mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-05 13:53:23 +02:00
Compare commits
165 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
7a395f67a7 | ||
|
|
971f245b3b | ||
|
|
12b17501e6 | ||
|
|
015022bb53 | ||
|
|
b43d89e311 | ||
|
|
80f19b4186 | ||
|
|
f8f820cc4d | ||
|
|
54a7272043 | ||
|
|
84778e9770 | ||
|
|
510676475f | ||
|
|
daa422881a | ||
|
|
eccc7a1602 | ||
|
|
0019279bb5 | ||
|
|
b0c75ac9f9 | ||
|
|
d6d2c2ab8c | ||
|
|
75afa0ae31 | ||
|
|
c772d54926 | ||
|
|
81c7e64fc2 | ||
|
|
526739b879 | ||
|
|
a25355e264 | ||
|
|
e959d32b1c | ||
|
|
307bfa253d | ||
|
|
71e90e8813 | ||
|
|
bc091a4dc5 | ||
|
|
a4837577aa | ||
|
|
e59ea539b8 | ||
|
|
c94085df28 | ||
|
|
e8a62631b3 | ||
|
|
b6930ebc42 | ||
|
|
68b08f36d0 | ||
|
|
578754b315 | ||
|
|
b2034c2b55 | ||
|
|
06bb53ad9b | ||
|
|
0c50923944 | ||
|
|
fccf9cae83 | ||
|
|
ec6c09d0fa | ||
|
|
8ac9f5d765 | ||
|
|
12e9158f25 | ||
|
|
5b1f13cb64 | ||
|
|
8b91d5355a | ||
|
|
0fed24c347 | ||
|
|
47ba87d0a4 | ||
|
|
1d2b613445 | ||
|
|
eb420e1148 | ||
|
|
cb79c2e7fa | ||
|
|
fe92821ea9 | ||
|
|
459895c326 | ||
|
|
e4bf72d631 | ||
|
|
8b9cc7cdd8 | ||
|
|
64eda5deb9 | ||
|
|
fe5b78c896 | ||
|
|
11d07e1e69 | ||
|
|
b0091ecc1e | ||
|
|
31f7803bc4 | ||
|
|
2391506ace | ||
|
|
d3bd7193ba | ||
|
|
d9a63b2f2e | ||
|
|
8ed71242f4 | ||
|
|
381603a775 | ||
|
|
65a69e6e1b | ||
|
|
47277d6d1d | ||
|
|
6e1c4cebdb | ||
|
|
0090950f67 | ||
|
|
7ecd780b1a | ||
|
|
7538246e7c | ||
|
|
b32efad2bc | ||
|
|
a19b5cef16 | ||
|
|
78a1ba0a4f | ||
|
|
2dabf759e7 | ||
|
|
1d343b4069 | ||
|
|
8ca6e1c3a4 | ||
|
|
656babd6c2 | ||
|
|
a226bc7a9a | ||
|
|
1466621e73 | ||
|
|
82974011f3 | ||
|
|
4ccea213bc | ||
|
|
1a1ab7e7a4 | ||
|
|
a4e46e28f9 | ||
|
|
ff067dbcb9 | ||
|
|
36ca8b3628 | ||
|
|
995083e4ed | ||
|
|
518a01480e | ||
|
|
e391d3ee8d | ||
|
|
bd3f59f812 | ||
|
|
52b3d71f12 | ||
|
|
d0d5b2232b | ||
|
|
916c83bfe7 | ||
|
|
0c74b04376 | ||
|
|
80b717d493 | ||
|
|
6bf28f0111 | ||
|
|
f1e3eb4249 | ||
|
|
0364178ca2 | ||
|
|
c6ff5d2a8d | ||
|
|
7a84777f42 | ||
|
|
3e1d29348b | ||
|
|
1be76e4620 | ||
|
|
b772394297 | ||
|
|
23106f94ea | ||
|
|
94148ba330 | ||
|
|
9ac4d611d0 | ||
|
|
348888e0dc | ||
|
|
74d4f5b041 | ||
|
|
35e592eb30 | ||
|
|
7d7b1bafa7 | ||
|
|
c262beddf2 | ||
|
|
5dd5d1ab00 | ||
|
|
1c059995e0 | ||
|
|
2004644b7a | ||
|
|
5f696e88e0 | ||
|
|
193c3e03a6 | ||
|
|
65cfe136a0 | ||
|
|
3f9da22c2b | ||
|
|
2a0dc97e56 | ||
|
|
97a20c012b | ||
|
|
f01bd02376 | ||
|
|
6f3bd38640 | ||
|
|
be0a0f8cae | ||
|
|
92e3006bb6 | ||
|
|
833e2b7409 | ||
|
|
e0e912f49b | ||
|
|
a10b36c91a | ||
|
|
83a88bd6af | ||
|
|
42eb248f46 | ||
|
|
9bacd6b374 | ||
|
|
267c1399f1 | ||
|
|
f423981ac8 | ||
|
|
e39e727e9a | ||
|
|
5936a616e4 | ||
|
|
3fd072a540 | ||
|
|
a6f32f0b34 | ||
|
|
2bb3597e42 | ||
|
|
8293970542 | ||
|
|
8bbf26083d | ||
|
|
35782aeedb | ||
|
|
c80a7759da | ||
|
|
250d7953e8 | ||
|
|
403fbacbbc | ||
|
|
a8a1f33567 | ||
|
|
1790e73157 | ||
|
|
0114a32da0 | ||
|
|
a7724480fd | ||
|
|
1a85949067 | ||
|
|
6c02a032fa | ||
|
|
f52d59d771 | ||
|
|
52de2e5949 | ||
|
|
2c3f8b850a | ||
|
|
4663bd353c | ||
|
|
b3de7cac73 | ||
|
|
7242dd9675 | ||
|
|
492d7f1ff7 | ||
|
|
d3f1f0acfb | ||
|
|
360dc22c00 | ||
|
|
a62d7fa7a9 | ||
|
|
e408d4351a | ||
|
|
3891e183c6 | ||
|
|
af6ae1efb2 | ||
|
|
0bb2919335 | ||
|
|
a69f846351 | ||
|
|
d07a0d7a79 | ||
|
|
3714c3ee1a | ||
|
|
b4ae50810e | ||
|
|
b86f600723 | ||
|
|
dd373dd3bf | ||
|
|
5d01670266 | ||
|
|
ef03229ff4 |
@@ -14,9 +14,9 @@ WORKDIR /app
|
||||
COPY . .
|
||||
|
||||
RUN if [ "$TARGETARCH" = "amd64" ]; then \
|
||||
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON; \
|
||||
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON; \
|
||||
elif [ "$TARGETARCH" = "arm64" ]; then \
|
||||
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=${GGML_CPU_ARM_ARCH}; \
|
||||
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=${GGML_CPU_ARM_ARCH}; \
|
||||
else \
|
||||
echo "Unsupported architecture"; \
|
||||
exit 1; \
|
||||
|
||||
@@ -21,7 +21,7 @@ COPY . .
|
||||
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib && \
|
||||
|
||||
@@ -17,7 +17,7 @@ RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
|
||||
&& export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
|
||||
fi && \
|
||||
echo "Building with dynamic libs" && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${OPT_SYCL_F16} && \
|
||||
cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib && \
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
ARG ASCEND_VERSION=8.0.rc2.alpha003-910b-openeuler22.03-py3.8
|
||||
ARG ASCEND_VERSION=8.1.RC1.alpha001-910b-openeuler22.03-py3.10
|
||||
|
||||
FROM ascendai/cann:$ASCEND_VERSION AS build
|
||||
|
||||
@@ -6,7 +6,7 @@ WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN yum install -y gcc g++ cmake make
|
||||
RUN yum install -y gcc g++ cmake make libcurl-devel
|
||||
ENV ASCEND_TOOLKIT_HOME=/usr/local/Ascend/ascend-toolkit/latest
|
||||
ENV LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:$LIBRARY_PATH
|
||||
ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${ASCEND_TOOLKIT_HOME}/lib64/plugin/opskernel:${ASCEND_TOOLKIT_HOME}/lib64/plugin/nnengine:${ASCEND_TOOLKIT_HOME}/opp/built-in/op_impl/ai_core/tbe/op_tiling:${LD_LIBRARY_PATH}
|
||||
|
||||
@@ -35,7 +35,7 @@ COPY . .
|
||||
RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib && \
|
||||
|
||||
@@ -17,8 +17,8 @@ FROM ${BASE_ROCM_DEV_CONTAINER} AS build
|
||||
# gfx906 is deprecated
|
||||
#check https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.2.4/reference/system-requirements.html
|
||||
|
||||
#ARG ROCM_DOCKER_ARCH='gfx803,gfx900,gfx906,gfx908,gfx90a,gfx942,gfx1010,gfx1030,gfx1032,gfx1100,gfx1101,gfx1102'
|
||||
ARG ROCM_DOCKER_ARCH=gfx1100
|
||||
ARG ROCM_DOCKER_ARCH='gfx803,gfx900,gfx906,gfx908,gfx90a,gfx942,gfx1010,gfx1030,gfx1032,gfx1100,gfx1101,gfx1102'
|
||||
#ARG ROCM_DOCKER_ARCH=gfx1100
|
||||
|
||||
# Set nvcc architectured
|
||||
ENV AMDGPU_TARGETS=${ROCM_DOCKER_ARCH}
|
||||
@@ -40,7 +40,7 @@ WORKDIR /app
|
||||
COPY . .
|
||||
|
||||
RUN HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
|
||||
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$ROCM_DOCKER_ARCH -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON \
|
||||
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$ROCM_DOCKER_ARCH -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON \
|
||||
&& cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib \
|
||||
|
||||
@@ -16,7 +16,7 @@ WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_CURL=1 && \
|
||||
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_CURL=1 -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON && \
|
||||
cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib && \
|
||||
|
||||
25
.github/actions/windows-setup-curl/action.yml
vendored
Normal file
25
.github/actions/windows-setup-curl/action.yml
vendored
Normal file
@@ -0,0 +1,25 @@
|
||||
name: 'Windows - Setup CURL'
|
||||
description: 'Composite action, to be reused in other workflow'
|
||||
inputs:
|
||||
curl_version:
|
||||
description: 'CURL version'
|
||||
required: false
|
||||
default: '8.6.0_6'
|
||||
outputs:
|
||||
curl_path:
|
||||
description: "Path to the downloaded libcurl"
|
||||
value: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
shell: powershell
|
||||
env:
|
||||
CURL_VERSION: ${{ inputs.curl_version }}
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/curl.zip -L "https://curl.se/windows/dl-${env:CURL_VERSION}/curl-${env:CURL_VERSION}-win64-mingw.zip"
|
||||
mkdir $env:RUNNER_TEMP/libcurl
|
||||
tar.exe -xvf $env:RUNNER_TEMP/curl.zip --strip-components=1 -C $env:RUNNER_TEMP/libcurl
|
||||
echo "curl_path=$env:RUNNER_TEMP/libcurl" >> $env:GITHUB_OUTPUT
|
||||
1
.github/workflows/bench.yml.disabled
vendored
1
.github/workflows/bench.yml.disabled
vendored
@@ -104,7 +104,6 @@ jobs:
|
||||
cmake -B build \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DLLAMA_CUBLAS=ON \
|
||||
-DCUDAToolkit_ROOT=/usr/local/cuda \
|
||||
-DCMAKE_CUDA_COMPILER=/usr/local/cuda/bin/nvcc \
|
||||
|
||||
124
.github/workflows/build-linux-cross.yml
vendored
Normal file
124
.github/workflows/build-linux-cross.yml
vendored
Normal file
@@ -0,0 +1,124 @@
|
||||
name: Build on Linux using cross-compiler
|
||||
on:
|
||||
workflow_dispatch:
|
||||
workflow_call:
|
||||
|
||||
jobs:
|
||||
ubuntu-latest-riscv64-cpu-cross:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Setup Riscv
|
||||
run: |
|
||||
sudo dpkg --add-architecture riscv64
|
||||
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
|
||||
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
|
||||
sudo apt-get clean
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
gcc-14-riscv64-linux-gnu \
|
||||
g++-14-riscv64-linux-gnu \
|
||||
libcurl4-openssl-dev:riscv64
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
|
||||
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
|
||||
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
|
||||
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
ubuntu-latest-riscv64-vulkan-cross:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Setup Riscv
|
||||
run: |
|
||||
sudo dpkg --add-architecture riscv64
|
||||
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
|
||||
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
|
||||
sudo apt-get clean
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
glslc \
|
||||
gcc-14-riscv64-linux-gnu \
|
||||
g++-14-riscv64-linux-gnu \
|
||||
libvulkan-dev:riscv64 \
|
||||
libcurl4-openssl-dev:riscv64
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
|
||||
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
|
||||
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
|
||||
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
ubuntu-latest-arm64-vulkan-cross:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Setup Arm64
|
||||
run: |
|
||||
sudo dpkg --add-architecture arm64
|
||||
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
|
||||
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
|
||||
sudo apt-get clean
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
glslc \
|
||||
crossbuild-essential-arm64 \
|
||||
libvulkan-dev:arm64 \
|
||||
libcurl4-openssl-dev:arm64
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=aarch64 \
|
||||
-DCMAKE_C_COMPILER=aarch64-linux-gnu-gcc \
|
||||
-DCMAKE_CXX_COMPILER=aarch64-linux-gnu-g++ \
|
||||
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
-DCMAKE_FIND_ROOT_PATH=/usr/lib/aarch64-linux-gnu \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
96
.github/workflows/build.yml
vendored
96
.github/workflows/build.yml
vendored
@@ -10,7 +10,7 @@ on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['.github/workflows/build.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal', '**/*.comp']
|
||||
paths: ['.github/workflows/build.yml', '.github/workflows/build-linux-cross.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal', '**/*.comp']
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['.github/workflows/build.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal', '**/*.comp']
|
||||
@@ -54,6 +54,7 @@ jobs:
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
brew install curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@@ -62,7 +63,6 @@ jobs:
|
||||
cmake -B build \
|
||||
-DCMAKE_BUILD_RPATH="@loader_path" \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DGGML_RPC=ON
|
||||
@@ -92,7 +92,6 @@ jobs:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
@@ -123,6 +122,7 @@ jobs:
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
brew install curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@@ -133,7 +133,6 @@ jobs:
|
||||
cmake -B build \
|
||||
-DCMAKE_BUILD_RPATH="@loader_path" \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DGGML_METAL=OFF \
|
||||
-DGGML_RPC=ON
|
||||
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
@@ -162,7 +161,6 @@ jobs:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
@@ -207,7 +205,6 @@ jobs:
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DGGML_RPC=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
@@ -246,7 +243,6 @@ jobs:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
@@ -281,7 +277,7 @@ jobs:
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install build-essential libcurl4-openssl-dev
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@@ -322,7 +318,7 @@ jobs:
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install build-essential libcurl4-openssl-dev
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@@ -360,7 +356,7 @@ jobs:
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install build-essential libcurl4-openssl-dev
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@@ -397,7 +393,7 @@ jobs:
|
||||
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | sudo apt-key add -
|
||||
sudo wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
|
||||
sudo apt-get update -y
|
||||
sudo apt-get install -y build-essential mesa-vulkan-drivers vulkan-sdk
|
||||
sudo apt-get install -y build-essential mesa-vulkan-drivers vulkan-sdk libcurl4-openssl-dev
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@@ -431,7 +427,6 @@ jobs:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
@@ -454,7 +449,7 @@ jobs:
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev
|
||||
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev libcurl4-openssl-dev
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
@@ -530,7 +525,7 @@ jobs:
|
||||
shell: bash
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install intel-oneapi-compiler-dpcpp-cpp
|
||||
sudo apt install intel-oneapi-compiler-dpcpp-cpp libcurl4-openssl-dev
|
||||
|
||||
- name: install oneAPI MKL library
|
||||
shell: bash
|
||||
@@ -578,7 +573,7 @@ jobs:
|
||||
shell: bash
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install intel-oneapi-compiler-dpcpp-cpp
|
||||
sudo apt install intel-oneapi-compiler-dpcpp-cpp libcurl4-openssl-dev
|
||||
|
||||
- name: install oneAPI MKL library
|
||||
shell: bash
|
||||
@@ -606,6 +601,9 @@ jobs:
|
||||
-DGGML_SYCL_F16=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
build-linux-cross:
|
||||
uses: ./.github/workflows/build-linux-cross.yml
|
||||
|
||||
macOS-latest-cmake-ios:
|
||||
runs-on: macos-latest
|
||||
|
||||
@@ -633,6 +631,7 @@ jobs:
|
||||
cmake -B build -G Xcode \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_BUILD_COMMON=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
@@ -668,6 +667,7 @@ jobs:
|
||||
cmake -B build -G Xcode \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_BUILD_COMMON=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
@@ -697,6 +697,7 @@ jobs:
|
||||
cmake -B build -G Xcode \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_BUILD_COMMON=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
@@ -736,6 +737,7 @@ jobs:
|
||||
cmake -B build -G Xcode \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
@@ -803,7 +805,7 @@ jobs:
|
||||
env:
|
||||
OPENBLAS_VERSION: 0.3.23
|
||||
SDE_VERSION: 9.33.0-2024-01-07
|
||||
VULKAN_VERSION: 1.4.304.1
|
||||
VULKAN_VERSION: 1.4.309.0
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
@@ -896,10 +898,17 @@ jobs:
|
||||
-DCMAKE_INSTALL_PREFIX="$env:RUNNER_TEMP/opencl-arm64-release"
|
||||
cmake --build build-arm64-release --target install --config release
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cmake -S . -B build ${{ matrix.defines }}
|
||||
cmake -S . -B build ${{ matrix.defines }} `
|
||||
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
|
||||
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS}
|
||||
|
||||
- name: Add libopenblas.dll
|
||||
@@ -959,9 +968,10 @@ jobs:
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
Copy-Item LICENSE .\build\bin\Release\llama.cpp.txt
|
||||
Copy-Item .\examples\run\linenoise.cpp\LICENSE .\build\bin\Release\linenoise.cpp.txt
|
||||
Copy-Item $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\Release\libcurl-x64.dll
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}.zip .\build\bin\Release\*
|
||||
|
||||
- name: Upload artifacts
|
||||
@@ -987,7 +997,7 @@ jobs:
|
||||
DEBIAN_FRONTEND: noninteractive
|
||||
run: |
|
||||
apt update
|
||||
apt install -y cmake build-essential ninja-build libgomp1 git
|
||||
apt install -y cmake build-essential ninja-build libgomp1 git libcurl4-openssl-dev
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
@@ -1089,16 +1099,23 @@ jobs:
|
||||
run: |
|
||||
choco install ninja
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
shell: cmd
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
|
||||
cmake -S . -B build -G "Ninja Multi-Config" ^
|
||||
-DLLAMA_BUILD_SERVER=ON ^
|
||||
-DGGML_NATIVE=OFF ^
|
||||
-DGGML_CUDA=ON ^
|
||||
-DGGML_RPC=ON
|
||||
-DGGML_RPC=ON ^
|
||||
-DCURL_LIBRARY="%CURL_PATH%/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="%CURL_PATH%/include"
|
||||
set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1
|
||||
cmake --build build --config Release -j %NINJA_JOBS% -t ggml
|
||||
cmake --build build --config Release
|
||||
@@ -1119,7 +1136,10 @@ jobs:
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cp $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\Release\libcurl-x64.dll
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip .\build\bin\Release\*
|
||||
|
||||
- name: Upload artifacts
|
||||
@@ -1174,6 +1194,8 @@ jobs:
|
||||
run: |
|
||||
scripts/install-oneapi.bat $WINDOWS_BASEKIT_URL $WINDOWS_DPCPP_MKL
|
||||
|
||||
# TODO: add libcurl support ; we will also need to modify win-build-sycl.bat to accept user-specified args
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: examples/sycl/win-build-sycl.bat
|
||||
@@ -1259,8 +1281,14 @@ jobs:
|
||||
key: ${{ github.job }}
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
|
||||
@@ -1271,9 +1299,11 @@ jobs:
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DGGML_HIP=ON `
|
||||
-DGGML_HIP_ROCWMMA_FATTN=ON `
|
||||
-DGGML_RPC=ON
|
||||
-DGGML_RPC=ON `
|
||||
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
|
||||
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
|
||||
|
||||
# TODO: reuse windows-latest-cmake-hip instead of duplicating this job
|
||||
windows-latest-cmake-hip-release:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
runs-on: windows-latest
|
||||
@@ -1315,8 +1345,14 @@ jobs:
|
||||
run: |
|
||||
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
|
||||
@@ -1328,7 +1364,8 @@ jobs:
|
||||
-DAMDGPU_TARGETS=${{ matrix.gpu_target }} `
|
||||
-DGGML_HIP_ROCWMMA_FATTN=ON `
|
||||
-DGGML_HIP=ON `
|
||||
-DGGML_RPC=ON
|
||||
-DGGML_RPC=ON `
|
||||
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
|
||||
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
|
||||
md "build\bin\rocblas\library\"
|
||||
cp "${env:HIP_PATH}\bin\hipblas.dll" "build\bin\"
|
||||
@@ -1350,7 +1387,10 @@ jobs:
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cp $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\libcurl-x64.dll
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-hip-x64-${{ matrix.gpu_target }}.zip .\build\bin\*
|
||||
|
||||
- name: Upload artifacts
|
||||
@@ -1375,6 +1415,7 @@ jobs:
|
||||
cmake -B build -G Xcode \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
@@ -1725,16 +1766,17 @@ jobs:
|
||||
if: ${{ github.event_name != 'pull_request' || contains(github.event.pull_request.labels.*.name, 'Ascend NPU') }}
|
||||
defaults:
|
||||
run:
|
||||
shell: bash -el {0}
|
||||
runs-on: ubuntu-24.04-arm
|
||||
shell: bash -el {0}
|
||||
strategy:
|
||||
matrix:
|
||||
arch: [x86, aarch64]
|
||||
cann:
|
||||
- '8.0.rc3.beta1-910b-openeuler22.03-py3.10'
|
||||
- '8.1.RC1.alpha001-910b-openeuler22.03-py3.10'
|
||||
device:
|
||||
- 'ascend910b3'
|
||||
build:
|
||||
- 'Release'
|
||||
runs-on: ${{ matrix.arch == 'aarch64' && 'ubuntu-24.04-arm' || 'ubuntu-24.04' }}
|
||||
container: ascendai/cann:${{ matrix.cann }}
|
||||
steps:
|
||||
- name: Checkout
|
||||
@@ -1743,7 +1785,7 @@ jobs:
|
||||
- name: Dependencies
|
||||
run: |
|
||||
yum update -y
|
||||
yum install -y git gcc gcc-c++ make cmake
|
||||
yum install -y git gcc gcc-c++ make cmake libcurl-devel
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
|
||||
12
.github/workflows/docker.yml
vendored
12
.github/workflows/docker.yml
vendored
@@ -36,13 +36,13 @@ jobs:
|
||||
matrix:
|
||||
config:
|
||||
# Multi-stage build
|
||||
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, freediskspace: false}
|
||||
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
|
||||
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
|
||||
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
|
||||
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
|
||||
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: false }
|
||||
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
|
||||
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true }
|
||||
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
|
||||
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
|
||||
# Note: the rocm images are failing due to a compiler error and are disabled until this is fixed to allow the workflow to complete
|
||||
#- {tag: "rocm", dockerfile: ".devops/rocm.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, freediskspace: true }
|
||||
#- {tag: "rocm", dockerfile: ".devops/rocm.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: true }
|
||||
steps:
|
||||
- name: Check out the repo
|
||||
uses: actions/checkout@v4
|
||||
|
||||
18
.github/workflows/server.yml
vendored
18
.github/workflows/server.yml
vendored
@@ -129,7 +129,6 @@ jobs:
|
||||
cmake -B build \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
|
||||
-DGGML_OPENMP=OFF ;
|
||||
@@ -142,7 +141,6 @@ jobs:
|
||||
cmake -B build \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
|
||||
@@ -154,7 +152,6 @@ jobs:
|
||||
cmake -B build \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} ;
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
|
||||
|
||||
@@ -195,17 +192,14 @@ jobs:
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
env:
|
||||
CURL_VERSION: 8.6.0_6
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/curl.zip -L "https://curl.se/windows/dl-${env:CURL_VERSION}/curl-${env:CURL_VERSION}-win64-mingw.zip"
|
||||
mkdir $env:RUNNER_TEMP/libcurl
|
||||
tar.exe -xvf $env:RUNNER_TEMP/curl.zip --strip-components=1 -C $env:RUNNER_TEMP/libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cmake -B build -DLLAMA_CURL=ON -DCURL_LIBRARY="$env:RUNNER_TEMP/libcurl/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:RUNNER_TEMP/libcurl/include"
|
||||
cmake -B build -DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
|
||||
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS} --target llama-server
|
||||
|
||||
- name: Python setup
|
||||
@@ -221,8 +215,10 @@ jobs:
|
||||
|
||||
- name: Copy Libcurl
|
||||
id: prepare_libcurl
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cp $env:RUNNER_TEMP/libcurl/bin/libcurl-x64.dll ./build/bin/Release/libcurl-x64.dll
|
||||
cp $env:CURL_PATH/bin/libcurl-x64.dll ./build/bin/Release/libcurl-x64.dll
|
||||
|
||||
- name: Tests
|
||||
id: server_integration_tests
|
||||
|
||||
@@ -81,7 +81,7 @@ option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_SERVER "llama: build server example" ${LLAMA_STANDALONE})
|
||||
|
||||
# 3rd party libs
|
||||
option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF)
|
||||
option(LLAMA_CURL "llama: use libcurl to download model from an URL" ON)
|
||||
option(LLAMA_LLGUIDANCE "llama-common: include LLGuidance library for structured output in common utils" OFF)
|
||||
|
||||
# Required for relocatable CMake package
|
||||
@@ -168,6 +168,11 @@ add_subdirectory(src)
|
||||
# utils, programs, examples and tests
|
||||
#
|
||||
|
||||
if (NOT LLAMA_BUILD_COMMON)
|
||||
message(STATUS "LLAMA_BUILD_COMMON is OFF, disabling LLAMA_CURL")
|
||||
set(LLAMA_CURL OFF)
|
||||
endif()
|
||||
|
||||
if (LLAMA_BUILD_COMMON)
|
||||
add_subdirectory(common)
|
||||
endif()
|
||||
@@ -242,3 +247,20 @@ configure_file(cmake/llama.pc.in
|
||||
|
||||
install(FILES "${CMAKE_CURRENT_BINARY_DIR}/llama.pc"
|
||||
DESTINATION ${CMAKE_INSTALL_LIBDIR}/pkgconfig)
|
||||
|
||||
#
|
||||
# copy the license files
|
||||
#
|
||||
|
||||
# Check if running in GitHub Actions
|
||||
if(DEFINED ENV{GITHUB_ACTIONS} AND "$ENV{GITHUB_ACTIONS}" STREQUAL "true")
|
||||
message(STATUS "Running inside GitHub Actions - copying license files")
|
||||
|
||||
# Copy all files from licenses/ to build/bin/
|
||||
file(GLOB LICENSE_FILES "${CMAKE_SOURCE_DIR}/licenses/*")
|
||||
foreach(LICENSE_FILE ${LICENSE_FILES})
|
||||
get_filename_component(FILENAME ${LICENSE_FILE} NAME)
|
||||
configure_file(${LICENSE_FILE} "${CMAKE_BINARY_DIR}/bin/${FILENAME}" COPYONLY)
|
||||
endforeach()
|
||||
endif()
|
||||
|
||||
|
||||
4
Makefile
4
Makefile
@@ -780,10 +780,6 @@ ifdef GGML_HIP
|
||||
|
||||
MK_CPPFLAGS += -DGGML_USE_HIP -DGGML_USE_CUDA
|
||||
|
||||
ifdef GGML_HIP_UMA
|
||||
MK_CPPFLAGS += -DGGML_HIP_UMA
|
||||
endif # GGML_HIP_UMA
|
||||
|
||||
MK_LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
|
||||
MK_LDFLAGS += -L$(ROCM_PATH)/lib64 -Wl,-rpath=$(ROCM_PATH)/lib64
|
||||
MK_LDFLAGS += -lhipblas -lamdhip64 -lrocblas
|
||||
|
||||
44
README.md
44
README.md
@@ -9,13 +9,6 @@
|
||||
|
||||
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
|
||||
|
||||
> [!IMPORTANT]
|
||||
> New `llama.cpp` package location: [ggml-org/llama.cpp](https://github.com/ggml-org/llama.cpp/pkgs/container/llama.cpp)
|
||||
>
|
||||
> Update your container URLs to: `ghcr.io/ggml-org/llama.cpp`
|
||||
>
|
||||
> More info: https://github.com/ggml-org/llama.cpp/discussions/11801
|
||||
|
||||
## Recent API changes
|
||||
|
||||
- [Changelog for `libllama` API](https://github.com/ggml-org/llama.cpp/issues/9289)
|
||||
@@ -104,6 +97,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- [x] [Flan T5](https://huggingface.co/models?search=flan-t5)
|
||||
- [x] [Open Elm models](https://huggingface.co/collections/apple/openelm-instruct-models-6619ad295d7ae9f868b759ca)
|
||||
- [x] [ChatGLM3-6b](https://huggingface.co/THUDM/chatglm3-6b) + [ChatGLM4-9b](https://huggingface.co/THUDM/glm-4-9b) + [GLMEdge-1.5b](https://huggingface.co/THUDM/glm-edge-1.5b-chat) + [GLMEdge-4b](https://huggingface.co/THUDM/glm-edge-4b-chat)
|
||||
- [x] [GLM-4-0414](https://huggingface.co/collections/THUDM/glm-4-0414-67f3cbcb34dd9d252707cb2e)
|
||||
- [x] [SmolLM](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad7167254ce15966)
|
||||
- [x] [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)
|
||||
- [x] [FalconMamba Models](https://huggingface.co/collections/tiiuae/falconmamba-7b-66b9a580324dd1598b0f6d4a)
|
||||
@@ -112,6 +106,8 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- [x] [RWKV-6](https://github.com/BlinkDL/RWKV-LM)
|
||||
- [x] [QRWKV-6](https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1)
|
||||
- [x] [GigaChat-20B-A3B](https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct)
|
||||
- [X] [Trillion-7B-preview](https://huggingface.co/trillionlabs/Trillion-7B-preview)
|
||||
- [x] [Ling models](https://huggingface.co/collections/inclusionAI/ling-67c51c85b34a7ea0aba94c32)
|
||||
|
||||
#### Multimodal
|
||||
|
||||
@@ -245,6 +241,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
| [Vulkan](docs/build.md#vulkan) | GPU |
|
||||
| [CANN](docs/build.md#cann) | Ascend NPU |
|
||||
| [OpenCL](docs/backend/OPENCL.md) | Adreno GPU |
|
||||
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/examples/rpc) | All |
|
||||
|
||||
## Building the project
|
||||
|
||||
@@ -263,7 +260,9 @@ The [Hugging Face](https://huggingface.co) platform hosts a [number of LLMs](htt
|
||||
- [Trending](https://huggingface.co/models?library=gguf&sort=trending)
|
||||
- [LLaMA](https://huggingface.co/models?sort=trending&search=llama+gguf)
|
||||
|
||||
You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from Hugging Face by using this CLI argument: `-hf <user>/<model>[:quant]`
|
||||
You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from [Hugging Face](https://huggingface.co/) or other model hosting sites, such as [ModelScope](https://modelscope.cn/), by using this CLI argument: `-hf <user>/<model>[:quant]`.
|
||||
|
||||
By default, the CLI would download from Hugging Face, you can switch to other options with the environment variable `MODEL_ENDPOINT`. For example, you may opt to downloading model checkpoints from ModelScope or other model sharing communities by setting the environment variable, e.g. `MODEL_ENDPOINT=https://www.modelscope.cn/`.
|
||||
|
||||
After downloading a model, use the CLI tools to run it locally - see below.
|
||||
|
||||
@@ -528,6 +527,35 @@ If your issue is with model generation quality, then please at least scan the fo
|
||||
- [Aligning language models to follow instructions](https://openai.com/research/instruction-following)
|
||||
- [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)
|
||||
|
||||
## XCFramework
|
||||
The XCFramework is a precompiled version of the library for iOS, visionOS, tvOS,
|
||||
and macOS. It can be used in Swift projects without the need to compile the
|
||||
library from source. For example:
|
||||
```swift
|
||||
// swift-tools-version: 5.10
|
||||
// The swift-tools-version declares the minimum version of Swift required to build this package.
|
||||
|
||||
import PackageDescription
|
||||
|
||||
let package = Package(
|
||||
name: "MyLlamaPackage",
|
||||
targets: [
|
||||
.executableTarget(
|
||||
name: "MyLlamaPackage",
|
||||
dependencies: [
|
||||
"LlamaFramework"
|
||||
]),
|
||||
.binaryTarget(
|
||||
name: "LlamaFramework",
|
||||
url: "https://github.com/ggml-org/llama.cpp/releases/download/b5046/llama-b5046-xcframework.zip",
|
||||
checksum: "c19be78b5f00d8d29a25da41042cb7afa094cbf6280a225abe614b03b20029ab"
|
||||
)
|
||||
]
|
||||
)
|
||||
```
|
||||
The above example is using an intermediate build `b5046` of the library. This can be modified
|
||||
to use a different version by changing the URL and checksum.
|
||||
|
||||
## Completions
|
||||
Command-line completion is available for some environments.
|
||||
|
||||
|
||||
@@ -41,6 +41,11 @@ COMMON_CMAKE_ARGS=(
|
||||
-DGGML_OPENMP=${GGML_OPENMP}
|
||||
)
|
||||
|
||||
XCODE_VERSION=$(xcodebuild -version 2>/dev/null | head -n1 | awk '{ print $2 }')
|
||||
MAJOR_VERSION=$(echo $XCODE_VERSION | cut -d. -f1)
|
||||
MINOR_VERSION=$(echo $XCODE_VERSION | cut -d. -f2)
|
||||
echo "Detected Xcode version: $XCODE_VERSION"
|
||||
|
||||
check_required_tool() {
|
||||
local tool=$1
|
||||
local install_message=$2
|
||||
@@ -325,21 +330,28 @@ combine_static_libraries() {
|
||||
|
||||
# Platform-specific post-processing for device builds
|
||||
if [[ "$is_simulator" == "false" ]]; then
|
||||
if command -v vtool &>/dev/null; then
|
||||
if command -v xcrun vtool &>/dev/null; then
|
||||
case "$platform" in
|
||||
"ios")
|
||||
echo "Marking binary as a framework binary for iOS..."
|
||||
vtool -set-build-version ios ${IOS_MIN_OS_VERSION} ${IOS_MIN_OS_VERSION} -replace \
|
||||
xcrun vtool -set-build-version ios ${IOS_MIN_OS_VERSION} ${IOS_MIN_OS_VERSION} -replace \
|
||||
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
|
||||
;;
|
||||
"visionos")
|
||||
echo "Marking binary as a framework binary for visionOS..."
|
||||
vtool -set-build-version xros ${VISIONOS_MIN_OS_VERSION} ${VISIONOS_MIN_OS_VERSION} -replace \
|
||||
if [[ "$MAJOR_VERSION" -gt 16 ]] || [[ "$MAJOR_VERSION" -eq 16 && "$MINOR_VERSION" -gt 2 ]]; then
|
||||
echo "Xcode version greater than 16.2, using visionOS."
|
||||
VISION_OS_BUILD_VERSION="visionos"
|
||||
else
|
||||
echo "Xcode version less than or equal to 16.2, using xros."
|
||||
VISION_OS_BUILD_VERSION="xros"
|
||||
fi
|
||||
xcrun vtool -set-build-version ${VISION_OS_BUILD_VERSION} ${VISIONOS_MIN_OS_VERSION} ${VISIONOS_MIN_OS_VERSION} -replace \
|
||||
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
|
||||
;;
|
||||
"tvos")
|
||||
echo "Marking binary as a framework binary for tvOS..."
|
||||
vtool -set-build-version tvos ${TVOS_MIN_OS_VERSION} ${TVOS_MIN_OS_VERSION} -replace \
|
||||
xcrun vtool -set-build-version tvos ${TVOS_MIN_OS_VERSION} ${TVOS_MIN_OS_VERSION} -replace \
|
||||
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
|
||||
;;
|
||||
esac
|
||||
@@ -399,6 +411,7 @@ cmake -B build-ios-sim -G Xcode \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphonesimulator \
|
||||
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-ios-sim --config Release -- -quiet
|
||||
|
||||
@@ -411,6 +424,7 @@ cmake -B build-ios-device -G Xcode \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphoneos \
|
||||
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-ios-device --config Release -- -quiet
|
||||
|
||||
@@ -421,6 +435,7 @@ cmake -B build-macos -G Xcode \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
|
||||
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-macos --config Release -- -quiet
|
||||
|
||||
@@ -434,6 +449,7 @@ cmake -B build-visionos -G Xcode \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xros \
|
||||
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-visionos --config Release -- -quiet
|
||||
|
||||
@@ -447,6 +463,7 @@ cmake -B build-visionos-sim -G Xcode \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xrsimulator \
|
||||
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-visionos-sim --config Release -- -quiet
|
||||
|
||||
@@ -462,6 +479,7 @@ cmake -B build-tvos-sim -G Xcode \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=appletvsimulator \
|
||||
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-tvos-sim --config Release -- -quiet
|
||||
|
||||
@@ -476,6 +494,7 @@ cmake -B build-tvos-device -G Xcode \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=appletvos \
|
||||
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-tvos-device --config Release -- -quiet
|
||||
|
||||
|
||||
@@ -60,7 +60,7 @@ docker run --privileged -it \
|
||||
Inside the container, execute the following commands:
|
||||
|
||||
```bash
|
||||
apt update -y && apt install -y bc cmake git python3.10-venv time unzip wget
|
||||
apt update -y && apt install -y bc cmake ccache git python3.10-venv time unzip wget
|
||||
git config --global --add safe.directory /ws
|
||||
GG_BUILD_MUSA=1 bash ./ci/run.sh /ci-results /ci-cache
|
||||
```
|
||||
|
||||
@@ -39,7 +39,7 @@ sd=`dirname $0`
|
||||
cd $sd/../
|
||||
SRC=`pwd`
|
||||
|
||||
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON"
|
||||
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=OFF"
|
||||
|
||||
if [ ! -z ${GG_BUILD_METAL} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON -DGGML_METAL_USE_BF16=ON"
|
||||
@@ -59,6 +59,8 @@ if [ ! -z ${GG_BUILD_SYCL} ]; then
|
||||
export ONEAPI_DEVICE_SELECTOR="level_zero:0"
|
||||
# Enable sysman for correct memory reporting
|
||||
export ZES_ENABLE_SYSMAN=1
|
||||
# to circumvent precision issues on CPY operations
|
||||
export SYCL_PROGRAM_COMPILE_OPTIONS="-cl-fp32-correctly-rounded-divide-sqrt"
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_SYCL=1 -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON"
|
||||
fi
|
||||
|
||||
@@ -69,7 +71,7 @@ fi
|
||||
if [ ! -z ${GG_BUILD_MUSA} ]; then
|
||||
# Use qy1 by default (MTT S80)
|
||||
MUSA_ARCH=${MUSA_ARCH:-21}
|
||||
CMAKE_EXTRA="-DGGML_MUSA=ON -DMUSA_ARCHITECTURES=${MUSA_ARCH}"
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_MUSA=ON -DMUSA_ARCHITECTURES=${MUSA_ARCH}"
|
||||
fi
|
||||
## helpers
|
||||
|
||||
|
||||
@@ -85,7 +85,10 @@ set(LLAMA_COMMON_EXTRA_LIBS build_info)
|
||||
|
||||
# Use curl to download model url
|
||||
if (LLAMA_CURL)
|
||||
find_package(CURL REQUIRED)
|
||||
find_package(CURL)
|
||||
if (NOT CURL_FOUND)
|
||||
message(FATAL_ERROR "Could NOT find CURL. Hint: to disable this feature, set -DLLAMA_CURL=OFF")
|
||||
endif()
|
||||
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_CURL)
|
||||
include_directories(${CURL_INCLUDE_DIRS})
|
||||
find_library(CURL_LIBRARY curl REQUIRED)
|
||||
|
||||
721
common/arg.cpp
721
common/arg.cpp
@@ -1,12 +1,24 @@
|
||||
#include "gguf.h" // for reading GGUF splits
|
||||
#include "arg.h"
|
||||
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "sampling.h"
|
||||
#include "chat.h"
|
||||
|
||||
// fix problem with std::min and std::max
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
# define NOMINMAX
|
||||
#endif
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
#include <algorithm>
|
||||
#include <climits>
|
||||
#include <cstdarg>
|
||||
#include <filesystem>
|
||||
#include <fstream>
|
||||
#include <regex>
|
||||
#include <set>
|
||||
@@ -14,6 +26,14 @@
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
//#define LLAMA_USE_CURL
|
||||
|
||||
#if defined(LLAMA_USE_CURL)
|
||||
#include <curl/curl.h>
|
||||
#include <curl/easy.h>
|
||||
#include <future>
|
||||
#endif
|
||||
|
||||
#include "json-schema-to-grammar.h"
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
@@ -125,47 +145,554 @@ std::string common_arg::to_string() {
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
//
|
||||
// downloader
|
||||
//
|
||||
|
||||
struct common_hf_file_res {
|
||||
std::string repo; // repo name with ":tag" removed
|
||||
std::string ggufFile;
|
||||
std::string mmprojFile;
|
||||
};
|
||||
|
||||
#ifdef LLAMA_USE_CURL
|
||||
|
||||
#ifdef __linux__
|
||||
#include <linux/limits.h>
|
||||
#elif defined(_WIN32)
|
||||
# if !defined(PATH_MAX)
|
||||
# define PATH_MAX MAX_PATH
|
||||
# endif
|
||||
#elif defined(_AIX)
|
||||
#include <sys/limits.h>
|
||||
#else
|
||||
#include <sys/syslimits.h>
|
||||
#endif
|
||||
#define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
|
||||
|
||||
//
|
||||
// CURL utils
|
||||
//
|
||||
|
||||
using curl_ptr = std::unique_ptr<CURL, decltype(&curl_easy_cleanup)>;
|
||||
|
||||
// cannot use unique_ptr for curl_slist, because we cannot update without destroying the old one
|
||||
struct curl_slist_ptr {
|
||||
struct curl_slist * ptr = nullptr;
|
||||
~curl_slist_ptr() {
|
||||
if (ptr) {
|
||||
curl_slist_free_all(ptr);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
#define CURL_MAX_RETRY 3
|
||||
#define CURL_RETRY_DELAY_SECONDS 2
|
||||
|
||||
static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds) {
|
||||
int remaining_attempts = max_attempts;
|
||||
|
||||
while (remaining_attempts > 0) {
|
||||
LOG_INF("%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
|
||||
|
||||
CURLcode res = curl_easy_perform(curl);
|
||||
if (res == CURLE_OK) {
|
||||
return true;
|
||||
}
|
||||
|
||||
int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
|
||||
LOG_WRN("%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
|
||||
|
||||
remaining_attempts--;
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
|
||||
}
|
||||
|
||||
LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// download one single file from remote URL to local path
|
||||
static bool common_download_file_single(const std::string & url, const std::string & path, const std::string & bearer_token) {
|
||||
// Initialize libcurl
|
||||
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
|
||||
curl_slist_ptr http_headers;
|
||||
if (!curl) {
|
||||
LOG_ERR("%s: error initializing libcurl\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
bool force_download = false;
|
||||
|
||||
// Set the URL, allow to follow http redirection
|
||||
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
|
||||
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
|
||||
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
|
||||
// Check if hf-token or bearer-token was specified
|
||||
if (!bearer_token.empty()) {
|
||||
std::string auth_header = "Authorization: Bearer " + bearer_token;
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
|
||||
}
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
|
||||
|
||||
#if defined(_WIN32)
|
||||
// CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
|
||||
// operating system. Currently implemented under MS-Windows.
|
||||
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
|
||||
#endif
|
||||
|
||||
// Check if the file already exists locally
|
||||
auto file_exists = std::filesystem::exists(path);
|
||||
|
||||
// If the file exists, check its JSON metadata companion file.
|
||||
std::string metadata_path = path + ".json";
|
||||
nlohmann::json metadata;
|
||||
std::string etag;
|
||||
std::string last_modified;
|
||||
|
||||
if (file_exists) {
|
||||
// Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
|
||||
std::ifstream metadata_in(metadata_path);
|
||||
if (metadata_in.good()) {
|
||||
try {
|
||||
metadata_in >> metadata;
|
||||
LOG_INF("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
|
||||
if (metadata.contains("url") && metadata.at("url").is_string()) {
|
||||
auto previous_url = metadata.at("url").get<std::string>();
|
||||
if (previous_url != url) {
|
||||
LOG_ERR("%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
if (metadata.contains("etag") && metadata.at("etag").is_string()) {
|
||||
etag = metadata.at("etag");
|
||||
}
|
||||
if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
|
||||
last_modified = metadata.at("lastModified");
|
||||
}
|
||||
} catch (const nlohmann::json::exception & e) {
|
||||
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
|
||||
}
|
||||
|
||||
// Send a HEAD request to retrieve the etag and last-modified headers
|
||||
struct common_load_model_from_url_headers {
|
||||
std::string etag;
|
||||
std::string last_modified;
|
||||
};
|
||||
|
||||
common_load_model_from_url_headers headers;
|
||||
|
||||
{
|
||||
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
|
||||
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
|
||||
common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
|
||||
|
||||
static std::regex header_regex("([^:]+): (.*)\r\n");
|
||||
static std::regex etag_regex("ETag", std::regex_constants::icase);
|
||||
static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
|
||||
|
||||
std::string header(buffer, n_items);
|
||||
std::smatch match;
|
||||
if (std::regex_match(header, match, header_regex)) {
|
||||
const std::string & key = match[1];
|
||||
const std::string & value = match[2];
|
||||
if (std::regex_match(key, match, etag_regex)) {
|
||||
headers->etag = value;
|
||||
} else if (std::regex_match(key, match, last_modified_regex)) {
|
||||
headers->last_modified = value;
|
||||
}
|
||||
}
|
||||
return n_items;
|
||||
};
|
||||
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
|
||||
|
||||
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
|
||||
if (!was_perform_successful) {
|
||||
return false;
|
||||
}
|
||||
|
||||
long http_code = 0;
|
||||
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
|
||||
if (http_code != 200) {
|
||||
// HEAD not supported, we don't know if the file has changed
|
||||
// force trigger downloading
|
||||
force_download = true;
|
||||
LOG_ERR("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
|
||||
}
|
||||
}
|
||||
|
||||
bool should_download = !file_exists || force_download;
|
||||
if (!should_download) {
|
||||
if (!etag.empty() && etag != headers.etag) {
|
||||
LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
|
||||
should_download = true;
|
||||
} else if (!last_modified.empty() && last_modified != headers.last_modified) {
|
||||
LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
|
||||
should_download = true;
|
||||
}
|
||||
}
|
||||
if (should_download) {
|
||||
std::string path_temporary = path + ".downloadInProgress";
|
||||
if (file_exists) {
|
||||
LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
|
||||
if (remove(path.c_str()) != 0) {
|
||||
LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Set the output file
|
||||
|
||||
struct FILE_deleter {
|
||||
void operator()(FILE * f) const {
|
||||
fclose(f);
|
||||
}
|
||||
};
|
||||
|
||||
std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
|
||||
if (!outfile) {
|
||||
LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
|
||||
auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
|
||||
return fwrite(data, size, nmemb, (FILE *)fd);
|
||||
};
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());
|
||||
|
||||
// display download progress
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
|
||||
|
||||
// helper function to hide password in URL
|
||||
auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
|
||||
std::size_t protocol_pos = url.find("://");
|
||||
if (protocol_pos == std::string::npos) {
|
||||
return url; // Malformed URL
|
||||
}
|
||||
|
||||
std::size_t at_pos = url.find('@', protocol_pos + 3);
|
||||
if (at_pos == std::string::npos) {
|
||||
return url; // No password in URL
|
||||
}
|
||||
|
||||
return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
|
||||
};
|
||||
|
||||
// start the download
|
||||
LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
|
||||
llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
|
||||
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
|
||||
if (!was_perform_successful) {
|
||||
return false;
|
||||
}
|
||||
|
||||
long http_code = 0;
|
||||
curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
|
||||
if (http_code < 200 || http_code >= 400) {
|
||||
LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code);
|
||||
return false;
|
||||
}
|
||||
|
||||
// Causes file to be closed explicitly here before we rename it.
|
||||
outfile.reset();
|
||||
|
||||
// Write the updated JSON metadata file.
|
||||
metadata.update({
|
||||
{"url", url},
|
||||
{"etag", headers.etag},
|
||||
{"lastModified", headers.last_modified}
|
||||
});
|
||||
std::ofstream(metadata_path) << metadata.dump(4);
|
||||
LOG_INF("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
|
||||
|
||||
if (rename(path_temporary.c_str(), path.c_str()) != 0) {
|
||||
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// download multiple files from remote URLs to local paths
|
||||
// the input is a vector of pairs <url, path>
|
||||
static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> & urls, const std::string & bearer_token) {
|
||||
// Prepare download in parallel
|
||||
std::vector<std::future<bool>> futures_download;
|
||||
for (auto const & item : urls) {
|
||||
futures_download.push_back(std::async(std::launch::async, [bearer_token](const std::pair<std::string, std::string> & it) -> bool {
|
||||
return common_download_file_single(it.first, it.second, bearer_token);
|
||||
}, item));
|
||||
}
|
||||
|
||||
// Wait for all downloads to complete
|
||||
for (auto & f : futures_download) {
|
||||
if (!f.get()) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool common_download_model(
|
||||
const common_params_model & model,
|
||||
const std::string & bearer_token) {
|
||||
// Basic validation of the model.url
|
||||
if (model.url.empty()) {
|
||||
LOG_ERR("%s: invalid model url\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!common_download_file_single(model.url, model.path, bearer_token)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// check for additional GGUFs split to download
|
||||
int n_split = 0;
|
||||
{
|
||||
struct gguf_init_params gguf_params = {
|
||||
/*.no_alloc = */ true,
|
||||
/*.ctx = */ NULL,
|
||||
};
|
||||
auto * ctx_gguf = gguf_init_from_file(model.path.c_str(), gguf_params);
|
||||
if (!ctx_gguf) {
|
||||
LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, model.path.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
|
||||
if (key_n_split >= 0) {
|
||||
n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
|
||||
}
|
||||
|
||||
gguf_free(ctx_gguf);
|
||||
}
|
||||
|
||||
if (n_split > 1) {
|
||||
char split_prefix[PATH_MAX] = {0};
|
||||
char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
|
||||
|
||||
// Verify the first split file format
|
||||
// and extract split URL and PATH prefixes
|
||||
{
|
||||
if (!llama_split_prefix(split_prefix, sizeof(split_prefix), model.path.c_str(), 0, n_split)) {
|
||||
LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, model.path.c_str(), n_split);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model.url.c_str(), 0, n_split)) {
|
||||
LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model.url.c_str(), n_split);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::pair<std::string, std::string>> urls;
|
||||
for (int idx = 1; idx < n_split; idx++) {
|
||||
char split_path[PATH_MAX] = {0};
|
||||
llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
|
||||
|
||||
char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
|
||||
llama_split_path(split_url, sizeof(split_url), split_url_prefix, idx, n_split);
|
||||
|
||||
if (std::string(split_path) == model.path) {
|
||||
continue; // skip the already downloaded file
|
||||
}
|
||||
|
||||
urls.push_back({split_url, split_path});
|
||||
}
|
||||
|
||||
// Download in parallel
|
||||
common_download_file_multiple(urls, bearer_token);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Allow getting the HF file from the HF repo with tag (like ollama), for example:
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
|
||||
* Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
|
||||
*
|
||||
* Return pair of <repo, file> (with "repo" already having tag removed)
|
||||
*
|
||||
* Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
|
||||
*/
|
||||
static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & bearer_token) {
|
||||
auto parts = string_split<std::string>(hf_repo_with_tag, ':');
|
||||
std::string tag = parts.size() > 1 ? parts.back() : "latest";
|
||||
std::string hf_repo = parts[0];
|
||||
if (string_split<std::string>(hf_repo, '/').size() != 2) {
|
||||
throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
|
||||
}
|
||||
|
||||
// fetch model info from Hugging Face Hub API
|
||||
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
|
||||
curl_slist_ptr http_headers;
|
||||
std::string res_str;
|
||||
|
||||
std::string model_endpoint = get_model_endpoint();
|
||||
|
||||
std::string url = model_endpoint + "v2/" + hf_repo + "/manifests/" + tag;
|
||||
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
|
||||
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
|
||||
auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
|
||||
static_cast<std::string *>(data)->append((char * ) ptr, size * nmemb);
|
||||
return size * nmemb;
|
||||
};
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_str);
|
||||
#if defined(_WIN32)
|
||||
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
|
||||
#endif
|
||||
if (!bearer_token.empty()) {
|
||||
std::string auth_header = "Authorization: Bearer " + bearer_token;
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
|
||||
}
|
||||
// Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, "Accept: application/json");
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
|
||||
|
||||
CURLcode res = curl_easy_perform(curl.get());
|
||||
|
||||
if (res != CURLE_OK) {
|
||||
throw std::runtime_error("error: cannot make GET request to HF API");
|
||||
}
|
||||
|
||||
long res_code;
|
||||
std::string ggufFile = "";
|
||||
std::string mmprojFile = "";
|
||||
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
|
||||
if (res_code == 200) {
|
||||
// extract ggufFile.rfilename in json, using regex
|
||||
{
|
||||
std::regex pattern("\"ggufFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
|
||||
std::smatch match;
|
||||
if (std::regex_search(res_str, match, pattern)) {
|
||||
ggufFile = match[1].str();
|
||||
}
|
||||
}
|
||||
// extract mmprojFile.rfilename in json, using regex
|
||||
{
|
||||
std::regex pattern("\"mmprojFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
|
||||
std::smatch match;
|
||||
if (std::regex_search(res_str, match, pattern)) {
|
||||
mmprojFile = match[1].str();
|
||||
}
|
||||
}
|
||||
} else if (res_code == 401) {
|
||||
throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
|
||||
} else {
|
||||
throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str()));
|
||||
}
|
||||
|
||||
// check response
|
||||
if (ggufFile.empty()) {
|
||||
throw std::runtime_error("error: model does not have ggufFile");
|
||||
}
|
||||
|
||||
return { hf_repo, ggufFile, mmprojFile };
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
static bool common_download_file_single(const std::string &, const std::string &, const std::string &) {
|
||||
LOG_ERR("error: built without CURL, cannot download model from internet\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> &, const std::string &) {
|
||||
LOG_ERR("error: built without CURL, cannot download model from the internet\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool common_download_model(
|
||||
const common_params_model &,
|
||||
const std::string &) {
|
||||
LOG_ERR("error: built without CURL, cannot download model from the internet\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
static struct common_hf_file_res common_get_hf_file(const std::string &, const std::string &) {
|
||||
LOG_ERR("error: built without CURL, cannot download model from the internet\n");
|
||||
return {};
|
||||
}
|
||||
|
||||
#endif // LLAMA_USE_CURL
|
||||
|
||||
//
|
||||
// utils
|
||||
//
|
||||
|
||||
static void common_params_handle_model_default(
|
||||
std::string & model,
|
||||
const std::string & model_url,
|
||||
std::string & hf_repo,
|
||||
std::string & hf_file,
|
||||
const std::string & hf_token,
|
||||
const std::string & model_default) {
|
||||
if (!hf_repo.empty()) {
|
||||
// short-hand to avoid specifying --hf-file -> default it to --model
|
||||
if (hf_file.empty()) {
|
||||
if (model.empty()) {
|
||||
auto auto_detected = common_get_hf_file(hf_repo, hf_token);
|
||||
if (auto_detected.first.empty() || auto_detected.second.empty()) {
|
||||
exit(1); // built without CURL, error message already printed
|
||||
static void common_params_handle_model(
|
||||
struct common_params_model & model,
|
||||
const std::string & bearer_token,
|
||||
const std::string & model_path_default,
|
||||
bool is_mmproj = false) { // TODO: move is_mmproj to an enum when we have more files?
|
||||
// handle pre-fill default model path and url based on hf_repo and hf_file
|
||||
{
|
||||
if (!model.hf_repo.empty()) {
|
||||
// short-hand to avoid specifying --hf-file -> default it to --model
|
||||
if (model.hf_file.empty()) {
|
||||
if (model.path.empty()) {
|
||||
auto auto_detected = common_get_hf_file(model.hf_repo, bearer_token);
|
||||
if (auto_detected.repo.empty() || auto_detected.ggufFile.empty()) {
|
||||
exit(1); // built without CURL, error message already printed
|
||||
}
|
||||
model.hf_repo = auto_detected.repo;
|
||||
model.hf_file = is_mmproj ? auto_detected.mmprojFile : auto_detected.ggufFile;
|
||||
} else {
|
||||
model.hf_file = model.path;
|
||||
}
|
||||
hf_repo = auto_detected.first;
|
||||
hf_file = auto_detected.second;
|
||||
} else {
|
||||
hf_file = model;
|
||||
}
|
||||
|
||||
std::string model_endpoint = get_model_endpoint();
|
||||
model.url = model_endpoint + model.hf_repo + "/resolve/main/" + model.hf_file;
|
||||
// make sure model path is present (for caching purposes)
|
||||
if (model.path.empty()) {
|
||||
// this is to avoid different repo having same file name, or same file name in different subdirs
|
||||
std::string filename = model.hf_repo + "_" + model.hf_file;
|
||||
// to make sure we don't have any slashes in the filename
|
||||
string_replace_all(filename, "/", "_");
|
||||
model.path = fs_get_cache_file(filename);
|
||||
}
|
||||
|
||||
} else if (!model.url.empty()) {
|
||||
if (model.path.empty()) {
|
||||
auto f = string_split<std::string>(model.url, '#').front();
|
||||
f = string_split<std::string>(f, '?').front();
|
||||
model.path = fs_get_cache_file(string_split<std::string>(f, '/').back());
|
||||
}
|
||||
|
||||
} else if (model.path.empty()) {
|
||||
model.path = model_path_default;
|
||||
}
|
||||
// make sure model path is present (for caching purposes)
|
||||
if (model.empty()) {
|
||||
// this is to avoid different repo having same file name, or same file name in different subdirs
|
||||
std::string filename = hf_repo + "_" + hf_file;
|
||||
// to make sure we don't have any slashes in the filename
|
||||
string_replace_all(filename, "/", "_");
|
||||
model = fs_get_cache_file(filename);
|
||||
}
|
||||
|
||||
// then, download it if needed
|
||||
if (!model.url.empty()) {
|
||||
bool ok = common_download_model(model, bearer_token);
|
||||
if (!ok) {
|
||||
LOG_ERR("error: failed to download model from %s\n", model.url.c_str());
|
||||
exit(1);
|
||||
}
|
||||
} else if (!model_url.empty()) {
|
||||
if (model.empty()) {
|
||||
auto f = string_split<std::string>(model_url, '#').front();
|
||||
f = string_split<std::string>(f, '?').front();
|
||||
model = fs_get_cache_file(string_split<std::string>(f, '/').back());
|
||||
}
|
||||
} else if (model.empty()) {
|
||||
model = model_default;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -300,10 +827,16 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
|
||||
throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
|
||||
}
|
||||
|
||||
// TODO: refactor model params in a common struct
|
||||
common_params_handle_model_default(params.model, params.model_url, params.hf_repo, params.hf_file, params.hf_token, DEFAULT_MODEL_PATH);
|
||||
common_params_handle_model_default(params.speculative.model, params.speculative.model_url, params.speculative.hf_repo, params.speculative.hf_file, params.hf_token, "");
|
||||
common_params_handle_model_default(params.vocoder.model, params.vocoder.model_url, params.vocoder.hf_repo, params.vocoder.hf_file, params.hf_token, "");
|
||||
common_params_handle_model(params.model, params.hf_token, DEFAULT_MODEL_PATH);
|
||||
common_params_handle_model(params.speculative.model, params.hf_token, "");
|
||||
common_params_handle_model(params.vocoder.model, params.hf_token, "");
|
||||
|
||||
// allow --mmproj to be set from -hf
|
||||
// assuming that mmproj is always in the same repo as text model
|
||||
if (!params.model.hf_repo.empty() && ctx_arg.ex == LLAMA_EXAMPLE_LLAVA) {
|
||||
params.mmproj.hf_repo = params.model.hf_repo;
|
||||
}
|
||||
common_params_handle_model(params.mmproj, params.hf_token, "", true);
|
||||
|
||||
if (params.escape) {
|
||||
string_process_escapes(params.prompt);
|
||||
@@ -322,6 +855,10 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
|
||||
params.kv_overrides.back().key[0] = 0;
|
||||
}
|
||||
|
||||
if (!params.tensor_buft_overrides.empty()) {
|
||||
params.tensor_buft_overrides.push_back({nullptr, nullptr});
|
||||
}
|
||||
|
||||
if (params.reranking && params.embedding) {
|
||||
throw std::invalid_argument("error: either --embedding or --reranking can be specified, but not both");
|
||||
}
|
||||
@@ -1561,7 +2098,14 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"--mmproj"}, "FILE",
|
||||
"path to a multimodal projector file for LLaVA. see examples/llava/README.md",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.mmproj = value;
|
||||
params.mmproj.path = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_LLAVA}));
|
||||
add_opt(common_arg(
|
||||
{"--mmproj-url"}, "URL",
|
||||
"URL to a multimodal projector file for LLaVA. see examples/llava/README.md",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.mmproj.url = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_LLAVA}));
|
||||
add_opt(common_arg(
|
||||
@@ -1647,6 +2191,41 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
exit(0);
|
||||
}
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"--override-tensor", "-ot"}, "<tensor name pattern>=<buffer type>,...",
|
||||
"override tensor buffer type", [](common_params & params, const std::string & value) {
|
||||
/* static */ std::map<std::string, ggml_backend_buffer_type_t> buft_list;
|
||||
if (buft_list.empty()) {
|
||||
// enumerate all the devices and add their buffer types to the list
|
||||
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
|
||||
auto * dev = ggml_backend_dev_get(i);
|
||||
auto * buft = ggml_backend_dev_buffer_type(dev);
|
||||
if (buft) {
|
||||
buft_list[ggml_backend_buft_name(buft)] = buft;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (const auto & override : string_split<std::string>(value, ',')) {
|
||||
std::string::size_type pos = override.find('=');
|
||||
if (pos == std::string::npos) {
|
||||
throw std::invalid_argument("invalid value");
|
||||
}
|
||||
std::string tensor_name = override.substr(0, pos);
|
||||
std::string buffer_type = override.substr(pos + 1);
|
||||
|
||||
if (buft_list.find(buffer_type) == buft_list.end()) {
|
||||
printf("Available buffer types:\n");
|
||||
for (const auto & it : buft_list) {
|
||||
printf(" %s\n", ggml_backend_buft_name(it.second));
|
||||
}
|
||||
throw std::invalid_argument("unknown buffer type");
|
||||
}
|
||||
// FIXME: this leaks memory
|
||||
params.tensor_buft_overrides.push_back({strdup(tensor_name.c_str()), buft_list.at(buffer_type)});
|
||||
}
|
||||
}
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
|
||||
"number of layers to store in VRAM",
|
||||
@@ -1790,14 +2369,14 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
"or `--model-url` if set, otherwise %s)", DEFAULT_MODEL_PATH
|
||||
),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.model = value;
|
||||
params.model.path = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL"));
|
||||
add_opt(common_arg(
|
||||
{"-mu", "--model-url"}, "MODEL_URL",
|
||||
"model download url (default: unused)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.model_url = value;
|
||||
params.model.url = value;
|
||||
}
|
||||
).set_env("LLAMA_ARG_MODEL_URL"));
|
||||
add_opt(common_arg(
|
||||
@@ -1806,35 +2385,35 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
"example: unsloth/phi-4-GGUF:q4_k_m\n"
|
||||
"(default: unused)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.hf_repo = value;
|
||||
params.model.hf_repo = value;
|
||||
}
|
||||
).set_env("LLAMA_ARG_HF_REPO"));
|
||||
add_opt(common_arg(
|
||||
{"-hfd", "-hfrd", "--hf-repo-draft"}, "<user>/<model>[:quant]",
|
||||
"Same as --hf-repo, but for the draft model (default: unused)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.speculative.hf_repo = value;
|
||||
params.speculative.model.hf_repo = value;
|
||||
}
|
||||
).set_env("LLAMA_ARG_HFD_REPO"));
|
||||
add_opt(common_arg(
|
||||
{"-hff", "--hf-file"}, "FILE",
|
||||
"Hugging Face model file. If specified, it will override the quant in --hf-repo (default: unused)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.hf_file = value;
|
||||
params.model.hf_file = value;
|
||||
}
|
||||
).set_env("LLAMA_ARG_HF_FILE"));
|
||||
add_opt(common_arg(
|
||||
{"-hfv", "-hfrv", "--hf-repo-v"}, "<user>/<model>[:quant]",
|
||||
"Hugging Face model repository for the vocoder model (default: unused)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.vocoder.hf_repo = value;
|
||||
params.vocoder.model.hf_repo = value;
|
||||
}
|
||||
).set_env("LLAMA_ARG_HF_REPO_V"));
|
||||
add_opt(common_arg(
|
||||
{"-hffv", "--hf-file-v"}, "FILE",
|
||||
"Hugging Face model file for the vocoder model (default: unused)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.vocoder.hf_file = value;
|
||||
params.vocoder.model.hf_file = value;
|
||||
}
|
||||
).set_env("LLAMA_ARG_HF_FILE_V"));
|
||||
add_opt(common_arg(
|
||||
@@ -2454,7 +3033,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"-md", "--model-draft"}, "FNAME",
|
||||
"draft model for speculative decoding (default: unused)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.speculative.model = value;
|
||||
params.speculative.model.path = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL_DRAFT"));
|
||||
|
||||
@@ -2462,7 +3041,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"-mv", "--model-vocoder"}, "FNAME",
|
||||
"vocoder model for audio generation (default: unused)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.vocoder.model = value;
|
||||
params.vocoder.model.path = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
@@ -2485,10 +3064,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"--tts-oute-default"},
|
||||
string_format("use default OuteTTS models (note: can download weights from the internet)"),
|
||||
[](common_params & params) {
|
||||
params.hf_repo = "OuteAI/OuteTTS-0.2-500M-GGUF";
|
||||
params.hf_file = "OuteTTS-0.2-500M-Q8_0.gguf";
|
||||
params.vocoder.hf_repo = "ggml-org/WavTokenizer";
|
||||
params.vocoder.hf_file = "WavTokenizer-Large-75-F16.gguf";
|
||||
params.model.hf_repo = "OuteAI/OuteTTS-0.2-500M-GGUF";
|
||||
params.model.hf_file = "OuteTTS-0.2-500M-Q8_0.gguf";
|
||||
params.vocoder.model.hf_repo = "ggml-org/WavTokenizer";
|
||||
params.vocoder.model.hf_file = "WavTokenizer-Large-75-F16.gguf";
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_TTS}));
|
||||
|
||||
@@ -2496,8 +3075,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"--embd-bge-small-en-default"},
|
||||
string_format("use default bge-small-en-v1.5 model (note: can download weights from the internet)"),
|
||||
[](common_params & params) {
|
||||
params.hf_repo = "ggml-org/bge-small-en-v1.5-Q8_0-GGUF";
|
||||
params.hf_file = "bge-small-en-v1.5-q8_0.gguf";
|
||||
params.model.hf_repo = "ggml-org/bge-small-en-v1.5-Q8_0-GGUF";
|
||||
params.model.hf_file = "bge-small-en-v1.5-q8_0.gguf";
|
||||
params.pooling_type = LLAMA_POOLING_TYPE_NONE;
|
||||
params.embd_normalize = 2;
|
||||
params.n_ctx = 512;
|
||||
@@ -2510,8 +3089,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"--embd-e5-small-en-default"},
|
||||
string_format("use default e5-small-v2 model (note: can download weights from the internet)"),
|
||||
[](common_params & params) {
|
||||
params.hf_repo = "ggml-org/e5-small-v2-Q8_0-GGUF";
|
||||
params.hf_file = "e5-small-v2-q8_0.gguf";
|
||||
params.model.hf_repo = "ggml-org/e5-small-v2-Q8_0-GGUF";
|
||||
params.model.hf_file = "e5-small-v2-q8_0.gguf";
|
||||
params.pooling_type = LLAMA_POOLING_TYPE_NONE;
|
||||
params.embd_normalize = 2;
|
||||
params.n_ctx = 512;
|
||||
@@ -2524,8 +3103,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"--embd-gte-small-default"},
|
||||
string_format("use default gte-small model (note: can download weights from the internet)"),
|
||||
[](common_params & params) {
|
||||
params.hf_repo = "ggml-org/gte-small-Q8_0-GGUF";
|
||||
params.hf_file = "gte-small-q8_0.gguf";
|
||||
params.model.hf_repo = "ggml-org/gte-small-Q8_0-GGUF";
|
||||
params.model.hf_file = "gte-small-q8_0.gguf";
|
||||
params.pooling_type = LLAMA_POOLING_TYPE_NONE;
|
||||
params.embd_normalize = 2;
|
||||
params.n_ctx = 512;
|
||||
@@ -2538,8 +3117,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"--fim-qwen-1.5b-default"},
|
||||
string_format("use default Qwen 2.5 Coder 1.5B (note: can download weights from the internet)"),
|
||||
[](common_params & params) {
|
||||
params.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF";
|
||||
params.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf";
|
||||
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF";
|
||||
params.model.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf";
|
||||
params.port = 8012;
|
||||
params.n_gpu_layers = 99;
|
||||
params.flash_attn = true;
|
||||
@@ -2554,8 +3133,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"--fim-qwen-3b-default"},
|
||||
string_format("use default Qwen 2.5 Coder 3B (note: can download weights from the internet)"),
|
||||
[](common_params & params) {
|
||||
params.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF";
|
||||
params.hf_file = "qwen2.5-coder-3b-q8_0.gguf";
|
||||
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF";
|
||||
params.model.hf_file = "qwen2.5-coder-3b-q8_0.gguf";
|
||||
params.port = 8012;
|
||||
params.n_gpu_layers = 99;
|
||||
params.flash_attn = true;
|
||||
@@ -2570,8 +3149,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"--fim-qwen-7b-default"},
|
||||
string_format("use default Qwen 2.5 Coder 7B (note: can download weights from the internet)"),
|
||||
[](common_params & params) {
|
||||
params.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
|
||||
params.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
|
||||
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
|
||||
params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
|
||||
params.port = 8012;
|
||||
params.n_gpu_layers = 99;
|
||||
params.flash_attn = true;
|
||||
@@ -2586,10 +3165,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"--fim-qwen-7b-spec"},
|
||||
string_format("use Qwen 2.5 Coder 7B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
|
||||
[](common_params & params) {
|
||||
params.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
|
||||
params.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
|
||||
params.speculative.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
|
||||
params.speculative.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
|
||||
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
|
||||
params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
|
||||
params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
|
||||
params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
|
||||
params.speculative.n_gpu_layers = 99;
|
||||
params.port = 8012;
|
||||
params.n_gpu_layers = 99;
|
||||
@@ -2605,10 +3184,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"--fim-qwen-14b-spec"},
|
||||
string_format("use Qwen 2.5 Coder 14B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
|
||||
[](common_params & params) {
|
||||
params.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF";
|
||||
params.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
|
||||
params.speculative.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
|
||||
params.speculative.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
|
||||
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF";
|
||||
params.model.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
|
||||
params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
|
||||
params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
|
||||
params.speculative.n_gpu_layers = 99;
|
||||
params.port = 8012;
|
||||
params.n_gpu_layers = 99;
|
||||
|
||||
@@ -1622,7 +1622,7 @@ static common_chat_params common_chat_templates_apply_jinja(
|
||||
}
|
||||
|
||||
// Hermes 2/3 Pro, Qwen 2.5 Instruct (w/ tools)
|
||||
if (src.find("<tool_call>") != std::string::npos && params.json_schema.is_null()) {
|
||||
if (src.find("<tool_call>") != std::string::npos && params.json_schema.is_null() && params.tools.is_array() && params.json_schema.is_null()) {
|
||||
return common_chat_params_init_hermes_2_pro(tmpl, params);
|
||||
}
|
||||
|
||||
|
||||
@@ -7,9 +7,6 @@
|
||||
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
// Change JSON_ASSERT from assert() to GGML_ASSERT:
|
||||
#define JSON_ASSERT GGML_ASSERT
|
||||
#include "json.hpp"
|
||||
#include "llama.h"
|
||||
|
||||
#include <algorithm>
|
||||
@@ -51,47 +48,11 @@
|
||||
#include <sys/stat.h>
|
||||
#include <unistd.h>
|
||||
#endif
|
||||
#if defined(LLAMA_USE_CURL)
|
||||
#include <curl/curl.h>
|
||||
#include <curl/easy.h>
|
||||
#include <future>
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
#if defined(LLAMA_USE_CURL)
|
||||
#ifdef __linux__
|
||||
#include <linux/limits.h>
|
||||
#elif defined(_WIN32)
|
||||
# if !defined(PATH_MAX)
|
||||
# define PATH_MAX MAX_PATH
|
||||
# endif
|
||||
#else
|
||||
#include <sys/syslimits.h>
|
||||
#endif
|
||||
#define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
|
||||
|
||||
//
|
||||
// CURL utils
|
||||
//
|
||||
|
||||
using curl_ptr = std::unique_ptr<CURL, decltype(&curl_easy_cleanup)>;
|
||||
|
||||
// cannot use unique_ptr for curl_slist, because we cannot update without destroying the old one
|
||||
struct curl_slist_ptr {
|
||||
struct curl_slist * ptr = nullptr;
|
||||
~curl_slist_ptr() {
|
||||
if (ptr) {
|
||||
curl_slist_free_all(ptr);
|
||||
}
|
||||
}
|
||||
};
|
||||
#endif // LLAMA_USE_CURL
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
//
|
||||
// CPU utils
|
||||
//
|
||||
@@ -869,7 +830,7 @@ std::string fs_get_cache_directory() {
|
||||
if (getenv("LLAMA_CACHE")) {
|
||||
cache_directory = std::getenv("LLAMA_CACHE");
|
||||
} else {
|
||||
#ifdef __linux__
|
||||
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX)
|
||||
if (std::getenv("XDG_CACHE_HOME")) {
|
||||
cache_directory = std::getenv("XDG_CACHE_HOME");
|
||||
} else {
|
||||
@@ -879,7 +840,9 @@ std::string fs_get_cache_directory() {
|
||||
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
|
||||
#elif defined(_WIN32)
|
||||
cache_directory = std::getenv("LOCALAPPDATA");
|
||||
#endif // __linux__
|
||||
#else
|
||||
# error Unknown architecture
|
||||
#endif
|
||||
cache_directory = ensure_trailing_slash(cache_directory);
|
||||
cache_directory += "llama.cpp";
|
||||
}
|
||||
@@ -900,22 +863,14 @@ std::string fs_get_cache_file(const std::string & filename) {
|
||||
//
|
||||
// Model utils
|
||||
//
|
||||
|
||||
struct common_init_result common_init_from_params(common_params & params) {
|
||||
common_init_result iparams;
|
||||
auto mparams = common_model_params_to_llama(params);
|
||||
|
||||
llama_model * model = nullptr;
|
||||
|
||||
if (!params.hf_repo.empty() && !params.hf_file.empty()) {
|
||||
model = common_load_model_from_hf(params.hf_repo, params.hf_file, params.model, params.hf_token, mparams);
|
||||
} else if (!params.model_url.empty()) {
|
||||
model = common_load_model_from_url(params.model_url, params.model, params.hf_token, mparams);
|
||||
} else {
|
||||
model = llama_model_load_from_file(params.model.c_str(), mparams);
|
||||
}
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.c_str());
|
||||
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.path.c_str());
|
||||
return iparams;
|
||||
}
|
||||
|
||||
@@ -950,7 +905,7 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
|
||||
llama_context * lctx = llama_init_from_model(model, cparams);
|
||||
if (lctx == NULL) {
|
||||
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.c_str());
|
||||
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str());
|
||||
llama_model_free(model);
|
||||
return iparams;
|
||||
}
|
||||
@@ -1074,6 +1029,19 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
return iparams;
|
||||
}
|
||||
|
||||
std::string get_model_endpoint() {
|
||||
const char * model_endpoint_env = getenv("MODEL_ENDPOINT");
|
||||
// We still respect the use of environment-variable "HF_ENDPOINT" for backward-compatibility.
|
||||
const char * hf_endpoint_env = getenv("HF_ENDPOINT");
|
||||
const char * endpoint_env = model_endpoint_env ? model_endpoint_env : hf_endpoint_env;
|
||||
std::string model_endpoint = "https://huggingface.co/";
|
||||
if (endpoint_env) {
|
||||
model_endpoint = endpoint_env;
|
||||
if (model_endpoint.back() != '/') model_endpoint += '/';
|
||||
}
|
||||
return model_endpoint;
|
||||
}
|
||||
|
||||
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora) {
|
||||
llama_clear_adapter_lora(ctx);
|
||||
for (auto & la : lora) {
|
||||
@@ -1089,15 +1057,18 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
|
||||
if (!params.devices.empty()) {
|
||||
mparams.devices = params.devices.data();
|
||||
}
|
||||
|
||||
if (params.n_gpu_layers != -1) {
|
||||
mparams.n_gpu_layers = params.n_gpu_layers;
|
||||
}
|
||||
|
||||
mparams.main_gpu = params.main_gpu;
|
||||
mparams.split_mode = params.split_mode;
|
||||
mparams.tensor_split = params.tensor_split;
|
||||
mparams.use_mmap = params.use_mmap;
|
||||
mparams.use_mlock = params.use_mlock;
|
||||
mparams.check_tensors = params.check_tensors;
|
||||
|
||||
if (params.kv_overrides.empty()) {
|
||||
mparams.kv_overrides = NULL;
|
||||
} else {
|
||||
@@ -1105,6 +1076,13 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
|
||||
mparams.kv_overrides = params.kv_overrides.data();
|
||||
}
|
||||
|
||||
if (params.tensor_buft_overrides.empty()) {
|
||||
mparams.tensor_buft_overrides = NULL;
|
||||
} else {
|
||||
GGML_ASSERT(params.tensor_buft_overrides.back().pattern == nullptr && "Tensor buffer overrides not terminated with empty pattern");
|
||||
mparams.tensor_buft_overrides = params.tensor_buft_overrides.data();
|
||||
}
|
||||
|
||||
return mparams;
|
||||
}
|
||||
|
||||
@@ -1164,451 +1142,6 @@ struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_p
|
||||
return tpp;
|
||||
}
|
||||
|
||||
#ifdef LLAMA_USE_CURL
|
||||
|
||||
#define CURL_MAX_RETRY 3
|
||||
#define CURL_RETRY_DELAY_SECONDS 2
|
||||
|
||||
static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds) {
|
||||
int remaining_attempts = max_attempts;
|
||||
|
||||
while (remaining_attempts > 0) {
|
||||
LOG_INF("%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
|
||||
|
||||
CURLcode res = curl_easy_perform(curl);
|
||||
if (res == CURLE_OK) {
|
||||
return true;
|
||||
}
|
||||
|
||||
int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
|
||||
LOG_WRN("%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
|
||||
|
||||
remaining_attempts--;
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
|
||||
}
|
||||
|
||||
LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool common_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
|
||||
// Initialize libcurl
|
||||
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
|
||||
curl_slist_ptr http_headers;
|
||||
if (!curl) {
|
||||
LOG_ERR("%s: error initializing libcurl\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
bool force_download = false;
|
||||
|
||||
// Set the URL, allow to follow http redirection
|
||||
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
|
||||
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
|
||||
|
||||
// Check if hf-token or bearer-token was specified
|
||||
if (!hf_token.empty()) {
|
||||
std::string auth_header = "Authorization: Bearer " + hf_token;
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
|
||||
}
|
||||
|
||||
#if defined(_WIN32)
|
||||
// CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
|
||||
// operating system. Currently implemented under MS-Windows.
|
||||
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
|
||||
#endif
|
||||
|
||||
// Check if the file already exists locally
|
||||
auto file_exists = std::filesystem::exists(path);
|
||||
|
||||
// If the file exists, check its JSON metadata companion file.
|
||||
std::string metadata_path = path + ".json";
|
||||
nlohmann::json metadata;
|
||||
std::string etag;
|
||||
std::string last_modified;
|
||||
|
||||
if (file_exists) {
|
||||
// Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
|
||||
std::ifstream metadata_in(metadata_path);
|
||||
if (metadata_in.good()) {
|
||||
try {
|
||||
metadata_in >> metadata;
|
||||
LOG_INF("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
|
||||
if (metadata.contains("url") && metadata.at("url").is_string()) {
|
||||
auto previous_url = metadata.at("url").get<std::string>();
|
||||
if (previous_url != url) {
|
||||
LOG_ERR("%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
if (metadata.contains("etag") && metadata.at("etag").is_string()) {
|
||||
etag = metadata.at("etag");
|
||||
}
|
||||
if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
|
||||
last_modified = metadata.at("lastModified");
|
||||
}
|
||||
} catch (const nlohmann::json::exception & e) {
|
||||
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
|
||||
}
|
||||
|
||||
// Send a HEAD request to retrieve the etag and last-modified headers
|
||||
struct common_load_model_from_url_headers {
|
||||
std::string etag;
|
||||
std::string last_modified;
|
||||
};
|
||||
|
||||
common_load_model_from_url_headers headers;
|
||||
|
||||
{
|
||||
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
|
||||
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
|
||||
common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
|
||||
|
||||
static std::regex header_regex("([^:]+): (.*)\r\n");
|
||||
static std::regex etag_regex("ETag", std::regex_constants::icase);
|
||||
static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
|
||||
|
||||
std::string header(buffer, n_items);
|
||||
std::smatch match;
|
||||
if (std::regex_match(header, match, header_regex)) {
|
||||
const std::string & key = match[1];
|
||||
const std::string & value = match[2];
|
||||
if (std::regex_match(key, match, etag_regex)) {
|
||||
headers->etag = value;
|
||||
} else if (std::regex_match(key, match, last_modified_regex)) {
|
||||
headers->last_modified = value;
|
||||
}
|
||||
}
|
||||
return n_items;
|
||||
};
|
||||
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
|
||||
|
||||
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
|
||||
if (!was_perform_successful) {
|
||||
return false;
|
||||
}
|
||||
|
||||
long http_code = 0;
|
||||
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
|
||||
if (http_code != 200) {
|
||||
// HEAD not supported, we don't know if the file has changed
|
||||
// force trigger downloading
|
||||
force_download = true;
|
||||
LOG_ERR("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
|
||||
}
|
||||
}
|
||||
|
||||
bool should_download = !file_exists || force_download;
|
||||
if (!should_download) {
|
||||
if (!etag.empty() && etag != headers.etag) {
|
||||
LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
|
||||
should_download = true;
|
||||
} else if (!last_modified.empty() && last_modified != headers.last_modified) {
|
||||
LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
|
||||
should_download = true;
|
||||
}
|
||||
}
|
||||
if (should_download) {
|
||||
std::string path_temporary = path + ".downloadInProgress";
|
||||
if (file_exists) {
|
||||
LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
|
||||
if (remove(path.c_str()) != 0) {
|
||||
LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Set the output file
|
||||
|
||||
struct FILE_deleter {
|
||||
void operator()(FILE * f) const {
|
||||
fclose(f);
|
||||
}
|
||||
};
|
||||
|
||||
std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
|
||||
if (!outfile) {
|
||||
LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
|
||||
auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
|
||||
return fwrite(data, size, nmemb, (FILE *)fd);
|
||||
};
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());
|
||||
|
||||
// display download progress
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
|
||||
|
||||
// helper function to hide password in URL
|
||||
auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
|
||||
std::size_t protocol_pos = url.find("://");
|
||||
if (protocol_pos == std::string::npos) {
|
||||
return url; // Malformed URL
|
||||
}
|
||||
|
||||
std::size_t at_pos = url.find('@', protocol_pos + 3);
|
||||
if (at_pos == std::string::npos) {
|
||||
return url; // No password in URL
|
||||
}
|
||||
|
||||
return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
|
||||
};
|
||||
|
||||
// start the download
|
||||
LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
|
||||
llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
|
||||
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
|
||||
if (!was_perform_successful) {
|
||||
return false;
|
||||
}
|
||||
|
||||
long http_code = 0;
|
||||
curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
|
||||
if (http_code < 200 || http_code >= 400) {
|
||||
LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code);
|
||||
return false;
|
||||
}
|
||||
|
||||
// Causes file to be closed explicitly here before we rename it.
|
||||
outfile.reset();
|
||||
|
||||
// Write the updated JSON metadata file.
|
||||
metadata.update({
|
||||
{"url", url},
|
||||
{"etag", headers.etag},
|
||||
{"lastModified", headers.last_modified}
|
||||
});
|
||||
std::ofstream(metadata_path) << metadata.dump(4);
|
||||
LOG_INF("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
|
||||
|
||||
if (rename(path_temporary.c_str(), path.c_str()) != 0) {
|
||||
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
struct llama_model * common_load_model_from_url(
|
||||
const std::string & model_url,
|
||||
const std::string & local_path,
|
||||
const std::string & hf_token,
|
||||
const struct llama_model_params & params) {
|
||||
// Basic validation of the model_url
|
||||
if (model_url.empty()) {
|
||||
LOG_ERR("%s: invalid model_url\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (!common_download_file(model_url, local_path, hf_token)) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// check for additional GGUFs split to download
|
||||
int n_split = 0;
|
||||
{
|
||||
struct gguf_init_params gguf_params = {
|
||||
/*.no_alloc = */ true,
|
||||
/*.ctx = */ NULL,
|
||||
};
|
||||
auto * ctx_gguf = gguf_init_from_file(local_path.c_str(), gguf_params);
|
||||
if (!ctx_gguf) {
|
||||
LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, local_path.c_str());
|
||||
return NULL;
|
||||
}
|
||||
|
||||
auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
|
||||
if (key_n_split >= 0) {
|
||||
n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
|
||||
}
|
||||
|
||||
gguf_free(ctx_gguf);
|
||||
}
|
||||
|
||||
if (n_split > 1) {
|
||||
char split_prefix[PATH_MAX] = {0};
|
||||
char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
|
||||
|
||||
// Verify the first split file format
|
||||
// and extract split URL and PATH prefixes
|
||||
{
|
||||
if (!llama_split_prefix(split_prefix, sizeof(split_prefix), local_path.c_str(), 0, n_split)) {
|
||||
LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, local_path.c_str(), n_split);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url.c_str(), 0, n_split)) {
|
||||
LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model_url.c_str(), n_split);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
// Prepare download in parallel
|
||||
std::vector<std::future<bool>> futures_download;
|
||||
for (int idx = 1; idx < n_split; idx++) {
|
||||
futures_download.push_back(std::async(std::launch::async, [&split_prefix, &split_url_prefix, &n_split, hf_token](int download_idx) -> bool {
|
||||
char split_path[PATH_MAX] = {0};
|
||||
llama_split_path(split_path, sizeof(split_path), split_prefix, download_idx, n_split);
|
||||
|
||||
char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
|
||||
llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split);
|
||||
|
||||
return common_download_file(split_url, split_path, hf_token);
|
||||
}, idx));
|
||||
}
|
||||
|
||||
// Wait for all downloads to complete
|
||||
for (auto & f : futures_download) {
|
||||
if (!f.get()) {
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return llama_model_load_from_file(local_path.c_str(), params);
|
||||
}
|
||||
|
||||
struct llama_model * common_load_model_from_hf(
|
||||
const std::string & repo,
|
||||
const std::string & remote_path,
|
||||
const std::string & local_path,
|
||||
const std::string & hf_token,
|
||||
const struct llama_model_params & params) {
|
||||
// construct hugging face model url:
|
||||
//
|
||||
// --repo ggml-org/models --file tinyllama-1.1b/ggml-model-f16.gguf
|
||||
// https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf
|
||||
//
|
||||
// --repo TheBloke/Mixtral-8x7B-v0.1-GGUF --file mixtral-8x7b-v0.1.Q4_K_M.gguf
|
||||
// https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q4_K_M.gguf
|
||||
//
|
||||
|
||||
std::string model_url = "https://huggingface.co/";
|
||||
model_url += repo;
|
||||
model_url += "/resolve/main/";
|
||||
model_url += remote_path;
|
||||
|
||||
return common_load_model_from_url(model_url, local_path, hf_token, params);
|
||||
}
|
||||
|
||||
/**
|
||||
* Allow getting the HF file from the HF repo with tag (like ollama), for example:
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
|
||||
* Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
|
||||
*
|
||||
* Return pair of <repo, file> (with "repo" already having tag removed)
|
||||
*
|
||||
* Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
|
||||
*/
|
||||
std::pair<std::string, std::string> common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & hf_token) {
|
||||
auto parts = string_split<std::string>(hf_repo_with_tag, ':');
|
||||
std::string tag = parts.size() > 1 ? parts.back() : "latest";
|
||||
std::string hf_repo = parts[0];
|
||||
if (string_split<std::string>(hf_repo, '/').size() != 2) {
|
||||
throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
|
||||
}
|
||||
|
||||
// fetch model info from Hugging Face Hub API
|
||||
json model_info;
|
||||
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
|
||||
curl_slist_ptr http_headers;
|
||||
std::string res_str;
|
||||
std::string url = "https://huggingface.co/v2/" + hf_repo + "/manifests/" + tag;
|
||||
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
|
||||
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
|
||||
auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
|
||||
static_cast<std::string *>(data)->append((char * ) ptr, size * nmemb);
|
||||
return size * nmemb;
|
||||
};
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_str);
|
||||
#if defined(_WIN32)
|
||||
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
|
||||
#endif
|
||||
if (!hf_token.empty()) {
|
||||
std::string auth_header = "Authorization: Bearer " + hf_token;
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
|
||||
}
|
||||
// Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, "Accept: application/json");
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
|
||||
|
||||
CURLcode res = curl_easy_perform(curl.get());
|
||||
|
||||
if (res != CURLE_OK) {
|
||||
throw std::runtime_error("error: cannot make GET request to HF API");
|
||||
}
|
||||
|
||||
long res_code;
|
||||
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
|
||||
if (res_code == 200) {
|
||||
model_info = json::parse(res_str);
|
||||
} else if (res_code == 401) {
|
||||
throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
|
||||
} else {
|
||||
throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str()));
|
||||
}
|
||||
|
||||
// check response
|
||||
if (!model_info.contains("ggufFile")) {
|
||||
throw std::runtime_error("error: model does not have ggufFile");
|
||||
}
|
||||
json & gguf_file = model_info.at("ggufFile");
|
||||
if (!gguf_file.contains("rfilename")) {
|
||||
throw std::runtime_error("error: ggufFile does not have rfilename");
|
||||
}
|
||||
|
||||
return std::make_pair(hf_repo, gguf_file.at("rfilename"));
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
struct llama_model * common_load_model_from_url(
|
||||
const std::string & /*model_url*/,
|
||||
const std::string & /*local_path*/,
|
||||
const std::string & /*hf_token*/,
|
||||
const struct llama_model_params & /*params*/) {
|
||||
LOG_WRN("%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
struct llama_model * common_load_model_from_hf(
|
||||
const std::string & /*repo*/,
|
||||
const std::string & /*remote_path*/,
|
||||
const std::string & /*local_path*/,
|
||||
const std::string & /*hf_token*/,
|
||||
const struct llama_model_params & /*params*/) {
|
||||
LOG_WRN("%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
std::pair<std::string, std::string> common_get_hf_file(const std::string &, const std::string &) {
|
||||
LOG_WRN("%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
|
||||
return std::make_pair("", "");
|
||||
}
|
||||
|
||||
#endif // LLAMA_USE_CURL
|
||||
|
||||
//
|
||||
// Batch utils
|
||||
//
|
||||
@@ -2032,26 +1565,3 @@ common_control_vector_data common_control_vector_load(const std::vector<common_c
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
template <>
|
||||
json common_grammar_trigger::to_json() const {
|
||||
json out {
|
||||
{"type", (int) type},
|
||||
{"value", value},
|
||||
};
|
||||
if (type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
|
||||
out["token"] = (int) token;
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
template <>
|
||||
common_grammar_trigger common_grammar_trigger::from_json(const json & in) {
|
||||
common_grammar_trigger out;
|
||||
out.type = (common_grammar_trigger_type) in.at("type").get<int>();
|
||||
out.value = in.at("value").get<std::string>();
|
||||
if (out.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
|
||||
out.token = (llama_token) in.at("token").get<int>();
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
@@ -121,10 +121,6 @@ struct common_grammar_trigger {
|
||||
common_grammar_trigger_type type;
|
||||
std::string value;
|
||||
llama_token token = LLAMA_TOKEN_NULL;
|
||||
|
||||
// T can only be nlohmann::ordered_json
|
||||
template <class T> T to_json() const;
|
||||
template <class T> static common_grammar_trigger from_json(const T & in);
|
||||
};
|
||||
|
||||
// sampling parameters
|
||||
@@ -184,6 +180,13 @@ struct common_params_sampling {
|
||||
std::string print() const;
|
||||
};
|
||||
|
||||
struct common_params_model {
|
||||
std::string path = ""; // model local path // NOLINT
|
||||
std::string url = ""; // model url to download // NOLINT
|
||||
std::string hf_repo = ""; // HF repo // NOLINT
|
||||
std::string hf_file = ""; // HF file // NOLINT
|
||||
};
|
||||
|
||||
struct common_params_speculative {
|
||||
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
|
||||
|
||||
@@ -197,19 +200,11 @@ struct common_params_speculative {
|
||||
struct cpu_params cpuparams;
|
||||
struct cpu_params cpuparams_batch;
|
||||
|
||||
std::string hf_repo = ""; // HF repo // NOLINT
|
||||
std::string hf_file = ""; // HF file // NOLINT
|
||||
|
||||
std::string model = ""; // draft model for speculative decoding // NOLINT
|
||||
std::string model_url = ""; // model url to download // NOLINT
|
||||
struct common_params_model model;
|
||||
};
|
||||
|
||||
struct common_params_vocoder {
|
||||
std::string hf_repo = ""; // HF repo // NOLINT
|
||||
std::string hf_file = ""; // HF file // NOLINT
|
||||
|
||||
std::string model = ""; // model path // NOLINT
|
||||
std::string model_url = ""; // model url to download // NOLINT
|
||||
struct common_params_model model;
|
||||
|
||||
std::string speaker_file = ""; // speaker file path // NOLINT
|
||||
|
||||
@@ -267,12 +262,10 @@ struct common_params {
|
||||
struct common_params_speculative speculative;
|
||||
struct common_params_vocoder vocoder;
|
||||
|
||||
std::string model = ""; // model path // NOLINT
|
||||
struct common_params_model model;
|
||||
|
||||
std::string model_alias = ""; // model alias // NOLINT
|
||||
std::string model_url = ""; // model url to download // NOLINT
|
||||
std::string hf_token = ""; // HF token // NOLINT
|
||||
std::string hf_repo = ""; // HF repo // NOLINT
|
||||
std::string hf_file = ""; // HF file // NOLINT
|
||||
std::string prompt = ""; // NOLINT
|
||||
std::string system_prompt = ""; // NOLINT
|
||||
std::string prompt_file = ""; // store the external prompt file name // NOLINT
|
||||
@@ -286,6 +279,7 @@ struct common_params {
|
||||
std::vector<std::string> in_files; // all input files
|
||||
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
|
||||
std::vector<llama_model_kv_override> kv_overrides;
|
||||
std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
|
||||
|
||||
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_adapter_lora_apply)
|
||||
std::vector<common_adapter_lora_info> lora_adapters; // lora adapter path with user defined scale
|
||||
@@ -347,7 +341,7 @@ struct common_params {
|
||||
common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
|
||||
|
||||
// multimodal models (see examples/llava)
|
||||
std::string mmproj = ""; // path to multimodal projector // NOLINT
|
||||
struct common_params_model mmproj;
|
||||
std::vector<std::string> image; // path to image file(s)
|
||||
|
||||
// embedding
|
||||
@@ -546,26 +540,11 @@ struct llama_model_params common_model_params_to_llama ( common_params
|
||||
struct llama_context_params common_context_params_to_llama(const common_params & params);
|
||||
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
|
||||
|
||||
struct llama_model * common_load_model_from_url(
|
||||
const std::string & model_url,
|
||||
const std::string & local_path,
|
||||
const std::string & hf_token,
|
||||
const struct llama_model_params & params);
|
||||
|
||||
struct llama_model * common_load_model_from_hf(
|
||||
const std::string & repo,
|
||||
const std::string & remote_path,
|
||||
const std::string & local_path,
|
||||
const std::string & hf_token,
|
||||
const struct llama_model_params & params);
|
||||
|
||||
std::pair<std::string, std::string> common_get_hf_file(
|
||||
const std::string & hf_repo_with_tag,
|
||||
const std::string & hf_token);
|
||||
|
||||
// clear LoRA adapters from context, then apply new list of adapters
|
||||
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora);
|
||||
|
||||
std::string get_model_endpoint();
|
||||
|
||||
//
|
||||
// Batch utils
|
||||
//
|
||||
|
||||
@@ -9,10 +9,19 @@
|
||||
#pragma once
|
||||
|
||||
#include "minja.hpp"
|
||||
#include <json.hpp>
|
||||
|
||||
#include <chrono>
|
||||
#include <cstddef>
|
||||
#include <cstdio>
|
||||
#include <exception>
|
||||
#include <iomanip>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include <json.hpp>
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
namespace minja {
|
||||
@@ -425,7 +434,7 @@ class chat_template {
|
||||
auto obj = json {
|
||||
{"tool_calls", tool_calls},
|
||||
};
|
||||
if (!content.is_null() && content != "") {
|
||||
if (!content.is_null() && !content.empty()) {
|
||||
obj["content"] = content;
|
||||
}
|
||||
message["content"] = obj.dump(2);
|
||||
@@ -435,13 +444,12 @@ class chat_template {
|
||||
if (polyfill_tool_responses && role == "tool") {
|
||||
message["role"] = "user";
|
||||
auto obj = json {
|
||||
{"tool_response", {
|
||||
{"content", message.at("content")},
|
||||
}},
|
||||
{"tool_response", json::object()},
|
||||
};
|
||||
if (message.contains("name")) {
|
||||
obj["tool_response"]["name"] = message.at("name");
|
||||
obj["tool_response"]["tool"] = message.at("name");
|
||||
}
|
||||
obj["tool_response"]["content"] = message.at("content");
|
||||
if (message.contains("tool_call_id")) {
|
||||
obj["tool_response"]["tool_call_id"] = message.at("tool_call_id");
|
||||
}
|
||||
@@ -510,7 +518,7 @@ class chat_template {
|
||||
static nlohmann::ordered_json add_system(const nlohmann::ordered_json & messages, const std::string & system_prompt) {
|
||||
json messages_with_system = messages;
|
||||
|
||||
if (messages_with_system.size() > 0 && messages_with_system[0].at("role") == "system") {
|
||||
if (!messages_with_system.empty() && messages_with_system[0].at("role") == "system") {
|
||||
std::string existing_system = messages_with_system.at(0).at("content");
|
||||
messages_with_system[0] = json {
|
||||
{"role", "system"},
|
||||
|
||||
@@ -8,14 +8,26 @@
|
||||
// SPDX-License-Identifier: MIT
|
||||
#pragma once
|
||||
|
||||
#include <algorithm>
|
||||
#include <cctype>
|
||||
#include <cstddef>
|
||||
#include <cmath>
|
||||
#include <exception>
|
||||
#include <functional>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <regex>
|
||||
#include <iterator>
|
||||
#include <limits>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <stdexcept>
|
||||
#include <regex>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <stdexcept>
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include <json.hpp>
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
@@ -731,51 +743,51 @@ public:
|
||||
|
||||
struct TextTemplateToken : public TemplateToken {
|
||||
std::string text;
|
||||
TextTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::string& t) : TemplateToken(Type::Text, location, pre, post), text(t) {}
|
||||
TextTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, const std::string& t) : TemplateToken(Type::Text, loc, pre, post), text(t) {}
|
||||
};
|
||||
|
||||
struct ExpressionTemplateToken : public TemplateToken {
|
||||
std::shared_ptr<Expression> expr;
|
||||
ExpressionTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && e) : TemplateToken(Type::Expression, location, pre, post), expr(std::move(e)) {}
|
||||
ExpressionTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && e) : TemplateToken(Type::Expression, loc, pre, post), expr(std::move(e)) {}
|
||||
};
|
||||
|
||||
struct IfTemplateToken : public TemplateToken {
|
||||
std::shared_ptr<Expression> condition;
|
||||
IfTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && c) : TemplateToken(Type::If, location, pre, post), condition(std::move(c)) {}
|
||||
IfTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && c) : TemplateToken(Type::If, loc, pre, post), condition(std::move(c)) {}
|
||||
};
|
||||
|
||||
struct ElifTemplateToken : public TemplateToken {
|
||||
std::shared_ptr<Expression> condition;
|
||||
ElifTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && c) : TemplateToken(Type::Elif, location, pre, post), condition(std::move(c)) {}
|
||||
ElifTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && c) : TemplateToken(Type::Elif, loc, pre, post), condition(std::move(c)) {}
|
||||
};
|
||||
|
||||
struct ElseTemplateToken : public TemplateToken {
|
||||
ElseTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::Else, location, pre, post) {}
|
||||
ElseTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::Else, loc, pre, post) {}
|
||||
};
|
||||
|
||||
struct EndIfTemplateToken : public TemplateToken {
|
||||
EndIfTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndIf, location, pre, post) {}
|
||||
EndIfTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndIf, loc, pre, post) {}
|
||||
};
|
||||
|
||||
struct MacroTemplateToken : public TemplateToken {
|
||||
std::shared_ptr<VariableExpr> name;
|
||||
Expression::Parameters params;
|
||||
MacroTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<VariableExpr> && n, Expression::Parameters && p)
|
||||
: TemplateToken(Type::Macro, location, pre, post), name(std::move(n)), params(std::move(p)) {}
|
||||
MacroTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<VariableExpr> && n, Expression::Parameters && p)
|
||||
: TemplateToken(Type::Macro, loc, pre, post), name(std::move(n)), params(std::move(p)) {}
|
||||
};
|
||||
|
||||
struct EndMacroTemplateToken : public TemplateToken {
|
||||
EndMacroTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndMacro, location, pre, post) {}
|
||||
EndMacroTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndMacro, loc, pre, post) {}
|
||||
};
|
||||
|
||||
struct FilterTemplateToken : public TemplateToken {
|
||||
std::shared_ptr<Expression> filter;
|
||||
FilterTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && filter)
|
||||
: TemplateToken(Type::Filter, location, pre, post), filter(std::move(filter)) {}
|
||||
FilterTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && filter)
|
||||
: TemplateToken(Type::Filter, loc, pre, post), filter(std::move(filter)) {}
|
||||
};
|
||||
|
||||
struct EndFilterTemplateToken : public TemplateToken {
|
||||
EndFilterTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndFilter, location, pre, post) {}
|
||||
EndFilterTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndFilter, loc, pre, post) {}
|
||||
};
|
||||
|
||||
struct ForTemplateToken : public TemplateToken {
|
||||
@@ -783,38 +795,38 @@ struct ForTemplateToken : public TemplateToken {
|
||||
std::shared_ptr<Expression> iterable;
|
||||
std::shared_ptr<Expression> condition;
|
||||
bool recursive;
|
||||
ForTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::vector<std::string> & vns, std::shared_ptr<Expression> && iter,
|
||||
ForTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, const std::vector<std::string> & vns, std::shared_ptr<Expression> && iter,
|
||||
std::shared_ptr<Expression> && c, bool r)
|
||||
: TemplateToken(Type::For, location, pre, post), var_names(vns), iterable(std::move(iter)), condition(std::move(c)), recursive(r) {}
|
||||
: TemplateToken(Type::For, loc, pre, post), var_names(vns), iterable(std::move(iter)), condition(std::move(c)), recursive(r) {}
|
||||
};
|
||||
|
||||
struct EndForTemplateToken : public TemplateToken {
|
||||
EndForTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndFor, location, pre, post) {}
|
||||
EndForTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndFor, loc, pre, post) {}
|
||||
};
|
||||
|
||||
struct GenerationTemplateToken : public TemplateToken {
|
||||
GenerationTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::Generation, location, pre, post) {}
|
||||
GenerationTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::Generation, loc, pre, post) {}
|
||||
};
|
||||
|
||||
struct EndGenerationTemplateToken : public TemplateToken {
|
||||
EndGenerationTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndGeneration, location, pre, post) {}
|
||||
EndGenerationTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndGeneration, loc, pre, post) {}
|
||||
};
|
||||
|
||||
struct SetTemplateToken : public TemplateToken {
|
||||
std::string ns;
|
||||
std::vector<std::string> var_names;
|
||||
std::shared_ptr<Expression> value;
|
||||
SetTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::string & ns, const std::vector<std::string> & vns, std::shared_ptr<Expression> && v)
|
||||
: TemplateToken(Type::Set, location, pre, post), ns(ns), var_names(vns), value(std::move(v)) {}
|
||||
SetTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, const std::string & ns, const std::vector<std::string> & vns, std::shared_ptr<Expression> && v)
|
||||
: TemplateToken(Type::Set, loc, pre, post), ns(ns), var_names(vns), value(std::move(v)) {}
|
||||
};
|
||||
|
||||
struct EndSetTemplateToken : public TemplateToken {
|
||||
EndSetTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndSet, location, pre, post) {}
|
||||
EndSetTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndSet, loc, pre, post) {}
|
||||
};
|
||||
|
||||
struct CommentTemplateToken : public TemplateToken {
|
||||
std::string text;
|
||||
CommentTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::string& t) : TemplateToken(Type::Comment, location, pre, post), text(t) {}
|
||||
CommentTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, const std::string& t) : TemplateToken(Type::Comment, loc, pre, post), text(t) {}
|
||||
};
|
||||
|
||||
enum class LoopControlType { Break, Continue };
|
||||
@@ -830,7 +842,7 @@ public:
|
||||
|
||||
struct LoopControlTemplateToken : public TemplateToken {
|
||||
LoopControlType control_type;
|
||||
LoopControlTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, LoopControlType control_type) : TemplateToken(Type::Break, location, pre, post), control_type(control_type) {}
|
||||
LoopControlTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, LoopControlType control_type) : TemplateToken(Type::Break, loc, pre, post), control_type(control_type) {}
|
||||
};
|
||||
|
||||
class TemplateNode {
|
||||
@@ -868,8 +880,8 @@ public:
|
||||
class SequenceNode : public TemplateNode {
|
||||
std::vector<std::shared_ptr<TemplateNode>> children;
|
||||
public:
|
||||
SequenceNode(const Location & location, std::vector<std::shared_ptr<TemplateNode>> && c)
|
||||
: TemplateNode(location), children(std::move(c)) {}
|
||||
SequenceNode(const Location & loc, std::vector<std::shared_ptr<TemplateNode>> && c)
|
||||
: TemplateNode(loc), children(std::move(c)) {}
|
||||
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
|
||||
for (const auto& child : children) child->render(out, context);
|
||||
}
|
||||
@@ -878,7 +890,7 @@ public:
|
||||
class TextNode : public TemplateNode {
|
||||
std::string text;
|
||||
public:
|
||||
TextNode(const Location & location, const std::string& t) : TemplateNode(location), text(t) {}
|
||||
TextNode(const Location & loc, const std::string& t) : TemplateNode(loc), text(t) {}
|
||||
void do_render(std::ostringstream & out, const std::shared_ptr<Context> &) const override {
|
||||
out << text;
|
||||
}
|
||||
@@ -887,7 +899,7 @@ public:
|
||||
class ExpressionNode : public TemplateNode {
|
||||
std::shared_ptr<Expression> expr;
|
||||
public:
|
||||
ExpressionNode(const Location & location, std::shared_ptr<Expression> && e) : TemplateNode(location), expr(std::move(e)) {}
|
||||
ExpressionNode(const Location & loc, std::shared_ptr<Expression> && e) : TemplateNode(loc), expr(std::move(e)) {}
|
||||
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
|
||||
if (!expr) throw std::runtime_error("ExpressionNode.expr is null");
|
||||
auto result = expr->evaluate(context);
|
||||
@@ -904,8 +916,8 @@ public:
|
||||
class IfNode : public TemplateNode {
|
||||
std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<TemplateNode>>> cascade;
|
||||
public:
|
||||
IfNode(const Location & location, std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<TemplateNode>>> && c)
|
||||
: TemplateNode(location), cascade(std::move(c)) {}
|
||||
IfNode(const Location & loc, std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<TemplateNode>>> && c)
|
||||
: TemplateNode(loc), cascade(std::move(c)) {}
|
||||
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
|
||||
for (const auto& branch : cascade) {
|
||||
auto enter_branch = true;
|
||||
@@ -924,7 +936,7 @@ public:
|
||||
class LoopControlNode : public TemplateNode {
|
||||
LoopControlType control_type_;
|
||||
public:
|
||||
LoopControlNode(const Location & location, LoopControlType control_type) : TemplateNode(location), control_type_(control_type) {}
|
||||
LoopControlNode(const Location & loc, LoopControlType control_type) : TemplateNode(loc), control_type_(control_type) {}
|
||||
void do_render(std::ostringstream &, const std::shared_ptr<Context> &) const override {
|
||||
throw LoopControlException(control_type_);
|
||||
}
|
||||
@@ -938,9 +950,9 @@ class ForNode : public TemplateNode {
|
||||
bool recursive;
|
||||
std::shared_ptr<TemplateNode> else_body;
|
||||
public:
|
||||
ForNode(const Location & location, std::vector<std::string> && var_names, std::shared_ptr<Expression> && iterable,
|
||||
ForNode(const Location & loc, std::vector<std::string> && var_names, std::shared_ptr<Expression> && iterable,
|
||||
std::shared_ptr<Expression> && condition, std::shared_ptr<TemplateNode> && body, bool recursive, std::shared_ptr<TemplateNode> && else_body)
|
||||
: TemplateNode(location), var_names(var_names), iterable(std::move(iterable)), condition(std::move(condition)), body(std::move(body)), recursive(recursive), else_body(std::move(else_body)) {}
|
||||
: TemplateNode(loc), var_names(var_names), iterable(std::move(iterable)), condition(std::move(condition)), body(std::move(body)), recursive(recursive), else_body(std::move(else_body)) {}
|
||||
|
||||
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
|
||||
// https://jinja.palletsprojects.com/en/3.0.x/templates/#for
|
||||
@@ -1025,8 +1037,8 @@ class MacroNode : public TemplateNode {
|
||||
std::shared_ptr<TemplateNode> body;
|
||||
std::unordered_map<std::string, size_t> named_param_positions;
|
||||
public:
|
||||
MacroNode(const Location & location, std::shared_ptr<VariableExpr> && n, Expression::Parameters && p, std::shared_ptr<TemplateNode> && b)
|
||||
: TemplateNode(location), name(std::move(n)), params(std::move(p)), body(std::move(b)) {
|
||||
MacroNode(const Location & loc, std::shared_ptr<VariableExpr> && n, Expression::Parameters && p, std::shared_ptr<TemplateNode> && b)
|
||||
: TemplateNode(loc), name(std::move(n)), params(std::move(p)), body(std::move(b)) {
|
||||
for (size_t i = 0; i < params.size(); ++i) {
|
||||
const auto & name = params[i].first;
|
||||
if (!name.empty()) {
|
||||
@@ -1072,8 +1084,8 @@ class FilterNode : public TemplateNode {
|
||||
std::shared_ptr<TemplateNode> body;
|
||||
|
||||
public:
|
||||
FilterNode(const Location & location, std::shared_ptr<Expression> && f, std::shared_ptr<TemplateNode> && b)
|
||||
: TemplateNode(location), filter(std::move(f)), body(std::move(b)) {}
|
||||
FilterNode(const Location & loc, std::shared_ptr<Expression> && f, std::shared_ptr<TemplateNode> && b)
|
||||
: TemplateNode(loc), filter(std::move(f)), body(std::move(b)) {}
|
||||
|
||||
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
|
||||
if (!filter) throw std::runtime_error("FilterNode.filter is null");
|
||||
@@ -1095,8 +1107,8 @@ class SetNode : public TemplateNode {
|
||||
std::vector<std::string> var_names;
|
||||
std::shared_ptr<Expression> value;
|
||||
public:
|
||||
SetNode(const Location & location, const std::string & ns, const std::vector<std::string> & vns, std::shared_ptr<Expression> && v)
|
||||
: TemplateNode(location), ns(ns), var_names(vns), value(std::move(v)) {}
|
||||
SetNode(const Location & loc, const std::string & ns, const std::vector<std::string> & vns, std::shared_ptr<Expression> && v)
|
||||
: TemplateNode(loc), ns(ns), var_names(vns), value(std::move(v)) {}
|
||||
void do_render(std::ostringstream &, const std::shared_ptr<Context> & context) const override {
|
||||
if (!value) throw std::runtime_error("SetNode.value is null");
|
||||
if (!ns.empty()) {
|
||||
@@ -1118,8 +1130,8 @@ class SetTemplateNode : public TemplateNode {
|
||||
std::string name;
|
||||
std::shared_ptr<TemplateNode> template_value;
|
||||
public:
|
||||
SetTemplateNode(const Location & location, const std::string & name, std::shared_ptr<TemplateNode> && tv)
|
||||
: TemplateNode(location), name(name), template_value(std::move(tv)) {}
|
||||
SetTemplateNode(const Location & loc, const std::string & name, std::shared_ptr<TemplateNode> && tv)
|
||||
: TemplateNode(loc), name(name), template_value(std::move(tv)) {}
|
||||
void do_render(std::ostringstream &, const std::shared_ptr<Context> & context) const override {
|
||||
if (!template_value) throw std::runtime_error("SetTemplateNode.template_value is null");
|
||||
Value value { template_value->render(context) };
|
||||
@@ -1132,8 +1144,8 @@ class IfExpr : public Expression {
|
||||
std::shared_ptr<Expression> then_expr;
|
||||
std::shared_ptr<Expression> else_expr;
|
||||
public:
|
||||
IfExpr(const Location & location, std::shared_ptr<Expression> && c, std::shared_ptr<Expression> && t, std::shared_ptr<Expression> && e)
|
||||
: Expression(location), condition(std::move(c)), then_expr(std::move(t)), else_expr(std::move(e)) {}
|
||||
IfExpr(const Location & loc, std::shared_ptr<Expression> && c, std::shared_ptr<Expression> && t, std::shared_ptr<Expression> && e)
|
||||
: Expression(loc), condition(std::move(c)), then_expr(std::move(t)), else_expr(std::move(e)) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
|
||||
if (!condition) throw std::runtime_error("IfExpr.condition is null");
|
||||
if (!then_expr) throw std::runtime_error("IfExpr.then_expr is null");
|
||||
@@ -1150,16 +1162,16 @@ public:
|
||||
class LiteralExpr : public Expression {
|
||||
Value value;
|
||||
public:
|
||||
LiteralExpr(const Location & location, const Value& v)
|
||||
: Expression(location), value(v) {}
|
||||
LiteralExpr(const Location & loc, const Value& v)
|
||||
: Expression(loc), value(v) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> &) const override { return value; }
|
||||
};
|
||||
|
||||
class ArrayExpr : public Expression {
|
||||
std::vector<std::shared_ptr<Expression>> elements;
|
||||
public:
|
||||
ArrayExpr(const Location & location, std::vector<std::shared_ptr<Expression>> && e)
|
||||
: Expression(location), elements(std::move(e)) {}
|
||||
ArrayExpr(const Location & loc, std::vector<std::shared_ptr<Expression>> && e)
|
||||
: Expression(loc), elements(std::move(e)) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
|
||||
auto result = Value::array();
|
||||
for (const auto& e : elements) {
|
||||
@@ -1173,8 +1185,8 @@ public:
|
||||
class DictExpr : public Expression {
|
||||
std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<Expression>>> elements;
|
||||
public:
|
||||
DictExpr(const Location & location, std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<Expression>>> && e)
|
||||
: Expression(location), elements(std::move(e)) {}
|
||||
DictExpr(const Location & loc, std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<Expression>>> && e)
|
||||
: Expression(loc), elements(std::move(e)) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
|
||||
auto result = Value::object();
|
||||
for (const auto& [key, value] : elements) {
|
||||
@@ -1189,8 +1201,8 @@ public:
|
||||
class SliceExpr : public Expression {
|
||||
public:
|
||||
std::shared_ptr<Expression> start, end;
|
||||
SliceExpr(const Location & location, std::shared_ptr<Expression> && s, std::shared_ptr<Expression> && e)
|
||||
: Expression(location), start(std::move(s)), end(std::move(e)) {}
|
||||
SliceExpr(const Location & loc, std::shared_ptr<Expression> && s, std::shared_ptr<Expression> && e)
|
||||
: Expression(loc), start(std::move(s)), end(std::move(e)) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> &) const override {
|
||||
throw std::runtime_error("SliceExpr not implemented");
|
||||
}
|
||||
@@ -1200,8 +1212,8 @@ class SubscriptExpr : public Expression {
|
||||
std::shared_ptr<Expression> base;
|
||||
std::shared_ptr<Expression> index;
|
||||
public:
|
||||
SubscriptExpr(const Location & location, std::shared_ptr<Expression> && b, std::shared_ptr<Expression> && i)
|
||||
: Expression(location), base(std::move(b)), index(std::move(i)) {}
|
||||
SubscriptExpr(const Location & loc, std::shared_ptr<Expression> && b, std::shared_ptr<Expression> && i)
|
||||
: Expression(loc), base(std::move(b)), index(std::move(i)) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
|
||||
if (!base) throw std::runtime_error("SubscriptExpr.base is null");
|
||||
if (!index) throw std::runtime_error("SubscriptExpr.index is null");
|
||||
@@ -1243,8 +1255,8 @@ public:
|
||||
enum class Op { Plus, Minus, LogicalNot, Expansion, ExpansionDict };
|
||||
std::shared_ptr<Expression> expr;
|
||||
Op op;
|
||||
UnaryOpExpr(const Location & location, std::shared_ptr<Expression> && e, Op o)
|
||||
: Expression(location), expr(std::move(e)), op(o) {}
|
||||
UnaryOpExpr(const Location & loc, std::shared_ptr<Expression> && e, Op o)
|
||||
: Expression(loc), expr(std::move(e)), op(o) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
|
||||
if (!expr) throw std::runtime_error("UnaryOpExpr.expr is null");
|
||||
auto e = expr->evaluate(context);
|
||||
@@ -1269,8 +1281,8 @@ private:
|
||||
std::shared_ptr<Expression> right;
|
||||
Op op;
|
||||
public:
|
||||
BinaryOpExpr(const Location & location, std::shared_ptr<Expression> && l, std::shared_ptr<Expression> && r, Op o)
|
||||
: Expression(location), left(std::move(l)), right(std::move(r)), op(o) {}
|
||||
BinaryOpExpr(const Location & loc, std::shared_ptr<Expression> && l, std::shared_ptr<Expression> && r, Op o)
|
||||
: Expression(loc), left(std::move(l)), right(std::move(r)), op(o) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
|
||||
if (!left) throw std::runtime_error("BinaryOpExpr.left is null");
|
||||
if (!right) throw std::runtime_error("BinaryOpExpr.right is null");
|
||||
@@ -1427,8 +1439,8 @@ class MethodCallExpr : public Expression {
|
||||
std::shared_ptr<VariableExpr> method;
|
||||
ArgumentsExpression args;
|
||||
public:
|
||||
MethodCallExpr(const Location & location, std::shared_ptr<Expression> && obj, std::shared_ptr<VariableExpr> && m, ArgumentsExpression && a)
|
||||
: Expression(location), object(std::move(obj)), method(std::move(m)), args(std::move(a)) {}
|
||||
MethodCallExpr(const Location & loc, std::shared_ptr<Expression> && obj, std::shared_ptr<VariableExpr> && m, ArgumentsExpression && a)
|
||||
: Expression(loc), object(std::move(obj)), method(std::move(m)), args(std::move(a)) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
|
||||
if (!object) throw std::runtime_error("MethodCallExpr.object is null");
|
||||
if (!method) throw std::runtime_error("MethodCallExpr.method is null");
|
||||
@@ -1526,8 +1538,8 @@ class CallExpr : public Expression {
|
||||
public:
|
||||
std::shared_ptr<Expression> object;
|
||||
ArgumentsExpression args;
|
||||
CallExpr(const Location & location, std::shared_ptr<Expression> && obj, ArgumentsExpression && a)
|
||||
: Expression(location), object(std::move(obj)), args(std::move(a)) {}
|
||||
CallExpr(const Location & loc, std::shared_ptr<Expression> && obj, ArgumentsExpression && a)
|
||||
: Expression(loc), object(std::move(obj)), args(std::move(a)) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
|
||||
if (!object) throw std::runtime_error("CallExpr.object is null");
|
||||
auto obj = object->evaluate(context);
|
||||
@@ -1542,8 +1554,8 @@ public:
|
||||
class FilterExpr : public Expression {
|
||||
std::vector<std::shared_ptr<Expression>> parts;
|
||||
public:
|
||||
FilterExpr(const Location & location, std::vector<std::shared_ptr<Expression>> && p)
|
||||
: Expression(location), parts(std::move(p)) {}
|
||||
FilterExpr(const Location & loc, std::vector<std::shared_ptr<Expression>> && p)
|
||||
: Expression(loc), parts(std::move(p)) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
|
||||
Value result;
|
||||
bool first = true;
|
||||
@@ -2460,7 +2472,7 @@ private:
|
||||
static std::regex leading_space_regex(R"(^\s+)");
|
||||
text = std::regex_replace(text, leading_space_regex, "");
|
||||
} else if (options.trim_blocks && (it - 1) != begin && !dynamic_cast<ExpressionTemplateToken*>((*(it - 2)).get())) {
|
||||
if (text.length() > 0 && text[0] == '\n') {
|
||||
if (!text.empty() && text[0] == '\n') {
|
||||
text.erase(0, 1);
|
||||
}
|
||||
}
|
||||
@@ -2538,7 +2550,7 @@ public:
|
||||
TemplateTokenIterator begin = tokens.begin();
|
||||
auto it = begin;
|
||||
TemplateTokenIterator end = tokens.end();
|
||||
return parser.parseTemplate(begin, it, end, /* full= */ true);
|
||||
return parser.parseTemplate(begin, it, end, /* fully= */ true);
|
||||
}
|
||||
};
|
||||
|
||||
@@ -2577,7 +2589,7 @@ inline std::shared_ptr<Context> Context::builtins() {
|
||||
throw std::runtime_error(args.at("message").get<std::string>());
|
||||
}));
|
||||
globals.set("tojson", simple_function("tojson", { "value", "indent" }, [](const std::shared_ptr<Context> &, Value & args) {
|
||||
return Value(args.at("value").dump(args.get<int64_t>("indent", -1), /* tojson= */ true));
|
||||
return Value(args.at("value").dump(args.get<int64_t>("indent", -1), /* to_json= */ true));
|
||||
}));
|
||||
globals.set("items", simple_function("items", { "object" }, [](const std::shared_ptr<Context> &, Value & args) {
|
||||
auto items = Value::array();
|
||||
@@ -2599,21 +2611,25 @@ inline std::shared_ptr<Context> Context::builtins() {
|
||||
globals.set("last", simple_function("last", { "items" }, [](const std::shared_ptr<Context> &, Value & args) {
|
||||
auto items = args.at("items");
|
||||
if (!items.is_array()) throw std::runtime_error("object is not a list");
|
||||
if (items.size() == 0) return Value();
|
||||
if (items.empty()) return Value();
|
||||
return items.at(items.size() - 1);
|
||||
}));
|
||||
globals.set("trim", simple_function("trim", { "text" }, [](const std::shared_ptr<Context> &, Value & args) {
|
||||
auto & text = args.at("text");
|
||||
return text.is_null() ? text : Value(strip(text.get<std::string>()));
|
||||
}));
|
||||
globals.set("lower", simple_function("lower", { "text" }, [](const std::shared_ptr<Context> &, Value & args) {
|
||||
auto text = args.at("text");
|
||||
if (text.is_null()) return text;
|
||||
std::string res;
|
||||
auto str = text.get<std::string>();
|
||||
std::transform(str.begin(), str.end(), std::back_inserter(res), ::tolower);
|
||||
return Value(res);
|
||||
}));
|
||||
auto char_transform_function = [](const std::string & name, const std::function<char(char)> & fn) {
|
||||
return simple_function(name, { "text" }, [=](const std::shared_ptr<Context> &, Value & args) {
|
||||
auto text = args.at("text");
|
||||
if (text.is_null()) return text;
|
||||
std::string res;
|
||||
auto str = text.get<std::string>();
|
||||
std::transform(str.begin(), str.end(), std::back_inserter(res), fn);
|
||||
return Value(res);
|
||||
});
|
||||
};
|
||||
globals.set("lower", char_transform_function("lower", ::tolower));
|
||||
globals.set("upper", char_transform_function("upper", ::toupper));
|
||||
globals.set("default", Value::callable([=](const std::shared_ptr<Context> &, ArgumentsValue & args) {
|
||||
args.expectArgs("default", {2, 3}, {0, 1});
|
||||
auto & value = args.args[0];
|
||||
@@ -2743,12 +2759,17 @@ inline std::shared_ptr<Context> Context::builtins() {
|
||||
return Value::callable([=](const std::shared_ptr<Context> & context, ArgumentsValue & args) {
|
||||
args.expectArgs(is_select ? "select" : "reject", {2, (std::numeric_limits<size_t>::max)()}, {0, 0});
|
||||
auto & items = args.args[0];
|
||||
if (items.is_null())
|
||||
if (items.is_null()) {
|
||||
return Value::array();
|
||||
if (!items.is_array()) throw std::runtime_error("object is not iterable: " + items.dump());
|
||||
}
|
||||
if (!items.is_array()) {
|
||||
throw std::runtime_error("object is not iterable: " + items.dump());
|
||||
}
|
||||
|
||||
auto filter_fn = context->get(args.args[1]);
|
||||
if (filter_fn.is_null()) throw std::runtime_error("Undefined filter: " + args.args[1].dump());
|
||||
if (filter_fn.is_null()) {
|
||||
throw std::runtime_error("Undefined filter: " + args.args[1].dump());
|
||||
}
|
||||
|
||||
auto filter_args = Value::array();
|
||||
for (size_t i = 2, n = args.args.size(); i < n; i++) {
|
||||
@@ -2870,20 +2891,25 @@ inline std::shared_ptr<Context> Context::builtins() {
|
||||
auto v = arg.get<int64_t>();
|
||||
startEndStep[i] = v;
|
||||
param_set[i] = true;
|
||||
}
|
||||
}
|
||||
for (auto & [name, value] : args.kwargs) {
|
||||
size_t i;
|
||||
if (name == "start") i = 0;
|
||||
else if (name == "end") i = 1;
|
||||
else if (name == "step") i = 2;
|
||||
else throw std::runtime_error("Unknown argument " + name + " for function range");
|
||||
}
|
||||
for (auto & [name, value] : args.kwargs) {
|
||||
size_t i;
|
||||
if (name == "start") {
|
||||
i = 0;
|
||||
} else if (name == "end") {
|
||||
i = 1;
|
||||
} else if (name == "step") {
|
||||
i = 2;
|
||||
} else {
|
||||
throw std::runtime_error("Unknown argument " + name + " for function range");
|
||||
}
|
||||
|
||||
if (param_set[i]) {
|
||||
throw std::runtime_error("Duplicate argument " + name + " for function range");
|
||||
}
|
||||
startEndStep[i] = value.get<int64_t>();
|
||||
param_set[i] = true;
|
||||
if (param_set[i]) {
|
||||
throw std::runtime_error("Duplicate argument " + name + " for function range");
|
||||
}
|
||||
startEndStep[i] = value.get<int64_t>();
|
||||
param_set[i] = true;
|
||||
}
|
||||
if (!param_set[1]) {
|
||||
throw std::runtime_error("Missing required argument 'end' for function range");
|
||||
|
||||
@@ -208,6 +208,9 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
||||
trigger_patterns_c.data(), trigger_patterns_c.size(),
|
||||
trigger_tokens.data(), trigger_tokens.size())
|
||||
: llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
|
||||
if (!grmr) {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
auto * result = new common_sampler {
|
||||
|
||||
@@ -65,6 +65,7 @@ class Model:
|
||||
model_name: str | None
|
||||
metadata_override: Path | None
|
||||
dir_model_card: Path
|
||||
remote_hf_model_id: str | None
|
||||
|
||||
# subclasses should define this!
|
||||
model_arch: gguf.MODEL_ARCH
|
||||
@@ -73,7 +74,7 @@ class Model:
|
||||
use_temp_file: bool = False, eager: bool = False,
|
||||
metadata_override: Path | None = None, model_name: str | None = None,
|
||||
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
|
||||
small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
|
||||
small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
|
||||
if type(self) is Model:
|
||||
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
|
||||
|
||||
@@ -83,11 +84,24 @@ class Model:
|
||||
self.is_big_endian = is_big_endian
|
||||
self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
|
||||
self.use_temp_file = use_temp_file
|
||||
self.lazy = not eager
|
||||
self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
|
||||
self.is_safetensors = len(self.part_names) > 0
|
||||
if not self.is_safetensors:
|
||||
self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
|
||||
self.lazy = not eager or (remote_hf_model_id is not None)
|
||||
self.remote_hf_model_id = remote_hf_model_id
|
||||
if remote_hf_model_id is not None:
|
||||
self.is_safetensors = True
|
||||
|
||||
def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
|
||||
logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
|
||||
remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
|
||||
self.tensor_names = set(name for name in remote_tensors.keys())
|
||||
for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
|
||||
yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
|
||||
|
||||
self.get_tensors = get_remote_tensors
|
||||
else:
|
||||
self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
|
||||
self.is_safetensors = len(self.part_names) > 0
|
||||
if not self.is_safetensors:
|
||||
self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
|
||||
self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
|
||||
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
|
||||
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
|
||||
@@ -393,6 +407,10 @@ class Model:
|
||||
|
||||
self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
|
||||
|
||||
# If we are using HF model id, set the metadata name to the model id
|
||||
if self.remote_hf_model_id:
|
||||
self.metadata.name = self.remote_hf_model_id
|
||||
|
||||
# Fallback to model directory name if metadata name is still missing
|
||||
if self.metadata.name is None:
|
||||
self.metadata.name = self.dir_model.name
|
||||
@@ -708,6 +726,18 @@ class Model:
|
||||
if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
|
||||
# ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
|
||||
res = "superbpe"
|
||||
if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
|
||||
# ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
|
||||
res = "trillion"
|
||||
if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
|
||||
# ref: https://huggingface.co/inclusionAI/Ling-lite
|
||||
res = "bailingmoe"
|
||||
if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
|
||||
# ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
|
||||
res = "llama4"
|
||||
if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
|
||||
# ref: https://huggingface.co/THUDM/glm-4-9b-hf
|
||||
res = "glm4"
|
||||
|
||||
if res is None:
|
||||
logger.warning("\n")
|
||||
@@ -1602,6 +1632,7 @@ class StableLMModel(Model):
|
||||
@Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
|
||||
class LlamaModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
undo_permute = True
|
||||
|
||||
def set_vocab(self):
|
||||
try:
|
||||
@@ -1666,10 +1697,11 @@ class LlamaModel(Model):
|
||||
n_head = self.hparams["num_attention_heads"]
|
||||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||
|
||||
if name.endswith(("q_proj.weight", "q_proj.bias")):
|
||||
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
|
||||
if name.endswith(("k_proj.weight", "k_proj.bias")):
|
||||
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
|
||||
if self.undo_permute:
|
||||
if name.endswith(("q_proj.weight", "q_proj.bias")):
|
||||
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
|
||||
if name.endswith(("k_proj.weight", "k_proj.bias")):
|
||||
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
|
||||
|
||||
# process the experts separately
|
||||
if name.find("block_sparse_moe.experts") != -1:
|
||||
@@ -1721,7 +1753,7 @@ class LlamaModel(Model):
|
||||
|
||||
low_freq_wavelen = old_context_len / low_freq_factor
|
||||
high_freq_wavelen = old_context_len / high_freq_factor
|
||||
assert low_freq_wavelen != high_freq_wavelen
|
||||
# assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
|
||||
|
||||
rope_factors = []
|
||||
for freq in freqs:
|
||||
@@ -1746,6 +1778,57 @@ class LlamaModel(Model):
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@Model.register("Llama4ForConditionalGeneration")
|
||||
class Llama4Model(LlamaModel):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA4
|
||||
has_vision: bool = False
|
||||
undo_permute = False
|
||||
|
||||
# TODO @ngxson : avoid duplicate this code everywhere by at least support "text_config"
|
||||
# same with llama, but we need to merge the text_config into the root level of hparams
|
||||
def __init__(self, *args, **kwargs):
|
||||
hparams = kwargs["hparams"] if "hparams" in kwargs else Model.load_hparams(args[0])
|
||||
if "text_config" in hparams:
|
||||
hparams = {**hparams, **hparams["text_config"]}
|
||||
kwargs["hparams"] = hparams
|
||||
super().__init__(*args, **kwargs)
|
||||
if "vision_config" in hparams:
|
||||
logger.info("Has vision encoder, but it will be ignored")
|
||||
self.has_vision = True
|
||||
# IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
|
||||
self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
|
||||
self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_gpt2()
|
||||
self.gguf_writer.add_add_bos_token(True)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
|
||||
self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
|
||||
# split the gate_up into gate and up
|
||||
if "gate_up_proj" in name:
|
||||
name_up = name.replace("gate_up_proj", "up_proj.weight")
|
||||
name_gate = name.replace("gate_up_proj", "gate_proj.weight")
|
||||
dim_half = data_torch.shape[-1] // 2
|
||||
gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
|
||||
return [
|
||||
(self.map_tensor_name(name_gate), gate_proj_weight),
|
||||
(self.map_tensor_name(name_up), up_proj_weight)
|
||||
]
|
||||
|
||||
if name.endswith("down_proj"):
|
||||
name += ".weight"
|
||||
data_torch = data_torch.transpose(-1, -2)
|
||||
|
||||
if "multi_modal_projector" in name or "vision_model" in name:
|
||||
return []
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@Model.register("Mistral3ForConditionalGeneration")
|
||||
class Mistral3Model(LlamaModel):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
@@ -2393,6 +2476,16 @@ class Qwen2MoeModel(Model):
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@Model.register("Qwen3ForCausalLM")
|
||||
class Qwen3Model(Qwen2Model):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN3
|
||||
|
||||
|
||||
@Model.register("Qwen3MoeForCausalLM")
|
||||
class Qwen3MoeModel(Qwen2MoeModel):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN3MOE
|
||||
|
||||
|
||||
@Model.register("GPT2LMHeadModel")
|
||||
class GPT2Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.GPT2
|
||||
@@ -3551,8 +3644,8 @@ class RWKV6Qwen2Model(Rwkv6Model):
|
||||
head_size = hidden_size // num_attention_heads
|
||||
rms_norm_eps = self.hparams["rms_norm_eps"]
|
||||
intermediate_size = self.hparams["intermediate_size"]
|
||||
time_mix_extra_dim = 64 if hidden_size >= 4096 else 32
|
||||
time_decay_extra_dim = 128 if hidden_size >= 4096 else 64
|
||||
time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
|
||||
time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
|
||||
|
||||
# RWKV isn't context limited
|
||||
self.gguf_writer.add_context_length(1048576)
|
||||
@@ -4329,6 +4422,10 @@ class DeepseekV2Model(Model):
|
||||
self._set_vocab_gpt2()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
|
||||
# note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
|
||||
self.hparams["num_key_value_heads"] = 1
|
||||
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
|
||||
@@ -4337,8 +4434,13 @@ class DeepseekV2Model(Model):
|
||||
if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
|
||||
self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
|
||||
self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
|
||||
self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
|
||||
self.gguf_writer.add_value_length(hparams["v_head_dim"])
|
||||
|
||||
# note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
|
||||
self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
|
||||
self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
|
||||
self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
|
||||
self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
|
||||
|
||||
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
|
||||
self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
|
||||
self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
|
||||
@@ -4407,6 +4509,26 @@ class DeepseekV2Model(Model):
|
||||
else:
|
||||
return []
|
||||
|
||||
# note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
|
||||
if name.endswith("kv_b_proj.weight"):
|
||||
name_kb = name.replace("kv_b_proj", "k_b_proj")
|
||||
name_vb = name.replace("kv_b_proj", "v_b_proj")
|
||||
|
||||
n_head_kv = self.hparams["num_key_value_heads"]
|
||||
v_head_dim = self.hparams["v_head_dim"]
|
||||
qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
|
||||
|
||||
assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
|
||||
|
||||
kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
|
||||
k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
|
||||
k_b = k_b.transpose(1, 2)
|
||||
|
||||
return [
|
||||
(self.map_tensor_name(name_kb), k_b),
|
||||
(self.map_tensor_name(name_vb), v_b)
|
||||
]
|
||||
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
def prepare_tensors(self):
|
||||
@@ -4807,6 +4929,22 @@ class JaisModel(Model):
|
||||
self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
|
||||
|
||||
|
||||
@Model.register("Glm4ForCausalLM")
|
||||
class Glm4Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.GLM4
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_gpt2()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||||
if self.hparams["rope_scaling"].get("type") == "yarn":
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
|
||||
|
||||
|
||||
@Model.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
|
||||
class ChatGLMModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.CHATGLM
|
||||
@@ -5130,6 +5268,105 @@ class GraniteMoeModel(GraniteModel):
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@Model.register("BailingMoeForCausalLM")
|
||||
class BailingMoeModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.BAILINGMOE
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_gpt2()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
|
||||
self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
|
||||
self.gguf_writer.add_expert_weights_scale(1.0)
|
||||
self.gguf_writer.add_expert_count(hparams["num_experts"])
|
||||
self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
|
||||
self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
|
||||
|
||||
_experts: list[dict[str, Tensor]] | None = None
|
||||
|
||||
@staticmethod
|
||||
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
|
||||
if n_head_kv is not None and n_head != n_head_kv:
|
||||
n_head = n_head_kv
|
||||
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||
.swapaxes(1, 2)
|
||||
.reshape(weights.shape))
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
n_head = self.hparams["num_attention_heads"]
|
||||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||
n_embd = self.hparams["hidden_size"]
|
||||
head_dim = self.hparams.get("head_dim") or n_embd // n_head
|
||||
|
||||
output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
|
||||
|
||||
if name.endswith("attention.dense.weight"):
|
||||
return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
|
||||
elif name.endswith("query_key_value.weight"):
|
||||
q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
|
||||
|
||||
return [
|
||||
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
|
||||
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
|
||||
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
|
||||
]
|
||||
elif name.find("mlp.experts") != -1:
|
||||
n_experts = self.hparams["num_experts"]
|
||||
assert bid is not None
|
||||
|
||||
tensors: list[tuple[str, Tensor]] = []
|
||||
|
||||
if self._experts is None:
|
||||
self._experts = [{} for _ in range(self.block_count)]
|
||||
|
||||
self._experts[bid][name] = data_torch
|
||||
|
||||
if len(self._experts[bid]) >= n_experts * 3:
|
||||
# merge the experts into a single 3d tensor
|
||||
for w_name in ["down_proj", "gate_proj", "up_proj"]:
|
||||
datas: list[Tensor] = []
|
||||
|
||||
for xid in range(n_experts):
|
||||
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
|
||||
datas.append(self._experts[bid][ename])
|
||||
del self._experts[bid][ename]
|
||||
|
||||
data_torch = torch.stack(datas, dim=0)
|
||||
|
||||
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
|
||||
|
||||
new_name = self.map_tensor_name(merged_name)
|
||||
|
||||
tensors.append((new_name, data_torch))
|
||||
|
||||
return tensors
|
||||
|
||||
new_name = self.map_tensor_name(name)
|
||||
|
||||
if new_name == output_name and self.hparams.get("norm_head"):
|
||||
data_torch = data_torch.float()
|
||||
data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
|
||||
|
||||
return [(new_name, data_torch)]
|
||||
|
||||
def prepare_tensors(self):
|
||||
super().prepare_tensors()
|
||||
|
||||
if self._experts is not None:
|
||||
# flatten `list[dict[str, Tensor]]` into `list[str]`
|
||||
experts = [k for d in self._experts for k in d.keys()]
|
||||
if len(experts) > 0:
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@Model.register("ChameleonForConditionalGeneration")
|
||||
@Model.register("ChameleonForCausalLM") # obsolete
|
||||
class ChameleonModel(Model):
|
||||
@@ -5228,6 +5465,14 @@ class LazyTorchTensor(gguf.LazyBase):
|
||||
lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
|
||||
return cast(torch.Tensor, lazy)
|
||||
|
||||
@classmethod
|
||||
def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
|
||||
dtype = cls._dtype_str_map[remote_tensor.dtype]
|
||||
shape = remote_tensor.shape
|
||||
meta = cls.meta_with_dtype_and_shape(dtype, shape)
|
||||
lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
|
||||
return cast(torch.Tensor, lazy)
|
||||
|
||||
@classmethod
|
||||
def __torch_function__(cls, func, types, args=(), kwargs=None):
|
||||
del types # unused
|
||||
@@ -5305,6 +5550,10 @@ def parse_args() -> argparse.Namespace:
|
||||
"--print-supported-models", action="store_true",
|
||||
help="Print the supported models"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--remote", action="store_true",
|
||||
help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
if not args.print_supported_models and args.model is None:
|
||||
@@ -5345,6 +5594,14 @@ def main() -> None:
|
||||
|
||||
dir_model = args.model
|
||||
|
||||
if args.remote:
|
||||
from huggingface_hub import snapshot_download
|
||||
local_dir = snapshot_download(
|
||||
repo_id=str(dir_model),
|
||||
allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
|
||||
dir_model = Path(local_dir)
|
||||
logger.info(f"Downloaded config and tokenizer to {local_dir}")
|
||||
|
||||
if not dir_model.is_dir():
|
||||
logger.error(f'Error: {args.model} is not a directory')
|
||||
sys.exit(1)
|
||||
@@ -5366,6 +5623,9 @@ def main() -> None:
|
||||
|
||||
if args.outfile is not None:
|
||||
fname_out = args.outfile
|
||||
elif args.remote:
|
||||
# if remote, use the model ID as the output file name
|
||||
fname_out = Path("./" + str(args.model).replace("/", "-") + "-{ftype}.gguf")
|
||||
else:
|
||||
fname_out = dir_model
|
||||
|
||||
@@ -5376,7 +5636,6 @@ def main() -> None:
|
||||
with torch.inference_mode():
|
||||
output_type = ftype_map[args.outtype]
|
||||
model_architecture = hparams["architectures"][0]
|
||||
|
||||
try:
|
||||
model_class = Model.from_model_architecture(model_architecture)
|
||||
except NotImplementedError:
|
||||
@@ -5389,7 +5648,8 @@ def main() -> None:
|
||||
metadata_override=args.metadata, model_name=args.model_name,
|
||||
split_max_tensors=args.split_max_tensors,
|
||||
split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
|
||||
small_first_shard=args.no_tensor_first_split)
|
||||
small_first_shard=args.no_tensor_first_split,
|
||||
remote_hf_model_id=str(args.model) if args.remote else None)
|
||||
|
||||
if args.vocab_only:
|
||||
logger.info("Exporting model vocab...")
|
||||
|
||||
@@ -111,6 +111,10 @@ models = [
|
||||
{"name": "deepseek-r1-qwen", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"},
|
||||
{"name": "gpt-4o", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Xenova/gpt-4o", },
|
||||
{"name": "superbpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k", },
|
||||
{"name": "trillion", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/trillionlabs/Trillion-7B-preview", },
|
||||
{"name": "bailingmoe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-lite", },
|
||||
{"name": "llama4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct", },
|
||||
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", },
|
||||
]
|
||||
|
||||
|
||||
|
||||
@@ -145,8 +145,13 @@ A Snapdragon X Elite device with Windows 11 Arm64 is used. Make sure the followi
|
||||
* Clang 19
|
||||
* Ninja
|
||||
* Visual Studio 2022
|
||||
* Powershell 7
|
||||
|
||||
Powershell is used for the following instructions.
|
||||
Visual Studio provides necessary headers and libraries although it is not directly used for building.
|
||||
Alternatively, Visual Studio Build Tools can be installed instead of the full Visual Studio.
|
||||
|
||||
Powershell 7 is used for the following commands.
|
||||
If an older version of Powershell is used, these commands may not work as they are.
|
||||
|
||||
### I. Setup Environment
|
||||
|
||||
@@ -196,10 +201,9 @@ ninja
|
||||
|
||||
## Known Issues
|
||||
|
||||
- Qwen2.5 0.5B model produces gibberish output with Adreno kernels.
|
||||
- Currently OpenCL backend does not work on Adreno 6xx GPUs.
|
||||
|
||||
## TODO
|
||||
|
||||
- Fix Qwen2.5 0.5B
|
||||
- Optimization for Q6_K
|
||||
- Support and optimization for Q4_K
|
||||
|
||||
@@ -20,7 +20,7 @@
|
||||
**oneAPI** is an open ecosystem and a standard-based specification, supporting multiple architectures including but not limited to intel CPUs, GPUs and FPGAs. The key components of the oneAPI ecosystem include:
|
||||
|
||||
- **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers.
|
||||
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL and oneDNN)*.
|
||||
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. Intel oneMKL, oneMath and oneDNN)*.
|
||||
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over intel iGPUs and dGPUs.
|
||||
- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets.
|
||||
|
||||
@@ -227,16 +227,6 @@ Upon a successful installation, SYCL is enabled for the available intel devices,
|
||||
|
||||
**oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.
|
||||
|
||||
|
||||
**oneMKL for cuBlas**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* do not contain the cuBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *cuBLAS* backend enabled is thus required to run it on Nvidia GPUs.
|
||||
|
||||
```sh
|
||||
git clone https://github.com/oneapi-src/oneMKL
|
||||
cd oneMKL
|
||||
cmake -B buildWithCublas -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_CUBLAS_BACKEND=ON -DTARGET_DOMAINS=blas
|
||||
cmake --build buildWithCublas --config Release
|
||||
```
|
||||
|
||||
**oneDNN**: The current oneDNN releases *(shipped with the oneAPI base-toolkit)* do not include the NVIDIA backend. Therefore, oneDNN must be compiled from source to enable the NVIDIA target:
|
||||
|
||||
```sh
|
||||
@@ -250,16 +240,6 @@ cmake --build build-nvidia --config Release
|
||||
|
||||
**oneAPI Plugin**: In order to enable SYCL support on AMD GPUs, please install the [Codeplay oneAPI Plugin for AMD GPUs](https://developer.codeplay.com/products/oneapi/amd/download). As with Nvidia GPUs, the user should also make sure the plugin version matches the installed base toolkit.
|
||||
|
||||
**oneMKL for rocBlas**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* doesn't contain the rocBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *rocBLAS* backend enabled is thus required to run it on AMD GPUs.
|
||||
|
||||
```sh
|
||||
git clone https://github.com/oneapi-src/oneMKL
|
||||
cd oneMKL
|
||||
# Find your HIPTARGET with rocminfo, under the key 'Name:'
|
||||
cmake -B buildWithrocBLAS -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_ROCBLAS_BACKEND=ON -DHIPTARGETS=${HIPTARGET} -DTARGET_DOMAINS=blas
|
||||
cmake --build buildWithrocBLAS --config Release
|
||||
```
|
||||
|
||||
3. **Verify installation and environment**
|
||||
|
||||
In order to check the available SYCL devices on the machine, please use the `sycl-ls` command.
|
||||
@@ -322,15 +302,16 @@ cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -
|
||||
cmake --build build --config Release -j -v
|
||||
```
|
||||
|
||||
It is possible to come across some precision issues when running tests that stem from using faster
|
||||
instructions, which can be circumvented by setting the environment variable `SYCL_PROGRAM_COMPILE_OPTIONS`
|
||||
as `-cl-fp32-correctly-rounded-divide-sqrt`
|
||||
|
||||
#### Nvidia GPU
|
||||
|
||||
```sh
|
||||
# Export relevant ENV variables
|
||||
export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LD_LIBRARY_PATH
|
||||
export LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LIBRARY_PATH
|
||||
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithCublas/include:$CPLUS_INCLUDE_DIR
|
||||
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/include:$CPLUS_INCLUDE_DIR
|
||||
The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
|
||||
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.
|
||||
|
||||
```sh
|
||||
# Build LLAMA with Nvidia BLAS acceleration through SYCL
|
||||
# Setting GGML_SYCL_DEVICE_ARCH is optional but can improve performance
|
||||
GGML_SYCL_DEVICE_ARCH=sm_80 # Example architecture
|
||||
@@ -345,14 +326,15 @@ cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=
|
||||
cmake --build build --config Release -j -v
|
||||
```
|
||||
|
||||
It is possible to come across some precision issues when running tests that stem from using faster
|
||||
instructions, which can be circumvented by passing the `-fno-fast-math` flag to the compiler.
|
||||
|
||||
#### AMD GPU
|
||||
|
||||
```sh
|
||||
# Export relevant ENV variables
|
||||
export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithrocBLAS/lib:$LD_LIBRARY_PATH
|
||||
export LIBRARY_PATH=/path/to/oneMKL/buildWithrocBLAS/lib:$LIBRARY_PATH
|
||||
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithrocBLAS/include:$CPLUS_INCLUDE_DIR
|
||||
The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
|
||||
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.
|
||||
|
||||
```sh
|
||||
# Build LLAMA with rocBLAS acceleration through SYCL
|
||||
|
||||
## AMD
|
||||
@@ -443,13 +425,13 @@ Examples:
|
||||
- Use device 0:
|
||||
|
||||
```sh
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
|
||||
```
|
||||
|
||||
- Use multiple devices:
|
||||
|
||||
```sh
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
|
||||
```
|
||||
|
||||
*Notes:*
|
||||
@@ -493,6 +475,12 @@ b. Enable oneAPI running environment:
|
||||
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
|
||||
```
|
||||
|
||||
- if you are using Powershell, enable the runtime environment with the following:
|
||||
|
||||
```
|
||||
cmd.exe "/K" '"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" && powershell'
|
||||
```
|
||||
|
||||
c. Verify installation
|
||||
|
||||
In the oneAPI command line, run the following to print the available SYCL devices:
|
||||
@@ -523,13 +511,13 @@ You could download the release package for Windows directly, which including bin
|
||||
|
||||
Choose one of following methods to build from source code.
|
||||
|
||||
1. Script
|
||||
#### 1. Script
|
||||
|
||||
```sh
|
||||
.\examples\sycl\win-build-sycl.bat
|
||||
```
|
||||
|
||||
2. CMake
|
||||
#### 2. CMake
|
||||
|
||||
On the oneAPI command line window, step into the llama.cpp main directory and run the following:
|
||||
|
||||
@@ -558,13 +546,84 @@ cmake --preset x64-windows-sycl-debug
|
||||
cmake --build build-x64-windows-sycl-debug -j --target llama-cli
|
||||
```
|
||||
|
||||
3. Visual Studio
|
||||
#### 3. Visual Studio
|
||||
|
||||
You can use Visual Studio to open llama.cpp folder as a CMake project. Choose the sycl CMake presets (`x64-windows-sycl-release` or `x64-windows-sycl-debug`) before you compile the project.
|
||||
You have two options to use Visual Studio to build llama.cpp:
|
||||
- As CMake Project using CMake presets.
|
||||
- Creating a Visual Studio solution to handle the project.
|
||||
|
||||
**Note**:
|
||||
|
||||
All following commands are executed in PowerShell.
|
||||
|
||||
##### - Open as a CMake Project
|
||||
|
||||
You can use Visual Studio to open the `llama.cpp` folder directly as a CMake project. Before compiling, select one of the SYCL CMake presets:
|
||||
|
||||
- `x64-windows-sycl-release`
|
||||
|
||||
- `x64-windows-sycl-debug`
|
||||
|
||||
*Notes:*
|
||||
- For a minimal experimental setup, you can build only the inference executable using:
|
||||
|
||||
- In case of a minimal experimental setup, the user can build the inference executable only through `cmake --build build --config Release -j --target llama-cli`.
|
||||
```Powershell
|
||||
cmake --build build --config Release -j --target llama-cli
|
||||
```
|
||||
|
||||
##### - Generating a Visual Studio Solution
|
||||
|
||||
You can use Visual Studio solution to build and work on llama.cpp on Windows. You need to convert the CMake Project into a `.sln` file.
|
||||
|
||||
If you want to use the Intel C++ Compiler for the entire `llama.cpp` project, run the following command:
|
||||
|
||||
```Powershell
|
||||
cmake -B build -G "Visual Studio 17 2022" -T "Intel C++ Compiler 2025" -A x64 -DGGML_SYCL=ON -DCMAKE_BUILD_TYPE=Release
|
||||
```
|
||||
|
||||
If you prefer to use the Intel C++ Compiler only for `ggml-sycl`, ensure that `ggml` and its backend libraries are built as shared libraries ( i.e. `-DBUILD_SHARED_LIBRARIES=ON`, this is default behaviour):
|
||||
|
||||
```Powershell
|
||||
cmake -B build -G "Visual Studio 17 2022" -A x64 -DGGML_SYCL=ON -DCMAKE_BUILD_TYPE=Release \
|
||||
-DSYCL_INCLUDE_DIR="C:\Program Files (x86)\Intel\oneAPI\compiler\latest\include" \
|
||||
-DSYCL_LIBRARY_DIR="C:\Program Files (x86)\Intel\oneAPI\compiler\latest\lib"
|
||||
```
|
||||
|
||||
If successful the build files have been written to: *path/to/llama.cpp/build*
|
||||
Open the project file **build/llama.cpp.sln** with Visual Studio.
|
||||
|
||||
Once the Visual Studio solution is created, follow these steps:
|
||||
|
||||
1. Open the solution in Visual Studio.
|
||||
|
||||
2. Right-click on `ggml-sycl` and select **Properties**.
|
||||
|
||||
3. In the left column, expand **C/C++** and select **DPC++**.
|
||||
|
||||
4. In the right panel, find **Enable SYCL Offload** and set it to `Yes`.
|
||||
|
||||
5. Apply the changes and save.
|
||||
|
||||
|
||||
*Navigation Path:*
|
||||
|
||||
```
|
||||
Properties -> C/C++ -> DPC++ -> Enable SYCL Offload (Yes)
|
||||
```
|
||||
|
||||
Now, you can build `llama.cpp` with the SYCL backend as a Visual Studio project.
|
||||
To do it from menu: `Build -> Build Solution`.
|
||||
Once it is completed, final results will be in **build/Release/bin**
|
||||
|
||||
*Additional Note*
|
||||
|
||||
- You can avoid specifying `SYCL_INCLUDE_DIR` and `SYCL_LIBRARY_DIR` in the CMake command by setting the environment variables:
|
||||
|
||||
- `SYCL_INCLUDE_DIR_HINT`
|
||||
|
||||
- `SYCL_LIBRARY_DIR_HINT`
|
||||
|
||||
- Above instruction has been tested with Visual Studio 17 Community edition and oneAPI 2025.0. We expect them to work also with future version if the instructions are adapted accordingly.
|
||||
|
||||
### III. Run the inference
|
||||
|
||||
@@ -638,13 +697,13 @@ Examples:
|
||||
- Use device 0:
|
||||
|
||||
```
|
||||
build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm none -mg 0
|
||||
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm none -mg 0
|
||||
```
|
||||
|
||||
- Use multiple devices:
|
||||
|
||||
```
|
||||
build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
|
||||
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
|
||||
```
|
||||
|
||||
|
||||
|
||||
@@ -259,8 +259,6 @@ You can download it from your Linux distro's package manager or from here: [ROCm
|
||||
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
|
||||
&& cmake --build build --config Release -- -j 16
|
||||
```
|
||||
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DGGML_HIP_UMA=ON`.
|
||||
However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
|
||||
|
||||
To enhance flash attention performance on RDNA3+ or CDNA architectures, you can utilize the rocWMMA library by enabling the `-DGGML_HIP_ROCWMMA_FATTN=ON` option. This requires rocWMMA headers to be installed on the build system.
|
||||
|
||||
@@ -296,6 +294,10 @@ You can download it from your Linux distro's package manager or from here: [ROCm
|
||||
The environment variable [`HIP_VISIBLE_DEVICES`](https://rocm.docs.amd.com/en/latest/understand/gpu_isolation.html#hip-visible-devices) can be used to specify which GPU(s) will be used.
|
||||
If your GPU is not officially supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 (e.g. gfx1030, gfx1031, or gfx1035) or 11.0.0 on RDNA3.
|
||||
|
||||
### Unified Memory
|
||||
|
||||
On Linux it is possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY=1`. However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
|
||||
|
||||
## Vulkan
|
||||
|
||||
**Windows**
|
||||
@@ -456,6 +458,96 @@ KleidiAI's microkernels implement optimized tensor operations using Arm CPU feat
|
||||
|
||||
Depending on your build target, other higher priority backends may be enabled by default. To ensure the CPU backend is used, you must disable the higher priority backends either at compile time, e.g. -DGGML_METAL=OFF, or during run-time using the command line option `--device none`.
|
||||
|
||||
## OpenCL
|
||||
|
||||
This provides GPU acceleration through OpenCL on recent Adreno GPU.
|
||||
More information about OpenCL backend can be found in [OPENCL.md](./backend/OPENCL.md) for more information.
|
||||
|
||||
### Android
|
||||
|
||||
Assume NDK is available in `$ANDROID_NDK`. First, install OpenCL headers and ICD loader library if not available,
|
||||
|
||||
```sh
|
||||
mkdir -p ~/dev/llm
|
||||
cd ~/dev/llm
|
||||
|
||||
git clone https://github.com/KhronosGroup/OpenCL-Headers && \
|
||||
cd OpenCL-Headers && \
|
||||
cp -r CL $ANDROID_NDK/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include
|
||||
|
||||
cd ~/dev/llm
|
||||
|
||||
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader && \
|
||||
cd OpenCL-ICD-Loader && \
|
||||
mkdir build_ndk && cd build_ndk && \
|
||||
cmake .. -G Ninja -DCMAKE_BUILD_TYPE=Release \
|
||||
-DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \
|
||||
-DOPENCL_ICD_LOADER_HEADERS_DIR=$ANDROID_NDK/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include \
|
||||
-DANDROID_ABI=arm64-v8a \
|
||||
-DANDROID_PLATFORM=24 \
|
||||
-DANDROID_STL=c++_shared && \
|
||||
ninja && \
|
||||
cp libOpenCL.so $ANDROID_NDK/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/lib/aarch64-linux-android
|
||||
```
|
||||
|
||||
Then build llama.cpp with OpenCL enabled,
|
||||
|
||||
```sh
|
||||
cd ~/dev/llm
|
||||
|
||||
git clone https://github.com/ggml-org/llama.cpp && \
|
||||
cd llama.cpp && \
|
||||
mkdir build-android && cd build-android
|
||||
|
||||
cmake .. -G Ninja \
|
||||
-DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \
|
||||
-DANDROID_ABI=arm64-v8a \
|
||||
-DANDROID_PLATFORM=android-28 \
|
||||
-DBUILD_SHARED_LIBS=OFF \
|
||||
-DGGML_OPENCL=ON
|
||||
|
||||
ninja
|
||||
```
|
||||
|
||||
### Windows Arm64
|
||||
|
||||
First, install OpenCL headers and ICD loader library if not available,
|
||||
|
||||
```powershell
|
||||
mkdir -p ~/dev/llm
|
||||
|
||||
cd ~/dev/llm
|
||||
git clone https://github.com/KhronosGroup/OpenCL-Headers && cd OpenCL-Headers
|
||||
mkdir build && cd build
|
||||
cmake .. -G Ninja `
|
||||
-DBUILD_TESTING=OFF `
|
||||
-DOPENCL_HEADERS_BUILD_TESTING=OFF `
|
||||
-DOPENCL_HEADERS_BUILD_CXX_TESTS=OFF `
|
||||
-DCMAKE_INSTALL_PREFIX="$HOME/dev/llm/opencl"
|
||||
cmake --build . --target install
|
||||
|
||||
cd ~/dev/llm
|
||||
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader && cd OpenCL-ICD-Loader
|
||||
mkdir build && cd build
|
||||
cmake .. -G Ninja `
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DCMAKE_PREFIX_PATH="$HOME/dev/llm/opencl" `
|
||||
-DCMAKE_INSTALL_PREFIX="$HOME/dev/llm/opencl"
|
||||
cmake --build . --target install
|
||||
```
|
||||
|
||||
Then build llama.cpp with OpenCL enabled,
|
||||
|
||||
```powershell
|
||||
cmake .. -G Ninja `
|
||||
-DCMAKE_TOOLCHAIN_FILE="$HOME/dev/llm/llama.cpp/cmake/arm64-windows-llvm.cmake" `
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DCMAKE_PREFIX_PATH="$HOME/dev/llm/opencl" `
|
||||
-DBUILD_SHARED_LIBS=OFF `
|
||||
-DGGML_OPENCL=ON
|
||||
ninja
|
||||
```
|
||||
|
||||
## Android
|
||||
|
||||
To read documentation for how to build on Android, [click here](./android.md)
|
||||
|
||||
@@ -38,7 +38,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_model_params model_params = common_model_params_to_llama(params);
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params);
|
||||
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
|
||||
|
||||
if (model == NULL) {
|
||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||
|
||||
@@ -41,7 +41,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_model_params model_params = common_model_params_to_llama(params);
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params);
|
||||
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
|
||||
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: error: unable to load model\n" , __func__);
|
||||
|
||||
@@ -421,7 +421,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
g_verbose = (params.verbosity > 1);
|
||||
try {
|
||||
lora_merge_ctx ctx(params.model, params.lora_adapters, params.out_file, params.cpuparams.n_threads);
|
||||
lora_merge_ctx ctx(params.model.path, params.lora_adapters, params.out_file, params.cpuparams.n_threads);
|
||||
ctx.run_merge();
|
||||
} catch (const std::exception & err) {
|
||||
fprintf(stderr, "%s\n", err.what());
|
||||
|
||||
@@ -408,8 +408,6 @@ static void gguf_merge(const split_params & split_params) {
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
std::ofstream fout(split_params.output.c_str(), std::ios::binary);
|
||||
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
|
||||
|
||||
auto * ctx_out = gguf_init_empty();
|
||||
|
||||
@@ -453,7 +451,6 @@ static void gguf_merge(const split_params & split_params) {
|
||||
gguf_free(ctx_gguf);
|
||||
ggml_free(ctx_meta);
|
||||
gguf_free(ctx_out);
|
||||
fout.close();
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
@@ -466,7 +463,6 @@ static void gguf_merge(const split_params & split_params) {
|
||||
gguf_free(ctx_gguf);
|
||||
ggml_free(ctx_meta);
|
||||
gguf_free(ctx_out);
|
||||
fout.close();
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
@@ -479,7 +475,6 @@ static void gguf_merge(const split_params & split_params) {
|
||||
gguf_free(ctx_gguf);
|
||||
ggml_free(ctx_meta);
|
||||
gguf_free(ctx_out);
|
||||
fout.close();
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
@@ -500,9 +495,11 @@ static void gguf_merge(const split_params & split_params) {
|
||||
|
||||
fprintf(stderr, "\033[3Ddone\n");
|
||||
}
|
||||
|
||||
// placeholder for the meta data
|
||||
{
|
||||
std::ofstream fout;
|
||||
if (!split_params.dry_run) {
|
||||
fout.open(split_params.output.c_str(), std::ios::binary);
|
||||
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
|
||||
// placeholder for the meta data
|
||||
auto meta_size = gguf_get_meta_size(ctx_out);
|
||||
::zeros(fout, meta_size);
|
||||
}
|
||||
@@ -518,7 +515,9 @@ static void gguf_merge(const split_params & split_params) {
|
||||
ggml_free(ctx_metas[i]);
|
||||
}
|
||||
gguf_free(ctx_out);
|
||||
fout.close();
|
||||
if (!split_params.dry_run) {
|
||||
fout.close();
|
||||
}
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
fprintf(stderr, "%s: writing tensors %s ...", __func__, split_path);
|
||||
@@ -540,10 +539,11 @@ static void gguf_merge(const split_params & split_params) {
|
||||
auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor);
|
||||
f_input.seekg(offset);
|
||||
f_input.read((char *)read_data.data(), n_bytes);
|
||||
|
||||
// write tensor data + padding
|
||||
fout.write((const char *)read_data.data(), n_bytes);
|
||||
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
|
||||
if (!split_params.dry_run) {
|
||||
// write tensor data + padding
|
||||
fout.write((const char *)read_data.data(), n_bytes);
|
||||
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
|
||||
}
|
||||
}
|
||||
|
||||
gguf_free(ctx_gguf);
|
||||
@@ -552,16 +552,15 @@ static void gguf_merge(const split_params & split_params) {
|
||||
fprintf(stderr, "\033[3Ddone\n");
|
||||
}
|
||||
|
||||
{
|
||||
if (!split_params.dry_run) {
|
||||
// go back to beginning of file and write the updated metadata
|
||||
fout.seekp(0);
|
||||
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
|
||||
gguf_get_meta_data(ctx_out, data.data());
|
||||
fout.write((const char *)data.data(), data.size());
|
||||
|
||||
fout.close();
|
||||
gguf_free(ctx_out);
|
||||
}
|
||||
gguf_free(ctx_out);
|
||||
|
||||
fprintf(stderr, "%s: %s merged from %d split with %d tensors.\n",
|
||||
__func__, split_params.output.c_str(), n_split, total_tensors);
|
||||
|
||||
@@ -168,7 +168,7 @@ int main(int argc, char * argv[]) {
|
||||
|
||||
llama_backend_init();
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params.model.c_str(), mparams);
|
||||
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
|
||||
|
||||
// create generation context
|
||||
llama_context * ctx = llama_init_from_model(model, cparams);
|
||||
|
||||
@@ -18,6 +18,7 @@ android {
|
||||
}
|
||||
externalNativeBuild {
|
||||
cmake {
|
||||
arguments += "-DLLAMA_CURL=OFF"
|
||||
arguments += "-DLLAMA_BUILD_COMMON=ON"
|
||||
arguments += "-DGGML_LLAMAFILE=OFF"
|
||||
arguments += "-DCMAKE_BUILD_TYPE=Release"
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
# llava (legacy)
|
||||
|
||||
add_library(llava OBJECT
|
||||
llava.cpp
|
||||
llava.h
|
||||
@@ -22,12 +24,41 @@ if (BUILD_SHARED_LIBS)
|
||||
install(TARGETS llava_shared LIBRARY)
|
||||
endif()
|
||||
|
||||
# mtmd
|
||||
|
||||
add_library(mtmd OBJECT
|
||||
mtmd.cpp
|
||||
mtmd.h
|
||||
clip.cpp
|
||||
clip.h
|
||||
clip-impl.h
|
||||
)
|
||||
|
||||
target_link_libraries(mtmd PRIVATE ggml llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
||||
target_include_directories(mtmd PUBLIC .)
|
||||
target_include_directories(mtmd PRIVATE ../..)
|
||||
target_include_directories(mtmd PRIVATE ../../common) # for stb_image.h
|
||||
|
||||
target_compile_features(mtmd PRIVATE cxx_std_17)
|
||||
|
||||
add_library(mtmd_static STATIC $<TARGET_OBJECTS:mtmd>)
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(mtmd PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
target_compile_definitions(mtmd PRIVATE LLAMA_SHARED LLAMA_BUILD)
|
||||
add_library(mtmd_shared SHARED $<TARGET_OBJECTS:mtmd>)
|
||||
target_link_libraries(mtmd_shared PRIVATE ggml llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
install(TARGETS mtmd_shared LIBRARY)
|
||||
endif()
|
||||
|
||||
if (NOT MSVC)
|
||||
target_compile_options(llava PRIVATE -Wno-cast-qual) # stb_image.h
|
||||
target_compile_options(mtmd PRIVATE -Wno-cast-qual) # stb_image.h
|
||||
endif()
|
||||
|
||||
if(TARGET BUILD_INFO)
|
||||
add_dependencies(llava BUILD_INFO)
|
||||
add_dependencies(mtmd BUILD_INFO)
|
||||
endif()
|
||||
|
||||
set(TARGET llama-llava-cli)
|
||||
@@ -55,7 +86,7 @@ set(TARGET llama-gemma3-cli)
|
||||
add_executable(${TARGET} gemma3-cli.cpp)
|
||||
set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-gemma3-cli)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_link_libraries(${TARGET} PRIVATE common mtmd ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_17)
|
||||
|
||||
set(TARGET llama-llava-clip-quantize-cli)
|
||||
|
||||
@@ -4,6 +4,26 @@
|
||||
>
|
||||
> This is very experimental, only used for demo purpose.
|
||||
|
||||
## Quick started
|
||||
|
||||
You can use pre-quantized model from [ggml-org](https://huggingface.co/ggml-org)'s Hugging Face account
|
||||
|
||||
```bash
|
||||
# build
|
||||
cmake -B build
|
||||
cmake --build build --target llama-gemma3-cli
|
||||
|
||||
# alternatively, install from brew (MacOS)
|
||||
brew install llama.cpp
|
||||
|
||||
# run it
|
||||
llama-gemma3-cli -hf ggml-org/gemma-3-4b-it-GGUF
|
||||
llama-gemma3-cli -hf ggml-org/gemma-3-12b-it-GGUF
|
||||
llama-gemma3-cli -hf ggml-org/gemma-3-27b-it-GGUF
|
||||
|
||||
# note: 1B model does not support vision
|
||||
```
|
||||
|
||||
## How to get mmproj.gguf?
|
||||
|
||||
```bash
|
||||
|
||||
344
examples/llava/clip-impl.h
Normal file
344
examples/llava/clip-impl.h
Normal file
@@ -0,0 +1,344 @@
|
||||
#include "ggml.h"
|
||||
#include "gguf.h"
|
||||
#include "clip.h"
|
||||
|
||||
#include "clip.h"
|
||||
|
||||
#include <climits>
|
||||
#include <cstdarg>
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <sstream>
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
|
||||
// Internal header for clip.cpp
|
||||
|
||||
#define KEY_FTYPE "general.file_type"
|
||||
#define KEY_NAME "general.name"
|
||||
#define KEY_DESCRIPTION "general.description"
|
||||
#define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
|
||||
#define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
|
||||
#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
|
||||
#define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector"
|
||||
#define KEY_HAS_GLM_PROJ "clip.has_glm_projector"
|
||||
#define KEY_MINICPMV_VERSION "clip.minicpmv_version"
|
||||
#define KEY_HAS_QWEN2VL_MERGER "clip.has_qwen2vl_merger"
|
||||
#define KEY_USE_GELU "clip.use_gelu"
|
||||
#define KEY_USE_SILU "clip.use_silu"
|
||||
#define KEY_N_EMBD "clip.%s.embedding_length"
|
||||
#define KEY_N_FF "clip.%s.feed_forward_length"
|
||||
#define KEY_N_BLOCK "clip.%s.block_count"
|
||||
#define KEY_N_HEAD "clip.%s.attention.head_count"
|
||||
#define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
|
||||
#define KEY_PROJ_DIM "clip.%s.projection_dim"
|
||||
#define KEY_TOKENS "tokenizer.ggml.tokens"
|
||||
#define KEY_N_POSITIONS "clip.text.context_length"
|
||||
#define KEY_IMAGE_SIZE "clip.vision.image_size"
|
||||
#define KEY_PATCH_SIZE "clip.vision.patch_size"
|
||||
#define KEY_IMAGE_MEAN "clip.vision.image_mean"
|
||||
#define KEY_IMAGE_STD "clip.vision.image_std"
|
||||
#define KEY_PROJ_TYPE "clip.projector_type"
|
||||
#define KEY_FEATURE_LAYER "clip.vision.feature_layer"
|
||||
|
||||
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
|
||||
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
|
||||
#define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
|
||||
|
||||
|
||||
//
|
||||
// tensor name constants
|
||||
//
|
||||
|
||||
#define TN_TOKEN_EMBD "%s.token_embd.weight"
|
||||
#define TN_POS_EMBD "%s.position_embd.weight"
|
||||
#define TN_CLASS_EMBD "v.class_embd"
|
||||
#define TN_PATCH_EMBD "v.patch_embd.weight" // not rename tensor with ".0" postfix for backwrad compat
|
||||
#define TN_PATCH_EMBD_1 "v.patch_embd.weight.1"
|
||||
#define TN_PATCH_BIAS "v.patch_embd.bias"
|
||||
#define TN_ATTN_K "%s.blk.%d.attn_k.%s"
|
||||
#define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
|
||||
#define TN_ATTN_V "%s.blk.%d.attn_v.%s"
|
||||
#define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
|
||||
#define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
|
||||
#define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
|
||||
#define TN_LN_1 "%s.blk.%d.ln1.%s"
|
||||
#define TN_LN_2 "%s.blk.%d.ln2.%s"
|
||||
#define TN_LN_PRE "%s.pre_ln.%s"
|
||||
#define TN_LN_POST "%s.post_ln.%s"
|
||||
#define TN_TEXT_PROJ "text_projection.weight"
|
||||
#define TN_VIS_PROJ "visual_projection.weight"
|
||||
#define TN_LLAVA_PROJ "mm.%d.%s"
|
||||
#define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
|
||||
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
|
||||
#define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
|
||||
#define TN_IMAGE_NEWLINE "model.image_newline"
|
||||
#define TN_MM_INP_PROJ "mm.input_projection.weight" // gemma3
|
||||
#define TN_MM_SOFT_EMB_N "mm.soft_emb_norm.weight" // gemma3
|
||||
|
||||
// mimicpmv
|
||||
#define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
|
||||
#define TN_MINICPMV_QUERY "resampler.query"
|
||||
#define TN_MINICPMV_PROJ "resampler.proj.weight"
|
||||
#define TN_MINICPMV_KV_PROJ "resampler.kv.weight"
|
||||
#define TN_MINICPMV_ATTN "resampler.attn.%s.%s"
|
||||
#define TN_MINICPMV_LN "resampler.ln_%s.%s"
|
||||
|
||||
#define TN_GLM_ADAPER_CONV "adapter.conv.%s"
|
||||
#define TN_GLM_ADAPTER_LINEAR "adapter.linear.linear.%s"
|
||||
#define TN_GLM_ADAPTER_NORM_1 "adapter.linear.norm1.%s"
|
||||
#define TN_GLM_ADAPTER_D_H_2_4H "adapter.linear.dense_h_to_4h.%s"
|
||||
#define TN_GLM_ADAPTER_GATE "adapter.linear.gate.%s"
|
||||
#define TN_GLM_ADAPTER_D_4H_2_H "adapter.linear.dense_4h_to_h.%s"
|
||||
#define TN_GLM_BOI_W "adapter.boi"
|
||||
#define TN_GLM_EOI_W "adapter.eoi"
|
||||
|
||||
enum projector_type {
|
||||
PROJECTOR_TYPE_MLP,
|
||||
PROJECTOR_TYPE_MLP_NORM,
|
||||
PROJECTOR_TYPE_LDP,
|
||||
PROJECTOR_TYPE_LDPV2,
|
||||
PROJECTOR_TYPE_RESAMPLER,
|
||||
PROJECTOR_TYPE_GLM_EDGE,
|
||||
PROJECTOR_TYPE_MERGER,
|
||||
PROJECTOR_TYPE_GEMMA3,
|
||||
PROJECTOR_TYPE_UNKNOWN,
|
||||
};
|
||||
|
||||
static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
|
||||
{ PROJECTOR_TYPE_MLP, "mlp" },
|
||||
{ PROJECTOR_TYPE_LDP, "ldp" },
|
||||
{ PROJECTOR_TYPE_LDPV2, "ldpv2"},
|
||||
{ PROJECTOR_TYPE_RESAMPLER, "resampler"},
|
||||
{ PROJECTOR_TYPE_GLM_EDGE, "adapter"},
|
||||
{ PROJECTOR_TYPE_MERGER, "qwen2vl_merger"},
|
||||
{ PROJECTOR_TYPE_GEMMA3, "gemma3"},
|
||||
};
|
||||
|
||||
static projector_type clip_projector_type_from_string(const std::string & str) {
|
||||
for (const auto & pair : PROJECTOR_TYPE_NAMES) {
|
||||
if (pair.second == str) {
|
||||
return pair.first;
|
||||
}
|
||||
}
|
||||
return PROJECTOR_TYPE_UNKNOWN;
|
||||
}
|
||||
|
||||
// RGB uint8 image
|
||||
struct clip_image_u8 {
|
||||
int nx;
|
||||
int ny;
|
||||
|
||||
std::vector<uint8_t> buf;
|
||||
};
|
||||
|
||||
// RGB float32 image (NHWC)
|
||||
// Memory layout: RGBRGBRGB...
|
||||
struct clip_image_f32 {
|
||||
int nx;
|
||||
int ny;
|
||||
|
||||
std::vector<float> buf;
|
||||
};
|
||||
|
||||
//
|
||||
// logging
|
||||
//
|
||||
|
||||
static void clip_log_callback_default(enum ggml_log_level level, const char * text, void * user_data) {
|
||||
(void) level;
|
||||
(void) user_data;
|
||||
fputs(text, stderr);
|
||||
fflush(stderr);
|
||||
}
|
||||
|
||||
struct clip_logger_state {
|
||||
ggml_log_level verbosity_thold;
|
||||
ggml_log_callback log_callback;
|
||||
void * log_callback_user_data;
|
||||
};
|
||||
|
||||
extern struct clip_logger_state g_logger_state;
|
||||
|
||||
static void clip_log_internal_v(enum ggml_log_level level, const char * format, va_list args) {
|
||||
if (format == NULL) {
|
||||
return;
|
||||
}
|
||||
va_list args_copy;
|
||||
va_copy(args_copy, args);
|
||||
char buffer[128];
|
||||
int len = vsnprintf(buffer, 128, format, args);
|
||||
if (len < 128) {
|
||||
g_logger_state.log_callback(level, buffer, g_logger_state.log_callback_user_data);
|
||||
} else {
|
||||
char * buffer2 = (char *) calloc(len + 1, sizeof(char));
|
||||
vsnprintf(buffer2, len + 1, format, args_copy);
|
||||
buffer2[len] = 0;
|
||||
g_logger_state.log_callback(level, buffer2, g_logger_state.log_callback_user_data);
|
||||
free(buffer2);
|
||||
}
|
||||
va_end(args_copy);
|
||||
}
|
||||
|
||||
static void clip_log_internal(enum ggml_log_level level, const char * format, ...) {
|
||||
va_list args;
|
||||
va_start(args, format);
|
||||
clip_log_internal_v(level, format, args);
|
||||
va_end(args);
|
||||
}
|
||||
|
||||
#define LOG_TMPL(level, ...) \
|
||||
do { \
|
||||
if ((level) >= g_logger_state.verbosity_thold) { \
|
||||
clip_log_internal((level), __VA_ARGS__); \
|
||||
} \
|
||||
} while (0)
|
||||
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, __VA_ARGS__)
|
||||
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, __VA_ARGS__)
|
||||
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
|
||||
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, __VA_ARGS__)
|
||||
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, __VA_ARGS__)
|
||||
|
||||
//
|
||||
// cpp wrappers
|
||||
//
|
||||
|
||||
// wrapper for clip_image_size
|
||||
struct clip_image_size_deleter {
|
||||
void operator()(clip_image_size * val) { clip_image_size_free(val); }
|
||||
};
|
||||
typedef std::unique_ptr<clip_image_size, clip_image_size_deleter> clip_image_size_ptr;
|
||||
|
||||
// wrapper for clip_image_u8
|
||||
struct clip_image_u8_deleter {
|
||||
void operator()(clip_image_u8 * val) { clip_image_u8_free(val); }
|
||||
};
|
||||
typedef std::unique_ptr<clip_image_u8, clip_image_u8_deleter> clip_image_u8_ptr;
|
||||
|
||||
// wrapper for clip_image_f32
|
||||
struct clip_image_f32_deleter {
|
||||
void operator()(clip_image_f32 * val) { clip_image_f32_free(val); }
|
||||
};
|
||||
typedef std::unique_ptr<clip_image_f32, clip_image_f32_deleter> clip_image_f32_ptr;
|
||||
|
||||
struct clip_image_u8_batch {
|
||||
std::vector<clip_image_u8_ptr> entries;
|
||||
};
|
||||
|
||||
struct clip_image_f32_batch {
|
||||
std::vector<clip_image_f32_ptr> entries;
|
||||
};
|
||||
|
||||
//
|
||||
// common utils
|
||||
//
|
||||
|
||||
static std::string string_format(const char * fmt, ...) {
|
||||
va_list ap;
|
||||
va_list ap2;
|
||||
va_start(ap, fmt);
|
||||
va_copy(ap2, ap);
|
||||
int size = vsnprintf(NULL, 0, fmt, ap);
|
||||
GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
|
||||
std::vector<char> buf(size + 1);
|
||||
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
||||
GGML_ASSERT(size2 == size);
|
||||
va_end(ap2);
|
||||
va_end(ap);
|
||||
return std::string(buf.data(), buf.size());
|
||||
}
|
||||
|
||||
static void string_replace_all(std::string & s, const std::string & search, const std::string & replace) {
|
||||
if (search.empty()) {
|
||||
return;
|
||||
}
|
||||
std::string builder;
|
||||
builder.reserve(s.length());
|
||||
size_t pos = 0;
|
||||
size_t last_pos = 0;
|
||||
while ((pos = s.find(search, last_pos)) != std::string::npos) {
|
||||
builder.append(s, last_pos, pos - last_pos);
|
||||
builder.append(replace);
|
||||
last_pos = pos + search.length();
|
||||
}
|
||||
builder.append(s, last_pos, std::string::npos);
|
||||
s = std::move(builder);
|
||||
}
|
||||
|
||||
// split string by a `std::string delim` instead of `char delim`
|
||||
static std::vector<std::string> string_split_str(std::string s, const std::string & delimiter) {
|
||||
std::vector<std::string> tokens;
|
||||
size_t pos = 0;
|
||||
std::string token;
|
||||
while ((pos = s.find(delimiter)) != std::string::npos) {
|
||||
token = s.substr(0, pos);
|
||||
tokens.push_back(token);
|
||||
s.erase(0, pos + delimiter.length());
|
||||
}
|
||||
tokens.push_back(s);
|
||||
return tokens;
|
||||
}
|
||||
|
||||
//
|
||||
// gguf utils
|
||||
//
|
||||
|
||||
static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
|
||||
switch (type) {
|
||||
case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
|
||||
case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
|
||||
case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
|
||||
case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
|
||||
case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
|
||||
case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
|
||||
case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
|
||||
case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
|
||||
case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
|
||||
case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
|
||||
case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
|
||||
default: return string_format("unknown type %d", type);
|
||||
}
|
||||
}
|
||||
|
||||
static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
|
||||
const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
|
||||
|
||||
switch (type) {
|
||||
case GGUF_TYPE_STRING:
|
||||
return gguf_get_val_str(ctx_gguf, i);
|
||||
case GGUF_TYPE_ARRAY:
|
||||
{
|
||||
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
|
||||
int arr_n = gguf_get_arr_n(ctx_gguf, i);
|
||||
const void * data = arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx_gguf, i);
|
||||
std::stringstream ss;
|
||||
ss << "[";
|
||||
for (int j = 0; j < arr_n; j++) {
|
||||
if (arr_type == GGUF_TYPE_STRING) {
|
||||
std::string val = gguf_get_arr_str(ctx_gguf, i, j);
|
||||
// escape quotes
|
||||
string_replace_all(val, "\\", "\\\\");
|
||||
string_replace_all(val, "\"", "\\\"");
|
||||
ss << '"' << val << '"';
|
||||
} else if (arr_type == GGUF_TYPE_ARRAY) {
|
||||
ss << "???";
|
||||
} else {
|
||||
ss << gguf_data_to_str(arr_type, data, j);
|
||||
}
|
||||
if (j < arr_n - 1) {
|
||||
ss << ", ";
|
||||
}
|
||||
}
|
||||
ss << "]";
|
||||
return ss.str();
|
||||
}
|
||||
default:
|
||||
return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// API used internally with mtmd
|
||||
//
|
||||
|
||||
projector_type clip_get_projector_type(const struct clip_ctx * ctx);
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,6 +1,7 @@
|
||||
#ifndef CLIP_H
|
||||
#define CLIP_H
|
||||
|
||||
#include "ggml.h"
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
@@ -29,19 +30,12 @@ struct clip_image_size {
|
||||
int height;
|
||||
};
|
||||
|
||||
struct clip_image_u8_batch {
|
||||
struct clip_image_u8 * data;
|
||||
size_t size;
|
||||
};
|
||||
|
||||
struct clip_image_f32_batch {
|
||||
struct clip_image_f32 * data;
|
||||
size_t size;
|
||||
};
|
||||
struct clip_image_u8_batch;
|
||||
struct clip_image_f32_batch;
|
||||
|
||||
struct clip_context_params {
|
||||
bool use_gpu;
|
||||
int verbosity;
|
||||
ggml_log_level verbosity;
|
||||
};
|
||||
|
||||
// deprecated, use clip_init
|
||||
@@ -54,9 +48,9 @@ CLIP_API void clip_free(struct clip_ctx * ctx);
|
||||
CLIP_API size_t clip_embd_nbytes(const struct clip_ctx * ctx);
|
||||
CLIP_API size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w);
|
||||
|
||||
CLIP_API int32_t clip_image_size (const struct clip_ctx * ctx);
|
||||
CLIP_API int32_t clip_patch_size (const struct clip_ctx * ctx);
|
||||
CLIP_API int32_t clip_hidden_size(const struct clip_ctx * ctx);
|
||||
CLIP_API int32_t clip_get_image_size (const struct clip_ctx * ctx);
|
||||
CLIP_API int32_t clip_get_patch_size (const struct clip_ctx * ctx);
|
||||
CLIP_API int32_t clip_get_hidden_size(const struct clip_ctx * ctx);
|
||||
|
||||
// TODO: should be enum, not string
|
||||
CLIP_API const char * clip_patch_merge_type(const struct clip_ctx * ctx);
|
||||
@@ -72,15 +66,26 @@ CLIP_API int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip);
|
||||
CLIP_API void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size);
|
||||
CLIP_API struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip);
|
||||
|
||||
CLIP_API struct clip_image_size * clip_image_size_init();
|
||||
CLIP_API struct clip_image_u8 * clip_image_u8_init ();
|
||||
CLIP_API struct clip_image_f32 * clip_image_f32_init();
|
||||
CLIP_API struct clip_image_size * clip_image_size_init();
|
||||
CLIP_API struct clip_image_u8 * clip_image_u8_init ();
|
||||
CLIP_API struct clip_image_f32 * clip_image_f32_init();
|
||||
CLIP_API struct clip_image_f32_batch * clip_image_f32_batch_init(); // only used by libllava
|
||||
|
||||
// nx, ny are the output image dimensions
|
||||
CLIP_API unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny);
|
||||
|
||||
CLIP_API void clip_image_size_free (struct clip_image_size * img_size);
|
||||
CLIP_API void clip_image_u8_free (struct clip_image_u8 * img);
|
||||
CLIP_API void clip_image_f32_free(struct clip_image_f32 * img);
|
||||
CLIP_API void clip_image_u8_batch_free (struct clip_image_u8_batch * batch);
|
||||
CLIP_API void clip_image_f32_batch_free(struct clip_image_f32_batch * batch);
|
||||
|
||||
// use for accessing underlay data of clip_image_f32_batch
|
||||
CLIP_API size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch); // equivalent to batch->size()
|
||||
CLIP_API size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->nx
|
||||
CLIP_API size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->ny
|
||||
CLIP_API clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->data
|
||||
|
||||
/**
|
||||
* Build image from pixels decoded by other libraries instead of stb_image.h for better performance.
|
||||
* The memory layout is RGBRGBRGB..., input buffer length must be 3*nx*ny bytes
|
||||
@@ -105,6 +110,8 @@ CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out
|
||||
CLIP_API int clip_is_minicpmv(const struct clip_ctx * ctx);
|
||||
CLIP_API bool clip_is_glm(const struct clip_ctx * ctx);
|
||||
CLIP_API bool clip_is_qwen2vl(const struct clip_ctx * ctx);
|
||||
CLIP_API bool clip_is_llava(const struct clip_ctx * ctx);
|
||||
CLIP_API bool clip_is_gemma3(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API int get_deepest_feature_layer(const struct clip_ctx * ctx);
|
||||
|
||||
|
||||
@@ -2,15 +2,15 @@
|
||||
#include "log.h"
|
||||
#include "common.h"
|
||||
#include "sampling.h"
|
||||
#include "clip.h"
|
||||
#include "stb_image.h"
|
||||
#include "llama.h"
|
||||
#include "ggml.h"
|
||||
#include "console.h"
|
||||
#include "chat.h"
|
||||
#include "mtmd.h"
|
||||
|
||||
#include <vector>
|
||||
#include <limits.h>
|
||||
#include <inttypes.h>
|
||||
#include <cinttypes>
|
||||
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
||||
#include <signal.h>
|
||||
@@ -57,13 +57,18 @@ static void sigint_handler(int signo) {
|
||||
#endif
|
||||
|
||||
struct gemma3_context {
|
||||
struct clip_ctx * ctx_clip = NULL;
|
||||
common_init_result llama_init;
|
||||
mtmd_context_ptr ctx_vision;
|
||||
common_init_result llama_init;
|
||||
|
||||
llama_model * model;
|
||||
llama_context * lctx;
|
||||
const llama_vocab * vocab;
|
||||
llama_batch batch;
|
||||
int n_batch;
|
||||
|
||||
// note: we know that gemma3 template is "linear", meaning each turn is completely separated to another
|
||||
// so here we don't need to keep track of chat history
|
||||
common_chat_templates_ptr tmpls;
|
||||
|
||||
int n_threads = 1;
|
||||
llama_pos n_past = 0;
|
||||
@@ -74,16 +79,23 @@ struct gemma3_context {
|
||||
vocab = llama_model_get_vocab(model);
|
||||
n_threads = params.cpuparams.n_threads;
|
||||
batch = llama_batch_init(params.n_batch, 0, 1);
|
||||
init_clip_model(params);
|
||||
n_batch = params.n_batch;
|
||||
tmpls = common_chat_templates_init(model, params.chat_template);
|
||||
init_vision_context(params);
|
||||
}
|
||||
|
||||
void init_clip_model(common_params & params) {
|
||||
const char * clip_path = params.mmproj.c_str();
|
||||
ctx_clip = clip_model_load(clip_path, params.verbosity > 1);
|
||||
}
|
||||
|
||||
~gemma3_context() {
|
||||
clip_free(ctx_clip);
|
||||
void init_vision_context(common_params & params) {
|
||||
const char * clip_path = params.mmproj.path.c_str();
|
||||
ctx_vision.reset(mtmd_init_from_file(clip_path, model, mtmd_context_params{
|
||||
/* use_gpu */ true,
|
||||
/* timings */ true,
|
||||
/* n_threads */ params.cpuparams.n_threads,
|
||||
/* verbosity */ GGML_LOG_LEVEL_INFO,
|
||||
}));
|
||||
if (!ctx_vision.get()) {
|
||||
LOG_ERR("Failed to load vision model from %s\n", clip_path);
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
@@ -120,77 +132,6 @@ struct decode_embd_batch {
|
||||
}
|
||||
};
|
||||
|
||||
static int eval_text(gemma3_context & ctx, std::string input, bool logits_last = false) {
|
||||
llama_tokens tokens = common_tokenize(ctx.lctx, input, false, true);
|
||||
common_batch_clear(ctx.batch);
|
||||
for (llama_token & t : tokens) {
|
||||
common_batch_add(ctx.batch, t, ctx.n_past++, {0}, false);
|
||||
}
|
||||
if (logits_last) {
|
||||
ctx.batch.logits[ctx.batch.n_tokens - 1] = true;
|
||||
}
|
||||
// LOG("eval_text (n_tokens = %d): %s\n", (int)tokens.size(), input.c_str());
|
||||
if (llama_decode(ctx.lctx, ctx.batch)) {
|
||||
LOG_ERR("Failed to decode text\n");
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int eval_image(gemma3_context & ctx, std::string & fname) {
|
||||
std::vector<float> image_embd_v;
|
||||
int n_embd = llama_model_n_embd(ctx.model);
|
||||
int n_tokens = 256;
|
||||
image_embd_v.resize(n_tokens * n_embd);
|
||||
|
||||
bool ok;
|
||||
struct clip_image_u8 * img_u8 = clip_image_u8_init();
|
||||
ok = clip_image_load_from_file(fname.c_str(), img_u8);
|
||||
if (!ok) {
|
||||
LOG_ERR("Unable to load image %s\n", fname.c_str());
|
||||
clip_image_u8_free(img_u8);
|
||||
return 2; // non-fatal error
|
||||
}
|
||||
|
||||
clip_image_f32_batch batch_f32;
|
||||
ok = clip_image_preprocess(ctx.ctx_clip, img_u8, &batch_f32);
|
||||
if (!ok) {
|
||||
LOG_ERR("Unable to preprocess image\n");
|
||||
clip_image_f32_batch_free(&batch_f32);
|
||||
clip_image_u8_free(img_u8);
|
||||
return 1;
|
||||
}
|
||||
|
||||
int64_t t0 = ggml_time_ms();
|
||||
LOG("Encoding image %s\n", fname.c_str());
|
||||
ok = clip_image_batch_encode(ctx.ctx_clip, ctx.n_threads, &batch_f32, image_embd_v.data());
|
||||
if (!ok) {
|
||||
LOG_ERR("Unable to encode image\n");
|
||||
clip_image_f32_batch_free(&batch_f32);
|
||||
clip_image_u8_free(img_u8);
|
||||
return 1;
|
||||
}
|
||||
LOG("Image encoded in %" PRId64 " ms\n", ggml_time_ms() - t0);
|
||||
|
||||
clip_image_f32_batch_free(&batch_f32);
|
||||
clip_image_u8_free(img_u8);
|
||||
|
||||
// decode image embeddings
|
||||
int64_t t1 = ggml_time_ms();
|
||||
eval_text(ctx, "<start_of_image>");
|
||||
llama_set_causal_attn(ctx.lctx, false);
|
||||
decode_embd_batch batch_img(image_embd_v.data(), n_tokens, ctx.n_past, 0);
|
||||
if (llama_decode(ctx.lctx, batch_img.batch)) {
|
||||
LOG_ERR("failed to decode image\n");
|
||||
return 1;
|
||||
}
|
||||
ctx.n_past += n_tokens;
|
||||
llama_set_causal_attn(ctx.lctx, true);
|
||||
eval_text(ctx, "<end_of_image>");
|
||||
LOG("Image decoded in %" PRId64 " ms\n", ggml_time_ms() - t1);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int generate_response(gemma3_context & ctx, common_sampler * smpl, int n_predict) {
|
||||
for (int i = 0; i < n_predict; i++) {
|
||||
if (i > n_predict || !g_is_generating) {
|
||||
@@ -220,6 +161,45 @@ static int generate_response(gemma3_context & ctx, common_sampler * smpl, int n_
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int eval_message(gemma3_context & ctx, common_chat_msg & msg, std::vector<std::string> & images_fname, bool add_bos = false) {
|
||||
std::vector<mtmd_bitmap> bitmaps;
|
||||
|
||||
common_chat_templates_inputs tmpl_inputs;
|
||||
tmpl_inputs.messages = {msg};
|
||||
tmpl_inputs.add_generation_prompt = true;
|
||||
tmpl_inputs.use_jinja = false; // jinja is buggy here
|
||||
auto formatted_chat = common_chat_templates_apply(ctx.tmpls.get(), tmpl_inputs);
|
||||
LOG_DBG("formatted_chat.prompt: %s\n", formatted_chat.prompt.c_str());
|
||||
|
||||
for (auto & fname : images_fname) {
|
||||
mtmd_bitmap bitmap;
|
||||
if (mtmd_helper_bitmap_init_from_file(fname.c_str(), bitmap)) {
|
||||
LOG_ERR("Unable to load image %s\n", fname.c_str());
|
||||
return 2; // image not found
|
||||
}
|
||||
bitmaps.push_back(std::move(bitmap));
|
||||
}
|
||||
|
||||
mtmd_input_text text;
|
||||
text.text = formatted_chat.prompt;
|
||||
text.add_special = add_bos;
|
||||
text.parse_special = true;
|
||||
mtmd_input_chunks_ptr chunks(mtmd_tokenize(ctx.ctx_vision.get(), text, bitmaps));
|
||||
if (chunks == nullptr) {
|
||||
LOG_ERR("Unable to tokenize prompt\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (mtmd_helper_eval(ctx.ctx_vision.get(), ctx.lctx, chunks.get(), ctx.n_past, 0, ctx.n_batch)) {
|
||||
LOG_ERR("Unable to eval prompt\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
ctx.n_past += mtmd_helper_get_n_tokens(chunks.get());
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
ggml_time_init();
|
||||
|
||||
@@ -232,13 +212,13 @@ int main(int argc, char ** argv) {
|
||||
|
||||
common_init();
|
||||
|
||||
if (params.mmproj.empty()) {
|
||||
if (params.mmproj.path.empty()) {
|
||||
show_additional_info(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
|
||||
gemma3_context ctx(params);
|
||||
printf("%s: %s\n", __func__, params.model.c_str());
|
||||
printf("%s: %s\n", __func__, params.model.path.c_str());
|
||||
|
||||
bool is_single_turn = !params.prompt.empty() && !params.image.empty();
|
||||
|
||||
@@ -261,21 +241,15 @@ int main(int argc, char ** argv) {
|
||||
#endif
|
||||
}
|
||||
|
||||
if (eval_text(ctx, "<bos>")) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (is_single_turn) {
|
||||
g_is_generating = true;
|
||||
if (eval_text(ctx, "<start_of_turn>user\n")) {
|
||||
return 1;
|
||||
if (params.prompt.find("<__image__>") == std::string::npos) {
|
||||
params.prompt += " <__image__>";
|
||||
}
|
||||
for (auto & fname : params.image) {
|
||||
if (eval_image(ctx, fname)) {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
if (eval_text(ctx, params.prompt + "<end_of_turn><start_of_turn>model\n", true)) {
|
||||
common_chat_msg msg;
|
||||
msg.role = "user";
|
||||
msg.content = params.prompt;
|
||||
if (eval_message(ctx, msg, params.image, true)) {
|
||||
return 1;
|
||||
}
|
||||
if (generate_response(ctx, smpl, n_predict)) {
|
||||
@@ -289,9 +263,9 @@ int main(int argc, char ** argv) {
|
||||
LOG("\n /quit or /exit exit the program");
|
||||
LOG("\n");
|
||||
|
||||
if (eval_text(ctx, "<start_of_turn>user\n")) {
|
||||
return 1;
|
||||
}
|
||||
bool is_first_msg = true;
|
||||
std::vector<std::string> images_fname;
|
||||
std::string content;
|
||||
|
||||
while (true) {
|
||||
g_is_generating = false;
|
||||
@@ -316,26 +290,33 @@ int main(int argc, char ** argv) {
|
||||
g_is_generating = true;
|
||||
if (line.find("/image") == 0) {
|
||||
std::string image = line.substr(7);
|
||||
int res = eval_image(ctx, image);
|
||||
if (res == 2) {
|
||||
continue; // image not found
|
||||
}
|
||||
if (res) {
|
||||
return 1;
|
||||
}
|
||||
images_fname.push_back(string_strip(image));
|
||||
content += "<__image__>";
|
||||
continue;
|
||||
} else {
|
||||
content += line;
|
||||
}
|
||||
common_chat_msg msg;
|
||||
msg.role = "user";
|
||||
msg.content = content;
|
||||
int ret = eval_message(ctx, msg, images_fname, is_first_msg);
|
||||
if (ret == 2) {
|
||||
// non-fatal error
|
||||
images_fname.clear();
|
||||
content.clear();
|
||||
continue;
|
||||
}
|
||||
if (eval_text(ctx, line + "<end_of_turn><start_of_turn>model\n", true)) {
|
||||
if (ret) {
|
||||
return 1;
|
||||
}
|
||||
if (generate_response(ctx, smpl, n_predict)) {
|
||||
return 1;
|
||||
}
|
||||
if (eval_text(ctx, "<end_of_turn><start_of_turn>user\n")) {
|
||||
return 1;
|
||||
}
|
||||
images_fname.clear();
|
||||
content.clear();
|
||||
is_first_msg = false;
|
||||
}
|
||||
}
|
||||
|
||||
llama_perf_context_print(ctx.lctx);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -225,7 +225,7 @@ static struct llama_model * llava_init(common_params * params) {
|
||||
|
||||
llama_model_params model_params = common_model_params_to_llama(*params);
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params->model.c_str(), model_params);
|
||||
llama_model * model = llama_model_load_from_file(params->model.path.c_str(), model_params);
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: unable to load model\n" , __func__);
|
||||
return NULL;
|
||||
@@ -234,14 +234,14 @@ static struct llama_model * llava_init(common_params * params) {
|
||||
}
|
||||
|
||||
static struct llava_context * llava_init_context(common_params * params, llama_model * model) {
|
||||
const char * clip_path = params->mmproj.c_str();
|
||||
const char * clip_path = params->mmproj.path.c_str();
|
||||
|
||||
auto prompt = params->prompt;
|
||||
if (prompt.empty()) {
|
||||
prompt = "describe the image in detail.";
|
||||
}
|
||||
|
||||
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
|
||||
auto ctx_clip = clip_model_load(clip_path, GGML_LOG_LEVEL_INFO);
|
||||
|
||||
llama_context_params ctx_params = common_context_params_to_llama(*params);
|
||||
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
|
||||
@@ -283,7 +283,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
common_init();
|
||||
|
||||
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
|
||||
if (params.mmproj.path.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
|
||||
print_usage(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -10,6 +10,7 @@
|
||||
#include <cstring>
|
||||
#include <limits>
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
|
||||
#if defined(LLAVA_LOG_OFF)
|
||||
# define LOG_INF(...)
|
||||
@@ -45,6 +46,17 @@ struct clip_image_grid_shape {
|
||||
int second;
|
||||
};
|
||||
|
||||
// convenience cpp wrapper
|
||||
struct clip_image_f32_batch_deleter {
|
||||
void operator()(clip_image_f32_batch * val) { clip_image_f32_batch_free(val); }
|
||||
};
|
||||
typedef std::unique_ptr<clip_image_f32_batch, clip_image_f32_batch_deleter> clip_image_f32_batch_ptr;
|
||||
|
||||
struct clip_image_size_deleter {
|
||||
void operator()(clip_image_f32_batch * val) { clip_image_f32_batch_free(val); }
|
||||
};
|
||||
typedef std::unique_ptr<clip_image_size, clip_image_size_deleter> clip_image_size_ptr;
|
||||
|
||||
/**
|
||||
* Selects the best resolution from a list of possible resolutions based on the original size.
|
||||
*
|
||||
@@ -105,8 +117,8 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
|
||||
struct ggml_context * ctx;
|
||||
} model;
|
||||
|
||||
const int32_t image_size = clip_image_size(ctx_clip);
|
||||
const int32_t patch_size = clip_patch_size(ctx_clip);
|
||||
const int32_t image_size = clip_get_image_size(ctx_clip);
|
||||
const int32_t patch_size = clip_get_patch_size(ctx_clip);
|
||||
|
||||
int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches)
|
||||
|
||||
@@ -246,12 +258,9 @@ static clip_image_f32 * reshape_by_patch(clip_image_f32 * image, int patch_size)
|
||||
|
||||
static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
|
||||
// std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
|
||||
clip_image_f32_batch img_res_v;
|
||||
img_res_v.size = 0;
|
||||
img_res_v.data = nullptr;
|
||||
if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) {
|
||||
clip_image_f32_batch_ptr img_res_v(clip_image_f32_batch_init());
|
||||
if (!clip_image_preprocess(ctx_clip, img, img_res_v.get())) {
|
||||
LOG_ERR("%s: unable to preprocess image\n", __func__);
|
||||
delete[] img_res_v.data;
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -259,66 +268,72 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||
|
||||
const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);
|
||||
|
||||
const size_t n_imgs = clip_image_f32_batch_n_images(img_res_v.get());
|
||||
|
||||
if (clip_is_minicpmv(ctx_clip) || clip_is_qwen2vl(ctx_clip)) {
|
||||
std::vector<float *> image_embd_v;
|
||||
image_embd_v.resize(img_res_v.size);
|
||||
struct clip_image_size * load_image_size = clip_image_size_init();
|
||||
image_embd_v.resize(n_imgs);
|
||||
clip_image_size load_image_size;
|
||||
|
||||
for (size_t i = 0; i < img_res_v.size; i++) {
|
||||
for (size_t i = 0; i < n_imgs; i++) {
|
||||
const int64_t t_img_enc_step_start_us = ggml_time_us();
|
||||
image_embd_v[i] = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, img_res_v.data[i].nx, img_res_v.data[i].ny));
|
||||
int patch_size=14;
|
||||
load_image_size->width = img_res_v.data[i].nx;
|
||||
load_image_size->height = img_res_v.data[i].ny;
|
||||
clip_add_load_image_size(ctx_clip, load_image_size);
|
||||
int nx = clip_image_f32_batch_nx(img_res_v.get(), i);
|
||||
int ny = clip_image_f32_batch_ny(img_res_v.get(), i);
|
||||
image_embd_v[i] = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, nx, ny));
|
||||
int patch_size = 14;
|
||||
load_image_size.width = nx;
|
||||
load_image_size.height = ny;
|
||||
clip_add_load_image_size(ctx_clip, &load_image_size);
|
||||
|
||||
bool encoded = false;
|
||||
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), i);
|
||||
if (clip_is_qwen2vl(ctx_clip)) {
|
||||
encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
|
||||
encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd_v[i]);
|
||||
}
|
||||
else {
|
||||
encoded = clip_image_encode(ctx_clip, n_threads, reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
|
||||
encoded = clip_image_encode(ctx_clip, n_threads, reshape_by_patch(img_res, patch_size), image_embd_v[i]);
|
||||
}
|
||||
|
||||
if (!encoded) {
|
||||
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
|
||||
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) n_imgs);
|
||||
return false;
|
||||
}
|
||||
const int64_t t_img_enc_steop_batch_us = ggml_time_us();
|
||||
LOG_INF("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)img_res_v.size, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
|
||||
LOG_INF("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)n_imgs, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
|
||||
}
|
||||
const int64_t t_img_enc_batch_us = ggml_time_us();
|
||||
LOG_INF("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
|
||||
LOG_INF("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)n_imgs, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
|
||||
|
||||
int n_img_pos_out = 0;
|
||||
for (size_t i = 0; i < image_embd_v.size(); i++) {
|
||||
int nx = clip_image_f32_batch_nx(img_res_v.get(), i);
|
||||
int ny = clip_image_f32_batch_ny(img_res_v.get(), i);
|
||||
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), i);
|
||||
std::memcpy(
|
||||
image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip),
|
||||
image_embd_v[i],
|
||||
clip_embd_nbytes_by_img(ctx_clip, img_res_v.data[i].nx, img_res_v.data[i].ny));
|
||||
n_img_pos_out += clip_n_patches_by_img(ctx_clip, &img_res_v.data[i]);
|
||||
clip_embd_nbytes_by_img(ctx_clip, nx, ny));
|
||||
n_img_pos_out += clip_n_patches_by_img(ctx_clip, img_res);
|
||||
}
|
||||
*n_img_pos = n_img_pos_out;
|
||||
for (size_t i = 0; i < image_embd_v.size(); i++) {
|
||||
free(image_embd_v[i]);
|
||||
}
|
||||
image_embd_v.clear();
|
||||
load_image_size->width = img->nx;
|
||||
load_image_size->height = img->ny;
|
||||
clip_add_load_image_size(ctx_clip, load_image_size);
|
||||
LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height);
|
||||
delete[] img_res_v.data;
|
||||
img_res_v.size = 0;
|
||||
img_res_v.data = nullptr;
|
||||
load_image_size.width = img->nx;
|
||||
load_image_size.height = img->ny;
|
||||
clip_add_load_image_size(ctx_clip, &load_image_size);
|
||||
LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size.width, load_image_size.height);
|
||||
}
|
||||
else if (clip_is_glm(ctx_clip)){
|
||||
struct clip_image_size * load_image_size = clip_image_size_init();
|
||||
load_image_size->width = img_res_v.data[0].nx;
|
||||
load_image_size->height = img_res_v.data[0].ny;
|
||||
load_image_size->width = clip_image_f32_batch_nx(img_res_v.get(), 0);
|
||||
load_image_size->height = clip_image_f32_batch_ny(img_res_v.get(), 0);
|
||||
clip_add_load_image_size(ctx_clip, load_image_size);
|
||||
|
||||
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd);
|
||||
int pos = int(load_image_size->width/clip_patch_size(ctx_clip)/2);
|
||||
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), 0);
|
||||
bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd);
|
||||
int pos = int(load_image_size->width/clip_get_patch_size(ctx_clip)/2);
|
||||
*n_img_pos = (pos * pos + 2);
|
||||
if (!encoded){
|
||||
LOG_ERR("Unable to encode image \n");
|
||||
@@ -328,8 +343,8 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||
else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
|
||||
// flat / default llava-1.5 type embedding
|
||||
*n_img_pos = clip_n_patches(ctx_clip);
|
||||
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096
|
||||
delete[] img_res_v.data;
|
||||
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), 0);
|
||||
bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd); // image_embd shape is 576 x 4096
|
||||
if (!encoded) {
|
||||
LOG_ERR("Unable to encode image\n");
|
||||
|
||||
@@ -340,17 +355,18 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||
// spatial_unpad llava-1.6 type embedding
|
||||
// TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
|
||||
std::vector<float *> image_embd_v;
|
||||
image_embd_v.resize(img_res_v.size);
|
||||
for (size_t i = 0; i < img_res_v.size; i++) {
|
||||
image_embd_v.resize(n_imgs);
|
||||
for (size_t i = 0; i < n_imgs; i++) {
|
||||
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), i);
|
||||
image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184
|
||||
const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
|
||||
const bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
|
||||
if (!encoded) {
|
||||
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
|
||||
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) n_imgs);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
const int64_t t_img_enc_batch_us = ggml_time_us();
|
||||
LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
|
||||
LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)n_imgs, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
|
||||
|
||||
const int32_t * image_grid = clip_image_grid(ctx_clip);
|
||||
const size_t num_gridpoints = get_clip_image_grid_size(ctx_clip);
|
||||
@@ -360,12 +376,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||
grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
|
||||
}
|
||||
|
||||
// free all img_res_v - not needed anymore
|
||||
delete[] img_res_v.data;
|
||||
img_res_v.size = 0;
|
||||
img_res_v.data = nullptr;
|
||||
|
||||
const int32_t image_size = clip_image_size(ctx_clip);
|
||||
const int32_t image_size = clip_get_image_size(ctx_clip);
|
||||
|
||||
struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);
|
||||
|
||||
|
||||
@@ -31,7 +31,7 @@ static struct llama_model * llava_init(common_params * params) {
|
||||
|
||||
llama_model_params model_params = common_model_params_to_llama(*params);
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params->model.c_str(), model_params);
|
||||
llama_model * model = llama_model_load_from_file(params->model.path.c_str(), model_params);
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: unable to load model\n" , __func__);
|
||||
return NULL;
|
||||
@@ -80,7 +80,7 @@ static void llava_free(struct llava_context * ctx_llava) {
|
||||
}
|
||||
|
||||
static struct clip_ctx * clip_init_context(common_params * params) {
|
||||
const char * clip_path = params->mmproj.c_str();
|
||||
const char * clip_path = params->mmproj.path.c_str();
|
||||
|
||||
auto prompt = params->prompt;
|
||||
if (prompt.empty()) {
|
||||
@@ -88,7 +88,7 @@ static struct clip_ctx * clip_init_context(common_params * params) {
|
||||
}
|
||||
struct clip_context_params clip_params = {
|
||||
/* use_gpu */ params->n_gpu_layers != 0,
|
||||
/* verbosity */ params->verbosity,
|
||||
/* verbosity */ GGML_LOG_LEVEL_INFO, // TODO: make this configurable
|
||||
};
|
||||
auto * ctx_clip = clip_init(clip_path, clip_params);
|
||||
return ctx_clip;
|
||||
@@ -290,7 +290,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
common_init();
|
||||
|
||||
if (params.mmproj.empty() || (params.image.empty())) {
|
||||
if (params.mmproj.path.empty() || (params.image.empty())) {
|
||||
show_additional_info(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
|
||||
341
examples/llava/mtmd.cpp
Normal file
341
examples/llava/mtmd.cpp
Normal file
@@ -0,0 +1,341 @@
|
||||
#include "clip.h"
|
||||
#include "clip-impl.h"
|
||||
#include "mtmd.h"
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cerrno>
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <limits>
|
||||
#include <vector>
|
||||
|
||||
struct mtmd_context {
|
||||
struct clip_ctx * ctx_clip;
|
||||
const struct llama_model * text_model;
|
||||
std::vector<float> image_embd_v; // image embedding vector
|
||||
bool print_timings;
|
||||
int n_threads;
|
||||
std::string image_marker;
|
||||
|
||||
// TODO @ngxson : add timings
|
||||
|
||||
mtmd_context(const char * mmproj_fname,
|
||||
const llama_model * text_model,
|
||||
const mtmd_context_params & ctx_params) : print_timings(ctx_params.print_timings), n_threads(ctx_params.n_threads), image_marker(ctx_params.image_marker) {
|
||||
clip_context_params ctx_clip_params;
|
||||
ctx_clip_params.use_gpu = ctx_params.use_gpu;
|
||||
ctx_clip_params.verbosity = ctx_params.verbosity;
|
||||
ctx_clip = clip_init(mmproj_fname, ctx_clip_params);
|
||||
if (!ctx_clip) {
|
||||
throw std::runtime_error(string_format("Failed to load CLIP model from %s\n", mmproj_fname));
|
||||
}
|
||||
this->text_model = text_model;
|
||||
}
|
||||
|
||||
~mtmd_context() {
|
||||
clip_free(ctx_clip);
|
||||
}
|
||||
};
|
||||
|
||||
struct mtmd_image_tokens_data {
|
||||
clip_image_f32_batch batch_f32; // preprocessed image patches
|
||||
};
|
||||
|
||||
struct mtmd_image_tokens {
|
||||
uint32_t nx; // number of tokens in x direction
|
||||
uint32_t ny; // number of tokens in y direction
|
||||
uint32_t n_tokens() const { return nx * ny; }
|
||||
clip_image_f32_batch batch_f32; // preprocessed image patches
|
||||
};
|
||||
|
||||
mtmd_context * mtmd_init_from_file(const char * mmproj_fname,
|
||||
const struct llama_model * text_model,
|
||||
const struct mtmd_context_params ctx_params) {
|
||||
try {
|
||||
return new mtmd_context(mmproj_fname, text_model, ctx_params);
|
||||
} catch (const std::exception & e) {
|
||||
LOG_ERR("%s: error: %s\n", __func__, e.what());
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
void mtmd_free(mtmd_context * ctx) {
|
||||
if (ctx) {
|
||||
delete ctx;
|
||||
}
|
||||
}
|
||||
|
||||
// copied from common_tokenize
|
||||
static std::vector<llama_token> mtmd_tokenize_text_internal(
|
||||
const struct llama_vocab * vocab,
|
||||
const std::string & text,
|
||||
bool add_special,
|
||||
bool parse_special) {
|
||||
// upper limit for the number of tokens
|
||||
int n_tokens = text.length() + 2 * add_special;
|
||||
std::vector<llama_token> result(n_tokens);
|
||||
n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
|
||||
if (n_tokens < 0) {
|
||||
result.resize(-n_tokens);
|
||||
int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
|
||||
GGML_ASSERT(check == -n_tokens);
|
||||
} else {
|
||||
result.resize(n_tokens);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
mtmd_input_chunks * mtmd_tokenize(mtmd_context * ctx,
|
||||
const mtmd_input_text & text,
|
||||
const std::vector<mtmd_bitmap> & bitmaps) {
|
||||
mtmd_input_chunks * output = new mtmd_input_chunks;
|
||||
auto vocab = llama_model_get_vocab(ctx->text_model);
|
||||
|
||||
std::string prompt_modified(text.text);
|
||||
std::string marker_modified(ctx->image_marker);
|
||||
projector_type proj_type = clip_get_projector_type(ctx->ctx_clip);
|
||||
// a bit hacky here, but works for now
|
||||
// for some models, we need to add prefix and suffix to the image embeddings
|
||||
if (proj_type == PROJECTOR_TYPE_GEMMA3) {
|
||||
// <start_of_image> ... (image embeddings) ... <end_of_image>
|
||||
marker_modified = "<start_of_image>" + ctx->image_marker + "<end_of_image>";
|
||||
string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
|
||||
}
|
||||
|
||||
std::vector<std::string> parts = string_split_str(text.text, ctx->image_marker);
|
||||
output->clear();
|
||||
output->reserve(parts.size());
|
||||
|
||||
size_t i_img = 0;
|
||||
|
||||
for (const auto & part : parts) {
|
||||
//printf("tokenizing part: %s\n", part.c_str());
|
||||
bool add_bos = &parts.front() == ∂
|
||||
auto tokens = mtmd_tokenize_text_internal(vocab, part, text.add_special && add_bos, text.parse_special);
|
||||
if (tokens.empty()) {
|
||||
continue;
|
||||
}
|
||||
mtmd_input_chunk chunk{
|
||||
MTMD_INPUT_CHUNK_TYPE_TEXT,
|
||||
std::move(tokens),
|
||||
{},
|
||||
};
|
||||
output->emplace_back(std::move(chunk));
|
||||
|
||||
if (&parts.back() != &part) {
|
||||
// add image token to middle of 2 parts
|
||||
|
||||
if (i_img >= bitmaps.size()) {
|
||||
LOG_ERR("%s: error: not enough images for %d parts\n", __func__, (int)parts.size());
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// shim layer
|
||||
clip_image_u8_ptr img_u8(clip_image_u8_init());
|
||||
img_u8->nx = bitmaps[i_img].nx;
|
||||
img_u8->ny = bitmaps[i_img].ny;
|
||||
img_u8->buf.resize(bitmaps[i_img].data.size());
|
||||
std::memcpy(img_u8->buf.data(), bitmaps[i_img].data.data(), img_u8->nx * img_u8->ny * 3);
|
||||
|
||||
// preprocess image
|
||||
clip_image_f32_batch batch_f32;
|
||||
bool ok = clip_image_preprocess(ctx->ctx_clip, img_u8.get(), &batch_f32);
|
||||
if (!ok) {
|
||||
LOG_ERR("Unable to preprocess image\n");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
mtmd_image_tokens * image_tokens = new mtmd_image_tokens;
|
||||
image_tokens->nx = clip_n_patches(ctx->ctx_clip); // TODO @ngxson : use clip_n_patches_by_image
|
||||
image_tokens->ny = 1; // TODO
|
||||
image_tokens->batch_f32 = std::move(batch_f32);
|
||||
|
||||
mtmd_input_chunk chunk{
|
||||
MTMD_INPUT_CHUNK_TYPE_IMAGE,
|
||||
{},
|
||||
image_tokens,
|
||||
};
|
||||
output->emplace_back(std::move(chunk));
|
||||
i_img++;
|
||||
}
|
||||
}
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
void mtmd_input_chunks_free(mtmd_input_chunks * chunks) {
|
||||
for (auto & chunk : *chunks) {
|
||||
if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE && chunk.tokens_image) {
|
||||
delete chunk.tokens_image;
|
||||
}
|
||||
}
|
||||
delete chunks;
|
||||
}
|
||||
|
||||
int32_t mtmd_encode(mtmd_context * ctx, const mtmd_image_tokens * image_tokens) {
|
||||
int n_mmproj_embd = clip_n_mmproj_embd(ctx->ctx_clip);
|
||||
ctx->image_embd_v.resize(image_tokens->n_tokens() * n_mmproj_embd);
|
||||
bool ok = clip_image_batch_encode(
|
||||
ctx->ctx_clip,
|
||||
ctx->n_threads,
|
||||
&image_tokens->batch_f32,
|
||||
ctx->image_embd_v.data());
|
||||
return ok ? 0 : 1;
|
||||
}
|
||||
|
||||
float * mtmd_get_output_embd(mtmd_context * ctx) {
|
||||
return ctx->image_embd_v.data();
|
||||
}
|
||||
|
||||
size_t mtmd_helper_get_n_tokens(mtmd_input_chunks * chunks) {
|
||||
size_t n_tokens = 0;
|
||||
for (auto & chunk : *chunks) {
|
||||
if (chunk.type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
|
||||
n_tokens += chunk.tokens_text.size();
|
||||
} else if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
|
||||
n_tokens += chunk.tokens_image->n_tokens();
|
||||
} else {
|
||||
GGML_ASSERT(false && "chunk type not supported");
|
||||
}
|
||||
}
|
||||
return n_tokens;
|
||||
}
|
||||
|
||||
// helper struct to make working with embd batch easier
|
||||
// note: this will be removed after llama_batch_ext refactoring
|
||||
struct decode_embd_batch {
|
||||
std::vector<llama_pos> pos;
|
||||
std::vector<int32_t> n_seq_id;
|
||||
std::vector<llama_seq_id> seq_id_0;
|
||||
std::vector<llama_seq_id *> seq_ids;
|
||||
std::vector<int8_t> logits;
|
||||
llama_batch batch;
|
||||
decode_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
|
||||
pos .resize(n_tokens);
|
||||
n_seq_id.resize(n_tokens);
|
||||
seq_ids .resize(n_tokens + 1);
|
||||
logits .resize(n_tokens);
|
||||
seq_id_0.resize(1);
|
||||
seq_id_0[0] = seq_id;
|
||||
seq_ids [n_tokens] = nullptr;
|
||||
batch = {
|
||||
/*n_tokens =*/ n_tokens,
|
||||
/*tokens =*/ nullptr,
|
||||
/*embd =*/ embd,
|
||||
/*pos =*/ pos.data(),
|
||||
/*n_seq_id =*/ n_seq_id.data(),
|
||||
/*seq_id =*/ seq_ids.data(),
|
||||
/*logits =*/ logits.data(),
|
||||
};
|
||||
for (int i = 0; i < n_tokens; i++) {
|
||||
batch.pos [i] = pos_0 + i;
|
||||
batch.n_seq_id[i] = 1;
|
||||
batch.seq_id [i] = seq_id_0.data();
|
||||
batch.logits [i] = false;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
int32_t mtmd_helper_eval(mtmd_context * ctx,
|
||||
llama_context * lctx,
|
||||
mtmd_input_chunks * chunks,
|
||||
llama_pos pos0,
|
||||
llama_seq_id seq_id,
|
||||
int32_t n_batch) {
|
||||
int32_t ret;
|
||||
llama_pos n_past = pos0;
|
||||
llama_batch text_batch = llama_batch_init(n_batch, 0, 1);
|
||||
|
||||
for (auto & chunk : *chunks) {
|
||||
bool is_last = &chunk == &chunks->back();
|
||||
if (chunk.type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
|
||||
// TODO @ngxson : may need to split into smaller batches
|
||||
text_batch.n_tokens = chunk.tokens_text.size();
|
||||
for (size_t i = 0; i < chunk.tokens_text.size(); i++) {
|
||||
text_batch.token [i] = chunk.tokens_text[i];
|
||||
text_batch.pos [i] = n_past++;
|
||||
text_batch.n_seq_id[i] = 1;
|
||||
text_batch.seq_id [i][0] = seq_id;
|
||||
text_batch.logits [i] = false;
|
||||
}
|
||||
if (is_last) {
|
||||
// always get logits for last input chunk
|
||||
text_batch.logits[text_batch.n_tokens - 1] = true;
|
||||
}
|
||||
ret = llama_decode(lctx, text_batch);
|
||||
if (ret != 0) {
|
||||
LOG_ERR("failed to decode text\n");
|
||||
llama_batch_free(text_batch);
|
||||
return ret;
|
||||
}
|
||||
|
||||
} else if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
|
||||
GGML_ASSERT(!is_last && "logits for last image chunk is not yet support");
|
||||
GGML_ASSERT(chunk.tokens_image != nullptr);
|
||||
int64_t t0 = ggml_time_ms();
|
||||
if (ctx->print_timings) {
|
||||
LOG_INF("encoding image...\n");
|
||||
}
|
||||
ret = mtmd_encode(ctx, chunk.tokens_image);
|
||||
if (ret != 0) {
|
||||
LOG_ERR("failed to encode image\n");
|
||||
llama_batch_free(text_batch);
|
||||
return ret;
|
||||
}
|
||||
if (ctx->print_timings) {
|
||||
LOG_INF("image encoded in %" PRId64 " ms\n", ggml_time_ms() - t0);
|
||||
}
|
||||
|
||||
int32_t n_tokens = chunk.tokens_image->n_tokens();
|
||||
float * embd = mtmd_get_output_embd(ctx);
|
||||
decode_embd_batch batch_img(embd, n_tokens, n_past, 0);
|
||||
int64_t t1 = ggml_time_ms();
|
||||
ret = llama_decode(lctx, batch_img.batch);
|
||||
if (ret != 0) {
|
||||
LOG_ERR("failed to decode image\n");
|
||||
llama_batch_free(text_batch);
|
||||
return ret;
|
||||
}
|
||||
if (ctx->print_timings) {
|
||||
LOG_INF("image decoded in %" PRId64 " ms\n", ggml_time_ms() - t1);
|
||||
}
|
||||
|
||||
n_past += n_tokens;
|
||||
|
||||
} else {
|
||||
GGML_ASSERT(false && "chunk type not supported");
|
||||
}
|
||||
}
|
||||
|
||||
llama_batch_free(text_batch);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int32_t mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len, mtmd_bitmap & output) {
|
||||
clip_image_u8_ptr img_u8(clip_image_u8_init());
|
||||
bool ok = clip_image_load_from_bytes(buf, len, img_u8.get());
|
||||
if (!ok) {
|
||||
LOG_ERR("Unable to load image from buffer\n");
|
||||
return 1;
|
||||
}
|
||||
unsigned char * data = clip_image_u8_get_data(img_u8.get(), &output.nx, &output.ny);
|
||||
output.data.resize(output.nx * output.ny * 3);
|
||||
std::memcpy(output.data.data(), data, output.nx * output.ny * 3);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int32_t mtmd_helper_bitmap_init_from_file(const char * fname, mtmd_bitmap & output) {
|
||||
clip_image_u8_ptr img_u8(clip_image_u8_init());
|
||||
bool ok = clip_image_load_from_file(fname, img_u8.get());
|
||||
if (!ok) {
|
||||
LOG_ERR("Unable to load image %s\n", fname);
|
||||
return 1;
|
||||
}
|
||||
unsigned char * data = clip_image_u8_get_data(img_u8.get(), &output.nx, &output.ny);
|
||||
output.data.resize(output.nx * output.ny * 3);
|
||||
std::memcpy(output.data.data(), data, output.nx * output.ny * 3);
|
||||
return 0;
|
||||
}
|
||||
146
examples/llava/mtmd.h
Normal file
146
examples/llava/mtmd.h
Normal file
@@ -0,0 +1,146 @@
|
||||
#ifndef MTMD_H
|
||||
#define MTMD_H
|
||||
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "clip.h"
|
||||
|
||||
#include <vector>
|
||||
#include <cinttypes>
|
||||
#include <memory>
|
||||
|
||||
#ifdef LLAMA_SHARED
|
||||
# if defined(_WIN32) && !defined(__MINGW32__)
|
||||
# ifdef LLAMA_BUILD
|
||||
# define MTMD_API __declspec(dllexport)
|
||||
# else
|
||||
# define MTMD_API __declspec(dllimport)
|
||||
# endif
|
||||
# else
|
||||
# define MTMD_API __attribute__ ((visibility ("default")))
|
||||
# endif
|
||||
#else
|
||||
# define MTMD_API
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
||||
enum mtmd_input_chunk_type {
|
||||
MTMD_INPUT_CHUNK_TYPE_TEXT,
|
||||
MTMD_INPUT_CHUNK_TYPE_IMAGE,
|
||||
};
|
||||
|
||||
struct mtmd_context;
|
||||
struct mtmd_image_tokens;
|
||||
|
||||
// represents raw image data, layout is RGBRGBRGB...
|
||||
// length of data must be nx * ny * 3
|
||||
struct mtmd_bitmap {
|
||||
uint32_t nx;
|
||||
uint32_t ny;
|
||||
std::vector<unsigned char> data;
|
||||
};
|
||||
|
||||
struct mtmd_input_chunk {
|
||||
mtmd_input_chunk_type type;
|
||||
std::vector<llama_token> tokens_text;
|
||||
mtmd_image_tokens * tokens_image = nullptr;
|
||||
};
|
||||
|
||||
using mtmd_input_chunks = std::vector<mtmd_input_chunk>;
|
||||
|
||||
struct mtmd_context_params {
|
||||
bool use_gpu = true;
|
||||
bool print_timings = true;
|
||||
int n_threads = 4;
|
||||
enum ggml_log_level verbosity = GGML_LOG_LEVEL_INFO;
|
||||
const char * image_marker = "<__image__>";
|
||||
};
|
||||
|
||||
struct mtmd_input_text {
|
||||
std::string text;
|
||||
bool add_special;
|
||||
bool parse_special;
|
||||
};
|
||||
|
||||
// initialize the mtmd context
|
||||
// return nullptr on failure
|
||||
MTMD_API mtmd_context * mtmd_init_from_file(const char * mmproj_fname,
|
||||
const llama_model * text_model,
|
||||
const mtmd_context_params ctx_params);
|
||||
|
||||
MTMD_API void mtmd_free(mtmd_context * ctx);
|
||||
|
||||
// tokenize an input text prompt and an image
|
||||
// the prompt must have the input image marker (default: "<__image__>") in it
|
||||
// the marker will be replaced with the image tokens
|
||||
// for example:
|
||||
// "here is an image: <__image__>\ndescribe it in detail."
|
||||
// this will gives 3 chunks:
|
||||
// 1. "here is an image: <start_of_image>"
|
||||
// 2. (image tokens)
|
||||
// 3. "<end_of_image>\ndescribe it in detail."
|
||||
// number of bitmaps must be equal to the number of image markers in the prompt
|
||||
// this function is thread-safe (shared ctx)
|
||||
MTMD_API mtmd_input_chunks * mtmd_tokenize(mtmd_context * ctx,
|
||||
const mtmd_input_text & text,
|
||||
const std::vector<mtmd_bitmap> & bitmaps);
|
||||
|
||||
// free image chunk data
|
||||
MTMD_API void mtmd_input_chunks_free(mtmd_input_chunks * chunks);
|
||||
|
||||
// returns 0 on success
|
||||
MTMD_API int32_t mtmd_encode(mtmd_context * ctx,
|
||||
const mtmd_image_tokens * image_tokens);
|
||||
|
||||
// get output embeddings from the last encode pass
|
||||
MTMD_API float * mtmd_get_output_embd(mtmd_context * ctx);
|
||||
|
||||
//
|
||||
// helper functions (can be implemented based on other functions)
|
||||
//
|
||||
|
||||
// helper to count the total number of tokens from a list of chunks, useful to keep track of n_past
|
||||
MTMD_API size_t mtmd_helper_get_n_tokens(mtmd_input_chunks * chunks);
|
||||
|
||||
// helper function that automatically:
|
||||
// 1. run llama_decode() on text chunks
|
||||
// 2. run mtmd_encode() on image chunks, then mtmd_get_output_embd() and then llama_decode()
|
||||
// if any of the mtmd_encode() or llama_decode() calls return non-zero, stop and forward the error
|
||||
// otherwise, returns 0 on success
|
||||
MTMD_API int32_t mtmd_helper_eval(mtmd_context * ctx,
|
||||
llama_context * lctx,
|
||||
mtmd_input_chunks * chunks,
|
||||
llama_pos pos0,
|
||||
llama_seq_id seq_id,
|
||||
int32_t n_batch);
|
||||
|
||||
// helper function to construct a mtmd_bitmap from a file
|
||||
// returns 0 on success
|
||||
// this function is thread-safe
|
||||
MTMD_API int32_t mtmd_helper_bitmap_init_from_file(const char * fname, mtmd_bitmap & output);
|
||||
|
||||
// helper function to construct a mtmd_bitmap from a buffer
|
||||
// the buffer must be an image in format supported by stb_image (jpg, png, bmp, gif, etc.)
|
||||
// returns 0 on success
|
||||
// this function is thread-safe
|
||||
MTMD_API int32_t mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len, mtmd_bitmap & output);
|
||||
|
||||
// convenient unique_ptr wrappers
|
||||
struct mtmd_context_deleter {
|
||||
void operator()(mtmd_context * val) { mtmd_free(val); }
|
||||
};
|
||||
using mtmd_context_ptr = std::unique_ptr<mtmd_context, mtmd_context_deleter>;
|
||||
|
||||
struct mtmd_input_chunks_deleter {
|
||||
void operator()(mtmd_input_chunks * val) { mtmd_input_chunks_free(val); }
|
||||
};
|
||||
using mtmd_input_chunks_ptr = std::unique_ptr<mtmd_input_chunks, mtmd_input_chunks_deleter>;
|
||||
|
||||
#else
|
||||
|
||||
static_assert(false && "C header is not yet supported by this library");
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
@@ -314,7 +314,7 @@ static struct llama_model * llava_init(common_params * params) {
|
||||
|
||||
llama_model_params model_params = common_model_params_to_llama(*params);
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params->model.c_str(), model_params);
|
||||
llama_model * model = llama_model_load_from_file(params->model.path.c_str(), model_params);
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: unable to load model\n" , __func__);
|
||||
return NULL;
|
||||
@@ -323,14 +323,14 @@ static struct llama_model * llava_init(common_params * params) {
|
||||
}
|
||||
|
||||
static struct llava_context * llava_init_context(common_params * params, llama_model * model) {
|
||||
const char * clip_path = params->mmproj.c_str();
|
||||
const char * clip_path = params->mmproj.path.c_str();
|
||||
|
||||
auto prompt = params->prompt;
|
||||
if (prompt.empty()) {
|
||||
prompt = "describe the image in detail.";
|
||||
}
|
||||
|
||||
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
|
||||
auto ctx_clip = clip_model_load(clip_path, GGML_LOG_LEVEL_INFO);
|
||||
|
||||
llama_context_params ctx_params = common_context_params_to_llama(*params);
|
||||
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
|
||||
@@ -524,7 +524,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
common_init();
|
||||
|
||||
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
|
||||
if (params.mmproj.path.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
|
||||
print_usage(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
|
||||
BIN
examples/llava/test-1.jpeg
Normal file
BIN
examples/llava/test-1.jpeg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 121 KiB |
81
examples/llava/tests.sh
Executable file
81
examples/llava/tests.sh
Executable file
@@ -0,0 +1,81 @@
|
||||
#!/bin/bash
|
||||
|
||||
# make sure we are in the right directory
|
||||
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
|
||||
cd $SCRIPT_DIR
|
||||
|
||||
#export LLAMA_CACHE="$SCRIPT_DIR/tmp"
|
||||
|
||||
set -eux
|
||||
|
||||
mkdir -p $SCRIPT_DIR/output
|
||||
|
||||
PROJ_ROOT="$SCRIPT_DIR/../.."
|
||||
cd $PROJ_ROOT
|
||||
|
||||
###############
|
||||
|
||||
arr_bin=()
|
||||
arr_hf=()
|
||||
|
||||
add_test() {
|
||||
local bin=$1
|
||||
local hf=$2
|
||||
arr_bin+=("$bin")
|
||||
arr_hf+=("$hf")
|
||||
}
|
||||
|
||||
add_test "llama-gemma3-cli" "ggml-org/gemma-3-4b-it-GGUF:Q4_K_M"
|
||||
add_test "llama-llava-cli" "cmp-nct/Yi-VL-6B-GGUF:Q5_K"
|
||||
add_test "llama-llava-cli" "guinmoon/MobileVLM-3B-GGUF:Q4_K_M"
|
||||
add_test "llama-llava-cli" "THUDM/glm-edge-v-5b-gguf:Q4_K_M"
|
||||
add_test "llama-llava-cli" "second-state/Llava-v1.5-7B-GGUF:Q2_K"
|
||||
add_test "llama-llava-cli" "cjpais/llava-1.6-mistral-7b-gguf:Q3_K"
|
||||
add_test "llama-llava-cli" "ibm-research/granite-vision-3.2-2b-GGUF:Q4_K_M"
|
||||
add_test "llama-minicpmv-cli" "second-state/MiniCPM-Llama3-V-2_5-GGUF:Q2_K" # model from openbmb is corrupted
|
||||
add_test "llama-minicpmv-cli" "openbmb/MiniCPM-V-2_6-gguf:Q2_K"
|
||||
add_test "llama-minicpmv-cli" "openbmb/MiniCPM-o-2_6-gguf:Q4_0"
|
||||
add_test "llama-qwen2vl-cli" "bartowski/Qwen2-VL-2B-Instruct-GGUF:Q4_K_M"
|
||||
|
||||
###############
|
||||
|
||||
cmake --build build -j --target "${arr_bin[@]}"
|
||||
|
||||
arr_res=()
|
||||
|
||||
for i in "${!arr_bin[@]}"; do
|
||||
bin="${arr_bin[$i]}"
|
||||
hf="${arr_hf[$i]}"
|
||||
|
||||
echo "Running test with binary: $bin and HF model: $hf"
|
||||
echo ""
|
||||
echo ""
|
||||
|
||||
output=$("$PROJ_ROOT/build/bin/$bin" -hf "$hf" --image $SCRIPT_DIR/test-1.jpeg -p "what is the publisher name of the newspaper?" --temp 0 2>&1 | tee /dev/tty)
|
||||
|
||||
echo "$output" > $SCRIPT_DIR/output/$bin-$(echo "$hf" | tr '/' '-').log
|
||||
|
||||
if echo "$output" | grep -iq "new york"; then
|
||||
result="\033[32mOK\033[0m: $bin $hf"
|
||||
else
|
||||
result="\033[31mFAIL\033[0m: $bin $hf"
|
||||
fi
|
||||
echo -e "$result"
|
||||
arr_res+=("$result")
|
||||
|
||||
echo ""
|
||||
echo ""
|
||||
echo ""
|
||||
echo "#################################################"
|
||||
echo "#################################################"
|
||||
echo ""
|
||||
echo ""
|
||||
done
|
||||
|
||||
set +x
|
||||
|
||||
for i in "${!arr_res[@]}"; do
|
||||
echo -e "${arr_res[$i]}"
|
||||
done
|
||||
echo ""
|
||||
echo "Output logs are saved in $SCRIPT_DIR/output"
|
||||
@@ -106,6 +106,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
common_params params;
|
||||
|
||||
params.n_predict = 128;
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PARALLEL)) {
|
||||
return 1;
|
||||
}
|
||||
@@ -405,7 +407,7 @@ int main(int argc, char ** argv) {
|
||||
params.prompt_file = "used built-in defaults";
|
||||
}
|
||||
LOG_INF("External prompt file: \033[32m%s\033[0m\n", params.prompt_file.c_str());
|
||||
LOG_INF("Model and path used: \033[32m%s\033[0m\n\n", params.model.c_str());
|
||||
LOG_INF("Model and path used: \033[32m%s\033[0m\n\n", params.model.path.c_str());
|
||||
|
||||
LOG_INF("Total prompt tokens: %6d, speed: %5.2f t/s\n", n_total_prompt, (double) (n_total_prompt ) / (t_main_end - t_main_start) * 1e6);
|
||||
LOG_INF("Total gen tokens: %6d, speed: %5.2f t/s\n", n_total_gen, (double) (n_total_gen ) / (t_main_end - t_main_start) * 1e6);
|
||||
|
||||
@@ -64,7 +64,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_model_params model_params = common_model_params_to_llama(params);
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params);
|
||||
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
|
||||
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: unable to load model\n" , __func__);
|
||||
|
||||
@@ -851,7 +851,7 @@ static void hellaswag_score(llama_context * ctx, const common_params & params) {
|
||||
|
||||
LOG_INF("%s : calculating hellaswag score over selected tasks.\n", __func__);
|
||||
|
||||
LOG("\ntask\tacc_norm\n");
|
||||
LOG("\ntask\tacc_norm\t95%% confidence interval\n");
|
||||
|
||||
double acc = 0.0f;
|
||||
|
||||
@@ -985,8 +985,22 @@ static void hellaswag_score(llama_context * ctx, const common_params & params) {
|
||||
acc += 1.0;
|
||||
}
|
||||
|
||||
// Print the accumulated accuracy mean x 100
|
||||
LOG("%zu\t%.8lf\n", i + 1, acc/double(i + 1)*100.0);
|
||||
double freq = acc / double(i + 1);
|
||||
|
||||
const double za = 1.95996398454;
|
||||
|
||||
// // Wald normal approx
|
||||
// double conf =za*sqrt(freq*(1-freq)/double(i + 1));
|
||||
// LOG("%zu\t%.8lf +/- %.8lf\n", i + 1, freq*100.0, conf*100.0);
|
||||
|
||||
// Wilson score interval, more accurate
|
||||
double z = za * za / double(i + 1);
|
||||
double cnf = z * sqrt(double(i + 1) * (4.0 * freq * (1 - freq) + z)) / (za + za);
|
||||
double a = (freq + z * 0.5 - cnf) / (1.0 + z);
|
||||
double b = (freq + z * 0.5 + cnf) / (1.0 + z);
|
||||
|
||||
// Print the accumulated accuracy mean x 100 and confidence interval
|
||||
LOG("%zu\t%3.8lf%%\t[%3.4lf%%, %3.4lf%%]\n", i + 1, freq * 100.0, a * 100.0, b * 100.0);
|
||||
}
|
||||
|
||||
i0 = i1 - 1;
|
||||
|
||||
@@ -9,6 +9,7 @@
|
||||
#include <fstream>
|
||||
#include <cmath>
|
||||
#include <cctype>
|
||||
#include <algorithm>
|
||||
|
||||
struct quant_option {
|
||||
std::string name;
|
||||
@@ -16,7 +17,7 @@ struct quant_option {
|
||||
std::string desc;
|
||||
};
|
||||
|
||||
static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
||||
static const std::vector<quant_option> QUANT_OPTIONS = {
|
||||
{ "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
|
||||
{ "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 4.78G, +0.4511 ppl @ Llama-3-8B", },
|
||||
{ "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 5.21G, +0.1316 ppl @ Llama-3-8B", },
|
||||
@@ -105,7 +106,8 @@ static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftyp
|
||||
//
|
||||
[[noreturn]]
|
||||
static void usage(const char * executable) {
|
||||
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] [--output-tensor-type] [--token-embedding-type] [--override-kv] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
|
||||
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] [--output-tensor-type]\n", executable);
|
||||
printf(" [--token-embedding-type] [--tensor-type] [--keep-split] [--override-kv] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n");
|
||||
printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
|
||||
printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
|
||||
printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
|
||||
@@ -114,6 +116,8 @@ static void usage(const char * executable) {
|
||||
printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
|
||||
printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n");
|
||||
printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n");
|
||||
printf(" --tensor-type TENSOR=TYPE: quantize this tensor to this ggml_type. example: --tensor-type attn_q=q8_0\n");
|
||||
printf(" Advanced option to selectively quantize tensors. May be specified multiple times.\n");
|
||||
printf(" --keep-split: will generate quantized model in the same shards as input\n");
|
||||
printf(" --override-kv KEY=TYPE:VALUE\n");
|
||||
printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n");
|
||||
@@ -244,6 +248,107 @@ static ggml_type parse_ggml_type(const char * arg) {
|
||||
return GGML_TYPE_COUNT;
|
||||
}
|
||||
|
||||
// Allowed tensors for arbitrary quantization with --tensor-type option
|
||||
static const std::vector<std::string> ALLOWED_TENSOR_TYPE = {
|
||||
"attn_k",
|
||||
"attn_kv_a_mqa",
|
||||
"attn_kv_b",
|
||||
"attn_o",
|
||||
"attn_output",
|
||||
"attn_q",
|
||||
"attn_q_a",
|
||||
"attn_q_b",
|
||||
"attn_qkv",
|
||||
"attn_v",
|
||||
"channel_mix_key",
|
||||
"channel_mix_receptance",
|
||||
"channel_mix_value",
|
||||
"cls",
|
||||
"cls.output",
|
||||
"cross_attn_k",
|
||||
"cross_attn_o",
|
||||
"cross_attn_q",
|
||||
"cross_attn_v",
|
||||
"ffn_act",
|
||||
"ffn_down",
|
||||
"ffn_down_exps",
|
||||
"ffn_down_shexp",
|
||||
"ffn_gate",
|
||||
"ffn_gate_exps",
|
||||
"ffn_gate_shexp",
|
||||
"ffn_up",
|
||||
"ffn_up_exps",
|
||||
"ffn_up_shexp",
|
||||
"ssm_in",
|
||||
"ssm_out",
|
||||
"time_mix_gate",
|
||||
"time_mix_key",
|
||||
"time_mix_output",
|
||||
"time_mix_receptance",
|
||||
"time_mix_value",
|
||||
};
|
||||
|
||||
// changes to this struct must be replicated in llama-quant.cpp
|
||||
struct tensor_quantization {
|
||||
std::string name;
|
||||
ggml_type quant = GGML_TYPE_COUNT;
|
||||
};
|
||||
|
||||
static bool parse_tensor_type(const char * data, std::vector<tensor_quantization> & tensor_type) {
|
||||
const char * sep = strchr(data, '=');
|
||||
if (sep == nullptr) {
|
||||
printf("\n%s: malformed tensor type '%s'\n\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
|
||||
const size_t tn_len = sep - data;
|
||||
if (tn_len == 0) {
|
||||
printf("\n%s: missing tensor name\n\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (const size_t qt_len = strlen(sep); qt_len == 1) {
|
||||
printf("\n%s: missing quantization type\n\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
std::string tn(data, tn_len);
|
||||
std::transform(tn.begin(), tn.end(), tn.begin(), tolower);
|
||||
sep++;
|
||||
const std::string qt(sep);
|
||||
|
||||
bool found = false;
|
||||
for (const auto & allowed : ALLOWED_TENSOR_TYPE) {
|
||||
std::string tensor;
|
||||
tensor = tn.rfind('.') != std::string::npos ? tn.substr(tn.rfind('.') + 1) : tn;
|
||||
// handle special case of cls.output
|
||||
std::string cls_output = "cls.output";
|
||||
if (tn.find(cls_output) != std::string::npos) {
|
||||
tensor = "cls.output";
|
||||
}
|
||||
// check if an allowed tensor exists and it's at the end of the kv string
|
||||
if (tensor == allowed) {
|
||||
found = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!found) {
|
||||
printf("\n%s: invalid tensor name '%s'\n\n", __func__, tn.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
if (parse_ggml_type(qt.c_str()) == GGML_TYPE_COUNT) {
|
||||
printf("\n%s: invalid quantization type '%s'\n\n", __func__, qt.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
tensor_quantization tqz;
|
||||
tqz.name = tn;
|
||||
tqz.quant = parse_ggml_type(qt.c_str());
|
||||
tensor_type.emplace_back(std::move(tqz));
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
if (argc < 3) {
|
||||
usage(argv[0]);
|
||||
@@ -255,6 +360,7 @@ int main(int argc, char ** argv) {
|
||||
std::string imatrix_file;
|
||||
std::vector<std::string> included_weights, excluded_weights;
|
||||
std::vector<llama_model_kv_override> kv_overrides;
|
||||
std::vector<tensor_quantization> tensor_types;
|
||||
|
||||
for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
|
||||
if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
|
||||
@@ -277,6 +383,10 @@ int main(int argc, char ** argv) {
|
||||
} else {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--tensor-type") == 0) {
|
||||
if (arg_idx == argc-1 || !parse_tensor_type(argv[++arg_idx], tensor_types)) {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--override-kv") == 0) {
|
||||
if (arg_idx == argc-1 || !string_parse_kv_override(argv[++arg_idx], kv_overrides)) {
|
||||
usage(argv[0]);
|
||||
@@ -361,6 +471,9 @@ int main(int argc, char ** argv) {
|
||||
kv_overrides.back().key[0] = 0;
|
||||
params.kv_overrides = &kv_overrides;
|
||||
}
|
||||
if (!tensor_types.empty()) {
|
||||
params.tensor_types = &tensor_types;
|
||||
}
|
||||
|
||||
llama_backend_init();
|
||||
|
||||
|
||||
@@ -72,3 +72,14 @@ $ bin/llama-cli -m ../models/tinyllama-1b/ggml-model-f16.gguf -p "Hello, my name
|
||||
|
||||
This way you can offload model layers to both local and remote devices.
|
||||
|
||||
### Local cache
|
||||
|
||||
The RPC server can use a local cache to store large tensors and avoid transferring them over the network.
|
||||
This can speed up model loading significantly, especially when using large models.
|
||||
To enable the cache, use the `-c` option:
|
||||
|
||||
```bash
|
||||
$ bin/rpc-server -c
|
||||
```
|
||||
|
||||
By default, the cache is stored in the `$HOME/.cache/llama.cpp/rpc` directory and can be controlled via the `LLAMA_CACHE` environment variable.
|
||||
|
||||
@@ -126,7 +126,7 @@ static std::string fs_get_cache_directory() {
|
||||
if (getenv("LLAMA_CACHE")) {
|
||||
cache_directory = std::getenv("LLAMA_CACHE");
|
||||
} else {
|
||||
#ifdef __linux__
|
||||
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX)
|
||||
if (std::getenv("XDG_CACHE_HOME")) {
|
||||
cache_directory = std::getenv("XDG_CACHE_HOME");
|
||||
} else {
|
||||
@@ -136,7 +136,9 @@ static std::string fs_get_cache_directory() {
|
||||
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
|
||||
#elif defined(_WIN32)
|
||||
cache_directory = std::getenv("LOCALAPPDATA");
|
||||
#endif // __linux__
|
||||
#else
|
||||
# error Unknown architecture
|
||||
#endif
|
||||
cache_directory = ensure_trailing_slash(cache_directory);
|
||||
cache_directory += "llama.cpp";
|
||||
}
|
||||
|
||||
@@ -1,5 +1,16 @@
|
||||
set(TARGET llama-run)
|
||||
add_executable(${TARGET} run.cpp linenoise.cpp/linenoise.cpp)
|
||||
|
||||
# TODO: avoid copying this code block from common/CMakeLists.txt
|
||||
set(LLAMA_RUN_EXTRA_LIBS "")
|
||||
if (LLAMA_CURL)
|
||||
find_package(CURL REQUIRED)
|
||||
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_CURL)
|
||||
include_directories(${CURL_INCLUDE_DIRS})
|
||||
find_library(CURL_LIBRARY curl REQUIRED)
|
||||
set(LLAMA_RUN_EXTRA_LIBS ${LLAMA_RUN_EXTRA_LIBS} ${CURL_LIBRARY})
|
||||
endif ()
|
||||
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT} ${LLAMA_RUN_EXTRA_LIBS})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_17)
|
||||
|
||||
@@ -697,8 +697,10 @@ class LlamaData {
|
||||
std::vector<std::string> headers = { "User-Agent: llama-cpp", "Accept: application/json" };
|
||||
std::string url;
|
||||
|
||||
std::string model_endpoint = get_model_endpoint();
|
||||
|
||||
if (pos == std::string::npos) {
|
||||
auto [model_name, manifest_url] = extract_model_and_tag(model, "https://huggingface.co/v2/");
|
||||
auto [model_name, manifest_url] = extract_model_and_tag(model, model_endpoint + "v2/");
|
||||
hfr = model_name;
|
||||
|
||||
nlohmann::json manifest;
|
||||
@@ -713,7 +715,7 @@ class LlamaData {
|
||||
hff = model.substr(pos + 1);
|
||||
}
|
||||
|
||||
url = "https://huggingface.co/" + hfr + "/resolve/main/" + hff;
|
||||
url = model_endpoint + hfr + "/resolve/main/" + hff;
|
||||
|
||||
return download(url, bn, true, headers);
|
||||
}
|
||||
|
||||
Binary file not shown.
@@ -133,7 +133,8 @@ struct slot_params {
|
||||
|
||||
auto grammar_triggers = json::array();
|
||||
for (const auto & trigger : sampling.grammar_triggers) {
|
||||
grammar_triggers.push_back(trigger.to_json<json>());
|
||||
server_grammar_trigger ct(std::move(trigger));
|
||||
grammar_triggers.push_back(ct.to_json());
|
||||
}
|
||||
|
||||
return json {
|
||||
@@ -372,9 +373,9 @@ struct server_task {
|
||||
const auto grammar_triggers = data.find("grammar_triggers");
|
||||
if (grammar_triggers != data.end()) {
|
||||
for (const auto & t : *grammar_triggers) {
|
||||
auto ct = common_grammar_trigger::from_json(t);
|
||||
if (ct.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
|
||||
const auto & word = ct.value;
|
||||
server_grammar_trigger ct(t);
|
||||
if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
|
||||
const auto & word = ct.value.value;
|
||||
auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
|
||||
if (ids.size() == 1) {
|
||||
auto token = ids[0];
|
||||
@@ -392,7 +393,7 @@ struct server_task {
|
||||
params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
|
||||
}
|
||||
} else {
|
||||
params.sampling.grammar_triggers.push_back(ct);
|
||||
params.sampling.grammar_triggers.push_back(std::move(ct.value));
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -489,8 +490,12 @@ struct result_timings {
|
||||
double predicted_per_token_ms;
|
||||
double predicted_per_second;
|
||||
|
||||
// Optional speculative metrics - only included when > 0
|
||||
int32_t draft_n = 0;
|
||||
int32_t draft_n_accepted = 0;
|
||||
|
||||
json to_json() const {
|
||||
return {
|
||||
json base = {
|
||||
{"prompt_n", prompt_n},
|
||||
{"prompt_ms", prompt_ms},
|
||||
{"prompt_per_token_ms", prompt_per_token_ms},
|
||||
@@ -501,6 +506,13 @@ struct result_timings {
|
||||
{"predicted_per_token_ms", predicted_per_token_ms},
|
||||
{"predicted_per_second", predicted_per_second},
|
||||
};
|
||||
|
||||
if (draft_n > 0) {
|
||||
base["draft_n"] = draft_n;
|
||||
base["draft_n_accepted"] = draft_n_accepted;
|
||||
}
|
||||
|
||||
return base;
|
||||
}
|
||||
};
|
||||
|
||||
@@ -1299,6 +1311,10 @@ struct server_slot {
|
||||
|
||||
std::function<void(int)> callback_on_release;
|
||||
|
||||
// Speculative decoding stats
|
||||
int32_t n_draft_total = 0; // Total draft tokens generated
|
||||
int32_t n_draft_accepted = 0; // Draft tokens actually accepted
|
||||
|
||||
void reset() {
|
||||
SLT_DBG(*this, "%s", "\n");
|
||||
|
||||
@@ -1315,6 +1331,10 @@ struct server_slot {
|
||||
|
||||
generated_tokens.clear();
|
||||
generated_token_probs.clear();
|
||||
|
||||
// clear speculative decoding stats
|
||||
n_draft_total = 0;
|
||||
n_draft_accepted = 0;
|
||||
}
|
||||
|
||||
bool is_non_causal() const {
|
||||
@@ -1381,6 +1401,12 @@ struct server_slot {
|
||||
timings.predicted_per_token_ms = t_token_generation / n_decoded;
|
||||
timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
|
||||
|
||||
// Add speculative metrics
|
||||
if (n_draft_total > 0) {
|
||||
timings.draft_n = n_draft_total;
|
||||
timings.draft_n_accepted = n_draft_accepted;
|
||||
}
|
||||
|
||||
return timings;
|
||||
}
|
||||
|
||||
@@ -1428,6 +1454,15 @@ struct server_slot {
|
||||
t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
|
||||
t_token_generation, n_decoded, t_gen, n_gen_second,
|
||||
t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
|
||||
|
||||
if (n_draft_total > 0) {
|
||||
const float draft_ratio = (float) n_draft_accepted / n_draft_total;
|
||||
SLT_INF(*this,
|
||||
"\n"
|
||||
"draft acceptance rate = %0.5f (%5d accepted / %5d generated)\n",
|
||||
draft_ratio, n_draft_accepted, n_draft_total
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
json to_json() const {
|
||||
@@ -1670,6 +1705,8 @@ private:
|
||||
};
|
||||
|
||||
struct server_response {
|
||||
bool running = true;
|
||||
|
||||
// for keeping track of all tasks waiting for the result
|
||||
std::unordered_set<int> waiting_task_ids;
|
||||
|
||||
@@ -1724,6 +1761,10 @@ struct server_response {
|
||||
while (true) {
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
condition_results.wait(lock, [&]{
|
||||
if (!running) {
|
||||
SRV_DBG("%s : queue result stop\n", __func__);
|
||||
std::terminate(); // we cannot return here since the caller is HTTP code
|
||||
}
|
||||
return !queue_results.empty();
|
||||
});
|
||||
|
||||
@@ -1754,6 +1795,10 @@ struct server_response {
|
||||
}
|
||||
|
||||
std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
|
||||
if (!running) {
|
||||
SRV_DBG("%s : queue result stop\n", __func__);
|
||||
std::terminate(); // we cannot return here since the caller is HTTP code
|
||||
}
|
||||
if (cr_res == std::cv_status::timeout) {
|
||||
return nullptr;
|
||||
}
|
||||
@@ -1783,6 +1828,12 @@ struct server_response {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// terminate the waiting loop
|
||||
void terminate() {
|
||||
running = false;
|
||||
condition_results.notify_all();
|
||||
}
|
||||
};
|
||||
|
||||
struct server_context {
|
||||
@@ -1842,7 +1893,7 @@ struct server_context {
|
||||
}
|
||||
|
||||
bool load_model(const common_params & params) {
|
||||
SRV_INF("loading model '%s'\n", params.model.c_str());
|
||||
SRV_INF("loading model '%s'\n", params.model.path.c_str());
|
||||
|
||||
params_base = params;
|
||||
|
||||
@@ -1852,7 +1903,7 @@ struct server_context {
|
||||
ctx = llama_init.context.get();
|
||||
|
||||
if (model == nullptr) {
|
||||
SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
|
||||
SRV_ERR("failed to load model, '%s'\n", params_base.model.path.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -1863,16 +1914,13 @@ struct server_context {
|
||||
add_bos_token = llama_vocab_get_add_bos(vocab);
|
||||
has_eos_token = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
|
||||
|
||||
if (!params_base.speculative.model.empty() || !params_base.speculative.hf_repo.empty()) {
|
||||
SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
|
||||
if (!params_base.speculative.model.path.empty() || !params_base.speculative.model.hf_repo.empty()) {
|
||||
SRV_INF("loading draft model '%s'\n", params_base.speculative.model.path.c_str());
|
||||
|
||||
auto params_dft = params_base;
|
||||
|
||||
params_dft.devices = params_base.speculative.devices;
|
||||
params_dft.hf_file = params_base.speculative.hf_file;
|
||||
params_dft.hf_repo = params_base.speculative.hf_repo;
|
||||
params_dft.model = params_base.speculative.model;
|
||||
params_dft.model_url = params_base.speculative.model_url;
|
||||
params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
|
||||
params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
|
||||
params_dft.n_parallel = 1;
|
||||
@@ -1886,12 +1934,12 @@ struct server_context {
|
||||
model_dft = llama_init_dft.model.get();
|
||||
|
||||
if (model_dft == nullptr) {
|
||||
SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
|
||||
SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) {
|
||||
SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());
|
||||
SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
|
||||
|
||||
return false;
|
||||
}
|
||||
@@ -3290,6 +3338,9 @@ struct server_context {
|
||||
|
||||
llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
|
||||
|
||||
// keep track of total number of tokens generated in the draft
|
||||
slot.n_draft_total += draft.size();
|
||||
|
||||
// ignore small drafts
|
||||
if (slot.params.speculative.n_min > (int) draft.size()) {
|
||||
SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
|
||||
@@ -3315,6 +3366,9 @@ struct server_context {
|
||||
slot.n_past += ids.size();
|
||||
slot.n_decoded += ids.size();
|
||||
|
||||
// update how many tokens out of draft was accepted
|
||||
slot.n_draft_accepted += ids.size() - 1;
|
||||
|
||||
slot.cache_tokens.push_back(id);
|
||||
slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
|
||||
|
||||
@@ -3825,7 +3879,7 @@ int main(int argc, char ** argv) {
|
||||
json data = {
|
||||
{ "default_generation_settings", ctx_server.default_generation_settings_for_props },
|
||||
{ "total_slots", ctx_server.params_base.n_parallel },
|
||||
{ "model_path", ctx_server.params_base.model },
|
||||
{ "model_path", ctx_server.params_base.model.path },
|
||||
{ "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) },
|
||||
{ "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
|
||||
{ "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
|
||||
@@ -3853,6 +3907,21 @@ int main(int argc, char ** argv) {
|
||||
res_ok(res, {{ "success", true }});
|
||||
};
|
||||
|
||||
const auto handle_api_show = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
|
||||
json data = {
|
||||
{
|
||||
"template", common_chat_templates_source(ctx_server.chat_templates.get()),
|
||||
},
|
||||
{
|
||||
"model_info", {
|
||||
{ "llama.context_length", ctx_server.slots.back().n_ctx, },
|
||||
}
|
||||
},
|
||||
};
|
||||
|
||||
res_ok(res, data);
|
||||
};
|
||||
|
||||
// handle completion-like requests (completion, chat, infill)
|
||||
// we can optionally provide a custom format for partial results and final results
|
||||
const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
|
||||
@@ -4091,7 +4160,7 @@ int main(int argc, char ** argv) {
|
||||
{"object", "list"},
|
||||
{"data", {
|
||||
{
|
||||
{"id", params.model_alias.empty() ? params.model : params.model_alias},
|
||||
{"id", params.model_alias.empty() ? params.model.path : params.model_alias},
|
||||
{"object", "model"},
|
||||
{"created", std::time(0)},
|
||||
{"owned_by", "llamacpp"},
|
||||
@@ -4417,6 +4486,7 @@ int main(int argc, char ** argv) {
|
||||
svr->Get ("/metrics", handle_metrics);
|
||||
svr->Get ("/props", handle_props);
|
||||
svr->Post("/props", handle_props_change);
|
||||
svr->Post("/api/show", handle_api_show);
|
||||
svr->Get ("/models", handle_models); // public endpoint (no API key check)
|
||||
svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
|
||||
svr->Post("/completion", handle_completions); // legacy
|
||||
@@ -4453,9 +4523,10 @@ int main(int argc, char ** argv) {
|
||||
svr->new_task_queue = [¶ms] { return new httplib::ThreadPool(params.n_threads_http); };
|
||||
|
||||
// clean up function, to be called before exit
|
||||
auto clean_up = [&svr]() {
|
||||
auto clean_up = [&svr, &ctx_server]() {
|
||||
SRV_INF("%s: cleaning up before exit...\n", __func__);
|
||||
svr->stop();
|
||||
ctx_server.queue_results.terminate();
|
||||
llama_backend_free();
|
||||
};
|
||||
|
||||
@@ -4496,7 +4567,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if (!ctx_server.load_model(params)) {
|
||||
clean_up();
|
||||
// t.join(); // FIXME: see below
|
||||
t.join();
|
||||
LOG_ERR("%s: exiting due to model loading error\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
@@ -4544,7 +4615,7 @@ int main(int argc, char ** argv) {
|
||||
ctx_server.queue_tasks.start_loop();
|
||||
|
||||
clean_up();
|
||||
// t.join(); // FIXME: http thread may stuck if there is an on-going request. we don't need to care about this for now as the HTTP connection will already be closed at this point, but it's better to fix this
|
||||
t.join();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -17,7 +17,7 @@ To mitigate it, you can increase values in `n_predict`, `kv_size`.
|
||||
|
||||
```shell
|
||||
cd ../../..
|
||||
cmake -B build -DLLAMA_CURL=ON
|
||||
cmake -B build
|
||||
cmake --build build --target llama-server
|
||||
```
|
||||
|
||||
|
||||
@@ -49,6 +49,26 @@ def test_embedding_multiple():
|
||||
assert len(d['embedding']) > 1
|
||||
|
||||
|
||||
def test_embedding_multiple_with_fa():
|
||||
server = ServerPreset.bert_bge_small_with_fa()
|
||||
server.pooling = 'last'
|
||||
server.start()
|
||||
# one of these should trigger the FA branch (i.e. context size % 256 == 0)
|
||||
res = server.make_request("POST", "/v1/embeddings", data={
|
||||
"input": [
|
||||
"a "*253,
|
||||
"b "*254,
|
||||
"c "*255,
|
||||
"d "*256,
|
||||
],
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert len(res.body['data']) == 4
|
||||
for d in res.body['data']:
|
||||
assert 'embedding' in d
|
||||
assert len(d['embedding']) > 1
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"input,is_multi_prompt",
|
||||
[
|
||||
|
||||
@@ -323,6 +323,21 @@ class ServerPreset:
|
||||
server.server_embeddings = True
|
||||
return server
|
||||
|
||||
@staticmethod
|
||||
def bert_bge_small_with_fa() -> ServerProcess:
|
||||
server = ServerProcess()
|
||||
server.model_hf_repo = "ggml-org/models"
|
||||
server.model_hf_file = "bert-bge-small/ggml-model-f16.gguf"
|
||||
server.model_alias = "bert-bge-small"
|
||||
server.n_ctx = 1024
|
||||
server.n_batch = 300
|
||||
server.n_ubatch = 300
|
||||
server.n_slots = 2
|
||||
server.fa = True
|
||||
server.seed = 42
|
||||
server.server_embeddings = True
|
||||
return server
|
||||
|
||||
@staticmethod
|
||||
def tinyllama_infill() -> ServerProcess:
|
||||
server = ServerProcess()
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
#include "common/base64.hpp"
|
||||
#include "base64.hpp"
|
||||
|
||||
// increase max payload length to allow use of larger context size
|
||||
#define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
|
||||
@@ -58,6 +58,32 @@ static T json_value(const json & body, const std::string & key, const T & defaul
|
||||
|
||||
const static std::string build_info("b" + std::to_string(LLAMA_BUILD_NUMBER) + "-" + LLAMA_COMMIT);
|
||||
|
||||
// thin wrapper around common_grammar_trigger with (de)serialization functions
|
||||
struct server_grammar_trigger {
|
||||
common_grammar_trigger value;
|
||||
|
||||
server_grammar_trigger() = default;
|
||||
server_grammar_trigger(const common_grammar_trigger & value) : value(value) {}
|
||||
server_grammar_trigger(const json & in) {
|
||||
value.type = (common_grammar_trigger_type) in.at("type").get<int>();
|
||||
value.value = in.at("value").get<std::string>();
|
||||
if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
|
||||
value.token = (llama_token) in.at("token").get<int>();
|
||||
}
|
||||
}
|
||||
|
||||
json to_json() const {
|
||||
json out {
|
||||
{"type", (int) value.type},
|
||||
{"value", value.value},
|
||||
};
|
||||
if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
|
||||
out["token"] = (int) value.token;
|
||||
}
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
//
|
||||
// tokenizer and input processing utils
|
||||
//
|
||||
@@ -627,7 +653,8 @@ static json oaicompat_completion_params_parse(
|
||||
llama_params["grammar_lazy"] = chat_params.grammar_lazy;
|
||||
auto grammar_triggers = json::array();
|
||||
for (const auto & trigger : chat_params.grammar_triggers) {
|
||||
grammar_triggers.push_back(trigger.to_json<json>());
|
||||
server_grammar_trigger ct(trigger);
|
||||
grammar_triggers.push_back(ct.to_json());
|
||||
}
|
||||
llama_params["grammar_triggers"] = grammar_triggers;
|
||||
llama_params["preserved_tokens"] = chat_params.preserved_tokens;
|
||||
|
||||
1436
examples/server/webui/package-lock.json
generated
1436
examples/server/webui/package-lock.json
generated
File diff suppressed because it is too large
Load Diff
@@ -13,9 +13,11 @@
|
||||
"dependencies": {
|
||||
"@heroicons/react": "^2.2.0",
|
||||
"@sec-ant/readable-stream": "^0.6.0",
|
||||
"@tailwindcss/postcss": "^4.1.1",
|
||||
"@tailwindcss/vite": "^4.1.1",
|
||||
"@vscode/markdown-it-katex": "^1.1.1",
|
||||
"autoprefixer": "^10.4.20",
|
||||
"daisyui": "^4.12.14",
|
||||
"daisyui": "^5.0.12",
|
||||
"dexie": "^4.0.11",
|
||||
"highlight.js": "^11.10.0",
|
||||
"katex": "^0.16.15",
|
||||
@@ -29,7 +31,7 @@
|
||||
"remark-breaks": "^4.0.0",
|
||||
"remark-gfm": "^4.0.0",
|
||||
"remark-math": "^6.0.0",
|
||||
"tailwindcss": "^3.4.15",
|
||||
"tailwindcss": "^4.1.1",
|
||||
"textlinestream": "^1.1.1",
|
||||
"vite-plugin-singlefile": "^2.0.3"
|
||||
},
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
export default {
|
||||
plugins: {
|
||||
tailwindcss: {},
|
||||
autoprefixer: {},
|
||||
"@tailwindcss/postcss": {},
|
||||
},
|
||||
}
|
||||
|
||||
@@ -28,7 +28,7 @@ function AppLayout() {
|
||||
<>
|
||||
<Sidebar />
|
||||
<div
|
||||
className="drawer-content grow flex flex-col h-screen w-screen mx-auto px-4 overflow-auto"
|
||||
className="drawer-content grow flex flex-col h-screen w-screen mx-auto px-4 overflow-auto bg-base-100"
|
||||
id="main-scroll"
|
||||
>
|
||||
<Header />
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
import daisyuiThemes from 'daisyui/src/theming/themes';
|
||||
import daisyuiThemes from 'daisyui/theme/object';
|
||||
import { isNumeric } from './utils/misc';
|
||||
|
||||
export const isDev = import.meta.env.MODE === 'development';
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
import { useEffect, useMemo, useRef, useState } from 'react';
|
||||
import { useEffect, useMemo, useState } from 'react';
|
||||
import { CallbackGeneratedChunk, useAppContext } from '../utils/app.context';
|
||||
import ChatMessage from './ChatMessage';
|
||||
import { CanvasType, Message, PendingMessage } from '../utils/types';
|
||||
@@ -6,6 +6,7 @@ import { classNames, cleanCurrentUrl, throttle } from '../utils/misc';
|
||||
import CanvasPyInterpreter from './CanvasPyInterpreter';
|
||||
import StorageUtils from '../utils/storage';
|
||||
import { useVSCodeContext } from '../utils/llama-vscode';
|
||||
import { useChatTextarea, ChatTextareaApi } from './useChatTextarea.ts';
|
||||
|
||||
/**
|
||||
* A message display is a message node with additional information for rendering.
|
||||
@@ -99,7 +100,8 @@ export default function ChatScreen() {
|
||||
canvasData,
|
||||
replaceMessageAndGenerate,
|
||||
} = useAppContext();
|
||||
const textarea = useOptimizedTextarea(prefilledMsg.content());
|
||||
|
||||
const textarea: ChatTextareaApi = useChatTextarea(prefilledMsg.content());
|
||||
|
||||
const { extraContext, clearExtraContext } = useVSCodeContext(textarea);
|
||||
// TODO: improve this when we have "upload file" feature
|
||||
@@ -248,14 +250,16 @@ export default function ChatScreen() {
|
||||
</div>
|
||||
|
||||
{/* chat input */}
|
||||
<div className="flex flex-row items-center pt-8 pb-6 sticky bottom-0 bg-base-100">
|
||||
<div className="flex flex-row items-end pt-8 pb-6 sticky bottom-0 bg-base-100">
|
||||
<textarea
|
||||
className="textarea textarea-bordered w-full"
|
||||
// Default (mobile): Enable vertical resize, overflow auto for scrolling if needed
|
||||
// Large screens (lg:): Disable manual resize, apply max-height for autosize limit
|
||||
className="textarea textarea-bordered w-full resize-vertical lg:resize-none lg:max-h-48 lg:overflow-y-auto" // Adjust lg:max-h-48 as needed (e.g., lg:max-h-60)
|
||||
placeholder="Type a message (Shift+Enter to add a new line)"
|
||||
ref={textarea.ref}
|
||||
onInput={textarea.onInput} // Hook's input handler (will only resize height on lg+ screens)
|
||||
onKeyDown={(e) => {
|
||||
if (e.nativeEvent.isComposing || e.keyCode === 229) return;
|
||||
if (e.key === 'Enter' && e.shiftKey) return;
|
||||
if (e.key === 'Enter' && !e.shiftKey) {
|
||||
e.preventDefault();
|
||||
sendNewMessage();
|
||||
@@ -263,7 +267,11 @@ export default function ChatScreen() {
|
||||
}}
|
||||
id="msg-input"
|
||||
dir="auto"
|
||||
// Set a base height of 2 rows for mobile views
|
||||
// On lg+ screens, the hook will calculate and set the initial height anyway
|
||||
rows={2}
|
||||
></textarea>
|
||||
|
||||
{isGenerating(currConvId ?? '') ? (
|
||||
<button
|
||||
className="btn btn-neutral ml-2"
|
||||
@@ -286,43 +294,3 @@ export default function ChatScreen() {
|
||||
</div>
|
||||
);
|
||||
}
|
||||
|
||||
export interface OptimizedTextareaValue {
|
||||
value: () => string;
|
||||
setValue: (value: string) => void;
|
||||
focus: () => void;
|
||||
ref: React.RefObject<HTMLTextAreaElement>;
|
||||
}
|
||||
|
||||
// This is a workaround to prevent the textarea from re-rendering when the inner content changes
|
||||
// See https://github.com/ggml-org/llama.cpp/pull/12299
|
||||
function useOptimizedTextarea(initValue: string): OptimizedTextareaValue {
|
||||
const [savedInitValue, setSavedInitValue] = useState<string>(initValue);
|
||||
const textareaRef = useRef<HTMLTextAreaElement>(null);
|
||||
|
||||
useEffect(() => {
|
||||
if (textareaRef.current && savedInitValue) {
|
||||
textareaRef.current.value = savedInitValue;
|
||||
setSavedInitValue('');
|
||||
}
|
||||
}, [textareaRef, savedInitValue, setSavedInitValue]);
|
||||
|
||||
return {
|
||||
value: () => {
|
||||
return textareaRef.current?.value ?? savedInitValue;
|
||||
},
|
||||
setValue: (value: string) => {
|
||||
if (textareaRef.current) {
|
||||
textareaRef.current.value = value;
|
||||
}
|
||||
},
|
||||
focus: () => {
|
||||
if (textareaRef.current) {
|
||||
// focus and move the cursor to the end
|
||||
textareaRef.current.focus();
|
||||
textareaRef.current.selectionStart = textareaRef.current.value.length;
|
||||
}
|
||||
},
|
||||
ref: textareaRef,
|
||||
};
|
||||
}
|
||||
|
||||
@@ -2,7 +2,7 @@ import { useEffect, useState } from 'react';
|
||||
import StorageUtils from '../utils/storage';
|
||||
import { useAppContext } from '../utils/app.context';
|
||||
import { classNames } from '../utils/misc';
|
||||
import daisyuiThemes from 'daisyui/src/theming/themes';
|
||||
import daisyuiThemes from 'daisyui/theme/object';
|
||||
import { THEMES } from '../Config';
|
||||
import { useNavigate } from 'react-router';
|
||||
|
||||
@@ -20,7 +20,6 @@ export default function Header() {
|
||||
document.body.setAttribute('data-theme', selectedTheme);
|
||||
document.body.setAttribute(
|
||||
'data-color-scheme',
|
||||
// @ts-expect-error daisyuiThemes complains about index type, but it should work
|
||||
daisyuiThemes[selectedTheme]?.['color-scheme'] ?? 'auto'
|
||||
);
|
||||
}, [selectedTheme]);
|
||||
|
||||
96
examples/server/webui/src/components/useChatTextarea.ts
Normal file
96
examples/server/webui/src/components/useChatTextarea.ts
Normal file
@@ -0,0 +1,96 @@
|
||||
import { useEffect, useRef, useState, useCallback } from 'react';
|
||||
|
||||
// Media Query for detecting "large" screens (matching Tailwind's lg: breakpoint)
|
||||
const LARGE_SCREEN_MQ = '(min-width: 1024px)';
|
||||
|
||||
// Calculates and sets the textarea height based on its scrollHeight
|
||||
const adjustTextareaHeight = (textarea: HTMLTextAreaElement | null) => {
|
||||
if (!textarea) return;
|
||||
|
||||
// Only perform auto-sizing on large screens
|
||||
if (!window.matchMedia(LARGE_SCREEN_MQ).matches) {
|
||||
// On small screens, reset inline height and max-height styles.
|
||||
// This allows CSS (e.g., `rows` attribute or classes) to control the height,
|
||||
// and enables manual resizing if `resize-vertical` is set.
|
||||
textarea.style.height = ''; // Use 'auto' or '' to reset
|
||||
textarea.style.maxHeight = '';
|
||||
return; // Do not adjust height programmatically on small screens
|
||||
}
|
||||
|
||||
const computedStyle = window.getComputedStyle(textarea);
|
||||
// Get the max-height specified by CSS (e.g., from `lg:max-h-48`)
|
||||
const currentMaxHeight = computedStyle.maxHeight;
|
||||
|
||||
// Temporarily remove max-height to allow scrollHeight to be calculated correctly
|
||||
textarea.style.maxHeight = 'none';
|
||||
// Reset height to 'auto' to measure the actual scrollHeight needed
|
||||
textarea.style.height = 'auto';
|
||||
// Set the height to the calculated scrollHeight
|
||||
textarea.style.height = `${textarea.scrollHeight}px`;
|
||||
// Re-apply the original max-height from CSS to enforce the limit
|
||||
textarea.style.maxHeight = currentMaxHeight;
|
||||
};
|
||||
|
||||
// Interface describing the API returned by the hook
|
||||
export interface ChatTextareaApi {
|
||||
value: () => string;
|
||||
setValue: (value: string) => void;
|
||||
focus: () => void;
|
||||
ref: React.RefObject<HTMLTextAreaElement>;
|
||||
onInput: (event: React.FormEvent<HTMLTextAreaElement>) => void; // Input handler
|
||||
}
|
||||
|
||||
// This is a workaround to prevent the textarea from re-rendering when the inner content changes
|
||||
// See https://github.com/ggml-org/llama.cpp/pull/12299
|
||||
// combined now with auto-sizing logic.
|
||||
export function useChatTextarea(initValue: string): ChatTextareaApi {
|
||||
const [savedInitValue, setSavedInitValue] = useState<string>(initValue);
|
||||
const textareaRef = useRef<HTMLTextAreaElement>(null);
|
||||
|
||||
// Effect to set initial value and height on mount or when initValue changes
|
||||
useEffect(() => {
|
||||
const textarea = textareaRef.current;
|
||||
if (textarea) {
|
||||
if (typeof savedInitValue === 'string' && savedInitValue.length > 0) {
|
||||
textarea.value = savedInitValue;
|
||||
// Call adjustTextareaHeight - it will check screen size internally
|
||||
setTimeout(() => adjustTextareaHeight(textarea), 0);
|
||||
setSavedInitValue(''); // Reset after applying
|
||||
} else {
|
||||
// Adjust height even if there's no initial value (for initial render)
|
||||
setTimeout(() => adjustTextareaHeight(textarea), 0);
|
||||
}
|
||||
}
|
||||
}, [textareaRef, savedInitValue]); // Depend on ref and savedInitValue
|
||||
|
||||
const handleInput = useCallback(
|
||||
(event: React.FormEvent<HTMLTextAreaElement>) => {
|
||||
// Call adjustTextareaHeight on every input - it will decide whether to act
|
||||
adjustTextareaHeight(event.currentTarget);
|
||||
},
|
||||
[]
|
||||
);
|
||||
|
||||
return {
|
||||
// Method to get the current value directly from the textarea
|
||||
value: () => {
|
||||
return textareaRef.current?.value ?? '';
|
||||
},
|
||||
// Method to programmatically set the value and trigger height adjustment
|
||||
setValue: (value: string) => {
|
||||
const textarea = textareaRef.current;
|
||||
if (textarea) {
|
||||
textarea.value = value;
|
||||
// Call adjustTextareaHeight - it will check screen size internally
|
||||
setTimeout(() => adjustTextareaHeight(textarea), 0);
|
||||
}
|
||||
},
|
||||
focus: () => {
|
||||
if (textareaRef.current) {
|
||||
textareaRef.current.focus();
|
||||
}
|
||||
},
|
||||
ref: textareaRef,
|
||||
onInput: handleInput,
|
||||
};
|
||||
}
|
||||
@@ -1,8 +1,13 @@
|
||||
@use 'sass:meta';
|
||||
@use 'tailwindcss';
|
||||
|
||||
@tailwind base;
|
||||
@tailwind components;
|
||||
@tailwind utilities;
|
||||
@plugin 'daisyui' {
|
||||
themes: all;
|
||||
}
|
||||
|
||||
html {
|
||||
scrollbar-gutter: auto;
|
||||
}
|
||||
|
||||
.markdown {
|
||||
h1,
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import { useEffect, useState } from 'react';
|
||||
import { MessageExtraContext } from './types';
|
||||
import { OptimizedTextareaValue } from '../components/ChatScreen';
|
||||
import { ChatTextareaApi } from '../components/useChatTextarea.ts';
|
||||
|
||||
// Extra context when using llama.cpp WebUI from llama-vscode, inside an iframe
|
||||
// Ref: https://github.com/ggml-org/llama.cpp/pull/11940
|
||||
@@ -15,7 +15,7 @@ interface SetTextEvData {
|
||||
* window.postMessage({ command: 'setText', text: 'Spot the syntax error', context: 'def test()\n return 123' }, '*');
|
||||
*/
|
||||
|
||||
export const useVSCodeContext = (textarea: OptimizedTextareaValue) => {
|
||||
export const useVSCodeContext = (textarea: ChatTextareaApi) => {
|
||||
const [extraContext, setExtraContext] = useState<MessageExtraContext | null>(
|
||||
null
|
||||
);
|
||||
|
||||
@@ -15,7 +15,7 @@ async def main():
|
||||
model_url = "http://127.0.0.1:6900"
|
||||
responses: list[requests.Response] = await asyncio.gather(*[requests_post_async(
|
||||
url= f"{model_url}/embedding",
|
||||
json= {"content": str(0)*1024}
|
||||
json= {"content": "a "*1022}
|
||||
) for i in range(n)])
|
||||
|
||||
for response in responses:
|
||||
|
||||
@@ -24,7 +24,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
common_init();
|
||||
|
||||
if (params.speculative.model.empty()) {
|
||||
if (params.speculative.model.path.empty()) {
|
||||
LOG_ERR("%s: --model-draft is required\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -46,7 +46,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
common_init();
|
||||
|
||||
if (params.speculative.model.empty()) {
|
||||
if (params.speculative.model.path.empty()) {
|
||||
LOG_ERR("%s: --model-draft is required\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -8,10 +8,10 @@ cd build
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
#for FP16
|
||||
#cmake .. -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON # faster for long-prompt inference
|
||||
#cmake .. -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON -DLLAMA_CURL=OFF # faster for long-prompt inference
|
||||
|
||||
#for FP32
|
||||
cmake .. -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
cmake .. -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=OFF
|
||||
|
||||
#build example/main
|
||||
#cmake --build . --config Release --target main
|
||||
|
||||
@@ -13,10 +13,10 @@ if %errorlevel% neq 0 goto ERROR
|
||||
|
||||
:: for FP16
|
||||
:: faster for long-prompt inference
|
||||
:: cmake -G "MinGW Makefiles" .. -DGGML_SYCL=ON -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release -DGGML_SYCL_F16=ON
|
||||
:: cmake -G "MinGW Makefiles" .. -DLLAMA_CURL=OFF -DGGML_SYCL=ON -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release -DGGML_SYCL_F16=ON
|
||||
|
||||
:: for FP32
|
||||
cmake -G "Ninja" .. -DGGML_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release
|
||||
cmake -G "Ninja" .. -DLLAMA_CURL=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release
|
||||
if %errorlevel% neq 0 goto ERROR
|
||||
:: build example/main only
|
||||
:: make main
|
||||
|
||||
@@ -577,12 +577,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model_ttc);
|
||||
|
||||
// TODO: refactor in a common struct
|
||||
params.model = params.vocoder.model;
|
||||
params.model_url = params.vocoder.model_url;
|
||||
params.hf_repo = params.vocoder.hf_repo;
|
||||
params.hf_file = params.vocoder.hf_file;
|
||||
|
||||
params.model = params.vocoder.model;
|
||||
params.embedding = true;
|
||||
|
||||
common_init_result llama_init_cts = common_init_from_params(params);
|
||||
@@ -699,11 +694,13 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14
|
||||
const std::string voice_data = audio_data;
|
||||
|
||||
auto tmp = common_tokenize(vocab, voice_data, false, true);
|
||||
printf("\n\n");
|
||||
|
||||
std::ostringstream tokens_oss;
|
||||
for (size_t i = 0; i < tmp.size(); ++i) {
|
||||
printf("%d, ", tmp[i]);
|
||||
tokens_oss << tmp[i] << ", ";
|
||||
}
|
||||
printf("\n\n");
|
||||
LOG_INF("\n\n%s: llama tokens: %s\n\n", __func__, tokens_oss.str().c_str());
|
||||
|
||||
prompt_add(prompt_inp, tmp);
|
||||
#else
|
||||
prompt_add(prompt_inp, llama_tokens {
|
||||
|
||||
@@ -100,6 +100,10 @@ else()
|
||||
set(INS_ENB ON)
|
||||
endif()
|
||||
|
||||
message(DEBUG "GGML_NATIVE : ${GGML_NATIVE}")
|
||||
message(DEBUG "GGML_NATIVE_DEFAULT : ${GGML_NATIVE_DEFAULT}")
|
||||
message(DEBUG "INS_ENB : ${INS_ENB}")
|
||||
|
||||
option(GGML_CPU_HBM "ggml: use memkind for CPU HBM" OFF)
|
||||
option(GGML_CPU_AARCH64 "ggml: use runtime weight conversion of Q4_0 to Q4_X_X" ON)
|
||||
option(GGML_CPU_KLEIDIAI "ggml: use KleidiAI optimized kernels if applicable" OFF)
|
||||
@@ -166,7 +170,6 @@ option(GGML_HIP "ggml: use HIP"
|
||||
option(GGML_HIP_GRAPHS "ggml: use HIP graph, experimental, slow" OFF)
|
||||
option(GGML_HIP_NO_VMM "ggml: do not try to use HIP VMM" ON)
|
||||
option(GGML_HIP_ROCWMMA_FATTN "ggml: enable rocWMMA for FlashAttention" OFF)
|
||||
option(GGML_HIP_UMA "ggml: use HIP unified memory architecture" OFF)
|
||||
option(GGML_VULKAN "ggml: use Vulkan" OFF)
|
||||
option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF)
|
||||
option(GGML_VULKAN_DEBUG "ggml: enable Vulkan debug output" OFF)
|
||||
|
||||
@@ -507,17 +507,12 @@ extern "C" {
|
||||
|
||||
GGML_OP_UNARY,
|
||||
|
||||
GGML_OP_MAP_UNARY,
|
||||
GGML_OP_MAP_BINARY,
|
||||
|
||||
GGML_OP_MAP_CUSTOM1_F32,
|
||||
GGML_OP_MAP_CUSTOM2_F32,
|
||||
GGML_OP_MAP_CUSTOM3_F32,
|
||||
|
||||
GGML_OP_MAP_CUSTOM1,
|
||||
GGML_OP_MAP_CUSTOM2,
|
||||
GGML_OP_MAP_CUSTOM3,
|
||||
|
||||
GGML_OP_CUSTOM,
|
||||
|
||||
GGML_OP_CROSS_ENTROPY_LOSS,
|
||||
GGML_OP_CROSS_ENTROPY_LOSS_BACK,
|
||||
GGML_OP_OPT_STEP_ADAMW,
|
||||
@@ -1722,24 +1717,29 @@ extern "C" {
|
||||
float p0,
|
||||
float p1);
|
||||
|
||||
// nearest interpolate
|
||||
enum ggml_scale_mode {
|
||||
GGML_SCALE_MODE_NEAREST = 0,
|
||||
GGML_SCALE_MODE_BILINEAR = 1,
|
||||
};
|
||||
|
||||
// interpolate
|
||||
// multiplies ne0 and ne1 by scale factor
|
||||
// used in stable-diffusion
|
||||
GGML_API struct ggml_tensor * ggml_upscale(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int scale_factor);
|
||||
int scale_factor,
|
||||
enum ggml_scale_mode mode);
|
||||
|
||||
// nearest interpolate
|
||||
// nearest interpolate to specified dimensions
|
||||
// used in tortoise.cpp
|
||||
// interpolate
|
||||
// interpolate scale to specified dimensions
|
||||
GGML_API struct ggml_tensor * ggml_upscale_ext(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2,
|
||||
int ne3);
|
||||
int ne3,
|
||||
enum ggml_scale_mode mode);
|
||||
|
||||
// pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
|
||||
GGML_API struct ggml_tensor * ggml_pad(
|
||||
@@ -1791,11 +1791,11 @@ extern "C" {
|
||||
|
||||
#define GGML_KQ_MASK_PAD 64
|
||||
|
||||
// q: [n_embd, n_batch, n_head, 1]
|
||||
// k: [n_embd, n_kv, n_head_kv, 1]
|
||||
// v: [n_embd, n_kv, n_head_kv, 1] !! not transposed !!
|
||||
// mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
|
||||
// res: [n_embd, n_head, n_batch, 1] !! permuted !!
|
||||
// q: [n_embd_k, n_batch, n_head, 1]
|
||||
// k: [n_embd_k, n_kv, n_head_kv, 1]
|
||||
// v: [n_embd_v, n_kv, n_head_kv, 1] !! not transposed !!
|
||||
// mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
|
||||
// res: [n_embd_v, n_head, n_batch, 1] !! permuted !!
|
||||
GGML_API struct ggml_tensor * ggml_flash_attn_ext(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * q,
|
||||
@@ -1916,83 +1916,6 @@ extern "C" {
|
||||
|
||||
// custom operators
|
||||
|
||||
typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
|
||||
typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
|
||||
|
||||
typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
|
||||
typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
|
||||
typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
ggml_unary_op_f32_t fun),
|
||||
"use ggml_map_custom1 instead");
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
ggml_unary_op_f32_t fun),
|
||||
"use ggml_map_custom1_inplace instead");
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
ggml_binary_op_f32_t fun),
|
||||
"use ggml_map_custom2 instead");
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
ggml_binary_op_f32_t fun),
|
||||
"use ggml_map_custom2_inplace instead");
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
ggml_custom1_op_f32_t fun),
|
||||
"use ggml_map_custom1 instead");
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
ggml_custom1_op_f32_t fun),
|
||||
"use ggml_map_custom1_inplace instead");
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
ggml_custom2_op_f32_t fun),
|
||||
"use ggml_map_custom2 instead");
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
ggml_custom2_op_f32_t fun),
|
||||
"use ggml_map_custom2_inplace instead");
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c,
|
||||
ggml_custom3_op_f32_t fun),
|
||||
"use ggml_map_custom3 instead");
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c,
|
||||
ggml_custom3_op_f32_t fun),
|
||||
"use ggml_map_custom3_inplace instead");
|
||||
|
||||
// custom operators v2
|
||||
|
||||
typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
|
||||
typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
|
||||
typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
|
||||
@@ -2048,6 +1971,30 @@ extern "C" {
|
||||
int n_tasks,
|
||||
void * userdata);
|
||||
|
||||
typedef void (*ggml_custom_op_t)(struct ggml_tensor * dst , int ith, int nth, void * userdata);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_custom_4d(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
int64_t ne0,
|
||||
int64_t ne1,
|
||||
int64_t ne2,
|
||||
int64_t ne3,
|
||||
struct ggml_tensor ** args,
|
||||
int n_args,
|
||||
ggml_custom_op_t fun,
|
||||
int n_tasks,
|
||||
void * userdata);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_custom_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor ** args,
|
||||
int n_args,
|
||||
ggml_custom_op_t fun,
|
||||
int n_tasks,
|
||||
void * userdata);
|
||||
|
||||
// loss function
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
|
||||
|
||||
@@ -65,7 +65,7 @@ if (GGML_LTO)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (GGML_CCACHE)
|
||||
if (GGML_CCACHE AND NOT CMAKE_C_COMPILER_LAUNCHER AND NOT CMAKE_CXX_COMPILER_LAUNCHER)
|
||||
find_program(GGML_CCACHE_FOUND ccache)
|
||||
find_program(GGML_SCCACHE_FOUND sccache)
|
||||
|
||||
|
||||
@@ -1,168 +0,0 @@
|
||||
---
|
||||
Language: Cpp
|
||||
# BasedOnStyle: Google
|
||||
AccessModifierOffset: -1
|
||||
AlignAfterOpenBracket: Align
|
||||
AlignConsecutiveMacros: false
|
||||
AlignConsecutiveAssignments: false
|
||||
AlignConsecutiveDeclarations: false
|
||||
AlignEscapedNewlines: Left
|
||||
AlignOperands: true
|
||||
AlignTrailingComments: true
|
||||
AllowAllArgumentsOnNextLine: true
|
||||
AllowAllConstructorInitializersOnNextLine: true
|
||||
AllowAllParametersOfDeclarationOnNextLine: true
|
||||
AllowShortBlocksOnASingleLine: Never
|
||||
AllowShortCaseLabelsOnASingleLine: false
|
||||
AllowShortFunctionsOnASingleLine: All
|
||||
AllowShortLambdasOnASingleLine: All
|
||||
AllowShortIfStatementsOnASingleLine: WithoutElse
|
||||
AllowShortLoopsOnASingleLine: true
|
||||
AlwaysBreakAfterDefinitionReturnType: None
|
||||
AlwaysBreakAfterReturnType: None
|
||||
AlwaysBreakBeforeMultilineStrings: true
|
||||
AlwaysBreakTemplateDeclarations: Yes
|
||||
BinPackArguments: true
|
||||
BinPackParameters: true
|
||||
BraceWrapping:
|
||||
AfterCaseLabel: false
|
||||
AfterClass: false
|
||||
AfterControlStatement: false
|
||||
AfterEnum: false
|
||||
AfterFunction: false
|
||||
AfterNamespace: false
|
||||
AfterObjCDeclaration: false
|
||||
AfterStruct: false
|
||||
AfterUnion: false
|
||||
AfterExternBlock: false
|
||||
BeforeCatch: false
|
||||
BeforeElse: false
|
||||
IndentBraces: false
|
||||
SplitEmptyFunction: true
|
||||
SplitEmptyRecord: true
|
||||
SplitEmptyNamespace: true
|
||||
BreakBeforeBinaryOperators: None
|
||||
BreakBeforeBraces: Attach
|
||||
BreakBeforeInheritanceComma: false
|
||||
BreakInheritanceList: BeforeColon
|
||||
BreakBeforeTernaryOperators: true
|
||||
BreakConstructorInitializersBeforeComma: false
|
||||
BreakConstructorInitializers: BeforeColon
|
||||
BreakAfterJavaFieldAnnotations: false
|
||||
BreakStringLiterals: true
|
||||
ColumnLimit: 80
|
||||
CommentPragmas: '^ IWYU pragma:'
|
||||
CompactNamespaces: false
|
||||
ConstructorInitializerAllOnOneLineOrOnePerLine: true
|
||||
ConstructorInitializerIndentWidth: 4
|
||||
ContinuationIndentWidth: 4
|
||||
Cpp11BracedListStyle: true
|
||||
DeriveLineEnding: true
|
||||
DerivePointerAlignment: true
|
||||
DisableFormat: false
|
||||
ExperimentalAutoDetectBinPacking: false
|
||||
FixNamespaceComments: true
|
||||
ForEachMacros:
|
||||
- foreach
|
||||
- Q_FOREACH
|
||||
- BOOST_FOREACH
|
||||
IncludeBlocks: Regroup
|
||||
IncludeCategories:
|
||||
- Regex: '^<ext/.*\.h>'
|
||||
Priority: 2
|
||||
SortPriority: 0
|
||||
- Regex: '^<.*\.h>'
|
||||
Priority: 1
|
||||
SortPriority: 0
|
||||
- Regex: '^<.*'
|
||||
Priority: 2
|
||||
SortPriority: 0
|
||||
- Regex: '.*'
|
||||
Priority: 3
|
||||
SortPriority: 0
|
||||
IncludeIsMainRegex: '([-_](test|unittest))?$'
|
||||
IncludeIsMainSourceRegex: ''
|
||||
IndentCaseLabels: true
|
||||
IndentGotoLabels: true
|
||||
IndentPPDirectives: None
|
||||
IndentWidth: 4
|
||||
IndentWrappedFunctionNames: false
|
||||
JavaScriptQuotes: Leave
|
||||
JavaScriptWrapImports: true
|
||||
KeepEmptyLinesAtTheStartOfBlocks: false
|
||||
MacroBlockBegin: ''
|
||||
MacroBlockEnd: ''
|
||||
MaxEmptyLinesToKeep: 1
|
||||
NamespaceIndentation: None
|
||||
ObjCBinPackProtocolList: Never
|
||||
ObjCBlockIndentWidth: 2
|
||||
ObjCSpaceAfterProperty: false
|
||||
ObjCSpaceBeforeProtocolList: true
|
||||
PenaltyBreakAssignment: 2
|
||||
PenaltyBreakBeforeFirstCallParameter: 1
|
||||
PenaltyBreakComment: 300
|
||||
PenaltyBreakFirstLessLess: 120
|
||||
PenaltyBreakString: 1000
|
||||
PenaltyBreakTemplateDeclaration: 10
|
||||
PenaltyExcessCharacter: 1000000
|
||||
PenaltyReturnTypeOnItsOwnLine: 200
|
||||
PointerAlignment: Left
|
||||
RawStringFormats:
|
||||
- Language: Cpp
|
||||
Delimiters:
|
||||
- cc
|
||||
- CC
|
||||
- cpp
|
||||
- Cpp
|
||||
- CPP
|
||||
- 'c++'
|
||||
- 'C++'
|
||||
CanonicalDelimiter: ''
|
||||
BasedOnStyle: google
|
||||
- Language: TextProto
|
||||
Delimiters:
|
||||
- pb
|
||||
- PB
|
||||
- proto
|
||||
- PROTO
|
||||
EnclosingFunctions:
|
||||
- EqualsProto
|
||||
- EquivToProto
|
||||
- PARSE_PARTIAL_TEXT_PROTO
|
||||
- PARSE_TEST_PROTO
|
||||
- PARSE_TEXT_PROTO
|
||||
- ParseTextOrDie
|
||||
- ParseTextProtoOrDie
|
||||
CanonicalDelimiter: ''
|
||||
BasedOnStyle: google
|
||||
ReflowComments: true
|
||||
SortIncludes: true
|
||||
SortUsingDeclarations: true
|
||||
SpaceAfterCStyleCast: false
|
||||
SpaceAfterLogicalNot: false
|
||||
SpaceAfterTemplateKeyword: true
|
||||
SpaceBeforeAssignmentOperators: true
|
||||
SpaceBeforeCpp11BracedList: false
|
||||
SpaceBeforeCtorInitializerColon: true
|
||||
SpaceBeforeInheritanceColon: true
|
||||
SpaceBeforeParens: ControlStatements
|
||||
SpaceBeforeRangeBasedForLoopColon: true
|
||||
SpaceInEmptyBlock: false
|
||||
SpaceInEmptyParentheses: false
|
||||
SpacesBeforeTrailingComments: 2
|
||||
SpacesInAngles: false
|
||||
SpacesInConditionalStatement: false
|
||||
SpacesInContainerLiterals: true
|
||||
SpacesInCStyleCastParentheses: false
|
||||
SpacesInParentheses: false
|
||||
SpacesInSquareBrackets: false
|
||||
SpaceBeforeSquareBrackets: false
|
||||
Standard: Auto
|
||||
StatementMacros:
|
||||
- Q_UNUSED
|
||||
- QT_REQUIRE_VERSION
|
||||
TabWidth: 8
|
||||
UseCRLF: false
|
||||
UseTab: Never
|
||||
...
|
||||
|
||||
@@ -51,13 +51,11 @@ if (CANN_INSTALL_DIR)
|
||||
${CANN_INSTALL_DIR}/acllib/include
|
||||
)
|
||||
|
||||
add_subdirectory(kernels)
|
||||
list(APPEND CANN_LIBRARIES
|
||||
ascendcl
|
||||
nnopbase
|
||||
opapi
|
||||
acl_op_compiler
|
||||
ascendc_kernels
|
||||
)
|
||||
|
||||
file(GLOB GGML_SOURCES_CANN "*.cpp")
|
||||
|
||||
@@ -41,6 +41,8 @@ aclDataType ggml_cann_type_mapping(ggml_type type) {
|
||||
return ACL_INT4;
|
||||
case GGML_TYPE_Q8_0:
|
||||
return ACL_INT8;
|
||||
case GGML_TYPE_I64:
|
||||
return ACL_INT64;
|
||||
default:
|
||||
return ACL_DT_UNDEFINED;
|
||||
}
|
||||
@@ -54,9 +56,7 @@ aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne,
|
||||
// added.
|
||||
int64_t acl_ne[GGML_MAX_DIMS * 2], acl_stride[GGML_MAX_DIMS * 2];
|
||||
|
||||
int64_t acl_storage_len = 0;
|
||||
if (ne == nullptr) {
|
||||
acl_storage_len = ggml_nbytes(tensor);
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
acl_ne[i] = tensor->ne[i];
|
||||
// The step size of acl is in elements.
|
||||
@@ -65,14 +65,18 @@ aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne,
|
||||
} else {
|
||||
// With bcast
|
||||
for (int i = 0; i < dims; i++) {
|
||||
acl_storage_len += (ne[i] - 1) * nb[i];
|
||||
acl_ne[i] = ne[i];
|
||||
acl_stride[i] = nb[i] / ggml_element_size(tensor);
|
||||
}
|
||||
}
|
||||
|
||||
// Reverse ne and stride.
|
||||
int64_t final_dims = (dims == 0 ? GGML_MAX_DIMS : dims);
|
||||
int64_t acl_storage_len = 1;
|
||||
for (int i = 0; i < final_dims; i++) {
|
||||
acl_storage_len += (acl_ne[i] - 1) * acl_stride[i];
|
||||
}
|
||||
|
||||
// Reverse ne and stride.
|
||||
std::reverse(acl_ne, acl_ne + final_dims);
|
||||
std::reverse(acl_stride, acl_stride + final_dims);
|
||||
|
||||
|
||||
@@ -101,14 +101,14 @@ aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
|
||||
tmp_stride[i] = nb[i] / type_size;
|
||||
}
|
||||
|
||||
int64_t acl_storage_len = 1;
|
||||
for (int i = 0; i < dims; i++) {
|
||||
acl_storage_len += (tmp_ne[i] - 1) * tmp_stride[i];
|
||||
}
|
||||
|
||||
std::reverse(tmp_ne, tmp_ne + dims);
|
||||
std::reverse(tmp_stride, tmp_stride + dims);
|
||||
|
||||
int64_t acl_storage_len = 0;
|
||||
for (int i = 0; i < dims; i++) {
|
||||
acl_storage_len += (ne[i] - 1) * nb[i];
|
||||
}
|
||||
|
||||
aclTensor* acl_tensor =
|
||||
aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size,
|
||||
format, &acl_storage_len, 1, data_ptr);
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,15 +1,4 @@
|
||||
#ifndef CANN_ACLNN_OPS
|
||||
#define CANN_ACLNN_OPS
|
||||
|
||||
/**
|
||||
* @file acl_tensor
|
||||
* @brief This file contains related functions of ggml_tensor and acl_tensor.
|
||||
* Contains conversion from ggml_tensor to acl_tensor, broadcast and other
|
||||
* functions.
|
||||
* @author hipudding <huafengchun@gmail.com>
|
||||
* @author wangshuai09 <391746016@qq.com>
|
||||
* @date July 15, 2024
|
||||
*
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
@@ -31,20 +20,31 @@
|
||||
* IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#include <aclnnop/aclnn_add.h>
|
||||
#ifndef CANN_ACLNN_OPS
|
||||
#define CANN_ACLNN_OPS
|
||||
|
||||
#include <functional>
|
||||
#include <aclnnop/aclnn_abs.h>
|
||||
#include <aclnnop/aclnn_neg.h>
|
||||
#include <aclnnop/aclnn_exp.h>
|
||||
#include <aclnnop/aclnn_arange.h>
|
||||
#include <aclnnop/aclnn_argsort.h>
|
||||
#include <aclnnop/aclnn_cat.h>
|
||||
#include <aclnnop/aclnn_clamp.h>
|
||||
#include <aclnnop/aclnn_div.h>
|
||||
#include <aclnnop/aclnn_gelu.h>
|
||||
#include <aclnnop/aclnn_gelu_v2.h>
|
||||
#include <aclnnop/aclnn_sigmoid.h>
|
||||
#include <aclnnop/aclnn_hardsigmoid.h>
|
||||
#include <aclnnop/aclnn_hardswish.h>
|
||||
#include <aclnnop/aclnn_leaky_relu.h>
|
||||
#include <aclnnop/aclnn_mul.h>
|
||||
#include <aclnnop/aclnn_relu.h>
|
||||
#include <aclnnop/aclnn_silu.h>
|
||||
#include <aclnnop/aclnn_tanh.h>
|
||||
#include <aclnnop/aclnn_sqrt.h>
|
||||
#include <aclnnop/aclnn_sin.h>
|
||||
#include <aclnnop/aclnn_cos.h>
|
||||
#include <aclnnop/aclnn_log.h>
|
||||
#include <aclnnop/aclnn_sign.h>
|
||||
#include "acl_tensor.h"
|
||||
#include "common.h"
|
||||
|
||||
@@ -63,23 +63,6 @@
|
||||
*/
|
||||
void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Adds two ggml tensors using the CANN backend.
|
||||
*
|
||||
* @details This function performs an element-wise addition of two tensors. In
|
||||
* case the tensors do not have the same shape, one or both tensors
|
||||
* will be broadcasted to match the shape of the other before the
|
||||
* addition is performed.The formula for the operation is given by:
|
||||
* \f[
|
||||
* \text{dst} = \text{acl_src0} + \alpha \cdot \text{acl_src1}
|
||||
* \f]
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The ggml tensor representing the destination, result of the
|
||||
* addition is stored at dst->data, and dst->op is `GGML_OP_ADD`
|
||||
*/
|
||||
void ggml_cann_add(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Applies the Leaky ReLU activation function to a tensor using the CANN
|
||||
* backend.
|
||||
@@ -131,19 +114,6 @@ void ggml_cann_concat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
*/
|
||||
void ggml_cann_arange(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the square of the elements of a ggml tensor using the CANN
|
||||
* backend.
|
||||
* @details The function sets the second source tensor of the destination
|
||||
* tensor `dst` to be equal to the first source tensor. This is
|
||||
* effectively squaring the elements since the multiplication becomes
|
||||
* `element * element`.
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the squared values will be stored,
|
||||
* which dst->op is `GGML_OP_SQR`.
|
||||
*/
|
||||
void ggml_cann_sqr(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Applies a clamp operation to the elements of a ggml tensor using the
|
||||
* CANN backend.
|
||||
@@ -275,6 +245,20 @@ void ggml_cann_acc(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
*/
|
||||
void ggml_cann_sum_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the sum of elements in a ggml tensor.
|
||||
*
|
||||
* @details This function performs a reduction sum operation along the last
|
||||
* dimension of the input tensor `src`. The result of the sum is stored
|
||||
* in the destination tensor `dst`.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the reduced values will be stored。
|
||||
*
|
||||
*/
|
||||
|
||||
void ggml_cann_sum(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Upsamples a ggml tensor using nearest neighbor interpolation using
|
||||
* the CANN backend.
|
||||
@@ -484,109 +468,616 @@ void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
*/
|
||||
void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
template <aclnnStatus getWorkspaceSize(const aclTensor*, const aclTensor*,
|
||||
aclTensor*, uint64_t*, aclOpExecutor**),
|
||||
aclnnStatus execute(void*, uint64_t, aclOpExecutor*, aclrtStream)>
|
||||
void ggml_cann_mul_div(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
/**
|
||||
* @brief Computes the index of the maximum value along the specified dimension
|
||||
* of a ggml tensor using the CANN backend.
|
||||
*
|
||||
* @details This function performs an argmax operation on the input tensor.
|
||||
* It finds the index of the maximum value along the specified axis
|
||||
* and stores these indices in the destination tensor `dst`. The
|
||||
* operation is executed using the CANN backend for optimized performance.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the indices of the maximum values will
|
||||
* be stored. dst->op is `GGML_OP_ARGMAX`.
|
||||
*/
|
||||
void ggml_cann_argmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Adds two tensors element-wise and stores the result in a destination
|
||||
* tensor.
|
||||
*
|
||||
* This function performs the operation:
|
||||
* \f[
|
||||
* dst = acl\_src0 + alpha \times acl\_src1
|
||||
* \f]
|
||||
* where alpha is a scalar value and defaults to 1.0f.
|
||||
*
|
||||
* @param ctx The context for the CANN backend operations.
|
||||
* @param acl_src0 The first source tensor.
|
||||
* @param acl_src1 The second source tensor.
|
||||
* @param acl_dst The destination tensor where the result will be stored.
|
||||
*/
|
||||
void aclnn_add(ggml_backend_cann_context& ctx, aclTensor* acl_src0,
|
||||
aclTensor* acl_src1, aclTensor* acl_dst = nullptr);
|
||||
|
||||
/**
|
||||
* @brief Sub two tensors element-wise and stores the result in a destination
|
||||
* tensor.
|
||||
*
|
||||
* This function performs the operation:
|
||||
* \f[
|
||||
* dst = acl\_src0 - alpha \times acl\_src1
|
||||
* \f]
|
||||
* where alpha is a scalar value and defaults to 1.0f.
|
||||
*
|
||||
* @param ctx The context for the CANN backend operations.
|
||||
* @param acl_src0 The first source tensor.
|
||||
* @param acl_src1 The second source tensor.
|
||||
* @param acl_dst The destination tensor where the result will be stored.
|
||||
*/
|
||||
void aclnn_sub(ggml_backend_cann_context& ctx, aclTensor* acl_src0,
|
||||
aclTensor* acl_src1, aclTensor* acl_dst = nullptr);
|
||||
|
||||
/**
|
||||
* @brief Performs element-wise multiplication of two tensors and stores the
|
||||
* result in a destination tensor.
|
||||
*
|
||||
* This function performs element-wise multiplication of the tensors `acl_src`
|
||||
* and `acl_other` and stores the result in the destination tensor `acl_dst`.
|
||||
* The operation is defined as:
|
||||
* \f[
|
||||
* \text {acl_dst }_i=\text {acl_src }_i \times \text {acl_other }_i
|
||||
* \f]
|
||||
*
|
||||
* @param ctx The context for the CANN backend operations.
|
||||
* @param acl_src The first tensor for element-wise multiplication.
|
||||
* @param acl_other The second tensor for element-wise multiplication.
|
||||
* @param acl_dst The destination tensor where the result will be stored.
|
||||
*/
|
||||
void aclnn_mul(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
aclTensor* acl_other, aclTensor* acl_dst = nullptr);
|
||||
|
||||
/**
|
||||
* @brief Matrix division, optionally in-place.
|
||||
*
|
||||
* This function division each element of the source tensor `acl_src` by the
|
||||
* tensor `acl_other` and stores the result in the destination tensor `acl_dst`.
|
||||
* If `inplace` is true, `acl_dst` will not be used and the operation is
|
||||
* performed in-place on `acl_src`. The operation is defined as: \f[
|
||||
* \text{dst}_i = \frac{\text{acl_src}_i}{\text{acl_other}_i}
|
||||
* \f]
|
||||
*
|
||||
* @param ctx The context for the CANN backend operations.
|
||||
* @param acl_src Numerator tensor..
|
||||
* @param acl_other Denominator tensor.
|
||||
* @param acl_dst The destination tensor where the result will be stored if
|
||||
* `inplace` is false.
|
||||
* @param inplace Flag indicating whether to perform the operation in-place on
|
||||
* `acl_src`.
|
||||
*/
|
||||
void aclnn_div(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
aclTensor* acl_other, aclTensor* acl_dst = nullptr);
|
||||
|
||||
/**
|
||||
* @brief Applies element-wise cosine function to the elements of a tensor.
|
||||
*
|
||||
* This function computes the cosine of each element in the source tensor
|
||||
* `acl_src` and stores the result in the destination tensor `acl_dst`. The
|
||||
* operation is defined as: \f[ \text {acl_dst }_i=\cos \left(\text {acl_src
|
||||
* }_i\right) \f]
|
||||
*
|
||||
* @param ctx The context for the CANN backend operations.
|
||||
* @param acl_src The source tensor on which the cosine function will be
|
||||
* applied.
|
||||
* @param acl_dst The destination tensor where the cosine results will be
|
||||
* stored.
|
||||
*/
|
||||
void aclnn_cos(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
aclTensor* acl_dst);
|
||||
|
||||
/**
|
||||
* @brief Applies element-wise sine function to the elements of a tensor.
|
||||
*
|
||||
* This function computes the sine of each element in the source tensor
|
||||
`acl_src`
|
||||
* and stores the result in the destination tensor `acl_dst`.
|
||||
* The operation is defined as:
|
||||
* \f[
|
||||
* \text {acl_dst }_i=\sin \left(\text {acl_src }_i\right)
|
||||
* \f]
|
||||
|
||||
* @param ctx The context for the CANN backend operations.
|
||||
* @param acl_src The source tensor on which the sine function will be applied.
|
||||
* @param acl_dst The destination tensor where the sine results will be stored.
|
||||
*/
|
||||
void aclnn_sin(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
aclTensor* acl_dst);
|
||||
|
||||
/**
|
||||
* @brief Prepares broadcast-compatible ACL tensors for two input tensors and one
|
||||
* output tensor.
|
||||
*
|
||||
* This function checks whether broadcasting is needed between `src0` and `src1`.
|
||||
* If broadcasting is required, it calculates the proper shapes and creates
|
||||
* ACL tensors with broadcast parameters. Otherwise, it directly creates ACL tensors
|
||||
* based on the original tensor shapes.
|
||||
*
|
||||
* @param src0 The first input tensor (reference shape).
|
||||
* @param src1 The second input tensor (possibly broadcasted).
|
||||
* @param dst The destination/output tensor.
|
||||
* @param acl_src0 Output pointer to the created ACL tensor corresponding to src0.
|
||||
* @param acl_src1 Output pointer to the created ACL tensor corresponding to src1.
|
||||
* @param acl_dst Output pointer to the created ACL tensor corresponding to dst.
|
||||
*/
|
||||
void bcast_shape(ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst,
|
||||
aclTensor ** acl_src0, aclTensor ** acl_src1, aclTensor ** acl_dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the 1D transposed convolution (deconvolution) of a ggml
|
||||
* tensor using the CANN backend.
|
||||
*
|
||||
* @details This function performs a 1D transposed convolution (also known as
|
||||
* deconvolution) operation on the input tensor. The computed result is stored
|
||||
* in the destination tensor `dst`. The operation is optimized using the CANN
|
||||
* backend for improved performance.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the transposed convolution result
|
||||
* will be stored. dst->op is `GGML_OP_CONV_TRANSPOSE_1D`.
|
||||
*/
|
||||
void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Applies the ELU (Exponential Linear Unit) activation to a ggml tensor
|
||||
* using the CANN backend.
|
||||
*
|
||||
* @details This function performs an element-wise ELU activation on the input
|
||||
* tensor.
|
||||
* The result is written to the destination tensor `dst` in-place.
|
||||
* The ELU function is defined as:
|
||||
*
|
||||
* \text{ELU}(x) =
|
||||
* \begin{cases}
|
||||
* x, & \text{if } x > 0 \\
|
||||
* \alpha \left( \exp(x) - 1 \right), & \text{if } x \leq 0
|
||||
* \end{cases}
|
||||
*
|
||||
* where α (alpha) is a hyperparameter, typically set to 1.0.
|
||||
* This operation is optimized using the CANN backend for high-performance
|
||||
* inference or training.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the ELU-activated result will be stored.
|
||||
* dst->op is expected to be `GGML_OP_ELU`.
|
||||
*/
|
||||
void ggml_cann_elu(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the mean of a ggml tensor element-wise using the CANN backend.
|
||||
*
|
||||
* @details This function calculates the element-wise mean of the input tensor.
|
||||
* The result is written to the destination tensor `dst`.
|
||||
* The mean is computed by averaging the values across the entire tensor.
|
||||
*
|
||||
* This operation is optimized using the CANN backend for high-performance inference or training.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the mean result will be stored.
|
||||
* dst->op is expected to be `GGML_OP_MEAN`.
|
||||
*/
|
||||
void ggml_cann_mean(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Applies 1D reflect padding to a ggml tensor using the CANN backend.
|
||||
*
|
||||
* @details This function performs 1D reflect padding on the input tensor.
|
||||
* The amount of padding on each side is specified by parameters stored in `dst->op_params`.
|
||||
* The operation reflects the values at the borders of the tensor to generate the padded output.
|
||||
*
|
||||
* This operation is optimized using the CANN backend for high-performance inference or training.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the padded result will be stored.
|
||||
* dst->op is expected to be `GGML_OP_PAD_REFLECT_1D`.
|
||||
*/
|
||||
void ggml_cann_pad_reflect_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Counts the number of equal elements in two ggml tensors using the CANN backend.
|
||||
*
|
||||
* @details This function performs an element-wise comparison between two input tensors,
|
||||
* and counts the number of positions where the elements are equal. The result is
|
||||
* stored in the destination tensor `dst` as a scalar.
|
||||
*
|
||||
* The operation is optimized using the CANN backend, making it suitable for
|
||||
* high-performance inference or training scenarios.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the result will be stored.
|
||||
* dst->op is expected to be `GGML_OP_COUNT_EQUAL`.
|
||||
*/
|
||||
void ggml_cann_count_equal(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Applies the Step activation function to a ggml tensor using the CANN backend.
|
||||
*
|
||||
* @details This function applies a step function element-wise to the input tensor, where
|
||||
* each element is transformed to 1.0 if it is greater than 0, and 0.0 otherwise.
|
||||
* The result is stored in the destination tensor `dst`.
|
||||
*
|
||||
* This operation is accelerated using the CANN backend to improve runtime performance.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the result will be stored.
|
||||
* dst->op is expected to be `GGML_OP_STEP`.
|
||||
*/
|
||||
void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/*
|
||||
* @brief A generic wrapper for ACL resources with custom deleter support.
|
||||
*/
|
||||
using any_acl_resource = std::unique_ptr<void, std::function<void(void*)>>;
|
||||
|
||||
/**
|
||||
* @brief Trait structure used to define how to destroy a given ACL resource type.
|
||||
*
|
||||
* @tparam T ACL resource type.
|
||||
*/
|
||||
template<typename T>
|
||||
struct acl_resource_traits;
|
||||
|
||||
/**
|
||||
* @brief Specialization for aclTensor, defines how to destroy an aclTensor resource.
|
||||
*/
|
||||
template<>
|
||||
struct acl_resource_traits<aclTensor> {
|
||||
static void destroy(void* p) {
|
||||
ACL_CHECK(aclDestroyTensor(static_cast<aclTensor*>(p)));
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Specialization for aclIntArray, defines how to destroy an aclIntArray resource.
|
||||
*/
|
||||
template<>
|
||||
struct acl_resource_traits<aclIntArray> {
|
||||
static void destroy(void* p) {
|
||||
ACL_CHECK(aclDestroyIntArray(static_cast<aclIntArray*>(p)));
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Specialization for aclScalar, defines how to destroy an aclScalar resource.
|
||||
*/
|
||||
template<>
|
||||
struct acl_resource_traits<aclScalar> {
|
||||
static void destroy(void* p) {
|
||||
ACL_CHECK(aclDestroyScalar(static_cast<aclScalar*>(p)));
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Specialization for aclTensorList, defines how to destroy an aclTensorList resource.
|
||||
*/
|
||||
template<>
|
||||
struct acl_resource_traits<aclTensorList> {
|
||||
static void destroy(void* p) {
|
||||
ACL_CHECK(aclDestroyTensorList(static_cast<aclTensorList*>(p)));
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Creates a generic ACL resource wrapper with proper destruction logic.
|
||||
*
|
||||
* @tparam T ACL resource type.
|
||||
* @param ptr Raw pointer to ACL resource.
|
||||
* @return any_acl_resource Smart pointer that handles destruction.
|
||||
*/
|
||||
template<typename T>
|
||||
any_acl_resource make_acl_resource(T* ptr) {
|
||||
return any_acl_resource(
|
||||
static_cast<void*>(ptr),
|
||||
[](void* p) {
|
||||
acl_resource_traits<T>::destroy(p);
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Registers multiple ACL resources into a vector for lifetime management.
|
||||
*
|
||||
* @tparam Args Variadic list of ACL resource types.
|
||||
* @param vec Target vector to hold ACL resources.
|
||||
* @param args Raw pointers to ACL resources.
|
||||
*/
|
||||
template<typename... Args>
|
||||
void register_acl_resources(std::vector<any_acl_resource>& vec, Args*... args) {
|
||||
(vec.emplace_back(make_acl_resource(args)), ...);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Task class that wraps the execution of an aclnn function call.
|
||||
*/
|
||||
class aclnn_task : public cann_task {
|
||||
public:
|
||||
aclnn_task(aclnn_func_t aclnn_func, void * workspace_addr,
|
||||
uint64_t workspace_size, aclOpExecutor * executor,
|
||||
aclrtStream stream) :
|
||||
aclnn_func_(aclnn_func),
|
||||
workspace_addr_(workspace_addr),
|
||||
workspace_size_(workspace_size),
|
||||
executor_(executor),
|
||||
stream_(stream) {}
|
||||
virtual void run_task() override {
|
||||
ACL_CHECK(aclnn_func_(workspace_addr_, workspace_size_, executor_, stream_));
|
||||
}
|
||||
private:
|
||||
aclnn_func_t aclnn_func_;
|
||||
void * workspace_addr_;
|
||||
uint64_t workspace_size_;
|
||||
aclOpExecutor * executor_;
|
||||
aclrtStream stream_;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Task class that releases ACL resources after usage.
|
||||
*/
|
||||
class release_resource_task : public cann_task {
|
||||
public:
|
||||
release_resource_task(std::vector<any_acl_resource>&& resources){
|
||||
resource_ = std::move(resources);
|
||||
}
|
||||
|
||||
virtual void run_task() override {
|
||||
resource_.clear();
|
||||
}
|
||||
private:
|
||||
std::vector<any_acl_resource> resource_;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Task class for performing asynchronous memory copy operations.
|
||||
*/
|
||||
class async_memcpy_task : public cann_task {
|
||||
public:
|
||||
async_memcpy_task(void* dst, const void* src, size_t size,
|
||||
aclrtMemcpyKind kind, aclrtStream stream)
|
||||
: dst_(dst), src_(src), size_(size), kind_(kind), stream_(stream) {}
|
||||
|
||||
virtual void run_task() override {
|
||||
ACL_CHECK(aclrtMemcpyAsync(dst_, size_, src_, size_, kind_, stream_));
|
||||
}
|
||||
private:
|
||||
void* dst_;
|
||||
const void* src_;
|
||||
size_t size_;
|
||||
aclrtMemcpyKind kind_;
|
||||
aclrtStream stream_;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Task class for performing asynchronous memory set operations.
|
||||
*/
|
||||
class async_memset_task : public cann_task {
|
||||
public:
|
||||
async_memset_task(void* buffer, size_t size, int32_t value, aclrtStream stream)
|
||||
: buffer_(buffer), size_(size), value_(value), stream_(stream) {}
|
||||
|
||||
virtual void run_task() override {
|
||||
ACL_CHECK(aclrtMemsetAsync(buffer_, size_, value_, size_, stream_));
|
||||
}
|
||||
private:
|
||||
void* buffer_;
|
||||
size_t size_;
|
||||
int32_t value_;
|
||||
aclrtStream stream_;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Launches an asynchronous task using the memory allocator.
|
||||
*
|
||||
* This macro submit an asynchronous task on the specified stream.
|
||||
* The task uses memory allocated by the allocator. It is guaranteed
|
||||
* that the memory will not be accessed by other tasks until this task
|
||||
* completes, due to the sequential execution order within the same stream.
|
||||
*
|
||||
* @param OP_NAME aclnn operator name.
|
||||
* @param args Additional arguments required by the task.
|
||||
*
|
||||
* @note
|
||||
* Memory from the allocator will be "freed" immediately and can be
|
||||
* reallocated to other pointers. However, it won't be accessed by any
|
||||
* other task before this asynchronous task ends, because all tasks in the
|
||||
* same stream are executed in queue order.
|
||||
*/
|
||||
|
||||
#define GGML_CANN_CALL_ACLNN_OP(CTX, OP_NAME, ...) \
|
||||
do { \
|
||||
uint64_t workspaceSize = 0; \
|
||||
aclOpExecutor * executor; \
|
||||
void * workspaceAddr = nullptr; \
|
||||
ACL_CHECK(aclnn##OP_NAME##GetWorkspaceSize(__VA_ARGS__, &workspaceSize, &executor));\
|
||||
/* workspace should alloced in main thread to keep malloc order when using vmm. */ \
|
||||
if (workspaceSize > 0) { \
|
||||
ggml_cann_pool_alloc workspace_allocator(CTX.pool(), workspaceSize); \
|
||||
workspaceAddr = workspace_allocator.get(); \
|
||||
} \
|
||||
if (CTX.async_mode) { \
|
||||
auto task = \
|
||||
std::make_unique<aclnn_task>(aclnn##OP_NAME, workspaceAddr, workspaceSize, \
|
||||
executor, CTX.stream()); \
|
||||
CTX.task_queue.submit_task(std::move(task)); \
|
||||
} else { \
|
||||
ACL_CHECK(aclnn##OP_NAME(workspaceAddr, workspaceSize, executor, CTX.stream()));\
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
/**
|
||||
* @brief Registers and releases multiple ACL resources, optionally deferring the release
|
||||
* using a task.
|
||||
*
|
||||
* @tparam Args Types of the ACL resources.
|
||||
* @param ctx Backend context which manages task submission and async mode.
|
||||
* @param args Pointers to ACL resources to be released.
|
||||
*/
|
||||
template <typename... Args>
|
||||
void ggml_cann_release_resources(ggml_backend_cann_context & ctx, Args &&... args) {
|
||||
std::vector<any_acl_resource> resources;
|
||||
register_acl_resources(resources, std::forward<Args>(args)...);
|
||||
if(ctx.async_mode) {
|
||||
auto task = std::make_unique<release_resource_task>(std::move(resources));
|
||||
ctx.task_queue.submit_task(std::move(task));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Performs an asynchronous memory copy operation, optionally deferred via task submission.
|
||||
*
|
||||
* @param ctx Backend context containing stream and async configuration.
|
||||
* @param dst Destination memory address.
|
||||
* @param src Source memory address.
|
||||
* @param len Size of memory to copy (in bytes).
|
||||
* @param kind Type of memory copy (host-to-device, device-to-host, etc).
|
||||
*/
|
||||
inline void ggml_cann_async_memcpy(ggml_backend_cann_context & ctx, void * dst,
|
||||
const void * src, size_t len, aclrtMemcpyKind kind) {
|
||||
if (ctx.async_mode) {
|
||||
auto task = std::make_unique<async_memcpy_task>(dst, const_cast<void *>(src), len, kind, ctx.stream());
|
||||
ctx.task_queue.submit_task(std::move(task));
|
||||
} else {
|
||||
ACL_CHECK(aclrtMemcpyAsync(dst, len, src, len, kind, ctx.stream()));
|
||||
}
|
||||
}
|
||||
|
||||
inline void ggml_cann_async_memcpy(ggml_backend_cann_context * ctx, void * dst,
|
||||
const void * src, size_t len, aclrtMemcpyKind kind) {
|
||||
if (ctx->async_mode) {
|
||||
auto task = std::make_unique<async_memcpy_task>(dst, const_cast<void *>(src), len, kind, ctx->stream());
|
||||
ctx->task_queue.submit_task(std::move(task));
|
||||
} else {
|
||||
ACL_CHECK(aclrtMemcpyAsync(dst, len, src, len, kind, ctx->stream()));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Performs an asynchronous memory set operation, optionally deferred via task submission.
|
||||
*
|
||||
* @param ctx Backend context containing stream and async configuration.
|
||||
* @param buffer Memory buffer to be set.
|
||||
* @param size Size of the memory buffer (in bytes).
|
||||
* @param value Value to set in the buffer.
|
||||
*/
|
||||
inline void ggml_cann_async_memset(ggml_backend_cann_context & ctx, void * buffer,
|
||||
size_t size, int value) {
|
||||
if (ctx.async_mode) {
|
||||
auto task = std::make_unique<async_memset_task>(buffer, size, value, ctx.stream());
|
||||
ctx.task_queue.submit_task(std::move(task));
|
||||
} else {
|
||||
ACL_CHECK(aclrtMemsetAsync(buffer, size, value, size, ctx.stream()));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Applies a element-wise operation to two input tensors using the CANN
|
||||
* backend.
|
||||
*
|
||||
* This templated function takes a binary operator and applies it to two source
|
||||
* tensors
|
||||
* associated with the destination tensor. The function handles broadcasting as
|
||||
* needed.
|
||||
*
|
||||
* @tparam binary_op A callable object (e.g., lambda or function pointer) representing
|
||||
* the binary operation to be performed. It must take three arguments:
|
||||
* (ggml_backend_cann_context&, aclTensor*, aclTensor*, aclTensor*).
|
||||
*
|
||||
* @param ctx The CANN backend context used to manage execution and resources.
|
||||
* @param dst The destination tensor.
|
||||
*/
|
||||
template <auto binary_op>
|
||||
void ggml_cann_binary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ggml_tensor* src0 = dst->src[0];
|
||||
ggml_tensor* src1 = dst->src[1];
|
||||
GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
|
||||
|
||||
aclTensor* acl_src0;
|
||||
aclTensor* acl_src1;
|
||||
aclTensor* acl_dst;
|
||||
|
||||
// Need bcast
|
||||
if (!ggml_are_same_shape(src0, src1) && ggml_cann_need_bcast(src0, src1)) {
|
||||
BCAST_SHAPE(src0, src1)
|
||||
acl_src0 = ggml_cann_create_tensor(src0, BCAST_PARAM(src0));
|
||||
acl_src1 = ggml_cann_create_tensor(src1, BCAST_PARAM(src1));
|
||||
acl_dst = ggml_cann_create_tensor(dst, BCAST_PARAM(src0));
|
||||
} else {
|
||||
acl_src0 = ggml_cann_create_tensor(src0);
|
||||
acl_src1 = ggml_cann_create_tensor(src1);
|
||||
acl_dst = ggml_cann_create_tensor(dst);
|
||||
}
|
||||
bcast_shape(src0, src1, dst, &acl_src0, &acl_src1, &acl_dst);
|
||||
binary_op(ctx, acl_src0, acl_src1, acl_dst);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor* executor;
|
||||
void* workspaceAddr = nullptr;
|
||||
|
||||
ACL_CHECK(getWorkspaceSize(acl_src0, acl_src1, acl_dst, &workspaceSize,
|
||||
&executor));
|
||||
if (workspaceSize > 0) {
|
||||
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
|
||||
workspaceAddr = workspace_allocator.get();
|
||||
}
|
||||
|
||||
aclrtStream main_stream = ctx.stream();
|
||||
ACL_CHECK(execute(workspaceAddr, workspaceSize, executor, main_stream));
|
||||
|
||||
ACL_CHECK(aclDestroyTensor(acl_src0));
|
||||
ACL_CHECK(aclDestroyTensor(acl_src1));
|
||||
ACL_CHECK(aclDestroyTensor(acl_dst));
|
||||
ggml_cann_release_resources(ctx, acl_src0, acl_src1, acl_dst);
|
||||
}
|
||||
|
||||
// Activation functions template.
|
||||
template <aclnnStatus getWorkspaceSize(const aclTensor*, aclTensor*, uint64_t*,
|
||||
aclOpExecutor**),
|
||||
aclnnStatus execute(void*, uint64_t, aclOpExecutor*,
|
||||
const aclrtStream)>
|
||||
void ggml_cann_activation(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ggml_tensor* src = dst->src[0];
|
||||
|
||||
GGML_ASSERT(src->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
/**
|
||||
* @brief Applies a unary operation to an input tensor using the CANN backend.
|
||||
*
|
||||
* This templated function applies a unary operator to the source tensor of `dst`
|
||||
* and stores the result in the destination tensor.
|
||||
*
|
||||
* @tparam unary_op A callable with the signature:
|
||||
* void(ggml_backend_cann_context&, aclTensor*, aclTensor*)
|
||||
* where the first aclTensor is the source and the second is the destination.
|
||||
* @param ctx The CANN backend context for managing resources and execution.
|
||||
* @param dst The destination tensor. Its src[0] is treated as the input tensor.
|
||||
*/
|
||||
template <void unary_op(ggml_backend_cann_context&, aclTensor*, aclTensor*)>
|
||||
void ggml_cann_unary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ggml_tensor* src = dst->src[0];
|
||||
|
||||
aclTensor* acl_src = ggml_cann_create_tensor(src);
|
||||
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor* executor;
|
||||
void* workspaceAddr = nullptr;
|
||||
|
||||
ACL_CHECK(getWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor));
|
||||
if (workspaceSize > 0) {
|
||||
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
|
||||
workspaceAddr = workspace_allocator.get();
|
||||
}
|
||||
|
||||
aclrtStream main_stream = ctx.stream();
|
||||
ACL_CHECK(execute(workspaceAddr, workspaceSize, executor, main_stream));
|
||||
|
||||
ACL_CHECK(aclDestroyTensor(acl_src));
|
||||
ACL_CHECK(aclDestroyTensor(acl_dst));
|
||||
unary_op(ctx, acl_src, acl_dst);
|
||||
ggml_cann_release_resources(ctx, acl_src, acl_dst);
|
||||
}
|
||||
|
||||
// Activation functions template for const aclTensors.
|
||||
template <aclnnStatus getWorkspaceSize(const aclTensor*, const aclTensor*,
|
||||
uint64_t*, aclOpExecutor**),
|
||||
aclnnStatus execute(void*, uint64_t, aclOpExecutor*,
|
||||
const aclrtStream)>
|
||||
void ggml_cann_activation(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ggml_tensor* src = dst->src[0];
|
||||
|
||||
GGML_ASSERT(src->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
aclTensor* acl_src = ggml_cann_create_tensor(src);
|
||||
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor* executor;
|
||||
void* workspaceAddr = nullptr;
|
||||
|
||||
ACL_CHECK(getWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor));
|
||||
if (workspaceSize > 0) {
|
||||
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
|
||||
workspaceAddr = workspace_allocator.get();
|
||||
}
|
||||
|
||||
aclrtStream main_stream = ctx.stream();
|
||||
ACL_CHECK(execute(workspaceAddr, workspaceSize, executor, main_stream));
|
||||
|
||||
ACL_CHECK(aclDestroyTensor(acl_src));
|
||||
ACL_CHECK(aclDestroyTensor(acl_dst));
|
||||
}
|
||||
/**
|
||||
* @brief Applies a unary operation to a ggml tensor using the CANN backend.
|
||||
*
|
||||
* @details This function performs a unary operation on the input tensor using
|
||||
* a user-provided lambda or callable object `unary_op`, which accepts the CANN
|
||||
* context and two ACL tensors (source and destination). Internally, this function
|
||||
* creates ACL representations of the ggml tensors and invokes the unary operation.
|
||||
* The result is stored in the destination tensor `dst`. This utility abstracts the
|
||||
* common boilerplate of tensor conversion and cleanup when implementing unary ops.
|
||||
*
|
||||
* @param unary_op A callable that performs the unary operation using CANN APIs.
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the result will be stored.
|
||||
* The source tensor is retrieved from `dst->src[0]`.
|
||||
*/
|
||||
void ggml_cann_unary_op(
|
||||
std::function<void(ggml_backend_cann_context&, aclTensor*, aclTensor*)> unary_op,
|
||||
ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Helper macro to invoke a unary ACL operation using ggml_cann_unary_op.
|
||||
*
|
||||
* This macro defines an inline lambda wrapping a specific ACL operation name,
|
||||
* and passes it to the templated ggml_cann_unary_op function. It simplifies
|
||||
* calling unary ops by hiding the lambda boilerplate.
|
||||
*
|
||||
* Internally, the lambda will call:
|
||||
* @code
|
||||
* GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst);
|
||||
* @endcode
|
||||
*
|
||||
* @param OP_NAME The name of the ACL unary operator to invoke via GGML_CANN_CALL_ACLNN_OP.
|
||||
*
|
||||
* @see ggml_cann_unary_op
|
||||
* @see GGML_CANN_CALL_ACLNN_OP
|
||||
*/
|
||||
#define GGML_CANN_CALL_UNARY_OP(OP_NAME) \
|
||||
do { \
|
||||
auto lambda = [](ggml_backend_cann_context& ctx, \
|
||||
aclTensor* acl_src, \
|
||||
aclTensor* acl_dst) { \
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); \
|
||||
}; \
|
||||
ggml_cann_unary_op(lambda, ctx, dst); \
|
||||
} \
|
||||
while (0)
|
||||
#endif // CANN_ACLNN_OPS
|
||||
|
||||
@@ -31,9 +31,16 @@
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <atomic>
|
||||
#include <condition_variable>
|
||||
#include <mutex>
|
||||
#include <thread>
|
||||
#include <unistd.h>
|
||||
#include <functional>
|
||||
|
||||
#include "../include/ggml-cann.h"
|
||||
#include "../include/ggml.h"
|
||||
#include "../ggml-impl.h"
|
||||
|
||||
#define MATRIX_ROW_PADDING 512
|
||||
#define GGML_CANN_MAX_STREAMS 8
|
||||
@@ -205,6 +212,127 @@ struct ggml_cann_pool_alloc {
|
||||
ggml_cann_pool_alloc& operator=(ggml_cann_pool_alloc&&) = delete;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Function pointer type for ACLNN operator calls.
|
||||
*/
|
||||
using aclnn_func_t = aclnnStatus (*)(void*, uint64_t, aclOpExecutor*, aclrtStream);
|
||||
|
||||
/**
|
||||
* @brief Base class for all CANN tasks to be submitted to the task queue.
|
||||
*
|
||||
* Users should override the run_task() method with actual task logic.
|
||||
*/
|
||||
class cann_task {
|
||||
public:
|
||||
virtual void run_task() {}
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief A lock-free ring-buffer based task queue for asynchronously executing cann_task instances.
|
||||
*/
|
||||
class cann_task_queue {
|
||||
public:
|
||||
/**
|
||||
* @brief Constructs a task queue with a fixed power-of-two capacity for a specific device.
|
||||
*
|
||||
* @param capacity Queue capacity. Must be a power of 2.
|
||||
* @param device Target device ID (used for context setting).
|
||||
*/
|
||||
explicit cann_task_queue(size_t capacity, int32_t device)
|
||||
: buffer_(capacity), capacity_(capacity), head_(0), tail_(0),
|
||||
running_(false), device_(device) {
|
||||
GGML_ASSERT((capacity & (capacity - 1)) == 0 && "capacity must be power of 2");
|
||||
mask_ = capacity_ - 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Attempts to enqueue a task into the queue.
|
||||
*
|
||||
* @param item Unique pointer to the task.
|
||||
* @return true if the task was successfully enqueued, false if the queue was full.
|
||||
*/
|
||||
bool enqueue(std::unique_ptr<cann_task>&& item) {
|
||||
size_t next_tail = (tail_ + 1) & mask_;
|
||||
|
||||
if (next_tail == head_) {
|
||||
return false;
|
||||
}
|
||||
|
||||
buffer_[tail_] = std::move(item);
|
||||
std::atomic_thread_fence(std::memory_order_release);
|
||||
tail_ = next_tail;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Submits a task to the queue, and starts the worker thread if not already running.
|
||||
*
|
||||
* @param task Task to be submitted.
|
||||
*/
|
||||
void submit_task(std::unique_ptr<cann_task>&& task) {
|
||||
while(!enqueue(std::move(task))) {
|
||||
std::this_thread::yield();
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!running_) {
|
||||
running_ = true;
|
||||
thread_ = std::thread(&cann_task_queue::execute, this);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Waits until the queue is completely empty and no tasks are being processed.
|
||||
*/
|
||||
void wait() {
|
||||
while (running_ && head_ != tail_) {
|
||||
std::this_thread::yield();
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Stops the task queue and joins the worker thread.
|
||||
*/
|
||||
void stop() {
|
||||
running_ = false;
|
||||
if (thread_.joinable()) {
|
||||
thread_.join();
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
/**
|
||||
* @brief Worker thread function that continuously dequeues and executes tasks.
|
||||
*/
|
||||
void execute() {
|
||||
ggml_cann_set_device(device_);
|
||||
|
||||
while (running_) {
|
||||
if(head_ == tail_) {
|
||||
std::this_thread::yield();
|
||||
continue;
|
||||
}
|
||||
|
||||
std::atomic_thread_fence(std::memory_order_acquire);
|
||||
buffer_[head_]->run_task();
|
||||
buffer_[head_].reset();
|
||||
head_ = (head_ + 1) & mask_;
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::unique_ptr<cann_task>> buffer_;
|
||||
const size_t capacity_;
|
||||
size_t mask_;
|
||||
size_t head_;
|
||||
size_t tail_;
|
||||
bool running_;
|
||||
std::thread thread_;
|
||||
int32_t device_;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Context for managing CANN backend operations.
|
||||
*/
|
||||
@@ -213,6 +341,8 @@ struct ggml_backend_cann_context {
|
||||
std::string name; /**< Name of the device. */
|
||||
std::string description; /**< Description of the device. */
|
||||
aclrtEvent copy_event = nullptr; /**< Event for managing copy operations. */
|
||||
cann_task_queue task_queue;
|
||||
bool async_mode;
|
||||
|
||||
aclrtStream streams[GGML_CANN_MAX_STREAMS] = {nullptr}; /**< Array of streams for the device. */
|
||||
|
||||
@@ -221,9 +351,12 @@ struct ggml_backend_cann_context {
|
||||
* @param device Device ID.
|
||||
*/
|
||||
explicit ggml_backend_cann_context(int device)
|
||||
: device(device), name("CANN" + std::to_string(device)) {
|
||||
: device(device), name("CANN" + std::to_string(device)), task_queue(1024, device) {
|
||||
ggml_cann_set_device(device);
|
||||
description = aclrtGetSocName();
|
||||
async_mode = (getenv("GGML_CANN_ASYNC_MODE") != nullptr);
|
||||
GGML_LOG_INFO("%s: device %d async operator submission is %s\n", __func__,
|
||||
device, async_mode ? "ON" : "OFF");
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -231,6 +364,7 @@ struct ggml_backend_cann_context {
|
||||
*/
|
||||
~ggml_backend_cann_context() {
|
||||
ggml_cann_set_device(device);
|
||||
task_queue.stop();
|
||||
if (copy_event != nullptr) {
|
||||
ACL_CHECK(aclrtDestroyEvent(copy_event));
|
||||
}
|
||||
|
||||
@@ -29,6 +29,8 @@
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <mutex>
|
||||
#include <queue>
|
||||
#include <chrono>
|
||||
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
@@ -119,9 +121,10 @@ static ggml_cann_device_info ggml_cann_init() {
|
||||
prop.location.type = ACL_MEM_LOCATION_TYPE_DEVICE;
|
||||
prop.location.id = id;
|
||||
prop.reserve = 0;
|
||||
ACL_CHECK(aclrtMemGetAllocationGranularity(
|
||||
err = aclrtMemGetAllocationGranularity(
|
||||
&prop, ACL_RT_MEM_ALLOC_GRANULARITY_RECOMMENDED,
|
||||
&info.devices[id].vmm_granularity));
|
||||
&info.devices[id].vmm_granularity);
|
||||
info.devices[id].vmm = err == ACL_SUCCESS;
|
||||
|
||||
size_t free, total;
|
||||
ggml_backend_cann_get_device_memory(id, &free, &total);
|
||||
@@ -148,11 +151,223 @@ const ggml_cann_device_info& ggml_cann_info() {
|
||||
|
||||
//#define DEBUG_CANN_MALLOC
|
||||
/**
|
||||
* @brief A pool of CANN buffers(legacy).
|
||||
* @brief A pool of CANN buffers(priority segment buffer).
|
||||
*
|
||||
* This class manages a pool of CANN buffers for a specific device.
|
||||
*/
|
||||
struct ggml_cann_pool_leg : public ggml_cann_pool {
|
||||
struct ggml_cann_pool_buf_prio : public ggml_cann_pool {
|
||||
/**
|
||||
* @brief The maximum reuse margin for a buffer.
|
||||
*/
|
||||
static const size_t max_reuse_margin = 1ull << 22; // 4MB
|
||||
|
||||
/**
|
||||
* @brief The minimum free margin for a buffer.
|
||||
*/
|
||||
static const size_t min_free_margin = 1ull << 20; // 1MB
|
||||
|
||||
/**
|
||||
* @brief The alignment for buffer allocation.
|
||||
*/
|
||||
static const size_t alignment = 128;
|
||||
|
||||
/**
|
||||
* @brief The device ID associated with this buffer pool.
|
||||
*/
|
||||
int device;
|
||||
|
||||
/**
|
||||
* @brief Whether to disable clean during buffer allocation.
|
||||
*/
|
||||
bool disable_clean = false;
|
||||
|
||||
/**
|
||||
* @brief Structure representing a CANN buffer.
|
||||
*/
|
||||
struct ggml_cann_buffer {
|
||||
void* ptr = nullptr; ///< Pointer to the buffer.
|
||||
size_t size = 0; ///< Size of the buffer.
|
||||
std::chrono::steady_clock::time_point last_used; ///< Last used time.
|
||||
|
||||
bool operator>(const ggml_cann_buffer& other) const {
|
||||
return size > other.size;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Array of CANN buffers in the pool.
|
||||
*/
|
||||
std::unordered_map<void*, size_t> buffer_pool;
|
||||
std::priority_queue<ggml_cann_buffer,
|
||||
std::vector<ggml_cann_buffer>,
|
||||
std::greater<>> free_buffers ;
|
||||
|
||||
/**
|
||||
* @brief Total size of all buffers in the pool.
|
||||
*/
|
||||
size_t pool_size = 0;
|
||||
|
||||
/**
|
||||
* @brief Constructor to initialize the buffer pool for a specific device.
|
||||
*
|
||||
* @param device The device ID to associate with this buffer pool.
|
||||
*/
|
||||
explicit ggml_cann_pool_buf_prio(int device) : device(device) {
|
||||
disable_clean = getenv("GGML_CANN_DISABLE_BUF_POOL_CLEAN") != nullptr;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Destructor to free all buffers in the pool.
|
||||
*/
|
||||
~ggml_cann_pool_buf_prio() {
|
||||
ggml_cann_set_device(device);
|
||||
for (auto& [b_ptr, b_size] : buffer_pool) {
|
||||
aclrtFree(b_ptr);
|
||||
pool_size -= b_size;
|
||||
}
|
||||
buffer_pool.clear();
|
||||
GGML_ASSERT(pool_size == 0);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Allocate a buffer of the given size.
|
||||
*
|
||||
* @param size The size of the buffer to allocate.
|
||||
* @param actual_size A pointer to a variable to receive the actual size of
|
||||
* the allocated buffer.
|
||||
* @return A pointer to the allocated buffer.
|
||||
*/
|
||||
void* alloc(size_t size, size_t* actual_size) override {
|
||||
size = GGML_PAD(size, alignment);
|
||||
if (size == 0) {
|
||||
size = alignment;
|
||||
}
|
||||
|
||||
void* ptr = nullptr;
|
||||
auto now = std::chrono::steady_clock::now();
|
||||
|
||||
std::vector<ggml_cann_buffer> free_buffers_rest;
|
||||
free_buffers_rest.reserve(free_buffers.size());
|
||||
while (!free_buffers.empty()) {
|
||||
auto b = free_buffers.top();
|
||||
free_buffers.pop();
|
||||
|
||||
if (b.size >= size) {
|
||||
// reuse the buffer if the size is enough
|
||||
const size_t margin = b.size - size;
|
||||
if (margin <= max_reuse_margin) {
|
||||
*actual_size = b.size;
|
||||
ptr = b.ptr;
|
||||
#ifdef DEBUG_CANN_MALLOC
|
||||
GGML_LOG_INFO(
|
||||
"cann pool[%d]: reused %p, "
|
||||
"pool_size = %5u MB, "
|
||||
"size = %5u MB, "
|
||||
"margin = %5u MB\n",
|
||||
device, b.ptr,
|
||||
(uint32_t)(GGML_PAD(pool_size, 1048576) / 1048576),
|
||||
(uint32_t)(GGML_PAD(size, 1048576) / 1048576),
|
||||
(uint32_t)(GGML_PAD(margin, 1048576) / 1048576));
|
||||
#endif
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
bool should_clean = !disable_clean &&
|
||||
b.size > min_free_margin &&
|
||||
std::chrono::duration_cast<std::chrono::milliseconds>(now - b.last_used).count() > 100;
|
||||
if (should_clean) {
|
||||
// free the buffer if the size is needed to be freed
|
||||
ACL_CHECK(aclrtFree(b.ptr));
|
||||
pool_size -= b.size;
|
||||
buffer_pool.erase(b.ptr);
|
||||
#ifdef DEBUG_CANN_MALLOC
|
||||
GGML_LOG_INFO(
|
||||
"cann pool[%d]: clean %p, "
|
||||
"pool_size = %5u MB, "
|
||||
"size = %5u MB\n",
|
||||
device, b.ptr,
|
||||
(uint32_t)(GGML_PAD(pool_size, 1048576) / 1048576),
|
||||
(uint32_t)(GGML_PAD(b.size, 1048576) / 1048576));
|
||||
#endif
|
||||
continue;
|
||||
}
|
||||
free_buffers_rest.push_back(b);
|
||||
}
|
||||
for (ggml_cann_buffer &b : free_buffers_rest) {
|
||||
free_buffers.push(std::move(b));
|
||||
}
|
||||
|
||||
#ifdef DEBUG_CANN_MALLOC
|
||||
GGML_LOG_INFO("cann pool[%d] free pool_size = %5u MB\n\n", device, (uint32_t)(GGML_PAD(pool_size, 1048576) / 1048576));
|
||||
#endif
|
||||
if (ptr != nullptr) {
|
||||
return ptr;
|
||||
}
|
||||
|
||||
// allocate a new buffer if no buffer can be reused
|
||||
ggml_cann_set_device(device);
|
||||
ACL_CHECK(aclrtMalloc(&ptr, size, ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
*actual_size = size;
|
||||
pool_size += size;
|
||||
#ifdef DEBUG_CANN_MALLOC
|
||||
GGML_LOG_INFO(
|
||||
"cann pool[%d]: allocate %p, "
|
||||
"pool_size = %5u MB, "
|
||||
"size = %5u MB\n",
|
||||
device, ptr, (uint32_t)(GGML_PAD(pool_size, 1048576) / 1048576),
|
||||
(uint32_t)(GGML_PAD(size, 1048576) / 1048576));
|
||||
#endif
|
||||
buffer_pool.emplace(ptr, size);
|
||||
return ptr;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Free a buffer and return it to the pool.
|
||||
*
|
||||
* @param ptr Pointer to the buffer to free.
|
||||
* @param size Size of the buffer to free.
|
||||
*/
|
||||
void free(void* ptr, size_t size) override {
|
||||
GGML_UNUSED(size);
|
||||
auto it = buffer_pool.find(ptr);
|
||||
if (it == buffer_pool.end()) {
|
||||
GGML_ABORT("cann pool[%d]: buffer %p not found in pool\n", device, ptr);
|
||||
}
|
||||
|
||||
auto now = std::chrono::steady_clock::now();
|
||||
free_buffers.emplace(ggml_cann_buffer{ptr, it->second, now});
|
||||
#ifdef DEBUG_CANN_MALLOC
|
||||
GGML_LOG_INFO(
|
||||
"cann pool[%d]: return %p, "
|
||||
"pool_size = %5u MB\n",
|
||||
device, ptr,
|
||||
(uint32_t)(GGML_PAD(pool_size, 1048576) / 1048576));
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief A pool of CANN buffers(segment buffer).
|
||||
*
|
||||
* This class manages a pool of CANN buffers for a specific device.
|
||||
*/
|
||||
struct ggml_cann_pool_buf : public ggml_cann_pool {
|
||||
/**
|
||||
* @brief The maximum reuse margin for a buffer.
|
||||
*/
|
||||
static const size_t max_reuse_margin = 1ull << 22; // 4MB
|
||||
|
||||
/**
|
||||
* @brief The minimum free margin for a buffer.
|
||||
*/
|
||||
static const size_t min_free_margin = 1ull << 20; // 1MB
|
||||
|
||||
/**
|
||||
* @brief The alignment for buffer allocation.
|
||||
*/
|
||||
static const size_t alignment = 128;
|
||||
|
||||
/**
|
||||
* @brief The maximum number of buffers in the pool.
|
||||
*/
|
||||
@@ -163,12 +378,19 @@ struct ggml_cann_pool_leg : public ggml_cann_pool {
|
||||
*/
|
||||
int device;
|
||||
|
||||
/**
|
||||
* @brief Whether to disable clean during buffer allocation.
|
||||
*/
|
||||
bool disable_clean = false;
|
||||
|
||||
/**
|
||||
* @brief Structure representing a CANN buffer.
|
||||
*/
|
||||
struct ggml_cann_buffer {
|
||||
void* ptr = nullptr; ///< Pointer to the buffer memory.
|
||||
size_t size = 0; ///< Size of the buffer.
|
||||
bool used = false; ///< Whether the buffer is currently in use.
|
||||
std::chrono::steady_clock::time_point last_used; ///< Last used time.
|
||||
};
|
||||
|
||||
/**
|
||||
@@ -186,17 +408,19 @@ struct ggml_cann_pool_leg : public ggml_cann_pool {
|
||||
*
|
||||
* @param device The device ID to associate with this buffer pool.
|
||||
*/
|
||||
explicit ggml_cann_pool_leg(int device) : device(device) {}
|
||||
explicit ggml_cann_pool_buf(int device) : device(device) {
|
||||
disable_clean = getenv("GGML_CANN_DISABLE_BUF_POOL_CLEAN") != nullptr;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Destructor to free all buffers in the pool.
|
||||
*/
|
||||
~ggml_cann_pool_leg() {
|
||||
~ggml_cann_pool_buf() {
|
||||
ggml_cann_set_device(device);
|
||||
for (int i = 0; i < MAX_BUFFERS; ++i) {
|
||||
ggml_cann_buffer& b = buffer_pool[i];
|
||||
if (b.ptr != nullptr) {
|
||||
ACL_CHECK(aclrtFree(b.ptr));
|
||||
aclrtFree(b.ptr);
|
||||
pool_size -= b.size;
|
||||
}
|
||||
}
|
||||
@@ -212,63 +436,93 @@ struct ggml_cann_pool_leg : public ggml_cann_pool {
|
||||
* @return A pointer to the allocated buffer.
|
||||
*/
|
||||
void* alloc(size_t size, size_t* actual_size) override {
|
||||
const size_t alignment = 128;
|
||||
size = GGML_PAD(size, alignment);
|
||||
if (size == 0) {
|
||||
size = alignment;
|
||||
}
|
||||
#ifdef DEBUG_CANN_MALLOC
|
||||
int nnz = 0;
|
||||
size_t max_size = 0;
|
||||
#endif
|
||||
size_t best_diff = 1ull << 36;
|
||||
int ibest = -1;
|
||||
for (int i = 0; i < MAX_BUFFERS; ++i) {
|
||||
|
||||
void* ptr = nullptr;
|
||||
auto now = std::chrono::steady_clock::now();
|
||||
|
||||
int i = 0;
|
||||
for (; i < MAX_BUFFERS; ++i) {
|
||||
ggml_cann_buffer& b = buffer_pool[i];
|
||||
if (b.ptr != nullptr) {
|
||||
if (b.ptr == nullptr) {
|
||||
break;
|
||||
}
|
||||
if (b.used) {
|
||||
continue;
|
||||
}
|
||||
if (b.size >= size) {
|
||||
// reuse the buffer if the size is enough
|
||||
const size_t margin = b.size - size;
|
||||
if (margin <= max_reuse_margin) {
|
||||
*actual_size = b.size;
|
||||
b.used = true;
|
||||
ptr = b.ptr;
|
||||
#ifdef DEBUG_CANN_MALLOC
|
||||
++nnz;
|
||||
if (b.size > max_size) max_size = b.size;
|
||||
GGML_LOG_INFO(
|
||||
"cann pool[%d]: reused %p, "
|
||||
"pool_size = %5u MB, "
|
||||
"size = %5u MB, "
|
||||
"margin = %5u MB\n",
|
||||
device, b.ptr,
|
||||
(uint32_t)(GGML_PAD(pool_size, 1048576) / 1048576),
|
||||
(uint32_t)(GGML_PAD(size, 1048576) / 1048576),
|
||||
(uint32_t)(GGML_PAD(margin, 1048576) / 1048576));
|
||||
#endif
|
||||
if (b.size >= size) {
|
||||
size_t diff = b.size - size;
|
||||
if (diff < best_diff) {
|
||||
best_diff = diff;
|
||||
ibest = i;
|
||||
if (!best_diff) {
|
||||
void* ptr = b.ptr;
|
||||
*actual_size = b.size;
|
||||
b.ptr = nullptr;
|
||||
b.size = 0;
|
||||
return ptr;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
bool should_clean = !disable_clean &&
|
||||
b.size > min_free_margin &&
|
||||
std::chrono::duration_cast<std::chrono::milliseconds>(now - b.last_used).count() > 100;
|
||||
if (should_clean) {
|
||||
// free the buffer if the size is needed to be freed
|
||||
ACL_CHECK(aclrtFree(b.ptr));
|
||||
pool_size -= b.size;
|
||||
#ifdef DEBUG_CANN_MALLOC
|
||||
GGML_LOG_INFO(
|
||||
"cann pool[%d]: clean %p, "
|
||||
"pool_size = %5u MB, "
|
||||
"size = %5u MB\n",
|
||||
device, b.ptr,
|
||||
(uint32_t)(GGML_PAD(pool_size, 1048576) / 1048576),
|
||||
(uint32_t)(GGML_PAD(b.size, 1048576) / 1048576));
|
||||
#endif
|
||||
b.ptr = nullptr;
|
||||
}
|
||||
}
|
||||
if (ibest >= 0) {
|
||||
ggml_cann_buffer& b = buffer_pool[ibest];
|
||||
void* ptr = b.ptr;
|
||||
*actual_size = b.size;
|
||||
b.ptr = nullptr;
|
||||
b.size = 0;
|
||||
if (ptr != nullptr) {
|
||||
return ptr;
|
||||
}
|
||||
void* ptr;
|
||||
ggml_cann_set_device(device);
|
||||
ACL_CHECK(
|
||||
aclrtMalloc(&ptr, size, ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
*actual_size = size;
|
||||
pool_size += size;
|
||||
|
||||
if (i < MAX_BUFFERS) {
|
||||
// allocate a new buffer if no buffer can be reused
|
||||
ggml_cann_buffer& b = buffer_pool[i];
|
||||
ggml_cann_set_device(device);
|
||||
ACL_CHECK(aclrtMalloc(&b.ptr, size, ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
pool_size += size;
|
||||
*actual_size = size;
|
||||
b.size = size;
|
||||
b.used = true;
|
||||
if (i >= MAX_BUFFERS - 8) {
|
||||
GGML_LOG_WARN("cann pool[%d]: slots almost full\n", device);
|
||||
}
|
||||
#ifdef DEBUG_CANN_MALLOC
|
||||
GGML_LOG_INFO(
|
||||
"%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, "
|
||||
"requested %u MB\n",
|
||||
__func__, device, nnz, (uint32_t)(max_size / 1024 / 1024),
|
||||
(uint32_t)(pool_size / 1024 / 1024),
|
||||
(uint32_t)(size / 1024 / 1024));
|
||||
GGML_LOG_INFO(
|
||||
"cann pool[%d]: allocate %p, "
|
||||
"pool_size = %5u MB, "
|
||||
"size = %5u MB\n",
|
||||
device, b.ptr,
|
||||
(uint32_t)(GGML_PAD(pool_size, 1048576) / 1048576),
|
||||
(uint32_t)(GGML_PAD(b.size, 1048576) / 1048576));
|
||||
#endif
|
||||
return ptr;
|
||||
return b.ptr;
|
||||
}
|
||||
|
||||
GGML_ABORT("cann pool[%d]: slots full\n", device);
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -278,18 +532,24 @@ struct ggml_cann_pool_leg : public ggml_cann_pool {
|
||||
* @param size Size of the buffer to free.
|
||||
*/
|
||||
void free(void* ptr, size_t size) override {
|
||||
GGML_UNUSED(size);
|
||||
for (int i = 0; i < MAX_BUFFERS; ++i) {
|
||||
ggml_cann_buffer& b = buffer_pool[i];
|
||||
if (b.ptr == nullptr) {
|
||||
b.ptr = ptr;
|
||||
b.size = size;
|
||||
return;
|
||||
if (b.ptr != ptr) {
|
||||
continue;
|
||||
}
|
||||
b.used = false;
|
||||
b.last_used = std::chrono::steady_clock::now();
|
||||
#ifdef DEBUG_CANN_MALLOC
|
||||
GGML_LOG_INFO(
|
||||
"cann pool[%d]: return %p, "
|
||||
"pool_size = %5u MB\n",
|
||||
device, b.ptr,
|
||||
(uint32_t)(GGML_PAD(pool_size, 1048576) / 1048576));
|
||||
#endif
|
||||
return;
|
||||
}
|
||||
// memory should always buffered. these memory may still needed by
|
||||
// tasks in stream.
|
||||
// TODO, fix me.
|
||||
GGML_ABORT("Cann buffer pool full, increase MAX_CANN_BUFFERS\n");
|
||||
GGML_ABORT("cann pool[%d]: slots full\n", device);
|
||||
}
|
||||
};
|
||||
|
||||
@@ -347,8 +607,7 @@ struct ggml_cann_pool_vmm : public ggml_cann_pool {
|
||||
* @param device The device ID to associate with this buffer pool.
|
||||
*/
|
||||
explicit ggml_cann_pool_vmm(int device)
|
||||
: device(device),
|
||||
granularity(ggml_cann_info().devices[device].vmm_granularity) {
|
||||
: device(device) {
|
||||
auto dev = ggml_cann_info().devices[device];
|
||||
granularity = dev.vmm_granularity;
|
||||
max_size = dev.total_vram;
|
||||
@@ -471,7 +730,18 @@ struct ggml_cann_pool_vmm : public ggml_cann_pool {
|
||||
*/
|
||||
std::unique_ptr<ggml_cann_pool> ggml_backend_cann_context::new_pool_for_device(
|
||||
int device) {
|
||||
return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_vmm(device));
|
||||
bool disable_vmm = (getenv("GGML_CANN_DISABLE_VMM_POOL") != nullptr);
|
||||
if (!disable_vmm && ggml_cann_info().devices[device].vmm) {
|
||||
GGML_LOG_INFO("%s: device %d use vmm pool\n", __func__, device);
|
||||
return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_vmm(device));
|
||||
}
|
||||
bool enable_buf_prio = (getenv("GGML_CANN_ENABLE_BUF_PRIO_POOL") != nullptr);
|
||||
if (enable_buf_prio) {
|
||||
GGML_LOG_INFO("%s: device %d use buffer pool with priority queue\n", __func__, device);
|
||||
return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_buf_prio(device));
|
||||
}
|
||||
GGML_LOG_INFO("%s: device %d use buffer pool\n", __func__, device);
|
||||
return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_buf(device));
|
||||
}
|
||||
|
||||
// cann buffer
|
||||
@@ -803,7 +1073,7 @@ static enum ggml_status ggml_backend_cann_buffer_init_tensor(
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
// TODO: can backend doesn't support quantized yet. Just leave the code
|
||||
// TODO: cann backend doesn't support quantized yet. Just leave the code
|
||||
// here.
|
||||
if (ggml_is_quantized(tensor->type)) {
|
||||
// Initialize padding to 0 to avoid possible NaN values
|
||||
@@ -1020,8 +1290,11 @@ ggml_backend_cann_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft,
|
||||
|
||||
ggml_cann_set_device(buft_ctx->device);
|
||||
|
||||
size = std::max(size, (size_t)1);
|
||||
|
||||
const size_t alignment = 128;
|
||||
size = GGML_PAD(size, alignment);
|
||||
if (size == 0) {
|
||||
size = alignment;
|
||||
}
|
||||
void* dev_ptr;
|
||||
aclError err = aclrtMalloc(&dev_ptr, size, ACL_MEM_MALLOC_HUGE_FIRST);
|
||||
if (err != ACL_SUCCESS) {
|
||||
@@ -1300,47 +1573,69 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
|
||||
ggml_cann_dup(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_ADD:
|
||||
ggml_cann_add(ctx, dst);
|
||||
case GGML_OP_ADD1:
|
||||
ggml_cann_binary_op<aclnn_add>(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SUB:
|
||||
ggml_cann_binary_op<aclnn_sub>(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_ACC:
|
||||
ggml_cann_acc(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_MUL:
|
||||
ggml_cann_mul_div<aclnnMulGetWorkspaceSize, aclnnMul>(ctx, dst);
|
||||
ggml_cann_binary_op<aclnn_mul>(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_DIV:
|
||||
ggml_cann_mul_div<aclnnDivGetWorkspaceSize, aclnnDiv>(ctx, dst);
|
||||
ggml_cann_binary_op<aclnn_div>(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_UNARY:
|
||||
switch (ggml_get_unary_op(dst)) {
|
||||
case GGML_UNARY_OP_ABS:
|
||||
GGML_CANN_CALL_UNARY_OP(Abs);
|
||||
break;
|
||||
case GGML_UNARY_OP_NEG:
|
||||
GGML_CANN_CALL_UNARY_OP(Neg);
|
||||
break;
|
||||
case GGML_UNARY_OP_GELU:
|
||||
ggml_cann_activation<aclnnGeluGetWorkspaceSize, aclnnGelu>(
|
||||
ctx, dst);
|
||||
GGML_CANN_CALL_UNARY_OP(Gelu);
|
||||
break;
|
||||
case GGML_UNARY_OP_SILU:
|
||||
ggml_cann_activation<aclnnSiluGetWorkspaceSize, aclnnSilu>(
|
||||
ctx, dst);
|
||||
break;
|
||||
// TODO: Use faster gelu??
|
||||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
ggml_cann_activation<aclnnGeluGetWorkspaceSize, aclnnGelu>(
|
||||
ctx, dst);
|
||||
GGML_CANN_CALL_UNARY_OP(Silu);
|
||||
break;
|
||||
case GGML_UNARY_OP_GELU_QUICK: {
|
||||
auto lambda = [](ggml_backend_cann_context& ctx,
|
||||
aclTensor* acl_src,
|
||||
aclTensor* acl_dst) {
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, GeluV2, acl_src, 0, acl_dst);
|
||||
};
|
||||
ggml_cann_unary_op(lambda, ctx, dst);
|
||||
} break;
|
||||
case GGML_UNARY_OP_TANH:
|
||||
ggml_cann_activation<aclnnTanhGetWorkspaceSize, aclnnTanh>(
|
||||
ctx, dst);
|
||||
GGML_CANN_CALL_UNARY_OP(Tanh);
|
||||
break;
|
||||
case GGML_UNARY_OP_RELU:
|
||||
ggml_cann_activation<aclnnReluGetWorkspaceSize, aclnnRelu>(
|
||||
ctx, dst);
|
||||
GGML_CANN_CALL_UNARY_OP(Relu);
|
||||
break;
|
||||
case GGML_UNARY_OP_SIGMOID:
|
||||
GGML_CANN_CALL_UNARY_OP(Sigmoid);
|
||||
break;
|
||||
case GGML_UNARY_OP_HARDSIGMOID:
|
||||
ggml_cann_activation<aclnnHardsigmoidGetWorkspaceSize,
|
||||
aclnnHardsigmoid>(ctx, dst);
|
||||
GGML_CANN_CALL_UNARY_OP(Hardsigmoid);
|
||||
break;
|
||||
case GGML_UNARY_OP_HARDSWISH:
|
||||
ggml_cann_activation<aclnnHardswishGetWorkspaceSize,
|
||||
aclnnHardswish>(ctx, dst);
|
||||
GGML_CANN_CALL_UNARY_OP(Hardswish);
|
||||
break;
|
||||
case GGML_UNARY_OP_EXP:
|
||||
GGML_CANN_CALL_UNARY_OP(Exp);
|
||||
break;
|
||||
case GGML_UNARY_OP_ELU:
|
||||
ggml_cann_elu(ctx, dst);
|
||||
break;
|
||||
case GGML_UNARY_OP_SGN:
|
||||
GGML_CANN_CALL_UNARY_OP(Sign);
|
||||
break;
|
||||
case GGML_UNARY_OP_STEP:
|
||||
ggml_cann_step(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
@@ -1382,7 +1677,12 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
|
||||
ggml_cann_scale(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SQR:
|
||||
ggml_cann_sqr(ctx, dst);
|
||||
GGML_ASSERT(dst->src[1] == nullptr);
|
||||
dst->src[1] = dst->src[0];
|
||||
ggml_cann_binary_op<aclnn_mul>(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SQRT:
|
||||
GGML_CANN_CALL_UNARY_OP(Sqrt);
|
||||
break;
|
||||
case GGML_OP_CLAMP:
|
||||
ggml_cann_clamp(ctx, dst);
|
||||
@@ -1414,12 +1714,39 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
|
||||
case GGML_OP_POOL_2D:
|
||||
ggml_cann_pool2d(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SUM:
|
||||
ggml_cann_sum(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SUM_ROWS:
|
||||
ggml_cann_sum_rows(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_ARGSORT:
|
||||
ggml_cann_argsort(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_ARGMAX:
|
||||
ggml_cann_argmax(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_COS:
|
||||
ggml_cann_unary_op<aclnn_cos>(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SIN:
|
||||
ggml_cann_unary_op<aclnn_sin>(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_CONV_TRANSPOSE_1D:
|
||||
ggml_cann_conv_transpose_1d(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_LOG:
|
||||
GGML_CANN_CALL_UNARY_OP(Log);
|
||||
break;
|
||||
case GGML_OP_MEAN:
|
||||
ggml_cann_mean(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_PAD_REFLECT_1D:
|
||||
ggml_cann_pad_reflect_1d(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_COUNT_EQUAL:
|
||||
ggml_cann_count_equal(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
@@ -1458,21 +1785,15 @@ static void ggml_backend_cann_free(ggml_backend_t backend) {
|
||||
ACL_CHECK(aclrtSynchronizeDevice());
|
||||
ACL_CHECK(aclrtResetDevice(cann_ctx->device));
|
||||
|
||||
// finalize when last backend freed.
|
||||
if (cann_ctx->device == ggml_backend_cann_get_device_count() - 1) {
|
||||
ACL_CHECK(aclFinalize());
|
||||
}
|
||||
|
||||
delete cann_ctx;
|
||||
delete backend;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief Sets tensor data asynchronously in the CANN backend.
|
||||
*
|
||||
* This function asynchronously sets tensor data in the CANN backend. Depending
|
||||
* on the tensor type, it may perform data transformations before copying data
|
||||
* to the device.
|
||||
* This function asynchronously sets tensor data in the CANN backend.
|
||||
*
|
||||
* @param backend Pointer to the CANN backend structure.
|
||||
* @param tensor Pointer to the tensor structure to set data for.
|
||||
@@ -1487,23 +1808,28 @@ static void ggml_backend_cann_set_tensor_async(ggml_backend_t backend,
|
||||
size_t size) {
|
||||
ggml_backend_cann_context *cann_ctx =
|
||||
(ggml_backend_cann_context *)backend->context;
|
||||
ggml_backend_buffer_t buf =
|
||||
tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
|
||||
|
||||
if (!need_transform(tensor->type)) {
|
||||
ACL_CHECK(aclrtMemcpyAsync((char *)tensor->data + offset, size, data,
|
||||
size, ACL_MEMCPY_HOST_TO_DEVICE,
|
||||
cann_ctx->stream()));
|
||||
} else {
|
||||
void *transform_buffer = malloc(size);
|
||||
ggml_backend_cann_transform(tensor, data, transform_buffer);
|
||||
GGML_ASSERT(buf->buft == ggml_backend_cann_buffer_type(cann_ctx->device) &&
|
||||
"unsupported buffer type");
|
||||
GGML_ASSERT(!ggml_is_quantized(tensor->type));
|
||||
|
||||
ACL_CHECK(aclrtMemcpyAsync(
|
||||
(char *)tensor->data + offset, size, transform_buffer, size,
|
||||
ACL_MEMCPY_HOST_TO_DEVICE, cann_ctx->stream()));
|
||||
ACL_CHECK(aclrtSynchronizeStream(cann_ctx->stream()));
|
||||
free(transform_buffer);
|
||||
}
|
||||
ggml_cann_async_memcpy(cann_ctx, (char *)tensor->data + offset, data, size,
|
||||
ACL_MEMCPY_HOST_TO_DEVICE);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Gets tensor data asynchronously in the CANN backend.
|
||||
*
|
||||
* This function asynchronously gets tensor data in the CANN backend.
|
||||
*
|
||||
* @param backend Pointer to the CANN backend structure.
|
||||
* @param tensor Pointer to the tensor structure to get data from.
|
||||
* @param data Pointer to the host data to copy from the tensor.
|
||||
* @param offset Offset in bytes within the host data.
|
||||
* @param size Size of the data to copy in bytes.
|
||||
*/
|
||||
static void ggml_backend_cann_get_tensor_async(
|
||||
ggml_backend_t backend, const ggml_tensor *tensor, void *data,
|
||||
size_t offset, size_t size) {
|
||||
@@ -1514,20 +1840,11 @@ static void ggml_backend_cann_get_tensor_async(
|
||||
|
||||
GGML_ASSERT(buf->buft == ggml_backend_cann_buffer_type(cann_ctx->device) &&
|
||||
"unsupported buffer type");
|
||||
GGML_ASSERT(!ggml_is_quantized(tensor->type));
|
||||
|
||||
ggml_cann_async_memcpy(cann_ctx, data, (char *)tensor->data + offset, size,
|
||||
ACL_MEMCPY_DEVICE_TO_HOST);
|
||||
|
||||
if (!need_transform(tensor->type)) {
|
||||
ACL_CHECK(aclrtMemcpyAsync(data, size, (char *)tensor->data + offset,
|
||||
size, ACL_MEMCPY_DEVICE_TO_HOST,
|
||||
cann_ctx->stream()));
|
||||
} else {
|
||||
void *transform_buffer = malloc(size);
|
||||
ACL_CHECK(aclrtMemcpyAsync(
|
||||
transform_buffer, size, (char *)tensor->data + offset, size,
|
||||
ACL_MEMCPY_DEVICE_TO_HOST, cann_ctx->stream()));
|
||||
ACL_CHECK(aclrtSynchronizeStream(cann_ctx->stream()));
|
||||
ggml_backend_cann_transform_back(tensor, transform_buffer, data);
|
||||
free(transform_buffer);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -1587,6 +1904,8 @@ static bool ggml_backend_cann_cpy_tensor_async(
|
||||
ggml_cann_set_device(cann_ctx_src->device);
|
||||
ACL_CHECK(aclrtDeviceEnablePeerAccess(cann_ctx_dst->device, 0));
|
||||
|
||||
// wait for task_queue empty to keep task order.
|
||||
cann_ctx_src->task_queue.wait();
|
||||
ACL_CHECK(aclrtMemcpyAsync(dst->data, copy_size, src->data, copy_size,
|
||||
ACL_MEMCPY_DEVICE_TO_DEVICE,
|
||||
cann_ctx_src->stream()));
|
||||
@@ -1614,9 +1933,8 @@ static bool ggml_backend_cann_cpy_tensor_async(
|
||||
static void ggml_backend_cann_synchronize(ggml_backend_t backend) {
|
||||
ggml_backend_cann_context* cann_ctx =
|
||||
(ggml_backend_cann_context*)backend->context;
|
||||
|
||||
cann_ctx->task_queue.wait();
|
||||
ggml_cann_set_device(cann_ctx->device);
|
||||
|
||||
ACL_CHECK(aclrtSynchronizeStream(cann_ctx->stream()));
|
||||
}
|
||||
|
||||
@@ -1675,24 +1993,38 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
switch (op->op) {
|
||||
case GGML_OP_UNARY:
|
||||
switch (ggml_get_unary_op(op)) {
|
||||
case GGML_UNARY_OP_ABS:
|
||||
case GGML_UNARY_OP_NEG:
|
||||
case GGML_UNARY_OP_GELU:
|
||||
case GGML_UNARY_OP_SILU:
|
||||
case GGML_UNARY_OP_RELU:
|
||||
case GGML_UNARY_OP_SIGMOID:
|
||||
case GGML_UNARY_OP_HARDSIGMOID:
|
||||
case GGML_UNARY_OP_HARDSWISH:
|
||||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
case GGML_UNARY_OP_TANH:
|
||||
case GGML_UNARY_OP_EXP:
|
||||
case GGML_UNARY_OP_ELU:
|
||||
case GGML_UNARY_OP_SGN:
|
||||
case GGML_UNARY_OP_STEP:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
case GGML_OP_MUL_MAT: {
|
||||
switch (op->src[0]->type) {
|
||||
case GGML_TYPE_Q8_0:
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_Q4_0:
|
||||
return true;
|
||||
case GGML_TYPE_Q8_0:
|
||||
case GGML_TYPE_Q4_0:
|
||||
#ifdef ASCEND_310P
|
||||
// Q4 && Q8 per group is not suppor on 310p device
|
||||
return false;
|
||||
#endif
|
||||
// only support contiguous for quantized types.
|
||||
return ggml_is_contiguous(op->src[0]) &&
|
||||
ggml_is_contiguous(op->src[1]);
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
@@ -1704,7 +2036,6 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
switch (op->src[0]->type) {
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_Q4_0:
|
||||
case GGML_TYPE_Q8_0:
|
||||
return true;
|
||||
default:
|
||||
@@ -1712,16 +2043,21 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_CPY: {
|
||||
switch (op->type) {
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_Q8_0:
|
||||
case GGML_TYPE_Q4_0:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
ggml_tensor *src = op->src[0];
|
||||
if ((op->type != GGML_TYPE_F32 && op->type != GGML_TYPE_F16) ||
|
||||
(src->type != GGML_TYPE_F32 &&
|
||||
src->type != GGML_TYPE_F16)) {
|
||||
// only support F32 and F16.
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
if (!ggml_are_same_shape(op, src) && !ggml_is_contiguous(op)) {
|
||||
// unsupport dst is not contiguous.
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
} break;
|
||||
case GGML_OP_CONT: {
|
||||
// TODO: support GGML_TYPE_BF16
|
||||
switch (op->src[0]->type) {
|
||||
@@ -1734,13 +2070,14 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
}
|
||||
case GGML_OP_ROPE: {
|
||||
// TODO: with ops-test v == 1
|
||||
float * ext_factor = (float*)((int32_t*)op->op_params + 7);
|
||||
float ext_factor = 0.0f;
|
||||
memcpy(&ext_factor, (const float *) op->op_params + 7, sizeof(float));
|
||||
// TODO: n_dims <= ne0
|
||||
if (op->src[0]->ne[0] != op->op_params[1]) {
|
||||
return false;
|
||||
}
|
||||
// TODO: ext_factor != 0
|
||||
if (*ext_factor != 0) {
|
||||
if (ext_factor != 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -1752,6 +2089,9 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
return false;
|
||||
}
|
||||
|
||||
if(!ggml_is_contiguous(op->src[0])){
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
case GGML_OP_UPSCALE: {
|
||||
@@ -1760,11 +2100,31 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
if (op->src[0]->ne[2] * op->ne[3] != op->src[0]->ne[3] * op->ne[2]) {
|
||||
return false;
|
||||
}
|
||||
if (op->op_params[0] != GGML_SCALE_MODE_NEAREST) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
case GGML_OP_POOL_2D: {
|
||||
const int32_t * opts = (const int32_t *) op->op_params;
|
||||
#ifdef ASCEND_310P
|
||||
enum ggml_op_pool opt = static_cast<ggml_op_pool>(opts[0]);
|
||||
if(opt == GGML_OP_POOL_MAX){
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
const int k0 = opts[1];
|
||||
const int k1 = opts[2];
|
||||
const int p0 = opts[5];
|
||||
const int p1 = opts[6];
|
||||
// value of paddingH should be at most half of kernelH
|
||||
// value of paddingW should be at most half of kernelW
|
||||
return (p0 <= (k0 / 2)) && (p1 <= (k1 / 2));
|
||||
}
|
||||
case GGML_OP_SUM:
|
||||
case GGML_OP_DUP:
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_CONCAT:
|
||||
case GGML_OP_DUP:
|
||||
case GGML_OP_REPEAT:
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_RESHAPE:
|
||||
@@ -1773,15 +2133,17 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
case GGML_OP_TRANSPOSE:
|
||||
case GGML_OP_NORM:
|
||||
case GGML_OP_ADD:
|
||||
case GGML_OP_ADD1:
|
||||
case GGML_OP_SUB:
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
case GGML_OP_RMS_NORM:
|
||||
case GGML_OP_SCALE:
|
||||
case GGML_OP_SQR:
|
||||
case GGML_OP_SQRT:
|
||||
case GGML_OP_CLAMP:
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
case GGML_OP_POOL_2D:
|
||||
case GGML_OP_SUM_ROWS:
|
||||
case GGML_OP_ARGSORT:
|
||||
case GGML_OP_ACC:
|
||||
@@ -1790,6 +2152,14 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
case GGML_OP_ARANGE:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
case GGML_OP_ARGMAX:
|
||||
case GGML_OP_COS:
|
||||
case GGML_OP_SIN:
|
||||
case GGML_OP_CONV_TRANSPOSE_1D:
|
||||
case GGML_OP_LOG:
|
||||
case GGML_OP_MEAN:
|
||||
case GGML_OP_PAD_REFLECT_1D:
|
||||
case GGML_OP_COUNT_EQUAL:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
|
||||
@@ -1,30 +0,0 @@
|
||||
file(GLOB SRC_FILES
|
||||
get_row_f32.cpp
|
||||
get_row_f16.cpp
|
||||
get_row_q4_0.cpp
|
||||
get_row_q8_0.cpp
|
||||
quantize_f32_q8_0.cpp
|
||||
quantize_f16_q8_0.cpp
|
||||
quantize_float_to_q4_0.cpp
|
||||
dup.cpp
|
||||
)
|
||||
|
||||
set(ASCEND_CANN_PACKAGE_PATH ${CANN_INSTALL_DIR})
|
||||
set(RUN_MODE "npu" CACHE STRING "run mode: npu/sim")
|
||||
|
||||
if(EXISTS ${ASCEND_CANN_PACKAGE_PATH}/compiler/tikcpp/ascendc_kernel_cmake)
|
||||
set(ASCENDC_CMAKE_DIR ${ASCEND_CANN_PACKAGE_PATH}/compiler/tikcpp/ascendc_kernel_cmake)
|
||||
elseif(EXISTS ${ASCEND_CANN_PACKAGE_PATH}/ascendc_devkit/tikcpp/samples/cmake)
|
||||
set(ASCENDC_CMAKE_DIR ${ASCEND_CANN_PACKAGE_PATH}/ascendc_devkit/tikcpp/samples/cmake)
|
||||
else()
|
||||
message(FATAL_ERROR "ascendc_kernel_cmake does not exist, please check whether the compiler package is installed.")
|
||||
endif()
|
||||
include(${ASCENDC_CMAKE_DIR}/ascendc.cmake)
|
||||
|
||||
ascendc_library(ascendc_kernels STATIC
|
||||
${SRC_FILES}
|
||||
)
|
||||
|
||||
message(STATUS "CANN: compile ascend kernels witch SOC_TYPE:${SOC_TYPE}, SOC_VERSION:${SOC_VERSION}, compile macro:-D${SOC_TYPE_COMPILE_OPTION}.")
|
||||
ascendc_compile_definitions(ascendc_kernels PRIVATE "-D${SOC_TYPE_COMPILE_OPTION}")
|
||||
# ascendc_compile_definitions(ascendc_kernels PRIVATE -DASCENDC_DUMP)
|
||||
@@ -1,19 +0,0 @@
|
||||
#ifndef ASCENDC_KERNELS_H
|
||||
#define ASCENDC_KERNELS_H
|
||||
|
||||
#include "aclrtlaunch_ascendc_get_row_f32.h"
|
||||
#include "aclrtlaunch_ascendc_get_row_f16.h"
|
||||
#include "aclrtlaunch_ascendc_get_row_q8_0.h"
|
||||
#include "aclrtlaunch_ascendc_get_row_q4_0.h"
|
||||
|
||||
#include "aclrtlaunch_ascendc_quantize_f32_q8_0.h"
|
||||
#include "aclrtlaunch_ascendc_quantize_f16_q8_0.h"
|
||||
#include "aclrtlaunch_ascendc_quantize_f16_to_q4_0.h"
|
||||
#include "aclrtlaunch_ascendc_quantize_f32_to_q4_0.h"
|
||||
|
||||
#include "aclrtlaunch_ascendc_dup_by_rows_fp16.h"
|
||||
#include "aclrtlaunch_ascendc_dup_by_rows_fp32.h"
|
||||
#include "aclrtlaunch_ascendc_dup_by_rows_fp32_to_fp16.h"
|
||||
#include "aclrtlaunch_ascendc_dup_by_rows_fp16_to_fp32.h"
|
||||
|
||||
#endif // ASCENDC_KERNELS_H
|
||||
@@ -1,234 +0,0 @@
|
||||
#include "kernel_operator.h"
|
||||
|
||||
using namespace AscendC;
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
const int64_t SUPPORTED_MAX_DIM = 65535; // currently the limit of max block dim supportted by dup kernel is 65535template <typename SRC_T, typename DST_T>
|
||||
|
||||
template <typename SRC_T, typename DST_T>
|
||||
class DupByRows {
|
||||
public:
|
||||
__aicore__ inline DupByRows() {}
|
||||
__aicore__ inline void init(GM_ADDR src, GM_ADDR dst, int64_t *input_ne_ub,
|
||||
size_t *input_nb_ub) {
|
||||
/* Dup by rows when src is contigous on first dimension and dst is
|
||||
contiguous, each kernel process one row.
|
||||
*/
|
||||
|
||||
// Input has four dims.
|
||||
int64_t op_block_num = GetBlockNum();
|
||||
int64_t op_block_idx = GetBlockIdx();
|
||||
|
||||
// param
|
||||
num_rows = input_ne_ub[1] * input_ne_ub[2] * input_ne_ub[3];
|
||||
num_elem = input_ne_ub[0];
|
||||
|
||||
// index for (ne[1], ne[2], ne[3]): (idx_ne1, idx_ne2, idx_ne3)
|
||||
idx_ne3 = op_block_idx / (input_ne_ub[1] * input_ne_ub[2]);
|
||||
idx_ne2 = (op_block_idx - idx_ne3 * (input_ne_ub[1] * input_ne_ub[2]))
|
||||
/ (input_ne_ub[1]);
|
||||
idx_ne1 = op_block_idx - idx_ne3 * (input_ne_ub[1] * input_ne_ub[2])
|
||||
- idx_ne2 * input_ne_ub[1];
|
||||
|
||||
// src may not contiguous in dim [1,2,3], so stride decited by ne&nb
|
||||
src_stride = input_nb_ub[3] * idx_ne3 + input_nb_ub[2] * idx_ne2
|
||||
+ input_nb_ub[1] * idx_ne1;
|
||||
|
||||
// dst is contiguous
|
||||
dst_stride = op_block_idx * (input_ne_ub[0] * sizeof(DST_T));
|
||||
|
||||
src_gm.SetGlobalBuffer(reinterpret_cast<__gm__ SRC_T *>(src +
|
||||
src_stride));
|
||||
dst_gm.SetGlobalBuffer(reinterpret_cast<__gm__ DST_T *>(dst +
|
||||
dst_stride));
|
||||
|
||||
pipe.InitBuffer(src_queue, BUFFER_NUM, (sizeof(SRC_T) * num_elem +
|
||||
32 - 1) / 32 * 32);
|
||||
pipe.InitBuffer(dst_queue, BUFFER_NUM, (sizeof(DST_T) * num_elem +
|
||||
32 - 1) / 32 * 32);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_in() {
|
||||
LocalTensor<SRC_T> src_local = src_queue.AllocTensor<SRC_T>();
|
||||
const size_t elem_per_block = 32 / sizeof(SRC_T);
|
||||
size_t tail = num_elem % elem_per_block;
|
||||
size_t cpy_elements_len = tail > 0 ? num_elem + 1 : num_elem;
|
||||
DataCopy(src_local, src_gm, cpy_elements_len);
|
||||
src_queue.EnQue(src_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_out() {
|
||||
LocalTensor<DST_T> dst_local = dst_queue.DeQue<DST_T>();
|
||||
#ifdef ASCEND_310P
|
||||
const size_t elem_per_block = 32 / sizeof(DST_T);
|
||||
size_t tail = num_elem % elem_per_block;
|
||||
size_t len = num_elem & ~(elem_per_block - 1);
|
||||
if (len > 0) {
|
||||
DataCopy(dst_gm, dst_local, len);
|
||||
}
|
||||
if(tail != 0) {
|
||||
for (size_t i = tail; i < elem_per_block; i++) {
|
||||
dst_local[len + i].SetValue(0, 0);
|
||||
}
|
||||
SetAtomicAdd<float>();
|
||||
DataCopy(dst_gm[len], dst_local[len], elem_per_block);
|
||||
SetAtomicNone();
|
||||
}
|
||||
#else
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = num_elem * sizeof(DST_T);
|
||||
DataCopyPad(dst_gm, dst_local, dataCopyParams);
|
||||
#endif
|
||||
dst_queue.FreeTensor(dst_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void dup() {
|
||||
// main process, copy one row data from src to dst.
|
||||
copy_in();
|
||||
|
||||
LocalTensor<SRC_T> src_local = src_queue.DeQue<SRC_T>();
|
||||
LocalTensor<DST_T> dst_local = dst_queue.AllocTensor<DST_T>();
|
||||
|
||||
int32_t BLOCK_NUM = 32 / sizeof(DST_T);
|
||||
DataCopy(dst_local, src_local, (num_elem + BLOCK_NUM - 1)
|
||||
/ BLOCK_NUM * BLOCK_NUM);
|
||||
dst_queue.EnQue<DST_T>(dst_local);
|
||||
|
||||
src_queue.FreeTensor(src_local);
|
||||
copy_out();
|
||||
}
|
||||
|
||||
__aicore__ inline void dup_with_cast() {
|
||||
// main process, copy one row data from src to dst.
|
||||
// cast dtype from src to dst.
|
||||
copy_in();
|
||||
|
||||
LocalTensor<SRC_T> src_local = src_queue.DeQue<SRC_T>();
|
||||
LocalTensor<DST_T> dst_local = dst_queue.AllocTensor<DST_T>();
|
||||
|
||||
Cast(dst_local, src_local, RoundMode::CAST_NONE, num_elem);
|
||||
dst_queue.EnQue<DST_T>(dst_local);
|
||||
|
||||
src_queue.FreeTensor(src_local);
|
||||
copy_out();
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
TPipe pipe;
|
||||
GlobalTensor<SRC_T> src_gm;
|
||||
GlobalTensor<DST_T> dst_gm;
|
||||
|
||||
int64_t num_rows;
|
||||
int64_t num_elem;
|
||||
int64_t idx_ne3;
|
||||
int64_t idx_ne2;
|
||||
int64_t idx_ne1;
|
||||
int64_t src_stride;
|
||||
int64_t dst_stride;
|
||||
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> src_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> dst_queue;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
||||
auto gm_ptr = (__gm__ uint8_t *)gm;
|
||||
auto ub_ptr = (uint8_t *)(ub);
|
||||
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
||||
*ub_ptr = *gm_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp16(
|
||||
GM_ADDR src_gm,
|
||||
GM_ADDR dst_gm,
|
||||
GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm,
|
||||
GM_ADDR output_ne_gm,
|
||||
GM_ADDR output_nb_gm) {
|
||||
|
||||
int64_t input_ne_ub[4];
|
||||
size_t input_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
size_t output_nb_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
||||
|
||||
DupByRows<half, half> op;
|
||||
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
|
||||
op.dup();
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp32(
|
||||
GM_ADDR src_gm,
|
||||
GM_ADDR dst_gm,
|
||||
GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm,
|
||||
GM_ADDR output_ne_gm,
|
||||
GM_ADDR output_nb_gm) {
|
||||
int64_t input_ne_ub[4];
|
||||
size_t input_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
size_t output_nb_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
||||
|
||||
DupByRows<float, float> op;
|
||||
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
|
||||
op.dup();
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp32_to_fp16(
|
||||
GM_ADDR src_gm,
|
||||
GM_ADDR dst_gm,
|
||||
GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm,
|
||||
GM_ADDR output_ne_gm,
|
||||
GM_ADDR output_nb_gm) {
|
||||
|
||||
int64_t input_ne_ub[4];
|
||||
size_t input_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
size_t output_nb_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
||||
|
||||
DupByRows<float, half> op;
|
||||
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
|
||||
op.dup_with_cast();
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp16_to_fp32(
|
||||
GM_ADDR src_gm,
|
||||
GM_ADDR dst_gm,
|
||||
GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm,
|
||||
GM_ADDR output_ne_gm,
|
||||
GM_ADDR output_nb_gm) {
|
||||
|
||||
// copy params from gm to ub.
|
||||
int64_t input_ne_ub[4];
|
||||
size_t input_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
size_t output_nb_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
||||
|
||||
DupByRows<half, float> op;
|
||||
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
|
||||
op.dup_with_cast();
|
||||
}
|
||||
@@ -1,197 +0,0 @@
|
||||
#include "kernel_operator.h"
|
||||
|
||||
// optimize me. Use template to avoid copy code.
|
||||
using namespace AscendC;
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
|
||||
class GET_ROW_F16 {
|
||||
public:
|
||||
__aicore__ inline GET_ROW_F16() {}
|
||||
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
|
||||
int64_t *input_ne_ub, size_t *input_nb_ub,
|
||||
int64_t *indices_ne_ub, size_t *indices_nb_ub,
|
||||
int64_t *output_ne_ub, size_t *output_nb_ub) {
|
||||
// TODO, use template for F16/f32
|
||||
int64_t op_block_num = GetBlockNum();
|
||||
op_block_idx = GetBlockIdx();
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
input_ne[i] = input_ne_ub[i];
|
||||
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
|
||||
|
||||
indices_ne[i] = indices_ne_ub[i];
|
||||
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
|
||||
|
||||
output_ne[i] = output_ne_ub[i];
|
||||
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
|
||||
}
|
||||
|
||||
// Indices has two dims. n_elements = all rows should get.
|
||||
// dr, all rows should this thread get.
|
||||
uint64_t n_elements =
|
||||
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
|
||||
dr = n_elements / op_block_num;
|
||||
|
||||
uint64_t tails = n_elements % op_block_num;
|
||||
if (op_block_idx < tails) {
|
||||
dr += 1;
|
||||
ir = dr * op_block_idx;
|
||||
} else {
|
||||
ir = dr * op_block_idx + tails;
|
||||
}
|
||||
|
||||
input_gm.SetGlobalBuffer((__gm__ half *)input);
|
||||
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
|
||||
output_gm.SetGlobalBuffer((__gm__ float *)output);
|
||||
|
||||
uint64_t input_local_buffer_size = ((input_ne[0] * sizeof(half) + 31)
|
||||
& ~31);
|
||||
uint64_t output_local_buffer_size = ((input_ne[0] * sizeof(float) + 31)
|
||||
& ~31);
|
||||
|
||||
local_buffer_elems = input_local_buffer_size / sizeof(half);
|
||||
|
||||
// TODO, consider long row that can't put in UB.
|
||||
// All data should asign to 32. It's ok because all data is align to 32.
|
||||
pipe.InitBuffer(input_queue, BUFFER_NUM, input_local_buffer_size);
|
||||
pipe.InitBuffer(output_queue, BUFFER_NUM, output_local_buffer_size);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_in(uint32_t offset, size_t len) {
|
||||
size_t origin_len = len;
|
||||
LocalTensor<half> input_local = input_queue.AllocTensor<half>();
|
||||
const size_t elem_per_block = 32 / sizeof(half);
|
||||
size_t tail = len % elem_per_block;
|
||||
len = len & ~(elem_per_block - 1);
|
||||
if(tail != 0) {
|
||||
len += elem_per_block;
|
||||
}
|
||||
DataCopy(input_local, input_gm[offset], len);
|
||||
input_queue.EnQue(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_out(uint32_t offset, size_t len) {
|
||||
LocalTensor<float> output_local = output_queue.DeQue<float>();
|
||||
const size_t elem_per_block = 32 / sizeof(float);
|
||||
size_t tail = len % elem_per_block;
|
||||
len = len & ~(elem_per_block - 1);
|
||||
if (len > 0) {
|
||||
DataCopy(output_gm[offset], output_local, len);
|
||||
}
|
||||
|
||||
if(tail != 0) {
|
||||
#ifdef ASCEND_310P
|
||||
for (size_t i = tail; i < elem_per_block; i++) {
|
||||
output_local[len + i].SetValue(0, 0);
|
||||
}
|
||||
SetAtomicAdd<float>();
|
||||
DataCopy(output_gm[offset + len], output_local[len], elem_per_block);
|
||||
SetAtomicNone();
|
||||
#else
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = tail * sizeof(float);
|
||||
DataCopyPad(output_gm[offset + len], output_local[len],
|
||||
dataCopyParams);
|
||||
#endif
|
||||
}
|
||||
output_queue.FreeTensor(output_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate_row(int64_t idx) {
|
||||
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
|
||||
const int64_t indices_ne1_idx =
|
||||
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
|
||||
indices_ne[0];
|
||||
const int64_t indices_ne0_idx =
|
||||
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
|
||||
indices_ne1_idx * indices_ne[0]);
|
||||
|
||||
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
|
||||
indices_ne1_idx * indices_stride[1] +
|
||||
indices_ne2_idx * indices_stride[2];
|
||||
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
|
||||
|
||||
const int64_t input_offset = selected_row_idx * input_stride[1] +
|
||||
indices_ne1_idx * input_stride[2] +
|
||||
indices_ne2_idx * input_stride[3];
|
||||
|
||||
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
|
||||
indices_ne1_idx * output_stride[2] +
|
||||
indices_ne2_idx * output_stride[3];
|
||||
|
||||
copy_in(input_offset, input_ne[0]);
|
||||
LocalTensor<half> input_local = input_queue.DeQue<half>();
|
||||
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
|
||||
|
||||
Cast(output_local, input_local, RoundMode::CAST_NONE,
|
||||
local_buffer_elems);
|
||||
output_queue.EnQue(output_local);
|
||||
copy_out(output_offset, input_ne[0]);
|
||||
|
||||
input_queue.FreeTensor(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate() {
|
||||
for (int64_t i = ir; i < ir + dr; i++) {
|
||||
calculate_row(i);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
int64_t input_ne[4];
|
||||
size_t input_stride[4];
|
||||
|
||||
int64_t indices_ne[4];
|
||||
size_t indices_stride[4];
|
||||
|
||||
int64_t output_ne[4];
|
||||
size_t output_stride[4];
|
||||
|
||||
size_t local_buffer_elems;
|
||||
|
||||
int64_t ir;
|
||||
int64_t dr;
|
||||
|
||||
TPipe pipe;
|
||||
GlobalTensor<half> input_gm;
|
||||
GlobalTensor<int32_t> indices_gm;
|
||||
GlobalTensor<float> output_gm;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
||||
int64_t op_block_idx;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
||||
auto gm_ptr = (__gm__ uint8_t *)gm;
|
||||
auto ub_ptr = (uint8_t *)(ub);
|
||||
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
||||
*ub_ptr = *gm_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_get_row_f16(
|
||||
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
|
||||
GM_ADDR input_ne_gm, GM_ADDR input_nb_gm, GM_ADDR indices_ne_gm,
|
||||
GM_ADDR indices_nb_gm, GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
|
||||
int64_t input_ne_ub[4];
|
||||
size_t input_nb_ub[4];
|
||||
int64_t indices_ne_ub[4];
|
||||
size_t indices_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
size_t output_nb_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
||||
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
|
||||
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
||||
|
||||
GET_ROW_F16 op;
|
||||
op.init(input_gm, indices_gm, output_gm, input_ne_ub, input_nb_ub,
|
||||
indices_ne_ub, indices_nb_ub, output_ne_ub, output_nb_ub);
|
||||
op.calculate();
|
||||
}
|
||||
@@ -1,190 +0,0 @@
|
||||
#include "kernel_operator.h"
|
||||
|
||||
// optimize me. Use template to avoid copy code.
|
||||
using namespace AscendC;
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
|
||||
class GET_ROW_F32 {
|
||||
public:
|
||||
__aicore__ inline GET_ROW_F32() {}
|
||||
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
|
||||
int64_t *input_ne_ub, size_t *input_nb_ub,
|
||||
int64_t *indices_ne_ub, size_t *indices_nb_ub,
|
||||
int64_t *output_ne_ub, size_t *output_nb_ub) {
|
||||
int64_t op_block_num = GetBlockNum();
|
||||
op_block_idx = GetBlockIdx();
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
input_ne[i] = input_ne_ub[i];
|
||||
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
|
||||
|
||||
indices_ne[i] = indices_ne_ub[i];
|
||||
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
|
||||
|
||||
output_ne[i] = output_ne_ub[i];
|
||||
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
|
||||
}
|
||||
|
||||
// Indices has two dims. n_elements = all rows should get.
|
||||
// dr, all rows should this thread get.
|
||||
uint64_t n_elements =
|
||||
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
|
||||
dr = n_elements / op_block_num;
|
||||
|
||||
uint64_t tails = n_elements % op_block_num;
|
||||
if (op_block_idx < tails) {
|
||||
dr += 1;
|
||||
ir = dr * op_block_idx;
|
||||
} else {
|
||||
ir = dr * op_block_idx + tails;
|
||||
}
|
||||
|
||||
input_gm.SetGlobalBuffer((__gm__ float *)input);
|
||||
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
|
||||
output_gm.SetGlobalBuffer((__gm__ float *)output);
|
||||
|
||||
uint64_t local_buffer_size = ((input_ne[0] * sizeof(float) + 31) & ~31);
|
||||
local_buffer_elems = local_buffer_size / sizeof(float);
|
||||
|
||||
// TODO, consider long row that can't put in UB.
|
||||
// All data should asign to 32. It's ok because all data is align to 32.
|
||||
pipe.InitBuffer(input_queue, BUFFER_NUM, local_buffer_size);
|
||||
pipe.InitBuffer(output_queue, BUFFER_NUM, local_buffer_size);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_in(uint32_t offset, size_t len) {
|
||||
LocalTensor<float> input_local = input_queue.AllocTensor<float>();
|
||||
const size_t elem_per_block = 32 / sizeof(float);
|
||||
size_t tail = len % elem_per_block;
|
||||
len = len & ~(elem_per_block - 1);
|
||||
if(tail != 0) {
|
||||
len += elem_per_block;
|
||||
}
|
||||
DataCopy(input_local, input_gm[offset], len);
|
||||
input_queue.EnQue(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_out(uint32_t offset, size_t len) {
|
||||
LocalTensor<float> output_local = output_queue.DeQue<float>();
|
||||
const size_t elem_per_block = 32 / sizeof(float);
|
||||
size_t tail = len % elem_per_block;
|
||||
len = len & ~(elem_per_block - 1);
|
||||
if (len > 0) {
|
||||
DataCopy(output_gm[offset], output_local, len);
|
||||
}
|
||||
|
||||
if(tail != 0) {
|
||||
#ifdef ASCEND_310P
|
||||
for (size_t i = tail; i < elem_per_block; i++) {
|
||||
output_local[len + i].SetValue(0, 0);
|
||||
}
|
||||
SetAtomicAdd<float>();
|
||||
DataCopy(output_gm[offset + len], output_local[len], elem_per_block);
|
||||
SetAtomicNone();
|
||||
#else
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = tail * sizeof(float);
|
||||
DataCopyPad(output_gm[offset + len], output_local[len],
|
||||
dataCopyParams);
|
||||
#endif
|
||||
}
|
||||
output_queue.FreeTensor(output_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate_row(int64_t idx) {
|
||||
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
|
||||
const int64_t indices_ne1_idx =
|
||||
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
|
||||
indices_ne[0];
|
||||
const int64_t indices_ne0_idx =
|
||||
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
|
||||
indices_ne1_idx * indices_ne[0]);
|
||||
|
||||
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
|
||||
indices_ne1_idx * indices_stride[1] +
|
||||
indices_ne2_idx * indices_stride[2];
|
||||
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
|
||||
|
||||
const int64_t input_offset = selected_row_idx * input_stride[1] +
|
||||
indices_ne1_idx * input_stride[2] +
|
||||
indices_ne2_idx * input_stride[3];
|
||||
|
||||
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
|
||||
indices_ne1_idx * output_stride[2] +
|
||||
indices_ne2_idx * output_stride[3];
|
||||
|
||||
copy_in(input_offset, input_ne[0]);
|
||||
LocalTensor<float> input_local = input_queue.DeQue<float>();
|
||||
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
|
||||
|
||||
DataCopy(output_local, input_local, local_buffer_elems);
|
||||
output_queue.EnQue(output_local);
|
||||
copy_out(output_offset, input_ne[0]);
|
||||
|
||||
input_queue.FreeTensor(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate() {
|
||||
for (int64_t i = ir; i < ir + dr; i++) {
|
||||
calculate_row(i);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
int64_t input_ne[4];
|
||||
size_t input_stride[4];
|
||||
|
||||
int64_t indices_ne[4];
|
||||
size_t indices_stride[4];
|
||||
|
||||
int64_t output_ne[4];
|
||||
size_t output_stride[4];
|
||||
|
||||
size_t local_buffer_elems;
|
||||
|
||||
int64_t ir;
|
||||
int64_t dr;
|
||||
|
||||
TPipe pipe;
|
||||
GlobalTensor<float> input_gm;
|
||||
GlobalTensor<int32_t> indices_gm;
|
||||
GlobalTensor<float> output_gm;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
||||
int64_t op_block_idx;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
||||
auto gm_ptr = (__gm__ uint8_t *)gm;
|
||||
auto ub_ptr = (uint8_t *)(ub);
|
||||
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
||||
*ub_ptr = *gm_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_get_row_f32(
|
||||
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
|
||||
GM_ADDR input_ne_gm, GM_ADDR input_nb_gm, GM_ADDR indices_ne_gm,
|
||||
GM_ADDR indices_nb_gm, GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
|
||||
int64_t input_ne_ub[4];
|
||||
size_t input_nb_ub[4];
|
||||
int64_t indices_ne_ub[4];
|
||||
size_t indices_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
size_t output_nb_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
||||
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
|
||||
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
||||
|
||||
GET_ROW_F32 op;
|
||||
op.init(input_gm, indices_gm, output_gm, input_ne_ub, input_nb_ub,
|
||||
indices_ne_ub, indices_nb_ub, output_ne_ub, output_nb_ub);
|
||||
op.calculate();
|
||||
}
|
||||
@@ -1,204 +0,0 @@
|
||||
#include "kernel_operator.h"
|
||||
|
||||
// optimize me. Use template to avoid copy code.
|
||||
using namespace AscendC;
|
||||
#ifdef ASCEND_310P // 310P not support 4bit get row
|
||||
extern "C" __global__ __aicore__ void ascendc_get_row_q4_0(
|
||||
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
|
||||
GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm,
|
||||
GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
|
||||
// let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
|
||||
printf("Ascend310P not support 4bit get row.\n");
|
||||
}
|
||||
#else
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
|
||||
#define QK4_0 32
|
||||
|
||||
class GET_ROW_Q4_0 {
|
||||
public:
|
||||
__aicore__ inline GET_ROW_Q4_0() {}
|
||||
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
|
||||
int64_t *input_ne_ub, int64_t *indices_ne_ub,
|
||||
size_t *indices_nb_ub, int64_t *output_ne_ub,
|
||||
size_t *output_nb_ub) {
|
||||
int64_t op_block_num = GetBlockNum();
|
||||
int64_t op_block_idx = GetBlockIdx();
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
input_ne[i] = input_ne_ub[i];
|
||||
indices_ne[i] = indices_ne_ub[i];
|
||||
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
|
||||
scale_ne[i] = input_ne_ub[i];
|
||||
output_ne[i] = output_ne_ub[i];
|
||||
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
|
||||
}
|
||||
|
||||
// one scale for a group.
|
||||
scale_ne[0] /= QK4_0;
|
||||
|
||||
input_stride[0] = 1;
|
||||
scale_stride[0] = 1;
|
||||
output_stride[0] = 1;
|
||||
for (int i = 1; i < 4; i++) {
|
||||
input_stride[i] = input_stride[i - 1] * input_ne[i - 1];
|
||||
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
|
||||
}
|
||||
|
||||
group_size_in_row = input_ne[0] / QK4_0;
|
||||
int64_t scale_offset = input_ne[0] * input_ne[1] * input_ne[2] *
|
||||
input_ne[3] / 2;
|
||||
|
||||
// Indices has two dims. n_elements = all rows should get.
|
||||
// dr, all rows should this thread get.
|
||||
uint64_t n_elements =
|
||||
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
|
||||
dr = n_elements / op_block_num;
|
||||
|
||||
uint64_t tails = n_elements % op_block_num;
|
||||
if (op_block_idx < tails) {
|
||||
dr += 1;
|
||||
ir = dr * op_block_idx;
|
||||
} else {
|
||||
ir = dr * op_block_idx + tails;
|
||||
}
|
||||
|
||||
input_gm.SetGlobalBuffer((__gm__ int4b_t *)input);
|
||||
scale_gm.SetGlobalBuffer((__gm__ half *)(input + scale_offset));
|
||||
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
|
||||
output_gm.SetGlobalBuffer((__gm__ float *)output);
|
||||
|
||||
pipe.InitBuffer(input_queue, BUFFER_NUM, QK4_0 * sizeof(int4b_t));
|
||||
pipe.InitBuffer(cast_queue, BUFFER_NUM, QK4_0 * sizeof(half));
|
||||
pipe.InitBuffer(output_queue, BUFFER_NUM, QK4_0 * sizeof(float));
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_in(uint32_t offset) {
|
||||
LocalTensor<int4b_t> input_local = input_queue.AllocTensor<int4b_t>();
|
||||
// 32 * sizeof(int4b_t) = 16, which is not aligned to 32, why no error?
|
||||
DataCopy(input_local, input_gm[offset], QK4_0);
|
||||
input_queue.EnQue(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_out(uint32_t offset) {
|
||||
LocalTensor<float> output_local = output_queue.DeQue<float>();
|
||||
DataCopy(output_gm[offset], output_local, QK4_0);
|
||||
output_queue.FreeTensor(output_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate_group(int64_t idx, int64_t group) {
|
||||
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
|
||||
const int64_t indices_ne1_idx =
|
||||
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
|
||||
indices_ne[0];
|
||||
const int64_t indices_ne0_idx =
|
||||
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
|
||||
indices_ne1_idx * indices_ne[0]);
|
||||
|
||||
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
|
||||
indices_ne1_idx * indices_stride[1] +
|
||||
indices_ne2_idx * indices_stride[2];
|
||||
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
|
||||
|
||||
const int64_t input_offset = selected_row_idx * input_stride[1] +
|
||||
indices_ne1_idx * input_stride[2] +
|
||||
indices_ne2_idx * input_stride[3] +
|
||||
group * QK4_0;
|
||||
const int64_t scale_offset = selected_row_idx * scale_stride[1] +
|
||||
indices_ne1_idx * scale_stride[2] +
|
||||
indices_ne2_idx * scale_stride[3] + group;
|
||||
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
|
||||
indices_ne1_idx * output_stride[2] +
|
||||
indices_ne2_idx * output_stride[3] +
|
||||
group * QK4_0;
|
||||
|
||||
copy_in(input_offset);
|
||||
LocalTensor<int4b_t> input_local = input_queue.DeQue<int4b_t>();
|
||||
LocalTensor<half> cast_local = cast_queue.AllocTensor<half>();
|
||||
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
|
||||
|
||||
// TODO: cast more data to speed up.
|
||||
Cast(cast_local, input_local, RoundMode::CAST_NONE, QK4_0);
|
||||
Cast(output_local, cast_local, RoundMode::CAST_NONE, QK4_0);
|
||||
|
||||
// Only mul need compile by group.
|
||||
half scale = scale_gm.GetValue(scale_offset);
|
||||
|
||||
Muls(output_local, output_local, (float)scale, QK4_0);
|
||||
|
||||
input_queue.FreeTensor(input_local);
|
||||
cast_queue.FreeTensor(cast_local);
|
||||
output_queue.EnQue(output_local);
|
||||
|
||||
copy_out(output_offset);
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate() {
|
||||
for (int64_t i = ir; i < ir + dr; i++) {
|
||||
for (int64_t j = 0; j < group_size_in_row; j++) {
|
||||
calculate_group(i, j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
int64_t input_ne[4];
|
||||
size_t input_stride[4];
|
||||
|
||||
int64_t scale_ne[4];
|
||||
size_t scale_stride[4];
|
||||
|
||||
int64_t indices_ne[4];
|
||||
size_t indices_stride[4];
|
||||
|
||||
int64_t output_ne[4];
|
||||
size_t output_stride[4];
|
||||
|
||||
int64_t ir;
|
||||
int64_t dr;
|
||||
|
||||
int64_t group_size_in_row;
|
||||
|
||||
TPipe pipe;
|
||||
GlobalTensor<int4b_t> input_gm;
|
||||
GlobalTensor<half> scale_gm;
|
||||
GlobalTensor<int32_t> indices_gm;
|
||||
GlobalTensor<float> output_gm;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> cast_queue;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
||||
auto gm_ptr = (__gm__ uint8_t *)gm;
|
||||
auto ub_ptr = (uint8_t *)(ub);
|
||||
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
||||
*ub_ptr = *gm_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_get_row_q4_0(
|
||||
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
|
||||
GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm,
|
||||
GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
|
||||
int64_t input_ne_ub[4];
|
||||
int64_t indices_ne_ub[4];
|
||||
size_t indices_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
size_t output_nb_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
|
||||
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
||||
|
||||
GET_ROW_Q4_0 op;
|
||||
op.init(input_gm, indices_gm, output_gm, input_ne_ub, indices_ne_ub,
|
||||
indices_nb_ub, output_ne_ub, output_nb_ub);
|
||||
op.calculate();
|
||||
}
|
||||
|
||||
#endif // #ifdef ASCEND_310P
|
||||
@@ -1,191 +0,0 @@
|
||||
#include "kernel_operator.h"
|
||||
|
||||
// optimize me. Use template to avoid copy code.
|
||||
using namespace AscendC;
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
|
||||
#define QK8_0 32
|
||||
|
||||
class GET_ROW_Q8_0 {
|
||||
public:
|
||||
__aicore__ inline GET_ROW_Q8_0() {}
|
||||
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
|
||||
int64_t *input_ne_ub, int64_t *indices_ne_ub,
|
||||
size_t *indices_nb_ub, int64_t *output_ne_ub,
|
||||
size_t *output_nb_ub) {
|
||||
int64_t op_block_num = GetBlockNum();
|
||||
int64_t op_block_idx = GetBlockIdx();
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
input_ne[i] = input_ne_ub[i];
|
||||
indices_ne[i] = indices_ne_ub[i];
|
||||
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
|
||||
scale_ne[i] = input_ne_ub[i];
|
||||
output_ne[i] = output_ne_ub[i];
|
||||
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
|
||||
}
|
||||
|
||||
// one scale for a group.
|
||||
scale_ne[0] /= QK8_0;
|
||||
|
||||
input_stride[0] = 1;
|
||||
scale_stride[0] = 1;
|
||||
output_stride[0] = 1;
|
||||
for (int i = 1; i < 4; i++) {
|
||||
input_stride[i] = input_stride[i - 1] * input_ne[i - 1];
|
||||
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
|
||||
}
|
||||
|
||||
group_size_in_row = input_ne[0] / QK8_0;
|
||||
int64_t scale_offset = input_ne[0] * input_ne[1] * input_ne[2] *
|
||||
input_ne[3] * sizeof(int8_t);
|
||||
|
||||
// Indices has two dims. n_elements = all rows should get.
|
||||
// dr, all rows should this thread get.
|
||||
uint64_t n_elements =
|
||||
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
|
||||
dr = n_elements / op_block_num;
|
||||
|
||||
uint64_t tails = n_elements % op_block_num;
|
||||
if (op_block_idx < tails) {
|
||||
dr += 1;
|
||||
ir = dr * op_block_idx;
|
||||
} else {
|
||||
ir = dr * op_block_idx + tails;
|
||||
}
|
||||
|
||||
input_gm.SetGlobalBuffer((__gm__ int8_t *)input);
|
||||
scale_gm.SetGlobalBuffer((__gm__ half *)(input + scale_offset));
|
||||
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
|
||||
output_gm.SetGlobalBuffer((__gm__ float *)output);
|
||||
|
||||
pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t));
|
||||
pipe.InitBuffer(cast_queue, BUFFER_NUM, QK8_0 * sizeof(half));
|
||||
pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(float));
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_in(uint32_t offset) {
|
||||
LocalTensor<int8_t> input_local = input_queue.AllocTensor<int8_t>();
|
||||
DataCopy(input_local, input_gm[offset], QK8_0);
|
||||
input_queue.EnQue(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_out(uint32_t offset) {
|
||||
LocalTensor<float> output_local = output_queue.DeQue<float>();
|
||||
DataCopy(output_gm[offset], output_local, QK8_0);
|
||||
output_queue.FreeTensor(output_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate_group(int64_t idx, int64_t group) {
|
||||
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
|
||||
const int64_t indices_ne1_idx =
|
||||
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
|
||||
indices_ne[0];
|
||||
const int64_t indices_ne0_idx =
|
||||
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
|
||||
indices_ne1_idx * indices_ne[0]);
|
||||
|
||||
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
|
||||
indices_ne1_idx * indices_stride[1] +
|
||||
indices_ne2_idx * indices_stride[2];
|
||||
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
|
||||
|
||||
const int64_t input_offset = selected_row_idx * input_stride[1] +
|
||||
indices_ne1_idx * input_stride[2] +
|
||||
indices_ne2_idx * input_stride[3] +
|
||||
group * QK8_0;
|
||||
const int64_t scale_offset = selected_row_idx * scale_stride[1] +
|
||||
indices_ne1_idx * scale_stride[2] +
|
||||
indices_ne2_idx * scale_stride[3] + group;
|
||||
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
|
||||
indices_ne1_idx * output_stride[2] +
|
||||
indices_ne2_idx * output_stride[3] +
|
||||
group * QK8_0;
|
||||
|
||||
copy_in(input_offset);
|
||||
LocalTensor<int8_t> input_local = input_queue.DeQue<int8_t>();
|
||||
LocalTensor<half> cast_local = cast_queue.AllocTensor<half>();
|
||||
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
|
||||
|
||||
// TODO: cast more data to speed up.
|
||||
Cast(cast_local, input_local, RoundMode::CAST_NONE, QK8_0);
|
||||
Cast(output_local, cast_local, RoundMode::CAST_NONE, QK8_0);
|
||||
|
||||
// Only mul need compile by group.
|
||||
half scale = scale_gm.GetValue(scale_offset);
|
||||
Muls(output_local, output_local, (float)scale, QK8_0);
|
||||
|
||||
input_queue.FreeTensor(input_local);
|
||||
cast_queue.FreeTensor(cast_local);
|
||||
output_queue.EnQue(output_local);
|
||||
|
||||
copy_out(output_offset);
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate() {
|
||||
for (int64_t i = ir; i < ir + dr; i++) {
|
||||
for (int64_t j = 0; j < group_size_in_row; j++) {
|
||||
calculate_group(i, j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
int64_t input_ne[4];
|
||||
size_t input_stride[4];
|
||||
|
||||
int64_t scale_ne[4];
|
||||
size_t scale_stride[4];
|
||||
|
||||
int64_t indices_ne[4];
|
||||
size_t indices_stride[4];
|
||||
|
||||
int64_t output_ne[4];
|
||||
size_t output_stride[4];
|
||||
|
||||
int64_t ir;
|
||||
int64_t dr;
|
||||
|
||||
int64_t group_size_in_row;
|
||||
|
||||
TPipe pipe;
|
||||
GlobalTensor<int8_t> input_gm;
|
||||
GlobalTensor<half> scale_gm;
|
||||
GlobalTensor<int32_t> indices_gm;
|
||||
GlobalTensor<float> output_gm;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> cast_queue;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
||||
auto gm_ptr = (__gm__ uint8_t *)gm;
|
||||
auto ub_ptr = (uint8_t *)(ub);
|
||||
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
||||
*ub_ptr = *gm_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_get_row_q8_0(
|
||||
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
|
||||
GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm,
|
||||
GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
|
||||
int64_t input_ne_ub[4];
|
||||
int64_t indices_ne_ub[4];
|
||||
size_t indices_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
size_t output_nb_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
|
||||
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
||||
|
||||
GET_ROW_Q8_0 op;
|
||||
op.init(input_gm, indices_gm, output_gm, input_ne_ub, indices_ne_ub,
|
||||
indices_nb_ub, output_ne_ub, output_nb_ub);
|
||||
op.calculate();
|
||||
}
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user