Compare commits

...

165 Commits
b4982 ... b5147

Author SHA1 Message Date
hipudding
7a395f67a7 CANN: Add support for async operator submission (#12864)
Submit operators using asynchronous threads to improve performance.

Use the environment variable GGML_CANN_ASYNC_MODE to control whether
asynchronous submission is enabled. It is disabled by default.

Testing shows a 10%–20% performance improvement in scenarios with
small parameter sizes, especially in quantized models.
2025-04-17 20:34:16 +08:00
Mikko Juola
971f245b3b llama : recognize IBM Granite 3.3 FIM tokens (#12988)
The Granite's FIM tokens are very similar to Qwen's; it's just that
they use underscore instead of a dash. So <fim_middle> for example
instead of <fim-middle>.

Opening up tokenizer_config.json in ibm-granite/granite-3.3-8b-base
shows:

```
    "<fim_prefix>",
    "<fim_middle>",
    "<fim_suffix>",
    "<fim_pad>",
    ...
    "<reponame>",
```
2025-04-17 11:37:05 +03:00
kimminsu
12b17501e6 opencl: fix incorrect local_size index in profiling log (#12868) 2025-04-16 14:25:57 -07:00
Jeff Bolz
015022bb53 vulkan: enable coopmat2 FA gqa and split_k optimizations more often (#12931)
The grouped query attention optmization doesn't require a power of two ratio,
the only thing relying on it was the modulo operation written as bitwise &.

split_k need not depend on gqa_ratio - enable it any time there's only one
workgroup in the X dimension. The shader gets the split index from the x coord,
and multiple workgroups in the X dimension (pre-split) indicates a larger
FA operation that wouldn't need splitting.
2025-04-16 20:37:25 +02:00
Chenguang Li
b43d89e311 CANN: Add 310P operator support check (#12962) 2025-04-16 16:21:05 +08:00
lhez
80f19b4186 opencl: split ggml-opencl.cl into multiple files and cleanup (#12886)
* opencl: refactor - split the kernel files

---------

Co-authored-by: Shangqing Gu <quic_shawngu@quicinc.com>

* opencl: split more kernels into separate files

* opencl: specify subgroup size instead of querying it

* opencl: refine Adreno cl compiler version parsing

* opencl: skip some kernels not used by Adreno on old compilers

* opencl: refine logic for selecting Adreno kernels

* opencl: refine Adreno cl compiler version

* opencl: cleanup preprocessor for kernels

* opencl: consider Adreno CL compiler on Windows

* opencl: add final newline for `mul_mv_f16_f16.cl`

---------

Co-authored-by: Shangqing Gu <quic_shawngu@quicinc.com>
2025-04-15 12:26:00 -07:00
Georgi Gerganov
f8f820cc4d metal : add FA-vec kernels for head size 96 (#12952)
ggml-ci
2025-04-15 14:45:05 +03:00
hipudding
54a7272043 CANN: Add x86 build ci (#12950)
* CANN: Add x86 build ci

* CANN: fix code format
2025-04-15 12:08:55 +01:00
David Huang
84778e9770 CUDA/HIP: Share the same unified memory allocation logic. (#12934)
Replace compile-time `GGML_HIP_UMA` with environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY`. This unifies the usage on NVIDIA and AMD GPUs, and allows a single binary to be shared between integrated and dedicated GPUs.
2025-04-15 11:20:38 +02:00
Akarshan Biswas
510676475f SYCL: Add ROPE vision kernel (#12887)
* SYCL: Add ROPE vision kernel

* Add comment about rope mode
2025-04-15 10:37:42 +02:00
Juk Armstrong
daa422881a llama : DeepSeek V2/V3 MLA implementation (#12801)
* Merged using squash to remove all noise commit messages

* Force flash attention off for `LLM_ARCH_DEEPSEEK2` - embedding too large

* Removed 3 conts (2x RoPE and 1x RMS-norm)

* Changed to use `<cmath>` instead of `<math.h>`

* Reverted removal of the 3 conts

* Used `reshape` in `llm_graph_context::build_attn_mha()`

* Use `k_pe = ggml_reshape`

* Removed the 3 conts again

* Removed the 3D views of `wk_b` and `wv_b`, and just save and 3D in GGUF

* Removed MQA optimisation from `build_attn_mha()` as no gains now

* Simplified `is_mla` branch in `llm_build_deepseek2()`

* Removed `build_attn_mla` and added `nullptr` to all `build_atnn` calls

* Fixed call to `build_attn` in `llm_build_t5_enc`
2025-04-15 09:49:57 +03:00
Srihari-mcw
eccc7a1602 ggml : Add AVX512 implementation of GEMM - Q4_Kx8 (#12829)
* Add AVX512 implementation of GEMM - q4kx8

* Update changes to remove unnecessary whitespaces
2025-04-15 09:22:36 +03:00
Chenguang Li
0019279bb5 CANN: Opt ROPE optimization (#12865)
* [CANN]Opt ROPE optimization

* [CANN]Codestyle adjustment

* [CANN]Fix the ROPE precision issue

* [CANN]codestyle fix

* [CANN]add rope unsupport case

Signed-off-by: noemotiovon <noemotiovon@gmail.com>
2025-04-15 10:09:35 +08:00
Xinpeng Dou
b0c75ac9f9 CANN: Optimize CANN buffer pool memory management (#12875)
Multiple optional memory pools are provided for CANN, including VMM, 
priority queue-based, and traditional memory pools.
1.When the memory pool is available and GGML_CANN_DISABLE_VMM_POOL 
   is not defined, the VMM pool is selected by default.
2.Otherwise, if GGML_CANN_ENABLE_BUF_PRIO_POOL is defined, 
   the priority queue-based memory pool is used.
3.If neither condition is met, the default memory pool is used.
2025-04-15 10:04:24 +08:00
Russyyds
d6d2c2ab8c Add performance print for gemma3 in example (#12929) 2025-04-14 19:18:20 +02:00
Akarshan Biswas
75afa0ae31 SYCL: Fix im2col (#12910)
* SYCL: Fix im2col

* restore local workgroup size adjustments for large inputs

* restore format
2025-04-14 14:23:53 +02:00
Radoslav Gerganov
c772d54926 rpc : use ggml_context_ptr (#12938) 2025-04-14 13:59:34 +03:00
Neo Zhang Jianyu
81c7e64fc2 dsiable curl lib check, this action is missed by commit bd3f59f812 (#12761) (#12937) 2025-04-14 18:19:07 +08:00
Georgi Gerganov
526739b879 sync : ggml
ggml-ci
2025-04-14 09:26:15 +03:00
cmdr2
a25355e264 cpu: fix cpu backend's supports-op for GET_ROWS_BACK. fixes a fatal when running test-backend-ops with only the CPU backend (ggml/1190) 2025-04-14 09:26:15 +03:00
SXX
e959d32b1c ggml: use _mm[512/256]_dpbusd[_avx]_epi32 to directly accumulate into the result register (#12773)
* ggml: use _mm[512/256]_dpbusd[_avx]_epi32 to directly accumulate into the result register

* simplifies the codebase by removing redundant functions
2025-04-14 08:47:55 +03:00
Alan Gray
307bfa253d ggml: disable CUDA graphs for unsupported DUP and CONT node types (#12891)
Fixes #12798
2025-04-13 23:12:21 +02:00
Ed Addario
71e90e8813 quantize: Handle user-defined quantization levels for additional tensors (#12511)
* Add llama_model_quantize_params parameters

* Add new quantize parameters parsing and validation

* Update usage

* Add new parameters defaults

* Add new quantization parameters logic

* Add llama_model_quantize_params parameters

* Add new quantize parameters parsing and validation

* Update usage

* Add new parameters defaults

* Add new quantization parameters logic

* Minor refactoring as per the contributors' coding guidelines

* Update descriptions to match existing style

* Add llama_model_quantize_params parameters

* Add new quantize parameters parsing and validation

* Update usage

* Add new parameters defaults

* Add new quantization parameters logic

* Minor refactoring as per the contributors' guidelines

* Implement general --tensor-type instead of tensor-specific command option

* Fix implied type bug

* Restore missing #includes

* Add regex capability for tensor selection

* Refactor function name and update ALLOWED_TENSOR_TYPE

* Add missing #include

* Handle edge case when tensor name is cls.output

* Minor logging improvement
2025-04-13 21:29:28 +03:00
Prajwal B Mehendarkar
bc091a4dc5 common : Define cache directory on AIX (#12915) 2025-04-12 17:33:39 +02:00
Jeff Bolz
a4837577aa vulkan: use aligned loads for flash attention mask (#12853)
Rewrite the stride logic for the mask tensor in the FA shader to force the
stride to be aligned, to allow using more efficient loads.
2025-04-12 10:44:48 +02:00
Matt Clayton
e59ea539b8 llava: Fix cpu-only clip image encoding sefault (#12907)
* llava: Fix cpu-only clip image encoding

* clip : no smart ptr for ggml_backend_t

* Fix for backend_ptr push_back

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-04-12 07:29:03 +02:00
Georgi Gerganov
c94085df28 server : add VSCode's Github Copilot Chat support (#12896)
* server : add VSCode's Github Copilot Chat support

* cont : update handler name
2025-04-11 23:37:41 +03:00
yuri@FreeBSD
e8a62631b3 rpc : Set cache directory in rpc-server.cpp on FreeBSD (#12903) 2025-04-11 22:04:14 +02:00
Olivier Chafik
b6930ebc42 tool-call: fix non-tool-calling grammar crashes w/ Qwen / Hermes 2 templates (#12900)
* `tool-call`: don't call common_chat_params_init_hermes_2_pro when there aren't tools (or when there's a schema)

* test all chat formats w/o tools
2025-04-11 21:47:52 +02:00
yuri@FreeBSD
68b08f36d0 common : Define cache directory on FreeBSD (#12892) 2025-04-11 21:45:44 +02:00
Ewan Crawford
578754b315 sycl: Support sycl_ext_oneapi_limited_graph (#12873)
The current usage of the SYCL-Graph extension checks for
the `sycl_ext_oneapi_graph` device aspect. However, it is also
possible to support `sycl_ext_oneapi_limied_graph` devices that
don't support update
2025-04-11 15:32:14 +02:00
tastelikefeet
b2034c2b55 contrib: support modelscope community (#12664)
* support download from modelscope

* support login

* remove comments

* add arguments

* fix code

* fix win32

* test passed

* fix readme

* revert readme

* change to MODEL_ENDPOINT

* revert tail line

* fix readme

* refactor model endpoint

* remove blank line

* fix header

* fix as comments

* update comment

* update readme

---------

Co-authored-by: tastelikefeet <yuze.zyz@alibaba-inc/com>
2025-04-11 14:01:56 +02:00
Yuxuan Zhang
06bb53ad9b llama-model : add Glm4Model implementation for GLM-4-0414 (#12867)
* GLM-4-0414

* use original one

* Using with tensor map

* fix bug

* change order

* change order

* format with flask8
2025-04-11 12:10:10 +02:00
Xuan-Son Nguyen
0c50923944 clip : use smart pointer (⚠️ breaking change) (#12869)
* clip : use smart pointers

* fix warmup

* add forward declaration

* misisng include

* fix include (2)

* composite

* simplify batch ptr

* fix conflict
2025-04-11 12:09:39 +02:00
Akarshan Biswas
fccf9cae83 SYCL: Add fp16 type support to unary op kernels (#12788)
* SYCL: Add fp16 support to some elementwise OP kernels

* remove comment

ggml-ci

* Use static_cast directly

* remove not needed cast from tanh

* Use static cast and remove unneeded castings

* Adjust device_support_op for unary OPs

* Use cast_data and typed_data struct to deduplicate casting code
2025-04-11 16:03:50 +08:00
Daniel Han
ec6c09d0fa convert : Llama4 RoPE fix (#12889) 2025-04-11 09:49:09 +02:00
R0CKSTAR
8ac9f5d765 ci : Replace freediskspace to free_disk_space in docker.yml (#12861)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-04-11 09:26:17 +02:00
Daniel Bevenius
12e9158f25 xcf : add check for visionos build version (#12854)
This commit adds a check for the visionos build version used with vtool
in build-xcframework.sh. The script now checks the Xcode version and
determines whether to use "xros" or "visionos" for the build version.

This commit also uses xcrun for the vtool so that the version of vtool
in xcode command line tools is used instead of the one in the system
path.

Refs: https://github.com/ggml-org/whisper.cpp/pull/2994#issuecomment-2773292223
2025-04-11 09:24:34 +02:00
Xuan-Son Nguyen
5b1f13cb64 convert : proper tensor name mapping for llama4 (#12870)
* Llama-4 mapping

* remove hacky renaming

---------

Co-authored-by: Daniel Han <danielhanchen@gmail.com>
2025-04-11 09:23:37 +02:00
Xuan-Son Nguyen
8b91d5355a llama : correct rms norm for llama 4 (#12882) 2025-04-11 08:49:50 +02:00
Aaron Teo
0fed24c347 ggml: fix compilation error s390x (#12848)
* ggml: fixes #12846 compilation error

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

Co-authored-by: Aleksei Nikiforov <aleksei.nikiforov@ibm.com>

* ggml: add documentation for code change

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

Co-authored-by: Aleksei Nikiforov <aleksei.nikiforov@ibm.com>

* ggml: refactor to type-cast and update documentation

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

Co-authored-by: Aleksei Nikiforov <aleksei.nikiforov@ibm.com>

* ggml: update documentation to provide full issue link

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

Co-authored-by: Aleksei Nikiforov <aleksei.nikiforov@ibm.com>

---------

Co-authored-by: Aleksei Nikiforov <aleksei.nikiforov@ibm.com>
2025-04-11 08:20:07 +03:00
Georgi Gerganov
47ba87d0a4 sync : ggml 2025-04-11 00:17:47 +03:00
Georgi Gerganov
1d2b613445 tests : fix init order (#0)
ggml-ci
2025-04-11 00:17:47 +03:00
Georgi Gerganov
eb420e1148 sync : ggml
ggml-ci
2025-04-11 00:17:47 +03:00
cmdr2
cb79c2e7fa ggml: don't include arm_neon.h when using CUDA 12 with ARM Neon (ggml/1187)
fix #1186
2025-04-11 00:17:47 +03:00
Diego Devesa
fe92821ea9 ggml : add bilinear upscale support (ggml/1185) 2025-04-11 00:17:47 +03:00
Diego Devesa
459895c326 ggml : add more generic custom op, remove deprecated custom ops (ggml/1183)
* ggml : add more generic ggml_custom op

* ggml : remove deprecated custom ops
2025-04-11 00:17:47 +03:00
Georgi Gerganov
e4bf72d631 scripts : fix sync-ggml-am.sh 2025-04-11 00:17:47 +03:00
Xuan-Son Nguyen
8b9cc7cdd8 llava : introduce libmtmd (#12849)
* wip llava2

* migrated gemma3 to llava2

* add timings

* correct pre/postfix

* fix missing include

* fix compilation unused var warn

* update llava2_tokenize

* change name llava2 --> mtmd

* improve api

* refine helpers

* Update examples/llava/mtmd.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-04-10 22:57:16 +02:00
Xuan-Son Nguyen
64eda5deb9 convert : ability to lazy-load safetensors remotely without downloading to disk (#12820)
* gguf util : add SafetensorRemote

* fix style

* convert: add --remote option

* convert : allow using lazy remote tensors

It's a bit slow for now since everything is blocking and single-threaded.

* correct metadata.name

* small style fix

* support HF_TOKEN

* convert : use writeable buffer for remote lazy tensors

* convert : fix flake8 lint regarding lamdba assigment

* multithreaded download

* multithread: print debug

* fix style

* Revert "multithreaded download"

This reverts commit 42fc895ace.

* bring back _get_request_headers

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
2025-04-10 17:24:44 +02:00
Chenguang Li
fe5b78c896 CANN: Support more ops (#12841)
* [CANN]Support Opt LOG && MEAN && PAD_REFLECT_1D

* [CANN]Support COUNT_EQUAL && STEP && SGN

* [CANN]codestyle adjustment

* [CANN]codestyle adjustment

---------

Signed-off-by: noemotiovon <noemotiovon@gmail.com>
2025-04-10 08:51:52 +08:00
Prajwal B Mehendarkar
11d07e1e69 Fixes #12823 (#12830)
* Including limits file on AIX

* Fixes #12823
2025-04-10 01:18:01 +02:00
Rudi Servo
b0091ecc1e docker : added all CPU to GPU images (#12749) 2025-04-10 01:17:12 +02:00
Piotr Kubaj
31f7803bc4 ggml-cpu-impl.h: do not redefine bool on POWER9 (#12856)
error: unknown type name '_Bool'
2025-04-10 01:00:34 +02:00
Piotr Kubaj
2391506ace ggml-impl.h: fix build on POWER9 (#12855)
error: ISO C++17 does not allow 'register' storage class specifier
2025-04-10 01:00:25 +02:00
Bo Zheng
d3bd7193ba llama : Support Qwen3 and Qwen3MoE (#12828)
* add qwen3 & qwen3moe support.

* fix

---------

Co-authored-by: bozheng-hit <dsoul0621@gmail.com>
2025-04-09 11:47:36 +02:00
R0CKSTAR
d9a63b2f2e musa: enable freediskspace for docker image build (#12839)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-04-09 11:22:30 +02:00
Romain Biessy
8ed71242f4 sycl: update documentation to use -no-cnv (#12845) 2025-04-09 11:22:04 +02:00
Plamen Minev
381603a775 ci: detach common from the library (#12827)
* fix: detach common from the library

* fix: building chat test template
2025-04-09 10:11:11 +02:00
Xuan-Son Nguyen
65a69e6e1b clip : do not print ftype (#12832) 2025-04-09 10:09:53 +02:00
Georgi Gerganov
47277d6d1d readme : add rpc backend (#12842) 2025-04-09 10:54:42 +03:00
Chenguang Li
6e1c4cebdb CANN: Support Opt CONV_TRANSPOSE_1D and ELU (#12786)
* [CANN] Support ELU and CONV_TRANSPOSE_1D

* [CANN]Modification review comments

* [CANN]Modification review comments

* [CANN]name adjustment

* [CANN]remove lambda used in template

* [CANN]Use std::func instead of template

* [CANN]Modify the code according to the review comments

---------

Signed-off-by: noemotiovon <noemotiovon@gmail.com>
2025-04-09 14:04:14 +08:00
Jeff Bolz
0090950f67 vulkan: In coopmat2 mmq, load q4_k/q5_k scales through shared memory (#12833)
q4_k and q5_k had a lot of redundant global loads where the same 16B of
scale information is repeatedly loaded and decoded during each loop iteration.
This change restructures the loops to more explicitly iterate over whole
blocks in the outer loop (with unrolled inner loop) and to copy/decode the
scale data into shared memory once at the start of each outer loop. The copy
is pipelined so the scale load from global memory is relatively cheap.

This improves q4_k/q5_k model prompt processing performance by around 5-7%.
I briefly tried applying this to q6_k and q4_0, and it didn't help for q6_k
and hurt for q4_0.

The big "else" path in mul_mm_cm2.comp that had all the clamped/unclamped
variants isn't used as often as it originally was (e.g. due to the padded_N
change), so I trimmed it down to offset some of the new complexity of the
semi-manual loop unrolling.
2025-04-09 07:25:08 +02:00
Jeff Bolz
7ecd780b1a vulkan: Use fp16 for the flash attention P*V multiplication (#12783)
This is consistent with the ggml-cuda behavior and the mul_mat fallback.
2025-04-09 07:12:57 +02:00
Sigbjørn Skjæret
7538246e7c cuda : add f32 to bf16 copy op (#12806)
This allows BF16 KV-cache on CUDA.
2025-04-08 23:21:31 +02:00
Matt Clayton
b32efad2bc llava: improve clip_ctx destructor to not memleak load_image_size (#12834) 2025-04-08 22:01:58 +02:00
Georgi Gerganov
a19b5cef16 llama : fix FA when KV cache is not used (i.e. embeddings) (#12825)
* ggml : FA supports F32 V

* graph : cast KV to F16 when the KV cache is not used

ggml-ci

* server : add test that exercises embeddings with FA enabled

ggml-ci
2025-04-08 19:54:51 +03:00
Xuan-Son Nguyen
78a1ba0a4f server : fix thread.join() on exit (#12831) 2025-04-08 18:37:06 +02:00
dm4
2dabf759e7 llava: add more helper functions to check projector types in clip context (#12824)
Signed-off-by: dm4 <sunrisedm4@gmail.com>
2025-04-08 15:49:13 +02:00
Prajwal B Mehendarkar
1d343b4069 arg : Including limits file on AIX (#12822) 2025-04-08 14:30:59 +02:00
characharm
8ca6e1c3a4 server : webui : Improve Chat Input with Auto-Sizing Textarea (#12785)
* Update ChatScreen.tsx

* useAutosizeTextarea.ts

useAutosizeTextarea to encapsulate the logic.

* Implement responsive auto-sizing chat textarea

Replaces the manual textarea resizing with an automatic height adjustment based on content.

- `useChatTextarea` hook to manage textarea state and auto-sizing logic via refs, preserving the optimization
- Textarea now grows vertically up to a maximum height (`lg:max-h-48`) on large screens (lg breakpoint and up).
- Disables auto-sizing and enables manual vertical resizing (`resize-vertical`) on smaller screens for better mobile usability.
- Aligns the "Send" button to the bottom of the textarea (`items-end`) for consistent positioning during resize.

* -update compressed index.html.gz after npm run build
-refactor: replace OptimizedTextareaValue with AutosizeTextareaApi in VSCode context hook

* chore: normalize line endings to LF
refactor: AutosizeTextareaApi -> chatTextareaApi

* refactor: Rename interface to PascalCase

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-04-08 11:14:59 +02:00
Neo Zhang Jianyu
656babd6c2 Revert "sycl:remove redundant memcopy in function ggml_backend_sycl_buffer_set_tensor" (#12812)
* Revert "sycl: remove redundant memcopy in function ggml_backend_sycl_buffer_s…"

This reverts commit 518a01480e.

* Update ggml/src/ggml-sycl/ggml-sycl.cpp

* Update ggml/src/ggml-sycl/ggml-sycl.cpp

* rm tail space
2025-04-08 15:03:21 +08:00
compilade
a226bc7a9a gguf-py : support lazy tensor splitting (#12809)
* gguf-py : support lazy tensor splitting

Splitting usually involves returning tuples of tensors,
which need to be handled properly to avoid early eager evaluation.

* gguf-py : fix flake8 lint
2025-04-08 09:03:07 +02:00
Xuan-Son Nguyen
1466621e73 llama : Support llama 4 text-only (#12791)
* llama4 conversion

* initial support, no chat template

* clean up a bit

* fix tokenizer conversion

* correct hparams

* try this

* fix shexp

* ffn_inp_normed

* chat template

* clean up model conversion

* add_bos

* add scale_before_ffn

* fix order

* weight_before_ffn

* llm_graph_input_attn_temp

* add chunk attn mask

* build_inp_attn_scale()

* add comment about ggml_repeat

* clarify comments

* fix build
2025-04-07 23:06:44 +02:00
lhez
82974011f3 opencl: better identify Adreno GPU (#12760) 2025-04-07 13:22:54 -07:00
stduhpf
4ccea213bc hellaswag: display estimated score confidence interval (#12797) 2025-04-07 18:47:08 +03:00
Georgi Gerganov
1a1ab7e7a4 cuda : fix HIP and MUSA BF16 (#0)
ggml-ci
2025-04-07 18:44:17 +03:00
Georgi Gerganov
a4e46e28f9 sync : ggml
ggml-ci
2025-04-07 18:44:17 +03:00
Georgi Gerganov
ff067dbcb9 ggml : simplify Arm fp16 CPU logic (ggml/1177)
* ggml : simlpify Arm fp16 CPU logic

ggml-ci

* cont : bring back CUDA/MUSA checks

ggml-ci
2025-04-07 18:44:17 +03:00
Sigbjørn Skjæret
36ca8b3628 CUDA: don't convert BF16 weights to FP32 (ggml/1174)
* add bf16 support

* use convert_from_bf16_cuda instead of convert_unary_cuda for f32

* revert 7ec5085

* move functionality into convert_unary with constexpr
2025-04-07 18:44:17 +03:00
cmdr2
995083e4ed cpu: move all the operators into a separate c++ file (except mul_mat) (ggml/1167)
* cpu: refactor SIMD mappings and vectorized op functions into separate files

* Fix warning for ggml_float to float

* Fix warnings

* cpu: move all the operations (except mul_mat) to a separate c++ file

* fix whitespace

* Update ggml/src/ggml-cpu/vec.h

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* Fix PR comments - use GGML_UNUSED, use cassert in ops.cpp

* Reverse the order of import for ops.h and vec.h, to match what was present in ggml-cpu.c previously

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-04-07 18:44:17 +03:00
zhouwg
518a01480e sycl: remove redundant memcopy in function ggml_backend_sycl_buffer_set_tensor (#12734) 2025-04-07 17:22:57 +02:00
Xuan-Son Nguyen
e391d3ee8d ci : no curl on ggml-ci (#12796) 2025-04-07 15:37:28 +03:00
Xuan-Son Nguyen
bd3f59f812 cmake : enable curl by default (#12761)
* cmake : enable curl by default

* no curl if no examples

* fix build

* fix build-linux-cross

* add windows-setup-curl

* fix

* shell

* fix path

* fix windows-latest-cmake*

* run: include_directories

* LLAMA_RUN_EXTRA_LIBS

* sycl: no llama_curl

* no test-arg-parser on windows

* clarification

* try riscv64 / arm64

* windows: include libcurl inside release binary

* add msg

* fix mac / ios / android build

* will this fix xcode?

* try clearing the cache

* add bunch of licenses

* revert clear cache

* fix xcode

* fix xcode (2)

* fix typo
2025-04-07 13:35:19 +02:00
zhouwg
52b3d71f12 CANN: fix typo in ggml-cann (#12733) 2025-04-07 19:34:14 +08:00
hipudding
d0d5b2232b CANN: Refactor to reduce duplicate code (#12731)
* CANN: Refactor to reduce duplicate code

* CANN: fix review comment
2025-04-07 17:10:36 +08:00
R0CKSTAR
916c83bfe7 musa: fix compilation warnings in mp_22/31 (#12780)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-04-06 15:23:54 +02:00
Jeff Bolz
0c74b04376 vulkan: fix NaN issue in flash attention shader (#12776)
Use -FLT_MAX/2 rather than -inf as the initial value for computing the maximum.
2025-04-06 11:03:47 +02:00
Jeff Bolz
80b717d493 vulkan: Use unclamped loads for flash attention mask (#12720)
nem1 must be a multiple of GGML_KQ_MASK_PAD, and GGML_KQ_MASK_PAD is a multiple
of the number of rows in the matrix. The KV dim is a multiple of the number of
columns for the aligned shader.
2025-04-06 10:47:13 +02:00
0cc4m
6bf28f0111 Vulkan: Tune Vulkan mmq int dot shader for performance (#12767)
Some checks failed
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/cpu.Dockerfile freediskspace:false full:true light:true platforms:linux/amd64,linux/arm64 server:true tag:cpu]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/cuda.Dockerfile freediskspace:false full:true light:true platforms:linux/amd64 server:true tag:cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/intel.Dockerfile freediskspace:false full:true light:true platforms:linux/amd64 server:true tag:intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/musa.Dockerfile freediskspace:false full:true light:true platforms:linux/amd64 server:true tag:musa]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/vulkan.Dockerfile freediskspace:false full:true light:true platforms:linux/amd64 server:true tag:vulkan]) (push) Has been cancelled
2025-04-05 18:04:03 +02:00
Sergey Fedorov
f1e3eb4249 common : fix includes in arg.cpp and gemma3-cli.cpp (#12766)
* arg.cpp: add a missing include

* gemma3-cli.cpp: fix cinttypes include
2025-04-05 17:46:00 +02:00
Xuan-Son Nguyen
0364178ca2 clip : refactor clip_init, add tests (#12757)
* refactor clip_init

* fix loading file

* fix style

* test ok

* better test with report

* add missing headers

* clarify

* add KEY_MM_PATCH_MERGE_TYPE

* remove bool has_* pattern

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/llava/clip.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* use ggml_soft_max_ext

* refactor logging system

* add minicpm-v-o 2.6 for testing

* use nullptr everywhere

* fix Yi-VL model

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-04-05 17:17:40 +02:00
エシュナヴァリシア
c6ff5d2a8d common: custom hf endpoint support (#12769)
Some checks failed
Close inactive issues / close-issues (push) Has been cancelled
* common: custom hf endpoint support

Add support for custom huggingface endpoints via HF_ENDPOINT environment variable

You can now specify a custom huggingface endpoint using the HF_ENDPOINT environment variable when using the --hf-repo flag, which works similarly to huggingface-cli's endpoint configuration.

Example usage:
HF_ENDPOINT=https://hf-mirror.com/ ./bin/llama-cli --hf-repo Qwen/Qwen1.5-0.5B-Chat-GGUF --hf-file qwen1_5-0_5b-chat-q2_k.gguf -p "The meaning to life and the universe is"

The trailing slash in the URL is optional:
HF_ENDPOINT=https://hf-mirror.com ./bin/llama-cli --hf-repo Qwen/Qwen1.5-0.5B-Chat-GGUF --hf-file qwen1_5-0_5b-chat-q2_k.gguf -p "The meaning to life and the universe is"

* Update common/arg.cpp

readability Improvement

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

* Apply suggestions from code review

---------

Co-authored-by: ベアトリーチェ <148695646+MakiSonomura@users.noreply.github.com>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-04-05 15:31:42 +02:00
Olivier Chafik
7a84777f42 sync: minja (#12739)
* sync: minja

https://github.com/google/minja/pull/57

* fix json include
2025-04-04 21:16:39 +01:00
Georgi Gerganov
3e1d29348b kv-cache : simplify + fix warning for recurrent models (#12756)
ggml-ci
2025-04-04 21:48:10 +03:00
bandoti
1be76e4620 ci: add Linux cross-compile build (#12428) 2025-04-04 14:05:12 -03:00
Nauful Shaikh
b772394297 server : webui : Upgrade daisyui, tailwindcss. (#12735)
* Upgrade daisyui, tailwindcss.

* Switch to all themes.

* Revert a change.

* Update formatting.

* Install packages before npm build.

* Revert "Install packages before npm build."

This reverts commit 336c5147e6.

* Add index.html.gz

* run build

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-04-04 16:09:52 +02:00
nick huang
23106f94ea gguf-split : --merge now respects --dry-run option (#12681)
* gguf-split now respects dry-run option

* removing trailing space
2025-04-04 16:09:12 +02:00
Nicolò Scipione
94148ba330 sycl: allow ggml-sycl configuration and compilation using Visual Studio project/solution (#12625) 2025-04-04 16:00:46 +02:00
Ronny Brendel
9ac4d611d0 cmake: fix ggml-shaders-gen compiler paths containing spaces (#12747)
fixes error for compiler paths with spaces
2025-04-04 10:12:40 -03:00
Daniel Bevenius
348888e0dc docs : add XCFramework section to README.md [no ci] (#12746)
This commit adds a new section to the README.md file, detailing the
usage of the XCFramework.

The motivation for this is that it might not be immediately clear to
users how to use the XCFramework in their projects and hopefully this
will help.
2025-04-04 10:24:12 +02:00
Jeff Bolz
74d4f5b041 vulkan: Hybrid waitForFences/getFenceStatus to reduce fence latency (#12630)
There seems to be a bubble waking up from waitForFences, which costs a few
percent performance and also increased variance in performance. This change
inserts an "almost_ready" fence when the graph is about 80% complete and we
waitForFences for the almost_ready fence and then spin (with _mm_pauses) waiting
for the final fence to be signaled.
2025-04-04 07:54:35 +02:00
Jeff Bolz
35e592eb30 vulkan: set cmake minimum and project name in vulkan-shaders (#12744) 2025-04-04 07:53:20 +02:00
lhez
7d7b1bafa7 opencl: update doc for OpenCL (#12702)
* opencl: add OpenCL to build.md

* opencl: remove fixed issue/TODO

* opencl: add link to OPENCL.md

* opencl: update doc - refine tools requirement for Windows 11 arm64
2025-04-03 22:18:17 -07:00
Gaurav Garg
c262beddf2 CUDA: Prefer vector flash decoding kernel for Gemma models (#12738)
* Prefer vector flash decoding kernel for Gemma models

Vector flash decoding kernel was not being picked for models with head dimension 256. Gemma models are in this category.
Removing this limit improves e2e performance by upto 12% in gen phase throughput for Gemm models.

* Update ggml/src/ggml-cuda/fattn.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-04-03 18:20:29 +02:00
yumeyao
5dd5d1ab00 vocab : use string_view::find() to avoid unnecessary looking up beyond the fragment range (#12706) 2025-04-03 18:32:54 +03:00
Jeff Bolz
1c059995e0 vulkan: Fix missing cmake logic for dot product extension (#12721) 2025-04-03 10:08:26 -05:00
Atharva Dubey
2004644b7a ci : add env variable in ggml-ci and document the same in SYCL.md (#12736) 2025-04-03 15:12:39 +03:00
R0CKSTAR
5f696e88e0 sync : minja (inclusionAI/Ling) and update tests (#12699)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-04-03 13:51:35 +02:00
a3sh
193c3e03a6 fix MUSA compiler warning (#12704)
* fix MUSA compiler warning

* replace (void) with GGML_UNUSED
2025-04-03 09:32:55 +02:00
Chenguang Li
65cfe136a0 CANN: Support operator SIN COS ARGMAX (#12709)
* [CANN]support sin cos argmax

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]codestyle adjustment

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]Remove redundant code

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

---------

Signed-off-by: noemotiovon <noemotiovon@gmail.com>
Co-authored-by: noemotiovon <noemotiovon@gmail.com>
2025-04-03 15:18:08 +08:00
Alan Gray
3f9da22c2b Simplify and improve CUDA graphs through use of indirect copy pointers (#9017)
* CUDA: Simplify and improve CUDA graphs through use of indirect copy pointers

Previously there was complexity in the CUDA graphs implementation due
frequently changing parameters to copy kernels associated with K and V
cache pointers. This patch simplifies by using indirection to avoid
such parameters frequently changing, avoiding the need for frequent
graph updates.

Fixes #12152

* Addressed comments

* fix HIP builds

* properly sync to stream

* removed ggml_cuda_cpy_fn_ptrs

* move stream sync before free

* guard to only use indirection with graphs

* style fixes

* check for errors

---------

Co-authored-by: slaren <slarengh@gmail.com>
2025-04-03 03:31:15 +02:00
hipudding
2a0dc97e56 CANN: Fix failed test cases (#12708)
* CANN: Fix memory waste in aclnn_tensor

* CANN: fix backend ops fail

* CANN: fix acl_tensor memory alloc.

* CANN: format

* CANN: remove trailing whitespace
2025-04-03 08:49:51 +08:00
lhez
97a20c012b opencl: use max_alloc_size in backend ctx instead of querying again (#12705) 2025-04-02 17:01:42 -07:00
Jeff Bolz
f01bd02376 vulkan: Implement split_k for coopmat2 flash attention. (#12627)
When using group query attention, we have one workgroup per KV batch and this
can be very few workgroups (e.g. just 8 in some models). Enable split_k to
spread the work across SMs. This helps a lot when the KV cache is large.
2025-04-02 14:25:08 -05:00
bandoti
6f3bd38640 cmake: remove caching from vulkan coopmat checks (#12719) 2025-04-02 14:56:26 -03:00
Jeff Bolz
be0a0f8cae vulkan: Implement grouped query attention in the coopmat2 FA shader (#12559)
When adjacent batches of Q share the same batches of K/V, batch them into
the same workgroup. For example, when:

dst(128,32,1,1) = FA(q(128,1,32,1), k(128,16640,8,1), v(128,16640,8,1))

previously we would run 32 workgroups computing 1 result each, now we will
run 8 workgroups computing 4 results each.

This doesn't directly translate to better performance (at least when you have
>=32 SMs), but in a subsequent change I'll enable split_k which will scale much
better with 4x fewer workgroups.
2025-04-02 19:40:32 +02:00
0cc4m
92e3006bb6 Vulkan: Fix mmq int dot float cache size (#12722) 2025-04-02 19:12:30 +02:00
Georgi Gerganov
833e2b7409 model : print tensor size during load (#12711)
* model : print tensor size during load

* cont : fix units MB -> MiB

Co-authored-by: Diego Devesa <slarengh@gmail.com>

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-04-02 16:38:54 +03:00
Diego Devesa
e0e912f49b llama : add option to override model tensor buffers (#11397)
* llama : add option to override tensor buffers

* ggml : fix possible underflow in ggml_nbytes
2025-04-02 14:52:01 +02:00
Georgi Gerganov
a10b36c91a llama : refactor kv cache guard (#12695)
* llama : refactor kv cache guard

ggml-ci

* cont : fix comment [no ci]

* llama : fix kv_cache restore logic

ggml-ci

* context : simplify kv cache updates

ggml-ci

* cont : better name [no ci]

* llama : fix llama_decode return code when could not find KV slot

ggml-ci

* context : change log err -> warn [no ci]

* kv-cache : add comment + warning
2025-04-02 14:32:59 +03:00
Sigbjørn Skjæret
83a88bd6af vocab : BailingMoE : change possessive quantifiers to greedy (#12677) 2025-04-02 11:21:48 +02:00
Xuan-Son Nguyen
42eb248f46 common : remove json.hpp from common.cpp (#12697)
* common : remove json.hpp from common.cpp

* fix comment
2025-04-02 09:58:34 +02:00
Chenguang Li
9bacd6b374 [CANN] get_rows and dup optimization (#12671)
* [CANN]get_rows and dup optimization.

Co-authored-by: hipudding <huafengchun@gmail.com>
Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]GET_ROWS and CPY/DUP optimization

Co-authored-by: hipudding <huafengchun@gmail.com>
Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]code style adjustment

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]code style adjustment

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]code style adjustment

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]code style adjustment

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

---------

Signed-off-by: noemotiovon <noemotiovon@gmail.com>
Co-authored-by: noemotiovon <noemotiovon@gmail.com>
Co-authored-by: hipudding <huafengchun@gmail.com>
2025-04-02 15:22:13 +08:00
Xuan-Son Nguyen
267c1399f1 common : refactor downloading system, handle mmproj with -hf option (#12694)
* (wip) refactor downloading system [no ci]

* fix all examples

* fix mmproj with -hf

* gemma3: update readme

* only handle mmproj in llava example

* fix multi-shard download

* windows: fix problem with std::min and std::max

* fix 2
2025-04-01 23:44:05 +02:00
Junil Kim
f423981ac8 opencl : fix memory allocation size (#12649)
Some checks failed
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
issue:
https://github.com/CodeLinaro/llama.cpp/pull/17#issuecomment-2760611283

This patch fixes the memory allocation size
not exceeding the maximum size of the OpenCL device.
2025-04-01 09:54:34 -07:00
jklincn
e39e727e9a llama : use LLM_KV_GENERAL_FILE_TYPE instead of gguf_find_key (#12672) 2025-04-01 14:54:28 +02:00
Sigbjørn Skjæret
5936a616e4 convert : BailingMoE : fix qkv split when head_dim is 0 (#12687)
NOTE: Ling-lite-base is broken, see https://huggingface.co/inclusionAI/Ling-lite-base/discussions/2
2025-04-01 14:37:13 +02:00
Georgi Gerganov
3fd072a540 metal : use F32 prec in FA kernels (#12688)
* metal : use F32 prec in FA kernels

ggml-ci

* cont : fix FA vec kernel

ggml-ci
2025-04-01 14:57:19 +03:00
R0CKSTAR
a6f32f0b34 Fix clang warning in gguf_check_reserved_keys (#12686)
* Fix clang warning in gguf_check_reserved_keys

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Fix typo

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-04-01 13:12:53 +02:00
Wagner Bruna
2bb3597e42 vulkan: fix build when glslc doesn't support coopmat (#12683) 2025-04-01 11:38:07 +02:00
Romain Biessy
8293970542 SYCL: Rename oneMKL to oneMath (#12192)
* Rename oneMKL Interface to oneMath

* Use oneMath for Intel vendor

* Rename occurences to mkl

* clang-format

* Silence verbose warnings

* Set oneMath HIP_TARGETS

* Fix silence warnings

* Remove step to build oneMath from build instructions

* Use fixed oneMath version

* Remove INTEL_CPU

* Fold CMake oneDNN conditions

* Use Intel oneMKL for Intel devices

* Improve CMake message

* Link against MKL::MKL_SYCL::BLAS only

* Move oneMath documentation to Nvidia and AMD sections
2025-04-01 16:24:29 +08:00
Akarshan Biswas
8bbf26083d SYCL: switch to SYCL namespace (#12674) 2025-04-01 10:11:39 +02:00
Sigbjørn Skjæret
35782aeedb convert : BailingMoE : avoid setting rope_dim to 0 (#12678)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
2025-03-31 23:09:48 +02:00
Daniel Bevenius
c80a7759da vocab : add special infill tokens for CodeLlama (#11850)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* vocab : add special infill tokens for CodeLlama

The commit adds the following special tokens for CodeLlama infill:
- `▁<PRE>`
- `▁<SUF>`
- `▁<MID>`

The motivation for this is that currently the infill example uses
CodeLlama as a suggested model. But when using this model the following
error is generated:
```console
/llama.cpp-debug/examples/infill/infill.cpp:165: GGML_ASSERT(llama_vocab_fim_pre(vocab) >= 0) failed

Could not attach to process.  If your uid matches the uid of the target
process, check the setting of /proc/sys/kernel/yama/ptrace_scope, or try
again as the root user.  For more details, see /etc/sysctl.d/10-ptrace.conf
ptrace: Operation not permitted.
No stack.
The program is not being run.
305251 Aborted                 (core dumped)
./build/bin/llama-infill -t 10 -ngl 0 -m models/codellama-13b.Q5_K_S.gguf \
  -c 4096 --temp 0.7 --repeat_penalty 1.1 -n 20 \
  --in-prefix "def helloworld():\n    print(\"hell" \
  --in-suffix "\n   print(\"goodbye world\")\n    "
```

* squash! vocab : add special infill tokens for CodeLlama

Add _<EOT> as well.
2025-03-31 18:40:56 +02:00
a3sh
250d7953e8 ggml : faster ssm scan (#10558)
* faster ssm_scan

* delete unused commnet

* clang format

* add space

* modify unnecessary calculations

* faster ssm conv implementatioin

* modify file name with dash
2025-03-31 18:05:13 +02:00
Sigbjørn Skjæret
403fbacbbc convert : Qwerky : use lora_rank_tokenshift and lora_rank_decay if present (#12667) 2025-03-31 16:36:25 +02:00
0cc4m
a8a1f33567 Vulkan: Add DP4A MMQ and Q8_1 quantization shader (#12135)
* Vulkan: Add DP4A MMQ and Q8_1 quantization shader

* Add q4_0 x q8_1 matrix matrix multiplication support

* Vulkan: Add int8 coopmat MMQ support

* Vulkan: Add q4_1, q5_0 and q5_1 quants, improve integer dot code

* Add GL_EXT_integer_dot_product check

* Remove ggml changes, fix mmq pipeline picker

* Remove ggml changes, restore Intel coopmat behaviour

* Fix glsl compile attempt when integer vec dot is not supported

* Remove redundant code, use non-saturating integer dot, enable all matmul sizes for mmq

* Remove redundant comment

* Fix integer dot check

* Fix compile issue with unsupported int dot glslc

* Update Windows build Vulkan SDK version
2025-03-31 14:37:01 +02:00
Georgi Gerganov
1790e73157 cmake : fix whitespace (#0) 2025-03-31 15:07:32 +03:00
Georgi Gerganov
0114a32da0 sync : ggml
ggml-ci
2025-03-31 15:07:32 +03:00
Sandro Hanea
a7724480fd cmake: improve Vulkan cooperative matrix support checks (whisper/2966)
Co-authored-by: Sandro Hanea <me@sandro.rocks>
2025-03-31 15:07:32 +03:00
Sigbjørn Skjæret
1a85949067 llava : proper description fix (#12668) 2025-03-31 11:28:30 +02:00
Akarshan Biswas
6c02a032fa SYCL: Remove misleading ggml_sycl_op_flatten function (#12387)
* SYCL: Remove misleading ggml_sycl_op_flatten function

* remove trailing whitespace

* Fix L2 norm from rebase

* remove try catch block from element_wise.cpp

* remove comment from common.hp

* ggml-sycl.cpp: Add try catch sycl::exception block in compute_forward

* norm.cpp: remove try catch exception block
2025-03-31 11:25:24 +02:00
Sigbjørn Skjæret
f52d59d771 llava : fix clip loading GGUFs with missing description (#12660) 2025-03-31 11:07:07 +02:00
marcoStocchi
52de2e5949 tts : remove printfs (#12640)
* tts.cpp : llama tokens console output is done using LOG_INF instead of printf(). Therefore the options '--log-disable' and '--log-file' have now uniform impact on all output.
2025-03-31 11:20:30 +03:00
Sigbjørn Skjæret
2c3f8b850a llama : support BailingMoE (Ling) (#12634)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
2025-03-30 22:21:03 +02:00
Georgi Gerganov
4663bd353c metal : use constexpr in FA kernels + fix typedef (#12659)
* metal : use constexpr in FA kernels

ggml-ci

* cont

ggml-ci

* cont : fix typedef

ggml-ci
2025-03-30 22:04:04 +03:00
Juyoung Suk
b3de7cac73 llama : add Trillion 7B model support (#12556)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* Support Trillion 7B

* Update llama.h

* Update llama.h

* Update llama-vocab.cpp for Trillion

* Update llama-vocab.cpp
2025-03-30 20:38:33 +02:00
Sergei Vorobyov
7242dd9675 llama-chat : Add Yandex instruct model template support (#12621)
* add yandex template

* update yandex chat template

* fix tests

* adjust chat template

* fix style

* fix tool macro in template

* add clarify comment

---------

Co-authored-by: Sergei Vorobev <serv01@yandex-team.ru>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-03-30 20:12:03 +02:00
R0CKSTAR
492d7f1ff7 musa: fix all warnings, re-enable -DLLAMA_FATAL_WARNINGS=ON in ci and update doc (#12611)
* musa: fix all warnings

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* musa: enable -DLLAMA_FATAL_WARNINGS=ON in run.sh

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* musa: update ci doc (install ccache)

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* fix Windows build issue

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Address review comments

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Address review comments

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-03-30 10:59:38 +02:00
Georgi Gerganov
d3f1f0acfb sync : ggml
ggml-ci
2025-03-30 08:33:31 +03:00
Xuan-Son Nguyen
360dc22c00 cpu : rm unused variable (ggml/1166) 2025-03-30 08:33:31 +03:00
cmdr2
a62d7fa7a9 cpu: de-duplicate some of the operators and refactor (ggml/1144)
* cpu: de-duplicate some of the operators and refactor

* Fix PR comments

* Fix PR comments
2025-03-30 08:33:31 +03:00
Daniel Bevenius
e408d4351a ggml : add logging for native build options/vars (whisper/2935)
This commit adds debug level logging for the native build options and
variables to ggml/CMakeLists.txt.

The motivation for this is that it can be useful to see the effective
result of `GGML_NATIVE`, `GGML_NATIVE_DEFAULT`, and `INS_ENB` for a
cmake build. I've found myself adding similar logging a few times now,
so I thought it might be a good idea to add this.

Example output, specifying `-DCMAKE_MESSAGE_LOG_LEVEL=DEBUG` when
running cmake produces the following output:
```console
-- GGML_NATIVE         : OFF
-- GGML_NATIVE_DEFAULT : OFF
-- INS_ENB             : OFF
```
2025-03-30 08:33:31 +03:00
Daniel Bevenius
3891e183c6 examples : command.wasm updates (whisper/2904)
This commit updates the command.wasm example by adding a server.py script to make it easy to start a local http server to try out the example, updates the build instructions, and also addresses some of the compiler warnings that were being generated.

* emscripten : fix TOTAL_STACK for wasm

This commit moves the TOTAL_STACK setting from the compile flags to the
linker flags. This is because the TOTAL_STACK setting is a linker
setting.

The motivation for this change is that currently the following warnings
are generated when building:
```console
em++: warning: linker setting ignored during compilation: 'TOTAL_STACK' [-Wunused-command-line-argument]
em++: warning: linker setting ignored during compilation: 'TOTAL_STACK' [-Wunused-command-line-argument]
em++: warning: linker setting ignored during compilation: 'TOTAL_STACK' [-Wunused-command-line-argument]
em++: warning: linker setting ignored during compilation: 'TOTAL_STACK' [-Wunused-command-line-argument]
em++: warning: linker setting ignored during compilation: 'TOTAL_STACK' [-Wunused-command-line-argument]
em++: warning: linker setting ignored during compilation: 'TOTAL_STACK' [-Wunused-command-line-argument]
```

* examples : suppress C++17 deprecation warning for std::codecvt_utf8

This commit suppresses the C++17 deprecation warning for
std::codecvt_utf8 similar to what is done in
examples/talk-llama/unicode.cpp.

The motivation for this change is to suppress these warnings:
```console
/Users/danbev/work/ai/whisper-work/examples/common.cpp:251:31: warning: 'codecvt_utf8<wchar_t>' is deprecated [-Wdeprecated-declarations]
  251 |     std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
      |                               ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/codecvt:193:28: note: 'codecvt_utf8<wchar_t>' has been explicitly marked deprecated here
  193 | class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX17 codecvt_utf8 : public __codecvt_utf8<_Elem> {
      |                            ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:723:41: note: expanded from macro '_LIBCPP_DEPRECATED_IN_CXX17'
  723 | #    define _LIBCPP_DEPRECATED_IN_CXX17 _LIBCPP_DEPRECATED
      |                                         ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:688:49: note: expanded from macro '_LIBCPP_DEPRECATED'
  688 | #      define _LIBCPP_DEPRECATED __attribute__((__deprecated__))
      |                                                 ^
/Users/danbev/work/ai/whisper-work/examples/common.cpp:251:10: warning: 'wstring_convert<std::codecvt_utf8<wchar_t>>' is deprecated [-Wdeprecated-declarations]
  251 |     std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
      |          ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/locale:3145:28: note: 'wstring_convert<std::codecvt_utf8<wchar_t>>' has been explicitly marked deprecated here
 3145 | class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX17 wstring_convert {
      |                            ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:723:41: note: expanded from macro '_LIBCPP_DEPRECATED_IN_CXX17'
  723 | #    define _LIBCPP_DEPRECATED_IN_CXX17 _LIBCPP_DEPRECATED
      |                                         ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:688:49: note: expanded from macro '_LIBCPP_DEPRECATED'
  688 | #      define _LIBCPP_DEPRECATED __attribute__((__deprecated__))
      |                                                 ^
/Users/danbev/work/ai/whisper-work/examples/common.cpp:257:31: warning: 'codecvt_utf8<wchar_t>' is deprecated [-Wdeprecated-declarations]
  257 |     std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
      |                               ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/codecvt:193:28: note: 'codecvt_utf8<wchar_t>' has been explicitly marked deprecated here
  193 | class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX17 codecvt_utf8 : public __codecvt_utf8<_Elem> {
      |                            ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:723:41: note: expanded from macro '_LIBCPP_DEPRECATED_IN_CXX17'
  723 | #    define _LIBCPP_DEPRECATED_IN_CXX17 _LIBCPP_DEPRECATED
      |                                         ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:688:49: note: expanded from macro '_LIBCPP_DEPRECATED'
  688 | #      define _LIBCPP_DEPRECATED __attribute__((__deprecated__))
      |                                                 ^
/Users/danbev/work/ai/whisper-work/examples/common.cpp:257:10: warning: 'wstring_convert<std::codecvt_utf8<wchar_t>>' is deprecated [-Wdeprecated-declarations]
  257 |     std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
      |          ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/locale:3145:28: note: 'wstring_convert<std::codecvt_utf8<wchar_t>>' has been explicitly marked deprecated here
 3145 | class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX17 wstring_convert {
      |                            ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:723:41: note: expanded from macro '_LIBCPP_DEPRECATED_IN_CXX17'
  723 | #    define _LIBCPP_DEPRECATED_IN_CXX17 _LIBCPP_DEPRECATED
      |                                         ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:688:49: note: expanded from macro '_LIBCPP_DEPRECATED'
  688 | #      define _LIBCPP_DEPRECATED __attribute__((__deprecated__))
      |                                                 ^
4 warnings generated.
```

* ggml : suppress double-promotion warning in GGML_F16x4_REDUCE

This commit adds a cast to `ggml_float` in the `GGML_F16x4_REDUCE` macro
to suppress a double-promotion warning.

Currently the following warning is generated when compiling the
command.wasm example:
```console
/whisper-work/src/ggml-cpu/ggml-cpu.c:1592:5: warning: implicit conversion increases floating-point precision: 'float' to 'ggml_float' (aka 'double') [-Wdouble-promotion]
 1592 |     GGML_F16_VEC_REDUCE(sumf, sum);
      |     ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/Users/danbev/work/ai/whisper-work/src/ggml-cpu/ggml-cpu.c:932:37: note: expanded from macro 'GGML_F16_VEC_REDUCE'
  932 | #define GGML_F16_VEC_REDUCE         GGML_F16x4_REDUCE
      |                                     ^
/Users/danbev/work/ai/whisper-work/src/ggml-cpu/ggml-cpu.c:920:44: note: expanded from macro 'GGML_F16x4_REDUCE'
  918 |     res = wasm_f32x4_extract_lane(x[0], 0) +       \
      |         ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  919 |           wasm_f32x4_extract_lane(x[0], 1) +       \
      |           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  920 |           wasm_f32x4_extract_lane(x[0], 2) +       \
      |           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~
  921 |           wasm_f32x4_extract_lane(x[0], 3);        \
      |           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/whisper-work/src/ggml-cpu/ggml-cpu.c:1640:9: warning: implicit conversion increases floating-point precision: 'float' to 'ggml_float' (aka 'double') [-Wdouble-promotion]
 1640 |         GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
      |         ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/Users/danbev/work/ai/whisper-work/src/ggml-cpu/ggml-cpu.c:932:37: note: expanded from macro 'GGML_F16_VEC_REDUCE'
  932 | #define GGML_F16_VEC_REDUCE         GGML_F16x4_REDUCE
      |                                     ^
/Users/danbev/work/ai/whisper-work/src/ggml-cpu/ggml-cpu.c:920:44: note: expanded from macro 'GGML_F16x4_REDUCE'
  918 |     res = wasm_f32x4_extract_lane(x[0], 0) +       \
      |         ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  919 |           wasm_f32x4_extract_lane(x[0], 1) +       \
      |           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  920 |           wasm_f32x4_extract_lane(x[0], 2) +       \
      |           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~
  921 |           wasm_f32x4_extract_lane(x[0], 3);        \
      |           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2 warnings generated.
```
wasm_f32x4_extract_lane returns a 32-bit float and this is what the
addition is performed on. But there is an implicit conversion from
32-bit float to 64-bit double when the result is assigned to `res`,
which is of type `ggml_float`. My understanding here is that this is
intentional and adding a cast to `ggml_float` should suppress the
warning.

* emscripten : add -Wno-deprecated to for emscripten

This commit adds -Wno-deprecated to the CMAKE_CXX_FLAGS for emscripten
builds.

The motivation for this is that currently there a number of warnings
generated like the following:
```console
warning: JS library symbol '$print' is deprecated. Please open a bug if you have a continuing need for this symbol [-Wdeprecated]
warning: JS library symbol '$printErr' is deprecated. Please open a bug if you have a continuing need for this symbol [-Wdeprecated]
em++: warning: warnings in JS library compilation [-Wjs-compiler]
em++: warning: linker setting ignored during compilation: 'ENVIRONMENT' [-Wunused-command-line-argument]
warning: JS library symbol '$print' is deprecated. Please open a bug if you have a continuing need for this symbol [-Wdeprecated]
warning: JS library symbol '$printErr' is deprecated. Please open a bug if you have a continuing need for this symbol [-Wdeprecated]
em++: warning: warnings in JS library compilation [-Wjs-compiler]
warning: JS library symbol '$print' is deprecated. Please open a bug if you have a continuing need for this symbol [-Wdeprecated]
warning: JS library symbol '$printErr' is deprecated. Please open a bug if you have a continuing need for this symbol [-Wdeprecated]
em++: warning: warnings in JS library compilation [-Wjs-compiler]
em++: warning: linker setting ignored during compilation: 'ENVIRONMENT' [-Wunused-command-line-argument]
em++: warning: linker setting ignored during compilation: 'ENVIRONMENT' [-Wunused-command-line-argument]
```

The downside of this is that we might miss other deprecation warnings
in the future so I'm not sure if this is acceptable. But it make the
wasm examples cleaner without the warnings.

* examples : fix tautological-compare warning in stb_vorbis.c [no ci]

This commit applies a fix to address a tautological-compare warning
in stb_vorbis.c.

The motivation for this is that currently the following warning is
generated when compiling the commmand-wasm example:
```console
/Users/danbev/work/ai/whisper-work/examples/stb_vorbis.c:1404:75: warning: pointer comparison always evaluates to false [-Wtautological-compare]
 1404 |       if (f->stream_start + loc >= f->stream_end || f->stream_start + loc < f->stream_start) {
      |                                                                           ^
1 warning generated.
```

This fix was taken from an open pull request on the stb repository
that addreses this issue:
https://github.com/nothings/stb/pull/1746

* squash! examples : update command.wasm instructions [no ci]

This commit adds a Python script to serve the the wasm examples build
in the `build-em` directory. Initially I thought that it would be enough
to start a simple python server but I did not notice that there was an
error in the browser console when I did that:
```console
command.js:1 Uncaught (in promise) DataCloneError: Failed to execute 'postMessage' on 'Worker': SharedArrayBuffer transfer requires self.crossOriginIsolated.
    at command.js:1:1206224
    at new Promise (<anonymous>)
    at loadWasmModuleToWorker (command.js:1:1204981)
    at Array.map (<anonymous>)
    at Object.loadWasmModuleToAllWorkers (command.js:1:1206428)
    at command.js:1:1204318
    at callRuntimeCallbacks (command.js:1:1202062)
    at preRun (command.js:1:6136)
    at run (command.js:1:1294094)
    at removeRunDependency (command.js:1:7046)
```
We need a few CORS headers to be set and in order hopefully make this
easy for users a Python script is added to the examples directory.
This should be able to server all the wasm examples provided they have
been built. command.wasm's README.md is updated to reflect this change.

* examples : remove unused functions

This commit removed the unused functions convert_to_utf8 and
convert_to_wstring from examples/common.cpp.

* Revert "examples : fix tautological-compare warning in stb_vorbis.c [no ci]"

This reverts commit 8e3c47d96141c7675c985562ebdc705e839e338a.

We should not make this change here and instead when the upstream PR is
merged we can sync with it.

Refs: https://github.com/ggerganov/whisper.cpp/issues/2784
2025-03-30 08:33:31 +03:00
Xuan-Son Nguyen
af6ae1efb2 llama : fix non-causal mask for gemma 3 (#12615) 2025-03-30 00:07:37 +01:00
Djip007
0bb2919335 llama : change cpu_buft_list order: ACCEL -> GPU host -> CPU extra -> CPU (#12632)
this allow to use GPU host when possible over CPU repack.
this have the same effect to resolve this issues (#12498) without
completely disable CPU extra buffer.

Co-authored-by: philou <philou@framework>
2025-03-29 14:07:37 +01:00
Jay
a69f846351 cmake : fix ccache conflict (#12522)
If users already set CMAKE_C_COMPILER_LAUNCHER globally, setting it in
cmake again will lead to conflict and compile fail.

Signed-off-by: Jay <BusyJay@users.noreply.github.com>
2025-03-29 11:04:58 +01:00
hipudding
d07a0d7a79 CANN : remove clang-format in ggml-cann (#12607) 2025-03-29 11:03:28 +01:00
Sigbjørn Skjæret
3714c3ee1a llama : fix incorrect Qwen2Moe ffn_moe_out graph callback (#12631) 2025-03-28 22:13:02 +01:00
Georgi Gerganov
b4ae50810e metal : improve FA + improve MoE (#12612)
* ggml : FA with different K, V head sizes (CPU)

ggml-ci

* metal : add FA with HS=192

* metal : extend FA to support different K and V head sizes

ggml-ci

* metal : add FA vector kernels for heads K 192 and V 128

ggml-ci

* ggml : restrict op on other backends to equal head sizes

ggml-ci

* metal : optimize FA-vec kernel

ggml-ci

* metal : FA remove mq registers

* metal : improve MoE mul_mat_id condition

ggml-ci

* metal : fix comments + remove unnecessary addition

ggml-ci

* metal : avoid too much shared memory usage with mul_mat_id

ggml-ci
2025-03-28 20:21:59 +02:00
Icenowy Zheng
b86f600723 vulkan: fix coopmat shader generation when cross-compiling (#12272)
* vulkan: fix coopmat shader generation when cross-compiling

Previously the status of coopmat{,2} support isn't passed to the
vulkan-shaders-gen project building on the host, which leads to build
failure because of the cross-compiling code expecting coopmat{,2}
shaders that didn't get generated.

Fix this by passing the coopmat{,2} support status to vulkan-shaders
subproject.

Signed-off-by: Icenowy Zheng <uwu@icenowy.me>

* Only call coop-mat shaders once

* Fix whitespace

---------

Signed-off-by: Icenowy Zheng <uwu@icenowy.me>
Co-authored-by: bandoti <141645996+bandoti@users.noreply.github.com>
2025-03-28 14:51:06 -03:00
Johannes Gäßler
dd373dd3bf llama: fix error on bad grammar (#12628) 2025-03-28 18:08:52 +01:00
Benson Wong
5d01670266 server : include speculative decoding stats when timings_per_token is enabled (#12603)
* Include speculative decoding stats when timings_per_token is true

New fields added to the `timings` object:

  - draft_n           : number of draft tokens generated
  - draft_accepted_n  : number of draft tokens accepted
  - draft_accept_ratio: ratio of accepted/generated

* Remove redundant draft_accept_ratio var

* add draft acceptance rate to server console output
2025-03-28 10:05:44 +02:00
Radoslav Gerganov
ef03229ff4 rpc : update README for cache usage (#12620) 2025-03-28 09:44:13 +02:00
268 changed files with 31112 additions and 27803 deletions

View File

@@ -14,9 +14,9 @@ WORKDIR /app
COPY . .
RUN if [ "$TARGETARCH" = "amd64" ]; then \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON; \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON; \
elif [ "$TARGETARCH" = "arm64" ]; then \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=${GGML_CPU_ARM_ARCH}; \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=${GGML_CPU_ARM_ARCH}; \
else \
echo "Unsupported architecture"; \
exit 1; \

View File

@@ -21,7 +21,7 @@ COPY . .
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
fi && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \

View File

@@ -17,7 +17,7 @@ RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
&& export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
fi && \
echo "Building with dynamic libs" && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${OPT_SYCL_F16} && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \

View File

@@ -1,4 +1,4 @@
ARG ASCEND_VERSION=8.0.rc2.alpha003-910b-openeuler22.03-py3.8
ARG ASCEND_VERSION=8.1.RC1.alpha001-910b-openeuler22.03-py3.10
FROM ascendai/cann:$ASCEND_VERSION AS build
@@ -6,7 +6,7 @@ WORKDIR /app
COPY . .
RUN yum install -y gcc g++ cmake make
RUN yum install -y gcc g++ cmake make libcurl-devel
ENV ASCEND_TOOLKIT_HOME=/usr/local/Ascend/ascend-toolkit/latest
ENV LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:$LIBRARY_PATH
ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${ASCEND_TOOLKIT_HOME}/lib64/plugin/opskernel:${ASCEND_TOOLKIT_HOME}/lib64/plugin/nnengine:${ASCEND_TOOLKIT_HOME}/opp/built-in/op_impl/ai_core/tbe/op_tiling:${LD_LIBRARY_PATH}

View File

@@ -35,7 +35,7 @@ COPY . .
RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \
export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \
fi && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \

View File

@@ -17,8 +17,8 @@ FROM ${BASE_ROCM_DEV_CONTAINER} AS build
# gfx906 is deprecated
#check https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.2.4/reference/system-requirements.html
#ARG ROCM_DOCKER_ARCH='gfx803,gfx900,gfx906,gfx908,gfx90a,gfx942,gfx1010,gfx1030,gfx1032,gfx1100,gfx1101,gfx1102'
ARG ROCM_DOCKER_ARCH=gfx1100
ARG ROCM_DOCKER_ARCH='gfx803,gfx900,gfx906,gfx908,gfx90a,gfx942,gfx1010,gfx1030,gfx1032,gfx1100,gfx1101,gfx1102'
#ARG ROCM_DOCKER_ARCH=gfx1100
# Set nvcc architectured
ENV AMDGPU_TARGETS=${ROCM_DOCKER_ARCH}
@@ -40,7 +40,7 @@ WORKDIR /app
COPY . .
RUN HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$ROCM_DOCKER_ARCH -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON \
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$ROCM_DOCKER_ARCH -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON \
&& cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib \

View File

@@ -16,7 +16,7 @@ WORKDIR /app
COPY . .
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_CURL=1 && \
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_CURL=1 -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \

View File

@@ -0,0 +1,25 @@
name: 'Windows - Setup CURL'
description: 'Composite action, to be reused in other workflow'
inputs:
curl_version:
description: 'CURL version'
required: false
default: '8.6.0_6'
outputs:
curl_path:
description: "Path to the downloaded libcurl"
value: ${{ steps.get_libcurl.outputs.curl_path }}
runs:
using: "composite"
steps:
- name: libCURL
id: get_libcurl
shell: powershell
env:
CURL_VERSION: ${{ inputs.curl_version }}
run: |
curl.exe -o $env:RUNNER_TEMP/curl.zip -L "https://curl.se/windows/dl-${env:CURL_VERSION}/curl-${env:CURL_VERSION}-win64-mingw.zip"
mkdir $env:RUNNER_TEMP/libcurl
tar.exe -xvf $env:RUNNER_TEMP/curl.zip --strip-components=1 -C $env:RUNNER_TEMP/libcurl
echo "curl_path=$env:RUNNER_TEMP/libcurl" >> $env:GITHUB_OUTPUT

View File

@@ -104,7 +104,6 @@ jobs:
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DLLAMA_CUBLAS=ON \
-DCUDAToolkit_ROOT=/usr/local/cuda \
-DCMAKE_CUDA_COMPILER=/usr/local/cuda/bin/nvcc \

124
.github/workflows/build-linux-cross.yml vendored Normal file
View File

@@ -0,0 +1,124 @@
name: Build on Linux using cross-compiler
on:
workflow_dispatch:
workflow_call:
jobs:
ubuntu-latest-riscv64-cpu-cross:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Setup Riscv
run: |
sudo dpkg --add-architecture riscv64
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
sudo apt-get clean
sudo apt-get update
sudo apt-get install -y --no-install-recommends \
build-essential \
gcc-14-riscv64-linux-gnu \
g++-14-riscv64-linux-gnu \
libcurl4-openssl-dev:riscv64
- name: Build
run: |
cmake -B build -DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
ubuntu-latest-riscv64-vulkan-cross:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Setup Riscv
run: |
sudo dpkg --add-architecture riscv64
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
sudo apt-get clean
sudo apt-get update
sudo apt-get install -y --no-install-recommends \
build-essential \
glslc \
gcc-14-riscv64-linux-gnu \
g++-14-riscv64-linux-gnu \
libvulkan-dev:riscv64 \
libcurl4-openssl-dev:riscv64
- name: Build
run: |
cmake -B build -DCMAKE_BUILD_TYPE=Release \
-DGGML_VULKAN=ON \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
ubuntu-latest-arm64-vulkan-cross:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Setup Arm64
run: |
sudo dpkg --add-architecture arm64
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
sudo apt-get clean
sudo apt-get update
sudo apt-get install -y --no-install-recommends \
build-essential \
glslc \
crossbuild-essential-arm64 \
libvulkan-dev:arm64 \
libcurl4-openssl-dev:arm64
- name: Build
run: |
cmake -B build -DCMAKE_BUILD_TYPE=Release \
-DGGML_VULKAN=ON \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=aarch64 \
-DCMAKE_C_COMPILER=aarch64-linux-gnu-gcc \
-DCMAKE_CXX_COMPILER=aarch64-linux-gnu-g++ \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/aarch64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)

View File

@@ -10,7 +10,7 @@ on:
push:
branches:
- master
paths: ['.github/workflows/build.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal', '**/*.comp']
paths: ['.github/workflows/build.yml', '.github/workflows/build-linux-cross.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal', '**/*.comp']
pull_request:
types: [opened, synchronize, reopened]
paths: ['.github/workflows/build.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal', '**/*.comp']
@@ -54,6 +54,7 @@ jobs:
continue-on-error: true
run: |
brew update
brew install curl
- name: Build
id: cmake_build
@@ -62,7 +63,6 @@ jobs:
cmake -B build \
-DCMAKE_BUILD_RPATH="@loader_path" \
-DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_CURL=ON \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DGGML_RPC=ON
@@ -92,7 +92,6 @@ jobs:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
cp LICENSE ./build/bin/
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip ./build/bin/*
- name: Upload artifacts
@@ -123,6 +122,7 @@ jobs:
continue-on-error: true
run: |
brew update
brew install curl
- name: Build
id: cmake_build
@@ -133,7 +133,6 @@ jobs:
cmake -B build \
-DCMAKE_BUILD_RPATH="@loader_path" \
-DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_CURL=ON \
-DGGML_METAL=OFF \
-DGGML_RPC=ON
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
@@ -162,7 +161,6 @@ jobs:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
cp LICENSE ./build/bin/
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip ./build/bin/*
- name: Upload artifacts
@@ -207,7 +205,6 @@ jobs:
run: |
cmake -B build \
-DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_CURL=ON \
-DGGML_RPC=ON
cmake --build build --config Release -j $(nproc)
@@ -246,7 +243,6 @@ jobs:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
cp LICENSE ./build/bin/
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip ./build/bin/*
- name: Upload artifacts
@@ -281,7 +277,7 @@ jobs:
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install build-essential libcurl4-openssl-dev
- name: Build
id: cmake_build
@@ -322,7 +318,7 @@ jobs:
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install build-essential libcurl4-openssl-dev
- name: Build
id: cmake_build
@@ -360,7 +356,7 @@ jobs:
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install build-essential libcurl4-openssl-dev
- name: Build
id: cmake_build
@@ -397,7 +393,7 @@ jobs:
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | sudo apt-key add -
sudo wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
sudo apt-get update -y
sudo apt-get install -y build-essential mesa-vulkan-drivers vulkan-sdk
sudo apt-get install -y build-essential mesa-vulkan-drivers vulkan-sdk libcurl4-openssl-dev
- name: Build
id: cmake_build
@@ -431,7 +427,6 @@ jobs:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
cp LICENSE ./build/bin/
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip ./build/bin/*
- name: Upload artifacts
@@ -454,7 +449,7 @@ jobs:
id: depends
run: |
sudo apt-get update
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev libcurl4-openssl-dev
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
@@ -530,7 +525,7 @@ jobs:
shell: bash
run: |
sudo apt update
sudo apt install intel-oneapi-compiler-dpcpp-cpp
sudo apt install intel-oneapi-compiler-dpcpp-cpp libcurl4-openssl-dev
- name: install oneAPI MKL library
shell: bash
@@ -578,7 +573,7 @@ jobs:
shell: bash
run: |
sudo apt update
sudo apt install intel-oneapi-compiler-dpcpp-cpp
sudo apt install intel-oneapi-compiler-dpcpp-cpp libcurl4-openssl-dev
- name: install oneAPI MKL library
shell: bash
@@ -606,6 +601,9 @@ jobs:
-DGGML_SYCL_F16=ON
cmake --build build --config Release -j $(nproc)
build-linux-cross:
uses: ./.github/workflows/build-linux-cross.yml
macOS-latest-cmake-ios:
runs-on: macos-latest
@@ -633,6 +631,7 @@ jobs:
cmake -B build -G Xcode \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_BUILD_COMMON=OFF \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
@@ -668,6 +667,7 @@ jobs:
cmake -B build -G Xcode \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_BUILD_COMMON=OFF \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
@@ -697,6 +697,7 @@ jobs:
cmake -B build -G Xcode \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_BUILD_COMMON=OFF \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
@@ -736,6 +737,7 @@ jobs:
cmake -B build -G Xcode \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_CURL=OFF \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
@@ -803,7 +805,7 @@ jobs:
env:
OPENBLAS_VERSION: 0.3.23
SDE_VERSION: 9.33.0-2024-01-07
VULKAN_VERSION: 1.4.304.1
VULKAN_VERSION: 1.4.309.0
strategy:
matrix:
@@ -896,10 +898,17 @@ jobs:
-DCMAKE_INSTALL_PREFIX="$env:RUNNER_TEMP/opencl-arm64-release"
cmake --build build-arm64-release --target install --config release
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build
id: cmake_build
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cmake -S . -B build ${{ matrix.defines }}
cmake -S . -B build ${{ matrix.defines }} `
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS}
- name: Add libopenblas.dll
@@ -959,9 +968,10 @@ jobs:
- name: Pack artifacts
id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
Copy-Item LICENSE .\build\bin\Release\llama.cpp.txt
Copy-Item .\examples\run\linenoise.cpp\LICENSE .\build\bin\Release\linenoise.cpp.txt
Copy-Item $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\Release\libcurl-x64.dll
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}.zip .\build\bin\Release\*
- name: Upload artifacts
@@ -987,7 +997,7 @@ jobs:
DEBIAN_FRONTEND: noninteractive
run: |
apt update
apt install -y cmake build-essential ninja-build libgomp1 git
apt install -y cmake build-essential ninja-build libgomp1 git libcurl4-openssl-dev
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
@@ -1089,16 +1099,23 @@ jobs:
run: |
choco install ninja
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build
id: cmake_build
shell: cmd
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
cmake -S . -B build -G "Ninja Multi-Config" ^
-DLLAMA_BUILD_SERVER=ON ^
-DGGML_NATIVE=OFF ^
-DGGML_CUDA=ON ^
-DGGML_RPC=ON
-DGGML_RPC=ON ^
-DCURL_LIBRARY="%CURL_PATH%/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="%CURL_PATH%/include"
set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1
cmake --build build --config Release -j %NINJA_JOBS% -t ggml
cmake --build build --config Release
@@ -1119,7 +1136,10 @@ jobs:
- name: Pack artifacts
id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cp $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\Release\libcurl-x64.dll
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip .\build\bin\Release\*
- name: Upload artifacts
@@ -1174,6 +1194,8 @@ jobs:
run: |
scripts/install-oneapi.bat $WINDOWS_BASEKIT_URL $WINDOWS_DPCPP_MKL
# TODO: add libcurl support ; we will also need to modify win-build-sycl.bat to accept user-specified args
- name: Build
id: cmake_build
run: examples/sycl/win-build-sycl.bat
@@ -1259,8 +1281,14 @@ jobs:
key: ${{ github.job }}
evict-old-files: 1d
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build
id: cmake_build
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
@@ -1271,9 +1299,11 @@ jobs:
-DCMAKE_BUILD_TYPE=Release `
-DGGML_HIP=ON `
-DGGML_HIP_ROCWMMA_FATTN=ON `
-DGGML_RPC=ON
-DGGML_RPC=ON `
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
# TODO: reuse windows-latest-cmake-hip instead of duplicating this job
windows-latest-cmake-hip-release:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
runs-on: windows-latest
@@ -1315,8 +1345,14 @@ jobs:
run: |
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build
id: cmake_build
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
@@ -1328,7 +1364,8 @@ jobs:
-DAMDGPU_TARGETS=${{ matrix.gpu_target }} `
-DGGML_HIP_ROCWMMA_FATTN=ON `
-DGGML_HIP=ON `
-DGGML_RPC=ON
-DGGML_RPC=ON `
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
md "build\bin\rocblas\library\"
cp "${env:HIP_PATH}\bin\hipblas.dll" "build\bin\"
@@ -1350,7 +1387,10 @@ jobs:
- name: Pack artifacts
id: pack_artifacts
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cp $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\libcurl-x64.dll
7z a llama-${{ steps.tag.outputs.name }}-bin-win-hip-x64-${{ matrix.gpu_target }}.zip .\build\bin\*
- name: Upload artifacts
@@ -1375,6 +1415,7 @@ jobs:
cmake -B build -G Xcode \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_CURL=OFF \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
@@ -1725,16 +1766,17 @@ jobs:
if: ${{ github.event_name != 'pull_request' || contains(github.event.pull_request.labels.*.name, 'Ascend NPU') }}
defaults:
run:
shell: bash -el {0}
runs-on: ubuntu-24.04-arm
shell: bash -el {0}
strategy:
matrix:
arch: [x86, aarch64]
cann:
- '8.0.rc3.beta1-910b-openeuler22.03-py3.10'
- '8.1.RC1.alpha001-910b-openeuler22.03-py3.10'
device:
- 'ascend910b3'
build:
- 'Release'
runs-on: ${{ matrix.arch == 'aarch64' && 'ubuntu-24.04-arm' || 'ubuntu-24.04' }}
container: ascendai/cann:${{ matrix.cann }}
steps:
- name: Checkout
@@ -1743,7 +1785,7 @@ jobs:
- name: Dependencies
run: |
yum update -y
yum install -y git gcc gcc-c++ make cmake
yum install -y git gcc gcc-c++ make cmake libcurl-devel
- name: Build
run: |

View File

@@ -36,13 +36,13 @@ jobs:
matrix:
config:
# Multi-stage build
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, freediskspace: false}
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true }
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
# Note: the rocm images are failing due to a compiler error and are disabled until this is fixed to allow the workflow to complete
#- {tag: "rocm", dockerfile: ".devops/rocm.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, freediskspace: true }
#- {tag: "rocm", dockerfile: ".devops/rocm.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: true }
steps:
- name: Check out the repo
uses: actions/checkout@v4

View File

@@ -129,7 +129,6 @@ jobs:
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DGGML_OPENMP=OFF ;
@@ -142,7 +141,6 @@ jobs:
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
@@ -154,7 +152,6 @@ jobs:
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
@@ -195,17 +192,14 @@ jobs:
- name: libCURL
id: get_libcurl
env:
CURL_VERSION: 8.6.0_6
run: |
curl.exe -o $env:RUNNER_TEMP/curl.zip -L "https://curl.se/windows/dl-${env:CURL_VERSION}/curl-${env:CURL_VERSION}-win64-mingw.zip"
mkdir $env:RUNNER_TEMP/libcurl
tar.exe -xvf $env:RUNNER_TEMP/curl.zip --strip-components=1 -C $env:RUNNER_TEMP/libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build
id: cmake_build
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cmake -B build -DLLAMA_CURL=ON -DCURL_LIBRARY="$env:RUNNER_TEMP/libcurl/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:RUNNER_TEMP/libcurl/include"
cmake -B build -DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS} --target llama-server
- name: Python setup
@@ -221,8 +215,10 @@ jobs:
- name: Copy Libcurl
id: prepare_libcurl
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cp $env:RUNNER_TEMP/libcurl/bin/libcurl-x64.dll ./build/bin/Release/libcurl-x64.dll
cp $env:CURL_PATH/bin/libcurl-x64.dll ./build/bin/Release/libcurl-x64.dll
- name: Tests
id: server_integration_tests

View File

@@ -81,7 +81,7 @@ option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_SERVER "llama: build server example" ${LLAMA_STANDALONE})
# 3rd party libs
option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF)
option(LLAMA_CURL "llama: use libcurl to download model from an URL" ON)
option(LLAMA_LLGUIDANCE "llama-common: include LLGuidance library for structured output in common utils" OFF)
# Required for relocatable CMake package
@@ -168,6 +168,11 @@ add_subdirectory(src)
# utils, programs, examples and tests
#
if (NOT LLAMA_BUILD_COMMON)
message(STATUS "LLAMA_BUILD_COMMON is OFF, disabling LLAMA_CURL")
set(LLAMA_CURL OFF)
endif()
if (LLAMA_BUILD_COMMON)
add_subdirectory(common)
endif()
@@ -242,3 +247,20 @@ configure_file(cmake/llama.pc.in
install(FILES "${CMAKE_CURRENT_BINARY_DIR}/llama.pc"
DESTINATION ${CMAKE_INSTALL_LIBDIR}/pkgconfig)
#
# copy the license files
#
# Check if running in GitHub Actions
if(DEFINED ENV{GITHUB_ACTIONS} AND "$ENV{GITHUB_ACTIONS}" STREQUAL "true")
message(STATUS "Running inside GitHub Actions - copying license files")
# Copy all files from licenses/ to build/bin/
file(GLOB LICENSE_FILES "${CMAKE_SOURCE_DIR}/licenses/*")
foreach(LICENSE_FILE ${LICENSE_FILES})
get_filename_component(FILENAME ${LICENSE_FILE} NAME)
configure_file(${LICENSE_FILE} "${CMAKE_BINARY_DIR}/bin/${FILENAME}" COPYONLY)
endforeach()
endif()

View File

@@ -780,10 +780,6 @@ ifdef GGML_HIP
MK_CPPFLAGS += -DGGML_USE_HIP -DGGML_USE_CUDA
ifdef GGML_HIP_UMA
MK_CPPFLAGS += -DGGML_HIP_UMA
endif # GGML_HIP_UMA
MK_LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
MK_LDFLAGS += -L$(ROCM_PATH)/lib64 -Wl,-rpath=$(ROCM_PATH)/lib64
MK_LDFLAGS += -lhipblas -lamdhip64 -lrocblas

View File

@@ -9,13 +9,6 @@
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
> [!IMPORTANT]
> New `llama.cpp` package location: [ggml-org/llama.cpp](https://github.com/ggml-org/llama.cpp/pkgs/container/llama.cpp)
>
> Update your container URLs to: `ghcr.io/ggml-org/llama.cpp`
>
> More info: https://github.com/ggml-org/llama.cpp/discussions/11801
## Recent API changes
- [Changelog for `libllama` API](https://github.com/ggml-org/llama.cpp/issues/9289)
@@ -104,6 +97,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [x] [Flan T5](https://huggingface.co/models?search=flan-t5)
- [x] [Open Elm models](https://huggingface.co/collections/apple/openelm-instruct-models-6619ad295d7ae9f868b759ca)
- [x] [ChatGLM3-6b](https://huggingface.co/THUDM/chatglm3-6b) + [ChatGLM4-9b](https://huggingface.co/THUDM/glm-4-9b) + [GLMEdge-1.5b](https://huggingface.co/THUDM/glm-edge-1.5b-chat) + [GLMEdge-4b](https://huggingface.co/THUDM/glm-edge-4b-chat)
- [x] [GLM-4-0414](https://huggingface.co/collections/THUDM/glm-4-0414-67f3cbcb34dd9d252707cb2e)
- [x] [SmolLM](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad7167254ce15966)
- [x] [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)
- [x] [FalconMamba Models](https://huggingface.co/collections/tiiuae/falconmamba-7b-66b9a580324dd1598b0f6d4a)
@@ -112,6 +106,8 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [x] [RWKV-6](https://github.com/BlinkDL/RWKV-LM)
- [x] [QRWKV-6](https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1)
- [x] [GigaChat-20B-A3B](https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct)
- [X] [Trillion-7B-preview](https://huggingface.co/trillionlabs/Trillion-7B-preview)
- [x] [Ling models](https://huggingface.co/collections/inclusionAI/ling-67c51c85b34a7ea0aba94c32)
#### Multimodal
@@ -245,6 +241,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
| [Vulkan](docs/build.md#vulkan) | GPU |
| [CANN](docs/build.md#cann) | Ascend NPU |
| [OpenCL](docs/backend/OPENCL.md) | Adreno GPU |
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/examples/rpc) | All |
## Building the project
@@ -263,7 +260,9 @@ The [Hugging Face](https://huggingface.co) platform hosts a [number of LLMs](htt
- [Trending](https://huggingface.co/models?library=gguf&sort=trending)
- [LLaMA](https://huggingface.co/models?sort=trending&search=llama+gguf)
You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from Hugging Face by using this CLI argument: `-hf <user>/<model>[:quant]`
You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from [Hugging Face](https://huggingface.co/) or other model hosting sites, such as [ModelScope](https://modelscope.cn/), by using this CLI argument: `-hf <user>/<model>[:quant]`.
By default, the CLI would download from Hugging Face, you can switch to other options with the environment variable `MODEL_ENDPOINT`. For example, you may opt to downloading model checkpoints from ModelScope or other model sharing communities by setting the environment variable, e.g. `MODEL_ENDPOINT=https://www.modelscope.cn/`.
After downloading a model, use the CLI tools to run it locally - see below.
@@ -528,6 +527,35 @@ If your issue is with model generation quality, then please at least scan the fo
- [Aligning language models to follow instructions](https://openai.com/research/instruction-following)
- [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)
## XCFramework
The XCFramework is a precompiled version of the library for iOS, visionOS, tvOS,
and macOS. It can be used in Swift projects without the need to compile the
library from source. For example:
```swift
// swift-tools-version: 5.10
// The swift-tools-version declares the minimum version of Swift required to build this package.
import PackageDescription
let package = Package(
name: "MyLlamaPackage",
targets: [
.executableTarget(
name: "MyLlamaPackage",
dependencies: [
"LlamaFramework"
]),
.binaryTarget(
name: "LlamaFramework",
url: "https://github.com/ggml-org/llama.cpp/releases/download/b5046/llama-b5046-xcframework.zip",
checksum: "c19be78b5f00d8d29a25da41042cb7afa094cbf6280a225abe614b03b20029ab"
)
]
)
```
The above example is using an intermediate build `b5046` of the library. This can be modified
to use a different version by changing the URL and checksum.
## Completions
Command-line completion is available for some environments.

View File

@@ -41,6 +41,11 @@ COMMON_CMAKE_ARGS=(
-DGGML_OPENMP=${GGML_OPENMP}
)
XCODE_VERSION=$(xcodebuild -version 2>/dev/null | head -n1 | awk '{ print $2 }')
MAJOR_VERSION=$(echo $XCODE_VERSION | cut -d. -f1)
MINOR_VERSION=$(echo $XCODE_VERSION | cut -d. -f2)
echo "Detected Xcode version: $XCODE_VERSION"
check_required_tool() {
local tool=$1
local install_message=$2
@@ -325,21 +330,28 @@ combine_static_libraries() {
# Platform-specific post-processing for device builds
if [[ "$is_simulator" == "false" ]]; then
if command -v vtool &>/dev/null; then
if command -v xcrun vtool &>/dev/null; then
case "$platform" in
"ios")
echo "Marking binary as a framework binary for iOS..."
vtool -set-build-version ios ${IOS_MIN_OS_VERSION} ${IOS_MIN_OS_VERSION} -replace \
xcrun vtool -set-build-version ios ${IOS_MIN_OS_VERSION} ${IOS_MIN_OS_VERSION} -replace \
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
;;
"visionos")
echo "Marking binary as a framework binary for visionOS..."
vtool -set-build-version xros ${VISIONOS_MIN_OS_VERSION} ${VISIONOS_MIN_OS_VERSION} -replace \
if [[ "$MAJOR_VERSION" -gt 16 ]] || [[ "$MAJOR_VERSION" -eq 16 && "$MINOR_VERSION" -gt 2 ]]; then
echo "Xcode version greater than 16.2, using visionOS."
VISION_OS_BUILD_VERSION="visionos"
else
echo "Xcode version less than or equal to 16.2, using xros."
VISION_OS_BUILD_VERSION="xros"
fi
xcrun vtool -set-build-version ${VISION_OS_BUILD_VERSION} ${VISIONOS_MIN_OS_VERSION} ${VISIONOS_MIN_OS_VERSION} -replace \
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
;;
"tvos")
echo "Marking binary as a framework binary for tvOS..."
vtool -set-build-version tvos ${TVOS_MIN_OS_VERSION} ${TVOS_MIN_OS_VERSION} -replace \
xcrun vtool -set-build-version tvos ${TVOS_MIN_OS_VERSION} ${TVOS_MIN_OS_VERSION} -replace \
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
;;
esac
@@ -399,6 +411,7 @@ cmake -B build-ios-sim -G Xcode \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphonesimulator \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-S .
cmake --build build-ios-sim --config Release -- -quiet
@@ -411,6 +424,7 @@ cmake -B build-ios-device -G Xcode \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphoneos \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-S .
cmake --build build-ios-device --config Release -- -quiet
@@ -421,6 +435,7 @@ cmake -B build-macos -G Xcode \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-S .
cmake --build build-macos --config Release -- -quiet
@@ -434,6 +449,7 @@ cmake -B build-visionos -G Xcode \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xros \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-S .
cmake --build build-visionos --config Release -- -quiet
@@ -447,6 +463,7 @@ cmake -B build-visionos-sim -G Xcode \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xrsimulator \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-S .
cmake --build build-visionos-sim --config Release -- -quiet
@@ -462,6 +479,7 @@ cmake -B build-tvos-sim -G Xcode \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=appletvsimulator \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-S .
cmake --build build-tvos-sim --config Release -- -quiet
@@ -476,6 +494,7 @@ cmake -B build-tvos-device -G Xcode \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=appletvos \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-S .
cmake --build build-tvos-device --config Release -- -quiet

View File

@@ -60,7 +60,7 @@ docker run --privileged -it \
Inside the container, execute the following commands:
```bash
apt update -y && apt install -y bc cmake git python3.10-venv time unzip wget
apt update -y && apt install -y bc cmake ccache git python3.10-venv time unzip wget
git config --global --add safe.directory /ws
GG_BUILD_MUSA=1 bash ./ci/run.sh /ci-results /ci-cache
```

View File

@@ -39,7 +39,7 @@ sd=`dirname $0`
cd $sd/../
SRC=`pwd`
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON"
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=OFF"
if [ ! -z ${GG_BUILD_METAL} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON -DGGML_METAL_USE_BF16=ON"
@@ -59,6 +59,8 @@ if [ ! -z ${GG_BUILD_SYCL} ]; then
export ONEAPI_DEVICE_SELECTOR="level_zero:0"
# Enable sysman for correct memory reporting
export ZES_ENABLE_SYSMAN=1
# to circumvent precision issues on CPY operations
export SYCL_PROGRAM_COMPILE_OPTIONS="-cl-fp32-correctly-rounded-divide-sqrt"
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_SYCL=1 -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON"
fi
@@ -69,7 +71,7 @@ fi
if [ ! -z ${GG_BUILD_MUSA} ]; then
# Use qy1 by default (MTT S80)
MUSA_ARCH=${MUSA_ARCH:-21}
CMAKE_EXTRA="-DGGML_MUSA=ON -DMUSA_ARCHITECTURES=${MUSA_ARCH}"
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_MUSA=ON -DMUSA_ARCHITECTURES=${MUSA_ARCH}"
fi
## helpers

View File

@@ -85,7 +85,10 @@ set(LLAMA_COMMON_EXTRA_LIBS build_info)
# Use curl to download model url
if (LLAMA_CURL)
find_package(CURL REQUIRED)
find_package(CURL)
if (NOT CURL_FOUND)
message(FATAL_ERROR "Could NOT find CURL. Hint: to disable this feature, set -DLLAMA_CURL=OFF")
endif()
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_CURL)
include_directories(${CURL_INCLUDE_DIRS})
find_library(CURL_LIBRARY curl REQUIRED)

View File

@@ -1,12 +1,24 @@
#include "gguf.h" // for reading GGUF splits
#include "arg.h"
#include "common.h"
#include "log.h"
#include "sampling.h"
#include "chat.h"
// fix problem with std::min and std::max
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
# define NOMINMAX
#endif
#include <windows.h>
#endif
#include <algorithm>
#include <climits>
#include <cstdarg>
#include <filesystem>
#include <fstream>
#include <regex>
#include <set>
@@ -14,6 +26,14 @@
#include <thread>
#include <vector>
//#define LLAMA_USE_CURL
#if defined(LLAMA_USE_CURL)
#include <curl/curl.h>
#include <curl/easy.h>
#include <future>
#endif
#include "json-schema-to-grammar.h"
using json = nlohmann::ordered_json;
@@ -125,47 +145,554 @@ std::string common_arg::to_string() {
return ss.str();
}
//
// downloader
//
struct common_hf_file_res {
std::string repo; // repo name with ":tag" removed
std::string ggufFile;
std::string mmprojFile;
};
#ifdef LLAMA_USE_CURL
#ifdef __linux__
#include <linux/limits.h>
#elif defined(_WIN32)
# if !defined(PATH_MAX)
# define PATH_MAX MAX_PATH
# endif
#elif defined(_AIX)
#include <sys/limits.h>
#else
#include <sys/syslimits.h>
#endif
#define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
//
// CURL utils
//
using curl_ptr = std::unique_ptr<CURL, decltype(&curl_easy_cleanup)>;
// cannot use unique_ptr for curl_slist, because we cannot update without destroying the old one
struct curl_slist_ptr {
struct curl_slist * ptr = nullptr;
~curl_slist_ptr() {
if (ptr) {
curl_slist_free_all(ptr);
}
}
};
#define CURL_MAX_RETRY 3
#define CURL_RETRY_DELAY_SECONDS 2
static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds) {
int remaining_attempts = max_attempts;
while (remaining_attempts > 0) {
LOG_INF("%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
CURLcode res = curl_easy_perform(curl);
if (res == CURLE_OK) {
return true;
}
int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
LOG_WRN("%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
remaining_attempts--;
std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
}
LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
return false;
}
// download one single file from remote URL to local path
static bool common_download_file_single(const std::string & url, const std::string & path, const std::string & bearer_token) {
// Initialize libcurl
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
curl_slist_ptr http_headers;
if (!curl) {
LOG_ERR("%s: error initializing libcurl\n", __func__);
return false;
}
bool force_download = false;
// Set the URL, allow to follow http redirection
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
// Check if hf-token or bearer-token was specified
if (!bearer_token.empty()) {
std::string auth_header = "Authorization: Bearer " + bearer_token;
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
}
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
#if defined(_WIN32)
// CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
// operating system. Currently implemented under MS-Windows.
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
#endif
// Check if the file already exists locally
auto file_exists = std::filesystem::exists(path);
// If the file exists, check its JSON metadata companion file.
std::string metadata_path = path + ".json";
nlohmann::json metadata;
std::string etag;
std::string last_modified;
if (file_exists) {
// Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
std::ifstream metadata_in(metadata_path);
if (metadata_in.good()) {
try {
metadata_in >> metadata;
LOG_INF("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
if (metadata.contains("url") && metadata.at("url").is_string()) {
auto previous_url = metadata.at("url").get<std::string>();
if (previous_url != url) {
LOG_ERR("%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
return false;
}
}
if (metadata.contains("etag") && metadata.at("etag").is_string()) {
etag = metadata.at("etag");
}
if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
last_modified = metadata.at("lastModified");
}
} catch (const nlohmann::json::exception & e) {
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
return false;
}
}
} else {
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
}
// Send a HEAD request to retrieve the etag and last-modified headers
struct common_load_model_from_url_headers {
std::string etag;
std::string last_modified;
};
common_load_model_from_url_headers headers;
{
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
static std::regex header_regex("([^:]+): (.*)\r\n");
static std::regex etag_regex("ETag", std::regex_constants::icase);
static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
std::string header(buffer, n_items);
std::smatch match;
if (std::regex_match(header, match, header_regex)) {
const std::string & key = match[1];
const std::string & value = match[2];
if (std::regex_match(key, match, etag_regex)) {
headers->etag = value;
} else if (std::regex_match(key, match, last_modified_regex)) {
headers->last_modified = value;
}
}
return n_items;
};
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
if (!was_perform_successful) {
return false;
}
long http_code = 0;
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
if (http_code != 200) {
// HEAD not supported, we don't know if the file has changed
// force trigger downloading
force_download = true;
LOG_ERR("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
}
}
bool should_download = !file_exists || force_download;
if (!should_download) {
if (!etag.empty() && etag != headers.etag) {
LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
should_download = true;
} else if (!last_modified.empty() && last_modified != headers.last_modified) {
LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
should_download = true;
}
}
if (should_download) {
std::string path_temporary = path + ".downloadInProgress";
if (file_exists) {
LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
if (remove(path.c_str()) != 0) {
LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
return false;
}
}
// Set the output file
struct FILE_deleter {
void operator()(FILE * f) const {
fclose(f);
}
};
std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
if (!outfile) {
LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path.c_str());
return false;
}
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
return fwrite(data, size, nmemb, (FILE *)fd);
};
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());
// display download progress
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
// helper function to hide password in URL
auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
std::size_t protocol_pos = url.find("://");
if (protocol_pos == std::string::npos) {
return url; // Malformed URL
}
std::size_t at_pos = url.find('@', protocol_pos + 3);
if (at_pos == std::string::npos) {
return url; // No password in URL
}
return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
};
// start the download
LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
if (!was_perform_successful) {
return false;
}
long http_code = 0;
curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
if (http_code < 200 || http_code >= 400) {
LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code);
return false;
}
// Causes file to be closed explicitly here before we rename it.
outfile.reset();
// Write the updated JSON metadata file.
metadata.update({
{"url", url},
{"etag", headers.etag},
{"lastModified", headers.last_modified}
});
std::ofstream(metadata_path) << metadata.dump(4);
LOG_INF("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
if (rename(path_temporary.c_str(), path.c_str()) != 0) {
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
return false;
}
}
return true;
}
// download multiple files from remote URLs to local paths
// the input is a vector of pairs <url, path>
static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> & urls, const std::string & bearer_token) {
// Prepare download in parallel
std::vector<std::future<bool>> futures_download;
for (auto const & item : urls) {
futures_download.push_back(std::async(std::launch::async, [bearer_token](const std::pair<std::string, std::string> & it) -> bool {
return common_download_file_single(it.first, it.second, bearer_token);
}, item));
}
// Wait for all downloads to complete
for (auto & f : futures_download) {
if (!f.get()) {
return false;
}
}
return true;
}
static bool common_download_model(
const common_params_model & model,
const std::string & bearer_token) {
// Basic validation of the model.url
if (model.url.empty()) {
LOG_ERR("%s: invalid model url\n", __func__);
return false;
}
if (!common_download_file_single(model.url, model.path, bearer_token)) {
return false;
}
// check for additional GGUFs split to download
int n_split = 0;
{
struct gguf_init_params gguf_params = {
/*.no_alloc = */ true,
/*.ctx = */ NULL,
};
auto * ctx_gguf = gguf_init_from_file(model.path.c_str(), gguf_params);
if (!ctx_gguf) {
LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, model.path.c_str());
return false;
}
auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
if (key_n_split >= 0) {
n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
}
gguf_free(ctx_gguf);
}
if (n_split > 1) {
char split_prefix[PATH_MAX] = {0};
char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
// Verify the first split file format
// and extract split URL and PATH prefixes
{
if (!llama_split_prefix(split_prefix, sizeof(split_prefix), model.path.c_str(), 0, n_split)) {
LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, model.path.c_str(), n_split);
return false;
}
if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model.url.c_str(), 0, n_split)) {
LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model.url.c_str(), n_split);
return false;
}
}
std::vector<std::pair<std::string, std::string>> urls;
for (int idx = 1; idx < n_split; idx++) {
char split_path[PATH_MAX] = {0};
llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
llama_split_path(split_url, sizeof(split_url), split_url_prefix, idx, n_split);
if (std::string(split_path) == model.path) {
continue; // skip the already downloaded file
}
urls.push_back({split_url, split_path});
}
// Download in parallel
common_download_file_multiple(urls, bearer_token);
}
return true;
}
/**
* Allow getting the HF file from the HF repo with tag (like ollama), for example:
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
* - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
* Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
*
* Return pair of <repo, file> (with "repo" already having tag removed)
*
* Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
*/
static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & bearer_token) {
auto parts = string_split<std::string>(hf_repo_with_tag, ':');
std::string tag = parts.size() > 1 ? parts.back() : "latest";
std::string hf_repo = parts[0];
if (string_split<std::string>(hf_repo, '/').size() != 2) {
throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
}
// fetch model info from Hugging Face Hub API
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
curl_slist_ptr http_headers;
std::string res_str;
std::string model_endpoint = get_model_endpoint();
std::string url = model_endpoint + "v2/" + hf_repo + "/manifests/" + tag;
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
static_cast<std::string *>(data)->append((char * ) ptr, size * nmemb);
return size * nmemb;
};
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_str);
#if defined(_WIN32)
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
#endif
if (!bearer_token.empty()) {
std::string auth_header = "Authorization: Bearer " + bearer_token;
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
}
// Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
http_headers.ptr = curl_slist_append(http_headers.ptr, "Accept: application/json");
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
CURLcode res = curl_easy_perform(curl.get());
if (res != CURLE_OK) {
throw std::runtime_error("error: cannot make GET request to HF API");
}
long res_code;
std::string ggufFile = "";
std::string mmprojFile = "";
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
if (res_code == 200) {
// extract ggufFile.rfilename in json, using regex
{
std::regex pattern("\"ggufFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
std::smatch match;
if (std::regex_search(res_str, match, pattern)) {
ggufFile = match[1].str();
}
}
// extract mmprojFile.rfilename in json, using regex
{
std::regex pattern("\"mmprojFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
std::smatch match;
if (std::regex_search(res_str, match, pattern)) {
mmprojFile = match[1].str();
}
}
} else if (res_code == 401) {
throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
} else {
throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str()));
}
// check response
if (ggufFile.empty()) {
throw std::runtime_error("error: model does not have ggufFile");
}
return { hf_repo, ggufFile, mmprojFile };
}
#else
static bool common_download_file_single(const std::string &, const std::string &, const std::string &) {
LOG_ERR("error: built without CURL, cannot download model from internet\n");
return false;
}
static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> &, const std::string &) {
LOG_ERR("error: built without CURL, cannot download model from the internet\n");
return false;
}
static bool common_download_model(
const common_params_model &,
const std::string &) {
LOG_ERR("error: built without CURL, cannot download model from the internet\n");
return false;
}
static struct common_hf_file_res common_get_hf_file(const std::string &, const std::string &) {
LOG_ERR("error: built without CURL, cannot download model from the internet\n");
return {};
}
#endif // LLAMA_USE_CURL
//
// utils
//
static void common_params_handle_model_default(
std::string & model,
const std::string & model_url,
std::string & hf_repo,
std::string & hf_file,
const std::string & hf_token,
const std::string & model_default) {
if (!hf_repo.empty()) {
// short-hand to avoid specifying --hf-file -> default it to --model
if (hf_file.empty()) {
if (model.empty()) {
auto auto_detected = common_get_hf_file(hf_repo, hf_token);
if (auto_detected.first.empty() || auto_detected.second.empty()) {
exit(1); // built without CURL, error message already printed
static void common_params_handle_model(
struct common_params_model & model,
const std::string & bearer_token,
const std::string & model_path_default,
bool is_mmproj = false) { // TODO: move is_mmproj to an enum when we have more files?
// handle pre-fill default model path and url based on hf_repo and hf_file
{
if (!model.hf_repo.empty()) {
// short-hand to avoid specifying --hf-file -> default it to --model
if (model.hf_file.empty()) {
if (model.path.empty()) {
auto auto_detected = common_get_hf_file(model.hf_repo, bearer_token);
if (auto_detected.repo.empty() || auto_detected.ggufFile.empty()) {
exit(1); // built without CURL, error message already printed
}
model.hf_repo = auto_detected.repo;
model.hf_file = is_mmproj ? auto_detected.mmprojFile : auto_detected.ggufFile;
} else {
model.hf_file = model.path;
}
hf_repo = auto_detected.first;
hf_file = auto_detected.second;
} else {
hf_file = model;
}
std::string model_endpoint = get_model_endpoint();
model.url = model_endpoint + model.hf_repo + "/resolve/main/" + model.hf_file;
// make sure model path is present (for caching purposes)
if (model.path.empty()) {
// this is to avoid different repo having same file name, or same file name in different subdirs
std::string filename = model.hf_repo + "_" + model.hf_file;
// to make sure we don't have any slashes in the filename
string_replace_all(filename, "/", "_");
model.path = fs_get_cache_file(filename);
}
} else if (!model.url.empty()) {
if (model.path.empty()) {
auto f = string_split<std::string>(model.url, '#').front();
f = string_split<std::string>(f, '?').front();
model.path = fs_get_cache_file(string_split<std::string>(f, '/').back());
}
} else if (model.path.empty()) {
model.path = model_path_default;
}
// make sure model path is present (for caching purposes)
if (model.empty()) {
// this is to avoid different repo having same file name, or same file name in different subdirs
std::string filename = hf_repo + "_" + hf_file;
// to make sure we don't have any slashes in the filename
string_replace_all(filename, "/", "_");
model = fs_get_cache_file(filename);
}
// then, download it if needed
if (!model.url.empty()) {
bool ok = common_download_model(model, bearer_token);
if (!ok) {
LOG_ERR("error: failed to download model from %s\n", model.url.c_str());
exit(1);
}
} else if (!model_url.empty()) {
if (model.empty()) {
auto f = string_split<std::string>(model_url, '#').front();
f = string_split<std::string>(f, '?').front();
model = fs_get_cache_file(string_split<std::string>(f, '/').back());
}
} else if (model.empty()) {
model = model_default;
}
}
@@ -300,10 +827,16 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
}
// TODO: refactor model params in a common struct
common_params_handle_model_default(params.model, params.model_url, params.hf_repo, params.hf_file, params.hf_token, DEFAULT_MODEL_PATH);
common_params_handle_model_default(params.speculative.model, params.speculative.model_url, params.speculative.hf_repo, params.speculative.hf_file, params.hf_token, "");
common_params_handle_model_default(params.vocoder.model, params.vocoder.model_url, params.vocoder.hf_repo, params.vocoder.hf_file, params.hf_token, "");
common_params_handle_model(params.model, params.hf_token, DEFAULT_MODEL_PATH);
common_params_handle_model(params.speculative.model, params.hf_token, "");
common_params_handle_model(params.vocoder.model, params.hf_token, "");
// allow --mmproj to be set from -hf
// assuming that mmproj is always in the same repo as text model
if (!params.model.hf_repo.empty() && ctx_arg.ex == LLAMA_EXAMPLE_LLAVA) {
params.mmproj.hf_repo = params.model.hf_repo;
}
common_params_handle_model(params.mmproj, params.hf_token, "", true);
if (params.escape) {
string_process_escapes(params.prompt);
@@ -322,6 +855,10 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
params.kv_overrides.back().key[0] = 0;
}
if (!params.tensor_buft_overrides.empty()) {
params.tensor_buft_overrides.push_back({nullptr, nullptr});
}
if (params.reranking && params.embedding) {
throw std::invalid_argument("error: either --embedding or --reranking can be specified, but not both");
}
@@ -1561,7 +2098,14 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--mmproj"}, "FILE",
"path to a multimodal projector file for LLaVA. see examples/llava/README.md",
[](common_params & params, const std::string & value) {
params.mmproj = value;
params.mmproj.path = value;
}
).set_examples({LLAMA_EXAMPLE_LLAVA}));
add_opt(common_arg(
{"--mmproj-url"}, "URL",
"URL to a multimodal projector file for LLaVA. see examples/llava/README.md",
[](common_params & params, const std::string & value) {
params.mmproj.url = value;
}
).set_examples({LLAMA_EXAMPLE_LLAVA}));
add_opt(common_arg(
@@ -1647,6 +2191,41 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
exit(0);
}
));
add_opt(common_arg(
{"--override-tensor", "-ot"}, "<tensor name pattern>=<buffer type>,...",
"override tensor buffer type", [](common_params & params, const std::string & value) {
/* static */ std::map<std::string, ggml_backend_buffer_type_t> buft_list;
if (buft_list.empty()) {
// enumerate all the devices and add their buffer types to the list
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
auto * dev = ggml_backend_dev_get(i);
auto * buft = ggml_backend_dev_buffer_type(dev);
if (buft) {
buft_list[ggml_backend_buft_name(buft)] = buft;
}
}
}
for (const auto & override : string_split<std::string>(value, ',')) {
std::string::size_type pos = override.find('=');
if (pos == std::string::npos) {
throw std::invalid_argument("invalid value");
}
std::string tensor_name = override.substr(0, pos);
std::string buffer_type = override.substr(pos + 1);
if (buft_list.find(buffer_type) == buft_list.end()) {
printf("Available buffer types:\n");
for (const auto & it : buft_list) {
printf(" %s\n", ggml_backend_buft_name(it.second));
}
throw std::invalid_argument("unknown buffer type");
}
// FIXME: this leaks memory
params.tensor_buft_overrides.push_back({strdup(tensor_name.c_str()), buft_list.at(buffer_type)});
}
}
));
add_opt(common_arg(
{"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
"number of layers to store in VRAM",
@@ -1790,14 +2369,14 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
"or `--model-url` if set, otherwise %s)", DEFAULT_MODEL_PATH
),
[](common_params & params, const std::string & value) {
params.model = value;
params.model.path = value;
}
).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL"));
add_opt(common_arg(
{"-mu", "--model-url"}, "MODEL_URL",
"model download url (default: unused)",
[](common_params & params, const std::string & value) {
params.model_url = value;
params.model.url = value;
}
).set_env("LLAMA_ARG_MODEL_URL"));
add_opt(common_arg(
@@ -1806,35 +2385,35 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
"example: unsloth/phi-4-GGUF:q4_k_m\n"
"(default: unused)",
[](common_params & params, const std::string & value) {
params.hf_repo = value;
params.model.hf_repo = value;
}
).set_env("LLAMA_ARG_HF_REPO"));
add_opt(common_arg(
{"-hfd", "-hfrd", "--hf-repo-draft"}, "<user>/<model>[:quant]",
"Same as --hf-repo, but for the draft model (default: unused)",
[](common_params & params, const std::string & value) {
params.speculative.hf_repo = value;
params.speculative.model.hf_repo = value;
}
).set_env("LLAMA_ARG_HFD_REPO"));
add_opt(common_arg(
{"-hff", "--hf-file"}, "FILE",
"Hugging Face model file. If specified, it will override the quant in --hf-repo (default: unused)",
[](common_params & params, const std::string & value) {
params.hf_file = value;
params.model.hf_file = value;
}
).set_env("LLAMA_ARG_HF_FILE"));
add_opt(common_arg(
{"-hfv", "-hfrv", "--hf-repo-v"}, "<user>/<model>[:quant]",
"Hugging Face model repository for the vocoder model (default: unused)",
[](common_params & params, const std::string & value) {
params.vocoder.hf_repo = value;
params.vocoder.model.hf_repo = value;
}
).set_env("LLAMA_ARG_HF_REPO_V"));
add_opt(common_arg(
{"-hffv", "--hf-file-v"}, "FILE",
"Hugging Face model file for the vocoder model (default: unused)",
[](common_params & params, const std::string & value) {
params.vocoder.hf_file = value;
params.vocoder.model.hf_file = value;
}
).set_env("LLAMA_ARG_HF_FILE_V"));
add_opt(common_arg(
@@ -2454,7 +3033,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"-md", "--model-draft"}, "FNAME",
"draft model for speculative decoding (default: unused)",
[](common_params & params, const std::string & value) {
params.speculative.model = value;
params.speculative.model.path = value;
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL_DRAFT"));
@@ -2462,7 +3041,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"-mv", "--model-vocoder"}, "FNAME",
"vocoder model for audio generation (default: unused)",
[](common_params & params, const std::string & value) {
params.vocoder.model = value;
params.vocoder.model.path = value;
}
).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
@@ -2485,10 +3064,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--tts-oute-default"},
string_format("use default OuteTTS models (note: can download weights from the internet)"),
[](common_params & params) {
params.hf_repo = "OuteAI/OuteTTS-0.2-500M-GGUF";
params.hf_file = "OuteTTS-0.2-500M-Q8_0.gguf";
params.vocoder.hf_repo = "ggml-org/WavTokenizer";
params.vocoder.hf_file = "WavTokenizer-Large-75-F16.gguf";
params.model.hf_repo = "OuteAI/OuteTTS-0.2-500M-GGUF";
params.model.hf_file = "OuteTTS-0.2-500M-Q8_0.gguf";
params.vocoder.model.hf_repo = "ggml-org/WavTokenizer";
params.vocoder.model.hf_file = "WavTokenizer-Large-75-F16.gguf";
}
).set_examples({LLAMA_EXAMPLE_TTS}));
@@ -2496,8 +3075,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--embd-bge-small-en-default"},
string_format("use default bge-small-en-v1.5 model (note: can download weights from the internet)"),
[](common_params & params) {
params.hf_repo = "ggml-org/bge-small-en-v1.5-Q8_0-GGUF";
params.hf_file = "bge-small-en-v1.5-q8_0.gguf";
params.model.hf_repo = "ggml-org/bge-small-en-v1.5-Q8_0-GGUF";
params.model.hf_file = "bge-small-en-v1.5-q8_0.gguf";
params.pooling_type = LLAMA_POOLING_TYPE_NONE;
params.embd_normalize = 2;
params.n_ctx = 512;
@@ -2510,8 +3089,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--embd-e5-small-en-default"},
string_format("use default e5-small-v2 model (note: can download weights from the internet)"),
[](common_params & params) {
params.hf_repo = "ggml-org/e5-small-v2-Q8_0-GGUF";
params.hf_file = "e5-small-v2-q8_0.gguf";
params.model.hf_repo = "ggml-org/e5-small-v2-Q8_0-GGUF";
params.model.hf_file = "e5-small-v2-q8_0.gguf";
params.pooling_type = LLAMA_POOLING_TYPE_NONE;
params.embd_normalize = 2;
params.n_ctx = 512;
@@ -2524,8 +3103,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--embd-gte-small-default"},
string_format("use default gte-small model (note: can download weights from the internet)"),
[](common_params & params) {
params.hf_repo = "ggml-org/gte-small-Q8_0-GGUF";
params.hf_file = "gte-small-q8_0.gguf";
params.model.hf_repo = "ggml-org/gte-small-Q8_0-GGUF";
params.model.hf_file = "gte-small-q8_0.gguf";
params.pooling_type = LLAMA_POOLING_TYPE_NONE;
params.embd_normalize = 2;
params.n_ctx = 512;
@@ -2538,8 +3117,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--fim-qwen-1.5b-default"},
string_format("use default Qwen 2.5 Coder 1.5B (note: can download weights from the internet)"),
[](common_params & params) {
params.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF";
params.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf";
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF";
params.model.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf";
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
@@ -2554,8 +3133,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--fim-qwen-3b-default"},
string_format("use default Qwen 2.5 Coder 3B (note: can download weights from the internet)"),
[](common_params & params) {
params.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF";
params.hf_file = "qwen2.5-coder-3b-q8_0.gguf";
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF";
params.model.hf_file = "qwen2.5-coder-3b-q8_0.gguf";
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
@@ -2570,8 +3149,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--fim-qwen-7b-default"},
string_format("use default Qwen 2.5 Coder 7B (note: can download weights from the internet)"),
[](common_params & params) {
params.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
params.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
@@ -2586,10 +3165,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--fim-qwen-7b-spec"},
string_format("use Qwen 2.5 Coder 7B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
[](common_params & params) {
params.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
params.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
params.speculative.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.speculative.n_gpu_layers = 99;
params.port = 8012;
params.n_gpu_layers = 99;
@@ -2605,10 +3184,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--fim-qwen-14b-spec"},
string_format("use Qwen 2.5 Coder 14B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
[](common_params & params) {
params.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF";
params.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
params.speculative.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF";
params.model.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.speculative.n_gpu_layers = 99;
params.port = 8012;
params.n_gpu_layers = 99;

View File

@@ -1622,7 +1622,7 @@ static common_chat_params common_chat_templates_apply_jinja(
}
// Hermes 2/3 Pro, Qwen 2.5 Instruct (w/ tools)
if (src.find("<tool_call>") != std::string::npos && params.json_schema.is_null()) {
if (src.find("<tool_call>") != std::string::npos && params.json_schema.is_null() && params.tools.is_array() && params.json_schema.is_null()) {
return common_chat_params_init_hermes_2_pro(tmpl, params);
}

View File

@@ -7,9 +7,6 @@
#include "common.h"
#include "log.h"
// Change JSON_ASSERT from assert() to GGML_ASSERT:
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
#include "llama.h"
#include <algorithm>
@@ -51,47 +48,11 @@
#include <sys/stat.h>
#include <unistd.h>
#endif
#if defined(LLAMA_USE_CURL)
#include <curl/curl.h>
#include <curl/easy.h>
#include <future>
#endif
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#if defined(LLAMA_USE_CURL)
#ifdef __linux__
#include <linux/limits.h>
#elif defined(_WIN32)
# if !defined(PATH_MAX)
# define PATH_MAX MAX_PATH
# endif
#else
#include <sys/syslimits.h>
#endif
#define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
//
// CURL utils
//
using curl_ptr = std::unique_ptr<CURL, decltype(&curl_easy_cleanup)>;
// cannot use unique_ptr for curl_slist, because we cannot update without destroying the old one
struct curl_slist_ptr {
struct curl_slist * ptr = nullptr;
~curl_slist_ptr() {
if (ptr) {
curl_slist_free_all(ptr);
}
}
};
#endif // LLAMA_USE_CURL
using json = nlohmann::ordered_json;
//
// CPU utils
//
@@ -869,7 +830,7 @@ std::string fs_get_cache_directory() {
if (getenv("LLAMA_CACHE")) {
cache_directory = std::getenv("LLAMA_CACHE");
} else {
#ifdef __linux__
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX)
if (std::getenv("XDG_CACHE_HOME")) {
cache_directory = std::getenv("XDG_CACHE_HOME");
} else {
@@ -879,7 +840,9 @@ std::string fs_get_cache_directory() {
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
#elif defined(_WIN32)
cache_directory = std::getenv("LOCALAPPDATA");
#endif // __linux__
#else
# error Unknown architecture
#endif
cache_directory = ensure_trailing_slash(cache_directory);
cache_directory += "llama.cpp";
}
@@ -900,22 +863,14 @@ std::string fs_get_cache_file(const std::string & filename) {
//
// Model utils
//
struct common_init_result common_init_from_params(common_params & params) {
common_init_result iparams;
auto mparams = common_model_params_to_llama(params);
llama_model * model = nullptr;
if (!params.hf_repo.empty() && !params.hf_file.empty()) {
model = common_load_model_from_hf(params.hf_repo, params.hf_file, params.model, params.hf_token, mparams);
} else if (!params.model_url.empty()) {
model = common_load_model_from_url(params.model_url, params.model, params.hf_token, mparams);
} else {
model = llama_model_load_from_file(params.model.c_str(), mparams);
}
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
if (model == NULL) {
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.c_str());
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.path.c_str());
return iparams;
}
@@ -950,7 +905,7 @@ struct common_init_result common_init_from_params(common_params & params) {
llama_context * lctx = llama_init_from_model(model, cparams);
if (lctx == NULL) {
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.c_str());
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str());
llama_model_free(model);
return iparams;
}
@@ -1074,6 +1029,19 @@ struct common_init_result common_init_from_params(common_params & params) {
return iparams;
}
std::string get_model_endpoint() {
const char * model_endpoint_env = getenv("MODEL_ENDPOINT");
// We still respect the use of environment-variable "HF_ENDPOINT" for backward-compatibility.
const char * hf_endpoint_env = getenv("HF_ENDPOINT");
const char * endpoint_env = model_endpoint_env ? model_endpoint_env : hf_endpoint_env;
std::string model_endpoint = "https://huggingface.co/";
if (endpoint_env) {
model_endpoint = endpoint_env;
if (model_endpoint.back() != '/') model_endpoint += '/';
}
return model_endpoint;
}
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora) {
llama_clear_adapter_lora(ctx);
for (auto & la : lora) {
@@ -1089,15 +1057,18 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
if (!params.devices.empty()) {
mparams.devices = params.devices.data();
}
if (params.n_gpu_layers != -1) {
mparams.n_gpu_layers = params.n_gpu_layers;
}
mparams.main_gpu = params.main_gpu;
mparams.split_mode = params.split_mode;
mparams.tensor_split = params.tensor_split;
mparams.use_mmap = params.use_mmap;
mparams.use_mlock = params.use_mlock;
mparams.check_tensors = params.check_tensors;
if (params.kv_overrides.empty()) {
mparams.kv_overrides = NULL;
} else {
@@ -1105,6 +1076,13 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
mparams.kv_overrides = params.kv_overrides.data();
}
if (params.tensor_buft_overrides.empty()) {
mparams.tensor_buft_overrides = NULL;
} else {
GGML_ASSERT(params.tensor_buft_overrides.back().pattern == nullptr && "Tensor buffer overrides not terminated with empty pattern");
mparams.tensor_buft_overrides = params.tensor_buft_overrides.data();
}
return mparams;
}
@@ -1164,451 +1142,6 @@ struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_p
return tpp;
}
#ifdef LLAMA_USE_CURL
#define CURL_MAX_RETRY 3
#define CURL_RETRY_DELAY_SECONDS 2
static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds) {
int remaining_attempts = max_attempts;
while (remaining_attempts > 0) {
LOG_INF("%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
CURLcode res = curl_easy_perform(curl);
if (res == CURLE_OK) {
return true;
}
int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
LOG_WRN("%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
remaining_attempts--;
std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
}
LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
return false;
}
static bool common_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
// Initialize libcurl
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
curl_slist_ptr http_headers;
if (!curl) {
LOG_ERR("%s: error initializing libcurl\n", __func__);
return false;
}
bool force_download = false;
// Set the URL, allow to follow http redirection
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
// Check if hf-token or bearer-token was specified
if (!hf_token.empty()) {
std::string auth_header = "Authorization: Bearer " + hf_token;
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
}
#if defined(_WIN32)
// CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
// operating system. Currently implemented under MS-Windows.
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
#endif
// Check if the file already exists locally
auto file_exists = std::filesystem::exists(path);
// If the file exists, check its JSON metadata companion file.
std::string metadata_path = path + ".json";
nlohmann::json metadata;
std::string etag;
std::string last_modified;
if (file_exists) {
// Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
std::ifstream metadata_in(metadata_path);
if (metadata_in.good()) {
try {
metadata_in >> metadata;
LOG_INF("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
if (metadata.contains("url") && metadata.at("url").is_string()) {
auto previous_url = metadata.at("url").get<std::string>();
if (previous_url != url) {
LOG_ERR("%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
return false;
}
}
if (metadata.contains("etag") && metadata.at("etag").is_string()) {
etag = metadata.at("etag");
}
if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
last_modified = metadata.at("lastModified");
}
} catch (const nlohmann::json::exception & e) {
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
return false;
}
}
} else {
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
}
// Send a HEAD request to retrieve the etag and last-modified headers
struct common_load_model_from_url_headers {
std::string etag;
std::string last_modified;
};
common_load_model_from_url_headers headers;
{
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
static std::regex header_regex("([^:]+): (.*)\r\n");
static std::regex etag_regex("ETag", std::regex_constants::icase);
static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
std::string header(buffer, n_items);
std::smatch match;
if (std::regex_match(header, match, header_regex)) {
const std::string & key = match[1];
const std::string & value = match[2];
if (std::regex_match(key, match, etag_regex)) {
headers->etag = value;
} else if (std::regex_match(key, match, last_modified_regex)) {
headers->last_modified = value;
}
}
return n_items;
};
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
if (!was_perform_successful) {
return false;
}
long http_code = 0;
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
if (http_code != 200) {
// HEAD not supported, we don't know if the file has changed
// force trigger downloading
force_download = true;
LOG_ERR("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
}
}
bool should_download = !file_exists || force_download;
if (!should_download) {
if (!etag.empty() && etag != headers.etag) {
LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
should_download = true;
} else if (!last_modified.empty() && last_modified != headers.last_modified) {
LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
should_download = true;
}
}
if (should_download) {
std::string path_temporary = path + ".downloadInProgress";
if (file_exists) {
LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
if (remove(path.c_str()) != 0) {
LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
return false;
}
}
// Set the output file
struct FILE_deleter {
void operator()(FILE * f) const {
fclose(f);
}
};
std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
if (!outfile) {
LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path.c_str());
return false;
}
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
return fwrite(data, size, nmemb, (FILE *)fd);
};
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());
// display download progress
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
// helper function to hide password in URL
auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
std::size_t protocol_pos = url.find("://");
if (protocol_pos == std::string::npos) {
return url; // Malformed URL
}
std::size_t at_pos = url.find('@', protocol_pos + 3);
if (at_pos == std::string::npos) {
return url; // No password in URL
}
return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
};
// start the download
LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
if (!was_perform_successful) {
return false;
}
long http_code = 0;
curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
if (http_code < 200 || http_code >= 400) {
LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code);
return false;
}
// Causes file to be closed explicitly here before we rename it.
outfile.reset();
// Write the updated JSON metadata file.
metadata.update({
{"url", url},
{"etag", headers.etag},
{"lastModified", headers.last_modified}
});
std::ofstream(metadata_path) << metadata.dump(4);
LOG_INF("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
if (rename(path_temporary.c_str(), path.c_str()) != 0) {
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
return false;
}
}
return true;
}
struct llama_model * common_load_model_from_url(
const std::string & model_url,
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params) {
// Basic validation of the model_url
if (model_url.empty()) {
LOG_ERR("%s: invalid model_url\n", __func__);
return NULL;
}
if (!common_download_file(model_url, local_path, hf_token)) {
return NULL;
}
// check for additional GGUFs split to download
int n_split = 0;
{
struct gguf_init_params gguf_params = {
/*.no_alloc = */ true,
/*.ctx = */ NULL,
};
auto * ctx_gguf = gguf_init_from_file(local_path.c_str(), gguf_params);
if (!ctx_gguf) {
LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, local_path.c_str());
return NULL;
}
auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
if (key_n_split >= 0) {
n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
}
gguf_free(ctx_gguf);
}
if (n_split > 1) {
char split_prefix[PATH_MAX] = {0};
char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
// Verify the first split file format
// and extract split URL and PATH prefixes
{
if (!llama_split_prefix(split_prefix, sizeof(split_prefix), local_path.c_str(), 0, n_split)) {
LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, local_path.c_str(), n_split);
return NULL;
}
if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url.c_str(), 0, n_split)) {
LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model_url.c_str(), n_split);
return NULL;
}
}
// Prepare download in parallel
std::vector<std::future<bool>> futures_download;
for (int idx = 1; idx < n_split; idx++) {
futures_download.push_back(std::async(std::launch::async, [&split_prefix, &split_url_prefix, &n_split, hf_token](int download_idx) -> bool {
char split_path[PATH_MAX] = {0};
llama_split_path(split_path, sizeof(split_path), split_prefix, download_idx, n_split);
char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split);
return common_download_file(split_url, split_path, hf_token);
}, idx));
}
// Wait for all downloads to complete
for (auto & f : futures_download) {
if (!f.get()) {
return NULL;
}
}
}
return llama_model_load_from_file(local_path.c_str(), params);
}
struct llama_model * common_load_model_from_hf(
const std::string & repo,
const std::string & remote_path,
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params) {
// construct hugging face model url:
//
// --repo ggml-org/models --file tinyllama-1.1b/ggml-model-f16.gguf
// https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf
//
// --repo TheBloke/Mixtral-8x7B-v0.1-GGUF --file mixtral-8x7b-v0.1.Q4_K_M.gguf
// https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q4_K_M.gguf
//
std::string model_url = "https://huggingface.co/";
model_url += repo;
model_url += "/resolve/main/";
model_url += remote_path;
return common_load_model_from_url(model_url, local_path, hf_token, params);
}
/**
* Allow getting the HF file from the HF repo with tag (like ollama), for example:
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
* - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
* Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
*
* Return pair of <repo, file> (with "repo" already having tag removed)
*
* Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
*/
std::pair<std::string, std::string> common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & hf_token) {
auto parts = string_split<std::string>(hf_repo_with_tag, ':');
std::string tag = parts.size() > 1 ? parts.back() : "latest";
std::string hf_repo = parts[0];
if (string_split<std::string>(hf_repo, '/').size() != 2) {
throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
}
// fetch model info from Hugging Face Hub API
json model_info;
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
curl_slist_ptr http_headers;
std::string res_str;
std::string url = "https://huggingface.co/v2/" + hf_repo + "/manifests/" + tag;
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
static_cast<std::string *>(data)->append((char * ) ptr, size * nmemb);
return size * nmemb;
};
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_str);
#if defined(_WIN32)
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
#endif
if (!hf_token.empty()) {
std::string auth_header = "Authorization: Bearer " + hf_token;
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
}
// Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
http_headers.ptr = curl_slist_append(http_headers.ptr, "Accept: application/json");
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
CURLcode res = curl_easy_perform(curl.get());
if (res != CURLE_OK) {
throw std::runtime_error("error: cannot make GET request to HF API");
}
long res_code;
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
if (res_code == 200) {
model_info = json::parse(res_str);
} else if (res_code == 401) {
throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
} else {
throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str()));
}
// check response
if (!model_info.contains("ggufFile")) {
throw std::runtime_error("error: model does not have ggufFile");
}
json & gguf_file = model_info.at("ggufFile");
if (!gguf_file.contains("rfilename")) {
throw std::runtime_error("error: ggufFile does not have rfilename");
}
return std::make_pair(hf_repo, gguf_file.at("rfilename"));
}
#else
struct llama_model * common_load_model_from_url(
const std::string & /*model_url*/,
const std::string & /*local_path*/,
const std::string & /*hf_token*/,
const struct llama_model_params & /*params*/) {
LOG_WRN("%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
return nullptr;
}
struct llama_model * common_load_model_from_hf(
const std::string & /*repo*/,
const std::string & /*remote_path*/,
const std::string & /*local_path*/,
const std::string & /*hf_token*/,
const struct llama_model_params & /*params*/) {
LOG_WRN("%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
return nullptr;
}
std::pair<std::string, std::string> common_get_hf_file(const std::string &, const std::string &) {
LOG_WRN("%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
return std::make_pair("", "");
}
#endif // LLAMA_USE_CURL
//
// Batch utils
//
@@ -2032,26 +1565,3 @@ common_control_vector_data common_control_vector_load(const std::vector<common_c
return result;
}
template <>
json common_grammar_trigger::to_json() const {
json out {
{"type", (int) type},
{"value", value},
};
if (type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
out["token"] = (int) token;
}
return out;
}
template <>
common_grammar_trigger common_grammar_trigger::from_json(const json & in) {
common_grammar_trigger out;
out.type = (common_grammar_trigger_type) in.at("type").get<int>();
out.value = in.at("value").get<std::string>();
if (out.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
out.token = (llama_token) in.at("token").get<int>();
}
return out;
}

View File

@@ -121,10 +121,6 @@ struct common_grammar_trigger {
common_grammar_trigger_type type;
std::string value;
llama_token token = LLAMA_TOKEN_NULL;
// T can only be nlohmann::ordered_json
template <class T> T to_json() const;
template <class T> static common_grammar_trigger from_json(const T & in);
};
// sampling parameters
@@ -184,6 +180,13 @@ struct common_params_sampling {
std::string print() const;
};
struct common_params_model {
std::string path = ""; // model local path // NOLINT
std::string url = ""; // model url to download // NOLINT
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
};
struct common_params_speculative {
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
@@ -197,19 +200,11 @@ struct common_params_speculative {
struct cpu_params cpuparams;
struct cpu_params cpuparams_batch;
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string model = ""; // draft model for speculative decoding // NOLINT
std::string model_url = ""; // model url to download // NOLINT
struct common_params_model model;
};
struct common_params_vocoder {
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string model = ""; // model path // NOLINT
std::string model_url = ""; // model url to download // NOLINT
struct common_params_model model;
std::string speaker_file = ""; // speaker file path // NOLINT
@@ -267,12 +262,10 @@ struct common_params {
struct common_params_speculative speculative;
struct common_params_vocoder vocoder;
std::string model = ""; // model path // NOLINT
struct common_params_model model;
std::string model_alias = ""; // model alias // NOLINT
std::string model_url = ""; // model url to download // NOLINT
std::string hf_token = ""; // HF token // NOLINT
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string prompt = ""; // NOLINT
std::string system_prompt = ""; // NOLINT
std::string prompt_file = ""; // store the external prompt file name // NOLINT
@@ -286,6 +279,7 @@ struct common_params {
std::vector<std::string> in_files; // all input files
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
std::vector<llama_model_kv_override> kv_overrides;
std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_adapter_lora_apply)
std::vector<common_adapter_lora_info> lora_adapters; // lora adapter path with user defined scale
@@ -347,7 +341,7 @@ struct common_params {
common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
// multimodal models (see examples/llava)
std::string mmproj = ""; // path to multimodal projector // NOLINT
struct common_params_model mmproj;
std::vector<std::string> image; // path to image file(s)
// embedding
@@ -546,26 +540,11 @@ struct llama_model_params common_model_params_to_llama ( common_params
struct llama_context_params common_context_params_to_llama(const common_params & params);
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
struct llama_model * common_load_model_from_url(
const std::string & model_url,
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params);
struct llama_model * common_load_model_from_hf(
const std::string & repo,
const std::string & remote_path,
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params);
std::pair<std::string, std::string> common_get_hf_file(
const std::string & hf_repo_with_tag,
const std::string & hf_token);
// clear LoRA adapters from context, then apply new list of adapters
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora);
std::string get_model_endpoint();
//
// Batch utils
//

View File

@@ -9,10 +9,19 @@
#pragma once
#include "minja.hpp"
#include <json.hpp>
#include <chrono>
#include <cstddef>
#include <cstdio>
#include <exception>
#include <iomanip>
#include <memory>
#include <sstream>
#include <string>
#include <vector>
#include <json.hpp>
using json = nlohmann::ordered_json;
namespace minja {
@@ -425,7 +434,7 @@ class chat_template {
auto obj = json {
{"tool_calls", tool_calls},
};
if (!content.is_null() && content != "") {
if (!content.is_null() && !content.empty()) {
obj["content"] = content;
}
message["content"] = obj.dump(2);
@@ -435,13 +444,12 @@ class chat_template {
if (polyfill_tool_responses && role == "tool") {
message["role"] = "user";
auto obj = json {
{"tool_response", {
{"content", message.at("content")},
}},
{"tool_response", json::object()},
};
if (message.contains("name")) {
obj["tool_response"]["name"] = message.at("name");
obj["tool_response"]["tool"] = message.at("name");
}
obj["tool_response"]["content"] = message.at("content");
if (message.contains("tool_call_id")) {
obj["tool_response"]["tool_call_id"] = message.at("tool_call_id");
}
@@ -510,7 +518,7 @@ class chat_template {
static nlohmann::ordered_json add_system(const nlohmann::ordered_json & messages, const std::string & system_prompt) {
json messages_with_system = messages;
if (messages_with_system.size() > 0 && messages_with_system[0].at("role") == "system") {
if (!messages_with_system.empty() && messages_with_system[0].at("role") == "system") {
std::string existing_system = messages_with_system.at(0).at("content");
messages_with_system[0] = json {
{"role", "system"},

View File

@@ -8,14 +8,26 @@
// SPDX-License-Identifier: MIT
#pragma once
#include <algorithm>
#include <cctype>
#include <cstddef>
#include <cmath>
#include <exception>
#include <functional>
#include <iostream>
#include <string>
#include <vector>
#include <regex>
#include <iterator>
#include <limits>
#include <map>
#include <memory>
#include <stdexcept>
#include <regex>
#include <sstream>
#include <string>
#include <stdexcept>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include <json.hpp>
using json = nlohmann::ordered_json;
@@ -731,51 +743,51 @@ public:
struct TextTemplateToken : public TemplateToken {
std::string text;
TextTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::string& t) : TemplateToken(Type::Text, location, pre, post), text(t) {}
TextTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, const std::string& t) : TemplateToken(Type::Text, loc, pre, post), text(t) {}
};
struct ExpressionTemplateToken : public TemplateToken {
std::shared_ptr<Expression> expr;
ExpressionTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && e) : TemplateToken(Type::Expression, location, pre, post), expr(std::move(e)) {}
ExpressionTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && e) : TemplateToken(Type::Expression, loc, pre, post), expr(std::move(e)) {}
};
struct IfTemplateToken : public TemplateToken {
std::shared_ptr<Expression> condition;
IfTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && c) : TemplateToken(Type::If, location, pre, post), condition(std::move(c)) {}
IfTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && c) : TemplateToken(Type::If, loc, pre, post), condition(std::move(c)) {}
};
struct ElifTemplateToken : public TemplateToken {
std::shared_ptr<Expression> condition;
ElifTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && c) : TemplateToken(Type::Elif, location, pre, post), condition(std::move(c)) {}
ElifTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && c) : TemplateToken(Type::Elif, loc, pre, post), condition(std::move(c)) {}
};
struct ElseTemplateToken : public TemplateToken {
ElseTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::Else, location, pre, post) {}
ElseTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::Else, loc, pre, post) {}
};
struct EndIfTemplateToken : public TemplateToken {
EndIfTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndIf, location, pre, post) {}
EndIfTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndIf, loc, pre, post) {}
};
struct MacroTemplateToken : public TemplateToken {
std::shared_ptr<VariableExpr> name;
Expression::Parameters params;
MacroTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<VariableExpr> && n, Expression::Parameters && p)
: TemplateToken(Type::Macro, location, pre, post), name(std::move(n)), params(std::move(p)) {}
MacroTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<VariableExpr> && n, Expression::Parameters && p)
: TemplateToken(Type::Macro, loc, pre, post), name(std::move(n)), params(std::move(p)) {}
};
struct EndMacroTemplateToken : public TemplateToken {
EndMacroTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndMacro, location, pre, post) {}
EndMacroTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndMacro, loc, pre, post) {}
};
struct FilterTemplateToken : public TemplateToken {
std::shared_ptr<Expression> filter;
FilterTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && filter)
: TemplateToken(Type::Filter, location, pre, post), filter(std::move(filter)) {}
FilterTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && filter)
: TemplateToken(Type::Filter, loc, pre, post), filter(std::move(filter)) {}
};
struct EndFilterTemplateToken : public TemplateToken {
EndFilterTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndFilter, location, pre, post) {}
EndFilterTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndFilter, loc, pre, post) {}
};
struct ForTemplateToken : public TemplateToken {
@@ -783,38 +795,38 @@ struct ForTemplateToken : public TemplateToken {
std::shared_ptr<Expression> iterable;
std::shared_ptr<Expression> condition;
bool recursive;
ForTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::vector<std::string> & vns, std::shared_ptr<Expression> && iter,
ForTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, const std::vector<std::string> & vns, std::shared_ptr<Expression> && iter,
std::shared_ptr<Expression> && c, bool r)
: TemplateToken(Type::For, location, pre, post), var_names(vns), iterable(std::move(iter)), condition(std::move(c)), recursive(r) {}
: TemplateToken(Type::For, loc, pre, post), var_names(vns), iterable(std::move(iter)), condition(std::move(c)), recursive(r) {}
};
struct EndForTemplateToken : public TemplateToken {
EndForTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndFor, location, pre, post) {}
EndForTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndFor, loc, pre, post) {}
};
struct GenerationTemplateToken : public TemplateToken {
GenerationTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::Generation, location, pre, post) {}
GenerationTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::Generation, loc, pre, post) {}
};
struct EndGenerationTemplateToken : public TemplateToken {
EndGenerationTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndGeneration, location, pre, post) {}
EndGenerationTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndGeneration, loc, pre, post) {}
};
struct SetTemplateToken : public TemplateToken {
std::string ns;
std::vector<std::string> var_names;
std::shared_ptr<Expression> value;
SetTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::string & ns, const std::vector<std::string> & vns, std::shared_ptr<Expression> && v)
: TemplateToken(Type::Set, location, pre, post), ns(ns), var_names(vns), value(std::move(v)) {}
SetTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, const std::string & ns, const std::vector<std::string> & vns, std::shared_ptr<Expression> && v)
: TemplateToken(Type::Set, loc, pre, post), ns(ns), var_names(vns), value(std::move(v)) {}
};
struct EndSetTemplateToken : public TemplateToken {
EndSetTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndSet, location, pre, post) {}
EndSetTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndSet, loc, pre, post) {}
};
struct CommentTemplateToken : public TemplateToken {
std::string text;
CommentTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::string& t) : TemplateToken(Type::Comment, location, pre, post), text(t) {}
CommentTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, const std::string& t) : TemplateToken(Type::Comment, loc, pre, post), text(t) {}
};
enum class LoopControlType { Break, Continue };
@@ -830,7 +842,7 @@ public:
struct LoopControlTemplateToken : public TemplateToken {
LoopControlType control_type;
LoopControlTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, LoopControlType control_type) : TemplateToken(Type::Break, location, pre, post), control_type(control_type) {}
LoopControlTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, LoopControlType control_type) : TemplateToken(Type::Break, loc, pre, post), control_type(control_type) {}
};
class TemplateNode {
@@ -868,8 +880,8 @@ public:
class SequenceNode : public TemplateNode {
std::vector<std::shared_ptr<TemplateNode>> children;
public:
SequenceNode(const Location & location, std::vector<std::shared_ptr<TemplateNode>> && c)
: TemplateNode(location), children(std::move(c)) {}
SequenceNode(const Location & loc, std::vector<std::shared_ptr<TemplateNode>> && c)
: TemplateNode(loc), children(std::move(c)) {}
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
for (const auto& child : children) child->render(out, context);
}
@@ -878,7 +890,7 @@ public:
class TextNode : public TemplateNode {
std::string text;
public:
TextNode(const Location & location, const std::string& t) : TemplateNode(location), text(t) {}
TextNode(const Location & loc, const std::string& t) : TemplateNode(loc), text(t) {}
void do_render(std::ostringstream & out, const std::shared_ptr<Context> &) const override {
out << text;
}
@@ -887,7 +899,7 @@ public:
class ExpressionNode : public TemplateNode {
std::shared_ptr<Expression> expr;
public:
ExpressionNode(const Location & location, std::shared_ptr<Expression> && e) : TemplateNode(location), expr(std::move(e)) {}
ExpressionNode(const Location & loc, std::shared_ptr<Expression> && e) : TemplateNode(loc), expr(std::move(e)) {}
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
if (!expr) throw std::runtime_error("ExpressionNode.expr is null");
auto result = expr->evaluate(context);
@@ -904,8 +916,8 @@ public:
class IfNode : public TemplateNode {
std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<TemplateNode>>> cascade;
public:
IfNode(const Location & location, std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<TemplateNode>>> && c)
: TemplateNode(location), cascade(std::move(c)) {}
IfNode(const Location & loc, std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<TemplateNode>>> && c)
: TemplateNode(loc), cascade(std::move(c)) {}
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
for (const auto& branch : cascade) {
auto enter_branch = true;
@@ -924,7 +936,7 @@ public:
class LoopControlNode : public TemplateNode {
LoopControlType control_type_;
public:
LoopControlNode(const Location & location, LoopControlType control_type) : TemplateNode(location), control_type_(control_type) {}
LoopControlNode(const Location & loc, LoopControlType control_type) : TemplateNode(loc), control_type_(control_type) {}
void do_render(std::ostringstream &, const std::shared_ptr<Context> &) const override {
throw LoopControlException(control_type_);
}
@@ -938,9 +950,9 @@ class ForNode : public TemplateNode {
bool recursive;
std::shared_ptr<TemplateNode> else_body;
public:
ForNode(const Location & location, std::vector<std::string> && var_names, std::shared_ptr<Expression> && iterable,
ForNode(const Location & loc, std::vector<std::string> && var_names, std::shared_ptr<Expression> && iterable,
std::shared_ptr<Expression> && condition, std::shared_ptr<TemplateNode> && body, bool recursive, std::shared_ptr<TemplateNode> && else_body)
: TemplateNode(location), var_names(var_names), iterable(std::move(iterable)), condition(std::move(condition)), body(std::move(body)), recursive(recursive), else_body(std::move(else_body)) {}
: TemplateNode(loc), var_names(var_names), iterable(std::move(iterable)), condition(std::move(condition)), body(std::move(body)), recursive(recursive), else_body(std::move(else_body)) {}
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
// https://jinja.palletsprojects.com/en/3.0.x/templates/#for
@@ -1025,8 +1037,8 @@ class MacroNode : public TemplateNode {
std::shared_ptr<TemplateNode> body;
std::unordered_map<std::string, size_t> named_param_positions;
public:
MacroNode(const Location & location, std::shared_ptr<VariableExpr> && n, Expression::Parameters && p, std::shared_ptr<TemplateNode> && b)
: TemplateNode(location), name(std::move(n)), params(std::move(p)), body(std::move(b)) {
MacroNode(const Location & loc, std::shared_ptr<VariableExpr> && n, Expression::Parameters && p, std::shared_ptr<TemplateNode> && b)
: TemplateNode(loc), name(std::move(n)), params(std::move(p)), body(std::move(b)) {
for (size_t i = 0; i < params.size(); ++i) {
const auto & name = params[i].first;
if (!name.empty()) {
@@ -1072,8 +1084,8 @@ class FilterNode : public TemplateNode {
std::shared_ptr<TemplateNode> body;
public:
FilterNode(const Location & location, std::shared_ptr<Expression> && f, std::shared_ptr<TemplateNode> && b)
: TemplateNode(location), filter(std::move(f)), body(std::move(b)) {}
FilterNode(const Location & loc, std::shared_ptr<Expression> && f, std::shared_ptr<TemplateNode> && b)
: TemplateNode(loc), filter(std::move(f)), body(std::move(b)) {}
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
if (!filter) throw std::runtime_error("FilterNode.filter is null");
@@ -1095,8 +1107,8 @@ class SetNode : public TemplateNode {
std::vector<std::string> var_names;
std::shared_ptr<Expression> value;
public:
SetNode(const Location & location, const std::string & ns, const std::vector<std::string> & vns, std::shared_ptr<Expression> && v)
: TemplateNode(location), ns(ns), var_names(vns), value(std::move(v)) {}
SetNode(const Location & loc, const std::string & ns, const std::vector<std::string> & vns, std::shared_ptr<Expression> && v)
: TemplateNode(loc), ns(ns), var_names(vns), value(std::move(v)) {}
void do_render(std::ostringstream &, const std::shared_ptr<Context> & context) const override {
if (!value) throw std::runtime_error("SetNode.value is null");
if (!ns.empty()) {
@@ -1118,8 +1130,8 @@ class SetTemplateNode : public TemplateNode {
std::string name;
std::shared_ptr<TemplateNode> template_value;
public:
SetTemplateNode(const Location & location, const std::string & name, std::shared_ptr<TemplateNode> && tv)
: TemplateNode(location), name(name), template_value(std::move(tv)) {}
SetTemplateNode(const Location & loc, const std::string & name, std::shared_ptr<TemplateNode> && tv)
: TemplateNode(loc), name(name), template_value(std::move(tv)) {}
void do_render(std::ostringstream &, const std::shared_ptr<Context> & context) const override {
if (!template_value) throw std::runtime_error("SetTemplateNode.template_value is null");
Value value { template_value->render(context) };
@@ -1132,8 +1144,8 @@ class IfExpr : public Expression {
std::shared_ptr<Expression> then_expr;
std::shared_ptr<Expression> else_expr;
public:
IfExpr(const Location & location, std::shared_ptr<Expression> && c, std::shared_ptr<Expression> && t, std::shared_ptr<Expression> && e)
: Expression(location), condition(std::move(c)), then_expr(std::move(t)), else_expr(std::move(e)) {}
IfExpr(const Location & loc, std::shared_ptr<Expression> && c, std::shared_ptr<Expression> && t, std::shared_ptr<Expression> && e)
: Expression(loc), condition(std::move(c)), then_expr(std::move(t)), else_expr(std::move(e)) {}
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
if (!condition) throw std::runtime_error("IfExpr.condition is null");
if (!then_expr) throw std::runtime_error("IfExpr.then_expr is null");
@@ -1150,16 +1162,16 @@ public:
class LiteralExpr : public Expression {
Value value;
public:
LiteralExpr(const Location & location, const Value& v)
: Expression(location), value(v) {}
LiteralExpr(const Location & loc, const Value& v)
: Expression(loc), value(v) {}
Value do_evaluate(const std::shared_ptr<Context> &) const override { return value; }
};
class ArrayExpr : public Expression {
std::vector<std::shared_ptr<Expression>> elements;
public:
ArrayExpr(const Location & location, std::vector<std::shared_ptr<Expression>> && e)
: Expression(location), elements(std::move(e)) {}
ArrayExpr(const Location & loc, std::vector<std::shared_ptr<Expression>> && e)
: Expression(loc), elements(std::move(e)) {}
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
auto result = Value::array();
for (const auto& e : elements) {
@@ -1173,8 +1185,8 @@ public:
class DictExpr : public Expression {
std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<Expression>>> elements;
public:
DictExpr(const Location & location, std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<Expression>>> && e)
: Expression(location), elements(std::move(e)) {}
DictExpr(const Location & loc, std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<Expression>>> && e)
: Expression(loc), elements(std::move(e)) {}
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
auto result = Value::object();
for (const auto& [key, value] : elements) {
@@ -1189,8 +1201,8 @@ public:
class SliceExpr : public Expression {
public:
std::shared_ptr<Expression> start, end;
SliceExpr(const Location & location, std::shared_ptr<Expression> && s, std::shared_ptr<Expression> && e)
: Expression(location), start(std::move(s)), end(std::move(e)) {}
SliceExpr(const Location & loc, std::shared_ptr<Expression> && s, std::shared_ptr<Expression> && e)
: Expression(loc), start(std::move(s)), end(std::move(e)) {}
Value do_evaluate(const std::shared_ptr<Context> &) const override {
throw std::runtime_error("SliceExpr not implemented");
}
@@ -1200,8 +1212,8 @@ class SubscriptExpr : public Expression {
std::shared_ptr<Expression> base;
std::shared_ptr<Expression> index;
public:
SubscriptExpr(const Location & location, std::shared_ptr<Expression> && b, std::shared_ptr<Expression> && i)
: Expression(location), base(std::move(b)), index(std::move(i)) {}
SubscriptExpr(const Location & loc, std::shared_ptr<Expression> && b, std::shared_ptr<Expression> && i)
: Expression(loc), base(std::move(b)), index(std::move(i)) {}
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
if (!base) throw std::runtime_error("SubscriptExpr.base is null");
if (!index) throw std::runtime_error("SubscriptExpr.index is null");
@@ -1243,8 +1255,8 @@ public:
enum class Op { Plus, Minus, LogicalNot, Expansion, ExpansionDict };
std::shared_ptr<Expression> expr;
Op op;
UnaryOpExpr(const Location & location, std::shared_ptr<Expression> && e, Op o)
: Expression(location), expr(std::move(e)), op(o) {}
UnaryOpExpr(const Location & loc, std::shared_ptr<Expression> && e, Op o)
: Expression(loc), expr(std::move(e)), op(o) {}
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
if (!expr) throw std::runtime_error("UnaryOpExpr.expr is null");
auto e = expr->evaluate(context);
@@ -1269,8 +1281,8 @@ private:
std::shared_ptr<Expression> right;
Op op;
public:
BinaryOpExpr(const Location & location, std::shared_ptr<Expression> && l, std::shared_ptr<Expression> && r, Op o)
: Expression(location), left(std::move(l)), right(std::move(r)), op(o) {}
BinaryOpExpr(const Location & loc, std::shared_ptr<Expression> && l, std::shared_ptr<Expression> && r, Op o)
: Expression(loc), left(std::move(l)), right(std::move(r)), op(o) {}
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
if (!left) throw std::runtime_error("BinaryOpExpr.left is null");
if (!right) throw std::runtime_error("BinaryOpExpr.right is null");
@@ -1427,8 +1439,8 @@ class MethodCallExpr : public Expression {
std::shared_ptr<VariableExpr> method;
ArgumentsExpression args;
public:
MethodCallExpr(const Location & location, std::shared_ptr<Expression> && obj, std::shared_ptr<VariableExpr> && m, ArgumentsExpression && a)
: Expression(location), object(std::move(obj)), method(std::move(m)), args(std::move(a)) {}
MethodCallExpr(const Location & loc, std::shared_ptr<Expression> && obj, std::shared_ptr<VariableExpr> && m, ArgumentsExpression && a)
: Expression(loc), object(std::move(obj)), method(std::move(m)), args(std::move(a)) {}
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
if (!object) throw std::runtime_error("MethodCallExpr.object is null");
if (!method) throw std::runtime_error("MethodCallExpr.method is null");
@@ -1526,8 +1538,8 @@ class CallExpr : public Expression {
public:
std::shared_ptr<Expression> object;
ArgumentsExpression args;
CallExpr(const Location & location, std::shared_ptr<Expression> && obj, ArgumentsExpression && a)
: Expression(location), object(std::move(obj)), args(std::move(a)) {}
CallExpr(const Location & loc, std::shared_ptr<Expression> && obj, ArgumentsExpression && a)
: Expression(loc), object(std::move(obj)), args(std::move(a)) {}
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
if (!object) throw std::runtime_error("CallExpr.object is null");
auto obj = object->evaluate(context);
@@ -1542,8 +1554,8 @@ public:
class FilterExpr : public Expression {
std::vector<std::shared_ptr<Expression>> parts;
public:
FilterExpr(const Location & location, std::vector<std::shared_ptr<Expression>> && p)
: Expression(location), parts(std::move(p)) {}
FilterExpr(const Location & loc, std::vector<std::shared_ptr<Expression>> && p)
: Expression(loc), parts(std::move(p)) {}
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
Value result;
bool first = true;
@@ -2460,7 +2472,7 @@ private:
static std::regex leading_space_regex(R"(^\s+)");
text = std::regex_replace(text, leading_space_regex, "");
} else if (options.trim_blocks && (it - 1) != begin && !dynamic_cast<ExpressionTemplateToken*>((*(it - 2)).get())) {
if (text.length() > 0 && text[0] == '\n') {
if (!text.empty() && text[0] == '\n') {
text.erase(0, 1);
}
}
@@ -2538,7 +2550,7 @@ public:
TemplateTokenIterator begin = tokens.begin();
auto it = begin;
TemplateTokenIterator end = tokens.end();
return parser.parseTemplate(begin, it, end, /* full= */ true);
return parser.parseTemplate(begin, it, end, /* fully= */ true);
}
};
@@ -2577,7 +2589,7 @@ inline std::shared_ptr<Context> Context::builtins() {
throw std::runtime_error(args.at("message").get<std::string>());
}));
globals.set("tojson", simple_function("tojson", { "value", "indent" }, [](const std::shared_ptr<Context> &, Value & args) {
return Value(args.at("value").dump(args.get<int64_t>("indent", -1), /* tojson= */ true));
return Value(args.at("value").dump(args.get<int64_t>("indent", -1), /* to_json= */ true));
}));
globals.set("items", simple_function("items", { "object" }, [](const std::shared_ptr<Context> &, Value & args) {
auto items = Value::array();
@@ -2599,21 +2611,25 @@ inline std::shared_ptr<Context> Context::builtins() {
globals.set("last", simple_function("last", { "items" }, [](const std::shared_ptr<Context> &, Value & args) {
auto items = args.at("items");
if (!items.is_array()) throw std::runtime_error("object is not a list");
if (items.size() == 0) return Value();
if (items.empty()) return Value();
return items.at(items.size() - 1);
}));
globals.set("trim", simple_function("trim", { "text" }, [](const std::shared_ptr<Context> &, Value & args) {
auto & text = args.at("text");
return text.is_null() ? text : Value(strip(text.get<std::string>()));
}));
globals.set("lower", simple_function("lower", { "text" }, [](const std::shared_ptr<Context> &, Value & args) {
auto text = args.at("text");
if (text.is_null()) return text;
std::string res;
auto str = text.get<std::string>();
std::transform(str.begin(), str.end(), std::back_inserter(res), ::tolower);
return Value(res);
}));
auto char_transform_function = [](const std::string & name, const std::function<char(char)> & fn) {
return simple_function(name, { "text" }, [=](const std::shared_ptr<Context> &, Value & args) {
auto text = args.at("text");
if (text.is_null()) return text;
std::string res;
auto str = text.get<std::string>();
std::transform(str.begin(), str.end(), std::back_inserter(res), fn);
return Value(res);
});
};
globals.set("lower", char_transform_function("lower", ::tolower));
globals.set("upper", char_transform_function("upper", ::toupper));
globals.set("default", Value::callable([=](const std::shared_ptr<Context> &, ArgumentsValue & args) {
args.expectArgs("default", {2, 3}, {0, 1});
auto & value = args.args[0];
@@ -2743,12 +2759,17 @@ inline std::shared_ptr<Context> Context::builtins() {
return Value::callable([=](const std::shared_ptr<Context> & context, ArgumentsValue & args) {
args.expectArgs(is_select ? "select" : "reject", {2, (std::numeric_limits<size_t>::max)()}, {0, 0});
auto & items = args.args[0];
if (items.is_null())
if (items.is_null()) {
return Value::array();
if (!items.is_array()) throw std::runtime_error("object is not iterable: " + items.dump());
}
if (!items.is_array()) {
throw std::runtime_error("object is not iterable: " + items.dump());
}
auto filter_fn = context->get(args.args[1]);
if (filter_fn.is_null()) throw std::runtime_error("Undefined filter: " + args.args[1].dump());
if (filter_fn.is_null()) {
throw std::runtime_error("Undefined filter: " + args.args[1].dump());
}
auto filter_args = Value::array();
for (size_t i = 2, n = args.args.size(); i < n; i++) {
@@ -2870,20 +2891,25 @@ inline std::shared_ptr<Context> Context::builtins() {
auto v = arg.get<int64_t>();
startEndStep[i] = v;
param_set[i] = true;
}
}
for (auto & [name, value] : args.kwargs) {
size_t i;
if (name == "start") i = 0;
else if (name == "end") i = 1;
else if (name == "step") i = 2;
else throw std::runtime_error("Unknown argument " + name + " for function range");
}
for (auto & [name, value] : args.kwargs) {
size_t i;
if (name == "start") {
i = 0;
} else if (name == "end") {
i = 1;
} else if (name == "step") {
i = 2;
} else {
throw std::runtime_error("Unknown argument " + name + " for function range");
}
if (param_set[i]) {
throw std::runtime_error("Duplicate argument " + name + " for function range");
}
startEndStep[i] = value.get<int64_t>();
param_set[i] = true;
if (param_set[i]) {
throw std::runtime_error("Duplicate argument " + name + " for function range");
}
startEndStep[i] = value.get<int64_t>();
param_set[i] = true;
}
if (!param_set[1]) {
throw std::runtime_error("Missing required argument 'end' for function range");

View File

@@ -208,6 +208,9 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
trigger_patterns_c.data(), trigger_patterns_c.size(),
trigger_tokens.data(), trigger_tokens.size())
: llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
if (!grmr) {
return nullptr;
}
}
auto * result = new common_sampler {

View File

@@ -65,6 +65,7 @@ class Model:
model_name: str | None
metadata_override: Path | None
dir_model_card: Path
remote_hf_model_id: str | None
# subclasses should define this!
model_arch: gguf.MODEL_ARCH
@@ -73,7 +74,7 @@ class Model:
use_temp_file: bool = False, eager: bool = False,
metadata_override: Path | None = None, model_name: str | None = None,
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
if type(self) is Model:
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
@@ -83,11 +84,24 @@ class Model:
self.is_big_endian = is_big_endian
self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
self.use_temp_file = use_temp_file
self.lazy = not eager
self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
self.is_safetensors = len(self.part_names) > 0
if not self.is_safetensors:
self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
self.lazy = not eager or (remote_hf_model_id is not None)
self.remote_hf_model_id = remote_hf_model_id
if remote_hf_model_id is not None:
self.is_safetensors = True
def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
self.tensor_names = set(name for name in remote_tensors.keys())
for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
self.get_tensors = get_remote_tensors
else:
self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
self.is_safetensors = len(self.part_names) > 0
if not self.is_safetensors:
self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
@@ -393,6 +407,10 @@ class Model:
self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
# If we are using HF model id, set the metadata name to the model id
if self.remote_hf_model_id:
self.metadata.name = self.remote_hf_model_id
# Fallback to model directory name if metadata name is still missing
if self.metadata.name is None:
self.metadata.name = self.dir_model.name
@@ -708,6 +726,18 @@ class Model:
if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
# ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
res = "superbpe"
if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
# ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
res = "trillion"
if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
# ref: https://huggingface.co/inclusionAI/Ling-lite
res = "bailingmoe"
if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
# ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
res = "llama4"
if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
# ref: https://huggingface.co/THUDM/glm-4-9b-hf
res = "glm4"
if res is None:
logger.warning("\n")
@@ -1602,6 +1632,7 @@ class StableLMModel(Model):
@Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
class LlamaModel(Model):
model_arch = gguf.MODEL_ARCH.LLAMA
undo_permute = True
def set_vocab(self):
try:
@@ -1666,10 +1697,11 @@ class LlamaModel(Model):
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams.get("num_key_value_heads")
if name.endswith(("q_proj.weight", "q_proj.bias")):
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
if name.endswith(("k_proj.weight", "k_proj.bias")):
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
if self.undo_permute:
if name.endswith(("q_proj.weight", "q_proj.bias")):
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
if name.endswith(("k_proj.weight", "k_proj.bias")):
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
# process the experts separately
if name.find("block_sparse_moe.experts") != -1:
@@ -1721,7 +1753,7 @@ class LlamaModel(Model):
low_freq_wavelen = old_context_len / low_freq_factor
high_freq_wavelen = old_context_len / high_freq_factor
assert low_freq_wavelen != high_freq_wavelen
# assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
rope_factors = []
for freq in freqs:
@@ -1746,6 +1778,57 @@ class LlamaModel(Model):
raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("Llama4ForConditionalGeneration")
class Llama4Model(LlamaModel):
model_arch = gguf.MODEL_ARCH.LLAMA4
has_vision: bool = False
undo_permute = False
# TODO @ngxson : avoid duplicate this code everywhere by at least support "text_config"
# same with llama, but we need to merge the text_config into the root level of hparams
def __init__(self, *args, **kwargs):
hparams = kwargs["hparams"] if "hparams" in kwargs else Model.load_hparams(args[0])
if "text_config" in hparams:
hparams = {**hparams, **hparams["text_config"]}
kwargs["hparams"] = hparams
super().__init__(*args, **kwargs)
if "vision_config" in hparams:
logger.info("Has vision encoder, but it will be ignored")
self.has_vision = True
# IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
def set_vocab(self):
self._set_vocab_gpt2()
self.gguf_writer.add_add_bos_token(True)
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
# split the gate_up into gate and up
if "gate_up_proj" in name:
name_up = name.replace("gate_up_proj", "up_proj.weight")
name_gate = name.replace("gate_up_proj", "gate_proj.weight")
dim_half = data_torch.shape[-1] // 2
gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
return [
(self.map_tensor_name(name_gate), gate_proj_weight),
(self.map_tensor_name(name_up), up_proj_weight)
]
if name.endswith("down_proj"):
name += ".weight"
data_torch = data_torch.transpose(-1, -2)
if "multi_modal_projector" in name or "vision_model" in name:
return []
return super().modify_tensors(data_torch, name, bid)
@Model.register("Mistral3ForConditionalGeneration")
class Mistral3Model(LlamaModel):
model_arch = gguf.MODEL_ARCH.LLAMA
@@ -2393,6 +2476,16 @@ class Qwen2MoeModel(Model):
raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("Qwen3ForCausalLM")
class Qwen3Model(Qwen2Model):
model_arch = gguf.MODEL_ARCH.QWEN3
@Model.register("Qwen3MoeForCausalLM")
class Qwen3MoeModel(Qwen2MoeModel):
model_arch = gguf.MODEL_ARCH.QWEN3MOE
@Model.register("GPT2LMHeadModel")
class GPT2Model(Model):
model_arch = gguf.MODEL_ARCH.GPT2
@@ -3551,8 +3644,8 @@ class RWKV6Qwen2Model(Rwkv6Model):
head_size = hidden_size // num_attention_heads
rms_norm_eps = self.hparams["rms_norm_eps"]
intermediate_size = self.hparams["intermediate_size"]
time_mix_extra_dim = 64 if hidden_size >= 4096 else 32
time_decay_extra_dim = 128 if hidden_size >= 4096 else 64
time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
# RWKV isn't context limited
self.gguf_writer.add_context_length(1048576)
@@ -4329,6 +4422,10 @@ class DeepseekV2Model(Model):
self._set_vocab_gpt2()
def set_gguf_parameters(self):
# note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
self.hparams["num_key_value_heads"] = 1
super().set_gguf_parameters()
hparams = self.hparams
@@ -4337,8 +4434,13 @@ class DeepseekV2Model(Model):
if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
self.gguf_writer.add_value_length(hparams["v_head_dim"])
# note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
@@ -4407,6 +4509,26 @@ class DeepseekV2Model(Model):
else:
return []
# note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
if name.endswith("kv_b_proj.weight"):
name_kb = name.replace("kv_b_proj", "k_b_proj")
name_vb = name.replace("kv_b_proj", "v_b_proj")
n_head_kv = self.hparams["num_key_value_heads"]
v_head_dim = self.hparams["v_head_dim"]
qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
k_b = k_b.transpose(1, 2)
return [
(self.map_tensor_name(name_kb), k_b),
(self.map_tensor_name(name_vb), v_b)
]
return [(self.map_tensor_name(name), data_torch)]
def prepare_tensors(self):
@@ -4807,6 +4929,22 @@ class JaisModel(Model):
self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
@Model.register("Glm4ForCausalLM")
class Glm4Model(Model):
model_arch = gguf.MODEL_ARCH.GLM4
def set_vocab(self):
self._set_vocab_gpt2()
def set_gguf_parameters(self):
super().set_gguf_parameters()
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "yarn":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
@Model.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
class ChatGLMModel(Model):
model_arch = gguf.MODEL_ARCH.CHATGLM
@@ -5130,6 +5268,105 @@ class GraniteMoeModel(GraniteModel):
return super().modify_tensors(data_torch, name, bid)
@Model.register("BailingMoeForCausalLM")
class BailingMoeModel(Model):
model_arch = gguf.MODEL_ARCH.BAILINGMOE
def set_vocab(self):
self._set_vocab_gpt2()
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(rope_dim)
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
self.gguf_writer.add_expert_weights_scale(1.0)
self.gguf_writer.add_expert_count(hparams["num_experts"])
self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
_experts: list[dict[str, Tensor]] | None = None
@staticmethod
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
if n_head_kv is not None and n_head != n_head_kv:
n_head = n_head_kv
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams.get("num_key_value_heads")
n_embd = self.hparams["hidden_size"]
head_dim = self.hparams.get("head_dim") or n_embd // n_head
output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
if name.endswith("attention.dense.weight"):
return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
elif name.endswith("query_key_value.weight"):
q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
return [
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
]
elif name.find("mlp.experts") != -1:
n_experts = self.hparams["num_experts"]
assert bid is not None
tensors: list[tuple[str, Tensor]] = []
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
# merge the experts into a single 3d tensor
for w_name in ["down_proj", "gate_proj", "up_proj"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
return tensors
new_name = self.map_tensor_name(name)
if new_name == output_name and self.hparams.get("norm_head"):
data_torch = data_torch.float()
data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
return [(new_name, data_torch)]
def prepare_tensors(self):
super().prepare_tensors()
if self._experts is not None:
# flatten `list[dict[str, Tensor]]` into `list[str]`
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("ChameleonForConditionalGeneration")
@Model.register("ChameleonForCausalLM") # obsolete
class ChameleonModel(Model):
@@ -5228,6 +5465,14 @@ class LazyTorchTensor(gguf.LazyBase):
lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
return cast(torch.Tensor, lazy)
@classmethod
def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
dtype = cls._dtype_str_map[remote_tensor.dtype]
shape = remote_tensor.shape
meta = cls.meta_with_dtype_and_shape(dtype, shape)
lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
return cast(torch.Tensor, lazy)
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
del types # unused
@@ -5305,6 +5550,10 @@ def parse_args() -> argparse.Namespace:
"--print-supported-models", action="store_true",
help="Print the supported models"
)
parser.add_argument(
"--remote", action="store_true",
help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
)
args = parser.parse_args()
if not args.print_supported_models and args.model is None:
@@ -5345,6 +5594,14 @@ def main() -> None:
dir_model = args.model
if args.remote:
from huggingface_hub import snapshot_download
local_dir = snapshot_download(
repo_id=str(dir_model),
allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
dir_model = Path(local_dir)
logger.info(f"Downloaded config and tokenizer to {local_dir}")
if not dir_model.is_dir():
logger.error(f'Error: {args.model} is not a directory')
sys.exit(1)
@@ -5366,6 +5623,9 @@ def main() -> None:
if args.outfile is not None:
fname_out = args.outfile
elif args.remote:
# if remote, use the model ID as the output file name
fname_out = Path("./" + str(args.model).replace("/", "-") + "-{ftype}.gguf")
else:
fname_out = dir_model
@@ -5376,7 +5636,6 @@ def main() -> None:
with torch.inference_mode():
output_type = ftype_map[args.outtype]
model_architecture = hparams["architectures"][0]
try:
model_class = Model.from_model_architecture(model_architecture)
except NotImplementedError:
@@ -5389,7 +5648,8 @@ def main() -> None:
metadata_override=args.metadata, model_name=args.model_name,
split_max_tensors=args.split_max_tensors,
split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
small_first_shard=args.no_tensor_first_split)
small_first_shard=args.no_tensor_first_split,
remote_hf_model_id=str(args.model) if args.remote else None)
if args.vocab_only:
logger.info("Exporting model vocab...")

View File

@@ -111,6 +111,10 @@ models = [
{"name": "deepseek-r1-qwen", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"},
{"name": "gpt-4o", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Xenova/gpt-4o", },
{"name": "superbpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k", },
{"name": "trillion", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/trillionlabs/Trillion-7B-preview", },
{"name": "bailingmoe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-lite", },
{"name": "llama4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct", },
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", },
]

View File

@@ -145,8 +145,13 @@ A Snapdragon X Elite device with Windows 11 Arm64 is used. Make sure the followi
* Clang 19
* Ninja
* Visual Studio 2022
* Powershell 7
Powershell is used for the following instructions.
Visual Studio provides necessary headers and libraries although it is not directly used for building.
Alternatively, Visual Studio Build Tools can be installed instead of the full Visual Studio.
Powershell 7 is used for the following commands.
If an older version of Powershell is used, these commands may not work as they are.
### I. Setup Environment
@@ -196,10 +201,9 @@ ninja
## Known Issues
- Qwen2.5 0.5B model produces gibberish output with Adreno kernels.
- Currently OpenCL backend does not work on Adreno 6xx GPUs.
## TODO
- Fix Qwen2.5 0.5B
- Optimization for Q6_K
- Support and optimization for Q4_K

View File

@@ -20,7 +20,7 @@
**oneAPI** is an open ecosystem and a standard-based specification, supporting multiple architectures including but not limited to intel CPUs, GPUs and FPGAs. The key components of the oneAPI ecosystem include:
- **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers.
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL and oneDNN)*.
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. Intel oneMKL, oneMath and oneDNN)*.
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over intel iGPUs and dGPUs.
- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets.
@@ -227,16 +227,6 @@ Upon a successful installation, SYCL is enabled for the available intel devices,
**oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.
**oneMKL for cuBlas**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* do not contain the cuBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *cuBLAS* backend enabled is thus required to run it on Nvidia GPUs.
```sh
git clone https://github.com/oneapi-src/oneMKL
cd oneMKL
cmake -B buildWithCublas -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_CUBLAS_BACKEND=ON -DTARGET_DOMAINS=blas
cmake --build buildWithCublas --config Release
```
**oneDNN**: The current oneDNN releases *(shipped with the oneAPI base-toolkit)* do not include the NVIDIA backend. Therefore, oneDNN must be compiled from source to enable the NVIDIA target:
```sh
@@ -250,16 +240,6 @@ cmake --build build-nvidia --config Release
**oneAPI Plugin**: In order to enable SYCL support on AMD GPUs, please install the [Codeplay oneAPI Plugin for AMD GPUs](https://developer.codeplay.com/products/oneapi/amd/download). As with Nvidia GPUs, the user should also make sure the plugin version matches the installed base toolkit.
**oneMKL for rocBlas**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* doesn't contain the rocBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *rocBLAS* backend enabled is thus required to run it on AMD GPUs.
```sh
git clone https://github.com/oneapi-src/oneMKL
cd oneMKL
# Find your HIPTARGET with rocminfo, under the key 'Name:'
cmake -B buildWithrocBLAS -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_ROCBLAS_BACKEND=ON -DHIPTARGETS=${HIPTARGET} -DTARGET_DOMAINS=blas
cmake --build buildWithrocBLAS --config Release
```
3. **Verify installation and environment**
In order to check the available SYCL devices on the machine, please use the `sycl-ls` command.
@@ -322,15 +302,16 @@ cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -
cmake --build build --config Release -j -v
```
It is possible to come across some precision issues when running tests that stem from using faster
instructions, which can be circumvented by setting the environment variable `SYCL_PROGRAM_COMPILE_OPTIONS`
as `-cl-fp32-correctly-rounded-divide-sqrt`
#### Nvidia GPU
```sh
# Export relevant ENV variables
export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LD_LIBRARY_PATH
export LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LIBRARY_PATH
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithCublas/include:$CPLUS_INCLUDE_DIR
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/include:$CPLUS_INCLUDE_DIR
The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.
```sh
# Build LLAMA with Nvidia BLAS acceleration through SYCL
# Setting GGML_SYCL_DEVICE_ARCH is optional but can improve performance
GGML_SYCL_DEVICE_ARCH=sm_80 # Example architecture
@@ -345,14 +326,15 @@ cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=
cmake --build build --config Release -j -v
```
It is possible to come across some precision issues when running tests that stem from using faster
instructions, which can be circumvented by passing the `-fno-fast-math` flag to the compiler.
#### AMD GPU
```sh
# Export relevant ENV variables
export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithrocBLAS/lib:$LD_LIBRARY_PATH
export LIBRARY_PATH=/path/to/oneMKL/buildWithrocBLAS/lib:$LIBRARY_PATH
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithrocBLAS/include:$CPLUS_INCLUDE_DIR
The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.
```sh
# Build LLAMA with rocBLAS acceleration through SYCL
## AMD
@@ -443,13 +425,13 @@ Examples:
- Use device 0:
```sh
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
```
- Use multiple devices:
```sh
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
```
*Notes:*
@@ -493,6 +475,12 @@ b. Enable oneAPI running environment:
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
```
- if you are using Powershell, enable the runtime environment with the following:
```
cmd.exe "/K" '"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" && powershell'
```
c. Verify installation
In the oneAPI command line, run the following to print the available SYCL devices:
@@ -523,13 +511,13 @@ You could download the release package for Windows directly, which including bin
Choose one of following methods to build from source code.
1. Script
#### 1. Script
```sh
.\examples\sycl\win-build-sycl.bat
```
2. CMake
#### 2. CMake
On the oneAPI command line window, step into the llama.cpp main directory and run the following:
@@ -558,13 +546,84 @@ cmake --preset x64-windows-sycl-debug
cmake --build build-x64-windows-sycl-debug -j --target llama-cli
```
3. Visual Studio
#### 3. Visual Studio
You can use Visual Studio to open llama.cpp folder as a CMake project. Choose the sycl CMake presets (`x64-windows-sycl-release` or `x64-windows-sycl-debug`) before you compile the project.
You have two options to use Visual Studio to build llama.cpp:
- As CMake Project using CMake presets.
- Creating a Visual Studio solution to handle the project.
**Note**:
All following commands are executed in PowerShell.
##### - Open as a CMake Project
You can use Visual Studio to open the `llama.cpp` folder directly as a CMake project. Before compiling, select one of the SYCL CMake presets:
- `x64-windows-sycl-release`
- `x64-windows-sycl-debug`
*Notes:*
- For a minimal experimental setup, you can build only the inference executable using:
- In case of a minimal experimental setup, the user can build the inference executable only through `cmake --build build --config Release -j --target llama-cli`.
```Powershell
cmake --build build --config Release -j --target llama-cli
```
##### - Generating a Visual Studio Solution
You can use Visual Studio solution to build and work on llama.cpp on Windows. You need to convert the CMake Project into a `.sln` file.
If you want to use the Intel C++ Compiler for the entire `llama.cpp` project, run the following command:
```Powershell
cmake -B build -G "Visual Studio 17 2022" -T "Intel C++ Compiler 2025" -A x64 -DGGML_SYCL=ON -DCMAKE_BUILD_TYPE=Release
```
If you prefer to use the Intel C++ Compiler only for `ggml-sycl`, ensure that `ggml` and its backend libraries are built as shared libraries ( i.e. `-DBUILD_SHARED_LIBRARIES=ON`, this is default behaviour):
```Powershell
cmake -B build -G "Visual Studio 17 2022" -A x64 -DGGML_SYCL=ON -DCMAKE_BUILD_TYPE=Release \
-DSYCL_INCLUDE_DIR="C:\Program Files (x86)\Intel\oneAPI\compiler\latest\include" \
-DSYCL_LIBRARY_DIR="C:\Program Files (x86)\Intel\oneAPI\compiler\latest\lib"
```
If successful the build files have been written to: *path/to/llama.cpp/build*
Open the project file **build/llama.cpp.sln** with Visual Studio.
Once the Visual Studio solution is created, follow these steps:
1. Open the solution in Visual Studio.
2. Right-click on `ggml-sycl` and select **Properties**.
3. In the left column, expand **C/C++** and select **DPC++**.
4. In the right panel, find **Enable SYCL Offload** and set it to `Yes`.
5. Apply the changes and save.
*Navigation Path:*
```
Properties -> C/C++ -> DPC++ -> Enable SYCL Offload (Yes)
```
Now, you can build `llama.cpp` with the SYCL backend as a Visual Studio project.
To do it from menu: `Build -> Build Solution`.
Once it is completed, final results will be in **build/Release/bin**
*Additional Note*
- You can avoid specifying `SYCL_INCLUDE_DIR` and `SYCL_LIBRARY_DIR` in the CMake command by setting the environment variables:
- `SYCL_INCLUDE_DIR_HINT`
- `SYCL_LIBRARY_DIR_HINT`
- Above instruction has been tested with Visual Studio 17 Community edition and oneAPI 2025.0. We expect them to work also with future version if the instructions are adapted accordingly.
### III. Run the inference
@@ -638,13 +697,13 @@ Examples:
- Use device 0:
```
build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm none -mg 0
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm none -mg 0
```
- Use multiple devices:
```
build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
```

View File

@@ -259,8 +259,6 @@ You can download it from your Linux distro's package manager or from here: [ROCm
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
&& cmake --build build --config Release -- -j 16
```
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DGGML_HIP_UMA=ON`.
However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
To enhance flash attention performance on RDNA3+ or CDNA architectures, you can utilize the rocWMMA library by enabling the `-DGGML_HIP_ROCWMMA_FATTN=ON` option. This requires rocWMMA headers to be installed on the build system.
@@ -296,6 +294,10 @@ You can download it from your Linux distro's package manager or from here: [ROCm
The environment variable [`HIP_VISIBLE_DEVICES`](https://rocm.docs.amd.com/en/latest/understand/gpu_isolation.html#hip-visible-devices) can be used to specify which GPU(s) will be used.
If your GPU is not officially supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 (e.g. gfx1030, gfx1031, or gfx1035) or 11.0.0 on RDNA3.
### Unified Memory
On Linux it is possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY=1`. However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
## Vulkan
**Windows**
@@ -456,6 +458,96 @@ KleidiAI's microkernels implement optimized tensor operations using Arm CPU feat
Depending on your build target, other higher priority backends may be enabled by default. To ensure the CPU backend is used, you must disable the higher priority backends either at compile time, e.g. -DGGML_METAL=OFF, or during run-time using the command line option `--device none`.
## OpenCL
This provides GPU acceleration through OpenCL on recent Adreno GPU.
More information about OpenCL backend can be found in [OPENCL.md](./backend/OPENCL.md) for more information.
### Android
Assume NDK is available in `$ANDROID_NDK`. First, install OpenCL headers and ICD loader library if not available,
```sh
mkdir -p ~/dev/llm
cd ~/dev/llm
git clone https://github.com/KhronosGroup/OpenCL-Headers && \
cd OpenCL-Headers && \
cp -r CL $ANDROID_NDK/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include
cd ~/dev/llm
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader && \
cd OpenCL-ICD-Loader && \
mkdir build_ndk && cd build_ndk && \
cmake .. -G Ninja -DCMAKE_BUILD_TYPE=Release \
-DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \
-DOPENCL_ICD_LOADER_HEADERS_DIR=$ANDROID_NDK/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include \
-DANDROID_ABI=arm64-v8a \
-DANDROID_PLATFORM=24 \
-DANDROID_STL=c++_shared && \
ninja && \
cp libOpenCL.so $ANDROID_NDK/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/lib/aarch64-linux-android
```
Then build llama.cpp with OpenCL enabled,
```sh
cd ~/dev/llm
git clone https://github.com/ggml-org/llama.cpp && \
cd llama.cpp && \
mkdir build-android && cd build-android
cmake .. -G Ninja \
-DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \
-DANDROID_ABI=arm64-v8a \
-DANDROID_PLATFORM=android-28 \
-DBUILD_SHARED_LIBS=OFF \
-DGGML_OPENCL=ON
ninja
```
### Windows Arm64
First, install OpenCL headers and ICD loader library if not available,
```powershell
mkdir -p ~/dev/llm
cd ~/dev/llm
git clone https://github.com/KhronosGroup/OpenCL-Headers && cd OpenCL-Headers
mkdir build && cd build
cmake .. -G Ninja `
-DBUILD_TESTING=OFF `
-DOPENCL_HEADERS_BUILD_TESTING=OFF `
-DOPENCL_HEADERS_BUILD_CXX_TESTS=OFF `
-DCMAKE_INSTALL_PREFIX="$HOME/dev/llm/opencl"
cmake --build . --target install
cd ~/dev/llm
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader && cd OpenCL-ICD-Loader
mkdir build && cd build
cmake .. -G Ninja `
-DCMAKE_BUILD_TYPE=Release `
-DCMAKE_PREFIX_PATH="$HOME/dev/llm/opencl" `
-DCMAKE_INSTALL_PREFIX="$HOME/dev/llm/opencl"
cmake --build . --target install
```
Then build llama.cpp with OpenCL enabled,
```powershell
cmake .. -G Ninja `
-DCMAKE_TOOLCHAIN_FILE="$HOME/dev/llm/llama.cpp/cmake/arm64-windows-llvm.cmake" `
-DCMAKE_BUILD_TYPE=Release `
-DCMAKE_PREFIX_PATH="$HOME/dev/llm/opencl" `
-DBUILD_SHARED_LIBS=OFF `
-DGGML_OPENCL=ON
ninja
```
## Android
To read documentation for how to build on Android, [click here](./android.md)

View File

@@ -38,7 +38,7 @@ int main(int argc, char ** argv) {
llama_model_params model_params = common_model_params_to_llama(params);
llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params);
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);

View File

@@ -41,7 +41,7 @@ int main(int argc, char ** argv) {
llama_model_params model_params = common_model_params_to_llama(params);
llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params);
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: error: unable to load model\n" , __func__);

View File

@@ -421,7 +421,7 @@ int main(int argc, char ** argv) {
g_verbose = (params.verbosity > 1);
try {
lora_merge_ctx ctx(params.model, params.lora_adapters, params.out_file, params.cpuparams.n_threads);
lora_merge_ctx ctx(params.model.path, params.lora_adapters, params.out_file, params.cpuparams.n_threads);
ctx.run_merge();
} catch (const std::exception & err) {
fprintf(stderr, "%s\n", err.what());

View File

@@ -408,8 +408,6 @@ static void gguf_merge(const split_params & split_params) {
exit(EXIT_FAILURE);
}
std::ofstream fout(split_params.output.c_str(), std::ios::binary);
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
auto * ctx_out = gguf_init_empty();
@@ -453,7 +451,6 @@ static void gguf_merge(const split_params & split_params) {
gguf_free(ctx_gguf);
ggml_free(ctx_meta);
gguf_free(ctx_out);
fout.close();
exit(EXIT_FAILURE);
}
@@ -466,7 +463,6 @@ static void gguf_merge(const split_params & split_params) {
gguf_free(ctx_gguf);
ggml_free(ctx_meta);
gguf_free(ctx_out);
fout.close();
exit(EXIT_FAILURE);
}
@@ -479,7 +475,6 @@ static void gguf_merge(const split_params & split_params) {
gguf_free(ctx_gguf);
ggml_free(ctx_meta);
gguf_free(ctx_out);
fout.close();
exit(EXIT_FAILURE);
}
@@ -500,9 +495,11 @@ static void gguf_merge(const split_params & split_params) {
fprintf(stderr, "\033[3Ddone\n");
}
// placeholder for the meta data
{
std::ofstream fout;
if (!split_params.dry_run) {
fout.open(split_params.output.c_str(), std::ios::binary);
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
// placeholder for the meta data
auto meta_size = gguf_get_meta_size(ctx_out);
::zeros(fout, meta_size);
}
@@ -518,7 +515,9 @@ static void gguf_merge(const split_params & split_params) {
ggml_free(ctx_metas[i]);
}
gguf_free(ctx_out);
fout.close();
if (!split_params.dry_run) {
fout.close();
}
exit(EXIT_FAILURE);
}
fprintf(stderr, "%s: writing tensors %s ...", __func__, split_path);
@@ -540,10 +539,11 @@ static void gguf_merge(const split_params & split_params) {
auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor);
f_input.seekg(offset);
f_input.read((char *)read_data.data(), n_bytes);
// write tensor data + padding
fout.write((const char *)read_data.data(), n_bytes);
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
if (!split_params.dry_run) {
// write tensor data + padding
fout.write((const char *)read_data.data(), n_bytes);
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
}
}
gguf_free(ctx_gguf);
@@ -552,16 +552,15 @@ static void gguf_merge(const split_params & split_params) {
fprintf(stderr, "\033[3Ddone\n");
}
{
if (!split_params.dry_run) {
// go back to beginning of file and write the updated metadata
fout.seekp(0);
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
gguf_get_meta_data(ctx_out, data.data());
fout.write((const char *)data.data(), data.size());
fout.close();
gguf_free(ctx_out);
}
gguf_free(ctx_out);
fprintf(stderr, "%s: %s merged from %d split with %d tensors.\n",
__func__, split_params.output.c_str(), n_split, total_tensors);

View File

@@ -168,7 +168,7 @@ int main(int argc, char * argv[]) {
llama_backend_init();
llama_model * model = llama_model_load_from_file(params.model.c_str(), mparams);
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
// create generation context
llama_context * ctx = llama_init_from_model(model, cparams);

View File

@@ -18,6 +18,7 @@ android {
}
externalNativeBuild {
cmake {
arguments += "-DLLAMA_CURL=OFF"
arguments += "-DLLAMA_BUILD_COMMON=ON"
arguments += "-DGGML_LLAMAFILE=OFF"
arguments += "-DCMAKE_BUILD_TYPE=Release"

View File

@@ -1,3 +1,5 @@
# llava (legacy)
add_library(llava OBJECT
llava.cpp
llava.h
@@ -22,12 +24,41 @@ if (BUILD_SHARED_LIBS)
install(TARGETS llava_shared LIBRARY)
endif()
# mtmd
add_library(mtmd OBJECT
mtmd.cpp
mtmd.h
clip.cpp
clip.h
clip-impl.h
)
target_link_libraries(mtmd PRIVATE ggml llama ${CMAKE_THREAD_LIBS_INIT})
target_include_directories(mtmd PUBLIC .)
target_include_directories(mtmd PRIVATE ../..)
target_include_directories(mtmd PRIVATE ../../common) # for stb_image.h
target_compile_features(mtmd PRIVATE cxx_std_17)
add_library(mtmd_static STATIC $<TARGET_OBJECTS:mtmd>)
if (BUILD_SHARED_LIBS)
set_target_properties(mtmd PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_compile_definitions(mtmd PRIVATE LLAMA_SHARED LLAMA_BUILD)
add_library(mtmd_shared SHARED $<TARGET_OBJECTS:mtmd>)
target_link_libraries(mtmd_shared PRIVATE ggml llama ${CMAKE_THREAD_LIBS_INIT})
install(TARGETS mtmd_shared LIBRARY)
endif()
if (NOT MSVC)
target_compile_options(llava PRIVATE -Wno-cast-qual) # stb_image.h
target_compile_options(mtmd PRIVATE -Wno-cast-qual) # stb_image.h
endif()
if(TARGET BUILD_INFO)
add_dependencies(llava BUILD_INFO)
add_dependencies(mtmd BUILD_INFO)
endif()
set(TARGET llama-llava-cli)
@@ -55,7 +86,7 @@ set(TARGET llama-gemma3-cli)
add_executable(${TARGET} gemma3-cli.cpp)
set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-gemma3-cli)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE common mtmd ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)
set(TARGET llama-llava-clip-quantize-cli)

View File

@@ -4,6 +4,26 @@
>
> This is very experimental, only used for demo purpose.
## Quick started
You can use pre-quantized model from [ggml-org](https://huggingface.co/ggml-org)'s Hugging Face account
```bash
# build
cmake -B build
cmake --build build --target llama-gemma3-cli
# alternatively, install from brew (MacOS)
brew install llama.cpp
# run it
llama-gemma3-cli -hf ggml-org/gemma-3-4b-it-GGUF
llama-gemma3-cli -hf ggml-org/gemma-3-12b-it-GGUF
llama-gemma3-cli -hf ggml-org/gemma-3-27b-it-GGUF
# note: 1B model does not support vision
```
## How to get mmproj.gguf?
```bash

344
examples/llava/clip-impl.h Normal file
View File

@@ -0,0 +1,344 @@
#include "ggml.h"
#include "gguf.h"
#include "clip.h"
#include "clip.h"
#include <climits>
#include <cstdarg>
#include <string>
#include <map>
#include <sstream>
#include <vector>
#include <memory>
// Internal header for clip.cpp
#define KEY_FTYPE "general.file_type"
#define KEY_NAME "general.name"
#define KEY_DESCRIPTION "general.description"
#define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
#define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
#define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector"
#define KEY_HAS_GLM_PROJ "clip.has_glm_projector"
#define KEY_MINICPMV_VERSION "clip.minicpmv_version"
#define KEY_HAS_QWEN2VL_MERGER "clip.has_qwen2vl_merger"
#define KEY_USE_GELU "clip.use_gelu"
#define KEY_USE_SILU "clip.use_silu"
#define KEY_N_EMBD "clip.%s.embedding_length"
#define KEY_N_FF "clip.%s.feed_forward_length"
#define KEY_N_BLOCK "clip.%s.block_count"
#define KEY_N_HEAD "clip.%s.attention.head_count"
#define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
#define KEY_PROJ_DIM "clip.%s.projection_dim"
#define KEY_TOKENS "tokenizer.ggml.tokens"
#define KEY_N_POSITIONS "clip.text.context_length"
#define KEY_IMAGE_SIZE "clip.vision.image_size"
#define KEY_PATCH_SIZE "clip.vision.patch_size"
#define KEY_IMAGE_MEAN "clip.vision.image_mean"
#define KEY_IMAGE_STD "clip.vision.image_std"
#define KEY_PROJ_TYPE "clip.projector_type"
#define KEY_FEATURE_LAYER "clip.vision.feature_layer"
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
#define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
//
// tensor name constants
//
#define TN_TOKEN_EMBD "%s.token_embd.weight"
#define TN_POS_EMBD "%s.position_embd.weight"
#define TN_CLASS_EMBD "v.class_embd"
#define TN_PATCH_EMBD "v.patch_embd.weight" // not rename tensor with ".0" postfix for backwrad compat
#define TN_PATCH_EMBD_1 "v.patch_embd.weight.1"
#define TN_PATCH_BIAS "v.patch_embd.bias"
#define TN_ATTN_K "%s.blk.%d.attn_k.%s"
#define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
#define TN_ATTN_V "%s.blk.%d.attn_v.%s"
#define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
#define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
#define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
#define TN_LN_1 "%s.blk.%d.ln1.%s"
#define TN_LN_2 "%s.blk.%d.ln2.%s"
#define TN_LN_PRE "%s.pre_ln.%s"
#define TN_LN_POST "%s.post_ln.%s"
#define TN_TEXT_PROJ "text_projection.weight"
#define TN_VIS_PROJ "visual_projection.weight"
#define TN_LLAVA_PROJ "mm.%d.%s"
#define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
#define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
#define TN_IMAGE_NEWLINE "model.image_newline"
#define TN_MM_INP_PROJ "mm.input_projection.weight" // gemma3
#define TN_MM_SOFT_EMB_N "mm.soft_emb_norm.weight" // gemma3
// mimicpmv
#define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
#define TN_MINICPMV_QUERY "resampler.query"
#define TN_MINICPMV_PROJ "resampler.proj.weight"
#define TN_MINICPMV_KV_PROJ "resampler.kv.weight"
#define TN_MINICPMV_ATTN "resampler.attn.%s.%s"
#define TN_MINICPMV_LN "resampler.ln_%s.%s"
#define TN_GLM_ADAPER_CONV "adapter.conv.%s"
#define TN_GLM_ADAPTER_LINEAR "adapter.linear.linear.%s"
#define TN_GLM_ADAPTER_NORM_1 "adapter.linear.norm1.%s"
#define TN_GLM_ADAPTER_D_H_2_4H "adapter.linear.dense_h_to_4h.%s"
#define TN_GLM_ADAPTER_GATE "adapter.linear.gate.%s"
#define TN_GLM_ADAPTER_D_4H_2_H "adapter.linear.dense_4h_to_h.%s"
#define TN_GLM_BOI_W "adapter.boi"
#define TN_GLM_EOI_W "adapter.eoi"
enum projector_type {
PROJECTOR_TYPE_MLP,
PROJECTOR_TYPE_MLP_NORM,
PROJECTOR_TYPE_LDP,
PROJECTOR_TYPE_LDPV2,
PROJECTOR_TYPE_RESAMPLER,
PROJECTOR_TYPE_GLM_EDGE,
PROJECTOR_TYPE_MERGER,
PROJECTOR_TYPE_GEMMA3,
PROJECTOR_TYPE_UNKNOWN,
};
static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_MLP, "mlp" },
{ PROJECTOR_TYPE_LDP, "ldp" },
{ PROJECTOR_TYPE_LDPV2, "ldpv2"},
{ PROJECTOR_TYPE_RESAMPLER, "resampler"},
{ PROJECTOR_TYPE_GLM_EDGE, "adapter"},
{ PROJECTOR_TYPE_MERGER, "qwen2vl_merger"},
{ PROJECTOR_TYPE_GEMMA3, "gemma3"},
};
static projector_type clip_projector_type_from_string(const std::string & str) {
for (const auto & pair : PROJECTOR_TYPE_NAMES) {
if (pair.second == str) {
return pair.first;
}
}
return PROJECTOR_TYPE_UNKNOWN;
}
// RGB uint8 image
struct clip_image_u8 {
int nx;
int ny;
std::vector<uint8_t> buf;
};
// RGB float32 image (NHWC)
// Memory layout: RGBRGBRGB...
struct clip_image_f32 {
int nx;
int ny;
std::vector<float> buf;
};
//
// logging
//
static void clip_log_callback_default(enum ggml_log_level level, const char * text, void * user_data) {
(void) level;
(void) user_data;
fputs(text, stderr);
fflush(stderr);
}
struct clip_logger_state {
ggml_log_level verbosity_thold;
ggml_log_callback log_callback;
void * log_callback_user_data;
};
extern struct clip_logger_state g_logger_state;
static void clip_log_internal_v(enum ggml_log_level level, const char * format, va_list args) {
if (format == NULL) {
return;
}
va_list args_copy;
va_copy(args_copy, args);
char buffer[128];
int len = vsnprintf(buffer, 128, format, args);
if (len < 128) {
g_logger_state.log_callback(level, buffer, g_logger_state.log_callback_user_data);
} else {
char * buffer2 = (char *) calloc(len + 1, sizeof(char));
vsnprintf(buffer2, len + 1, format, args_copy);
buffer2[len] = 0;
g_logger_state.log_callback(level, buffer2, g_logger_state.log_callback_user_data);
free(buffer2);
}
va_end(args_copy);
}
static void clip_log_internal(enum ggml_log_level level, const char * format, ...) {
va_list args;
va_start(args, format);
clip_log_internal_v(level, format, args);
va_end(args);
}
#define LOG_TMPL(level, ...) \
do { \
if ((level) >= g_logger_state.verbosity_thold) { \
clip_log_internal((level), __VA_ARGS__); \
} \
} while (0)
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, __VA_ARGS__)
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, __VA_ARGS__)
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, __VA_ARGS__)
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, __VA_ARGS__)
//
// cpp wrappers
//
// wrapper for clip_image_size
struct clip_image_size_deleter {
void operator()(clip_image_size * val) { clip_image_size_free(val); }
};
typedef std::unique_ptr<clip_image_size, clip_image_size_deleter> clip_image_size_ptr;
// wrapper for clip_image_u8
struct clip_image_u8_deleter {
void operator()(clip_image_u8 * val) { clip_image_u8_free(val); }
};
typedef std::unique_ptr<clip_image_u8, clip_image_u8_deleter> clip_image_u8_ptr;
// wrapper for clip_image_f32
struct clip_image_f32_deleter {
void operator()(clip_image_f32 * val) { clip_image_f32_free(val); }
};
typedef std::unique_ptr<clip_image_f32, clip_image_f32_deleter> clip_image_f32_ptr;
struct clip_image_u8_batch {
std::vector<clip_image_u8_ptr> entries;
};
struct clip_image_f32_batch {
std::vector<clip_image_f32_ptr> entries;
};
//
// common utils
//
static std::string string_format(const char * fmt, ...) {
va_list ap;
va_list ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
int size = vsnprintf(NULL, 0, fmt, ap);
GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
std::vector<char> buf(size + 1);
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
GGML_ASSERT(size2 == size);
va_end(ap2);
va_end(ap);
return std::string(buf.data(), buf.size());
}
static void string_replace_all(std::string & s, const std::string & search, const std::string & replace) {
if (search.empty()) {
return;
}
std::string builder;
builder.reserve(s.length());
size_t pos = 0;
size_t last_pos = 0;
while ((pos = s.find(search, last_pos)) != std::string::npos) {
builder.append(s, last_pos, pos - last_pos);
builder.append(replace);
last_pos = pos + search.length();
}
builder.append(s, last_pos, std::string::npos);
s = std::move(builder);
}
// split string by a `std::string delim` instead of `char delim`
static std::vector<std::string> string_split_str(std::string s, const std::string & delimiter) {
std::vector<std::string> tokens;
size_t pos = 0;
std::string token;
while ((pos = s.find(delimiter)) != std::string::npos) {
token = s.substr(0, pos);
tokens.push_back(token);
s.erase(0, pos + delimiter.length());
}
tokens.push_back(s);
return tokens;
}
//
// gguf utils
//
static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
switch (type) {
case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
default: return string_format("unknown type %d", type);
}
}
static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
switch (type) {
case GGUF_TYPE_STRING:
return gguf_get_val_str(ctx_gguf, i);
case GGUF_TYPE_ARRAY:
{
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
int arr_n = gguf_get_arr_n(ctx_gguf, i);
const void * data = arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx_gguf, i);
std::stringstream ss;
ss << "[";
for (int j = 0; j < arr_n; j++) {
if (arr_type == GGUF_TYPE_STRING) {
std::string val = gguf_get_arr_str(ctx_gguf, i, j);
// escape quotes
string_replace_all(val, "\\", "\\\\");
string_replace_all(val, "\"", "\\\"");
ss << '"' << val << '"';
} else if (arr_type == GGUF_TYPE_ARRAY) {
ss << "???";
} else {
ss << gguf_data_to_str(arr_type, data, j);
}
if (j < arr_n - 1) {
ss << ", ";
}
}
ss << "]";
return ss.str();
}
default:
return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
}
}
//
// API used internally with mtmd
//
projector_type clip_get_projector_type(const struct clip_ctx * ctx);

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,7 @@
#ifndef CLIP_H
#define CLIP_H
#include "ggml.h"
#include <stddef.h>
#include <stdint.h>
@@ -29,19 +30,12 @@ struct clip_image_size {
int height;
};
struct clip_image_u8_batch {
struct clip_image_u8 * data;
size_t size;
};
struct clip_image_f32_batch {
struct clip_image_f32 * data;
size_t size;
};
struct clip_image_u8_batch;
struct clip_image_f32_batch;
struct clip_context_params {
bool use_gpu;
int verbosity;
ggml_log_level verbosity;
};
// deprecated, use clip_init
@@ -54,9 +48,9 @@ CLIP_API void clip_free(struct clip_ctx * ctx);
CLIP_API size_t clip_embd_nbytes(const struct clip_ctx * ctx);
CLIP_API size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w);
CLIP_API int32_t clip_image_size (const struct clip_ctx * ctx);
CLIP_API int32_t clip_patch_size (const struct clip_ctx * ctx);
CLIP_API int32_t clip_hidden_size(const struct clip_ctx * ctx);
CLIP_API int32_t clip_get_image_size (const struct clip_ctx * ctx);
CLIP_API int32_t clip_get_patch_size (const struct clip_ctx * ctx);
CLIP_API int32_t clip_get_hidden_size(const struct clip_ctx * ctx);
// TODO: should be enum, not string
CLIP_API const char * clip_patch_merge_type(const struct clip_ctx * ctx);
@@ -72,15 +66,26 @@ CLIP_API int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip);
CLIP_API void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size);
CLIP_API struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip);
CLIP_API struct clip_image_size * clip_image_size_init();
CLIP_API struct clip_image_u8 * clip_image_u8_init ();
CLIP_API struct clip_image_f32 * clip_image_f32_init();
CLIP_API struct clip_image_size * clip_image_size_init();
CLIP_API struct clip_image_u8 * clip_image_u8_init ();
CLIP_API struct clip_image_f32 * clip_image_f32_init();
CLIP_API struct clip_image_f32_batch * clip_image_f32_batch_init(); // only used by libllava
// nx, ny are the output image dimensions
CLIP_API unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny);
CLIP_API void clip_image_size_free (struct clip_image_size * img_size);
CLIP_API void clip_image_u8_free (struct clip_image_u8 * img);
CLIP_API void clip_image_f32_free(struct clip_image_f32 * img);
CLIP_API void clip_image_u8_batch_free (struct clip_image_u8_batch * batch);
CLIP_API void clip_image_f32_batch_free(struct clip_image_f32_batch * batch);
// use for accessing underlay data of clip_image_f32_batch
CLIP_API size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch); // equivalent to batch->size()
CLIP_API size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->nx
CLIP_API size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->ny
CLIP_API clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->data
/**
* Build image from pixels decoded by other libraries instead of stb_image.h for better performance.
* The memory layout is RGBRGBRGB..., input buffer length must be 3*nx*ny bytes
@@ -105,6 +110,8 @@ CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out
CLIP_API int clip_is_minicpmv(const struct clip_ctx * ctx);
CLIP_API bool clip_is_glm(const struct clip_ctx * ctx);
CLIP_API bool clip_is_qwen2vl(const struct clip_ctx * ctx);
CLIP_API bool clip_is_llava(const struct clip_ctx * ctx);
CLIP_API bool clip_is_gemma3(const struct clip_ctx * ctx);
CLIP_API int get_deepest_feature_layer(const struct clip_ctx * ctx);

View File

@@ -2,15 +2,15 @@
#include "log.h"
#include "common.h"
#include "sampling.h"
#include "clip.h"
#include "stb_image.h"
#include "llama.h"
#include "ggml.h"
#include "console.h"
#include "chat.h"
#include "mtmd.h"
#include <vector>
#include <limits.h>
#include <inttypes.h>
#include <cinttypes>
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
#include <signal.h>
@@ -57,13 +57,18 @@ static void sigint_handler(int signo) {
#endif
struct gemma3_context {
struct clip_ctx * ctx_clip = NULL;
common_init_result llama_init;
mtmd_context_ptr ctx_vision;
common_init_result llama_init;
llama_model * model;
llama_context * lctx;
const llama_vocab * vocab;
llama_batch batch;
int n_batch;
// note: we know that gemma3 template is "linear", meaning each turn is completely separated to another
// so here we don't need to keep track of chat history
common_chat_templates_ptr tmpls;
int n_threads = 1;
llama_pos n_past = 0;
@@ -74,16 +79,23 @@ struct gemma3_context {
vocab = llama_model_get_vocab(model);
n_threads = params.cpuparams.n_threads;
batch = llama_batch_init(params.n_batch, 0, 1);
init_clip_model(params);
n_batch = params.n_batch;
tmpls = common_chat_templates_init(model, params.chat_template);
init_vision_context(params);
}
void init_clip_model(common_params & params) {
const char * clip_path = params.mmproj.c_str();
ctx_clip = clip_model_load(clip_path, params.verbosity > 1);
}
~gemma3_context() {
clip_free(ctx_clip);
void init_vision_context(common_params & params) {
const char * clip_path = params.mmproj.path.c_str();
ctx_vision.reset(mtmd_init_from_file(clip_path, model, mtmd_context_params{
/* use_gpu */ true,
/* timings */ true,
/* n_threads */ params.cpuparams.n_threads,
/* verbosity */ GGML_LOG_LEVEL_INFO,
}));
if (!ctx_vision.get()) {
LOG_ERR("Failed to load vision model from %s\n", clip_path);
exit(1);
}
}
};
@@ -120,77 +132,6 @@ struct decode_embd_batch {
}
};
static int eval_text(gemma3_context & ctx, std::string input, bool logits_last = false) {
llama_tokens tokens = common_tokenize(ctx.lctx, input, false, true);
common_batch_clear(ctx.batch);
for (llama_token & t : tokens) {
common_batch_add(ctx.batch, t, ctx.n_past++, {0}, false);
}
if (logits_last) {
ctx.batch.logits[ctx.batch.n_tokens - 1] = true;
}
// LOG("eval_text (n_tokens = %d): %s\n", (int)tokens.size(), input.c_str());
if (llama_decode(ctx.lctx, ctx.batch)) {
LOG_ERR("Failed to decode text\n");
return 1;
}
return 0;
}
static int eval_image(gemma3_context & ctx, std::string & fname) {
std::vector<float> image_embd_v;
int n_embd = llama_model_n_embd(ctx.model);
int n_tokens = 256;
image_embd_v.resize(n_tokens * n_embd);
bool ok;
struct clip_image_u8 * img_u8 = clip_image_u8_init();
ok = clip_image_load_from_file(fname.c_str(), img_u8);
if (!ok) {
LOG_ERR("Unable to load image %s\n", fname.c_str());
clip_image_u8_free(img_u8);
return 2; // non-fatal error
}
clip_image_f32_batch batch_f32;
ok = clip_image_preprocess(ctx.ctx_clip, img_u8, &batch_f32);
if (!ok) {
LOG_ERR("Unable to preprocess image\n");
clip_image_f32_batch_free(&batch_f32);
clip_image_u8_free(img_u8);
return 1;
}
int64_t t0 = ggml_time_ms();
LOG("Encoding image %s\n", fname.c_str());
ok = clip_image_batch_encode(ctx.ctx_clip, ctx.n_threads, &batch_f32, image_embd_v.data());
if (!ok) {
LOG_ERR("Unable to encode image\n");
clip_image_f32_batch_free(&batch_f32);
clip_image_u8_free(img_u8);
return 1;
}
LOG("Image encoded in %" PRId64 " ms\n", ggml_time_ms() - t0);
clip_image_f32_batch_free(&batch_f32);
clip_image_u8_free(img_u8);
// decode image embeddings
int64_t t1 = ggml_time_ms();
eval_text(ctx, "<start_of_image>");
llama_set_causal_attn(ctx.lctx, false);
decode_embd_batch batch_img(image_embd_v.data(), n_tokens, ctx.n_past, 0);
if (llama_decode(ctx.lctx, batch_img.batch)) {
LOG_ERR("failed to decode image\n");
return 1;
}
ctx.n_past += n_tokens;
llama_set_causal_attn(ctx.lctx, true);
eval_text(ctx, "<end_of_image>");
LOG("Image decoded in %" PRId64 " ms\n", ggml_time_ms() - t1);
return 0;
}
static int generate_response(gemma3_context & ctx, common_sampler * smpl, int n_predict) {
for (int i = 0; i < n_predict; i++) {
if (i > n_predict || !g_is_generating) {
@@ -220,6 +161,45 @@ static int generate_response(gemma3_context & ctx, common_sampler * smpl, int n_
return 0;
}
static int eval_message(gemma3_context & ctx, common_chat_msg & msg, std::vector<std::string> & images_fname, bool add_bos = false) {
std::vector<mtmd_bitmap> bitmaps;
common_chat_templates_inputs tmpl_inputs;
tmpl_inputs.messages = {msg};
tmpl_inputs.add_generation_prompt = true;
tmpl_inputs.use_jinja = false; // jinja is buggy here
auto formatted_chat = common_chat_templates_apply(ctx.tmpls.get(), tmpl_inputs);
LOG_DBG("formatted_chat.prompt: %s\n", formatted_chat.prompt.c_str());
for (auto & fname : images_fname) {
mtmd_bitmap bitmap;
if (mtmd_helper_bitmap_init_from_file(fname.c_str(), bitmap)) {
LOG_ERR("Unable to load image %s\n", fname.c_str());
return 2; // image not found
}
bitmaps.push_back(std::move(bitmap));
}
mtmd_input_text text;
text.text = formatted_chat.prompt;
text.add_special = add_bos;
text.parse_special = true;
mtmd_input_chunks_ptr chunks(mtmd_tokenize(ctx.ctx_vision.get(), text, bitmaps));
if (chunks == nullptr) {
LOG_ERR("Unable to tokenize prompt\n");
return 1;
}
if (mtmd_helper_eval(ctx.ctx_vision.get(), ctx.lctx, chunks.get(), ctx.n_past, 0, ctx.n_batch)) {
LOG_ERR("Unable to eval prompt\n");
return 1;
}
ctx.n_past += mtmd_helper_get_n_tokens(chunks.get());
return 0;
}
int main(int argc, char ** argv) {
ggml_time_init();
@@ -232,13 +212,13 @@ int main(int argc, char ** argv) {
common_init();
if (params.mmproj.empty()) {
if (params.mmproj.path.empty()) {
show_additional_info(argc, argv);
return 1;
}
gemma3_context ctx(params);
printf("%s: %s\n", __func__, params.model.c_str());
printf("%s: %s\n", __func__, params.model.path.c_str());
bool is_single_turn = !params.prompt.empty() && !params.image.empty();
@@ -261,21 +241,15 @@ int main(int argc, char ** argv) {
#endif
}
if (eval_text(ctx, "<bos>")) {
return 1;
}
if (is_single_turn) {
g_is_generating = true;
if (eval_text(ctx, "<start_of_turn>user\n")) {
return 1;
if (params.prompt.find("<__image__>") == std::string::npos) {
params.prompt += " <__image__>";
}
for (auto & fname : params.image) {
if (eval_image(ctx, fname)) {
return 1;
}
}
if (eval_text(ctx, params.prompt + "<end_of_turn><start_of_turn>model\n", true)) {
common_chat_msg msg;
msg.role = "user";
msg.content = params.prompt;
if (eval_message(ctx, msg, params.image, true)) {
return 1;
}
if (generate_response(ctx, smpl, n_predict)) {
@@ -289,9 +263,9 @@ int main(int argc, char ** argv) {
LOG("\n /quit or /exit exit the program");
LOG("\n");
if (eval_text(ctx, "<start_of_turn>user\n")) {
return 1;
}
bool is_first_msg = true;
std::vector<std::string> images_fname;
std::string content;
while (true) {
g_is_generating = false;
@@ -316,26 +290,33 @@ int main(int argc, char ** argv) {
g_is_generating = true;
if (line.find("/image") == 0) {
std::string image = line.substr(7);
int res = eval_image(ctx, image);
if (res == 2) {
continue; // image not found
}
if (res) {
return 1;
}
images_fname.push_back(string_strip(image));
content += "<__image__>";
continue;
} else {
content += line;
}
common_chat_msg msg;
msg.role = "user";
msg.content = content;
int ret = eval_message(ctx, msg, images_fname, is_first_msg);
if (ret == 2) {
// non-fatal error
images_fname.clear();
content.clear();
continue;
}
if (eval_text(ctx, line + "<end_of_turn><start_of_turn>model\n", true)) {
if (ret) {
return 1;
}
if (generate_response(ctx, smpl, n_predict)) {
return 1;
}
if (eval_text(ctx, "<end_of_turn><start_of_turn>user\n")) {
return 1;
}
images_fname.clear();
content.clear();
is_first_msg = false;
}
}
llama_perf_context_print(ctx.lctx);
return 0;
}

View File

@@ -225,7 +225,7 @@ static struct llama_model * llava_init(common_params * params) {
llama_model_params model_params = common_model_params_to_llama(*params);
llama_model * model = llama_model_load_from_file(params->model.c_str(), model_params);
llama_model * model = llama_model_load_from_file(params->model.path.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: unable to load model\n" , __func__);
return NULL;
@@ -234,14 +234,14 @@ static struct llama_model * llava_init(common_params * params) {
}
static struct llava_context * llava_init_context(common_params * params, llama_model * model) {
const char * clip_path = params->mmproj.c_str();
const char * clip_path = params->mmproj.path.c_str();
auto prompt = params->prompt;
if (prompt.empty()) {
prompt = "describe the image in detail.";
}
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
auto ctx_clip = clip_model_load(clip_path, GGML_LOG_LEVEL_INFO);
llama_context_params ctx_params = common_context_params_to_llama(*params);
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
@@ -283,7 +283,7 @@ int main(int argc, char ** argv) {
common_init();
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
if (params.mmproj.path.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
print_usage(argc, argv);
return 1;
}

View File

@@ -10,6 +10,7 @@
#include <cstring>
#include <limits>
#include <vector>
#include <memory>
#if defined(LLAVA_LOG_OFF)
# define LOG_INF(...)
@@ -45,6 +46,17 @@ struct clip_image_grid_shape {
int second;
};
// convenience cpp wrapper
struct clip_image_f32_batch_deleter {
void operator()(clip_image_f32_batch * val) { clip_image_f32_batch_free(val); }
};
typedef std::unique_ptr<clip_image_f32_batch, clip_image_f32_batch_deleter> clip_image_f32_batch_ptr;
struct clip_image_size_deleter {
void operator()(clip_image_f32_batch * val) { clip_image_f32_batch_free(val); }
};
typedef std::unique_ptr<clip_image_size, clip_image_size_deleter> clip_image_size_ptr;
/**
* Selects the best resolution from a list of possible resolutions based on the original size.
*
@@ -105,8 +117,8 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
struct ggml_context * ctx;
} model;
const int32_t image_size = clip_image_size(ctx_clip);
const int32_t patch_size = clip_patch_size(ctx_clip);
const int32_t image_size = clip_get_image_size(ctx_clip);
const int32_t patch_size = clip_get_patch_size(ctx_clip);
int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches)
@@ -246,12 +258,9 @@ static clip_image_f32 * reshape_by_patch(clip_image_f32 * image, int patch_size)
static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
// std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
clip_image_f32_batch img_res_v;
img_res_v.size = 0;
img_res_v.data = nullptr;
if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) {
clip_image_f32_batch_ptr img_res_v(clip_image_f32_batch_init());
if (!clip_image_preprocess(ctx_clip, img, img_res_v.get())) {
LOG_ERR("%s: unable to preprocess image\n", __func__);
delete[] img_res_v.data;
return false;
}
@@ -259,66 +268,72 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);
const size_t n_imgs = clip_image_f32_batch_n_images(img_res_v.get());
if (clip_is_minicpmv(ctx_clip) || clip_is_qwen2vl(ctx_clip)) {
std::vector<float *> image_embd_v;
image_embd_v.resize(img_res_v.size);
struct clip_image_size * load_image_size = clip_image_size_init();
image_embd_v.resize(n_imgs);
clip_image_size load_image_size;
for (size_t i = 0; i < img_res_v.size; i++) {
for (size_t i = 0; i < n_imgs; i++) {
const int64_t t_img_enc_step_start_us = ggml_time_us();
image_embd_v[i] = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, img_res_v.data[i].nx, img_res_v.data[i].ny));
int patch_size=14;
load_image_size->width = img_res_v.data[i].nx;
load_image_size->height = img_res_v.data[i].ny;
clip_add_load_image_size(ctx_clip, load_image_size);
int nx = clip_image_f32_batch_nx(img_res_v.get(), i);
int ny = clip_image_f32_batch_ny(img_res_v.get(), i);
image_embd_v[i] = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, nx, ny));
int patch_size = 14;
load_image_size.width = nx;
load_image_size.height = ny;
clip_add_load_image_size(ctx_clip, &load_image_size);
bool encoded = false;
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), i);
if (clip_is_qwen2vl(ctx_clip)) {
encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd_v[i]);
}
else {
encoded = clip_image_encode(ctx_clip, n_threads, reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
encoded = clip_image_encode(ctx_clip, n_threads, reshape_by_patch(img_res, patch_size), image_embd_v[i]);
}
if (!encoded) {
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) n_imgs);
return false;
}
const int64_t t_img_enc_steop_batch_us = ggml_time_us();
LOG_INF("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)img_res_v.size, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
LOG_INF("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)n_imgs, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
}
const int64_t t_img_enc_batch_us = ggml_time_us();
LOG_INF("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
LOG_INF("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)n_imgs, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
int n_img_pos_out = 0;
for (size_t i = 0; i < image_embd_v.size(); i++) {
int nx = clip_image_f32_batch_nx(img_res_v.get(), i);
int ny = clip_image_f32_batch_ny(img_res_v.get(), i);
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), i);
std::memcpy(
image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip),
image_embd_v[i],
clip_embd_nbytes_by_img(ctx_clip, img_res_v.data[i].nx, img_res_v.data[i].ny));
n_img_pos_out += clip_n_patches_by_img(ctx_clip, &img_res_v.data[i]);
clip_embd_nbytes_by_img(ctx_clip, nx, ny));
n_img_pos_out += clip_n_patches_by_img(ctx_clip, img_res);
}
*n_img_pos = n_img_pos_out;
for (size_t i = 0; i < image_embd_v.size(); i++) {
free(image_embd_v[i]);
}
image_embd_v.clear();
load_image_size->width = img->nx;
load_image_size->height = img->ny;
clip_add_load_image_size(ctx_clip, load_image_size);
LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height);
delete[] img_res_v.data;
img_res_v.size = 0;
img_res_v.data = nullptr;
load_image_size.width = img->nx;
load_image_size.height = img->ny;
clip_add_load_image_size(ctx_clip, &load_image_size);
LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size.width, load_image_size.height);
}
else if (clip_is_glm(ctx_clip)){
struct clip_image_size * load_image_size = clip_image_size_init();
load_image_size->width = img_res_v.data[0].nx;
load_image_size->height = img_res_v.data[0].ny;
load_image_size->width = clip_image_f32_batch_nx(img_res_v.get(), 0);
load_image_size->height = clip_image_f32_batch_ny(img_res_v.get(), 0);
clip_add_load_image_size(ctx_clip, load_image_size);
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd);
int pos = int(load_image_size->width/clip_patch_size(ctx_clip)/2);
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), 0);
bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd);
int pos = int(load_image_size->width/clip_get_patch_size(ctx_clip)/2);
*n_img_pos = (pos * pos + 2);
if (!encoded){
LOG_ERR("Unable to encode image \n");
@@ -328,8 +343,8 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
// flat / default llava-1.5 type embedding
*n_img_pos = clip_n_patches(ctx_clip);
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096
delete[] img_res_v.data;
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), 0);
bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd); // image_embd shape is 576 x 4096
if (!encoded) {
LOG_ERR("Unable to encode image\n");
@@ -340,17 +355,18 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
// spatial_unpad llava-1.6 type embedding
// TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
std::vector<float *> image_embd_v;
image_embd_v.resize(img_res_v.size);
for (size_t i = 0; i < img_res_v.size; i++) {
image_embd_v.resize(n_imgs);
for (size_t i = 0; i < n_imgs; i++) {
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), i);
image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184
const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
const bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
if (!encoded) {
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) n_imgs);
return false;
}
}
const int64_t t_img_enc_batch_us = ggml_time_us();
LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)n_imgs, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
const int32_t * image_grid = clip_image_grid(ctx_clip);
const size_t num_gridpoints = get_clip_image_grid_size(ctx_clip);
@@ -360,12 +376,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
}
// free all img_res_v - not needed anymore
delete[] img_res_v.data;
img_res_v.size = 0;
img_res_v.data = nullptr;
const int32_t image_size = clip_image_size(ctx_clip);
const int32_t image_size = clip_get_image_size(ctx_clip);
struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);

View File

@@ -31,7 +31,7 @@ static struct llama_model * llava_init(common_params * params) {
llama_model_params model_params = common_model_params_to_llama(*params);
llama_model * model = llama_model_load_from_file(params->model.c_str(), model_params);
llama_model * model = llama_model_load_from_file(params->model.path.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: unable to load model\n" , __func__);
return NULL;
@@ -80,7 +80,7 @@ static void llava_free(struct llava_context * ctx_llava) {
}
static struct clip_ctx * clip_init_context(common_params * params) {
const char * clip_path = params->mmproj.c_str();
const char * clip_path = params->mmproj.path.c_str();
auto prompt = params->prompt;
if (prompt.empty()) {
@@ -88,7 +88,7 @@ static struct clip_ctx * clip_init_context(common_params * params) {
}
struct clip_context_params clip_params = {
/* use_gpu */ params->n_gpu_layers != 0,
/* verbosity */ params->verbosity,
/* verbosity */ GGML_LOG_LEVEL_INFO, // TODO: make this configurable
};
auto * ctx_clip = clip_init(clip_path, clip_params);
return ctx_clip;
@@ -290,7 +290,7 @@ int main(int argc, char ** argv) {
common_init();
if (params.mmproj.empty() || (params.image.empty())) {
if (params.mmproj.path.empty() || (params.image.empty())) {
show_additional_info(argc, argv);
return 1;
}

341
examples/llava/mtmd.cpp Normal file
View File

@@ -0,0 +1,341 @@
#include "clip.h"
#include "clip-impl.h"
#include "mtmd.h"
#include "llama.h"
#include <algorithm>
#include <cerrno>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <limits>
#include <vector>
struct mtmd_context {
struct clip_ctx * ctx_clip;
const struct llama_model * text_model;
std::vector<float> image_embd_v; // image embedding vector
bool print_timings;
int n_threads;
std::string image_marker;
// TODO @ngxson : add timings
mtmd_context(const char * mmproj_fname,
const llama_model * text_model,
const mtmd_context_params & ctx_params) : print_timings(ctx_params.print_timings), n_threads(ctx_params.n_threads), image_marker(ctx_params.image_marker) {
clip_context_params ctx_clip_params;
ctx_clip_params.use_gpu = ctx_params.use_gpu;
ctx_clip_params.verbosity = ctx_params.verbosity;
ctx_clip = clip_init(mmproj_fname, ctx_clip_params);
if (!ctx_clip) {
throw std::runtime_error(string_format("Failed to load CLIP model from %s\n", mmproj_fname));
}
this->text_model = text_model;
}
~mtmd_context() {
clip_free(ctx_clip);
}
};
struct mtmd_image_tokens_data {
clip_image_f32_batch batch_f32; // preprocessed image patches
};
struct mtmd_image_tokens {
uint32_t nx; // number of tokens in x direction
uint32_t ny; // number of tokens in y direction
uint32_t n_tokens() const { return nx * ny; }
clip_image_f32_batch batch_f32; // preprocessed image patches
};
mtmd_context * mtmd_init_from_file(const char * mmproj_fname,
const struct llama_model * text_model,
const struct mtmd_context_params ctx_params) {
try {
return new mtmd_context(mmproj_fname, text_model, ctx_params);
} catch (const std::exception & e) {
LOG_ERR("%s: error: %s\n", __func__, e.what());
return nullptr;
}
}
void mtmd_free(mtmd_context * ctx) {
if (ctx) {
delete ctx;
}
}
// copied from common_tokenize
static std::vector<llama_token> mtmd_tokenize_text_internal(
const struct llama_vocab * vocab,
const std::string & text,
bool add_special,
bool parse_special) {
// upper limit for the number of tokens
int n_tokens = text.length() + 2 * add_special;
std::vector<llama_token> result(n_tokens);
n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
GGML_ASSERT(check == -n_tokens);
} else {
result.resize(n_tokens);
}
return result;
}
mtmd_input_chunks * mtmd_tokenize(mtmd_context * ctx,
const mtmd_input_text & text,
const std::vector<mtmd_bitmap> & bitmaps) {
mtmd_input_chunks * output = new mtmd_input_chunks;
auto vocab = llama_model_get_vocab(ctx->text_model);
std::string prompt_modified(text.text);
std::string marker_modified(ctx->image_marker);
projector_type proj_type = clip_get_projector_type(ctx->ctx_clip);
// a bit hacky here, but works for now
// for some models, we need to add prefix and suffix to the image embeddings
if (proj_type == PROJECTOR_TYPE_GEMMA3) {
// <start_of_image> ... (image embeddings) ... <end_of_image>
marker_modified = "<start_of_image>" + ctx->image_marker + "<end_of_image>";
string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
}
std::vector<std::string> parts = string_split_str(text.text, ctx->image_marker);
output->clear();
output->reserve(parts.size());
size_t i_img = 0;
for (const auto & part : parts) {
//printf("tokenizing part: %s\n", part.c_str());
bool add_bos = &parts.front() == &part;
auto tokens = mtmd_tokenize_text_internal(vocab, part, text.add_special && add_bos, text.parse_special);
if (tokens.empty()) {
continue;
}
mtmd_input_chunk chunk{
MTMD_INPUT_CHUNK_TYPE_TEXT,
std::move(tokens),
{},
};
output->emplace_back(std::move(chunk));
if (&parts.back() != &part) {
// add image token to middle of 2 parts
if (i_img >= bitmaps.size()) {
LOG_ERR("%s: error: not enough images for %d parts\n", __func__, (int)parts.size());
return nullptr;
}
// shim layer
clip_image_u8_ptr img_u8(clip_image_u8_init());
img_u8->nx = bitmaps[i_img].nx;
img_u8->ny = bitmaps[i_img].ny;
img_u8->buf.resize(bitmaps[i_img].data.size());
std::memcpy(img_u8->buf.data(), bitmaps[i_img].data.data(), img_u8->nx * img_u8->ny * 3);
// preprocess image
clip_image_f32_batch batch_f32;
bool ok = clip_image_preprocess(ctx->ctx_clip, img_u8.get(), &batch_f32);
if (!ok) {
LOG_ERR("Unable to preprocess image\n");
return nullptr;
}
mtmd_image_tokens * image_tokens = new mtmd_image_tokens;
image_tokens->nx = clip_n_patches(ctx->ctx_clip); // TODO @ngxson : use clip_n_patches_by_image
image_tokens->ny = 1; // TODO
image_tokens->batch_f32 = std::move(batch_f32);
mtmd_input_chunk chunk{
MTMD_INPUT_CHUNK_TYPE_IMAGE,
{},
image_tokens,
};
output->emplace_back(std::move(chunk));
i_img++;
}
}
return output;
}
void mtmd_input_chunks_free(mtmd_input_chunks * chunks) {
for (auto & chunk : *chunks) {
if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE && chunk.tokens_image) {
delete chunk.tokens_image;
}
}
delete chunks;
}
int32_t mtmd_encode(mtmd_context * ctx, const mtmd_image_tokens * image_tokens) {
int n_mmproj_embd = clip_n_mmproj_embd(ctx->ctx_clip);
ctx->image_embd_v.resize(image_tokens->n_tokens() * n_mmproj_embd);
bool ok = clip_image_batch_encode(
ctx->ctx_clip,
ctx->n_threads,
&image_tokens->batch_f32,
ctx->image_embd_v.data());
return ok ? 0 : 1;
}
float * mtmd_get_output_embd(mtmd_context * ctx) {
return ctx->image_embd_v.data();
}
size_t mtmd_helper_get_n_tokens(mtmd_input_chunks * chunks) {
size_t n_tokens = 0;
for (auto & chunk : *chunks) {
if (chunk.type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
n_tokens += chunk.tokens_text.size();
} else if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
n_tokens += chunk.tokens_image->n_tokens();
} else {
GGML_ASSERT(false && "chunk type not supported");
}
}
return n_tokens;
}
// helper struct to make working with embd batch easier
// note: this will be removed after llama_batch_ext refactoring
struct decode_embd_batch {
std::vector<llama_pos> pos;
std::vector<int32_t> n_seq_id;
std::vector<llama_seq_id> seq_id_0;
std::vector<llama_seq_id *> seq_ids;
std::vector<int8_t> logits;
llama_batch batch;
decode_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
pos .resize(n_tokens);
n_seq_id.resize(n_tokens);
seq_ids .resize(n_tokens + 1);
logits .resize(n_tokens);
seq_id_0.resize(1);
seq_id_0[0] = seq_id;
seq_ids [n_tokens] = nullptr;
batch = {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ embd,
/*pos =*/ pos.data(),
/*n_seq_id =*/ n_seq_id.data(),
/*seq_id =*/ seq_ids.data(),
/*logits =*/ logits.data(),
};
for (int i = 0; i < n_tokens; i++) {
batch.pos [i] = pos_0 + i;
batch.n_seq_id[i] = 1;
batch.seq_id [i] = seq_id_0.data();
batch.logits [i] = false;
}
}
};
int32_t mtmd_helper_eval(mtmd_context * ctx,
llama_context * lctx,
mtmd_input_chunks * chunks,
llama_pos pos0,
llama_seq_id seq_id,
int32_t n_batch) {
int32_t ret;
llama_pos n_past = pos0;
llama_batch text_batch = llama_batch_init(n_batch, 0, 1);
for (auto & chunk : *chunks) {
bool is_last = &chunk == &chunks->back();
if (chunk.type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
// TODO @ngxson : may need to split into smaller batches
text_batch.n_tokens = chunk.tokens_text.size();
for (size_t i = 0; i < chunk.tokens_text.size(); i++) {
text_batch.token [i] = chunk.tokens_text[i];
text_batch.pos [i] = n_past++;
text_batch.n_seq_id[i] = 1;
text_batch.seq_id [i][0] = seq_id;
text_batch.logits [i] = false;
}
if (is_last) {
// always get logits for last input chunk
text_batch.logits[text_batch.n_tokens - 1] = true;
}
ret = llama_decode(lctx, text_batch);
if (ret != 0) {
LOG_ERR("failed to decode text\n");
llama_batch_free(text_batch);
return ret;
}
} else if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
GGML_ASSERT(!is_last && "logits for last image chunk is not yet support");
GGML_ASSERT(chunk.tokens_image != nullptr);
int64_t t0 = ggml_time_ms();
if (ctx->print_timings) {
LOG_INF("encoding image...\n");
}
ret = mtmd_encode(ctx, chunk.tokens_image);
if (ret != 0) {
LOG_ERR("failed to encode image\n");
llama_batch_free(text_batch);
return ret;
}
if (ctx->print_timings) {
LOG_INF("image encoded in %" PRId64 " ms\n", ggml_time_ms() - t0);
}
int32_t n_tokens = chunk.tokens_image->n_tokens();
float * embd = mtmd_get_output_embd(ctx);
decode_embd_batch batch_img(embd, n_tokens, n_past, 0);
int64_t t1 = ggml_time_ms();
ret = llama_decode(lctx, batch_img.batch);
if (ret != 0) {
LOG_ERR("failed to decode image\n");
llama_batch_free(text_batch);
return ret;
}
if (ctx->print_timings) {
LOG_INF("image decoded in %" PRId64 " ms\n", ggml_time_ms() - t1);
}
n_past += n_tokens;
} else {
GGML_ASSERT(false && "chunk type not supported");
}
}
llama_batch_free(text_batch);
return 0;
}
int32_t mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len, mtmd_bitmap & output) {
clip_image_u8_ptr img_u8(clip_image_u8_init());
bool ok = clip_image_load_from_bytes(buf, len, img_u8.get());
if (!ok) {
LOG_ERR("Unable to load image from buffer\n");
return 1;
}
unsigned char * data = clip_image_u8_get_data(img_u8.get(), &output.nx, &output.ny);
output.data.resize(output.nx * output.ny * 3);
std::memcpy(output.data.data(), data, output.nx * output.ny * 3);
return 0;
}
int32_t mtmd_helper_bitmap_init_from_file(const char * fname, mtmd_bitmap & output) {
clip_image_u8_ptr img_u8(clip_image_u8_init());
bool ok = clip_image_load_from_file(fname, img_u8.get());
if (!ok) {
LOG_ERR("Unable to load image %s\n", fname);
return 1;
}
unsigned char * data = clip_image_u8_get_data(img_u8.get(), &output.nx, &output.ny);
output.data.resize(output.nx * output.ny * 3);
std::memcpy(output.data.data(), data, output.nx * output.ny * 3);
return 0;
}

146
examples/llava/mtmd.h Normal file
View File

@@ -0,0 +1,146 @@
#ifndef MTMD_H
#define MTMD_H
#include "ggml.h"
#include "llama.h"
#include "clip.h"
#include <vector>
#include <cinttypes>
#include <memory>
#ifdef LLAMA_SHARED
# if defined(_WIN32) && !defined(__MINGW32__)
# ifdef LLAMA_BUILD
# define MTMD_API __declspec(dllexport)
# else
# define MTMD_API __declspec(dllimport)
# endif
# else
# define MTMD_API __attribute__ ((visibility ("default")))
# endif
#else
# define MTMD_API
#endif
#ifdef __cplusplus
enum mtmd_input_chunk_type {
MTMD_INPUT_CHUNK_TYPE_TEXT,
MTMD_INPUT_CHUNK_TYPE_IMAGE,
};
struct mtmd_context;
struct mtmd_image_tokens;
// represents raw image data, layout is RGBRGBRGB...
// length of data must be nx * ny * 3
struct mtmd_bitmap {
uint32_t nx;
uint32_t ny;
std::vector<unsigned char> data;
};
struct mtmd_input_chunk {
mtmd_input_chunk_type type;
std::vector<llama_token> tokens_text;
mtmd_image_tokens * tokens_image = nullptr;
};
using mtmd_input_chunks = std::vector<mtmd_input_chunk>;
struct mtmd_context_params {
bool use_gpu = true;
bool print_timings = true;
int n_threads = 4;
enum ggml_log_level verbosity = GGML_LOG_LEVEL_INFO;
const char * image_marker = "<__image__>";
};
struct mtmd_input_text {
std::string text;
bool add_special;
bool parse_special;
};
// initialize the mtmd context
// return nullptr on failure
MTMD_API mtmd_context * mtmd_init_from_file(const char * mmproj_fname,
const llama_model * text_model,
const mtmd_context_params ctx_params);
MTMD_API void mtmd_free(mtmd_context * ctx);
// tokenize an input text prompt and an image
// the prompt must have the input image marker (default: "<__image__>") in it
// the marker will be replaced with the image tokens
// for example:
// "here is an image: <__image__>\ndescribe it in detail."
// this will gives 3 chunks:
// 1. "here is an image: <start_of_image>"
// 2. (image tokens)
// 3. "<end_of_image>\ndescribe it in detail."
// number of bitmaps must be equal to the number of image markers in the prompt
// this function is thread-safe (shared ctx)
MTMD_API mtmd_input_chunks * mtmd_tokenize(mtmd_context * ctx,
const mtmd_input_text & text,
const std::vector<mtmd_bitmap> & bitmaps);
// free image chunk data
MTMD_API void mtmd_input_chunks_free(mtmd_input_chunks * chunks);
// returns 0 on success
MTMD_API int32_t mtmd_encode(mtmd_context * ctx,
const mtmd_image_tokens * image_tokens);
// get output embeddings from the last encode pass
MTMD_API float * mtmd_get_output_embd(mtmd_context * ctx);
//
// helper functions (can be implemented based on other functions)
//
// helper to count the total number of tokens from a list of chunks, useful to keep track of n_past
MTMD_API size_t mtmd_helper_get_n_tokens(mtmd_input_chunks * chunks);
// helper function that automatically:
// 1. run llama_decode() on text chunks
// 2. run mtmd_encode() on image chunks, then mtmd_get_output_embd() and then llama_decode()
// if any of the mtmd_encode() or llama_decode() calls return non-zero, stop and forward the error
// otherwise, returns 0 on success
MTMD_API int32_t mtmd_helper_eval(mtmd_context * ctx,
llama_context * lctx,
mtmd_input_chunks * chunks,
llama_pos pos0,
llama_seq_id seq_id,
int32_t n_batch);
// helper function to construct a mtmd_bitmap from a file
// returns 0 on success
// this function is thread-safe
MTMD_API int32_t mtmd_helper_bitmap_init_from_file(const char * fname, mtmd_bitmap & output);
// helper function to construct a mtmd_bitmap from a buffer
// the buffer must be an image in format supported by stb_image (jpg, png, bmp, gif, etc.)
// returns 0 on success
// this function is thread-safe
MTMD_API int32_t mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len, mtmd_bitmap & output);
// convenient unique_ptr wrappers
struct mtmd_context_deleter {
void operator()(mtmd_context * val) { mtmd_free(val); }
};
using mtmd_context_ptr = std::unique_ptr<mtmd_context, mtmd_context_deleter>;
struct mtmd_input_chunks_deleter {
void operator()(mtmd_input_chunks * val) { mtmd_input_chunks_free(val); }
};
using mtmd_input_chunks_ptr = std::unique_ptr<mtmd_input_chunks, mtmd_input_chunks_deleter>;
#else
static_assert(false && "C header is not yet supported by this library");
#endif
#endif

View File

@@ -314,7 +314,7 @@ static struct llama_model * llava_init(common_params * params) {
llama_model_params model_params = common_model_params_to_llama(*params);
llama_model * model = llama_model_load_from_file(params->model.c_str(), model_params);
llama_model * model = llama_model_load_from_file(params->model.path.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: unable to load model\n" , __func__);
return NULL;
@@ -323,14 +323,14 @@ static struct llama_model * llava_init(common_params * params) {
}
static struct llava_context * llava_init_context(common_params * params, llama_model * model) {
const char * clip_path = params->mmproj.c_str();
const char * clip_path = params->mmproj.path.c_str();
auto prompt = params->prompt;
if (prompt.empty()) {
prompt = "describe the image in detail.";
}
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
auto ctx_clip = clip_model_load(clip_path, GGML_LOG_LEVEL_INFO);
llama_context_params ctx_params = common_context_params_to_llama(*params);
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
@@ -524,7 +524,7 @@ int main(int argc, char ** argv) {
common_init();
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
if (params.mmproj.path.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
print_usage(argc, argv);
return 1;
}

BIN
examples/llava/test-1.jpeg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 121 KiB

81
examples/llava/tests.sh Executable file
View File

@@ -0,0 +1,81 @@
#!/bin/bash
# make sure we are in the right directory
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
cd $SCRIPT_DIR
#export LLAMA_CACHE="$SCRIPT_DIR/tmp"
set -eux
mkdir -p $SCRIPT_DIR/output
PROJ_ROOT="$SCRIPT_DIR/../.."
cd $PROJ_ROOT
###############
arr_bin=()
arr_hf=()
add_test() {
local bin=$1
local hf=$2
arr_bin+=("$bin")
arr_hf+=("$hf")
}
add_test "llama-gemma3-cli" "ggml-org/gemma-3-4b-it-GGUF:Q4_K_M"
add_test "llama-llava-cli" "cmp-nct/Yi-VL-6B-GGUF:Q5_K"
add_test "llama-llava-cli" "guinmoon/MobileVLM-3B-GGUF:Q4_K_M"
add_test "llama-llava-cli" "THUDM/glm-edge-v-5b-gguf:Q4_K_M"
add_test "llama-llava-cli" "second-state/Llava-v1.5-7B-GGUF:Q2_K"
add_test "llama-llava-cli" "cjpais/llava-1.6-mistral-7b-gguf:Q3_K"
add_test "llama-llava-cli" "ibm-research/granite-vision-3.2-2b-GGUF:Q4_K_M"
add_test "llama-minicpmv-cli" "second-state/MiniCPM-Llama3-V-2_5-GGUF:Q2_K" # model from openbmb is corrupted
add_test "llama-minicpmv-cli" "openbmb/MiniCPM-V-2_6-gguf:Q2_K"
add_test "llama-minicpmv-cli" "openbmb/MiniCPM-o-2_6-gguf:Q4_0"
add_test "llama-qwen2vl-cli" "bartowski/Qwen2-VL-2B-Instruct-GGUF:Q4_K_M"
###############
cmake --build build -j --target "${arr_bin[@]}"
arr_res=()
for i in "${!arr_bin[@]}"; do
bin="${arr_bin[$i]}"
hf="${arr_hf[$i]}"
echo "Running test with binary: $bin and HF model: $hf"
echo ""
echo ""
output=$("$PROJ_ROOT/build/bin/$bin" -hf "$hf" --image $SCRIPT_DIR/test-1.jpeg -p "what is the publisher name of the newspaper?" --temp 0 2>&1 | tee /dev/tty)
echo "$output" > $SCRIPT_DIR/output/$bin-$(echo "$hf" | tr '/' '-').log
if echo "$output" | grep -iq "new york"; then
result="\033[32mOK\033[0m: $bin $hf"
else
result="\033[31mFAIL\033[0m: $bin $hf"
fi
echo -e "$result"
arr_res+=("$result")
echo ""
echo ""
echo ""
echo "#################################################"
echo "#################################################"
echo ""
echo ""
done
set +x
for i in "${!arr_res[@]}"; do
echo -e "${arr_res[$i]}"
done
echo ""
echo "Output logs are saved in $SCRIPT_DIR/output"

View File

@@ -106,6 +106,8 @@ int main(int argc, char ** argv) {
common_params params;
params.n_predict = 128;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PARALLEL)) {
return 1;
}
@@ -405,7 +407,7 @@ int main(int argc, char ** argv) {
params.prompt_file = "used built-in defaults";
}
LOG_INF("External prompt file: \033[32m%s\033[0m\n", params.prompt_file.c_str());
LOG_INF("Model and path used: \033[32m%s\033[0m\n\n", params.model.c_str());
LOG_INF("Model and path used: \033[32m%s\033[0m\n\n", params.model.path.c_str());
LOG_INF("Total prompt tokens: %6d, speed: %5.2f t/s\n", n_total_prompt, (double) (n_total_prompt ) / (t_main_end - t_main_start) * 1e6);
LOG_INF("Total gen tokens: %6d, speed: %5.2f t/s\n", n_total_gen, (double) (n_total_gen ) / (t_main_end - t_main_start) * 1e6);

View File

@@ -64,7 +64,7 @@ int main(int argc, char ** argv) {
llama_model_params model_params = common_model_params_to_llama(params);
llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params);
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: unable to load model\n" , __func__);

View File

@@ -851,7 +851,7 @@ static void hellaswag_score(llama_context * ctx, const common_params & params) {
LOG_INF("%s : calculating hellaswag score over selected tasks.\n", __func__);
LOG("\ntask\tacc_norm\n");
LOG("\ntask\tacc_norm\t95%% confidence interval\n");
double acc = 0.0f;
@@ -985,8 +985,22 @@ static void hellaswag_score(llama_context * ctx, const common_params & params) {
acc += 1.0;
}
// Print the accumulated accuracy mean x 100
LOG("%zu\t%.8lf\n", i + 1, acc/double(i + 1)*100.0);
double freq = acc / double(i + 1);
const double za = 1.95996398454;
// // Wald normal approx
// double conf =za*sqrt(freq*(1-freq)/double(i + 1));
// LOG("%zu\t%.8lf +/- %.8lf\n", i + 1, freq*100.0, conf*100.0);
// Wilson score interval, more accurate
double z = za * za / double(i + 1);
double cnf = z * sqrt(double(i + 1) * (4.0 * freq * (1 - freq) + z)) / (za + za);
double a = (freq + z * 0.5 - cnf) / (1.0 + z);
double b = (freq + z * 0.5 + cnf) / (1.0 + z);
// Print the accumulated accuracy mean x 100 and confidence interval
LOG("%zu\t%3.8lf%%\t[%3.4lf%%, %3.4lf%%]\n", i + 1, freq * 100.0, a * 100.0, b * 100.0);
}
i0 = i1 - 1;

View File

@@ -9,6 +9,7 @@
#include <fstream>
#include <cmath>
#include <cctype>
#include <algorithm>
struct quant_option {
std::string name;
@@ -16,7 +17,7 @@ struct quant_option {
std::string desc;
};
static const std::vector<struct quant_option> QUANT_OPTIONS = {
static const std::vector<quant_option> QUANT_OPTIONS = {
{ "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
{ "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 4.78G, +0.4511 ppl @ Llama-3-8B", },
{ "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 5.21G, +0.1316 ppl @ Llama-3-8B", },
@@ -105,7 +106,8 @@ static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftyp
//
[[noreturn]]
static void usage(const char * executable) {
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] [--output-tensor-type] [--token-embedding-type] [--override-kv] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] [--output-tensor-type]\n", executable);
printf(" [--token-embedding-type] [--tensor-type] [--keep-split] [--override-kv] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n");
printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
@@ -114,6 +116,8 @@ static void usage(const char * executable) {
printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n");
printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n");
printf(" --tensor-type TENSOR=TYPE: quantize this tensor to this ggml_type. example: --tensor-type attn_q=q8_0\n");
printf(" Advanced option to selectively quantize tensors. May be specified multiple times.\n");
printf(" --keep-split: will generate quantized model in the same shards as input\n");
printf(" --override-kv KEY=TYPE:VALUE\n");
printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n");
@@ -244,6 +248,107 @@ static ggml_type parse_ggml_type(const char * arg) {
return GGML_TYPE_COUNT;
}
// Allowed tensors for arbitrary quantization with --tensor-type option
static const std::vector<std::string> ALLOWED_TENSOR_TYPE = {
"attn_k",
"attn_kv_a_mqa",
"attn_kv_b",
"attn_o",
"attn_output",
"attn_q",
"attn_q_a",
"attn_q_b",
"attn_qkv",
"attn_v",
"channel_mix_key",
"channel_mix_receptance",
"channel_mix_value",
"cls",
"cls.output",
"cross_attn_k",
"cross_attn_o",
"cross_attn_q",
"cross_attn_v",
"ffn_act",
"ffn_down",
"ffn_down_exps",
"ffn_down_shexp",
"ffn_gate",
"ffn_gate_exps",
"ffn_gate_shexp",
"ffn_up",
"ffn_up_exps",
"ffn_up_shexp",
"ssm_in",
"ssm_out",
"time_mix_gate",
"time_mix_key",
"time_mix_output",
"time_mix_receptance",
"time_mix_value",
};
// changes to this struct must be replicated in llama-quant.cpp
struct tensor_quantization {
std::string name;
ggml_type quant = GGML_TYPE_COUNT;
};
static bool parse_tensor_type(const char * data, std::vector<tensor_quantization> & tensor_type) {
const char * sep = strchr(data, '=');
if (sep == nullptr) {
printf("\n%s: malformed tensor type '%s'\n\n", __func__, data);
return false;
}
const size_t tn_len = sep - data;
if (tn_len == 0) {
printf("\n%s: missing tensor name\n\n", __func__);
return false;
}
if (const size_t qt_len = strlen(sep); qt_len == 1) {
printf("\n%s: missing quantization type\n\n", __func__);
return false;
}
std::string tn(data, tn_len);
std::transform(tn.begin(), tn.end(), tn.begin(), tolower);
sep++;
const std::string qt(sep);
bool found = false;
for (const auto & allowed : ALLOWED_TENSOR_TYPE) {
std::string tensor;
tensor = tn.rfind('.') != std::string::npos ? tn.substr(tn.rfind('.') + 1) : tn;
// handle special case of cls.output
std::string cls_output = "cls.output";
if (tn.find(cls_output) != std::string::npos) {
tensor = "cls.output";
}
// check if an allowed tensor exists and it's at the end of the kv string
if (tensor == allowed) {
found = true;
break;
}
}
if (!found) {
printf("\n%s: invalid tensor name '%s'\n\n", __func__, tn.c_str());
return false;
}
if (parse_ggml_type(qt.c_str()) == GGML_TYPE_COUNT) {
printf("\n%s: invalid quantization type '%s'\n\n", __func__, qt.c_str());
return false;
}
tensor_quantization tqz;
tqz.name = tn;
tqz.quant = parse_ggml_type(qt.c_str());
tensor_type.emplace_back(std::move(tqz));
return true;
}
int main(int argc, char ** argv) {
if (argc < 3) {
usage(argv[0]);
@@ -255,6 +360,7 @@ int main(int argc, char ** argv) {
std::string imatrix_file;
std::vector<std::string> included_weights, excluded_weights;
std::vector<llama_model_kv_override> kv_overrides;
std::vector<tensor_quantization> tensor_types;
for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
@@ -277,6 +383,10 @@ int main(int argc, char ** argv) {
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--tensor-type") == 0) {
if (arg_idx == argc-1 || !parse_tensor_type(argv[++arg_idx], tensor_types)) {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--override-kv") == 0) {
if (arg_idx == argc-1 || !string_parse_kv_override(argv[++arg_idx], kv_overrides)) {
usage(argv[0]);
@@ -361,6 +471,9 @@ int main(int argc, char ** argv) {
kv_overrides.back().key[0] = 0;
params.kv_overrides = &kv_overrides;
}
if (!tensor_types.empty()) {
params.tensor_types = &tensor_types;
}
llama_backend_init();

View File

@@ -72,3 +72,14 @@ $ bin/llama-cli -m ../models/tinyllama-1b/ggml-model-f16.gguf -p "Hello, my name
This way you can offload model layers to both local and remote devices.
### Local cache
The RPC server can use a local cache to store large tensors and avoid transferring them over the network.
This can speed up model loading significantly, especially when using large models.
To enable the cache, use the `-c` option:
```bash
$ bin/rpc-server -c
```
By default, the cache is stored in the `$HOME/.cache/llama.cpp/rpc` directory and can be controlled via the `LLAMA_CACHE` environment variable.

View File

@@ -126,7 +126,7 @@ static std::string fs_get_cache_directory() {
if (getenv("LLAMA_CACHE")) {
cache_directory = std::getenv("LLAMA_CACHE");
} else {
#ifdef __linux__
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX)
if (std::getenv("XDG_CACHE_HOME")) {
cache_directory = std::getenv("XDG_CACHE_HOME");
} else {
@@ -136,7 +136,9 @@ static std::string fs_get_cache_directory() {
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
#elif defined(_WIN32)
cache_directory = std::getenv("LOCALAPPDATA");
#endif // __linux__
#else
# error Unknown architecture
#endif
cache_directory = ensure_trailing_slash(cache_directory);
cache_directory += "llama.cpp";
}

View File

@@ -1,5 +1,16 @@
set(TARGET llama-run)
add_executable(${TARGET} run.cpp linenoise.cpp/linenoise.cpp)
# TODO: avoid copying this code block from common/CMakeLists.txt
set(LLAMA_RUN_EXTRA_LIBS "")
if (LLAMA_CURL)
find_package(CURL REQUIRED)
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_CURL)
include_directories(${CURL_INCLUDE_DIRS})
find_library(CURL_LIBRARY curl REQUIRED)
set(LLAMA_RUN_EXTRA_LIBS ${LLAMA_RUN_EXTRA_LIBS} ${CURL_LIBRARY})
endif ()
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT} ${LLAMA_RUN_EXTRA_LIBS})
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -697,8 +697,10 @@ class LlamaData {
std::vector<std::string> headers = { "User-Agent: llama-cpp", "Accept: application/json" };
std::string url;
std::string model_endpoint = get_model_endpoint();
if (pos == std::string::npos) {
auto [model_name, manifest_url] = extract_model_and_tag(model, "https://huggingface.co/v2/");
auto [model_name, manifest_url] = extract_model_and_tag(model, model_endpoint + "v2/");
hfr = model_name;
nlohmann::json manifest;
@@ -713,7 +715,7 @@ class LlamaData {
hff = model.substr(pos + 1);
}
url = "https://huggingface.co/" + hfr + "/resolve/main/" + hff;
url = model_endpoint + hfr + "/resolve/main/" + hff;
return download(url, bn, true, headers);
}

Binary file not shown.

View File

@@ -133,7 +133,8 @@ struct slot_params {
auto grammar_triggers = json::array();
for (const auto & trigger : sampling.grammar_triggers) {
grammar_triggers.push_back(trigger.to_json<json>());
server_grammar_trigger ct(std::move(trigger));
grammar_triggers.push_back(ct.to_json());
}
return json {
@@ -372,9 +373,9 @@ struct server_task {
const auto grammar_triggers = data.find("grammar_triggers");
if (grammar_triggers != data.end()) {
for (const auto & t : *grammar_triggers) {
auto ct = common_grammar_trigger::from_json(t);
if (ct.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
const auto & word = ct.value;
server_grammar_trigger ct(t);
if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
const auto & word = ct.value.value;
auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
if (ids.size() == 1) {
auto token = ids[0];
@@ -392,7 +393,7 @@ struct server_task {
params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
}
} else {
params.sampling.grammar_triggers.push_back(ct);
params.sampling.grammar_triggers.push_back(std::move(ct.value));
}
}
}
@@ -489,8 +490,12 @@ struct result_timings {
double predicted_per_token_ms;
double predicted_per_second;
// Optional speculative metrics - only included when > 0
int32_t draft_n = 0;
int32_t draft_n_accepted = 0;
json to_json() const {
return {
json base = {
{"prompt_n", prompt_n},
{"prompt_ms", prompt_ms},
{"prompt_per_token_ms", prompt_per_token_ms},
@@ -501,6 +506,13 @@ struct result_timings {
{"predicted_per_token_ms", predicted_per_token_ms},
{"predicted_per_second", predicted_per_second},
};
if (draft_n > 0) {
base["draft_n"] = draft_n;
base["draft_n_accepted"] = draft_n_accepted;
}
return base;
}
};
@@ -1299,6 +1311,10 @@ struct server_slot {
std::function<void(int)> callback_on_release;
// Speculative decoding stats
int32_t n_draft_total = 0; // Total draft tokens generated
int32_t n_draft_accepted = 0; // Draft tokens actually accepted
void reset() {
SLT_DBG(*this, "%s", "\n");
@@ -1315,6 +1331,10 @@ struct server_slot {
generated_tokens.clear();
generated_token_probs.clear();
// clear speculative decoding stats
n_draft_total = 0;
n_draft_accepted = 0;
}
bool is_non_causal() const {
@@ -1381,6 +1401,12 @@ struct server_slot {
timings.predicted_per_token_ms = t_token_generation / n_decoded;
timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
// Add speculative metrics
if (n_draft_total > 0) {
timings.draft_n = n_draft_total;
timings.draft_n_accepted = n_draft_accepted;
}
return timings;
}
@@ -1428,6 +1454,15 @@ struct server_slot {
t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
t_token_generation, n_decoded, t_gen, n_gen_second,
t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
if (n_draft_total > 0) {
const float draft_ratio = (float) n_draft_accepted / n_draft_total;
SLT_INF(*this,
"\n"
"draft acceptance rate = %0.5f (%5d accepted / %5d generated)\n",
draft_ratio, n_draft_accepted, n_draft_total
);
}
}
json to_json() const {
@@ -1670,6 +1705,8 @@ private:
};
struct server_response {
bool running = true;
// for keeping track of all tasks waiting for the result
std::unordered_set<int> waiting_task_ids;
@@ -1724,6 +1761,10 @@ struct server_response {
while (true) {
std::unique_lock<std::mutex> lock(mutex_results);
condition_results.wait(lock, [&]{
if (!running) {
SRV_DBG("%s : queue result stop\n", __func__);
std::terminate(); // we cannot return here since the caller is HTTP code
}
return !queue_results.empty();
});
@@ -1754,6 +1795,10 @@ struct server_response {
}
std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
if (!running) {
SRV_DBG("%s : queue result stop\n", __func__);
std::terminate(); // we cannot return here since the caller is HTTP code
}
if (cr_res == std::cv_status::timeout) {
return nullptr;
}
@@ -1783,6 +1828,12 @@ struct server_response {
}
}
}
// terminate the waiting loop
void terminate() {
running = false;
condition_results.notify_all();
}
};
struct server_context {
@@ -1842,7 +1893,7 @@ struct server_context {
}
bool load_model(const common_params & params) {
SRV_INF("loading model '%s'\n", params.model.c_str());
SRV_INF("loading model '%s'\n", params.model.path.c_str());
params_base = params;
@@ -1852,7 +1903,7 @@ struct server_context {
ctx = llama_init.context.get();
if (model == nullptr) {
SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
SRV_ERR("failed to load model, '%s'\n", params_base.model.path.c_str());
return false;
}
@@ -1863,16 +1914,13 @@ struct server_context {
add_bos_token = llama_vocab_get_add_bos(vocab);
has_eos_token = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
if (!params_base.speculative.model.empty() || !params_base.speculative.hf_repo.empty()) {
SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
if (!params_base.speculative.model.path.empty() || !params_base.speculative.model.hf_repo.empty()) {
SRV_INF("loading draft model '%s'\n", params_base.speculative.model.path.c_str());
auto params_dft = params_base;
params_dft.devices = params_base.speculative.devices;
params_dft.hf_file = params_base.speculative.hf_file;
params_dft.hf_repo = params_base.speculative.hf_repo;
params_dft.model = params_base.speculative.model;
params_dft.model_url = params_base.speculative.model_url;
params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
params_dft.n_parallel = 1;
@@ -1886,12 +1934,12 @@ struct server_context {
model_dft = llama_init_dft.model.get();
if (model_dft == nullptr) {
SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str());
return false;
}
if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) {
SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());
SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
return false;
}
@@ -3290,6 +3338,9 @@ struct server_context {
llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
// keep track of total number of tokens generated in the draft
slot.n_draft_total += draft.size();
// ignore small drafts
if (slot.params.speculative.n_min > (int) draft.size()) {
SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
@@ -3315,6 +3366,9 @@ struct server_context {
slot.n_past += ids.size();
slot.n_decoded += ids.size();
// update how many tokens out of draft was accepted
slot.n_draft_accepted += ids.size() - 1;
slot.cache_tokens.push_back(id);
slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
@@ -3825,7 +3879,7 @@ int main(int argc, char ** argv) {
json data = {
{ "default_generation_settings", ctx_server.default_generation_settings_for_props },
{ "total_slots", ctx_server.params_base.n_parallel },
{ "model_path", ctx_server.params_base.model },
{ "model_path", ctx_server.params_base.model.path },
{ "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) },
{ "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
{ "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
@@ -3853,6 +3907,21 @@ int main(int argc, char ** argv) {
res_ok(res, {{ "success", true }});
};
const auto handle_api_show = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
json data = {
{
"template", common_chat_templates_source(ctx_server.chat_templates.get()),
},
{
"model_info", {
{ "llama.context_length", ctx_server.slots.back().n_ctx, },
}
},
};
res_ok(res, data);
};
// handle completion-like requests (completion, chat, infill)
// we can optionally provide a custom format for partial results and final results
const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
@@ -4091,7 +4160,7 @@ int main(int argc, char ** argv) {
{"object", "list"},
{"data", {
{
{"id", params.model_alias.empty() ? params.model : params.model_alias},
{"id", params.model_alias.empty() ? params.model.path : params.model_alias},
{"object", "model"},
{"created", std::time(0)},
{"owned_by", "llamacpp"},
@@ -4417,6 +4486,7 @@ int main(int argc, char ** argv) {
svr->Get ("/metrics", handle_metrics);
svr->Get ("/props", handle_props);
svr->Post("/props", handle_props_change);
svr->Post("/api/show", handle_api_show);
svr->Get ("/models", handle_models); // public endpoint (no API key check)
svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
svr->Post("/completion", handle_completions); // legacy
@@ -4453,9 +4523,10 @@ int main(int argc, char ** argv) {
svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
// clean up function, to be called before exit
auto clean_up = [&svr]() {
auto clean_up = [&svr, &ctx_server]() {
SRV_INF("%s: cleaning up before exit...\n", __func__);
svr->stop();
ctx_server.queue_results.terminate();
llama_backend_free();
};
@@ -4496,7 +4567,7 @@ int main(int argc, char ** argv) {
if (!ctx_server.load_model(params)) {
clean_up();
// t.join(); // FIXME: see below
t.join();
LOG_ERR("%s: exiting due to model loading error\n", __func__);
return 1;
}
@@ -4544,7 +4615,7 @@ int main(int argc, char ** argv) {
ctx_server.queue_tasks.start_loop();
clean_up();
// t.join(); // FIXME: http thread may stuck if there is an on-going request. we don't need to care about this for now as the HTTP connection will already be closed at this point, but it's better to fix this
t.join();
return 0;
}

View File

@@ -17,7 +17,7 @@ To mitigate it, you can increase values in `n_predict`, `kv_size`.
```shell
cd ../../..
cmake -B build -DLLAMA_CURL=ON
cmake -B build
cmake --build build --target llama-server
```

View File

@@ -49,6 +49,26 @@ def test_embedding_multiple():
assert len(d['embedding']) > 1
def test_embedding_multiple_with_fa():
server = ServerPreset.bert_bge_small_with_fa()
server.pooling = 'last'
server.start()
# one of these should trigger the FA branch (i.e. context size % 256 == 0)
res = server.make_request("POST", "/v1/embeddings", data={
"input": [
"a "*253,
"b "*254,
"c "*255,
"d "*256,
],
})
assert res.status_code == 200
assert len(res.body['data']) == 4
for d in res.body['data']:
assert 'embedding' in d
assert len(d['embedding']) > 1
@pytest.mark.parametrize(
"input,is_multi_prompt",
[

View File

@@ -323,6 +323,21 @@ class ServerPreset:
server.server_embeddings = True
return server
@staticmethod
def bert_bge_small_with_fa() -> ServerProcess:
server = ServerProcess()
server.model_hf_repo = "ggml-org/models"
server.model_hf_file = "bert-bge-small/ggml-model-f16.gguf"
server.model_alias = "bert-bge-small"
server.n_ctx = 1024
server.n_batch = 300
server.n_ubatch = 300
server.n_slots = 2
server.fa = True
server.seed = 42
server.server_embeddings = True
return server
@staticmethod
def tinyllama_infill() -> ServerProcess:
server = ServerProcess()

View File

@@ -3,7 +3,7 @@
#include "common.h"
#include "log.h"
#include "llama.h"
#include "common/base64.hpp"
#include "base64.hpp"
// increase max payload length to allow use of larger context size
#define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
@@ -58,6 +58,32 @@ static T json_value(const json & body, const std::string & key, const T & defaul
const static std::string build_info("b" + std::to_string(LLAMA_BUILD_NUMBER) + "-" + LLAMA_COMMIT);
// thin wrapper around common_grammar_trigger with (de)serialization functions
struct server_grammar_trigger {
common_grammar_trigger value;
server_grammar_trigger() = default;
server_grammar_trigger(const common_grammar_trigger & value) : value(value) {}
server_grammar_trigger(const json & in) {
value.type = (common_grammar_trigger_type) in.at("type").get<int>();
value.value = in.at("value").get<std::string>();
if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
value.token = (llama_token) in.at("token").get<int>();
}
}
json to_json() const {
json out {
{"type", (int) value.type},
{"value", value.value},
};
if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
out["token"] = (int) value.token;
}
return out;
}
};
//
// tokenizer and input processing utils
//
@@ -627,7 +653,8 @@ static json oaicompat_completion_params_parse(
llama_params["grammar_lazy"] = chat_params.grammar_lazy;
auto grammar_triggers = json::array();
for (const auto & trigger : chat_params.grammar_triggers) {
grammar_triggers.push_back(trigger.to_json<json>());
server_grammar_trigger ct(trigger);
grammar_triggers.push_back(ct.to_json());
}
llama_params["grammar_triggers"] = grammar_triggers;
llama_params["preserved_tokens"] = chat_params.preserved_tokens;

File diff suppressed because it is too large Load Diff

View File

@@ -13,9 +13,11 @@
"dependencies": {
"@heroicons/react": "^2.2.0",
"@sec-ant/readable-stream": "^0.6.0",
"@tailwindcss/postcss": "^4.1.1",
"@tailwindcss/vite": "^4.1.1",
"@vscode/markdown-it-katex": "^1.1.1",
"autoprefixer": "^10.4.20",
"daisyui": "^4.12.14",
"daisyui": "^5.0.12",
"dexie": "^4.0.11",
"highlight.js": "^11.10.0",
"katex": "^0.16.15",
@@ -29,7 +31,7 @@
"remark-breaks": "^4.0.0",
"remark-gfm": "^4.0.0",
"remark-math": "^6.0.0",
"tailwindcss": "^3.4.15",
"tailwindcss": "^4.1.1",
"textlinestream": "^1.1.1",
"vite-plugin-singlefile": "^2.0.3"
},

View File

@@ -1,6 +1,5 @@
export default {
plugins: {
tailwindcss: {},
autoprefixer: {},
"@tailwindcss/postcss": {},
},
}

View File

@@ -28,7 +28,7 @@ function AppLayout() {
<>
<Sidebar />
<div
className="drawer-content grow flex flex-col h-screen w-screen mx-auto px-4 overflow-auto"
className="drawer-content grow flex flex-col h-screen w-screen mx-auto px-4 overflow-auto bg-base-100"
id="main-scroll"
>
<Header />

View File

@@ -1,4 +1,4 @@
import daisyuiThemes from 'daisyui/src/theming/themes';
import daisyuiThemes from 'daisyui/theme/object';
import { isNumeric } from './utils/misc';
export const isDev = import.meta.env.MODE === 'development';

View File

@@ -1,4 +1,4 @@
import { useEffect, useMemo, useRef, useState } from 'react';
import { useEffect, useMemo, useState } from 'react';
import { CallbackGeneratedChunk, useAppContext } from '../utils/app.context';
import ChatMessage from './ChatMessage';
import { CanvasType, Message, PendingMessage } from '../utils/types';
@@ -6,6 +6,7 @@ import { classNames, cleanCurrentUrl, throttle } from '../utils/misc';
import CanvasPyInterpreter from './CanvasPyInterpreter';
import StorageUtils from '../utils/storage';
import { useVSCodeContext } from '../utils/llama-vscode';
import { useChatTextarea, ChatTextareaApi } from './useChatTextarea.ts';
/**
* A message display is a message node with additional information for rendering.
@@ -99,7 +100,8 @@ export default function ChatScreen() {
canvasData,
replaceMessageAndGenerate,
} = useAppContext();
const textarea = useOptimizedTextarea(prefilledMsg.content());
const textarea: ChatTextareaApi = useChatTextarea(prefilledMsg.content());
const { extraContext, clearExtraContext } = useVSCodeContext(textarea);
// TODO: improve this when we have "upload file" feature
@@ -248,14 +250,16 @@ export default function ChatScreen() {
</div>
{/* chat input */}
<div className="flex flex-row items-center pt-8 pb-6 sticky bottom-0 bg-base-100">
<div className="flex flex-row items-end pt-8 pb-6 sticky bottom-0 bg-base-100">
<textarea
className="textarea textarea-bordered w-full"
// Default (mobile): Enable vertical resize, overflow auto for scrolling if needed
// Large screens (lg:): Disable manual resize, apply max-height for autosize limit
className="textarea textarea-bordered w-full resize-vertical lg:resize-none lg:max-h-48 lg:overflow-y-auto" // Adjust lg:max-h-48 as needed (e.g., lg:max-h-60)
placeholder="Type a message (Shift+Enter to add a new line)"
ref={textarea.ref}
onInput={textarea.onInput} // Hook's input handler (will only resize height on lg+ screens)
onKeyDown={(e) => {
if (e.nativeEvent.isComposing || e.keyCode === 229) return;
if (e.key === 'Enter' && e.shiftKey) return;
if (e.key === 'Enter' && !e.shiftKey) {
e.preventDefault();
sendNewMessage();
@@ -263,7 +267,11 @@ export default function ChatScreen() {
}}
id="msg-input"
dir="auto"
// Set a base height of 2 rows for mobile views
// On lg+ screens, the hook will calculate and set the initial height anyway
rows={2}
></textarea>
{isGenerating(currConvId ?? '') ? (
<button
className="btn btn-neutral ml-2"
@@ -286,43 +294,3 @@ export default function ChatScreen() {
</div>
);
}
export interface OptimizedTextareaValue {
value: () => string;
setValue: (value: string) => void;
focus: () => void;
ref: React.RefObject<HTMLTextAreaElement>;
}
// This is a workaround to prevent the textarea from re-rendering when the inner content changes
// See https://github.com/ggml-org/llama.cpp/pull/12299
function useOptimizedTextarea(initValue: string): OptimizedTextareaValue {
const [savedInitValue, setSavedInitValue] = useState<string>(initValue);
const textareaRef = useRef<HTMLTextAreaElement>(null);
useEffect(() => {
if (textareaRef.current && savedInitValue) {
textareaRef.current.value = savedInitValue;
setSavedInitValue('');
}
}, [textareaRef, savedInitValue, setSavedInitValue]);
return {
value: () => {
return textareaRef.current?.value ?? savedInitValue;
},
setValue: (value: string) => {
if (textareaRef.current) {
textareaRef.current.value = value;
}
},
focus: () => {
if (textareaRef.current) {
// focus and move the cursor to the end
textareaRef.current.focus();
textareaRef.current.selectionStart = textareaRef.current.value.length;
}
},
ref: textareaRef,
};
}

View File

@@ -2,7 +2,7 @@ import { useEffect, useState } from 'react';
import StorageUtils from '../utils/storage';
import { useAppContext } from '../utils/app.context';
import { classNames } from '../utils/misc';
import daisyuiThemes from 'daisyui/src/theming/themes';
import daisyuiThemes from 'daisyui/theme/object';
import { THEMES } from '../Config';
import { useNavigate } from 'react-router';
@@ -20,7 +20,6 @@ export default function Header() {
document.body.setAttribute('data-theme', selectedTheme);
document.body.setAttribute(
'data-color-scheme',
// @ts-expect-error daisyuiThemes complains about index type, but it should work
daisyuiThemes[selectedTheme]?.['color-scheme'] ?? 'auto'
);
}, [selectedTheme]);

View File

@@ -0,0 +1,96 @@
import { useEffect, useRef, useState, useCallback } from 'react';
// Media Query for detecting "large" screens (matching Tailwind's lg: breakpoint)
const LARGE_SCREEN_MQ = '(min-width: 1024px)';
// Calculates and sets the textarea height based on its scrollHeight
const adjustTextareaHeight = (textarea: HTMLTextAreaElement | null) => {
if (!textarea) return;
// Only perform auto-sizing on large screens
if (!window.matchMedia(LARGE_SCREEN_MQ).matches) {
// On small screens, reset inline height and max-height styles.
// This allows CSS (e.g., `rows` attribute or classes) to control the height,
// and enables manual resizing if `resize-vertical` is set.
textarea.style.height = ''; // Use 'auto' or '' to reset
textarea.style.maxHeight = '';
return; // Do not adjust height programmatically on small screens
}
const computedStyle = window.getComputedStyle(textarea);
// Get the max-height specified by CSS (e.g., from `lg:max-h-48`)
const currentMaxHeight = computedStyle.maxHeight;
// Temporarily remove max-height to allow scrollHeight to be calculated correctly
textarea.style.maxHeight = 'none';
// Reset height to 'auto' to measure the actual scrollHeight needed
textarea.style.height = 'auto';
// Set the height to the calculated scrollHeight
textarea.style.height = `${textarea.scrollHeight}px`;
// Re-apply the original max-height from CSS to enforce the limit
textarea.style.maxHeight = currentMaxHeight;
};
// Interface describing the API returned by the hook
export interface ChatTextareaApi {
value: () => string;
setValue: (value: string) => void;
focus: () => void;
ref: React.RefObject<HTMLTextAreaElement>;
onInput: (event: React.FormEvent<HTMLTextAreaElement>) => void; // Input handler
}
// This is a workaround to prevent the textarea from re-rendering when the inner content changes
// See https://github.com/ggml-org/llama.cpp/pull/12299
// combined now with auto-sizing logic.
export function useChatTextarea(initValue: string): ChatTextareaApi {
const [savedInitValue, setSavedInitValue] = useState<string>(initValue);
const textareaRef = useRef<HTMLTextAreaElement>(null);
// Effect to set initial value and height on mount or when initValue changes
useEffect(() => {
const textarea = textareaRef.current;
if (textarea) {
if (typeof savedInitValue === 'string' && savedInitValue.length > 0) {
textarea.value = savedInitValue;
// Call adjustTextareaHeight - it will check screen size internally
setTimeout(() => adjustTextareaHeight(textarea), 0);
setSavedInitValue(''); // Reset after applying
} else {
// Adjust height even if there's no initial value (for initial render)
setTimeout(() => adjustTextareaHeight(textarea), 0);
}
}
}, [textareaRef, savedInitValue]); // Depend on ref and savedInitValue
const handleInput = useCallback(
(event: React.FormEvent<HTMLTextAreaElement>) => {
// Call adjustTextareaHeight on every input - it will decide whether to act
adjustTextareaHeight(event.currentTarget);
},
[]
);
return {
// Method to get the current value directly from the textarea
value: () => {
return textareaRef.current?.value ?? '';
},
// Method to programmatically set the value and trigger height adjustment
setValue: (value: string) => {
const textarea = textareaRef.current;
if (textarea) {
textarea.value = value;
// Call adjustTextareaHeight - it will check screen size internally
setTimeout(() => adjustTextareaHeight(textarea), 0);
}
},
focus: () => {
if (textareaRef.current) {
textareaRef.current.focus();
}
},
ref: textareaRef,
onInput: handleInput,
};
}

View File

@@ -1,8 +1,13 @@
@use 'sass:meta';
@use 'tailwindcss';
@tailwind base;
@tailwind components;
@tailwind utilities;
@plugin 'daisyui' {
themes: all;
}
html {
scrollbar-gutter: auto;
}
.markdown {
h1,

View File

@@ -1,6 +1,6 @@
import { useEffect, useState } from 'react';
import { MessageExtraContext } from './types';
import { OptimizedTextareaValue } from '../components/ChatScreen';
import { ChatTextareaApi } from '../components/useChatTextarea.ts';
// Extra context when using llama.cpp WebUI from llama-vscode, inside an iframe
// Ref: https://github.com/ggml-org/llama.cpp/pull/11940
@@ -15,7 +15,7 @@ interface SetTextEvData {
* window.postMessage({ command: 'setText', text: 'Spot the syntax error', context: 'def test()\n return 123' }, '*');
*/
export const useVSCodeContext = (textarea: OptimizedTextareaValue) => {
export const useVSCodeContext = (textarea: ChatTextareaApi) => {
const [extraContext, setExtraContext] = useState<MessageExtraContext | null>(
null
);

View File

@@ -15,7 +15,7 @@ async def main():
model_url = "http://127.0.0.1:6900"
responses: list[requests.Response] = await asyncio.gather(*[requests_post_async(
url= f"{model_url}/embedding",
json= {"content": str(0)*1024}
json= {"content": "a "*1022}
) for i in range(n)])
for response in responses:

View File

@@ -24,7 +24,7 @@ int main(int argc, char ** argv) {
common_init();
if (params.speculative.model.empty()) {
if (params.speculative.model.path.empty()) {
LOG_ERR("%s: --model-draft is required\n", __func__);
return 1;
}

View File

@@ -46,7 +46,7 @@ int main(int argc, char ** argv) {
common_init();
if (params.speculative.model.empty()) {
if (params.speculative.model.path.empty()) {
LOG_ERR("%s: --model-draft is required\n", __func__);
return 1;
}

View File

@@ -8,10 +8,10 @@ cd build
source /opt/intel/oneapi/setvars.sh
#for FP16
#cmake .. -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON # faster for long-prompt inference
#cmake .. -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON -DLLAMA_CURL=OFF # faster for long-prompt inference
#for FP32
cmake .. -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
cmake .. -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=OFF
#build example/main
#cmake --build . --config Release --target main

View File

@@ -13,10 +13,10 @@ if %errorlevel% neq 0 goto ERROR
:: for FP16
:: faster for long-prompt inference
:: cmake -G "MinGW Makefiles" .. -DGGML_SYCL=ON -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release -DGGML_SYCL_F16=ON
:: cmake -G "MinGW Makefiles" .. -DLLAMA_CURL=OFF -DGGML_SYCL=ON -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release -DGGML_SYCL_F16=ON
:: for FP32
cmake -G "Ninja" .. -DGGML_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release
cmake -G "Ninja" .. -DLLAMA_CURL=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release
if %errorlevel% neq 0 goto ERROR
:: build example/main only
:: make main

View File

@@ -577,12 +577,7 @@ int main(int argc, char ** argv) {
const llama_vocab * vocab = llama_model_get_vocab(model_ttc);
// TODO: refactor in a common struct
params.model = params.vocoder.model;
params.model_url = params.vocoder.model_url;
params.hf_repo = params.vocoder.hf_repo;
params.hf_file = params.vocoder.hf_file;
params.model = params.vocoder.model;
params.embedding = true;
common_init_result llama_init_cts = common_init_from_params(params);
@@ -699,11 +694,13 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14
const std::string voice_data = audio_data;
auto tmp = common_tokenize(vocab, voice_data, false, true);
printf("\n\n");
std::ostringstream tokens_oss;
for (size_t i = 0; i < tmp.size(); ++i) {
printf("%d, ", tmp[i]);
tokens_oss << tmp[i] << ", ";
}
printf("\n\n");
LOG_INF("\n\n%s: llama tokens: %s\n\n", __func__, tokens_oss.str().c_str());
prompt_add(prompt_inp, tmp);
#else
prompt_add(prompt_inp, llama_tokens {

View File

@@ -100,6 +100,10 @@ else()
set(INS_ENB ON)
endif()
message(DEBUG "GGML_NATIVE : ${GGML_NATIVE}")
message(DEBUG "GGML_NATIVE_DEFAULT : ${GGML_NATIVE_DEFAULT}")
message(DEBUG "INS_ENB : ${INS_ENB}")
option(GGML_CPU_HBM "ggml: use memkind for CPU HBM" OFF)
option(GGML_CPU_AARCH64 "ggml: use runtime weight conversion of Q4_0 to Q4_X_X" ON)
option(GGML_CPU_KLEIDIAI "ggml: use KleidiAI optimized kernels if applicable" OFF)
@@ -166,7 +170,6 @@ option(GGML_HIP "ggml: use HIP"
option(GGML_HIP_GRAPHS "ggml: use HIP graph, experimental, slow" OFF)
option(GGML_HIP_NO_VMM "ggml: do not try to use HIP VMM" ON)
option(GGML_HIP_ROCWMMA_FATTN "ggml: enable rocWMMA for FlashAttention" OFF)
option(GGML_HIP_UMA "ggml: use HIP unified memory architecture" OFF)
option(GGML_VULKAN "ggml: use Vulkan" OFF)
option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF)
option(GGML_VULKAN_DEBUG "ggml: enable Vulkan debug output" OFF)

View File

@@ -507,17 +507,12 @@ extern "C" {
GGML_OP_UNARY,
GGML_OP_MAP_UNARY,
GGML_OP_MAP_BINARY,
GGML_OP_MAP_CUSTOM1_F32,
GGML_OP_MAP_CUSTOM2_F32,
GGML_OP_MAP_CUSTOM3_F32,
GGML_OP_MAP_CUSTOM1,
GGML_OP_MAP_CUSTOM2,
GGML_OP_MAP_CUSTOM3,
GGML_OP_CUSTOM,
GGML_OP_CROSS_ENTROPY_LOSS,
GGML_OP_CROSS_ENTROPY_LOSS_BACK,
GGML_OP_OPT_STEP_ADAMW,
@@ -1722,24 +1717,29 @@ extern "C" {
float p0,
float p1);
// nearest interpolate
enum ggml_scale_mode {
GGML_SCALE_MODE_NEAREST = 0,
GGML_SCALE_MODE_BILINEAR = 1,
};
// interpolate
// multiplies ne0 and ne1 by scale factor
// used in stable-diffusion
GGML_API struct ggml_tensor * ggml_upscale(
struct ggml_context * ctx,
struct ggml_tensor * a,
int scale_factor);
int scale_factor,
enum ggml_scale_mode mode);
// nearest interpolate
// nearest interpolate to specified dimensions
// used in tortoise.cpp
// interpolate
// interpolate scale to specified dimensions
GGML_API struct ggml_tensor * ggml_upscale_ext(
struct ggml_context * ctx,
struct ggml_tensor * a,
int ne0,
int ne1,
int ne2,
int ne3);
int ne3,
enum ggml_scale_mode mode);
// pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
GGML_API struct ggml_tensor * ggml_pad(
@@ -1791,11 +1791,11 @@ extern "C" {
#define GGML_KQ_MASK_PAD 64
// q: [n_embd, n_batch, n_head, 1]
// k: [n_embd, n_kv, n_head_kv, 1]
// v: [n_embd, n_kv, n_head_kv, 1] !! not transposed !!
// mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
// res: [n_embd, n_head, n_batch, 1] !! permuted !!
// q: [n_embd_k, n_batch, n_head, 1]
// k: [n_embd_k, n_kv, n_head_kv, 1]
// v: [n_embd_v, n_kv, n_head_kv, 1] !! not transposed !!
// mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
// res: [n_embd_v, n_head, n_batch, 1] !! permuted !!
GGML_API struct ggml_tensor * ggml_flash_attn_ext(
struct ggml_context * ctx,
struct ggml_tensor * q,
@@ -1916,83 +1916,6 @@ extern "C" {
// custom operators
typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
ggml_unary_op_f32_t fun),
"use ggml_map_custom1 instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
ggml_unary_op_f32_t fun),
"use ggml_map_custom1_inplace instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
ggml_binary_op_f32_t fun),
"use ggml_map_custom2 instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
ggml_binary_op_f32_t fun),
"use ggml_map_custom2_inplace instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
ggml_custom1_op_f32_t fun),
"use ggml_map_custom1 instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
ggml_custom1_op_f32_t fun),
"use ggml_map_custom1_inplace instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
ggml_custom2_op_f32_t fun),
"use ggml_map_custom2 instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
ggml_custom2_op_f32_t fun),
"use ggml_map_custom2_inplace instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
ggml_custom3_op_f32_t fun),
"use ggml_map_custom3 instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
ggml_custom3_op_f32_t fun),
"use ggml_map_custom3_inplace instead");
// custom operators v2
typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
@@ -2048,6 +1971,30 @@ extern "C" {
int n_tasks,
void * userdata);
typedef void (*ggml_custom_op_t)(struct ggml_tensor * dst , int ith, int nth, void * userdata);
GGML_API struct ggml_tensor * ggml_custom_4d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3,
struct ggml_tensor ** args,
int n_args,
ggml_custom_op_t fun,
int n_tasks,
void * userdata);
GGML_API struct ggml_tensor * ggml_custom_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor ** args,
int n_args,
ggml_custom_op_t fun,
int n_tasks,
void * userdata);
// loss function
GGML_API struct ggml_tensor * ggml_cross_entropy_loss(

View File

@@ -65,7 +65,7 @@ if (GGML_LTO)
endif()
endif()
if (GGML_CCACHE)
if (GGML_CCACHE AND NOT CMAKE_C_COMPILER_LAUNCHER AND NOT CMAKE_CXX_COMPILER_LAUNCHER)
find_program(GGML_CCACHE_FOUND ccache)
find_program(GGML_SCCACHE_FOUND sccache)

View File

@@ -1,168 +0,0 @@
---
Language: Cpp
# BasedOnStyle: Google
AccessModifierOffset: -1
AlignAfterOpenBracket: Align
AlignConsecutiveMacros: false
AlignConsecutiveAssignments: false
AlignConsecutiveDeclarations: false
AlignEscapedNewlines: Left
AlignOperands: true
AlignTrailingComments: true
AllowAllArgumentsOnNextLine: true
AllowAllConstructorInitializersOnNextLine: true
AllowAllParametersOfDeclarationOnNextLine: true
AllowShortBlocksOnASingleLine: Never
AllowShortCaseLabelsOnASingleLine: false
AllowShortFunctionsOnASingleLine: All
AllowShortLambdasOnASingleLine: All
AllowShortIfStatementsOnASingleLine: WithoutElse
AllowShortLoopsOnASingleLine: true
AlwaysBreakAfterDefinitionReturnType: None
AlwaysBreakAfterReturnType: None
AlwaysBreakBeforeMultilineStrings: true
AlwaysBreakTemplateDeclarations: Yes
BinPackArguments: true
BinPackParameters: true
BraceWrapping:
AfterCaseLabel: false
AfterClass: false
AfterControlStatement: false
AfterEnum: false
AfterFunction: false
AfterNamespace: false
AfterObjCDeclaration: false
AfterStruct: false
AfterUnion: false
AfterExternBlock: false
BeforeCatch: false
BeforeElse: false
IndentBraces: false
SplitEmptyFunction: true
SplitEmptyRecord: true
SplitEmptyNamespace: true
BreakBeforeBinaryOperators: None
BreakBeforeBraces: Attach
BreakBeforeInheritanceComma: false
BreakInheritanceList: BeforeColon
BreakBeforeTernaryOperators: true
BreakConstructorInitializersBeforeComma: false
BreakConstructorInitializers: BeforeColon
BreakAfterJavaFieldAnnotations: false
BreakStringLiterals: true
ColumnLimit: 80
CommentPragmas: '^ IWYU pragma:'
CompactNamespaces: false
ConstructorInitializerAllOnOneLineOrOnePerLine: true
ConstructorInitializerIndentWidth: 4
ContinuationIndentWidth: 4
Cpp11BracedListStyle: true
DeriveLineEnding: true
DerivePointerAlignment: true
DisableFormat: false
ExperimentalAutoDetectBinPacking: false
FixNamespaceComments: true
ForEachMacros:
- foreach
- Q_FOREACH
- BOOST_FOREACH
IncludeBlocks: Regroup
IncludeCategories:
- Regex: '^<ext/.*\.h>'
Priority: 2
SortPriority: 0
- Regex: '^<.*\.h>'
Priority: 1
SortPriority: 0
- Regex: '^<.*'
Priority: 2
SortPriority: 0
- Regex: '.*'
Priority: 3
SortPriority: 0
IncludeIsMainRegex: '([-_](test|unittest))?$'
IncludeIsMainSourceRegex: ''
IndentCaseLabels: true
IndentGotoLabels: true
IndentPPDirectives: None
IndentWidth: 4
IndentWrappedFunctionNames: false
JavaScriptQuotes: Leave
JavaScriptWrapImports: true
KeepEmptyLinesAtTheStartOfBlocks: false
MacroBlockBegin: ''
MacroBlockEnd: ''
MaxEmptyLinesToKeep: 1
NamespaceIndentation: None
ObjCBinPackProtocolList: Never
ObjCBlockIndentWidth: 2
ObjCSpaceAfterProperty: false
ObjCSpaceBeforeProtocolList: true
PenaltyBreakAssignment: 2
PenaltyBreakBeforeFirstCallParameter: 1
PenaltyBreakComment: 300
PenaltyBreakFirstLessLess: 120
PenaltyBreakString: 1000
PenaltyBreakTemplateDeclaration: 10
PenaltyExcessCharacter: 1000000
PenaltyReturnTypeOnItsOwnLine: 200
PointerAlignment: Left
RawStringFormats:
- Language: Cpp
Delimiters:
- cc
- CC
- cpp
- Cpp
- CPP
- 'c++'
- 'C++'
CanonicalDelimiter: ''
BasedOnStyle: google
- Language: TextProto
Delimiters:
- pb
- PB
- proto
- PROTO
EnclosingFunctions:
- EqualsProto
- EquivToProto
- PARSE_PARTIAL_TEXT_PROTO
- PARSE_TEST_PROTO
- PARSE_TEXT_PROTO
- ParseTextOrDie
- ParseTextProtoOrDie
CanonicalDelimiter: ''
BasedOnStyle: google
ReflowComments: true
SortIncludes: true
SortUsingDeclarations: true
SpaceAfterCStyleCast: false
SpaceAfterLogicalNot: false
SpaceAfterTemplateKeyword: true
SpaceBeforeAssignmentOperators: true
SpaceBeforeCpp11BracedList: false
SpaceBeforeCtorInitializerColon: true
SpaceBeforeInheritanceColon: true
SpaceBeforeParens: ControlStatements
SpaceBeforeRangeBasedForLoopColon: true
SpaceInEmptyBlock: false
SpaceInEmptyParentheses: false
SpacesBeforeTrailingComments: 2
SpacesInAngles: false
SpacesInConditionalStatement: false
SpacesInContainerLiterals: true
SpacesInCStyleCastParentheses: false
SpacesInParentheses: false
SpacesInSquareBrackets: false
SpaceBeforeSquareBrackets: false
Standard: Auto
StatementMacros:
- Q_UNUSED
- QT_REQUIRE_VERSION
TabWidth: 8
UseCRLF: false
UseTab: Never
...

View File

@@ -51,13 +51,11 @@ if (CANN_INSTALL_DIR)
${CANN_INSTALL_DIR}/acllib/include
)
add_subdirectory(kernels)
list(APPEND CANN_LIBRARIES
ascendcl
nnopbase
opapi
acl_op_compiler
ascendc_kernels
)
file(GLOB GGML_SOURCES_CANN "*.cpp")

View File

@@ -41,6 +41,8 @@ aclDataType ggml_cann_type_mapping(ggml_type type) {
return ACL_INT4;
case GGML_TYPE_Q8_0:
return ACL_INT8;
case GGML_TYPE_I64:
return ACL_INT64;
default:
return ACL_DT_UNDEFINED;
}
@@ -54,9 +56,7 @@ aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne,
// added.
int64_t acl_ne[GGML_MAX_DIMS * 2], acl_stride[GGML_MAX_DIMS * 2];
int64_t acl_storage_len = 0;
if (ne == nullptr) {
acl_storage_len = ggml_nbytes(tensor);
for (int i = 0; i < GGML_MAX_DIMS; i++) {
acl_ne[i] = tensor->ne[i];
// The step size of acl is in elements.
@@ -65,14 +65,18 @@ aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne,
} else {
// With bcast
for (int i = 0; i < dims; i++) {
acl_storage_len += (ne[i] - 1) * nb[i];
acl_ne[i] = ne[i];
acl_stride[i] = nb[i] / ggml_element_size(tensor);
}
}
// Reverse ne and stride.
int64_t final_dims = (dims == 0 ? GGML_MAX_DIMS : dims);
int64_t acl_storage_len = 1;
for (int i = 0; i < final_dims; i++) {
acl_storage_len += (acl_ne[i] - 1) * acl_stride[i];
}
// Reverse ne and stride.
std::reverse(acl_ne, acl_ne + final_dims);
std::reverse(acl_stride, acl_stride + final_dims);

View File

@@ -101,14 +101,14 @@ aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
tmp_stride[i] = nb[i] / type_size;
}
int64_t acl_storage_len = 1;
for (int i = 0; i < dims; i++) {
acl_storage_len += (tmp_ne[i] - 1) * tmp_stride[i];
}
std::reverse(tmp_ne, tmp_ne + dims);
std::reverse(tmp_stride, tmp_stride + dims);
int64_t acl_storage_len = 0;
for (int i = 0; i < dims; i++) {
acl_storage_len += (ne[i] - 1) * nb[i];
}
aclTensor* acl_tensor =
aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size,
format, &acl_storage_len, 1, data_ptr);

File diff suppressed because it is too large Load Diff

View File

@@ -1,15 +1,4 @@
#ifndef CANN_ACLNN_OPS
#define CANN_ACLNN_OPS
/**
* @file acl_tensor
* @brief This file contains related functions of ggml_tensor and acl_tensor.
* Contains conversion from ggml_tensor to acl_tensor, broadcast and other
* functions.
* @author hipudding <huafengchun@gmail.com>
* @author wangshuai09 <391746016@qq.com>
* @date July 15, 2024
*
* Copyright (c) 2023-2024 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
@@ -31,20 +20,31 @@
* IN THE SOFTWARE.
*/
#include <aclnnop/aclnn_add.h>
#ifndef CANN_ACLNN_OPS
#define CANN_ACLNN_OPS
#include <functional>
#include <aclnnop/aclnn_abs.h>
#include <aclnnop/aclnn_neg.h>
#include <aclnnop/aclnn_exp.h>
#include <aclnnop/aclnn_arange.h>
#include <aclnnop/aclnn_argsort.h>
#include <aclnnop/aclnn_cat.h>
#include <aclnnop/aclnn_clamp.h>
#include <aclnnop/aclnn_div.h>
#include <aclnnop/aclnn_gelu.h>
#include <aclnnop/aclnn_gelu_v2.h>
#include <aclnnop/aclnn_sigmoid.h>
#include <aclnnop/aclnn_hardsigmoid.h>
#include <aclnnop/aclnn_hardswish.h>
#include <aclnnop/aclnn_leaky_relu.h>
#include <aclnnop/aclnn_mul.h>
#include <aclnnop/aclnn_relu.h>
#include <aclnnop/aclnn_silu.h>
#include <aclnnop/aclnn_tanh.h>
#include <aclnnop/aclnn_sqrt.h>
#include <aclnnop/aclnn_sin.h>
#include <aclnnop/aclnn_cos.h>
#include <aclnnop/aclnn_log.h>
#include <aclnnop/aclnn_sign.h>
#include "acl_tensor.h"
#include "common.h"
@@ -63,23 +63,6 @@
*/
void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Adds two ggml tensors using the CANN backend.
*
* @details This function performs an element-wise addition of two tensors. In
* case the tensors do not have the same shape, one or both tensors
* will be broadcasted to match the shape of the other before the
* addition is performed.The formula for the operation is given by:
* \f[
* \text{dst} = \text{acl_src0} + \alpha \cdot \text{acl_src1}
* \f]
*
* @param ctx The CANN context used for operations.
* @param dst The ggml tensor representing the destination, result of the
* addition is stored at dst->data, and dst->op is `GGML_OP_ADD`
*/
void ggml_cann_add(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Applies the Leaky ReLU activation function to a tensor using the CANN
* backend.
@@ -131,19 +114,6 @@ void ggml_cann_concat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
*/
void ggml_cann_arange(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Computes the square of the elements of a ggml tensor using the CANN
* backend.
* @details The function sets the second source tensor of the destination
* tensor `dst` to be equal to the first source tensor. This is
* effectively squaring the elements since the multiplication becomes
* `element * element`.
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the squared values will be stored
* which dst->op is `GGML_OP_SQR`.
*/
void ggml_cann_sqr(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Applies a clamp operation to the elements of a ggml tensor using the
* CANN backend.
@@ -275,6 +245,20 @@ void ggml_cann_acc(ggml_backend_cann_context& ctx, ggml_tensor* dst);
*/
void ggml_cann_sum_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Computes the sum of elements in a ggml tensor.
*
* @details This function performs a reduction sum operation along the last
* dimension of the input tensor `src`. The result of the sum is stored
* in the destination tensor `dst`.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the reduced values will be stored。
*
*/
void ggml_cann_sum(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Upsamples a ggml tensor using nearest neighbor interpolation using
* the CANN backend.
@@ -484,109 +468,616 @@ void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
*/
void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst);
template <aclnnStatus getWorkspaceSize(const aclTensor*, const aclTensor*,
aclTensor*, uint64_t*, aclOpExecutor**),
aclnnStatus execute(void*, uint64_t, aclOpExecutor*, aclrtStream)>
void ggml_cann_mul_div(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
/**
* @brief Computes the index of the maximum value along the specified dimension
* of a ggml tensor using the CANN backend.
*
* @details This function performs an argmax operation on the input tensor.
* It finds the index of the maximum value along the specified axis
* and stores these indices in the destination tensor `dst`. The
* operation is executed using the CANN backend for optimized performance.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the indices of the maximum values will
* be stored. dst->op is `GGML_OP_ARGMAX`.
*/
void ggml_cann_argmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Adds two tensors element-wise and stores the result in a destination
* tensor.
*
* This function performs the operation:
* \f[
* dst = acl\_src0 + alpha \times acl\_src1
* \f]
* where alpha is a scalar value and defaults to 1.0f.
*
* @param ctx The context for the CANN backend operations.
* @param acl_src0 The first source tensor.
* @param acl_src1 The second source tensor.
* @param acl_dst The destination tensor where the result will be stored.
*/
void aclnn_add(ggml_backend_cann_context& ctx, aclTensor* acl_src0,
aclTensor* acl_src1, aclTensor* acl_dst = nullptr);
/**
* @brief Sub two tensors element-wise and stores the result in a destination
* tensor.
*
* This function performs the operation:
* \f[
* dst = acl\_src0 - alpha \times acl\_src1
* \f]
* where alpha is a scalar value and defaults to 1.0f.
*
* @param ctx The context for the CANN backend operations.
* @param acl_src0 The first source tensor.
* @param acl_src1 The second source tensor.
* @param acl_dst The destination tensor where the result will be stored.
*/
void aclnn_sub(ggml_backend_cann_context& ctx, aclTensor* acl_src0,
aclTensor* acl_src1, aclTensor* acl_dst = nullptr);
/**
* @brief Performs element-wise multiplication of two tensors and stores the
* result in a destination tensor.
*
* This function performs element-wise multiplication of the tensors `acl_src`
* and `acl_other` and stores the result in the destination tensor `acl_dst`.
* The operation is defined as:
* \f[
* \text {acl_dst }_i=\text {acl_src }_i \times \text {acl_other }_i
* \f]
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The first tensor for element-wise multiplication.
* @param acl_other The second tensor for element-wise multiplication.
* @param acl_dst The destination tensor where the result will be stored.
*/
void aclnn_mul(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_other, aclTensor* acl_dst = nullptr);
/**
* @brief Matrix division, optionally in-place.
*
* This function division each element of the source tensor `acl_src` by the
* tensor `acl_other` and stores the result in the destination tensor `acl_dst`.
* If `inplace` is true, `acl_dst` will not be used and the operation is
* performed in-place on `acl_src`. The operation is defined as: \f[
* \text{dst}_i = \frac{\text{acl_src}_i}{\text{acl_other}_i}
* \f]
*
* @param ctx The context for the CANN backend operations.
* @param acl_src Numerator tensor..
* @param acl_other Denominator tensor.
* @param acl_dst The destination tensor where the result will be stored if
* `inplace` is false.
* @param inplace Flag indicating whether to perform the operation in-place on
* `acl_src`.
*/
void aclnn_div(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_other, aclTensor* acl_dst = nullptr);
/**
* @brief Applies element-wise cosine function to the elements of a tensor.
*
* This function computes the cosine of each element in the source tensor
* `acl_src` and stores the result in the destination tensor `acl_dst`. The
* operation is defined as: \f[ \text {acl_dst }_i=\cos \left(\text {acl_src
* }_i\right) \f]
*
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor on which the cosine function will be
* applied.
* @param acl_dst The destination tensor where the cosine results will be
* stored.
*/
void aclnn_cos(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_dst);
/**
* @brief Applies element-wise sine function to the elements of a tensor.
*
* This function computes the sine of each element in the source tensor
`acl_src`
* and stores the result in the destination tensor `acl_dst`.
* The operation is defined as:
* \f[
* \text {acl_dst }_i=\sin \left(\text {acl_src }_i\right)
* \f]
* @param ctx The context for the CANN backend operations.
* @param acl_src The source tensor on which the sine function will be applied.
* @param acl_dst The destination tensor where the sine results will be stored.
*/
void aclnn_sin(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_dst);
/**
* @brief Prepares broadcast-compatible ACL tensors for two input tensors and one
* output tensor.
*
* This function checks whether broadcasting is needed between `src0` and `src1`.
* If broadcasting is required, it calculates the proper shapes and creates
* ACL tensors with broadcast parameters. Otherwise, it directly creates ACL tensors
* based on the original tensor shapes.
*
* @param src0 The first input tensor (reference shape).
* @param src1 The second input tensor (possibly broadcasted).
* @param dst The destination/output tensor.
* @param acl_src0 Output pointer to the created ACL tensor corresponding to src0.
* @param acl_src1 Output pointer to the created ACL tensor corresponding to src1.
* @param acl_dst Output pointer to the created ACL tensor corresponding to dst.
*/
void bcast_shape(ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst,
aclTensor ** acl_src0, aclTensor ** acl_src1, aclTensor ** acl_dst);
/**
* @brief Computes the 1D transposed convolution (deconvolution) of a ggml
* tensor using the CANN backend.
*
* @details This function performs a 1D transposed convolution (also known as
* deconvolution) operation on the input tensor. The computed result is stored
* in the destination tensor `dst`. The operation is optimized using the CANN
* backend for improved performance.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the transposed convolution result
* will be stored. dst->op is `GGML_OP_CONV_TRANSPOSE_1D`.
*/
void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Applies the ELU (Exponential Linear Unit) activation to a ggml tensor
* using the CANN backend.
*
* @details This function performs an element-wise ELU activation on the input
* tensor.
* The result is written to the destination tensor `dst` in-place.
* The ELU function is defined as:
*
* \text{ELU}(x) =
* \begin{cases}
* x, & \text{if } x > 0 \\
* \alpha \left( \exp(x) - 1 \right), & \text{if } x \leq 0
* \end{cases}
*
* where α (alpha) is a hyperparameter, typically set to 1.0.
* This operation is optimized using the CANN backend for high-performance
* inference or training.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the ELU-activated result will be stored.
* dst->op is expected to be `GGML_OP_ELU`.
*/
void ggml_cann_elu(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Computes the mean of a ggml tensor element-wise using the CANN backend.
*
* @details This function calculates the element-wise mean of the input tensor.
* The result is written to the destination tensor `dst`.
* The mean is computed by averaging the values across the entire tensor.
*
* This operation is optimized using the CANN backend for high-performance inference or training.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the mean result will be stored.
* dst->op is expected to be `GGML_OP_MEAN`.
*/
void ggml_cann_mean(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Applies 1D reflect padding to a ggml tensor using the CANN backend.
*
* @details This function performs 1D reflect padding on the input tensor.
* The amount of padding on each side is specified by parameters stored in `dst->op_params`.
* The operation reflects the values at the borders of the tensor to generate the padded output.
*
* This operation is optimized using the CANN backend for high-performance inference or training.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the padded result will be stored.
* dst->op is expected to be `GGML_OP_PAD_REFLECT_1D`.
*/
void ggml_cann_pad_reflect_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Counts the number of equal elements in two ggml tensors using the CANN backend.
*
* @details This function performs an element-wise comparison between two input tensors,
* and counts the number of positions where the elements are equal. The result is
* stored in the destination tensor `dst` as a scalar.
*
* The operation is optimized using the CANN backend, making it suitable for
* high-performance inference or training scenarios.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the result will be stored.
* dst->op is expected to be `GGML_OP_COUNT_EQUAL`.
*/
void ggml_cann_count_equal(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Applies the Step activation function to a ggml tensor using the CANN backend.
*
* @details This function applies a step function element-wise to the input tensor, where
* each element is transformed to 1.0 if it is greater than 0, and 0.0 otherwise.
* The result is stored in the destination tensor `dst`.
*
* This operation is accelerated using the CANN backend to improve runtime performance.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the result will be stored.
* dst->op is expected to be `GGML_OP_STEP`.
*/
void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/*
* @brief A generic wrapper for ACL resources with custom deleter support.
*/
using any_acl_resource = std::unique_ptr<void, std::function<void(void*)>>;
/**
* @brief Trait structure used to define how to destroy a given ACL resource type.
*
* @tparam T ACL resource type.
*/
template<typename T>
struct acl_resource_traits;
/**
* @brief Specialization for aclTensor, defines how to destroy an aclTensor resource.
*/
template<>
struct acl_resource_traits<aclTensor> {
static void destroy(void* p) {
ACL_CHECK(aclDestroyTensor(static_cast<aclTensor*>(p)));
}
};
/**
* @brief Specialization for aclIntArray, defines how to destroy an aclIntArray resource.
*/
template<>
struct acl_resource_traits<aclIntArray> {
static void destroy(void* p) {
ACL_CHECK(aclDestroyIntArray(static_cast<aclIntArray*>(p)));
}
};
/**
* @brief Specialization for aclScalar, defines how to destroy an aclScalar resource.
*/
template<>
struct acl_resource_traits<aclScalar> {
static void destroy(void* p) {
ACL_CHECK(aclDestroyScalar(static_cast<aclScalar*>(p)));
}
};
/**
* @brief Specialization for aclTensorList, defines how to destroy an aclTensorList resource.
*/
template<>
struct acl_resource_traits<aclTensorList> {
static void destroy(void* p) {
ACL_CHECK(aclDestroyTensorList(static_cast<aclTensorList*>(p)));
}
};
/**
* @brief Creates a generic ACL resource wrapper with proper destruction logic.
*
* @tparam T ACL resource type.
* @param ptr Raw pointer to ACL resource.
* @return any_acl_resource Smart pointer that handles destruction.
*/
template<typename T>
any_acl_resource make_acl_resource(T* ptr) {
return any_acl_resource(
static_cast<void*>(ptr),
[](void* p) {
acl_resource_traits<T>::destroy(p);
}
);
}
/**
* @brief Registers multiple ACL resources into a vector for lifetime management.
*
* @tparam Args Variadic list of ACL resource types.
* @param vec Target vector to hold ACL resources.
* @param args Raw pointers to ACL resources.
*/
template<typename... Args>
void register_acl_resources(std::vector<any_acl_resource>& vec, Args*... args) {
(vec.emplace_back(make_acl_resource(args)), ...);
}
/**
* @brief Task class that wraps the execution of an aclnn function call.
*/
class aclnn_task : public cann_task {
public:
aclnn_task(aclnn_func_t aclnn_func, void * workspace_addr,
uint64_t workspace_size, aclOpExecutor * executor,
aclrtStream stream) :
aclnn_func_(aclnn_func),
workspace_addr_(workspace_addr),
workspace_size_(workspace_size),
executor_(executor),
stream_(stream) {}
virtual void run_task() override {
ACL_CHECK(aclnn_func_(workspace_addr_, workspace_size_, executor_, stream_));
}
private:
aclnn_func_t aclnn_func_;
void * workspace_addr_;
uint64_t workspace_size_;
aclOpExecutor * executor_;
aclrtStream stream_;
};
/**
* @brief Task class that releases ACL resources after usage.
*/
class release_resource_task : public cann_task {
public:
release_resource_task(std::vector<any_acl_resource>&& resources){
resource_ = std::move(resources);
}
virtual void run_task() override {
resource_.clear();
}
private:
std::vector<any_acl_resource> resource_;
};
/**
* @brief Task class for performing asynchronous memory copy operations.
*/
class async_memcpy_task : public cann_task {
public:
async_memcpy_task(void* dst, const void* src, size_t size,
aclrtMemcpyKind kind, aclrtStream stream)
: dst_(dst), src_(src), size_(size), kind_(kind), stream_(stream) {}
virtual void run_task() override {
ACL_CHECK(aclrtMemcpyAsync(dst_, size_, src_, size_, kind_, stream_));
}
private:
void* dst_;
const void* src_;
size_t size_;
aclrtMemcpyKind kind_;
aclrtStream stream_;
};
/**
* @brief Task class for performing asynchronous memory set operations.
*/
class async_memset_task : public cann_task {
public:
async_memset_task(void* buffer, size_t size, int32_t value, aclrtStream stream)
: buffer_(buffer), size_(size), value_(value), stream_(stream) {}
virtual void run_task() override {
ACL_CHECK(aclrtMemsetAsync(buffer_, size_, value_, size_, stream_));
}
private:
void* buffer_;
size_t size_;
int32_t value_;
aclrtStream stream_;
};
/**
* @brief Launches an asynchronous task using the memory allocator.
*
* This macro submit an asynchronous task on the specified stream.
* The task uses memory allocated by the allocator. It is guaranteed
* that the memory will not be accessed by other tasks until this task
* completes, due to the sequential execution order within the same stream.
*
* @param OP_NAME aclnn operator name.
* @param args Additional arguments required by the task.
*
* @note
* Memory from the allocator will be "freed" immediately and can be
* reallocated to other pointers. However, it won't be accessed by any
* other task before this asynchronous task ends, because all tasks in the
* same stream are executed in queue order.
*/
#define GGML_CANN_CALL_ACLNN_OP(CTX, OP_NAME, ...) \
do { \
uint64_t workspaceSize = 0; \
aclOpExecutor * executor; \
void * workspaceAddr = nullptr; \
ACL_CHECK(aclnn##OP_NAME##GetWorkspaceSize(__VA_ARGS__, &workspaceSize, &executor));\
/* workspace should alloced in main thread to keep malloc order when using vmm. */ \
if (workspaceSize > 0) { \
ggml_cann_pool_alloc workspace_allocator(CTX.pool(), workspaceSize); \
workspaceAddr = workspace_allocator.get(); \
} \
if (CTX.async_mode) { \
auto task = \
std::make_unique<aclnn_task>(aclnn##OP_NAME, workspaceAddr, workspaceSize, \
executor, CTX.stream()); \
CTX.task_queue.submit_task(std::move(task)); \
} else { \
ACL_CHECK(aclnn##OP_NAME(workspaceAddr, workspaceSize, executor, CTX.stream()));\
} \
} while (0)
/**
* @brief Registers and releases multiple ACL resources, optionally deferring the release
* using a task.
*
* @tparam Args Types of the ACL resources.
* @param ctx Backend context which manages task submission and async mode.
* @param args Pointers to ACL resources to be released.
*/
template <typename... Args>
void ggml_cann_release_resources(ggml_backend_cann_context & ctx, Args &&... args) {
std::vector<any_acl_resource> resources;
register_acl_resources(resources, std::forward<Args>(args)...);
if(ctx.async_mode) {
auto task = std::make_unique<release_resource_task>(std::move(resources));
ctx.task_queue.submit_task(std::move(task));
}
}
/**
* @brief Performs an asynchronous memory copy operation, optionally deferred via task submission.
*
* @param ctx Backend context containing stream and async configuration.
* @param dst Destination memory address.
* @param src Source memory address.
* @param len Size of memory to copy (in bytes).
* @param kind Type of memory copy (host-to-device, device-to-host, etc).
*/
inline void ggml_cann_async_memcpy(ggml_backend_cann_context & ctx, void * dst,
const void * src, size_t len, aclrtMemcpyKind kind) {
if (ctx.async_mode) {
auto task = std::make_unique<async_memcpy_task>(dst, const_cast<void *>(src), len, kind, ctx.stream());
ctx.task_queue.submit_task(std::move(task));
} else {
ACL_CHECK(aclrtMemcpyAsync(dst, len, src, len, kind, ctx.stream()));
}
}
inline void ggml_cann_async_memcpy(ggml_backend_cann_context * ctx, void * dst,
const void * src, size_t len, aclrtMemcpyKind kind) {
if (ctx->async_mode) {
auto task = std::make_unique<async_memcpy_task>(dst, const_cast<void *>(src), len, kind, ctx->stream());
ctx->task_queue.submit_task(std::move(task));
} else {
ACL_CHECK(aclrtMemcpyAsync(dst, len, src, len, kind, ctx->stream()));
}
}
/**
* @brief Performs an asynchronous memory set operation, optionally deferred via task submission.
*
* @param ctx Backend context containing stream and async configuration.
* @param buffer Memory buffer to be set.
* @param size Size of the memory buffer (in bytes).
* @param value Value to set in the buffer.
*/
inline void ggml_cann_async_memset(ggml_backend_cann_context & ctx, void * buffer,
size_t size, int value) {
if (ctx.async_mode) {
auto task = std::make_unique<async_memset_task>(buffer, size, value, ctx.stream());
ctx.task_queue.submit_task(std::move(task));
} else {
ACL_CHECK(aclrtMemsetAsync(buffer, size, value, size, ctx.stream()));
}
}
/**
* @brief Applies a element-wise operation to two input tensors using the CANN
* backend.
*
* This templated function takes a binary operator and applies it to two source
* tensors
* associated with the destination tensor. The function handles broadcasting as
* needed.
*
* @tparam binary_op A callable object (e.g., lambda or function pointer) representing
* the binary operation to be performed. It must take three arguments:
* (ggml_backend_cann_context&, aclTensor*, aclTensor*, aclTensor*).
*
* @param ctx The CANN backend context used to manage execution and resources.
* @param dst The destination tensor.
*/
template <auto binary_op>
void ggml_cann_binary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0];
ggml_tensor* src1 = dst->src[1];
GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
aclTensor* acl_src0;
aclTensor* acl_src1;
aclTensor* acl_dst;
// Need bcast
if (!ggml_are_same_shape(src0, src1) && ggml_cann_need_bcast(src0, src1)) {
BCAST_SHAPE(src0, src1)
acl_src0 = ggml_cann_create_tensor(src0, BCAST_PARAM(src0));
acl_src1 = ggml_cann_create_tensor(src1, BCAST_PARAM(src1));
acl_dst = ggml_cann_create_tensor(dst, BCAST_PARAM(src0));
} else {
acl_src0 = ggml_cann_create_tensor(src0);
acl_src1 = ggml_cann_create_tensor(src1);
acl_dst = ggml_cann_create_tensor(dst);
}
bcast_shape(src0, src1, dst, &acl_src0, &acl_src1, &acl_dst);
binary_op(ctx, acl_src0, acl_src1, acl_dst);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(getWorkspaceSize(acl_src0, acl_src1, acl_dst, &workspaceSize,
&executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
aclrtStream main_stream = ctx.stream();
ACL_CHECK(execute(workspaceAddr, workspaceSize, executor, main_stream));
ACL_CHECK(aclDestroyTensor(acl_src0));
ACL_CHECK(aclDestroyTensor(acl_src1));
ACL_CHECK(aclDestroyTensor(acl_dst));
ggml_cann_release_resources(ctx, acl_src0, acl_src1, acl_dst);
}
// Activation functions template.
template <aclnnStatus getWorkspaceSize(const aclTensor*, aclTensor*, uint64_t*,
aclOpExecutor**),
aclnnStatus execute(void*, uint64_t, aclOpExecutor*,
const aclrtStream)>
void ggml_cann_activation(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
GGML_ASSERT(src->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
/**
* @brief Applies a unary operation to an input tensor using the CANN backend.
*
* This templated function applies a unary operator to the source tensor of `dst`
* and stores the result in the destination tensor.
*
* @tparam unary_op A callable with the signature:
* void(ggml_backend_cann_context&, aclTensor*, aclTensor*)
* where the first aclTensor is the source and the second is the destination.
* @param ctx The CANN backend context for managing resources and execution.
* @param dst The destination tensor. Its src[0] is treated as the input tensor.
*/
template <void unary_op(ggml_backend_cann_context&, aclTensor*, aclTensor*)>
void ggml_cann_unary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(getWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
aclrtStream main_stream = ctx.stream();
ACL_CHECK(execute(workspaceAddr, workspaceSize, executor, main_stream));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
unary_op(ctx, acl_src, acl_dst);
ggml_cann_release_resources(ctx, acl_src, acl_dst);
}
// Activation functions template for const aclTensors.
template <aclnnStatus getWorkspaceSize(const aclTensor*, const aclTensor*,
uint64_t*, aclOpExecutor**),
aclnnStatus execute(void*, uint64_t, aclOpExecutor*,
const aclrtStream)>
void ggml_cann_activation(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
GGML_ASSERT(src->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(getWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
aclrtStream main_stream = ctx.stream();
ACL_CHECK(execute(workspaceAddr, workspaceSize, executor, main_stream));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
/**
* @brief Applies a unary operation to a ggml tensor using the CANN backend.
*
* @details This function performs a unary operation on the input tensor using
* a user-provided lambda or callable object `unary_op`, which accepts the CANN
* context and two ACL tensors (source and destination). Internally, this function
* creates ACL representations of the ggml tensors and invokes the unary operation.
* The result is stored in the destination tensor `dst`. This utility abstracts the
* common boilerplate of tensor conversion and cleanup when implementing unary ops.
*
* @param unary_op A callable that performs the unary operation using CANN APIs.
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the result will be stored.
* The source tensor is retrieved from `dst->src[0]`.
*/
void ggml_cann_unary_op(
std::function<void(ggml_backend_cann_context&, aclTensor*, aclTensor*)> unary_op,
ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Helper macro to invoke a unary ACL operation using ggml_cann_unary_op.
*
* This macro defines an inline lambda wrapping a specific ACL operation name,
* and passes it to the templated ggml_cann_unary_op function. It simplifies
* calling unary ops by hiding the lambda boilerplate.
*
* Internally, the lambda will call:
* @code
* GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst);
* @endcode
*
* @param OP_NAME The name of the ACL unary operator to invoke via GGML_CANN_CALL_ACLNN_OP.
*
* @see ggml_cann_unary_op
* @see GGML_CANN_CALL_ACLNN_OP
*/
#define GGML_CANN_CALL_UNARY_OP(OP_NAME) \
do { \
auto lambda = [](ggml_backend_cann_context& ctx, \
aclTensor* acl_src, \
aclTensor* acl_dst) { \
GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); \
}; \
ggml_cann_unary_op(lambda, ctx, dst); \
} \
while (0)
#endif // CANN_ACLNN_OPS

View File

@@ -31,9 +31,16 @@
#include <memory>
#include <string>
#include <vector>
#include <atomic>
#include <condition_variable>
#include <mutex>
#include <thread>
#include <unistd.h>
#include <functional>
#include "../include/ggml-cann.h"
#include "../include/ggml.h"
#include "../ggml-impl.h"
#define MATRIX_ROW_PADDING 512
#define GGML_CANN_MAX_STREAMS 8
@@ -205,6 +212,127 @@ struct ggml_cann_pool_alloc {
ggml_cann_pool_alloc& operator=(ggml_cann_pool_alloc&&) = delete;
};
/**
* @brief Function pointer type for ACLNN operator calls.
*/
using aclnn_func_t = aclnnStatus (*)(void*, uint64_t, aclOpExecutor*, aclrtStream);
/**
* @brief Base class for all CANN tasks to be submitted to the task queue.
*
* Users should override the run_task() method with actual task logic.
*/
class cann_task {
public:
virtual void run_task() {}
};
/**
* @brief A lock-free ring-buffer based task queue for asynchronously executing cann_task instances.
*/
class cann_task_queue {
public:
/**
* @brief Constructs a task queue with a fixed power-of-two capacity for a specific device.
*
* @param capacity Queue capacity. Must be a power of 2.
* @param device Target device ID (used for context setting).
*/
explicit cann_task_queue(size_t capacity, int32_t device)
: buffer_(capacity), capacity_(capacity), head_(0), tail_(0),
running_(false), device_(device) {
GGML_ASSERT((capacity & (capacity - 1)) == 0 && "capacity must be power of 2");
mask_ = capacity_ - 1;
}
/**
* @brief Attempts to enqueue a task into the queue.
*
* @param item Unique pointer to the task.
* @return true if the task was successfully enqueued, false if the queue was full.
*/
bool enqueue(std::unique_ptr<cann_task>&& item) {
size_t next_tail = (tail_ + 1) & mask_;
if (next_tail == head_) {
return false;
}
buffer_[tail_] = std::move(item);
std::atomic_thread_fence(std::memory_order_release);
tail_ = next_tail;
return true;
}
/**
* @brief Submits a task to the queue, and starts the worker thread if not already running.
*
* @param task Task to be submitted.
*/
void submit_task(std::unique_ptr<cann_task>&& task) {
while(!enqueue(std::move(task))) {
std::this_thread::yield();
continue;
}
if (!running_) {
running_ = true;
thread_ = std::thread(&cann_task_queue::execute, this);
}
}
/**
* @brief Waits until the queue is completely empty and no tasks are being processed.
*/
void wait() {
while (running_ && head_ != tail_) {
std::this_thread::yield();
continue;
}
}
/**
* @brief Stops the task queue and joins the worker thread.
*/
void stop() {
running_ = false;
if (thread_.joinable()) {
thread_.join();
}
}
private:
/**
* @brief Worker thread function that continuously dequeues and executes tasks.
*/
void execute() {
ggml_cann_set_device(device_);
while (running_) {
if(head_ == tail_) {
std::this_thread::yield();
continue;
}
std::atomic_thread_fence(std::memory_order_acquire);
buffer_[head_]->run_task();
buffer_[head_].reset();
head_ = (head_ + 1) & mask_;
}
}
std::vector<std::unique_ptr<cann_task>> buffer_;
const size_t capacity_;
size_t mask_;
size_t head_;
size_t tail_;
bool running_;
std::thread thread_;
int32_t device_;
};
/**
* @brief Context for managing CANN backend operations.
*/
@@ -213,6 +341,8 @@ struct ggml_backend_cann_context {
std::string name; /**< Name of the device. */
std::string description; /**< Description of the device. */
aclrtEvent copy_event = nullptr; /**< Event for managing copy operations. */
cann_task_queue task_queue;
bool async_mode;
aclrtStream streams[GGML_CANN_MAX_STREAMS] = {nullptr}; /**< Array of streams for the device. */
@@ -221,9 +351,12 @@ struct ggml_backend_cann_context {
* @param device Device ID.
*/
explicit ggml_backend_cann_context(int device)
: device(device), name("CANN" + std::to_string(device)) {
: device(device), name("CANN" + std::to_string(device)), task_queue(1024, device) {
ggml_cann_set_device(device);
description = aclrtGetSocName();
async_mode = (getenv("GGML_CANN_ASYNC_MODE") != nullptr);
GGML_LOG_INFO("%s: device %d async operator submission is %s\n", __func__,
device, async_mode ? "ON" : "OFF");
}
/**
@@ -231,6 +364,7 @@ struct ggml_backend_cann_context {
*/
~ggml_backend_cann_context() {
ggml_cann_set_device(device);
task_queue.stop();
if (copy_event != nullptr) {
ACL_CHECK(aclrtDestroyEvent(copy_event));
}

View File

@@ -29,6 +29,8 @@
#include <cstdio>
#include <cstring>
#include <mutex>
#include <queue>
#include <chrono>
#include "ggml-impl.h"
#include "ggml-backend-impl.h"
@@ -119,9 +121,10 @@ static ggml_cann_device_info ggml_cann_init() {
prop.location.type = ACL_MEM_LOCATION_TYPE_DEVICE;
prop.location.id = id;
prop.reserve = 0;
ACL_CHECK(aclrtMemGetAllocationGranularity(
err = aclrtMemGetAllocationGranularity(
&prop, ACL_RT_MEM_ALLOC_GRANULARITY_RECOMMENDED,
&info.devices[id].vmm_granularity));
&info.devices[id].vmm_granularity);
info.devices[id].vmm = err == ACL_SUCCESS;
size_t free, total;
ggml_backend_cann_get_device_memory(id, &free, &total);
@@ -148,11 +151,223 @@ const ggml_cann_device_info& ggml_cann_info() {
//#define DEBUG_CANN_MALLOC
/**
* @brief A pool of CANN buffers(legacy).
* @brief A pool of CANN buffers(priority segment buffer).
*
* This class manages a pool of CANN buffers for a specific device.
*/
struct ggml_cann_pool_leg : public ggml_cann_pool {
struct ggml_cann_pool_buf_prio : public ggml_cann_pool {
/**
* @brief The maximum reuse margin for a buffer.
*/
static const size_t max_reuse_margin = 1ull << 22; // 4MB
/**
* @brief The minimum free margin for a buffer.
*/
static const size_t min_free_margin = 1ull << 20; // 1MB
/**
* @brief The alignment for buffer allocation.
*/
static const size_t alignment = 128;
/**
* @brief The device ID associated with this buffer pool.
*/
int device;
/**
* @brief Whether to disable clean during buffer allocation.
*/
bool disable_clean = false;
/**
* @brief Structure representing a CANN buffer.
*/
struct ggml_cann_buffer {
void* ptr = nullptr; ///< Pointer to the buffer.
size_t size = 0; ///< Size of the buffer.
std::chrono::steady_clock::time_point last_used; ///< Last used time.
bool operator>(const ggml_cann_buffer& other) const {
return size > other.size;
}
};
/**
* @brief Array of CANN buffers in the pool.
*/
std::unordered_map<void*, size_t> buffer_pool;
std::priority_queue<ggml_cann_buffer,
std::vector<ggml_cann_buffer>,
std::greater<>> free_buffers ;
/**
* @brief Total size of all buffers in the pool.
*/
size_t pool_size = 0;
/**
* @brief Constructor to initialize the buffer pool for a specific device.
*
* @param device The device ID to associate with this buffer pool.
*/
explicit ggml_cann_pool_buf_prio(int device) : device(device) {
disable_clean = getenv("GGML_CANN_DISABLE_BUF_POOL_CLEAN") != nullptr;
}
/**
* @brief Destructor to free all buffers in the pool.
*/
~ggml_cann_pool_buf_prio() {
ggml_cann_set_device(device);
for (auto& [b_ptr, b_size] : buffer_pool) {
aclrtFree(b_ptr);
pool_size -= b_size;
}
buffer_pool.clear();
GGML_ASSERT(pool_size == 0);
}
/**
* @brief Allocate a buffer of the given size.
*
* @param size The size of the buffer to allocate.
* @param actual_size A pointer to a variable to receive the actual size of
* the allocated buffer.
* @return A pointer to the allocated buffer.
*/
void* alloc(size_t size, size_t* actual_size) override {
size = GGML_PAD(size, alignment);
if (size == 0) {
size = alignment;
}
void* ptr = nullptr;
auto now = std::chrono::steady_clock::now();
std::vector<ggml_cann_buffer> free_buffers_rest;
free_buffers_rest.reserve(free_buffers.size());
while (!free_buffers.empty()) {
auto b = free_buffers.top();
free_buffers.pop();
if (b.size >= size) {
// reuse the buffer if the size is enough
const size_t margin = b.size - size;
if (margin <= max_reuse_margin) {
*actual_size = b.size;
ptr = b.ptr;
#ifdef DEBUG_CANN_MALLOC
GGML_LOG_INFO(
"cann pool[%d]: reused %p, "
"pool_size = %5u MB, "
"size = %5u MB, "
"margin = %5u MB\n",
device, b.ptr,
(uint32_t)(GGML_PAD(pool_size, 1048576) / 1048576),
(uint32_t)(GGML_PAD(size, 1048576) / 1048576),
(uint32_t)(GGML_PAD(margin, 1048576) / 1048576));
#endif
break;
}
}
bool should_clean = !disable_clean &&
b.size > min_free_margin &&
std::chrono::duration_cast<std::chrono::milliseconds>(now - b.last_used).count() > 100;
if (should_clean) {
// free the buffer if the size is needed to be freed
ACL_CHECK(aclrtFree(b.ptr));
pool_size -= b.size;
buffer_pool.erase(b.ptr);
#ifdef DEBUG_CANN_MALLOC
GGML_LOG_INFO(
"cann pool[%d]: clean %p, "
"pool_size = %5u MB, "
"size = %5u MB\n",
device, b.ptr,
(uint32_t)(GGML_PAD(pool_size, 1048576) / 1048576),
(uint32_t)(GGML_PAD(b.size, 1048576) / 1048576));
#endif
continue;
}
free_buffers_rest.push_back(b);
}
for (ggml_cann_buffer &b : free_buffers_rest) {
free_buffers.push(std::move(b));
}
#ifdef DEBUG_CANN_MALLOC
GGML_LOG_INFO("cann pool[%d] free pool_size = %5u MB\n\n", device, (uint32_t)(GGML_PAD(pool_size, 1048576) / 1048576));
#endif
if (ptr != nullptr) {
return ptr;
}
// allocate a new buffer if no buffer can be reused
ggml_cann_set_device(device);
ACL_CHECK(aclrtMalloc(&ptr, size, ACL_MEM_MALLOC_HUGE_FIRST));
*actual_size = size;
pool_size += size;
#ifdef DEBUG_CANN_MALLOC
GGML_LOG_INFO(
"cann pool[%d]: allocate %p, "
"pool_size = %5u MB, "
"size = %5u MB\n",
device, ptr, (uint32_t)(GGML_PAD(pool_size, 1048576) / 1048576),
(uint32_t)(GGML_PAD(size, 1048576) / 1048576));
#endif
buffer_pool.emplace(ptr, size);
return ptr;
}
/**
* @brief Free a buffer and return it to the pool.
*
* @param ptr Pointer to the buffer to free.
* @param size Size of the buffer to free.
*/
void free(void* ptr, size_t size) override {
GGML_UNUSED(size);
auto it = buffer_pool.find(ptr);
if (it == buffer_pool.end()) {
GGML_ABORT("cann pool[%d]: buffer %p not found in pool\n", device, ptr);
}
auto now = std::chrono::steady_clock::now();
free_buffers.emplace(ggml_cann_buffer{ptr, it->second, now});
#ifdef DEBUG_CANN_MALLOC
GGML_LOG_INFO(
"cann pool[%d]: return %p, "
"pool_size = %5u MB\n",
device, ptr,
(uint32_t)(GGML_PAD(pool_size, 1048576) / 1048576));
#endif
}
};
/**
* @brief A pool of CANN buffers(segment buffer).
*
* This class manages a pool of CANN buffers for a specific device.
*/
struct ggml_cann_pool_buf : public ggml_cann_pool {
/**
* @brief The maximum reuse margin for a buffer.
*/
static const size_t max_reuse_margin = 1ull << 22; // 4MB
/**
* @brief The minimum free margin for a buffer.
*/
static const size_t min_free_margin = 1ull << 20; // 1MB
/**
* @brief The alignment for buffer allocation.
*/
static const size_t alignment = 128;
/**
* @brief The maximum number of buffers in the pool.
*/
@@ -163,12 +378,19 @@ struct ggml_cann_pool_leg : public ggml_cann_pool {
*/
int device;
/**
* @brief Whether to disable clean during buffer allocation.
*/
bool disable_clean = false;
/**
* @brief Structure representing a CANN buffer.
*/
struct ggml_cann_buffer {
void* ptr = nullptr; ///< Pointer to the buffer memory.
size_t size = 0; ///< Size of the buffer.
bool used = false; ///< Whether the buffer is currently in use.
std::chrono::steady_clock::time_point last_used; ///< Last used time.
};
/**
@@ -186,17 +408,19 @@ struct ggml_cann_pool_leg : public ggml_cann_pool {
*
* @param device The device ID to associate with this buffer pool.
*/
explicit ggml_cann_pool_leg(int device) : device(device) {}
explicit ggml_cann_pool_buf(int device) : device(device) {
disable_clean = getenv("GGML_CANN_DISABLE_BUF_POOL_CLEAN") != nullptr;
}
/**
* @brief Destructor to free all buffers in the pool.
*/
~ggml_cann_pool_leg() {
~ggml_cann_pool_buf() {
ggml_cann_set_device(device);
for (int i = 0; i < MAX_BUFFERS; ++i) {
ggml_cann_buffer& b = buffer_pool[i];
if (b.ptr != nullptr) {
ACL_CHECK(aclrtFree(b.ptr));
aclrtFree(b.ptr);
pool_size -= b.size;
}
}
@@ -212,63 +436,93 @@ struct ggml_cann_pool_leg : public ggml_cann_pool {
* @return A pointer to the allocated buffer.
*/
void* alloc(size_t size, size_t* actual_size) override {
const size_t alignment = 128;
size = GGML_PAD(size, alignment);
if (size == 0) {
size = alignment;
}
#ifdef DEBUG_CANN_MALLOC
int nnz = 0;
size_t max_size = 0;
#endif
size_t best_diff = 1ull << 36;
int ibest = -1;
for (int i = 0; i < MAX_BUFFERS; ++i) {
void* ptr = nullptr;
auto now = std::chrono::steady_clock::now();
int i = 0;
for (; i < MAX_BUFFERS; ++i) {
ggml_cann_buffer& b = buffer_pool[i];
if (b.ptr != nullptr) {
if (b.ptr == nullptr) {
break;
}
if (b.used) {
continue;
}
if (b.size >= size) {
// reuse the buffer if the size is enough
const size_t margin = b.size - size;
if (margin <= max_reuse_margin) {
*actual_size = b.size;
b.used = true;
ptr = b.ptr;
#ifdef DEBUG_CANN_MALLOC
++nnz;
if (b.size > max_size) max_size = b.size;
GGML_LOG_INFO(
"cann pool[%d]: reused %p, "
"pool_size = %5u MB, "
"size = %5u MB, "
"margin = %5u MB\n",
device, b.ptr,
(uint32_t)(GGML_PAD(pool_size, 1048576) / 1048576),
(uint32_t)(GGML_PAD(size, 1048576) / 1048576),
(uint32_t)(GGML_PAD(margin, 1048576) / 1048576));
#endif
if (b.size >= size) {
size_t diff = b.size - size;
if (diff < best_diff) {
best_diff = diff;
ibest = i;
if (!best_diff) {
void* ptr = b.ptr;
*actual_size = b.size;
b.ptr = nullptr;
b.size = 0;
return ptr;
}
}
break;
}
}
bool should_clean = !disable_clean &&
b.size > min_free_margin &&
std::chrono::duration_cast<std::chrono::milliseconds>(now - b.last_used).count() > 100;
if (should_clean) {
// free the buffer if the size is needed to be freed
ACL_CHECK(aclrtFree(b.ptr));
pool_size -= b.size;
#ifdef DEBUG_CANN_MALLOC
GGML_LOG_INFO(
"cann pool[%d]: clean %p, "
"pool_size = %5u MB, "
"size = %5u MB\n",
device, b.ptr,
(uint32_t)(GGML_PAD(pool_size, 1048576) / 1048576),
(uint32_t)(GGML_PAD(b.size, 1048576) / 1048576));
#endif
b.ptr = nullptr;
}
}
if (ibest >= 0) {
ggml_cann_buffer& b = buffer_pool[ibest];
void* ptr = b.ptr;
*actual_size = b.size;
b.ptr = nullptr;
b.size = 0;
if (ptr != nullptr) {
return ptr;
}
void* ptr;
ggml_cann_set_device(device);
ACL_CHECK(
aclrtMalloc(&ptr, size, ACL_MEM_MALLOC_HUGE_FIRST));
*actual_size = size;
pool_size += size;
if (i < MAX_BUFFERS) {
// allocate a new buffer if no buffer can be reused
ggml_cann_buffer& b = buffer_pool[i];
ggml_cann_set_device(device);
ACL_CHECK(aclrtMalloc(&b.ptr, size, ACL_MEM_MALLOC_HUGE_FIRST));
pool_size += size;
*actual_size = size;
b.size = size;
b.used = true;
if (i >= MAX_BUFFERS - 8) {
GGML_LOG_WARN("cann pool[%d]: slots almost full\n", device);
}
#ifdef DEBUG_CANN_MALLOC
GGML_LOG_INFO(
"%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, "
"requested %u MB\n",
__func__, device, nnz, (uint32_t)(max_size / 1024 / 1024),
(uint32_t)(pool_size / 1024 / 1024),
(uint32_t)(size / 1024 / 1024));
GGML_LOG_INFO(
"cann pool[%d]: allocate %p, "
"pool_size = %5u MB, "
"size = %5u MB\n",
device, b.ptr,
(uint32_t)(GGML_PAD(pool_size, 1048576) / 1048576),
(uint32_t)(GGML_PAD(b.size, 1048576) / 1048576));
#endif
return ptr;
return b.ptr;
}
GGML_ABORT("cann pool[%d]: slots full\n", device);
}
/**
@@ -278,18 +532,24 @@ struct ggml_cann_pool_leg : public ggml_cann_pool {
* @param size Size of the buffer to free.
*/
void free(void* ptr, size_t size) override {
GGML_UNUSED(size);
for (int i = 0; i < MAX_BUFFERS; ++i) {
ggml_cann_buffer& b = buffer_pool[i];
if (b.ptr == nullptr) {
b.ptr = ptr;
b.size = size;
return;
if (b.ptr != ptr) {
continue;
}
b.used = false;
b.last_used = std::chrono::steady_clock::now();
#ifdef DEBUG_CANN_MALLOC
GGML_LOG_INFO(
"cann pool[%d]: return %p, "
"pool_size = %5u MB\n",
device, b.ptr,
(uint32_t)(GGML_PAD(pool_size, 1048576) / 1048576));
#endif
return;
}
// memory should always buffered. these memory may still needed by
// tasks in stream.
// TODO, fix me.
GGML_ABORT("Cann buffer pool full, increase MAX_CANN_BUFFERS\n");
GGML_ABORT("cann pool[%d]: slots full\n", device);
}
};
@@ -347,8 +607,7 @@ struct ggml_cann_pool_vmm : public ggml_cann_pool {
* @param device The device ID to associate with this buffer pool.
*/
explicit ggml_cann_pool_vmm(int device)
: device(device),
granularity(ggml_cann_info().devices[device].vmm_granularity) {
: device(device) {
auto dev = ggml_cann_info().devices[device];
granularity = dev.vmm_granularity;
max_size = dev.total_vram;
@@ -471,7 +730,18 @@ struct ggml_cann_pool_vmm : public ggml_cann_pool {
*/
std::unique_ptr<ggml_cann_pool> ggml_backend_cann_context::new_pool_for_device(
int device) {
return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_vmm(device));
bool disable_vmm = (getenv("GGML_CANN_DISABLE_VMM_POOL") != nullptr);
if (!disable_vmm && ggml_cann_info().devices[device].vmm) {
GGML_LOG_INFO("%s: device %d use vmm pool\n", __func__, device);
return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_vmm(device));
}
bool enable_buf_prio = (getenv("GGML_CANN_ENABLE_BUF_PRIO_POOL") != nullptr);
if (enable_buf_prio) {
GGML_LOG_INFO("%s: device %d use buffer pool with priority queue\n", __func__, device);
return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_buf_prio(device));
}
GGML_LOG_INFO("%s: device %d use buffer pool\n", __func__, device);
return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_buf(device));
}
// cann buffer
@@ -803,7 +1073,7 @@ static enum ggml_status ggml_backend_cann_buffer_init_tensor(
return GGML_STATUS_SUCCESS;
}
// TODO: can backend doesn't support quantized yet. Just leave the code
// TODO: cann backend doesn't support quantized yet. Just leave the code
// here.
if (ggml_is_quantized(tensor->type)) {
// Initialize padding to 0 to avoid possible NaN values
@@ -1020,8 +1290,11 @@ ggml_backend_cann_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft,
ggml_cann_set_device(buft_ctx->device);
size = std::max(size, (size_t)1);
const size_t alignment = 128;
size = GGML_PAD(size, alignment);
if (size == 0) {
size = alignment;
}
void* dev_ptr;
aclError err = aclrtMalloc(&dev_ptr, size, ACL_MEM_MALLOC_HUGE_FIRST);
if (err != ACL_SUCCESS) {
@@ -1300,47 +1573,69 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
ggml_cann_dup(ctx, dst);
break;
case GGML_OP_ADD:
ggml_cann_add(ctx, dst);
case GGML_OP_ADD1:
ggml_cann_binary_op<aclnn_add>(ctx, dst);
break;
case GGML_OP_SUB:
ggml_cann_binary_op<aclnn_sub>(ctx, dst);
break;
case GGML_OP_ACC:
ggml_cann_acc(ctx, dst);
break;
case GGML_OP_MUL:
ggml_cann_mul_div<aclnnMulGetWorkspaceSize, aclnnMul>(ctx, dst);
ggml_cann_binary_op<aclnn_mul>(ctx, dst);
break;
case GGML_OP_DIV:
ggml_cann_mul_div<aclnnDivGetWorkspaceSize, aclnnDiv>(ctx, dst);
ggml_cann_binary_op<aclnn_div>(ctx, dst);
break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(dst)) {
case GGML_UNARY_OP_ABS:
GGML_CANN_CALL_UNARY_OP(Abs);
break;
case GGML_UNARY_OP_NEG:
GGML_CANN_CALL_UNARY_OP(Neg);
break;
case GGML_UNARY_OP_GELU:
ggml_cann_activation<aclnnGeluGetWorkspaceSize, aclnnGelu>(
ctx, dst);
GGML_CANN_CALL_UNARY_OP(Gelu);
break;
case GGML_UNARY_OP_SILU:
ggml_cann_activation<aclnnSiluGetWorkspaceSize, aclnnSilu>(
ctx, dst);
break;
// TODO: Use faster gelu??
case GGML_UNARY_OP_GELU_QUICK:
ggml_cann_activation<aclnnGeluGetWorkspaceSize, aclnnGelu>(
ctx, dst);
GGML_CANN_CALL_UNARY_OP(Silu);
break;
case GGML_UNARY_OP_GELU_QUICK: {
auto lambda = [](ggml_backend_cann_context& ctx,
aclTensor* acl_src,
aclTensor* acl_dst) {
GGML_CANN_CALL_ACLNN_OP(ctx, GeluV2, acl_src, 0, acl_dst);
};
ggml_cann_unary_op(lambda, ctx, dst);
} break;
case GGML_UNARY_OP_TANH:
ggml_cann_activation<aclnnTanhGetWorkspaceSize, aclnnTanh>(
ctx, dst);
GGML_CANN_CALL_UNARY_OP(Tanh);
break;
case GGML_UNARY_OP_RELU:
ggml_cann_activation<aclnnReluGetWorkspaceSize, aclnnRelu>(
ctx, dst);
GGML_CANN_CALL_UNARY_OP(Relu);
break;
case GGML_UNARY_OP_SIGMOID:
GGML_CANN_CALL_UNARY_OP(Sigmoid);
break;
case GGML_UNARY_OP_HARDSIGMOID:
ggml_cann_activation<aclnnHardsigmoidGetWorkspaceSize,
aclnnHardsigmoid>(ctx, dst);
GGML_CANN_CALL_UNARY_OP(Hardsigmoid);
break;
case GGML_UNARY_OP_HARDSWISH:
ggml_cann_activation<aclnnHardswishGetWorkspaceSize,
aclnnHardswish>(ctx, dst);
GGML_CANN_CALL_UNARY_OP(Hardswish);
break;
case GGML_UNARY_OP_EXP:
GGML_CANN_CALL_UNARY_OP(Exp);
break;
case GGML_UNARY_OP_ELU:
ggml_cann_elu(ctx, dst);
break;
case GGML_UNARY_OP_SGN:
GGML_CANN_CALL_UNARY_OP(Sign);
break;
case GGML_UNARY_OP_STEP:
ggml_cann_step(ctx, dst);
break;
default:
return false;
@@ -1382,7 +1677,12 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
ggml_cann_scale(ctx, dst);
break;
case GGML_OP_SQR:
ggml_cann_sqr(ctx, dst);
GGML_ASSERT(dst->src[1] == nullptr);
dst->src[1] = dst->src[0];
ggml_cann_binary_op<aclnn_mul>(ctx, dst);
break;
case GGML_OP_SQRT:
GGML_CANN_CALL_UNARY_OP(Sqrt);
break;
case GGML_OP_CLAMP:
ggml_cann_clamp(ctx, dst);
@@ -1414,12 +1714,39 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
case GGML_OP_POOL_2D:
ggml_cann_pool2d(ctx, dst);
break;
case GGML_OP_SUM:
ggml_cann_sum(ctx, dst);
break;
case GGML_OP_SUM_ROWS:
ggml_cann_sum_rows(ctx, dst);
break;
case GGML_OP_ARGSORT:
ggml_cann_argsort(ctx, dst);
break;
case GGML_OP_ARGMAX:
ggml_cann_argmax(ctx, dst);
break;
case GGML_OP_COS:
ggml_cann_unary_op<aclnn_cos>(ctx, dst);
break;
case GGML_OP_SIN:
ggml_cann_unary_op<aclnn_sin>(ctx, dst);
break;
case GGML_OP_CONV_TRANSPOSE_1D:
ggml_cann_conv_transpose_1d(ctx, dst);
break;
case GGML_OP_LOG:
GGML_CANN_CALL_UNARY_OP(Log);
break;
case GGML_OP_MEAN:
ggml_cann_mean(ctx, dst);
break;
case GGML_OP_PAD_REFLECT_1D:
ggml_cann_pad_reflect_1d(ctx, dst);
break;
case GGML_OP_COUNT_EQUAL:
ggml_cann_count_equal(ctx, dst);
break;
default:
return false;
}
@@ -1458,21 +1785,15 @@ static void ggml_backend_cann_free(ggml_backend_t backend) {
ACL_CHECK(aclrtSynchronizeDevice());
ACL_CHECK(aclrtResetDevice(cann_ctx->device));
// finalize when last backend freed.
if (cann_ctx->device == ggml_backend_cann_get_device_count() - 1) {
ACL_CHECK(aclFinalize());
}
delete cann_ctx;
delete backend;
}
/**
* @brief Sets tensor data asynchronously in the CANN backend.
*
* This function asynchronously sets tensor data in the CANN backend. Depending
* on the tensor type, it may perform data transformations before copying data
* to the device.
* This function asynchronously sets tensor data in the CANN backend.
*
* @param backend Pointer to the CANN backend structure.
* @param tensor Pointer to the tensor structure to set data for.
@@ -1487,23 +1808,28 @@ static void ggml_backend_cann_set_tensor_async(ggml_backend_t backend,
size_t size) {
ggml_backend_cann_context *cann_ctx =
(ggml_backend_cann_context *)backend->context;
ggml_backend_buffer_t buf =
tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
if (!need_transform(tensor->type)) {
ACL_CHECK(aclrtMemcpyAsync((char *)tensor->data + offset, size, data,
size, ACL_MEMCPY_HOST_TO_DEVICE,
cann_ctx->stream()));
} else {
void *transform_buffer = malloc(size);
ggml_backend_cann_transform(tensor, data, transform_buffer);
GGML_ASSERT(buf->buft == ggml_backend_cann_buffer_type(cann_ctx->device) &&
"unsupported buffer type");
GGML_ASSERT(!ggml_is_quantized(tensor->type));
ACL_CHECK(aclrtMemcpyAsync(
(char *)tensor->data + offset, size, transform_buffer, size,
ACL_MEMCPY_HOST_TO_DEVICE, cann_ctx->stream()));
ACL_CHECK(aclrtSynchronizeStream(cann_ctx->stream()));
free(transform_buffer);
}
ggml_cann_async_memcpy(cann_ctx, (char *)tensor->data + offset, data, size,
ACL_MEMCPY_HOST_TO_DEVICE);
}
/**
* @brief Gets tensor data asynchronously in the CANN backend.
*
* This function asynchronously gets tensor data in the CANN backend.
*
* @param backend Pointer to the CANN backend structure.
* @param tensor Pointer to the tensor structure to get data from.
* @param data Pointer to the host data to copy from the tensor.
* @param offset Offset in bytes within the host data.
* @param size Size of the data to copy in bytes.
*/
static void ggml_backend_cann_get_tensor_async(
ggml_backend_t backend, const ggml_tensor *tensor, void *data,
size_t offset, size_t size) {
@@ -1514,20 +1840,11 @@ static void ggml_backend_cann_get_tensor_async(
GGML_ASSERT(buf->buft == ggml_backend_cann_buffer_type(cann_ctx->device) &&
"unsupported buffer type");
GGML_ASSERT(!ggml_is_quantized(tensor->type));
ggml_cann_async_memcpy(cann_ctx, data, (char *)tensor->data + offset, size,
ACL_MEMCPY_DEVICE_TO_HOST);
if (!need_transform(tensor->type)) {
ACL_CHECK(aclrtMemcpyAsync(data, size, (char *)tensor->data + offset,
size, ACL_MEMCPY_DEVICE_TO_HOST,
cann_ctx->stream()));
} else {
void *transform_buffer = malloc(size);
ACL_CHECK(aclrtMemcpyAsync(
transform_buffer, size, (char *)tensor->data + offset, size,
ACL_MEMCPY_DEVICE_TO_HOST, cann_ctx->stream()));
ACL_CHECK(aclrtSynchronizeStream(cann_ctx->stream()));
ggml_backend_cann_transform_back(tensor, transform_buffer, data);
free(transform_buffer);
}
}
/**
@@ -1587,6 +1904,8 @@ static bool ggml_backend_cann_cpy_tensor_async(
ggml_cann_set_device(cann_ctx_src->device);
ACL_CHECK(aclrtDeviceEnablePeerAccess(cann_ctx_dst->device, 0));
// wait for task_queue empty to keep task order.
cann_ctx_src->task_queue.wait();
ACL_CHECK(aclrtMemcpyAsync(dst->data, copy_size, src->data, copy_size,
ACL_MEMCPY_DEVICE_TO_DEVICE,
cann_ctx_src->stream()));
@@ -1614,9 +1933,8 @@ static bool ggml_backend_cann_cpy_tensor_async(
static void ggml_backend_cann_synchronize(ggml_backend_t backend) {
ggml_backend_cann_context* cann_ctx =
(ggml_backend_cann_context*)backend->context;
cann_ctx->task_queue.wait();
ggml_cann_set_device(cann_ctx->device);
ACL_CHECK(aclrtSynchronizeStream(cann_ctx->stream()));
}
@@ -1675,24 +1993,38 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
switch (op->op) {
case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) {
case GGML_UNARY_OP_ABS:
case GGML_UNARY_OP_NEG:
case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_SIGMOID:
case GGML_UNARY_OP_HARDSIGMOID:
case GGML_UNARY_OP_HARDSWISH:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_EXP:
case GGML_UNARY_OP_ELU:
case GGML_UNARY_OP_SGN:
case GGML_UNARY_OP_STEP:
return true;
default:
return false;
}
case GGML_OP_MUL_MAT: {
switch (op->src[0]->type) {
case GGML_TYPE_Q8_0:
case GGML_TYPE_F16:
case GGML_TYPE_F32:
case GGML_TYPE_Q4_0:
return true;
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q4_0:
#ifdef ASCEND_310P
// Q4 && Q8 per group is not suppor on 310p device
return false;
#endif
// only support contiguous for quantized types.
return ggml_is_contiguous(op->src[0]) &&
ggml_is_contiguous(op->src[1]);
default:
return false;
}
@@ -1704,7 +2036,6 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
switch (op->src[0]->type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q8_0:
return true;
default:
@@ -1712,16 +2043,21 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
}
} break;
case GGML_OP_CPY: {
switch (op->type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q4_0:
return true;
default:
return false;
ggml_tensor *src = op->src[0];
if ((op->type != GGML_TYPE_F32 && op->type != GGML_TYPE_F16) ||
(src->type != GGML_TYPE_F32 &&
src->type != GGML_TYPE_F16)) {
// only support F32 and F16.
return false;
}
}
if (!ggml_are_same_shape(op, src) && !ggml_is_contiguous(op)) {
// unsupport dst is not contiguous.
return false;
}
return true;
} break;
case GGML_OP_CONT: {
// TODO: support GGML_TYPE_BF16
switch (op->src[0]->type) {
@@ -1734,13 +2070,14 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
}
case GGML_OP_ROPE: {
// TODO: with ops-test v == 1
float * ext_factor = (float*)((int32_t*)op->op_params + 7);
float ext_factor = 0.0f;
memcpy(&ext_factor, (const float *) op->op_params + 7, sizeof(float));
// TODO: n_dims <= ne0
if (op->src[0]->ne[0] != op->op_params[1]) {
return false;
}
// TODO: ext_factor != 0
if (*ext_factor != 0) {
if (ext_factor != 0) {
return false;
}
@@ -1752,6 +2089,9 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
return false;
}
if(!ggml_is_contiguous(op->src[0])){
return false;
}
return true;
}
case GGML_OP_UPSCALE: {
@@ -1760,11 +2100,31 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
if (op->src[0]->ne[2] * op->ne[3] != op->src[0]->ne[3] * op->ne[2]) {
return false;
}
if (op->op_params[0] != GGML_SCALE_MODE_NEAREST) {
return false;
}
return true;
}
case GGML_OP_POOL_2D: {
const int32_t * opts = (const int32_t *) op->op_params;
#ifdef ASCEND_310P
enum ggml_op_pool opt = static_cast<ggml_op_pool>(opts[0]);
if(opt == GGML_OP_POOL_MAX){
return false;
}
#endif
const int k0 = opts[1];
const int k1 = opts[2];
const int p0 = opts[5];
const int p1 = opts[6];
// value of paddingH should be at most half of kernelH
// value of paddingW should be at most half of kernelW
return (p0 <= (k0 / 2)) && (p1 <= (k1 / 2));
}
case GGML_OP_SUM:
case GGML_OP_DUP:
case GGML_OP_IM2COL:
case GGML_OP_CONCAT:
case GGML_OP_DUP:
case GGML_OP_REPEAT:
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
@@ -1773,15 +2133,17 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
case GGML_OP_TRANSPOSE:
case GGML_OP_NORM:
case GGML_OP_ADD:
case GGML_OP_ADD1:
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_RMS_NORM:
case GGML_OP_SCALE:
case GGML_OP_SQR:
case GGML_OP_SQRT:
case GGML_OP_CLAMP:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
case GGML_OP_POOL_2D:
case GGML_OP_SUM_ROWS:
case GGML_OP_ARGSORT:
case GGML_OP_ACC:
@@ -1790,6 +2152,14 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
case GGML_OP_ARANGE:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_LEAKY_RELU:
case GGML_OP_ARGMAX:
case GGML_OP_COS:
case GGML_OP_SIN:
case GGML_OP_CONV_TRANSPOSE_1D:
case GGML_OP_LOG:
case GGML_OP_MEAN:
case GGML_OP_PAD_REFLECT_1D:
case GGML_OP_COUNT_EQUAL:
return true;
default:
return false;

View File

@@ -1,30 +0,0 @@
file(GLOB SRC_FILES
get_row_f32.cpp
get_row_f16.cpp
get_row_q4_0.cpp
get_row_q8_0.cpp
quantize_f32_q8_0.cpp
quantize_f16_q8_0.cpp
quantize_float_to_q4_0.cpp
dup.cpp
)
set(ASCEND_CANN_PACKAGE_PATH ${CANN_INSTALL_DIR})
set(RUN_MODE "npu" CACHE STRING "run mode: npu/sim")
if(EXISTS ${ASCEND_CANN_PACKAGE_PATH}/compiler/tikcpp/ascendc_kernel_cmake)
set(ASCENDC_CMAKE_DIR ${ASCEND_CANN_PACKAGE_PATH}/compiler/tikcpp/ascendc_kernel_cmake)
elseif(EXISTS ${ASCEND_CANN_PACKAGE_PATH}/ascendc_devkit/tikcpp/samples/cmake)
set(ASCENDC_CMAKE_DIR ${ASCEND_CANN_PACKAGE_PATH}/ascendc_devkit/tikcpp/samples/cmake)
else()
message(FATAL_ERROR "ascendc_kernel_cmake does not exist, please check whether the compiler package is installed.")
endif()
include(${ASCENDC_CMAKE_DIR}/ascendc.cmake)
ascendc_library(ascendc_kernels STATIC
${SRC_FILES}
)
message(STATUS "CANN: compile ascend kernels witch SOC_TYPE:${SOC_TYPE}, SOC_VERSION:${SOC_VERSION}, compile macro:-D${SOC_TYPE_COMPILE_OPTION}.")
ascendc_compile_definitions(ascendc_kernels PRIVATE "-D${SOC_TYPE_COMPILE_OPTION}")
# ascendc_compile_definitions(ascendc_kernels PRIVATE -DASCENDC_DUMP)

View File

@@ -1,19 +0,0 @@
#ifndef ASCENDC_KERNELS_H
#define ASCENDC_KERNELS_H
#include "aclrtlaunch_ascendc_get_row_f32.h"
#include "aclrtlaunch_ascendc_get_row_f16.h"
#include "aclrtlaunch_ascendc_get_row_q8_0.h"
#include "aclrtlaunch_ascendc_get_row_q4_0.h"
#include "aclrtlaunch_ascendc_quantize_f32_q8_0.h"
#include "aclrtlaunch_ascendc_quantize_f16_q8_0.h"
#include "aclrtlaunch_ascendc_quantize_f16_to_q4_0.h"
#include "aclrtlaunch_ascendc_quantize_f32_to_q4_0.h"
#include "aclrtlaunch_ascendc_dup_by_rows_fp16.h"
#include "aclrtlaunch_ascendc_dup_by_rows_fp32.h"
#include "aclrtlaunch_ascendc_dup_by_rows_fp32_to_fp16.h"
#include "aclrtlaunch_ascendc_dup_by_rows_fp16_to_fp32.h"
#endif // ASCENDC_KERNELS_H

View File

@@ -1,234 +0,0 @@
#include "kernel_operator.h"
using namespace AscendC;
#define BUFFER_NUM 2
const int64_t SUPPORTED_MAX_DIM = 65535; // currently the limit of max block dim supportted by dup kernel is 65535template <typename SRC_T, typename DST_T>
template <typename SRC_T, typename DST_T>
class DupByRows {
public:
__aicore__ inline DupByRows() {}
__aicore__ inline void init(GM_ADDR src, GM_ADDR dst, int64_t *input_ne_ub,
size_t *input_nb_ub) {
/* Dup by rows when src is contigous on first dimension and dst is
contiguous, each kernel process one row.
*/
// Input has four dims.
int64_t op_block_num = GetBlockNum();
int64_t op_block_idx = GetBlockIdx();
// param
num_rows = input_ne_ub[1] * input_ne_ub[2] * input_ne_ub[3];
num_elem = input_ne_ub[0];
// index for (ne[1], ne[2], ne[3]): (idx_ne1, idx_ne2, idx_ne3)
idx_ne3 = op_block_idx / (input_ne_ub[1] * input_ne_ub[2]);
idx_ne2 = (op_block_idx - idx_ne3 * (input_ne_ub[1] * input_ne_ub[2]))
/ (input_ne_ub[1]);
idx_ne1 = op_block_idx - idx_ne3 * (input_ne_ub[1] * input_ne_ub[2])
- idx_ne2 * input_ne_ub[1];
// src may not contiguous in dim [1,2,3], so stride decited by ne&nb
src_stride = input_nb_ub[3] * idx_ne3 + input_nb_ub[2] * idx_ne2
+ input_nb_ub[1] * idx_ne1;
// dst is contiguous
dst_stride = op_block_idx * (input_ne_ub[0] * sizeof(DST_T));
src_gm.SetGlobalBuffer(reinterpret_cast<__gm__ SRC_T *>(src +
src_stride));
dst_gm.SetGlobalBuffer(reinterpret_cast<__gm__ DST_T *>(dst +
dst_stride));
pipe.InitBuffer(src_queue, BUFFER_NUM, (sizeof(SRC_T) * num_elem +
32 - 1) / 32 * 32);
pipe.InitBuffer(dst_queue, BUFFER_NUM, (sizeof(DST_T) * num_elem +
32 - 1) / 32 * 32);
}
__aicore__ inline void copy_in() {
LocalTensor<SRC_T> src_local = src_queue.AllocTensor<SRC_T>();
const size_t elem_per_block = 32 / sizeof(SRC_T);
size_t tail = num_elem % elem_per_block;
size_t cpy_elements_len = tail > 0 ? num_elem + 1 : num_elem;
DataCopy(src_local, src_gm, cpy_elements_len);
src_queue.EnQue(src_local);
}
__aicore__ inline void copy_out() {
LocalTensor<DST_T> dst_local = dst_queue.DeQue<DST_T>();
#ifdef ASCEND_310P
const size_t elem_per_block = 32 / sizeof(DST_T);
size_t tail = num_elem % elem_per_block;
size_t len = num_elem & ~(elem_per_block - 1);
if (len > 0) {
DataCopy(dst_gm, dst_local, len);
}
if(tail != 0) {
for (size_t i = tail; i < elem_per_block; i++) {
dst_local[len + i].SetValue(0, 0);
}
SetAtomicAdd<float>();
DataCopy(dst_gm[len], dst_local[len], elem_per_block);
SetAtomicNone();
}
#else
DataCopyExtParams dataCopyParams;
dataCopyParams.blockCount = 1;
dataCopyParams.blockLen = num_elem * sizeof(DST_T);
DataCopyPad(dst_gm, dst_local, dataCopyParams);
#endif
dst_queue.FreeTensor(dst_local);
}
__aicore__ inline void dup() {
// main process, copy one row data from src to dst.
copy_in();
LocalTensor<SRC_T> src_local = src_queue.DeQue<SRC_T>();
LocalTensor<DST_T> dst_local = dst_queue.AllocTensor<DST_T>();
int32_t BLOCK_NUM = 32 / sizeof(DST_T);
DataCopy(dst_local, src_local, (num_elem + BLOCK_NUM - 1)
/ BLOCK_NUM * BLOCK_NUM);
dst_queue.EnQue<DST_T>(dst_local);
src_queue.FreeTensor(src_local);
copy_out();
}
__aicore__ inline void dup_with_cast() {
// main process, copy one row data from src to dst.
// cast dtype from src to dst.
copy_in();
LocalTensor<SRC_T> src_local = src_queue.DeQue<SRC_T>();
LocalTensor<DST_T> dst_local = dst_queue.AllocTensor<DST_T>();
Cast(dst_local, src_local, RoundMode::CAST_NONE, num_elem);
dst_queue.EnQue<DST_T>(dst_local);
src_queue.FreeTensor(src_local);
copy_out();
}
private:
TPipe pipe;
GlobalTensor<SRC_T> src_gm;
GlobalTensor<DST_T> dst_gm;
int64_t num_rows;
int64_t num_elem;
int64_t idx_ne3;
int64_t idx_ne2;
int64_t idx_ne1;
int64_t src_stride;
int64_t dst_stride;
TQue<QuePosition::VECIN, BUFFER_NUM> src_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> dst_queue;
};
template <typename T>
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
auto gm_ptr = (__gm__ uint8_t *)gm;
auto ub_ptr = (uint8_t *)(ub);
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
*ub_ptr = *gm_ptr;
}
}
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp16(
GM_ADDR src_gm,
GM_ADDR dst_gm,
GM_ADDR input_ne_gm,
GM_ADDR input_nb_gm,
GM_ADDR output_ne_gm,
GM_ADDR output_nb_gm) {
int64_t input_ne_ub[4];
size_t input_nb_ub[4];
int64_t output_ne_ub[4];
size_t output_nb_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(input_nb_gm, input_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
copy_to_ub(output_nb_gm, output_nb_ub, 32);
DupByRows<half, half> op;
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
op.dup();
}
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp32(
GM_ADDR src_gm,
GM_ADDR dst_gm,
GM_ADDR input_ne_gm,
GM_ADDR input_nb_gm,
GM_ADDR output_ne_gm,
GM_ADDR output_nb_gm) {
int64_t input_ne_ub[4];
size_t input_nb_ub[4];
int64_t output_ne_ub[4];
size_t output_nb_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(input_nb_gm, input_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
copy_to_ub(output_nb_gm, output_nb_ub, 32);
DupByRows<float, float> op;
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
op.dup();
}
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp32_to_fp16(
GM_ADDR src_gm,
GM_ADDR dst_gm,
GM_ADDR input_ne_gm,
GM_ADDR input_nb_gm,
GM_ADDR output_ne_gm,
GM_ADDR output_nb_gm) {
int64_t input_ne_ub[4];
size_t input_nb_ub[4];
int64_t output_ne_ub[4];
size_t output_nb_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(input_nb_gm, input_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
copy_to_ub(output_nb_gm, output_nb_ub, 32);
DupByRows<float, half> op;
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
op.dup_with_cast();
}
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp16_to_fp32(
GM_ADDR src_gm,
GM_ADDR dst_gm,
GM_ADDR input_ne_gm,
GM_ADDR input_nb_gm,
GM_ADDR output_ne_gm,
GM_ADDR output_nb_gm) {
// copy params from gm to ub.
int64_t input_ne_ub[4];
size_t input_nb_ub[4];
int64_t output_ne_ub[4];
size_t output_nb_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(input_nb_gm, input_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
copy_to_ub(output_nb_gm, output_nb_ub, 32);
DupByRows<half, float> op;
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
op.dup_with_cast();
}

View File

@@ -1,197 +0,0 @@
#include "kernel_operator.h"
// optimize me. Use template to avoid copy code.
using namespace AscendC;
#define BUFFER_NUM 2
class GET_ROW_F16 {
public:
__aicore__ inline GET_ROW_F16() {}
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
int64_t *input_ne_ub, size_t *input_nb_ub,
int64_t *indices_ne_ub, size_t *indices_nb_ub,
int64_t *output_ne_ub, size_t *output_nb_ub) {
// TODO, use template for F16/f32
int64_t op_block_num = GetBlockNum();
op_block_idx = GetBlockIdx();
for (int i = 0; i < 4; i++) {
input_ne[i] = input_ne_ub[i];
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
indices_ne[i] = indices_ne_ub[i];
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
output_ne[i] = output_ne_ub[i];
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
}
// Indices has two dims. n_elements = all rows should get.
// dr, all rows should this thread get.
uint64_t n_elements =
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
dr = n_elements / op_block_num;
uint64_t tails = n_elements % op_block_num;
if (op_block_idx < tails) {
dr += 1;
ir = dr * op_block_idx;
} else {
ir = dr * op_block_idx + tails;
}
input_gm.SetGlobalBuffer((__gm__ half *)input);
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
output_gm.SetGlobalBuffer((__gm__ float *)output);
uint64_t input_local_buffer_size = ((input_ne[0] * sizeof(half) + 31)
& ~31);
uint64_t output_local_buffer_size = ((input_ne[0] * sizeof(float) + 31)
& ~31);
local_buffer_elems = input_local_buffer_size / sizeof(half);
// TODO, consider long row that can't put in UB.
// All data should asign to 32. It's ok because all data is align to 32.
pipe.InitBuffer(input_queue, BUFFER_NUM, input_local_buffer_size);
pipe.InitBuffer(output_queue, BUFFER_NUM, output_local_buffer_size);
}
__aicore__ inline void copy_in(uint32_t offset, size_t len) {
size_t origin_len = len;
LocalTensor<half> input_local = input_queue.AllocTensor<half>();
const size_t elem_per_block = 32 / sizeof(half);
size_t tail = len % elem_per_block;
len = len & ~(elem_per_block - 1);
if(tail != 0) {
len += elem_per_block;
}
DataCopy(input_local, input_gm[offset], len);
input_queue.EnQue(input_local);
}
__aicore__ inline void copy_out(uint32_t offset, size_t len) {
LocalTensor<float> output_local = output_queue.DeQue<float>();
const size_t elem_per_block = 32 / sizeof(float);
size_t tail = len % elem_per_block;
len = len & ~(elem_per_block - 1);
if (len > 0) {
DataCopy(output_gm[offset], output_local, len);
}
if(tail != 0) {
#ifdef ASCEND_310P
for (size_t i = tail; i < elem_per_block; i++) {
output_local[len + i].SetValue(0, 0);
}
SetAtomicAdd<float>();
DataCopy(output_gm[offset + len], output_local[len], elem_per_block);
SetAtomicNone();
#else
DataCopyExtParams dataCopyParams;
dataCopyParams.blockCount = 1;
dataCopyParams.blockLen = tail * sizeof(float);
DataCopyPad(output_gm[offset + len], output_local[len],
dataCopyParams);
#endif
}
output_queue.FreeTensor(output_local);
}
__aicore__ inline void calculate_row(int64_t idx) {
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
const int64_t indices_ne1_idx =
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
indices_ne[0];
const int64_t indices_ne0_idx =
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
indices_ne1_idx * indices_ne[0]);
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
indices_ne1_idx * indices_stride[1] +
indices_ne2_idx * indices_stride[2];
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
const int64_t input_offset = selected_row_idx * input_stride[1] +
indices_ne1_idx * input_stride[2] +
indices_ne2_idx * input_stride[3];
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
indices_ne1_idx * output_stride[2] +
indices_ne2_idx * output_stride[3];
copy_in(input_offset, input_ne[0]);
LocalTensor<half> input_local = input_queue.DeQue<half>();
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
Cast(output_local, input_local, RoundMode::CAST_NONE,
local_buffer_elems);
output_queue.EnQue(output_local);
copy_out(output_offset, input_ne[0]);
input_queue.FreeTensor(input_local);
}
__aicore__ inline void calculate() {
for (int64_t i = ir; i < ir + dr; i++) {
calculate_row(i);
}
}
private:
int64_t input_ne[4];
size_t input_stride[4];
int64_t indices_ne[4];
size_t indices_stride[4];
int64_t output_ne[4];
size_t output_stride[4];
size_t local_buffer_elems;
int64_t ir;
int64_t dr;
TPipe pipe;
GlobalTensor<half> input_gm;
GlobalTensor<int32_t> indices_gm;
GlobalTensor<float> output_gm;
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
int64_t op_block_idx;
};
template <typename T>
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
auto gm_ptr = (__gm__ uint8_t *)gm;
auto ub_ptr = (uint8_t *)(ub);
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
*ub_ptr = *gm_ptr;
}
}
extern "C" __global__ __aicore__ void ascendc_get_row_f16(
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
GM_ADDR input_ne_gm, GM_ADDR input_nb_gm, GM_ADDR indices_ne_gm,
GM_ADDR indices_nb_gm, GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
int64_t input_ne_ub[4];
size_t input_nb_ub[4];
int64_t indices_ne_ub[4];
size_t indices_nb_ub[4];
int64_t output_ne_ub[4];
size_t output_nb_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(input_nb_gm, input_nb_ub, 32);
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
copy_to_ub(output_nb_gm, output_nb_ub, 32);
GET_ROW_F16 op;
op.init(input_gm, indices_gm, output_gm, input_ne_ub, input_nb_ub,
indices_ne_ub, indices_nb_ub, output_ne_ub, output_nb_ub);
op.calculate();
}

View File

@@ -1,190 +0,0 @@
#include "kernel_operator.h"
// optimize me. Use template to avoid copy code.
using namespace AscendC;
#define BUFFER_NUM 2
class GET_ROW_F32 {
public:
__aicore__ inline GET_ROW_F32() {}
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
int64_t *input_ne_ub, size_t *input_nb_ub,
int64_t *indices_ne_ub, size_t *indices_nb_ub,
int64_t *output_ne_ub, size_t *output_nb_ub) {
int64_t op_block_num = GetBlockNum();
op_block_idx = GetBlockIdx();
for (int i = 0; i < 4; i++) {
input_ne[i] = input_ne_ub[i];
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
indices_ne[i] = indices_ne_ub[i];
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
output_ne[i] = output_ne_ub[i];
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
}
// Indices has two dims. n_elements = all rows should get.
// dr, all rows should this thread get.
uint64_t n_elements =
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
dr = n_elements / op_block_num;
uint64_t tails = n_elements % op_block_num;
if (op_block_idx < tails) {
dr += 1;
ir = dr * op_block_idx;
} else {
ir = dr * op_block_idx + tails;
}
input_gm.SetGlobalBuffer((__gm__ float *)input);
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
output_gm.SetGlobalBuffer((__gm__ float *)output);
uint64_t local_buffer_size = ((input_ne[0] * sizeof(float) + 31) & ~31);
local_buffer_elems = local_buffer_size / sizeof(float);
// TODO, consider long row that can't put in UB.
// All data should asign to 32. It's ok because all data is align to 32.
pipe.InitBuffer(input_queue, BUFFER_NUM, local_buffer_size);
pipe.InitBuffer(output_queue, BUFFER_NUM, local_buffer_size);
}
__aicore__ inline void copy_in(uint32_t offset, size_t len) {
LocalTensor<float> input_local = input_queue.AllocTensor<float>();
const size_t elem_per_block = 32 / sizeof(float);
size_t tail = len % elem_per_block;
len = len & ~(elem_per_block - 1);
if(tail != 0) {
len += elem_per_block;
}
DataCopy(input_local, input_gm[offset], len);
input_queue.EnQue(input_local);
}
__aicore__ inline void copy_out(uint32_t offset, size_t len) {
LocalTensor<float> output_local = output_queue.DeQue<float>();
const size_t elem_per_block = 32 / sizeof(float);
size_t tail = len % elem_per_block;
len = len & ~(elem_per_block - 1);
if (len > 0) {
DataCopy(output_gm[offset], output_local, len);
}
if(tail != 0) {
#ifdef ASCEND_310P
for (size_t i = tail; i < elem_per_block; i++) {
output_local[len + i].SetValue(0, 0);
}
SetAtomicAdd<float>();
DataCopy(output_gm[offset + len], output_local[len], elem_per_block);
SetAtomicNone();
#else
DataCopyExtParams dataCopyParams;
dataCopyParams.blockCount = 1;
dataCopyParams.blockLen = tail * sizeof(float);
DataCopyPad(output_gm[offset + len], output_local[len],
dataCopyParams);
#endif
}
output_queue.FreeTensor(output_local);
}
__aicore__ inline void calculate_row(int64_t idx) {
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
const int64_t indices_ne1_idx =
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
indices_ne[0];
const int64_t indices_ne0_idx =
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
indices_ne1_idx * indices_ne[0]);
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
indices_ne1_idx * indices_stride[1] +
indices_ne2_idx * indices_stride[2];
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
const int64_t input_offset = selected_row_idx * input_stride[1] +
indices_ne1_idx * input_stride[2] +
indices_ne2_idx * input_stride[3];
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
indices_ne1_idx * output_stride[2] +
indices_ne2_idx * output_stride[3];
copy_in(input_offset, input_ne[0]);
LocalTensor<float> input_local = input_queue.DeQue<float>();
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
DataCopy(output_local, input_local, local_buffer_elems);
output_queue.EnQue(output_local);
copy_out(output_offset, input_ne[0]);
input_queue.FreeTensor(input_local);
}
__aicore__ inline void calculate() {
for (int64_t i = ir; i < ir + dr; i++) {
calculate_row(i);
}
}
private:
int64_t input_ne[4];
size_t input_stride[4];
int64_t indices_ne[4];
size_t indices_stride[4];
int64_t output_ne[4];
size_t output_stride[4];
size_t local_buffer_elems;
int64_t ir;
int64_t dr;
TPipe pipe;
GlobalTensor<float> input_gm;
GlobalTensor<int32_t> indices_gm;
GlobalTensor<float> output_gm;
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
int64_t op_block_idx;
};
template <typename T>
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
auto gm_ptr = (__gm__ uint8_t *)gm;
auto ub_ptr = (uint8_t *)(ub);
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
*ub_ptr = *gm_ptr;
}
}
extern "C" __global__ __aicore__ void ascendc_get_row_f32(
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
GM_ADDR input_ne_gm, GM_ADDR input_nb_gm, GM_ADDR indices_ne_gm,
GM_ADDR indices_nb_gm, GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
int64_t input_ne_ub[4];
size_t input_nb_ub[4];
int64_t indices_ne_ub[4];
size_t indices_nb_ub[4];
int64_t output_ne_ub[4];
size_t output_nb_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(input_nb_gm, input_nb_ub, 32);
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
copy_to_ub(output_nb_gm, output_nb_ub, 32);
GET_ROW_F32 op;
op.init(input_gm, indices_gm, output_gm, input_ne_ub, input_nb_ub,
indices_ne_ub, indices_nb_ub, output_ne_ub, output_nb_ub);
op.calculate();
}

View File

@@ -1,204 +0,0 @@
#include "kernel_operator.h"
// optimize me. Use template to avoid copy code.
using namespace AscendC;
#ifdef ASCEND_310P // 310P not support 4bit get row
extern "C" __global__ __aicore__ void ascendc_get_row_q4_0(
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm,
GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
// let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
printf("Ascend310P not support 4bit get row.\n");
}
#else
#define BUFFER_NUM 2
#define QK4_0 32
class GET_ROW_Q4_0 {
public:
__aicore__ inline GET_ROW_Q4_0() {}
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
int64_t *input_ne_ub, int64_t *indices_ne_ub,
size_t *indices_nb_ub, int64_t *output_ne_ub,
size_t *output_nb_ub) {
int64_t op_block_num = GetBlockNum();
int64_t op_block_idx = GetBlockIdx();
for (int i = 0; i < 4; i++) {
input_ne[i] = input_ne_ub[i];
indices_ne[i] = indices_ne_ub[i];
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
scale_ne[i] = input_ne_ub[i];
output_ne[i] = output_ne_ub[i];
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
}
// one scale for a group.
scale_ne[0] /= QK4_0;
input_stride[0] = 1;
scale_stride[0] = 1;
output_stride[0] = 1;
for (int i = 1; i < 4; i++) {
input_stride[i] = input_stride[i - 1] * input_ne[i - 1];
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
}
group_size_in_row = input_ne[0] / QK4_0;
int64_t scale_offset = input_ne[0] * input_ne[1] * input_ne[2] *
input_ne[3] / 2;
// Indices has two dims. n_elements = all rows should get.
// dr, all rows should this thread get.
uint64_t n_elements =
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
dr = n_elements / op_block_num;
uint64_t tails = n_elements % op_block_num;
if (op_block_idx < tails) {
dr += 1;
ir = dr * op_block_idx;
} else {
ir = dr * op_block_idx + tails;
}
input_gm.SetGlobalBuffer((__gm__ int4b_t *)input);
scale_gm.SetGlobalBuffer((__gm__ half *)(input + scale_offset));
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
output_gm.SetGlobalBuffer((__gm__ float *)output);
pipe.InitBuffer(input_queue, BUFFER_NUM, QK4_0 * sizeof(int4b_t));
pipe.InitBuffer(cast_queue, BUFFER_NUM, QK4_0 * sizeof(half));
pipe.InitBuffer(output_queue, BUFFER_NUM, QK4_0 * sizeof(float));
}
__aicore__ inline void copy_in(uint32_t offset) {
LocalTensor<int4b_t> input_local = input_queue.AllocTensor<int4b_t>();
// 32 * sizeof(int4b_t) = 16, which is not aligned to 32, why no error?
DataCopy(input_local, input_gm[offset], QK4_0);
input_queue.EnQue(input_local);
}
__aicore__ inline void copy_out(uint32_t offset) {
LocalTensor<float> output_local = output_queue.DeQue<float>();
DataCopy(output_gm[offset], output_local, QK4_0);
output_queue.FreeTensor(output_local);
}
__aicore__ inline void calculate_group(int64_t idx, int64_t group) {
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
const int64_t indices_ne1_idx =
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
indices_ne[0];
const int64_t indices_ne0_idx =
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
indices_ne1_idx * indices_ne[0]);
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
indices_ne1_idx * indices_stride[1] +
indices_ne2_idx * indices_stride[2];
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
const int64_t input_offset = selected_row_idx * input_stride[1] +
indices_ne1_idx * input_stride[2] +
indices_ne2_idx * input_stride[3] +
group * QK4_0;
const int64_t scale_offset = selected_row_idx * scale_stride[1] +
indices_ne1_idx * scale_stride[2] +
indices_ne2_idx * scale_stride[3] + group;
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
indices_ne1_idx * output_stride[2] +
indices_ne2_idx * output_stride[3] +
group * QK4_0;
copy_in(input_offset);
LocalTensor<int4b_t> input_local = input_queue.DeQue<int4b_t>();
LocalTensor<half> cast_local = cast_queue.AllocTensor<half>();
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
// TODO: cast more data to speed up.
Cast(cast_local, input_local, RoundMode::CAST_NONE, QK4_0);
Cast(output_local, cast_local, RoundMode::CAST_NONE, QK4_0);
// Only mul need compile by group.
half scale = scale_gm.GetValue(scale_offset);
Muls(output_local, output_local, (float)scale, QK4_0);
input_queue.FreeTensor(input_local);
cast_queue.FreeTensor(cast_local);
output_queue.EnQue(output_local);
copy_out(output_offset);
}
__aicore__ inline void calculate() {
for (int64_t i = ir; i < ir + dr; i++) {
for (int64_t j = 0; j < group_size_in_row; j++) {
calculate_group(i, j);
}
}
}
private:
int64_t input_ne[4];
size_t input_stride[4];
int64_t scale_ne[4];
size_t scale_stride[4];
int64_t indices_ne[4];
size_t indices_stride[4];
int64_t output_ne[4];
size_t output_stride[4];
int64_t ir;
int64_t dr;
int64_t group_size_in_row;
TPipe pipe;
GlobalTensor<int4b_t> input_gm;
GlobalTensor<half> scale_gm;
GlobalTensor<int32_t> indices_gm;
GlobalTensor<float> output_gm;
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
TQue<QuePosition::VECIN, BUFFER_NUM> cast_queue;
};
template <typename T>
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
auto gm_ptr = (__gm__ uint8_t *)gm;
auto ub_ptr = (uint8_t *)(ub);
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
*ub_ptr = *gm_ptr;
}
}
extern "C" __global__ __aicore__ void ascendc_get_row_q4_0(
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm,
GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
int64_t input_ne_ub[4];
int64_t indices_ne_ub[4];
size_t indices_nb_ub[4];
int64_t output_ne_ub[4];
size_t output_nb_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
copy_to_ub(output_nb_gm, output_nb_ub, 32);
GET_ROW_Q4_0 op;
op.init(input_gm, indices_gm, output_gm, input_ne_ub, indices_ne_ub,
indices_nb_ub, output_ne_ub, output_nb_ub);
op.calculate();
}
#endif // #ifdef ASCEND_310P

View File

@@ -1,191 +0,0 @@
#include "kernel_operator.h"
// optimize me. Use template to avoid copy code.
using namespace AscendC;
#define BUFFER_NUM 2
#define QK8_0 32
class GET_ROW_Q8_0 {
public:
__aicore__ inline GET_ROW_Q8_0() {}
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
int64_t *input_ne_ub, int64_t *indices_ne_ub,
size_t *indices_nb_ub, int64_t *output_ne_ub,
size_t *output_nb_ub) {
int64_t op_block_num = GetBlockNum();
int64_t op_block_idx = GetBlockIdx();
for (int i = 0; i < 4; i++) {
input_ne[i] = input_ne_ub[i];
indices_ne[i] = indices_ne_ub[i];
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
scale_ne[i] = input_ne_ub[i];
output_ne[i] = output_ne_ub[i];
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
}
// one scale for a group.
scale_ne[0] /= QK8_0;
input_stride[0] = 1;
scale_stride[0] = 1;
output_stride[0] = 1;
for (int i = 1; i < 4; i++) {
input_stride[i] = input_stride[i - 1] * input_ne[i - 1];
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
}
group_size_in_row = input_ne[0] / QK8_0;
int64_t scale_offset = input_ne[0] * input_ne[1] * input_ne[2] *
input_ne[3] * sizeof(int8_t);
// Indices has two dims. n_elements = all rows should get.
// dr, all rows should this thread get.
uint64_t n_elements =
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
dr = n_elements / op_block_num;
uint64_t tails = n_elements % op_block_num;
if (op_block_idx < tails) {
dr += 1;
ir = dr * op_block_idx;
} else {
ir = dr * op_block_idx + tails;
}
input_gm.SetGlobalBuffer((__gm__ int8_t *)input);
scale_gm.SetGlobalBuffer((__gm__ half *)(input + scale_offset));
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
output_gm.SetGlobalBuffer((__gm__ float *)output);
pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t));
pipe.InitBuffer(cast_queue, BUFFER_NUM, QK8_0 * sizeof(half));
pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(float));
}
__aicore__ inline void copy_in(uint32_t offset) {
LocalTensor<int8_t> input_local = input_queue.AllocTensor<int8_t>();
DataCopy(input_local, input_gm[offset], QK8_0);
input_queue.EnQue(input_local);
}
__aicore__ inline void copy_out(uint32_t offset) {
LocalTensor<float> output_local = output_queue.DeQue<float>();
DataCopy(output_gm[offset], output_local, QK8_0);
output_queue.FreeTensor(output_local);
}
__aicore__ inline void calculate_group(int64_t idx, int64_t group) {
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
const int64_t indices_ne1_idx =
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
indices_ne[0];
const int64_t indices_ne0_idx =
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
indices_ne1_idx * indices_ne[0]);
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
indices_ne1_idx * indices_stride[1] +
indices_ne2_idx * indices_stride[2];
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
const int64_t input_offset = selected_row_idx * input_stride[1] +
indices_ne1_idx * input_stride[2] +
indices_ne2_idx * input_stride[3] +
group * QK8_0;
const int64_t scale_offset = selected_row_idx * scale_stride[1] +
indices_ne1_idx * scale_stride[2] +
indices_ne2_idx * scale_stride[3] + group;
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
indices_ne1_idx * output_stride[2] +
indices_ne2_idx * output_stride[3] +
group * QK8_0;
copy_in(input_offset);
LocalTensor<int8_t> input_local = input_queue.DeQue<int8_t>();
LocalTensor<half> cast_local = cast_queue.AllocTensor<half>();
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
// TODO: cast more data to speed up.
Cast(cast_local, input_local, RoundMode::CAST_NONE, QK8_0);
Cast(output_local, cast_local, RoundMode::CAST_NONE, QK8_0);
// Only mul need compile by group.
half scale = scale_gm.GetValue(scale_offset);
Muls(output_local, output_local, (float)scale, QK8_0);
input_queue.FreeTensor(input_local);
cast_queue.FreeTensor(cast_local);
output_queue.EnQue(output_local);
copy_out(output_offset);
}
__aicore__ inline void calculate() {
for (int64_t i = ir; i < ir + dr; i++) {
for (int64_t j = 0; j < group_size_in_row; j++) {
calculate_group(i, j);
}
}
}
private:
int64_t input_ne[4];
size_t input_stride[4];
int64_t scale_ne[4];
size_t scale_stride[4];
int64_t indices_ne[4];
size_t indices_stride[4];
int64_t output_ne[4];
size_t output_stride[4];
int64_t ir;
int64_t dr;
int64_t group_size_in_row;
TPipe pipe;
GlobalTensor<int8_t> input_gm;
GlobalTensor<half> scale_gm;
GlobalTensor<int32_t> indices_gm;
GlobalTensor<float> output_gm;
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
TQue<QuePosition::VECIN, BUFFER_NUM> cast_queue;
};
template <typename T>
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
auto gm_ptr = (__gm__ uint8_t *)gm;
auto ub_ptr = (uint8_t *)(ub);
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
*ub_ptr = *gm_ptr;
}
}
extern "C" __global__ __aicore__ void ascendc_get_row_q8_0(
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm,
GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
int64_t input_ne_ub[4];
int64_t indices_ne_ub[4];
size_t indices_nb_ub[4];
int64_t output_ne_ub[4];
size_t output_nb_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
copy_to_ub(output_nb_gm, output_nb_ub, 32);
GET_ROW_Q8_0 op;
op.init(input_gm, indices_gm, output_gm, input_ne_ub, indices_ne_ub,
indices_nb_ub, output_ne_ub, output_nb_ub);
op.calculate();
}

Some files were not shown because too many files have changed in this diff Show More