mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-12 14:03:20 +02:00
Compare commits
75 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
518a01480e | ||
|
|
e391d3ee8d | ||
|
|
bd3f59f812 | ||
|
|
52b3d71f12 | ||
|
|
d0d5b2232b | ||
|
|
916c83bfe7 | ||
|
|
0c74b04376 | ||
|
|
80b717d493 | ||
|
|
6bf28f0111 | ||
|
|
f1e3eb4249 | ||
|
|
0364178ca2 | ||
|
|
c6ff5d2a8d | ||
|
|
7a84777f42 | ||
|
|
3e1d29348b | ||
|
|
1be76e4620 | ||
|
|
b772394297 | ||
|
|
23106f94ea | ||
|
|
94148ba330 | ||
|
|
9ac4d611d0 | ||
|
|
348888e0dc | ||
|
|
74d4f5b041 | ||
|
|
35e592eb30 | ||
|
|
7d7b1bafa7 | ||
|
|
c262beddf2 | ||
|
|
5dd5d1ab00 | ||
|
|
1c059995e0 | ||
|
|
2004644b7a | ||
|
|
5f696e88e0 | ||
|
|
193c3e03a6 | ||
|
|
65cfe136a0 | ||
|
|
3f9da22c2b | ||
|
|
2a0dc97e56 | ||
|
|
97a20c012b | ||
|
|
f01bd02376 | ||
|
|
6f3bd38640 | ||
|
|
be0a0f8cae | ||
|
|
92e3006bb6 | ||
|
|
833e2b7409 | ||
|
|
e0e912f49b | ||
|
|
a10b36c91a | ||
|
|
83a88bd6af | ||
|
|
42eb248f46 | ||
|
|
9bacd6b374 | ||
|
|
267c1399f1 | ||
|
|
f423981ac8 | ||
|
|
e39e727e9a | ||
|
|
5936a616e4 | ||
|
|
3fd072a540 | ||
|
|
a6f32f0b34 | ||
|
|
2bb3597e42 | ||
|
|
8293970542 | ||
|
|
8bbf26083d | ||
|
|
35782aeedb | ||
|
|
c80a7759da | ||
|
|
250d7953e8 | ||
|
|
403fbacbbc | ||
|
|
a8a1f33567 | ||
|
|
1790e73157 | ||
|
|
0114a32da0 | ||
|
|
a7724480fd | ||
|
|
1a85949067 | ||
|
|
6c02a032fa | ||
|
|
f52d59d771 | ||
|
|
52de2e5949 | ||
|
|
2c3f8b850a | ||
|
|
4663bd353c | ||
|
|
b3de7cac73 | ||
|
|
7242dd9675 | ||
|
|
492d7f1ff7 | ||
|
|
d3f1f0acfb | ||
|
|
360dc22c00 | ||
|
|
a62d7fa7a9 | ||
|
|
e408d4351a | ||
|
|
3891e183c6 | ||
|
|
af6ae1efb2 |
@@ -14,9 +14,9 @@ WORKDIR /app
|
||||
COPY . .
|
||||
|
||||
RUN if [ "$TARGETARCH" = "amd64" ]; then \
|
||||
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON; \
|
||||
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON; \
|
||||
elif [ "$TARGETARCH" = "arm64" ]; then \
|
||||
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=${GGML_CPU_ARM_ARCH}; \
|
||||
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=${GGML_CPU_ARM_ARCH}; \
|
||||
else \
|
||||
echo "Unsupported architecture"; \
|
||||
exit 1; \
|
||||
|
||||
@@ -21,7 +21,7 @@ COPY . .
|
||||
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib && \
|
||||
|
||||
@@ -17,7 +17,7 @@ RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
|
||||
&& export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
|
||||
fi && \
|
||||
echo "Building with dynamic libs" && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ${OPT_SYCL_F16} && \
|
||||
cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib && \
|
||||
|
||||
@@ -35,7 +35,7 @@ COPY . .
|
||||
RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib && \
|
||||
|
||||
@@ -40,7 +40,7 @@ WORKDIR /app
|
||||
COPY . .
|
||||
|
||||
RUN HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
|
||||
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$ROCM_DOCKER_ARCH -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON \
|
||||
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$ROCM_DOCKER_ARCH -DCMAKE_BUILD_TYPE=Release \
|
||||
&& cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib \
|
||||
|
||||
25
.github/actions/windows-setup-curl/action.yml
vendored
Normal file
25
.github/actions/windows-setup-curl/action.yml
vendored
Normal file
@@ -0,0 +1,25 @@
|
||||
name: 'Windows - Setup CURL'
|
||||
description: 'Composite action, to be reused in other workflow'
|
||||
inputs:
|
||||
curl_version:
|
||||
description: 'CURL version'
|
||||
required: false
|
||||
default: '8.6.0_6'
|
||||
outputs:
|
||||
curl_path:
|
||||
description: "Path to the downloaded libcurl"
|
||||
value: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
shell: powershell
|
||||
env:
|
||||
CURL_VERSION: ${{ inputs.curl_version }}
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/curl.zip -L "https://curl.se/windows/dl-${env:CURL_VERSION}/curl-${env:CURL_VERSION}-win64-mingw.zip"
|
||||
mkdir $env:RUNNER_TEMP/libcurl
|
||||
tar.exe -xvf $env:RUNNER_TEMP/curl.zip --strip-components=1 -C $env:RUNNER_TEMP/libcurl
|
||||
echo "curl_path=$env:RUNNER_TEMP/libcurl" >> $env:GITHUB_OUTPUT
|
||||
1
.github/workflows/bench.yml.disabled
vendored
1
.github/workflows/bench.yml.disabled
vendored
@@ -104,7 +104,6 @@ jobs:
|
||||
cmake -B build \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DLLAMA_CUBLAS=ON \
|
||||
-DCUDAToolkit_ROOT=/usr/local/cuda \
|
||||
-DCMAKE_CUDA_COMPILER=/usr/local/cuda/bin/nvcc \
|
||||
|
||||
124
.github/workflows/build-linux-cross.yml
vendored
Normal file
124
.github/workflows/build-linux-cross.yml
vendored
Normal file
@@ -0,0 +1,124 @@
|
||||
name: Build on Linux using cross-compiler
|
||||
on:
|
||||
workflow_dispatch:
|
||||
workflow_call:
|
||||
|
||||
jobs:
|
||||
ubuntu-latest-riscv64-cpu-cross:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Setup Riscv
|
||||
run: |
|
||||
sudo dpkg --add-architecture riscv64
|
||||
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
|
||||
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
|
||||
sudo apt-get clean
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
gcc-14-riscv64-linux-gnu \
|
||||
g++-14-riscv64-linux-gnu \
|
||||
libcurl4-openssl-dev:riscv64
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
|
||||
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
|
||||
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
|
||||
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
ubuntu-latest-riscv64-vulkan-cross:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Setup Riscv
|
||||
run: |
|
||||
sudo dpkg --add-architecture riscv64
|
||||
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
|
||||
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
|
||||
sudo apt-get clean
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
glslc \
|
||||
gcc-14-riscv64-linux-gnu \
|
||||
g++-14-riscv64-linux-gnu \
|
||||
libvulkan-dev:riscv64 \
|
||||
libcurl4-openssl-dev:riscv64
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
|
||||
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
|
||||
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
|
||||
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
ubuntu-latest-arm64-vulkan-cross:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Setup Arm64
|
||||
run: |
|
||||
sudo dpkg --add-architecture arm64
|
||||
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
|
||||
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
|
||||
sudo apt-get clean
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
glslc \
|
||||
crossbuild-essential-arm64 \
|
||||
libvulkan-dev:arm64 \
|
||||
libcurl4-openssl-dev:arm64
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=aarch64 \
|
||||
-DCMAKE_C_COMPILER=aarch64-linux-gnu-gcc \
|
||||
-DCMAKE_CXX_COMPILER=aarch64-linux-gnu-g++ \
|
||||
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
-DCMAKE_FIND_ROOT_PATH=/usr/lib/aarch64-linux-gnu \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
87
.github/workflows/build.yml
vendored
87
.github/workflows/build.yml
vendored
@@ -10,7 +10,7 @@ on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['.github/workflows/build.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal', '**/*.comp']
|
||||
paths: ['.github/workflows/build.yml', '.github/workflows/build-linux-cross.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal', '**/*.comp']
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['.github/workflows/build.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal', '**/*.comp']
|
||||
@@ -54,6 +54,7 @@ jobs:
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
brew install curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@@ -62,7 +63,6 @@ jobs:
|
||||
cmake -B build \
|
||||
-DCMAKE_BUILD_RPATH="@loader_path" \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DGGML_RPC=ON
|
||||
@@ -92,7 +92,6 @@ jobs:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
@@ -123,6 +122,7 @@ jobs:
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
brew install curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@@ -133,7 +133,6 @@ jobs:
|
||||
cmake -B build \
|
||||
-DCMAKE_BUILD_RPATH="@loader_path" \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DGGML_METAL=OFF \
|
||||
-DGGML_RPC=ON
|
||||
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
@@ -162,7 +161,6 @@ jobs:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
@@ -207,7 +205,6 @@ jobs:
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DGGML_RPC=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
@@ -246,7 +243,6 @@ jobs:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
@@ -281,7 +277,7 @@ jobs:
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install build-essential libcurl4-openssl-dev
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@@ -322,7 +318,7 @@ jobs:
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install build-essential libcurl4-openssl-dev
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@@ -360,7 +356,7 @@ jobs:
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install build-essential libcurl4-openssl-dev
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@@ -397,7 +393,7 @@ jobs:
|
||||
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | sudo apt-key add -
|
||||
sudo wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
|
||||
sudo apt-get update -y
|
||||
sudo apt-get install -y build-essential mesa-vulkan-drivers vulkan-sdk
|
||||
sudo apt-get install -y build-essential mesa-vulkan-drivers vulkan-sdk libcurl4-openssl-dev
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@@ -431,7 +427,6 @@ jobs:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
@@ -454,7 +449,7 @@ jobs:
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev
|
||||
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev libcurl4-openssl-dev
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
@@ -530,7 +525,7 @@ jobs:
|
||||
shell: bash
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install intel-oneapi-compiler-dpcpp-cpp
|
||||
sudo apt install intel-oneapi-compiler-dpcpp-cpp libcurl4-openssl-dev
|
||||
|
||||
- name: install oneAPI MKL library
|
||||
shell: bash
|
||||
@@ -578,7 +573,7 @@ jobs:
|
||||
shell: bash
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install intel-oneapi-compiler-dpcpp-cpp
|
||||
sudo apt install intel-oneapi-compiler-dpcpp-cpp libcurl4-openssl-dev
|
||||
|
||||
- name: install oneAPI MKL library
|
||||
shell: bash
|
||||
@@ -606,6 +601,9 @@ jobs:
|
||||
-DGGML_SYCL_F16=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
build-linux-cross:
|
||||
uses: ./.github/workflows/build-linux-cross.yml
|
||||
|
||||
macOS-latest-cmake-ios:
|
||||
runs-on: macos-latest
|
||||
|
||||
@@ -633,6 +631,7 @@ jobs:
|
||||
cmake -B build -G Xcode \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_BUILD_COMMON=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
@@ -668,6 +667,7 @@ jobs:
|
||||
cmake -B build -G Xcode \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_BUILD_COMMON=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
@@ -697,6 +697,7 @@ jobs:
|
||||
cmake -B build -G Xcode \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_BUILD_COMMON=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
@@ -736,6 +737,7 @@ jobs:
|
||||
cmake -B build -G Xcode \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
@@ -803,7 +805,7 @@ jobs:
|
||||
env:
|
||||
OPENBLAS_VERSION: 0.3.23
|
||||
SDE_VERSION: 9.33.0-2024-01-07
|
||||
VULKAN_VERSION: 1.4.304.1
|
||||
VULKAN_VERSION: 1.4.309.0
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
@@ -896,10 +898,17 @@ jobs:
|
||||
-DCMAKE_INSTALL_PREFIX="$env:RUNNER_TEMP/opencl-arm64-release"
|
||||
cmake --build build-arm64-release --target install --config release
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cmake -S . -B build ${{ matrix.defines }}
|
||||
cmake -S . -B build ${{ matrix.defines }} `
|
||||
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
|
||||
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS}
|
||||
|
||||
- name: Add libopenblas.dll
|
||||
@@ -959,9 +968,10 @@ jobs:
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
Copy-Item LICENSE .\build\bin\Release\llama.cpp.txt
|
||||
Copy-Item .\examples\run\linenoise.cpp\LICENSE .\build\bin\Release\linenoise.cpp.txt
|
||||
Copy-Item $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\Release\libcurl-x64.dll
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}.zip .\build\bin\Release\*
|
||||
|
||||
- name: Upload artifacts
|
||||
@@ -987,7 +997,7 @@ jobs:
|
||||
DEBIAN_FRONTEND: noninteractive
|
||||
run: |
|
||||
apt update
|
||||
apt install -y cmake build-essential ninja-build libgomp1 git
|
||||
apt install -y cmake build-essential ninja-build libgomp1 git libcurl4-openssl-dev
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
@@ -1089,16 +1099,23 @@ jobs:
|
||||
run: |
|
||||
choco install ninja
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
shell: cmd
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
|
||||
cmake -S . -B build -G "Ninja Multi-Config" ^
|
||||
-DLLAMA_BUILD_SERVER=ON ^
|
||||
-DGGML_NATIVE=OFF ^
|
||||
-DGGML_CUDA=ON ^
|
||||
-DGGML_RPC=ON
|
||||
-DGGML_RPC=ON ^
|
||||
-DCURL_LIBRARY="%CURL_PATH%/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="%CURL_PATH%/include"
|
||||
set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1
|
||||
cmake --build build --config Release -j %NINJA_JOBS% -t ggml
|
||||
cmake --build build --config Release
|
||||
@@ -1119,7 +1136,10 @@ jobs:
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cp $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\Release\libcurl-x64.dll
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip .\build\bin\Release\*
|
||||
|
||||
- name: Upload artifacts
|
||||
@@ -1174,6 +1194,8 @@ jobs:
|
||||
run: |
|
||||
scripts/install-oneapi.bat $WINDOWS_BASEKIT_URL $WINDOWS_DPCPP_MKL
|
||||
|
||||
# TODO: add libcurl support ; we will also need to modify win-build-sycl.bat to accept user-specified args
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: examples/sycl/win-build-sycl.bat
|
||||
@@ -1259,8 +1281,14 @@ jobs:
|
||||
key: ${{ github.job }}
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
|
||||
@@ -1271,9 +1299,11 @@ jobs:
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DGGML_HIP=ON `
|
||||
-DGGML_HIP_ROCWMMA_FATTN=ON `
|
||||
-DGGML_RPC=ON
|
||||
-DGGML_RPC=ON `
|
||||
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
|
||||
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
|
||||
|
||||
# TODO: reuse windows-latest-cmake-hip instead of duplicating this job
|
||||
windows-latest-cmake-hip-release:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
runs-on: windows-latest
|
||||
@@ -1315,8 +1345,14 @@ jobs:
|
||||
run: |
|
||||
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
|
||||
@@ -1328,7 +1364,8 @@ jobs:
|
||||
-DAMDGPU_TARGETS=${{ matrix.gpu_target }} `
|
||||
-DGGML_HIP_ROCWMMA_FATTN=ON `
|
||||
-DGGML_HIP=ON `
|
||||
-DGGML_RPC=ON
|
||||
-DGGML_RPC=ON `
|
||||
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
|
||||
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
|
||||
md "build\bin\rocblas\library\"
|
||||
cp "${env:HIP_PATH}\bin\hipblas.dll" "build\bin\"
|
||||
@@ -1350,7 +1387,10 @@ jobs:
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cp $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\libcurl-x64.dll
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-hip-x64-${{ matrix.gpu_target }}.zip .\build\bin\*
|
||||
|
||||
- name: Upload artifacts
|
||||
@@ -1375,6 +1415,7 @@ jobs:
|
||||
cmake -B build -G Xcode \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
|
||||
18
.github/workflows/server.yml
vendored
18
.github/workflows/server.yml
vendored
@@ -129,7 +129,6 @@ jobs:
|
||||
cmake -B build \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
|
||||
-DGGML_OPENMP=OFF ;
|
||||
@@ -142,7 +141,6 @@ jobs:
|
||||
cmake -B build \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
|
||||
@@ -154,7 +152,6 @@ jobs:
|
||||
cmake -B build \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} ;
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
|
||||
|
||||
@@ -195,17 +192,14 @@ jobs:
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
env:
|
||||
CURL_VERSION: 8.6.0_6
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/curl.zip -L "https://curl.se/windows/dl-${env:CURL_VERSION}/curl-${env:CURL_VERSION}-win64-mingw.zip"
|
||||
mkdir $env:RUNNER_TEMP/libcurl
|
||||
tar.exe -xvf $env:RUNNER_TEMP/curl.zip --strip-components=1 -C $env:RUNNER_TEMP/libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cmake -B build -DLLAMA_CURL=ON -DCURL_LIBRARY="$env:RUNNER_TEMP/libcurl/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:RUNNER_TEMP/libcurl/include"
|
||||
cmake -B build -DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
|
||||
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS} --target llama-server
|
||||
|
||||
- name: Python setup
|
||||
@@ -221,8 +215,10 @@ jobs:
|
||||
|
||||
- name: Copy Libcurl
|
||||
id: prepare_libcurl
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cp $env:RUNNER_TEMP/libcurl/bin/libcurl-x64.dll ./build/bin/Release/libcurl-x64.dll
|
||||
cp $env:CURL_PATH/bin/libcurl-x64.dll ./build/bin/Release/libcurl-x64.dll
|
||||
|
||||
- name: Tests
|
||||
id: server_integration_tests
|
||||
|
||||
@@ -81,7 +81,7 @@ option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_SERVER "llama: build server example" ${LLAMA_STANDALONE})
|
||||
|
||||
# 3rd party libs
|
||||
option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF)
|
||||
option(LLAMA_CURL "llama: use libcurl to download model from an URL" ON)
|
||||
option(LLAMA_LLGUIDANCE "llama-common: include LLGuidance library for structured output in common utils" OFF)
|
||||
|
||||
# Required for relocatable CMake package
|
||||
@@ -168,6 +168,11 @@ add_subdirectory(src)
|
||||
# utils, programs, examples and tests
|
||||
#
|
||||
|
||||
if (NOT LLAMA_BUILD_COMMON)
|
||||
message(STATUS "LLAMA_BUILD_COMMON is OFF, disabling LLAMA_CURL")
|
||||
set(LLAMA_CURL OFF)
|
||||
endif()
|
||||
|
||||
if (LLAMA_BUILD_COMMON)
|
||||
add_subdirectory(common)
|
||||
endif()
|
||||
@@ -242,3 +247,20 @@ configure_file(cmake/llama.pc.in
|
||||
|
||||
install(FILES "${CMAKE_CURRENT_BINARY_DIR}/llama.pc"
|
||||
DESTINATION ${CMAKE_INSTALL_LIBDIR}/pkgconfig)
|
||||
|
||||
#
|
||||
# copy the license files
|
||||
#
|
||||
|
||||
# Check if running in GitHub Actions
|
||||
if(DEFINED ENV{GITHUB_ACTIONS} AND "$ENV{GITHUB_ACTIONS}" STREQUAL "true")
|
||||
message(STATUS "Running inside GitHub Actions - copying license files")
|
||||
|
||||
# Copy all files from licenses/ to build/bin/
|
||||
file(GLOB LICENSE_FILES "${CMAKE_SOURCE_DIR}/licenses/*")
|
||||
foreach(LICENSE_FILE ${LICENSE_FILES})
|
||||
get_filename_component(FILENAME ${LICENSE_FILE} NAME)
|
||||
configure_file(${LICENSE_FILE} "${CMAKE_BINARY_DIR}/bin/${FILENAME}" COPYONLY)
|
||||
endforeach()
|
||||
endif()
|
||||
|
||||
|
||||
31
README.md
31
README.md
@@ -112,6 +112,8 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- [x] [RWKV-6](https://github.com/BlinkDL/RWKV-LM)
|
||||
- [x] [QRWKV-6](https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1)
|
||||
- [x] [GigaChat-20B-A3B](https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct)
|
||||
- [X] [Trillion-7B-preview](https://huggingface.co/trillionlabs/Trillion-7B-preview)
|
||||
- [x] [Ling models](https://huggingface.co/collections/inclusionAI/ling-67c51c85b34a7ea0aba94c32)
|
||||
|
||||
#### Multimodal
|
||||
|
||||
@@ -528,6 +530,35 @@ If your issue is with model generation quality, then please at least scan the fo
|
||||
- [Aligning language models to follow instructions](https://openai.com/research/instruction-following)
|
||||
- [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)
|
||||
|
||||
## XCFramework
|
||||
The XCFramework is a precompiled version of the library for iOS, visionOS, tvOS,
|
||||
and macOS. It can be used in Swift projects without the need to compile the
|
||||
library from source. For example:
|
||||
```swift
|
||||
// swift-tools-version: 5.10
|
||||
// The swift-tools-version declares the minimum version of Swift required to build this package.
|
||||
|
||||
import PackageDescription
|
||||
|
||||
let package = Package(
|
||||
name: "MyLlamaPackage",
|
||||
targets: [
|
||||
.executableTarget(
|
||||
name: "MyLlamaPackage",
|
||||
dependencies: [
|
||||
"LlamaFramework"
|
||||
]),
|
||||
.binaryTarget(
|
||||
name: "LlamaFramework",
|
||||
url: "https://github.com/ggml-org/llama.cpp/releases/download/b5046/llama-b5046-xcframework.zip",
|
||||
checksum: "c19be78b5f00d8d29a25da41042cb7afa094cbf6280a225abe614b03b20029ab"
|
||||
)
|
||||
]
|
||||
)
|
||||
```
|
||||
The above example is using an intermediate build `b5046` of the library. This can be modified
|
||||
to use a different version by changing the URL and checksum.
|
||||
|
||||
## Completions
|
||||
Command-line completion is available for some environments.
|
||||
|
||||
|
||||
@@ -399,6 +399,7 @@ cmake -B build-ios-sim -G Xcode \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphonesimulator \
|
||||
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-ios-sim --config Release -- -quiet
|
||||
|
||||
@@ -411,6 +412,7 @@ cmake -B build-ios-device -G Xcode \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphoneos \
|
||||
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-ios-device --config Release -- -quiet
|
||||
|
||||
@@ -421,6 +423,7 @@ cmake -B build-macos -G Xcode \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
|
||||
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-macos --config Release -- -quiet
|
||||
|
||||
@@ -434,6 +437,7 @@ cmake -B build-visionos -G Xcode \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xros \
|
||||
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-visionos --config Release -- -quiet
|
||||
|
||||
@@ -447,6 +451,7 @@ cmake -B build-visionos-sim -G Xcode \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xrsimulator \
|
||||
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-visionos-sim --config Release -- -quiet
|
||||
|
||||
@@ -462,6 +467,7 @@ cmake -B build-tvos-sim -G Xcode \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=appletvsimulator \
|
||||
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-tvos-sim --config Release -- -quiet
|
||||
|
||||
@@ -476,6 +482,7 @@ cmake -B build-tvos-device -G Xcode \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=appletvos \
|
||||
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-tvos-device --config Release -- -quiet
|
||||
|
||||
|
||||
@@ -60,7 +60,7 @@ docker run --privileged -it \
|
||||
Inside the container, execute the following commands:
|
||||
|
||||
```bash
|
||||
apt update -y && apt install -y bc cmake git python3.10-venv time unzip wget
|
||||
apt update -y && apt install -y bc cmake ccache git python3.10-venv time unzip wget
|
||||
git config --global --add safe.directory /ws
|
||||
GG_BUILD_MUSA=1 bash ./ci/run.sh /ci-results /ci-cache
|
||||
```
|
||||
|
||||
@@ -39,7 +39,7 @@ sd=`dirname $0`
|
||||
cd $sd/../
|
||||
SRC=`pwd`
|
||||
|
||||
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON"
|
||||
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=OFF"
|
||||
|
||||
if [ ! -z ${GG_BUILD_METAL} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON -DGGML_METAL_USE_BF16=ON"
|
||||
@@ -59,6 +59,8 @@ if [ ! -z ${GG_BUILD_SYCL} ]; then
|
||||
export ONEAPI_DEVICE_SELECTOR="level_zero:0"
|
||||
# Enable sysman for correct memory reporting
|
||||
export ZES_ENABLE_SYSMAN=1
|
||||
# to circumvent precision issues on CPY operations
|
||||
export SYCL_PROGRAM_COMPILE_OPTIONS="-cl-fp32-correctly-rounded-divide-sqrt"
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_SYCL=1 -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON"
|
||||
fi
|
||||
|
||||
@@ -69,7 +71,7 @@ fi
|
||||
if [ ! -z ${GG_BUILD_MUSA} ]; then
|
||||
# Use qy1 by default (MTT S80)
|
||||
MUSA_ARCH=${MUSA_ARCH:-21}
|
||||
CMAKE_EXTRA="-DGGML_MUSA=ON -DMUSA_ARCHITECTURES=${MUSA_ARCH}"
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_MUSA=ON -DMUSA_ARCHITECTURES=${MUSA_ARCH}"
|
||||
fi
|
||||
## helpers
|
||||
|
||||
|
||||
@@ -85,7 +85,10 @@ set(LLAMA_COMMON_EXTRA_LIBS build_info)
|
||||
|
||||
# Use curl to download model url
|
||||
if (LLAMA_CURL)
|
||||
find_package(CURL REQUIRED)
|
||||
find_package(CURL)
|
||||
if (NOT CURL_FOUND)
|
||||
message(FATAL_ERROR "Could NOT find CURL. Hint: to disable this feature, set -DLLAMA_CURL=OFF")
|
||||
endif()
|
||||
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_CURL)
|
||||
include_directories(${CURL_INCLUDE_DIRS})
|
||||
find_library(CURL_LIBRARY curl REQUIRED)
|
||||
|
||||
720
common/arg.cpp
720
common/arg.cpp
@@ -1,12 +1,24 @@
|
||||
#include "gguf.h" // for reading GGUF splits
|
||||
#include "arg.h"
|
||||
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "sampling.h"
|
||||
#include "chat.h"
|
||||
|
||||
// fix problem with std::min and std::max
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
# define NOMINMAX
|
||||
#endif
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
#include <algorithm>
|
||||
#include <climits>
|
||||
#include <cstdarg>
|
||||
#include <filesystem>
|
||||
#include <fstream>
|
||||
#include <regex>
|
||||
#include <set>
|
||||
@@ -14,6 +26,14 @@
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
//#define LLAMA_USE_CURL
|
||||
|
||||
#if defined(LLAMA_USE_CURL)
|
||||
#include <curl/curl.h>
|
||||
#include <curl/easy.h>
|
||||
#include <future>
|
||||
#endif
|
||||
|
||||
#include "json-schema-to-grammar.h"
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
@@ -125,47 +145,553 @@ std::string common_arg::to_string() {
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
//
|
||||
// downloader
|
||||
//
|
||||
|
||||
struct common_hf_file_res {
|
||||
std::string repo; // repo name with ":tag" removed
|
||||
std::string ggufFile;
|
||||
std::string mmprojFile;
|
||||
};
|
||||
|
||||
#ifdef LLAMA_USE_CURL
|
||||
|
||||
#ifdef __linux__
|
||||
#include <linux/limits.h>
|
||||
#elif defined(_WIN32)
|
||||
# if !defined(PATH_MAX)
|
||||
# define PATH_MAX MAX_PATH
|
||||
# endif
|
||||
#else
|
||||
#include <sys/syslimits.h>
|
||||
#endif
|
||||
#define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
|
||||
|
||||
//
|
||||
// CURL utils
|
||||
//
|
||||
|
||||
using curl_ptr = std::unique_ptr<CURL, decltype(&curl_easy_cleanup)>;
|
||||
|
||||
// cannot use unique_ptr for curl_slist, because we cannot update without destroying the old one
|
||||
struct curl_slist_ptr {
|
||||
struct curl_slist * ptr = nullptr;
|
||||
~curl_slist_ptr() {
|
||||
if (ptr) {
|
||||
curl_slist_free_all(ptr);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
#define CURL_MAX_RETRY 3
|
||||
#define CURL_RETRY_DELAY_SECONDS 2
|
||||
|
||||
static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds) {
|
||||
int remaining_attempts = max_attempts;
|
||||
|
||||
while (remaining_attempts > 0) {
|
||||
LOG_INF("%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
|
||||
|
||||
CURLcode res = curl_easy_perform(curl);
|
||||
if (res == CURLE_OK) {
|
||||
return true;
|
||||
}
|
||||
|
||||
int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
|
||||
LOG_WRN("%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
|
||||
|
||||
remaining_attempts--;
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
|
||||
}
|
||||
|
||||
LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// download one single file from remote URL to local path
|
||||
static bool common_download_file_single(const std::string & url, const std::string & path, const std::string & bearer_token) {
|
||||
// Initialize libcurl
|
||||
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
|
||||
curl_slist_ptr http_headers;
|
||||
if (!curl) {
|
||||
LOG_ERR("%s: error initializing libcurl\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
bool force_download = false;
|
||||
|
||||
// Set the URL, allow to follow http redirection
|
||||
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
|
||||
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
|
||||
|
||||
// Check if hf-token or bearer-token was specified
|
||||
if (!bearer_token.empty()) {
|
||||
std::string auth_header = "Authorization: Bearer " + bearer_token;
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
|
||||
}
|
||||
|
||||
#if defined(_WIN32)
|
||||
// CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
|
||||
// operating system. Currently implemented under MS-Windows.
|
||||
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
|
||||
#endif
|
||||
|
||||
// Check if the file already exists locally
|
||||
auto file_exists = std::filesystem::exists(path);
|
||||
|
||||
// If the file exists, check its JSON metadata companion file.
|
||||
std::string metadata_path = path + ".json";
|
||||
nlohmann::json metadata;
|
||||
std::string etag;
|
||||
std::string last_modified;
|
||||
|
||||
if (file_exists) {
|
||||
// Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
|
||||
std::ifstream metadata_in(metadata_path);
|
||||
if (metadata_in.good()) {
|
||||
try {
|
||||
metadata_in >> metadata;
|
||||
LOG_INF("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
|
||||
if (metadata.contains("url") && metadata.at("url").is_string()) {
|
||||
auto previous_url = metadata.at("url").get<std::string>();
|
||||
if (previous_url != url) {
|
||||
LOG_ERR("%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
if (metadata.contains("etag") && metadata.at("etag").is_string()) {
|
||||
etag = metadata.at("etag");
|
||||
}
|
||||
if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
|
||||
last_modified = metadata.at("lastModified");
|
||||
}
|
||||
} catch (const nlohmann::json::exception & e) {
|
||||
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
|
||||
}
|
||||
|
||||
// Send a HEAD request to retrieve the etag and last-modified headers
|
||||
struct common_load_model_from_url_headers {
|
||||
std::string etag;
|
||||
std::string last_modified;
|
||||
};
|
||||
|
||||
common_load_model_from_url_headers headers;
|
||||
|
||||
{
|
||||
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
|
||||
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
|
||||
common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
|
||||
|
||||
static std::regex header_regex("([^:]+): (.*)\r\n");
|
||||
static std::regex etag_regex("ETag", std::regex_constants::icase);
|
||||
static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
|
||||
|
||||
std::string header(buffer, n_items);
|
||||
std::smatch match;
|
||||
if (std::regex_match(header, match, header_regex)) {
|
||||
const std::string & key = match[1];
|
||||
const std::string & value = match[2];
|
||||
if (std::regex_match(key, match, etag_regex)) {
|
||||
headers->etag = value;
|
||||
} else if (std::regex_match(key, match, last_modified_regex)) {
|
||||
headers->last_modified = value;
|
||||
}
|
||||
}
|
||||
return n_items;
|
||||
};
|
||||
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
|
||||
|
||||
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
|
||||
if (!was_perform_successful) {
|
||||
return false;
|
||||
}
|
||||
|
||||
long http_code = 0;
|
||||
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
|
||||
if (http_code != 200) {
|
||||
// HEAD not supported, we don't know if the file has changed
|
||||
// force trigger downloading
|
||||
force_download = true;
|
||||
LOG_ERR("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
|
||||
}
|
||||
}
|
||||
|
||||
bool should_download = !file_exists || force_download;
|
||||
if (!should_download) {
|
||||
if (!etag.empty() && etag != headers.etag) {
|
||||
LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
|
||||
should_download = true;
|
||||
} else if (!last_modified.empty() && last_modified != headers.last_modified) {
|
||||
LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
|
||||
should_download = true;
|
||||
}
|
||||
}
|
||||
if (should_download) {
|
||||
std::string path_temporary = path + ".downloadInProgress";
|
||||
if (file_exists) {
|
||||
LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
|
||||
if (remove(path.c_str()) != 0) {
|
||||
LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Set the output file
|
||||
|
||||
struct FILE_deleter {
|
||||
void operator()(FILE * f) const {
|
||||
fclose(f);
|
||||
}
|
||||
};
|
||||
|
||||
std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
|
||||
if (!outfile) {
|
||||
LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
|
||||
auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
|
||||
return fwrite(data, size, nmemb, (FILE *)fd);
|
||||
};
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());
|
||||
|
||||
// display download progress
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
|
||||
|
||||
// helper function to hide password in URL
|
||||
auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
|
||||
std::size_t protocol_pos = url.find("://");
|
||||
if (protocol_pos == std::string::npos) {
|
||||
return url; // Malformed URL
|
||||
}
|
||||
|
||||
std::size_t at_pos = url.find('@', protocol_pos + 3);
|
||||
if (at_pos == std::string::npos) {
|
||||
return url; // No password in URL
|
||||
}
|
||||
|
||||
return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
|
||||
};
|
||||
|
||||
// start the download
|
||||
LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
|
||||
llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
|
||||
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
|
||||
if (!was_perform_successful) {
|
||||
return false;
|
||||
}
|
||||
|
||||
long http_code = 0;
|
||||
curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
|
||||
if (http_code < 200 || http_code >= 400) {
|
||||
LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code);
|
||||
return false;
|
||||
}
|
||||
|
||||
// Causes file to be closed explicitly here before we rename it.
|
||||
outfile.reset();
|
||||
|
||||
// Write the updated JSON metadata file.
|
||||
metadata.update({
|
||||
{"url", url},
|
||||
{"etag", headers.etag},
|
||||
{"lastModified", headers.last_modified}
|
||||
});
|
||||
std::ofstream(metadata_path) << metadata.dump(4);
|
||||
LOG_INF("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
|
||||
|
||||
if (rename(path_temporary.c_str(), path.c_str()) != 0) {
|
||||
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// download multiple files from remote URLs to local paths
|
||||
// the input is a vector of pairs <url, path>
|
||||
static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> & urls, const std::string & bearer_token) {
|
||||
// Prepare download in parallel
|
||||
std::vector<std::future<bool>> futures_download;
|
||||
for (auto const & item : urls) {
|
||||
futures_download.push_back(std::async(std::launch::async, [bearer_token](const std::pair<std::string, std::string> & it) -> bool {
|
||||
return common_download_file_single(it.first, it.second, bearer_token);
|
||||
}, item));
|
||||
}
|
||||
|
||||
// Wait for all downloads to complete
|
||||
for (auto & f : futures_download) {
|
||||
if (!f.get()) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool common_download_model(
|
||||
const common_params_model & model,
|
||||
const std::string & bearer_token) {
|
||||
// Basic validation of the model.url
|
||||
if (model.url.empty()) {
|
||||
LOG_ERR("%s: invalid model url\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!common_download_file_single(model.url, model.path, bearer_token)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// check for additional GGUFs split to download
|
||||
int n_split = 0;
|
||||
{
|
||||
struct gguf_init_params gguf_params = {
|
||||
/*.no_alloc = */ true,
|
||||
/*.ctx = */ NULL,
|
||||
};
|
||||
auto * ctx_gguf = gguf_init_from_file(model.path.c_str(), gguf_params);
|
||||
if (!ctx_gguf) {
|
||||
LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, model.path.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
|
||||
if (key_n_split >= 0) {
|
||||
n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
|
||||
}
|
||||
|
||||
gguf_free(ctx_gguf);
|
||||
}
|
||||
|
||||
if (n_split > 1) {
|
||||
char split_prefix[PATH_MAX] = {0};
|
||||
char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
|
||||
|
||||
// Verify the first split file format
|
||||
// and extract split URL and PATH prefixes
|
||||
{
|
||||
if (!llama_split_prefix(split_prefix, sizeof(split_prefix), model.path.c_str(), 0, n_split)) {
|
||||
LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, model.path.c_str(), n_split);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model.url.c_str(), 0, n_split)) {
|
||||
LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model.url.c_str(), n_split);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::pair<std::string, std::string>> urls;
|
||||
for (int idx = 1; idx < n_split; idx++) {
|
||||
char split_path[PATH_MAX] = {0};
|
||||
llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
|
||||
|
||||
char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
|
||||
llama_split_path(split_url, sizeof(split_url), split_url_prefix, idx, n_split);
|
||||
|
||||
if (std::string(split_path) == model.path) {
|
||||
continue; // skip the already downloaded file
|
||||
}
|
||||
|
||||
urls.push_back({split_url, split_path});
|
||||
}
|
||||
|
||||
// Download in parallel
|
||||
common_download_file_multiple(urls, bearer_token);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Allow getting the HF file from the HF repo with tag (like ollama), for example:
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
|
||||
* Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
|
||||
*
|
||||
* Return pair of <repo, file> (with "repo" already having tag removed)
|
||||
*
|
||||
* Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
|
||||
*/
|
||||
static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & bearer_token) {
|
||||
auto parts = string_split<std::string>(hf_repo_with_tag, ':');
|
||||
std::string tag = parts.size() > 1 ? parts.back() : "latest";
|
||||
std::string hf_repo = parts[0];
|
||||
if (string_split<std::string>(hf_repo, '/').size() != 2) {
|
||||
throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
|
||||
}
|
||||
|
||||
// fetch model info from Hugging Face Hub API
|
||||
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
|
||||
curl_slist_ptr http_headers;
|
||||
std::string res_str;
|
||||
std::string url = "https://huggingface.co/v2/" + hf_repo + "/manifests/" + tag;
|
||||
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
|
||||
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
|
||||
auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
|
||||
static_cast<std::string *>(data)->append((char * ) ptr, size * nmemb);
|
||||
return size * nmemb;
|
||||
};
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_str);
|
||||
#if defined(_WIN32)
|
||||
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
|
||||
#endif
|
||||
if (!bearer_token.empty()) {
|
||||
std::string auth_header = "Authorization: Bearer " + bearer_token;
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
|
||||
}
|
||||
// Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, "Accept: application/json");
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
|
||||
|
||||
CURLcode res = curl_easy_perform(curl.get());
|
||||
|
||||
if (res != CURLE_OK) {
|
||||
throw std::runtime_error("error: cannot make GET request to HF API");
|
||||
}
|
||||
|
||||
long res_code;
|
||||
std::string ggufFile = "";
|
||||
std::string mmprojFile = "";
|
||||
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
|
||||
if (res_code == 200) {
|
||||
// extract ggufFile.rfilename in json, using regex
|
||||
{
|
||||
std::regex pattern("\"ggufFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
|
||||
std::smatch match;
|
||||
if (std::regex_search(res_str, match, pattern)) {
|
||||
ggufFile = match[1].str();
|
||||
}
|
||||
}
|
||||
// extract mmprojFile.rfilename in json, using regex
|
||||
{
|
||||
std::regex pattern("\"mmprojFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
|
||||
std::smatch match;
|
||||
if (std::regex_search(res_str, match, pattern)) {
|
||||
mmprojFile = match[1].str();
|
||||
}
|
||||
}
|
||||
} else if (res_code == 401) {
|
||||
throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
|
||||
} else {
|
||||
throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str()));
|
||||
}
|
||||
|
||||
// check response
|
||||
if (ggufFile.empty()) {
|
||||
throw std::runtime_error("error: model does not have ggufFile");
|
||||
}
|
||||
|
||||
return { hf_repo, ggufFile, mmprojFile };
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
static bool common_download_file_single(const std::string &, const std::string &, const std::string &) {
|
||||
LOG_ERR("error: built without CURL, cannot download model from internet\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> &, const std::string &) {
|
||||
LOG_ERR("error: built without CURL, cannot download model from the internet\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool common_download_model(
|
||||
const common_params_model &,
|
||||
const std::string &) {
|
||||
LOG_ERR("error: built without CURL, cannot download model from the internet\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
static struct common_hf_file_res common_get_hf_file(const std::string &, const std::string &) {
|
||||
LOG_ERR("error: built without CURL, cannot download model from the internet\n");
|
||||
return {};
|
||||
}
|
||||
|
||||
#endif // LLAMA_USE_CURL
|
||||
|
||||
//
|
||||
// utils
|
||||
//
|
||||
|
||||
static void common_params_handle_model_default(
|
||||
std::string & model,
|
||||
const std::string & model_url,
|
||||
std::string & hf_repo,
|
||||
std::string & hf_file,
|
||||
const std::string & hf_token,
|
||||
const std::string & model_default) {
|
||||
if (!hf_repo.empty()) {
|
||||
// short-hand to avoid specifying --hf-file -> default it to --model
|
||||
if (hf_file.empty()) {
|
||||
if (model.empty()) {
|
||||
auto auto_detected = common_get_hf_file(hf_repo, hf_token);
|
||||
if (auto_detected.first.empty() || auto_detected.second.empty()) {
|
||||
exit(1); // built without CURL, error message already printed
|
||||
static void common_params_handle_model(
|
||||
struct common_params_model & model,
|
||||
const std::string & bearer_token,
|
||||
const std::string & model_path_default,
|
||||
bool is_mmproj = false) { // TODO: move is_mmproj to an enum when we have more files?
|
||||
// handle pre-fill default model path and url based on hf_repo and hf_file
|
||||
{
|
||||
if (!model.hf_repo.empty()) {
|
||||
// short-hand to avoid specifying --hf-file -> default it to --model
|
||||
if (model.hf_file.empty()) {
|
||||
if (model.path.empty()) {
|
||||
auto auto_detected = common_get_hf_file(model.hf_repo, bearer_token);
|
||||
if (auto_detected.repo.empty() || auto_detected.ggufFile.empty()) {
|
||||
exit(1); // built without CURL, error message already printed
|
||||
}
|
||||
model.hf_repo = auto_detected.repo;
|
||||
model.hf_file = is_mmproj ? auto_detected.mmprojFile : auto_detected.ggufFile;
|
||||
} else {
|
||||
model.hf_file = model.path;
|
||||
}
|
||||
hf_repo = auto_detected.first;
|
||||
hf_file = auto_detected.second;
|
||||
} else {
|
||||
hf_file = model;
|
||||
}
|
||||
|
||||
std::string hf_endpoint = "https://huggingface.co/";
|
||||
const char * hf_endpoint_env = getenv("HF_ENDPOINT");
|
||||
if (hf_endpoint_env) {
|
||||
hf_endpoint = hf_endpoint_env;
|
||||
if (hf_endpoint.back() != '/') hf_endpoint += '/';
|
||||
}
|
||||
model.url = hf_endpoint + model.hf_repo + "/resolve/main/" + model.hf_file;
|
||||
// make sure model path is present (for caching purposes)
|
||||
if (model.path.empty()) {
|
||||
// this is to avoid different repo having same file name, or same file name in different subdirs
|
||||
std::string filename = model.hf_repo + "_" + model.hf_file;
|
||||
// to make sure we don't have any slashes in the filename
|
||||
string_replace_all(filename, "/", "_");
|
||||
model.path = fs_get_cache_file(filename);
|
||||
}
|
||||
|
||||
} else if (!model.url.empty()) {
|
||||
if (model.path.empty()) {
|
||||
auto f = string_split<std::string>(model.url, '#').front();
|
||||
f = string_split<std::string>(f, '?').front();
|
||||
model.path = fs_get_cache_file(string_split<std::string>(f, '/').back());
|
||||
}
|
||||
|
||||
} else if (model.path.empty()) {
|
||||
model.path = model_path_default;
|
||||
}
|
||||
// make sure model path is present (for caching purposes)
|
||||
if (model.empty()) {
|
||||
// this is to avoid different repo having same file name, or same file name in different subdirs
|
||||
std::string filename = hf_repo + "_" + hf_file;
|
||||
// to make sure we don't have any slashes in the filename
|
||||
string_replace_all(filename, "/", "_");
|
||||
model = fs_get_cache_file(filename);
|
||||
}
|
||||
|
||||
// then, download it if needed
|
||||
if (!model.url.empty()) {
|
||||
bool ok = common_download_model(model, bearer_token);
|
||||
if (!ok) {
|
||||
LOG_ERR("error: failed to download model from %s\n", model.url.c_str());
|
||||
exit(1);
|
||||
}
|
||||
} else if (!model_url.empty()) {
|
||||
if (model.empty()) {
|
||||
auto f = string_split<std::string>(model_url, '#').front();
|
||||
f = string_split<std::string>(f, '?').front();
|
||||
model = fs_get_cache_file(string_split<std::string>(f, '/').back());
|
||||
}
|
||||
} else if (model.empty()) {
|
||||
model = model_default;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -300,10 +826,16 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
|
||||
throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
|
||||
}
|
||||
|
||||
// TODO: refactor model params in a common struct
|
||||
common_params_handle_model_default(params.model, params.model_url, params.hf_repo, params.hf_file, params.hf_token, DEFAULT_MODEL_PATH);
|
||||
common_params_handle_model_default(params.speculative.model, params.speculative.model_url, params.speculative.hf_repo, params.speculative.hf_file, params.hf_token, "");
|
||||
common_params_handle_model_default(params.vocoder.model, params.vocoder.model_url, params.vocoder.hf_repo, params.vocoder.hf_file, params.hf_token, "");
|
||||
common_params_handle_model(params.model, params.hf_token, DEFAULT_MODEL_PATH);
|
||||
common_params_handle_model(params.speculative.model, params.hf_token, "");
|
||||
common_params_handle_model(params.vocoder.model, params.hf_token, "");
|
||||
|
||||
// allow --mmproj to be set from -hf
|
||||
// assuming that mmproj is always in the same repo as text model
|
||||
if (!params.model.hf_repo.empty() && ctx_arg.ex == LLAMA_EXAMPLE_LLAVA) {
|
||||
params.mmproj.hf_repo = params.model.hf_repo;
|
||||
}
|
||||
common_params_handle_model(params.mmproj, params.hf_token, "", true);
|
||||
|
||||
if (params.escape) {
|
||||
string_process_escapes(params.prompt);
|
||||
@@ -322,6 +854,10 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
|
||||
params.kv_overrides.back().key[0] = 0;
|
||||
}
|
||||
|
||||
if (!params.tensor_buft_overrides.empty()) {
|
||||
params.tensor_buft_overrides.push_back({nullptr, nullptr});
|
||||
}
|
||||
|
||||
if (params.reranking && params.embedding) {
|
||||
throw std::invalid_argument("error: either --embedding or --reranking can be specified, but not both");
|
||||
}
|
||||
@@ -1561,7 +2097,14 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"--mmproj"}, "FILE",
|
||||
"path to a multimodal projector file for LLaVA. see examples/llava/README.md",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.mmproj = value;
|
||||
params.mmproj.path = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_LLAVA}));
|
||||
add_opt(common_arg(
|
||||
{"--mmproj-url"}, "URL",
|
||||
"URL to a multimodal projector file for LLaVA. see examples/llava/README.md",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.mmproj.url = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_LLAVA}));
|
||||
add_opt(common_arg(
|
||||
@@ -1647,6 +2190,41 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
exit(0);
|
||||
}
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"--override-tensor", "-ot"}, "<tensor name pattern>=<buffer type>,...",
|
||||
"override tensor buffer type", [](common_params & params, const std::string & value) {
|
||||
/* static */ std::map<std::string, ggml_backend_buffer_type_t> buft_list;
|
||||
if (buft_list.empty()) {
|
||||
// enumerate all the devices and add their buffer types to the list
|
||||
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
|
||||
auto * dev = ggml_backend_dev_get(i);
|
||||
auto * buft = ggml_backend_dev_buffer_type(dev);
|
||||
if (buft) {
|
||||
buft_list[ggml_backend_buft_name(buft)] = buft;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (const auto & override : string_split<std::string>(value, ',')) {
|
||||
std::string::size_type pos = override.find('=');
|
||||
if (pos == std::string::npos) {
|
||||
throw std::invalid_argument("invalid value");
|
||||
}
|
||||
std::string tensor_name = override.substr(0, pos);
|
||||
std::string buffer_type = override.substr(pos + 1);
|
||||
|
||||
if (buft_list.find(buffer_type) == buft_list.end()) {
|
||||
printf("Available buffer types:\n");
|
||||
for (const auto & it : buft_list) {
|
||||
printf(" %s\n", ggml_backend_buft_name(it.second));
|
||||
}
|
||||
throw std::invalid_argument("unknown buffer type");
|
||||
}
|
||||
// FIXME: this leaks memory
|
||||
params.tensor_buft_overrides.push_back({strdup(tensor_name.c_str()), buft_list.at(buffer_type)});
|
||||
}
|
||||
}
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
|
||||
"number of layers to store in VRAM",
|
||||
@@ -1790,14 +2368,14 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
"or `--model-url` if set, otherwise %s)", DEFAULT_MODEL_PATH
|
||||
),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.model = value;
|
||||
params.model.path = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL"));
|
||||
add_opt(common_arg(
|
||||
{"-mu", "--model-url"}, "MODEL_URL",
|
||||
"model download url (default: unused)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.model_url = value;
|
||||
params.model.url = value;
|
||||
}
|
||||
).set_env("LLAMA_ARG_MODEL_URL"));
|
||||
add_opt(common_arg(
|
||||
@@ -1806,35 +2384,35 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
"example: unsloth/phi-4-GGUF:q4_k_m\n"
|
||||
"(default: unused)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.hf_repo = value;
|
||||
params.model.hf_repo = value;
|
||||
}
|
||||
).set_env("LLAMA_ARG_HF_REPO"));
|
||||
add_opt(common_arg(
|
||||
{"-hfd", "-hfrd", "--hf-repo-draft"}, "<user>/<model>[:quant]",
|
||||
"Same as --hf-repo, but for the draft model (default: unused)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.speculative.hf_repo = value;
|
||||
params.speculative.model.hf_repo = value;
|
||||
}
|
||||
).set_env("LLAMA_ARG_HFD_REPO"));
|
||||
add_opt(common_arg(
|
||||
{"-hff", "--hf-file"}, "FILE",
|
||||
"Hugging Face model file. If specified, it will override the quant in --hf-repo (default: unused)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.hf_file = value;
|
||||
params.model.hf_file = value;
|
||||
}
|
||||
).set_env("LLAMA_ARG_HF_FILE"));
|
||||
add_opt(common_arg(
|
||||
{"-hfv", "-hfrv", "--hf-repo-v"}, "<user>/<model>[:quant]",
|
||||
"Hugging Face model repository for the vocoder model (default: unused)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.vocoder.hf_repo = value;
|
||||
params.vocoder.model.hf_repo = value;
|
||||
}
|
||||
).set_env("LLAMA_ARG_HF_REPO_V"));
|
||||
add_opt(common_arg(
|
||||
{"-hffv", "--hf-file-v"}, "FILE",
|
||||
"Hugging Face model file for the vocoder model (default: unused)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.vocoder.hf_file = value;
|
||||
params.vocoder.model.hf_file = value;
|
||||
}
|
||||
).set_env("LLAMA_ARG_HF_FILE_V"));
|
||||
add_opt(common_arg(
|
||||
@@ -2454,7 +3032,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"-md", "--model-draft"}, "FNAME",
|
||||
"draft model for speculative decoding (default: unused)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.speculative.model = value;
|
||||
params.speculative.model.path = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL_DRAFT"));
|
||||
|
||||
@@ -2462,7 +3040,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"-mv", "--model-vocoder"}, "FNAME",
|
||||
"vocoder model for audio generation (default: unused)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.vocoder.model = value;
|
||||
params.vocoder.model.path = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
@@ -2485,10 +3063,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"--tts-oute-default"},
|
||||
string_format("use default OuteTTS models (note: can download weights from the internet)"),
|
||||
[](common_params & params) {
|
||||
params.hf_repo = "OuteAI/OuteTTS-0.2-500M-GGUF";
|
||||
params.hf_file = "OuteTTS-0.2-500M-Q8_0.gguf";
|
||||
params.vocoder.hf_repo = "ggml-org/WavTokenizer";
|
||||
params.vocoder.hf_file = "WavTokenizer-Large-75-F16.gguf";
|
||||
params.model.hf_repo = "OuteAI/OuteTTS-0.2-500M-GGUF";
|
||||
params.model.hf_file = "OuteTTS-0.2-500M-Q8_0.gguf";
|
||||
params.vocoder.model.hf_repo = "ggml-org/WavTokenizer";
|
||||
params.vocoder.model.hf_file = "WavTokenizer-Large-75-F16.gguf";
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_TTS}));
|
||||
|
||||
@@ -2496,8 +3074,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"--embd-bge-small-en-default"},
|
||||
string_format("use default bge-small-en-v1.5 model (note: can download weights from the internet)"),
|
||||
[](common_params & params) {
|
||||
params.hf_repo = "ggml-org/bge-small-en-v1.5-Q8_0-GGUF";
|
||||
params.hf_file = "bge-small-en-v1.5-q8_0.gguf";
|
||||
params.model.hf_repo = "ggml-org/bge-small-en-v1.5-Q8_0-GGUF";
|
||||
params.model.hf_file = "bge-small-en-v1.5-q8_0.gguf";
|
||||
params.pooling_type = LLAMA_POOLING_TYPE_NONE;
|
||||
params.embd_normalize = 2;
|
||||
params.n_ctx = 512;
|
||||
@@ -2510,8 +3088,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"--embd-e5-small-en-default"},
|
||||
string_format("use default e5-small-v2 model (note: can download weights from the internet)"),
|
||||
[](common_params & params) {
|
||||
params.hf_repo = "ggml-org/e5-small-v2-Q8_0-GGUF";
|
||||
params.hf_file = "e5-small-v2-q8_0.gguf";
|
||||
params.model.hf_repo = "ggml-org/e5-small-v2-Q8_0-GGUF";
|
||||
params.model.hf_file = "e5-small-v2-q8_0.gguf";
|
||||
params.pooling_type = LLAMA_POOLING_TYPE_NONE;
|
||||
params.embd_normalize = 2;
|
||||
params.n_ctx = 512;
|
||||
@@ -2524,8 +3102,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"--embd-gte-small-default"},
|
||||
string_format("use default gte-small model (note: can download weights from the internet)"),
|
||||
[](common_params & params) {
|
||||
params.hf_repo = "ggml-org/gte-small-Q8_0-GGUF";
|
||||
params.hf_file = "gte-small-q8_0.gguf";
|
||||
params.model.hf_repo = "ggml-org/gte-small-Q8_0-GGUF";
|
||||
params.model.hf_file = "gte-small-q8_0.gguf";
|
||||
params.pooling_type = LLAMA_POOLING_TYPE_NONE;
|
||||
params.embd_normalize = 2;
|
||||
params.n_ctx = 512;
|
||||
@@ -2538,8 +3116,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"--fim-qwen-1.5b-default"},
|
||||
string_format("use default Qwen 2.5 Coder 1.5B (note: can download weights from the internet)"),
|
||||
[](common_params & params) {
|
||||
params.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF";
|
||||
params.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf";
|
||||
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF";
|
||||
params.model.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf";
|
||||
params.port = 8012;
|
||||
params.n_gpu_layers = 99;
|
||||
params.flash_attn = true;
|
||||
@@ -2554,8 +3132,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"--fim-qwen-3b-default"},
|
||||
string_format("use default Qwen 2.5 Coder 3B (note: can download weights from the internet)"),
|
||||
[](common_params & params) {
|
||||
params.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF";
|
||||
params.hf_file = "qwen2.5-coder-3b-q8_0.gguf";
|
||||
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF";
|
||||
params.model.hf_file = "qwen2.5-coder-3b-q8_0.gguf";
|
||||
params.port = 8012;
|
||||
params.n_gpu_layers = 99;
|
||||
params.flash_attn = true;
|
||||
@@ -2570,8 +3148,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"--fim-qwen-7b-default"},
|
||||
string_format("use default Qwen 2.5 Coder 7B (note: can download weights from the internet)"),
|
||||
[](common_params & params) {
|
||||
params.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
|
||||
params.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
|
||||
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
|
||||
params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
|
||||
params.port = 8012;
|
||||
params.n_gpu_layers = 99;
|
||||
params.flash_attn = true;
|
||||
@@ -2586,10 +3164,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"--fim-qwen-7b-spec"},
|
||||
string_format("use Qwen 2.5 Coder 7B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
|
||||
[](common_params & params) {
|
||||
params.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
|
||||
params.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
|
||||
params.speculative.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
|
||||
params.speculative.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
|
||||
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
|
||||
params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
|
||||
params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
|
||||
params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
|
||||
params.speculative.n_gpu_layers = 99;
|
||||
params.port = 8012;
|
||||
params.n_gpu_layers = 99;
|
||||
@@ -2605,10 +3183,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"--fim-qwen-14b-spec"},
|
||||
string_format("use Qwen 2.5 Coder 14B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
|
||||
[](common_params & params) {
|
||||
params.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF";
|
||||
params.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
|
||||
params.speculative.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
|
||||
params.speculative.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
|
||||
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF";
|
||||
params.model.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
|
||||
params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
|
||||
params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
|
||||
params.speculative.n_gpu_layers = 99;
|
||||
params.port = 8012;
|
||||
params.n_gpu_layers = 99;
|
||||
|
||||
@@ -7,9 +7,6 @@
|
||||
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
// Change JSON_ASSERT from assert() to GGML_ASSERT:
|
||||
#define JSON_ASSERT GGML_ASSERT
|
||||
#include "json.hpp"
|
||||
#include "llama.h"
|
||||
|
||||
#include <algorithm>
|
||||
@@ -51,47 +48,11 @@
|
||||
#include <sys/stat.h>
|
||||
#include <unistd.h>
|
||||
#endif
|
||||
#if defined(LLAMA_USE_CURL)
|
||||
#include <curl/curl.h>
|
||||
#include <curl/easy.h>
|
||||
#include <future>
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
#if defined(LLAMA_USE_CURL)
|
||||
#ifdef __linux__
|
||||
#include <linux/limits.h>
|
||||
#elif defined(_WIN32)
|
||||
# if !defined(PATH_MAX)
|
||||
# define PATH_MAX MAX_PATH
|
||||
# endif
|
||||
#else
|
||||
#include <sys/syslimits.h>
|
||||
#endif
|
||||
#define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
|
||||
|
||||
//
|
||||
// CURL utils
|
||||
//
|
||||
|
||||
using curl_ptr = std::unique_ptr<CURL, decltype(&curl_easy_cleanup)>;
|
||||
|
||||
// cannot use unique_ptr for curl_slist, because we cannot update without destroying the old one
|
||||
struct curl_slist_ptr {
|
||||
struct curl_slist * ptr = nullptr;
|
||||
~curl_slist_ptr() {
|
||||
if (ptr) {
|
||||
curl_slist_free_all(ptr);
|
||||
}
|
||||
}
|
||||
};
|
||||
#endif // LLAMA_USE_CURL
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
//
|
||||
// CPU utils
|
||||
//
|
||||
@@ -900,22 +861,14 @@ std::string fs_get_cache_file(const std::string & filename) {
|
||||
//
|
||||
// Model utils
|
||||
//
|
||||
|
||||
struct common_init_result common_init_from_params(common_params & params) {
|
||||
common_init_result iparams;
|
||||
auto mparams = common_model_params_to_llama(params);
|
||||
|
||||
llama_model * model = nullptr;
|
||||
|
||||
if (!params.hf_repo.empty() && !params.hf_file.empty()) {
|
||||
model = common_load_model_from_hf(params.hf_repo, params.hf_file, params.model, params.hf_token, mparams);
|
||||
} else if (!params.model_url.empty()) {
|
||||
model = common_load_model_from_url(params.model_url, params.model, params.hf_token, mparams);
|
||||
} else {
|
||||
model = llama_model_load_from_file(params.model.c_str(), mparams);
|
||||
}
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.c_str());
|
||||
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.path.c_str());
|
||||
return iparams;
|
||||
}
|
||||
|
||||
@@ -950,7 +903,7 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
|
||||
llama_context * lctx = llama_init_from_model(model, cparams);
|
||||
if (lctx == NULL) {
|
||||
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.c_str());
|
||||
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str());
|
||||
llama_model_free(model);
|
||||
return iparams;
|
||||
}
|
||||
@@ -1089,15 +1042,18 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
|
||||
if (!params.devices.empty()) {
|
||||
mparams.devices = params.devices.data();
|
||||
}
|
||||
|
||||
if (params.n_gpu_layers != -1) {
|
||||
mparams.n_gpu_layers = params.n_gpu_layers;
|
||||
}
|
||||
|
||||
mparams.main_gpu = params.main_gpu;
|
||||
mparams.split_mode = params.split_mode;
|
||||
mparams.tensor_split = params.tensor_split;
|
||||
mparams.use_mmap = params.use_mmap;
|
||||
mparams.use_mlock = params.use_mlock;
|
||||
mparams.check_tensors = params.check_tensors;
|
||||
|
||||
if (params.kv_overrides.empty()) {
|
||||
mparams.kv_overrides = NULL;
|
||||
} else {
|
||||
@@ -1105,6 +1061,13 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
|
||||
mparams.kv_overrides = params.kv_overrides.data();
|
||||
}
|
||||
|
||||
if (params.tensor_buft_overrides.empty()) {
|
||||
mparams.tensor_buft_overrides = NULL;
|
||||
} else {
|
||||
GGML_ASSERT(params.tensor_buft_overrides.back().pattern == nullptr && "Tensor buffer overrides not terminated with empty pattern");
|
||||
mparams.tensor_buft_overrides = params.tensor_buft_overrides.data();
|
||||
}
|
||||
|
||||
return mparams;
|
||||
}
|
||||
|
||||
@@ -1164,451 +1127,6 @@ struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_p
|
||||
return tpp;
|
||||
}
|
||||
|
||||
#ifdef LLAMA_USE_CURL
|
||||
|
||||
#define CURL_MAX_RETRY 3
|
||||
#define CURL_RETRY_DELAY_SECONDS 2
|
||||
|
||||
static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds) {
|
||||
int remaining_attempts = max_attempts;
|
||||
|
||||
while (remaining_attempts > 0) {
|
||||
LOG_INF("%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
|
||||
|
||||
CURLcode res = curl_easy_perform(curl);
|
||||
if (res == CURLE_OK) {
|
||||
return true;
|
||||
}
|
||||
|
||||
int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
|
||||
LOG_WRN("%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
|
||||
|
||||
remaining_attempts--;
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
|
||||
}
|
||||
|
||||
LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool common_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
|
||||
// Initialize libcurl
|
||||
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
|
||||
curl_slist_ptr http_headers;
|
||||
if (!curl) {
|
||||
LOG_ERR("%s: error initializing libcurl\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
bool force_download = false;
|
||||
|
||||
// Set the URL, allow to follow http redirection
|
||||
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
|
||||
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
|
||||
|
||||
// Check if hf-token or bearer-token was specified
|
||||
if (!hf_token.empty()) {
|
||||
std::string auth_header = "Authorization: Bearer " + hf_token;
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
|
||||
}
|
||||
|
||||
#if defined(_WIN32)
|
||||
// CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
|
||||
// operating system. Currently implemented under MS-Windows.
|
||||
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
|
||||
#endif
|
||||
|
||||
// Check if the file already exists locally
|
||||
auto file_exists = std::filesystem::exists(path);
|
||||
|
||||
// If the file exists, check its JSON metadata companion file.
|
||||
std::string metadata_path = path + ".json";
|
||||
nlohmann::json metadata;
|
||||
std::string etag;
|
||||
std::string last_modified;
|
||||
|
||||
if (file_exists) {
|
||||
// Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
|
||||
std::ifstream metadata_in(metadata_path);
|
||||
if (metadata_in.good()) {
|
||||
try {
|
||||
metadata_in >> metadata;
|
||||
LOG_INF("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
|
||||
if (metadata.contains("url") && metadata.at("url").is_string()) {
|
||||
auto previous_url = metadata.at("url").get<std::string>();
|
||||
if (previous_url != url) {
|
||||
LOG_ERR("%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
if (metadata.contains("etag") && metadata.at("etag").is_string()) {
|
||||
etag = metadata.at("etag");
|
||||
}
|
||||
if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
|
||||
last_modified = metadata.at("lastModified");
|
||||
}
|
||||
} catch (const nlohmann::json::exception & e) {
|
||||
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
|
||||
}
|
||||
|
||||
// Send a HEAD request to retrieve the etag and last-modified headers
|
||||
struct common_load_model_from_url_headers {
|
||||
std::string etag;
|
||||
std::string last_modified;
|
||||
};
|
||||
|
||||
common_load_model_from_url_headers headers;
|
||||
|
||||
{
|
||||
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
|
||||
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
|
||||
common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
|
||||
|
||||
static std::regex header_regex("([^:]+): (.*)\r\n");
|
||||
static std::regex etag_regex("ETag", std::regex_constants::icase);
|
||||
static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
|
||||
|
||||
std::string header(buffer, n_items);
|
||||
std::smatch match;
|
||||
if (std::regex_match(header, match, header_regex)) {
|
||||
const std::string & key = match[1];
|
||||
const std::string & value = match[2];
|
||||
if (std::regex_match(key, match, etag_regex)) {
|
||||
headers->etag = value;
|
||||
} else if (std::regex_match(key, match, last_modified_regex)) {
|
||||
headers->last_modified = value;
|
||||
}
|
||||
}
|
||||
return n_items;
|
||||
};
|
||||
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
|
||||
|
||||
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
|
||||
if (!was_perform_successful) {
|
||||
return false;
|
||||
}
|
||||
|
||||
long http_code = 0;
|
||||
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
|
||||
if (http_code != 200) {
|
||||
// HEAD not supported, we don't know if the file has changed
|
||||
// force trigger downloading
|
||||
force_download = true;
|
||||
LOG_ERR("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
|
||||
}
|
||||
}
|
||||
|
||||
bool should_download = !file_exists || force_download;
|
||||
if (!should_download) {
|
||||
if (!etag.empty() && etag != headers.etag) {
|
||||
LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
|
||||
should_download = true;
|
||||
} else if (!last_modified.empty() && last_modified != headers.last_modified) {
|
||||
LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
|
||||
should_download = true;
|
||||
}
|
||||
}
|
||||
if (should_download) {
|
||||
std::string path_temporary = path + ".downloadInProgress";
|
||||
if (file_exists) {
|
||||
LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
|
||||
if (remove(path.c_str()) != 0) {
|
||||
LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Set the output file
|
||||
|
||||
struct FILE_deleter {
|
||||
void operator()(FILE * f) const {
|
||||
fclose(f);
|
||||
}
|
||||
};
|
||||
|
||||
std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
|
||||
if (!outfile) {
|
||||
LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
|
||||
auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
|
||||
return fwrite(data, size, nmemb, (FILE *)fd);
|
||||
};
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());
|
||||
|
||||
// display download progress
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
|
||||
|
||||
// helper function to hide password in URL
|
||||
auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
|
||||
std::size_t protocol_pos = url.find("://");
|
||||
if (protocol_pos == std::string::npos) {
|
||||
return url; // Malformed URL
|
||||
}
|
||||
|
||||
std::size_t at_pos = url.find('@', protocol_pos + 3);
|
||||
if (at_pos == std::string::npos) {
|
||||
return url; // No password in URL
|
||||
}
|
||||
|
||||
return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
|
||||
};
|
||||
|
||||
// start the download
|
||||
LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
|
||||
llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
|
||||
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
|
||||
if (!was_perform_successful) {
|
||||
return false;
|
||||
}
|
||||
|
||||
long http_code = 0;
|
||||
curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
|
||||
if (http_code < 200 || http_code >= 400) {
|
||||
LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code);
|
||||
return false;
|
||||
}
|
||||
|
||||
// Causes file to be closed explicitly here before we rename it.
|
||||
outfile.reset();
|
||||
|
||||
// Write the updated JSON metadata file.
|
||||
metadata.update({
|
||||
{"url", url},
|
||||
{"etag", headers.etag},
|
||||
{"lastModified", headers.last_modified}
|
||||
});
|
||||
std::ofstream(metadata_path) << metadata.dump(4);
|
||||
LOG_INF("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
|
||||
|
||||
if (rename(path_temporary.c_str(), path.c_str()) != 0) {
|
||||
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
struct llama_model * common_load_model_from_url(
|
||||
const std::string & model_url,
|
||||
const std::string & local_path,
|
||||
const std::string & hf_token,
|
||||
const struct llama_model_params & params) {
|
||||
// Basic validation of the model_url
|
||||
if (model_url.empty()) {
|
||||
LOG_ERR("%s: invalid model_url\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (!common_download_file(model_url, local_path, hf_token)) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// check for additional GGUFs split to download
|
||||
int n_split = 0;
|
||||
{
|
||||
struct gguf_init_params gguf_params = {
|
||||
/*.no_alloc = */ true,
|
||||
/*.ctx = */ NULL,
|
||||
};
|
||||
auto * ctx_gguf = gguf_init_from_file(local_path.c_str(), gguf_params);
|
||||
if (!ctx_gguf) {
|
||||
LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, local_path.c_str());
|
||||
return NULL;
|
||||
}
|
||||
|
||||
auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
|
||||
if (key_n_split >= 0) {
|
||||
n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
|
||||
}
|
||||
|
||||
gguf_free(ctx_gguf);
|
||||
}
|
||||
|
||||
if (n_split > 1) {
|
||||
char split_prefix[PATH_MAX] = {0};
|
||||
char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
|
||||
|
||||
// Verify the first split file format
|
||||
// and extract split URL and PATH prefixes
|
||||
{
|
||||
if (!llama_split_prefix(split_prefix, sizeof(split_prefix), local_path.c_str(), 0, n_split)) {
|
||||
LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, local_path.c_str(), n_split);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url.c_str(), 0, n_split)) {
|
||||
LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model_url.c_str(), n_split);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
// Prepare download in parallel
|
||||
std::vector<std::future<bool>> futures_download;
|
||||
for (int idx = 1; idx < n_split; idx++) {
|
||||
futures_download.push_back(std::async(std::launch::async, [&split_prefix, &split_url_prefix, &n_split, hf_token](int download_idx) -> bool {
|
||||
char split_path[PATH_MAX] = {0};
|
||||
llama_split_path(split_path, sizeof(split_path), split_prefix, download_idx, n_split);
|
||||
|
||||
char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
|
||||
llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split);
|
||||
|
||||
return common_download_file(split_url, split_path, hf_token);
|
||||
}, idx));
|
||||
}
|
||||
|
||||
// Wait for all downloads to complete
|
||||
for (auto & f : futures_download) {
|
||||
if (!f.get()) {
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return llama_model_load_from_file(local_path.c_str(), params);
|
||||
}
|
||||
|
||||
struct llama_model * common_load_model_from_hf(
|
||||
const std::string & repo,
|
||||
const std::string & remote_path,
|
||||
const std::string & local_path,
|
||||
const std::string & hf_token,
|
||||
const struct llama_model_params & params) {
|
||||
// construct hugging face model url:
|
||||
//
|
||||
// --repo ggml-org/models --file tinyllama-1.1b/ggml-model-f16.gguf
|
||||
// https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf
|
||||
//
|
||||
// --repo TheBloke/Mixtral-8x7B-v0.1-GGUF --file mixtral-8x7b-v0.1.Q4_K_M.gguf
|
||||
// https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q4_K_M.gguf
|
||||
//
|
||||
|
||||
std::string model_url = "https://huggingface.co/";
|
||||
model_url += repo;
|
||||
model_url += "/resolve/main/";
|
||||
model_url += remote_path;
|
||||
|
||||
return common_load_model_from_url(model_url, local_path, hf_token, params);
|
||||
}
|
||||
|
||||
/**
|
||||
* Allow getting the HF file from the HF repo with tag (like ollama), for example:
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
|
||||
* Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
|
||||
*
|
||||
* Return pair of <repo, file> (with "repo" already having tag removed)
|
||||
*
|
||||
* Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
|
||||
*/
|
||||
std::pair<std::string, std::string> common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & hf_token) {
|
||||
auto parts = string_split<std::string>(hf_repo_with_tag, ':');
|
||||
std::string tag = parts.size() > 1 ? parts.back() : "latest";
|
||||
std::string hf_repo = parts[0];
|
||||
if (string_split<std::string>(hf_repo, '/').size() != 2) {
|
||||
throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
|
||||
}
|
||||
|
||||
// fetch model info from Hugging Face Hub API
|
||||
json model_info;
|
||||
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
|
||||
curl_slist_ptr http_headers;
|
||||
std::string res_str;
|
||||
std::string url = "https://huggingface.co/v2/" + hf_repo + "/manifests/" + tag;
|
||||
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
|
||||
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
|
||||
auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
|
||||
static_cast<std::string *>(data)->append((char * ) ptr, size * nmemb);
|
||||
return size * nmemb;
|
||||
};
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_str);
|
||||
#if defined(_WIN32)
|
||||
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
|
||||
#endif
|
||||
if (!hf_token.empty()) {
|
||||
std::string auth_header = "Authorization: Bearer " + hf_token;
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
|
||||
}
|
||||
// Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, "Accept: application/json");
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
|
||||
|
||||
CURLcode res = curl_easy_perform(curl.get());
|
||||
|
||||
if (res != CURLE_OK) {
|
||||
throw std::runtime_error("error: cannot make GET request to HF API");
|
||||
}
|
||||
|
||||
long res_code;
|
||||
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
|
||||
if (res_code == 200) {
|
||||
model_info = json::parse(res_str);
|
||||
} else if (res_code == 401) {
|
||||
throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
|
||||
} else {
|
||||
throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str()));
|
||||
}
|
||||
|
||||
// check response
|
||||
if (!model_info.contains("ggufFile")) {
|
||||
throw std::runtime_error("error: model does not have ggufFile");
|
||||
}
|
||||
json & gguf_file = model_info.at("ggufFile");
|
||||
if (!gguf_file.contains("rfilename")) {
|
||||
throw std::runtime_error("error: ggufFile does not have rfilename");
|
||||
}
|
||||
|
||||
return std::make_pair(hf_repo, gguf_file.at("rfilename"));
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
struct llama_model * common_load_model_from_url(
|
||||
const std::string & /*model_url*/,
|
||||
const std::string & /*local_path*/,
|
||||
const std::string & /*hf_token*/,
|
||||
const struct llama_model_params & /*params*/) {
|
||||
LOG_WRN("%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
struct llama_model * common_load_model_from_hf(
|
||||
const std::string & /*repo*/,
|
||||
const std::string & /*remote_path*/,
|
||||
const std::string & /*local_path*/,
|
||||
const std::string & /*hf_token*/,
|
||||
const struct llama_model_params & /*params*/) {
|
||||
LOG_WRN("%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
std::pair<std::string, std::string> common_get_hf_file(const std::string &, const std::string &) {
|
||||
LOG_WRN("%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
|
||||
return std::make_pair("", "");
|
||||
}
|
||||
|
||||
#endif // LLAMA_USE_CURL
|
||||
|
||||
//
|
||||
// Batch utils
|
||||
//
|
||||
@@ -2032,26 +1550,3 @@ common_control_vector_data common_control_vector_load(const std::vector<common_c
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
template <>
|
||||
json common_grammar_trigger::to_json() const {
|
||||
json out {
|
||||
{"type", (int) type},
|
||||
{"value", value},
|
||||
};
|
||||
if (type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
|
||||
out["token"] = (int) token;
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
template <>
|
||||
common_grammar_trigger common_grammar_trigger::from_json(const json & in) {
|
||||
common_grammar_trigger out;
|
||||
out.type = (common_grammar_trigger_type) in.at("type").get<int>();
|
||||
out.value = in.at("value").get<std::string>();
|
||||
if (out.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
|
||||
out.token = (llama_token) in.at("token").get<int>();
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
@@ -121,10 +121,6 @@ struct common_grammar_trigger {
|
||||
common_grammar_trigger_type type;
|
||||
std::string value;
|
||||
llama_token token = LLAMA_TOKEN_NULL;
|
||||
|
||||
// T can only be nlohmann::ordered_json
|
||||
template <class T> T to_json() const;
|
||||
template <class T> static common_grammar_trigger from_json(const T & in);
|
||||
};
|
||||
|
||||
// sampling parameters
|
||||
@@ -184,6 +180,13 @@ struct common_params_sampling {
|
||||
std::string print() const;
|
||||
};
|
||||
|
||||
struct common_params_model {
|
||||
std::string path = ""; // model local path // NOLINT
|
||||
std::string url = ""; // model url to download // NOLINT
|
||||
std::string hf_repo = ""; // HF repo // NOLINT
|
||||
std::string hf_file = ""; // HF file // NOLINT
|
||||
};
|
||||
|
||||
struct common_params_speculative {
|
||||
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
|
||||
|
||||
@@ -197,19 +200,11 @@ struct common_params_speculative {
|
||||
struct cpu_params cpuparams;
|
||||
struct cpu_params cpuparams_batch;
|
||||
|
||||
std::string hf_repo = ""; // HF repo // NOLINT
|
||||
std::string hf_file = ""; // HF file // NOLINT
|
||||
|
||||
std::string model = ""; // draft model for speculative decoding // NOLINT
|
||||
std::string model_url = ""; // model url to download // NOLINT
|
||||
struct common_params_model model;
|
||||
};
|
||||
|
||||
struct common_params_vocoder {
|
||||
std::string hf_repo = ""; // HF repo // NOLINT
|
||||
std::string hf_file = ""; // HF file // NOLINT
|
||||
|
||||
std::string model = ""; // model path // NOLINT
|
||||
std::string model_url = ""; // model url to download // NOLINT
|
||||
struct common_params_model model;
|
||||
|
||||
std::string speaker_file = ""; // speaker file path // NOLINT
|
||||
|
||||
@@ -267,12 +262,10 @@ struct common_params {
|
||||
struct common_params_speculative speculative;
|
||||
struct common_params_vocoder vocoder;
|
||||
|
||||
std::string model = ""; // model path // NOLINT
|
||||
struct common_params_model model;
|
||||
|
||||
std::string model_alias = ""; // model alias // NOLINT
|
||||
std::string model_url = ""; // model url to download // NOLINT
|
||||
std::string hf_token = ""; // HF token // NOLINT
|
||||
std::string hf_repo = ""; // HF repo // NOLINT
|
||||
std::string hf_file = ""; // HF file // NOLINT
|
||||
std::string prompt = ""; // NOLINT
|
||||
std::string system_prompt = ""; // NOLINT
|
||||
std::string prompt_file = ""; // store the external prompt file name // NOLINT
|
||||
@@ -286,6 +279,7 @@ struct common_params {
|
||||
std::vector<std::string> in_files; // all input files
|
||||
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
|
||||
std::vector<llama_model_kv_override> kv_overrides;
|
||||
std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
|
||||
|
||||
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_adapter_lora_apply)
|
||||
std::vector<common_adapter_lora_info> lora_adapters; // lora adapter path with user defined scale
|
||||
@@ -347,7 +341,7 @@ struct common_params {
|
||||
common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
|
||||
|
||||
// multimodal models (see examples/llava)
|
||||
std::string mmproj = ""; // path to multimodal projector // NOLINT
|
||||
struct common_params_model mmproj;
|
||||
std::vector<std::string> image; // path to image file(s)
|
||||
|
||||
// embedding
|
||||
@@ -546,23 +540,6 @@ struct llama_model_params common_model_params_to_llama ( common_params
|
||||
struct llama_context_params common_context_params_to_llama(const common_params & params);
|
||||
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
|
||||
|
||||
struct llama_model * common_load_model_from_url(
|
||||
const std::string & model_url,
|
||||
const std::string & local_path,
|
||||
const std::string & hf_token,
|
||||
const struct llama_model_params & params);
|
||||
|
||||
struct llama_model * common_load_model_from_hf(
|
||||
const std::string & repo,
|
||||
const std::string & remote_path,
|
||||
const std::string & local_path,
|
||||
const std::string & hf_token,
|
||||
const struct llama_model_params & params);
|
||||
|
||||
std::pair<std::string, std::string> common_get_hf_file(
|
||||
const std::string & hf_repo_with_tag,
|
||||
const std::string & hf_token);
|
||||
|
||||
// clear LoRA adapters from context, then apply new list of adapters
|
||||
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora);
|
||||
|
||||
|
||||
@@ -9,10 +9,19 @@
|
||||
#pragma once
|
||||
|
||||
#include "minja.hpp"
|
||||
#include <json.hpp>
|
||||
|
||||
#include <chrono>
|
||||
#include <cstddef>
|
||||
#include <cstdio>
|
||||
#include <exception>
|
||||
#include <iomanip>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include <json.hpp>
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
namespace minja {
|
||||
@@ -425,7 +434,7 @@ class chat_template {
|
||||
auto obj = json {
|
||||
{"tool_calls", tool_calls},
|
||||
};
|
||||
if (!content.is_null() && content != "") {
|
||||
if (!content.is_null() && !content.empty()) {
|
||||
obj["content"] = content;
|
||||
}
|
||||
message["content"] = obj.dump(2);
|
||||
@@ -435,13 +444,12 @@ class chat_template {
|
||||
if (polyfill_tool_responses && role == "tool") {
|
||||
message["role"] = "user";
|
||||
auto obj = json {
|
||||
{"tool_response", {
|
||||
{"content", message.at("content")},
|
||||
}},
|
||||
{"tool_response", json::object()},
|
||||
};
|
||||
if (message.contains("name")) {
|
||||
obj["tool_response"]["name"] = message.at("name");
|
||||
obj["tool_response"]["tool"] = message.at("name");
|
||||
}
|
||||
obj["tool_response"]["content"] = message.at("content");
|
||||
if (message.contains("tool_call_id")) {
|
||||
obj["tool_response"]["tool_call_id"] = message.at("tool_call_id");
|
||||
}
|
||||
@@ -510,7 +518,7 @@ class chat_template {
|
||||
static nlohmann::ordered_json add_system(const nlohmann::ordered_json & messages, const std::string & system_prompt) {
|
||||
json messages_with_system = messages;
|
||||
|
||||
if (messages_with_system.size() > 0 && messages_with_system[0].at("role") == "system") {
|
||||
if (!messages_with_system.empty() && messages_with_system[0].at("role") == "system") {
|
||||
std::string existing_system = messages_with_system.at(0).at("content");
|
||||
messages_with_system[0] = json {
|
||||
{"role", "system"},
|
||||
|
||||
@@ -8,14 +8,26 @@
|
||||
// SPDX-License-Identifier: MIT
|
||||
#pragma once
|
||||
|
||||
#include <algorithm>
|
||||
#include <cctype>
|
||||
#include <cstddef>
|
||||
#include <cmath>
|
||||
#include <exception>
|
||||
#include <functional>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <regex>
|
||||
#include <iterator>
|
||||
#include <limits>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <stdexcept>
|
||||
#include <regex>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <stdexcept>
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include <json.hpp>
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
@@ -731,51 +743,51 @@ public:
|
||||
|
||||
struct TextTemplateToken : public TemplateToken {
|
||||
std::string text;
|
||||
TextTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::string& t) : TemplateToken(Type::Text, location, pre, post), text(t) {}
|
||||
TextTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, const std::string& t) : TemplateToken(Type::Text, loc, pre, post), text(t) {}
|
||||
};
|
||||
|
||||
struct ExpressionTemplateToken : public TemplateToken {
|
||||
std::shared_ptr<Expression> expr;
|
||||
ExpressionTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && e) : TemplateToken(Type::Expression, location, pre, post), expr(std::move(e)) {}
|
||||
ExpressionTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && e) : TemplateToken(Type::Expression, loc, pre, post), expr(std::move(e)) {}
|
||||
};
|
||||
|
||||
struct IfTemplateToken : public TemplateToken {
|
||||
std::shared_ptr<Expression> condition;
|
||||
IfTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && c) : TemplateToken(Type::If, location, pre, post), condition(std::move(c)) {}
|
||||
IfTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && c) : TemplateToken(Type::If, loc, pre, post), condition(std::move(c)) {}
|
||||
};
|
||||
|
||||
struct ElifTemplateToken : public TemplateToken {
|
||||
std::shared_ptr<Expression> condition;
|
||||
ElifTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && c) : TemplateToken(Type::Elif, location, pre, post), condition(std::move(c)) {}
|
||||
ElifTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && c) : TemplateToken(Type::Elif, loc, pre, post), condition(std::move(c)) {}
|
||||
};
|
||||
|
||||
struct ElseTemplateToken : public TemplateToken {
|
||||
ElseTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::Else, location, pre, post) {}
|
||||
ElseTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::Else, loc, pre, post) {}
|
||||
};
|
||||
|
||||
struct EndIfTemplateToken : public TemplateToken {
|
||||
EndIfTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndIf, location, pre, post) {}
|
||||
EndIfTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndIf, loc, pre, post) {}
|
||||
};
|
||||
|
||||
struct MacroTemplateToken : public TemplateToken {
|
||||
std::shared_ptr<VariableExpr> name;
|
||||
Expression::Parameters params;
|
||||
MacroTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<VariableExpr> && n, Expression::Parameters && p)
|
||||
: TemplateToken(Type::Macro, location, pre, post), name(std::move(n)), params(std::move(p)) {}
|
||||
MacroTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<VariableExpr> && n, Expression::Parameters && p)
|
||||
: TemplateToken(Type::Macro, loc, pre, post), name(std::move(n)), params(std::move(p)) {}
|
||||
};
|
||||
|
||||
struct EndMacroTemplateToken : public TemplateToken {
|
||||
EndMacroTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndMacro, location, pre, post) {}
|
||||
EndMacroTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndMacro, loc, pre, post) {}
|
||||
};
|
||||
|
||||
struct FilterTemplateToken : public TemplateToken {
|
||||
std::shared_ptr<Expression> filter;
|
||||
FilterTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && filter)
|
||||
: TemplateToken(Type::Filter, location, pre, post), filter(std::move(filter)) {}
|
||||
FilterTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && filter)
|
||||
: TemplateToken(Type::Filter, loc, pre, post), filter(std::move(filter)) {}
|
||||
};
|
||||
|
||||
struct EndFilterTemplateToken : public TemplateToken {
|
||||
EndFilterTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndFilter, location, pre, post) {}
|
||||
EndFilterTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndFilter, loc, pre, post) {}
|
||||
};
|
||||
|
||||
struct ForTemplateToken : public TemplateToken {
|
||||
@@ -783,38 +795,38 @@ struct ForTemplateToken : public TemplateToken {
|
||||
std::shared_ptr<Expression> iterable;
|
||||
std::shared_ptr<Expression> condition;
|
||||
bool recursive;
|
||||
ForTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::vector<std::string> & vns, std::shared_ptr<Expression> && iter,
|
||||
ForTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, const std::vector<std::string> & vns, std::shared_ptr<Expression> && iter,
|
||||
std::shared_ptr<Expression> && c, bool r)
|
||||
: TemplateToken(Type::For, location, pre, post), var_names(vns), iterable(std::move(iter)), condition(std::move(c)), recursive(r) {}
|
||||
: TemplateToken(Type::For, loc, pre, post), var_names(vns), iterable(std::move(iter)), condition(std::move(c)), recursive(r) {}
|
||||
};
|
||||
|
||||
struct EndForTemplateToken : public TemplateToken {
|
||||
EndForTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndFor, location, pre, post) {}
|
||||
EndForTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndFor, loc, pre, post) {}
|
||||
};
|
||||
|
||||
struct GenerationTemplateToken : public TemplateToken {
|
||||
GenerationTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::Generation, location, pre, post) {}
|
||||
GenerationTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::Generation, loc, pre, post) {}
|
||||
};
|
||||
|
||||
struct EndGenerationTemplateToken : public TemplateToken {
|
||||
EndGenerationTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndGeneration, location, pre, post) {}
|
||||
EndGenerationTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndGeneration, loc, pre, post) {}
|
||||
};
|
||||
|
||||
struct SetTemplateToken : public TemplateToken {
|
||||
std::string ns;
|
||||
std::vector<std::string> var_names;
|
||||
std::shared_ptr<Expression> value;
|
||||
SetTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::string & ns, const std::vector<std::string> & vns, std::shared_ptr<Expression> && v)
|
||||
: TemplateToken(Type::Set, location, pre, post), ns(ns), var_names(vns), value(std::move(v)) {}
|
||||
SetTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, const std::string & ns, const std::vector<std::string> & vns, std::shared_ptr<Expression> && v)
|
||||
: TemplateToken(Type::Set, loc, pre, post), ns(ns), var_names(vns), value(std::move(v)) {}
|
||||
};
|
||||
|
||||
struct EndSetTemplateToken : public TemplateToken {
|
||||
EndSetTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndSet, location, pre, post) {}
|
||||
EndSetTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndSet, loc, pre, post) {}
|
||||
};
|
||||
|
||||
struct CommentTemplateToken : public TemplateToken {
|
||||
std::string text;
|
||||
CommentTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::string& t) : TemplateToken(Type::Comment, location, pre, post), text(t) {}
|
||||
CommentTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, const std::string& t) : TemplateToken(Type::Comment, loc, pre, post), text(t) {}
|
||||
};
|
||||
|
||||
enum class LoopControlType { Break, Continue };
|
||||
@@ -830,7 +842,7 @@ public:
|
||||
|
||||
struct LoopControlTemplateToken : public TemplateToken {
|
||||
LoopControlType control_type;
|
||||
LoopControlTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, LoopControlType control_type) : TemplateToken(Type::Break, location, pre, post), control_type(control_type) {}
|
||||
LoopControlTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, LoopControlType control_type) : TemplateToken(Type::Break, loc, pre, post), control_type(control_type) {}
|
||||
};
|
||||
|
||||
class TemplateNode {
|
||||
@@ -868,8 +880,8 @@ public:
|
||||
class SequenceNode : public TemplateNode {
|
||||
std::vector<std::shared_ptr<TemplateNode>> children;
|
||||
public:
|
||||
SequenceNode(const Location & location, std::vector<std::shared_ptr<TemplateNode>> && c)
|
||||
: TemplateNode(location), children(std::move(c)) {}
|
||||
SequenceNode(const Location & loc, std::vector<std::shared_ptr<TemplateNode>> && c)
|
||||
: TemplateNode(loc), children(std::move(c)) {}
|
||||
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
|
||||
for (const auto& child : children) child->render(out, context);
|
||||
}
|
||||
@@ -878,7 +890,7 @@ public:
|
||||
class TextNode : public TemplateNode {
|
||||
std::string text;
|
||||
public:
|
||||
TextNode(const Location & location, const std::string& t) : TemplateNode(location), text(t) {}
|
||||
TextNode(const Location & loc, const std::string& t) : TemplateNode(loc), text(t) {}
|
||||
void do_render(std::ostringstream & out, const std::shared_ptr<Context> &) const override {
|
||||
out << text;
|
||||
}
|
||||
@@ -887,7 +899,7 @@ public:
|
||||
class ExpressionNode : public TemplateNode {
|
||||
std::shared_ptr<Expression> expr;
|
||||
public:
|
||||
ExpressionNode(const Location & location, std::shared_ptr<Expression> && e) : TemplateNode(location), expr(std::move(e)) {}
|
||||
ExpressionNode(const Location & loc, std::shared_ptr<Expression> && e) : TemplateNode(loc), expr(std::move(e)) {}
|
||||
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
|
||||
if (!expr) throw std::runtime_error("ExpressionNode.expr is null");
|
||||
auto result = expr->evaluate(context);
|
||||
@@ -904,8 +916,8 @@ public:
|
||||
class IfNode : public TemplateNode {
|
||||
std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<TemplateNode>>> cascade;
|
||||
public:
|
||||
IfNode(const Location & location, std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<TemplateNode>>> && c)
|
||||
: TemplateNode(location), cascade(std::move(c)) {}
|
||||
IfNode(const Location & loc, std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<TemplateNode>>> && c)
|
||||
: TemplateNode(loc), cascade(std::move(c)) {}
|
||||
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
|
||||
for (const auto& branch : cascade) {
|
||||
auto enter_branch = true;
|
||||
@@ -924,7 +936,7 @@ public:
|
||||
class LoopControlNode : public TemplateNode {
|
||||
LoopControlType control_type_;
|
||||
public:
|
||||
LoopControlNode(const Location & location, LoopControlType control_type) : TemplateNode(location), control_type_(control_type) {}
|
||||
LoopControlNode(const Location & loc, LoopControlType control_type) : TemplateNode(loc), control_type_(control_type) {}
|
||||
void do_render(std::ostringstream &, const std::shared_ptr<Context> &) const override {
|
||||
throw LoopControlException(control_type_);
|
||||
}
|
||||
@@ -938,9 +950,9 @@ class ForNode : public TemplateNode {
|
||||
bool recursive;
|
||||
std::shared_ptr<TemplateNode> else_body;
|
||||
public:
|
||||
ForNode(const Location & location, std::vector<std::string> && var_names, std::shared_ptr<Expression> && iterable,
|
||||
ForNode(const Location & loc, std::vector<std::string> && var_names, std::shared_ptr<Expression> && iterable,
|
||||
std::shared_ptr<Expression> && condition, std::shared_ptr<TemplateNode> && body, bool recursive, std::shared_ptr<TemplateNode> && else_body)
|
||||
: TemplateNode(location), var_names(var_names), iterable(std::move(iterable)), condition(std::move(condition)), body(std::move(body)), recursive(recursive), else_body(std::move(else_body)) {}
|
||||
: TemplateNode(loc), var_names(var_names), iterable(std::move(iterable)), condition(std::move(condition)), body(std::move(body)), recursive(recursive), else_body(std::move(else_body)) {}
|
||||
|
||||
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
|
||||
// https://jinja.palletsprojects.com/en/3.0.x/templates/#for
|
||||
@@ -1025,8 +1037,8 @@ class MacroNode : public TemplateNode {
|
||||
std::shared_ptr<TemplateNode> body;
|
||||
std::unordered_map<std::string, size_t> named_param_positions;
|
||||
public:
|
||||
MacroNode(const Location & location, std::shared_ptr<VariableExpr> && n, Expression::Parameters && p, std::shared_ptr<TemplateNode> && b)
|
||||
: TemplateNode(location), name(std::move(n)), params(std::move(p)), body(std::move(b)) {
|
||||
MacroNode(const Location & loc, std::shared_ptr<VariableExpr> && n, Expression::Parameters && p, std::shared_ptr<TemplateNode> && b)
|
||||
: TemplateNode(loc), name(std::move(n)), params(std::move(p)), body(std::move(b)) {
|
||||
for (size_t i = 0; i < params.size(); ++i) {
|
||||
const auto & name = params[i].first;
|
||||
if (!name.empty()) {
|
||||
@@ -1072,8 +1084,8 @@ class FilterNode : public TemplateNode {
|
||||
std::shared_ptr<TemplateNode> body;
|
||||
|
||||
public:
|
||||
FilterNode(const Location & location, std::shared_ptr<Expression> && f, std::shared_ptr<TemplateNode> && b)
|
||||
: TemplateNode(location), filter(std::move(f)), body(std::move(b)) {}
|
||||
FilterNode(const Location & loc, std::shared_ptr<Expression> && f, std::shared_ptr<TemplateNode> && b)
|
||||
: TemplateNode(loc), filter(std::move(f)), body(std::move(b)) {}
|
||||
|
||||
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
|
||||
if (!filter) throw std::runtime_error("FilterNode.filter is null");
|
||||
@@ -1095,8 +1107,8 @@ class SetNode : public TemplateNode {
|
||||
std::vector<std::string> var_names;
|
||||
std::shared_ptr<Expression> value;
|
||||
public:
|
||||
SetNode(const Location & location, const std::string & ns, const std::vector<std::string> & vns, std::shared_ptr<Expression> && v)
|
||||
: TemplateNode(location), ns(ns), var_names(vns), value(std::move(v)) {}
|
||||
SetNode(const Location & loc, const std::string & ns, const std::vector<std::string> & vns, std::shared_ptr<Expression> && v)
|
||||
: TemplateNode(loc), ns(ns), var_names(vns), value(std::move(v)) {}
|
||||
void do_render(std::ostringstream &, const std::shared_ptr<Context> & context) const override {
|
||||
if (!value) throw std::runtime_error("SetNode.value is null");
|
||||
if (!ns.empty()) {
|
||||
@@ -1118,8 +1130,8 @@ class SetTemplateNode : public TemplateNode {
|
||||
std::string name;
|
||||
std::shared_ptr<TemplateNode> template_value;
|
||||
public:
|
||||
SetTemplateNode(const Location & location, const std::string & name, std::shared_ptr<TemplateNode> && tv)
|
||||
: TemplateNode(location), name(name), template_value(std::move(tv)) {}
|
||||
SetTemplateNode(const Location & loc, const std::string & name, std::shared_ptr<TemplateNode> && tv)
|
||||
: TemplateNode(loc), name(name), template_value(std::move(tv)) {}
|
||||
void do_render(std::ostringstream &, const std::shared_ptr<Context> & context) const override {
|
||||
if (!template_value) throw std::runtime_error("SetTemplateNode.template_value is null");
|
||||
Value value { template_value->render(context) };
|
||||
@@ -1132,8 +1144,8 @@ class IfExpr : public Expression {
|
||||
std::shared_ptr<Expression> then_expr;
|
||||
std::shared_ptr<Expression> else_expr;
|
||||
public:
|
||||
IfExpr(const Location & location, std::shared_ptr<Expression> && c, std::shared_ptr<Expression> && t, std::shared_ptr<Expression> && e)
|
||||
: Expression(location), condition(std::move(c)), then_expr(std::move(t)), else_expr(std::move(e)) {}
|
||||
IfExpr(const Location & loc, std::shared_ptr<Expression> && c, std::shared_ptr<Expression> && t, std::shared_ptr<Expression> && e)
|
||||
: Expression(loc), condition(std::move(c)), then_expr(std::move(t)), else_expr(std::move(e)) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
|
||||
if (!condition) throw std::runtime_error("IfExpr.condition is null");
|
||||
if (!then_expr) throw std::runtime_error("IfExpr.then_expr is null");
|
||||
@@ -1150,16 +1162,16 @@ public:
|
||||
class LiteralExpr : public Expression {
|
||||
Value value;
|
||||
public:
|
||||
LiteralExpr(const Location & location, const Value& v)
|
||||
: Expression(location), value(v) {}
|
||||
LiteralExpr(const Location & loc, const Value& v)
|
||||
: Expression(loc), value(v) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> &) const override { return value; }
|
||||
};
|
||||
|
||||
class ArrayExpr : public Expression {
|
||||
std::vector<std::shared_ptr<Expression>> elements;
|
||||
public:
|
||||
ArrayExpr(const Location & location, std::vector<std::shared_ptr<Expression>> && e)
|
||||
: Expression(location), elements(std::move(e)) {}
|
||||
ArrayExpr(const Location & loc, std::vector<std::shared_ptr<Expression>> && e)
|
||||
: Expression(loc), elements(std::move(e)) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
|
||||
auto result = Value::array();
|
||||
for (const auto& e : elements) {
|
||||
@@ -1173,8 +1185,8 @@ public:
|
||||
class DictExpr : public Expression {
|
||||
std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<Expression>>> elements;
|
||||
public:
|
||||
DictExpr(const Location & location, std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<Expression>>> && e)
|
||||
: Expression(location), elements(std::move(e)) {}
|
||||
DictExpr(const Location & loc, std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<Expression>>> && e)
|
||||
: Expression(loc), elements(std::move(e)) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
|
||||
auto result = Value::object();
|
||||
for (const auto& [key, value] : elements) {
|
||||
@@ -1189,8 +1201,8 @@ public:
|
||||
class SliceExpr : public Expression {
|
||||
public:
|
||||
std::shared_ptr<Expression> start, end;
|
||||
SliceExpr(const Location & location, std::shared_ptr<Expression> && s, std::shared_ptr<Expression> && e)
|
||||
: Expression(location), start(std::move(s)), end(std::move(e)) {}
|
||||
SliceExpr(const Location & loc, std::shared_ptr<Expression> && s, std::shared_ptr<Expression> && e)
|
||||
: Expression(loc), start(std::move(s)), end(std::move(e)) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> &) const override {
|
||||
throw std::runtime_error("SliceExpr not implemented");
|
||||
}
|
||||
@@ -1200,8 +1212,8 @@ class SubscriptExpr : public Expression {
|
||||
std::shared_ptr<Expression> base;
|
||||
std::shared_ptr<Expression> index;
|
||||
public:
|
||||
SubscriptExpr(const Location & location, std::shared_ptr<Expression> && b, std::shared_ptr<Expression> && i)
|
||||
: Expression(location), base(std::move(b)), index(std::move(i)) {}
|
||||
SubscriptExpr(const Location & loc, std::shared_ptr<Expression> && b, std::shared_ptr<Expression> && i)
|
||||
: Expression(loc), base(std::move(b)), index(std::move(i)) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
|
||||
if (!base) throw std::runtime_error("SubscriptExpr.base is null");
|
||||
if (!index) throw std::runtime_error("SubscriptExpr.index is null");
|
||||
@@ -1243,8 +1255,8 @@ public:
|
||||
enum class Op { Plus, Minus, LogicalNot, Expansion, ExpansionDict };
|
||||
std::shared_ptr<Expression> expr;
|
||||
Op op;
|
||||
UnaryOpExpr(const Location & location, std::shared_ptr<Expression> && e, Op o)
|
||||
: Expression(location), expr(std::move(e)), op(o) {}
|
||||
UnaryOpExpr(const Location & loc, std::shared_ptr<Expression> && e, Op o)
|
||||
: Expression(loc), expr(std::move(e)), op(o) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
|
||||
if (!expr) throw std::runtime_error("UnaryOpExpr.expr is null");
|
||||
auto e = expr->evaluate(context);
|
||||
@@ -1269,8 +1281,8 @@ private:
|
||||
std::shared_ptr<Expression> right;
|
||||
Op op;
|
||||
public:
|
||||
BinaryOpExpr(const Location & location, std::shared_ptr<Expression> && l, std::shared_ptr<Expression> && r, Op o)
|
||||
: Expression(location), left(std::move(l)), right(std::move(r)), op(o) {}
|
||||
BinaryOpExpr(const Location & loc, std::shared_ptr<Expression> && l, std::shared_ptr<Expression> && r, Op o)
|
||||
: Expression(loc), left(std::move(l)), right(std::move(r)), op(o) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
|
||||
if (!left) throw std::runtime_error("BinaryOpExpr.left is null");
|
||||
if (!right) throw std::runtime_error("BinaryOpExpr.right is null");
|
||||
@@ -1427,8 +1439,8 @@ class MethodCallExpr : public Expression {
|
||||
std::shared_ptr<VariableExpr> method;
|
||||
ArgumentsExpression args;
|
||||
public:
|
||||
MethodCallExpr(const Location & location, std::shared_ptr<Expression> && obj, std::shared_ptr<VariableExpr> && m, ArgumentsExpression && a)
|
||||
: Expression(location), object(std::move(obj)), method(std::move(m)), args(std::move(a)) {}
|
||||
MethodCallExpr(const Location & loc, std::shared_ptr<Expression> && obj, std::shared_ptr<VariableExpr> && m, ArgumentsExpression && a)
|
||||
: Expression(loc), object(std::move(obj)), method(std::move(m)), args(std::move(a)) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
|
||||
if (!object) throw std::runtime_error("MethodCallExpr.object is null");
|
||||
if (!method) throw std::runtime_error("MethodCallExpr.method is null");
|
||||
@@ -1526,8 +1538,8 @@ class CallExpr : public Expression {
|
||||
public:
|
||||
std::shared_ptr<Expression> object;
|
||||
ArgumentsExpression args;
|
||||
CallExpr(const Location & location, std::shared_ptr<Expression> && obj, ArgumentsExpression && a)
|
||||
: Expression(location), object(std::move(obj)), args(std::move(a)) {}
|
||||
CallExpr(const Location & loc, std::shared_ptr<Expression> && obj, ArgumentsExpression && a)
|
||||
: Expression(loc), object(std::move(obj)), args(std::move(a)) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
|
||||
if (!object) throw std::runtime_error("CallExpr.object is null");
|
||||
auto obj = object->evaluate(context);
|
||||
@@ -1542,8 +1554,8 @@ public:
|
||||
class FilterExpr : public Expression {
|
||||
std::vector<std::shared_ptr<Expression>> parts;
|
||||
public:
|
||||
FilterExpr(const Location & location, std::vector<std::shared_ptr<Expression>> && p)
|
||||
: Expression(location), parts(std::move(p)) {}
|
||||
FilterExpr(const Location & loc, std::vector<std::shared_ptr<Expression>> && p)
|
||||
: Expression(loc), parts(std::move(p)) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
|
||||
Value result;
|
||||
bool first = true;
|
||||
@@ -2460,7 +2472,7 @@ private:
|
||||
static std::regex leading_space_regex(R"(^\s+)");
|
||||
text = std::regex_replace(text, leading_space_regex, "");
|
||||
} else if (options.trim_blocks && (it - 1) != begin && !dynamic_cast<ExpressionTemplateToken*>((*(it - 2)).get())) {
|
||||
if (text.length() > 0 && text[0] == '\n') {
|
||||
if (!text.empty() && text[0] == '\n') {
|
||||
text.erase(0, 1);
|
||||
}
|
||||
}
|
||||
@@ -2538,7 +2550,7 @@ public:
|
||||
TemplateTokenIterator begin = tokens.begin();
|
||||
auto it = begin;
|
||||
TemplateTokenIterator end = tokens.end();
|
||||
return parser.parseTemplate(begin, it, end, /* full= */ true);
|
||||
return parser.parseTemplate(begin, it, end, /* fully= */ true);
|
||||
}
|
||||
};
|
||||
|
||||
@@ -2577,7 +2589,7 @@ inline std::shared_ptr<Context> Context::builtins() {
|
||||
throw std::runtime_error(args.at("message").get<std::string>());
|
||||
}));
|
||||
globals.set("tojson", simple_function("tojson", { "value", "indent" }, [](const std::shared_ptr<Context> &, Value & args) {
|
||||
return Value(args.at("value").dump(args.get<int64_t>("indent", -1), /* tojson= */ true));
|
||||
return Value(args.at("value").dump(args.get<int64_t>("indent", -1), /* to_json= */ true));
|
||||
}));
|
||||
globals.set("items", simple_function("items", { "object" }, [](const std::shared_ptr<Context> &, Value & args) {
|
||||
auto items = Value::array();
|
||||
@@ -2599,21 +2611,25 @@ inline std::shared_ptr<Context> Context::builtins() {
|
||||
globals.set("last", simple_function("last", { "items" }, [](const std::shared_ptr<Context> &, Value & args) {
|
||||
auto items = args.at("items");
|
||||
if (!items.is_array()) throw std::runtime_error("object is not a list");
|
||||
if (items.size() == 0) return Value();
|
||||
if (items.empty()) return Value();
|
||||
return items.at(items.size() - 1);
|
||||
}));
|
||||
globals.set("trim", simple_function("trim", { "text" }, [](const std::shared_ptr<Context> &, Value & args) {
|
||||
auto & text = args.at("text");
|
||||
return text.is_null() ? text : Value(strip(text.get<std::string>()));
|
||||
}));
|
||||
globals.set("lower", simple_function("lower", { "text" }, [](const std::shared_ptr<Context> &, Value & args) {
|
||||
auto text = args.at("text");
|
||||
if (text.is_null()) return text;
|
||||
std::string res;
|
||||
auto str = text.get<std::string>();
|
||||
std::transform(str.begin(), str.end(), std::back_inserter(res), ::tolower);
|
||||
return Value(res);
|
||||
}));
|
||||
auto char_transform_function = [](const std::string & name, const std::function<char(char)> & fn) {
|
||||
return simple_function(name, { "text" }, [=](const std::shared_ptr<Context> &, Value & args) {
|
||||
auto text = args.at("text");
|
||||
if (text.is_null()) return text;
|
||||
std::string res;
|
||||
auto str = text.get<std::string>();
|
||||
std::transform(str.begin(), str.end(), std::back_inserter(res), fn);
|
||||
return Value(res);
|
||||
});
|
||||
};
|
||||
globals.set("lower", char_transform_function("lower", ::tolower));
|
||||
globals.set("upper", char_transform_function("upper", ::toupper));
|
||||
globals.set("default", Value::callable([=](const std::shared_ptr<Context> &, ArgumentsValue & args) {
|
||||
args.expectArgs("default", {2, 3}, {0, 1});
|
||||
auto & value = args.args[0];
|
||||
@@ -2743,12 +2759,17 @@ inline std::shared_ptr<Context> Context::builtins() {
|
||||
return Value::callable([=](const std::shared_ptr<Context> & context, ArgumentsValue & args) {
|
||||
args.expectArgs(is_select ? "select" : "reject", {2, (std::numeric_limits<size_t>::max)()}, {0, 0});
|
||||
auto & items = args.args[0];
|
||||
if (items.is_null())
|
||||
if (items.is_null()) {
|
||||
return Value::array();
|
||||
if (!items.is_array()) throw std::runtime_error("object is not iterable: " + items.dump());
|
||||
}
|
||||
if (!items.is_array()) {
|
||||
throw std::runtime_error("object is not iterable: " + items.dump());
|
||||
}
|
||||
|
||||
auto filter_fn = context->get(args.args[1]);
|
||||
if (filter_fn.is_null()) throw std::runtime_error("Undefined filter: " + args.args[1].dump());
|
||||
if (filter_fn.is_null()) {
|
||||
throw std::runtime_error("Undefined filter: " + args.args[1].dump());
|
||||
}
|
||||
|
||||
auto filter_args = Value::array();
|
||||
for (size_t i = 2, n = args.args.size(); i < n; i++) {
|
||||
@@ -2870,20 +2891,25 @@ inline std::shared_ptr<Context> Context::builtins() {
|
||||
auto v = arg.get<int64_t>();
|
||||
startEndStep[i] = v;
|
||||
param_set[i] = true;
|
||||
}
|
||||
}
|
||||
for (auto & [name, value] : args.kwargs) {
|
||||
size_t i;
|
||||
if (name == "start") i = 0;
|
||||
else if (name == "end") i = 1;
|
||||
else if (name == "step") i = 2;
|
||||
else throw std::runtime_error("Unknown argument " + name + " for function range");
|
||||
}
|
||||
for (auto & [name, value] : args.kwargs) {
|
||||
size_t i;
|
||||
if (name == "start") {
|
||||
i = 0;
|
||||
} else if (name == "end") {
|
||||
i = 1;
|
||||
} else if (name == "step") {
|
||||
i = 2;
|
||||
} else {
|
||||
throw std::runtime_error("Unknown argument " + name + " for function range");
|
||||
}
|
||||
|
||||
if (param_set[i]) {
|
||||
throw std::runtime_error("Duplicate argument " + name + " for function range");
|
||||
}
|
||||
startEndStep[i] = value.get<int64_t>();
|
||||
param_set[i] = true;
|
||||
if (param_set[i]) {
|
||||
throw std::runtime_error("Duplicate argument " + name + " for function range");
|
||||
}
|
||||
startEndStep[i] = value.get<int64_t>();
|
||||
param_set[i] = true;
|
||||
}
|
||||
if (!param_set[1]) {
|
||||
throw std::runtime_error("Missing required argument 'end' for function range");
|
||||
|
||||
@@ -708,6 +708,12 @@ class Model:
|
||||
if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
|
||||
# ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
|
||||
res = "superbpe"
|
||||
if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
|
||||
# ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
|
||||
res = "trillion"
|
||||
if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
|
||||
# ref: https://huggingface.co/inclusionAI/Ling-lite
|
||||
res = "bailingmoe"
|
||||
|
||||
if res is None:
|
||||
logger.warning("\n")
|
||||
@@ -3551,8 +3557,8 @@ class RWKV6Qwen2Model(Rwkv6Model):
|
||||
head_size = hidden_size // num_attention_heads
|
||||
rms_norm_eps = self.hparams["rms_norm_eps"]
|
||||
intermediate_size = self.hparams["intermediate_size"]
|
||||
time_mix_extra_dim = 64 if hidden_size >= 4096 else 32
|
||||
time_decay_extra_dim = 128 if hidden_size >= 4096 else 64
|
||||
time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
|
||||
time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
|
||||
|
||||
# RWKV isn't context limited
|
||||
self.gguf_writer.add_context_length(1048576)
|
||||
@@ -5130,6 +5136,105 @@ class GraniteMoeModel(GraniteModel):
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@Model.register("BailingMoeForCausalLM")
|
||||
class BailingMoeModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.BAILINGMOE
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_gpt2()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
|
||||
self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
|
||||
self.gguf_writer.add_expert_weights_scale(1.0)
|
||||
self.gguf_writer.add_expert_count(hparams["num_experts"])
|
||||
self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
|
||||
self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
|
||||
|
||||
_experts: list[dict[str, Tensor]] | None = None
|
||||
|
||||
@staticmethod
|
||||
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
|
||||
if n_head_kv is not None and n_head != n_head_kv:
|
||||
n_head = n_head_kv
|
||||
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||
.swapaxes(1, 2)
|
||||
.reshape(weights.shape))
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
n_head = self.hparams["num_attention_heads"]
|
||||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||
n_embd = self.hparams["hidden_size"]
|
||||
head_dim = self.hparams.get("head_dim") or n_embd // n_head
|
||||
|
||||
output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
|
||||
|
||||
if name.endswith("attention.dense.weight"):
|
||||
return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
|
||||
elif name.endswith("query_key_value.weight"):
|
||||
q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
|
||||
|
||||
return [
|
||||
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
|
||||
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
|
||||
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
|
||||
]
|
||||
elif name.find("mlp.experts") != -1:
|
||||
n_experts = self.hparams["num_experts"]
|
||||
assert bid is not None
|
||||
|
||||
tensors: list[tuple[str, Tensor]] = []
|
||||
|
||||
if self._experts is None:
|
||||
self._experts = [{} for _ in range(self.block_count)]
|
||||
|
||||
self._experts[bid][name] = data_torch
|
||||
|
||||
if len(self._experts[bid]) >= n_experts * 3:
|
||||
# merge the experts into a single 3d tensor
|
||||
for w_name in ["down_proj", "gate_proj", "up_proj"]:
|
||||
datas: list[Tensor] = []
|
||||
|
||||
for xid in range(n_experts):
|
||||
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
|
||||
datas.append(self._experts[bid][ename])
|
||||
del self._experts[bid][ename]
|
||||
|
||||
data_torch = torch.stack(datas, dim=0)
|
||||
|
||||
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
|
||||
|
||||
new_name = self.map_tensor_name(merged_name)
|
||||
|
||||
tensors.append((new_name, data_torch))
|
||||
|
||||
return tensors
|
||||
|
||||
new_name = self.map_tensor_name(name)
|
||||
|
||||
if new_name == output_name and self.hparams.get("norm_head"):
|
||||
data_torch = data_torch.float()
|
||||
data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
|
||||
|
||||
return [(new_name, data_torch)]
|
||||
|
||||
def prepare_tensors(self):
|
||||
super().prepare_tensors()
|
||||
|
||||
if self._experts is not None:
|
||||
# flatten `list[dict[str, Tensor]]` into `list[str]`
|
||||
experts = [k for d in self._experts for k in d.keys()]
|
||||
if len(experts) > 0:
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@Model.register("ChameleonForConditionalGeneration")
|
||||
@Model.register("ChameleonForCausalLM") # obsolete
|
||||
class ChameleonModel(Model):
|
||||
|
||||
@@ -111,6 +111,8 @@ models = [
|
||||
{"name": "deepseek-r1-qwen", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"},
|
||||
{"name": "gpt-4o", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Xenova/gpt-4o", },
|
||||
{"name": "superbpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k", },
|
||||
{"name": "trillion", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/trillionlabs/Trillion-7B-preview", },
|
||||
{"name": "bailingmoe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-lite", },
|
||||
]
|
||||
|
||||
|
||||
|
||||
@@ -145,8 +145,13 @@ A Snapdragon X Elite device with Windows 11 Arm64 is used. Make sure the followi
|
||||
* Clang 19
|
||||
* Ninja
|
||||
* Visual Studio 2022
|
||||
* Powershell 7
|
||||
|
||||
Powershell is used for the following instructions.
|
||||
Visual Studio provides necessary headers and libraries although it is not directly used for building.
|
||||
Alternatively, Visual Studio Build Tools can be installed instead of the full Visual Studio.
|
||||
|
||||
Powershell 7 is used for the following commands.
|
||||
If an older version of Powershell is used, these commands may not work as they are.
|
||||
|
||||
### I. Setup Environment
|
||||
|
||||
@@ -196,10 +201,9 @@ ninja
|
||||
|
||||
## Known Issues
|
||||
|
||||
- Qwen2.5 0.5B model produces gibberish output with Adreno kernels.
|
||||
- Currently OpenCL backend does not work on Adreno 6xx GPUs.
|
||||
|
||||
## TODO
|
||||
|
||||
- Fix Qwen2.5 0.5B
|
||||
- Optimization for Q6_K
|
||||
- Support and optimization for Q4_K
|
||||
|
||||
@@ -20,7 +20,7 @@
|
||||
**oneAPI** is an open ecosystem and a standard-based specification, supporting multiple architectures including but not limited to intel CPUs, GPUs and FPGAs. The key components of the oneAPI ecosystem include:
|
||||
|
||||
- **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers.
|
||||
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL and oneDNN)*.
|
||||
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. Intel oneMKL, oneMath and oneDNN)*.
|
||||
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over intel iGPUs and dGPUs.
|
||||
- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets.
|
||||
|
||||
@@ -227,16 +227,6 @@ Upon a successful installation, SYCL is enabled for the available intel devices,
|
||||
|
||||
**oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.
|
||||
|
||||
|
||||
**oneMKL for cuBlas**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* do not contain the cuBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *cuBLAS* backend enabled is thus required to run it on Nvidia GPUs.
|
||||
|
||||
```sh
|
||||
git clone https://github.com/oneapi-src/oneMKL
|
||||
cd oneMKL
|
||||
cmake -B buildWithCublas -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_CUBLAS_BACKEND=ON -DTARGET_DOMAINS=blas
|
||||
cmake --build buildWithCublas --config Release
|
||||
```
|
||||
|
||||
**oneDNN**: The current oneDNN releases *(shipped with the oneAPI base-toolkit)* do not include the NVIDIA backend. Therefore, oneDNN must be compiled from source to enable the NVIDIA target:
|
||||
|
||||
```sh
|
||||
@@ -250,16 +240,6 @@ cmake --build build-nvidia --config Release
|
||||
|
||||
**oneAPI Plugin**: In order to enable SYCL support on AMD GPUs, please install the [Codeplay oneAPI Plugin for AMD GPUs](https://developer.codeplay.com/products/oneapi/amd/download). As with Nvidia GPUs, the user should also make sure the plugin version matches the installed base toolkit.
|
||||
|
||||
**oneMKL for rocBlas**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* doesn't contain the rocBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *rocBLAS* backend enabled is thus required to run it on AMD GPUs.
|
||||
|
||||
```sh
|
||||
git clone https://github.com/oneapi-src/oneMKL
|
||||
cd oneMKL
|
||||
# Find your HIPTARGET with rocminfo, under the key 'Name:'
|
||||
cmake -B buildWithrocBLAS -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_ROCBLAS_BACKEND=ON -DHIPTARGETS=${HIPTARGET} -DTARGET_DOMAINS=blas
|
||||
cmake --build buildWithrocBLAS --config Release
|
||||
```
|
||||
|
||||
3. **Verify installation and environment**
|
||||
|
||||
In order to check the available SYCL devices on the machine, please use the `sycl-ls` command.
|
||||
@@ -322,15 +302,16 @@ cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -
|
||||
cmake --build build --config Release -j -v
|
||||
```
|
||||
|
||||
It is possible to come across some precision issues when running tests that stem from using faster
|
||||
instructions, which can be circumvented by setting the environment variable `SYCL_PROGRAM_COMPILE_OPTIONS`
|
||||
as `-cl-fp32-correctly-rounded-divide-sqrt`
|
||||
|
||||
#### Nvidia GPU
|
||||
|
||||
```sh
|
||||
# Export relevant ENV variables
|
||||
export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LD_LIBRARY_PATH
|
||||
export LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LIBRARY_PATH
|
||||
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithCublas/include:$CPLUS_INCLUDE_DIR
|
||||
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/include:$CPLUS_INCLUDE_DIR
|
||||
The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
|
||||
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.
|
||||
|
||||
```sh
|
||||
# Build LLAMA with Nvidia BLAS acceleration through SYCL
|
||||
# Setting GGML_SYCL_DEVICE_ARCH is optional but can improve performance
|
||||
GGML_SYCL_DEVICE_ARCH=sm_80 # Example architecture
|
||||
@@ -345,14 +326,15 @@ cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=
|
||||
cmake --build build --config Release -j -v
|
||||
```
|
||||
|
||||
It is possible to come across some precision issues when running tests that stem from using faster
|
||||
instructions, which can be circumvented by passing the `-fno-fast-math` flag to the compiler.
|
||||
|
||||
#### AMD GPU
|
||||
|
||||
```sh
|
||||
# Export relevant ENV variables
|
||||
export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithrocBLAS/lib:$LD_LIBRARY_PATH
|
||||
export LIBRARY_PATH=/path/to/oneMKL/buildWithrocBLAS/lib:$LIBRARY_PATH
|
||||
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithrocBLAS/include:$CPLUS_INCLUDE_DIR
|
||||
The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
|
||||
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.
|
||||
|
||||
```sh
|
||||
# Build LLAMA with rocBLAS acceleration through SYCL
|
||||
|
||||
## AMD
|
||||
@@ -493,6 +475,12 @@ b. Enable oneAPI running environment:
|
||||
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
|
||||
```
|
||||
|
||||
- if you are using Powershell, enable the runtime environment with the following:
|
||||
|
||||
```
|
||||
cmd.exe "/K" '"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" && powershell'
|
||||
```
|
||||
|
||||
c. Verify installation
|
||||
|
||||
In the oneAPI command line, run the following to print the available SYCL devices:
|
||||
@@ -523,13 +511,13 @@ You could download the release package for Windows directly, which including bin
|
||||
|
||||
Choose one of following methods to build from source code.
|
||||
|
||||
1. Script
|
||||
#### 1. Script
|
||||
|
||||
```sh
|
||||
.\examples\sycl\win-build-sycl.bat
|
||||
```
|
||||
|
||||
2. CMake
|
||||
#### 2. CMake
|
||||
|
||||
On the oneAPI command line window, step into the llama.cpp main directory and run the following:
|
||||
|
||||
@@ -558,13 +546,84 @@ cmake --preset x64-windows-sycl-debug
|
||||
cmake --build build-x64-windows-sycl-debug -j --target llama-cli
|
||||
```
|
||||
|
||||
3. Visual Studio
|
||||
#### 3. Visual Studio
|
||||
|
||||
You can use Visual Studio to open llama.cpp folder as a CMake project. Choose the sycl CMake presets (`x64-windows-sycl-release` or `x64-windows-sycl-debug`) before you compile the project.
|
||||
You have two options to use Visual Studio to build llama.cpp:
|
||||
- As CMake Project using CMake presets.
|
||||
- Creating a Visual Studio solution to handle the project.
|
||||
|
||||
**Note**:
|
||||
|
||||
All following commands are executed in PowerShell.
|
||||
|
||||
##### - Open as a CMake Project
|
||||
|
||||
You can use Visual Studio to open the `llama.cpp` folder directly as a CMake project. Before compiling, select one of the SYCL CMake presets:
|
||||
|
||||
- `x64-windows-sycl-release`
|
||||
|
||||
- `x64-windows-sycl-debug`
|
||||
|
||||
*Notes:*
|
||||
- For a minimal experimental setup, you can build only the inference executable using:
|
||||
|
||||
- In case of a minimal experimental setup, the user can build the inference executable only through `cmake --build build --config Release -j --target llama-cli`.
|
||||
```Powershell
|
||||
cmake --build build --config Release -j --target llama-cli
|
||||
```
|
||||
|
||||
##### - Generating a Visual Studio Solution
|
||||
|
||||
You can use Visual Studio solution to build and work on llama.cpp on Windows. You need to convert the CMake Project into a `.sln` file.
|
||||
|
||||
If you want to use the Intel C++ Compiler for the entire `llama.cpp` project, run the following command:
|
||||
|
||||
```Powershell
|
||||
cmake -B build -G "Visual Studio 17 2022" -T "Intel C++ Compiler 2025" -A x64 -DGGML_SYCL=ON -DCMAKE_BUILD_TYPE=Release
|
||||
```
|
||||
|
||||
If you prefer to use the Intel C++ Compiler only for `ggml-sycl`, ensure that `ggml` and its backend libraries are built as shared libraries ( i.e. `-DBUILD_SHARED_LIBRARIES=ON`, this is default behaviour):
|
||||
|
||||
```Powershell
|
||||
cmake -B build -G "Visual Studio 17 2022" -A x64 -DGGML_SYCL=ON -DCMAKE_BUILD_TYPE=Release \
|
||||
-DSYCL_INCLUDE_DIR="C:\Program Files (x86)\Intel\oneAPI\compiler\latest\include" \
|
||||
-DSYCL_LIBRARY_DIR="C:\Program Files (x86)\Intel\oneAPI\compiler\latest\lib"
|
||||
```
|
||||
|
||||
If successful the build files have been written to: *path/to/llama.cpp/build*
|
||||
Open the project file **build/llama.cpp.sln** with Visual Studio.
|
||||
|
||||
Once the Visual Studio solution is created, follow these steps:
|
||||
|
||||
1. Open the solution in Visual Studio.
|
||||
|
||||
2. Right-click on `ggml-sycl` and select **Properties**.
|
||||
|
||||
3. In the left column, expand **C/C++** and select **DPC++**.
|
||||
|
||||
4. In the right panel, find **Enable SYCL Offload** and set it to `Yes`.
|
||||
|
||||
5. Apply the changes and save.
|
||||
|
||||
|
||||
*Navigation Path:*
|
||||
|
||||
```
|
||||
Properties -> C/C++ -> DPC++ -> Enable SYCL Offload (Yes)
|
||||
```
|
||||
|
||||
Now, you can build `llama.cpp` with the SYCL backend as a Visual Studio project.
|
||||
To do it from menu: `Build -> Build Solution`.
|
||||
Once it is completed, final results will be in **build/Release/bin**
|
||||
|
||||
*Additional Note*
|
||||
|
||||
- You can avoid specifying `SYCL_INCLUDE_DIR` and `SYCL_LIBRARY_DIR` in the CMake command by setting the environment variables:
|
||||
|
||||
- `SYCL_INCLUDE_DIR_HINT`
|
||||
|
||||
- `SYCL_LIBRARY_DIR_HINT`
|
||||
|
||||
- Above instruction has been tested with Visual Studio 17 Community edition and oneAPI 2025.0. We expect them to work also with future version if the instructions are adapted accordingly.
|
||||
|
||||
### III. Run the inference
|
||||
|
||||
|
||||
@@ -456,6 +456,96 @@ KleidiAI's microkernels implement optimized tensor operations using Arm CPU feat
|
||||
|
||||
Depending on your build target, other higher priority backends may be enabled by default. To ensure the CPU backend is used, you must disable the higher priority backends either at compile time, e.g. -DGGML_METAL=OFF, or during run-time using the command line option `--device none`.
|
||||
|
||||
## OpenCL
|
||||
|
||||
This provides GPU acceleration through OpenCL on recent Adreno GPU.
|
||||
More information about OpenCL backend can be found in [OPENCL.md](./backend/OPENCL.md) for more information.
|
||||
|
||||
### Android
|
||||
|
||||
Assume NDK is available in `$ANDROID_NDK`. First, install OpenCL headers and ICD loader library if not available,
|
||||
|
||||
```sh
|
||||
mkdir -p ~/dev/llm
|
||||
cd ~/dev/llm
|
||||
|
||||
git clone https://github.com/KhronosGroup/OpenCL-Headers && \
|
||||
cd OpenCL-Headers && \
|
||||
cp -r CL $ANDROID_NDK/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include
|
||||
|
||||
cd ~/dev/llm
|
||||
|
||||
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader && \
|
||||
cd OpenCL-ICD-Loader && \
|
||||
mkdir build_ndk && cd build_ndk && \
|
||||
cmake .. -G Ninja -DCMAKE_BUILD_TYPE=Release \
|
||||
-DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \
|
||||
-DOPENCL_ICD_LOADER_HEADERS_DIR=$ANDROID_NDK/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include \
|
||||
-DANDROID_ABI=arm64-v8a \
|
||||
-DANDROID_PLATFORM=24 \
|
||||
-DANDROID_STL=c++_shared && \
|
||||
ninja && \
|
||||
cp libOpenCL.so $ANDROID_NDK/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/lib/aarch64-linux-android
|
||||
```
|
||||
|
||||
Then build llama.cpp with OpenCL enabled,
|
||||
|
||||
```sh
|
||||
cd ~/dev/llm
|
||||
|
||||
git clone https://github.com/ggml-org/llama.cpp && \
|
||||
cd llama.cpp && \
|
||||
mkdir build-android && cd build-android
|
||||
|
||||
cmake .. -G Ninja \
|
||||
-DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \
|
||||
-DANDROID_ABI=arm64-v8a \
|
||||
-DANDROID_PLATFORM=android-28 \
|
||||
-DBUILD_SHARED_LIBS=OFF \
|
||||
-DGGML_OPENCL=ON
|
||||
|
||||
ninja
|
||||
```
|
||||
|
||||
### Windows Arm64
|
||||
|
||||
First, install OpenCL headers and ICD loader library if not available,
|
||||
|
||||
```powershell
|
||||
mkdir -p ~/dev/llm
|
||||
|
||||
cd ~/dev/llm
|
||||
git clone https://github.com/KhronosGroup/OpenCL-Headers && cd OpenCL-Headers
|
||||
mkdir build && cd build
|
||||
cmake .. -G Ninja `
|
||||
-DBUILD_TESTING=OFF `
|
||||
-DOPENCL_HEADERS_BUILD_TESTING=OFF `
|
||||
-DOPENCL_HEADERS_BUILD_CXX_TESTS=OFF `
|
||||
-DCMAKE_INSTALL_PREFIX="$HOME/dev/llm/opencl"
|
||||
cmake --build . --target install
|
||||
|
||||
cd ~/dev/llm
|
||||
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader && cd OpenCL-ICD-Loader
|
||||
mkdir build && cd build
|
||||
cmake .. -G Ninja `
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DCMAKE_PREFIX_PATH="$HOME/dev/llm/opencl" `
|
||||
-DCMAKE_INSTALL_PREFIX="$HOME/dev/llm/opencl"
|
||||
cmake --build . --target install
|
||||
```
|
||||
|
||||
Then build llama.cpp with OpenCL enabled,
|
||||
|
||||
```powershell
|
||||
cmake .. -G Ninja `
|
||||
-DCMAKE_TOOLCHAIN_FILE="$HOME/dev/llm/llama.cpp/cmake/arm64-windows-llvm.cmake" `
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DCMAKE_PREFIX_PATH="$HOME/dev/llm/opencl" `
|
||||
-DBUILD_SHARED_LIBS=OFF `
|
||||
-DGGML_OPENCL=ON
|
||||
ninja
|
||||
```
|
||||
|
||||
## Android
|
||||
|
||||
To read documentation for how to build on Android, [click here](./android.md)
|
||||
|
||||
@@ -38,7 +38,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_model_params model_params = common_model_params_to_llama(params);
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params);
|
||||
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
|
||||
|
||||
if (model == NULL) {
|
||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||
|
||||
@@ -41,7 +41,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_model_params model_params = common_model_params_to_llama(params);
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params);
|
||||
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
|
||||
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: error: unable to load model\n" , __func__);
|
||||
|
||||
@@ -421,7 +421,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
g_verbose = (params.verbosity > 1);
|
||||
try {
|
||||
lora_merge_ctx ctx(params.model, params.lora_adapters, params.out_file, params.cpuparams.n_threads);
|
||||
lora_merge_ctx ctx(params.model.path, params.lora_adapters, params.out_file, params.cpuparams.n_threads);
|
||||
ctx.run_merge();
|
||||
} catch (const std::exception & err) {
|
||||
fprintf(stderr, "%s\n", err.what());
|
||||
|
||||
@@ -408,8 +408,6 @@ static void gguf_merge(const split_params & split_params) {
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
std::ofstream fout(split_params.output.c_str(), std::ios::binary);
|
||||
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
|
||||
|
||||
auto * ctx_out = gguf_init_empty();
|
||||
|
||||
@@ -453,7 +451,6 @@ static void gguf_merge(const split_params & split_params) {
|
||||
gguf_free(ctx_gguf);
|
||||
ggml_free(ctx_meta);
|
||||
gguf_free(ctx_out);
|
||||
fout.close();
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
@@ -466,7 +463,6 @@ static void gguf_merge(const split_params & split_params) {
|
||||
gguf_free(ctx_gguf);
|
||||
ggml_free(ctx_meta);
|
||||
gguf_free(ctx_out);
|
||||
fout.close();
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
@@ -479,7 +475,6 @@ static void gguf_merge(const split_params & split_params) {
|
||||
gguf_free(ctx_gguf);
|
||||
ggml_free(ctx_meta);
|
||||
gguf_free(ctx_out);
|
||||
fout.close();
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
@@ -500,9 +495,11 @@ static void gguf_merge(const split_params & split_params) {
|
||||
|
||||
fprintf(stderr, "\033[3Ddone\n");
|
||||
}
|
||||
|
||||
// placeholder for the meta data
|
||||
{
|
||||
std::ofstream fout;
|
||||
if (!split_params.dry_run) {
|
||||
fout.open(split_params.output.c_str(), std::ios::binary);
|
||||
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
|
||||
// placeholder for the meta data
|
||||
auto meta_size = gguf_get_meta_size(ctx_out);
|
||||
::zeros(fout, meta_size);
|
||||
}
|
||||
@@ -518,7 +515,9 @@ static void gguf_merge(const split_params & split_params) {
|
||||
ggml_free(ctx_metas[i]);
|
||||
}
|
||||
gguf_free(ctx_out);
|
||||
fout.close();
|
||||
if (!split_params.dry_run) {
|
||||
fout.close();
|
||||
}
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
fprintf(stderr, "%s: writing tensors %s ...", __func__, split_path);
|
||||
@@ -540,10 +539,11 @@ static void gguf_merge(const split_params & split_params) {
|
||||
auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor);
|
||||
f_input.seekg(offset);
|
||||
f_input.read((char *)read_data.data(), n_bytes);
|
||||
|
||||
// write tensor data + padding
|
||||
fout.write((const char *)read_data.data(), n_bytes);
|
||||
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
|
||||
if (!split_params.dry_run) {
|
||||
// write tensor data + padding
|
||||
fout.write((const char *)read_data.data(), n_bytes);
|
||||
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
|
||||
}
|
||||
}
|
||||
|
||||
gguf_free(ctx_gguf);
|
||||
@@ -552,16 +552,15 @@ static void gguf_merge(const split_params & split_params) {
|
||||
fprintf(stderr, "\033[3Ddone\n");
|
||||
}
|
||||
|
||||
{
|
||||
if (!split_params.dry_run) {
|
||||
// go back to beginning of file and write the updated metadata
|
||||
fout.seekp(0);
|
||||
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
|
||||
gguf_get_meta_data(ctx_out, data.data());
|
||||
fout.write((const char *)data.data(), data.size());
|
||||
|
||||
fout.close();
|
||||
gguf_free(ctx_out);
|
||||
}
|
||||
gguf_free(ctx_out);
|
||||
|
||||
fprintf(stderr, "%s: %s merged from %d split with %d tensors.\n",
|
||||
__func__, split_params.output.c_str(), n_split, total_tensors);
|
||||
|
||||
@@ -168,7 +168,7 @@ int main(int argc, char * argv[]) {
|
||||
|
||||
llama_backend_init();
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params.model.c_str(), mparams);
|
||||
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
|
||||
|
||||
// create generation context
|
||||
llama_context * ctx = llama_init_from_model(model, cparams);
|
||||
|
||||
@@ -18,6 +18,7 @@ android {
|
||||
}
|
||||
externalNativeBuild {
|
||||
cmake {
|
||||
arguments += "-DLLAMA_CURL=OFF"
|
||||
arguments += "-DLLAMA_BUILD_COMMON=ON"
|
||||
arguments += "-DGGML_LLAMAFILE=OFF"
|
||||
arguments += "-DCMAKE_BUILD_TYPE=Release"
|
||||
|
||||
@@ -4,6 +4,26 @@
|
||||
>
|
||||
> This is very experimental, only used for demo purpose.
|
||||
|
||||
## Quick started
|
||||
|
||||
You can use pre-quantized model from [ggml-org](https://huggingface.co/ggml-org)'s Hugging Face account
|
||||
|
||||
```bash
|
||||
# build
|
||||
cmake -B build
|
||||
cmake --build build --target llama-gemma3-cli
|
||||
|
||||
# alternatively, install from brew (MacOS)
|
||||
brew install llama.cpp
|
||||
|
||||
# run it
|
||||
llama-gemma3-cli -hf ggml-org/gemma-3-4b-it-GGUF
|
||||
llama-gemma3-cli -hf ggml-org/gemma-3-12b-it-GGUF
|
||||
llama-gemma3-cli -hf ggml-org/gemma-3-27b-it-GGUF
|
||||
|
||||
# note: 1B model does not support vision
|
||||
```
|
||||
|
||||
## How to get mmproj.gguf?
|
||||
|
||||
```bash
|
||||
|
||||
273
examples/llava/clip-impl.h
Normal file
273
examples/llava/clip-impl.h
Normal file
@@ -0,0 +1,273 @@
|
||||
#include "ggml.h"
|
||||
#include "gguf.h"
|
||||
|
||||
#include <climits>
|
||||
#include <cstdarg>
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <sstream>
|
||||
#include <vector>
|
||||
|
||||
// Internal header for clip.cpp
|
||||
|
||||
#define KEY_FTYPE "general.file_type"
|
||||
#define KEY_NAME "general.name"
|
||||
#define KEY_DESCRIPTION "general.description"
|
||||
#define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
|
||||
#define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
|
||||
#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
|
||||
#define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector"
|
||||
#define KEY_HAS_GLM_PROJ "clip.has_glm_projector"
|
||||
#define KEY_MINICPMV_VERSION "clip.minicpmv_version"
|
||||
#define KEY_HAS_QWEN2VL_MERGER "clip.has_qwen2vl_merger"
|
||||
#define KEY_USE_GELU "clip.use_gelu"
|
||||
#define KEY_USE_SILU "clip.use_silu"
|
||||
#define KEY_N_EMBD "clip.%s.embedding_length"
|
||||
#define KEY_N_FF "clip.%s.feed_forward_length"
|
||||
#define KEY_N_BLOCK "clip.%s.block_count"
|
||||
#define KEY_N_HEAD "clip.%s.attention.head_count"
|
||||
#define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
|
||||
#define KEY_PROJ_DIM "clip.%s.projection_dim"
|
||||
#define KEY_TOKENS "tokenizer.ggml.tokens"
|
||||
#define KEY_N_POSITIONS "clip.text.context_length"
|
||||
#define KEY_IMAGE_SIZE "clip.vision.image_size"
|
||||
#define KEY_PATCH_SIZE "clip.vision.patch_size"
|
||||
#define KEY_IMAGE_MEAN "clip.vision.image_mean"
|
||||
#define KEY_IMAGE_STD "clip.vision.image_std"
|
||||
#define KEY_PROJ_TYPE "clip.projector_type"
|
||||
#define KEY_FEATURE_LAYER "clip.vision.feature_layer"
|
||||
|
||||
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
|
||||
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
|
||||
#define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
|
||||
|
||||
|
||||
//
|
||||
// tensor name constants
|
||||
//
|
||||
|
||||
#define TN_TOKEN_EMBD "%s.token_embd.weight"
|
||||
#define TN_POS_EMBD "%s.position_embd.weight"
|
||||
#define TN_CLASS_EMBD "v.class_embd"
|
||||
#define TN_PATCH_EMBD "v.patch_embd.weight" // not rename tensor with ".0" postfix for backwrad compat
|
||||
#define TN_PATCH_EMBD_1 "v.patch_embd.weight.1"
|
||||
#define TN_PATCH_BIAS "v.patch_embd.bias"
|
||||
#define TN_ATTN_K "%s.blk.%d.attn_k.%s"
|
||||
#define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
|
||||
#define TN_ATTN_V "%s.blk.%d.attn_v.%s"
|
||||
#define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
|
||||
#define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
|
||||
#define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
|
||||
#define TN_LN_1 "%s.blk.%d.ln1.%s"
|
||||
#define TN_LN_2 "%s.blk.%d.ln2.%s"
|
||||
#define TN_LN_PRE "%s.pre_ln.%s"
|
||||
#define TN_LN_POST "%s.post_ln.%s"
|
||||
#define TN_TEXT_PROJ "text_projection.weight"
|
||||
#define TN_VIS_PROJ "visual_projection.weight"
|
||||
#define TN_LLAVA_PROJ "mm.%d.%s"
|
||||
#define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
|
||||
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
|
||||
#define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
|
||||
#define TN_IMAGE_NEWLINE "model.image_newline"
|
||||
#define TN_MM_INP_PROJ "mm.input_projection.weight" // gemma3
|
||||
#define TN_MM_SOFT_EMB_N "mm.soft_emb_norm.weight" // gemma3
|
||||
|
||||
// mimicpmv
|
||||
#define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
|
||||
#define TN_MINICPMV_QUERY "resampler.query"
|
||||
#define TN_MINICPMV_PROJ "resampler.proj.weight"
|
||||
#define TN_MINICPMV_KV_PROJ "resampler.kv.weight"
|
||||
#define TN_MINICPMV_ATTN "resampler.attn.%s.%s"
|
||||
#define TN_MINICPMV_LN "resampler.ln_%s.%s"
|
||||
|
||||
#define TN_GLM_ADAPER_CONV "adapter.conv.%s"
|
||||
#define TN_GLM_ADAPTER_LINEAR "adapter.linear.linear.%s"
|
||||
#define TN_GLM_ADAPTER_NORM_1 "adapter.linear.norm1.%s"
|
||||
#define TN_GLM_ADAPTER_D_H_2_4H "adapter.linear.dense_h_to_4h.%s"
|
||||
#define TN_GLM_ADAPTER_GATE "adapter.linear.gate.%s"
|
||||
#define TN_GLM_ADAPTER_D_4H_2_H "adapter.linear.dense_4h_to_h.%s"
|
||||
#define TN_GLM_BOI_W "adapter.boi"
|
||||
#define TN_GLM_EOI_W "adapter.eoi"
|
||||
|
||||
enum projector_type {
|
||||
PROJECTOR_TYPE_MLP,
|
||||
PROJECTOR_TYPE_MLP_NORM,
|
||||
PROJECTOR_TYPE_LDP,
|
||||
PROJECTOR_TYPE_LDPV2,
|
||||
PROJECTOR_TYPE_RESAMPLER,
|
||||
PROJECTOR_TYPE_GLM_EDGE,
|
||||
PROJECTOR_TYPE_MERGER,
|
||||
PROJECTOR_TYPE_GEMMA3,
|
||||
PROJECTOR_TYPE_UNKNOWN,
|
||||
};
|
||||
|
||||
static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
|
||||
{ PROJECTOR_TYPE_MLP, "mlp" },
|
||||
{ PROJECTOR_TYPE_LDP, "ldp" },
|
||||
{ PROJECTOR_TYPE_LDPV2, "ldpv2"},
|
||||
{ PROJECTOR_TYPE_RESAMPLER, "resampler"},
|
||||
{ PROJECTOR_TYPE_GLM_EDGE, "adapter"},
|
||||
{ PROJECTOR_TYPE_MERGER, "qwen2vl_merger"},
|
||||
{ PROJECTOR_TYPE_GEMMA3, "gemma3"},
|
||||
};
|
||||
|
||||
static projector_type clip_projector_type_from_string(const std::string & str) {
|
||||
for (const auto & pair : PROJECTOR_TYPE_NAMES) {
|
||||
if (pair.second == str) {
|
||||
return pair.first;
|
||||
}
|
||||
}
|
||||
return PROJECTOR_TYPE_UNKNOWN;
|
||||
}
|
||||
|
||||
//
|
||||
// logging
|
||||
//
|
||||
|
||||
static void clip_log_callback_default(enum ggml_log_level level, const char * text, void * user_data) {
|
||||
(void) level;
|
||||
(void) user_data;
|
||||
fputs(text, stderr);
|
||||
fflush(stderr);
|
||||
}
|
||||
|
||||
struct clip_logger_state {
|
||||
ggml_log_level verbosity_thold;
|
||||
ggml_log_callback log_callback;
|
||||
void * log_callback_user_data;
|
||||
};
|
||||
|
||||
extern struct clip_logger_state g_logger_state;
|
||||
|
||||
static void clip_log_internal_v(enum ggml_log_level level, const char * format, va_list args) {
|
||||
if (format == NULL) {
|
||||
return;
|
||||
}
|
||||
va_list args_copy;
|
||||
va_copy(args_copy, args);
|
||||
char buffer[128];
|
||||
int len = vsnprintf(buffer, 128, format, args);
|
||||
if (len < 128) {
|
||||
g_logger_state.log_callback(level, buffer, g_logger_state.log_callback_user_data);
|
||||
} else {
|
||||
char * buffer2 = (char *) calloc(len + 1, sizeof(char));
|
||||
vsnprintf(buffer2, len + 1, format, args_copy);
|
||||
buffer2[len] = 0;
|
||||
g_logger_state.log_callback(level, buffer2, g_logger_state.log_callback_user_data);
|
||||
free(buffer2);
|
||||
}
|
||||
va_end(args_copy);
|
||||
}
|
||||
|
||||
static void clip_log_internal(enum ggml_log_level level, const char * format, ...) {
|
||||
va_list args;
|
||||
va_start(args, format);
|
||||
clip_log_internal_v(level, format, args);
|
||||
va_end(args);
|
||||
}
|
||||
|
||||
#define LOG_TMPL(level, ...) \
|
||||
do { \
|
||||
if ((level) >= g_logger_state.verbosity_thold) { \
|
||||
clip_log_internal((level), __VA_ARGS__); \
|
||||
} \
|
||||
} while (0)
|
||||
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, __VA_ARGS__)
|
||||
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, __VA_ARGS__)
|
||||
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
|
||||
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, __VA_ARGS__)
|
||||
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, __VA_ARGS__)
|
||||
|
||||
//
|
||||
// common utils
|
||||
//
|
||||
|
||||
static std::string string_format(const char * fmt, ...) {
|
||||
va_list ap;
|
||||
va_list ap2;
|
||||
va_start(ap, fmt);
|
||||
va_copy(ap2, ap);
|
||||
int size = vsnprintf(NULL, 0, fmt, ap);
|
||||
GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
|
||||
std::vector<char> buf(size + 1);
|
||||
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
||||
GGML_ASSERT(size2 == size);
|
||||
va_end(ap2);
|
||||
va_end(ap);
|
||||
return std::string(buf.data(), buf.size());
|
||||
}
|
||||
|
||||
static void string_replace_all(std::string & s, const std::string & search, const std::string & replace) {
|
||||
if (search.empty()) {
|
||||
return;
|
||||
}
|
||||
std::string builder;
|
||||
builder.reserve(s.length());
|
||||
size_t pos = 0;
|
||||
size_t last_pos = 0;
|
||||
while ((pos = s.find(search, last_pos)) != std::string::npos) {
|
||||
builder.append(s, last_pos, pos - last_pos);
|
||||
builder.append(replace);
|
||||
last_pos = pos + search.length();
|
||||
}
|
||||
builder.append(s, last_pos, std::string::npos);
|
||||
s = std::move(builder);
|
||||
}
|
||||
|
||||
//
|
||||
// gguf utils
|
||||
//
|
||||
|
||||
static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
|
||||
switch (type) {
|
||||
case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
|
||||
case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
|
||||
case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
|
||||
case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
|
||||
case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
|
||||
case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
|
||||
case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
|
||||
case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
|
||||
case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
|
||||
case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
|
||||
case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
|
||||
default: return string_format("unknown type %d", type);
|
||||
}
|
||||
}
|
||||
|
||||
static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
|
||||
const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
|
||||
|
||||
switch (type) {
|
||||
case GGUF_TYPE_STRING:
|
||||
return gguf_get_val_str(ctx_gguf, i);
|
||||
case GGUF_TYPE_ARRAY:
|
||||
{
|
||||
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
|
||||
int arr_n = gguf_get_arr_n(ctx_gguf, i);
|
||||
const void * data = arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx_gguf, i);
|
||||
std::stringstream ss;
|
||||
ss << "[";
|
||||
for (int j = 0; j < arr_n; j++) {
|
||||
if (arr_type == GGUF_TYPE_STRING) {
|
||||
std::string val = gguf_get_arr_str(ctx_gguf, i, j);
|
||||
// escape quotes
|
||||
string_replace_all(val, "\\", "\\\\");
|
||||
string_replace_all(val, "\"", "\\\"");
|
||||
ss << '"' << val << '"';
|
||||
} else if (arr_type == GGUF_TYPE_ARRAY) {
|
||||
ss << "???";
|
||||
} else {
|
||||
ss << gguf_data_to_str(arr_type, data, j);
|
||||
}
|
||||
if (j < arr_n - 1) {
|
||||
ss << ", ";
|
||||
}
|
||||
}
|
||||
ss << "]";
|
||||
return ss.str();
|
||||
}
|
||||
default:
|
||||
return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
|
||||
}
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,6 +1,7 @@
|
||||
#ifndef CLIP_H
|
||||
#define CLIP_H
|
||||
|
||||
#include "ggml.h"
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
@@ -41,7 +42,7 @@ struct clip_image_f32_batch {
|
||||
|
||||
struct clip_context_params {
|
||||
bool use_gpu;
|
||||
int verbosity;
|
||||
ggml_log_level verbosity;
|
||||
};
|
||||
|
||||
// deprecated, use clip_init
|
||||
|
||||
@@ -10,7 +10,7 @@
|
||||
|
||||
#include <vector>
|
||||
#include <limits.h>
|
||||
#include <inttypes.h>
|
||||
#include <cinttypes>
|
||||
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
||||
#include <signal.h>
|
||||
@@ -78,8 +78,12 @@ struct gemma3_context {
|
||||
}
|
||||
|
||||
void init_clip_model(common_params & params) {
|
||||
const char * clip_path = params.mmproj.c_str();
|
||||
ctx_clip = clip_model_load(clip_path, params.verbosity > 1);
|
||||
const char * clip_path = params.mmproj.path.c_str();
|
||||
ctx_clip = clip_model_load(clip_path, GGML_LOG_LEVEL_INFO);
|
||||
if (!ctx_clip) {
|
||||
LOG_ERR("Failed to load CLIP model from %s\n", clip_path);
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
~gemma3_context() {
|
||||
@@ -232,13 +236,13 @@ int main(int argc, char ** argv) {
|
||||
|
||||
common_init();
|
||||
|
||||
if (params.mmproj.empty()) {
|
||||
if (params.mmproj.path.empty()) {
|
||||
show_additional_info(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
|
||||
gemma3_context ctx(params);
|
||||
printf("%s: %s\n", __func__, params.model.c_str());
|
||||
printf("%s: %s\n", __func__, params.model.path.c_str());
|
||||
|
||||
bool is_single_turn = !params.prompt.empty() && !params.image.empty();
|
||||
|
||||
|
||||
@@ -225,7 +225,7 @@ static struct llama_model * llava_init(common_params * params) {
|
||||
|
||||
llama_model_params model_params = common_model_params_to_llama(*params);
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params->model.c_str(), model_params);
|
||||
llama_model * model = llama_model_load_from_file(params->model.path.c_str(), model_params);
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: unable to load model\n" , __func__);
|
||||
return NULL;
|
||||
@@ -234,14 +234,14 @@ static struct llama_model * llava_init(common_params * params) {
|
||||
}
|
||||
|
||||
static struct llava_context * llava_init_context(common_params * params, llama_model * model) {
|
||||
const char * clip_path = params->mmproj.c_str();
|
||||
const char * clip_path = params->mmproj.path.c_str();
|
||||
|
||||
auto prompt = params->prompt;
|
||||
if (prompt.empty()) {
|
||||
prompt = "describe the image in detail.";
|
||||
}
|
||||
|
||||
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
|
||||
auto ctx_clip = clip_model_load(clip_path, GGML_LOG_LEVEL_INFO);
|
||||
|
||||
llama_context_params ctx_params = common_context_params_to_llama(*params);
|
||||
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
|
||||
@@ -283,7 +283,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
common_init();
|
||||
|
||||
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
|
||||
if (params.mmproj.path.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
|
||||
print_usage(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -31,7 +31,7 @@ static struct llama_model * llava_init(common_params * params) {
|
||||
|
||||
llama_model_params model_params = common_model_params_to_llama(*params);
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params->model.c_str(), model_params);
|
||||
llama_model * model = llama_model_load_from_file(params->model.path.c_str(), model_params);
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: unable to load model\n" , __func__);
|
||||
return NULL;
|
||||
@@ -80,7 +80,7 @@ static void llava_free(struct llava_context * ctx_llava) {
|
||||
}
|
||||
|
||||
static struct clip_ctx * clip_init_context(common_params * params) {
|
||||
const char * clip_path = params->mmproj.c_str();
|
||||
const char * clip_path = params->mmproj.path.c_str();
|
||||
|
||||
auto prompt = params->prompt;
|
||||
if (prompt.empty()) {
|
||||
@@ -88,7 +88,7 @@ static struct clip_ctx * clip_init_context(common_params * params) {
|
||||
}
|
||||
struct clip_context_params clip_params = {
|
||||
/* use_gpu */ params->n_gpu_layers != 0,
|
||||
/* verbosity */ params->verbosity,
|
||||
/* verbosity */ GGML_LOG_LEVEL_INFO, // TODO: make this configurable
|
||||
};
|
||||
auto * ctx_clip = clip_init(clip_path, clip_params);
|
||||
return ctx_clip;
|
||||
@@ -290,7 +290,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
common_init();
|
||||
|
||||
if (params.mmproj.empty() || (params.image.empty())) {
|
||||
if (params.mmproj.path.empty() || (params.image.empty())) {
|
||||
show_additional_info(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -314,7 +314,7 @@ static struct llama_model * llava_init(common_params * params) {
|
||||
|
||||
llama_model_params model_params = common_model_params_to_llama(*params);
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params->model.c_str(), model_params);
|
||||
llama_model * model = llama_model_load_from_file(params->model.path.c_str(), model_params);
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: unable to load model\n" , __func__);
|
||||
return NULL;
|
||||
@@ -323,14 +323,14 @@ static struct llama_model * llava_init(common_params * params) {
|
||||
}
|
||||
|
||||
static struct llava_context * llava_init_context(common_params * params, llama_model * model) {
|
||||
const char * clip_path = params->mmproj.c_str();
|
||||
const char * clip_path = params->mmproj.path.c_str();
|
||||
|
||||
auto prompt = params->prompt;
|
||||
if (prompt.empty()) {
|
||||
prompt = "describe the image in detail.";
|
||||
}
|
||||
|
||||
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
|
||||
auto ctx_clip = clip_model_load(clip_path, GGML_LOG_LEVEL_INFO);
|
||||
|
||||
llama_context_params ctx_params = common_context_params_to_llama(*params);
|
||||
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
|
||||
@@ -524,7 +524,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
common_init();
|
||||
|
||||
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
|
||||
if (params.mmproj.path.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
|
||||
print_usage(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
|
||||
BIN
examples/llava/test-1.jpeg
Normal file
BIN
examples/llava/test-1.jpeg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 121 KiB |
81
examples/llava/tests.sh
Executable file
81
examples/llava/tests.sh
Executable file
@@ -0,0 +1,81 @@
|
||||
#!/bin/bash
|
||||
|
||||
# make sure we are in the right directory
|
||||
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
|
||||
cd $SCRIPT_DIR
|
||||
|
||||
#export LLAMA_CACHE="$SCRIPT_DIR/tmp"
|
||||
|
||||
set -eux
|
||||
|
||||
mkdir -p $SCRIPT_DIR/output
|
||||
|
||||
PROJ_ROOT="$SCRIPT_DIR/../.."
|
||||
cd $PROJ_ROOT
|
||||
|
||||
###############
|
||||
|
||||
arr_bin=()
|
||||
arr_hf=()
|
||||
|
||||
add_test() {
|
||||
local bin=$1
|
||||
local hf=$2
|
||||
arr_bin+=("$bin")
|
||||
arr_hf+=("$hf")
|
||||
}
|
||||
|
||||
add_test "llama-gemma3-cli" "ggml-org/gemma-3-4b-it-GGUF:Q4_K_M"
|
||||
add_test "llama-llava-cli" "cmp-nct/Yi-VL-6B-GGUF:Q5_K"
|
||||
add_test "llama-llava-cli" "guinmoon/MobileVLM-3B-GGUF:Q4_K_M"
|
||||
add_test "llama-llava-cli" "THUDM/glm-edge-v-5b-gguf:Q4_K_M"
|
||||
add_test "llama-llava-cli" "second-state/Llava-v1.5-7B-GGUF:Q2_K"
|
||||
add_test "llama-llava-cli" "cjpais/llava-1.6-mistral-7b-gguf:Q3_K"
|
||||
add_test "llama-llava-cli" "ibm-research/granite-vision-3.2-2b-GGUF:Q4_K_M"
|
||||
add_test "llama-minicpmv-cli" "second-state/MiniCPM-Llama3-V-2_5-GGUF:Q2_K" # model from openbmb is corrupted
|
||||
add_test "llama-minicpmv-cli" "openbmb/MiniCPM-V-2_6-gguf:Q2_K"
|
||||
add_test "llama-minicpmv-cli" "openbmb/MiniCPM-o-2_6-gguf:Q4_0"
|
||||
add_test "llama-qwen2vl-cli" "bartowski/Qwen2-VL-2B-Instruct-GGUF:Q4_K_M"
|
||||
|
||||
###############
|
||||
|
||||
cmake --build build -j --target "${arr_bin[@]}"
|
||||
|
||||
arr_res=()
|
||||
|
||||
for i in "${!arr_bin[@]}"; do
|
||||
bin="${arr_bin[$i]}"
|
||||
hf="${arr_hf[$i]}"
|
||||
|
||||
echo "Running test with binary: $bin and HF model: $hf"
|
||||
echo ""
|
||||
echo ""
|
||||
|
||||
output=$("$PROJ_ROOT/build/bin/$bin" -hf "$hf" --image $SCRIPT_DIR/test-1.jpeg -p "what is the publisher name of the newspaper?" --temp 0 2>&1 | tee /dev/tty)
|
||||
|
||||
echo "$output" > $SCRIPT_DIR/output/$bin-$(echo "$hf" | tr '/' '-').log
|
||||
|
||||
if echo "$output" | grep -iq "new york"; then
|
||||
result="\033[32mOK\033[0m: $bin $hf"
|
||||
else
|
||||
result="\033[31mFAIL\033[0m: $bin $hf"
|
||||
fi
|
||||
echo -e "$result"
|
||||
arr_res+=("$result")
|
||||
|
||||
echo ""
|
||||
echo ""
|
||||
echo ""
|
||||
echo "#################################################"
|
||||
echo "#################################################"
|
||||
echo ""
|
||||
echo ""
|
||||
done
|
||||
|
||||
set +x
|
||||
|
||||
for i in "${!arr_res[@]}"; do
|
||||
echo -e "${arr_res[$i]}"
|
||||
done
|
||||
echo ""
|
||||
echo "Output logs are saved in $SCRIPT_DIR/output"
|
||||
@@ -106,6 +106,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
common_params params;
|
||||
|
||||
params.n_predict = 128;
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PARALLEL)) {
|
||||
return 1;
|
||||
}
|
||||
@@ -405,7 +407,7 @@ int main(int argc, char ** argv) {
|
||||
params.prompt_file = "used built-in defaults";
|
||||
}
|
||||
LOG_INF("External prompt file: \033[32m%s\033[0m\n", params.prompt_file.c_str());
|
||||
LOG_INF("Model and path used: \033[32m%s\033[0m\n\n", params.model.c_str());
|
||||
LOG_INF("Model and path used: \033[32m%s\033[0m\n\n", params.model.path.c_str());
|
||||
|
||||
LOG_INF("Total prompt tokens: %6d, speed: %5.2f t/s\n", n_total_prompt, (double) (n_total_prompt ) / (t_main_end - t_main_start) * 1e6);
|
||||
LOG_INF("Total gen tokens: %6d, speed: %5.2f t/s\n", n_total_gen, (double) (n_total_gen ) / (t_main_end - t_main_start) * 1e6);
|
||||
|
||||
@@ -64,7 +64,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_model_params model_params = common_model_params_to_llama(params);
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params);
|
||||
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
|
||||
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: unable to load model\n" , __func__);
|
||||
|
||||
@@ -1,5 +1,16 @@
|
||||
set(TARGET llama-run)
|
||||
add_executable(${TARGET} run.cpp linenoise.cpp/linenoise.cpp)
|
||||
|
||||
# TODO: avoid copying this code block from common/CMakeLists.txt
|
||||
set(LLAMA_RUN_EXTRA_LIBS "")
|
||||
if (LLAMA_CURL)
|
||||
find_package(CURL REQUIRED)
|
||||
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_CURL)
|
||||
include_directories(${CURL_INCLUDE_DIRS})
|
||||
find_library(CURL_LIBRARY curl REQUIRED)
|
||||
set(LLAMA_RUN_EXTRA_LIBS ${LLAMA_RUN_EXTRA_LIBS} ${CURL_LIBRARY})
|
||||
endif ()
|
||||
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT} ${LLAMA_RUN_EXTRA_LIBS})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_17)
|
||||
|
||||
Binary file not shown.
@@ -133,7 +133,8 @@ struct slot_params {
|
||||
|
||||
auto grammar_triggers = json::array();
|
||||
for (const auto & trigger : sampling.grammar_triggers) {
|
||||
grammar_triggers.push_back(trigger.to_json<json>());
|
||||
server_grammar_trigger ct(std::move(trigger));
|
||||
grammar_triggers.push_back(ct.to_json());
|
||||
}
|
||||
|
||||
return json {
|
||||
@@ -372,9 +373,9 @@ struct server_task {
|
||||
const auto grammar_triggers = data.find("grammar_triggers");
|
||||
if (grammar_triggers != data.end()) {
|
||||
for (const auto & t : *grammar_triggers) {
|
||||
auto ct = common_grammar_trigger::from_json(t);
|
||||
if (ct.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
|
||||
const auto & word = ct.value;
|
||||
server_grammar_trigger ct(t);
|
||||
if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
|
||||
const auto & word = ct.value.value;
|
||||
auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
|
||||
if (ids.size() == 1) {
|
||||
auto token = ids[0];
|
||||
@@ -392,7 +393,7 @@ struct server_task {
|
||||
params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
|
||||
}
|
||||
} else {
|
||||
params.sampling.grammar_triggers.push_back(ct);
|
||||
params.sampling.grammar_triggers.push_back(std::move(ct.value));
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1876,7 +1877,7 @@ struct server_context {
|
||||
}
|
||||
|
||||
bool load_model(const common_params & params) {
|
||||
SRV_INF("loading model '%s'\n", params.model.c_str());
|
||||
SRV_INF("loading model '%s'\n", params.model.path.c_str());
|
||||
|
||||
params_base = params;
|
||||
|
||||
@@ -1886,7 +1887,7 @@ struct server_context {
|
||||
ctx = llama_init.context.get();
|
||||
|
||||
if (model == nullptr) {
|
||||
SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
|
||||
SRV_ERR("failed to load model, '%s'\n", params_base.model.path.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -1897,16 +1898,13 @@ struct server_context {
|
||||
add_bos_token = llama_vocab_get_add_bos(vocab);
|
||||
has_eos_token = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
|
||||
|
||||
if (!params_base.speculative.model.empty() || !params_base.speculative.hf_repo.empty()) {
|
||||
SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
|
||||
if (!params_base.speculative.model.path.empty() || !params_base.speculative.model.hf_repo.empty()) {
|
||||
SRV_INF("loading draft model '%s'\n", params_base.speculative.model.path.c_str());
|
||||
|
||||
auto params_dft = params_base;
|
||||
|
||||
params_dft.devices = params_base.speculative.devices;
|
||||
params_dft.hf_file = params_base.speculative.hf_file;
|
||||
params_dft.hf_repo = params_base.speculative.hf_repo;
|
||||
params_dft.model = params_base.speculative.model;
|
||||
params_dft.model_url = params_base.speculative.model_url;
|
||||
params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
|
||||
params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
|
||||
params_dft.n_parallel = 1;
|
||||
@@ -1920,12 +1918,12 @@ struct server_context {
|
||||
model_dft = llama_init_dft.model.get();
|
||||
|
||||
if (model_dft == nullptr) {
|
||||
SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
|
||||
SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) {
|
||||
SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());
|
||||
SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
|
||||
|
||||
return false;
|
||||
}
|
||||
@@ -3865,7 +3863,7 @@ int main(int argc, char ** argv) {
|
||||
json data = {
|
||||
{ "default_generation_settings", ctx_server.default_generation_settings_for_props },
|
||||
{ "total_slots", ctx_server.params_base.n_parallel },
|
||||
{ "model_path", ctx_server.params_base.model },
|
||||
{ "model_path", ctx_server.params_base.model.path },
|
||||
{ "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) },
|
||||
{ "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
|
||||
{ "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
|
||||
@@ -4131,7 +4129,7 @@ int main(int argc, char ** argv) {
|
||||
{"object", "list"},
|
||||
{"data", {
|
||||
{
|
||||
{"id", params.model_alias.empty() ? params.model : params.model_alias},
|
||||
{"id", params.model_alias.empty() ? params.model.path : params.model_alias},
|
||||
{"object", "model"},
|
||||
{"created", std::time(0)},
|
||||
{"owned_by", "llamacpp"},
|
||||
|
||||
@@ -17,7 +17,7 @@ To mitigate it, you can increase values in `n_predict`, `kv_size`.
|
||||
|
||||
```shell
|
||||
cd ../../..
|
||||
cmake -B build -DLLAMA_CURL=ON
|
||||
cmake -B build
|
||||
cmake --build build --target llama-server
|
||||
```
|
||||
|
||||
|
||||
@@ -58,6 +58,32 @@ static T json_value(const json & body, const std::string & key, const T & defaul
|
||||
|
||||
const static std::string build_info("b" + std::to_string(LLAMA_BUILD_NUMBER) + "-" + LLAMA_COMMIT);
|
||||
|
||||
// thin wrapper around common_grammar_trigger with (de)serialization functions
|
||||
struct server_grammar_trigger {
|
||||
common_grammar_trigger value;
|
||||
|
||||
server_grammar_trigger() = default;
|
||||
server_grammar_trigger(const common_grammar_trigger & value) : value(value) {}
|
||||
server_grammar_trigger(const json & in) {
|
||||
value.type = (common_grammar_trigger_type) in.at("type").get<int>();
|
||||
value.value = in.at("value").get<std::string>();
|
||||
if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
|
||||
value.token = (llama_token) in.at("token").get<int>();
|
||||
}
|
||||
}
|
||||
|
||||
json to_json() const {
|
||||
json out {
|
||||
{"type", (int) value.type},
|
||||
{"value", value.value},
|
||||
};
|
||||
if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
|
||||
out["token"] = (int) value.token;
|
||||
}
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
//
|
||||
// tokenizer and input processing utils
|
||||
//
|
||||
@@ -627,7 +653,8 @@ static json oaicompat_completion_params_parse(
|
||||
llama_params["grammar_lazy"] = chat_params.grammar_lazy;
|
||||
auto grammar_triggers = json::array();
|
||||
for (const auto & trigger : chat_params.grammar_triggers) {
|
||||
grammar_triggers.push_back(trigger.to_json<json>());
|
||||
server_grammar_trigger ct(trigger);
|
||||
grammar_triggers.push_back(ct.to_json());
|
||||
}
|
||||
llama_params["grammar_triggers"] = grammar_triggers;
|
||||
llama_params["preserved_tokens"] = chat_params.preserved_tokens;
|
||||
|
||||
1436
examples/server/webui/package-lock.json
generated
1436
examples/server/webui/package-lock.json
generated
File diff suppressed because it is too large
Load Diff
@@ -13,9 +13,11 @@
|
||||
"dependencies": {
|
||||
"@heroicons/react": "^2.2.0",
|
||||
"@sec-ant/readable-stream": "^0.6.0",
|
||||
"@tailwindcss/postcss": "^4.1.1",
|
||||
"@tailwindcss/vite": "^4.1.1",
|
||||
"@vscode/markdown-it-katex": "^1.1.1",
|
||||
"autoprefixer": "^10.4.20",
|
||||
"daisyui": "^4.12.14",
|
||||
"daisyui": "^5.0.12",
|
||||
"dexie": "^4.0.11",
|
||||
"highlight.js": "^11.10.0",
|
||||
"katex": "^0.16.15",
|
||||
@@ -29,7 +31,7 @@
|
||||
"remark-breaks": "^4.0.0",
|
||||
"remark-gfm": "^4.0.0",
|
||||
"remark-math": "^6.0.0",
|
||||
"tailwindcss": "^3.4.15",
|
||||
"tailwindcss": "^4.1.1",
|
||||
"textlinestream": "^1.1.1",
|
||||
"vite-plugin-singlefile": "^2.0.3"
|
||||
},
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
export default {
|
||||
plugins: {
|
||||
tailwindcss: {},
|
||||
autoprefixer: {},
|
||||
"@tailwindcss/postcss": {},
|
||||
},
|
||||
}
|
||||
|
||||
@@ -28,7 +28,7 @@ function AppLayout() {
|
||||
<>
|
||||
<Sidebar />
|
||||
<div
|
||||
className="drawer-content grow flex flex-col h-screen w-screen mx-auto px-4 overflow-auto"
|
||||
className="drawer-content grow flex flex-col h-screen w-screen mx-auto px-4 overflow-auto bg-base-100"
|
||||
id="main-scroll"
|
||||
>
|
||||
<Header />
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
import daisyuiThemes from 'daisyui/src/theming/themes';
|
||||
import daisyuiThemes from 'daisyui/theme/object';
|
||||
import { isNumeric } from './utils/misc';
|
||||
|
||||
export const isDev = import.meta.env.MODE === 'development';
|
||||
|
||||
@@ -2,7 +2,7 @@ import { useEffect, useState } from 'react';
|
||||
import StorageUtils from '../utils/storage';
|
||||
import { useAppContext } from '../utils/app.context';
|
||||
import { classNames } from '../utils/misc';
|
||||
import daisyuiThemes from 'daisyui/src/theming/themes';
|
||||
import daisyuiThemes from 'daisyui/theme/object';
|
||||
import { THEMES } from '../Config';
|
||||
import { useNavigate } from 'react-router';
|
||||
|
||||
@@ -20,7 +20,6 @@ export default function Header() {
|
||||
document.body.setAttribute('data-theme', selectedTheme);
|
||||
document.body.setAttribute(
|
||||
'data-color-scheme',
|
||||
// @ts-expect-error daisyuiThemes complains about index type, but it should work
|
||||
daisyuiThemes[selectedTheme]?.['color-scheme'] ?? 'auto'
|
||||
);
|
||||
}, [selectedTheme]);
|
||||
|
||||
@@ -1,8 +1,13 @@
|
||||
@use 'sass:meta';
|
||||
@use 'tailwindcss';
|
||||
|
||||
@tailwind base;
|
||||
@tailwind components;
|
||||
@tailwind utilities;
|
||||
@plugin 'daisyui' {
|
||||
themes: all;
|
||||
}
|
||||
|
||||
html {
|
||||
scrollbar-gutter: auto;
|
||||
}
|
||||
|
||||
.markdown {
|
||||
h1,
|
||||
|
||||
@@ -24,7 +24,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
common_init();
|
||||
|
||||
if (params.speculative.model.empty()) {
|
||||
if (params.speculative.model.path.empty()) {
|
||||
LOG_ERR("%s: --model-draft is required\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -46,7 +46,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
common_init();
|
||||
|
||||
if (params.speculative.model.empty()) {
|
||||
if (params.speculative.model.path.empty()) {
|
||||
LOG_ERR("%s: --model-draft is required\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -13,10 +13,10 @@ if %errorlevel% neq 0 goto ERROR
|
||||
|
||||
:: for FP16
|
||||
:: faster for long-prompt inference
|
||||
:: cmake -G "MinGW Makefiles" .. -DGGML_SYCL=ON -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release -DGGML_SYCL_F16=ON
|
||||
:: cmake -G "MinGW Makefiles" .. -DLLAMA_CURL=OFF -DGGML_SYCL=ON -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release -DGGML_SYCL_F16=ON
|
||||
|
||||
:: for FP32
|
||||
cmake -G "Ninja" .. -DGGML_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release
|
||||
cmake -G "Ninja" .. -DLLAMA_CURL=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release
|
||||
if %errorlevel% neq 0 goto ERROR
|
||||
:: build example/main only
|
||||
:: make main
|
||||
|
||||
@@ -577,12 +577,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model_ttc);
|
||||
|
||||
// TODO: refactor in a common struct
|
||||
params.model = params.vocoder.model;
|
||||
params.model_url = params.vocoder.model_url;
|
||||
params.hf_repo = params.vocoder.hf_repo;
|
||||
params.hf_file = params.vocoder.hf_file;
|
||||
|
||||
params.model = params.vocoder.model;
|
||||
params.embedding = true;
|
||||
|
||||
common_init_result llama_init_cts = common_init_from_params(params);
|
||||
@@ -699,11 +694,13 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14
|
||||
const std::string voice_data = audio_data;
|
||||
|
||||
auto tmp = common_tokenize(vocab, voice_data, false, true);
|
||||
printf("\n\n");
|
||||
|
||||
std::ostringstream tokens_oss;
|
||||
for (size_t i = 0; i < tmp.size(); ++i) {
|
||||
printf("%d, ", tmp[i]);
|
||||
tokens_oss << tmp[i] << ", ";
|
||||
}
|
||||
printf("\n\n");
|
||||
LOG_INF("\n\n%s: llama tokens: %s\n\n", __func__, tokens_oss.str().c_str());
|
||||
|
||||
prompt_add(prompt_inp, tmp);
|
||||
#else
|
||||
prompt_add(prompt_inp, llama_tokens {
|
||||
|
||||
@@ -100,6 +100,10 @@ else()
|
||||
set(INS_ENB ON)
|
||||
endif()
|
||||
|
||||
message(DEBUG "GGML_NATIVE : ${GGML_NATIVE}")
|
||||
message(DEBUG "GGML_NATIVE_DEFAULT : ${GGML_NATIVE_DEFAULT}")
|
||||
message(DEBUG "INS_ENB : ${INS_ENB}")
|
||||
|
||||
option(GGML_CPU_HBM "ggml: use memkind for CPU HBM" OFF)
|
||||
option(GGML_CPU_AARCH64 "ggml: use runtime weight conversion of Q4_0 to Q4_X_X" ON)
|
||||
option(GGML_CPU_KLEIDIAI "ggml: use KleidiAI optimized kernels if applicable" OFF)
|
||||
|
||||
@@ -51,13 +51,11 @@ if (CANN_INSTALL_DIR)
|
||||
${CANN_INSTALL_DIR}/acllib/include
|
||||
)
|
||||
|
||||
add_subdirectory(kernels)
|
||||
list(APPEND CANN_LIBRARIES
|
||||
ascendcl
|
||||
nnopbase
|
||||
opapi
|
||||
acl_op_compiler
|
||||
ascendc_kernels
|
||||
)
|
||||
|
||||
file(GLOB GGML_SOURCES_CANN "*.cpp")
|
||||
|
||||
@@ -54,9 +54,7 @@ aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne,
|
||||
// added.
|
||||
int64_t acl_ne[GGML_MAX_DIMS * 2], acl_stride[GGML_MAX_DIMS * 2];
|
||||
|
||||
int64_t acl_storage_len = 0;
|
||||
if (ne == nullptr) {
|
||||
acl_storage_len = ggml_nbytes(tensor);
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
acl_ne[i] = tensor->ne[i];
|
||||
// The step size of acl is in elements.
|
||||
@@ -65,14 +63,18 @@ aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne,
|
||||
} else {
|
||||
// With bcast
|
||||
for (int i = 0; i < dims; i++) {
|
||||
acl_storage_len += (ne[i] - 1) * nb[i];
|
||||
acl_ne[i] = ne[i];
|
||||
acl_stride[i] = nb[i] / ggml_element_size(tensor);
|
||||
}
|
||||
}
|
||||
|
||||
// Reverse ne and stride.
|
||||
int64_t final_dims = (dims == 0 ? GGML_MAX_DIMS : dims);
|
||||
int64_t acl_storage_len = 1;
|
||||
for (int i = 0; i < final_dims; i++) {
|
||||
acl_storage_len += (acl_ne[i] - 1) * acl_stride[i];
|
||||
}
|
||||
|
||||
// Reverse ne and stride.
|
||||
std::reverse(acl_ne, acl_ne + final_dims);
|
||||
std::reverse(acl_stride, acl_stride + final_dims);
|
||||
|
||||
|
||||
@@ -101,14 +101,14 @@ aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
|
||||
tmp_stride[i] = nb[i] / type_size;
|
||||
}
|
||||
|
||||
int64_t acl_storage_len = 1;
|
||||
for (int i = 0; i < dims; i++) {
|
||||
acl_storage_len += (tmp_ne[i] - 1) * tmp_stride[i];
|
||||
}
|
||||
|
||||
std::reverse(tmp_ne, tmp_ne + dims);
|
||||
std::reverse(tmp_stride, tmp_stride + dims);
|
||||
|
||||
int64_t acl_storage_len = 0;
|
||||
for (int i = 0; i < dims; i++) {
|
||||
acl_storage_len += (ne[i] - 1) * nb[i];
|
||||
}
|
||||
|
||||
aclTensor* acl_tensor =
|
||||
aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size,
|
||||
format, &acl_storage_len, 1, data_ptr);
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -31,20 +31,25 @@
|
||||
* IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#include <aclnnop/aclnn_add.h>
|
||||
#include <aclnnop/aclnn_abs.h>
|
||||
#include <aclnnop/aclnn_neg.h>
|
||||
#include <aclnnop/aclnn_exp.h>
|
||||
#include <aclnnop/aclnn_arange.h>
|
||||
#include <aclnnop/aclnn_argsort.h>
|
||||
#include <aclnnop/aclnn_cat.h>
|
||||
#include <aclnnop/aclnn_clamp.h>
|
||||
#include <aclnnop/aclnn_div.h>
|
||||
#include <aclnnop/aclnn_gelu.h>
|
||||
#include <aclnnop/aclnn_gelu_v2.h>
|
||||
#include <aclnnop/aclnn_sigmoid.h>
|
||||
#include <aclnnop/aclnn_hardsigmoid.h>
|
||||
#include <aclnnop/aclnn_hardswish.h>
|
||||
#include <aclnnop/aclnn_leaky_relu.h>
|
||||
#include <aclnnop/aclnn_mul.h>
|
||||
#include <aclnnop/aclnn_relu.h>
|
||||
#include <aclnnop/aclnn_silu.h>
|
||||
#include <aclnnop/aclnn_tanh.h>
|
||||
#include <aclnnop/aclnn_sqrt.h>
|
||||
#include <aclnnop/aclnn_sin.h>
|
||||
#include <aclnnop/aclnn_cos.h>
|
||||
#include "acl_tensor.h"
|
||||
#include "common.h"
|
||||
|
||||
@@ -63,23 +68,6 @@
|
||||
*/
|
||||
void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Adds two ggml tensors using the CANN backend.
|
||||
*
|
||||
* @details This function performs an element-wise addition of two tensors. In
|
||||
* case the tensors do not have the same shape, one or both tensors
|
||||
* will be broadcasted to match the shape of the other before the
|
||||
* addition is performed.The formula for the operation is given by:
|
||||
* \f[
|
||||
* \text{dst} = \text{acl_src0} + \alpha \cdot \text{acl_src1}
|
||||
* \f]
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The ggml tensor representing the destination, result of the
|
||||
* addition is stored at dst->data, and dst->op is `GGML_OP_ADD`
|
||||
*/
|
||||
void ggml_cann_add(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Applies the Leaky ReLU activation function to a tensor using the CANN
|
||||
* backend.
|
||||
@@ -131,19 +119,6 @@ void ggml_cann_concat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
*/
|
||||
void ggml_cann_arange(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the square of the elements of a ggml tensor using the CANN
|
||||
* backend.
|
||||
* @details The function sets the second source tensor of the destination
|
||||
* tensor `dst` to be equal to the first source tensor. This is
|
||||
* effectively squaring the elements since the multiplication becomes
|
||||
* `element * element`.
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the squared values will be stored,
|
||||
* which dst->op is `GGML_OP_SQR`.
|
||||
*/
|
||||
void ggml_cann_sqr(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Applies a clamp operation to the elements of a ggml tensor using the
|
||||
* CANN backend.
|
||||
@@ -275,6 +250,20 @@ void ggml_cann_acc(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
*/
|
||||
void ggml_cann_sum_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the sum of elements in a ggml tensor.
|
||||
*
|
||||
* @details This function performs a reduction sum operation along the last
|
||||
* dimension of the input tensor `src`. The result of the sum is stored
|
||||
* in the destination tensor `dst`.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the reduced values will be stored。
|
||||
*
|
||||
*/
|
||||
|
||||
void ggml_cann_sum(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Upsamples a ggml tensor using nearest neighbor interpolation using
|
||||
* the CANN backend.
|
||||
@@ -484,109 +473,263 @@ void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
*/
|
||||
void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
template <aclnnStatus getWorkspaceSize(const aclTensor*, const aclTensor*,
|
||||
aclTensor*, uint64_t*, aclOpExecutor**),
|
||||
aclnnStatus execute(void*, uint64_t, aclOpExecutor*, aclrtStream)>
|
||||
void ggml_cann_mul_div(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
/**
|
||||
* @brief Computes the index of the maximum value along the specified dimension
|
||||
* of a ggml tensor using the CANN backend.
|
||||
*
|
||||
* @details This function performs an argmax operation on the input tensor.
|
||||
* It finds the index of the maximum value along the specified axis
|
||||
* and stores these indices in the destination tensor `dst`. The
|
||||
* operation is executed using the CANN backend for optimized performance.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the indices of the maximum values will be stored.
|
||||
* dst->op is `GGML_OP_ARGMAX`.
|
||||
*/
|
||||
void ggml_cann_argmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Adds two tensors element-wise and stores the result in a destination
|
||||
* tensor.
|
||||
*
|
||||
* This function performs the operation:
|
||||
* \f[
|
||||
* dst = acl\_src0 + alpha \times acl\_src1
|
||||
* \f]
|
||||
* where alpha is a scalar value and defaults to 1.0f.
|
||||
*
|
||||
* @param ctx The context for the CANN backend operations.
|
||||
* @param acl_src0 The first source tensor.
|
||||
* @param acl_src1 The second source tensor.
|
||||
* @param acl_dst The destination tensor where the result will be stored.
|
||||
*/
|
||||
void aclnn_add(ggml_backend_cann_context& ctx, aclTensor* acl_src0,
|
||||
aclTensor* acl_src1, aclTensor* acl_dst = nullptr);
|
||||
|
||||
/**
|
||||
* @brief Sub two tensors element-wise and stores the result in a destination
|
||||
* tensor.
|
||||
*
|
||||
* This function performs the operation:
|
||||
* \f[
|
||||
* dst = acl\_src0 - alpha \times acl\_src1
|
||||
* \f]
|
||||
* where alpha is a scalar value and defaults to 1.0f.
|
||||
*
|
||||
* @param ctx The context for the CANN backend operations.
|
||||
* @param acl_src0 The first source tensor.
|
||||
* @param acl_src1 The second source tensor.
|
||||
* @param acl_dst The destination tensor where the result will be stored.
|
||||
*/
|
||||
void aclnn_sub(ggml_backend_cann_context& ctx, aclTensor* acl_src0,
|
||||
aclTensor* acl_src1, aclTensor* acl_dst = nullptr);
|
||||
|
||||
/**
|
||||
* @brief Performs element-wise multiplication of two tensors and stores the
|
||||
* result in a destination tensor.
|
||||
*
|
||||
* This function performs element-wise multiplication of the tensors `acl_src`
|
||||
* and `acl_other` and stores the result in the destination tensor `acl_dst`.
|
||||
* The operation is defined as:
|
||||
* \f[
|
||||
* \text {acl_dst }_i=\text {acl_src }_i \times \text {acl_other }_i
|
||||
* \f]
|
||||
*
|
||||
* @param ctx The context for the CANN backend operations.
|
||||
* @param acl_src The first tensor for element-wise multiplication.
|
||||
* @param acl_other The second tensor for element-wise multiplication.
|
||||
* @param acl_dst The destination tensor where the result will be stored.
|
||||
*/
|
||||
void aclnn_mul(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
aclTensor* acl_other, aclTensor* acl_dst = nullptr);
|
||||
|
||||
/**
|
||||
* @brief Matrix division, optionally in-place.
|
||||
*
|
||||
* This function division each element of the source tensor `acl_src` by the
|
||||
* tensor `acl_other` and stores the result in the destination tensor `acl_dst`.
|
||||
* If `inplace` is true, `acl_dst` will not be used and the operation is
|
||||
* performed in-place on `acl_src`. The operation is defined as: \f[
|
||||
* \text{dst}_i = \frac{\text{acl_src}_i}{\text{acl_other}_i}
|
||||
* \f]
|
||||
*
|
||||
* @param ctx The context for the CANN backend operations.
|
||||
* @param acl_src Numerator tensor..
|
||||
* @param acl_other Denominator tensor.
|
||||
* @param acl_dst The destination tensor where the result will be stored if
|
||||
* `inplace` is false.
|
||||
* @param inplace Flag indicating whether to perform the operation in-place on
|
||||
* `acl_src`.
|
||||
*/
|
||||
void aclnn_div(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
aclTensor* acl_other, aclTensor* acl_dst = nullptr);
|
||||
|
||||
/**
|
||||
* @brief Applies element-wise cosine function to the elements of a tensor.
|
||||
*
|
||||
* This function computes the cosine of each element in the source tensor
|
||||
* `acl_src` and stores the result in the destination tensor `acl_dst`. The
|
||||
* operation is defined as: \f[ \text {acl_dst }_i=\cos \left(\text {acl_src
|
||||
* }_i\right) \f]
|
||||
*
|
||||
* @param ctx The context for the CANN backend operations.
|
||||
* @param acl_src The source tensor on which the cosine function will be
|
||||
* applied.
|
||||
* @param acl_dst The destination tensor where the cosine results will be
|
||||
* stored.
|
||||
*/
|
||||
void aclnn_cos(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
aclTensor* acl_dst);
|
||||
|
||||
/**
|
||||
* @brief Applies element-wise sine function to the elements of a tensor.
|
||||
*
|
||||
* This function computes the sine of each element in the source tensor
|
||||
`acl_src`
|
||||
* and stores the result in the destination tensor `acl_dst`.
|
||||
* The operation is defined as:
|
||||
* \f[
|
||||
* \text {acl_dst }_i=\sin \left(\text {acl_src }_i\right)
|
||||
* \f]
|
||||
|
||||
* @param ctx The context for the CANN backend operations.
|
||||
* @param acl_src The source tensor on which the sine function will be applied.
|
||||
* @param acl_dst The destination tensor where the sine results will be stored.
|
||||
*/
|
||||
void aclnn_sin(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
aclTensor* acl_dst);
|
||||
|
||||
/**
|
||||
* @brief Launches an asynchronous task using the memory allocator.
|
||||
*
|
||||
* This macro submit an asynchronous task on the specified stream.
|
||||
* The task uses memory allocated by the allocator. It is guaranteed
|
||||
* that the memory will not be accessed by other tasks until this task
|
||||
* completes, due to the sequential execution order within the same stream.
|
||||
*
|
||||
* @param OP_NAME aclnn operator name.
|
||||
* @param args Additional arguments required by the task.
|
||||
*
|
||||
* @note
|
||||
* Memory from the allocator will be "freed" immediately and can be
|
||||
* reallocated to other pointers. However, it won't be accessed by any
|
||||
* other task before this asynchronous task ends, because all tasks in the
|
||||
* same stream are executed in queue order.
|
||||
*/
|
||||
#define GGML_CANN_CALL_ACLNN_OP(OP_NAME, ...) \
|
||||
do { \
|
||||
uint64_t workspaceSize = 0; \
|
||||
aclOpExecutor * executor; \
|
||||
void * workspaceAddr = nullptr; \
|
||||
\
|
||||
ACL_CHECK(aclnn##OP_NAME##GetWorkspaceSize(__VA_ARGS__, &workspaceSize, &executor)); \
|
||||
\
|
||||
if (workspaceSize > 0) { \
|
||||
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); \
|
||||
workspaceAddr = workspace_allocator.get(); \
|
||||
} \
|
||||
ACL_CHECK(aclnn##OP_NAME(workspaceAddr, workspaceSize, executor, ctx.stream())); \
|
||||
} while (0)
|
||||
|
||||
|
||||
/**
|
||||
* @brief Prepares broadcast-compatible ACL tensors for two input tensors and one output tensor.
|
||||
*
|
||||
* This function checks whether broadcasting is needed between `src0` and `src1`.
|
||||
* If broadcasting is required, it calculates the proper shapes and creates
|
||||
* ACL tensors with broadcast parameters. Otherwise, it directly creates ACL tensors
|
||||
* based on the original tensor shapes.
|
||||
*
|
||||
* @param src0 The first input tensor (reference shape).
|
||||
* @param src1 The second input tensor (possibly broadcasted).
|
||||
* @param dst The destination/output tensor.
|
||||
* @param acl_src0 Output pointer to the created ACL tensor corresponding to src0.
|
||||
* @param acl_src1 Output pointer to the created ACL tensor corresponding to src1.
|
||||
* @param acl_dst Output pointer to the created ACL tensor corresponding to dst.
|
||||
*/
|
||||
void bcast_shape(ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst, aclTensor ** acl_src0,
|
||||
aclTensor ** acl_src1, aclTensor ** acl_dst);
|
||||
|
||||
/**
|
||||
* @brief Applies a element-wise operation to two input tensors using the CANN backend.
|
||||
*
|
||||
* This templated function takes a binary operator and applies it to two source tensors
|
||||
* associated with the destination tensor. The function handles broadcasting as needed.
|
||||
*
|
||||
* @tparam binary_op A callable object (e.g., lambda or function pointer) representing
|
||||
* the binary operation to be performed. It must take three arguments:
|
||||
* (ggml_backend_cann_context&, aclTensor*, aclTensor*, aclTensor*).
|
||||
*
|
||||
* @param ctx The CANN backend context used to manage execution and resources.
|
||||
* @param dst The destination tensor.
|
||||
*/
|
||||
template <auto binary_op>
|
||||
void ggml_cann_binary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ggml_tensor* src0 = dst->src[0];
|
||||
ggml_tensor* src1 = dst->src[1];
|
||||
GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
|
||||
|
||||
aclTensor* acl_src0;
|
||||
aclTensor* acl_src1;
|
||||
aclTensor* acl_dst;
|
||||
|
||||
// Need bcast
|
||||
if (!ggml_are_same_shape(src0, src1) && ggml_cann_need_bcast(src0, src1)) {
|
||||
BCAST_SHAPE(src0, src1)
|
||||
acl_src0 = ggml_cann_create_tensor(src0, BCAST_PARAM(src0));
|
||||
acl_src1 = ggml_cann_create_tensor(src1, BCAST_PARAM(src1));
|
||||
acl_dst = ggml_cann_create_tensor(dst, BCAST_PARAM(src0));
|
||||
} else {
|
||||
acl_src0 = ggml_cann_create_tensor(src0);
|
||||
acl_src1 = ggml_cann_create_tensor(src1);
|
||||
acl_dst = ggml_cann_create_tensor(dst);
|
||||
}
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor* executor;
|
||||
void* workspaceAddr = nullptr;
|
||||
|
||||
ACL_CHECK(getWorkspaceSize(acl_src0, acl_src1, acl_dst, &workspaceSize,
|
||||
&executor));
|
||||
if (workspaceSize > 0) {
|
||||
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
|
||||
workspaceAddr = workspace_allocator.get();
|
||||
}
|
||||
|
||||
aclrtStream main_stream = ctx.stream();
|
||||
ACL_CHECK(execute(workspaceAddr, workspaceSize, executor, main_stream));
|
||||
bcast_shape(src0, src1, dst, &acl_src0, &acl_src1, &acl_dst);
|
||||
binary_op(ctx, acl_src0, acl_src1, acl_dst);
|
||||
|
||||
ACL_CHECK(aclDestroyTensor(acl_src0));
|
||||
ACL_CHECK(aclDestroyTensor(acl_src1));
|
||||
ACL_CHECK(aclDestroyTensor(acl_dst));
|
||||
}
|
||||
|
||||
// Activation functions template.
|
||||
template <aclnnStatus getWorkspaceSize(const aclTensor*, aclTensor*, uint64_t*,
|
||||
aclOpExecutor**),
|
||||
aclnnStatus execute(void*, uint64_t, aclOpExecutor*,
|
||||
const aclrtStream)>
|
||||
void ggml_cann_activation(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
/**
|
||||
* @brief Applies a unary operation to an input tensor using the CANN backend.
|
||||
*
|
||||
* This templated function applies a unary operator to the source tensor of `dst`
|
||||
* and stores the result in the destination tensor.
|
||||
*
|
||||
* @tparam unary_op A callable with the signature:
|
||||
* void(ggml_backend_cann_context&, aclTensor*, aclTensor*)
|
||||
* where the first aclTensor is the source and the second is the destination.
|
||||
*
|
||||
* @param ctx The CANN backend context for managing resources and execution.
|
||||
* @param dst The destination tensor. Its src[0] is treated as the input tensor.
|
||||
*/
|
||||
template <void unary_op(ggml_backend_cann_context&, aclTensor*, aclTensor*)>
|
||||
void ggml_cann_unary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ggml_tensor* src = dst->src[0];
|
||||
|
||||
GGML_ASSERT(src->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
aclTensor* acl_src = ggml_cann_create_tensor(src);
|
||||
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor* executor;
|
||||
void* workspaceAddr = nullptr;
|
||||
|
||||
ACL_CHECK(getWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor));
|
||||
if (workspaceSize > 0) {
|
||||
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
|
||||
workspaceAddr = workspace_allocator.get();
|
||||
}
|
||||
|
||||
aclrtStream main_stream = ctx.stream();
|
||||
ACL_CHECK(execute(workspaceAddr, workspaceSize, executor, main_stream));
|
||||
|
||||
unary_op(ctx, acl_src, acl_dst);
|
||||
ACL_CHECK(aclDestroyTensor(acl_src));
|
||||
ACL_CHECK(aclDestroyTensor(acl_dst));
|
||||
}
|
||||
|
||||
// Activation functions template for const aclTensors.
|
||||
template <aclnnStatus getWorkspaceSize(const aclTensor*, const aclTensor*,
|
||||
uint64_t*, aclOpExecutor**),
|
||||
aclnnStatus execute(void*, uint64_t, aclOpExecutor*,
|
||||
const aclrtStream)>
|
||||
void ggml_cann_activation(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ggml_tensor* src = dst->src[0];
|
||||
|
||||
GGML_ASSERT(src->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
aclTensor* acl_src = ggml_cann_create_tensor(src);
|
||||
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor* executor;
|
||||
void* workspaceAddr = nullptr;
|
||||
|
||||
ACL_CHECK(getWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor));
|
||||
if (workspaceSize > 0) {
|
||||
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
|
||||
workspaceAddr = workspace_allocator.get();
|
||||
}
|
||||
|
||||
aclrtStream main_stream = ctx.stream();
|
||||
ACL_CHECK(execute(workspaceAddr, workspaceSize, executor, main_stream));
|
||||
|
||||
ACL_CHECK(aclDestroyTensor(acl_src));
|
||||
ACL_CHECK(aclDestroyTensor(acl_dst));
|
||||
}
|
||||
/**
|
||||
* @brief Helper macro to invoke a unary ACL operation using ggml_cann_unary_op.
|
||||
*
|
||||
* This macro defines an inline lambda wrapping a specific ACL operation name,
|
||||
* and passes it to the templated ggml_cann_unary_op function. It simplifies
|
||||
* calling unary ops by hiding the lambda boilerplate.
|
||||
*
|
||||
* Internally, the lambda will call:
|
||||
* @code
|
||||
* GGML_CANN_CALL_ACLNN_OP(OP_NAME, acl_src, acl_dst);
|
||||
* @endcode
|
||||
*
|
||||
* @param OP_NAME The name of the ACL unary operator to invoke via GGML_CANN_CALL_ACLNN_OP.
|
||||
*
|
||||
* @see ggml_cann_unary_op
|
||||
* @see GGML_CANN_CALL_ACLNN_OP
|
||||
*/
|
||||
#define GGML_CANN_CALL_UNARY_OP(OP_NAME) \
|
||||
do { \
|
||||
auto lambda = [](auto ctx, auto acl_src, auto acl_dst) { \
|
||||
GGML_CANN_CALL_ACLNN_OP(OP_NAME, acl_src, acl_dst); \
|
||||
}; \
|
||||
ggml_cann_unary_op<lambda>(ctx, dst); \
|
||||
} \
|
||||
while (0)
|
||||
|
||||
#endif // CANN_ACLNN_OPS
|
||||
|
||||
@@ -803,7 +803,7 @@ static enum ggml_status ggml_backend_cann_buffer_init_tensor(
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
// TODO: can backend doesn't support quantized yet. Just leave the code
|
||||
// TODO: cann backend doesn't support quantized yet. Just leave the code
|
||||
// here.
|
||||
if (ggml_is_quantized(tensor->type)) {
|
||||
// Initialize padding to 0 to avoid possible NaN values
|
||||
@@ -1300,47 +1300,59 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
|
||||
ggml_cann_dup(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_ADD:
|
||||
ggml_cann_add(ctx, dst);
|
||||
case GGML_OP_ADD1:
|
||||
ggml_cann_binary_op<aclnn_add>(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SUB:
|
||||
ggml_cann_binary_op<aclnn_sub>(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_ACC:
|
||||
ggml_cann_acc(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_MUL:
|
||||
ggml_cann_mul_div<aclnnMulGetWorkspaceSize, aclnnMul>(ctx, dst);
|
||||
ggml_cann_binary_op<aclnn_mul>(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_DIV:
|
||||
ggml_cann_mul_div<aclnnDivGetWorkspaceSize, aclnnDiv>(ctx, dst);
|
||||
ggml_cann_binary_op<aclnn_div>(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_UNARY:
|
||||
switch (ggml_get_unary_op(dst)) {
|
||||
case GGML_UNARY_OP_ABS:
|
||||
GGML_CANN_CALL_UNARY_OP(Abs);
|
||||
break;
|
||||
case GGML_UNARY_OP_NEG:
|
||||
GGML_CANN_CALL_UNARY_OP(Neg);
|
||||
break;
|
||||
case GGML_UNARY_OP_GELU:
|
||||
ggml_cann_activation<aclnnGeluGetWorkspaceSize, aclnnGelu>(
|
||||
ctx, dst);
|
||||
GGML_CANN_CALL_UNARY_OP(Gelu);
|
||||
break;
|
||||
case GGML_UNARY_OP_SILU:
|
||||
ggml_cann_activation<aclnnSiluGetWorkspaceSize, aclnnSilu>(
|
||||
ctx, dst);
|
||||
GGML_CANN_CALL_UNARY_OP(Silu);
|
||||
break;
|
||||
// TODO: Use faster gelu??
|
||||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
ggml_cann_activation<aclnnGeluGetWorkspaceSize, aclnnGelu>(
|
||||
ctx, dst);
|
||||
case GGML_UNARY_OP_GELU_QUICK: {
|
||||
auto lambda = [](auto ctx, auto acl_src, auto acl_dst) {
|
||||
GGML_CANN_CALL_ACLNN_OP(GeluV2, acl_src, 0, acl_dst);
|
||||
};
|
||||
ggml_cann_unary_op<lambda>(ctx, dst);
|
||||
}
|
||||
break;
|
||||
case GGML_UNARY_OP_TANH:
|
||||
ggml_cann_activation<aclnnTanhGetWorkspaceSize, aclnnTanh>(
|
||||
ctx, dst);
|
||||
GGML_CANN_CALL_UNARY_OP(Tanh);
|
||||
break;
|
||||
case GGML_UNARY_OP_RELU:
|
||||
ggml_cann_activation<aclnnReluGetWorkspaceSize, aclnnRelu>(
|
||||
ctx, dst);
|
||||
GGML_CANN_CALL_UNARY_OP(Relu);
|
||||
break;
|
||||
case GGML_UNARY_OP_SIGMOID:
|
||||
GGML_CANN_CALL_UNARY_OP(Sigmoid);
|
||||
break;
|
||||
case GGML_UNARY_OP_HARDSIGMOID:
|
||||
ggml_cann_activation<aclnnHardsigmoidGetWorkspaceSize,
|
||||
aclnnHardsigmoid>(ctx, dst);
|
||||
GGML_CANN_CALL_UNARY_OP(Hardsigmoid);
|
||||
break;
|
||||
case GGML_UNARY_OP_HARDSWISH:
|
||||
ggml_cann_activation<aclnnHardswishGetWorkspaceSize,
|
||||
aclnnHardswish>(ctx, dst);
|
||||
GGML_CANN_CALL_UNARY_OP(Hardswish);
|
||||
break;
|
||||
case GGML_UNARY_OP_EXP:
|
||||
GGML_CANN_CALL_UNARY_OP(Exp);
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
@@ -1382,7 +1394,12 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
|
||||
ggml_cann_scale(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SQR:
|
||||
ggml_cann_sqr(ctx, dst);
|
||||
GGML_ASSERT(dst->src[1] == nullptr);
|
||||
dst->src[1] = dst->src[0];
|
||||
ggml_cann_binary_op<aclnn_mul>(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SQRT:
|
||||
GGML_CANN_CALL_UNARY_OP(Sqrt);
|
||||
break;
|
||||
case GGML_OP_CLAMP:
|
||||
ggml_cann_clamp(ctx, dst);
|
||||
@@ -1414,12 +1431,24 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
|
||||
case GGML_OP_POOL_2D:
|
||||
ggml_cann_pool2d(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SUM:
|
||||
ggml_cann_sum(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SUM_ROWS:
|
||||
ggml_cann_sum_rows(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_ARGSORT:
|
||||
ggml_cann_argsort(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_ARGMAX:
|
||||
ggml_cann_argmax(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_COS:
|
||||
ggml_cann_unary_op<aclnn_cos>(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SIN:
|
||||
ggml_cann_unary_op<aclnn_sin>(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
@@ -1458,11 +1487,6 @@ static void ggml_backend_cann_free(ggml_backend_t backend) {
|
||||
ACL_CHECK(aclrtSynchronizeDevice());
|
||||
ACL_CHECK(aclrtResetDevice(cann_ctx->device));
|
||||
|
||||
// finalize when last backend freed.
|
||||
if (cann_ctx->device == ggml_backend_cann_get_device_count() - 1) {
|
||||
ACL_CHECK(aclFinalize());
|
||||
}
|
||||
|
||||
delete cann_ctx;
|
||||
delete backend;
|
||||
}
|
||||
@@ -1675,24 +1699,31 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
switch (op->op) {
|
||||
case GGML_OP_UNARY:
|
||||
switch (ggml_get_unary_op(op)) {
|
||||
case GGML_UNARY_OP_ABS:
|
||||
case GGML_UNARY_OP_NEG:
|
||||
case GGML_UNARY_OP_GELU:
|
||||
case GGML_UNARY_OP_SILU:
|
||||
case GGML_UNARY_OP_RELU:
|
||||
case GGML_UNARY_OP_SIGMOID:
|
||||
case GGML_UNARY_OP_HARDSIGMOID:
|
||||
case GGML_UNARY_OP_HARDSWISH:
|
||||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
case GGML_UNARY_OP_TANH:
|
||||
case GGML_UNARY_OP_EXP:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
case GGML_OP_MUL_MAT: {
|
||||
switch (op->src[0]->type) {
|
||||
case GGML_TYPE_Q8_0:
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_Q4_0:
|
||||
return true;
|
||||
case GGML_TYPE_Q8_0:
|
||||
case GGML_TYPE_Q4_0:
|
||||
// only support contiguous for quantized types.
|
||||
return ggml_is_contiguous(op->src[0]) &&
|
||||
ggml_is_contiguous(op->src[1]);
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
@@ -1704,7 +1735,6 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
switch (op->src[0]->type) {
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_Q4_0:
|
||||
case GGML_TYPE_Q8_0:
|
||||
return true;
|
||||
default:
|
||||
@@ -1712,16 +1742,21 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_CPY: {
|
||||
switch (op->type) {
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_Q8_0:
|
||||
case GGML_TYPE_Q4_0:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
ggml_tensor *src = op->src[0];
|
||||
if ((op->type != GGML_TYPE_F32 && op->type != GGML_TYPE_F16) ||
|
||||
(src->type != GGML_TYPE_F32 &&
|
||||
src->type != GGML_TYPE_F16)) {
|
||||
// only support F32 and F16.
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
if (!ggml_are_same_shape(op, src) && !ggml_is_contiguous(op)) {
|
||||
// unsupport dst is not contiguous.
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
} break;
|
||||
case GGML_OP_CONT: {
|
||||
// TODO: support GGML_TYPE_BF16
|
||||
switch (op->src[0]->type) {
|
||||
@@ -1734,13 +1769,14 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
}
|
||||
case GGML_OP_ROPE: {
|
||||
// TODO: with ops-test v == 1
|
||||
float * ext_factor = (float*)((int32_t*)op->op_params + 7);
|
||||
float ext_factor = 0.0f;
|
||||
memcpy(&ext_factor, (const float *) op->op_params + 7, sizeof(float));
|
||||
// TODO: n_dims <= ne0
|
||||
if (op->src[0]->ne[0] != op->op_params[1]) {
|
||||
return false;
|
||||
}
|
||||
// TODO: ext_factor != 0
|
||||
if (*ext_factor != 0) {
|
||||
if (ext_factor != 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -1762,9 +1798,20 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
}
|
||||
return true;
|
||||
}
|
||||
case GGML_OP_POOL_2D: {
|
||||
const int32_t * opts = (const int32_t *) op->op_params;
|
||||
const int k0 = opts[1];
|
||||
const int k1 = opts[2];
|
||||
const int p0 = opts[5];
|
||||
const int p1 = opts[6];
|
||||
// value of paddingH should be at most half of kernelH
|
||||
// value of paddingW should be at most half of kernelW
|
||||
return (p0 <= (k0 / 2)) && (p1 <= (k1 / 2));
|
||||
}
|
||||
case GGML_OP_SUM:
|
||||
case GGML_OP_DUP:
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_CONCAT:
|
||||
case GGML_OP_DUP:
|
||||
case GGML_OP_REPEAT:
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_RESHAPE:
|
||||
@@ -1773,15 +1820,17 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
case GGML_OP_TRANSPOSE:
|
||||
case GGML_OP_NORM:
|
||||
case GGML_OP_ADD:
|
||||
case GGML_OP_ADD1:
|
||||
case GGML_OP_SUB:
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
case GGML_OP_RMS_NORM:
|
||||
case GGML_OP_SCALE:
|
||||
case GGML_OP_SQR:
|
||||
case GGML_OP_SQRT:
|
||||
case GGML_OP_CLAMP:
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
case GGML_OP_POOL_2D:
|
||||
case GGML_OP_SUM_ROWS:
|
||||
case GGML_OP_ARGSORT:
|
||||
case GGML_OP_ACC:
|
||||
@@ -1790,6 +1839,9 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
case GGML_OP_ARANGE:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
case GGML_OP_ARGMAX:
|
||||
case GGML_OP_COS:
|
||||
case GGML_OP_SIN:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
|
||||
@@ -1,30 +0,0 @@
|
||||
file(GLOB SRC_FILES
|
||||
get_row_f32.cpp
|
||||
get_row_f16.cpp
|
||||
get_row_q4_0.cpp
|
||||
get_row_q8_0.cpp
|
||||
quantize_f32_q8_0.cpp
|
||||
quantize_f16_q8_0.cpp
|
||||
quantize_float_to_q4_0.cpp
|
||||
dup.cpp
|
||||
)
|
||||
|
||||
set(ASCEND_CANN_PACKAGE_PATH ${CANN_INSTALL_DIR})
|
||||
set(RUN_MODE "npu" CACHE STRING "run mode: npu/sim")
|
||||
|
||||
if(EXISTS ${ASCEND_CANN_PACKAGE_PATH}/compiler/tikcpp/ascendc_kernel_cmake)
|
||||
set(ASCENDC_CMAKE_DIR ${ASCEND_CANN_PACKAGE_PATH}/compiler/tikcpp/ascendc_kernel_cmake)
|
||||
elseif(EXISTS ${ASCEND_CANN_PACKAGE_PATH}/ascendc_devkit/tikcpp/samples/cmake)
|
||||
set(ASCENDC_CMAKE_DIR ${ASCEND_CANN_PACKAGE_PATH}/ascendc_devkit/tikcpp/samples/cmake)
|
||||
else()
|
||||
message(FATAL_ERROR "ascendc_kernel_cmake does not exist, please check whether the compiler package is installed.")
|
||||
endif()
|
||||
include(${ASCENDC_CMAKE_DIR}/ascendc.cmake)
|
||||
|
||||
ascendc_library(ascendc_kernels STATIC
|
||||
${SRC_FILES}
|
||||
)
|
||||
|
||||
message(STATUS "CANN: compile ascend kernels witch SOC_TYPE:${SOC_TYPE}, SOC_VERSION:${SOC_VERSION}, compile macro:-D${SOC_TYPE_COMPILE_OPTION}.")
|
||||
ascendc_compile_definitions(ascendc_kernels PRIVATE "-D${SOC_TYPE_COMPILE_OPTION}")
|
||||
# ascendc_compile_definitions(ascendc_kernels PRIVATE -DASCENDC_DUMP)
|
||||
@@ -1,19 +0,0 @@
|
||||
#ifndef ASCENDC_KERNELS_H
|
||||
#define ASCENDC_KERNELS_H
|
||||
|
||||
#include "aclrtlaunch_ascendc_get_row_f32.h"
|
||||
#include "aclrtlaunch_ascendc_get_row_f16.h"
|
||||
#include "aclrtlaunch_ascendc_get_row_q8_0.h"
|
||||
#include "aclrtlaunch_ascendc_get_row_q4_0.h"
|
||||
|
||||
#include "aclrtlaunch_ascendc_quantize_f32_q8_0.h"
|
||||
#include "aclrtlaunch_ascendc_quantize_f16_q8_0.h"
|
||||
#include "aclrtlaunch_ascendc_quantize_f16_to_q4_0.h"
|
||||
#include "aclrtlaunch_ascendc_quantize_f32_to_q4_0.h"
|
||||
|
||||
#include "aclrtlaunch_ascendc_dup_by_rows_fp16.h"
|
||||
#include "aclrtlaunch_ascendc_dup_by_rows_fp32.h"
|
||||
#include "aclrtlaunch_ascendc_dup_by_rows_fp32_to_fp16.h"
|
||||
#include "aclrtlaunch_ascendc_dup_by_rows_fp16_to_fp32.h"
|
||||
|
||||
#endif // ASCENDC_KERNELS_H
|
||||
@@ -1,234 +0,0 @@
|
||||
#include "kernel_operator.h"
|
||||
|
||||
using namespace AscendC;
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
const int64_t SUPPORTED_MAX_DIM = 65535; // currently the limit of max block dim supportted by dup kernel is 65535template <typename SRC_T, typename DST_T>
|
||||
|
||||
template <typename SRC_T, typename DST_T>
|
||||
class DupByRows {
|
||||
public:
|
||||
__aicore__ inline DupByRows() {}
|
||||
__aicore__ inline void init(GM_ADDR src, GM_ADDR dst, int64_t *input_ne_ub,
|
||||
size_t *input_nb_ub) {
|
||||
/* Dup by rows when src is contigous on first dimension and dst is
|
||||
contiguous, each kernel process one row.
|
||||
*/
|
||||
|
||||
// Input has four dims.
|
||||
int64_t op_block_num = GetBlockNum();
|
||||
int64_t op_block_idx = GetBlockIdx();
|
||||
|
||||
// param
|
||||
num_rows = input_ne_ub[1] * input_ne_ub[2] * input_ne_ub[3];
|
||||
num_elem = input_ne_ub[0];
|
||||
|
||||
// index for (ne[1], ne[2], ne[3]): (idx_ne1, idx_ne2, idx_ne3)
|
||||
idx_ne3 = op_block_idx / (input_ne_ub[1] * input_ne_ub[2]);
|
||||
idx_ne2 = (op_block_idx - idx_ne3 * (input_ne_ub[1] * input_ne_ub[2]))
|
||||
/ (input_ne_ub[1]);
|
||||
idx_ne1 = op_block_idx - idx_ne3 * (input_ne_ub[1] * input_ne_ub[2])
|
||||
- idx_ne2 * input_ne_ub[1];
|
||||
|
||||
// src may not contiguous in dim [1,2,3], so stride decited by ne&nb
|
||||
src_stride = input_nb_ub[3] * idx_ne3 + input_nb_ub[2] * idx_ne2
|
||||
+ input_nb_ub[1] * idx_ne1;
|
||||
|
||||
// dst is contiguous
|
||||
dst_stride = op_block_idx * (input_ne_ub[0] * sizeof(DST_T));
|
||||
|
||||
src_gm.SetGlobalBuffer(reinterpret_cast<__gm__ SRC_T *>(src +
|
||||
src_stride));
|
||||
dst_gm.SetGlobalBuffer(reinterpret_cast<__gm__ DST_T *>(dst +
|
||||
dst_stride));
|
||||
|
||||
pipe.InitBuffer(src_queue, BUFFER_NUM, (sizeof(SRC_T) * num_elem +
|
||||
32 - 1) / 32 * 32);
|
||||
pipe.InitBuffer(dst_queue, BUFFER_NUM, (sizeof(DST_T) * num_elem +
|
||||
32 - 1) / 32 * 32);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_in() {
|
||||
LocalTensor<SRC_T> src_local = src_queue.AllocTensor<SRC_T>();
|
||||
const size_t elem_per_block = 32 / sizeof(SRC_T);
|
||||
size_t tail = num_elem % elem_per_block;
|
||||
size_t cpy_elements_len = tail > 0 ? num_elem + 1 : num_elem;
|
||||
DataCopy(src_local, src_gm, cpy_elements_len);
|
||||
src_queue.EnQue(src_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_out() {
|
||||
LocalTensor<DST_T> dst_local = dst_queue.DeQue<DST_T>();
|
||||
#ifdef ASCEND_310P
|
||||
const size_t elem_per_block = 32 / sizeof(DST_T);
|
||||
size_t tail = num_elem % elem_per_block;
|
||||
size_t len = num_elem & ~(elem_per_block - 1);
|
||||
if (len > 0) {
|
||||
DataCopy(dst_gm, dst_local, len);
|
||||
}
|
||||
if(tail != 0) {
|
||||
for (size_t i = tail; i < elem_per_block; i++) {
|
||||
dst_local[len + i].SetValue(0, 0);
|
||||
}
|
||||
SetAtomicAdd<float>();
|
||||
DataCopy(dst_gm[len], dst_local[len], elem_per_block);
|
||||
SetAtomicNone();
|
||||
}
|
||||
#else
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = num_elem * sizeof(DST_T);
|
||||
DataCopyPad(dst_gm, dst_local, dataCopyParams);
|
||||
#endif
|
||||
dst_queue.FreeTensor(dst_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void dup() {
|
||||
// main process, copy one row data from src to dst.
|
||||
copy_in();
|
||||
|
||||
LocalTensor<SRC_T> src_local = src_queue.DeQue<SRC_T>();
|
||||
LocalTensor<DST_T> dst_local = dst_queue.AllocTensor<DST_T>();
|
||||
|
||||
int32_t BLOCK_NUM = 32 / sizeof(DST_T);
|
||||
DataCopy(dst_local, src_local, (num_elem + BLOCK_NUM - 1)
|
||||
/ BLOCK_NUM * BLOCK_NUM);
|
||||
dst_queue.EnQue<DST_T>(dst_local);
|
||||
|
||||
src_queue.FreeTensor(src_local);
|
||||
copy_out();
|
||||
}
|
||||
|
||||
__aicore__ inline void dup_with_cast() {
|
||||
// main process, copy one row data from src to dst.
|
||||
// cast dtype from src to dst.
|
||||
copy_in();
|
||||
|
||||
LocalTensor<SRC_T> src_local = src_queue.DeQue<SRC_T>();
|
||||
LocalTensor<DST_T> dst_local = dst_queue.AllocTensor<DST_T>();
|
||||
|
||||
Cast(dst_local, src_local, RoundMode::CAST_NONE, num_elem);
|
||||
dst_queue.EnQue<DST_T>(dst_local);
|
||||
|
||||
src_queue.FreeTensor(src_local);
|
||||
copy_out();
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
TPipe pipe;
|
||||
GlobalTensor<SRC_T> src_gm;
|
||||
GlobalTensor<DST_T> dst_gm;
|
||||
|
||||
int64_t num_rows;
|
||||
int64_t num_elem;
|
||||
int64_t idx_ne3;
|
||||
int64_t idx_ne2;
|
||||
int64_t idx_ne1;
|
||||
int64_t src_stride;
|
||||
int64_t dst_stride;
|
||||
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> src_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> dst_queue;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
||||
auto gm_ptr = (__gm__ uint8_t *)gm;
|
||||
auto ub_ptr = (uint8_t *)(ub);
|
||||
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
||||
*ub_ptr = *gm_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp16(
|
||||
GM_ADDR src_gm,
|
||||
GM_ADDR dst_gm,
|
||||
GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm,
|
||||
GM_ADDR output_ne_gm,
|
||||
GM_ADDR output_nb_gm) {
|
||||
|
||||
int64_t input_ne_ub[4];
|
||||
size_t input_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
size_t output_nb_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
||||
|
||||
DupByRows<half, half> op;
|
||||
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
|
||||
op.dup();
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp32(
|
||||
GM_ADDR src_gm,
|
||||
GM_ADDR dst_gm,
|
||||
GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm,
|
||||
GM_ADDR output_ne_gm,
|
||||
GM_ADDR output_nb_gm) {
|
||||
int64_t input_ne_ub[4];
|
||||
size_t input_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
size_t output_nb_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
||||
|
||||
DupByRows<float, float> op;
|
||||
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
|
||||
op.dup();
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp32_to_fp16(
|
||||
GM_ADDR src_gm,
|
||||
GM_ADDR dst_gm,
|
||||
GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm,
|
||||
GM_ADDR output_ne_gm,
|
||||
GM_ADDR output_nb_gm) {
|
||||
|
||||
int64_t input_ne_ub[4];
|
||||
size_t input_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
size_t output_nb_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
||||
|
||||
DupByRows<float, half> op;
|
||||
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
|
||||
op.dup_with_cast();
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp16_to_fp32(
|
||||
GM_ADDR src_gm,
|
||||
GM_ADDR dst_gm,
|
||||
GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm,
|
||||
GM_ADDR output_ne_gm,
|
||||
GM_ADDR output_nb_gm) {
|
||||
|
||||
// copy params from gm to ub.
|
||||
int64_t input_ne_ub[4];
|
||||
size_t input_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
size_t output_nb_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
||||
|
||||
DupByRows<half, float> op;
|
||||
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
|
||||
op.dup_with_cast();
|
||||
}
|
||||
@@ -1,197 +0,0 @@
|
||||
#include "kernel_operator.h"
|
||||
|
||||
// optimize me. Use template to avoid copy code.
|
||||
using namespace AscendC;
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
|
||||
class GET_ROW_F16 {
|
||||
public:
|
||||
__aicore__ inline GET_ROW_F16() {}
|
||||
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
|
||||
int64_t *input_ne_ub, size_t *input_nb_ub,
|
||||
int64_t *indices_ne_ub, size_t *indices_nb_ub,
|
||||
int64_t *output_ne_ub, size_t *output_nb_ub) {
|
||||
// TODO, use template for F16/f32
|
||||
int64_t op_block_num = GetBlockNum();
|
||||
op_block_idx = GetBlockIdx();
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
input_ne[i] = input_ne_ub[i];
|
||||
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
|
||||
|
||||
indices_ne[i] = indices_ne_ub[i];
|
||||
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
|
||||
|
||||
output_ne[i] = output_ne_ub[i];
|
||||
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
|
||||
}
|
||||
|
||||
// Indices has two dims. n_elements = all rows should get.
|
||||
// dr, all rows should this thread get.
|
||||
uint64_t n_elements =
|
||||
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
|
||||
dr = n_elements / op_block_num;
|
||||
|
||||
uint64_t tails = n_elements % op_block_num;
|
||||
if (op_block_idx < tails) {
|
||||
dr += 1;
|
||||
ir = dr * op_block_idx;
|
||||
} else {
|
||||
ir = dr * op_block_idx + tails;
|
||||
}
|
||||
|
||||
input_gm.SetGlobalBuffer((__gm__ half *)input);
|
||||
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
|
||||
output_gm.SetGlobalBuffer((__gm__ float *)output);
|
||||
|
||||
uint64_t input_local_buffer_size = ((input_ne[0] * sizeof(half) + 31)
|
||||
& ~31);
|
||||
uint64_t output_local_buffer_size = ((input_ne[0] * sizeof(float) + 31)
|
||||
& ~31);
|
||||
|
||||
local_buffer_elems = input_local_buffer_size / sizeof(half);
|
||||
|
||||
// TODO, consider long row that can't put in UB.
|
||||
// All data should asign to 32. It's ok because all data is align to 32.
|
||||
pipe.InitBuffer(input_queue, BUFFER_NUM, input_local_buffer_size);
|
||||
pipe.InitBuffer(output_queue, BUFFER_NUM, output_local_buffer_size);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_in(uint32_t offset, size_t len) {
|
||||
size_t origin_len = len;
|
||||
LocalTensor<half> input_local = input_queue.AllocTensor<half>();
|
||||
const size_t elem_per_block = 32 / sizeof(half);
|
||||
size_t tail = len % elem_per_block;
|
||||
len = len & ~(elem_per_block - 1);
|
||||
if(tail != 0) {
|
||||
len += elem_per_block;
|
||||
}
|
||||
DataCopy(input_local, input_gm[offset], len);
|
||||
input_queue.EnQue(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_out(uint32_t offset, size_t len) {
|
||||
LocalTensor<float> output_local = output_queue.DeQue<float>();
|
||||
const size_t elem_per_block = 32 / sizeof(float);
|
||||
size_t tail = len % elem_per_block;
|
||||
len = len & ~(elem_per_block - 1);
|
||||
if (len > 0) {
|
||||
DataCopy(output_gm[offset], output_local, len);
|
||||
}
|
||||
|
||||
if(tail != 0) {
|
||||
#ifdef ASCEND_310P
|
||||
for (size_t i = tail; i < elem_per_block; i++) {
|
||||
output_local[len + i].SetValue(0, 0);
|
||||
}
|
||||
SetAtomicAdd<float>();
|
||||
DataCopy(output_gm[offset + len], output_local[len], elem_per_block);
|
||||
SetAtomicNone();
|
||||
#else
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = tail * sizeof(float);
|
||||
DataCopyPad(output_gm[offset + len], output_local[len],
|
||||
dataCopyParams);
|
||||
#endif
|
||||
}
|
||||
output_queue.FreeTensor(output_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate_row(int64_t idx) {
|
||||
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
|
||||
const int64_t indices_ne1_idx =
|
||||
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
|
||||
indices_ne[0];
|
||||
const int64_t indices_ne0_idx =
|
||||
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
|
||||
indices_ne1_idx * indices_ne[0]);
|
||||
|
||||
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
|
||||
indices_ne1_idx * indices_stride[1] +
|
||||
indices_ne2_idx * indices_stride[2];
|
||||
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
|
||||
|
||||
const int64_t input_offset = selected_row_idx * input_stride[1] +
|
||||
indices_ne1_idx * input_stride[2] +
|
||||
indices_ne2_idx * input_stride[3];
|
||||
|
||||
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
|
||||
indices_ne1_idx * output_stride[2] +
|
||||
indices_ne2_idx * output_stride[3];
|
||||
|
||||
copy_in(input_offset, input_ne[0]);
|
||||
LocalTensor<half> input_local = input_queue.DeQue<half>();
|
||||
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
|
||||
|
||||
Cast(output_local, input_local, RoundMode::CAST_NONE,
|
||||
local_buffer_elems);
|
||||
output_queue.EnQue(output_local);
|
||||
copy_out(output_offset, input_ne[0]);
|
||||
|
||||
input_queue.FreeTensor(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate() {
|
||||
for (int64_t i = ir; i < ir + dr; i++) {
|
||||
calculate_row(i);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
int64_t input_ne[4];
|
||||
size_t input_stride[4];
|
||||
|
||||
int64_t indices_ne[4];
|
||||
size_t indices_stride[4];
|
||||
|
||||
int64_t output_ne[4];
|
||||
size_t output_stride[4];
|
||||
|
||||
size_t local_buffer_elems;
|
||||
|
||||
int64_t ir;
|
||||
int64_t dr;
|
||||
|
||||
TPipe pipe;
|
||||
GlobalTensor<half> input_gm;
|
||||
GlobalTensor<int32_t> indices_gm;
|
||||
GlobalTensor<float> output_gm;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
||||
int64_t op_block_idx;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
||||
auto gm_ptr = (__gm__ uint8_t *)gm;
|
||||
auto ub_ptr = (uint8_t *)(ub);
|
||||
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
||||
*ub_ptr = *gm_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_get_row_f16(
|
||||
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
|
||||
GM_ADDR input_ne_gm, GM_ADDR input_nb_gm, GM_ADDR indices_ne_gm,
|
||||
GM_ADDR indices_nb_gm, GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
|
||||
int64_t input_ne_ub[4];
|
||||
size_t input_nb_ub[4];
|
||||
int64_t indices_ne_ub[4];
|
||||
size_t indices_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
size_t output_nb_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
||||
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
|
||||
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
||||
|
||||
GET_ROW_F16 op;
|
||||
op.init(input_gm, indices_gm, output_gm, input_ne_ub, input_nb_ub,
|
||||
indices_ne_ub, indices_nb_ub, output_ne_ub, output_nb_ub);
|
||||
op.calculate();
|
||||
}
|
||||
@@ -1,190 +0,0 @@
|
||||
#include "kernel_operator.h"
|
||||
|
||||
// optimize me. Use template to avoid copy code.
|
||||
using namespace AscendC;
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
|
||||
class GET_ROW_F32 {
|
||||
public:
|
||||
__aicore__ inline GET_ROW_F32() {}
|
||||
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
|
||||
int64_t *input_ne_ub, size_t *input_nb_ub,
|
||||
int64_t *indices_ne_ub, size_t *indices_nb_ub,
|
||||
int64_t *output_ne_ub, size_t *output_nb_ub) {
|
||||
int64_t op_block_num = GetBlockNum();
|
||||
op_block_idx = GetBlockIdx();
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
input_ne[i] = input_ne_ub[i];
|
||||
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
|
||||
|
||||
indices_ne[i] = indices_ne_ub[i];
|
||||
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
|
||||
|
||||
output_ne[i] = output_ne_ub[i];
|
||||
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
|
||||
}
|
||||
|
||||
// Indices has two dims. n_elements = all rows should get.
|
||||
// dr, all rows should this thread get.
|
||||
uint64_t n_elements =
|
||||
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
|
||||
dr = n_elements / op_block_num;
|
||||
|
||||
uint64_t tails = n_elements % op_block_num;
|
||||
if (op_block_idx < tails) {
|
||||
dr += 1;
|
||||
ir = dr * op_block_idx;
|
||||
} else {
|
||||
ir = dr * op_block_idx + tails;
|
||||
}
|
||||
|
||||
input_gm.SetGlobalBuffer((__gm__ float *)input);
|
||||
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
|
||||
output_gm.SetGlobalBuffer((__gm__ float *)output);
|
||||
|
||||
uint64_t local_buffer_size = ((input_ne[0] * sizeof(float) + 31) & ~31);
|
||||
local_buffer_elems = local_buffer_size / sizeof(float);
|
||||
|
||||
// TODO, consider long row that can't put in UB.
|
||||
// All data should asign to 32. It's ok because all data is align to 32.
|
||||
pipe.InitBuffer(input_queue, BUFFER_NUM, local_buffer_size);
|
||||
pipe.InitBuffer(output_queue, BUFFER_NUM, local_buffer_size);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_in(uint32_t offset, size_t len) {
|
||||
LocalTensor<float> input_local = input_queue.AllocTensor<float>();
|
||||
const size_t elem_per_block = 32 / sizeof(float);
|
||||
size_t tail = len % elem_per_block;
|
||||
len = len & ~(elem_per_block - 1);
|
||||
if(tail != 0) {
|
||||
len += elem_per_block;
|
||||
}
|
||||
DataCopy(input_local, input_gm[offset], len);
|
||||
input_queue.EnQue(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_out(uint32_t offset, size_t len) {
|
||||
LocalTensor<float> output_local = output_queue.DeQue<float>();
|
||||
const size_t elem_per_block = 32 / sizeof(float);
|
||||
size_t tail = len % elem_per_block;
|
||||
len = len & ~(elem_per_block - 1);
|
||||
if (len > 0) {
|
||||
DataCopy(output_gm[offset], output_local, len);
|
||||
}
|
||||
|
||||
if(tail != 0) {
|
||||
#ifdef ASCEND_310P
|
||||
for (size_t i = tail; i < elem_per_block; i++) {
|
||||
output_local[len + i].SetValue(0, 0);
|
||||
}
|
||||
SetAtomicAdd<float>();
|
||||
DataCopy(output_gm[offset + len], output_local[len], elem_per_block);
|
||||
SetAtomicNone();
|
||||
#else
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = tail * sizeof(float);
|
||||
DataCopyPad(output_gm[offset + len], output_local[len],
|
||||
dataCopyParams);
|
||||
#endif
|
||||
}
|
||||
output_queue.FreeTensor(output_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate_row(int64_t idx) {
|
||||
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
|
||||
const int64_t indices_ne1_idx =
|
||||
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
|
||||
indices_ne[0];
|
||||
const int64_t indices_ne0_idx =
|
||||
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
|
||||
indices_ne1_idx * indices_ne[0]);
|
||||
|
||||
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
|
||||
indices_ne1_idx * indices_stride[1] +
|
||||
indices_ne2_idx * indices_stride[2];
|
||||
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
|
||||
|
||||
const int64_t input_offset = selected_row_idx * input_stride[1] +
|
||||
indices_ne1_idx * input_stride[2] +
|
||||
indices_ne2_idx * input_stride[3];
|
||||
|
||||
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
|
||||
indices_ne1_idx * output_stride[2] +
|
||||
indices_ne2_idx * output_stride[3];
|
||||
|
||||
copy_in(input_offset, input_ne[0]);
|
||||
LocalTensor<float> input_local = input_queue.DeQue<float>();
|
||||
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
|
||||
|
||||
DataCopy(output_local, input_local, local_buffer_elems);
|
||||
output_queue.EnQue(output_local);
|
||||
copy_out(output_offset, input_ne[0]);
|
||||
|
||||
input_queue.FreeTensor(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate() {
|
||||
for (int64_t i = ir; i < ir + dr; i++) {
|
||||
calculate_row(i);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
int64_t input_ne[4];
|
||||
size_t input_stride[4];
|
||||
|
||||
int64_t indices_ne[4];
|
||||
size_t indices_stride[4];
|
||||
|
||||
int64_t output_ne[4];
|
||||
size_t output_stride[4];
|
||||
|
||||
size_t local_buffer_elems;
|
||||
|
||||
int64_t ir;
|
||||
int64_t dr;
|
||||
|
||||
TPipe pipe;
|
||||
GlobalTensor<float> input_gm;
|
||||
GlobalTensor<int32_t> indices_gm;
|
||||
GlobalTensor<float> output_gm;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
||||
int64_t op_block_idx;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
||||
auto gm_ptr = (__gm__ uint8_t *)gm;
|
||||
auto ub_ptr = (uint8_t *)(ub);
|
||||
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
||||
*ub_ptr = *gm_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_get_row_f32(
|
||||
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
|
||||
GM_ADDR input_ne_gm, GM_ADDR input_nb_gm, GM_ADDR indices_ne_gm,
|
||||
GM_ADDR indices_nb_gm, GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
|
||||
int64_t input_ne_ub[4];
|
||||
size_t input_nb_ub[4];
|
||||
int64_t indices_ne_ub[4];
|
||||
size_t indices_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
size_t output_nb_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
||||
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
|
||||
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
||||
|
||||
GET_ROW_F32 op;
|
||||
op.init(input_gm, indices_gm, output_gm, input_ne_ub, input_nb_ub,
|
||||
indices_ne_ub, indices_nb_ub, output_ne_ub, output_nb_ub);
|
||||
op.calculate();
|
||||
}
|
||||
@@ -1,204 +0,0 @@
|
||||
#include "kernel_operator.h"
|
||||
|
||||
// optimize me. Use template to avoid copy code.
|
||||
using namespace AscendC;
|
||||
#ifdef ASCEND_310P // 310P not support 4bit get row
|
||||
extern "C" __global__ __aicore__ void ascendc_get_row_q4_0(
|
||||
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
|
||||
GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm,
|
||||
GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
|
||||
// let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
|
||||
printf("Ascend310P not support 4bit get row.\n");
|
||||
}
|
||||
#else
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
|
||||
#define QK4_0 32
|
||||
|
||||
class GET_ROW_Q4_0 {
|
||||
public:
|
||||
__aicore__ inline GET_ROW_Q4_0() {}
|
||||
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
|
||||
int64_t *input_ne_ub, int64_t *indices_ne_ub,
|
||||
size_t *indices_nb_ub, int64_t *output_ne_ub,
|
||||
size_t *output_nb_ub) {
|
||||
int64_t op_block_num = GetBlockNum();
|
||||
int64_t op_block_idx = GetBlockIdx();
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
input_ne[i] = input_ne_ub[i];
|
||||
indices_ne[i] = indices_ne_ub[i];
|
||||
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
|
||||
scale_ne[i] = input_ne_ub[i];
|
||||
output_ne[i] = output_ne_ub[i];
|
||||
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
|
||||
}
|
||||
|
||||
// one scale for a group.
|
||||
scale_ne[0] /= QK4_0;
|
||||
|
||||
input_stride[0] = 1;
|
||||
scale_stride[0] = 1;
|
||||
output_stride[0] = 1;
|
||||
for (int i = 1; i < 4; i++) {
|
||||
input_stride[i] = input_stride[i - 1] * input_ne[i - 1];
|
||||
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
|
||||
}
|
||||
|
||||
group_size_in_row = input_ne[0] / QK4_0;
|
||||
int64_t scale_offset = input_ne[0] * input_ne[1] * input_ne[2] *
|
||||
input_ne[3] / 2;
|
||||
|
||||
// Indices has two dims. n_elements = all rows should get.
|
||||
// dr, all rows should this thread get.
|
||||
uint64_t n_elements =
|
||||
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
|
||||
dr = n_elements / op_block_num;
|
||||
|
||||
uint64_t tails = n_elements % op_block_num;
|
||||
if (op_block_idx < tails) {
|
||||
dr += 1;
|
||||
ir = dr * op_block_idx;
|
||||
} else {
|
||||
ir = dr * op_block_idx + tails;
|
||||
}
|
||||
|
||||
input_gm.SetGlobalBuffer((__gm__ int4b_t *)input);
|
||||
scale_gm.SetGlobalBuffer((__gm__ half *)(input + scale_offset));
|
||||
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
|
||||
output_gm.SetGlobalBuffer((__gm__ float *)output);
|
||||
|
||||
pipe.InitBuffer(input_queue, BUFFER_NUM, QK4_0 * sizeof(int4b_t));
|
||||
pipe.InitBuffer(cast_queue, BUFFER_NUM, QK4_0 * sizeof(half));
|
||||
pipe.InitBuffer(output_queue, BUFFER_NUM, QK4_0 * sizeof(float));
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_in(uint32_t offset) {
|
||||
LocalTensor<int4b_t> input_local = input_queue.AllocTensor<int4b_t>();
|
||||
// 32 * sizeof(int4b_t) = 16, which is not aligned to 32, why no error?
|
||||
DataCopy(input_local, input_gm[offset], QK4_0);
|
||||
input_queue.EnQue(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_out(uint32_t offset) {
|
||||
LocalTensor<float> output_local = output_queue.DeQue<float>();
|
||||
DataCopy(output_gm[offset], output_local, QK4_0);
|
||||
output_queue.FreeTensor(output_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate_group(int64_t idx, int64_t group) {
|
||||
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
|
||||
const int64_t indices_ne1_idx =
|
||||
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
|
||||
indices_ne[0];
|
||||
const int64_t indices_ne0_idx =
|
||||
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
|
||||
indices_ne1_idx * indices_ne[0]);
|
||||
|
||||
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
|
||||
indices_ne1_idx * indices_stride[1] +
|
||||
indices_ne2_idx * indices_stride[2];
|
||||
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
|
||||
|
||||
const int64_t input_offset = selected_row_idx * input_stride[1] +
|
||||
indices_ne1_idx * input_stride[2] +
|
||||
indices_ne2_idx * input_stride[3] +
|
||||
group * QK4_0;
|
||||
const int64_t scale_offset = selected_row_idx * scale_stride[1] +
|
||||
indices_ne1_idx * scale_stride[2] +
|
||||
indices_ne2_idx * scale_stride[3] + group;
|
||||
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
|
||||
indices_ne1_idx * output_stride[2] +
|
||||
indices_ne2_idx * output_stride[3] +
|
||||
group * QK4_0;
|
||||
|
||||
copy_in(input_offset);
|
||||
LocalTensor<int4b_t> input_local = input_queue.DeQue<int4b_t>();
|
||||
LocalTensor<half> cast_local = cast_queue.AllocTensor<half>();
|
||||
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
|
||||
|
||||
// TODO: cast more data to speed up.
|
||||
Cast(cast_local, input_local, RoundMode::CAST_NONE, QK4_0);
|
||||
Cast(output_local, cast_local, RoundMode::CAST_NONE, QK4_0);
|
||||
|
||||
// Only mul need compile by group.
|
||||
half scale = scale_gm.GetValue(scale_offset);
|
||||
|
||||
Muls(output_local, output_local, (float)scale, QK4_0);
|
||||
|
||||
input_queue.FreeTensor(input_local);
|
||||
cast_queue.FreeTensor(cast_local);
|
||||
output_queue.EnQue(output_local);
|
||||
|
||||
copy_out(output_offset);
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate() {
|
||||
for (int64_t i = ir; i < ir + dr; i++) {
|
||||
for (int64_t j = 0; j < group_size_in_row; j++) {
|
||||
calculate_group(i, j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
int64_t input_ne[4];
|
||||
size_t input_stride[4];
|
||||
|
||||
int64_t scale_ne[4];
|
||||
size_t scale_stride[4];
|
||||
|
||||
int64_t indices_ne[4];
|
||||
size_t indices_stride[4];
|
||||
|
||||
int64_t output_ne[4];
|
||||
size_t output_stride[4];
|
||||
|
||||
int64_t ir;
|
||||
int64_t dr;
|
||||
|
||||
int64_t group_size_in_row;
|
||||
|
||||
TPipe pipe;
|
||||
GlobalTensor<int4b_t> input_gm;
|
||||
GlobalTensor<half> scale_gm;
|
||||
GlobalTensor<int32_t> indices_gm;
|
||||
GlobalTensor<float> output_gm;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> cast_queue;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
||||
auto gm_ptr = (__gm__ uint8_t *)gm;
|
||||
auto ub_ptr = (uint8_t *)(ub);
|
||||
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
||||
*ub_ptr = *gm_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_get_row_q4_0(
|
||||
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
|
||||
GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm,
|
||||
GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
|
||||
int64_t input_ne_ub[4];
|
||||
int64_t indices_ne_ub[4];
|
||||
size_t indices_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
size_t output_nb_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
|
||||
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
||||
|
||||
GET_ROW_Q4_0 op;
|
||||
op.init(input_gm, indices_gm, output_gm, input_ne_ub, indices_ne_ub,
|
||||
indices_nb_ub, output_ne_ub, output_nb_ub);
|
||||
op.calculate();
|
||||
}
|
||||
|
||||
#endif // #ifdef ASCEND_310P
|
||||
@@ -1,191 +0,0 @@
|
||||
#include "kernel_operator.h"
|
||||
|
||||
// optimize me. Use template to avoid copy code.
|
||||
using namespace AscendC;
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
|
||||
#define QK8_0 32
|
||||
|
||||
class GET_ROW_Q8_0 {
|
||||
public:
|
||||
__aicore__ inline GET_ROW_Q8_0() {}
|
||||
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
|
||||
int64_t *input_ne_ub, int64_t *indices_ne_ub,
|
||||
size_t *indices_nb_ub, int64_t *output_ne_ub,
|
||||
size_t *output_nb_ub) {
|
||||
int64_t op_block_num = GetBlockNum();
|
||||
int64_t op_block_idx = GetBlockIdx();
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
input_ne[i] = input_ne_ub[i];
|
||||
indices_ne[i] = indices_ne_ub[i];
|
||||
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
|
||||
scale_ne[i] = input_ne_ub[i];
|
||||
output_ne[i] = output_ne_ub[i];
|
||||
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
|
||||
}
|
||||
|
||||
// one scale for a group.
|
||||
scale_ne[0] /= QK8_0;
|
||||
|
||||
input_stride[0] = 1;
|
||||
scale_stride[0] = 1;
|
||||
output_stride[0] = 1;
|
||||
for (int i = 1; i < 4; i++) {
|
||||
input_stride[i] = input_stride[i - 1] * input_ne[i - 1];
|
||||
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
|
||||
}
|
||||
|
||||
group_size_in_row = input_ne[0] / QK8_0;
|
||||
int64_t scale_offset = input_ne[0] * input_ne[1] * input_ne[2] *
|
||||
input_ne[3] * sizeof(int8_t);
|
||||
|
||||
// Indices has two dims. n_elements = all rows should get.
|
||||
// dr, all rows should this thread get.
|
||||
uint64_t n_elements =
|
||||
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
|
||||
dr = n_elements / op_block_num;
|
||||
|
||||
uint64_t tails = n_elements % op_block_num;
|
||||
if (op_block_idx < tails) {
|
||||
dr += 1;
|
||||
ir = dr * op_block_idx;
|
||||
} else {
|
||||
ir = dr * op_block_idx + tails;
|
||||
}
|
||||
|
||||
input_gm.SetGlobalBuffer((__gm__ int8_t *)input);
|
||||
scale_gm.SetGlobalBuffer((__gm__ half *)(input + scale_offset));
|
||||
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
|
||||
output_gm.SetGlobalBuffer((__gm__ float *)output);
|
||||
|
||||
pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t));
|
||||
pipe.InitBuffer(cast_queue, BUFFER_NUM, QK8_0 * sizeof(half));
|
||||
pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(float));
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_in(uint32_t offset) {
|
||||
LocalTensor<int8_t> input_local = input_queue.AllocTensor<int8_t>();
|
||||
DataCopy(input_local, input_gm[offset], QK8_0);
|
||||
input_queue.EnQue(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_out(uint32_t offset) {
|
||||
LocalTensor<float> output_local = output_queue.DeQue<float>();
|
||||
DataCopy(output_gm[offset], output_local, QK8_0);
|
||||
output_queue.FreeTensor(output_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate_group(int64_t idx, int64_t group) {
|
||||
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
|
||||
const int64_t indices_ne1_idx =
|
||||
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
|
||||
indices_ne[0];
|
||||
const int64_t indices_ne0_idx =
|
||||
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
|
||||
indices_ne1_idx * indices_ne[0]);
|
||||
|
||||
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
|
||||
indices_ne1_idx * indices_stride[1] +
|
||||
indices_ne2_idx * indices_stride[2];
|
||||
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
|
||||
|
||||
const int64_t input_offset = selected_row_idx * input_stride[1] +
|
||||
indices_ne1_idx * input_stride[2] +
|
||||
indices_ne2_idx * input_stride[3] +
|
||||
group * QK8_0;
|
||||
const int64_t scale_offset = selected_row_idx * scale_stride[1] +
|
||||
indices_ne1_idx * scale_stride[2] +
|
||||
indices_ne2_idx * scale_stride[3] + group;
|
||||
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
|
||||
indices_ne1_idx * output_stride[2] +
|
||||
indices_ne2_idx * output_stride[3] +
|
||||
group * QK8_0;
|
||||
|
||||
copy_in(input_offset);
|
||||
LocalTensor<int8_t> input_local = input_queue.DeQue<int8_t>();
|
||||
LocalTensor<half> cast_local = cast_queue.AllocTensor<half>();
|
||||
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
|
||||
|
||||
// TODO: cast more data to speed up.
|
||||
Cast(cast_local, input_local, RoundMode::CAST_NONE, QK8_0);
|
||||
Cast(output_local, cast_local, RoundMode::CAST_NONE, QK8_0);
|
||||
|
||||
// Only mul need compile by group.
|
||||
half scale = scale_gm.GetValue(scale_offset);
|
||||
Muls(output_local, output_local, (float)scale, QK8_0);
|
||||
|
||||
input_queue.FreeTensor(input_local);
|
||||
cast_queue.FreeTensor(cast_local);
|
||||
output_queue.EnQue(output_local);
|
||||
|
||||
copy_out(output_offset);
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate() {
|
||||
for (int64_t i = ir; i < ir + dr; i++) {
|
||||
for (int64_t j = 0; j < group_size_in_row; j++) {
|
||||
calculate_group(i, j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
int64_t input_ne[4];
|
||||
size_t input_stride[4];
|
||||
|
||||
int64_t scale_ne[4];
|
||||
size_t scale_stride[4];
|
||||
|
||||
int64_t indices_ne[4];
|
||||
size_t indices_stride[4];
|
||||
|
||||
int64_t output_ne[4];
|
||||
size_t output_stride[4];
|
||||
|
||||
int64_t ir;
|
||||
int64_t dr;
|
||||
|
||||
int64_t group_size_in_row;
|
||||
|
||||
TPipe pipe;
|
||||
GlobalTensor<int8_t> input_gm;
|
||||
GlobalTensor<half> scale_gm;
|
||||
GlobalTensor<int32_t> indices_gm;
|
||||
GlobalTensor<float> output_gm;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> cast_queue;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
||||
auto gm_ptr = (__gm__ uint8_t *)gm;
|
||||
auto ub_ptr = (uint8_t *)(ub);
|
||||
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
||||
*ub_ptr = *gm_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_get_row_q8_0(
|
||||
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
|
||||
GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm,
|
||||
GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
|
||||
int64_t input_ne_ub[4];
|
||||
int64_t indices_ne_ub[4];
|
||||
size_t indices_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
size_t output_nb_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
|
||||
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
||||
|
||||
GET_ROW_Q8_0 op;
|
||||
op.init(input_gm, indices_gm, output_gm, input_ne_ub, indices_ne_ub,
|
||||
indices_nb_ub, output_ne_ub, output_nb_ub);
|
||||
op.calculate();
|
||||
}
|
||||
@@ -1,218 +0,0 @@
|
||||
#include "kernel_operator.h"
|
||||
|
||||
using namespace AscendC;
|
||||
#ifdef ASCEND_310P
|
||||
extern "C" __global__ __aicore__ void ascendc_quantize_f16_q8_0(
|
||||
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
||||
// let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
|
||||
printf("Ascend310P not support f16->8bit quantization.\n");
|
||||
}
|
||||
#else
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
#define QK8_0 32
|
||||
|
||||
class QUANTIZE_F16_Q8_0 {
|
||||
public:
|
||||
__aicore__ inline QUANTIZE_F16_Q8_0() {}
|
||||
__aicore__ inline void init(GM_ADDR input, GM_ADDR output,
|
||||
int64_t *input_ne_ub, size_t *input_nb_ub,
|
||||
int64_t *output_ne_ub) {
|
||||
int64_t op_block_num = GetBlockNum();
|
||||
int64_t op_block_idx = GetBlockIdx();
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
input_ne[i] = input_ne_ub[i];
|
||||
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
|
||||
|
||||
output_ne[i] = output_ne_ub[i];
|
||||
}
|
||||
|
||||
output_stride[0] = 1;
|
||||
for (int i = 1; i < 4; i++) {
|
||||
output_stride[i] = output_stride[i - 1] * output_ne[i - 1];
|
||||
}
|
||||
|
||||
scale_ne = input_ne;
|
||||
scale_stride[0] = 1;
|
||||
scale_stride[1] = input_ne[0] / QK8_0;
|
||||
for (int i = 2; i < 4; i++) {
|
||||
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
|
||||
}
|
||||
|
||||
// split input tensor by rows.
|
||||
uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3];
|
||||
dr = nr / op_block_num;
|
||||
|
||||
uint64_t tails = nr % op_block_num;
|
||||
if (op_block_idx < tails) {
|
||||
dr += 1;
|
||||
ir = dr * op_block_idx;
|
||||
} else {
|
||||
ir = dr * op_block_idx + tails;
|
||||
}
|
||||
|
||||
group_size_in_row = scale_stride[1];
|
||||
int64_t output_size = output_ne[0] * output_ne[1] * output_ne[2] *
|
||||
output_ne[3] * sizeof(uint8_t);
|
||||
|
||||
input_gm.SetGlobalBuffer((__gm__ half *)input);
|
||||
output_gm.SetGlobalBuffer((__gm__ int8_t *)output);
|
||||
scale_gm.SetGlobalBuffer((__gm__ half *)(output + output_size + ir *
|
||||
group_size_in_row *
|
||||
sizeof(half)));
|
||||
|
||||
pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(half));
|
||||
pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t));
|
||||
pipe.InitBuffer(work_queue, 1, 32);
|
||||
pipe.InitBuffer(max_queue, 1, 32);
|
||||
pipe.InitBuffer(abs_queue, 1, QK8_0 * sizeof(float));
|
||||
pipe.InitBuffer(scale_queue, 1, 32);
|
||||
pipe.InitBuffer(cast_queue ,1 ,QK8_0 * sizeof(float));
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_in(uint32_t offset) {
|
||||
LocalTensor<half> input_local = input_queue.AllocTensor<half>();
|
||||
DataCopy(input_local, input_gm[offset], QK8_0);
|
||||
input_queue.EnQue(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_out(uint32_t offset) {
|
||||
LocalTensor<int8_t> output_local = output_queue.DeQue<int8_t>();
|
||||
DataCopy(output_gm[offset], output_local, QK8_0);
|
||||
output_queue.FreeTensor(output_local);
|
||||
}
|
||||
|
||||
__aicore__ inline half calculate_group(int64_t row, int64_t group) {
|
||||
const int64_t i3 = row / (input_ne[1] * input_ne[2]);
|
||||
const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1];
|
||||
const int64_t i1 =
|
||||
row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1];
|
||||
|
||||
const int64_t input_offset = i1 * input_stride[1] +
|
||||
i2 * input_stride[2] +
|
||||
i3 * input_stride[3] + QK8_0 * group;
|
||||
|
||||
const int64_t output_offset = i1 * output_stride[1] +
|
||||
i2 * output_stride[2] +
|
||||
i3 * output_stride[3] + QK8_0 * group;
|
||||
|
||||
copy_in(input_offset);
|
||||
LocalTensor<half> input_local = input_queue.DeQue<half>();
|
||||
LocalTensor<int8_t> output_local = output_queue.AllocTensor<int8_t>();
|
||||
LocalTensor<float> work_local = work_queue.AllocTensor<float>();
|
||||
LocalTensor<float> abs_local = abs_queue.AllocTensor<float>();
|
||||
LocalTensor<float> max_local = max_queue.AllocTensor<float>();
|
||||
LocalTensor<float> cast_local = cast_queue.AllocTensor<float>();
|
||||
|
||||
Cast(cast_local, input_local, RoundMode::CAST_NONE, QK8_0);
|
||||
Abs(abs_local, cast_local, QK8_0);
|
||||
ReduceMax(max_local, abs_local, work_local, QK8_0);
|
||||
|
||||
pipe_barrier(PIPE_ALL);
|
||||
float d = max_local.GetValue(0);
|
||||
d = d / ((1 << 7) - 1);
|
||||
if (d != 0) {
|
||||
Muls(cast_local, cast_local, 1.0f / d, QK8_0);
|
||||
}
|
||||
|
||||
Cast(cast_local, cast_local, RoundMode::CAST_ROUND, QK8_0);
|
||||
Cast(input_local, cast_local, RoundMode::CAST_ROUND, QK8_0);
|
||||
Cast(output_local, input_local, RoundMode::CAST_ROUND, QK8_0);
|
||||
output_queue.EnQue(output_local);
|
||||
copy_out(output_offset);
|
||||
|
||||
input_queue.FreeTensor(input_local);
|
||||
work_queue.FreeTensor(work_local);
|
||||
abs_queue.FreeTensor(abs_local);
|
||||
max_queue.FreeTensor(max_local);
|
||||
cast_queue.FreeTensor(cast_local);
|
||||
return (half)d;
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate() {
|
||||
LocalTensor<half> scale_local = scale_queue.AllocTensor<half>();
|
||||
uint32_t scale_local_offset = 0;
|
||||
uint32_t scale_global_offset = 0;
|
||||
for (int64_t i = ir; i < ir + dr; i++) {
|
||||
for (int64_t j = 0; j < group_size_in_row; j++) {
|
||||
half scale = calculate_group(i, j);
|
||||
scale_local.SetValue(scale_local_offset++, scale);
|
||||
if (scale_local_offset == 16) {
|
||||
scale_local_offset = 0;
|
||||
// TODO: OPTIMIZE ME
|
||||
pipe_barrier(PIPE_ALL);
|
||||
DataCopy(scale_gm[scale_global_offset], scale_local, 16);
|
||||
pipe_barrier(PIPE_ALL);
|
||||
scale_global_offset += 16;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (scale_local_offset != 0) {
|
||||
pipe_barrier(PIPE_ALL);
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = scale_local_offset * sizeof(half);
|
||||
DataCopyPad(scale_gm[scale_global_offset], scale_local,
|
||||
dataCopyParams);
|
||||
pipe_barrier(PIPE_ALL);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
int64_t input_ne[4];
|
||||
size_t input_stride[4];
|
||||
|
||||
int64_t *scale_ne;
|
||||
size_t scale_stride[4];
|
||||
|
||||
int64_t output_ne[4];
|
||||
size_t output_stride[4];
|
||||
|
||||
int64_t group_size_in_row;
|
||||
|
||||
int64_t ir;
|
||||
int64_t dr;
|
||||
|
||||
TPipe pipe;
|
||||
GlobalTensor<half> input_gm;
|
||||
GlobalTensor<half> scale_gm;
|
||||
GlobalTensor<int8_t> output_gm;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
||||
TQue<QuePosition::VECIN, 1> work_queue;
|
||||
TQue<QuePosition::VECOUT, 1> max_queue;
|
||||
TQue<QuePosition::VECIN, 1> abs_queue;
|
||||
TQue<QuePosition::VECOUT, 1> scale_queue;
|
||||
TQue<QuePosition::VECOUT, 1> cast_queue;
|
||||
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
||||
auto gm_ptr = (__gm__ uint8_t *)gm;
|
||||
auto ub_ptr = (uint8_t *)(ub);
|
||||
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
||||
*ub_ptr = *gm_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_quantize_f16_q8_0(
|
||||
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
||||
int64_t input_ne_ub[4];
|
||||
size_t input_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
|
||||
QUANTIZE_F16_Q8_0 op;
|
||||
op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
|
||||
op.calculate();
|
||||
}
|
||||
|
||||
#endif // #ifdef ASCEND_310P
|
||||
@@ -1,216 +0,0 @@
|
||||
#include "kernel_operator.h"
|
||||
|
||||
using namespace AscendC;
|
||||
#ifdef ASCEND_310P // 310P not support f32->8bit quantization
|
||||
extern "C" __global__ __aicore__ void ascendc_quantize_f32_q8_0(
|
||||
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
||||
// let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
|
||||
printf("Ascend310P not support f32->8bit quantization.\n");
|
||||
}
|
||||
#else
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
#define QK8_0 32
|
||||
|
||||
class QUANTIZE_F32_Q8_0 {
|
||||
public:
|
||||
__aicore__ inline QUANTIZE_F32_Q8_0() {}
|
||||
__aicore__ inline void init(GM_ADDR input, GM_ADDR output,
|
||||
int64_t *input_ne_ub, size_t *input_nb_ub,
|
||||
int64_t *output_ne_ub) {
|
||||
int64_t op_block_num = GetBlockNum();
|
||||
int64_t op_block_idx = GetBlockIdx();
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
input_ne[i] = input_ne_ub[i];
|
||||
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
|
||||
|
||||
output_ne[i] = output_ne_ub[i];
|
||||
}
|
||||
|
||||
output_stride[0] = 1;
|
||||
for (int i = 1; i < 4; i++) {
|
||||
output_stride[i] = output_stride[i - 1] * output_ne[i - 1];
|
||||
}
|
||||
|
||||
scale_ne = input_ne;
|
||||
scale_stride[0] = 1;
|
||||
scale_stride[1] = input_ne[0] / QK8_0;
|
||||
for (int i = 2; i < 4; i++) {
|
||||
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
|
||||
}
|
||||
|
||||
// split input tensor by rows.
|
||||
uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3];
|
||||
dr = nr / op_block_num;
|
||||
|
||||
uint64_t tails = nr % op_block_num;
|
||||
if (op_block_idx < tails) {
|
||||
dr += 1;
|
||||
ir = dr * op_block_idx;
|
||||
} else {
|
||||
ir = dr * op_block_idx + tails;
|
||||
}
|
||||
|
||||
group_size_in_row = scale_stride[1];
|
||||
int64_t output_size = output_ne[0] * output_ne[1] * output_ne[2] *
|
||||
output_ne[3] * sizeof(uint8_t);
|
||||
|
||||
input_gm.SetGlobalBuffer((__gm__ float *)input);
|
||||
output_gm.SetGlobalBuffer((__gm__ int8_t *)output);
|
||||
scale_gm.SetGlobalBuffer((__gm__ half *)(output + output_size +
|
||||
ir * group_size_in_row *
|
||||
sizeof(half)));
|
||||
|
||||
pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(float));
|
||||
pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t));
|
||||
pipe.InitBuffer(work_queue, 1, 32);
|
||||
pipe.InitBuffer(max_queue, 1, 32);
|
||||
pipe.InitBuffer(abs_queue, 1, QK8_0 * sizeof(float));
|
||||
pipe.InitBuffer(cast_queue, 1, QK8_0 * sizeof(half));
|
||||
pipe.InitBuffer(scale_queue, 1, 32);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_in(uint32_t offset) {
|
||||
LocalTensor<float> input_local = input_queue.AllocTensor<float>();
|
||||
DataCopy(input_local, input_gm[offset], QK8_0);
|
||||
input_queue.EnQue(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_out(uint32_t offset) {
|
||||
LocalTensor<int8_t> output_local = output_queue.DeQue<int8_t>();
|
||||
DataCopy(output_gm[offset], output_local, QK8_0);
|
||||
output_queue.FreeTensor(output_local);
|
||||
}
|
||||
|
||||
__aicore__ inline half calculate_group(int64_t row, int64_t group) {
|
||||
const int64_t i3 = row / (input_ne[1] * input_ne[2]);
|
||||
const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1];
|
||||
const int64_t i1 =
|
||||
row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1];
|
||||
|
||||
const int64_t input_offset = i1 * input_stride[1] +
|
||||
i2 * input_stride[2] +
|
||||
i3 * input_stride[3] + QK8_0 * group;
|
||||
|
||||
const int64_t output_offset = i1 * output_stride[1] +
|
||||
i2 * output_stride[2] +
|
||||
i3 * output_stride[3] + QK8_0 * group;
|
||||
|
||||
copy_in(input_offset);
|
||||
LocalTensor<float> input_local = input_queue.DeQue<float>();
|
||||
LocalTensor<int8_t> output_local = output_queue.AllocTensor<int8_t>();
|
||||
LocalTensor<float> work_local = work_queue.AllocTensor<float>();
|
||||
LocalTensor<float> abs_local = abs_queue.AllocTensor<float>();
|
||||
LocalTensor<float> max_local = max_queue.AllocTensor<float>();
|
||||
LocalTensor<half> cast_local = cast_queue.AllocTensor<half>();
|
||||
|
||||
Abs(abs_local, input_local, QK8_0);
|
||||
ReduceMax(max_local, abs_local, work_local, QK8_0);
|
||||
pipe_barrier(PIPE_ALL);
|
||||
float d = max_local.GetValue(0);
|
||||
d = d / ((1 << 7) - 1);
|
||||
if (d != 0) {
|
||||
Muls(input_local, input_local, 1.0f / d, QK8_0);
|
||||
}
|
||||
|
||||
Cast(input_local, input_local, RoundMode::CAST_ROUND, QK8_0);
|
||||
Cast(cast_local, input_local, RoundMode::CAST_ROUND, QK8_0);
|
||||
Cast(output_local, cast_local, RoundMode::CAST_ROUND, QK8_0);
|
||||
output_queue.EnQue(output_local);
|
||||
copy_out(output_offset);
|
||||
|
||||
input_queue.FreeTensor(input_local);
|
||||
work_queue.FreeTensor(work_local);
|
||||
abs_queue.FreeTensor(abs_local);
|
||||
max_queue.FreeTensor(max_local);
|
||||
cast_queue.FreeTensor(cast_local);
|
||||
|
||||
return (half)d;
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate() {
|
||||
LocalTensor<half> scale_local = scale_queue.AllocTensor<half>();
|
||||
uint32_t scale_local_offset = 0;
|
||||
uint32_t scale_global_offset = 0;
|
||||
for (int64_t i = ir; i < ir + dr; i++) {
|
||||
for (int64_t j = 0; j < group_size_in_row; j++) {
|
||||
half scale = calculate_group(i, j);
|
||||
scale_local.SetValue(scale_local_offset++, scale);
|
||||
if (scale_local_offset == 16) {
|
||||
scale_local_offset = 0;
|
||||
// TODO: OPTIMIZE ME
|
||||
pipe_barrier(PIPE_ALL);
|
||||
DataCopy(scale_gm[scale_global_offset], scale_local, 16);
|
||||
pipe_barrier(PIPE_ALL);
|
||||
scale_global_offset += 16;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (scale_local_offset != 0) {
|
||||
pipe_barrier(PIPE_ALL);
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = scale_local_offset * sizeof(half);
|
||||
DataCopyPad(scale_gm[scale_global_offset], scale_local,
|
||||
dataCopyParams);
|
||||
pipe_barrier(PIPE_ALL);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
int64_t input_ne[4];
|
||||
size_t input_stride[4];
|
||||
|
||||
int64_t *scale_ne;
|
||||
size_t scale_stride[4];
|
||||
|
||||
int64_t output_ne[4];
|
||||
size_t output_stride[4];
|
||||
|
||||
int64_t group_size_in_row;
|
||||
|
||||
int64_t ir;
|
||||
int64_t dr;
|
||||
|
||||
TPipe pipe;
|
||||
GlobalTensor<float> input_gm;
|
||||
GlobalTensor<half> scale_gm;
|
||||
GlobalTensor<int8_t> output_gm;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
||||
TQue<QuePosition::VECIN, 1> work_queue;
|
||||
TQue<QuePosition::VECOUT, 1> max_queue;
|
||||
TQue<QuePosition::VECIN, 1> abs_queue;
|
||||
TQue<QuePosition::VECIN, 1> cast_queue;
|
||||
TQue<QuePosition::VECOUT, 1> scale_queue;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
||||
auto gm_ptr = (__gm__ uint8_t *)gm;
|
||||
auto ub_ptr = (uint8_t *)(ub);
|
||||
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
||||
*ub_ptr = *gm_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_quantize_f32_q8_0(
|
||||
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
||||
int64_t input_ne_ub[4];
|
||||
size_t input_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
|
||||
QUANTIZE_F32_Q8_0 op;
|
||||
op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
|
||||
op.calculate();
|
||||
}
|
||||
|
||||
#endif // #ifdef ASCEND_310P
|
||||
@@ -1,295 +0,0 @@
|
||||
#include "kernel_operator.h"
|
||||
|
||||
using namespace AscendC;
|
||||
#ifdef ASCEND_310P // 310P not support float->4bit quantization
|
||||
extern "C" __global__ __aicore__ void ascendc_quantize_f32_to_q4_0(
|
||||
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
||||
// let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
|
||||
printf("Ascend310P not support f32->4bit quantization.\n");
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_quantize_f16_to_q4_0(
|
||||
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
||||
// let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
|
||||
printf("Ascend310P not support f16->4bit quantization.\n");
|
||||
}
|
||||
#else
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
#define Group_Size 32
|
||||
|
||||
template <typename SRC_T>
|
||||
class QUANTIZE_FLOAT_TO_Q4_0 {
|
||||
public:
|
||||
__aicore__ inline QUANTIZE_FLOAT_TO_Q4_0() {}
|
||||
__aicore__ inline void init(GM_ADDR input, GM_ADDR output,
|
||||
int64_t *input_ne_ub, size_t *input_nb_ub,
|
||||
int64_t *output_ne_ub) {
|
||||
// TODO: fix test_case CPY(type_src=f16,type_dst=q4_0,ne=[256,4,4,4],
|
||||
// permute=[0,0,0,0]):
|
||||
// [CPY] NMSE = 0.000008343 > 0.000001000 FAIL
|
||||
int64_t op_block_num = GetBlockNum();
|
||||
int64_t op_block_idx = GetBlockIdx();
|
||||
|
||||
// input stride of data elements
|
||||
for (int i = 0; i < 4; i++) {
|
||||
input_ne[i] = input_ne_ub[i];
|
||||
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
|
||||
output_ne[i] = output_ne_ub[i];
|
||||
}
|
||||
|
||||
// output stride of data elements
|
||||
output_stride[0] = 1;
|
||||
for (int i = 1; i < 4; i++) {
|
||||
output_stride[i] = output_stride[i - 1] * output_ne[i - 1];
|
||||
}
|
||||
|
||||
// scale saved one by one after data:. [group1_scale, group2_scale, ...]
|
||||
scale_ne = input_ne;
|
||||
scale_stride[0] = 1;
|
||||
scale_stride[1] = input_ne[0] / Group_Size;
|
||||
for (int i = 2; i < 4; i++) {
|
||||
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
|
||||
}
|
||||
|
||||
// split input tensor by rows.
|
||||
uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3];
|
||||
dr = nr / op_block_num;
|
||||
|
||||
uint64_t tails = nr % op_block_num;
|
||||
if (op_block_idx < tails) {
|
||||
dr += 1;
|
||||
ir = dr * op_block_idx;
|
||||
} else {
|
||||
ir = dr * op_block_idx + tails;
|
||||
}
|
||||
|
||||
group_size_in_row = scale_stride[1];
|
||||
int64_t scale_offset = output_ne[0] * output_ne[1] * output_ne[2] *
|
||||
output_ne[3] * sizeof(uint8_t) / 2;
|
||||
|
||||
input_gm.SetGlobalBuffer((__gm__ SRC_T *)input);
|
||||
output_gm.SetGlobalBuffer((__gm__ int8_t *)output);
|
||||
scale_gm.SetGlobalBuffer((__gm__ half *)(output + scale_offset + ir *
|
||||
group_size_in_row *
|
||||
sizeof(half)));
|
||||
|
||||
pipe.InitBuffer(input_queue, BUFFER_NUM, Group_Size * sizeof(SRC_T));
|
||||
pipe.InitBuffer(output_queue, BUFFER_NUM,
|
||||
Group_Size * sizeof(int8_t) / 2);
|
||||
pipe.InitBuffer(cast_queue , 1, Group_Size * sizeof(float));
|
||||
pipe.InitBuffer(work_queue, 1, Group_Size * sizeof(float));
|
||||
pipe.InitBuffer(max_queue, 1, Group_Size * sizeof(float));
|
||||
pipe.InitBuffer(min_queue, 1, Group_Size * sizeof(float));
|
||||
pipe.InitBuffer(scale_queue, 1, Group_Size / 2 * sizeof(half));
|
||||
pipe.InitBuffer(int8_queue, 1, Group_Size * sizeof(int8_t));
|
||||
pipe.InitBuffer(half_queue, 1, Group_Size * sizeof(half));
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_in(uint32_t offset) {
|
||||
LocalTensor<SRC_T> input_local = input_queue.AllocTensor<SRC_T>();
|
||||
DataCopy(input_local, input_gm[offset], Group_Size);
|
||||
input_queue.EnQue(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_out(uint32_t offset) {
|
||||
// reinterpretcast Group_Size(32) * int4b_t to Group_Size / 2 * int8_t,
|
||||
// and using DataCopyPad to avoid 32 bits align.
|
||||
LocalTensor<int4b_t> output_local = output_queue.DeQue<int4b_t>();
|
||||
LocalTensor<int8_t> output_int8_local =
|
||||
output_local.ReinterpretCast<int8_t>();
|
||||
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = Group_Size / 2 * sizeof(int8_t);
|
||||
DataCopyPad(output_gm[offset], output_int8_local, dataCopyParams);
|
||||
|
||||
output_queue.FreeTensor(output_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void input_to_cast(LocalTensor<float> cast_local,
|
||||
LocalTensor<float> input_local) {
|
||||
DataCopy(cast_local, input_local, Group_Size);
|
||||
}
|
||||
|
||||
__aicore__ inline void input_to_cast(LocalTensor<float> cast_local,
|
||||
LocalTensor<half> input_local) {
|
||||
Cast(cast_local, input_local, RoundMode::CAST_NONE, Group_Size);
|
||||
}
|
||||
|
||||
__aicore__ inline half calculate_group(int64_t row, int64_t group) {
|
||||
const int64_t i3 = row / (input_ne[1] * input_ne[2]);
|
||||
const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1];
|
||||
const int64_t i1 =
|
||||
row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1];
|
||||
|
||||
const int64_t input_offset = i1 * input_stride[1] +
|
||||
i2 * input_stride[2] +
|
||||
i3 * input_stride[3] + Group_Size * group;
|
||||
|
||||
// output_offset is stride for output_gm which datatype is int8_t and
|
||||
// divided by 2 is needed for int4b_t.
|
||||
const int64_t output_offset = (i1 * output_stride[1] +
|
||||
i2 * output_stride[2] +
|
||||
i3 * output_stride[3] +
|
||||
Group_Size * group) / 2;
|
||||
copy_in(input_offset);
|
||||
|
||||
LocalTensor<SRC_T> input_local = input_queue.DeQue<SRC_T>();
|
||||
LocalTensor<int4b_t> output_local = output_queue.AllocTensor<int4b_t>();
|
||||
LocalTensor<float> cast_local = cast_queue.AllocTensor<float>();
|
||||
LocalTensor<float> work_local = work_queue.AllocTensor<float>();
|
||||
LocalTensor<float> max_local = max_queue.AllocTensor<float>();
|
||||
LocalTensor<float> min_local = min_queue.AllocTensor<float>();
|
||||
LocalTensor<int8_t> int8_local = int8_queue.AllocTensor<int8_t>();
|
||||
LocalTensor<half> half_local = half_queue.AllocTensor<half>();
|
||||
|
||||
input_to_cast(cast_local, input_local);
|
||||
|
||||
ReduceMax(max_local, cast_local, work_local, Group_Size);
|
||||
ReduceMin(min_local, cast_local, work_local, Group_Size);
|
||||
const float max_value = max_local.GetValue(0);
|
||||
const float min_value = min_local.GetValue(0);
|
||||
float d = max_value;
|
||||
if (min_value < 0 && (-1 * min_value) > max_value) {
|
||||
d = min_value;
|
||||
}
|
||||
|
||||
d = d / (-8);
|
||||
if (d != 0) {
|
||||
Muls(cast_local, cast_local, 1.0f / d, Group_Size);
|
||||
}
|
||||
|
||||
// range: [-8,8] -> [0.5,16.5] -> [0,16] -> [0,15] -> [-8,7]
|
||||
float scalar = 8.5f;
|
||||
Adds(cast_local, cast_local, scalar, Group_Size);
|
||||
Cast(cast_local, cast_local, RoundMode::CAST_FLOOR, Group_Size);
|
||||
scalar = 15.0f;
|
||||
Mins(cast_local, cast_local, scalar, Group_Size);
|
||||
scalar = -8.0f;
|
||||
Adds(cast_local, cast_local, scalar, Group_Size);
|
||||
|
||||
// float->half->int4b
|
||||
Cast(half_local, cast_local, RoundMode::CAST_NONE, Group_Size);
|
||||
Cast(output_local, half_local, RoundMode::CAST_NONE, Group_Size);
|
||||
|
||||
output_queue.EnQue(output_local);
|
||||
copy_out(output_offset);
|
||||
|
||||
input_queue.FreeTensor(input_local);
|
||||
work_queue.FreeTensor(work_local);
|
||||
max_queue.FreeTensor(max_local);
|
||||
min_queue.FreeTensor(min_local);
|
||||
int8_queue.FreeTensor(int8_local);
|
||||
half_queue.FreeTensor(half_local);
|
||||
cast_queue.FreeTensor(cast_local);
|
||||
return (half)d;
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate() {
|
||||
LocalTensor<half> scale_local = scale_queue.AllocTensor<half>();
|
||||
uint32_t scale_local_offset = 0;
|
||||
uint32_t scale_global_offset = 0;
|
||||
for (int64_t i = ir; i < ir + dr; i++) {
|
||||
for (int64_t j = 0; j < group_size_in_row; j++) {
|
||||
half scale = calculate_group(i, j);
|
||||
scale_local.SetValue(scale_local_offset++, scale);
|
||||
// Copy Group_Size/2 length data each time.
|
||||
if (scale_local_offset == Group_Size / 2) {
|
||||
scale_local_offset = 0;
|
||||
// TODO: OPTIMIZE ME
|
||||
pipe_barrier(PIPE_ALL);
|
||||
DataCopy(scale_gm[scale_global_offset], scale_local,
|
||||
Group_Size / 2);
|
||||
pipe_barrier(PIPE_ALL);
|
||||
scale_global_offset += Group_Size / 2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (scale_local_offset != 0) {
|
||||
pipe_barrier(PIPE_ALL);
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = scale_local_offset * sizeof(half);
|
||||
DataCopyPad(scale_gm[scale_global_offset], scale_local,
|
||||
dataCopyParams);
|
||||
pipe_barrier(PIPE_ALL);
|
||||
}
|
||||
scale_queue.FreeTensor(scale_local);
|
||||
}
|
||||
|
||||
private:
|
||||
int64_t input_ne[4];
|
||||
size_t input_stride[4];
|
||||
|
||||
int64_t *scale_ne;
|
||||
size_t scale_stride[4];
|
||||
|
||||
int64_t output_ne[4];
|
||||
size_t output_stride[4];
|
||||
|
||||
int64_t group_size_in_row;
|
||||
|
||||
int64_t ir;
|
||||
int64_t dr;
|
||||
|
||||
TPipe pipe;
|
||||
GlobalTensor<SRC_T> input_gm;
|
||||
GlobalTensor<half> scale_gm;
|
||||
GlobalTensor<int8_t> output_gm;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> work_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> max_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> min_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> scale_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> cast_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> int8_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> half_queue;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
||||
auto gm_ptr = (__gm__ uint8_t *)gm;
|
||||
auto ub_ptr = (uint8_t *)(ub);
|
||||
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
||||
*ub_ptr = *gm_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_quantize_f16_to_q4_0(
|
||||
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
||||
int64_t input_ne_ub[4];
|
||||
size_t input_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
|
||||
QUANTIZE_FLOAT_TO_Q4_0<half> op;
|
||||
op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
|
||||
op.calculate();
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_quantize_f32_to_q4_0(
|
||||
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
||||
int64_t input_ne_ub[4];
|
||||
size_t input_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
|
||||
QUANTIZE_FLOAT_TO_Q4_0<float> op;
|
||||
op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
|
||||
op.calculate();
|
||||
}
|
||||
|
||||
#endif // #ifdef ASCEND_310P
|
||||
@@ -158,6 +158,12 @@ typedef sycl::half2 ggml_half2;
|
||||
|
||||
#endif // GGML_COMMON_DECL_CUDA || GGML_COMMON_DECL_HIP
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#define GGML_EXTENSION
|
||||
#else // _MSC_VER
|
||||
#define GGML_EXTENSION __extension__
|
||||
#endif // _MSC_VER
|
||||
|
||||
#define QK4_0 32
|
||||
typedef struct {
|
||||
ggml_half d; // delta
|
||||
@@ -167,7 +173,7 @@ static_assert(sizeof(block_q4_0) == sizeof(ggml_half) + QK4_0 / 2, "wrong q4_0 b
|
||||
|
||||
#define QK4_1 32
|
||||
typedef struct {
|
||||
union {
|
||||
GGML_EXTENSION union {
|
||||
struct {
|
||||
ggml_half d; // delta
|
||||
ggml_half m; // min
|
||||
@@ -188,7 +194,7 @@ static_assert(sizeof(block_q5_0) == sizeof(ggml_half) + sizeof(uint32_t) + QK5_0
|
||||
|
||||
#define QK5_1 32
|
||||
typedef struct {
|
||||
union {
|
||||
GGML_EXTENSION union {
|
||||
struct {
|
||||
ggml_half d; // delta
|
||||
ggml_half m; // min
|
||||
@@ -209,7 +215,7 @@ static_assert(sizeof(block_q8_0) == sizeof(ggml_half) + QK8_0, "wrong q8_0 block
|
||||
|
||||
#define QK8_1 32
|
||||
typedef struct {
|
||||
union {
|
||||
GGML_EXTENSION union {
|
||||
struct {
|
||||
ggml_half d; // delta
|
||||
ggml_half s; // d * sum(qs[i])
|
||||
@@ -250,7 +256,7 @@ static_assert(sizeof(block_tq2_0) == sizeof(ggml_half) + QK_K / 4, "wrong tq2_0
|
||||
typedef struct {
|
||||
uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
|
||||
uint8_t qs[QK_K/4]; // quants
|
||||
union {
|
||||
GGML_EXTENSION union {
|
||||
struct {
|
||||
ggml_half d; // super-block scale for quantized scales
|
||||
ggml_half dmin; // super-block scale for quantized mins
|
||||
@@ -277,7 +283,7 @@ static_assert(sizeof(block_q3_K) == sizeof(ggml_half) + QK_K / 4 + QK_K / 8 + 12
|
||||
// weight is represented as x = a * q + b
|
||||
// Effectively 4.5 bits per weight
|
||||
typedef struct {
|
||||
union {
|
||||
GGML_EXTENSION union {
|
||||
struct {
|
||||
ggml_half d; // super-block scale for quantized scales
|
||||
ggml_half dmin; // super-block scale for quantized mins
|
||||
@@ -294,7 +300,7 @@ static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_half) + K_SCALE_SIZE + QK_K/2,
|
||||
// weight is represented as x = a * q + b
|
||||
// Effectively 5.5 bits per weight
|
||||
typedef struct {
|
||||
union {
|
||||
GGML_EXTENSION union {
|
||||
struct {
|
||||
ggml_half d; // super-block scale for quantized scales
|
||||
ggml_half dmin; // super-block scale for quantized mins
|
||||
|
||||
@@ -23,6 +23,11 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
ggml-cpu/amx/mmq.cpp
|
||||
ggml-cpu/amx/mmq.h
|
||||
ggml-cpu/ggml-cpu-impl.h
|
||||
ggml-cpu/common.h
|
||||
ggml-cpu/binary-ops.h
|
||||
ggml-cpu/binary-ops.cpp
|
||||
ggml-cpu/unary-ops.h
|
||||
ggml-cpu/unary-ops.cpp
|
||||
)
|
||||
|
||||
target_compile_features(${GGML_CPU_NAME} PRIVATE c_std_11 cxx_std_17)
|
||||
|
||||
158
ggml/src/ggml-cpu/binary-ops.cpp
Normal file
158
ggml/src/ggml-cpu/binary-ops.cpp
Normal file
@@ -0,0 +1,158 @@
|
||||
#include "binary-ops.h"
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE)
|
||||
#include <Accelerate/Accelerate.h>
|
||||
|
||||
using vDSP_fn_t = void (*)(const float *, vDSP_Stride, const float *, vDSP_Stride, float *, vDSP_Stride, vDSP_Length);
|
||||
#endif
|
||||
|
||||
static inline float op_add(float a, float b) {
|
||||
return a + b;
|
||||
}
|
||||
|
||||
static inline float op_sub(float a, float b) {
|
||||
return a - b;
|
||||
}
|
||||
|
||||
static inline float op_mul(float a, float b) {
|
||||
return a * b;
|
||||
}
|
||||
|
||||
static inline float op_div(float a, float b) {
|
||||
return a / b;
|
||||
}
|
||||
|
||||
template <float (*op)(float, float), typename src0_t, typename src1_t, typename dst_t>
|
||||
static inline void vec_binary_op_contiguous(const int64_t n, dst_t * z, const src0_t * x, const src1_t * y) {
|
||||
constexpr auto src0_to_f32 = type_conversion_table<src0_t>::to_f32;
|
||||
constexpr auto src1_to_f32 = type_conversion_table<src1_t>::to_f32;
|
||||
constexpr auto f32_to_dst = type_conversion_table<dst_t >::from_f32;
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
z[i] = f32_to_dst(op(src0_to_f32(x[i]), src1_to_f32(y[i])));
|
||||
}
|
||||
}
|
||||
|
||||
template <float (*op)(float, float), typename src0_t, typename src1_t, typename dst_t>
|
||||
static inline void vec_binary_op_non_contiguous(const int64_t n, const int64_t ne10, const int64_t nb10, dst_t * z, const src0_t * x, const src1_t * y) {
|
||||
constexpr auto src0_to_f32 = type_conversion_table<src0_t>::to_f32;
|
||||
constexpr auto src1_to_f32 = type_conversion_table<src1_t>::to_f32;
|
||||
constexpr auto f32_to_dst = type_conversion_table<dst_t >::from_f32;
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
int i10 = i % ne10;
|
||||
const src1_t * y_ptr = (const src1_t *)((const char *)y + i10*nb10);
|
||||
z[i] = f32_to_dst(op(src0_to_f32(x[i]), src1_to_f32(*y_ptr)));
|
||||
}
|
||||
}
|
||||
|
||||
template <float (*op)(float, float), typename src0_t, typename src1_t, typename dst_t>
|
||||
static void apply_binary_op(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT( nb0 == sizeof(dst_t));
|
||||
GGML_ASSERT(nb00 == sizeof(src0_t));
|
||||
|
||||
const auto [ir0, ir1] = get_thread_range(params, src0);
|
||||
const bool is_src1_contiguous = (nb10 == sizeof(src1_t));
|
||||
|
||||
if (!is_src1_contiguous) { // broadcast not implemented yet for non-contiguous
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, src1));
|
||||
}
|
||||
|
||||
#ifdef GGML_USE_ACCELERATE
|
||||
vDSP_fn_t vDSP_op = nullptr;
|
||||
// TODO - avoid the f32-only check using type 'trait' lookup tables and row-based src-to-float conversion functions
|
||||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
if (op == op_add) {
|
||||
vDSP_op = vDSP_vadd;
|
||||
} else if (op == op_sub) {
|
||||
vDSP_op = vDSP_vsub;
|
||||
} else if (op == op_mul) {
|
||||
vDSP_op = vDSP_vmul;
|
||||
} else if (op == op_div) {
|
||||
vDSP_op = vDSP_vdiv;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
for (int64_t ir = ir0; ir < ir1; ++ir) {
|
||||
const int64_t i03 = ir/(ne02*ne01);
|
||||
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
|
||||
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
||||
|
||||
const int64_t i13 = i03 % ne13;
|
||||
const int64_t i12 = i02 % ne12;
|
||||
const int64_t i11 = i01 % ne11;
|
||||
|
||||
dst_t * dst_ptr = (dst_t *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
||||
const src0_t * src0_ptr = (const src0_t *) ((const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
||||
const src1_t * src1_ptr = (const src1_t *) ((const char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
|
||||
|
||||
if (is_src1_contiguous) {
|
||||
// src1 is broadcastable across src0 and dst in i1, i2, i3
|
||||
const int64_t nr0 = ne00 / ne10;
|
||||
|
||||
for (int64_t r = 0; r < nr0; ++r) {
|
||||
#ifdef GGML_USE_ACCELERATE
|
||||
if constexpr (std::is_same_v<src0_t, float> && std::is_same_v<src1_t, float> && std::is_same_v<dst_t, float>) {
|
||||
if (vDSP_op != nullptr) {
|
||||
vDSP_op(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
vec_binary_op_contiguous<op>(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
|
||||
}
|
||||
} else {
|
||||
vec_binary_op_non_contiguous<op>(ne0, ne10, nb10, dst_ptr, src0_ptr, src1_ptr);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Use the 'traits' lookup table (for type conversion fns), instead of a mass of 'if' conditions with long templates
|
||||
template <float (*op)(float, float)>
|
||||
static void binary_op(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
/* */ if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { // all f32
|
||||
apply_binary_op<op, float, float, float>(params, dst);
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { // all f16
|
||||
apply_binary_op<op, ggml_fp16_t, ggml_fp16_t, ggml_fp16_t>(params, dst);
|
||||
} else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_BF16 && dst->type == GGML_TYPE_BF16) { // all bf16
|
||||
apply_binary_op<op, ggml_bf16_t, ggml_bf16_t, ggml_bf16_t>(params, dst);
|
||||
} else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_BF16) {
|
||||
apply_binary_op<op, ggml_bf16_t, float, ggml_bf16_t>(params, dst);
|
||||
} else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
apply_binary_op<op, ggml_bf16_t, float, float>(params, dst);
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) {
|
||||
apply_binary_op<op, ggml_fp16_t, float, ggml_fp16_t>(params, dst);
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
apply_binary_op<op, ggml_fp16_t, float, float>(params, dst);
|
||||
} else {
|
||||
GGML_ABORT("%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
|
||||
ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_compute_forward_add_non_quantized(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
binary_op<op_add>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_sub(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
binary_op<op_sub>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_mul(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
binary_op<op_mul>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_div(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
binary_op<op_div>(params, dst);
|
||||
}
|
||||
16
ggml/src/ggml-cpu/binary-ops.h
Normal file
16
ggml/src/ggml-cpu/binary-ops.h
Normal file
@@ -0,0 +1,16 @@
|
||||
#pragma once
|
||||
|
||||
#include "common.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
void ggml_compute_forward_add_non_quantized(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_sub(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_mul(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_div(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
72
ggml/src/ggml-cpu/common.h
Normal file
72
ggml/src/ggml-cpu/common.h
Normal file
@@ -0,0 +1,72 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-cpu-traits.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "ggml-impl.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
||||
#include <utility>
|
||||
|
||||
// convenience functions/macros for use in template calls
|
||||
// note: these won't be required after the 'traits' lookup table is used.
|
||||
static inline ggml_fp16_t f32_to_f16(float x) {
|
||||
return GGML_FP32_TO_FP16(x);
|
||||
}
|
||||
|
||||
static inline float f16_to_f32(ggml_fp16_t x) {
|
||||
return GGML_FP16_TO_FP32(x);
|
||||
}
|
||||
|
||||
static inline ggml_bf16_t f32_to_bf16(float x) {
|
||||
return GGML_FP32_TO_BF16(x);
|
||||
}
|
||||
|
||||
static inline float bf16_to_f32(ggml_bf16_t x) {
|
||||
return GGML_BF16_TO_FP32(x);
|
||||
}
|
||||
|
||||
static inline float f32_to_f32(float x) {
|
||||
return x;
|
||||
}
|
||||
|
||||
// TODO - merge this into the traits table, after using row-based conversions
|
||||
template <class T>
|
||||
struct type_conversion_table;
|
||||
|
||||
template <>
|
||||
struct type_conversion_table<ggml_fp16_t> {
|
||||
static constexpr float (*to_f32)(ggml_fp16_t) = f16_to_f32;
|
||||
static constexpr ggml_fp16_t (*from_f32)(float) = f32_to_f16;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct type_conversion_table<float> {
|
||||
static constexpr float (*to_f32)(float) = f32_to_f32;
|
||||
static constexpr float (*from_f32)(float) = f32_to_f32;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct type_conversion_table<ggml_bf16_t> {
|
||||
static constexpr float (*to_f32)(ggml_bf16_t) = bf16_to_f32;
|
||||
static constexpr ggml_bf16_t (*from_f32)(float) = f32_to_bf16;
|
||||
};
|
||||
|
||||
static std::pair<int64_t, int64_t> get_thread_range(const struct ggml_compute_params * params, const struct ggml_tensor * src0) {
|
||||
const int64_t ith = params->ith;
|
||||
const int64_t nth = params->nth;
|
||||
|
||||
const int64_t nr = ggml_nrows(src0);
|
||||
|
||||
// rows per thread
|
||||
const int64_t dr = (nr + nth - 1)/nth;
|
||||
|
||||
// row range for this thread
|
||||
const int64_t ir0 = dr*ith;
|
||||
const int64_t ir1 = MIN(ir0 + dr, nr);
|
||||
|
||||
return {ir0, ir1};
|
||||
}
|
||||
|
||||
#endif
|
||||
File diff suppressed because it is too large
Load Diff
186
ggml/src/ggml-cpu/unary-ops.cpp
Normal file
186
ggml/src/ggml-cpu/unary-ops.cpp
Normal file
@@ -0,0 +1,186 @@
|
||||
#include "unary-ops.h"
|
||||
|
||||
static inline float op_abs(float x) {
|
||||
return fabsf(x);
|
||||
}
|
||||
|
||||
static inline float op_sgn(float x) {
|
||||
return (x > 0.f) ? 1.f : ((x < 0.f) ? -1.f : 0.f);
|
||||
}
|
||||
|
||||
static inline float op_neg(float x) {
|
||||
return -x;
|
||||
}
|
||||
|
||||
static inline float op_step(float x) {
|
||||
return (x > 0.f) ? 1.f : 0.f;
|
||||
}
|
||||
|
||||
static inline float op_tanh(float x) {
|
||||
return tanhf(x);
|
||||
}
|
||||
|
||||
static inline float op_elu(float x) {
|
||||
return (x > 0.f) ? x : expm1f(x);
|
||||
}
|
||||
|
||||
static inline float op_relu(float x) {
|
||||
return (x > 0.f) ? x : 0.f;
|
||||
}
|
||||
|
||||
static inline float op_sigmoid(float x) {
|
||||
return 1.f / (1.f + expf(-x));
|
||||
}
|
||||
|
||||
static inline float op_hardsigmoid(float x) {
|
||||
return fminf(1.0f, fmaxf(0.0f, (x + 3.0f) / 6.0f));
|
||||
}
|
||||
|
||||
static inline float op_exp(float x) {
|
||||
return expf(x);
|
||||
}
|
||||
|
||||
static inline float op_hardswish(float x) {
|
||||
return x * fminf(1.0f, fmaxf(0.0f, (x + 3.0f) / 6.0f));
|
||||
}
|
||||
|
||||
static inline float op_sqr(float x) {
|
||||
return x * x;
|
||||
}
|
||||
|
||||
static inline float op_sqrt(float x) {
|
||||
return sqrtf(x);
|
||||
}
|
||||
|
||||
static inline float op_sin(float x) {
|
||||
return sinf(x);
|
||||
}
|
||||
|
||||
static inline float op_cos(float x) {
|
||||
return cosf(x);
|
||||
}
|
||||
|
||||
static inline float op_log(float x) {
|
||||
return logf(x);
|
||||
}
|
||||
|
||||
template <float (*op)(float), typename src0_t, typename dst_t>
|
||||
static inline void vec_unary_op(int64_t n, dst_t * y, const src0_t * x) {
|
||||
constexpr auto src0_to_f32 = type_conversion_table<src0_t>::to_f32;
|
||||
constexpr auto f32_to_dst = type_conversion_table<dst_t >::from_f32;
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
y[i] = f32_to_dst(op(src0_to_f32(x[i])));
|
||||
}
|
||||
}
|
||||
|
||||
template <float (*op)(float), typename src0_t, typename dst_t>
|
||||
static void apply_unary_op(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous_1(src0) && ggml_is_contiguous_1(dst) && ggml_are_same_shape(src0, dst));
|
||||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT( nb0 == sizeof(dst_t));
|
||||
GGML_ASSERT(nb00 == sizeof(src0_t));
|
||||
|
||||
const auto [ir0, ir1] = get_thread_range(params, src0);
|
||||
|
||||
for (int64_t ir = ir0; ir < ir1; ++ir) {
|
||||
const int64_t i03 = ir/(ne02*ne01);
|
||||
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
|
||||
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
||||
|
||||
dst_t * dst_ptr = (dst_t *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
||||
const src0_t * src0_ptr = (const src0_t *) ((const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
||||
|
||||
vec_unary_op<op>(ne0, dst_ptr, src0_ptr);
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Use the 'traits' lookup table (for type conversion fns), instead of a mass of 'if' conditions with long templates
|
||||
template <float (*op)(float)>
|
||||
static void unary_op(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
/* */ if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { // all f32
|
||||
apply_unary_op<op, float, float>(params, dst);
|
||||
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { // all f16
|
||||
apply_unary_op<op, ggml_fp16_t, ggml_fp16_t>(params, dst);
|
||||
} else if (src0->type == GGML_TYPE_BF16 && dst->type == GGML_TYPE_BF16) { // all bf16
|
||||
apply_unary_op<op, ggml_bf16_t, ggml_bf16_t>(params, dst);
|
||||
} else if (src0->type == GGML_TYPE_BF16 && dst->type == GGML_TYPE_F32) {
|
||||
apply_unary_op<op, ggml_bf16_t, float>(params, dst);
|
||||
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
|
||||
apply_unary_op<op, ggml_fp16_t, float>(params, dst);
|
||||
} else {
|
||||
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s\n", __func__,
|
||||
ggml_type_name(dst->type), ggml_type_name(src0->type));
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_compute_forward_abs(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_abs>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_sgn(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_sgn>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_neg(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_neg>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_step(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_step>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_tanh(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_tanh>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_elu(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_elu>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_relu(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_relu>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_sigmoid(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_sigmoid>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_hardsigmoid(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_hardsigmoid>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_exp(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_exp>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_hardswish(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_hardswish>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_sqr(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_sqr>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_sqrt(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_sqrt>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_sin(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_sin>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_cos(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_cos>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_log(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_log>(params, dst);
|
||||
}
|
||||
28
ggml/src/ggml-cpu/unary-ops.h
Normal file
28
ggml/src/ggml-cpu/unary-ops.h
Normal file
@@ -0,0 +1,28 @@
|
||||
#pragma once
|
||||
|
||||
#include "common.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
void ggml_compute_forward_abs(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_sgn(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_neg(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_step(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_tanh(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_elu(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_relu(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_sigmoid(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_hardsigmoid(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_exp(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_hardswish(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_sqr(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_sqrt(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_sin(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_cos(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_log(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
@@ -288,6 +288,10 @@ static __device__ void no_device_code(
|
||||
__trap();
|
||||
|
||||
GGML_UNUSED(no_device_code); // suppress unused function warning
|
||||
|
||||
#if defined(GGML_USE_MUSA)
|
||||
__builtin_unreachable();
|
||||
#endif // defined(GGML_USE_MUSA)
|
||||
}
|
||||
|
||||
#ifdef __CUDA_ARCH__
|
||||
@@ -725,7 +729,13 @@ struct ggml_cuda_graph {
|
||||
bool disable_due_to_failed_graph_capture = false;
|
||||
int number_consecutive_updates = 0;
|
||||
std::vector<ggml_graph_node_properties> ggml_graph_properties;
|
||||
std::vector<char **> updated_kernel_arg;
|
||||
bool use_cpy_indirection = false;
|
||||
std::vector<char *> cpy_dest_ptrs;
|
||||
char ** dest_ptrs_d;
|
||||
int dest_ptrs_size = 0;
|
||||
// Index to allow each cpy kernel to be aware of it's position within the graph
|
||||
// relative to other cpy nodes.
|
||||
int graph_cpynode_index = -1;
|
||||
#endif
|
||||
};
|
||||
|
||||
|
||||
@@ -38,7 +38,7 @@ static __global__ void concat_f32_dim1(const float * x, const float * y, float *
|
||||
blockIdx.y * ne0 +
|
||||
blockIdx.z * ne0 * gridDim.y;
|
||||
|
||||
if (blockIdx.y < ne01) { // src0
|
||||
if (blockIdx.y < (unsigned)ne01) { // src0
|
||||
int offset_src =
|
||||
nidx +
|
||||
blockIdx.y * ne0 +
|
||||
@@ -64,7 +64,7 @@ static __global__ void concat_f32_dim2(const float * x, const float * y, float *
|
||||
blockIdx.y * ne0 +
|
||||
blockIdx.z * ne0 * gridDim.y;
|
||||
|
||||
if (blockIdx.z < ne02) { // src0
|
||||
if (blockIdx.z < (unsigned)ne02) { // src0
|
||||
int offset_src =
|
||||
nidx +
|
||||
blockIdx.y * ne0 +
|
||||
|
||||
@@ -34,6 +34,10 @@ static __global__ void conv_transpose_1d_kernel(
|
||||
}
|
||||
}
|
||||
dst[global_index] = accumulator;
|
||||
GGML_UNUSED(p0); GGML_UNUSED(d0); GGML_UNUSED(src0_ne3);
|
||||
GGML_UNUSED(src1_ne3); GGML_UNUSED(dst_ne3);
|
||||
GGML_UNUSED(src1_ne1); GGML_UNUSED(dst_ne1);
|
||||
GGML_UNUSED(src1_ne2); GGML_UNUSED(dst_ne2);
|
||||
}
|
||||
|
||||
static void conv_transpose_1d_f32_f32_cuda(
|
||||
@@ -75,8 +79,6 @@ void ggml_cuda_op_conv_transpose_1d(ggml_backend_cuda_context & ctx, ggml_tensor
|
||||
const int p0 = 0;//opts[3];
|
||||
const int d0 = 1;//opts[4];
|
||||
|
||||
const int64_t kernel_size = ggml_nelements(src0);
|
||||
const int64_t input_size = ggml_nelements(src1);
|
||||
const int64_t output_size = ggml_nelements(dst);
|
||||
|
||||
conv_transpose_1d_f32_f32_cuda(s0, p0, d0, output_size,
|
||||
|
||||
@@ -577,7 +577,7 @@ static __global__ void convert_unary(const void * __restrict__ vx, dst_t * __res
|
||||
return;
|
||||
}
|
||||
|
||||
const src_t * x = (src_t *) vx;
|
||||
const src_t * x = (const src_t *) vx;
|
||||
|
||||
y[i] = x[i];
|
||||
}
|
||||
|
||||
@@ -32,16 +32,18 @@ static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) {
|
||||
}
|
||||
|
||||
template <cpy_kernel_t cpy_1>
|
||||
static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
|
||||
static __global__ void cpy_f32_f16(const char * cx, char * cdst_direct, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||
const int nb12, const int nb13) {
|
||||
const int nb12, const int nb13, char ** cdst_indirect, int graph_cpynode_index) {
|
||||
const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
char * cdst = (cdst_indirect != nullptr) ? cdst_indirect[graph_cpynode_index]: cdst_direct;
|
||||
|
||||
// determine indices i03/i13, i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
|
||||
// then combine those indices with the corresponding byte offsets to get the total offsets
|
||||
const int64_t i03 = i/(ne00 * ne01 * ne02);
|
||||
@@ -288,16 +290,18 @@ static __device__ void cpy_blck_f32_iq4_nl(const char * cxi, char * cdsti) {
|
||||
}
|
||||
|
||||
template <cpy_kernel_t cpy_blck, int qk>
|
||||
static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne,
|
||||
static __global__ void cpy_f32_q(const char * cx, char * cdst_direct, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||
const int nb12, const int nb13) {
|
||||
const int nb12, const int nb13, char ** cdst_indirect, int graph_cpynode_index) {
|
||||
const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
char * cdst = (cdst_indirect != nullptr) ? cdst_indirect[graph_cpynode_index]: cdst_direct;
|
||||
|
||||
const int i03 = i/(ne00 * ne01 * ne02);
|
||||
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||
@@ -314,16 +318,18 @@ static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne,
|
||||
}
|
||||
|
||||
template <cpy_kernel_t cpy_blck, int qk>
|
||||
static __global__ void cpy_q_f32(const char * cx, char * cdst, const int ne,
|
||||
static __global__ void cpy_q_f32(const char * cx, char * cdst_direct, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||
const int nb12, const int nb13) {
|
||||
const int nb12, const int nb13, char ** cdst_indirect, int graph_cpynode_index) {
|
||||
const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
char * cdst = (cdst_indirect != nullptr) ? cdst_indirect[graph_cpynode_index]: cdst_direct;
|
||||
|
||||
const int i03 = i/(ne00 * ne01 * ne02);
|
||||
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||
@@ -339,66 +345,87 @@ static __global__ void cpy_q_f32(const char * cx, char * cdst, const int ne,
|
||||
cpy_blck(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
|
||||
// Copy destination pointers to GPU to be available when pointer indirection is in use
|
||||
|
||||
void ggml_cuda_cpy_dest_ptrs_copy(ggml_cuda_graph * cuda_graph, char ** host_dest_ptrs, const int host_dest_ptrs_size, cudaStream_t stream) {
|
||||
#if defined(GGML_CUDA_USE_GRAPHS) || defined(GGML_HIP_GRAPHS)
|
||||
if (cuda_graph->dest_ptrs_size < host_dest_ptrs_size) { // (re-)allocate GPU memory for destination pointers
|
||||
CUDA_CHECK(cudaStreamSynchronize(stream));
|
||||
if (cuda_graph->dest_ptrs_d != nullptr) {
|
||||
CUDA_CHECK(cudaFree(cuda_graph->dest_ptrs_d));
|
||||
}
|
||||
CUDA_CHECK(cudaMalloc(&cuda_graph->dest_ptrs_d, host_dest_ptrs_size*sizeof(char *)));
|
||||
cuda_graph->dest_ptrs_size = host_dest_ptrs_size;
|
||||
}
|
||||
// copy destination pointers to GPU
|
||||
CUDA_CHECK(cudaMemcpyAsync(cuda_graph->dest_ptrs_d, host_dest_ptrs, host_dest_ptrs_size*sizeof(char *), cudaMemcpyHostToDevice, stream));
|
||||
cuda_graph->graph_cpynode_index = 0; // reset index
|
||||
#else
|
||||
GGML_UNUSED(cuda_graph); GGML_UNUSED(host_dest_ptrs);
|
||||
GGML_UNUSED(host_dest_ptrs_size); GGML_UNUSED(stream);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void ggml_cpy_f16_f32_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
|
||||
|
||||
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
cpy_f32_f16<cpy_1_f16_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_f32_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
|
||||
|
||||
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
cpy_f32_f16<cpy_1_f32_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_f16_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
|
||||
|
||||
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
cpy_f32_f16<cpy_1_f32_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q8_0_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
|
||||
|
||||
GGML_ASSERT(ne % QK8_0 == 0);
|
||||
const int num_blocks = ne / QK8_0;
|
||||
cpy_f32_q<cpy_blck_f32_q8_0, QK8_0><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
|
||||
}
|
||||
|
||||
static void ggml_cpy_q8_0_f32_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
|
||||
|
||||
const int num_blocks = ne;
|
||||
cpy_q_f32<cpy_blck_q8_0_f32, QK8_0><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q4_0_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
|
||||
|
||||
GGML_ASSERT(ne % QK4_0 == 0);
|
||||
const int num_blocks = ne / QK4_0;
|
||||
cpy_f32_q<cpy_blck_f32_q4_0, QK4_0><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
|
||||
}
|
||||
|
||||
static void ggml_cpy_q4_0_f32_cuda(
|
||||
@@ -407,22 +434,22 @@ static void ggml_cpy_q4_0_f32_cuda(
|
||||
const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12,
|
||||
const int nb10, const int nb11, const int nb12, const int nb13,
|
||||
cudaStream_t stream) {
|
||||
cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
|
||||
const int num_blocks = ne;
|
||||
cpy_q_f32<cpy_blck_q_f32<dequantize_q4_0, QK4_0>, QK4_0><<<num_blocks, 1, 0, stream>>>(
|
||||
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q4_1_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
|
||||
|
||||
GGML_ASSERT(ne % QK4_1 == 0);
|
||||
const int num_blocks = ne / QK4_1;
|
||||
cpy_f32_q<cpy_blck_f32_q4_1, QK4_1><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
|
||||
}
|
||||
|
||||
static void ggml_cpy_q4_1_f32_cuda(
|
||||
@@ -431,22 +458,22 @@ static void ggml_cpy_q4_1_f32_cuda(
|
||||
const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12,
|
||||
const int nb10, const int nb11, const int nb12, const int nb13,
|
||||
cudaStream_t stream) {
|
||||
cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
|
||||
const int num_blocks = ne;
|
||||
cpy_q_f32<cpy_blck_q_f32<dequantize_q4_1, QK4_1>, QK4_1><<<num_blocks, 1, 0, stream>>>(
|
||||
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q5_0_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
|
||||
|
||||
GGML_ASSERT(ne % QK5_0 == 0);
|
||||
const int num_blocks = ne / QK5_0;
|
||||
cpy_f32_q<cpy_blck_f32_q5_0, QK5_0><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
|
||||
}
|
||||
|
||||
static void ggml_cpy_q5_0_f32_cuda(
|
||||
@@ -455,22 +482,22 @@ static void ggml_cpy_q5_0_f32_cuda(
|
||||
const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12,
|
||||
const int nb10, const int nb11, const int nb12, const int nb13,
|
||||
cudaStream_t stream) {
|
||||
cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
|
||||
const int num_blocks = ne;
|
||||
cpy_q_f32<cpy_blck_q_f32<dequantize_q5_0, QK5_0>, QK5_0><<<num_blocks, 1, 0, stream>>>(
|
||||
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q5_1_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
|
||||
|
||||
GGML_ASSERT(ne % QK5_1 == 0);
|
||||
const int num_blocks = ne / QK5_1;
|
||||
cpy_f32_q<cpy_blck_f32_q5_1, QK5_1><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
|
||||
}
|
||||
|
||||
static void ggml_cpy_q5_1_f32_cuda(
|
||||
@@ -479,32 +506,32 @@ static void ggml_cpy_q5_1_f32_cuda(
|
||||
const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12,
|
||||
const int nb10, const int nb11, const int nb12, const int nb13,
|
||||
cudaStream_t stream) {
|
||||
cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
|
||||
const int num_blocks = ne;
|
||||
cpy_q_f32<cpy_blck_q_f32<dequantize_q5_1, QK5_1>, QK5_1><<<num_blocks, 1, 0, stream>>>(
|
||||
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_iq4_nl_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
|
||||
|
||||
GGML_ASSERT(ne % QK4_NL == 0);
|
||||
const int num_blocks = ne / QK4_NL;
|
||||
cpy_f32_q<cpy_blck_f32_iq4_nl, QK4_NL><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f16_f16_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
|
||||
|
||||
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
cpy_f32_f16<cpy_1_f16_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
|
||||
}
|
||||
|
||||
void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1) {
|
||||
@@ -541,46 +568,60 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
|
||||
char * src0_ddc = (char *) src0->data;
|
||||
char * src1_ddc = (char *) src1->data;
|
||||
|
||||
char ** dest_ptrs_d = nullptr;
|
||||
int graph_cpynode_index = -1;
|
||||
#if defined(GGML_CUDA_USE_GRAPHS) || defined(GGML_HIP_GRAPHS)
|
||||
if(ctx.cuda_graph->use_cpy_indirection) {
|
||||
dest_ptrs_d = ctx.cuda_graph->dest_ptrs_d;
|
||||
graph_cpynode_index = ctx.cuda_graph->graph_cpynode_index;
|
||||
}
|
||||
#endif
|
||||
if (src0->type == src1->type && ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
|
||||
GGML_ASSERT(ggml_nbytes(src0) == ggml_nbytes(src1));
|
||||
CUDA_CHECK(cudaMemcpyAsync(src1_ddc, src0_ddc, ggml_nbytes(src0), cudaMemcpyDeviceToDevice, main_stream));
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
|
||||
ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
|
||||
ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_Q8_0 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_q8_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
ggml_cpy_q8_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
|
||||
ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_Q4_0 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_q4_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02,
|
||||
nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
|
||||
ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_Q4_1 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_q4_1_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02,
|
||||
nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_0) {
|
||||
ggml_cpy_f32_q5_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
ggml_cpy_f32_q5_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_Q5_0 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_q5_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02,
|
||||
nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_IQ4_NL) {
|
||||
ggml_cpy_f32_iq4_nl_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
ggml_cpy_f32_iq4_nl_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_1) {
|
||||
ggml_cpy_f32_q5_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
ggml_cpy_f32_q5_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_Q5_1 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_q5_1_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
ggml_cpy_q5_1_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
|
||||
ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else {
|
||||
GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,
|
||||
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||
}
|
||||
#if defined(GGML_CUDA_USE_GRAPHS) || defined(GGML_HIP_GRAPHS)
|
||||
if(ctx.cuda_graph->use_cpy_indirection) {
|
||||
ctx.cuda_graph->graph_cpynode_index = graph_cpynode_index;
|
||||
}
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
||||
@@ -7,3 +7,5 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
|
||||
void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1);
|
||||
|
||||
void ggml_cuda_cpy_dest_ptrs_copy(ggml_cuda_graph * cuda_graph, char ** host_dest_ptrs, const int host_dest_ptrs_size, cudaStream_t stream);
|
||||
|
||||
@@ -62,7 +62,7 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_0(
|
||||
T sum = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += warp_size) {
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += warp_size) {
|
||||
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||
|
||||
const int ib = k_KQ / QI8_1;
|
||||
@@ -102,7 +102,7 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_1(
|
||||
T sum = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += warp_size) {
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += warp_size) {
|
||||
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||
|
||||
const int ib = k_KQ / QI8_1;
|
||||
@@ -146,7 +146,7 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_0(
|
||||
T sum = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += warp_size) {
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += warp_size) {
|
||||
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||
|
||||
const int ib = k_KQ / QI8_1;
|
||||
@@ -193,7 +193,7 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_1(
|
||||
T sum = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += warp_size) {
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += warp_size) {
|
||||
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||
|
||||
const int ib = k_KQ / QI8_1;
|
||||
@@ -244,7 +244,7 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q8_0(
|
||||
T sum = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += warp_size) {
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += warp_size) {
|
||||
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||
|
||||
const int ib = k_KQ / QI8_0;
|
||||
@@ -315,14 +315,14 @@ static __device__ __forceinline__ void quantize_q8_1_to_shared(
|
||||
|
||||
float vals[sizeof(int)] = {0.0f};
|
||||
#pragma unroll
|
||||
for (int l = 0; l < sizeof(int); ++l) {
|
||||
for (int l = 0; l < int(sizeof(int)); ++l) {
|
||||
vals[l] = scale * x[4*threadIdx.x + l];
|
||||
}
|
||||
|
||||
float amax = fabsf(vals[0]);
|
||||
float sum = vals[0];
|
||||
#pragma unroll
|
||||
for (int l = 1; l < sizeof(int); ++l) {
|
||||
for (int l = 1; l < int(sizeof(int)); ++l) {
|
||||
amax = fmaxf(amax, fabsf(vals[l]));
|
||||
sum += vals[l];
|
||||
}
|
||||
@@ -338,7 +338,7 @@ static __device__ __forceinline__ void quantize_q8_1_to_shared(
|
||||
|
||||
if (d != 0.0f) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < sizeof(int); ++l) {
|
||||
for (int l = 0; l < int(sizeof(int)); ++l) {
|
||||
q8[l] = roundf(vals[l] / d);
|
||||
}
|
||||
}
|
||||
@@ -638,7 +638,7 @@ static __global__ void flash_attn_combine_results(
|
||||
float VKQ_denominator = 0.0f;
|
||||
for (int l = 0; l < parallel_blocks; ++l) {
|
||||
const float diff = meta[l].x - kqmax;
|
||||
const float KQ_max_scale = expf(diff);
|
||||
float KQ_max_scale = expf(diff);
|
||||
const uint32_t ftz_mask = 0xFFFFFFFF * (diff > SOFTMAX_FTZ_THRESHOLD);
|
||||
*((uint32_t *) &KQ_max_scale) &= ftz_mask;
|
||||
|
||||
@@ -649,6 +649,7 @@ static __global__ void flash_attn_combine_results(
|
||||
dst[blockIdx.z*D + tid] = VKQ_numerator / VKQ_denominator;
|
||||
}
|
||||
|
||||
[[noreturn]]
|
||||
static void on_no_fattn_vec_case(const int D) {
|
||||
if (D == 64) {
|
||||
fprintf(stderr, "Unsupported KV type combination for head_size 64.\n");
|
||||
|
||||
@@ -406,6 +406,15 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
|
||||
#endif // CP_ASYNC_AVAILABLE
|
||||
|
||||
#else
|
||||
GGML_UNUSED(Q_f2); GGML_UNUSED(K_h2); GGML_UNUSED(V_h2);
|
||||
GGML_UNUSED(mask_h2); GGML_UNUSED(dstk); GGML_UNUSED(dstk_fixup);
|
||||
GGML_UNUSED(scale); GGML_UNUSED(slope); GGML_UNUSED(logit_softcap);
|
||||
GGML_UNUSED(ne01); GGML_UNUSED(ne02); GGML_UNUSED(stride_KV);
|
||||
GGML_UNUSED(stride_mask); GGML_UNUSED(jt); GGML_UNUSED(tile_K);
|
||||
GGML_UNUSED(stride_mask); GGML_UNUSED(jt); GGML_UNUSED(tile_K);
|
||||
GGML_UNUSED(tile_V); GGML_UNUSED(tile_mask); GGML_UNUSED(Q_B);
|
||||
GGML_UNUSED(VKQ_C); GGML_UNUSED(KQ_max); GGML_UNUSED(KQ_rowsum);
|
||||
GGML_UNUSED(kb0);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
@@ -797,6 +806,12 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
|
||||
__syncthreads();
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED(Q_f2); GGML_UNUSED(K_h2); GGML_UNUSED(V_h2);
|
||||
GGML_UNUSED(mask_h2); GGML_UNUSED(dstk); GGML_UNUSED(dstk_fixup);
|
||||
GGML_UNUSED(scale); GGML_UNUSED(slope); GGML_UNUSED(logit_softcap);
|
||||
GGML_UNUSED(ne01); GGML_UNUSED(ne02); GGML_UNUSED(stride_Q1);
|
||||
GGML_UNUSED(stride_Q2); GGML_UNUSED(stride_KV); GGML_UNUSED(stride_mask);
|
||||
GGML_UNUSED(jt); GGML_UNUSED(kb0_start); GGML_UNUSED(kb0_stop);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
@@ -931,6 +946,16 @@ static __global__ void flash_attn_ext_f16(
|
||||
(Q_f2, K_h2, V_h2, mask_h2, dstk, dst_meta, scale, slope, logit_softcap,
|
||||
ne01, ne02, stride_Q1, stride_Q2, stride_KV, stride_mask, jt, kb0_start_kernel, kb0_stop_kernel);
|
||||
#else
|
||||
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
|
||||
GGML_UNUSED(dst); GGML_UNUSED(dst_meta); GGML_UNUSED(scale);
|
||||
GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
|
||||
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap); GGML_UNUSED(ne00);
|
||||
GGML_UNUSED(ne01); GGML_UNUSED(ne02); GGML_UNUSED(ne03); GGML_UNUSED(ne10);
|
||||
GGML_UNUSED(ne11); GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31);
|
||||
GGML_UNUSED(nb31); GGML_UNUSED(nb01); GGML_UNUSED(nb02); GGML_UNUSED(nb03);
|
||||
GGML_UNUSED(nb11); GGML_UNUSED(nb12); GGML_UNUSED(nb13); GGML_UNUSED(nb21);
|
||||
GGML_UNUSED(nb22); GGML_UNUSED(nb23); GGML_UNUSED(ne0); GGML_UNUSED(ne1);
|
||||
GGML_UNUSED(ne2); GGML_UNUSED(ne3);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // defined(FLASH_ATTN_AVAILABLE) && defined(NEW_MMA_AVAILABLE)
|
||||
}
|
||||
@@ -985,38 +1010,38 @@ void ggml_cuda_flash_attn_ext_mma_f16_case(ggml_backend_cuda_context & ctx, ggml
|
||||
extern DECL_FATTN_MMA_F16_CASE(D, (ncols)/4, 4); \
|
||||
extern DECL_FATTN_MMA_F16_CASE(D, (ncols)/8, 8); \
|
||||
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 64, 8);
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 80, 8);
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 96, 8);
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(112, 8);
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(128, 8);
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(256, 8);
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 64, 8)
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 80, 8)
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 96, 8)
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(112, 8)
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(128, 8)
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(256, 8)
|
||||
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 64, 16);
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 80, 16);
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 96, 16);
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(112, 16);
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(128, 16);
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(256, 16);
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 64, 16)
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 80, 16)
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 96, 16)
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(112, 16)
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(128, 16)
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(256, 16)
|
||||
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 64, 32);
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 80, 32);
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 96, 32);
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(112, 32);
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(128, 32);
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(256, 32);
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 64, 32)
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 80, 32)
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 96, 32)
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(112, 32)
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(128, 32)
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(256, 32)
|
||||
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 64, 64);
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 80, 64);
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 96, 64);
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(112, 64);
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(128, 64);
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(256, 64);
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 64, 64)
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 80, 64)
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 96, 64)
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(112, 64)
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(128, 64)
|
||||
DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(256, 64)
|
||||
|
||||
// Kernels with ncols == 128 are only 4% faster due to register pressure.
|
||||
// DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 64, 128);
|
||||
// DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 80, 128);
|
||||
// DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 96, 128);
|
||||
// DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(112, 128);
|
||||
// DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(128, 128);
|
||||
// DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(256, 128); // Needs too much shared memory.
|
||||
// DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 64, 128)
|
||||
// DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 80, 128)
|
||||
// DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 96, 128)
|
||||
// DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(112, 128)
|
||||
// DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(128, 128)
|
||||
// DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(256, 128) // Needs too much shared memory.
|
||||
|
||||
@@ -282,7 +282,19 @@ static __global__ void flash_attn_tile_ext_f16(
|
||||
}
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
|
||||
GGML_UNUSED(dst); GGML_UNUSED(dst_meta); GGML_UNUSED(scale);
|
||||
GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
|
||||
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
|
||||
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02);
|
||||
GGML_UNUSED(ne03); GGML_UNUSED(ne10); GGML_UNUSED(ne11);
|
||||
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31);
|
||||
GGML_UNUSED(nb31); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
|
||||
GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12);
|
||||
GGML_UNUSED(nb13); GGML_UNUSED(nb21); GGML_UNUSED(nb22);
|
||||
GGML_UNUSED(nb23); GGML_UNUSED(ne0); GGML_UNUSED(ne1);
|
||||
GGML_UNUSED(ne2); GGML_UNUSED(ne3);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE)
|
||||
}
|
||||
|
||||
|
||||
@@ -52,6 +52,18 @@ static __global__ void flash_attn_tile_ext_f32(
|
||||
return;
|
||||
#endif // FP16_MMA_AVAILABLE
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
|
||||
GGML_UNUSED(dst); GGML_UNUSED(dst_meta); GGML_UNUSED(scale);
|
||||
GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
|
||||
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
|
||||
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02);
|
||||
GGML_UNUSED(ne03); GGML_UNUSED(ne10); GGML_UNUSED(ne11);
|
||||
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31);
|
||||
GGML_UNUSED(nb31); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
|
||||
GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12);
|
||||
GGML_UNUSED(nb13); GGML_UNUSED(nb21); GGML_UNUSED(nb22);
|
||||
GGML_UNUSED(nb23); GGML_UNUSED(ne0); GGML_UNUSED(ne1);
|
||||
GGML_UNUSED(ne2); GGML_UNUSED(ne3);
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
@@ -281,6 +293,18 @@ static __global__ void flash_attn_tile_ext_f32(
|
||||
}
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
|
||||
GGML_UNUSED(dst); GGML_UNUSED(dst_meta); GGML_UNUSED(scale);
|
||||
GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
|
||||
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
|
||||
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02);
|
||||
GGML_UNUSED(ne03); GGML_UNUSED(ne10); GGML_UNUSED(ne11);
|
||||
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31);
|
||||
GGML_UNUSED(nb31); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
|
||||
GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12);
|
||||
GGML_UNUSED(nb13); GGML_UNUSED(nb21); GGML_UNUSED(nb22);
|
||||
GGML_UNUSED(nb23); GGML_UNUSED(ne0); GGML_UNUSED(ne1);
|
||||
GGML_UNUSED(ne2); GGML_UNUSED(ne3);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // FLASH_ATTN_AVAILABLE
|
||||
}
|
||||
|
||||
@@ -292,7 +292,19 @@ static __global__ void flash_attn_vec_ext_f16(
|
||||
dst_meta[((ic0 + tid)*gridDim.z + blockIdx.z) * gridDim.y + blockIdx.y] = make_float2(kqmax[tid], kqsum[tid]);
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
|
||||
GGML_UNUSED(dst); GGML_UNUSED(dst_meta); GGML_UNUSED(scale);
|
||||
GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
|
||||
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
|
||||
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02);
|
||||
GGML_UNUSED(ne03); GGML_UNUSED(ne10); GGML_UNUSED(ne11);
|
||||
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31);
|
||||
GGML_UNUSED(nb31); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
|
||||
GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12);
|
||||
GGML_UNUSED(nb13); GGML_UNUSED(nb21); GGML_UNUSED(nb22);
|
||||
GGML_UNUSED(nb23); GGML_UNUSED(ne0); GGML_UNUSED(ne1);
|
||||
GGML_UNUSED(ne2); GGML_UNUSED(ne3);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE)
|
||||
}
|
||||
|
||||
|
||||
@@ -45,6 +45,18 @@ static __global__ void flash_attn_vec_ext_f32(
|
||||
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
|
||||
GGML_UNUSED(dst); GGML_UNUSED(dst_meta); GGML_UNUSED(scale);
|
||||
GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
|
||||
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
|
||||
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02);
|
||||
GGML_UNUSED(ne03); GGML_UNUSED(ne10); GGML_UNUSED(ne11);
|
||||
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31);
|
||||
GGML_UNUSED(nb31); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
|
||||
GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12);
|
||||
GGML_UNUSED(nb13); GGML_UNUSED(nb21); GGML_UNUSED(nb22);
|
||||
GGML_UNUSED(nb23); GGML_UNUSED(ne0); GGML_UNUSED(ne1);
|
||||
GGML_UNUSED(ne2); GGML_UNUSED(ne3);
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
@@ -114,7 +126,7 @@ static __global__ void flash_attn_vec_ext_f32(
|
||||
// Set memory to zero if out of bounds:
|
||||
if (ncols > 2 && ic0 + j >= ne01) {
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
||||
for (int i0 = 0; i0 < int(D/sizeof(int)); i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
tmp_q_i32[i] = 0;
|
||||
@@ -127,7 +139,7 @@ static __global__ void flash_attn_vec_ext_f32(
|
||||
|
||||
const float * Q_f = (const float *) (Q + j*nb01);
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
||||
for (int i0 = 0; i0 < int(D/sizeof(int)); i0 += WARP_SIZE) {
|
||||
quantize_q8_1_to_shared<float2>(Q_f + 4*i0, scale, tmp_q_i32, tmp_q_ds);
|
||||
}
|
||||
}
|
||||
@@ -140,7 +152,7 @@ static __global__ void flash_attn_vec_ext_f32(
|
||||
float2 * tmp_q_ds = (float2 *) (tmp_q_i32 + D/sizeof(int));
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
||||
for (int i0 = 0; i0 < int(D/sizeof(int)); i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
Q_i32[j][i0/WARP_SIZE] = tmp_q_i32[i];
|
||||
@@ -277,6 +289,16 @@ static __global__ void flash_attn_vec_ext_f32(
|
||||
dst_meta[((ic0 + tid)*gridDim.z + blockIdx.z) * gridDim.y + blockIdx.y] = make_float2(kqmax[tid], kqsum[tid]);
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
|
||||
GGML_UNUSED(dst); GGML_UNUSED(dst_meta); GGML_UNUSED(scale);
|
||||
GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
|
||||
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap); GGML_UNUSED(ne00);
|
||||
GGML_UNUSED(ne01); GGML_UNUSED(ne02); GGML_UNUSED(ne03); GGML_UNUSED(ne10);
|
||||
GGML_UNUSED(ne11); GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31);
|
||||
GGML_UNUSED(nb31); GGML_UNUSED(nb01); GGML_UNUSED(nb02); GGML_UNUSED(nb03);
|
||||
GGML_UNUSED(nb11); GGML_UNUSED(nb12); GGML_UNUSED(nb13); GGML_UNUSED(nb21);
|
||||
GGML_UNUSED(nb22); GGML_UNUSED(nb23); GGML_UNUSED(ne0); GGML_UNUSED(ne1);
|
||||
GGML_UNUSED(ne2); GGML_UNUSED(ne3);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // FLASH_ATTN_AVAILABLE
|
||||
}
|
||||
|
||||
@@ -430,7 +430,17 @@ static __global__ void flash_attn_ext_f16(
|
||||
dst_meta[((ic0 + j_VKQ)*gridDim.z + blockIdx.z) * gridDim.y + blockIdx.y] = dst_meta_val;
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
|
||||
GGML_UNUSED(dst); GGML_UNUSED(dst_meta); GGML_UNUSED(scale);
|
||||
GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
|
||||
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
|
||||
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02); GGML_UNUSED(ne03);
|
||||
GGML_UNUSED(ne10); GGML_UNUSED(ne11); GGML_UNUSED(ne12); GGML_UNUSED(ne13);
|
||||
GGML_UNUSED(ne31); GGML_UNUSED(nb31); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
|
||||
GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12); GGML_UNUSED(nb13);
|
||||
GGML_UNUSED(nb21); GGML_UNUSED(nb22); GGML_UNUSED(nb23);
|
||||
GGML_UNUSED(ne0); GGML_UNUSED(ne1); GGML_UNUSED(ne2); GGML_UNUSED(ne3);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // defined(FLASH_ATTN_AVAILABLE) && (__CUDA_ARCH__ == GGML_CUDA_CC_VOLTA || (defined(GGML_HIP_ROCWMMA_FATTN) && defined(FP16_MMA_AVAILABLE)))
|
||||
}
|
||||
|
||||
|
||||
@@ -299,7 +299,7 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
||||
const bool gqa_opt_applies = ((Q->ne[2] / K->ne[2]) % 2 == 0) && mask; // The mma-based kernels have GQA-specific optimizations
|
||||
const bool mma_needs_data_conversion = K->type != GGML_TYPE_F16 || V->type != GGML_TYPE_F16;
|
||||
const bool mma_faster_for_bs1 = new_mma_available(cc) && gqa_opt_applies && cc < GGML_CUDA_CC_ADA_LOVELACE && !mma_needs_data_conversion;
|
||||
const bool can_use_vector_kernel = (Q->ne[0] % (2*warp_size) == 0) && (prec == GGML_PREC_DEFAULT || Q->ne[0] <= 128);
|
||||
const bool can_use_vector_kernel = Q->ne[0] % (2*warp_size) == 0;
|
||||
if (Q->ne[1] == 1 && can_use_vector_kernel && !mma_faster_for_bs1) {
|
||||
if (prec == GGML_PREC_DEFAULT) {
|
||||
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
||||
|
||||
@@ -31,6 +31,8 @@
|
||||
#include "ggml-cuda/rope.cuh"
|
||||
#include "ggml-cuda/scale.cuh"
|
||||
#include "ggml-cuda/softmax.cuh"
|
||||
#include "ggml-cuda/ssm-conv.cuh"
|
||||
#include "ggml-cuda/ssm-scan.cuh"
|
||||
#include "ggml-cuda/sum.cuh"
|
||||
#include "ggml-cuda/sumrows.cuh"
|
||||
#include "ggml-cuda/tsembd.cuh"
|
||||
@@ -2296,6 +2298,12 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_OP_SUM_ROWS:
|
||||
ggml_cuda_op_sum_rows(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SSM_CONV:
|
||||
ggml_cuda_op_ssm_conv(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SSM_SCAN:
|
||||
ggml_cuda_op_ssm_scan(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_ARGSORT:
|
||||
ggml_cuda_op_argsort(ctx, dst);
|
||||
break;
|
||||
@@ -2433,10 +2441,11 @@ static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
|
||||
|
||||
#ifdef USE_CUDA_GRAPH
|
||||
static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
|
||||
std::vector<void *> & ggml_cuda_cpy_fn_ptrs, bool use_cuda_graph) {
|
||||
bool use_cuda_graph) {
|
||||
|
||||
// Loop over nodes in GGML graph to obtain info needed for CUDA graph
|
||||
cuda_ctx->cuda_graph->updated_kernel_arg.clear();
|
||||
cuda_ctx->cuda_graph->cpy_dest_ptrs.clear();
|
||||
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
ggml_tensor * node = cgraph->nodes[i];
|
||||
|
||||
@@ -2468,8 +2477,11 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud
|
||||
}
|
||||
|
||||
if (node->op == GGML_OP_CPY) {
|
||||
// store the copy op parameter which changes with each token.
|
||||
cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data));
|
||||
|
||||
// Store the pointers which are updated for each token, such that these can be sent
|
||||
// to the device and accessed using indirection from CUDA graph
|
||||
cuda_ctx->cuda_graph->cpy_dest_ptrs.push_back((char *) node->src[1]->data);
|
||||
|
||||
// store a pointer to each copy op CUDA kernel to identify it later
|
||||
void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
|
||||
if (!ptr) {
|
||||
@@ -2477,10 +2489,6 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to unsupported copy op\n", __func__);
|
||||
#endif
|
||||
} else {
|
||||
if (std::find(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), ptr) == ggml_cuda_cpy_fn_ptrs.end()) {
|
||||
ggml_cuda_cpy_fn_ptrs.push_back(ptr);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -2489,6 +2497,12 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud
|
||||
}
|
||||
}
|
||||
|
||||
if (use_cuda_graph) {
|
||||
cuda_ctx->cuda_graph->use_cpy_indirection = true;
|
||||
// copy pointers to GPU so they can be accessed via indirection within CUDA graph
|
||||
ggml_cuda_cpy_dest_ptrs_copy(cuda_ctx->cuda_graph.get(), cuda_ctx->cuda_graph->cpy_dest_ptrs.data(), cuda_ctx->cuda_graph->cpy_dest_ptrs.size(), cuda_ctx->stream());
|
||||
}
|
||||
|
||||
return use_cuda_graph;
|
||||
}
|
||||
|
||||
@@ -2543,51 +2557,6 @@ static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_gra
|
||||
return true;
|
||||
}
|
||||
|
||||
static void maintain_cuda_graph(ggml_backend_cuda_context * cuda_ctx, std::vector<void *> & ggml_cuda_cpy_fn_ptrs, bool cuda_graph_update_required) {
|
||||
|
||||
if (cuda_graph_update_required) {
|
||||
// Extract nodes from graph
|
||||
// First call with null argument gets number of nodes in graph
|
||||
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes));
|
||||
// Subsequent call with non-null argument gets nodes
|
||||
cuda_ctx->cuda_graph->nodes.clear();
|
||||
cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes);
|
||||
cuda_ctx->cuda_graph->params.clear();
|
||||
cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes);
|
||||
if (cuda_ctx->cuda_graph->num_nodes > 0) {
|
||||
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes));
|
||||
|
||||
// Loop over nodes, and extract kernel parameters from each node
|
||||
for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
|
||||
cudaGraphNodeType node_type;
|
||||
CUDA_CHECK(cudaGraphNodeGetType(cuda_ctx->cuda_graph->nodes[i], &node_type));
|
||||
if (node_type == cudaGraphNodeTypeKernel) {
|
||||
cudaError_t stat = cudaGraphKernelNodeGetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]); // Get params using runtime
|
||||
if (stat == cudaErrorInvalidDeviceFunction) {
|
||||
// Fails due to incorrect handling by CUDA runtime of CUDA BLAS node.
|
||||
// We don't need to update blas nodes, so clear error and move on.
|
||||
(void)cudaGetLastError();
|
||||
} else {
|
||||
GGML_ASSERT(stat == cudaSuccess);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// One of the arguments to the copy kernel is updated for each token, hence we need to
|
||||
// replace that argument with the updated value in the CUDA graph
|
||||
// on update steps, the live parameters will already be captured
|
||||
int k = 0;
|
||||
for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
|
||||
if(count(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), cuda_ctx->cuda_graph->params[i].func) > 0) {
|
||||
char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++);
|
||||
*(void**)cuda_ctx->cuda_graph->params[i].kernelParams[1] = *(void**)updated_kernel_arg_ptr;
|
||||
CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static bool is_cuda_graph_update_required(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph) {
|
||||
|
||||
bool cuda_graph_update_required = false;
|
||||
@@ -2647,8 +2616,7 @@ static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) {
|
||||
#endif
|
||||
|
||||
static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
|
||||
[[maybe_unused]] std::vector<void *> & ggml_cuda_cpy_fn_ptrs, bool & graph_evaluated_or_captured, bool & use_cuda_graph,
|
||||
bool & cuda_graph_update_required) {
|
||||
bool & graph_evaluated_or_captured, bool & use_cuda_graph, bool & cuda_graph_update_required) {
|
||||
|
||||
while (!graph_evaluated_or_captured) {
|
||||
// Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph.
|
||||
@@ -2698,13 +2666,9 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
||||
if (cuda_ctx->cuda_graph->instance == nullptr) { // Create executable graph from captured graph.
|
||||
CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
|
||||
}
|
||||
|
||||
// Perform update to graph (if required for this token), and change copy parameter (required for every token)
|
||||
maintain_cuda_graph(cuda_ctx, ggml_cuda_cpy_fn_ptrs, cuda_graph_update_required);
|
||||
|
||||
// Update graph executable
|
||||
update_cuda_graph_executable(cuda_ctx);
|
||||
|
||||
if (cuda_graph_update_required) { // Update graph executable
|
||||
update_cuda_graph_executable(cuda_ctx);
|
||||
}
|
||||
// Launch graph
|
||||
CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream()));
|
||||
#else
|
||||
@@ -2718,10 +2682,6 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
|
||||
|
||||
ggml_cuda_set_device(cuda_ctx->device);
|
||||
|
||||
// vector of pointers to CUDA cpy kernels, which are required to identify
|
||||
// kernel parameters which need updated in the graph for each token
|
||||
std::vector<void *> ggml_cuda_cpy_fn_ptrs;
|
||||
|
||||
#ifdef USE_CUDA_GRAPH
|
||||
static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);
|
||||
|
||||
@@ -2755,8 +2715,7 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
|
||||
if (use_cuda_graph) {
|
||||
cuda_graph_update_required = is_cuda_graph_update_required(cuda_ctx, cgraph);
|
||||
|
||||
use_cuda_graph = check_node_graph_compatibility_and_refresh_copy_ops(cuda_ctx, cgraph,
|
||||
ggml_cuda_cpy_fn_ptrs, use_cuda_graph);
|
||||
use_cuda_graph = check_node_graph_compatibility_and_refresh_copy_ops(cuda_ctx, cgraph, use_cuda_graph);
|
||||
|
||||
// Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
|
||||
if (use_cuda_graph && cuda_graph_update_required) {
|
||||
@@ -2777,6 +2736,10 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
|
||||
CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
|
||||
}
|
||||
|
||||
if (!use_cuda_graph) {
|
||||
cuda_ctx->cuda_graph->use_cpy_indirection = false;
|
||||
}
|
||||
|
||||
#else
|
||||
bool use_cuda_graph = false;
|
||||
bool cuda_graph_update_required = false;
|
||||
@@ -2784,7 +2747,7 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
|
||||
|
||||
bool graph_evaluated_or_captured = false;
|
||||
|
||||
evaluate_and_capture_cuda_graph(cuda_ctx, cgraph, ggml_cuda_cpy_fn_ptrs, graph_evaluated_or_captured, use_cuda_graph, cuda_graph_update_required);
|
||||
evaluate_and_capture_cuda_graph(cuda_ctx, cgraph, graph_evaluated_or_captured, use_cuda_graph, cuda_graph_update_required);
|
||||
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
@@ -3193,6 +3156,8 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
case GGML_OP_COS:
|
||||
case GGML_OP_CLAMP:
|
||||
case GGML_OP_LOG:
|
||||
case GGML_OP_SSM_SCAN:
|
||||
case GGML_OP_SSM_CONV:
|
||||
return true;
|
||||
case GGML_OP_CONT:
|
||||
return op->src[0]->type != GGML_TYPE_BF16;
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user