Compare commits

..

36 Commits

Author SHA1 Message Date
Georgi Gerganov
7a3c178d78 speculative : adapt to new llama API
ggml-ci
2025-03-18 22:05:44 +02:00
Xuan Son Nguyen
dc4bb64290 Merge branch 'master' into xsn/private_batch_api 2025-03-18 15:45:22 +01:00
Xuan-Son Nguyen
eab5606d7b Apply suggestions from code review 2025-03-17 12:17:14 +01:00
Xuan-Son Nguyen
de788e071b Update examples/tts/tts.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-03-17 12:05:23 +01:00
Xuan Son Nguyen
624a683c6f fix compile 2025-03-14 22:30:29 +01:00
Xuan Son Nguyen
116b9a1662 rename to init_from_text 2025-03-14 22:17:07 +01:00
Xuan Son Nguyen
eaffba0f2e llama_batch_ext_ptr::from_text/embd 2025-03-14 17:12:03 +01:00
Xuan Son Nguyen
8e7714fa77 fix compile 2025-03-14 11:28:15 +01:00
Xuan Son Nguyen
a363251fac qwen2vl: use llama_batch_ext_set_pos 2025-03-14 11:25:36 +01:00
Xuan Son Nguyen
ba79369615 fix llama_batch_ext_init_from_embd 2025-03-14 11:17:22 +01:00
Xuan Son Nguyen
07d84fa3c2 fix missing n_past in various places
this is actually a revert of cda0e4b648
2025-03-14 10:47:08 +01:00
Xuan Son Nguyen
32940369d3 fix gemma3-cli 2025-03-14 10:33:28 +01:00
Xuan Son Nguyen
5e6a6d4e1c fix llama-run n_past 2025-03-14 10:32:43 +01:00
Xuan Son Nguyen
bfdddbc150 bring back mistakenly deleted llama_batch_init/free 2025-03-14 00:22:28 +01:00
Xuan Son Nguyen
54566ad95d correct comment 2025-03-14 00:21:06 +01:00
Xuan Son Nguyen
04f8641815 rm redundant llama_batch_ext_set_output_last 2025-03-13 23:14:16 +01:00
Xuan Son Nguyen
c3dd79007b fix llama_batch_ext_init_from_text 2025-03-13 23:09:27 +01:00
Xuan Son Nguyen
65f0184517 compile ok 2025-03-13 22:56:35 +01:00
Xuan Son Nguyen
9fb2d81eab fix common_batch missing seq_id 2025-03-13 22:38:04 +01:00
Xuan Son Nguyen
47086fa82d apply to the rest 2025-03-13 22:36:27 +01:00
Xuan Son Nguyen
4aabf4e8f4 return output ID from llama_batch_ext_add/set 2025-03-13 17:47:07 +01:00
Xuan Son Nguyen
86973cb14a fix merge errors 2025-03-13 17:32:36 +01:00
Xuan Son Nguyen
17f954c8e2 Merge branch 'master' into xsn/private_batch_api 2025-03-13 15:55:18 +01:00
Xuan Son Nguyen
46596caf6d apply various in places 2025-03-01 20:42:18 +01:00
Xuan Son Nguyen
1d6ba97789 remove token_info API 2025-03-01 16:21:16 +01:00
Xuan Son Nguyen
1170135dfb llama_batch_ext_add_text 2025-03-01 14:00:14 +01:00
Xuan Son Nguyen
40989f4116 correct llama_decode_ext 2025-03-01 14:00:05 +01:00
Xuan Son Nguyen
9e75c49d35 Merge branch 'master' into xsn/private_batch_api 2025-03-01 12:13:03 +01:00
Xuan Son Nguyen
f0ffd81130 adapt common 2025-03-01 12:12:52 +01:00
Xuan Son Nguyen
a1b1dea33b Merge branch 'master' into xsn/private_batch_api 2025-02-24 17:01:30 +01:00
Xuan Son Nguyen
4bf7ca3943 llama_decode_ext 2025-02-24 17:01:20 +01:00
Xuan Son Nguyen
aed4a8e980 fix server 2025-02-16 11:36:50 +01:00
Xuan Son Nguyen
85ef80cbe9 server : use llama_batch_ext 2025-02-16 00:06:48 +01:00
Xuan Son Nguyen
17d3658b5f move to llama_batch_ext 2025-02-16 00:02:53 +01:00
Xuan Son Nguyen
f2e59a8eb9 rework, targeting llama-server 2025-02-14 18:16:49 +01:00
Xuan Son Nguyen
4ed4fe75ed first proposal for private llama_batch 2025-02-14 00:48:12 +01:00
261 changed files with 24508 additions and 28824 deletions

View File

@@ -14,9 +14,9 @@ WORKDIR /app
COPY . .
RUN if [ "$TARGETARCH" = "amd64" ]; then \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON; \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON; \
elif [ "$TARGETARCH" = "arm64" ]; then \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=${GGML_CPU_ARM_ARCH}; \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=${GGML_CPU_ARM_ARCH}; \
else \
echo "Unsupported architecture"; \
exit 1; \

View File

@@ -21,7 +21,7 @@ COPY . .
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
fi && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \

View File

@@ -17,7 +17,7 @@ RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
&& export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
fi && \
echo "Building with dynamic libs" && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ${OPT_SYCL_F16} && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \

View File

@@ -1,4 +1,4 @@
ARG ASCEND_VERSION=8.1.RC1.alpha001-910b-openeuler22.03-py3.10
ARG ASCEND_VERSION=8.0.rc2.alpha003-910b-openeuler22.03-py3.8
FROM ascendai/cann:$ASCEND_VERSION AS build
@@ -6,7 +6,7 @@ WORKDIR /app
COPY . .
RUN yum install -y gcc g++ cmake make libcurl-devel
RUN yum install -y gcc g++ cmake make
ENV ASCEND_TOOLKIT_HOME=/usr/local/Ascend/ascend-toolkit/latest
ENV LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:$LIBRARY_PATH
ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${ASCEND_TOOLKIT_HOME}/lib64/plugin/opskernel:${ASCEND_TOOLKIT_HOME}/lib64/plugin/nnengine:${ASCEND_TOOLKIT_HOME}/opp/built-in/op_impl/ai_core/tbe/op_tiling:${LD_LIBRARY_PATH}

View File

@@ -35,7 +35,7 @@ COPY . .
RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \
export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \
fi && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \

View File

@@ -40,7 +40,7 @@ WORKDIR /app
COPY . .
RUN HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$ROCM_DOCKER_ARCH -DCMAKE_BUILD_TYPE=Release \
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$ROCM_DOCKER_ARCH -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON \
&& cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib \

View File

@@ -1,25 +0,0 @@
name: 'Windows - Setup CURL'
description: 'Composite action, to be reused in other workflow'
inputs:
curl_version:
description: 'CURL version'
required: false
default: '8.6.0_6'
outputs:
curl_path:
description: "Path to the downloaded libcurl"
value: ${{ steps.get_libcurl.outputs.curl_path }}
runs:
using: "composite"
steps:
- name: libCURL
id: get_libcurl
shell: powershell
env:
CURL_VERSION: ${{ inputs.curl_version }}
run: |
curl.exe -o $env:RUNNER_TEMP/curl.zip -L "https://curl.se/windows/dl-${env:CURL_VERSION}/curl-${env:CURL_VERSION}-win64-mingw.zip"
mkdir $env:RUNNER_TEMP/libcurl
tar.exe -xvf $env:RUNNER_TEMP/curl.zip --strip-components=1 -C $env:RUNNER_TEMP/libcurl
echo "curl_path=$env:RUNNER_TEMP/libcurl" >> $env:GITHUB_OUTPUT

View File

@@ -104,6 +104,7 @@ jobs:
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DLLAMA_CUBLAS=ON \
-DCUDAToolkit_ROOT=/usr/local/cuda \
-DCMAKE_CUDA_COMPILER=/usr/local/cuda/bin/nvcc \

View File

@@ -1,124 +0,0 @@
name: Build on Linux using cross-compiler
on:
workflow_dispatch:
workflow_call:
jobs:
ubuntu-latest-riscv64-cpu-cross:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Setup Riscv
run: |
sudo dpkg --add-architecture riscv64
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
sudo apt-get clean
sudo apt-get update
sudo apt-get install -y --no-install-recommends \
build-essential \
gcc-14-riscv64-linux-gnu \
g++-14-riscv64-linux-gnu \
libcurl4-openssl-dev:riscv64
- name: Build
run: |
cmake -B build -DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
ubuntu-latest-riscv64-vulkan-cross:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Setup Riscv
run: |
sudo dpkg --add-architecture riscv64
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
sudo apt-get clean
sudo apt-get update
sudo apt-get install -y --no-install-recommends \
build-essential \
glslc \
gcc-14-riscv64-linux-gnu \
g++-14-riscv64-linux-gnu \
libvulkan-dev:riscv64 \
libcurl4-openssl-dev:riscv64
- name: Build
run: |
cmake -B build -DCMAKE_BUILD_TYPE=Release \
-DGGML_VULKAN=ON \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
ubuntu-latest-arm64-vulkan-cross:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Setup Arm64
run: |
sudo dpkg --add-architecture arm64
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
sudo apt-get clean
sudo apt-get update
sudo apt-get install -y --no-install-recommends \
build-essential \
glslc \
crossbuild-essential-arm64 \
libvulkan-dev:arm64 \
libcurl4-openssl-dev:arm64
- name: Build
run: |
cmake -B build -DCMAKE_BUILD_TYPE=Release \
-DGGML_VULKAN=ON \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=aarch64 \
-DCMAKE_C_COMPILER=aarch64-linux-gnu-gcc \
-DCMAKE_CXX_COMPILER=aarch64-linux-gnu-g++ \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/aarch64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)

View File

@@ -10,7 +10,7 @@ on:
push:
branches:
- master
paths: ['.github/workflows/build.yml', '.github/workflows/build-linux-cross.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal', '**/*.comp']
paths: ['.github/workflows/build.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal', '**/*.comp']
pull_request:
types: [opened, synchronize, reopened]
paths: ['.github/workflows/build.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal', '**/*.comp']
@@ -54,7 +54,6 @@ jobs:
continue-on-error: true
run: |
brew update
brew install curl
- name: Build
id: cmake_build
@@ -63,6 +62,7 @@ jobs:
cmake -B build \
-DCMAKE_BUILD_RPATH="@loader_path" \
-DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_CURL=ON \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DGGML_RPC=ON
@@ -92,6 +92,7 @@ jobs:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
cp LICENSE ./build/bin/
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip ./build/bin/*
- name: Upload artifacts
@@ -122,7 +123,6 @@ jobs:
continue-on-error: true
run: |
brew update
brew install curl
- name: Build
id: cmake_build
@@ -133,6 +133,7 @@ jobs:
cmake -B build \
-DCMAKE_BUILD_RPATH="@loader_path" \
-DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_CURL=ON \
-DGGML_METAL=OFF \
-DGGML_RPC=ON
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
@@ -161,6 +162,7 @@ jobs:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
cp LICENSE ./build/bin/
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip ./build/bin/*
- name: Upload artifacts
@@ -205,6 +207,7 @@ jobs:
run: |
cmake -B build \
-DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_CURL=ON \
-DGGML_RPC=ON
cmake --build build --config Release -j $(nproc)
@@ -243,6 +246,7 @@ jobs:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
cp LICENSE ./build/bin/
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip ./build/bin/*
- name: Upload artifacts
@@ -277,7 +281,7 @@ jobs:
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential libcurl4-openssl-dev
sudo apt-get install build-essential
- name: Build
id: cmake_build
@@ -318,7 +322,7 @@ jobs:
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential libcurl4-openssl-dev
sudo apt-get install build-essential
- name: Build
id: cmake_build
@@ -356,7 +360,7 @@ jobs:
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential libcurl4-openssl-dev
sudo apt-get install build-essential
- name: Build
id: cmake_build
@@ -393,7 +397,7 @@ jobs:
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | sudo apt-key add -
sudo wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
sudo apt-get update -y
sudo apt-get install -y build-essential mesa-vulkan-drivers vulkan-sdk libcurl4-openssl-dev
sudo apt-get install -y build-essential mesa-vulkan-drivers vulkan-sdk
- name: Build
id: cmake_build
@@ -427,6 +431,7 @@ jobs:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
cp LICENSE ./build/bin/
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip ./build/bin/*
- name: Upload artifacts
@@ -449,7 +454,7 @@ jobs:
id: depends
run: |
sudo apt-get update
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev libcurl4-openssl-dev
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
@@ -525,7 +530,7 @@ jobs:
shell: bash
run: |
sudo apt update
sudo apt install intel-oneapi-compiler-dpcpp-cpp libcurl4-openssl-dev
sudo apt install intel-oneapi-compiler-dpcpp-cpp
- name: install oneAPI MKL library
shell: bash
@@ -573,7 +578,7 @@ jobs:
shell: bash
run: |
sudo apt update
sudo apt install intel-oneapi-compiler-dpcpp-cpp libcurl4-openssl-dev
sudo apt install intel-oneapi-compiler-dpcpp-cpp
- name: install oneAPI MKL library
shell: bash
@@ -601,9 +606,6 @@ jobs:
-DGGML_SYCL_F16=ON
cmake --build build --config Release -j $(nproc)
build-linux-cross:
uses: ./.github/workflows/build-linux-cross.yml
macOS-latest-cmake-ios:
runs-on: macos-latest
@@ -631,7 +633,6 @@ jobs:
cmake -B build -G Xcode \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_BUILD_COMMON=OFF \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
@@ -667,7 +668,6 @@ jobs:
cmake -B build -G Xcode \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_BUILD_COMMON=OFF \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
@@ -676,36 +676,6 @@ jobs:
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu) -- CODE_SIGNING_ALLOWED=NO
macOS-latest-cmake-visionos:
runs-on: macos-latest
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
- name: Build
id: cmake_build
run: |
sysctl -a
cmake -B build -G Xcode \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_BUILD_COMMON=OFF \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
-DCMAKE_SYSTEM_NAME=visionOS \
-DCMAKE_OSX_DEPLOYMENT_TARGET=1.0 \
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu) -- CODE_SIGNING_ALLOWED=NO
macOS-latest-swift:
runs-on: macos-latest
@@ -737,7 +707,6 @@ jobs:
cmake -B build -G Xcode \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_CURL=OFF \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
@@ -805,7 +774,7 @@ jobs:
env:
OPENBLAS_VERSION: 0.3.23
SDE_VERSION: 9.33.0-2024-01-07
VULKAN_VERSION: 1.4.309.0
VULKAN_VERSION: 1.4.304.1
strategy:
matrix:
@@ -898,17 +867,10 @@ jobs:
-DCMAKE_INSTALL_PREFIX="$env:RUNNER_TEMP/opencl-arm64-release"
cmake --build build-arm64-release --target install --config release
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build
id: cmake_build
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cmake -S . -B build ${{ matrix.defines }} `
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
cmake -S . -B build ${{ matrix.defines }}
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS}
- name: Add libopenblas.dll
@@ -968,10 +930,9 @@ jobs:
- name: Pack artifacts
id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
Copy-Item $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\Release\libcurl-x64.dll
Copy-Item LICENSE .\build\bin\Release\llama.cpp.txt
Copy-Item .\examples\run\linenoise.cpp\LICENSE .\build\bin\Release\linenoise.cpp.txt
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}.zip .\build\bin\Release\*
- name: Upload artifacts
@@ -997,7 +958,7 @@ jobs:
DEBIAN_FRONTEND: noninteractive
run: |
apt update
apt install -y cmake build-essential ninja-build libgomp1 git libcurl4-openssl-dev
apt install -y cmake build-essential ninja-build libgomp1 git
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
@@ -1099,23 +1060,16 @@ jobs:
run: |
choco install ninja
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build
id: cmake_build
shell: cmd
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
cmake -S . -B build -G "Ninja Multi-Config" ^
-DLLAMA_BUILD_SERVER=ON ^
-DGGML_NATIVE=OFF ^
-DGGML_CUDA=ON ^
-DGGML_RPC=ON ^
-DCURL_LIBRARY="%CURL_PATH%/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="%CURL_PATH%/include"
-DGGML_RPC=ON
set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1
cmake --build build --config Release -j %NINJA_JOBS% -t ggml
cmake --build build --config Release
@@ -1136,10 +1090,7 @@ jobs:
- name: Pack artifacts
id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cp $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\Release\libcurl-x64.dll
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip .\build\bin\Release\*
- name: Upload artifacts
@@ -1194,8 +1145,6 @@ jobs:
run: |
scripts/install-oneapi.bat $WINDOWS_BASEKIT_URL $WINDOWS_DPCPP_MKL
# TODO: add libcurl support ; we will also need to modify win-build-sycl.bat to accept user-specified args
- name: Build
id: cmake_build
run: examples/sycl/win-build-sycl.bat
@@ -1281,14 +1230,8 @@ jobs:
key: ${{ github.job }}
evict-old-files: 1d
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build
id: cmake_build
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
@@ -1299,11 +1242,9 @@ jobs:
-DCMAKE_BUILD_TYPE=Release `
-DGGML_HIP=ON `
-DGGML_HIP_ROCWMMA_FATTN=ON `
-DGGML_RPC=ON `
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
-DGGML_RPC=ON
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
# TODO: reuse windows-latest-cmake-hip instead of duplicating this job
windows-latest-cmake-hip-release:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
runs-on: windows-latest
@@ -1345,14 +1286,8 @@ jobs:
run: |
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build
id: cmake_build
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
@@ -1364,8 +1299,7 @@ jobs:
-DAMDGPU_TARGETS=${{ matrix.gpu_target }} `
-DGGML_HIP_ROCWMMA_FATTN=ON `
-DGGML_HIP=ON `
-DGGML_RPC=ON `
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
-DGGML_RPC=ON
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
md "build\bin\rocblas\library\"
cp "${env:HIP_PATH}\bin\hipblas.dll" "build\bin\"
@@ -1387,10 +1321,7 @@ jobs:
- name: Pack artifacts
id: pack_artifacts
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cp $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\libcurl-x64.dll
7z a llama-${{ steps.tag.outputs.name }}-bin-win-hip-x64-${{ matrix.gpu_target }}.zip .\build\bin\*
- name: Upload artifacts
@@ -1415,7 +1346,6 @@ jobs:
cmake -B build -G Xcode \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_CURL=OFF \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
@@ -1771,7 +1701,7 @@ jobs:
strategy:
matrix:
cann:
- '8.1.RC1.alpha001-910b-openeuler22.03-py3.10'
- '8.0.rc3.beta1-910b-openeuler22.03-py3.10'
device:
- 'ascend910b3'
build:
@@ -1784,7 +1714,7 @@ jobs:
- name: Dependencies
run: |
yum update -y
yum install -y git gcc gcc-c++ make cmake libcurl-devel
yum install -y git gcc gcc-c++ make cmake
- name: Build
run: |

View File

@@ -38,7 +38,7 @@ jobs:
# Multi-stage build
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, freediskspace: false}
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: true}
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
# Note: the rocm images are failing due to a compiler error and are disabled until this is fixed to allow the workflow to complete

View File

@@ -129,6 +129,7 @@ jobs:
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DGGML_OPENMP=OFF ;
@@ -141,6 +142,7 @@ jobs:
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
@@ -152,6 +154,7 @@ jobs:
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
@@ -192,14 +195,17 @@ jobs:
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
env:
CURL_VERSION: 8.6.0_6
run: |
curl.exe -o $env:RUNNER_TEMP/curl.zip -L "https://curl.se/windows/dl-${env:CURL_VERSION}/curl-${env:CURL_VERSION}-win64-mingw.zip"
mkdir $env:RUNNER_TEMP/libcurl
tar.exe -xvf $env:RUNNER_TEMP/curl.zip --strip-components=1 -C $env:RUNNER_TEMP/libcurl
- name: Build
id: cmake_build
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cmake -B build -DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
cmake -B build -DLLAMA_CURL=ON -DCURL_LIBRARY="$env:RUNNER_TEMP/libcurl/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:RUNNER_TEMP/libcurl/include"
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS} --target llama-server
- name: Python setup
@@ -215,10 +221,8 @@ jobs:
- name: Copy Libcurl
id: prepare_libcurl
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cp $env:CURL_PATH/bin/libcurl-x64.dll ./build/bin/Release/libcurl-x64.dll
cp $env:RUNNER_TEMP/libcurl/bin/libcurl-x64.dll ./build/bin/Release/libcurl-x64.dll
- name: Tests
id: server_integration_tests

View File

@@ -81,7 +81,7 @@ option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_SERVER "llama: build server example" ${LLAMA_STANDALONE})
# 3rd party libs
option(LLAMA_CURL "llama: use libcurl to download model from an URL" ON)
option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF)
option(LLAMA_LLGUIDANCE "llama-common: include LLGuidance library for structured output in common utils" OFF)
# Required for relocatable CMake package
@@ -168,11 +168,6 @@ add_subdirectory(src)
# utils, programs, examples and tests
#
if (NOT LLAMA_BUILD_COMMON)
message(STATUS "LLAMA_BUILD_COMMON is OFF, disabling LLAMA_CURL")
set(LLAMA_CURL OFF)
endif()
if (LLAMA_BUILD_COMMON)
add_subdirectory(common)
endif()
@@ -247,20 +242,3 @@ configure_file(cmake/llama.pc.in
install(FILES "${CMAKE_CURRENT_BINARY_DIR}/llama.pc"
DESTINATION ${CMAKE_INSTALL_LIBDIR}/pkgconfig)
#
# copy the license files
#
# Check if running in GitHub Actions
if(DEFINED ENV{GITHUB_ACTIONS} AND "$ENV{GITHUB_ACTIONS}" STREQUAL "true")
message(STATUS "Running inside GitHub Actions - copying license files")
# Copy all files from licenses/ to build/bin/
file(GLOB LICENSE_FILES "${CMAKE_SOURCE_DIR}/licenses/*")
foreach(LICENSE_FILE ${LICENSE_FILES})
get_filename_component(FILENAME ${LICENSE_FILE} NAME)
configure_file(${LICENSE_FILE} "${CMAKE_BINARY_DIR}/bin/${FILENAME}" COPYONLY)
endforeach()
endif()

View File

@@ -9,6 +9,13 @@
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
> [!IMPORTANT]
> New `llama.cpp` package location: [ggml-org/llama.cpp](https://github.com/ggml-org/llama.cpp/pkgs/container/llama.cpp)
>
> Update your container URLs to: `ghcr.io/ggml-org/llama.cpp`
>
> More info: https://github.com/ggml-org/llama.cpp/discussions/11801
## Recent API changes
- [Changelog for `libllama` API](https://github.com/ggml-org/llama.cpp/issues/9289)
@@ -105,8 +112,6 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [x] [RWKV-6](https://github.com/BlinkDL/RWKV-LM)
- [x] [QRWKV-6](https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1)
- [x] [GigaChat-20B-A3B](https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct)
- [X] [Trillion-7B-preview](https://huggingface.co/trillionlabs/Trillion-7B-preview)
- [x] [Ling models](https://huggingface.co/collections/inclusionAI/ling-67c51c85b34a7ea0aba94c32)
#### Multimodal
@@ -240,7 +245,6 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
| [Vulkan](docs/build.md#vulkan) | GPU |
| [CANN](docs/build.md#cann) | Ascend NPU |
| [OpenCL](docs/backend/OPENCL.md) | Adreno GPU |
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/examples/rpc) | All |
## Building the project
@@ -524,35 +528,6 @@ If your issue is with model generation quality, then please at least scan the fo
- [Aligning language models to follow instructions](https://openai.com/research/instruction-following)
- [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)
## XCFramework
The XCFramework is a precompiled version of the library for iOS, visionOS, tvOS,
and macOS. It can be used in Swift projects without the need to compile the
library from source. For example:
```swift
// swift-tools-version: 5.10
// The swift-tools-version declares the minimum version of Swift required to build this package.
import PackageDescription
let package = Package(
name: "MyLlamaPackage",
targets: [
.executableTarget(
name: "MyLlamaPackage",
dependencies: [
"LlamaFramework"
]),
.binaryTarget(
name: "LlamaFramework",
url: "https://github.com/ggml-org/llama.cpp/releases/download/b5046/llama-b5046-xcframework.zip",
checksum: "c19be78b5f00d8d29a25da41042cb7afa094cbf6280a225abe614b03b20029ab"
)
]
)
```
The above example is using an intermediate build `b5046` of the library. This can be modified
to use a different version by changing the URL and checksum.
## Completions
Command-line completion is available for some environments.

View File

@@ -399,7 +399,6 @@ cmake -B build-ios-sim -G Xcode \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphonesimulator \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-S .
cmake --build build-ios-sim --config Release -- -quiet
@@ -412,7 +411,6 @@ cmake -B build-ios-device -G Xcode \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphoneos \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-S .
cmake --build build-ios-device --config Release -- -quiet
@@ -423,7 +421,6 @@ cmake -B build-macos -G Xcode \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-S .
cmake --build build-macos --config Release -- -quiet
@@ -435,9 +432,8 @@ cmake -B build-visionos -G Xcode \
-DCMAKE_SYSTEM_NAME=visionOS \
-DCMAKE_OSX_SYSROOT=xros \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xros \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 -Du_int=unsigned\ int -Du_char=unsigned\ char -Du_short=unsigned\ short ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 -Du_int=unsigned\ int -Du_char=unsigned\ char -Du_short=unsigned\ short ${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-visionos --config Release -- -quiet
@@ -449,9 +445,8 @@ cmake -B build-visionos-sim -G Xcode \
-DCMAKE_SYSTEM_NAME=visionOS \
-DCMAKE_OSX_SYSROOT=xrsimulator \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xrsimulator \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 -Du_int=unsigned\ int -Du_char=unsigned\ char -Du_short=unsigned\ short ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 -Du_int=unsigned\ int -Du_char=unsigned\ char -Du_short=unsigned\ short ${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-visionos-sim --config Release -- -quiet
@@ -467,7 +462,6 @@ cmake -B build-tvos-sim -G Xcode \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=appletvsimulator \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-S .
cmake --build build-tvos-sim --config Release -- -quiet
@@ -482,7 +476,6 @@ cmake -B build-tvos-device -G Xcode \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=appletvos \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-S .
cmake --build build-tvos-device --config Release -- -quiet

View File

@@ -26,43 +26,4 @@ GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
# with SYCL support
source /opt/intel/oneapi/setvars.sh
GG_BUILD_SYCL=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
# with MUSA support
GG_BUILD_MUSA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
```
## Running MUSA CI in a Docker Container
Assuming `$PWD` is the root of the `llama.cpp` repository, follow these steps to set up and run MUSA CI in a Docker container:
### 1. Create a local directory to store cached models, configuration files and venv:
```bash
mkdir -p $HOME/llama.cpp/ci-cache
```
### 2. Create a local directory to store CI run results:
```bash
mkdir -p $HOME/llama.cpp/ci-results
```
### 3. Start a Docker container and run the CI:
```bash
docker run --privileged -it \
-v $HOME/llama.cpp/ci-cache:/ci-cache \
-v $HOME/llama.cpp/ci-results:/ci-results \
-v $PWD:/ws -w /ws \
mthreads/musa:rc3.1.1-devel-ubuntu22.04
```
Inside the container, execute the following commands:
```bash
apt update -y && apt install -y bc cmake ccache git python3.10-venv time unzip wget
git config --global --add safe.directory /ws
GG_BUILD_MUSA=1 bash ./ci/run.sh /ci-results /ci-cache
```
This setup ensures that the CI runs within an isolated Docker environment while maintaining cached files and results across runs.

View File

@@ -16,9 +16,6 @@
# # with VULKAN support
# GG_BUILD_VULKAN=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
# # with MUSA support
# GG_BUILD_MUSA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
if [ -z "$2" ]; then
echo "usage: $0 <output-dir> <mnt-dir>"
@@ -39,7 +36,7 @@ sd=`dirname $0`
cd $sd/../
SRC=`pwd`
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=OFF"
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON"
if [ ! -z ${GG_BUILD_METAL} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON -DGGML_METAL_USE_BF16=ON"
@@ -55,24 +52,13 @@ if [ ! -z ${GG_BUILD_SYCL} ]; then
echo "source /opt/intel/oneapi/setvars.sh"
exit 1
fi
# Use only main GPU
export ONEAPI_DEVICE_SELECTOR="level_zero:0"
# Enable sysman for correct memory reporting
export ZES_ENABLE_SYSMAN=1
# to circumvent precision issues on CPY operations
export SYCL_PROGRAM_COMPILE_OPTIONS="-cl-fp32-correctly-rounded-divide-sqrt"
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_SYCL=1 -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON"
fi
if [ ! -z ${GG_BUILD_VULKAN} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_VULKAN=1"
fi
if [ ! -z ${GG_BUILD_MUSA} ]; then
# Use qy1 by default (MTT S80)
MUSA_ARCH=${MUSA_ARCH:-21}
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_MUSA=ON -DMUSA_ARCHITECTURES=${MUSA_ARCH}"
fi
## helpers
# download a file if it does not exist or if it is outdated
@@ -822,7 +808,7 @@ export LLAMA_LOG_PREFIX=1
export LLAMA_LOG_TIMESTAMPS=1
if [ -z ${GG_BUILD_LOW_PERF} ]; then
# Create symlink: ./llama.cpp/models-mnt -> $MNT/models
# Create symlink: ./llama.cpp/models-mnt -> $MNT/models/models-mnt
rm -rf ${SRC}/models-mnt
mnt_models=${MNT}/models
mkdir -p ${mnt_models}
@@ -840,10 +826,8 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
fi
ret=0
if [ -z ${GG_BUILD_SYCL} ]; then
# SYCL build breaks with debug build flags
test $ret -eq 0 && gg_run ctest_debug
fi
test $ret -eq 0 && gg_run ctest_debug
test $ret -eq 0 && gg_run ctest_release
if [ -z ${GG_BUILD_LOW_PERF} ]; then
@@ -851,9 +835,7 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
test $ret -eq 0 && gg_run rerank_tiny
if [ -z ${GG_BUILD_CLOUD} ] || [ ${GG_BUILD_EXTRA_TESTS_0} ]; then
if [ -z ${GG_BUILD_SYCL} ]; then
test $ret -eq 0 && gg_run test_scripts_debug
fi
test $ret -eq 0 && gg_run test_scripts_debug
test $ret -eq 0 && gg_run test_scripts_release
fi
@@ -864,9 +846,7 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
test $ret -eq 0 && gg_run pythia_2_8b
#test $ret -eq 0 && gg_run open_llama_7b_v2
fi
if [ -z ${GG_BUILD_SYCL} ]; then
test $ret -eq 0 && gg_run ctest_with_model_debug
fi
test $ret -eq 0 && gg_run ctest_with_model_debug
test $ret -eq 0 && gg_run ctest_with_model_release
fi
fi

View File

@@ -85,10 +85,7 @@ set(LLAMA_COMMON_EXTRA_LIBS build_info)
# Use curl to download model url
if (LLAMA_CURL)
find_package(CURL)
if (NOT CURL_FOUND)
message(FATAL_ERROR "Could NOT find CURL. Hint: to disable this feature, set -DLLAMA_CURL=OFF")
endif()
find_package(CURL REQUIRED)
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_CURL)
include_directories(${CURL_INCLUDE_DIRS})
find_library(CURL_LIBRARY curl REQUIRED)
@@ -117,8 +114,8 @@ if (LLAMA_LLGUIDANCE)
ExternalProject_Add(llguidance_ext
GIT_REPOSITORY https://github.com/guidance-ai/llguidance
# v0.7.10:
GIT_TAG 0309d2a6bf40abda35344a362edc71e06d5009f8
# v0.6.12:
GIT_TAG ced1c9023d47ec194fa977932d35ce65c2ebfc09
PREFIX ${CMAKE_BINARY_DIR}/llguidance
SOURCE_DIR ${LLGUIDANCE_SRC}
BUILD_IN_SOURCE TRUE

View File

@@ -1,24 +1,12 @@
#include "gguf.h" // for reading GGUF splits
#include "arg.h"
#include "common.h"
#include "log.h"
#include "sampling.h"
#include "chat.h"
// fix problem with std::min and std::max
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
# define NOMINMAX
#endif
#include <windows.h>
#endif
#include <algorithm>
#include <climits>
#include <cstdarg>
#include <filesystem>
#include <fstream>
#include <regex>
#include <set>
@@ -26,14 +14,6 @@
#include <thread>
#include <vector>
//#define LLAMA_USE_CURL
#if defined(LLAMA_USE_CURL)
#include <curl/curl.h>
#include <curl/easy.h>
#include <future>
#endif
#include "json-schema-to-grammar.h"
using json = nlohmann::ordered_json;
@@ -145,555 +125,47 @@ std::string common_arg::to_string() {
return ss.str();
}
//
// downloader
//
struct common_hf_file_res {
std::string repo; // repo name with ":tag" removed
std::string ggufFile;
std::string mmprojFile;
};
#ifdef LLAMA_USE_CURL
#ifdef __linux__
#include <linux/limits.h>
#elif defined(_WIN32)
# if !defined(PATH_MAX)
# define PATH_MAX MAX_PATH
# endif
#elif defined(_AIX)
#include <sys/limits.h>
#else
#include <sys/syslimits.h>
#endif
#define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
//
// CURL utils
//
using curl_ptr = std::unique_ptr<CURL, decltype(&curl_easy_cleanup)>;
// cannot use unique_ptr for curl_slist, because we cannot update without destroying the old one
struct curl_slist_ptr {
struct curl_slist * ptr = nullptr;
~curl_slist_ptr() {
if (ptr) {
curl_slist_free_all(ptr);
}
}
};
#define CURL_MAX_RETRY 3
#define CURL_RETRY_DELAY_SECONDS 2
static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds) {
int remaining_attempts = max_attempts;
while (remaining_attempts > 0) {
LOG_INF("%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
CURLcode res = curl_easy_perform(curl);
if (res == CURLE_OK) {
return true;
}
int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
LOG_WRN("%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
remaining_attempts--;
std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
}
LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
return false;
}
// download one single file from remote URL to local path
static bool common_download_file_single(const std::string & url, const std::string & path, const std::string & bearer_token) {
// Initialize libcurl
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
curl_slist_ptr http_headers;
if (!curl) {
LOG_ERR("%s: error initializing libcurl\n", __func__);
return false;
}
bool force_download = false;
// Set the URL, allow to follow http redirection
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
// Check if hf-token or bearer-token was specified
if (!bearer_token.empty()) {
std::string auth_header = "Authorization: Bearer " + bearer_token;
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
}
#if defined(_WIN32)
// CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
// operating system. Currently implemented under MS-Windows.
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
#endif
// Check if the file already exists locally
auto file_exists = std::filesystem::exists(path);
// If the file exists, check its JSON metadata companion file.
std::string metadata_path = path + ".json";
nlohmann::json metadata;
std::string etag;
std::string last_modified;
if (file_exists) {
// Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
std::ifstream metadata_in(metadata_path);
if (metadata_in.good()) {
try {
metadata_in >> metadata;
LOG_INF("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
if (metadata.contains("url") && metadata.at("url").is_string()) {
auto previous_url = metadata.at("url").get<std::string>();
if (previous_url != url) {
LOG_ERR("%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
return false;
}
}
if (metadata.contains("etag") && metadata.at("etag").is_string()) {
etag = metadata.at("etag");
}
if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
last_modified = metadata.at("lastModified");
}
} catch (const nlohmann::json::exception & e) {
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
return false;
}
}
} else {
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
}
// Send a HEAD request to retrieve the etag and last-modified headers
struct common_load_model_from_url_headers {
std::string etag;
std::string last_modified;
};
common_load_model_from_url_headers headers;
{
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
static std::regex header_regex("([^:]+): (.*)\r\n");
static std::regex etag_regex("ETag", std::regex_constants::icase);
static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
std::string header(buffer, n_items);
std::smatch match;
if (std::regex_match(header, match, header_regex)) {
const std::string & key = match[1];
const std::string & value = match[2];
if (std::regex_match(key, match, etag_regex)) {
headers->etag = value;
} else if (std::regex_match(key, match, last_modified_regex)) {
headers->last_modified = value;
}
}
return n_items;
};
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
if (!was_perform_successful) {
return false;
}
long http_code = 0;
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
if (http_code != 200) {
// HEAD not supported, we don't know if the file has changed
// force trigger downloading
force_download = true;
LOG_ERR("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
}
}
bool should_download = !file_exists || force_download;
if (!should_download) {
if (!etag.empty() && etag != headers.etag) {
LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
should_download = true;
} else if (!last_modified.empty() && last_modified != headers.last_modified) {
LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
should_download = true;
}
}
if (should_download) {
std::string path_temporary = path + ".downloadInProgress";
if (file_exists) {
LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
if (remove(path.c_str()) != 0) {
LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
return false;
}
}
// Set the output file
struct FILE_deleter {
void operator()(FILE * f) const {
fclose(f);
}
};
std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
if (!outfile) {
LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path.c_str());
return false;
}
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
return fwrite(data, size, nmemb, (FILE *)fd);
};
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());
// display download progress
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
// helper function to hide password in URL
auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
std::size_t protocol_pos = url.find("://");
if (protocol_pos == std::string::npos) {
return url; // Malformed URL
}
std::size_t at_pos = url.find('@', protocol_pos + 3);
if (at_pos == std::string::npos) {
return url; // No password in URL
}
return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
};
// start the download
LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
if (!was_perform_successful) {
return false;
}
long http_code = 0;
curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
if (http_code < 200 || http_code >= 400) {
LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code);
return false;
}
// Causes file to be closed explicitly here before we rename it.
outfile.reset();
// Write the updated JSON metadata file.
metadata.update({
{"url", url},
{"etag", headers.etag},
{"lastModified", headers.last_modified}
});
std::ofstream(metadata_path) << metadata.dump(4);
LOG_INF("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
if (rename(path_temporary.c_str(), path.c_str()) != 0) {
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
return false;
}
}
return true;
}
// download multiple files from remote URLs to local paths
// the input is a vector of pairs <url, path>
static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> & urls, const std::string & bearer_token) {
// Prepare download in parallel
std::vector<std::future<bool>> futures_download;
for (auto const & item : urls) {
futures_download.push_back(std::async(std::launch::async, [bearer_token](const std::pair<std::string, std::string> & it) -> bool {
return common_download_file_single(it.first, it.second, bearer_token);
}, item));
}
// Wait for all downloads to complete
for (auto & f : futures_download) {
if (!f.get()) {
return false;
}
}
return true;
}
static bool common_download_model(
const common_params_model & model,
const std::string & bearer_token) {
// Basic validation of the model.url
if (model.url.empty()) {
LOG_ERR("%s: invalid model url\n", __func__);
return false;
}
if (!common_download_file_single(model.url, model.path, bearer_token)) {
return false;
}
// check for additional GGUFs split to download
int n_split = 0;
{
struct gguf_init_params gguf_params = {
/*.no_alloc = */ true,
/*.ctx = */ NULL,
};
auto * ctx_gguf = gguf_init_from_file(model.path.c_str(), gguf_params);
if (!ctx_gguf) {
LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, model.path.c_str());
return false;
}
auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
if (key_n_split >= 0) {
n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
}
gguf_free(ctx_gguf);
}
if (n_split > 1) {
char split_prefix[PATH_MAX] = {0};
char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
// Verify the first split file format
// and extract split URL and PATH prefixes
{
if (!llama_split_prefix(split_prefix, sizeof(split_prefix), model.path.c_str(), 0, n_split)) {
LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, model.path.c_str(), n_split);
return false;
}
if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model.url.c_str(), 0, n_split)) {
LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model.url.c_str(), n_split);
return false;
}
}
std::vector<std::pair<std::string, std::string>> urls;
for (int idx = 1; idx < n_split; idx++) {
char split_path[PATH_MAX] = {0};
llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
llama_split_path(split_url, sizeof(split_url), split_url_prefix, idx, n_split);
if (std::string(split_path) == model.path) {
continue; // skip the already downloaded file
}
urls.push_back({split_url, split_path});
}
// Download in parallel
common_download_file_multiple(urls, bearer_token);
}
return true;
}
/**
* Allow getting the HF file from the HF repo with tag (like ollama), for example:
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
* - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
* Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
*
* Return pair of <repo, file> (with "repo" already having tag removed)
*
* Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
*/
static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & bearer_token) {
auto parts = string_split<std::string>(hf_repo_with_tag, ':');
std::string tag = parts.size() > 1 ? parts.back() : "latest";
std::string hf_repo = parts[0];
if (string_split<std::string>(hf_repo, '/').size() != 2) {
throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
}
// fetch model info from Hugging Face Hub API
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
curl_slist_ptr http_headers;
std::string res_str;
std::string url = "https://huggingface.co/v2/" + hf_repo + "/manifests/" + tag;
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
static_cast<std::string *>(data)->append((char * ) ptr, size * nmemb);
return size * nmemb;
};
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_str);
#if defined(_WIN32)
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
#endif
if (!bearer_token.empty()) {
std::string auth_header = "Authorization: Bearer " + bearer_token;
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
}
// Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
http_headers.ptr = curl_slist_append(http_headers.ptr, "Accept: application/json");
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
CURLcode res = curl_easy_perform(curl.get());
if (res != CURLE_OK) {
throw std::runtime_error("error: cannot make GET request to HF API");
}
long res_code;
std::string ggufFile = "";
std::string mmprojFile = "";
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
if (res_code == 200) {
// extract ggufFile.rfilename in json, using regex
{
std::regex pattern("\"ggufFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
std::smatch match;
if (std::regex_search(res_str, match, pattern)) {
ggufFile = match[1].str();
}
}
// extract mmprojFile.rfilename in json, using regex
{
std::regex pattern("\"mmprojFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
std::smatch match;
if (std::regex_search(res_str, match, pattern)) {
mmprojFile = match[1].str();
}
}
} else if (res_code == 401) {
throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
} else {
throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str()));
}
// check response
if (ggufFile.empty()) {
throw std::runtime_error("error: model does not have ggufFile");
}
return { hf_repo, ggufFile, mmprojFile };
}
#else
static bool common_download_file_single(const std::string &, const std::string &, const std::string &) {
LOG_ERR("error: built without CURL, cannot download model from internet\n");
return false;
}
static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> &, const std::string &) {
LOG_ERR("error: built without CURL, cannot download model from the internet\n");
return false;
}
static bool common_download_model(
const common_params_model &,
const std::string &) {
LOG_ERR("error: built without CURL, cannot download model from the internet\n");
return false;
}
static struct common_hf_file_res common_get_hf_file(const std::string &, const std::string &) {
LOG_ERR("error: built without CURL, cannot download model from the internet\n");
return {};
}
#endif // LLAMA_USE_CURL
//
// utils
//
static void common_params_handle_model(
struct common_params_model & model,
const std::string & bearer_token,
const std::string & model_path_default,
bool is_mmproj = false) { // TODO: move is_mmproj to an enum when we have more files?
// handle pre-fill default model path and url based on hf_repo and hf_file
{
if (!model.hf_repo.empty()) {
// short-hand to avoid specifying --hf-file -> default it to --model
if (model.hf_file.empty()) {
if (model.path.empty()) {
auto auto_detected = common_get_hf_file(model.hf_repo, bearer_token);
if (auto_detected.repo.empty() || auto_detected.ggufFile.empty()) {
exit(1); // built without CURL, error message already printed
}
model.hf_repo = auto_detected.repo;
model.hf_file = is_mmproj ? auto_detected.mmprojFile : auto_detected.ggufFile;
} else {
model.hf_file = model.path;
static void common_params_handle_model_default(
std::string & model,
const std::string & model_url,
std::string & hf_repo,
std::string & hf_file,
const std::string & hf_token,
const std::string & model_default) {
if (!hf_repo.empty()) {
// short-hand to avoid specifying --hf-file -> default it to --model
if (hf_file.empty()) {
if (model.empty()) {
auto auto_detected = common_get_hf_file(hf_repo, hf_token);
if (auto_detected.first.empty() || auto_detected.second.empty()) {
exit(1); // built without CURL, error message already printed
}
hf_repo = auto_detected.first;
hf_file = auto_detected.second;
} else {
hf_file = model;
}
std::string hf_endpoint = "https://huggingface.co/";
const char * hf_endpoint_env = getenv("HF_ENDPOINT");
if (hf_endpoint_env) {
hf_endpoint = hf_endpoint_env;
if (hf_endpoint.back() != '/') hf_endpoint += '/';
}
model.url = hf_endpoint + model.hf_repo + "/resolve/main/" + model.hf_file;
// make sure model path is present (for caching purposes)
if (model.path.empty()) {
// this is to avoid different repo having same file name, or same file name in different subdirs
std::string filename = model.hf_repo + "_" + model.hf_file;
// to make sure we don't have any slashes in the filename
string_replace_all(filename, "/", "_");
model.path = fs_get_cache_file(filename);
}
} else if (!model.url.empty()) {
if (model.path.empty()) {
auto f = string_split<std::string>(model.url, '#').front();
f = string_split<std::string>(f, '?').front();
model.path = fs_get_cache_file(string_split<std::string>(f, '/').back());
}
} else if (model.path.empty()) {
model.path = model_path_default;
}
}
// then, download it if needed
if (!model.url.empty()) {
bool ok = common_download_model(model, bearer_token);
if (!ok) {
LOG_ERR("error: failed to download model from %s\n", model.url.c_str());
exit(1);
// make sure model path is present (for caching purposes)
if (model.empty()) {
// this is to avoid different repo having same file name, or same file name in different subdirs
std::string filename = hf_repo + "_" + hf_file;
// to make sure we don't have any slashes in the filename
string_replace_all(filename, "/", "_");
model = fs_get_cache_file(filename);
}
} else if (!model_url.empty()) {
if (model.empty()) {
auto f = string_split<std::string>(model_url, '#').front();
f = string_split<std::string>(f, '?').front();
model = fs_get_cache_file(string_split<std::string>(f, '/').back());
}
} else if (model.empty()) {
model = model_default;
}
}
@@ -828,16 +300,10 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
}
common_params_handle_model(params.model, params.hf_token, DEFAULT_MODEL_PATH);
common_params_handle_model(params.speculative.model, params.hf_token, "");
common_params_handle_model(params.vocoder.model, params.hf_token, "");
// allow --mmproj to be set from -hf
// assuming that mmproj is always in the same repo as text model
if (!params.model.hf_repo.empty() && ctx_arg.ex == LLAMA_EXAMPLE_LLAVA) {
params.mmproj.hf_repo = params.model.hf_repo;
}
common_params_handle_model(params.mmproj, params.hf_token, "", true);
// TODO: refactor model params in a common struct
common_params_handle_model_default(params.model, params.model_url, params.hf_repo, params.hf_file, params.hf_token, DEFAULT_MODEL_PATH);
common_params_handle_model_default(params.speculative.model, params.speculative.model_url, params.speculative.hf_repo, params.speculative.hf_file, params.hf_token, "");
common_params_handle_model_default(params.vocoder.model, params.vocoder.model_url, params.vocoder.hf_repo, params.vocoder.hf_file, params.hf_token, "");
if (params.escape) {
string_process_escapes(params.prompt);
@@ -856,10 +322,6 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
params.kv_overrides.back().key[0] = 0;
}
if (!params.tensor_buft_overrides.empty()) {
params.tensor_buft_overrides.push_back({nullptr, nullptr});
}
if (params.reranking && params.embedding) {
throw std::invalid_argument("error: either --embedding or --reranking can be specified, but not both");
}
@@ -2099,14 +1561,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--mmproj"}, "FILE",
"path to a multimodal projector file for LLaVA. see examples/llava/README.md",
[](common_params & params, const std::string & value) {
params.mmproj.path = value;
}
).set_examples({LLAMA_EXAMPLE_LLAVA}));
add_opt(common_arg(
{"--mmproj-url"}, "URL",
"URL to a multimodal projector file for LLaVA. see examples/llava/README.md",
[](common_params & params, const std::string & value) {
params.mmproj.url = value;
params.mmproj = value;
}
).set_examples({LLAMA_EXAMPLE_LLAVA}));
add_opt(common_arg(
@@ -2192,41 +1647,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
exit(0);
}
));
add_opt(common_arg(
{"--override-tensor", "-ot"}, "<tensor name pattern>=<buffer type>,...",
"override tensor buffer type", [](common_params & params, const std::string & value) {
/* static */ std::map<std::string, ggml_backend_buffer_type_t> buft_list;
if (buft_list.empty()) {
// enumerate all the devices and add their buffer types to the list
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
auto * dev = ggml_backend_dev_get(i);
auto * buft = ggml_backend_dev_buffer_type(dev);
if (buft) {
buft_list[ggml_backend_buft_name(buft)] = buft;
}
}
}
for (const auto & override : string_split<std::string>(value, ',')) {
std::string::size_type pos = override.find('=');
if (pos == std::string::npos) {
throw std::invalid_argument("invalid value");
}
std::string tensor_name = override.substr(0, pos);
std::string buffer_type = override.substr(pos + 1);
if (buft_list.find(buffer_type) == buft_list.end()) {
printf("Available buffer types:\n");
for (const auto & it : buft_list) {
printf(" %s\n", ggml_backend_buft_name(it.second));
}
throw std::invalid_argument("unknown buffer type");
}
// FIXME: this leaks memory
params.tensor_buft_overrides.push_back({strdup(tensor_name.c_str()), buft_list.at(buffer_type)});
}
}
));
add_opt(common_arg(
{"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
"number of layers to store in VRAM",
@@ -2370,14 +1790,14 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
"or `--model-url` if set, otherwise %s)", DEFAULT_MODEL_PATH
),
[](common_params & params, const std::string & value) {
params.model.path = value;
params.model = value;
}
).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL"));
add_opt(common_arg(
{"-mu", "--model-url"}, "MODEL_URL",
"model download url (default: unused)",
[](common_params & params, const std::string & value) {
params.model.url = value;
params.model_url = value;
}
).set_env("LLAMA_ARG_MODEL_URL"));
add_opt(common_arg(
@@ -2386,35 +1806,35 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
"example: unsloth/phi-4-GGUF:q4_k_m\n"
"(default: unused)",
[](common_params & params, const std::string & value) {
params.model.hf_repo = value;
params.hf_repo = value;
}
).set_env("LLAMA_ARG_HF_REPO"));
add_opt(common_arg(
{"-hfd", "-hfrd", "--hf-repo-draft"}, "<user>/<model>[:quant]",
"Same as --hf-repo, but for the draft model (default: unused)",
[](common_params & params, const std::string & value) {
params.speculative.model.hf_repo = value;
params.speculative.hf_repo = value;
}
).set_env("LLAMA_ARG_HFD_REPO"));
add_opt(common_arg(
{"-hff", "--hf-file"}, "FILE",
"Hugging Face model file. If specified, it will override the quant in --hf-repo (default: unused)",
[](common_params & params, const std::string & value) {
params.model.hf_file = value;
params.hf_file = value;
}
).set_env("LLAMA_ARG_HF_FILE"));
add_opt(common_arg(
{"-hfv", "-hfrv", "--hf-repo-v"}, "<user>/<model>[:quant]",
"Hugging Face model repository for the vocoder model (default: unused)",
[](common_params & params, const std::string & value) {
params.vocoder.model.hf_repo = value;
params.vocoder.hf_repo = value;
}
).set_env("LLAMA_ARG_HF_REPO_V"));
add_opt(common_arg(
{"-hffv", "--hf-file-v"}, "FILE",
"Hugging Face model file for the vocoder model (default: unused)",
[](common_params & params, const std::string & value) {
params.vocoder.model.hf_file = value;
params.vocoder.hf_file = value;
}
).set_env("LLAMA_ARG_HF_FILE_V"));
add_opt(common_arg(
@@ -2559,7 +1979,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
add_opt(common_arg(
{"--host"}, "HOST",
string_format("ip address to listen, or bind to an UNIX socket if the address ends with .sock (default: %s)", params.hostname.c_str()),
string_format("ip address to listen (default: %s)", params.hostname.c_str()),
[](common_params & params, const std::string & value) {
params.hostname = value;
}
@@ -3034,7 +2454,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"-md", "--model-draft"}, "FNAME",
"draft model for speculative decoding (default: unused)",
[](common_params & params, const std::string & value) {
params.speculative.model.path = value;
params.speculative.model = value;
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL_DRAFT"));
@@ -3042,7 +2462,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"-mv", "--model-vocoder"}, "FNAME",
"vocoder model for audio generation (default: unused)",
[](common_params & params, const std::string & value) {
params.vocoder.model.path = value;
params.vocoder.model = value;
}
).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
@@ -3065,10 +2485,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--tts-oute-default"},
string_format("use default OuteTTS models (note: can download weights from the internet)"),
[](common_params & params) {
params.model.hf_repo = "OuteAI/OuteTTS-0.2-500M-GGUF";
params.model.hf_file = "OuteTTS-0.2-500M-Q8_0.gguf";
params.vocoder.model.hf_repo = "ggml-org/WavTokenizer";
params.vocoder.model.hf_file = "WavTokenizer-Large-75-F16.gguf";
params.hf_repo = "OuteAI/OuteTTS-0.2-500M-GGUF";
params.hf_file = "OuteTTS-0.2-500M-Q8_0.gguf";
params.vocoder.hf_repo = "ggml-org/WavTokenizer";
params.vocoder.hf_file = "WavTokenizer-Large-75-F16.gguf";
}
).set_examples({LLAMA_EXAMPLE_TTS}));
@@ -3076,8 +2496,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--embd-bge-small-en-default"},
string_format("use default bge-small-en-v1.5 model (note: can download weights from the internet)"),
[](common_params & params) {
params.model.hf_repo = "ggml-org/bge-small-en-v1.5-Q8_0-GGUF";
params.model.hf_file = "bge-small-en-v1.5-q8_0.gguf";
params.hf_repo = "ggml-org/bge-small-en-v1.5-Q8_0-GGUF";
params.hf_file = "bge-small-en-v1.5-q8_0.gguf";
params.pooling_type = LLAMA_POOLING_TYPE_NONE;
params.embd_normalize = 2;
params.n_ctx = 512;
@@ -3090,8 +2510,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--embd-e5-small-en-default"},
string_format("use default e5-small-v2 model (note: can download weights from the internet)"),
[](common_params & params) {
params.model.hf_repo = "ggml-org/e5-small-v2-Q8_0-GGUF";
params.model.hf_file = "e5-small-v2-q8_0.gguf";
params.hf_repo = "ggml-org/e5-small-v2-Q8_0-GGUF";
params.hf_file = "e5-small-v2-q8_0.gguf";
params.pooling_type = LLAMA_POOLING_TYPE_NONE;
params.embd_normalize = 2;
params.n_ctx = 512;
@@ -3104,8 +2524,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--embd-gte-small-default"},
string_format("use default gte-small model (note: can download weights from the internet)"),
[](common_params & params) {
params.model.hf_repo = "ggml-org/gte-small-Q8_0-GGUF";
params.model.hf_file = "gte-small-q8_0.gguf";
params.hf_repo = "ggml-org/gte-small-Q8_0-GGUF";
params.hf_file = "gte-small-q8_0.gguf";
params.pooling_type = LLAMA_POOLING_TYPE_NONE;
params.embd_normalize = 2;
params.n_ctx = 512;
@@ -3118,8 +2538,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--fim-qwen-1.5b-default"},
string_format("use default Qwen 2.5 Coder 1.5B (note: can download weights from the internet)"),
[](common_params & params) {
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF";
params.model.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf";
params.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF";
params.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf";
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
@@ -3134,8 +2554,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--fim-qwen-3b-default"},
string_format("use default Qwen 2.5 Coder 3B (note: can download weights from the internet)"),
[](common_params & params) {
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF";
params.model.hf_file = "qwen2.5-coder-3b-q8_0.gguf";
params.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF";
params.hf_file = "qwen2.5-coder-3b-q8_0.gguf";
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
@@ -3150,8 +2570,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--fim-qwen-7b-default"},
string_format("use default Qwen 2.5 Coder 7B (note: can download weights from the internet)"),
[](common_params & params) {
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
params.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
params.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
@@ -3166,10 +2586,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--fim-qwen-7b-spec"},
string_format("use Qwen 2.5 Coder 7B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
[](common_params & params) {
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
params.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
params.speculative.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.speculative.n_gpu_layers = 99;
params.port = 8012;
params.n_gpu_layers = 99;
@@ -3185,10 +2605,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--fim-qwen-14b-spec"},
string_format("use Qwen 2.5 Coder 14B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
[](common_params & params) {
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF";
params.model.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF";
params.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
params.speculative.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.speculative.n_gpu_layers = 99;
params.port = 8012;
params.n_gpu_layers = 99;

View File

@@ -7,6 +7,9 @@
#include "common.h"
#include "log.h"
// Change JSON_ASSERT from assert() to GGML_ASSERT:
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
#include "llama.h"
#include <algorithm>
@@ -48,11 +51,47 @@
#include <sys/stat.h>
#include <unistd.h>
#endif
#if defined(LLAMA_USE_CURL)
#include <curl/curl.h>
#include <curl/easy.h>
#include <future>
#endif
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#if defined(LLAMA_USE_CURL)
#ifdef __linux__
#include <linux/limits.h>
#elif defined(_WIN32)
# if !defined(PATH_MAX)
# define PATH_MAX MAX_PATH
# endif
#else
#include <sys/syslimits.h>
#endif
#define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
//
// CURL utils
//
using curl_ptr = std::unique_ptr<CURL, decltype(&curl_easy_cleanup)>;
// cannot use unique_ptr for curl_slist, because we cannot update without destroying the old one
struct curl_slist_ptr {
struct curl_slist * ptr = nullptr;
~curl_slist_ptr() {
if (ptr) {
curl_slist_free_all(ptr);
}
}
};
#endif // LLAMA_USE_CURL
using json = nlohmann::ordered_json;
//
// CPU utils
//
@@ -543,41 +582,6 @@ std::string string_from(const struct llama_context * ctx, const std::vector<llam
return buf.str();
}
std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch) {
std::stringstream buf;
buf << "[ ";
bool first = true;
for (int i = 0; i < batch.n_tokens; ++i) {
if (!first) {
buf << ", ";
} else {
first = false;
}
auto detokenized = common_token_to_piece(ctx, batch.token[i]);
detokenized.erase(
std::remove_if(
detokenized.begin(),
detokenized.end(),
[](const unsigned char c) { return !std::isprint(c); }),
detokenized.end());
buf << "\n" << std::to_string(i)
<< ", token '" << detokenized << "'"
<< ", pos " << std::to_string(batch.pos[i])
<< ", n_seq_id " << std::to_string(batch.n_seq_id[i])
<< ", seq_id " << std::to_string(batch.seq_id[i][0])
<< ", logits " << std::to_string(batch.logits[i]);
}
buf << " ]";
return buf.str();
}
void string_process_escapes(std::string & input) {
std::size_t input_len = input.length();
std::size_t output_idx = 0;
@@ -861,14 +865,22 @@ std::string fs_get_cache_file(const std::string & filename) {
//
// Model utils
//
struct common_init_result common_init_from_params(common_params & params) {
common_init_result iparams;
auto mparams = common_model_params_to_llama(params);
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
llama_model * model = nullptr;
if (!params.hf_repo.empty() && !params.hf_file.empty()) {
model = common_load_model_from_hf(params.hf_repo, params.hf_file, params.model, params.hf_token, mparams);
} else if (!params.model_url.empty()) {
model = common_load_model_from_url(params.model_url, params.model, params.hf_token, mparams);
} else {
model = llama_model_load_from_file(params.model.c_str(), mparams);
}
if (model == NULL) {
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.path.c_str());
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.c_str());
return iparams;
}
@@ -903,7 +915,7 @@ struct common_init_result common_init_from_params(common_params & params) {
llama_context * lctx = llama_init_from_model(model, cparams);
if (lctx == NULL) {
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str());
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.c_str());
llama_model_free(model);
return iparams;
}
@@ -1004,7 +1016,8 @@ struct common_init_result common_init_from_params(common_params & params) {
}
if (llama_model_has_encoder(model)) {
llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size()));
llama_batch_ext_ptr batch(llama_batch_ext_init_from_text(tmp.data(), tmp.size(), 0, 0, true));
llama_encode_ext(lctx, batch.get());
llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
if (decoder_start_token_id == LLAMA_TOKEN_NULL) {
decoder_start_token_id = bos;
@@ -1013,7 +1026,8 @@ struct common_init_result common_init_from_params(common_params & params) {
tmp.push_back(decoder_start_token_id);
}
if (llama_model_has_decoder(model)) {
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch)));
llama_batch_ext_ptr batch(llama_batch_ext_init_from_text(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0, true));
llama_decode_ext(lctx, batch.get());
}
llama_kv_self_clear(lctx);
llama_synchronize(lctx);
@@ -1042,18 +1056,15 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
if (!params.devices.empty()) {
mparams.devices = params.devices.data();
}
if (params.n_gpu_layers != -1) {
mparams.n_gpu_layers = params.n_gpu_layers;
}
mparams.main_gpu = params.main_gpu;
mparams.split_mode = params.split_mode;
mparams.tensor_split = params.tensor_split;
mparams.use_mmap = params.use_mmap;
mparams.use_mlock = params.use_mlock;
mparams.check_tensors = params.check_tensors;
if (params.kv_overrides.empty()) {
mparams.kv_overrides = NULL;
} else {
@@ -1061,13 +1072,6 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
mparams.kv_overrides = params.kv_overrides.data();
}
if (params.tensor_buft_overrides.empty()) {
mparams.tensor_buft_overrides = NULL;
} else {
GGML_ASSERT(params.tensor_buft_overrides.back().pattern == nullptr && "Tensor buffer overrides not terminated with empty pattern");
mparams.tensor_buft_overrides = params.tensor_buft_overrides.data();
}
return mparams;
}
@@ -1127,14 +1131,461 @@ struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_p
return tpp;
}
#ifdef LLAMA_USE_CURL
#define CURL_MAX_RETRY 3
#define CURL_RETRY_DELAY_SECONDS 2
static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds) {
int remaining_attempts = max_attempts;
while (remaining_attempts > 0) {
LOG_INF("%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
CURLcode res = curl_easy_perform(curl);
if (res == CURLE_OK) {
return true;
}
int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
LOG_WRN("%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
remaining_attempts--;
std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
}
LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
return false;
}
static bool common_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
// Initialize libcurl
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
curl_slist_ptr http_headers;
if (!curl) {
LOG_ERR("%s: error initializing libcurl\n", __func__);
return false;
}
bool force_download = false;
// Set the URL, allow to follow http redirection
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
// Check if hf-token or bearer-token was specified
if (!hf_token.empty()) {
std::string auth_header = "Authorization: Bearer " + hf_token;
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
}
#if defined(_WIN32)
// CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
// operating system. Currently implemented under MS-Windows.
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
#endif
// Check if the file already exists locally
auto file_exists = std::filesystem::exists(path);
// If the file exists, check its JSON metadata companion file.
std::string metadata_path = path + ".json";
nlohmann::json metadata;
std::string etag;
std::string last_modified;
if (file_exists) {
// Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
std::ifstream metadata_in(metadata_path);
if (metadata_in.good()) {
try {
metadata_in >> metadata;
LOG_INF("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
if (metadata.contains("url") && metadata.at("url").is_string()) {
auto previous_url = metadata.at("url").get<std::string>();
if (previous_url != url) {
LOG_ERR("%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
return false;
}
}
if (metadata.contains("etag") && metadata.at("etag").is_string()) {
etag = metadata.at("etag");
}
if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
last_modified = metadata.at("lastModified");
}
} catch (const nlohmann::json::exception & e) {
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
return false;
}
}
} else {
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
}
// Send a HEAD request to retrieve the etag and last-modified headers
struct common_load_model_from_url_headers {
std::string etag;
std::string last_modified;
};
common_load_model_from_url_headers headers;
{
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
static std::regex header_regex("([^:]+): (.*)\r\n");
static std::regex etag_regex("ETag", std::regex_constants::icase);
static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
std::string header(buffer, n_items);
std::smatch match;
if (std::regex_match(header, match, header_regex)) {
const std::string & key = match[1];
const std::string & value = match[2];
if (std::regex_match(key, match, etag_regex)) {
headers->etag = value;
} else if (std::regex_match(key, match, last_modified_regex)) {
headers->last_modified = value;
}
}
return n_items;
};
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
if (!was_perform_successful) {
return false;
}
long http_code = 0;
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
if (http_code != 200) {
// HEAD not supported, we don't know if the file has changed
// force trigger downloading
force_download = true;
LOG_ERR("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
}
}
bool should_download = !file_exists || force_download;
if (!should_download) {
if (!etag.empty() && etag != headers.etag) {
LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
should_download = true;
} else if (!last_modified.empty() && last_modified != headers.last_modified) {
LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
should_download = true;
}
}
if (should_download) {
std::string path_temporary = path + ".downloadInProgress";
if (file_exists) {
LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
if (remove(path.c_str()) != 0) {
LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
return false;
}
}
// Set the output file
struct FILE_deleter {
void operator()(FILE * f) const {
fclose(f);
}
};
std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
if (!outfile) {
LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path.c_str());
return false;
}
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
return fwrite(data, size, nmemb, (FILE *)fd);
};
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());
// display download progress
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
// helper function to hide password in URL
auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
std::size_t protocol_pos = url.find("://");
if (protocol_pos == std::string::npos) {
return url; // Malformed URL
}
std::size_t at_pos = url.find('@', protocol_pos + 3);
if (at_pos == std::string::npos) {
return url; // No password in URL
}
return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
};
// start the download
LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
if (!was_perform_successful) {
return false;
}
long http_code = 0;
curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
if (http_code < 200 || http_code >= 400) {
LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code);
return false;
}
// Causes file to be closed explicitly here before we rename it.
outfile.reset();
// Write the updated JSON metadata file.
metadata.update({
{"url", url},
{"etag", headers.etag},
{"lastModified", headers.last_modified}
});
std::ofstream(metadata_path) << metadata.dump(4);
LOG_INF("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
if (rename(path_temporary.c_str(), path.c_str()) != 0) {
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
return false;
}
}
return true;
}
struct llama_model * common_load_model_from_url(
const std::string & model_url,
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params) {
// Basic validation of the model_url
if (model_url.empty()) {
LOG_ERR("%s: invalid model_url\n", __func__);
return NULL;
}
if (!common_download_file(model_url, local_path, hf_token)) {
return NULL;
}
// check for additional GGUFs split to download
int n_split = 0;
{
struct gguf_init_params gguf_params = {
/*.no_alloc = */ true,
/*.ctx = */ NULL,
};
auto * ctx_gguf = gguf_init_from_file(local_path.c_str(), gguf_params);
if (!ctx_gguf) {
LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, local_path.c_str());
return NULL;
}
auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
if (key_n_split >= 0) {
n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
}
gguf_free(ctx_gguf);
}
if (n_split > 1) {
char split_prefix[PATH_MAX] = {0};
char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
// Verify the first split file format
// and extract split URL and PATH prefixes
{
if (!llama_split_prefix(split_prefix, sizeof(split_prefix), local_path.c_str(), 0, n_split)) {
LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, local_path.c_str(), n_split);
return NULL;
}
if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url.c_str(), 0, n_split)) {
LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model_url.c_str(), n_split);
return NULL;
}
}
// Prepare download in parallel
std::vector<std::future<bool>> futures_download;
for (int idx = 1; idx < n_split; idx++) {
futures_download.push_back(std::async(std::launch::async, [&split_prefix, &split_url_prefix, &n_split, hf_token](int download_idx) -> bool {
char split_path[PATH_MAX] = {0};
llama_split_path(split_path, sizeof(split_path), split_prefix, download_idx, n_split);
char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split);
return common_download_file(split_url, split_path, hf_token);
}, idx));
}
// Wait for all downloads to complete
for (auto & f : futures_download) {
if (!f.get()) {
return NULL;
}
}
}
return llama_model_load_from_file(local_path.c_str(), params);
}
struct llama_model * common_load_model_from_hf(
const std::string & repo,
const std::string & remote_path,
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params) {
// construct hugging face model url:
//
// --repo ggml-org/models --file tinyllama-1.1b/ggml-model-f16.gguf
// https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf
//
// --repo TheBloke/Mixtral-8x7B-v0.1-GGUF --file mixtral-8x7b-v0.1.Q4_K_M.gguf
// https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q4_K_M.gguf
//
std::string model_url = "https://huggingface.co/";
model_url += repo;
model_url += "/resolve/main/";
model_url += remote_path;
return common_load_model_from_url(model_url, local_path, hf_token, params);
}
/**
* Allow getting the HF file from the HF repo with tag (like ollama), for example:
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
* - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
* Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
*
* Return pair of <repo, file> (with "repo" already having tag removed)
*
* Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
*/
std::pair<std::string, std::string> common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & hf_token) {
auto parts = string_split<std::string>(hf_repo_with_tag, ':');
std::string tag = parts.size() > 1 ? parts.back() : "latest";
std::string hf_repo = parts[0];
if (string_split<std::string>(hf_repo, '/').size() != 2) {
throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
}
// fetch model info from Hugging Face Hub API
json model_info;
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
curl_slist_ptr http_headers;
std::string res_str;
std::string url = "https://huggingface.co/v2/" + hf_repo + "/manifests/" + tag;
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
static_cast<std::string *>(data)->append((char * ) ptr, size * nmemb);
return size * nmemb;
};
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_str);
#if defined(_WIN32)
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
#endif
if (!hf_token.empty()) {
std::string auth_header = "Authorization: Bearer " + hf_token;
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
}
// Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
http_headers.ptr = curl_slist_append(http_headers.ptr, "Accept: application/json");
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
CURLcode res = curl_easy_perform(curl.get());
if (res != CURLE_OK) {
throw std::runtime_error("error: cannot make GET request to HF API");
}
long res_code;
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
if (res_code == 200) {
model_info = json::parse(res_str);
} else if (res_code == 401) {
throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
} else {
throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str()));
}
// check response
if (!model_info.contains("ggufFile")) {
throw std::runtime_error("error: model does not have ggufFile");
}
json & gguf_file = model_info.at("ggufFile");
if (!gguf_file.contains("rfilename")) {
throw std::runtime_error("error: ggufFile does not have rfilename");
}
return std::make_pair(hf_repo, gguf_file.at("rfilename"));
}
#else
struct llama_model * common_load_model_from_url(
const std::string & /*model_url*/,
const std::string & /*local_path*/,
const std::string & /*hf_token*/,
const struct llama_model_params & /*params*/) {
LOG_WRN("%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
return nullptr;
}
struct llama_model * common_load_model_from_hf(
const std::string & /*repo*/,
const std::string & /*remote_path*/,
const std::string & /*local_path*/,
const std::string & /*hf_token*/,
const struct llama_model_params & /*params*/) {
LOG_WRN("%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
return nullptr;
}
std::pair<std::string, std::string> common_get_hf_file(const std::string &, const std::string &) {
LOG_WRN("%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
return std::make_pair("", "");
}
#endif // LLAMA_USE_CURL
//
// Batch utils
//
// DEPRECATED
void common_batch_clear(struct llama_batch & batch) {
batch.n_tokens = 0;
}
// DEPRECATED
void common_batch_add(
struct llama_batch & batch,
llama_token id,
@@ -1550,3 +2001,26 @@ common_control_vector_data common_control_vector_load(const std::vector<common_c
return result;
}
template <>
json common_grammar_trigger::to_json() const {
json out {
{"type", (int) type},
{"value", value},
};
if (type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
out["token"] = (int) token;
}
return out;
}
template <>
common_grammar_trigger common_grammar_trigger::from_json(const json & in) {
common_grammar_trigger out;
out.type = (common_grammar_trigger_type) in.at("type").get<int>();
out.value = in.at("value").get<std::string>();
if (out.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
out.token = (llama_token) in.at("token").get<int>();
}
return out;
}

View File

@@ -121,6 +121,10 @@ struct common_grammar_trigger {
common_grammar_trigger_type type;
std::string value;
llama_token token = LLAMA_TOKEN_NULL;
// T can only be nlohmann::ordered_json
template <class T> T to_json() const;
template <class T> static common_grammar_trigger from_json(const T & in);
};
// sampling parameters
@@ -180,13 +184,6 @@ struct common_params_sampling {
std::string print() const;
};
struct common_params_model {
std::string path = ""; // model local path // NOLINT
std::string url = ""; // model url to download // NOLINT
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
};
struct common_params_speculative {
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
@@ -200,11 +197,19 @@ struct common_params_speculative {
struct cpu_params cpuparams;
struct cpu_params cpuparams_batch;
struct common_params_model model;
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string model = ""; // draft model for speculative decoding // NOLINT
std::string model_url = ""; // model url to download // NOLINT
};
struct common_params_vocoder {
struct common_params_model model;
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string model = ""; // model path // NOLINT
std::string model_url = ""; // model url to download // NOLINT
std::string speaker_file = ""; // speaker file path // NOLINT
@@ -262,10 +267,12 @@ struct common_params {
struct common_params_speculative speculative;
struct common_params_vocoder vocoder;
struct common_params_model model;
std::string model = ""; // model path // NOLINT
std::string model_alias = ""; // model alias // NOLINT
std::string model_url = ""; // model url to download // NOLINT
std::string hf_token = ""; // HF token // NOLINT
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string prompt = ""; // NOLINT
std::string system_prompt = ""; // NOLINT
std::string prompt_file = ""; // store the external prompt file name // NOLINT
@@ -279,7 +286,6 @@ struct common_params {
std::vector<std::string> in_files; // all input files
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
std::vector<llama_model_kv_override> kv_overrides;
std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_adapter_lora_apply)
std::vector<common_adapter_lora_info> lora_adapters; // lora adapter path with user defined scale
@@ -341,7 +347,7 @@ struct common_params {
common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
// multimodal models (see examples/llava)
struct common_params_model mmproj;
std::string mmproj = ""; // path to multimodal projector // NOLINT
std::vector<std::string> image; // path to image file(s)
// embedding
@@ -510,7 +516,6 @@ void string_process_escapes(std::string & input);
std::string string_from(bool value);
std::string string_from(const std::vector<int> & values);
std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens);
std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch);
//
// Filesystem utils
@@ -540,6 +545,23 @@ struct llama_model_params common_model_params_to_llama ( common_params
struct llama_context_params common_context_params_to_llama(const common_params & params);
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
struct llama_model * common_load_model_from_url(
const std::string & model_url,
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params);
struct llama_model * common_load_model_from_hf(
const std::string & repo,
const std::string & remote_path,
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params);
std::pair<std::string, std::string> common_get_hf_file(
const std::string & hf_repo_with_tag,
const std::string & hf_token);
// clear LoRA adapters from context, then apply new list of adapters
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora);
@@ -547,8 +569,10 @@ void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adap
// Batch utils
//
// DEPRECATED
void common_batch_clear(struct llama_batch & batch);
// DEPRECATED
void common_batch_add(
struct llama_batch & batch,
llama_token id,
@@ -556,6 +580,66 @@ void common_batch_add(
const std::vector<llama_seq_id> & seq_ids,
bool logits);
// convenient wrapper around llama_batch_ext, to provide a way to get embeddings positions
// this is meant to be temporary
struct common_batch {
llama_batch_ext_ptr batch;
struct batch_token {
llama_token token;
llama_seq_id seq_id; // only support single seq for now
bool logits;
};
std::vector<batch_token> tokens;
int n_outputs = 0;
common_batch() = default;
common_batch(int32_t n_tokens, int32_t n_seq_max) {
batch.reset(llama_batch_ext_init(n_tokens, n_seq_max));
tokens.reserve(n_tokens);
}
void clear() {
llama_batch_ext_clear(batch.get());
tokens.clear();
}
void add_text(llama_token token, llama_pos pos, llama_seq_id seq_id, bool logits) {
llama_batch_ext_add_text(batch.get(), token, pos, &seq_id, 1, logits);
tokens.push_back({token, seq_id, logits});
if (logits) {
n_outputs++;
}
}
void add_text_multi_seq(llama_token token, llama_pos pos, std::vector<llama_seq_id> seq_ids, bool logits) {
llama_batch_ext_add_text(batch.get(), token, pos, seq_ids.data(), seq_ids.size(), logits);
tokens.push_back({token, seq_ids[0], logits});
if (logits) {
n_outputs++;
}
}
void set_logits_last() {
if (!tokens.empty()) {
llama_batch_ext_set_output_last(batch.get());
tokens.back().logits = true;
}
}
int32_t get_n_tokens() const {
return (int32_t)tokens.size();
}
llama_batch_ext * get() {
return batch.get();
}
common_batch get_view(int32_t offset, int32_t n_tokens) {
common_batch view;
view.batch = llama_batch_ext_ptr(llama_batch_ext_get_view(batch.get(), offset, n_tokens));
view.tokens.reserve(n_tokens);
for (int32_t i = 0; i < n_tokens; i++) {
view.tokens.push_back(tokens[offset + i]);
if (tokens[offset + i].logits) {
view.n_outputs++;
}
}
return view;
}
};
//
// Token utils
//

View File

@@ -11,24 +11,25 @@ struct llama_sampler_llg {
std::string grammar_kind;
std::string grammar_data;
LlgTokenizer * tokenizer;
LlgMatcher * grammar;
LlgConstraint * grammar;
LlgMaskResult llg_res;
bool has_llg_res;
};
static LlgMatcher * llama_sampler_llg_new(LlgTokenizer * tokenizer, const char * grammar_kind,
const char * grammar_data) {
static LlgConstraint * llama_sampler_llg_new(LlgTokenizer * tokenizer, const char * grammar_kind,
const char * grammar_data) {
LlgConstraintInit cinit;
llg_constraint_init_set_defaults(&cinit, tokenizer);
const char * log_level = getenv("LLGUIDANCE_LOG_LEVEL");
if (log_level && *log_level) {
cinit.log_stderr_level = atoi(log_level);
}
auto c = llg_new_matcher(&cinit, grammar_kind, grammar_data);
if (llg_matcher_get_error(c)) {
LOG_ERR("llg error: %s\n", llg_matcher_get_error(c));
llg_free_matcher(c);
auto c = llg_new_constraint_any(&cinit, grammar_kind, grammar_data);
if (llg_get_error(c)) {
LOG_ERR("llg error: %s\n", llg_get_error(c));
llg_free_constraint(c);
return nullptr;
}
return c;
}
@@ -39,29 +40,39 @@ static const char * llama_sampler_llg_name(const llama_sampler * /*smpl*/) {
static void llama_sampler_llg_accept_impl(llama_sampler * smpl, llama_token token) {
auto * ctx = (llama_sampler_llg *) smpl->ctx;
if (ctx->grammar) {
llg_matcher_consume_token(ctx->grammar, token);
LlgCommitResult res;
llg_commit_token(ctx->grammar, token, &res);
ctx->has_llg_res = false;
}
}
static void llama_sampler_llg_apply(llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_llg *) smpl->ctx;
if (ctx->grammar) {
const uint32_t * mask = llg_matcher_get_mask(ctx->grammar);
if (mask == nullptr) {
if (llg_matcher_compute_mask(ctx->grammar) == 0) {
mask = llg_matcher_get_mask(ctx->grammar);
if (!ctx->has_llg_res) {
if (llg_compute_mask(ctx->grammar, &ctx->llg_res) == 0) {
ctx->has_llg_res = true;
} else {
LOG_ERR("llg error: %s\n", llg_matcher_get_error(ctx->grammar));
llg_free_matcher(ctx->grammar);
LOG_ERR("llg error: %s\n", llg_get_error(ctx->grammar));
llg_free_constraint(ctx->grammar);
ctx->grammar = nullptr;
return;
}
}
for (size_t i = 0; i < cur_p->size; ++i) {
auto token = cur_p->data[i].id;
if ((mask[token / 32] & (1 << (token % 32))) == 0) {
cur_p->data[i].logit = -INFINITY;
if (ctx->has_llg_res) {
if (ctx->llg_res.is_stop) {
for (size_t i = 0; i < cur_p->size; ++i) {
if (!llama_vocab_is_eog(ctx->vocab, cur_p->data[i].id)) {
cur_p->data[i].logit = -INFINITY;
}
}
} else {
const uint32_t * mask = ctx->llg_res.sample_mask;
for (size_t i = 0; i < cur_p->size; ++i) {
auto token = cur_p->data[i].id;
if ((mask[token / 32] & (1 << (token % 32))) == 0) {
cur_p->data[i].logit = -INFINITY;
}
}
}
}
}
@@ -69,9 +80,14 @@ static void llama_sampler_llg_apply(llama_sampler * smpl, llama_token_data_array
static void llama_sampler_llg_reset(llama_sampler * smpl) {
auto * ctx = (llama_sampler_llg *) smpl->ctx;
if (ctx->grammar) {
llg_matcher_reset(ctx->grammar);
if (!ctx->grammar) {
return;
}
auto * grammar_new = llama_sampler_llg_new(ctx->tokenizer, ctx->grammar_kind.c_str(), ctx->grammar_data.c_str());
llg_free_constraint(ctx->grammar);
ctx->grammar = grammar_new;
ctx->has_llg_res = false;
}
static llama_sampler * llama_sampler_llg_clone(const llama_sampler * smpl) {
@@ -86,7 +102,7 @@ static llama_sampler * llama_sampler_llg_clone(const llama_sampler * smpl) {
if (ctx->grammar) {
result_ctx->grammar_kind = ctx->grammar_kind;
result_ctx->grammar_data = ctx->grammar_data;
result_ctx->grammar = llg_clone_matcher(ctx->grammar);
result_ctx->grammar = llg_clone_constraint(ctx->grammar);
result_ctx->tokenizer = llg_clone_tokenizer(ctx->tokenizer);
}
}
@@ -98,7 +114,7 @@ static void llama_sampler_llg_free(llama_sampler * smpl) {
const auto * ctx = (llama_sampler_llg *) smpl->ctx;
if (ctx->grammar) {
llg_free_matcher(ctx->grammar);
llg_free_constraint(ctx->grammar);
llg_free_tokenizer(ctx->tokenizer);
}
@@ -223,11 +239,9 @@ llama_sampler * llama_sampler_init_llg(const llama_vocab * vocab, const char * g
/* .grammar_data = */ grammar_data,
/* .tokenizer = */ tokenizer,
/* .grammar = */ llama_sampler_llg_new(tokenizer, grammar_kind, grammar_data),
/* .llg_res = */ {},
/* .has_llg_res = */ false,
};
if (ctx->grammar) {
GGML_ASSERT(((size_t) llama_vocab_n_tokens(vocab) + 31) / 32 * 4 ==
llg_matcher_get_mask_byte_size(ctx->grammar));
}
} else {
*ctx = {
/* .vocab = */ vocab,
@@ -235,12 +249,15 @@ llama_sampler * llama_sampler_init_llg(const llama_vocab * vocab, const char * g
/* .grammar_data = */ {},
/* .tokenizer = */ nullptr,
/* .grammar = */ nullptr,
/* .llg_res = */ {},
/* .has_llg_res = */ false,
};
}
return llama_sampler_init(
/* .iface = */ &llama_sampler_llg_i,
/* .ctx = */ ctx);
/* .ctx = */ ctx
);
}
#else

View File

@@ -9,19 +9,10 @@
#pragma once
#include "minja.hpp"
#include <chrono>
#include <cstddef>
#include <cstdio>
#include <exception>
#include <iomanip>
#include <memory>
#include <sstream>
#include <json.hpp>
#include <string>
#include <vector>
#include <json.hpp>
using json = nlohmann::ordered_json;
namespace minja {
@@ -434,7 +425,7 @@ class chat_template {
auto obj = json {
{"tool_calls", tool_calls},
};
if (!content.is_null() && !content.empty()) {
if (!content.is_null() && content != "") {
obj["content"] = content;
}
message["content"] = obj.dump(2);
@@ -444,12 +435,13 @@ class chat_template {
if (polyfill_tool_responses && role == "tool") {
message["role"] = "user";
auto obj = json {
{"tool_response", json::object()},
{"tool_response", {
{"content", message.at("content")},
}},
};
if (message.contains("name")) {
obj["tool_response"]["tool"] = message.at("name");
obj["tool_response"]["name"] = message.at("name");
}
obj["tool_response"]["content"] = message.at("content");
if (message.contains("tool_call_id")) {
obj["tool_response"]["tool_call_id"] = message.at("tool_call_id");
}
@@ -518,7 +510,7 @@ class chat_template {
static nlohmann::ordered_json add_system(const nlohmann::ordered_json & messages, const std::string & system_prompt) {
json messages_with_system = messages;
if (!messages_with_system.empty() && messages_with_system[0].at("role") == "system") {
if (messages_with_system.size() > 0 && messages_with_system[0].at("role") == "system") {
std::string existing_system = messages_with_system.at(0).at("content");
messages_with_system[0] = json {
{"role", "system"},

View File

@@ -8,26 +8,14 @@
// SPDX-License-Identifier: MIT
#pragma once
#include <algorithm>
#include <cctype>
#include <cstddef>
#include <cmath>
#include <exception>
#include <functional>
#include <iostream>
#include <iterator>
#include <limits>
#include <map>
#include <memory>
#include <regex>
#include <sstream>
#include <string>
#include <stdexcept>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include <regex>
#include <memory>
#include <stdexcept>
#include <sstream>
#include <unordered_set>
#include <json.hpp>
using json = nlohmann::ordered_json;
@@ -743,51 +731,51 @@ public:
struct TextTemplateToken : public TemplateToken {
std::string text;
TextTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, const std::string& t) : TemplateToken(Type::Text, loc, pre, post), text(t) {}
TextTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::string& t) : TemplateToken(Type::Text, location, pre, post), text(t) {}
};
struct ExpressionTemplateToken : public TemplateToken {
std::shared_ptr<Expression> expr;
ExpressionTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && e) : TemplateToken(Type::Expression, loc, pre, post), expr(std::move(e)) {}
ExpressionTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && e) : TemplateToken(Type::Expression, location, pre, post), expr(std::move(e)) {}
};
struct IfTemplateToken : public TemplateToken {
std::shared_ptr<Expression> condition;
IfTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && c) : TemplateToken(Type::If, loc, pre, post), condition(std::move(c)) {}
IfTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && c) : TemplateToken(Type::If, location, pre, post), condition(std::move(c)) {}
};
struct ElifTemplateToken : public TemplateToken {
std::shared_ptr<Expression> condition;
ElifTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && c) : TemplateToken(Type::Elif, loc, pre, post), condition(std::move(c)) {}
ElifTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && c) : TemplateToken(Type::Elif, location, pre, post), condition(std::move(c)) {}
};
struct ElseTemplateToken : public TemplateToken {
ElseTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::Else, loc, pre, post) {}
ElseTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::Else, location, pre, post) {}
};
struct EndIfTemplateToken : public TemplateToken {
EndIfTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndIf, loc, pre, post) {}
EndIfTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndIf, location, pre, post) {}
};
struct MacroTemplateToken : public TemplateToken {
std::shared_ptr<VariableExpr> name;
Expression::Parameters params;
MacroTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<VariableExpr> && n, Expression::Parameters && p)
: TemplateToken(Type::Macro, loc, pre, post), name(std::move(n)), params(std::move(p)) {}
MacroTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<VariableExpr> && n, Expression::Parameters && p)
: TemplateToken(Type::Macro, location, pre, post), name(std::move(n)), params(std::move(p)) {}
};
struct EndMacroTemplateToken : public TemplateToken {
EndMacroTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndMacro, loc, pre, post) {}
EndMacroTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndMacro, location, pre, post) {}
};
struct FilterTemplateToken : public TemplateToken {
std::shared_ptr<Expression> filter;
FilterTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && filter)
: TemplateToken(Type::Filter, loc, pre, post), filter(std::move(filter)) {}
FilterTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && filter)
: TemplateToken(Type::Filter, location, pre, post), filter(std::move(filter)) {}
};
struct EndFilterTemplateToken : public TemplateToken {
EndFilterTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndFilter, loc, pre, post) {}
EndFilterTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndFilter, location, pre, post) {}
};
struct ForTemplateToken : public TemplateToken {
@@ -795,38 +783,38 @@ struct ForTemplateToken : public TemplateToken {
std::shared_ptr<Expression> iterable;
std::shared_ptr<Expression> condition;
bool recursive;
ForTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, const std::vector<std::string> & vns, std::shared_ptr<Expression> && iter,
ForTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::vector<std::string> & vns, std::shared_ptr<Expression> && iter,
std::shared_ptr<Expression> && c, bool r)
: TemplateToken(Type::For, loc, pre, post), var_names(vns), iterable(std::move(iter)), condition(std::move(c)), recursive(r) {}
: TemplateToken(Type::For, location, pre, post), var_names(vns), iterable(std::move(iter)), condition(std::move(c)), recursive(r) {}
};
struct EndForTemplateToken : public TemplateToken {
EndForTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndFor, loc, pre, post) {}
EndForTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndFor, location, pre, post) {}
};
struct GenerationTemplateToken : public TemplateToken {
GenerationTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::Generation, loc, pre, post) {}
GenerationTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::Generation, location, pre, post) {}
};
struct EndGenerationTemplateToken : public TemplateToken {
EndGenerationTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndGeneration, loc, pre, post) {}
EndGenerationTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndGeneration, location, pre, post) {}
};
struct SetTemplateToken : public TemplateToken {
std::string ns;
std::vector<std::string> var_names;
std::shared_ptr<Expression> value;
SetTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, const std::string & ns, const std::vector<std::string> & vns, std::shared_ptr<Expression> && v)
: TemplateToken(Type::Set, loc, pre, post), ns(ns), var_names(vns), value(std::move(v)) {}
SetTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::string & ns, const std::vector<std::string> & vns, std::shared_ptr<Expression> && v)
: TemplateToken(Type::Set, location, pre, post), ns(ns), var_names(vns), value(std::move(v)) {}
};
struct EndSetTemplateToken : public TemplateToken {
EndSetTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndSet, loc, pre, post) {}
EndSetTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndSet, location, pre, post) {}
};
struct CommentTemplateToken : public TemplateToken {
std::string text;
CommentTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, const std::string& t) : TemplateToken(Type::Comment, loc, pre, post), text(t) {}
CommentTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::string& t) : TemplateToken(Type::Comment, location, pre, post), text(t) {}
};
enum class LoopControlType { Break, Continue };
@@ -842,7 +830,7 @@ public:
struct LoopControlTemplateToken : public TemplateToken {
LoopControlType control_type;
LoopControlTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, LoopControlType control_type) : TemplateToken(Type::Break, loc, pre, post), control_type(control_type) {}
LoopControlTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, LoopControlType control_type) : TemplateToken(Type::Break, location, pre, post), control_type(control_type) {}
};
class TemplateNode {
@@ -880,8 +868,8 @@ public:
class SequenceNode : public TemplateNode {
std::vector<std::shared_ptr<TemplateNode>> children;
public:
SequenceNode(const Location & loc, std::vector<std::shared_ptr<TemplateNode>> && c)
: TemplateNode(loc), children(std::move(c)) {}
SequenceNode(const Location & location, std::vector<std::shared_ptr<TemplateNode>> && c)
: TemplateNode(location), children(std::move(c)) {}
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
for (const auto& child : children) child->render(out, context);
}
@@ -890,7 +878,7 @@ public:
class TextNode : public TemplateNode {
std::string text;
public:
TextNode(const Location & loc, const std::string& t) : TemplateNode(loc), text(t) {}
TextNode(const Location & location, const std::string& t) : TemplateNode(location), text(t) {}
void do_render(std::ostringstream & out, const std::shared_ptr<Context> &) const override {
out << text;
}
@@ -899,7 +887,7 @@ public:
class ExpressionNode : public TemplateNode {
std::shared_ptr<Expression> expr;
public:
ExpressionNode(const Location & loc, std::shared_ptr<Expression> && e) : TemplateNode(loc), expr(std::move(e)) {}
ExpressionNode(const Location & location, std::shared_ptr<Expression> && e) : TemplateNode(location), expr(std::move(e)) {}
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
if (!expr) throw std::runtime_error("ExpressionNode.expr is null");
auto result = expr->evaluate(context);
@@ -916,8 +904,8 @@ public:
class IfNode : public TemplateNode {
std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<TemplateNode>>> cascade;
public:
IfNode(const Location & loc, std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<TemplateNode>>> && c)
: TemplateNode(loc), cascade(std::move(c)) {}
IfNode(const Location & location, std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<TemplateNode>>> && c)
: TemplateNode(location), cascade(std::move(c)) {}
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
for (const auto& branch : cascade) {
auto enter_branch = true;
@@ -936,7 +924,7 @@ public:
class LoopControlNode : public TemplateNode {
LoopControlType control_type_;
public:
LoopControlNode(const Location & loc, LoopControlType control_type) : TemplateNode(loc), control_type_(control_type) {}
LoopControlNode(const Location & location, LoopControlType control_type) : TemplateNode(location), control_type_(control_type) {}
void do_render(std::ostringstream &, const std::shared_ptr<Context> &) const override {
throw LoopControlException(control_type_);
}
@@ -950,9 +938,9 @@ class ForNode : public TemplateNode {
bool recursive;
std::shared_ptr<TemplateNode> else_body;
public:
ForNode(const Location & loc, std::vector<std::string> && var_names, std::shared_ptr<Expression> && iterable,
ForNode(const Location & location, std::vector<std::string> && var_names, std::shared_ptr<Expression> && iterable,
std::shared_ptr<Expression> && condition, std::shared_ptr<TemplateNode> && body, bool recursive, std::shared_ptr<TemplateNode> && else_body)
: TemplateNode(loc), var_names(var_names), iterable(std::move(iterable)), condition(std::move(condition)), body(std::move(body)), recursive(recursive), else_body(std::move(else_body)) {}
: TemplateNode(location), var_names(var_names), iterable(std::move(iterable)), condition(std::move(condition)), body(std::move(body)), recursive(recursive), else_body(std::move(else_body)) {}
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
// https://jinja.palletsprojects.com/en/3.0.x/templates/#for
@@ -1037,8 +1025,8 @@ class MacroNode : public TemplateNode {
std::shared_ptr<TemplateNode> body;
std::unordered_map<std::string, size_t> named_param_positions;
public:
MacroNode(const Location & loc, std::shared_ptr<VariableExpr> && n, Expression::Parameters && p, std::shared_ptr<TemplateNode> && b)
: TemplateNode(loc), name(std::move(n)), params(std::move(p)), body(std::move(b)) {
MacroNode(const Location & location, std::shared_ptr<VariableExpr> && n, Expression::Parameters && p, std::shared_ptr<TemplateNode> && b)
: TemplateNode(location), name(std::move(n)), params(std::move(p)), body(std::move(b)) {
for (size_t i = 0; i < params.size(); ++i) {
const auto & name = params[i].first;
if (!name.empty()) {
@@ -1084,8 +1072,8 @@ class FilterNode : public TemplateNode {
std::shared_ptr<TemplateNode> body;
public:
FilterNode(const Location & loc, std::shared_ptr<Expression> && f, std::shared_ptr<TemplateNode> && b)
: TemplateNode(loc), filter(std::move(f)), body(std::move(b)) {}
FilterNode(const Location & location, std::shared_ptr<Expression> && f, std::shared_ptr<TemplateNode> && b)
: TemplateNode(location), filter(std::move(f)), body(std::move(b)) {}
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
if (!filter) throw std::runtime_error("FilterNode.filter is null");
@@ -1107,8 +1095,8 @@ class SetNode : public TemplateNode {
std::vector<std::string> var_names;
std::shared_ptr<Expression> value;
public:
SetNode(const Location & loc, const std::string & ns, const std::vector<std::string> & vns, std::shared_ptr<Expression> && v)
: TemplateNode(loc), ns(ns), var_names(vns), value(std::move(v)) {}
SetNode(const Location & location, const std::string & ns, const std::vector<std::string> & vns, std::shared_ptr<Expression> && v)
: TemplateNode(location), ns(ns), var_names(vns), value(std::move(v)) {}
void do_render(std::ostringstream &, const std::shared_ptr<Context> & context) const override {
if (!value) throw std::runtime_error("SetNode.value is null");
if (!ns.empty()) {
@@ -1130,8 +1118,8 @@ class SetTemplateNode : public TemplateNode {
std::string name;
std::shared_ptr<TemplateNode> template_value;
public:
SetTemplateNode(const Location & loc, const std::string & name, std::shared_ptr<TemplateNode> && tv)
: TemplateNode(loc), name(name), template_value(std::move(tv)) {}
SetTemplateNode(const Location & location, const std::string & name, std::shared_ptr<TemplateNode> && tv)
: TemplateNode(location), name(name), template_value(std::move(tv)) {}
void do_render(std::ostringstream &, const std::shared_ptr<Context> & context) const override {
if (!template_value) throw std::runtime_error("SetTemplateNode.template_value is null");
Value value { template_value->render(context) };
@@ -1144,8 +1132,8 @@ class IfExpr : public Expression {
std::shared_ptr<Expression> then_expr;
std::shared_ptr<Expression> else_expr;
public:
IfExpr(const Location & loc, std::shared_ptr<Expression> && c, std::shared_ptr<Expression> && t, std::shared_ptr<Expression> && e)
: Expression(loc), condition(std::move(c)), then_expr(std::move(t)), else_expr(std::move(e)) {}
IfExpr(const Location & location, std::shared_ptr<Expression> && c, std::shared_ptr<Expression> && t, std::shared_ptr<Expression> && e)
: Expression(location), condition(std::move(c)), then_expr(std::move(t)), else_expr(std::move(e)) {}
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
if (!condition) throw std::runtime_error("IfExpr.condition is null");
if (!then_expr) throw std::runtime_error("IfExpr.then_expr is null");
@@ -1162,16 +1150,16 @@ public:
class LiteralExpr : public Expression {
Value value;
public:
LiteralExpr(const Location & loc, const Value& v)
: Expression(loc), value(v) {}
LiteralExpr(const Location & location, const Value& v)
: Expression(location), value(v) {}
Value do_evaluate(const std::shared_ptr<Context> &) const override { return value; }
};
class ArrayExpr : public Expression {
std::vector<std::shared_ptr<Expression>> elements;
public:
ArrayExpr(const Location & loc, std::vector<std::shared_ptr<Expression>> && e)
: Expression(loc), elements(std::move(e)) {}
ArrayExpr(const Location & location, std::vector<std::shared_ptr<Expression>> && e)
: Expression(location), elements(std::move(e)) {}
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
auto result = Value::array();
for (const auto& e : elements) {
@@ -1185,8 +1173,8 @@ public:
class DictExpr : public Expression {
std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<Expression>>> elements;
public:
DictExpr(const Location & loc, std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<Expression>>> && e)
: Expression(loc), elements(std::move(e)) {}
DictExpr(const Location & location, std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<Expression>>> && e)
: Expression(location), elements(std::move(e)) {}
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
auto result = Value::object();
for (const auto& [key, value] : elements) {
@@ -1201,8 +1189,8 @@ public:
class SliceExpr : public Expression {
public:
std::shared_ptr<Expression> start, end;
SliceExpr(const Location & loc, std::shared_ptr<Expression> && s, std::shared_ptr<Expression> && e)
: Expression(loc), start(std::move(s)), end(std::move(e)) {}
SliceExpr(const Location & location, std::shared_ptr<Expression> && s, std::shared_ptr<Expression> && e)
: Expression(location), start(std::move(s)), end(std::move(e)) {}
Value do_evaluate(const std::shared_ptr<Context> &) const override {
throw std::runtime_error("SliceExpr not implemented");
}
@@ -1212,8 +1200,8 @@ class SubscriptExpr : public Expression {
std::shared_ptr<Expression> base;
std::shared_ptr<Expression> index;
public:
SubscriptExpr(const Location & loc, std::shared_ptr<Expression> && b, std::shared_ptr<Expression> && i)
: Expression(loc), base(std::move(b)), index(std::move(i)) {}
SubscriptExpr(const Location & location, std::shared_ptr<Expression> && b, std::shared_ptr<Expression> && i)
: Expression(location), base(std::move(b)), index(std::move(i)) {}
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
if (!base) throw std::runtime_error("SubscriptExpr.base is null");
if (!index) throw std::runtime_error("SubscriptExpr.index is null");
@@ -1255,8 +1243,8 @@ public:
enum class Op { Plus, Minus, LogicalNot, Expansion, ExpansionDict };
std::shared_ptr<Expression> expr;
Op op;
UnaryOpExpr(const Location & loc, std::shared_ptr<Expression> && e, Op o)
: Expression(loc), expr(std::move(e)), op(o) {}
UnaryOpExpr(const Location & location, std::shared_ptr<Expression> && e, Op o)
: Expression(location), expr(std::move(e)), op(o) {}
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
if (!expr) throw std::runtime_error("UnaryOpExpr.expr is null");
auto e = expr->evaluate(context);
@@ -1281,8 +1269,8 @@ private:
std::shared_ptr<Expression> right;
Op op;
public:
BinaryOpExpr(const Location & loc, std::shared_ptr<Expression> && l, std::shared_ptr<Expression> && r, Op o)
: Expression(loc), left(std::move(l)), right(std::move(r)), op(o) {}
BinaryOpExpr(const Location & location, std::shared_ptr<Expression> && l, std::shared_ptr<Expression> && r, Op o)
: Expression(location), left(std::move(l)), right(std::move(r)), op(o) {}
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
if (!left) throw std::runtime_error("BinaryOpExpr.left is null");
if (!right) throw std::runtime_error("BinaryOpExpr.right is null");
@@ -1439,8 +1427,8 @@ class MethodCallExpr : public Expression {
std::shared_ptr<VariableExpr> method;
ArgumentsExpression args;
public:
MethodCallExpr(const Location & loc, std::shared_ptr<Expression> && obj, std::shared_ptr<VariableExpr> && m, ArgumentsExpression && a)
: Expression(loc), object(std::move(obj)), method(std::move(m)), args(std::move(a)) {}
MethodCallExpr(const Location & location, std::shared_ptr<Expression> && obj, std::shared_ptr<VariableExpr> && m, ArgumentsExpression && a)
: Expression(location), object(std::move(obj)), method(std::move(m)), args(std::move(a)) {}
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
if (!object) throw std::runtime_error("MethodCallExpr.object is null");
if (!method) throw std::runtime_error("MethodCallExpr.method is null");
@@ -1538,8 +1526,8 @@ class CallExpr : public Expression {
public:
std::shared_ptr<Expression> object;
ArgumentsExpression args;
CallExpr(const Location & loc, std::shared_ptr<Expression> && obj, ArgumentsExpression && a)
: Expression(loc), object(std::move(obj)), args(std::move(a)) {}
CallExpr(const Location & location, std::shared_ptr<Expression> && obj, ArgumentsExpression && a)
: Expression(location), object(std::move(obj)), args(std::move(a)) {}
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
if (!object) throw std::runtime_error("CallExpr.object is null");
auto obj = object->evaluate(context);
@@ -1554,8 +1542,8 @@ public:
class FilterExpr : public Expression {
std::vector<std::shared_ptr<Expression>> parts;
public:
FilterExpr(const Location & loc, std::vector<std::shared_ptr<Expression>> && p)
: Expression(loc), parts(std::move(p)) {}
FilterExpr(const Location & location, std::vector<std::shared_ptr<Expression>> && p)
: Expression(location), parts(std::move(p)) {}
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
Value result;
bool first = true;
@@ -2472,7 +2460,7 @@ private:
static std::regex leading_space_regex(R"(^\s+)");
text = std::regex_replace(text, leading_space_regex, "");
} else if (options.trim_blocks && (it - 1) != begin && !dynamic_cast<ExpressionTemplateToken*>((*(it - 2)).get())) {
if (!text.empty() && text[0] == '\n') {
if (text.length() > 0 && text[0] == '\n') {
text.erase(0, 1);
}
}
@@ -2550,7 +2538,7 @@ public:
TemplateTokenIterator begin = tokens.begin();
auto it = begin;
TemplateTokenIterator end = tokens.end();
return parser.parseTemplate(begin, it, end, /* fully= */ true);
return parser.parseTemplate(begin, it, end, /* full= */ true);
}
};
@@ -2589,7 +2577,7 @@ inline std::shared_ptr<Context> Context::builtins() {
throw std::runtime_error(args.at("message").get<std::string>());
}));
globals.set("tojson", simple_function("tojson", { "value", "indent" }, [](const std::shared_ptr<Context> &, Value & args) {
return Value(args.at("value").dump(args.get<int64_t>("indent", -1), /* to_json= */ true));
return Value(args.at("value").dump(args.get<int64_t>("indent", -1), /* tojson= */ true));
}));
globals.set("items", simple_function("items", { "object" }, [](const std::shared_ptr<Context> &, Value & args) {
auto items = Value::array();
@@ -2611,25 +2599,21 @@ inline std::shared_ptr<Context> Context::builtins() {
globals.set("last", simple_function("last", { "items" }, [](const std::shared_ptr<Context> &, Value & args) {
auto items = args.at("items");
if (!items.is_array()) throw std::runtime_error("object is not a list");
if (items.empty()) return Value();
if (items.size() == 0) return Value();
return items.at(items.size() - 1);
}));
globals.set("trim", simple_function("trim", { "text" }, [](const std::shared_ptr<Context> &, Value & args) {
auto & text = args.at("text");
return text.is_null() ? text : Value(strip(text.get<std::string>()));
}));
auto char_transform_function = [](const std::string & name, const std::function<char(char)> & fn) {
return simple_function(name, { "text" }, [=](const std::shared_ptr<Context> &, Value & args) {
auto text = args.at("text");
if (text.is_null()) return text;
std::string res;
auto str = text.get<std::string>();
std::transform(str.begin(), str.end(), std::back_inserter(res), fn);
return Value(res);
});
};
globals.set("lower", char_transform_function("lower", ::tolower));
globals.set("upper", char_transform_function("upper", ::toupper));
globals.set("lower", simple_function("lower", { "text" }, [](const std::shared_ptr<Context> &, Value & args) {
auto text = args.at("text");
if (text.is_null()) return text;
std::string res;
auto str = text.get<std::string>();
std::transform(str.begin(), str.end(), std::back_inserter(res), ::tolower);
return Value(res);
}));
globals.set("default", Value::callable([=](const std::shared_ptr<Context> &, ArgumentsValue & args) {
args.expectArgs("default", {2, 3}, {0, 1});
auto & value = args.args[0];
@@ -2759,17 +2743,12 @@ inline std::shared_ptr<Context> Context::builtins() {
return Value::callable([=](const std::shared_ptr<Context> & context, ArgumentsValue & args) {
args.expectArgs(is_select ? "select" : "reject", {2, (std::numeric_limits<size_t>::max)()}, {0, 0});
auto & items = args.args[0];
if (items.is_null()) {
if (items.is_null())
return Value::array();
}
if (!items.is_array()) {
throw std::runtime_error("object is not iterable: " + items.dump());
}
if (!items.is_array()) throw std::runtime_error("object is not iterable: " + items.dump());
auto filter_fn = context->get(args.args[1]);
if (filter_fn.is_null()) {
throw std::runtime_error("Undefined filter: " + args.args[1].dump());
}
if (filter_fn.is_null()) throw std::runtime_error("Undefined filter: " + args.args[1].dump());
auto filter_args = Value::array();
for (size_t i = 2, n = args.args.size(); i < n; i++) {
@@ -2891,25 +2870,20 @@ inline std::shared_ptr<Context> Context::builtins() {
auto v = arg.get<int64_t>();
startEndStep[i] = v;
param_set[i] = true;
}
}
}
for (auto & [name, value] : args.kwargs) {
size_t i;
if (name == "start") {
i = 0;
} else if (name == "end") {
i = 1;
} else if (name == "step") {
i = 2;
} else {
throw std::runtime_error("Unknown argument " + name + " for function range");
}
for (auto & [name, value] : args.kwargs) {
size_t i;
if (name == "start") i = 0;
else if (name == "end") i = 1;
else if (name == "step") i = 2;
else throw std::runtime_error("Unknown argument " + name + " for function range");
if (param_set[i]) {
throw std::runtime_error("Duplicate argument " + name + " for function range");
}
startEndStep[i] = value.get<int64_t>();
param_set[i] = true;
if (param_set[i]) {
throw std::runtime_error("Duplicate argument " + name + " for function range");
}
startEndStep[i] = value.get<int64_t>();
param_set[i] = true;
}
if (!param_set[1]) {
throw std::runtime_error("Missing required argument 'end' for function range");

View File

@@ -208,9 +208,6 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
trigger_patterns_c.data(), trigger_patterns_c.size(),
trigger_tokens.data(), trigger_tokens.size())
: llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
if (!grmr) {
return nullptr;
}
}
auto * result = new common_sampler {

View File

@@ -14,7 +14,7 @@ struct common_speculative {
struct llama_context * ctx;
struct common_sampler * smpl;
llama_batch batch;
llama_batch_ext_ptr batch;
llama_tokens prompt;
};
@@ -23,7 +23,7 @@ struct common_speculative * common_speculative_init(
auto * result = new common_speculative {
/* .ctx = */ ctx_dft,
/* .smpl = */ nullptr,
/* .batch = */ llama_batch_init(llama_n_batch(ctx_dft), 0, 1),
/* .batch = */ llama_batch_ext_ptr(llama_batch_ext_init(llama_n_batch(ctx_dft), 1)),
/* .prompt = */ {},
};
@@ -69,8 +69,6 @@ void common_speculative_free(struct common_speculative * spec) {
common_sampler_free(spec->smpl);
llama_batch_free(spec->batch);
delete spec;
}
@@ -151,6 +149,8 @@ llama_tokens common_speculative_gen_draft(
const int i_start = std::max<int>(0, (int) prompt_tgt.size() - n_ctx);
const llama_seq_id seq_id = 0;
// reuse as much as possible from the old draft context
// ideally, the draft context should be as big as the target context and we will always reuse the entire prompt
for (int i = 0; i < (int) prompt.size(); ++i) {
@@ -206,40 +206,40 @@ llama_tokens common_speculative_gen_draft(
}
// prepare a batch to evaluate any new tokens in the prompt
common_batch_clear(batch);
llama_batch_ext_clear(batch.get());
for (size_t i = i_start + reuse_n; i < prompt_tgt.size(); ++i) {
//LOG_DBG("i = %d, i_start = %d, reuse_n = %d, i - i_start = %d, id = %6d\n", i, i_start, reuse_n, i - i_start, prompt_tgt[i]);
common_batch_add(batch, prompt_tgt[i], i - i_start, { 0 }, false);
llama_batch_ext_add_text(batch.get(), prompt_tgt[i], i - i_start, &seq_id, 1, false);
prompt.push_back(prompt_tgt[i]);
}
// we should rarely end-up here during normal decoding
if (batch.n_tokens > 0) {
if (llama_batch_ext_get_n_tokens(batch.get()) > 0) {
//LOG_DBG("%s: draft prompt batch: %s\n", __func__, string_from(ctx, batch).c_str());
llama_decode(ctx, batch);
llama_decode_ext(ctx, batch.get());
}
const llama_pos n_past = prompt.size();
LOG_DBG("%s: n_past = %d\n", __func__, n_past);
common_batch_clear(batch);
common_batch_add (batch, id_last, n_past, { 0 }, true);
llama_batch_ext_clear(batch.get());
llama_batch_ext_add_text(batch.get(), id_last, n_past, &seq_id, 1, true);
prompt.push_back(id_last);
//LOG_DBG("%s: draft prompt: %s\n", __func__, string_from(ctx, prompt).c_str());
llama_decode(ctx, batch);
llama_decode_ext(ctx, batch.get());
common_sampler_reset(smpl);
// sample n_draft tokens from the draft model
for (int i = 0; i < params.n_draft; ++i) {
common_batch_clear(batch);
llama_batch_ext_clear(batch.get());
common_sampler_sample(smpl, ctx, 0, true);
@@ -266,10 +266,10 @@ llama_tokens common_speculative_gen_draft(
break;
}
common_batch_add(batch, id, n_past + i + 1, { 0 }, true);
llama_batch_ext_add_text(batch.get(), id, n_past + i + 1, &seq_id, 1, true);
// evaluate the drafted tokens on the draft model
llama_decode(ctx, batch);
llama_decode_ext(ctx, batch.get());
prompt.push_back(id);
}

View File

@@ -180,8 +180,7 @@ class Model:
extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
if len(extra) == 0 and len(missing_files) > 0:
raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
f"Missing tensors: {missing}")
raise ValueError(f"Missing or incomplete model files: {missing_files}")
else:
raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
f"Missing tensors: {missing}\n"
@@ -529,8 +528,6 @@ class Model:
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
added_vocab = tokenizer.get_added_vocab()
added_tokens_decoder = tokenizer.added_tokens_decoder
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
@@ -540,13 +537,13 @@ class Model:
if token in added_vocab:
# The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
# To avoid unexpected issues - we make sure to normalize non-normalized tokens
if not added_tokens_decoder[i].normalized:
if not tokenizer.added_tokens_decoder[i].normalized:
previous_token = token
token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
if previous_token != token:
logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
if added_tokens_decoder[i].special or self.does_token_look_special(token):
if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
toktypes.append(gguf.TokenType.CONTROL)
else:
# NOTE: this was added for Gemma.
@@ -705,18 +702,6 @@ class Model:
if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
# ref: https://huggingface.co/Xenova/gpt-4o
res = "gpt-4o"
if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
# ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
res = "superbpe"
if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
# ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
res = "trillion"
if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
# ref: https://huggingface.co/inclusionAI/Ling-lite
res = "bailingmoe"
if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
# ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
res = "llama4"
if res is None:
logger.warning("\n")
@@ -1114,6 +1099,13 @@ class BloomModel(Model):
tensors.append((self.map_tensor_name(name), data_torch))
if name == "word_embeddings.weight":
assert self.tensor_names is not None
# TODO: tie them at runtime, don't duplicate in the model file
if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
return tensors
@@ -1611,7 +1603,6 @@ class StableLMModel(Model):
@Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
class LlamaModel(Model):
model_arch = gguf.MODEL_ARCH.LLAMA
undo_permute = True
def set_vocab(self):
try:
@@ -1676,11 +1667,10 @@ class LlamaModel(Model):
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams.get("num_key_value_heads")
if self.undo_permute:
if name.endswith(("q_proj.weight", "q_proj.bias")):
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
if name.endswith(("k_proj.weight", "k_proj.bias")):
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
if name.endswith(("q_proj.weight", "q_proj.bias")):
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
if name.endswith(("k_proj.weight", "k_proj.bias")):
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
# process the experts separately
if name.find("block_sparse_moe.experts") != -1:
@@ -1757,80 +1747,6 @@ class LlamaModel(Model):
raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("Llama4ForConditionalGeneration")
class Llama4Model(LlamaModel):
model_arch = gguf.MODEL_ARCH.LLAMA4
has_vision: bool = False
undo_permute = False
# TODO @ngxson : avoid duplicate this code everywhere by at least support "text_config"
# same with llama, but we need to merge the text_config into the root level of hparams
def __init__(self, *args, **kwargs):
hparams = kwargs["hparams"] if "hparams" in kwargs else Model.load_hparams(args[0])
if "text_config" in hparams:
hparams = {**hparams, **hparams["text_config"]}
kwargs["hparams"] = hparams
super().__init__(*args, **kwargs)
if "vision_config" in hparams:
logger.info("Has vision encoder, but it will be ignored")
self.has_vision = True
# IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
def set_vocab(self):
self._set_vocab_gpt2()
self.gguf_writer.add_add_bos_token(True)
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
name = name.replace("language_model.", "")
name = name.replace("feed_forward.", "mlp.") # a bit hacky for now
name = name.replace(".router.weight", ".gate.weight") # a bit hacky for now
# split the gate_up into gate and up
if "gate_up_proj" in name:
name_up = name.replace("gate_up_proj", "up_proj.weight")
name_gate = name.replace("gate_up_proj", "gate_proj.weight")
dim_half = data_torch.shape[-1] // 2
gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
return [
(self.map_tensor_name(name_gate), gate_proj_weight),
(self.map_tensor_name(name_up), up_proj_weight)
]
if name.endswith("down_proj"):
name += ".weight"
data_torch = data_torch.transpose(-1, -2)
if "multi_modal_projector" in name or "vision_model" in name:
return []
return super().modify_tensors(data_torch, name, bid)
@Model.register("Mistral3ForConditionalGeneration")
class Mistral3Model(LlamaModel):
model_arch = gguf.MODEL_ARCH.LLAMA
# we need to merge the text_config into the root level of hparams
def __init__(self, *args, **kwargs):
hparams = kwargs["hparams"] if "hparams" in kwargs else Model.load_hparams(args[0])
if "text_config" in hparams:
hparams = {**hparams, **hparams["text_config"]}
kwargs["hparams"] = hparams
super().__init__(*args, **kwargs)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
name = name.replace("language_model.", "")
if "multi_modal_projector" in name or "vision_tower" in name:
return []
return super().modify_tensors(data_torch, name, bid)
@Model.register("DeciLMForCausalLM")
class DeciModel(Model):
model_arch = gguf.MODEL_ARCH.DECI
@@ -2335,7 +2251,7 @@ class Qwen2Model(Model):
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
@Model.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
@Model.register("Qwen2VLForConditionalGeneration")
class Qwen2VLModel(Model):
model_arch = gguf.MODEL_ARCH.QWEN2VL
@@ -2459,16 +2375,6 @@ class Qwen2MoeModel(Model):
raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("Qwen3ForCausalLM")
class Qwen3Model(Qwen2Model):
model_arch = gguf.MODEL_ARCH.QWEN3
@Model.register("Qwen3MoeForCausalLM")
class Qwen3MoeModel(Qwen2MoeModel):
model_arch = gguf.MODEL_ARCH.QWEN3MOE
@Model.register("GPT2LMHeadModel")
class GPT2Model(Model):
model_arch = gguf.MODEL_ARCH.GPT2
@@ -2498,6 +2404,10 @@ class GPT2Model(Model):
tensors.append((new_name, data_torch))
# note: GPT2 output is tied to (same as) wte in original model
if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
return tensors
@@ -2827,26 +2737,21 @@ class CodeShellModel(Model):
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(1.0)
_has_tok_embd = False
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
new_name = self.map_tensor_name(name)
# assuming token_embd.weight is seen before output.weight
if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
# even though the tensor file(s) does not contain the word embeddings they are still in the weight map
if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
self.tensor_names.remove("transformer.wte.weight")
elif new_name == tok_embd_name:
self._has_tok_embd = True
tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
return [(new_name, data_torch)]
if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
assert self.tensor_names is not None
if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
# copy tok_embd.weight to output.weight
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
return tensors
@Model.register("InternLM2ForCausalLM")
@@ -3461,7 +3366,7 @@ class Gemma3Model(Model):
# we need to merge the text_config into the root level of hparams
def __init__(self, *args, **kwargs):
hparams = kwargs["hparams"] if "hparams" in kwargs else Model.load_hparams(args[0])
hparams = Model.load_hparams(kwargs["dir_model"])
if "text_config" in hparams:
hparams = {**hparams, **hparams["text_config"]}
kwargs["hparams"] = hparams
@@ -3627,8 +3532,8 @@ class RWKV6Qwen2Model(Rwkv6Model):
head_size = hidden_size // num_attention_heads
rms_norm_eps = self.hparams["rms_norm_eps"]
intermediate_size = self.hparams["intermediate_size"]
time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
time_mix_extra_dim = 64 if hidden_size >= 4096 else 32
time_decay_extra_dim = 128 if hidden_size >= 4096 else 64
# RWKV isn't context limited
self.gguf_writer.add_context_length(1048576)
@@ -3879,6 +3784,8 @@ class MambaModel(Model):
_tok_embd = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
@@ -3888,10 +3795,6 @@ class MambaModel(Model):
logger.debug("A_log --> A ==> " + new_name)
data_torch = -torch.exp(data_torch)
# [4 1 8192 1] -> [4 8192 1 1]
if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
data_torch = data_torch.squeeze()
# assuming token_embd.weight is seen before output.weight
if self._tok_embd is not None and new_name == output_name:
if torch.equal(self._tok_embd, data_torch):
@@ -4495,29 +4398,6 @@ class DeepseekV2Model(Model):
raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("PLMForCausalLM")
class PLMModel(Model):
model_arch = gguf.MODEL_ARCH.PLM
def set_vocab(self):
self._set_vocab_gpt2()
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
self.gguf_writer.add_value_length(hparams["v_head_dim"])
self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
return [(self.map_tensor_name(name), data_torch)]
def prepare_tensors(self):
super().prepare_tensors()
@Model.register("T5WithLMHeadModel")
@Model.register("T5ForConditionalGeneration")
@Model.register("MT5ForConditionalGeneration")
@@ -5206,105 +5086,6 @@ class GraniteMoeModel(GraniteModel):
return super().modify_tensors(data_torch, name, bid)
@Model.register("BailingMoeForCausalLM")
class BailingMoeModel(Model):
model_arch = gguf.MODEL_ARCH.BAILINGMOE
def set_vocab(self):
self._set_vocab_gpt2()
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(rope_dim)
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
self.gguf_writer.add_expert_weights_scale(1.0)
self.gguf_writer.add_expert_count(hparams["num_experts"])
self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
_experts: list[dict[str, Tensor]] | None = None
@staticmethod
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
if n_head_kv is not None and n_head != n_head_kv:
n_head = n_head_kv
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams.get("num_key_value_heads")
n_embd = self.hparams["hidden_size"]
head_dim = self.hparams.get("head_dim") or n_embd // n_head
output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
if name.endswith("attention.dense.weight"):
return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
elif name.endswith("query_key_value.weight"):
q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
return [
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
]
elif name.find("mlp.experts") != -1:
n_experts = self.hparams["num_experts"]
assert bid is not None
tensors: list[tuple[str, Tensor]] = []
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
# merge the experts into a single 3d tensor
for w_name in ["down_proj", "gate_proj", "up_proj"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
return tensors
new_name = self.map_tensor_name(name)
if new_name == output_name and self.hparams.get("norm_head"):
data_torch = data_torch.float()
data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
return [(new_name, data_torch)]
def prepare_tensors(self):
super().prepare_tensors()
if self._experts is not None:
# flatten `list[dict[str, Tensor]]` into `list[str]`
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("ChameleonForConditionalGeneration")
@Model.register("ChameleonForCausalLM") # obsolete
class ChameleonModel(Model):
@@ -5558,7 +5339,7 @@ def main() -> None:
logger.error(f"Model {model_architecture} is not supported")
sys.exit(1)
model_instance = model_class(dir_model, output_type, fname_out,
model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
eager=args.no_lazy,
metadata_override=args.metadata, model_name=args.model_name,

View File

@@ -110,10 +110,6 @@ models = [
{"name": "deepseek-v3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-V3"},
{"name": "deepseek-r1-qwen", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"},
{"name": "gpt-4o", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Xenova/gpt-4o", },
{"name": "superbpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k", },
{"name": "trillion", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/trillionlabs/Trillion-7B-preview", },
{"name": "bailingmoe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-lite", },
{"name": "llama4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct", },
]

View File

@@ -145,13 +145,8 @@ A Snapdragon X Elite device with Windows 11 Arm64 is used. Make sure the followi
* Clang 19
* Ninja
* Visual Studio 2022
* Powershell 7
Visual Studio provides necessary headers and libraries although it is not directly used for building.
Alternatively, Visual Studio Build Tools can be installed instead of the full Visual Studio.
Powershell 7 is used for the following commands.
If an older version of Powershell is used, these commands may not work as they are.
Powershell is used for the following instructions.
### I. Setup Environment
@@ -201,9 +196,10 @@ ninja
## Known Issues
- Currently OpenCL backend does not work on Adreno 6xx GPUs.
- Qwen2.5 0.5B model produces gibberish output with Adreno kernels.
## TODO
- Fix Qwen2.5 0.5B
- Optimization for Q6_K
- Support and optimization for Q4_K

View File

@@ -20,7 +20,7 @@
**oneAPI** is an open ecosystem and a standard-based specification, supporting multiple architectures including but not limited to intel CPUs, GPUs and FPGAs. The key components of the oneAPI ecosystem include:
- **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers.
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. Intel oneMKL, oneMath and oneDNN)*.
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL and oneDNN)*.
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over intel iGPUs and dGPUs.
- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets.
@@ -227,19 +227,30 @@ Upon a successful installation, SYCL is enabled for the available intel devices,
**oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.
**oneDNN**: The current oneDNN releases *(shipped with the oneAPI base-toolkit)* do not include the NVIDIA backend. Therefore, oneDNN must be compiled from source to enable the NVIDIA target:
**oneMKL for cuBlas**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* do not contain the cuBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *cuBLAS* backend enabled is thus required to run it on Nvidia GPUs.
```sh
git clone https://github.com/oneapi-src/oneDNN.git
cd oneDNN
cmake -GNinja -Bbuild-nvidia -DDNNL_CPU_RUNTIME=DPCPP -DDNNL_GPU_RUNTIME=DPCPP -DDNNL_GPU_VENDOR=NVIDIA -DONEDNN_BUILD_GRAPH=OFF -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
cmake --build build-nvidia --config Release
git clone https://github.com/oneapi-src/oneMKL
cd oneMKL
cmake -B buildWithCublas -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_CUBLAS_BACKEND=ON -DTARGET_DOMAINS=blas
cmake --build buildWithCublas --config Release
```
- **Adding support to AMD GPUs**
**oneAPI Plugin**: In order to enable SYCL support on AMD GPUs, please install the [Codeplay oneAPI Plugin for AMD GPUs](https://developer.codeplay.com/products/oneapi/amd/download). As with Nvidia GPUs, the user should also make sure the plugin version matches the installed base toolkit.
**oneMKL for rocBlas**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* doesn't contain the rocBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *rocBLAS* backend enabled is thus required to run it on AMD GPUs.
```sh
git clone https://github.com/oneapi-src/oneMKL
cd oneMKL
# Find your HIPTARGET with rocminfo, under the key 'Name:'
cmake -B buildWithrocBLAS -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_ROCBLAS_BACKEND=ON -DHIPTARGETS=${HIPTARGET} -DTARGET_DOMAINS=blas
cmake --build buildWithrocBLAS --config Release
```
3. **Verify installation and environment**
In order to check the available SYCL devices on the machine, please use the `sycl-ls` command.
@@ -302,39 +313,37 @@ cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -
cmake --build build --config Release -j -v
```
It is possible to come across some precision issues when running tests that stem from using faster
instructions, which can be circumvented by setting the environment variable `SYCL_PROGRAM_COMPILE_OPTIONS`
as `-cl-fp32-correctly-rounded-divide-sqrt`
#### Nvidia GPU
The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.
```sh
# Export relevant ENV variables
export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LD_LIBRARY_PATH
export LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LIBRARY_PATH
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithCublas/include:$CPLUS_INCLUDE_DIR
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/include:$CPLUS_INCLUDE_DIR
# Build LLAMA with Nvidia BLAS acceleration through SYCL
# Setting GGML_SYCL_DEVICE_ARCH is optional but can improve performance
GGML_SYCL_DEVICE_ARCH=sm_80 # Example architecture
# Option 1: Use FP32 (recommended for better performance in most cases)
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DDNNL_DIR=/path/to/oneDNN/build-nvidia/install/lib/cmake/dnnl
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
# Option 2: Use FP16
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON -DDNNL_DIR=/path/to/oneDNN/build-nvidia/install/lib/cmake/dnnl
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON
# build all binary
cmake --build build --config Release -j -v
```
It is possible to come across some precision issues when running tests that stem from using faster
instructions, which can be circumvented by passing the `-fno-fast-math` flag to the compiler.
#### AMD GPU
The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.
```sh
# Export relevant ENV variables
export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithrocBLAS/lib:$LD_LIBRARY_PATH
export LIBRARY_PATH=/path/to/oneMKL/buildWithrocBLAS/lib:$LIBRARY_PATH
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithrocBLAS/include:$CPLUS_INCLUDE_DIR
# Build LLAMA with rocBLAS acceleration through SYCL
## AMD
@@ -425,13 +434,13 @@ Examples:
- Use device 0:
```sh
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
```
- Use multiple devices:
```sh
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
```
*Notes:*
@@ -475,12 +484,6 @@ b. Enable oneAPI running environment:
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
```
- if you are using Powershell, enable the runtime environment with the following:
```
cmd.exe "/K" '"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" && powershell'
```
c. Verify installation
In the oneAPI command line, run the following to print the available SYCL devices:
@@ -511,13 +514,13 @@ You could download the release package for Windows directly, which including bin
Choose one of following methods to build from source code.
#### 1. Script
1. Script
```sh
.\examples\sycl\win-build-sycl.bat
```
#### 2. CMake
2. CMake
On the oneAPI command line window, step into the llama.cpp main directory and run the following:
@@ -546,84 +549,13 @@ cmake --preset x64-windows-sycl-debug
cmake --build build-x64-windows-sycl-debug -j --target llama-cli
```
#### 3. Visual Studio
3. Visual Studio
You have two options to use Visual Studio to build llama.cpp:
- As CMake Project using CMake presets.
- Creating a Visual Studio solution to handle the project.
**Note**:
All following commands are executed in PowerShell.
##### - Open as a CMake Project
You can use Visual Studio to open the `llama.cpp` folder directly as a CMake project. Before compiling, select one of the SYCL CMake presets:
- `x64-windows-sycl-release`
- `x64-windows-sycl-debug`
You can use Visual Studio to open llama.cpp folder as a CMake project. Choose the sycl CMake presets (`x64-windows-sycl-release` or `x64-windows-sycl-debug`) before you compile the project.
*Notes:*
- For a minimal experimental setup, you can build only the inference executable using:
```Powershell
cmake --build build --config Release -j --target llama-cli
```
##### - Generating a Visual Studio Solution
You can use Visual Studio solution to build and work on llama.cpp on Windows. You need to convert the CMake Project into a `.sln` file.
If you want to use the Intel C++ Compiler for the entire `llama.cpp` project, run the following command:
```Powershell
cmake -B build -G "Visual Studio 17 2022" -T "Intel C++ Compiler 2025" -A x64 -DGGML_SYCL=ON -DCMAKE_BUILD_TYPE=Release
```
If you prefer to use the Intel C++ Compiler only for `ggml-sycl`, ensure that `ggml` and its backend libraries are built as shared libraries ( i.e. `-DBUILD_SHARED_LIBRARIES=ON`, this is default behaviour):
```Powershell
cmake -B build -G "Visual Studio 17 2022" -A x64 -DGGML_SYCL=ON -DCMAKE_BUILD_TYPE=Release \
-DSYCL_INCLUDE_DIR="C:\Program Files (x86)\Intel\oneAPI\compiler\latest\include" \
-DSYCL_LIBRARY_DIR="C:\Program Files (x86)\Intel\oneAPI\compiler\latest\lib"
```
If successful the build files have been written to: *path/to/llama.cpp/build*
Open the project file **build/llama.cpp.sln** with Visual Studio.
Once the Visual Studio solution is created, follow these steps:
1. Open the solution in Visual Studio.
2. Right-click on `ggml-sycl` and select **Properties**.
3. In the left column, expand **C/C++** and select **DPC++**.
4. In the right panel, find **Enable SYCL Offload** and set it to `Yes`.
5. Apply the changes and save.
*Navigation Path:*
```
Properties -> C/C++ -> DPC++ -> Enable SYCL Offload (Yes)
```
Now, you can build `llama.cpp` with the SYCL backend as a Visual Studio project.
To do it from menu: `Build -> Build Solution`.
Once it is completed, final results will be in **build/Release/bin**
*Additional Note*
- You can avoid specifying `SYCL_INCLUDE_DIR` and `SYCL_LIBRARY_DIR` in the CMake command by setting the environment variables:
- `SYCL_INCLUDE_DIR_HINT`
- `SYCL_LIBRARY_DIR_HINT`
- Above instruction has been tested with Visual Studio 17 Community edition and oneAPI 2025.0. We expect them to work also with future version if the instructions are adapted accordingly.
- In case of a minimal experimental setup, the user can build the inference executable only through `cmake --build build --config Release -j --target llama-cli`.
### III. Run the inference
@@ -697,13 +629,13 @@ Examples:
- Use device 0:
```
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm none -mg 0
build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm none -mg 0
```
- Use multiple devices:
```
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
```

View File

@@ -132,14 +132,12 @@ You may find the official downloads here: [NVIDIA developer site](https://develo
#### Compile and run inside a Fedora Toolbox Container
We also have a [guide](./backend/CUDA-FEDORA.md) for setting up CUDA toolkit in a Fedora [toolbox container](https://containertoolbx.org/).
We also have a [guide](./cuda-fedora.md) for setting up CUDA toolkit in a Fedora [toolbox container](https://containertoolbx.org/).
**Recommended for:**
- ***Necessary*** for users of [Atomic Desktops for Fedora](https://fedoraproject.org/atomic-desktops/); such as: [Silverblue](https://fedoraproject.org/atomic-desktops/silverblue/) and [Kinoite](https://fedoraproject.org/atomic-desktops/kinoite/).
- (there are no supported CUDA packages for these systems)
- ***Necessary*** for users that have a host that is not a: [Supported Nvidia CUDA Release Platform](https://developer.nvidia.com/cuda-downloads).
- (for example, you may have [Fedora 42 Beta](https://fedoramagazine.org/announcing-fedora-linux-42-beta/) as your your host operating system)
- ***Convenient*** For those running [Fedora Workstation](https://fedoraproject.org/workstation/) or [Fedora KDE Plasma Desktop](https://fedoraproject.org/spins/kde), and want to keep their host system clean.
- ***Particularly*** *convenient* for users of [Atomic Desktops for Fedora](https://fedoraproject.org/atomic-desktops/); such as: [Silverblue](https://fedoraproject.org/atomic-desktops/silverblue/) and [Kinoite](https://fedoraproject.org/atomic-desktops/kinoite/).
- Toolbox is installed by default: [Fedora Workstation](https://fedoraproject.org/workstation/) or [Fedora KDE Plasma Desktop](https://fedoraproject.org/spins/kde).
- *Optionally* toolbox packages are available: [Arch Linux](https://archlinux.org/), [Red Hat Enterprise Linux >= 8.5](https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux), or [Ubuntu](https://ubuntu.com/download)
@@ -191,7 +189,7 @@ The following compilation options are also available to tweak performance:
| Option | Legal values | Default | Description |
|-------------------------------|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GGML_CUDA_FORCE_MMQ | Boolean | false | Force the use of custom matrix multiplication kernels for quantized models instead of FP16 cuBLAS even if there is no int8 tensor core implementation available (affects V100, CDNA and RDNA3+). MMQ kernels are enabled by default on GPUs with int8 tensor core support. With MMQ force enabled, speed for large batch sizes will be worse but VRAM consumption will be lower. |
| GGML_CUDA_FORCE_MMQ | Boolean | false | Force the use of custom matrix multiplication kernels for quantized models instead of FP16 cuBLAS even if there is no int8 tensor core implementation available (affects V100, RDNA3). MMQ kernels are enabled by default on GPUs with int8 tensor core support. With MMQ force enabled, speed for large batch sizes will be worse but VRAM consumption will be lower. |
| GGML_CUDA_FORCE_CUBLAS | Boolean | false | Force the use of FP16 cuBLAS instead of custom matrix multiplication kernels for quantized models |
| GGML_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
| GGML_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
@@ -218,7 +216,6 @@ By default, all supported compute capabilities are enabled. To customize this be
```bash
cmake -B build -DGGML_MUSA=ON -DMUSA_ARCHITECTURES="21"
cmake --build build --config Release
```
This configuration enables only compute capability `2.1` (MTT S80) during compilation, which can help reduce compilation time.
@@ -436,116 +433,6 @@ llama_new_context_with_model: CANN compute buffer size = 1260.81 MiB
For detailed info, such as model/device supports, CANN install, please refer to [llama.cpp for CANN](./backend/CANN.md).
## Arm® KleidiAI™
KleidiAI is a library of optimized microkernels for AI workloads, specifically designed for Arm CPUs. These microkernels enhance performance and can be enabled for use by the CPU backend.
To enable KleidiAI, go to the llama.cpp directory and build using CMake
```bash
cmake -B build -DGGML_CPU_KLEIDIAI=ON
cmake --build build --config Release
```
You can verify that KleidiAI is being used by running
```bash
./build/bin/llama-cli -m PATH_TO_MODEL -p "What is a car?"
```
If KleidiAI is enabled, the ouput will contain a line similar to:
```
load_tensors: CPU_KLEIDIAI model buffer size = 3474.00 MiB
```
KleidiAI's microkernels implement optimized tensor operations using Arm CPU features such as dotprod, int8mm and SME. llama.cpp selects the most efficient kernel based on runtime CPU feature detection. However, on platforms that support SME, you must manually enable SME microkernels by setting the environment variable `GGML_KLEIDIAI_SME=1`.
Depending on your build target, other higher priority backends may be enabled by default. To ensure the CPU backend is used, you must disable the higher priority backends either at compile time, e.g. -DGGML_METAL=OFF, or during run-time using the command line option `--device none`.
## OpenCL
This provides GPU acceleration through OpenCL on recent Adreno GPU.
More information about OpenCL backend can be found in [OPENCL.md](./backend/OPENCL.md) for more information.
### Android
Assume NDK is available in `$ANDROID_NDK`. First, install OpenCL headers and ICD loader library if not available,
```sh
mkdir -p ~/dev/llm
cd ~/dev/llm
git clone https://github.com/KhronosGroup/OpenCL-Headers && \
cd OpenCL-Headers && \
cp -r CL $ANDROID_NDK/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include
cd ~/dev/llm
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader && \
cd OpenCL-ICD-Loader && \
mkdir build_ndk && cd build_ndk && \
cmake .. -G Ninja -DCMAKE_BUILD_TYPE=Release \
-DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \
-DOPENCL_ICD_LOADER_HEADERS_DIR=$ANDROID_NDK/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include \
-DANDROID_ABI=arm64-v8a \
-DANDROID_PLATFORM=24 \
-DANDROID_STL=c++_shared && \
ninja && \
cp libOpenCL.so $ANDROID_NDK/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/lib/aarch64-linux-android
```
Then build llama.cpp with OpenCL enabled,
```sh
cd ~/dev/llm
git clone https://github.com/ggml-org/llama.cpp && \
cd llama.cpp && \
mkdir build-android && cd build-android
cmake .. -G Ninja \
-DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \
-DANDROID_ABI=arm64-v8a \
-DANDROID_PLATFORM=android-28 \
-DBUILD_SHARED_LIBS=OFF \
-DGGML_OPENCL=ON
ninja
```
### Windows Arm64
First, install OpenCL headers and ICD loader library if not available,
```powershell
mkdir -p ~/dev/llm
cd ~/dev/llm
git clone https://github.com/KhronosGroup/OpenCL-Headers && cd OpenCL-Headers
mkdir build && cd build
cmake .. -G Ninja `
-DBUILD_TESTING=OFF `
-DOPENCL_HEADERS_BUILD_TESTING=OFF `
-DOPENCL_HEADERS_BUILD_CXX_TESTS=OFF `
-DCMAKE_INSTALL_PREFIX="$HOME/dev/llm/opencl"
cmake --build . --target install
cd ~/dev/llm
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader && cd OpenCL-ICD-Loader
mkdir build && cd build
cmake .. -G Ninja `
-DCMAKE_BUILD_TYPE=Release `
-DCMAKE_PREFIX_PATH="$HOME/dev/llm/opencl" `
-DCMAKE_INSTALL_PREFIX="$HOME/dev/llm/opencl"
cmake --build . --target install
```
Then build llama.cpp with OpenCL enabled,
```powershell
cmake .. -G Ninja `
-DCMAKE_TOOLCHAIN_FILE="$HOME/dev/llm/llama.cpp/cmake/arm64-windows-llvm.cmake" `
-DCMAKE_BUILD_TYPE=Release `
-DCMAKE_PREFIX_PATH="$HOME/dev/llm/opencl" `
-DBUILD_SHARED_LIBS=OFF `
-DGGML_OPENCL=ON
ninja
```
## Android
To read documentation for how to build on Android, [click here](./android.md)

View File

@@ -14,7 +14,9 @@ In this guide we setup [Nvidia CUDA](https://docs.nvidia.com/cuda/) in a toolbox
- [Creating a Fedora Toolbox Environment](#creating-a-fedora-toolbox-environment)
- [Installing Essential Development Tools](#installing-essential-development-tools)
- [Adding the CUDA Repository](#adding-the-cuda-repository)
- [Installing Nvidia Driver Libraries](#installing-nvidia-driver-libraries)
- [Installing `nvidia-driver-libs`](#installing-nvidia-driver-libs)
- [Manually Resolving Package Conflicts](#manually-resolving-package-conflicts)
- [Finalizing the Installation of `nvidia-driver-libs`](#finalizing-the-installation-of-nvidia-driver-libs)
- [Installing the CUDA Meta-Package](#installing-the-cuda-meta-package)
- [Configuring the Environment](#configuring-the-environment)
- [Verifying the Installation](#verifying-the-installation)
@@ -65,7 +67,7 @@ This guide focuses on Fedora hosts, but with small adjustments, it can work for
sudo dnf distro-sync
```
2. **Install **Vim** the default text editor (Optional):**
2. **Install the Default Text Editor (Optional):**
```bash
sudo dnf install vim-default-editor --allowerasing
@@ -95,48 +97,36 @@ After adding the repository, synchronize the package manager again:
sudo dnf distro-sync
```
## Installing Nvidia Driver Libraries
## Installing `nvidia-driver-libs` and `nvidia-driver-cuda-libs`
First, we need to detect if the host is supplying the [NVIDIA driver libraries into the toolbox](https://github.com/containers/toolbox/blob/main/src/pkg/nvidia/nvidia.go):
We need to detect if the host is supplying the [NVIDIA driver libraries into the toolbox](https://github.com/containers/toolbox/blob/main/src/pkg/nvidia/nvidia.go).
```bash
ls -la /usr/lib64/libcuda.so.1
```
### If *`libcuda.so.1`* is missing:
```
ls: cannot access '/usr/lib64/libcuda.so.1': No such file or directory
```
**Explanation:**
The host dose not supply the CUDA drivers, **install them now:**
#### Install the Nvidia Driver Libraries on Guest:
- `nvidia-driver-libs` and `nvidia-driver-cuda-libs` contains necessary NVIDIA driver libraries required by CUDA,
on hosts with NVIDIA drivers installed the Fedora Container will supply the host libraries.
### Install Nvidia Driver Libraries on Guest (if `libcuda.so.1` was NOT found).
```bash
sudo dnf install nvidia-driver-cuda nvidia-driver-libs nvidia-driver-cuda-libs nvidia-persistenced
sudo dnf install nvidia-driver-libs nvidia-driver-cuda-libs
```
### If *`libcuda.so.1`* exists:
```
lrwxrwxrwx. 1 root root 21 Mar 24 11:26 /usr/lib64/libcuda.so.1 -> libcuda.so.570.133.07
```
### Manually Updating the RPM database for host-supplied NVIDIA drivers (if `libcuda.so.1` was found).
**Explanation:**
The host is supply the CUDA drivers, **we need to update the guest RPM Database accordingly:**
If the installation fails due to conflicts, we'll manually download and install the required packages, excluding conflicting files.
#### Update the Toolbox RPM Database to include the Host-Supplied Libraries:
Note: we do not actually install the libraries, we just update the DB so that the guest system knows they are supplied by the host.
##### 1. Download `nvidia-` parts that are supplied by the host RPM's (with dependencies)
#### 1. Download `nvidia-driver-libs` and `nvidia-driver-cuda-libs` RPM's (with dependencies)
```bash
sudo dnf download --destdir=/tmp/nvidia-driver-libs --resolve --arch x86_64 nvidia-driver-cuda nvidia-driver-libs nvidia-driver-cuda-libs nvidia-persistenced
sudo dnf download --destdir=/tmp/nvidia-driver-libs --resolve --arch x86_64 nvidia-driver-libs nvidia-driver-cuda-libs
```
##### 2. Update the RPM database to assume the installation of these packages.
#### 2. Update the RPM database to assume the installation of these packages.
```bash
sudo rpm --install --verbose --hash --justdb /tmp/nvidia-driver-libs/*
@@ -144,26 +134,23 @@ sudo rpm --install --verbose --hash --justdb /tmp/nvidia-driver-libs/*
**Note:**
- The `--justdb` option only updates the RPM database, without touching the filesystem elsewhere.
- The `--justdb` option only updates the RPM database, without touching the filesystem.
##### Check that the RPM Database has been correctly updated:
**Note:** This is the same command as in the *"Install the Nvidia Driver Libraries on Guest"* for if *`libcuda.so.1`* was missing.
#### Finalizing the Installation of `nvidia-driver-libs` and `nvidia-driver-cuda-libs`
After manually installing the dependencies, run:
```bash
sudo dnf install nvidia-driver-cuda nvidia-driver-libs nvidia-driver-cuda-libs nvidia-persistenced
sudo dnf install nvidia-driver-libs nvidia-driver-cuda-libs
```
*(this time it will not install anything, as the database things that these packages are already installed)*
You should receive a message indicating the package is already installed:
```
Updating and loading repositories:
Repositories loaded.
Package "nvidia-driver-cuda-3:570.124.06-1.fc41.x86_64" is already installed.
Package "nvidia-driver-libs-3:570.124.06-1.fc41.x86_64" is already installed.
Package "nvidia-driver-cuda-libs-3:570.124.06-1.fc41.x86_64" is already installed.
Package "nvidia-persistenced-3:570.124.06-1.fc41.x86_64" is already installed.
Package "nvidia-driver-libs-3:570.86.10-1.fc41.x86_64" is already installed.
Package "nvidia-driver-cuda-libs-3:570.86.10-1.fc41.x86_64" is already installed.
Nothing to do.
```
@@ -220,9 +207,9 @@ You should see output similar to:
```
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2025 NVIDIA Corporation
Built on Fri_Feb_21_20:23:50_PST_2025
Cuda compilation tools, release 12.8, V12.8.93
Build cuda_12.8.r12.8/compiler.35583870_0
Built on Wed_Jan_15_19:20:09_PST_2025
Cuda compilation tools, release 12.8, V12.8.61
Build cuda_12.8.r12.8/compiler.35404655_0
```
This output confirms that the CUDA compiler is accessible and indicates the installed version.

View File

@@ -9,13 +9,6 @@ brew install llama.cpp
```
The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggml-org/llama.cpp/discussions/7668
## MacPorts
```sh
sudo port install llama.cpp
```
see also: https://ports.macports.org/port/llama.cpp/details/
## Nix
On Mac and Linux, the Nix package manager can be used via

View File

@@ -38,7 +38,7 @@ int main(int argc, char ** argv) {
llama_model_params model_params = common_model_params_to_llama(params);
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params);
if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
@@ -59,24 +59,17 @@ int main(int argc, char ** argv) {
const int32_t n_kv_max = llama_n_ctx(ctx);
llama_batch batch = llama_batch_init(n_kv_max, 0, 1);
llama_batch_ext * batch = llama_batch_ext_init(n_kv_max, 1);
// decode in batches of ctx_params.n_batch tokens
auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) {
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
auto decode_helper = [](llama_context * ctx, llama_batch_ext * batch, int32_t n_batch) {
const int32_t n_batch_tokens = llama_batch_ext_get_n_tokens(batch);
for (int32_t i = 0; i < (int32_t) n_batch_tokens; i += n_batch) {
const int32_t n_tokens = std::min(n_batch, (int32_t) (n_batch_tokens - i));
llama_batch batch_view = {
n_tokens,
batch.token + i,
nullptr,
batch.pos + i,
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
};
llama_batch_ext_ptr batch_view = llama_batch_ext_ptr(llama_batch_ext_get_view(batch, i, n_tokens));
const int ret = llama_decode(ctx, batch_view);
const int ret = llama_decode_ext(ctx, batch_view.get());
if (ret != 0) {
LOG_ERR("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
return false;
@@ -91,7 +84,8 @@ int main(int argc, char ** argv) {
// warm up
{
for (int i = 0; i < 16; ++i) {
common_batch_add(batch, 0, i, { 0 }, false);
const llama_seq_id seq_id = 0;
llama_batch_ext_add_text(batch, 0, i, &seq_id, 1, false);
}
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
@@ -121,14 +115,14 @@ int main(int argc, char ** argv) {
continue;
}
common_batch_clear(batch);
llama_batch_ext_clear(batch);
for (int i = 0; i < pp; ++i) {
for (int j = 0; j < (is_pp_shared ? 1 : pl); ++j) {
common_batch_add(batch, 0, i, { j }, false);
llama_batch_ext_add_text(batch, 0, i, &j, 1, false);
}
}
batch.logits[batch.n_tokens - 1] = true;
llama_batch_ext_set_output_last(batch);
const auto t_pp_start = ggml_time_us();
@@ -150,10 +144,10 @@ int main(int argc, char ** argv) {
const auto t_tg_start = ggml_time_us();
for (int i = 0; i < tg; ++i) {
common_batch_clear(batch);
llama_batch_ext_clear(batch);
for (int j = 0; j < pl; ++j) {
common_batch_add(batch, 0, pp + i, { j }, true);
llama_batch_ext_add_text(batch, 0, pp + i, &j, 1, true);
}
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
@@ -191,7 +185,7 @@ int main(int argc, char ** argv) {
LOG("\n");
llama_perf_context_print(ctx);
llama_batch_free(batch);
llama_batch_ext_free(batch);
llama_free(ctx);
llama_model_free(model);

View File

@@ -41,7 +41,7 @@ int main(int argc, char ** argv) {
llama_model_params model_params = common_model_params_to_llama(params);
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: error: unable to load model\n" , __func__);
@@ -102,7 +102,7 @@ int main(int argc, char ** argv) {
// create a llama_batch
// we use this object to submit token data for decoding
llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t) n_parallel), 0, n_parallel);
llama_batch_ext * batch = llama_batch_ext_init(std::max(tokens_list.size(), (size_t) n_parallel), n_parallel);
std::vector<llama_seq_id> seq_ids(n_parallel, 0);
for (int32_t i = 0; i < n_parallel; ++i) {
@@ -111,12 +111,12 @@ int main(int argc, char ** argv) {
// evaluate the initial prompt
for (size_t i = 0; i < tokens_list.size(); ++i) {
common_batch_add(batch, tokens_list[i], i, seq_ids, false);
llama_batch_ext_add_text(batch, tokens_list[i], i, seq_ids.data(), seq_ids.size(), false);
}
GGML_ASSERT(batch.n_tokens == (int) tokens_list.size());
GGML_ASSERT(llama_batch_ext_get_n_tokens(batch) == (int) tokens_list.size());
if (llama_model_has_encoder(model)) {
if (llama_encode(ctx, batch)) {
if (llama_encode_ext(ctx, batch)) {
LOG_ERR("%s : failed to eval\n", __func__);
return 1;
}
@@ -126,14 +126,14 @@ int main(int argc, char ** argv) {
decoder_start_token_id = llama_vocab_bos(vocab);
}
common_batch_clear(batch);
common_batch_add(batch, decoder_start_token_id, 0, seq_ids, false);
llama_batch_ext_clear(batch);
llama_batch_ext_add_text(batch, decoder_start_token_id, 0, seq_ids.data(), seq_ids.size(), false);
}
// llama_decode will output logits only for the last token of the prompt
batch.logits[batch.n_tokens - 1] = true;
llama_batch_ext_set_output_last(batch);
if (llama_decode(ctx, batch) != 0) {
if (llama_decode_ext(ctx, batch) != 0) {
LOG_ERR("%s: llama_decode() failed\n", __func__);
return 1;
}
@@ -155,16 +155,16 @@ int main(int argc, char ** argv) {
// remember the batch index of the last token for each parallel sequence
// we need this to determine which logits to sample from
std::vector<int32_t> i_batch(n_parallel, batch.n_tokens - 1);
std::vector<int32_t> i_batch(n_parallel, llama_batch_ext_get_n_tokens(batch) - 1);
int n_cur = batch.n_tokens;
int n_cur = llama_batch_ext_get_n_tokens(batch);
int n_decode = 0;
const auto t_main_start = ggml_time_us();
while (n_cur <= n_predict) {
// prepare the next batch
common_batch_clear(batch);
llama_batch_ext_clear(batch);
// sample the next token for each parallel sequence / stream
for (int32_t i = 0; i < n_parallel; ++i) {
@@ -193,23 +193,23 @@ int main(int argc, char ** argv) {
streams[i] += common_token_to_piece(ctx, new_token_id);
i_batch[i] = batch.n_tokens;
i_batch[i] = llama_batch_ext_get_n_tokens(batch);
// push this new token for next evaluation
common_batch_add(batch, new_token_id, n_cur, { i }, true);
llama_batch_ext_add_text(batch, new_token_id, n_cur, &i, 1, true);
n_decode += 1;
}
// all streams are finished
if (batch.n_tokens == 0) {
if (llama_batch_ext_get_n_tokens(batch) == 0) {
break;
}
n_cur += 1;
// evaluate the current batch with the transformer model
if (llama_decode(ctx, batch)) {
if (llama_decode_ext(ctx, batch)) {
LOG_ERR("%s : failed to eval, return code %d\n", __func__, 1);
return 1;
}
@@ -234,7 +234,7 @@ int main(int argc, char ** argv) {
fprintf(stderr, "\n");
llama_batch_free(batch);
llama_batch_ext_free(batch);
llama_sampler_free(smpl);
llama_free(ctx);

View File

@@ -343,7 +343,8 @@ static bool cb_eval(struct ggml_tensor * t, bool ask, void * user_data) {
static bool get_hidden_layers(llama_context * ctx, std::vector<llama_token> & tokens) {
llama_kv_self_clear(ctx);
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size()))) {
auto batch = llama_batch_ext_ptr::init_from_text(tokens.data(), tokens.size(), 0, 0, true);
if (llama_decode_ext(ctx, batch.get())) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return false;
}

View File

@@ -26,14 +26,14 @@ static std::vector<std::string> split_lines(const std::string & s, const std::st
return lines;
}
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
static void batch_add_seq(common_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
size_t n_tokens = tokens.size();
for (size_t i = 0; i < n_tokens; i++) {
common_batch_add(batch, tokens[i], i, { seq_id }, true);
batch.add_text(tokens[i], i, seq_id, true);
}
}
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd, int embd_norm) {
static void batch_decode(llama_context * ctx, common_batch & batch, float * output, int n_seq, int n_embd, int embd_norm) {
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
const struct llama_model * model = llama_get_model(ctx);
@@ -41,21 +41,21 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
llama_kv_self_clear(ctx);
// run model
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, llama_batch_ext_get_n_tokens(batch.get()), n_seq);
if (llama_model_has_encoder(model) && !llama_model_has_decoder(model)) {
// encoder-only model
if (llama_encode(ctx, batch) < 0) {
if (llama_encode_ext(ctx, batch.get()) < 0) {
LOG_ERR("%s : failed to encode\n", __func__);
}
} else if (!llama_model_has_encoder(model) && llama_model_has_decoder(model)) {
// decoder-only model
if (llama_decode(ctx, batch) < 0) {
if (llama_decode_ext(ctx, batch.get()) < 0) {
LOG_ERR("%s : failed to decode\n", __func__);
}
}
for (int i = 0; i < batch.n_tokens; i++) {
if (!batch.logits[i]) {
for (int i = 0; i < llama_batch_ext_get_n_tokens(batch.get()); i++) {
if (!batch.tokens[i].logits) {
continue;
}
@@ -69,8 +69,8 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
GGML_ASSERT(embd != NULL && "failed to get token embeddings");
} else {
// try to get sequence embeddings - supported only when pooling_type is not NONE
embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
embd_pos = batch.seq_id[i][0];
embd = llama_get_embeddings_seq(ctx, batch.tokens[i].seq_id);
embd_pos = batch.tokens[i].seq_id;
GGML_ASSERT(embd != NULL && "failed to get sequence embeddings");
}
@@ -171,7 +171,7 @@ int main(int argc, char ** argv) {
// initialize batch
const int n_prompts = prompts.size();
struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
struct common_batch batch = common_batch(n_batch, 1);
// count number of embeddings
int n_embd_count = 0;
@@ -198,12 +198,12 @@ int main(int argc, char ** argv) {
const uint64_t n_toks = inp.size();
// encode if at capacity
if (batch.n_tokens + n_toks > n_batch) {
if (batch.get_n_tokens() + n_toks > n_batch) {
float * out = emb + e * n_embd;
batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
e += pooling_type == LLAMA_POOLING_TYPE_NONE ? batch.n_tokens : s;
e += pooling_type == LLAMA_POOLING_TYPE_NONE ? batch.get_n_tokens() : s;
s = 0;
common_batch_clear(batch);
batch.clear();
}
// add to batch
@@ -319,7 +319,6 @@ int main(int argc, char ** argv) {
llama_perf_context_print(ctx);
// clean up
llama_batch_free(batch);
llama_backend_free();
return 0;

View File

@@ -134,7 +134,8 @@ static bool run(llama_context * ctx, const common_params & params) {
std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, add_bos);
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size()))) {
auto batch = llama_batch_ext_ptr::init_from_text(tokens.data(), tokens.size(), 0, 0, true);
if (llama_decode_ext(ctx, batch.get())) {
LOG_ERR("%s : failed to eval\n", __func__);
return false;
}

View File

@@ -421,7 +421,7 @@ int main(int argc, char ** argv) {
g_verbose = (params.verbosity > 1);
try {
lora_merge_ctx ctx(params.model.path, params.lora_adapters, params.out_file, params.cpuparams.n_threads);
lora_merge_ctx ctx(params.model, params.lora_adapters, params.out_file, params.cpuparams.n_threads);
ctx.run_merge();
} catch (const std::exception & err) {
fprintf(stderr, "%s\n", err.what());

View File

@@ -408,6 +408,8 @@ static void gguf_merge(const split_params & split_params) {
exit(EXIT_FAILURE);
}
std::ofstream fout(split_params.output.c_str(), std::ios::binary);
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
auto * ctx_out = gguf_init_empty();
@@ -451,6 +453,7 @@ static void gguf_merge(const split_params & split_params) {
gguf_free(ctx_gguf);
ggml_free(ctx_meta);
gguf_free(ctx_out);
fout.close();
exit(EXIT_FAILURE);
}
@@ -463,6 +466,7 @@ static void gguf_merge(const split_params & split_params) {
gguf_free(ctx_gguf);
ggml_free(ctx_meta);
gguf_free(ctx_out);
fout.close();
exit(EXIT_FAILURE);
}
@@ -475,6 +479,7 @@ static void gguf_merge(const split_params & split_params) {
gguf_free(ctx_gguf);
ggml_free(ctx_meta);
gguf_free(ctx_out);
fout.close();
exit(EXIT_FAILURE);
}
@@ -495,11 +500,9 @@ static void gguf_merge(const split_params & split_params) {
fprintf(stderr, "\033[3Ddone\n");
}
std::ofstream fout;
if (!split_params.dry_run) {
fout.open(split_params.output.c_str(), std::ios::binary);
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
// placeholder for the meta data
// placeholder for the meta data
{
auto meta_size = gguf_get_meta_size(ctx_out);
::zeros(fout, meta_size);
}
@@ -515,9 +518,7 @@ static void gguf_merge(const split_params & split_params) {
ggml_free(ctx_metas[i]);
}
gguf_free(ctx_out);
if (!split_params.dry_run) {
fout.close();
}
fout.close();
exit(EXIT_FAILURE);
}
fprintf(stderr, "%s: writing tensors %s ...", __func__, split_path);
@@ -539,11 +540,10 @@ static void gguf_merge(const split_params & split_params) {
auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor);
f_input.seekg(offset);
f_input.read((char *)read_data.data(), n_bytes);
if (!split_params.dry_run) {
// write tensor data + padding
fout.write((const char *)read_data.data(), n_bytes);
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
}
// write tensor data + padding
fout.write((const char *)read_data.data(), n_bytes);
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
}
gguf_free(ctx_gguf);
@@ -552,15 +552,16 @@ static void gguf_merge(const split_params & split_params) {
fprintf(stderr, "\033[3Ddone\n");
}
if (!split_params.dry_run) {
{
// go back to beginning of file and write the updated metadata
fout.seekp(0);
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
gguf_get_meta_data(ctx_out, data.data());
fout.write((const char *)data.data(), data.size());
fout.close();
gguf_free(ctx_out);
}
gguf_free(ctx_out);
fprintf(stderr, "%s: %s merged from %d split with %d tensors.\n",
__func__, split_params.output.c_str(), n_split, total_tensors);

View File

@@ -13,10 +13,10 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
llama_batch batch = llama_batch_init(llama_n_batch(ctx), 0, 1);
llama_batch_ext * batch = llama_batch_ext_init(llama_n_batch(ctx), 1);
for (uint64_t i = 0; i < sentences.size(); i++) {
common_batch_clear(batch);
llama_batch_ext_clear(batch);
const std::string input_string = instruction + sentences[i];
@@ -41,7 +41,8 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
// add input to batch (this increments n_tokens)
for (int32_t j = 0; j < n_toks; j++) {
common_batch_add(batch, inputs[j], j, { 0 }, j >= n_inst);
const llama_seq_id seq_id = 0;
llama_batch_ext_add_text(batch, inputs[j], j, &seq_id, 1 , j >= n_inst);
}
// clear previous kv_cache values (irrelevant for embeddings)
@@ -50,7 +51,7 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
llama_set_causal_attn(ctx, false);
// run model
llama_decode(ctx, batch);
llama_decode_ext(ctx, batch);
// get embedding dimensions
uint64_t n_embd = llama_model_n_embd(model);
@@ -89,7 +90,7 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
#endif
}
llama_batch_free(batch);
llama_batch_ext_free(batch);
return result;
}
@@ -106,25 +107,26 @@ static std::string generate(llama_context * ctx, llama_sampler * smpl, const std
llama_set_embeddings(ctx, false);
llama_set_causal_attn(ctx, true);
llama_batch bat = llama_batch_init(llama_n_batch(ctx), 0, 1);
llama_batch_ext * bat = llama_batch_ext_init(llama_n_batch(ctx), 1);
std::vector<llama_token> inputs = common_tokenize(vocab, prompt, false, true);
int32_t i_current_token = 0;
while (true) {
common_batch_clear(bat);
llama_batch_ext_clear(bat);
{
const int32_t n_inputs = inputs.size();
for (int32_t i = 0; i < n_inputs; i++) {
common_batch_add(bat, inputs[i], i_current_token++, { 0 }, i == n_inputs - 1);
const llama_seq_id seq_id = 0;
llama_batch_ext_add_text(bat, inputs[i], i_current_token++, &seq_id, 1, i == n_inputs - 1);
}
}
inputs.clear();
llama_decode(ctx, bat);
llama_decode_ext(ctx, bat);
llama_token token = llama_sampler_sample(smpl, ctx, bat.n_tokens - 1);
llama_token token = llama_sampler_sample(smpl, ctx, llama_batch_ext_get_n_tokens(bat) - 1);
if (token == eos_token) {
break;
@@ -145,7 +147,7 @@ static std::string generate(llama_context * ctx, llama_sampler * smpl, const std
std::printf("\n");
}
llama_batch_free(bat);
llama_batch_ext_free(bat);
return result;
}
@@ -168,7 +170,7 @@ int main(int argc, char * argv[]) {
llama_backend_init();
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
llama_model * model = llama_model_load_from_file(params.model.c_str(), mparams);
// create generation context
llama_context * ctx = llama_init_from_model(model, cparams);

View File

@@ -497,7 +497,7 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
// clear the KV cache
llama_kv_self_clear(ctx);
llama_batch batch = llama_batch_init(n_batch, 0, 1);
llama_batch_ext * batch = llama_batch_ext_init(n_batch, 1);
for (int j = 0; j < num_batches; ++j) {
const int batch_start = start + j * n_batch;
@@ -511,14 +511,15 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
tokens[batch_start] = llama_vocab_bos(vocab);
}
common_batch_clear(batch);
llama_batch_ext_clear(batch);
for (int i = 0; i < batch_size; i++) {
common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true);
const llama_seq_id seq_id = 0;
llama_batch_ext_add_text(batch, tokens[batch_start + i], j*n_batch + i, &seq_id, 1, true);
}
if (llama_decode(ctx, batch)) {
if (llama_decode_ext(ctx, batch)) {
LOG_ERR("%s : failed to eval\n", __func__);
llama_batch_free(batch);
llama_batch_ext_free(batch);
return false;
}
@@ -531,7 +532,7 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
}
}
llama_batch_free(batch);
llama_batch_ext_free(batch);
const auto t_end = std::chrono::high_resolution_clock::now();

View File

@@ -353,7 +353,8 @@ int main(int argc, char ** argv) {
LOG_DBG("eval: %s\n", string_from(ctx, embd).c_str());
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval))) {
auto batch = llama_batch_ext_ptr::init_from_text(&embd[i], n_eval, n_past, 0, true);
if (llama_decode_ext(ctx, batch.get())) {
LOG_ERR("%s : failed to eval\n", __func__);
return 1;
}

View File

@@ -1427,7 +1427,7 @@ struct sql_printer : public printer {
}
};
static void test_prompt(llama_context * ctx, int n_prompt, int n_batch, int n_threads) {
static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
llama_set_n_threads(ctx, n_threads, n_threads);
const llama_model * model = llama_get_model(ctx);
@@ -1444,14 +1444,15 @@ static void test_prompt(llama_context * ctx, int n_prompt, int n_batch, int n_th
for (int i = 1; i < n_tokens; i++) {
tokens[i] = std::rand() % n_vocab;
}
llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens));
auto batch = llama_batch_ext_ptr::init_from_text(tokens.data(), n_tokens, n_past + n_processed, 0, true);
llama_decode_ext(ctx, batch.get());
n_processed += n_tokens;
}
llama_synchronize(ctx);
}
static void test_gen(llama_context * ctx, int n_gen, int n_threads) {
static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
llama_set_n_threads(ctx, n_threads, n_threads);
const llama_model * model = llama_get_model(ctx);
@@ -1461,7 +1462,8 @@ static void test_gen(llama_context * ctx, int n_gen, int n_threads) {
llama_token token = llama_vocab_get_add_bos(vocab) ? llama_vocab_bos(vocab) : std::rand() % n_vocab;
for (int i = 0; i < n_gen; i++) {
llama_decode(ctx, llama_batch_get_one(&token, 1));
auto batch = llama_batch_ext_ptr::init_from_text(&token, 1, n_past + i, 0, true);
llama_decode_ext(ctx, batch.get());
llama_synchronize(ctx);
token = std::rand() % n_vocab;
}
@@ -1608,13 +1610,13 @@ int main(int argc, char ** argv) {
fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup prompt run\n", params_idx, params_count);
}
//test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
}
if (t.n_gen > 0) {
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup generation run\n", params_idx, params_count);
}
test_gen(ctx, 1, t.n_threads);
test_gen(ctx, 1, 0, t.n_threads);
}
for (int i = 0; i < params.reps; i++) {
@@ -1627,14 +1629,14 @@ int main(int argc, char ** argv) {
fprintf(stderr, "llama-bench: benchmark %d/%zu: prompt run %d/%d\n", params_idx, params_count,
i + 1, params.reps);
}
test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
}
if (t.n_gen > 0) {
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%zu: generation run %d/%d\n", params_idx, params_count,
i + 1, params.reps);
}
test_gen(ctx, t.n_gen, t.n_threads);
test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
}
uint64_t t_ns = get_time_ns() - t_start;

View File

@@ -18,7 +18,6 @@ android {
}
externalNativeBuild {
cmake {
arguments += "-DLLAMA_CURL=OFF"
arguments += "-DLLAMA_BUILD_COMMON=ON"
arguments += "-DGGML_LLAMAFILE=OFF"
arguments += "-DCMAKE_BUILD_TYPE=Release"

View File

@@ -4,26 +4,6 @@
>
> This is very experimental, only used for demo purpose.
## Quick started
You can use pre-quantized model from [ggml-org](https://huggingface.co/ggml-org)'s Hugging Face account
```bash
# build
cmake -B build
cmake --build build --target llama-gemma3-cli
# alternatively, install from brew (MacOS)
brew install llama.cpp
# run it
llama-gemma3-cli -hf ggml-org/gemma-3-4b-it-GGUF
llama-gemma3-cli -hf ggml-org/gemma-3-12b-it-GGUF
llama-gemma3-cli -hf ggml-org/gemma-3-27b-it-GGUF
# note: 1B model does not support vision
```
## How to get mmproj.gguf?
```bash

View File

@@ -1,273 +0,0 @@
#include "ggml.h"
#include "gguf.h"
#include <climits>
#include <cstdarg>
#include <string>
#include <map>
#include <sstream>
#include <vector>
// Internal header for clip.cpp
#define KEY_FTYPE "general.file_type"
#define KEY_NAME "general.name"
#define KEY_DESCRIPTION "general.description"
#define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
#define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
#define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector"
#define KEY_HAS_GLM_PROJ "clip.has_glm_projector"
#define KEY_MINICPMV_VERSION "clip.minicpmv_version"
#define KEY_HAS_QWEN2VL_MERGER "clip.has_qwen2vl_merger"
#define KEY_USE_GELU "clip.use_gelu"
#define KEY_USE_SILU "clip.use_silu"
#define KEY_N_EMBD "clip.%s.embedding_length"
#define KEY_N_FF "clip.%s.feed_forward_length"
#define KEY_N_BLOCK "clip.%s.block_count"
#define KEY_N_HEAD "clip.%s.attention.head_count"
#define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
#define KEY_PROJ_DIM "clip.%s.projection_dim"
#define KEY_TOKENS "tokenizer.ggml.tokens"
#define KEY_N_POSITIONS "clip.text.context_length"
#define KEY_IMAGE_SIZE "clip.vision.image_size"
#define KEY_PATCH_SIZE "clip.vision.patch_size"
#define KEY_IMAGE_MEAN "clip.vision.image_mean"
#define KEY_IMAGE_STD "clip.vision.image_std"
#define KEY_PROJ_TYPE "clip.projector_type"
#define KEY_FEATURE_LAYER "clip.vision.feature_layer"
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
#define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
//
// tensor name constants
//
#define TN_TOKEN_EMBD "%s.token_embd.weight"
#define TN_POS_EMBD "%s.position_embd.weight"
#define TN_CLASS_EMBD "v.class_embd"
#define TN_PATCH_EMBD "v.patch_embd.weight" // not rename tensor with ".0" postfix for backwrad compat
#define TN_PATCH_EMBD_1 "v.patch_embd.weight.1"
#define TN_PATCH_BIAS "v.patch_embd.bias"
#define TN_ATTN_K "%s.blk.%d.attn_k.%s"
#define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
#define TN_ATTN_V "%s.blk.%d.attn_v.%s"
#define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
#define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
#define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
#define TN_LN_1 "%s.blk.%d.ln1.%s"
#define TN_LN_2 "%s.blk.%d.ln2.%s"
#define TN_LN_PRE "%s.pre_ln.%s"
#define TN_LN_POST "%s.post_ln.%s"
#define TN_TEXT_PROJ "text_projection.weight"
#define TN_VIS_PROJ "visual_projection.weight"
#define TN_LLAVA_PROJ "mm.%d.%s"
#define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
#define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
#define TN_IMAGE_NEWLINE "model.image_newline"
#define TN_MM_INP_PROJ "mm.input_projection.weight" // gemma3
#define TN_MM_SOFT_EMB_N "mm.soft_emb_norm.weight" // gemma3
// mimicpmv
#define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
#define TN_MINICPMV_QUERY "resampler.query"
#define TN_MINICPMV_PROJ "resampler.proj.weight"
#define TN_MINICPMV_KV_PROJ "resampler.kv.weight"
#define TN_MINICPMV_ATTN "resampler.attn.%s.%s"
#define TN_MINICPMV_LN "resampler.ln_%s.%s"
#define TN_GLM_ADAPER_CONV "adapter.conv.%s"
#define TN_GLM_ADAPTER_LINEAR "adapter.linear.linear.%s"
#define TN_GLM_ADAPTER_NORM_1 "adapter.linear.norm1.%s"
#define TN_GLM_ADAPTER_D_H_2_4H "adapter.linear.dense_h_to_4h.%s"
#define TN_GLM_ADAPTER_GATE "adapter.linear.gate.%s"
#define TN_GLM_ADAPTER_D_4H_2_H "adapter.linear.dense_4h_to_h.%s"
#define TN_GLM_BOI_W "adapter.boi"
#define TN_GLM_EOI_W "adapter.eoi"
enum projector_type {
PROJECTOR_TYPE_MLP,
PROJECTOR_TYPE_MLP_NORM,
PROJECTOR_TYPE_LDP,
PROJECTOR_TYPE_LDPV2,
PROJECTOR_TYPE_RESAMPLER,
PROJECTOR_TYPE_GLM_EDGE,
PROJECTOR_TYPE_MERGER,
PROJECTOR_TYPE_GEMMA3,
PROJECTOR_TYPE_UNKNOWN,
};
static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_MLP, "mlp" },
{ PROJECTOR_TYPE_LDP, "ldp" },
{ PROJECTOR_TYPE_LDPV2, "ldpv2"},
{ PROJECTOR_TYPE_RESAMPLER, "resampler"},
{ PROJECTOR_TYPE_GLM_EDGE, "adapter"},
{ PROJECTOR_TYPE_MERGER, "qwen2vl_merger"},
{ PROJECTOR_TYPE_GEMMA3, "gemma3"},
};
static projector_type clip_projector_type_from_string(const std::string & str) {
for (const auto & pair : PROJECTOR_TYPE_NAMES) {
if (pair.second == str) {
return pair.first;
}
}
return PROJECTOR_TYPE_UNKNOWN;
}
//
// logging
//
static void clip_log_callback_default(enum ggml_log_level level, const char * text, void * user_data) {
(void) level;
(void) user_data;
fputs(text, stderr);
fflush(stderr);
}
struct clip_logger_state {
ggml_log_level verbosity_thold;
ggml_log_callback log_callback;
void * log_callback_user_data;
};
extern struct clip_logger_state g_logger_state;
static void clip_log_internal_v(enum ggml_log_level level, const char * format, va_list args) {
if (format == NULL) {
return;
}
va_list args_copy;
va_copy(args_copy, args);
char buffer[128];
int len = vsnprintf(buffer, 128, format, args);
if (len < 128) {
g_logger_state.log_callback(level, buffer, g_logger_state.log_callback_user_data);
} else {
char * buffer2 = (char *) calloc(len + 1, sizeof(char));
vsnprintf(buffer2, len + 1, format, args_copy);
buffer2[len] = 0;
g_logger_state.log_callback(level, buffer2, g_logger_state.log_callback_user_data);
free(buffer2);
}
va_end(args_copy);
}
static void clip_log_internal(enum ggml_log_level level, const char * format, ...) {
va_list args;
va_start(args, format);
clip_log_internal_v(level, format, args);
va_end(args);
}
#define LOG_TMPL(level, ...) \
do { \
if ((level) >= g_logger_state.verbosity_thold) { \
clip_log_internal((level), __VA_ARGS__); \
} \
} while (0)
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, __VA_ARGS__)
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, __VA_ARGS__)
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, __VA_ARGS__)
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, __VA_ARGS__)
//
// common utils
//
static std::string string_format(const char * fmt, ...) {
va_list ap;
va_list ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
int size = vsnprintf(NULL, 0, fmt, ap);
GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
std::vector<char> buf(size + 1);
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
GGML_ASSERT(size2 == size);
va_end(ap2);
va_end(ap);
return std::string(buf.data(), buf.size());
}
static void string_replace_all(std::string & s, const std::string & search, const std::string & replace) {
if (search.empty()) {
return;
}
std::string builder;
builder.reserve(s.length());
size_t pos = 0;
size_t last_pos = 0;
while ((pos = s.find(search, last_pos)) != std::string::npos) {
builder.append(s, last_pos, pos - last_pos);
builder.append(replace);
last_pos = pos + search.length();
}
builder.append(s, last_pos, std::string::npos);
s = std::move(builder);
}
//
// gguf utils
//
static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
switch (type) {
case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
default: return string_format("unknown type %d", type);
}
}
static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
switch (type) {
case GGUF_TYPE_STRING:
return gguf_get_val_str(ctx_gguf, i);
case GGUF_TYPE_ARRAY:
{
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
int arr_n = gguf_get_arr_n(ctx_gguf, i);
const void * data = arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx_gguf, i);
std::stringstream ss;
ss << "[";
for (int j = 0; j < arr_n; j++) {
if (arr_type == GGUF_TYPE_STRING) {
std::string val = gguf_get_arr_str(ctx_gguf, i, j);
// escape quotes
string_replace_all(val, "\\", "\\\\");
string_replace_all(val, "\"", "\\\"");
ss << '"' << val << '"';
} else if (arr_type == GGUF_TYPE_ARRAY) {
ss << "???";
} else {
ss << gguf_data_to_str(arr_type, data, j);
}
if (j < arr_n - 1) {
ss << ", ";
}
}
ss << "]";
return ss.str();
}
default:
return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,7 +1,6 @@
#ifndef CLIP_H
#define CLIP_H
#include "ggml.h"
#include <stddef.h>
#include <stdint.h>
@@ -42,7 +41,7 @@ struct clip_image_f32_batch {
struct clip_context_params {
bool use_gpu;
ggml_log_level verbosity;
int verbosity;
};
// deprecated, use clip_init
@@ -77,7 +76,6 @@ CLIP_API struct clip_image_size * clip_image_size_init();
CLIP_API struct clip_image_u8 * clip_image_u8_init ();
CLIP_API struct clip_image_f32 * clip_image_f32_init();
CLIP_API void clip_image_size_free (struct clip_image_size * img_size);
CLIP_API void clip_image_u8_free (struct clip_image_u8 * img);
CLIP_API void clip_image_f32_free(struct clip_image_f32 * img);
CLIP_API void clip_image_u8_batch_free (struct clip_image_u8_batch * batch);
@@ -107,8 +105,6 @@ CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out
CLIP_API int clip_is_minicpmv(const struct clip_ctx * ctx);
CLIP_API bool clip_is_glm(const struct clip_ctx * ctx);
CLIP_API bool clip_is_qwen2vl(const struct clip_ctx * ctx);
CLIP_API bool clip_is_llava(const struct clip_ctx * ctx);
CLIP_API bool clip_is_gemma3(const struct clip_ctx * ctx);
CLIP_API int get_deepest_feature_layer(const struct clip_ctx * ctx);

View File

@@ -5,12 +5,13 @@
#include "clip.h"
#include "stb_image.h"
#include "llama.h"
#include "llama-cpp.h"
#include "ggml.h"
#include "console.h"
#include <vector>
#include <limits.h>
#include <cinttypes>
#include <inttypes.h>
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
#include <signal.h>
@@ -63,7 +64,7 @@ struct gemma3_context {
llama_model * model;
llama_context * lctx;
const llama_vocab * vocab;
llama_batch batch;
llama_batch_ext_ptr batch;
int n_threads = 1;
llama_pos n_past = 0;
@@ -73,17 +74,13 @@ struct gemma3_context {
lctx = llama_init.context.get();
vocab = llama_model_get_vocab(model);
n_threads = params.cpuparams.n_threads;
batch = llama_batch_init(params.n_batch, 0, 1);
batch.reset(llama_batch_ext_init(params.n_batch, 1));
init_clip_model(params);
}
void init_clip_model(common_params & params) {
const char * clip_path = params.mmproj.path.c_str();
ctx_clip = clip_model_load(clip_path, GGML_LOG_LEVEL_INFO);
if (!ctx_clip) {
LOG_ERR("Failed to load CLIP model from %s\n", clip_path);
exit(1);
}
const char * clip_path = params.mmproj.c_str();
ctx_clip = clip_model_load(clip_path, params.verbosity > 1);
}
~gemma3_context() {
@@ -91,50 +88,18 @@ struct gemma3_context {
}
};
struct decode_embd_batch {
std::vector<llama_pos> pos;
std::vector<int32_t> n_seq_id;
std::vector<llama_seq_id> seq_id_0;
std::vector<llama_seq_id *> seq_ids;
std::vector<int8_t> logits;
llama_batch batch;
decode_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
pos .resize(n_tokens);
n_seq_id.resize(n_tokens);
seq_ids .resize(n_tokens + 1);
logits .resize(n_tokens);
seq_id_0.resize(1);
seq_id_0[0] = seq_id;
seq_ids [n_tokens] = nullptr;
batch = {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ embd,
/*pos =*/ pos.data(),
/*n_seq_id =*/ n_seq_id.data(),
/*seq_id =*/ seq_ids.data(),
/*logits =*/ logits.data(),
};
for (int i = 0; i < n_tokens; i++) {
batch.pos [i] = pos_0 + i;
batch.n_seq_id[i] = 1;
batch.seq_id [i] = seq_id_0.data();
batch.logits [i] = false;
}
}
};
static int eval_text(gemma3_context & ctx, std::string input, bool logits_last = false) {
llama_tokens tokens = common_tokenize(ctx.lctx, input, false, true);
common_batch_clear(ctx.batch);
llama_batch_ext_clear(ctx.batch.get());
for (llama_token & t : tokens) {
common_batch_add(ctx.batch, t, ctx.n_past++, {0}, false);
llama_seq_id seq_id = 0;
llama_batch_ext_add_text(ctx.batch.get(), t, ctx.n_past++, &seq_id, 1, false);
}
if (logits_last) {
ctx.batch.logits[ctx.batch.n_tokens - 1] = true;
llama_batch_ext_set_output_last(ctx.batch.get());
}
// LOG("eval_text (n_tokens = %d): %s\n", (int)tokens.size(), input.c_str());
if (llama_decode(ctx.lctx, ctx.batch)) {
if (llama_decode_ext(ctx.lctx, ctx.batch.get())) {
LOG_ERR("Failed to decode text\n");
return 1;
}
@@ -183,8 +148,8 @@ static int eval_image(gemma3_context & ctx, std::string & fname) {
int64_t t1 = ggml_time_ms();
eval_text(ctx, "<start_of_image>");
llama_set_causal_attn(ctx.lctx, false);
decode_embd_batch batch_img(image_embd_v.data(), n_tokens, ctx.n_past, 0);
if (llama_decode(ctx.lctx, batch_img.batch)) {
llama_batch_ext_ptr batch_img(llama_batch_ext_init_from_embd(image_embd_v.data(), n_tokens, n_embd, ctx.n_past, 0));
if (llama_decode_ext(ctx.lctx, batch_img.get())) {
LOG_ERR("failed to decode image\n");
return 1;
}
@@ -214,9 +179,10 @@ static int generate_response(gemma3_context & ctx, common_sampler * smpl, int n_
fflush(stdout);
// eval the token
common_batch_clear(ctx.batch);
common_batch_add(ctx.batch, token_id, ctx.n_past++, {0}, true);
if (llama_decode(ctx.lctx, ctx.batch)) {
llama_batch_ext_clear(ctx.batch.get());
llama_seq_id seq_id = 0;
llama_batch_ext_add_text(ctx.batch.get(), token_id, ctx.n_past++, &seq_id, 1, true);
if (llama_decode_ext(ctx.lctx, ctx.batch.get())) {
LOG_ERR("failed to decode token\n");
return 1;
}
@@ -236,13 +202,13 @@ int main(int argc, char ** argv) {
common_init();
if (params.mmproj.path.empty()) {
if (params.mmproj.empty()) {
show_additional_info(argc, argv);
return 1;
}
gemma3_context ctx(params);
printf("%s: %s\n", __func__, params.model.path.c_str());
printf("%s: %s\n", __func__, params.model.c_str());
bool is_single_turn = !params.prompt.empty() && !params.image.empty();

View File

@@ -20,7 +20,8 @@ static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_toke
if (n_eval > n_batch) {
n_eval = n_batch;
}
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval))) {
auto batch = llama_batch_ext_ptr::init_from_text(&tokens[i], n_eval, *n_past, 0, true);
if (llama_decode_ext(ctx_llama, batch.get())) {
LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
return false;
}
@@ -225,7 +226,7 @@ static struct llama_model * llava_init(common_params * params) {
llama_model_params model_params = common_model_params_to_llama(*params);
llama_model * model = llama_model_load_from_file(params->model.path.c_str(), model_params);
llama_model * model = llama_model_load_from_file(params->model.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: unable to load model\n" , __func__);
return NULL;
@@ -234,14 +235,14 @@ static struct llama_model * llava_init(common_params * params) {
}
static struct llava_context * llava_init_context(common_params * params, llama_model * model) {
const char * clip_path = params->mmproj.path.c_str();
const char * clip_path = params->mmproj.c_str();
auto prompt = params->prompt;
if (prompt.empty()) {
prompt = "describe the image in detail.";
}
auto ctx_clip = clip_model_load(clip_path, GGML_LOG_LEVEL_INFO);
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
llama_context_params ctx_params = common_context_params_to_llama(*params);
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
@@ -283,7 +284,7 @@ int main(int argc, char ** argv) {
common_init();
if (params.mmproj.path.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
print_usage(argc, argv);
return 1;
}

View File

@@ -2,6 +2,7 @@
#include "llava.h"
#include "llama.h"
#include "llama-cpp.h"
#include <algorithm>
#include <cerrno>
@@ -438,39 +439,6 @@ bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, co
return true;
}
struct llava_embd_batch {
std::vector<llama_pos> pos;
std::vector<int32_t> n_seq_id;
std::vector<llama_seq_id> seq_id_0;
std::vector<llama_seq_id *> seq_ids;
std::vector<int8_t> logits;
llama_batch batch;
llava_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
pos .resize(n_tokens);
n_seq_id.resize(n_tokens);
seq_ids .resize(n_tokens + 1);
logits .resize(n_tokens);
seq_id_0.resize(1);
seq_id_0[0] = seq_id;
seq_ids [n_tokens] = nullptr;
batch = {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ embd,
/*pos =*/ pos.data(),
/*n_seq_id =*/ n_seq_id.data(),
/*seq_id =*/ seq_ids.data(),
/*logits =*/ logits.data(),
};
for (int i = 0; i < n_tokens; i++) {
batch.pos [i] = pos_0 + i;
batch.n_seq_id[i] = 1;
batch.seq_id [i] = seq_id_0.data();
batch.logits [i] = false;
}
}
};
bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) {
int n_embd = llama_model_n_embd(llama_get_model(ctx_llama));
@@ -480,8 +448,8 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
n_eval = n_batch;
}
float * embd = image_embed->embed+i*n_embd;
llava_embd_batch llava_batch = llava_embd_batch(embd, n_eval, *n_past, 0);
if (llama_decode(ctx_llama, llava_batch.batch)) {
auto batch = llama_batch_ext_ptr::init_from_embd(embd, n_eval, n_embd, 0, 0);
if (llama_decode_ext(ctx_llama, batch.get())) {
LOG_ERR("%s : failed to eval\n", __func__);
return false;
}

View File

@@ -31,7 +31,7 @@ static struct llama_model * llava_init(common_params * params) {
llama_model_params model_params = common_model_params_to_llama(*params);
llama_model * model = llama_model_load_from_file(params->model.path.c_str(), model_params);
llama_model * model = llama_model_load_from_file(params->model.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: unable to load model\n" , __func__);
return NULL;
@@ -80,7 +80,7 @@ static void llava_free(struct llava_context * ctx_llava) {
}
static struct clip_ctx * clip_init_context(common_params * params) {
const char * clip_path = params->mmproj.path.c_str();
const char * clip_path = params->mmproj.c_str();
auto prompt = params->prompt;
if (prompt.empty()) {
@@ -88,7 +88,7 @@ static struct clip_ctx * clip_init_context(common_params * params) {
}
struct clip_context_params clip_params = {
/* use_gpu */ params->n_gpu_layers != 0,
/* verbosity */ GGML_LOG_LEVEL_INFO, // TODO: make this configurable
/* verbosity */ params->verbosity,
};
auto * ctx_clip = clip_init(clip_path, clip_params);
return ctx_clip;
@@ -101,7 +101,8 @@ static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_toke
if (n_eval > n_batch) {
n_eval = n_batch;
}
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval))) {
auto batch = llama_batch_ext_ptr::init_from_text(&tokens[i], n_eval, *n_past, 0, true);
if (llama_decode_ext(ctx_llama, batch.get())) {
LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
return false;
}
@@ -290,7 +291,7 @@ int main(int argc, char ** argv) {
common_init();
if (params.mmproj.path.empty() || (params.image.empty())) {
if (params.mmproj.empty() || (params.image.empty())) {
show_additional_info(argc, argv);
return 1;
}

View File

@@ -66,17 +66,11 @@ static bool qwen2vl_eval_image_embed(llama_context * ctx_llama, const struct lla
memcpy(&batch_mrope_pos[n_eval * 2], &mrope_pos[img_tokens * 2 + processed], n_eval * sizeof(llama_pos));
memcpy(&batch_mrope_pos[n_eval * 3], &mrope_pos[img_tokens * 3 + processed], n_eval * sizeof(llama_pos));
llama_batch batch = {
int32_t(n_eval), // n_tokens
nullptr, // token
(image_embed->embed+i*n_embd), // embed
batch_mrope_pos.data(), // pos
nullptr, // n_seq_id
nullptr, // seq_id
nullptr, // logits
};
float * batch_embd = image_embed->embed+i*n_embd;
auto batch = llama_batch_ext_ptr::init_from_embd(batch_embd, n_eval, n_embd, 0, 0);
llama_batch_ext_set_pos(batch.get(), batch_mrope_pos.data(), n_eval);
if (llama_decode(ctx_llama, batch)) {
if (llama_decode_ext(ctx_llama, batch.get())) {
LOG_ERR("%s : failed to eval\n", __func__);
return false;
}
@@ -95,16 +89,24 @@ static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_toke
if (n_eval > n_batch) {
n_eval = n_batch;
}
auto batch = llama_batch_get_one(&tokens[i], n_eval);
// TODO: add mrope pos ids somewhere else
pos.resize(batch.n_tokens * 4);
std::fill(pos.begin(), pos.end(), 0);
for (int j = 0; j < batch.n_tokens * 3; j ++) {
pos[j] = *st_pos_id + (j % batch.n_tokens);
}
batch.pos = pos.data();
if (llama_decode(ctx_llama, batch)) {
// TODO: add mrope pos ids somewhere else
int n_tokens = n_eval;
pos.resize(n_tokens * 4);
std::fill(pos.begin(), pos.end(), 0);
for (int j = 0; j < n_tokens * 3; j ++) {
pos[j] = *st_pos_id + (j % n_tokens);
}
llama_batch_ext_ptr batch(llama_batch_ext_init(n_eval, 1));
for (int j = 0; j < n_eval; j++) {
llama_token token = tokens[i + j];
llama_seq_id seq_id = 0;
llama_batch_ext_add_text(batch.get(), token, pos[j], &seq_id, 1, false);
}
llama_batch_ext_set_output_last(batch.get());
if (llama_decode_ext(ctx_llama, batch.get())) {
LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
return false;
}
@@ -314,7 +316,7 @@ static struct llama_model * llava_init(common_params * params) {
llama_model_params model_params = common_model_params_to_llama(*params);
llama_model * model = llama_model_load_from_file(params->model.path.c_str(), model_params);
llama_model * model = llama_model_load_from_file(params->model.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: unable to load model\n" , __func__);
return NULL;
@@ -323,14 +325,14 @@ static struct llama_model * llava_init(common_params * params) {
}
static struct llava_context * llava_init_context(common_params * params, llama_model * model) {
const char * clip_path = params->mmproj.path.c_str();
const char * clip_path = params->mmproj.c_str();
auto prompt = params->prompt;
if (prompt.empty()) {
prompt = "describe the image in detail.";
}
auto ctx_clip = clip_model_load(clip_path, GGML_LOG_LEVEL_INFO);
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
llama_context_params ctx_params = common_context_params_to_llama(*params);
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
@@ -524,7 +526,7 @@ int main(int argc, char ** argv) {
common_init();
if (params.mmproj.path.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
print_usage(argc, argv);
return 1;
}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 121 KiB

View File

@@ -1,81 +0,0 @@
#!/bin/bash
# make sure we are in the right directory
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
cd $SCRIPT_DIR
#export LLAMA_CACHE="$SCRIPT_DIR/tmp"
set -eux
mkdir -p $SCRIPT_DIR/output
PROJ_ROOT="$SCRIPT_DIR/../.."
cd $PROJ_ROOT
###############
arr_bin=()
arr_hf=()
add_test() {
local bin=$1
local hf=$2
arr_bin+=("$bin")
arr_hf+=("$hf")
}
add_test "llama-gemma3-cli" "ggml-org/gemma-3-4b-it-GGUF:Q4_K_M"
add_test "llama-llava-cli" "cmp-nct/Yi-VL-6B-GGUF:Q5_K"
add_test "llama-llava-cli" "guinmoon/MobileVLM-3B-GGUF:Q4_K_M"
add_test "llama-llava-cli" "THUDM/glm-edge-v-5b-gguf:Q4_K_M"
add_test "llama-llava-cli" "second-state/Llava-v1.5-7B-GGUF:Q2_K"
add_test "llama-llava-cli" "cjpais/llava-1.6-mistral-7b-gguf:Q3_K"
add_test "llama-llava-cli" "ibm-research/granite-vision-3.2-2b-GGUF:Q4_K_M"
add_test "llama-minicpmv-cli" "second-state/MiniCPM-Llama3-V-2_5-GGUF:Q2_K" # model from openbmb is corrupted
add_test "llama-minicpmv-cli" "openbmb/MiniCPM-V-2_6-gguf:Q2_K"
add_test "llama-minicpmv-cli" "openbmb/MiniCPM-o-2_6-gguf:Q4_0"
add_test "llama-qwen2vl-cli" "bartowski/Qwen2-VL-2B-Instruct-GGUF:Q4_K_M"
###############
cmake --build build -j --target "${arr_bin[@]}"
arr_res=()
for i in "${!arr_bin[@]}"; do
bin="${arr_bin[$i]}"
hf="${arr_hf[$i]}"
echo "Running test with binary: $bin and HF model: $hf"
echo ""
echo ""
output=$("$PROJ_ROOT/build/bin/$bin" -hf "$hf" --image $SCRIPT_DIR/test-1.jpeg -p "what is the publisher name of the newspaper?" --temp 0 2>&1 | tee /dev/tty)
echo "$output" > $SCRIPT_DIR/output/$bin-$(echo "$hf" | tr '/' '-').log
if echo "$output" | grep -iq "new york"; then
result="\033[32mOK\033[0m: $bin $hf"
else
result="\033[31mFAIL\033[0m: $bin $hf"
fi
echo -e "$result"
arr_res+=("$result")
echo ""
echo ""
echo ""
echo "#################################################"
echo "#################################################"
echo ""
echo ""
done
set +x
for i in "${!arr_res[@]}"; do
echo -e "${arr_res[$i]}"
done
echo ""
echo "Output logs are saved in $SCRIPT_DIR/output"

View File

@@ -92,8 +92,10 @@ int main(int argc, char ** argv) {
const auto t_enc_start = ggml_time_us();
// eval the prompt
llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1));
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1));
llama_batch_ext_ptr batch0(llama_batch_ext_init_from_text( inp.data(), n_input - 1, 0, 0, true));
llama_batch_ext_ptr batch1(llama_batch_ext_init_from_text(&inp.back(), 1, n_input - 1, 0, true));
llama_decode_ext(ctx, batch0.get());
llama_decode_ext(ctx, batch1.get());
for (int s = 1; s < W + G + 1; ++s) {
llama_kv_self_seq_cp(ctx, 0, s, -1, -1);
@@ -115,7 +117,7 @@ int main(int argc, char ** argv) {
// seq_id == 0 : the current input token
// seq_id [1, W] : tokens from the past N - 1 Jacobi iterations
// seq_id [W + 1, W + G] : verification n-grams
llama_batch batch = llama_batch_init(params.n_ctx, 0, W + G + 1);
llama_batch_ext * batch = llama_batch_ext_init(params.n_ctx, W + G + 1);
// target model sampling context
struct common_sampler * smpl = common_sampler_init(model, params.sampling);
@@ -204,10 +206,10 @@ int main(int argc, char ** argv) {
// V V V V V V
// id
{
common_batch_clear(batch);
llama_batch_ext_clear(batch);
// current token - first token of the first level
common_batch_add(batch, id, n_past, seq_id_all, true);
llama_batch_ext_add_text(batch, id, n_past, seq_id_all.data(), seq_id_all.size(), true);
// verification n-grams - queue this before the lookahead tokens for less KV cache fragmentation
{
@@ -230,9 +232,10 @@ int main(int argc, char ** argv) {
const llama_token t = ngrams_observed.tokens[idx + j];
ngrams_cur[g].tokens [j + 1] = t;
ngrams_cur[g].i_batch[j + 1] = batch.n_tokens;
ngrams_cur[g].i_batch[j + 1] = llama_batch_ext_get_n_tokens(batch);
common_batch_add(batch, t, n_past + j + 1, { W + 1 + g }, true);
llama_seq_id seq_id = W + 1 + g;
llama_batch_ext_add_text(batch, t, n_past + j + 1, &seq_id, 1, true);
}
}
}
@@ -244,18 +247,20 @@ int main(int argc, char ** argv) {
seq_id_look[j] = i + j + 1;
}
common_batch_add(batch, tokens_j[0][i], n_past + i, seq_id_look, false);
llama_batch_ext_add_text(batch, tokens_j[0][i], n_past + i,
seq_id_look.data(), seq_id_look.size(), false);
}
// fill the rest of the levels
for (int j = 1; j < N - 1; j++) {
for (int i = 0; i < W; i++) {
common_batch_add(batch, tokens_j[j][i], n_past + j + i, { i + 1 }, j == N - 2);
llama_seq_id seq_id = i + 1;
llama_batch_ext_add_text(batch, tokens_j[j][i], n_past + j + i, &seq_id, 1, j == N - 2);
}
}
}
if (llama_decode(ctx, batch) != 0) {
if (llama_decode_ext(ctx, batch) != 0) {
LOG_ERR("\n\n%s: llama_decode failed - increase KV cache size\n", __func__);
return 1;
}
@@ -475,7 +480,7 @@ int main(int argc, char ** argv) {
llama_kv_cache_view_free(&kvc_view);
llama_batch_free(batch);
llama_batch_ext_free(batch);
llama_backend_free();

View File

@@ -91,8 +91,10 @@ int main(int argc, char ** argv){
const auto t_enc_start = ggml_time_us();
llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1));
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1));
llama_batch_ext_ptr batch0(llama_batch_ext_init_from_text( inp.data(), n_input - 1, 0, 0, true));
llama_batch_ext_ptr batch1(llama_batch_ext_init_from_text(&inp.back(), 1, n_input - 1, 0, true));
llama_decode_ext(ctx, batch0.get());
llama_decode_ext(ctx, batch1.get());
const auto t_enc_end = ggml_time_us();
@@ -108,7 +110,7 @@ int main(int argc, char ** argv){
std::vector<llama_token> draft;
llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, 1);
llama_batch_ext * batch_tgt = llama_batch_ext_init(params.n_ctx, 1);
// debug
struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, 1);
@@ -194,8 +196,9 @@ int main(int argc, char ** argv){
// clean the cache of draft tokens that weren't accepted
llama_kv_self_seq_rm(ctx, 0, n_past, -1);
common_batch_clear(batch_tgt);
common_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);
const llama_seq_id seq_id = 0;
llama_batch_ext_clear(batch_tgt);
llama_batch_ext_add_text(batch_tgt, draft[0], n_past, &seq_id, 1, true);
// Draft already contains a single token sampled from the model:
GGML_ASSERT(draft.size() == 1);
@@ -205,13 +208,13 @@ int main(int argc, char ** argv){
common_ngram_cache_draft(inp, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
for (size_t i = 1; i < draft.size(); ++i) {
common_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true);
llama_batch_ext_add_text(batch_tgt, draft[i], n_past + i, &seq_id, 1, true);
}
t_draft_us += ggml_time_us() - t_start_draft_us;
n_drafted += draft.size() - 1;
llama_decode(ctx, batch_tgt);
llama_decode_ext(ctx, batch_tgt);
++n_past;
draft.erase(draft.begin());
@@ -243,7 +246,7 @@ int main(int argc, char ** argv){
common_sampler_free(smpl);
llama_batch_free(batch_tgt);
llama_batch_ext_free(batch_tgt);
llama_backend_free();

View File

@@ -548,7 +548,8 @@ int main(int argc, char ** argv) {
int enc_input_size = embd_inp.size();
llama_token * enc_input_buf = embd_inp.data();
if (llama_encode(ctx, llama_batch_get_one(enc_input_buf, enc_input_size))) {
auto batch = llama_batch_ext_ptr::init_from_text(enc_input_buf, enc_input_size, 0, 0, true);
if (llama_decode_ext(ctx, batch.get())) {
LOG_ERR("%s : failed to eval\n", __func__);
return 1;
}
@@ -668,7 +669,8 @@ int main(int argc, char ** argv) {
LOG_DBG("eval: %s\n", string_from(ctx, embd).c_str());
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval))) {
auto batch = llama_batch_ext_ptr::init_from_text(&embd[i], n_eval, n_past, 0, true);
if (llama_decode_ext(ctx, batch.get())) {
LOG_ERR("%s : failed to eval\n", __func__);
return 1;
}

View File

@@ -106,8 +106,6 @@ int main(int argc, char ** argv) {
common_params params;
params.n_predict = 128;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PARALLEL)) {
return 1;
}
@@ -176,7 +174,7 @@ int main(int argc, char ** argv) {
// the max batch size is as large as the context to handle cases where we get very long input prompt from multiple
// users. regardless of the size, the main loop will chunk the batch into a maximum of params.n_batch tokens at a time
llama_batch batch = llama_batch_init(n_ctx, 0, 1);
llama_batch_ext * batch = llama_batch_ext_init(n_ctx, 1);
int32_t n_total_prompt = 0;
int32_t n_total_gen = 0;
@@ -194,10 +192,11 @@ int main(int argc, char ** argv) {
LOG_INF("%s: Evaluating the system prompt ...\n", __func__);
for (int32_t i = 0; i < n_tokens_system; ++i) {
common_batch_add(batch, tokens_system[i], i, { 0 }, false);
llama_seq_id seq_id = 0;
llama_batch_ext_add_text(batch, tokens_system[i], i, &seq_id, 1, false);
}
if (llama_decode(ctx, batch) != 0) {
if (llama_decode_ext(ctx, batch) != 0) {
LOG_ERR("%s: llama_decode() failed\n", __func__);
return 1;
}
@@ -218,7 +217,7 @@ int main(int argc, char ** argv) {
common_kv_cache_dump_view_seqs(kvc_view, 40);
}
common_batch_clear(batch);
llama_batch_ext_clear(batch);
// decode any currently ongoing sequences
for (auto & client : clients) {
@@ -226,14 +225,15 @@ int main(int argc, char ** argv) {
continue;
}
client.i_batch = batch.n_tokens;
client.i_batch = llama_batch_ext_get_n_tokens(batch);
common_batch_add(batch, client.sampled, n_tokens_system + client.n_prompt + client.n_decoded, { client.id + 1 }, true);
llama_seq_id seq_id = client.id + 1;
llama_batch_ext_add_text(batch, client.sampled, n_tokens_system + client.n_prompt + client.n_decoded, &seq_id, 1, true);
client.n_decoded += 1;
}
if (batch.n_tokens == 0) {
if (llama_batch_ext_get_n_tokens(batch) == 0) {
// all sequences have ended - clear the entire KV cache
for (int i = 1; i <= n_clients; ++i) {
llama_kv_self_seq_rm(ctx, i, -1, -1);
@@ -245,7 +245,7 @@ int main(int argc, char ** argv) {
}
// insert new sequences for decoding
if (cont_batching || batch.n_tokens == 0) {
if (cont_batching || llama_batch_ext_get_n_tokens(batch) == 0) {
for (auto & client : clients) {
if (client.seq_id == -1 && g_seq_id < n_seq) {
client.seq_id = g_seq_id;
@@ -264,17 +264,18 @@ int main(int argc, char ** argv) {
tokens_prompt = common_tokenize(ctx, client.prompt, false);
for (size_t i = 0; i < tokens_prompt.size(); ++i) {
common_batch_add(batch, tokens_prompt[i], i + n_tokens_system, { client.id + 1 }, false);
llama_seq_id seq_id = client.id + 1;
llama_batch_ext_add_text(batch, tokens_prompt[i], i + n_tokens_system, &seq_id, 1, false);
}
// extract the logits only for the last token
if (batch.n_tokens > 0) {
batch.logits[batch.n_tokens - 1] = true;
if (llama_batch_ext_get_n_tokens(batch) > 0) {
llama_batch_ext_set_output_last(batch);
}
client.n_prompt = tokens_prompt.size();
client.n_decoded = 0;
client.i_batch = batch.n_tokens - 1;
client.i_batch = llama_batch_ext_get_n_tokens(batch) - 1;
LOG_INF("\033[31mClient %3d, seq %4d, started decoding ...\033[0m\n", client.id, client.seq_id);
@@ -288,14 +289,15 @@ int main(int argc, char ** argv) {
}
}
if (batch.n_tokens == 0) {
if (llama_batch_ext_get_n_tokens(batch) == 0) {
break;
}
// process in chunks of params.n_batch
int32_t n_batch = params.n_batch;
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
int32_t n_tokens_in_batch = llama_batch_ext_get_n_tokens(batch);
for (int32_t i = 0; i < (int32_t) n_tokens_in_batch; i += n_batch) {
// experiment: process in powers of 2
//if (i + n_batch > (int32_t) batch.n_tokens && n_batch > 32) {
// n_batch /= 2;
@@ -303,19 +305,11 @@ int main(int argc, char ** argv) {
// continue;
//}
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
const int32_t n_tokens = std::min(n_batch, (int32_t) (n_tokens_in_batch - i));
llama_batch batch_view = {
n_tokens,
batch.token + i,
nullptr,
batch.pos + i,
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
};
const int ret = llama_decode(ctx, batch_view);
llama_batch_ext * batch_view = llama_batch_ext_get_view(batch, i, n_tokens);
const int ret = llama_decode_ext(ctx, batch_view);
llama_batch_ext_free(batch_view);
if (ret != 0) {
if (n_batch == 1 || ret < 0) {
// if you get here, it means the KV cache is full - try increasing it via the context size
@@ -407,7 +401,7 @@ int main(int argc, char ** argv) {
params.prompt_file = "used built-in defaults";
}
LOG_INF("External prompt file: \033[32m%s\033[0m\n", params.prompt_file.c_str());
LOG_INF("Model and path used: \033[32m%s\033[0m\n\n", params.model.path.c_str());
LOG_INF("Model and path used: \033[32m%s\033[0m\n\n", params.model.c_str());
LOG_INF("Total prompt tokens: %6d, speed: %5.2f t/s\n", n_total_prompt, (double) (n_total_prompt ) / (t_main_end - t_main_start) * 1e6);
LOG_INF("Total gen tokens: %6d, speed: %5.2f t/s\n", n_total_gen, (double) (n_total_gen ) / (t_main_end - t_main_start) * 1e6);
@@ -419,7 +413,7 @@ int main(int argc, char ** argv) {
// TODO: print sampling/grammar timings for all clients
llama_perf_context_print(ctx);
llama_batch_free(batch);
llama_batch_ext_free(batch);
llama_backend_free();

View File

@@ -2,6 +2,7 @@
#include "common.h"
#include "log.h"
#include "llama.h"
#include "llama-cpp.h"
#include <cmath>
#include <cstdio>
@@ -64,7 +65,7 @@ int main(int argc, char ** argv) {
llama_model_params model_params = common_model_params_to_llama(params);
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: unable to load model\n" , __func__);
@@ -122,7 +123,7 @@ int main(int argc, char ** argv) {
LOG_INF("prompt tokens: %d\n", n_tokens_all);
//LOG_INF("prompt: %s\n", params.prompt.c_str());
llama_batch batch = llama_batch_init(params.n_batch, 0, 1);
llama_batch_ext_ptr batch(llama_batch_ext_init(params.n_batch, 1));
int n_past = 0;
@@ -140,17 +141,18 @@ int main(int argc, char ** argv) {
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
}
common_batch_clear(batch);
llama_batch_ext_clear(batch.get());
for (int j = 0; j < n_batch && i + j < n_tokens_all; j++) {
common_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false);
llama_seq_id seq_id = 0;
llama_batch_ext_add_text(batch.get(), tokens_list[i + j], n_past++, &seq_id, 1, false);
}
if (i + n_batch >= n_tokens_all) {
batch.logits[batch.n_tokens - 1] = true;
llama_batch_ext_set_output_last(batch.get());
}
if (llama_decode(ctx, batch) != 0) {
if (llama_decode_ext(ctx, batch.get()) != 0) {
LOG_INF("%s: llama_decode() failed\n", __func__);
return 1;
}
@@ -174,17 +176,18 @@ int main(int argc, char ** argv) {
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
common_batch_clear(batch);
llama_batch_ext_clear(batch.get());
for (int j = 0; j < n_batch && i + j < n_tokens_all; j++) {
common_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false);
llama_seq_id seq_id = 0;
llama_batch_ext_add_text(batch.get(), tokens_list[i + j], n_past++, &seq_id, 1, false);
}
if (i + n_batch >= n_tokens_all) {
batch.logits[batch.n_tokens - 1] = true;
llama_batch_ext_set_output_last(batch.get());
}
if (llama_decode(ctx, batch) != 0) {
if (llama_decode_ext(ctx, batch.get()) != 0) {
LOG_ERR("%s: llama_decode() failed\n", __func__);
return 1;
}
@@ -223,7 +226,7 @@ int main(int argc, char ** argv) {
while (n_cur <= n_len) {
// sample the next token
{
const llama_token new_token_id = llama_sampler_sample(smpl, ctx, batch.n_tokens - 1);
const llama_token new_token_id = llama_sampler_sample(smpl, ctx, llama_batch_ext_get_n_tokens(batch.get()) - 1);
// is it an end of generation?
if (llama_vocab_is_eog(vocab, new_token_id) || n_cur == n_len) {
@@ -237,16 +240,17 @@ int main(int argc, char ** argv) {
n_decode += 1;
// prepare the next batch
common_batch_clear(batch);
llama_batch_ext_clear(batch.get());
// push this new token for next evaluation
common_batch_add(batch, new_token_id, n_past++, { 0 }, true);
llama_seq_id seq_id = 0;
llama_batch_ext_add_text(batch.get(), new_token_id, n_past++, &seq_id, 1, true);
}
n_cur += 1;
// evaluate the current batch with the transformer model
if (llama_decode(ctx, batch)) {
if (llama_decode_ext(ctx, batch.get())) {
LOG_ERR("%s : failed to eval, return code %d\n", __func__, 1);
return 1;
}
@@ -266,8 +270,6 @@ int main(int argc, char ** argv) {
llama_sampler_free(smpl);
llama_batch_free(batch);
llama_free(ctx);
llama_model_free(model);

View File

@@ -363,21 +363,20 @@ static results_perplexity perplexity_v2(llama_context * ctx, const common_params
// clear the KV cache
llama_kv_self_clear(ctx);
llama_batch batch = llama_batch_init(n_batch, 0, 1);
common_batch batch(n_batch, 1);
for (int j = 0; j < num_batches; ++j) {
const int batch_start = start + j * n_batch;
const int batch_size = std::min(end - batch_start, n_batch);
common_batch_clear(batch);
batch.clear();
for (int i = 0; i < batch_size; i++) {
common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true);
batch.add_text(tokens[batch_start + i], j*n_batch + i, 0, true);
}
//LOG_DBG(" Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
if (llama_decode(ctx, batch)) {
if (llama_decode_ext(ctx, batch.get())) {
//LOG_ERR("%s : failed to eval\n", __func__);
llama_batch_free(batch);
return {tokens, -1, logit_history, prob_history};
}
@@ -397,8 +396,6 @@ static results_perplexity perplexity_v2(llama_context * ctx, const common_params
}
}
llama_batch_free(batch);
const auto t_end = std::chrono::high_resolution_clock::now();
if (i == 0) {
@@ -504,7 +501,7 @@ static results_perplexity perplexity(llama_context * ctx, const common_params &
GGML_ASSERT(n_batch < n_ctx || n_batch % n_ctx == 0);
GGML_ASSERT(params.n_ctx == n_seq * n_ctx);
llama_batch batch = llama_batch_init(std::min(n_batch, n_ctx*n_seq), 0, 1);
common_batch batch(std::min(n_batch, n_ctx*n_seq), 1);
std::vector<float> logits;
if (num_batches > 1) {
@@ -555,7 +552,7 @@ static results_perplexity perplexity(llama_context * ctx, const common_params &
int n_outputs = 0;
batch.n_tokens = 0;
batch.clear();
for (int seq = 0; seq < n_seq_batch; seq++) {
int seq_start = batch_start + seq*n_ctx;
@@ -568,22 +565,18 @@ static results_perplexity perplexity(llama_context * ctx, const common_params &
}
for (int k = 0; k < batch_size; ++k) {
const int idx = seq*n_ctx + k;
batch.token [idx] = tokens[seq_start + k];
batch.pos [idx] = j*n_batch + k;
batch.n_seq_id[idx] = 1;
batch.seq_id [idx][0] = seq;
batch.logits [idx] = batch.pos[idx] >= first ? 1 : 0;
const llama_pos pos = j*n_batch + k;
bool output = pos >= first;
batch.add_text(tokens[seq_start + k], pos, seq, output);
n_outputs += batch.logits[idx] != 0;
n_outputs += output ? 1 : 0;
}
batch.n_tokens += batch_size;
// restore the original token in case it was set to BOS
tokens[seq_start] = token_org;
}
if (llama_decode(ctx, batch)) {
if (llama_decode_ext(ctx, batch.get())) {
LOG_INF("%s : failed to eval\n", __func__);
return {tokens, -1, logit_history, prob_history};
}
@@ -653,36 +646,23 @@ static results_perplexity perplexity(llama_context * ctx, const common_params &
LOG_ERR("Unexpected negative standard deviation of log(prob)\n");
}
llama_batch_free(batch);
return {tokens, ppl, logit_history, prob_history};
}
static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<float> & batch_logits, int n_batch, int n_vocab) {
static bool decode_helper(llama_context * ctx, common_batch & batch, std::vector<float> & batch_logits, int n_batch, int n_vocab) {
int prev_outputs = 0;
for (int i = 0; i < (int) batch.n_tokens; i += n_batch) {
const int n_tokens = std::min<int>(n_batch, batch.n_tokens - i);
for (int i = 0; i < (int) batch.get_n_tokens(); i += n_batch) {
const int n_tokens = std::min<int>(n_batch, batch.get_n_tokens() - i);
llama_batch batch_view = {
n_tokens,
batch.token + i,
nullptr,
batch.pos + i,
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
};
common_batch batch_view = batch.get_view(i, n_tokens);
const int ret = llama_decode(ctx, batch_view);
const int ret = llama_decode_ext(ctx, batch_view.get());
if (ret != 0) {
LOG_ERR("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
return false;
}
int n_outputs = 0;
for (int i = 0; i < n_tokens; ++i) {
n_outputs += batch_view.logits[i] != 0;
}
int n_outputs = batch_view.n_outputs;
memcpy(batch_logits.data() + size_t(prev_outputs)*n_vocab, llama_get_logits(ctx), size_t(n_outputs)*n_vocab*sizeof(float));
@@ -851,7 +831,7 @@ static void hellaswag_score(llama_context * ctx, const common_params & params) {
LOG_INF("%s : calculating hellaswag score over selected tasks.\n", __func__);
LOG("\ntask\tacc_norm\t95%% confidence interval\n");
LOG("\ntask\tacc_norm\n");
double acc = 0.0f;
@@ -863,7 +843,7 @@ static void hellaswag_score(llama_context * ctx, const common_params & params) {
const int max_tasks_per_batch = 32;
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
llama_batch batch = llama_batch_init(n_ctx, 0, 4);
common_batch batch(n_ctx, 4);
std::vector<float> tok_logits(n_vocab);
// TODO: this could be made smaller; it's currently the worst-case size
@@ -879,7 +859,7 @@ static void hellaswag_score(llama_context * ctx, const common_params & params) {
size_t i1 = i0;
size_t i_logits = 0; // this tells us how many logits were needed before this point in the batch
common_batch_clear(batch);
batch.clear();
// batch as much tasks as possible into the available context
// each task has 4 unique sequence ids - one for each ending
@@ -895,9 +875,9 @@ static void hellaswag_score(llama_context * ctx, const common_params & params) {
}
for (size_t i = 0; i < hs_cur.common_prefix; ++i) {
common_batch_add(batch, hs_cur.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3 }, false);
batch.add_text_multi_seq(hs_cur.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3 }, false);
}
batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
llama_batch_ext_set_output_last(batch.get());
n_logits += 1;
for (int s = 0; s < 4; ++s) {
@@ -905,7 +885,7 @@ static void hellaswag_score(llama_context * ctx, const common_params & params) {
// TODO: don't evaluate the last token of each sequence
for (size_t i = hs_cur.common_prefix; i < seq_tokens_size; ++i) {
const bool needs_logits = i < seq_tokens_size - 1;
common_batch_add(batch, hs_cur.seq_tokens[s][i], i, { s0 + s }, needs_logits);
batch.add_text_multi_seq(hs_cur.seq_tokens[s][i], i, { s0 + s }, needs_logits);
n_logits += needs_logits;
}
}
@@ -985,29 +965,13 @@ static void hellaswag_score(llama_context * ctx, const common_params & params) {
acc += 1.0;
}
double freq = acc / double(i + 1);
const double za = 1.95996398454;
// // Wald normal approx
// double conf =za*sqrt(freq*(1-freq)/double(i + 1));
// LOG("%zu\t%.8lf +/- %.8lf\n", i + 1, freq*100.0, conf*100.0);
// Wilson score interval, more accurate
double z = za * za / double(i + 1);
double cnf = z * sqrt(double(i + 1) * (4.0 * freq * (1 - freq) + z)) / (za + za);
double a = (freq + z * 0.5 - cnf) / (1.0 + z);
double b = (freq + z * 0.5 + cnf) / (1.0 + z);
// Print the accumulated accuracy mean x 100 and confidence interval
LOG("%zu\t%3.8lf%%\t[%3.4lf%%, %3.4lf%%]\n", i + 1, freq * 100.0, a * 100.0, b * 100.0);
// Print the accumulated accuracy mean x 100
LOG("%zu\t%.8lf\n", i + 1, acc/double(i + 1)*100.0);
}
i0 = i1 - 1;
}
llama_batch_free(batch);
LOG("\n");
}
@@ -1161,7 +1125,7 @@ static void winogrande_score(llama_context * ctx, const common_params & params)
const int max_tasks_per_batch = 128;
const int max_seq = std::min(2*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
llama_batch batch = llama_batch_init(n_ctx, 0, 2);
common_batch batch(n_ctx, 2);
std::vector<float> tok_logits(n_vocab);
// TODO: this could be made smaller; it's currently the worst-case size
@@ -1180,7 +1144,7 @@ static void winogrande_score(llama_context * ctx, const common_params & params)
size_t i1 = i0;
size_t i_logits = 0;
common_batch_clear(batch);
batch.clear();
while (n_cur + (int) data[i1].required_tokens <= n_ctx) {
int n_logits = 0;
@@ -1190,15 +1154,15 @@ static void winogrande_score(llama_context * ctx, const common_params & params)
}
for (size_t i = 0; i < data[i1].common_prefix; ++i) {
common_batch_add(batch, data[i1].seq_tokens[0][i], i, { s0 + 0, s0 + 1 }, false);
batch.add_text_multi_seq(data[i1].seq_tokens[0][i], i, { s0 + 0, s0 + 1 }, false);
}
batch.logits[batch.n_tokens - 1] = true;
llama_batch_ext_set_output_last(batch.get());
n_logits += 1;
for (int s = 0; s < 2; ++s) {
// TODO: end before the last token, no need to predict past the end of the sequences
for (size_t i = data[i1].common_prefix; i < data[i1].seq_tokens[s].size(); ++i) {
common_batch_add(batch, data[i1].seq_tokens[s][i], i, { s0 + s }, true);
batch.add_text_multi_seq(data[i1].seq_tokens[s][i], i, { s0 + s }, true);
n_logits += 1;
}
}
@@ -1515,7 +1479,7 @@ static void multiple_choice_score(llama_context * ctx, const common_params & par
const int max_tasks_per_batch = 32;
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
common_batch batch(n_ctx, max_seq);
std::vector<float> tok_logits(n_vocab);
std::vector<float> batch_logits(size_t(n_ctx)*n_vocab);
@@ -1535,7 +1499,7 @@ static void multiple_choice_score(llama_context * ctx, const common_params & par
size_t i1 = i0;
size_t i_logits = 0; // this tells us how many logits were needed before this point in the batch
common_batch_clear(batch);
batch.clear();
// batch as much tasks as possible into the available context
// each task has 4 unique sequence ids - one for each ending
@@ -1558,9 +1522,9 @@ static void multiple_choice_score(llama_context * ctx, const common_params & par
for (size_t i = 0; i < cur_task.common_prefix; ++i) {
//llama_batch_add(batch, cur_task.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3}, false);
common_batch_add(batch, cur_task.seq_tokens[0][i], i, batch_indeces, false);
batch.add_text_multi_seq(cur_task.seq_tokens[0][i], i, batch_indeces, false);
}
batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
llama_batch_ext_set_output_last(batch.get()); // we need logits for the last token of the common prefix
n_logits += 1;
for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
@@ -1568,7 +1532,7 @@ static void multiple_choice_score(llama_context * ctx, const common_params & par
// TODO: don't evaluate the last token of each sequence
for (size_t i = cur_task.common_prefix; i < seq_tokens_size; ++i) {
const bool needs_logits = i < seq_tokens_size - 1;
common_batch_add(batch, cur_task.seq_tokens[s][i], i, { s0 + s }, needs_logits);
batch.add_text_multi_seq(cur_task.seq_tokens[s][i], i, { s0 + s }, needs_logits);
n_logits += needs_logits;
}
}
@@ -1667,8 +1631,6 @@ static void multiple_choice_score(llama_context * ctx, const common_params & par
i0 = i1 - 1;
}
llama_batch_free(batch);
if (n_done < 100 && (params.multiple_choice_tasks != 0 && params.multiple_choice_tasks < (size_t)n_task)) return;
float p = 1.f*n_correct/n_done;
@@ -1781,7 +1743,7 @@ static void kl_divergence(llama_context * ctx, const common_params & params) {
// clear the KV cache
llama_kv_self_clear(ctx);
llama_batch batch = llama_batch_init(n_batch, 0, 1);
common_batch batch(n_batch, 1);
for (int j = 0; j < num_batches; ++j) {
const int batch_start = start + j * n_batch;
@@ -1795,14 +1757,13 @@ static void kl_divergence(llama_context * ctx, const common_params & params) {
tokens[batch_start] = llama_vocab_bos(vocab);
}
common_batch_clear(batch);
batch.clear();
for (int i = 0; i < batch_size; i++) {
common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true);
batch.add_text_multi_seq(tokens[batch_start + i], j*n_batch + i, {0}, true);
}
if (llama_decode(ctx, batch)) {
if (llama_decode_ext(ctx, batch.get())) {
LOG_ERR("%s : failed to eval\n", __func__);
llama_batch_free(batch);
return;
}
@@ -1815,8 +1776,6 @@ static void kl_divergence(llama_context * ctx, const common_params & params) {
}
}
llama_batch_free(batch);
const auto t_end = std::chrono::high_resolution_clock::now();
if (i == 0) {

View File

@@ -74,40 +74,56 @@ static std::vector<chunk> chunk_file(const std::string & filename, int chunk_siz
return chunks;
}
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
static void batch_add_seq(common_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
size_t n_tokens = tokens.size();
for (size_t i = 0; i < n_tokens; i++) {
common_batch_add(batch, tokens[i], i, { seq_id }, true);
batch.add_text(tokens[i], i, seq_id, true);
}
}
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
static void batch_decode(llama_context * ctx, common_batch & batch, float * output, int n_seq, int n_embd, int embd_norm = 2) {
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
const struct llama_model * model = llama_get_model(ctx);
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_self_clear(ctx);
// run model
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
if (llama_decode(ctx, batch) < 0) {
LOG_ERR("%s : failed to decode\n", __func__);
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, llama_batch_ext_get_n_tokens(batch.get()), n_seq);
if (llama_model_has_encoder(model) && !llama_model_has_decoder(model)) {
// encoder-only model
if (llama_encode_ext(ctx, batch.get()) < 0) {
LOG_ERR("%s : failed to encode\n", __func__);
}
} else if (!llama_model_has_encoder(model) && llama_model_has_decoder(model)) {
// decoder-only model
if (llama_decode_ext(ctx, batch.get()) < 0) {
LOG_ERR("%s : failed to decode\n", __func__);
}
}
for (int i = 0; i < batch.n_tokens; i++) {
if (!batch.logits[i]) {
for (int i = 0; i < llama_batch_ext_get_n_tokens(batch.get()); i++) {
if (!batch.tokens[i].logits) {
continue;
}
// try to get sequence embeddings - supported only when pooling_type is not NONE
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
if (embd == NULL) {
const float * embd = nullptr;
int embd_pos = 0;
if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
// try to get token embeddings
embd = llama_get_embeddings_ith(ctx, i);
if (embd == NULL) {
LOG_ERR("%s: failed to get embeddings for token %d\n", __func__, i);
continue;
}
embd_pos = i;
GGML_ASSERT(embd != NULL && "failed to get token embeddings");
} else {
// try to get sequence embeddings - supported only when pooling_type is not NONE
embd = llama_get_embeddings_seq(ctx, batch.tokens[i].seq_id);
embd_pos = batch.tokens[i].seq_id;
GGML_ASSERT(embd != NULL && "failed to get sequence embeddings");
}
float * out = output + batch.seq_id[i][0] * n_embd;
common_embd_normalize(embd, out, n_embd, 2);
float * out = output + embd_pos * n_embd;
common_embd_normalize(embd, out, n_embd, embd_norm);
}
}
@@ -214,7 +230,7 @@ int main(int argc, char ** argv) {
// initialize batch
const int n_chunks = chunks.size();
struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
struct common_batch batch = common_batch(n_batch, 1);
// allocate output
const int n_embd = llama_model_n_embd(model);
@@ -231,10 +247,10 @@ int main(int argc, char ** argv) {
const uint64_t n_toks = inp.size();
// encode if at capacity
if (batch.n_tokens + n_toks > n_batch) {
if (llama_batch_ext_get_n_tokens(batch.get()) + n_toks > n_batch) {
float * out = emb + p * n_embd;
batch_decode(ctx, batch, out, s, n_embd);
common_batch_clear(batch);
batch.clear();
p += s;
s = 0;
}
@@ -255,7 +271,7 @@ int main(int argc, char ** argv) {
chunks[i].tokens.clear();
}
struct llama_batch query_batch = llama_batch_init(n_batch, 0, 1);
struct common_batch query_batch = common_batch(n_batch, 1);
// start loop, receive query and return top k similar chunks based on cosine similarity
std::string query;
@@ -269,7 +285,7 @@ int main(int argc, char ** argv) {
std::vector<float> query_emb(n_embd, 0);
batch_decode(ctx, query_batch, query_emb.data(), 1, n_embd);
common_batch_clear(query_batch);
query_batch.clear();
// compute cosine similarities
{
@@ -299,6 +315,5 @@ int main(int argc, char ** argv) {
llama_perf_context_print(ctx);
// clean up
llama_batch_free(query_batch);
llama_backend_free();
}

View File

@@ -1,4 +1,2 @@
set(TARGET rpc-server)
add_executable(${TARGET} rpc-server.cpp)
target_link_libraries(${TARGET} PRIVATE ggml)
target_compile_features(${TARGET} PRIVATE cxx_std_17)
add_executable(rpc-server rpc-server.cpp)
target_link_libraries(rpc-server PRIVATE ggml llama)

View File

@@ -72,14 +72,3 @@ $ bin/llama-cli -m ../models/tinyllama-1b/ggml-model-f16.gguf -p "Hello, my name
This way you can offload model layers to both local and remote devices.
### Local cache
The RPC server can use a local cache to store large tensors and avoid transferring them over the network.
This can speed up model loading significantly, especially when using large models.
To enable the cache, use the `-c` option:
```bash
$ bin/rpc-server -c
```
By default, the cache is stored in the `$HOME/.cache/llama.cpp/rpc` directory and can be controlled via the `LLAMA_CACHE` environment variable.

View File

@@ -1,7 +1,3 @@
#if defined(_MSC_VER)
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
#endif
#include "ggml-cpu.h"
#ifdef GGML_USE_CUDA
@@ -22,142 +18,26 @@
#include "ggml-rpc.h"
#ifdef _WIN32
# define DIRECTORY_SEPARATOR '\\'
# include <locale>
# include <windows.h>
# include <fcntl.h>
# include <io.h>
#else
# define DIRECTORY_SEPARATOR '/'
# include <unistd.h>
# include <sys/stat.h>
#endif
#include <codecvt>
#include <string>
#include <stdio.h>
#include <vector>
#include <filesystem>
namespace fs = std::filesystem;
// NOTE: this is copied from common.cpp to avoid linking with libcommon
// returns true if successful, false otherwise
static bool fs_create_directory_with_parents(const std::string & path) {
#ifdef _WIN32
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
std::wstring wpath = converter.from_bytes(path);
// if the path already exists, check whether it's a directory
const DWORD attributes = GetFileAttributesW(wpath.c_str());
if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
return true;
}
size_t pos_slash = 0;
// process path from front to back, procedurally creating directories
while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
const std::wstring subpath = wpath.substr(0, pos_slash);
const wchar_t * test = subpath.c_str();
const bool success = CreateDirectoryW(test, NULL);
if (!success) {
const DWORD error = GetLastError();
// if the path already exists, ensure that it's a directory
if (error == ERROR_ALREADY_EXISTS) {
const DWORD attributes = GetFileAttributesW(subpath.c_str());
if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
return false;
}
} else {
return false;
}
}
pos_slash += 1;
}
return true;
#else
// if the path already exists, check whether it's a directory
struct stat info;
if (stat(path.c_str(), &info) == 0) {
return S_ISDIR(info.st_mode);
}
size_t pos_slash = 1; // skip leading slashes for directory creation
// process path from front to back, procedurally creating directories
while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
const std::string subpath = path.substr(0, pos_slash);
struct stat info;
// if the path already exists, ensure that it's a directory
if (stat(subpath.c_str(), &info) == 0) {
if (!S_ISDIR(info.st_mode)) {
return false;
}
} else {
// create parent directories
const int ret = mkdir(subpath.c_str(), 0755);
if (ret != 0) {
return false;
}
}
pos_slash += 1;
}
return true;
#endif // _WIN32
}
// NOTE: this is copied from common.cpp to avoid linking with libcommon
static std::string fs_get_cache_directory() {
std::string cache_directory = "";
auto ensure_trailing_slash = [](std::string p) {
// Make sure to add trailing slash
if (p.back() != DIRECTORY_SEPARATOR) {
p += DIRECTORY_SEPARATOR;
}
return p;
};
if (getenv("LLAMA_CACHE")) {
cache_directory = std::getenv("LLAMA_CACHE");
} else {
#ifdef __linux__
if (std::getenv("XDG_CACHE_HOME")) {
cache_directory = std::getenv("XDG_CACHE_HOME");
} else {
cache_directory = std::getenv("HOME") + std::string("/.cache/");
}
#elif defined(__APPLE__)
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
#elif defined(_WIN32)
cache_directory = std::getenv("LOCALAPPDATA");
#endif // __linux__
cache_directory = ensure_trailing_slash(cache_directory);
cache_directory += "llama.cpp";
}
return ensure_trailing_slash(cache_directory);
}
struct rpc_server_params {
std::string host = "127.0.0.1";
int port = 50052;
size_t backend_mem = 0;
bool use_cache = false;
};
static void print_usage(int /*argc*/, char ** argv, rpc_server_params params) {
fprintf(stderr, "Usage: %s [options]\n\n", argv[0]);
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -H HOST, --host HOST host to bind to (default: %s)\n", params.host.c_str());
fprintf(stderr, " -p PORT, --port PORT port to bind to (default: %d)\n", params.port);
fprintf(stderr, " -m MEM, --mem MEM backend memory size (in MB)\n");
fprintf(stderr, " -c, --cache enable local file cache\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -H HOST, --host HOST host to bind to (default: %s)\n", params.host.c_str());
fprintf(stderr, " -p PORT, --port PORT port to bind to (default: %d)\n", params.port);
fprintf(stderr, " -m MEM, --mem MEM backend memory size (in MB)\n");
fprintf(stderr, "\n");
}
@@ -178,8 +58,6 @@ static bool rpc_server_params_parse(int argc, char ** argv, rpc_server_params &
if (params.port <= 0 || params.port > 65535) {
return false;
}
} else if (arg == "-c" || arg == "--cache") {
params.use_cache = true;
} else if (arg == "-m" || arg == "--mem") {
if (++i >= argc) {
return false;
@@ -286,20 +164,8 @@ int main(int argc, char * argv[]) {
} else {
get_backend_memory(&free_mem, &total_mem);
}
const char * cache_dir = nullptr;
std::string cache_dir_str = fs_get_cache_directory() + "rpc/";
if (params.use_cache) {
if (!fs_create_directory_with_parents(cache_dir_str)) {
fprintf(stderr, "Failed to create cache directory: %s\n", cache_dir_str.c_str());
return 1;
}
cache_dir = cache_dir_str.c_str();
}
printf("Starting RPC server\n");
printf(" endpoint : %s\n", endpoint.c_str());
printf(" local cache : %s\n", cache_dir ? cache_dir : "n/a");
printf(" backend memory : %zu MB\n", free_mem / (1024 * 1024));
ggml_backend_rpc_start_server(backend, endpoint.c_str(), cache_dir, free_mem, total_mem);
printf("Starting RPC server on %s, backend memory: %zu MB\n", endpoint.c_str(), free_mem / (1024 * 1024));
ggml_backend_rpc_start_server(backend, endpoint.c_str(), free_mem, total_mem);
ggml_backend_free(backend);
return 0;
}

View File

@@ -1,16 +1,5 @@
set(TARGET llama-run)
add_executable(${TARGET} run.cpp linenoise.cpp/linenoise.cpp)
# TODO: avoid copying this code block from common/CMakeLists.txt
set(LLAMA_RUN_EXTRA_LIBS "")
if (LLAMA_CURL)
find_package(CURL REQUIRED)
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_CURL)
include_directories(${CURL_INCLUDE_DIRS})
find_library(CURL_LIBRARY curl REQUIRED)
set(LLAMA_RUN_EXTRA_LIBS ${LLAMA_RUN_EXTRA_LIBS} ${CURL_LIBRARY})
endif ()
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT} ${LLAMA_RUN_EXTRA_LIBS})
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -38,6 +38,24 @@
}
#endif
GGML_ATTRIBUTE_FORMAT(1, 2)
static std::string fmt(const char * fmt, ...) {
va_list ap;
va_list ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
const int size = vsnprintf(NULL, 0, fmt, ap);
GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
std::string buf;
buf.resize(size);
const int size2 = vsnprintf(const_cast<char *>(buf.data()), buf.size() + 1, fmt, ap2);
GGML_ASSERT(size2 == size);
va_end(ap2);
va_end(ap);
return buf;
}
GGML_ATTRIBUTE_FORMAT(1, 2)
static int printe(const char * fmt, ...) {
va_list args;
@@ -507,11 +525,11 @@ class HttpClient {
int secs = static_cast<int>(seconds) % 60;
if (hrs > 0) {
return string_format("%dh %02dm %02ds", hrs, mins, secs);
return fmt("%dh %02dm %02ds", hrs, mins, secs);
} else if (mins > 0) {
return string_format("%dm %02ds", mins, secs);
return fmt("%dm %02ds", mins, secs);
} else {
return string_format("%ds", secs);
return fmt("%ds", secs);
}
}
@@ -526,7 +544,7 @@ class HttpClient {
}
}
return string_format("%.2f %s", dbl_size, suffix[i]);
return fmt("%.2f %s", dbl_size, suffix[i]);
}
static int update_progress(void * ptr, curl_off_t total_to_download, curl_off_t now_downloaded, curl_off_t,
@@ -560,9 +578,7 @@ class HttpClient {
return (now_downloaded_plus_file_size * 100) / total_to_download;
}
static std::string generate_progress_prefix(curl_off_t percentage) {
return string_format("%3ld%% |", static_cast<long int>(percentage));
}
static std::string generate_progress_prefix(curl_off_t percentage) { return fmt("%3ld%% |", static_cast<long int>(percentage)); }
static double calculate_speed(curl_off_t now_downloaded, const std::chrono::steady_clock::time_point & start_time) {
const auto now = std::chrono::steady_clock::now();
@@ -573,9 +589,9 @@ class HttpClient {
static std::string generate_progress_suffix(curl_off_t now_downloaded_plus_file_size, curl_off_t total_to_download,
double speed, double estimated_time) {
const int width = 10;
return string_format("%*s/%*s%*s/s%*s", width, human_readable_size(now_downloaded_plus_file_size).c_str(),
width, human_readable_size(total_to_download).c_str(), width,
human_readable_size(speed).c_str(), width, human_readable_time(estimated_time).c_str());
return fmt("%*s/%*s%*s/s%*s", width, human_readable_size(now_downloaded_plus_file_size).c_str(), width,
human_readable_size(total_to_download).c_str(), width, human_readable_size(speed).c_str(), width,
human_readable_time(estimated_time).c_str());
}
static int calculate_progress_bar_width(const std::string & progress_prefix, const std::string & progress_suffix) {
@@ -624,6 +640,7 @@ class LlamaData {
std::vector<llama_chat_message> messages; // TODO: switch to common_chat_msg
std::list<std::string> msg_strs;
std::vector<char> fmtted;
llama_pos n_past = 0;
int init(Opt & opt) {
model = initialize_model(opt);
@@ -934,10 +951,10 @@ static int tokenize_prompt(const llama_vocab * vocab, const std::string & prompt
}
// Check if we have enough space in the context to evaluate this batch
static int check_context_size(const llama_context_ptr & ctx, const llama_batch & batch) {
static int check_context_size(const llama_context_ptr & ctx, const llama_batch_ext_ptr & batch) {
const int n_ctx = llama_n_ctx(ctx.get());
const int n_ctx_used = llama_kv_self_used_cells(ctx.get());
if (n_ctx_used + batch.n_tokens > n_ctx) {
if (n_ctx_used + llama_batch_ext_get_n_tokens(batch.get()) > n_ctx) {
printf(LOG_COL_DEFAULT "\n");
printe("context size exceeded\n");
return 1;
@@ -975,15 +992,17 @@ static int generate(LlamaData & llama_data, const std::string & prompt, std::str
}
// prepare a batch for the prompt
llama_batch batch = llama_batch_get_one(tokens.data(), tokens.size());
auto batch = llama_batch_ext_ptr::init_from_text(tokens.data(), tokens.size(), llama_data.n_past, 0, true);
llama_token new_token_id;
while (true) {
check_context_size(llama_data.context, batch);
if (llama_decode(llama_data.context.get(), batch)) {
if (llama_decode_ext(llama_data.context.get(), batch.get())) {
printe("failed to decode\n");
return 1;
}
llama_data.n_past += llama_batch_ext_get_n_tokens(batch.get());
// sample the next token, check is it an end of generation?
new_token_id = llama_sampler_sample(llama_data.sampler.get(), llama_data.context.get(), -1);
if (llama_vocab_is_eog(vocab, new_token_id)) {
@@ -998,7 +1017,7 @@ static int generate(LlamaData & llama_data, const std::string & prompt, std::str
print_word_and_concatenate_to_response(piece, response);
// prepare the next batch with the sampled token
batch = llama_batch_get_one(&new_token_id, 1);
batch.reset(llama_batch_ext_init_from_text(&new_token_id, 1, llama_data.n_past, 0, true));
}
printf(LOG_COL_DEFAULT);

View File

@@ -48,15 +48,11 @@ int main(int argc, char ** argv) {
auto tokens = common_tokenize(ctx, params.prompt, true);
// prepare the batch
llama_batch batch = llama_batch_init(tokens.size(), 0, 1);
for (size_t i = 0; i < tokens.size(); i++) {
common_batch_add(batch, tokens[i], i, {0}, false);
}
batch.logits[batch.n_tokens - 1] = true; // generate next token
llama_batch_ext * batch = llama_batch_ext_init_from_text(tokens.data(), tokens.size(), 0, 0, true);
// evaluate prompt
llama_decode(ctx, batch);
n_past += batch.n_tokens;
llama_decode_ext(ctx, batch);
n_past += llama_batch_ext_get_n_tokens(batch);
// save state (rng, logits, embedding and kv_cache) to file
{
@@ -83,12 +79,13 @@ int main(int argc, char ** argv) {
printf("%s", next_token_str.c_str());
result0 += next_token_str;
common_batch_clear(batch);
common_batch_add(batch, next_token, n_past, {0}, true);
llama_batch_ext_clear(batch);
llama_seq_id seq_id = 0;
llama_batch_ext_add_text(batch, next_token, 0, &seq_id, 1, true);
if (llama_decode(ctx, batch)) {
if (llama_decode_ext(ctx, batch)) {
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
llama_batch_free(batch);
llama_batch_ext_free(batch);
return 1;
}
n_past += 1;
@@ -135,12 +132,13 @@ int main(int argc, char ** argv) {
printf("%s", next_token_str.c_str());
result1 += next_token_str;
common_batch_clear(batch);
common_batch_add(batch, next_token, n_past, {0}, true);
llama_batch_ext_clear(batch);
llama_seq_id seq_id = 0;
llama_batch_ext_add_text(batch, next_token, 0, &seq_id, 1, true);
if (llama_decode(ctx2, batch)) {
if (llama_decode_ext(ctx2, batch)) {
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
llama_batch_free(batch);
llama_batch_ext_free(batch);
return 1;
}
n_past += 1;
@@ -216,12 +214,13 @@ int main(int argc, char ** argv) {
printf("%s", next_token_str.c_str());
result2 += next_token_str;
common_batch_clear(batch);
common_batch_add(batch, next_token, n_past, {1}, true);
llama_batch_ext_clear(batch);
llama_seq_id seq_id = 1; // seq 1 instead of 0
llama_batch_ext_add_text(batch, next_token, 0, &seq_id, 1, true);
if (llama_decode(ctx3, batch)) {
if (llama_decode_ext(ctx3, batch)) {
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
llama_batch_free(batch);
llama_batch_ext_free(batch);
return 1;
}
n_past += 1;
@@ -233,7 +232,7 @@ int main(int argc, char ** argv) {
llama_sampler_free(smpl2);
llama_sampler_free(smpl3);
llama_batch_free(batch);
llama_batch_ext_free(batch);
if (result0 != result2) {
fprintf(stderr, "\n%s : error : the seq restore generation is different\n", __func__);

File diff suppressed because it is too large Load Diff

Binary file not shown.

View File

@@ -133,8 +133,7 @@ struct slot_params {
auto grammar_triggers = json::array();
for (const auto & trigger : sampling.grammar_triggers) {
server_grammar_trigger ct(std::move(trigger));
grammar_triggers.push_back(ct.to_json());
grammar_triggers.push_back(trigger.to_json<json>());
}
return json {
@@ -373,9 +372,9 @@ struct server_task {
const auto grammar_triggers = data.find("grammar_triggers");
if (grammar_triggers != data.end()) {
for (const auto & t : *grammar_triggers) {
server_grammar_trigger ct(t);
if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
const auto & word = ct.value.value;
auto ct = common_grammar_trigger::from_json(t);
if (ct.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
const auto & word = ct.value;
auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
if (ids.size() == 1) {
auto token = ids[0];
@@ -393,7 +392,7 @@ struct server_task {
params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
}
} else {
params.sampling.grammar_triggers.push_back(std::move(ct.value));
params.sampling.grammar_triggers.push_back(ct);
}
}
}
@@ -490,12 +489,8 @@ struct result_timings {
double predicted_per_token_ms;
double predicted_per_second;
// Optional speculative metrics - only included when > 0
int32_t draft_n = 0;
int32_t draft_n_accepted = 0;
json to_json() const {
json base = {
return {
{"prompt_n", prompt_n},
{"prompt_ms", prompt_ms},
{"prompt_per_token_ms", prompt_per_token_ms},
@@ -506,13 +501,6 @@ struct result_timings {
{"predicted_per_token_ms", predicted_per_token_ms},
{"predicted_per_second", predicted_per_second},
};
if (draft_n > 0) {
base["draft_n"] = draft_n;
base["draft_n_accepted"] = draft_n_accepted;
}
return base;
}
};
@@ -842,11 +830,6 @@ struct server_task_result_cmpl_final : server_task_result {
ret.push_back({"timings", timings.to_json()});
}
// extra fields for debugging purposes
if (verbose) {
ret["__verbose"] = to_json_non_oaicompat();
}
return ret;
}
};
@@ -1241,7 +1224,7 @@ struct server_slot {
// only used for completion/embedding/infill/rerank
server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
llama_batch batch_spec = {};
common_batch batch_spec;
llama_context * ctx = nullptr;
llama_context * ctx_dft = nullptr;
@@ -1311,10 +1294,6 @@ struct server_slot {
std::function<void(int)> callback_on_release;
// Speculative decoding stats
int32_t n_draft_total = 0; // Total draft tokens generated
int32_t n_draft_accepted = 0; // Draft tokens actually accepted
void reset() {
SLT_DBG(*this, "%s", "\n");
@@ -1331,10 +1310,6 @@ struct server_slot {
generated_tokens.clear();
generated_token_probs.clear();
// clear speculative decoding stats
n_draft_total = 0;
n_draft_accepted = 0;
}
bool is_non_causal() const {
@@ -1401,12 +1376,6 @@ struct server_slot {
timings.predicted_per_token_ms = t_token_generation / n_decoded;
timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
// Add speculative metrics
if (n_draft_total > 0) {
timings.draft_n = n_draft_total;
timings.draft_n_accepted = n_draft_accepted;
}
return timings;
}
@@ -1454,15 +1423,6 @@ struct server_slot {
t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
t_token_generation, n_decoded, t_gen, n_gen_second,
t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
if (n_draft_total > 0) {
const float draft_ratio = (float) n_draft_accepted / n_draft_total;
SLT_INF(*this,
"\n"
"draft acceptance rate = %0.5f (%5d accepted / %5d generated)\n",
draft_ratio, n_draft_accepted, n_draft_total
);
}
}
json to_json() const {
@@ -1705,8 +1665,6 @@ private:
};
struct server_response {
bool running = true;
// for keeping track of all tasks waiting for the result
std::unordered_set<int> waiting_task_ids;
@@ -1761,10 +1719,6 @@ struct server_response {
while (true) {
std::unique_lock<std::mutex> lock(mutex_results);
condition_results.wait(lock, [&]{
if (!running) {
SRV_DBG("%s : queue result stop\n", __func__);
std::terminate(); // we cannot return here since the caller is HTTP code
}
return !queue_results.empty();
});
@@ -1795,10 +1749,6 @@ struct server_response {
}
std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
if (!running) {
SRV_DBG("%s : queue result stop\n", __func__);
std::terminate(); // we cannot return here since the caller is HTTP code
}
if (cr_res == std::cv_status::timeout) {
return nullptr;
}
@@ -1828,12 +1778,6 @@ struct server_response {
}
}
}
// terminate the waiting loop
void terminate() {
running = false;
condition_results.notify_all();
}
};
struct server_context {
@@ -1852,7 +1796,7 @@ struct server_context {
llama_context_params cparams_dft;
llama_batch batch = {};
common_batch batch;
bool clean_kv_cache = true;
bool add_bos_token = true;
@@ -1885,15 +1829,11 @@ struct server_context {
common_speculative_free(slot.spec);
slot.spec = nullptr;
llama_batch_free(slot.batch_spec);
}
llama_batch_free(batch);
}
bool load_model(const common_params & params) {
SRV_INF("loading model '%s'\n", params.model.path.c_str());
SRV_INF("loading model '%s'\n", params.model.c_str());
params_base = params;
@@ -1903,7 +1843,7 @@ struct server_context {
ctx = llama_init.context.get();
if (model == nullptr) {
SRV_ERR("failed to load model, '%s'\n", params_base.model.path.c_str());
SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
return false;
}
@@ -1914,13 +1854,16 @@ struct server_context {
add_bos_token = llama_vocab_get_add_bos(vocab);
has_eos_token = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
if (!params_base.speculative.model.path.empty() || !params_base.speculative.model.hf_repo.empty()) {
SRV_INF("loading draft model '%s'\n", params_base.speculative.model.path.c_str());
if (!params_base.speculative.model.empty() || !params_base.speculative.hf_repo.empty()) {
SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
auto params_dft = params_base;
params_dft.devices = params_base.speculative.devices;
params_dft.hf_file = params_base.speculative.hf_file;
params_dft.hf_repo = params_base.speculative.hf_repo;
params_dft.model = params_base.speculative.model;
params_dft.model_url = params_base.speculative.model_url;
params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
params_dft.n_parallel = 1;
@@ -1934,12 +1877,12 @@ struct server_context {
model_dft = llama_init_dft.model.get();
if (model_dft == nullptr) {
SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str());
SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
return false;
}
if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) {
SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());
return false;
}
@@ -1979,7 +1922,7 @@ struct server_context {
slot.n_predict = params_base.n_predict;
if (model_dft) {
slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
slot.batch_spec = common_batch(params_base.speculative.n_max + 1, 1);
slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
if (slot.ctx_dft == nullptr) {
@@ -2004,7 +1947,7 @@ struct server_context {
slot.reset();
slots.push_back(slot);
slots.push_back(std::move(slot));
}
default_generation_settings_for_props = slots[0].to_json();
@@ -2015,7 +1958,7 @@ struct server_context {
const int32_t n_batch = llama_n_batch(ctx);
// only a single seq_id per token is needed
batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
batch = common_batch(std::max(n_batch, params_base.n_parallel), 1);
}
metrics.init();
@@ -2150,9 +2093,7 @@ struct server_context {
}
if (slot.ctx_dft) {
llama_batch_free(slot.batch_spec);
slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
slot.batch_spec = common_batch(slot.params.speculative.n_max + 1, 1);
}
slot.state = SLOT_STATE_STARTED;
@@ -2460,7 +2401,7 @@ struct server_context {
queue_results.send(std::move(res));
}
void send_embedding(const server_slot & slot, const llama_batch & batch) {
void send_embedding(const server_slot & slot, common_batch & batch) {
auto res = std::make_unique<server_task_result_embd>();
res->id = slot.id_task;
res->index = slot.index;
@@ -2471,18 +2412,19 @@ struct server_context {
std::vector<float> embd_res(n_embd, 0.0f);
for (int i = 0; i < batch.n_tokens; ++i) {
if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
for (int i = 0; i < batch.get_n_tokens(); ++i) {
auto tok = batch.tokens[i];
if (!tok.logits || tok.seq_id != slot.id) {
continue;
}
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
const float * embd = llama_get_embeddings_seq(ctx, tok.seq_id);
if (embd == NULL) {
embd = llama_get_embeddings_ith(ctx, i);
}
if (embd == NULL) {
SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", tok.token, tok.seq_id);
res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
continue;
@@ -2503,24 +2445,25 @@ struct server_context {
queue_results.send(std::move(res));
}
void send_rerank(const server_slot & slot, const llama_batch & batch) {
void send_rerank(const server_slot & slot, common_batch & batch) {
auto res = std::make_unique<server_task_result_rerank>();
res->id = slot.id_task;
res->index = slot.index;
res->n_tokens = slot.n_prompt_tokens;
for (int i = 0; i < batch.n_tokens; ++i) {
if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
for (int i = 0; i < batch.get_n_tokens(); ++i) {
auto tok = batch.tokens[i];
if (!tok.logits || tok.seq_id != slot.id) {
continue;
}
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
const float * embd = llama_get_embeddings_seq(ctx, tok.seq_id);
if (embd == NULL) {
embd = llama_get_embeddings_ith(ctx, i);
}
if (embd == NULL) {
SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", tok.token, tok.seq_id);
res->score = -1e6;
continue;
@@ -2911,7 +2854,7 @@ struct server_context {
}
// start populating the batch for this iteration
common_batch_clear(batch);
batch.clear();
// track if given slot can be batched with slots already in the batch
server_slot * slot_batched = nullptr;
@@ -2933,9 +2876,9 @@ struct server_context {
continue;
}
slot.i_batch = batch.n_tokens;
slot.i_batch = batch.get_n_tokens();
common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
batch.add_text(slot.sampled, slot.n_past, slot.id, true);
slot.n_past += 1;
@@ -2952,7 +2895,7 @@ struct server_context {
int32_t n_ubatch = llama_n_ubatch(ctx);
// next, batch any pending prompts without exceeding n_batch
if (params_base.cont_batching || batch.n_tokens == 0) {
if (params_base.cont_batching || batch.get_n_tokens() == 0) {
for (auto & slot : slots) {
// check if we can batch this slot with the previous one
if (slot.is_processing()) {
@@ -3118,7 +3061,7 @@ struct server_context {
// non-causal tasks require to fit the entire prompt in the physical batch
if (slot.is_non_causal()) {
// cannot fit the prompt in the current batch - will try next iter
if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
if (batch.get_n_tokens() + slot.n_prompt_tokens > n_batch) {
continue;
}
}
@@ -3138,11 +3081,11 @@ struct server_context {
slot.cache_tokens.resize(slot.n_past);
// add prompt tokens for processing in the current batch
while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
while (slot.n_past < slot.n_prompt_tokens && batch.get_n_tokens() < n_batch) {
// without pooling, we want to output the embeddings for all the tokens in the batch
const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE;
common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, need_embd);
batch.add_text(prompt_tokens[slot.n_past], slot.n_past, slot.id, need_embd);
if (slot.params.cache_prompt) {
slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
@@ -3152,13 +3095,13 @@ struct server_context {
slot.n_past++;
}
SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.get_n_tokens(), (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
// entire prompt has been processed
if (slot.n_past == slot.n_prompt_tokens) {
slot.state = SLOT_STATE_DONE_PROMPT;
GGML_ASSERT(batch.n_tokens > 0);
GGML_ASSERT(batch.get_n_tokens() > 0);
common_sampler_reset(slot.smpl);
@@ -3168,27 +3111,27 @@ struct server_context {
}
// extract the logits only for the last token
batch.logits[batch.n_tokens - 1] = true;
batch.set_logits_last();
slot.n_decoded = 0;
slot.i_batch = batch.n_tokens - 1;
slot.i_batch = batch.get_n_tokens() - 1;
SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.get_n_tokens());
}
}
if (batch.n_tokens >= n_batch) {
if (batch.get_n_tokens() >= n_batch) {
break;
}
}
}
if (batch.n_tokens == 0) {
if (batch.get_n_tokens() == 0) {
SRV_WRN("%s", "no tokens to decode\n");
return;
}
SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
SRV_DBG("decoding batch, n_tokens = %d\n", batch.get_n_tokens());
if (slot_batched) {
// make sure we're in the right embedding mode
@@ -3198,20 +3141,12 @@ struct server_context {
}
// process the created batch of tokens
for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
for (int32_t i = 0; i < batch.get_n_tokens(); i += n_batch) {
const int32_t n_tokens = std::min(n_batch, batch.get_n_tokens() - i);
llama_batch batch_view = {
n_tokens,
batch.token + i,
nullptr,
batch.pos + i,
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
};
common_batch batch_view = batch.get_view(i, n_tokens);
const int ret = llama_decode(ctx, batch_view);
const int ret = llama_decode_ext(ctx, batch_view.get());
metrics.on_decoded(slots);
if (ret != 0) {
@@ -3338,9 +3273,6 @@ struct server_context {
llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
// keep track of total number of tokens generated in the draft
slot.n_draft_total += draft.size();
// ignore small drafts
if (slot.params.speculative.n_min > (int) draft.size()) {
SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
@@ -3349,16 +3281,16 @@ struct server_context {
}
// construct the speculation batch
common_batch_clear(slot.batch_spec);
common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
slot.batch_spec.clear();
slot.batch_spec.add_text(id, slot.n_past, slot.id, true);
for (size_t i = 0; i < draft.size(); ++i) {
common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
slot.batch_spec.add_text(draft[i], slot.n_past + 1 + i, slot.id, true);
}
SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.get_n_tokens());
llama_decode(ctx, slot.batch_spec);
llama_decode_ext(ctx, slot.batch_spec.get());
// the accepted tokens from the speculation
const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
@@ -3366,9 +3298,6 @@ struct server_context {
slot.n_past += ids.size();
slot.n_decoded += ids.size();
// update how many tokens out of draft was accepted
slot.n_draft_accepted += ids.size() - 1;
slot.cache_tokens.push_back(id);
slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
@@ -3879,7 +3808,7 @@ int main(int argc, char ** argv) {
json data = {
{ "default_generation_settings", ctx_server.default_generation_settings_for_props },
{ "total_slots", ctx_server.params_base.n_parallel },
{ "model_path", ctx_server.params_base.model.path },
{ "model_path", ctx_server.params_base.model },
{ "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) },
{ "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
{ "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
@@ -4145,7 +4074,7 @@ int main(int argc, char ** argv) {
{"object", "list"},
{"data", {
{
{"id", params.model_alias.empty() ? params.model.path : params.model_alias},
{"id", params.model_alias.empty() ? params.model : params.model_alias},
{"object", "model"},
{"created", std::time(0)},
{"owned_by", "llamacpp"},
@@ -4507,31 +4436,21 @@ int main(int argc, char ** argv) {
svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
// clean up function, to be called before exit
auto clean_up = [&svr, &ctx_server]() {
auto clean_up = [&svr]() {
SRV_INF("%s: cleaning up before exit...\n", __func__);
svr->stop();
ctx_server.queue_results.terminate();
llama_backend_free();
};
// bind HTTP listen port
bool was_bound = false;
if (string_ends_with(std::string(params.hostname), ".sock")) {
LOG_INF("%s: setting address family to AF_UNIX\n", __func__);
svr->set_address_family(AF_UNIX);
// bind_to_port requires a second arg, any value other than 0 should
// simply get ignored
was_bound = svr->bind_to_port(params.hostname, 8080);
} else {
LOG_INF("%s: binding port with default address family\n", __func__);
// bind HTTP listen port
if (params.port == 0) {
int bound_port = svr->bind_to_any_port(params.hostname);
if ((was_bound = (bound_port >= 0))) {
params.port = bound_port;
}
} else {
was_bound = svr->bind_to_port(params.hostname, params.port);
if (params.port == 0) {
int bound_port = svr->bind_to_any_port(params.hostname);
if ((was_bound = (bound_port >= 0))) {
params.port = bound_port;
}
} else {
was_bound = svr->bind_to_port(params.hostname, params.port);
}
if (!was_bound) {
@@ -4551,7 +4470,7 @@ int main(int argc, char ** argv) {
if (!ctx_server.load_model(params)) {
clean_up();
t.join();
// t.join(); // FIXME: see below
LOG_ERR("%s: exiting due to model loading error\n", __func__);
return 1;
}
@@ -4599,7 +4518,7 @@ int main(int argc, char ** argv) {
ctx_server.queue_tasks.start_loop();
clean_up();
t.join();
// t.join(); // FIXME: http thread may stuck if there is an on-going request. we don't need to care about this for now as the HTTP connection will already be closed at this point, but it's better to fix this
return 0;
}

View File

@@ -17,7 +17,7 @@ To mitigate it, you can increase values in `n_predict`, `kv_size`.
```shell
cd ../../..
cmake -B build
cmake -B build -DLLAMA_CURL=ON
cmake --build build --target llama-server
```

View File

@@ -49,26 +49,6 @@ def test_embedding_multiple():
assert len(d['embedding']) > 1
def test_embedding_multiple_with_fa():
server = ServerPreset.bert_bge_small_with_fa()
server.pooling = 'last'
server.start()
# one of these should trigger the FA branch (i.e. context size % 256 == 0)
res = server.make_request("POST", "/v1/embeddings", data={
"input": [
"a "*253,
"b "*254,
"c "*255,
"d "*256,
],
})
assert res.status_code == 200
assert len(res.body['data']) == 4
for d in res.body['data']:
assert 'embedding' in d
assert len(d['embedding']) > 1
@pytest.mark.parametrize(
"input,is_multi_prompt",
[

View File

@@ -323,21 +323,6 @@ class ServerPreset:
server.server_embeddings = True
return server
@staticmethod
def bert_bge_small_with_fa() -> ServerProcess:
server = ServerProcess()
server.model_hf_repo = "ggml-org/models"
server.model_hf_file = "bert-bge-small/ggml-model-f16.gguf"
server.model_alias = "bert-bge-small"
server.n_ctx = 1024
server.n_batch = 300
server.n_ubatch = 300
server.n_slots = 2
server.fa = True
server.seed = 42
server.server_embeddings = True
return server
@staticmethod
def tinyllama_infill() -> ServerProcess:
server = ServerProcess()

View File

@@ -3,7 +3,7 @@
#include "common.h"
#include "log.h"
#include "llama.h"
#include "base64.hpp"
#include "common/base64.hpp"
// increase max payload length to allow use of larger context size
#define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
@@ -58,32 +58,6 @@ static T json_value(const json & body, const std::string & key, const T & defaul
const static std::string build_info("b" + std::to_string(LLAMA_BUILD_NUMBER) + "-" + LLAMA_COMMIT);
// thin wrapper around common_grammar_trigger with (de)serialization functions
struct server_grammar_trigger {
common_grammar_trigger value;
server_grammar_trigger() = default;
server_grammar_trigger(const common_grammar_trigger & value) : value(value) {}
server_grammar_trigger(const json & in) {
value.type = (common_grammar_trigger_type) in.at("type").get<int>();
value.value = in.at("value").get<std::string>();
if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
value.token = (llama_token) in.at("token").get<int>();
}
}
json to_json() const {
json out {
{"type", (int) value.type},
{"value", value.value},
};
if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
out["token"] = (int) value.token;
}
return out;
}
};
//
// tokenizer and input processing utils
//
@@ -653,8 +627,7 @@ static json oaicompat_completion_params_parse(
llama_params["grammar_lazy"] = chat_params.grammar_lazy;
auto grammar_triggers = json::array();
for (const auto & trigger : chat_params.grammar_triggers) {
server_grammar_trigger ct(trigger);
grammar_triggers.push_back(ct.to_json());
grammar_triggers.push_back(trigger.to_json<json>());
}
llama_params["grammar_triggers"] = grammar_triggers;
llama_params["preserved_tokens"] = chat_params.preserved_tokens;

File diff suppressed because it is too large Load Diff

View File

@@ -13,11 +13,9 @@
"dependencies": {
"@heroicons/react": "^2.2.0",
"@sec-ant/readable-stream": "^0.6.0",
"@tailwindcss/postcss": "^4.1.1",
"@tailwindcss/vite": "^4.1.1",
"@vscode/markdown-it-katex": "^1.1.1",
"autoprefixer": "^10.4.20",
"daisyui": "^5.0.12",
"daisyui": "^4.12.14",
"dexie": "^4.0.11",
"highlight.js": "^11.10.0",
"katex": "^0.16.15",
@@ -31,7 +29,7 @@
"remark-breaks": "^4.0.0",
"remark-gfm": "^4.0.0",
"remark-math": "^6.0.0",
"tailwindcss": "^4.1.1",
"tailwindcss": "^3.4.15",
"textlinestream": "^1.1.1",
"vite-plugin-singlefile": "^2.0.3"
},

View File

@@ -1,5 +1,6 @@
export default {
plugins: {
"@tailwindcss/postcss": {},
tailwindcss: {},
autoprefixer: {},
},
}

View File

@@ -28,7 +28,7 @@ function AppLayout() {
<>
<Sidebar />
<div
className="drawer-content grow flex flex-col h-screen w-screen mx-auto px-4 overflow-auto bg-base-100"
className="drawer-content grow flex flex-col h-screen w-screen mx-auto px-4 overflow-auto"
id="main-scroll"
>
<Header />

View File

@@ -1,4 +1,4 @@
import daisyuiThemes from 'daisyui/theme/object';
import daisyuiThemes from 'daisyui/src/theming/themes';
import { isNumeric } from './utils/misc';
export const isDev = import.meta.env.MODE === 'development';

View File

@@ -1,4 +1,4 @@
import { useEffect, useMemo, useState } from 'react';
import { useEffect, useMemo, useRef, useState } from 'react';
import { CallbackGeneratedChunk, useAppContext } from '../utils/app.context';
import ChatMessage from './ChatMessage';
import { CanvasType, Message, PendingMessage } from '../utils/types';
@@ -6,7 +6,6 @@ import { classNames, cleanCurrentUrl, throttle } from '../utils/misc';
import CanvasPyInterpreter from './CanvasPyInterpreter';
import StorageUtils from '../utils/storage';
import { useVSCodeContext } from '../utils/llama-vscode';
import { useChatTextarea, ChatTextareaApi } from './useChatTextarea.ts';
/**
* A message display is a message node with additional information for rendering.
@@ -100,10 +99,13 @@ export default function ChatScreen() {
canvasData,
replaceMessageAndGenerate,
} = useAppContext();
const [inputMsg, setInputMsg] = useState(prefilledMsg.content());
const inputRef = useRef<HTMLTextAreaElement>(null);
const textarea: ChatTextareaApi = useChatTextarea(prefilledMsg.content());
const { extraContext, clearExtraContext } = useVSCodeContext(textarea);
const { extraContext, clearExtraContext } = useVSCodeContext(
inputRef,
setInputMsg
);
// TODO: improve this when we have "upload file" feature
const currExtra: Message['extra'] = extraContext ? [extraContext] : undefined;
@@ -133,10 +135,9 @@ export default function ChatScreen() {
};
const sendNewMessage = async () => {
const lastInpMsg = textarea.value();
if (lastInpMsg.trim().length === 0 || isGenerating(currConvId ?? ''))
return;
textarea.setValue('');
if (inputMsg.trim().length === 0 || isGenerating(currConvId ?? '')) return;
const lastInpMsg = inputMsg;
setInputMsg('');
scrollToBottom(false);
setCurrNodeId(-1);
// get the last message node
@@ -145,13 +146,13 @@ export default function ChatScreen() {
!(await sendMessage(
currConvId,
lastMsgNodeId,
lastInpMsg,
inputMsg,
currExtra,
onChunk
))
) {
// restore the input message if failed
textarea.setValue(lastInpMsg);
setInputMsg(lastInpMsg);
}
// OK
clearExtraContext();
@@ -194,13 +195,16 @@ export default function ChatScreen() {
// send the prefilled message if needed
sendNewMessage();
} else {
// otherwise, focus on the input
textarea.focus();
// otherwise, focus on the input and move the cursor to the end
if (inputRef.current) {
inputRef.current.focus();
inputRef.current.selectionStart = inputRef.current.value.length;
}
}
prefilledMsg.clear();
// no need to keep track of sendNewMessage
// eslint-disable-next-line react-hooks/exhaustive-deps
}, [textarea.ref]);
}, [inputRef]);
// due to some timing issues of StorageUtils.appendMsg(), we need to make sure the pendingMsg is not duplicated upon rendering (i.e. appears once in the saved conversation and once in the pendingMsg)
const pendingMsgDisplay: MessageDisplay[] =
@@ -250,16 +254,16 @@ export default function ChatScreen() {
</div>
{/* chat input */}
<div className="flex flex-row items-end pt-8 pb-6 sticky bottom-0 bg-base-100">
<div className="flex flex-row items-center pt-8 pb-6 sticky bottom-0 bg-base-100">
<textarea
// Default (mobile): Enable vertical resize, overflow auto for scrolling if needed
// Large screens (lg:): Disable manual resize, apply max-height for autosize limit
className="textarea textarea-bordered w-full resize-vertical lg:resize-none lg:max-h-48 lg:overflow-y-auto" // Adjust lg:max-h-48 as needed (e.g., lg:max-h-60)
className="textarea textarea-bordered w-full"
placeholder="Type a message (Shift+Enter to add a new line)"
ref={textarea.ref}
onInput={textarea.onInput} // Hook's input handler (will only resize height on lg+ screens)
ref={inputRef}
value={inputMsg}
onChange={(e) => setInputMsg(e.target.value)}
onKeyDown={(e) => {
if (e.nativeEvent.isComposing || e.keyCode === 229) return;
if (e.key === 'Enter' && e.shiftKey) return;
if (e.key === 'Enter' && !e.shiftKey) {
e.preventDefault();
sendNewMessage();
@@ -267,11 +271,7 @@ export default function ChatScreen() {
}}
id="msg-input"
dir="auto"
// Set a base height of 2 rows for mobile views
// On lg+ screens, the hook will calculate and set the initial height anyway
rows={2}
></textarea>
{isGenerating(currConvId ?? '') ? (
<button
className="btn btn-neutral ml-2"
@@ -280,7 +280,11 @@ export default function ChatScreen() {
Stop
</button>
) : (
<button className="btn btn-primary ml-2" onClick={sendNewMessage}>
<button
className="btn btn-primary ml-2"
onClick={sendNewMessage}
disabled={inputMsg.trim().length === 0}
>
Send
</button>
)}

View File

@@ -2,7 +2,7 @@ import { useEffect, useState } from 'react';
import StorageUtils from '../utils/storage';
import { useAppContext } from '../utils/app.context';
import { classNames } from '../utils/misc';
import daisyuiThemes from 'daisyui/theme/object';
import daisyuiThemes from 'daisyui/src/theming/themes';
import { THEMES } from '../Config';
import { useNavigate } from 'react-router';
@@ -20,6 +20,7 @@ export default function Header() {
document.body.setAttribute('data-theme', selectedTheme);
document.body.setAttribute(
'data-color-scheme',
// @ts-expect-error daisyuiThemes complains about index type, but it should work
daisyuiThemes[selectedTheme]?.['color-scheme'] ?? 'auto'
);
}, [selectedTheme]);

View File

@@ -1,96 +0,0 @@
import { useEffect, useRef, useState, useCallback } from 'react';
// Media Query for detecting "large" screens (matching Tailwind's lg: breakpoint)
const LARGE_SCREEN_MQ = '(min-width: 1024px)';
// Calculates and sets the textarea height based on its scrollHeight
const adjustTextareaHeight = (textarea: HTMLTextAreaElement | null) => {
if (!textarea) return;
// Only perform auto-sizing on large screens
if (!window.matchMedia(LARGE_SCREEN_MQ).matches) {
// On small screens, reset inline height and max-height styles.
// This allows CSS (e.g., `rows` attribute or classes) to control the height,
// and enables manual resizing if `resize-vertical` is set.
textarea.style.height = ''; // Use 'auto' or '' to reset
textarea.style.maxHeight = '';
return; // Do not adjust height programmatically on small screens
}
const computedStyle = window.getComputedStyle(textarea);
// Get the max-height specified by CSS (e.g., from `lg:max-h-48`)
const currentMaxHeight = computedStyle.maxHeight;
// Temporarily remove max-height to allow scrollHeight to be calculated correctly
textarea.style.maxHeight = 'none';
// Reset height to 'auto' to measure the actual scrollHeight needed
textarea.style.height = 'auto';
// Set the height to the calculated scrollHeight
textarea.style.height = `${textarea.scrollHeight}px`;
// Re-apply the original max-height from CSS to enforce the limit
textarea.style.maxHeight = currentMaxHeight;
};
// Interface describing the API returned by the hook
export interface ChatTextareaApi {
value: () => string;
setValue: (value: string) => void;
focus: () => void;
ref: React.RefObject<HTMLTextAreaElement>;
onInput: (event: React.FormEvent<HTMLTextAreaElement>) => void; // Input handler
}
// This is a workaround to prevent the textarea from re-rendering when the inner content changes
// See https://github.com/ggml-org/llama.cpp/pull/12299
// combined now with auto-sizing logic.
export function useChatTextarea(initValue: string): ChatTextareaApi {
const [savedInitValue, setSavedInitValue] = useState<string>(initValue);
const textareaRef = useRef<HTMLTextAreaElement>(null);
// Effect to set initial value and height on mount or when initValue changes
useEffect(() => {
const textarea = textareaRef.current;
if (textarea) {
if (typeof savedInitValue === 'string' && savedInitValue.length > 0) {
textarea.value = savedInitValue;
// Call adjustTextareaHeight - it will check screen size internally
setTimeout(() => adjustTextareaHeight(textarea), 0);
setSavedInitValue(''); // Reset after applying
} else {
// Adjust height even if there's no initial value (for initial render)
setTimeout(() => adjustTextareaHeight(textarea), 0);
}
}
}, [textareaRef, savedInitValue]); // Depend on ref and savedInitValue
const handleInput = useCallback(
(event: React.FormEvent<HTMLTextAreaElement>) => {
// Call adjustTextareaHeight on every input - it will decide whether to act
adjustTextareaHeight(event.currentTarget);
},
[]
);
return {
// Method to get the current value directly from the textarea
value: () => {
return textareaRef.current?.value ?? '';
},
// Method to programmatically set the value and trigger height adjustment
setValue: (value: string) => {
const textarea = textareaRef.current;
if (textarea) {
textarea.value = value;
// Call adjustTextareaHeight - it will check screen size internally
setTimeout(() => adjustTextareaHeight(textarea), 0);
}
},
focus: () => {
if (textareaRef.current) {
textareaRef.current.focus();
}
},
ref: textareaRef,
onInput: handleInput,
};
}

View File

@@ -1,13 +1,8 @@
@use 'sass:meta';
@use 'tailwindcss';
@plugin 'daisyui' {
themes: all;
}
html {
scrollbar-gutter: auto;
}
@tailwind base;
@tailwind components;
@tailwind utilities;
.markdown {
h1,

View File

@@ -1,6 +1,5 @@
import { useEffect, useState } from 'react';
import { MessageExtraContext } from './types';
import { ChatTextareaApi } from '../components/useChatTextarea.ts';
// Extra context when using llama.cpp WebUI from llama-vscode, inside an iframe
// Ref: https://github.com/ggml-org/llama.cpp/pull/11940
@@ -15,7 +14,10 @@ interface SetTextEvData {
* window.postMessage({ command: 'setText', text: 'Spot the syntax error', context: 'def test()\n return 123' }, '*');
*/
export const useVSCodeContext = (textarea: ChatTextareaApi) => {
export const useVSCodeContext = (
inputRef: React.RefObject<HTMLTextAreaElement>,
setInputMsg: (text: string) => void
) => {
const [extraContext, setExtraContext] = useState<MessageExtraContext | null>(
null
);
@@ -25,20 +27,20 @@ export const useVSCodeContext = (textarea: ChatTextareaApi) => {
const handleMessage = (event: MessageEvent) => {
if (event.data?.command === 'setText') {
const data: SetTextEvData = event.data;
textarea.setValue(data?.text);
setInputMsg(data?.text);
if (data?.context && data.context.length > 0) {
setExtraContext({
type: 'context',
content: data.context,
});
}
textarea.focus();
inputRef.current?.focus();
}
};
window.addEventListener('message', handleMessage);
return () => window.removeEventListener('message', handleMessage);
}, [textarea]);
}, [inputRef, setInputMsg]);
// Add a keydown listener that sends the "escapePressed" message to the parent window
useEffect(() => {

View File

@@ -15,7 +15,7 @@ async def main():
model_url = "http://127.0.0.1:6900"
responses: list[requests.Response] = await asyncio.gather(*[requests_post_async(
url= f"{model_url}/embedding",
json= {"content": "a "*1022}
json= {"content": str(0)*1024}
) for i in range(n)])
for response in responses:

View File

@@ -108,19 +108,22 @@ int main(int argc, char ** argv) {
}
// prepare a batch for the prompt
llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
llama_pos n_past = 0;
llama_batch_ext * batch = llama_batch_ext_init_from_text(prompt_tokens.data(), prompt_tokens.size(), n_past, 0, true);
n_past += llama_batch_ext_get_n_tokens(batch);
llama_token new_token_id;
while (true) {
// check if we have enough space in the context to evaluate this batch
int n_ctx = llama_n_ctx(ctx);
int n_ctx_used = llama_kv_self_used_cells(ctx);
if (n_ctx_used + batch.n_tokens > n_ctx) {
if (n_ctx_used + llama_batch_ext_get_n_tokens(batch) > n_ctx) {
printf("\033[0m\n");
fprintf(stderr, "context size exceeded\n");
exit(0);
}
if (llama_decode(ctx, batch)) {
if (llama_decode_ext(ctx, batch)) {
GGML_ABORT("failed to decode\n");
}
@@ -144,9 +147,14 @@ int main(int argc, char ** argv) {
response += piece;
// prepare the next batch with the sampled token
batch = llama_batch_get_one(&new_token_id, 1);
llama_batch_ext_clear(batch);
llama_seq_id seq_id = 0;
llama_batch_ext_add_text(batch, new_token_id, n_past, &seq_id, 1, true);
n_past++;
}
llama_batch_ext_free(batch);
return response;
};

View File

@@ -143,7 +143,7 @@ int main(int argc, char ** argv) {
// prepare a batch for the prompt
llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
llama_batch_ext * batch = llama_batch_ext_init_from_text(prompt_tokens.data(), prompt_tokens.size(), 0, 0, true);
// main loop
@@ -151,14 +151,14 @@ int main(int argc, char ** argv) {
int n_decode = 0;
llama_token new_token_id;
for (int n_pos = 0; n_pos + batch.n_tokens < n_prompt + n_predict; ) {
for (int n_pos = 0; n_pos + llama_batch_ext_get_n_tokens(batch) < n_prompt + n_predict; ) {
// evaluate the current batch with the transformer model
if (llama_decode(ctx, batch)) {
if (llama_decode_ext(ctx, batch)) {
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
return 1;
}
n_pos += batch.n_tokens;
n_pos += llama_batch_ext_get_n_tokens(batch);
// sample the next token
{
@@ -180,7 +180,9 @@ int main(int argc, char ** argv) {
fflush(stdout);
// prepare the next batch with the sampled token
batch = llama_batch_get_one(&new_token_id, 1);
llama_batch_ext_clear(batch);
llama_seq_id seq_id = 0;
llama_batch_ext_add_text(batch, new_token_id, n_pos, &seq_id, 1, true);
n_decode += 1;
}
@@ -198,6 +200,7 @@ int main(int argc, char ** argv) {
llama_perf_context_print(ctx);
fprintf(stderr, "\n");
llama_batch_ext_free(batch);
llama_sampler_free(smpl);
llama_free(ctx);
llama_model_free(model);

View File

@@ -24,7 +24,7 @@ int main(int argc, char ** argv) {
common_init();
if (params.speculative.model.path.empty()) {
if (params.speculative.model.empty()) {
LOG_ERR("%s: --model-draft is required\n", __func__);
return 1;
}
@@ -113,7 +113,8 @@ int main(int argc, char ** argv) {
struct common_sampler * smpl = common_sampler_init(model_tgt, params.sampling);
// eval the prompt
llama_decode(ctx_tgt, llama_batch_get_one(inp.data(), inp.size() - 1));
auto batch = llama_batch_ext_ptr::init_from_text(inp.data(), inp.size() - 1, 0, 0, true);
llama_decode_ext(ctx_tgt, batch.get());
// note: keep the last token separate!
llama_token id_last = inp.back();
@@ -132,7 +133,7 @@ int main(int argc, char ** argv) {
struct common_speculative * spec = common_speculative_init(ctx_dft);
llama_batch batch_tgt = llama_batch_init(llama_n_batch(ctx_tgt), 0, 1);
llama_batch_ext * batch_tgt = llama_batch_ext_init(llama_n_batch(ctx_tgt), 1);
const auto t_enc_end = ggml_time_us();
@@ -151,8 +152,9 @@ int main(int argc, char ** argv) {
//LOG_DBG("draft: %s\n", string_from(ctx_dft, draft).c_str());
// always have a token to evaluate from before - id_last
common_batch_clear(batch_tgt);
common_batch_add (batch_tgt, id_last, n_past++, { 0 }, true);
llama_batch_ext_clear(batch_tgt);
llama_seq_id seq_id = 0;
llama_batch_ext_add_text(batch_tgt, id_last, n_past++, &seq_id, 1, true);
// evaluate the target model on [id_last, draft0, draft1, ..., draftN-1]
{
@@ -162,12 +164,12 @@ int main(int argc, char ** argv) {
}
for (size_t i = 0; i < draft.size(); ++i) {
common_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true);
llama_batch_ext_add_text(batch_tgt, draft[i], n_past + i, &seq_id, 1, true);
}
//LOG_DBG("target batch: %s\n", string_from(ctx_tgt, batch_tgt).c_str());
llama_decode(ctx_tgt, batch_tgt);
llama_decode_ext(ctx_tgt, batch_tgt);
}
// sample from the full target batch and return the accepted tokens based on the target sampler
@@ -253,6 +255,7 @@ int main(int argc, char ** argv) {
common_sampler_free(smpl);
common_speculative_free(spec);
llama_batch_ext_free(batch_tgt);
llama_backend_free();
LOG("\n\n");

View File

@@ -45,8 +45,7 @@ int main(int argc, char ** argv) {
}
common_init();
if (params.speculative.model.path.empty()) {
if (params.speculative.model.empty()) {
LOG_ERR("%s: --model-draft is required\n", __func__);
return 1;
}
@@ -166,9 +165,12 @@ int main(int argc, char ** argv) {
const auto t_enc_start = ggml_time_us();
// eval the prompt with both models
llama_decode(ctx_tgt, llama_batch_get_one( inp.data(), n_input - 1));
llama_decode(ctx_tgt, llama_batch_get_one(&inp.back(), 1));
llama_decode(ctx_dft, llama_batch_get_one( inp.data(), n_input));
llama_batch_ext_ptr batch0(llama_batch_ext_init_from_text( inp.data(), n_input - 1, 0, 0, true));
llama_batch_ext_ptr batch1(llama_batch_ext_init_from_text(&inp.back(), 1, n_input - 1, 0, true));
llama_batch_ext_ptr batch2(llama_batch_ext_init_from_text( inp.data(), n_input , 0, 0, true));
llama_decode_ext(ctx_tgt, batch0.get());
llama_decode_ext(ctx_tgt, batch1.get());
llama_decode_ext(ctx_dft, batch2.get());
const auto t_enc_end = ggml_time_us();
@@ -199,8 +201,8 @@ int main(int argc, char ** argv) {
drafts[s].smpl = common_sampler_init(model_dft, params.sampling);
}
llama_batch batch_dft = llama_batch_init(llama_n_batch(ctx_dft), 0, 1);
llama_batch batch_tgt = llama_batch_init(llama_n_batch(ctx_tgt), 0, n_seq_dft);
llama_batch_ext * batch_dft = llama_batch_ext_init(llama_n_batch(ctx_dft), 1);
llama_batch_ext * batch_tgt = llama_batch_ext_init(llama_n_batch(ctx_tgt), n_seq_dft);
const auto t_dec_start = ggml_time_us();
@@ -331,7 +333,7 @@ int main(int argc, char ** argv) {
}
active_seqs.erase(s);
for (int i = 0; i < n_seq_dft; i++) {
for(int i = 0; i < n_seq_dft; i++) {
if (i == s) {
continue;
}
@@ -441,12 +443,13 @@ int main(int argc, char ** argv) {
drafts[0].dists.push_back(std::vector<llama_token_data>());
drafts[0].i_batch_tgt.push_back(0);
common_batch_clear(batch_dft);
common_batch_add (batch_dft, token_id, n_past_dft, { 0 }, true);
llama_batch_ext_clear(batch_dft);
llama_seq_id seq_id = 0;
llama_batch_ext_add_text(batch_dft, token_id, n_past_dft, &seq_id, 1, true);
llama_kv_self_seq_rm(ctx_dft, 0, n_past_dft, -1);
// LOG_DBG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
llama_decode(ctx_dft, batch_dft);
llama_decode_ext(ctx_dft, batch_dft);
++n_past_dft;
}
@@ -471,12 +474,19 @@ int main(int argc, char ** argv) {
drafts[0].drafting = true;
drafts[0].i_batch_dft = 0;
common_batch_clear(batch_tgt);
common_batch_add (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true);
struct batch_info {
llama_token id;
llama_pos pos;
std::vector<llama_seq_id> seq_id;
};
std::vector<batch_info> batch_tgt_data;
batch_tgt_data.push_back({ drafts[0].tokens[0], n_past_tgt, {0} });
// sample n_draft tokens from the draft model using tree-based sampling
for (int i = 0; i < n_draft; ++i) {
batch_dft.n_tokens = 0;
llama_batch_ext_clear(batch_dft);
for (int s = 0; s < n_seq_dft; ++s) {
drafts[s].skip = false;
@@ -507,11 +517,10 @@ int main(int argc, char ** argv) {
llama_kv_self_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);
// all previous tokens from this branch are now also part of the new branch
for (int t = 0; t < batch_tgt.n_tokens; ++t) {
for (int p = 0; p < batch_tgt.n_seq_id[t]; ++p) {
if (batch_tgt.seq_id[t][p] == s) {
batch_tgt.seq_id[t][batch_tgt.n_seq_id[t]] = n_seq_cur;
batch_tgt.n_seq_id[t]++;
for (int t = 0; t < (int) batch_tgt_data.size(); ++t) {
for (int p = 0; p < (int) batch_tgt_data[t].seq_id.size(); ++p) {
if (batch_tgt_data[t].seq_id[p] == s) {
batch_tgt_data[t].seq_id.push_back(n_seq_cur);
break;
}
}
@@ -553,32 +562,30 @@ int main(int argc, char ** argv) {
drafts[s].dists.push_back({cur_p->data, cur_p->data + cur_p->size});
// add unique drafted tokens to the target batch
drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);
drafts[s].i_batch_tgt.push_back(batch_tgt_data.size());
common_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true);
batch_tgt_data.push_back({ id, n_past_tgt + i + 1, { s }});
// add the token to the batch for batched decoding with the draft model
drafts[s].i_batch_dft = batch_dft.n_tokens;
drafts[s].i_batch_dft = llama_batch_ext_add_text(batch_dft, id, n_past_cur, &s, 1, true);
common_batch_add(batch_dft, id, n_past_cur, { s }, true);
if (batch_tgt.n_tokens > n_draft) {
if (batch_tgt_data.size() > (size_t) n_draft) {
drafts[s].drafting = false;
}
}
}
// no sequence is drafting anymore
if (batch_dft.n_tokens == 0) {
if (llama_batch_ext_get_n_tokens(batch_dft) == 0) {
break;
}
// evaluate the drafted tokens on the draft model
llama_decode(ctx_dft, batch_dft);
llama_decode_ext(ctx_dft, batch_dft);
++n_past_cur;
++n_drafted;
if (batch_tgt.n_tokens > n_draft) {
if (batch_tgt_data.size() > (size_t) n_draft) {
break;
}
}
@@ -590,8 +597,15 @@ int main(int argc, char ** argv) {
llama_kv_self_seq_cp(ctx_tgt, 0, s, -1, -1);
}
llama_batch_ext_clear(batch_tgt);
for (int i = 0; i < (int) batch_tgt_data.size(); ++i) {
const auto & data = batch_tgt_data[i];
llama_batch_ext_add_text(batch_tgt, data.id, data.pos, data.seq_id.data(), data.seq_id.size(), true);
}
// LOG_DBG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt).c_str());
llama_decode(ctx_tgt, batch_tgt);
llama_decode_ext(ctx_tgt, batch_tgt);
++n_past_tgt;
}
@@ -634,7 +648,8 @@ int main(int argc, char ** argv) {
common_sampler_free(drafts[s].smpl);
}
llama_batch_free(batch_dft);
llama_batch_ext_free(batch_dft);
llama_batch_ext_free(batch_tgt);
llama_backend_free();

View File

@@ -13,10 +13,10 @@ if %errorlevel% neq 0 goto ERROR
:: for FP16
:: faster for long-prompt inference
:: cmake -G "MinGW Makefiles" .. -DLLAMA_CURL=OFF -DGGML_SYCL=ON -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release -DGGML_SYCL_F16=ON
:: cmake -G "MinGW Makefiles" .. -DGGML_SYCL=ON -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release -DGGML_SYCL_F16=ON
:: for FP32
cmake -G "Ninja" .. -DLLAMA_CURL=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release
cmake -G "Ninja" .. -DGGML_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release
if %errorlevel% neq 0 goto ERROR
:: build example/main only
:: make main

View File

@@ -571,13 +571,14 @@ int main(int argc, char ** argv) {
model_ttc = llama_init_ttc.model.get();
ctx_ttc = llama_init_ttc.context.get();
if (model_ttc == nullptr || ctx_ttc == nullptr) {
return ENOENT;
}
const llama_vocab * vocab = llama_model_get_vocab(model_ttc);
params.model = params.vocoder.model;
// TODO: refactor in a common struct
params.model = params.vocoder.model;
params.model_url = params.vocoder.model_url;
params.hf_repo = params.vocoder.hf_repo;
params.hf_file = params.vocoder.hf_file;
params.embedding = true;
common_init_result llama_init_cts = common_init_from_params(params);
@@ -585,10 +586,6 @@ int main(int argc, char ** argv) {
model_cts = llama_init_cts.model.get();
ctx_cts = llama_init_cts.context.get();
if (model_cts == nullptr || ctx_cts == nullptr) {
return ENOENT;
}
std::vector<common_sampler *> smpl(n_parallel);
for (int i = 0; i < n_parallel; ++i) {
params.sampling.no_perf = (i != 0);
@@ -694,13 +691,11 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14
const std::string voice_data = audio_data;
auto tmp = common_tokenize(vocab, voice_data, false, true);
std::ostringstream tokens_oss;
printf("\n\n");
for (size_t i = 0; i < tmp.size(); ++i) {
tokens_oss << tmp[i] << ", ";
printf("%d, ", tmp[i]);
}
LOG_INF("\n\n%s: llama tokens: %s\n\n", __func__, tokens_oss.str().c_str());
printf("\n\n");
prompt_add(prompt_inp, tmp);
#else
prompt_add(prompt_inp, llama_tokens {
@@ -823,7 +818,7 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14
// create a llama_batch
// we use this object to submit token data for decoding
llama_batch batch = llama_batch_init(std::max(prompt_inp.size(), (size_t) n_parallel), 0, n_parallel);
llama_batch_ext * batch = llama_batch_ext_init(std::max(prompt_inp.size(), (size_t) n_parallel), n_parallel);
std::vector<llama_seq_id> seq_ids(n_parallel, 0);
for (int32_t i = 0; i < n_parallel; ++i) {
@@ -832,14 +827,14 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14
// evaluate the initial prompt
for (size_t i = 0; i < prompt_inp.size(); ++i) {
common_batch_add(batch, prompt_inp[i], i, seq_ids, false);
llama_batch_ext_add_text(batch, prompt_inp[i], i, seq_ids.data(), seq_ids.size(), false);
}
GGML_ASSERT(batch.n_tokens == (int) prompt_inp.size());
GGML_ASSERT(llama_batch_ext_get_n_tokens(batch) == (int) prompt_inp.size());
// llama_decode will output logits only for the last token of the prompt
batch.logits[batch.n_tokens - 1] = true;
llama_batch_ext_set_output_last(batch);
if (llama_decode(ctx_ttc, batch) != 0) {
if (llama_decode_ext(ctx_ttc, batch) != 0) {
LOG_ERR("%s: llama_decode() failed\n", __func__);
return 1;
}
@@ -858,16 +853,16 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14
// remember the batch index of the last token for each parallel sequence
// we need this to determine which logits to sample from
std::vector<int32_t> i_batch(n_parallel, batch.n_tokens - 1);
std::vector<int32_t> i_batch(n_parallel, llama_batch_ext_get_n_tokens(batch) - 1);
int n_past = batch.n_tokens;
int n_past = llama_batch_ext_get_n_tokens(batch);
int n_decode = 0;
bool next_token_uses_guide_token = true;
while (n_decode <= n_predict) {
// prepare the next batch
common_batch_clear(batch);
llama_batch_ext_clear(batch);
// sample the next token for each parallel sequence / stream
for (int32_t i = 0; i < n_parallel; ++i) {
@@ -923,14 +918,14 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14
//LOG_CNT("%d", i);
}
i_batch[i] = batch.n_tokens;
i_batch[i] = llama_batch_ext_get_n_tokens(batch);
// push this new token for next evaluation
common_batch_add(batch, new_token_id, n_past, { i }, true);
llama_batch_ext_add_text(batch, new_token_id, n_past, &i, 1, true);
}
// all streams are finished
if (batch.n_tokens == 0) {
if (llama_batch_ext_get_n_tokens(batch) == 0) {
break;
}
@@ -938,13 +933,13 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14
n_past += 1;
// evaluate the current batch with the transformer model
if (llama_decode(ctx_ttc, batch)) {
if (llama_decode_ext(ctx_ttc, batch)) {
LOG_ERR("%s : failed to eval, return code %d\n", __func__, 1);
return 1;
}
}
llama_batch_free(batch);
llama_batch_ext_free(batch);
LOG("\n");
LOG_INF("%s: time for decoder: %.3f ms\n", __func__, (ggml_time_us() - t_dec_start) / 1000.0f);
@@ -1013,14 +1008,15 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14
const int n_codes = codes.size();
llama_batch batch = llama_batch_init(n_codes, 0, 1);
llama_batch_ext * batch = llama_batch_ext_init(n_codes, 1);
for (size_t i = 0; i < codes.size(); ++i) {
common_batch_add(batch, codes[i], i, { 0 }, true); // TODO: all logits?
llama_seq_id seq_id = 0;
llama_batch_ext_add_text(batch, codes[i], i, &seq_id, 1, true); // TODO: all logits?
}
GGML_ASSERT(batch.n_tokens == n_codes);
GGML_ASSERT(llama_batch_ext_get_n_tokens(batch) == n_codes);
if (llama_decode(ctx_cts, batch) != 0) {
if (llama_decode_ext(ctx_cts, batch) != 0) {
LOG_ERR("%s: llama_decode() failed\n", __func__);
return 1;
}
@@ -1084,6 +1080,7 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14
retval = ENOENT;
}
llama_batch_ext_free(batch);
llama_backend_free();
return retval;

View File

@@ -100,10 +100,6 @@ else()
set(INS_ENB ON)
endif()
message(DEBUG "GGML_NATIVE : ${GGML_NATIVE}")
message(DEBUG "GGML_NATIVE_DEFAULT : ${GGML_NATIVE_DEFAULT}")
message(DEBUG "INS_ENB : ${INS_ENB}")
option(GGML_CPU_HBM "ggml: use memkind for CPU HBM" OFF)
option(GGML_CPU_AARCH64 "ggml: use runtime weight conversion of Q4_0 to Q4_X_X" ON)
option(GGML_CPU_KLEIDIAI "ggml: use KleidiAI optimized kernels if applicable" OFF)
@@ -127,12 +123,10 @@ endif()
option(GGML_LASX "ggml: enable lasx" ON)
option(GGML_LSX "ggml: enable lsx" ON)
option(GGML_RVV "ggml: enable rvv" ON)
option(GGML_RV_ZFH "ggml: enable riscv zfh" OFF)
option(GGML_VXE "ggml: enable vxe" ON)
option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requires GGML_BACKEND_DL)" OFF)
set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM")
set(GGML_CPU_POWERPC_CPUTYPE "" CACHE STRING "ggml: CPU type for PowerPC")
set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM")
if (WIN32)

View File

@@ -1,22 +0,0 @@
find_package(Git)
# the commit's SHA1
execute_process(COMMAND
"${GIT_EXECUTABLE}" describe --match=NeVeRmAtCh --always --abbrev=8
WORKING_DIRECTORY "${CMAKE_SOURCE_DIR}"
OUTPUT_VARIABLE GIT_SHA1
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
# the date of the commit
execute_process(COMMAND
"${GIT_EXECUTABLE}" log -1 --format=%ad --date=local
WORKING_DIRECTORY "${CMAKE_SOURCE_DIR}"
OUTPUT_VARIABLE GIT_DATE
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
# the subject of the commit
execute_process(COMMAND
"${GIT_EXECUTABLE}" log -1 --format=%s
WORKING_DIRECTORY "${CMAKE_SOURCE_DIR}"
OUTPUT_VARIABLE GIT_COMMIT_SUBJECT
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)

View File

@@ -5,7 +5,7 @@
set_and_check(GGML_INCLUDE_DIR "@PACKAGE_GGML_INCLUDE_INSTALL_DIR@")
set_and_check(GGML_LIB_DIR "@PACKAGE_GGML_LIB_INSTALL_DIR@")
#set_and_check(GGML_BIN_DIR "@PACKAGE_GGML_BIN_INSTALL_DIR@")
set_and_check(GGML_BIN_DIR "@PACKAGE_GGML_BIN_INSTALL_DIR@")
find_package(Threads REQUIRED)

View File

@@ -17,9 +17,7 @@ GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const c
GGML_BACKEND_API void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total);
GGML_BACKEND_API void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint,
const char * cache_dir,
size_t free_mem, size_t total_mem);
GGML_BACKEND_API void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_rpc_reg(void);

View File

@@ -1791,11 +1791,11 @@ extern "C" {
#define GGML_KQ_MASK_PAD 64
// q: [n_embd_k, n_batch, n_head, 1]
// k: [n_embd_k, n_kv, n_head_kv, 1]
// v: [n_embd_v, n_kv, n_head_kv, 1] !! not transposed !!
// mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
// res: [n_embd_v, n_head, n_batch, 1] !! permuted !!
// q: [n_embd, n_batch, n_head, 1]
// k: [n_embd, n_kv, n_head_kv, 1]
// v: [n_embd, n_kv, n_head_kv, 1] !! not transposed !!
// mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
// res: [n_embd, n_head, n_batch, 1] !! permuted !!
GGML_API struct ggml_tensor * ggml_flash_attn_ext(
struct ggml_context * ctx,
struct ggml_tensor * q,

View File

@@ -65,7 +65,7 @@ if (GGML_LTO)
endif()
endif()
if (GGML_CCACHE AND NOT CMAKE_C_COMPILER_LAUNCHER AND NOT CMAKE_CXX_COMPILER_LAUNCHER)
if (GGML_CCACHE)
find_program(GGML_CCACHE_FOUND ccache)
find_program(GGML_SCCACHE_FOUND sccache)
@@ -76,11 +76,7 @@ if (GGML_CCACHE AND NOT CMAKE_C_COMPILER_LAUNCHER AND NOT CMAKE_CXX_COMPILER_LAU
set(GGML_CCACHE_VARIANT sccache)
endif()
# TODO: should not be set globally
if (GGML_SYCL AND GGML_CCACHE_FOUND AND WIN32)
set_property(GLOBAL PROPERTY RULE_LAUNCH_COMPILE "ccache compiler_type=icl")
else ()
set_property(GLOBAL PROPERTY RULE_LAUNCH_COMPILE "${GGML_CCACHE_VARIANT}")
endif ()
set_property(GLOBAL PROPERTY RULE_LAUNCH_COMPILE "${GGML_CCACHE_VARIANT}")
set(ENV{CCACHE_SLOPPINESS} time_macros)
message(STATUS "${GGML_CCACHE_VARIANT} found, compilation results will be cached. Disable with GGML_CCACHE=OFF.")
else()
@@ -329,10 +325,6 @@ if (CMAKE_SYSTEM_NAME MATCHES "Android")
target_link_libraries(ggml-base PRIVATE dl)
endif()
if(CMAKE_SYSTEM_NAME MATCHES "visionOS")
target_compile_definitions(ggml-base PUBLIC _DARWIN_C_SOURCE)
endif()
if (BUILD_SHARED_LIBS)
foreach (target ggml-base ggml)
set_target_properties(${target} PROPERTIES POSITION_INDEPENDENT_CODE ON)

Some files were not shown because too many files have changed in this diff Show More