mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-05 13:53:23 +02:00
Compare commits
1 Commits
b5151
...
gg/ci-pyth
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
492eaad571 |
@@ -2,10 +2,6 @@ ARG UBUNTU_VERSION=22.04
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
||||
|
||||
ARG TARGETARCH
|
||||
|
||||
ARG GGML_CPU_ARM_ARCH=armv8-a
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential git cmake libcurl4-openssl-dev
|
||||
|
||||
@@ -13,14 +9,7 @@ WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN if [ "$TARGETARCH" = "amd64" ]; then \
|
||||
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON; \
|
||||
elif [ "$TARGETARCH" = "arm64" ]; then \
|
||||
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=${GGML_CPU_ARM_ARCH}; \
|
||||
else \
|
||||
echo "Unsupported architecture"; \
|
||||
exit 1; \
|
||||
fi && \
|
||||
RUN cmake -S . -B build -DGGML_BACKEND_DL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_CURL=ON -DCMAKE_BUILD_TYPE=Release && \
|
||||
cmake --build build -j $(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib && \
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG CUDA_VERSION=12.4.0
|
||||
ARG CUDA_VERSION=12.6.0
|
||||
# Target the CUDA build image
|
||||
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
@@ -21,7 +21,7 @@ COPY . .
|
||||
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib && \
|
||||
|
||||
@@ -17,7 +17,7 @@ RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
|
||||
&& export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
|
||||
fi && \
|
||||
echo "Building with dynamic libs" && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${OPT_SYCL_F16} && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \
|
||||
cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib && \
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
ARG ASCEND_VERSION=8.1.RC1.alpha001-910b-openeuler22.03-py3.10
|
||||
ARG ASCEND_VERSION=8.0.rc2.alpha003-910b-openeuler22.03-py3.8
|
||||
|
||||
FROM ascendai/cann:$ASCEND_VERSION AS build
|
||||
|
||||
@@ -6,7 +6,7 @@ WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN yum install -y gcc g++ cmake make libcurl-devel
|
||||
RUN yum install -y gcc g++ cmake make
|
||||
ENV ASCEND_TOOLKIT_HOME=/usr/local/Ascend/ascend-toolkit/latest
|
||||
ENV LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:$LIBRARY_PATH
|
||||
ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${ASCEND_TOOLKIT_HOME}/lib64/plugin/opskernel:${ASCEND_TOOLKIT_HOME}/lib64/plugin/nnengine:${ASCEND_TOOLKIT_HOME}/opp/built-in/op_impl/ai_core/tbe/op_tiling:${LD_LIBRARY_PATH}
|
||||
|
||||
@@ -17,10 +17,10 @@ Version: %( date "+%%Y%%m%%d" )
|
||||
Release: 1%{?dist}
|
||||
Summary: CPU Inference of LLaMA model in pure C/C++ (no CUDA/OpenCL)
|
||||
License: MIT
|
||||
Source0: https://github.com/ggml-org/llama.cpp/archive/refs/heads/master.tar.gz
|
||||
Source0: https://github.com/ggerganov/llama.cpp/archive/refs/heads/master.tar.gz
|
||||
BuildRequires: coreutils make gcc-c++ git cuda-toolkit
|
||||
Requires: cuda-toolkit
|
||||
URL: https://github.com/ggml-org/llama.cpp
|
||||
URL: https://github.com/ggerganov/llama.cpp
|
||||
|
||||
%define debug_package %{nil}
|
||||
%define source_date_epoch_from_changelog 0
|
||||
|
||||
@@ -18,10 +18,10 @@ Version: %( date "+%%Y%%m%%d" )
|
||||
Release: 1%{?dist}
|
||||
Summary: CPU Inference of LLaMA model in pure C/C++ (no CUDA/OpenCL)
|
||||
License: MIT
|
||||
Source0: https://github.com/ggml-org/llama.cpp/archive/refs/heads/master.tar.gz
|
||||
Source0: https://github.com/ggerganov/llama.cpp/archive/refs/heads/master.tar.gz
|
||||
BuildRequires: coreutils make gcc-c++ git libstdc++-devel
|
||||
Requires: libstdc++
|
||||
URL: https://github.com/ggml-org/llama.cpp
|
||||
URL: https://github.com/ggerganov/llama.cpp
|
||||
|
||||
%define debug_package %{nil}
|
||||
%define source_date_epoch_from_changelog 0
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG MUSA_VERSION=rc3.1.1
|
||||
ARG MUSA_VERSION=rc3.1.0
|
||||
# Target the MUSA build image
|
||||
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
@@ -35,7 +35,7 @@ COPY . .
|
||||
RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib && \
|
||||
|
||||
@@ -133,12 +133,12 @@ effectiveStdenv.mkDerivation (finalAttrs: {
|
||||
--replace '[bundle pathForResource:@"default" ofType:@"metallib"];' "@\"$out/bin/default.metallib\";"
|
||||
'';
|
||||
|
||||
# With PR#6015 https://github.com/ggml-org/llama.cpp/pull/6015,
|
||||
# With PR#6015 https://github.com/ggerganov/llama.cpp/pull/6015,
|
||||
# `default.metallib` may be compiled with Metal compiler from XCode
|
||||
# and we need to escape sandbox on MacOS to access Metal compiler.
|
||||
# `xcrun` is used find the path of the Metal compiler, which is varible
|
||||
# and not on $PATH
|
||||
# see https://github.com/ggml-org/llama.cpp/pull/6118 for discussion
|
||||
# see https://github.com/ggerganov/llama.cpp/pull/6118 for discussion
|
||||
__noChroot = effectiveStdenv.isDarwin && useMetalKit && precompileMetalShaders;
|
||||
|
||||
nativeBuildInputs =
|
||||
@@ -220,7 +220,7 @@ effectiveStdenv.mkDerivation (finalAttrs: {
|
||||
broken = (useMetalKit && !effectiveStdenv.isDarwin);
|
||||
|
||||
description = "Inference of LLaMA model in pure C/C++${descriptionSuffix}";
|
||||
homepage = "https://github.com/ggml-org/llama.cpp/";
|
||||
homepage = "https://github.com/ggerganov/llama.cpp/";
|
||||
license = lib.licenses.mit;
|
||||
|
||||
# Accommodates `nix run` and `lib.getExe`
|
||||
|
||||
@@ -11,14 +11,14 @@ ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-co
|
||||
FROM ${BASE_ROCM_DEV_CONTAINER} AS build
|
||||
|
||||
# Unless otherwise specified, we make a fat build.
|
||||
# List from https://github.com/ggml-org/llama.cpp/pull/1087#issuecomment-1682807878
|
||||
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
|
||||
# This is mostly tied to rocBLAS supported archs.
|
||||
# gfx803, gfx900, gfx1032, gfx1101, gfx1102,not officialy supported
|
||||
# gfx906 is deprecated
|
||||
#check https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.2.4/reference/system-requirements.html
|
||||
|
||||
ARG ROCM_DOCKER_ARCH='gfx803,gfx900,gfx906,gfx908,gfx90a,gfx942,gfx1010,gfx1030,gfx1032,gfx1100,gfx1101,gfx1102'
|
||||
#ARG ROCM_DOCKER_ARCH=gfx1100
|
||||
#ARG ROCM_DOCKER_ARCH='gfx803,gfx900,gfx906,gfx908,gfx90a,gfx942,gfx1010,gfx1030,gfx1032,gfx1100,gfx1101,gfx1102'
|
||||
ARG ROCM_DOCKER_ARCH=gfx1100
|
||||
|
||||
# Set nvcc architectured
|
||||
ENV AMDGPU_TARGETS=${ROCM_DOCKER_ARCH}
|
||||
@@ -40,7 +40,7 @@ WORKDIR /app
|
||||
COPY . .
|
||||
|
||||
RUN HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
|
||||
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$ROCM_DOCKER_ARCH -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON \
|
||||
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$ROCM_DOCKER_ARCH -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON \
|
||||
&& cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib \
|
||||
|
||||
@@ -13,13 +13,9 @@ elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then
|
||||
exec ./llama-quantize "$@"
|
||||
elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then
|
||||
exec ./llama-cli "$@"
|
||||
elif [[ "$arg1" == '--bench' || "$arg1" == '-b' ]]; then
|
||||
exec ./llama-bench "$@"
|
||||
elif [[ "$arg1" == '--perplexity' || "$arg1" == '-p' ]]; then
|
||||
exec ./llama-perplexity "$@"
|
||||
elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then
|
||||
echo "Converting PTH to GGML..."
|
||||
for i in $(ls $1/$2/ggml-model-f16.bin*); do
|
||||
for i in `ls $1/$2/ggml-model-f16.bin*`; do
|
||||
if [ -f "${i/f16/q4_0}" ]; then
|
||||
echo "Skip model quantization, it already exists: ${i/f16/q4_0}"
|
||||
else
|
||||
@@ -34,10 +30,6 @@ else
|
||||
echo "Available commands: "
|
||||
echo " --run (-r): Run a model previously converted into ggml"
|
||||
echo " ex: -m /models/7B/ggml-model-q4_0.bin -p \"Building a website can be done in 10 simple steps:\" -n 512"
|
||||
echo " --bench (-b): Benchmark the performance of the inference for various parameters."
|
||||
echo " ex: -m model.gguf"
|
||||
echo " --perplexity (-p): Measure the perplexity of a model over a given text."
|
||||
echo " ex: -m model.gguf -f file.txt"
|
||||
echo " --convert (-c): Convert a llama model into ggml"
|
||||
echo " ex: --outtype f16 \"/models/7B/\" "
|
||||
echo " --quantize (-q): Optimize with quantization process ggml"
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
ARG UBUNTU_VERSION=24.04
|
||||
ARG UBUNTU_VERSION=jammy
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
||||
|
||||
@@ -7,7 +7,7 @@ RUN apt update && apt install -y git build-essential cmake wget
|
||||
|
||||
# Install Vulkan SDK and cURL
|
||||
RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
|
||||
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-noble.list https://packages.lunarg.com/vulkan/lunarg-vulkan-noble.list && \
|
||||
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \
|
||||
apt update -y && \
|
||||
apt-get install -y vulkan-sdk libcurl4-openssl-dev curl
|
||||
|
||||
@@ -16,7 +16,7 @@ WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_CURL=1 -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON && \
|
||||
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_CURL=1 && \
|
||||
cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib && \
|
||||
@@ -34,7 +34,7 @@ RUN mkdir -p /app/full \
|
||||
FROM ubuntu:$UBUNTU_VERSION AS base
|
||||
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y libgomp1 curl libvulkan-dev \
|
||||
&& apt-get install -y libgomp1 curl\
|
||||
&& apt autoremove -y \
|
||||
&& apt clean -y \
|
||||
&& rm -rf /tmp/* /var/tmp/* \
|
||||
@@ -55,9 +55,8 @@ RUN apt-get update \
|
||||
git \
|
||||
python3 \
|
||||
python3-pip \
|
||||
python3-wheel \
|
||||
&& pip install --break-system-packages --upgrade setuptools \
|
||||
&& pip install --break-system-packages -r requirements.txt \
|
||||
&& pip install --upgrade pip setuptools wheel \
|
||||
&& pip install -r requirements.txt \
|
||||
&& apt autoremove -y \
|
||||
&& apt clean -y \
|
||||
&& rm -rf /tmp/* /var/tmp/* \
|
||||
|
||||
@@ -40,11 +40,3 @@ indent_style = tab
|
||||
[examples/cvector-generator/*.txt]
|
||||
trim_trailing_whitespace = unset
|
||||
insert_final_newline = unset
|
||||
|
||||
[models/templates/*.jinja]
|
||||
indent_style = unset
|
||||
indent_size = unset
|
||||
end_of_line = unset
|
||||
charset = unset
|
||||
trim_trailing_whitespace = unset
|
||||
insert_final_newline = unset
|
||||
|
||||
6
.github/ISSUE_TEMPLATE/020-enhancement.yml
vendored
6
.github/ISSUE_TEMPLATE/020-enhancement.yml
vendored
@@ -6,7 +6,7 @@ body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
[Please post your idea first in Discussion if there is not yet a consensus for this enhancement request. This will help to keep this issue tracker focused on enhancements that the community has agreed needs to be implemented.](https://github.com/ggml-org/llama.cpp/discussions/categories/ideas)
|
||||
[Please post your idea first in Discussion if there is not yet a consensus for this enhancement request. This will help to keep this issue tracker focused on enhancements that the community has agreed needs to be implemented.](https://github.com/ggerganov/llama.cpp/discussions/categories/ideas)
|
||||
|
||||
- type: checkboxes
|
||||
id: prerequisites
|
||||
@@ -16,11 +16,11 @@ body:
|
||||
options:
|
||||
- label: I am running the latest code. Mention the version if possible as well.
|
||||
required: true
|
||||
- label: I carefully followed the [README.md](https://github.com/ggml-org/llama.cpp/blob/master/README.md).
|
||||
- label: I carefully followed the [README.md](https://github.com/ggerganov/llama.cpp/blob/master/README.md).
|
||||
required: true
|
||||
- label: I searched using keywords relevant to my issue to make sure that I am creating a new issue that is not already open (or closed).
|
||||
required: true
|
||||
- label: I reviewed the [Discussions](https://github.com/ggml-org/llama.cpp/discussions), and have a new and useful enhancement to share.
|
||||
- label: I reviewed the [Discussions](https://github.com/ggerganov/llama.cpp/discussions), and have a new and useful enhancement to share.
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
|
||||
2
.github/ISSUE_TEMPLATE/030-research.yml
vendored
2
.github/ISSUE_TEMPLATE/030-research.yml
vendored
@@ -6,7 +6,7 @@ body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Don't forget to check for any [duplicate research issue tickets](https://github.com/ggml-org/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3A%22research+%F0%9F%94%AC%22)
|
||||
Don't forget to check for any [duplicate research issue tickets](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3A%22research+%F0%9F%94%AC%22)
|
||||
|
||||
- type: checkboxes
|
||||
id: research-stage
|
||||
|
||||
4
.github/ISSUE_TEMPLATE/040-refactor.yml
vendored
4
.github/ISSUE_TEMPLATE/040-refactor.yml
vendored
@@ -6,8 +6,8 @@ body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Don't forget to [check for existing refactor issue tickets](https://github.com/ggml-org/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3Arefactoring) in case it's already covered.
|
||||
Also you may want to check [Pull request refactor label as well](https://github.com/ggml-org/llama.cpp/pulls?q=is%3Aopen+is%3Apr+label%3Arefactoring) for duplicates too.
|
||||
Don't forget to [check for existing refactor issue tickets](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3Arefactoring) in case it's already covered.
|
||||
Also you may want to check [Pull request refactor label as well](https://github.com/ggerganov/llama.cpp/pulls?q=is%3Aopen+is%3Apr+label%3Arefactoring) for duplicates too.
|
||||
|
||||
- type: textarea
|
||||
id: background-description
|
||||
|
||||
6
.github/ISSUE_TEMPLATE/config.yml
vendored
6
.github/ISSUE_TEMPLATE/config.yml
vendored
@@ -1,11 +1,11 @@
|
||||
blank_issues_enabled: true
|
||||
contact_links:
|
||||
- name: Got an idea?
|
||||
url: https://github.com/ggml-org/llama.cpp/discussions/categories/ideas
|
||||
url: https://github.com/ggerganov/llama.cpp/discussions/categories/ideas
|
||||
about: Pop it there. It may then become an enhancement ticket.
|
||||
- name: Got a question?
|
||||
url: https://github.com/ggml-org/llama.cpp/discussions/categories/q-a
|
||||
url: https://github.com/ggerganov/llama.cpp/discussions/categories/q-a
|
||||
about: Ask a question there!
|
||||
- name: Want to contribute?
|
||||
url: https://github.com/ggml-org/llama.cpp/wiki/contribute
|
||||
url: https://github.com/ggerganov/llama.cpp/wiki/contribute
|
||||
about: Head to the contribution guide page of the wiki for areas you can help with
|
||||
|
||||
25
.github/actions/windows-setup-curl/action.yml
vendored
25
.github/actions/windows-setup-curl/action.yml
vendored
@@ -1,25 +0,0 @@
|
||||
name: 'Windows - Setup CURL'
|
||||
description: 'Composite action, to be reused in other workflow'
|
||||
inputs:
|
||||
curl_version:
|
||||
description: 'CURL version'
|
||||
required: false
|
||||
default: '8.6.0_6'
|
||||
outputs:
|
||||
curl_path:
|
||||
description: "Path to the downloaded libcurl"
|
||||
value: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
shell: powershell
|
||||
env:
|
||||
CURL_VERSION: ${{ inputs.curl_version }}
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/curl.zip -L "https://curl.se/windows/dl-${env:CURL_VERSION}/curl-${env:CURL_VERSION}-win64-mingw.zip"
|
||||
mkdir $env:RUNNER_TEMP/libcurl
|
||||
tar.exe -xvf $env:RUNNER_TEMP/curl.zip --strip-components=1 -C $env:RUNNER_TEMP/libcurl
|
||||
echo "curl_path=$env:RUNNER_TEMP/libcurl" >> $env:GITHUB_OUTPUT
|
||||
2
.github/pull_request_template.md
vendored
2
.github/pull_request_template.md
vendored
@@ -1 +1 @@
|
||||
*Make sure to read the [contributing guidelines](https://github.com/ggml-org/llama.cpp/blob/master/CONTRIBUTING.md) before submitting a PR*
|
||||
*Make sure to read the [contributing guidelines](https://github.com/ggerganov/llama.cpp/blob/master/CONTRIBUTING.md) before submitting a PR*
|
||||
|
||||
13
.github/workflows/bench.yml.disabled
vendored
13
.github/workflows/bench.yml.disabled
vendored
@@ -1,5 +1,5 @@
|
||||
# TODO: there have been some issues with the workflow, so disabling for now
|
||||
# https://github.com/ggml-org/llama.cpp/issues/7893
|
||||
# https://github.com/ggerganov/llama.cpp/issues/7893
|
||||
#
|
||||
# Benchmark
|
||||
name: Benchmark
|
||||
@@ -57,7 +57,17 @@ jobs:
|
||||
|
||||
if: |
|
||||
inputs.gpu-series == 'Standard_NC4as_T4_v3'
|
||||
|| (
|
||||
github.event_name == 'schedule'
|
||||
&& github.ref_name == 'master'
|
||||
&& github.repository_owner == 'ggerganov'
|
||||
)
|
||||
|| github.event_name == 'pull_request_target'
|
||||
|| (
|
||||
github.event_name == 'push'
|
||||
&& github.event.ref == 'refs/heads/master'
|
||||
&& github.repository_owner == 'ggerganov'
|
||||
)
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
@@ -104,6 +114,7 @@ jobs:
|
||||
cmake -B build \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DLLAMA_CUBLAS=ON \
|
||||
-DCUDAToolkit_ROOT=/usr/local/cuda \
|
||||
-DCMAKE_CUDA_COMPILER=/usr/local/cuda/bin/nvcc \
|
||||
|
||||
124
.github/workflows/build-linux-cross.yml
vendored
124
.github/workflows/build-linux-cross.yml
vendored
@@ -1,124 +0,0 @@
|
||||
name: Build on Linux using cross-compiler
|
||||
on:
|
||||
workflow_dispatch:
|
||||
workflow_call:
|
||||
|
||||
jobs:
|
||||
ubuntu-latest-riscv64-cpu-cross:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Setup Riscv
|
||||
run: |
|
||||
sudo dpkg --add-architecture riscv64
|
||||
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
|
||||
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
|
||||
sudo apt-get clean
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
gcc-14-riscv64-linux-gnu \
|
||||
g++-14-riscv64-linux-gnu \
|
||||
libcurl4-openssl-dev:riscv64
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
|
||||
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
|
||||
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
|
||||
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
ubuntu-latest-riscv64-vulkan-cross:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Setup Riscv
|
||||
run: |
|
||||
sudo dpkg --add-architecture riscv64
|
||||
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
|
||||
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
|
||||
sudo apt-get clean
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
glslc \
|
||||
gcc-14-riscv64-linux-gnu \
|
||||
g++-14-riscv64-linux-gnu \
|
||||
libvulkan-dev:riscv64 \
|
||||
libcurl4-openssl-dev:riscv64
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
|
||||
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
|
||||
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
|
||||
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
ubuntu-latest-arm64-vulkan-cross:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Setup Arm64
|
||||
run: |
|
||||
sudo dpkg --add-architecture arm64
|
||||
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
|
||||
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
|
||||
sudo apt-get clean
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
glslc \
|
||||
crossbuild-essential-arm64 \
|
||||
libvulkan-dev:arm64 \
|
||||
libcurl4-openssl-dev:arm64
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=aarch64 \
|
||||
-DCMAKE_C_COMPILER=aarch64-linux-gnu-gcc \
|
||||
-DCMAKE_CXX_COMPILER=aarch64-linux-gnu-g++ \
|
||||
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
-DCMAKE_FIND_ROOT_PATH=/usr/lib/aarch64-linux-gnu \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
593
.github/workflows/build.yml
vendored
593
.github/workflows/build.yml
vendored
File diff suppressed because it is too large
Load Diff
2
.github/workflows/close-issue.yml
vendored
2
.github/workflows/close-issue.yml
vendored
@@ -17,7 +17,7 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/stale@v5
|
||||
with:
|
||||
exempt-issue-labels: "refactor,help wanted,good first issue,research,bug,roadmap"
|
||||
exempt-issue-labels: "refactor,help wanted,good first issue,research,bug"
|
||||
days-before-issue-stale: 30
|
||||
days-before-issue-close: 14
|
||||
stale-issue-label: "stale"
|
||||
|
||||
17
.github/workflows/docker.yml
vendored
17
.github/workflows/docker.yml
vendored
@@ -28,21 +28,20 @@ jobs:
|
||||
push_to_registry:
|
||||
name: Push Docker image to Docker Hub
|
||||
|
||||
runs-on: ubuntu-22.04
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
COMMIT_SHA: ${{ github.sha }}
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
config:
|
||||
# Multi-stage build
|
||||
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: false }
|
||||
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
|
||||
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true }
|
||||
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
|
||||
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
|
||||
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, freediskspace: false}
|
||||
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
|
||||
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
|
||||
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
|
||||
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
|
||||
# Note: the rocm images are failing due to a compiler error and are disabled until this is fixed to allow the workflow to complete
|
||||
#- {tag: "rocm", dockerfile: ".devops/rocm.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: true }
|
||||
#- {tag: "rocm", dockerfile: ".devops/rocm.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, freediskspace: true }
|
||||
steps:
|
||||
- name: Check out the repo
|
||||
uses: actions/checkout@v4
|
||||
@@ -51,8 +50,6 @@ jobs:
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v3
|
||||
with:
|
||||
image: tonistiigi/binfmt:qemu-v7.0.0-28
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
2
.github/workflows/labeler.yml
vendored
2
.github/workflows/labeler.yml
vendored
@@ -11,7 +11,7 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
repository: "ggml-org/llama.cpp"
|
||||
repository: "ggerganov/llama.cpp"
|
||||
- uses: actions/labeler@v5
|
||||
with:
|
||||
configuration-path: '.github/labeler.yml'
|
||||
|
||||
70
.github/workflows/server.yml
vendored
70
.github/workflows/server.yml
vendored
@@ -81,36 +81,13 @@ jobs:
|
||||
with:
|
||||
node-version: '22.11.0'
|
||||
|
||||
- name: WebUI - Install dependencies
|
||||
id: webui_lint
|
||||
run: |
|
||||
cd examples/server/webui
|
||||
npm ci
|
||||
|
||||
- name: WebUI - Check code format
|
||||
id: webui_format
|
||||
run: |
|
||||
git config --global --add safe.directory $(realpath .)
|
||||
cd examples/server/webui
|
||||
git status
|
||||
|
||||
npm run format
|
||||
git status
|
||||
modified_files="$(git status -s)"
|
||||
echo "Modified files: ${modified_files}"
|
||||
if [ -n "${modified_files}" ]; then
|
||||
echo "Files do not follow coding style. To fix: npm run format"
|
||||
echo "${modified_files}"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
- name: Verify bundled index.html
|
||||
id: verify_server_index_html
|
||||
run: |
|
||||
git config --global --add safe.directory $(realpath .)
|
||||
cd examples/server/webui
|
||||
git status
|
||||
|
||||
npm ci
|
||||
npm run build
|
||||
git status
|
||||
modified_files="$(git status -s)"
|
||||
@@ -129,48 +106,30 @@ jobs:
|
||||
cmake -B build \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
|
||||
-DGGML_OPENMP=OFF ;
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
|
||||
|
||||
- name: Build (sanitizers)
|
||||
id: cmake_build_sanitizers
|
||||
if: ${{ matrix.sanitizer != '' && matrix.sanitizer != 'THREAD' }}
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
if: ${{ matrix.sanitizer != 'THREAD' }}
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
|
||||
|
||||
- name: Build (sanitizers)
|
||||
id: cmake_build
|
||||
if: ${{ matrix.sanitizer == '' }}
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} ;
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
|
||||
|
||||
- name: Tests
|
||||
id: server_integration_tests
|
||||
if: ${{ matrix.sanitizer == '' }}
|
||||
env:
|
||||
GITHUB_ACTIONS: "true"
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
./tests.sh
|
||||
|
||||
- name: Tests (sanitizers)
|
||||
id: server_integration_tests_sanitizers
|
||||
if: ${{ matrix.sanitizer != '' }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
LLAMA_SANITIZE=1 ./tests.sh
|
||||
|
||||
- name: Slow tests
|
||||
id: server_integration_tests_slow
|
||||
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
|
||||
@@ -192,14 +151,17 @@ jobs:
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
env:
|
||||
CURL_VERSION: 8.6.0_6
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/curl.zip -L "https://curl.se/windows/dl-${env:CURL_VERSION}/curl-${env:CURL_VERSION}-win64-mingw.zip"
|
||||
mkdir $env:RUNNER_TEMP/libcurl
|
||||
tar.exe -xvf $env:RUNNER_TEMP/curl.zip --strip-components=1 -C $env:RUNNER_TEMP/libcurl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cmake -B build -DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
|
||||
cmake -B build -DLLAMA_CURL=ON -DCURL_LIBRARY="$env:RUNNER_TEMP/libcurl/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:RUNNER_TEMP/libcurl/include"
|
||||
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS} --target llama-server
|
||||
|
||||
- name: Python setup
|
||||
@@ -215,10 +177,8 @@ jobs:
|
||||
|
||||
- name: Copy Libcurl
|
||||
id: prepare_libcurl
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cp $env:CURL_PATH/bin/libcurl-x64.dll ./build/bin/Release/libcurl-x64.dll
|
||||
cp $env:RUNNER_TEMP/libcurl/bin/libcurl-x64.dll ./build/bin/Release/libcurl-x64.dll
|
||||
|
||||
- name: Tests
|
||||
id: server_integration_tests
|
||||
@@ -226,7 +186,7 @@ jobs:
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
$env:PYTHONIOENCODING = ":replace"
|
||||
pytest -v -x -m "not slow"
|
||||
pytest -v -x
|
||||
|
||||
- name: Slow tests
|
||||
id: server_integration_tests_slow
|
||||
|
||||
4
.gitignore
vendored
4
.gitignore
vendored
@@ -18,7 +18,6 @@
|
||||
*.metallib
|
||||
*.o
|
||||
*.so
|
||||
*.swp
|
||||
*.tmp
|
||||
|
||||
# IDE / OS
|
||||
@@ -45,8 +44,6 @@ lcov-report/
|
||||
tags
|
||||
.build/
|
||||
build*
|
||||
release
|
||||
debug
|
||||
!build-info.cmake
|
||||
!build-info.cpp.in
|
||||
!build-info.sh
|
||||
@@ -100,7 +97,6 @@ examples/server/*.css.hpp
|
||||
examples/server/*.html.hpp
|
||||
examples/server/*.js.hpp
|
||||
examples/server/*.mjs.hpp
|
||||
examples/server/*.gz.hpp
|
||||
!build_64.sh
|
||||
!examples/*.bat
|
||||
!examples/*/*.kts
|
||||
|
||||
142
AUTHORS
142
AUTHORS
@@ -1,4 +1,4 @@
|
||||
# date: Sat Mar 8 18:23:52 EET 2025
|
||||
# date: Thu Nov 28 20:46:15 EET 2024
|
||||
# this file is auto-generated by scripts/gen-authors.sh
|
||||
|
||||
0cc4m <picard12@live.de>
|
||||
@@ -8,12 +8,10 @@
|
||||
3ooabkhxtn <31479382+3ooabkhxtn@users.noreply.github.com>
|
||||
44670 <44670@users.noreply.github.com>
|
||||
65a <10104049+65a@users.noreply.github.com>
|
||||
708-145 <40387547+708-145@users.noreply.github.com>
|
||||
AN Long <aisk@users.noreply.github.com>
|
||||
AT <manyoso@users.noreply.github.com>
|
||||
Aarni Koskela <akx@iki.fi>
|
||||
Aaron Miller <apage43@ninjawhale.com>
|
||||
Aaron Teo <57927438+taronaeo@users.noreply.github.com>
|
||||
Aaryaman Vasishta <aaryaman.vasishta@amd.com>
|
||||
Abheek Gulati <abheekg@hotmail.com>
|
||||
Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
|
||||
@@ -22,27 +20,21 @@ Adithya Balaji <adithya.b94@gmail.com>
|
||||
AdithyanI <adithyan.i4internet@gmail.com>
|
||||
Adrian <smith.adriane@gmail.com>
|
||||
Adrian Hesketh <a-h@users.noreply.github.com>
|
||||
Adrian Kretz <me@akretz.com>
|
||||
Adrien Gallouët <adrien@gallouet.fr>
|
||||
Adrien Gallouët <angt@huggingface.co>
|
||||
Ahmad Tameem <113388789+Tameem-10xE@users.noreply.github.com>
|
||||
Ahmet Zeer <ahmed.zeer@std.yildiz.edu.tr>
|
||||
AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>
|
||||
AidanBeltonS <aidan.belton@codeplay.com>
|
||||
Aisuko <urakiny@gmail.com>
|
||||
Akarshan Biswas <akarshan.biswas@gmail.com>
|
||||
Akarshan Biswas <akarshan@menlo.ai>
|
||||
Akarshan Biswas <akarshanbiswas@fedoraproject.org>
|
||||
Al Mochkin <14274697+amochkin@users.noreply.github.com>
|
||||
Albert Jin <albert.jin@gmail.com>
|
||||
Alberto <57916483+albbus-stack@users.noreply.github.com>
|
||||
Alberto Cabrera Pérez <alberto.cabrera@codeplay.com>
|
||||
Alberto Cabrera Pérez <alberto.cabrera@intel.com>
|
||||
Aleksei Nikiforov <103434461+AlekseiNikiforovIBM@users.noreply.github.com>
|
||||
Alex <awhill19@icloud.com>
|
||||
Alex Azarov <alex@azarov.by>
|
||||
Alex Azarov <alexander.azarov@mapbox.com>
|
||||
Alex Brooks <alex.brooks@ibm.com>
|
||||
Alex Klinkhamer <from.github.com.917@grencez.dev>
|
||||
Alex Klinkhamer <git@grencez.dev>
|
||||
Alex Nguyen <tiendung@users.noreply.github.com>
|
||||
@@ -63,7 +55,6 @@ Ananta Bastola <anantarajbastola@gmail.com>
|
||||
Anas Ahouzi <112881240+aahouzi@users.noreply.github.com>
|
||||
András Salamon <ott2@users.noreply.github.com>
|
||||
Andreas (Andi) Kunar <andreask@msn.com>
|
||||
Andreas Kieslinger <47689530+aendk@users.noreply.github.com>
|
||||
Andrei <abetlen@gmail.com>
|
||||
Andrew Canis <andrew.canis@gmail.com>
|
||||
Andrew Downing <andrew2085@gmail.com>
|
||||
@@ -73,7 +64,6 @@ Andrew Minh Nguyen <40281306+amqdn@users.noreply.github.com>
|
||||
Andy Salerno <andysalerno@gmail.com>
|
||||
Andy Tai <andy-tai@users.noreply.github.com>
|
||||
Anthony Van de Gejuchte <anthonyvdgent@gmail.com>
|
||||
Antoine Viallon <antoine@lesviallon.fr>
|
||||
Antonis Makropoulos <benuix@gmail.com>
|
||||
Arik Poznanski <arikpoz@users.noreply.github.com>
|
||||
Armen Kaleshian <kriation@users.noreply.github.com>
|
||||
@@ -90,7 +80,6 @@ Atsushi Tatsuma <yoshoku@outlook.com>
|
||||
Austin <77757836+teleprint-me@users.noreply.github.com>
|
||||
AustinMroz <austinmroz@utexas.edu>
|
||||
BADR <contact@pythops.com>
|
||||
BB-fat <45072480+BB-fat@users.noreply.github.com>
|
||||
Bach Le <bach@bullno1.com>
|
||||
Bailey Chittle <39804642+bachittle@users.noreply.github.com>
|
||||
BarfingLemurs <128182951+BarfingLemurs@users.noreply.github.com>
|
||||
@@ -102,18 +91,13 @@ Ben Siraphob <bensiraphob@gmail.com>
|
||||
Ben Williams <ben@719ben.com>
|
||||
Benjamin Findley <39356821+Kartoffelsaft@users.noreply.github.com>
|
||||
Benjamin Lecaillon <84293038+blecaillon@users.noreply.github.com>
|
||||
Benson Wong <mostlygeek@gmail.com>
|
||||
Bernat Vadell <hounter.caza@gmail.com>
|
||||
Bernhard M. Wiedemann <githubbmwprimary@lsmod.de>
|
||||
Bert Wagner <github@bertwagner.com>
|
||||
Billel Mokeddem <billel.mokeddem.ml@gmail.com>
|
||||
Bingan <70050083+binganao@users.noreply.github.com>
|
||||
Bjarke Viksøe <164612031+bviksoe@users.noreply.github.com>
|
||||
Bodhi <3882561+BodhiHu@users.noreply.github.com>
|
||||
Bodo Graumann <mail@bodograumann.de>
|
||||
Bono Lv <lvscar@users.noreply.github.com>
|
||||
Borislav Stanimirov <b.stanimirov@abv.bg>
|
||||
Borislav Stanimirov <b@ibob.bg>
|
||||
Branden Butler <bwtbutler@hotmail.com>
|
||||
Brandon Squizzato <35474886+bsquizz@users.noreply.github.com>
|
||||
Brian <mofosyne@gmail.com>
|
||||
@@ -133,11 +117,9 @@ Casey Primozic <casey@cprimozic.net>
|
||||
Casey Primozic <me@ameo.link>
|
||||
CausalLM <148736309+CausalLM@users.noreply.github.com>
|
||||
Cebtenzzre <cebtenzzre@gmail.com>
|
||||
CentricStorm <CentricStorm@users.noreply.github.com>
|
||||
Chad Brewbaker <crb002@gmail.com>
|
||||
Changyeon Kim <cyzero.kim@samsung.com>
|
||||
Chao Jiang <jc19chaoj@zoho.com>
|
||||
Charles Duffy <charles@dyfis.net>
|
||||
Charles Xu <63788048+chaxu01@users.noreply.github.com>
|
||||
Charles Xu <charles.xu@arm.com>
|
||||
Chen Xi <xi2.chen@intel.com>
|
||||
@@ -149,17 +131,12 @@ Chris Kuehl <ckuehl@ckuehl.me>
|
||||
Christian Demsar <christian@github.email.demsar.us>
|
||||
Christian Demsar <crasm@git.vczf.us>
|
||||
Christian Falch <875252+chrfalch@users.noreply.github.com>
|
||||
Christian Fillion <cfillion@users.noreply.github.com>
|
||||
Christian Kastner <ckk@kvr.at>
|
||||
Christian Kögler <ck3d@gmx.de>
|
||||
Christian Köhnenkamp <cvk5@me.com>
|
||||
Christian Zhou-Zheng <59622928+christianazinn@users.noreply.github.com>
|
||||
Christopher Nielsen <62156882+mascguy@users.noreply.github.com>
|
||||
Clark Saben <76020733+csaben@users.noreply.github.com>
|
||||
Clauszy <zhangyub@uniontech.com>
|
||||
Clint Herron <hanclinto@gmail.com>
|
||||
Conrad Kramer <conrad@conradkramer.com>
|
||||
Corentin REGAL <corentin.regal@gmail.com>
|
||||
CrispStrobe <154636388+CrispStrobe@users.noreply.github.com>
|
||||
Csaba Kecskemeti <csaba.kecskemeti@gmail.com>
|
||||
Cuong Trinh Manh <nguoithichkhampha@gmail.com>
|
||||
@@ -175,7 +152,6 @@ Daniel Hiltgen <dhiltgen@users.noreply.github.com>
|
||||
Daniel Illescas Romero <illescas.daniel@protonmail.com>
|
||||
Daniel Kleine <53251018+d-kleine@users.noreply.github.com>
|
||||
Daniele <57776841+daniandtheweb@users.noreply.github.com>
|
||||
Danny Milosavljevic <dannym@friendly-machines.com>
|
||||
DannyDaemonic <DannyDaemonic@gmail.com>
|
||||
Dat Quoc Nguyen <2412555+datquocnguyen@users.noreply.github.com>
|
||||
Dave <dave-fl@users.noreply.github.com>
|
||||
@@ -183,7 +159,6 @@ Dave Airlie <airlied@gmail.com>
|
||||
Dave Airlie <airlied@redhat.com>
|
||||
Dave Della Costa <ddellacosta+github@gmail.com>
|
||||
David Friehs <david@friehs.info>
|
||||
David Huang <1969802+hjc4869@users.noreply.github.com>
|
||||
David Kennedy <dakennedyd@gmail.com>
|
||||
David Pflug <david@pflug.email>
|
||||
David Renshaw <dwrenshaw@gmail.com>
|
||||
@@ -201,7 +176,6 @@ Dibakar Gope <dibakar.gope@arm.com>
|
||||
Didzis Gosko <didzis@users.noreply.github.com>
|
||||
Diego Devesa <slarengh@gmail.com>
|
||||
Diogo Teles Sant'Anna <diogoteles@google.com>
|
||||
Djip007 <3705339+Djip007@users.noreply.github.com>
|
||||
Djip007 <djip.perois@free.fr>
|
||||
Don Mahurin <dmahurin@users.noreply.github.com>
|
||||
DooWoong Lee (David) <manics99@naver.com>
|
||||
@@ -219,7 +193,6 @@ Edward Taylor <edeetee@gmail.com>
|
||||
Elaine <elaine.zosa@gmail.com>
|
||||
Elbios <141279586+Elbios@users.noreply.github.com>
|
||||
Elton Kola <eltonkola@gmail.com>
|
||||
Emreerdog <34742675+Emreerdog@users.noreply.github.com>
|
||||
Engininja2 <139037756+Engininja2@users.noreply.github.com>
|
||||
Equim <sayaka@ekyu.moe>
|
||||
Eric Curtin <ecurtin@redhat.com>
|
||||
@@ -250,7 +223,6 @@ Felix <stenbackfelix@gmail.com>
|
||||
Finn Voorhees <finnvoorhees@gmail.com>
|
||||
Firat <firatkiral@gmail.com>
|
||||
FirstTimeEZ <179362031+FirstTimeEZ@users.noreply.github.com>
|
||||
Florent BENOIT <fbenoit@redhat.com>
|
||||
Folko-Ven <71110216+Folko-Ven@users.noreply.github.com>
|
||||
Foul-Tarnished <107711110+Foul-Tarnished@users.noreply.github.com>
|
||||
Francisco Melo <43780565+francis2tm@users.noreply.github.com>
|
||||
@@ -261,7 +233,6 @@ Fred Douglas <43351173+fredlas@users.noreply.github.com>
|
||||
Frederik Vogel <Schaltfehler@users.noreply.github.com>
|
||||
Gabe Goodhart <gabe.l.hart@gmail.com>
|
||||
Gabe Goodhart <ghart@us.ibm.com>
|
||||
Gaetan Bisson <gaetan@fenua.org>
|
||||
GainLee <perfecter.gen@gmail.com>
|
||||
Galunid <karolek1231456@gmail.com>
|
||||
Gary Linscott <glinscott@gmail.com>
|
||||
@@ -269,7 +240,6 @@ Gary Mulder <gjmulder@gmail.com>
|
||||
Gavin Zhao <gavinzhaojw@protonmail.com>
|
||||
Genkagaku.GPT <hlhr202@163.com>
|
||||
Georgi Gerganov <ggerganov@gmail.com>
|
||||
Gian-Carlo Pascutto <gcp@sjeng.org>
|
||||
Gilad S <giladgd@users.noreply.github.com>
|
||||
Gilad S. <7817232+giladgd@users.noreply.github.com>
|
||||
Giuseppe Scrivano <giuseppe@scrivano.org>
|
||||
@@ -279,27 +249,21 @@ Guillaume "Vermeille" Sanchez <Guillaume.V.Sanchez@gmail.com>
|
||||
Guillaume Wenzek <gwenzek@users.noreply.github.com>
|
||||
Guoliang Hua <32868157+nbcsm@users.noreply.github.com>
|
||||
Guoteng <32697156+SolenoidWGT@users.noreply.github.com>
|
||||
Guspan Tanadi <36249910+guspan-tanadi@users.noreply.github.com>
|
||||
Gustavo Rocha Dias <91472747+gustrd@users.noreply.github.com>
|
||||
Haggai Nuchi <h.nuchi@gmail.com>
|
||||
Halalaluyafail3 <55773281+Halalaluyafail3@users.noreply.github.com>
|
||||
Hale Chan <halechan@qq.com>
|
||||
Hamdoud Hakem <90524568+hamdoudhakem@users.noreply.github.com>
|
||||
Han Yin <han.yin@arm.com>
|
||||
HanishKVC <hanishkvc@gmail.com>
|
||||
Haohui Mai <ricetons@gmail.com>
|
||||
Haoxiang Fei <tonyfettes@tonyfettes.com>
|
||||
Harald Fernengel <harald.fernengel@here.com>
|
||||
Hatsune Miku <129688334+at8u@users.noreply.github.com>
|
||||
HatsuneMikuUwU33 <173229399+HatsuneMikuUwU33@users.noreply.github.com>
|
||||
Haus1 <haus.xda@gmail.com>
|
||||
Henk Poley <HenkPoley@gmail.com>
|
||||
Henri Vasserman <henv@hot.ee>
|
||||
Henrik Forstén <henrik.forsten@gmail.com>
|
||||
Henry Linjamäki <henry.linjamaki@gmail.com>
|
||||
Herman Semenov <GermanAizek@yandex.ru>
|
||||
Hesen Peng <hesen.peng@gmail.com>
|
||||
HimariO <dsfhe49854@gmail.com>
|
||||
Hoang Nguyen <hugo53@users.noreply.github.com>
|
||||
Hong Bo PENG <penghb@cn.ibm.com>
|
||||
Hongyu Ouyang <96765450+casavaca@users.noreply.github.com>
|
||||
@@ -316,7 +280,6 @@ Icecream95 <the.real.icecream95@gmail.com>
|
||||
Ido S <ido.pluto@gmail.com>
|
||||
IgnacioFDM <ignaciofdm@gmail.com>
|
||||
Igor Okulist <okigan@gmail.com>
|
||||
Ihar Hrachyshka <ihrachys@redhat.com>
|
||||
Ikko Eltociear Ashimine <eltociear@gmail.com>
|
||||
Ilya Kurdyukov <59548320+ilyakurdyukov@users.noreply.github.com>
|
||||
Ionoclast Laboratories <brigham@ionoclast.com>
|
||||
@@ -326,15 +289,12 @@ Ivan <nekotekina@gmail.com>
|
||||
Ivan Filipov <159561759+vanaka11@users.noreply.github.com>
|
||||
Ivan Komarov <Ivan.Komarov@dfyz.info>
|
||||
Ivan Stepanov <ivanstepanovftw@gmail.com>
|
||||
JC <43374599+MrSMlT@users.noreply.github.com>
|
||||
JFLFY2255 <JFLFY2255@163.com>
|
||||
JH23X <165871467+JH23X@users.noreply.github.com>
|
||||
Jack Mousseau <jack@software.inc>
|
||||
Jack Mousseau <jmousseau@users.noreply.github.com>
|
||||
JackJollimore <130917767+JackJollimore@users.noreply.github.com>
|
||||
Jaeden Amero <jaeden@patater.com>
|
||||
Jaemin Son <woalsdnd@gmail.com>
|
||||
Jafar Uruç <jafar.uruc@gmail.com>
|
||||
Jag Chadha <jagtesh@gmail.com>
|
||||
Jakub N <jakubniemczyk97@gmail.com>
|
||||
James A Capozzoli <157492257+jac-jim@users.noreply.github.com>
|
||||
@@ -345,7 +305,6 @@ Jan Ploski <jpl@plosquare.com>
|
||||
Jannis Schönleber <joennlae@gmail.com>
|
||||
Jared Van Bortel <cebtenzzre@gmail.com>
|
||||
Jared Van Bortel <jared@nomic.ai>
|
||||
Jason C.H <ctrysbita@outlook.com>
|
||||
Jason McCartney <jmac@theroot.org>
|
||||
Jason Stillerman <jason.t.stillerman@gmail.com>
|
||||
Jean-Christophe Hoelt <hoelt@fovea.cc>
|
||||
@@ -356,14 +315,12 @@ Jeffrey Morgan <jmorganca@gmail.com>
|
||||
Jeffrey Quesnelle <emozilla@nousresearch.com>
|
||||
Jeroen Mostert <jeroen.mostert@cm.com>
|
||||
Jesse Jojo Johnson <williamsaintgeorge@gmail.com>
|
||||
Jett Janiak <jettjaniak@gmail.com>
|
||||
Jeximo <jeximo@gmail.com>
|
||||
Jhen-Jie Hong <iainst0409@gmail.com>
|
||||
Jiahao Li <liplus17@163.com>
|
||||
Jian Liao <jianliao@users.noreply.github.com>
|
||||
JidongZhang-THU <1119708529@qq.com>
|
||||
Jinwoo Jeong <33892306+williamjeong2@users.noreply.github.com>
|
||||
Jinyang He <hejinyang@loongson.cn>
|
||||
Jiří Podivín <66251151+jpodivin@users.noreply.github.com>
|
||||
Jiří Sejkora <Sejseloid@gmail.com>
|
||||
Joan Fontanals <jfontanalsmartinez@gmail.com>
|
||||
@@ -386,7 +343,6 @@ Josh Ramer <josh.ramer@icloud.com>
|
||||
Joyce <joycebrum@google.com>
|
||||
Juan Calderon-Perez <835733+gaby@users.noreply.github.com>
|
||||
Judd <foldl@users.noreply.github.com>
|
||||
Juk Armstrong <69222624+jukofyork@users.noreply.github.com>
|
||||
Julius Arkenberg <arki05@users.noreply.github.com>
|
||||
Jun Hee Yoo <contact.jhyoo@gmail.com>
|
||||
Jun Jie <71215065+junnjiee16@users.noreply.github.com>
|
||||
@@ -401,8 +357,6 @@ Justine Tunney <jtunney@mozilla.com>
|
||||
Juuso Alasuutari <juuso.alasuutari@gmail.com>
|
||||
KASR <karim.asrih@gmail.com>
|
||||
Kamil Tomšík <info@tomsik.cz>
|
||||
Kante Yin <kerthcet@gmail.com>
|
||||
Karol Kontny <82021046+kkontny@users.noreply.github.com>
|
||||
Karsten Weiss <knweiss@gmail.com>
|
||||
Karthick <j.karthic2004@gmail.com>
|
||||
Karthik Kumar Viswanathan <195178+guilt@users.noreply.github.com>
|
||||
@@ -422,7 +376,6 @@ Kolen Cheung <ickc@users.noreply.github.com>
|
||||
Konstantin Herud <konstantin.herud@denkbares.com>
|
||||
Konstantin Zhuravlyov <konstantin.zhuravlyov@amd.com>
|
||||
Kunshang Ji <kunshang.ji@intel.com>
|
||||
Kyle Bruene <KyleBruene@users.noreply.github.com>
|
||||
Kyle Liang <liangmanlai@gmail.com>
|
||||
Kyle Mistele <kyle@mistele.com>
|
||||
Kylin <56434533+KyL0N@users.noreply.github.com>
|
||||
@@ -441,8 +394,6 @@ Liu Jia <jia3.liu@intel.com>
|
||||
LoganDark <github@logandark.mozmail.com>
|
||||
Loïc Carrère <loic.carrere@gmail.com>
|
||||
LostRuins <39025047+LostRuins@users.noreply.github.com>
|
||||
LostRuins Concedo <39025047+LostRuins@users.noreply.github.com>
|
||||
Lucas Moura Belo <lucas.belo@live.com>
|
||||
Luciano <lucianostrika44@gmail.com>
|
||||
Luo Tian <lt@basecity.com>
|
||||
Lyle Dean <dean@lyle.dev>
|
||||
@@ -472,7 +423,6 @@ MasterYi1024 <39848311+MasterYi1024@users.noreply.github.com>
|
||||
Mateusz Charytoniuk <mateusz.charytoniuk@protonmail.com>
|
||||
Matheus C. França <matheus-catarino@hotmail.com>
|
||||
Matheus Gabriel Alves Silva <matheusgasource@gmail.com>
|
||||
Mathieu Baudier <mbaudier@argeo.org>
|
||||
Mathieu Geli <mathieu.geli@gmail.com>
|
||||
Mathieu Nayrolles <MathieuNls@users.noreply.github.com>
|
||||
Mathijs Henquet <mathijs.henquet@gmail.com>
|
||||
@@ -487,7 +437,6 @@ Matthew Tejo <matthew.tejo@gmail.com>
|
||||
Matvey Soloviev <blackhole89@gmail.com>
|
||||
Max Krasnyansky <max.krasnyansky@gmail.com>
|
||||
Max Krasnyansky <quic_maxk@quicinc.com>
|
||||
Maxim Evtush <154841002+maximevtush@users.noreply.github.com>
|
||||
Maxime <672982+maximegmd@users.noreply.github.com>
|
||||
Maximilian Winter <maximilian.winter.91@gmail.com>
|
||||
Meng Zhang <meng@tabbyml.com>
|
||||
@@ -495,7 +444,6 @@ Meng, Hengyu <hengyu.meng@intel.com>
|
||||
Mengqing Cao <cmq0113@163.com>
|
||||
Merrick Christensen <merrick.christensen@gmail.com>
|
||||
Michael Coppola <m18coppola@gmail.com>
|
||||
Michael Engel <mengel@redhat.com>
|
||||
Michael Francis <edude03@gmail.com>
|
||||
Michael Hueschen <m@mhueschen.dev>
|
||||
Michael Kesper <mkesper@schokokeks.org>
|
||||
@@ -504,9 +452,7 @@ Michael Podvitskiy <podvitskiymichael@gmail.com>
|
||||
Michael Potter <NanoTekGuy@Gmail.com>
|
||||
Michael de Gans <michael.john.degans@gmail.com>
|
||||
Michaël de Vries <vriesdemichael@gmail.com>
|
||||
Michał Moskal <michal@moskal.me>
|
||||
Michał Tuszyński <srgtuszy@gmail.com>
|
||||
Michelle Tan <41475767+MichelleTanPY@users.noreply.github.com>
|
||||
Mihai <mihai.chirculescu@yahoo.com>
|
||||
Mike <ytianhui2004@gmail.com>
|
||||
Mikko Juola <mikjuo@gmail.com>
|
||||
@@ -519,7 +465,6 @@ Miwa / Ensan <63481257+ensan-hcl@users.noreply.github.com>
|
||||
Mohammadreza Hendiani <hendiani.mohammadreza@gmail.com>
|
||||
Mohammadreza Hendiani <mohammad.r.hendiani@gmail.com>
|
||||
Molly Sophia <mollysophia379@gmail.com>
|
||||
MoonRide303 <130458190+MoonRide303@users.noreply.github.com>
|
||||
MorganRO8 <47795945+MorganRO8@users.noreply.github.com>
|
||||
Murilo Santana <mvrilo@gmail.com>
|
||||
Musab Gultekin <musabgultekin@users.noreply.github.com>
|
||||
@@ -532,7 +477,6 @@ Neo Zhang <14088817+arthw@users.noreply.github.com>
|
||||
Neo Zhang <zhang.jianyu@outlook.com>
|
||||
Neo Zhang Jianyu <jianyu.zhang@intel.com>
|
||||
Neuman Vong <neuman.vong@gmail.com>
|
||||
NeverLucky <92274250+nvrxq@users.noreply.github.com>
|
||||
Nexes the Old <124105151+Nexesenex@users.noreply.github.com>
|
||||
Nexesenex <124105151+Nexesenex@users.noreply.github.com>
|
||||
Niall Coates <1349685+Niall-@users.noreply.github.com>
|
||||
@@ -540,17 +484,12 @@ Nicholai Tukanov <nicholaitukanov@gmail.com>
|
||||
Nico Bosshard <nico@bosshome.ch>
|
||||
Nicolai Weitkemper <kontakt@nicolaiweitkemper.de>
|
||||
Nicolás Pérez <nicolas_perez@brown.edu>
|
||||
Nicolò Scipione <nicolo.scipione@codeplay.com>
|
||||
Nigel Bosch <pnigelb@gmail.com>
|
||||
Nikita Sarychev <42014488+sARY77@users.noreply.github.com>
|
||||
Niklas Korz <niklas@niklaskorz.de>
|
||||
NikolaiLyssogor <59844691+NikolaiLyssogor@users.noreply.github.com>
|
||||
Nikolaos Pothitos <pothitos@di.uoa.gr>
|
||||
Nikolas <127742645+nneubacher@users.noreply.github.com>
|
||||
Nindaleth <Nindaleth@users.noreply.github.com>
|
||||
Nuno <rare-magma@posteo.eu>
|
||||
OSecret <135510162+OLSecret@users.noreply.github.com>
|
||||
Oleksandr Kuvshynov <661042+okuvshynov@users.noreply.github.com>
|
||||
Oleksandr Nikitin <oleksandr@tvori.info>
|
||||
Oleksii Maryshchenko <oleksii.maryshchenko@gmail.com>
|
||||
Olivier Chafik <ochafik@users.noreply.github.com>
|
||||
@@ -560,13 +499,11 @@ PAB <pierreantoine.bannier@gmail.com>
|
||||
Pablo Duboue <pablo.duboue@gmail.com>
|
||||
Pascal Patry <ppatry@mtacitlabs.com>
|
||||
Patrice Ferlet <metal3d@gmail.com>
|
||||
Patrick Peng <retr0@retr0.blog>
|
||||
Paul Tsochantaris <ptsochantaris@icloud.com>
|
||||
Pavel Zloi <github.com@drteam.rocks>
|
||||
Pavol Rusnak <pavol@rusnak.io>
|
||||
Paweł Wodnicki <151604+32bitmicro@users.noreply.github.com>
|
||||
Pedro Cuenca <pedro@huggingface.co>
|
||||
Peter <peter277@users.noreply.github.com>
|
||||
Peter Sugihara <peter@campsh.com>
|
||||
Phil H <5756783+phiharri@users.noreply.github.com>
|
||||
Philip Taron <philip.taron@gmail.com>
|
||||
@@ -577,7 +514,6 @@ Pieter Ouwerkerk <pieter.ouwerkerk@gmail.com>
|
||||
Plamen Minev <pacominev@gmail.com>
|
||||
Prashant Vithule <119530321+Vithulep@users.noreply.github.com>
|
||||
Przemysław Pawełczyk <przemoc@gmail.com>
|
||||
PureJourney <edward.pong@qq.com>
|
||||
Qin Yue Chen <71813199+chenqiny@users.noreply.github.com>
|
||||
Qingyou Meng <meng.qingyou@gmail.com>
|
||||
Qu Zongfu <43257352+yancaoweidaode@users.noreply.github.com>
|
||||
@@ -593,17 +529,11 @@ Rand Xie <randxiexyy29@gmail.com>
|
||||
Randall Fitzgerald <randall@dasaku.net>
|
||||
Random Fly <renfei8@live.cn>
|
||||
Reinforce-II <fate@eastal.com>
|
||||
Rémy O <remyoudompheng@gmail.com>
|
||||
Rémy Oudompheng <oudomphe@phare.normalesup.org>
|
||||
Ren Xuancheng <jklj077@users.noreply.github.com>
|
||||
Rene Leonhardt <65483435+reneleonhardt@users.noreply.github.com>
|
||||
Reza Kakhki <rezakakhki.de@gmail.com>
|
||||
Reza Rahemtola <49811529+RezaRahemtola@users.noreply.github.com>
|
||||
RhinoDevel <RhinoDevel@users.noreply.github.com>
|
||||
Riccardo Orlando <Riccorl@users.noreply.github.com>
|
||||
Riceball LEE <snowyu.lee@gmail.com>
|
||||
Rich Dougherty <rich@rd.nz>
|
||||
Richard <r-burton@hotmail.co.uk>
|
||||
Richard Kiss <him@richardkiss.com>
|
||||
Richard Roberson <richardr1126@gmail.com>
|
||||
Rick G <26732651+TheFlipbook@users.noreply.github.com>
|
||||
@@ -614,13 +544,10 @@ Riley Stewart <ristew@users.noreply.github.com>
|
||||
Rinne <AsakusaRinne@gmail.com>
|
||||
Rinne <liu_yaohui1998@126.com>
|
||||
Robert Brisita <986796+rbrisita@users.noreply.github.com>
|
||||
Robert Collins <roberto.tomas.cuentas@gmail.com>
|
||||
Robert Ormandi <52251610+ormandi@users.noreply.github.com>
|
||||
Robert Sung-wook Shin <edp1096@users.noreply.github.com>
|
||||
Robey Holderith <robey@flaminglunchbox.net>
|
||||
Robyn <robyngraf@users.noreply.github.com>
|
||||
Roger Meier <r.meier@siemens.com>
|
||||
Rohanjames1997 <rohan.james4@gmail.com>
|
||||
Roland <14355895+rbur0425@users.noreply.github.com>
|
||||
Romain Biessy <romain.biessy@codeplay.com>
|
||||
Romain D <90720+Artefact2@users.noreply.github.com>
|
||||
@@ -632,9 +559,7 @@ Roni <sulpher@gmx.net>
|
||||
Ronny Brendel <ronnybrendel@gmail.com>
|
||||
Ronsor <ronsor@ronsor.pw>
|
||||
Rowan Hart <rowanbhart@gmail.com>
|
||||
Ruan <47767371+ruanych@users.noreply.github.com>
|
||||
Ruchira Hasaranga <ruchira66@gmail.com>
|
||||
Rudi Servo <rudiservo@gmail.com>
|
||||
Ruixin Huang <18860020911@163.com>
|
||||
Rune <43761327+Rune-AI@users.noreply.github.com>
|
||||
RunningLeon <maningsheng@sensetime.com>
|
||||
@@ -643,7 +568,6 @@ Ryan Landay <rlanday@gmail.com>
|
||||
Ryder Wishart <ryderwishart@gmail.com>
|
||||
Ryuei <louixs@users.noreply.github.com>
|
||||
Rőczey Barnabás <31726601+An0nie@users.noreply.github.com>
|
||||
SAMI <samuel.koesnadi@stud.uni-due.de>
|
||||
SRHMorris <69468379+SRHMorris@users.noreply.github.com>
|
||||
SXX <sxx1136965276@gmail.com>
|
||||
SakuraUmi <yukinon244@gmail.com>
|
||||
@@ -668,8 +592,6 @@ Shane A <shanea@allenai.org>
|
||||
Shangning Xu <32517059+xushangning@users.noreply.github.com>
|
||||
Shankar <gshankar.87@gmail.com>
|
||||
Shanshan Shen <467638484@qq.com>
|
||||
Shelby Jenkins <47464908+ShelbyJenkins@users.noreply.github.com>
|
||||
Sheldon Robinson <sheldon.robinson@live.com>
|
||||
Shijie <821898965@qq.com>
|
||||
Shintarou Okada <kokuzen@gmail.com>
|
||||
Shouzheng Liu <61452103+lshzh-ww@users.noreply.github.com>
|
||||
@@ -701,14 +623,12 @@ Steven Roussey <sroussey@gmail.com>
|
||||
Steward Garcia <57494570+FSSRepo@users.noreply.github.com>
|
||||
StrangeBytesDev <141275258+StrangeBytesDev@users.noreply.github.com>
|
||||
Suaj Carrot <72162667+SuajCarrot@users.noreply.github.com>
|
||||
Sukriti Sharma <Ssukriti@users.noreply.github.com>
|
||||
SuperUserNameMan <yoann@terminajones.com>
|
||||
Sutou Kouhei <kou@cozmixng.org>
|
||||
Tai Duc Nguyen <taiducnguyen.drexel@gmail.com>
|
||||
Taikono-Himazin <kazu@po.harenet.ne.jp>
|
||||
Tameem <113388789+AhmadTameem@users.noreply.github.com>
|
||||
Tamotsu Takahashi <ttakah+github@gmail.com>
|
||||
Tei Home <taiteitonghome@proton.me>
|
||||
Thái Hoàng Tâm <75922889+RoyalHeart@users.noreply.github.com>
|
||||
Thatcher Chamberlin <j.thatcher.c@gmail.com>
|
||||
Theia Vogel <theia@vgel.me>
|
||||
@@ -720,7 +640,6 @@ Tim Miller <drasticactions@users.noreply.github.com>
|
||||
Tim Wang <overocean@gmail.com>
|
||||
Timmy Knight <r2d2fish@gmail.com>
|
||||
Timothy Cronin <40186632+4imothy@users.noreply.github.com>
|
||||
Ting Lou <louting@189.cn>
|
||||
Ting Lou <ting.lou@gmail.com>
|
||||
Ting Sun <suntcrick@gmail.com>
|
||||
Tobias Lütke <tobi@shopify.com>
|
||||
@@ -742,36 +661,25 @@ Uzo Nweke <uzoechi@gmail.com>
|
||||
Vaibhav Srivastav <vaibhavs10@gmail.com>
|
||||
Val Kharitonov <mail@kharvd.com>
|
||||
Valentin Konovalov <valle.ketsujin@gmail.com>
|
||||
Valentin Mamedov <45292985+Inf1delis@users.noreply.github.com>
|
||||
Valentyn Bezshapkin <61702053+valentynbez@users.noreply.github.com>
|
||||
Vali Malinoiu <0x4139@gmail.com>
|
||||
Victor Nogueira <felladrin@gmail.com>
|
||||
Victor Z. Peng <ziliangdotme@gmail.com>
|
||||
Viet-Anh NGUYEN (Andrew) <vietanh.dev@gmail.com>
|
||||
Vinesh Janarthanan <36610342+VJHack@users.noreply.github.com>
|
||||
Vitali Lovich <vlovich+github@gmail.com>
|
||||
Vivian <vynride@gmail.com>
|
||||
Vlad <spitfireage@gmail.com>
|
||||
Vladimir <bogdad@gmail.com>
|
||||
Vladimir Malyutin <first-leon@yandex.ru>
|
||||
Vladimir Vuksanovic <109677816+vvuksanovic@users.noreply.github.com>
|
||||
Vladimir Zorin <vladimir@deviant.guru>
|
||||
VoidIsVoid <343750470@qq.com>
|
||||
Volodymyr Vitvitskyi <72226+signalpillar@users.noreply.github.com>
|
||||
Wagner Bruna <wbruna@users.noreply.github.com>
|
||||
Wang Qin <37098874+wangqin0@users.noreply.github.com>
|
||||
Wang Ran (汪然) <wangr@smail.nju.edu.cn>
|
||||
WangHaoranRobin <56047610+WangHaoranRobin@users.noreply.github.com>
|
||||
Weird Constructor <weirdconstructor@gmail.com>
|
||||
Weizhao Ouyang <o451686892@gmail.com>
|
||||
Welby Seely <welbyseely@gmail.com>
|
||||
Wentai Zhang <rchardx@gmail.com>
|
||||
Wilken Gottwalt <12194808+wgottwalt@users.noreply.github.com>
|
||||
WillCorticesAI <150854901+WillCorticesAI@users.noreply.github.com>
|
||||
William Tambellini <william.tambellini@gmail.com>
|
||||
William Tambellini <wtambellini@sdl.com>
|
||||
Willy Tarreau <w@1wt.eu>
|
||||
Woof Dog <197125663+woof-dog@users.noreply.github.com>
|
||||
Wouter <9594229+DifferentialityDevelopment@users.noreply.github.com>
|
||||
Wu Jian Ping <wujjpp@hotmail.com>
|
||||
Wu Jian Ping <wujp@greatld.com>
|
||||
@@ -784,7 +692,6 @@ Xie Yanbo <xieyanbo@gmail.com>
|
||||
Xingchen Song(宋星辰) <xingchensong1996@163.com>
|
||||
Xinpeng Dou <81913537+Dou-Git@users.noreply.github.com>
|
||||
Xuan Son Nguyen <thichthat@gmail.com>
|
||||
Xuan-Son Nguyen <thichthat@gmail.com>
|
||||
Yaiko <elyaiko@hotmail.com>
|
||||
Yann Follet <131855179+YannFollet@users.noreply.github.com>
|
||||
Yaroslav <yaroslav.yashin@me.com>
|
||||
@@ -795,9 +702,7 @@ Yoshi Suhara <y.suhara@gmail.com>
|
||||
Yoshi Suhara <ysuhara@nvidia.com>
|
||||
Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
|
||||
Yueh-Po Peng <94939112+y10ab1@users.noreply.github.com>
|
||||
Yüg <eugeniosegalaweb@gmail.com>
|
||||
Yui <dev@sleepyyui.com>
|
||||
Yun Dou <dixyes@gmail.com>
|
||||
Yuri Khrustalev <ykhrustalev@users.noreply.github.com>
|
||||
Yusuf Kağan Hanoğlu <hanoglu@yahoo.com>
|
||||
Yuval Peled <31162840+Yuval-Peled@users.noreply.github.com>
|
||||
@@ -809,23 +714,18 @@ Zhang Peiyuan <a1286225768@gmail.com>
|
||||
Zheng.Deng <32841220+dengzheng-cloud@users.noreply.github.com>
|
||||
Zhenwei Jin <109658203+kylo5aby@users.noreply.github.com>
|
||||
Zhiyuan Li <lizhiyuan@uniartisan.com>
|
||||
Zhiyuan Li <uniartisan2017@gmail.com>
|
||||
ZhouYuChen <zhouyuchen@naver.com>
|
||||
Ziad Ben Hadj-Alouane <zied.benhadjalouane@gmail.com>
|
||||
Ziang Wu <97337387+ZiangWu-77@users.noreply.github.com>
|
||||
Zsapi <martin1.zsapka@gmail.com>
|
||||
a-n-n-a-l-e-e <150648636+a-n-n-a-l-e-e@users.noreply.github.com>
|
||||
a3sh <38979186+A3shTnT@users.noreply.github.com>
|
||||
adel boussaken <netdur@gmail.com>
|
||||
afrideva <95653597+afrideva@users.noreply.github.com>
|
||||
ag2s20150909 <19373730+ag2s20150909@users.noreply.github.com>
|
||||
agray3 <agray3@users.noreply.github.com>
|
||||
akawrykow <142945436+akawrykow@users.noreply.github.com>
|
||||
alek3y <44779186+alek3y@users.noreply.github.com>
|
||||
alexpinel <93524949+alexpinel@users.noreply.github.com>
|
||||
alonfaraj <alonfaraj@gmail.com>
|
||||
alwqx <kenan3015@gmail.com>
|
||||
amd-dwang <dong.wang@amd.com>
|
||||
amd-lalithnc <lalithnc@amd.com>
|
||||
amritahs-ibm <amritahs@linux.vnet.ibm.com>
|
||||
andrijdavid <david@geek.mg>
|
||||
@@ -837,7 +737,6 @@ arch-btw <57669023+arch-btw@users.noreply.github.com>
|
||||
arcrank <arcrank@gmail.com>
|
||||
ardfork <134447697+ardfork@users.noreply.github.com>
|
||||
arlo-phoenix <140345165+arlo-phoenix@users.noreply.github.com>
|
||||
aryantandon01 <80969509+aryantandon01@users.noreply.github.com>
|
||||
at8u <129688334+at8u@users.noreply.github.com>
|
||||
automaticcat <daogiatuank54@gmail.com>
|
||||
awatuna <23447591+awatuna@users.noreply.github.com>
|
||||
@@ -852,16 +751,12 @@ bryanSwk <93190252+bryanSwk@users.noreply.github.com>
|
||||
bsilvereagle <bsilvereagle@users.noreply.github.com>
|
||||
bssrdf <merlintiger@hotmail.com>
|
||||
byte-6174 <88070277+byte-6174@users.noreply.github.com>
|
||||
cduk <19917266+cduk@users.noreply.github.com>
|
||||
cebtenzzre <cebtenzzre@gmail.com>
|
||||
chaihahaha <chai836275709@gmail.com>
|
||||
chiranko <96988916+chiranko@users.noreply.github.com>
|
||||
clibdev <52199778+clibdev@users.noreply.github.com>
|
||||
clyang <clyang@clyang.net>
|
||||
cmdr2 <secondary.cmdr2@gmail.com>
|
||||
cmdr2 <shashank.shekhar.global@gmail.com>
|
||||
cocktailpeanut <121128867+cocktailpeanut@users.noreply.github.com>
|
||||
codezjx <code.zjx@gmail.com>
|
||||
coezbek <c.oezbek@gmail.com>
|
||||
comex <comexk@gmail.com>
|
||||
compilade <113953597+compilade@users.noreply.github.com>
|
||||
@@ -879,25 +774,20 @@ deepdiffuser <112834445+deepdiffuser@users.noreply.github.com>
|
||||
devojony <61173062+devojony@users.noreply.github.com>
|
||||
ditsuke <ditsuke@protonmail.com>
|
||||
divinity76 <divinity76@gmail.com>
|
||||
dm4 <dm4@secondstate.io>
|
||||
dm4 <sunrisedm4@gmail.com>
|
||||
dotpy314 <33351922+dotpy314@users.noreply.github.com>
|
||||
drbh <david.richard.holtz@gmail.com>
|
||||
ds5t5 <145942675+ds5t5@users.noreply.github.com>
|
||||
dylan <canardleteer@users.noreply.github.com>
|
||||
eastriver <lee@eastriver.dev>
|
||||
ebraminio <ebrahim@gnu.org>
|
||||
ebraminio <ebraminio@gmail.com>
|
||||
eiery <19350831+eiery@users.noreply.github.com>
|
||||
eric8607242 <e0928021388@gmail.com>
|
||||
fairydreaming <166155368+fairydreaming@users.noreply.github.com>
|
||||
fengerhu1 <2748250768@qq.com>
|
||||
fj-y-saito <85871716+fj-y-saito@users.noreply.github.com>
|
||||
fraxy-v <65565042+fraxy-v@users.noreply.github.com>
|
||||
fxzjshm <11426482+fxzjshm@users.noreply.github.com>
|
||||
github-actions[bot] <github-actions[bot]@users.noreply.github.com>
|
||||
gliptic <gliptic@users.noreply.github.com>
|
||||
gn64 <yukikaze.jp@gmail.com>
|
||||
goerch <jhr.walter@t-online.de>
|
||||
grahameth <96447521+grahameth@users.noreply.github.com>
|
||||
gtygo <gtydoit@gmail.com>
|
||||
@@ -919,17 +809,13 @@ hydai <z54981220@gmail.com>
|
||||
iSma <ismail.senhaji@gmail.com>
|
||||
iacore <74560659+iacore@users.noreply.github.com>
|
||||
icppWorld <124377669+icppWorld@users.noreply.github.com>
|
||||
igardev <49397134+igardev@users.noreply.github.com>
|
||||
igarnier <igarnier@protonmail.com>
|
||||
intelmatt <61025942+intelmatt@users.noreply.github.com>
|
||||
iohub <rickyang.pro@gmail.com>
|
||||
issixx <46835150+issixx@users.noreply.github.com>
|
||||
jacobi petrucciani <8117202+jpetrucciani@users.noreply.github.com>
|
||||
jaime-m-p <167997752+jaime-m-p@users.noreply.github.com>
|
||||
jameswu2014 <545426914@qq.com>
|
||||
jason_w <jason.wang@126.com>
|
||||
jdomke <28772296+jdomke@users.noreply.github.com>
|
||||
jiahao su <damow890@gmail.com>
|
||||
jiez <373447296@qq.com>
|
||||
jneem <joeneeman@gmail.com>
|
||||
joecryptotoo <80373433+joecryptotoo@users.noreply.github.com>
|
||||
@@ -939,11 +825,9 @@ jon-chuang <9093549+jon-chuang@users.noreply.github.com>
|
||||
jp-x-g <jpxg-dev@protonmail.com>
|
||||
jukofyork <69222624+jukofyork@users.noreply.github.com>
|
||||
junchao-loongson <68935141+junchao-loongson@users.noreply.github.com>
|
||||
junchao-zhao <68935141+junchao-loongson@users.noreply.github.com>
|
||||
jwj7140 <32943891+jwj7140@users.noreply.github.com>
|
||||
k.h.lai <adrian.k.h.lai@outlook.com>
|
||||
kaizau <kaizau@users.noreply.github.com>
|
||||
kallewoof <kalle.alm@gmail.com>
|
||||
kalomaze <66376113+kalomaze@users.noreply.github.com>
|
||||
kang <tpdns9032100@gmail.com>
|
||||
katsu560 <118887472+katsu560@users.noreply.github.com>
|
||||
@@ -951,7 +835,6 @@ kchro3 <62481661+kchro3@users.noreply.github.com>
|
||||
khimaros <me@khimaros.com>
|
||||
kiltyj <kiltyj@gmail.com>
|
||||
klosax <131523366+klosax@users.noreply.github.com>
|
||||
krystiancha <krystian@krystianch.com>
|
||||
kunal-vaishnavi <115581922+kunal-vaishnavi@users.noreply.github.com>
|
||||
kunnis <kunnis@users.noreply.github.com>
|
||||
kuronekosaiko <EvanChanJ@163.com>
|
||||
@@ -964,8 +847,6 @@ ldwang <ftgreat@163.com>
|
||||
le.chang <cljs118@126.com>
|
||||
leejet <leejet714@gmail.com>
|
||||
leo-pony <nengjunma@outlook.com>
|
||||
lexasub <lexakopp2212@gmail.com>
|
||||
lhez <quic_lih@quicinc.com>
|
||||
limitedAtonement <limitedAtonement@users.noreply.github.com>
|
||||
liuwei-git <14815172+liuwei-git@users.noreply.github.com>
|
||||
lon <114724657+longregen@users.noreply.github.com>
|
||||
@@ -974,25 +855,19 @@ ltoniazzi <61414566+ltoniazzi@users.noreply.github.com>
|
||||
luoyu-intel <yu.luo@intel.com>
|
||||
m3ndax <adrian.goessl@outlook.com>
|
||||
maddes8cht <55592906+maddes8cht@users.noreply.github.com>
|
||||
magicse <magicse@users.noreply.github.com>
|
||||
mahorozte <41834471+mahorozte@users.noreply.github.com>
|
||||
makomk <makosoft@googlemail.com>
|
||||
manikbhandari <mbbhandarimanik2@gmail.com>
|
||||
maor-ps <154728172+maor-ps@users.noreply.github.com>
|
||||
mashdragon <122402293+mashdragon@users.noreply.github.com>
|
||||
matiaslin <45382001+matiaslin@users.noreply.github.com>
|
||||
matt23654 <matthew.webber@protonmail.com>
|
||||
matteo <matteogeniaccio@yahoo.it>
|
||||
mdrokz <mohammadmunshi@gmail.com>
|
||||
mgroeber9110 <45620825+mgroeber9110@users.noreply.github.com>
|
||||
midnight <midnightmagic@users.noreply.github.com>
|
||||
minarchist <minarchist@users.noreply.github.com>
|
||||
mj-shifu <77107165+mj-shifu@users.noreply.github.com>
|
||||
mmyjona <jonathan.gonse@gmail.com>
|
||||
momonga <115213907+mmnga@users.noreply.github.com>
|
||||
momonga <146910567+mmngays@users.noreply.github.com>
|
||||
moritzbrantner <31051084+moritzbrantner@users.noreply.github.com>
|
||||
musoles <135031143+musoles@users.noreply.github.com>
|
||||
mzcu <milos.cubrilo@gmail.com>
|
||||
nanahi <130121847+na-na-hi@users.noreply.github.com>
|
||||
ngc92 <7938269+ngc92@users.noreply.github.com>
|
||||
@@ -1009,23 +884,18 @@ omahs <73983677+omahs@users.noreply.github.com>
|
||||
oobabooga <112222186+oobabooga@users.noreply.github.com>
|
||||
opparco <parco.opaai@gmail.com>
|
||||
ostix360 <55257054+ostix360@users.noreply.github.com>
|
||||
pascal-lc <49066376+pascal-lc@users.noreply.github.com>
|
||||
pculliton <phillipculliton@gmail.com>
|
||||
peidaqi <peidaqi@gmail.com>
|
||||
pengxin99 <pengxin.yuan@intel.com>
|
||||
perserk <perserk@gmail.com>
|
||||
petterreinholdtsen <pere-github@hungry.com>
|
||||
piDack <104877312+piDack@users.noreply.github.com>
|
||||
pmysl <piotr.myslinski@outlook.com>
|
||||
postmasters <namnguyen@google.com>
|
||||
pudepiedj <pudepiedj@gmail.com>
|
||||
qingfengfenga <41416092+qingfengfenga@users.noreply.github.com>
|
||||
qingy1337 <qxli2@students.everettcc.edu>
|
||||
qouoq <qouoq@fastmail.com>
|
||||
qunash <anzoria@gmail.com>
|
||||
rabidcopy <rabidcopy@yahoo.com>
|
||||
rankaiyx <rankaiyx@rankaiyx.com>
|
||||
redbeard <bharrington@alticon.net>
|
||||
rhjdvsgsgks <26178113+rhjdvsgsgks@users.noreply.github.com>
|
||||
rhuddleston <ryan.huddleston@percona.com>
|
||||
rimoliga <53384203+rimoliga@users.noreply.github.com>
|
||||
@@ -1036,14 +906,12 @@ semidark <me@semidark.net>
|
||||
serhii-nakon <57632032+serhii-nakon@users.noreply.github.com>
|
||||
sharpHL <132747147+sharpHL@users.noreply.github.com>
|
||||
shibe2 <shibe@tuta.io>
|
||||
simon886212 <37953122+simon886212@users.noreply.github.com>
|
||||
singularity <12184989+singularity-s0@users.noreply.github.com>
|
||||
sjinzh <sjinzh@gmail.com>
|
||||
sjxx <63994076+ylsdamxssjxxdd@users.noreply.github.com>
|
||||
slaren <2141330+slaren@users.noreply.github.com>
|
||||
slaren <slarengh@gmail.com>
|
||||
snadampal <87143774+snadampal@users.noreply.github.com>
|
||||
someone13574 <81528246+someone13574@users.noreply.github.com>
|
||||
standby24x7 <standby24x7@gmail.com>
|
||||
staviq <staviq@gmail.com>
|
||||
stduhpf <stephduh@live.fr>
|
||||
@@ -1054,23 +922,19 @@ tarcey <cey.tarik@gmail.com>
|
||||
tc-mb <157115220+tc-mb@users.noreply.github.com>
|
||||
texmex76 <40733439+texmex76@users.noreply.github.com>
|
||||
thement <40525767+thement@users.noreply.github.com>
|
||||
theraininsky <76763719+theraininsky@users.noreply.github.com>
|
||||
thewh1teagle <61390950+thewh1teagle@users.noreply.github.com>
|
||||
tjohnman <tjohnman@users.noreply.github.com>
|
||||
toyer <2042519524@qq.com>
|
||||
tslmy <tslmy@users.noreply.github.com>
|
||||
tv1wnd <55383215+tv1wnd@users.noreply.github.com>
|
||||
ubik2 <ubik2@users.noreply.github.com>
|
||||
uint256_t <konndennsa@gmail.com>
|
||||
uint256_t <maekawatoshiki1017@gmail.com>
|
||||
unbounded <haakon@likedan.net>
|
||||
uvos <devnull@uvos.xyz>
|
||||
uvos <philipp@uvos.xyz>
|
||||
valiray <133289098+valiray@users.noreply.github.com>
|
||||
vb <vaibhavs10@gmail.com>
|
||||
vik <vikhyatk@gmail.com>
|
||||
viric <viric@viric.name>
|
||||
vmobilis <75476228+vmobilis@users.noreply.github.com>
|
||||
vodkaslime <646329483@qq.com>
|
||||
vvhg1 <94630311+vvhg1@users.noreply.github.com>
|
||||
vxiiduu <73044267+vxiiduu@users.noreply.github.com>
|
||||
@@ -1085,11 +949,8 @@ wzy <32936898+Freed-Wu@users.noreply.github.com>
|
||||
xaedes <xaedes@gmail.com>
|
||||
xaedes <xaedes@googlemail.com>
|
||||
xctan <axunlei@gmail.com>
|
||||
xiaobing318 <71554036+xiaobing318@users.noreply.github.com>
|
||||
xiaofei <hbuxiaofei@gmail.com>
|
||||
xloem <0xloem@gmail.com>
|
||||
yangli2 <yangli2@gmail.com>
|
||||
ymcki <84055651+ymcki@users.noreply.github.com>
|
||||
yuiseki <yuiseki@gmail.com>
|
||||
yuri@FreeBSD <yurivict@users.noreply.github.com>
|
||||
zakkor <edward.partenie@gmail.com>
|
||||
@@ -1102,5 +963,4 @@ zrm <trustiosity.zrm@gmail.com>
|
||||
杨朱 · Kiki <baofa.fan@daocloud.io>
|
||||
源文雨 <41315874+fumiama@users.noreply.github.com>
|
||||
蕭澧邦 <45505768+shou692199@users.noreply.github.com>
|
||||
谢乃闻 <sienaiwun@users.noreply.github.com>
|
||||
Нияз Гарифзянов <112617865+garrnizon@users.noreply.github.com>
|
||||
|
||||
128
CMakeLists.txt
128
CMakeLists.txt
@@ -16,7 +16,6 @@ endif()
|
||||
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
|
||||
|
||||
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
|
||||
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
|
||||
|
||||
if (CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
|
||||
set(LLAMA_STANDALONE ON)
|
||||
@@ -29,8 +28,6 @@ else()
|
||||
set(LLAMA_STANDALONE OFF)
|
||||
endif()
|
||||
|
||||
option(LLAMA_USE_SYSTEM_GGML "Use system libggml" OFF)
|
||||
|
||||
if (EMSCRIPTEN)
|
||||
set(BUILD_SHARED_LIBS_DEFAULT OFF)
|
||||
|
||||
@@ -52,8 +49,6 @@ endif()
|
||||
if (MSVC)
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:C>:/utf-8>")
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/utf-8>")
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:C>:/bigobj>")
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/bigobj>")
|
||||
endif()
|
||||
|
||||
#
|
||||
@@ -81,16 +76,18 @@ option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_SERVER "llama: build server example" ${LLAMA_STANDALONE})
|
||||
|
||||
# 3rd party libs
|
||||
option(LLAMA_CURL "llama: use libcurl to download model from an URL" ON)
|
||||
option(LLAMA_LLGUIDANCE "llama-common: include LLGuidance library for structured output in common utils" OFF)
|
||||
option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF)
|
||||
|
||||
# Required for relocatable CMake package
|
||||
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake)
|
||||
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/common.cmake)
|
||||
|
||||
# override ggml options
|
||||
set(GGML_ALL_WARNINGS ${LLAMA_ALL_WARNINGS})
|
||||
set(GGML_FATAL_WARNINGS ${LLAMA_FATAL_WARNINGS})
|
||||
set(GGML_SANITIZE_THREAD ${LLAMA_SANITIZE_THREAD})
|
||||
set(GGML_SANITIZE_ADDRESS ${LLAMA_SANITIZE_ADDRESS})
|
||||
set(GGML_SANITIZE_UNDEFINED ${LLAMA_SANITIZE_UNDEFINED})
|
||||
set(GGML_ALL_WARNINGS ${LLAMA_ALL_WARNINGS})
|
||||
set(GGML_FATAL_WARNINGS ${LLAMA_FATAL_WARNINGS})
|
||||
|
||||
# change the default for these ggml options
|
||||
if (NOT DEFINED GGML_LLAMAFILE)
|
||||
@@ -120,73 +117,16 @@ llama_option_depr(WARNING LLAMA_SYCL GGML_SYCL)
|
||||
llama_option_depr(WARNING LLAMA_SYCL_F16 GGML_SYCL_F16)
|
||||
llama_option_depr(WARNING LLAMA_CANN GGML_CANN)
|
||||
|
||||
if (NOT MSVC)
|
||||
if (LLAMA_SANITIZE_THREAD)
|
||||
message(STATUS "Using -fsanitize=thread")
|
||||
|
||||
add_compile_options(-fsanitize=thread)
|
||||
link_libraries (-fsanitize=thread)
|
||||
endif()
|
||||
|
||||
if (LLAMA_SANITIZE_ADDRESS)
|
||||
message(STATUS "Using -fsanitize=address")
|
||||
|
||||
add_compile_options(-fsanitize=address -fno-omit-frame-pointer)
|
||||
link_libraries (-fsanitize=address)
|
||||
endif()
|
||||
|
||||
if (LLAMA_SANITIZE_UNDEFINED)
|
||||
message(STATUS "Using -fsanitize=undefined")
|
||||
|
||||
add_compile_options(-fsanitize=undefined)
|
||||
link_libraries (-fsanitize=undefined)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
#
|
||||
# 3rd-party
|
||||
#
|
||||
|
||||
if (LLAMA_USE_SYSTEM_GGML)
|
||||
message(STATUS "Using system-provided libggml, skipping ggml build")
|
||||
find_package(ggml REQUIRED)
|
||||
add_library(ggml ALIAS ggml::ggml)
|
||||
endif()
|
||||
|
||||
if (NOT TARGET ggml AND NOT LLAMA_USE_SYSTEM_GGML)
|
||||
add_subdirectory(ggml)
|
||||
# ... otherwise assume ggml is added by a parent CMakeLists.txt
|
||||
endif()
|
||||
|
||||
#
|
||||
# build the library
|
||||
#
|
||||
|
||||
if (NOT TARGET ggml)
|
||||
add_subdirectory(ggml)
|
||||
# ... otherwise assume ggml is added by a parent CMakeLists.txt
|
||||
endif()
|
||||
add_subdirectory(src)
|
||||
|
||||
#
|
||||
# utils, programs, examples and tests
|
||||
#
|
||||
|
||||
if (NOT LLAMA_BUILD_COMMON)
|
||||
message(STATUS "LLAMA_BUILD_COMMON is OFF, disabling LLAMA_CURL")
|
||||
set(LLAMA_CURL OFF)
|
||||
endif()
|
||||
|
||||
if (LLAMA_BUILD_COMMON)
|
||||
add_subdirectory(common)
|
||||
endif()
|
||||
|
||||
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
|
||||
include(CTest)
|
||||
add_subdirectory(tests)
|
||||
endif()
|
||||
|
||||
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_EXAMPLES)
|
||||
add_subdirectory(examples)
|
||||
add_subdirectory(pocs)
|
||||
endif()
|
||||
|
||||
#
|
||||
# install
|
||||
#
|
||||
@@ -202,14 +142,27 @@ set(LLAMA_INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR} CACHE PATH "Location o
|
||||
set(LLAMA_LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR} CACHE PATH "Location of library files")
|
||||
set(LLAMA_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR} CACHE PATH "Location of binary files")
|
||||
|
||||
# At the moment some compile definitions are placed within the ggml/src
|
||||
# directory but not exported on the `ggml` target. This could be improved by
|
||||
# determining _precisely_ which defines are necessary for the llama-config
|
||||
# package.
|
||||
#
|
||||
set(GGML_TRANSIENT_DEFINES)
|
||||
get_target_property(GGML_DIRECTORY ggml SOURCE_DIR)
|
||||
get_directory_property(GGML_DIR_DEFINES DIRECTORY ${GGML_DIRECTORY} COMPILE_DEFINITIONS)
|
||||
if (GGML_DIR_DEFINES)
|
||||
list(APPEND GGML_TRANSIENT_DEFINES ${GGML_DIR_DEFINES})
|
||||
endif()
|
||||
get_target_property(GGML_TARGET_DEFINES ggml COMPILE_DEFINITIONS)
|
||||
if (GGML_TARGET_DEFINES)
|
||||
list(APPEND GGML_TRANSIENT_DEFINES ${GGML_TARGET_DEFINES})
|
||||
endif()
|
||||
get_target_property(GGML_LINK_LIBRARIES ggml LINK_LIBRARIES)
|
||||
# all public headers
|
||||
set(LLAMA_PUBLIC_HEADERS
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/include/llama.h
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/include/llama-cpp.h)
|
||||
|
||||
set_target_properties(llama
|
||||
PROPERTIES
|
||||
PUBLIC_HEADER "${LLAMA_PUBLIC_HEADERS}")
|
||||
|
||||
set_target_properties(llama PROPERTIES PUBLIC_HEADER "${LLAMA_PUBLIC_HEADERS}")
|
||||
install(TARGETS llama LIBRARY PUBLIC_HEADER)
|
||||
|
||||
configure_package_config_file(
|
||||
@@ -246,21 +199,22 @@ configure_file(cmake/llama.pc.in
|
||||
@ONLY)
|
||||
|
||||
install(FILES "${CMAKE_CURRENT_BINARY_DIR}/llama.pc"
|
||||
DESTINATION ${CMAKE_INSTALL_LIBDIR}/pkgconfig)
|
||||
DESTINATION lib/pkgconfig)
|
||||
|
||||
#
|
||||
# copy the license files
|
||||
# utils, programs, examples and tests
|
||||
#
|
||||
|
||||
# Check if running in GitHub Actions
|
||||
if(DEFINED ENV{GITHUB_ACTIONS} AND "$ENV{GITHUB_ACTIONS}" STREQUAL "true")
|
||||
message(STATUS "Running inside GitHub Actions - copying license files")
|
||||
|
||||
# Copy all files from licenses/ to build/bin/
|
||||
file(GLOB LICENSE_FILES "${CMAKE_SOURCE_DIR}/licenses/*")
|
||||
foreach(LICENSE_FILE ${LICENSE_FILES})
|
||||
get_filename_component(FILENAME ${LICENSE_FILE} NAME)
|
||||
configure_file(${LICENSE_FILE} "${CMAKE_BINARY_DIR}/bin/${FILENAME}" COPYONLY)
|
||||
endforeach()
|
||||
if (LLAMA_BUILD_COMMON)
|
||||
add_subdirectory(common)
|
||||
endif()
|
||||
|
||||
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
|
||||
include(CTest)
|
||||
add_subdirectory(tests)
|
||||
endif()
|
||||
|
||||
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_EXAMPLES)
|
||||
add_subdirectory(examples)
|
||||
add_subdirectory(pocs)
|
||||
endif()
|
||||
|
||||
@@ -1,12 +1,10 @@
|
||||
# Pull requests (for contributors)
|
||||
|
||||
- llama.cpp uses the ggml tensor library for model evaluation. If you are unfamiliar with ggml, consider taking a look at the [examples in the ggml repository](https://github.com/ggml-org/ggml/tree/master/examples/). [simple](https://github.com/ggml-org/ggml/tree/master/examples/simple) shows the bare minimum for using ggml. [gpt-2](https://github.com/ggml-org/ggml/tree/master/examples/gpt-2) has minimal implementations for language model inference using GPT-2. [mnist](https://github.com/ggml-org/ggml/tree/master/examples/mnist) demonstrates how to train and evaluate a simple image classifier
|
||||
- Test your changes:
|
||||
- Execute [the full CI locally on your machine](ci/README.md) before publishing
|
||||
- Verify that the perplexity and the performance are not affected negatively by your changes (use `llama-perplexity` and `llama-bench`)
|
||||
- If you modified the `ggml` source, run the `test-backend-ops` tool to check whether different backend implementations of the `ggml` operators produce consistent results (this requires access to at least two different `ggml` backends)
|
||||
- If you modified a `ggml` operator or added a new one, add the corresponding test cases to `test-backend-ops`
|
||||
- Create separate PRs for each feature or fix. Avoid combining unrelated changes in a single PR
|
||||
- Consider allowing write access to your branch for faster reviews, as reviewers can push commits directly
|
||||
- If your PR becomes stale, don't hesitate to ping the maintainers in the comments
|
||||
|
||||
@@ -14,7 +12,7 @@
|
||||
|
||||
- Squash-merge PRs
|
||||
- Use the following format for the squashed commit title: `<module> : <commit title> (#<issue_number>)`. For example: `utils : fix typo in utils.py (#1234)`
|
||||
- Optionally pick a `<module>` from here: https://github.com/ggml-org/llama.cpp/wiki/Modules
|
||||
- Optionally pick a `<module>` from here: https://github.com/ggerganov/llama.cpp/wiki/Modules
|
||||
- Consider adding yourself to [CODEOWNERS](CODEOWNERS)
|
||||
|
||||
# Coding guidelines
|
||||
@@ -39,17 +37,17 @@
|
||||
|
||||
_(NOTE: this guideline is yet to be applied to the `llama.cpp` codebase. New code should follow this guideline.)_
|
||||
|
||||
- Try to follow the existing patterns in the code (indentation, spaces, etc.). In case of doubt use `clang-format` (from clang-tools v15+) to format the added code
|
||||
- Try to follow the existing patterns in the code (indentation, spaces, etc.). In case of doubt use `clang-format` to format the added code
|
||||
- For anything not covered in the current guidelines, refer to the [C++ Core Guidelines](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines)
|
||||
- Tensors store data in row-major order. We refer to dimension 0 as columns, 1 as rows, 2 as matrices
|
||||
- Matrix multiplication is unconventional: [`C = ggml_mul_mat(ctx, A, B)`](https://github.com/ggml-org/llama.cpp/blob/880e352277fc017df4d5794f0c21c44e1eae2b84/ggml.h#L1058-L1064) means $C^T = A B^T \Leftrightarrow C = B A^T.$
|
||||
- Matrix multiplication is unconventional: [`C = ggml_mul_mat(ctx, A, B)`](https://github.com/ggerganov/llama.cpp/blob/880e352277fc017df4d5794f0c21c44e1eae2b84/ggml.h#L1058-L1064) means $C^T = A B^T \Leftrightarrow C = B A^T.$
|
||||
|
||||

|
||||
|
||||
# Naming guidelines
|
||||
|
||||
- Use `snake_case` for function, variable and type names
|
||||
- Naming usually optimizes for longest common prefix (see https://github.com/ggml-org/ggml/pull/302#discussion_r1243240963)
|
||||
- Naming usually optimizes for longest common prefix (see https://github.com/ggerganov/ggml/pull/302#discussion_r1243240963)
|
||||
|
||||
```cpp
|
||||
// not OK
|
||||
@@ -124,4 +122,4 @@
|
||||
|
||||
The Github issues, PRs and discussions contain a lot of information that can be useful to get familiar with the codebase. For convenience, some of the more important information is referenced from Github projects:
|
||||
|
||||
https://github.com/ggml-org/llama.cpp/projects
|
||||
https://github.com/ggerganov/llama.cpp/projects
|
||||
|
||||
41
Makefile
41
Makefile
@@ -1,5 +1,5 @@
|
||||
ifndef LLAMA_MAKEFILE
|
||||
$(error The Makefile build is deprecated. Use the CMake build instead. For more details, see https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
|
||||
$(error The Makefile build is deprecated. Use the CMake build instead. For more details, see https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
endif
|
||||
|
||||
# Define the default target now so that it is always the first target
|
||||
@@ -52,7 +52,6 @@ TEST_TARGETS = \
|
||||
tests/test-arg-parser \
|
||||
tests/test-autorelease \
|
||||
tests/test-backend-ops \
|
||||
tests/test-chat \
|
||||
tests/test-chat-template \
|
||||
tests/test-double-float \
|
||||
tests/test-grammar-integration \
|
||||
@@ -463,7 +462,7 @@ endif
|
||||
ifneq '' '$(findstring mingw,$(shell $(CC) -dumpmachine))'
|
||||
# The stack is only 16-byte aligned on Windows, so don't let gcc emit aligned moves.
|
||||
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54412
|
||||
# https://github.com/ggml-org/llama.cpp/issues/2922
|
||||
# https://github.com/ggerganov/llama.cpp/issues/2922
|
||||
MK_CFLAGS += -Xassembler -muse-unaligned-vector-move
|
||||
MK_CXXFLAGS += -Xassembler -muse-unaligned-vector-move
|
||||
|
||||
@@ -596,7 +595,7 @@ ifdef GGML_RPC
|
||||
OBJ_GGML_EXT += ggml/src/ggml-rpc.o
|
||||
endif # GGML_RPC
|
||||
|
||||
OBJ_CUDA_TMPL = $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/template-instances/fattn-mma*.cu))
|
||||
OBJ_CUDA_TMPL = $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/template-instances/fattn-wmma*.cu))
|
||||
OBJ_CUDA_TMPL += $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/template-instances/mmq*.cu))
|
||||
|
||||
ifdef GGML_CUDA_FA_ALL_QUANTS
|
||||
@@ -680,10 +679,6 @@ ifdef GGML_CUDA_CCBIN
|
||||
MK_NVCCFLAGS += -ccbin $(GGML_CUDA_CCBIN)
|
||||
endif # GGML_CUDA_CCBIN
|
||||
|
||||
ifdef GGML_CUDA_NO_FA
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_NO_FA
|
||||
endif # GGML_CUDA_NO_FA
|
||||
|
||||
ifdef GGML_CUDA_FA_ALL_QUANTS
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_FA_ALL_QUANTS
|
||||
endif # GGML_CUDA_FA_ALL_QUANTS
|
||||
@@ -780,6 +775,10 @@ ifdef GGML_HIP
|
||||
|
||||
MK_CPPFLAGS += -DGGML_USE_HIP -DGGML_USE_CUDA
|
||||
|
||||
ifdef GGML_HIP_UMA
|
||||
MK_CPPFLAGS += -DGGML_HIP_UMA
|
||||
endif # GGML_HIP_UMA
|
||||
|
||||
MK_LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
|
||||
MK_LDFLAGS += -L$(ROCM_PATH)/lib64 -Wl,-rpath=$(ROCM_PATH)/lib64
|
||||
MK_LDFLAGS += -lhipblas -lamdhip64 -lrocblas
|
||||
@@ -800,10 +799,6 @@ ifdef GGML_CUDA_NO_PEER_COPY
|
||||
HIPFLAGS += -DGGML_CUDA_NO_PEER_COPY
|
||||
endif # GGML_CUDA_NO_PEER_COPY
|
||||
|
||||
ifdef GGML_CUDA_NO_FA
|
||||
HIPFLAGS += -DGGML_CUDA_NO_FA
|
||||
endif # GGML_CUDA_NO_FA
|
||||
|
||||
OBJ_GGML_EXT += ggml/src/ggml-cuda/ggml-cuda.o
|
||||
OBJ_GGML_EXT += $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/*.cu))
|
||||
OBJ_GGML_EXT += $(OBJ_CUDA_TMPL)
|
||||
@@ -832,7 +827,7 @@ ifdef GGML_MUSA
|
||||
else
|
||||
MUSA_PATH ?= /opt/musa
|
||||
endif
|
||||
MUSA_ARCHITECTURES ?= 21;22;31
|
||||
MUSA_ARCHITECTURES ?= 21;22
|
||||
|
||||
MK_CPPFLAGS += -DGGML_USE_MUSA -DGGML_USE_CUDA
|
||||
MK_LDFLAGS += -L$(MUSA_PATH)/lib -Wl,-rpath=$(MUSA_PATH)/lib
|
||||
@@ -851,7 +846,7 @@ ifdef GGML_MUSA
|
||||
CXX := $(MUSA_PATH)/bin/clang++
|
||||
MCC := $(CCACHE) $(MUSA_PATH)/bin/mcc
|
||||
|
||||
MUSAFLAGS = -fsigned-char -x musa -mtgpu
|
||||
MUSAFLAGS = -x musa -mtgpu
|
||||
MUSAFLAGS += $(foreach arch,$(subst ;, ,$(MUSA_ARCHITECTURES)),--cuda-gpu-arch=mp_$(arch))
|
||||
|
||||
ifdef GGML_CUDA_FORCE_MMQ
|
||||
@@ -880,10 +875,6 @@ ifdef GGML_CUDA_NO_PEER_COPY
|
||||
MUSAFLAGS += -DGGML_CUDA_NO_PEER_COPY
|
||||
endif # GGML_CUDA_NO_PEER_COPY
|
||||
|
||||
ifdef GGML_CUDA_NO_FA
|
||||
MUSAFLAGS += -DGGML_CUDA_NO_FA
|
||||
endif # GGML_CUDA_NO_FA
|
||||
|
||||
ifdef GGML_CUDA_FA_ALL_QUANTS
|
||||
MUSAFLAGS += -DGGML_CUDA_FA_ALL_QUANTS
|
||||
endif # GGML_CUDA_FA_ALL_QUANTS
|
||||
@@ -992,7 +983,6 @@ OBJ_COMMON = \
|
||||
$(DIR_COMMON)/ngram-cache.o \
|
||||
$(DIR_COMMON)/sampling.o \
|
||||
$(DIR_COMMON)/speculative.o \
|
||||
$(DIR_COMMON)/chat.o \
|
||||
$(DIR_COMMON)/build-info.o \
|
||||
$(DIR_COMMON)/json-schema-to-grammar.o
|
||||
|
||||
@@ -1086,8 +1076,8 @@ endif
|
||||
ifdef REMOVE_WARNING
|
||||
$(info !!! REMOVAL WARNING !!!)
|
||||
$(info The following LLAMA_ options have been removed and are no longer supported)
|
||||
$(info - LLAMA_DISABLE_LOGS (https://github.com/ggml-org/llama.cpp/pull/9418))
|
||||
$(info - LLAMA_SERVER_VERBOSE (https://github.com/ggml-org/llama.cpp/pull/9418))
|
||||
$(info - LLAMA_DISABLE_LOGS (https://github.com/ggerganov/llama.cpp/pull/9418))
|
||||
$(info - LLAMA_SERVER_VERBOSE (https://github.com/ggerganov/llama.cpp/pull/9418))
|
||||
$(info )
|
||||
endif
|
||||
|
||||
@@ -1371,11 +1361,7 @@ llama-server: \
|
||||
examples/server/httplib.h \
|
||||
examples/server/index.html.hpp \
|
||||
examples/server/loading.html.hpp \
|
||||
common/chat.cpp \
|
||||
common/chat.h \
|
||||
common/chat-template.hpp \
|
||||
common/json.hpp \
|
||||
common/minja.hpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Iexamples/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2)
|
||||
@@ -1483,11 +1469,6 @@ tests/test-json-schema-to-grammar: tests/test-json-schema-to-grammar.cpp \
|
||||
$(CXX) $(CXXFLAGS) -Iexamples/server -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-chat: tests/test-chat.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -Iexamples/server -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-opt: tests/test-opt.cpp \
|
||||
$(OBJ_GGML)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
|
||||
19
Package.swift
Normal file
19
Package.swift
Normal file
@@ -0,0 +1,19 @@
|
||||
// swift-tools-version:5.5
|
||||
|
||||
import PackageDescription
|
||||
|
||||
let package = Package(
|
||||
name: "llama",
|
||||
platforms: [
|
||||
.macOS(.v12),
|
||||
.iOS(.v14),
|
||||
.watchOS(.v4),
|
||||
.tvOS(.v14)
|
||||
],
|
||||
products: [
|
||||
.library(name: "llama", targets: ["llama"]),
|
||||
],
|
||||
targets: [
|
||||
.systemLibrary(name: "llama", pkgConfig: "llama"),
|
||||
]
|
||||
)
|
||||
117
README.md
117
README.md
@@ -3,26 +3,22 @@
|
||||

|
||||
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://github.com/ggml-org/llama.cpp/actions/workflows/server.yml)
|
||||
[](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml)
|
||||
|
||||
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggml-org/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggml-org/llama.cpp/discussions/205) / [ggml](https://github.com/ggml-org/ggml)
|
||||
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggerganov/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml)
|
||||
|
||||
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
|
||||
|
||||
## Recent API changes
|
||||
|
||||
- [Changelog for `libllama` API](https://github.com/ggml-org/llama.cpp/issues/9289)
|
||||
- [Changelog for `llama-server` REST API](https://github.com/ggml-org/llama.cpp/issues/9291)
|
||||
- [Changelog for `libllama` API](https://github.com/ggerganov/llama.cpp/issues/9289)
|
||||
- [Changelog for `llama-server` REST API](https://github.com/ggerganov/llama.cpp/issues/9291)
|
||||
|
||||
## Hot topics
|
||||
|
||||
- **How to use [MTLResidencySet](https://developer.apple.com/documentation/metal/mtlresidencyset?language=objc) to keep the GPU memory active?** https://github.com/ggml-org/llama.cpp/pull/11427
|
||||
- **VS Code extension for FIM completions:** https://github.com/ggml-org/llama.vscode
|
||||
- Universal [tool call support](./docs/function-calling.md) in `llama-server` https://github.com/ggml-org/llama.cpp/pull/9639
|
||||
- Vim/Neovim plugin for FIM completions: https://github.com/ggml-org/llama.vim
|
||||
- Introducing GGUF-my-LoRA https://github.com/ggml-org/llama.cpp/discussions/10123
|
||||
- Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggml-org/llama.cpp/discussions/9669
|
||||
- Hugging Face GGUF editor: [discussion](https://github.com/ggml-org/llama.cpp/discussions/9268) | [tool](https://huggingface.co/spaces/CISCai/gguf-editor)
|
||||
- **Introducing GGUF-my-LoRA** https://github.com/ggerganov/llama.cpp/discussions/10123
|
||||
- Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggerganov/llama.cpp/discussions/9669
|
||||
- Hugging Face GGUF editor: [discussion](https://github.com/ggerganov/llama.cpp/discussions/9268) | [tool](https://huggingface.co/spaces/CISCai/gguf-editor)
|
||||
|
||||
----
|
||||
|
||||
@@ -39,7 +35,7 @@ range of hardware - locally and in the cloud.
|
||||
- Vulkan and SYCL backend support
|
||||
- CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity
|
||||
|
||||
The `llama.cpp` project is the main playground for developing new features for the [ggml](https://github.com/ggml-org/ggml) library.
|
||||
The `llama.cpp` project is the main playground for developing new features for the [ggml](https://github.com/ggerganov/ggml) library.
|
||||
|
||||
<details>
|
||||
<summary>Models</summary>
|
||||
@@ -59,23 +55,23 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- [X] [Falcon](https://huggingface.co/models?search=tiiuae/falcon)
|
||||
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2)
|
||||
- [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne)
|
||||
- [X] [BERT](https://github.com/ggml-org/llama.cpp/pull/5423)
|
||||
- [X] [BERT](https://github.com/ggerganov/llama.cpp/pull/5423)
|
||||
- [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/)
|
||||
- [X] [Baichuan 1 & 2](https://huggingface.co/models?search=baichuan-inc/Baichuan) + [derivations](https://huggingface.co/hiyouga/baichuan-7b-sft)
|
||||
- [X] [Aquila 1 & 2](https://huggingface.co/models?search=BAAI/Aquila)
|
||||
- [X] [Starcoder models](https://github.com/ggml-org/llama.cpp/pull/3187)
|
||||
- [X] [Starcoder models](https://github.com/ggerganov/llama.cpp/pull/3187)
|
||||
- [X] [Refact](https://huggingface.co/smallcloudai/Refact-1_6B-fim)
|
||||
- [X] [MPT](https://github.com/ggml-org/llama.cpp/pull/3417)
|
||||
- [X] [Bloom](https://github.com/ggml-org/llama.cpp/pull/3553)
|
||||
- [X] [MPT](https://github.com/ggerganov/llama.cpp/pull/3417)
|
||||
- [X] [Bloom](https://github.com/ggerganov/llama.cpp/pull/3553)
|
||||
- [x] [Yi models](https://huggingface.co/models?search=01-ai/Yi)
|
||||
- [X] [StableLM models](https://huggingface.co/stabilityai)
|
||||
- [x] [Deepseek models](https://huggingface.co/models?search=deepseek-ai/deepseek)
|
||||
- [x] [Qwen models](https://huggingface.co/models?search=Qwen/Qwen)
|
||||
- [x] [PLaMo-13B](https://github.com/ggml-org/llama.cpp/pull/3557)
|
||||
- [x] [PLaMo-13B](https://github.com/ggerganov/llama.cpp/pull/3557)
|
||||
- [x] [Phi models](https://huggingface.co/models?search=microsoft/phi)
|
||||
- [x] [PhiMoE](https://github.com/ggml-org/llama.cpp/pull/11003)
|
||||
- [x] [PhiMoE](https://github.com/ggerganov/llama.cpp/pull/11003)
|
||||
- [x] [GPT-2](https://huggingface.co/gpt2)
|
||||
- [x] [Orion 14B](https://github.com/ggml-org/llama.cpp/pull/5118)
|
||||
- [x] [Orion 14B](https://github.com/ggerganov/llama.cpp/pull/5118)
|
||||
- [x] [InternLM2](https://huggingface.co/models?search=internlm2)
|
||||
- [x] [CodeShell](https://github.com/WisdomShell/codeshell)
|
||||
- [x] [Gemma](https://ai.google.dev/gemma)
|
||||
@@ -96,8 +92,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- [x] [Bitnet b1.58 models](https://huggingface.co/1bitLLM)
|
||||
- [x] [Flan T5](https://huggingface.co/models?search=flan-t5)
|
||||
- [x] [Open Elm models](https://huggingface.co/collections/apple/openelm-instruct-models-6619ad295d7ae9f868b759ca)
|
||||
- [x] [ChatGLM3-6b](https://huggingface.co/THUDM/chatglm3-6b) + [ChatGLM4-9b](https://huggingface.co/THUDM/glm-4-9b) + [GLMEdge-1.5b](https://huggingface.co/THUDM/glm-edge-1.5b-chat) + [GLMEdge-4b](https://huggingface.co/THUDM/glm-edge-4b-chat)
|
||||
- [x] [GLM-4-0414](https://huggingface.co/collections/THUDM/glm-4-0414-67f3cbcb34dd9d252707cb2e)
|
||||
- [x] [ChatGLM3-6b](https://huggingface.co/THUDM/chatglm3-6b) + [ChatGLM4-9b](https://huggingface.co/THUDM/glm-4-9b)
|
||||
- [x] [SmolLM](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad7167254ce15966)
|
||||
- [x] [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)
|
||||
- [x] [FalconMamba Models](https://huggingface.co/collections/tiiuae/falconmamba-7b-66b9a580324dd1598b0f6d4a)
|
||||
@@ -106,8 +101,6 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- [x] [RWKV-6](https://github.com/BlinkDL/RWKV-LM)
|
||||
- [x] [QRWKV-6](https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1)
|
||||
- [x] [GigaChat-20B-A3B](https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct)
|
||||
- [X] [Trillion-7B-preview](https://huggingface.co/trillionlabs/Trillion-7B-preview)
|
||||
- [x] [Ling models](https://huggingface.co/collections/inclusionAI/ling-67c51c85b34a7ea0aba94c32)
|
||||
|
||||
#### Multimodal
|
||||
|
||||
@@ -120,7 +113,6 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- [x] [Mini CPM](https://huggingface.co/models?search=MiniCPM)
|
||||
- [x] [Moondream](https://huggingface.co/vikhyatk/moondream2)
|
||||
- [x] [Bunny](https://github.com/BAAI-DCAI/Bunny)
|
||||
- [x] [GLM-EDGE](https://huggingface.co/models?search=glm-edge)
|
||||
- [x] [Qwen2-VL](https://huggingface.co/collections/Qwen/qwen2-vl-66cee7455501d7126940800d)
|
||||
|
||||
</details>
|
||||
@@ -139,7 +131,6 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- Rust (more features): [edgenai/llama_cpp-rs](https://github.com/edgenai/llama_cpp-rs)
|
||||
- Rust (nicer API): [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp)
|
||||
- Rust (more direct bindings): [utilityai/llama-cpp-rs](https://github.com/utilityai/llama-cpp-rs)
|
||||
- Rust (automated build from crates.io): [ShelbyJenkins/llm_client](https://github.com/ShelbyJenkins/llm_client)
|
||||
- C#/.NET: [SciSharp/LLamaSharp](https://github.com/SciSharp/LLamaSharp)
|
||||
- C#/VB.NET (more features - community license): [LM-Kit.NET](https://docs.lm-kit.com/lm-kit-net/index.html)
|
||||
- Scala 3: [donderom/llm4s](https://github.com/donderom/llm4s)
|
||||
@@ -149,11 +140,10 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- Zig: [deins/llama.cpp.zig](https://github.com/Deins/llama.cpp.zig)
|
||||
- Flutter/Dart: [netdur/llama_cpp_dart](https://github.com/netdur/llama_cpp_dart)
|
||||
- Flutter: [xuegao-tzx/Fllama](https://github.com/xuegao-tzx/Fllama)
|
||||
- PHP (API bindings and features built on top of llama.cpp): [distantmagic/resonance](https://github.com/distantmagic/resonance) [(more info)](https://github.com/ggml-org/llama.cpp/pull/6326)
|
||||
- PHP (API bindings and features built on top of llama.cpp): [distantmagic/resonance](https://github.com/distantmagic/resonance) [(more info)](https://github.com/ggerganov/llama.cpp/pull/6326)
|
||||
- Guile Scheme: [guile_llama_cpp](https://savannah.nongnu.org/projects/guile-llama-cpp)
|
||||
- Swift [srgtuszy/llama-cpp-swift](https://github.com/srgtuszy/llama-cpp-swift)
|
||||
- Swift [ShenghaiWang/SwiftLlama](https://github.com/ShenghaiWang/SwiftLlama)
|
||||
- Delphi [Embarcadero/llama-cpp-delphi](https://github.com/Embarcadero/llama-cpp-delphi)
|
||||
|
||||
</details>
|
||||
|
||||
@@ -168,7 +158,6 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT)
|
||||
- [iohub/collama](https://github.com/iohub/coLLaMA) (Apache-2.0)
|
||||
- [janhq/jan](https://github.com/janhq/jan) (AGPL)
|
||||
- [johnbean393/Sidekick](https://github.com/johnbean393/Sidekick) (MIT)
|
||||
- [KanTV](https://github.com/zhouwg/kantv?tab=readme-ov-file) (Apache-2.0)
|
||||
- [KodiBot](https://github.com/firatkiral/kodibot) (GPL)
|
||||
- [llama.vim](https://github.com/ggml-org/llama.vim) (MIT)
|
||||
@@ -194,7 +183,6 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- [ramalama](https://github.com/containers/ramalama) (MIT)
|
||||
- [semperai/amica](https://github.com/semperai/amica) (MIT)
|
||||
- [withcatai/catai](https://github.com/withcatai/catai) (MIT)
|
||||
- [Autopen](https://github.com/blackhole89/autopen) (GPL)
|
||||
|
||||
</details>
|
||||
|
||||
@@ -216,8 +204,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- [GPUStack](https://github.com/gpustack/gpustack) - Manage GPU clusters for running LLMs
|
||||
- [llama_cpp_canister](https://github.com/onicai/llama_cpp_canister) - llama.cpp as a smart contract on the Internet Computer, using WebAssembly
|
||||
- [llama-swap](https://github.com/mostlygeek/llama-swap) - transparent proxy that adds automatic model switching with llama-server
|
||||
- [Kalavai](https://github.com/kalavai-net/kalavai-client) - Crowdsource end to end LLM deployment at any scale
|
||||
- [llmaz](https://github.com/InftyAI/llmaz) - ☸️ Easy, advanced inference platform for large language models on Kubernetes.
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
@@ -240,8 +227,6 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
| [HIP](docs/build.md#hip) | AMD GPU |
|
||||
| [Vulkan](docs/build.md#vulkan) | GPU |
|
||||
| [CANN](docs/build.md#cann) | Ascend NPU |
|
||||
| [OpenCL](docs/backend/OPENCL.md) | Adreno GPU |
|
||||
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/examples/rpc) | All |
|
||||
|
||||
## Building the project
|
||||
|
||||
@@ -251,7 +236,7 @@ The project also includes many example programs and tools using the `llama` libr
|
||||
- Clone this repository and build locally, see [how to build](docs/build.md)
|
||||
- On MacOS or Linux, install `llama.cpp` via [brew, flox or nix](docs/install.md)
|
||||
- Use a Docker image, see [documentation for Docker](docs/docker.md)
|
||||
- Download pre-built binaries from [releases](https://github.com/ggml-org/llama.cpp/releases)
|
||||
- Download pre-built binaries from [releases](https://github.com/ggerganov/llama.cpp/releases)
|
||||
|
||||
## Obtaining and quantizing models
|
||||
|
||||
@@ -260,20 +245,18 @@ The [Hugging Face](https://huggingface.co) platform hosts a [number of LLMs](htt
|
||||
- [Trending](https://huggingface.co/models?library=gguf&sort=trending)
|
||||
- [LLaMA](https://huggingface.co/models?sort=trending&search=llama+gguf)
|
||||
|
||||
You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from [Hugging Face](https://huggingface.co/) or other model hosting sites, such as [ModelScope](https://modelscope.cn/), by using this CLI argument: `-hf <user>/<model>[:quant]`.
|
||||
|
||||
By default, the CLI would download from Hugging Face, you can switch to other options with the environment variable `MODEL_ENDPOINT`. For example, you may opt to downloading model checkpoints from ModelScope or other model sharing communities by setting the environment variable, e.g. `MODEL_ENDPOINT=https://www.modelscope.cn/`.
|
||||
You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from Hugging Face by using this CLI argument: `-hf <user>/<model>[:quant]`
|
||||
|
||||
After downloading a model, use the CLI tools to run it locally - see below.
|
||||
|
||||
`llama.cpp` requires the model to be stored in the [GGUF](https://github.com/ggml-org/ggml/blob/master/docs/gguf.md) file format. Models in other data formats can be converted to GGUF using the `convert_*.py` Python scripts in this repo.
|
||||
`llama.cpp` requires the model to be stored in the [GGUF](https://github.com/ggerganov/ggml/blob/master/docs/gguf.md) file format. Models in other data formats can be converted to GGUF using the `convert_*.py` Python scripts in this repo.
|
||||
|
||||
The Hugging Face platform provides a variety of online tools for converting, quantizing and hosting models with `llama.cpp`:
|
||||
|
||||
- Use the [GGUF-my-repo space](https://huggingface.co/spaces/ggml-org/gguf-my-repo) to convert to GGUF format and quantize model weights to smaller sizes
|
||||
- Use the [GGUF-my-LoRA space](https://huggingface.co/spaces/ggml-org/gguf-my-lora) to convert LoRA adapters to GGUF format (more info: https://github.com/ggml-org/llama.cpp/discussions/10123)
|
||||
- Use the [GGUF-editor space](https://huggingface.co/spaces/CISCai/gguf-editor) to edit GGUF meta data in the browser (more info: https://github.com/ggml-org/llama.cpp/discussions/9268)
|
||||
- Use the [Inference Endpoints](https://ui.endpoints.huggingface.co/) to directly host `llama.cpp` in the cloud (more info: https://github.com/ggml-org/llama.cpp/discussions/9669)
|
||||
- Use the [GGUF-my-LoRA space](https://huggingface.co/spaces/ggml-org/gguf-my-lora) to convert LoRA adapters to GGUF format (more info: https://github.com/ggerganov/llama.cpp/discussions/10123)
|
||||
- Use the [GGUF-editor space](https://huggingface.co/spaces/CISCai/gguf-editor) to edit GGUF meta data in the browser (more info: https://github.com/ggerganov/llama.cpp/discussions/9268)
|
||||
- Use the [Inference Endpoints](https://ui.endpoints.huggingface.co/) to directly host `llama.cpp` in the cloud (more info: https://github.com/ggerganov/llama.cpp/discussions/9669)
|
||||
|
||||
To learn more about model quantization, [read this documentation](examples/quantize/README.md)
|
||||
|
||||
@@ -435,7 +418,7 @@ To learn more about model quantization, [read this documentation](examples/quant
|
||||
|
||||
</details>
|
||||
|
||||
[^1]: [examples/perplexity/README.md](./examples/perplexity/README.md)
|
||||
[^1]: [examples/perplexity/README.md](examples/perplexity/README.md)
|
||||
[^2]: [https://huggingface.co/docs/transformers/perplexity](https://huggingface.co/docs/transformers/perplexity)
|
||||
|
||||
## [`llama-bench`](examples/llama-bench)
|
||||
@@ -496,9 +479,9 @@ To learn more about model quantization, [read this documentation](examples/quant
|
||||
- Collaborators can push to branches in the `llama.cpp` repo and merge PRs into the `master` branch
|
||||
- Collaborators will be invited based on contributions
|
||||
- Any help with managing issues, PRs and projects is very appreciated!
|
||||
- See [good first issues](https://github.com/ggml-org/llama.cpp/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) for tasks suitable for first contributions
|
||||
- See [good first issues](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) for tasks suitable for first contributions
|
||||
- Read the [CONTRIBUTING.md](CONTRIBUTING.md) for more information
|
||||
- Make sure to read this: [Inference at the edge](https://github.com/ggml-org/llama.cpp/discussions/205)
|
||||
- Make sure to read this: [Inference at the edge](https://github.com/ggerganov/llama.cpp/discussions/205)
|
||||
- A bit of backstory for those who are interested: [Changelog podcast](https://changelog.com/podcast/532)
|
||||
|
||||
## Other documentation
|
||||
@@ -513,7 +496,7 @@ To learn more about model quantization, [read this documentation](examples/quant
|
||||
- [Running on Docker](docs/docker.md)
|
||||
- [Build on Android](docs/android.md)
|
||||
- [Performance troubleshooting](docs/development/token_generation_performance_tips.md)
|
||||
- [GGML tips & tricks](https://github.com/ggml-org/llama.cpp/wiki/GGML-Tips-&-Tricks)
|
||||
- [GGML tips & tricks](https://github.com/ggerganov/llama.cpp/wiki/GGML-Tips-&-Tricks)
|
||||
|
||||
#### Seminal papers and background on the models
|
||||
|
||||
@@ -527,47 +510,5 @@ If your issue is with model generation quality, then please at least scan the fo
|
||||
- [Aligning language models to follow instructions](https://openai.com/research/instruction-following)
|
||||
- [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)
|
||||
|
||||
## XCFramework
|
||||
The XCFramework is a precompiled version of the library for iOS, visionOS, tvOS,
|
||||
and macOS. It can be used in Swift projects without the need to compile the
|
||||
library from source. For example:
|
||||
```swift
|
||||
// swift-tools-version: 5.10
|
||||
// The swift-tools-version declares the minimum version of Swift required to build this package.
|
||||
#### References
|
||||
|
||||
import PackageDescription
|
||||
|
||||
let package = Package(
|
||||
name: "MyLlamaPackage",
|
||||
targets: [
|
||||
.executableTarget(
|
||||
name: "MyLlamaPackage",
|
||||
dependencies: [
|
||||
"LlamaFramework"
|
||||
]),
|
||||
.binaryTarget(
|
||||
name: "LlamaFramework",
|
||||
url: "https://github.com/ggml-org/llama.cpp/releases/download/b5046/llama-b5046-xcframework.zip",
|
||||
checksum: "c19be78b5f00d8d29a25da41042cb7afa094cbf6280a225abe614b03b20029ab"
|
||||
)
|
||||
]
|
||||
)
|
||||
```
|
||||
The above example is using an intermediate build `b5046` of the library. This can be modified
|
||||
to use a different version by changing the URL and checksum.
|
||||
|
||||
## Completions
|
||||
Command-line completion is available for some environments.
|
||||
|
||||
#### Bash Completion
|
||||
```bash
|
||||
$ build/bin/llama-cli --completion-bash > ~/.llama-completion.bash
|
||||
$ source ~/.llama-completion.bash
|
||||
```
|
||||
Optionally this can be added to your `.bashrc` or `.bash_profile` to load it
|
||||
automatically. For example:
|
||||
```console
|
||||
$ echo "source ~/.llama-completion.bash" >> ~/.bashrc
|
||||
```
|
||||
|
||||
## References
|
||||
|
||||
@@ -62,6 +62,6 @@ Beware that none of the topics under [Using llama.cpp securely](#using-llamacpp-
|
||||
<!-- normal version -->
|
||||
However, If you have discovered a security vulnerability in this project, please report it privately. **Do not disclose it as a public issue.** This gives us time to work with you to fix the issue before public exposure, reducing the chance that the exploit will be used before a patch is released.
|
||||
|
||||
Please disclose it as a private [security advisory](https://github.com/ggml-org/llama.cpp/security/advisories/new).
|
||||
Please disclose it as a private [security advisory](https://github.com/ggerganov/llama.cpp/security/advisories/new).
|
||||
|
||||
A team of volunteers on a reasonable-effort basis maintains this project. As such, please give us at least 90 days to work on a fix before public exposure.
|
||||
|
||||
4
Sources/llama/llama.h
Normal file
4
Sources/llama/llama.h
Normal file
@@ -0,0 +1,4 @@
|
||||
#pragma once
|
||||
|
||||
#include <llama.h>
|
||||
|
||||
5
Sources/llama/module.modulemap
Normal file
5
Sources/llama/module.modulemap
Normal file
@@ -0,0 +1,5 @@
|
||||
module llama [system] {
|
||||
header "llama.h"
|
||||
link "llama"
|
||||
export *
|
||||
}
|
||||
@@ -1,538 +0,0 @@
|
||||
#!/bin/bash
|
||||
#
|
||||
# Options
|
||||
IOS_MIN_OS_VERSION=16.4
|
||||
MACOS_MIN_OS_VERSION=13.3
|
||||
VISIONOS_MIN_OS_VERSION=1.0
|
||||
TVOS_MIN_OS_VERSION=16.4
|
||||
|
||||
BUILD_SHARED_LIBS=OFF
|
||||
LLAMA_BUILD_EXAMPLES=OFF
|
||||
LLAMA_BUILD_TESTS=OFF
|
||||
LLAMA_BUILD_SERVER=OFF
|
||||
GGML_METAL=ON
|
||||
GGML_METAL_EMBED_LIBRARY=ON
|
||||
GGML_BLAS_DEFAULT=ON
|
||||
GGML_METAL_USE_BF16=ON
|
||||
GGML_OPENMP=OFF
|
||||
|
||||
COMMON_C_FLAGS="-Wno-macro-redefined -Wno-shorten-64-to-32 -Wno-unused-command-line-argument -g"
|
||||
COMMON_CXX_FLAGS="-Wno-macro-redefined -Wno-shorten-64-to-32 -Wno-unused-command-line-argument -g"
|
||||
|
||||
# Common options for all builds
|
||||
COMMON_CMAKE_ARGS=(
|
||||
-DCMAKE_XCODE_ATTRIBUTE_CODE_SIGNING_REQUIRED=NO
|
||||
-DCMAKE_XCODE_ATTRIBUTE_CODE_SIGN_IDENTITY=""
|
||||
-DCMAKE_XCODE_ATTRIBUTE_CODE_SIGNING_ALLOWED=NO
|
||||
-DCMAKE_XCODE_ATTRIBUTE_DEBUG_INFORMATION_FORMAT="dwarf-with-dsym"
|
||||
-DCMAKE_XCODE_ATTRIBUTE_GCC_GENERATE_DEBUGGING_SYMBOLS=YES
|
||||
-DCMAKE_XCODE_ATTRIBUTE_COPY_PHASE_STRIP=NO
|
||||
-DCMAKE_XCODE_ATTRIBUTE_STRIP_INSTALLED_PRODUCT=NO
|
||||
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
|
||||
-DBUILD_SHARED_LIBS=${BUILD_SHARED_LIBS}
|
||||
-DLLAMA_BUILD_EXAMPLES=${LLAMA_BUILD_EXAMPLES}
|
||||
-DLLAMA_BUILD_TESTS=${LLAMA_BUILD_TESTS}
|
||||
-DLLAMA_BUILD_SERVER=${LLAMA_BUILD_SERVER}
|
||||
-DGGML_METAL_EMBED_LIBRARY=${GGML_METAL_EMBED_LIBRARY}
|
||||
-DGGML_BLAS_DEFAULT=${GGML_BLAS_DEFAULT}
|
||||
-DGGML_METAL=${GGML_METAL}
|
||||
-DGGML_METAL_USE_BF16=${GGML_METAL_USE_BF16}
|
||||
-DGGML_NATIVE=OFF
|
||||
-DGGML_OPENMP=${GGML_OPENMP}
|
||||
)
|
||||
|
||||
XCODE_VERSION=$(xcodebuild -version 2>/dev/null | head -n1 | awk '{ print $2 }')
|
||||
MAJOR_VERSION=$(echo $XCODE_VERSION | cut -d. -f1)
|
||||
MINOR_VERSION=$(echo $XCODE_VERSION | cut -d. -f2)
|
||||
echo "Detected Xcode version: $XCODE_VERSION"
|
||||
|
||||
check_required_tool() {
|
||||
local tool=$1
|
||||
local install_message=$2
|
||||
|
||||
if ! command -v $tool &> /dev/null; then
|
||||
echo "Error: $tool is required but not found."
|
||||
echo "$install_message"
|
||||
exit 1
|
||||
fi
|
||||
}
|
||||
echo "Checking for required tools..."
|
||||
check_required_tool "cmake" "Please install CMake 3.28.0 or later (brew install cmake)"
|
||||
check_required_tool "xcodebuild" "Please install Xcode and Xcode Command Line Tools (xcode-select --install)"
|
||||
check_required_tool "libtool" "Please install libtool which should be available with Xcode Command Line Tools (CLT). Make sure Xcode CLT is installed (xcode-select --install)"
|
||||
check_required_tool "dsymutil" "Please install Xcode and Xcode Command Line Tools (xcode-select --install)"
|
||||
|
||||
set -e
|
||||
|
||||
## Clean up previous builds
|
||||
rm -rf build-apple
|
||||
rm -rf build-ios-sim
|
||||
rm -rf build-ios-device
|
||||
rm -rf build-macos
|
||||
rm -rf build-visionos
|
||||
rm -rf build-visionos-sim
|
||||
rm -rf build-tvos-sim
|
||||
rm -rf build-tvos-device
|
||||
|
||||
# Setup the xcframework build directory structure
|
||||
setup_framework_structure() {
|
||||
local build_dir=$1
|
||||
local min_os_version=$2
|
||||
local platform=$3 # "ios", "macos", "visionos", or "tvos"
|
||||
local framework_name="llama"
|
||||
|
||||
echo "Creating ${platform}-style framework structure for ${build_dir}"
|
||||
|
||||
if [[ "$platform" == "macos" ]]; then
|
||||
# macOS versioned structure uses versioned directories
|
||||
mkdir -p ${build_dir}/framework/${framework_name}.framework/Versions/A/Headers
|
||||
mkdir -p ${build_dir}/framework/${framework_name}.framework/Versions/A/Modules
|
||||
mkdir -p ${build_dir}/framework/${framework_name}.framework/Versions/A/Resources
|
||||
|
||||
# Create symbolic links
|
||||
ln -sf A ${build_dir}/framework/${framework_name}.framework/Versions/Current
|
||||
ln -sf Versions/Current/Headers ${build_dir}/framework/${framework_name}.framework/Headers
|
||||
ln -sf Versions/Current/Modules ${build_dir}/framework/${framework_name}.framework/Modules
|
||||
ln -sf Versions/Current/Resources ${build_dir}/framework/${framework_name}.framework/Resources
|
||||
ln -sf Versions/Current/${framework_name} ${build_dir}/framework/${framework_name}.framework/${framework_name}
|
||||
|
||||
# Set header and module paths
|
||||
local header_path=${build_dir}/framework/${framework_name}.framework/Versions/A/Headers/
|
||||
local module_path=${build_dir}/framework/${framework_name}.framework/Versions/A/Modules/
|
||||
else
|
||||
# iOS/VisionOS/tvOS use a flat structure
|
||||
mkdir -p ${build_dir}/framework/${framework_name}.framework/Headers
|
||||
mkdir -p ${build_dir}/framework/${framework_name}.framework/Modules
|
||||
|
||||
# Remove any existing structure to ensure clean build
|
||||
rm -rf ${build_dir}/framework/${framework_name}.framework/Versions
|
||||
|
||||
# Set header and module paths
|
||||
local header_path=${build_dir}/framework/${framework_name}.framework/Headers/
|
||||
local module_path=${build_dir}/framework/${framework_name}.framework/Modules/
|
||||
fi
|
||||
|
||||
# Copy all required headers (common for all platforms)
|
||||
cp include/llama.h ${header_path}
|
||||
cp ggml/include/ggml.h ${header_path}
|
||||
cp ggml/include/ggml-alloc.h ${header_path}
|
||||
cp ggml/include/ggml-backend.h ${header_path}
|
||||
cp ggml/include/ggml-metal.h ${header_path}
|
||||
cp ggml/include/ggml-cpu.h ${header_path}
|
||||
cp ggml/include/ggml-blas.h ${header_path}
|
||||
cp ggml/include/gguf.h ${header_path}
|
||||
|
||||
# Create module map (common for all platforms)
|
||||
cat > ${module_path}module.modulemap << EOF
|
||||
framework module llama {
|
||||
header "llama.h"
|
||||
header "ggml.h"
|
||||
header "ggml-alloc.h"
|
||||
header "ggml-backend.h"
|
||||
header "ggml-metal.h"
|
||||
header "ggml-cpu.h"
|
||||
header "ggml-blas.h"
|
||||
header "gguf.h"
|
||||
|
||||
link "c++"
|
||||
link framework "Accelerate"
|
||||
link framework "Metal"
|
||||
link framework "Foundation"
|
||||
|
||||
export *
|
||||
}
|
||||
EOF
|
||||
|
||||
# Platform-specific settings for Info.plist
|
||||
local platform_name=""
|
||||
local sdk_name=""
|
||||
local supported_platform=""
|
||||
|
||||
case "$platform" in
|
||||
"ios")
|
||||
platform_name="iphoneos"
|
||||
sdk_name="iphoneos${min_os_version}"
|
||||
supported_platform="iPhoneOS"
|
||||
local plist_path="${build_dir}/framework/${framework_name}.framework/Info.plist"
|
||||
local device_family=' <key>UIDeviceFamily</key>
|
||||
<array>
|
||||
<integer>1</integer>
|
||||
<integer>2</integer>
|
||||
</array>'
|
||||
;;
|
||||
"macos")
|
||||
platform_name="macosx"
|
||||
sdk_name="macosx${min_os_version}"
|
||||
supported_platform="MacOSX"
|
||||
local plist_path="${build_dir}/framework/${framework_name}.framework/Versions/A/Resources/Info.plist"
|
||||
local device_family=""
|
||||
;;
|
||||
"visionos")
|
||||
platform_name="xros"
|
||||
sdk_name="xros${min_os_version}"
|
||||
supported_platform="XRPlatform"
|
||||
local plist_path="${build_dir}/framework/${framework_name}.framework/Info.plist"
|
||||
local device_family=""
|
||||
;;
|
||||
"tvos")
|
||||
platform_name="appletvos"
|
||||
sdk_name="appletvos${min_os_version}"
|
||||
supported_platform="AppleTVOS"
|
||||
local plist_path="${build_dir}/framework/${framework_name}.framework/Info.plist"
|
||||
local device_family=' <key>UIDeviceFamily</key>
|
||||
<array>
|
||||
<integer>3</integer>
|
||||
</array>'
|
||||
;;
|
||||
esac
|
||||
|
||||
# Create Info.plist
|
||||
cat > ${plist_path} << EOF
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
|
||||
<plist version="1.0">
|
||||
<dict>
|
||||
<key>CFBundleDevelopmentRegion</key>
|
||||
<string>en</string>
|
||||
<key>CFBundleExecutable</key>
|
||||
<string>llama</string>
|
||||
<key>CFBundleIdentifier</key>
|
||||
<string>org.ggml.llama</string>
|
||||
<key>CFBundleInfoDictionaryVersion</key>
|
||||
<string>6.0</string>
|
||||
<key>CFBundleName</key>
|
||||
<string>llama</string>
|
||||
<key>CFBundlePackageType</key>
|
||||
<string>FMWK</string>
|
||||
<key>CFBundleShortVersionString</key>
|
||||
<string>1.0</string>
|
||||
<key>CFBundleVersion</key>
|
||||
<string>1</string>
|
||||
<key>MinimumOSVersion</key>
|
||||
<string>${min_os_version}</string>
|
||||
<key>CFBundleSupportedPlatforms</key>
|
||||
<array>
|
||||
<string>${supported_platform}</string>
|
||||
</array>${device_family}
|
||||
<key>DTPlatformName</key>
|
||||
<string>${platform_name}</string>
|
||||
<key>DTSDKName</key>
|
||||
<string>${sdk_name}</string>
|
||||
</dict>
|
||||
</plist>
|
||||
EOF
|
||||
}
|
||||
|
||||
# Create dynamic libraries from static libraries.
|
||||
combine_static_libraries() {
|
||||
local build_dir="$1"
|
||||
local release_dir="$2"
|
||||
local platform="$3" # "ios", "macos", "visionos", or "tvos"
|
||||
local is_simulator="$4"
|
||||
local base_dir="$(pwd)"
|
||||
local framework_name="llama"
|
||||
|
||||
# Determine output path based on platform
|
||||
local output_lib=""
|
||||
if [[ "$platform" == "macos" ]]; then
|
||||
# macOS uses versioned structure
|
||||
output_lib="${build_dir}/framework/${framework_name}.framework/Versions/A/${framework_name}"
|
||||
else
|
||||
# iOS, visionOS, and tvOS use a directory flat structure
|
||||
output_lib="${build_dir}/framework/${framework_name}.framework/${framework_name}"
|
||||
fi
|
||||
|
||||
local libs=(
|
||||
"${base_dir}/${build_dir}/src/${release_dir}/libllama.a"
|
||||
"${base_dir}/${build_dir}/ggml/src/${release_dir}/libggml.a"
|
||||
"${base_dir}/${build_dir}/ggml/src/${release_dir}/libggml-base.a"
|
||||
"${base_dir}/${build_dir}/ggml/src/${release_dir}/libggml-cpu.a"
|
||||
"${base_dir}/${build_dir}/ggml/src/ggml-metal/${release_dir}/libggml-metal.a"
|
||||
"${base_dir}/${build_dir}/ggml/src/ggml-blas/${release_dir}/libggml-blas.a"
|
||||
)
|
||||
|
||||
# Create temporary directory for processing
|
||||
local temp_dir="${base_dir}/${build_dir}/temp"
|
||||
mkdir -p "${temp_dir}"
|
||||
|
||||
# Since we have multiple architectures libtool will find object files that do not
|
||||
# match the target architecture. We suppress these warnings.
|
||||
libtool -static -o "${temp_dir}/combined.a" "${libs[@]}" 2> /dev/null
|
||||
|
||||
# Determine SDK, architectures, and install_name based on platform and simulator flag.
|
||||
local sdk=""
|
||||
local archs=""
|
||||
local min_version_flag=""
|
||||
local install_name=""
|
||||
|
||||
case "$platform" in
|
||||
"ios")
|
||||
if [[ "$is_simulator" == "true" ]]; then
|
||||
sdk="iphonesimulator"
|
||||
archs="arm64 x86_64"
|
||||
min_version_flag="-mios-simulator-version-min=${IOS_MIN_OS_VERSION}"
|
||||
else
|
||||
sdk="iphoneos"
|
||||
archs="arm64"
|
||||
min_version_flag="-mios-version-min=${IOS_MIN_OS_VERSION}"
|
||||
fi
|
||||
install_name="@rpath/llama.framework/llama"
|
||||
;;
|
||||
"macos")
|
||||
sdk="macosx"
|
||||
archs="arm64 x86_64"
|
||||
min_version_flag="-mmacosx-version-min=${MACOS_MIN_OS_VERSION}"
|
||||
install_name="@rpath/llama.framework/Versions/Current/llama"
|
||||
;;
|
||||
"visionos")
|
||||
if [[ "$is_simulator" == "true" ]]; then
|
||||
sdk="xrsimulator"
|
||||
archs="arm64 x86_64"
|
||||
min_version_flag="-mtargetos=xros${VISIONOS_MIN_OS_VERSION}-simulator"
|
||||
else
|
||||
sdk="xros"
|
||||
archs="arm64"
|
||||
min_version_flag="-mtargetos=xros${VISIONOS_MIN_OS_VERSION}"
|
||||
fi
|
||||
# Use flat structure for visionOS, same as iOS
|
||||
install_name="@rpath/llama.framework/llama"
|
||||
;;
|
||||
"tvos")
|
||||
if [[ "$is_simulator" == "true" ]]; then
|
||||
sdk="appletvsimulator"
|
||||
archs="arm64 x86_64"
|
||||
min_version_flag="-mtvos-simulator-version-min=${TVOS_MIN_OS_VERSION}"
|
||||
else
|
||||
sdk="appletvos"
|
||||
archs="arm64"
|
||||
min_version_flag="-mtvos-version-min=${TVOS_MIN_OS_VERSION}"
|
||||
fi
|
||||
install_name="@rpath/llama.framework/llama"
|
||||
;;
|
||||
esac
|
||||
|
||||
# Build architecture flags
|
||||
local arch_flags=""
|
||||
for arch in $archs; do
|
||||
arch_flags+=" -arch $arch"
|
||||
done
|
||||
|
||||
# Create dynamic library
|
||||
echo "Creating dynamic library for ${platform}."
|
||||
xcrun -sdk $sdk clang++ -dynamiclib \
|
||||
-isysroot $(xcrun --sdk $sdk --show-sdk-path) \
|
||||
$arch_flags \
|
||||
$min_version_flag \
|
||||
-Wl,-force_load,"${temp_dir}/combined.a" \
|
||||
-framework Foundation -framework Metal -framework Accelerate \
|
||||
-install_name "$install_name" \
|
||||
-o "${base_dir}/${output_lib}"
|
||||
|
||||
# Platform-specific post-processing for device builds
|
||||
if [[ "$is_simulator" == "false" ]]; then
|
||||
if command -v xcrun vtool &>/dev/null; then
|
||||
case "$platform" in
|
||||
"ios")
|
||||
echo "Marking binary as a framework binary for iOS..."
|
||||
xcrun vtool -set-build-version ios ${IOS_MIN_OS_VERSION} ${IOS_MIN_OS_VERSION} -replace \
|
||||
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
|
||||
;;
|
||||
"visionos")
|
||||
echo "Marking binary as a framework binary for visionOS..."
|
||||
if [[ "$MAJOR_VERSION" -gt 16 ]] || [[ "$MAJOR_VERSION" -eq 16 && "$MINOR_VERSION" -gt 2 ]]; then
|
||||
echo "Xcode version greater than 16.2, using visionOS."
|
||||
VISION_OS_BUILD_VERSION="visionos"
|
||||
else
|
||||
echo "Xcode version less than or equal to 16.2, using xros."
|
||||
VISION_OS_BUILD_VERSION="xros"
|
||||
fi
|
||||
xcrun vtool -set-build-version ${VISION_OS_BUILD_VERSION} ${VISIONOS_MIN_OS_VERSION} ${VISIONOS_MIN_OS_VERSION} -replace \
|
||||
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
|
||||
;;
|
||||
"tvos")
|
||||
echo "Marking binary as a framework binary for tvOS..."
|
||||
xcrun vtool -set-build-version tvos ${TVOS_MIN_OS_VERSION} ${TVOS_MIN_OS_VERSION} -replace \
|
||||
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
|
||||
;;
|
||||
esac
|
||||
else
|
||||
echo "Warning: vtool not found. Binary may not pass App Store validation."
|
||||
fi
|
||||
fi
|
||||
|
||||
echo "Creating properly formatted dSYM..."
|
||||
# Create a separate directory for dSYMs for all platforms
|
||||
mkdir -p "${base_dir}/${build_dir}/dSYMs"
|
||||
|
||||
# iOS and visionOS style dSYM (flat structure)
|
||||
if [[ "$platform" == "ios" || "$platform" == "visionos" || "$platform" == "tvos" ]]; then
|
||||
# Generate dSYM in the dSYMs directory
|
||||
xcrun dsymutil "${base_dir}/${output_lib}" -o "${base_dir}/${build_dir}/dSYMs/llama.dSYM"
|
||||
|
||||
# Create a copy of the binary that will be stripped
|
||||
cp "${base_dir}/${output_lib}" "${temp_dir}/binary_to_strip"
|
||||
|
||||
# Strip debug symbols from the copy
|
||||
xcrun strip -S "${temp_dir}/binary_to_strip" -o "${temp_dir}/stripped_lib"
|
||||
|
||||
# Replace the original with the stripped version
|
||||
mv "${temp_dir}/stripped_lib" "${base_dir}/${output_lib}"
|
||||
else
|
||||
# macOS style dSYM
|
||||
# First strip debug info to a separate file
|
||||
xcrun strip -S "${base_dir}/${output_lib}" -o "${temp_dir}/stripped_lib"
|
||||
|
||||
# Generate dSYM in the dSYMs directory
|
||||
xcrun dsymutil "${base_dir}/${output_lib}" -o "${base_dir}/${build_dir}/dSYMs/llama.dSYM"
|
||||
|
||||
# Replace original binary with stripped version
|
||||
mv "${temp_dir}/stripped_lib" "${base_dir}/${output_lib}"
|
||||
fi
|
||||
|
||||
# Remove any automatically generated dSYM files in the framework structure as they will
|
||||
# otherwise case Invalid Bundle Structure validation errors.
|
||||
if [ -d "${base_dir}/${output_lib}.dSYM" ]; then
|
||||
echo "Removing generated dSYM file in framework structure: ${base_dir}/${output_lib}.dSYM"
|
||||
rm -rf "${base_dir}/${output_lib}.dSYM"
|
||||
fi
|
||||
|
||||
# Clean up
|
||||
rm -rf "${temp_dir}"
|
||||
}
|
||||
|
||||
echo "Building for iOS simulator..."
|
||||
cmake -B build-ios-sim -G Xcode \
|
||||
"${COMMON_CMAKE_ARGS[@]}" \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=${IOS_MIN_OS_VERSION} \
|
||||
-DIOS=ON \
|
||||
-DCMAKE_SYSTEM_NAME=iOS \
|
||||
-DCMAKE_OSX_SYSROOT=iphonesimulator \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphonesimulator \
|
||||
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-ios-sim --config Release -- -quiet
|
||||
|
||||
echo "Building for iOS devices..."
|
||||
cmake -B build-ios-device -G Xcode \
|
||||
"${COMMON_CMAKE_ARGS[@]}" \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=${IOS_MIN_OS_VERSION} \
|
||||
-DCMAKE_OSX_SYSROOT=iphoneos \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64" \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphoneos \
|
||||
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-ios-device --config Release -- -quiet
|
||||
|
||||
echo "Building for macOS..."
|
||||
cmake -B build-macos -G Xcode \
|
||||
"${COMMON_CMAKE_ARGS[@]}" \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=${MACOS_MIN_OS_VERSION} \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
|
||||
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-macos --config Release -- -quiet
|
||||
|
||||
echo "Building for visionOS..."
|
||||
cmake -B build-visionos -G Xcode \
|
||||
"${COMMON_CMAKE_ARGS[@]}" \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=${VISIONOS_MIN_OS_VERSION} \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64" \
|
||||
-DCMAKE_SYSTEM_NAME=visionOS \
|
||||
-DCMAKE_OSX_SYSROOT=xros \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xros \
|
||||
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-visionos --config Release -- -quiet
|
||||
|
||||
echo "Building for visionOS simulator..."
|
||||
cmake -B build-visionos-sim -G Xcode \
|
||||
"${COMMON_CMAKE_ARGS[@]}" \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=${VISIONOS_MIN_OS_VERSION} \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
|
||||
-DCMAKE_SYSTEM_NAME=visionOS \
|
||||
-DCMAKE_OSX_SYSROOT=xrsimulator \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xrsimulator \
|
||||
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-visionos-sim --config Release -- -quiet
|
||||
|
||||
# Add tvOS builds (might need the same u_int definitions as watchOS and visionOS)
|
||||
echo "Building for tvOS simulator..."
|
||||
cmake -B build-tvos-sim -G Xcode \
|
||||
"${COMMON_CMAKE_ARGS[@]}" \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=${TVOS_MIN_OS_VERSION} \
|
||||
-DCMAKE_SYSTEM_NAME=tvOS \
|
||||
-DCMAKE_OSX_SYSROOT=appletvsimulator \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
|
||||
-DGGML_METAL=ON \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=appletvsimulator \
|
||||
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-tvos-sim --config Release -- -quiet
|
||||
|
||||
echo "Building for tvOS devices..."
|
||||
cmake -B build-tvos-device -G Xcode \
|
||||
"${COMMON_CMAKE_ARGS[@]}" \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=${TVOS_MIN_OS_VERSION} \
|
||||
-DCMAKE_SYSTEM_NAME=tvOS \
|
||||
-DCMAKE_OSX_SYSROOT=appletvos \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64" \
|
||||
-DGGML_METAL=ON \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=appletvos \
|
||||
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-tvos-device --config Release -- -quiet
|
||||
|
||||
# Setup frameworks and copy binaries and headers
|
||||
echo "Setting up framework structures..."
|
||||
setup_framework_structure "build-ios-sim" ${IOS_MIN_OS_VERSION} "ios"
|
||||
setup_framework_structure "build-ios-device" ${IOS_MIN_OS_VERSION} "ios"
|
||||
setup_framework_structure "build-macos" ${MACOS_MIN_OS_VERSION} "macos"
|
||||
setup_framework_structure "build-visionos" ${VISIONOS_MIN_OS_VERSION} "visionos"
|
||||
setup_framework_structure "build-visionos-sim" ${VISIONOS_MIN_OS_VERSION} "visionos"
|
||||
setup_framework_structure "build-tvos-sim" ${TVOS_MIN_OS_VERSION} "tvos"
|
||||
setup_framework_structure "build-tvos-device" ${TVOS_MIN_OS_VERSION} "tvos"
|
||||
|
||||
# Create dynamic libraries from static libraries
|
||||
echo "Creating dynamic libraries from static libraries..."
|
||||
combine_static_libraries "build-ios-sim" "Release-iphonesimulator" "ios" "true"
|
||||
combine_static_libraries "build-ios-device" "Release-iphoneos" "ios" "false"
|
||||
combine_static_libraries "build-macos" "Release" "macos" "false"
|
||||
combine_static_libraries "build-visionos" "Release-xros" "visionos" "false"
|
||||
combine_static_libraries "build-visionos-sim" "Release-xrsimulator" "visionos" "true"
|
||||
combine_static_libraries "build-tvos-sim" "Release-appletvsimulator" "tvos" "true"
|
||||
combine_static_libraries "build-tvos-device" "Release-appletvos" "tvos" "false"
|
||||
|
||||
# Create XCFramework with correct debug symbols paths
|
||||
echo "Creating XCFramework..."
|
||||
xcodebuild -create-xcframework \
|
||||
-framework $(pwd)/build-ios-sim/framework/llama.framework \
|
||||
-debug-symbols $(pwd)/build-ios-sim/dSYMs/llama.dSYM \
|
||||
-framework $(pwd)/build-ios-device/framework/llama.framework \
|
||||
-debug-symbols $(pwd)/build-ios-device/dSYMs/llama.dSYM \
|
||||
-framework $(pwd)/build-macos/framework/llama.framework \
|
||||
-debug-symbols $(pwd)/build-macos/dSYMS/llama.dSYM \
|
||||
-framework $(pwd)/build-visionos/framework/llama.framework \
|
||||
-debug-symbols $(pwd)/build-visionos/dSYMs/llama.dSYM \
|
||||
-framework $(pwd)/build-visionos-sim/framework/llama.framework \
|
||||
-debug-symbols $(pwd)/build-visionos-sim/dSYMs/llama.dSYM \
|
||||
-framework $(pwd)/build-tvos-device/framework/llama.framework \
|
||||
-debug-symbols $(pwd)/build-tvos-device/dSYMs/llama.dSYM \
|
||||
-framework $(pwd)/build-tvos-sim/framework/llama.framework \
|
||||
-debug-symbols $(pwd)/build-tvos-sim/dSYMs/llama.dSYM \
|
||||
-output $(pwd)/build-apple/llama.xcframework
|
||||
43
ci/README.md
43
ci/README.md
@@ -1,11 +1,11 @@
|
||||
# CI
|
||||
|
||||
In addition to [Github Actions](https://github.com/ggml-org/llama.cpp/actions) `llama.cpp` uses a custom CI framework:
|
||||
In addition to [Github Actions](https://github.com/ggerganov/llama.cpp/actions) `llama.cpp` uses a custom CI framework:
|
||||
|
||||
https://github.com/ggml-org/ci
|
||||
|
||||
It monitors the `master` branch for new commits and runs the
|
||||
[ci/run.sh](https://github.com/ggml-org/llama.cpp/blob/master/ci/run.sh) script on dedicated cloud instances. This allows us
|
||||
[ci/run.sh](https://github.com/ggerganov/llama.cpp/blob/master/ci/run.sh) script on dedicated cloud instances. This allows us
|
||||
to execute heavier workloads compared to just using Github Actions. Also with time, the cloud instances will be scaled
|
||||
to cover various hardware architectures, including GPU and Apple Silicon instances.
|
||||
|
||||
@@ -26,43 +26,4 @@ GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
# with SYCL support
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
GG_BUILD_SYCL=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
|
||||
# with MUSA support
|
||||
GG_BUILD_MUSA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
```
|
||||
|
||||
## Running MUSA CI in a Docker Container
|
||||
|
||||
Assuming `$PWD` is the root of the `llama.cpp` repository, follow these steps to set up and run MUSA CI in a Docker container:
|
||||
|
||||
### 1. Create a local directory to store cached models, configuration files and venv:
|
||||
|
||||
```bash
|
||||
mkdir -p $HOME/llama.cpp/ci-cache
|
||||
```
|
||||
|
||||
### 2. Create a local directory to store CI run results:
|
||||
|
||||
```bash
|
||||
mkdir -p $HOME/llama.cpp/ci-results
|
||||
```
|
||||
|
||||
### 3. Start a Docker container and run the CI:
|
||||
|
||||
```bash
|
||||
docker run --privileged -it \
|
||||
-v $HOME/llama.cpp/ci-cache:/ci-cache \
|
||||
-v $HOME/llama.cpp/ci-results:/ci-results \
|
||||
-v $PWD:/ws -w /ws \
|
||||
mthreads/musa:rc3.1.1-devel-ubuntu22.04
|
||||
```
|
||||
|
||||
Inside the container, execute the following commands:
|
||||
|
||||
```bash
|
||||
apt update -y && apt install -y bc cmake ccache git python3.10-venv time unzip wget
|
||||
git config --global --add safe.directory /ws
|
||||
GG_BUILD_MUSA=1 bash ./ci/run.sh /ci-results /ci-cache
|
||||
```
|
||||
|
||||
This setup ensures that the CI runs within an isolated Docker environment while maintaining cached files and results across runs.
|
||||
|
||||
56
ci/run.sh
56
ci/run.sh
@@ -16,9 +16,6 @@
|
||||
# # with VULKAN support
|
||||
# GG_BUILD_VULKAN=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
#
|
||||
# # with MUSA support
|
||||
# GG_BUILD_MUSA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
#
|
||||
|
||||
if [ -z "$2" ]; then
|
||||
echo "usage: $0 <output-dir> <mnt-dir>"
|
||||
@@ -39,7 +36,7 @@ sd=`dirname $0`
|
||||
cd $sd/../
|
||||
SRC=`pwd`
|
||||
|
||||
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=OFF"
|
||||
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON"
|
||||
|
||||
if [ ! -z ${GG_BUILD_METAL} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON -DGGML_METAL_USE_BF16=ON"
|
||||
@@ -55,24 +52,13 @@ if [ ! -z ${GG_BUILD_SYCL} ]; then
|
||||
echo "source /opt/intel/oneapi/setvars.sh"
|
||||
exit 1
|
||||
fi
|
||||
# Use only main GPU
|
||||
export ONEAPI_DEVICE_SELECTOR="level_zero:0"
|
||||
# Enable sysman for correct memory reporting
|
||||
export ZES_ENABLE_SYSMAN=1
|
||||
# to circumvent precision issues on CPY operations
|
||||
export SYCL_PROGRAM_COMPILE_OPTIONS="-cl-fp32-correctly-rounded-divide-sqrt"
|
||||
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_SYCL=1 -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON"
|
||||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_VULKAN} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_VULKAN=1"
|
||||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_MUSA} ]; then
|
||||
# Use qy1 by default (MTT S80)
|
||||
MUSA_ARCH=${MUSA_ARCH:-21}
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_MUSA=ON -DMUSA_ARCHITECTURES=${MUSA_ARCH}"
|
||||
fi
|
||||
## helpers
|
||||
|
||||
# download a file if it does not exist or if it is outdated
|
||||
@@ -313,7 +299,7 @@ function gg_run_open_llama_7b_v2 {
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../examples/convert_legacy_llama.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||
python ../examples/convert_legacy_llama.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||
|
||||
model_f16="${path_models}/ggml-model-f16.gguf"
|
||||
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
|
||||
@@ -366,10 +352,10 @@ function gg_run_open_llama_7b_v2 {
|
||||
|
||||
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
|
||||
function check_ppl {
|
||||
qnt="$1"
|
||||
@@ -447,7 +433,7 @@ function gg_run_pythia_1_4b {
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||
python ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||
|
||||
model_f16="${path_models}/ggml-model-f16.gguf"
|
||||
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
|
||||
@@ -578,7 +564,7 @@ function gg_run_pythia_2_8b {
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||
python ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||
|
||||
model_f16="${path_models}/ggml-model-f16.gguf"
|
||||
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
|
||||
@@ -713,7 +699,7 @@ function gg_run_embd_bge_small {
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||
python ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||
|
||||
model_f16="${path_models}/ggml-model-f16.gguf"
|
||||
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
|
||||
@@ -761,7 +747,7 @@ function gg_run_rerank_tiny {
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||
python ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||
|
||||
model_f16="${path_models}/ggml-model-f16.gguf"
|
||||
|
||||
@@ -822,14 +808,14 @@ export LLAMA_LOG_PREFIX=1
|
||||
export LLAMA_LOG_TIMESTAMPS=1
|
||||
|
||||
if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
# Create symlink: ./llama.cpp/models-mnt -> $MNT/models
|
||||
# Create symlink: ./llama.cpp/models-mnt -> $MNT/models/models-mnt
|
||||
rm -rf ${SRC}/models-mnt
|
||||
mnt_models=${MNT}/models
|
||||
mkdir -p ${mnt_models}
|
||||
ln -sfn ${mnt_models} ${SRC}/models-mnt
|
||||
|
||||
# Create a fresh python3 venv and enter it
|
||||
if ! python3 -m venv "$MNT/venv"; then
|
||||
# Create a fresh python venv and enter it
|
||||
if ! python -m venv "$MNT/venv"; then
|
||||
echo "Error: Failed to create Python virtual environment at $MNT/venv."
|
||||
exit 1
|
||||
fi
|
||||
@@ -840,10 +826,8 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
fi
|
||||
|
||||
ret=0
|
||||
if [ -z ${GG_BUILD_SYCL} ]; then
|
||||
# SYCL build breaks with debug build flags
|
||||
test $ret -eq 0 && gg_run ctest_debug
|
||||
fi
|
||||
|
||||
test $ret -eq 0 && gg_run ctest_debug
|
||||
test $ret -eq 0 && gg_run ctest_release
|
||||
|
||||
if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
@@ -851,9 +835,7 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
test $ret -eq 0 && gg_run rerank_tiny
|
||||
|
||||
if [ -z ${GG_BUILD_CLOUD} ] || [ ${GG_BUILD_EXTRA_TESTS_0} ]; then
|
||||
if [ -z ${GG_BUILD_SYCL} ]; then
|
||||
test $ret -eq 0 && gg_run test_scripts_debug
|
||||
fi
|
||||
test $ret -eq 0 && gg_run test_scripts_debug
|
||||
test $ret -eq 0 && gg_run test_scripts_release
|
||||
fi
|
||||
|
||||
@@ -864,9 +846,7 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
test $ret -eq 0 && gg_run pythia_2_8b
|
||||
#test $ret -eq 0 && gg_run open_llama_7b_v2
|
||||
fi
|
||||
if [ -z ${GG_BUILD_SYCL} ]; then
|
||||
test $ret -eq 0 && gg_run ctest_with_model_debug
|
||||
fi
|
||||
test $ret -eq 0 && gg_run ctest_with_model_debug
|
||||
test $ret -eq 0 && gg_run ctest_with_model_release
|
||||
fi
|
||||
fi
|
||||
|
||||
@@ -44,7 +44,7 @@ if(MSVC)
|
||||
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
|
||||
else()
|
||||
execute_process(
|
||||
COMMAND sh -c "\"$@\" --version | head -1" _ ${CMAKE_C_COMPILER}
|
||||
COMMAND sh -c "$@ --version | head -1" _ ${CMAKE_C_COMPILER}
|
||||
OUTPUT_VARIABLE OUT
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
)
|
||||
|
||||
@@ -1,5 +1,3 @@
|
||||
include("ggml/cmake/common.cmake")
|
||||
|
||||
function(llama_add_compile_flags)
|
||||
if (LLAMA_FATAL_WARNINGS)
|
||||
if (CMAKE_CXX_COMPILER_ID MATCHES "GNU" OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
|
||||
|
||||
@@ -3,13 +3,159 @@ set(LLAMA_BUILD_COMMIT @LLAMA_BUILD_COMMIT@)
|
||||
set(LLAMA_BUILD_NUMBER @LLAMA_BUILD_NUMBER@)
|
||||
set(LLAMA_SHARED_LIB @BUILD_SHARED_LIBS@)
|
||||
|
||||
set(GGML_STATIC @GGML_STATIC@)
|
||||
set(GGML_NATIVE @GGML_NATIVE@)
|
||||
set(GGML_LTO @GGML_LTO@)
|
||||
set(GGML_CCACHE @GGML_CCACHE@)
|
||||
set(GGML_AVX @GGML_AVX@)
|
||||
set(GGML_AVX2 @GGML_AVX2@)
|
||||
set(GGML_AVX512 @GGML_AVX512@)
|
||||
set(GGML_AVX512_VBMI @GGML_AVX512_VBMI@)
|
||||
set(GGML_AVX512_VNNI @GGML_AVX512_VNNI@)
|
||||
set(GGML_AVX512_BF16 @GGML_AVX512_BF16@)
|
||||
set(GGML_AMX_TILE @GGML_AMX_TILE@)
|
||||
set(GGML_AMX_INT8 @GGML_AMX_INT8@)
|
||||
set(GGML_AMX_BF16 @GGML_AMX_BF16@)
|
||||
set(GGML_FMA @GGML_FMA@)
|
||||
set(GGML_LASX @GGML_LASX@)
|
||||
set(GGML_LSX @GGML_LSX@)
|
||||
set(GGML_RVV @GGML_RVV@)
|
||||
set(GGML_SVE @GGML_SVE@)
|
||||
|
||||
set(GGML_ACCELERATE @GGML_ACCELERATE@)
|
||||
set(GGML_OPENMP @GGML_OPENMP@)
|
||||
set(GGML_CPU_HBM @GGML_CPU_HBM@)
|
||||
set(GGML_BLAS_VENDOR @GGML_BLAS_VENDOR@)
|
||||
|
||||
set(GGML_CUDA_FORCE_MMQ @GGML_CUDA_FORCE_MMQ@)
|
||||
set(GGML_CUDA_FORCE_CUBLAS @GGML_CUDA_FORCE_CUBLAS@)
|
||||
set(GGML_CUDA_F16 @GGML_CUDA_F16@)
|
||||
set(GGML_CUDA_PEER_MAX_BATCH_SIZE @GGML_CUDA_PEER_MAX_BATCH_SIZE@)
|
||||
set(GGML_CUDA_NO_PEER_COPY @GGML_CUDA_NO_PEER_COPY@)
|
||||
set(GGML_CUDA_NO_VMM @GGML_CUDA_NO_VMM@)
|
||||
set(GGML_CUDA_FA_ALL_QUANTS @GGML_CUDA_FA_ALL_QUANTS@)
|
||||
set(GGML_CUDA_GRAPHS @GGML_CUDA_GRAPHS@)
|
||||
|
||||
set(GGML_HIP_UMA @GGML_HIP_UMA@)
|
||||
|
||||
set(GGML_VULKAN_CHECK_RESULTS @GGML_VULKAN_CHECK_RESULTS@)
|
||||
set(GGML_VULKAN_DEBUG @GGML_VULKAN_DEBUG@)
|
||||
set(GGML_VULKAN_MEMORY_DEBUG @GGML_VULKAN_MEMORY_DEBUG@)
|
||||
set(GGML_VULKAN_SHADER_DEBUG_INFO @GGML_VULKAN_SHADER_DEBUG_INFO@)
|
||||
set(GGML_VULKAN_PERF @GGML_VULKAN_PERF@)
|
||||
set(GGML_VULKAN_VALIDATE @GGML_VULKAN_VALIDATE@)
|
||||
set(GGML_VULKAN_RUN_TESTS @GGML_VULKAN_RUN_TESTS@)
|
||||
|
||||
set(GGML_METAL_USE_BF16 @GGML_METAL_USE_BF16@)
|
||||
set(GGML_METAL_NDEBUG @GGML_METAL_NDEBUG@)
|
||||
set(GGML_METAL_SHADER_DEBUG @GGML_METAL_SHADER_DEBUG@)
|
||||
set(GGML_METAL_EMBED_LIBRARY @GGML_METAL_EMBED_LIBRARY@)
|
||||
set(GGML_METAL_MACOSX_VERSION_MIN @GGML_METAL_MACOSX_VERSION_MIN@)
|
||||
set(GGML_METAL_STD @GGML_METAL_STD@)
|
||||
|
||||
set(GGML_SYCL_F16 @GGML_SYCL_F16@)
|
||||
set(GGML_SYCL_TARGET @GGML_SYCL_TARGET@)
|
||||
set(GGML_SYCL_DEVICE_ARCH @GGML_SYCL_DEVICE_ARCH@)
|
||||
|
||||
|
||||
@PACKAGE_INIT@
|
||||
|
||||
set_and_check(LLAMA_INCLUDE_DIR "@PACKAGE_LLAMA_INCLUDE_INSTALL_DIR@")
|
||||
set_and_check(LLAMA_LIB_DIR "@PACKAGE_LLAMA_LIB_INSTALL_DIR@")
|
||||
set_and_check(LLAMA_BIN_DIR "@PACKAGE_LLAMA_BIN_INSTALL_DIR@")
|
||||
|
||||
find_package(ggml REQUIRED HINTS ${LLAMA_LIB_DIR}/cmake)
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
set(_llama_transient_defines "@GGML_TRANSIENT_DEFINES@")
|
||||
set(_llama_link_deps "")
|
||||
set(_llama_link_opts "")
|
||||
foreach(_ggml_lib ggml ggml-base)
|
||||
string(REPLACE "-" "_" _ggml_lib_var "${_ggml_lib}_LIBRARY")
|
||||
find_library(${_ggml_lib_var} ${_ggml_lib}
|
||||
REQUIRED
|
||||
HINTS ${LLAMA_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH
|
||||
)
|
||||
list(APPEND _llama_link_deps "${${_ggml_lib_var}}")
|
||||
message(STATUS "Found ${${_ggml_lib_var}}")
|
||||
endforeach()
|
||||
|
||||
foreach(backend amx blas cann cpu cuda hip kompute metal musa rpc sycl vulkan)
|
||||
string(TOUPPER "GGML_${backend}" backend_id)
|
||||
set(_ggml_lib "ggml-${backend}")
|
||||
string(REPLACE "-" "_" _ggml_lib_var "${_ggml_lib}_LIBRARY")
|
||||
|
||||
find_library(${_ggml_lib_var} ${_ggml_lib}
|
||||
HINTS ${LLAMA_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH
|
||||
)
|
||||
if(${_ggml_lib_var})
|
||||
list(APPEND _llama_link_deps "${${_ggml_lib_var}}")
|
||||
set(${backend_id} ON)
|
||||
message(STATUS "Found backend ${${_ggml_lib_var}}")
|
||||
else()
|
||||
set(${backend_id} OFF)
|
||||
endif()
|
||||
endforeach()
|
||||
|
||||
if (NOT LLAMA_SHARED_LIB)
|
||||
if (APPLE AND GGML_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate REQUIRED)
|
||||
list(APPEND _llama_link_deps ${ACCELERATE_FRAMEWORK})
|
||||
endif()
|
||||
|
||||
if (GGML_OPENMP)
|
||||
find_package(OpenMP REQUIRED)
|
||||
list(APPEND _llama_link_deps OpenMP::OpenMP_C OpenMP::OpenMP_CXX)
|
||||
endif()
|
||||
|
||||
if (GGML_CPU_HBM)
|
||||
find_library(memkind memkind REQUIRED)
|
||||
list(APPEND _llama_link_deps memkind)
|
||||
endif()
|
||||
|
||||
if (GGML_BLAS)
|
||||
find_package(BLAS REQUIRED)
|
||||
list(APPEND _llama_link_deps ${BLAS_LIBRARIES})
|
||||
list(APPEND _llama_link_opts ${BLAS_LINKER_FLAGS})
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA)
|
||||
find_package(CUDAToolkit REQUIRED)
|
||||
endif()
|
||||
|
||||
if (GGML_METAL)
|
||||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
list(APPEND _llama_link_deps ${FOUNDATION_LIBRARY}
|
||||
${METAL_FRAMEWORK} ${METALKIT_FRAMEWORK})
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN)
|
||||
find_package(Vulkan REQUIRED)
|
||||
list(APPEND _llama_link_deps Vulkan::Vulkan)
|
||||
endif()
|
||||
|
||||
if (GGML_HIP)
|
||||
find_package(hip REQUIRED)
|
||||
find_package(hipblas REQUIRED)
|
||||
find_package(rocblas REQUIRED)
|
||||
list(APPEND _llama_link_deps hip::host roc::rocblas roc::hipblas)
|
||||
endif()
|
||||
|
||||
if (GGML_SYCL)
|
||||
find_package(DNNL)
|
||||
if (${DNNL_FOUND} AND GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
list(APPEND _llama_link_deps DNNL::dnnl)
|
||||
endif()
|
||||
if (WIN32)
|
||||
find_package(IntelSYCL REQUIRED)
|
||||
find_package(MKL REQUIRED)
|
||||
list(APPEND _llama_link_deps IntelSYCL::SYCL_CXX MKL::MKL MKL::MKL_SYCL)
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
|
||||
find_library(llama_LIBRARY llama
|
||||
REQUIRED
|
||||
@@ -21,10 +167,12 @@ add_library(llama UNKNOWN IMPORTED)
|
||||
set_target_properties(llama
|
||||
PROPERTIES
|
||||
INTERFACE_INCLUDE_DIRECTORIES "${LLAMA_INCLUDE_DIR}"
|
||||
INTERFACE_LINK_LIBRARIES "ggml::ggml;ggml::ggml-base;"
|
||||
INTERFACE_LINK_LIBRARIES "${_llama_link_deps}"
|
||||
INTERFACE_LINK_OPTIONS "${_llama_link_opts}"
|
||||
INTERFACE_COMPILE_DEFINITIONS "${_llama_transient_defines}"
|
||||
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
|
||||
IMPORTED_LOCATION "${llama_LIBRARY}"
|
||||
INTERFACE_COMPILE_FEATURES c_std_90
|
||||
POSITION_INDEPENDENT_CODE ON)
|
||||
INTERFACE_COMPILE_FEATURES cxx_std_11
|
||||
POSITION_INDEPENDENT_CODE ON )
|
||||
|
||||
check_required_components(Llama)
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
prefix=@CMAKE_INSTALL_PREFIX@
|
||||
exec_prefix=@CMAKE_INSTALL_PREFIX@
|
||||
libdir=@CMAKE_INSTALL_FULL_LIBDIR@
|
||||
includedir=@CMAKE_INSTALL_FULL_INCLUDEDIR@
|
||||
exec_prefix=${prefix}
|
||||
libdir=${exec_prefix}/lib
|
||||
includedir=${prefix}/include
|
||||
|
||||
Name: llama
|
||||
Description: Port of Facebook's LLaMA model in C/C++
|
||||
Version: @LLAMA_INSTALL_VERSION@
|
||||
Libs: -L${libdir} -lggml -lggml-base -lllama
|
||||
Version: @PROJECT_VERSION@
|
||||
Libs: -L${libdir} -lggml -lggml-base -lllama
|
||||
Cflags: -I${includedir}
|
||||
|
||||
@@ -56,19 +56,14 @@ add_library(${TARGET} STATIC
|
||||
arg.cpp
|
||||
arg.h
|
||||
base64.hpp
|
||||
chat.cpp
|
||||
chat.h
|
||||
common.cpp
|
||||
common.h
|
||||
console.cpp
|
||||
console.h
|
||||
json-schema-to-grammar.cpp
|
||||
json.hpp
|
||||
llguidance.cpp
|
||||
log.cpp
|
||||
log.h
|
||||
minja/chat-template.hpp
|
||||
minja/minja.hpp
|
||||
ngram-cache.cpp
|
||||
ngram-cache.h
|
||||
sampling.cpp
|
||||
@@ -85,60 +80,13 @@ set(LLAMA_COMMON_EXTRA_LIBS build_info)
|
||||
|
||||
# Use curl to download model url
|
||||
if (LLAMA_CURL)
|
||||
find_package(CURL)
|
||||
if (NOT CURL_FOUND)
|
||||
message(FATAL_ERROR "Could NOT find CURL. Hint: to disable this feature, set -DLLAMA_CURL=OFF")
|
||||
endif()
|
||||
find_package(CURL REQUIRED)
|
||||
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_CURL)
|
||||
include_directories(${CURL_INCLUDE_DIRS})
|
||||
find_library(CURL_LIBRARY curl REQUIRED)
|
||||
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} ${CURL_LIBRARY})
|
||||
endif ()
|
||||
|
||||
if (LLAMA_LLGUIDANCE)
|
||||
include(ExternalProject)
|
||||
set(LLGUIDANCE_SRC ${CMAKE_BINARY_DIR}/llguidance/source)
|
||||
set(LLGUIDANCE_PATH ${LLGUIDANCE_SRC}/target/release)
|
||||
|
||||
# Set the correct library file extension based on platform
|
||||
if (WIN32)
|
||||
set(LLGUIDANCE_LIB_NAME "llguidance.lib")
|
||||
# Add Windows-specific libraries
|
||||
set(LLGUIDANCE_PLATFORM_LIBS
|
||||
ws2_32 # Windows Sockets API
|
||||
userenv # For GetUserProfileDirectoryW
|
||||
ntdll # For NT functions
|
||||
bcrypt # For BCryptGenRandom
|
||||
)
|
||||
else()
|
||||
set(LLGUIDANCE_LIB_NAME "libllguidance.a")
|
||||
set(LLGUIDANCE_PLATFORM_LIBS "")
|
||||
endif()
|
||||
|
||||
ExternalProject_Add(llguidance_ext
|
||||
GIT_REPOSITORY https://github.com/guidance-ai/llguidance
|
||||
# v0.7.10:
|
||||
GIT_TAG 0309d2a6bf40abda35344a362edc71e06d5009f8
|
||||
PREFIX ${CMAKE_BINARY_DIR}/llguidance
|
||||
SOURCE_DIR ${LLGUIDANCE_SRC}
|
||||
BUILD_IN_SOURCE TRUE
|
||||
CONFIGURE_COMMAND ""
|
||||
BUILD_COMMAND cargo build --release
|
||||
INSTALL_COMMAND ""
|
||||
BUILD_BYPRODUCTS ${LLGUIDANCE_PATH}/${LLGUIDANCE_LIB_NAME} ${LLGUIDANCE_PATH}/llguidance.h
|
||||
UPDATE_COMMAND ""
|
||||
)
|
||||
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_LLGUIDANCE)
|
||||
|
||||
add_library(llguidance STATIC IMPORTED)
|
||||
set_target_properties(llguidance PROPERTIES IMPORTED_LOCATION ${LLGUIDANCE_PATH}/${LLGUIDANCE_LIB_NAME})
|
||||
add_dependencies(llguidance llguidance_ext)
|
||||
|
||||
target_include_directories(${TARGET} PRIVATE ${LLGUIDANCE_PATH})
|
||||
# Add platform libraries to the main target
|
||||
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} llguidance ${LLGUIDANCE_PLATFORM_LIBS})
|
||||
endif ()
|
||||
|
||||
target_include_directories(${TARGET} PUBLIC .)
|
||||
target_compile_features (${TARGET} PUBLIC cxx_std_17)
|
||||
target_link_libraries (${TARGET} PRIVATE ${LLAMA_COMMON_EXTRA_LIBS} PUBLIC llama Threads::Threads)
|
||||
|
||||
1113
common/arg.cpp
1113
common/arg.cpp
File diff suppressed because it is too large
Load Diff
1779
common/chat.cpp
1779
common/chat.cpp
File diff suppressed because it is too large
Load Diff
135
common/chat.h
135
common/chat.h
@@ -1,135 +0,0 @@
|
||||
// Chat support (incl. tool call grammar constraining & output parsing) w/ generic & custom template handlers.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common.h"
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
struct common_chat_templates;
|
||||
|
||||
struct common_chat_tool_call {
|
||||
std::string name;
|
||||
std::string arguments;
|
||||
std::string id;
|
||||
};
|
||||
|
||||
struct common_chat_msg_content_part {
|
||||
std::string type;
|
||||
std::string text;
|
||||
};
|
||||
|
||||
struct common_chat_msg {
|
||||
std::string role;
|
||||
std::string content;
|
||||
std::vector<common_chat_msg_content_part> content_parts = {};
|
||||
std::vector<common_chat_tool_call> tool_calls = {};
|
||||
std::string reasoning_content;
|
||||
std::string tool_name;
|
||||
std::string tool_call_id;
|
||||
};
|
||||
|
||||
struct common_chat_tool {
|
||||
std::string name;
|
||||
std::string description;
|
||||
std::string parameters;
|
||||
};
|
||||
|
||||
enum common_chat_tool_choice {
|
||||
COMMON_CHAT_TOOL_CHOICE_AUTO,
|
||||
COMMON_CHAT_TOOL_CHOICE_REQUIRED,
|
||||
COMMON_CHAT_TOOL_CHOICE_NONE,
|
||||
};
|
||||
|
||||
enum common_chat_format {
|
||||
COMMON_CHAT_FORMAT_CONTENT_ONLY,
|
||||
COMMON_CHAT_FORMAT_GENERIC,
|
||||
COMMON_CHAT_FORMAT_MISTRAL_NEMO,
|
||||
COMMON_CHAT_FORMAT_LLAMA_3_X,
|
||||
COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS,
|
||||
COMMON_CHAT_FORMAT_DEEPSEEK_R1,
|
||||
COMMON_CHAT_FORMAT_DEEPSEEK_R1_EXTRACT_REASONING,
|
||||
COMMON_CHAT_FORMAT_FIREFUNCTION_V2,
|
||||
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2,
|
||||
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1,
|
||||
COMMON_CHAT_FORMAT_HERMES_2_PRO,
|
||||
COMMON_CHAT_FORMAT_HERMES_2_PRO_EXTRACT_REASONING,
|
||||
COMMON_CHAT_FORMAT_COMMAND_R7B,
|
||||
COMMON_CHAT_FORMAT_COMMAND_R7B_EXTRACT_REASONING,
|
||||
|
||||
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
|
||||
};
|
||||
|
||||
struct common_chat_templates_inputs {
|
||||
std::vector<common_chat_msg> messages;
|
||||
std::string grammar;
|
||||
std::string json_schema;
|
||||
bool add_generation_prompt = true;
|
||||
bool use_jinja = true;
|
||||
// Parameters below only supported when use_jinja is true
|
||||
std::vector<common_chat_tool> tools;
|
||||
common_chat_tool_choice tool_choice = COMMON_CHAT_TOOL_CHOICE_AUTO;
|
||||
bool parallel_tool_calls = false;
|
||||
bool extract_reasoning = true;
|
||||
};
|
||||
|
||||
struct common_chat_params {
|
||||
common_chat_format format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
|
||||
std::string prompt;
|
||||
std::string grammar;
|
||||
bool grammar_lazy = false;
|
||||
std::vector<common_grammar_trigger> grammar_triggers;
|
||||
std::vector<std::string> preserved_tokens;
|
||||
std::vector<std::string> additional_stops;
|
||||
};
|
||||
|
||||
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
|
||||
bool common_chat_verify_template(const std::string & tmpl, bool use_jinja);
|
||||
|
||||
void common_chat_templates_free(struct common_chat_templates * tmpls);
|
||||
|
||||
struct common_chat_templates_deleter { void operator()(common_chat_templates * tmpls) { common_chat_templates_free(tmpls); } };
|
||||
|
||||
typedef std::unique_ptr<struct common_chat_templates, common_chat_templates_deleter> common_chat_templates_ptr;
|
||||
|
||||
common_chat_templates_ptr common_chat_templates_init(
|
||||
const struct llama_model * model,
|
||||
const std::string & chat_template_override,
|
||||
const std::string & bos_token_override = "",
|
||||
const std::string & eos_token_override = "");
|
||||
|
||||
bool common_chat_templates_was_explicit(const struct common_chat_templates * tmpls);
|
||||
const char * common_chat_templates_source(const struct common_chat_templates * tmpls, const char * variant = nullptr);
|
||||
|
||||
|
||||
struct common_chat_params common_chat_templates_apply(
|
||||
const struct common_chat_templates * tmpls,
|
||||
const struct common_chat_templates_inputs & inputs);
|
||||
|
||||
// Format single message, while taking into account the position of that message in chat history
|
||||
std::string common_chat_format_single(
|
||||
const struct common_chat_templates * tmpls,
|
||||
const std::vector<common_chat_msg> & past_msg,
|
||||
const common_chat_msg & new_msg,
|
||||
bool add_ass,
|
||||
bool use_jinja);
|
||||
|
||||
// Returns an example of formatted chat
|
||||
std::string common_chat_format_example(
|
||||
const struct common_chat_templates * tmpls,
|
||||
bool use_jinja);
|
||||
|
||||
std::string common_chat_format_name(common_chat_format format);
|
||||
common_chat_msg common_chat_parse( const std::string & input, common_chat_format format);
|
||||
|
||||
common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::string & tool_choice);
|
||||
|
||||
// Parses a JSON array of messages in OpenAI's chat completion API format.
|
||||
// T can be std::string containing JSON or nlohmann::ordered_json
|
||||
template <class T> std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const T & messages);
|
||||
template <class T> T common_chat_msgs_to_json_oaicompat(const std::vector<common_chat_msg> & msgs, bool concat_typed_text = false);
|
||||
|
||||
// Parses a JSON array of tools in OpenAI's chat completion tool call API format.
|
||||
// T can be std::string containing JSON or nlohmann::ordered_json
|
||||
template <class T> std::vector<common_chat_tool> common_chat_tools_parse_oaicompat(const T & tools);
|
||||
template <class T> T common_chat_tools_to_json_oaicompat(const std::vector<common_chat_tool> & tools);
|
||||
@@ -7,6 +7,10 @@
|
||||
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
// Change JSON_ASSERT from assert() to GGML_ASSERT:
|
||||
#define JSON_ASSERT GGML_ASSERT
|
||||
#include "json.hpp"
|
||||
#include "json-schema-to-grammar.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <algorithm>
|
||||
@@ -48,11 +52,47 @@
|
||||
#include <sys/stat.h>
|
||||
#include <unistd.h>
|
||||
#endif
|
||||
#if defined(LLAMA_USE_CURL)
|
||||
#include <curl/curl.h>
|
||||
#include <curl/easy.h>
|
||||
#include <future>
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
#if defined(LLAMA_USE_CURL)
|
||||
#ifdef __linux__
|
||||
#include <linux/limits.h>
|
||||
#elif defined(_WIN32)
|
||||
# if !defined(PATH_MAX)
|
||||
# define PATH_MAX MAX_PATH
|
||||
# endif
|
||||
#else
|
||||
#include <sys/syslimits.h>
|
||||
#endif
|
||||
#define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
|
||||
|
||||
//
|
||||
// CURL utils
|
||||
//
|
||||
|
||||
using curl_ptr = std::unique_ptr<CURL, decltype(&curl_easy_cleanup)>;
|
||||
|
||||
// cannot use unique_ptr for curl_slist, because we cannot update without destroying the old one
|
||||
struct curl_slist_ptr {
|
||||
struct curl_slist * ptr = nullptr;
|
||||
~curl_slist_ptr() {
|
||||
if (ptr) {
|
||||
curl_slist_free_all(ptr);
|
||||
}
|
||||
}
|
||||
};
|
||||
#endif // LLAMA_USE_CURL
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
//
|
||||
// CPU utils
|
||||
//
|
||||
@@ -443,53 +483,6 @@ void string_replace_all(std::string & s, const std::string & search, const std::
|
||||
s = std::move(builder);
|
||||
}
|
||||
|
||||
std::string regex_escape(const std::string & s) {
|
||||
static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]");
|
||||
return std::regex_replace(s, special_chars, "\\$0");
|
||||
}
|
||||
|
||||
std::string string_join(const std::vector<std::string> & values, const std::string & separator) {
|
||||
std::ostringstream result;
|
||||
for (size_t i = 0; i < values.size(); ++i) {
|
||||
if (i > 0) {
|
||||
result << separator;
|
||||
}
|
||||
result << values[i];
|
||||
}
|
||||
return result.str();
|
||||
}
|
||||
|
||||
std::vector<std::string> string_split(const std::string & str, const std::string & delimiter) {
|
||||
std::vector<std::string> parts;
|
||||
size_t start = 0;
|
||||
size_t end = str.find(delimiter);
|
||||
|
||||
while (end != std::string::npos) {
|
||||
parts.push_back(str.substr(start, end - start));
|
||||
start = end + delimiter.length();
|
||||
end = str.find(delimiter, start);
|
||||
}
|
||||
|
||||
parts.push_back(str.substr(start));
|
||||
|
||||
return parts;
|
||||
}
|
||||
|
||||
std::string string_repeat(const std::string & str, size_t n) {
|
||||
if (n == 0) {
|
||||
return "";
|
||||
}
|
||||
|
||||
std::string result;
|
||||
result.reserve(str.length() * n);
|
||||
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
result += str;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
std::string string_from(bool value) {
|
||||
return value ? "true" : "false";
|
||||
}
|
||||
@@ -830,7 +823,7 @@ std::string fs_get_cache_directory() {
|
||||
if (getenv("LLAMA_CACHE")) {
|
||||
cache_directory = std::getenv("LLAMA_CACHE");
|
||||
} else {
|
||||
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX)
|
||||
#ifdef __linux__
|
||||
if (std::getenv("XDG_CACHE_HOME")) {
|
||||
cache_directory = std::getenv("XDG_CACHE_HOME");
|
||||
} else {
|
||||
@@ -840,9 +833,7 @@ std::string fs_get_cache_directory() {
|
||||
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
|
||||
#elif defined(_WIN32)
|
||||
cache_directory = std::getenv("LOCALAPPDATA");
|
||||
#else
|
||||
# error Unknown architecture
|
||||
#endif
|
||||
#endif // __linux__
|
||||
cache_directory = ensure_trailing_slash(cache_directory);
|
||||
cache_directory += "llama.cpp";
|
||||
}
|
||||
@@ -863,14 +854,22 @@ std::string fs_get_cache_file(const std::string & filename) {
|
||||
//
|
||||
// Model utils
|
||||
//
|
||||
|
||||
struct common_init_result common_init_from_params(common_params & params) {
|
||||
common_init_result iparams;
|
||||
auto mparams = common_model_params_to_llama(params);
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
|
||||
llama_model * model = nullptr;
|
||||
|
||||
if (!params.hf_repo.empty() && !params.hf_file.empty()) {
|
||||
model = common_load_model_from_hf(params.hf_repo, params.hf_file, params.model, params.hf_token, mparams);
|
||||
} else if (!params.model_url.empty()) {
|
||||
model = common_load_model_from_url(params.model_url, params.model, params.hf_token, mparams);
|
||||
} else {
|
||||
model = llama_model_load_from_file(params.model.c_str(), mparams);
|
||||
}
|
||||
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.path.c_str());
|
||||
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.c_str());
|
||||
return iparams;
|
||||
}
|
||||
|
||||
@@ -905,13 +904,13 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
|
||||
llama_context * lctx = llama_init_from_model(model, cparams);
|
||||
if (lctx == NULL) {
|
||||
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str());
|
||||
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.c_str());
|
||||
llama_model_free(model);
|
||||
return iparams;
|
||||
}
|
||||
|
||||
if (params.ctx_shift && !llama_kv_self_can_shift(lctx)) {
|
||||
LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__);
|
||||
if (params.ctx_shift && !llama_kv_cache_can_shift(lctx)) {
|
||||
LOG_WRN("%s: KV cache shifting is not supported for this model, disabling KV cache shifting\n", __func__);
|
||||
params.ctx_shift = false;
|
||||
}
|
||||
|
||||
@@ -988,8 +987,6 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
if (params.warmup) {
|
||||
LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__);
|
||||
|
||||
llama_set_warmup(lctx, true);
|
||||
|
||||
std::vector<llama_token> tmp;
|
||||
llama_token bos = llama_vocab_bos(vocab);
|
||||
llama_token eos = llama_vocab_eos(vocab);
|
||||
@@ -1017,10 +1014,9 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
if (llama_model_has_decoder(model)) {
|
||||
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch)));
|
||||
}
|
||||
llama_kv_self_clear(lctx);
|
||||
llama_kv_cache_clear(lctx);
|
||||
llama_synchronize(lctx);
|
||||
llama_perf_context_reset(lctx);
|
||||
llama_set_warmup(lctx, false);
|
||||
}
|
||||
|
||||
iparams.model.reset(model);
|
||||
@@ -1029,19 +1025,6 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
return iparams;
|
||||
}
|
||||
|
||||
std::string get_model_endpoint() {
|
||||
const char * model_endpoint_env = getenv("MODEL_ENDPOINT");
|
||||
// We still respect the use of environment-variable "HF_ENDPOINT" for backward-compatibility.
|
||||
const char * hf_endpoint_env = getenv("HF_ENDPOINT");
|
||||
const char * endpoint_env = model_endpoint_env ? model_endpoint_env : hf_endpoint_env;
|
||||
std::string model_endpoint = "https://huggingface.co/";
|
||||
if (endpoint_env) {
|
||||
model_endpoint = endpoint_env;
|
||||
if (model_endpoint.back() != '/') model_endpoint += '/';
|
||||
}
|
||||
return model_endpoint;
|
||||
}
|
||||
|
||||
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora) {
|
||||
llama_clear_adapter_lora(ctx);
|
||||
for (auto & la : lora) {
|
||||
@@ -1057,18 +1040,16 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
|
||||
if (!params.devices.empty()) {
|
||||
mparams.devices = params.devices.data();
|
||||
}
|
||||
|
||||
if (params.n_gpu_layers != -1) {
|
||||
mparams.n_gpu_layers = params.n_gpu_layers;
|
||||
}
|
||||
|
||||
mparams.rpc_servers = params.rpc_servers.c_str();
|
||||
mparams.main_gpu = params.main_gpu;
|
||||
mparams.split_mode = params.split_mode;
|
||||
mparams.tensor_split = params.tensor_split;
|
||||
mparams.use_mmap = params.use_mmap;
|
||||
mparams.use_mlock = params.use_mlock;
|
||||
mparams.check_tensors = params.check_tensors;
|
||||
|
||||
if (params.kv_overrides.empty()) {
|
||||
mparams.kv_overrides = NULL;
|
||||
} else {
|
||||
@@ -1076,13 +1057,6 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
|
||||
mparams.kv_overrides = params.kv_overrides.data();
|
||||
}
|
||||
|
||||
if (params.tensor_buft_overrides.empty()) {
|
||||
mparams.tensor_buft_overrides = NULL;
|
||||
} else {
|
||||
GGML_ASSERT(params.tensor_buft_overrides.back().pattern == nullptr && "Tensor buffer overrides not terminated with empty pattern");
|
||||
mparams.tensor_buft_overrides = params.tensor_buft_overrides.data();
|
||||
}
|
||||
|
||||
return mparams;
|
||||
}
|
||||
|
||||
@@ -1142,6 +1116,451 @@ struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_p
|
||||
return tpp;
|
||||
}
|
||||
|
||||
#ifdef LLAMA_USE_CURL
|
||||
|
||||
#define CURL_MAX_RETRY 3
|
||||
#define CURL_RETRY_DELAY_SECONDS 2
|
||||
|
||||
static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds) {
|
||||
int remaining_attempts = max_attempts;
|
||||
|
||||
while (remaining_attempts > 0) {
|
||||
LOG_INF("%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
|
||||
|
||||
CURLcode res = curl_easy_perform(curl);
|
||||
if (res == CURLE_OK) {
|
||||
return true;
|
||||
}
|
||||
|
||||
int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
|
||||
LOG_WRN("%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
|
||||
|
||||
remaining_attempts--;
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
|
||||
}
|
||||
|
||||
LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool common_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
|
||||
// Initialize libcurl
|
||||
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
|
||||
curl_slist_ptr http_headers;
|
||||
if (!curl) {
|
||||
LOG_ERR("%s: error initializing libcurl\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
bool force_download = false;
|
||||
|
||||
// Set the URL, allow to follow http redirection
|
||||
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
|
||||
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
|
||||
|
||||
// Check if hf-token or bearer-token was specified
|
||||
if (!hf_token.empty()) {
|
||||
std::string auth_header = "Authorization: Bearer " + hf_token;
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
|
||||
}
|
||||
|
||||
#if defined(_WIN32)
|
||||
// CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
|
||||
// operating system. Currently implemented under MS-Windows.
|
||||
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
|
||||
#endif
|
||||
|
||||
// Check if the file already exists locally
|
||||
auto file_exists = std::filesystem::exists(path);
|
||||
|
||||
// If the file exists, check its JSON metadata companion file.
|
||||
std::string metadata_path = path + ".json";
|
||||
nlohmann::json metadata;
|
||||
std::string etag;
|
||||
std::string last_modified;
|
||||
|
||||
if (file_exists) {
|
||||
// Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
|
||||
std::ifstream metadata_in(metadata_path);
|
||||
if (metadata_in.good()) {
|
||||
try {
|
||||
metadata_in >> metadata;
|
||||
LOG_INF("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
|
||||
if (metadata.contains("url") && metadata.at("url").is_string()) {
|
||||
auto previous_url = metadata.at("url").get<std::string>();
|
||||
if (previous_url != url) {
|
||||
LOG_ERR("%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
if (metadata.contains("etag") && metadata.at("etag").is_string()) {
|
||||
etag = metadata.at("etag");
|
||||
}
|
||||
if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
|
||||
last_modified = metadata.at("lastModified");
|
||||
}
|
||||
} catch (const nlohmann::json::exception & e) {
|
||||
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
|
||||
}
|
||||
|
||||
// Send a HEAD request to retrieve the etag and last-modified headers
|
||||
struct common_load_model_from_url_headers {
|
||||
std::string etag;
|
||||
std::string last_modified;
|
||||
};
|
||||
|
||||
common_load_model_from_url_headers headers;
|
||||
|
||||
{
|
||||
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
|
||||
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
|
||||
common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
|
||||
|
||||
static std::regex header_regex("([^:]+): (.*)\r\n");
|
||||
static std::regex etag_regex("ETag", std::regex_constants::icase);
|
||||
static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
|
||||
|
||||
std::string header(buffer, n_items);
|
||||
std::smatch match;
|
||||
if (std::regex_match(header, match, header_regex)) {
|
||||
const std::string & key = match[1];
|
||||
const std::string & value = match[2];
|
||||
if (std::regex_match(key, match, etag_regex)) {
|
||||
headers->etag = value;
|
||||
} else if (std::regex_match(key, match, last_modified_regex)) {
|
||||
headers->last_modified = value;
|
||||
}
|
||||
}
|
||||
return n_items;
|
||||
};
|
||||
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
|
||||
|
||||
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
|
||||
if (!was_perform_successful) {
|
||||
return false;
|
||||
}
|
||||
|
||||
long http_code = 0;
|
||||
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
|
||||
if (http_code != 200) {
|
||||
// HEAD not supported, we don't know if the file has changed
|
||||
// force trigger downloading
|
||||
force_download = true;
|
||||
LOG_ERR("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
|
||||
}
|
||||
}
|
||||
|
||||
bool should_download = !file_exists || force_download;
|
||||
if (!should_download) {
|
||||
if (!etag.empty() && etag != headers.etag) {
|
||||
LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
|
||||
should_download = true;
|
||||
} else if (!last_modified.empty() && last_modified != headers.last_modified) {
|
||||
LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
|
||||
should_download = true;
|
||||
}
|
||||
}
|
||||
if (should_download) {
|
||||
std::string path_temporary = path + ".downloadInProgress";
|
||||
if (file_exists) {
|
||||
LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
|
||||
if (remove(path.c_str()) != 0) {
|
||||
LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Set the output file
|
||||
|
||||
struct FILE_deleter {
|
||||
void operator()(FILE * f) const {
|
||||
fclose(f);
|
||||
}
|
||||
};
|
||||
|
||||
std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
|
||||
if (!outfile) {
|
||||
LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
|
||||
auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
|
||||
return fwrite(data, size, nmemb, (FILE *)fd);
|
||||
};
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());
|
||||
|
||||
// display download progress
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
|
||||
|
||||
// helper function to hide password in URL
|
||||
auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
|
||||
std::size_t protocol_pos = url.find("://");
|
||||
if (protocol_pos == std::string::npos) {
|
||||
return url; // Malformed URL
|
||||
}
|
||||
|
||||
std::size_t at_pos = url.find('@', protocol_pos + 3);
|
||||
if (at_pos == std::string::npos) {
|
||||
return url; // No password in URL
|
||||
}
|
||||
|
||||
return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
|
||||
};
|
||||
|
||||
// start the download
|
||||
LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
|
||||
llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
|
||||
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
|
||||
if (!was_perform_successful) {
|
||||
return false;
|
||||
}
|
||||
|
||||
long http_code = 0;
|
||||
curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
|
||||
if (http_code < 200 || http_code >= 400) {
|
||||
LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code);
|
||||
return false;
|
||||
}
|
||||
|
||||
// Causes file to be closed explicitly here before we rename it.
|
||||
outfile.reset();
|
||||
|
||||
// Write the updated JSON metadata file.
|
||||
metadata.update({
|
||||
{"url", url},
|
||||
{"etag", headers.etag},
|
||||
{"lastModified", headers.last_modified}
|
||||
});
|
||||
std::ofstream(metadata_path) << metadata.dump(4);
|
||||
LOG_INF("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
|
||||
|
||||
if (rename(path_temporary.c_str(), path.c_str()) != 0) {
|
||||
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
struct llama_model * common_load_model_from_url(
|
||||
const std::string & model_url,
|
||||
const std::string & local_path,
|
||||
const std::string & hf_token,
|
||||
const struct llama_model_params & params) {
|
||||
// Basic validation of the model_url
|
||||
if (model_url.empty()) {
|
||||
LOG_ERR("%s: invalid model_url\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (!common_download_file(model_url, local_path, hf_token)) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// check for additional GGUFs split to download
|
||||
int n_split = 0;
|
||||
{
|
||||
struct gguf_init_params gguf_params = {
|
||||
/*.no_alloc = */ true,
|
||||
/*.ctx = */ NULL,
|
||||
};
|
||||
auto * ctx_gguf = gguf_init_from_file(local_path.c_str(), gguf_params);
|
||||
if (!ctx_gguf) {
|
||||
LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, local_path.c_str());
|
||||
return NULL;
|
||||
}
|
||||
|
||||
auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
|
||||
if (key_n_split >= 0) {
|
||||
n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
|
||||
}
|
||||
|
||||
gguf_free(ctx_gguf);
|
||||
}
|
||||
|
||||
if (n_split > 1) {
|
||||
char split_prefix[PATH_MAX] = {0};
|
||||
char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
|
||||
|
||||
// Verify the first split file format
|
||||
// and extract split URL and PATH prefixes
|
||||
{
|
||||
if (!llama_split_prefix(split_prefix, sizeof(split_prefix), local_path.c_str(), 0, n_split)) {
|
||||
LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, local_path.c_str(), n_split);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url.c_str(), 0, n_split)) {
|
||||
LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model_url.c_str(), n_split);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
// Prepare download in parallel
|
||||
std::vector<std::future<bool>> futures_download;
|
||||
for (int idx = 1; idx < n_split; idx++) {
|
||||
futures_download.push_back(std::async(std::launch::async, [&split_prefix, &split_url_prefix, &n_split, hf_token](int download_idx) -> bool {
|
||||
char split_path[PATH_MAX] = {0};
|
||||
llama_split_path(split_path, sizeof(split_path), split_prefix, download_idx, n_split);
|
||||
|
||||
char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
|
||||
llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split);
|
||||
|
||||
return common_download_file(split_url, split_path, hf_token);
|
||||
}, idx));
|
||||
}
|
||||
|
||||
// Wait for all downloads to complete
|
||||
for (auto & f : futures_download) {
|
||||
if (!f.get()) {
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return llama_model_load_from_file(local_path.c_str(), params);
|
||||
}
|
||||
|
||||
struct llama_model * common_load_model_from_hf(
|
||||
const std::string & repo,
|
||||
const std::string & remote_path,
|
||||
const std::string & local_path,
|
||||
const std::string & hf_token,
|
||||
const struct llama_model_params & params) {
|
||||
// construct hugging face model url:
|
||||
//
|
||||
// --repo ggml-org/models --file tinyllama-1.1b/ggml-model-f16.gguf
|
||||
// https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf
|
||||
//
|
||||
// --repo TheBloke/Mixtral-8x7B-v0.1-GGUF --file mixtral-8x7b-v0.1.Q4_K_M.gguf
|
||||
// https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q4_K_M.gguf
|
||||
//
|
||||
|
||||
std::string model_url = "https://huggingface.co/";
|
||||
model_url += repo;
|
||||
model_url += "/resolve/main/";
|
||||
model_url += remote_path;
|
||||
|
||||
return common_load_model_from_url(model_url, local_path, hf_token, params);
|
||||
}
|
||||
|
||||
/**
|
||||
* Allow getting the HF file from the HF repo with tag (like ollama), for example:
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
|
||||
* Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
|
||||
*
|
||||
* Return pair of <repo, file> (with "repo" already having tag removed)
|
||||
*
|
||||
* Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
|
||||
*/
|
||||
std::pair<std::string, std::string> common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & hf_token) {
|
||||
auto parts = string_split<std::string>(hf_repo_with_tag, ':');
|
||||
std::string tag = parts.size() > 1 ? parts.back() : "latest";
|
||||
std::string hf_repo = parts[0];
|
||||
if (string_split<std::string>(hf_repo, '/').size() != 2) {
|
||||
throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
|
||||
}
|
||||
|
||||
// fetch model info from Hugging Face Hub API
|
||||
json model_info;
|
||||
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
|
||||
curl_slist_ptr http_headers;
|
||||
std::string res_str;
|
||||
std::string url = "https://huggingface.co/v2/" + hf_repo + "/manifests/" + tag;
|
||||
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
|
||||
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
|
||||
auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
|
||||
static_cast<std::string *>(data)->append((char * ) ptr, size * nmemb);
|
||||
return size * nmemb;
|
||||
};
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_str);
|
||||
#if defined(_WIN32)
|
||||
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
|
||||
#endif
|
||||
if (!hf_token.empty()) {
|
||||
std::string auth_header = "Authorization: Bearer " + hf_token;
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
|
||||
}
|
||||
// Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, "Accept: application/json");
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
|
||||
|
||||
CURLcode res = curl_easy_perform(curl.get());
|
||||
|
||||
if (res != CURLE_OK) {
|
||||
throw std::runtime_error("error: cannot make GET request to HF API");
|
||||
}
|
||||
|
||||
long res_code;
|
||||
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
|
||||
if (res_code == 200) {
|
||||
model_info = json::parse(res_str);
|
||||
} else if (res_code == 401) {
|
||||
throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
|
||||
} else {
|
||||
throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str()));
|
||||
}
|
||||
|
||||
// check response
|
||||
if (!model_info.contains("ggufFile")) {
|
||||
throw std::runtime_error("error: model does not have ggufFile");
|
||||
}
|
||||
json & gguf_file = model_info.at("ggufFile");
|
||||
if (!gguf_file.contains("rfilename")) {
|
||||
throw std::runtime_error("error: ggufFile does not have rfilename");
|
||||
}
|
||||
|
||||
return std::make_pair(hf_repo, gguf_file.at("rfilename"));
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
struct llama_model * common_load_model_from_url(
|
||||
const std::string & /*model_url*/,
|
||||
const std::string & /*local_path*/,
|
||||
const std::string & /*hf_token*/,
|
||||
const struct llama_model_params & /*params*/) {
|
||||
LOG_WRN("%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
struct llama_model * common_load_model_from_hf(
|
||||
const std::string & /*repo*/,
|
||||
const std::string & /*remote_path*/,
|
||||
const std::string & /*local_path*/,
|
||||
const std::string & /*hf_token*/,
|
||||
const struct llama_model_params & /*params*/) {
|
||||
LOG_WRN("%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
std::pair<std::string, std::string> common_get_hf_file(const std::string &, const std::string &) {
|
||||
LOG_WRN("%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
|
||||
return std::make_pair("", "");
|
||||
}
|
||||
|
||||
#endif // LLAMA_USE_CURL
|
||||
|
||||
//
|
||||
// Batch utils
|
||||
//
|
||||
@@ -1306,6 +1725,95 @@ std::string common_detokenize(const struct llama_vocab * vocab, const std::vecto
|
||||
return text;
|
||||
}
|
||||
|
||||
//
|
||||
// Chat template utils
|
||||
//
|
||||
|
||||
std::string common_get_builtin_chat_template(const struct llama_model * model) {
|
||||
const char * ptr_tmpl = llama_model_chat_template(model);
|
||||
return ptr_tmpl == nullptr ? "" : ptr_tmpl;
|
||||
}
|
||||
|
||||
bool common_chat_verify_template(const std::string & tmpl) {
|
||||
llama_chat_message chat[] = {{"user", "test"}};
|
||||
const int res = llama_chat_apply_template(tmpl.c_str(), chat, 1, true, nullptr, 0);
|
||||
return res >= 0;
|
||||
}
|
||||
|
||||
std::string common_chat_apply_template(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
const std::vector<common_chat_msg> & msgs,
|
||||
bool add_ass) {
|
||||
int alloc_size = 0;
|
||||
bool fallback = false; // indicate if we must fallback to default chatml
|
||||
std::vector<llama_chat_message> chat;
|
||||
for (const auto & msg : msgs) {
|
||||
chat.push_back({msg.role.c_str(), msg.content.c_str()});
|
||||
alloc_size += (msg.role.size() + msg.content.size()) * 1.25;
|
||||
}
|
||||
|
||||
const char * ptr_tmpl = tmpl.empty() ? llama_model_chat_template(model) : tmpl.c_str();
|
||||
std::vector<char> buf(alloc_size);
|
||||
|
||||
// run the first time to get the total output length
|
||||
int32_t res = llama_chat_apply_template(ptr_tmpl, chat.data(), chat.size(), add_ass, buf.data(), buf.size());
|
||||
|
||||
// error: chat template is not supported
|
||||
if (res < 0) {
|
||||
if (ptr_tmpl != nullptr) {
|
||||
// if the custom "tmpl" is not supported, we throw an error
|
||||
// this is a bit redundant (for good), since we're not sure if user validated the custom template with llama_chat_verify_template()
|
||||
throw std::runtime_error("this custom template is not supported");
|
||||
}
|
||||
|
||||
// If the built-in template is not supported, we default to chatml
|
||||
res = llama_chat_apply_template("chatml", chat.data(), chat.size(), add_ass, buf.data(), buf.size());
|
||||
fallback = true;
|
||||
}
|
||||
|
||||
// if it turns out that our buffer is too small, we resize it
|
||||
if ((size_t) res > buf.size()) {
|
||||
buf.resize(res);
|
||||
res = llama_chat_apply_template(
|
||||
fallback ? "chatml" : ptr_tmpl,
|
||||
chat.data(), chat.size(), add_ass, buf.data(), buf.size());
|
||||
}
|
||||
|
||||
std::string formatted_chat(buf.data(), res);
|
||||
return formatted_chat;
|
||||
}
|
||||
|
||||
std::string common_chat_format_single(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
const std::vector<common_chat_msg> & past_msg,
|
||||
const common_chat_msg & new_msg,
|
||||
bool add_ass) {
|
||||
std::ostringstream ss;
|
||||
auto fmt_past_msg = past_msg.empty() ? "" : common_chat_apply_template(model, tmpl, past_msg, false);
|
||||
std::vector<common_chat_msg> chat_new(past_msg);
|
||||
// if the past_msg ends with a newline, we must preserve it in the formatted version
|
||||
if (add_ass && !fmt_past_msg.empty() && fmt_past_msg.back() == '\n') {
|
||||
ss << "\n";
|
||||
};
|
||||
// format chat with new_msg
|
||||
chat_new.push_back(new_msg);
|
||||
auto fmt_new_msg = common_chat_apply_template(model, tmpl, chat_new, add_ass);
|
||||
// get the diff part
|
||||
ss << fmt_new_msg.substr(fmt_past_msg.size(), fmt_new_msg.size() - fmt_past_msg.size());
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
std::string common_chat_format_example(const struct llama_model * model,
|
||||
const std::string & tmpl) {
|
||||
std::vector<common_chat_msg> msgs = {
|
||||
{"system", "You are a helpful assistant"},
|
||||
{"user", "Hello"},
|
||||
{"assistant", "Hi there"},
|
||||
{"user", "How are you?"},
|
||||
};
|
||||
return common_chat_apply_template(model, tmpl, msgs, true);
|
||||
}
|
||||
|
||||
//
|
||||
// KV cache utils
|
||||
//
|
||||
@@ -1565,3 +2073,4 @@ common_control_vector_data common_control_vector_load(const std::vector<common_c
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
140
common/common.h
140
common/common.h
@@ -4,7 +4,6 @@
|
||||
|
||||
#include "llama-cpp.h"
|
||||
|
||||
#include <set>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <sstream>
|
||||
@@ -110,19 +109,6 @@ enum common_conversation_mode {
|
||||
COMMON_CONVERSATION_MODE_AUTO = 2,
|
||||
};
|
||||
|
||||
enum common_grammar_trigger_type {
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN,
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_WORD,
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN,
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START,
|
||||
};
|
||||
|
||||
struct common_grammar_trigger {
|
||||
common_grammar_trigger_type type;
|
||||
std::string value;
|
||||
llama_token token = LLAMA_TOKEN_NULL;
|
||||
};
|
||||
|
||||
// sampling parameters
|
||||
struct common_params_sampling {
|
||||
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
|
||||
@@ -148,7 +134,6 @@ struct common_params_sampling {
|
||||
int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
|
||||
int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
|
||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float top_n_sigma = -1.00f;// -1.0 = disabled
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
bool ignore_eos = false;
|
||||
@@ -169,10 +154,7 @@ struct common_params_sampling {
|
||||
COMMON_SAMPLER_TYPE_TEMPERATURE,
|
||||
};
|
||||
|
||||
std::string grammar; // optional BNF-like grammar to constrain sampling
|
||||
bool grammar_lazy = false;
|
||||
std::vector<common_grammar_trigger> grammar_triggers; // optional triggers (for lazy grammars)
|
||||
std::set<llama_token> preserved_tokens;
|
||||
std::string grammar; // optional BNF-like grammar to constrain sampling
|
||||
|
||||
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
|
||||
|
||||
@@ -180,40 +162,28 @@ struct common_params_sampling {
|
||||
std::string print() const;
|
||||
};
|
||||
|
||||
struct common_params_model {
|
||||
std::string path = ""; // model local path // NOLINT
|
||||
std::string url = ""; // model url to download // NOLINT
|
||||
std::string hf_repo = ""; // HF repo // NOLINT
|
||||
std::string hf_file = ""; // HF file // NOLINT
|
||||
};
|
||||
|
||||
struct common_params_speculative {
|
||||
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
|
||||
|
||||
int32_t n_ctx = 0; // draft context size
|
||||
int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding
|
||||
int32_t n_min = 0; // minimum number of draft tokens to use for speculative decoding
|
||||
int32_t n_min = 5; // minimum number of draft tokens to use for speculative decoding
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
float p_min = 0.75f; // minimum speculative decoding probability (greedy)
|
||||
float p_min = 0.9f; // minimum speculative decoding probability (greedy)
|
||||
|
||||
struct cpu_params cpuparams;
|
||||
struct cpu_params cpuparams_batch;
|
||||
|
||||
struct common_params_model model;
|
||||
std::string model = ""; // draft model for speculative decoding // NOLINT
|
||||
};
|
||||
|
||||
struct common_params_vocoder {
|
||||
struct common_params_model model;
|
||||
std::string hf_repo = ""; // HF repo // NOLINT
|
||||
std::string hf_file = ""; // HF file // NOLINT
|
||||
|
||||
std::string speaker_file = ""; // speaker file path // NOLINT
|
||||
|
||||
bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy // NOLINT
|
||||
};
|
||||
|
||||
enum common_reasoning_format {
|
||||
COMMON_REASONING_FORMAT_NONE,
|
||||
COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`
|
||||
std::string model = ""; // model path // NOLINT
|
||||
std::string model_url = ""; // model url to download // NOLINT
|
||||
};
|
||||
|
||||
struct common_params {
|
||||
@@ -262,12 +232,13 @@ struct common_params {
|
||||
struct common_params_speculative speculative;
|
||||
struct common_params_vocoder vocoder;
|
||||
|
||||
struct common_params_model model;
|
||||
|
||||
std::string model = ""; // model path // NOLINT
|
||||
std::string model_alias = ""; // model alias // NOLINT
|
||||
std::string model_url = ""; // model url to download // NOLINT
|
||||
std::string hf_token = ""; // HF token // NOLINT
|
||||
std::string hf_repo = ""; // HF repo // NOLINT
|
||||
std::string hf_file = ""; // HF file // NOLINT
|
||||
std::string prompt = ""; // NOLINT
|
||||
std::string system_prompt = ""; // NOLINT
|
||||
std::string prompt_file = ""; // store the external prompt file name // NOLINT
|
||||
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
|
||||
std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
|
||||
@@ -275,11 +246,11 @@ struct common_params {
|
||||
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
|
||||
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
|
||||
std::string logits_file = ""; // file for saving *all* logits // NOLINT
|
||||
std::string rpc_servers = ""; // comma separated list of RPC servers // NOLINT
|
||||
|
||||
std::vector<std::string> in_files; // all input files
|
||||
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
|
||||
std::vector<llama_model_kv_override> kv_overrides;
|
||||
std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
|
||||
|
||||
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_adapter_lora_apply)
|
||||
std::vector<common_adapter_lora_info> lora_adapters; // lora adapter path with user defined scale
|
||||
@@ -306,7 +277,6 @@ struct common_params {
|
||||
bool kl_divergence = false; // compute KL divergence
|
||||
|
||||
bool usage = false; // print usage
|
||||
bool completion = false; // print source-able completion script
|
||||
bool use_color = false; // use color to distinguish generations and inputs
|
||||
bool special = false; // enable special token output
|
||||
bool interactive = false; // interactive mode
|
||||
@@ -333,15 +303,13 @@ struct common_params {
|
||||
bool warmup = true; // warmup run
|
||||
bool check_tensors = false; // validate tensor data
|
||||
|
||||
bool single_turn = false; // single turn chat conversation
|
||||
|
||||
ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
|
||||
ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
|
||||
|
||||
common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
|
||||
|
||||
// multimodal models (see examples/llava)
|
||||
struct common_params_model mmproj;
|
||||
std::string mmproj = ""; // path to multimodal projector // NOLINT
|
||||
std::vector<std::string> image; // path to image file(s)
|
||||
|
||||
// embedding
|
||||
@@ -361,9 +329,7 @@ struct common_params {
|
||||
std::string hostname = "127.0.0.1";
|
||||
std::string public_path = ""; // NOLINT
|
||||
std::string chat_template = ""; // NOLINT
|
||||
bool use_jinja = false; // NOLINT
|
||||
bool enable_chat_template = true;
|
||||
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
|
||||
|
||||
std::vector<std::string> api_keys;
|
||||
|
||||
@@ -401,6 +367,8 @@ struct common_params {
|
||||
int32_t i_pos = -1; // position of the passkey in the junk text
|
||||
|
||||
// imatrix params
|
||||
std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
|
||||
|
||||
int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
|
||||
int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
|
||||
int32_t i_chunk = 0; // start processing from this chunk
|
||||
@@ -412,16 +380,16 @@ struct common_params {
|
||||
int n_pca_batch = 100;
|
||||
int n_pca_iterations = 1000;
|
||||
dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
|
||||
std::string cvector_outfile = "control_vector.gguf";
|
||||
std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
|
||||
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
|
||||
|
||||
bool spm_infill = false; // suffix/prefix/middle pattern for infill
|
||||
|
||||
std::string lora_outfile = "ggml-lora-merged-f16.gguf";
|
||||
|
||||
// batched-bench params
|
||||
bool batched_bench_output_jsonl = false;
|
||||
|
||||
// common params
|
||||
std::string out_file; // output filename for all example programs
|
||||
};
|
||||
|
||||
// call once at the start of a program if it uses libcommon
|
||||
@@ -440,13 +408,13 @@ bool set_process_priority(enum ggml_sched_priority prio);
|
||||
//
|
||||
|
||||
#ifdef __GNUC__
|
||||
# if defined(__MINGW32__) && !defined(__clang__)
|
||||
# define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
||||
# else
|
||||
# define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
||||
# endif
|
||||
#ifdef __MINGW32__
|
||||
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
||||
#else
|
||||
# define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
|
||||
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
||||
#endif
|
||||
#else
|
||||
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
|
||||
#endif
|
||||
|
||||
LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
|
||||
@@ -455,14 +423,8 @@ std::string string_format(const char * fmt, ...);
|
||||
std::string string_strip(const std::string & str);
|
||||
std::string string_get_sortable_timestamp();
|
||||
|
||||
std::string string_join(const std::vector<std::string> & values, const std::string & separator);
|
||||
std::vector<std::string> string_split(const std::string & str, const std::string & delimiter);
|
||||
std::string string_repeat(const std::string & str, size_t n);
|
||||
|
||||
void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
|
||||
|
||||
std::string regex_escape(const std::string & s);
|
||||
|
||||
template<class T>
|
||||
static std::vector<T> string_split(const std::string & str, char delim) {
|
||||
static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string");
|
||||
@@ -540,11 +502,24 @@ struct llama_model_params common_model_params_to_llama ( common_params
|
||||
struct llama_context_params common_context_params_to_llama(const common_params & params);
|
||||
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
|
||||
|
||||
struct llama_model * common_load_model_from_url(
|
||||
const std::string & model_url,
|
||||
const std::string & local_path,
|
||||
const std::string & hf_token,
|
||||
const struct llama_model_params & params);
|
||||
struct llama_model * common_load_model_from_hf(
|
||||
const std::string & repo,
|
||||
const std::string & remote_path,
|
||||
const std::string & local_path,
|
||||
const std::string & hf_token,
|
||||
const struct llama_model_params & params);
|
||||
std::pair<std::string, std::string> common_get_hf_file(
|
||||
const std::string & hf_repo_with_tag,
|
||||
const std::string & hf_token);
|
||||
|
||||
// clear LoRA adapters from context, then apply new list of adapters
|
||||
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora);
|
||||
|
||||
std::string get_model_endpoint();
|
||||
|
||||
//
|
||||
// Batch utils
|
||||
//
|
||||
@@ -611,6 +586,41 @@ std::string common_detokenize(
|
||||
const std::vector<llama_token> & tokens,
|
||||
bool special = true);
|
||||
|
||||
//
|
||||
// Chat template utils
|
||||
//
|
||||
|
||||
// same with llama_chat_message, but uses std::string
|
||||
struct common_chat_msg {
|
||||
std::string role;
|
||||
std::string content;
|
||||
};
|
||||
|
||||
// Get the built-in chat template for the model. Return empty string if not present.
|
||||
std::string common_get_builtin_chat_template(const struct llama_model * model);
|
||||
|
||||
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
|
||||
bool common_chat_verify_template(const std::string & tmpl);
|
||||
|
||||
// CPP wrapper for llama_chat_apply_template
|
||||
// If the built-in template is not supported, we default to chatml
|
||||
// If the custom "tmpl" is not supported, we throw an error
|
||||
std::string common_chat_apply_template(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
const std::vector<common_chat_msg> & chat,
|
||||
bool add_ass);
|
||||
|
||||
// Format single message, while taking into account the position of that message in chat history
|
||||
std::string common_chat_format_single(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
const std::vector<common_chat_msg> & past_msg,
|
||||
const common_chat_msg & new_msg,
|
||||
bool add_ass);
|
||||
|
||||
// Returns an example of formatted chat
|
||||
std::string common_chat_format_example(const struct llama_model * model,
|
||||
const std::string & tmpl);
|
||||
|
||||
//
|
||||
// KV cache utils
|
||||
//
|
||||
|
||||
@@ -1,6 +1,4 @@
|
||||
#include "json-schema-to-grammar.h"
|
||||
#include "common.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <fstream>
|
||||
#include <map>
|
||||
@@ -13,6 +11,11 @@
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
template <typename Iterator>
|
||||
static std::string join(Iterator begin, Iterator end, const std::string & separator);
|
||||
|
||||
static std::string repeat(const std::string & str, size_t n);
|
||||
|
||||
static std::string build_repetition(const std::string & item_rule, int min_items, int max_items, const std::string & separator_rule = "") {
|
||||
auto has_max = max_items != std::numeric_limits<int>::max();
|
||||
|
||||
@@ -125,8 +128,8 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
|
||||
if (sub_len > 0) {
|
||||
auto from_sub = from.substr(i + 1);
|
||||
auto to_sub = to.substr(i + 1);
|
||||
auto sub_zeros = string_repeat("0", sub_len);
|
||||
auto sub_nines = string_repeat("9", sub_len);
|
||||
auto sub_zeros = repeat("0", sub_len);
|
||||
auto sub_nines = repeat("9", sub_len);
|
||||
|
||||
auto to_reached = false;
|
||||
out << "(";
|
||||
@@ -185,8 +188,8 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
|
||||
auto max_digits = max_s.length();
|
||||
|
||||
for (auto digits = min_digits; digits < max_digits; digits++) {
|
||||
uniform_range(min_s, string_repeat("9", digits));
|
||||
min_s = "1" + string_repeat("0", digits);
|
||||
uniform_range(min_s, repeat("9", digits));
|
||||
min_s = "1" + repeat("0", digits);
|
||||
out << " | ";
|
||||
}
|
||||
uniform_range(min_s, max_s);
|
||||
@@ -264,7 +267,7 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
|
||||
throw std::runtime_error("At least one of min_value or max_value must be set");
|
||||
}
|
||||
|
||||
const std::string SPACE_RULE = "| \" \" | \"\\n\"{1,2} [ \\t]{0,20}";
|
||||
const std::string SPACE_RULE = "| \" \" | \"\\n\" [ \\t]{0,20}";
|
||||
|
||||
struct BuiltinRule {
|
||||
std::string content;
|
||||
@@ -315,6 +318,49 @@ std::unordered_map<char, std::string> GRAMMAR_LITERAL_ESCAPES = {
|
||||
std::unordered_set<char> NON_LITERAL_SET = {'|', '.', '(', ')', '[', ']', '{', '}', '*', '+', '?'};
|
||||
std::unordered_set<char> ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = {'^', '$', '.', '[', ']', '(', ')', '|', '{', '}', '*', '+', '?'};
|
||||
|
||||
template <typename Iterator>
|
||||
std::string join(Iterator begin, Iterator end, const std::string & separator) {
|
||||
std::ostringstream result;
|
||||
if (begin != end) {
|
||||
result << *begin;
|
||||
for (Iterator it = begin + 1; it != end; ++it) {
|
||||
result << separator << *it;
|
||||
}
|
||||
}
|
||||
return result.str();
|
||||
}
|
||||
|
||||
static std::vector<std::string> split(const std::string & str, const std::string & delimiter) {
|
||||
std::vector<std::string> tokens;
|
||||
size_t start = 0;
|
||||
size_t end = str.find(delimiter);
|
||||
|
||||
while (end != std::string::npos) {
|
||||
tokens.push_back(str.substr(start, end - start));
|
||||
start = end + delimiter.length();
|
||||
end = str.find(delimiter, start);
|
||||
}
|
||||
|
||||
tokens.push_back(str.substr(start));
|
||||
|
||||
return tokens;
|
||||
}
|
||||
|
||||
static std::string repeat(const std::string & str, size_t n) {
|
||||
if (n == 0) {
|
||||
return "";
|
||||
}
|
||||
|
||||
std::string result;
|
||||
result.reserve(str.length() * n);
|
||||
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
result += str;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static std::string replacePattern(const std::string & input, const std::regex & regex, const std::function<std::string(const std::smatch &)> & replacement) {
|
||||
std::smatch match;
|
||||
std::string result;
|
||||
@@ -343,7 +389,6 @@ static std::string format_literal(const std::string & literal) {
|
||||
|
||||
class SchemaConverter {
|
||||
private:
|
||||
friend std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options);
|
||||
std::function<json(const std::string &)> _fetch_json;
|
||||
bool _dotall;
|
||||
std::map<std::string, std::string> _rules;
|
||||
@@ -373,7 +418,7 @@ private:
|
||||
for (size_t i = 0; i < alt_schemas.size(); i++) {
|
||||
rules.push_back(visit(alt_schemas[i], name + (name.empty() ? "alternative-" : "-") + std::to_string(i)));
|
||||
}
|
||||
return string_join(rules, " | ");
|
||||
return join(rules.begin(), rules.end(), " | ");
|
||||
}
|
||||
|
||||
std::string _visit_pattern(const std::string & pattern, const std::string & name) {
|
||||
@@ -436,7 +481,7 @@ private:
|
||||
for (const auto & item : ret) {
|
||||
results.push_back(to_rule(item));
|
||||
}
|
||||
return std::make_pair(string_join(results, " "), false);
|
||||
return std::make_pair(join(results.begin(), results.end(), " "), false);
|
||||
};
|
||||
|
||||
while (i < length) {
|
||||
@@ -494,7 +539,7 @@ private:
|
||||
}
|
||||
curly_brackets += '}';
|
||||
i++;
|
||||
auto nums = string_split(curly_brackets.substr(1, curly_brackets.length() - 2), ",");
|
||||
auto nums = split(curly_brackets.substr(1, curly_brackets.length() - 2), ",");
|
||||
int min_times = 0;
|
||||
int max_times = std::numeric_limits<int>::max();
|
||||
try {
|
||||
@@ -809,7 +854,7 @@ public:
|
||||
return;
|
||||
}
|
||||
std::string pointer = ref.substr(ref.find('#') + 1);
|
||||
std::vector<std::string> tokens = string_split(pointer, "/");
|
||||
std::vector<std::string> tokens = split(pointer, "/");
|
||||
for (size_t i = 1; i < tokens.size(); ++i) {
|
||||
std::string sel = tokens[i];
|
||||
if (target.is_null() || !target.contains(sel)) {
|
||||
@@ -860,7 +905,7 @@ public:
|
||||
for (const auto & v : schema["enum"]) {
|
||||
enum_values.push_back(_generate_constant_rule(v));
|
||||
}
|
||||
return _add_rule(rule_name, "(" + string_join(enum_values, " | ") + ") space");
|
||||
return _add_rule(rule_name, "(" + join(enum_values.begin(), enum_values.end(), " | ") + ") space");
|
||||
} else if ((schema_type.is_null() || schema_type == "object")
|
||||
&& (schema.contains("properties") ||
|
||||
(schema.contains("additionalProperties") && schema["additionalProperties"] != true))) {
|
||||
@@ -974,10 +1019,10 @@ public:
|
||||
|
||||
void check_errors() {
|
||||
if (!_errors.empty()) {
|
||||
throw std::runtime_error("JSON schema conversion failed:\n" + string_join(_errors, "\n"));
|
||||
throw std::runtime_error("JSON schema conversion failed:\n" + join(_errors.begin(), _errors.end(), "\n"));
|
||||
}
|
||||
if (!_warnings.empty()) {
|
||||
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", string_join(_warnings, "; ").c_str());
|
||||
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", join(_warnings.begin(), _warnings.end(), "; ").c_str());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -990,35 +1035,11 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
std::string json_schema_to_grammar(const json & schema, bool force_gbnf) {
|
||||
#ifdef LLAMA_USE_LLGUIDANCE
|
||||
if (!force_gbnf) {
|
||||
return "%llguidance {}\nstart: %json " + schema.dump();
|
||||
}
|
||||
#else
|
||||
(void)force_gbnf;
|
||||
#endif // LLAMA_USE_LLGUIDANCE
|
||||
return build_grammar([&](const common_grammar_builder & callbacks) {
|
||||
auto copy = schema;
|
||||
callbacks.resolve_refs(copy);
|
||||
callbacks.add_schema("", copy);
|
||||
});
|
||||
}
|
||||
|
||||
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options) {
|
||||
SchemaConverter converter([&](const std::string &) { return json(); }, options.dotall);
|
||||
common_grammar_builder builder {
|
||||
/* .add_rule = */ [&](const std::string & name, const std::string & rule) {
|
||||
return converter._add_rule(name, rule);
|
||||
},
|
||||
/* .add_schema = */ [&](const std::string & name, const nlohmann::ordered_json & schema) {
|
||||
return converter.visit(schema, name == "root" ? "" : name);
|
||||
},
|
||||
/* .resolve_refs = */ [&](nlohmann::ordered_json & schema) {
|
||||
converter.resolve_refs(schema, "");
|
||||
}
|
||||
};
|
||||
cb(builder);
|
||||
std::string json_schema_to_grammar(const json & schema) {
|
||||
SchemaConverter converter([](const std::string &) { return json::object(); }, /* dotall= */ false);
|
||||
auto copy = schema;
|
||||
converter.resolve_refs(copy, "input");
|
||||
converter.visit(copy, "");
|
||||
converter.check_errors();
|
||||
return converter.format_grammar();
|
||||
}
|
||||
|
||||
@@ -5,17 +5,4 @@
|
||||
#define JSON_ASSERT GGML_ASSERT
|
||||
#include "json.hpp"
|
||||
|
||||
std::string json_schema_to_grammar(const nlohmann::ordered_json & schema,
|
||||
bool force_gbnf = false);
|
||||
|
||||
struct common_grammar_builder {
|
||||
std::function<std::string(const std::string &, const std::string &)> add_rule;
|
||||
std::function<std::string(const std::string &, const nlohmann::ordered_json &)> add_schema;
|
||||
std::function<void(nlohmann::ordered_json &)> resolve_refs;
|
||||
};
|
||||
|
||||
struct common_grammar_options {
|
||||
bool dotall = false;
|
||||
};
|
||||
|
||||
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options = {});
|
||||
std::string json_schema_to_grammar(const nlohmann::ordered_json& schema);
|
||||
|
||||
@@ -1,253 +0,0 @@
|
||||
#include "sampling.h"
|
||||
#include "log.h"
|
||||
|
||||
#ifdef LLAMA_USE_LLGUIDANCE
|
||||
|
||||
# include "llguidance.h"
|
||||
# include <cmath>
|
||||
|
||||
struct llama_sampler_llg {
|
||||
const llama_vocab * vocab;
|
||||
std::string grammar_kind;
|
||||
std::string grammar_data;
|
||||
LlgTokenizer * tokenizer;
|
||||
LlgMatcher * grammar;
|
||||
};
|
||||
|
||||
static LlgMatcher * llama_sampler_llg_new(LlgTokenizer * tokenizer, const char * grammar_kind,
|
||||
const char * grammar_data) {
|
||||
LlgConstraintInit cinit;
|
||||
llg_constraint_init_set_defaults(&cinit, tokenizer);
|
||||
const char * log_level = getenv("LLGUIDANCE_LOG_LEVEL");
|
||||
if (log_level && *log_level) {
|
||||
cinit.log_stderr_level = atoi(log_level);
|
||||
}
|
||||
auto c = llg_new_matcher(&cinit, grammar_kind, grammar_data);
|
||||
if (llg_matcher_get_error(c)) {
|
||||
LOG_ERR("llg error: %s\n", llg_matcher_get_error(c));
|
||||
llg_free_matcher(c);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return c;
|
||||
}
|
||||
|
||||
static const char * llama_sampler_llg_name(const llama_sampler * /*smpl*/) {
|
||||
return "llguidance";
|
||||
}
|
||||
|
||||
static void llama_sampler_llg_accept_impl(llama_sampler * smpl, llama_token token) {
|
||||
auto * ctx = (llama_sampler_llg *) smpl->ctx;
|
||||
if (ctx->grammar) {
|
||||
llg_matcher_consume_token(ctx->grammar, token);
|
||||
}
|
||||
}
|
||||
|
||||
static void llama_sampler_llg_apply(llama_sampler * smpl, llama_token_data_array * cur_p) {
|
||||
auto * ctx = (llama_sampler_llg *) smpl->ctx;
|
||||
if (ctx->grammar) {
|
||||
const uint32_t * mask = llg_matcher_get_mask(ctx->grammar);
|
||||
if (mask == nullptr) {
|
||||
if (llg_matcher_compute_mask(ctx->grammar) == 0) {
|
||||
mask = llg_matcher_get_mask(ctx->grammar);
|
||||
} else {
|
||||
LOG_ERR("llg error: %s\n", llg_matcher_get_error(ctx->grammar));
|
||||
llg_free_matcher(ctx->grammar);
|
||||
ctx->grammar = nullptr;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < cur_p->size; ++i) {
|
||||
auto token = cur_p->data[i].id;
|
||||
if ((mask[token / 32] & (1 << (token % 32))) == 0) {
|
||||
cur_p->data[i].logit = -INFINITY;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void llama_sampler_llg_reset(llama_sampler * smpl) {
|
||||
auto * ctx = (llama_sampler_llg *) smpl->ctx;
|
||||
if (ctx->grammar) {
|
||||
llg_matcher_reset(ctx->grammar);
|
||||
}
|
||||
}
|
||||
|
||||
static llama_sampler * llama_sampler_llg_clone(const llama_sampler * smpl) {
|
||||
const auto * ctx = (const llama_sampler_llg *) smpl->ctx;
|
||||
|
||||
auto * result = llama_sampler_init_llg(ctx->vocab, nullptr, nullptr);
|
||||
|
||||
// copy the state
|
||||
{
|
||||
auto * result_ctx = (llama_sampler_llg *) result->ctx;
|
||||
|
||||
if (ctx->grammar) {
|
||||
result_ctx->grammar_kind = ctx->grammar_kind;
|
||||
result_ctx->grammar_data = ctx->grammar_data;
|
||||
result_ctx->grammar = llg_clone_matcher(ctx->grammar);
|
||||
result_ctx->tokenizer = llg_clone_tokenizer(ctx->tokenizer);
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static void llama_sampler_llg_free(llama_sampler * smpl) {
|
||||
const auto * ctx = (llama_sampler_llg *) smpl->ctx;
|
||||
|
||||
if (ctx->grammar) {
|
||||
llg_free_matcher(ctx->grammar);
|
||||
llg_free_tokenizer(ctx->tokenizer);
|
||||
}
|
||||
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
static llama_sampler_i llama_sampler_llg_i = {
|
||||
/* .name = */ llama_sampler_llg_name,
|
||||
/* .accept = */ llama_sampler_llg_accept_impl,
|
||||
/* .apply = */ llama_sampler_llg_apply,
|
||||
/* .reset = */ llama_sampler_llg_reset,
|
||||
/* .clone = */ llama_sampler_llg_clone,
|
||||
/* .free = */ llama_sampler_llg_free,
|
||||
};
|
||||
|
||||
static size_t llama_sampler_llg_tokenize_fn(const void * user_data, const uint8_t * bytes, size_t bytes_len,
|
||||
uint32_t * output_tokens, size_t output_tokens_len) {
|
||||
const llama_vocab * vocab = (const llama_vocab *) user_data;
|
||||
int r = 0;
|
||||
try {
|
||||
r = llama_tokenize(vocab, (const char *) bytes, bytes_len, (int32_t *) output_tokens, output_tokens_len, false,
|
||||
true);
|
||||
} catch (const std::exception & e) {
|
||||
GGML_ABORT("llama_tokenize failed: %s\n", e.what());
|
||||
}
|
||||
if (r < 0) {
|
||||
return -r;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
static LlgTokenizer * llama_sampler_llg_new_tokenizer(const llama_vocab * vocab) {
|
||||
// TODO store the tokenizer in the vocab somehow
|
||||
static const llama_vocab * vocab_cache;
|
||||
static LlgTokenizer * tokenizer_cache;
|
||||
|
||||
if (vocab_cache == vocab) {
|
||||
return llg_clone_tokenizer(tokenizer_cache);
|
||||
}
|
||||
|
||||
auto tok_eos = llama_vocab_eot(vocab);
|
||||
if (tok_eos == LLAMA_TOKEN_NULL) {
|
||||
tok_eos = llama_vocab_eos(vocab);
|
||||
}
|
||||
|
||||
size_t vocab_size = llama_vocab_n_tokens(vocab);
|
||||
|
||||
auto token_lens = new uint32_t[vocab_size];
|
||||
// we typically have ~7 bytes per token; let's go on the safe side here
|
||||
auto token_bytes_size = vocab_size * 16 + 1024 * 1024;
|
||||
auto token_bytes = new uint8_t[token_bytes_size];
|
||||
|
||||
size_t offset = 0;
|
||||
for (size_t i = 0; i < vocab_size; i++) {
|
||||
size_t max_token = 1024;
|
||||
if (token_bytes_size - offset < max_token) {
|
||||
GGML_ABORT("token_bytes buffer too small\n");
|
||||
}
|
||||
|
||||
llama_token token = i;
|
||||
auto dp = (char *) token_bytes + offset;
|
||||
auto size = llama_detokenize(vocab, &token, 1, dp, max_token, false, false);
|
||||
if (size < 0) {
|
||||
GGML_ABORT("llama_detokenize failed\n");
|
||||
}
|
||||
if (size == 0) {
|
||||
size = llama_detokenize(vocab, &token, 1, dp + 1, max_token - 1, false, true);
|
||||
if (size < 0) {
|
||||
GGML_ABORT("llama_detokenize failed\n");
|
||||
}
|
||||
if (size != 0) {
|
||||
*dp = '\xff'; // special token prefix marker
|
||||
size += 1;
|
||||
}
|
||||
}
|
||||
|
||||
token_lens[i] = size;
|
||||
offset += size;
|
||||
}
|
||||
|
||||
LlgTokenizerInit tinit = {
|
||||
/* .vocab_size = */ (uint32_t) vocab_size,
|
||||
/* .tok_eos = */ (uint32_t) tok_eos,
|
||||
/* .token_lens = */ token_lens,
|
||||
/* .token_bytes = */ token_bytes,
|
||||
/* .tokenizer_json = */ nullptr,
|
||||
/* .tokenize_assumes_string = */ true,
|
||||
/* .tokenize_fn = */ llama_sampler_llg_tokenize_fn,
|
||||
/* .use_approximate_greedy_tokenize_fn = */ false,
|
||||
/* .tokenize_user_data = */ vocab,
|
||||
};
|
||||
|
||||
char error_buffer[1024];
|
||||
LlgTokenizer * tokenizer = llg_new_tokenizer(&tinit, error_buffer, sizeof(error_buffer));
|
||||
|
||||
delete[] token_bytes;
|
||||
delete[] token_lens;
|
||||
|
||||
if (tokenizer == nullptr) {
|
||||
LOG_ERR("llg tokenizer error: %s\n", error_buffer);
|
||||
return tokenizer;
|
||||
}
|
||||
|
||||
if (tokenizer_cache) {
|
||||
llg_free_tokenizer(tokenizer_cache);
|
||||
}
|
||||
vocab_cache = vocab;
|
||||
tokenizer_cache = tokenizer;
|
||||
|
||||
return llg_clone_tokenizer(tokenizer_cache);
|
||||
}
|
||||
|
||||
llama_sampler * llama_sampler_init_llg(const llama_vocab * vocab, const char * grammar_kind,
|
||||
const char * grammar_data) {
|
||||
auto * ctx = new llama_sampler_llg;
|
||||
|
||||
if (grammar_kind != nullptr && grammar_kind[0] != '\0') {
|
||||
auto tokenizer = llama_sampler_llg_new_tokenizer(vocab);
|
||||
*ctx = {
|
||||
/* .vocab = */ vocab,
|
||||
/* .grammar_kind = */ grammar_kind,
|
||||
/* .grammar_data = */ grammar_data,
|
||||
/* .tokenizer = */ tokenizer,
|
||||
/* .grammar = */ llama_sampler_llg_new(tokenizer, grammar_kind, grammar_data),
|
||||
};
|
||||
if (ctx->grammar) {
|
||||
GGML_ASSERT(((size_t) llama_vocab_n_tokens(vocab) + 31) / 32 * 4 ==
|
||||
llg_matcher_get_mask_byte_size(ctx->grammar));
|
||||
}
|
||||
} else {
|
||||
*ctx = {
|
||||
/* .vocab = */ vocab,
|
||||
/* .grammar_kind = */ {},
|
||||
/* .grammar_data = */ {},
|
||||
/* .tokenizer = */ nullptr,
|
||||
/* .grammar = */ nullptr,
|
||||
};
|
||||
}
|
||||
|
||||
return llama_sampler_init(
|
||||
/* .iface = */ &llama_sampler_llg_i,
|
||||
/* .ctx = */ ctx);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
llama_sampler * llama_sampler_init_llg(const llama_vocab *, const char *, const char *) {
|
||||
LOG_WRN("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
#endif // LLAMA_USE_LLGUIDANCE
|
||||
@@ -1,6 +1,5 @@
|
||||
#include "log.h"
|
||||
|
||||
#include <chrono>
|
||||
#include <condition_variable>
|
||||
#include <cstdarg>
|
||||
#include <cstdio>
|
||||
@@ -15,6 +14,16 @@ void common_log_set_verbosity_thold(int verbosity) {
|
||||
common_log_verbosity_thold = verbosity;
|
||||
}
|
||||
|
||||
#define LOG_COL_DEFAULT "\033[0m"
|
||||
#define LOG_COL_BOLD "\033[1m"
|
||||
#define LOG_COL_RED "\033[31m"
|
||||
#define LOG_COL_GREEN "\033[32m"
|
||||
#define LOG_COL_YELLOW "\033[33m"
|
||||
#define LOG_COL_BLUE "\033[34m"
|
||||
#define LOG_COL_MAGENTA "\033[35m"
|
||||
#define LOG_COL_CYAN "\033[36m"
|
||||
#define LOG_COL_WHITE "\033[37m"
|
||||
|
||||
static int64_t t_us() {
|
||||
return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::system_clock::now().time_since_epoch()).count();
|
||||
}
|
||||
@@ -197,7 +206,6 @@ public:
|
||||
vsnprintf(entry.msg.data(), entry.msg.size(), ss.str().c_str(), args_copy);
|
||||
}
|
||||
#endif
|
||||
va_end(args_copy);
|
||||
}
|
||||
|
||||
entry.level = level;
|
||||
|
||||
13
common/log.h
13
common/log.h
@@ -2,20 +2,9 @@
|
||||
|
||||
#include "ggml.h" // for ggml_log_level
|
||||
|
||||
#define LOG_CLR_TO_EOL "\033[K\r"
|
||||
#define LOG_COL_DEFAULT "\033[0m"
|
||||
#define LOG_COL_BOLD "\033[1m"
|
||||
#define LOG_COL_RED "\033[31m"
|
||||
#define LOG_COL_GREEN "\033[32m"
|
||||
#define LOG_COL_YELLOW "\033[33m"
|
||||
#define LOG_COL_BLUE "\033[34m"
|
||||
#define LOG_COL_MAGENTA "\033[35m"
|
||||
#define LOG_COL_CYAN "\033[36m"
|
||||
#define LOG_COL_WHITE "\033[37m"
|
||||
|
||||
#ifndef __GNUC__
|
||||
# define LOG_ATTRIBUTE_FORMAT(...)
|
||||
#elif defined(__MINGW32__) && !defined(__clang__)
|
||||
#elif defined(__MINGW32__)
|
||||
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
||||
#else
|
||||
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
||||
|
||||
@@ -1,537 +0,0 @@
|
||||
/*
|
||||
Copyright 2024 Google LLC
|
||||
|
||||
Use of this source code is governed by an MIT-style
|
||||
license that can be found in the LICENSE file or at
|
||||
https://opensource.org/licenses/MIT.
|
||||
*/
|
||||
// SPDX-License-Identifier: MIT
|
||||
#pragma once
|
||||
|
||||
#include "minja.hpp"
|
||||
|
||||
#include <chrono>
|
||||
#include <cstddef>
|
||||
#include <cstdio>
|
||||
#include <exception>
|
||||
#include <iomanip>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include <json.hpp>
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
namespace minja {
|
||||
|
||||
struct chat_template_caps {
|
||||
bool supports_tools = false;
|
||||
bool supports_tool_calls = false;
|
||||
bool supports_tool_responses = false;
|
||||
bool supports_system_role = false;
|
||||
bool supports_parallel_tool_calls = false;
|
||||
bool supports_tool_call_id = false;
|
||||
// meta-llama/Llama-3.1-8B-Instruct expects arguments to be an object.
|
||||
// Most other templates (and OpenAI's API) expect the arguments object to be stringified.
|
||||
bool requires_object_arguments = false;
|
||||
// CohereForAI/c4ai-command-r-plus simple variant
|
||||
bool requires_non_null_content = false;
|
||||
// MiniMaxAI/MiniMax-Text-01 special
|
||||
bool requires_typed_content = false;
|
||||
};
|
||||
|
||||
struct chat_template_inputs {
|
||||
nlohmann::ordered_json messages;
|
||||
nlohmann::ordered_json tools;
|
||||
bool add_generation_prompt = true;
|
||||
nlohmann::ordered_json extra_context;
|
||||
std::chrono::system_clock::time_point now = std::chrono::system_clock::now();
|
||||
};
|
||||
|
||||
struct chat_template_options {
|
||||
bool apply_polyfills = true;
|
||||
bool use_bos_token = true;
|
||||
bool use_eos_token = true;
|
||||
bool define_strftime_now = true;
|
||||
|
||||
bool polyfill_tools = true;
|
||||
bool polyfill_tool_call_examples = true;
|
||||
bool polyfill_tool_calls = true;
|
||||
bool polyfill_tool_responses = true;
|
||||
bool polyfill_system_role = true;
|
||||
bool polyfill_object_arguments = true;
|
||||
bool polyfill_typed_content = true;
|
||||
};
|
||||
|
||||
class chat_template {
|
||||
|
||||
private:
|
||||
chat_template_caps caps_;
|
||||
std::string source_;
|
||||
std::string bos_token_;
|
||||
std::string eos_token_;
|
||||
std::shared_ptr<minja::TemplateNode> template_root_;
|
||||
std::string tool_call_example_;
|
||||
|
||||
std::string try_raw_render(
|
||||
const nlohmann::ordered_json & messages,
|
||||
const nlohmann::ordered_json & tools,
|
||||
bool add_generation_prompt,
|
||||
const nlohmann::ordered_json & extra_context = nlohmann::ordered_json()) const
|
||||
{
|
||||
try {
|
||||
chat_template_inputs inputs;
|
||||
inputs.messages = messages;
|
||||
inputs.tools = tools;
|
||||
inputs.add_generation_prompt = add_generation_prompt;
|
||||
inputs.extra_context = extra_context;
|
||||
// Use fixed date for tests
|
||||
inputs.now = std::chrono::system_clock::from_time_t(0);
|
||||
|
||||
chat_template_options opts;
|
||||
opts.apply_polyfills = false;
|
||||
|
||||
auto prompt = apply(inputs, opts);
|
||||
// fprintf(stderr, "try_raw_render: %s\n", prompt.c_str());
|
||||
return prompt;
|
||||
} catch (const std::exception & e) {
|
||||
// fprintf(stderr, "try_raw_render error: %s\n", e.what());
|
||||
return "";
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
chat_template(const std::string & source, const std::string & bos_token, const std::string & eos_token)
|
||||
: source_(source), bos_token_(bos_token), eos_token_(eos_token)
|
||||
{
|
||||
template_root_ = minja::Parser::parse(source_, {
|
||||
/* .trim_blocks = */ true,
|
||||
/* .lstrip_blocks = */ true,
|
||||
/* .keep_trailing_newline = */ false,
|
||||
});
|
||||
|
||||
auto contains = [](const std::string & haystack, const std::string & needle) {
|
||||
return haystack.find(needle) != std::string::npos;
|
||||
};
|
||||
|
||||
const std::string user_needle = "<User Needle>";
|
||||
const std::string sys_needle = "<System Needle>";
|
||||
const json dummy_str_user_msg = {{"role", "user"}, {"content", user_needle}};
|
||||
const json dummy_typed_user_msg = {{"role", "user"}, {"content", json::array({{{"type", "text"}, {"text", user_needle}}})}};
|
||||
|
||||
caps_.requires_typed_content =
|
||||
!contains(try_raw_render(json::array({dummy_str_user_msg}), {}, false), user_needle)
|
||||
&& contains(try_raw_render(json::array({dummy_typed_user_msg}), {}, false), user_needle);
|
||||
|
||||
const auto dummy_user_msg = caps_.requires_typed_content
|
||||
? dummy_typed_user_msg
|
||||
: dummy_str_user_msg;
|
||||
const json needle_system_msg = {
|
||||
{"role", "system"},
|
||||
{"content", caps_.requires_typed_content ? json::array({{{"type", "text"}, {"text", sys_needle}}}) : json(sys_needle)},
|
||||
};
|
||||
|
||||
caps_.supports_system_role = contains(try_raw_render({needle_system_msg, dummy_user_msg,}, {}, false), sys_needle);
|
||||
|
||||
auto out = try_raw_render(json::array({
|
||||
dummy_user_msg
|
||||
}), json::array({
|
||||
{
|
||||
{"name", "some_tool"},
|
||||
{"type", "function"},
|
||||
{"function", {
|
||||
{"name", "some_tool"},
|
||||
{"description", "Some tool."},
|
||||
{"parameters", {
|
||||
{"type", "object"},
|
||||
{"properties", {
|
||||
{"arg", {
|
||||
{"type", "string"},
|
||||
{"description", "Some argument."},
|
||||
}},
|
||||
}},
|
||||
{"required", json::array({ "arg" })},
|
||||
}},
|
||||
}},
|
||||
},
|
||||
}), false);
|
||||
caps_.supports_tools = contains(out, "some_tool");
|
||||
|
||||
auto make_tool_calls_msg = [&](const json & tool_calls) {
|
||||
return json {
|
||||
{"role", "assistant"},
|
||||
{"content", nullptr},
|
||||
{"tool_calls", tool_calls},
|
||||
};
|
||||
};
|
||||
auto make_tool_call = [](const std::string & tool_name, const json & arguments) {
|
||||
return json {
|
||||
{"id", "call_1___"},
|
||||
{"type", "function"},
|
||||
{"function", {
|
||||
{"arguments", arguments},
|
||||
{"name", tool_name},
|
||||
}},
|
||||
};
|
||||
};
|
||||
const json dummy_args_obj {{"argument_needle", "print('Hello, World!')"}};
|
||||
|
||||
// Note: the arguments are rendered in both cases, but may be double-escaped, which we don't want.
|
||||
out = try_raw_render(json::array({
|
||||
dummy_user_msg,
|
||||
make_tool_calls_msg(json::array({make_tool_call("ipython", dummy_args_obj.dump())})),
|
||||
}), {}, false);
|
||||
auto tool_call_renders_str_arguments = contains(out, "\"argument_needle\":") || contains(out, "'argument_needle':");
|
||||
out = try_raw_render(json::array({
|
||||
dummy_user_msg,
|
||||
make_tool_calls_msg(json::array({make_tool_call("ipython", dummy_args_obj)})),
|
||||
}), {}, false);
|
||||
auto tool_call_renders_obj_arguments = contains(out, "\"argument_needle\":") || contains(out, "'argument_needle':");
|
||||
|
||||
caps_.supports_tool_calls = tool_call_renders_str_arguments || tool_call_renders_obj_arguments;
|
||||
caps_.requires_object_arguments = !tool_call_renders_str_arguments && tool_call_renders_obj_arguments;
|
||||
auto out_empty = try_raw_render(json::array({dummy_user_msg, {{"role", "assistant"}, {"content", ""}}}), {}, false);
|
||||
auto out_null = try_raw_render(json::array({dummy_user_msg, {{"role", "assistant"}, {"content", nullptr}}}), {}, false);
|
||||
caps_.requires_non_null_content = contains(out_empty, user_needle) && !contains(out_null, user_needle);
|
||||
|
||||
if (caps_.supports_tool_calls) {
|
||||
auto dummy_args = caps_.requires_object_arguments ? dummy_args_obj : json(dummy_args_obj.dump());
|
||||
auto tc1 = make_tool_call("test_tool1", dummy_args);
|
||||
auto tc2 = make_tool_call("test_tool2", dummy_args);
|
||||
auto out = try_raw_render(json::array({
|
||||
dummy_user_msg,
|
||||
make_tool_calls_msg(json::array({tc1, tc2})),
|
||||
}), {}, false);
|
||||
caps_.supports_parallel_tool_calls = contains(out, "test_tool1") && contains(out, "test_tool2");
|
||||
|
||||
out = try_raw_render(json::array({
|
||||
dummy_user_msg,
|
||||
make_tool_calls_msg(json::array({tc1})),
|
||||
{
|
||||
{"role", "tool"},
|
||||
{"name", "test_tool1"},
|
||||
{"content", "Some response!"},
|
||||
{"tool_call_id", "call_911_"},
|
||||
}
|
||||
}), {}, false);
|
||||
caps_.supports_tool_responses = contains(out, "Some response!");
|
||||
caps_.supports_tool_call_id = contains(out, "call_911_");
|
||||
}
|
||||
|
||||
try {
|
||||
if (!caps_.supports_tools) {
|
||||
const json user_msg {
|
||||
{"role", "user"},
|
||||
{"content", "Hey"},
|
||||
};
|
||||
const json args {
|
||||
{"arg1", "some_value"},
|
||||
};
|
||||
const json tool_call_msg {
|
||||
{"role", "assistant"},
|
||||
{"content", nullptr},
|
||||
{"tool_calls", json::array({
|
||||
{
|
||||
// TODO: detect if requires numerical id or fixed length == 6 like Nemo
|
||||
{"id", "call_1___"},
|
||||
{"type", "function"},
|
||||
{"function", {
|
||||
{"name", "tool_name"},
|
||||
{"arguments", (caps_.requires_object_arguments ? args : json(minja::Value(args).dump(-1, /* to_json= */ true)))},
|
||||
}},
|
||||
},
|
||||
})},
|
||||
};
|
||||
std::string prefix, full;
|
||||
{
|
||||
chat_template_inputs inputs;
|
||||
inputs.messages = json::array({user_msg});
|
||||
inputs.add_generation_prompt = true;
|
||||
prefix = apply(inputs);
|
||||
}
|
||||
{
|
||||
chat_template_inputs inputs;
|
||||
inputs.messages = json::array({user_msg, tool_call_msg});
|
||||
inputs.add_generation_prompt = false;
|
||||
full = apply(inputs);
|
||||
}
|
||||
auto eos_pos_last = full.rfind(eos_token_);
|
||||
if (eos_pos_last == prefix.size() - eos_token_.size() ||
|
||||
(full[full.size() - 1] == '\n' && (eos_pos_last == full.size() - eos_token_.size() - 1))) {
|
||||
full = full.substr(0, eos_pos_last);
|
||||
}
|
||||
size_t common_prefix_length = 0;
|
||||
for (size_t i = 0; i < prefix.size() && i < full.size(); ++i) {
|
||||
if (prefix[i] != full[i]) {
|
||||
break;
|
||||
}
|
||||
if (prefix[i] == '<') {
|
||||
// DeepSeek R1's template (as of 20250209) adds a trailing <think> if add_generation_prompt,
|
||||
// but it removes thinking tags for past messages.
|
||||
// The prefix and full strings diverge at <think> vs. <|tool▁calls▁begin|>, we avoid consuming the leading <.
|
||||
continue;
|
||||
}
|
||||
common_prefix_length = i + 1;
|
||||
}
|
||||
auto example = full.substr(common_prefix_length);
|
||||
if (example.find("tool_name") == std::string::npos && example.find("some_value") == std::string::npos) {
|
||||
fprintf(stderr, "Failed to infer a tool call example (possible template bug)\n");
|
||||
} else {
|
||||
tool_call_example_ = example;
|
||||
}
|
||||
}
|
||||
} catch (const std::exception & e) {
|
||||
fprintf(stderr, "Failed to generate tool call example: %s\n", e.what());
|
||||
}
|
||||
}
|
||||
|
||||
const std::string & source() const { return source_; }
|
||||
const std::string & bos_token() const { return bos_token_; }
|
||||
const std::string & eos_token() const { return eos_token_; }
|
||||
const chat_template_caps & original_caps() const { return caps_; }
|
||||
|
||||
// Deprecated, please use the form with chat_template_inputs and chat_template_options
|
||||
std::string apply(
|
||||
const nlohmann::ordered_json & messages,
|
||||
const nlohmann::ordered_json & tools,
|
||||
bool add_generation_prompt,
|
||||
const nlohmann::ordered_json & extra_context = nlohmann::ordered_json(),
|
||||
bool apply_polyfills = true)
|
||||
{
|
||||
fprintf(stderr, "[%s] Deprecated!\n", __func__);
|
||||
chat_template_inputs inputs;
|
||||
inputs.messages = messages;
|
||||
inputs.tools = tools;
|
||||
inputs.add_generation_prompt = add_generation_prompt;
|
||||
inputs.extra_context = extra_context;
|
||||
inputs.now = std::chrono::system_clock::now();
|
||||
|
||||
chat_template_options opts;
|
||||
opts.apply_polyfills = apply_polyfills;
|
||||
|
||||
return apply(inputs, opts);
|
||||
}
|
||||
|
||||
std::string apply(
|
||||
const chat_template_inputs & inputs,
|
||||
const chat_template_options & opts = chat_template_options()) const
|
||||
{
|
||||
json actual_messages;
|
||||
|
||||
auto has_tools = inputs.tools.is_array() && !inputs.tools.empty();
|
||||
auto has_tool_calls = false;
|
||||
auto has_tool_responses = false;
|
||||
auto has_string_content = false;
|
||||
for (const auto & message : inputs.messages) {
|
||||
if (message.contains("tool_calls") && !message["tool_calls"].is_null()) {
|
||||
has_tool_calls = true;
|
||||
}
|
||||
if (message.contains("role") && message["role"] == "tool") {
|
||||
has_tool_responses = true;
|
||||
}
|
||||
if (message.contains("content") && message["content"].is_string()) {
|
||||
has_string_content = true;
|
||||
}
|
||||
}
|
||||
|
||||
auto polyfill_system_role = opts.polyfill_system_role && !caps_.supports_system_role;
|
||||
auto polyfill_tools = opts.polyfill_tools && has_tools && !caps_.supports_tools;
|
||||
auto polyfill_tool_call_example = polyfill_tools && opts.polyfill_tool_call_examples;
|
||||
auto polyfill_tool_calls = opts.polyfill_tool_calls && has_tool_calls && !caps_.supports_tool_calls;
|
||||
auto polyfill_tool_responses = opts.polyfill_tool_responses && has_tool_responses && !caps_.supports_tool_responses;
|
||||
auto polyfill_object_arguments = opts.polyfill_object_arguments && has_tool_calls && caps_.requires_object_arguments;
|
||||
auto polyfill_typed_content = opts.polyfill_typed_content && has_string_content && caps_.requires_typed_content;
|
||||
|
||||
auto needs_polyfills = opts.apply_polyfills && (false
|
||||
|| polyfill_system_role
|
||||
|| polyfill_tools
|
||||
|| polyfill_tool_calls
|
||||
|| polyfill_tool_responses
|
||||
|| polyfill_object_arguments
|
||||
|| polyfill_typed_content
|
||||
);
|
||||
|
||||
if (needs_polyfills) {
|
||||
actual_messages = json::array();
|
||||
|
||||
auto add_message = [&](const json & msg) {
|
||||
if (polyfill_typed_content && msg.contains("content") && !msg.at("content").is_null() && msg.at("content").is_string()) {
|
||||
actual_messages.push_back({
|
||||
{"role", msg.at("role")},
|
||||
{"content", {{
|
||||
{"type", "text"},
|
||||
{"text", msg.at("content")},
|
||||
}}},
|
||||
});
|
||||
} else {
|
||||
actual_messages.push_back(msg);
|
||||
}
|
||||
};
|
||||
|
||||
std::string pending_system;
|
||||
auto flush_sys = [&]() {
|
||||
if (!pending_system.empty()) {
|
||||
add_message({
|
||||
{"role", "user"},
|
||||
{"content", pending_system},
|
||||
});
|
||||
pending_system.clear();
|
||||
}
|
||||
};
|
||||
|
||||
json adjusted_messages;
|
||||
if (polyfill_tools) {
|
||||
adjusted_messages = add_system(inputs.messages,
|
||||
"You can call any of the following tools to satisfy the user's requests: " + minja::Value(inputs.tools).dump(2, /* to_json= */ true) +
|
||||
(!polyfill_tool_call_example || tool_call_example_.empty() ? "" : "\n\nExample tool call syntax:\n\n" + tool_call_example_ + "\n\n"));
|
||||
} else {
|
||||
adjusted_messages = inputs.messages;
|
||||
}
|
||||
|
||||
for (const auto & message_ : adjusted_messages) {
|
||||
auto message = message_;
|
||||
if (!message.contains("role") || !message.contains("content")) {
|
||||
throw std::runtime_error("message must have 'role' and 'content' fields: " + message.dump());
|
||||
}
|
||||
std::string role = message.at("role");
|
||||
|
||||
if (message.contains("tool_calls")) {
|
||||
if (polyfill_object_arguments || polyfill_tool_calls) {
|
||||
for (auto & tool_call : message.at("tool_calls")) {
|
||||
if (tool_call["type"] == "function") {
|
||||
auto & function = tool_call.at("function");
|
||||
auto & arguments = function.at("arguments");
|
||||
if (arguments.is_string()) {
|
||||
try {
|
||||
arguments = json::parse(arguments.get<std::string>());
|
||||
} catch (const std::exception & ecvt) {
|
||||
fprintf(stderr, "Failed to parse arguments: %s\n", ecvt.what());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (polyfill_tool_calls) {
|
||||
auto content = message.at("content");
|
||||
auto tool_calls = json::array();
|
||||
for (const auto & tool_call : message.at("tool_calls")) {
|
||||
if (tool_call.at("type") != "function") {
|
||||
continue;
|
||||
}
|
||||
const auto & function = tool_call.at("function");
|
||||
auto tc = json {
|
||||
{"name", function.at("name")},
|
||||
{"arguments", function.at("arguments")},
|
||||
};
|
||||
if (tool_call.contains("id")) {
|
||||
tc["id"] = tool_call["id"];
|
||||
}
|
||||
tool_calls.push_back(tc);
|
||||
}
|
||||
auto obj = json {
|
||||
{"tool_calls", tool_calls},
|
||||
};
|
||||
if (!content.is_null() && !content.empty()) {
|
||||
obj["content"] = content;
|
||||
}
|
||||
message["content"] = obj.dump(2);
|
||||
message.erase("tool_calls");
|
||||
}
|
||||
}
|
||||
if (polyfill_tool_responses && role == "tool") {
|
||||
message["role"] = "user";
|
||||
auto obj = json {
|
||||
{"tool_response", json::object()},
|
||||
};
|
||||
if (message.contains("name")) {
|
||||
obj["tool_response"]["tool"] = message.at("name");
|
||||
}
|
||||
obj["tool_response"]["content"] = message.at("content");
|
||||
if (message.contains("tool_call_id")) {
|
||||
obj["tool_response"]["tool_call_id"] = message.at("tool_call_id");
|
||||
}
|
||||
message["content"] = obj.dump(2);
|
||||
message.erase("name");
|
||||
}
|
||||
|
||||
if (!message["content"].is_null() && polyfill_system_role) {
|
||||
std::string content = message.at("content");
|
||||
if (role == "system") {
|
||||
if (!pending_system.empty()) pending_system += "\n";
|
||||
pending_system += content;
|
||||
continue;
|
||||
} else {
|
||||
if (role == "user") {
|
||||
if (!pending_system.empty()) {
|
||||
message["content"] = pending_system + (content.empty() ? "" : "\n" + content);
|
||||
pending_system.clear();
|
||||
}
|
||||
} else {
|
||||
flush_sys();
|
||||
}
|
||||
}
|
||||
}
|
||||
add_message(message);
|
||||
}
|
||||
flush_sys();
|
||||
} else {
|
||||
actual_messages = inputs.messages;
|
||||
}
|
||||
|
||||
auto context = minja::Context::make(json({
|
||||
{"messages", actual_messages},
|
||||
{"add_generation_prompt", inputs.add_generation_prompt},
|
||||
}));
|
||||
context->set("bos_token", opts.use_bos_token ? bos_token_ : "");
|
||||
context->set("eos_token", opts.use_eos_token ? eos_token_ : "");
|
||||
if (opts.define_strftime_now) {
|
||||
auto now = inputs.now;
|
||||
context->set("strftime_now", Value::callable([now](const std::shared_ptr<minja::Context> &, minja::ArgumentsValue & args) {
|
||||
args.expectArgs("strftime_now", {1, 1}, {0, 0});
|
||||
auto format = args.args[0].get<std::string>();
|
||||
|
||||
auto time = std::chrono::system_clock::to_time_t(now);
|
||||
auto local_time = *std::localtime(&time);
|
||||
std::ostringstream ss;
|
||||
ss << std::put_time(&local_time, format.c_str());
|
||||
return ss.str();
|
||||
}));
|
||||
}
|
||||
if (!inputs.tools.is_null()) {
|
||||
context->set("tools", minja::Value(inputs.tools));
|
||||
}
|
||||
if (!inputs.extra_context.is_null()) {
|
||||
for (auto & kv : inputs.extra_context.items()) {
|
||||
context->set(kv.key(), minja::Value(kv.value()));
|
||||
}
|
||||
}
|
||||
|
||||
auto ret = template_root_->render(context);
|
||||
// fprintf(stderr, "actual_messages: %s\n", actual_messages.dump(2).c_str());
|
||||
// fprintf(stderr, "apply: %s\n\n", ret.c_str());
|
||||
return ret;
|
||||
}
|
||||
|
||||
static nlohmann::ordered_json add_system(const nlohmann::ordered_json & messages, const std::string & system_prompt) {
|
||||
json messages_with_system = messages;
|
||||
|
||||
if (!messages_with_system.empty() && messages_with_system[0].at("role") == "system") {
|
||||
std::string existing_system = messages_with_system.at(0).at("content");
|
||||
messages_with_system[0] = json {
|
||||
{"role", "system"},
|
||||
{"content", existing_system + "\n\n" + system_prompt},
|
||||
};
|
||||
} else {
|
||||
messages_with_system.insert(messages_with_system.begin(), json {
|
||||
{"role", "system"},
|
||||
{"content", system_prompt},
|
||||
});
|
||||
}
|
||||
return messages_with_system;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace minja
|
||||
File diff suppressed because it is too large
Load Diff
@@ -7,7 +7,6 @@
|
||||
#include <cstdio>
|
||||
#include <fstream>
|
||||
#include <thread>
|
||||
#include <algorithm>
|
||||
|
||||
void common_ngram_cache_update(common_ngram_cache & ngram_cache, int ngram_min, int ngram_max,
|
||||
std::vector<llama_token> & inp, int nnew, bool print_progress) {
|
||||
|
||||
@@ -4,7 +4,6 @@
|
||||
|
||||
#include <cmath>
|
||||
#include <unordered_map>
|
||||
#include <algorithm>
|
||||
|
||||
// the ring buffer works similarly to std::deque, but with a fixed capacity
|
||||
// TODO: deduplicate with llama-impl.h
|
||||
@@ -135,11 +134,11 @@ std::string common_params_sampling::print() const {
|
||||
snprintf(result, sizeof(result),
|
||||
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
|
||||
"\tdry_multiplier = %.3f, dry_base = %.3f, dry_allowed_length = %d, dry_penalty_last_n = %d\n"
|
||||
"\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, top_n_sigma = %.3f, temp = %.3f\n"
|
||||
"\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, temp = %.3f\n"
|
||||
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
|
||||
penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
|
||||
dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n,
|
||||
top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, top_n_sigma, temp,
|
||||
top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, temp,
|
||||
mirostat, mirostat_eta, mirostat_tau);
|
||||
|
||||
return std::string(result);
|
||||
@@ -152,70 +151,9 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
||||
|
||||
lparams.no_perf = params.no_perf;
|
||||
|
||||
struct llama_sampler * grmr;
|
||||
if (params.grammar.compare(0, 11, "%llguidance") == 0) {
|
||||
#ifdef LLAMA_USE_LLGUIDANCE
|
||||
grmr = llama_sampler_init_llg(vocab, "lark", params.grammar.c_str());
|
||||
#else
|
||||
GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
|
||||
#endif // LLAMA_USE_LLGUIDANCE
|
||||
} else {
|
||||
std::vector<std::string> patterns_at_start;
|
||||
std::vector<std::string> patterns_anywhere;
|
||||
std::vector<llama_token> trigger_tokens;
|
||||
for (const auto & trigger : params.grammar_triggers) {
|
||||
switch (trigger.type) {
|
||||
case COMMON_GRAMMAR_TRIGGER_TYPE_WORD:
|
||||
{
|
||||
const auto & word = trigger.value;
|
||||
patterns_anywhere.push_back(regex_escape(word));
|
||||
break;
|
||||
}
|
||||
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN:
|
||||
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START:
|
||||
{
|
||||
const auto & pattern = trigger.value;
|
||||
(trigger.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START ? patterns_at_start : patterns_anywhere).push_back(pattern);
|
||||
break;
|
||||
}
|
||||
case COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN:
|
||||
{
|
||||
const auto token = trigger.token;
|
||||
trigger_tokens.push_back(token);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
GGML_ASSERT(false && "unknown trigger type");
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::string> trigger_patterns;
|
||||
if (!patterns_at_start.empty()) {
|
||||
trigger_patterns.push_back("^(" + string_join(patterns_at_start, "|") + ")[\\s\\S]*");
|
||||
}
|
||||
if (!patterns_anywhere.empty()) {
|
||||
trigger_patterns.push_back("^[\\s\\S]*?(" + string_join(patterns_anywhere, "|") + ")[\\s\\S]*");
|
||||
}
|
||||
|
||||
std::vector<const char *> trigger_patterns_c;
|
||||
trigger_patterns_c.reserve(trigger_patterns.size());
|
||||
for (const auto & regex : trigger_patterns) {
|
||||
trigger_patterns_c.push_back(regex.c_str());
|
||||
}
|
||||
|
||||
grmr = params.grammar_lazy
|
||||
? llama_sampler_init_grammar_lazy_patterns(vocab, params.grammar.c_str(), "root",
|
||||
trigger_patterns_c.data(), trigger_patterns_c.size(),
|
||||
trigger_tokens.data(), trigger_tokens.size())
|
||||
: llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
|
||||
if (!grmr) {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
auto * result = new common_sampler {
|
||||
/* .params = */ params,
|
||||
/* .grmr = */ grmr,
|
||||
/* .grmr = */ llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root"),
|
||||
/* .chain = */ llama_sampler_chain_init(lparams),
|
||||
/* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
|
||||
/* .cur = */ {},
|
||||
@@ -229,51 +167,45 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
||||
params.logit_bias.data()));
|
||||
|
||||
if (params.mirostat == 0) {
|
||||
if (params.top_n_sigma >= 0) {
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp (params.temp));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
|
||||
} else {
|
||||
for (const auto & cnstr : params.samplers) {
|
||||
switch (cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_DRY:
|
||||
{
|
||||
std::vector<const char *> c_breakers;
|
||||
c_breakers.reserve(params.dry_sequence_breakers.size());
|
||||
for (const auto & str : params.dry_sequence_breakers) {
|
||||
c_breakers.push_back(str.c_str());
|
||||
}
|
||||
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
|
||||
for (const auto & cnstr : params.samplers) {
|
||||
switch (cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_DRY:
|
||||
{
|
||||
std::vector<const char *> c_breakers;
|
||||
c_breakers.reserve(params.dry_sequence_breakers.size());
|
||||
for (const auto & str : params.dry_sequence_breakers) {
|
||||
c_breakers.push_back(str.c_str());
|
||||
}
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_K:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_MIN_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_XTC:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_INFILL:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_PENALTIES:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false && "unknown sampler type");
|
||||
}
|
||||
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
|
||||
}
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_K:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_MIN_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_XTC:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_INFILL:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_PENALTIES:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false && "unknown sampler type");
|
||||
}
|
||||
}
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
|
||||
|
||||
@@ -102,6 +102,3 @@ std::string common_sampler_type_to_str(enum common_sampler_type cnstr);
|
||||
|
||||
std::vector<enum common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
|
||||
std::vector<enum common_sampler_type> common_sampler_types_from_chars(const std::string & chars);
|
||||
|
||||
llama_sampler * llama_sampler_init_llg(const llama_vocab * vocab,
|
||||
const char * grammar_kind, const char * grammar_data);
|
||||
|
||||
@@ -5,7 +5,6 @@
|
||||
#include "sampling.h"
|
||||
|
||||
#include <cstring>
|
||||
#include <algorithm>
|
||||
|
||||
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128
|
||||
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
|
||||
@@ -173,7 +172,7 @@ llama_tokens common_speculative_gen_draft(
|
||||
result.reserve(params.n_draft);
|
||||
|
||||
if (reuse_n == 0) {
|
||||
llama_kv_self_clear(ctx);
|
||||
llama_kv_cache_clear(ctx);
|
||||
|
||||
prompt.clear();
|
||||
} else {
|
||||
@@ -192,14 +191,14 @@ llama_tokens common_speculative_gen_draft(
|
||||
}
|
||||
|
||||
if (reuse_i > 0) {
|
||||
llama_kv_self_seq_rm (ctx, 0, 0, reuse_i);
|
||||
llama_kv_self_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
|
||||
llama_kv_cache_seq_rm (ctx, 0, 0, reuse_i);
|
||||
llama_kv_cache_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
|
||||
|
||||
prompt.erase(prompt.begin(), prompt.begin() + reuse_i);
|
||||
}
|
||||
|
||||
if (reuse_n < (int) prompt.size()) {
|
||||
llama_kv_self_seq_rm (ctx, 0, reuse_n, -1);
|
||||
llama_kv_cache_seq_rm (ctx, 0, reuse_n, -1);
|
||||
|
||||
prompt.erase(prompt.begin() + reuse_n, prompt.end());
|
||||
}
|
||||
@@ -253,6 +252,11 @@ llama_tokens common_speculative_gen_draft(
|
||||
// add drafted token for each sequence
|
||||
const llama_token id = cur_p->data[0].id;
|
||||
|
||||
// only collect very high-confidence draft tokens
|
||||
if (cur_p->data[0].p < params.p_min) {
|
||||
break;
|
||||
}
|
||||
|
||||
common_sampler_accept(smpl, id, true);
|
||||
|
||||
result.push_back(id);
|
||||
@@ -261,11 +265,6 @@ llama_tokens common_speculative_gen_draft(
|
||||
break;
|
||||
}
|
||||
|
||||
// only collect very high-confidence draft tokens
|
||||
if (cur_p->data[0].p < params.p_min) {
|
||||
break;
|
||||
}
|
||||
|
||||
common_batch_add(batch, id, n_past + i + 1, { 0 }, true);
|
||||
|
||||
// evaluate the drafted tokens on the draft model
|
||||
|
||||
@@ -9,7 +9,7 @@ struct common_speculative_params {
|
||||
int n_draft = 16; // max drafted tokens
|
||||
int n_reuse = 256;
|
||||
|
||||
float p_min = 0.75f; // min probability required to accept a token in the draft
|
||||
float p_min = 0.9f; // min probabiliy required to accept a token in the draft
|
||||
};
|
||||
|
||||
struct common_speculative * common_speculative_init(struct llama_context * ctx_dft);
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -8,7 +8,7 @@
|
||||
# provide the necessary information to llama.cpp via the GGUF header in order to implement
|
||||
# the same pre-tokenizer.
|
||||
#
|
||||
# ref: https://github.com/ggml-org/llama.cpp/pull/6920
|
||||
# ref: https://github.com/ggerganov/llama.cpp/pull/6920
|
||||
#
|
||||
# Instructions:
|
||||
#
|
||||
@@ -65,56 +65,49 @@ else:
|
||||
|
||||
# TODO: add models here, base models preferred
|
||||
models = [
|
||||
{"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
|
||||
{"name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", },
|
||||
{"name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", },
|
||||
{"name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", },
|
||||
{"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
|
||||
{"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
|
||||
{"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
|
||||
{"name": "falcon3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon3-7B-Base", },
|
||||
{"name": "bert-bge-large", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/BAAI/bge-large-zh-v1.5", },
|
||||
{"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
|
||||
{"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
|
||||
{"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
|
||||
{"name": "stablelm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", },
|
||||
{"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", },
|
||||
{"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", },
|
||||
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
|
||||
{"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
|
||||
{"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", },
|
||||
{"name": "jina-v1-en", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-reranker-v1-tiny-en", },
|
||||
{"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM!
|
||||
{"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
|
||||
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
|
||||
{"name": "smaug-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct", },
|
||||
{"name": "poro-chat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Poro-34B-chat", },
|
||||
{"name": "jina-v2-code", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-code", },
|
||||
{"name": "viking", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Viking-7B", }, # Also used for Viking 13B and 33B
|
||||
{"name": "gemma", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2b", },
|
||||
{"name": "gemma-2", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2-9b", },
|
||||
{"name": "jais", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/core42/jais-13b", },
|
||||
{"name": "t5", "tokt": TOKENIZER_TYPE.UGM, "repo": "https://huggingface.co/google-t5/t5-small", },
|
||||
{"name": "codeshell", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/WisdomShell/CodeShell-7B", },
|
||||
{"name": "tekken", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistralai/Mistral-Nemo-Base-2407", },
|
||||
{"name": "smollm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/HuggingFaceTB/SmolLM-135M", },
|
||||
{'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", },
|
||||
{'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", },
|
||||
{"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", },
|
||||
{"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", },
|
||||
{"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", },
|
||||
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", },
|
||||
{"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"},
|
||||
{"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"},
|
||||
{"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"},
|
||||
{"name": "deepseek-v3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-V3"},
|
||||
{"name": "deepseek-r1-qwen", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"},
|
||||
{"name": "gpt-4o", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Xenova/gpt-4o", },
|
||||
{"name": "superbpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k", },
|
||||
{"name": "trillion", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/trillionlabs/Trillion-7B-preview", },
|
||||
{"name": "bailingmoe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-lite", },
|
||||
{"name": "llama4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct", },
|
||||
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", },
|
||||
{"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
|
||||
{"name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", },
|
||||
{"name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", },
|
||||
{"name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", },
|
||||
{"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
|
||||
{"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
|
||||
{"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
|
||||
{"name": "falcon3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon3-7B-Base", },
|
||||
{"name": "bert-bge-large", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/BAAI/bge-large-zh-v1.5", },
|
||||
{"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
|
||||
{"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
|
||||
{"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
|
||||
{"name": "stablelm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", },
|
||||
{"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", },
|
||||
{"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", },
|
||||
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
|
||||
{"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
|
||||
{"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", },
|
||||
{"name": "jina-v1-en", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-reranker-v1-tiny-en", },
|
||||
{"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM!
|
||||
{"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
|
||||
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
|
||||
{"name": "smaug-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct", },
|
||||
{"name": "poro-chat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Poro-34B-chat", },
|
||||
{"name": "jina-v2-code", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-code", },
|
||||
{"name": "viking", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Viking-7B", }, # Also used for Viking 13B and 33B
|
||||
{"name": "gemma", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2b", },
|
||||
{"name": "gemma-2", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2-9b", },
|
||||
{"name": "jais", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/core42/jais-13b", },
|
||||
{"name": "t5", "tokt": TOKENIZER_TYPE.UGM, "repo": "https://huggingface.co/google-t5/t5-small", },
|
||||
{"name": "codeshell", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/WisdomShell/CodeShell-7B", },
|
||||
{"name": "tekken", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistralai/Mistral-Nemo-Base-2407", },
|
||||
{"name": "smollm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/HuggingFaceTB/SmolLM-135M", },
|
||||
{'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", },
|
||||
{'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", },
|
||||
{"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", },
|
||||
{"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", },
|
||||
{"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", },
|
||||
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", },
|
||||
{"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"},
|
||||
{"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"},
|
||||
{"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"},
|
||||
{"name": "deepseek-v3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-V3"},
|
||||
]
|
||||
|
||||
|
||||
@@ -137,10 +130,6 @@ def download_model(model):
|
||||
|
||||
files = ["config.json", "tokenizer.json", "tokenizer_config.json"]
|
||||
|
||||
if name == "gpt-4o":
|
||||
# Xenova/gpt-4o is tokenizer-only, it does not contain config.json
|
||||
files = ["tokenizer.json", "tokenizer_config.json"]
|
||||
|
||||
if tokt == TOKENIZER_TYPE.SPM:
|
||||
files.append("tokenizer.model")
|
||||
|
||||
@@ -256,7 +245,7 @@ src_func = f"""
|
||||
logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
|
||||
logger.warning("** - the pre-tokenization config has changed upstream")
|
||||
logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
|
||||
logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
|
||||
logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
|
||||
logger.warning("**")
|
||||
logger.warning(f"** chkhsh: {{chkhsh}}")
|
||||
logger.warning("**************************************************************************************")
|
||||
|
||||
@@ -395,7 +395,7 @@ if __name__ == '__main__':
|
||||
logger.error(f"Unexpected name '{name}': Not a lora_A or lora_B tensor")
|
||||
if ".embed_tokens.weight" in name or ".lm_head.weight" in name:
|
||||
logger.error("Embeddings is present in the adapter. This can be due to new tokens added during fine tuning")
|
||||
logger.error("Please refer to https://github.com/ggml-org/llama.cpp/pull/9948")
|
||||
logger.error("Please refer to https://github.com/ggerganov/llama.cpp/pull/9948")
|
||||
sys.exit(1)
|
||||
|
||||
if base_name in tensor_map:
|
||||
@@ -419,7 +419,7 @@ if __name__ == '__main__':
|
||||
# some archs may have the same tensor for lm_head and output (tie word embeddings)
|
||||
# in this case, adapters targeting lm_head will fail when using llama-export-lora
|
||||
# therefore, we ignore them for now
|
||||
# see: https://github.com/ggml-org/llama.cpp/issues/9065
|
||||
# see: https://github.com/ggerganov/llama.cpp/issues/9065
|
||||
if name == "lm_head.weight" and len(dest) == 0:
|
||||
raise ValueError("lm_head is present in adapter, but is ignored in base model")
|
||||
for dest_name, dest_data in dest:
|
||||
|
||||
@@ -12,7 +12,7 @@ $ apt update && apt upgrade -y
|
||||
$ apt install git cmake
|
||||
```
|
||||
|
||||
Then, follow the [build instructions](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md), specifically for CMake.
|
||||
Then, follow the [build instructions](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md), specifically for CMake.
|
||||
|
||||
Once the binaries are built, download your model of choice (e.g., from Hugging Face). It's recommended to place it in the `~/` directory for best performance:
|
||||
|
||||
|
||||
@@ -1,209 +0,0 @@
|
||||
# llama.cpp for OpenCL
|
||||
|
||||
- [Background](#background)
|
||||
- [OS](#os)
|
||||
- [Hardware](#hardware)
|
||||
- [DataType Supports](#datatype-supports)
|
||||
- [Model Preparation](#model-preparation)
|
||||
- [CMake Options](#cmake-options)
|
||||
- [Android](#android)
|
||||
- [Windows 11 Arm64](#windows-11-arm64)
|
||||
- [Known Issue](#known-issues)
|
||||
- [TODO](#todo)
|
||||
|
||||
## Background
|
||||
|
||||
OpenCL (Open Computing Language) is an open, royalty-free standard for cross-platform, parallel programming of diverse accelerators found in supercomputers, cloud servers, personal computers, mobile devices and embedded platforms. OpenCL specifies a programming language (based on C99) for programming these devices and application programming interfaces (APIs) to control the platform and execute programs on the compute devices. Similar to CUDA, OpenCL has been widely used to program GPUs and is supported by most GPU vendors.
|
||||
|
||||
### Llama.cpp + OpenCL
|
||||
|
||||
The llama.cpp OpenCL backend is designed to enable llama.cpp on **Qualcomm Adreno GPU** firstly via OpenCL. Thanks to the portabilty of OpenCL, the OpenCL backend can also run on certain Intel GPUs although the performance is not optimal.
|
||||
|
||||
## OS
|
||||
|
||||
| OS | Status | Verified |
|
||||
|---------|---------|------------------------------------------------|
|
||||
| Android | Support | Snapdragon 8 Gen 3, Snapdragon 8 Elite |
|
||||
| Windows | Support | Windows 11 Arm64 with Snapdragon X Elite |
|
||||
| Linux | Support | Ubuntu 22.04 WSL2 with Intel 12700H |
|
||||
|
||||
## Hardware
|
||||
|
||||
### Adreno GPU
|
||||
|
||||
**Verified devices**
|
||||
|
||||
| Adreno GPU | Status |
|
||||
|:------------------------------------:|:-------:|
|
||||
| Adreno 750 (Snapdragon 8 Gen 3) | Support |
|
||||
| Adreno 830 (Snapdragon 8 Elite) | Support |
|
||||
| Adreno X85 (Snapdragon X Elite) | Support |
|
||||
|
||||
## DataType Supports
|
||||
|
||||
| DataType | Status |
|
||||
|:----------------------:|:--------------------------:|
|
||||
| Q4_0 | Support |
|
||||
| Q6_K | Support, but not optimized |
|
||||
|
||||
## Model Preparation
|
||||
|
||||
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration.
|
||||
|
||||
Currently we support `Q4_0` quantization and have optimize for it. To achieve best performance on Adreno GPU, add `--pure` to `llama-quantize`. For example,
|
||||
|
||||
```sh
|
||||
./llama-quantize --pure ggml-model-qwen2.5-3b-f16.gguf ggml-model-qwen-3b-Q4_0.gguf Q4_0
|
||||
```
|
||||
|
||||
Since `Q6_K` is also supported, `Q4_0` quantization without `--pure` will also work. However, the performance will be worse compared to pure `Q4_0` quantization.
|
||||
|
||||
## CMake Options
|
||||
|
||||
The OpenCL backend has the following CMake options that control the behavior of the backend.
|
||||
|
||||
| CMake options | Default value | Description |
|
||||
|:---------------------------------:|:--------------:|:------------------------------------------|
|
||||
| `GGML_OPENCL_EMBED_KERNELS` | `ON` | Embed OpenCL kernels into the executable. |
|
||||
| `GGML_OPENCL_USE_ADRENO_KERNELS` | `ON` | Use kernels optimized for Adreno. |
|
||||
|
||||
## Android
|
||||
|
||||
Ubuntu 22.04 is used for targeting Android. Make sure the following tools are accessible from command line,
|
||||
|
||||
* Git
|
||||
* CMake 3.29
|
||||
* Ninja
|
||||
* Python3
|
||||
|
||||
### I. Setup Environment
|
||||
|
||||
1. **Install NDK**
|
||||
|
||||
```sh
|
||||
cd ~
|
||||
wget https://dl.google.com/android/repository/commandlinetools-linux-8512546_latest.zip && \
|
||||
unzip commandlinetools-linux-8512546_latest.zip && \
|
||||
mkdir -p ~/android-sdk/cmdline-tools && \
|
||||
mv cmdline-tools latest && \
|
||||
mv latest ~/android-sdk/cmdline-tools/ && \
|
||||
rm -rf commandlinetools-linux-8512546_latest.zip
|
||||
|
||||
yes | ~/android-sdk/cmdline-tools/latest/bin/sdkmanager "ndk;26.3.11579264"
|
||||
```
|
||||
|
||||
2. **Install OpenCL Headers and Library**
|
||||
|
||||
```sh
|
||||
mkdir -p ~/dev/llm
|
||||
cd ~/dev/llm
|
||||
|
||||
git clone https://github.com/KhronosGroup/OpenCL-Headers && \
|
||||
cd OpenCL-Headers && \
|
||||
cp -r CL ~/android-sdk/ndk/26.3.11579264/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include
|
||||
|
||||
cd ~/dev/llm
|
||||
|
||||
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader && \
|
||||
cd OpenCL-ICD-Loader && \
|
||||
mkdir build_ndk26 && cd build_ndk26 && \
|
||||
cmake .. -G Ninja -DCMAKE_BUILD_TYPE=Release \
|
||||
-DCMAKE_TOOLCHAIN_FILE=$HOME/android-sdk/ndk/26.3.11579264/build/cmake/android.toolchain.cmake \
|
||||
-DOPENCL_ICD_LOADER_HEADERS_DIR=$HOME/android-sdk/ndk/26.3.11579264/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include \
|
||||
-DANDROID_ABI=arm64-v8a \
|
||||
-DANDROID_PLATFORM=24 \
|
||||
-DANDROID_STL=c++_shared && \
|
||||
ninja && \
|
||||
cp libOpenCL.so ~/android-sdk/ndk/26.3.11579264/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/lib/aarch64-linux-android
|
||||
```
|
||||
|
||||
### II. Build llama.cpp
|
||||
|
||||
```sh
|
||||
cd ~/dev/llm
|
||||
|
||||
git clone https://github.com/ggml-org/llama.cpp && \
|
||||
cd llama.cpp && \
|
||||
mkdir build-android && cd build-android
|
||||
|
||||
cmake .. -G Ninja \
|
||||
-DCMAKE_TOOLCHAIN_FILE=$HOME/android-sdk/ndk/26.3.11579264/build/cmake/android.toolchain.cmake \
|
||||
-DANDROID_ABI=arm64-v8a \
|
||||
-DANDROID_PLATFORM=android-28 \
|
||||
-DBUILD_SHARED_LIBS=OFF \
|
||||
-DGGML_OPENCL=ON
|
||||
|
||||
ninja
|
||||
```
|
||||
|
||||
## Windows 11 Arm64
|
||||
|
||||
A Snapdragon X Elite device with Windows 11 Arm64 is used. Make sure the following tools are accessible from command line,
|
||||
|
||||
* Git
|
||||
* CMake 3.29
|
||||
* Clang 19
|
||||
* Ninja
|
||||
* Visual Studio 2022
|
||||
* Powershell 7
|
||||
|
||||
Visual Studio provides necessary headers and libraries although it is not directly used for building.
|
||||
Alternatively, Visual Studio Build Tools can be installed instead of the full Visual Studio.
|
||||
|
||||
Powershell 7 is used for the following commands.
|
||||
If an older version of Powershell is used, these commands may not work as they are.
|
||||
|
||||
### I. Setup Environment
|
||||
|
||||
1. **Install OpenCL Headers and Library**
|
||||
|
||||
```powershell
|
||||
mkdir -p ~/dev/llm
|
||||
|
||||
cd ~/dev/llm
|
||||
git clone https://github.com/KhronosGroup/OpenCL-Headers && cd OpenCL-Headers
|
||||
mkdir build && cd build
|
||||
cmake .. -G Ninja `
|
||||
-DBUILD_TESTING=OFF `
|
||||
-DOPENCL_HEADERS_BUILD_TESTING=OFF `
|
||||
-DOPENCL_HEADERS_BUILD_CXX_TESTS=OFF `
|
||||
-DCMAKE_INSTALL_PREFIX="$HOME/dev/llm/opencl"
|
||||
cmake --build . --target install
|
||||
|
||||
cd ~/dev/llm
|
||||
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader && cd OpenCL-ICD-Loader
|
||||
mkdir build && cd build
|
||||
cmake .. -G Ninja `
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DCMAKE_PREFIX_PATH="$HOME/dev/llm/opencl" `
|
||||
-DCMAKE_INSTALL_PREFIX="$HOME/dev/llm/opencl"
|
||||
cmake --build . --target install
|
||||
```
|
||||
|
||||
### II. Build llama.cpp
|
||||
|
||||
```powershell
|
||||
|
||||
mkdir -p ~/dev/llm
|
||||
cd ~/dev/llm
|
||||
|
||||
git clone https://github.com/ggml-org/llama.cpp && cd llama.cpp
|
||||
mkdir build && cd build
|
||||
|
||||
cmake .. -G Ninja `
|
||||
-DCMAKE_TOOLCHAIN_FILE="$HOME/dev/llm/llama.cpp/cmake/arm64-windows-llvm.cmake" `
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DCMAKE_PREFIX_PATH="$HOME/dev/llm/opencl" `
|
||||
-DBUILD_SHARED_LIBS=OFF `
|
||||
-DGGML_OPENCL=ON
|
||||
ninja
|
||||
```
|
||||
|
||||
## Known Issues
|
||||
|
||||
- Currently OpenCL backend does not work on Adreno 6xx GPUs.
|
||||
|
||||
## TODO
|
||||
|
||||
- Optimization for Q6_K
|
||||
- Support and optimization for Q4_K
|
||||
@@ -20,7 +20,7 @@
|
||||
**oneAPI** is an open ecosystem and a standard-based specification, supporting multiple architectures including but not limited to intel CPUs, GPUs and FPGAs. The key components of the oneAPI ecosystem include:
|
||||
|
||||
- **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers.
|
||||
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. Intel oneMKL, oneMath and oneDNN)*.
|
||||
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL and oneDNN)*.
|
||||
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over intel iGPUs and dGPUs.
|
||||
- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets.
|
||||
|
||||
@@ -36,22 +36,12 @@ The following release is verified with good quality:
|
||||
|
||||
|Commit ID|Tag|Release|Verified Platform| Update date|
|
||||
|-|-|-|-|-|
|
||||
|3bcd40b3c593d14261fb2abfabad3c0fb5b9e318|b4040 |[llama-b4040-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b4040/llama-b4040-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1| 2024-11-19|
|
||||
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1||
|
||||
|3bcd40b3c593d14261fb2abfabad3c0fb5b9e318|b4040 |[llama-b4040-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b4040/llama-b4040-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1| 2024-11-19|
|
||||
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1||
|
||||
|
||||
|
||||
## News
|
||||
|
||||
- 2025.2
|
||||
- Optimize MUL_MAT Q4_0 on Intel GPU for all dGPUs and built-in GPUs since MTL. Increase the performance of LLM (llama-2-7b.Q4_0.gguf) 21%-87% on Intel GPUs (MTL, ARL-H, Arc, Flex, PVC).
|
||||
|GPU|Base tokens/s|Increased tokens/s|Percent|
|
||||
|-|-|-|-|
|
||||
|PVC 1550|39|73|+87%|
|
||||
|Flex 170|39|50|+28%|
|
||||
|Arc770|42|55|+30%|
|
||||
|MTL|13|16|+23%|
|
||||
|ARL-H|14|17|+21%|
|
||||
|
||||
- 2024.11
|
||||
- Use syclcompat to improve the performance on some platforms. This requires to use oneAPI 2025.0 or newer.
|
||||
|
||||
@@ -68,7 +58,7 @@ The following release is verified with good quality:
|
||||
- 2024.3
|
||||
- Release binary files of Windows.
|
||||
- A blog is published: **Run LLM on all Intel GPUs Using llama.cpp**: [intel.com](https://www.intel.com/content/www/us/en/developer/articles/technical/run-llm-on-all-gpus-using-llama-cpp-artical.html) or [medium.com](https://medium.com/@jianyu_neo/run-llm-on-all-intel-gpus-using-llama-cpp-fd2e2dcbd9bd).
|
||||
- New base line is ready: [tag b2437](https://github.com/ggml-org/llama.cpp/tree/b2437).
|
||||
- New base line is ready: [tag b2437](https://github.com/ggerganov/llama.cpp/tree/b2437).
|
||||
- Support multiple cards: **--split-mode**: [none|layer]; not support [row], it's on developing.
|
||||
- Support to assign main GPU by **--main-gpu**, replace $GGML_SYCL_DEVICE.
|
||||
- Support detecting all GPUs with level-zero and same top **Max compute units**.
|
||||
@@ -107,8 +97,8 @@ SYCL backend supports Intel GPU Family:
|
||||
| Intel Data Center Max Series | Support | Max 1550, 1100 |
|
||||
| Intel Data Center Flex Series | Support | Flex 170 |
|
||||
| Intel Arc Series | Support | Arc 770, 730M, Arc A750 |
|
||||
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake, Arrow Lake |
|
||||
| Intel iGPU | Support | iGPU in 13700k,iGPU in 13400, i5-1250P, i7-1260P, i7-1165G7 |
|
||||
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake |
|
||||
| Intel iGPU | Support | iGPU in 13700k, i5-1250P, i7-1260P, i7-1165G7 |
|
||||
|
||||
*Notes:*
|
||||
|
||||
@@ -143,7 +133,7 @@ The docker build option is currently limited to *intel GPU* targets.
|
||||
### Build image
|
||||
```sh
|
||||
# Using FP16
|
||||
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" --target light -f .devops/intel.Dockerfile .
|
||||
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" -f .devops/llama-cli-intel.Dockerfile .
|
||||
```
|
||||
|
||||
*Notes*:
|
||||
@@ -227,19 +217,30 @@ Upon a successful installation, SYCL is enabled for the available intel devices,
|
||||
|
||||
**oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.
|
||||
|
||||
**oneDNN**: The current oneDNN releases *(shipped with the oneAPI base-toolkit)* do not include the NVIDIA backend. Therefore, oneDNN must be compiled from source to enable the NVIDIA target:
|
||||
|
||||
**oneMKL for cuBlas**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* do not contain the cuBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *cuBLAS* backend enabled is thus required to run it on Nvidia GPUs.
|
||||
|
||||
```sh
|
||||
git clone https://github.com/oneapi-src/oneDNN.git
|
||||
cd oneDNN
|
||||
cmake -GNinja -Bbuild-nvidia -DDNNL_CPU_RUNTIME=DPCPP -DDNNL_GPU_RUNTIME=DPCPP -DDNNL_GPU_VENDOR=NVIDIA -DONEDNN_BUILD_GRAPH=OFF -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
cmake --build build-nvidia --config Release
|
||||
git clone https://github.com/oneapi-src/oneMKL
|
||||
cd oneMKL
|
||||
cmake -B buildWithCublas -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_CUBLAS_BACKEND=ON -DTARGET_DOMAINS=blas
|
||||
cmake --build buildWithCublas --config Release
|
||||
```
|
||||
|
||||
- **Adding support to AMD GPUs**
|
||||
|
||||
**oneAPI Plugin**: In order to enable SYCL support on AMD GPUs, please install the [Codeplay oneAPI Plugin for AMD GPUs](https://developer.codeplay.com/products/oneapi/amd/download). As with Nvidia GPUs, the user should also make sure the plugin version matches the installed base toolkit.
|
||||
|
||||
**oneMKL for rocBlas**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* doesn't contain the rocBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *rocBLAS* backend enabled is thus required to run it on AMD GPUs.
|
||||
|
||||
```sh
|
||||
git clone https://github.com/oneapi-src/oneMKL
|
||||
cd oneMKL
|
||||
# Find your HIPTARGET with rocminfo, under the key 'Name:'
|
||||
cmake -B buildWithrocBLAS -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_ROCBLAS_BACKEND=ON -DHIPTARGETS=${HIPTARGET} -DTARGET_DOMAINS=blas
|
||||
cmake --build buildWithrocBLAS --config Release
|
||||
```
|
||||
|
||||
3. **Verify installation and environment**
|
||||
|
||||
In order to check the available SYCL devices on the machine, please use the `sycl-ls` command.
|
||||
@@ -302,39 +303,37 @@ cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -
|
||||
cmake --build build --config Release -j -v
|
||||
```
|
||||
|
||||
It is possible to come across some precision issues when running tests that stem from using faster
|
||||
instructions, which can be circumvented by setting the environment variable `SYCL_PROGRAM_COMPILE_OPTIONS`
|
||||
as `-cl-fp32-correctly-rounded-divide-sqrt`
|
||||
|
||||
#### Nvidia GPU
|
||||
|
||||
The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
|
||||
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.
|
||||
|
||||
```sh
|
||||
# Export relevant ENV variables
|
||||
export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LD_LIBRARY_PATH
|
||||
export LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LIBRARY_PATH
|
||||
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithCublas/include:$CPLUS_INCLUDE_DIR
|
||||
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/include:$CPLUS_INCLUDE_DIR
|
||||
|
||||
# Build LLAMA with Nvidia BLAS acceleration through SYCL
|
||||
# Setting GGML_SYCL_DEVICE_ARCH is optional but can improve performance
|
||||
GGML_SYCL_DEVICE_ARCH=sm_80 # Example architecture
|
||||
|
||||
# Option 1: Use FP32 (recommended for better performance in most cases)
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DDNNL_DIR=/path/to/oneDNN/build-nvidia/install/lib/cmake/dnnl
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
|
||||
# Option 2: Use FP16
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON -DDNNL_DIR=/path/to/oneDNN/build-nvidia/install/lib/cmake/dnnl
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON
|
||||
|
||||
# build all binary
|
||||
cmake --build build --config Release -j -v
|
||||
```
|
||||
|
||||
It is possible to come across some precision issues when running tests that stem from using faster
|
||||
instructions, which can be circumvented by passing the `-fno-fast-math` flag to the compiler.
|
||||
|
||||
#### AMD GPU
|
||||
|
||||
The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
|
||||
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.
|
||||
|
||||
```sh
|
||||
# Export relevant ENV variables
|
||||
export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithrocBLAS/lib:$LD_LIBRARY_PATH
|
||||
export LIBRARY_PATH=/path/to/oneMKL/buildWithrocBLAS/lib:$LIBRARY_PATH
|
||||
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithrocBLAS/include:$CPLUS_INCLUDE_DIR
|
||||
|
||||
# Build LLAMA with rocBLAS acceleration through SYCL
|
||||
|
||||
## AMD
|
||||
@@ -425,13 +424,13 @@ Examples:
|
||||
- Use device 0:
|
||||
|
||||
```sh
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
|
||||
```
|
||||
|
||||
- Use multiple devices:
|
||||
|
||||
```sh
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
|
||||
```
|
||||
|
||||
*Notes:*
|
||||
@@ -475,12 +474,6 @@ b. Enable oneAPI running environment:
|
||||
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
|
||||
```
|
||||
|
||||
- if you are using Powershell, enable the runtime environment with the following:
|
||||
|
||||
```
|
||||
cmd.exe "/K" '"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" && powershell'
|
||||
```
|
||||
|
||||
c. Verify installation
|
||||
|
||||
In the oneAPI command line, run the following to print the available SYCL devices:
|
||||
@@ -511,13 +504,13 @@ You could download the release package for Windows directly, which including bin
|
||||
|
||||
Choose one of following methods to build from source code.
|
||||
|
||||
#### 1. Script
|
||||
1. Script
|
||||
|
||||
```sh
|
||||
.\examples\sycl\win-build-sycl.bat
|
||||
```
|
||||
|
||||
#### 2. CMake
|
||||
2. CMake
|
||||
|
||||
On the oneAPI command line window, step into the llama.cpp main directory and run the following:
|
||||
|
||||
@@ -546,84 +539,13 @@ cmake --preset x64-windows-sycl-debug
|
||||
cmake --build build-x64-windows-sycl-debug -j --target llama-cli
|
||||
```
|
||||
|
||||
#### 3. Visual Studio
|
||||
3. Visual Studio
|
||||
|
||||
You have two options to use Visual Studio to build llama.cpp:
|
||||
- As CMake Project using CMake presets.
|
||||
- Creating a Visual Studio solution to handle the project.
|
||||
|
||||
**Note**:
|
||||
|
||||
All following commands are executed in PowerShell.
|
||||
|
||||
##### - Open as a CMake Project
|
||||
|
||||
You can use Visual Studio to open the `llama.cpp` folder directly as a CMake project. Before compiling, select one of the SYCL CMake presets:
|
||||
|
||||
- `x64-windows-sycl-release`
|
||||
|
||||
- `x64-windows-sycl-debug`
|
||||
You can use Visual Studio to open llama.cpp folder as a CMake project. Choose the sycl CMake presets (`x64-windows-sycl-release` or `x64-windows-sycl-debug`) before you compile the project.
|
||||
|
||||
*Notes:*
|
||||
- For a minimal experimental setup, you can build only the inference executable using:
|
||||
|
||||
```Powershell
|
||||
cmake --build build --config Release -j --target llama-cli
|
||||
```
|
||||
|
||||
##### - Generating a Visual Studio Solution
|
||||
|
||||
You can use Visual Studio solution to build and work on llama.cpp on Windows. You need to convert the CMake Project into a `.sln` file.
|
||||
|
||||
If you want to use the Intel C++ Compiler for the entire `llama.cpp` project, run the following command:
|
||||
|
||||
```Powershell
|
||||
cmake -B build -G "Visual Studio 17 2022" -T "Intel C++ Compiler 2025" -A x64 -DGGML_SYCL=ON -DCMAKE_BUILD_TYPE=Release
|
||||
```
|
||||
|
||||
If you prefer to use the Intel C++ Compiler only for `ggml-sycl`, ensure that `ggml` and its backend libraries are built as shared libraries ( i.e. `-DBUILD_SHARED_LIBRARIES=ON`, this is default behaviour):
|
||||
|
||||
```Powershell
|
||||
cmake -B build -G "Visual Studio 17 2022" -A x64 -DGGML_SYCL=ON -DCMAKE_BUILD_TYPE=Release \
|
||||
-DSYCL_INCLUDE_DIR="C:\Program Files (x86)\Intel\oneAPI\compiler\latest\include" \
|
||||
-DSYCL_LIBRARY_DIR="C:\Program Files (x86)\Intel\oneAPI\compiler\latest\lib"
|
||||
```
|
||||
|
||||
If successful the build files have been written to: *path/to/llama.cpp/build*
|
||||
Open the project file **build/llama.cpp.sln** with Visual Studio.
|
||||
|
||||
Once the Visual Studio solution is created, follow these steps:
|
||||
|
||||
1. Open the solution in Visual Studio.
|
||||
|
||||
2. Right-click on `ggml-sycl` and select **Properties**.
|
||||
|
||||
3. In the left column, expand **C/C++** and select **DPC++**.
|
||||
|
||||
4. In the right panel, find **Enable SYCL Offload** and set it to `Yes`.
|
||||
|
||||
5. Apply the changes and save.
|
||||
|
||||
|
||||
*Navigation Path:*
|
||||
|
||||
```
|
||||
Properties -> C/C++ -> DPC++ -> Enable SYCL Offload (Yes)
|
||||
```
|
||||
|
||||
Now, you can build `llama.cpp` with the SYCL backend as a Visual Studio project.
|
||||
To do it from menu: `Build -> Build Solution`.
|
||||
Once it is completed, final results will be in **build/Release/bin**
|
||||
|
||||
*Additional Note*
|
||||
|
||||
- You can avoid specifying `SYCL_INCLUDE_DIR` and `SYCL_LIBRARY_DIR` in the CMake command by setting the environment variables:
|
||||
|
||||
- `SYCL_INCLUDE_DIR_HINT`
|
||||
|
||||
- `SYCL_LIBRARY_DIR_HINT`
|
||||
|
||||
- Above instruction has been tested with Visual Studio 17 Community edition and oneAPI 2025.0. We expect them to work also with future version if the instructions are adapted accordingly.
|
||||
- In case of a minimal experimental setup, the user can build the inference executable only through `cmake --build build --config Release -j --target llama-cli`.
|
||||
|
||||
### III. Run the inference
|
||||
|
||||
@@ -697,13 +619,13 @@ Examples:
|
||||
- Use device 0:
|
||||
|
||||
```
|
||||
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm none -mg 0
|
||||
build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm none -mg 0
|
||||
```
|
||||
|
||||
- Use multiple devices:
|
||||
|
||||
```
|
||||
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
|
||||
build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
|
||||
```
|
||||
|
||||
|
||||
@@ -728,9 +650,8 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
|--------------------|---------------------------------------|---------------------------------------------|
|
||||
| GGML_SYCL | ON (mandatory) | Enable build with SYCL code path.<br>FP32 path - recommended for better perforemance than FP16 on quantized model|
|
||||
| GGML_SYCL_TARGET | INTEL *(default)* \| NVIDIA \| AMD | Set the SYCL target device type. |
|
||||
| GGML_SYCL_DEVICE_ARCH | Optional (except for AMD) | Set the SYCL device architecture, optional except for AMD. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. |
|
||||
| GGML_SYCL_DEVICE_ARCH | Optional (except for AMD) | Set the SYCL device architecture, optional except for AMD. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. |
|
||||
| GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. |
|
||||
| GGML_SYCL_GRAPH | ON *(default)* \|OFF *(Optional)* | Enable build with [SYCL Graph extension](https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_graph.asciidoc). |
|
||||
| CMAKE_C_COMPILER | `icx` *(Linux)*, `icx/cl` *(Windows)* | Set `icx` compiler for SYCL code path. |
|
||||
| CMAKE_CXX_COMPILER | `icpx` *(Linux)*, `icx` *(Windows)* | Set `icpx/icx` compiler for SYCL code path. |
|
||||
|
||||
@@ -739,11 +660,8 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
| Name | Value | Function |
|
||||
|-------------------|------------------|---------------------------------------------------------------------------------------------------------------------------|
|
||||
| GGML_SYCL_DEBUG | 0 (default) or 1 | Enable log function by macro: GGML_SYCL_DEBUG |
|
||||
| GGML_SYCL_DISABLE_OPT | 0 (default) or 1 | Disable optimize features based on Intel GPU type, to compare the performance increase |
|
||||
| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because graph performance isn't yet better than non-graph performance. |
|
||||
| ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer |
|
||||
|
||||
|
||||
## Known Issues
|
||||
|
||||
- `Split-mode:[row]` is not supported.
|
||||
|
||||
240
docs/build.md
240
docs/build.md
@@ -3,7 +3,7 @@
|
||||
**To get the Code:**
|
||||
|
||||
```bash
|
||||
git clone https://github.com/ggml-org/llama.cpp
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
cd llama.cpp
|
||||
```
|
||||
|
||||
@@ -46,7 +46,7 @@ cmake --build build --config Release
|
||||
```
|
||||
|
||||
- Building for Windows (x86, x64 and arm64) with MSVC or clang as compilers:
|
||||
- Install Visual Studio 2022, e.g. via the [Community Edition](https://visualstudio.microsoft.com/vs/community/). In the installer, select at least the following options (this also automatically installs the required additional tools like CMake,...):
|
||||
- Install Visual Studio 2022, e.g. via the [Community Edition](https://visualstudio.microsoft.com/de/vs/community/). In the installer, select at least the following options (this also automatically installs the required additional tools like CMake,...):
|
||||
- Tab Workload: Desktop-development with C++
|
||||
- Tab Components (select quickly via search): C++-_CMake_ Tools for Windows, _Git_ for Windows, C++-_Clang_ Compiler for Windows, MS-Build Support for LLVM-Toolset (clang)
|
||||
- Please remember to always use a Developer Command Prompt / PowerShell for VS2022 for git, build, test
|
||||
@@ -125,73 +125,26 @@ For detailed info, please refer to [llama.cpp for SYCL](./backend/SYCL.md).
|
||||
|
||||
## CUDA
|
||||
|
||||
This provides GPU acceleration using an NVIDIA GPU. Make sure to have the [CUDA toolkit](https://developer.nvidia.com/cuda-toolkit) installed.
|
||||
This provides GPU acceleration using an NVIDIA GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from the [NVIDIA developer site](https://developer.nvidia.com/cuda-downloads).
|
||||
|
||||
#### Download directly from NVIDIA
|
||||
You may find the official downloads here: [NVIDIA developer site](https://developer.nvidia.com/cuda-downloads).
|
||||
If you are using Fedora (using Fedora Workstation, or an 'Atomic' variant such as Silverblue), or would like to set up CUDA in a toolbox, please consider our [Fedora CUDA guide](./cuda-fedora.md). Unfortunately, the process is not as simple as one might expect.
|
||||
|
||||
- Using `CMake`:
|
||||
|
||||
#### Compile and run inside a Fedora Toolbox Container
|
||||
We also have a [guide](./backend/CUDA-FEDORA.md) for setting up CUDA toolkit in a Fedora [toolbox container](https://containertoolbx.org/).
|
||||
```bash
|
||||
cmake -B build -DGGML_CUDA=ON
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
**Recommended for:**
|
||||
- ***Necessary*** for users of [Atomic Desktops for Fedora](https://fedoraproject.org/atomic-desktops/); such as: [Silverblue](https://fedoraproject.org/atomic-desktops/silverblue/) and [Kinoite](https://fedoraproject.org/atomic-desktops/kinoite/).
|
||||
- (there are no supported CUDA packages for these systems)
|
||||
- ***Necessary*** for users that have a host that is not a: [Supported Nvidia CUDA Release Platform](https://developer.nvidia.com/cuda-downloads).
|
||||
- (for example, you may have [Fedora 42 Beta](https://fedoramagazine.org/announcing-fedora-linux-42-beta/) as your your host operating system)
|
||||
- ***Convenient*** For those running [Fedora Workstation](https://fedoraproject.org/workstation/) or [Fedora KDE Plasma Desktop](https://fedoraproject.org/spins/kde), and want to keep their host system clean.
|
||||
- *Optionally* toolbox packages are available: [Arch Linux](https://archlinux.org/), [Red Hat Enterprise Linux >= 8.5](https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux), or [Ubuntu](https://ubuntu.com/download)
|
||||
|
||||
|
||||
### Compilation
|
||||
```bash
|
||||
cmake -B build -DGGML_CUDA=ON
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
### Override Compute Capability Specifications
|
||||
|
||||
If `nvcc` cannot detect your gpu, you may get compile-warnings such as:
|
||||
```text
|
||||
nvcc warning : Cannot find valid GPU for '-arch=native', default arch is used
|
||||
```
|
||||
|
||||
To override the `native` GPU detection:
|
||||
|
||||
#### 1. Take note of the `Compute Capability` of your NVIDIA devices: ["CUDA: Your GPU Compute > Capability"](https://developer.nvidia.com/cuda-gpus).
|
||||
|
||||
```text
|
||||
GeForce RTX 4090 8.9
|
||||
GeForce RTX 3080 Ti 8.6
|
||||
GeForce RTX 3070 8.6
|
||||
```
|
||||
|
||||
#### 2. Manually list each varying `Compute Capability` in the `CMAKE_CUDA_ARCHITECTURES` list.
|
||||
|
||||
```bash
|
||||
cmake -B build -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES="86;89"
|
||||
```
|
||||
|
||||
### Runtime CUDA environmental variables
|
||||
|
||||
You may set the [cuda environmental variables](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) at runtime.
|
||||
|
||||
```bash
|
||||
# Use `CUDA_VISIBLE_DEVICES` to hide the first compute device.
|
||||
CUDA_VISIBLE_DEVICES="-0" ./build/bin/llama-server --model /srv/models/llama.gguf
|
||||
```
|
||||
|
||||
### Unified Memory
|
||||
The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used.
|
||||
|
||||
The environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY=1` can be used to enable unified memory in Linux. This allows swapping to system RAM instead of crashing when the GPU VRAM is exhausted. In Windows this setting is available in the NVIDIA control panel as `System Memory Fallback`.
|
||||
|
||||
### Performance Tuning
|
||||
|
||||
The following compilation options are also available to tweak performance:
|
||||
|
||||
| Option | Legal values | Default | Description |
|
||||
|-------------------------------|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| GGML_CUDA_FORCE_MMQ | Boolean | false | Force the use of custom matrix multiplication kernels for quantized models instead of FP16 cuBLAS even if there is no int8 tensor core implementation available (affects V100, CDNA and RDNA3+). MMQ kernels are enabled by default on GPUs with int8 tensor core support. With MMQ force enabled, speed for large batch sizes will be worse but VRAM consumption will be lower. |
|
||||
| GGML_CUDA_FORCE_MMQ | Boolean | false | Force the use of custom matrix multiplication kernels for quantized models instead of FP16 cuBLAS even if there is no int8 tensor core implementation available (affects V100, RDNA3). MMQ kernels are enabled by default on GPUs with int8 tensor core support. With MMQ force enabled, speed for large batch sizes will be worse but VRAM consumption will be lower. |
|
||||
| GGML_CUDA_FORCE_CUBLAS | Boolean | false | Force the use of FP16 cuBLAS instead of custom matrix multiplication kernels for quantized models |
|
||||
| GGML_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
|
||||
| GGML_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
|
||||
@@ -199,54 +152,21 @@ The following compilation options are also available to tweak performance:
|
||||
|
||||
## MUSA
|
||||
|
||||
This provides GPU acceleration using a Moore Threads GPU. Make sure to have the [MUSA SDK](https://developer.mthreads.com/musa/musa-sdk) installed.
|
||||
This provides GPU acceleration using the MUSA cores of your Moore Threads MTT GPU. Make sure to have the MUSA SDK installed. You can download it from here: [MUSA SDK](https://developer.mthreads.com/sdk/download/musa).
|
||||
|
||||
#### Download directly from Moore Threads
|
||||
- Using `CMake`:
|
||||
|
||||
You may find the official downloads here: [Moore Threads developer site](https://developer.mthreads.com/sdk/download/musa).
|
||||
|
||||
### Compilation
|
||||
|
||||
```bash
|
||||
cmake -B build -DGGML_MUSA=ON
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
#### Override Compute Capability Specifications
|
||||
|
||||
By default, all supported compute capabilities are enabled. To customize this behavior, you can specify the `MUSA_ARCHITECTURES` option in the CMake command:
|
||||
|
||||
```bash
|
||||
cmake -B build -DGGML_MUSA=ON -DMUSA_ARCHITECTURES="21"
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
This configuration enables only compute capability `2.1` (MTT S80) during compilation, which can help reduce compilation time.
|
||||
|
||||
#### Compilation options
|
||||
|
||||
Most of the compilation options available for CUDA should also be available for MUSA, though they haven't been thoroughly tested yet.
|
||||
|
||||
- For static builds, add `-DBUILD_SHARED_LIBS=OFF` and `-DCMAKE_POSITION_INDEPENDENT_CODE=ON`:
|
||||
```
|
||||
cmake -B build -DGGML_MUSA=ON \
|
||||
-DBUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON
|
||||
```bash
|
||||
cmake -B build -DGGML_MUSA=ON
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
### Runtime MUSA environmental variables
|
||||
|
||||
You may set the [musa environmental variables](https://docs.mthreads.com/musa-sdk/musa-sdk-doc-online/programming_guide/Z%E9%99%84%E5%BD%95/) at runtime.
|
||||
|
||||
```bash
|
||||
# Use `MUSA_VISIBLE_DEVICES` to hide the first compute device.
|
||||
MUSA_VISIBLE_DEVICES="-0" ./build/bin/llama-server --model /srv/models/llama.gguf
|
||||
```
|
||||
|
||||
### Unified Memory
|
||||
The environment variable [`MUSA_VISIBLE_DEVICES`](https://docs.mthreads.com/musa-sdk/musa-sdk-doc-online/programming_guide/Z%E9%99%84%E5%BD%95/) can be used to specify which GPU(s) will be used.
|
||||
|
||||
The environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY=1` can be used to enable unified memory in Linux. This allows swapping to system RAM instead of crashing when the GPU VRAM is exhausted.
|
||||
|
||||
Most of the compilation options available for CUDA should also be available for MUSA, though they haven't been thoroughly tested yet.
|
||||
|
||||
## HIP
|
||||
|
||||
This provides GPU acceleration on HIP-supported AMD GPUs.
|
||||
@@ -259,12 +179,8 @@ You can download it from your Linux distro's package manager or from here: [ROCm
|
||||
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
|
||||
&& cmake --build build --config Release -- -j 16
|
||||
```
|
||||
|
||||
To enhance flash attention performance on RDNA3+ or CDNA architectures, you can utilize the rocWMMA library by enabling the `-DGGML_HIP_ROCWMMA_FATTN=ON` option. This requires rocWMMA headers to be installed on the build system.
|
||||
|
||||
The rocWMMA library is included by default when installing the ROCm SDK using the `rocm` meta package provided by AMD. Alternatively, if you are not using the meta package, you can install the library using the `rocwmma-dev` or `rocwmma-devel` package, depending on your system's package manager.
|
||||
|
||||
As an alternative, you can manually install the library by cloning it from the official [GitHub repository](https://github.com/ROCm/rocWMMA), checkout the corresponding version tag (e.g. `rocm-6.2.4`) and set `-DCMAKE_CXX_FLAGS="-I<path/to/rocwmma>/library/include/"` in CMake. This also works under Windows despite not officially supported by AMD.
|
||||
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DGGML_HIP_UMA=ON`.
|
||||
However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
|
||||
|
||||
Note that if you get the following error:
|
||||
```
|
||||
@@ -294,10 +210,6 @@ You can download it from your Linux distro's package manager or from here: [ROCm
|
||||
The environment variable [`HIP_VISIBLE_DEVICES`](https://rocm.docs.amd.com/en/latest/understand/gpu_isolation.html#hip-visible-devices) can be used to specify which GPU(s) will be used.
|
||||
If your GPU is not officially supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 (e.g. gfx1030, gfx1031, or gfx1035) or 11.0.0 on RDNA3.
|
||||
|
||||
### Unified Memory
|
||||
|
||||
On Linux it is possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY=1`. However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
|
||||
|
||||
## Vulkan
|
||||
|
||||
**Windows**
|
||||
@@ -374,7 +286,7 @@ You don't need to install Vulkan SDK. It will be installed inside the container.
|
||||
|
||||
```sh
|
||||
# Build the image
|
||||
docker build -t llama-cpp-vulkan --target light -f .devops/vulkan.Dockerfile .
|
||||
docker build -t llama-cpp-vulkan -f .devops/llama-cli-vulkan.Dockerfile .
|
||||
|
||||
# Then, use it:
|
||||
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-vulkan -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
|
||||
@@ -438,116 +350,6 @@ llama_new_context_with_model: CANN compute buffer size = 1260.81 MiB
|
||||
|
||||
For detailed info, such as model/device supports, CANN install, please refer to [llama.cpp for CANN](./backend/CANN.md).
|
||||
|
||||
## Arm® KleidiAI™
|
||||
KleidiAI is a library of optimized microkernels for AI workloads, specifically designed for Arm CPUs. These microkernels enhance performance and can be enabled for use by the CPU backend.
|
||||
|
||||
To enable KleidiAI, go to the llama.cpp directory and build using CMake
|
||||
```bash
|
||||
cmake -B build -DGGML_CPU_KLEIDIAI=ON
|
||||
cmake --build build --config Release
|
||||
```
|
||||
You can verify that KleidiAI is being used by running
|
||||
```bash
|
||||
./build/bin/llama-cli -m PATH_TO_MODEL -p "What is a car?"
|
||||
```
|
||||
If KleidiAI is enabled, the ouput will contain a line similar to:
|
||||
```
|
||||
load_tensors: CPU_KLEIDIAI model buffer size = 3474.00 MiB
|
||||
```
|
||||
KleidiAI's microkernels implement optimized tensor operations using Arm CPU features such as dotprod, int8mm and SME. llama.cpp selects the most efficient kernel based on runtime CPU feature detection. However, on platforms that support SME, you must manually enable SME microkernels by setting the environment variable `GGML_KLEIDIAI_SME=1`.
|
||||
|
||||
Depending on your build target, other higher priority backends may be enabled by default. To ensure the CPU backend is used, you must disable the higher priority backends either at compile time, e.g. -DGGML_METAL=OFF, or during run-time using the command line option `--device none`.
|
||||
|
||||
## OpenCL
|
||||
|
||||
This provides GPU acceleration through OpenCL on recent Adreno GPU.
|
||||
More information about OpenCL backend can be found in [OPENCL.md](./backend/OPENCL.md) for more information.
|
||||
|
||||
### Android
|
||||
|
||||
Assume NDK is available in `$ANDROID_NDK`. First, install OpenCL headers and ICD loader library if not available,
|
||||
|
||||
```sh
|
||||
mkdir -p ~/dev/llm
|
||||
cd ~/dev/llm
|
||||
|
||||
git clone https://github.com/KhronosGroup/OpenCL-Headers && \
|
||||
cd OpenCL-Headers && \
|
||||
cp -r CL $ANDROID_NDK/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include
|
||||
|
||||
cd ~/dev/llm
|
||||
|
||||
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader && \
|
||||
cd OpenCL-ICD-Loader && \
|
||||
mkdir build_ndk && cd build_ndk && \
|
||||
cmake .. -G Ninja -DCMAKE_BUILD_TYPE=Release \
|
||||
-DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \
|
||||
-DOPENCL_ICD_LOADER_HEADERS_DIR=$ANDROID_NDK/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include \
|
||||
-DANDROID_ABI=arm64-v8a \
|
||||
-DANDROID_PLATFORM=24 \
|
||||
-DANDROID_STL=c++_shared && \
|
||||
ninja && \
|
||||
cp libOpenCL.so $ANDROID_NDK/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/lib/aarch64-linux-android
|
||||
```
|
||||
|
||||
Then build llama.cpp with OpenCL enabled,
|
||||
|
||||
```sh
|
||||
cd ~/dev/llm
|
||||
|
||||
git clone https://github.com/ggml-org/llama.cpp && \
|
||||
cd llama.cpp && \
|
||||
mkdir build-android && cd build-android
|
||||
|
||||
cmake .. -G Ninja \
|
||||
-DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \
|
||||
-DANDROID_ABI=arm64-v8a \
|
||||
-DANDROID_PLATFORM=android-28 \
|
||||
-DBUILD_SHARED_LIBS=OFF \
|
||||
-DGGML_OPENCL=ON
|
||||
|
||||
ninja
|
||||
```
|
||||
|
||||
### Windows Arm64
|
||||
|
||||
First, install OpenCL headers and ICD loader library if not available,
|
||||
|
||||
```powershell
|
||||
mkdir -p ~/dev/llm
|
||||
|
||||
cd ~/dev/llm
|
||||
git clone https://github.com/KhronosGroup/OpenCL-Headers && cd OpenCL-Headers
|
||||
mkdir build && cd build
|
||||
cmake .. -G Ninja `
|
||||
-DBUILD_TESTING=OFF `
|
||||
-DOPENCL_HEADERS_BUILD_TESTING=OFF `
|
||||
-DOPENCL_HEADERS_BUILD_CXX_TESTS=OFF `
|
||||
-DCMAKE_INSTALL_PREFIX="$HOME/dev/llm/opencl"
|
||||
cmake --build . --target install
|
||||
|
||||
cd ~/dev/llm
|
||||
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader && cd OpenCL-ICD-Loader
|
||||
mkdir build && cd build
|
||||
cmake .. -G Ninja `
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DCMAKE_PREFIX_PATH="$HOME/dev/llm/opencl" `
|
||||
-DCMAKE_INSTALL_PREFIX="$HOME/dev/llm/opencl"
|
||||
cmake --build . --target install
|
||||
```
|
||||
|
||||
Then build llama.cpp with OpenCL enabled,
|
||||
|
||||
```powershell
|
||||
cmake .. -G Ninja `
|
||||
-DCMAKE_TOOLCHAIN_FILE="$HOME/dev/llm/llama.cpp/cmake/arm64-windows-llvm.cmake" `
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DCMAKE_PREFIX_PATH="$HOME/dev/llm/opencl" `
|
||||
-DBUILD_SHARED_LIBS=OFF `
|
||||
-DGGML_OPENCL=ON
|
||||
ninja
|
||||
```
|
||||
|
||||
## Android
|
||||
|
||||
To read documentation for how to build on Android, [click here](./android.md)
|
||||
|
||||
@@ -1,20 +1,23 @@
|
||||
# Setting Up CUDA on Fedora
|
||||
|
||||
In this guide we setup [Nvidia CUDA](https://docs.nvidia.com/cuda/) in a toolbox container. This guide is applicable for:
|
||||
|
||||
- [Fedora Workstation](https://fedoraproject.org/workstation/)
|
||||
- [Atomic Desktops for Fedora](https://fedoraproject.org/atomic-desktops/)
|
||||
- [Fedora Spins](https://fedoraproject.org/spins)
|
||||
- [Other Distributions](https://containertoolbx.org/distros/), including `Red Hat Enterprise Linux >= 8.5`, `Arch Linux`, and `Ubuntu`.
|
||||
- [Other Distributions](https://containertoolbx.org/distros/), including `Red Hat Enterprise Linux >= 8.`, `Arch Linux`, and `Ubuntu`.
|
||||
|
||||
|
||||
## Table of Contents
|
||||
|
||||
- [Prerequisites](#prerequisites)
|
||||
- [Using the Fedora 41 CUDA Repository](#using-the-fedora-41-cuda-repository)
|
||||
- [Monitoring NVIDIA CUDA Repositories](#monitoring-nvidia-cuda-repositories)
|
||||
- [Using the Fedora 39 CUDA Repository](#using-the-fedora-39-cuda-repository)
|
||||
- [Creating a Fedora Toolbox Environment](#creating-a-fedora-toolbox-environment)
|
||||
- [Installing Essential Development Tools](#installing-essential-development-tools)
|
||||
- [Adding the CUDA Repository](#adding-the-cuda-repository)
|
||||
- [Installing Nvidia Driver Libraries](#installing-nvidia-driver-libraries)
|
||||
- [Installing `nvidia-driver-libs`](#installing-nvidia-driver-libs)
|
||||
- [Manually Resolving Package Conflicts](#manually-resolving-package-conflicts)
|
||||
- [Finalizing the Installation of `nvidia-driver-libs`](#finalizing-the-installation-of-nvidia-driver-libs)
|
||||
- [Installing the CUDA Meta-Package](#installing-the-cuda-meta-package)
|
||||
- [Configuring the Environment](#configuring-the-environment)
|
||||
- [Verifying the Installation](#verifying-the-installation)
|
||||
@@ -26,33 +29,44 @@ In this guide we setup [Nvidia CUDA](https://docs.nvidia.com/cuda/) in a toolbox
|
||||
## Prerequisites
|
||||
|
||||
- **Toolbox Installed on the Host System** `Fedora Silverblue` and `Fedora Workstation` both have toolbox by default, other distributions may need to install the [toolbox package](https://containertoolbx.org/install/).
|
||||
- **NVIDIA Drivers and Graphics Card installed on Host System (recommended)** To run CUDA program, such as `llama.cpp`, the host should be setup to access your NVIDIA hardware. Fedora Hosts can use the [RPM Fusion Repository](https://rpmfusion.org/Howto/NVIDIA).
|
||||
- **NVIDIA Drivers and Graphics Card installed on Host System (optional)** To run CUDA program, such as `llama.cpp`, the host should be setup to access your NVIDIA hardware. Fedora Hosts can use the [RPM Fusion Repository](https://rpmfusion.org/Howto/NVIDIA).
|
||||
- **Internet connectivity** to download packages.
|
||||
|
||||
### Using the Fedora 41 CUDA Repository
|
||||
### Monitoring NVIDIA CUDA Repositories
|
||||
|
||||
The latest release is 41.
|
||||
Before proceeding, it is advisable to check if NVIDIA has updated their CUDA repositories for your Fedora version. NVIDIA's repositories can be found at:
|
||||
|
||||
- [Fedora 40 CUDA Repository](https://developer.download.nvidia.com/compute/cuda/repos/fedora40/x86_64/)
|
||||
- [Fedora 41 CUDA Repository](https://developer.download.nvidia.com/compute/cuda/repos/fedora41/x86_64/)
|
||||
|
||||
**Note:** We recommend using a toolbox environment to prevent system conflicts.
|
||||
As of the latest update, these repositories do not contain the `cuda` meta-package or are missing essential components.
|
||||
|
||||
### Using the Fedora 39 CUDA Repository
|
||||
|
||||
Since the newer repositories are incomplete, we'll use the Fedora 39 repository:
|
||||
|
||||
- [Fedora 39 CUDA Repository](https://developer.download.nvidia.com/compute/cuda/repos/fedora39/x86_64/)
|
||||
|
||||
**Note:** Fedora 39 is no longer maintained, so we recommend using a toolbox environment to prevent system conflicts.
|
||||
|
||||
## Creating a Fedora Toolbox Environment
|
||||
|
||||
This guide focuses on Fedora hosts, but with small adjustments, it can work for other hosts. Using the Fedora Toolbox allows us to install the necessary packages without affecting the host system.
|
||||
This guide focuses on Fedora hosts, but with small adjustments, it can work for other hosts. Using a Fedora 39 toolbox allows us to install the necessary packages without affecting the host system.
|
||||
|
||||
**Note:** Toolbox is available for other systems, and even without Toolbox, it is possible to use Podman or Docker.
|
||||
|
||||
1. **Create a Fedora 41 Toolbox:**
|
||||
We do not recommend installing on the host system, as Fedora 39 is out-of-maintenance, and instead you should upgrade to a maintained version of Fedora for your host.
|
||||
|
||||
1. **Create a Fedora 39 Toolbox:**
|
||||
|
||||
```bash
|
||||
toolbox create --image registry.fedoraproject.org/fedora-toolbox:41 --container fedora-toolbox-41-cuda
|
||||
toolbox create --image registry.fedoraproject.org/fedora-toolbox:39 --container fedora-toolbox-39-cuda
|
||||
```
|
||||
|
||||
2. **Enter the Toolbox:**
|
||||
|
||||
```bash
|
||||
toolbox enter --container fedora-toolbox-41-cuda
|
||||
toolbox enter --container fedora-toolbox-39-cuda
|
||||
```
|
||||
|
||||
Inside the toolbox, you have root privileges and can install packages without affecting the host system.
|
||||
@@ -65,13 +79,13 @@ This guide focuses on Fedora hosts, but with small adjustments, it can work for
|
||||
sudo dnf distro-sync
|
||||
```
|
||||
|
||||
2. **Install **Vim** the default text editor (Optional):**
|
||||
2. **Install the Default Text Editor (Optional):**
|
||||
|
||||
```bash
|
||||
sudo dnf install vim-default-editor --allowerasing
|
||||
```
|
||||
|
||||
The `--allowerasing` flag will allow the removal of the conflicting `nano-default-editor` package.
|
||||
The `--allowerasing` flag resolves any package conflicts.
|
||||
|
||||
3. **Install Development Tools and Libraries:**
|
||||
|
||||
@@ -86,7 +100,7 @@ This guide focuses on Fedora hosts, but with small adjustments, it can work for
|
||||
Add the NVIDIA CUDA repository to your DNF configuration:
|
||||
|
||||
```bash
|
||||
sudo dnf config-manager addrepo --from-repofile=https://developer.download.nvidia.com/compute/cuda/repos/fedora41/x86_64/cuda-fedora41.repo
|
||||
sudo dnf config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/fedora39/x86_64/cuda-fedora39.repo
|
||||
```
|
||||
|
||||
After adding the repository, synchronize the package manager again:
|
||||
@@ -95,77 +109,106 @@ After adding the repository, synchronize the package manager again:
|
||||
sudo dnf distro-sync
|
||||
```
|
||||
|
||||
## Installing Nvidia Driver Libraries
|
||||
## Installing `nvidia-driver-libs`
|
||||
|
||||
First, we need to detect if the host is supplying the [NVIDIA driver libraries into the toolbox](https://github.com/containers/toolbox/blob/main/src/pkg/nvidia/nvidia.go):
|
||||
Attempt to install `nvidia-driver-libs`:
|
||||
|
||||
```bash
|
||||
ls -la /usr/lib64/libcuda.so.1
|
||||
```
|
||||
|
||||
### If *`libcuda.so.1`* is missing:
|
||||
|
||||
```
|
||||
ls: cannot access '/usr/lib64/libcuda.so.1': No such file or directory
|
||||
sudo dnf install nvidia-driver-libs
|
||||
```
|
||||
|
||||
**Explanation:**
|
||||
The host dose not supply the CUDA drivers, **install them now:**
|
||||
|
||||
#### Install the Nvidia Driver Libraries on Guest:
|
||||
- `nvidia-driver-libs` contains necessary NVIDIA driver libraries required by CUDA.
|
||||
- This step might fail due to conflicts with existing NVIDIA drivers on the host system.
|
||||
|
||||
## Manually Resolving Package Conflicts
|
||||
|
||||
If the installation fails due to conflicts, we'll manually download and install the required packages, excluding conflicting files.
|
||||
|
||||
### 1. Download the `nvidia-driver-libs` RPM
|
||||
|
||||
```bash
|
||||
sudo dnf install nvidia-driver-cuda nvidia-driver-libs nvidia-driver-cuda-libs nvidia-persistenced
|
||||
sudo dnf download --arch x86_64 nvidia-driver-libs
|
||||
```
|
||||
|
||||
### If *`libcuda.so.1`* exists:
|
||||
You should see a file similar to:
|
||||
|
||||
```
|
||||
lrwxrwxrwx. 1 root root 21 Mar 24 11:26 /usr/lib64/libcuda.so.1 -> libcuda.so.570.133.07
|
||||
nvidia-driver-libs-560.35.05-1.fc39.x86_64.rpm
|
||||
```
|
||||
|
||||
### 2. Attempt to Install the RPM
|
||||
|
||||
```bash
|
||||
sudo dnf install nvidia-driver-libs-560.35.05-1.fc39.x86_64.rpm
|
||||
```
|
||||
|
||||
**Expected Error:**
|
||||
|
||||
Installation may fail with errors pointing to conflicts with `egl-gbm` and `egl-wayland`.
|
||||
|
||||
**Note: It is important to carefully read the error messages to identify the exact paths that need to be excluded.**
|
||||
|
||||
### 3. Download Dependencies
|
||||
|
||||
```bash
|
||||
sudo dnf download --arch x86_64 egl-gbm egl-wayland
|
||||
```
|
||||
|
||||
### 4. Install `egl-gbm` with Excluded Paths
|
||||
|
||||
Exclude conflicting files during installation:
|
||||
|
||||
```bash
|
||||
sudo rpm --install --verbose --hash \
|
||||
--excludepath=/usr/lib64/libnvidia-egl-gbm.so.1.1.2 \
|
||||
--excludepath=/usr/share/egl/egl_external_platform.d/15_nvidia_gbm.json \
|
||||
egl-gbm-1.1.2^20240919gitb24587d-3.fc39.x86_64.rpm
|
||||
```
|
||||
|
||||
**Explanation:**
|
||||
The host is supply the CUDA drivers, **we need to update the guest RPM Database accordingly:**
|
||||
|
||||
#### Update the Toolbox RPM Database to include the Host-Supplied Libraries:
|
||||
- The `--excludepath` option skips installing files that conflict with existing files.
|
||||
- Adjust the paths based on the error messages you receive.
|
||||
|
||||
Note: we do not actually install the libraries, we just update the DB so that the guest system knows they are supplied by the host.
|
||||
|
||||
##### 1. Download `nvidia-` parts that are supplied by the host RPM's (with dependencies)
|
||||
### 5. Install `egl-wayland` with Excluded Paths
|
||||
|
||||
```bash
|
||||
sudo dnf download --destdir=/tmp/nvidia-driver-libs --resolve --arch x86_64 nvidia-driver-cuda nvidia-driver-libs nvidia-driver-cuda-libs nvidia-persistenced
|
||||
sudo rpm --install --verbose --hash \
|
||||
--excludepath=/usr/share/egl/egl_external_platform.d/10_nvidia_wayland.json \
|
||||
egl-wayland-1.1.17^20241118giteeb29e1-5.fc39.x86_64.rpm
|
||||
```
|
||||
|
||||
##### 2. Update the RPM database to assume the installation of these packages.
|
||||
### 6. Install `nvidia-driver-libs` with Excluded Paths
|
||||
|
||||
```bash
|
||||
sudo rpm --install --verbose --hash --justdb /tmp/nvidia-driver-libs/*
|
||||
sudo rpm --install --verbose --hash \
|
||||
--excludepath=/usr/share/glvnd/egl_vendor.d/10_nvidia.json \
|
||||
--excludepath=/usr/share/nvidia/nvoptix.bin \
|
||||
nvidia-driver-libs-560.35.05-1.fc39.x86_64.rpm
|
||||
```
|
||||
|
||||
**Note:**
|
||||
|
||||
- The `--justdb` option only updates the RPM database, without touching the filesystem elsewhere.
|
||||
- Replace the paths with the ones causing conflicts in your installation if they differ.
|
||||
- The `--verbose` and `--hash` options provide detailed output during installation.
|
||||
|
||||
##### Check that the RPM Database has been correctly updated:
|
||||
|
||||
**Note:** This is the same command as in the *"Install the Nvidia Driver Libraries on Guest"* for if *`libcuda.so.1`* was missing.
|
||||
## Finalizing the Installation of `nvidia-driver-libs`
|
||||
|
||||
After manually installing the dependencies, run:
|
||||
|
||||
```bash
|
||||
sudo dnf install nvidia-driver-cuda nvidia-driver-libs nvidia-driver-cuda-libs nvidia-persistenced
|
||||
sudo dnf install nvidia-driver-libs
|
||||
```
|
||||
|
||||
*(this time it will not install anything, as the database things that these packages are already installed)*
|
||||
You should receive a message indicating the package is already installed:
|
||||
|
||||
```
|
||||
Updating and loading repositories:
|
||||
Repositories loaded.
|
||||
Package "nvidia-driver-cuda-3:570.124.06-1.fc41.x86_64" is already installed.
|
||||
Package "nvidia-driver-libs-3:570.124.06-1.fc41.x86_64" is already installed.
|
||||
Package "nvidia-driver-cuda-libs-3:570.124.06-1.fc41.x86_64" is already installed.
|
||||
Package "nvidia-persistenced-3:570.124.06-1.fc41.x86_64" is already installed.
|
||||
|
||||
Package nvidia-driver-libs-3:560.35.05-1.fc39.x86_64 is already installed.
|
||||
Dependencies resolved.
|
||||
Nothing to do.
|
||||
Complete!
|
||||
```
|
||||
|
||||
## Installing the CUDA Meta-Package
|
||||
@@ -190,7 +233,7 @@ To use CUDA, add its binary directory to your system's `PATH`.
|
||||
|
||||
**Explanation:**
|
||||
|
||||
- We add to `/etc/profile.d/` as the `/etc/` folder is unique to this particular container, and is not shared with other containers or the host system.
|
||||
- We add to `/etc/profile.d/` as the `/etc/` folder is unique to this particular container, and is not shared with other containers or the host system.
|
||||
- The backslash `\` before `$PATH` ensures the variable is correctly written into the script.
|
||||
|
||||
2. **Make the Script Executable:**
|
||||
@@ -219,33 +262,26 @@ You should see output similar to:
|
||||
|
||||
```
|
||||
nvcc: NVIDIA (R) Cuda compiler driver
|
||||
Copyright (c) 2005-2025 NVIDIA Corporation
|
||||
Built on Fri_Feb_21_20:23:50_PST_2025
|
||||
Cuda compilation tools, release 12.8, V12.8.93
|
||||
Build cuda_12.8.r12.8/compiler.35583870_0
|
||||
Copyright (c) 2005-2024 NVIDIA Corporation
|
||||
Built on Tue_Oct_29_23:50:19_PDT_2024
|
||||
Cuda compilation tools, release 12.6, V12.6.85
|
||||
Build cuda_12.6.r12.6/compiler.35059454_0
|
||||
```
|
||||
|
||||
This output confirms that the CUDA compiler is accessible and indicates the installed version.
|
||||
|
||||
## Conclusion
|
||||
|
||||
You have successfully set up CUDA on Fedora within a toolbox environment using the Fedora 41 CUDA repository. By manually updating the RPM db and configuring the environment, you can develop CUDA applications without affecting your host system.
|
||||
You have successfully set up CUDA on Fedora within a toolbox environment using the Fedora 39 CUDA repository. By manually resolving package conflicts and configuring the environment, you can develop CUDA applications without affecting your host system.
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
- **Installation Failures:**
|
||||
|
||||
- If you encounter errors during installation, carefully read the error messages. They often indicate conflicting files or missing dependencies.
|
||||
- You may use the `--excludepath` option with `rpm` to exclude conflicting files during manual RPM installations.
|
||||
- Use the `--excludepath` option with `rpm` to exclude conflicting files during manual installations.
|
||||
|
||||
- **Rebooting the Container:**
|
||||
|
||||
- Sometimes there may be a bug in the NVIDIA driver host passthrough (such as missing a shared library). Rebooting the container may solve this issue:
|
||||
|
||||
```bash
|
||||
# on the host system
|
||||
podman container restart --all
|
||||
```
|
||||
- **Driver Conflicts:**
|
||||
- Since the host system may already have NVIDIA drivers installed, conflicts can arise. Using the toolbox environment helps isolate these issues.
|
||||
|
||||
- **Environment Variables Not Set:**
|
||||
- If `nvcc` is not found after installation, ensure that `/usr/local/cuda/bin` is in your `PATH`.
|
||||
@@ -255,13 +291,11 @@ You have successfully set up CUDA on Fedora within a toolbox environment using t
|
||||
## Additional Notes
|
||||
|
||||
- **Updating CUDA in the Future:**
|
||||
|
||||
- Keep an eye on the official NVIDIA repositories for updates to your Fedora version.
|
||||
- When an updated repository becomes available, adjust your `dnf` configuration accordingly.
|
||||
|
||||
- **Building `llama.cpp`:**
|
||||
|
||||
- With CUDA installed, you can follow these [build instructions for `llama.cpp`](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md) to compile it with CUDA support.
|
||||
- With CUDA installed, you can follow these [build instructions for `llama.cpp`](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md) to compile it with CUDA support.
|
||||
- Ensure that any CUDA-specific build flags or paths are correctly set in your build configuration.
|
||||
|
||||
- **Using the Toolbox Environment:**
|
||||
@@ -104,16 +104,16 @@ Note: to debug the inference graph: you can use [llama-eval-callback](/examples/
|
||||
|
||||
## GGUF specification
|
||||
|
||||
https://github.com/ggml-org/ggml/blob/master/docs/gguf.md
|
||||
https://github.com/ggerganov/ggml/blob/master/docs/gguf.md
|
||||
|
||||
## Resources
|
||||
|
||||
- YaRN RoPE scaling https://github.com/ggml-org/llama.cpp/pull/2268
|
||||
- support Baichuan serial models https://github.com/ggml-org/llama.cpp/pull/3009
|
||||
- support attention bias https://github.com/ggml-org/llama.cpp/pull/4283
|
||||
- Mixtral support https://github.com/ggml-org/llama.cpp/pull/4406
|
||||
- BERT embeddings https://github.com/ggml-org/llama.cpp/pull/5423
|
||||
- Grok-1 support https://github.com/ggml-org/llama.cpp/pull/6204
|
||||
- Command R Plus support https://github.com/ggml-org/llama.cpp/pull/6491
|
||||
- support arch DBRX https://github.com/ggml-org/llama.cpp/pull/6515
|
||||
- How to convert HuggingFace model to GGUF format https://github.com/ggml-org/llama.cpp/discussions/2948
|
||||
- YaRN RoPE scaling https://github.com/ggerganov/llama.cpp/pull/2268
|
||||
- support Baichuan serial models https://github.com/ggerganov/llama.cpp/pull/3009
|
||||
- support attention bias https://github.com/ggerganov/llama.cpp/pull/4283
|
||||
- Mixtral support https://github.com/ggerganov/llama.cpp/pull/4406
|
||||
- BERT embeddings https://github.com/ggerganov/llama.cpp/pull/5423
|
||||
- Grok-1 support https://github.com/ggerganov/llama.cpp/pull/6204
|
||||
- Command R Plus support https://github.com/ggerganov/llama.cpp/pull/6491
|
||||
- support arch DBRX https://github.com/ggerganov/llama.cpp/pull/6515
|
||||
- How to convert HuggingFace model to GGUF format https://github.com/ggerganov/llama.cpp/discussions/2948
|
||||
|
||||
@@ -7,21 +7,21 @@
|
||||
## Images
|
||||
We have three Docker images available for this project:
|
||||
|
||||
1. `ghcr.io/ggml-org/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
2. `ghcr.io/ggml-org/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
3. `ghcr.io/ggml-org/llama.cpp:server`: This image only includes the server executable file. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
1. `ghcr.io/ggerganov/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
2. `ghcr.io/ggerganov/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
3. `ghcr.io/ggerganov/llama.cpp:server`: This image only includes the server executable file. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
|
||||
Additionally, there the following images, similar to the above:
|
||||
|
||||
- `ghcr.io/ggml-org/llama.cpp:full-cuda`: Same as `full` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:light-cuda`: Same as `light` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:server-cuda`: Same as `server` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:full-rocm`: Same as `full` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:light-rocm`: Same as `light` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:server-rocm`: Same as `server` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:full-musa`: Same as `full` but compiled with MUSA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:light-musa`: Same as `light` but compiled with MUSA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:server-musa`: Same as `server` but compiled with MUSA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:full-cuda`: Same as `full` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:light-cuda`: Same as `light` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:server-cuda`: Same as `server` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:full-rocm`: Same as `full` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:light-rocm`: Same as `light` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:server-rocm`: Same as `server` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:full-musa`: Same as `full` but compiled with MUSA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:light-musa`: Same as `light` but compiled with MUSA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:server-musa`: Same as `server` but compiled with MUSA support. (platforms: `linux/amd64`)
|
||||
|
||||
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](../.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](../.github/workflows/docker.yml). If you need different settings (for example, a different CUDA, ROCm or MUSA library, you'll need to build the images locally for now).
|
||||
|
||||
@@ -32,25 +32,25 @@ The easiest way to download the models, convert them to ggml and optimize them i
|
||||
Replace `/path/to/models` below with the actual path where you downloaded the models.
|
||||
|
||||
```bash
|
||||
docker run -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:full --all-in-one "/models/" 7B
|
||||
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --all-in-one "/models/" 7B
|
||||
```
|
||||
|
||||
On completion, you are ready to play!
|
||||
|
||||
```bash
|
||||
docker run -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
|
||||
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
|
||||
```
|
||||
|
||||
or with a light image:
|
||||
|
||||
```bash
|
||||
docker run -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
|
||||
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
|
||||
```
|
||||
|
||||
or with a server image:
|
||||
|
||||
```bash
|
||||
docker run -v /path/to/models:/models -p 8000:8000 ghcr.io/ggml-org/llama.cpp:server -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512
|
||||
docker run -v /path/to/models:/models -p 8000:8000 ghcr.io/ggerganov/llama.cpp:server -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512
|
||||
```
|
||||
|
||||
## Docker With CUDA
|
||||
@@ -60,16 +60,16 @@ Assuming one has the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia
|
||||
## Building Docker locally
|
||||
|
||||
```bash
|
||||
docker build -t local/llama.cpp:full-cuda --target full -f .devops/cuda.Dockerfile .
|
||||
docker build -t local/llama.cpp:light-cuda --target light -f .devops/cuda.Dockerfile .
|
||||
docker build -t local/llama.cpp:server-cuda --target server -f .devops/cuda.Dockerfile .
|
||||
docker build -t local/llama.cpp:full-cuda -f .devops/full-cuda.Dockerfile .
|
||||
docker build -t local/llama.cpp:light-cuda -f .devops/llama-cli-cuda.Dockerfile .
|
||||
docker build -t local/llama.cpp:server-cuda -f .devops/llama-server-cuda.Dockerfile .
|
||||
```
|
||||
|
||||
You may want to pass in some different `ARGS`, depending on the CUDA environment supported by your container host, as well as the GPU architecture.
|
||||
|
||||
The defaults are:
|
||||
|
||||
- `CUDA_VERSION` set to `12.4.0`
|
||||
- `CUDA_VERSION` set to `12.6.0`
|
||||
- `CUDA_DOCKER_ARCH` set to the cmake build default, which includes all the supported architectures
|
||||
|
||||
The resulting images, are essentially the same as the non-CUDA images:
|
||||
@@ -95,16 +95,16 @@ Assuming one has the [mt-container-toolkit](https://developer.mthreads.com/musa/
|
||||
## Building Docker locally
|
||||
|
||||
```bash
|
||||
docker build -t local/llama.cpp:full-musa --target full -f .devops/musa.Dockerfile .
|
||||
docker build -t local/llama.cpp:light-musa --target light -f .devops/musa.Dockerfile .
|
||||
docker build -t local/llama.cpp:server-musa --target server -f .devops/musa.Dockerfile .
|
||||
docker build -t local/llama.cpp:full-musa -f .devops/full-musa.Dockerfile .
|
||||
docker build -t local/llama.cpp:light-musa -f .devops/llama-cli-musa.Dockerfile .
|
||||
docker build -t local/llama.cpp:server-musa -f .devops/llama-server-musa.Dockerfile .
|
||||
```
|
||||
|
||||
You may want to pass in some different `ARGS`, depending on the MUSA environment supported by your container host, as well as the GPU architecture.
|
||||
|
||||
The defaults are:
|
||||
|
||||
- `MUSA_VERSION` set to `rc3.1.1`
|
||||
- `MUSA_VERSION` set to `rc3.1.0`
|
||||
|
||||
The resulting images, are essentially the same as the non-MUSA images:
|
||||
|
||||
|
||||
@@ -1,394 +0,0 @@
|
||||
# Function Calling
|
||||
|
||||
[chat.h](../common/chat.h) (https://github.com/ggml-org/llama.cpp/pull/9639) adds support for [OpenAI-style function calling](https://platform.openai.com/docs/guides/function-calling) and is used in:
|
||||
- `llama-server` when started w/ `--jinja` flag
|
||||
- `llama-cli` (WIP: https://github.com/ggml-org/llama.cpp/pull/11556)
|
||||
|
||||
## Universal support w/ Native & Generic handlers
|
||||
|
||||
Function calling is supported for all models (see https://github.com/ggml-org/llama.cpp/pull/9639):
|
||||
|
||||
- Native tool call formats supported:
|
||||
- Llama 3.1 / 3.3 (including builtin tools support - tool names for `wolfram_alpha`, `web_search` / `brave_search`, `code_interpreter`), Llama 3.2
|
||||
- Functionary v3.1 / v3.2
|
||||
- Hermes 2/3, Qwen 2.5
|
||||
- Qwen 2.5 Coder (WIP: https://github.com/ggml-org/llama.cpp/pull/12034)
|
||||
- Mistral Nemo
|
||||
- Firefunction v2
|
||||
- Command R7B
|
||||
- DeepSeek R1 (WIP / seems reluctant to call any tools?)
|
||||
|
||||
- Generic tool call is supported when the template isn't recognized by native format handlers (you'll see `Chat format: Generic` in the logs).
|
||||
- Use `--chat-template-file` to override the template when appropriate (see examples below)
|
||||
- Generic support may consume more tokens and be less efficient than a model's native format.
|
||||
|
||||
<details>
|
||||
<summary>Show some common templates and which format handler they use</summary>
|
||||
|
||||
| Template | Format |
|
||||
|----------|--------|
|
||||
| Almawave-Velvet-14B.jinja | Hermes 2 Pro |
|
||||
| AtlaAI-Selene-1-Mini-Llama-3.1-8B.jinja | Llama 3.x |
|
||||
| CohereForAI-aya-expanse-8b.jinja | Generic |
|
||||
| CohereForAI-c4ai-command-r-plus-default.jinja | Generic |
|
||||
| CohereForAI-c4ai-command-r-plus-rag.jinja | Generic |
|
||||
| CohereForAI-c4ai-command-r-plus-tool_use.jinja | Generic |
|
||||
| CohereForAI-c4ai-command-r7b-12-2024-default.jinja | Command R7B (extract reasoning) |
|
||||
| CohereForAI-c4ai-command-r7b-12-2024-rag.jinja | Command R7B (extract reasoning) |
|
||||
| CohereForAI-c4ai-command-r7b-12-2024-tool_use.jinja | Command R7B (extract reasoning) |
|
||||
| CohereForAI-c4ai-command-r7b-12-2024.jinja | Generic |
|
||||
| DavieLion-Llama-3.2-1B-SPIN-iter3.jinja | Generic |
|
||||
| Delta-Vector-Rei-12B.jinja | Mistral Nemo |
|
||||
| EpistemeAI-Mistral-Nemo-Instruct-12B-Philosophy-Math.jinja | Mistral Nemo |
|
||||
| FlofloB-83k_continued_pretraining_Qwen2.5-0.5B-Instruct_Unsloth_merged_16bit.jinja | Hermes 2 Pro |
|
||||
| FlofloB-test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit.jinja | Generic |
|
||||
| HelpingAI-HAI-SER.jinja | Generic |
|
||||
| HuggingFaceTB-SmolLM2-1.7B-Instruct.jinja | Generic |
|
||||
| HuggingFaceTB-SmolLM2-135M-Instruct.jinja | Generic |
|
||||
| HuggingFaceTB-SmolLM2-360M-Instruct.jinja | Generic |
|
||||
| INSAIT-Institute-BgGPT-Gemma-2-27B-IT-v1.0.jinja | Generic |
|
||||
| Ihor-Text2Graph-R1-Qwen2.5-0.5b.jinja | Hermes 2 Pro |
|
||||
| Infinigence-Megrez-3B-Instruct.jinja | Generic |
|
||||
| Josephgflowers-TinyLlama_v1.1_math_code-world-test-1.jinja | Generic |
|
||||
| LGAI-EXAONE-EXAONE-3.5-2.4B-Instruct.jinja | Generic |
|
||||
| LGAI-EXAONE-EXAONE-3.5-7.8B-Instruct.jinja | Generic |
|
||||
| LatitudeGames-Wayfarer-12B.jinja | Generic |
|
||||
| Magpie-Align-Llama-3-8B-Magpie-Align-v0.1.jinja | Generic |
|
||||
| Magpie-Align-Llama-3.1-8B-Magpie-Align-v0.1.jinja | Generic |
|
||||
| MaziyarPanahi-calme-3.2-instruct-78b.jinja | Generic |
|
||||
| MiniMaxAI-MiniMax-Text-01.jinja | Generic |
|
||||
| MiniMaxAI-MiniMax-VL-01.jinja | Generic |
|
||||
| NaniDAO-deepseek-r1-qwen-2.5-32B-ablated.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| NexaAIDev-Octopus-v2.jinja | Generic |
|
||||
| NousResearch-Hermes-2-Pro-Llama-3-8B-default.jinja | Generic |
|
||||
| NousResearch-Hermes-2-Pro-Llama-3-8B-tool_use.jinja | Hermes 2 Pro |
|
||||
| NousResearch-Hermes-2-Pro-Mistral-7B-default.jinja | Generic |
|
||||
| NousResearch-Hermes-2-Pro-Mistral-7B-tool_use.jinja | Hermes 2 Pro |
|
||||
| NousResearch-Hermes-3-Llama-3.1-70B-default.jinja | Generic |
|
||||
| NousResearch-Hermes-3-Llama-3.1-70B-tool_use.jinja | Hermes 2 Pro |
|
||||
| NovaSky-AI-Sky-T1-32B-Flash.jinja | Hermes 2 Pro |
|
||||
| NovaSky-AI-Sky-T1-32B-Preview.jinja | Hermes 2 Pro |
|
||||
| OnlyCheeini-greesychat-turbo.jinja | Generic |
|
||||
| Orenguteng-Llama-3.1-8B-Lexi-Uncensored-V2.jinja | Llama 3.x |
|
||||
| OrionStarAI-Orion-14B-Chat.jinja | Generic |
|
||||
| PowerInfer-SmallThinker-3B-Preview.jinja | Generic |
|
||||
| PrimeIntellect-INTELLECT-1-Instruct.jinja | Generic |
|
||||
| Qwen-QVQ-72B-Preview.jinja | Generic |
|
||||
| Qwen-QwQ-32B-Preview.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen1.5-7B-Chat.jinja | Generic |
|
||||
| Qwen-Qwen2-7B-Instruct.jinja | Generic |
|
||||
| Qwen-Qwen2-VL-72B-Instruct.jinja | Generic |
|
||||
| Qwen-Qwen2-VL-7B-Instruct.jinja | Generic |
|
||||
| Qwen-Qwen2.5-0.5B.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-1.5B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-14B-Instruct-1M.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-14B.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-32B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-32B.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-3B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-72B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-7B-Instruct-1M.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-7B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-7B.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-Coder-32B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-Coder-7B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-Math-1.5B.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-Math-7B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-VL-3B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-VL-72B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-VL-7B-Instruct.jinja | Hermes 2 Pro |
|
||||
| RWKV-Red-Team-ARWKV-7B-Preview-0.1.jinja | Hermes 2 Pro |
|
||||
| SakanaAI-TinySwallow-1.5B-Instruct.jinja | Hermes 2 Pro |
|
||||
| SakanaAI-TinySwallow-1.5B.jinja | Hermes 2 Pro |
|
||||
| Sao10K-70B-L3.3-Cirrus-x1.jinja | Llama 3.x |
|
||||
| SentientAGI-Dobby-Mini-Leashed-Llama-3.1-8B.jinja | Llama 3.x |
|
||||
| SentientAGI-Dobby-Mini-Unhinged-Llama-3.1-8B.jinja | Llama 3.x |
|
||||
| Steelskull-L3.3-Damascus-R1.jinja | Llama 3.x |
|
||||
| Steelskull-L3.3-MS-Nevoria-70b.jinja | Llama 3.x |
|
||||
| Steelskull-L3.3-Nevoria-R1-70b.jinja | Llama 3.x |
|
||||
| THUDM-glm-4-9b-chat.jinja | Generic |
|
||||
| THUDM-glm-edge-1.5b-chat.jinja | Generic |
|
||||
| Tarek07-Progenitor-V1.1-LLaMa-70B.jinja | Llama 3.x |
|
||||
| TheBloke-FusionNet_34Bx2_MoE-AWQ.jinja | Generic |
|
||||
| TinyLlama-TinyLlama-1.1B-Chat-v1.0.jinja | Generic |
|
||||
| UCLA-AGI-Mistral7B-PairRM-SPPO-Iter3.jinja | Generic |
|
||||
| ValiantLabs-Llama3.1-8B-Enigma.jinja | Llama 3.x |
|
||||
| abacusai-Fewshot-Metamath-OrcaVicuna-Mistral.jinja | Generic |
|
||||
| ai21labs-AI21-Jamba-1.5-Large.jinja | Generic |
|
||||
| allenai-Llama-3.1-Tulu-3-405B-SFT.jinja | Generic |
|
||||
| allenai-Llama-3.1-Tulu-3-405B.jinja | Generic |
|
||||
| allenai-Llama-3.1-Tulu-3-8B.jinja | Generic |
|
||||
| arcee-ai-Virtuoso-Lite.jinja | Hermes 2 Pro |
|
||||
| arcee-ai-Virtuoso-Medium-v2.jinja | Hermes 2 Pro |
|
||||
| arcee-ai-Virtuoso-Small-v2.jinja | Hermes 2 Pro |
|
||||
| avemio-GRAG-NEMO-12B-ORPO-HESSIAN-AI.jinja | Generic |
|
||||
| bespokelabs-Bespoke-Stratos-7B.jinja | Hermes 2 Pro |
|
||||
| bfuzzy1-acheron-m1a-llama.jinja | Generic |
|
||||
| bofenghuang-vigogne-2-70b-chat.jinja | Generic |
|
||||
| bytedance-research-UI-TARS-72B-DPO.jinja | Generic |
|
||||
| bytedance-research-UI-TARS-7B-DPO.jinja | Generic |
|
||||
| bytedance-research-UI-TARS-7B-SFT.jinja | Generic |
|
||||
| carsenk-phi3.5_mini_exp_825_uncensored.jinja | Generic |
|
||||
| cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| databricks-dbrx-instruct.jinja | Generic |
|
||||
| deepseek-ai-DeepSeek-Coder-V2-Instruct.jinja | Generic |
|
||||
| deepseek-ai-DeepSeek-Coder-V2-Lite-Base.jinja | Generic |
|
||||
| deepseek-ai-DeepSeek-Coder-V2-Lite-Instruct.jinja | Generic |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Llama-70B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Llama-8B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Qwen-1.5B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Qwen-14B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Qwen-32B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Qwen-7B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Zero.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-V2-Lite.jinja | Generic |
|
||||
| deepseek-ai-DeepSeek-V2.5.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-V3.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-deepseek-coder-33b-instruct.jinja | Generic |
|
||||
| deepseek-ai-deepseek-coder-6.7b-instruct.jinja | Generic |
|
||||
| deepseek-ai-deepseek-coder-7b-instruct-v1.5.jinja | Generic |
|
||||
| deepseek-ai-deepseek-llm-67b-chat.jinja | Generic |
|
||||
| deepseek-ai-deepseek-llm-7b-chat.jinja | Generic |
|
||||
| dicta-il-dictalm2.0-instruct.jinja | Generic |
|
||||
| ehristoforu-Falcon3-8B-Franken-Basestruct.jinja | Hermes 2 Pro |
|
||||
| fireworks-ai-llama-3-firefunction-v2.jinja | FireFunction v2 |
|
||||
| godlikehhd-alpaca_data_sampled_ifd_new_5200.jinja | Hermes 2 Pro |
|
||||
| godlikehhd-alpaca_data_score_max_0.7_2600.jinja | Hermes 2 Pro |
|
||||
| google-gemma-2-27b-it.jinja | Generic |
|
||||
| google-gemma-2-2b-it.jinja | Generic |
|
||||
| google-gemma-2-2b-jpn-it.jinja | Generic |
|
||||
| google-gemma-7b-it.jinja | Generic |
|
||||
| huihui-ai-DeepSeek-R1-Distill-Llama-70B-abliterated.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| huihui-ai-DeepSeek-R1-Distill-Llama-8B-abliterated.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| huihui-ai-DeepSeek-R1-Distill-Qwen-14B-abliterated-v2.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| huihui-ai-DeepSeek-R1-Distill-Qwen-32B-abliterated.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| huihui-ai-DeepSeek-R1-Distill-Qwen-7B-abliterated-v2.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| huihui-ai-Qwen2.5-14B-Instruct-1M-abliterated.jinja | Hermes 2 Pro |
|
||||
| ibm-granite-granite-3.1-8b-instruct.jinja | Generic |
|
||||
| indischepartij-MiniCPM-3B-OpenHermes-2.5-v2.jinja | Generic |
|
||||
| inflatebot-MN-12B-Mag-Mell-R1.jinja | Generic |
|
||||
| jinaai-ReaderLM-v2.jinja | Generic |
|
||||
| kms7530-chemeng_qwen-math-7b_24_1_100_1_nonmath.jinja | Hermes 2 Pro |
|
||||
| knifeayumu-Cydonia-v1.3-Magnum-v4-22B.jinja | Mistral Nemo |
|
||||
| langgptai-qwen1.5-7b-chat-sa-v0.1.jinja | Generic |
|
||||
| lightblue-DeepSeek-R1-Distill-Qwen-7B-Japanese.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| mattshumer-Reflection-Llama-3.1-70B.jinja | Generic |
|
||||
| meetkai-functionary-medium-v3.1.jinja | Functionary v3.1 Llama 3.1 |
|
||||
| meetkai-functionary-medium-v3.2.jinja | Functionary v3.2 |
|
||||
| meta-llama-Llama-2-7b-chat-hf.jinja | Generic |
|
||||
| meta-llama-Llama-3.1-8B-Instruct.jinja | Llama 3.x |
|
||||
| meta-llama-Llama-3.2-11B-Vision-Instruct.jinja | Llama 3.x |
|
||||
| meta-llama-Llama-3.2-1B-Instruct.jinja | Llama 3.x |
|
||||
| meta-llama-Llama-3.2-3B-Instruct.jinja | Llama 3.x |
|
||||
| meta-llama-Llama-3.3-70B-Instruct.jinja | Llama 3.x |
|
||||
| meta-llama-Meta-Llama-3-8B-Instruct.jinja | Generic |
|
||||
| meta-llama-Meta-Llama-3.1-8B-Instruct.jinja | Llama 3.x |
|
||||
| microsoft-Phi-3-medium-4k-instruct.jinja | Generic |
|
||||
| microsoft-Phi-3-mini-4k-instruct.jinja | Generic |
|
||||
| microsoft-Phi-3-small-8k-instruct.jinja | Generic |
|
||||
| microsoft-Phi-3.5-mini-instruct.jinja | Generic |
|
||||
| microsoft-Phi-3.5-vision-instruct.jinja | Generic |
|
||||
| microsoft-phi-4.jinja | Generic |
|
||||
| migtissera-Tess-3-Mistral-Nemo-12B.jinja | Generic |
|
||||
| ministral-Ministral-3b-instruct.jinja | Generic |
|
||||
| mistralai-Codestral-22B-v0.1.jinja | Generic |
|
||||
| mistralai-Mistral-7B-Instruct-v0.1.jinja | Generic |
|
||||
| mistralai-Mistral-7B-Instruct-v0.2.jinja | Generic |
|
||||
| mistralai-Mistral-7B-Instruct-v0.3.jinja | Mistral Nemo |
|
||||
| mistralai-Mistral-Large-Instruct-2407.jinja | Mistral Nemo |
|
||||
| mistralai-Mistral-Large-Instruct-2411.jinja | Generic |
|
||||
| mistralai-Mistral-Nemo-Instruct-2407.jinja | Mistral Nemo |
|
||||
| mistralai-Mistral-Small-24B-Instruct-2501.jinja | Generic |
|
||||
| mistralai-Mixtral-8x7B-Instruct-v0.1.jinja | Generic |
|
||||
| mkurman-Qwen2.5-14B-DeepSeek-R1-1M.jinja | Hermes 2 Pro |
|
||||
| mlabonne-AlphaMonarch-7B.jinja | Generic |
|
||||
| mlx-community-Josiefied-Qwen2.5-0.5B-Instruct-abliterated-v1-float32.jinja | Hermes 2 Pro |
|
||||
| mlx-community-Qwen2.5-VL-7B-Instruct-8bit.jinja | Hermes 2 Pro |
|
||||
| mobiuslabsgmbh-DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| netcat420-MFANNv0.20.jinja | Generic |
|
||||
| netcat420-MFANNv0.24.jinja | Generic |
|
||||
| netease-youdao-Confucius-o1-14B.jinja | Hermes 2 Pro |
|
||||
| nvidia-AceMath-7B-RM.jinja | Hermes 2 Pro |
|
||||
| nvidia-Eagle2-1B.jinja | Hermes 2 Pro |
|
||||
| nvidia-Eagle2-9B.jinja | Hermes 2 Pro |
|
||||
| nvidia-Llama-3.1-Nemotron-70B-Instruct-HF.jinja | Llama 3.x |
|
||||
| onnx-community-DeepSeek-R1-Distill-Qwen-1.5B-ONNX.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| open-thoughts-OpenThinker-7B.jinja | Hermes 2 Pro |
|
||||
| openchat-openchat-3.5-0106.jinja | Generic |
|
||||
| pankajmathur-orca_mini_v6_8b.jinja | Generic |
|
||||
| princeton-nlp-Mistral-7B-Base-SFT-RDPO.jinja | Generic |
|
||||
| princeton-nlp-Mistral-7B-Instruct-DPO.jinja | Generic |
|
||||
| princeton-nlp-Mistral-7B-Instruct-RDPO.jinja | Generic |
|
||||
| prithivMLmods-Bellatrix-Tiny-1.5B-R1.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Bellatrix-Tiny-1B-R1.jinja | Llama 3.x |
|
||||
| prithivMLmods-Bellatrix-Tiny-1B-v3.jinja | Generic |
|
||||
| prithivMLmods-Bellatrix-Tiny-3B-R1.jinja | Llama 3.x |
|
||||
| prithivMLmods-Blaze-14B-xElite.jinja | Generic |
|
||||
| prithivMLmods-Calcium-Opus-14B-Elite2-R1.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Calme-Ties-78B.jinja | Generic |
|
||||
| prithivMLmods-Calme-Ties2-78B.jinja | Generic |
|
||||
| prithivMLmods-Calme-Ties3-78B.jinja | Generic |
|
||||
| prithivMLmods-ChemQwen2-vL.jinja | Generic |
|
||||
| prithivMLmods-GWQ2b.jinja | Generic |
|
||||
| prithivMLmods-LatexMind-2B-Codec.jinja | Generic |
|
||||
| prithivMLmods-Llama-3.2-6B-AlgoCode.jinja | Llama 3.x |
|
||||
| prithivMLmods-Megatron-Opus-14B-Exp.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Megatron-Opus-14B-Stock.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Megatron-Opus-7B-Exp.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Omni-Reasoner-Merged.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Omni-Reasoner4-Merged.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Primal-Opus-14B-Optimus-v1.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-QwQ-Math-IO-500M.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Qwen-7B-Distill-Reasoner.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| prithivMLmods-Qwen2.5-1.5B-DeepSeek-R1-Instruct.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Qwen2.5-14B-DeepSeek-R1-1M.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Qwen2.5-32B-DeepSeek-R1-Instruct.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Qwen2.5-7B-DeepSeek-R1-1M.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Triangulum-v2-10B.jinja | Hermes 2 Pro |
|
||||
| qingy2024-Falcon3-2x10B-MoE-Instruct.jinja | Hermes 2 Pro |
|
||||
| rubenroy-Zurich-14B-GCv2-5m.jinja | Hermes 2 Pro |
|
||||
| rubenroy-Zurich-7B-GCv2-5m.jinja | Hermes 2 Pro |
|
||||
| silma-ai-SILMA-Kashif-2B-Instruct-v1.0.jinja | Generic |
|
||||
| simplescaling-s1-32B.jinja | Hermes 2 Pro |
|
||||
| sometimesanotion-Lamarck-14B-v0.7.jinja | Hermes 2 Pro |
|
||||
| sonthenguyen-zephyr-sft-bnb-4bit-DPO-mtbr-180steps.jinja | Generic |
|
||||
| sthenno-tempesthenno-icy-0130.jinja | Generic |
|
||||
| sumink-qwft.jinja | Hermes 2 Pro |
|
||||
| teknium-OpenHermes-2.5-Mistral-7B.jinja | Generic |
|
||||
| thirdeyeai-elevate360m.jinja | Generic |
|
||||
| tiiuae-Falcon3-10B-Instruct.jinja | Hermes 2 Pro |
|
||||
| unsloth-DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| unsloth-DeepSeek-R1-Distill-Llama-8B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| unsloth-DeepSeek-R1.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| unsloth-Mistral-Small-24B-Instruct-2501-unsloth-bnb-4bit.jinja | Generic |
|
||||
| upstage-solar-pro-preview-instruct.jinja | Generic |
|
||||
| whyhow-ai-PatientSeek.jinja | Generic |
|
||||
| xwen-team-Xwen-72B-Chat.jinja | Hermes 2 Pro |
|
||||
| xwen-team-Xwen-7B-Chat.jinja | Hermes 2 Pro |
|
||||
|
||||
This table can be generated with:
|
||||
|
||||
```bash
|
||||
./build/bin/test-chat ../minja/build/tests/*.jinja 2>/dev/null
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
# Usage - need tool-aware Jinja template
|
||||
|
||||
First, start a server with any model, but make sure it has a tools-enabled template: you can verify this by inspecting the `chat_template` or `chat_template_tool_use` properties in `http://localhost:8080/props`).
|
||||
|
||||
Here are some models known to work (w/ chat template override when needed):
|
||||
|
||||
```shell
|
||||
# Native support:
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M
|
||||
llama-server --jinja -fa -hf bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q6_K_L
|
||||
llama-server --jinja -fa -hf bartowski/Llama-3.3-70B-Instruct-GGUF:Q4_K_M
|
||||
|
||||
# Native support for DeepSeek R1 works best w/ our template override (official template is buggy, although we do work around it)
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q6_K_L \
|
||||
--chat-template-file models/templates/llama-cpp-deepseek-r1.jinja
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/DeepSeek-R1-Distill-Qwen-32B-GGUF:Q4_K_M \
|
||||
--chat-template-file models/templates/llama-cpp-deepseek-r1.jinja
|
||||
|
||||
# Native support requires the right template for these GGUFs:
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/functionary-small-v3.2-GGUF:Q4_K_M
|
||||
--chat-template-file models/templates/meetkai-functionary-medium-v3.2.jinja
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M \
|
||||
--chat-template-file models/templates/NousResearch-Hermes-2-Pro-Llama-3-8B-tool_use.jinja
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M \
|
||||
--chat-template-file models/templates/NousResearch-Hermes-3-Llama-3.1-8B-tool_use.jinja
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/firefunction-v2-GGUF -hff firefunction-v2-IQ1_M.gguf \
|
||||
--chat-template-file models/templates/fireworks-ai-llama-3-firefunction-v2.jinja
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/c4ai-command-r7b-12-2024-GGUF:Q6_K_L \
|
||||
--chat-template-file models/templates/CohereForAI-c4ai-command-r7b-12-2024-tool_use.jinja
|
||||
|
||||
# Generic format support
|
||||
llama-server --jinja -fa -hf bartowski/phi-4-GGUF:Q4_0
|
||||
llama-server --jinja -fa -hf bartowski/gemma-2-2b-it-GGUF:Q8_0
|
||||
llama-server --jinja -fa -hf bartowski/c4ai-command-r-v01-GGUF:Q2_K
|
||||
```
|
||||
|
||||
To get the official template from original HuggingFace repos, you can use [scripts/get_chat_template.py](../scripts/get_chat_template.py) (see examples invocations in [models/templates/README.md](../models/templates/README.md))
|
||||
|
||||
> [!TIP]
|
||||
> If there is no official `tool_use` Jinja template, you may want to set `--chat-template chatml` to use a default that works with many models (YMMV!), or write your own (e.g. we provide a custom [llama-cpp-deepseek-r1.jinja](../models/templates/llama-cpp-deepseek-r1.jinja) for DeepSeek R1 distills)
|
||||
|
||||
Test in CLI (or with any library / software that can use OpenAI-compatible API backends):
|
||||
|
||||
```bash
|
||||
curl http://localhost:8080/v1/chat/completions -d '{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"tools": [
|
||||
{
|
||||
"type":"function",
|
||||
"function":{
|
||||
"name":"python",
|
||||
"description":"Runs code in an ipython interpreter and returns the result of the execution after 60 seconds.",
|
||||
"parameters":{
|
||||
"type":"object",
|
||||
"properties":{
|
||||
"code":{
|
||||
"type":"string",
|
||||
"description":"The code to run in the ipython interpreter."
|
||||
}
|
||||
},
|
||||
"required":["code"]
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Print a hello world message with python."
|
||||
}
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
<details>
|
||||
<summary>Show output</summary>
|
||||
|
||||
```json
|
||||
{
|
||||
"choices": [
|
||||
{
|
||||
"finish_reason": "tool",
|
||||
"index": 0,
|
||||
"message": {
|
||||
"content": null,
|
||||
"tool_calls": [
|
||||
{
|
||||
"name": "python",
|
||||
"arguments": "{\"code\":\" \\nprint(\\\"Hello, World!\\\")\"}"
|
||||
}
|
||||
],
|
||||
"role": "assistant"
|
||||
}
|
||||
}
|
||||
],
|
||||
"created": 1727287211,
|
||||
"model": "gpt-3.5-turbo",
|
||||
"object": "chat.completion",
|
||||
"usage": {
|
||||
"completion_tokens": 16,
|
||||
"prompt_tokens": 44,
|
||||
"total_tokens": 60
|
||||
},
|
||||
"id": "chatcmpl-Htbgh9feMmGM0LEH2hmQvwsCxq3c6Ni8"
|
||||
}
|
||||
```
|
||||
|
||||
</details>
|
||||
@@ -7,14 +7,7 @@ On Mac and Linux, the homebrew package manager can be used via
|
||||
```sh
|
||||
brew install llama.cpp
|
||||
```
|
||||
The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggml-org/llama.cpp/discussions/7668
|
||||
|
||||
## MacPorts
|
||||
|
||||
```sh
|
||||
sudo port install llama.cpp
|
||||
```
|
||||
see also: https://ports.macports.org/port/llama.cpp/details/
|
||||
The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggerganov/llama.cpp/discussions/7668
|
||||
|
||||
## Nix
|
||||
|
||||
|
||||
@@ -1,53 +0,0 @@
|
||||
# LLGuidance Support in llama.cpp
|
||||
|
||||
[LLGuidance](https://github.com/guidance-ai/llguidance) is a library for constrained decoding (also called constrained sampling or structured outputs) for Large Language Models (LLMs). Initially developed as the backend for the [Guidance](https://github.com/guidance-ai/guidance) library, it can also be used independently.
|
||||
|
||||
LLGuidance supports JSON Schemas and arbitrary context-free grammars (CFGs) written in a [variant](https://github.com/guidance-ai/llguidance/blob/main/docs/syntax.md) of Lark syntax. It is [very fast](https://github.com/guidance-ai/jsonschemabench/tree/main/maskbench) and has [excellent](https://github.com/guidance-ai/llguidance/blob/main/docs/json_schema.md) JSON Schema coverage but requires the Rust compiler, which complicates the llama.cpp build process.
|
||||
|
||||
## Building
|
||||
|
||||
To enable LLGuidance support, build llama.cpp with the `LLAMA_LLGUIDANCE` option:
|
||||
|
||||
```sh
|
||||
cmake -B build -DLLAMA_LLGUIDANCE=ON
|
||||
make -C build -j
|
||||
```
|
||||
|
||||
For Windows use `cmake --build build --config Release` instead of `make`.
|
||||
|
||||
This requires the Rust compiler and the `cargo` tool to be [installed](https://www.rust-lang.org/tools/install).
|
||||
|
||||
## Interface
|
||||
|
||||
There are no new command-line arguments or modifications to `common_params`. When enabled, grammars starting with `%llguidance` are passed to LLGuidance instead of the [current](../grammars/README.md) llama.cpp grammars. Additionally, JSON Schema requests (e.g., using the `-j` argument in `llama-cli`) are also passed to LLGuidance.
|
||||
|
||||
For your existing GBNF grammars, you can use [gbnf_to_lark.py script](https://github.com/guidance-ai/llguidance/blob/main/python/llguidance/gbnf_to_lark.py) to convert them to LLGuidance Lark-like format.
|
||||
|
||||
## Performance
|
||||
|
||||
Computing a "token mask" (i.e., the set of allowed tokens) for a llama3 tokenizer with 128k tokens takes, on average, 50μs of single-core CPU time for the [JSON Schema Bench](https://github.com/guidance-ai/jsonschemabench). The p99 time is 0.5ms, and the p100 time is 20ms. These results are due to the lexer/parser split and several [optimizations](https://github.com/guidance-ai/llguidance/blob/main/docs/optimizations.md).
|
||||
|
||||
## JSON Schema
|
||||
|
||||
LLGuidance adheres closely to the JSON Schema specification. For example:
|
||||
|
||||
- `additionalProperties` defaults to `true`, unlike current grammars, though you can set `"additionalProperties": false` if needed.
|
||||
- any whitespace is allowed.
|
||||
- The definition order in the `"properties": {}` object is maintained, regardless of whether properties are required (current grammars always puts required properties first).
|
||||
|
||||
Unsupported schemas result in an error message—no keywords are silently ignored.
|
||||
|
||||
## Why Not Reuse GBNF Format?
|
||||
|
||||
GBNF lacks the concept of a lexer.
|
||||
|
||||
Most programming languages, including JSON, use a two-step process: a lexer (built with regular expressions) converts a byte stream into lexemes, which are then processed by a CFG parser. This approach is faster because lexers are cheaper to evaluate, and there is ~10x fewer lexemes than bytes.
|
||||
LLM tokens often align with lexemes, so the parser is engaged in under 0.5% of tokens, with the lexer handling the rest.
|
||||
|
||||
However, the user has to provide the distinction between lexemes and CFG symbols. In [Lark](https://github.com/lark-parser/lark), lexeme names are uppercase, while CFG symbols are lowercase.
|
||||
The [gbnf_to_lark.py script](https://github.com/guidance-ai/llguidance/blob/main/scripts/gbnf_to_lark.py) can often take care of this automatically.
|
||||
See [LLGuidance syntax docs](https://github.com/guidance-ai/llguidance/blob/main/docs/syntax.md#terminals-vs-rules) for more details.
|
||||
|
||||
## Error Handling
|
||||
|
||||
Errors are currently printed to `stderr`, and generation continues. Improved error handling may be added in the future.
|
||||
@@ -38,7 +38,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_model_params model_params = common_model_params_to_llama(params);
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
|
||||
llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params);
|
||||
|
||||
if (model == NULL) {
|
||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||
@@ -132,7 +132,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
const auto t_pp_start = ggml_time_us();
|
||||
|
||||
llama_kv_self_clear(ctx);
|
||||
llama_kv_cache_clear(ctx);
|
||||
|
||||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
||||
LOG_ERR("%s: llama_decode() failed\n", __func__);
|
||||
@@ -141,7 +141,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if (is_pp_shared) {
|
||||
for (int32_t i = 1; i < pl; ++i) {
|
||||
llama_kv_self_seq_cp(ctx, 0, i, -1, -1);
|
||||
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -31,11 +31,6 @@ defer {
|
||||
llama_model_free(model)
|
||||
}
|
||||
|
||||
guard let vocab = llama_model_get_vocab(model) else {
|
||||
print("Failed to get vocab")
|
||||
exit(1)
|
||||
}
|
||||
|
||||
var tokens = tokenize(text: prompt, add_bos: true)
|
||||
|
||||
let n_kv_req = UInt32(tokens.count) + UInt32((n_len - Int(tokens.count)) * n_parallel)
|
||||
@@ -46,7 +41,7 @@ context_params.n_batch = UInt32(max(n_len, n_parallel))
|
||||
context_params.n_threads = 8
|
||||
context_params.n_threads_batch = 8
|
||||
|
||||
let context = llama_init_from_model(model, context_params)
|
||||
let context = llama_new_context_with_model(model, context_params)
|
||||
guard context != nil else {
|
||||
print("Failed to initialize context")
|
||||
exit(1)
|
||||
@@ -116,7 +111,7 @@ if llama_decode(context, batch) != 0 {
|
||||
}
|
||||
|
||||
for i in 1 ..< n_parallel {
|
||||
llama_kv_self_seq_cp(context, 0, Int32(i), 0, batch.n_tokens)
|
||||
llama_kv_cache_seq_cp(context, 0, Int32(i), 0, batch.n_tokens)
|
||||
}
|
||||
|
||||
if n_parallel > 1 {
|
||||
@@ -146,7 +141,7 @@ while n_cur <= n_len {
|
||||
let new_token_id = llama_sampler_sample(smpl, context, i_batch[i])
|
||||
|
||||
// is it an end of stream? -> mark the stream as finished
|
||||
if llama_vocab_is_eog(vocab, new_token_id) || n_cur == n_len {
|
||||
if llama_vocab_is_eog(model, new_token_id) || n_cur == n_len {
|
||||
i_batch[i] = -1
|
||||
// print("")
|
||||
if n_parallel > 1 {
|
||||
@@ -212,7 +207,7 @@ private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
|
||||
let utf8Count = text.utf8.count
|
||||
let n_tokens = utf8Count + (add_bos ? 1 : 0)
|
||||
let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
|
||||
let tokenCount = llama_tokenize(vocab, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, /*special tokens*/ false)
|
||||
let tokenCount = llama_tokenize(model, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, /*special tokens*/ false)
|
||||
var swiftTokens: [llama_token] = []
|
||||
for i in 0 ..< tokenCount {
|
||||
swiftTokens.append(tokens[Int(i)])
|
||||
@@ -223,12 +218,12 @@ private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
|
||||
|
||||
private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? {
|
||||
var result = [CChar](repeating: 0, count: 8)
|
||||
let nTokens = llama_token_to_piece(vocab, token, &result, Int32(result.count), 0, false)
|
||||
let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count), 0, false)
|
||||
if nTokens < 0 {
|
||||
let actualTokensCount = -Int(nTokens)
|
||||
result = .init(repeating: 0, count: actualTokensCount)
|
||||
let check = llama_token_to_piece(
|
||||
vocab,
|
||||
model,
|
||||
token,
|
||||
&result,
|
||||
Int32(result.count),
|
||||
|
||||
@@ -41,7 +41,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_model_params model_params = common_model_params_to_llama(params);
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
|
||||
llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params);
|
||||
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: error: unable to load model\n" , __func__);
|
||||
|
||||
@@ -3,9 +3,9 @@
|
||||
This example demonstrates how to generate a control vector using gguf models.
|
||||
|
||||
Related PRs:
|
||||
- [Add support for control vectors](https://github.com/ggml-org/llama.cpp/pull/5970)
|
||||
- (Issue) [Generate control vector using llama.cpp](https://github.com/ggml-org/llama.cpp/issues/6880)
|
||||
- [Add cvector-generator example](https://github.com/ggml-org/llama.cpp/pull/7514)
|
||||
- [Add support for control vectors](https://github.com/ggerganov/llama.cpp/pull/5970)
|
||||
- (Issue) [Generate control vector using llama.cpp](https://github.com/ggerganov/llama.cpp/issues/6880)
|
||||
- [Add cvector-generator example](https://github.com/ggerganov/llama.cpp/pull/7514)
|
||||
|
||||
## Examples
|
||||
|
||||
|
||||
@@ -342,7 +342,7 @@ static bool cb_eval(struct ggml_tensor * t, bool ask, void * user_data) {
|
||||
}
|
||||
|
||||
static bool get_hidden_layers(llama_context * ctx, std::vector<llama_token> & tokens) {
|
||||
llama_kv_self_clear(ctx);
|
||||
llama_kv_cache_clear(ctx);
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size()))) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
@@ -394,8 +394,6 @@ static int prepare_entries(common_params & params, train_context & ctx_train) {
|
||||
int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
|
||||
params.out_file = "control_vector.gguf";
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_CVECTOR_GENERATOR, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
@@ -500,7 +498,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// write output vectors to gguf
|
||||
export_gguf(ctx_train.v_final, params.out_file, model_hint);
|
||||
export_gguf(ctx_train.v_final, params.cvector_outfile, model_hint);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
|
||||
@@ -4,7 +4,6 @@
|
||||
#include "llama.h"
|
||||
|
||||
#include <ctime>
|
||||
#include <algorithm>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
@@ -38,7 +37,7 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
|
||||
const struct llama_model * model = llama_get_model(ctx);
|
||||
|
||||
// clear previous kv_cache values (irrelevant for embeddings)
|
||||
llama_kv_self_clear(ctx);
|
||||
llama_kv_cache_clear(ctx);
|
||||
|
||||
// run model
|
||||
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
|
||||
|
||||
@@ -345,18 +345,8 @@ struct lora_merge_ctx {
|
||||
gf = ggml_new_graph(ctx0);
|
||||
struct ggml_tensor * cur = inp_base;
|
||||
for (size_t i = 0; i < adapters.size(); ++i) {
|
||||
struct ggml_tensor * delta;
|
||||
bool is_tok_embd = string_starts_with(name_base, "token_embd");
|
||||
if (is_tok_embd) {
|
||||
printf("%s : detected token embeddings tensor\n", __func__);
|
||||
delta = ggml_mul_mat(ctx0,
|
||||
ggml_cast(ctx0, inp_b[i], GGML_TYPE_F32),
|
||||
ggml_cast(ctx0, inp_a[i], GGML_TYPE_F32));
|
||||
} else {
|
||||
delta = ggml_mul_mat(ctx0,
|
||||
ggml_cont(ctx0, ggml_transpose(ctx0, ggml_cast(ctx0, inp_a[i], GGML_TYPE_F32))),
|
||||
ggml_cast(ctx0, inp_b[i], GGML_TYPE_F32));
|
||||
}
|
||||
struct ggml_tensor * a_T = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_cast(ctx0, inp_a[i], GGML_TYPE_F32)));
|
||||
struct ggml_tensor * delta = ggml_mul_mat(ctx0, a_T, ggml_cast(ctx0, inp_b[i], GGML_TYPE_F32));
|
||||
// scale
|
||||
const float alpha = adapters[i]->alpha;
|
||||
const float rank = (float) inp_b[i]->ne[0];
|
||||
@@ -413,22 +403,20 @@ static void print_usage(int, char ** argv) {
|
||||
int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
|
||||
params.out_file = "ggml-lora-merged-f16.gguf";
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_EXPORT_LORA, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
g_verbose = (params.verbosity > 1);
|
||||
try {
|
||||
lora_merge_ctx ctx(params.model.path, params.lora_adapters, params.out_file, params.cpuparams.n_threads);
|
||||
lora_merge_ctx ctx(params.model, params.lora_adapters, params.lora_outfile, params.cpuparams.n_threads);
|
||||
ctx.run_merge();
|
||||
} catch (const std::exception & err) {
|
||||
fprintf(stderr, "%s\n", err.what());
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
printf("done, output file is %s\n", params.out_file.c_str());
|
||||
printf("done, output file is %s\n", params.lora_outfile.c_str());
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -76,7 +76,7 @@ int main(int argc, char** argv) {
|
||||
grammar_str = buffer.str();
|
||||
}
|
||||
|
||||
llama_grammar * grammar = llama_grammar_init_impl(nullptr, grammar_str.c_str(), "root", false, nullptr, 0, nullptr, 0);
|
||||
llama_grammar * grammar = llama_grammar_init_impl(nullptr, grammar_str.c_str(), "root");
|
||||
if (grammar == nullptr) {
|
||||
fprintf(stdout, "Failed to initialize llama_grammar\n");
|
||||
return 1;
|
||||
|
||||
@@ -408,6 +408,8 @@ static void gguf_merge(const split_params & split_params) {
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
std::ofstream fout(split_params.output.c_str(), std::ios::binary);
|
||||
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
|
||||
|
||||
auto * ctx_out = gguf_init_empty();
|
||||
|
||||
@@ -451,6 +453,7 @@ static void gguf_merge(const split_params & split_params) {
|
||||
gguf_free(ctx_gguf);
|
||||
ggml_free(ctx_meta);
|
||||
gguf_free(ctx_out);
|
||||
fout.close();
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
@@ -463,6 +466,7 @@ static void gguf_merge(const split_params & split_params) {
|
||||
gguf_free(ctx_gguf);
|
||||
ggml_free(ctx_meta);
|
||||
gguf_free(ctx_out);
|
||||
fout.close();
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
@@ -475,6 +479,7 @@ static void gguf_merge(const split_params & split_params) {
|
||||
gguf_free(ctx_gguf);
|
||||
ggml_free(ctx_meta);
|
||||
gguf_free(ctx_out);
|
||||
fout.close();
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
@@ -495,11 +500,9 @@ static void gguf_merge(const split_params & split_params) {
|
||||
|
||||
fprintf(stderr, "\033[3Ddone\n");
|
||||
}
|
||||
std::ofstream fout;
|
||||
if (!split_params.dry_run) {
|
||||
fout.open(split_params.output.c_str(), std::ios::binary);
|
||||
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
|
||||
// placeholder for the meta data
|
||||
|
||||
// placeholder for the meta data
|
||||
{
|
||||
auto meta_size = gguf_get_meta_size(ctx_out);
|
||||
::zeros(fout, meta_size);
|
||||
}
|
||||
@@ -515,9 +518,7 @@ static void gguf_merge(const split_params & split_params) {
|
||||
ggml_free(ctx_metas[i]);
|
||||
}
|
||||
gguf_free(ctx_out);
|
||||
if (!split_params.dry_run) {
|
||||
fout.close();
|
||||
}
|
||||
fout.close();
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
fprintf(stderr, "%s: writing tensors %s ...", __func__, split_path);
|
||||
@@ -539,11 +540,10 @@ static void gguf_merge(const split_params & split_params) {
|
||||
auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor);
|
||||
f_input.seekg(offset);
|
||||
f_input.read((char *)read_data.data(), n_bytes);
|
||||
if (!split_params.dry_run) {
|
||||
// write tensor data + padding
|
||||
fout.write((const char *)read_data.data(), n_bytes);
|
||||
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
|
||||
}
|
||||
|
||||
// write tensor data + padding
|
||||
fout.write((const char *)read_data.data(), n_bytes);
|
||||
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
|
||||
}
|
||||
|
||||
gguf_free(ctx_gguf);
|
||||
@@ -552,15 +552,16 @@ static void gguf_merge(const split_params & split_params) {
|
||||
fprintf(stderr, "\033[3Ddone\n");
|
||||
}
|
||||
|
||||
if (!split_params.dry_run) {
|
||||
{
|
||||
// go back to beginning of file and write the updated metadata
|
||||
fout.seekp(0);
|
||||
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
|
||||
gguf_get_meta_data(ctx_out, data.data());
|
||||
fout.write((const char *)data.data(), data.size());
|
||||
|
||||
fout.close();
|
||||
gguf_free(ctx_out);
|
||||
}
|
||||
gguf_free(ctx_out);
|
||||
|
||||
fprintf(stderr, "%s: %s merged from %d split with %d tensors.\n",
|
||||
__func__, split_params.output.c_str(), n_split, total_tensors);
|
||||
|
||||
@@ -41,7 +41,7 @@ echo PASS
|
||||
echo
|
||||
|
||||
# 2b. Test the sharded model is loading properly
|
||||
$MAIN -no-cnv --model $WORK_PATH/ggml-model-split-00001-of-00006.gguf --n-predict 32
|
||||
$MAIN --model $WORK_PATH/ggml-model-split-00001-of-00006.gguf --n-predict 32
|
||||
echo PASS
|
||||
echo
|
||||
|
||||
@@ -51,7 +51,7 @@ echo PASS
|
||||
echo
|
||||
|
||||
# 3b. Test the merged model is loading properly
|
||||
$MAIN -no-cnv --model $WORK_PATH/ggml-model-merge.gguf --n-predict 32
|
||||
$MAIN --model $WORK_PATH/ggml-model-merge.gguf --n-predict 32
|
||||
echo PASS
|
||||
echo
|
||||
|
||||
@@ -61,7 +61,7 @@ echo PASS
|
||||
echo
|
||||
|
||||
# 4b. Test the sharded model is loading properly
|
||||
$MAIN -no-cnv --model $WORK_PATH/ggml-model-split-32-tensors-00001-of-00007.gguf --n-predict 32
|
||||
$MAIN --model $WORK_PATH/ggml-model-split-32-tensors-00001-of-00007.gguf --n-predict 32
|
||||
echo PASS
|
||||
echo
|
||||
|
||||
@@ -71,7 +71,7 @@ echo
|
||||
#echo
|
||||
|
||||
# 5b. Test the merged model is loading properly
|
||||
#$MAIN -no-cnv --model $WORK_PATH/ggml-model-merge-2.gguf --n-predict 32
|
||||
#$MAIN --model $WORK_PATH/ggml-model-merge-2.gguf --n-predict 32
|
||||
#echo PASS
|
||||
#echo
|
||||
|
||||
@@ -81,7 +81,7 @@ echo PASS
|
||||
echo
|
||||
|
||||
# 6b. Test the sharded model is loading properly
|
||||
$MAIN -no-cnv --model $WORK_PATH/ggml-model-split-2G-00001-of-00002.gguf --n-predict 32
|
||||
$MAIN --model $WORK_PATH/ggml-model-split-2G-00001-of-00002.gguf --n-predict 32
|
||||
echo PASS
|
||||
echo
|
||||
|
||||
|
||||
@@ -45,7 +45,7 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
|
||||
}
|
||||
|
||||
// clear previous kv_cache values (irrelevant for embeddings)
|
||||
llama_kv_self_clear(ctx);
|
||||
llama_kv_cache_clear(ctx);
|
||||
llama_set_embeddings(ctx, true);
|
||||
llama_set_causal_attn(ctx, false);
|
||||
|
||||
@@ -102,7 +102,7 @@ static std::string generate(llama_context * ctx, llama_sampler * smpl, const std
|
||||
|
||||
llama_token eos_token = llama_vocab_eos(vocab);
|
||||
|
||||
llama_kv_self_clear(ctx);
|
||||
llama_kv_cache_clear(ctx);
|
||||
llama_set_embeddings(ctx, false);
|
||||
llama_set_causal_attn(ctx, true);
|
||||
|
||||
@@ -168,7 +168,7 @@ int main(int argc, char * argv[]) {
|
||||
|
||||
llama_backend_init();
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
|
||||
llama_model * model = llama_model_load_from_file(params.model.c_str(), mparams);
|
||||
|
||||
// create generation context
|
||||
llama_context * ctx = llama_init_from_model(model, cparams);
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
# llama.cpp/examples/imatrix
|
||||
|
||||
Compute an importance matrix for a model and given text dataset. Can be used during quantization to enhance the quality of the quantized models.
|
||||
More information is available here: https://github.com/ggml-org/llama.cpp/pull/4861
|
||||
Compute an importance matrix for a model and given text dataset. Can be used during quantization to enchance the quality of the quantized models.
|
||||
More information is available here: https://github.com/ggerganov/llama.cpp/pull/4861
|
||||
|
||||
## Usage
|
||||
|
||||
|
||||
@@ -3,7 +3,6 @@
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <chrono>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
@@ -100,7 +99,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
||||
const float * data = is_host ? (const float *) src1->data : m_src1_data.data();
|
||||
|
||||
// this has been adapted to the new format of storing merged experts in a single 3d tensor
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/6387
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/6387
|
||||
if (t->op == GGML_OP_MUL_MAT_ID) {
|
||||
// ids -> [n_experts_used, n_tokens]
|
||||
// src1 -> [cols, n_expert_used, n_tokens]
|
||||
@@ -206,6 +205,9 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
||||
|
||||
void IMatrixCollector::save_imatrix(int ncall) const {
|
||||
auto fname = m_params.out_file;
|
||||
if (fname.empty()) {
|
||||
fname = "imatrix.dat";
|
||||
}
|
||||
|
||||
if (ncall > 0) {
|
||||
fname += ".at_";
|
||||
@@ -495,7 +497,7 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
|
||||
const auto t_start = std::chrono::high_resolution_clock::now();
|
||||
|
||||
// clear the KV cache
|
||||
llama_kv_self_clear(ctx);
|
||||
llama_kv_cache_clear(ctx);
|
||||
|
||||
llama_batch batch = llama_batch_init(n_batch, 0, 1);
|
||||
|
||||
@@ -580,8 +582,6 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
|
||||
int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
|
||||
params.out_file = "imatrix.dat" ;
|
||||
|
||||
params.n_ctx = 512;
|
||||
params.logits_all = true;
|
||||
params.escape = false;
|
||||
|
||||
@@ -332,8 +332,8 @@ int main(int argc, char ** argv) {
|
||||
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
|
||||
n_past, n_left, n_ctx, params.n_keep, n_discard);
|
||||
|
||||
llama_kv_self_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
|
||||
llama_kv_self_seq_add(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
|
||||
llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
|
||||
llama_kv_cache_seq_add(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
|
||||
|
||||
n_past -= n_discard;
|
||||
|
||||
|
||||
@@ -195,7 +195,7 @@ class BuiltinRule:
|
||||
self.deps = deps or []
|
||||
|
||||
# Constraining spaces to prevent model "running away".
|
||||
SPACE_RULE = '| " " | "\\n"{1,2} [ \\t]{0,20}'
|
||||
SPACE_RULE = '| " " | "\\n" [ \\t]{0,20}'
|
||||
|
||||
PRIMITIVE_RULES = {
|
||||
'boolean' : BuiltinRule('("true" | "false") space', []),
|
||||
|
||||
@@ -683,7 +683,7 @@ struct cmd_params_instance {
|
||||
bool cpu_strict;
|
||||
int poll;
|
||||
int n_gpu_layers;
|
||||
std::string rpc_servers_str;
|
||||
std::string rpc_servers;
|
||||
llama_split_mode split_mode;
|
||||
int main_gpu;
|
||||
bool no_kv_offload;
|
||||
@@ -696,37 +696,8 @@ struct cmd_params_instance {
|
||||
llama_model_params mparams = llama_model_default_params();
|
||||
|
||||
mparams.n_gpu_layers = n_gpu_layers;
|
||||
if (!rpc_servers_str.empty()) {
|
||||
auto rpc_servers = string_split<std::string>(rpc_servers_str, ',');
|
||||
|
||||
// add RPC devices
|
||||
if (!rpc_servers.empty()) {
|
||||
ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
|
||||
if (!rpc_reg) {
|
||||
fprintf(stderr, "%s: failed to find RPC backend\n", __func__);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
|
||||
ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
|
||||
if (!ggml_backend_rpc_add_device_fn) {
|
||||
fprintf(stderr, "%s: failed to find RPC device add function\n", __func__);
|
||||
exit(1);
|
||||
}
|
||||
static std::vector<ggml_backend_dev_t> devices;
|
||||
devices.clear();
|
||||
for (const std::string & server : rpc_servers) {
|
||||
ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
|
||||
if (dev) {
|
||||
devices.push_back(dev);
|
||||
} else {
|
||||
fprintf(stderr, "%s: failed to add RPC device for server '%s'\n", __func__, server.c_str());
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
devices.push_back(nullptr);
|
||||
mparams.devices = devices.data();
|
||||
}
|
||||
if (!rpc_servers.empty()) {
|
||||
mparams.rpc_servers = rpc_servers.c_str();
|
||||
}
|
||||
mparams.split_mode = split_mode;
|
||||
mparams.main_gpu = main_gpu;
|
||||
@@ -737,7 +708,7 @@ struct cmd_params_instance {
|
||||
}
|
||||
|
||||
bool equal_mparams(const cmd_params_instance & other) const {
|
||||
return model == other.model && n_gpu_layers == other.n_gpu_layers && rpc_servers_str == other.rpc_servers_str &&
|
||||
return model == other.model && n_gpu_layers == other.n_gpu_layers && rpc_servers == other.rpc_servers &&
|
||||
split_mode == other.split_mode && main_gpu == other.main_gpu && use_mmap == other.use_mmap &&
|
||||
tensor_split == other.tensor_split;
|
||||
}
|
||||
@@ -876,8 +847,8 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
||||
struct test {
|
||||
static const std::string build_commit;
|
||||
static const int build_number;
|
||||
const std::string cpu_info;
|
||||
const std::string gpu_info;
|
||||
static const std::string cpu_info;
|
||||
static const std::string gpu_info;
|
||||
std::string model_filename;
|
||||
std::string model_type;
|
||||
uint64_t model_size;
|
||||
@@ -903,10 +874,7 @@ struct test {
|
||||
std::string test_time;
|
||||
std::vector<uint64_t> samples_ns;
|
||||
|
||||
test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) :
|
||||
cpu_info(get_cpu_info()),
|
||||
gpu_info(get_gpu_info()) {
|
||||
|
||||
test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
|
||||
model_filename = inst.model;
|
||||
char buf[128];
|
||||
llama_model_desc(lmodel, buf, sizeof(buf));
|
||||
@@ -1061,6 +1029,8 @@ struct test {
|
||||
|
||||
const std::string test::build_commit = LLAMA_COMMIT;
|
||||
const int test::build_number = LLAMA_BUILD_NUMBER;
|
||||
const std::string test::cpu_info = get_cpu_info();
|
||||
const std::string test::gpu_info = get_gpu_info();
|
||||
|
||||
struct printer {
|
||||
virtual ~printer() {}
|
||||
@@ -1578,7 +1548,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
test t(inst, lmodel, ctx);
|
||||
|
||||
llama_kv_self_clear(ctx);
|
||||
llama_kv_cache_clear(ctx);
|
||||
|
||||
// cool off before the test
|
||||
if (params.delay) {
|
||||
@@ -1618,7 +1588,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
for (int i = 0; i < params.reps; i++) {
|
||||
llama_kv_self_clear(ctx);
|
||||
llama_kv_cache_clear(ctx);
|
||||
|
||||
uint64_t t_start = get_time_ns();
|
||||
|
||||
|
||||
@@ -18,7 +18,6 @@ android {
|
||||
}
|
||||
externalNativeBuild {
|
||||
cmake {
|
||||
arguments += "-DLLAMA_CURL=OFF"
|
||||
arguments += "-DLLAMA_BUILD_COMMON=ON"
|
||||
arguments += "-DGGML_LLAMAFILE=OFF"
|
||||
arguments += "-DCMAKE_BUILD_TYPE=Release"
|
||||
|
||||
@@ -14,7 +14,7 @@ project("llama-android")
|
||||
#include(FetchContent)
|
||||
#FetchContent_Declare(
|
||||
# llama
|
||||
# GIT_REPOSITORY https://github.com/ggml-org/llama.cpp
|
||||
# GIT_REPOSITORY https://github.com/ggerganov/llama.cpp
|
||||
# GIT_TAG master
|
||||
#)
|
||||
|
||||
|
||||
@@ -194,7 +194,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
|
||||
}
|
||||
|
||||
batch->logits[batch->n_tokens - 1] = true;
|
||||
llama_kv_self_clear(context);
|
||||
llama_kv_cache_clear(context);
|
||||
|
||||
const auto t_pp_start = ggml_time_us();
|
||||
if (llama_decode(context, *batch) != 0) {
|
||||
@@ -206,7 +206,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
|
||||
|
||||
LOGi("Benchmark text generation (tg)");
|
||||
|
||||
llama_kv_self_clear(context);
|
||||
llama_kv_cache_clear(context);
|
||||
const auto t_tg_start = ggml_time_us();
|
||||
for (i = 0; i < tg; i++) {
|
||||
|
||||
@@ -223,7 +223,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
|
||||
|
||||
const auto t_tg_end = ggml_time_us();
|
||||
|
||||
llama_kv_self_clear(context);
|
||||
llama_kv_cache_clear(context);
|
||||
|
||||
const auto t_pp = double(t_pp_end - t_pp_start) / 1000000.0;
|
||||
const auto t_tg = double(t_tg_end - t_tg_start) / 1000000.0;
|
||||
@@ -347,7 +347,6 @@ Java_android_llama_cpp_LLamaAndroid_completion_1init(
|
||||
jlong context_pointer,
|
||||
jlong batch_pointer,
|
||||
jstring jtext,
|
||||
jboolean format_chat,
|
||||
jint n_len
|
||||
) {
|
||||
|
||||
@@ -357,11 +356,10 @@ Java_android_llama_cpp_LLamaAndroid_completion_1init(
|
||||
const auto context = reinterpret_cast<llama_context *>(context_pointer);
|
||||
const auto batch = reinterpret_cast<llama_batch *>(batch_pointer);
|
||||
|
||||
bool parse_special = (format_chat == JNI_TRUE);
|
||||
const auto tokens_list = common_tokenize(context, text, true, parse_special);
|
||||
const auto tokens_list = common_tokenize(context, text, 1);
|
||||
|
||||
auto n_ctx = llama_n_ctx(context);
|
||||
auto n_kv_req = tokens_list.size() + n_len;
|
||||
auto n_kv_req = tokens_list.size() + (n_len - tokens_list.size());
|
||||
|
||||
LOGi("n_len = %d, n_ctx = %d, n_kv_req = %d", n_len, n_ctx, n_kv_req);
|
||||
|
||||
@@ -370,7 +368,7 @@ Java_android_llama_cpp_LLamaAndroid_completion_1init(
|
||||
}
|
||||
|
||||
for (auto id : tokens_list) {
|
||||
LOGi("token: `%s`-> %d ", common_token_to_piece(context, id).c_str(), id);
|
||||
LOGi("%s", common_token_to_piece(context, id).c_str());
|
||||
}
|
||||
|
||||
common_batch_clear(*batch);
|
||||
@@ -448,5 +446,5 @@ Java_android_llama_cpp_LLamaAndroid_completion_1loop(
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_android_llama_cpp_LLamaAndroid_kv_1cache_1clear(JNIEnv *, jobject, jlong context) {
|
||||
llama_kv_self_clear(reinterpret_cast<llama_context *>(context));
|
||||
llama_kv_cache_clear(reinterpret_cast<llama_context *>(context));
|
||||
}
|
||||
|
||||
@@ -65,7 +65,6 @@ class LLamaAndroid {
|
||||
context: Long,
|
||||
batch: Long,
|
||||
text: String,
|
||||
formatChat: Boolean,
|
||||
nLen: Int
|
||||
): Int
|
||||
|
||||
@@ -116,10 +115,10 @@ class LLamaAndroid {
|
||||
}
|
||||
}
|
||||
|
||||
fun send(message: String, formatChat: Boolean = false): Flow<String> = flow {
|
||||
fun send(message: String): Flow<String> = flow {
|
||||
when (val state = threadLocalState.get()) {
|
||||
is State.Loaded -> {
|
||||
val ncur = IntVar(completion_init(state.context, state.batch, message, formatChat, nlen))
|
||||
val ncur = IntVar(completion_init(state.context, state.batch, message, nlen))
|
||||
while (ncur.value <= nlen) {
|
||||
val str = completion_loop(state.context, state.batch, state.sampler, nlen, ncur)
|
||||
if (str == null) {
|
||||
|
||||
@@ -3,24 +3,9 @@
|
||||
Local inference of llama.cpp on an iPhone. This is a sample app that can be used as a starting
|
||||
point for more advanced projects.
|
||||
|
||||
For usage instructions and performance stats, check the following discussion: https://github.com/ggml-org/llama.cpp/discussions/4508
|
||||
For usage instructions and performance stats, check the following discussion: https://github.com/ggerganov/llama.cpp/discussions/4508
|
||||
|
||||
|
||||
### Building
|
||||
First llama.cpp need to be built and a XCFramework needs to be created. This can be done by running
|
||||
the following script from the llama.cpp project root:
|
||||
```console
|
||||
$ ./build-xcframework.sh
|
||||
```
|
||||
Open `llama.swiftui.xcodeproj` project in Xcode and you should be able to build and run the app on
|
||||
a simulator or a real device.
|
||||
|
||||
To use the framework with a different project, the XCFramework can be added to the project by
|
||||
adding `build-apple/llama.xcframework` by dragging and dropping it into the project navigator, or
|
||||
by manually selecting the framework in the "Frameworks, Libraries, and Embedded Content" section
|
||||
of the project settings.
|
||||
|
||||

|
||||

|
||||
|
||||
Video demonstration:
|
||||
|
||||
|
||||
@@ -24,7 +24,6 @@ func llama_batch_add(_ batch: inout llama_batch, _ id: llama_token, _ pos: llama
|
||||
actor LlamaContext {
|
||||
private var model: OpaquePointer
|
||||
private var context: OpaquePointer
|
||||
private var vocab: OpaquePointer
|
||||
private var sampling: UnsafeMutablePointer<llama_sampler>
|
||||
private var batch: llama_batch
|
||||
private var tokens_list: [llama_token]
|
||||
@@ -48,7 +47,6 @@ actor LlamaContext {
|
||||
self.sampling = llama_sampler_chain_init(sparams)
|
||||
llama_sampler_chain_add(self.sampling, llama_sampler_init_temp(0.4))
|
||||
llama_sampler_chain_add(self.sampling, llama_sampler_init_dist(1234))
|
||||
vocab = llama_model_get_vocab(model)
|
||||
}
|
||||
|
||||
deinit {
|
||||
@@ -81,7 +79,7 @@ actor LlamaContext {
|
||||
ctx_params.n_threads = Int32(n_threads)
|
||||
ctx_params.n_threads_batch = Int32(n_threads)
|
||||
|
||||
let context = llama_init_from_model(model, ctx_params)
|
||||
let context = llama_new_context_with_model(model, ctx_params)
|
||||
guard let context else {
|
||||
print("Could not load context!")
|
||||
throw LlamaError.couldNotInitializeContext
|
||||
@@ -153,7 +151,7 @@ actor LlamaContext {
|
||||
|
||||
new_token_id = llama_sampler_sample(sampling, context, batch.n_tokens - 1)
|
||||
|
||||
if llama_vocab_is_eog(vocab, new_token_id) || n_cur == n_len {
|
||||
if llama_vocab_is_eog(model, new_token_id) || n_cur == n_len {
|
||||
print("\n")
|
||||
is_done = true
|
||||
let new_token_str = String(cString: temporary_invalid_cchars + [0])
|
||||
@@ -210,7 +208,7 @@ actor LlamaContext {
|
||||
}
|
||||
batch.logits[Int(batch.n_tokens) - 1] = 1 // true
|
||||
|
||||
llama_kv_self_clear(context)
|
||||
llama_kv_cache_clear(context)
|
||||
|
||||
let t_pp_start = DispatchTime.now().uptimeNanoseconds / 1000;
|
||||
|
||||
@@ -223,7 +221,7 @@ actor LlamaContext {
|
||||
|
||||
// bench text generation
|
||||
|
||||
llama_kv_self_clear(context)
|
||||
llama_kv_cache_clear(context)
|
||||
|
||||
let t_tg_start = DispatchTime.now().uptimeNanoseconds / 1000;
|
||||
|
||||
@@ -242,7 +240,7 @@ actor LlamaContext {
|
||||
|
||||
let t_tg_end = DispatchTime.now().uptimeNanoseconds / 1000;
|
||||
|
||||
llama_kv_self_clear(context)
|
||||
llama_kv_cache_clear(context)
|
||||
|
||||
let t_pp = Double(t_pp_end - t_pp_start) / 1000000.0
|
||||
let t_tg = Double(t_tg_end - t_tg_start) / 1000000.0
|
||||
@@ -292,14 +290,14 @@ actor LlamaContext {
|
||||
func clear() {
|
||||
tokens_list.removeAll()
|
||||
temporary_invalid_cchars.removeAll()
|
||||
llama_kv_self_clear(context)
|
||||
llama_kv_cache_clear(context)
|
||||
}
|
||||
|
||||
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
|
||||
let utf8Count = text.utf8.count
|
||||
let n_tokens = utf8Count + (add_bos ? 1 : 0) + 1
|
||||
let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
|
||||
let tokenCount = llama_tokenize(vocab, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, false)
|
||||
let tokenCount = llama_tokenize(model, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, false)
|
||||
|
||||
var swiftTokens: [llama_token] = []
|
||||
for i in 0..<tokenCount {
|
||||
@@ -318,7 +316,7 @@ actor LlamaContext {
|
||||
defer {
|
||||
result.deallocate()
|
||||
}
|
||||
let nTokens = llama_token_to_piece(vocab, token, result, 8, 0, false)
|
||||
let nTokens = llama_token_to_piece(model, token, result, 8, 0, false)
|
||||
|
||||
if nTokens < 0 {
|
||||
let newResult = UnsafeMutablePointer<Int8>.allocate(capacity: Int(-nTokens))
|
||||
@@ -326,7 +324,7 @@ actor LlamaContext {
|
||||
defer {
|
||||
newResult.deallocate()
|
||||
}
|
||||
let nNewTokens = llama_token_to_piece(vocab, token, newResult, -nTokens, 0, false)
|
||||
let nNewTokens = llama_token_to_piece(model, token, newResult, -nTokens, 0, false)
|
||||
let bufferPointer = UnsafeBufferPointer(start: newResult, count: Int(nNewTokens))
|
||||
return Array(bufferPointer)
|
||||
} else {
|
||||
|
||||
@@ -7,6 +7,7 @@
|
||||
objects = {
|
||||
|
||||
/* Begin PBXBuildFile section */
|
||||
1809696D2D05A39F00400EE8 /* llama in Frameworks */ = {isa = PBXBuildFile; productRef = 1809696C2D05A39F00400EE8 /* llama */; };
|
||||
549479CB2AC9E16000E0F78B /* Metal.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 549479CA2AC9E16000E0F78B /* Metal.framework */; };
|
||||
79E1D9CD2B4CD16E005F8E46 /* InputButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = 79E1D9CC2B4CD16E005F8E46 /* InputButton.swift */; };
|
||||
7FA3D2B32B2EA2F600543F92 /* DownloadButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = 7FA3D2B22B2EA2F600543F92 /* DownloadButton.swift */; };
|
||||
@@ -17,25 +18,9 @@
|
||||
8A3F84242AC4C891005E2EE8 /* models in Resources */ = {isa = PBXBuildFile; fileRef = 8A3F84232AC4C891005E2EE8 /* models */; };
|
||||
8A907F332AC7138A006146EA /* LibLlama.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A907F322AC7134E006146EA /* LibLlama.swift */; };
|
||||
8A9F7C4D2AC332EE008AE1EA /* LlamaState.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */; };
|
||||
DD84C9FD2D747FED007778EC /* llama.xcframework in Frameworks */ = {isa = PBXBuildFile; fileRef = DD84C9FC2D747FED007778EC /* llama.xcframework */; };
|
||||
DD84C9FE2D747FED007778EC /* llama.xcframework in Embed Frameworks */ = {isa = PBXBuildFile; fileRef = DD84C9FC2D747FED007778EC /* llama.xcframework */; settings = {ATTRIBUTES = (CodeSignOnCopy, RemoveHeadersOnCopy, ); }; };
|
||||
F1FE20E22B465ECA00B45541 /* LoadCustomButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = F1FE20E12B465EC900B45541 /* LoadCustomButton.swift */; };
|
||||
/* End PBXBuildFile section */
|
||||
|
||||
/* Begin PBXCopyFilesBuildPhase section */
|
||||
DD84C9FF2D747FED007778EC /* Embed Frameworks */ = {
|
||||
isa = PBXCopyFilesBuildPhase;
|
||||
buildActionMask = 2147483647;
|
||||
dstPath = "";
|
||||
dstSubfolderSpec = 10;
|
||||
files = (
|
||||
DD84C9FE2D747FED007778EC /* llama.xcframework in Embed Frameworks */,
|
||||
);
|
||||
name = "Embed Frameworks";
|
||||
runOnlyForDeploymentPostprocessing = 0;
|
||||
};
|
||||
/* End PBXCopyFilesBuildPhase section */
|
||||
|
||||
/* Begin PBXFileReference section */
|
||||
549479CA2AC9E16000E0F78B /* Metal.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = Metal.framework; path = System/Library/Frameworks/Metal.framework; sourceTree = SDKROOT; };
|
||||
79E1D9CC2B4CD16E005F8E46 /* InputButton.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = InputButton.swift; sourceTree = "<group>"; };
|
||||
@@ -48,7 +33,6 @@
|
||||
8A3F84232AC4C891005E2EE8 /* models */ = {isa = PBXFileReference; lastKnownFileType = folder; name = models; path = llama.swiftui/Resources/models; sourceTree = "<group>"; };
|
||||
8A907F322AC7134E006146EA /* LibLlama.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LibLlama.swift; sourceTree = "<group>"; };
|
||||
8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LlamaState.swift; sourceTree = "<group>"; };
|
||||
DD84C9FC2D747FED007778EC /* llama.xcframework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.xcframework; name = llama.xcframework; path = "../../build-apple/llama.xcframework"; sourceTree = "<group>"; };
|
||||
DF2D2FE72B4A59BE00FCB72D /* llama.cpp */ = {isa = PBXFileReference; lastKnownFileType = wrapper; name = llama.cpp; path = ../..; sourceTree = "<group>"; };
|
||||
F1FE20E12B465EC900B45541 /* LoadCustomButton.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LoadCustomButton.swift; sourceTree = "<group>"; };
|
||||
/* End PBXFileReference section */
|
||||
@@ -58,9 +42,9 @@
|
||||
isa = PBXFrameworksBuildPhase;
|
||||
buildActionMask = 2147483647;
|
||||
files = (
|
||||
1809696D2D05A39F00400EE8 /* llama in Frameworks */,
|
||||
549479CB2AC9E16000E0F78B /* Metal.framework in Frameworks */,
|
||||
8A39BE0A2AC7601100BFEB40 /* Accelerate.framework in Frameworks */,
|
||||
DD84C9FD2D747FED007778EC /* llama.xcframework in Frameworks */,
|
||||
);
|
||||
runOnlyForDeploymentPostprocessing = 0;
|
||||
};
|
||||
@@ -102,7 +86,6 @@
|
||||
8A39BE082AC7601000BFEB40 /* Frameworks */ = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
DD84C9FC2D747FED007778EC /* llama.xcframework */,
|
||||
549479CA2AC9E16000E0F78B /* Metal.framework */,
|
||||
8A39BE092AC7601000BFEB40 /* Accelerate.framework */,
|
||||
);
|
||||
@@ -161,7 +144,6 @@
|
||||
8A1C836F2AC328BD0096AF73 /* Sources */,
|
||||
8A1C83702AC328BD0096AF73 /* Frameworks */,
|
||||
8A1C83712AC328BD0096AF73 /* Resources */,
|
||||
DD84C9FF2D747FED007778EC /* Embed Frameworks */,
|
||||
);
|
||||
buildRules = (
|
||||
);
|
||||
@@ -169,6 +151,7 @@
|
||||
);
|
||||
name = llama.swiftui;
|
||||
packageProductDependencies = (
|
||||
1809696C2D05A39F00400EE8 /* llama */,
|
||||
);
|
||||
productName = llama.swiftui;
|
||||
productReference = 8A1C83732AC328BD0096AF73 /* llama.swiftui.app */;
|
||||
@@ -444,6 +427,13 @@
|
||||
defaultConfigurationName = Release;
|
||||
};
|
||||
/* End XCConfigurationList section */
|
||||
|
||||
/* Begin XCSwiftPackageProductDependency section */
|
||||
1809696C2D05A39F00400EE8 /* llama */ = {
|
||||
isa = XCSwiftPackageProductDependency;
|
||||
productName = llama;
|
||||
};
|
||||
/* End XCSwiftPackageProductDependency section */
|
||||
};
|
||||
rootObject = 8A1C836B2AC328BD0096AF73 /* Project object */;
|
||||
}
|
||||
|
||||
@@ -124,26 +124,15 @@ struct ContentView: View {
|
||||
}
|
||||
}
|
||||
}.sheet(isPresented: $showingHelp) { // Sheet for help modal
|
||||
NavigationView {
|
||||
VStack(alignment: .leading) {
|
||||
VStack(alignment: .leading) {
|
||||
VStack(alignment: .leading) {
|
||||
Text("1. Make sure the model is in GGUF Format")
|
||||
.padding()
|
||||
Text("2. Copy the download link of the quantized model")
|
||||
.padding()
|
||||
}
|
||||
Spacer()
|
||||
Text("1. Make sure the model is in GGUF Format")
|
||||
.padding()
|
||||
Text("2. Copy the download link of the quantized model")
|
||||
.padding()
|
||||
}
|
||||
.navigationTitle("Help")
|
||||
.navigationBarTitleDisplayMode(.inline)
|
||||
.toolbar {
|
||||
ToolbarItem(placement: .navigationBarTrailing) {
|
||||
Button("Done") {
|
||||
showingHelp = false
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Spacer()
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -39,7 +39,7 @@
|
||||
"
|
||||
" :call llama#init()
|
||||
"
|
||||
" more info: https://github.com/ggml-org/llama.cpp/pull/9787
|
||||
" more info: https://github.com/ggerganov/llama.cpp/pull/9787
|
||||
"
|
||||
|
||||
" colors (adjust to your liking)
|
||||
|
||||
@@ -1,5 +1,3 @@
|
||||
# llava (legacy)
|
||||
|
||||
add_library(llava OBJECT
|
||||
llava.cpp
|
||||
llava.h
|
||||
@@ -24,41 +22,12 @@ if (BUILD_SHARED_LIBS)
|
||||
install(TARGETS llava_shared LIBRARY)
|
||||
endif()
|
||||
|
||||
# mtmd
|
||||
|
||||
add_library(mtmd OBJECT
|
||||
mtmd.cpp
|
||||
mtmd.h
|
||||
clip.cpp
|
||||
clip.h
|
||||
clip-impl.h
|
||||
)
|
||||
|
||||
target_link_libraries(mtmd PRIVATE ggml llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
||||
target_include_directories(mtmd PUBLIC .)
|
||||
target_include_directories(mtmd PRIVATE ../..)
|
||||
target_include_directories(mtmd PRIVATE ../../common) # for stb_image.h
|
||||
|
||||
target_compile_features(mtmd PRIVATE cxx_std_17)
|
||||
|
||||
add_library(mtmd_static STATIC $<TARGET_OBJECTS:mtmd>)
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(mtmd PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
target_compile_definitions(mtmd PRIVATE LLAMA_SHARED LLAMA_BUILD)
|
||||
add_library(mtmd_shared SHARED $<TARGET_OBJECTS:mtmd>)
|
||||
target_link_libraries(mtmd_shared PRIVATE ggml llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
install(TARGETS mtmd_shared LIBRARY)
|
||||
endif()
|
||||
|
||||
if (NOT MSVC)
|
||||
target_compile_options(llava PRIVATE -Wno-cast-qual) # stb_image.h
|
||||
target_compile_options(mtmd PRIVATE -Wno-cast-qual) # stb_image.h
|
||||
endif()
|
||||
|
||||
if(TARGET BUILD_INFO)
|
||||
add_dependencies(llava BUILD_INFO)
|
||||
add_dependencies(mtmd BUILD_INFO)
|
||||
endif()
|
||||
|
||||
set(TARGET llama-llava-cli)
|
||||
@@ -81,17 +50,3 @@ set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-qwen2vl-cli)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_17)
|
||||
|
||||
set(TARGET llama-gemma3-cli)
|
||||
add_executable(${TARGET} gemma3-cli.cpp)
|
||||
set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-gemma3-cli)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common mtmd ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_17)
|
||||
|
||||
set(TARGET llama-llava-clip-quantize-cli)
|
||||
add_executable(${TARGET} clip-quantize-cli.cpp)
|
||||
set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-llava-clip-quantize-cli)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_17)
|
||||
|
||||
@@ -1,50 +0,0 @@
|
||||
# Gemma 3 vision
|
||||
|
||||
> [!IMPORTANT]
|
||||
>
|
||||
> This is very experimental, only used for demo purpose.
|
||||
|
||||
## Quick started
|
||||
|
||||
You can use pre-quantized model from [ggml-org](https://huggingface.co/ggml-org)'s Hugging Face account
|
||||
|
||||
```bash
|
||||
# build
|
||||
cmake -B build
|
||||
cmake --build build --target llama-gemma3-cli
|
||||
|
||||
# alternatively, install from brew (MacOS)
|
||||
brew install llama.cpp
|
||||
|
||||
# run it
|
||||
llama-gemma3-cli -hf ggml-org/gemma-3-4b-it-GGUF
|
||||
llama-gemma3-cli -hf ggml-org/gemma-3-12b-it-GGUF
|
||||
llama-gemma3-cli -hf ggml-org/gemma-3-27b-it-GGUF
|
||||
|
||||
# note: 1B model does not support vision
|
||||
```
|
||||
|
||||
## How to get mmproj.gguf?
|
||||
|
||||
```bash
|
||||
cd gemma-3-4b-it
|
||||
python ../llama.cpp/examples/llava/gemma3_convert_encoder_to_gguf.py .
|
||||
|
||||
# output file is mmproj.gguf
|
||||
```
|
||||
|
||||
## How to run it?
|
||||
|
||||
What you need:
|
||||
- The text model GGUF, can be converted using `convert_hf_to_gguf.py`
|
||||
- The mmproj file from step above
|
||||
- An image file
|
||||
|
||||
```bash
|
||||
# build
|
||||
cmake -B build
|
||||
cmake --build build --target llama-gemma3-cli
|
||||
|
||||
# run it
|
||||
./build/bin/llama-gemma3-cli -m {text_model}.gguf --mmproj mmproj.gguf --image your_image.jpg
|
||||
```
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user