Compare commits

..

106 Commits
b5155 ... b5261

Author SHA1 Message Date
Sigbjørn Skjæret
cb06a3c363 llama : orion rope type is neox (#13261) 2025-05-02 12:44:24 +02:00
Sigbjørn Skjæret
626083faf7 llama : plamo rope type is neox (#13260) 2025-05-02 12:40:56 +02:00
piDack
2af6880178 llama-chat : reset glmedge chat template (#13253)
* reset glmedge chat template

* fix glmedge chat template
2025-05-02 11:06:09 +02:00
Shakil Ahmed
e84773ab60 mtmd-cli : fix out_of_range when input image path is empty (#13244)
* fix out_of_range error  to keep the chat loop running

* Update examples/llava/mtmd-cli.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* mtmd-cli : load image right away

* add a new line for readability

* rm printf

* Update examples/llava/mtmd-cli.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update examples/llava/mtmd-cli.cpp

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-05-02 10:20:27 +02:00
Georgi Gerganov
fab647e884 server : add cache reuse card link to help (#13230)
* server : add cache reuse card link to help

* args : use short url
2025-05-02 09:48:31 +03:00
Xuan-Son Nguyen
dcf886007d convert : explicitly disable trust_remote_code for AutoConfig (#13246) 2025-05-02 08:45:10 +02:00
bandoti
d24d592808 ci: fix cross-compile sync issues (#12804) 2025-05-01 19:06:39 -03:00
Justin Santa Barbara
8efbdadc61 rpc : avoid uninitialized memory in serialize_tensor (#13210)
Zero out the name and padding buffers.
2025-05-01 23:32:11 +02:00
Jesse Gross
f057808ffa ggml: Don't assert fail when tensor data changes (#13222)
The following scenario will cause an assertion failure in the graph
allocator:
 - Build and allocate a graph containing a tensor with a non-NULL data
   pointer
 - Build and allocate a new graph where that data is NULL

Result:
ggml-alloc.c:819: GGML_ASSERT(talloc->buffer_id >= 0) failed

This happens during revalidation because we think that memory should
have been previously allocated based on the current graph but in
reality the previous graph was different. In this situation, we
should do a full reallocation pass.
2025-05-01 22:46:10 +02:00
Diego Devesa
d7a14c42a1 build : fix build info on windows (#13239)
* build : fix build info on windows

* fix cuda host compiler msg
2025-05-01 21:48:08 +02:00
Loïc Carrère
b6e4ff69b8 clip : (minicpmv) Re-enable upscaling of images smaller than the CLIP image size (#13237) 2025-05-01 21:32:21 +02:00
matteo
e0f572c846 llama-chat : update GLM4 chat template (#13238)
* update GLM4 chat template

* Update chat template

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-05-01 21:16:38 +02:00
Jeff Bolz
79f26e9e12 vulkan: Add bfloat16 support (#12554)
* vulkan: Add bfloat16 support

This adds bfloat16 matrix multiply support based on VK_KHR_shader_bfloat16.
The extension is required for coopmat multiply support, but matrix-vector
multiply trivially promotes bf16 to fp32 and doesn't require the extension.
The copy/get_rows shaders also don't require the extension.

It's probably possible to fall back to non-coopmat and promote to fp32 when
the extension isn't supported, but this change doesn't do that.

The coopmat support also requires a glslc that supports the extension, which
currently requires a custom build.

* vulkan: Support bf16 tensors without the bf16 extension or coopmat support

Compile a variant of the scalar mul_mm shader that will promote the bf16
values to float, and use that when either the bf16 extension or the coopmat
extensions aren't available.

* vulkan: bfloat16 fixes (really works without bfloat16 support now)

* vulkan: fix spirv-val failure and reenable -O
2025-05-01 20:49:39 +02:00
Jeff Bolz
fc727bcdd5 vulkan: Handle src1 batch dimension in non-contiguous mat-vec-mul shader (#13191)
* vulkan: Handle src1 batch dimension in non-contiguous mat-vec-mul shader
2025-05-01 20:19:31 +02:00
Johannes Gäßler
b0ecbd434b test: non-cont. b in test-backend-ops -o MUL_MAT (#13187) 2025-05-01 20:18:56 +02:00
Georgi Gerganov
b1dd4d08e8 sync : ggml
ggml-ci
2025-05-01 20:15:34 +03:00
Daniel Bevenius
99881f77d8 whisper : add check that target name exists (whisper/3103)
This commit adds a check to makes sure that the target exists before
trying to add compile options to ignore warnings when using MSVC.

The motivation for this is currently the build is broken depending on
the cmake options provided. With this fix it should be possible to build
even if the targets are not actually available.

Refs: https://github.com/ggml-org/whisper.cpp/pull/3090#issuecomment-2842760104
2025-05-01 20:15:34 +03:00
Daniel Bevenius
b5769d92b4 ggml : suppress Windows compiler warnings (whisper/3075)
* whisper: suppress Windows compiler warnings

This commit disables compiler warnings on window using MSVC.

The motivation for these changes is that some compilers generate
warnings for these conversion, for example Windows MSVC, and
there are quite a few of them. This makes it a little difficult to
spot new warnings that may be introduced and also can be difficult
for users/embedders of ggml where these warnings are hard to separate
from their own warnings.

* squash! whisper: suppress Windows compiler warnings

Move ggml related warnings into ggml. This commit also fixes the
indentation and adds a missing whitespace to the if statement.
2025-05-01 20:15:34 +03:00
Xuan-Son Nguyen
8936784f7a mtmd : add **vision** support for Mistral Small 3.1 (#13231)
* convert ok

* load ok, missing patch merger

* ah sheet it works

* update llava/readme

* add test

* fix test
2025-05-01 17:05:42 +02:00
Xuan-Son Nguyen
13c9a3319b arg : remove CURLINFO_EFFECTIVE_METHOD (#13228) 2025-05-01 10:23:25 +02:00
Jared Van Bortel
a70183eb00 llama-model : fix the reported size class for nomic-embed-text-v2-moe (#13223) 2025-05-01 10:09:41 +03:00
Georgi Gerganov
8d33d740c3 sync : ggml 2025-05-01 10:00:39 +03:00
Diego Devesa
4254bb4951 ggml : fix ggml_gallocr_ptr type (ggml/1205) 2025-05-01 09:58:44 +03:00
Georgi Gerganov
9998540149 cuda : fix unused variable compile warning (whisper/0)
ggml-ci
2025-05-01 09:58:44 +03:00
Johannes Gäßler
e1e8e0991f CUDA: batched+noncont MMQ, refactor bs>1 MoE code (#13199) 2025-04-30 23:12:59 +02:00
Xuan-Son Nguyen
6f67cf1f48 arg : -hf do not fail if url mismatch (#13219)
* arg : -hf do not fail if url mismatch

* do not return if cannot parse metadata json
2025-04-30 21:29:15 +01:00
ddh0
16a457facd fix typo: n_ctx_pre_seq -> n_ctx_per_seq (#13221) 2025-04-30 21:28:43 +01:00
Xuan-Son Nguyen
3e168bede4 convert : improve model arch handling (#13122)
* convert : improve model arch handling

* use AutoConfig

* rm trust_remote_code

* Update convert_hf_to_gguf.py

* fix self.block_count for vision

* fix NomicBertModel
2025-04-30 16:56:24 +02:00
Tatsuya Tanaka
ceda28ef8e llava : remove duplicate include (#13207) 2025-04-30 15:25:20 +02:00
Olivier Chafik
3b127c7385 common : add -jf / --json-schema-file flag (#12011) 2025-04-30 14:52:35 +02:00
Jeff Bolz
e5007a5edf vulkan: use uint array index to avoid glslang bug (#13193) 2025-04-30 14:38:37 +02:00
shalinib-ibm
416313773b ggml : fix ppc64le build (#13176)
Build fails with compilation error on power pc.
This patch fixes the same.

Tested with unit tests run via
 --build <build_dir> && cd <build_dir> && make test

Signed-off-by: Shalini Salomi Bodapati <Shalini.Salomi.Bodapati@ibm.com>
2025-04-30 13:17:08 +02:00
Xuan-Son Nguyen
07c2e2f76c convert : correct typo image_mean --> image_std (#13208) 2025-04-30 13:06:15 +02:00
Aaron Teo
44cd8d91ff feat(ggml-cpu): enable z17 compile (#13182)
z17 compilation requires GCC 15.1.0 and onwards

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-04-30 10:47:35 +01:00
Xuan-Son Nguyen
5933e6fdc9 arg : allow using -hf offline (#13202)
* arg : allow using -hf offline

* add more comments in code [no ci]
2025-04-30 10:46:32 +02:00
Xuan-Son Nguyen
da84c04d8f docker : do not build tests (#13204)
* docker : do not build tests

* include "ggml-cpu.h"
2025-04-30 10:44:07 +02:00
xiaofei
a0f7016d17 rpc : fix cache directory initialization (#13188)
Signed-off-by: xiaofei <hbuxiaofei@gmail.com>
2025-04-30 09:29:22 +03:00
Johannes Gäßler
19e899ce21 scripts: n_depth for compare-llama-bench [no ci] (#13201) 2025-04-29 23:32:04 +02:00
matteo
e2e1ddb93a server : Prefilling assistant message in openai compatible API (#13174)
* Prefilling assistant message in openai compatible API

* fixed indentation

* fixed code convention

* simplify method usage

* no more than one assistant message at end of messages

* merge checks into prefill code

* Update examples/server/utils.hpp

---------

Co-authored-by: matteo <matteo@naspc.lan>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-04-29 20:33:10 +02:00
Georgi Gerganov
d9d398f84f sampling : when top-k <= 0 -> noop (#13173)
ggml-ci
2025-04-29 20:22:57 +03:00
Alberto Cabrera Pérez
5a63980117 llama-bench: fixed size of fields to correctly map to values (#13183) 2025-04-29 17:24:36 +02:00
Johannes Gäßler
cdf76586b2 CUDA: fix non-cont. inputs for batched mat mul (#13155) 2025-04-29 16:00:27 +02:00
Sigbjørn Skjæret
7d3af70b08 llama : llm_type order by size (#13177) 2025-04-29 13:25:53 +02:00
Xuan-Son Nguyen
00e3e5a194 mtmd : add qwen2vl and qwen2.5vl (#13141)
* llava : add clip_n_output_tokens, deprecate clip_n_patches

* mtmd : add qwen2vl and qwen2.5vl

* decode_embd_batch::set_position_...

* working version

* deprecate llama-qwen2vl-cli

* correct order W, H of clip_embd_nbytes_by_img

* edit existing line in hot topics
2025-04-29 11:47:04 +02:00
Sigbjørn Skjæret
e98b3692be llama : set qwen3 model type sizes (#13175) 2025-04-29 11:00:31 +02:00
Xuan-Son Nguyen
b6ce7430b7 llama-graph : fix text position for mrope (#13159)
* llama-graph : fix text position for mrope

* fix typo

* explicitly set 4th dim in the loop
2025-04-29 09:45:49 +03:00
AT
5f5e39e1ba model : Nomic Embed Text V2 with Mixture-of-Experts (MoE) architecture (#12466)
* Nomic Embed Text V2 with Mixture-of-Experts (MoE) architecture

- Adds MoE-based embedding model supporting multilingual embeddings.
- Selects architecture variant based on hyperparameter detection (MoE layers).
- Removes unnecessary subclass initialization checks for clarity.

https://www.nomic.ai/blog/posts/nomic-embed-text-v2

Co-authored-by: Jared Van Bortel <jared@nomic.ai>

* fix tokenizer

* don't rename this tensor

---------

Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2025-04-28 22:52:15 +03:00
Xuan-Son Nguyen
eaea325324 clip : fix model size display (#13153) 2025-04-28 21:23:19 +02:00
Ville Vesilehto
43ddab6eee fix(rpc): Improve input validation and error handling (#13069)
* fix(rpc): Improve input validation and error handling

The `rpc-server` was vulnerable to Denial of Service attacks via
several RPC commands (`SET_TENSOR`, `GRAPH_COMPUTE`, etc.). Malformed
messages could trigger failed assertions (e.g., invalid `ggml_type`)
or out-of-bounds reads/writes leading to `GGML_ABORT` calls,
crashing the server process.

This PR introduces robust input validation and replaces `abort()`
calls with graceful error handling:

- **Type Validation:** `deserialize_tensor` now checks if the
  `tensor->type` is within the valid `GGML_TYPE_COUNT` range
  *before* calling `ggml_new_tensor_4d`. Returns `nullptr` on
  invalid type.
- **Bounds Checks:** Replaced `GGML_ABORT` in `set_tensor`,
  `set_tensor_hash`, and `get_tensor` handlers with error
  logging and returning `false` when data/offset parameters
  are out of buffer bounds.
- **Size Checks:** Added safe arithmetic checks (for overflow) in
  `graph_compute` when calculating required message sizes based
  on client-provided `n_nodes` and `n_tensors`. Returns early
  if the reported sizes conflict with the actual message size or
  would lead to overflow.
- **Error Propagation:**
    - `create_node` now checks for `nullptr` return values from
      `deserialize_tensor` and its recursive calls, propagating
      `nullptr` upwards on failure. Uses `find` instead of `at`
      for safer map access.
    - `copy_tensor` now checks for `nullptr` from `deserialize_tensor`
      and sets the response status to failure if deserialization
      or bounds checks fail.
    - `graph_compute` now checks for `nullptr` return from
      `create_node` and returns failure status correctly. The final
      return value now reflects the actual computation status.

These changes improve the RPC server's resilience
against malformed client requests, preventing crashes and ensuring
errors are handled more gracefully.

Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>

* refactor(rpc): address pr comments

removed comments and unnecessary returns

Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>

* refactor(rpc): ambiguous nullptr from create_node

rpc_server::create_node could previously return nullptr if the input ID
was 0 (valid) or if an internal error (deserialization, recursion
failure) occurred (invalid). This ambiguity made error handling
difficult for the caller (`graph_compute`).

This commit clarifies the meaning of nullptr:
- `graph_compute` now checks if the input 'id' was non-zero when
  `create_node` returns nullptr, correctly identifying failures
  versus intentional null links.
- `create_node` avoids recursive calls for zero IDs and propagates
  nullptr unambiguously on failure during recursion.

Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>

* refactor(rpc): initial zero check in create_node

The caller (`graph_compute`) already checks `id != 0` when handling
a `nullptr` return from `create_node`, correctly distinguishing
intentional null links from actual errors. This makes the initial
`if (id == 0)` check redundant.

Also removes the log message when a tensor ID is not found in the
provided map which was added in this branch.

Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>

* fix(rpc): Handle get_alloc_size failure in server

Check the return value of `server.get_alloc_size` in the RPC server
loop. If the call fails, return early to close the connection.

Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>

* refactor(rpc): input size validation in graph_compute

Removes detailed, step-by-step size calculations and overflow
checks in favor of simpler direct comparisons, assuming 64-bit
overflow is unlikely.

Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>

* refactor(rpc): remove extra status code setting

Removes the explicit setting of `response.result = GGML_STATUS_FAILED`
when `create_node` returns `nullptr` within `graph_compute`.
Primary signal is the `false` return value in case of failure.

Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>

* refactor(rpc): remove redundant check for tensor->type

Breaks CI on ubuntu-cpu-make. Tensor type is uint32_t, thus
the check is not needed.

Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>

---------

Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>
2025-04-28 21:00:20 +03:00
Vishal Agarwal
1831f538f7 llama-bench: add -d depth arg (#13096)
* add depth param

* update llama-bench README and add depth param

* llama-bench: default params for depth arg for faster execution

* Update examples/llama-bench/README.md

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* fix buffer print ub

* use user provided args

* remove extra whitespaces

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-04-28 16:50:39 +02:00
Xuan-Son Nguyen
4e87962e34 mtmd : fix glm-edge redundant token count (#13139)
* mtmd : fix glm-edge redundant token count

* fix chat template

* temporary disable GLMEdge test chat tmpl
2025-04-28 16:12:56 +02:00
pockers21
fb0471d175 context : do not clear output buffer on reserve (#13152)
Co-authored-by: pockers21 <liyang2@uniontech.com>
2025-04-28 16:45:40 +03:00
Xuan-Son Nguyen
d2b2031e5f llama : (mrope) allow using normal 1D position for text token (#13138)
* llama : (mrope) use normal position for text token

* rm n_pos_per_embd from llm_graph_input_attn_temp
2025-04-28 14:20:56 +02:00
Xuan-Son Nguyen
5fa9e63be8 clip : refactor set input for cgraph + fix qwen2.5vl input (#13136)
* clip : refactor set input for cgraph

* more strict assert

* minicpmv : use clip_n_mmproj_embd instead of copying the same code everywhere

* split qwen2 and qwen2.5 code blocks

* minor style fix
2025-04-28 12:18:59 +02:00
Akarshan Biswas
a4c340f974 SYCL: Add all missing unary kernels (#13074)
* SYCL: Add all missing unary kernels

ggml-ci

* decouple kernel launch range from data size using strided loop

* use ciel_div helper for num_blocks
ggml-ci

* clean auto imported header files
2025-04-28 11:33:25 +02:00
Georgi Gerganov
d0a417f3c7 readme : update hot topics (#13150) 2025-04-28 12:10:18 +03:00
Georgi Gerganov
43f2b07193 common : fix noreturn compile warning (#13151)
ggml-ci
2025-04-28 11:57:19 +03:00
Xuan-Son Nguyen
e5d6c2554e llama-chat : fix typo GML --> GLM (#13143) 2025-04-28 10:11:58 +02:00
R0CKSTAR
f0dd6a1926 musa: fix typo in cc control (#13144)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-04-28 09:33:28 +02:00
Johannes Gäßler
69699be48a CUDA: fix q_nope_absorbed prec for DS 2 Lite f16 (#13137) 2025-04-28 09:29:26 +02:00
Xuan-Son Nguyen
85f36e5e71 arg : fix unused variable (#13142) 2025-04-28 08:16:59 +03:00
4onen
c0a97b762e llama-bench : Add --override-tensors arg (#12922)
* Add --override-tensors option to llama-bench

* Correct llama-bench --override-tensors to --override-tensor

* llama-bench: Update --override-tensors parsing to match --tensor-split, appear in test matrix.

* Make new llama-bench util functions static to fix Ubuntu CI

* llama-bench: Correct -ot corner cases (No -ot calls, leading and trailing empty -ot spans, etc.)
2025-04-27 23:48:26 +02:00
matteo
ced44be342 llama-chat : fix wrong template in GLM4-0414 (#13140)
* fix wrong template in GLM4-0414

* fix spaces

* no bos token since it is already in the template

* moved the chatgml4 check to higher priority

* restored template for old GLM models

* moved the GLM4 template check in the correct place with correct check
2025-04-27 21:57:32 +02:00
R0CKSTAR
e291450b76 musa: fix build warning (#13129)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-04-27 13:22:49 +02:00
LostRuins Concedo
59e991c23c Fixes Qwen2.5VL segfault during inference with https://github.com/ggml-org/llama.cpp/pull/12402 as has_qwen2vl_merger migration was incomplete (#13133) 2025-04-27 12:43:37 +02:00
HimariO
ca2bb89eac clip : Add Qwen2.5VL support (#12402)
* implment vision model architecture, gguf convertor

* handle window attention inputs

* add debug utils

* fix few incorrect tensor memory layout

* move position id remap out of ggml to avoid int32 cuda operations

* cleaning up

* ignore transformers Qwen2_5_xxx type check

* remove not so often use `qwen2vl-cli` debug functions

* remove commented-out code blocks

* fix attn weight scaling after rebase

* add `PROJECTOR_TYPE_QWEN2_5_VL`

* remove `KEY_USE_GLU_MLP`, `KEY_USE_RMS_NORM`

* replace `KEY_FULLATTN_BLK_IDX` with `KEY_WIN_ATTN_PATTERN`

* remove `attn_window_size` from gguf

* fix model conversion

* clean up

* fix merging problem

* add test

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-04-27 10:10:34 +02:00
Xuan-Son Nguyen
2d451c8059 common : add common_remote_get_content (#13123)
* common : add common_remote_get_content

* support max size and timeout

* add tests
2025-04-26 22:58:12 +02:00
Xuan-Son Nguyen
4753791e70 clip : improve projector naming (#13118)
* clip : improve projector naming

* no more kv has_llava_projector

* rm unused kv

* rm more unused
2025-04-26 22:39:47 +02:00
SXX
77d5e9a76a ggml: move fp16/bf16 conversion optimizations to CPU backend + export conversion APIs (#13107)
* ggml: dynamic x86_64 feature detection for FP32 <-> FP16/BF16 conversion

* move fp converter to ggml-cpu

* Switch ggml_compute_forward_get_rows_f16/bf16 to new ggml_cpu_fp16/bf16_to_fp32
2025-04-26 16:05:31 +02:00
frob
d5fe4e81bd grammar : handle maxItems == 0 in JSON schema (#13117)
Co-authored-by: Richard Lyons <frob@cloudstaff.com>
2025-04-26 10:10:20 +02:00
Diego Devesa
295354ea68 llama : fix K-shift with quantized K and BLAS backend (#13113) 2025-04-25 19:40:11 +02:00
City
558a764713 Force FP32 compute in GLM4 FFN Down (#13101)
* Force FP32 compute in cuBLAS GEMM

* Revert "Force FP32 compute in cuBLAS GEMM"

This reverts commit 6efd872732.

* Force F32 compute in GLM4 ffn down

* Edit comment to clarify issue

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-04-25 14:38:34 +02:00
Xuan-Son Nguyen
edb18b6e8f clip : fix pixtral on some GPU backends (#13097)
* clip : fix pixtral on some GPU backends

* refactor inp_raw set

* rm outdated comment

* fix dynamic size

* add TODO
2025-04-25 14:31:42 +02:00
Neo Zhang Jianyu
514c45608f change the reorder tensor from init to execute OP (#13003) 2025-04-25 17:37:51 +08:00
Radoslav Gerganov
553a5c3a9f rpc : do not wait for response when sending RPC_CMD_SET_TENSOR (#12943)
RPC_CMD_SET_TENSOR always returns an empty response and we send this 4
times per token. We can improve TG speed if we don't wait for this empty
response.

The performance impact of this change depends on the network latency.
2025-04-25 10:08:08 +03:00
Xuan-Son Nguyen
13be08daf9 clip : remove boi/eoi embeddings for GLM-edge model (#13081) 2025-04-24 22:17:04 +02:00
Georgi Gerganov
226251ed56 embeddings : fix batch sizes (#13076)
ggml-ci
2025-04-24 22:29:22 +03:00
Georgi Gerganov
87616f0680 ggml : fix trailing whitespaces (#0) 2025-04-24 17:32:47 +03:00
Georgi Gerganov
63b4911494 sync : ggml
ggml-ci
2025-04-24 17:32:47 +03:00
Acly
c6e8cc28c1 ggml : Depthwise 2D convolution (ggml/1152)
* ggml-cpu : kernels for faster depthwise 2D convolution

* fix compile: remove static after moving to ops.cpp

* add dilation for depthwise_conv_2d

* review: rename to ggml_conv_2d_dw_direct, remove redundant struct keywords, pass by ref, whitespace

* review: rename depthwise_conv_2d -> conv_2d_dw everywhere
2025-04-24 17:32:47 +03:00
Johannes Gäßler
b10d8bfdb1 CUDA: use switch statements in constexpr functions (#13095) 2025-04-24 15:57:10 +02:00
Georgi Gerganov
13b4548877 cmake : do not include ./src as public for libllama (#13062)
* cmake : do not include ./src as public for libllama

ggml-ci

* cmake : rework tests

ggml-ci

* llguidance : remove unicode include

ggml-ci

* cmake : make c++17 private

ggml-ci
2025-04-24 16:00:10 +03:00
Georgi Gerganov
572b3141d3 clang-tidy : disable warning about missing math parenthesis (#13091) 2025-04-24 15:44:05 +03:00
Xuan-Son Nguyen
7c727fbe39 arg : add --no-mmproj-offload (#13093)
* arg : add --no-mmproj-offload

* Update common/arg.cpp
2025-04-24 14:04:14 +02:00
Xuan-Son Nguyen
80982e815e arg : clean up handling --mmproj with -hf (#13082)
* arg : clean up handling --mmproj with -hf

* rm change about no_mmproj

* Revert "rm change about no_mmproj"

This reverts commit 2cac8e0efb.

* handle no_mmproj explicitly

* skip download mmproj on examples not using it
2025-04-24 12:14:13 +02:00
Georgi Gerganov
7604a7d6b8 metal : fix floating-point range of attention scores in FA kernels (#13090)
ggml-ci
2025-04-24 10:38:30 +03:00
Eve
b3b6d862cf vulkan: matmul gcn tuning (#13016)
* tune matmul for gcn

* this one is more power efficient

* Update ggml/src/ggml-vulkan/ggml-vulkan.cpp

Co-authored-by: 0cc4m <picard12@live.de>

* disable this tune for the proprietary driver

---------

Co-authored-by: 0cc4m <picard12@live.de>
2025-04-24 09:18:33 +02:00
pl752
5630406959 llama-mtmd-cli: Sigint rework in mtmd vision example (#13080)
* Sigint rework in mtmd vision example

* Applied suggestions on mtmd-cli PR

* Forgot to invert one of the conditions

* Update examples/llava/mtmd-cli.cpp

* Removed redundant exit check

---------

Co-authored-by: pl752 <maximpl752@gmail.com>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-04-23 23:32:35 +02:00
Xuan-Son Nguyen
ecda2ec4b3 mtmd : Support Pixtral 12B (#13065)
* add pixtral text model (vision is wip)

* cgraph ok, just missing 2D RoPE

* fix bad rebase

* first working version

* fix problem with img_break token

* support dynamic image size

* update docs

* update test script
2025-04-23 20:21:59 +02:00
piDack
eb1776b15a convert : Append mult-eos,half-rope,bos to GLM4-0414 and Z (#13021)
* append mult-eos,half-rope,bos to GLM4-0414

* remove unset var
2025-04-23 16:59:14 +02:00
Radoslav Gerganov
2cca6c01e4 rpc : add command line option for number of threads for the CPU backend (#13060)
closes #13051
2025-04-23 10:32:49 +03:00
Johannes Gäßler
658987cfc9 CUDA: noncont MMVQ + batched bs1 MUL_MAT_ID (#13014)
* CUDA: noncont MMVQ + batched bs1 MUL_MAT_ID

* fix logic for RoPE support, CUDA graphs
2025-04-22 21:27:40 +02:00
Xuan-Son Nguyen
dc39a5e7a8 mtmd : support SmolVLM (version 1 and 2) (#13050)
* mtmd : support SmolVLM (version 1 and 2)

* correct chat template

* fix n_patches

* scale_factor is an int

* add more models to test
2025-04-22 16:24:54 +02:00
Georgi Gerganov
ab47dec3d3 security : add note about RPC and server functionality (#13061)
* security : add note about RPC functionality

* security : add note about llama-server
2025-04-22 16:16:10 +03:00
Georgi Gerganov
7b53389c24 metal : add memory pool for temp allocs (#12850)
* metal : add memory pool for temp allocs (wip) [no ci]

* cont : free buffers from the heap

* cont : resize heap [no ci]

* cont : refactor heap [no ci]

* cont : heap for each cmd buffer [no ci]

* cont : fix free

* wip

* cont : fix alignment [no ci]

* cont : not working .. [no ci]

* cont : heap allocation now works [no ci]

* cont : use MTLHeapTypePlacement

ggml-ci

* metal : use dynamic MTLHeap allocations

ggml-ci

* metal : add comments

* metal : disable softmax use of mem_pool

ggml-ci

* metal : final touches
2025-04-22 16:15:51 +03:00
Xuan-Son Nguyen
243453533e llava : update documentations (#13055)
* llava : update documentations

* fix typo
2025-04-22 10:37:00 +02:00
Diego Devesa
1d735c0b4f ggml : add SSE 4.2 and x64 base variant for CPUs without AVX (#12871)
* ggml : add SSE 4.2 variant for CPUs without AVX

* ggml : add x64 base ABI variant
2025-04-21 18:13:51 +02:00
Akarshan Biswas
5368ddda7a SYCL: Add non-contiguous support in ROPE (#12993)
ggml-ci
2025-04-21 19:13:30 +05:30
Xuan-Son Nguyen
84a9bf2fc2 mtmd : merge llava, gemma3 and minicpmv CLI into single llama-mtmd-cli (#13012)
* mtmd : merge `llava-cli` and `gemma3-cli` into single `mtmd-cli`

* support for minicpmv

* remove cpp files of llava and minicpmv

* update hot topics

* mtmd : add not supported msg for qwen2vl

* Update examples/llava/mtmd.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-04-21 15:32:58 +02:00
Xuan-Son Nguyen
2016f07bd1 convert : experimental support for --mmproj flag (#13023)
* convert : experimental support for `--mmproj` flag

* fix bad ctrl+f replace

* fix style

* split into subclasses TextModel and VisionModel

* rename Mode --> ModelBase

* small fix

* correct CLIP_VISION arch name (because existing GGUF already use it)

* Apply suggestions from code review

Co-authored-by: compilade <git@compilade.net>

* fix Mistral3Model

* fix typo

Co-authored-by: compilade <git@compilade.net>

---------

Co-authored-by: compilade <git@compilade.net>
2025-04-20 23:29:36 +02:00
Jeffrey Morgan
6602304814 llava: fix errors in clip.h on certain compilers (#13030) 2025-04-20 12:15:41 +02:00
Jeff Bolz
66168204be vulkan: support noncontiguous rms_norm (#13031) 2025-04-20 10:50:02 +02:00
Jeffrey Morgan
4ba9d711ba metal: add neg operator (#13029) 2025-04-20 08:28:40 +03:00
bandoti
00137157fc Disable CI cross-compile builds (#13022) 2025-04-19 18:05:03 +02:00
Sigbjørn Skjæret
fb28f4f80e gguf-py : fix upload python package workflow (#13020) 2025-04-19 16:26:38 +02:00
Xuan-Son Nguyen
37b9f0d29d clip : refactor, add image_manipulation and llava_uhd classes (#13011)
* clip : refactor, add `image_manipulation` and `llava_uhd`

* refactor llava-1.6 preprocessing

* simplify logic for llava-1.5

* missing include
2025-04-19 09:15:45 +02:00
150 changed files with 8165 additions and 4440 deletions

View File

@@ -13,6 +13,7 @@ Checks: >
-readability-magic-numbers,
-readability-uppercase-literal-suffix,
-readability-simplify-boolean-expr,
-readability-math-missing-parentheses,
clang-analyzer-*,
-clang-analyzer-security.insecureAPI.DeprecatedOrUnsafeBufferHandling,
performance-*,

View File

@@ -14,9 +14,9 @@ WORKDIR /app
COPY . .
RUN if [ "$TARGETARCH" = "amd64" ]; then \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON; \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_TESTS=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON; \
elif [ "$TARGETARCH" = "arm64" ]; then \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=${GGML_CPU_ARM_ARCH}; \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_TESTS=OFF -DGGML_CPU_ARM_ARCH=${GGML_CPU_ARM_ARCH}; \
else \
echo "Unsupported architecture"; \
exit 1; \

View File

@@ -21,7 +21,7 @@ COPY . .
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
fi && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_BUILD_TESTS=OFF ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \

View File

@@ -17,7 +17,7 @@ RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
&& export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
fi && \
echo "Building with dynamic libs" && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${OPT_SYCL_F16} && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_BUILD_TESTS=OFF ${OPT_SYCL_F16} && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \

View File

@@ -22,7 +22,7 @@ ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/runtime/lib64/stub:$LD_LIBRARY_PATH
RUN echo "Building with static libs" && \
source /usr/local/Ascend/ascend-toolkit/set_env.sh --force && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_CANN=ON -DBUILD_SHARED_LIBS=OFF && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_CANN=ON -DBUILD_SHARED_LIBS=OFF -DLLAMA_BUILD_TESTS=OFF && \
cmake --build build --config Release --target llama-cli
# TODO: use image with NNRT

View File

@@ -35,7 +35,7 @@ COPY . .
RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \
export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \
fi && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_BUILD_TESTS=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \

View File

@@ -40,7 +40,7 @@ WORKDIR /app
COPY . .
RUN HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$ROCM_DOCKER_ARCH -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON \
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$ROCM_DOCKER_ARCH -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DCMAKE_BUILD_TYPE=Release -DLLAMA_BUILD_TESTS=OFF \
&& cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib \

View File

@@ -16,7 +16,7 @@ WORKDIR /app
COPY . .
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_CURL=1 -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON && \
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_BUILD_TESTS=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \

View File

@@ -4,18 +4,25 @@ on:
workflow_call:
jobs:
ubuntu-latest-riscv64-cpu-cross:
runs-on: ubuntu-latest
ubuntu-24-riscv64-cpu-cross:
runs-on: ubuntu-24.04
steps:
- uses: actions/checkout@v4
- name: Setup Riscv
run: |
sudo dpkg --add-architecture riscv64
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
sudo apt-get clean
sudo apt-get update
# Add arch-specific repositories for non-amd64 architectures
cat << EOF | sudo tee /etc/apt/sources.list.d/riscv64-ports.list
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
EOF
sudo apt-get update || true ;# Prevent failure due to missing URLs.
sudo apt-get install -y --no-install-recommends \
build-essential \
gcc-14-riscv64-linux-gnu \
@@ -40,21 +47,25 @@ jobs:
cmake --build build --config Release -j $(nproc)
ubuntu-latest-riscv64-vulkan-cross:
runs-on: ubuntu-latest
ubuntu-24-riscv64-vulkan-cross:
runs-on: ubuntu-24.04
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Setup Riscv
run: |
sudo dpkg --add-architecture riscv64
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
sudo apt-get clean
sudo apt-get update
# Add arch-specific repositories for non-amd64 architectures
cat << EOF | sudo tee /etc/apt/sources.list.d/riscv64-ports.list
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
EOF
sudo apt-get update || true ;# Prevent failure due to missing URLs.
sudo apt-get install -y --no-install-recommends \
build-essential \
glslc \
@@ -82,21 +93,25 @@ jobs:
cmake --build build --config Release -j $(nproc)
ubuntu-latest-arm64-vulkan-cross:
runs-on: ubuntu-latest
ubuntu-24-arm64-vulkan-cross:
runs-on: ubuntu-24.04
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Setup Arm64
run: |
sudo dpkg --add-architecture arm64
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
sudo apt-get clean
sudo apt-get update
# Add arch-specific repositories for non-amd64 architectures
cat << EOF | sudo tee /etc/apt/sources.list.d/arm64-ports.list
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
EOF
sudo apt-get update || true ;# Prevent failure due to missing URLs.
sudo apt-get install -y --no-install-recommends \
build-essential \
glslc \

View File

@@ -16,8 +16,9 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
## Hot topics
- **How to use [MTLResidencySet](https://developer.apple.com/documentation/metal/mtlresidencyset?language=objc) to keep the GPU memory active?** https://github.com/ggml-org/llama.cpp/pull/11427
- **VS Code extension for FIM completions:** https://github.com/ggml-org/llama.vscode
- **GGML developer experience survey (organized and reviewed by NVIDIA):** [link](https://forms.gle/Gasw3cRgyhNEnrwK9)
- A new binary `llama-mtmd-cli` is introduced to replace `llava-cli`, `minicpmv-cli`, `gemma3-cli` ([#13012](https://github.com/ggml-org/llama.cpp/pull/13012)) and `qwen2vl-cli` ([#13141]((https://github.com/ggml-org/llama.cpp/pull/13141))), `libllava` will be deprecated
- VS Code extension for FIM completions: https://github.com/ggml-org/llama.vscode
- Universal [tool call support](./docs/function-calling.md) in `llama-server` https://github.com/ggml-org/llama.cpp/pull/9639
- Vim/Neovim plugin for FIM completions: https://github.com/ggml-org/llama.vim
- Introducing GGUF-my-LoRA https://github.com/ggml-org/llama.cpp/discussions/10123

View File

@@ -40,7 +40,8 @@ To protect sensitive data from potential leaks or unauthorized access, it is cru
### Untrusted environments or networks
If you can't run your models in a secure and isolated environment or if it must be exposed to an untrusted network, make sure to take the following security precautions:
* Confirm the hash of any downloaded artifact (e.g. pre-trained model weights) matches a known-good value
* Do not use the RPC backend, [rpc-server](https://github.com/ggml-org/llama.cpp/tree/master/examples/rpc) and [llama-server](https://github.com/ggml-org/llama.cpp/tree/master/examples/server) functionality (see https://github.com/ggml-org/llama.cpp/pull/13061).
* Confirm the hash of any downloaded artifact (e.g. pre-trained model weights) matches a known-good value.
* Encrypt your data if sending it over the network.
### Multi-Tenant environments

View File

@@ -41,14 +41,20 @@ endif()
if(MSVC)
set(BUILD_COMPILER "${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
if (CMAKE_VS_PLATFORM_NAME)
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
else()
set(BUILD_TARGET "${CMAKE_SYSTEM_NAME} ${CMAKE_SYSTEM_PROCESSOR}")
endif()
else()
execute_process(
COMMAND sh -c "\"$@\" --version | head -1" _ ${CMAKE_C_COMPILER}
COMMAND ${CMAKE_C_COMPILER} --version
OUTPUT_VARIABLE OUT
OUTPUT_STRIP_TRAILING_WHITESPACE
)
string(REGEX REPLACE " *\n.*" "" OUT "${OUT}")
set(BUILD_COMPILER ${OUT})
execute_process(
COMMAND ${CMAKE_C_COMPILER} -dumpmachine
OUTPUT_VARIABLE OUT

View File

@@ -39,7 +39,9 @@ add_custom_command(
COMMENT "Generating build details from Git"
COMMAND ${CMAKE_COMMAND} -DMSVC=${MSVC} -DCMAKE_C_COMPILER_VERSION=${CMAKE_C_COMPILER_VERSION}
-DCMAKE_C_COMPILER_ID=${CMAKE_C_COMPILER_ID} -DCMAKE_VS_PLATFORM_NAME=${CMAKE_VS_PLATFORM_NAME}
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} -P "${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info-gen-cpp.cmake"
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
-DCMAKE_SYSTEM_NAME=${CMAKE_SYSTEM_NAME} -DCMAKE_SYSTEM_PROCESSOR=${CMAKE_SYSTEM_PROCESSOR}
-P "${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info-gen-cpp.cmake"
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}/.."
DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/build-info.cpp.in" ${GIT_INDEX}
VERBATIM

View File

@@ -38,6 +38,30 @@
using json = nlohmann::ordered_json;
std::initializer_list<enum llama_example> mmproj_examples = {
LLAMA_EXAMPLE_LLAVA,
// TODO: add LLAMA_EXAMPLE_SERVER when it's ready
};
static std::string read_file(const std::string & fname) {
std::ifstream file(fname);
if (!file) {
throw std::runtime_error(string_format("error: failed to open file '%s'\n", fname.c_str()));
}
std::string content((std::istreambuf_iterator<char>(file)), std::istreambuf_iterator<char>());
file.close();
return content;
}
static void write_file(const std::string & fname, const std::string & content) {
std::ofstream file(fname);
if (!file) {
throw std::runtime_error(string_format("error: failed to open file '%s'\n", fname.c_str()));
}
file << content;
file.close();
}
common_arg & common_arg::set_examples(std::initializer_list<enum llama_example> examples) {
this->examples = std::move(examples);
return *this;
@@ -157,6 +181,10 @@ struct common_hf_file_res {
#ifdef LLAMA_USE_CURL
bool common_has_curl() {
return true;
}
#ifdef __linux__
#include <linux/limits.h>
#elif defined(_WIN32)
@@ -189,11 +217,11 @@ struct curl_slist_ptr {
#define CURL_MAX_RETRY 3
#define CURL_RETRY_DELAY_SECONDS 2
static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds) {
static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds, const char * method_name) {
int remaining_attempts = max_attempts;
while (remaining_attempts > 0) {
LOG_INF("%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
LOG_INF("%s: %s %s (attempt %d of %d)...\n", __func__ , method_name, url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
CURLcode res = curl_easy_perform(curl);
if (res == CURLE_OK) {
@@ -204,6 +232,7 @@ static bool curl_perform_with_retry(const std::string & url, CURL * curl, int ma
LOG_WRN("%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
remaining_attempts--;
if (remaining_attempts == 0) break;
std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
}
@@ -222,8 +251,6 @@ static bool common_download_file_single(const std::string & url, const std::stri
return false;
}
bool force_download = false;
// Set the URL, allow to follow http redirection
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
@@ -247,7 +274,7 @@ static bool common_download_file_single(const std::string & url, const std::stri
// If the file exists, check its JSON metadata companion file.
std::string metadata_path = path + ".json";
nlohmann::json metadata;
nlohmann::json metadata; // TODO @ngxson : get rid of this json, use regex instead
std::string etag;
std::string last_modified;
@@ -257,14 +284,7 @@ static bool common_download_file_single(const std::string & url, const std::stri
if (metadata_in.good()) {
try {
metadata_in >> metadata;
LOG_INF("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
if (metadata.contains("url") && metadata.at("url").is_string()) {
auto previous_url = metadata.at("url").get<std::string>();
if (previous_url != url) {
LOG_ERR("%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
return false;
}
}
LOG_DBG("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
if (metadata.contains("etag") && metadata.at("etag").is_string()) {
etag = metadata.at("etag");
}
@@ -272,10 +292,10 @@ static bool common_download_file_single(const std::string & url, const std::stri
last_modified = metadata.at("lastModified");
}
} catch (const nlohmann::json::exception & e) {
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
return false;
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
}
}
// if we cannot open the metadata file, we assume that the downloaded file is not valid (etag and last-modified are left empty, so we will download it again)
} else {
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
}
@@ -287,7 +307,10 @@ static bool common_download_file_single(const std::string & url, const std::stri
};
common_load_model_from_url_headers headers;
bool head_request_ok = false;
bool should_download = !file_exists; // by default, we should download if the file does not exist
// get ETag to see if the remote file has changed
{
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
@@ -316,23 +339,28 @@ static bool common_download_file_single(const std::string & url, const std::stri
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
// we only allow retrying once for HEAD requests
// this is for the use case of using running offline (no internet), retrying can be annoying
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), 1, 0, "HEAD");
if (!was_perform_successful) {
return false;
head_request_ok = false;
}
long http_code = 0;
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
if (http_code != 200) {
// HEAD not supported, we don't know if the file has changed
// force trigger downloading
force_download = true;
LOG_ERR("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
if (http_code == 200) {
head_request_ok = true;
} else {
LOG_WRN("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
head_request_ok = false;
}
}
bool should_download = !file_exists || force_download;
if (!should_download) {
// if head_request_ok is false, we don't have the etag or last-modified headers
// we leave should_download as-is, which is true if the file does not exist
if (head_request_ok) {
// check if ETag or Last-Modified headers are different
// if it is, we need to download the file again
if (!etag.empty() && etag != headers.etag) {
LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
should_download = true;
@@ -341,6 +369,7 @@ static bool common_download_file_single(const std::string & url, const std::stri
should_download = true;
}
}
if (should_download) {
std::string path_temporary = path + ".downloadInProgress";
if (file_exists) {
@@ -394,7 +423,7 @@ static bool common_download_file_single(const std::string & url, const std::stri
// start the download
LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS, "GET");
if (!was_perform_successful) {
return false;
}
@@ -415,13 +444,15 @@ static bool common_download_file_single(const std::string & url, const std::stri
{"etag", headers.etag},
{"lastModified", headers.last_modified}
});
std::ofstream(metadata_path) << metadata.dump(4);
LOG_INF("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
write_file(metadata_path, metadata.dump(4));
LOG_DBG("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
if (rename(path_temporary.c_str(), path.c_str()) != 0) {
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
return false;
}
} else {
LOG_INF("%s: using cached file: %s\n", __func__, path.c_str());
}
return true;
@@ -522,6 +553,50 @@ static bool common_download_model(
return true;
}
std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url, const common_remote_params & params) {
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
curl_slist_ptr http_headers;
std::vector<char> res_buffer;
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
auto data_vec = static_cast<std::vector<char> *>(data);
data_vec->insert(data_vec->end(), (char *)ptr, (char *)ptr + size * nmemb);
return size * nmemb;
};
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_buffer);
#if defined(_WIN32)
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
#endif
if (params.timeout > 0) {
curl_easy_setopt(curl.get(), CURLOPT_TIMEOUT, params.timeout);
}
if (params.max_size > 0) {
curl_easy_setopt(curl.get(), CURLOPT_MAXFILESIZE, params.max_size);
}
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
for (const auto & header : params.headers) {
http_headers.ptr = curl_slist_append(http_headers.ptr, header.c_str());
}
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
CURLcode res = curl_easy_perform(curl.get());
if (res != CURLE_OK) {
std::string error_msg = curl_easy_strerror(res);
throw std::runtime_error("error: cannot make GET request: " + error_msg);
}
long res_code;
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
return { res_code, std::move(res_buffer) };
}
/**
* Allow getting the HF file from the HF repo with tag (like ollama), for example:
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
@@ -541,46 +616,48 @@ static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_
throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
}
// fetch model info from Hugging Face Hub API
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
curl_slist_ptr http_headers;
std::string res_str;
std::string url = get_model_endpoint() + "v2/" + hf_repo + "/manifests/" + tag;
std::string model_endpoint = get_model_endpoint();
std::string url = model_endpoint + "v2/" + hf_repo + "/manifests/" + tag;
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
static_cast<std::string *>(data)->append((char * ) ptr, size * nmemb);
return size * nmemb;
};
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_str);
#if defined(_WIN32)
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
#endif
// headers
std::vector<std::string> headers;
headers.push_back("Accept: application/json");
if (!bearer_token.empty()) {
std::string auth_header = "Authorization: Bearer " + bearer_token;
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
headers.push_back("Authorization: Bearer " + bearer_token);
}
// Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
http_headers.ptr = curl_slist_append(http_headers.ptr, "Accept: application/json");
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
// User-Agent header is already set in common_remote_get_content, no need to set it here
CURLcode res = curl_easy_perform(curl.get());
// we use "=" to avoid clashing with other component, while still being allowed on windows
std::string cached_response_fname = "manifest=" + hf_repo + "=" + tag + ".json";
string_replace_all(cached_response_fname, "/", "_");
std::string cached_response_path = fs_get_cache_file(cached_response_fname);
if (res != CURLE_OK) {
throw std::runtime_error("error: cannot make GET request to HF API");
// make the request
common_remote_params params;
params.headers = headers;
long res_code = 0;
std::string res_str;
bool use_cache = false;
try {
auto res = common_remote_get_content(url, params);
res_code = res.first;
res_str = std::string(res.second.data(), res.second.size());
} catch (const std::exception & e) {
LOG_WRN("error: failed to get manifest: %s\n", e.what());
LOG_WRN("try reading from cache\n");
// try to read from cache
try {
res_str = read_file(cached_response_path);
res_code = 200;
use_cache = true;
} catch (const std::exception & e) {
throw std::runtime_error("error: failed to get manifest (check your internet connection)");
}
}
std::string ggufFile;
std::string mmprojFile;
long res_code;
std::string ggufFile = "";
std::string mmprojFile = "";
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
if (res_code == 200) {
if (res_code == 200 || res_code == 304) {
// extract ggufFile.rfilename in json, using regex
{
std::regex pattern("\"ggufFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
@@ -597,6 +674,10 @@ static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_
mmprojFile = match[1].str();
}
}
if (!use_cache) {
// if not using cached response, update the cache file
write_file(cached_response_path, res_str);
}
} else if (res_code == 401) {
throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
} else {
@@ -613,6 +694,10 @@ static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_
#else
bool common_has_curl() {
return false;
}
static bool common_download_file_single(const std::string &, const std::string &, const std::string &) {
LOG_ERR("error: built without CURL, cannot download model from internet\n");
return false;
@@ -635,17 +720,30 @@ static struct common_hf_file_res common_get_hf_file(const std::string &, const s
return {};
}
std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url, const common_remote_params &) {
if (!url.empty()) {
throw std::runtime_error("error: built without CURL, cannot download model from the internet");
}
return {};
}
#endif // LLAMA_USE_CURL
//
// utils
//
static void common_params_handle_model(
struct handle_model_result {
bool found_mmproj = false;
common_params_model mmproj;
};
static handle_model_result common_params_handle_model(
struct common_params_model & model,
const std::string & bearer_token,
const std::string & model_path_default,
bool is_mmproj = false) { // TODO: move is_mmproj to an enum when we have more files?
const std::string & model_path_default) {
handle_model_result result;
// handle pre-fill default model path and url based on hf_repo and hf_file
{
if (!model.hf_repo.empty()) {
@@ -657,7 +755,12 @@ static void common_params_handle_model(
exit(1); // built without CURL, error message already printed
}
model.hf_repo = auto_detected.repo;
model.hf_file = is_mmproj ? auto_detected.mmprojFile : auto_detected.ggufFile;
model.hf_file = auto_detected.ggufFile;
if (!auto_detected.mmprojFile.empty()) {
result.found_mmproj = true;
result.mmproj.hf_repo = model.hf_repo;
result.mmproj.hf_file = auto_detected.mmprojFile;
}
} else {
model.hf_file = model.path;
}
@@ -694,6 +797,8 @@ static void common_params_handle_model(
exit(1);
}
}
return result;
}
const std::vector<ggml_type> kv_cache_types = {
@@ -827,16 +932,25 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
}
common_params_handle_model(params.model, params.hf_token, DEFAULT_MODEL_PATH);
common_params_handle_model(params.speculative.model, params.hf_token, "");
common_params_handle_model(params.vocoder.model, params.hf_token, "");
// allow --mmproj to be set from -hf
// assuming that mmproj is always in the same repo as text model
if (!params.model.hf_repo.empty() && ctx_arg.ex == LLAMA_EXAMPLE_LLAVA) {
params.mmproj.hf_repo = params.model.hf_repo;
// handle model and download
{
auto res = common_params_handle_model(params.model, params.hf_token, DEFAULT_MODEL_PATH);
if (params.no_mmproj) {
params.mmproj = {};
} else if (res.found_mmproj && params.mmproj.path.empty() && params.mmproj.url.empty()) {
// optionally, handle mmproj model when -hf is specified
params.mmproj = res.mmproj;
}
// only download mmproj if the current example is using it
for (auto & ex : mmproj_examples) {
if (ctx_arg.ex == ex) {
common_params_handle_model(params.mmproj, params.hf_token, "");
break;
}
}
common_params_handle_model(params.speculative.model, params.hf_token, "");
common_params_handle_model(params.vocoder.model, params.hf_token, "");
}
common_params_handle_model(params.mmproj, params.hf_token, "", true);
if (params.escape) {
string_process_escapes(params.prompt);
@@ -968,7 +1082,6 @@ static void common_params_print_completion(common_params_context & ctx_arg) {
"llama-embedding",
"llama-eval-callback",
"llama-export-lora",
"llama-gbnf-validator",
"llama-gen-docs",
"llama-gguf",
"llama-gguf-hash",
@@ -976,20 +1089,18 @@ static void common_params_print_completion(common_params_context & ctx_arg) {
"llama-gritlm",
"llama-imatrix",
"llama-infill",
"llama-llava-cli",
"llama-mtmd-cli",
"llama-llava-clip-quantize-cli",
"llama-lookahead",
"llama-lookup",
"llama-lookup-create",
"llama-lookup-merge",
"llama-lookup-stats",
"llama-minicpmv-cli",
"llama-parallel",
"llama-passkey",
"llama-perplexity",
"llama-q8dot",
"llama-quantize",
"llama-quantize-stats",
"llama-qwen2vl-cli",
"llama-retrieval",
"llama-run",
@@ -1078,6 +1189,9 @@ bool common_params_parse(int argc, char ** argv, common_params & params, llama_e
fprintf(stderr, "%s\n", ex.what());
ctx_arg.params = params_org;
return false;
} catch (std::exception & ex) {
fprintf(stderr, "%s\n", ex.what());
exit(1); // for other exceptions, we exit with status code 1
}
return true;
@@ -1378,13 +1492,9 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"-f", "--file"}, "FNAME",
"a file containing the prompt (default: none)",
[](common_params & params, const std::string & value) {
std::ifstream file(value);
if (!file) {
throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
}
params.prompt = read_file(value);
// store the external file name in params
params.prompt_file = value;
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
if (!params.prompt.empty() && params.prompt.back() == '\n') {
params.prompt.pop_back();
}
@@ -1394,11 +1504,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"-sysf", "--system-prompt-file"}, "FNAME",
"a file containing the system prompt (default: none)",
[](common_params & params, const std::string & value) {
std::ifstream file(value);
if (!file) {
throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
}
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.system_prompt));
params.system_prompt = read_file(value);
if (!params.system_prompt.empty() && params.system_prompt.back() == '\n') {
params.system_prompt.pop_back();
}
@@ -1823,15 +1929,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--grammar-file"}, "FNAME",
"file to read grammar from",
[](common_params & params, const std::string & value) {
std::ifstream file(value);
if (!file) {
throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
}
std::copy(
std::istreambuf_iterator<char>(file),
std::istreambuf_iterator<char>(),
std::back_inserter(params.sampling.grammar)
);
params.sampling.grammar = read_file(value);
}
).set_sparam());
add_opt(common_arg(
@@ -1841,6 +1939,23 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.sampling.grammar = json_schema_to_grammar(json::parse(value));
}
).set_sparam());
add_opt(common_arg(
{"-jf", "--json-schema-file"}, "FILE",
"File containing a JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead",
[](common_params & params, const std::string & value) {
std::ifstream file(value);
if (!file) {
throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
}
std::string schema;
std::copy(
std::istreambuf_iterator<char>(file),
std::istreambuf_iterator<char>(),
std::back_inserter(schema)
);
params.sampling.grammar = json_schema_to_grammar(json::parse(schema));
}
).set_sparam());
add_opt(common_arg(
{"--pooling"}, "{none,mean,cls,last,rank}",
"pooling type for embeddings, use model default if unspecified",
@@ -2096,18 +2211,32 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONT_BATCHING"));
add_opt(common_arg(
{"--mmproj"}, "FILE",
"path to a multimodal projector file for LLaVA. see examples/llava/README.md",
"path to a multimodal projector file. see examples/llava/README.md",
[](common_params & params, const std::string & value) {
params.mmproj.path = value;
}
).set_examples({LLAMA_EXAMPLE_LLAVA}));
).set_examples(mmproj_examples));
add_opt(common_arg(
{"--mmproj-url"}, "URL",
"URL to a multimodal projector file for LLaVA. see examples/llava/README.md",
"URL to a multimodal projector file. see examples/llava/README.md",
[](common_params & params, const std::string & value) {
params.mmproj.url = value;
}
).set_examples({LLAMA_EXAMPLE_LLAVA}));
).set_examples(mmproj_examples));
add_opt(common_arg(
{"--no-mmproj"},
"explicitly disable multimodal projector, useful when using -hf",
[](common_params & params) {
params.no_mmproj = true;
}
).set_examples(mmproj_examples));
add_opt(common_arg(
{"--no-mmproj-offload"},
"do not offload multimodal projector to GPU",
[](common_params & params) {
params.mmproj_use_gpu = false;
}
).set_examples(mmproj_examples));
add_opt(common_arg(
{"--image"}, "FILE",
"path to an image file. use with multimodal models. Specify multiple times for batching",
@@ -2382,6 +2511,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
add_opt(common_arg(
{"-hf", "-hfr", "--hf-repo"}, "<user>/<model>[:quant]",
"Hugging Face model repository; quant is optional, case-insensitive, default to Q4_K_M, or falls back to the first file in the repo if Q4_K_M doesn't exist.\n"
"mmproj is also downloaded automatically if available. to disable, add --no-mmproj\n"
"example: unsloth/phi-4-GGUF:q4_k_m\n"
"(default: unused)",
[](common_params & params, const std::string & value) {
@@ -2653,7 +2783,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_THREADS_HTTP"));
add_opt(common_arg(
{"--cache-reuse"}, "N",
string_format("min chunk size to attempt reusing from the cache via KV shifting (default: %d)", params.n_cache_reuse),
string_format(
"min chunk size to attempt reusing from the cache via KV shifting (default: %d)\n"
"[(card)](https://ggml.ai/f0.png)", params.n_cache_reuse
),
[](common_params & params, int value) {
params.n_cache_reuse = value;
}
@@ -2726,7 +2859,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params, const std::string & value) {
params.chat_template = value;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE"));
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_LLAVA}).set_env("LLAMA_ARG_CHAT_TEMPLATE"));
add_opt(common_arg(
{"--chat-template-file"}, "JINJA_TEMPLATE_FILE",
string_format(
@@ -2736,14 +2869,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
"list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
),
[](common_params & params, const std::string & value) {
std::ifstream file(value);
if (!file) {
throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
}
std::copy(
std::istreambuf_iterator<char>(file),
std::istreambuf_iterator<char>(),
std::back_inserter(params.chat_template));
params.chat_template = read_file(value);
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE_FILE"));
add_opt(common_arg(

View File

@@ -78,3 +78,12 @@ bool common_params_parse(int argc, char ** argv, common_params & params, llama_e
// function to be used by test-arg-parser
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
bool common_has_curl();
struct common_remote_params {
std::vector<std::string> headers;
long timeout = 0; // CURLOPT_TIMEOUT, in seconds ; 0 means no timeout
long max_size = 0; // max size of the response ; unlimited if 0 ; max is 2GB
};
// get remote file content, returns <http_code, raw_response_body>
std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url, const common_remote_params & params);

View File

@@ -342,6 +342,8 @@ struct common_params {
// multimodal models (see examples/llava)
struct common_params_model mmproj;
bool mmproj_use_gpu = true; // use GPU for multimodal model
bool no_mmproj = false; // explicitly disable multimodal model
std::vector<std::string> image; // path to image file(s)
// embedding

View File

@@ -16,6 +16,9 @@ using json = nlohmann::ordered_json;
static std::string build_repetition(const std::string & item_rule, int min_items, int max_items, const std::string & separator_rule = "") {
auto has_max = max_items != std::numeric_limits<int>::max();
if (max_items == 0) {
return "";
}
if (min_items == 0 && max_items == 1) {
return item_rule + "?";
}

File diff suppressed because it is too large Load Diff

View File

@@ -115,6 +115,7 @@ models = [
{"name": "bailingmoe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-lite", },
{"name": "llama4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct", },
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", },
{"name": "pixtral", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistral-community/pixtral-12b", },
]

View File

@@ -24,7 +24,7 @@ if 'NO_LOCAL_GGUF' not in os.environ:
import gguf
# reuse model definitions from convert_hf_to_gguf.py
from convert_hf_to_gguf import LazyTorchTensor, Model
from convert_hf_to_gguf import LazyTorchTensor, ModelBase
logger = logging.getLogger("lora-to-gguf")
@@ -340,11 +340,11 @@ if __name__ == '__main__':
sys.exit(1)
else:
logger.info(f"Loading base model: {dir_base_model.name}")
hparams = Model.load_hparams(dir_base_model)
hparams = ModelBase.load_hparams(dir_base_model)
with torch.inference_mode():
try:
model_class = Model.from_model_architecture(hparams["architectures"][0])
model_class = ModelBase.from_model_architecture(hparams["architectures"][0])
except NotImplementedError:
logger.error(f"Model {hparams['architectures'][0]} is not supported")
sys.exit(1)

View File

@@ -9,15 +9,15 @@ The implementation is based on llava, and is compatible with llava and mobileVLM
Notice: The overall process of model inference for both **MobileVLM** and **MobileVLM_V2** models is the same, but the process of model conversion is a little different. Therefore, using **MobileVLM-1.7B** as an example, the different conversion step will be shown.
## Usage
Build with cmake or run `make llama-llava-cli` to build it.
After building, run: `./llama-llava-cli` to see the usage. For example:
Build the `llama-mtmd-cli` binary.
After building, run: `./llama-mtmd-cli` to see the usage. For example:
```sh
./llama-llava-cli -m MobileVLM-1.7B/ggml-model-q4_k.gguf \
./llama-mtmd-cli -m MobileVLM-1.7B/ggml-model-q4_k.gguf \
--mmproj MobileVLM-1.7B/mmproj-model-f16.gguf \
--image path/to/an/image.jpg \
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWho is the author of this book? Answer the question using a single word or phrase. ASSISTANT:"
--chat-template deepseek
```
## Model conversion
@@ -82,7 +82,7 @@ refer to `android/adb_run.sh`, modify resources' `name` and `path`
### case 1
**input**
```sh
/data/local/tmp/llama-llava-cli \
/data/local/tmp/llama-mtmd-cli \
-m /data/local/tmp/ggml-model-q4_k.gguf \
--mmproj /data/local/tmp/mmproj-model-f16.gguf \
-t 4 \
@@ -102,7 +102,7 @@ llama_print_timings: total time = 34731.93 ms
### case 2
**input**
```sh
/data/local/tmp/llama-llava-cli \
/data/local/tmp/llama-mtmd-cli \
-m /data/local/tmp/ggml-model-q4_k.gguf \
--mmproj /data/local/tmp/mmproj-model-f16.gguf \
-t 4 \
@@ -123,10 +123,10 @@ llama_print_timings: total time = 34570.79 ms
## Some result on Android with `Snapdragon 778G` chip
### MobileVLM-1.7B case
#### llava-cli release-b2005
#### mtmd-cli release-b2005
**input**
```sh
/data/local/tmp/llama-llava-cli \
/data/local/tmp/llama-mtmd-cli \
-m /data/local/tmp/ggml-model-q4_k.gguf \
--mmproj /data/local/tmp/mmproj-model-f16.gguf \
-t 4 \
@@ -147,7 +147,7 @@ llama_print_timings: prompt eval time = 8119.49 ms / 191 tokens ( 42.51 m
llama_print_timings: eval time = 1005.75 ms / 14 runs ( 71.84 ms per token, 13.92 tokens per second)
llama_print_timings: total time = 28038.34 ms / 205 tokens
```
#### llava-cli latest-version
#### mtmd-cli latest-version
**input**
Just the same as above.
@@ -169,7 +169,7 @@ llama_print_timings: eval time = 43894.02 ms / 13 runs ( 3376.46 m
llama_print_timings: total time = 865441.76 ms / 204 tokens
```
### MobileVLM_V2-1.7B case
#### llava-cli release-2005b
#### mtmd-cli release-2005b
**input**
Just the same as above.
@@ -200,7 +200,7 @@ make GGML_CUDA=1 CUDA_DOCKER_ARCH=sm_87 GGML_CUDA_F16=1 -j 32
### case 1
**input**
```sh
./llama-llava-cli \
./llama-mtmd-cli \
-m /data/local/tmp/ggml-model-q4_k.gguf \
--mmproj /data/local/tmp/mmproj-model-f16.gguf \
--image /data/local/tmp/demo.jpeg \
@@ -224,7 +224,7 @@ llama_print_timings: total time = 1352.63 ms / 252 tokens
### case 2
**input**
```sh
./llama-llava-cli \
./llama-mtmd-cli \
-m /data/local/tmp/ggml-model-q4_k.gguf \
--mmproj /data/local/tmp/mmproj-model-f16.gguf \
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat is in the image? ASSISTANT:" \

View File

@@ -11,26 +11,27 @@ You can use pre-quantized model from [ggml-org](https://huggingface.co/ggml-org)
```bash
# build
cmake -B build
cmake --build build --target llama-gemma3-cli
cmake --build build --target llama-mtmd-cli
# alternatively, install from brew (MacOS)
brew install llama.cpp
# run it
llama-gemma3-cli -hf ggml-org/gemma-3-4b-it-GGUF
llama-gemma3-cli -hf ggml-org/gemma-3-12b-it-GGUF
llama-gemma3-cli -hf ggml-org/gemma-3-27b-it-GGUF
llama-mtmd-cli -hf ggml-org/gemma-3-4b-it-GGUF
llama-mtmd-cli -hf ggml-org/gemma-3-12b-it-GGUF
llama-mtmd-cli -hf ggml-org/gemma-3-27b-it-GGUF
# note: 1B model does not support vision
```
## How to get mmproj.gguf?
Simply to add `--mmproj` in when converting model via `convert_hf_to_gguf.py`:
```bash
cd gemma-3-4b-it
python ../llama.cpp/examples/llava/gemma3_convert_encoder_to_gguf.py .
# output file is mmproj.gguf
python ../llama.cpp/convert_hf_to_gguf.py --outfile model.gguf --outtype f16 --mmproj .
# output file: mmproj-model.gguf
```
## How to run it?
@@ -43,8 +44,8 @@ What you need:
```bash
# build
cmake -B build
cmake --build build --target llama-gemma3-cli
cmake --build build --target llama-mtmd-cli
# run it
./build/bin/llama-gemma3-cli -m {text_model}.gguf --mmproj mmproj.gguf --image your_image.jpg
./build/bin/llama-mtmd-cli -m {text_model}.gguf --mmproj mmproj.gguf --image your_image.jpg
```

View File

@@ -3,12 +3,12 @@
Currently this implementation supports [glm-edge-v-2b](https://huggingface.co/THUDM/glm-edge-v-2b) and [glm-edge-v-5b](https://huggingface.co/THUDM/glm-edge-v-5b).
## Usage
Build with cmake or run `make llama-llava-cli` to build it.
Build the `llama-mtmd-cli` binary.
After building, run: `./llama-llava-cli` to see the usage. For example:
After building, run: `./llama-mtmd-cli` to see the usage. For example:
```sh
./llama-llava-cli -m model_path/ggml-model-f16.gguf --mmproj model_path/mmproj-model-f16.gguf --image img_path/image.jpg -p "<|system|>\n system prompt <image><|user|>\n prompt <|assistant|>\n"
./llama-mtmd-cli -m model_path/ggml-model-f16.gguf --mmproj model_path/mmproj-model-f16.gguf
```
**note**: A lower temperature like 0.1 is recommended for better quality. add `--temp 0.1` to the command to do so.

View File

@@ -176,15 +176,11 @@ Note that currently you cannot quantize the visual encoder because granite visio
### 5. Running the Model in Llama cpp
Build llama cpp normally; you should have a target binary named `llama-llava-cli`, which you can pass two binaries to. As an example, we pass the the llama.cpp banner.
Build llama cpp normally; you should have a target binary named `llama-mtmd-cli`, which you can pass two binaries to. As an example, we pass the the llama.cpp banner.
```bash
$ ./build/bin/llama-llava-cli -m $LLM_GGUF_PATH \
$ ./build/bin/llama-mtmd-cli -m $LLM_GGUF_PATH \
--mmproj $VISUAL_GGUF_PATH \
--image ./media/llama0-banner.png \
-c 16384 \
-p "<|system|>\nA chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\n<|user|>\n\<image>\nWhat does the text in this image say?\n<|assistant|>\n" \
--temp 0
```
Sample output: `The text in the image reads "LLAMA C++ Can it run DOOM Llama?"`

143
docs/multimodal/llava.md Normal file
View File

@@ -0,0 +1,143 @@
# LLaVA
Currently this implementation supports [llava-v1.5](https://huggingface.co/liuhaotian/llava-v1.5-7b) variants,
as well as llava-1.6 [llava-v1.6](https://huggingface.co/collections/liuhaotian/llava-16-65b9e40155f60fd046a5ccf2) variants.
The pre-converted [7b](https://huggingface.co/mys/ggml_llava-v1.5-7b)
and [13b](https://huggingface.co/mys/ggml_llava-v1.5-13b)
models are available.
For llava-1.6 a variety of prepared gguf models are available as well [7b-34b](https://huggingface.co/cmp-nct/llava-1.6-gguf)
After API is confirmed, more models will be supported / uploaded.
## Usage
Build the `llama-mtmd-cli` binary.
After building, run: `./llama-mtmd-cli` to see the usage. For example:
```sh
./llama-mtmd-cli -m ../llava-v1.5-7b/ggml-model-f16.gguf \
--mmproj ../llava-v1.5-7b/mmproj-model-f16.gguf \
--chat-template vicuna
```
**note**: A lower temperature like 0.1 is recommended for better quality. add `--temp 0.1` to the command to do so.
**note**: For GPU offloading ensure to use the `-ngl` flag just like usual
## LLaVA 1.5
1. Clone a LLaVA and a CLIP model ([available options](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md)). For example:
```sh
git clone https://huggingface.co/liuhaotian/llava-v1.5-7b
git clone https://huggingface.co/openai/clip-vit-large-patch14-336
```
2. Install the required Python packages:
```sh
pip install -r examples/llava/requirements.txt
```
3. Use `llava_surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
```sh
python ./examples/llava/llava_surgery.py -m ../llava-v1.5-7b
```
4. Use `convert_image_encoder_to_gguf.py` to convert the LLaVA image encoder to GGUF:
```sh
python ./examples/llava/convert_image_encoder_to_gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
```
5. Use `examples/convert_legacy_llama.py` to convert the LLaMA part of LLaVA to GGUF:
```sh
python ./examples/convert_legacy_llama.py ../llava-v1.5-7b --skip-unknown
```
Now both the LLaMA part and the image encoder are in the `llava-v1.5-7b` directory.
## LLaVA 1.6 gguf conversion
1) First clone a LLaVA 1.6 model:
```console
git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
```
2) Install the required Python packages:
```sh
pip install -r examples/llava/requirements.txt
```
3) Use `llava_surgery_v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models:
```console
python examples/llava/llava_surgery_v2.py -C -m ../llava-v1.6-vicuna-7b/
```
- you will find a llava.projector and a llava.clip file in your model directory
4) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory:
```console
mkdir vit
cp ../llava-v1.6-vicuna-7b/llava.clip vit/pytorch_model.bin
cp ../llava-v1.6-vicuna-7b/llava.projector vit/
curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.json -o vit/config.json
```
5) Create the visual gguf model:
```console
python ./examples/llava/convert_image_encoder_to_gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
```
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP
6) Then convert the model to gguf format:
```console
python ./examples/convert_legacy_llama.py ../llava-v1.6-vicuna-7b/ --skip-unknown
```
7) And finally we can run the llava cli using the 1.6 model version:
```console
./llama-mtmd-cli -m ../llava-v1.6-vicuna-7b/ggml-model-f16.gguf --mmproj vit/mmproj-model-f16.gguf
```
**note** llava-1.6 needs more context than llava-1.5, at least 3000 is needed (just run it at -c 4096)
**note** llava-1.6 greatly benefits from batched prompt processing (defaults work)
**note** if the language model in step `6)` is incompatible with the legacy conversion script, the easiest way handle the LLM model conversion is to load the model in transformers, and export only the LLM from the llava next model.
```python
import os
import transformers
model_path = ...
llm_export_path = ...
tokenizer = transformers.AutoTokenizer.from_pretrained(model_path)
model = transformers.AutoModelForImageTextToText.from_pretrained(model_path)
tokenizer.save_pretrained(llm_export_path)
model.language_model.save_pretrained(llm_export_path)
```
Then, you can convert the LLM using the `convert_hf_to_gguf.py` script, which handles more LLM architectures.
## Chat template
For llava-1.5 and llava-1.6, you need to use `vicuna` chat template. Simply add `--chat-template vicuna` to activate this template.
## How to know if you are running in llava-1.5 or llava-1.6 mode
When running llava-cli you will see a visual information right before the prompt is being processed:
**Llava-1.5:**
`encode_image_with_clip: image embedding created: 576 tokens`
**Llava-1.6 (anything above 576):**
`encode_image_with_clip: image embedding created: 2880 tokens`
Alternatively just pay notice to how many "tokens" have been used for your prompt, it will also show 1000+ tokens for llava-1.6

View File

@@ -40,9 +40,9 @@ python ./convert_hf_to_gguf.py ../MiniCPM-o-2_6/model
Inference on Linux or Mac
```bash
# run f16 version
./build/bin/llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# run in single-turn mode
./build/bin/llama-mtmd-cli -m ../MiniCPM-o-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# run quantized int4 version
./build/bin/llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# run in conversation mode
./build/bin/llama-mtmd-cli -m ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf
```

View File

@@ -39,9 +39,9 @@ python ./convert_hf_to_gguf.py ../MiniCPM-Llama3-V-2_5/model
Inference on Linux or Mac
```bash
# run f16 version
./build/bin/llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# run in single-turn mode
./build/bin/llama-mtmd-cli -m ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# run quantized int4 version
./build/bin/llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# run in conversation mode
./build/bin/llama-mtmd-cli -m ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf
```

View File

@@ -39,9 +39,9 @@ python ./convert_hf_to_gguf.py ../MiniCPM-V-2_6/model
Inference on Linux or Mac
```bash
# run f16 version
./build/bin/llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# run in single-turn mode
./build/bin/llama-mtmd-cli -m ../MiniCPM-V-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# run quantized int4 version
./build/bin/llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# run in conversation mode
./build/bin/llama-mtmd-cli -m ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf
```

View File

@@ -21,11 +21,6 @@ else()
add_subdirectory(embedding)
add_subdirectory(eval-callback)
if (NOT WIN32)
# disabled on Windows because it uses internal functions not exported with LLAMA_API
add_subdirectory(gbnf-validator)
endif()
add_subdirectory(gguf-hash)
add_subdirectory(gguf-split)
add_subdirectory(gguf)
@@ -58,10 +53,6 @@ else()
add_subdirectory(convert-llama2c-to-ggml)
add_subdirectory(cvector-generator)
add_subdirectory(export-lora)
if (NOT WIN32)
# disabled on Windows because it uses internal functions not exported with LLAMA_API
add_subdirectory(quantize-stats)
endif()
add_subdirectory(llava)
if (GGML_RPC)
add_subdirectory(rpc)

View File

@@ -89,6 +89,13 @@ int main(int argc, char ** argv) {
common_init();
params.embedding = true;
// utilize the full context
if (params.n_batch < params.n_ctx) {
LOG_WRN("%s: setting batch size to %d\n", __func__, params.n_ctx);
params.n_batch = params.n_ctx;
}
// For non-causal models, batch size must be equal to ubatch size
params.n_ubatch = params.n_batch;
@@ -134,7 +141,6 @@ int main(int argc, char ** argv) {
// max batch size
const uint64_t n_batch = params.n_batch;
GGML_ASSERT(params.n_batch >= params.n_ctx);
// tokenize the prompts and trim
std::vector<std::vector<int32_t>> inputs;

View File

@@ -1,5 +0,0 @@
set(TARGET llama-gbnf-validator)
add_executable(${TARGET} gbnf-validator.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -10,6 +10,9 @@ from typing import Any, List, Optional, Set, Tuple, Union
def _build_repetition(item_rule, min_items, max_items, separator_rule=None):
if max_items == 0:
return ""
if min_items == 0 and max_items == 1:
return f'{item_rule}?'

View File

@@ -28,6 +28,7 @@ options:
-p, --n-prompt <n> (default: 512)
-n, --n-gen <n> (default: 128)
-pg <pp,tg> (default: )
-d, --n-depth <n> (default: 0)
-b, --batch-size <n> (default: 2048)
-ub, --ubatch-size <n> (default: 512)
-ctk, --cache-type-k <t> (default: f16)
@@ -66,6 +67,8 @@ With the exception of `-r`, `-o` and `-v`, all options can be specified multiple
Each test is repeated the number of times given by `-r`, and the results are averaged. The results are given in average tokens per second (t/s) and standard deviation. Some output formats (e.g. json) also include the individual results of each repetition.
Using the `-d <n>` option, each test can be run at a specified context depth, prefilling the KV cache with `<n>` tokens.
For a description of the other options, see the [main example](../main/README.md).
Note:
@@ -148,6 +151,19 @@ $ ./llama-bench -ngl 10,20,30,31,32,33,34,35
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 35 | pp 512 | 2400.01 ± 7.72 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 35 | tg 128 | 131.66 ± 0.49 |
### Different prefilled context
```
$ ./llama-bench -d 0,512
```
| model | size | params | backend | ngl | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | --------------: | -------------------: |
| qwen2 7B Q4_K - Medium | 4.36 GiB | 7.62 B | CUDA | 99 | pp512 | 7340.20 ± 23.45 |
| qwen2 7B Q4_K - Medium | 4.36 GiB | 7.62 B | CUDA | 99 | tg128 | 120.60 ± 0.59 |
| qwen2 7B Q4_K - Medium | 4.36 GiB | 7.62 B | CUDA | 99 | pp512 @ d512 | 6425.91 ± 18.88 |
| qwen2 7B Q4_K - Medium | 4.36 GiB | 7.62 B | CUDA | 99 | tg128 @ d512 | 116.71 ± 0.60 |
## Output formats
By default, llama-bench outputs the results in markdown format. The results can be output in other formats by using the `-o` option.
@@ -170,9 +186,9 @@ $ ./llama-bench -o csv
```
```csv
build_commit,build_number,cuda,metal,gpu_blas,blas,cpu_info,gpu_info,model_filename,model_type,model_size,model_n_params,n_batch,n_threads,f16_kv,n_gpu_layers,main_gpu,mul_mat_q,tensor_split,n_prompt,n_gen,test_time,avg_ns,stddev_ns,avg_ts,stddev_ts
"3469684","1275","1","0","0","1","1","13th Gen Intel(R) Core(TM) i9-13900K","NVIDIA GeForce RTX 3090 Ti","models/7B/ggml-model-q4_0.gguf","llama 7B mostly Q4_0","3825065984","6738415616","512","16","1","99","0","1","0.00","512","0","2023-09-23T12:09:01Z","212155977","732372","2413.341687","8.305961"
"3469684","1275","1","0","0","1","1","13th Gen Intel(R) Core(TM) i9-13900K","NVIDIA GeForce RTX 3090 Ti","models/7B/ggml-model-q4_0.gguf","llama 7B mostly Q4_0","3825065984","6738415616","512","16","1","99","0","1","0.00","0","128","2023-09-23T12:09:02Z","969320879","2728399","132.052051","0.371342"
build_commit,build_number,cpu_info,gpu_info,backends,model_filename,model_type,model_size,model_n_params,n_batch,n_ubatch,n_threads,cpu_mask,cpu_strict,poll,type_k,type_v,n_gpu_layers,split_mode,main_gpu,no_kv_offload,flash_attn,tensor_split,use_mmap,embeddings,n_prompt,n_gen,n_depth,test_time,avg_ns,stddev_ns,avg_ts,stddev_ts
"8cf427ff","5163","AMD Ryzen 7 7800X3D 8-Core Processor","NVIDIA GeForce RTX 4080","CUDA","models/Qwen2.5-7B-Instruct-Q4_K_M.gguf","qwen2 7B Q4_K - Medium","4677120000","7615616512","2048","512","8","0x0","0","50","f16","f16","99","layer","0","0","0","0.00","1","0","512","0","0","2025-04-24T11:57:09Z","70285660","982040","7285.676949","100.064434"
"8cf427ff","5163","AMD Ryzen 7 7800X3D 8-Core Processor","NVIDIA GeForce RTX 4080","CUDA","models/Qwen2.5-7B-Instruct-Q4_K_M.gguf","qwen2 7B Q4_K - Medium","4677120000","7615616512","2048","512","8","0x0","0","50","f16","f16","99","layer","0","0","0","0.00","1","0","0","128","0","2025-04-24T11:57:10Z","1067431600","3834831","119.915244","0.430617"
```
### JSON
@@ -184,64 +200,78 @@ $ ./llama-bench -o json
```json
[
{
"build_commit": "3469684",
"build_number": 1275,
"cuda": true,
"metal": false,
"gpu_blas": true,
"blas": true,
"cpu_info": "13th Gen Intel(R) Core(TM) i9-13900K",
"gpu_info": "NVIDIA GeForce RTX 3090 Ti",
"model_filename": "models/7B/ggml-model-q4_0.gguf",
"model_type": "llama 7B mostly Q4_0",
"model_size": 3825065984,
"model_n_params": 6738415616,
"n_batch": 512,
"n_threads": 16,
"f16_kv": true,
"build_commit": "8cf427ff",
"build_number": 5163,
"cpu_info": "AMD Ryzen 7 7800X3D 8-Core Processor",
"gpu_info": "NVIDIA GeForce RTX 4080",
"backends": "CUDA",
"model_filename": "models/Qwen2.5-7B-Instruct-Q4_K_M.gguf",
"model_type": "qwen2 7B Q4_K - Medium",
"model_size": 4677120000,
"model_n_params": 7615616512,
"n_batch": 2048,
"n_ubatch": 512,
"n_threads": 8,
"cpu_mask": "0x0",
"cpu_strict": false,
"poll": 50,
"type_k": "f16",
"type_v": "f16",
"n_gpu_layers": 99,
"split_mode": "layer",
"main_gpu": 0,
"mul_mat_q": true,
"no_kv_offload": false,
"flash_attn": false,
"tensor_split": "0.00",
"use_mmap": true,
"embeddings": false,
"n_prompt": 512,
"n_gen": 0,
"test_time": "2023-09-23T12:09:57Z",
"avg_ns": 212365953,
"stddev_ns": 985423,
"avg_ts": 2410.974041,
"stddev_ts": 11.163766,
"samples_ns": [ 213837238, 211635853, 212328053, 211329715, 212698907 ],
"samples_ts": [ 2394.34, 2419.25, 2411.36, 2422.75, 2407.16 ]
"n_depth": 0,
"test_time": "2025-04-24T11:58:50Z",
"avg_ns": 72135640,
"stddev_ns": 1453752,
"avg_ts": 7100.002165,
"stddev_ts": 140.341520,
"samples_ns": [ 74601900, 71632900, 71745200, 71952700, 70745500 ],
"samples_ts": [ 6863.1, 7147.55, 7136.37, 7115.79, 7237.21 ]
},
{
"build_commit": "3469684",
"build_number": 1275,
"cuda": true,
"metal": false,
"gpu_blas": true,
"blas": true,
"cpu_info": "13th Gen Intel(R) Core(TM) i9-13900K",
"gpu_info": "NVIDIA GeForce RTX 3090 Ti",
"model_filename": "models/7B/ggml-model-q4_0.gguf",
"model_type": "llama 7B mostly Q4_0",
"model_size": 3825065984,
"model_n_params": 6738415616,
"n_batch": 512,
"n_threads": 16,
"f16_kv": true,
"build_commit": "8cf427ff",
"build_number": 5163,
"cpu_info": "AMD Ryzen 7 7800X3D 8-Core Processor",
"gpu_info": "NVIDIA GeForce RTX 4080",
"backends": "CUDA",
"model_filename": "models/Qwen2.5-7B-Instruct-Q4_K_M.gguf",
"model_type": "qwen2 7B Q4_K - Medium",
"model_size": 4677120000,
"model_n_params": 7615616512,
"n_batch": 2048,
"n_ubatch": 512,
"n_threads": 8,
"cpu_mask": "0x0",
"cpu_strict": false,
"poll": 50,
"type_k": "f16",
"type_v": "f16",
"n_gpu_layers": 99,
"split_mode": "layer",
"main_gpu": 0,
"mul_mat_q": true,
"no_kv_offload": false,
"flash_attn": false,
"tensor_split": "0.00",
"use_mmap": true,
"embeddings": false,
"n_prompt": 0,
"n_gen": 128,
"test_time": "2023-09-23T12:09:59Z",
"avg_ns": 977425219,
"stddev_ns": 9268593,
"avg_ts": 130.965708,
"stddev_ts": 1.238924,
"samples_ns": [ 984472709, 974901233, 989474741, 970729355, 967548060 ],
"samples_ts": [ 130.019, 131.295, 129.362, 131.86, 132.293 ]
"n_depth": 0,
"test_time": "2025-04-24T11:58:51Z",
"avg_ns": 1076767880,
"stddev_ns": 9449585,
"avg_ts": 118.881588,
"stddev_ts": 1.041811,
"samples_ns": [ 1075361300, 1065089400, 1071761200, 1081934900, 1089692600 ],
"samples_ts": [ 119.03, 120.178, 119.43, 118.307, 117.464 ]
}
]
```
@@ -254,8 +284,8 @@ $ ./llama-bench -o jsonl
```
```json lines
{"build_commit":"3469684","build_number":1275,"cuda":true,"metal":false,"gpu_blas":true,"blas":true,"cpu_info":"13th Gen Intel(R) Core(TM) i9-13900K","gpu_info":"NVIDIA GeForce RTX 3090 Ti","model_filename":"models/7B/ggml-model-q4_0.gguf","model_type":"llama 7B mostly Q4_0","model_size":3825065984,"model_n_params":6738415616,"n_batch":512,"n_threads":16,"f16_kv":true,"n_gpu_layers":99,"main_gpu":0,"mul_mat_q":true,"tensor_split":"0.00","n_prompt":512,"n_gen":0,"test_time":"2023-09-23T12:09:57Z","avg_ns":212365953,"stddev_ns":985423,"avg_ts":2410.974041,"stddev_ts":11.163766,"samples_ns":[213837238,211635853,212328053,211329715,212698907],"samples_ts":[2394.34,2419.25,2411.36,2422.75,2407.16]}
{"build_commit":"3469684","build_number":1275,"cuda":true,"metal":false,"gpu_blas":true,"blas":true,"cpu_info":"13th Gen Intel(R) Core(TM) i9-13900K","gpu_info":"NVIDIA GeForce RTX 3090 Ti","model_filename":"models/7B/ggml-model-q4_0.gguf","model_type":"llama 7B mostly Q4_0","model_size":3825065984,"model_n_params":6738415616,"n_batch":512,"n_threads":16,"f16_kv":true,"n_gpu_layers":99,"main_gpu":0,"mul_mat_q":true,"tensor_split":"0.00","n_prompt":0,"n_gen":128,"test_time":"2023-09-23T12:09:59Z","avg_ns":977425219,"stddev_ns":9268593,"avg_ts":130.965708,"stddev_ts":1.238924,"samples_ns":[984472709,974901233,989474741,970729355,967548060],"samples_ts":[130.019,131.295,129.362,131.86,132.293]}
{"build_commit": "8cf427ff", "build_number": 5163, "cpu_info": "AMD Ryzen 7 7800X3D 8-Core Processor", "gpu_info": "NVIDIA GeForce RTX 4080", "backends": "CUDA", "model_filename": "models/Qwen2.5-7B-Instruct-Q4_K_M.gguf", "model_type": "qwen2 7B Q4_K - Medium", "model_size": 4677120000, "model_n_params": 7615616512, "n_batch": 2048, "n_ubatch": 512, "n_threads": 8, "cpu_mask": "0x0", "cpu_strict": false, "poll": 50, "type_k": "f16", "type_v": "f16", "n_gpu_layers": 99, "split_mode": "layer", "main_gpu": 0, "no_kv_offload": false, "flash_attn": false, "tensor_split": "0.00", "use_mmap": true, "embeddings": false, "n_prompt": 512, "n_gen": 0, "n_depth": 0, "test_time": "2025-04-24T11:59:33Z", "avg_ns": 70497220, "stddev_ns": 883196, "avg_ts": 7263.609157, "stddev_ts": 90.940578, "samples_ns": [ 71551000, 71222800, 70364100, 69439100, 69909100 ],"samples_ts": [ 7155.74, 7188.71, 7276.44, 7373.37, 7323.8 ]}
{"build_commit": "8cf427ff", "build_number": 5163, "cpu_info": "AMD Ryzen 7 7800X3D 8-Core Processor", "gpu_info": "NVIDIA GeForce RTX 4080", "backends": "CUDA", "model_filename": "models/Qwen2.5-7B-Instruct-Q4_K_M.gguf", "model_type": "qwen2 7B Q4_K - Medium", "model_size": 4677120000, "model_n_params": 7615616512, "n_batch": 2048, "n_ubatch": 512, "n_threads": 8, "cpu_mask": "0x0", "cpu_strict": false, "poll": 50, "type_k": "f16", "type_v": "f16", "n_gpu_layers": 99, "split_mode": "layer", "main_gpu": 0, "no_kv_offload": false, "flash_attn": false, "tensor_split": "0.00", "use_mmap": true, "embeddings": false, "n_prompt": 0, "n_gen": 128, "n_depth": 0, "test_time": "2025-04-24T11:59:33Z", "avg_ns": 1068078400, "stddev_ns": 6279455, "avg_ts": 119.844681, "stddev_ts": 0.699739, "samples_ns": [ 1066331700, 1064864900, 1079042600, 1063328400, 1066824400 ],"samples_ts": [ 120.038, 120.203, 118.624, 120.377, 119.982 ]}
```
@@ -271,25 +301,32 @@ $ ./llama-bench -o sql
CREATE TABLE IF NOT EXISTS test (
build_commit TEXT,
build_number INTEGER,
cuda INTEGER,
metal INTEGER,
gpu_blas INTEGER,
blas INTEGER,
cpu_info TEXT,
gpu_info TEXT,
backends TEXT,
model_filename TEXT,
model_type TEXT,
model_size INTEGER,
model_n_params INTEGER,
n_batch INTEGER,
n_ubatch INTEGER,
n_threads INTEGER,
f16_kv INTEGER,
cpu_mask TEXT,
cpu_strict INTEGER,
poll INTEGER,
type_k TEXT,
type_v TEXT,
n_gpu_layers INTEGER,
split_mode TEXT,
main_gpu INTEGER,
mul_mat_q INTEGER,
no_kv_offload INTEGER,
flash_attn INTEGER,
tensor_split TEXT,
use_mmap INTEGER,
embeddings INTEGER,
n_prompt INTEGER,
n_gen INTEGER,
n_depth INTEGER,
test_time TEXT,
avg_ns INTEGER,
stddev_ns INTEGER,
@@ -297,6 +334,6 @@ CREATE TABLE IF NOT EXISTS test (
stddev_ts REAL
);
INSERT INTO test (build_commit, build_number, cuda, metal, gpu_blas, blas, cpu_info, gpu_info, model_filename, model_type, model_size, model_n_params, n_batch, n_threads, f16_kv, n_gpu_layers, main_gpu, mul_mat_q, tensor_split, n_prompt, n_gen, test_time, avg_ns, stddev_ns, avg_ts, stddev_ts) VALUES ('3469684', '1275', '1', '0', '0', '1', '1', '13th Gen Intel(R) Core(TM) i9-13900K', 'NVIDIA GeForce RTX 3090 Ti', 'models/7B/ggml-model-q4_0.gguf', 'llama 7B mostly Q4_0', '3825065984', '6738415616', '512', '16', '1', '99', '0', '1', '0.00', '512', '0', '2023-09-23T12:10:30Z', '212693772', '743623', '2407.240204', '8.409634');
INSERT INTO test (build_commit, build_number, cuda, metal, gpu_blas, blas, cpu_info, gpu_info, model_filename, model_type, model_size, model_n_params, n_batch, n_threads, f16_kv, n_gpu_layers, main_gpu, mul_mat_q, tensor_split, n_prompt, n_gen, test_time, avg_ns, stddev_ns, avg_ts, stddev_ts) VALUES ('3469684', '1275', '1', '0', '0', '1', '1', '13th Gen Intel(R) Core(TM) i9-13900K', 'NVIDIA GeForce RTX 3090 Ti', 'models/7B/ggml-model-q4_0.gguf', 'llama 7B mostly Q4_0', '3825065984', '6738415616', '512', '16', '1', '99', '0', '1', '0.00', '0', '128', '2023-09-23T12:10:31Z', '977925003', '4037361', '130.891159', '0.537692');
INSERT INTO test (build_commit, build_number, cpu_info, gpu_info, backends, model_filename, model_type, model_size, model_n_params, n_batch, n_ubatch, n_threads, cpu_mask, cpu_strict, poll, type_k, type_v, n_gpu_layers, split_mode, main_gpu, no_kv_offload, flash_attn, tensor_split, use_mmap, embeddings, n_prompt, n_gen, n_depth, test_time, avg_ns, stddev_ns, avg_ts, stddev_ts) VALUES ('8cf427ff', '5163', 'AMD Ryzen 7 7800X3D 8-Core Processor', 'NVIDIA GeForce RTX 4080', 'CUDA', 'models/Qwen2.5-7B-Instruct-Q4_K_M.gguf', 'qwen2 7B Q4_K - Medium', '4677120000', '7615616512', '2048', '512', '8', '0x0', '0', '50', 'f16', 'f16', '99', 'layer', '0', '0', '0', '0.00', '1', '0', '512', '0', '0', '2025-04-24T12:00:08Z', '69905000', '519516', '7324.546977', '54.032613');
INSERT INTO test (build_commit, build_number, cpu_info, gpu_info, backends, model_filename, model_type, model_size, model_n_params, n_batch, n_ubatch, n_threads, cpu_mask, cpu_strict, poll, type_k, type_v, n_gpu_layers, split_mode, main_gpu, no_kv_offload, flash_attn, tensor_split, use_mmap, embeddings, n_prompt, n_gen, n_depth, test_time, avg_ns, stddev_ns, avg_ts, stddev_ts) VALUES ('8cf427ff', '5163', 'AMD Ryzen 7 7800X3D 8-Core Processor', 'NVIDIA GeForce RTX 4080', 'CUDA', 'models/Qwen2.5-7B-Instruct-Q4_K_M.gguf', 'qwen2 7B Q4_K - Medium', '4677120000', '7615616512', '2048', '512', '8', '0x0', '0', '50', 'f16', 'f16', '99', 'layer', '0', '0', '0', '0.00', '1', '0', '0', '128', '0', '2025-04-24T12:00:09Z', '1063608780', '4464130', '120.346696', '0.504647');
```

View File

@@ -36,6 +36,46 @@ static uint64_t get_time_ns() {
return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
}
static bool tensor_buft_override_equal(const llama_model_tensor_buft_override& a, const llama_model_tensor_buft_override& b) {
if (a.pattern != b.pattern) {
// cString comparison that may be null
if (a.pattern == nullptr || b.pattern == nullptr) {
return false;
}
if (strcmp(a.pattern, b.pattern) != 0) {
return false;
}
}
if (a.buft != b.buft) {
return false;
}
return true;
}
static bool vec_tensor_buft_override_equal(const std::vector<llama_model_tensor_buft_override>& a, const std::vector<llama_model_tensor_buft_override>& b) {
if (a.size() != b.size()) {
return false;
}
for (size_t i = 0; i < a.size(); i++) {
if (!tensor_buft_override_equal(a[i], b[i])) {
return false;
}
}
return true;
}
static bool vec_vec_tensor_buft_override_equal(const std::vector<std::vector<llama_model_tensor_buft_override>>& a, const std::vector<std::vector<llama_model_tensor_buft_override>>& b) {
if (a.size() != b.size()) {
return false;
}
for (size_t i = 0; i < a.size(); i++) {
if (!vec_tensor_buft_override_equal(a[i], b[i])) {
return false;
}
}
return true;
}
template <class T> static std::string join(const std::vector<T> & values, const std::string & delim) {
std::ostringstream str;
for (size_t i = 0; i < values.size(); i++) {
@@ -160,6 +200,7 @@ struct cmd_params {
std::vector<int> n_prompt;
std::vector<int> n_gen;
std::vector<std::pair<int, int>> n_pg;
std::vector<int> n_depth;
std::vector<int> n_batch;
std::vector<int> n_ubatch;
std::vector<ggml_type> type_k;
@@ -175,6 +216,7 @@ struct cmd_params {
std::vector<bool> no_kv_offload;
std::vector<bool> flash_attn;
std::vector<std::vector<float>> tensor_split;
std::vector<std::vector<llama_model_tensor_buft_override>> tensor_buft_overrides;
std::vector<bool> use_mmap;
std::vector<bool> embeddings;
ggml_numa_strategy numa;
@@ -192,6 +234,7 @@ static const cmd_params cmd_params_defaults = {
/* n_prompt */ { 512 },
/* n_gen */ { 128 },
/* n_pg */ {},
/* n_depth */ { 0 },
/* n_batch */ { 2048 },
/* n_ubatch */ { 512 },
/* type_k */ { GGML_TYPE_F16 },
@@ -207,6 +250,7 @@ static const cmd_params cmd_params_defaults = {
/* no_kv_offload */ { false },
/* flash_attn */ { false },
/* tensor_split */ { std::vector<float>(llama_max_devices(), 0.0f) },
/* tensor_buft_overrides*/ { std::vector<llama_model_tensor_buft_override>{{nullptr,nullptr}} },
/* use_mmap */ { true },
/* embeddings */ { false },
/* numa */ GGML_NUMA_STRATEGY_DISABLED,
@@ -230,6 +274,7 @@ static void print_usage(int /* argc */, char ** argv) {
printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
printf(" -pg <pp,tg> (default: %s)\n",
join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
printf(" -d, --n-depth <n> (default: %s)\n", join(cmd_params_defaults.n_depth, ",").c_str());
printf(" -b, --batch-size <n> (default: %s)\n",
join(cmd_params_defaults.n_batch, ",").c_str());
printf(" -ub, --ubatch-size <n> (default: %s)\n",
@@ -265,6 +310,7 @@ static void print_usage(int /* argc */, char ** argv) {
printf(" -embd, --embeddings <0|1> (default: %s)\n",
join(cmd_params_defaults.embeddings, ",").c_str());
printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
printf(" -ot --override-tensors <tensor name pattern>=<buffer type>;... (default: disabled)\n");
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
printf(" --prio <0|1|2|3> (default: %d)\n", cmd_params_defaults.prio);
printf(" --delay <0...N> (seconds) (default: %d)\n", cmd_params_defaults.delay);
@@ -366,6 +412,13 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
break;
}
params.n_pg.push_back({ std::stoi(p[0]), std::stoi(p[1]) });
} else if (arg == "-d" || arg == "--n-depth") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<int>(argv[i], split_delim);
params.n_depth.insert(params.n_depth.end(), p.begin(), p.end());
} else if (arg == "-b" || arg == "--batch-size") {
if (++i >= argc) {
invalid_param = true;
@@ -557,6 +610,87 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
}
params.tensor_split.push_back(tensor_split);
}
} else if (arg == "-ot" || arg == "--override-tensor") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto value = argv[i];
/* static */ std::map<std::string, ggml_backend_buffer_type_t> buft_list;
if (buft_list.empty()) {
// enumerate all the devices and add their buffer types to the list
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
auto * dev = ggml_backend_dev_get(i);
auto * buft = ggml_backend_dev_buffer_type(dev);
if (buft) {
buft_list[ggml_backend_buft_name(buft)] = buft;
}
}
}
auto override_group_span_len = std::strcspn(value, ",");
bool last_group = false;
do {
if (override_group_span_len == 0) {
// Adds an empty override-tensors for an empty span
params.tensor_buft_overrides.push_back({{}});
if (value[override_group_span_len] == '\0') {
value = &value[override_group_span_len];
last_group = true;
} else {
value = &value[override_group_span_len + 1];
override_group_span_len = std::strcspn(value, ",");
}
continue;
}
// Stamps null terminators into the argv
// value for this option to avoid the
// memory leak present in the implementation
// over in arg.cpp. Acceptable because we
// only parse these args once in this program.
auto override_group = value;
if (value[override_group_span_len] == '\0') {
value = &value[override_group_span_len];
last_group = true;
} else {
value[override_group_span_len] = '\0';
value = &value[override_group_span_len + 1];
}
std::vector<llama_model_tensor_buft_override> group_tensor_buft_overrides{};
auto override_span_len = std::strcspn(override_group, ";");
while (override_span_len > 0) {
auto override = override_group;
if (override_group[override_span_len] != '\0') {
override_group[override_span_len] = '\0';
override_group = &override_group[override_span_len + 1];
} else {
override_group = &override_group[override_span_len];
}
auto tensor_name_span_len = std::strcspn(override, "=");
if (tensor_name_span_len >= override_span_len) {
invalid_param = true;
break;
}
override[tensor_name_span_len] = '\0';
auto tensor_name = override;
auto buffer_type = &override[tensor_name_span_len + 1];
if (buft_list.find(buffer_type) == buft_list.end()) {
printf("Available buffer types:\n");
for (const auto & it : buft_list) {
printf(" %s\n", ggml_backend_buft_name(it.second));
}
invalid_param = true;
break;
}
group_tensor_buft_overrides.push_back({tensor_name, buft_list.at(buffer_type)});
override_span_len = std::strcspn(override_group, ";");
}
if (invalid_param) {
break;
}
group_tensor_buft_overrides.push_back({nullptr,nullptr});
params.tensor_buft_overrides.push_back(group_tensor_buft_overrides);
override_group_span_len = std::strcspn(value, ",");
} while (!last_group);
} else if (arg == "-r" || arg == "--repetitions") {
if (++i >= argc) {
invalid_param = true;
@@ -615,6 +749,9 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
if (params.n_pg.empty()) {
params.n_pg = cmd_params_defaults.n_pg;
}
if (params.n_depth.empty()) {
params.n_depth = cmd_params_defaults.n_depth;
}
if (params.n_batch.empty()) {
params.n_batch = cmd_params_defaults.n_batch;
}
@@ -648,6 +785,9 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
if (params.tensor_split.empty()) {
params.tensor_split = cmd_params_defaults.tensor_split;
}
if (params.tensor_buft_overrides.empty()) {
params.tensor_buft_overrides = cmd_params_defaults.tensor_buft_overrides;
}
if (params.use_mmap.empty()) {
params.use_mmap = cmd_params_defaults.use_mmap;
}
@@ -674,6 +814,7 @@ struct cmd_params_instance {
std::string model;
int n_prompt;
int n_gen;
int n_depth;
int n_batch;
int n_ubatch;
ggml_type type_k;
@@ -689,6 +830,7 @@ struct cmd_params_instance {
bool no_kv_offload;
bool flash_attn;
std::vector<float> tensor_split;
std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
bool use_mmap;
bool embeddings;
@@ -733,19 +875,26 @@ struct cmd_params_instance {
mparams.tensor_split = tensor_split.data();
mparams.use_mmap = use_mmap;
if (tensor_buft_overrides.empty()) {
mparams.tensor_buft_overrides = nullptr;
} else {
GGML_ASSERT(tensor_buft_overrides.back().pattern == nullptr && "Tensor buffer overrides not terminated with empty pattern");
mparams.tensor_buft_overrides = tensor_buft_overrides.data();
}
return mparams;
}
bool equal_mparams(const cmd_params_instance & other) const {
return model == other.model && n_gpu_layers == other.n_gpu_layers && rpc_servers_str == other.rpc_servers_str &&
split_mode == other.split_mode && main_gpu == other.main_gpu && use_mmap == other.use_mmap &&
tensor_split == other.tensor_split;
tensor_split == other.tensor_split && vec_tensor_buft_override_equal(tensor_buft_overrides, other.tensor_buft_overrides);
}
llama_context_params to_llama_cparams() const {
llama_context_params cparams = llama_context_default_params();
cparams.n_ctx = n_prompt + n_gen;
cparams.n_ctx = n_prompt + n_gen + n_depth;
cparams.n_batch = n_batch;
cparams.n_ubatch = n_ubatch;
cparams.type_k = type_k;
@@ -769,6 +918,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
for (const auto & sm : params.split_mode)
for (const auto & mg : params.main_gpu)
for (const auto & ts : params.tensor_split)
for (const auto & ot : params.tensor_buft_overrides)
for (const auto & mmp : params.use_mmap)
for (const auto & embd : params.embeddings)
for (const auto & nb : params.n_batch)
@@ -780,6 +930,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
for (const auto & nt : params.n_threads)
for (const auto & cm : params.cpu_mask)
for (const auto & cs : params.cpu_strict)
for (const auto & nd : params.n_depth)
for (const auto & pl : params.poll) {
for (const auto & n_prompt : params.n_prompt) {
if (n_prompt == 0) {
@@ -789,6 +940,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .model = */ m,
/* .n_prompt = */ n_prompt,
/* .n_gen = */ 0,
/* .n_depth = */ nd,
/* .n_batch = */ nb,
/* .n_ubatch = */ nub,
/* .type_k = */ tk,
@@ -804,6 +956,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .no_kv_offload= */ nkvo,
/* .flash_attn = */ fa,
/* .tensor_split = */ ts,
/* .tensor_buft_overrides = */ ot,
/* .use_mmap = */ mmp,
/* .embeddings = */ embd,
};
@@ -818,6 +971,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .model = */ m,
/* .n_prompt = */ 0,
/* .n_gen = */ n_gen,
/* .n_depth = */ nd,
/* .n_batch = */ nb,
/* .n_ubatch = */ nub,
/* .type_k = */ tk,
@@ -833,6 +987,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .no_kv_offload= */ nkvo,
/* .flash_attn = */ fa,
/* .tensor_split = */ ts,
/* .tensor_buft_overrides = */ ot,
/* .use_mmap = */ mmp,
/* .embeddings = */ embd,
};
@@ -847,6 +1002,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .model = */ m,
/* .n_prompt = */ n_pg.first,
/* .n_gen = */ n_pg.second,
/* .n_depth = */ nd,
/* .n_batch = */ nb,
/* .n_ubatch = */ nub,
/* .type_k = */ tk,
@@ -862,6 +1018,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .no_kv_offload= */ nkvo,
/* .flash_attn = */ fa,
/* .tensor_split = */ ts,
/* .tensor_buft_overrides = */ ot,
/* .use_mmap = */ mmp,
/* .embeddings = */ embd,
};
@@ -896,10 +1053,12 @@ struct test {
bool no_kv_offload;
bool flash_attn;
std::vector<float> tensor_split;
std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
bool use_mmap;
bool embeddings;
int n_prompt;
int n_gen;
int n_depth;
std::string test_time;
std::vector<uint64_t> samples_ns;
@@ -927,10 +1086,12 @@ struct test {
no_kv_offload = inst.no_kv_offload;
flash_attn = inst.flash_attn;
tensor_split = inst.tensor_split;
tensor_buft_overrides = inst.tensor_buft_overrides;
use_mmap = inst.use_mmap;
embeddings = inst.embeddings;
n_prompt = inst.n_prompt;
n_gen = inst.n_gen;
n_depth = inst.n_depth;
// RFC 3339 date-time format
time_t t = time(NULL);
std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
@@ -972,9 +1133,9 @@ struct test {
"build_commit", "build_number", "cpu_info", "gpu_info", "backends", "model_filename",
"model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "n_threads",
"cpu_mask", "cpu_strict", "poll", "type_k", "type_v", "n_gpu_layers",
"split_mode", "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "use_mmap",
"embeddings", "n_prompt", "n_gen", "test_time", "avg_ns", "stddev_ns",
"avg_ts", "stddev_ts",
"split_mode", "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "tensor_buft_overrides",
"use_mmap", "embeddings", "n_prompt", "n_gen", "n_depth", "test_time",
"avg_ns", "stddev_ns", "avg_ts", "stddev_ts",
};
return fields;
}
@@ -984,8 +1145,8 @@ struct test {
static field_type get_field_type(const std::string & field) {
if (field == "build_number" || field == "n_batch" || field == "n_ubatch" || field == "n_threads" ||
field == "poll" || field == "model_size" || field == "model_n_params" || field == "n_gpu_layers" ||
field == "main_gpu" || field == "n_prompt" || field == "n_gen" || field == "avg_ns" ||
field == "stddev_ns") {
field == "main_gpu" || field == "n_prompt" || field == "n_gen" || field == "n_depth" ||
field == "avg_ns" || field == "stddev_ns") {
return INT;
}
if (field == "f16_kv" || field == "no_kv_offload" || field == "cpu_strict" || field == "flash_attn" ||
@@ -1000,6 +1161,7 @@ struct test {
std::vector<std::string> get_values() const {
std::string tensor_split_str;
std::string tensor_buft_overrides_str;
int max_nonzero = 0;
for (size_t i = 0; i < llama_max_devices(); i++) {
if (tensor_split[i] > 0) {
@@ -1014,6 +1176,26 @@ struct test {
tensor_split_str += "/";
}
}
if (tensor_buft_overrides.size() == 1) {
// Last element of tensor_buft_overrides is always a null pattern
// so if it is only one element long, it must be a null pattern.
GGML_ASSERT(tensor_buft_overrides[0].pattern == nullptr);
tensor_buft_overrides_str += "none";
} else {
for (size_t i = 0; i < tensor_buft_overrides.size()-1; i++) {
// Last element of tensor_buft_overrides is always a null pattern
if (tensor_buft_overrides[i].pattern == nullptr) {
tensor_buft_overrides_str += "none";
} else {
tensor_buft_overrides_str += tensor_buft_overrides[i].pattern;
tensor_buft_overrides_str += "=";
tensor_buft_overrides_str += ggml_backend_buft_name(tensor_buft_overrides[i].buft);
}
if (i + 2 < tensor_buft_overrides.size()) {
tensor_buft_overrides_str += ";";
}
}
}
std::vector<std::string> values = { build_commit,
std::to_string(build_number),
cpu_info,
@@ -1037,10 +1219,12 @@ struct test {
std::to_string(no_kv_offload),
std::to_string(flash_attn),
tensor_split_str,
tensor_buft_overrides_str,
std::to_string(use_mmap),
std::to_string(embeddings),
std::to_string(n_prompt),
std::to_string(n_gen),
std::to_string(n_depth),
test_time,
std::to_string(avg_ns()),
std::to_string(stdev_ns()),
@@ -1218,7 +1402,7 @@ struct markdown_printer : public printer {
return 4;
}
if (field == "test") {
return 13;
return 15;
}
int width = std::max((int) field.length(), 10);
@@ -1254,6 +1438,9 @@ struct markdown_printer : public printer {
if (field == "tensor_split") {
return "ts";
}
if (field == "tensor_buft_overrides") {
return "ot";
}
return field;
}
@@ -1307,6 +1494,9 @@ struct markdown_printer : public printer {
if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
fields.emplace_back("tensor_split");
}
if (params.tensor_buft_overrides.size() > 1 || !vec_vec_tensor_buft_override_equal(params.tensor_buft_overrides, cmd_params_defaults.tensor_buft_overrides)) {
fields.emplace_back("tensor_buft_overrides");
}
if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
fields.emplace_back("use_mmap");
}
@@ -1362,6 +1552,10 @@ struct markdown_printer : public printer {
} else {
snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
}
if (t.n_depth > 0) {
int len = strlen(buf);
snprintf(buf + len, sizeof(buf) - len, " @ d%d", t.n_depth);
}
value = buf;
} else if (field == "t/s") {
snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
@@ -1620,6 +1814,14 @@ int main(int argc, char ** argv) {
for (int i = 0; i < params.reps; i++) {
llama_kv_self_clear(ctx);
if (t.n_depth > 0) {
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%zu: depth run %d/%d\n", params_idx, params_count,
i + 1, params.reps);
}
test_prompt(ctx, t.n_depth, t.n_batch, t.n_threads);
}
uint64_t t_start = get_time_ns();
if (t.n_prompt > 0) {

View File

@@ -61,30 +61,14 @@ if(TARGET BUILD_INFO)
add_dependencies(mtmd BUILD_INFO)
endif()
set(TARGET llama-llava-cli)
add_executable(${TARGET} llava-cli.cpp)
set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-llava-cli)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)
add_executable(llama-llava-cli deprecation-warning.cpp)
add_executable(llama-gemma3-cli deprecation-warning.cpp)
add_executable(llama-minicpmv-cli deprecation-warning.cpp)
add_executable(llama-qwen2vl-cli deprecation-warning.cpp)
set(TARGET llama-minicpmv-cli)
add_executable(${TARGET} minicpmv-cli.cpp)
set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-minicpmv-cli)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)
set(TARGET llama-qwen2vl-cli)
add_executable(${TARGET} qwen2vl-cli.cpp)
set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-qwen2vl-cli)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)
set(TARGET llama-gemma3-cli)
add_executable(${TARGET} gemma3-cli.cpp)
set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-gemma3-cli)
set(TARGET llama-mtmd-cli)
add_executable(${TARGET} mtmd-cli.cpp)
set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-mtmd-cli)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common mtmd ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -1,158 +1,79 @@
# LLaVA
# Multimodal Support in llama.cpp
Currently this implementation supports [llava-v1.5](https://huggingface.co/liuhaotian/llava-v1.5-7b) variants,
as well as llava-1.6 [llava-v1.6](https://huggingface.co/collections/liuhaotian/llava-16-65b9e40155f60fd046a5ccf2) variants.
This directory provides multimodal capabilities for `llama.cpp`. Initially intended as a showcase for running LLaVA models, its scope has expanded significantly over time to include various other vision-capable models. As a result, LLaVA is no longer the only multimodal architecture supported.
The pre-converted [7b](https://huggingface.co/mys/ggml_llava-v1.5-7b)
and [13b](https://huggingface.co/mys/ggml_llava-v1.5-13b)
models are available.
For llava-1.6 a variety of prepared gguf models are available as well [7b-34b](https://huggingface.co/cmp-nct/llava-1.6-gguf)
> [!IMPORTANT]
>
> Multimodal support can be viewed as a sub-project within `llama.cpp`. It is under **very heavy development**, and **breaking changes are expected**.
After API is confirmed, more models will be supported / uploaded.
The naming and structure related to multimodal support have evolved, which might cause some confusion. Here's a brief timeline to clarify:
## Usage
Build with cmake or run `make llama-llava-cli` to build it.
- [#3436](https://github.com/ggml-org/llama.cpp/pull/3436): Initial support for LLaVA 1.5 was added, introducing `llava.cpp` and `clip.cpp`. The `llava-cli` binary was created for model interaction.
- [#4954](https://github.com/ggml-org/llama.cpp/pull/4954): Support for MobileVLM was added, becoming the second vision model supported. This built upon the existing `llava.cpp`, `clip.cpp`, and `llava-cli` infrastructure.
- **Expansion & Fragmentation:** Many new models were subsequently added (e.g., [#7599](https://github.com/ggml-org/llama.cpp/pull/7599), [#10361](https://github.com/ggml-org/llama.cpp/pull/10361), [#12344](https://github.com/ggml-org/llama.cpp/pull/12344), and others). However, `llava-cli` lacked support for the increasingly complex chat templates required by these models. This led to the creation of model-specific binaries like `qwen2vl-cli`, `minicpmv-cli`, and `gemma3-cli`. While functional, this proliferation of command-line tools became confusing for users.
- [#12849](https://github.com/ggml-org/llama.cpp/pull/12849): `libmtmd` was introduced as a replacement for `llava.cpp`. Its goals include providing a single, unified command-line interface, improving the user/developer experience (UX/DX), and supporting both audio and image inputs.
- [#13012](https://github.com/ggml-org/llama.cpp/pull/13012): `mtmd-cli` was added, consolidating the various model-specific CLIs into a single tool powered by `libmtmd`.
After building, run: `./llama-llava-cli` to see the usage. For example:
## Pre-quantized models
These are ready-to-use models, most of them come with `Q4_K_M` quantization by default:
```sh
./llama-llava-cli -m ../llava-v1.5-7b/ggml-model-f16.gguf --mmproj ../llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg
# Gemma 3
llama-mtmd-cli -hf ggml-org/gemma-3-4b-it-GGUF
llama-mtmd-cli -hf ggml-org/gemma-3-12b-it-GGUF
llama-mtmd-cli -hf ggml-org/gemma-3-27b-it-GGUF
# SmolVLM
llama-mtmd-cli -hf ggml-org/SmolVLM-Instruct-GGUF
llama-mtmd-cli -hf ggml-org/SmolVLM-256M-Instruct-GGUF
llama-mtmd-cli -hf ggml-org/SmolVLM-500M-Instruct-GGUF
llama-mtmd-cli -hf ggml-org/SmolVLM2-2.2B-Instruct-GGUF
llama-mtmd-cli -hf ggml-org/SmolVLM2-256M-Video-Instruct-GGUF
llama-mtmd-cli -hf ggml-org/SmolVLM2-500M-Video-Instruct-GGUF
# Pixtral 12B
llama-mtmd-cli -hf ggml-org/pixtral-12b-GGUF
# Mistral Small 3.1 24B (IQ2_M quantization)
llama-mtmd-cli -hf ggml-org/Mistral-Small-3.1-24B-Instruct-2503-GGUF --chat-template mistral-v7
```
**note**: A lower temperature like 0.1 is recommended for better quality. add `--temp 0.1` to the command to do so.
**note**: For GPU offloading ensure to use the `-ngl` flag just like usual
## How it works and what is `mmproj`?
## LLaVA 1.5
Multimodal support in `llama.cpp` works by encoding images into embeddings using a separate model component, and then feeding these embeddings into the language model.
1. Clone a LLaVA and a CLIP model ([available options](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md)). For example:
This approach keeps the multimodal components distinct from the core `libllama` library. Separating these allows for faster, independent development cycles. While many modern vision models are based on Vision Transformers (ViTs), their specific pre-processing and projection steps can vary significantly. Integrating this diverse complexity directly into `libllama` is currently challenging.
```sh
git clone https://huggingface.co/liuhaotian/llava-v1.5-7b
Consequently, running a multimodal model typically requires two GGUF files:
1. The standard language model file.
2. A corresponding **multimodal projector (`mmproj`)** file, which handles the image encoding and projection.
git clone https://huggingface.co/openai/clip-vit-large-patch14-336
```
## What is `libmtmd`?
2. Install the required Python packages:
As outlined in the history, `libmtmd` is the modern library designed to replace the original `llava.cpp` implementation for handling multimodal inputs.
```sh
pip install -r examples/llava/requirements.txt
```
Built upon `clip.cpp` (similar to `llava.cpp`), `libmtmd` offers several advantages:
- **Unified Interface:** Aims to consolidate interaction for various multimodal models.
- **Improved UX/DX:** Features a more intuitive API, inspired by the `Processor` class in the Hugging Face `transformers` library.
- **Flexibility:** Designed to support multiple input types (text, audio, images) while respecting the wide variety of chat templates used by different models.
3. Use `llava_surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
## How to obtain `mmproj`
```sh
python ./examples/llava/llava_surgery.py -m ../llava-v1.5-7b
```
Multimodal projector (`mmproj`) files are specific to each model architecture. Please refer to the relevant guide for instructions on how to obtain or create them:
4. Use `convert_image_encoder_to_gguf.py` to convert the LLaVA image encoder to GGUF:
- [LLaVA](../../docs/multimodal/llava.md)
- [MobileVLM](../../docs/multimodal/MobileVLM.md)
- [GLM-Edge](../../docs/multimodal/glmedge.md)
- [MiniCPM-V 2.5](../../docs/multimodal/minicpmv2.5.md)
- [MiniCPM-V 2.6](../../docs/multimodal/minicpmv2.6.md)
- [MiniCPM-o 2.6](../../docs/multimodal/minicpmo2.6.md)
- [IBM Granite Vision](../../docs/multimodal/granitevision.md)
- [Google Gemma 3](../../docs/multimodal/gemma3.md)
```sh
python ./examples/llava/convert_image_encoder_to_gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
```
5. Use `examples/convert_legacy_llama.py` to convert the LLaMA part of LLaVA to GGUF:
```sh
python ./examples/convert_legacy_llama.py ../llava-v1.5-7b --skip-unknown
```
Now both the LLaMA part and the image encoder are in the `llava-v1.5-7b` directory.
## LLaVA 1.6 gguf conversion
1) First clone a LLaVA 1.6 model:
```console
git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
```
2) Install the required Python packages:
```sh
pip install -r examples/llava/requirements.txt
```
3) Use `llava_surgery_v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models:
```console
python examples/llava/llava_surgery_v2.py -C -m ../llava-v1.6-vicuna-7b/
```
- you will find a llava.projector and a llava.clip file in your model directory
4) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory:
```console
mkdir vit
cp ../llava-v1.6-vicuna-7b/llava.clip vit/pytorch_model.bin
cp ../llava-v1.6-vicuna-7b/llava.projector vit/
curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.json -o vit/config.json
```
5) Create the visual gguf model:
```console
python ./examples/llava/convert_image_encoder_to_gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
```
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP
6) Then convert the model to gguf format:
```console
python ./examples/convert_legacy_llama.py ../llava-v1.6-vicuna-7b/ --skip-unknown
```
7) And finally we can run the llava cli using the 1.6 model version:
```console
./llama-llava-cli -m ../llava-v1.6-vicuna-7b/ggml-model-f16.gguf --mmproj vit/mmproj-model-f16.gguf --image some-image.jpg -c 4096
```
**note** llava-1.6 needs more context than llava-1.5, at least 3000 is needed (just run it at -c 4096)
**note** llava-1.6 greatly benefits from batched prompt processing (defaults work)
**note** if the language model in step `6)` is incompatible with the legacy conversion script, the easiest way handle the LLM model conversion is to load the model in transformers, and export only the LLM from the llava next model.
```python
import os
import transformers
model_path = ...
llm_export_path = ...
tokenizer = transformers.AutoTokenizer.from_pretrained(model_path)
model = transformers.AutoModelForImageTextToText.from_pretrained(model_path)
tokenizer.save_pretrained(llm_export_path)
model.language_model.save_pretrained(llm_export_path)
```
Then, you can convert the LLM using the `convert_hf_to_gguf.py` script, which handles more LLM architectures.
## llava-cli templating and llava-1.6 prompting
llava-1.5 models all use the same vicuna prompt, here you can just add your image question like `-p "Provide a full description."`
For llava-1.5 models which are not vicuna (mistral and Yi) you need to adapt system prompt as well as user prompt, for this purpose llava-cli has a basic templating system:
**For Mistral and using llava-cli binary:**
Add this: `-p "<image>\nUSER:\nProvide a full description.\nASSISTANT:\n"`
The mistral template for llava-1.6 seems to be no system print and a USER/ASSISTANT role
**For the 34B this should work:**
Add this: `-e -p <|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<image>\nProvide a full description.<|im_end|><|im_start|>assistant\n`
## How to know if you are running in llava-1.5 or llava-1.6 mode
When running llava-cli you will see a visual information right before the prompt is being processed:
**Llava-1.5:**
`encode_image_with_clip: image embedding created: 576 tokens`
**Llava-1.6 (anything above 576):**
`encode_image_with_clip: image embedding created: 2880 tokens`
Alternatively just pay notice to how many "tokens" have been used for your prompt, it will also show 1000+ tokens for llava-1.6
## TODO
- [x] Support non-CPU backend for the image encoding part.
- [ ] Support different sampling methods.
- [ ] Support more model variants.
For the following models, you can use `convert_hf_to_gguf.py`with `--mmproj` flag to get the `mmproj` file:
- [Gemma 3](https://huggingface.co/collections/google/gemma-3-release-67c6c6f89c4f76621268bb6d) - Note: 1B variant does not have vision support
- SmolVLM (from [HuggingFaceTB](https://huggingface.co/HuggingFaceTB))
- SmolVLM2 (from [HuggingFaceTB](https://huggingface.co/HuggingFaceTB))
- [Pixtral 12B](https://huggingface.co/mistral-community/pixtral-12b) - only works with `transformers`-compatible checkpoint
- [Mistral Small 3.1 24B](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503)

View File

@@ -10,7 +10,7 @@ prompt="A chat between a curious user and an artificial intelligence assistant.
# prompt="A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat is in the image? ASSISTANT:"
program_dir="build_64/bin"
binName="llama-llava-cli"
binName="llama-mtmd-cli"
n_threads=4

View File

@@ -2,8 +2,6 @@
#include "gguf.h"
#include "clip.h"
#include "clip.h"
#include <climits>
#include <cstdarg>
#include <string>
@@ -17,40 +15,38 @@
#define KEY_FTYPE "general.file_type"
#define KEY_NAME "general.name"
#define KEY_DESCRIPTION "general.description"
#define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
#define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
#define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector"
#define KEY_HAS_GLM_PROJ "clip.has_glm_projector"
#define KEY_MINICPMV_VERSION "clip.minicpmv_version"
#define KEY_HAS_QWEN2VL_MERGER "clip.has_qwen2vl_merger"
#define KEY_USE_GELU "clip.use_gelu"
#define KEY_USE_SILU "clip.use_silu"
#define KEY_N_EMBD "clip.%s.embedding_length"
#define KEY_N_FF "clip.%s.feed_forward_length"
#define KEY_N_BLOCK "clip.%s.block_count"
#define KEY_N_HEAD "clip.%s.attention.head_count"
#define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
#define KEY_PROJ_DIM "clip.%s.projection_dim"
#define KEY_TOKENS "tokenizer.ggml.tokens"
#define KEY_N_POSITIONS "clip.text.context_length"
#define KEY_N_EMBD "clip.vision.embedding_length"
#define KEY_N_FF "clip.vision.feed_forward_length"
#define KEY_N_BLOCK "clip.vision.block_count"
#define KEY_N_HEAD "clip.vision.attention.head_count"
#define KEY_LAYER_NORM_EPS "clip.vision.attention.layer_norm_epsilon"
#define KEY_PROJ_DIM "clip.vision.projection_dim"
#define KEY_IMAGE_SIZE "clip.vision.image_size"
#define KEY_PATCH_SIZE "clip.vision.patch_size"
#define KEY_IMAGE_MEAN "clip.vision.image_mean"
#define KEY_IMAGE_STD "clip.vision.image_std"
#define KEY_PROJ_TYPE "clip.projector_type"
#define KEY_FEATURE_LAYER "clip.vision.feature_layer"
#define KEY_PROJ_SCALE_FACTOR "clip.vision.projector.scale_factor"
#define KEY_PROJ_TYPE "clip.projector_type"
#define KEY_SPATIAL_MERGE_SIZE "clip.vision.spatial_merge_size"
#define KEY_USE_GLU_MLP "clip.use_glu_mlp" // for qwen2.5vl
#define KEY_USE_RMS_NORM "clip.use_rms_norm" // for qwen2.5vl
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
#define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
#define KEY_WIN_ATTN_PATTERN "clip.vision.n_wa_pattern"
#define KEY_ATTN_WINDOW_SIZE "clip.vision.window_size"
//
// tensor name constants
//
#define TN_TOKEN_EMBD "%s.token_embd.weight"
#define TN_POS_EMBD "%s.position_embd.weight"
#define TN_CLASS_EMBD "v.class_embd"
#define TN_PATCH_EMBD "v.patch_embd.weight" // not rename tensor with ".0" postfix for backwrad compat
@@ -61,20 +57,24 @@
#define TN_ATTN_V "%s.blk.%d.attn_v.%s"
#define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
#define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
#define TN_FFN_GATE "%s.blk.%d.ffn_gate.%s"
#define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
#define TN_FFN_GATE "%s.blk.%d.ffn_gate.%s"
#define TN_LN_1 "%s.blk.%d.ln1.%s"
#define TN_LN_2 "%s.blk.%d.ln2.%s"
#define TN_LN_PRE "%s.pre_ln.%s"
#define TN_LN_POST "%s.post_ln.%s"
#define TN_TEXT_PROJ "text_projection.weight"
#define TN_VIS_PROJ "visual_projection.weight"
#define TN_LLAVA_PROJ "mm.%d.%s"
#define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
#define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
#define TN_IMAGE_NEWLINE "model.image_newline"
#define TN_MM_INP_NORM "mm.input_norm.weight"
#define TN_MM_INP_PROJ "mm.input_projection.weight" // gemma3
#define TN_MM_SOFT_EMB_N "mm.soft_emb_norm.weight" // gemma3
#define TN_MM_PROJECTOR "mm.model.fc.weight" // idefics3
#define TN_MM_PATCH_MERGER "mm.patch_merger.weight" // mistral small 3.1
#define TN_TOK_IMG_BREAK "v.token_embd.img_break" // pixtral
// mimicpmv
#define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
@@ -90,18 +90,19 @@
#define TN_GLM_ADAPTER_D_H_2_4H "adapter.linear.dense_h_to_4h.%s"
#define TN_GLM_ADAPTER_GATE "adapter.linear.gate.%s"
#define TN_GLM_ADAPTER_D_4H_2_H "adapter.linear.dense_4h_to_h.%s"
#define TN_GLM_BOI_W "adapter.boi"
#define TN_GLM_EOI_W "adapter.eoi"
enum projector_type {
PROJECTOR_TYPE_MLP,
PROJECTOR_TYPE_MLP_NORM,
PROJECTOR_TYPE_LDP,
PROJECTOR_TYPE_LDPV2,
PROJECTOR_TYPE_RESAMPLER,
PROJECTOR_TYPE_MINICPMV,
PROJECTOR_TYPE_GLM_EDGE,
PROJECTOR_TYPE_MERGER,
PROJECTOR_TYPE_QWEN2VL,
PROJECTOR_TYPE_GEMMA3,
PROJECTOR_TYPE_IDEFICS3,
PROJECTOR_TYPE_PIXTRAL,
PROJECTOR_TYPE_QWEN25VL,
PROJECTOR_TYPE_UNKNOWN,
};
@@ -109,10 +110,13 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_MLP, "mlp" },
{ PROJECTOR_TYPE_LDP, "ldp" },
{ PROJECTOR_TYPE_LDPV2, "ldpv2"},
{ PROJECTOR_TYPE_RESAMPLER, "resampler"},
{ PROJECTOR_TYPE_MINICPMV, "resampler"},
{ PROJECTOR_TYPE_GLM_EDGE, "adapter"},
{ PROJECTOR_TYPE_MERGER, "qwen2vl_merger"},
{ PROJECTOR_TYPE_QWEN2VL, "qwen2vl_merger"},
{ PROJECTOR_TYPE_QWEN25VL, "qwen2.5vl_merger"},
{ PROJECTOR_TYPE_GEMMA3, "gemma3"},
{ PROJECTOR_TYPE_IDEFICS3, "idefics3"},
{ PROJECTOR_TYPE_PIXTRAL, "pixtral"},
};
static projector_type clip_projector_type_from_string(const std::string & str) {

File diff suppressed because it is too large Load Diff

View File

@@ -30,12 +30,13 @@ struct clip_image_size {
int height;
};
struct clip_image_f32;
struct clip_image_u8_batch;
struct clip_image_f32_batch;
struct clip_context_params {
bool use_gpu;
ggml_log_level verbosity;
enum ggml_log_level verbosity;
};
// deprecated, use clip_init
@@ -46,7 +47,7 @@ CLIP_API struct clip_ctx * clip_init(const char * fname, struct clip_context_par
CLIP_API void clip_free(struct clip_ctx * ctx);
CLIP_API size_t clip_embd_nbytes(const struct clip_ctx * ctx);
CLIP_API size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w);
CLIP_API size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h);
CLIP_API int32_t clip_get_image_size (const struct clip_ctx * ctx);
CLIP_API int32_t clip_get_patch_size (const struct clip_ctx * ctx);
@@ -58,9 +59,20 @@ CLIP_API const char * clip_patch_merge_type(const struct clip_ctx * ctx);
CLIP_API const int32_t * clip_image_grid(const struct clip_ctx * ctx);
CLIP_API size_t get_clip_image_grid_size(const struct clip_ctx * ctx);
CLIP_API int clip_n_patches (const struct clip_ctx * ctx);
CLIP_API int clip_n_patches_by_img (const struct clip_ctx * ctx, struct clip_image_f32 * img);
CLIP_API int clip_n_mmproj_embd (const struct clip_ctx * ctx);
GGML_DEPRECATED(CLIP_API int clip_n_patches(const struct clip_ctx * ctx),
"use clip_n_output_tokens instead");
GGML_DEPRECATED(CLIP_API int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * img),
"use clip_n_output_tokens instead");
CLIP_API int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img);
// for M-RoPE, this will be the number of token positions in X and Y directions
// for other models, X will be the total number of tokens and Y will be 1
CLIP_API int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img);
CLIP_API int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img);
// this should be equal to the embedding dimension of the text model
CLIP_API int clip_n_mmproj_embd(const struct clip_ctx * ctx);
CLIP_API int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip);
CLIP_API void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size);
@@ -84,7 +96,7 @@ CLIP_API void clip_image_f32_batch_free(struct clip_image_f32_batch * batch);
CLIP_API size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch); // equivalent to batch->size()
CLIP_API size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->nx
CLIP_API size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->ny
CLIP_API clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->data
CLIP_API struct clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->data
/**
* Build image from pixels decoded by other libraries instead of stb_image.h for better performance.
@@ -113,8 +125,6 @@ CLIP_API bool clip_is_qwen2vl(const struct clip_ctx * ctx);
CLIP_API bool clip_is_llava(const struct clip_ctx * ctx);
CLIP_API bool clip_is_gemma3(const struct clip_ctx * ctx);
CLIP_API int get_deepest_feature_layer(const struct clip_ctx * ctx);
CLIP_API bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec);

View File

@@ -0,0 +1,22 @@
#include <cstdio>
#include <string>
int main(int argc, char** argv) {
std::string filename = "main";
if (argc >= 1) {
filename = argv[0];
}
// Get only the program name from the full path
size_t pos = filename.find_last_of("/\\");
if (pos != std::string::npos) {
filename = filename.substr(pos+1);
}
fprintf(stdout, "\n");
fprintf(stdout, "WARNING: The binary '%s' is deprecated.\n", filename.c_str());
fprintf(stdout, "Please use 'llama-mtmd-cli' instead.\n");
fprintf(stdout, "\n");
return EXIT_FAILURE;
}

View File

@@ -1,307 +0,0 @@
import gguf
import argparse
import logging
import sys
import torch
import json
import os
import numpy as np
from typing import cast, ContextManager, Any, Iterator
from pathlib import Path
from torch import Tensor
logger = logging.getLogger("gemma3-mmproj")
# (copied from convert_hf_to_gguf.py)
# tree of lazy tensors
class LazyTorchTensor(gguf.LazyBase):
_tensor_type = torch.Tensor
# to keep the type-checker happy
dtype: torch.dtype
shape: torch.Size
# only used when converting a torch.Tensor to a np.ndarray
_dtype_map: dict[torch.dtype, type] = {
torch.float16: np.float16,
torch.float32: np.float32,
}
# used for safetensors slices
# ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
# TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
_dtype_str_map: dict[str, torch.dtype] = {
"F64": torch.float64,
"F32": torch.float32,
"BF16": torch.bfloat16,
"F16": torch.float16,
# "U64": torch.uint64,
"I64": torch.int64,
# "U32": torch.uint32,
"I32": torch.int32,
# "U16": torch.uint16,
"I16": torch.int16,
"U8": torch.uint8,
"I8": torch.int8,
"BOOL": torch.bool,
"F8_E4M3": torch.float8_e4m3fn,
"F8_E5M2": torch.float8_e5m2,
}
def numpy(self) -> gguf.LazyNumpyTensor:
dtype = self._dtype_map[self.dtype]
return gguf.LazyNumpyTensor(
meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
args=(self,),
func=(lambda s: s.numpy())
)
@classmethod
def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
return torch.empty(size=shape, dtype=dtype, device="meta")
@classmethod
def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
dtype = cls._dtype_str_map[st_slice.get_dtype()]
shape: tuple[int, ...] = tuple(st_slice.get_shape())
lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
return cast(torch.Tensor, lazy)
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
del types # unused
if kwargs is None:
kwargs = {}
if func is torch.Tensor.numpy:
return args[0].numpy()
return cls._wrap_fn(func)(*args, **kwargs)
class Gemma3VisionTower:
hparams: dict
gguf_writer: gguf.GGUFWriter
fname_out: Path
ftype: gguf.LlamaFileType
@staticmethod
def load_hparams(dir_model: Path):
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
return json.load(f)
@staticmethod
def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
part_names: list[str] = []
for filename in os.listdir(dir_model):
if filename.startswith(prefix) and filename.endswith(suffix):
part_names.append(filename)
part_names.sort()
return part_names
def __init__(self,
dir_model: Path,
fname_out: Path,
ftype: gguf.LlamaFileType,
is_big_endian: bool,):
hparams = Gemma3VisionTower.load_hparams(dir_model)
self.hparams = hparams
self.fname_out = fname_out
self.ftype = ftype
endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
self.gguf_writer = gguf.GGUFWriter(path=None, arch="clip", endianess=endianess)
text_config = hparams["text_config"]
vision_config = hparams["vision_config"]
assert hparams["architectures"][0] == "Gemma3ForConditionalGeneration"
assert text_config is not None
assert vision_config is not None
self.gguf_writer.add_string ("clip.projector_type", "gemma3")
self.gguf_writer.add_bool ("clip.has_text_encoder", False)
self.gguf_writer.add_bool ("clip.has_vision_encoder", True)
self.gguf_writer.add_bool ("clip.has_llava_projector", False) # legacy
self.gguf_writer.add_uint32 ("clip.vision.image_size", vision_config["image_size"])
self.gguf_writer.add_uint32 ("clip.vision.patch_size", vision_config["patch_size"])
self.gguf_writer.add_uint32 ("clip.vision.embedding_length", vision_config["hidden_size"])
self.gguf_writer.add_uint32 ("clip.vision.feed_forward_length", vision_config["intermediate_size"])
self.gguf_writer.add_uint32 ("clip.vision.projection_dim", text_config["hidden_size"])
self.gguf_writer.add_uint32 ("clip.vision.block_count", vision_config["num_hidden_layers"])
self.gguf_writer.add_uint32 ("clip.vision.attention.head_count", vision_config["num_attention_heads"])
self.gguf_writer.add_float32("clip.vision.attention.layer_norm_epsilon", vision_config.get("layer_norm_eps", 1e-6))
# default values taken from HF tranformers code
self.gguf_writer.add_array ("clip.vision.image_mean", [0.5, 0.5, 0.5])
self.gguf_writer.add_array ("clip.vision.image_std", [0.5, 0.5, 0.5])
self.gguf_writer.add_bool ("clip.use_gelu", True)
# load tensors
for name, data_torch in self.get_tensors(dir_model):
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
self.add_tensor(name, data_torch)
def get_tensors(self, dir_model: Path) -> Iterator[tuple[str, Tensor]]:
part_names = Gemma3VisionTower.get_model_part_names(dir_model, "model", ".safetensors")
tensor_names_from_parts: set[str] = set()
for part_name in part_names:
logger.info(f"gguf: loading model part '{part_name}'")
from safetensors import safe_open
ctx = cast(ContextManager[Any], safe_open(dir_model / part_name, framework="pt", device="cpu"))
with ctx as model_part:
tensor_names_from_parts.update(model_part.keys())
for name in model_part.keys():
data = model_part.get_slice(name)
data = LazyTorchTensor.from_safetensors_slice(data)
yield name, data
def add_tensor(self, name: str, data_torch: Tensor):
is_1d = len(data_torch.shape) == 1
is_embd = ".embeddings." in name
old_dtype = data_torch.dtype
can_quantize = not is_1d and not is_embd
data_qtype = gguf.GGMLQuantizationType.F32
# this is to support old checkpoint
# TODO: remove this when we have the final model
name = name.replace("vision_model.vision_model.", "vision_tower.vision_model.")
name = name.replace("multimodal_projector.", "multi_modal_projector.")
# filter only vision tensors
if not name.startswith("vision_tower.vision_model.") and not name.startswith("multi_modal_projector."):
return
# prefix
name = name.replace("vision_tower.vision_model.encoder.layers.", "v.blk.")
name = name.replace("vision_tower.vision_model.", "v.")
# projector and input embd
name = name.replace(".embeddings.patch_embedding.", ".patch_embd.")
name = name.replace(".embeddings.position_embedding.", ".position_embd.")
name = name.replace(
"multi_modal_projector.mm_input_projection_weight",
"mm.input_projection.weight"
)
name = name.replace(
"multi_modal_projector.mm_soft_emb_norm.weight",
"mm.soft_emb_norm.weight"
)
name = name.replace("post_layernorm.", "post_ln.")
# each block
name = name.replace(".self_attn.k_proj.", ".attn_k.")
name = name.replace(".self_attn.v_proj.", ".attn_v.")
name = name.replace(".self_attn.q_proj.", ".attn_q.")
name = name.replace(".self_attn.out_proj.", ".attn_out.")
name = name.replace(".layer_norm1.", ".ln1.")
name = name.replace(".layer_norm2.", ".ln2.")
name = name.replace(".mlp.fc1.", ".ffn_down.")
name = name.replace(".mlp.fc2.", ".ffn_up.")
if can_quantize:
if self.ftype == gguf.LlamaFileType.ALL_F32:
data_qtype = gguf.GGMLQuantizationType.F32
elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
data_qtype = gguf.GGMLQuantizationType.F16
elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
data_qtype = gguf.GGMLQuantizationType.BF16
elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
data_qtype = gguf.GGMLQuantizationType.Q8_0
else:
raise ValueError(f"Unsupported file type: {self.ftype}")
# corrent norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
# the other norm values are part of SigLIP model, and they are already correct
# ref code: Gemma3RMSNorm
if "soft_emb_norm.weight" in name:
logger.info(f"Correcting norm value for '{name}'")
data_torch = data_torch + 1
data = data_torch.numpy()
try:
data = gguf.quants.quantize(data, data_qtype)
except Exception as e:
logger.error(f"Error quantizing tensor '{name}': {e}, fallback to F16")
data_qtype = gguf.GGMLQuantizationType.F16
data = gguf.quants.quantize(data, data_qtype)
# reverse shape to make it similar to the internal ggml dimension order
shape_str = f"{{{', '.join(str(n) for n in reversed(data_torch.shape))}}}"
logger.info(f"{f'%-32s' % f'{name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
self.gguf_writer.add_tensor(name, data, raw_dtype=data_qtype)
def write(self):
self.gguf_writer.write_header_to_file(path=self.fname_out)
self.gguf_writer.write_kv_data_to_file()
self.gguf_writer.write_tensors_to_file(progress=True)
self.gguf_writer.close()
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="Convert Gemma 3 vision tower safetensors to GGUF format",)
parser.add_argument(
"--outfile", type=Path, default="mmproj.gguf",
help="path to write to",
)
parser.add_argument(
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0"], default="f16",
help="output format",
)
parser.add_argument(
"--bigendian", action="store_true",
help="model is executed on big endian machine",
)
parser.add_argument(
"model", type=Path,
help="directory containing model file",
nargs="?",
)
parser.add_argument(
"--verbose", action="store_true",
help="increase output verbosity",
)
args = parser.parse_args()
if args.model is None:
parser.error("the following arguments are required: model")
return args
def main() -> None:
args = parse_args()
if args.verbose:
logging.basicConfig(level=logging.DEBUG)
else:
logging.basicConfig(level=logging.INFO)
dir_model = args.model
if not dir_model.is_dir():
logger.error(f'Error: {args.model} is not a directory')
sys.exit(1)
ftype_map: dict[str, gguf.LlamaFileType] = {
"f32": gguf.LlamaFileType.ALL_F32,
"f16": gguf.LlamaFileType.MOSTLY_F16,
"bf16": gguf.LlamaFileType.MOSTLY_BF16,
"q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
}
logger.info(f"Loading model: {dir_model.name}")
with torch.inference_mode():
gemma3_vision_tower = Gemma3VisionTower(
dir_model=dir_model,
fname_out=args.outfile,
ftype=ftype_map[args.outtype],
is_big_endian=args.bigendian,
)
gemma3_vision_tower.write()
if __name__ == '__main__':
main()

View File

@@ -1,332 +0,0 @@
#include "arg.h"
#include "base64.hpp"
#include "log.h"
#include "common.h"
#include "sampling.h"
#include "clip.h"
#include "llava.h"
#include "llama.h"
#include "ggml.h"
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <vector>
static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
int N = (int) tokens.size();
for (int i = 0; i < N; i += n_batch) {
int n_eval = (int) tokens.size() - i;
if (n_eval > n_batch) {
n_eval = n_batch;
}
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval))) {
LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
return false;
}
*n_past += n_eval;
}
return true;
}
static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
std::vector<llama_token> tokens;
tokens.push_back(id);
return eval_tokens(ctx_llama, tokens, 1, n_past);
}
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
std::string str2 = str;
std::vector<llama_token> embd_inp = common_tokenize(ctx_llama, str2, add_bos, true);
eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
return true;
}
static const char * sample(struct common_sampler * smpl,
struct llama_context * ctx_llama,
int * n_past) {
const llama_token id = common_sampler_sample(smpl, ctx_llama, -1);
common_sampler_accept(smpl, id, true);
const llama_model * model = llama_get_model(ctx_llama);
const llama_vocab * vocab = llama_model_get_vocab(model);
static std::string ret;
if (llama_vocab_is_eog(vocab, id)) {
ret = "</s>";
} else {
ret = common_token_to_piece(ctx_llama, id);
}
eval_id(ctx_llama, id, n_past);
return ret.c_str();
}
static const char* IMG_BASE64_TAG_BEGIN = "<img src=\"data:image/jpeg;base64,";
static const char* IMG_BASE64_TAG_END = "\">";
static void find_image_tag_in_prompt(const std::string& prompt, size_t& begin_out, size_t& end_out) {
begin_out = prompt.find(IMG_BASE64_TAG_BEGIN);
end_out = prompt.find(IMG_BASE64_TAG_END, (begin_out == std::string::npos) ? 0UL : begin_out);
}
static bool prompt_contains_image(const std::string& prompt) {
size_t begin, end;
find_image_tag_in_prompt(prompt, begin, end);
return (begin != std::string::npos);
}
// replaces the base64 image tag in the prompt with `replacement`
static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip_ctx * ctx_clip, int n_threads, const std::string& prompt) {
size_t img_base64_str_start, img_base64_str_end;
find_image_tag_in_prompt(prompt, img_base64_str_start, img_base64_str_end);
if (img_base64_str_start == std::string::npos || img_base64_str_end == std::string::npos) {
LOG_ERR("%s: invalid base64 image tag. must be %s<base64 byte string>%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END);
return NULL;
}
auto base64_bytes_start = img_base64_str_start + strlen(IMG_BASE64_TAG_BEGIN);
auto base64_bytes_count = img_base64_str_end - base64_bytes_start;
auto base64_str = prompt.substr(base64_bytes_start, base64_bytes_count );
auto required_bytes = base64::required_encode_size(base64_str.size());
auto img_bytes = std::vector<unsigned char>(required_bytes);
base64::decode(base64_str.begin(), base64_str.end(), img_bytes.begin());
auto embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, img_bytes.data(), img_bytes.size());
if (!embed) {
LOG_ERR("%s: could not load image from base64 string.\n", __func__);
return NULL;
}
return embed;
}
static std::string remove_image_from_prompt(const std::string& prompt, const char * replacement = "") {
size_t begin, end;
find_image_tag_in_prompt(prompt, begin, end);
if (begin == std::string::npos || end == std::string::npos) {
return prompt;
}
auto pre = prompt.substr(0, begin);
auto post = prompt.substr(end + strlen(IMG_BASE64_TAG_END));
return pre + replacement + post;
}
struct llava_context {
struct clip_ctx * ctx_clip = NULL;
struct llama_context * ctx_llama = NULL;
struct llama_model * model = NULL;
};
static void print_usage(int, char ** argv) {
LOG("\n example usage:\n");
LOG("\n %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
LOG("\n note: a lower temperature value like 0.1 is recommended for better quality.\n");
}
static struct llava_image_embed * load_image(llava_context * ctx_llava, common_params * params, const std::string & fname) {
// load and preprocess the image
llava_image_embed * embed = NULL;
auto prompt = params->prompt;
if (prompt_contains_image(prompt)) {
if (!params->image.empty()) {
LOG_INF("using base64 encoded image instead of command line image path\n");
}
embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->cpuparams.n_threads, prompt);
if (!embed) {
LOG_ERR("%s: can't load image from prompt\n", __func__);
return NULL;
}
params->prompt = remove_image_from_prompt(prompt);
} else {
embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->cpuparams.n_threads, fname.c_str());
if (!embed) {
fprintf(stderr, "%s: is %s really an image file?\n", __func__, fname.c_str());
return NULL;
}
}
return embed;
}
static void process_prompt(struct llava_context * ctx_llava, struct llava_image_embed * image_embed, common_params * params, const std::string & prompt) {
int n_past = 0;
const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict;
std::string system_prompt, user_prompt;
size_t image_pos = prompt.find("<image>");
if (image_pos != std::string::npos) {
// new templating mode: Provide the full prompt including system message and use <image> as a placeholder for the image
system_prompt = prompt.substr(0, image_pos);
user_prompt = prompt.substr(image_pos + std::string("<image>").length());
LOG_INF("system_prompt: %s\n", system_prompt.c_str());
if (params->verbose_prompt) {
auto tmp = common_tokenize(ctx_llava->ctx_llama, system_prompt, true, true);
for (int i = 0; i < (int) tmp.size(); i++) {
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
}
}
LOG_INF("user_prompt: %s\n", user_prompt.c_str());
if (params->verbose_prompt) {
auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
for (int i = 0; i < (int) tmp.size(); i++) {
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
}
}
} else {
// llava-1.5 native mode
system_prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:";
user_prompt = prompt + "\nASSISTANT:";
if (params->verbose_prompt) {
auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
for (int i = 0; i < (int) tmp.size(); i++) {
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
}
}
}
eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, true);
llava_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past);
eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);
// generate the response
LOG("\n");
struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sampling);
if (!smpl) {
LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
exit(1);
}
std::string response = "";
for (int i = 0; i < max_tgt_len; i++) {
const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past);
response += tmp;
if (strcmp(tmp, "</s>") == 0) break;
if (strstr(tmp, "###")) break; // Yi-VL behavior
LOG("%s", tmp);
if (strstr(response.c_str(), "<|im_end|>")) break; // Yi-34B llava-1.6 - for some reason those decode not as the correct token (tokenizer works)
if (strstr(response.c_str(), "<|im_start|>")) break; // Yi-34B llava-1.6
if (strstr(response.c_str(), "USER:")) break; // mistral llava-1.6
fflush(stdout);
}
common_sampler_free(smpl);
LOG("\n");
}
static struct llama_model * llava_init(common_params * params) {
llama_backend_init();
llama_numa_init(params->numa);
llama_model_params model_params = common_model_params_to_llama(*params);
llama_model * model = llama_model_load_from_file(params->model.path.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: unable to load model\n" , __func__);
return NULL;
}
return model;
}
static struct llava_context * llava_init_context(common_params * params, llama_model * model) {
const char * clip_path = params->mmproj.path.c_str();
auto prompt = params->prompt;
if (prompt.empty()) {
prompt = "describe the image in detail.";
}
auto ctx_clip = clip_model_load(clip_path, GGML_LOG_LEVEL_INFO);
llama_context_params ctx_params = common_context_params_to_llama(*params);
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
llama_context * ctx_llama = llama_init_from_model(model, ctx_params);
if (ctx_llama == NULL) {
LOG_ERR("%s: failed to create the llama_context\n" , __func__);
return NULL;
}
auto * ctx_llava = (struct llava_context *)malloc(sizeof(llava_context));
ctx_llava->ctx_llama = ctx_llama;
ctx_llava->ctx_clip = ctx_clip;
ctx_llava->model = model;
return ctx_llava;
}
static void llava_free(struct llava_context * ctx_llava) {
if (ctx_llava->ctx_clip) {
clip_free(ctx_llava->ctx_clip);
ctx_llava->ctx_clip = NULL;
}
llama_free(ctx_llava->ctx_llama);
llama_model_free(ctx_llava->model);
llama_backend_free();
}
int main(int argc, char ** argv) {
ggml_time_init();
common_params params;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, print_usage)) {
return 1;
}
common_init();
if (params.mmproj.path.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
print_usage(argc, argv);
return 1;
}
auto * model = llava_init(&params);
if (model == NULL) {
fprintf(stderr, "%s: error: failed to init llava model\n", __func__);
return 1;
}
if (prompt_contains_image(params.prompt)) {
auto * ctx_llava = llava_init_context(&params, model);
auto * image_embed = load_image(ctx_llava, &params, "");
// process the prompt
process_prompt(ctx_llava, image_embed, &params, params.prompt);
llama_perf_context_print(ctx_llava->ctx_llama);
llava_image_embed_free(image_embed);
ctx_llava->model = NULL;
llava_free(ctx_llava);
} else {
for (auto & image : params.image) {
auto * ctx_llava = llava_init_context(&params, model);
auto * image_embed = load_image(ctx_llava, &params, image);
if (!image_embed) {
LOG_ERR("%s: failed to load image %s. Terminating\n\n", __func__, image.c_str());
return 1;
}
// process the prompt
process_prompt(ctx_llava, image_embed, &params, params.prompt);
llama_perf_context_print(ctx_llava->ctx_llama);
llava_image_embed_free(image_embed);
ctx_llava->model = NULL;
llava_free(ctx_llava);
}
}
llama_model_free(model);
return 0;
}

View File

@@ -112,7 +112,7 @@ static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<
}
// Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out)
static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) {
static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out, clip_image_f32 * img_input) {
struct {
struct ggml_context * ctx;
} model;
@@ -175,7 +175,7 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
model.ctx = ggml_init(params);
struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); // example: 4096 x 576 x 4
struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_output_tokens(ctx_clip, img_input), num_images - 1); // example: 4096 x 576 x 4
// ggml_tensor_printf(image_features,"image_features",__LINE__,false,false);
// fill it with the image embeddings, ignoring the base
for (size_t i = 1; i < num_images; i++) {
@@ -214,8 +214,8 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
// append without newline tokens (default behavior in llava_arch when not using unpad ):
memcpy(image_embd_out + clip_n_patches(ctx_clip) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches
*n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_patches(ctx_clip));
memcpy(image_embd_out + clip_n_output_tokens(ctx_clip, img_input) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches
*n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_output_tokens(ctx_clip, img_input));
// Debug: Test single segments
// Current findings: sending base image, sending a segment embedding all works similar to python
@@ -313,7 +313,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip),
image_embd_v[i],
clip_embd_nbytes_by_img(ctx_clip, nx, ny));
n_img_pos_out += clip_n_patches_by_img(ctx_clip, img_res);
n_img_pos_out += clip_n_output_tokens(ctx_clip, img_res);
}
*n_img_pos = n_img_pos_out;
for (size_t i = 0; i < image_embd_v.size(); i++) {
@@ -342,8 +342,8 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
}
else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
// flat / default llava-1.5 type embedding
*n_img_pos = clip_n_patches(ctx_clip);
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), 0);
*n_img_pos = clip_n_output_tokens(ctx_clip, img_res);
bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd); // image_embd shape is 576 x 4096
if (!encoded) {
LOG_ERR("Unable to encode image\n");
@@ -381,7 +381,8 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);
int n_img_pos_out;
clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out);
clip_image_f32 * img_input = clip_image_f32_get_img(img_res_v.get(), 0);
clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out, img_input);
*n_img_pos = n_img_pos_out;
for (size_t i = 0; i < image_embd_v.size(); i++) {

View File

@@ -1,354 +0,0 @@
#include "arg.h"
#include "log.h"
#include "common.h"
#include "sampling.h"
#include "clip.h"
#include "llava.h"
#include "llama.h"
#include "ggml.h"
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <vector>
#include <iostream> // TODO: remove me
struct llava_context {
struct clip_ctx * ctx_clip = NULL;
struct llama_context * ctx_llama = NULL;
struct llama_model * model = NULL;
};
static void show_additional_info(int /*argc*/, char ** argv) {
LOG("\nexample usage:\n\n%s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
LOG("\nnote: a lower temperature value like 0.1 is recommended for better quality.\n");
}
static struct llama_model * llava_init(common_params * params) {
llama_backend_init();
llama_numa_init(params->numa);
llama_model_params model_params = common_model_params_to_llama(*params);
llama_model * model = llama_model_load_from_file(params->model.path.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: unable to load model\n" , __func__);
return NULL;
}
return model;
}
static struct llava_context * llava_init_context(common_params * params, llama_model * model) {
auto prompt = params->prompt;
if (prompt.empty()) {
prompt = "describe the image in detail.";
}
llama_context_params ctx_params = common_context_params_to_llama(*params);
if (params->n_ctx < 2048) {
// warn user here, "Image processing requires at least 2048 context, setting context to 2048"
LOG_WRN("%s: Image processing requires at least 2048 context, setting context to 2048\n" , __func__);
ctx_params.n_ctx = 2048;
} else {
ctx_params.n_ctx = params->n_ctx;
}
llama_context * ctx_llama = llama_init_from_model(model, ctx_params);
if (ctx_llama == NULL) {
LOG_ERR("%s: failed to create the llama_context\n" , __func__);
return NULL;
}
auto * ctx_llava = (struct llava_context *)malloc(sizeof(llava_context));
ctx_llava->ctx_llama = ctx_llama;
ctx_llava->model = model;
return ctx_llava;
}
static void llava_free(struct llava_context * ctx_llava) {
if (ctx_llava->ctx_clip) {
clip_free(ctx_llava->ctx_clip);
ctx_llava->ctx_clip = NULL;
}
llama_free(ctx_llava->ctx_llama);
llama_model_free(ctx_llava->model);
llama_backend_free();
}
static struct clip_ctx * clip_init_context(common_params * params) {
const char * clip_path = params->mmproj.path.c_str();
auto prompt = params->prompt;
if (prompt.empty()) {
prompt = "describe the image in detail.";
}
struct clip_context_params clip_params = {
/* use_gpu */ params->n_gpu_layers != 0,
/* verbosity */ GGML_LOG_LEVEL_INFO, // TODO: make this configurable
};
auto * ctx_clip = clip_init(clip_path, clip_params);
return ctx_clip;
}
static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
int N = (int) tokens.size();
for (int i = 0; i < N; i += n_batch) {
int n_eval = (int) tokens.size() - i;
if (n_eval > n_batch) {
n_eval = n_batch;
}
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval))) {
LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
return false;
}
*n_past += n_eval;
}
return true;
}
static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
std::vector<llama_token> tokens;
tokens.push_back(id);
return eval_tokens(ctx_llama, tokens, 1, n_past);
}
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
std::string str2 = str;
std::vector<llama_token> embd_inp = common_tokenize(ctx_llama, str2, add_bos, true);
return eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
}
static void process_eval_image_embed(struct llava_context * ctx_llava, const struct llava_image_embed * embeds, int n_batch, int * n_past, int idx) {
float * image_embed = (float *)malloc(clip_embd_nbytes(ctx_llava->ctx_clip));
std::memcpy(image_embed, embeds->embed + idx * clip_n_patches(ctx_llava->ctx_clip) * clip_n_mmproj_embd(ctx_llava->ctx_clip), clip_embd_nbytes(ctx_llava->ctx_clip));
auto * slice_embed = (llava_image_embed*)malloc(sizeof(llava_image_embed));
slice_embed->embed = image_embed;
slice_embed->n_image_pos = clip_n_patches(ctx_llava->ctx_clip);
llava_eval_image_embed(ctx_llava->ctx_llama, slice_embed, n_batch, n_past);
llava_image_embed_free(slice_embed);
}
static void process_image(struct llava_context * ctx_llava, struct llava_image_embed * embeds, common_params * params, int &n_past) {
std::string system_prompt;
int idx = 0;
int num_image_embeds = embeds->n_image_pos / clip_n_patches(ctx_llava->ctx_clip);
int has_minicpmv_projector = clip_is_minicpmv(ctx_llava->ctx_clip);
if (has_minicpmv_projector == 2) {
system_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n";
}
else if (has_minicpmv_projector == 3) {
system_prompt = "<|im_start|>user\n";
}
else if (has_minicpmv_projector == 4) {
system_prompt = "<|im_start|>user\n";
}
LOG_INF("%s: image token past: %d\n", __func__, n_past);
eval_string(ctx_llava->ctx_llama, (system_prompt+"<image>").c_str(), params->n_batch, &n_past, false);
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
if (num_image_embeds > 1) {
if (has_minicpmv_projector == 2) {
size_t num_image_embeds_col = clip_uhd_num_image_embeds_col(ctx_llava->ctx_clip);
eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
for (size_t i = 0; i < (num_image_embeds-1)/num_image_embeds_col; ++i) {
for (size_t j = 0; j < num_image_embeds_col; ++j) {
eval_string(ctx_llava->ctx_llama, std::string("<image>").c_str(), params->n_batch, &n_past, false);
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
if (j == num_image_embeds_col - 1) {
eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
}
}
}
eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
}
else if (has_minicpmv_projector == 3 || has_minicpmv_projector == 4) {
size_t num_image_embeds_col = clip_uhd_num_image_embeds_col(ctx_llava->ctx_clip);
for (size_t i = 0; i < (num_image_embeds-1)/num_image_embeds_col; ++i) {
for (size_t j = 0; j < num_image_embeds_col; ++j) {
eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
if (j == num_image_embeds_col - 1) {
eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
}
}
}
}
}
LOG_INF("%s: image token past: %d\n", __func__, n_past);
}
static const char * sample(struct common_sampler * smpl,
struct llama_context * ctx_llama,
int * n_past) {
const llama_token id = common_sampler_sample(smpl, ctx_llama, -1);
common_sampler_accept(smpl, id, true);
const llama_model * model = llama_get_model(ctx_llama);
const llama_vocab * vocab = llama_model_get_vocab(model);
static std::string ret;
if (llama_vocab_is_eog(vocab, id)) {
ret = "</s>";
} else {
ret = common_token_to_piece(ctx_llama, id);
}
eval_id(ctx_llama, id, n_past);
return ret.c_str();
}
static struct llava_context * minicpmv_init(common_params * params, const std::string & fname, int &n_past){
auto * ctx_clip = clip_init_context(params);
auto * embeds = llava_image_embed_make_with_filename(ctx_clip, params->cpuparams.n_threads, fname.c_str());
if (!embeds) {
LOG_ERR("failed to load image %s. Terminating\n\n", fname.c_str());
return NULL;
}
// process the prompt
if (params->prompt.empty() && params->interactive == false) {
LOG_ERR("prompt should be given or interactive mode should be on");
return NULL;
}
auto * model = llava_init(params);
if (model == NULL) {
fprintf(stderr, "%s: error: failed to init minicpmv model\n", __func__);
return NULL;
}
const int64_t t_llava_init_start_us = ggml_time_us();
auto * ctx_llava = llava_init_context(params, model);
ctx_llava->ctx_clip = ctx_clip;
const int64_t t_llava_init_end_us = ggml_time_us();
float t_llava_init_ms = (t_llava_init_end_us - t_llava_init_start_us) / 1000.0;
LOG_INF("%s: llava init in %8.2f ms.\n", __func__, t_llava_init_ms);
const int64_t t_process_image_start_us = ggml_time_us();
process_image(ctx_llava, embeds, params, n_past);
const int64_t t_process_image_end_us = ggml_time_us();
float t_process_image_ms = (t_process_image_end_us - t_process_image_start_us) / 1000.0;
LOG_INF("%s: llama process image in %8.2f ms.\n", __func__, t_process_image_ms);
llava_image_embed_free(embeds);
return ctx_llava;
}
static struct common_sampler * llama_init(struct llava_context * ctx_llava, common_params * params, const std::string & prompt, int & n_past, bool is_first = false){
std::string user_prompt = prompt;
int has_minicpmv_projector = clip_is_minicpmv(ctx_llava->ctx_clip);
if (!is_first) {
if (has_minicpmv_projector == 2) {
user_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" + prompt;
}
else if (has_minicpmv_projector == 3) {
user_prompt = "<|im_start|>user\n" + prompt;
}
else if (has_minicpmv_projector == 4) {
user_prompt = "<|im_start|>user\n" + prompt;
}
}
eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);
if (has_minicpmv_projector == 2) {
eval_string(ctx_llava->ctx_llama, "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", params->n_batch, &n_past, false);
}
else if (has_minicpmv_projector == 3) {
eval_string(ctx_llava->ctx_llama, "<|im_end|><|im_start|>assistant\n", params->n_batch, &n_past, false);
}
else if (has_minicpmv_projector == 4) {
eval_string(ctx_llava->ctx_llama, "<|im_end|><|im_start|>assistant\n", params->n_batch, &n_past, false);
}
// generate the response
LOG_INF("\n");
struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sampling);
return smpl;
}
static const char * llama_loop(struct llava_context * ctx_llava,struct common_sampler * smpl, int &n_past){
const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past);
return tmp;
}
int main(int argc, char ** argv) {
ggml_time_init();
common_params params;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, show_additional_info)) {
return 1;
}
common_init();
if (params.mmproj.path.empty() || (params.image.empty())) {
show_additional_info(argc, argv);
return 1;
}
for (auto & image : params.image) {
int n_past = 0;
auto * ctx_llava = minicpmv_init(&params, image, n_past);
if (!params.prompt.empty()) {
LOG("<user>%s\n", params.prompt.c_str());
LOG("<assistant>");
auto * smpl = llama_init(ctx_llava, &params, params.prompt, n_past, true);
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
std::string response;
bool have_tmp = false;
for (int i = 0; i < max_tgt_len; i++) {
const auto * tmp = llama_loop(ctx_llava, smpl, n_past);
response += tmp;
if (strcmp(tmp, "</s>") == 0){
if (!have_tmp) {
continue;
}
break;
}
if (strstr(tmp, "###")) break; // Yi-VL behavior
have_tmp = true;
printf("%s", tmp);
if (strstr(response.c_str(), "<user>")) break; // minicpm-v
fflush(stdout);
}
common_sampler_free(smpl);
}else {
while (true) {
LOG("<user>");
std::string prompt;
std::getline(std::cin, prompt);
LOG("<assistant>");
auto * smpl = llama_init(ctx_llava, &params, prompt, n_past, true);
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
std::string response;
for (int i = 0; i < max_tgt_len; i++) {
const auto * tmp = llama_loop(ctx_llava, smpl, n_past);
response += tmp;
if (strcmp(tmp, "</s>") == 0) break;
printf("%s", tmp);// mistral llava-1.6
if (strstr(response.c_str(), "<user>")) break; // minicpm-v
fflush(stdout);
}
common_sampler_free(smpl);
}
}
printf("\n");
llama_perf_context_print(ctx_llava->ctx_llama);
ctx_llava->model = NULL;
llava_free(ctx_llava);
}
return 0;
}

View File

@@ -24,20 +24,24 @@
#include <signal.h>
#endif
static bool g_is_generating = false;
// volatile, because of signal being an interrupt
static volatile bool g_is_generating = false;
static volatile bool g_is_interrupted = false;
/**
* Please note that this is NOT a production-ready stuff.
* It is a playground for trying Gemma 3 vision capabilities.
* It is a playground for trying multimodal support in llama.cpp.
* For contributors: please keep this code simple and easy to understand.
*/
static void show_additional_info(int /*argc*/, char ** argv) {
LOG(
"Experimental CLI for using Gemma 3 vision model\n\n"
"Experimental CLI for multimodal\n\n"
"Usage: %s [options] -m <model> --mmproj <mmproj> --image <image> -p <prompt>\n\n"
" -m and --mmproj are required\n"
" --image and -p are optional, if NOT provided, the CLI will run in chat mode\n",
" -hf user/repo can replace both -m and --mmproj in most cases\n"
" --image and -p are optional, if NOT provided, the CLI will run in chat mode\n"
" to disable using GPU for mmproj model, add --no-mmproj-offload\n",
argv[0]
);
}
@@ -49,14 +53,16 @@ static void sigint_handler(int signo) {
g_is_generating = false;
} else {
console::cleanup();
LOG("\nInterrupted by user\n");
_exit(130);
if (g_is_interrupted) {
_exit(1);
}
g_is_interrupted = true;
}
}
}
#endif
struct gemma3_context {
struct mtmd_cli_context {
mtmd_context_ptr ctx_vision;
common_init_result llama_init;
@@ -66,90 +72,107 @@ struct gemma3_context {
llama_batch batch;
int n_batch;
std::vector<mtmd_bitmap> bitmaps;
// note: we know that gemma3 template is "linear", meaning each turn is completely separated to another
// so here we don't need to keep track of chat history
common_chat_templates_ptr tmpls;
// support for legacy templates (models not having EOT token)
llama_tokens antiprompt_tokens;
int n_threads = 1;
llama_pos n_past = 0;
gemma3_context(common_params & params) : llama_init(common_init_from_params(params)) {
mtmd_cli_context(common_params & params) : llama_init(common_init_from_params(params)) {
model = llama_init.model.get();
lctx = llama_init.context.get();
vocab = llama_model_get_vocab(model);
n_threads = params.cpuparams.n_threads;
batch = llama_batch_init(params.n_batch, 0, 1);
n_batch = params.n_batch;
if (!llama_model_chat_template(model, nullptr) && params.chat_template.empty()) {
LOG_ERR("Model does not have chat template.\n");
LOG_ERR(" For old llava models, you may need to use '--chat-template vicuna'\n");
LOG_ERR(" For MobileVLM models, use '--chat-template deepseek'\n");
LOG_ERR(" For Mistral Small 3.1, use '--chat-template mistral-v7'\n");
exit(1);
}
tmpls = common_chat_templates_init(model, params.chat_template);
LOG_INF("%s: chat template example:\n%s\n", __func__, common_chat_format_example(tmpls.get(), params.use_jinja).c_str());
init_vision_context(params);
// load antiprompt tokens for legacy templates
if (params.chat_template == "vicuna") {
antiprompt_tokens = common_tokenize(lctx, "ASSISTANT:", false, true);
} else if (params.chat_template == "deepseek") {
antiprompt_tokens = common_tokenize(lctx, "###", false, true);
}
}
void init_vision_context(common_params & params) {
const char * clip_path = params.mmproj.path.c_str();
ctx_vision.reset(mtmd_init_from_file(clip_path, model, mtmd_context_params{
/* use_gpu */ true,
/* use_gpu */ params.mmproj_use_gpu,
/* timings */ true,
/* n_threads */ params.cpuparams.n_threads,
/* verbosity */ GGML_LOG_LEVEL_INFO,
/* verbosity */ params.verbosity > 0 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_INFO,
}));
if (!ctx_vision.get()) {
LOG_ERR("Failed to load vision model from %s\n", clip_path);
exit(1);
}
}
};
struct decode_embd_batch {
std::vector<llama_pos> pos;
std::vector<int32_t> n_seq_id;
std::vector<llama_seq_id> seq_id_0;
std::vector<llama_seq_id *> seq_ids;
std::vector<int8_t> logits;
llama_batch batch;
decode_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
pos .resize(n_tokens);
n_seq_id.resize(n_tokens);
seq_ids .resize(n_tokens + 1);
logits .resize(n_tokens);
seq_id_0.resize(1);
seq_id_0[0] = seq_id;
seq_ids [n_tokens] = nullptr;
batch = {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ embd,
/*pos =*/ pos.data(),
/*n_seq_id =*/ n_seq_id.data(),
/*seq_id =*/ seq_ids.data(),
/*logits =*/ logits.data(),
};
for (int i = 0; i < n_tokens; i++) {
batch.pos [i] = pos_0 + i;
batch.n_seq_id[i] = 1;
batch.seq_id [i] = seq_id_0.data();
batch.logits [i] = false;
bool check_antiprompt(const llama_tokens & generated_tokens) {
if (antiprompt_tokens.empty() || generated_tokens.size() < antiprompt_tokens.size()) {
return false;
}
return std::equal(
generated_tokens.end() - antiprompt_tokens.size(),
generated_tokens.end(),
antiprompt_tokens.begin()
);
}
bool load_image(const std::string & fname) {
mtmd_bitmap bitmap;
if (mtmd_helper_bitmap_init_from_file(fname.c_str(), bitmap)) {
return false;
}
bitmaps.push_back(std::move(bitmap));
return true;
}
};
static int generate_response(gemma3_context & ctx, common_sampler * smpl, int n_predict) {
static int generate_response(mtmd_cli_context & ctx, common_sampler * smpl, int n_predict) {
llama_tokens generated_tokens;
for (int i = 0; i < n_predict; i++) {
if (i > n_predict || !g_is_generating) {
printf("\n");
if (i > n_predict || !g_is_generating || g_is_interrupted) {
LOG("\n");
break;
}
llama_token token_id = common_sampler_sample(smpl, ctx.lctx, -1);
generated_tokens.push_back(token_id);
common_sampler_accept(smpl, token_id, true);
if (llama_vocab_is_eog(ctx.vocab, token_id)) {
printf("\n");
if (llama_vocab_is_eog(ctx.vocab, token_id) || ctx.check_antiprompt(generated_tokens)) {
LOG("\n");
break; // end of generation
}
printf("%s", common_token_to_piece(ctx.lctx, token_id).c_str());
LOG("%s", common_token_to_piece(ctx.lctx, token_id).c_str());
fflush(stdout);
if (g_is_interrupted) {
LOG("\n");
break;
}
// eval the token
common_batch_clear(ctx.batch);
common_batch_add(ctx.batch, token_id, ctx.n_past++, {0}, true);
@@ -161,9 +184,7 @@ static int generate_response(gemma3_context & ctx, common_sampler * smpl, int n_
return 0;
}
static int eval_message(gemma3_context & ctx, common_chat_msg & msg, std::vector<std::string> & images_fname, bool add_bos = false) {
std::vector<mtmd_bitmap> bitmaps;
static int eval_message(mtmd_cli_context & ctx, common_chat_msg & msg, bool add_bos = false) {
common_chat_templates_inputs tmpl_inputs;
tmpl_inputs.messages = {msg};
tmpl_inputs.add_generation_prompt = true;
@@ -171,32 +192,30 @@ static int eval_message(gemma3_context & ctx, common_chat_msg & msg, std::vector
auto formatted_chat = common_chat_templates_apply(ctx.tmpls.get(), tmpl_inputs);
LOG_DBG("formatted_chat.prompt: %s\n", formatted_chat.prompt.c_str());
for (auto & fname : images_fname) {
mtmd_bitmap bitmap;
if (mtmd_helper_bitmap_init_from_file(fname.c_str(), bitmap)) {
LOG_ERR("Unable to load image %s\n", fname.c_str());
return 2; // image not found
}
bitmaps.push_back(std::move(bitmap));
}
mtmd_input_text text;
text.text = formatted_chat.prompt;
text.add_special = add_bos;
text.parse_special = true;
mtmd_input_chunks chunks;
int32_t res = mtmd_tokenize(ctx.ctx_vision.get(), chunks, text, bitmaps);
if (g_is_interrupted) return 0;
int32_t res = mtmd_tokenize(ctx.ctx_vision.get(), chunks, text, ctx.bitmaps);
if (res != 0) {
LOG_ERR("Unable to tokenize prompt, res = %d\n", res);
return 1;
}
ctx.bitmaps.clear();
if (mtmd_helper_eval(ctx.ctx_vision.get(), ctx.lctx, chunks, ctx.n_past, 0, ctx.n_batch)) {
LOG_ERR("Unable to eval prompt\n");
return 1;
}
ctx.n_past += mtmd_helper_get_n_tokens(chunks);
ctx.n_past += mtmd_helper_get_n_pos(chunks);
LOG("\n");
return 0;
}
@@ -215,11 +234,12 @@ int main(int argc, char ** argv) {
if (params.mmproj.path.empty()) {
show_additional_info(argc, argv);
LOG_ERR("ERR: Missing --mmproj argument\n");
return 1;
}
gemma3_context ctx(params);
printf("%s: %s\n", __func__, params.model.path.c_str());
mtmd_cli_context ctx(params);
LOG("%s: loading model: %s\n", __func__, params.model.path.c_str());
bool is_single_turn = !params.prompt.empty() && !params.image.empty();
@@ -242,6 +262,8 @@ int main(int argc, char ** argv) {
#endif
}
if (g_is_interrupted) return 130;
if (is_single_turn) {
g_is_generating = true;
if (params.prompt.find("<__image__>") == std::string::npos) {
@@ -250,10 +272,15 @@ int main(int argc, char ** argv) {
common_chat_msg msg;
msg.role = "user";
msg.content = params.prompt;
if (eval_message(ctx, msg, params.image, true)) {
for (const auto & image : params.image) {
if (!ctx.load_image(image)) {
return 1; // error is already printed by libmtmd
}
}
if (eval_message(ctx, msg, true)) {
return 1;
}
if (generate_response(ctx, smpl, n_predict)) {
if (!g_is_interrupted && generate_response(ctx, smpl, n_predict)) {
return 1;
}
@@ -265,15 +292,15 @@ int main(int argc, char ** argv) {
LOG("\n");
bool is_first_msg = true;
std::vector<std::string> images_fname;
std::string content;
while (true) {
while (!g_is_interrupted) {
g_is_generating = false;
LOG("\n> ");
console::set_display(console::user_input);
std::string line;
console::readline(line, false);
if (g_is_interrupted) break;
console::set_display(console::reset);
line = string_strip(line);
if (line.empty()) {
@@ -289,10 +316,17 @@ int main(int argc, char ** argv) {
continue;
}
g_is_generating = true;
if (line.find("/image") == 0) {
if (line == "/image" || line.find("/image ") == 0) {
if (line.size() < 8) {
LOG_ERR("ERR: Missing image filename\n");
continue;
}
std::string image = line.substr(7);
images_fname.push_back(string_strip(image));
content += "<__image__>";
if (ctx.load_image(image)) {
LOG("Image %s loaded\n", image.c_str());
content += "<__image__>";
}
// else, error is already printed by libmtmd
continue;
} else {
content += line;
@@ -300,24 +334,20 @@ int main(int argc, char ** argv) {
common_chat_msg msg;
msg.role = "user";
msg.content = content;
int ret = eval_message(ctx, msg, images_fname, is_first_msg);
if (ret == 2) {
// non-fatal error
images_fname.clear();
content.clear();
continue;
}
int ret = eval_message(ctx, msg, is_first_msg);
if (ret) {
return 1;
}
if (g_is_interrupted) break;
if (generate_response(ctx, smpl, n_predict)) {
return 1;
}
images_fname.clear();
content.clear();
is_first_msg = false;
}
}
if (g_is_interrupted) LOG("\nInterrupted by user\n");
LOG("\n\n");
llama_perf_context_print(ctx.lctx);
return 0;
return g_is_interrupted ? 130 : 0;
}

View File

@@ -12,6 +12,15 @@
#include <limits>
#include <vector>
// slice template, used by some llava-uhd models to correctly place the special tokens around image embeddings
// models not having it (llava-1.6) will process embeddings without any special tokens in-between
enum mtmd_slice_tmpl {
MTMD_SLICE_TMPL_NONE,
MTMD_SLICE_TMPL_MINICPMV_2_5,
MTMD_SLICE_TMPL_MINICPMV_2_6,
// TODO @ngxson : add support for idefics (SmolVLM)
};
struct mtmd_context {
struct clip_ctx * ctx_clip;
const struct llama_model * text_model;
@@ -21,11 +30,24 @@ struct mtmd_context {
int n_threads;
std::string image_marker;
// for minicpmv, we need special tokens in-between slices
mtmd_slice_tmpl slice_tmpl = MTMD_SLICE_TMPL_NONE;
llama_token tok_ov_img_start = LLAMA_TOKEN_NULL; // overview image
llama_token tok_ov_img_end = LLAMA_TOKEN_NULL; // overview image
llama_token tok_slices_start = LLAMA_TOKEN_NULL; // start of all slices
llama_token tok_slices_end = LLAMA_TOKEN_NULL; // end of all slices
llama_token tok_sli_img_start = LLAMA_TOKEN_NULL; // single slice
llama_token tok_sli_img_end = LLAMA_TOKEN_NULL; // single slice
llama_token tok_row_end = LLAMA_TOKEN_NULL; // end of row
bool use_mrope = false; // for Qwen2VL, we need to use M-RoPE
// TODO @ngxson : add timings
mtmd_context(const char * mmproj_fname,
const llama_model * text_model,
const mtmd_context_params & ctx_params) :
text_model (text_model),
print_timings(ctx_params.print_timings),
n_threads (ctx_params.n_threads),
image_marker (ctx_params.image_marker)
@@ -37,12 +59,66 @@ struct mtmd_context {
if (!ctx_clip) {
throw std::runtime_error(string_format("Failed to load CLIP model from %s\n", mmproj_fname));
}
this->text_model = text_model;
use_mrope = clip_is_qwen2vl(ctx_clip);
int minicpmv_version = clip_is_minicpmv(ctx_clip);
if (minicpmv_version == 2) {
// minicpmv 2.5 format:
// <image> (overview) </image><slice><image> (slice) </image><image> (slice) </image>\n ... </slice>
slice_tmpl = MTMD_SLICE_TMPL_MINICPMV_2_5;
tok_ov_img_start = lookup_token("<image>");
tok_ov_img_end = lookup_token("</image>");
tok_slices_start = lookup_token("<slice>");
tok_slices_end = lookup_token("</slice>");
tok_sli_img_start = tok_ov_img_start;
tok_sli_img_end = tok_ov_img_end;
tok_row_end = lookup_token("\n");
} else if (minicpmv_version == 3 || minicpmv_version == 4) {
// minicpmv 2.6 format:
// <image> (overview) </image><slice> (slice) </slice><slice> (slice) </slice>\n ...
slice_tmpl = MTMD_SLICE_TMPL_MINICPMV_2_6;
tok_ov_img_start = lookup_token("<image>");
tok_ov_img_end = lookup_token("</image>");
tok_sli_img_start = lookup_token("<slice>");
tok_sli_img_end = lookup_token("</slice>");
tok_row_end = lookup_token("\n");
} else if (minicpmv_version != 0) {
GGML_ASSERT(false && "unsupported minicpmv version");
}
}
~mtmd_context() {
clip_free(ctx_clip);
}
private:
llama_token lookup_token(const std::string & token_text) {
const llama_vocab * vocab = llama_model_get_vocab(text_model);
const int n_vocab = llama_vocab_n_tokens(vocab);
for (int i = 0; i < n_vocab; i++) {
if (token_to_piece(vocab, i, true) == token_text) {
return i;
}
}
return LLAMA_TOKEN_NULL;
}
std::string token_to_piece(const llama_vocab * vocab, llama_token token, bool special) {
std::string piece;
piece.resize(piece.capacity()); // using string internal cache, 15 bytes + '\n'
const int n_chars = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
if (n_chars < 0) {
piece.resize(-n_chars);
int check = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
GGML_ASSERT(check == -n_chars);
} else {
piece.resize(n_chars);
}
return piece;
}
};
struct mtmd_image_tokens_data {
@@ -52,6 +128,7 @@ struct mtmd_image_tokens_data {
struct mtmd_image_tokens {
uint32_t nx; // number of tokens in x direction
uint32_t ny; // number of tokens in y direction
bool use_mrope_pos = false; // use M-RoPE position counting (the whole image is 1 temporal position)
uint32_t n_tokens() const { return nx * ny; }
clip_image_f32_batch batch_f32; // preprocessed image patches
std::string id; // optional user-defined ID, useful for KV cache tracking
@@ -103,22 +180,80 @@ int32_t mtmd_tokenize(mtmd_context * ctx,
std::string prompt_modified(text.text);
std::string marker_modified(ctx->image_marker);
projector_type proj_type = clip_get_projector_type(ctx->ctx_clip);
// a bit hacky here, but works for now
// for some models, we need to add prefix and suffix to the image embeddings
if (proj_type == PROJECTOR_TYPE_GEMMA3) {
if (clip_is_gemma3(ctx->ctx_clip)) {
// gemma 3
// <start_of_image> ... (image embeddings) ... <end_of_image>
marker_modified = "<start_of_image>" + ctx->image_marker + "<end_of_image>";
string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
} else if (proj_type == PROJECTOR_TYPE_GLM_EDGE) {
// <|begin_of_image|> ... (image embeddings) ... <|end_of_image|>
marker_modified = "<|begin_of_image|>" + ctx->image_marker + "<|end_of_image|>";
string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
} else if (proj_type == PROJECTOR_TYPE_IDEFICS3) {
// https://github.com/huggingface/transformers/blob/a42ba80fa520c784c8f11a973ca9034e5f859b79/src/transformers/models/idefics3/processing_idefics3.py#L192-L215
marker_modified = "<fake_token_around_image><global-img>" + ctx->image_marker + "<fake_token_around_image>";
string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
} else if (proj_type == PROJECTOR_TYPE_PIXTRAL) {
// https://github.com/huggingface/transformers/blob/1cd110c6cb6a6237614130c470e9a902dbc1a4bd/docs/source/en/model_doc/pixtral.md
marker_modified = ctx->image_marker + "[IMG_END]";
string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
}
else if (proj_type == PROJECTOR_TYPE_QWEN2VL || proj_type == PROJECTOR_TYPE_QWEN25VL) {
// <|vision_start|> ... (image embeddings) ... <|vision_end|>
marker_modified = "<|vision_start|>" + ctx->image_marker + "<|vision_end|>";
string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
}
// llava-1.5, llava-1.6, Yi-VL, Yi-34B, granite: don't need to add prefix and suffix
std::vector<std::string> parts = string_split_str(prompt_modified, ctx->image_marker);
output.clear();
output.reserve(parts.size());
size_t i_img = 0;
// utility for adding raw tokens
auto add_text_chunk = [&output](std::vector<llama_token> && tokens) {
mtmd_input_chunk chunk{
MTMD_INPUT_CHUNK_TYPE_TEXT,
std::move(tokens),
{},
};
output.emplace_back(std::move(chunk));
};
// utility for splitting batch of multiple images into chunks of batch having single images
auto split_batch_to_chunk = [&ctx](clip_image_f32_batch && batch_f32, const std::string & id) {
std::vector<mtmd_input_chunk> chunks;
for (auto & entry : batch_f32.entries) {
mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens);
image_tokens->nx = clip_n_output_tokens(ctx->ctx_clip, entry.get());
image_tokens->ny = 1;
image_tokens->batch_f32.entries.push_back(std::move(entry));
image_tokens->id = id;
mtmd_input_chunk chunk{
MTMD_INPUT_CHUNK_TYPE_IMAGE,
{},
std::move(image_tokens),
};
chunks.emplace_back(std::move(chunk));
}
return chunks;
};
for (const auto & part : parts) {
//printf("tokenizing part: %s\n", part.c_str());
// printf("tokenizing part: %s\n", part.c_str());
bool add_bos = &parts.front() == &part;
auto tokens = mtmd_tokenize_text_internal(vocab, part, text.add_special && add_bos, text.parse_special);
if (tokens.empty()) {
@@ -139,12 +274,13 @@ int32_t mtmd_tokenize(mtmd_context * ctx,
return 1;
}
// shim layer
// convert mtmd_bitmap to clip_image_u8
clip_image_u8_ptr img_u8(clip_image_u8_init());
img_u8->nx = bitmaps[i_img].nx;
img_u8->ny = bitmaps[i_img].ny;
img_u8->buf.resize(bitmaps[i_img].data.size());
std::memcpy(img_u8->buf.data(), bitmaps[i_img].data.data(), img_u8->nx * img_u8->ny * 3);
clip_image_size img_u8_size{img_u8->nx, img_u8->ny};
// preprocess image
clip_image_f32_batch batch_f32;
@@ -154,19 +290,78 @@ int32_t mtmd_tokenize(mtmd_context * ctx,
return 2;
}
mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens);
image_tokens->nx = clip_n_patches(ctx->ctx_clip); // TODO @ngxson : use clip_n_patches_by_image
image_tokens->ny = 1; // TODO
image_tokens->batch_f32 = std::move(batch_f32);
image_tokens->id = bitmaps[i_img].id; // optional
if (ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_5 || ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_6) {
// split batch into chunks of single images
auto chunks = split_batch_to_chunk(std::move(batch_f32), bitmaps[i_img].id);
GGML_ASSERT(chunks.size() > 0);
mtmd_input_chunk chunk{
MTMD_INPUT_CHUNK_TYPE_IMAGE,
{},
std::move(image_tokens),
};
output.emplace_back(std::move(chunk));
i_img++;
// add overview image
add_text_chunk({ctx->tok_ov_img_start});
output.emplace_back(std::move(chunks.front()));
chunks.erase(chunks.begin());
add_text_chunk({ctx->tok_ov_img_end});
// add slices
if (!chunks.empty()) {
clip_add_load_image_size(ctx->ctx_clip, &img_u8_size);
int n_col = clip_uhd_num_image_embeds_col(ctx->ctx_clip);
int n_row = (int)chunks.size() / n_col;
GGML_ASSERT(n_row * n_col == (int)chunks.size());
if (ctx->tok_slices_start != LLAMA_TOKEN_NULL) {
add_text_chunk({ctx->tok_slices_start});
}
for (int y = 0; y < n_row; y++) {
for (int x = 0; x < n_col; x++) {
if (ctx->tok_sli_img_start != LLAMA_TOKEN_NULL) {
add_text_chunk({ctx->tok_sli_img_start});
}
output.emplace_back(std::move(chunks[y * n_col + x]));
if (ctx->tok_sli_img_end != LLAMA_TOKEN_NULL) {
add_text_chunk({ctx->tok_sli_img_end});
}
}
if (ctx->tok_row_end != LLAMA_TOKEN_NULL && y != n_row - 1) {
add_text_chunk({ctx->tok_row_end});
}
}
if (ctx->tok_slices_end != LLAMA_TOKEN_NULL) {
add_text_chunk({ctx->tok_slices_end});
}
}
} else {
size_t n_tokens = 0;
for (const auto & entry : batch_f32.entries) {
n_tokens += clip_n_output_tokens(ctx->ctx_clip, entry.get());
}
mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens);
if (ctx->use_mrope) {
// for Qwen2VL, we need this information for M-RoPE decoding positions
image_tokens->nx = clip_n_output_tokens_x(ctx->ctx_clip, batch_f32.entries[0].get());
image_tokens->ny = clip_n_output_tokens_y(ctx->ctx_clip, batch_f32.entries[0].get());
image_tokens->use_mrope_pos = true;
} else {
// other models, we only need the total number of tokens
image_tokens->nx = n_tokens;
image_tokens->ny = 1;
}
image_tokens->batch_f32 = std::move(batch_f32);
image_tokens->id = bitmaps[i_img].id; // optional
LOG_DBG("image_tokens->nx = %d\n", image_tokens->nx);
LOG_DBG("image_tokens->ny = %d\n", image_tokens->ny);
LOG_DBG("batch_f32 size = %d\n", (int)image_tokens->batch_f32.entries.size());
mtmd_input_chunk chunk{
MTMD_INPUT_CHUNK_TYPE_IMAGE,
{},
std::move(image_tokens),
};
output.emplace_back(std::move(chunk));
}
i_img++; // move to next image
}
}
@@ -195,14 +390,45 @@ std::string mtmd_image_tokens_get_id(const mtmd_image_tokens * image_tokens) {
return image_tokens->id;
}
llama_pos mtmd_image_tokens_get_n_pos(const mtmd_image_tokens * image_tokens) {
if (image_tokens->use_mrope_pos) {
return 1; // for M-RoPE, the whole image is 1 in temporal dimension
}
return image_tokens->n_tokens();
}
int32_t mtmd_encode(mtmd_context * ctx, const mtmd_image_tokens * image_tokens) {
int n_mmproj_embd = clip_n_mmproj_embd(ctx->ctx_clip);
ctx->image_embd_v.resize(image_tokens->n_tokens() * n_mmproj_embd);
bool ok = clip_image_batch_encode(
ctx->ctx_clip,
ctx->n_threads,
&image_tokens->batch_f32,
ctx->image_embd_v.data());
bool ok = false;
// only effective for minicpmv and qwen2vl, other models will ignore load_image_size
{
clip_image_size slice_size{
image_tokens->batch_f32.entries[0]->nx,
image_tokens->batch_f32.entries[0]->ny};
clip_add_load_image_size(ctx->ctx_clip, &slice_size);
}
if (clip_is_llava(ctx->ctx_clip) || clip_is_minicpmv(ctx->ctx_clip) || clip_is_glm(ctx->ctx_clip)) {
// TODO @ngxson : llava does not support batched encoding ; this should be fixed inside clip_image_batch_encode()
const auto & entries = image_tokens->batch_f32.entries;
for (size_t i = 0; i < entries.size(); i++) {
int n_tokens_per_image = clip_n_output_tokens(ctx->ctx_clip, entries[i].get());
ok = clip_image_encode(
ctx->ctx_clip,
ctx->n_threads,
entries[i].get(),
ctx->image_embd_v.data() + i*n_mmproj_embd*n_tokens_per_image);
}
} else {
ok = clip_image_batch_encode(
ctx->ctx_clip,
ctx->n_threads,
&image_tokens->batch_f32,
ctx->image_embd_v.data());
}
return ok ? 0 : 1;
}
@@ -216,7 +442,7 @@ size_t mtmd_helper_get_n_tokens(mtmd_input_chunks & chunks) {
if (chunk.type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
n_tokens += chunk.tokens_text.size();
} else if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
n_tokens += chunk.tokens_image->n_tokens();
n_tokens += mtmd_image_tokens_get_n_tokens(chunk.tokens_image.get());
} else {
GGML_ASSERT(false && "chunk type not supported");
}
@@ -224,22 +450,38 @@ size_t mtmd_helper_get_n_tokens(mtmd_input_chunks & chunks) {
return n_tokens;
}
llama_pos mtmd_helper_get_n_pos(mtmd_input_chunks & chunks) {
llama_pos n_pos = 0;
for (auto & chunk : chunks) {
if (chunk.type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
n_pos += chunk.tokens_text.size();
} else if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
n_pos += mtmd_image_tokens_get_n_pos(chunk.tokens_image.get());
} else {
GGML_ASSERT(false && "chunk type not supported");
}
}
return n_pos;
}
// helper struct to make working with embd batch easier
// note: this will be removed after llama_batch_ext refactoring
struct decode_embd_batch {
int n_pos_per_embd;
int n_mmproj_embd;
std::vector<llama_pos> pos;
std::vector<llama_pos> pos_view; // used by mrope
std::vector<int32_t> n_seq_id;
std::vector<llama_seq_id> seq_id_0;
std::vector<llama_seq_id *> seq_ids;
std::vector<int8_t> logits;
llama_batch batch;
decode_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
pos .resize(n_tokens);
decode_embd_batch(float * embd, int32_t n_tokens, int n_pos_per_embd, int n_mmproj_embd) : n_pos_per_embd(n_pos_per_embd), n_mmproj_embd(n_mmproj_embd) {
pos .resize(n_tokens * n_pos_per_embd);
n_seq_id.resize(n_tokens);
seq_ids .resize(n_tokens + 1);
logits .resize(n_tokens);
seq_id_0.resize(1);
seq_id_0[0] = seq_id;
seq_ids [n_tokens] = nullptr;
batch = {
/*n_tokens =*/ n_tokens,
@@ -250,13 +492,64 @@ struct decode_embd_batch {
/*seq_id =*/ seq_ids.data(),
/*logits =*/ logits.data(),
};
for (int i = 0; i < n_tokens; i++) {
}
void set_position_normal(llama_pos pos_0, llama_seq_id seq_id) {
seq_id_0[0] = seq_id;
for (int i = 0; i < batch.n_tokens; i++) {
batch.pos [i] = pos_0 + i;
batch.n_seq_id[i] = 1;
batch.seq_id [i] = seq_id_0.data();
batch.logits [i] = false;
}
}
void set_position_mrope(llama_pos pos_0, int nx, int ny, llama_seq_id seq_id) {
GGML_ASSERT(n_pos_per_embd == 4);
seq_id_0[0] = seq_id;
for (int y = 0; y < ny; y++) {
for (int x = 0; x < nx; x++) {
int i = y * nx + x;
pos[i ] = pos_0;
pos[i + batch.n_tokens ] = pos_0 + y;
pos[i + batch.n_tokens * 2] = pos_0 + x;
pos[i + batch.n_tokens * 3] = 0; // last pos dim is unused
}
}
for (int i = 0; i < batch.n_tokens; i++) {
batch.n_seq_id[i] = 1;
batch.seq_id [i] = seq_id_0.data();
batch.logits [i] = false;
}
}
llama_batch get_view(int offset, int n_tokens) {
llama_pos * pos_ptr;
pos_view.clear();
pos_view.resize(n_tokens * n_pos_per_embd);
if (n_pos_per_embd > 1) {
// mrope
// for example, with layout of src: 1234...1234...1234...1234...
// offset 2 will give us dst: 34...34...34...34...
for (int i = 0; i < n_pos_per_embd; i++) {
auto src = pos.begin() + i * batch.n_tokens + offset;
pos_view.insert(pos_view.end(), src, src + n_tokens);
}
pos_ptr = pos_view.data();
} else {
// normal
pos_ptr = pos.data() + offset;
}
return {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ batch.embd + offset * n_mmproj_embd,
/*pos =*/ pos_ptr,
/*n_seq_id =*/ batch.n_seq_id + offset,
/*seq_id =*/ batch.seq_id + offset,
/*logits =*/ batch.logits + offset,
};
}
};
int32_t mtmd_helper_eval(mtmd_context * ctx,
@@ -268,36 +561,40 @@ int32_t mtmd_helper_eval(mtmd_context * ctx,
int32_t ret;
llama_pos n_past = pos0;
llama_batch text_batch = llama_batch_init(n_batch, 0, 1);
int n_mmproj_embd = clip_n_mmproj_embd(ctx->ctx_clip);
int n_pos_per_embd = mtmd_decode_use_mrope(ctx) ? 4 : 1;
for (auto & chunk : chunks) {
bool is_last = &chunk == &chunks.back();
if (chunk.type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
// TODO @ngxson : may need to split into smaller batches
text_batch.n_tokens = chunk.tokens_text.size();
for (size_t i = 0; i < chunk.tokens_text.size(); i++) {
text_batch.token [i] = chunk.tokens_text[i];
text_batch.pos [i] = n_past++;
text_batch.n_seq_id[i] = 1;
text_batch.seq_id [i][0] = seq_id;
text_batch.logits [i] = false;
}
if (is_last) {
// always get logits for last input chunk
text_batch.logits[text_batch.n_tokens - 1] = true;
}
ret = llama_decode(lctx, text_batch);
if (ret != 0) {
LOG_ERR("failed to decode text\n");
llama_batch_free(text_batch);
return ret;
size_t i = 0;
while (i < chunk.tokens_text.size()) { // split into batches
for (; i < chunk.tokens_text.size() && text_batch.n_tokens < n_batch; i++) {
text_batch.token [i] = chunk.tokens_text[i];
text_batch.pos [i] = n_past++;
text_batch.n_seq_id[i] = 1;
text_batch.seq_id [i][0] = seq_id;
text_batch.logits [i] = false;
}
if (is_last) {
// always get logits for last input chunk
text_batch.logits[text_batch.n_tokens - 1] = true;
}
ret = llama_decode(lctx, text_batch);
if (ret != 0) {
LOG_ERR("failed to decode text\n");
llama_batch_free(text_batch);
return ret;
}
}
} else if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
GGML_ASSERT(!is_last && "logits for last image chunk is not yet support");
GGML_ASSERT(!is_last && "logits for last image chunk is not yet supported");
GGML_ASSERT(chunk.tokens_image != nullptr);
int64_t t0 = ggml_time_ms();
if (ctx->print_timings) {
LOG_INF("encoding image...\n");
LOG_INF("encoding image or slice...\n");
}
ret = mtmd_encode(ctx, chunk.tokens_image.get());
if (ret != 0) {
@@ -306,24 +603,58 @@ int32_t mtmd_helper_eval(mtmd_context * ctx,
return ret;
}
if (ctx->print_timings) {
LOG_INF("image encoded in %" PRId64 " ms\n", ggml_time_ms() - t0);
LOG_INF("image/slice encoded in %" PRId64 " ms\n", ggml_time_ms() - t0);
}
int32_t n_tokens = mtmd_image_tokens_get_n_tokens(chunk.tokens_image.get());
int32_t i_batch = 0;
int32_t n_img_batches = GGML_PAD(n_tokens, n_batch) / n_batch;
float * embd = mtmd_get_output_embd(ctx);
decode_embd_batch batch_img(embd, n_tokens, n_past, 0);
int64_t t1 = ggml_time_ms();
ret = llama_decode(lctx, batch_img.batch);
if (ret != 0) {
LOG_ERR("failed to decode image\n");
llama_batch_free(text_batch);
return ret;
}
if (ctx->print_timings) {
LOG_INF("image decoded in %" PRId64 " ms\n", ggml_time_ms() - t1);
decode_embd_batch batch_embd(embd, n_tokens, n_pos_per_embd, n_mmproj_embd);
const int nx = mtmd_image_tokens_get_nx(chunk.tokens_image.get());
const int ny = mtmd_image_tokens_get_ny(chunk.tokens_image.get());
if (mtmd_decode_use_mrope(ctx)) {
batch_embd.set_position_mrope(n_past, nx, ny, seq_id);
} else {
batch_embd.set_position_normal(n_past, seq_id);
}
n_past += n_tokens;
if (mtmd_decode_use_non_causal(ctx)) {
llama_set_causal_attn(lctx, false);
// TODO @ngxson : need to make sure only one image is processed at a time, and n_ubatch must be enough to hold the image
}
while (i_batch < n_img_batches) { // split into batches
int pos_offset = i_batch*n_batch;
int n_tokens_batch = std::min(n_batch, n_tokens - pos_offset);
llama_batch batch_embd_view = batch_embd.get_view(pos_offset, n_tokens_batch);
LOG_INF("decoding image batch %d/%d, n_tokens_batch = %d\n", i_batch+1, n_img_batches, n_tokens_batch);
int64_t t1 = ggml_time_ms();
ret = llama_decode(lctx, batch_embd_view);
if (ret != 0) {
LOG_ERR("failed to decode image\n");
llama_set_causal_attn(lctx, true); // restore causal attn
llama_batch_free(text_batch);
return ret;
}
if (ctx->print_timings) {
LOG_INF("image decoded (batch %d/%d) in %" PRId64 " ms\n", i_batch+1, n_img_batches, ggml_time_ms() - t1);
}
i_batch++;
}
// for mrope, one image is one single **temporal** position
n_past += mtmd_decode_use_mrope(ctx) ? 1 : n_tokens;
if (mtmd_decode_use_non_causal(ctx)) {
llama_set_causal_attn(lctx, true);
}
} else {
GGML_ASSERT(false && "chunk type not supported");
@@ -368,6 +699,10 @@ bool mtmd_decode_use_non_causal(mtmd_context * ctx) {
return false;
}
bool mtmd_decode_use_mrope(mtmd_context * ctx) {
return ctx->use_mrope;
}
void mtmd_image_tokens_deleter::operator()(mtmd_image_tokens * val) {
mtmd_image_tokens_free(val);
}

View File

@@ -102,6 +102,7 @@ MTMD_API size_t mtmd_image_tokens_get_n_tokens(const mtmd_image_tokens * im
MTMD_API size_t mtmd_image_tokens_get_nx(const mtmd_image_tokens * image_tokens);
MTMD_API size_t mtmd_image_tokens_get_ny(const mtmd_image_tokens * image_tokens);
MTMD_API std::string mtmd_image_tokens_get_id(const mtmd_image_tokens * image_tokens);
MTMD_API llama_pos mtmd_image_tokens_get_n_pos(const mtmd_image_tokens * image_tokens); // number of temporal positions (always 1 for M-RoPE, n_tokens otherwise)
MTMD_API void mtmd_image_tokens_free(mtmd_image_tokens * image_tokens);
// returns 0 on success
@@ -114,15 +115,21 @@ MTMD_API float * mtmd_get_output_embd(mtmd_context * ctx);
// whether we need to set non-causal mask before llama_decode
MTMD_API bool mtmd_decode_use_non_causal(mtmd_context * ctx);
// whether the current model use M-RoPE for llama_decode
MTMD_API bool mtmd_decode_use_mrope(mtmd_context * ctx);
//
// helper functions (can be implemented based on other functions)
//
// helper to count the total number of tokens from a list of chunks, useful to keep track of n_past
// helper to count the total number of tokens from a list of chunks, useful to keep track of KV cache
MTMD_API size_t mtmd_helper_get_n_tokens(mtmd_input_chunks & chunks);
// helper to count the total position of tokens from a list of chunks, useful to keep track of n_past
MTMD_API llama_pos mtmd_helper_get_n_pos(mtmd_input_chunks & chunks);
// helper function that automatically:
// 1. run llama_decode() on text chunks
// 2. run mtmd_encode() on image chunks, then mtmd_get_output_embd() and then llama_decode()

View File

@@ -1,14 +1,16 @@
import argparse
from typing import Dict
from typing import Dict, List, Optional
import torch
import numpy as np
from gguf import *
from transformers import (
Qwen2VLForConditionalGeneration,
Qwen2VLProcessor,
AutoProcessor,
Qwen2VLConfig
Qwen2VLConfig,
Qwen2VLProcessor,
Qwen2VLForConditionalGeneration,
Qwen2_5_VLConfig, # type: ignore[reportAttributeAccessIssue]
Qwen2_5_VLForConditionalGeneration, # type: ignore[reportAttributeAccessIssue]
)
@@ -19,61 +21,93 @@ def k(raw_key: str, arch: str) -> str:
return raw_key.format(arch=arch)
def to_gguf_name(name: str) -> str:
og = name
name = name.replace("text_model", "t").replace("vision_model", "v")
name = name.replace("blocks", "blk").replace("embeddings.", "")
name = name.replace("attn.", "attn_")
name = name.replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("proj.", "out.")
# name = name.replace("layrnorm", "ln").replace("layer_norm", "ln").replace("layernorm", "ln")
name = name.replace("norm1", "ln1").replace("norm2", "ln2")
name = name.replace("merger.mlp", 'mm')
print(f"[to_gguf_name] {og} --> {name}")
return name
def get_n_wa_pattern(fullatt_block_indexes: Optional[List[int]]):
if fullatt_block_indexes is None:
return 0
n_wa = fullatt_block_indexes[0]
for a, b in zip(fullatt_block_indexes, fullatt_block_indexes[1:]):
if b - a - 1 != n_wa:
raise ValueError(
f"window/full attention layer should have fix pattern of "
f"for each full-attention layer followed by {n_wa} window-attention layers"
)
return n_wa + 1
def find_vision_tensors(qwen2vl, dtype) -> Dict[str, np.ndarray]:
vision_model = qwen2vl.visual
tensor_map = {}
for name, ten in vision_model.state_dict().items():
ten = ten.numpy()
if 'qkv' in name:
if ten.ndim == 2: # weight
c3, _ = ten.shape
else: # bias
c3 = ten.shape[0]
assert c3 % 3 == 0
c = c3 // 3
wq = ten[:c]
wk = ten[c: c * 2]
wv = ten[c * 2:]
tensor_map[to_gguf_name(f"vision_model.{name}").replace("qkv", "q")] = wq
tensor_map[to_gguf_name(f"vision_model.{name}").replace("qkv", "k")] = wk
tensor_map[to_gguf_name(f"vision_model.{name}").replace("qkv", "v")] = wv
elif 'merger' in name:
if name.endswith("ln_q.weight"):
tensor_map['v.post_ln.weight'] = ten
elif name.endswith("ln_q.bias"):
tensor_map['v.post_ln.bias'] = ten
class VL2:
@staticmethod
def to_gguf_name(name: str) -> str:
og = name
name = name.replace("text_model", "t").replace("vision_model", "v")
name = name.replace("blocks", "blk").replace("embeddings.", "")
name = name.replace("attn.", "attn_")
name = name.replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("proj.", "out.")
# name = name.replace("layrnorm", "ln").replace("layer_norm", "ln").replace("layernorm", "ln")
name = name.replace("norm1", "ln1").replace("norm2", "ln2")
name = name.replace("merger.mlp", 'mm')
print(f"[to_gguf_name] {og} --> {name}")
return name
@classmethod
def find_vision_tensors(cls, qwen2vl, dtype) -> Dict[str, np.ndarray]:
vision_model = qwen2vl.visual
tensor_map = {}
for name, ten in vision_model.state_dict().items():
ten = ten.numpy()
if 'qkv' in name:
if ten.ndim == 2: # weight
c3, _ = ten.shape
else: # bias
c3 = ten.shape[0]
assert c3 % 3 == 0
c = c3 // 3
wq = ten[:c]
wk = ten[c: c * 2]
wv = ten[c * 2:]
tensor_map[cls.to_gguf_name(f"vision_model.{name}").replace("qkv", "q")] = wq
tensor_map[cls.to_gguf_name(f"vision_model.{name}").replace("qkv", "k")] = wk
tensor_map[cls.to_gguf_name(f"vision_model.{name}").replace("qkv", "v")] = wv
elif 'merger' in name:
if name.endswith("ln_q.weight"):
tensor_map['v.post_ln.weight'] = ten
elif name.endswith("ln_q.bias"):
tensor_map['v.post_ln.bias'] = ten
else:
# "merger.mlp.%d.weight/bias" --> "mm.%d.weight/bias"
tensor_map[cls.to_gguf_name(name)] = ten
elif 'patch_embed.proj.weight' in name:
# NOTE: split Conv3D into Conv2Ds
c1, c2, kt, kh, kw = ten.shape
assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
tensor_map["v.patch_embd.weight"] = ten[:, :, 0, ...]
tensor_map["v.patch_embd.weight.1"] = ten[:, :, 1, ...]
else:
# "merger.mlp.%d.weight/bias" --> "mm.%d.weight/bias"
tensor_map[to_gguf_name(name)] = ten
elif 'patch_embed.proj.weight' in name:
# NOTE: split Conv3D into Conv2Ds
c1, c2, kt, kh, kw = ten.shape
assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
tensor_map["v.patch_embd.weight"] = ten[:, :, 0, ...]
tensor_map["v.patch_embd.weight.1"] = ten[:, :, 1, ...]
else:
tensor_map[to_gguf_name(f"vision_model.{name}")] = ten
tensor_map[cls.to_gguf_name(f"vision_model.{name}")] = ten
for new_name, ten in tensor_map.items():
if ten.ndim <= 1 or new_name.endswith("_norm.weight"):
tensor_map[new_name] = ten.astype(np.float32)
else:
tensor_map[new_name] = ten.astype(dtype)
tensor_map["v.position_embd.weight"] = np.zeros([10, 10], dtype=np.float32) # dummy tensor, just here as a placeholder
return tensor_map
for new_name, ten in tensor_map.items():
if ten.ndim <= 1 or new_name.endswith("_norm.weight"):
tensor_map[new_name] = ten.astype(np.float32)
else:
tensor_map[new_name] = ten.astype(dtype)
tensor_map["v.position_embd.weight"] = np.zeros([10, 10], dtype=np.float32) # dummy tensor, just here as a placeholder
return tensor_map
class VL25(VL2):
@staticmethod
def to_gguf_name(name: str) -> str:
og = name
name = name.replace("text_model", "t").replace("vision_model", "v")
name = name.replace("blocks", "blk").replace("embeddings.", "")
name = name.replace("attn.", "attn_")
name = name.replace("mlp.down_proj", "ffn_down").replace("mlp.up_proj", "ffn_up")
name = name.replace("mlp.gate_proj", "ffn_gate").replace("proj.", "out.")
name = name.replace("norm1", "ln1").replace("norm2", "ln2")
name = name.replace("merger.mlp", 'mm')
print(f"[vl25][to_gguf_name] {og} --> {name}")
return name
def main(args):
@@ -82,7 +116,7 @@ def main(args):
np_dtype = np.float32
ftype = 0
elif args.data_type == 'fp16':
dtype = torch.float32
dtype = torch.float16
np_dtype = np.float16
ftype = 1
else:
@@ -92,11 +126,18 @@ def main(args):
model_path = ""
model_name = args.model_name
print("model_name: ", model_name)
qwen2vl = Qwen2VLForConditionalGeneration.from_pretrained(
model_name, torch_dtype=dtype, device_map="cpu"
)
cfg: Qwen2VLConfig = qwen2vl.config # type: ignore[reportAssignmentType]
vcfg = cfg.vision_config
if args.model_type == "qwen2vl":
qwen2vl = Qwen2VLForConditionalGeneration.from_pretrained(
model_name, torch_dtype=dtype, device_map="cpu"
)
cfg: Qwen2VLConfig = qwen2vl.config # type: ignore[reportAssignmentType]
vcfg = cfg.vision_config
else:
qwen2vl = Qwen2_5_VLForConditionalGeneration.from_pretrained(
model_name, torch_dtype=dtype, device_map="cpu"
)
cfg: Qwen2_5_VLConfig = qwen2vl.config # type: ignore[reportAssignmentType]
vcfg = cfg.vision_config
if os.path.isdir(model_name):
local_model = True
@@ -113,7 +154,6 @@ def main(args):
fout.add_bool("clip.has_text_encoder", False)
fout.add_bool("clip.has_vision_encoder", True)
fout.add_bool("clip.has_qwen2vl_merger", True)
fout.add_string("clip.projector_type", "qwen2vl_merger")
print(cfg.vision_config)
if 'silu' in cfg.vision_config.hidden_act.lower():
@@ -125,14 +165,25 @@ def main(args):
else:
raise ValueError()
tensor_map = find_vision_tensors(qwen2vl, np_dtype)
if args.model_type == "qwen2.5vl":
fout.add_uint32("clip.vision.n_wa_pattern", get_n_wa_pattern(vcfg.fullatt_block_indexes))
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.hidden_size)
fout.add_uint32("clip.vision.projection_dim", vcfg.out_hidden_size)
fout.add_string("clip.projector_type", "qwen2.5vl_merger")
else:
fout.add_string("clip.projector_type", "qwen2vl_merger")
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.embed_dim)
fout.add_uint32("clip.vision.projection_dim", vcfg.hidden_size)
if args.model_type == "qwen2.5vl":
tensor_map = VL25.find_vision_tensors(qwen2vl, np_dtype)
else:
tensor_map = VL2.find_vision_tensors(qwen2vl, np_dtype)
for name, data in tensor_map.items():
fout.add_tensor(name, data)
fout.add_uint32("clip.vision.patch_size", vcfg.patch_size)
fout.add_uint32("clip.vision.image_size", 14 * 40) # some reasonable size that is divable by (14*2)
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.embed_dim)
fout.add_uint32("clip.vision.projection_dim", vcfg.hidden_size)
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), vcfg.num_heads)
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), vcfg.depth)
@@ -160,6 +211,7 @@ def main(args):
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("model_name", nargs='?', default="Qwen/Qwen2-VL-2B-Instruct")
parser.add_argument("--model_type", nargs='?', choices=['qwen2vl', 'qwen2.5vl'], default="qwen2vl")
parser.add_argument("--data_type", nargs='?', choices=['fp32', 'fp16'], default="fp32")
args = parser.parse_args()
main(args)

View File

@@ -23,7 +23,12 @@
#include <algorithm>
#include <iostream>
#include <fstream>
#include <limits>
#include <cassert>
#include <cmath>
// THIS FILE IS ONLY USED FOR TESTING THE QWEN2VL MODEL
// IT IS NOT A PRODUCTION CODE
static bool qwen2vl_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed,
int n_batch, int * n_past, int * st_pos_id, struct clip_image_size * image_size) {
@@ -89,20 +94,12 @@ static bool qwen2vl_eval_image_embed(llama_context * ctx_llama, const struct lla
static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past, int * st_pos_id) {
int N = (int) tokens.size();
std::vector<llama_pos> pos;
for (int i = 0; i < N; i += n_batch) {
int n_eval = (int) tokens.size() - i;
if (n_eval > n_batch) {
n_eval = n_batch;
}
auto batch = llama_batch_get_one(&tokens[i], n_eval);
// TODO: add mrope pos ids somewhere else
pos.resize(batch.n_tokens * 4);
std::fill(pos.begin(), pos.end(), 0);
for (int j = 0; j < batch.n_tokens * 3; j ++) {
pos[j] = *st_pos_id + (j % batch.n_tokens);
}
batch.pos = pos.data();
if (llama_decode(ctx_llama, batch)) {
LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
@@ -367,14 +364,14 @@ static void debug_test_mrope_2d() {
// 1. Initialize backend
ggml_backend_t backend = NULL;
std::string backend_name = "";
#ifdef GGML_USE_CUDA
fprintf(stderr, "%s: using CUDA backend\n", __func__);
backend = ggml_backend_cuda_init(0); // init device 0
backend_name = "cuda";
if (!backend) {
fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
}
#endif
// #ifdef GGML_USE_CUDA
// fprintf(stderr, "%s: using CUDA backend\n", __func__);
// backend = ggml_backend_cuda_init(0); // init device 0
// backend_name = "cuda";
// if (!backend) {
// fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
// }
// #endif
// if there aren't GPU Backends fallback to CPU backend
if (!backend) {
backend = ggml_backend_cpu_init();
@@ -483,28 +480,82 @@ static void debug_test_mrope_2d() {
ggml_backend_free(backend);
}
static void debug_dump_img_embed(struct llava_context * ctx_llava) {
int n_embd = llama_model_n_embd(llama_get_model(ctx_llava->ctx_llama));
int ne = n_embd * 4;
float vals[56 * 56 * 3];
enum model_output_type {
conv3d,
patch_embed,
patch_win_attn_scatter,
first_attn_layer,
last_attn_layer,
attn_softmax,
final_layer,
};
static void debug_dump_img_embed(struct llava_context * ctx_llava, model_output_type output_type) {
constexpr int ih = 140;
constexpr int iw = 196;
// constexpr int ih = 56;
// constexpr int iw = 56;
// int n_embd = llama_model_n_embd(llama_get_model(ctx_llava->ctx_llama));
int n_embd = 1280;
int merge = 1;
if (output_type == model_output_type::final_layer) {
n_embd = 2048;
merge = 2;
}
else if (output_type == model_output_type::attn_softmax) {
merge = 1;
n_embd = (ih/14/merge) * (iw/14/merge) * 16;
}
int ne = (ih/14/merge) * (iw/14/merge) * n_embd;
float vals[iw * ih * 3];
// float embd[ne];
std::vector<float> embd;
embd.resize(ne);
for (int i = 0; i < 56*56; i++)
for (int i = 0; i < iw*ih; i++)
{
for (int c = 0; c < 3; c++)
vals[i * 3 + c] = (float)(i % (56 * 56)) / (56*56);
vals[i * 3 + c] = (float)i / (iw*ih);
}
clip_encode_float_image(ctx_llava->ctx_clip, 16, vals, 56, 56, embd.data());
clip_encode_float_image(ctx_llava->ctx_clip, 8, vals, ih, iw, embd.data());
std::ofstream outFile("img_embed.bin", std::ios::binary);
std::string file_postfix = "";
switch (output_type)
{
case model_output_type::conv3d:
file_postfix = "conv3d";
break;
case model_output_type::patch_embed:
file_postfix = "patch_embed";
break;
case model_output_type::patch_win_attn_scatter:
file_postfix = "scatter";
break;
case model_output_type::first_attn_layer:
file_postfix = "first_attn";
break;
case model_output_type::last_attn_layer:
file_postfix = "last_attn";
break;
case model_output_type::attn_softmax:
file_postfix = "attn_softmax";
break;
case model_output_type::final_layer:
file_postfix = "final";
break;
default:
break;
}
auto output_path = "img_embed_" + file_postfix + ".bin";
std::ofstream outFile(output_path, std::ios::binary);
if (outFile.is_open()) {
outFile.write(reinterpret_cast<const char*>(embd.data()), ne * sizeof(float));
outFile.close();
std::cout << "Data successfully written to mrope.bin" << std::endl;
std::cout << "Data successfully written to ::[ " << output_path << std::endl;
} else {
std::cerr << "Error opening file!" << std::endl;
}
@@ -551,8 +602,9 @@ int main(int argc, char ** argv) {
} else if (params.image[0].empty()) {
auto ctx_llava = llava_init_context(&params, model);
debug_test_mrope_2d();
debug_dump_img_embed(ctx_llava);
// debug_test_mrope_2d();
debug_dump_img_embed(ctx_llava, model_output_type::final_layer);
// debug_dump_img_embed(ctx_llava, model_output_type::last_attn_layer);
llama_perf_context_print(ctx_llava->ctx_llama);
ctx_llava->model = NULL;

View File

@@ -13,29 +13,61 @@ mkdir -p $SCRIPT_DIR/output
PROJ_ROOT="$SCRIPT_DIR/../.."
cd $PROJ_ROOT
# Check if the first argument is "big", then run test with big models
# This is useful if we're running the script on a larger machine, so we can test the big models
RUN_BIG_TESTS=false
if [ "${1:-}" = "big" ]; then
RUN_BIG_TESTS=true
echo "Include BIG models..."
fi
###############
arr_bin=()
arr_hf=()
arr_tmpl=() # chat template
add_test() {
local bin=$1
local hf=$2
local tmpl=${3:-""} # default to empty string if not provided
arr_bin+=("$bin")
arr_hf+=("$hf")
arr_tmpl+=("$tmpl")
}
add_test "llama-gemma3-cli" "ggml-org/gemma-3-4b-it-GGUF:Q4_K_M"
add_test "llama-llava-cli" "cmp-nct/Yi-VL-6B-GGUF:Q5_K"
add_test "llama-llava-cli" "guinmoon/MobileVLM-3B-GGUF:Q4_K_M"
add_test "llama-llava-cli" "THUDM/glm-edge-v-5b-gguf:Q4_K_M"
add_test "llama-llava-cli" "second-state/Llava-v1.5-7B-GGUF:Q2_K"
add_test "llama-llava-cli" "cjpais/llava-1.6-mistral-7b-gguf:Q3_K"
add_test "llama-llava-cli" "ibm-research/granite-vision-3.2-2b-GGUF:Q4_K_M"
add_test "llama-minicpmv-cli" "second-state/MiniCPM-Llama3-V-2_5-GGUF:Q2_K" # model from openbmb is corrupted
add_test "llama-minicpmv-cli" "openbmb/MiniCPM-V-2_6-gguf:Q2_K"
add_test "llama-minicpmv-cli" "openbmb/MiniCPM-o-2_6-gguf:Q4_0"
add_test "llama-qwen2vl-cli" "bartowski/Qwen2-VL-2B-Instruct-GGUF:Q4_K_M"
add_test_big() {
if [ "$RUN_BIG_TESTS" = true ]; then
add_test "$@"
fi
}
add_test "llama-mtmd-cli" "ggml-org/SmolVLM-500M-Instruct-GGUF:Q8_0"
add_test "llama-mtmd-cli" "ggml-org/SmolVLM2-2.2B-Instruct-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "ggml-org/SmolVLM2-500M-Video-Instruct-GGUF:Q8_0"
add_test "llama-mtmd-cli" "ggml-org/gemma-3-4b-it-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "guinmoon/MobileVLM-3B-GGUF:Q4_K_M" "deepseek"
add_test "llama-mtmd-cli" "THUDM/glm-edge-v-5b-gguf:Q4_K_M"
add_test "llama-mtmd-cli" "second-state/Llava-v1.5-7B-GGUF:Q2_K" "vicuna"
add_test "llama-mtmd-cli" "cjpais/llava-1.6-mistral-7b-gguf:Q3_K" "vicuna"
add_test "llama-mtmd-cli" "ibm-research/granite-vision-3.2-2b-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "second-state/MiniCPM-Llama3-V-2_5-GGUF:Q2_K" # model from openbmb is corrupted
add_test "llama-mtmd-cli" "openbmb/MiniCPM-V-2_6-gguf:Q2_K"
add_test "llama-mtmd-cli" "openbmb/MiniCPM-o-2_6-gguf:Q4_0"
add_test "llama-mtmd-cli" "bartowski/Qwen2-VL-2B-Instruct-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "ggml-org/Qwen2.5-VL-3B-Instruct-GGUF:Q4_K_M"
# to test the big models, run: ./tests.sh big
add_test_big "llama-mtmd-cli" "ggml-org/pixtral-12b-GGUF:Q4_K_M"
add_test_big "llama-mtmd-cli" "ggml-org/Mistral-Small-3.1-24B-Instruct-2503-GGUF" "mistral-v7"
# these models always give the wrong answer, not sure why
# add_test "llama-mtmd-cli" "ggml-org/SmolVLM-Instruct-GGUF:Q4_K_M"
# add_test "llama-mtmd-cli" "ggml-org/SmolVLM-256M-Instruct-GGUF:Q8_0"
# add_test "llama-mtmd-cli" "ggml-org/SmolVLM2-256M-Video-Instruct-GGUF:Q8_0"
# this model has broken chat template, not usable
# add_test "llama-mtmd-cli" "cmp-nct/Yi-VL-6B-GGUF:Q5_K"
###############
@@ -46,12 +78,20 @@ arr_res=()
for i in "${!arr_bin[@]}"; do
bin="${arr_bin[$i]}"
hf="${arr_hf[$i]}"
tmpl="${arr_tmpl[$i]}"
echo "Running test with binary: $bin and HF model: $hf"
echo ""
echo ""
output=$("$PROJ_ROOT/build/bin/$bin" -hf "$hf" --image $SCRIPT_DIR/test-1.jpeg -p "what is the publisher name of the newspaper?" --temp 0 2>&1 | tee /dev/tty)
output=$(\
"$PROJ_ROOT/build/bin/$bin" \
-hf "$hf" \
--image $SCRIPT_DIR/test-1.jpeg \
-p "what is the publisher name of the newspaper?" \
--temp 0 -n 128 \
${tmpl:+--chat-template "$tmpl"} \
2>&1 | tee /dev/tty)
echo "$output" > $SCRIPT_DIR/output/$bin-$(echo "$hf" | tr '/' '-').log

View File

@@ -1,6 +0,0 @@
set(TARGET llama-quantize-stats)
add_executable(${TARGET} quantize-stats.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE llama build_info ${CMAKE_THREAD_LIBS_INIT})
target_include_directories(${TARGET} PRIVATE ../../common)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -22,6 +22,7 @@
#include "ggml-rpc.h"
#ifdef _WIN32
# define NOMINMAX
# define DIRECTORY_SEPARATOR '\\'
# include <locale>
# include <windows.h>
@@ -37,6 +38,8 @@
#include <stdio.h>
#include <vector>
#include <filesystem>
#include <algorithm>
#include <thread>
namespace fs = std::filesystem;
@@ -150,12 +153,14 @@ struct rpc_server_params {
int port = 50052;
size_t backend_mem = 0;
bool use_cache = false;
int n_threads = std::max(1U, std::thread::hardware_concurrency()/2);
};
static void print_usage(int /*argc*/, char ** argv, rpc_server_params params) {
fprintf(stderr, "Usage: %s [options]\n\n", argv[0]);
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -t, --threads number of threads for the CPU backend (default: %d)\n", params.n_threads);
fprintf(stderr, " -H HOST, --host HOST host to bind to (default: %s)\n", params.host.c_str());
fprintf(stderr, " -p PORT, --port PORT port to bind to (default: %d)\n", params.port);
fprintf(stderr, " -m MEM, --mem MEM backend memory size (in MB)\n");
@@ -172,6 +177,15 @@ static bool rpc_server_params_parse(int argc, char ** argv, rpc_server_params &
return false;
}
params.host = argv[i];
} else if (arg == "-t" || arg == "--threads") {
if (++i >= argc) {
return false;
}
params.n_threads = std::stoi(argv[i]);
if (params.n_threads <= 0) {
fprintf(stderr, "error: invalid number of threads: %d\n", params.n_threads);
return false;
}
} else if (arg == "-p" || arg == "--port") {
if (++i >= argc) {
return false;
@@ -199,7 +213,7 @@ static bool rpc_server_params_parse(int argc, char ** argv, rpc_server_params &
return true;
}
static ggml_backend_t create_backend() {
static ggml_backend_t create_backend(const rpc_server_params & params) {
ggml_backend_t backend = NULL;
#ifdef GGML_USE_CUDA
fprintf(stderr, "%s: using CUDA backend\n", __func__);
@@ -231,6 +245,7 @@ static ggml_backend_t create_backend() {
if (!backend) {
fprintf(stderr, "%s: using CPU backend\n", __func__);
backend = ggml_backend_cpu_init();
ggml_backend_cpu_set_n_threads(backend, params.n_threads);
}
return backend;
}
@@ -275,7 +290,7 @@ int main(int argc, char * argv[]) {
fprintf(stderr, "\n");
}
ggml_backend_t backend = create_backend();
ggml_backend_t backend = create_backend(params);
if (!backend) {
fprintf(stderr, "Failed to create backend\n");
return 1;
@@ -289,8 +304,9 @@ int main(int argc, char * argv[]) {
get_backend_memory(&free_mem, &total_mem);
}
const char * cache_dir = nullptr;
std::string cache_dir_str = fs_get_cache_directory() + "rpc/";
std::string cache_dir_str;
if (params.use_cache) {
cache_dir_str = fs_get_cache_directory() + "rpc/";
if (!fs_create_directory_with_parents(cache_dir_str)) {
fprintf(stderr, "Failed to create cache directory: %s\n", cache_dir_str.c_str());
return 1;

View File

@@ -154,7 +154,7 @@ The project is under active development, and we are [looking for feedback and co
| `--ssl-cert-file FNAME` | path to file a PEM-encoded SSL certificate<br/>(env: LLAMA_ARG_SSL_CERT_FILE) |
| `-to, --timeout N` | server read/write timeout in seconds (default: 600)<br/>(env: LLAMA_ARG_TIMEOUT) |
| `--threads-http N` | number of threads used to process HTTP requests (default: -1)<br/>(env: LLAMA_ARG_THREADS_HTTP) |
| `--cache-reuse N` | min chunk size to attempt reusing from the cache via KV shifting (default: 0)<br/>(env: LLAMA_ARG_CACHE_REUSE) |
| `--cache-reuse N` | min chunk size to attempt reusing from the cache via KV shifting (default: 0)<br/>[(card)](https://ggml.ai/f0.png)<br/>(env: LLAMA_ARG_CACHE_REUSE) |
| `--metrics` | enable prometheus compatible metrics endpoint (default: disabled)<br/>(env: LLAMA_ARG_ENDPOINT_METRICS) |
| `--slots` | enable slots monitoring endpoint (default: disabled)<br/>(env: LLAMA_ARG_ENDPOINT_SLOTS) |
| `--props` | enable changing global properties via POST /props (default: disabled)<br/>(env: LLAMA_ARG_ENDPOINT_PROPS) |

View File

@@ -2,6 +2,9 @@
const SPACE_RULE = '| " " | "\\n"{1,2} [ \\t]{0,20}';
function _buildRepetition(itemRule, minItems, maxItems, opts={}) {
if (maxItems == 0) {
return '';
}
if (minItems === 0 && maxItems === 1) {
return `${itemRule}?`;
}

View File

@@ -642,9 +642,31 @@ static json oaicompat_completion_params_parse(
throw std::runtime_error("Cannot use custom grammar constraints with tools.");
}
// if the assistant message appears at the end of list, we do not add end-of-turn token
// for ex. this can be useful to modify the reasoning process in reasoning models
bool prefill_assistant_message = !inputs.messages.empty() && inputs.messages.back().role == "assistant";
common_chat_msg last_message;
if (prefill_assistant_message) {
last_message = inputs.messages.back();
inputs.messages.pop_back();
/* sanity check, max one assistant message at the end of the list */
if (!inputs.messages.empty() && inputs.messages.back().role == "assistant"){
throw std::runtime_error("Cannot have 2 or more assistant messages at the end of the list.");
}
inputs.extract_reasoning = false;
inputs.add_generation_prompt = true;
}
// Apply chat template to the list of messages
auto chat_params = common_chat_templates_apply(tmpls, inputs);
/* Append assistant prefilled message */
if (prefill_assistant_message) {
chat_params.prompt += last_message.content;
}
llama_params["chat_format"] = static_cast<int>(chat_params.format);
llama_params["prompt"] = chat_params.prompt;
if (!chat_params.grammar.empty()) {

View File

@@ -107,6 +107,7 @@ message(DEBUG "INS_ENB : ${INS_ENB}")
option(GGML_CPU_HBM "ggml: use memkind for CPU HBM" OFF)
option(GGML_CPU_AARCH64 "ggml: use runtime weight conversion of Q4_0 to Q4_X_X" ON)
option(GGML_CPU_KLEIDIAI "ggml: use KleidiAI optimized kernels if applicable" OFF)
option(GGML_SSE42 "ggml: enable SSE 4.2" ${INS_ENB})
option(GGML_AVX "ggml: enable AVX" ${INS_ENB})
option(GGML_AVX_VNNI "ggml: enable AVX-VNNI" OFF)
option(GGML_AVX2 "ggml: enable AVX2" ${INS_ENB})
@@ -359,3 +360,27 @@ write_basic_package_version_file(
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/ggml-config.cmake
${CMAKE_CURRENT_BINARY_DIR}/ggml-version.cmake
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/ggml)
if (MSVC)
set(MSVC_WARNING_FLAGS
/wd4005 # Macro redefinition
/wd4244 # Conversion from one type to another type, possible loss of data
/wd4267 # Conversion from 'size_t' to a smaller type, possible loss of data
)
function(disable_msvc_warnings target_name)
if(TARGET ${target_name})
target_compile_options(${target_name} PRIVATE ${MSVC_WARNING_FLAGS})
endif()
endfunction()
disable_msvc_warnings(ggml-base)
disable_msvc_warnings(ggml)
disable_msvc_warnings(ggml-cpu)
disable_msvc_warnings(ggml-cpu-x64)
disable_msvc_warnings(ggml-cpu-sse42)
disable_msvc_warnings(ggml-cpu-sandybridge)
disable_msvc_warnings(ggml-cpu-haswell)
disable_msvc_warnings(ggml-cpu-skylakex)
disable_msvc_warnings(ggml-cpu-icelake)
disable_msvc_warnings(ggml-cpu-alderlake)
endif()

View File

@@ -24,7 +24,7 @@ typedef std::unique_ptr<gguf_context, gguf_context_deleter> gguf_context_ptr;
struct ggml_gallocr_deleter { void operator()(ggml_gallocr_t galloc) { ggml_gallocr_free(galloc); } };
typedef std::unique_ptr<ggml_gallocr_t, ggml_gallocr_deleter> ggml_gallocr_ptr;
typedef std::unique_ptr<ggml_gallocr, ggml_gallocr_deleter> ggml_gallocr_ptr;
// ggml-backend

View File

@@ -133,6 +133,11 @@ extern "C" {
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
GGML_BACKEND_API void ggml_cpu_fp32_to_fp16(const float *, ggml_fp16_t *, int64_t);
GGML_BACKEND_API void ggml_cpu_fp16_to_fp32(const ggml_fp16_t *, float *, int64_t);
GGML_BACKEND_API void ggml_cpu_fp32_to_bf16(const float *, ggml_bf16_t *, int64_t);
GGML_BACKEND_API void ggml_cpu_bf16_to_fp32(const ggml_bf16_t *, float *, int64_t);
#ifdef __cplusplus
}
#endif

View File

@@ -7,7 +7,7 @@
extern "C" {
#endif
#define RPC_PROTO_MAJOR_VERSION 1
#define RPC_PROTO_MAJOR_VERSION 2
#define RPC_PROTO_MINOR_VERSION 0
#define RPC_PROTO_PATCH_VERSION 0
#define GGML_RPC_MAX_SERVERS 16

View File

@@ -393,8 +393,8 @@ extern "C" {
// precision
enum ggml_prec {
GGML_PREC_DEFAULT,
GGML_PREC_F32,
GGML_PREC_DEFAULT = 0, // stored as ggml_tensor.op_params, 0 by default
GGML_PREC_F32 = 10,
};
// model file types
@@ -481,6 +481,7 @@ extern "C" {
GGML_OP_CONV_TRANSPOSE_1D,
GGML_OP_IM2COL,
GGML_OP_IM2COL_BACK,
GGML_OP_CONV_2D_DW,
GGML_OP_CONV_TRANSPOSE_2D,
GGML_OP_POOL_1D,
GGML_OP_POOL_2D,
@@ -677,6 +678,9 @@ extern "C" {
GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
// true for tensor that is stored in memory as CxWxHxN and has been permuted to WxHxCxN
GGML_API bool ggml_is_contiguous_channels(const struct ggml_tensor * tensor);
GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
@@ -1660,7 +1664,7 @@ extern "C" {
struct ggml_tensor * a,
struct ggml_tensor * b);
// depthwise
// depthwise (via im2col and mul_mat)
GGML_API struct ggml_tensor * ggml_conv_2d_dw(
struct ggml_context * ctx,
struct ggml_tensor * a, // convolution kernel
@@ -1672,6 +1676,22 @@ extern "C" {
int d0, // dilation dimension 0
int d1); // dilation dimension 1
// Depthwise 2D convolution
// may be faster than ggml_conv_2d_dw, but not available in all backends
// a: KW KH 1 C convolution kernel
// b: W H C N input data
// res: W_out H_out C N
GGML_API struct ggml_tensor * ggml_conv_2d_dw_direct(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int stride0,
int stride1,
int pad0,
int pad1,
int dilation0,
int dilation1);
GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
struct ggml_context * ctx,
struct ggml_tensor * a,

View File

@@ -267,6 +267,7 @@ function(ggml_add_cpu_backend_variant tag_name)
set(GGML_CPU_TAG_NAME ${tag_name})
# other: OPENMP LLAMAFILE CPU_HBM
foreach (feat NATIVE
SSE42
AVX AVX2 BMI2 AVX_VNNI FMA F16C
AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16
AMX_TILE AMX_INT8 AMX_BF16)
@@ -286,14 +287,16 @@ if (GGML_CPU_ALL_VARIANTS)
if (NOT GGML_BACKEND_DL)
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS requires GGML_BACKEND_DL")
endif()
ggml_add_cpu_backend_variant(sandybridge AVX)
ggml_add_cpu_backend_variant(haswell AVX F16C AVX2 BMI2 FMA)
ggml_add_cpu_backend_variant(skylakex AVX F16C AVX2 BMI2 FMA AVX512)
ggml_add_cpu_backend_variant(icelake AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
ggml_add_cpu_backend_variant(alderlake AVX F16C AVX2 BMI2 FMA AVX_VNNI)
ggml_add_cpu_backend_variant(x64)
ggml_add_cpu_backend_variant(sse42 SSE42)
ggml_add_cpu_backend_variant(sandybridge SSE42 AVX)
ggml_add_cpu_backend_variant(haswell SSE42 AVX F16C AVX2 BMI2 FMA)
ggml_add_cpu_backend_variant(skylakex SSE42 AVX F16C AVX2 BMI2 FMA AVX512)
ggml_add_cpu_backend_variant(icelake SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
ggml_add_cpu_backend_variant(alderlake SSE42 AVX F16C AVX2 BMI2 FMA AVX_VNNI)
if (NOT MSVC)
# MSVC doesn't support AMX
ggml_add_cpu_backend_variant(sapphirerapids AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
ggml_add_cpu_backend_variant(sapphirerapids SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
endif()
elseif (GGML_CPU)
ggml_add_cpu_backend_variant_impl("")

View File

@@ -816,7 +816,10 @@ static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor *
static bool ggml_gallocr_node_needs_realloc(ggml_gallocr_t galloc, struct ggml_tensor * node, struct tensor_alloc * talloc) {
size_t node_size = 0;
if (!node->data && !node->view_src) {
GGML_ASSERT(talloc->buffer_id >= 0); // prevent segfault when misusing the API
// If we previously had data but don't now then reallocate
if (talloc->buffer_id < 0) {
return false;
}
node_size = ggml_backend_buft_get_alloc_size(galloc->bufts[talloc->buffer_id], node);
}
return talloc->size_max >= node_size;

View File

@@ -222,7 +222,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
elseif (GGML_AVX)
list(APPEND ARCH_FLAGS /arch:AVX)
list(APPEND ARCH_DEFINITIONS GGML_AVX)
else ()
elseif (GGML_SSE42)
list(APPEND ARCH_FLAGS /arch:SSE4.2)
list(APPEND ARCH_DEFINITIONS GGML_SSE42)
endif()
@@ -237,8 +237,10 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
if (GGML_NATIVE)
list(APPEND ARCH_FLAGS -march=native)
else ()
list(APPEND ARCH_FLAGS -msse4.2)
list(APPEND ARCH_DEFINITIONS GGML_SSE42)
if (GGML_SSE42)
list(APPEND ARCH_FLAGS -msse4.2)
list(APPEND ARCH_DEFINITIONS GGML_SSE42)
endif()
if (GGML_F16C)
list(APPEND ARCH_FLAGS -mf16c)
list(APPEND ARCH_DEFINITIONS GGML_F16C)
@@ -350,10 +352,14 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
# TODO: Separation to determine activation of VX/VXE/VXE2
if (${S390X_M} MATCHES "8561|8562")
message(STATUS "z15 target")
list(APPEND ARCH_FLAGS -march=z15 -mtune=z15)
list(APPEND ARCH_FLAGS -march=z15)
elseif (${S390X_M} MATCHES "3931")
message(STATUS "z16 target")
list(APPEND ARCH_FLAGS -march=z16 -mtune=z16)
list(APPEND ARCH_FLAGS -march=z16)
elseif (${S390X_M} MATCHES "9175|9176")
# NOTE: Only available from GCC 15.1.0 onwards. Any z17 machine with compile issues must first verify their GCC version.
message(STATUS "z17 target")
list(APPEND ARCH_FLAGS -march=z17)
else()
message(STATUS "Unknown target")
message(WARNING "Unknown target. If you are compiling for z14 and earlier, you might have to add -DGGML_VXE=OFF.")

View File

@@ -263,7 +263,7 @@ void test_x86_is() {
static int ggml_backend_cpu_x86_score() {
// FIXME: this does not check for OS support
int score = 0;
int score = 1;
cpuid_x86 is;
#ifdef GGML_FMA

View File

@@ -215,7 +215,7 @@ static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
.nrows = 1,
},
[GGML_TYPE_F16] = {
.from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
.from_float = (ggml_from_float_t) ggml_cpu_fp32_to_fp16,
.vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
.vec_dot_type = GGML_TYPE_F16,
.nrows = 1,
@@ -356,7 +356,7 @@ static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
.from_float = quantize_row_q8_K,
},
[GGML_TYPE_BF16] = {
.from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
.from_float = (ggml_from_float_t) ggml_cpu_fp32_to_bf16,
.vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
.vec_dot_type = GGML_TYPE_BF16,
.nrows = 1,
@@ -1932,6 +1932,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_im2col_back_f32(params, tensor);
} break;
case GGML_OP_CONV_2D_DW:
{
ggml_compute_forward_conv_2d_dw(params, tensor);
} break;
case GGML_OP_CONV_TRANSPOSE_2D:
{
ggml_compute_forward_conv_transpose_2d(params, tensor);
@@ -2268,6 +2272,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
} break;
case GGML_OP_IM2COL:
case GGML_OP_IM2COL_BACK:
case GGML_OP_CONV_2D_DW:
case GGML_OP_CONV_TRANSPOSE_1D:
case GGML_OP_CONV_TRANSPOSE_2D:
{
@@ -3161,6 +3166,93 @@ enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct g
return ggml_graph_compute(cgraph, &cplan);
}
void ggml_cpu_fp32_to_fp16(const float * x, ggml_fp16_t * y, int64_t n) {
int64_t i = 0;
#if defined(__F16C__)
#if defined(__AVX512F__)
for (; i + 15 < n; i += 16) {
__m512 x_vec = _mm512_loadu_ps(x + i);
__m256i y_vec = _mm512_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
_mm256_storeu_si256((__m256i *)(y + i), y_vec);
}
#endif
for (; i + 7 < n; i += 8) {
__m256 x_vec = _mm256_loadu_ps(x + i);
__m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
_mm_storeu_si128((__m128i *)(y + i), y_vec);
}
for (; i + 3 < n; i += 4) {
__m128 x_vec = _mm_loadu_ps(x + i);
__m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
_mm_storel_epi64((__m128i *)(y + i), y_vec);
}
#endif
for (; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(x[i]);
}
}
void ggml_cpu_fp16_to_fp32(const ggml_fp16_t * x, float * y, int64_t n) {
int64_t i = 0;
#if defined(__F16C__)
#if defined(__AVX512F__)
for (; i + 15 < n; i += 16) {
__m256i x_vec = _mm256_loadu_si256((const __m256i *)(x + i));
__m512 y_vec = _mm512_cvtph_ps(x_vec);
_mm512_storeu_ps(y + i, y_vec);
}
#endif
for (; i + 7 < n; i += 8) {
__m128i x_vec = _mm_loadu_si128((const __m128i *)(x + i));
__m256 y_vec = _mm256_cvtph_ps(x_vec);
_mm256_storeu_ps(y + i, y_vec);
}
for (; i + 3 < n; i += 4) {
__m128i x_vec = _mm_loadl_epi64((const __m128i *)(x + i));
__m128 y_vec = _mm_cvtph_ps(x_vec);
_mm_storeu_ps(y + i, y_vec);
}
#endif
for (; i < n; ++i) {
y[i] = GGML_FP16_TO_FP32(x[i]);
}
}
void ggml_cpu_fp32_to_bf16(const float * x, ggml_bf16_t * y, int64_t n) {
int64_t i = 0;
for (; i < n; ++i) {
y[i] = GGML_FP32_TO_BF16(x[i]);
}
}
void ggml_cpu_bf16_to_fp32(const ggml_bf16_t * x, float * y, int64_t n) {
int64_t i = 0;
#if defined(__AVX2__)
#if defined(__AVX512F__)
for (; i + 15 < n; i += 16) {
_mm512_storeu_ps(y + i,
_mm512_castsi512_ps(
_mm512_slli_epi32(
_mm512_cvtepu16_epi32(
_mm256_loadu_si256(
(const __m256i *)(x + i))),
16)));
}
#endif
for (; i + 7 < n; i += 8) {
_mm256_storeu_ps(y + i,
_mm256_castsi256_ps(
_mm256_slli_epi32(
_mm256_cvtepu16_epi32(
_mm_loadu_si128(
(const __m128i *)(x + i))),
16)));
}
#endif
for (; i < n; i++) {
y[i] = GGML_BF16_TO_FP32(x[i]);
}
}
int ggml_cpu_has_avx(void) {
#if defined(__AVX__)

View File

@@ -4222,7 +4222,7 @@ static void ggml_compute_forward_get_rows_f16(
GGML_ASSERT(i01 >= 0 && i01 < ne01);
ggml_fp16_to_fp32_row(
ggml_cpu_fp16_to_fp32(
(const ggml_fp16_t*) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
}
@@ -4263,7 +4263,7 @@ static void ggml_compute_forward_get_rows_bf16(
GGML_ASSERT(i01 >= 0 && i01 < ne01);
ggml_bf16_to_fp32_row(
ggml_cpu_bf16_to_fp32(
(const ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
}
@@ -6064,6 +6064,178 @@ void ggml_compute_forward_conv_transpose_2d(
}
}
// ggml_compute_forward_conv_2d_dw
struct ggml_conv_2d_dw_params {
int64_t channels;
int64_t batch;
int64_t src_w;
int64_t src_h;
int64_t dst_w;
int64_t dst_h;
int64_t knl_w;
int64_t knl_h;
int stride_x;
int stride_y;
int pad_x;
int pad_y;
int dilation_x;
int dilation_y;
};
static void ggml_compute_forward_conv_2d_dw_cwhn(
const ggml_compute_params * params,
const ggml_tensor * src,
const ggml_tensor * kernel,
ggml_tensor * dst,
const ggml_conv_2d_dw_params & p) {
const int64_t c = p.channels;
const float * knl_data = (const float *)kernel->data;
const int64_t rows_total = p.dst_h * p.batch;
const int64_t rows_per_thread = (rows_total + params->nth - 1) / params->nth;
const int64_t row_start = params->ith * rows_per_thread;
const int64_t row_end = MIN(row_start + rows_per_thread, rows_total);
#ifdef GGML_SIMD
const int64_t pkg_size = GGML_F32_EPR;
const int64_t pkg_count = c / pkg_size;
const int64_t c_pkg_end = pkg_count * pkg_size;
#else
const int64_t c_pkg_end = 0;
#endif
for (int64_t row = row_start; row < row_end; ++row) {
const int64_t dst_y = row % p.dst_h;
const float * src_data = (const float *)src->data + (row / p.dst_h) * p.src_w * p.src_h * c;
for (int64_t dst_x = 0; dst_x < p.dst_w; ++dst_x) {
float * dst_data = (float *)dst->data + (row * p.dst_w + dst_x) * c;
const int64_t src_y_base = dst_y * p.stride_y - p.pad_y;
const int64_t src_x_base = dst_x * p.stride_x - p.pad_x;
#ifdef GGML_SIMD
// Vectorized loop
for (int64_t c_i = 0; c_i < c_pkg_end; c_i += pkg_size) {
GGML_F32_VEC sum = GGML_F32_VEC_ZERO;
for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
const int64_t src_y = src_y_base + knl_y * p.dilation_y;
if (src_y < 0 || src_y >= p.src_h) {
continue;
}
for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
const int64_t src_x = src_x_base + knl_x * p.dilation_x;
if (src_x < 0 || src_x >= p.src_w) {
continue;
}
GGML_F32_VEC k = GGML_F32_VEC_LOAD(knl_data + (knl_y * p.knl_w + knl_x) * c + c_i);
GGML_F32_VEC s = GGML_F32_VEC_LOAD(src_data + (src_y * p.src_w + src_x) * c + c_i);
sum = GGML_F32_VEC_FMA(sum, k, s);
}
}
GGML_F32_VEC_STORE(dst_data + c_i, sum);
}
#endif
// Scalar loop
for (int64_t c_i = c_pkg_end; c_i < c; ++c_i) {
float sum = 0.0f;
for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
const int64_t src_y = src_y_base + knl_y * p.dilation_y;
if (src_y < 0 || src_y >= p.src_h) {
continue;
}
for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
const int64_t src_x = src_x_base + knl_x * p.dilation_x;
if (src_x < 0 || src_x >= p.src_w) {
continue;
}
sum += knl_data[(knl_y * p.knl_w + knl_x) * c + c_i]
* src_data[(src_y * p.src_w + src_x) * c + c_i];
}
}
dst_data[c_i] = sum;
}
}
}
}
static void ggml_compute_forward_conv_2d_dw_whcn(
const ggml_compute_params * params,
const ggml_tensor * src,
const ggml_tensor * kernel,
ggml_tensor * dst,
const ggml_conv_2d_dw_params & p) {
const int64_t n = p.channels * p.batch;
const int64_t per_thread = (n + params->nth - 1) / params->nth;
const int64_t start = params->ith * per_thread;
const int64_t end = MIN(start + per_thread, n);
for (int64_t i = start; i < end; ++i) {
const float * knl_data = (const float *)kernel->data + (i % p.channels) * p.knl_w * p.knl_h;
const float * src_data = (const float *)src->data + i * p.src_w * p.src_h;
float * dst_data = (float *)dst->data + i * p.dst_w * p.dst_h;
for (int64_t dst_y = 0; dst_y < p.dst_h; ++dst_y) {
for (int64_t dst_x = 0; dst_x < p.dst_w; ++dst_x) {
float sum = 0.0f;
for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
const int64_t src_y = dst_y * p.stride_y + knl_y * p.dilation_y - p.pad_y;
if (src_y < 0 || src_y >= p.src_h) {
continue;
}
for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
const int64_t src_x = dst_x * p.stride_x + knl_x * p.dilation_x - p.pad_x;
if (src_x < 0 || src_x >= p.src_w) {
continue;
}
sum += knl_data[knl_y * p.knl_w + knl_x]
* src_data[src_y * p.src_w + src_x];
}
}
dst_data[dst_y * p.dst_w + dst_x] = sum;
}
}
}
}
void ggml_compute_forward_conv_2d_dw(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * kernel = dst->src[0];
const ggml_tensor * src = dst->src[1];
ggml_conv_2d_dw_params p;
p.channels = src->ne[2];
p.batch = src->ne[3];
p.src_w = src->ne[0];
p.src_h = src->ne[1];
p.dst_w = dst->ne[0];
p.dst_h = dst->ne[1];
p.knl_w = kernel->ne[0];
p.knl_h = kernel->ne[1];
p.stride_x = dst->op_params[0];
p.stride_y = dst->op_params[1];
p.pad_x = dst->op_params[2];
p.pad_y = dst->op_params[3];
p.dilation_x = dst->op_params[4];
p.dilation_y = dst->op_params[5];
GGML_ASSERT(kernel->ne[3] == p.channels);
GGML_ASSERT(dst->ne[3] == p.batch);
if (ggml_is_contiguous(src)) {
ggml_compute_forward_conv_2d_dw_whcn(params, src, kernel, dst, p);
} else if (ggml_is_contiguous_channels(src)) {
// kernel should also have channels most contiguous in memory
GGML_ASSERT(kernel->nb[0] >= kernel->nb[2] && kernel->nb[1] >= kernel->nb[0]);
ggml_compute_forward_conv_2d_dw_cwhn(params, src, kernel, dst, p);
} else {
GGML_ABORT("non-contiguous memory layout not supported");
}
}
// ggml_compute_forward_pool_1d_sk_p0
static void ggml_compute_forward_pool_1d_sk_p0(

View File

@@ -65,6 +65,7 @@ void ggml_compute_forward_conv_transpose_1d(const struct ggml_compute_params * p
void ggml_compute_forward_im2col(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_im2col_back_f32(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_conv_transpose_2d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_conv_2d_dw(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_pool_1d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_pool_2d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_pool_2d_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);

View File

@@ -341,7 +341,7 @@ static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
#define GGML_F32_EPR 4
#define GGML_F32x4 vector float
#define GGML_F32x4_ZERO 0.0f
#define GGML_F32x4_ZERO {0.0f}
#define GGML_F32x4_SET1 vec_splats
#define GGML_F32x4_LOAD(p) vec_xl(0, p)
#define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)

View File

@@ -133,6 +133,7 @@ if (CUDAToolkit_FOUND)
COMMAND ${NVCC_CMD} -Xcompiler "-dumpfullversion -dumpversion"
OUTPUT_VARIABLE CUDA_CCVER
ERROR_QUIET
OUTPUT_STRIP_TRAILING_WHITESPACE
)
else()
if (CUDA_CCFULLVER MATCHES Apple)
@@ -143,7 +144,7 @@ if (CUDAToolkit_FOUND)
string(REGEX REPLACE "^.* version ([0-9.]*).*$" "\\1" CUDA_CCVER ${CUDA_CCFULLVER})
endif()
message("-- CUDA host compiler is ${CUDA_CCID} ${CUDA_CCVER}")
message(STATUS "CUDA host compiler is ${CUDA_CCID} ${CUDA_CCVER}")
ggml_get_flags(${CUDA_CCID} ${CUDA_CCVER})
list(APPEND CUDA_CXX_FLAGS ${CXX_FLAGS} ${GF_CXX_FLAGS}) # This is passed to -Xcompiler later

View File

@@ -78,13 +78,13 @@
// Moore Threads
#define GGML_CUDA_MUSA_ARCH_IS_QY1 (__MUSA_ARCH__ <= 210)
#define GGML_CUDA_CC_QY1 (GGML_MUSA_CC_OFFSET_MTHREADS + 0x210) // MTT S80, MTT S3000
#define GGML_CUDA_CC_QY2 (GGML_MUSA_CC_OFFSET_MTHREADS + 0x220) // MTT S4000
#define GGML_CUDA_CC_NG (GGML_MUSA_CC_OFFSET_MTHREADS + 0x310) // TBD
#define GGML_CUDA_CC_QY1 (GGML_CUDA_CC_OFFSET_MTHREADS + 0x210) // MTT S80, MTT S3000
#define GGML_CUDA_CC_QY2 (GGML_CUDA_CC_OFFSET_MTHREADS + 0x220) // MTT S4000
#define GGML_CUDA_CC_NG (GGML_CUDA_CC_OFFSET_MTHREADS + 0x310) // TBD
#define GGML_CUDA_CC_IS_MTHREADS(cc) (cc >= GGML_CUDA_CC_OFFSET_MTHREADS && cc < GGML_CUDA_CC_OFFSET_AMD)
#define GGML_CUDA_CC_IS_QY1(cc) (cc >= GGML_CUDA_CC_QY1 && cc < GGML_CUDA_CC_QY2)
#define GGML_CUDA_CC_IS_QY2(cc) (cc >= GGML_CUDA_CC_QY2 && cc < GGML_CUDA_CC_NEXT)
#define GGML_CUDA_CC_IS_QY2(cc) (cc >= GGML_CUDA_CC_QY2 && cc < GGML_CUDA_CC_NG)
#define GGML_CUDA_CC_IS_NG(cc) (cc >= GGML_CUDA_CC_NG)
#ifdef __CUDA_ARCH_LIST__

View File

@@ -1,6 +1,8 @@
#include "convert.cuh"
#include "dequantize.cuh"
#include <cstdint>
#define CUDA_Q8_0_NE_ALIGN 2048
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
@@ -570,30 +572,46 @@ static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int64_t
}
template <typename src_t, typename dst_t>
static __global__ void convert_unary(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k) {
const int64_t i = (int64_t)blockDim.x*blockIdx.x + threadIdx.x;
static __global__ void convert_unary(
const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t ne00, const int64_t ne01, const int64_t ne02,
const int64_t s01, const int64_t s02, const int64_t s03) {
const int64_t i00 = (int64_t)blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
if (i00 >= ne00) {
return;
}
const int64_t i01 = blockIdx.y;
const int64_t i02 = blockIdx.z % ne02;
const int64_t i03 = blockIdx.z / ne02;
const src_t * x = (const src_t *) vx;
y[i] = float(x[i]);
const int64_t ix = i03*s03 + i02*s02 + i01*s01 + i00;
const int64_t iy = ((i03*ne02 + i02)*ne01 + i01)*ne00 + i00;
y[iy] = float(x[ix]);
}
template <typename src_t, typename dst_t>
static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
convert_unary<src_t><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
static void convert_unary_cuda(const void * vx, dst_t * y,
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
const int64_t s01, const int64_t s02, const int64_t s03, cudaStream_t stream) {
const dim3 num_blocks((ne00 + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE, ne01, ne02*ne03);
convert_unary<src_t><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>
(vx, y, ne00, ne01, ne02, s01, s02, s03);
}
template <typename src_t, typename dst_t>
static void convert_unary_cont_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
convert_unary_cuda<src_t>(vx, y, k, 1, 1, 1, k, k, k, stream);
}
to_bf16_cuda_t ggml_get_to_bf16_cuda(ggml_type type) {
switch (type) {
case GGML_TYPE_F32:
return convert_unary_cuda<float>;
return convert_unary_cont_cuda<float>;
case GGML_TYPE_F16:
return convert_unary_cuda<half>;
return convert_unary_cont_cuda<half>;
default:
return nullptr;
}
@@ -643,9 +661,9 @@ to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
case GGML_TYPE_IQ3_S:
return dequantize_row_iq3_s_cuda;
case GGML_TYPE_F32:
return convert_unary_cuda<float>;
return convert_unary_cont_cuda<float>;
case GGML_TYPE_BF16:
return convert_unary_cuda<nv_bfloat16>;
return convert_unary_cont_cuda<nv_bfloat16>;
default:
return nullptr;
}
@@ -692,7 +710,18 @@ to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
case GGML_TYPE_IQ3_S:
return dequantize_row_iq3_s_cuda;
case GGML_TYPE_F16:
return convert_unary_cuda<half>;
return convert_unary_cont_cuda<half>;
case GGML_TYPE_BF16:
return convert_unary_cont_cuda<nv_bfloat16>;
default:
return nullptr;
}
}
to_fp16_nc_cuda_t ggml_get_to_fp16_nc_cuda(ggml_type type) {
switch (type) {
case GGML_TYPE_F32:
return convert_unary_cuda<float>;
case GGML_TYPE_BF16:
return convert_unary_cuda<nv_bfloat16>;
default:

View File

@@ -3,7 +3,7 @@
#define CUDA_DEQUANTIZE_BLOCK_SIZE 256
template<typename T>
using to_t_cuda_t = void (*)(const void * __restrict__ x, T * __restrict__ y, int64_t k, cudaStream_t stream);
using to_t_cuda_t = void (*)(const void * x, T * y, int64_t k, cudaStream_t stream);
typedef to_t_cuda_t<float> to_fp32_cuda_t;
typedef to_t_cuda_t<half> to_fp16_cuda_t;
@@ -14,3 +14,13 @@ to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type);
to_bf16_cuda_t ggml_get_to_bf16_cuda(ggml_type type);
to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type);
// TODO more general support for non-contiguous inputs
template<typename T>
using to_t_nc_cuda_t = void (*)(const void * x, T * y,
int64_t ne00, int64_t ne01, int64_t ne02, int64_t ne03,
int64_t s01, int64_t s02, int64_t s03, cudaStream_t stream);
typedef to_t_nc_cuda_t<half> to_fp16_nc_cuda_t;
to_fp16_nc_cuda_t ggml_get_to_fp16_nc_cuda(ggml_type type);

View File

@@ -592,6 +592,8 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
dest_ptrs_d = ctx.cuda_graph->dest_ptrs_d;
graph_cpynode_index = ctx.cuda_graph->graph_cpynode_index;
}
#else
GGML_UNUSED(disable_indirection_for_this_node);
#endif
if (src0->type == src1->type && ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
GGML_ASSERT(ggml_nbytes(src0) == ggml_nbytes(src1));
@@ -639,6 +641,8 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
if(ctx.cuda_graph->use_cpy_indirection && !disable_indirection_for_this_node) {
ctx.cuda_graph->graph_cpynode_index = graph_cpynode_index;
}
#else
GGML_UNUSED(disable_indirection_for_this_node);
#endif
}

View File

@@ -33,8 +33,8 @@ static __global__ void k_get_rows(
dfloat2 v;
dequantize_kernel(src0_row, ib, iqs, v);
dst_row[iybs + iqs + 0] = v.x;
dst_row[iybs + iqs + y_offset] = v.y;
dst_row[iybs + iqs + 0] = float(v.x);
dst_row[iybs + iqs + y_offset] = float(v.y);
}
template<typename src0_t, typename dst_t>
@@ -60,7 +60,7 @@ static __global__ void k_get_rows_float(
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
const src0_t * src0_row = (const src0_t *)((const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03);
dst_row[i00] = src0_row[i00];
dst_row[i00] = float(src0_row[i00]);
}
template<typename grad_t, typename dst_t>
@@ -86,120 +86,159 @@ static __global__ void k_get_rows_back_float(
dst[dst_row*ncols + col] = sum;
}
template<int qk, int qr, dequantize_kernel_t dq>
static void get_rows_cuda(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
GGML_TENSOR_BINARY_OP_LOCALS
template<int qk, int qr, dequantize_kernel_t dq, typename dst_t>
static void get_rows_cuda_q(
const void * src0_d, const int32_t * src1_d, dst_t * dst_d,
const int64_t ne00, const size_t nb01, const size_t nb02, const size_t nb03,
const int64_t ne10, const int64_t ne11, const int64_t ne12, const size_t nb10, const size_t nb11, const size_t nb12,
const size_t nb1, const size_t nb2, const size_t nb3,
cudaStream_t stream) {
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
// strides in elements
//const size_t s0 = nb0 / ggml_element_size(dst);
const size_t s1 = nb1 / ggml_element_size(dst);
const size_t s2 = nb2 / ggml_element_size(dst);
const size_t s3 = nb3 / ggml_element_size(dst);
// const size_t s0 = nb0 / sizeof(dst_t);
const size_t s1 = nb1 / sizeof(dst_t);
const size_t s2 = nb2 / sizeof(dst_t);
const size_t s3 = nb3 / sizeof(dst_t);
const size_t s10 = nb10 / ggml_element_size(src1);
const size_t s11 = nb11 / ggml_element_size(src1);
const size_t s12 = nb12 / ggml_element_size(src1);
//const size_t s13 = nb13 / ggml_element_size(src1);
const size_t s10 = nb10 / sizeof(int32_t);
const size_t s11 = nb11 / sizeof(int32_t);
const size_t s12 = nb12 / sizeof(int32_t);
// const size_t s13 = nb13 / sizeof(int32_t);
GGML_ASSERT(ne00 % 2 == 0);
k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
src0_dd, src1_dd, dst_dd,
src0_d, src1_d, dst_d,
ne00, /*ne01, ne02, ne03,*/
/*ne10, ne11,*/ ne12, /*ne13,*/
/* s0,*/ s1, s2, s3,
/* nb00,*/ nb01, nb02, nb03,
s10, s11, s12/*, s13*/);
GGML_UNUSED(dst);
}
template<typename src0_t>
template<typename src0_t, typename dst_t>
static void get_rows_cuda_float(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT(ne13 == 1);
const src0_t * src0_d, const int32_t * src1_d, dst_t * dst_d,
const int64_t ne00, const size_t nb01, const size_t nb02, const size_t nb03,
const int64_t ne10, const int64_t ne11, const int64_t ne12, const size_t nb10, const size_t nb11, const size_t nb12,
const size_t nb1, const size_t nb2, const size_t nb3,
cudaStream_t stream) {
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
// strides in elements
//const size_t s0 = nb0 / ggml_element_size(dst);
const size_t s1 = nb1 / ggml_element_size(dst);
const size_t s2 = nb2 / ggml_element_size(dst);
const size_t s3 = nb3 / ggml_element_size(dst);
// const size_t s0 = nb0 / sizeof(dst_t);
const size_t s1 = nb1 / sizeof(dst_t);
const size_t s2 = nb2 / sizeof(dst_t);
const size_t s3 = nb3 / sizeof(dst_t);
const size_t s10 = nb10 / ggml_element_size(src1);
const size_t s11 = nb11 / ggml_element_size(src1);
const size_t s12 = nb12 / ggml_element_size(src1);
//const size_t s13 = nb13 / ggml_element_size(src1);
const size_t s10 = nb10 / sizeof(int32_t);
const size_t s11 = nb11 / sizeof(int32_t);
const size_t s12 = nb12 / sizeof(int32_t);
// const size_t s13 = nb13 / sizeof(int32_t);
k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
src0_dd, src1_dd, dst_dd,
src0_d, src1_d, dst_d,
ne00, /*ne01, ne02, ne03,*/
/*ne10, ne11,*/ ne12, /*ne13,*/
/* s0,*/ s1, s2, s3,
/* nb00,*/ nb01, nb02, nb03,
s10, s11, s12/*, s13*/);
}
GGML_UNUSED(dst);
template <typename dst_t>
static void ggml_cuda_get_rows_switch_src0_type(
const void * src0_d, const ggml_type src0_type, const int32_t * src1_d, dst_t * dst_d,
const int64_t ne00, const size_t nb01, const size_t nb02, const size_t nb03,
const int64_t ne10, const int64_t ne11, const int64_t ne12, const size_t nb10, const size_t nb11, const size_t nb12,
const size_t nb1, const size_t nb2, const size_t nb3,
cudaStream_t stream) {
switch (src0_type) {
case GGML_TYPE_F16:
get_rows_cuda_float((const half *) src0_d, src1_d, dst_d,
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
break;
case GGML_TYPE_F32:
get_rows_cuda_float((const float *) src0_d, src1_d, dst_d,
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
break;
case GGML_TYPE_BF16:
get_rows_cuda_float((const nv_bfloat16 *) src0_d, src1_d, dst_d,
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
break;
case GGML_TYPE_Q4_0:
get_rows_cuda_q<QK4_0, QR4_0, dequantize_q4_0>(src0_d, src1_d, dst_d,
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
break;
case GGML_TYPE_Q4_1:
get_rows_cuda_q<QK4_1, QR4_1, dequantize_q4_1>(src0_d, src1_d, dst_d,
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
break;
case GGML_TYPE_Q5_0:
get_rows_cuda_q<QK5_0, QR5_0, dequantize_q5_0>(src0_d, src1_d, dst_d,
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
break;
case GGML_TYPE_Q5_1:
get_rows_cuda_q<QK5_1, QR5_1, dequantize_q5_1>(src0_d, src1_d, dst_d,
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
break;
case GGML_TYPE_Q8_0:
get_rows_cuda_q<QK8_0, QR8_0, dequantize_q8_0>(src0_d, src1_d, dst_d,
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
break;
default:
// TODO: k-quants
GGML_ABORT("%s: unsupported src0 type: %s\n", __func__, ggml_type_name(src0_type));
break;
}
}
void get_rows_cuda(
const void * src0_d, ggml_type src0_type, const int32_t * src1_d, void * dst_d, ggml_type dst_type,
int64_t ne00, size_t nb01, size_t nb02, size_t nb03,
int64_t ne10, int64_t ne11, int64_t ne12, size_t nb10, size_t nb11, size_t nb12,
size_t nb1, size_t nb2, size_t nb3,
cudaStream_t stream) {
switch (dst_type) {
case GGML_TYPE_F32:
ggml_cuda_get_rows_switch_src0_type(src0_d, src0_type, src1_d, (float *) dst_d,
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
break;
case GGML_TYPE_F16:
ggml_cuda_get_rows_switch_src0_type(src0_d, src0_type, src1_d, (half *) dst_d,
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
break;
case GGML_TYPE_BF16:
ggml_cuda_get_rows_switch_src0_type(src0_d, src0_type, src1_d, (nv_bfloat16 *) dst_d,
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
break;
default:
GGML_ABORT("%s: unsupported dst type: %s\n", __func__, ggml_type_name(dst_type));
break;
}
}
void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const void * src0_d = (const void *) src0->data;
const int32_t * src1_d = (const int32_t *) src1->data;
float * dst_d = (float *) dst->data;
cudaStream_t stream = ctx.stream();
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT(src1->type == GGML_TYPE_I32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(ne13 == 1);
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
switch (src0->type) {
case GGML_TYPE_F16:
get_rows_cuda_float(src0, src1, dst, (const half *) src0_d, src1_d, dst_d, stream);
break;
case GGML_TYPE_F32:
get_rows_cuda_float(src0, src1, dst, (const float *) src0_d, src1_d, dst_d, stream);
break;
case GGML_TYPE_Q4_0:
get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
break;
case GGML_TYPE_Q4_1:
get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
break;
case GGML_TYPE_Q5_0:
get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
break;
case GGML_TYPE_Q5_1:
get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
break;
case GGML_TYPE_Q8_0:
get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
break;
default:
// TODO: k-quants
GGML_ABORT("%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
break;
}
get_rows_cuda(src0->data, src0->type, (const int32_t *) src1->data, dst->data, dst->type,
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
}
void ggml_cuda_op_get_rows_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {

View File

@@ -3,6 +3,13 @@
#define CUDA_GET_ROWS_BLOCK_SIZE 256
#define CUDA_GET_ROWS_BACK_BLOCK_SIZE 256
void get_rows_cuda(
const void * src0_d, ggml_type src0_type, const int32_t * src1_d, void * dst_d, ggml_type dst_type,
int64_t ne00, size_t nb01, size_t nb02, size_t nb03,
int64_t ne10, int64_t ne11, int64_t ne12, size_t nb10, size_t nb11, size_t nb12,
size_t nb1, size_t nb2, size_t nb3,
cudaStream_t stream);
void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_get_rows_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -1410,6 +1410,11 @@ static void ggml_cuda_op_mul_mat(
const int64_t ne0 = dst->ne[0];
const int64_t ne1 = dst->ne[1];
// const int64_t nb10 = src1->nb[0];
const int64_t nb11 = src1->nb[1];
const int64_t nb12 = src1->nb[2];
const int64_t nb13 = src1->nb[3];
const int64_t nb2 = dst->nb[2];
const int64_t nb3 = dst->nb[3];
@@ -1545,7 +1550,10 @@ static void ggml_cuda_op_mul_mat(
dev[id].src1_ddq = dev[id].src1_ddq_alloc.alloc(ctx.pool(id), src_1_ddq_size);
if (src1_on_device && src1_is_contiguous) {
quantize_src1(dev[id].src1_ddf, dev[id].src1_ddq, ne10, ne11, ne12*ne13, src1_padded_col_size, src0->type, stream);
quantize_src1(
dev[id].src1_ddf, nullptr, dev[id].src1_ddq, src0->type, ne10,
nb11/sizeof(float), nb12/sizeof(float), nb13/sizeof(float),
src1_padded_col_size, ne11, ne12, ne13, stream);
CUDA_CHECK(cudaGetLastError());
}
}
@@ -1640,7 +1648,9 @@ static void ggml_cuda_op_mul_mat(
}
if (quantize_src1 && !src1_is_contiguous) {
quantize_src1(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, 1, src1_padded_col_size, src0->type, stream);
quantize_src1(
src1_ddf_i, nullptr, src1_ddq_i, src0->type, ne10, ne10, ne11*ne10, ne12*ne11*ne10,
src1_padded_col_size, src1_ncols, 1, 1, stream);
CUDA_CHECK(cudaGetLastError());
}
@@ -1710,15 +1720,15 @@ static __global__ void k_compute_batched_ptrs(
size_t nb12, size_t nb13,
size_t nbd2, size_t nbd3,
int64_t r2, int64_t r3) {
int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x;
int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y;
const int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x;
const int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y;
if (i13 >= ne13 || i12 >= ne12) {
return;
}
int64_t i03 = i13 / r3;
int64_t i02 = i12 / r2;
const int64_t i03 = i13 / r3;
const int64_t i02 = i12 / r2;
ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
@@ -1732,6 +1742,10 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
GGML_ASSERT(src0->type == GGML_TYPE_F16);
// Byte offsets and tensor dimensions are currently used in an inconsistent way for dst.
// As long as dst is contiguous this does not matter though.
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_TENSOR_BINARY_OP_LOCALS
const int64_t ne_dst = ggml_nelements(dst);
@@ -1740,21 +1754,31 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(), main_stream));
void * src0_ddq = src0->data;
half * src0_f16 = (half *) src0_ddq;
float * src1_ddf = (float *) src1->data;
float * dst_ddf = (float *) dst->data;
const half * src0_f16 = (const half *) src0->data;
float * dst_ddf = (float *) dst->data;
const half * src1_f16 = (const half *) src1->data;
const size_t ts_src1 = ggml_type_size(src1->type);
GGML_ASSERT(nb10 == ts_src1);
int64_t s11 = nb11 / ts_src1;
int64_t s12 = nb12 / ts_src1;
int64_t s13 = nb13 / ts_src1;
ggml_cuda_pool_alloc<half> src1_f16_alloc(ctx.pool());
// convert src1 to fp16
ggml_cuda_pool_alloc<half> src1_f16_alloc(ctx.pool());
if (src1->type != GGML_TYPE_F16) {
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
const to_fp16_nc_cuda_t to_fp16_cuda = ggml_get_to_fp16_nc_cuda(src1->type);
const int64_t ne_src1 = ggml_nelements(src1);
src1_f16_alloc.alloc(ne_src1);
GGML_ASSERT(to_fp16_cuda != nullptr);
to_fp16_cuda(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream);
to_fp16_cuda(src1_f16, src1_f16_alloc.get(), ne10, ne11, ne12, ne13, s11, s12, s13, main_stream);
src1_f16 = src1_f16_alloc.get();
s11 = ne10;
s12 = ne11*s11;
s13 = ne12*s12;
}
half * src1_f16 = src1->type == GGML_TYPE_F16 ? (half *) src1_ddf : src1_f16_alloc.get();
ggml_cuda_pool_alloc<half> dst_f16(ctx.pool());
char * dst_t;
@@ -1814,13 +1838,13 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
int i02 = i12 / r2;
CUBLAS_CHECK(
cublasGemmEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
alpha, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , CUDA_R_16F, nb01/sizeof(half),
(const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F, nb11/sizeof(float),
beta, ( char *) dst_t + i12*nbd2 + i13*nbd3, cu_data_type, ne01,
cu_compute_type,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
cublasGemmEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
alpha, (const char *) src0_f16 + i03*nb03 + i02*nb02, CUDA_R_16F, nb01/sizeof(half),
src1_f16 + i13*s13 + i12*s12, CUDA_R_16F, s11,
beta, ( char *) dst_t + i13*nbd3 + i12*nbd2, cu_data_type, ne0,
cu_compute_type,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
}
}
}
@@ -1831,15 +1855,15 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
CUBLAS_CHECK(
cublasGemmStridedBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
alpha, (const char *) src0_f16, CUDA_R_16F, nb01/nb00, nb02/nb00, // strideA
(const char *) src1_f16, CUDA_R_16F, nb11/nb10, nb12/nb10, // strideB
beta, ( char *) dst_t, cu_data_type, ne01, nb2/nb0, // strideC
alpha, src0_f16, CUDA_R_16F, nb01/nb00, nb02/nb00, // strideA
src1_f16, CUDA_R_16F, s11, s12, // strideB
beta, dst_t, cu_data_type, ne0, ne1*ne0, // strideC
ne12*ne13,
cu_compute_type,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
} else {
// use cublasGemmBatchedEx
const int ne23 = ne12*ne13;
const int64_t ne23 = ne12*ne13;
ggml_cuda_pool_alloc<const void *> ptrs_src(ctx.pool(), 2*ne23);
ggml_cuda_pool_alloc< void *> ptrs_dst(ctx.pool(), 1*ne23);
@@ -1851,8 +1875,8 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
ne12, ne13,
ne23,
nb02, nb03,
src1->type == GGML_TYPE_F16 ? nb12 : nb12/2,
src1->type == GGML_TYPE_F16 ? nb13 : nb13/2,
src1->type == GGML_TYPE_F16 ? nb12 : s12*sizeof(half),
src1->type == GGML_TYPE_F16 ? nb13 : s13*sizeof(half),
nbd2, nbd3,
r2, r3);
CUDA_CHECK(cudaGetLastError());
@@ -1861,8 +1885,8 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
cublasGemmBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F, nb01/nb00,
(const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F, nb11/nb10,
beta, ( void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne01,
(const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F, s11,
beta, ( void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne0,
ne23,
cu_compute_type,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
@@ -1878,7 +1902,7 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft);
bool use_mul_mat_vec = (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16)
bool use_mul_mat_vec = (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
&& src0->ne[0] % 2 == 0 && src1->ne[1] == 1;
bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
@@ -1919,12 +1943,16 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
//printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
//printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
if (!split && use_mul_mat_vec && (src0->ne[1] < MMV_MAX_ROWS || any_gpus_without_fp16_mma)) {
if (!split && use_mul_mat_vec && (src0->ne[1] <= MMV_MAX_ROWS || any_gpus_without_fp16_mma)) {
// the custom F16 vector kernel can be used over batched cuBLAS GEMM
// but this is only faster for GPUs without tensor cores or with a thin src0 matrix (particularly KQV in attention)
ggml_cuda_mul_mat_vec(ctx, src0, src1, dst);
} else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || !any_gpus_with_slow_fp16)
&& !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
ggml_cuda_mul_mat_vec(ctx, src0, src1, nullptr, dst);
} else if (!split && use_mul_mat_vec_q) {
ggml_cuda_mul_mat_vec_q(ctx, src0, src1, nullptr, dst);
} else if (!split && use_mul_mat_q) {
ggml_cuda_mul_mat_q(ctx, src0, src1, nullptr, dst);
} else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || !any_gpus_with_slow_fp16) &&
!ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
// general KQ + KQV multi-batch without FlashAttention
ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst);
} else if (use_mul_mat_vec) {
@@ -1938,196 +1966,145 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
}
}
struct mmid_row_mapping {
int32_t i1;
int32_t i2;
};
static __global__ void k_copy_src1_to_contiguous(const char * __restrict__ src1_original, char * __restrict__ src1_contiguous,
int * __restrict__ cur_src1_row, mmid_row_mapping * __restrict__ row_mapping,
const char * __restrict ids, int64_t i02, size_t ids_nb1, size_t ids_nb0,
int64_t ne11, int64_t ne10,
size_t nb11, size_t nb12) {
int32_t iid1 = blockIdx.x;
int32_t id = blockIdx.y;
const int32_t row_id_i = *(const int32_t *) (ids + iid1*ids_nb1 + id*ids_nb0);
if (row_id_i != i02) {
return;
}
const int64_t i11 = id % ne11;
const int64_t i12 = iid1;
__shared__ int src1_row;
if (threadIdx.x == 0) {
src1_row = atomicAdd(cur_src1_row, 1);
row_mapping[src1_row] = {id, iid1};
}
__syncthreads();
const float * src1_row_original = (const float *)(src1_original + i11*nb11 + i12*nb12);
float * src1_row_contiguous = (float *)(src1_contiguous + src1_row*nb11);
for (int i = threadIdx.x; i < ne10; i += blockDim.x) {
src1_row_contiguous[i] = src1_row_original[i];
}
}
static __global__ void k_copy_dst_from_contiguous(char * __restrict__ dst_original, const char * __restrict__ dst_contiguous,
const mmid_row_mapping * __restrict__ row_mapping,
int64_t ne0,
size_t nb1, size_t nb2) {
int32_t i = blockIdx.x;
const int32_t i1 = row_mapping[i].i1;
const int32_t i2 = row_mapping[i].i2;
const float * dst_row_contiguous = (const float *)(dst_contiguous + i*nb1);
float * dst_row_original = (float *)(dst_original + i1*nb1 + i2*nb2);
for (int j = threadIdx.x; j < ne0; j += blockDim.x) {
dst_row_original[j] = dst_row_contiguous[j];
}
}
static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const ggml_tensor * ids = dst->src[2];
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(!ggml_backend_buft_is_cuda_split(src0->buffer->buft) && "mul_mat_id does not support split buffers");
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT(!ggml_backend_buft_is_cuda_split(src0->buffer->buft) && "mul_mat_id does not support split buffers");
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
if (ne2 == 1) {
if (ggml_is_quantized(src0->type)) {
ggml_cuda_mul_mat_vec_q(ctx, src0, src1, ids, dst);
} else {
ggml_cuda_mul_mat_vec(ctx, src0, src1, ids, dst);
}
return;
}
if (ggml_cuda_should_use_mmq(src0->type, cc, ne12)) {
ggml_cuda_mul_mat_q(ctx, src0, src1, ids, dst);
return;
}
}
cudaStream_t stream = ctx.stream();
const int64_t n_as = ne02;
const int64_t n_ids = ids->ne[0];
GGML_ASSERT(nb12 % nb11 == 0);
GGML_ASSERT(nb2 % nb1 == 0);
const ggml_type type_src1_sorted = (src0->type == GGML_TYPE_F16 && !fast_fp16_hardware_available(cc))
|| ggml_is_quantized(src0->type) ? GGML_TYPE_F32 : src0->type;
const ggml_type type_dst_sorted = GGML_TYPE_F32;
const size_t ts_src1_sorted = ggml_type_size(type_src1_sorted);
const size_t ts_dst_sorted = ggml_type_size(type_dst_sorted);
const int64_t n_expert_used = ids->ne[0];
const int64_t ne_get_rows = ne12 * n_expert_used;
std::vector<int32_t> ids_to_sorted_host;
ids_to_sorted_host.reserve(2*ne_get_rows);
std::vector<int32_t> ids_from_sorted_host(ne_get_rows);
ggml_cuda_pool_alloc<int32_t> ids_buf_dev(ctx.pool(), 2*ne_get_rows);
std::vector<int32_t> tokens_per_expert(ne02);
ggml_cuda_pool_alloc<char> src1_sorted(ctx.pool(), ne12*n_expert_used*ne10*ts_src1_sorted);
ggml_cuda_pool_alloc<char> dst_sorted(ctx.pool(), ne2 *n_expert_used* ne0*ts_dst_sorted);
std::vector<char> ids_host(ggml_nbytes(ids));
const char * ids_dev = (const char *) ids->data;
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids->data, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
CUDA_CHECK(cudaStreamSynchronize(stream));
ggml_tensor src0_row = *src0;
ggml_tensor src1_row = *src1;
ggml_tensor dst_row = *dst;
char * src0_original = (char *) src0->data;
char * src1_original = (char *) src1->data;
char * dst_original = (char *) dst->data;
src0_row.ne[2] = 1;
src0_row.ne[3] = 1;
src0_row.nb[3] = nb02;
src1_row.ne[1] = 1;
src1_row.ne[2] = 1;
src1_row.ne[3] = 1;
src1_row.nb[2] = nb11;
src1_row.nb[3] = nb11;
dst_row.ne[1] = 1;
dst_row.ne[2] = 1;
dst_row.ne[3] = 1;
dst_row.nb[2] = nb1;
dst_row.nb[3] = nb1;
if (ne12 == 1) {
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
for (int64_t id = 0; id < n_ids; id++) {
const int32_t i02 = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
GGML_ASSERT(i02 >= 0 && i02 < n_as);
const int64_t i11 = id % ne11;
const int64_t i12 = iid1;
const int64_t i1 = id;
const int64_t i2 = i12;
src0_row.data = src0_original + i02*nb02;
src1_row.data = src1_original + i11*nb11 + i12*nb12;
dst_row.data = dst_original + i1*nb1 + i2*nb2;
ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
}
}
} else {
ggml_cuda_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1));
ggml_cuda_pool_alloc<char> dst_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst));
src1_row.data = src1_contiguous.get();
dst_row.data = dst_contiguous.get();
for (int64_t i02 = 0; i02 < n_as; i02++) {
int64_t num_src1_rows = 0;
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
for (int64_t id = 0; id < n_ids; id++) {
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
GGML_ASSERT(row_id_i >= 0 && row_id_i < n_as);
if (row_id_i != i02) {
continue;
}
num_src1_rows++;
for (int64_t i02 = 0; i02 < ne02; ++i02) { // expert matrices
for (int64_t i12 = 0; i12 < ne12; ++i12) { // tokens
for (int64_t iex = 0; iex < n_expert_used; ++iex) {
const int32_t expert_to_use = *(const int32_t *)(ids_host.data() + i12*ids->nb[1] + iex*ids->nb[0]);
assert(expert_to_use >= 0 && expert_to_use < ne02);
if (expert_to_use == i02) {
ids_from_sorted_host[i12*n_expert_used + iex] = ids_to_sorted_host.size();
ids_to_sorted_host.push_back(i12*ne11 + iex % ne11);
tokens_per_expert[i02]++;
break;
}
}
if (num_src1_rows == 0) {
continue;
}
ggml_cuda_pool_alloc<int> dev_cur_src1_row(ctx.pool(), 1);
ggml_cuda_pool_alloc<mmid_row_mapping> dev_row_mapping(ctx.pool(), num_src1_rows);
CUDA_CHECK(cudaMemsetAsync(dev_cur_src1_row.get(), 0, sizeof(int), stream));
{
dim3 block_dims(std::min((unsigned int)ne10, 768u));
dim3 grid_dims(ids->ne[1], n_ids);
k_copy_src1_to_contiguous<<<grid_dims, block_dims, 0, stream>>>(
src1_original, src1_contiguous.get(),
dev_cur_src1_row.get(), dev_row_mapping.get(),
ids_dev, i02, ids->nb[1], ids->nb[0],
ne11, ne10,
nb11, nb12);
CUDA_CHECK(cudaGetLastError());
}
src0_row.data = src0_original + i02*nb02;
GGML_ASSERT(nb11 == sizeof(float)*ne10);
GGML_ASSERT(nb1 == sizeof(float)*ne0);
src1_row.ne[1] = num_src1_rows;
src1_row.nb[1] = nb11;
src1_row.nb[2] = num_src1_rows*nb11;
src1_row.nb[3] = num_src1_rows*nb11;
dst_row.ne[1] = num_src1_rows;
dst_row.nb[1] = nb1;
dst_row.nb[2] = num_src1_rows*nb1;
dst_row.nb[3] = num_src1_rows*nb1;
ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
{
dim3 block_dims(std::min((unsigned int)ne0, 768u));
dim3 grid_dims(num_src1_rows);
k_copy_dst_from_contiguous<<<grid_dims, block_dims, 0, stream>>>(
dst_original, dst_contiguous.get(),
dev_row_mapping.get(),
ne0,
nb1, nb2);
CUDA_CHECK(cudaGetLastError());
}
}
}
GGML_ASSERT(ids_to_sorted_host.size() == size_t(ne_get_rows));
ids_to_sorted_host.insert(ids_to_sorted_host.end(), ids_from_sorted_host.begin(), ids_from_sorted_host.end());
CUDA_CHECK(cudaMemcpyAsync(ids_buf_dev.ptr, ids_to_sorted_host.data(), 2*ne_get_rows*sizeof(int32_t), cudaMemcpyHostToDevice, stream));
CUDA_CHECK(cudaStreamSynchronize(stream));
const int32_t * ids_to_sorted = ids_buf_dev.ptr + 0*ne_get_rows;
const int32_t * ids_from_sorted = ids_buf_dev.ptr + 1*ne_get_rows;
get_rows_cuda(src1->data, src1->type, ids_to_sorted, src1_sorted.ptr, type_src1_sorted,
ne10, nb11, nb12, nb13,
ne_get_rows, 1, 1, sizeof(int32_t), ne_get_rows*sizeof(int32_t), ne_get_rows*sizeof(int32_t),
ne10*ts_src1_sorted, ne_get_rows*ne10*ts_src1_sorted, ne_get_rows*ne10*ts_src1_sorted, stream);
CUDA_CHECK(cudaGetLastError());
char * src1_data_cur = (char *) src1_sorted.ptr;
char * dst_data_cur = (char *) dst_sorted.ptr;
for (int64_t i02 = 0; i02 < ne02; ++i02) {
if (tokens_per_expert[i02] == 0) {
continue;
}
ggml_tensor src0_slice = *src0;
src0_slice.ne[2] = 1;
src0_slice.nb[3] = src0_slice.nb[2];
src0_slice.data = (char *) src0->data + i02*nb02;
ggml_tensor src1_slice;
memset(&src1_slice, 0, sizeof(src1_slice));
src1_slice.buffer = src1->buffer;
src1_slice.type = type_src1_sorted;
src1_slice.ne[0] = ne10;
src1_slice.ne[1] = tokens_per_expert[i02];
src1_slice.ne[2] = 1;
src1_slice.ne[3] = 1;
src1_slice.nb[0] = ts_src1_sorted;
src1_slice.nb[1] = src1_slice.ne[0] * src1_slice.nb[0];
src1_slice.nb[2] = src1_slice.ne[1] * src1_slice.nb[1];
src1_slice.nb[3] = src1_slice.ne[2] * src1_slice.nb[2];
src1_slice.data = src1_data_cur;
ggml_tensor dst_slice;
memset(&dst_slice, 0, sizeof(dst_slice));
dst_slice.buffer = dst->buffer;
dst_slice.type = type_dst_sorted;
dst_slice.ne[0] = ne0;
dst_slice.ne[1] = tokens_per_expert[i02];
dst_slice.ne[2] = 1;
dst_slice.ne[3] = 1;
dst_slice.nb[0] = ts_dst_sorted;
dst_slice.nb[1] = dst_slice.ne[0] * dst_slice.nb[0];
dst_slice.nb[2] = dst_slice.ne[1] * dst_slice.nb[1];
dst_slice.nb[3] = dst_slice.ne[2] * dst_slice.nb[2];
dst_slice.data = dst_data_cur;
ggml_cuda_mul_mat(ctx, &src0_slice, &src1_slice, &dst_slice);
CUDA_CHECK(cudaGetLastError());
src1_data_cur += src1_slice.nb[2];
dst_data_cur += dst_slice.nb[2];
}
get_rows_cuda(dst_sorted.ptr, type_dst_sorted, ids_from_sorted, dst->data, dst->type,
ne0, ne0*ts_dst_sorted, ne_get_rows*ne0*ts_dst_sorted, ne_get_rows*ne0*ts_dst_sorted,
ne_get_rows, 1, 1, sizeof(int32_t), ne_get_rows*sizeof(int32_t), ne_get_rows*sizeof(int32_t),
nb1, nb2, nb3, stream);
}
static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct ggml_tensor * dst) {
@@ -2489,7 +2466,7 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud
#endif
}
if (node->op == GGML_OP_MUL_MAT_ID) {
if (node->op == GGML_OP_MUL_MAT_ID && node->ne[2] != 1) {
use_cuda_graph = false; // This node type is not supported by CUDA graph capture
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to unsupported node type\n", __func__);
@@ -3203,9 +3180,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
}
case GGML_OP_ROPE:
case GGML_OP_ROPE_BACK: {
const size_t ts = ggml_type_size(op->src[0]->type);
const int64_t ne0_012 = op->src[0]->ne[0] * op->src[0]->ne[1] * op->src[0]->ne[2];
return op->src[0]->nb[0] == ts && op->src[0]->nb[3] == ne0_012*ts;
return op->src[0]->nb[0] == ggml_type_size(op->src[0]->type) && ggml_is_contiguous_2(op->src[0]);
}
case GGML_OP_IM2COL:
case GGML_OP_POOL_2D:

View File

@@ -1,37 +1,10 @@
#include "mmq.cuh"
#include "quantize.cuh"
void ggml_cuda_op_mul_mat_q(
ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
const int64_t src1_padded_row_size, cudaStream_t stream) {
#include <vector>
const int64_t ne00 = src0->ne[0];
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
GGML_ASSERT(ne10 % QK8_1 == 0);
const int64_t ne0 = dst->ne[0];
const int64_t row_diff = row_high - row_low;
const int64_t stride00 = ne00 / ggml_blck_size(src0->type);
int id = ggml_cuda_get_device();
const int cc = ggml_cuda_info().devices[id].cc;
// the main device has a larger memory buffer to hold the results from all GPUs
// nrows_dst == nrows of the matrix that the kernel writes into
const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
// The stream-k decomposition is only faster for recent NVIDIA GPUs.
// Also its fixup needs to allocate a temporary buffer in the memory pool.
// There are multiple parallel CUDA streams for src1_ncols != ne11 which would introduce a race condition for this buffer.
const bool use_stream_k = GGML_CUDA_CC_IS_NVIDIA(cc) &&
ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA && src1_ncols == ne11;
const mmq_args args = {src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stride00, src1_padded_row_size, src1_ncols, ne11, nrows_dst, use_stream_k};
switch (src0->type) {
static void ggml_cuda_mul_mat_q_switch_type(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) {
switch (args.type_x) {
case GGML_TYPE_Q4_0:
mul_mat_q_case<GGML_TYPE_Q4_0>(ctx, args, stream);
break;
@@ -90,10 +63,195 @@ void ggml_cuda_op_mul_mat_q(
GGML_ABORT("fatal error");
break;
}
}
void ggml_cuda_mul_mat_q(
ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) {
GGML_ASSERT( src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(!ids || ids->type == GGML_TYPE_I32); // Optional, used for batched GGML_MUL_MAT_ID.
GGML_TENSOR_BINARY_OP_LOCALS;
cudaStream_t stream = ctx.stream();
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
const size_t ts_src0 = ggml_type_size(src0->type);
const size_t ts_src1 = ggml_type_size(src1->type);
const size_t ts_dst = ggml_type_size(dst->type);
GGML_ASSERT( nb00 == ts_src0);
GGML_ASSERT( nb10 == ts_src1);
GGML_ASSERT( nb0 == ts_dst);
GGML_ASSERT(!ids || ids->nb[0] == ggml_type_size(ids->type));
const char * src0_d = (const char *) src0->data;
const float * src1_d = (const float *) src1->data;
float * dst_d = (float *) dst->data;
const int64_t ne10_padded = GGML_PAD(ne10, MATRIX_ROW_PADDING);
const int64_t s01 = src0->nb[1] / ts_src0;
const int64_t s1 = dst->nb[1] / ts_dst;
const int64_t s02 = src0->nb[2] / ts_src0;
const int64_t s2 = dst->nb[2] / ts_dst;
const int64_t s03 = src0->nb[3] / ts_src0;
const int64_t s3 = dst->nb[3] / ts_dst;
const bool use_stream_k = GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA;
if (!ids) {
const size_t nbytes_src1_q8_1 = ne13*ne12 * ne11*ne10_padded * sizeof(block_q8_1)/QK8_1 +
get_mmq_x_max_host(cc)*sizeof(block_q8_1_mmq);
ggml_cuda_pool_alloc<char> src1_q8_1(ctx.pool(), nbytes_src1_q8_1);
{
const int64_t s11 = src1->nb[1] / ts_src1;
const int64_t s12 = src1->nb[2] / ts_src1;
const int64_t s13 = src1->nb[3] / ts_src1;
quantize_mmq_q8_1_cuda(src1_d, nullptr, src1_q8_1.get(), src0->type,
ne10, s11, s12, s13, ne10_padded, ne11, ne12, ne13, stream);
}
const int64_t s12 = ne11*ne10_padded * sizeof(block_q8_1)/(QK8_1*sizeof(int));
const int64_t s13 = ne12*s12;
const mmq_args args = {
src0_d, src0->type, (const int *) src1_q8_1.ptr, nullptr, nullptr, dst_d,
ne00, ne01, ne1, s01, s1,
ne02, ne12, s02, s12, s2,
ne03, ne13, s03, s13, s3,
use_stream_k};
ggml_cuda_mul_mat_q_switch_type(ctx, args, stream);
return;
}
GGML_ASSERT(ne13 == 1);
GGML_ASSERT(nb12 % nb11 == 0);
GGML_ASSERT(nb2 % nb1 == 0);
const int64_t n_expert_used = ids->ne[0];
const int64_t ne_get_rows = ne12 * n_expert_used;
std::vector<char> ids_host(ggml_nbytes(ids));
std::vector<int32_t> ids_src1_host;
ids_src1_host.reserve(ne_get_rows);
std::vector<int32_t> ids_dst_host;
ids_dst_host.reserve(ne_get_rows);
std::vector<int32_t> tokens_per_expert_host(ne02);
std::vector<int32_t> expert_bounds_host(ne02 + 1);
ggml_cuda_pool_alloc<int32_t> ids_buf_dev(ctx.pool());
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids->data, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
CUDA_CHECK(cudaStreamSynchronize(stream));
for (int64_t i02 = 0; i02 < ne02; ++i02) { // expert matrices
for (int64_t i12 = 0; i12 < ne12; ++i12) { // tokens
for (int64_t iex = 0; iex < n_expert_used; ++iex) {
const int32_t expert_to_use = *(const int32_t *)(ids_host.data() + i12*ids->nb[1] + iex*ids->nb[0]);
assert(expert_to_use >= 0 && expert_to_use < ne02);
if (expert_to_use == i02) {
ids_src1_host.push_back(i12*(nb12/nb11) + iex % ne11);
ids_dst_host.push_back(i12*ne1 + iex);
tokens_per_expert_host[i02]++;
break;
}
}
}
}
int32_t cumsum = 0;
for (int64_t i = 0; i < ne02; ++i) {
expert_bounds_host[i] = cumsum;
cumsum += tokens_per_expert_host[i];
}
expert_bounds_host[ne02] = cumsum;
std::vector<int32_t> ids_buf_host;
ids_buf_host.reserve(ids_src1_host.size() + ids_dst_host.size() + expert_bounds_host.size());
ids_buf_host.insert(ids_buf_host.end(), ids_src1_host.begin(), ids_src1_host.end());
ids_buf_host.insert(ids_buf_host.end(), ids_dst_host.begin(), ids_dst_host.end());
ids_buf_host.insert(ids_buf_host.end(), expert_bounds_host.begin(), expert_bounds_host.end());
ids_buf_dev.alloc(ids_buf_host.size() + get_mmq_x_max_host(cc)); // Expert bounds are padded on device.
CUDA_CHECK(cudaMemcpyAsync(ids_buf_dev.ptr, ids_buf_host.data(), ids_buf_host.size()*sizeof(int32_t), cudaMemcpyHostToDevice, stream));
CUDA_CHECK(cudaStreamSynchronize(stream));
const int32_t * ids_src1_dev = ids_buf_dev.ptr;
const int32_t * ids_dst_dev = ids_src1_dev + ids_src1_host.size();
const int32_t * expert_bounds_dev = ids_dst_dev + ids_dst_host.size();
const size_t nbytes_src1_q8_1 = ne12*n_expert_used*ne10_padded * sizeof(block_q8_1)/QK8_1 +
get_mmq_x_max_host(cc)*sizeof(block_q8_1_mmq);
ggml_cuda_pool_alloc<char> src1_q8_1(ctx.pool(), nbytes_src1_q8_1);
const int64_t ne11_flat = ne12*n_expert_used;
const int64_t ne12_flat = 1;
const int64_t ne13_flat = 1;
{
const int64_t s11 = src1->nb[1] / ts_src1;
const int64_t s12 = src1->nb[2] / ts_src1;
const int64_t s13 = src1->nb[2] / ts_src1;
quantize_mmq_q8_1_cuda(src1_d, ids_src1_dev, src1_q8_1.get(), src0->type,
ne10, s11, s12, s13, ne10_padded, ne11_flat, ne12_flat, ne13_flat, stream);
}
const int64_t s12 = ne11*ne10_padded * sizeof(block_q8_1)/(QK8_1*sizeof(int));
const int64_t s13 = ne12*s12;
// Note that ne02 is used instead of ne12 because the number of y channels determines the z dimension of the CUDA grid.
const mmq_args args = {
src0_d, src0->type, (const int *) src1_q8_1.ptr, ids_dst_dev, expert_bounds_dev, dst_d,
ne00, ne01, ne_get_rows, s01, s1,
ne02, ne02, s02, s12, s2,
ne03, ne13, s03, s13, s3,
use_stream_k};
ggml_cuda_mul_mat_q_switch_type(ctx, args, stream);
}
void ggml_cuda_op_mul_mat_q(
ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
const int64_t src1_padded_row_size, cudaStream_t stream) {
const int64_t ne00 = src0->ne[0];
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
GGML_ASSERT(ne10 % QK8_1 == 0);
const int64_t ne0 = dst->ne[0];
const int64_t row_diff = row_high - row_low;
const int64_t stride01 = ne00 / ggml_blck_size(src0->type);
const int id = ggml_cuda_get_device();
const int cc = ggml_cuda_info().devices[id].cc;
// the main device has a larger memory buffer to hold the results from all GPUs
// nrows_dst == nrows of the matrix that the kernel writes into
const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
// The stream-k decomposition is only faster for recent NVIDIA GPUs.
// Also its fixup needs to allocate a temporary buffer in the memory pool.
// There are multiple parallel CUDA streams for src1_ncols != ne11 which would introduce a race condition for this buffer.
const bool use_stream_k = GGML_CUDA_CC_IS_NVIDIA(cc) &&
ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA && src1_ncols == ne11;
const mmq_args args = {
src0_dd_i, src0->type, (const int *) src1_ddq_i, nullptr, nullptr, dst_dd_i,
ne00, row_diff, src1_ncols, stride01, nrows_dst,
1, 1, 0, 0, 0,
1, 1, 0, 0, 0,
use_stream_k};
ggml_cuda_mul_mat_q_switch_type(ctx, args, stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_ddf_i);
GGML_UNUSED(src1_padded_row_size);
}
bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {

File diff suppressed because it is too large Load Diff

View File

@@ -4,18 +4,23 @@
template <typename T, typename type_acc, int block_size>
static __global__ void mul_mat_vec(
const T * __restrict__ x, const float * __restrict__ y, float * __restrict__ dst, const int64_t ncols2, const int64_t stride_row,
const T * __restrict__ x, const float * __restrict__ y, const int32_t * __restrict__ ids, float * __restrict__ dst,
const int64_t ncols2, const int64_t nchannels_y, const int64_t stride_row,
const int64_t channel_ratio, const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst,
const int64_t sample_ratio, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst) {
const int64_t row = blockIdx.x;
const int64_t channel = blockIdx.y;
const int64_t sample = blockIdx.z;
const int tid = threadIdx.x;
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
const int64_t row = blockIdx.x;
const int64_t channel_dst = blockIdx.y;
const int64_t channel_x = ids ? ids[channel_dst] : channel_dst / channel_ratio;
const int64_t channel_y = ids ? channel_dst % nchannels_y : channel_dst;
const int64_t sample_dst = blockIdx.z;
const int64_t sample_x = sample_dst / sample_ratio;
const int64_t sample_y = sample_dst;
const int tid = threadIdx.x;
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
x += (sample/sample_ratio)*stride_sample_x + (channel/channel_ratio)*stride_channel_x + row*stride_row;
y += sample *stride_sample_y + channel *stride_channel_y;
dst += sample *stride_sample_dst + channel *stride_channel_dst;
x += sample_x *stride_sample_x + channel_x *stride_channel_x + row*stride_row;
y += sample_y *stride_sample_y + channel_y *stride_channel_y;
dst += sample_dst*stride_sample_dst + channel_dst*stride_channel_dst;
const float2 * y2 = (const float2 *) y;
@@ -31,12 +36,19 @@ static __global__ void mul_mat_vec(
float sumf = 0.0f;
if constexpr (std::is_same<T, half>::value) {
if constexpr (std::is_same<T, float>::value) {
const float2 * x2 = (const float2 *) x;
for (int64_t col2 = tid; col2 < ncols2; col2 += block_size) {
const float2 tmpx = x2[col2];
const float2 tmpy = y2[col2];
sumf += tmpx.x*tmpy.x;
sumf += tmpx.y*tmpy.y;
}
} else if constexpr (std::is_same<T, half>::value) {
const half2 * x2 = (const half2 *) x;
if (std::is_same<type_acc, float>::value) {
sumf = 0.0f;
for (int64_t col2 = tid; col2 < ncols2; col2 += block_size) {
const float2 tmpx = __half22float2(x2[col2]);
const float2 tmpy = y2[col2];
@@ -59,8 +71,6 @@ static __global__ void mul_mat_vec(
}
} else if constexpr (std::is_same<T, nv_bfloat16>::value) {
const int * x2 = (const int *) x;
sumf = 0.0f;
for (int64_t col2 = tid; col2 < ncols2; col2 += block_size) {
const int tmpx = x2[col2];
const float2 tmpy = y2[col2];
@@ -92,17 +102,17 @@ static __global__ void mul_mat_vec(
template <typename T, typename type_acc>
static void launch_mul_mat_vec_cuda(
const T * x, const float * y, float * dst,
const int64_t ncols, const int64_t nrows, const int64_t stride_row, const int64_t nchannels_x, const int64_t nchannels_y,
const T * x, const float * y, const int32_t * ids, float * dst,
const int64_t ncols, const int64_t nrows, const int64_t stride_row, const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
const int64_t nsamples_y, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
cudaStream_t stream) {
GGML_ASSERT(ncols % 2 == 0);
GGML_ASSERT(stride_row % 2 == 0);
GGML_ASSERT(nchannels_y % nchannels_x == 0);
GGML_ASSERT(nsamples_y % nsamples_x == 0);
const int64_t channel_ratio = nchannels_y / nchannels_x;
const int64_t sample_ratio = nsamples_y / nsamples_x;
GGML_ASSERT(ids || nchannels_dst % nchannels_x == 0);
GGML_ASSERT( nsamples_dst % nsamples_x == 0);
const int64_t channel_ratio = nchannels_dst / nchannels_x;
const int64_t sample_ratio = nsamples_dst / nsamples_x;
int device;
int warp_size;
@@ -124,48 +134,48 @@ static void launch_mul_mat_vec_cuda(
}
const int smem = warp_size*sizeof(float);
const dim3 block_nums(nrows, nchannels_y, nsamples_y);
const dim3 block_nums(nrows, nchannels_dst, nsamples_dst);
const dim3 block_dims(block_size_best, 1, 1);
switch (block_size_best) {
case 32: {
mul_mat_vec<T, type_acc, 32><<<block_nums, block_dims, smem, stream>>>
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, channel_ratio, stride_channel_x, stride_channel_y,
stride_channel_dst, sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 64: {
mul_mat_vec<T, type_acc, 64><<<block_nums, block_dims, smem, stream>>>
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, channel_ratio, stride_channel_x, stride_channel_y,
stride_channel_dst, sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 96: {
mul_mat_vec<T, type_acc, 96><<<block_nums, block_dims, smem, stream>>>
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, channel_ratio, stride_channel_x, stride_channel_y,
stride_channel_dst, sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 128: {
mul_mat_vec<T, type_acc, 128><<<block_nums, block_dims, smem, stream>>>
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, channel_ratio, stride_channel_x, stride_channel_y,
stride_channel_dst, sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 160: {
mul_mat_vec<T, type_acc, 160><<<block_nums, block_dims, smem, stream>>>
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, channel_ratio, stride_channel_x, stride_channel_y,
stride_channel_dst, sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 192: {
mul_mat_vec<T, type_acc, 192><<<block_nums, block_dims, smem, stream>>>
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, channel_ratio, stride_channel_x, stride_channel_y,
stride_channel_dst, sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 224: {
mul_mat_vec<T, type_acc, 224><<<block_nums, block_dims, smem, stream>>>
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, channel_ratio, stride_channel_x, stride_channel_y,
stride_channel_dst, sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 256: {
mul_mat_vec<T, type_acc, 256><<<block_nums, block_dims, smem, stream>>>
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, channel_ratio, stride_channel_x, stride_channel_y,
stride_channel_dst, sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
default: {
GGML_ABORT("fatal error");
@@ -175,28 +185,28 @@ static void launch_mul_mat_vec_cuda(
template<typename T>
static void mul_mat_vec_cuda(
const T * x, const float * y, float * dst,
const int64_t ncols, const int64_t nrows, const int64_t stride_row, const int64_t nchannels_x, const int64_t nchannels_y,
const T * x, const float * y, const int32_t * ids, float * dst,
const int64_t ncols, const int64_t nrows, const int64_t stride_row, const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
const int64_t nsamples_y, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
enum ggml_prec prec, cudaStream_t stream) {
switch (prec) {
case GGML_PREC_DEFAULT: {
if constexpr(std::is_same<T, half>::value) {
if (prec == GGML_PREC_DEFAULT) {
launch_mul_mat_vec_cuda<T, half>
(x, y, dst, ncols, nrows, stride_row, nchannels_x, nchannels_y, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_y, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case GGML_PREC_F32: {
launch_mul_mat_vec_cuda<T, float>
(x, y, dst, ncols, nrows, stride_row, nchannels_x, nchannels_y, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_y, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
(x, y, ids, dst, ncols, nrows, stride_row, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
return;
}
}
launch_mul_mat_vec_cuda<T, float>
(x, y, ids, dst, ncols, nrows, stride_row, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
}
void ggml_cuda_mul_mat_vec(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
void ggml_cuda_mul_mat_vec(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) {
GGML_ASSERT( src1->type == GGML_TYPE_F32);
GGML_ASSERT(!ids || ids->type == GGML_TYPE_I32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_TENSOR_BINARY_OP_LOCALS;
@@ -204,21 +214,24 @@ void ggml_cuda_mul_mat_vec(ggml_backend_cuda_context & ctx, const ggml_tensor *
const size_t ts_src1 = ggml_type_size(src1->type);
const size_t ts_dst = ggml_type_size(dst->type);
GGML_ASSERT(ne11 == 1);
GGML_ASSERT(ne12 == ne2);
GGML_ASSERT(!ids || ne12 == 1); // Implementation is only correct for batch size 1.
GGML_ASSERT(ne13 == ne3);
GGML_ASSERT(nb00 == ts_src0);
GGML_ASSERT(nb10 == ts_src1);
GGML_ASSERT(nb0 == ts_dst);
GGML_ASSERT( nb00 == ts_src0);
GGML_ASSERT( nb10 == ts_src1);
GGML_ASSERT(!ids || ids->nb[0] == ggml_type_size(ids->type));
GGML_ASSERT( nb0 == ts_dst);
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
const enum ggml_prec prec = fast_fp16_available(cc) ? ggml_prec(dst->op_params[0]) : GGML_PREC_F32;
const float * src1_d = (const float *) src1->data;
float * dst_d = (float *) dst->data;
const float * src1_d = (const float *) src1->data;
const int32_t * ids_d = ids ? (const int32_t *) ids->data : nullptr;
float * dst_d = (float *) dst->data;
const int64_t s01 = src0->nb[1] / ts_src0;
const int64_t s11 = src1->nb[1] / ts_src1;
const int64_t s1 = dst->nb[1] / ts_dst;
const int64_t s02 = src0->nb[2] / ts_src0;
const int64_t s12 = src1->nb[2] / ts_src1;
const int64_t s2 = dst->nb[2] / ts_dst;
@@ -226,14 +239,33 @@ void ggml_cuda_mul_mat_vec(ggml_backend_cuda_context & ctx, const ggml_tensor *
const int64_t s13 = src1->nb[3] / ts_src1;
const int64_t s3 = dst->nb[3] / ts_dst;
// For MUL_MAT_ID the memory layout is different than for MUL_MAT:
const int64_t ncols_dst = ids ? ne2 : ne1;
const int64_t nchannels_y = ids ? ne11 : ne12;
const int64_t nchannels_dst = ids ? ne1 : ne2;
const int64_t stride_channel_dst = ids ? s1 : s2;
const int64_t stride_channel_y = ids ? s11 : s12;
GGML_ASSERT(ncols_dst == 1);
switch (src0->type) {
case GGML_TYPE_F32: {
const float * src0_d = (const float *) src0->data;
mul_mat_vec_cuda(src0_d, src1_d, ids_d, dst_d, ne00, ne01, s01,
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
ne03, ne3, s03, s13, s3, prec, ctx.stream());
} break;
case GGML_TYPE_F16: {
const half * src0_d = (const half *) src0->data;
mul_mat_vec_cuda(src0_d, src1_d, dst_d, ne00, ne01, s01, ne02, ne12, s02, s12, s2, ne03, ne13, s03, s13, s3, prec, ctx.stream());
mul_mat_vec_cuda(src0_d, src1_d, ids_d, dst_d, ne00, ne01, s01,
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
ne03, ne3, s03, s13, s3, prec, ctx.stream());
} break;
case GGML_TYPE_BF16: {
const nv_bfloat16 * src0_d = (const nv_bfloat16 *) src0->data;
mul_mat_vec_cuda(src0_d, src1_d, dst_d, ne00, ne01, s01, ne02, ne12, s02, s12, s2, ne03, ne13, s03, s13, s3, prec, ctx.stream());
mul_mat_vec_cuda(src0_d, src1_d, ids_d, dst_d, ne00, ne01, s01,
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
ne03, ne3, s03, s13, s3, prec, ctx.stream());
} break;
default:
GGML_ABORT("unsupported type: %s", ggml_type_name(src0->type));
@@ -262,27 +294,34 @@ void ggml_cuda_op_mul_mat_vec(
const int64_t stride_row = ne00;
const int64_t nchannels_x = 1;
const int64_t nchannels_y = 1;
const int64_t nchannels_dst = 1;
const int64_t stride_channel_x = 0;
const int64_t stride_channel_y = 0;
const int64_t stride_channel_dst = 0;
const int64_t nsamples_x = 1;
const int64_t nsamples_y = 1;
const int64_t nsamples_dst = 1;
const int64_t stride_sample_x = 0;
const int64_t stride_sample_y = 0;
const int64_t stride_sample_dst = 0;
switch (src0->type) {
case GGML_TYPE_F32: {
const float * src0_d = (const float *) src0_dd_i;
mul_mat_vec_cuda(src0_d, src1_ddf_i, nullptr, dst_dd_i, ne00, row_diff, stride_row,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
} break;
case GGML_TYPE_F16: {
const half * src0_d = (const half *) src0_dd_i;
mul_mat_vec_cuda(src0_d, src1_ddf_i, dst_dd_i, ne00, row_diff, stride_row,
nchannels_x, nchannels_y, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_y, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
mul_mat_vec_cuda(src0_d, src1_ddf_i, nullptr, dst_dd_i, ne00, row_diff, stride_row,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
} break;
case GGML_TYPE_BF16: {
const nv_bfloat16 * src0_d = (const nv_bfloat16 *) src0_dd_i;
mul_mat_vec_cuda(src0_d, src1_ddf_i, dst_dd_i, ne00, row_diff, stride_row,
nchannels_x, nchannels_y, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_y, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
mul_mat_vec_cuda(src0_d, src1_ddf_i, nullptr, dst_dd_i, ne00, row_diff, stride_row,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
} break;
default:
GGML_ABORT("unsupported type: %s", ggml_type_name(src0->type));

View File

@@ -3,7 +3,7 @@
// maximum number of src0 rows with which to use mul_mat_vec over cuBLAS if FP16 tensor cores are available
#define MMV_MAX_ROWS 512
void ggml_cuda_mul_mat_vec(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_cuda_mul_mat_vec(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst);
void ggml_cuda_op_mul_mat_vec(
ggml_backend_cuda_context & ctx,

View File

@@ -1,50 +1,57 @@
#include "mmvq.cuh"
#include "quantize.cuh"
#include "vecdotq.cuh"
#include <cstdint>
typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs);
static constexpr __device__ vec_dot_q_cuda_t get_vec_dot_q_cuda(ggml_type type) {
return type == GGML_TYPE_Q4_0 ? vec_dot_q4_0_q8_1 :
type == GGML_TYPE_Q4_1 ? vec_dot_q4_1_q8_1 :
type == GGML_TYPE_Q5_0 ? vec_dot_q5_0_q8_1 :
type == GGML_TYPE_Q5_1 ? vec_dot_q5_1_q8_1 :
type == GGML_TYPE_Q8_0 ? vec_dot_q8_0_q8_1 :
type == GGML_TYPE_Q2_K ? vec_dot_q2_K_q8_1 :
type == GGML_TYPE_Q3_K ? vec_dot_q3_K_q8_1 :
type == GGML_TYPE_Q4_K ? vec_dot_q4_K_q8_1 :
type == GGML_TYPE_Q5_K ? vec_dot_q5_K_q8_1 :
type == GGML_TYPE_Q6_K ? vec_dot_q6_K_q8_1 :
type == GGML_TYPE_IQ2_XXS ? vec_dot_iq2_xxs_q8_1 :
type == GGML_TYPE_IQ2_XS ? vec_dot_iq2_xs_q8_1 :
type == GGML_TYPE_IQ2_S ? vec_dot_iq2_s_q8_1 :
type == GGML_TYPE_IQ3_XXS ? vec_dot_iq3_xxs_q8_1 :
type == GGML_TYPE_IQ1_S ? vec_dot_iq1_s_q8_1 :
type == GGML_TYPE_IQ1_M ? vec_dot_iq1_m_q8_1 :
type == GGML_TYPE_IQ4_NL ? vec_dot_iq4_nl_q8_1 :
type == GGML_TYPE_IQ4_XS ? vec_dot_iq4_xs_q8_1 :
type == GGML_TYPE_IQ3_S ? vec_dot_iq3_s_q8_1 :
nullptr;
switch (type) {
case GGML_TYPE_Q4_0: return vec_dot_q4_0_q8_1;
case GGML_TYPE_Q4_1: return vec_dot_q4_1_q8_1;
case GGML_TYPE_Q5_0: return vec_dot_q5_0_q8_1;
case GGML_TYPE_Q5_1: return vec_dot_q5_1_q8_1;
case GGML_TYPE_Q8_0: return vec_dot_q8_0_q8_1;
case GGML_TYPE_Q2_K: return vec_dot_q2_K_q8_1;
case GGML_TYPE_Q3_K: return vec_dot_q3_K_q8_1;
case GGML_TYPE_Q4_K: return vec_dot_q4_K_q8_1;
case GGML_TYPE_Q5_K: return vec_dot_q5_K_q8_1;
case GGML_TYPE_Q6_K: return vec_dot_q6_K_q8_1;
case GGML_TYPE_IQ2_XXS: return vec_dot_iq2_xxs_q8_1;
case GGML_TYPE_IQ2_XS: return vec_dot_iq2_xs_q8_1;
case GGML_TYPE_IQ2_S: return vec_dot_iq2_s_q8_1;
case GGML_TYPE_IQ3_XXS: return vec_dot_iq3_xxs_q8_1;
case GGML_TYPE_IQ1_S: return vec_dot_iq1_s_q8_1;
case GGML_TYPE_IQ1_M: return vec_dot_iq1_m_q8_1;
case GGML_TYPE_IQ4_NL: return vec_dot_iq4_nl_q8_1;
case GGML_TYPE_IQ4_XS: return vec_dot_iq4_xs_q8_1;
case GGML_TYPE_IQ3_S: return vec_dot_iq3_s_q8_1;
default: return nullptr;
}
}
static constexpr __device__ int get_vdr_mmvq(ggml_type type) {
return type == GGML_TYPE_Q4_0 ? VDR_Q4_0_Q8_1_MMVQ :
type == GGML_TYPE_Q4_1 ? VDR_Q4_1_Q8_1_MMVQ :
type == GGML_TYPE_Q5_0 ? VDR_Q5_0_Q8_1_MMVQ :
type == GGML_TYPE_Q5_1 ? VDR_Q5_1_Q8_1_MMVQ :
type == GGML_TYPE_Q8_0 ? VDR_Q8_0_Q8_1_MMVQ :
type == GGML_TYPE_Q2_K ? VDR_Q2_K_Q8_1_MMVQ :
type == GGML_TYPE_Q3_K ? VDR_Q3_K_Q8_1_MMVQ :
type == GGML_TYPE_Q4_K ? VDR_Q4_K_Q8_1_MMVQ :
type == GGML_TYPE_Q5_K ? VDR_Q5_K_Q8_1_MMVQ :
type == GGML_TYPE_Q6_K ? VDR_Q6_K_Q8_1_MMVQ :
type == GGML_TYPE_IQ2_XXS ? VDR_IQ2_XXS_Q8_1_MMVQ :
type == GGML_TYPE_IQ2_XS ? VDR_IQ2_XS_Q8_1_MMVQ :
type == GGML_TYPE_IQ2_S ? VDR_IQ2_S_Q8_1_MMVQ :
type == GGML_TYPE_IQ3_XXS ? VDR_IQ3_XXS_Q8_1_MMVQ :
type == GGML_TYPE_IQ3_S ? VDR_IQ3_S_Q8_1_MMVQ :
type == GGML_TYPE_IQ4_NL ? VDR_IQ4_NL_Q8_1_MMVQ :
type == GGML_TYPE_IQ4_XS ? VDR_IQ4_XS_Q8_1_MMVQ :
1;
switch (type) {
case GGML_TYPE_Q4_0: return VDR_Q4_0_Q8_1_MMVQ;
case GGML_TYPE_Q4_1: return VDR_Q4_1_Q8_1_MMVQ;
case GGML_TYPE_Q5_0: return VDR_Q5_0_Q8_1_MMVQ;
case GGML_TYPE_Q5_1: return VDR_Q5_1_Q8_1_MMVQ;
case GGML_TYPE_Q8_0: return VDR_Q8_0_Q8_1_MMVQ;
case GGML_TYPE_Q2_K: return VDR_Q2_K_Q8_1_MMVQ;
case GGML_TYPE_Q3_K: return VDR_Q3_K_Q8_1_MMVQ;
case GGML_TYPE_Q4_K: return VDR_Q4_K_Q8_1_MMVQ;
case GGML_TYPE_Q5_K: return VDR_Q5_K_Q8_1_MMVQ;
case GGML_TYPE_Q6_K: return VDR_Q6_K_Q8_1_MMVQ;
case GGML_TYPE_IQ2_XXS: return VDR_IQ2_XXS_Q8_1_MMVQ;
case GGML_TYPE_IQ2_XS: return VDR_IQ2_XS_Q8_1_MMVQ;
case GGML_TYPE_IQ2_S: return VDR_IQ2_S_Q8_1_MMVQ;
case GGML_TYPE_IQ3_XXS: return VDR_IQ3_XXS_Q8_1_MMVQ;
case GGML_TYPE_IQ3_S: return VDR_IQ3_S_Q8_1_MMVQ;
case GGML_TYPE_IQ4_NL: return VDR_IQ4_NL_Q8_1_MMVQ;
case GGML_TYPE_IQ4_XS: return VDR_IQ4_XS_Q8_1_MMVQ;
default: return 1;
}
}
enum mmvq_parameter_table_id {
@@ -73,9 +80,9 @@ static __host__ mmvq_parameter_table_id get_device_table_id(int cc) {
return MMVQ_PARAMETERS_GENERIC;
}
static constexpr __host__ __device__ int calc_nwarps(int ncols_y, mmvq_parameter_table_id table_id) {
static constexpr __host__ __device__ int calc_nwarps(int ncols_dst, mmvq_parameter_table_id table_id) {
if (table_id == MMVQ_PARAMETERS_GENERIC) {
switch (ncols_y) {
switch (ncols_dst) {
case 1:
case 2:
case 3:
@@ -90,7 +97,7 @@ static constexpr __host__ __device__ int calc_nwarps(int ncols_y, mmvq_paramete
return 1;
}
} else if (table_id == MMVQ_PARAMETERS_GCN) {
switch (ncols_y) {
switch (ncols_dst) {
case 1:
case 2:
case 3:
@@ -107,9 +114,9 @@ static constexpr __host__ __device__ int calc_nwarps(int ncols_y, mmvq_paramete
return 1;
}
static constexpr __host__ __device__ int calc_rows_per_block(int ncols_y, int table_id) {
static constexpr __host__ __device__ int calc_rows_per_block(int ncols_dst, int table_id) {
if (table_id == MMVQ_PARAMETERS_GENERIC || table_id == MMVQ_PARAMETERS_GCN) {
switch (ncols_y) {
switch (ncols_dst) {
case 1:
return 1;
case 2:
@@ -127,19 +134,21 @@ static constexpr __host__ __device__ int calc_rows_per_block(int ncols_y, int ta
return 1;
}
template <ggml_type type, int ncols_y>
template <ggml_type type, int ncols_dst>
// tell the compiler to use as many registers as it wants, see nwarps definition below
__launch_bounds__(calc_nwarps(ncols_y, get_device_table_id())*ggml_cuda_get_physical_warp_size(), 1)
__launch_bounds__(calc_nwarps(ncols_dst, get_device_table_id())*ggml_cuda_get_physical_warp_size(), 1)
static __global__ void mul_mat_vec_q(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
const void * __restrict__ vx, const void * __restrict__ vy, const int32_t * __restrict__ ids, float * __restrict__ dst,
const int ncols_x, const int nchannels_y, const int stride_row_x, const int stride_col_y, const int stride_col_dst,
const int channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
const int sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
constexpr int qk = ggml_cuda_type_traits<type>::qk;
constexpr int qi = ggml_cuda_type_traits<type>::qi;
constexpr int vdr = get_vdr_mmvq(type);
constexpr mmvq_parameter_table_id table_id = get_device_table_id();
constexpr int nwarps = calc_nwarps(ncols_y, table_id);
constexpr int rows_per_cuda_block = calc_rows_per_block(ncols_y, table_id);
constexpr int nwarps = calc_nwarps(ncols_dst, table_id);
constexpr int rows_per_cuda_block = calc_rows_per_block(ncols_dst, table_id);
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
constexpr vec_dot_q_cuda_t vec_dot_q_cuda = get_vec_dot_q_cuda(type);
@@ -147,13 +156,21 @@ static __global__ void mul_mat_vec_q(
const int tid = warp_size*threadIdx.y + threadIdx.x;
const int row0 = rows_per_cuda_block*blockIdx.x;
const int blocks_per_row_x = ncols_x / qk;
const int blocks_per_col_y = nrows_y / QK8_1;
constexpr int blocks_per_iter = vdr * nwarps*warp_size / qi;
// partial sum for each thread
float tmp[ncols_y][rows_per_cuda_block] = {{0.0f}};
// The MUL_MAT_ID code path with ids != nullptr is only implemented for ncols_dst == 1.
const int channel_dst = blockIdx.y;
const int channel_x = ncols_dst == 1 && ids ? ids[channel_dst] : channel_dst / channel_ratio;
const int channel_y = ncols_dst == 1 && ids ? channel_dst % nchannels_y : channel_dst;
const int sample_dst = blockIdx.z;
const int sample_x = sample_dst / sample_ratio;
const int sample_y = sample_dst;
const block_q8_1 * y = (const block_q8_1 *) vy;
// partial sum for each thread
float tmp[ncols_dst][rows_per_cuda_block] = {{0.0f}};
const block_q8_1 * y = ((const block_q8_1 *) vy) + sample_y*stride_sample_y + channel_y*stride_channel_y;
const int kbx_offset = sample_x*stride_sample_x + channel_x*stride_channel_x + row0*stride_row_x;
for (int kbx = tid / (qi/vdr); kbx < blocks_per_row_x; kbx += blocks_per_iter) {
const int kby = kbx * (qk/QK8_1); // y block index that aligns with kbx
@@ -162,18 +179,19 @@ static __global__ void mul_mat_vec_q(
const int kqs = vdr * (tid % (qi/vdr));
#pragma unroll
for (int j = 0; j < ncols_y; ++j) {
for (int j = 0; j < ncols_dst; ++j) {
#pragma unroll
for (int i = 0; i < rows_per_cuda_block; ++i) {
tmp[j][i] += vec_dot_q_cuda(vx, &y[j*blocks_per_col_y + kby], (row0 + i)*blocks_per_row_x + kbx, kqs);
tmp[j][i] += vec_dot_q_cuda(
vx, &y[j*stride_col_y + kby], kbx_offset + i*stride_row_x + kbx, kqs);
}
}
}
__shared__ float tmp_shared[nwarps-1 > 0 ? nwarps-1 : 1][ncols_y][rows_per_cuda_block][warp_size];
__shared__ float tmp_shared[nwarps-1 > 0 ? nwarps-1 : 1][ncols_dst][rows_per_cuda_block][warp_size];
if (threadIdx.y > 0) {
#pragma unroll
for (int j = 0; j < ncols_y; ++j) {
for (int j = 0; j < ncols_dst; ++j) {
#pragma unroll
for (int i = 0; i < rows_per_cuda_block; ++i) {
tmp_shared[threadIdx.y-1][j][i][threadIdx.x] = tmp[j][i];
@@ -185,9 +203,11 @@ static __global__ void mul_mat_vec_q(
return;
}
dst += sample_dst*stride_sample_dst + channel_dst*stride_channel_dst + row0;
// sum up partial sums and write back result
#pragma unroll
for (int j = 0; j < ncols_y; ++j) {
for (int j = 0; j < ncols_dst; ++j) {
#pragma unroll
for (int i = 0; i < rows_per_cuda_block; ++i) {
#pragma unroll
@@ -197,88 +217,121 @@ static __global__ void mul_mat_vec_q(
tmp[j][i] = warp_reduce_sum<warp_size>(tmp[j][i]);
}
if (threadIdx.x < rows_per_cuda_block && (rows_per_cuda_block == 1 || row0 + threadIdx.x < (unsigned)nrows_dst)) {
dst[j*nrows_dst + row0 + threadIdx.x] = tmp[j][threadIdx.x];
if (threadIdx.x < rows_per_cuda_block && (rows_per_cuda_block == 1 || row0 + int(threadIdx.x) < stride_col_dst)) {
dst[j*stride_col_dst + threadIdx.x] = tmp[j][threadIdx.x];
}
}
GGML_UNUSED(nrows_x);
}
static std::pair<dim3, dim3> calc_launch_params(const int ncols_y, const int nrows_x, const int warp_size, const mmvq_parameter_table_id table_id) {
const int64_t nblocks = (nrows_x + calc_rows_per_block(ncols_y, table_id) - 1) / calc_rows_per_block(ncols_y, table_id);
const dim3 block_nums(nblocks, 1, 1);
const dim3 block_dims(warp_size, calc_nwarps(ncols_y, table_id), 1);
static std::pair<dim3, dim3> calc_launch_params(
const int ncols_dst, const int nrows_x, const int nchannels_y, const int nsamples_y,
const int warp_size, const mmvq_parameter_table_id table_id) {
const int64_t nblocks = (nrows_x + calc_rows_per_block(ncols_dst, table_id) - 1) / calc_rows_per_block(ncols_dst, table_id);
const dim3 block_nums(nblocks, nchannels_y, nsamples_y);
const dim3 block_dims(warp_size, calc_nwarps(ncols_dst, table_id), 1);
return {block_nums, block_dims};
}
template <ggml_type type>
static void mul_mat_vec_q_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
static void mul_mat_vec_q_switch_ncols_dst(
const void * vx, const void * vy, const int32_t * ids, float * dst,
const int ncols_x, const int nrows_x, const int ncols_dst,
const int stride_row_x, const int stride_col_y, const int stride_col_dst,
const int nchannels_x, const int nchannels_y, const int nchannels_dst,
const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
const int nsamples_x, const int nsamples_dst, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst,
cudaStream_t stream) {
GGML_ASSERT(ncols_x % ggml_blck_size(type) == 0);
GGML_ASSERT(ncols_y <= MMVQ_MAX_BATCH_SIZE);
GGML_ASSERT(ncols_dst <= MMVQ_MAX_BATCH_SIZE);
const int channel_ratio = nchannels_dst / nchannels_x;
const int sample_ratio = nsamples_dst / nsamples_x;
const int device = ggml_cuda_get_device();
const int warp_size = ggml_cuda_info().devices[device].warp_size;
const mmvq_parameter_table_id table_id = get_device_table_id(ggml_cuda_info().devices[device].cc);
switch (ncols_y) {
GGML_ASSERT(!ids || ncols_dst == 1);
switch (ncols_dst) {
case 1:
{
constexpr int c_ncols_y = 1;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_y, nrows_x, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_y><<<dims.first, dims.second, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
constexpr int c_ncols_dst = 1;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
break;
}
case 2:
{
constexpr int c_ncols_y = 2;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_y, nrows_x, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_y><<<dims.first, dims.second, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
constexpr int c_ncols_dst = 2;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
break;
}
case 3:
{
constexpr int c_ncols_y = 3;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_y, nrows_x, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_y><<<dims.first, dims.second, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
constexpr int c_ncols_dst = 3;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
break;
}
case 4:
{
constexpr int c_ncols_y = 4;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_y, nrows_x, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_y><<<dims.first, dims.second, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
constexpr int c_ncols_dst = 4;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
break;
}
case 5:
{
constexpr int c_ncols_y = 5;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_y, nrows_x, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_y><<<dims.first, dims.second, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
constexpr int c_ncols_dst = 5;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
break;
}
case 6:
{
constexpr int c_ncols_y = 6;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_y, nrows_x, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_y><<<dims.first, dims.second, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
constexpr int c_ncols_dst = 6;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
break;
}
case 7:
{
constexpr int c_ncols_y = 7;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_y, nrows_x, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_y><<<dims.first, dims.second, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
constexpr int c_ncols_dst = 7;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
break;
}
case 8:
{
constexpr int c_ncols_y = 8;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_y, nrows_x, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_y><<<dims.first, dims.second, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
constexpr int c_ncols_dst = 8;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
break;
}
default:
@@ -287,137 +340,213 @@ static void mul_mat_vec_q_cuda(
}
}
static void mul_mat_vec_q4_0_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<GGML_TYPE_Q4_0>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
static void mul_mat_vec_q_switch_type(
const void * vx, const ggml_type type_x, const void * vy, const int32_t * ids, float * dst,
const int ncols_x, const int nrows_x, const int ncols_dst,
const int stride_row_x, const int stride_col_y, const int stride_col_dst,
const int nchannels_x, const int nchannels_y, const int nchannels_dst,
const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
const int nsamples_x, const int nsamples_dst, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst,
cudaStream_t stream) {
switch (type_x) {
case GGML_TYPE_Q4_0:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q4_0>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
break;
case GGML_TYPE_Q4_1:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q4_1>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
break;
case GGML_TYPE_Q5_0:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q5_0>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
break;
case GGML_TYPE_Q5_1:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q5_1>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
break;
case GGML_TYPE_Q8_0:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q8_0>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
break;
case GGML_TYPE_Q2_K:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q2_K>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
break;
case GGML_TYPE_Q3_K:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q3_K>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
break;
case GGML_TYPE_Q4_K:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q4_K>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
break;
case GGML_TYPE_Q5_K:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q5_K>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
break;
case GGML_TYPE_Q6_K:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q6_K>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
break;
case GGML_TYPE_IQ2_XXS:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ2_XXS>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
break;
case GGML_TYPE_IQ2_XS:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ2_XS>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
break;
case GGML_TYPE_IQ2_S:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ2_S>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
break;
case GGML_TYPE_IQ3_XXS:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ3_XXS>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
break;
case GGML_TYPE_IQ1_S:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ1_S>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
break;
case GGML_TYPE_IQ1_M:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ1_M>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
break;
case GGML_TYPE_IQ4_NL:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ4_NL>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
break;
case GGML_TYPE_IQ4_XS:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ4_XS>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
break;
case GGML_TYPE_IQ3_S:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ3_S>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
break;
default:
GGML_ABORT("fatal error");
break;
}
}
static void mul_mat_vec_q4_1_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
void ggml_cuda_mul_mat_vec_q(
ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) {
GGML_ASSERT( src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(!ids || ids->type == GGML_TYPE_I32); // Optional, used for batched GGML_MUL_MAT_ID.
mul_mat_vec_q_cuda<GGML_TYPE_Q4_1>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
GGML_TENSOR_BINARY_OP_LOCALS;
static void mul_mat_vec_q5_0_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
cudaStream_t stream = ctx.stream();
mul_mat_vec_q_cuda<GGML_TYPE_Q5_0>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
const size_t ts_src0 = ggml_type_size(src0->type);
const size_t ts_src1 = ggml_type_size(src1->type);
const size_t ts_dst = ggml_type_size(dst->type);
static void mul_mat_vec_q5_1_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
GGML_ASSERT( nb00 == ts_src0);
GGML_ASSERT( nb10 == ts_src1);
GGML_ASSERT( nb0 == ts_dst);
GGML_ASSERT(!ids || ids->nb[0] == ggml_type_size(ids->type));
mul_mat_vec_q_cuda<GGML_TYPE_Q5_1>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
GGML_ASSERT(!ids || ne12 == 1); // Implementation is only correct for batch size 1.
static void mul_mat_vec_q8_0_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
const float * src1_d = (const float *) src1->data;
const int32_t * ids_d = ids ? (const int32_t *) ids->data : nullptr;
float * dst_d = (float *) dst->data;
mul_mat_vec_q_cuda<GGML_TYPE_Q8_0>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
const int64_t ne10_padded = GGML_PAD(ne10, MATRIX_ROW_PADDING);
ggml_cuda_pool_alloc<char> src1_q8_1(ctx.pool(), ne13*ne12 * ne11*ne10_padded * sizeof(block_q8_1)/QK8_1);
{
const int64_t s11 = src1->nb[1] / ts_src1;
const int64_t s12 = src1->nb[2] / ts_src1;
const int64_t s13 = src1->nb[3] / ts_src1;
quantize_row_q8_1_cuda(src1_d, nullptr, src1_q8_1.get(), src0->type, ne10, s11, s12, s13, ne10_padded, ne11, ne12, ne13, stream);
}
static void mul_mat_vec_q2_K_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
const int64_t s01 = src0->nb[1] / ts_src0;
const int64_t s11 = ne10_padded / QK8_1;
const int64_t s1 = dst->nb[1] / ts_dst;
const int64_t s02 = src0->nb[2] / ts_src0;
const int64_t s2 = dst->nb[2] / ts_dst;
const int64_t s03 = src0->nb[3] / ts_src0;
const int64_t s3 = dst->nb[3] / ts_dst;
mul_mat_vec_q_cuda<GGML_TYPE_Q2_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
const int64_t s12 = ne11*s11;
const int64_t s13 = ne12*s12;
static void mul_mat_vec_q3_K_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
// For MUL_MAT_ID the memory layout is different than for MUL_MAT:
const int64_t ncols_dst = ids ? ne2 : ne1;
const int64_t nchannels_y = ids ? ne11 : ne12;
const int64_t nchannels_dst = ids ? ne1 : ne2;
const int64_t stride_col_dst = ids ? s2 : s1;
const int64_t stride_col_y = ids ? s12 : s11;
const int64_t stride_channel_dst = ids ? s1 : s2;
const int64_t stride_channel_y = ids ? s11 : s12;
mul_mat_vec_q_cuda<GGML_TYPE_Q3_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_q4_K_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<GGML_TYPE_Q4_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_q5_K_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<GGML_TYPE_Q5_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_q6_K_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<GGML_TYPE_Q6_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_iq2_xxs_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<GGML_TYPE_IQ2_XXS>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_iq2_xs_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<GGML_TYPE_IQ2_XS>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_iq2_s_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<GGML_TYPE_IQ2_S>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_iq3_xxs_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<GGML_TYPE_IQ3_XXS>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_iq1_s_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<GGML_TYPE_IQ1_S>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_iq1_m_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<GGML_TYPE_IQ1_M>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_iq4_nl_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<GGML_TYPE_IQ4_NL>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_iq4_xs_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<GGML_TYPE_IQ4_XS>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_iq3_s_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<GGML_TYPE_IQ3_S>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
mul_mat_vec_q_switch_type(
src0->data, src0->type, src1_q8_1.get(), ids_d, dst_d, ne00,
ne01, ncols_dst, s01, stride_col_y, stride_col_dst,
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
ne03, ne3, s03, s13, s3, stream);
}
void ggml_cuda_op_mul_mat_vec_q(
@@ -440,68 +569,12 @@ void ggml_cuda_op_mul_mat_vec_q(
// nrows_dst == nrows of the matrix that the kernel writes into
const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
switch (src0->type) {
case GGML_TYPE_Q4_0:
mul_mat_vec_q4_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_Q4_1:
mul_mat_vec_q4_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_Q5_0:
mul_mat_vec_q5_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_Q5_1:
mul_mat_vec_q5_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_Q8_0:
mul_mat_vec_q8_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_Q2_K:
mul_mat_vec_q2_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_Q3_K:
mul_mat_vec_q3_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_Q4_K:
mul_mat_vec_q4_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_Q5_K:
mul_mat_vec_q5_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_Q6_K:
mul_mat_vec_q6_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_IQ2_XXS:
mul_mat_vec_iq2_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_IQ2_XS:
mul_mat_vec_iq2_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_IQ2_S:
mul_mat_vec_iq2_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_IQ3_XXS:
mul_mat_vec_iq3_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_IQ1_S:
mul_mat_vec_iq1_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_IQ1_M:
mul_mat_vec_iq1_m_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_IQ4_NL:
mul_mat_vec_iq4_nl_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_IQ4_XS:
mul_mat_vec_iq4_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_IQ3_S:
mul_mat_vec_iq3_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
default:
GGML_ABORT("fatal error");
break;
}
const int stride_row_x = ne00 / ggml_blck_size(src0->type);
const int stride_col_y = src1_padded_row_size / QK8_1;
mul_mat_vec_q_switch_type(
src0_dd_i, src0->type, src1_ddq_i, nullptr, dst_dd_i, ne00, row_diff, src1_ncols, stride_row_x, stride_col_y, nrows_dst,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);

View File

@@ -2,6 +2,9 @@
#define MMVQ_MAX_BATCH_SIZE 8 // Max. batch size for which to use MMVQ kernels.
void ggml_cuda_mul_mat_vec_q(ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst);
void ggml_cuda_op_mul_mat_vec_q(
ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,

View File

@@ -1,30 +1,40 @@
#include "quantize.cuh"
#include <cstdint>
static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int64_t kx, const int64_t kx0_padded) {
const int64_t ix0 = (int64_t)blockDim.x*blockIdx.x + threadIdx.x;
static __global__ void quantize_q8_1(
const float * __restrict__ x, void * __restrict__ vy,
const int64_t ne00, const int64_t s01, const int64_t s02, const int64_t s03,
const int64_t ne0, const int ne1, const int ne2) {
const int64_t i0 = (int64_t)blockDim.x*blockIdx.x + threadIdx.x;
if (ix0 >= kx0_padded) {
if (i0 >= ne0) {
return;
}
const int64_t ix1 = blockIdx.y;
const int64_t i1 = blockIdx.y;
const int64_t i2 = blockIdx.z % ne2;
const int64_t i3 = blockIdx.z / ne2;
const int64_t i_padded = ix1*kx0_padded + ix0;
const int64_t & i00 = i0;
const int64_t & i01 = i1;
const int64_t & i02 = i2;
const int64_t & i03 = i3;
const int64_t i_cont = ((i3*ne2 + i2) * ne1 + i1) * ne0 + i0;
block_q8_1 * y = (block_q8_1 *) vy;
const int64_t ib = i_padded / QK8_1; // block index
const int64_t iqs = i_padded % QK8_1; // quant index
const int64_t ib = i_cont / QK8_1; // block index
const int64_t iqs = i_cont % QK8_1; // quant index
const float xi = ix0 < kx ? x[ix1*kx + ix0] : 0.0f;
const float xi = i0 < ne00 ? x[i03*s03 + i02*s02 + i01*s01 + i00] : 0.0f;
float amax = fabsf(xi);
float sum = xi;
amax = warp_reduce_max(amax);
sum = warp_reduce_sum(sum);
sum = warp_reduce_sum(sum);
const float d = amax / 127;
const float d = amax / 127;
const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);
y[ib].qs[iqs] = q;
@@ -39,29 +49,38 @@ static __global__ void quantize_q8_1(const float * __restrict__ x, void * __rest
template <mmq_q8_1_ds_layout ds_layout>
static __global__ void quantize_mmq_q8_1(
const float * __restrict__ x, void * __restrict__ vy, const int64_t kx0, const int64_t kx1, const int64_t kx0_padded) {
const float * __restrict__ x, const int32_t * __restrict__ ids, void * __restrict__ vy,
const int64_t ne00, const int64_t s01, const int64_t s02, const int64_t s03,
const int64_t ne0, const int ne1, const int ne2) {
constexpr int vals_per_scale = ds_layout == MMQ_Q8_1_DS_LAYOUT_D2S6 ? 64 : 32;
constexpr int vals_per_sum = ds_layout == MMQ_Q8_1_DS_LAYOUT_D2S6 ? 16 : 32;
const int64_t ix0 = ((int64_t)blockDim.x*blockIdx.x + threadIdx.x)*4;
const int64_t i0 = ((int64_t)blockDim.x*blockIdx.x + threadIdx.x)*4;
if (ix0 >= kx0_padded) {
if (i0 >= ne0) {
return;
}
const float4 * x4 = (const float4 *) x;
const int64_t i1 = blockIdx.y;
const int64_t i2 = blockIdx.z % ne2;
const int64_t i3 = blockIdx.z / ne2;
const int64_t ix1 = kx1*blockIdx.z + blockIdx.y;
const int64_t i00 = i0;
const int64_t i01 = ids ? ids[i1] : i1;
const int64_t i02 = i2;
const int64_t i03 = i3;
const float4 * x4 = (const float4 *) x;
block_q8_1_mmq * y = (block_q8_1_mmq *) vy;
const int64_t ib0 = blockIdx.z*((int64_t)gridDim.y*gridDim.x*blockDim.x/QK8_1); // first block of channel
const int64_t ib = ib0 + (ix0 / (4*QK8_1))*kx1 + blockIdx.y; // block index in channel
const int64_t iqs = ix0 % (4*QK8_1); // quant index in block
const int64_t ib = ib0 + (i0 / (4*QK8_1))*ne1 + blockIdx.y; // block index in channel
const int64_t iqs = i0 % (4*QK8_1); // quant index in block
// Load 4 floats per thread and calculate max. abs. value between them:
const float4 xi = ix0 < kx0 ? x4[(ix1*kx0 + ix0)/4] : make_float4(0.0f, 0.0f, 0.0f, 0.0f);
const float4 xi = i0 < ne00 ? x4[(i03*s03 + i02*s02 + i01*s01 + i00)/4] : make_float4(0.0f, 0.0f, 0.0f, 0.0f);
float amax = fabsf(xi.x);
amax = fmaxf(amax, fabsf(xi.y));
amax = fmaxf(amax, fabsf(xi.z));
@@ -77,7 +96,7 @@ static __global__ void quantize_mmq_q8_1(
if (ds_layout != MMQ_Q8_1_DS_LAYOUT_D4) {
sum = xi.x + xi.y + xi.z + xi.w;
// Exchange calculate sum across vals_per_sum/4 threads.
// Calculate sums across vals_per_sum/4 threads.
#pragma unroll
for (int offset = vals_per_sum/8; offset > 0; offset >>= 1) {
sum += __shfl_xor_sync(0xFFFFFFFF, sum, offset, WARP_SIZE);
@@ -127,40 +146,40 @@ static __global__ void quantize_mmq_q8_1(
}
void quantize_row_q8_1_cuda(
const float * x, void * vy, const int64_t kx0, const int64_t kx1, const int64_t channels,
const int64_t kx0_padded, const ggml_type type_x, cudaStream_t stream) {
const float * x, const int32_t * ids, void * vy, const ggml_type type_src0,
const int64_t ne00, const int64_t s01, const int64_t s02, const int64_t s03,
const int64_t ne0, const int64_t ne1, const int64_t ne2, const int64_t ne3, cudaStream_t stream) {
GGML_ASSERT(!ids);
GGML_ASSERT(ne0 % QK8_1 == 0);
GGML_ASSERT(kx0_padded % QK8_1 == 0);
const int64_t block_num_x = (kx0_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
const dim3 num_blocks(block_num_x, kx1*channels, 1);
const int64_t block_num_x = (ne0 + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
const dim3 num_blocks(block_num_x, ne1, ne2*ne3);
const dim3 block_size(CUDA_QUANTIZE_BLOCK_SIZE, 1, 1);
quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, kx0, kx0_padded);
GGML_UNUSED(type_x);
quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, ne00, s01, s02, s03, ne0, ne1, ne2);
GGML_UNUSED(type_src0);
}
void quantize_mmq_q8_1_cuda(
const float * x, void * vy, const int64_t kx0, const int64_t kx1, const int64_t channels,
const int64_t kx0_padded, const ggml_type type_x, cudaStream_t stream) {
const float * x, const int32_t * ids, void * vy, const ggml_type type_src0,
const int64_t ne00, const int64_t s01, const int64_t s02, const int64_t s03,
const int64_t ne0, const int64_t ne1, const int64_t ne2, const int64_t ne3, cudaStream_t stream) {
GGML_ASSERT(ne0 % (4*QK8_1) == 0);
GGML_ASSERT(kx0_padded % (4*QK8_1) == 0);
const int64_t block_num_x = (kx0_padded + 4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ - 1) / (4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ);
const dim3 num_blocks(block_num_x, kx1, channels);
const int64_t block_num_x = (ne0 + 4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ - 1) / (4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ);
const dim3 num_blocks(block_num_x, ne1, ne2*ne3);
const dim3 block_size(CUDA_QUANTIZE_BLOCK_SIZE_MMQ, 1, 1);
switch (mmq_get_q8_1_ds_layout(type_x)) {
switch (mmq_get_q8_1_ds_layout(type_src0)) {
case MMQ_Q8_1_DS_LAYOUT_D4:
quantize_mmq_q8_1<MMQ_Q8_1_DS_LAYOUT_D4>
<<<num_blocks, block_size, 0, stream>>>(x, vy, kx0, kx1, kx0_padded);
<<<num_blocks, block_size, 0, stream>>>(x, ids, vy, ne00, s01, s02, s03, ne0, ne1, ne2);
break;
case MMQ_Q8_1_DS_LAYOUT_DS4:
quantize_mmq_q8_1<MMQ_Q8_1_DS_LAYOUT_DS4>
<<<num_blocks, block_size, 0, stream>>>(x, vy, kx0, kx1, kx0_padded);
<<<num_blocks, block_size, 0, stream>>>(x, ids, vy, ne00, s01, s02, s03, ne0, ne1, ne2);
break;
case MMQ_Q8_1_DS_LAYOUT_D2S6:
quantize_mmq_q8_1<MMQ_Q8_1_DS_LAYOUT_D2S6>
<<<num_blocks, block_size, 0, stream>>>(x, vy, kx0, kx1, kx0_padded);
<<<num_blocks, block_size, 0, stream>>>(x, ids, vy, ne00, s01, s02, s03, ne0, ne1, ne2);
break;
default:
GGML_ABORT("fatal error");

View File

@@ -12,13 +12,16 @@ static_assert(MATRIX_ROW_PADDING % CUDA_QUANTIZE_BLOCK_SIZE == 0, "Risk
static_assert(MATRIX_ROW_PADDING % (4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ) == 0, "Risk of out-of-bounds access.");
typedef void (*quantize_cuda_t)(
const float * x, void * vy, const int64_t kx0, const int64_t kx1, const int64_t channels, const int64_t kx0_padded,
const ggml_type type_x, cudaStream_t stream);
const float * x, const int32_t * ids, void * vy,
ggml_type type_src0, int64_t ne00, int64_t s01, int64_t s02, int64_t s03,
int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3, cudaStream_t stream);
void quantize_row_q8_1_cuda(
const float * x, void * vy, const int64_t kx0, const int64_t kx1, const int64_t channels, const int64_t kx0_padded,
const ggml_type type_x, cudaStream_t stream);
const float * x, const int32_t * ids, void * vy,
ggml_type type_src0, int64_t ne00, int64_t s01, int64_t s02, int64_t s03,
int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3, cudaStream_t stream);
void quantize_mmq_q8_1_cuda(
const float * x, void * vy, const int64_t kx0, const int64_t kx1, const int64_t channels, const int64_t kx0_padded,
const ggml_type type_x, cudaStream_t stream);
const float * x, const int32_t * ids, void * vy,
ggml_type type_src0, int64_t ne00, int64_t s01, int64_t s02, int64_t s03,
int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3, cudaStream_t stream);

View File

@@ -1,3 +1,5 @@
#pragma once
#include "common.cuh"
#include <cstdint>

View File

@@ -44,8 +44,8 @@ static struct ggml_backend_device g_ggml_backend_metal_device;
// note: assumes single GPU device - the default one
// TODO: support multiple GPU devices
static struct ggml_backend_metal_device_context {
id<MTLDevice> mtl_device;
int mtl_device_ref_count;
id<MTLDevice> mtl_device;
int mtl_device_ref_count;
id<MTLLibrary> mtl_library;
bool has_simdgroup_reduction;
@@ -481,6 +481,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_SQRT,
GGML_METAL_KERNEL_TYPE_SIN,
GGML_METAL_KERNEL_TYPE_COS,
GGML_METAL_KERNEL_TYPE_NEG,
GGML_METAL_KERNEL_TYPE_SUM_ROWS,
GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32,
GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32,
@@ -489,7 +490,259 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_COUNT
};
//
// ggml_metal_heap
//
struct ggml_metal_heap {
// number of times the heap was unused
int n_unused;
// total number of buffer allocations in this heap across all computes
int64_t n_alloc;
// current offset in the heap - we reset this after each node in order to reuse the memory
size_t offs;
// the currently allocated MTLBuffer objects in this heap
id<MTLHeap> obj;
NSMutableArray * bufs;
};
static struct ggml_metal_heap * ggml_metal_heap_init(id<MTLDevice> device, size_t size) {
struct ggml_metal_heap * heap = calloc(1, sizeof(struct ggml_metal_heap));
MTLHeapDescriptor * desc = [[MTLHeapDescriptor alloc] init];
desc.storageMode = MTLStorageModePrivate;
desc.cpuCacheMode = MTLCPUCacheModeDefaultCache;
desc.type = MTLHeapTypePlacement;
desc.size = size;
heap->n_unused = 0;
heap->n_alloc = 0;
heap->obj = [device newHeapWithDescriptor:desc];
if (!heap->obj) {
GGML_LOG_ERROR("%s: error: failed to create MTLHeap with size %zu\n", __func__, size);
free(heap);
return false;
}
[desc release];
heap->bufs = [[NSMutableArray alloc] init];
return heap;
}
static void ggml_metal_heap_reset(struct ggml_metal_heap * heap) {
heap->offs = 0;
// count how many graph computes the heap ended up being unused
if ([heap->bufs count] > 0) {
heap->n_unused = 0;
} else {
heap->n_unused++;
}
for (id<MTLBuffer> buf in heap->bufs) {
[buf release];
}
[heap->bufs removeAllObjects];
// tell the OS that it can reuse this memory if needed
// ref: https://developer.apple.com/documentation/metal/mtlpurgeablestate?language=objc
[heap->obj setPurgeableState:MTLPurgeableStateVolatile];
}
static void ggml_metal_heap_free(struct ggml_metal_heap * heap) {
if (heap == nil) {
return;
}
ggml_metal_heap_reset(heap);
[heap->obj release];
[heap->bufs release];
free(heap);
}
@interface ggml_metal_heap_ptr : NSObject
@property (nonatomic, assign) struct ggml_metal_heap * data;
@end
@implementation ggml_metal_heap_ptr
@end
//
// ggml_metal_mem_pool
//
struct ggml_metal_mem_pool {
id<MTLDevice> device;
int n_heaps; // total number of heaps ever created (including those that were removed)
NSMutableArray * heaps;
NSMutableArray * heaps_to_remove;
};
static struct ggml_metal_mem_pool * ggml_metal_mem_pool_init(void) {
struct ggml_metal_mem_pool * mem_pool = calloc(1, sizeof(struct ggml_metal_mem_pool));
mem_pool->n_heaps = 0;
mem_pool->heaps = [[NSMutableArray alloc] init];
mem_pool->heaps_to_remove = [[NSMutableArray alloc] init];
return mem_pool;
}
static void ggml_metal_mem_pool_free(struct ggml_metal_mem_pool * mem_pool) {
GGML_LOG_DEBUG("%s: freeing memory pool, num heaps = %zu (total = %d)\n", __func__, [mem_pool->heaps count], mem_pool->n_heaps);
size_t size_all = 0;
size_t size_cur = 0;
for (ggml_metal_heap_ptr * ptr in mem_pool->heaps) {
GGML_LOG_DEBUG("%s: heap: %p\n", __func__, (void *) ptr.data);
GGML_LOG_DEBUG("%s: n_alloc: %" PRId64 "\n", __func__, ptr.data->n_alloc);
GGML_LOG_DEBUG("%s: n_unused: %d\n", __func__, ptr.data->n_unused);
GGML_LOG_DEBUG("%s: size: %.2f MiB\n", __func__, [ptr.data->obj size] / 1024.0 / 1024.0);
GGML_LOG_DEBUG("%s: bufs: %zu\n", __func__, [ptr.data->bufs count]);
if ([ptr.data->bufs count] > 0) {
size_cur += [ptr.data->obj size];
}
size_all += [ptr.data->obj size];
ggml_metal_heap_free(ptr.data);
[ptr release];
}
[mem_pool->heaps release];
[mem_pool->heaps_to_remove release];
if (size_all > 0) {
GGML_LOG_DEBUG("%s: size_all: %.2f MiB\n", __func__, size_all / 1024.0 / 1024.0);
GGML_LOG_DEBUG("%s: size_cur: %.2f MiB\n", __func__, size_cur / 1024.0 / 1024.0);
}
free(mem_pool);
}
static void ggml_metal_mem_pool_reset(struct ggml_metal_mem_pool * mem_pool) {
for (NSUInteger i = 0; i < [mem_pool->heaps count]; i++) {
ggml_metal_heap_ptr * ptr = [mem_pool->heaps objectAtIndex:i];
struct ggml_metal_heap * heap = ptr.data;
ggml_metal_heap_reset(heap);
// if the heap hasn't been used for a while, remove it
if (heap->n_unused >= 128) {
[mem_pool->heaps_to_remove addObject:@(i)];
}
}
if (mem_pool->heaps_to_remove.count > 0) {
for (NSUInteger i = 0; i < [mem_pool->heaps_to_remove count]; i++) {
NSUInteger index = [[mem_pool->heaps_to_remove objectAtIndex:i] intValue];
ggml_metal_heap_ptr * ptr = [mem_pool->heaps objectAtIndex:index];
struct ggml_metal_heap * heap = ptr.data;
ggml_metal_heap_free(heap);
[mem_pool->heaps removeObjectAtIndex:index];
[ptr release];
}
[mem_pool->heaps_to_remove removeAllObjects];
}
}
static void ggml_metal_mem_pool_clear(struct ggml_metal_mem_pool * mem_pool) {
for (ggml_metal_heap_ptr * ptr in mem_pool->heaps) {
ptr.data->offs = 0;
}
}
static id<MTLBuffer> ggml_metal_mem_pool_alloc(struct ggml_metal_mem_pool * mem_pool, size_t size) {
const size_t alignment = 32;
const size_t size_aligned = GGML_PAD(size, alignment);
// try one of the existing heaps
for (ggml_metal_heap_ptr * ptr in mem_pool->heaps) {
struct ggml_metal_heap * heap = ptr.data;
if (heap->offs + size_aligned <= [heap->obj size]) {
// if this is the first buffer in the heap for the current command buffer, tell the OS that
// it cannot free the memory used by the heap
// ref: https://developer.apple.com/documentation/metal/mtlpurgeablestate?language=objc
if ([heap->bufs count] == 0) {
[heap->obj setPurgeableState:MTLPurgeableStateNonVolatile];
}
id<MTLBuffer> buf = [heap->obj newBufferWithLength:size_aligned options:MTLResourceStorageModePrivate offset:heap->offs];
if (buf == nil) {
GGML_LOG_ERROR("%s: error: failed to create MTLBuffer with size %zu\n", __func__, size_aligned);
return nil;
}
heap->n_alloc++;
heap->offs += size_aligned;
[heap->bufs addObject:buf];
return buf;
}
}
// create a new heap that can fit this buffer
ggml_metal_heap_ptr * heap_ptr = [ggml_metal_heap_ptr new];
struct ggml_metal_heap * heap = ggml_metal_heap_init(mem_pool->device, size_aligned);
if (heap == NULL) {
GGML_LOG_ERROR("%s: error: failed to create heap of size %zu\n", __func__, size_aligned);
return NULL;
}
//GGML_LOG_DEBUG("%s: creating new heap of size %zu, got %zu\n", __func__, size_aligned, [heap->obj size]);
heap_ptr.data = heap;
ggml_metal_heap_reset(heap);
[heap->obj setPurgeableState:MTLPurgeableStateNonVolatile];
id<MTLBuffer> buf = [heap->obj newBufferWithLength:size_aligned options:MTLResourceStorageModePrivate offset:heap->offs];
if (buf == nil) {
GGML_LOG_ERROR("%s: error: failed to create MTLBuffer with size %zu\n", __func__, size_aligned);
return NULL;
}
heap->n_alloc++;
heap->offs += size_aligned;
[heap->bufs addObject:buf];
[mem_pool->heaps addObject:heap_ptr];
mem_pool->n_heaps++;
return buf;
}
struct ggml_metal_command_buffer {
id<MTLCommandBuffer> obj;
// each command buffer has a memory pool from which it can allocate temporary buffers during the compute
struct ggml_metal_mem_pool * mem_pool;
};
struct ggml_backend_metal_context {
id<MTLDevice> device;
id<MTLCommandQueue> queue;
dispatch_queue_t d_queue;
@@ -514,7 +767,7 @@ struct ggml_backend_metal_context {
void (^encode_async)(size_t ith);
// n_cb command buffers + 1 used by the main thread
id<MTLCommandBuffer> command_buffers[GGML_METAL_MAX_COMMAND_BUFFERS + 1];
struct ggml_metal_command_buffer cmd_bufs[GGML_METAL_MAX_COMMAND_BUFFERS + 1];
// abort ggml_metal_graph_compute if callback returns true
ggml_abort_callback abort_callback;
@@ -704,9 +957,11 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
struct ggml_backend_metal_device_context * ctx_dev = dev->context;
id<MTLDevice> device = ggml_backend_metal_device_acq(ctx_dev);
GGML_LOG_INFO("%s: picking default device: %s\n", __func__, [[device name] UTF8String]);
ctx->queue = [device newCommandQueue];
ctx->device = device;
ctx->queue = [device newCommandQueue];
if (ctx->queue == nil) {
GGML_LOG_ERROR("%s: error: failed to create command queue\n", __func__);
return NULL;
@@ -767,7 +1022,10 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
ctx->gf = nil;
ctx->encode_async = nil;
for (int i = 0; i < GGML_METAL_MAX_COMMAND_BUFFERS; ++i) {
ctx->command_buffers[i] = nil;
ctx->cmd_bufs[i].obj = nil;
ctx->cmd_bufs[i].mem_pool = ggml_metal_mem_pool_init();
ctx->cmd_bufs[i].mem_pool->device = device;
}
#if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15)
@@ -1159,6 +1417,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQRT, sqrt, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIN, sin, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_COS, cos, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NEG, neg, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGMAX, argmax, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32, pool_2d_avg_f32, true);
@@ -1179,6 +1438,12 @@ static void ggml_metal_free(struct ggml_backend_metal_context * ctx) {
[ctx->queue release];
for (int i = 0; i < GGML_METAL_MAX_COMMAND_BUFFERS; ++i) {
// ctx->cmd_bufs[i].obj is auto released
ggml_metal_mem_pool_free(ctx->cmd_bufs[i].mem_pool);
}
dispatch_release(ctx->d_queue);
free(ctx);
@@ -1320,6 +1585,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_ELU:
case GGML_UNARY_OP_NEG:
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
default:
return false;
@@ -1483,10 +1749,11 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
}
}
static void ggml_metal_encode_node(
static bool ggml_metal_encode_node(
ggml_backend_t backend,
int idx,
id<MTLComputeCommandEncoder> encoder) {
id<MTLComputeCommandEncoder> encoder,
struct ggml_metal_mem_pool * mem_pool) {
struct ggml_backend_metal_context * ctx = backend->context;
struct ggml_backend_metal_device_context * ctx_dev = backend->device->context;
@@ -1502,7 +1769,7 @@ static void ggml_metal_encode_node(
struct ggml_tensor * dst = node;
if (ggml_is_empty(dst)) {
return;
return true;
}
switch (dst->op) {
@@ -1513,7 +1780,7 @@ static void ggml_metal_encode_node(
case GGML_OP_PERMUTE:
{
// noop -> next node
} return;
} return true;
default:
{
} break;
@@ -1524,6 +1791,8 @@ static void ggml_metal_encode_node(
GGML_ABORT("unsupported op");
}
ggml_metal_mem_pool_clear(mem_pool);
const int64_t ne00 = src0 ? src0->ne[0] : 0;
const int64_t ne01 = src0 ? src0->ne[1] : 0;
const int64_t ne02 = src0 ? src0->ne[2] : 0;
@@ -2010,6 +2279,18 @@ static void ggml_metal_encode_node(
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_NEG:
{
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_NEG].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
default:
{
GGML_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, idx, ggml_op_name(dst->op));
@@ -2158,26 +2439,76 @@ static void ggml_metal_encode_node(
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
ggml_metal_kargs_soft_max args = {
// use this branch to test the ggml_metal_mem_pool functionality
#if 0
// cpy to tmp buffer in MTLHeap
id<MTLBuffer> h_src0 = h_src0 = ggml_metal_mem_pool_alloc(mem_pool, ggml_nbytes(src0));
if (!h_src0) {
GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, ggml_nbytes(src0));
return false;
}
offs_src0 = 0;
ggml_metal_kargs_cpy args_cpy = {
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.ne02 =*/ ne02,
/*.scale =*/ scale,
/*.max_bias =*/ max_bias,
/*.m0 =*/ m0,
/*.m1 =*/ m1,
/*.ne03 =*/ ne03,
/*.nb00 =*/ nb00,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.nb03 =*/ nb03,
/*.ne0 =*/ ne00,
/*.ne1 =*/ ne01,
/*.ne2 =*/ ne02,
/*.ne3 =*/ ne03,
/*.nb0 =*/ nb00,
/*.nb1 =*/ nb01,
/*.nb2 =*/ nb02,
/*.nb3 =*/ nb03,
};
if (src0->type == GGML_TYPE_F16) {
[encoder setComputePipelineState:ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F16].pipeline];
} else {
[encoder setComputePipelineState:ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline];
}
[encoder setBytes:&args_cpy length:sizeof(args_cpy) atIndex:0];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
[encoder setBuffer:h_src0 offset:0 atIndex:2];
GGML_ASSERT(ne00 % ggml_blck_size(src0->type) == 0);
int nth_cpy = MIN(1024, ne00 / ggml_blck_size(src0->type));
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth_cpy, 1, 1)];
#else
id<MTLBuffer> h_src0 = id_src0;
#endif
// softmax
ggml_metal_kargs_soft_max args = {
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.ne02 =*/ ne02,
/*.scale =*/ scale,
/*.max_bias =*/ max_bias,
/*.m0 =*/ m0,
/*.m1 =*/ m1,
/*.n_head_log2 =*/ n_head_log2,
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:h_src0 offset:offs_src0 atIndex:0];
if (id_src1) {
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
} else {
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
[encoder setBuffer:h_src0 offset:offs_src0 atIndex:1];
}
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&args length:sizeof(args) atIndex:3];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&args length:sizeof(args) atIndex:3];
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
@@ -4586,6 +4917,8 @@ static void ggml_metal_encode_node(
GGML_ABORT("fatal error");
}
}
return true;
}
static enum ggml_status ggml_metal_graph_compute(
@@ -4639,25 +4972,25 @@ static enum ggml_status ggml_metal_graph_compute(
}
// the main thread commits the first few commands immediately
// command_buffer[n_cb]
// cmd_buf[n_cb]
{
id<MTLCommandBuffer> command_buffer = [ctx->queue commandBufferWithUnretainedReferences];
ctx->command_buffers[n_cb] = command_buffer;
id<MTLCommandBuffer> cmd_buf = [ctx->queue commandBufferWithUnretainedReferences];
ctx->cmd_bufs[n_cb].obj = cmd_buf;
[command_buffer enqueue];
[cmd_buf enqueue];
ctx->encode_async(n_cb);
}
// prepare the rest of the command buffers asynchronously
// command_buffer[0.. n_cb)
// cmd_buf[0.. n_cb)
for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
id<MTLCommandBuffer> command_buffer = [ctx->queue commandBufferWithUnretainedReferences];
ctx->command_buffers[cb_idx] = command_buffer;
id<MTLCommandBuffer> cmd_buf = [ctx->queue commandBufferWithUnretainedReferences];
ctx->cmd_bufs[cb_idx].obj = cmd_buf;
// always enqueue the first two command buffers
// enqueue all of the command buffers if we don't need to abort
if (cb_idx < 2 || ctx->abort_callback == NULL) {
[command_buffer enqueue];
[cmd_buf enqueue];
}
}
@@ -4666,14 +4999,14 @@ static enum ggml_status ggml_metal_graph_compute(
// wait for completion and check status of each command buffer
// needed to detect if the device ran out-of-memory for example (#1881)
{
id<MTLCommandBuffer> command_buffer = ctx->command_buffers[n_cb];
[command_buffer waitUntilCompleted];
id<MTLCommandBuffer> cmd_buf = ctx->cmd_bufs[n_cb].obj;
[cmd_buf waitUntilCompleted];
MTLCommandBufferStatus status = [command_buffer status];
MTLCommandBufferStatus status = [cmd_buf status];
if (status != MTLCommandBufferStatusCompleted) {
GGML_LOG_INFO("%s: command buffer %d failed with status %lu\n", __func__, n_cb, status);
if (status == MTLCommandBufferStatusError) {
GGML_LOG_INFO("error: %s\n", [[command_buffer error].localizedDescription UTF8String]);
GGML_LOG_INFO("error: %s\n", [[cmd_buf error].localizedDescription UTF8String]);
}
return GGML_STATUS_FAILED;
@@ -4681,20 +5014,20 @@ static enum ggml_status ggml_metal_graph_compute(
}
for (int i = 0; i < n_cb; ++i) {
id<MTLCommandBuffer> command_buffer = ctx->command_buffers[i];
[command_buffer waitUntilCompleted];
id<MTLCommandBuffer> cmd_buf = ctx->cmd_bufs[i].obj;
[cmd_buf waitUntilCompleted];
MTLCommandBufferStatus status = [command_buffer status];
MTLCommandBufferStatus status = [cmd_buf status];
if (status != MTLCommandBufferStatusCompleted) {
GGML_LOG_INFO("%s: command buffer %d failed with status %lu\n", __func__, i, status);
if (status == MTLCommandBufferStatusError) {
GGML_LOG_INFO("error: %s\n", [[command_buffer error].localizedDescription UTF8String]);
GGML_LOG_INFO("error: %s\n", [[cmd_buf error].localizedDescription UTF8String]);
}
return GGML_STATUS_FAILED;
}
id<MTLCommandBuffer> next_buffer = (i + 1 < n_cb ? ctx->command_buffers[i + 1] : nil);
id<MTLCommandBuffer> next_buffer = (i + 1 < n_cb ? ctx->cmd_bufs[i + 1].obj : nil);
if (!next_buffer) {
continue;
}
@@ -5077,8 +5410,9 @@ static void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) {
const int n_nodes_per_cb = ctx->n_nodes_per_cb;
id<MTLCommandBuffer> command_buffer = ctx->command_buffers[cb_idx];
id<MTLComputeCommandEncoder> encoder = [command_buffer computeCommandEncoder];
id<MTLCommandBuffer> cmd_buf = ctx->cmd_bufs[cb_idx].obj;
id<MTLComputeCommandEncoder> encoder = [cmd_buf computeCommandEncoder];
int node_start = 0;
int node_end = n_nodes_0;
@@ -5090,22 +5424,29 @@ static void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) {
const bool should_capture = ctx->capture_next_compute;
struct ggml_metal_mem_pool * mem_pool = ctx->cmd_bufs[cb_idx].mem_pool;
ggml_metal_mem_pool_reset(mem_pool);
for (int idx = node_start; idx < node_end; ++idx) {
if (should_capture) {
[encoder pushDebugGroup:[NSString stringWithCString:ggml_op_desc(ggml_graph_node(ctx->gf, idx)) encoding:NSUTF8StringEncoding]];
}
ggml_metal_encode_node(backend, idx, encoder);
const bool res = ggml_metal_encode_node(backend, idx, encoder, mem_pool);
if (should_capture) {
[encoder popDebugGroup];
}
if (!res) {
break;
}
}
[encoder endEncoding];
if (cb_idx < 2 || ctx->abort_callback == NULL) {
[command_buffer commit];
[cmd_buf commit];
}
});
}

View File

@@ -949,6 +949,13 @@ kernel void kernel_cos(
dst[tpig] = cos(src0[tpig]);
}
kernel void kernel_neg(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = -src0[tpig];
}
kernel void kernel_sum_rows(
device const float * src0,
device float * dst,
@@ -3185,7 +3192,7 @@ kernel void kernel_flash_attn_ext(
{
float S[Q] = { [0 ... Q-1] = 0.0f };
float M[Q] = { [0 ... Q-1] = -__FLT16_MAX__/2 };
float M[Q] = { [0 ... Q-1] = -__FLT_MAX__/2 };
// thread indices inside the simdgroup
// TODO: see if we can utilize quad-group functions for better performance
@@ -3445,7 +3452,7 @@ kernel void kernel_flash_attn_ext(
// reduce the warps sequentially
for (ushort sg = 1; sg < nsg; ++sg) {
float S = { 0.0f };
float M = { -__FLT16_MAX__/2 };
float M = { -__FLT_MAX__/2 };
threadgroup_barrier(mem_flags::mem_threadgroup);
@@ -3692,7 +3699,7 @@ kernel void kernel_flash_attn_ext_vec(
{
float S = 0.0f;
float M = -__FLT16_MAX__/2;
float M = -__FLT_MAX__/2;
// thread indices inside the simdgroup
const short tx = tiisg%NL;

View File

@@ -378,8 +378,8 @@ static bool parse_endpoint(const std::string & endpoint, std::string & host, int
}
// RPC request : | rpc_cmd (1 byte) | request_size (8 bytes) | request_data (request_size bytes) |
// RPC response: | response_size (8 bytes) | response_data (response_size bytes) |
static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cmd, const void * input, size_t input_size, void * output, size_t output_size) {
// No response
static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cmd, const void * input, size_t input_size) {
uint8_t cmd_byte = cmd;
if (!send_data(sock->fd, &cmd_byte, sizeof(cmd_byte))) {
return false;
@@ -390,6 +390,15 @@ static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cm
if (!send_data(sock->fd, input, input_size)) {
return false;
}
return true;
}
// RPC request : | rpc_cmd (1 byte) | request_size (8 bytes) | request_data (request_size bytes) |
// RPC response: | response_size (8 bytes) | response_data (response_size bytes) |
static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cmd, const void * input, size_t input_size, void * output, size_t output_size) {
if (!send_rpc_cmd(sock, cmd, input, input_size)) {
return false;
}
// TODO: currently the output_size is always known, do we need support for commands with variable output size?
// even if we do, we can skip sending output_size from the server for commands with known output size
uint64_t out_size;
@@ -509,6 +518,11 @@ static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
result.view_src = reinterpret_cast<uint64_t>(tensor->view_src);
result.view_offs = tensor->view_offs;
result.data = reinterpret_cast<uint64_t>(tensor->data);
// Avoid sending uninitialized data over the wire
memset(result.name, 0, sizeof(result.name));
memset(result.padding, 0, sizeof(result.padding));
snprintf(result.name, GGML_MAX_NAME, "%s", tensor->name);
return result;
}
@@ -555,7 +569,7 @@ static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggm
memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), data, size);
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_SET_TENSOR, input.data(), input.size(), nullptr, 0);
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_SET_TENSOR, input.data(), input.size());
GGML_ASSERT(status);
}
@@ -973,8 +987,21 @@ bool rpc_server::buffer_clear(const rpc_msg_buffer_clear_req & request) {
}
ggml_tensor * rpc_server::deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor) {
// Validate tensor type before using it
if (tensor->type >= GGML_TYPE_COUNT) {
GGML_LOG_ERROR("[%s] invalid tensor type received: %u\n", __func__, tensor->type);
return nullptr;
}
ggml_tensor * result = ggml_new_tensor_4d(ctx, (ggml_type) tensor->type,
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
// ggml_new_tensor_4d might fail if dimensions are invalid, although less likely to crash than invalid type
if (result == nullptr) {
GGML_LOG_ERROR("[%s] ggml_new_tensor_4d failed for type %u\\n", __func__, tensor->type);
return nullptr;
}
for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
result->nb[i] = tensor->nb[i];
}
@@ -1034,7 +1061,9 @@ bool rpc_server::set_tensor(const std::vector<uint8_t> & input) {
const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
if (in_tensor->data + offset < p0 || in_tensor->data + offset >= p1 || size > (p1 - in_tensor->data - offset)) {
GGML_ABORT("[%s] tensor->data out of bounds\n", __func__);
GGML_LOG_ERROR("[%s] tensor data region (data=0x%" PRIx64 ", offset=%" PRIu64 ", size=%zu) out of buffer bounds [0x%zx, 0x%zx)\n",
__func__, in_tensor->data, offset, size, p0, p1);
return false;
}
}
@@ -1109,7 +1138,9 @@ bool rpc_server::set_tensor_hash(const std::vector<uint8_t> & input, rpc_msg_set
const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
if (in_tensor->data + offset < p0 || in_tensor->data + offset >= p1 || size > (p1 - in_tensor->data - offset)) {
GGML_ABORT("[%s] tensor->data out of bounds\n", __func__);
GGML_LOG_ERROR("[%s] tensor data region (data=0x%" PRIx64 ", offset=%" PRIu64 ", size=%zu, hash=0x%" PRIx64 ") out of buffer bounds [0x%zx, 0x%zx)\n",
__func__, in_tensor->data, offset, size, *hash, p0, p1);
return false;
}
}
ggml_backend_tensor_set(tensor, cached_file.data(), offset, size);
@@ -1174,7 +1205,9 @@ bool rpc_server::get_tensor(const rpc_msg_get_tensor_req & request, std::vector<
if (request.tensor.data + request.offset < p0 ||
request.tensor.data + request.offset >= p1 ||
request.size > (p1 - request.tensor.data - request.offset)) {
GGML_ABORT("[%s] tensor->data out of bounds\n", __func__);
GGML_LOG_ERROR("[%s] requested tensor region (data=0x%" PRIx64 ", offset=%" PRIu64 ", size=%" PRIu64 ") out of buffer bounds [0x%zx, 0x%zx)\n",
__func__, request.tensor.data, request.offset, request.size, p0, p1);
return false;
}
}
@@ -1228,22 +1261,50 @@ ggml_tensor * rpc_server::create_node(uint64_t id,
struct ggml_context * ctx,
const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map) {
if (id == 0) {
return nullptr;
}
if (tensor_map.find(id) != tensor_map.end()) {
return tensor_map[id];
}
const rpc_tensor * tensor = tensor_ptrs.at(id);
// Safely find the tensor pointer
auto it_ptr = tensor_ptrs.find(id);
if (it_ptr == tensor_ptrs.end()) {
return nullptr;
}
const rpc_tensor * tensor = it_ptr->second;
struct ggml_tensor * result = deserialize_tensor(ctx, tensor);
if (result == nullptr) {
return nullptr;
}
tensor_map[id] = result;
for (int i = 0; i < GGML_MAX_SRC; i++) {
result->src[i] = create_node(tensor->src[i], ctx, tensor_ptrs, tensor_map);
// Check if the source ID is 0 before calling create_node recursively
if (tensor->src[i] == 0) {
result->src[i] = nullptr;
} else {
result->src[i] = create_node(tensor->src[i], ctx, tensor_ptrs, tensor_map);
// If the recursive call failed for a non-zero ID, propagate the error
if (result->src[i] == nullptr) {
GGML_LOG_ERROR("[%s] failed to create source node %d (src_id=%" PRIu64 ") for node id %" PRIu64 "\n",
__func__, i, tensor->src[i], id);
// Must return nullptr to signal failure up the call stack
return nullptr;
}
}
}
// Handle view_src similarly
if (tensor->view_src == 0) {
result->view_src = nullptr;
} else {
result->view_src = create_node(tensor->view_src, ctx, tensor_ptrs, tensor_map);
// If the recursive call failed for a non-zero ID, propagate the error
if (result->view_src == nullptr) {
GGML_LOG_ERROR("[%s] failed to create view_src node (view_src_id=%" PRIu64 ") for node id %" PRIu64 "\n",
__func__, tensor->view_src, id);
// Must return nullptr to signal failure up the call stack
return nullptr;
}
}
result->view_src = create_node(tensor->view_src, ctx, tensor_ptrs, tensor_map);
result->view_offs = tensor->view_offs;
return result;
}
@@ -1269,6 +1330,7 @@ bool rpc_server::graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph
GGML_PRINT_DEBUG("[%s] n_nodes: %u, n_tensors: %u\n", __func__, n_nodes, n_tensors);
size_t buf_size = ggml_tensor_overhead()*(n_nodes + n_tensors) + ggml_graph_overhead_custom(n_nodes, false);
struct ggml_init_params params = {
/*.mem_size =*/ buf_size,
/*.mem_buffer =*/ NULL,
@@ -1288,6 +1350,14 @@ bool rpc_server::graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph
int64_t id;
memcpy(&id, &nodes[i], sizeof(id));
graph->nodes[i] = create_node(id, ctx, tensor_ptrs, tensor_map);
// Check if create_node failed for a *non-zero* ID.
// If id was 0, create_node returning nullptr is expected.
// If id was non-zero and create_node returned nullptr, it indicates a deserialization error.
if (graph->nodes[i] == nullptr && id != 0) {
GGML_LOG_ERROR("[%s] failed to create graph node %d (id=%" PRId64 ")\n", __func__, i, id);
return false;
}
}
ggml_status status = ggml_backend_graph_compute(backend, graph);
response.result = status;
@@ -1352,7 +1422,9 @@ static void rpc_serve_client(ggml_backend_t backend, const char * cache_dir,
return;
}
rpc_msg_get_alloc_size_rsp response;
server.get_alloc_size(request, response);
if (!server.get_alloc_size(request, response)) {
return;
}
if (!send_msg(sockfd, &response, sizeof(response))) {
return;
}
@@ -1428,9 +1500,6 @@ static void rpc_serve_client(ggml_backend_t backend, const char * cache_dir,
if (!server.set_tensor(input)) {
return;
}
if (!send_msg(sockfd, nullptr, 0)) {
return;
}
break;
}
case RPC_CMD_SET_TENSOR_HASH: {

View File

@@ -313,7 +313,6 @@ struct ggml_backend_sycl_context {
int device;
std::string name;
optimize_feature opt_feature;
bool optimized_graph=false;
queue_ptr qptrs[GGML_SYCL_MAX_DEVICES][GGML_SYCL_MAX_STREAMS] = { { nullptr } };
@@ -494,5 +493,9 @@ static __dpct_inline__ Tp* get_pointer(sycl::local_accessor<Tp, dim> acc) {
int64_t downsample_sycl_global_range(int64_t accumulate_block_num, int64_t block_size);
constexpr size_t ceil_div(const size_t m, const size_t n) {
return (m + n - 1) / n;
}
bool gpu_has_xmx(sycl::device &dev);
#endif // GGML_SYCL_COMMON_HPP

View File

@@ -21,6 +21,27 @@ static void acc_f32(const float * x, const float * y, float * dst, const int ne,
}
}
template<typename T>
static void sgn(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) {
for(auto i = item_ct1.get_global_id(2); i < (const size_t)k; i += item_ct1.get_global_range(2)) {
dst[i] = x[i] > static_cast<T>(0.f) ? static_cast<T>(1.f) : ((x[i] < static_cast<T>(0.f) ? static_cast<T>(-1.f) : static_cast<T>(0.f)));
}
}
template<typename T>
static void abs_op(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) {
for(auto i = item_ct1.get_global_id(2); i < (const size_t)k; i += item_ct1.get_global_range(2)) {
dst[i] = sycl::fabs(x[i]);
}
}
template<typename T>
static void elu_op(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) {
for(auto i = item_ct1.get_global_id(2); i < (const size_t)k; i += item_ct1.get_global_range(2)) {
dst[i] = (x[i] > static_cast<T>(0.f)) ? x[i] : sycl::expm1(x[i]);
}
}
template<typename T>
static void gelu(const T * x, T * dst, const int k,
const sycl::nd_item<3> &item_ct1) {
@@ -335,6 +356,37 @@ static void silu_sycl(const T *x, T *dst, const int k,
});
}
template<typename T>
static void sgn_sycl(const T * x, T * dst, const int k, queue_ptr stream) {
// hard code for now
const int num_blocks = ceil_div(k, 256);
stream->parallel_for(
sycl::nd_range<3>((sycl::range<3>(1, 1, num_blocks) * sycl::range(1, 1, 256)), sycl::range(1, 1, 256)), [=](sycl::nd_item<3> item_ct1) {
sgn(x, dst, k, item_ct1);
});
}
template<typename T>
static void abs_sycl(const T * x, T * dst, const int k, queue_ptr stream) {
// hard code for now
const int num_blocks = ceil_div(k, 256);
stream->parallel_for(
sycl::nd_range<3>((sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, 256)), sycl::range<3>(1, 1, 256)), [=](sycl::nd_item<3> item_ct1) {
abs_op(x, dst, k, item_ct1);
});
}
template<typename T>
static void elu_sycl(const T * x, T * dst, const int k, queue_ptr stream) {
// hard code for now
const int num_blocks = ceil_div(k, 256);
stream->parallel_for(
sycl::nd_range<3>((sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, 256)), sycl::range<3>(1, 1, 256)), [=](sycl::nd_item<3> item_ct1) {
elu_op(x, dst, k, item_ct1);
});
}
template<typename T>
static void gelu_quick_sycl(const T *x, T *dst, const int k,
queue_ptr stream) {
@@ -574,6 +626,106 @@ static void clamp_sycl(const T *x, T *dst, const float min,
});
}
inline void ggml_sycl_op_sgn(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
#if defined (GGML_SYCL_F16)
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
#else
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
#endif
GGML_ASSERT(dst->src[0]->type == dst->type);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
switch (dst->type) {
#if defined (GGML_SYCL_F16)
case GGML_TYPE_F16:
{
auto data_pts = cast_data<sycl::half>(dst);
sgn_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
break;
}
#endif
case GGML_TYPE_F32:
{
auto data_pts = cast_data<float>(dst);
sgn_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
break;
}
default:
GGML_ABORT("GGML tensor type not supported!\n");
break;
}
}
inline void ggml_sycl_op_abs(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
#if defined (GGML_SYCL_F16)
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
#else
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
#endif
GGML_ASSERT(dst->src[0]->type == dst->type);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
switch (dst->type) {
#if defined (GGML_SYCL_F16)
case GGML_TYPE_F16:
{
auto data_pts = cast_data<sycl::half>(dst);
abs_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
break;
}
#endif
case GGML_TYPE_F32:
{
auto data_pts = cast_data<float>(dst);
abs_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
break;
}
default:
GGML_ABORT("GGML tensor type not supported!\n");
break;
}
}
inline void ggml_sycl_op_elu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
#if defined (GGML_SYCL_F16)
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
#else
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
#endif
GGML_ASSERT(dst->src[0]->type == dst->type);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
switch (dst->type) {
#if defined (GGML_SYCL_F16)
case GGML_TYPE_F16:
{
auto data_pts = cast_data<sycl::half>(dst);
elu_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
break;
}
#endif
case GGML_TYPE_F32:
{
auto data_pts = cast_data<float>(dst);
elu_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
break;
}
default:
GGML_ABORT("GGML tensor type not supported!\n");
break;
}
}
inline void ggml_sycl_op_silu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
#if defined (GGML_SYCL_F16)
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
@@ -1388,3 +1540,20 @@ void ggml_sycl_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_sgn(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
ggml_sycl_op_sgn(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_abs(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
ggml_sycl_op_abs(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_elu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
ggml_sycl_op_elu(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}

View File

@@ -66,5 +66,10 @@ void ggml_sycl_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_sgn(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_abs(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_elu(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
#endif // GGML_SYCL_ELEMENTWISE_HPP

View File

@@ -38,6 +38,7 @@
#include "ggml-sycl/backend.hpp"
#include "ggml-sycl/common.hpp"
#include "ggml-sycl/element_wise.hpp"
#include "ggml-sycl/presets.hpp"
#include "ggml-sycl/gemm.hpp"
#include "ggml-sycl/sycl_hw.hpp"
@@ -192,7 +193,7 @@ static void ggml_check_sycl() try {
if (!initialized) {
g_ggml_sycl_debug = get_sycl_env("GGML_SYCL_DEBUG", 0);
g_ggml_sycl_disable_optimize= get_sycl_env("GGML_SYCL_DISABLE_OPT", 1);
g_ggml_sycl_disable_optimize= get_sycl_env("GGML_SYCL_DISABLE_OPT", 0);
g_ggml_sycl_disable_graph = get_sycl_env("GGML_SYCL_DISABLE_GRAPH", 1);
GGML_SYCL_DEBUG("[SYCL] call ggml_check_sycl\n");
GGML_LOG_INFO("Running with Environment Variables:\n");
@@ -2852,6 +2853,64 @@ static bool ggml_sycl_supports_dmmv(enum ggml_type type) {
}
}
static void reorder_qw(char *data_device, const int ncols, const int nrows,
size_t size, size_t offset, dpct::queue_ptr stream) {
auto tmp_buf = sycl::malloc_shared<char>(size, *stream);
SYCL_CHECK(
CHECK_TRY_ERROR((*stream).memcpy(tmp_buf, data_device, size)
.wait()));
GGML_ASSERT((size % sizeof(block_q4_0) == 0));
GGML_ASSERT((offset % sizeof(block_q4_0) == 0));
int offset_blks = offset / sizeof(block_q4_0);
auto qs_ptr = (uint8_t*)data_device + offset_blks * QK4_0 / 2;;
auto d_ptr = (sycl::half*)(qs_ptr + ncols * nrows / 2) + offset_blks;
stream->parallel_for(
size / sizeof(block_q4_0),
[=](auto i) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
const block_q4_0* x = (const block_q4_0*)tmp_buf;
const int ib = i;
for (int j = 0; j < QK4_0/2; j ++)
{
*(qs_ptr + ib * QK4_0 / 2 + j) = x[ib].qs[j];
}
*(d_ptr + ib) = x[ib].d;
});
sycl::free(tmp_buf, *stream);
}
static void reorder_qw(const ggml_tensor * src0, dpct::queue_ptr stream) {
char*data_device = (char*)src0->data;
size_t ncols = src0->ne[0];
size_t nrows = src0->ne[1];
size_t size = ggml_nbytes(src0);
reorder_qw(data_device, ncols, nrows, size, 0, stream);
}
/*
* This function could be called when the OP (mul_mat) function support reorder optimizition.
*/
static void opt_for_reorder(ggml_backend_sycl_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1,
ggml_tensor * dst) {
if (!g_ggml_sycl_disable_optimize && //allow optimize, controlled by $GGML_SYCL_DISABLE_OPT
ctx->opt_feature.reorder && //allow this device due to good perf, skip the devices with bad perf.
dst->op == GGML_OP_MUL_MAT && //limit to some supported cases of Q4_0, to do for more cases.
src0->type == GGML_TYPE_Q4_0 &&
src1->ne[2]==1 && src1->ne[3]==1) {
ggml_tensor_extra_gpu* extra = (ggml_tensor_extra_gpu*)src0->extra;
if (!extra) return; //only happen in CI/UT permute case.
if (extra->optimized_feature.reorder) return; //skip the tensor which is handled for reorder.
reorder_qw(src0, ctx->stream());
extra->optimized_feature.reorder = true; //used to decode/dequan in next steps.
}
}
static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const bool split = ggml_backend_buffer_is_sycl_split(src0->buffer);
@@ -2914,6 +2973,7 @@ static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor
// KQ + KQV multi-batch
ggml_sycl_mul_mat_batched_sycl(ctx, src0, src1, dst);
} else if (use_dequantize_mul_mat_vec) {
opt_for_reorder(&ctx, src0, src1, dst); //the OP function in this branch support reorder.
ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_dequantize_mul_mat_vec, false);
// save_tensor_txt("1/dst_1.txt", (float*) dst->data, src0->ne[1], sizeof(float), ctx.stream());
} else if (use_mul_mat_vec_q) {
@@ -2921,6 +2981,7 @@ static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor
} else if (use_mul_mat_q) {
ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_q, true);
} else {
opt_for_reorder(&ctx, src0, src1, dst); //the OP function in this branch support reorder.
ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false);
}
}
@@ -3168,11 +3229,6 @@ static void ggml_sycl_diag_mask_inf(ggml_backend_sycl_context & ctx, ggml_tensor
ggml_sycl_op_diag_mask_inf(ctx, dst);
}
static void ggml_sycl_rope(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous(dst->src[0])); // TODO: this restriction is temporary until non-cont support is implemented
ggml_sycl_op_rope(ctx, dst);
}
static void ggml_sycl_pool2d(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_op_pool2d(ctx, dst);
}
@@ -3300,6 +3356,15 @@ static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct gg
case GGML_UNARY_OP_EXP:
ggml_sycl_exp(ctx, dst);
break;
case GGML_UNARY_OP_SGN:
ggml_sycl_sgn(ctx, dst);
break;
case GGML_UNARY_OP_ABS:
ggml_sycl_abs(ctx, dst);
break;
case GGML_UNARY_OP_ELU:
ggml_sycl_elu(ctx, dst);
break;
default:
return false;
}
@@ -3550,71 +3615,8 @@ catch (sycl::exception const &exc) {
std::exit(1);
}
static void reorder_qw(char *data_device, const int ncols, const int nrows,
size_t size, size_t offset, dpct::queue_ptr stream) {
auto tmp_buf = sycl::malloc_shared<char>(size, *stream);
SYCL_CHECK(
CHECK_TRY_ERROR((*stream).memcpy(tmp_buf, data_device, size)
.wait()));
GGML_ASSERT((size % sizeof(block_q4_0) == 0));
GGML_ASSERT((offset % sizeof(block_q4_0) == 0));
int offset_blks = offset / sizeof(block_q4_0);
auto qs_ptr = (uint8_t*)data_device + offset_blks * QK4_0 / 2;;
auto d_ptr = (sycl::half*)(qs_ptr + ncols * nrows / 2) + offset_blks;
stream->parallel_for(
size / sizeof(block_q4_0),
[=](auto i) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
const block_q4_0* x = (const block_q4_0*)tmp_buf;
const int ib = i;
for (int j = 0; j < QK4_0/2; j ++)
{
*(qs_ptr + ib * QK4_0 / 2 + j) = x[ib].qs[j];
}
*(d_ptr + ib) = x[ib].d;
});
sycl::free(tmp_buf, *stream);
}
static void reorder_qw(ggml_tensor * src0, dpct::queue_ptr stream) {
char*data_device = (char*)src0->data;
size_t ncols = src0->ne[0];
size_t nrows = src0->ne[1];
size_t size = ggml_nbytes(src0);
reorder_qw(data_device, ncols, nrows, size, 0, stream);
}
static void opt_for_reorder(ggml_tensor * dst, dpct::queue_ptr stream) {
ggml_tensor *src0 = dst->src[0];
ggml_tensor *src1 = dst->src[1];
if (dst->op == GGML_OP_MUL_MAT && src0->type == GGML_TYPE_Q4_0 &&
src1->ne[2]==1 && src1->ne[3]==1) {
reorder_qw(src0, stream);
ggml_tensor_extra_gpu* extra = (ggml_tensor_extra_gpu*)src0->extra;
GGML_ASSERT(extra);
extra->optimized_feature.reorder = true; //used to decode/dequan in next steps.
}
}
static void optimize_graph_once(ggml_cgraph * cgraph, ggml_backend_sycl_context * ctx) {
dpct::queue_ptr stream = ctx->stream();
if (ctx->optimized_graph) {
return;
}
ctx->optimized_graph = true;
for (int i = 0; i < cgraph->n_nodes; i++) {
if (ctx->opt_feature.reorder) opt_for_reorder(cgraph->nodes[i], stream);
}
}
static void ggml_backend_sycl_graph_compute_impl(ggml_backend_sycl_context * sycl_ctx, ggml_cgraph * cgraph) {
ggml_sycl_set_main_device(sycl_ctx->device);
if (!g_ggml_sycl_disable_optimize) optimize_graph_once(cgraph, sycl_ctx);
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
@@ -3845,6 +3847,9 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_EXP:
case GGML_UNARY_OP_SGN:
case GGML_UNARY_OP_ABS:
case GGML_UNARY_OP_ELU:
#if defined (GGML_SYCL_F16)
return ggml_is_contiguous(op->src[0]) && (op->type == op->src[0]->type);
#else
@@ -4002,7 +4007,7 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
if (mode == GGML_ROPE_TYPE_MROPE) {
return false;
}
return ggml_is_contiguous(op->src[0]);
return true;
}
case GGML_OP_IM2COL:
return true;

View File

@@ -34,23 +34,21 @@ static void rope_yarn(
*sin_theta = sycl::sin(theta) * mscale;
}
template<typename T, bool has_ff>
static void rope_norm(
const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors,
const sycl::nd_item<3> &item_ct1) {
const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
item_ct1.get_local_id(1));
template <typename T, bool has_ff>
static void rope_norm(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims,
const int32_t * pos, float freq_scale, float ext_factor, float attn_factor,
const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors,
const sycl::nd_item<3> & item_ct1) {
const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) + item_ct1.get_local_id(1));
if (i0 >= ne0) {
return;
}
const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2);
if (i0 >= n_dims) {
const int i = row*ne0 + i0;
const int i = row * ne0 + i0;
dst[i + 0] = x[i + 0];
dst[i + 1] = x[i + 1];
@@ -58,42 +56,43 @@ static void rope_norm(
return;
}
const int i = row*ne0 + i0;
const int i2 = row/p_delta_rows;
const int row0 = row % ne1;
const int channel0 = row / ne1;
const float theta_base = pos[i2] * sycl::pow(theta_scale, i0 / 2.0f);
const int i = row * ne0 + i0;
const int i2 = channel0 * s2 + row0 * s1 + i0;
const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
const float theta_base = pos[channel0] * sycl::pow(theta_scale, i0 / 2.0f);
const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f;
float cos_theta;
float sin_theta;
rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
const float x0 = x[i + 0];
const float x1 = x[i + 1];
const float x0 = x[i2 + 0];
const float x1 = x[i2 + 1];
dst[i + 0] = x0*cos_theta - x1*sin_theta;
dst[i + 1] = x0*sin_theta + x1*cos_theta;
dst[i + 0] = x0 * cos_theta - x1 * sin_theta;
dst[i + 1] = x0 * sin_theta + x1 * cos_theta;
}
template<typename T, bool has_ff>
static void rope_neox(
const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors,
const sycl::nd_item<3> &item_ct1) {
const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
item_ct1.get_local_id(1));
template <typename T, bool has_ff>
static void rope_neox(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims,
const int32_t * pos, const float freq_scale, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors,
const sycl::nd_item<3> & item_ct1) {
const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) + item_ct1.get_local_id(1));
if (i0 >= ne0) {
return;
}
const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2);
if (i0 >= n_dims) {
const int i = row*ne0 + i0;
const int i = row * ne0 + i0;
dst[i + 0] = x[i + 0];
dst[i + 1] = x[i + 1];
@@ -101,23 +100,26 @@ static void rope_neox(
return;
}
const int i = row*ne0 + i0/2;
const int i2 = row/p_delta_rows;
const int row0 = row % ne1;
const int channel0 = row / ne1;
const float theta_base = pos[i2] * sycl::pow(theta_scale, i0 / 2.0f);
const int i = row * ne0 + i0 / 2;
const int i2 = channel0 * s2 + row0 * s1 + i0 / 2;
const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
const float theta_base = pos[channel0] * sycl::pow(theta_scale, i0 / 2.0f);
const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f;
float cos_theta;
float sin_theta;
rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
const float x0 = x[i + 0];
const float x1 = x[i + n_dims/2];
const float x0 = x[i2 + 0];
const float x1 = x[i2 + n_dims / 2];
dst[i + 0] = x0*cos_theta - x1*sin_theta;
dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
dst[i + 0] = x0 * cos_theta - x1 * sin_theta;
dst[i + n_dims / 2] = x0 * sin_theta + x1 * cos_theta;
}
template <typename T, bool has_ff>
@@ -163,18 +165,18 @@ static void rope_vision(const T * x, T * dst, const int ne0, const int ne1, cons
}
template <typename T>
static void rope_norm_sycl(
const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows,
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) {
static void rope_norm_sycl(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2,
const int n_dims, int nr, const int32_t * pos, const float freq_scale, const float freq_base,
const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims,
const float * freq_factors, queue_ptr stream) {
GGML_ASSERT(ne0 % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
const int num_blocks_x = (ne0 + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
const int num_blocks_x = (ne0 + 2 * SYCL_ROPE_BLOCK_SIZE - 1) / (2 * SYCL_ROPE_BLOCK_SIZE);
const sycl::range<3> block_nums(1, num_blocks_x, nr);
const float theta_scale = powf(freq_base, -2.0f/n_dims);
const float theta_scale = powf(freq_base, -2.0f / n_dims);
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
if (freq_factors == nullptr) {
/*
@@ -182,61 +184,47 @@ static void rope_norm_sycl(
the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if needed.
*/
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
rope_norm<T, false>(x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows,
ext_factor, attn_factor, corr_dims, theta_scale, freq_factors,
item_ct1);
});
stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) {
rope_norm<T, false>(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor, corr_dims,
theta_scale, freq_factors, item_ct1);
});
} else {
/*
DPCT1049:41: The work-group size passed to the SYCL kernel may exceed
the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if needed.
*/
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
rope_norm<T, true>(x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows,
ext_factor, attn_factor, corr_dims, theta_scale, freq_factors,
item_ct1);
});
stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) {
rope_norm<T, true>(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor, corr_dims,
theta_scale, freq_factors, item_ct1);
});
}
}
template <typename T>
static void rope_neox_sycl(
const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows,
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) {
static void rope_neox_sycl(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2,
const int n_dims, const int nr, const int32_t * pos, const float freq_scale,
const float freq_base, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) {
GGML_ASSERT(ne0 % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
const int num_blocks_x = (ne0 + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
const int num_blocks_x = (ne0 + 2 * SYCL_ROPE_BLOCK_SIZE - 1) / (2 * SYCL_ROPE_BLOCK_SIZE);
const sycl::range<3> block_nums(1, num_blocks_x, nr);
const float theta_scale = powf(freq_base, -2.0f/n_dims);
const float theta_scale = powf(freq_base, -2.0f / n_dims);
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
if (freq_factors == nullptr) {
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
rope_neox<T, false>(x, dst, ne0, n_dims, pos, freq_scale,
p_delta_rows, ext_factor, attn_factor,
corr_dims, theta_scale, freq_factors,
item_ct1);
});
stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) {
rope_neox<T, false>(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor, corr_dims,
theta_scale, freq_factors, item_ct1);
});
} else {
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
rope_neox<T, true>(x, dst, ne0, n_dims, pos, freq_scale,
p_delta_rows, ext_factor, attn_factor,
corr_dims, theta_scale, freq_factors,
item_ct1);
});
stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) {
rope_neox<T, true>(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor, corr_dims,
theta_scale, freq_factors, item_ct1);
});
}
}
@@ -272,7 +260,7 @@ static void rope_vision_sycl(const T * x, T * dst, const int ne0, const int ne1,
}
}
void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
inline void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
@@ -329,43 +317,46 @@ void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
if (is_neox) {
GGML_SYCL_DEBUG("%s: neox path\n", __func__);
if (dst->src[0]->type == GGML_TYPE_F32) {
rope_neox_sycl(
(const float *)dst->src[0]->data, (float *)dst->data, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, freq_factors, main_stream
);
rope_neox_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, s01, s02, n_dims, nr,
pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, main_stream);
} else if (dst->src[0]->type == GGML_TYPE_F16) {
rope_neox_sycl(
(const sycl::half *)dst->src[0]->data, (sycl::half *)dst->data, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, freq_factors, main_stream
);
rope_neox_sycl((const sycl::half *) dst->src[0]->data, (sycl::half *) dst->data, ne00, ne01, s01, s02,
n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors,
main_stream);
} else {
GGML_ABORT("fatal error");
}
} else if (is_vision) {
GGML_SYCL_DEBUG("%s: vision path\n", __func__);
if (dst->src[0]->type == GGML_TYPE_F16) {
rope_vision_sycl((const sycl::half *)dst->src[0]->data, (sycl::half *)dst->data, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, main_stream);
rope_vision_sycl((const sycl::half *) dst->src[0]->data, (sycl::half *) dst->data, ne00, ne01, ne02, s01,
s02, n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims,
freq_factors, sections, main_stream);
} else if (dst->src[0]->type == GGML_TYPE_F32) {
rope_vision_sycl((const float *) dst->src[0]->data, (float *)dst->data, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, main_stream);
rope_vision_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, ne02, s01, s02, n_dims,
nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections,
main_stream);
} else {
GGML_ABORT("Fatal error: Tensor type unsupported!");
}
} else {
GGML_SYCL_DEBUG("%s: norm path\n", __func__);
if (dst->src[0]->type == GGML_TYPE_F32) {
rope_norm_sycl(
(const float *)dst->src[0]->data, (float *)dst->data, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, freq_factors, main_stream
);
rope_norm_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, s01, s02, n_dims, nr,
pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, main_stream);
} else if (dst->src[0]->type == GGML_TYPE_F16) {
rope_norm_sycl(
(const sycl::half *)dst->src[0]->data, (sycl::half *)dst->data, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, freq_factors, main_stream
);
rope_norm_sycl((const sycl::half *) dst->src[0]->data, (sycl::half *) dst->data, ne00, ne01, s01, s02,
n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors,
main_stream);
} else {
GGML_ABORT("fatal error");
}
}
}
void ggml_sycl_rope(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_rope(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}

View File

@@ -15,6 +15,6 @@
#include "common.hpp"
void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst);
void ggml_sycl_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst);
#endif // GGML_SYCL_ROPE_HPP

View File

@@ -71,6 +71,22 @@ if (Vulkan_FOUND)
add_compile_definitions(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
endif()
# Compile a test shader to determine whether GL_EXT_bfloat16 is supported.
# If it's not, there will be an error to stderr.
# If it's supported, set a define to indicate that we should compile those shaders
execute_process(COMMAND ${Vulkan_GLSLC_EXECUTABLE} -o - -fshader-stage=compute --target-env=vulkan1.3 "${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders/test_bfloat16_support.comp"
OUTPUT_VARIABLE glslc_output
ERROR_VARIABLE glslc_error)
if (${glslc_error} MATCHES ".*extension not supported: GL_EXT_bfloat16.*")
message(STATUS "GL_EXT_bfloat16 not supported by glslc")
set(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT OFF)
else()
message(STATUS "GL_EXT_bfloat16 supported by glslc")
set(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT ON)
add_compile_definitions(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
endif()
target_link_libraries(ggml-vulkan PRIVATE Vulkan::Vulkan)
target_include_directories(ggml-vulkan PRIVATE ${CMAKE_CURRENT_BINARY_DIR})
@@ -142,6 +158,7 @@ if (Vulkan_FOUND)
-DGGML_VULKAN_COOPMAT_GLSLC_SUPPORT=${GGML_VULKAN_COOPMAT_GLSLC_SUPPORT}
-DGGML_VULKAN_COOPMAT2_GLSLC_SUPPORT=${GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT}
-DGGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT=${GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT}
-DGGML_VULKAN_BFLOAT16_GLSLC_SUPPORT=${GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT}
BUILD_COMMAND ${CMAKE_COMMAND} --build .
INSTALL_COMMAND ${CMAKE_COMMAND} --install .
INSTALL_DIR ${CMAKE_BINARY_DIR}

View File

@@ -51,6 +51,24 @@
#include "ggml-vulkan-shaders.hpp"
// remove this once it's more widely available in the SDK
#if !defined(VK_KHR_shader_bfloat16)
#define VK_KHR_shader_bfloat16 1
#define VK_KHR_SHADER_BFLOAT16_SPEC_VERSION 1
#define VK_KHR_SHADER_BFLOAT16_EXTENSION_NAME "VK_KHR_shader_bfloat16"
#define VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_BFLOAT16_FEATURES_KHR ((VkStructureType)1000141000)
#define VK_COMPONENT_TYPE_BFLOAT16_KHR ((VkComponentTypeKHR)1000141000)
typedef struct VkPhysicalDeviceShaderBfloat16FeaturesKHR {
VkStructureType sType;
void* pNext;
VkBool32 shaderBFloat16Type;
VkBool32 shaderBFloat16DotProduct;
VkBool32 shaderBFloat16CooperativeMatrix;
} VkPhysicalDeviceShaderBfloat16FeaturesKHR;
#endif
#define ROUNDUP_POW2(M, N) (((M) + (N) - 1) & ~((N) - 1))
#define CEIL_DIV(M, N) (((M) + (N)-1) / (N))
static bool is_pow2(uint32_t x) { return x > 1 && (x & (x-1)) == 0; }
@@ -246,6 +264,7 @@ struct vk_device_struct {
bool pipeline_robustness;
vk::Device device;
uint32_t vendor_id;
vk::DriverId driver_id;
vk_device_architecture architecture;
vk_queue compute_queue;
vk_queue transfer_queue;
@@ -265,8 +284,9 @@ struct vk_device_struct {
bool subgroup_require_full_support;
bool coopmat_support;
bool coopmat_acc_f32_support;
bool coopmat_acc_f16_support;
bool coopmat_acc_f32_support {};
bool coopmat_acc_f16_support {};
bool coopmat_bf16_support {};
uint32_t coopmat_m;
uint32_t coopmat_n;
uint32_t coopmat_k;
@@ -292,6 +312,7 @@ struct vk_device_struct {
vk_matmul_pipeline pipeline_matmul_f32 {};
vk_matmul_pipeline pipeline_matmul_f32_f16 {};
vk_matmul_pipeline pipeline_matmul_bf16 {};
vk_matmul_pipeline2 pipeline_matmul_f16;
vk_matmul_pipeline2 pipeline_matmul_f16_f32;
@@ -300,6 +321,7 @@ struct vk_device_struct {
vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_COUNT];
vk_matmul_pipeline pipeline_matmul_id_f32 {};
vk_matmul_pipeline pipeline_matmul_id_bf16 {};
vk_matmul_pipeline2 pipeline_matmul_id_f16;
vk_matmul_pipeline2 pipeline_matmul_id_f16_f32;
@@ -332,8 +354,8 @@ struct vk_device_struct {
vk_pipeline pipeline_clamp_f32;
vk_pipeline pipeline_pad_f32;
vk_pipeline pipeline_repeat_f32, pipeline_repeat_back_f32;
vk_pipeline pipeline_cpy_f32_f32, pipeline_cpy_f32_f16, pipeline_cpy_f16_f16;
vk_pipeline pipeline_contig_cpy_f32_f32, pipeline_contig_cpy_f32_f16, pipeline_contig_cpy_f16_f16;
vk_pipeline pipeline_cpy_f32_f32, pipeline_cpy_f32_f16, pipeline_cpy_f16_f16, pipeline_cpy_f32_bf16;
vk_pipeline pipeline_contig_cpy_f32_f32, pipeline_contig_cpy_f32_f16, pipeline_contig_cpy_f16_f16, pipeline_contig_cpy_f32_bf16;
vk_pipeline pipeline_cpy_f32_quant[GGML_TYPE_COUNT];
vk_pipeline pipeline_cpy_quant_f32[GGML_TYPE_COUNT];
vk_pipeline pipeline_norm_f32;
@@ -1740,6 +1762,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
m_warptile_mmq_int = { 128, 64, 64, 32, subgroup_size_8, 32, 2, 2, 2, 1, subgroup_size_8 };
s_warptile_mmq_int = { subgroup_size_32, 32, 32, 32, 32, 32, 2, 2, 1, 1, subgroup_size_8 };
// chip specific tuning
if ((device->architecture == AMD_GCN) && (device->driver_id != vk::DriverId::eAmdProprietary)) {
m_warptile_mmq = m_warptile_mmq_int = { 256, 64, 64, 32, 16, 16, 2, 2, 2, 1, 16 };
}
l_mmq_wg_denoms = l_wg_denoms = {128, 128, 1 };
m_mmq_wg_denoms = m_wg_denoms = { 64, 64, 1 };
s_mmq_wg_denoms = s_wg_denoms = { 32, 32, 1 };
@@ -1785,6 +1812,12 @@ static void ggml_vk_load_shaders(vk_device& device) {
if (!device->pipeline_matmul_id_f32) {
device->pipeline_matmul_id_f32 = std::make_shared<vk_matmul_pipeline_struct>();
}
if (!device->pipeline_matmul_bf16) {
device->pipeline_matmul_bf16 = std::make_shared<vk_matmul_pipeline_struct>();
}
if (!device->pipeline_matmul_id_bf16) {
device->pipeline_matmul_id_bf16 = std::make_shared<vk_matmul_pipeline_struct>();
}
std::vector<std::future<void>> compiles;
auto const &ggml_vk_create_pipeline = [&](vk_device& device, vk_pipeline& pipeline, const std::string &name, size_t spv_size, const void* spv_data, const std::string &entrypoint,
@@ -1894,6 +1927,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(PIPELINE_NAME . f32acc, NAMELC, , WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT) \
CREATE_MM2(pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3)
#if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
if (device->coopmat_bf16_support) {
CREATE_MM(pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3)
}
#endif
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
@@ -1915,6 +1953,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM2(pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_id_push_constants, 4)
#if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
if (device->coopmat_bf16_support) {
CREATE_MM(pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4)
}
#endif
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
@@ -1968,6 +2011,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16_f32, matmul_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
#if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
if (device->coopmat_bf16_support) {
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, )
}
#endif
if (device->coopmat_acc_f16_support) {
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
@@ -2016,6 +2064,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
#if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
if (device->coopmat_bf16_support) {
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
}
#endif
if (device->coopmat_acc_f16_support) {
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
@@ -2098,6 +2151,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16_f32, matmul_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
@@ -2133,6 +2188,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
@@ -2185,6 +2242,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_f16.f32acc, matmul_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_f16_f32.f32acc, matmul_f16_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f32acc, matmul_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f32acc, matmul_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f32acc, matmul_q5_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
@@ -2220,6 +2279,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16.f32acc, matmul_id_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16_f32.f32acc, matmul_id_f16_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f32acc, matmul_id_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f32acc, matmul_id_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f32acc, matmul_id_q5_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
@@ -2240,8 +2301,26 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S].f32acc, matmul_id_iq3_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS].f32acc, matmul_id_iq4_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f32acc, matmul_id_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
#undef CREATE_MM
}
// reusing CREATE_MM from the fp32 path
if ((device->coopmat2 || device->coopmat_support)
#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
&& !device->coopmat_bf16_support
#endif
) {
// use scalar tile sizes
l_warptile = { 128, 128, 128, 16, subgroup_size_8 * 2, 64, 2, 4, 4, 1, subgroup_size_8 };
m_warptile = { 128, 64, 64, 16, subgroup_size_8, 32, 2, 4, 2, 1, subgroup_size_8 };
s_warptile = { subgroup_size_16, 32, 32, 16, 32, 32, 2, 2, 2, 1, subgroup_size_8 };
l_wg_denoms = {128, 128, 1 };
m_wg_denoms = { 64, 64, 1 };
s_wg_denoms = { 32, 32, 1 };
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4, _id);
}
#undef CREATE_MM
// mul mat vec
@@ -2260,6 +2339,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
for (uint32_t i = 0; i < mul_mat_vec_max_cols; ++i) {
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f32_f32_"+std::to_string(i+1), mul_mat_vec_f32_f32_f32_len, mul_mat_vec_f32_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f32_f32_"+std::to_string(i+1), mul_mat_vec_f16_f32_f32_len, mul_mat_vec_f16_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_BF16][i], "mul_mat_vec_bf16_f32_f32_"+std::to_string(i+1), mul_mat_vec_bf16_f32_f32_len, mul_mat_vec_bf16_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f32_f32_"+std::to_string(i+1), mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_f32_f32_"+std::to_string(i+1), mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_f32_f32_"+std::to_string(i+1), mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
@@ -2282,6 +2362,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f16_f32_"+std::to_string(i+1), mul_mat_vec_f32_f16_f32_len, mul_mat_vec_f32_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f16_f32_"+std::to_string(i+1), mul_mat_vec_f16_f16_f32_len, mul_mat_vec_f16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_BF16][i], "mul_mat_vec_bf16_f16_f32_"+std::to_string(i+1), mul_mat_vec_bf16_f16_f32_len, mul_mat_vec_bf16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f16_f32_"+std::to_string(i+1), mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_f16_f32_"+std::to_string(i+1), mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_f16_f32_"+std::to_string(i+1), mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
@@ -2305,6 +2386,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32", mul_mat_vec_id_f32_f32_len, mul_mat_vec_id_f32_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F16 ], "mul_mat_vec_id_f16_f32", mul_mat_vec_id_f16_f32_len, mul_mat_vec_id_f16_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_BF16], "mul_mat_vec_id_bf16_f32", mul_mat_vec_id_bf16_f32_len, mul_mat_vec_id_bf16_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
@@ -2350,6 +2432,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
// get_rows
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_F32 ], "get_rows_f32", get_rows_f32_len, get_rows_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_F16 ], "get_rows_f16", get_rows_f16_len, get_rows_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_BF16], "get_rows_bf16", get_rows_bf16_len, get_rows_bf16_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q4_0], "get_rows_q4_0", get_rows_q4_0_len, get_rows_q4_0_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q4_1], "get_rows_q4_1", get_rows_q4_1_len, get_rows_q4_1_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q5_0], "get_rows_q5_0", get_rows_q5_0_len, get_rows_q5_0_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
@@ -2367,6 +2450,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_F32 ], "get_rows_f32_f32", get_rows_f32_f32_len, get_rows_f32_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_F16 ], "get_rows_f16_f32", get_rows_f16_f32_len, get_rows_f16_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_BF16], "get_rows_bf16_f32", get_rows_bf16_f32_len, get_rows_bf16_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q4_0], "get_rows_q4_0_f32", get_rows_q4_0_f32_len, get_rows_q4_0_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q4_1], "get_rows_q4_1_f32", get_rows_q4_1_f32_len, get_rows_q4_1_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q5_0], "get_rows_q5_0_f32", get_rows_q5_0_f32_len, get_rows_q5_0_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
@@ -2393,21 +2477,24 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_p021_f16_f32[i], "mul_mat_vec_p021_f16_f32"+std::to_string(i+1), mul_mat_vec_p021_f16_f32_len, mul_mat_vec_p021_f16_f32_data, "main", 3, 6 * sizeof(uint32_t), {1, 1, 1}, {device->subgroup_size, i + 1}, 1, true);
}
}
ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_nc_f16_f32, "mul_mat_vec_nc_f16_f32", mul_mat_vec_nc_f16_f32_len, mul_mat_vec_nc_f16_f32_data, "main", 3, 7 * sizeof(uint32_t), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_nc_f16_f32, "mul_mat_vec_nc_f16_f32", mul_mat_vec_nc_f16_f32_len, mul_mat_vec_nc_f16_f32_data, "main", 3, 9 * sizeof(uint32_t), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_norm_f32, "norm_f32", norm_f32_len, norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_group_norm_f32, "group_norm_f32", group_norm_f32_len, group_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rms_norm_f32, "rms_norm_f32", rms_norm_f32_len, rms_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rms_norm_f32, "rms_norm_f32", rms_norm_f32_len, rms_norm_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rms_norm_back_f32, "rms_norm_back_f32", rms_norm_back_f32_len, rms_norm_back_f32_data, "main", 3, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_l2_norm_f32, "l2_norm_f32", l2_norm_f32_len, l2_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_f32, "cpy_f32_f32", cpy_f32_f32_len, cpy_f32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_f16, "cpy_f32_f16", cpy_f32_f16_len, cpy_f32_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f16_f16, "cpy_f16_f16", cpy_f16_f16_len, cpy_f16_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_bf16,"cpy_f32_bf16",cpy_f32_bf16_len,cpy_f32_bf16_data,"main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_f32, "contig_cpy_f32_f32", contig_cpy_f32_f32_len, contig_cpy_f32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_f16, "contig_cpy_f32_f16", contig_cpy_f32_f16_len, contig_cpy_f32_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f16_f16, "contig_cpy_f16_f16", contig_cpy_f16_f16_len, contig_cpy_f16_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_bf16,"contig_cpy_f32_bf16",contig_cpy_f32_bf16_len,contig_cpy_f32_bf16_data,"main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
if (device->float_controls_rte_fp16) {
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_0], "cpy_f32_q4_0", cpy_f32_q4_0_rte_len, cpy_f32_q4_0_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_1], "cpy_f32_q4_1", cpy_f32_q4_1_rte_len, cpy_f32_q4_1_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_1), 1, 1}, {}, 1);
@@ -2572,6 +2659,7 @@ static vk_device ggml_vk_get_device(size_t idx) {
bool coopmat2_support = false;
device->coopmat_support = false;
device->integer_dot_product = false;
bool bfloat16_support = false;
for (const auto& properties : ext_props) {
if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) {
@@ -2602,6 +2690,9 @@ static vk_device ggml_vk_get_device(size_t idx) {
!getenv("GGML_VK_DISABLE_INTEGER_DOT_PRODUCT")) {
device->integer_dot_product = true;
#endif
} else if (strcmp("VK_KHR_shader_bfloat16", properties.extensionName) == 0 &&
!getenv("GGML_VK_DISABLE_BFLOAT16")) {
bfloat16_support = true;
}
}
@@ -2658,6 +2749,7 @@ static vk_device ggml_vk_get_device(size_t idx) {
device->physical_device.getProperties2(&props2);
device->properties = props2.properties;
device->vendor_id = device->properties.vendorID;
device->driver_id = driver_props.driverID;
const char* GGML_VK_FORCE_MAX_ALLOCATION_SIZE = getenv("GGML_VK_FORCE_MAX_ALLOCATION_SIZE");
@@ -2787,6 +2879,17 @@ static vk_device ggml_vk_get_device(size_t idx) {
}
#endif
#if defined(VK_KHR_shader_bfloat16)
VkPhysicalDeviceShaderBfloat16FeaturesKHR bfloat16_features {};
bfloat16_features.pNext = nullptr;
bfloat16_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_BFLOAT16_FEATURES_KHR;
if (bfloat16_support) {
last_struct->pNext = (VkBaseOutStructure *)&bfloat16_features;
last_struct = (VkBaseOutStructure *)&bfloat16_features;
device_extensions.push_back("VK_KHR_shader_bfloat16");
}
#endif
VkPhysicalDeviceMaintenance4Features maint4_features {};
maint4_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_FEATURES;
if (maintenance4_support) {
@@ -2984,6 +3087,25 @@ static vk_device ggml_vk_get_device(size_t idx) {
device->coopmat_int_n = prop.NSize;
device->coopmat_int_k = prop.KSize;
}
#if defined(VK_KHR_shader_bfloat16) && defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
if (prop.AType == VK_COMPONENT_TYPE_BFLOAT16_KHR &&
prop.BType == VK_COMPONENT_TYPE_BFLOAT16_KHR &&
prop.CType == VK_COMPONENT_TYPE_FLOAT32_KHR &&
prop.ResultType == VK_COMPONENT_TYPE_FLOAT32_KHR &&
(vk::ScopeKHR)prop.scope == vk::ScopeKHR::eSubgroup
) {
// coopmat sizes not set yet
if (device->coopmat_m == 0) {
device->coopmat_bf16_support = true;
device->coopmat_m = prop.MSize;
device->coopmat_n = prop.NSize;
device->coopmat_k = prop.KSize;
} else if (device->coopmat_m == prop.MSize && device->coopmat_n == prop.NSize && device->coopmat_k == prop.KSize) {
// Only enable if shape is identical
device->coopmat_bf16_support = true;
}
}
#endif
}
if (device->coopmat_m == 0 || !device->coopmat_acc_f32_support) {
@@ -2991,11 +3113,19 @@ static vk_device ggml_vk_get_device(size_t idx) {
GGML_LOG_DEBUG("ggml_vulkan: WARNING: No suitable matrix core mode found. Disabling matrix cores.\n");
device->coopmat_support = false;
}
if (getenv("GGML_VK_DISABLE_BFLOAT16")) {
device->coopmat_bf16_support = false;
}
}
if (device->coopmat_support) {
device_extensions.push_back("VK_KHR_cooperative_matrix");
}
#if defined(VK_KHR_shader_bfloat16)
if (device->coopmat_bf16_support) {
device_extensions.push_back("VK_KHR_shader_bfloat16");
}
#endif
#endif
device->name = GGML_VK_NAME + std::to_string(idx);
@@ -3452,6 +3582,9 @@ static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_pipeline(ggml_backend_vk_conte
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
return ctx->device->pipeline_matmul_f32_f16;
}
if (src0_type == GGML_TYPE_BF16 && src1_type == GGML_TYPE_BF16) {
return ctx->device->pipeline_matmul_bf16;
}
if (prec == GGML_PREC_DEFAULT && ctx->device->fp16 && !(ctx->device->coopmat_support && !ctx->device->coopmat_acc_f16_support)) {
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
return ctx->device->pipeline_matmul_f16_f32.f16acc;
@@ -3523,6 +3656,7 @@ static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec(ggml_backend_vk_context *
switch (a_type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_BF16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
@@ -3555,6 +3689,9 @@ static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_id_pipeline(ggml_backend_vk_co
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
return ctx->device->pipeline_matmul_id_f32;
}
if (src0_type == GGML_TYPE_BF16 && src1_type == GGML_TYPE_BF16) {
return ctx->device->pipeline_matmul_id_bf16;
}
if (prec == GGML_PREC_DEFAULT && ctx->device->fp16 && !(ctx->device->coopmat_support && !ctx->device->coopmat_acc_f16_support)) {
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
return ctx->device->pipeline_matmul_id_f16_f32.f16acc;
@@ -3608,6 +3745,7 @@ static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec_id(ggml_backend_vk_context
switch (a_type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_BF16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
@@ -4343,6 +4481,13 @@ static vk_pipeline ggml_vk_get_cpy_pipeline(ggml_backend_vk_context * ctx, const
return ctx->device->pipeline_cpy_f16_f16;
}
}
if (src->type == GGML_TYPE_F32 && to == GGML_TYPE_BF16) {
if (contig) {
return ctx->device->pipeline_contig_cpy_f32_bf16;
} else {
return ctx->device->pipeline_cpy_f32_bf16;
}
}
if (src->type == GGML_TYPE_F32) {
switch (to) {
case GGML_TYPE_Q4_0:
@@ -4470,8 +4615,12 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
const bool x_non_contig = (ctx->device->coopmat2 && src0->type == GGML_TYPE_F32) ||
!ggml_vk_dim01_contiguous(src0);
const bool y_non_contig = (ctx->device->coopmat2 && src1->type == GGML_TYPE_F32) ||
(src0->type == GGML_TYPE_BF16 && src1->type != GGML_TYPE_BF16) ||
!ggml_vk_dim01_contiguous(src1);
// If src0 is BF16, try to use a BF16 x BF16 multiply
ggml_type f16_type = src0->type == GGML_TYPE_BF16 ? GGML_TYPE_BF16 : GGML_TYPE_F16;
const bool y_f32_kernel = src1->type == GGML_TYPE_F32 && !y_non_contig;
bool quantize_y = ctx->device->integer_dot_product && src1->type == GGML_TYPE_F32 && ggml_is_contiguous(src1) && (ne11 * ne10) % 4 == 0;
@@ -4481,25 +4630,25 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
if (mmp == nullptr) {
// Fall back to f16 dequant mul mat
mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, src0->type, y_non_contig ? GGML_TYPE_F16 : src1->type, (ggml_prec)dst->op_params[0]);
mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, src0->type, y_non_contig ? f16_type : src1->type, (ggml_prec)dst->op_params[0]);
quantize_y = false;
}
const bool qx_needs_dequant = mmp == nullptr || x_non_contig;
const bool qy_needs_dequant = !quantize_y && ((src1->type != GGML_TYPE_F16 && !y_f32_kernel) || y_non_contig);
const bool qy_needs_dequant = !quantize_y && ((src1->type != f16_type && !y_f32_kernel) || y_non_contig);
if (qx_needs_dequant) {
// Fall back to dequant + f16 mulmat
mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, GGML_TYPE_F16, y_f32_kernel ? GGML_TYPE_F32 : GGML_TYPE_F16, (ggml_prec)dst->op_params[0]);
mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, f16_type, y_f32_kernel ? GGML_TYPE_F32 : f16_type, (ggml_prec)dst->op_params[0]);
}
// Not implemented
GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT
const uint32_t kpad = quantize_y ? 0 : ggml_vk_align_size(ne10, ggml_vk_guess_matmul_pipeline_align(ctx, mmp, ne01, ne11, qx_needs_dequant ? GGML_TYPE_F16 : src0->type, quantize_y ? GGML_TYPE_Q8_1 : (y_f32_kernel ? GGML_TYPE_F32 : src1->type)));
const uint32_t kpad = quantize_y ? 0 : ggml_vk_align_size(ne10, ggml_vk_guess_matmul_pipeline_align(ctx, mmp, ne01, ne11, qx_needs_dequant ? f16_type : src0->type, quantize_y ? GGML_TYPE_Q8_1 : (y_f32_kernel ? GGML_TYPE_F32 : src1->type)));
const bool aligned = !quantize_y && ne10 == kpad && ne01 > 8 && ne11 > 8;
vk_pipeline pipeline = ggml_vk_guess_matmul_pipeline(ctx, mmp, ne01, ne11, aligned, qx_needs_dequant ? GGML_TYPE_F16 : src0->type, quantize_y ? GGML_TYPE_Q8_1 : (y_f32_kernel ? GGML_TYPE_F32 : src1->type));
vk_pipeline pipeline = ggml_vk_guess_matmul_pipeline(ctx, mmp, ne01, ne11, aligned, qx_needs_dequant ? f16_type : src0->type, quantize_y ? GGML_TYPE_Q8_1 : (y_f32_kernel ? GGML_TYPE_F32 : src1->type));
// Reserve extra storage in the N dimension for the Y matrix, so we can avoid bounds-checking
uint32_t padded_n = qy_needs_dequant ? ROUNDUP_POW2(ne11, pipeline->wg_denoms[1]) : ne11;
@@ -4520,12 +4669,12 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
vk_pipeline to_q8_1 = nullptr;
if (x_non_contig) {
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, GGML_TYPE_F16);
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, f16_type);
} else {
to_fp16_vk_0 = ggml_vk_get_to_fp16(ctx, src0->type);
}
if (y_non_contig) {
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, GGML_TYPE_F16);
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, f16_type);
} else {
to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
}
@@ -4942,6 +5091,8 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
const uint64_t nb01 = src0->nb[1];
const uint64_t nb02 = src0->nb[2];
const uint64_t nb12 = src1->nb[2];
// const uint64_t ne10 = src1->ne[0];
const uint64_t ne11 = src1->ne[1];
const uint64_t ne12 = src1->ne[2];
@@ -4967,6 +5118,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
const uint32_t row_stride_x = nb01 / sizeof(ggml_fp16_t);
const uint32_t channel_stride_x = nb02 / sizeof(ggml_fp16_t);
const uint32_t channel_stride_y = nb12 / sizeof(float);
const uint64_t qx_sz = ggml_nbytes(src0);
const uint64_t qy_sz = ggml_nbytes(src1);
@@ -4997,7 +5149,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
const uint64_t d_shader_offset = d_buf_offset - d_buffer_offset;
// compute
const std::array<uint32_t, 7> pc = { (uint32_t)ne00, (uint32_t)ne01, row_stride_x, channel_stride_x, (uint32_t)(ne12 / ne02), (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
const std::array<uint32_t, 9> pc = { (uint32_t)ne00, (uint32_t)ne01, row_stride_x, channel_stride_x, channel_stride_y, (uint32_t)(ne12 / ne02), (uint32_t)ne12, (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_nc_f16_f32,
{ vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz }, vk_subbuffer{ d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, vk_subbuffer{ d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
@@ -5022,7 +5174,7 @@ static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context& subctx, c
// mul_mat_vec supports batching ne12*ne13 when ne11==1, or treating ne11 as the batch size (up to four)
// when ne12 and ne13 are one.
} else if ((dst->ne[1] == 1 || (dst->ne[1] <= mul_mat_vec_max_cols && src1->ne[2] * src1->ne[3] == 1)) &&
(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type))) {
(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16 || ggml_is_quantized(src0->type))) {
ggml_vk_mul_mat_vec_q_f16(ctx, subctx, src0, src1, dst, dryrun);
} else {
ggml_vk_mul_mat_q_f16(ctx, subctx, src0, src1, dst, dryrun);
@@ -5090,27 +5242,31 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
const bool x_non_contig = (ctx->device->coopmat2 && src0->type == GGML_TYPE_F32) ||
!ggml_vk_dim01_contiguous(src0);
const bool y_non_contig = (ctx->device->coopmat2 && src1->type == GGML_TYPE_F32) ||
(src0->type == GGML_TYPE_BF16 && src1->type != GGML_TYPE_BF16) ||
!ggml_vk_dim01_contiguous(src1);
// If src0 is BF16, try to use a BF16 x BF16 multiply
ggml_type f16_type = src0->type == GGML_TYPE_BF16 ? GGML_TYPE_BF16 : GGML_TYPE_F16;
const bool y_f32_kernel = src1->type == GGML_TYPE_F32 && !y_non_contig;
vk_matmul_pipeline mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, src0->type, y_non_contig ? GGML_TYPE_F16 : src1->type, (ggml_prec)dst->op_params[0]);
vk_matmul_pipeline mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, src0->type, y_non_contig ? f16_type : src1->type, (ggml_prec)dst->op_params[0]);
const bool qx_needs_dequant = mmp == nullptr || x_non_contig;
const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !y_f32_kernel) || y_non_contig;
const bool qy_needs_dequant = (src1->type != f16_type && !y_f32_kernel) || y_non_contig;
if (qx_needs_dequant) {
// Fall back to dequant + f16 mulmat
mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, GGML_TYPE_F16, y_f32_kernel ? GGML_TYPE_F32 : GGML_TYPE_F16, (ggml_prec)dst->op_params[0]);
mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, f16_type, y_f32_kernel ? GGML_TYPE_F32 : f16_type, (ggml_prec)dst->op_params[0]);
}
// Not implemented
GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT
const uint32_t kpad = ggml_vk_align_size(ne10, ggml_vk_guess_matmul_id_pipeline_align(ctx, mmp, ne01, nei1, qx_needs_dequant ? GGML_TYPE_F16 : src0->type));
const uint32_t kpad = ggml_vk_align_size(ne10, ggml_vk_guess_matmul_id_pipeline_align(ctx, mmp, ne01, nei1, qx_needs_dequant ? f16_type : src0->type));
const bool aligned = ne10 == kpad && ne01 > 8 && nei1 > 8;
vk_pipeline pipeline = ggml_vk_guess_matmul_id_pipeline(ctx, mmp, ne01, nei1, aligned, qx_needs_dequant ? GGML_TYPE_F16 : src0->type);
vk_pipeline pipeline = ggml_vk_guess_matmul_id_pipeline(ctx, mmp, ne01, nei1, aligned, qx_needs_dequant ? f16_type : src0->type);
// Reserve extra storage in the N dimension for the Y matrix, so we can avoid bounds-checking
uint32_t padded_n = qy_needs_dequant ? ROUNDUP_POW2(ne11, pipeline->wg_denoms[1]) :ne11;
@@ -5129,12 +5285,12 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
vk_pipeline to_fp16_vk_1 = nullptr;
if (x_non_contig) {
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, GGML_TYPE_F16);
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, f16_type);
} else {
to_fp16_vk_0 = ggml_vk_get_to_fp16(ctx, src0->type);
}
if (y_non_contig) {
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, GGML_TYPE_F16);
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, f16_type);
} else {
to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
}
@@ -6006,6 +6162,7 @@ static bool ggml_vk_op_supports_incontiguous(ggml_op op) {
case GGML_OP_REPEAT:
case GGML_OP_REPEAT_BACK:
case GGML_OP_ROPE:
case GGML_OP_RMS_NORM:
return true;
default:
return false;
@@ -6216,7 +6373,6 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
switch (op) {
case GGML_OP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_RMS_NORM_BACK:
case GGML_OP_L2_NORM:
case GGML_OP_SOFT_MAX:
@@ -6233,6 +6389,10 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
elements = { nr, 1, 1 };
}
} break;
case GGML_OP_RMS_NORM:
elements = { (uint32_t)ne01, (uint32_t)ne02, (uint32_t)ne03 };
break;
case GGML_OP_SUM:
// We use GGML_OP_SUM_ROWS with 1 row.
elements = { 1, 1, 1 };
@@ -6883,7 +7043,17 @@ static void ggml_vk_group_norm(ggml_backend_vk_context * ctx, vk_context& subctx
static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
float * op_params = (float *)dst->op_params;
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }, dryrun);
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_RMS_NORM, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
0,
op_params[0], 0.0f,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
}, dryrun);
}
static void ggml_vk_rms_norm_back(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
@@ -9206,6 +9376,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
switch (src0_type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_BF16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
@@ -9241,10 +9412,15 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
if (a->ne[3] != b->ne[3]) {
return false;
}
if (!(ggml_vk_dim01_contiguous(op->src[0]) || op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) ||
if (!(ggml_vk_dim01_contiguous(op->src[0]) || op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16 || op->src[0]->type == GGML_TYPE_BF16) ||
!(ggml_vk_dim01_contiguous(op->src[1]) || op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_F16)) {
return false;
}
if (op->src[0]->type == GGML_TYPE_BF16 && op->src[1]->type == GGML_TYPE_F16) {
// We currently don't have a bf16 x f16 shader, or an fp16->bf16 copy shader.
// So don't support this combination for now.
return false;
}
return true;
} break;
@@ -9317,6 +9493,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
switch (op->src[0]->type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_BF16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
@@ -9347,6 +9524,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
switch (src1_type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_BF16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
@@ -9388,10 +9566,10 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
case GGML_OP_RMS_NORM:
return true;
case GGML_OP_NORM:
case GGML_OP_GROUP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_L2_NORM:
return ggml_is_contiguous(op->src[0]);
case GGML_OP_ADD:

View File

@@ -12,6 +12,9 @@ endif()
if (GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
add_compile_definitions(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
endif()
if (GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
add_compile_definitions(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
endif()
set(TARGET vulkan-shaders-gen)
add_executable(${TARGET} vulkan-shaders-gen.cpp)
install(TARGETS ${TARGET} RUNTIME)

View File

@@ -18,7 +18,11 @@ void main() {
// fast path for when all four iterations are in-bounds
if (idx + (num_iter-1)*num_threads < p.ne) {
[[unroll]] for (uint i = 0; i < num_iter; ++i) {
#ifndef OPTIMIZATION_ERROR_WORKAROUND
#if defined(DATA_D_BF16)
float f = float(data_a[get_aoffset() + idx]);
data_d[get_doffset() + idx] = D_TYPE(fp32_to_bf16(f));
#elif !defined(OPTIMIZATION_ERROR_WORKAROUND)
data_d[get_doffset() + idx] = D_TYPE(data_a[get_aoffset() + idx]);
#else
data_d[get_doffset() + idx] = data_a[get_aoffset() + idx];
@@ -31,7 +35,10 @@ void main() {
continue;
}
#ifndef OPTIMIZATION_ERROR_WORKAROUND
#if defined(DATA_D_BF16)
float f = float(data_a[get_aoffset() + idx]);
data_d[get_doffset() + idx] = D_TYPE(fp32_to_bf16(f));
#elif !defined(OPTIMIZATION_ERROR_WORKAROUND)
data_d[get_doffset() + idx] = D_TYPE(data_a[get_aoffset() + idx]);
#else
data_d[get_doffset() + idx] = data_a[get_aoffset() + idx];

View File

@@ -12,7 +12,10 @@ void main() {
return;
}
#ifndef OPTIMIZATION_ERROR_WORKAROUND
#if defined(DATA_D_BF16)
float f = float(data_a[get_aoffset() + src0_idx(idx)]);
data_d[get_doffset() + dst_idx(idx)] = D_TYPE(fp32_to_bf16(f));
#elif !defined(OPTIMIZATION_ERROR_WORKAROUND)
data_d[get_doffset() + dst_idx(idx)] = D_TYPE(data_a[get_aoffset() + src0_idx(idx)]);
#else
data_d[get_doffset() + dst_idx(idx)] = data_a[get_aoffset() + src0_idx(idx)];

Some files were not shown because too many files have changed in this diff Show More