mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-05 13:53:23 +02:00
Compare commits
62 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
1f73301b63 | ||
|
|
4773d7a02f | ||
|
|
6c7fd67b64 | ||
|
|
141a908a59 | ||
|
|
32916a4907 | ||
|
|
ffc727203a | ||
|
|
91a86a6f35 | ||
|
|
f4ed10b69c | ||
|
|
1e333d5bba | ||
|
|
2f54e348ad | ||
|
|
2356fb1d53 | ||
|
|
764b85627b | ||
|
|
15a28ec8c7 | ||
|
|
a7366faa5b | ||
|
|
9070365020 | ||
|
|
233461f812 | ||
|
|
b34c859146 | ||
|
|
9b61acf060 | ||
|
|
5215b91e93 | ||
|
|
ae803bfc3d | ||
|
|
66645a5285 | ||
|
|
27aa259532 | ||
|
|
9fdfcdaedd | ||
|
|
6eb7d25c70 | ||
|
|
86bd60d3fe | ||
|
|
9f2da5871f | ||
|
|
93c4e23905 | ||
|
|
8afbd96818 | ||
|
|
8ae5ebcf85 | ||
|
|
3e959f0976 | ||
|
|
36667c8edc | ||
|
|
3bf785f3ef | ||
|
|
1d36b3670b | ||
|
|
b34443923c | ||
|
|
a75cb30dc9 | ||
|
|
3f3769ba76 | ||
|
|
2f567611c0 | ||
|
|
7d2123484e | ||
|
|
074e42ab31 | ||
|
|
c642bc014c | ||
|
|
cb06a3c363 | ||
|
|
626083faf7 | ||
|
|
2af6880178 | ||
|
|
e84773ab60 | ||
|
|
fab647e884 | ||
|
|
dcf886007d | ||
|
|
d24d592808 | ||
|
|
8efbdadc61 | ||
|
|
f057808ffa | ||
|
|
d7a14c42a1 | ||
|
|
b6e4ff69b8 | ||
|
|
e0f572c846 | ||
|
|
79f26e9e12 | ||
|
|
fc727bcdd5 | ||
|
|
b0ecbd434b | ||
|
|
b1dd4d08e8 | ||
|
|
99881f77d8 | ||
|
|
b5769d92b4 | ||
|
|
8936784f7a | ||
|
|
13c9a3319b | ||
|
|
a70183eb00 | ||
|
|
8d33d740c3 |
@@ -21,15 +21,15 @@ indent_style = tab
|
||||
[prompts/*.txt]
|
||||
insert_final_newline = unset
|
||||
|
||||
[examples/server/public/*]
|
||||
[tools/server/public/*]
|
||||
indent_size = 2
|
||||
|
||||
[examples/server/public/deps_*]
|
||||
[tools/server/public/deps_*]
|
||||
trim_trailing_whitespace = unset
|
||||
indent_style = unset
|
||||
indent_size = unset
|
||||
|
||||
[examples/server/deps_*]
|
||||
[tools/server/deps_*]
|
||||
trim_trailing_whitespace = unset
|
||||
indent_style = unset
|
||||
indent_size = unset
|
||||
@@ -37,7 +37,7 @@ indent_size = unset
|
||||
[examples/llama.swiftui/llama.swiftui.xcodeproj/*]
|
||||
indent_style = tab
|
||||
|
||||
[examples/cvector-generator/*.txt]
|
||||
[tools/cvector-generator/*.txt]
|
||||
trim_trailing_whitespace = unset
|
||||
insert_final_newline = unset
|
||||
|
||||
|
||||
3
.flake8
3
.flake8
@@ -2,8 +2,9 @@
|
||||
max-line-length = 125
|
||||
ignore = E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704,W503
|
||||
exclude =
|
||||
# Do not traverse examples
|
||||
# Do not traverse examples and tools
|
||||
examples,
|
||||
tools,
|
||||
# Do not include package initializers
|
||||
__init__.py,
|
||||
# No need to traverse our git directory
|
||||
|
||||
6
.github/labeler.yml
vendored
6
.github/labeler.yml
vendored
@@ -45,7 +45,9 @@ build:
|
||||
- CMakePresets.json
|
||||
examples:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file: examples/**
|
||||
- any-glob-to-any-file:
|
||||
- examples/**
|
||||
- tools/**
|
||||
devops:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
@@ -70,7 +72,7 @@ android:
|
||||
server:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- examples/server/**
|
||||
- tools/server/**
|
||||
ggml:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
|
||||
30
.github/workflows/bench.yml.disabled
vendored
30
.github/workflows/bench.yml.disabled
vendored
@@ -27,10 +27,10 @@ on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
|
||||
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'tools/server/*.h*', 'tools/server/*.cpp']
|
||||
pull_request_target:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
|
||||
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'tools/server/*.h*', 'tools/server/*.cpp']
|
||||
schedule:
|
||||
- cron: '04 2 * * *'
|
||||
|
||||
@@ -69,7 +69,7 @@ jobs:
|
||||
- name: Install python env
|
||||
id: pipenv
|
||||
run: |
|
||||
cd examples/server/bench
|
||||
cd tools/server/bench
|
||||
python3 -m venv venv
|
||||
source venv/bin/activate
|
||||
pip install -r requirements.txt
|
||||
@@ -79,7 +79,7 @@ jobs:
|
||||
run: |
|
||||
wget --quiet https://github.com/prometheus/prometheus/releases/download/v2.51.0/prometheus-2.51.0.linux-amd64.tar.gz
|
||||
tar xzf prometheus*.tar.gz --strip-components=1
|
||||
./prometheus --config.file=examples/server/bench/prometheus.yml &
|
||||
./prometheus --config.file=tools/server/bench/prometheus.yml &
|
||||
while ! nc -z localhost 9090; do
|
||||
sleep 0.1
|
||||
done
|
||||
@@ -92,7 +92,7 @@ jobs:
|
||||
- name: Install k6 and xk6-sse
|
||||
id: k6_installation
|
||||
run: |
|
||||
cd examples/server/bench
|
||||
cd tools/server/bench
|
||||
go install go.k6.io/xk6/cmd/xk6@latest
|
||||
xk6 build master \
|
||||
--with github.com/phymbert/xk6-sse
|
||||
@@ -116,7 +116,7 @@ jobs:
|
||||
- name: Download the dataset
|
||||
id: download_dataset
|
||||
run: |
|
||||
cd examples/server/bench
|
||||
cd tools/server/bench
|
||||
wget --quiet https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
|
||||
- name: Server bench
|
||||
@@ -126,7 +126,7 @@ jobs:
|
||||
run: |
|
||||
set -eux
|
||||
|
||||
cd examples/server/bench
|
||||
cd tools/server/bench
|
||||
source venv/bin/activate
|
||||
python bench.py \
|
||||
--runner-label ${{ env.RUNNER_LABEL }} \
|
||||
@@ -157,9 +157,9 @@ jobs:
|
||||
name: bench-server-${{ github.job }}-${{ env.RUNNER_LABEL }}-${{ matrix.model }}-${{ matrix.ftype }}
|
||||
compression-level: 9
|
||||
path: |
|
||||
examples/server/bench/*.jpg
|
||||
examples/server/bench/*.json
|
||||
examples/server/bench/*.log
|
||||
tools/server/bench/*.jpg
|
||||
tools/server/bench/*.json
|
||||
tools/server/bench/*.log
|
||||
|
||||
- name: Commit status
|
||||
uses: Sibz/github-status-action@v1
|
||||
@@ -178,17 +178,17 @@ jobs:
|
||||
with:
|
||||
client_id: ${{secrets.IMGUR_CLIENT_ID}}
|
||||
path: |
|
||||
examples/server/bench/prompt_tokens_seconds.jpg
|
||||
examples/server/bench/predicted_tokens_seconds.jpg
|
||||
examples/server/bench/kv_cache_usage_ratio.jpg
|
||||
examples/server/bench/requests_processing.jpg
|
||||
tools/server/bench/prompt_tokens_seconds.jpg
|
||||
tools/server/bench/predicted_tokens_seconds.jpg
|
||||
tools/server/bench/kv_cache_usage_ratio.jpg
|
||||
tools/server/bench/requests_processing.jpg
|
||||
|
||||
- name: Extract mermaid
|
||||
id: set_mermaid
|
||||
run: |
|
||||
set -eux
|
||||
|
||||
cd examples/server/bench
|
||||
cd tools/server/bench
|
||||
PROMPT_TOKENS_SECONDS=$(cat prompt_tokens_seconds.mermaid)
|
||||
echo "PROMPT_TOKENS_SECONDS<<EOF" >> $GITHUB_ENV
|
||||
echo "$PROMPT_TOKENS_SECONDS" >> $GITHUB_ENV
|
||||
|
||||
66
.github/workflows/build-linux-cross.yml
vendored
66
.github/workflows/build-linux-cross.yml
vendored
@@ -4,18 +4,25 @@ on:
|
||||
workflow_call:
|
||||
|
||||
jobs:
|
||||
ubuntu-latest-riscv64-cpu-cross:
|
||||
runs-on: ubuntu-latest
|
||||
ubuntu-24-riscv64-cpu-cross:
|
||||
runs-on: ubuntu-24.04
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Setup Riscv
|
||||
run: |
|
||||
sudo dpkg --add-architecture riscv64
|
||||
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
|
||||
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
|
||||
sudo apt-get clean
|
||||
sudo apt-get update
|
||||
|
||||
# Add arch-specific repositories for non-amd64 architectures
|
||||
cat << EOF | sudo tee /etc/apt/sources.list.d/riscv64-ports.list
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
|
||||
EOF
|
||||
|
||||
sudo apt-get update || true ;# Prevent failure due to missing URLs.
|
||||
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
gcc-14-riscv64-linux-gnu \
|
||||
@@ -27,6 +34,7 @@ jobs:
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
|
||||
@@ -40,21 +48,25 @@ jobs:
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
ubuntu-latest-riscv64-vulkan-cross:
|
||||
runs-on: ubuntu-latest
|
||||
ubuntu-24-riscv64-vulkan-cross:
|
||||
runs-on: ubuntu-24.04
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Setup Riscv
|
||||
run: |
|
||||
sudo dpkg --add-architecture riscv64
|
||||
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
|
||||
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
|
||||
sudo apt-get clean
|
||||
sudo apt-get update
|
||||
|
||||
# Add arch-specific repositories for non-amd64 architectures
|
||||
cat << EOF | sudo tee /etc/apt/sources.list.d/riscv64-ports.list
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
|
||||
EOF
|
||||
|
||||
sudo apt-get update || true ;# Prevent failure due to missing URLs.
|
||||
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
glslc \
|
||||
@@ -69,6 +81,7 @@ jobs:
|
||||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
|
||||
@@ -82,21 +95,25 @@ jobs:
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
ubuntu-latest-arm64-vulkan-cross:
|
||||
runs-on: ubuntu-latest
|
||||
ubuntu-24-arm64-vulkan-cross:
|
||||
runs-on: ubuntu-24.04
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Setup Arm64
|
||||
run: |
|
||||
sudo dpkg --add-architecture arm64
|
||||
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
|
||||
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
|
||||
sudo apt-get clean
|
||||
sudo apt-get update
|
||||
|
||||
# Add arch-specific repositories for non-amd64 architectures
|
||||
cat << EOF | sudo tee /etc/apt/sources.list.d/arm64-ports.list
|
||||
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
|
||||
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
|
||||
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
|
||||
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
|
||||
EOF
|
||||
|
||||
sudo apt-get update || true ;# Prevent failure due to missing URLs.
|
||||
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
glslc \
|
||||
@@ -110,6 +127,7 @@ jobs:
|
||||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=aarch64 \
|
||||
|
||||
81
.github/workflows/build.yml
vendored
81
.github/workflows/build.yml
vendored
@@ -601,9 +601,8 @@ jobs:
|
||||
-DGGML_SYCL_F16=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
# Disabled for now due to sporadic issue syncing.
|
||||
# build-linux-cross:
|
||||
# uses: ./.github/workflows/build-linux-cross.yml
|
||||
build-linux-cross:
|
||||
uses: ./.github/workflows/build-linux-cross.yml
|
||||
|
||||
macOS-latest-cmake-ios:
|
||||
runs-on: macos-latest
|
||||
@@ -634,6 +633,7 @@ jobs:
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_BUILD_COMMON=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TOOLS=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=iOS \
|
||||
@@ -670,6 +670,7 @@ jobs:
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_BUILD_COMMON=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TOOLS=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=tvOS \
|
||||
@@ -700,6 +701,7 @@ jobs:
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_BUILD_COMMON=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TOOLS=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=visionOS \
|
||||
@@ -740,6 +742,7 @@ jobs:
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TOOLS=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64"
|
||||
@@ -768,7 +771,7 @@ jobs:
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
with:
|
||||
key: windows-msys2
|
||||
variant: sccache
|
||||
variant: ccache
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Setup ${{ matrix.sys }}
|
||||
@@ -811,26 +814,18 @@ jobs:
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build: 'noavx-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX=OFF -DGGML_AVX2=OFF -DGGML_FMA=OFF'
|
||||
- build: 'avx2-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON'
|
||||
- build: 'avx-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX2=OFF'
|
||||
- build: 'avx512-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX512=ON'
|
||||
- build: 'cpu-x64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF'
|
||||
- build: 'openblas-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
|
||||
- build: 'kompute-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
|
||||
- build: 'vulkan-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_VULKAN=ON'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON'
|
||||
- build: 'llvm-arm64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON'
|
||||
- build: 'msvc-arm64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-msvc.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON'
|
||||
- build: 'llvm-arm64-opencl-adreno'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON'
|
||||
# - build: 'kompute-x64'
|
||||
# defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON'
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@@ -843,7 +838,7 @@ jobs:
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
with:
|
||||
key: windows-latest-cmake-${{ matrix.build }}
|
||||
variant: sccache
|
||||
variant: ccache
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Clone Kompute submodule
|
||||
@@ -919,39 +914,26 @@ jobs:
|
||||
cp $env:RUNNER_TEMP/openblas/bin/libopenblas.dll ./build/bin/Release/openblas.dll
|
||||
cp $env:RUNNER_TEMP/OpenBLAS.LICENSE.txt ./build/bin/Release/OpenBLAS-${env:OPENBLAS_VERSION}.txt
|
||||
|
||||
- name: Check AVX512F support
|
||||
id: check_avx512f
|
||||
if: ${{ matrix.build == 'avx512-x64' }}
|
||||
continue-on-error: true
|
||||
run: |
|
||||
cd build
|
||||
$vcdir = $(vswhere -latest -products * -requires Microsoft.VisualStudio.Component.VC.Tools.x86.x64 -property installationPath)
|
||||
$msvc = $(join-path $vcdir $('VC\Tools\MSVC\'+$(gc -raw $(join-path $vcdir 'VC\Auxiliary\Build\Microsoft.VCToolsVersion.default.txt')).Trim()))
|
||||
$cl = $(join-path $msvc 'bin\Hostx64\x64\cl.exe')
|
||||
echo 'int main(void){unsigned int a[4];__cpuid(a,7);return !(a[1]&65536);}' >> avx512f.c
|
||||
& $cl /O2 /GS- /kernel avx512f.c /link /nodefaultlib /entry:main
|
||||
.\avx512f.exe && echo "AVX512F: YES" && ( echo HAS_AVX512F=1 >> $env:GITHUB_ENV ) || echo "AVX512F: NO"
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
# not all machines have native AVX-512
|
||||
if: ${{ matrix.build != 'msvc-arm64' && matrix.build != 'llvm-arm64' && matrix.build != 'llvm-arm64-opencl-adreno' && matrix.build != 'kompute-x64' && matrix.build != 'vulkan-x64' && (matrix.build != 'avx512-x64' || env.HAS_AVX512F == '1') }}
|
||||
if: ${{ matrix.build != 'llvm-arm64' && matrix.build != 'llvm-arm64-opencl-adreno' }}
|
||||
run: |
|
||||
cd build
|
||||
ctest -L main -C Release --verbose --timeout 900
|
||||
|
||||
- name: Test (Intel SDE)
|
||||
id: cmake_test_sde
|
||||
if: ${{ matrix.build == 'avx512-x64' && env.HAS_AVX512F == '0' }} # use Intel SDE for AVX-512 emulation
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/sde.tar.xz -L "https://downloadmirror.intel.com/813591/sde-external-${env:SDE_VERSION}-win.tar.xz"
|
||||
# for some weird reason windows tar doesn't like sde tar.xz
|
||||
7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/sde.tar.xz
|
||||
7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/sde.tar
|
||||
$sde = $(join-path $env:RUNNER_TEMP sde-external-${env:SDE_VERSION}-win/sde.exe)
|
||||
cd build
|
||||
$env:LLAMA_SKIP_TESTS_SLOW_ON_EMULATOR = 1
|
||||
& $sde -future -- ctest -L main -C Release --verbose --timeout 900
|
||||
# TODO: disabled for now, consider adding tests for all CPU variants instead
|
||||
# - name: Test (Intel SDE)
|
||||
# id: cmake_test_sde
|
||||
# if: ${{ matrix.build == 'avx512-x64' && env.HAS_AVX512F == '0' }} # use Intel SDE for AVX-512 emulation
|
||||
# run: |
|
||||
# curl.exe -o $env:RUNNER_TEMP/sde.tar.xz -L "https://downloadmirror.intel.com/813591/sde-external-${env:SDE_VERSION}-win.tar.xz"
|
||||
# # for some weird reason windows tar doesn't like sde tar.xz
|
||||
# 7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/sde.tar.xz
|
||||
# 7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/sde.tar
|
||||
# $sde = $(join-path $env:RUNNER_TEMP sde-external-${env:SDE_VERSION}-win/sde.exe)
|
||||
# cd build
|
||||
# $env:LLAMA_SKIP_TESTS_SLOW_ON_EMULATOR = 1
|
||||
# & $sde -future -- ctest -L main -C Release --verbose --timeout 900
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
@@ -1036,7 +1018,7 @@ jobs:
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
with:
|
||||
key: ${{ github.job }}-${{ matrix.cuda }}-${{ matrix.build }}
|
||||
variant: sccache
|
||||
variant: ccache
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Install Cuda Toolkit 11.7
|
||||
@@ -1114,6 +1096,8 @@ jobs:
|
||||
cmake -S . -B build -G "Ninja Multi-Config" ^
|
||||
-DLLAMA_BUILD_SERVER=ON ^
|
||||
-DGGML_NATIVE=OFF ^
|
||||
-DGGML_BACKEND_DL=ON ^
|
||||
-DGGML_CPU_ALL_VARIANTS=ON ^
|
||||
-DGGML_CUDA=ON ^
|
||||
-DGGML_RPC=ON ^
|
||||
-DCURL_LIBRARY="%CURL_PATH%/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="%CURL_PATH%/include"
|
||||
@@ -1188,7 +1172,7 @@ jobs:
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
with:
|
||||
key: windows-latest-cmake-sycl
|
||||
variant: sccache
|
||||
variant: ccache
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Install
|
||||
@@ -1418,6 +1402,7 @@ jobs:
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TOOLS=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=iOS \
|
||||
|
||||
24
.github/workflows/server.yml
vendored
24
.github/workflows/server.yml
vendored
@@ -15,10 +15,10 @@ on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
|
||||
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'tools/server/**.*']
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
|
||||
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'tools/server/**.*']
|
||||
|
||||
env:
|
||||
LLAMA_LOG_COLORS: 1
|
||||
@@ -74,7 +74,7 @@ jobs:
|
||||
- name: Tests dependencies
|
||||
id: test_dependencies
|
||||
run: |
|
||||
pip install -r examples/server/tests/requirements.txt
|
||||
pip install -r tools/server/tests/requirements.txt
|
||||
|
||||
# Setup nodejs (to be used for verifying bundled index.html)
|
||||
- uses: actions/setup-node@v4
|
||||
@@ -84,14 +84,14 @@ jobs:
|
||||
- name: WebUI - Install dependencies
|
||||
id: webui_lint
|
||||
run: |
|
||||
cd examples/server/webui
|
||||
cd tools/server/webui
|
||||
npm ci
|
||||
|
||||
- name: WebUI - Check code format
|
||||
id: webui_format
|
||||
run: |
|
||||
git config --global --add safe.directory $(realpath .)
|
||||
cd examples/server/webui
|
||||
cd tools/server/webui
|
||||
git status
|
||||
|
||||
npm run format
|
||||
@@ -108,7 +108,7 @@ jobs:
|
||||
id: verify_server_index_html
|
||||
run: |
|
||||
git config --global --add safe.directory $(realpath .)
|
||||
cd examples/server/webui
|
||||
cd tools/server/webui
|
||||
git status
|
||||
|
||||
npm run build
|
||||
@@ -161,21 +161,21 @@ jobs:
|
||||
env:
|
||||
GITHUB_ACTIONS: "true"
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
cd tools/server/tests
|
||||
./tests.sh
|
||||
|
||||
- name: Tests (sanitizers)
|
||||
id: server_integration_tests_sanitizers
|
||||
if: ${{ matrix.sanitizer != '' }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
cd tools/server/tests
|
||||
LLAMA_SANITIZE=1 ./tests.sh
|
||||
|
||||
- name: Slow tests
|
||||
id: server_integration_tests_slow
|
||||
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
cd tools/server/tests
|
||||
SLOW_TESTS=1 ./tests.sh
|
||||
|
||||
|
||||
@@ -211,7 +211,7 @@ jobs:
|
||||
- name: Tests dependencies
|
||||
id: test_dependencies
|
||||
run: |
|
||||
pip install -r examples/server/tests/requirements.txt
|
||||
pip install -r tools/server/tests/requirements.txt
|
||||
|
||||
- name: Copy Libcurl
|
||||
id: prepare_libcurl
|
||||
@@ -224,7 +224,7 @@ jobs:
|
||||
id: server_integration_tests
|
||||
if: ${{ !matrix.disabled_on_pr || !github.event.pull_request }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
cd tools/server/tests
|
||||
$env:PYTHONIOENCODING = ":replace"
|
||||
pytest -v -x -m "not slow"
|
||||
|
||||
@@ -232,6 +232,6 @@ jobs:
|
||||
id: server_integration_tests_slow
|
||||
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
cd tools/server/tests
|
||||
$env:SLOW_TESTS = "1"
|
||||
pytest -v -x
|
||||
|
||||
12
.gitignore
vendored
12
.gitignore
vendored
@@ -96,11 +96,11 @@ perf-*.txt
|
||||
# Examples
|
||||
|
||||
examples/jeopardy/results.txt
|
||||
examples/server/*.css.hpp
|
||||
examples/server/*.html.hpp
|
||||
examples/server/*.js.hpp
|
||||
examples/server/*.mjs.hpp
|
||||
examples/server/*.gz.hpp
|
||||
tools/server/*.css.hpp
|
||||
tools/server/*.html.hpp
|
||||
tools/server/*.js.hpp
|
||||
tools/server/*.mjs.hpp
|
||||
tools/server/*.gz.hpp
|
||||
!build_64.sh
|
||||
!examples/*.bat
|
||||
!examples/*/*.kts
|
||||
@@ -110,7 +110,7 @@ examples/server/*.gz.hpp
|
||||
|
||||
# Server Web UI temporary files
|
||||
node_modules
|
||||
examples/server/webui/dist
|
||||
tools/server/webui/dist
|
||||
|
||||
# Python
|
||||
|
||||
|
||||
@@ -77,6 +77,7 @@ option(LLAMA_BUILD_COMMON "llama: build common utils library" ${LLAMA_STANDALONE
|
||||
|
||||
# extra artifacts
|
||||
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_TOOLS "llama: build tools" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_SERVER "llama: build server example" ${LLAMA_STANDALONE})
|
||||
|
||||
@@ -187,6 +188,10 @@ if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_EXAMPLES)
|
||||
add_subdirectory(pocs)
|
||||
endif()
|
||||
|
||||
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_TOOLS)
|
||||
add_subdirectory(tools)
|
||||
endif()
|
||||
|
||||
#
|
||||
# install
|
||||
#
|
||||
|
||||
@@ -38,15 +38,6 @@
|
||||
}
|
||||
},
|
||||
|
||||
{
|
||||
"name": "arm64-windows-msvc", "hidden": true,
|
||||
"architecture": { "value": "arm64", "strategy": "external" },
|
||||
"toolset": { "value": "host=x64", "strategy": "external" },
|
||||
"cacheVariables": {
|
||||
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-windows-msvc.cmake"
|
||||
}
|
||||
},
|
||||
|
||||
{
|
||||
"name": "arm64-windows-llvm", "hidden": true,
|
||||
"architecture": { "value": "arm64", "strategy": "external" },
|
||||
@@ -73,10 +64,6 @@
|
||||
{ "name": "arm64-apple-clang-release", "inherits": [ "base", "arm64-apple-clang", "reldbg" ] },
|
||||
{ "name": "arm64-apple-clang+static-release", "inherits": [ "base", "arm64-apple-clang", "reldbg", "static" ] },
|
||||
|
||||
{ "name": "arm64-windows-msvc-debug", "inherits": [ "base", "arm64-windows-msvc", "debug" ] },
|
||||
{ "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg" ] },
|
||||
{ "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg", "static" ] },
|
||||
|
||||
{ "name": "x64-windows-llvm-debug", "inherits": [ "base", "x64-windows-llvm", "debug" ] },
|
||||
{ "name": "x64-windows-llvm-release", "inherits": [ "base", "x64-windows-llvm", "release" ] },
|
||||
{ "name": "x64-windows-llvm-reldbg", "inherits": [ "base", "x64-windows-llvm", "reldbg" ] },
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
|
||||
/ci/ @ggerganov
|
||||
/.devops/*.Dockerfile @ngxson
|
||||
/examples/server/ @ngxson
|
||||
/tools/server/ @ngxson
|
||||
/ggml/src/ggml-cuda/fattn* @JohannesGaessler
|
||||
/ggml/src/ggml-cuda/mmq.* @JohannesGaessler
|
||||
/ggml/src/ggml-cuda/mmv.* @JohannesGaessler
|
||||
|
||||
97
Makefile
97
Makefile
@@ -1156,10 +1156,10 @@ $(LIB_COMMON_S): $(OBJ_COMMON)
|
||||
|
||||
# Clean generated server assets
|
||||
clean-server-assets:
|
||||
find examples/server -type f -name "*.js.hpp" -delete
|
||||
find examples/server -type f -name "*.mjs.hpp" -delete
|
||||
find examples/server -type f -name "*.css.hpp" -delete
|
||||
find examples/server -type f -name "*.html.hpp" -delete
|
||||
find tools/server -type f -name "*.js.hpp" -delete
|
||||
find tools/server -type f -name "*.mjs.hpp" -delete
|
||||
find tools/server -type f -name "*.css.hpp" -delete
|
||||
find tools/server -type f -name "*.html.hpp" -delete
|
||||
|
||||
# Clean rule
|
||||
clean: clean-server-assets
|
||||
@@ -1179,7 +1179,7 @@ clean: clean-server-assets
|
||||
# Helper function that replaces .c, .cpp, and .cu file endings with .o:
|
||||
GET_OBJ_FILE = $(patsubst %.c,%.o,$(patsubst %.cpp,%.o,$(patsubst %.cu,%.o,$(1))))
|
||||
|
||||
llama-cli: examples/main/main.cpp \
|
||||
llama-cli: tools/main/main.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
@@ -1187,12 +1187,7 @@ llama-cli: examples/main/main.cpp \
|
||||
@echo '==== Run ./llama-cli -h for help. ===='
|
||||
@echo
|
||||
|
||||
llama-infill: examples/infill/infill.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-run: examples/run/run.cpp \
|
||||
llama-run: tools/run/run.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
@@ -1207,7 +1202,7 @@ llama-simple-chat: examples/simple-chat/simple-chat.cpp \
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-tokenize: examples/tokenize/tokenize.cpp \
|
||||
llama-tokenize: tools/tokenize/tokenize.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
@@ -1217,27 +1212,27 @@ llama-batched: examples/batched/batched.cpp \
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-batched-bench: examples/batched-bench/batched-bench.cpp \
|
||||
llama-batched-bench: tools/batched-bench/batched-bench.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-quantize: examples/quantize/quantize.cpp \
|
||||
llama-quantize: tools/quantize/quantize.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-quantize-stats: examples/quantize-stats/quantize-stats.cpp \
|
||||
llama-quantize-stats: tools/quantize-stats/quantize-stats.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-perplexity: examples/perplexity/perplexity.cpp \
|
||||
llama-perplexity: tools/perplexity/perplexity.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-imatrix: examples/imatrix/imatrix.cpp \
|
||||
llama-imatrix: tools/imatrix/imatrix.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
@@ -1279,7 +1274,7 @@ llama-gguf-hash: examples/gguf-hash/gguf-hash.cpp examples/gguf-hash/deps/sha1/s
|
||||
$(CXX) $(CXXFLAGS) -Iexamples/gguf-hash/deps -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-gguf-split: examples/gguf-split/gguf-split.cpp \
|
||||
llama-gguf-split: tools/gguf-split/gguf-split.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
@@ -1289,7 +1284,7 @@ llama-eval-callback: examples/eval-callback/eval-callback.cpp \
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-cvector-generator: examples/cvector-generator/cvector-generator.cpp \
|
||||
llama-cvector-generator: tools/cvector-generator/cvector-generator.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
@@ -1299,12 +1294,12 @@ llama-convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-bench: examples/llama-bench/llama-bench.cpp \
|
||||
llama-bench: tools/llama-bench/llama-bench.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-export-lora: examples/export-lora/export-lora.cpp \
|
||||
llama-export-lora: tools/export-lora/export-lora.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
@@ -1360,17 +1355,17 @@ llama-gbnf-validator: examples/gbnf-validator/gbnf-validator.cpp \
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
ifdef GGML_RPC
|
||||
rpc-server: examples/rpc/rpc-server.cpp \
|
||||
rpc-server: tools/rpc/rpc-server.cpp \
|
||||
$(OBJ_GGML)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
endif # GGML_RPC
|
||||
|
||||
llama-server: \
|
||||
examples/server/server.cpp \
|
||||
examples/server/utils.hpp \
|
||||
examples/server/httplib.h \
|
||||
examples/server/index.html.hpp \
|
||||
examples/server/loading.html.hpp \
|
||||
tools/server/server.cpp \
|
||||
tools/server/utils.hpp \
|
||||
tools/server/httplib.h \
|
||||
tools/server/index.html.hpp \
|
||||
tools/server/loading.html.hpp \
|
||||
common/chat.cpp \
|
||||
common/chat.h \
|
||||
common/chat-template.hpp \
|
||||
@@ -1378,10 +1373,10 @@ llama-server: \
|
||||
common/minja.hpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Iexamples/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Itools/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2)
|
||||
|
||||
# Portable equivalent of `cd examples/server/public && xxd -i $(notdir $<) ../$(notdir $<).hpp`:
|
||||
examples/server/%.hpp: examples/server/public/% FORCE Makefile
|
||||
# Portable equivalent of `cd tools/server/public && xxd -i $(notdir $<) ../$(notdir $<).hpp`:
|
||||
tools/server/%.hpp: tools/server/public/% FORCE Makefile
|
||||
@( export NAME=$(subst .,_,$(subst -,_,$(notdir $<))) && \
|
||||
echo "unsigned char $${NAME}[] = {" && \
|
||||
cat $< | od -v -t x1 -An | sed -E 's/([0-9a-fA-F]+)/0x\1, /g' && \
|
||||
@@ -1394,36 +1389,36 @@ llama-gen-docs: examples/gen-docs/gen-docs.cpp \
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
libllava.a: examples/llava/llava.cpp \
|
||||
examples/llava/llava.h \
|
||||
examples/llava/clip.cpp \
|
||||
examples/llava/clip.h \
|
||||
libllava.a: tools/mtmd/llava.cpp \
|
||||
tools/mtmd/llava.h \
|
||||
tools/mtmd/clip.cpp \
|
||||
tools/mtmd/clip.h \
|
||||
common/stb_image.h \
|
||||
common/base64.hpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -static -fPIC -c $< -o $@ -Wno-cast-qual
|
||||
|
||||
llama-llava-cli: examples/llava/llava-cli.cpp \
|
||||
examples/llava/llava.cpp \
|
||||
examples/llava/llava.h \
|
||||
examples/llava/clip.cpp \
|
||||
examples/llava/clip.h \
|
||||
llama-llava-cli: tools/mtmd/llava-cli.cpp \
|
||||
tools/mtmd/llava.cpp \
|
||||
tools/mtmd/llava.h \
|
||||
tools/mtmd/clip.cpp \
|
||||
tools/mtmd/clip.h \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) $< $(filter-out %.h $<,$^) -o $@ $(LDFLAGS) -Wno-cast-qual
|
||||
|
||||
llama-minicpmv-cli: examples/llava/minicpmv-cli.cpp \
|
||||
examples/llava/llava.cpp \
|
||||
examples/llava/llava.h \
|
||||
examples/llava/clip.cpp \
|
||||
examples/llava/clip.h \
|
||||
llama-minicpmv-cli: tools/mtmd/minicpmv-cli.cpp \
|
||||
tools/mtmd/llava.cpp \
|
||||
tools/mtmd/llava.h \
|
||||
tools/mtmd/clip.cpp \
|
||||
tools/mtmd/clip.h \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) $< $(filter-out %.h $<,$^) -o $@ $(LDFLAGS) -Wno-cast-qual
|
||||
|
||||
llama-qwen2vl-cli: examples/llava/qwen2vl-cli.cpp \
|
||||
examples/llava/llava.cpp \
|
||||
examples/llava/llava.h \
|
||||
examples/llava/clip.cpp \
|
||||
examples/llava/clip.h \
|
||||
llama-qwen2vl-cli: tools/mtmd/qwen2vl-cli.cpp \
|
||||
tools/mtmd/llava.cpp \
|
||||
tools/mtmd/llava.h \
|
||||
tools/mtmd/clip.cpp \
|
||||
tools/mtmd/clip.h \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) $< $(filter-out %.h $<,$^) -o $@ $(LDFLAGS) -Wno-cast-qual
|
||||
|
||||
@@ -1480,12 +1475,12 @@ tests/test-double-float: tests/test-double-float.cpp
|
||||
|
||||
tests/test-json-schema-to-grammar: tests/test-json-schema-to-grammar.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -Iexamples/server -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) -Itools/server -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-chat: tests/test-chat.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -Iexamples/server -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) -Itools/server -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-opt: tests/test-opt.cpp \
|
||||
|
||||
20
README.md
20
README.md
@@ -242,7 +242,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
| [Vulkan](docs/build.md#vulkan) | GPU |
|
||||
| [CANN](docs/build.md#cann) | Ascend NPU |
|
||||
| [OpenCL](docs/backend/OPENCL.md) | Adreno GPU |
|
||||
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/examples/rpc) | All |
|
||||
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) | All |
|
||||
|
||||
## Building the project
|
||||
|
||||
@@ -276,9 +276,9 @@ The Hugging Face platform provides a variety of online tools for converting, qua
|
||||
- Use the [GGUF-editor space](https://huggingface.co/spaces/CISCai/gguf-editor) to edit GGUF meta data in the browser (more info: https://github.com/ggml-org/llama.cpp/discussions/9268)
|
||||
- Use the [Inference Endpoints](https://ui.endpoints.huggingface.co/) to directly host `llama.cpp` in the cloud (more info: https://github.com/ggml-org/llama.cpp/discussions/9669)
|
||||
|
||||
To learn more about model quantization, [read this documentation](examples/quantize/README.md)
|
||||
To learn more about model quantization, [read this documentation](tools/quantize/README.md)
|
||||
|
||||
## [`llama-cli`](examples/main)
|
||||
## [`llama-cli`](tools/main)
|
||||
|
||||
#### A CLI tool for accessing and experimenting with most of `llama.cpp`'s functionality.
|
||||
|
||||
@@ -341,7 +341,7 @@ To learn more about model quantization, [read this documentation](examples/quant
|
||||
</details>
|
||||
|
||||
|
||||
## [`llama-server`](examples/server)
|
||||
## [`llama-server`](tools/server)
|
||||
|
||||
#### A lightweight, [OpenAI API](https://github.com/openai/openai-openapi) compatible, HTTP server for serving LLMs.
|
||||
|
||||
@@ -411,7 +411,7 @@ To learn more about model quantization, [read this documentation](examples/quant
|
||||
</details>
|
||||
|
||||
|
||||
## [`llama-perplexity`](examples/perplexity)
|
||||
## [`llama-perplexity`](tools/perplexity)
|
||||
|
||||
#### A tool for measuring the perplexity [^1][^2] (and other quality metrics) of a model over a given text.
|
||||
|
||||
@@ -436,10 +436,10 @@ To learn more about model quantization, [read this documentation](examples/quant
|
||||
|
||||
</details>
|
||||
|
||||
[^1]: [examples/perplexity/README.md](./examples/perplexity/README.md)
|
||||
[^1]: [tools/perplexity/README.md](./tools/perplexity/README.md)
|
||||
[^2]: [https://huggingface.co/docs/transformers/perplexity](https://huggingface.co/docs/transformers/perplexity)
|
||||
|
||||
## [`llama-bench`](examples/llama-bench)
|
||||
## [`llama-bench`](tools/llama-bench)
|
||||
|
||||
#### Benchmark the performance of the inference for various parameters.
|
||||
|
||||
@@ -460,7 +460,7 @@ To learn more about model quantization, [read this documentation](examples/quant
|
||||
|
||||
</details>
|
||||
|
||||
## [`llama-run`](examples/run)
|
||||
## [`llama-run`](tools/run)
|
||||
|
||||
#### A comprehensive example for running `llama.cpp` models. Useful for inferencing. Used with RamaLama [^3].
|
||||
|
||||
@@ -504,8 +504,8 @@ To learn more about model quantization, [read this documentation](examples/quant
|
||||
|
||||
## Other documentation
|
||||
|
||||
- [main (cli)](examples/main/README.md)
|
||||
- [server](examples/server/README.md)
|
||||
- [main (cli)](tools/main/README.md)
|
||||
- [server](tools/server/README.md)
|
||||
- [GBNF grammars](grammars/README.md)
|
||||
|
||||
#### Development documentation
|
||||
|
||||
@@ -40,7 +40,7 @@ To protect sensitive data from potential leaks or unauthorized access, it is cru
|
||||
### Untrusted environments or networks
|
||||
|
||||
If you can't run your models in a secure and isolated environment or if it must be exposed to an untrusted network, make sure to take the following security precautions:
|
||||
* Do not use the RPC backend, [rpc-server](https://github.com/ggml-org/llama.cpp/tree/master/examples/rpc) and [llama-server](https://github.com/ggml-org/llama.cpp/tree/master/examples/server) functionality (see https://github.com/ggml-org/llama.cpp/pull/13061).
|
||||
* Do not use the RPC backend, [rpc-server](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) and [llama-server](https://github.com/ggml-org/llama.cpp/tree/master/tools/server) functionality (see https://github.com/ggml-org/llama.cpp/pull/13061).
|
||||
* Confirm the hash of any downloaded artifact (e.g. pre-trained model weights) matches a known-good value.
|
||||
* Encrypt your data if sending it over the network.
|
||||
|
||||
|
||||
@@ -8,6 +8,7 @@ TVOS_MIN_OS_VERSION=16.4
|
||||
|
||||
BUILD_SHARED_LIBS=OFF
|
||||
LLAMA_BUILD_EXAMPLES=OFF
|
||||
LLAMA_BUILD_TOOLS=OFF
|
||||
LLAMA_BUILD_TESTS=OFF
|
||||
LLAMA_BUILD_SERVER=OFF
|
||||
GGML_METAL=ON
|
||||
@@ -31,6 +32,7 @@ COMMON_CMAKE_ARGS=(
|
||||
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
|
||||
-DBUILD_SHARED_LIBS=${BUILD_SHARED_LIBS}
|
||||
-DLLAMA_BUILD_EXAMPLES=${LLAMA_BUILD_EXAMPLES}
|
||||
-DLLAMA_BUILD_TOOLS=${LLAMA_BUILD_TOOLS}
|
||||
-DLLAMA_BUILD_TESTS=${LLAMA_BUILD_TESTS}
|
||||
-DLLAMA_BUILD_SERVER=${LLAMA_BUILD_SERVER}
|
||||
-DGGML_METAL_EMBED_LIBRARY=${GGML_METAL_EMBED_LIBRARY}
|
||||
|
||||
@@ -187,8 +187,8 @@ function gg_run_test_scripts_debug {
|
||||
|
||||
set -e
|
||||
|
||||
(cd ./examples/gguf-split && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
(cd ./examples/quantize && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
(cd ./tools/gguf-split && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
(cd ./tools/quantize && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
|
||||
set +e
|
||||
}
|
||||
@@ -211,8 +211,8 @@ function gg_run_test_scripts_release {
|
||||
|
||||
set -e
|
||||
|
||||
(cd ./examples/gguf-split && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
(cd ./examples/quantize && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
(cd ./tools/gguf-split && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
(cd ./tools/quantize && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
|
||||
set +e
|
||||
}
|
||||
|
||||
@@ -1,6 +0,0 @@
|
||||
set( CMAKE_SYSTEM_NAME Windows )
|
||||
set( CMAKE_SYSTEM_PROCESSOR arm64 )
|
||||
|
||||
set( target arm64-pc-windows-msvc )
|
||||
set( CMAKE_C_COMPILER_TARGET ${target} )
|
||||
set( CMAKE_CXX_COMPILER_TARGET ${target} )
|
||||
@@ -41,14 +41,20 @@ endif()
|
||||
|
||||
if(MSVC)
|
||||
set(BUILD_COMPILER "${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
|
||||
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
|
||||
if (CMAKE_VS_PLATFORM_NAME)
|
||||
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
|
||||
else()
|
||||
set(BUILD_TARGET "${CMAKE_SYSTEM_NAME} ${CMAKE_SYSTEM_PROCESSOR}")
|
||||
endif()
|
||||
else()
|
||||
execute_process(
|
||||
COMMAND sh -c "\"$@\" --version | head -1" _ ${CMAKE_C_COMPILER}
|
||||
COMMAND ${CMAKE_C_COMPILER} --version
|
||||
OUTPUT_VARIABLE OUT
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
)
|
||||
string(REGEX REPLACE " *\n.*" "" OUT "${OUT}")
|
||||
set(BUILD_COMPILER ${OUT})
|
||||
|
||||
execute_process(
|
||||
COMMAND ${CMAKE_C_COMPILER} -dumpmachine
|
||||
OUTPUT_VARIABLE OUT
|
||||
|
||||
@@ -3,9 +3,3 @@ set( CMAKE_SYSTEM_PROCESSOR x86_64 )
|
||||
|
||||
set( CMAKE_C_COMPILER clang )
|
||||
set( CMAKE_CXX_COMPILER clang++ )
|
||||
|
||||
set( arch_c_flags "-march=native" )
|
||||
|
||||
set( CMAKE_C_FLAGS_INIT "${arch_c_flags}" )
|
||||
set( CMAKE_CXX_FLAGS_INIT "${arch_c_flags}" )
|
||||
|
||||
|
||||
@@ -39,7 +39,9 @@ add_custom_command(
|
||||
COMMENT "Generating build details from Git"
|
||||
COMMAND ${CMAKE_COMMAND} -DMSVC=${MSVC} -DCMAKE_C_COMPILER_VERSION=${CMAKE_C_COMPILER_VERSION}
|
||||
-DCMAKE_C_COMPILER_ID=${CMAKE_C_COMPILER_ID} -DCMAKE_VS_PLATFORM_NAME=${CMAKE_VS_PLATFORM_NAME}
|
||||
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} -P "${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info-gen-cpp.cmake"
|
||||
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
|
||||
-DCMAKE_SYSTEM_NAME=${CMAKE_SYSTEM_NAME} -DCMAKE_SYSTEM_PROCESSOR=${CMAKE_SYSTEM_PROCESSOR}
|
||||
-P "${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info-gen-cpp.cmake"
|
||||
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}/.."
|
||||
DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/build-info.cpp.in" ${GIT_INDEX}
|
||||
VERBATIM
|
||||
|
||||
@@ -217,13 +217,11 @@ struct curl_slist_ptr {
|
||||
#define CURL_MAX_RETRY 3
|
||||
#define CURL_RETRY_DELAY_SECONDS 2
|
||||
|
||||
static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds) {
|
||||
static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds, const char * method_name) {
|
||||
int remaining_attempts = max_attempts;
|
||||
char * method = nullptr;
|
||||
curl_easy_getinfo(curl, CURLINFO_EFFECTIVE_METHOD, &method);
|
||||
|
||||
while (remaining_attempts > 0) {
|
||||
LOG_INF("%s: %s %s (attempt %d of %d)...\n", __func__ , method, url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
|
||||
LOG_INF("%s: %s %s (attempt %d of %d)...\n", __func__ , method_name, url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
|
||||
|
||||
CURLcode res = curl_easy_perform(curl);
|
||||
if (res == CURLE_OK) {
|
||||
@@ -343,7 +341,7 @@ static bool common_download_file_single(const std::string & url, const std::stri
|
||||
|
||||
// we only allow retrying once for HEAD requests
|
||||
// this is for the use case of using running offline (no internet), retrying can be annoying
|
||||
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), 1, 0);
|
||||
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), 1, 0, "HEAD");
|
||||
if (!was_perform_successful) {
|
||||
head_request_ok = false;
|
||||
}
|
||||
@@ -425,7 +423,7 @@ static bool common_download_file_single(const std::string & url, const std::stri
|
||||
// start the download
|
||||
LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
|
||||
llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
|
||||
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
|
||||
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS, "GET");
|
||||
if (!was_perform_successful) {
|
||||
return false;
|
||||
}
|
||||
@@ -1285,7 +1283,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params) {
|
||||
params.use_color = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
|
||||
add_opt(common_arg(
|
||||
{"-t", "--threads"}, "N",
|
||||
string_format("number of threads to use during generation (default: %d)", params.cpuparams.n_threads),
|
||||
@@ -1418,7 +1416,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
add_opt(common_arg(
|
||||
{"-n", "--predict", "--n-predict"}, "N",
|
||||
string_format(
|
||||
ex == LLAMA_EXAMPLE_MAIN || ex == LLAMA_EXAMPLE_INFILL
|
||||
ex == LLAMA_EXAMPLE_MAIN
|
||||
? "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)"
|
||||
: "number of tokens to predict (default: %d, -1 = infinity)",
|
||||
params.n_predict),
|
||||
@@ -1657,7 +1655,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.input_prefix = value;
|
||||
params.enable_chat_template = false;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN}));
|
||||
add_opt(common_arg(
|
||||
{"--in-suffix"}, "STRING",
|
||||
"string to suffix after user inputs with (default: empty)",
|
||||
@@ -1665,7 +1663,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.input_suffix = value;
|
||||
params.enable_chat_template = false;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN}));
|
||||
add_opt(common_arg(
|
||||
{"--no-warmup"},
|
||||
"skip warming up the model with an empty run",
|
||||
@@ -1682,7 +1680,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params) {
|
||||
params.spm_infill = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_INFILL}));
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"--samplers"}, "SAMPLERS",
|
||||
string_format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()),
|
||||
@@ -2213,14 +2211,14 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONT_BATCHING"));
|
||||
add_opt(common_arg(
|
||||
{"--mmproj"}, "FILE",
|
||||
"path to a multimodal projector file. see examples/llava/README.md",
|
||||
"path to a multimodal projector file. see tools/mtmd/README.md",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.mmproj.path = value;
|
||||
}
|
||||
).set_examples(mmproj_examples));
|
||||
add_opt(common_arg(
|
||||
{"--mmproj-url"}, "URL",
|
||||
"URL to a multimodal projector file. see examples/llava/README.md",
|
||||
"URL to a multimodal projector file. see tools/mtmd/README.md",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.mmproj.url = value;
|
||||
}
|
||||
@@ -2785,7 +2783,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_THREADS_HTTP"));
|
||||
add_opt(common_arg(
|
||||
{"--cache-reuse"}, "N",
|
||||
string_format("min chunk size to attempt reusing from the cache via KV shifting (default: %d)", params.n_cache_reuse),
|
||||
string_format(
|
||||
"min chunk size to attempt reusing from the cache via KV shifting (default: %d)\n"
|
||||
"[(card)](https://ggml.ai/f0.png)", params.n_cache_reuse
|
||||
),
|
||||
[](common_params & params, int value) {
|
||||
params.n_cache_reuse = value;
|
||||
}
|
||||
@@ -2891,7 +2892,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params) {
|
||||
params.simple_io = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN}));
|
||||
add_opt(common_arg(
|
||||
{"--positive-file"}, "FNAME",
|
||||
string_format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()),
|
||||
|
||||
@@ -66,7 +66,6 @@ enum llama_example {
|
||||
LLAMA_EXAMPLE_COMMON,
|
||||
LLAMA_EXAMPLE_SPECULATIVE,
|
||||
LLAMA_EXAMPLE_MAIN,
|
||||
LLAMA_EXAMPLE_INFILL,
|
||||
LLAMA_EXAMPLE_EMBEDDING,
|
||||
LLAMA_EXAMPLE_PERPLEXITY,
|
||||
LLAMA_EXAMPLE_RETRIEVAL,
|
||||
@@ -96,6 +95,7 @@ enum common_sampler_type {
|
||||
COMMON_SAMPLER_TYPE_XTC = 8,
|
||||
COMMON_SAMPLER_TYPE_INFILL = 9,
|
||||
COMMON_SAMPLER_TYPE_PENALTIES = 10,
|
||||
COMMON_SAMPLER_TYPE_TOP_N_SIGMA = 11,
|
||||
};
|
||||
|
||||
// dimensionality reduction methods, used by cvector-generator
|
||||
@@ -161,6 +161,7 @@ struct common_params_sampling {
|
||||
std::vector<enum common_sampler_type> samplers = {
|
||||
COMMON_SAMPLER_TYPE_PENALTIES,
|
||||
COMMON_SAMPLER_TYPE_DRY,
|
||||
COMMON_SAMPLER_TYPE_TOP_N_SIGMA,
|
||||
COMMON_SAMPLER_TYPE_TOP_K,
|
||||
COMMON_SAMPLER_TYPE_TYPICAL_P,
|
||||
COMMON_SAMPLER_TYPE_TOP_P,
|
||||
@@ -340,7 +341,7 @@ struct common_params {
|
||||
|
||||
common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
|
||||
|
||||
// multimodal models (see examples/llava)
|
||||
// multimodal models (see tools/mtmd)
|
||||
struct common_params_model mmproj;
|
||||
bool mmproj_use_gpu = true; // use GPU for multimodal model
|
||||
bool no_mmproj = false; // explicitly disable multimodal model
|
||||
@@ -414,8 +415,8 @@ struct common_params {
|
||||
int n_pca_batch = 100;
|
||||
int n_pca_iterations = 1000;
|
||||
dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
|
||||
std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
|
||||
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
|
||||
std::string cvector_positive_file = "tools/cvector-generator/positive.txt";
|
||||
std::string cvector_negative_file = "tools/cvector-generator/negative.txt";
|
||||
|
||||
bool spm_infill = false; // suffix/prefix/middle pattern for infill
|
||||
|
||||
|
||||
@@ -229,51 +229,48 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
||||
params.logit_bias.data()));
|
||||
|
||||
if (params.mirostat == 0) {
|
||||
if (params.top_n_sigma >= 0) {
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp (params.temp));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
|
||||
} else {
|
||||
for (const auto & cnstr : params.samplers) {
|
||||
switch (cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_DRY:
|
||||
{
|
||||
std::vector<const char *> c_breakers;
|
||||
c_breakers.reserve(params.dry_sequence_breakers.size());
|
||||
for (const auto & str : params.dry_sequence_breakers) {
|
||||
c_breakers.push_back(str.c_str());
|
||||
}
|
||||
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
|
||||
for (const auto & cnstr : params.samplers) {
|
||||
switch (cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_DRY:
|
||||
{
|
||||
std::vector<const char *> c_breakers;
|
||||
c_breakers.reserve(params.dry_sequence_breakers.size());
|
||||
for (const auto & str : params.dry_sequence_breakers) {
|
||||
c_breakers.push_back(str.c_str());
|
||||
}
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_K:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_MIN_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_XTC:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_INFILL:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_PENALTIES:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false && "unknown sampler type");
|
||||
}
|
||||
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
|
||||
}
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_K:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_MIN_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_XTC:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_INFILL:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_PENALTIES:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties (params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false && "unknown sampler type");
|
||||
}
|
||||
}
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
|
||||
@@ -475,6 +472,7 @@ char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_TOP_K: return 'k';
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P: return 'y';
|
||||
case COMMON_SAMPLER_TYPE_TOP_P: return 'p';
|
||||
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return 's';
|
||||
case COMMON_SAMPLER_TYPE_MIN_P: return 'm';
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
|
||||
case COMMON_SAMPLER_TYPE_XTC: return 'x';
|
||||
@@ -490,6 +488,7 @@ std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_TOP_K: return "top_k";
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
|
||||
case COMMON_SAMPLER_TYPE_TOP_P: return "top_p";
|
||||
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return "top_n_sigma";
|
||||
case COMMON_SAMPLER_TYPE_MIN_P: return "min_p";
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
|
||||
case COMMON_SAMPLER_TYPE_XTC: return "xtc";
|
||||
@@ -504,6 +503,7 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
|
||||
{ "dry", COMMON_SAMPLER_TYPE_DRY },
|
||||
{ "top_k", COMMON_SAMPLER_TYPE_TOP_K },
|
||||
{ "top_p", COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ "top_n_sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
|
||||
{ "typ_p", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "min_p", COMMON_SAMPLER_TYPE_MIN_P },
|
||||
{ "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
|
||||
@@ -517,6 +517,7 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
|
||||
std::unordered_map<std::string, common_sampler_type> sampler_alt_name_map {
|
||||
{ "top-k", COMMON_SAMPLER_TYPE_TOP_K },
|
||||
{ "top-p", COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ "top-n-sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
|
||||
{ "nucleus", COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ "typical-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typical", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
@@ -552,6 +553,7 @@ std::vector<common_sampler_type> common_sampler_types_from_chars(const std::stri
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K), COMMON_SAMPLER_TYPE_TOP_K },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P), COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P), COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_N_SIGMA), COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P), COMMON_SAMPLER_TYPE_MIN_P },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC), COMMON_SAMPLER_TYPE_XTC },
|
||||
|
||||
@@ -419,7 +419,9 @@ class ModelBase:
|
||||
@staticmethod
|
||||
def load_hparams(dir_model: Path):
|
||||
try:
|
||||
return AutoConfig.from_pretrained(dir_model).to_dict()
|
||||
# for security reason, we don't allow loading remote code by default
|
||||
# if a model need remote code, we will fallback to config.json
|
||||
return AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to load model config from {dir_model}: {e}")
|
||||
logger.warning("Trying to load config.json instead")
|
||||
@@ -453,8 +455,12 @@ class ModelBase:
|
||||
|
||||
|
||||
class TextModel(ModelBase):
|
||||
model_type = ModelType.TEXT
|
||||
hf_arch: str
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.hf_arch = get_model_architecture(self.hparams, self.model_type)
|
||||
|
||||
if "text_config" in self.hparams:
|
||||
# move the text_config to the root level
|
||||
@@ -504,7 +510,7 @@ class TextModel(ModelBase):
|
||||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
|
||||
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
|
||||
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions"], optional=True)) is not None:
|
||||
self.gguf_writer.add_context_length(n_ctx)
|
||||
logger.info(f"gguf: context length = {n_ctx}")
|
||||
|
||||
@@ -1073,10 +1079,36 @@ class TextModel(ModelBase):
|
||||
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
|
||||
self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
|
||||
|
||||
def _try_set_pooling_type(self) -> None:
|
||||
# get pooling path
|
||||
pooling_path = None
|
||||
module_path = self.dir_model / "modules.json"
|
||||
if module_path.is_file():
|
||||
with open(module_path, encoding="utf-8") as f:
|
||||
modules = json.load(f)
|
||||
for mod in modules:
|
||||
if mod["type"] == "sentence_transformers.models.Pooling":
|
||||
pooling_path = mod["path"]
|
||||
break
|
||||
|
||||
# get pooling type
|
||||
if pooling_path is not None:
|
||||
with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
|
||||
pooling = json.load(f)
|
||||
if pooling["pooling_mode_mean_tokens"]:
|
||||
pooling_type = gguf.PoolingType.MEAN
|
||||
elif pooling["pooling_mode_cls_token"]:
|
||||
pooling_type = gguf.PoolingType.CLS
|
||||
elif pooling["pooling_mode_lasttoken"]:
|
||||
pooling_type = gguf.PoolingType.LAST
|
||||
else:
|
||||
raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
|
||||
self.gguf_writer.add_pooling_type(pooling_type)
|
||||
|
||||
|
||||
class VisionModel(ModelBase):
|
||||
model_type = ModelType.VISION
|
||||
model_arch = gguf.MODEL_ARCH.CLIP_VISION
|
||||
n_text_embd = 0
|
||||
preprocessor_config: dict[str, Any]
|
||||
global_config: dict[str, Any]
|
||||
|
||||
@@ -1087,6 +1119,8 @@ class VisionModel(ModelBase):
|
||||
raise TypeError("VisionModel must be subclassed with model_arch = gguf.MODEL_ARCH.CLIP_VISION")
|
||||
|
||||
# get n_embd of the text model
|
||||
if "text_config" not in self.hparams:
|
||||
self.hparams["text_config"] = {}
|
||||
text_config = {**self.hparams, **self.hparams["text_config"]}
|
||||
self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
|
||||
assert self.n_embd_text > 0, "n_embd not found in hparams"
|
||||
@@ -1744,6 +1778,12 @@ class LlamaModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
undo_permute = True
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
# fix for SmolVLM2, missing `num_attention_heads` in config.json
|
||||
if self.hf_arch == "VLlama3ForCausalLM":
|
||||
self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
|
||||
|
||||
def set_vocab(self):
|
||||
try:
|
||||
self._set_vocab_sentencepiece()
|
||||
@@ -1899,7 +1939,10 @@ class LlamaModel(TextModel):
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@ModelBase.register("LlavaForConditionalGeneration")
|
||||
@ModelBase.register(
|
||||
"LlavaForConditionalGeneration", # pixtral
|
||||
"Mistral3ForConditionalGeneration", # mistral small 3.1
|
||||
)
|
||||
class LlavaVisionModel(VisionModel):
|
||||
img_break_tok_id = -1
|
||||
|
||||
@@ -1908,17 +1951,38 @@ class LlavaVisionModel(VisionModel):
|
||||
if self.hparams["model_type"] == "pixtral":
|
||||
# layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
|
||||
self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
|
||||
self.img_break_tok_id = 12 # see tokenizer_config.json
|
||||
self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
|
||||
logger.info(f"Image break token id: {self.img_break_tok_id}")
|
||||
else:
|
||||
raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
|
||||
|
||||
def get_token_id(self, token: str) -> int:
|
||||
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
|
||||
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
|
||||
added_tokens_decoder = json.load(f)['added_tokens_decoder']
|
||||
for id_, token_data in added_tokens_decoder.items():
|
||||
if token_data["content"] == token:
|
||||
return int(id_)
|
||||
raise ValueError(f"Token '{token}' not found in tokenizer config.")
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
if hparams["model_type"] == "pixtral":
|
||||
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.PIXTRAL)
|
||||
self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
|
||||
self.gguf_writer.add_vision_use_silu(True)
|
||||
|
||||
# hidden_act
|
||||
if hparams["hidden_act"] == "silu":
|
||||
self.gguf_writer.add_vision_use_silu(True)
|
||||
elif hparams["hidden_act"] == "gelu":
|
||||
self.gguf_writer.add_vision_use_gelu(True)
|
||||
else:
|
||||
raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
|
||||
|
||||
# spatial_merge_size
|
||||
if "spatial_merge_size" in self.global_config:
|
||||
self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
@@ -2065,6 +2129,9 @@ class DeciModel(TextModel):
|
||||
# if n_heads_in_group is not None, then
|
||||
# _num_kv_heads[il] is num_attention_head // n_heads_in_group and
|
||||
# _num_heads[il] is num_attention_head
|
||||
# ***dummy layer*** for nemotron 253B
|
||||
# if n_heads_in_group is None and ffn_mult is None
|
||||
# then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
|
||||
for il in range(len(_block_configs)):
|
||||
if _block_configs[il]["attention"]["n_heads_in_group"] is None:
|
||||
if _block_configs[il]["attention"]["replace_with_linear"] is True:
|
||||
@@ -2076,7 +2143,10 @@ class DeciModel(TextModel):
|
||||
else:
|
||||
self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
|
||||
self._num_heads.append(self.hparams["num_attention_heads"])
|
||||
_ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
|
||||
if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
|
||||
_ffn_multipliers.append(0.0)
|
||||
else:
|
||||
_ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
|
||||
assert self.block_count == len(self._num_kv_heads)
|
||||
assert self.block_count == len(self._num_heads)
|
||||
assert self.block_count == len(_ffn_multipliers)
|
||||
@@ -2514,7 +2584,7 @@ class QwenModel(TextModel):
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
|
||||
@ModelBase.register("Qwen2ForCausalLM")
|
||||
@ModelBase.register("Qwen2Model", "Qwen2ForCausalLM")
|
||||
class Qwen2Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN2
|
||||
|
||||
@@ -2526,12 +2596,18 @@ class Qwen2Model(TextModel):
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self._try_set_pooling_type()
|
||||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||||
if self.hparams["rope_scaling"].get("type") == "yarn":
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
if self.hf_arch == "Qwen2Model":
|
||||
name = f"model.{name}" # map to Qwen2ForCausalLM tensors
|
||||
yield from super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
|
||||
class Qwen2VLModel(TextModel):
|
||||
@@ -2557,6 +2633,82 @@ class Qwen2VLModel(TextModel):
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
|
||||
class Qwen2VLVisionModel(VisionModel):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.hparams["image_size"] = self.hparams.get("image_size", 560)
|
||||
# rename config.json values
|
||||
self.hparams["num_attention_heads"] = self.hparams.get("num_heads")
|
||||
self.hparams["num_hidden_layers"] = self.hparams.get("depth")
|
||||
if "embed_dim" in self.hparams: # qwen2vl
|
||||
self.hparams["intermediate_size"] = self.hparams.get("hidden_size")
|
||||
self.hparams["hidden_size"] = self.hparams.get("embed_dim")
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
if self.global_config['model_type'] == 'qwen2_vl':
|
||||
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.QWEN2VL)
|
||||
elif self.global_config['model_type'] == 'qwen2_5_vl':
|
||||
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.QWEN25VL)
|
||||
self.gguf_writer.add_vision_use_silu(True)
|
||||
# find n_wa_pattern (window attention pattern)
|
||||
fullatt_block_indexes = hparams.get("fullatt_block_indexes")
|
||||
assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
|
||||
n_wa_pattern = fullatt_block_indexes[0] + 1
|
||||
# validate n_wa_pattern
|
||||
for i in range(1, len(fullatt_block_indexes)):
|
||||
if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
|
||||
raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
|
||||
self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
|
||||
else:
|
||||
raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
|
||||
# default values below are taken from HF tranformers code
|
||||
self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
|
||||
|
||||
def tensor_force_quant(self, name, new_name, bid, n_dims):
|
||||
del bid, name, n_dims # unused
|
||||
if ".patch_embd." in new_name:
|
||||
return gguf.GGMLQuantizationType.F16
|
||||
if ".position_embd." in new_name:
|
||||
return gguf.GGMLQuantizationType.F32
|
||||
return False
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
if name.startswith("visual."):
|
||||
# process visual tensors
|
||||
# split QKV tensors if needed
|
||||
if ".qkv." in name:
|
||||
if data_torch.ndim == 2: # weight
|
||||
c3, _ = data_torch.shape
|
||||
else: # bias
|
||||
c3 = data_torch.shape[0]
|
||||
assert c3 % 3 == 0
|
||||
c = c3 // 3
|
||||
wq = data_torch[:c]
|
||||
wk = data_torch[c: c * 2]
|
||||
wv = data_torch[c * 2:]
|
||||
return [
|
||||
(self.map_tensor_name(name.replace("qkv", "q")), wq),
|
||||
(self.map_tensor_name(name.replace("qkv", "k")), wk),
|
||||
(self.map_tensor_name(name.replace("qkv", "v")), wv),
|
||||
]
|
||||
elif 'patch_embed.proj.weight' in name:
|
||||
# split Conv3D into Conv2Ds
|
||||
c1, c2, kt, kh, kw = data_torch.shape
|
||||
del c1, c2, kh, kw # unused
|
||||
assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
|
||||
return [
|
||||
(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
|
||||
(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
|
||||
]
|
||||
else:
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
return [] # skip other tensors
|
||||
|
||||
|
||||
@ModelBase.register("WavTokenizerDec")
|
||||
class WavTokenizerDecModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
|
||||
@@ -2609,6 +2761,13 @@ class Qwen2MoeModel(TextModel):
|
||||
if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
|
||||
self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
|
||||
logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
|
||||
# YaRN is not enabled by default
|
||||
# To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
|
||||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||||
if self.hparams["rope_scaling"].get("type") == "yarn":
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
|
||||
|
||||
_experts: list[dict[str, Tensor]] | None = None
|
||||
|
||||
@@ -3292,29 +3451,7 @@ class BertModel(TextModel):
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_causal_attention(False)
|
||||
|
||||
# get pooling path
|
||||
pooling_path = None
|
||||
module_path = self.dir_model / "modules.json"
|
||||
if module_path.is_file():
|
||||
with open(module_path, encoding="utf-8") as f:
|
||||
modules = json.load(f)
|
||||
for mod in modules:
|
||||
if mod["type"] == "sentence_transformers.models.Pooling":
|
||||
pooling_path = mod["path"]
|
||||
break
|
||||
|
||||
# get pooling type
|
||||
if pooling_path is not None:
|
||||
with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
|
||||
pooling = json.load(f)
|
||||
if pooling["pooling_mode_mean_tokens"]:
|
||||
pooling_type = gguf.PoolingType.MEAN
|
||||
elif pooling["pooling_mode_cls_token"]:
|
||||
pooling_type = gguf.PoolingType.CLS
|
||||
else:
|
||||
raise NotImplementedError("Only MEAN and CLS pooling types supported")
|
||||
self.gguf_writer.add_pooling_type(pooling_type)
|
||||
self._try_set_pooling_type()
|
||||
|
||||
def set_vocab(self):
|
||||
tokens, toktypes, tokpre = self.get_vocab_base()
|
||||
@@ -3523,8 +3660,13 @@ class NomicBertModel(BertModel):
|
||||
if self._tokenizer_is_xlmroberta:
|
||||
self._xlmroberta_tokenizer_init()
|
||||
|
||||
# the HF config claims n_ctx=8192, but it uses RoPE scaling
|
||||
self.hparams["n_ctx"] = 2048
|
||||
npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
|
||||
if npos == 8192 and mtp == 2048:
|
||||
self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
|
||||
elif npos == 2048 and mtp == 2048:
|
||||
self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
|
||||
else:
|
||||
raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
|
||||
|
||||
assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
|
||||
|
||||
@@ -3773,6 +3915,16 @@ class Gemma3VisionModel(VisionModel):
|
||||
# default values below are taken from HF tranformers code
|
||||
self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
|
||||
self.gguf_writer.add_vision_use_gelu(True)
|
||||
# calculate proj_scale_factor (used by tinygemma3 test model)
|
||||
image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
|
||||
n_per_side = int(image_seq_length ** 0.5)
|
||||
image_size = self.hparams["image_size"]
|
||||
patch_size = self.hparams["patch_size"]
|
||||
proj_scale_factor = (image_size // patch_size) // n_per_side
|
||||
if proj_scale_factor > 0 and proj_scale_factor != 4:
|
||||
# we only need to write this if it's not the default value
|
||||
# in this case, we are converting a test model
|
||||
self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
|
||||
|
||||
def tensor_force_quant(self, name, new_name, bid, n_dims):
|
||||
del bid, new_name, n_dims # unused
|
||||
@@ -3786,6 +3938,9 @@ class Gemma3VisionModel(VisionModel):
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
|
||||
if "vision_model.head." in name:
|
||||
return [] # skip redundant tensors for tinygemma3
|
||||
|
||||
if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
|
||||
or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
|
||||
# process vision tensors
|
||||
@@ -5551,7 +5706,12 @@ class BailingMoeModel(TextModel):
|
||||
rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
|
||||
if (self.hparams.get("rope_scaling") or {}).get("type") == "yarn" and "factor" in self.hparams["rope_scaling"]:
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
|
||||
else:
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
|
||||
self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
|
||||
@@ -5853,8 +6013,7 @@ def split_str_to_n_bytes(split_str: str) -> int:
|
||||
return n
|
||||
|
||||
|
||||
def get_model_architecture(dir_model: Path, model_type: ModelType, hparams: Any = None) -> str:
|
||||
hparams = ModelBase.load_hparams(dir_model) if hparams is None else hparams
|
||||
def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
|
||||
text_config = hparams.get("text_config", {})
|
||||
vision_config = hparams.get("vision_config", {})
|
||||
arch = hparams["architectures"][0]
|
||||
@@ -5925,7 +6084,8 @@ def main() -> None:
|
||||
with torch.inference_mode():
|
||||
output_type = ftype_map[args.outtype]
|
||||
model_type = ModelType.VISION if args.mmproj else ModelType.TEXT
|
||||
model_architecture = get_model_architecture(dir_model, model_type)
|
||||
hparams = ModelBase.load_hparams(dir_model)
|
||||
model_architecture = get_model_architecture(hparams, model_type)
|
||||
logger.info(f"Model architecture: {model_architecture}")
|
||||
try:
|
||||
model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
|
||||
|
||||
@@ -9,10 +9,10 @@ Adding a model requires few steps:
|
||||
After following these steps, you can open PR.
|
||||
|
||||
Also, it is important to check that the examples and main ggml backends (CUDA, METAL, CPU) are working with the new architecture, especially:
|
||||
- [main](/examples/main/)
|
||||
- [imatrix](/examples/imatrix/)
|
||||
- [quantize](/examples/quantize/)
|
||||
- [server](/examples/server/)
|
||||
- [main](/tools/main/)
|
||||
- [imatrix](/tools/imatrix/)
|
||||
- [quantize](/tools/quantize/)
|
||||
- [server](/tools/server/)
|
||||
|
||||
### 1. Convert the model to GGUF
|
||||
|
||||
|
||||
@@ -33,13 +33,13 @@ git clone https://huggingface.co/openai/clip-vit-large-patch14-336
|
||||
2. Use `llava_surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/llava_surgery.py -m path/to/MobileVLM-1.7B
|
||||
python ./tools/mtmd/llava_surgery.py -m path/to/MobileVLM-1.7B
|
||||
```
|
||||
|
||||
3. Use `convert_image_encoder_to_gguf.py` with `--projector-type ldp` (for **V2** please use `--projector-type ldpv2`) to convert the LLaVA image encoder to GGUF:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/convert_image_encoder_to_gguf.py \
|
||||
python ./tools/mtmd/convert_image_encoder_to_gguf.py \
|
||||
-m path/to/clip-vit-large-patch14-336 \
|
||||
--llava-projector path/to/MobileVLM-1.7B/llava.projector \
|
||||
--output-dir path/to/MobileVLM-1.7B \
|
||||
@@ -47,7 +47,7 @@ python ./examples/llava/convert_image_encoder_to_gguf.py \
|
||||
```
|
||||
|
||||
```sh
|
||||
python ./examples/llava/convert_image_encoder_to_gguf.py \
|
||||
python ./tools/mtmd/convert_image_encoder_to_gguf.py \
|
||||
-m path/to/clip-vit-large-patch14-336 \
|
||||
--llava-projector path/to/MobileVLM-1.7B_V2/llava.projector \
|
||||
--output-dir path/to/MobileVLM-1.7B_V2 \
|
||||
@@ -69,10 +69,10 @@ Now both the LLaMA part and the image encoder is in the `MobileVLM-1.7B` directo
|
||||
|
||||
## Android compile and run
|
||||
### compile
|
||||
refer to `examples/llava/android/build_64.sh`
|
||||
refer to `tools/mtmd/android/build_64.sh`
|
||||
```sh
|
||||
mkdir examples/llava/android/build_64
|
||||
cd examples/llava/android/build_64
|
||||
mkdir tools/mtmd/android/build_64
|
||||
cd tools/mtmd/android/build_64
|
||||
../build_64.sh
|
||||
```
|
||||
### run on Android
|
||||
|
||||
@@ -25,13 +25,13 @@ git clone https://huggingface.co/THUDM/glm-edge-v-5b or https://huggingface.co/T
|
||||
2. Use `glmedge-surgery.py` to split the GLMV-EDGE model to LLM and multimodel projector constituents:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/glmedge-surgery.py -m ../model_path
|
||||
python ./tools/mtmd/glmedge-surgery.py -m ../model_path
|
||||
```
|
||||
|
||||
4. Use `glmedge-convert-image-encoder-to-gguf.py` to convert the GLMV-EDGE image encoder to GGUF:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/glmedge-convert-image-encoder-to-gguf.py -m ../model_path --llava-projector ../model_path/glm.projector --output-dir ../model_path
|
||||
python ./tools/mtmd/glmedge-convert-image-encoder-to-gguf.py -m ../model_path --llava-projector ../model_path/glm.projector --output-dir ../model_path
|
||||
```
|
||||
|
||||
5. Use `examples/convert_hf_to_gguf.py` to convert the LLM part of GLMV-EDGE to GGUF:
|
||||
|
||||
@@ -37,19 +37,19 @@ git clone https://huggingface.co/openai/clip-vit-large-patch14-336
|
||||
2. Install the required Python packages:
|
||||
|
||||
```sh
|
||||
pip install -r examples/llava/requirements.txt
|
||||
pip install -r tools/mtmd/requirements.txt
|
||||
```
|
||||
|
||||
3. Use `llava_surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/llava_surgery.py -m ../llava-v1.5-7b
|
||||
python ./tools/mtmd/llava_surgery.py -m ../llava-v1.5-7b
|
||||
```
|
||||
|
||||
4. Use `convert_image_encoder_to_gguf.py` to convert the LLaVA image encoder to GGUF:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/convert_image_encoder_to_gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
|
||||
python ./tools/mtmd/convert_image_encoder_to_gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
|
||||
```
|
||||
|
||||
5. Use `examples/convert_legacy_llama.py` to convert the LLaMA part of LLaVA to GGUF:
|
||||
@@ -69,12 +69,12 @@ git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
|
||||
2) Install the required Python packages:
|
||||
|
||||
```sh
|
||||
pip install -r examples/llava/requirements.txt
|
||||
pip install -r tools/mtmd/requirements.txt
|
||||
```
|
||||
|
||||
3) Use `llava_surgery_v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models:
|
||||
```console
|
||||
python examples/llava/llava_surgery_v2.py -C -m ../llava-v1.6-vicuna-7b/
|
||||
python tools/mtmd/llava_surgery_v2.py -C -m ../llava-v1.6-vicuna-7b/
|
||||
```
|
||||
- you will find a llava.projector and a llava.clip file in your model directory
|
||||
|
||||
@@ -88,7 +88,7 @@ curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.jso
|
||||
|
||||
5) Create the visual gguf model:
|
||||
```console
|
||||
python ./examples/llava/convert_image_encoder_to_gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
|
||||
python ./tools/mtmd/convert_image_encoder_to_gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
|
||||
```
|
||||
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP
|
||||
|
||||
|
||||
@@ -29,8 +29,8 @@ cmake --build build --config Release
|
||||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-o-2_6-gguf) by us)
|
||||
|
||||
```bash
|
||||
python ./examples/llava/minicpmv-surgery.py -m ../MiniCPM-o-2_6
|
||||
python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-o-2_6 --minicpmv-projector ../MiniCPM-o-2_6/minicpmv.projector --output-dir ../MiniCPM-o-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 4
|
||||
python ./tools/mtmd/minicpmv-surgery.py -m ../MiniCPM-o-2_6
|
||||
python ./tools/mtmd/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-o-2_6 --minicpmv-projector ../MiniCPM-o-2_6/minicpmv.projector --output-dir ../MiniCPM-o-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 4
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-o-2_6/model
|
||||
|
||||
# quantize int4 version
|
||||
|
||||
@@ -28,8 +28,8 @@ cmake --build build --config Release
|
||||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) by us)
|
||||
|
||||
```bash
|
||||
python ./examples/llava/minicpmv-surgery.py -m ../MiniCPM-Llama3-V-2_5
|
||||
python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-Llama3-V-2_5 --minicpmv-projector ../MiniCPM-Llama3-V-2_5/minicpmv.projector --output-dir ../MiniCPM-Llama3-V-2_5/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 2
|
||||
python ./tools/mtmd/minicpmv-surgery.py -m ../MiniCPM-Llama3-V-2_5
|
||||
python ./tools/mtmd/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-Llama3-V-2_5 --minicpmv-projector ../MiniCPM-Llama3-V-2_5/minicpmv.projector --output-dir ../MiniCPM-Llama3-V-2_5/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 2
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-Llama3-V-2_5/model
|
||||
|
||||
# quantize int4 version
|
||||
|
||||
@@ -28,8 +28,8 @@ cmake --build build --config Release
|
||||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf) by us)
|
||||
|
||||
```bash
|
||||
python ./examples/llava/minicpmv-surgery.py -m ../MiniCPM-V-2_6
|
||||
python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-V-2_6 --minicpmv-projector ../MiniCPM-V-2_6/minicpmv.projector --output-dir ../MiniCPM-V-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 3
|
||||
python ./tools/mtmd/minicpmv-surgery.py -m ../MiniCPM-V-2_6
|
||||
python ./tools/mtmd/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-V-2_6 --minicpmv-projector ../MiniCPM-V-2_6/minicpmv.projector --output-dir ../MiniCPM-V-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 3
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-V-2_6/model
|
||||
|
||||
# quantize int4 version
|
||||
|
||||
@@ -12,51 +12,29 @@ llama_add_compile_flags()
|
||||
|
||||
# examples
|
||||
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
|
||||
if (EMSCRIPTEN)
|
||||
else()
|
||||
add_subdirectory(batched-bench)
|
||||
add_subdirectory(batched)
|
||||
add_subdirectory(embedding)
|
||||
add_subdirectory(eval-callback)
|
||||
|
||||
add_subdirectory(gguf-hash)
|
||||
add_subdirectory(gguf-split)
|
||||
add_subdirectory(gguf)
|
||||
add_subdirectory(gritlm)
|
||||
add_subdirectory(imatrix)
|
||||
add_subdirectory(infill)
|
||||
add_subdirectory(llama-bench)
|
||||
add_subdirectory(lookahead)
|
||||
add_subdirectory(lookup)
|
||||
add_subdirectory(main)
|
||||
add_subdirectory(parallel)
|
||||
add_subdirectory(passkey)
|
||||
add_subdirectory(perplexity)
|
||||
add_subdirectory(quantize)
|
||||
add_subdirectory(retrieval)
|
||||
if (LLAMA_BUILD_SERVER)
|
||||
add_subdirectory(server)
|
||||
endif()
|
||||
add_subdirectory(save-load-state)
|
||||
add_subdirectory(run)
|
||||
add_subdirectory(simple)
|
||||
add_subdirectory(simple-chat)
|
||||
add_subdirectory(speculative)
|
||||
add_subdirectory(speculative-simple)
|
||||
add_subdirectory(tokenize)
|
||||
add_subdirectory(tts)
|
||||
add_subdirectory(gen-docs)
|
||||
if (NOT GGML_BACKEND_DL)
|
||||
# these examples use the backends directly and cannot be built with dynamic loading
|
||||
add_subdirectory(convert-llama2c-to-ggml)
|
||||
add_subdirectory(cvector-generator)
|
||||
add_subdirectory(export-lora)
|
||||
add_subdirectory(llava)
|
||||
if (GGML_RPC)
|
||||
add_subdirectory(rpc)
|
||||
endif()
|
||||
# these examples use the backends directly and cannot be built with dynamic loading
|
||||
if (GGML_SYCL)
|
||||
add_subdirectory(sycl)
|
||||
endif()
|
||||
|
||||
@@ -1,5 +0,0 @@
|
||||
set(TARGET llama-infill)
|
||||
add_executable(${TARGET} infill.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_17)
|
||||
@@ -1,47 +0,0 @@
|
||||
# llama.cpp/example/infill
|
||||
|
||||
This example shows how to use the infill mode with Code Llama models supporting infill mode.
|
||||
Currently the 7B and 13B models support infill mode.
|
||||
|
||||
Infill supports most of the options available in the main example.
|
||||
|
||||
For further information have a look at the main README.md in llama.cpp/example/main/README.md
|
||||
|
||||
## Common Options
|
||||
|
||||
In this section, we cover the most commonly used options for running the `infill` program with the LLaMA models:
|
||||
|
||||
- `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.bin`).
|
||||
- `-i, --interactive`: Run the program in interactive mode, allowing you to provide input directly and receive real-time responses.
|
||||
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text. Adjusting this value can influence the length of the generated text.
|
||||
- `-c N, --ctx-size N`: Set the size of the prompt context. The default is 4096, but if a LLaMA model was built with a longer context, increasing this value will provide better results for longer input/inference.
|
||||
- `--spm-infill`: Use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this.
|
||||
|
||||
## Input Prompts
|
||||
|
||||
The `infill` program provides several ways to interact with the LLaMA models using input prompts:
|
||||
|
||||
- `--in-prefix PROMPT_BEFORE_CURSOR`: Provide the prefix directly as a command-line option.
|
||||
- `--in-suffix PROMPT_AFTER_CURSOR`: Provide the suffix directly as a command-line option.
|
||||
- `--interactive-first`: Run the program in interactive mode and wait for input right away. (More on this below.)
|
||||
|
||||
## Interaction
|
||||
|
||||
The `infill` program offers a seamless way to interact with LLaMA models, allowing users to receive real-time infill suggestions. The interactive mode can be triggered using `--interactive`, and `--interactive-first`
|
||||
|
||||
### Interaction Options
|
||||
|
||||
- `-i, --interactive`: Run the program in interactive mode, allowing users to get real time code suggestions from model.
|
||||
- `--interactive-first`: Run the program in interactive mode and immediately wait for user input before starting the text generation.
|
||||
- `--color`: Enable colorized output to differentiate visually distinguishing between prompts, user input, and generated text.
|
||||
|
||||
### Example
|
||||
|
||||
Download a model that supports infill, for example CodeLlama:
|
||||
```console
|
||||
scripts/hf.sh --repo TheBloke/CodeLlama-13B-GGUF --file codellama-13b.Q5_K_S.gguf --outdir models
|
||||
```
|
||||
|
||||
```bash
|
||||
./llama-infill -t 10 -ngl 0 -m models/codellama-13b.Q5_K_S.gguf -c 4096 --temp 0.7 --repeat_penalty 1.1 -n 20 --in-prefix "def helloworld():\n print(\"hell" --in-suffix "\n print(\"goodbye world\")\n "
|
||||
```
|
||||
@@ -1,590 +0,0 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "console.h"
|
||||
#include "sampling.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cinttypes>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
||||
#include <signal.h>
|
||||
#include <unistd.h>
|
||||
#elif defined (_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
#define NOMINMAX
|
||||
#endif
|
||||
#include <windows.h>
|
||||
#include <signal.h>
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
static llama_context ** g_ctx;
|
||||
static llama_model ** g_model;
|
||||
static common_sampler ** g_smpl;
|
||||
static common_params * g_params;
|
||||
static std::vector<llama_token> * g_input_tokens;
|
||||
static std::ostringstream * g_output_ss;
|
||||
static std::vector<llama_token> * g_output_tokens;
|
||||
|
||||
static bool is_interacting = false;
|
||||
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
||||
static void sigint_handler(int signo) {
|
||||
if (signo == SIGINT) {
|
||||
if (!is_interacting) {
|
||||
is_interacting = true;
|
||||
} else {
|
||||
console::cleanup();
|
||||
LOG("\n");
|
||||
common_perf_print(*g_ctx, *g_smpl);
|
||||
|
||||
// make sure all logs are flushed
|
||||
LOG("Interrupted by user\n");
|
||||
common_log_pause(common_log_main());
|
||||
|
||||
_exit(130);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
g_params = ¶ms;
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_INFILL)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
common_init();
|
||||
|
||||
auto & sparams = params.sampling;
|
||||
|
||||
console::init(params.simple_io, params.use_color);
|
||||
atexit([]() { console::cleanup(); });
|
||||
|
||||
if (params.logits_all) {
|
||||
LOG_ERR("\n************\n");
|
||||
LOG_ERR("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
|
||||
LOG_ERR("************\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (params.embedding) {
|
||||
LOG_ERR("\n************\n");
|
||||
LOG_ERR("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
|
||||
LOG_ERR("************\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (params.n_ctx != 0 && params.n_ctx < 8) {
|
||||
LOG_WRN("%s: minimum context size is 8, using minimum size.\n", __func__);
|
||||
params.n_ctx = 8;
|
||||
}
|
||||
|
||||
if (!params.interactive_first && (params.input_prefix.empty() && params.input_suffix.empty())) {
|
||||
LOG_ERR("\n************\n");
|
||||
LOG_ERR("%s: please use '--interactive_first' or specify '--in_prefix' and/or '--in_suffix'\n", __func__);
|
||||
LOG_ERR("************\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (params.rope_freq_base != 0.0) {
|
||||
LOG_WRN("%s: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
|
||||
}
|
||||
|
||||
if (params.rope_freq_scale != 0.0) {
|
||||
LOG_WRN("%s: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
|
||||
}
|
||||
|
||||
LOG_INF("%s: llama backend init\n", __func__);
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model * model = nullptr;
|
||||
llama_context * ctx = nullptr;
|
||||
common_sampler * smpl = nullptr;
|
||||
|
||||
g_model = &model;
|
||||
g_ctx = &ctx;
|
||||
g_smpl = &smpl;
|
||||
|
||||
// load the model and apply lora adapter, if any
|
||||
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
model = llama_init.model.get();
|
||||
ctx = llama_init.context.get();
|
||||
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: unable to load model\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
const int n_ctx_train = llama_model_n_ctx_train(model);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
LOG_DBG("n_ctx: %d\n", n_ctx);
|
||||
|
||||
if (n_ctx > n_ctx_train) {
|
||||
LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx);
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||
}
|
||||
const bool add_bos = llama_vocab_get_add_bos(vocab);
|
||||
GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
|
||||
|
||||
std::vector<llama_token> embd_inp;
|
||||
std::vector<llama_token> embd_end;
|
||||
std::vector<llama_token> inp_pfx = common_tokenize(ctx, params.input_prefix, false);
|
||||
std::vector<llama_token> inp_sfx = common_tokenize(ctx, params.input_suffix, false);
|
||||
|
||||
GGML_ASSERT(llama_vocab_fim_pre(vocab) >= 0);
|
||||
GGML_ASSERT(llama_vocab_fim_suf(vocab) >= 0);
|
||||
|
||||
inp_pfx.insert(inp_pfx.begin(), llama_vocab_fim_pre(vocab));
|
||||
inp_sfx.insert(inp_sfx.begin(), llama_vocab_fim_suf(vocab));
|
||||
|
||||
embd_inp = params.spm_infill ? inp_sfx : inp_pfx;
|
||||
embd_end = params.spm_infill ? inp_pfx : inp_sfx;
|
||||
if (add_bos) {
|
||||
embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab));
|
||||
}
|
||||
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
|
||||
|
||||
const llama_token middle_token = llama_vocab_fim_mid(vocab);
|
||||
if (middle_token >= 0) {
|
||||
embd_inp.push_back(middle_token);
|
||||
}
|
||||
|
||||
LOG_DBG("add_bos: %d\n", add_bos);
|
||||
LOG_DBG("prefix: \"%s\"\n", params.input_prefix.c_str());
|
||||
LOG_DBG("suffix: \"%s\"\n", params.input_suffix.c_str());
|
||||
LOG_DBG("tokens: %s\n", string_from(ctx, embd_inp).c_str());
|
||||
|
||||
// Should not run without any tokens
|
||||
if (embd_inp.empty()) {
|
||||
embd_inp.push_back(llama_vocab_bos(vocab));
|
||||
LOG_WRN("embd_inp was considered empty and bos was added: %s\n", string_from(ctx, embd_inp).c_str());
|
||||
}
|
||||
|
||||
if ((int) embd_inp.size() > n_ctx - 4) {
|
||||
LOG_ERR("%s: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// number of tokens to keep when resetting context
|
||||
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) {
|
||||
params.n_keep = (int)embd_inp.size();
|
||||
}
|
||||
|
||||
LOG_INF("inp_pfx: %s\n", string_from(ctx, inp_pfx).c_str());
|
||||
LOG_INF("inp_sfx: %s\n", string_from(ctx, inp_sfx).c_str());
|
||||
|
||||
// enable interactive mode if interactive start is specified
|
||||
if (params.interactive_first) {
|
||||
params.interactive = true;
|
||||
}
|
||||
|
||||
if (params.verbose_prompt) {
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
||||
LOG_INF("%6d -> '%s'\n", embd_inp[i], common_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
}
|
||||
|
||||
if (params.n_keep > 0) {
|
||||
LOG_INF("%s: static prompt based on n_keep: '", __func__);
|
||||
for (int i = 0; i < params.n_keep; i++) {
|
||||
LOG_CNT("%s", common_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
}
|
||||
LOG_CNT("'\n");
|
||||
}
|
||||
LOG_INF("\n");
|
||||
}
|
||||
|
||||
if (params.interactive) {
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
||||
struct sigaction sigint_action;
|
||||
sigint_action.sa_handler = sigint_handler;
|
||||
sigemptyset (&sigint_action.sa_mask);
|
||||
sigint_action.sa_flags = 0;
|
||||
sigaction(SIGINT, &sigint_action, NULL);
|
||||
#elif defined (_WIN32)
|
||||
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
|
||||
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
|
||||
};
|
||||
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
|
||||
#endif
|
||||
|
||||
LOG_INF("%s: interactive mode on.\n", __func__);
|
||||
|
||||
if (params.input_prefix_bos) {
|
||||
LOG_INF("Input prefix with BOS\n");
|
||||
}
|
||||
|
||||
if (!params.input_prefix.empty()) {
|
||||
LOG_INF("Input prefix: '%s'\n", params.input_prefix.c_str());
|
||||
}
|
||||
|
||||
if (!params.input_suffix.empty()) {
|
||||
LOG_INF("Input suffix: '%s'\n", params.input_suffix.c_str());
|
||||
}
|
||||
}
|
||||
smpl = common_sampler_init(model, sparams);
|
||||
|
||||
LOG_INF("sampler seed: %u\n", common_sampler_get_seed(smpl));
|
||||
LOG_INF("sampler params: \n%s\n", sparams.print().c_str());
|
||||
LOG_INF("sampler chain: %s\n", common_sampler_print(smpl).c_str());
|
||||
|
||||
LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||
|
||||
LOG_INF("\n");
|
||||
LOG_INF("\n##### Infill mode #####\n\n");
|
||||
if (params.interactive) {
|
||||
const char *control_message;
|
||||
if (params.multiline_input) {
|
||||
control_message = " - To return control to LLaMA, end your input with '\\'.\n"
|
||||
" - To return control without starting a new line, end your input with '/'.\n";
|
||||
} else {
|
||||
control_message = " - Press Return to return control to LLaMA.\n"
|
||||
" - To return control without starting a new line, end your input with '/'.\n"
|
||||
" - If you want to submit another line, end your input with '\\'.\n";
|
||||
}
|
||||
LOG_INF("== Running in interactive mode. ==\n");
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
||||
LOG_INF( " - Press Ctrl+C to interject at any time.\n");
|
||||
#endif
|
||||
LOG_INF( "%s\n", control_message);
|
||||
|
||||
is_interacting = params.interactive_first;
|
||||
}
|
||||
|
||||
bool input_echo = true;
|
||||
|
||||
int n_past = 0;
|
||||
int n_remain = params.n_predict;
|
||||
int n_consumed = 0;
|
||||
|
||||
std::vector<int> input_tokens; g_input_tokens = &input_tokens;
|
||||
std::vector<int> output_tokens; g_output_tokens = &output_tokens;
|
||||
std::ostringstream output_ss; g_output_ss = &output_ss;
|
||||
|
||||
// the first thing we will do is to output the prompt, so set color accordingly
|
||||
console::set_display(console::prompt);
|
||||
|
||||
std::vector<llama_token> embd;
|
||||
|
||||
while (n_remain != 0 || params.interactive) {
|
||||
// predict
|
||||
if (!embd.empty()) {
|
||||
// Note: n_ctx - 4 here is to match the logic for commandline prompt handling via
|
||||
// --prompt or --file which uses the same value.
|
||||
int max_embd_size = n_ctx - 4;
|
||||
|
||||
// Ensure the input doesn't exceed the context size by truncating embd if necessary.
|
||||
if ((int) embd.size() > max_embd_size) {
|
||||
const int skipped_tokens = (int) embd.size() - max_embd_size;
|
||||
embd.resize(max_embd_size);
|
||||
|
||||
console::set_display(console::error);
|
||||
LOG_WRN("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
|
||||
console::set_display(console::reset);
|
||||
}
|
||||
|
||||
// infinite text generation via context swapping
|
||||
// if we run out of context:
|
||||
// - take the n_keep first tokens from the original prompt (via n_past)
|
||||
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
|
||||
if (n_past + (int) embd.size() > n_ctx) {
|
||||
if (params.n_predict == -2) {
|
||||
LOG_DBG("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
|
||||
break;
|
||||
}
|
||||
|
||||
const int n_left = n_past - params.n_keep - 1;
|
||||
const int n_discard = n_left/2;
|
||||
|
||||
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
|
||||
n_past, n_left, n_ctx, params.n_keep, n_discard);
|
||||
|
||||
llama_kv_self_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
|
||||
llama_kv_self_seq_add(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
|
||||
|
||||
n_past -= n_discard;
|
||||
|
||||
LOG_DBG("after swap: n_past = %d\n", n_past);
|
||||
|
||||
LOG_DBG("embd: %s\n", string_from(ctx, embd).c_str());
|
||||
|
||||
}
|
||||
|
||||
// evaluate tokens in batches
|
||||
// embd is typically prepared beforehand to fit within a batch, but not always
|
||||
for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
|
||||
int n_eval = (int) embd.size() - i;
|
||||
if (n_eval > params.n_batch) {
|
||||
n_eval = params.n_batch;
|
||||
}
|
||||
|
||||
LOG_DBG("eval: %s\n", string_from(ctx, embd).c_str());
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval))) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
n_past += n_eval;
|
||||
|
||||
LOG_DBG("n_past = %d\n", n_past);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
embd.clear();
|
||||
|
||||
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
|
||||
const llama_token id = common_sampler_sample(smpl, ctx, -1);
|
||||
|
||||
common_sampler_accept(smpl, id, true);
|
||||
|
||||
// LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str());
|
||||
|
||||
embd.push_back(id);
|
||||
|
||||
// echo this to console
|
||||
input_echo = true;
|
||||
|
||||
// decrement remaining sampling budget
|
||||
--n_remain;
|
||||
|
||||
LOG_DBG("n_remain: %d\n", n_remain);
|
||||
} else {
|
||||
// some user input remains from prompt or interaction, forward it to processing
|
||||
LOG_DBG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
|
||||
while ((int) embd_inp.size() > n_consumed) {
|
||||
embd.push_back(embd_inp[n_consumed]);
|
||||
|
||||
// push the prompt in the sampling context in order to apply repetition penalties later
|
||||
// for the prompt, we don't apply grammar rules
|
||||
common_sampler_accept(smpl, embd_inp[n_consumed], false);
|
||||
|
||||
++n_consumed;
|
||||
if ((int) embd.size() >= params.n_batch) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// display text
|
||||
if (input_echo) {
|
||||
for (auto id : embd) {
|
||||
const std::string token_str = common_token_to_piece(ctx, id);
|
||||
LOG("%s", token_str.c_str());
|
||||
|
||||
if (embd.size() > 1) {
|
||||
input_tokens.push_back(id);
|
||||
} else {
|
||||
output_tokens.push_back(id);
|
||||
output_ss << token_str;
|
||||
}
|
||||
}
|
||||
}
|
||||
// reset color to default if we there is no pending user input
|
||||
if (input_echo && (int) embd_inp.size() == n_consumed) {
|
||||
console::set_display(console::reset);
|
||||
}
|
||||
|
||||
// if not currently processing queued inputs;
|
||||
if ((int) embd_inp.size() <= n_consumed) {
|
||||
// deal with eot token in infill mode
|
||||
if ((common_sampler_last(smpl) == llama_vocab_eot(vocab) || is_interacting) && params.interactive){
|
||||
if (is_interacting && !params.interactive_first) {
|
||||
// print an eot token
|
||||
LOG("%s", common_token_to_piece(ctx, llama_vocab_eot(vocab)).c_str());
|
||||
}
|
||||
LOG("\n");
|
||||
console::set_display(console::user_input);
|
||||
std::string buffer;
|
||||
std::string line;
|
||||
bool another_line=true;
|
||||
// set a new prefix via stdin
|
||||
do {
|
||||
another_line = console::readline(line, params.multiline_input);
|
||||
buffer += line;
|
||||
} while (another_line);
|
||||
// check if we got an empty line, if so we use the old input
|
||||
if (!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
|
||||
params.input_prefix = buffer;
|
||||
}
|
||||
buffer.clear();
|
||||
// set a new suffix via stdin
|
||||
do {
|
||||
another_line = console::readline(line, params.multiline_input);
|
||||
buffer += line;
|
||||
} while (another_line);
|
||||
// check if we got an empty line
|
||||
if (!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
|
||||
params.input_suffix = buffer;
|
||||
}
|
||||
buffer.clear();
|
||||
// done taking input, reset color
|
||||
console::set_display(console::reset);
|
||||
|
||||
if (params.escape) {
|
||||
//process escape sequences, for the initial prompt this is done in common.cpp when we load the params, but for the interactive mode we need to do it here
|
||||
string_process_escapes(params.input_prefix);
|
||||
string_process_escapes(params.input_suffix);
|
||||
}
|
||||
|
||||
// tokenize new prefix and suffix
|
||||
std::vector<llama_token> inp_pfx = common_tokenize(ctx, params.input_prefix, false);
|
||||
std::vector<llama_token> inp_sfx = common_tokenize(ctx, params.input_suffix, false);
|
||||
|
||||
inp_pfx.insert(inp_pfx.begin(), llama_vocab_fim_pre(vocab));
|
||||
inp_sfx.insert(inp_sfx.begin(), llama_vocab_fim_suf(vocab));
|
||||
|
||||
embd_inp = params.spm_infill ? inp_sfx : inp_pfx;
|
||||
embd_end = params.spm_infill ? inp_pfx : inp_sfx;
|
||||
if (add_bos) {
|
||||
embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab));
|
||||
}
|
||||
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
|
||||
|
||||
if (middle_token >= 0) {
|
||||
embd_inp.push_back(middle_token);
|
||||
}
|
||||
|
||||
embd.clear();
|
||||
n_remain = params.n_predict;
|
||||
n_past = 0;
|
||||
n_consumed = 0;
|
||||
is_interacting = false;
|
||||
}
|
||||
// deal with end of generation tokens in interactive mode
|
||||
else if (llama_vocab_is_eog(vocab, common_sampler_last(smpl))) {
|
||||
LOG_DBG("found EOS token\n");
|
||||
|
||||
if (params.interactive) {
|
||||
|
||||
is_interacting = true;
|
||||
LOG("\n");
|
||||
console::set_display(console::user_input);
|
||||
}
|
||||
}
|
||||
|
||||
if (n_past > 0 && is_interacting && !params.interactive) {
|
||||
LOG_DBG("waiting for user input\n");
|
||||
|
||||
if (params.input_prefix_bos) {
|
||||
LOG_DBG("adding input prefix BOS token\n");
|
||||
embd_inp.push_back(llama_vocab_bos(vocab));
|
||||
}
|
||||
|
||||
std::string buffer;
|
||||
if (!params.input_prefix.empty()) {
|
||||
LOG_DBG("appending input prefix: '%s'\n", params.input_prefix.c_str());
|
||||
buffer += params.input_prefix;
|
||||
LOG("%s", buffer.c_str());
|
||||
}
|
||||
|
||||
std::string line;
|
||||
bool another_line = true;
|
||||
do {
|
||||
another_line = console::readline(line, params.multiline_input);
|
||||
buffer += line;
|
||||
} while (another_line);
|
||||
|
||||
// done taking input, reset color
|
||||
console::set_display(console::reset);
|
||||
|
||||
// Add tokens to embd only if the input buffer is non-empty
|
||||
// Entering a empty line lets the user pass control back
|
||||
if (buffer.length() > 1) {
|
||||
// append input suffix if any
|
||||
if (!params.input_suffix.empty()) {
|
||||
LOG_DBG("appending input suffix: '%s'\n", params.input_suffix.c_str());
|
||||
buffer += params.input_suffix;
|
||||
LOG("%s", params.input_suffix.c_str());
|
||||
}
|
||||
|
||||
LOG_DBG("buffer: '%s'\n", buffer.c_str());
|
||||
|
||||
const size_t original_size = embd_inp.size();
|
||||
|
||||
const auto line_inp = common_tokenize(ctx, buffer, false);
|
||||
LOG_DBG("input tokens: %s\n", string_from(ctx, line_inp).c_str());
|
||||
|
||||
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
||||
|
||||
for (size_t i = original_size; i < embd_inp.size(); ++i) {
|
||||
const llama_token token = embd_inp[i];
|
||||
output_tokens.push_back(token);
|
||||
output_ss << common_token_to_piece(ctx, token);
|
||||
}
|
||||
|
||||
n_remain -= line_inp.size();
|
||||
LOG_DBG("n_remain: %d\n", n_remain);
|
||||
} else {
|
||||
LOG_DBG("empty line, passing control back\n");
|
||||
}
|
||||
|
||||
input_echo = false; // do not echo this again
|
||||
}
|
||||
|
||||
if (n_past > 0) {
|
||||
if (is_interacting) {
|
||||
common_sampler_reset(smpl);
|
||||
}
|
||||
is_interacting = false;
|
||||
}
|
||||
}
|
||||
|
||||
// end of generation
|
||||
if (!embd.empty() && llama_vocab_is_eog(vocab, embd.back()) && !params.interactive) {
|
||||
break;
|
||||
}
|
||||
|
||||
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
|
||||
// We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size).
|
||||
if (params.interactive && n_remain <= 0 && params.n_predict >= 0) {
|
||||
n_remain = params.n_predict;
|
||||
is_interacting = true;
|
||||
}
|
||||
}
|
||||
if (!params.interactive && n_remain <= 0) {
|
||||
LOG("%s", common_token_to_piece(ctx, llama_vocab_eot(vocab)).c_str());
|
||||
}
|
||||
|
||||
LOG("\n");
|
||||
common_perf_print(ctx, smpl);
|
||||
|
||||
common_sampler_free(smpl);
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
}
|
||||
@@ -1,168 +0,0 @@
|
||||
#ifndef MTMD_H
|
||||
#define MTMD_H
|
||||
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "clip.h"
|
||||
|
||||
#include <vector>
|
||||
#include <cinttypes>
|
||||
#include <memory>
|
||||
|
||||
#ifdef LLAMA_SHARED
|
||||
# if defined(_WIN32) && !defined(__MINGW32__)
|
||||
# ifdef LLAMA_BUILD
|
||||
# define MTMD_API __declspec(dllexport)
|
||||
# else
|
||||
# define MTMD_API __declspec(dllimport)
|
||||
# endif
|
||||
# else
|
||||
# define MTMD_API __attribute__ ((visibility ("default")))
|
||||
# endif
|
||||
#else
|
||||
# define MTMD_API
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
||||
enum mtmd_input_chunk_type {
|
||||
MTMD_INPUT_CHUNK_TYPE_TEXT,
|
||||
MTMD_INPUT_CHUNK_TYPE_IMAGE,
|
||||
};
|
||||
|
||||
struct mtmd_context;
|
||||
struct mtmd_image_tokens;
|
||||
|
||||
// represents raw image data, layout is RGBRGBRGB...
|
||||
// length of data must be nx * ny * 3
|
||||
struct mtmd_bitmap {
|
||||
uint32_t nx;
|
||||
uint32_t ny;
|
||||
std::vector<unsigned char> data;
|
||||
std::string id; // optional user-defined id, for ex: can be set to image hash, useful for KV cache tracking
|
||||
};
|
||||
|
||||
struct mtmd_image_tokens_deleter {
|
||||
void operator()(mtmd_image_tokens * val); // forward declaration
|
||||
};
|
||||
using mtmd_image_tokens_ptr = std::unique_ptr<mtmd_image_tokens, mtmd_image_tokens_deleter>;
|
||||
|
||||
struct mtmd_input_chunk {
|
||||
mtmd_input_chunk_type type;
|
||||
std::vector<llama_token> tokens_text;
|
||||
mtmd_image_tokens_ptr tokens_image;
|
||||
};
|
||||
|
||||
using mtmd_input_chunks = std::vector<mtmd_input_chunk>;
|
||||
|
||||
struct mtmd_context_params {
|
||||
bool use_gpu = true;
|
||||
bool print_timings = true;
|
||||
int n_threads = 4;
|
||||
enum ggml_log_level verbosity = GGML_LOG_LEVEL_INFO;
|
||||
const char * image_marker = "<__image__>";
|
||||
};
|
||||
|
||||
struct mtmd_input_text {
|
||||
std::string text;
|
||||
bool add_special;
|
||||
bool parse_special;
|
||||
};
|
||||
|
||||
// initialize the mtmd context
|
||||
// return nullptr on failure
|
||||
MTMD_API mtmd_context * mtmd_init_from_file(const char * mmproj_fname,
|
||||
const llama_model * text_model,
|
||||
const mtmd_context_params ctx_params);
|
||||
|
||||
MTMD_API void mtmd_free(mtmd_context * ctx);
|
||||
|
||||
// tokenize an input text prompt and an image
|
||||
// the prompt must have the input image marker (default: "<__image__>") in it
|
||||
// the marker will be replaced with the image tokens
|
||||
// for example:
|
||||
// "here is an image: <__image__>\ndescribe it in detail."
|
||||
// this will gives 3 chunks:
|
||||
// 1. "here is an image: <start_of_image>"
|
||||
// 2. (image tokens)
|
||||
// 3. "<end_of_image>\ndescribe it in detail."
|
||||
// number of bitmaps must be equal to the number of image markers in the prompt
|
||||
// this function is thread-safe (shared ctx)
|
||||
// return values:
|
||||
// 0 on success
|
||||
// 1 on number of images not matching the number of markers
|
||||
// 2 on image preprocessing error
|
||||
MTMD_API int32_t mtmd_tokenize(mtmd_context * ctx,
|
||||
std::vector<mtmd_input_chunk> & output,
|
||||
const mtmd_input_text & text,
|
||||
const std::vector<mtmd_bitmap> & bitmaps);
|
||||
|
||||
// access mtmd_image_tokens
|
||||
MTMD_API size_t mtmd_image_tokens_get_n_tokens(const mtmd_image_tokens * image_tokens);
|
||||
MTMD_API size_t mtmd_image_tokens_get_nx(const mtmd_image_tokens * image_tokens);
|
||||
MTMD_API size_t mtmd_image_tokens_get_ny(const mtmd_image_tokens * image_tokens);
|
||||
MTMD_API std::string mtmd_image_tokens_get_id(const mtmd_image_tokens * image_tokens);
|
||||
MTMD_API llama_pos mtmd_image_tokens_get_n_pos(const mtmd_image_tokens * image_tokens); // number of temporal positions (always 1 for M-RoPE, n_tokens otherwise)
|
||||
MTMD_API void mtmd_image_tokens_free(mtmd_image_tokens * image_tokens);
|
||||
|
||||
// returns 0 on success
|
||||
MTMD_API int32_t mtmd_encode(mtmd_context * ctx,
|
||||
const mtmd_image_tokens * image_tokens);
|
||||
|
||||
// get output embeddings from the last encode pass
|
||||
MTMD_API float * mtmd_get_output_embd(mtmd_context * ctx);
|
||||
|
||||
// whether we need to set non-causal mask before llama_decode
|
||||
MTMD_API bool mtmd_decode_use_non_causal(mtmd_context * ctx);
|
||||
|
||||
// whether the current model use M-RoPE for llama_decode
|
||||
MTMD_API bool mtmd_decode_use_mrope(mtmd_context * ctx);
|
||||
|
||||
|
||||
|
||||
//
|
||||
// helper functions (can be implemented based on other functions)
|
||||
//
|
||||
|
||||
// helper to count the total number of tokens from a list of chunks, useful to keep track of KV cache
|
||||
MTMD_API size_t mtmd_helper_get_n_tokens(mtmd_input_chunks & chunks);
|
||||
|
||||
// helper to count the total position of tokens from a list of chunks, useful to keep track of n_past
|
||||
MTMD_API llama_pos mtmd_helper_get_n_pos(mtmd_input_chunks & chunks);
|
||||
|
||||
// helper function that automatically:
|
||||
// 1. run llama_decode() on text chunks
|
||||
// 2. run mtmd_encode() on image chunks, then mtmd_get_output_embd() and then llama_decode()
|
||||
// if any of the mtmd_encode() or llama_decode() calls return non-zero, stop and forward the error
|
||||
// otherwise, returns 0 on success
|
||||
MTMD_API int32_t mtmd_helper_eval(mtmd_context * ctx,
|
||||
llama_context * lctx,
|
||||
mtmd_input_chunks & chunks,
|
||||
llama_pos pos0,
|
||||
llama_seq_id seq_id,
|
||||
int32_t n_batch);
|
||||
|
||||
// helper function to construct a mtmd_bitmap from a file
|
||||
// returns 0 on success
|
||||
// this function is thread-safe
|
||||
MTMD_API int32_t mtmd_helper_bitmap_init_from_file(const char * fname, mtmd_bitmap & output);
|
||||
|
||||
// helper function to construct a mtmd_bitmap from a buffer
|
||||
// the buffer must be an image in format supported by stb_image (jpg, png, bmp, gif, etc.)
|
||||
// returns 0 on success
|
||||
// this function is thread-safe
|
||||
MTMD_API int32_t mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len, mtmd_bitmap & output);
|
||||
|
||||
// convenient unique_ptr wrappers
|
||||
struct mtmd_context_deleter {
|
||||
void operator()(mtmd_context * val) { mtmd_free(val); }
|
||||
};
|
||||
using mtmd_context_ptr = std::unique_ptr<mtmd_context, mtmd_context_deleter>;
|
||||
|
||||
#else
|
||||
|
||||
static_assert(false && "C header is not yet supported by this library");
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
@@ -1,217 +0,0 @@
|
||||
import argparse
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from gguf import *
|
||||
from transformers import (
|
||||
AutoProcessor,
|
||||
Qwen2VLConfig,
|
||||
Qwen2VLProcessor,
|
||||
Qwen2VLForConditionalGeneration,
|
||||
Qwen2_5_VLConfig, # type: ignore[reportAttributeAccessIssue]
|
||||
Qwen2_5_VLForConditionalGeneration, # type: ignore[reportAttributeAccessIssue]
|
||||
)
|
||||
|
||||
|
||||
VISION = "clip.vision"
|
||||
|
||||
|
||||
def k(raw_key: str, arch: str) -> str:
|
||||
return raw_key.format(arch=arch)
|
||||
|
||||
|
||||
def get_n_wa_pattern(fullatt_block_indexes: Optional[List[int]]):
|
||||
if fullatt_block_indexes is None:
|
||||
return 0
|
||||
n_wa = fullatt_block_indexes[0]
|
||||
for a, b in zip(fullatt_block_indexes, fullatt_block_indexes[1:]):
|
||||
if b - a - 1 != n_wa:
|
||||
raise ValueError(
|
||||
f"window/full attention layer should have fix pattern of "
|
||||
f"for each full-attention layer followed by {n_wa} window-attention layers"
|
||||
)
|
||||
return n_wa + 1
|
||||
|
||||
|
||||
class VL2:
|
||||
|
||||
@staticmethod
|
||||
def to_gguf_name(name: str) -> str:
|
||||
og = name
|
||||
name = name.replace("text_model", "t").replace("vision_model", "v")
|
||||
name = name.replace("blocks", "blk").replace("embeddings.", "")
|
||||
name = name.replace("attn.", "attn_")
|
||||
name = name.replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("proj.", "out.")
|
||||
# name = name.replace("layrnorm", "ln").replace("layer_norm", "ln").replace("layernorm", "ln")
|
||||
name = name.replace("norm1", "ln1").replace("norm2", "ln2")
|
||||
name = name.replace("merger.mlp", 'mm')
|
||||
print(f"[to_gguf_name] {og} --> {name}")
|
||||
return name
|
||||
|
||||
@classmethod
|
||||
def find_vision_tensors(cls, qwen2vl, dtype) -> Dict[str, np.ndarray]:
|
||||
vision_model = qwen2vl.visual
|
||||
tensor_map = {}
|
||||
for name, ten in vision_model.state_dict().items():
|
||||
ten = ten.numpy()
|
||||
if 'qkv' in name:
|
||||
if ten.ndim == 2: # weight
|
||||
c3, _ = ten.shape
|
||||
else: # bias
|
||||
c3 = ten.shape[0]
|
||||
assert c3 % 3 == 0
|
||||
c = c3 // 3
|
||||
wq = ten[:c]
|
||||
wk = ten[c: c * 2]
|
||||
wv = ten[c * 2:]
|
||||
tensor_map[cls.to_gguf_name(f"vision_model.{name}").replace("qkv", "q")] = wq
|
||||
tensor_map[cls.to_gguf_name(f"vision_model.{name}").replace("qkv", "k")] = wk
|
||||
tensor_map[cls.to_gguf_name(f"vision_model.{name}").replace("qkv", "v")] = wv
|
||||
elif 'merger' in name:
|
||||
if name.endswith("ln_q.weight"):
|
||||
tensor_map['v.post_ln.weight'] = ten
|
||||
elif name.endswith("ln_q.bias"):
|
||||
tensor_map['v.post_ln.bias'] = ten
|
||||
else:
|
||||
# "merger.mlp.%d.weight/bias" --> "mm.%d.weight/bias"
|
||||
tensor_map[cls.to_gguf_name(name)] = ten
|
||||
elif 'patch_embed.proj.weight' in name:
|
||||
# NOTE: split Conv3D into Conv2Ds
|
||||
c1, c2, kt, kh, kw = ten.shape
|
||||
assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
|
||||
tensor_map["v.patch_embd.weight"] = ten[:, :, 0, ...]
|
||||
tensor_map["v.patch_embd.weight.1"] = ten[:, :, 1, ...]
|
||||
else:
|
||||
tensor_map[cls.to_gguf_name(f"vision_model.{name}")] = ten
|
||||
|
||||
for new_name, ten in tensor_map.items():
|
||||
if ten.ndim <= 1 or new_name.endswith("_norm.weight"):
|
||||
tensor_map[new_name] = ten.astype(np.float32)
|
||||
else:
|
||||
tensor_map[new_name] = ten.astype(dtype)
|
||||
tensor_map["v.position_embd.weight"] = np.zeros([10, 10], dtype=np.float32) # dummy tensor, just here as a placeholder
|
||||
return tensor_map
|
||||
|
||||
|
||||
class VL25(VL2):
|
||||
|
||||
@staticmethod
|
||||
def to_gguf_name(name: str) -> str:
|
||||
og = name
|
||||
name = name.replace("text_model", "t").replace("vision_model", "v")
|
||||
name = name.replace("blocks", "blk").replace("embeddings.", "")
|
||||
name = name.replace("attn.", "attn_")
|
||||
name = name.replace("mlp.down_proj", "ffn_down").replace("mlp.up_proj", "ffn_up")
|
||||
name = name.replace("mlp.gate_proj", "ffn_gate").replace("proj.", "out.")
|
||||
name = name.replace("norm1", "ln1").replace("norm2", "ln2")
|
||||
name = name.replace("merger.mlp", 'mm')
|
||||
print(f"[vl25][to_gguf_name] {og} --> {name}")
|
||||
return name
|
||||
|
||||
|
||||
def main(args):
|
||||
if args.data_type == 'fp32':
|
||||
dtype = torch.float32
|
||||
np_dtype = np.float32
|
||||
ftype = 0
|
||||
elif args.data_type == 'fp16':
|
||||
dtype = torch.float16
|
||||
np_dtype = np.float16
|
||||
ftype = 1
|
||||
else:
|
||||
raise ValueError()
|
||||
|
||||
local_model = False
|
||||
model_path = ""
|
||||
model_name = args.model_name
|
||||
print("model_name: ", model_name)
|
||||
if args.model_type == "qwen2vl":
|
||||
qwen2vl = Qwen2VLForConditionalGeneration.from_pretrained(
|
||||
model_name, torch_dtype=dtype, device_map="cpu"
|
||||
)
|
||||
cfg: Qwen2VLConfig = qwen2vl.config # type: ignore[reportAssignmentType]
|
||||
vcfg = cfg.vision_config
|
||||
else:
|
||||
qwen2vl = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
||||
model_name, torch_dtype=dtype, device_map="cpu"
|
||||
)
|
||||
cfg: Qwen2_5_VLConfig = qwen2vl.config # type: ignore[reportAssignmentType]
|
||||
vcfg = cfg.vision_config
|
||||
|
||||
if os.path.isdir(model_name):
|
||||
local_model = True
|
||||
if model_name.endswith(os.sep):
|
||||
model_name = model_name[:-1]
|
||||
model_path = model_name
|
||||
model_name = os.path.basename(model_name)
|
||||
fname_out = f"{model_name.replace('/', '-').lower()}-vision.gguf"
|
||||
|
||||
fout = GGUFWriter(path=fname_out, arch="clip")
|
||||
fout.add_description("image encoder for Qwen2VL")
|
||||
|
||||
fout.add_file_type(ftype)
|
||||
fout.add_bool("clip.has_text_encoder", False)
|
||||
fout.add_bool("clip.has_vision_encoder", True)
|
||||
fout.add_bool("clip.has_qwen2vl_merger", True)
|
||||
|
||||
print(cfg.vision_config)
|
||||
if 'silu' in cfg.vision_config.hidden_act.lower():
|
||||
fout.add_bool("clip.use_silu", True)
|
||||
fout.add_bool("clip.use_gelu", False)
|
||||
elif 'gelu' in cfg.vision_config.hidden_act.lower():
|
||||
fout.add_bool("clip.use_silu", False)
|
||||
fout.add_bool("clip.use_gelu", 'quick' not in cfg.vision_config.hidden_act.lower())
|
||||
else:
|
||||
raise ValueError()
|
||||
|
||||
if args.model_type == "qwen2.5vl":
|
||||
fout.add_uint32("clip.vision.n_wa_pattern", get_n_wa_pattern(vcfg.fullatt_block_indexes))
|
||||
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.hidden_size)
|
||||
fout.add_uint32("clip.vision.projection_dim", vcfg.out_hidden_size)
|
||||
fout.add_string("clip.projector_type", "qwen2.5vl_merger")
|
||||
else:
|
||||
fout.add_string("clip.projector_type", "qwen2vl_merger")
|
||||
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.embed_dim)
|
||||
fout.add_uint32("clip.vision.projection_dim", vcfg.hidden_size)
|
||||
|
||||
if args.model_type == "qwen2.5vl":
|
||||
tensor_map = VL25.find_vision_tensors(qwen2vl, np_dtype)
|
||||
else:
|
||||
tensor_map = VL2.find_vision_tensors(qwen2vl, np_dtype)
|
||||
for name, data in tensor_map.items():
|
||||
fout.add_tensor(name, data)
|
||||
|
||||
fout.add_uint32("clip.vision.patch_size", vcfg.patch_size)
|
||||
fout.add_uint32("clip.vision.image_size", 14 * 40) # some reasonable size that is divable by (14*2)
|
||||
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), vcfg.num_heads)
|
||||
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
|
||||
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), vcfg.depth)
|
||||
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), 0) # not sure what this does, put 0 here as a placeholder
|
||||
fout.add_name(model_name)
|
||||
"""
|
||||
HACK: Since vision rope related parameter aren't stored in the `Qwen2VLConfig,
|
||||
it will be hardcoded in the `clip_image_build_graph` from `clip.cpp`.
|
||||
"""
|
||||
|
||||
if local_model:
|
||||
processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_path)
|
||||
else:
|
||||
processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_name)
|
||||
fout.add_array("clip.vision.image_mean", processor.image_processor.image_mean) # type: ignore[reportAttributeAccessIssue]
|
||||
fout.add_array("clip.vision.image_std", processor.image_processor.image_std) # type: ignore[reportAttributeAccessIssue]
|
||||
|
||||
fout.write_header_to_file()
|
||||
fout.write_kv_data_to_file()
|
||||
fout.write_tensors_to_file()
|
||||
fout.close()
|
||||
print("save model as: ", fname_out)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("model_name", nargs='?', default="Qwen/Qwen2-VL-2B-Instruct")
|
||||
parser.add_argument("--model_type", nargs='?', choices=['qwen2vl', 'qwen2.5vl'], default="qwen2vl")
|
||||
parser.add_argument("--data_type", nargs='?', choices=['fp32', 'fp16'], default="fp32")
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
@@ -23,7 +23,7 @@ def create_completion(host, prompt, gbnf_grammar):
|
||||
"""Calls the /completion API on llama-server.
|
||||
|
||||
See
|
||||
https://github.com/ggml-org/llama.cpp/tree/HEAD/examples/server#api-endpoints
|
||||
https://github.com/ggml-org/llama.cpp/tree/HEAD/tools/server#api-endpoints
|
||||
"""
|
||||
print(f" Request:\n Grammar:\n{textwrap.indent(gbnf_grammar, ' ')}\n Prompt:\n{textwrap.indent(prompt.rstrip(), ' ')}")
|
||||
headers = {"Content-Type": "application/json"}
|
||||
|
||||
Binary file not shown.
@@ -360,3 +360,27 @@ write_basic_package_version_file(
|
||||
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/ggml-config.cmake
|
||||
${CMAKE_CURRENT_BINARY_DIR}/ggml-version.cmake
|
||||
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/ggml)
|
||||
|
||||
if (MSVC)
|
||||
set(MSVC_WARNING_FLAGS
|
||||
/wd4005 # Macro redefinition
|
||||
/wd4244 # Conversion from one type to another type, possible loss of data
|
||||
/wd4267 # Conversion from 'size_t' to a smaller type, possible loss of data
|
||||
)
|
||||
function(disable_msvc_warnings target_name)
|
||||
if(TARGET ${target_name})
|
||||
target_compile_options(${target_name} PRIVATE ${MSVC_WARNING_FLAGS})
|
||||
endif()
|
||||
endfunction()
|
||||
|
||||
disable_msvc_warnings(ggml-base)
|
||||
disable_msvc_warnings(ggml)
|
||||
disable_msvc_warnings(ggml-cpu)
|
||||
disable_msvc_warnings(ggml-cpu-x64)
|
||||
disable_msvc_warnings(ggml-cpu-sse42)
|
||||
disable_msvc_warnings(ggml-cpu-sandybridge)
|
||||
disable_msvc_warnings(ggml-cpu-haswell)
|
||||
disable_msvc_warnings(ggml-cpu-skylakex)
|
||||
disable_msvc_warnings(ggml-cpu-icelake)
|
||||
disable_msvc_warnings(ggml-cpu-alderlake)
|
||||
endif()
|
||||
|
||||
@@ -38,7 +38,7 @@ extern "C" {
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
|
||||
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
|
||||
GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft);
|
||||
GGML_API size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
|
||||
GGML_API ggml_backend_dev_t ggml_backend_buft_get_device (ggml_backend_buffer_type_t buft);
|
||||
|
||||
@@ -59,7 +59,7 @@ extern "C" {
|
||||
GGML_API enum ggml_status ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
|
||||
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
|
||||
|
||||
@@ -673,11 +673,15 @@ extern "C" {
|
||||
GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
|
||||
GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
|
||||
|
||||
// returns whether the tensor elements can be iterated over with a flattened index (no gaps, no permutation)
|
||||
GGML_API bool ggml_is_contiguous (const struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
|
||||
GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
|
||||
GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
|
||||
|
||||
// returns whether the tensor elements are allocated as one contiguous block of memory (no gaps, but permutation ok)
|
||||
GGML_API bool ggml_is_contiguously_allocated(const struct ggml_tensor * tensor);
|
||||
|
||||
// true for tensor that is stored in memory as CxWxHxN and has been permuted to WxHxCxN
|
||||
GGML_API bool ggml_is_contiguous_channels(const struct ggml_tensor * tensor);
|
||||
|
||||
|
||||
@@ -816,7 +816,10 @@ static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor *
|
||||
static bool ggml_gallocr_node_needs_realloc(ggml_gallocr_t galloc, struct ggml_tensor * node, struct tensor_alloc * talloc) {
|
||||
size_t node_size = 0;
|
||||
if (!node->data && !node->view_src) {
|
||||
GGML_ASSERT(talloc->buffer_id >= 0); // prevent segfault when misusing the API
|
||||
// If we previously had data but don't now then reallocate
|
||||
if (talloc->buffer_id < 0) {
|
||||
return false;
|
||||
}
|
||||
node_size = ggml_backend_buft_get_alloc_size(galloc->bufts[talloc->buffer_id], node);
|
||||
}
|
||||
return talloc->size_max >= node_size;
|
||||
|
||||
@@ -56,7 +56,7 @@ size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
|
||||
return SIZE_MAX;
|
||||
}
|
||||
|
||||
size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
|
||||
size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor) {
|
||||
// get_alloc_size is optional, defaults to ggml_nbytes
|
||||
if (buft->iface.get_alloc_size) {
|
||||
size_t size = buft->iface.get_alloc_size(buft, tensor);
|
||||
@@ -152,7 +152,7 @@ size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
|
||||
return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
|
||||
}
|
||||
|
||||
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor) {
|
||||
return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
|
||||
}
|
||||
|
||||
|
||||
@@ -6596,7 +6596,118 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
}
|
||||
|
||||
*s = hsum_float_8(acc);
|
||||
#elif defined(__VXE__) || defined(__VXE2__)
|
||||
uint32_t aux[3];
|
||||
uint32_t utmp[4];
|
||||
|
||||
const int32x4_t v_z = vec_splat_s32(0);
|
||||
const uint8x16_t v_3m = vec_splat_u8(0x03);
|
||||
|
||||
const uint8x16_t v_0c = vec_splat_u8(1);
|
||||
const uint8x16_t v_1c = vec_sl(v_0c, 1);
|
||||
const uint8x16_t v_2c = vec_sl(v_0c, 2);
|
||||
const uint8x16_t v_3c = vec_sl(v_0c, 3);
|
||||
|
||||
uint8x16_t q3h[4];
|
||||
uint8x16_t q3b[2];
|
||||
int8x16_t q3bytes[4];
|
||||
int8x16_t q8bytes[4];
|
||||
uint8x16_t qhbits[2];
|
||||
|
||||
float sum = 0;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
|
||||
const uint8_t * restrict x0l = x[i].qs;
|
||||
const uint8_t * restrict x0h = x[i].hmask;
|
||||
const int8_t * restrict y0 = y[i].qs;
|
||||
|
||||
qhbits[0] = vec_xl(0 , x0h);
|
||||
qhbits[1] = vec_xl(16, x0h);
|
||||
|
||||
int32_t isum = 0;
|
||||
|
||||
memcpy(aux, x[i].scales, 12);
|
||||
utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
|
||||
utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
|
||||
utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
|
||||
utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
|
||||
|
||||
int8_t * scale = (int8_t *)utmp;
|
||||
for (int j = 0; j < 16; ++j) scale[j] -= 32;
|
||||
|
||||
for (int j = 0; j < QK_K/128; ++j) {
|
||||
int32x4_t isum0, isum1, isum2, isum3;
|
||||
|
||||
q3b[0] = vec_xl(0 , x0l);
|
||||
q3b[1] = vec_xl(16, x0l);
|
||||
x0l += 32;
|
||||
|
||||
q8bytes[0] = vec_xl(0 , y0);
|
||||
q8bytes[1] = vec_xl(16 , y0);
|
||||
q8bytes[2] = vec_xl(32 , y0);
|
||||
q8bytes[3] = vec_xl(48 , y0);
|
||||
q8bytes[4] = vec_xl(64 , y0);
|
||||
q8bytes[5] = vec_xl(80 , y0);
|
||||
q8bytes[6] = vec_xl(96 , y0);
|
||||
q8bytes[7] = vec_xl(112, y0);
|
||||
y0 += 128;
|
||||
|
||||
q3h[0] = vec_sl(vec_andc(v_0c, qhbits[0]), 2);
|
||||
q3h[1] = vec_sl(vec_andc(v_0c, qhbits[1]), 2);
|
||||
q3h[2] = vec_sl(vec_andc(v_1c, qhbits[0]), 1);
|
||||
q3h[3] = vec_sl(vec_andc(v_1c, qhbits[1]), 1);
|
||||
|
||||
q3bytes[0] = vec_sub((int8x16_t)vec_and(q3b[0], v_3m), (int8x16_t)q3h[0]);
|
||||
q3bytes[1] = vec_sub((int8x16_t)vec_and(q3b[1], v_3m), (int8x16_t)q3h[1]);
|
||||
q3bytes[2] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[0], 2), v_3m), (int8x16_t)q3h[2]);
|
||||
q3bytes[3] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[1], 2), v_3m), (int8x16_t)q3h[3]);
|
||||
|
||||
isum0 = ggml_vec_dot(v_z, q3bytes[0], q8bytes[0]);
|
||||
isum1 = ggml_vec_dot(v_z, q3bytes[1], q8bytes[1]);
|
||||
isum2 = ggml_vec_dot(v_z, q3bytes[2], q8bytes[2]);
|
||||
isum3 = ggml_vec_dot(v_z, q3bytes[3], q8bytes[3]);
|
||||
|
||||
isum += (isum0[0] + isum0[1] + isum0[2] + isum0[3]) * scale[0];
|
||||
isum += (isum1[0] + isum1[1] + isum1[2] + isum1[3]) * scale[1];
|
||||
isum += (isum2[0] + isum2[1] + isum2[2] + isum2[3]) * scale[2];
|
||||
isum += (isum3[0] + isum3[1] + isum3[2] + isum3[3]) * scale[3];
|
||||
|
||||
scale += 4;
|
||||
|
||||
q3h[0] = vec_andc(v_2c, qhbits[0]);
|
||||
q3h[1] = vec_andc(v_2c, qhbits[1]);
|
||||
q3h[2] = vec_sr(vec_andc(v_3c, qhbits[0]), 1);
|
||||
q3h[3] = vec_sr(vec_andc(v_3c, qhbits[1]), 1);
|
||||
|
||||
q3bytes[0] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[0], 4), v_3m), (int8x16_t)q3h[0]);
|
||||
q3bytes[1] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[1], 4), v_3m), (int8x16_t)q3h[1]);
|
||||
q3bytes[2] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[0], 6), v_3m), (int8x16_t)q3h[2]);
|
||||
q3bytes[3] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[1], 6), v_3m), (int8x16_t)q3h[3]);
|
||||
|
||||
isum0 = ggml_vec_dot(v_z, q3bytes[0], q8bytes[4]);
|
||||
isum1 = ggml_vec_dot(v_z, q3bytes[1], q8bytes[5]);
|
||||
isum2 = ggml_vec_dot(v_z, q3bytes[2], q8bytes[6]);
|
||||
isum3 = ggml_vec_dot(v_z, q3bytes[3], q8bytes[7]);
|
||||
|
||||
isum += (isum0[0] + isum0[1] + isum0[2] + isum0[3]) * scale[0];
|
||||
isum += (isum1[0] + isum1[1] + isum1[2] + isum1[3]) * scale[1];
|
||||
isum += (isum2[0] + isum2[1] + isum2[2] + isum2[3]) * scale[2];
|
||||
isum += (isum3[0] + isum3[1] + isum3[2] + isum3[3]) * scale[3];
|
||||
|
||||
scale += 4;
|
||||
|
||||
if (j == 0) {
|
||||
qhbits[0] = vec_sr(qhbits[0], 4);
|
||||
qhbits[1] = vec_sr(qhbits[1], 4);
|
||||
}
|
||||
}
|
||||
|
||||
sum += d * isum;
|
||||
}
|
||||
|
||||
*s = sum;
|
||||
#else
|
||||
// scalar version
|
||||
// This function is written like this so the compiler can manage to vectorize most of it
|
||||
|
||||
@@ -11,24 +11,26 @@
|
||||
#include <vector>
|
||||
|
||||
#ifdef GGML_USE_CPU_HBM
|
||||
#include "ggml-cpu-hbm.h"
|
||||
# include "ggml-cpu-hbm.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CPU_KLEIDIAI
|
||||
#include "kleidiai/kleidiai.h"
|
||||
#endif
|
||||
|
||||
#if defined(__APPLE__)
|
||||
#include <sys/types.h>
|
||||
#include <sys/sysctl.h>
|
||||
# include "kleidiai/kleidiai.h"
|
||||
#endif
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
#define NOMINMAX
|
||||
# define WIN32_LEAN_AND_MEAN
|
||||
# ifndef NOMINMAX
|
||||
# define NOMINMAX
|
||||
# endif
|
||||
# include <windows.h>
|
||||
#else
|
||||
# include <unistd.h>
|
||||
#endif
|
||||
#include <windows.h>
|
||||
|
||||
#if defined(__APPLE__)
|
||||
# include <sys/sysctl.h>
|
||||
# include <sys/types.h>
|
||||
#endif
|
||||
|
||||
// ggml-backend interface
|
||||
@@ -70,8 +72,10 @@ static ggml_backend_buffer_type_t * ggml_backend_cpu_device_get_extra_buffers_ty
|
||||
}
|
||||
|
||||
static bool ggml_backend_cpu_is_extra_buffer_type(ggml_backend_buffer_type_t buft) {
|
||||
for (auto extra : ggml_backend_cpu_get_extra_buffers_type()) {
|
||||
if (extra && extra == buft) return true;
|
||||
for (auto * extra : ggml_backend_cpu_get_extra_buffers_type()) {
|
||||
if (extra && extra == buft) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
@@ -330,9 +334,18 @@ static const char * ggml_backend_cpu_device_get_description(ggml_backend_dev_t d
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
||||
// TODO
|
||||
*free = 0;
|
||||
*total = 0;
|
||||
#ifdef _WIN32
|
||||
MEMORYSTATUSEX status;
|
||||
status.dwLength = sizeof(status);
|
||||
GlobalMemoryStatusEx(&status);
|
||||
*total = status.ullTotalPhys;
|
||||
*free = status.ullAvailPhys;
|
||||
#else
|
||||
long pages = sysconf(_SC_PHYS_PAGES);
|
||||
long page_size = sysconf(_SC_PAGE_SIZE);
|
||||
*total = pages * page_size;
|
||||
*free = *total;
|
||||
#endif
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
@@ -1054,6 +1054,493 @@ class tinyBLAS_Q0_AVX {
|
||||
} \
|
||||
} \
|
||||
|
||||
template <typename TA, typename TB, typename TC>
|
||||
class tinyBLAS_BF16_PPC {
|
||||
public:
|
||||
tinyBLAS_BF16_PPC(int64_t k,
|
||||
const TA *A, int64_t lda,
|
||||
const TB *B, int64_t ldb,
|
||||
TC *C, int64_t ldc,
|
||||
int ith, int nth)
|
||||
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
|
||||
}
|
||||
|
||||
void matmul(int64_t m, int64_t n) {
|
||||
mnpack(0, m, 0, n);
|
||||
}
|
||||
|
||||
private:
|
||||
void vector_permute_store(vec_t *c, int numVec, unsigned char *vecOffset) {
|
||||
vec_t t[8], s[8];
|
||||
vec_t swiz1 = {0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23};
|
||||
vec_t swiz2 = {8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31};
|
||||
vec_t swiz3 = {0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23};
|
||||
vec_t swiz4 = {8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31};
|
||||
|
||||
if (numVec == 2) {
|
||||
t[0] = vec_perm(c[0], c[1], swiz1);
|
||||
t[1] = vec_perm(c[2], c[3], swiz1);
|
||||
s[0] = vec_perm(t[0], t[1], swiz3);
|
||||
s[1] = vec_perm(t[0], t[1], swiz4);
|
||||
vec_xst(s[0], 0, (vec_t*)vecOffset);
|
||||
vec_xst(s[1], 0, (vec_t*)(vecOffset + 16));
|
||||
} else if (numVec == 4) {
|
||||
t[0] = vec_perm(c[0], c[1], swiz1);
|
||||
t[1] = vec_perm(c[0], c[1], swiz2);
|
||||
t[2] = vec_perm(c[2], c[3], swiz1);
|
||||
t[3] = vec_perm(c[2], c[3], swiz2);
|
||||
s[0] = vec_perm(t[0], t[2], swiz3);
|
||||
s[1] = vec_perm(t[0], t[2], swiz4);
|
||||
s[2] = vec_perm(t[1], t[3], swiz3);
|
||||
s[3] = vec_perm(t[1], t[3], swiz4);
|
||||
for (int i = 0; i < 4; ++i)
|
||||
vec_xst(s[i], 0, (vec_t*)(vecOffset + i * 16));
|
||||
} else if (numVec == 8) {
|
||||
for (int i = 0; i < 4; i += 2) {
|
||||
t[i+0] = vec_perm(c[i+0], c[i+1], swiz1);
|
||||
t[i+1] = vec_perm(c[i+0], c[i+1], swiz2);
|
||||
}
|
||||
for (int i = 4; i < 8; i += 2) {
|
||||
t[i+0] = vec_perm(c[i+0], c[i+1], swiz1);
|
||||
t[i+1] = vec_perm(c[i+0], c[i+1], swiz2);
|
||||
}
|
||||
s[0] = vec_perm(t[0], t[2], swiz3);
|
||||
s[1] = vec_perm(t[0], t[2], swiz4);
|
||||
s[2] = vec_perm(t[1], t[3], swiz3);
|
||||
s[3] = vec_perm(t[1], t[3], swiz4);
|
||||
s[4] = vec_perm(t[4], t[6], swiz3);
|
||||
s[5] = vec_perm(t[4], t[6], swiz4);
|
||||
s[6] = vec_perm(t[5], t[7], swiz3);
|
||||
s[7] = vec_perm(t[5], t[7], swiz4);
|
||||
for (int i = 0; i < 8; ++i)
|
||||
vec_xst(s[i], 0, (vec_t*)(vecOffset + i * 16));
|
||||
}
|
||||
}
|
||||
|
||||
void packNormal(const TA* a, int64_t lda, int rows, int cols, unsigned char* vec) {
|
||||
int64_t i, j;
|
||||
TA *aoffset = NULL;
|
||||
unsigned char *vecOffset = NULL;
|
||||
TA * aoffsets[8];
|
||||
vector unsigned char c_arr[8];
|
||||
aoffset = const_cast<TA*>(a);
|
||||
vecOffset = vec;
|
||||
j = (rows >> 3);
|
||||
if (j > 0) {
|
||||
do {
|
||||
if (cols == 4) {
|
||||
aoffsets[0] = aoffset;
|
||||
for (int it = 1; it < 4; ++it)
|
||||
aoffsets[it] = aoffsets[it-1] + lda;
|
||||
aoffset += 4 * lda;
|
||||
for (int i = 0; i < 4; ++i)
|
||||
c_arr[i] = vec_xl(0, (vector unsigned char*)aoffsets[i]);
|
||||
vector_permute_store(c_arr, 4, vecOffset);
|
||||
for (int i = 0; i<4; i++)
|
||||
aoffsets[i] = aoffsets[i]+lda;
|
||||
vecOffset +=64;
|
||||
}
|
||||
i = (cols >> 3);
|
||||
if (i > 0) {
|
||||
aoffsets[0] = aoffset;
|
||||
for (int it = 1; it < 8; ++it) {
|
||||
aoffsets[it] = aoffsets[it-1] + lda;
|
||||
}
|
||||
aoffset += 8 * lda;
|
||||
do {
|
||||
for (int it = 0; it < 8; ++it)
|
||||
c_arr[it] = vec_xl(0, (vector unsigned char*)aoffsets[it]);
|
||||
vector_permute_store(c_arr, 8, vecOffset);
|
||||
for (int it = 0; it < 8; ++it)
|
||||
aoffsets[it] = aoffsets[it] + 8*lda;
|
||||
vecOffset += 128;
|
||||
i--;
|
||||
} while(i > 0);
|
||||
}
|
||||
j--;
|
||||
} while(j > 0);
|
||||
}
|
||||
if (rows & 4) {
|
||||
aoffsets[0] = aoffset;
|
||||
for (int it = 1; it < 4; ++it)
|
||||
aoffsets[it] = aoffsets[it-1] + lda;
|
||||
aoffset += 4 * lda;
|
||||
if (cols == 4) {
|
||||
for (int it = 0; it < 4; ++it)
|
||||
c_arr[it] = vec_xl(0, (vector unsigned char*)aoffsets[it]);
|
||||
vector_permute_store(c_arr, 2, vecOffset);
|
||||
for (int it = 0; it< 4; it++)
|
||||
aoffsets[it] = aoffsets[it] + lda;
|
||||
vecOffset += 32;
|
||||
}
|
||||
i = (cols >> 3);
|
||||
if (i > 0) {
|
||||
do {
|
||||
for (int it = 0; it < 4; ++it)
|
||||
c_arr[it] = vec_xl(0, (vector unsigned char*)aoffsets[it]);
|
||||
vector_permute_store(c_arr, 4, vecOffset);
|
||||
for (int it = 0; it< 4; it++)
|
||||
aoffsets[it] = aoffsets[it] + 8*lda;
|
||||
vecOffset += 64;
|
||||
i--;
|
||||
} while(i > 0);
|
||||
}
|
||||
}
|
||||
if (rows & 3) {
|
||||
aoffsets[0] = aoffset;
|
||||
for (int it = 1; it < 4; ++it)
|
||||
aoffsets[it] = aoffsets[it-1] + lda;
|
||||
if (cols == 4) {
|
||||
switch(rows) {
|
||||
case 3: c_arr[2] = vec_xl(0, (vector unsigned char*)aoffsets[2]);
|
||||
case 2: c_arr[1] = vec_xl(0, (vector unsigned char*)aoffsets[1]);
|
||||
case 1: c_arr[0] = vec_xl(0, (vector unsigned char*)aoffsets[0]);
|
||||
break;
|
||||
}
|
||||
vector_permute_store(c_arr, 2, vecOffset);
|
||||
for (int it = 0; it< 4; it++)
|
||||
aoffsets[it] = aoffsets[it] + lda;
|
||||
vecOffset += 32;
|
||||
}
|
||||
i = (cols >> 3);
|
||||
if (i > 0) {
|
||||
do {
|
||||
switch(rows) {
|
||||
case 3: c_arr[2] = vec_xl(0, (vector unsigned char*)aoffsets[2]);
|
||||
case 2: c_arr[1] = vec_xl(0, (vector unsigned char*)aoffsets[1]);
|
||||
case 1: c_arr[0] = vec_xl(0, (vector unsigned char*)aoffsets[0]);
|
||||
break;
|
||||
}
|
||||
vector_permute_store(c_arr, 4, vecOffset);
|
||||
for (int it = 0; it <4; it++)
|
||||
aoffsets[it] = aoffsets[it] + 8* lda;
|
||||
vecOffset += 64;
|
||||
i--;
|
||||
} while(i > 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||||
int64_t mc, nc, mp, np;
|
||||
int m_rem = MIN(m - m0, 8);
|
||||
int n_rem = MIN(n - n0, 8);
|
||||
|
||||
if (m_rem >= 8 && n_rem >= 8) {
|
||||
mc = 8;
|
||||
nc = 8;
|
||||
gemm<8,8>(m0, m, n0, n);
|
||||
} else if (m_rem >= 4 && n_rem >= 8) {
|
||||
mc = 4;
|
||||
nc = 8;
|
||||
gemm<4,8>(m0, m, n0, n);
|
||||
} else if (m_rem >=8 && n_rem >=4){
|
||||
mc = 8;
|
||||
nc = 4;
|
||||
gemm<8,4>(m0, m, n0, n);
|
||||
} else if ((m_rem < 4) && (n_rem >= 8)) {
|
||||
nc = 8;
|
||||
switch(m_rem) {
|
||||
case 1:
|
||||
mc = 1;
|
||||
gemm_Mx8<1>(m0, m, n0, n);
|
||||
break;
|
||||
case 2:
|
||||
mc = 2;
|
||||
gemm_Mx8<2>(m0, m, n0, n);
|
||||
break;
|
||||
case 3:
|
||||
mc = 3;
|
||||
gemm_Mx8<3>(m0, m, n0, n);
|
||||
break;
|
||||
default:
|
||||
return;
|
||||
}
|
||||
} else if (m_rem >= 4 && n_rem >= 4) {
|
||||
mc = 4;
|
||||
nc = 4;
|
||||
gemm_small<4, 4>(m0, m, n0, n);
|
||||
} else if ((m_rem > 4) && (n_rem < 4)) {
|
||||
mc = 4;
|
||||
switch(n_rem) {
|
||||
case 1:
|
||||
nc = 1;
|
||||
gemm_small<4, 1>(m0, m, n0, n);
|
||||
break;
|
||||
case 2:
|
||||
nc = 2;
|
||||
gemm_small<4, 2>(m0, m, n0, n);
|
||||
break;
|
||||
case 3:
|
||||
nc = 3;
|
||||
gemm_small<4, 3>(m0, m, n0, n);
|
||||
break;
|
||||
|
||||
default:
|
||||
return;
|
||||
}
|
||||
} else {
|
||||
switch((m_rem << 4) | n_rem) {
|
||||
case 0x43:
|
||||
mc = 4;
|
||||
nc = 3;
|
||||
gemm_small<4, 3>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x42:
|
||||
mc = 4;
|
||||
nc = 2;
|
||||
gemm_small<4, 2>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x41:
|
||||
mc = 4;
|
||||
nc = 1;
|
||||
gemm_small<4, 1>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x34:
|
||||
mc = 3;
|
||||
nc = 4;
|
||||
gemm_small<3, 4>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x33:
|
||||
mc = 3;
|
||||
nc = 3;
|
||||
gemm_small<3, 3>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x32:
|
||||
mc = 3;
|
||||
nc = 2;
|
||||
gemm_small<3, 2>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x31:
|
||||
mc = 3;
|
||||
nc = 1;
|
||||
gemm_small<3, 1>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x24:
|
||||
mc = 2;
|
||||
nc = 4;
|
||||
gemm_small<2,4>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x23:
|
||||
mc = 2;
|
||||
nc = 3;
|
||||
gemm_small<2, 3>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x22:
|
||||
mc = 2;
|
||||
nc = 2;
|
||||
gemm_small<2, 2>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x21:
|
||||
mc = 2;
|
||||
nc = 1;
|
||||
gemm_small<2, 1>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x14:
|
||||
mc = 1;
|
||||
nc = 4;
|
||||
gemm_small<1, 4>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x13:
|
||||
mc = 1;
|
||||
nc = 3;
|
||||
gemm_small<1, 3>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x12:
|
||||
mc = 1;
|
||||
nc = 2;
|
||||
gemm_small<1, 2>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x11:
|
||||
mc = 1;
|
||||
nc = 1;
|
||||
gemm_small<1, 1>(m0, m, n0, n);
|
||||
break;
|
||||
default:
|
||||
return;
|
||||
}
|
||||
}
|
||||
mp = m0 + (m - m0) / mc * mc;
|
||||
np = n0 + (n - n0) / nc * nc;
|
||||
mnpack(mp, m, n0, np);
|
||||
mnpack(m0, m, np, n);
|
||||
}
|
||||
|
||||
void KERNEL_4x8(int64_t ii, int64_t jj) {
|
||||
vec_t vec_A[4], vec_B[8] , vec_C[4];
|
||||
acc_t acc_0, acc_1;
|
||||
__builtin_mma_xxsetaccz(&acc_0);
|
||||
__builtin_mma_xxsetaccz(&acc_1);
|
||||
for (int l = 0; l < k; l+=8) {
|
||||
packNormal((A+(ii*lda)+l), lda, 4, 8, (uint8_t*)vec_A);
|
||||
packNormal((B+(jj*ldb)+l), ldb, 8, 8, (uint8_t*)vec_B);
|
||||
for (int x = 0; x < 4; x++) {
|
||||
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
|
||||
__builtin_mma_xvbf16ger2pp(&acc_1, vec_A[x], vec_B[x+4]);
|
||||
}
|
||||
}
|
||||
SAVE_ACC(&acc_0, ii, jj);
|
||||
SAVE_ACC(&acc_1, ii, jj+4);
|
||||
}
|
||||
|
||||
void KERNEL_8x4(int64_t ii, int64_t jj) {
|
||||
vec_t vec_A[8], vec_B[4] , vec_C[4];
|
||||
acc_t acc_0, acc_1;
|
||||
__builtin_mma_xxsetaccz(&acc_0);
|
||||
__builtin_mma_xxsetaccz(&acc_1);
|
||||
for (int l = 0; l < k; l+=8) {
|
||||
packNormal((A+(ii*lda)+l), lda, 8, 8, (uint8_t*)vec_A);
|
||||
packNormal((B+(jj*ldb)+l), ldb, 8, 4, (uint8_t*)vec_B);
|
||||
for (int x = 0; x < 4; x++) {
|
||||
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
|
||||
__builtin_mma_xvbf16ger2pp(&acc_1, vec_A[x+4], vec_B[x]);
|
||||
}
|
||||
}
|
||||
SAVE_ACC(&acc_0, ii, jj);
|
||||
SAVE_ACC(&acc_1, ii+4, jj);
|
||||
}
|
||||
|
||||
|
||||
void KERNEL_8x8(int64_t ii, int64_t jj) {
|
||||
vec_t vec_A[8], vec_B[8], vec_C[4];
|
||||
acc_t acc_0, acc_1, acc_2, acc_3;
|
||||
__builtin_mma_xxsetaccz(&acc_0);
|
||||
__builtin_mma_xxsetaccz(&acc_1);
|
||||
__builtin_mma_xxsetaccz(&acc_2);
|
||||
__builtin_mma_xxsetaccz(&acc_3);
|
||||
for (int l = 0; l < k; l+=8) {
|
||||
packNormal(A+(ii*lda)+l, lda, 8, 8, (uint8_t*)vec_A);
|
||||
packNormal(B+(jj*ldb)+l, ldb, 8, 8, (uint8_t*)vec_B);
|
||||
for (int x = 0; x < 4; x++) {
|
||||
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
|
||||
__builtin_mma_xvbf16ger2pp(&acc_1, (vec_t)vec_A[x], (vec_t)vec_B[x+4]);
|
||||
__builtin_mma_xvbf16ger2pp(&acc_2, (vec_t)vec_A[x+4], (vec_t)vec_B[x]);
|
||||
__builtin_mma_xvbf16ger2pp(&acc_3, (vec_t)vec_A[x+4], (vec_t)vec_B[x+4]);
|
||||
}
|
||||
}
|
||||
|
||||
SAVE_ACC(&acc_0, ii, jj);
|
||||
SAVE_ACC(&acc_1, ii, jj+4);
|
||||
SAVE_ACC(&acc_2, ii+4, jj);
|
||||
SAVE_ACC(&acc_3, ii+4, jj+4);
|
||||
}
|
||||
|
||||
template<int RM, int RN>
|
||||
void gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||||
int64_t ytiles = (m - m0) / RM;
|
||||
int64_t xtiles = (n - n0) / RN;
|
||||
int64_t tiles = xtiles * ytiles;
|
||||
int64_t duty = (tiles + nth - 1) / nth;
|
||||
int64_t start = duty * ith;
|
||||
int64_t end = start + duty;
|
||||
if (end > tiles)
|
||||
end = tiles;
|
||||
for (int64_t job = start; job < end; ++job) {
|
||||
int64_t ii = m0 + job / xtiles * RM;
|
||||
int64_t jj = n0 + job % xtiles * RN;
|
||||
vec_t vec_C[4];
|
||||
acc_t acc_0;
|
||||
__builtin_mma_xxsetaccz(&acc_0);
|
||||
vec_t vec_A[2], vec_B[2];
|
||||
for (int l=0; l<k; l+=4) {
|
||||
packNormal(A+(ii*lda)+l, lda, RM, 4, (uint8_t*)vec_A);
|
||||
packNormal(B+(jj*ldb)+l, ldb, RN, 4, (uint8_t*)vec_B);
|
||||
for (int x = 0; x<2; x++) {
|
||||
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
|
||||
}
|
||||
}
|
||||
__builtin_mma_disassemble_acc(vec_C, &acc_0);
|
||||
for (int I = 0; I < RM; I++) {
|
||||
for (int J = 0; J < RN; J++) {
|
||||
*((TC*)(C+ii+((jj+J)*ldc)+I)) = *((TC*)&vec_C[I]+J);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<int RM>
|
||||
void gemm_Mx8(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||||
int RN = 8;
|
||||
int64_t ytiles = (m - m0) / RM;
|
||||
int64_t xtiles = (n - n0) / RN;
|
||||
int64_t tiles = xtiles * ytiles;
|
||||
int64_t duty = (tiles + nth - 1) / nth;
|
||||
int64_t start = duty * ith;
|
||||
int64_t end = start + duty;
|
||||
if (end > tiles)
|
||||
end = tiles;
|
||||
for (int64_t job = start; job < end; ++job) {
|
||||
int64_t ii = m0 + job / xtiles * RM;
|
||||
int64_t jj = n0 + job % xtiles * RN;
|
||||
vec_t vec_C[4];
|
||||
acc_t acc_0, acc_1;
|
||||
__builtin_mma_xxsetaccz(&acc_0);
|
||||
__builtin_mma_xxsetaccz(&acc_1);
|
||||
vec_t vec_A[4], vec_B[8];
|
||||
for (int l=0; l<k; l+=8) {
|
||||
packNormal(A+(ii*lda)+l, lda, RM, 8, (uint8_t*)vec_A);
|
||||
packNormal(B+(jj*ldb)+l, ldb, RN, 8, (uint8_t*)vec_B);
|
||||
for (int x = 0; x<4; x++) {
|
||||
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
|
||||
__builtin_mma_xvbf16ger2pp(&acc_1, vec_A[x], vec_B[x+4]);
|
||||
}
|
||||
}
|
||||
__builtin_mma_disassemble_acc(vec_C, &acc_0);
|
||||
for (int I = 0; I < RM; I++) {
|
||||
for (int J = 0; J < 4; J++) {
|
||||
*((TC*)(C+ii+((jj+J)*ldc)+I)) = *((TC*)&vec_C[I]+J);
|
||||
}
|
||||
}
|
||||
__builtin_mma_disassemble_acc(vec_C, &acc_1);
|
||||
for (int I = 0; I < RM; I++) {
|
||||
for (int J = 0; J < 4; J++) {
|
||||
*((TC*)(C+ii+((jj+4+J)*ldc)+I)) = *((TC*)&vec_C[I]+J);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<int RM, int RN>
|
||||
inline void kernel(int64_t ii, int64_t jj) {
|
||||
if constexpr(RM == 4 && RN == 8) {
|
||||
KERNEL_4x8(ii,jj);
|
||||
} else if constexpr(RM == 8 && RN == 8) {
|
||||
KERNEL_8x8(ii,jj);
|
||||
} else if constexpr(RM == 8 && RN == 4) {
|
||||
KERNEL_8x4(ii,jj);
|
||||
} else {
|
||||
static_assert(false, "RN/RM values not supported");
|
||||
}
|
||||
}
|
||||
|
||||
template <int RM, int RN>
|
||||
NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||||
int64_t ytiles = (m - m0) / RM;
|
||||
int64_t xtiles = (n - n0) / RN;
|
||||
int64_t tiles = xtiles * ytiles;
|
||||
int64_t duty = (tiles + nth - 1) / nth;
|
||||
int64_t start = duty * ith;
|
||||
int64_t end = start + duty;
|
||||
if (end > tiles)
|
||||
end = tiles;
|
||||
for (int64_t job = start; job < end; ++job) {
|
||||
int64_t ii = m0 + job / xtiles * RM;
|
||||
int64_t jj = n0 + job % xtiles * RN;
|
||||
kernel<RM, RN>(ii, jj);
|
||||
}
|
||||
}
|
||||
|
||||
const TA *const A;
|
||||
const TB *const B;
|
||||
TC *C;
|
||||
const int64_t k;
|
||||
const int64_t lda;
|
||||
const int64_t ldb;
|
||||
const int64_t ldc;
|
||||
const int ith;
|
||||
const int nth;
|
||||
};
|
||||
|
||||
template <typename TA, typename TB, typename TC>
|
||||
class tinyBLAS_Q0_PPC {
|
||||
public:
|
||||
@@ -2202,6 +2689,7 @@ class tinyBLAS_PPC {
|
||||
boffset = vec;
|
||||
j = (rows >> 3);
|
||||
if (j > 0) {
|
||||
|
||||
do {
|
||||
aoffset1 = aoffset;
|
||||
aoffset2 = aoffset1 + lda;
|
||||
@@ -2875,9 +3363,22 @@ bool llamafile_sgemm(const struct ggml_compute_params * params, int64_t m, int64
|
||||
(float *)C, ldc};
|
||||
return tb.matmul(m, n);
|
||||
}
|
||||
#elif defined(__MMA__)
|
||||
if ((k % 8))
|
||||
return false;
|
||||
if(Btype == GGML_TYPE_BF16) {
|
||||
tinyBLAS_BF16_PPC<ggml_bf16_t, ggml_bf16_t, float> tb{ k,
|
||||
(const ggml_bf16_t *)A, lda,
|
||||
(const ggml_bf16_t *)B, ldb,
|
||||
(float *)C, ldc,
|
||||
params->ith, params->nth};
|
||||
tb.matmul(m, n);
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
|
||||
case GGML_TYPE_F16: {
|
||||
#if defined(__AVX512F__)
|
||||
if (Btype == GGML_TYPE_F16) {
|
||||
|
||||
@@ -12,12 +12,30 @@ if (CUDAToolkit_FOUND)
|
||||
# 61 == Pascal, __dp4a instruction (per-byte integer dot product)
|
||||
# 70 == V100, FP16 tensor cores
|
||||
# 75 == Turing, int8 tensor cores
|
||||
# 80 == Ampere, asynchronous data loading, faster tensor core instructions
|
||||
# 86 == RTX 3000, needs CUDA v11.1
|
||||
# 89 == RTX 4000, needs CUDA v11.8
|
||||
#
|
||||
# XX-virtual == compile CUDA code as PTX, do JIT compilation to binary code on first run
|
||||
# XX-real == compile CUDA code as device code for this specific architecture
|
||||
# no suffix == compile as both PTX and device code
|
||||
#
|
||||
# The default behavior for a non-native is to build virtual architectures as needed to cover all features needed
|
||||
# for best performance and to also build real architectures for the most commonly used GPUs.
|
||||
if (GGML_NATIVE AND CUDAToolkit_VERSION VERSION_GREATER_EQUAL "11.6" AND CMAKE_VERSION VERSION_GREATER_EQUAL "3.24")
|
||||
set(CMAKE_CUDA_ARCHITECTURES "native")
|
||||
elseif(GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
|
||||
set(CMAKE_CUDA_ARCHITECTURES "60;61;70;75;80")
|
||||
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "11.8")
|
||||
set(CMAKE_CUDA_ARCHITECTURES "60-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real;89-real")
|
||||
else()
|
||||
set(CMAKE_CUDA_ARCHITECTURES "60-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real")
|
||||
endif()
|
||||
else()
|
||||
set(CMAKE_CUDA_ARCHITECTURES "50;61;70;75;80")
|
||||
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "11.8")
|
||||
set(CMAKE_CUDA_ARCHITECTURES "50-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real;89-real")
|
||||
else()
|
||||
set(CMAKE_CUDA_ARCHITECTURES "50-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real")
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")
|
||||
@@ -133,6 +151,7 @@ if (CUDAToolkit_FOUND)
|
||||
COMMAND ${NVCC_CMD} -Xcompiler "-dumpfullversion -dumpversion"
|
||||
OUTPUT_VARIABLE CUDA_CCVER
|
||||
ERROR_QUIET
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
)
|
||||
else()
|
||||
if (CUDA_CCFULLVER MATCHES Apple)
|
||||
@@ -143,7 +162,7 @@ if (CUDAToolkit_FOUND)
|
||||
string(REGEX REPLACE "^.* version ([0-9.]*).*$" "\\1" CUDA_CCVER ${CUDA_CCFULLVER})
|
||||
endif()
|
||||
|
||||
message("-- CUDA host compiler is ${CUDA_CCID} ${CUDA_CCVER}")
|
||||
message(STATUS "CUDA host compiler is ${CUDA_CCID} ${CUDA_CCVER}")
|
||||
|
||||
ggml_get_flags(${CUDA_CCID} ${CUDA_CCVER})
|
||||
list(APPEND CUDA_CXX_FLAGS ${CXX_FLAGS} ${GF_CXX_FLAGS}) # This is passed to -Xcompiler later
|
||||
|
||||
@@ -719,6 +719,7 @@ void launch_fattn(
|
||||
size_t nb23 = V->nb[3];
|
||||
|
||||
if (need_f16_K && K->type != GGML_TYPE_F16) {
|
||||
GGML_ASSERT(ggml_is_contiguously_allocated(K));
|
||||
K_f16.alloc(ggml_nelements(K));
|
||||
to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(K->type);
|
||||
to_fp16(K_data, K_f16.ptr, ggml_nelements(K), main_stream);
|
||||
@@ -733,6 +734,7 @@ void launch_fattn(
|
||||
}
|
||||
|
||||
if (need_f16_V && V->type != GGML_TYPE_F16) {
|
||||
GGML_ASSERT(ggml_is_contiguously_allocated(V));
|
||||
V_f16.alloc(ggml_nelements(V));
|
||||
to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(V->type);
|
||||
to_fp16(V_data, V_f16.ptr, ggml_nelements(V), main_stream);
|
||||
|
||||
@@ -555,8 +555,8 @@ static enum ggml_status ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer
|
||||
|
||||
if (ggml_is_quantized(tensor->type) && tensor->view_src == nullptr && ggml_backend_buffer_get_usage(buffer) != GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
|
||||
// initialize padding to 0 to avoid possible NaN values
|
||||
size_t original_size = ggml_nbytes(tensor);
|
||||
size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
|
||||
const size_t original_size = ggml_nbytes(tensor);
|
||||
const size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
|
||||
|
||||
if (padded_size > original_size) {
|
||||
ggml_cuda_set_device(ctx->device);
|
||||
@@ -679,6 +679,7 @@ static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_t
|
||||
|
||||
if (ggml_is_quantized(tensor->type)) {
|
||||
if (ne0 % MATRIX_ROW_PADDING != 0) {
|
||||
GGML_ASSERT(tensor->nb[0] == ggml_element_size(tensor));
|
||||
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
|
||||
}
|
||||
}
|
||||
@@ -800,6 +801,7 @@ static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buff
|
||||
|
||||
static enum ggml_status ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
||||
GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
|
||||
GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
|
||||
|
||||
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
|
||||
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
|
||||
@@ -851,6 +853,7 @@ static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buff
|
||||
// split tensors must always be set in their entirety at once
|
||||
GGML_ASSERT(offset == 0);
|
||||
GGML_ASSERT(size == ggml_nbytes(tensor));
|
||||
GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
|
||||
|
||||
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
|
||||
|
||||
@@ -889,6 +892,7 @@ static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buff
|
||||
// split tensors must always be set in their entirety at once
|
||||
GGML_ASSERT(offset == 0);
|
||||
GGML_ASSERT(size == ggml_nbytes(tensor));
|
||||
GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
|
||||
|
||||
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
|
||||
|
||||
@@ -970,6 +974,7 @@ static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buf
|
||||
|
||||
static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
|
||||
ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
|
||||
GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
|
||||
|
||||
size_t total_size = 0;
|
||||
|
||||
@@ -1531,6 +1536,8 @@ static void ggml_cuda_op_mul_mat(
|
||||
|
||||
// If src0 is on a temporary compute buffer (partial offloading) there may be some padding that needs to be cleared:
|
||||
if (ne00 % MATRIX_ROW_PADDING != 0 && ggml_is_quantized(src0->type) && ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE && src0->view_src == nullptr) {
|
||||
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
|
||||
GGML_ASSERT(!src0->view_src);
|
||||
const size_t nbytes_data = ggml_row_size(src0->type, (dev[id].row_high - dev[id].row_low)*ne00);
|
||||
const size_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING);
|
||||
CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd + nbytes_data, 0, nbytes_padding, stream));
|
||||
@@ -2062,9 +2069,11 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
|
||||
}
|
||||
|
||||
ggml_tensor src0_slice = *src0;
|
||||
src0_slice.ne[2] = 1;
|
||||
src0_slice.nb[3] = src0_slice.nb[2];
|
||||
src0_slice.data = (char *) src0->data + i02*nb02;
|
||||
src0_slice.ne[2] = 1;
|
||||
src0_slice.nb[3] = src0_slice.nb[2];
|
||||
src0_slice.op = GGML_OP_VIEW;
|
||||
src0_slice.view_src = dst->src[0]; // non-const pointer to src0
|
||||
src0_slice.data = (char *) src0->data + i02*nb02;
|
||||
|
||||
ggml_tensor src1_slice;
|
||||
memset(&src1_slice, 0, sizeof(src1_slice));
|
||||
|
||||
@@ -89,6 +89,17 @@ void ggml_cuda_mul_mat_q(
|
||||
const float * src1_d = (const float *) src1->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
// If src0 is a temporary compute buffer, clear any potential padding.
|
||||
if (ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
|
||||
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
|
||||
GGML_ASSERT(!src0->view_src);
|
||||
const size_t size_data = ggml_nbytes(src0);
|
||||
const size_t size_alloc = ggml_backend_buffer_get_alloc_size(src0->buffer, src0);
|
||||
if (size_alloc > size_data) {
|
||||
CUDA_CHECK(cudaMemsetAsync((char *) src0->data + size_data, 0, size_alloc - size_data, stream));
|
||||
}
|
||||
}
|
||||
|
||||
const int64_t ne10_padded = GGML_PAD(ne10, MATRIX_ROW_PADDING);
|
||||
|
||||
const int64_t s01 = src0->nb[1] / ts_src0;
|
||||
@@ -118,7 +129,7 @@ void ggml_cuda_mul_mat_q(
|
||||
|
||||
const mmq_args args = {
|
||||
src0_d, src0->type, (const int *) src1_q8_1.ptr, nullptr, nullptr, dst_d,
|
||||
ne00, ne01, ne1, s01, s1,
|
||||
ne00, ne01, ne1, s01, ne11, s1,
|
||||
ne02, ne12, s02, s12, s2,
|
||||
ne03, ne13, s03, s13, s3,
|
||||
use_stream_k};
|
||||
@@ -202,7 +213,7 @@ void ggml_cuda_mul_mat_q(
|
||||
// Note that ne02 is used instead of ne12 because the number of y channels determines the z dimension of the CUDA grid.
|
||||
const mmq_args args = {
|
||||
src0_d, src0->type, (const int *) src1_q8_1.ptr, ids_dst_dev, expert_bounds_dev, dst_d,
|
||||
ne00, ne01, ne_get_rows, s01, s1,
|
||||
ne00, ne01, ne_get_rows, s01, ne_get_rows, s1,
|
||||
ne02, ne02, s02, s12, s2,
|
||||
ne03, ne13, s03, s13, s3,
|
||||
use_stream_k};
|
||||
@@ -241,7 +252,7 @@ void ggml_cuda_op_mul_mat_q(
|
||||
ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA && src1_ncols == ne11;
|
||||
const mmq_args args = {
|
||||
src0_dd_i, src0->type, (const int *) src1_ddq_i, nullptr, nullptr, dst_dd_i,
|
||||
ne00, row_diff, src1_ncols, stride01, nrows_dst,
|
||||
ne00, row_diff, src1_ncols, stride01, ne11, nrows_dst,
|
||||
1, 1, 0, 0, 0,
|
||||
1, 1, 0, 0, 0,
|
||||
use_stream_k};
|
||||
|
||||
@@ -2522,7 +2522,7 @@ template <ggml_type type, int mmq_x, int nwarps, bool need_check, bool fixup>
|
||||
static __device__ __forceinline__ void mul_mat_q_process_tile(
|
||||
const char * __restrict__ x, const int offset_x, const int * __restrict__ y,
|
||||
const int * __restrict__ ids_dst, float * __restrict__ dst, float * __restrict__ tmp_fixup,
|
||||
const int nrows_x, const int ncols_y, const int stride_row_x, const int stride_col_dst,
|
||||
const int stride_row_x, const int ncols_y, const int stride_col_dst,
|
||||
const int tile_x_max_i, const int tile_y_max_j, const int kb0_start, const int kb0_stop) {
|
||||
|
||||
constexpr int qk = ggml_cuda_type_traits<type>::qk;
|
||||
@@ -2606,7 +2606,7 @@ template <ggml_type type, int mmq_x, int nwarps, bool need_check>
|
||||
static __global__ void mul_mat_q(
|
||||
const char * __restrict__ x, const int * __restrict__ y, const int32_t * __restrict__ ids_dst,
|
||||
const int32_t * __restrict__ expert_bounds, float * __restrict__ dst, float * __restrict__ tmp_fixup,
|
||||
const int ncols_x, const int nrows_x, const int ncols_y, const int stride_row_x, const int stride_col_dst,
|
||||
const int ncols_x, const int nrows_x, const int ncols_dst, const int stride_row_x, const int ncols_y, const int stride_col_dst,
|
||||
const int channel_ratio, const int nchannels_y, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
|
||||
const int sample_ratio, const int nsamples_y, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
|
||||
|
||||
@@ -2619,8 +2619,8 @@ static __global__ void mul_mat_q(
|
||||
constexpr int qk = ggml_cuda_type_traits<type>::qk;
|
||||
constexpr int mmq_y = get_mmq_y_device();
|
||||
|
||||
const int ntx = (ncols_y + mmq_x - 1) / mmq_x; // Number of tiles x
|
||||
const int nty = (nrows_x + mmq_y - 1) / mmq_y; // Number of tiles y
|
||||
const int ntx = (ncols_dst + mmq_x - 1) / mmq_x; // Number of tiles x
|
||||
const int nty = (nrows_x + mmq_y - 1) / mmq_y; // Number of tiles y
|
||||
|
||||
// Initialize the ids for writing back data with just the index.
|
||||
// For regular matrix multiplications this is never changed.
|
||||
@@ -2636,6 +2636,7 @@ static __global__ void mul_mat_q(
|
||||
|
||||
ids_dst_shared[j] = j;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
// On AMD or old CUDA the performance with stream-k was worse, use conventional tiling instead:
|
||||
#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < GGML_CUDA_CC_VOLTA
|
||||
@@ -2647,8 +2648,8 @@ static __global__ void mul_mat_q(
|
||||
|
||||
// Defaults for regular matrix multiplication:
|
||||
int col_low = 0;
|
||||
int col_high = ncols_y;
|
||||
int col_diff = ncols_y;
|
||||
int col_high = ncols_dst;
|
||||
int col_diff = ncols_dst;
|
||||
int offset_y = wt*stride_sample_y + zt*stride_channel_y;
|
||||
int offset_dst = wt*stride_sample_dst + zt*stride_channel_dst + jt*mmq_x*stride_col_dst;
|
||||
|
||||
@@ -2664,6 +2665,7 @@ static __global__ void mul_mat_q(
|
||||
return;
|
||||
}
|
||||
|
||||
// __syncthreads(); // There is no previous tile that could cause a race condition.
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < mmq_x; j0 += nwarps*WARP_SIZE) {
|
||||
const int j = j0 + threadIdx.y*WARP_SIZE + threadIdx.x;
|
||||
@@ -2674,6 +2676,7 @@ static __global__ void mul_mat_q(
|
||||
|
||||
ids_dst_shared[j] = ids_dst[col_low + jt*mmq_x + j];
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
offset_y += (col_low + jt*mmq_x)*(sizeof(block_q8_1_mmq)/sizeof(int));
|
||||
@@ -2686,7 +2689,7 @@ static __global__ void mul_mat_q(
|
||||
|
||||
constexpr bool fixup = false;
|
||||
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
|
||||
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, nrows_x, ncols_y, stride_row_x, stride_col_dst,
|
||||
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, stride_row_x, ncols_y, stride_col_dst,
|
||||
tile_x_max_i, tile_y_max_j, 0, ncols_x/qk);
|
||||
return;
|
||||
}
|
||||
@@ -2717,8 +2720,8 @@ static __global__ void mul_mat_q(
|
||||
|
||||
// Defaults for regular matrix multiplication:
|
||||
int col_low = 0;
|
||||
int col_high = ncols_y;
|
||||
int col_diff = ncols_y;
|
||||
int col_high = ncols_dst;
|
||||
int col_diff = ncols_dst;
|
||||
int offset_y = wt*stride_sample_y + zt*stride_channel_y;
|
||||
int offset_dst = wt*stride_sample_dst + zt*stride_channel_dst + jt*mmq_x*stride_col_dst;
|
||||
|
||||
@@ -2740,6 +2743,7 @@ static __global__ void mul_mat_q(
|
||||
continue;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < mmq_x; j0 += nwarps*WARP_SIZE) {
|
||||
const int j = j0 + threadIdx.y*WARP_SIZE + threadIdx.x;
|
||||
@@ -2750,6 +2754,7 @@ static __global__ void mul_mat_q(
|
||||
|
||||
ids_dst_shared[j] = ids_dst[col_low + jt*mmq_x + j];
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
offset_y += (col_low + jt*mmq_x)*(sizeof(block_q8_1_mmq)/sizeof(int));
|
||||
@@ -2762,7 +2767,7 @@ static __global__ void mul_mat_q(
|
||||
|
||||
constexpr bool fixup = false; // All but (potentially) the last iterations write their data to dst rather than the fixup buffer.
|
||||
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
|
||||
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, nrows_x, ncols_y, stride_row_x, stride_col_dst,
|
||||
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, stride_row_x, ncols_y, stride_col_dst,
|
||||
tile_x_max_i, tile_y_max_j, kb0_start, kb0_stop);
|
||||
|
||||
kbc += blocks_per_ne00;
|
||||
@@ -2787,8 +2792,8 @@ static __global__ void mul_mat_q(
|
||||
|
||||
// Defaults for regular matrix multiplication:
|
||||
int col_low = 0;
|
||||
int col_high = ncols_y;
|
||||
int col_diff = ncols_y;
|
||||
int col_high = ncols_dst;
|
||||
int col_diff = ncols_dst;
|
||||
int offset_y = wt*stride_sample_y + zt*stride_channel_y;
|
||||
int offset_dst = wt*stride_sample_dst + zt*stride_channel_dst + jt*mmq_x*stride_col_dst;
|
||||
|
||||
@@ -2805,6 +2810,7 @@ static __global__ void mul_mat_q(
|
||||
}
|
||||
|
||||
// The memory layout for the fixup buffer is always contiguous, therefore reset ids:
|
||||
__syncthreads();
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < mmq_x; j0 += nwarps*WARP_SIZE) {
|
||||
const int j = j0 + threadIdx.y*WARP_SIZE + threadIdx.x;
|
||||
@@ -2815,6 +2821,7 @@ static __global__ void mul_mat_q(
|
||||
|
||||
ids_dst_shared[j] = j;
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
offset_y += (col_low + jt*mmq_x)*(sizeof(block_q8_1_mmq)/sizeof(int));
|
||||
@@ -2827,7 +2834,7 @@ static __global__ void mul_mat_q(
|
||||
|
||||
constexpr bool fixup = true; // Last index writes its data to fixup buffer to avoid data races with other blocks.
|
||||
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
|
||||
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, nrows_x, ncols_y, stride_row_x, stride_col_dst,
|
||||
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, stride_row_x, ncols_y, stride_col_dst,
|
||||
tile_x_max_i, tile_y_max_j, kb0_start, kb0_stop);
|
||||
}
|
||||
|
||||
@@ -2835,7 +2842,7 @@ static __global__ void mul_mat_q(
|
||||
template <ggml_type type, int mmq_x, int nwarps, bool need_check>
|
||||
static __global__ void mul_mat_q_stream_k_fixup(
|
||||
const int32_t * ids_dst, const int32_t * expert_bounds, float * __restrict__ dst, const float * __restrict__ tmp_last_tile,
|
||||
const int ncols_x, const int nrows_x, const int ncols_y, const int stride_col_dst,
|
||||
const int ncols_x, const int nrows_x, const int ncols_dst, const int stride_col_dst,
|
||||
const int nchannels_y, const int stride_channel_dst, const int nsamples_y, const int stride_sample_dst) {
|
||||
constexpr int mmq_y = get_mmq_y_device();
|
||||
constexpr int qk = ggml_cuda_type_traits<type>::qk;
|
||||
@@ -2844,8 +2851,8 @@ static __global__ void mul_mat_q_stream_k_fixup(
|
||||
|
||||
float sum[mmq_x*mmq_y / (nwarps*WARP_SIZE)] = {0.0f};
|
||||
|
||||
const int ntx = (ncols_y + mmq_x - 1) / mmq_x;
|
||||
const int nty = (nrows_x + mmq_y - 1) / mmq_y;
|
||||
const int ntx = (ncols_dst + mmq_x - 1) / mmq_x;
|
||||
const int nty = (nrows_x + mmq_y - 1) / mmq_y;
|
||||
|
||||
const int bidx0 = blockIdx.x;
|
||||
|
||||
@@ -2918,8 +2925,8 @@ static __global__ void mul_mat_q_stream_k_fixup(
|
||||
const int offset_dst = wt*stride_sample_dst + zt*stride_channel_dst + jt*mmq_x*stride_col_dst + it*mmq_y;
|
||||
dst += offset_dst;
|
||||
|
||||
const int i_max = nrows_x - it*mmq_y - 1;
|
||||
const int j_max = ncols_y - jt*mmq_x - 1;
|
||||
const int i_max = nrows_x - it*mmq_y - 1;
|
||||
const int j_max = ncols_dst - jt*mmq_x - 1;
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
|
||||
@@ -2951,6 +2958,7 @@ static __global__ void mul_mat_q_stream_k_fixup(
|
||||
for (int j = threadIdx.y*WARP_SIZE + threadIdx.x; j < mmq_x; j += nwarps*WARP_SIZE) {
|
||||
ids_dst_shared[j] = ids_dst[col_low + j];
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
const int offset_dst = it*mmq_y;
|
||||
dst += offset_dst;
|
||||
@@ -2981,7 +2989,7 @@ static __global__ void mul_mat_q_stream_k_fixup(
|
||||
|
||||
struct mmq_args {
|
||||
const char * x; ggml_type type_x; const int * y; const int32_t * ids_dst; const int32_t * expert_bounds; float * dst;
|
||||
int64_t ncols_x; int64_t nrows_x; int64_t ncols_y; int64_t stride_row_x; int64_t nrows_dst;
|
||||
int64_t ncols_x; int64_t nrows_x; int64_t ncols_dst; int64_t stride_row_x; int64_t ncols_y; int64_t nrows_dst;
|
||||
int64_t nchannels_x; int64_t nchannels_y; int64_t stride_channel_x; int64_t stride_channel_y; int64_t stride_channel_dst;
|
||||
int64_t nsamples_x; int64_t nsamples_y; int64_t stride_sample_x; int64_t stride_sample_y; int64_t stride_sample_dst;
|
||||
bool use_stream_k;
|
||||
@@ -3017,8 +3025,8 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
|
||||
}
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
|
||||
|
||||
const int nty = (args.nrows_x + mmq_y - 1) / mmq_y;
|
||||
const int ntx = (args.ncols_y + mmq_x - 1) / mmq_x;
|
||||
const int nty = (args.nrows_x + mmq_y - 1) / mmq_y;
|
||||
const int ntx = (args.ncols_dst + mmq_x - 1) / mmq_x;
|
||||
const int ntzw = args.nchannels_y * args.nsamples_y;
|
||||
const dim3 block_nums_xy_tiling(nty, ntx, ntzw);
|
||||
|
||||
@@ -3032,14 +3040,14 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
|
||||
constexpr bool need_check = false;
|
||||
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, nbytes_shared, stream>>>
|
||||
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, nullptr,
|
||||
args.ncols_x, args.nrows_x, args.ncols_y, args.stride_row_x, args.nrows_dst,
|
||||
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
|
||||
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
|
||||
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
|
||||
} else {
|
||||
constexpr bool need_check = true;
|
||||
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, nbytes_shared, stream>>>
|
||||
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, nullptr,
|
||||
args.ncols_x, args.nrows_x, args.ncols_y, args.stride_row_x, args.nrows_dst,
|
||||
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
|
||||
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
|
||||
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
|
||||
}
|
||||
@@ -3060,7 +3068,7 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
|
||||
|
||||
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_stream_k, block_dims, nbytes_shared, stream>>>
|
||||
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr,
|
||||
args.ncols_x, args.nrows_x, args.ncols_y, args.stride_row_x, args.nrows_dst,
|
||||
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
|
||||
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
|
||||
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
|
||||
|
||||
@@ -3069,14 +3077,14 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
|
||||
}
|
||||
|
||||
mul_mat_q_stream_k_fixup<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_stream_k, block_dims, 0, stream>>>
|
||||
(args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_y,
|
||||
(args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_dst,
|
||||
args.nrows_dst, args.nchannels_y, args.stride_channel_dst, args.nsamples_y, args.stride_sample_dst);
|
||||
} else {
|
||||
constexpr bool need_check = true;
|
||||
|
||||
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_stream_k, block_dims, nbytes_shared, stream>>>
|
||||
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr,
|
||||
args.ncols_x, args.nrows_x, args.ncols_y, args.stride_row_x, args.nrows_dst,
|
||||
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
|
||||
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
|
||||
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
|
||||
|
||||
@@ -3085,7 +3093,7 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
|
||||
}
|
||||
|
||||
mul_mat_q_stream_k_fixup<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_stream_k, block_dims, 0, stream>>>
|
||||
(args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_y,
|
||||
(args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_dst,
|
||||
args.nrows_dst, args.nchannels_y, args.stride_channel_dst, args.nsamples_y, args.stride_sample_dst);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -513,6 +513,17 @@ void ggml_cuda_mul_mat_vec_q(
|
||||
const int32_t * ids_d = ids ? (const int32_t *) ids->data : nullptr;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
// If src0 is a temporary compute buffer, clear any potential padding.
|
||||
if (ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
|
||||
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
|
||||
GGML_ASSERT(!src0->view_src);
|
||||
const size_t size_data = ggml_nbytes(src0);
|
||||
const size_t size_alloc = ggml_backend_buffer_get_alloc_size(src0->buffer, src0);
|
||||
if (size_alloc > size_data) {
|
||||
CUDA_CHECK(cudaMemsetAsync((char *) src0->data + size_data, 0, size_alloc - size_data, stream));
|
||||
}
|
||||
}
|
||||
|
||||
const int64_t ne10_padded = GGML_PAD(ne10, MATRIX_ROW_PADDING);
|
||||
ggml_cuda_pool_alloc<char> src1_q8_1(ctx.pool(), ne13*ne12 * ne11*ne10_padded * sizeof(block_q8_1)/QK8_1);
|
||||
{
|
||||
|
||||
@@ -163,6 +163,7 @@ void quantize_mmq_q8_1_cuda(
|
||||
const float * x, const int32_t * ids, void * vy, const ggml_type type_src0,
|
||||
const int64_t ne00, const int64_t s01, const int64_t s02, const int64_t s03,
|
||||
const int64_t ne0, const int64_t ne1, const int64_t ne2, const int64_t ne3, cudaStream_t stream) {
|
||||
GGML_ASSERT(ne00 % 4 == 0);
|
||||
GGML_ASSERT(ne0 % (4*QK8_1) == 0);
|
||||
|
||||
const int64_t block_num_x = (ne0 + 4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ - 1) / (4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ);
|
||||
|
||||
@@ -518,6 +518,11 @@ static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
|
||||
result.view_src = reinterpret_cast<uint64_t>(tensor->view_src);
|
||||
result.view_offs = tensor->view_offs;
|
||||
result.data = reinterpret_cast<uint64_t>(tensor->data);
|
||||
|
||||
// Avoid sending uninitialized data over the wire
|
||||
memset(result.name, 0, sizeof(result.name));
|
||||
memset(result.padding, 0, sizeof(result.padding));
|
||||
|
||||
snprintf(result.name, GGML_MAX_NAME, "%s", tensor->name);
|
||||
return result;
|
||||
}
|
||||
@@ -1589,6 +1594,14 @@ static void rpc_serve_client(ggml_backend_t backend, const char * cache_dir,
|
||||
void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint,
|
||||
const char * cache_dir,
|
||||
size_t free_mem, size_t total_mem) {
|
||||
printf("Starting RPC server v%d.%d.%d\n",
|
||||
RPC_PROTO_MAJOR_VERSION,
|
||||
RPC_PROTO_MINOR_VERSION,
|
||||
RPC_PROTO_PATCH_VERSION);
|
||||
printf(" endpoint : %s\n", endpoint);
|
||||
printf(" local cache : %s\n", cache_dir ? cache_dir : "n/a");
|
||||
printf(" backend memory : %zu MB\n", free_mem / (1024 * 1024));
|
||||
|
||||
std::string host;
|
||||
int port;
|
||||
if (!parse_endpoint(endpoint, host, port)) {
|
||||
@@ -1748,6 +1761,9 @@ static void * ggml_backend_rpc_get_proc_address(ggml_backend_reg_t reg, const ch
|
||||
if (std::strcmp(name, "ggml_backend_rpc_add_device") == 0) {
|
||||
return (void *)ggml_backend_rpc_add_device;
|
||||
}
|
||||
if (std::strcmp(name, "ggml_backend_rpc_start_server") == 0) {
|
||||
return (void *)ggml_backend_rpc_start_server;
|
||||
}
|
||||
return NULL;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
|
||||
@@ -193,7 +193,7 @@ static void ggml_check_sycl() try {
|
||||
|
||||
if (!initialized) {
|
||||
g_ggml_sycl_debug = get_sycl_env("GGML_SYCL_DEBUG", 0);
|
||||
g_ggml_sycl_disable_optimize= get_sycl_env("GGML_SYCL_DISABLE_OPT", 0);
|
||||
g_ggml_sycl_disable_optimize= get_sycl_env("GGML_SYCL_DISABLE_OPT", 1);
|
||||
g_ggml_sycl_disable_graph = get_sycl_env("GGML_SYCL_DISABLE_GRAPH", 1);
|
||||
GGML_SYCL_DEBUG("[SYCL] call ggml_check_sycl\n");
|
||||
GGML_LOG_INFO("Running with Environment Variables:\n");
|
||||
@@ -338,7 +338,7 @@ ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer,
|
||||
assert(tensor->view_src->buffer->buft == buffer->buft);
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
if (tensor->type == GGML_TYPE_Q4_0) {
|
||||
if (tensor->type == GGML_TYPE_Q4_0 && !g_ggml_sycl_disable_optimize) {
|
||||
ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
|
||||
tensor->extra = extra;
|
||||
ctx->tensor_extras.push_back(extra); //used to release it when destroy ctx.
|
||||
@@ -3873,6 +3873,9 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
if (a->ne[3] != b->ne[3]) {
|
||||
return false;
|
||||
}
|
||||
if (!ggml_is_contiguous(b)) {
|
||||
return false;
|
||||
}
|
||||
ggml_type a_type = a->type;
|
||||
if (a_type == GGML_TYPE_IQ4_NL || a_type == GGML_TYPE_IQ4_XS ||
|
||||
a_type == GGML_TYPE_IQ3_XXS || a_type == GGML_TYPE_IQ3_S ||
|
||||
|
||||
@@ -71,6 +71,22 @@ if (Vulkan_FOUND)
|
||||
add_compile_definitions(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
|
||||
endif()
|
||||
|
||||
# Compile a test shader to determine whether GL_EXT_bfloat16 is supported.
|
||||
# If it's not, there will be an error to stderr.
|
||||
# If it's supported, set a define to indicate that we should compile those shaders
|
||||
execute_process(COMMAND ${Vulkan_GLSLC_EXECUTABLE} -o - -fshader-stage=compute --target-env=vulkan1.3 "${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders/test_bfloat16_support.comp"
|
||||
OUTPUT_VARIABLE glslc_output
|
||||
ERROR_VARIABLE glslc_error)
|
||||
|
||||
if (${glslc_error} MATCHES ".*extension not supported: GL_EXT_bfloat16.*")
|
||||
message(STATUS "GL_EXT_bfloat16 not supported by glslc")
|
||||
set(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT OFF)
|
||||
else()
|
||||
message(STATUS "GL_EXT_bfloat16 supported by glslc")
|
||||
set(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT ON)
|
||||
add_compile_definitions(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
|
||||
endif()
|
||||
|
||||
target_link_libraries(ggml-vulkan PRIVATE Vulkan::Vulkan)
|
||||
target_include_directories(ggml-vulkan PRIVATE ${CMAKE_CURRENT_BINARY_DIR})
|
||||
|
||||
@@ -142,6 +158,7 @@ if (Vulkan_FOUND)
|
||||
-DGGML_VULKAN_COOPMAT_GLSLC_SUPPORT=${GGML_VULKAN_COOPMAT_GLSLC_SUPPORT}
|
||||
-DGGML_VULKAN_COOPMAT2_GLSLC_SUPPORT=${GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT}
|
||||
-DGGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT=${GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT}
|
||||
-DGGML_VULKAN_BFLOAT16_GLSLC_SUPPORT=${GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT}
|
||||
BUILD_COMMAND ${CMAKE_COMMAND} --build .
|
||||
INSTALL_COMMAND ${CMAKE_COMMAND} --install .
|
||||
INSTALL_DIR ${CMAKE_BINARY_DIR}
|
||||
|
||||
@@ -51,6 +51,24 @@
|
||||
|
||||
#include "ggml-vulkan-shaders.hpp"
|
||||
|
||||
// remove this once it's more widely available in the SDK
|
||||
#if !defined(VK_KHR_shader_bfloat16)
|
||||
|
||||
#define VK_KHR_shader_bfloat16 1
|
||||
#define VK_KHR_SHADER_BFLOAT16_SPEC_VERSION 1
|
||||
#define VK_KHR_SHADER_BFLOAT16_EXTENSION_NAME "VK_KHR_shader_bfloat16"
|
||||
#define VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_BFLOAT16_FEATURES_KHR ((VkStructureType)1000141000)
|
||||
#define VK_COMPONENT_TYPE_BFLOAT16_KHR ((VkComponentTypeKHR)1000141000)
|
||||
|
||||
typedef struct VkPhysicalDeviceShaderBfloat16FeaturesKHR {
|
||||
VkStructureType sType;
|
||||
void* pNext;
|
||||
VkBool32 shaderBFloat16Type;
|
||||
VkBool32 shaderBFloat16DotProduct;
|
||||
VkBool32 shaderBFloat16CooperativeMatrix;
|
||||
} VkPhysicalDeviceShaderBfloat16FeaturesKHR;
|
||||
#endif
|
||||
|
||||
#define ROUNDUP_POW2(M, N) (((M) + (N) - 1) & ~((N) - 1))
|
||||
#define CEIL_DIV(M, N) (((M) + (N)-1) / (N))
|
||||
static bool is_pow2(uint32_t x) { return x > 1 && (x & (x-1)) == 0; }
|
||||
@@ -266,8 +284,9 @@ struct vk_device_struct {
|
||||
bool subgroup_require_full_support;
|
||||
|
||||
bool coopmat_support;
|
||||
bool coopmat_acc_f32_support;
|
||||
bool coopmat_acc_f16_support;
|
||||
bool coopmat_acc_f32_support {};
|
||||
bool coopmat_acc_f16_support {};
|
||||
bool coopmat_bf16_support {};
|
||||
uint32_t coopmat_m;
|
||||
uint32_t coopmat_n;
|
||||
uint32_t coopmat_k;
|
||||
@@ -293,6 +312,7 @@ struct vk_device_struct {
|
||||
|
||||
vk_matmul_pipeline pipeline_matmul_f32 {};
|
||||
vk_matmul_pipeline pipeline_matmul_f32_f16 {};
|
||||
vk_matmul_pipeline pipeline_matmul_bf16 {};
|
||||
vk_matmul_pipeline2 pipeline_matmul_f16;
|
||||
vk_matmul_pipeline2 pipeline_matmul_f16_f32;
|
||||
|
||||
@@ -301,6 +321,7 @@ struct vk_device_struct {
|
||||
vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_COUNT];
|
||||
|
||||
vk_matmul_pipeline pipeline_matmul_id_f32 {};
|
||||
vk_matmul_pipeline pipeline_matmul_id_bf16 {};
|
||||
vk_matmul_pipeline2 pipeline_matmul_id_f16;
|
||||
vk_matmul_pipeline2 pipeline_matmul_id_f16_f32;
|
||||
|
||||
@@ -319,11 +340,17 @@ struct vk_device_struct {
|
||||
vk_pipeline pipeline_get_rows[GGML_TYPE_COUNT];
|
||||
vk_pipeline pipeline_get_rows_f32[GGML_TYPE_COUNT];
|
||||
vk_pipeline pipeline_acc_f32;
|
||||
vk_pipeline pipeline_add_f32, pipeline_add_f32_norepeat;
|
||||
vk_pipeline pipeline_add_f16_f32_f16, pipeline_add_f16_f32_f16_norepeat;
|
||||
vk_pipeline pipeline_sub_f32, pipeline_sub_f32_norepeat;
|
||||
vk_pipeline pipeline_mul_f32, pipeline_mul_f32_norepeat;
|
||||
vk_pipeline pipeline_div_f32, pipeline_div_f32_norepeat;
|
||||
|
||||
// [src0 0=fp32,1=fp16][src1 0=fp32,1=fp16][dst 0=fp32,1=fp16]
|
||||
vk_pipeline pipeline_add[2][2][2];
|
||||
vk_pipeline pipeline_add_norepeat[2][2][2];
|
||||
vk_pipeline pipeline_sub[2][2][2];
|
||||
vk_pipeline pipeline_sub_norepeat[2][2][2];
|
||||
vk_pipeline pipeline_mul[2][2][2];
|
||||
vk_pipeline pipeline_mul_norepeat[2][2][2];
|
||||
vk_pipeline pipeline_div[2][2][2];
|
||||
vk_pipeline pipeline_div_norepeat[2][2][2];
|
||||
|
||||
vk_pipeline pipeline_concat_f32, pipeline_concat_f16, pipeline_concat_i32;
|
||||
vk_pipeline pipeline_upscale_f32;
|
||||
vk_pipeline pipeline_scale_f32;
|
||||
@@ -333,8 +360,8 @@ struct vk_device_struct {
|
||||
vk_pipeline pipeline_clamp_f32;
|
||||
vk_pipeline pipeline_pad_f32;
|
||||
vk_pipeline pipeline_repeat_f32, pipeline_repeat_back_f32;
|
||||
vk_pipeline pipeline_cpy_f32_f32, pipeline_cpy_f32_f16, pipeline_cpy_f16_f16;
|
||||
vk_pipeline pipeline_contig_cpy_f32_f32, pipeline_contig_cpy_f32_f16, pipeline_contig_cpy_f16_f16;
|
||||
vk_pipeline pipeline_cpy_f32_f32, pipeline_cpy_f32_f16, pipeline_cpy_f16_f16, pipeline_cpy_f16_f32, pipeline_cpy_f32_bf16;
|
||||
vk_pipeline pipeline_contig_cpy_f32_f32, pipeline_contig_cpy_f32_f16, pipeline_contig_cpy_f16_f16, pipeline_contig_cpy_f16_f32, pipeline_contig_cpy_f32_bf16;
|
||||
vk_pipeline pipeline_cpy_f32_quant[GGML_TYPE_COUNT];
|
||||
vk_pipeline pipeline_cpy_quant_f32[GGML_TYPE_COUNT];
|
||||
vk_pipeline pipeline_norm_f32;
|
||||
@@ -342,14 +369,17 @@ struct vk_device_struct {
|
||||
vk_pipeline pipeline_rms_norm_f32;
|
||||
vk_pipeline pipeline_rms_norm_back_f32;
|
||||
vk_pipeline pipeline_l2_norm_f32;
|
||||
vk_pipeline pipeline_gelu_f32;
|
||||
vk_pipeline pipeline_gelu_quick_f32;
|
||||
vk_pipeline pipeline_silu_f32;
|
||||
vk_pipeline pipeline_silu_back_f32;
|
||||
vk_pipeline pipeline_relu_f32;
|
||||
|
||||
// [src/dst 0=fp32,1=fp16]
|
||||
vk_pipeline pipeline_gelu[2];
|
||||
vk_pipeline pipeline_gelu_quick[2];
|
||||
vk_pipeline pipeline_silu[2];
|
||||
vk_pipeline pipeline_relu[2];
|
||||
vk_pipeline pipeline_tanh[2];
|
||||
vk_pipeline pipeline_sigmoid[2];
|
||||
|
||||
vk_pipeline pipeline_leaky_relu_f32;
|
||||
vk_pipeline pipeline_tanh_f32;
|
||||
vk_pipeline pipeline_sigmoid_f32;
|
||||
vk_pipeline pipeline_silu_back_f32;
|
||||
vk_pipeline pipeline_diag_mask_inf_f32;
|
||||
vk_pipeline pipeline_soft_max_f32, pipeline_soft_max_f32_f16;
|
||||
vk_pipeline pipeline_soft_max_f32_wg512, pipeline_soft_max_f32_f16_wg512;
|
||||
@@ -368,6 +398,8 @@ struct vk_device_struct {
|
||||
vk_pipeline pipeline_rwkv_wkv6_f32;
|
||||
vk_pipeline pipeline_rwkv_wkv7_f32;
|
||||
vk_pipeline pipeline_opt_step_adamw_f32;
|
||||
vk_pipeline pipeline_conv2d_dw_whcn_f32;
|
||||
vk_pipeline pipeline_conv2d_dw_cwhn_f32;
|
||||
|
||||
// [2][2][2] is for {f16acc,f32acc}x{large,small_rows}x{unaligned, aligned}
|
||||
vk_pipeline pipeline_flash_attn_f32_f16_D64[GGML_TYPE_COUNT][2][2][2];
|
||||
@@ -680,6 +712,24 @@ struct vk_op_rwkv_wkv7_push_constants {
|
||||
uint32_t H;
|
||||
};
|
||||
|
||||
struct vk_op_conv2d_dw_push_constants {
|
||||
uint32_t ne;
|
||||
uint32_t batches;
|
||||
uint32_t channels;
|
||||
uint32_t dst_w;
|
||||
uint32_t dst_h;
|
||||
uint32_t src_w;
|
||||
uint32_t src_h;
|
||||
uint32_t knl_w;
|
||||
uint32_t knl_h;
|
||||
int32_t stride_x;
|
||||
int32_t stride_y;
|
||||
int32_t pad_x;
|
||||
int32_t pad_y;
|
||||
int32_t dilation_x;
|
||||
int32_t dilation_y;
|
||||
};
|
||||
|
||||
struct vk_op_upscale_push_constants {
|
||||
uint32_t ne; uint32_t a_offset; uint32_t d_offset;
|
||||
uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
|
||||
@@ -1791,6 +1841,12 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
if (!device->pipeline_matmul_id_f32) {
|
||||
device->pipeline_matmul_id_f32 = std::make_shared<vk_matmul_pipeline_struct>();
|
||||
}
|
||||
if (!device->pipeline_matmul_bf16) {
|
||||
device->pipeline_matmul_bf16 = std::make_shared<vk_matmul_pipeline_struct>();
|
||||
}
|
||||
if (!device->pipeline_matmul_id_bf16) {
|
||||
device->pipeline_matmul_id_bf16 = std::make_shared<vk_matmul_pipeline_struct>();
|
||||
}
|
||||
|
||||
std::vector<std::future<void>> compiles;
|
||||
auto const &ggml_vk_create_pipeline = [&](vk_device& device, vk_pipeline& pipeline, const std::string &name, size_t spv_size, const void* spv_data, const std::string &entrypoint,
|
||||
@@ -1900,6 +1956,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
CREATE_MM(PIPELINE_NAME . f32acc, NAMELC, , WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT) \
|
||||
|
||||
CREATE_MM2(pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3)
|
||||
#if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
|
||||
if (device->coopmat_bf16_support) {
|
||||
CREATE_MM(pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3)
|
||||
}
|
||||
#endif
|
||||
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
|
||||
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
|
||||
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
|
||||
@@ -1921,6 +1982,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
|
||||
|
||||
CREATE_MM2(pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_id_push_constants, 4)
|
||||
#if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
|
||||
if (device->coopmat_bf16_support) {
|
||||
CREATE_MM(pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4)
|
||||
}
|
||||
#endif
|
||||
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
|
||||
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
|
||||
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
|
||||
@@ -1974,6 +2040,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
||||
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
||||
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16_f32, matmul_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
||||
#if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
|
||||
if (device->coopmat_bf16_support) {
|
||||
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, )
|
||||
}
|
||||
#endif
|
||||
|
||||
if (device->coopmat_acc_f16_support) {
|
||||
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
||||
@@ -2022,6 +2093,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
|
||||
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
|
||||
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
|
||||
#if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
|
||||
if (device->coopmat_bf16_support) {
|
||||
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
|
||||
}
|
||||
#endif
|
||||
|
||||
if (device->coopmat_acc_f16_support) {
|
||||
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
||||
@@ -2104,6 +2180,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
||||
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16_f32, matmul_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
||||
|
||||
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
||||
|
||||
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
||||
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
||||
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
||||
@@ -2139,6 +2217,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
|
||||
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
|
||||
|
||||
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4, _id);
|
||||
|
||||
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
||||
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
||||
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
||||
@@ -2191,6 +2271,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_f16.f32acc, matmul_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
||||
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_f16_f32.f32acc, matmul_f16_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
||||
|
||||
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
||||
|
||||
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f32acc, matmul_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
||||
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f32acc, matmul_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
||||
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f32acc, matmul_q5_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
||||
@@ -2226,6 +2308,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16.f32acc, matmul_id_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
|
||||
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16_f32.f32acc, matmul_id_f16_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
|
||||
|
||||
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4, _id);
|
||||
|
||||
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f32acc, matmul_id_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
||||
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f32acc, matmul_id_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
||||
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f32acc, matmul_id_q5_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
||||
@@ -2246,8 +2330,26 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S].f32acc, matmul_id_iq3_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
||||
CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS].f32acc, matmul_id_iq4_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
||||
CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f32acc, matmul_id_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
||||
#undef CREATE_MM
|
||||
}
|
||||
// reusing CREATE_MM from the fp32 path
|
||||
if ((device->coopmat2 || device->coopmat_support)
|
||||
#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
|
||||
&& !device->coopmat_bf16_support
|
||||
#endif
|
||||
) {
|
||||
// use scalar tile sizes
|
||||
l_warptile = { 128, 128, 128, 16, subgroup_size_8 * 2, 64, 2, 4, 4, 1, subgroup_size_8 };
|
||||
m_warptile = { 128, 64, 64, 16, subgroup_size_8, 32, 2, 4, 2, 1, subgroup_size_8 };
|
||||
s_warptile = { subgroup_size_16, 32, 32, 16, 32, 32, 2, 2, 2, 1, subgroup_size_8 };
|
||||
|
||||
l_wg_denoms = {128, 128, 1 };
|
||||
m_wg_denoms = { 64, 64, 1 };
|
||||
s_wg_denoms = { 32, 32, 1 };
|
||||
|
||||
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
||||
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4, _id);
|
||||
}
|
||||
#undef CREATE_MM
|
||||
|
||||
// mul mat vec
|
||||
|
||||
@@ -2266,6 +2368,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
for (uint32_t i = 0; i < mul_mat_vec_max_cols; ++i) {
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f32_f32_"+std::to_string(i+1), mul_mat_vec_f32_f32_f32_len, mul_mat_vec_f32_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f32_f32_"+std::to_string(i+1), mul_mat_vec_f16_f32_f32_len, mul_mat_vec_f16_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_BF16][i], "mul_mat_vec_bf16_f32_f32_"+std::to_string(i+1), mul_mat_vec_bf16_f32_f32_len, mul_mat_vec_bf16_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f32_f32_"+std::to_string(i+1), mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_f32_f32_"+std::to_string(i+1), mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_f32_f32_"+std::to_string(i+1), mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
|
||||
@@ -2288,6 +2391,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f16_f32_"+std::to_string(i+1), mul_mat_vec_f32_f16_f32_len, mul_mat_vec_f32_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f16_f32_"+std::to_string(i+1), mul_mat_vec_f16_f16_f32_len, mul_mat_vec_f16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_BF16][i], "mul_mat_vec_bf16_f16_f32_"+std::to_string(i+1), mul_mat_vec_bf16_f16_f32_len, mul_mat_vec_bf16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f16_f32_"+std::to_string(i+1), mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_f16_f32_"+std::to_string(i+1), mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_f16_f32_"+std::to_string(i+1), mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
|
||||
@@ -2311,6 +2415,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32", mul_mat_vec_id_f32_f32_len, mul_mat_vec_id_f32_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F16 ], "mul_mat_vec_id_f16_f32", mul_mat_vec_id_f16_f32_len, mul_mat_vec_id_f16_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_BF16], "mul_mat_vec_id_bf16_f32", mul_mat_vec_id_bf16_f32_len, mul_mat_vec_id_bf16_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
|
||||
@@ -2356,6 +2461,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
// get_rows
|
||||
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_F32 ], "get_rows_f32", get_rows_f32_len, get_rows_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_F16 ], "get_rows_f16", get_rows_f16_len, get_rows_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_BF16], "get_rows_bf16", get_rows_bf16_len, get_rows_bf16_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q4_0], "get_rows_q4_0", get_rows_q4_0_len, get_rows_q4_0_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q4_1], "get_rows_q4_1", get_rows_q4_1_len, get_rows_q4_1_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q5_0], "get_rows_q5_0", get_rows_q5_0_len, get_rows_q5_0_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
|
||||
@@ -2373,6 +2479,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_F32 ], "get_rows_f32_f32", get_rows_f32_f32_len, get_rows_f32_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_F16 ], "get_rows_f16_f32", get_rows_f16_f32_len, get_rows_f16_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_BF16], "get_rows_bf16_f32", get_rows_bf16_f32_len, get_rows_bf16_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q4_0], "get_rows_q4_0_f32", get_rows_q4_0_f32_len, get_rows_q4_0_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q4_1], "get_rows_q4_1_f32", get_rows_q4_1_f32_len, get_rows_q4_1_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q5_0], "get_rows_q5_0_f32", get_rows_q5_0_f32_len, get_rows_q5_0_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
|
||||
@@ -2399,7 +2506,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_p021_f16_f32[i], "mul_mat_vec_p021_f16_f32"+std::to_string(i+1), mul_mat_vec_p021_f16_f32_len, mul_mat_vec_p021_f16_f32_data, "main", 3, 6 * sizeof(uint32_t), {1, 1, 1}, {device->subgroup_size, i + 1}, 1, true);
|
||||
}
|
||||
}
|
||||
ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_nc_f16_f32, "mul_mat_vec_nc_f16_f32", mul_mat_vec_nc_f16_f32_len, mul_mat_vec_nc_f16_f32_data, "main", 3, 7 * sizeof(uint32_t), {1, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_nc_f16_f32, "mul_mat_vec_nc_f16_f32", mul_mat_vec_nc_f16_f32_len, mul_mat_vec_nc_f16_f32_data, "main", 3, 9 * sizeof(uint32_t), {1, 1, 1}, {}, 1);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_norm_f32, "norm_f32", norm_f32_len, norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_group_norm_f32, "group_norm_f32", group_norm_f32_len, group_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
|
||||
@@ -2410,10 +2517,15 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_f32, "cpy_f32_f32", cpy_f32_f32_len, cpy_f32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_f16, "cpy_f32_f16", cpy_f32_f16_len, cpy_f32_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_cpy_f16_f16, "cpy_f16_f16", cpy_f16_f16_len, cpy_f16_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_cpy_f16_f32, "cpy_f16_f32", cpy_f16_f32_len, cpy_f16_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_bf16,"cpy_f32_bf16",cpy_f32_bf16_len,cpy_f32_bf16_data,"main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_f32, "contig_cpy_f32_f32", contig_cpy_f32_f32_len, contig_cpy_f32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_f16, "contig_cpy_f32_f16", contig_cpy_f32_f16_len, contig_cpy_f32_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f16_f16, "contig_cpy_f16_f16", contig_cpy_f16_f16_len, contig_cpy_f16_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f16_f32, "contig_cpy_f16_f32", contig_cpy_f16_f32_len, contig_cpy_f16_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_bf16,"contig_cpy_f32_bf16",contig_cpy_f32_bf16_len,contig_cpy_f32_bf16_data,"main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
||||
if (device->float_controls_rte_fp16) {
|
||||
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_0], "cpy_f32_q4_0", cpy_f32_q4_0_rte_len, cpy_f32_q4_0_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_0), 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_1], "cpy_f32_q4_1", cpy_f32_q4_1_rte_len, cpy_f32_q4_1_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_1), 1, 1}, {}, 1);
|
||||
@@ -2437,20 +2549,32 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_Q8_0], "cpy_q8_0_f32", cpy_q8_0_f32_len, cpy_q8_0_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q8_0), 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_IQ4_NL], "cpy_iq4_nl_f32", cpy_iq4_nl_f32_len, cpy_iq4_nl_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_IQ4_NL), 1, 1}, {}, 1);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_add_f32, "add_f32", add_f32_len, add_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_add_f32_norepeat, "add_f32_norepeat", add_f32_len, add_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_add_f16_f32_f16, "add_f16_f32_f16", add_f16_f32_f16_len, add_f16_f32_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_add_f16_f32_f16_norepeat, "add_f16_f32_f16_norepeat", add_f16_f32_f16_len, add_f16_f32_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
|
||||
auto get_suffix = [](bool src0_f16, bool src1_f16, bool dst_f16) {
|
||||
std::string s;
|
||||
s += std::string(src0_f16 ? "_f16" : "_f32");
|
||||
s += std::string(src1_f16 ? "_f16" : "_f32");
|
||||
s += std::string(dst_f16 ? "_f16" : "_f32");
|
||||
return s;
|
||||
};
|
||||
|
||||
#define CREATE_BINARY(name, namemod, spec) \
|
||||
for (int s0 : {0,1}) for (int s1 : {0,1}) for (int d : {0,1}) \
|
||||
ggml_vk_create_pipeline(device, device->pipeline_ ## name ## namemod[s0][s1][d], \
|
||||
#name + get_suffix(s0, s1, d) + #namemod, name ## _len[s0][s1][d], name ## _data[s0][s1][d], \
|
||||
"main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, spec, 1);
|
||||
|
||||
CREATE_BINARY(add, , {0})
|
||||
CREATE_BINARY(add, _norepeat, {1})
|
||||
CREATE_BINARY(sub, , {0})
|
||||
CREATE_BINARY(sub, _norepeat, {1})
|
||||
CREATE_BINARY(mul, , {0})
|
||||
CREATE_BINARY(mul, _norepeat, {1})
|
||||
CREATE_BINARY(div, , {0})
|
||||
CREATE_BINARY(div, _norepeat, {1})
|
||||
#undef CREATE_BINARY
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_acc_f32, "acc_f32", acc_f32_len, acc_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_sub_f32, "sub_f32", sub_f32_len, sub_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_sub_f32_norepeat, "sub_f32_norepeat", sub_f32_len, sub_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_mul_f32, "mul_f32", mul_f32_len, mul_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_mul_f32_norepeat, "mul_f32_norepeat", mul_f32_len, mul_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_div_f32, "div_f32", div_f32_len, div_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_div_f32_norepeat, "div_f32_norepeat", div_f32_len, div_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_concat_f32, "concat_f32", concat_f32_len, concat_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_concat_f16, "concat_f16", concat_f16_len, concat_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_concat_i32, "concat_i32", concat_i32_len, concat_i32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
|
||||
@@ -2470,14 +2594,20 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
ggml_vk_create_pipeline(device, device->pipeline_repeat_f32, "repeat_f32", repeat_f32_len, repeat_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_repeat_back_f32, "repeat_back_f32", repeat_back_f32_len, repeat_back_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_gelu_f32, "gelu_f32", gelu_f32_len, gelu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_gelu_quick_f32, "gelu_quick_f32", gelu_quick_f32_len, gelu_quick_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_silu_f32, "silu_f32", silu_f32_len, silu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_silu_back_f32, "silu_back_f32", silu_back_f32_len, silu_back_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_relu_f32, "relu_f32", relu_f32_len, relu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
||||
#define CREATE_UNARY(name) \
|
||||
ggml_vk_create_pipeline(device, device->pipeline_ ## name [0], #name "_f32", name ## _f32_len, name ## _f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); \
|
||||
ggml_vk_create_pipeline(device, device->pipeline_ ## name [1], #name "_f16", name ## _f16_len, name ## _f16_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
||||
CREATE_UNARY(gelu)
|
||||
CREATE_UNARY(gelu_quick)
|
||||
CREATE_UNARY(silu)
|
||||
CREATE_UNARY(relu)
|
||||
CREATE_UNARY(tanh)
|
||||
CREATE_UNARY(sigmoid)
|
||||
#undef CREATE_UNARY
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_leaky_relu_f32, "leaky_relu_f32", leaky_relu_f32_len, leaky_relu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_tanh_f32, "tanh_f32", tanh_f32_len, tanh_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_sigmoid_f32, "sigmoid_f32", sigmoid_f32_len, sigmoid_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_silu_back_f32, "silu_back_f32", silu_back_f32_len, silu_back_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_diag_mask_inf_f32, "diag_mask_inf_f32", diag_mask_inf_f32_len, diag_mask_inf_f32_data, "main", 2, sizeof(vk_op_diag_mask_push_constants), {1, 512, 1}, {}, 1, true);
|
||||
|
||||
@@ -2529,6 +2659,9 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_opt_step_adamw_f32, "opt_step_adamw_f32", opt_step_adamw_f32_len, opt_step_adamw_f32_data, "main", 5, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_whcn_f32, "conv2d_dw_whcn_f32", conv2d_dw_whcn_f32_len, conv2d_dw_whcn_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_cwhn_f32, "conv2d_dw_cwhn_f32", conv2d_dw_cwhn_f32_len, conv2d_dw_cwhn_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
||||
for (auto &c : compiles) {
|
||||
c.wait();
|
||||
}
|
||||
@@ -2578,6 +2711,7 @@ static vk_device ggml_vk_get_device(size_t idx) {
|
||||
bool coopmat2_support = false;
|
||||
device->coopmat_support = false;
|
||||
device->integer_dot_product = false;
|
||||
bool bfloat16_support = false;
|
||||
|
||||
for (const auto& properties : ext_props) {
|
||||
if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) {
|
||||
@@ -2608,6 +2742,9 @@ static vk_device ggml_vk_get_device(size_t idx) {
|
||||
!getenv("GGML_VK_DISABLE_INTEGER_DOT_PRODUCT")) {
|
||||
device->integer_dot_product = true;
|
||||
#endif
|
||||
} else if (strcmp("VK_KHR_shader_bfloat16", properties.extensionName) == 0 &&
|
||||
!getenv("GGML_VK_DISABLE_BFLOAT16")) {
|
||||
bfloat16_support = true;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -2794,6 +2931,17 @@ static vk_device ggml_vk_get_device(size_t idx) {
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(VK_KHR_shader_bfloat16)
|
||||
VkPhysicalDeviceShaderBfloat16FeaturesKHR bfloat16_features {};
|
||||
bfloat16_features.pNext = nullptr;
|
||||
bfloat16_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_BFLOAT16_FEATURES_KHR;
|
||||
if (bfloat16_support) {
|
||||
last_struct->pNext = (VkBaseOutStructure *)&bfloat16_features;
|
||||
last_struct = (VkBaseOutStructure *)&bfloat16_features;
|
||||
device_extensions.push_back("VK_KHR_shader_bfloat16");
|
||||
}
|
||||
#endif
|
||||
|
||||
VkPhysicalDeviceMaintenance4Features maint4_features {};
|
||||
maint4_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_FEATURES;
|
||||
if (maintenance4_support) {
|
||||
@@ -2991,6 +3139,25 @@ static vk_device ggml_vk_get_device(size_t idx) {
|
||||
device->coopmat_int_n = prop.NSize;
|
||||
device->coopmat_int_k = prop.KSize;
|
||||
}
|
||||
#if defined(VK_KHR_shader_bfloat16) && defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
|
||||
if (prop.AType == VK_COMPONENT_TYPE_BFLOAT16_KHR &&
|
||||
prop.BType == VK_COMPONENT_TYPE_BFLOAT16_KHR &&
|
||||
prop.CType == VK_COMPONENT_TYPE_FLOAT32_KHR &&
|
||||
prop.ResultType == VK_COMPONENT_TYPE_FLOAT32_KHR &&
|
||||
(vk::ScopeKHR)prop.scope == vk::ScopeKHR::eSubgroup
|
||||
) {
|
||||
// coopmat sizes not set yet
|
||||
if (device->coopmat_m == 0) {
|
||||
device->coopmat_bf16_support = true;
|
||||
device->coopmat_m = prop.MSize;
|
||||
device->coopmat_n = prop.NSize;
|
||||
device->coopmat_k = prop.KSize;
|
||||
} else if (device->coopmat_m == prop.MSize && device->coopmat_n == prop.NSize && device->coopmat_k == prop.KSize) {
|
||||
// Only enable if shape is identical
|
||||
device->coopmat_bf16_support = true;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
if (device->coopmat_m == 0 || !device->coopmat_acc_f32_support) {
|
||||
@@ -2998,11 +3165,19 @@ static vk_device ggml_vk_get_device(size_t idx) {
|
||||
GGML_LOG_DEBUG("ggml_vulkan: WARNING: No suitable matrix core mode found. Disabling matrix cores.\n");
|
||||
device->coopmat_support = false;
|
||||
}
|
||||
if (getenv("GGML_VK_DISABLE_BFLOAT16")) {
|
||||
device->coopmat_bf16_support = false;
|
||||
}
|
||||
}
|
||||
|
||||
if (device->coopmat_support) {
|
||||
device_extensions.push_back("VK_KHR_cooperative_matrix");
|
||||
}
|
||||
#if defined(VK_KHR_shader_bfloat16)
|
||||
if (device->coopmat_bf16_support) {
|
||||
device_extensions.push_back("VK_KHR_shader_bfloat16");
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
device->name = GGML_VK_NAME + std::to_string(idx);
|
||||
|
||||
@@ -3459,6 +3634,9 @@ static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_pipeline(ggml_backend_vk_conte
|
||||
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
|
||||
return ctx->device->pipeline_matmul_f32_f16;
|
||||
}
|
||||
if (src0_type == GGML_TYPE_BF16 && src1_type == GGML_TYPE_BF16) {
|
||||
return ctx->device->pipeline_matmul_bf16;
|
||||
}
|
||||
if (prec == GGML_PREC_DEFAULT && ctx->device->fp16 && !(ctx->device->coopmat_support && !ctx->device->coopmat_acc_f16_support)) {
|
||||
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
|
||||
return ctx->device->pipeline_matmul_f16_f32.f16acc;
|
||||
@@ -3530,6 +3708,7 @@ static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec(ggml_backend_vk_context *
|
||||
switch (a_type) {
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_BF16:
|
||||
case GGML_TYPE_Q4_0:
|
||||
case GGML_TYPE_Q4_1:
|
||||
case GGML_TYPE_Q5_0:
|
||||
@@ -3562,6 +3741,9 @@ static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_id_pipeline(ggml_backend_vk_co
|
||||
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
|
||||
return ctx->device->pipeline_matmul_id_f32;
|
||||
}
|
||||
if (src0_type == GGML_TYPE_BF16 && src1_type == GGML_TYPE_BF16) {
|
||||
return ctx->device->pipeline_matmul_id_bf16;
|
||||
}
|
||||
if (prec == GGML_PREC_DEFAULT && ctx->device->fp16 && !(ctx->device->coopmat_support && !ctx->device->coopmat_acc_f16_support)) {
|
||||
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
|
||||
return ctx->device->pipeline_matmul_id_f16_f32.f16acc;
|
||||
@@ -3615,6 +3797,7 @@ static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec_id(ggml_backend_vk_context
|
||||
switch (a_type) {
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_BF16:
|
||||
case GGML_TYPE_Q4_0:
|
||||
case GGML_TYPE_Q4_1:
|
||||
case GGML_TYPE_Q5_0:
|
||||
@@ -4350,6 +4533,20 @@ static vk_pipeline ggml_vk_get_cpy_pipeline(ggml_backend_vk_context * ctx, const
|
||||
return ctx->device->pipeline_cpy_f16_f16;
|
||||
}
|
||||
}
|
||||
if (src->type == GGML_TYPE_F16 && to == GGML_TYPE_F32) {
|
||||
if (contig) {
|
||||
return ctx->device->pipeline_contig_cpy_f16_f32;
|
||||
} else {
|
||||
return ctx->device->pipeline_cpy_f16_f32;
|
||||
}
|
||||
}
|
||||
if (src->type == GGML_TYPE_F32 && to == GGML_TYPE_BF16) {
|
||||
if (contig) {
|
||||
return ctx->device->pipeline_contig_cpy_f32_bf16;
|
||||
} else {
|
||||
return ctx->device->pipeline_cpy_f32_bf16;
|
||||
}
|
||||
}
|
||||
if (src->type == GGML_TYPE_F32) {
|
||||
switch (to) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
@@ -4477,8 +4674,12 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
|
||||
const bool x_non_contig = (ctx->device->coopmat2 && src0->type == GGML_TYPE_F32) ||
|
||||
!ggml_vk_dim01_contiguous(src0);
|
||||
const bool y_non_contig = (ctx->device->coopmat2 && src1->type == GGML_TYPE_F32) ||
|
||||
(src0->type == GGML_TYPE_BF16 && src1->type != GGML_TYPE_BF16) ||
|
||||
!ggml_vk_dim01_contiguous(src1);
|
||||
|
||||
// If src0 is BF16, try to use a BF16 x BF16 multiply
|
||||
ggml_type f16_type = src0->type == GGML_TYPE_BF16 ? GGML_TYPE_BF16 : GGML_TYPE_F16;
|
||||
|
||||
const bool y_f32_kernel = src1->type == GGML_TYPE_F32 && !y_non_contig;
|
||||
|
||||
bool quantize_y = ctx->device->integer_dot_product && src1->type == GGML_TYPE_F32 && ggml_is_contiguous(src1) && (ne11 * ne10) % 4 == 0;
|
||||
@@ -4488,25 +4689,25 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
|
||||
|
||||
if (mmp == nullptr) {
|
||||
// Fall back to f16 dequant mul mat
|
||||
mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, src0->type, y_non_contig ? GGML_TYPE_F16 : src1->type, (ggml_prec)dst->op_params[0]);
|
||||
mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, src0->type, y_non_contig ? f16_type : src1->type, (ggml_prec)dst->op_params[0]);
|
||||
quantize_y = false;
|
||||
}
|
||||
|
||||
const bool qx_needs_dequant = mmp == nullptr || x_non_contig;
|
||||
const bool qy_needs_dequant = !quantize_y && ((src1->type != GGML_TYPE_F16 && !y_f32_kernel) || y_non_contig);
|
||||
const bool qy_needs_dequant = !quantize_y && ((src1->type != f16_type && !y_f32_kernel) || y_non_contig);
|
||||
|
||||
if (qx_needs_dequant) {
|
||||
// Fall back to dequant + f16 mulmat
|
||||
mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, GGML_TYPE_F16, y_f32_kernel ? GGML_TYPE_F32 : GGML_TYPE_F16, (ggml_prec)dst->op_params[0]);
|
||||
mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, f16_type, y_f32_kernel ? GGML_TYPE_F32 : f16_type, (ggml_prec)dst->op_params[0]);
|
||||
}
|
||||
|
||||
// Not implemented
|
||||
GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT
|
||||
|
||||
const uint32_t kpad = quantize_y ? 0 : ggml_vk_align_size(ne10, ggml_vk_guess_matmul_pipeline_align(ctx, mmp, ne01, ne11, qx_needs_dequant ? GGML_TYPE_F16 : src0->type, quantize_y ? GGML_TYPE_Q8_1 : (y_f32_kernel ? GGML_TYPE_F32 : src1->type)));
|
||||
const uint32_t kpad = quantize_y ? 0 : ggml_vk_align_size(ne10, ggml_vk_guess_matmul_pipeline_align(ctx, mmp, ne01, ne11, qx_needs_dequant ? f16_type : src0->type, quantize_y ? GGML_TYPE_Q8_1 : (y_f32_kernel ? GGML_TYPE_F32 : src1->type)));
|
||||
const bool aligned = !quantize_y && ne10 == kpad && ne01 > 8 && ne11 > 8;
|
||||
|
||||
vk_pipeline pipeline = ggml_vk_guess_matmul_pipeline(ctx, mmp, ne01, ne11, aligned, qx_needs_dequant ? GGML_TYPE_F16 : src0->type, quantize_y ? GGML_TYPE_Q8_1 : (y_f32_kernel ? GGML_TYPE_F32 : src1->type));
|
||||
vk_pipeline pipeline = ggml_vk_guess_matmul_pipeline(ctx, mmp, ne01, ne11, aligned, qx_needs_dequant ? f16_type : src0->type, quantize_y ? GGML_TYPE_Q8_1 : (y_f32_kernel ? GGML_TYPE_F32 : src1->type));
|
||||
|
||||
// Reserve extra storage in the N dimension for the Y matrix, so we can avoid bounds-checking
|
||||
uint32_t padded_n = qy_needs_dequant ? ROUNDUP_POW2(ne11, pipeline->wg_denoms[1]) : ne11;
|
||||
@@ -4527,12 +4728,12 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
|
||||
vk_pipeline to_q8_1 = nullptr;
|
||||
|
||||
if (x_non_contig) {
|
||||
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, GGML_TYPE_F16);
|
||||
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, f16_type);
|
||||
} else {
|
||||
to_fp16_vk_0 = ggml_vk_get_to_fp16(ctx, src0->type);
|
||||
}
|
||||
if (y_non_contig) {
|
||||
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, GGML_TYPE_F16);
|
||||
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, f16_type);
|
||||
} else {
|
||||
to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
|
||||
}
|
||||
@@ -4949,6 +5150,8 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
|
||||
const uint64_t nb01 = src0->nb[1];
|
||||
const uint64_t nb02 = src0->nb[2];
|
||||
|
||||
const uint64_t nb12 = src1->nb[2];
|
||||
|
||||
// const uint64_t ne10 = src1->ne[0];
|
||||
const uint64_t ne11 = src1->ne[1];
|
||||
const uint64_t ne12 = src1->ne[2];
|
||||
@@ -4974,6 +5177,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
|
||||
|
||||
const uint32_t row_stride_x = nb01 / sizeof(ggml_fp16_t);
|
||||
const uint32_t channel_stride_x = nb02 / sizeof(ggml_fp16_t);
|
||||
const uint32_t channel_stride_y = nb12 / sizeof(float);
|
||||
|
||||
const uint64_t qx_sz = ggml_nbytes(src0);
|
||||
const uint64_t qy_sz = ggml_nbytes(src1);
|
||||
@@ -5004,7 +5208,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
|
||||
const uint64_t d_shader_offset = d_buf_offset - d_buffer_offset;
|
||||
|
||||
// compute
|
||||
const std::array<uint32_t, 7> pc = { (uint32_t)ne00, (uint32_t)ne01, row_stride_x, channel_stride_x, (uint32_t)(ne12 / ne02), (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
|
||||
const std::array<uint32_t, 9> pc = { (uint32_t)ne00, (uint32_t)ne01, row_stride_x, channel_stride_x, channel_stride_y, (uint32_t)(ne12 / ne02), (uint32_t)ne12, (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
|
||||
ggml_vk_sync_buffers(subctx);
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_nc_f16_f32,
|
||||
{ vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz }, vk_subbuffer{ d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, vk_subbuffer{ d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
|
||||
@@ -5029,7 +5233,7 @@ static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context& subctx, c
|
||||
// mul_mat_vec supports batching ne12*ne13 when ne11==1, or treating ne11 as the batch size (up to four)
|
||||
// when ne12 and ne13 are one.
|
||||
} else if ((dst->ne[1] == 1 || (dst->ne[1] <= mul_mat_vec_max_cols && src1->ne[2] * src1->ne[3] == 1)) &&
|
||||
(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type))) {
|
||||
(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16 || ggml_is_quantized(src0->type))) {
|
||||
ggml_vk_mul_mat_vec_q_f16(ctx, subctx, src0, src1, dst, dryrun);
|
||||
} else {
|
||||
ggml_vk_mul_mat_q_f16(ctx, subctx, src0, src1, dst, dryrun);
|
||||
@@ -5097,27 +5301,31 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
|
||||
const bool x_non_contig = (ctx->device->coopmat2 && src0->type == GGML_TYPE_F32) ||
|
||||
!ggml_vk_dim01_contiguous(src0);
|
||||
const bool y_non_contig = (ctx->device->coopmat2 && src1->type == GGML_TYPE_F32) ||
|
||||
(src0->type == GGML_TYPE_BF16 && src1->type != GGML_TYPE_BF16) ||
|
||||
!ggml_vk_dim01_contiguous(src1);
|
||||
|
||||
// If src0 is BF16, try to use a BF16 x BF16 multiply
|
||||
ggml_type f16_type = src0->type == GGML_TYPE_BF16 ? GGML_TYPE_BF16 : GGML_TYPE_F16;
|
||||
|
||||
const bool y_f32_kernel = src1->type == GGML_TYPE_F32 && !y_non_contig;
|
||||
|
||||
vk_matmul_pipeline mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, src0->type, y_non_contig ? GGML_TYPE_F16 : src1->type, (ggml_prec)dst->op_params[0]);
|
||||
vk_matmul_pipeline mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, src0->type, y_non_contig ? f16_type : src1->type, (ggml_prec)dst->op_params[0]);
|
||||
|
||||
const bool qx_needs_dequant = mmp == nullptr || x_non_contig;
|
||||
const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !y_f32_kernel) || y_non_contig;
|
||||
const bool qy_needs_dequant = (src1->type != f16_type && !y_f32_kernel) || y_non_contig;
|
||||
|
||||
if (qx_needs_dequant) {
|
||||
// Fall back to dequant + f16 mulmat
|
||||
mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, GGML_TYPE_F16, y_f32_kernel ? GGML_TYPE_F32 : GGML_TYPE_F16, (ggml_prec)dst->op_params[0]);
|
||||
mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, f16_type, y_f32_kernel ? GGML_TYPE_F32 : f16_type, (ggml_prec)dst->op_params[0]);
|
||||
}
|
||||
|
||||
// Not implemented
|
||||
GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT
|
||||
|
||||
const uint32_t kpad = ggml_vk_align_size(ne10, ggml_vk_guess_matmul_id_pipeline_align(ctx, mmp, ne01, nei1, qx_needs_dequant ? GGML_TYPE_F16 : src0->type));
|
||||
const uint32_t kpad = ggml_vk_align_size(ne10, ggml_vk_guess_matmul_id_pipeline_align(ctx, mmp, ne01, nei1, qx_needs_dequant ? f16_type : src0->type));
|
||||
const bool aligned = ne10 == kpad && ne01 > 8 && nei1 > 8;
|
||||
|
||||
vk_pipeline pipeline = ggml_vk_guess_matmul_id_pipeline(ctx, mmp, ne01, nei1, aligned, qx_needs_dequant ? GGML_TYPE_F16 : src0->type);
|
||||
vk_pipeline pipeline = ggml_vk_guess_matmul_id_pipeline(ctx, mmp, ne01, nei1, aligned, qx_needs_dequant ? f16_type : src0->type);
|
||||
|
||||
// Reserve extra storage in the N dimension for the Y matrix, so we can avoid bounds-checking
|
||||
uint32_t padded_n = qy_needs_dequant ? ROUNDUP_POW2(ne11, pipeline->wg_denoms[1]) :ne11;
|
||||
@@ -5136,12 +5344,12 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
|
||||
vk_pipeline to_fp16_vk_1 = nullptr;
|
||||
|
||||
if (x_non_contig) {
|
||||
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, GGML_TYPE_F16);
|
||||
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, f16_type);
|
||||
} else {
|
||||
to_fp16_vk_0 = ggml_vk_get_to_fp16(ctx, src0->type);
|
||||
}
|
||||
if (y_non_contig) {
|
||||
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, GGML_TYPE_F16);
|
||||
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, f16_type);
|
||||
} else {
|
||||
to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
|
||||
}
|
||||
@@ -5722,26 +5930,37 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
|
||||
}
|
||||
return nullptr;
|
||||
case GGML_OP_ADD:
|
||||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_add_f32_norepeat : ctx->device->pipeline_add_f32;
|
||||
}
|
||||
if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) {
|
||||
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_add_f16_f32_f16_norepeat : ctx->device->pipeline_add_f16_f32_f16;
|
||||
}
|
||||
return nullptr;
|
||||
case GGML_OP_SUB:
|
||||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_sub_f32_norepeat : ctx->device->pipeline_sub_f32;
|
||||
}
|
||||
return nullptr;
|
||||
case GGML_OP_MUL:
|
||||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_mul_f32_norepeat : ctx->device->pipeline_mul_f32;
|
||||
}
|
||||
return nullptr;
|
||||
case GGML_OP_DIV:
|
||||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_div_f32_norepeat : ctx->device->pipeline_div_f32;
|
||||
if ((src0->type != GGML_TYPE_F32 && src0->type != GGML_TYPE_F16) ||
|
||||
(src1->type != GGML_TYPE_F32 && src1->type != GGML_TYPE_F16) ||
|
||||
(dst->type != GGML_TYPE_F32 && dst->type != GGML_TYPE_F16)) {
|
||||
return nullptr;
|
||||
}
|
||||
switch (op) {
|
||||
case GGML_OP_ADD:
|
||||
{
|
||||
auto pipelines = ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_add_norepeat : ctx->device->pipeline_add;
|
||||
return pipelines[src0->type == GGML_TYPE_F16][src1->type == GGML_TYPE_F16][dst->type == GGML_TYPE_F16];
|
||||
}
|
||||
case GGML_OP_SUB:
|
||||
{
|
||||
auto pipelines = ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_sub_norepeat : ctx->device->pipeline_sub;
|
||||
return pipelines[src0->type == GGML_TYPE_F16][src1->type == GGML_TYPE_F16][dst->type == GGML_TYPE_F16];
|
||||
}
|
||||
case GGML_OP_MUL:
|
||||
{
|
||||
auto pipelines = ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_mul_norepeat : ctx->device->pipeline_mul;
|
||||
return pipelines[src0->type == GGML_TYPE_F16][src1->type == GGML_TYPE_F16][dst->type == GGML_TYPE_F16];
|
||||
}
|
||||
case GGML_OP_DIV:
|
||||
{
|
||||
auto pipelines = ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_div_norepeat : ctx->device->pipeline_div;
|
||||
return pipelines[src0->type == GGML_TYPE_F16][src1->type == GGML_TYPE_F16][dst->type == GGML_TYPE_F16];
|
||||
}
|
||||
default:
|
||||
break;
|
||||
}
|
||||
return nullptr;
|
||||
case GGML_OP_CONCAT:
|
||||
@@ -5835,37 +6054,25 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
|
||||
}
|
||||
return nullptr;
|
||||
case GGML_OP_UNARY:
|
||||
if ((src0->type != GGML_TYPE_F32 && src0->type != GGML_TYPE_F16) ||
|
||||
(dst->type != GGML_TYPE_F32 && dst->type != GGML_TYPE_F16) ||
|
||||
(src0->type != dst->type)) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
switch (ggml_get_unary_op(dst)) {
|
||||
case GGML_UNARY_OP_SILU:
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
return ctx->device->pipeline_silu_f32;
|
||||
}
|
||||
break;
|
||||
return ctx->device->pipeline_silu[dst->type == GGML_TYPE_F16];
|
||||
case GGML_UNARY_OP_GELU:
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
return ctx->device->pipeline_gelu_f32;
|
||||
}
|
||||
break;
|
||||
return ctx->device->pipeline_gelu[dst->type == GGML_TYPE_F16];
|
||||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
return ctx->device->pipeline_gelu_quick_f32;
|
||||
}
|
||||
break;
|
||||
return ctx->device->pipeline_gelu_quick[dst->type == GGML_TYPE_F16];
|
||||
case GGML_UNARY_OP_RELU:
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
return ctx->device->pipeline_relu_f32;
|
||||
}
|
||||
break;
|
||||
return ctx->device->pipeline_relu[dst->type == GGML_TYPE_F16];
|
||||
case GGML_UNARY_OP_TANH:
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
return ctx->device->pipeline_tanh_f32;
|
||||
}
|
||||
break;
|
||||
return ctx->device->pipeline_tanh[dst->type == GGML_TYPE_F16];
|
||||
case GGML_UNARY_OP_SIGMOID:
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
return ctx->device->pipeline_sigmoid_f32;
|
||||
}
|
||||
break;
|
||||
return ctx->device->pipeline_sigmoid[dst->type == GGML_TYPE_F16];
|
||||
default:
|
||||
break;
|
||||
}
|
||||
@@ -5988,6 +6195,15 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
|
||||
return ctx->device->pipeline_leaky_relu_f32;
|
||||
}
|
||||
return nullptr;
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
if (ggml_is_contiguous(src1)) {
|
||||
return ctx->device->pipeline_conv2d_dw_whcn_f32;
|
||||
} else if (ggml_is_contiguous_channels(src1)) {
|
||||
return ctx->device->pipeline_conv2d_dw_cwhn_f32;
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
default:
|
||||
return nullptr;
|
||||
}
|
||||
@@ -6014,6 +6230,7 @@ static bool ggml_vk_op_supports_incontiguous(ggml_op op) {
|
||||
case GGML_OP_REPEAT_BACK:
|
||||
case GGML_OP_ROPE:
|
||||
case GGML_OP_RMS_NORM:
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
@@ -6310,6 +6527,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
|
||||
case GGML_OP_CONCAT:
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_UNARY:
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
{
|
||||
const uint32_t ne = ggml_nelements(dst);
|
||||
if (ne > 262144) {
|
||||
@@ -7096,6 +7314,30 @@ static void ggml_vk_pool_2d(ggml_backend_vk_context * ctx, vk_context& subctx, c
|
||||
}, dryrun);
|
||||
}
|
||||
|
||||
static void ggml_vk_conv_2d_dw(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
|
||||
vk_op_conv2d_dw_push_constants p{};
|
||||
p.ne = ggml_nelements(dst);
|
||||
p.channels = dst->ne[2];
|
||||
p.batches = dst->ne[3];
|
||||
p.dst_w = dst->ne[0];
|
||||
p.dst_h = dst->ne[1];
|
||||
p.src_w = src1->ne[0];
|
||||
p.src_h = src1->ne[1];
|
||||
p.knl_w = src0->ne[0];
|
||||
p.knl_h = src0->ne[1];
|
||||
p.stride_x = dst->op_params[0];
|
||||
p.stride_y = dst->op_params[1];
|
||||
p.pad_x = dst->op_params[2];
|
||||
p.pad_y = dst->op_params[3];
|
||||
p.dilation_x = dst->op_params[4];
|
||||
p.dilation_y = dst->op_params[5];
|
||||
|
||||
GGML_ASSERT(src0->ne[3] == p.channels);
|
||||
GGML_ASSERT(src1->ne[3] == p.batches);
|
||||
|
||||
ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_CONV_2D_DW, std::move(p), dryrun);
|
||||
}
|
||||
|
||||
static void ggml_vk_leaky_relu(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
||||
const float * op_params = (const float *)dst->op_params;
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_LEAKY_RELU, { (uint32_t)ggml_nelements(src0), 0, op_params[0], 0.0f }, dryrun);
|
||||
@@ -8116,6 +8358,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_POOL_2D:
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
case GGML_OP_RWKV_WKV6:
|
||||
case GGML_OP_RWKV_WKV7:
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
@@ -8179,6 +8422,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_POOL_2D:
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
{
|
||||
// These operations all go through ggml_vk_op_f32, so short-circuit and
|
||||
@@ -8352,6 +8596,10 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
||||
case GGML_OP_POOL_2D:
|
||||
ggml_vk_pool_2d(ctx, compute_ctx, src0, node, dryrun);
|
||||
|
||||
break;
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
ggml_vk_conv_2d_dw(ctx, compute_ctx, src0, src1, node, dryrun);
|
||||
|
||||
break;
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
ggml_vk_leaky_relu(ctx, compute_ctx, src0, node, dryrun);
|
||||
@@ -8473,6 +8721,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor *
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_POOL_2D:
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
case GGML_OP_RWKV_WKV6:
|
||||
case GGML_OP_RWKV_WKV7:
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
@@ -9209,7 +9458,10 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
||||
case GGML_UNARY_OP_RELU:
|
||||
case GGML_UNARY_OP_TANH:
|
||||
case GGML_UNARY_OP_SIGMOID:
|
||||
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
|
||||
return ggml_is_contiguous(op->src[0]) &&
|
||||
(op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
|
||||
(op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16) &&
|
||||
(op->src[0]->type == op->type);
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
@@ -9227,6 +9479,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
||||
switch (src0_type) {
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_BF16:
|
||||
case GGML_TYPE_Q4_0:
|
||||
case GGML_TYPE_Q4_1:
|
||||
case GGML_TYPE_Q5_0:
|
||||
@@ -9262,10 +9515,15 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
||||
if (a->ne[3] != b->ne[3]) {
|
||||
return false;
|
||||
}
|
||||
if (!(ggml_vk_dim01_contiguous(op->src[0]) || op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) ||
|
||||
if (!(ggml_vk_dim01_contiguous(op->src[0]) || op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16 || op->src[0]->type == GGML_TYPE_BF16) ||
|
||||
!(ggml_vk_dim01_contiguous(op->src[1]) || op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_F16)) {
|
||||
return false;
|
||||
}
|
||||
if (op->src[0]->type == GGML_TYPE_BF16 && op->src[1]->type == GGML_TYPE_F16) {
|
||||
// We currently don't have a bf16 x f16 shader, or an fp16->bf16 copy shader.
|
||||
// So don't support this combination for now.
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
} break;
|
||||
@@ -9338,6 +9596,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
||||
switch (op->src[0]->type) {
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_BF16:
|
||||
case GGML_TYPE_Q4_0:
|
||||
case GGML_TYPE_Q4_1:
|
||||
case GGML_TYPE_Q5_0:
|
||||
@@ -9368,6 +9627,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
||||
switch (src1_type) {
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_BF16:
|
||||
case GGML_TYPE_Q4_0:
|
||||
case GGML_TYPE_Q4_1:
|
||||
case GGML_TYPE_Q5_0:
|
||||
@@ -9381,6 +9641,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
||||
}
|
||||
if (src1_type == GGML_TYPE_F32) {
|
||||
switch (src0_type) {
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_Q4_0:
|
||||
case GGML_TYPE_Q4_1:
|
||||
case GGML_TYPE_Q5_0:
|
||||
@@ -9419,6 +9680,9 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
||||
case GGML_OP_SUB:
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
return (op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
|
||||
(op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_F16) &&
|
||||
(op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16);
|
||||
case GGML_OP_SILU_BACK:
|
||||
case GGML_OP_RMS_NORM_BACK:
|
||||
case GGML_OP_SQR:
|
||||
@@ -9442,6 +9706,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
||||
case GGML_OP_COUNT_EQUAL:
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
case GGML_OP_POOL_2D:
|
||||
case GGML_OP_RWKV_WKV6:
|
||||
case GGML_OP_RWKV_WKV7:
|
||||
|
||||
@@ -12,6 +12,9 @@ endif()
|
||||
if (GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
|
||||
add_compile_definitions(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
|
||||
endif()
|
||||
if (GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
|
||||
add_compile_definitions(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
|
||||
endif()
|
||||
set(TARGET vulkan-shaders-gen)
|
||||
add_executable(${TARGET} vulkan-shaders-gen.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
|
||||
@@ -18,7 +18,11 @@ void main() {
|
||||
// fast path for when all four iterations are in-bounds
|
||||
if (idx + (num_iter-1)*num_threads < p.ne) {
|
||||
[[unroll]] for (uint i = 0; i < num_iter; ++i) {
|
||||
#ifndef OPTIMIZATION_ERROR_WORKAROUND
|
||||
|
||||
#if defined(DATA_D_BF16)
|
||||
float f = float(data_a[get_aoffset() + idx]);
|
||||
data_d[get_doffset() + idx] = D_TYPE(fp32_to_bf16(f));
|
||||
#elif !defined(OPTIMIZATION_ERROR_WORKAROUND)
|
||||
data_d[get_doffset() + idx] = D_TYPE(data_a[get_aoffset() + idx]);
|
||||
#else
|
||||
data_d[get_doffset() + idx] = data_a[get_aoffset() + idx];
|
||||
@@ -31,7 +35,10 @@ void main() {
|
||||
continue;
|
||||
}
|
||||
|
||||
#ifndef OPTIMIZATION_ERROR_WORKAROUND
|
||||
#if defined(DATA_D_BF16)
|
||||
float f = float(data_a[get_aoffset() + idx]);
|
||||
data_d[get_doffset() + idx] = D_TYPE(fp32_to_bf16(f));
|
||||
#elif !defined(OPTIMIZATION_ERROR_WORKAROUND)
|
||||
data_d[get_doffset() + idx] = D_TYPE(data_a[get_aoffset() + idx]);
|
||||
#else
|
||||
data_d[get_doffset() + idx] = data_a[get_aoffset() + idx];
|
||||
|
||||
105
ggml/src/ggml-vulkan/vulkan-shaders/conv2d_dw.comp
Normal file
105
ggml/src/ggml-vulkan/vulkan-shaders/conv2d_dw.comp
Normal file
@@ -0,0 +1,105 @@
|
||||
#version 450
|
||||
|
||||
#include "types.comp"
|
||||
|
||||
layout (push_constant) uniform parameter
|
||||
{
|
||||
uint ne;
|
||||
uint batches;
|
||||
uint channels;
|
||||
uint dst_w;
|
||||
uint dst_h;
|
||||
uint src_w;
|
||||
uint src_h;
|
||||
uint knl_w;
|
||||
uint knl_h;
|
||||
int stride_x;
|
||||
int stride_y;
|
||||
int pad_x;
|
||||
int pad_y;
|
||||
int dilation_x;
|
||||
int dilation_y;
|
||||
} p;
|
||||
|
||||
layout (binding = 0) readonly buffer A {A_TYPE knl_data[];};
|
||||
layout (binding = 1) readonly buffer B {B_TYPE src_data[];};
|
||||
layout (binding = 2) writeonly buffer D {D_TYPE dst_data[];};
|
||||
|
||||
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
FLOAT_TYPE conv_2d_dw_whcn(uint idx) {
|
||||
uint i0 = idx / p.dst_w;
|
||||
uint dst_x = idx - i0 * p.dst_w;
|
||||
uint i1 = i0 / p.dst_h;
|
||||
uint dst_y = i0 - i1 * p.dst_h;
|
||||
uint n = i1 / p.channels;
|
||||
uint c = i1 - n * p.channels;
|
||||
|
||||
uint src_i = n * p.channels * p.src_h * p.src_w + c * p.src_h * p.src_w;
|
||||
uint knl_i = c * p.knl_h * p.knl_w;
|
||||
|
||||
FLOAT_TYPE sum = 0.0;
|
||||
for (uint knl_y = 0; knl_y < p.knl_h; ++knl_y) {
|
||||
uint src_y = dst_y * p.stride_y + knl_y * p.dilation_y - p.pad_y;
|
||||
if (src_y >= p.src_h) { // src_y < 0 will wrap to a large unsigned int
|
||||
continue;
|
||||
}
|
||||
for (uint knl_x = 0; knl_x < p.knl_w; ++knl_x) {
|
||||
uint src_x = dst_x * p.stride_x + knl_x * p.dilation_x - p.pad_x;
|
||||
if (src_x >= p.src_w) { // src_x < 0 will wrap to a large unsigned int
|
||||
continue;
|
||||
}
|
||||
FLOAT_TYPE v = FLOAT_TYPE(src_data[src_i + src_y * p.src_w + src_x]);
|
||||
FLOAT_TYPE k = FLOAT_TYPE(knl_data[knl_i + knl_y * p.knl_w + knl_x]);
|
||||
sum = fma(v, k, sum);
|
||||
}
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
FLOAT_TYPE conv_2d_dw_cwhn(uint idx) {
|
||||
uint i0 = idx / p.channels;
|
||||
uint c = idx - i0 * p.channels;
|
||||
uint i1 = i0 / p.dst_w;
|
||||
uint dst_x = i0 - i1 * p.dst_w;
|
||||
uint n = i1 / p.dst_h;
|
||||
uint dst_y = i1 - n * p.dst_h;
|
||||
|
||||
uint src_i = n * p.channels * p.src_h * p.src_w;
|
||||
uint src_row = p.src_w * p.channels;
|
||||
uint knl_row = p.knl_w * p.channels;
|
||||
|
||||
FLOAT_TYPE sum = 0.0;
|
||||
for (uint knl_y = 0; knl_y < p.knl_h; ++knl_y) {
|
||||
uint src_y = dst_y * p.stride_y + knl_y * p.dilation_y - p.pad_y;
|
||||
if (src_y >= p.src_h) { // src_y < 0 will wrap to a large unsigned int
|
||||
continue;
|
||||
}
|
||||
for (uint knl_x = 0; knl_x < p.knl_w; ++knl_x) {
|
||||
uint src_x = dst_x * p.stride_x + knl_x * p.dilation_x - p.pad_x;
|
||||
if (src_x >= p.src_w) { // src_x < 0 will wrap to a large unsigned int
|
||||
continue;
|
||||
}
|
||||
FLOAT_TYPE v = FLOAT_TYPE(src_data[src_i + src_y * src_row + src_x * p.channels + c]);
|
||||
FLOAT_TYPE k = FLOAT_TYPE(knl_data[ knl_y * knl_row + knl_x * p.channels + c]);
|
||||
sum = fma(v, k, sum);
|
||||
}
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
void main() {
|
||||
uint idx = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x;
|
||||
if (idx >= p.ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
FLOAT_TYPE result =
|
||||
#ifdef WHCN
|
||||
conv_2d_dw_whcn(idx);
|
||||
#else
|
||||
conv_2d_dw_cwhn(idx);
|
||||
#endif
|
||||
dst_data[idx] = D_TYPE(result);
|
||||
}
|
||||
|
||||
@@ -12,7 +12,10 @@ void main() {
|
||||
return;
|
||||
}
|
||||
|
||||
#ifndef OPTIMIZATION_ERROR_WORKAROUND
|
||||
#if defined(DATA_D_BF16)
|
||||
float f = float(data_a[get_aoffset() + src0_idx(idx)]);
|
||||
data_d[get_doffset() + dst_idx(idx)] = D_TYPE(fp32_to_bf16(f));
|
||||
#elif !defined(OPTIMIZATION_ERROR_WORKAROUND)
|
||||
data_d[get_doffset() + dst_idx(idx)] = D_TYPE(data_a[get_aoffset() + src0_idx(idx)]);
|
||||
#else
|
||||
data_d[get_doffset() + dst_idx(idx)] = data_a[get_aoffset() + src0_idx(idx)];
|
||||
|
||||
@@ -23,6 +23,12 @@ vec2 dequantize(uint ib, uint iqs, uint a_offset) {
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_BF16)
|
||||
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
|
||||
return vec2(bf16_to_fp32(data_a[a_offset + ib]), bf16_to_fp32(data_a[a_offset + ib + 1]));
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_Q4_0)
|
||||
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
|
||||
const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
|
||||
@@ -428,7 +434,7 @@ vec4 dequantize4(uint ib, uint iqs, uint a_offset) {
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_F32) || defined(DATA_A_F16)
|
||||
#if defined(DATA_A_F32) || defined(DATA_A_F16) || defined(DATA_A_BF16)
|
||||
vec2 get_dm(uint ib, uint a_offset) {
|
||||
return vec2(0, 0);
|
||||
}
|
||||
|
||||
@@ -20,9 +20,14 @@ void main() {
|
||||
const uint a_offset = get_aoffset() + i01*p.nb01 + i11*p.nb02 + i12*p.nb03;
|
||||
const uint d_offset = get_doffset() + i10*p.nb21 + i11*p.nb22 + i12*p.nb23;
|
||||
|
||||
#ifndef OPTIMIZATION_ERROR_WORKAROUND
|
||||
data_d[d_offset + i00] = D_TYPE(data_a[a_offset + i00]);
|
||||
#if defined(DATA_A_BF16)
|
||||
FLOAT_TYPE v = FLOAT_TYPE(bf16_to_fp32(data_a[a_offset + i00]));
|
||||
#else
|
||||
data_d[d_offset + i00] = data_a[a_offset + i00];
|
||||
FLOAT_TYPE v = FLOAT_TYPE(data_a[a_offset + i00]);
|
||||
#endif
|
||||
#ifndef OPTIMIZATION_ERROR_WORKAROUND
|
||||
data_d[d_offset + i00] = D_TYPE(v);
|
||||
#else
|
||||
data_d[d_offset + i00] = D_TYPE(v);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -6,7 +6,7 @@
|
||||
|
||||
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
#if !defined(DATA_A_F32) && !defined(DATA_A_F16)
|
||||
#if !defined(DATA_A_F32) && !defined(DATA_A_F16) && !defined(DATA_A_BF16)
|
||||
#define K_PER_ITER 8
|
||||
#else
|
||||
#define K_PER_ITER 2
|
||||
|
||||
@@ -21,7 +21,9 @@ layout (push_constant) uniform parameter
|
||||
uint nrows_x;
|
||||
uint row_stride_x;
|
||||
uint channel_stride_x;
|
||||
uint channel_stride_y;
|
||||
uint channel_x_divisor;
|
||||
uint ne12;
|
||||
uint b_offset;
|
||||
uint d_offset;
|
||||
} p;
|
||||
@@ -33,6 +35,7 @@ void main() {
|
||||
const uint row_x = gl_GlobalInvocationID.y;
|
||||
const uint channel = gl_GlobalInvocationID.z;
|
||||
const uint channel_x = channel / p.channel_x_divisor;
|
||||
const uint channel_y = channel % p.ne12;
|
||||
|
||||
const uint nrows_y = p.ncols_x;
|
||||
const uint nrows_dst = p.nrows_x;
|
||||
@@ -56,7 +59,7 @@ void main() {
|
||||
const uint row_y = col_x;
|
||||
|
||||
const uint ix = channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x;
|
||||
const uint iy = channel*nrows_y + row_y;
|
||||
const uint iy = channel_y*p.channel_stride_y + row_y;
|
||||
|
||||
const vec4 av4 = vec4(data_a_v4[ix / 4]);
|
||||
const vec4 bv4 = vec4(data_b_v4[iy / 4]);
|
||||
@@ -72,7 +75,7 @@ void main() {
|
||||
const uint row_y = col_x;
|
||||
|
||||
const uint ix = channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x;
|
||||
const uint iy = channel*nrows_y + row_y;
|
||||
const uint iy = channel_y*p.channel_stride_y + row_y;
|
||||
|
||||
const vec4 av4 = vec4(data_a_v4[ix / 4]);
|
||||
const vec4 bv4 = vec4(data_b_v4[iy / 4]);
|
||||
@@ -89,7 +92,7 @@ void main() {
|
||||
const uint row_y = col_x;
|
||||
|
||||
const uint ix = channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x;
|
||||
const uint iy = channel*nrows_y + row_y;
|
||||
const uint iy = channel_y*p.channel_stride_y + row_y;
|
||||
|
||||
const FLOAT_TYPE xi = FLOAT_TYPE(data_a[ix]);
|
||||
|
||||
|
||||
@@ -10,6 +10,10 @@
|
||||
#extension GL_EXT_shader_explicit_arithmetic_types_float16 : require
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_BF16) && defined(COOPMAT)
|
||||
#extension GL_EXT_bfloat16 : enable
|
||||
#endif
|
||||
|
||||
#ifdef COOPMAT
|
||||
#extension GL_KHR_cooperative_matrix : enable
|
||||
#extension GL_KHR_memory_scope_semantics : enable
|
||||
@@ -29,6 +33,10 @@
|
||||
#define LOAD_VEC_B 1
|
||||
#endif
|
||||
|
||||
#if !defined(TO_FLOAT_TYPE)
|
||||
#define TO_FLOAT_TYPE FLOAT_TYPE
|
||||
#endif
|
||||
|
||||
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
|
||||
@@ -202,8 +210,8 @@ void main() {
|
||||
#endif
|
||||
|
||||
#ifdef COOPMAT
|
||||
coopmat<float16_t, gl_ScopeSubgroup, TM, TK, gl_MatrixUseA> cache_a;
|
||||
coopmat<float16_t, gl_ScopeSubgroup, TK, TN, gl_MatrixUseB> cache_b;
|
||||
coopmat<FLOAT_TYPE, gl_ScopeSubgroup, TM, TK, gl_MatrixUseA> cache_a;
|
||||
coopmat<FLOAT_TYPE, gl_ScopeSubgroup, TK, TN, gl_MatrixUseB> cache_b;
|
||||
coopmat<ACC_TYPE, gl_ScopeSubgroup, TM, TN, gl_MatrixUseAccumulator> sums[cms_per_row * cms_per_col];
|
||||
|
||||
[[unroll]] for (uint i = 0; i < cms_per_row * cms_per_col; i++) {
|
||||
@@ -248,6 +256,21 @@ void main() {
|
||||
buf_a[(loadc_a + l) * SHMEM_STRIDE + loadr_a] = FLOAT_TYPE(0.0f);
|
||||
}
|
||||
#endif
|
||||
#elif defined(DATA_A_BF16)
|
||||
#if LOAD_VEC_A == 4
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;
|
||||
buf_a[buf_idx ] = TO_FLOAT_TYPE(data_a[idx].x);
|
||||
buf_a[buf_idx + 1] = TO_FLOAT_TYPE(data_a[idx].y);
|
||||
buf_a[buf_idx + 2] = TO_FLOAT_TYPE(data_a[idx].z);
|
||||
buf_a[buf_idx + 3] = TO_FLOAT_TYPE(data_a[idx].w);
|
||||
#else
|
||||
if (ir * BM + loadc_a + l < p.M && block + loadr_a < end_k) {
|
||||
buf_a[(loadc_a + l) * SHMEM_STRIDE + loadr_a] = TO_FLOAT_TYPE(data_a[pos_a + (loadc_a + l) * p.stride_a + loadr_a]);
|
||||
} else {
|
||||
buf_a[(loadc_a + l) * SHMEM_STRIDE + loadr_a] = TO_FLOAT_TYPE(uint16_t(0));
|
||||
}
|
||||
#endif
|
||||
#elif defined(DATA_A_Q4_0)
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + 4 * loadr_a;
|
||||
@@ -695,13 +718,13 @@ void main() {
|
||||
const uint idx = pos_b + (loadc_b + l) * p.stride_b / LOAD_VEC_B + loadr_b;
|
||||
#endif
|
||||
const uint buf_idx = (loadc_b + l) * SHMEM_STRIDE + loadr_b * LOAD_VEC_B;
|
||||
buf_b[buf_idx + 0] = FLOAT_TYPE(data_b[idx].x);
|
||||
buf_b[buf_idx + 1] = FLOAT_TYPE(data_b[idx].y);
|
||||
buf_b[buf_idx + 2] = FLOAT_TYPE(data_b[idx].z);
|
||||
buf_b[buf_idx + 3] = FLOAT_TYPE(data_b[idx].w);
|
||||
buf_b[buf_idx + 0] = TO_FLOAT_TYPE(data_b[idx].x);
|
||||
buf_b[buf_idx + 1] = TO_FLOAT_TYPE(data_b[idx].y);
|
||||
buf_b[buf_idx + 2] = TO_FLOAT_TYPE(data_b[idx].z);
|
||||
buf_b[buf_idx + 3] = TO_FLOAT_TYPE(data_b[idx].w);
|
||||
#elif !MUL_MAT_ID
|
||||
if (ic * BN + loadc_b + l < p.N && block + loadr_b < end_k) {
|
||||
buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = FLOAT_TYPE(data_b[pos_b + (loadc_b + l) * p.stride_b + loadr_b]);
|
||||
buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = TO_FLOAT_TYPE(data_b[pos_b + (loadc_b + l) * p.stride_b + loadr_b]);
|
||||
} else {
|
||||
buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = FLOAT_TYPE(0.0f);
|
||||
}
|
||||
@@ -709,7 +732,7 @@ void main() {
|
||||
const uint row_i = ic * BN + loadc_b + l;
|
||||
if (row_i < _ne1) {
|
||||
const u16vec2 row_idx = row_ids[row_i];
|
||||
buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = FLOAT_TYPE(data_b[pos_b + row_idx.y * p.batch_stride_b + (row_idx.x % p.ne11) * p.stride_b + loadr_b]);
|
||||
buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = TO_FLOAT_TYPE(data_b[pos_b + row_idx.y * p.batch_stride_b + (row_idx.x % p.ne11) * p.stride_b + loadr_b]);
|
||||
} else {
|
||||
buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = FLOAT_TYPE(0.0f);
|
||||
}
|
||||
|
||||
@@ -14,6 +14,9 @@
|
||||
#extension GL_EXT_buffer_reference : enable
|
||||
#extension GL_KHR_shader_subgroup_ballot : enable
|
||||
#extension GL_KHR_shader_subgroup_vote : enable
|
||||
#ifdef DATA_A_BF16
|
||||
#extension GL_EXT_bfloat16 : enable
|
||||
#endif
|
||||
|
||||
#include "types.comp"
|
||||
|
||||
@@ -80,6 +83,12 @@ layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
|
||||
#define store_scales(a)
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_BF16)
|
||||
#define MAT_TYPE bfloat16_t
|
||||
#else
|
||||
#define MAT_TYPE FLOAT_TYPE
|
||||
#endif
|
||||
|
||||
#ifdef MUL_MAT_ID
|
||||
layout (binding = 3) readonly buffer IDS {int data_ids[];};
|
||||
|
||||
@@ -271,8 +280,8 @@ void main() {
|
||||
|
||||
// Manually partial unroll
|
||||
[[unroll]] for (uint j = 0; j < unroll_count; ++j) {
|
||||
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
|
||||
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BNover4, gl_MatrixUseB> mat_b;
|
||||
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
|
||||
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BNover4, gl_MatrixUseB> mat_b;
|
||||
|
||||
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA);
|
||||
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BNover4, block_k, BK), tensorViewTranspose);
|
||||
@@ -286,8 +295,8 @@ void main() {
|
||||
store_scales(tid);
|
||||
}
|
||||
while (block_k < end_k) {
|
||||
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
|
||||
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BNover4, gl_MatrixUseB> mat_b;
|
||||
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
|
||||
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BNover4, gl_MatrixUseB> mat_b;
|
||||
|
||||
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA);
|
||||
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BNover4, block_k, BK), tensorViewTranspose);
|
||||
@@ -310,8 +319,8 @@ void main() {
|
||||
|
||||
// Manually partial unroll
|
||||
[[unroll]] for (uint j = 0; j < unroll_count; ++j) {
|
||||
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
|
||||
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BNover2, gl_MatrixUseB> mat_b;
|
||||
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
|
||||
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BNover2, gl_MatrixUseB> mat_b;
|
||||
|
||||
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA);
|
||||
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BNover2, block_k, BK), tensorViewTranspose);
|
||||
@@ -325,8 +334,8 @@ void main() {
|
||||
store_scales(tid);
|
||||
}
|
||||
while (block_k < end_k) {
|
||||
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
|
||||
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BNover2, gl_MatrixUseB> mat_b;
|
||||
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
|
||||
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BNover2, gl_MatrixUseB> mat_b;
|
||||
|
||||
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA);
|
||||
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BNover2, block_k, BK), tensorViewTranspose);
|
||||
@@ -350,8 +359,8 @@ void main() {
|
||||
|
||||
// Manually partial unroll
|
||||
[[unroll]] for (uint j = 0; j < unroll_count; ++j) {
|
||||
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
|
||||
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
|
||||
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
|
||||
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
|
||||
|
||||
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA);
|
||||
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BN, block_k, BK), tensorViewTranspose);
|
||||
@@ -365,8 +374,8 @@ void main() {
|
||||
store_scales(tid);
|
||||
}
|
||||
while (block_k < end_k) {
|
||||
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
|
||||
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
|
||||
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
|
||||
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
|
||||
|
||||
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA);
|
||||
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BN, block_k, BK), tensorViewTranspose);
|
||||
@@ -405,8 +414,8 @@ void main() {
|
||||
fetch_scales(ir * BM, pos_a, stride_a, block_k + BK, tid, false);
|
||||
}
|
||||
|
||||
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
|
||||
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
|
||||
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
|
||||
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
|
||||
|
||||
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutAClamp, ir * BM, BM, block_k, BK) DECODEFUNCA);
|
||||
#ifdef MUL_MAT_ID
|
||||
|
||||
@@ -17,5 +17,5 @@ void main() {
|
||||
return;
|
||||
}
|
||||
|
||||
data_d[i] = max(float(data_a[i]), 0);
|
||||
data_d[i] = D_TYPE(max(float(data_a[i]), 0));
|
||||
}
|
||||
|
||||
@@ -16,5 +16,5 @@ void main() {
|
||||
if (i >= p.KX) {
|
||||
return;
|
||||
}
|
||||
data_d[i] = D_TYPE(1. / (1 + exp(-1. *data_a[i])));
|
||||
data_d[i] = D_TYPE(1. / (1 + exp(-1. * float(data_a[i]))));
|
||||
}
|
||||
|
||||
@@ -16,5 +16,5 @@ void main() {
|
||||
if (i >= p.KX) {
|
||||
return;
|
||||
}
|
||||
data_d[i] = D_TYPE(1. - 2. / (exp(2.*data_a[i]) + 1.));
|
||||
data_d[i] = D_TYPE(1. - 2. / (exp(2.*float(data_a[i])) + 1.));
|
||||
}
|
||||
|
||||
@@ -0,0 +1,7 @@
|
||||
#version 460
|
||||
|
||||
#extension GL_EXT_bfloat16 : require
|
||||
|
||||
void main()
|
||||
{
|
||||
}
|
||||
@@ -33,6 +33,19 @@
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_BF16)
|
||||
#define QUANT_K 1
|
||||
#define QUANT_R 1
|
||||
|
||||
#if !defined(LOAD_VEC_A) || LOAD_VEC_A == 1
|
||||
#define A_TYPE uint16_t
|
||||
#elif LOAD_VEC_A == 4
|
||||
#define A_TYPE u16vec4
|
||||
#elif LOAD_VEC_A == 8
|
||||
#error unsupported
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#define QUANT_K_Q4_0 32
|
||||
#define QUANT_R_Q4_0 2
|
||||
|
||||
@@ -1343,4 +1356,18 @@ void init_iq_shmem(uvec3 wgsize)
|
||||
}
|
||||
#endif
|
||||
|
||||
// returns the bfloat value in the low 16b.
|
||||
// See ggml_compute_fp32_to_bf16
|
||||
uint32_t fp32_to_bf16(float f)
|
||||
{
|
||||
uint32_t u = floatBitsToUint(f);
|
||||
u = (u + (0x7fff + ((u >> 16) & 1))) >> 16;
|
||||
return u;
|
||||
}
|
||||
|
||||
float bf16_to_fp32(uint32_t u)
|
||||
{
|
||||
return uintBitsToFloat(u << 16);
|
||||
}
|
||||
|
||||
#endif // !defined(GGML_TYPES_COMP)
|
||||
|
||||
@@ -63,7 +63,8 @@ const std::vector<std::string> type_names = {
|
||||
"iq3_xxs",
|
||||
"iq3_s",
|
||||
"iq4_xs",
|
||||
"iq4_nl"
|
||||
"iq4_nl",
|
||||
"bf16",
|
||||
};
|
||||
|
||||
namespace {
|
||||
@@ -296,7 +297,6 @@ void matmul_shaders(bool fp16, bool matmul_id, bool coopmat, bool coopmat2, bool
|
||||
std::string aligned_b_type_f16 = coopmat2 ? "float16_t" : fp16 ? "f16mat2x4" : "f16vec4";
|
||||
|
||||
std::map<std::string, std::string> base_dict = {
|
||||
{"FLOAT_TYPE", (coopmat2 || fp16) ? "float16_t" : "float"},
|
||||
{"FLOAT_TYPE_VEC2", (coopmat2 || fp16) ? "f16vec2" : "vec2"},
|
||||
};
|
||||
std::string shader_name = "matmul";
|
||||
@@ -318,12 +318,45 @@ void matmul_shaders(bool fp16, bool matmul_id, bool coopmat, bool coopmat2, bool
|
||||
|
||||
const std::string source_name = coopmat2 ? "mul_mm_cm2.comp" : "mul_mm.comp";
|
||||
|
||||
// Shaders with f16 B_TYPE
|
||||
string_to_spv(shader_name + "_f32_f16", source_name, merge_maps(base_dict, {{"DATA_A_F32", "1"}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}, }), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_f32_f16_aligned", source_name, merge_maps(base_dict, {{"DATA_A_F32", "1"}, {"LOAD_VEC_A", load_vec}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
auto const &FLOAT_TYPE = [&](const std::string &t) -> std::string {
|
||||
if (t == "bf16") {
|
||||
// scalar path promotes to float
|
||||
if (!coopmat && !coopmat2) {
|
||||
return "float";
|
||||
}
|
||||
return "bfloat16_t";
|
||||
}
|
||||
if (coopmat2 || fp16) {
|
||||
return "float16_t";
|
||||
}
|
||||
return "float";
|
||||
};
|
||||
|
||||
string_to_spv(shader_name + "_f16_aligned", source_name, merge_maps(base_dict, {{"DATA_A_F16", "1"}, {"LOAD_VEC_A", load_vec}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_f16", source_name, merge_maps(base_dict, {{"DATA_A_F16", "1"}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
// Shaders with f16 B_TYPE
|
||||
string_to_spv(shader_name + "_f32_f16", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE("f16")}, {"DATA_A_F32", "1"}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}, }), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_f32_f16_aligned", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE("f16")}, {"DATA_A_F32", "1"}, {"LOAD_VEC_A", load_vec}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
|
||||
string_to_spv(shader_name + "_f16_aligned", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE("f16")}, {"DATA_A_F16", "1"}, {"LOAD_VEC_A", load_vec}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_f16", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE("f16")}, {"DATA_A_F16", "1"}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
|
||||
// bf16
|
||||
{
|
||||
std::string load_vec_a_unaligned = "1";
|
||||
// For aligned matmul loads
|
||||
std::string load_vec_a = coopmat2 ? "1" : "4";
|
||||
|
||||
// scalar path promotes to float
|
||||
std::string to_float_type = (coopmat || coopmat2) ? "uintBitsToBFloat16EXT" : "bf16_to_fp32";
|
||||
|
||||
// If bfloat16 is not supported, then only compile the scalar (promote to fp32) shader
|
||||
#if !defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
|
||||
if (!(coopmat || coopmat2))
|
||||
#endif
|
||||
{
|
||||
string_to_spv(shader_name + "_bf16_aligned", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE("bf16")}, {"TO_FLOAT_TYPE", to_float_type}, {"DATA_A_BF16", "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", "4"}, {"B_TYPE", coopmat2 ? "bfloat16_t" : "u16vec4"}, {"D_TYPE", "float"}, {"B_IS_FLOAT", "1"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_bf16", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE("bf16")}, {"TO_FLOAT_TYPE", to_float_type}, {"DATA_A_BF16", "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", coopmat2 ? "bfloat16_t" : "uint16_t"}, {"D_TYPE", "float"}, {"B_IS_FLOAT", "1"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
}
|
||||
}
|
||||
|
||||
for (const auto& tname : type_names) {
|
||||
std::string load_vec_quant = "2";
|
||||
@@ -332,26 +365,30 @@ void matmul_shaders(bool fp16, bool matmul_id, bool coopmat, bool coopmat2, bool
|
||||
else if ((tname == "q5_0") || (tname == "q5_1") || (tname == "q8_0") || (tname == "iq4_nl"))
|
||||
load_vec_quant = "4";
|
||||
|
||||
if (tname == "bf16") {
|
||||
continue;
|
||||
}
|
||||
|
||||
std::string data_a_key = "DATA_A_" + to_uppercase(tname);
|
||||
// For unaligned, load one at a time for f32/f16, or two at a time for quants
|
||||
std::string load_vec_a_unaligned = (coopmat2 || tname == "f32" || tname == "f16") ? "1" : load_vec_quant;
|
||||
std::string load_vec_a_unaligned = (coopmat2 || tname == "f32" || tname == "f16" || tname == "bf16") ? "1" : load_vec_quant;
|
||||
// For aligned matmul loads
|
||||
std::string load_vec_a = (coopmat2 || tname == "f32" || tname == "f16") ? load_vec : load_vec_quant;
|
||||
std::string load_vec_a = (coopmat2 || tname == "f32" || tname == "f16" || tname == "bf16") ? load_vec : load_vec_quant;
|
||||
|
||||
// don't generate f32 variants for coopmat2
|
||||
if (!coopmat2) {
|
||||
string_to_spv(shader_name + "_" + tname + "_f32", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_" + tname + "_f32_aligned", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f32}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_" + tname + "_f32", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE(tname)}, {data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_" + tname + "_f32_aligned", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE(tname)}, {data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f32}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
}
|
||||
|
||||
if (tname != "f16" && tname != "f32") {
|
||||
string_to_spv(shader_name + "_" + tname + "_f16", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_" + tname + "_f16_aligned", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_" + tname + "_f16", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE(tname)}, {data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_" + tname + "_f16_aligned", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE(tname)}, {data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
}
|
||||
|
||||
#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
|
||||
if (!coopmat && !coopmat2 && !matmul_id && (tname == "q4_0" || tname == "q4_1" || tname == "q5_0" || tname == "q5_1" || tname == "q8_0")) {
|
||||
string_to_spv(shader_name + "_" + tname + "_q8_1", "mul_mmq.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float"},}), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_" + tname + "_q8_1", "mul_mmq.comp", merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE(tname)}, {data_a_key, "1"}, {"D_TYPE", "float"},}), fp16, coopmat, coopmat2, f16acc);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
@@ -393,6 +430,7 @@ void process_shaders() {
|
||||
if (tname == "f32") {
|
||||
continue;
|
||||
}
|
||||
if (tname == "bf16") continue;
|
||||
|
||||
if (tname == "f16") {
|
||||
string_to_spv("flash_attn_f32_f16_" + tname, "flash_attn_cm2.comp",
|
||||
@@ -417,12 +455,12 @@ void process_shaders() {
|
||||
string_to_spv("mul_mat_vec_id_" + tname + "_f32", shader, merge_maps(base_dict, {{"MUL_MAT_ID", "1"}, {data_a_key, "1"}, {"B_TYPE", "float"}, {"B_TYPE_VEC2", "vec2"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}}));
|
||||
|
||||
// Dequant shaders
|
||||
if (tname != "f16") {
|
||||
if (tname != "f16" && tname != "bf16") {
|
||||
string_to_spv("dequant_" + tname, "dequant_" + tname + ".comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float16_t"}}));
|
||||
}
|
||||
|
||||
if (!string_ends_with(tname, "_k")) {
|
||||
shader = (tname == "f32" || tname == "f16") ? "get_rows.comp" : "get_rows_quant.comp";
|
||||
shader = (tname == "f32" || tname == "f16" || tname == "bf16") ? "get_rows.comp" : "get_rows_quant.comp";
|
||||
|
||||
if (tname == "f16") {
|
||||
string_to_spv("get_rows_" + tname, shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "int"}, {"D_TYPE", "float16_t"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}}));
|
||||
@@ -447,9 +485,13 @@ void process_shaders() {
|
||||
string_to_spv("cpy_f32_f32", "copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
|
||||
string_to_spv("cpy_f32_f16", "copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float16_t"}});
|
||||
string_to_spv("cpy_f16_f16", "copy.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}});
|
||||
string_to_spv("cpy_f16_f32", "copy.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}});
|
||||
string_to_spv("cpy_f32_bf16","copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "uint16_t"}, {"DATA_D_BF16", "1"}});
|
||||
string_to_spv("contig_cpy_f32_f32", "contig_copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
|
||||
string_to_spv("contig_cpy_f32_f16", "contig_copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float16_t"}});
|
||||
string_to_spv("contig_cpy_f16_f16", "contig_copy.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}});
|
||||
string_to_spv("contig_cpy_f16_f32", "contig_copy.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}});
|
||||
string_to_spv("contig_cpy_f32_bf16","contig_copy.comp",{{"A_TYPE", "float"}, {"D_TYPE", "uint16_t"}, {"DATA_D_BF16", "1"}});
|
||||
|
||||
for (std::string t : {"q4_0", "q4_1", "q5_0", "q5_1", "q8_0", "iq4_nl"}) {
|
||||
string_to_spv("cpy_f32_" + t, "copy_to_quant.comp", {{"DATA_A_" + to_uppercase(t), "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
|
||||
@@ -457,8 +499,26 @@ void process_shaders() {
|
||||
string_to_spv("cpy_" + t + "_f32", "copy_from_quant.comp", {{"DATA_A_" + to_uppercase(t), "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
|
||||
}
|
||||
|
||||
string_to_spv("add_f32", "add.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
|
||||
string_to_spv("add_f16_f32_f16", "add.comp", {{"A_TYPE", "float16_t"}, {"B_TYPE", "float"}, {"D_TYPE", "float16_t"}, {"FLOAT_TYPE", "float"}});
|
||||
auto get_type_str = [](bool f16) {
|
||||
return f16 ? "float16_t" : "float";
|
||||
};
|
||||
auto get_suffix = [](bool src0_f16, bool src1_f16, bool dst_f16) {
|
||||
std::string s;
|
||||
s += std::string(src0_f16 ? "_f16" : "_f32");
|
||||
s += std::string(src1_f16 ? "_f16" : "_f32");
|
||||
s += std::string(dst_f16 ? "_f16" : "_f32");
|
||||
return s;
|
||||
};
|
||||
for (std::string op : {"add", "sub", "mul", "div"}) {
|
||||
for (auto src0_f16 : {false, true}) {
|
||||
for (auto src1_f16 : {false, true}) {
|
||||
for (auto dst_f16 : {false, true}) {
|
||||
auto name = op + get_suffix(src0_f16, src1_f16, dst_f16);
|
||||
string_to_spv(name.c_str(), op + ".comp", {{"A_TYPE", get_type_str(src0_f16)}, {"B_TYPE", get_type_str(src1_f16)}, {"D_TYPE", get_type_str(dst_f16)}, {"FLOAT_TYPE", "float"}});
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
string_to_spv("sub_f32", "sub.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
|
||||
|
||||
@@ -493,14 +553,21 @@ void process_shaders() {
|
||||
|
||||
string_to_spv("upscale_f32", "upscale.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}});
|
||||
|
||||
string_to_spv("gelu_f32", "gelu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
|
||||
string_to_spv("gelu_quick_f32", "gelu_quick.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
|
||||
string_to_spv("silu_f32", "silu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
|
||||
string_to_spv("silu_back_f32", "silu_back.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}});
|
||||
string_to_spv("relu_f32", "relu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
|
||||
string_to_spv("leaky_relu_f32", "leaky_relu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
|
||||
string_to_spv("tanh_f32", "tanh.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
|
||||
string_to_spv("sigmoid_f32", "sigmoid.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
|
||||
string_to_spv("gelu_f16", "gelu.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
|
||||
string_to_spv("gelu_f32", "gelu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
|
||||
string_to_spv("gelu_quick_f16", "gelu_quick.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
|
||||
string_to_spv("gelu_quick_f32", "gelu_quick.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
|
||||
string_to_spv("silu_f16", "silu.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
|
||||
string_to_spv("silu_f32", "silu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
|
||||
string_to_spv("relu_f16", "relu.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
|
||||
string_to_spv("relu_f32", "relu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
|
||||
string_to_spv("tanh_f16", "tanh.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
|
||||
string_to_spv("tanh_f32", "tanh.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
|
||||
string_to_spv("sigmoid_f16", "sigmoid.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
|
||||
string_to_spv("sigmoid_f32", "sigmoid.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
|
||||
|
||||
string_to_spv("leaky_relu_f32", "leaky_relu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
|
||||
string_to_spv("silu_back_f32", "silu_back.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}});
|
||||
|
||||
string_to_spv("diag_mask_inf_f32", "diag_mask_inf.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
|
||||
|
||||
@@ -544,6 +611,9 @@ void process_shaders() {
|
||||
|
||||
string_to_spv("opt_step_adamw_f32", "opt_step_adamw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}}));
|
||||
|
||||
string_to_spv("conv2d_dw_whcn_f32", "conv2d_dw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"WHCN", "1"}}));
|
||||
string_to_spv("conv2d_dw_cwhn_f32", "conv2d_dw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"CWHN", "1"}}));
|
||||
|
||||
for (auto &c : compiles) {
|
||||
c.wait();
|
||||
}
|
||||
@@ -598,7 +668,12 @@ void write_output_files() {
|
||||
std::remove(path.c_str());
|
||||
}
|
||||
}
|
||||
|
||||
for (const char *op : {"add", "sub", "mul", "div"}) {
|
||||
fprintf(hdr, "extern unsigned char *%s_data[2][2][2];\n", op);
|
||||
fprintf(hdr, "extern uint64_t %s_len[2][2][2];\n", op);
|
||||
fprintf(src, "unsigned char *%s_data[2][2][2] = {{{%s_f32_f32_f32_data, %s_f32_f32_f16_data}, {%s_f32_f16_f32_data, %s_f32_f16_f16_data}}, {{%s_f16_f32_f32_data, %s_f16_f32_f16_data}, {%s_f16_f16_f32_data, %s_f16_f16_f16_data}}};\n", op, op, op, op, op, op, op, op, op);
|
||||
fprintf(src, "uint64_t %s_len[2][2][2] = {{{%s_f32_f32_f32_len, %s_f32_f32_f16_len}, {%s_f32_f16_f32_len, %s_f32_f16_f16_len}}, {{%s_f16_f32_f32_len, %s_f16_f32_f16_len}, {%s_f16_f16_f32_len, %s_f16_f16_f16_len}}};\n", op, op, op, op, op, op, op, op, op);
|
||||
}
|
||||
fclose(hdr);
|
||||
fclose(src);
|
||||
}
|
||||
|
||||
@@ -1299,6 +1299,10 @@ bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
|
||||
return ggml_is_contiguous_n(tensor, 2);
|
||||
}
|
||||
|
||||
bool ggml_is_contiguously_allocated(const struct ggml_tensor * tensor) {
|
||||
return ggml_nbytes(tensor) == ggml_nelements(tensor) * ggml_type_size(tensor->type)/ggml_blck_size(tensor->type);
|
||||
}
|
||||
|
||||
bool ggml_is_permuted(const struct ggml_tensor * tensor) {
|
||||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||||
|
||||
|
||||
@@ -231,8 +231,10 @@ class Keys:
|
||||
BLOCK_COUNT = "clip.vision.block_count"
|
||||
IMAGE_MEAN = "clip.vision.image_mean"
|
||||
IMAGE_STD = "clip.vision.image_std"
|
||||
SPATIAL_MERGE_SIZE = "clip.vision.spatial_merge_size"
|
||||
USE_GELU = "clip.use_gelu"
|
||||
USE_SILU = "clip.use_silu"
|
||||
N_WA_PATTERN = "clip.vision.n_wa_pattern" # used by qwen2.5vl
|
||||
|
||||
class Attention:
|
||||
HEAD_COUNT = "clip.vision.attention.head_count"
|
||||
@@ -491,6 +493,7 @@ class MODEL_TENSOR(IntEnum):
|
||||
V_ENC_FFN_DOWN = auto()
|
||||
V_PRE_NORM = auto()
|
||||
V_POST_NORM = auto()
|
||||
V_MM_INP_NORM = auto()
|
||||
V_MM_INP_PROJ = auto() # gemma3
|
||||
V_MM_SOFT_EMB_NORM = auto() # gemma3
|
||||
V_RESMPL_POS_EMBD_K = auto() # minicpmv
|
||||
@@ -505,6 +508,7 @@ class MODEL_TENSOR(IntEnum):
|
||||
V_RESMPL_PROJ = auto() # minicpmv
|
||||
V_RESMPL_QUERY = auto() # minicpmv
|
||||
V_TOK_EMBD_IMG_BREAK = auto() # pixtral
|
||||
V_MM_PATCH_MERGER = auto() # mistral small 3.1
|
||||
|
||||
|
||||
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
@@ -747,6 +751,7 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||
MODEL_TENSOR.V_PRE_NORM: "v.pre_ln",
|
||||
MODEL_TENSOR.V_POST_NORM: "v.post_ln",
|
||||
MODEL_TENSOR.V_MM_INP_PROJ: "mm.input_projection",
|
||||
MODEL_TENSOR.V_MM_INP_NORM: "mm.input_norm",
|
||||
MODEL_TENSOR.V_MM_SOFT_EMB_NORM: "mm.soft_emb_norm",
|
||||
MODEL_TENSOR.V_RESMPL_POS_EMBD_K: "resampler.pos_embd_k",
|
||||
MODEL_TENSOR.V_RESMPL_ATTN_Q: "resampler.attn.q",
|
||||
@@ -760,6 +765,7 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||
MODEL_TENSOR.V_RESMPL_PROJ: "resampler.proj",
|
||||
MODEL_TENSOR.V_RESMPL_QUERY: "resampler.query",
|
||||
MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: "v.token_embd.img_break", # pixtral
|
||||
MODEL_TENSOR.V_MM_PATCH_MERGER: "mm.patch_merger", # mistral small 3.1
|
||||
}
|
||||
|
||||
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
@@ -783,6 +789,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.V_PRE_NORM,
|
||||
MODEL_TENSOR.V_POST_NORM,
|
||||
MODEL_TENSOR.V_MM_INP_PROJ,
|
||||
MODEL_TENSOR.V_MM_INP_NORM,
|
||||
MODEL_TENSOR.V_MM_SOFT_EMB_NORM,
|
||||
MODEL_TENSOR.V_RESMPL_POS_EMBD_K,
|
||||
MODEL_TENSOR.V_RESMPL_ATTN_Q,
|
||||
@@ -796,6 +803,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.V_RESMPL_PROJ,
|
||||
MODEL_TENSOR.V_RESMPL_QUERY,
|
||||
MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK,
|
||||
MODEL_TENSOR.V_MM_PATCH_MERGER,
|
||||
],
|
||||
MODEL_ARCH.LLAMA: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
@@ -2025,6 +2033,8 @@ class PoolingType(IntEnum):
|
||||
NONE = 0
|
||||
MEAN = 1
|
||||
CLS = 2
|
||||
LAST = 3
|
||||
RANK = 4
|
||||
|
||||
|
||||
class GGMLQuantizationType(IntEnum):
|
||||
@@ -2155,6 +2165,8 @@ class VisionProjectorType:
|
||||
GEMMA3 = "gemma3"
|
||||
IDEFICS3 = "idefics3"
|
||||
PIXTRAL = "pixtral"
|
||||
QWEN2VL = "qwen2vl_merger"
|
||||
QWEN25VL = "qwen2.5vl_merger"
|
||||
|
||||
|
||||
# Items here are (block size, type size)
|
||||
|
||||
@@ -972,6 +972,9 @@ class GGUFWriter:
|
||||
def add_vision_image_std(self, values: Sequence[float]) -> None:
|
||||
self.add_array(Keys.ClipVision.IMAGE_STD, values)
|
||||
|
||||
def add_vision_spatial_merge_size(self, value: int) -> None:
|
||||
self.add_uint32(Keys.ClipVision.SPATIAL_MERGE_SIZE, value)
|
||||
|
||||
def add_vision_use_gelu(self, value: bool) -> None:
|
||||
self.add_bool(Keys.ClipVision.USE_GELU, value)
|
||||
|
||||
@@ -981,6 +984,9 @@ class GGUFWriter:
|
||||
def add_vision_projector_scale_factor(self, value: int) -> None:
|
||||
self.add_uint32(Keys.ClipVision.Projector.SCALE_FACTOR, value)
|
||||
|
||||
def add_vision_n_wa_pattern(self, value: int) -> None:
|
||||
self.add_uint32(Keys.ClipVision.N_WA_PATTERN, value)
|
||||
|
||||
def _pack(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> bytes:
|
||||
pack_prefix = ''
|
||||
if not skip_pack_prefix:
|
||||
|
||||
@@ -1,7 +0,0 @@
|
||||
# pyright: reportUnusedImport=false
|
||||
|
||||
from .gguf_convert_endian import main as gguf_convert_endian_entrypoint
|
||||
from .gguf_dump import main as gguf_dump_entrypoint
|
||||
from .gguf_set_metadata import main as gguf_set_metadata_entrypoint
|
||||
from .gguf_new_metadata import main as gguf_new_metadata_entrypoint
|
||||
from .gguf_editor_gui import main as gguf_editor_gui_entrypoint
|
||||
@@ -896,6 +896,7 @@ class TensorNameMap:
|
||||
|
||||
MODEL_TENSOR.V_MMPROJ: (
|
||||
"multi_modal_projector.linear_{bid}",
|
||||
"visual.merger.mlp.{bid}", # qwen2vl
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_MMPROJ_FC: (
|
||||
@@ -919,6 +920,7 @@ class TensorNameMap:
|
||||
"vpm.embeddings.patch_embedding",
|
||||
"model.vision_model.embeddings.patch_embedding", # SmolVLM
|
||||
"vision_tower.patch_conv", # pixtral
|
||||
"visual.patch_embed.proj", # qwen2vl
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_EMBD_POS: (
|
||||
@@ -932,6 +934,7 @@ class TensorNameMap:
|
||||
"vpm.encoder.layers.{bid}.self_attn.q_proj",
|
||||
"model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
|
||||
"vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral
|
||||
"visual.blocks.{bid}.attn.q", # qwen2vl, generated
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_ATTN_K: (
|
||||
@@ -939,6 +942,7 @@ class TensorNameMap:
|
||||
"vpm.encoder.layers.{bid}.self_attn.k_proj",
|
||||
"model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
|
||||
"vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral
|
||||
"visual.blocks.{bid}.attn.k", # qwen2vl, generated
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_ATTN_V: (
|
||||
@@ -946,6 +950,7 @@ class TensorNameMap:
|
||||
"vpm.encoder.layers.{bid}.self_attn.v_proj",
|
||||
"model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
|
||||
"vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral
|
||||
"visual.blocks.{bid}.attn.v", # qwen2vl, generated
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_INPUT_NORM: (
|
||||
@@ -953,6 +958,7 @@ class TensorNameMap:
|
||||
"vpm.encoder.layers.{bid}.layer_norm1",
|
||||
"model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
|
||||
"vision_tower.transformer.layers.{bid}.attention_norm", # pixtral
|
||||
"visual.blocks.{bid}.norm1", # qwen2vl
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_OUTPUT: (
|
||||
@@ -960,6 +966,7 @@ class TensorNameMap:
|
||||
"vpm.encoder.layers.{bid}.self_attn.out_proj",
|
||||
"model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
|
||||
"vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral
|
||||
"visual.blocks.{bid}.attn.proj", # qwen2vl
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_OUTPUT_NORM: (
|
||||
@@ -967,24 +974,30 @@ class TensorNameMap:
|
||||
"vpm.encoder.layers.{bid}.layer_norm2",
|
||||
"model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
|
||||
"vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral
|
||||
"visual.blocks.{bid}.norm2", # qwen2vl
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_FFN_UP: (
|
||||
"vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
|
||||
"vpm.encoder.layers.{bid}.mlp.fc1",
|
||||
"model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3 (note: name is swapped)
|
||||
"model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
|
||||
"vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral
|
||||
"visual.blocks.{bid}.mlp.fc1", # qwen2vl
|
||||
"visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_FFN_GATE: (
|
||||
"vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral
|
||||
"visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_FFN_DOWN: (
|
||||
"vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
|
||||
"vpm.encoder.layers.{bid}.mlp.fc2",
|
||||
"model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3 (note: name is swapped)
|
||||
"model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
|
||||
"vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral
|
||||
"visual.blocks.{bid}.mlp.fc2", # qwen2vl
|
||||
"visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_PRE_NORM: (
|
||||
@@ -995,12 +1008,17 @@ class TensorNameMap:
|
||||
MODEL_TENSOR.V_POST_NORM: (
|
||||
"vision_tower.vision_model.post_layernorm",
|
||||
"model.vision_model.post_layernorm", # SmolVLM
|
||||
"visual.merger.ln_q", # qwen2vl
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_MM_INP_PROJ: (
|
||||
"multi_modal_projector.mm_input_projection",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_MM_INP_NORM: (
|
||||
"multi_modal_projector.norm",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
|
||||
"multi_modal_projector.mm_soft_emb_norm",
|
||||
),
|
||||
@@ -1052,6 +1070,10 @@ class TensorNameMap:
|
||||
MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: (
|
||||
"v.token_embd.img_break", # for pixtral, this is a generated vector
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_MM_PATCH_MERGER: (
|
||||
"multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1
|
||||
),
|
||||
}
|
||||
|
||||
# architecture-specific block mappings
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[tool.poetry]
|
||||
name = "gguf"
|
||||
version = "0.16.2"
|
||||
version = "0.16.3"
|
||||
description = "Read and write ML models in GGUF for GGML"
|
||||
authors = ["GGML <ggml@ggml.ai>"]
|
||||
packages = [
|
||||
@@ -36,8 +36,8 @@ requires = ["poetry-core>=1.0.0"]
|
||||
build-backend = "poetry.core.masonry.api"
|
||||
|
||||
[tool.poetry.scripts]
|
||||
gguf-convert-endian = "gguf.scripts:gguf_convert_endian_entrypoint"
|
||||
gguf-dump = "gguf.scripts:gguf_dump_entrypoint"
|
||||
gguf-set-metadata = "gguf.scripts:gguf_set_metadata_entrypoint"
|
||||
gguf-new-metadata = "gguf.scripts:gguf_new_metadata_entrypoint"
|
||||
gguf-editor-gui = "gguf.scripts:gguf_editor_gui_entrypoint"
|
||||
gguf-convert-endian = "gguf.scripts.gguf_convert_endian:main"
|
||||
gguf-dump = "gguf.scripts.gguf_dump:main"
|
||||
gguf-set-metadata = "gguf.scripts.gguf_set_metadata:main"
|
||||
gguf-new-metadata = "gguf.scripts.gguf_new_metadata:main"
|
||||
gguf-editor-gui = "gguf.scripts.gguf_editor_gui:main"
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# GBNF Guide
|
||||
|
||||
GBNF (GGML BNF) is a format for defining [formal grammars](https://en.wikipedia.org/wiki/Formal_grammar) to constrain model outputs in `llama.cpp`. For example, you can use it to force the model to generate valid JSON, or speak only in emojis. GBNF grammars are supported in various ways in `examples/main` and `examples/server`.
|
||||
GBNF (GGML BNF) is a format for defining [formal grammars](https://en.wikipedia.org/wiki/Formal_grammar) to constrain model outputs in `llama.cpp`. For example, you can use it to force the model to generate valid JSON, or speak only in emojis. GBNF grammars are supported in various ways in `tools/main` and `tools/server`.
|
||||
|
||||
## Background
|
||||
|
||||
@@ -110,21 +110,21 @@ While semantically correct, the syntax `x? x? x?.... x?` (with N repetitions) ma
|
||||
|
||||
You can use GBNF grammars:
|
||||
|
||||
- In [llama-server](../examples/server)'s completion endpoints, passed as the `grammar` body field
|
||||
- In [llama-cli](../examples/main), passed as the `--grammar` & `--grammar-file` flags
|
||||
- In [llama-server](../tools/server)'s completion endpoints, passed as the `grammar` body field
|
||||
- In [llama-cli](../tools/main), passed as the `--grammar` & `--grammar-file` flags
|
||||
- With [test-gbnf-validator](../tests/test-gbnf-validator.cpp), to test them against strings.
|
||||
|
||||
## JSON Schemas → GBNF
|
||||
|
||||
`llama.cpp` supports converting a subset of https://json-schema.org/ to GBNF grammars:
|
||||
|
||||
- In [llama-server](../examples/server):
|
||||
- In [llama-server](../tools/server):
|
||||
- For any completion endpoints, passed as the `json_schema` body field
|
||||
- For the `/chat/completions` endpoint, passed inside the `response_format` body field (e.g. `{"type", "json_object", "schema": {"items": {}}}` or `{ type: "json_schema", json_schema: {"schema": ...} }`)
|
||||
- In [llama-cli](../examples/main), passed as the `--json` / `-j` flag
|
||||
- In [llama-cli](../tools/main), passed as the `--json` / `-j` flag
|
||||
- To convert to a grammar ahead of time:
|
||||
- in CLI, with [examples/json_schema_to_grammar.py](../examples/json_schema_to_grammar.py)
|
||||
- in JavaScript with [json-schema-to-grammar.mjs](../examples/server/public_legacy/json-schema-to-grammar.mjs) (this is used by the [server](../examples/server)'s Web UI)
|
||||
- in JavaScript with [json-schema-to-grammar.mjs](../tools/server/public_legacy/json-schema-to-grammar.mjs) (this is used by the [server](../tools/server)'s Web UI)
|
||||
|
||||
Take a look at [tests](../tests/test-json-schema-to-grammar.cpp) to see which features are likely supported (you'll also find usage examples in https://github.com/ggml-org/llama.cpp/pull/5978, https://github.com/ggml-org/llama.cpp/pull/6659 & https://github.com/ggml-org/llama.cpp/pull/6555).
|
||||
|
||||
|
||||
@@ -40,5 +40,6 @@ build-backend = "poetry.core.masonry.api"
|
||||
|
||||
[tool.poetry.scripts]
|
||||
llama-convert-hf-to-gguf = "convert_hf_to_gguf:main"
|
||||
llama-convert-lora-to-gguf = "convert_lora_to_gguf:main"
|
||||
llama-convert-llama-ggml-to-gguf = "convert_llama_ggml_to_gguf:main"
|
||||
llama-ggml-vk-generate-shaders = "ggml_vk_generate_shaders:main"
|
||||
|
||||
@@ -15,7 +15,7 @@
|
||||
},
|
||||
{
|
||||
// uses match expressions in steps.py
|
||||
"root": "examples/server/tests",
|
||||
"root": "tools/server/tests",
|
||||
"pythonVersion": "3.10",
|
||||
},
|
||||
],
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
-r ../examples/llava/requirements.txt
|
||||
-r ../examples/server/bench/requirements.txt
|
||||
-r ../examples/server/tests/requirements.txt
|
||||
-r ../tools/mtmd/requirements.txt
|
||||
-r ../tools/server/bench/requirements.txt
|
||||
-r ../tools/server/tests/requirements.txt
|
||||
|
||||
-r ./requirements-compare-llama-bench.txt
|
||||
-r ./requirements-pydantic.txt
|
||||
|
||||
@@ -8,7 +8,7 @@
|
||||
|
||||
Example:
|
||||
python scripts/fetch_server_test_models.py
|
||||
( cd examples/server/tests && ./tests.sh -v -x -m slow )
|
||||
( cd tools/server/tests && ./tests.sh -v -x -m slow )
|
||||
'''
|
||||
import ast
|
||||
import glob
|
||||
@@ -66,7 +66,7 @@ if __name__ == '__main__':
|
||||
|
||||
models = sorted(list(set([
|
||||
model
|
||||
for test_file in glob.glob('examples/server/tests/unit/test_*.py')
|
||||
for test_file in glob.glob('tools/server/tests/unit/test_*.py')
|
||||
for model in collect_hf_model_test_parameters(test_file)
|
||||
])), key=lambda m: (m.hf_repo, m.hf_file))
|
||||
|
||||
|
||||
@@ -1 +1 @@
|
||||
13bcf9ce50651a8b4238ec6d136f46f2c1b23b6f
|
||||
0482de9c63b9134eb462c7732888c0ee0dbc2755
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
'''
|
||||
Simplistic tool call benchmarks for llama-server and ollama.
|
||||
|
||||
Essentially runs the tests at server/examples/server/tests/unit/test_tool_call.py N times, at different temperatures and on different backends (current llama-server, baseline llama-server and ollama),
|
||||
Essentially runs the tests at server/tools/server/tests/unit/test_tool_call.py N times, at different temperatures and on different backends (current llama-server, baseline llama-server and ollama),
|
||||
and plots the results of multiple runs (from same .jsonl file or multiple ones) as a success rate heatmap.
|
||||
|
||||
Simple usage example:
|
||||
@@ -51,8 +51,8 @@ import typer
|
||||
|
||||
sys.path.insert(0, Path(__file__).parent.parent.as_posix())
|
||||
if True:
|
||||
from examples.server.tests.utils import ServerProcess
|
||||
from examples.server.tests.unit.test_tool_call import TIMEOUT_SERVER_START, do_test_calc_result, do_test_hello_world, do_test_weather
|
||||
from tools.server.tests.utils import ServerProcess
|
||||
from tools.server.tests.unit.test_tool_call import TIMEOUT_SERVER_START, do_test_calc_result, do_test_hello_world, do_test_weather
|
||||
|
||||
|
||||
@contextmanager
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# CMake equivalent of `xxd -i ${INPUT} ${OUTPUT}`
|
||||
# Usage: cmake -DINPUT=examples/server/public/index.html -DOUTPUT=examples/server/index.html.hpp -P scripts/xxd.cmake
|
||||
# Usage: cmake -DINPUT=tools/server/public/index.html -DOUTPUT=tools/server/index.html.hpp -P scripts/xxd.cmake
|
||||
|
||||
SET(INPUT "" CACHE STRING "Input File")
|
||||
SET(OUTPUT "" CACHE STRING "Output File")
|
||||
|
||||
@@ -189,7 +189,7 @@ llama_ubatch llama_sbatch::split_seq(size_t n_ubatch) {
|
||||
return ubatch;
|
||||
}
|
||||
|
||||
void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool simple_split, bool logits_all) {
|
||||
llama_sbatch::llama_sbatch(const llama_batch & batch, size_t n_embd, bool simple_split, bool logits_all) {
|
||||
GGML_ASSERT(batch.n_tokens >= 0);
|
||||
this->batch = &batch;
|
||||
this->n_embd = n_embd;
|
||||
@@ -203,6 +203,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
|
||||
for (size_t i = 0; i < n_tokens; ++i) {
|
||||
ids[i] = i;
|
||||
}
|
||||
|
||||
if (simple_split) {
|
||||
seq.resize(1);
|
||||
llama_sbatch_seq & s = seq[0];
|
||||
@@ -212,6 +213,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
|
||||
s.length = n_tokens;
|
||||
return;
|
||||
}
|
||||
|
||||
std::sort(ids.begin(), ids.end(),
|
||||
[&batch](size_t a, size_t b) {
|
||||
int32_t n_seq_a = batch.n_seq_id ? batch.n_seq_id[a] : 1;
|
||||
@@ -239,6 +241,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
|
||||
return n_seq_a > n_seq_b;
|
||||
}
|
||||
);
|
||||
|
||||
// init seq
|
||||
llama_sbatch_seq * last_seq = nullptr;
|
||||
|
||||
@@ -262,6 +265,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
|
||||
seq.push_back(new_seq);
|
||||
last_seq = &seq.back();
|
||||
}
|
||||
|
||||
// keep shared prompts first at the end, then sort by length descending.
|
||||
std::sort(seq.begin(), seq.end(),
|
||||
[](llama_sbatch_seq & a, llama_sbatch_seq & b) {
|
||||
|
||||
@@ -70,7 +70,8 @@ struct llama_sbatch {
|
||||
// sequence-wise split
|
||||
llama_ubatch split_seq(size_t n_ubatch);
|
||||
|
||||
void from_batch(const llama_batch & batch, size_t n_embd, bool simple_split = false, bool logits_all = false);
|
||||
llama_sbatch() = default;
|
||||
llama_sbatch(const llama_batch & batch, size_t n_embd, bool simple_split = false, bool logits_all = false);
|
||||
};
|
||||
|
||||
// temporary allocate memory for the input batch if needed
|
||||
|
||||
@@ -447,8 +447,16 @@ int32_t llm_chat_apply_template(
|
||||
if (add_ass) {
|
||||
ss << "<|assistant|>";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGLM_4 || tmpl == LLM_CHAT_TEMPLATE_GLMEDGE) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGLM_4) {
|
||||
ss << "[gMASK]" << "<sop>";
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
ss << "<|" << role << "|>" << "\n" << message->content;
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|assistant|>\n";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_GLMEDGE) {
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
ss << "<|" << role << "|>" << "\n" << message->content;
|
||||
|
||||
@@ -6,11 +6,9 @@
|
||||
#include "llama-model.h"
|
||||
#include "llama-kv-cache.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cstring>
|
||||
#include <stdexcept>
|
||||
#include <cinttypes>
|
||||
#include <cmath>
|
||||
|
||||
//
|
||||
// llama_context
|
||||
@@ -177,44 +175,13 @@ llama_context::llama_context(
|
||||
}
|
||||
|
||||
// init the memory module
|
||||
// TODO: for now, always create a unified KV cache
|
||||
if (!hparams.vocab_only) {
|
||||
kv_self.reset(static_cast<llama_kv_cache_unified *>(model.create_memory()));
|
||||
llama_memory_params params_mem = {
|
||||
/*.type_k =*/ params.type_k,
|
||||
/*.type_v =*/ params.type_v,
|
||||
};
|
||||
|
||||
LLAMA_LOG_DEBUG("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
|
||||
|
||||
cparams.n_ctx = GGML_PAD(cparams.n_ctx, kv_self->get_padding(cparams));
|
||||
|
||||
LLAMA_LOG_DEBUG("%s: n_ctx = %u (padded)\n", __func__, cparams.n_ctx);
|
||||
|
||||
uint32_t kv_size = cparams.n_ctx;
|
||||
ggml_type type_k = params.type_k;
|
||||
ggml_type type_v = params.type_v;
|
||||
|
||||
if (llama_model_is_recurrent(&model)) {
|
||||
// Mamba needs at least as many KV cells as there are sequences kept at any time
|
||||
kv_size = std::max((uint32_t) 1, params.n_seq_max);
|
||||
// it's probably best to keep as much precision as possible for the states
|
||||
type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
|
||||
type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
|
||||
}
|
||||
|
||||
GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
|
||||
GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
|
||||
|
||||
if (!kv_self->init(model, cparams, type_k, type_v, kv_size, cparams.offload_kqv)) {
|
||||
throw std::runtime_error("failed to initialize self-attention cache");
|
||||
}
|
||||
|
||||
{
|
||||
const size_t memory_size_k = kv_self->size_k_bytes();
|
||||
const size_t memory_size_v = kv_self->size_v_bytes();
|
||||
|
||||
LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
|
||||
(float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
|
||||
ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
|
||||
ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
|
||||
}
|
||||
memory.reset(model.create_memory(params_mem, cparams));
|
||||
}
|
||||
|
||||
// init backends
|
||||
@@ -305,7 +272,9 @@ llama_context::llama_context(
|
||||
int n_nodes_tg = -1;
|
||||
|
||||
// simulate full KV cache
|
||||
kv_self->n = kv_self->size;
|
||||
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
||||
|
||||
kv_self->set_full();
|
||||
|
||||
cross.v_embd.clear();
|
||||
|
||||
@@ -427,6 +396,18 @@ const llama_model & llama_context::get_model() const {
|
||||
return model;
|
||||
}
|
||||
|
||||
const llama_cparams & llama_context::get_cparams() const {
|
||||
return cparams;
|
||||
}
|
||||
|
||||
ggml_backend_sched_t llama_context::get_sched() const {
|
||||
return sched.get();
|
||||
}
|
||||
|
||||
ggml_context * llama_context::get_ctx_compute() const {
|
||||
return ctx_compute.get();
|
||||
}
|
||||
|
||||
uint32_t llama_context::n_ctx() const {
|
||||
return cparams.n_ctx;
|
||||
}
|
||||
@@ -456,337 +437,21 @@ uint32_t llama_context::n_threads_batch() const {
|
||||
}
|
||||
|
||||
llama_kv_cache * llama_context::get_kv_self() {
|
||||
return kv_self.get();
|
||||
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
||||
return kv_self;
|
||||
}
|
||||
|
||||
const llama_kv_cache * llama_context::get_kv_self() const {
|
||||
return kv_self.get();
|
||||
}
|
||||
|
||||
ggml_tensor * llama_context::build_rope_shift(
|
||||
ggml_context * ctx0,
|
||||
ggml_tensor * cur,
|
||||
ggml_tensor * shift,
|
||||
ggml_tensor * factors,
|
||||
float freq_base,
|
||||
float freq_scale) const {
|
||||
const auto & n_ctx_orig = cparams.n_ctx_orig_yarn;
|
||||
|
||||
const auto & yarn_ext_factor = cparams.yarn_ext_factor;
|
||||
const auto & yarn_beta_fast = cparams.yarn_beta_fast;
|
||||
const auto & yarn_beta_slow = cparams.yarn_beta_slow;
|
||||
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const auto & n_rot = hparams.n_rot;
|
||||
const auto & rope_type = hparams.rope_type;
|
||||
|
||||
// See llm_build_deepseek2() for why attn_factor has to be scaled for YaRN RoPE to work correctly.
|
||||
// See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
|
||||
const float yarn_attn_factor = model.arch == LLM_ARCH_DEEPSEEK2 ? 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale)) : cparams.yarn_attn_factor;
|
||||
|
||||
ggml_tensor * tmp;
|
||||
|
||||
if (ggml_is_quantized(cur->type)) {
|
||||
// dequantize to f32 -> RoPE -> quantize back
|
||||
tmp = ggml_cast(ctx0, cur, GGML_TYPE_F32);
|
||||
|
||||
tmp = ggml_rope_ext(ctx0, tmp,
|
||||
shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
|
||||
|
||||
tmp = ggml_cpy(ctx0, tmp, cur);
|
||||
} else {
|
||||
// we rotate only the first n_rot dimensions
|
||||
tmp = ggml_rope_ext_inplace(ctx0, cur,
|
||||
shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
|
||||
}
|
||||
|
||||
return tmp;
|
||||
}
|
||||
|
||||
class llm_graph_input_k_shift : public llm_graph_input_i {
|
||||
public:
|
||||
llm_graph_input_k_shift(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
|
||||
virtual ~llm_graph_input_k_shift() = default;
|
||||
|
||||
void set_input(const llama_ubatch * ubatch) override;
|
||||
|
||||
ggml_tensor * k_shift; // I32 [kv_size]
|
||||
|
||||
const llama_kv_cache_unified * kv_self;
|
||||
};
|
||||
|
||||
void llm_graph_input_k_shift::set_input(const llama_ubatch * ubatch) {
|
||||
GGML_UNUSED(ubatch);
|
||||
|
||||
if (k_shift) {
|
||||
assert(ggml_backend_buffer_is_host(k_shift->buffer));
|
||||
|
||||
int32_t * data = (int32_t *) k_shift->data;
|
||||
|
||||
for (uint32_t i = 0; i < kv_self->size; ++i) {
|
||||
data[i] = kv_self->cells[i].delta;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
llm_graph_result_ptr llama_context::build_kv_self_shift(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * gf) const {
|
||||
auto res = std::make_unique<llm_graph_result>();
|
||||
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const auto & n_layer = hparams.n_layer;
|
||||
|
||||
const auto & n_embd_head_k = hparams.n_embd_head_k;
|
||||
//const auto & n_embd_head_v = hparams.n_embd_head_v;
|
||||
|
||||
//GGML_ASSERT(kv_self->size == n_ctx);
|
||||
|
||||
auto inp = std::make_unique<llm_graph_input_k_shift>(kv_self.get());
|
||||
|
||||
inp->k_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, cparams.n_ctx);
|
||||
ggml_set_input(inp->k_shift);
|
||||
|
||||
for (uint32_t il = 0; il < n_layer; ++il) {
|
||||
const int64_t n_head_kv = hparams.n_head_kv(il);
|
||||
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
|
||||
|
||||
const bool is_swa = hparams.is_swa(il);
|
||||
|
||||
// note: the swa rope params could become part of the cparams in the future
|
||||
// if we decide to make them configurable, like the non-sliding ones
|
||||
const float freq_base_l = is_swa ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
|
||||
const float freq_scale_l = is_swa ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
|
||||
|
||||
ggml_tensor * rope_factors = kv_self->cbs.get_rope_factors(n_ctx_per_seq(), il);
|
||||
|
||||
ggml_tensor * k =
|
||||
ggml_view_3d(ctx0, kv_self->k_l[il],
|
||||
n_embd_head_k, n_head_kv, kv_self->size,
|
||||
ggml_row_size(kv_self->k_l[il]->type, n_embd_head_k),
|
||||
ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa),
|
||||
0);
|
||||
|
||||
ggml_tensor * cur = build_rope_shift(ctx0, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l);
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
|
||||
res->add_input(std::move(inp));
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
llm_graph_result_ptr llama_context::build_kv_self_defrag(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * gf) const {
|
||||
auto res = std::make_unique<llm_graph_result>();
|
||||
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const auto & ids = kv_self->defrag_info.ids;
|
||||
|
||||
#if 0
|
||||
// CPU defrag
|
||||
//
|
||||
// TODO: optimizations are possible:
|
||||
// - multiple threads
|
||||
// - avoid copying to the host memory when already there
|
||||
//
|
||||
// likely not worth the effort, as we have ggml_graph based defrag
|
||||
//
|
||||
|
||||
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
|
||||
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
|
||||
|
||||
const uint32_t kv_size = size;
|
||||
|
||||
std::vector<uint8_t> buf_k;
|
||||
std::vector<uint8_t> buf_v;
|
||||
|
||||
for (uint32_t il = 0; il < n_layer; ++il) {
|
||||
const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
|
||||
const size_t k_size = ggml_row_size(k_l[il]->type, n_embd_k_gqa*kv_size);
|
||||
|
||||
const size_t v_size_el = ggml_type_size(v_l[il]->type);
|
||||
const size_t v_size = ggml_row_size (v_l[il]->type, n_embd_v_gqa*kv_size);
|
||||
|
||||
buf_k.resize(k_size);
|
||||
buf_v.resize(v_size);
|
||||
|
||||
ggml_backend_tensor_get(k_l[il], buf_k.data(), 0, buf_k.size());
|
||||
ggml_backend_tensor_get(v_l[il], buf_v.data(), 0, buf_v.size());
|
||||
|
||||
// batch move [i, i+nm) to [id, id+nm)
|
||||
// note: cells can move only to a lower index
|
||||
for (uint32_t i = 0; i < n_kv; ++i) {
|
||||
const uint32_t id = ids[i];
|
||||
|
||||
if (i == id || id == n_kv) {
|
||||
continue;
|
||||
}
|
||||
|
||||
uint32_t nm = 1;
|
||||
|
||||
while (i + nm < n_kv && ids[i + nm] == id + nm) {
|
||||
nm++;
|
||||
}
|
||||
|
||||
// move keys
|
||||
{
|
||||
const int64_t os = i*k_size_row;
|
||||
const int64_t od = id*k_size_row;
|
||||
|
||||
memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
|
||||
}
|
||||
|
||||
// move values (note: they are transposed)
|
||||
{
|
||||
const int64_t os = i;
|
||||
const int64_t od = id;
|
||||
|
||||
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
|
||||
memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
|
||||
}
|
||||
}
|
||||
|
||||
i += nm - 1;
|
||||
}
|
||||
|
||||
ggml_backend_tensor_set(k_l[il], buf_k.data(), 0, buf_k.size());
|
||||
ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size());
|
||||
}
|
||||
#else
|
||||
for (uint32_t i = 0; i < ids.size(); ++i) {
|
||||
const uint32_t id = ids[i];
|
||||
|
||||
if (i == id || id == ids.size()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
uint32_t nm = 1;
|
||||
|
||||
while (i + nm < ids.size() && ids[i + nm] == id + nm) {
|
||||
nm++;
|
||||
}
|
||||
|
||||
for (uint32_t il = 0; il < hparams.n_layer; ++il) { // NOLINT
|
||||
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
|
||||
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
|
||||
|
||||
ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self->k_l[il],
|
||||
n_embd_k_gqa, nm,
|
||||
ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa),
|
||||
ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa*i));
|
||||
|
||||
ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self->k_l[il],
|
||||
n_embd_k_gqa, nm,
|
||||
ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa),
|
||||
ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa*id));
|
||||
|
||||
ggml_tensor * view_v_src;
|
||||
ggml_tensor * view_v_dst;
|
||||
|
||||
if (cparams.flash_attn) {
|
||||
// NOTE: the V cache is not transposed when using flash attention
|
||||
view_v_src = ggml_view_2d(ctx0, kv_self->v_l[il],
|
||||
n_embd_v_gqa, nm,
|
||||
ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa),
|
||||
ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa*i));
|
||||
|
||||
view_v_dst = ggml_view_2d(ctx0, kv_self->v_l[il],
|
||||
n_embd_v_gqa, nm,
|
||||
ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa),
|
||||
ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa*id));
|
||||
} else {
|
||||
view_v_src = ggml_view_2d(ctx0, kv_self->v_l[il],
|
||||
nm, n_embd_v_gqa,
|
||||
ggml_row_size(kv_self->v_l[il]->type, kv_self->size),
|
||||
ggml_row_size(kv_self->v_l[il]->type, i));
|
||||
|
||||
view_v_dst = ggml_view_2d(ctx0, kv_self->v_l[il],
|
||||
nm, n_embd_v_gqa,
|
||||
ggml_row_size(kv_self->v_l[il]->type, kv_self->size),
|
||||
ggml_row_size(kv_self->v_l[il]->type, id));
|
||||
}
|
||||
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
|
||||
}
|
||||
|
||||
i += nm - 1;
|
||||
}
|
||||
|
||||
//LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
|
||||
#endif
|
||||
|
||||
return res;
|
||||
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
||||
return kv_self;
|
||||
}
|
||||
|
||||
void llama_context::kv_self_update() {
|
||||
auto & kv = kv_self;
|
||||
|
||||
bool need_reserve = false;
|
||||
|
||||
if (kv->has_shift) {
|
||||
if (!kv->get_can_shift()) {
|
||||
GGML_ABORT("The current context does not support K-shift");
|
||||
}
|
||||
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
||||
|
||||
LLAMA_LOG_DEBUG("%s: applying K-shift\n", __func__);
|
||||
|
||||
// apply K-shift if needed
|
||||
if (model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE) {
|
||||
ggml_backend_sched_reset(sched.get());
|
||||
|
||||
auto * gf = graph_init();
|
||||
|
||||
auto res = build_kv_self_shift(ctx_compute.get(), gf);
|
||||
|
||||
ggml_backend_sched_alloc_graph(sched.get(), gf);
|
||||
|
||||
res->set_inputs(nullptr);
|
||||
|
||||
graph_compute(gf, false);
|
||||
|
||||
need_reserve = true;
|
||||
}
|
||||
|
||||
{
|
||||
kv->has_shift = false;
|
||||
|
||||
for (uint32_t i = 0; i < kv->size; ++i) {
|
||||
kv->cells[i].delta = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// defragment the KV cache if needed
|
||||
if (kv->do_defrag) {
|
||||
LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__);
|
||||
|
||||
if (kv->defrag_prepare(graph_max_nodes())) {
|
||||
ggml_backend_sched_reset(sched.get());
|
||||
|
||||
auto * gf = graph_init();
|
||||
|
||||
auto res = build_kv_self_defrag(ctx_compute.get(), gf);
|
||||
|
||||
ggml_backend_sched_alloc_graph(sched.get(), gf);
|
||||
|
||||
res->set_inputs(nullptr);
|
||||
|
||||
graph_compute(gf, false);
|
||||
|
||||
need_reserve = true;
|
||||
}
|
||||
|
||||
kv->do_defrag = false;
|
||||
}
|
||||
need_reserve = kv_self->update(*this);
|
||||
|
||||
// reserve a worst case graph if needed
|
||||
if (need_reserve) {
|
||||
@@ -797,7 +462,7 @@ void llama_context::kv_self_update() {
|
||||
uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
|
||||
|
||||
// simulate full KV cache
|
||||
kv_self->n = kv_self->size;
|
||||
kv_self->set_full();
|
||||
|
||||
llama_token token = model.vocab.token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
|
||||
llama_ubatch ubatch = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
|
||||
@@ -818,9 +483,6 @@ enum llama_pooling_type llama_context::pooling_type() const {
|
||||
}
|
||||
|
||||
float * llama_context::get_logits() {
|
||||
// reorder logits for backward compatibility
|
||||
output_reorder();
|
||||
|
||||
return logits;
|
||||
}
|
||||
|
||||
@@ -863,9 +525,6 @@ float * llama_context::get_logits_ith(int32_t i) {
|
||||
}
|
||||
|
||||
float * llama_context::get_embeddings() {
|
||||
// reorder embeddings for backward compatibility
|
||||
output_reorder();
|
||||
|
||||
return embd;
|
||||
}
|
||||
|
||||
@@ -1017,8 +676,8 @@ int llama_context::encode(llama_batch & inp_batch) {
|
||||
}
|
||||
|
||||
// temporary allocate memory for the input batch if needed
|
||||
// TODO: this is incorrect for multiple sequences because pos_max() is the maximum across all sequences
|
||||
llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : kv_self->pos_max() + 1);
|
||||
// note: during encode, we always pass the full sequence starting from pos = 0
|
||||
llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : 0);
|
||||
|
||||
const llama_batch & batch = batch_allocr.batch;
|
||||
const int32_t n_tokens = batch.n_tokens;
|
||||
@@ -1047,7 +706,7 @@ int llama_context::encode(llama_batch & inp_batch) {
|
||||
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
|
||||
sbatch.from_batch(batch, n_embd, /* simple_split */ true, /* logits_all */ true);
|
||||
llama_sbatch sbatch = llama_sbatch(batch, n_embd, /* simple_split */ true, /* logits_all */ true);
|
||||
|
||||
const llama_ubatch ubatch = sbatch.split_simple(n_tokens);
|
||||
|
||||
@@ -1181,9 +840,11 @@ int llama_context::decode(llama_batch & inp_batch) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
||||
|
||||
// temporary allocate memory for the input batch if needed
|
||||
// TODO: this is incorrect for multiple sequences because pos_max() is the maximum across all sequences
|
||||
llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : kv_self->pos_max() + 1);
|
||||
// TODO: this is incorrect for multiple sequences because get_pos_max() is the maximum across all sequences
|
||||
llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : kv_self->get_pos_max() + 1);
|
||||
|
||||
const llama_batch & batch = batch_allocr.batch;
|
||||
|
||||
@@ -1195,7 +856,7 @@ int llama_context::decode(llama_batch & inp_batch) {
|
||||
const int64_t n_tokens_all = batch.n_tokens;
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
|
||||
llama_kv_cache_guard kv_guard(kv_self.get());
|
||||
llama_kv_cache_guard kv_guard(kv_self);
|
||||
|
||||
GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
|
||||
|
||||
@@ -1236,11 +897,7 @@ int llama_context::decode(llama_batch & inp_batch) {
|
||||
n_outputs_all = 1;
|
||||
}
|
||||
|
||||
const bool logits_all = n_outputs_all == n_tokens_all;
|
||||
|
||||
sbatch.from_batch(batch, n_embd,
|
||||
/* simple_split */ !kv_self->recurrent,
|
||||
/* logits_all */ logits_all);
|
||||
llama_sbatch sbatch = kv_self->sbatch_init(batch, /* logits_all */ n_outputs_all == n_tokens_all);
|
||||
|
||||
// reserve output buffer
|
||||
if (output_reserve(n_outputs_all) < n_outputs_all) {
|
||||
@@ -1254,22 +911,7 @@ int llama_context::decode(llama_batch & inp_batch) {
|
||||
int64_t n_outputs_prev = 0;
|
||||
|
||||
while (sbatch.n_tokens > 0) {
|
||||
llama_ubatch ubatch = llama_ubatch();
|
||||
|
||||
const auto & n_ubatch = cparams.n_ubatch;
|
||||
|
||||
if (kv_self->recurrent) {
|
||||
if (embd_pooled) {
|
||||
// Pooled embeddings cannot be split across ubatches (yet)
|
||||
ubatch = sbatch.split_seq(cparams.n_ubatch);
|
||||
} else {
|
||||
// recurrent model architectures are easier to implement
|
||||
// with equal-length sequences
|
||||
ubatch = sbatch.split_equal(cparams.n_ubatch);
|
||||
}
|
||||
} else {
|
||||
ubatch = sbatch.split_simple(n_ubatch);
|
||||
}
|
||||
llama_ubatch ubatch = kv_self->ubatch_next(sbatch, cparams.n_ubatch, embd_pooled);
|
||||
|
||||
// count the outputs in this u_batch
|
||||
{
|
||||
@@ -1289,24 +931,12 @@ int llama_context::decode(llama_batch & inp_batch) {
|
||||
}
|
||||
|
||||
// find KV slot
|
||||
{
|
||||
if (!kv_self->find_slot(ubatch)) {
|
||||
LLAMA_LOG_WARN("%s: failed to find KV cache slot for ubatch of size %d\n", __func__, ubatch.n_tokens);
|
||||
if (!kv_self->find_slot(ubatch)) {
|
||||
LLAMA_LOG_WARN("%s: failed to find KV cache slot for ubatch of size %d\n", __func__, ubatch.n_tokens);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (!kv_self->recurrent) {
|
||||
// a heuristic, to avoid attending the full cache if it is not yet utilized
|
||||
// after enough generations, the benefit from this heuristic disappears
|
||||
// if we start defragmenting the cache, the benefit from this will be more important
|
||||
const uint32_t pad = kv_self->get_padding(cparams);
|
||||
kv_self->n = std::min(kv_self->size, std::max(pad, GGML_PAD(kv_self->cell_max(), pad)));
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
//printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self->n, kv_self->used, kv_self->head);
|
||||
|
||||
ggml_backend_sched_reset(sched.get());
|
||||
ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data);
|
||||
|
||||
@@ -1420,43 +1050,68 @@ int llama_context::decode(llama_batch & inp_batch) {
|
||||
// finalize the batch processing
|
||||
kv_guard.commit();
|
||||
|
||||
// set to total number of outputs in the batch, for use in llama_get_logits_ith
|
||||
n_outputs = n_outputs_all;
|
||||
|
||||
// set output mappings
|
||||
{
|
||||
bool sorted_output = true;
|
||||
|
||||
GGML_ASSERT(sbatch.out_ids.size() == (size_t) n_outputs_all);
|
||||
auto & out_ids = sbatch.out_ids;
|
||||
|
||||
GGML_ASSERT(out_ids.size() == (size_t) n_outputs_all);
|
||||
|
||||
for (int64_t i = 0; i < n_outputs_all; ++i) {
|
||||
int64_t out_id = sbatch.out_ids[i];
|
||||
int64_t out_id = out_ids[i];
|
||||
output_ids[out_id] = i;
|
||||
if (out_id != i) {
|
||||
sorted_output = false;
|
||||
}
|
||||
}
|
||||
|
||||
if (sorted_output) {
|
||||
sbatch.out_ids.clear();
|
||||
// make the outputs have the same order they had in the user-provided batch
|
||||
// note: this is mostly relevant for recurrent models atm
|
||||
if (!sorted_output) {
|
||||
const uint32_t n_vocab = model.vocab.n_tokens();
|
||||
const uint32_t n_embd = model.hparams.n_embd;
|
||||
|
||||
GGML_ASSERT((size_t) n_outputs == out_ids.size());
|
||||
|
||||
// TODO: is there something more efficient which also minimizes swaps?
|
||||
// selection sort, to minimize swaps (from https://en.wikipedia.org/wiki/Selection_sort)
|
||||
for (int32_t i = 0; i < n_outputs - 1; ++i) {
|
||||
int32_t j_min = i;
|
||||
for (int32_t j = i + 1; j < n_outputs; ++j) {
|
||||
if (out_ids[j] < out_ids[j_min]) {
|
||||
j_min = j;
|
||||
}
|
||||
}
|
||||
if (j_min == i) { continue; }
|
||||
std::swap(out_ids[i], out_ids[j_min]);
|
||||
if (logits_size > 0) {
|
||||
for (uint32_t k = 0; k < n_vocab; k++) {
|
||||
std::swap(logits[i*n_vocab + k], logits[j_min*n_vocab + k]);
|
||||
}
|
||||
}
|
||||
if (embd_size > 0) {
|
||||
for (uint32_t k = 0; k < n_embd; k++) {
|
||||
std::swap(embd[i*n_embd + k], embd[j_min*n_embd + k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
std::fill(output_ids.begin(), output_ids.end(), -1);
|
||||
for (int32_t i = 0; i < n_outputs; ++i) {
|
||||
output_ids[out_ids[i]] = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// set to total number of outputs in the batch, for use in llama_get_logits_ith
|
||||
n_outputs = n_outputs_all;
|
||||
|
||||
// wait for the computation to finish (automatically done when obtaining the model output)
|
||||
//synchronize();
|
||||
|
||||
// decide if we need to defrag the kv cache
|
||||
if (cparams.causal_attn && cparams.defrag_thold > 0.0f) {
|
||||
// - do not defrag small contexts (i.e. < 2048 tokens)
|
||||
// - count the padding towards the number of used tokens
|
||||
const float fragmentation = kv_self->n >= 2048 ? std::max(0.0f, 1.0f - float(kv_self->used + kv_self->get_padding(cparams))/float(kv_self->n)) : 0.0f;
|
||||
|
||||
// queue defragmentation for next llama_kv_cache_update
|
||||
if (fragmentation > cparams.defrag_thold) {
|
||||
LLAMA_LOG_DEBUG("%s: fragmentation: %.2f - requesting defrag\n", __func__, fragmentation);
|
||||
|
||||
kv_self->defrag();
|
||||
}
|
||||
if (cparams.defrag_thold > 0.0f) {
|
||||
kv_self->defrag_sched(cparams.defrag_thold);
|
||||
}
|
||||
|
||||
// Reset state for the next token before backend sync, to allow the CPU activities in the reset to
|
||||
@@ -1542,44 +1197,6 @@ int32_t llama_context::output_reserve(int32_t n_outputs) {
|
||||
return n_outputs_max;
|
||||
}
|
||||
|
||||
void llama_context::output_reorder() {
|
||||
auto & out_ids = sbatch.out_ids;
|
||||
if (!out_ids.empty()) {
|
||||
const uint32_t n_vocab = model.vocab.n_tokens();
|
||||
const uint32_t n_embd = model.hparams.n_embd;
|
||||
|
||||
GGML_ASSERT((size_t) n_outputs == out_ids.size());
|
||||
|
||||
// TODO: is there something more efficient which also minimizes swaps?
|
||||
// selection sort, to minimize swaps (from https://en.wikipedia.org/wiki/Selection_sort)
|
||||
for (int32_t i = 0; i < n_outputs - 1; ++i) {
|
||||
int32_t j_min = i;
|
||||
for (int32_t j = i + 1; j < n_outputs; ++j) {
|
||||
if (out_ids[j] < out_ids[j_min]) {
|
||||
j_min = j;
|
||||
}
|
||||
}
|
||||
if (j_min == i) { continue; }
|
||||
std::swap(out_ids[i], out_ids[j_min]);
|
||||
if (logits_size > 0) {
|
||||
for (uint32_t k = 0; k < n_vocab; k++) {
|
||||
std::swap(logits[i*n_vocab + k], logits[j_min*n_vocab + k]);
|
||||
}
|
||||
}
|
||||
if (embd_size > 0) {
|
||||
for (uint32_t k = 0; k < n_embd; k++) {
|
||||
std::swap(embd[i*n_embd + k], embd[j_min*n_embd + k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
std::fill(output_ids.begin(), output_ids.end(), -1);
|
||||
for (int32_t i = 0; i < n_outputs; ++i) {
|
||||
output_ids[out_ids[i]] = i;
|
||||
}
|
||||
out_ids.clear();
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// graph
|
||||
//
|
||||
@@ -1616,7 +1233,7 @@ llm_graph_result_ptr llama_context::graph_build(
|
||||
/*.backend_cpu =*/ backend_cpu,
|
||||
/*.cvec =*/ &cvec,
|
||||
/*.loras =*/ &loras,
|
||||
/*.memory =*/ kv_self.get(),
|
||||
/*.memory =*/ memory.get(),
|
||||
/*.cross =*/ &cross,
|
||||
/*.n_outputs =*/ n_outputs,
|
||||
/*.cb =*/ graph_get_cb(),
|
||||
@@ -2020,8 +1637,6 @@ size_t llama_context::state_write_data(llama_io_write_i & io) {
|
||||
{
|
||||
LLAMA_LOG_DEBUG("%s: - writing output ids\n", __func__);
|
||||
|
||||
output_reorder();
|
||||
|
||||
const auto n_outputs = this->n_outputs;
|
||||
const auto & output_ids = this->output_ids;
|
||||
|
||||
@@ -2075,6 +1690,8 @@ size_t llama_context::state_write_data(llama_io_write_i & io) {
|
||||
}
|
||||
|
||||
LLAMA_LOG_DEBUG("%s: - writing KV self\n", __func__);
|
||||
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
||||
|
||||
kv_self->state_write(io);
|
||||
|
||||
return io.n_bytes();
|
||||
@@ -2159,6 +1776,8 @@ size_t llama_context::state_read_data(llama_io_read_i & io) {
|
||||
}
|
||||
|
||||
LLAMA_LOG_DEBUG("%s: - reading KV self\n", __func__);
|
||||
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
||||
|
||||
kv_self->state_read(io);
|
||||
|
||||
return io.n_bytes();
|
||||
@@ -2167,6 +1786,8 @@ size_t llama_context::state_read_data(llama_io_read_i & io) {
|
||||
size_t llama_context::state_seq_write_data(llama_io_write_i & io, llama_seq_id seq_id) {
|
||||
GGML_UNUSED(seq_id);
|
||||
|
||||
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
||||
|
||||
kv_self->state_write(io, seq_id);
|
||||
|
||||
return io.n_bytes();
|
||||
@@ -2175,6 +1796,8 @@ size_t llama_context::state_seq_write_data(llama_io_write_i & io, llama_seq_id s
|
||||
size_t llama_context::state_seq_read_data(llama_io_read_i & io, llama_seq_id seq_id) {
|
||||
GGML_UNUSED(seq_id);
|
||||
|
||||
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
||||
|
||||
kv_self->state_read(io, seq_id);
|
||||
|
||||
return io.n_bytes();
|
||||
@@ -2530,7 +2153,7 @@ void llama_kv_cache_seq_cp(
|
||||
llama_seq_id seq_id_dst,
|
||||
llama_pos p0,
|
||||
llama_pos p1) {
|
||||
return llama_kv_self_seq_cp(ctx, seq_id_src, seq_id_dst, p0, p1);
|
||||
llama_kv_self_seq_cp(ctx, seq_id_src, seq_id_dst, p0, p1);
|
||||
}
|
||||
|
||||
void llama_kv_self_seq_cp(
|
||||
@@ -2544,14 +2167,14 @@ void llama_kv_self_seq_cp(
|
||||
return;
|
||||
}
|
||||
|
||||
return kv->seq_cp(seq_id_src, seq_id_dst, p0, p1);
|
||||
kv->seq_cp(seq_id_src, seq_id_dst, p0, p1);
|
||||
}
|
||||
|
||||
// deprecated
|
||||
void llama_kv_cache_seq_keep(
|
||||
llama_context * ctx,
|
||||
llama_seq_id seq_id) {
|
||||
return llama_kv_self_seq_keep(ctx, seq_id);
|
||||
llama_kv_self_seq_keep(ctx, seq_id);
|
||||
}
|
||||
|
||||
void llama_kv_self_seq_keep(llama_context * ctx, llama_seq_id seq_id) {
|
||||
@@ -2560,7 +2183,7 @@ void llama_kv_self_seq_keep(llama_context * ctx, llama_seq_id seq_id) {
|
||||
return;
|
||||
}
|
||||
|
||||
return kv->seq_keep(seq_id);
|
||||
kv->seq_keep(seq_id);
|
||||
}
|
||||
|
||||
// deprecated
|
||||
@@ -2570,7 +2193,7 @@ void llama_kv_cache_seq_add(
|
||||
llama_pos p0,
|
||||
llama_pos p1,
|
||||
llama_pos delta) {
|
||||
return llama_kv_self_seq_add(ctx, seq_id, p0, p1, delta);
|
||||
llama_kv_self_seq_add(ctx, seq_id, p0, p1, delta);
|
||||
}
|
||||
|
||||
void llama_kv_self_seq_add(
|
||||
@@ -2584,7 +2207,7 @@ void llama_kv_self_seq_add(
|
||||
return;
|
||||
}
|
||||
|
||||
return kv->seq_add(seq_id, p0, p1, delta);
|
||||
kv->seq_add(seq_id, p0, p1, delta);
|
||||
}
|
||||
|
||||
// deprecated
|
||||
@@ -2594,7 +2217,7 @@ void llama_kv_cache_seq_div(
|
||||
llama_pos p0,
|
||||
llama_pos p1,
|
||||
int d) {
|
||||
return llama_kv_self_seq_div(ctx, seq_id, p0, p1, d);
|
||||
llama_kv_self_seq_div(ctx, seq_id, p0, p1, d);
|
||||
}
|
||||
|
||||
void llama_kv_self_seq_div(
|
||||
@@ -2608,7 +2231,7 @@ void llama_kv_self_seq_div(
|
||||
return;
|
||||
}
|
||||
|
||||
return kv->seq_div(seq_id, p0, p1, d);
|
||||
kv->seq_div(seq_id, p0, p1, d);
|
||||
}
|
||||
|
||||
// deprecated
|
||||
@@ -2627,7 +2250,7 @@ llama_pos llama_kv_self_seq_pos_max(llama_context * ctx, llama_seq_id seq_id) {
|
||||
|
||||
// deprecated
|
||||
void llama_kv_cache_defrag(llama_context * ctx) {
|
||||
return llama_kv_self_defrag(ctx);
|
||||
llama_kv_self_defrag(ctx);
|
||||
}
|
||||
|
||||
void llama_kv_self_defrag(llama_context * ctx) {
|
||||
@@ -2636,7 +2259,8 @@ void llama_kv_self_defrag(llama_context * ctx) {
|
||||
return;
|
||||
}
|
||||
|
||||
return kv->defrag();
|
||||
// force defrag
|
||||
kv->defrag_sched(-1.0f);
|
||||
}
|
||||
|
||||
// deprecated
|
||||
|
||||
@@ -27,7 +27,12 @@ struct llama_context {
|
||||
|
||||
void synchronize();
|
||||
|
||||
const llama_model & get_model() const;
|
||||
const llama_model & get_model() const;
|
||||
const llama_cparams & get_cparams() const;
|
||||
|
||||
ggml_backend_sched_t get_sched() const;
|
||||
|
||||
ggml_context * get_ctx_compute() const;
|
||||
|
||||
uint32_t n_ctx() const;
|
||||
uint32_t n_ctx_per_seq() const;
|
||||
@@ -137,49 +142,30 @@ private:
|
||||
// Returns max number of outputs for which space was reserved.
|
||||
int32_t output_reserve(int32_t n_outputs);
|
||||
|
||||
// make the outputs have the same order they had in the user-provided batch
|
||||
// TODO: maybe remove this
|
||||
void output_reorder();
|
||||
|
||||
//
|
||||
// graph
|
||||
//
|
||||
|
||||
public:
|
||||
int32_t graph_max_nodes() const;
|
||||
|
||||
// zero-out inputs and create the ctx_compute for the compute graph
|
||||
ggml_cgraph * graph_init();
|
||||
|
||||
llm_graph_result_ptr graph_build(
|
||||
ggml_context * ctx,
|
||||
ggml_cgraph * gf,
|
||||
const llama_ubatch & ubatch,
|
||||
llm_graph_type gtype);
|
||||
|
||||
// returns the result of ggml_backend_sched_graph_compute_async execution
|
||||
ggml_status graph_compute(
|
||||
ggml_cgraph * gf,
|
||||
bool batched);
|
||||
|
||||
private:
|
||||
llm_graph_result_ptr graph_build(
|
||||
ggml_context * ctx,
|
||||
ggml_cgraph * gf,
|
||||
const llama_ubatch & ubatch,
|
||||
llm_graph_type gtype);
|
||||
|
||||
llm_graph_cb graph_get_cb() const;
|
||||
|
||||
// used by kv_self_update()
|
||||
ggml_tensor * build_rope_shift(
|
||||
ggml_context * ctx0,
|
||||
ggml_tensor * cur,
|
||||
ggml_tensor * shift,
|
||||
ggml_tensor * factors,
|
||||
float freq_base,
|
||||
float freq_scale) const;
|
||||
|
||||
llm_graph_result_ptr build_kv_self_shift(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * gf) const;
|
||||
|
||||
llm_graph_result_ptr build_kv_self_defrag(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * gf) const;
|
||||
|
||||
// TODO: read/write lora adapters and cvec
|
||||
size_t state_write_data(llama_io_write_i & io);
|
||||
size_t state_read_data (llama_io_read_i & io);
|
||||
@@ -196,11 +182,10 @@ private:
|
||||
llama_cparams cparams;
|
||||
llama_adapter_cvec cvec;
|
||||
llama_adapter_loras loras;
|
||||
llama_sbatch sbatch;
|
||||
|
||||
llama_cross cross; // TODO: tmp for handling cross-attention - need something better probably
|
||||
|
||||
std::unique_ptr<llama_kv_cache_unified> kv_self;
|
||||
std::unique_ptr<llama_memory_i> memory;
|
||||
|
||||
// TODO: remove
|
||||
bool logits_all = false;
|
||||
|
||||
@@ -284,24 +284,7 @@ void llm_graph_input_s_copy::set_input(const llama_ubatch * ubatch) {
|
||||
|
||||
// assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
|
||||
for (uint32_t i = 0; i < n_kv; ++i) {
|
||||
const uint32_t cell_id = i + kv_self->head;
|
||||
|
||||
//////////////////////////////////////////////
|
||||
// TODO: this should not mutate the KV cache !
|
||||
llama_kv_cell & kv_cell = const_cast<class llama_kv_cache_unified *>(kv_self)->cells[i];
|
||||
|
||||
// prevent out-of-bound sources
|
||||
if (kv_cell.src < 0 || (uint32_t) kv_cell.src >= kv_self->size) {
|
||||
kv_cell.src = cell_id;
|
||||
}
|
||||
|
||||
data[i] = kv_cell.src;
|
||||
|
||||
// TODO: do not mutate the KV cache
|
||||
// ensure copy only happens once
|
||||
if (kv_cell.src != (int32_t) cell_id) {
|
||||
kv_cell.src = cell_id;
|
||||
}
|
||||
data[i] = kv_self->s_copy(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -317,18 +300,7 @@ void llm_graph_input_s_mask::set_input(const llama_ubatch * ubatch) {
|
||||
|
||||
// clear unused states
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
const uint32_t cell_id = i + kv_self->head;
|
||||
|
||||
//////////////////////////////////////////////
|
||||
// TODO: this should not mutate the KV cache !
|
||||
llama_kv_cell & kv_cell = const_cast<class llama_kv_cache_unified *>(kv_self)->cells[i];
|
||||
|
||||
data[i] = (float) (kv_cell.src >= 0);
|
||||
|
||||
// only clear once
|
||||
if (kv_cell.src < 0) {
|
||||
kv_cell.src = cell_id;
|
||||
}
|
||||
data[i] = kv_self->s_mask(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -810,7 +782,7 @@ ggml_tensor * llm_graph_context::build_ffn(
|
||||
} break;
|
||||
}
|
||||
|
||||
if (type_gate == LLM_FFN_PAR) {
|
||||
if (gate && type_gate == LLM_FFN_PAR) {
|
||||
cur = ggml_mul(ctx0, cur, tmp);
|
||||
cb(cur, "ffn_gate_par", il);
|
||||
}
|
||||
@@ -1105,7 +1077,7 @@ ggml_tensor * llm_graph_context::build_inp_cls() const {
|
||||
}
|
||||
|
||||
ggml_tensor * llm_graph_context::build_inp_s_copy() const {
|
||||
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
||||
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||
|
||||
auto inp = std::make_unique<llm_graph_input_s_copy>(kv_self);
|
||||
|
||||
@@ -1122,7 +1094,7 @@ ggml_tensor * llm_graph_context::build_inp_s_copy() const {
|
||||
}
|
||||
|
||||
ggml_tensor * llm_graph_context::build_inp_s_mask() const {
|
||||
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
||||
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||
|
||||
auto inp = std::make_unique<llm_graph_input_s_mask>(kv_self);
|
||||
|
||||
@@ -1436,8 +1408,6 @@ ggml_tensor * llm_graph_context::build_attn(
|
||||
|
||||
// store to KV cache
|
||||
{
|
||||
GGML_ASSERT(!kv_self->recurrent);
|
||||
|
||||
const auto kv_head = kv_self->head;
|
||||
|
||||
GGML_ASSERT(kv_self->size == n_ctx);
|
||||
@@ -1587,7 +1557,7 @@ ggml_tensor * llm_graph_context::build_copy_mask_state(
|
||||
ggml_tensor * state_mask,
|
||||
int32_t n_state,
|
||||
int32_t n_seqs) const {
|
||||
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
||||
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||
|
||||
const auto n_kv = kv_self->n;
|
||||
const auto kv_head = kv_self->head;
|
||||
@@ -1619,7 +1589,7 @@ ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
|
||||
ggml_tensor * state_mask,
|
||||
const llama_ubatch & ubatch,
|
||||
int il) const {
|
||||
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
||||
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||
|
||||
const auto token_shift_count = hparams.token_shift_count;
|
||||
|
||||
@@ -1640,7 +1610,7 @@ ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
|
||||
ggml_tensor * token_shift,
|
||||
const llama_ubatch & ubatch,
|
||||
int il) const {
|
||||
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
||||
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||
|
||||
const auto token_shift_count = hparams.token_shift_count;
|
||||
const auto n_embd = hparams.n_embd;
|
||||
|
||||
@@ -19,6 +19,7 @@ struct llama_cparams;
|
||||
|
||||
class llama_memory_i;
|
||||
class llama_kv_cache_unified;
|
||||
class llama_kv_cache_recurrent;
|
||||
|
||||
// certain models (typically multi-modal) can produce different types of graphs
|
||||
enum llm_graph_type {
|
||||
@@ -186,26 +187,26 @@ public:
|
||||
|
||||
class llm_graph_input_s_copy : public llm_graph_input_i {
|
||||
public:
|
||||
llm_graph_input_s_copy(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
|
||||
llm_graph_input_s_copy(const llama_kv_cache_recurrent * kv_self) : kv_self(kv_self) {}
|
||||
virtual ~llm_graph_input_s_copy() = default;
|
||||
|
||||
void set_input(const llama_ubatch * ubatch) override;
|
||||
|
||||
ggml_tensor * s_copy; // I32 [kv_size]
|
||||
|
||||
const llama_kv_cache_unified * kv_self;
|
||||
const llama_kv_cache_recurrent * kv_self;
|
||||
};
|
||||
|
||||
class llm_graph_input_s_mask : public llm_graph_input_i {
|
||||
public:
|
||||
llm_graph_input_s_mask(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
|
||||
llm_graph_input_s_mask(const llama_kv_cache_recurrent * kv_self) : kv_self(kv_self) {}
|
||||
virtual ~llm_graph_input_s_mask() = default;
|
||||
|
||||
void set_input(const llama_ubatch * ubatch) override;
|
||||
|
||||
ggml_tensor * s_mask; // F32 [1, n_kv]
|
||||
|
||||
const llama_kv_cache_unified * kv_self;
|
||||
const llama_kv_cache_recurrent * kv_self;
|
||||
};
|
||||
|
||||
class llm_graph_input_cross_embd : public llm_graph_input_i {
|
||||
@@ -350,8 +351,8 @@ struct llm_graph_params {
|
||||
const llama_cparams & cparams;
|
||||
const llama_ubatch & ubatch;
|
||||
|
||||
ggml_backend_sched * sched;
|
||||
ggml_backend * backend_cpu;
|
||||
ggml_backend_sched_t sched;
|
||||
ggml_backend_t backend_cpu;
|
||||
|
||||
const llama_adapter_cvec * cvec;
|
||||
const llama_adapter_loras * loras;
|
||||
@@ -402,9 +403,9 @@ struct llm_graph_context {
|
||||
|
||||
ggml_context * ctx0 = nullptr;
|
||||
|
||||
ggml_backend_sched * sched;
|
||||
ggml_backend_sched_t sched;
|
||||
|
||||
ggml_backend * backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove?
|
||||
ggml_backend_t backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove?
|
||||
|
||||
const llama_adapter_cvec * cvec;
|
||||
const llama_adapter_loras * loras;
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -2,32 +2,72 @@
|
||||
|
||||
#include "llama.h"
|
||||
#include "llama-io.h"
|
||||
#include "llama-graph.h"
|
||||
#include "llama-memory.h"
|
||||
|
||||
#include "ggml-cpp.h"
|
||||
|
||||
#include <functional>
|
||||
#include <set>
|
||||
#include <vector>
|
||||
|
||||
struct llama_cparams;
|
||||
struct llama_hparams;
|
||||
struct llama_ubatch;
|
||||
struct llama_sbatch;
|
||||
struct llama_model;
|
||||
struct llama_context;
|
||||
|
||||
struct llama_kv_cache : public llama_memory_i {
|
||||
using llama_memory_i::llama_memory_i;
|
||||
virtual ~llama_kv_cache() = default;
|
||||
|
||||
virtual void restore() = 0; // call if batch processing fails - restores the cache state
|
||||
virtual void commit() = 0; // call after successful batch processing - clears any pending state
|
||||
// call if batch processing fails - restores the cache state
|
||||
virtual void restore() = 0;
|
||||
|
||||
virtual int32_t get_n_tokens() const = 0;
|
||||
virtual int32_t get_used_cells() const = 0; // TODO: remove, this is too-specific to the unified cache
|
||||
// call after successful batch processing - clears any pending state
|
||||
virtual void commit() = 0;
|
||||
|
||||
virtual bool get_can_shift() const = 0;
|
||||
// process any pending defrag/shift/etc. operations
|
||||
// optionally call once before processing a new batch
|
||||
virtual bool update(llama_context & lctx) = 0;
|
||||
|
||||
// schedule a defrag if the fragmentation threshold is exceeded. otherwise, do nothing
|
||||
virtual void defrag_sched(float thold) = 0;
|
||||
|
||||
// simulate full cache, used for allocating worst-case compute buffers
|
||||
virtual void set_full() = 0;
|
||||
|
||||
//
|
||||
// batch processing
|
||||
//
|
||||
|
||||
virtual llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) = 0;
|
||||
|
||||
// different KV caches require different batch splitting strategies
|
||||
virtual llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const = 0;
|
||||
|
||||
// find an empty slot of size "n_tokens" in the cache
|
||||
virtual bool find_slot(const llama_ubatch & batch) = 0;
|
||||
|
||||
// getters
|
||||
virtual int32_t get_n_tokens() const = 0;
|
||||
virtual int32_t get_used_cells() const = 0; // TODO: remove, this is too-specific to the unified cache
|
||||
virtual llama_pos get_pos_max() const = 0;
|
||||
virtual bool get_can_shift() const = 0;
|
||||
|
||||
bool get_can_edit() const override { return get_can_shift(); }
|
||||
|
||||
//
|
||||
// state write/read
|
||||
//
|
||||
|
||||
virtual void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const = 0;
|
||||
virtual void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) = 0;
|
||||
};
|
||||
|
||||
//
|
||||
// llama_kv_cache_guard
|
||||
//
|
||||
|
||||
struct llama_kv_cache_guard {
|
||||
llama_kv_cache_guard(llama_kv_cache * kv) : kv(kv) {}
|
||||
|
||||
@@ -43,65 +83,50 @@ private:
|
||||
llama_kv_cache * kv;
|
||||
};
|
||||
|
||||
struct llama_kv_cell {
|
||||
llama_pos pos = -1;
|
||||
llama_pos delta = 0;
|
||||
int32_t src = -1; // used by recurrent state models to copy states
|
||||
int32_t tail = -1;
|
||||
//
|
||||
// llama_kv_cache_unified
|
||||
//
|
||||
|
||||
std::set<llama_seq_id> seq_id;
|
||||
|
||||
bool has_seq_id(const llama_seq_id & id) const {
|
||||
return seq_id.find(id) != seq_id.end();
|
||||
}
|
||||
|
||||
bool is_empty() const {
|
||||
return seq_id.empty();
|
||||
}
|
||||
|
||||
bool is_same_seq(const llama_kv_cell & other) const {
|
||||
return seq_id == other.seq_id;
|
||||
}
|
||||
};
|
||||
|
||||
// ring-buffer of cached KV data
|
||||
// TODO: pimpl
|
||||
// TODO: add notion of max sequences
|
||||
class llama_kv_cache_unified : public llama_kv_cache {
|
||||
public:
|
||||
// can be used to query data from the model if needed
|
||||
struct callbacks {
|
||||
std::function<ggml_tensor * (uint32_t n_ctx_per_seq, int il)> get_rope_factors;
|
||||
struct kv_cell {
|
||||
llama_pos pos = -1;
|
||||
llama_pos delta = 0;
|
||||
|
||||
std::set<llama_seq_id> seq_id;
|
||||
|
||||
bool has_seq_id(const llama_seq_id & id) const {
|
||||
return seq_id.find(id) != seq_id.end();
|
||||
}
|
||||
|
||||
bool is_empty() const {
|
||||
return seq_id.empty();
|
||||
}
|
||||
|
||||
bool is_same_seq(const kv_cell & other) const {
|
||||
return seq_id == other.seq_id;
|
||||
}
|
||||
};
|
||||
|
||||
static uint32_t get_padding(const llama_cparams & cparams);
|
||||
|
||||
llama_kv_cache_unified(
|
||||
const llama_hparams & hparams,
|
||||
callbacks cbs);
|
||||
|
||||
virtual ~llama_kv_cache_unified() = default;
|
||||
|
||||
// TODO: become constructor
|
||||
bool init(
|
||||
const llama_model & model, // TODO: do not reference the model
|
||||
const llama_cparams & cparams,
|
||||
const llama_model & model,
|
||||
ggml_type type_k,
|
||||
ggml_type type_v,
|
||||
bool v_trans,
|
||||
bool offload,
|
||||
uint32_t kv_size,
|
||||
bool offload);
|
||||
uint32_t padding);
|
||||
|
||||
int32_t get_n_tokens() const override;
|
||||
int32_t get_used_cells() const override;
|
||||
~llama_kv_cache_unified() = default;
|
||||
|
||||
size_t total_size() const;
|
||||
|
||||
// TODO: better data structures to reduce the cost of this operation
|
||||
llama_pos pos_max() const;
|
||||
//
|
||||
// llama_memory_i
|
||||
//
|
||||
|
||||
void clear() override;
|
||||
void defrag() override;
|
||||
|
||||
virtual void restore() override;
|
||||
virtual void commit() override;
|
||||
|
||||
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
|
||||
void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;
|
||||
@@ -111,63 +136,40 @@ public:
|
||||
|
||||
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
|
||||
|
||||
bool get_can_shift() const override;
|
||||
//
|
||||
// llama_kv_cache
|
||||
//
|
||||
|
||||
void restore() override;
|
||||
void commit() override;
|
||||
|
||||
bool update(llama_context & ctx) override;
|
||||
|
||||
void defrag_sched(float thold) override;
|
||||
|
||||
void set_full() override;
|
||||
|
||||
llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) override;
|
||||
|
||||
llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const override;
|
||||
|
||||
// find an empty slot of size "n_tokens" in the cache
|
||||
// updates the cache head
|
||||
// Note: On success, it's important that cache.head points
|
||||
// to the first cell of the slot.
|
||||
bool find_slot(const llama_ubatch & batch);
|
||||
bool find_slot(const llama_ubatch & batch) override;
|
||||
|
||||
// TODO: maybe not needed
|
||||
uint32_t get_padding(const llama_cparams & cparams) const;
|
||||
int32_t get_n_tokens() const override;
|
||||
int32_t get_used_cells() const override;
|
||||
|
||||
// find how many cells are currently in use
|
||||
uint32_t cell_max() const;
|
||||
// TODO: better data structures to reduce the cost of this operation
|
||||
llama_pos get_pos_max() const override;
|
||||
|
||||
size_t size_k_bytes() const;
|
||||
size_t size_v_bytes() const;
|
||||
|
||||
// defrag
|
||||
|
||||
struct {
|
||||
std::vector<uint32_t> ids;
|
||||
} defrag_info;
|
||||
|
||||
// return true if cells have been moved
|
||||
bool defrag_prepare(int32_t n_max_nodes);
|
||||
|
||||
// commit/restore cache
|
||||
|
||||
struct slot_range {
|
||||
uint32_t c0 = 0; // note: these are cell indices, not sequence positions
|
||||
uint32_t c1 = 0;
|
||||
};
|
||||
|
||||
// pending cell updates that are not yet committed
|
||||
struct {
|
||||
std::vector<slot_range> ranges;
|
||||
} pending;
|
||||
bool get_can_shift() const override;
|
||||
|
||||
// state write/load
|
||||
|
||||
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const;
|
||||
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1);
|
||||
|
||||
// members
|
||||
|
||||
const llama_hparams & hparams;
|
||||
|
||||
callbacks cbs;
|
||||
|
||||
bool has_shift = false;
|
||||
bool do_defrag = false;
|
||||
|
||||
// TODO: remove this and implement llama_kv_cache_recurrent instead
|
||||
bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
|
||||
|
||||
bool v_trans = true; // the value tensor is transposed
|
||||
bool can_shift = false;
|
||||
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override;
|
||||
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override;
|
||||
|
||||
// Note: The value of head isn't only used to optimize searching
|
||||
// for a free KV slot. llama_decode_impl also uses it, so it
|
||||
@@ -179,18 +181,213 @@ public:
|
||||
// computed before each graph build
|
||||
uint32_t n = 0;
|
||||
|
||||
std::vector<llama_kv_cell> cells;
|
||||
std::vector<kv_cell> cells;
|
||||
|
||||
std::vector<ggml_tensor *> k_l; // per layer
|
||||
std::vector<ggml_tensor *> v_l;
|
||||
|
||||
private:
|
||||
const llama_model & model;
|
||||
const llama_hparams & hparams;
|
||||
|
||||
bool has_shift = false;
|
||||
bool do_defrag = false;
|
||||
|
||||
bool v_trans = true; // the value tensor is transposed
|
||||
bool can_shift = false;
|
||||
|
||||
// required padding
|
||||
uint32_t padding = 1;
|
||||
|
||||
ggml_type type_k = GGML_TYPE_F16;
|
||||
ggml_type type_v = GGML_TYPE_F16;
|
||||
|
||||
std::vector<ggml_context_ptr> ctxs;
|
||||
std::vector<ggml_backend_buffer_ptr> bufs;
|
||||
|
||||
// defrag
|
||||
struct {
|
||||
std::vector<uint32_t> ids;
|
||||
} defrag_info;
|
||||
|
||||
// return true if cells have been moved
|
||||
bool defrag_prepare(int32_t n_max_nodes);
|
||||
|
||||
// commit/restore cache
|
||||
struct slot_range {
|
||||
uint32_t c0 = 0; // note: these are cell indices, not sequence positions
|
||||
uint32_t c1 = 0;
|
||||
};
|
||||
|
||||
// pending cell updates that are not yet committed
|
||||
struct {
|
||||
std::vector<slot_range> ranges;
|
||||
} pending;
|
||||
|
||||
// find how many cells are currently in use
|
||||
uint32_t cell_max() const;
|
||||
|
||||
size_t total_size() const;
|
||||
|
||||
size_t size_k_bytes() const;
|
||||
size_t size_v_bytes() const;
|
||||
|
||||
ggml_tensor * build_rope_shift(
|
||||
const llama_cparams & cparams,
|
||||
ggml_context * ctx,
|
||||
ggml_tensor * cur,
|
||||
ggml_tensor * shift,
|
||||
ggml_tensor * factors,
|
||||
float freq_base,
|
||||
float freq_scale) const;
|
||||
|
||||
llm_graph_result_ptr build_graph_shift(
|
||||
const llama_cparams & cparams,
|
||||
ggml_context * ctx,
|
||||
ggml_cgraph * gf) const;
|
||||
|
||||
llm_graph_result_ptr build_graph_defrag(
|
||||
const llama_cparams & cparams,
|
||||
ggml_context * ctx,
|
||||
ggml_cgraph * gf) const;
|
||||
|
||||
void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const;
|
||||
void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const;
|
||||
|
||||
bool state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1);
|
||||
bool state_read_data(llama_io_read_i & io, uint32_t cell_count);
|
||||
};
|
||||
|
||||
//
|
||||
// llama_kv_cache_recurrent
|
||||
//
|
||||
|
||||
class llama_kv_cache_recurrent : public llama_kv_cache {
|
||||
public:
|
||||
struct kv_cell {
|
||||
llama_pos pos = -1;
|
||||
int32_t src = -1; // used to copy states
|
||||
int32_t tail = -1;
|
||||
|
||||
std::set<llama_seq_id> seq_id;
|
||||
|
||||
bool has_seq_id(const llama_seq_id & id) const {
|
||||
return seq_id.find(id) != seq_id.end();
|
||||
}
|
||||
|
||||
bool is_empty() const {
|
||||
return seq_id.empty();
|
||||
}
|
||||
|
||||
bool is_same_seq(const kv_cell & other) const {
|
||||
return seq_id == other.seq_id;
|
||||
}
|
||||
};
|
||||
|
||||
llama_kv_cache_recurrent(
|
||||
const llama_model & model,
|
||||
ggml_type type_k,
|
||||
ggml_type type_v,
|
||||
bool offload,
|
||||
uint32_t kv_size);
|
||||
|
||||
~llama_kv_cache_recurrent() = default;
|
||||
|
||||
//
|
||||
// llama_memory_i
|
||||
//
|
||||
|
||||
void clear() override;
|
||||
|
||||
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
|
||||
void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;
|
||||
void seq_keep(llama_seq_id seq_id) override;
|
||||
void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) override;
|
||||
void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override;
|
||||
|
||||
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
|
||||
|
||||
//
|
||||
// llama_kv_cache
|
||||
//
|
||||
|
||||
void restore() override;
|
||||
void commit() override;
|
||||
|
||||
bool update(llama_context & lctx) override;
|
||||
|
||||
void defrag_sched(float thold) override;
|
||||
|
||||
void set_full() override;
|
||||
|
||||
llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) override;
|
||||
|
||||
llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const override;
|
||||
|
||||
bool find_slot(const llama_ubatch & batch) override;
|
||||
|
||||
int32_t get_n_tokens() const override;
|
||||
int32_t get_used_cells() const override;
|
||||
|
||||
// TODO: better data structures to reduce the cost of this operation
|
||||
llama_pos get_pos_max() const override;
|
||||
|
||||
bool get_can_shift() const override;
|
||||
|
||||
// TODO: temporary methods - they are not really const as they do const_cast<>, fix this
|
||||
int32_t s_copy(int i) const;
|
||||
float s_mask(int i) const;
|
||||
|
||||
// state write/load
|
||||
|
||||
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override;
|
||||
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override;
|
||||
|
||||
// Note: The value of head isn't only used to optimize searching
|
||||
// for a free KV slot. llama_decode_impl also uses it, so it
|
||||
// cannot be freely changed after a slot has been allocated.
|
||||
uint32_t head = 0;
|
||||
uint32_t size = 0;
|
||||
uint32_t used = 0; // used cells (i.e. at least one seq_id)
|
||||
|
||||
// computed before each graph build
|
||||
uint32_t n = 0;
|
||||
|
||||
std::vector<kv_cell> cells;
|
||||
|
||||
std::vector<ggml_tensor *> k_l; // per layer
|
||||
std::vector<ggml_tensor *> v_l;
|
||||
|
||||
private:
|
||||
//const llama_model & model;
|
||||
const llama_hparams & hparams;
|
||||
|
||||
// commit/restore cache
|
||||
// TODO: rework for recurrent cache
|
||||
struct slot_range {
|
||||
uint32_t c0 = 0; // note: these are cell indices, not sequence positions
|
||||
uint32_t c1 = 0;
|
||||
};
|
||||
|
||||
// pending cell updates that are not yet committed
|
||||
struct {
|
||||
std::vector<slot_range> ranges;
|
||||
} pending;
|
||||
|
||||
ggml_type type_k = GGML_TYPE_F16;
|
||||
ggml_type type_v = GGML_TYPE_F16;
|
||||
|
||||
std::vector<ggml_context_ptr> ctxs;
|
||||
std::vector<ggml_backend_buffer_ptr> bufs;
|
||||
|
||||
// find how many cells are currently in use
|
||||
uint32_t cell_max() const;
|
||||
|
||||
size_t total_size() const;
|
||||
|
||||
size_t size_k_bytes() const;
|
||||
size_t size_v_bytes() const;
|
||||
|
||||
void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const;
|
||||
void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const;
|
||||
|
||||
@@ -198,11 +395,6 @@ private:
|
||||
bool state_read_data(llama_io_read_i & io, uint32_t cell_count);
|
||||
};
|
||||
|
||||
// TODO: temporary reusing llama_kv_cache_unified -- implement recurrent cache and simplify llama_kv_cache_unified
|
||||
//class llama_kv_cache_recurrent : public llama_kv_cache_unified {
|
||||
//public:
|
||||
// using llama_kv_cache_unified::llama_kv_cache_unified;
|
||||
//};
|
||||
|
||||
//
|
||||
// kv cache view
|
||||
|
||||
@@ -2,12 +2,22 @@
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
struct llama_memory_params {
|
||||
// kv cache
|
||||
ggml_type type_k;
|
||||
ggml_type type_v;
|
||||
|
||||
// parameters for other types of memory
|
||||
// ...
|
||||
};
|
||||
|
||||
// general concept of LLM memory
|
||||
// the KV cache is a type of LLM memory, but there can be other types
|
||||
class llama_memory_i {
|
||||
public:
|
||||
virtual ~llama_memory_i() = default;
|
||||
|
||||
virtual void clear() = 0;
|
||||
virtual void defrag() = 0;
|
||||
|
||||
virtual bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) = 0;
|
||||
virtual void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) = 0;
|
||||
|
||||
@@ -40,6 +40,7 @@ const char * llm_type_name(llm_type type) {
|
||||
case LLM_TYPE_335M: return "335M";
|
||||
case LLM_TYPE_410M: return "410M";
|
||||
case LLM_TYPE_450M: return "450M";
|
||||
case LLM_TYPE_475M: return "475M";
|
||||
case LLM_TYPE_770M: return "770M";
|
||||
case LLM_TYPE_780M: return "780M";
|
||||
case LLM_TYPE_0_5B: return "0.5B";
|
||||
@@ -79,6 +80,7 @@ const char * llm_type_name(llm_type type) {
|
||||
case LLM_TYPE_236B: return "236B";
|
||||
case LLM_TYPE_290B: return "290B";
|
||||
case LLM_TYPE_314B: return "314B";
|
||||
case LLM_TYPE_405B: return "405B";
|
||||
case LLM_TYPE_671B: return "671B";
|
||||
case LLM_TYPE_SMALL: return "0.1B";
|
||||
case LLM_TYPE_MEDIUM: return "0.4B";
|
||||
@@ -581,6 +583,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
switch (hparams.n_layer) {
|
||||
case 32: type = LLM_TYPE_7B; break;
|
||||
case 80: type = LLM_TYPE_70B; break;
|
||||
case 162: type = LLM_TYPE_405B; break;
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
@@ -707,7 +710,11 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
ml.get_key(LLM_KV_MOE_EVERY_N_LAYERS, hparams.moe_every_n_layers, 0);
|
||||
|
||||
if (hparams.n_layer == 12 && hparams.n_embd == 768) {
|
||||
type = LLM_TYPE_137M;
|
||||
if (arch == LLM_ARCH_NOMIC_BERT) {
|
||||
type = LLM_TYPE_137M;
|
||||
} else if (arch == LLM_ARCH_NOMIC_BERT_MOE && hparams.moe_every_n_layers == 2) {
|
||||
type = LLM_TYPE_475M;
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_BLOOM:
|
||||
@@ -768,6 +775,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
// fall through
|
||||
case LLM_ARCH_QWEN2:
|
||||
{
|
||||
ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
switch (hparams.n_layer) {
|
||||
case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break;
|
||||
@@ -1842,7 +1850,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
|
||||
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
|
||||
|
||||
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
||||
if (n_ff > 0) {
|
||||
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
||||
}
|
||||
|
||||
if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
|
||||
layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
||||
@@ -1852,9 +1862,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
||||
}
|
||||
|
||||
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
||||
if (n_ff > 0) {
|
||||
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
||||
}
|
||||
|
||||
// optional MLP bias
|
||||
layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
|
||||
@@ -3498,7 +3510,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
|
||||
// output
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
||||
// if output is NULL, init from the input tok embed
|
||||
if (output == NULL) {
|
||||
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
@@ -4440,6 +4456,19 @@ const ggml_tensor * llama_model::get_tensor(const char * name) const {
|
||||
return it->second;
|
||||
}
|
||||
|
||||
ggml_tensor * llama_model::get_rope_factors(uint32_t n_ctx_per_seq, int il) const {
|
||||
// choose long/short freq factors based on the context size
|
||||
if (layers[il].rope_freqs != nullptr) {
|
||||
return layers[il].rope_freqs;
|
||||
}
|
||||
|
||||
if (n_ctx_per_seq > hparams.n_ctx_orig_yarn) {
|
||||
return layers[il].rope_long;
|
||||
}
|
||||
|
||||
return layers[il].rope_short;
|
||||
}
|
||||
|
||||
struct llm_build_llama : public llm_graph_context {
|
||||
llm_build_llama(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
@@ -4480,7 +4509,7 @@ struct llm_build_llama : public llm_graph_context {
|
||||
// self-attention
|
||||
{
|
||||
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||
|
||||
// compute Q and K and RoPE them
|
||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
@@ -4686,6 +4715,7 @@ struct llm_build_deci : public llm_graph_context {
|
||||
ggml_tensor * inpSA = inpL;
|
||||
const int64_t n_head_kv = hparams.n_head_kv(il);
|
||||
const int64_t n_head = hparams.n_head(il);
|
||||
const int64_t n_ff = hparams.n_ff(il);
|
||||
|
||||
if (n_head == 0) {
|
||||
// attention-free layer of Llama-3_1-Nemotron-51B
|
||||
@@ -4705,7 +4735,7 @@ struct llm_build_deci : public llm_graph_context {
|
||||
} else if (n_head > 0) {
|
||||
// self-attention
|
||||
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||
|
||||
// compute Q and K and RoPE them
|
||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
@@ -4761,6 +4791,11 @@ struct llm_build_deci : public llm_graph_context {
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
|
||||
// FFN-free layer of Llama-3_1-Nemotron-Ultra-253B
|
||||
if (n_head == 0 && n_ff == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// For Granite architecture
|
||||
if (hparams.f_residual_scale) {
|
||||
cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
|
||||
@@ -7187,7 +7222,7 @@ struct llm_build_phi3 : public llm_graph_context {
|
||||
// self-attention
|
||||
{
|
||||
// rope freq factors for 128k context
|
||||
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||
|
||||
ggml_tensor* attn_norm_output = build_norm(inpL,
|
||||
model.layers[il].attn_norm,
|
||||
@@ -7939,7 +7974,7 @@ struct llm_build_minicpm3 : public llm_graph_context {
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_tensor * inpSA = inpL;
|
||||
|
||||
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||
|
||||
// norm
|
||||
cur = build_norm(inpL,
|
||||
@@ -8706,7 +8741,7 @@ struct llm_build_mamba : public llm_graph_context {
|
||||
ggml_tensor * state_mask,
|
||||
const llama_ubatch & ubatch,
|
||||
int il) const {
|
||||
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
||||
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||
|
||||
const auto kv_head = kv_self->head;
|
||||
|
||||
@@ -9007,7 +9042,7 @@ struct llm_build_cohere2 : public llm_graph_context {
|
||||
// self-attention
|
||||
{
|
||||
// rope freq factors for 128k context
|
||||
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||
|
||||
// compute Q and K and RoPE them
|
||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
@@ -9945,7 +9980,7 @@ struct llm_build_deepseek : public llm_graph_context {
|
||||
// self-attention
|
||||
{
|
||||
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||
|
||||
// compute Q and K and RoPE them
|
||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
@@ -11309,7 +11344,7 @@ struct llm_build_exaone : public llm_graph_context {
|
||||
// self-attention
|
||||
{
|
||||
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||
|
||||
// compute Q and K and RoPE them
|
||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
@@ -11454,7 +11489,7 @@ struct llm_build_rwkv6_base : public llm_graph_context {
|
||||
ggml_tensor * state_mask,
|
||||
const llama_ubatch & ubatch,
|
||||
int il) const {
|
||||
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
||||
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||
|
||||
const auto n_tokens = ubatch.n_tokens;
|
||||
const auto n_seqs = ubatch.n_seqs;
|
||||
@@ -11850,7 +11885,7 @@ struct llm_build_rwkv7_base : public llm_graph_context {
|
||||
ggml_tensor *& first_layer_value,
|
||||
const llama_ubatch & ubatch,
|
||||
int il) const {
|
||||
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
||||
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||
|
||||
const auto n_tokens = ubatch.n_tokens;
|
||||
const auto n_seqs = ubatch.n_seqs;
|
||||
@@ -12690,7 +12725,7 @@ struct llm_build_bailingmoe : public llm_graph_context {
|
||||
// self-attention
|
||||
{
|
||||
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||
|
||||
// compute Q and K and RoPE them
|
||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
@@ -12810,7 +12845,7 @@ struct llm_build_bailingmoe : public llm_graph_context {
|
||||
}
|
||||
};
|
||||
|
||||
llama_memory_i * llama_model::create_memory() const {
|
||||
llama_memory_i * llama_model::create_memory(const llama_memory_params & params, llama_cparams & cparams) const {
|
||||
llama_memory_i * res;
|
||||
|
||||
switch (arch) {
|
||||
@@ -12820,26 +12855,29 @@ llama_memory_i * llama_model::create_memory() const {
|
||||
case LLM_ARCH_RWKV7:
|
||||
case LLM_ARCH_ARWKV7:
|
||||
{
|
||||
res = new llama_kv_cache_unified(hparams, {
|
||||
/*.get_rope_factors =*/ nullptr
|
||||
});
|
||||
res = new llama_kv_cache_recurrent(
|
||||
*this,
|
||||
GGML_TYPE_F32,
|
||||
GGML_TYPE_F32,
|
||||
cparams.offload_kqv,
|
||||
std::max((uint32_t) 1, cparams.n_seq_max));
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
res = new llama_kv_cache_unified(hparams, {
|
||||
/*.get_rope_factors =*/ [this](uint32_t n_ctx_per_seq, int il) {
|
||||
// choose long/short freq factors based on the context size
|
||||
if (layers[il].rope_freqs != nullptr) {
|
||||
return layers[il].rope_freqs;
|
||||
}
|
||||
const auto padding = llama_kv_cache_unified::get_padding(cparams);
|
||||
|
||||
if (n_ctx_per_seq > hparams.n_ctx_orig_yarn) {
|
||||
return layers[il].rope_long;
|
||||
}
|
||||
cparams.n_ctx = GGML_PAD(cparams.n_ctx, padding);
|
||||
|
||||
return layers[il].rope_short;
|
||||
}
|
||||
});
|
||||
LLAMA_LOG_DEBUG("%s: n_ctx = %u (padded)\n", __func__, cparams.n_ctx);
|
||||
|
||||
res = new llama_kv_cache_unified(
|
||||
*this,
|
||||
params.type_k,
|
||||
params.type_v,
|
||||
!cparams.flash_attn,
|
||||
cparams.offload_kqv,
|
||||
cparams.n_ctx,
|
||||
padding);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -13221,8 +13259,6 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
||||
case LLM_ARCH_DECI:
|
||||
case LLM_ARCH_BAICHUAN:
|
||||
case LLM_ARCH_STARCODER:
|
||||
case LLM_ARCH_PLAMO:
|
||||
case LLM_ARCH_ORION:
|
||||
case LLM_ARCH_INTERNLM2:
|
||||
case LLM_ARCH_MINICPM:
|
||||
case LLM_ARCH_XVERSE:
|
||||
@@ -13260,6 +13296,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
||||
case LLM_ARCH_PHI2:
|
||||
case LLM_ARCH_PHI3:
|
||||
case LLM_ARCH_PHIMOE:
|
||||
case LLM_ARCH_PLAMO:
|
||||
case LLM_ARCH_GEMMA:
|
||||
case LLM_ARCH_GEMMA2:
|
||||
case LLM_ARCH_GEMMA3:
|
||||
@@ -13267,6 +13304,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
||||
case LLM_ARCH_OPENELM:
|
||||
case LLM_ARCH_GPTNEOX:
|
||||
case LLM_ARCH_CODESHELL:
|
||||
case LLM_ARCH_ORION:
|
||||
case LLM_ARCH_NEMOTRON:
|
||||
case LLM_ARCH_EXAONE:
|
||||
case LLM_ARCH_MINICPM3:
|
||||
|
||||
@@ -36,6 +36,7 @@ enum llm_type {
|
||||
LLM_TYPE_335M,
|
||||
LLM_TYPE_410M,
|
||||
LLM_TYPE_450M,
|
||||
LLM_TYPE_475M,
|
||||
LLM_TYPE_770M,
|
||||
LLM_TYPE_780M,
|
||||
LLM_TYPE_0_5B,
|
||||
@@ -75,6 +76,7 @@ enum llm_type {
|
||||
LLM_TYPE_236B,
|
||||
LLM_TYPE_290B,
|
||||
LLM_TYPE_314B,
|
||||
LLM_TYPE_405B,
|
||||
LLM_TYPE_671B,
|
||||
LLM_TYPE_SMALL,
|
||||
LLM_TYPE_MEDIUM,
|
||||
@@ -394,8 +396,11 @@ struct llama_model {
|
||||
|
||||
const struct ggml_tensor * get_tensor(const char * name) const;
|
||||
|
||||
ggml_tensor * get_rope_factors(uint32_t n_ctx_per_seq, int il) const;
|
||||
|
||||
// note: can mutate `cparams`
|
||||
// TODO: move this to new llm_arch_model_i interface
|
||||
llama_memory_i * create_memory() const; // TODO: params
|
||||
llama_memory_i * create_memory(const llama_memory_params & params, llama_cparams & cparams) const;
|
||||
|
||||
// TODO: move this to new llm_arch_model_i interface
|
||||
llm_graph_result_ptr build_graph(
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user