Compare commits

..

62 Commits
b5239 ... b5301

Author SHA1 Message Date
R0CKSTAR
1f73301b63 cuda : remove nrows_x in mul_mat_q_process_tile (#13325)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-05-07 09:48:23 +02:00
Georgi Gerganov
4773d7a02f examples : remove infill (#13283)
ggml-ci
2025-05-07 10:28:02 +03:00
piDack
6c7fd67b64 llama : support tie embedding for chatglm models (#13328) 2025-05-07 09:23:11 +02:00
Johannes Gäßler
141a908a59 CUDA: mix virt/real CUDA archs for GGML_NATIVE=OFF (#13135) 2025-05-06 23:35:51 +02:00
Xuan-Son Nguyen
32916a4907 clip : refactor graph builder (#13321)
* mtmd : refactor graph builder

* fix qwen2vl

* clean up siglip cgraph

* pixtral migrated

* move minicpmv to a dedicated build function

* move max_feature_layer to build_llava

* use build_attn for minicpm resampler

* fix windows build

* add comment for batch_size

* also support tinygemma3 test model

* qwen2vl does not use RMS norm

* fix qwen2vl norm (2)
2025-05-06 22:40:24 +02:00
DocShotgun
ffc727203a sampling : make top_n_sigma no-op at <=0 or a single candidate (#13345) 2025-05-06 22:36:24 +02:00
oobabooga
91a86a6f35 sampling : don't consider -infinity values in top_n_sigma (#13344) 2025-05-06 20:24:15 +02:00
Diego Devesa
f4ed10b69c cmake : remove arm64 msvc presets (#13342) 2025-05-06 20:15:31 +02:00
Akarshan Biswas
1e333d5bba SYCL: Disable reorder optimize by default and stop setting tensor extras when optimize is disabled (#13254)
* SYCL: Do not set tensor extras when reorder optimize is disabled

* SYCL: Disable reorder optimize by default
2025-05-06 20:27:06 +05:30
Xuan-Son Nguyen
2f54e348ad llama : fix build_ffn without gate (#13336)
* llama : fix build_ffn without gate

* fix build on windows

* Revert "fix build on windows"

This reverts commit fc420d3c7e.
2025-05-06 14:25:40 +02:00
Johannes Gäßler
2356fb1d53 CUDA: fix bad asserts for partial offload (#13337) 2025-05-06 13:58:51 +02:00
Sigbjørn Skjæret
764b85627b convert : qwen2/3moe : set yarn metadata if present (#13331)
* set yarn metadata if present

* add comment about enabling YaRN

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>

---------

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>
2025-05-06 11:12:06 +02:00
Johannes Gäßler
15a28ec8c7 CUDA: fix --split-mode row for MMQ (#13323) 2025-05-06 08:36:46 +02:00
compilade
a7366faa5b gguf-py : avoid requiring pyside6 for other scripts (#13036)
- gguf-py : remove gguf-py/gguf/scripts/__init__.py because it's not needed

Implicit namespaces are supported since Python 3.3 (https://peps.python.org/pep-0420/),
and the entrypoints in pyproject.toml can directly refer to the main functions.
2025-05-05 22:27:31 -04:00
Johannes Gäßler
9070365020 CUDA: fix logic for clearing padding with -ngl 0 (#13320) 2025-05-05 22:32:13 +02:00
oobabooga
233461f812 sampling : Integrate Top-nσ into main sampling chain (and add it to the server) (#13264)
* sampling: add Top-nσ sampler to `llama-server` and sampler ordering

* revert: sampler ordering

* revert: VS' crappy auto-formatting

* revert: VS' crappy auto-formatting pt.2

* revert: my crappy eye sight...

* sampling: add XTC to Top-nσ sampler chain

* sampling: add Dyna. Temp. to Top-nσ sampler chain

* sampling: actually remove Top-nσ from sampler(oops)

* Integrate top_n_sigma into main sampler chain

* Define COMMON_SAMPLER_TYPE_TOP_N_SIGMA

* Formatting

* Lint

* Exit early in the sampler if nsigma < 0

---------

Co-authored-by: CasualAutopsy <casual_autopsy@outlook.com>
2025-05-05 22:12:19 +02:00
igardev
b34c859146 server : Webui - change setText command from parent window to also send the message. (#13309)
* setText command from parent window for llama-vscode now sends the message automatically.

* Upgrade packages versions to fix vulnerabilities with "npm audit fix" command.

* Fix code formatting.

* Add index.html.gz changes.

* Revert "Upgrade packages versions to fix vulnerabilities with "npm audit fix" command."

This reverts commit 67687b7fda.

* easier approach

* add setTimeout

---------

Co-authored-by: igardev <ivailo.gardev@akros.ch>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-05-05 16:03:31 +02:00
Xuan-Son Nguyen
9b61acf060 mtmd : rename llava directory to mtmd (#13311)
* mv llava to mtmd

* change ref everywhere
2025-05-05 16:02:55 +02:00
Xuan-Son Nguyen
5215b91e93 clip : fix confused naming ffn_up and ffn_down (#13290)
* clip :  fix confused naming ffn_up and ffn_down

* rm ffn_i/o/g naming

* rename n_embd, n_ff

* small fix

* no check n_ff
2025-05-05 12:54:44 +02:00
Sigbjørn Skjæret
ae803bfc3d convert : bailingmoe : set yarn metadata if present (#13312) 2025-05-05 12:34:26 +02:00
Akarshan Biswas
66645a5285 SYCL: Disable mul_mat kernels for noncontiguous tensor b (#13308)
ggml-ci
2025-05-05 13:39:10 +05:30
Xuan-Son Nguyen
27aa259532 mtmd : add C public API (#13184)
* init

* wip

* working version

* add mtmd::bitmaps

* add test target

* rm redundant define

* test: mtmd_input_chunks_free

* rm outdated comment

* fix merging issue

* explicitly create mtmd::input_chunks

* mtmd_input_chunk_copy

* add clone()

* add const to various places

* add warning about breaking changes

* helper: use mtmd_image_tokens_get_n_pos
2025-05-04 23:43:42 +02:00
Diego Devesa
9fdfcdaedd rpc : use backend registry, support dl backends (#13304) 2025-05-04 21:25:43 +02:00
Aaron Teo
6eb7d25c70 ggml : activate s390x simd for Q3_K (#13301)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-05-04 19:49:12 +02:00
Diego Devesa
86bd60d3fe llava/mtmd : fixes to fully support dl backends (#13303) 2025-05-04 17:05:20 +02:00
Diego Devesa
9f2da5871f llama : build windows releases with dl backends (#13220) 2025-05-04 14:20:49 +02:00
Johannes Gäßler
93c4e23905 CUDA: fix race condition in MMQ stream-k fixup (#13299) 2025-05-04 14:16:39 +02:00
Johannes Gäßler
8afbd96818 CUDA: fix race condition in MMQ ids_dst (#13294) 2025-05-04 13:58:38 +02:00
Jeff Bolz
8ae5ebcf85 vulkan: Additional type support for unary, binary, and copy (#13266)
Support f16->f32 copy.
Support f16->f16 and f32->f32 unary ops.
Support all combinations of f16/f32 for src0/src1/dst for add/sub/mul/div.
2025-05-04 07:17:16 +02:00
Johannes Gäßler
3e959f0976 imatrix: fix oob writes if src1 is not contiguous (#13286) 2025-05-04 00:50:37 +02:00
Xuan-Son Nguyen
36667c8edc clip : revert the change of BOI/EOI token for GLM-edge (⚠️ breaking change) (#13259) 2025-05-03 20:07:54 +02:00
ymcki
3bf785f3ef llama : Llama-3_1-Nemotron-Ultra-253B-v1 support (#12843) 2025-05-03 17:39:51 +02:00
Diego Devesa
1d36b3670b llama : move end-user examples to tools directory (#13249)
* llama : move end-user examples to tools directory

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-05-02 20:27:13 +02:00
Georgi Gerganov
b34443923c sync : ggml (#13268)
* vulkan : kernels for depthwise 2D convolution (CONV_2D_DW) (ggml/1204)

* vulkan : add kernels for depthwise 2d convolution (OP_CONV_2D_DW)

* review: remove src_x/y < 0 checks; add performance tests

* sync : ggml

ggml-ci

* vulkan : fix lint (#0)

---------

Co-authored-by: Acly <aclysia@gmail.com>
2025-05-02 20:54:30 +03:00
Georgi Gerganov
a75cb30dc9 context : fix reorder logic (#13267)
ggml-ci
2025-05-02 20:54:13 +03:00
shalinib-ibm
3f3769ba76 ggml : Enable MMA for BF16 in llamafile_sgemm (#13148)
This patch upstreams llamafile's cpu matrix multiplication kernels for ppc64le using MMA builtins for BF16 data type.

This change results in 9x - 40x gains
in total speed S t/s (ie all tokens/total time), across various batch sizes tested using llama-batched-bench benchmark.

The patch is tested with Meta-Lllama-3-8B,
and Mistral-7B models (BF16 models generated by using llama-quantize from corresponding FP32 models) on an IBM POWER10 machine.

Signed-off-by: Shalini Salomi Bodapati <Shalini.Salomi.Bodapati@ibm.com>
2025-05-02 19:53:12 +03:00
Jared Van Bortel
2f567611c0 llama-model : support Qwen2 embedding models and pooling_mode_lasttoken (#13245) 2025-05-02 11:42:30 -04:00
Jared Van Bortel
7d2123484e convert : use correct context length for nomic-embed-text-v2 (#13216) 2025-05-02 11:41:54 -04:00
Xuan-Son Nguyen
074e42ab31 convert : converting mmproj for Qwen2/2.5VL from convert_hf_to_gguf (#13209)
* wip

* qwen2.5vl ok

* vision: fix models missing "text_config"

* add test

* fix test repo name

* fix 32B model

* Revert "fix 32B model"

This reverts commit 651752f1ae.

* clarify about 32B

* rm qwen surgery script

* update llava/readme

* move V_ENC_EMBD_PATCH handling to Qwen2VLVisionModel
2025-05-02 17:17:15 +02:00
Georgi Gerganov
c642bc014c kv-cache : separate recurrent vs non-recurrent impl (#12799)
* kv-cache : serparate recurrent vs non-recurrent impl (wip)

ggml-ci

* kv-cache : init -> contructor + add llama_memory_params

ggml-ci

* kv-cache : fix callback reference

ggml-ci

* context : llama_kv_cache -> llama_memory_i

ggml-ci

* context : move memory creation logic to model

ggml-ci

* llama : remove reference of memory during encode

ggml-ci

* kv-cache : hide padding details in the implementation

ggml-ci

* kv-cache : add ubatch_next()

ggml-ci

* context : simplify sbatch logic

ggml-ci

* kv-cache : hide defrag logic in the implementation

ggml-ci

* context : hide kv cache details in implementation

ggml-ci

* build : fix

ggml-ci

* cont : another fix

ggml-ci

* kv-cache : simplify interface (wip)

ggml-ci

* kv-cache : use separate KV cell structs for unified/recurrent

ggml-ci

* kv-cache : clean-up

ggml-ci

* model : better llama_model::create_model() signature

ggml-ci

* kv-cache : fix recurrent seq_rm()

ggml-ci

* kv-cache : replace `struct callbacks` with `llama_model &`

ggml-ci

* kv-cache : replace `struct graph_params` with `llama_context &`

ggml-ci

* kv-cache : fix offload check

ggml-ci

* context : avoid passing unique_ptr

ggml-ci

* kv-cache : avoid using the backends from the llama_context

ref #13113

ggml-ci

* kv-cache : more consistent debug logs [no ci]

* kv-cache : do not pass the full llama_context for kv graphs

ggml-ci

* kv-cache : remove comment

* kv-cache : ggml_rope_ext_inplace -> ggml_rope_ext

ggml-ci

* kv-cache : fix recurrent multi-user case

ggml-ci

* memory : remove comments [no ci]
2025-05-02 17:48:36 +03:00
Sigbjørn Skjæret
cb06a3c363 llama : orion rope type is neox (#13261) 2025-05-02 12:44:24 +02:00
Sigbjørn Skjæret
626083faf7 llama : plamo rope type is neox (#13260) 2025-05-02 12:40:56 +02:00
piDack
2af6880178 llama-chat : reset glmedge chat template (#13253)
* reset glmedge chat template

* fix glmedge chat template
2025-05-02 11:06:09 +02:00
Shakil Ahmed
e84773ab60 mtmd-cli : fix out_of_range when input image path is empty (#13244)
* fix out_of_range error  to keep the chat loop running

* Update examples/llava/mtmd-cli.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* mtmd-cli : load image right away

* add a new line for readability

* rm printf

* Update examples/llava/mtmd-cli.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update examples/llava/mtmd-cli.cpp

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-05-02 10:20:27 +02:00
Georgi Gerganov
fab647e884 server : add cache reuse card link to help (#13230)
* server : add cache reuse card link to help

* args : use short url
2025-05-02 09:48:31 +03:00
Xuan-Son Nguyen
dcf886007d convert : explicitly disable trust_remote_code for AutoConfig (#13246) 2025-05-02 08:45:10 +02:00
bandoti
d24d592808 ci: fix cross-compile sync issues (#12804) 2025-05-01 19:06:39 -03:00
Justin Santa Barbara
8efbdadc61 rpc : avoid uninitialized memory in serialize_tensor (#13210)
Zero out the name and padding buffers.
2025-05-01 23:32:11 +02:00
Jesse Gross
f057808ffa ggml: Don't assert fail when tensor data changes (#13222)
The following scenario will cause an assertion failure in the graph
allocator:
 - Build and allocate a graph containing a tensor with a non-NULL data
   pointer
 - Build and allocate a new graph where that data is NULL

Result:
ggml-alloc.c:819: GGML_ASSERT(talloc->buffer_id >= 0) failed

This happens during revalidation because we think that memory should
have been previously allocated based on the current graph but in
reality the previous graph was different. In this situation, we
should do a full reallocation pass.
2025-05-01 22:46:10 +02:00
Diego Devesa
d7a14c42a1 build : fix build info on windows (#13239)
* build : fix build info on windows

* fix cuda host compiler msg
2025-05-01 21:48:08 +02:00
Loïc Carrère
b6e4ff69b8 clip : (minicpmv) Re-enable upscaling of images smaller than the CLIP image size (#13237) 2025-05-01 21:32:21 +02:00
matteo
e0f572c846 llama-chat : update GLM4 chat template (#13238)
* update GLM4 chat template

* Update chat template

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-05-01 21:16:38 +02:00
Jeff Bolz
79f26e9e12 vulkan: Add bfloat16 support (#12554)
* vulkan: Add bfloat16 support

This adds bfloat16 matrix multiply support based on VK_KHR_shader_bfloat16.
The extension is required for coopmat multiply support, but matrix-vector
multiply trivially promotes bf16 to fp32 and doesn't require the extension.
The copy/get_rows shaders also don't require the extension.

It's probably possible to fall back to non-coopmat and promote to fp32 when
the extension isn't supported, but this change doesn't do that.

The coopmat support also requires a glslc that supports the extension, which
currently requires a custom build.

* vulkan: Support bf16 tensors without the bf16 extension or coopmat support

Compile a variant of the scalar mul_mm shader that will promote the bf16
values to float, and use that when either the bf16 extension or the coopmat
extensions aren't available.

* vulkan: bfloat16 fixes (really works without bfloat16 support now)

* vulkan: fix spirv-val failure and reenable -O
2025-05-01 20:49:39 +02:00
Jeff Bolz
fc727bcdd5 vulkan: Handle src1 batch dimension in non-contiguous mat-vec-mul shader (#13191)
* vulkan: Handle src1 batch dimension in non-contiguous mat-vec-mul shader
2025-05-01 20:19:31 +02:00
Johannes Gäßler
b0ecbd434b test: non-cont. b in test-backend-ops -o MUL_MAT (#13187) 2025-05-01 20:18:56 +02:00
Georgi Gerganov
b1dd4d08e8 sync : ggml
ggml-ci
2025-05-01 20:15:34 +03:00
Daniel Bevenius
99881f77d8 whisper : add check that target name exists (whisper/3103)
This commit adds a check to makes sure that the target exists before
trying to add compile options to ignore warnings when using MSVC.

The motivation for this is currently the build is broken depending on
the cmake options provided. With this fix it should be possible to build
even if the targets are not actually available.

Refs: https://github.com/ggml-org/whisper.cpp/pull/3090#issuecomment-2842760104
2025-05-01 20:15:34 +03:00
Daniel Bevenius
b5769d92b4 ggml : suppress Windows compiler warnings (whisper/3075)
* whisper: suppress Windows compiler warnings

This commit disables compiler warnings on window using MSVC.

The motivation for these changes is that some compilers generate
warnings for these conversion, for example Windows MSVC, and
there are quite a few of them. This makes it a little difficult to
spot new warnings that may be introduced and also can be difficult
for users/embedders of ggml where these warnings are hard to separate
from their own warnings.

* squash! whisper: suppress Windows compiler warnings

Move ggml related warnings into ggml. This commit also fixes the
indentation and adds a missing whitespace to the if statement.
2025-05-01 20:15:34 +03:00
Xuan-Son Nguyen
8936784f7a mtmd : add **vision** support for Mistral Small 3.1 (#13231)
* convert ok

* load ok, missing patch merger

* ah sheet it works

* update llava/readme

* add test

* fix test
2025-05-01 17:05:42 +02:00
Xuan-Son Nguyen
13c9a3319b arg : remove CURLINFO_EFFECTIVE_METHOD (#13228) 2025-05-01 10:23:25 +02:00
Jared Van Bortel
a70183eb00 llama-model : fix the reported size class for nomic-embed-text-v2-moe (#13223) 2025-05-01 10:09:41 +03:00
Georgi Gerganov
8d33d740c3 sync : ggml 2025-05-01 10:00:39 +03:00
285 changed files with 6606 additions and 4341 deletions

View File

@@ -21,15 +21,15 @@ indent_style = tab
[prompts/*.txt]
insert_final_newline = unset
[examples/server/public/*]
[tools/server/public/*]
indent_size = 2
[examples/server/public/deps_*]
[tools/server/public/deps_*]
trim_trailing_whitespace = unset
indent_style = unset
indent_size = unset
[examples/server/deps_*]
[tools/server/deps_*]
trim_trailing_whitespace = unset
indent_style = unset
indent_size = unset
@@ -37,7 +37,7 @@ indent_size = unset
[examples/llama.swiftui/llama.swiftui.xcodeproj/*]
indent_style = tab
[examples/cvector-generator/*.txt]
[tools/cvector-generator/*.txt]
trim_trailing_whitespace = unset
insert_final_newline = unset

View File

@@ -2,8 +2,9 @@
max-line-length = 125
ignore = E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704,W503
exclude =
# Do not traverse examples
# Do not traverse examples and tools
examples,
tools,
# Do not include package initializers
__init__.py,
# No need to traverse our git directory

6
.github/labeler.yml vendored
View File

@@ -45,7 +45,9 @@ build:
- CMakePresets.json
examples:
- changed-files:
- any-glob-to-any-file: examples/**
- any-glob-to-any-file:
- examples/**
- tools/**
devops:
- changed-files:
- any-glob-to-any-file:
@@ -70,7 +72,7 @@ android:
server:
- changed-files:
- any-glob-to-any-file:
- examples/server/**
- tools/server/**
ggml:
- changed-files:
- any-glob-to-any-file:

View File

@@ -27,10 +27,10 @@ on:
push:
branches:
- master
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'tools/server/*.h*', 'tools/server/*.cpp']
pull_request_target:
types: [opened, synchronize, reopened]
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'tools/server/*.h*', 'tools/server/*.cpp']
schedule:
- cron: '04 2 * * *'
@@ -69,7 +69,7 @@ jobs:
- name: Install python env
id: pipenv
run: |
cd examples/server/bench
cd tools/server/bench
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
@@ -79,7 +79,7 @@ jobs:
run: |
wget --quiet https://github.com/prometheus/prometheus/releases/download/v2.51.0/prometheus-2.51.0.linux-amd64.tar.gz
tar xzf prometheus*.tar.gz --strip-components=1
./prometheus --config.file=examples/server/bench/prometheus.yml &
./prometheus --config.file=tools/server/bench/prometheus.yml &
while ! nc -z localhost 9090; do
sleep 0.1
done
@@ -92,7 +92,7 @@ jobs:
- name: Install k6 and xk6-sse
id: k6_installation
run: |
cd examples/server/bench
cd tools/server/bench
go install go.k6.io/xk6/cmd/xk6@latest
xk6 build master \
--with github.com/phymbert/xk6-sse
@@ -116,7 +116,7 @@ jobs:
- name: Download the dataset
id: download_dataset
run: |
cd examples/server/bench
cd tools/server/bench
wget --quiet https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
- name: Server bench
@@ -126,7 +126,7 @@ jobs:
run: |
set -eux
cd examples/server/bench
cd tools/server/bench
source venv/bin/activate
python bench.py \
--runner-label ${{ env.RUNNER_LABEL }} \
@@ -157,9 +157,9 @@ jobs:
name: bench-server-${{ github.job }}-${{ env.RUNNER_LABEL }}-${{ matrix.model }}-${{ matrix.ftype }}
compression-level: 9
path: |
examples/server/bench/*.jpg
examples/server/bench/*.json
examples/server/bench/*.log
tools/server/bench/*.jpg
tools/server/bench/*.json
tools/server/bench/*.log
- name: Commit status
uses: Sibz/github-status-action@v1
@@ -178,17 +178,17 @@ jobs:
with:
client_id: ${{secrets.IMGUR_CLIENT_ID}}
path: |
examples/server/bench/prompt_tokens_seconds.jpg
examples/server/bench/predicted_tokens_seconds.jpg
examples/server/bench/kv_cache_usage_ratio.jpg
examples/server/bench/requests_processing.jpg
tools/server/bench/prompt_tokens_seconds.jpg
tools/server/bench/predicted_tokens_seconds.jpg
tools/server/bench/kv_cache_usage_ratio.jpg
tools/server/bench/requests_processing.jpg
- name: Extract mermaid
id: set_mermaid
run: |
set -eux
cd examples/server/bench
cd tools/server/bench
PROMPT_TOKENS_SECONDS=$(cat prompt_tokens_seconds.mermaid)
echo "PROMPT_TOKENS_SECONDS<<EOF" >> $GITHUB_ENV
echo "$PROMPT_TOKENS_SECONDS" >> $GITHUB_ENV

View File

@@ -4,18 +4,25 @@ on:
workflow_call:
jobs:
ubuntu-latest-riscv64-cpu-cross:
runs-on: ubuntu-latest
ubuntu-24-riscv64-cpu-cross:
runs-on: ubuntu-24.04
steps:
- uses: actions/checkout@v4
- name: Setup Riscv
run: |
sudo dpkg --add-architecture riscv64
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
sudo apt-get clean
sudo apt-get update
# Add arch-specific repositories for non-amd64 architectures
cat << EOF | sudo tee /etc/apt/sources.list.d/riscv64-ports.list
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
EOF
sudo apt-get update || true ;# Prevent failure due to missing URLs.
sudo apt-get install -y --no-install-recommends \
build-essential \
gcc-14-riscv64-linux-gnu \
@@ -27,6 +34,7 @@ jobs:
cmake -B build -DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
@@ -40,21 +48,25 @@ jobs:
cmake --build build --config Release -j $(nproc)
ubuntu-latest-riscv64-vulkan-cross:
runs-on: ubuntu-latest
ubuntu-24-riscv64-vulkan-cross:
runs-on: ubuntu-24.04
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Setup Riscv
run: |
sudo dpkg --add-architecture riscv64
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
sudo apt-get clean
sudo apt-get update
# Add arch-specific repositories for non-amd64 architectures
cat << EOF | sudo tee /etc/apt/sources.list.d/riscv64-ports.list
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
EOF
sudo apt-get update || true ;# Prevent failure due to missing URLs.
sudo apt-get install -y --no-install-recommends \
build-essential \
glslc \
@@ -69,6 +81,7 @@ jobs:
-DGGML_VULKAN=ON \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
@@ -82,21 +95,25 @@ jobs:
cmake --build build --config Release -j $(nproc)
ubuntu-latest-arm64-vulkan-cross:
runs-on: ubuntu-latest
ubuntu-24-arm64-vulkan-cross:
runs-on: ubuntu-24.04
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Setup Arm64
run: |
sudo dpkg --add-architecture arm64
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
sudo apt-get clean
sudo apt-get update
# Add arch-specific repositories for non-amd64 architectures
cat << EOF | sudo tee /etc/apt/sources.list.d/arm64-ports.list
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
EOF
sudo apt-get update || true ;# Prevent failure due to missing URLs.
sudo apt-get install -y --no-install-recommends \
build-essential \
glslc \
@@ -110,6 +127,7 @@ jobs:
-DGGML_VULKAN=ON \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=aarch64 \

View File

@@ -601,9 +601,8 @@ jobs:
-DGGML_SYCL_F16=ON
cmake --build build --config Release -j $(nproc)
# Disabled for now due to sporadic issue syncing.
# build-linux-cross:
# uses: ./.github/workflows/build-linux-cross.yml
build-linux-cross:
uses: ./.github/workflows/build-linux-cross.yml
macOS-latest-cmake-ios:
runs-on: macos-latest
@@ -634,6 +633,7 @@ jobs:
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_BUILD_COMMON=OFF \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TOOLS=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
-DCMAKE_SYSTEM_NAME=iOS \
@@ -670,6 +670,7 @@ jobs:
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_BUILD_COMMON=OFF \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TOOLS=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
-DCMAKE_SYSTEM_NAME=tvOS \
@@ -700,6 +701,7 @@ jobs:
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_BUILD_COMMON=OFF \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TOOLS=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
-DCMAKE_SYSTEM_NAME=visionOS \
@@ -740,6 +742,7 @@ jobs:
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_CURL=OFF \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TOOLS=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64"
@@ -768,7 +771,7 @@ jobs:
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: windows-msys2
variant: sccache
variant: ccache
evict-old-files: 1d
- name: Setup ${{ matrix.sys }}
@@ -811,26 +814,18 @@ jobs:
strategy:
matrix:
include:
- build: 'noavx-x64'
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX=OFF -DGGML_AVX2=OFF -DGGML_FMA=OFF'
- build: 'avx2-x64'
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON'
- build: 'avx-x64'
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX2=OFF'
- build: 'avx512-x64'
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX512=ON'
- build: 'cpu-x64'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF'
- build: 'openblas-x64'
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
- build: 'kompute-x64'
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
- build: 'vulkan-x64'
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_VULKAN=ON'
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON'
- build: 'llvm-arm64'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON'
- build: 'msvc-arm64'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-msvc.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON'
- build: 'llvm-arm64-opencl-adreno'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON'
# - build: 'kompute-x64'
# defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON'
steps:
- name: Clone
@@ -843,7 +838,7 @@ jobs:
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: windows-latest-cmake-${{ matrix.build }}
variant: sccache
variant: ccache
evict-old-files: 1d
- name: Clone Kompute submodule
@@ -919,39 +914,26 @@ jobs:
cp $env:RUNNER_TEMP/openblas/bin/libopenblas.dll ./build/bin/Release/openblas.dll
cp $env:RUNNER_TEMP/OpenBLAS.LICENSE.txt ./build/bin/Release/OpenBLAS-${env:OPENBLAS_VERSION}.txt
- name: Check AVX512F support
id: check_avx512f
if: ${{ matrix.build == 'avx512-x64' }}
continue-on-error: true
run: |
cd build
$vcdir = $(vswhere -latest -products * -requires Microsoft.VisualStudio.Component.VC.Tools.x86.x64 -property installationPath)
$msvc = $(join-path $vcdir $('VC\Tools\MSVC\'+$(gc -raw $(join-path $vcdir 'VC\Auxiliary\Build\Microsoft.VCToolsVersion.default.txt')).Trim()))
$cl = $(join-path $msvc 'bin\Hostx64\x64\cl.exe')
echo 'int main(void){unsigned int a[4];__cpuid(a,7);return !(a[1]&65536);}' >> avx512f.c
& $cl /O2 /GS- /kernel avx512f.c /link /nodefaultlib /entry:main
.\avx512f.exe && echo "AVX512F: YES" && ( echo HAS_AVX512F=1 >> $env:GITHUB_ENV ) || echo "AVX512F: NO"
- name: Test
id: cmake_test
# not all machines have native AVX-512
if: ${{ matrix.build != 'msvc-arm64' && matrix.build != 'llvm-arm64' && matrix.build != 'llvm-arm64-opencl-adreno' && matrix.build != 'kompute-x64' && matrix.build != 'vulkan-x64' && (matrix.build != 'avx512-x64' || env.HAS_AVX512F == '1') }}
if: ${{ matrix.build != 'llvm-arm64' && matrix.build != 'llvm-arm64-opencl-adreno' }}
run: |
cd build
ctest -L main -C Release --verbose --timeout 900
- name: Test (Intel SDE)
id: cmake_test_sde
if: ${{ matrix.build == 'avx512-x64' && env.HAS_AVX512F == '0' }} # use Intel SDE for AVX-512 emulation
run: |
curl.exe -o $env:RUNNER_TEMP/sde.tar.xz -L "https://downloadmirror.intel.com/813591/sde-external-${env:SDE_VERSION}-win.tar.xz"
# for some weird reason windows tar doesn't like sde tar.xz
7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/sde.tar.xz
7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/sde.tar
$sde = $(join-path $env:RUNNER_TEMP sde-external-${env:SDE_VERSION}-win/sde.exe)
cd build
$env:LLAMA_SKIP_TESTS_SLOW_ON_EMULATOR = 1
& $sde -future -- ctest -L main -C Release --verbose --timeout 900
# TODO: disabled for now, consider adding tests for all CPU variants instead
# - name: Test (Intel SDE)
# id: cmake_test_sde
# if: ${{ matrix.build == 'avx512-x64' && env.HAS_AVX512F == '0' }} # use Intel SDE for AVX-512 emulation
# run: |
# curl.exe -o $env:RUNNER_TEMP/sde.tar.xz -L "https://downloadmirror.intel.com/813591/sde-external-${env:SDE_VERSION}-win.tar.xz"
# # for some weird reason windows tar doesn't like sde tar.xz
# 7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/sde.tar.xz
# 7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/sde.tar
# $sde = $(join-path $env:RUNNER_TEMP sde-external-${env:SDE_VERSION}-win/sde.exe)
# cd build
# $env:LLAMA_SKIP_TESTS_SLOW_ON_EMULATOR = 1
# & $sde -future -- ctest -L main -C Release --verbose --timeout 900
- name: Determine tag name
id: tag
@@ -1036,7 +1018,7 @@ jobs:
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: ${{ github.job }}-${{ matrix.cuda }}-${{ matrix.build }}
variant: sccache
variant: ccache
evict-old-files: 1d
- name: Install Cuda Toolkit 11.7
@@ -1114,6 +1096,8 @@ jobs:
cmake -S . -B build -G "Ninja Multi-Config" ^
-DLLAMA_BUILD_SERVER=ON ^
-DGGML_NATIVE=OFF ^
-DGGML_BACKEND_DL=ON ^
-DGGML_CPU_ALL_VARIANTS=ON ^
-DGGML_CUDA=ON ^
-DGGML_RPC=ON ^
-DCURL_LIBRARY="%CURL_PATH%/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="%CURL_PATH%/include"
@@ -1188,7 +1172,7 @@ jobs:
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: windows-latest-cmake-sycl
variant: sccache
variant: ccache
evict-old-files: 1d
- name: Install
@@ -1418,6 +1402,7 @@ jobs:
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_CURL=OFF \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TOOLS=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
-DCMAKE_SYSTEM_NAME=iOS \

View File

@@ -15,10 +15,10 @@ on:
push:
branches:
- master
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'tools/server/**.*']
pull_request:
types: [opened, synchronize, reopened]
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'tools/server/**.*']
env:
LLAMA_LOG_COLORS: 1
@@ -74,7 +74,7 @@ jobs:
- name: Tests dependencies
id: test_dependencies
run: |
pip install -r examples/server/tests/requirements.txt
pip install -r tools/server/tests/requirements.txt
# Setup nodejs (to be used for verifying bundled index.html)
- uses: actions/setup-node@v4
@@ -84,14 +84,14 @@ jobs:
- name: WebUI - Install dependencies
id: webui_lint
run: |
cd examples/server/webui
cd tools/server/webui
npm ci
- name: WebUI - Check code format
id: webui_format
run: |
git config --global --add safe.directory $(realpath .)
cd examples/server/webui
cd tools/server/webui
git status
npm run format
@@ -108,7 +108,7 @@ jobs:
id: verify_server_index_html
run: |
git config --global --add safe.directory $(realpath .)
cd examples/server/webui
cd tools/server/webui
git status
npm run build
@@ -161,21 +161,21 @@ jobs:
env:
GITHUB_ACTIONS: "true"
run: |
cd examples/server/tests
cd tools/server/tests
./tests.sh
- name: Tests (sanitizers)
id: server_integration_tests_sanitizers
if: ${{ matrix.sanitizer != '' }}
run: |
cd examples/server/tests
cd tools/server/tests
LLAMA_SANITIZE=1 ./tests.sh
- name: Slow tests
id: server_integration_tests_slow
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
run: |
cd examples/server/tests
cd tools/server/tests
SLOW_TESTS=1 ./tests.sh
@@ -211,7 +211,7 @@ jobs:
- name: Tests dependencies
id: test_dependencies
run: |
pip install -r examples/server/tests/requirements.txt
pip install -r tools/server/tests/requirements.txt
- name: Copy Libcurl
id: prepare_libcurl
@@ -224,7 +224,7 @@ jobs:
id: server_integration_tests
if: ${{ !matrix.disabled_on_pr || !github.event.pull_request }}
run: |
cd examples/server/tests
cd tools/server/tests
$env:PYTHONIOENCODING = ":replace"
pytest -v -x -m "not slow"
@@ -232,6 +232,6 @@ jobs:
id: server_integration_tests_slow
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
run: |
cd examples/server/tests
cd tools/server/tests
$env:SLOW_TESTS = "1"
pytest -v -x

12
.gitignore vendored
View File

@@ -96,11 +96,11 @@ perf-*.txt
# Examples
examples/jeopardy/results.txt
examples/server/*.css.hpp
examples/server/*.html.hpp
examples/server/*.js.hpp
examples/server/*.mjs.hpp
examples/server/*.gz.hpp
tools/server/*.css.hpp
tools/server/*.html.hpp
tools/server/*.js.hpp
tools/server/*.mjs.hpp
tools/server/*.gz.hpp
!build_64.sh
!examples/*.bat
!examples/*/*.kts
@@ -110,7 +110,7 @@ examples/server/*.gz.hpp
# Server Web UI temporary files
node_modules
examples/server/webui/dist
tools/server/webui/dist
# Python

View File

@@ -77,6 +77,7 @@ option(LLAMA_BUILD_COMMON "llama: build common utils library" ${LLAMA_STANDALONE
# extra artifacts
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_TOOLS "llama: build tools" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_SERVER "llama: build server example" ${LLAMA_STANDALONE})
@@ -187,6 +188,10 @@ if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_EXAMPLES)
add_subdirectory(pocs)
endif()
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_TOOLS)
add_subdirectory(tools)
endif()
#
# install
#

View File

@@ -38,15 +38,6 @@
}
},
{
"name": "arm64-windows-msvc", "hidden": true,
"architecture": { "value": "arm64", "strategy": "external" },
"toolset": { "value": "host=x64", "strategy": "external" },
"cacheVariables": {
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-windows-msvc.cmake"
}
},
{
"name": "arm64-windows-llvm", "hidden": true,
"architecture": { "value": "arm64", "strategy": "external" },
@@ -73,10 +64,6 @@
{ "name": "arm64-apple-clang-release", "inherits": [ "base", "arm64-apple-clang", "reldbg" ] },
{ "name": "arm64-apple-clang+static-release", "inherits": [ "base", "arm64-apple-clang", "reldbg", "static" ] },
{ "name": "arm64-windows-msvc-debug", "inherits": [ "base", "arm64-windows-msvc", "debug" ] },
{ "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg" ] },
{ "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg", "static" ] },
{ "name": "x64-windows-llvm-debug", "inherits": [ "base", "x64-windows-llvm", "debug" ] },
{ "name": "x64-windows-llvm-release", "inherits": [ "base", "x64-windows-llvm", "release" ] },
{ "name": "x64-windows-llvm-reldbg", "inherits": [ "base", "x64-windows-llvm", "reldbg" ] },

View File

@@ -2,7 +2,7 @@
/ci/ @ggerganov
/.devops/*.Dockerfile @ngxson
/examples/server/ @ngxson
/tools/server/ @ngxson
/ggml/src/ggml-cuda/fattn* @JohannesGaessler
/ggml/src/ggml-cuda/mmq.* @JohannesGaessler
/ggml/src/ggml-cuda/mmv.* @JohannesGaessler

View File

@@ -1156,10 +1156,10 @@ $(LIB_COMMON_S): $(OBJ_COMMON)
# Clean generated server assets
clean-server-assets:
find examples/server -type f -name "*.js.hpp" -delete
find examples/server -type f -name "*.mjs.hpp" -delete
find examples/server -type f -name "*.css.hpp" -delete
find examples/server -type f -name "*.html.hpp" -delete
find tools/server -type f -name "*.js.hpp" -delete
find tools/server -type f -name "*.mjs.hpp" -delete
find tools/server -type f -name "*.css.hpp" -delete
find tools/server -type f -name "*.html.hpp" -delete
# Clean rule
clean: clean-server-assets
@@ -1179,7 +1179,7 @@ clean: clean-server-assets
# Helper function that replaces .c, .cpp, and .cu file endings with .o:
GET_OBJ_FILE = $(patsubst %.c,%.o,$(patsubst %.cpp,%.o,$(patsubst %.cu,%.o,$(1))))
llama-cli: examples/main/main.cpp \
llama-cli: tools/main/main.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
@@ -1187,12 +1187,7 @@ llama-cli: examples/main/main.cpp \
@echo '==== Run ./llama-cli -h for help. ===='
@echo
llama-infill: examples/infill/infill.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-run: examples/run/run.cpp \
llama-run: tools/run/run.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
@@ -1207,7 +1202,7 @@ llama-simple-chat: examples/simple-chat/simple-chat.cpp \
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-tokenize: examples/tokenize/tokenize.cpp \
llama-tokenize: tools/tokenize/tokenize.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
@@ -1217,27 +1212,27 @@ llama-batched: examples/batched/batched.cpp \
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-batched-bench: examples/batched-bench/batched-bench.cpp \
llama-batched-bench: tools/batched-bench/batched-bench.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-quantize: examples/quantize/quantize.cpp \
llama-quantize: tools/quantize/quantize.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-quantize-stats: examples/quantize-stats/quantize-stats.cpp \
llama-quantize-stats: tools/quantize-stats/quantize-stats.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-perplexity: examples/perplexity/perplexity.cpp \
llama-perplexity: tools/perplexity/perplexity.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-imatrix: examples/imatrix/imatrix.cpp \
llama-imatrix: tools/imatrix/imatrix.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
@@ -1279,7 +1274,7 @@ llama-gguf-hash: examples/gguf-hash/gguf-hash.cpp examples/gguf-hash/deps/sha1/s
$(CXX) $(CXXFLAGS) -Iexamples/gguf-hash/deps -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-gguf-split: examples/gguf-split/gguf-split.cpp \
llama-gguf-split: tools/gguf-split/gguf-split.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
@@ -1289,7 +1284,7 @@ llama-eval-callback: examples/eval-callback/eval-callback.cpp \
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-cvector-generator: examples/cvector-generator/cvector-generator.cpp \
llama-cvector-generator: tools/cvector-generator/cvector-generator.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
@@ -1299,12 +1294,12 @@ llama-convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-bench: examples/llama-bench/llama-bench.cpp \
llama-bench: tools/llama-bench/llama-bench.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-export-lora: examples/export-lora/export-lora.cpp \
llama-export-lora: tools/export-lora/export-lora.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
@@ -1360,17 +1355,17 @@ llama-gbnf-validator: examples/gbnf-validator/gbnf-validator.cpp \
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
ifdef GGML_RPC
rpc-server: examples/rpc/rpc-server.cpp \
rpc-server: tools/rpc/rpc-server.cpp \
$(OBJ_GGML)
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
endif # GGML_RPC
llama-server: \
examples/server/server.cpp \
examples/server/utils.hpp \
examples/server/httplib.h \
examples/server/index.html.hpp \
examples/server/loading.html.hpp \
tools/server/server.cpp \
tools/server/utils.hpp \
tools/server/httplib.h \
tools/server/index.html.hpp \
tools/server/loading.html.hpp \
common/chat.cpp \
common/chat.h \
common/chat-template.hpp \
@@ -1378,10 +1373,10 @@ llama-server: \
common/minja.hpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Iexamples/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2)
$(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Itools/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2)
# Portable equivalent of `cd examples/server/public && xxd -i $(notdir $<) ../$(notdir $<).hpp`:
examples/server/%.hpp: examples/server/public/% FORCE Makefile
# Portable equivalent of `cd tools/server/public && xxd -i $(notdir $<) ../$(notdir $<).hpp`:
tools/server/%.hpp: tools/server/public/% FORCE Makefile
@( export NAME=$(subst .,_,$(subst -,_,$(notdir $<))) && \
echo "unsigned char $${NAME}[] = {" && \
cat $< | od -v -t x1 -An | sed -E 's/([0-9a-fA-F]+)/0x\1, /g' && \
@@ -1394,36 +1389,36 @@ llama-gen-docs: examples/gen-docs/gen-docs.cpp \
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
libllava.a: examples/llava/llava.cpp \
examples/llava/llava.h \
examples/llava/clip.cpp \
examples/llava/clip.h \
libllava.a: tools/mtmd/llava.cpp \
tools/mtmd/llava.h \
tools/mtmd/clip.cpp \
tools/mtmd/clip.h \
common/stb_image.h \
common/base64.hpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -static -fPIC -c $< -o $@ -Wno-cast-qual
llama-llava-cli: examples/llava/llava-cli.cpp \
examples/llava/llava.cpp \
examples/llava/llava.h \
examples/llava/clip.cpp \
examples/llava/clip.h \
llama-llava-cli: tools/mtmd/llava-cli.cpp \
tools/mtmd/llava.cpp \
tools/mtmd/llava.h \
tools/mtmd/clip.cpp \
tools/mtmd/clip.h \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) $< $(filter-out %.h $<,$^) -o $@ $(LDFLAGS) -Wno-cast-qual
llama-minicpmv-cli: examples/llava/minicpmv-cli.cpp \
examples/llava/llava.cpp \
examples/llava/llava.h \
examples/llava/clip.cpp \
examples/llava/clip.h \
llama-minicpmv-cli: tools/mtmd/minicpmv-cli.cpp \
tools/mtmd/llava.cpp \
tools/mtmd/llava.h \
tools/mtmd/clip.cpp \
tools/mtmd/clip.h \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) $< $(filter-out %.h $<,$^) -o $@ $(LDFLAGS) -Wno-cast-qual
llama-qwen2vl-cli: examples/llava/qwen2vl-cli.cpp \
examples/llava/llava.cpp \
examples/llava/llava.h \
examples/llava/clip.cpp \
examples/llava/clip.h \
llama-qwen2vl-cli: tools/mtmd/qwen2vl-cli.cpp \
tools/mtmd/llava.cpp \
tools/mtmd/llava.h \
tools/mtmd/clip.cpp \
tools/mtmd/clip.h \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) $< $(filter-out %.h $<,$^) -o $@ $(LDFLAGS) -Wno-cast-qual
@@ -1480,12 +1475,12 @@ tests/test-double-float: tests/test-double-float.cpp
tests/test-json-schema-to-grammar: tests/test-json-schema-to-grammar.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -Iexamples/server -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) -Itools/server -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-chat: tests/test-chat.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -Iexamples/server -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) -Itools/server -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-opt: tests/test-opt.cpp \

View File

@@ -242,7 +242,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
| [Vulkan](docs/build.md#vulkan) | GPU |
| [CANN](docs/build.md#cann) | Ascend NPU |
| [OpenCL](docs/backend/OPENCL.md) | Adreno GPU |
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/examples/rpc) | All |
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) | All |
## Building the project
@@ -276,9 +276,9 @@ The Hugging Face platform provides a variety of online tools for converting, qua
- Use the [GGUF-editor space](https://huggingface.co/spaces/CISCai/gguf-editor) to edit GGUF meta data in the browser (more info: https://github.com/ggml-org/llama.cpp/discussions/9268)
- Use the [Inference Endpoints](https://ui.endpoints.huggingface.co/) to directly host `llama.cpp` in the cloud (more info: https://github.com/ggml-org/llama.cpp/discussions/9669)
To learn more about model quantization, [read this documentation](examples/quantize/README.md)
To learn more about model quantization, [read this documentation](tools/quantize/README.md)
## [`llama-cli`](examples/main)
## [`llama-cli`](tools/main)
#### A CLI tool for accessing and experimenting with most of `llama.cpp`'s functionality.
@@ -341,7 +341,7 @@ To learn more about model quantization, [read this documentation](examples/quant
</details>
## [`llama-server`](examples/server)
## [`llama-server`](tools/server)
#### A lightweight, [OpenAI API](https://github.com/openai/openai-openapi) compatible, HTTP server for serving LLMs.
@@ -411,7 +411,7 @@ To learn more about model quantization, [read this documentation](examples/quant
</details>
## [`llama-perplexity`](examples/perplexity)
## [`llama-perplexity`](tools/perplexity)
#### A tool for measuring the perplexity [^1][^2] (and other quality metrics) of a model over a given text.
@@ -436,10 +436,10 @@ To learn more about model quantization, [read this documentation](examples/quant
</details>
[^1]: [examples/perplexity/README.md](./examples/perplexity/README.md)
[^1]: [tools/perplexity/README.md](./tools/perplexity/README.md)
[^2]: [https://huggingface.co/docs/transformers/perplexity](https://huggingface.co/docs/transformers/perplexity)
## [`llama-bench`](examples/llama-bench)
## [`llama-bench`](tools/llama-bench)
#### Benchmark the performance of the inference for various parameters.
@@ -460,7 +460,7 @@ To learn more about model quantization, [read this documentation](examples/quant
</details>
## [`llama-run`](examples/run)
## [`llama-run`](tools/run)
#### A comprehensive example for running `llama.cpp` models. Useful for inferencing. Used with RamaLama [^3].
@@ -504,8 +504,8 @@ To learn more about model quantization, [read this documentation](examples/quant
## Other documentation
- [main (cli)](examples/main/README.md)
- [server](examples/server/README.md)
- [main (cli)](tools/main/README.md)
- [server](tools/server/README.md)
- [GBNF grammars](grammars/README.md)
#### Development documentation

View File

@@ -40,7 +40,7 @@ To protect sensitive data from potential leaks or unauthorized access, it is cru
### Untrusted environments or networks
If you can't run your models in a secure and isolated environment or if it must be exposed to an untrusted network, make sure to take the following security precautions:
* Do not use the RPC backend, [rpc-server](https://github.com/ggml-org/llama.cpp/tree/master/examples/rpc) and [llama-server](https://github.com/ggml-org/llama.cpp/tree/master/examples/server) functionality (see https://github.com/ggml-org/llama.cpp/pull/13061).
* Do not use the RPC backend, [rpc-server](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) and [llama-server](https://github.com/ggml-org/llama.cpp/tree/master/tools/server) functionality (see https://github.com/ggml-org/llama.cpp/pull/13061).
* Confirm the hash of any downloaded artifact (e.g. pre-trained model weights) matches a known-good value.
* Encrypt your data if sending it over the network.

View File

@@ -8,6 +8,7 @@ TVOS_MIN_OS_VERSION=16.4
BUILD_SHARED_LIBS=OFF
LLAMA_BUILD_EXAMPLES=OFF
LLAMA_BUILD_TOOLS=OFF
LLAMA_BUILD_TESTS=OFF
LLAMA_BUILD_SERVER=OFF
GGML_METAL=ON
@@ -31,6 +32,7 @@ COMMON_CMAKE_ARGS=(
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
-DBUILD_SHARED_LIBS=${BUILD_SHARED_LIBS}
-DLLAMA_BUILD_EXAMPLES=${LLAMA_BUILD_EXAMPLES}
-DLLAMA_BUILD_TOOLS=${LLAMA_BUILD_TOOLS}
-DLLAMA_BUILD_TESTS=${LLAMA_BUILD_TESTS}
-DLLAMA_BUILD_SERVER=${LLAMA_BUILD_SERVER}
-DGGML_METAL_EMBED_LIBRARY=${GGML_METAL_EMBED_LIBRARY}

View File

@@ -187,8 +187,8 @@ function gg_run_test_scripts_debug {
set -e
(cd ./examples/gguf-split && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
(cd ./examples/quantize && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
(cd ./tools/gguf-split && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
(cd ./tools/quantize && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
set +e
}
@@ -211,8 +211,8 @@ function gg_run_test_scripts_release {
set -e
(cd ./examples/gguf-split && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
(cd ./examples/quantize && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
(cd ./tools/gguf-split && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
(cd ./tools/quantize && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
set +e
}

View File

@@ -1,6 +0,0 @@
set( CMAKE_SYSTEM_NAME Windows )
set( CMAKE_SYSTEM_PROCESSOR arm64 )
set( target arm64-pc-windows-msvc )
set( CMAKE_C_COMPILER_TARGET ${target} )
set( CMAKE_CXX_COMPILER_TARGET ${target} )

View File

@@ -41,14 +41,20 @@ endif()
if(MSVC)
set(BUILD_COMPILER "${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
if (CMAKE_VS_PLATFORM_NAME)
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
else()
set(BUILD_TARGET "${CMAKE_SYSTEM_NAME} ${CMAKE_SYSTEM_PROCESSOR}")
endif()
else()
execute_process(
COMMAND sh -c "\"$@\" --version | head -1" _ ${CMAKE_C_COMPILER}
COMMAND ${CMAKE_C_COMPILER} --version
OUTPUT_VARIABLE OUT
OUTPUT_STRIP_TRAILING_WHITESPACE
)
string(REGEX REPLACE " *\n.*" "" OUT "${OUT}")
set(BUILD_COMPILER ${OUT})
execute_process(
COMMAND ${CMAKE_C_COMPILER} -dumpmachine
OUTPUT_VARIABLE OUT

View File

@@ -3,9 +3,3 @@ set( CMAKE_SYSTEM_PROCESSOR x86_64 )
set( CMAKE_C_COMPILER clang )
set( CMAKE_CXX_COMPILER clang++ )
set( arch_c_flags "-march=native" )
set( CMAKE_C_FLAGS_INIT "${arch_c_flags}" )
set( CMAKE_CXX_FLAGS_INIT "${arch_c_flags}" )

View File

@@ -39,7 +39,9 @@ add_custom_command(
COMMENT "Generating build details from Git"
COMMAND ${CMAKE_COMMAND} -DMSVC=${MSVC} -DCMAKE_C_COMPILER_VERSION=${CMAKE_C_COMPILER_VERSION}
-DCMAKE_C_COMPILER_ID=${CMAKE_C_COMPILER_ID} -DCMAKE_VS_PLATFORM_NAME=${CMAKE_VS_PLATFORM_NAME}
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} -P "${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info-gen-cpp.cmake"
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
-DCMAKE_SYSTEM_NAME=${CMAKE_SYSTEM_NAME} -DCMAKE_SYSTEM_PROCESSOR=${CMAKE_SYSTEM_PROCESSOR}
-P "${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info-gen-cpp.cmake"
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}/.."
DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/build-info.cpp.in" ${GIT_INDEX}
VERBATIM

View File

@@ -217,13 +217,11 @@ struct curl_slist_ptr {
#define CURL_MAX_RETRY 3
#define CURL_RETRY_DELAY_SECONDS 2
static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds) {
static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds, const char * method_name) {
int remaining_attempts = max_attempts;
char * method = nullptr;
curl_easy_getinfo(curl, CURLINFO_EFFECTIVE_METHOD, &method);
while (remaining_attempts > 0) {
LOG_INF("%s: %s %s (attempt %d of %d)...\n", __func__ , method, url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
LOG_INF("%s: %s %s (attempt %d of %d)...\n", __func__ , method_name, url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
CURLcode res = curl_easy_perform(curl);
if (res == CURLE_OK) {
@@ -343,7 +341,7 @@ static bool common_download_file_single(const std::string & url, const std::stri
// we only allow retrying once for HEAD requests
// this is for the use case of using running offline (no internet), retrying can be annoying
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), 1, 0);
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), 1, 0, "HEAD");
if (!was_perform_successful) {
head_request_ok = false;
}
@@ -425,7 +423,7 @@ static bool common_download_file_single(const std::string & url, const std::stri
// start the download
LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS, "GET");
if (!was_perform_successful) {
return false;
}
@@ -1285,7 +1283,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params) {
params.use_color = true;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
add_opt(common_arg(
{"-t", "--threads"}, "N",
string_format("number of threads to use during generation (default: %d)", params.cpuparams.n_threads),
@@ -1418,7 +1416,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
add_opt(common_arg(
{"-n", "--predict", "--n-predict"}, "N",
string_format(
ex == LLAMA_EXAMPLE_MAIN || ex == LLAMA_EXAMPLE_INFILL
ex == LLAMA_EXAMPLE_MAIN
? "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)"
: "number of tokens to predict (default: %d, -1 = infinity)",
params.n_predict),
@@ -1657,7 +1655,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.input_prefix = value;
params.enable_chat_template = false;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(common_arg(
{"--in-suffix"}, "STRING",
"string to suffix after user inputs with (default: empty)",
@@ -1665,7 +1663,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.input_suffix = value;
params.enable_chat_template = false;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(common_arg(
{"--no-warmup"},
"skip warming up the model with an empty run",
@@ -1682,7 +1680,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params) {
params.spm_infill = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_INFILL}));
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--samplers"}, "SAMPLERS",
string_format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()),
@@ -2213,14 +2211,14 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONT_BATCHING"));
add_opt(common_arg(
{"--mmproj"}, "FILE",
"path to a multimodal projector file. see examples/llava/README.md",
"path to a multimodal projector file. see tools/mtmd/README.md",
[](common_params & params, const std::string & value) {
params.mmproj.path = value;
}
).set_examples(mmproj_examples));
add_opt(common_arg(
{"--mmproj-url"}, "URL",
"URL to a multimodal projector file. see examples/llava/README.md",
"URL to a multimodal projector file. see tools/mtmd/README.md",
[](common_params & params, const std::string & value) {
params.mmproj.url = value;
}
@@ -2785,7 +2783,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_THREADS_HTTP"));
add_opt(common_arg(
{"--cache-reuse"}, "N",
string_format("min chunk size to attempt reusing from the cache via KV shifting (default: %d)", params.n_cache_reuse),
string_format(
"min chunk size to attempt reusing from the cache via KV shifting (default: %d)\n"
"[(card)](https://ggml.ai/f0.png)", params.n_cache_reuse
),
[](common_params & params, int value) {
params.n_cache_reuse = value;
}
@@ -2891,7 +2892,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params) {
params.simple_io = true;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(common_arg(
{"--positive-file"}, "FNAME",
string_format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()),

View File

@@ -66,7 +66,6 @@ enum llama_example {
LLAMA_EXAMPLE_COMMON,
LLAMA_EXAMPLE_SPECULATIVE,
LLAMA_EXAMPLE_MAIN,
LLAMA_EXAMPLE_INFILL,
LLAMA_EXAMPLE_EMBEDDING,
LLAMA_EXAMPLE_PERPLEXITY,
LLAMA_EXAMPLE_RETRIEVAL,
@@ -96,6 +95,7 @@ enum common_sampler_type {
COMMON_SAMPLER_TYPE_XTC = 8,
COMMON_SAMPLER_TYPE_INFILL = 9,
COMMON_SAMPLER_TYPE_PENALTIES = 10,
COMMON_SAMPLER_TYPE_TOP_N_SIGMA = 11,
};
// dimensionality reduction methods, used by cvector-generator
@@ -161,6 +161,7 @@ struct common_params_sampling {
std::vector<enum common_sampler_type> samplers = {
COMMON_SAMPLER_TYPE_PENALTIES,
COMMON_SAMPLER_TYPE_DRY,
COMMON_SAMPLER_TYPE_TOP_N_SIGMA,
COMMON_SAMPLER_TYPE_TOP_K,
COMMON_SAMPLER_TYPE_TYPICAL_P,
COMMON_SAMPLER_TYPE_TOP_P,
@@ -340,7 +341,7 @@ struct common_params {
common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
// multimodal models (see examples/llava)
// multimodal models (see tools/mtmd)
struct common_params_model mmproj;
bool mmproj_use_gpu = true; // use GPU for multimodal model
bool no_mmproj = false; // explicitly disable multimodal model
@@ -414,8 +415,8 @@ struct common_params {
int n_pca_batch = 100;
int n_pca_iterations = 1000;
dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
std::string cvector_positive_file = "tools/cvector-generator/positive.txt";
std::string cvector_negative_file = "tools/cvector-generator/negative.txt";
bool spm_infill = false; // suffix/prefix/middle pattern for infill

View File

@@ -229,51 +229,48 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
params.logit_bias.data()));
if (params.mirostat == 0) {
if (params.top_n_sigma >= 0) {
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
llama_sampler_chain_add(result->chain, llama_sampler_init_temp (params.temp));
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
} else {
for (const auto & cnstr : params.samplers) {
switch (cnstr) {
case COMMON_SAMPLER_TYPE_DRY:
{
std::vector<const char *> c_breakers;
c_breakers.reserve(params.dry_sequence_breakers.size());
for (const auto & str : params.dry_sequence_breakers) {
c_breakers.push_back(str.c_str());
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
for (const auto & cnstr : params.samplers) {
switch (cnstr) {
case COMMON_SAMPLER_TYPE_DRY:
{
std::vector<const char *> c_breakers;
c_breakers.reserve(params.dry_sequence_breakers.size());
for (const auto & str : params.dry_sequence_breakers) {
c_breakers.push_back(str.c_str());
}
break;
case COMMON_SAMPLER_TYPE_TOP_K:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
break;
case COMMON_SAMPLER_TYPE_TOP_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_MIN_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_XTC:
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
break;
case COMMON_SAMPLER_TYPE_TYPICAL_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TEMPERATURE:
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
break;
case COMMON_SAMPLER_TYPE_INFILL:
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
break;
case COMMON_SAMPLER_TYPE_PENALTIES:
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
break;
default:
GGML_ASSERT(false && "unknown sampler type");
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
}
break;
case COMMON_SAMPLER_TYPE_TOP_K:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
break;
case COMMON_SAMPLER_TYPE_TOP_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
break;
case COMMON_SAMPLER_TYPE_MIN_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_XTC:
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
break;
case COMMON_SAMPLER_TYPE_TYPICAL_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TEMPERATURE:
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
break;
case COMMON_SAMPLER_TYPE_INFILL:
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
break;
case COMMON_SAMPLER_TYPE_PENALTIES:
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties (params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
break;
default:
GGML_ASSERT(false && "unknown sampler type");
}
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
@@ -475,6 +472,7 @@ char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
case COMMON_SAMPLER_TYPE_TOP_K: return 'k';
case COMMON_SAMPLER_TYPE_TYPICAL_P: return 'y';
case COMMON_SAMPLER_TYPE_TOP_P: return 'p';
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return 's';
case COMMON_SAMPLER_TYPE_MIN_P: return 'm';
case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
case COMMON_SAMPLER_TYPE_XTC: return 'x';
@@ -490,6 +488,7 @@ std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
case COMMON_SAMPLER_TYPE_TOP_K: return "top_k";
case COMMON_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
case COMMON_SAMPLER_TYPE_TOP_P: return "top_p";
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return "top_n_sigma";
case COMMON_SAMPLER_TYPE_MIN_P: return "min_p";
case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
case COMMON_SAMPLER_TYPE_XTC: return "xtc";
@@ -504,6 +503,7 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
{ "dry", COMMON_SAMPLER_TYPE_DRY },
{ "top_k", COMMON_SAMPLER_TYPE_TOP_K },
{ "top_p", COMMON_SAMPLER_TYPE_TOP_P },
{ "top_n_sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
{ "typ_p", COMMON_SAMPLER_TYPE_TYPICAL_P },
{ "min_p", COMMON_SAMPLER_TYPE_MIN_P },
{ "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
@@ -517,6 +517,7 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
std::unordered_map<std::string, common_sampler_type> sampler_alt_name_map {
{ "top-k", COMMON_SAMPLER_TYPE_TOP_K },
{ "top-p", COMMON_SAMPLER_TYPE_TOP_P },
{ "top-n-sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
{ "nucleus", COMMON_SAMPLER_TYPE_TOP_P },
{ "typical-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
{ "typical", COMMON_SAMPLER_TYPE_TYPICAL_P },
@@ -552,6 +553,7 @@ std::vector<common_sampler_type> common_sampler_types_from_chars(const std::stri
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K), COMMON_SAMPLER_TYPE_TOP_K },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P), COMMON_SAMPLER_TYPE_TYPICAL_P },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P), COMMON_SAMPLER_TYPE_TOP_P },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_N_SIGMA), COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P), COMMON_SAMPLER_TYPE_MIN_P },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC), COMMON_SAMPLER_TYPE_XTC },

View File

@@ -419,7 +419,9 @@ class ModelBase:
@staticmethod
def load_hparams(dir_model: Path):
try:
return AutoConfig.from_pretrained(dir_model).to_dict()
# for security reason, we don't allow loading remote code by default
# if a model need remote code, we will fallback to config.json
return AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
except Exception as e:
logger.warning(f"Failed to load model config from {dir_model}: {e}")
logger.warning("Trying to load config.json instead")
@@ -453,8 +455,12 @@ class ModelBase:
class TextModel(ModelBase):
model_type = ModelType.TEXT
hf_arch: str
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.hf_arch = get_model_architecture(self.hparams, self.model_type)
if "text_config" in self.hparams:
# move the text_config to the root level
@@ -504,7 +510,7 @@ class TextModel(ModelBase):
def set_gguf_parameters(self):
self.gguf_writer.add_block_count(self.block_count)
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions"], optional=True)) is not None:
self.gguf_writer.add_context_length(n_ctx)
logger.info(f"gguf: context length = {n_ctx}")
@@ -1073,10 +1079,36 @@ class TextModel(ModelBase):
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
def _try_set_pooling_type(self) -> None:
# get pooling path
pooling_path = None
module_path = self.dir_model / "modules.json"
if module_path.is_file():
with open(module_path, encoding="utf-8") as f:
modules = json.load(f)
for mod in modules:
if mod["type"] == "sentence_transformers.models.Pooling":
pooling_path = mod["path"]
break
# get pooling type
if pooling_path is not None:
with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
pooling = json.load(f)
if pooling["pooling_mode_mean_tokens"]:
pooling_type = gguf.PoolingType.MEAN
elif pooling["pooling_mode_cls_token"]:
pooling_type = gguf.PoolingType.CLS
elif pooling["pooling_mode_lasttoken"]:
pooling_type = gguf.PoolingType.LAST
else:
raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
self.gguf_writer.add_pooling_type(pooling_type)
class VisionModel(ModelBase):
model_type = ModelType.VISION
model_arch = gguf.MODEL_ARCH.CLIP_VISION
n_text_embd = 0
preprocessor_config: dict[str, Any]
global_config: dict[str, Any]
@@ -1087,6 +1119,8 @@ class VisionModel(ModelBase):
raise TypeError("VisionModel must be subclassed with model_arch = gguf.MODEL_ARCH.CLIP_VISION")
# get n_embd of the text model
if "text_config" not in self.hparams:
self.hparams["text_config"] = {}
text_config = {**self.hparams, **self.hparams["text_config"]}
self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
assert self.n_embd_text > 0, "n_embd not found in hparams"
@@ -1744,6 +1778,12 @@ class LlamaModel(TextModel):
model_arch = gguf.MODEL_ARCH.LLAMA
undo_permute = True
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# fix for SmolVLM2, missing `num_attention_heads` in config.json
if self.hf_arch == "VLlama3ForCausalLM":
self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
def set_vocab(self):
try:
self._set_vocab_sentencepiece()
@@ -1899,7 +1939,10 @@ class LlamaModel(TextModel):
raise ValueError(f"Unprocessed experts: {experts}")
@ModelBase.register("LlavaForConditionalGeneration")
@ModelBase.register(
"LlavaForConditionalGeneration", # pixtral
"Mistral3ForConditionalGeneration", # mistral small 3.1
)
class LlavaVisionModel(VisionModel):
img_break_tok_id = -1
@@ -1908,17 +1951,38 @@ class LlavaVisionModel(VisionModel):
if self.hparams["model_type"] == "pixtral":
# layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
self.img_break_tok_id = 12 # see tokenizer_config.json
self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
logger.info(f"Image break token id: {self.img_break_tok_id}")
else:
raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
def get_token_id(self, token: str) -> int:
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
added_tokens_decoder = json.load(f)['added_tokens_decoder']
for id_, token_data in added_tokens_decoder.items():
if token_data["content"] == token:
return int(id_)
raise ValueError(f"Token '{token}' not found in tokenizer config.")
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
if hparams["model_type"] == "pixtral":
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.PIXTRAL)
self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
self.gguf_writer.add_vision_use_silu(True)
# hidden_act
if hparams["hidden_act"] == "silu":
self.gguf_writer.add_vision_use_silu(True)
elif hparams["hidden_act"] == "gelu":
self.gguf_writer.add_vision_use_gelu(True)
else:
raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
# spatial_merge_size
if "spatial_merge_size" in self.global_config:
self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
@@ -2065,6 +2129,9 @@ class DeciModel(TextModel):
# if n_heads_in_group is not None, then
# _num_kv_heads[il] is num_attention_head // n_heads_in_group and
# _num_heads[il] is num_attention_head
# ***dummy layer*** for nemotron 253B
# if n_heads_in_group is None and ffn_mult is None
# then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
for il in range(len(_block_configs)):
if _block_configs[il]["attention"]["n_heads_in_group"] is None:
if _block_configs[il]["attention"]["replace_with_linear"] is True:
@@ -2076,7 +2143,10 @@ class DeciModel(TextModel):
else:
self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
self._num_heads.append(self.hparams["num_attention_heads"])
_ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
_ffn_multipliers.append(0.0)
else:
_ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
assert self.block_count == len(self._num_kv_heads)
assert self.block_count == len(self._num_heads)
assert self.block_count == len(_ffn_multipliers)
@@ -2514,7 +2584,7 @@ class QwenModel(TextModel):
self.gguf_writer.add_file_type(self.ftype)
@ModelBase.register("Qwen2ForCausalLM")
@ModelBase.register("Qwen2Model", "Qwen2ForCausalLM")
class Qwen2Model(TextModel):
model_arch = gguf.MODEL_ARCH.QWEN2
@@ -2526,12 +2596,18 @@ class Qwen2Model(TextModel):
def set_gguf_parameters(self):
super().set_gguf_parameters()
self._try_set_pooling_type()
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "yarn":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
if self.hf_arch == "Qwen2Model":
name = f"model.{name}" # map to Qwen2ForCausalLM tensors
yield from super().modify_tensors(data_torch, name, bid)
@ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
class Qwen2VLModel(TextModel):
@@ -2557,6 +2633,82 @@ class Qwen2VLModel(TextModel):
return [(self.map_tensor_name(name), data_torch)]
@ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
class Qwen2VLVisionModel(VisionModel):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.hparams["image_size"] = self.hparams.get("image_size", 560)
# rename config.json values
self.hparams["num_attention_heads"] = self.hparams.get("num_heads")
self.hparams["num_hidden_layers"] = self.hparams.get("depth")
if "embed_dim" in self.hparams: # qwen2vl
self.hparams["intermediate_size"] = self.hparams.get("hidden_size")
self.hparams["hidden_size"] = self.hparams.get("embed_dim")
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
if self.global_config['model_type'] == 'qwen2_vl':
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.QWEN2VL)
elif self.global_config['model_type'] == 'qwen2_5_vl':
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.QWEN25VL)
self.gguf_writer.add_vision_use_silu(True)
# find n_wa_pattern (window attention pattern)
fullatt_block_indexes = hparams.get("fullatt_block_indexes")
assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
n_wa_pattern = fullatt_block_indexes[0] + 1
# validate n_wa_pattern
for i in range(1, len(fullatt_block_indexes)):
if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
else:
raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
# default values below are taken from HF tranformers code
self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
def tensor_force_quant(self, name, new_name, bid, n_dims):
del bid, name, n_dims # unused
if ".patch_embd." in new_name:
return gguf.GGMLQuantizationType.F16
if ".position_embd." in new_name:
return gguf.GGMLQuantizationType.F32
return False
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
if name.startswith("visual."):
# process visual tensors
# split QKV tensors if needed
if ".qkv." in name:
if data_torch.ndim == 2: # weight
c3, _ = data_torch.shape
else: # bias
c3 = data_torch.shape[0]
assert c3 % 3 == 0
c = c3 // 3
wq = data_torch[:c]
wk = data_torch[c: c * 2]
wv = data_torch[c * 2:]
return [
(self.map_tensor_name(name.replace("qkv", "q")), wq),
(self.map_tensor_name(name.replace("qkv", "k")), wk),
(self.map_tensor_name(name.replace("qkv", "v")), wv),
]
elif 'patch_embed.proj.weight' in name:
# split Conv3D into Conv2Ds
c1, c2, kt, kh, kw = data_torch.shape
del c1, c2, kh, kw # unused
assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
return [
(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
]
else:
return [(self.map_tensor_name(name), data_torch)]
return [] # skip other tensors
@ModelBase.register("WavTokenizerDec")
class WavTokenizerDecModel(TextModel):
model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
@@ -2609,6 +2761,13 @@ class Qwen2MoeModel(TextModel):
if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
# YaRN is not enabled by default
# To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "yarn":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
_experts: list[dict[str, Tensor]] | None = None
@@ -3292,29 +3451,7 @@ class BertModel(TextModel):
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_causal_attention(False)
# get pooling path
pooling_path = None
module_path = self.dir_model / "modules.json"
if module_path.is_file():
with open(module_path, encoding="utf-8") as f:
modules = json.load(f)
for mod in modules:
if mod["type"] == "sentence_transformers.models.Pooling":
pooling_path = mod["path"]
break
# get pooling type
if pooling_path is not None:
with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
pooling = json.load(f)
if pooling["pooling_mode_mean_tokens"]:
pooling_type = gguf.PoolingType.MEAN
elif pooling["pooling_mode_cls_token"]:
pooling_type = gguf.PoolingType.CLS
else:
raise NotImplementedError("Only MEAN and CLS pooling types supported")
self.gguf_writer.add_pooling_type(pooling_type)
self._try_set_pooling_type()
def set_vocab(self):
tokens, toktypes, tokpre = self.get_vocab_base()
@@ -3523,8 +3660,13 @@ class NomicBertModel(BertModel):
if self._tokenizer_is_xlmroberta:
self._xlmroberta_tokenizer_init()
# the HF config claims n_ctx=8192, but it uses RoPE scaling
self.hparams["n_ctx"] = 2048
npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
if npos == 8192 and mtp == 2048:
self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
elif npos == 2048 and mtp == 2048:
self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
else:
raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
@@ -3773,6 +3915,16 @@ class Gemma3VisionModel(VisionModel):
# default values below are taken from HF tranformers code
self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
self.gguf_writer.add_vision_use_gelu(True)
# calculate proj_scale_factor (used by tinygemma3 test model)
image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
n_per_side = int(image_seq_length ** 0.5)
image_size = self.hparams["image_size"]
patch_size = self.hparams["patch_size"]
proj_scale_factor = (image_size // patch_size) // n_per_side
if proj_scale_factor > 0 and proj_scale_factor != 4:
# we only need to write this if it's not the default value
# in this case, we are converting a test model
self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
def tensor_force_quant(self, name, new_name, bid, n_dims):
del bid, new_name, n_dims # unused
@@ -3786,6 +3938,9 @@ class Gemma3VisionModel(VisionModel):
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
if "vision_model.head." in name:
return [] # skip redundant tensors for tinygemma3
if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
# process vision tensors
@@ -5551,7 +5706,12 @@ class BailingMoeModel(TextModel):
rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(rope_dim)
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
if (self.hparams.get("rope_scaling") or {}).get("type") == "yarn" and "factor" in self.hparams["rope_scaling"]:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
else:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
@@ -5853,8 +6013,7 @@ def split_str_to_n_bytes(split_str: str) -> int:
return n
def get_model_architecture(dir_model: Path, model_type: ModelType, hparams: Any = None) -> str:
hparams = ModelBase.load_hparams(dir_model) if hparams is None else hparams
def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
text_config = hparams.get("text_config", {})
vision_config = hparams.get("vision_config", {})
arch = hparams["architectures"][0]
@@ -5925,7 +6084,8 @@ def main() -> None:
with torch.inference_mode():
output_type = ftype_map[args.outtype]
model_type = ModelType.VISION if args.mmproj else ModelType.TEXT
model_architecture = get_model_architecture(dir_model, model_type)
hparams = ModelBase.load_hparams(dir_model)
model_architecture = get_model_architecture(hparams, model_type)
logger.info(f"Model architecture: {model_architecture}")
try:
model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)

View File

@@ -9,10 +9,10 @@ Adding a model requires few steps:
After following these steps, you can open PR.
Also, it is important to check that the examples and main ggml backends (CUDA, METAL, CPU) are working with the new architecture, especially:
- [main](/examples/main/)
- [imatrix](/examples/imatrix/)
- [quantize](/examples/quantize/)
- [server](/examples/server/)
- [main](/tools/main/)
- [imatrix](/tools/imatrix/)
- [quantize](/tools/quantize/)
- [server](/tools/server/)
### 1. Convert the model to GGUF

View File

@@ -33,13 +33,13 @@ git clone https://huggingface.co/openai/clip-vit-large-patch14-336
2. Use `llava_surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
```sh
python ./examples/llava/llava_surgery.py -m path/to/MobileVLM-1.7B
python ./tools/mtmd/llava_surgery.py -m path/to/MobileVLM-1.7B
```
3. Use `convert_image_encoder_to_gguf.py` with `--projector-type ldp` (for **V2** please use `--projector-type ldpv2`) to convert the LLaVA image encoder to GGUF:
```sh
python ./examples/llava/convert_image_encoder_to_gguf.py \
python ./tools/mtmd/convert_image_encoder_to_gguf.py \
-m path/to/clip-vit-large-patch14-336 \
--llava-projector path/to/MobileVLM-1.7B/llava.projector \
--output-dir path/to/MobileVLM-1.7B \
@@ -47,7 +47,7 @@ python ./examples/llava/convert_image_encoder_to_gguf.py \
```
```sh
python ./examples/llava/convert_image_encoder_to_gguf.py \
python ./tools/mtmd/convert_image_encoder_to_gguf.py \
-m path/to/clip-vit-large-patch14-336 \
--llava-projector path/to/MobileVLM-1.7B_V2/llava.projector \
--output-dir path/to/MobileVLM-1.7B_V2 \
@@ -69,10 +69,10 @@ Now both the LLaMA part and the image encoder is in the `MobileVLM-1.7B` directo
## Android compile and run
### compile
refer to `examples/llava/android/build_64.sh`
refer to `tools/mtmd/android/build_64.sh`
```sh
mkdir examples/llava/android/build_64
cd examples/llava/android/build_64
mkdir tools/mtmd/android/build_64
cd tools/mtmd/android/build_64
../build_64.sh
```
### run on Android

View File

@@ -25,13 +25,13 @@ git clone https://huggingface.co/THUDM/glm-edge-v-5b or https://huggingface.co/T
2. Use `glmedge-surgery.py` to split the GLMV-EDGE model to LLM and multimodel projector constituents:
```sh
python ./examples/llava/glmedge-surgery.py -m ../model_path
python ./tools/mtmd/glmedge-surgery.py -m ../model_path
```
4. Use `glmedge-convert-image-encoder-to-gguf.py` to convert the GLMV-EDGE image encoder to GGUF:
```sh
python ./examples/llava/glmedge-convert-image-encoder-to-gguf.py -m ../model_path --llava-projector ../model_path/glm.projector --output-dir ../model_path
python ./tools/mtmd/glmedge-convert-image-encoder-to-gguf.py -m ../model_path --llava-projector ../model_path/glm.projector --output-dir ../model_path
```
5. Use `examples/convert_hf_to_gguf.py` to convert the LLM part of GLMV-EDGE to GGUF:

View File

@@ -37,19 +37,19 @@ git clone https://huggingface.co/openai/clip-vit-large-patch14-336
2. Install the required Python packages:
```sh
pip install -r examples/llava/requirements.txt
pip install -r tools/mtmd/requirements.txt
```
3. Use `llava_surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
```sh
python ./examples/llava/llava_surgery.py -m ../llava-v1.5-7b
python ./tools/mtmd/llava_surgery.py -m ../llava-v1.5-7b
```
4. Use `convert_image_encoder_to_gguf.py` to convert the LLaVA image encoder to GGUF:
```sh
python ./examples/llava/convert_image_encoder_to_gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
python ./tools/mtmd/convert_image_encoder_to_gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
```
5. Use `examples/convert_legacy_llama.py` to convert the LLaMA part of LLaVA to GGUF:
@@ -69,12 +69,12 @@ git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
2) Install the required Python packages:
```sh
pip install -r examples/llava/requirements.txt
pip install -r tools/mtmd/requirements.txt
```
3) Use `llava_surgery_v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models:
```console
python examples/llava/llava_surgery_v2.py -C -m ../llava-v1.6-vicuna-7b/
python tools/mtmd/llava_surgery_v2.py -C -m ../llava-v1.6-vicuna-7b/
```
- you will find a llava.projector and a llava.clip file in your model directory
@@ -88,7 +88,7 @@ curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.jso
5) Create the visual gguf model:
```console
python ./examples/llava/convert_image_encoder_to_gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
python ./tools/mtmd/convert_image_encoder_to_gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
```
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP

View File

@@ -29,8 +29,8 @@ cmake --build build --config Release
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-o-2_6-gguf) by us)
```bash
python ./examples/llava/minicpmv-surgery.py -m ../MiniCPM-o-2_6
python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-o-2_6 --minicpmv-projector ../MiniCPM-o-2_6/minicpmv.projector --output-dir ../MiniCPM-o-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 4
python ./tools/mtmd/minicpmv-surgery.py -m ../MiniCPM-o-2_6
python ./tools/mtmd/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-o-2_6 --minicpmv-projector ../MiniCPM-o-2_6/minicpmv.projector --output-dir ../MiniCPM-o-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 4
python ./convert_hf_to_gguf.py ../MiniCPM-o-2_6/model
# quantize int4 version

View File

@@ -28,8 +28,8 @@ cmake --build build --config Release
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) by us)
```bash
python ./examples/llava/minicpmv-surgery.py -m ../MiniCPM-Llama3-V-2_5
python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-Llama3-V-2_5 --minicpmv-projector ../MiniCPM-Llama3-V-2_5/minicpmv.projector --output-dir ../MiniCPM-Llama3-V-2_5/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 2
python ./tools/mtmd/minicpmv-surgery.py -m ../MiniCPM-Llama3-V-2_5
python ./tools/mtmd/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-Llama3-V-2_5 --minicpmv-projector ../MiniCPM-Llama3-V-2_5/minicpmv.projector --output-dir ../MiniCPM-Llama3-V-2_5/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 2
python ./convert_hf_to_gguf.py ../MiniCPM-Llama3-V-2_5/model
# quantize int4 version

View File

@@ -28,8 +28,8 @@ cmake --build build --config Release
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf) by us)
```bash
python ./examples/llava/minicpmv-surgery.py -m ../MiniCPM-V-2_6
python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-V-2_6 --minicpmv-projector ../MiniCPM-V-2_6/minicpmv.projector --output-dir ../MiniCPM-V-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 3
python ./tools/mtmd/minicpmv-surgery.py -m ../MiniCPM-V-2_6
python ./tools/mtmd/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-V-2_6 --minicpmv-projector ../MiniCPM-V-2_6/minicpmv.projector --output-dir ../MiniCPM-V-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 3
python ./convert_hf_to_gguf.py ../MiniCPM-V-2_6/model
# quantize int4 version

View File

@@ -12,51 +12,29 @@ llama_add_compile_flags()
# examples
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
if (EMSCRIPTEN)
else()
add_subdirectory(batched-bench)
add_subdirectory(batched)
add_subdirectory(embedding)
add_subdirectory(eval-callback)
add_subdirectory(gguf-hash)
add_subdirectory(gguf-split)
add_subdirectory(gguf)
add_subdirectory(gritlm)
add_subdirectory(imatrix)
add_subdirectory(infill)
add_subdirectory(llama-bench)
add_subdirectory(lookahead)
add_subdirectory(lookup)
add_subdirectory(main)
add_subdirectory(parallel)
add_subdirectory(passkey)
add_subdirectory(perplexity)
add_subdirectory(quantize)
add_subdirectory(retrieval)
if (LLAMA_BUILD_SERVER)
add_subdirectory(server)
endif()
add_subdirectory(save-load-state)
add_subdirectory(run)
add_subdirectory(simple)
add_subdirectory(simple-chat)
add_subdirectory(speculative)
add_subdirectory(speculative-simple)
add_subdirectory(tokenize)
add_subdirectory(tts)
add_subdirectory(gen-docs)
if (NOT GGML_BACKEND_DL)
# these examples use the backends directly and cannot be built with dynamic loading
add_subdirectory(convert-llama2c-to-ggml)
add_subdirectory(cvector-generator)
add_subdirectory(export-lora)
add_subdirectory(llava)
if (GGML_RPC)
add_subdirectory(rpc)
endif()
# these examples use the backends directly and cannot be built with dynamic loading
if (GGML_SYCL)
add_subdirectory(sycl)
endif()

View File

@@ -1,5 +0,0 @@
set(TARGET llama-infill)
add_executable(${TARGET} infill.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -1,47 +0,0 @@
# llama.cpp/example/infill
This example shows how to use the infill mode with Code Llama models supporting infill mode.
Currently the 7B and 13B models support infill mode.
Infill supports most of the options available in the main example.
For further information have a look at the main README.md in llama.cpp/example/main/README.md
## Common Options
In this section, we cover the most commonly used options for running the `infill` program with the LLaMA models:
- `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.bin`).
- `-i, --interactive`: Run the program in interactive mode, allowing you to provide input directly and receive real-time responses.
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text. Adjusting this value can influence the length of the generated text.
- `-c N, --ctx-size N`: Set the size of the prompt context. The default is 4096, but if a LLaMA model was built with a longer context, increasing this value will provide better results for longer input/inference.
- `--spm-infill`: Use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this.
## Input Prompts
The `infill` program provides several ways to interact with the LLaMA models using input prompts:
- `--in-prefix PROMPT_BEFORE_CURSOR`: Provide the prefix directly as a command-line option.
- `--in-suffix PROMPT_AFTER_CURSOR`: Provide the suffix directly as a command-line option.
- `--interactive-first`: Run the program in interactive mode and wait for input right away. (More on this below.)
## Interaction
The `infill` program offers a seamless way to interact with LLaMA models, allowing users to receive real-time infill suggestions. The interactive mode can be triggered using `--interactive`, and `--interactive-first`
### Interaction Options
- `-i, --interactive`: Run the program in interactive mode, allowing users to get real time code suggestions from model.
- `--interactive-first`: Run the program in interactive mode and immediately wait for user input before starting the text generation.
- `--color`: Enable colorized output to differentiate visually distinguishing between prompts, user input, and generated text.
### Example
Download a model that supports infill, for example CodeLlama:
```console
scripts/hf.sh --repo TheBloke/CodeLlama-13B-GGUF --file codellama-13b.Q5_K_S.gguf --outdir models
```
```bash
./llama-infill -t 10 -ngl 0 -m models/codellama-13b.Q5_K_S.gguf -c 4096 --temp 0.7 --repeat_penalty 1.1 -n 20 --in-prefix "def helloworld():\n print(\"hell" --in-suffix "\n print(\"goodbye world\")\n "
```

View File

@@ -1,590 +0,0 @@
#include "arg.h"
#include "common.h"
#include "console.h"
#include "sampling.h"
#include "log.h"
#include "llama.h"
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
#include <signal.h>
#include <unistd.h>
#elif defined (_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <signal.h>
#endif
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
static llama_context ** g_ctx;
static llama_model ** g_model;
static common_sampler ** g_smpl;
static common_params * g_params;
static std::vector<llama_token> * g_input_tokens;
static std::ostringstream * g_output_ss;
static std::vector<llama_token> * g_output_tokens;
static bool is_interacting = false;
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
static void sigint_handler(int signo) {
if (signo == SIGINT) {
if (!is_interacting) {
is_interacting = true;
} else {
console::cleanup();
LOG("\n");
common_perf_print(*g_ctx, *g_smpl);
// make sure all logs are flushed
LOG("Interrupted by user\n");
common_log_pause(common_log_main());
_exit(130);
}
}
}
#endif
int main(int argc, char ** argv) {
common_params params;
g_params = &params;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_INFILL)) {
return 1;
}
common_init();
auto & sparams = params.sampling;
console::init(params.simple_io, params.use_color);
atexit([]() { console::cleanup(); });
if (params.logits_all) {
LOG_ERR("\n************\n");
LOG_ERR("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
LOG_ERR("************\n\n");
return 0;
}
if (params.embedding) {
LOG_ERR("\n************\n");
LOG_ERR("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
LOG_ERR("************\n\n");
return 0;
}
if (params.n_ctx != 0 && params.n_ctx < 8) {
LOG_WRN("%s: minimum context size is 8, using minimum size.\n", __func__);
params.n_ctx = 8;
}
if (!params.interactive_first && (params.input_prefix.empty() && params.input_suffix.empty())) {
LOG_ERR("\n************\n");
LOG_ERR("%s: please use '--interactive_first' or specify '--in_prefix' and/or '--in_suffix'\n", __func__);
LOG_ERR("************\n\n");
return 0;
}
if (params.rope_freq_base != 0.0) {
LOG_WRN("%s: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
}
if (params.rope_freq_scale != 0.0) {
LOG_WRN("%s: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
}
LOG_INF("%s: llama backend init\n", __func__);
llama_backend_init();
llama_numa_init(params.numa);
llama_model * model = nullptr;
llama_context * ctx = nullptr;
common_sampler * smpl = nullptr;
g_model = &model;
g_ctx = &ctx;
g_smpl = &smpl;
// load the model and apply lora adapter, if any
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
common_init_result llama_init = common_init_from_params(params);
model = llama_init.model.get();
ctx = llama_init.context.get();
if (model == NULL) {
LOG_ERR("%s: unable to load model\n", __func__);
return 1;
}
const llama_vocab * vocab = llama_model_get_vocab(model);
const int n_ctx_train = llama_model_n_ctx_train(model);
const int n_ctx = llama_n_ctx(ctx);
LOG_DBG("n_ctx: %d\n", n_ctx);
if (n_ctx > n_ctx_train) {
LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx);
}
// print system information
{
LOG_INF("\n");
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
}
const bool add_bos = llama_vocab_get_add_bos(vocab);
GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
std::vector<llama_token> embd_inp;
std::vector<llama_token> embd_end;
std::vector<llama_token> inp_pfx = common_tokenize(ctx, params.input_prefix, false);
std::vector<llama_token> inp_sfx = common_tokenize(ctx, params.input_suffix, false);
GGML_ASSERT(llama_vocab_fim_pre(vocab) >= 0);
GGML_ASSERT(llama_vocab_fim_suf(vocab) >= 0);
inp_pfx.insert(inp_pfx.begin(), llama_vocab_fim_pre(vocab));
inp_sfx.insert(inp_sfx.begin(), llama_vocab_fim_suf(vocab));
embd_inp = params.spm_infill ? inp_sfx : inp_pfx;
embd_end = params.spm_infill ? inp_pfx : inp_sfx;
if (add_bos) {
embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab));
}
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
const llama_token middle_token = llama_vocab_fim_mid(vocab);
if (middle_token >= 0) {
embd_inp.push_back(middle_token);
}
LOG_DBG("add_bos: %d\n", add_bos);
LOG_DBG("prefix: \"%s\"\n", params.input_prefix.c_str());
LOG_DBG("suffix: \"%s\"\n", params.input_suffix.c_str());
LOG_DBG("tokens: %s\n", string_from(ctx, embd_inp).c_str());
// Should not run without any tokens
if (embd_inp.empty()) {
embd_inp.push_back(llama_vocab_bos(vocab));
LOG_WRN("embd_inp was considered empty and bos was added: %s\n", string_from(ctx, embd_inp).c_str());
}
if ((int) embd_inp.size() > n_ctx - 4) {
LOG_ERR("%s: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
return 1;
}
// number of tokens to keep when resetting context
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) {
params.n_keep = (int)embd_inp.size();
}
LOG_INF("inp_pfx: %s\n", string_from(ctx, inp_pfx).c_str());
LOG_INF("inp_sfx: %s\n", string_from(ctx, inp_sfx).c_str());
// enable interactive mode if interactive start is specified
if (params.interactive_first) {
params.interactive = true;
}
if (params.verbose_prompt) {
LOG_INF("\n");
LOG_INF("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
for (int i = 0; i < (int) embd_inp.size(); i++) {
LOG_INF("%6d -> '%s'\n", embd_inp[i], common_token_to_piece(ctx, embd_inp[i]).c_str());
}
if (params.n_keep > 0) {
LOG_INF("%s: static prompt based on n_keep: '", __func__);
for (int i = 0; i < params.n_keep; i++) {
LOG_CNT("%s", common_token_to_piece(ctx, embd_inp[i]).c_str());
}
LOG_CNT("'\n");
}
LOG_INF("\n");
}
if (params.interactive) {
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
struct sigaction sigint_action;
sigint_action.sa_handler = sigint_handler;
sigemptyset (&sigint_action.sa_mask);
sigint_action.sa_flags = 0;
sigaction(SIGINT, &sigint_action, NULL);
#elif defined (_WIN32)
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
};
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
#endif
LOG_INF("%s: interactive mode on.\n", __func__);
if (params.input_prefix_bos) {
LOG_INF("Input prefix with BOS\n");
}
if (!params.input_prefix.empty()) {
LOG_INF("Input prefix: '%s'\n", params.input_prefix.c_str());
}
if (!params.input_suffix.empty()) {
LOG_INF("Input suffix: '%s'\n", params.input_suffix.c_str());
}
}
smpl = common_sampler_init(model, sparams);
LOG_INF("sampler seed: %u\n", common_sampler_get_seed(smpl));
LOG_INF("sampler params: \n%s\n", sparams.print().c_str());
LOG_INF("sampler chain: %s\n", common_sampler_print(smpl).c_str());
LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
LOG_INF("\n");
LOG_INF("\n##### Infill mode #####\n\n");
if (params.interactive) {
const char *control_message;
if (params.multiline_input) {
control_message = " - To return control to LLaMA, end your input with '\\'.\n"
" - To return control without starting a new line, end your input with '/'.\n";
} else {
control_message = " - Press Return to return control to LLaMA.\n"
" - To return control without starting a new line, end your input with '/'.\n"
" - If you want to submit another line, end your input with '\\'.\n";
}
LOG_INF("== Running in interactive mode. ==\n");
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
LOG_INF( " - Press Ctrl+C to interject at any time.\n");
#endif
LOG_INF( "%s\n", control_message);
is_interacting = params.interactive_first;
}
bool input_echo = true;
int n_past = 0;
int n_remain = params.n_predict;
int n_consumed = 0;
std::vector<int> input_tokens; g_input_tokens = &input_tokens;
std::vector<int> output_tokens; g_output_tokens = &output_tokens;
std::ostringstream output_ss; g_output_ss = &output_ss;
// the first thing we will do is to output the prompt, so set color accordingly
console::set_display(console::prompt);
std::vector<llama_token> embd;
while (n_remain != 0 || params.interactive) {
// predict
if (!embd.empty()) {
// Note: n_ctx - 4 here is to match the logic for commandline prompt handling via
// --prompt or --file which uses the same value.
int max_embd_size = n_ctx - 4;
// Ensure the input doesn't exceed the context size by truncating embd if necessary.
if ((int) embd.size() > max_embd_size) {
const int skipped_tokens = (int) embd.size() - max_embd_size;
embd.resize(max_embd_size);
console::set_display(console::error);
LOG_WRN("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
console::set_display(console::reset);
}
// infinite text generation via context swapping
// if we run out of context:
// - take the n_keep first tokens from the original prompt (via n_past)
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
if (n_past + (int) embd.size() > n_ctx) {
if (params.n_predict == -2) {
LOG_DBG("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
break;
}
const int n_left = n_past - params.n_keep - 1;
const int n_discard = n_left/2;
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
n_past, n_left, n_ctx, params.n_keep, n_discard);
llama_kv_self_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
llama_kv_self_seq_add(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
n_past -= n_discard;
LOG_DBG("after swap: n_past = %d\n", n_past);
LOG_DBG("embd: %s\n", string_from(ctx, embd).c_str());
}
// evaluate tokens in batches
// embd is typically prepared beforehand to fit within a batch, but not always
for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
int n_eval = (int) embd.size() - i;
if (n_eval > params.n_batch) {
n_eval = params.n_batch;
}
LOG_DBG("eval: %s\n", string_from(ctx, embd).c_str());
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval))) {
LOG_ERR("%s : failed to eval\n", __func__);
return 1;
}
n_past += n_eval;
LOG_DBG("n_past = %d\n", n_past);
}
}
embd.clear();
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
const llama_token id = common_sampler_sample(smpl, ctx, -1);
common_sampler_accept(smpl, id, true);
// LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str());
embd.push_back(id);
// echo this to console
input_echo = true;
// decrement remaining sampling budget
--n_remain;
LOG_DBG("n_remain: %d\n", n_remain);
} else {
// some user input remains from prompt or interaction, forward it to processing
LOG_DBG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
while ((int) embd_inp.size() > n_consumed) {
embd.push_back(embd_inp[n_consumed]);
// push the prompt in the sampling context in order to apply repetition penalties later
// for the prompt, we don't apply grammar rules
common_sampler_accept(smpl, embd_inp[n_consumed], false);
++n_consumed;
if ((int) embd.size() >= params.n_batch) {
break;
}
}
}
// display text
if (input_echo) {
for (auto id : embd) {
const std::string token_str = common_token_to_piece(ctx, id);
LOG("%s", token_str.c_str());
if (embd.size() > 1) {
input_tokens.push_back(id);
} else {
output_tokens.push_back(id);
output_ss << token_str;
}
}
}
// reset color to default if we there is no pending user input
if (input_echo && (int) embd_inp.size() == n_consumed) {
console::set_display(console::reset);
}
// if not currently processing queued inputs;
if ((int) embd_inp.size() <= n_consumed) {
// deal with eot token in infill mode
if ((common_sampler_last(smpl) == llama_vocab_eot(vocab) || is_interacting) && params.interactive){
if (is_interacting && !params.interactive_first) {
// print an eot token
LOG("%s", common_token_to_piece(ctx, llama_vocab_eot(vocab)).c_str());
}
LOG("\n");
console::set_display(console::user_input);
std::string buffer;
std::string line;
bool another_line=true;
// set a new prefix via stdin
do {
another_line = console::readline(line, params.multiline_input);
buffer += line;
} while (another_line);
// check if we got an empty line, if so we use the old input
if (!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
params.input_prefix = buffer;
}
buffer.clear();
// set a new suffix via stdin
do {
another_line = console::readline(line, params.multiline_input);
buffer += line;
} while (another_line);
// check if we got an empty line
if (!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
params.input_suffix = buffer;
}
buffer.clear();
// done taking input, reset color
console::set_display(console::reset);
if (params.escape) {
//process escape sequences, for the initial prompt this is done in common.cpp when we load the params, but for the interactive mode we need to do it here
string_process_escapes(params.input_prefix);
string_process_escapes(params.input_suffix);
}
// tokenize new prefix and suffix
std::vector<llama_token> inp_pfx = common_tokenize(ctx, params.input_prefix, false);
std::vector<llama_token> inp_sfx = common_tokenize(ctx, params.input_suffix, false);
inp_pfx.insert(inp_pfx.begin(), llama_vocab_fim_pre(vocab));
inp_sfx.insert(inp_sfx.begin(), llama_vocab_fim_suf(vocab));
embd_inp = params.spm_infill ? inp_sfx : inp_pfx;
embd_end = params.spm_infill ? inp_pfx : inp_sfx;
if (add_bos) {
embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab));
}
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
if (middle_token >= 0) {
embd_inp.push_back(middle_token);
}
embd.clear();
n_remain = params.n_predict;
n_past = 0;
n_consumed = 0;
is_interacting = false;
}
// deal with end of generation tokens in interactive mode
else if (llama_vocab_is_eog(vocab, common_sampler_last(smpl))) {
LOG_DBG("found EOS token\n");
if (params.interactive) {
is_interacting = true;
LOG("\n");
console::set_display(console::user_input);
}
}
if (n_past > 0 && is_interacting && !params.interactive) {
LOG_DBG("waiting for user input\n");
if (params.input_prefix_bos) {
LOG_DBG("adding input prefix BOS token\n");
embd_inp.push_back(llama_vocab_bos(vocab));
}
std::string buffer;
if (!params.input_prefix.empty()) {
LOG_DBG("appending input prefix: '%s'\n", params.input_prefix.c_str());
buffer += params.input_prefix;
LOG("%s", buffer.c_str());
}
std::string line;
bool another_line = true;
do {
another_line = console::readline(line, params.multiline_input);
buffer += line;
} while (another_line);
// done taking input, reset color
console::set_display(console::reset);
// Add tokens to embd only if the input buffer is non-empty
// Entering a empty line lets the user pass control back
if (buffer.length() > 1) {
// append input suffix if any
if (!params.input_suffix.empty()) {
LOG_DBG("appending input suffix: '%s'\n", params.input_suffix.c_str());
buffer += params.input_suffix;
LOG("%s", params.input_suffix.c_str());
}
LOG_DBG("buffer: '%s'\n", buffer.c_str());
const size_t original_size = embd_inp.size();
const auto line_inp = common_tokenize(ctx, buffer, false);
LOG_DBG("input tokens: %s\n", string_from(ctx, line_inp).c_str());
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
for (size_t i = original_size; i < embd_inp.size(); ++i) {
const llama_token token = embd_inp[i];
output_tokens.push_back(token);
output_ss << common_token_to_piece(ctx, token);
}
n_remain -= line_inp.size();
LOG_DBG("n_remain: %d\n", n_remain);
} else {
LOG_DBG("empty line, passing control back\n");
}
input_echo = false; // do not echo this again
}
if (n_past > 0) {
if (is_interacting) {
common_sampler_reset(smpl);
}
is_interacting = false;
}
}
// end of generation
if (!embd.empty() && llama_vocab_is_eog(vocab, embd.back()) && !params.interactive) {
break;
}
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
// We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size).
if (params.interactive && n_remain <= 0 && params.n_predict >= 0) {
n_remain = params.n_predict;
is_interacting = true;
}
}
if (!params.interactive && n_remain <= 0) {
LOG("%s", common_token_to_piece(ctx, llama_vocab_eot(vocab)).c_str());
}
LOG("\n");
common_perf_print(ctx, smpl);
common_sampler_free(smpl);
llama_backend_free();
return 0;
}

View File

@@ -1,168 +0,0 @@
#ifndef MTMD_H
#define MTMD_H
#include "ggml.h"
#include "llama.h"
#include "clip.h"
#include <vector>
#include <cinttypes>
#include <memory>
#ifdef LLAMA_SHARED
# if defined(_WIN32) && !defined(__MINGW32__)
# ifdef LLAMA_BUILD
# define MTMD_API __declspec(dllexport)
# else
# define MTMD_API __declspec(dllimport)
# endif
# else
# define MTMD_API __attribute__ ((visibility ("default")))
# endif
#else
# define MTMD_API
#endif
#ifdef __cplusplus
enum mtmd_input_chunk_type {
MTMD_INPUT_CHUNK_TYPE_TEXT,
MTMD_INPUT_CHUNK_TYPE_IMAGE,
};
struct mtmd_context;
struct mtmd_image_tokens;
// represents raw image data, layout is RGBRGBRGB...
// length of data must be nx * ny * 3
struct mtmd_bitmap {
uint32_t nx;
uint32_t ny;
std::vector<unsigned char> data;
std::string id; // optional user-defined id, for ex: can be set to image hash, useful for KV cache tracking
};
struct mtmd_image_tokens_deleter {
void operator()(mtmd_image_tokens * val); // forward declaration
};
using mtmd_image_tokens_ptr = std::unique_ptr<mtmd_image_tokens, mtmd_image_tokens_deleter>;
struct mtmd_input_chunk {
mtmd_input_chunk_type type;
std::vector<llama_token> tokens_text;
mtmd_image_tokens_ptr tokens_image;
};
using mtmd_input_chunks = std::vector<mtmd_input_chunk>;
struct mtmd_context_params {
bool use_gpu = true;
bool print_timings = true;
int n_threads = 4;
enum ggml_log_level verbosity = GGML_LOG_LEVEL_INFO;
const char * image_marker = "<__image__>";
};
struct mtmd_input_text {
std::string text;
bool add_special;
bool parse_special;
};
// initialize the mtmd context
// return nullptr on failure
MTMD_API mtmd_context * mtmd_init_from_file(const char * mmproj_fname,
const llama_model * text_model,
const mtmd_context_params ctx_params);
MTMD_API void mtmd_free(mtmd_context * ctx);
// tokenize an input text prompt and an image
// the prompt must have the input image marker (default: "<__image__>") in it
// the marker will be replaced with the image tokens
// for example:
// "here is an image: <__image__>\ndescribe it in detail."
// this will gives 3 chunks:
// 1. "here is an image: <start_of_image>"
// 2. (image tokens)
// 3. "<end_of_image>\ndescribe it in detail."
// number of bitmaps must be equal to the number of image markers in the prompt
// this function is thread-safe (shared ctx)
// return values:
// 0 on success
// 1 on number of images not matching the number of markers
// 2 on image preprocessing error
MTMD_API int32_t mtmd_tokenize(mtmd_context * ctx,
std::vector<mtmd_input_chunk> & output,
const mtmd_input_text & text,
const std::vector<mtmd_bitmap> & bitmaps);
// access mtmd_image_tokens
MTMD_API size_t mtmd_image_tokens_get_n_tokens(const mtmd_image_tokens * image_tokens);
MTMD_API size_t mtmd_image_tokens_get_nx(const mtmd_image_tokens * image_tokens);
MTMD_API size_t mtmd_image_tokens_get_ny(const mtmd_image_tokens * image_tokens);
MTMD_API std::string mtmd_image_tokens_get_id(const mtmd_image_tokens * image_tokens);
MTMD_API llama_pos mtmd_image_tokens_get_n_pos(const mtmd_image_tokens * image_tokens); // number of temporal positions (always 1 for M-RoPE, n_tokens otherwise)
MTMD_API void mtmd_image_tokens_free(mtmd_image_tokens * image_tokens);
// returns 0 on success
MTMD_API int32_t mtmd_encode(mtmd_context * ctx,
const mtmd_image_tokens * image_tokens);
// get output embeddings from the last encode pass
MTMD_API float * mtmd_get_output_embd(mtmd_context * ctx);
// whether we need to set non-causal mask before llama_decode
MTMD_API bool mtmd_decode_use_non_causal(mtmd_context * ctx);
// whether the current model use M-RoPE for llama_decode
MTMD_API bool mtmd_decode_use_mrope(mtmd_context * ctx);
//
// helper functions (can be implemented based on other functions)
//
// helper to count the total number of tokens from a list of chunks, useful to keep track of KV cache
MTMD_API size_t mtmd_helper_get_n_tokens(mtmd_input_chunks & chunks);
// helper to count the total position of tokens from a list of chunks, useful to keep track of n_past
MTMD_API llama_pos mtmd_helper_get_n_pos(mtmd_input_chunks & chunks);
// helper function that automatically:
// 1. run llama_decode() on text chunks
// 2. run mtmd_encode() on image chunks, then mtmd_get_output_embd() and then llama_decode()
// if any of the mtmd_encode() or llama_decode() calls return non-zero, stop and forward the error
// otherwise, returns 0 on success
MTMD_API int32_t mtmd_helper_eval(mtmd_context * ctx,
llama_context * lctx,
mtmd_input_chunks & chunks,
llama_pos pos0,
llama_seq_id seq_id,
int32_t n_batch);
// helper function to construct a mtmd_bitmap from a file
// returns 0 on success
// this function is thread-safe
MTMD_API int32_t mtmd_helper_bitmap_init_from_file(const char * fname, mtmd_bitmap & output);
// helper function to construct a mtmd_bitmap from a buffer
// the buffer must be an image in format supported by stb_image (jpg, png, bmp, gif, etc.)
// returns 0 on success
// this function is thread-safe
MTMD_API int32_t mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len, mtmd_bitmap & output);
// convenient unique_ptr wrappers
struct mtmd_context_deleter {
void operator()(mtmd_context * val) { mtmd_free(val); }
};
using mtmd_context_ptr = std::unique_ptr<mtmd_context, mtmd_context_deleter>;
#else
static_assert(false && "C header is not yet supported by this library");
#endif
#endif

View File

@@ -1,217 +0,0 @@
import argparse
from typing import Dict, List, Optional
import torch
import numpy as np
from gguf import *
from transformers import (
AutoProcessor,
Qwen2VLConfig,
Qwen2VLProcessor,
Qwen2VLForConditionalGeneration,
Qwen2_5_VLConfig, # type: ignore[reportAttributeAccessIssue]
Qwen2_5_VLForConditionalGeneration, # type: ignore[reportAttributeAccessIssue]
)
VISION = "clip.vision"
def k(raw_key: str, arch: str) -> str:
return raw_key.format(arch=arch)
def get_n_wa_pattern(fullatt_block_indexes: Optional[List[int]]):
if fullatt_block_indexes is None:
return 0
n_wa = fullatt_block_indexes[0]
for a, b in zip(fullatt_block_indexes, fullatt_block_indexes[1:]):
if b - a - 1 != n_wa:
raise ValueError(
f"window/full attention layer should have fix pattern of "
f"for each full-attention layer followed by {n_wa} window-attention layers"
)
return n_wa + 1
class VL2:
@staticmethod
def to_gguf_name(name: str) -> str:
og = name
name = name.replace("text_model", "t").replace("vision_model", "v")
name = name.replace("blocks", "blk").replace("embeddings.", "")
name = name.replace("attn.", "attn_")
name = name.replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("proj.", "out.")
# name = name.replace("layrnorm", "ln").replace("layer_norm", "ln").replace("layernorm", "ln")
name = name.replace("norm1", "ln1").replace("norm2", "ln2")
name = name.replace("merger.mlp", 'mm')
print(f"[to_gguf_name] {og} --> {name}")
return name
@classmethod
def find_vision_tensors(cls, qwen2vl, dtype) -> Dict[str, np.ndarray]:
vision_model = qwen2vl.visual
tensor_map = {}
for name, ten in vision_model.state_dict().items():
ten = ten.numpy()
if 'qkv' in name:
if ten.ndim == 2: # weight
c3, _ = ten.shape
else: # bias
c3 = ten.shape[0]
assert c3 % 3 == 0
c = c3 // 3
wq = ten[:c]
wk = ten[c: c * 2]
wv = ten[c * 2:]
tensor_map[cls.to_gguf_name(f"vision_model.{name}").replace("qkv", "q")] = wq
tensor_map[cls.to_gguf_name(f"vision_model.{name}").replace("qkv", "k")] = wk
tensor_map[cls.to_gguf_name(f"vision_model.{name}").replace("qkv", "v")] = wv
elif 'merger' in name:
if name.endswith("ln_q.weight"):
tensor_map['v.post_ln.weight'] = ten
elif name.endswith("ln_q.bias"):
tensor_map['v.post_ln.bias'] = ten
else:
# "merger.mlp.%d.weight/bias" --> "mm.%d.weight/bias"
tensor_map[cls.to_gguf_name(name)] = ten
elif 'patch_embed.proj.weight' in name:
# NOTE: split Conv3D into Conv2Ds
c1, c2, kt, kh, kw = ten.shape
assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
tensor_map["v.patch_embd.weight"] = ten[:, :, 0, ...]
tensor_map["v.patch_embd.weight.1"] = ten[:, :, 1, ...]
else:
tensor_map[cls.to_gguf_name(f"vision_model.{name}")] = ten
for new_name, ten in tensor_map.items():
if ten.ndim <= 1 or new_name.endswith("_norm.weight"):
tensor_map[new_name] = ten.astype(np.float32)
else:
tensor_map[new_name] = ten.astype(dtype)
tensor_map["v.position_embd.weight"] = np.zeros([10, 10], dtype=np.float32) # dummy tensor, just here as a placeholder
return tensor_map
class VL25(VL2):
@staticmethod
def to_gguf_name(name: str) -> str:
og = name
name = name.replace("text_model", "t").replace("vision_model", "v")
name = name.replace("blocks", "blk").replace("embeddings.", "")
name = name.replace("attn.", "attn_")
name = name.replace("mlp.down_proj", "ffn_down").replace("mlp.up_proj", "ffn_up")
name = name.replace("mlp.gate_proj", "ffn_gate").replace("proj.", "out.")
name = name.replace("norm1", "ln1").replace("norm2", "ln2")
name = name.replace("merger.mlp", 'mm')
print(f"[vl25][to_gguf_name] {og} --> {name}")
return name
def main(args):
if args.data_type == 'fp32':
dtype = torch.float32
np_dtype = np.float32
ftype = 0
elif args.data_type == 'fp16':
dtype = torch.float16
np_dtype = np.float16
ftype = 1
else:
raise ValueError()
local_model = False
model_path = ""
model_name = args.model_name
print("model_name: ", model_name)
if args.model_type == "qwen2vl":
qwen2vl = Qwen2VLForConditionalGeneration.from_pretrained(
model_name, torch_dtype=dtype, device_map="cpu"
)
cfg: Qwen2VLConfig = qwen2vl.config # type: ignore[reportAssignmentType]
vcfg = cfg.vision_config
else:
qwen2vl = Qwen2_5_VLForConditionalGeneration.from_pretrained(
model_name, torch_dtype=dtype, device_map="cpu"
)
cfg: Qwen2_5_VLConfig = qwen2vl.config # type: ignore[reportAssignmentType]
vcfg = cfg.vision_config
if os.path.isdir(model_name):
local_model = True
if model_name.endswith(os.sep):
model_name = model_name[:-1]
model_path = model_name
model_name = os.path.basename(model_name)
fname_out = f"{model_name.replace('/', '-').lower()}-vision.gguf"
fout = GGUFWriter(path=fname_out, arch="clip")
fout.add_description("image encoder for Qwen2VL")
fout.add_file_type(ftype)
fout.add_bool("clip.has_text_encoder", False)
fout.add_bool("clip.has_vision_encoder", True)
fout.add_bool("clip.has_qwen2vl_merger", True)
print(cfg.vision_config)
if 'silu' in cfg.vision_config.hidden_act.lower():
fout.add_bool("clip.use_silu", True)
fout.add_bool("clip.use_gelu", False)
elif 'gelu' in cfg.vision_config.hidden_act.lower():
fout.add_bool("clip.use_silu", False)
fout.add_bool("clip.use_gelu", 'quick' not in cfg.vision_config.hidden_act.lower())
else:
raise ValueError()
if args.model_type == "qwen2.5vl":
fout.add_uint32("clip.vision.n_wa_pattern", get_n_wa_pattern(vcfg.fullatt_block_indexes))
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.hidden_size)
fout.add_uint32("clip.vision.projection_dim", vcfg.out_hidden_size)
fout.add_string("clip.projector_type", "qwen2.5vl_merger")
else:
fout.add_string("clip.projector_type", "qwen2vl_merger")
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.embed_dim)
fout.add_uint32("clip.vision.projection_dim", vcfg.hidden_size)
if args.model_type == "qwen2.5vl":
tensor_map = VL25.find_vision_tensors(qwen2vl, np_dtype)
else:
tensor_map = VL2.find_vision_tensors(qwen2vl, np_dtype)
for name, data in tensor_map.items():
fout.add_tensor(name, data)
fout.add_uint32("clip.vision.patch_size", vcfg.patch_size)
fout.add_uint32("clip.vision.image_size", 14 * 40) # some reasonable size that is divable by (14*2)
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), vcfg.num_heads)
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), vcfg.depth)
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), 0) # not sure what this does, put 0 here as a placeholder
fout.add_name(model_name)
"""
HACK: Since vision rope related parameter aren't stored in the `Qwen2VLConfig,
it will be hardcoded in the `clip_image_build_graph` from `clip.cpp`.
"""
if local_model:
processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_path)
else:
processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_name)
fout.add_array("clip.vision.image_mean", processor.image_processor.image_mean) # type: ignore[reportAttributeAccessIssue]
fout.add_array("clip.vision.image_std", processor.image_processor.image_std) # type: ignore[reportAttributeAccessIssue]
fout.write_header_to_file()
fout.write_kv_data_to_file()
fout.write_tensors_to_file()
fout.close()
print("save model as: ", fname_out)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("model_name", nargs='?', default="Qwen/Qwen2-VL-2B-Instruct")
parser.add_argument("--model_type", nargs='?', choices=['qwen2vl', 'qwen2.5vl'], default="qwen2vl")
parser.add_argument("--data_type", nargs='?', choices=['fp32', 'fp16'], default="fp32")
args = parser.parse_args()
main(args)

View File

@@ -23,7 +23,7 @@ def create_completion(host, prompt, gbnf_grammar):
"""Calls the /completion API on llama-server.
See
https://github.com/ggml-org/llama.cpp/tree/HEAD/examples/server#api-endpoints
https://github.com/ggml-org/llama.cpp/tree/HEAD/tools/server#api-endpoints
"""
print(f" Request:\n Grammar:\n{textwrap.indent(gbnf_grammar, ' ')}\n Prompt:\n{textwrap.indent(prompt.rstrip(), ' ')}")
headers = {"Content-Type": "application/json"}

Binary file not shown.

View File

@@ -360,3 +360,27 @@ write_basic_package_version_file(
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/ggml-config.cmake
${CMAKE_CURRENT_BINARY_DIR}/ggml-version.cmake
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/ggml)
if (MSVC)
set(MSVC_WARNING_FLAGS
/wd4005 # Macro redefinition
/wd4244 # Conversion from one type to another type, possible loss of data
/wd4267 # Conversion from 'size_t' to a smaller type, possible loss of data
)
function(disable_msvc_warnings target_name)
if(TARGET ${target_name})
target_compile_options(${target_name} PRIVATE ${MSVC_WARNING_FLAGS})
endif()
endfunction()
disable_msvc_warnings(ggml-base)
disable_msvc_warnings(ggml)
disable_msvc_warnings(ggml-cpu)
disable_msvc_warnings(ggml-cpu-x64)
disable_msvc_warnings(ggml-cpu-sse42)
disable_msvc_warnings(ggml-cpu-sandybridge)
disable_msvc_warnings(ggml-cpu-haswell)
disable_msvc_warnings(ggml-cpu-skylakex)
disable_msvc_warnings(ggml-cpu-icelake)
disable_msvc_warnings(ggml-cpu-alderlake)
endif()

View File

@@ -38,7 +38,7 @@ extern "C" {
GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft);
GGML_API size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
GGML_API size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor);
GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
GGML_API ggml_backend_dev_t ggml_backend_buft_get_device (ggml_backend_buffer_type_t buft);
@@ -59,7 +59,7 @@ extern "C" {
GGML_API enum ggml_status ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor);
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);

View File

@@ -673,11 +673,15 @@ extern "C" {
GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
// returns whether the tensor elements can be iterated over with a flattened index (no gaps, no permutation)
GGML_API bool ggml_is_contiguous (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
// returns whether the tensor elements are allocated as one contiguous block of memory (no gaps, but permutation ok)
GGML_API bool ggml_is_contiguously_allocated(const struct ggml_tensor * tensor);
// true for tensor that is stored in memory as CxWxHxN and has been permuted to WxHxCxN
GGML_API bool ggml_is_contiguous_channels(const struct ggml_tensor * tensor);

View File

@@ -816,7 +816,10 @@ static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor *
static bool ggml_gallocr_node_needs_realloc(ggml_gallocr_t galloc, struct ggml_tensor * node, struct tensor_alloc * talloc) {
size_t node_size = 0;
if (!node->data && !node->view_src) {
GGML_ASSERT(talloc->buffer_id >= 0); // prevent segfault when misusing the API
// If we previously had data but don't now then reallocate
if (talloc->buffer_id < 0) {
return false;
}
node_size = ggml_backend_buft_get_alloc_size(galloc->bufts[talloc->buffer_id], node);
}
return talloc->size_max >= node_size;

View File

@@ -56,7 +56,7 @@ size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
return SIZE_MAX;
}
size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor) {
// get_alloc_size is optional, defaults to ggml_nbytes
if (buft->iface.get_alloc_size) {
size_t size = buft->iface.get_alloc_size(buft, tensor);
@@ -152,7 +152,7 @@ size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
}
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor) {
return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
}

View File

@@ -6596,7 +6596,118 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
}
*s = hsum_float_8(acc);
#elif defined(__VXE__) || defined(__VXE2__)
uint32_t aux[3];
uint32_t utmp[4];
const int32x4_t v_z = vec_splat_s32(0);
const uint8x16_t v_3m = vec_splat_u8(0x03);
const uint8x16_t v_0c = vec_splat_u8(1);
const uint8x16_t v_1c = vec_sl(v_0c, 1);
const uint8x16_t v_2c = vec_sl(v_0c, 2);
const uint8x16_t v_3c = vec_sl(v_0c, 3);
uint8x16_t q3h[4];
uint8x16_t q3b[2];
int8x16_t q3bytes[4];
int8x16_t q8bytes[4];
uint8x16_t qhbits[2];
float sum = 0;
for (int i = 0; i < nb; ++i) {
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
const uint8_t * restrict x0l = x[i].qs;
const uint8_t * restrict x0h = x[i].hmask;
const int8_t * restrict y0 = y[i].qs;
qhbits[0] = vec_xl(0 , x0h);
qhbits[1] = vec_xl(16, x0h);
int32_t isum = 0;
memcpy(aux, x[i].scales, 12);
utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
int8_t * scale = (int8_t *)utmp;
for (int j = 0; j < 16; ++j) scale[j] -= 32;
for (int j = 0; j < QK_K/128; ++j) {
int32x4_t isum0, isum1, isum2, isum3;
q3b[0] = vec_xl(0 , x0l);
q3b[1] = vec_xl(16, x0l);
x0l += 32;
q8bytes[0] = vec_xl(0 , y0);
q8bytes[1] = vec_xl(16 , y0);
q8bytes[2] = vec_xl(32 , y0);
q8bytes[3] = vec_xl(48 , y0);
q8bytes[4] = vec_xl(64 , y0);
q8bytes[5] = vec_xl(80 , y0);
q8bytes[6] = vec_xl(96 , y0);
q8bytes[7] = vec_xl(112, y0);
y0 += 128;
q3h[0] = vec_sl(vec_andc(v_0c, qhbits[0]), 2);
q3h[1] = vec_sl(vec_andc(v_0c, qhbits[1]), 2);
q3h[2] = vec_sl(vec_andc(v_1c, qhbits[0]), 1);
q3h[3] = vec_sl(vec_andc(v_1c, qhbits[1]), 1);
q3bytes[0] = vec_sub((int8x16_t)vec_and(q3b[0], v_3m), (int8x16_t)q3h[0]);
q3bytes[1] = vec_sub((int8x16_t)vec_and(q3b[1], v_3m), (int8x16_t)q3h[1]);
q3bytes[2] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[0], 2), v_3m), (int8x16_t)q3h[2]);
q3bytes[3] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[1], 2), v_3m), (int8x16_t)q3h[3]);
isum0 = ggml_vec_dot(v_z, q3bytes[0], q8bytes[0]);
isum1 = ggml_vec_dot(v_z, q3bytes[1], q8bytes[1]);
isum2 = ggml_vec_dot(v_z, q3bytes[2], q8bytes[2]);
isum3 = ggml_vec_dot(v_z, q3bytes[3], q8bytes[3]);
isum += (isum0[0] + isum0[1] + isum0[2] + isum0[3]) * scale[0];
isum += (isum1[0] + isum1[1] + isum1[2] + isum1[3]) * scale[1];
isum += (isum2[0] + isum2[1] + isum2[2] + isum2[3]) * scale[2];
isum += (isum3[0] + isum3[1] + isum3[2] + isum3[3]) * scale[3];
scale += 4;
q3h[0] = vec_andc(v_2c, qhbits[0]);
q3h[1] = vec_andc(v_2c, qhbits[1]);
q3h[2] = vec_sr(vec_andc(v_3c, qhbits[0]), 1);
q3h[3] = vec_sr(vec_andc(v_3c, qhbits[1]), 1);
q3bytes[0] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[0], 4), v_3m), (int8x16_t)q3h[0]);
q3bytes[1] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[1], 4), v_3m), (int8x16_t)q3h[1]);
q3bytes[2] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[0], 6), v_3m), (int8x16_t)q3h[2]);
q3bytes[3] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[1], 6), v_3m), (int8x16_t)q3h[3]);
isum0 = ggml_vec_dot(v_z, q3bytes[0], q8bytes[4]);
isum1 = ggml_vec_dot(v_z, q3bytes[1], q8bytes[5]);
isum2 = ggml_vec_dot(v_z, q3bytes[2], q8bytes[6]);
isum3 = ggml_vec_dot(v_z, q3bytes[3], q8bytes[7]);
isum += (isum0[0] + isum0[1] + isum0[2] + isum0[3]) * scale[0];
isum += (isum1[0] + isum1[1] + isum1[2] + isum1[3]) * scale[1];
isum += (isum2[0] + isum2[1] + isum2[2] + isum2[3]) * scale[2];
isum += (isum3[0] + isum3[1] + isum3[2] + isum3[3]) * scale[3];
scale += 4;
if (j == 0) {
qhbits[0] = vec_sr(qhbits[0], 4);
qhbits[1] = vec_sr(qhbits[1], 4);
}
}
sum += d * isum;
}
*s = sum;
#else
// scalar version
// This function is written like this so the compiler can manage to vectorize most of it

View File

@@ -11,24 +11,26 @@
#include <vector>
#ifdef GGML_USE_CPU_HBM
#include "ggml-cpu-hbm.h"
# include "ggml-cpu-hbm.h"
#endif
#ifdef GGML_USE_CPU_KLEIDIAI
#include "kleidiai/kleidiai.h"
#endif
#if defined(__APPLE__)
#include <sys/types.h>
#include <sys/sysctl.h>
# include "kleidiai/kleidiai.h"
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
# define WIN32_LEAN_AND_MEAN
# ifndef NOMINMAX
# define NOMINMAX
# endif
# include <windows.h>
#else
# include <unistd.h>
#endif
#include <windows.h>
#if defined(__APPLE__)
# include <sys/sysctl.h>
# include <sys/types.h>
#endif
// ggml-backend interface
@@ -70,8 +72,10 @@ static ggml_backend_buffer_type_t * ggml_backend_cpu_device_get_extra_buffers_ty
}
static bool ggml_backend_cpu_is_extra_buffer_type(ggml_backend_buffer_type_t buft) {
for (auto extra : ggml_backend_cpu_get_extra_buffers_type()) {
if (extra && extra == buft) return true;
for (auto * extra : ggml_backend_cpu_get_extra_buffers_type()) {
if (extra && extra == buft) {
return true;
}
}
return false;
}
@@ -330,9 +334,18 @@ static const char * ggml_backend_cpu_device_get_description(ggml_backend_dev_t d
}
static void ggml_backend_cpu_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
// TODO
*free = 0;
*total = 0;
#ifdef _WIN32
MEMORYSTATUSEX status;
status.dwLength = sizeof(status);
GlobalMemoryStatusEx(&status);
*total = status.ullTotalPhys;
*free = status.ullAvailPhys;
#else
long pages = sysconf(_SC_PHYS_PAGES);
long page_size = sysconf(_SC_PAGE_SIZE);
*total = pages * page_size;
*free = *total;
#endif
GGML_UNUSED(dev);
}

View File

@@ -1054,6 +1054,493 @@ class tinyBLAS_Q0_AVX {
} \
} \
template <typename TA, typename TB, typename TC>
class tinyBLAS_BF16_PPC {
public:
tinyBLAS_BF16_PPC(int64_t k,
const TA *A, int64_t lda,
const TB *B, int64_t ldb,
TC *C, int64_t ldc,
int ith, int nth)
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
}
void matmul(int64_t m, int64_t n) {
mnpack(0, m, 0, n);
}
private:
void vector_permute_store(vec_t *c, int numVec, unsigned char *vecOffset) {
vec_t t[8], s[8];
vec_t swiz1 = {0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23};
vec_t swiz2 = {8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31};
vec_t swiz3 = {0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23};
vec_t swiz4 = {8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31};
if (numVec == 2) {
t[0] = vec_perm(c[0], c[1], swiz1);
t[1] = vec_perm(c[2], c[3], swiz1);
s[0] = vec_perm(t[0], t[1], swiz3);
s[1] = vec_perm(t[0], t[1], swiz4);
vec_xst(s[0], 0, (vec_t*)vecOffset);
vec_xst(s[1], 0, (vec_t*)(vecOffset + 16));
} else if (numVec == 4) {
t[0] = vec_perm(c[0], c[1], swiz1);
t[1] = vec_perm(c[0], c[1], swiz2);
t[2] = vec_perm(c[2], c[3], swiz1);
t[3] = vec_perm(c[2], c[3], swiz2);
s[0] = vec_perm(t[0], t[2], swiz3);
s[1] = vec_perm(t[0], t[2], swiz4);
s[2] = vec_perm(t[1], t[3], swiz3);
s[3] = vec_perm(t[1], t[3], swiz4);
for (int i = 0; i < 4; ++i)
vec_xst(s[i], 0, (vec_t*)(vecOffset + i * 16));
} else if (numVec == 8) {
for (int i = 0; i < 4; i += 2) {
t[i+0] = vec_perm(c[i+0], c[i+1], swiz1);
t[i+1] = vec_perm(c[i+0], c[i+1], swiz2);
}
for (int i = 4; i < 8; i += 2) {
t[i+0] = vec_perm(c[i+0], c[i+1], swiz1);
t[i+1] = vec_perm(c[i+0], c[i+1], swiz2);
}
s[0] = vec_perm(t[0], t[2], swiz3);
s[1] = vec_perm(t[0], t[2], swiz4);
s[2] = vec_perm(t[1], t[3], swiz3);
s[3] = vec_perm(t[1], t[3], swiz4);
s[4] = vec_perm(t[4], t[6], swiz3);
s[5] = vec_perm(t[4], t[6], swiz4);
s[6] = vec_perm(t[5], t[7], swiz3);
s[7] = vec_perm(t[5], t[7], swiz4);
for (int i = 0; i < 8; ++i)
vec_xst(s[i], 0, (vec_t*)(vecOffset + i * 16));
}
}
void packNormal(const TA* a, int64_t lda, int rows, int cols, unsigned char* vec) {
int64_t i, j;
TA *aoffset = NULL;
unsigned char *vecOffset = NULL;
TA * aoffsets[8];
vector unsigned char c_arr[8];
aoffset = const_cast<TA*>(a);
vecOffset = vec;
j = (rows >> 3);
if (j > 0) {
do {
if (cols == 4) {
aoffsets[0] = aoffset;
for (int it = 1; it < 4; ++it)
aoffsets[it] = aoffsets[it-1] + lda;
aoffset += 4 * lda;
for (int i = 0; i < 4; ++i)
c_arr[i] = vec_xl(0, (vector unsigned char*)aoffsets[i]);
vector_permute_store(c_arr, 4, vecOffset);
for (int i = 0; i<4; i++)
aoffsets[i] = aoffsets[i]+lda;
vecOffset +=64;
}
i = (cols >> 3);
if (i > 0) {
aoffsets[0] = aoffset;
for (int it = 1; it < 8; ++it) {
aoffsets[it] = aoffsets[it-1] + lda;
}
aoffset += 8 * lda;
do {
for (int it = 0; it < 8; ++it)
c_arr[it] = vec_xl(0, (vector unsigned char*)aoffsets[it]);
vector_permute_store(c_arr, 8, vecOffset);
for (int it = 0; it < 8; ++it)
aoffsets[it] = aoffsets[it] + 8*lda;
vecOffset += 128;
i--;
} while(i > 0);
}
j--;
} while(j > 0);
}
if (rows & 4) {
aoffsets[0] = aoffset;
for (int it = 1; it < 4; ++it)
aoffsets[it] = aoffsets[it-1] + lda;
aoffset += 4 * lda;
if (cols == 4) {
for (int it = 0; it < 4; ++it)
c_arr[it] = vec_xl(0, (vector unsigned char*)aoffsets[it]);
vector_permute_store(c_arr, 2, vecOffset);
for (int it = 0; it< 4; it++)
aoffsets[it] = aoffsets[it] + lda;
vecOffset += 32;
}
i = (cols >> 3);
if (i > 0) {
do {
for (int it = 0; it < 4; ++it)
c_arr[it] = vec_xl(0, (vector unsigned char*)aoffsets[it]);
vector_permute_store(c_arr, 4, vecOffset);
for (int it = 0; it< 4; it++)
aoffsets[it] = aoffsets[it] + 8*lda;
vecOffset += 64;
i--;
} while(i > 0);
}
}
if (rows & 3) {
aoffsets[0] = aoffset;
for (int it = 1; it < 4; ++it)
aoffsets[it] = aoffsets[it-1] + lda;
if (cols == 4) {
switch(rows) {
case 3: c_arr[2] = vec_xl(0, (vector unsigned char*)aoffsets[2]);
case 2: c_arr[1] = vec_xl(0, (vector unsigned char*)aoffsets[1]);
case 1: c_arr[0] = vec_xl(0, (vector unsigned char*)aoffsets[0]);
break;
}
vector_permute_store(c_arr, 2, vecOffset);
for (int it = 0; it< 4; it++)
aoffsets[it] = aoffsets[it] + lda;
vecOffset += 32;
}
i = (cols >> 3);
if (i > 0) {
do {
switch(rows) {
case 3: c_arr[2] = vec_xl(0, (vector unsigned char*)aoffsets[2]);
case 2: c_arr[1] = vec_xl(0, (vector unsigned char*)aoffsets[1]);
case 1: c_arr[0] = vec_xl(0, (vector unsigned char*)aoffsets[0]);
break;
}
vector_permute_store(c_arr, 4, vecOffset);
for (int it = 0; it <4; it++)
aoffsets[it] = aoffsets[it] + 8* lda;
vecOffset += 64;
i--;
} while(i > 0);
}
}
}
void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t mc, nc, mp, np;
int m_rem = MIN(m - m0, 8);
int n_rem = MIN(n - n0, 8);
if (m_rem >= 8 && n_rem >= 8) {
mc = 8;
nc = 8;
gemm<8,8>(m0, m, n0, n);
} else if (m_rem >= 4 && n_rem >= 8) {
mc = 4;
nc = 8;
gemm<4,8>(m0, m, n0, n);
} else if (m_rem >=8 && n_rem >=4){
mc = 8;
nc = 4;
gemm<8,4>(m0, m, n0, n);
} else if ((m_rem < 4) && (n_rem >= 8)) {
nc = 8;
switch(m_rem) {
case 1:
mc = 1;
gemm_Mx8<1>(m0, m, n0, n);
break;
case 2:
mc = 2;
gemm_Mx8<2>(m0, m, n0, n);
break;
case 3:
mc = 3;
gemm_Mx8<3>(m0, m, n0, n);
break;
default:
return;
}
} else if (m_rem >= 4 && n_rem >= 4) {
mc = 4;
nc = 4;
gemm_small<4, 4>(m0, m, n0, n);
} else if ((m_rem > 4) && (n_rem < 4)) {
mc = 4;
switch(n_rem) {
case 1:
nc = 1;
gemm_small<4, 1>(m0, m, n0, n);
break;
case 2:
nc = 2;
gemm_small<4, 2>(m0, m, n0, n);
break;
case 3:
nc = 3;
gemm_small<4, 3>(m0, m, n0, n);
break;
default:
return;
}
} else {
switch((m_rem << 4) | n_rem) {
case 0x43:
mc = 4;
nc = 3;
gemm_small<4, 3>(m0, m, n0, n);
break;
case 0x42:
mc = 4;
nc = 2;
gemm_small<4, 2>(m0, m, n0, n);
break;
case 0x41:
mc = 4;
nc = 1;
gemm_small<4, 1>(m0, m, n0, n);
break;
case 0x34:
mc = 3;
nc = 4;
gemm_small<3, 4>(m0, m, n0, n);
break;
case 0x33:
mc = 3;
nc = 3;
gemm_small<3, 3>(m0, m, n0, n);
break;
case 0x32:
mc = 3;
nc = 2;
gemm_small<3, 2>(m0, m, n0, n);
break;
case 0x31:
mc = 3;
nc = 1;
gemm_small<3, 1>(m0, m, n0, n);
break;
case 0x24:
mc = 2;
nc = 4;
gemm_small<2,4>(m0, m, n0, n);
break;
case 0x23:
mc = 2;
nc = 3;
gemm_small<2, 3>(m0, m, n0, n);
break;
case 0x22:
mc = 2;
nc = 2;
gemm_small<2, 2>(m0, m, n0, n);
break;
case 0x21:
mc = 2;
nc = 1;
gemm_small<2, 1>(m0, m, n0, n);
break;
case 0x14:
mc = 1;
nc = 4;
gemm_small<1, 4>(m0, m, n0, n);
break;
case 0x13:
mc = 1;
nc = 3;
gemm_small<1, 3>(m0, m, n0, n);
break;
case 0x12:
mc = 1;
nc = 2;
gemm_small<1, 2>(m0, m, n0, n);
break;
case 0x11:
mc = 1;
nc = 1;
gemm_small<1, 1>(m0, m, n0, n);
break;
default:
return;
}
}
mp = m0 + (m - m0) / mc * mc;
np = n0 + (n - n0) / nc * nc;
mnpack(mp, m, n0, np);
mnpack(m0, m, np, n);
}
void KERNEL_4x8(int64_t ii, int64_t jj) {
vec_t vec_A[4], vec_B[8] , vec_C[4];
acc_t acc_0, acc_1;
__builtin_mma_xxsetaccz(&acc_0);
__builtin_mma_xxsetaccz(&acc_1);
for (int l = 0; l < k; l+=8) {
packNormal((A+(ii*lda)+l), lda, 4, 8, (uint8_t*)vec_A);
packNormal((B+(jj*ldb)+l), ldb, 8, 8, (uint8_t*)vec_B);
for (int x = 0; x < 4; x++) {
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
__builtin_mma_xvbf16ger2pp(&acc_1, vec_A[x], vec_B[x+4]);
}
}
SAVE_ACC(&acc_0, ii, jj);
SAVE_ACC(&acc_1, ii, jj+4);
}
void KERNEL_8x4(int64_t ii, int64_t jj) {
vec_t vec_A[8], vec_B[4] , vec_C[4];
acc_t acc_0, acc_1;
__builtin_mma_xxsetaccz(&acc_0);
__builtin_mma_xxsetaccz(&acc_1);
for (int l = 0; l < k; l+=8) {
packNormal((A+(ii*lda)+l), lda, 8, 8, (uint8_t*)vec_A);
packNormal((B+(jj*ldb)+l), ldb, 8, 4, (uint8_t*)vec_B);
for (int x = 0; x < 4; x++) {
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
__builtin_mma_xvbf16ger2pp(&acc_1, vec_A[x+4], vec_B[x]);
}
}
SAVE_ACC(&acc_0, ii, jj);
SAVE_ACC(&acc_1, ii+4, jj);
}
void KERNEL_8x8(int64_t ii, int64_t jj) {
vec_t vec_A[8], vec_B[8], vec_C[4];
acc_t acc_0, acc_1, acc_2, acc_3;
__builtin_mma_xxsetaccz(&acc_0);
__builtin_mma_xxsetaccz(&acc_1);
__builtin_mma_xxsetaccz(&acc_2);
__builtin_mma_xxsetaccz(&acc_3);
for (int l = 0; l < k; l+=8) {
packNormal(A+(ii*lda)+l, lda, 8, 8, (uint8_t*)vec_A);
packNormal(B+(jj*ldb)+l, ldb, 8, 8, (uint8_t*)vec_B);
for (int x = 0; x < 4; x++) {
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
__builtin_mma_xvbf16ger2pp(&acc_1, (vec_t)vec_A[x], (vec_t)vec_B[x+4]);
__builtin_mma_xvbf16ger2pp(&acc_2, (vec_t)vec_A[x+4], (vec_t)vec_B[x]);
__builtin_mma_xvbf16ger2pp(&acc_3, (vec_t)vec_A[x+4], (vec_t)vec_B[x+4]);
}
}
SAVE_ACC(&acc_0, ii, jj);
SAVE_ACC(&acc_1, ii, jj+4);
SAVE_ACC(&acc_2, ii+4, jj);
SAVE_ACC(&acc_3, ii+4, jj+4);
}
template<int RM, int RN>
void gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t ytiles = (m - m0) / RM;
int64_t xtiles = (n - n0) / RN;
int64_t tiles = xtiles * ytiles;
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
if (end > tiles)
end = tiles;
for (int64_t job = start; job < end; ++job) {
int64_t ii = m0 + job / xtiles * RM;
int64_t jj = n0 + job % xtiles * RN;
vec_t vec_C[4];
acc_t acc_0;
__builtin_mma_xxsetaccz(&acc_0);
vec_t vec_A[2], vec_B[2];
for (int l=0; l<k; l+=4) {
packNormal(A+(ii*lda)+l, lda, RM, 4, (uint8_t*)vec_A);
packNormal(B+(jj*ldb)+l, ldb, RN, 4, (uint8_t*)vec_B);
for (int x = 0; x<2; x++) {
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
}
}
__builtin_mma_disassemble_acc(vec_C, &acc_0);
for (int I = 0; I < RM; I++) {
for (int J = 0; J < RN; J++) {
*((TC*)(C+ii+((jj+J)*ldc)+I)) = *((TC*)&vec_C[I]+J);
}
}
}
}
template<int RM>
void gemm_Mx8(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int RN = 8;
int64_t ytiles = (m - m0) / RM;
int64_t xtiles = (n - n0) / RN;
int64_t tiles = xtiles * ytiles;
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
if (end > tiles)
end = tiles;
for (int64_t job = start; job < end; ++job) {
int64_t ii = m0 + job / xtiles * RM;
int64_t jj = n0 + job % xtiles * RN;
vec_t vec_C[4];
acc_t acc_0, acc_1;
__builtin_mma_xxsetaccz(&acc_0);
__builtin_mma_xxsetaccz(&acc_1);
vec_t vec_A[4], vec_B[8];
for (int l=0; l<k; l+=8) {
packNormal(A+(ii*lda)+l, lda, RM, 8, (uint8_t*)vec_A);
packNormal(B+(jj*ldb)+l, ldb, RN, 8, (uint8_t*)vec_B);
for (int x = 0; x<4; x++) {
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
__builtin_mma_xvbf16ger2pp(&acc_1, vec_A[x], vec_B[x+4]);
}
}
__builtin_mma_disassemble_acc(vec_C, &acc_0);
for (int I = 0; I < RM; I++) {
for (int J = 0; J < 4; J++) {
*((TC*)(C+ii+((jj+J)*ldc)+I)) = *((TC*)&vec_C[I]+J);
}
}
__builtin_mma_disassemble_acc(vec_C, &acc_1);
for (int I = 0; I < RM; I++) {
for (int J = 0; J < 4; J++) {
*((TC*)(C+ii+((jj+4+J)*ldc)+I)) = *((TC*)&vec_C[I]+J);
}
}
}
}
template<int RM, int RN>
inline void kernel(int64_t ii, int64_t jj) {
if constexpr(RM == 4 && RN == 8) {
KERNEL_4x8(ii,jj);
} else if constexpr(RM == 8 && RN == 8) {
KERNEL_8x8(ii,jj);
} else if constexpr(RM == 8 && RN == 4) {
KERNEL_8x4(ii,jj);
} else {
static_assert(false, "RN/RM values not supported");
}
}
template <int RM, int RN>
NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t ytiles = (m - m0) / RM;
int64_t xtiles = (n - n0) / RN;
int64_t tiles = xtiles * ytiles;
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
if (end > tiles)
end = tiles;
for (int64_t job = start; job < end; ++job) {
int64_t ii = m0 + job / xtiles * RM;
int64_t jj = n0 + job % xtiles * RN;
kernel<RM, RN>(ii, jj);
}
}
const TA *const A;
const TB *const B;
TC *C;
const int64_t k;
const int64_t lda;
const int64_t ldb;
const int64_t ldc;
const int ith;
const int nth;
};
template <typename TA, typename TB, typename TC>
class tinyBLAS_Q0_PPC {
public:
@@ -2202,6 +2689,7 @@ class tinyBLAS_PPC {
boffset = vec;
j = (rows >> 3);
if (j > 0) {
do {
aoffset1 = aoffset;
aoffset2 = aoffset1 + lda;
@@ -2875,9 +3363,22 @@ bool llamafile_sgemm(const struct ggml_compute_params * params, int64_t m, int64
(float *)C, ldc};
return tb.matmul(m, n);
}
#elif defined(__MMA__)
if ((k % 8))
return false;
if(Btype == GGML_TYPE_BF16) {
tinyBLAS_BF16_PPC<ggml_bf16_t, ggml_bf16_t, float> tb{ k,
(const ggml_bf16_t *)A, lda,
(const ggml_bf16_t *)B, ldb,
(float *)C, ldc,
params->ith, params->nth};
tb.matmul(m, n);
return true;
}
#endif
return false;
}
case GGML_TYPE_F16: {
#if defined(__AVX512F__)
if (Btype == GGML_TYPE_F16) {

View File

@@ -12,12 +12,30 @@ if (CUDAToolkit_FOUND)
# 61 == Pascal, __dp4a instruction (per-byte integer dot product)
# 70 == V100, FP16 tensor cores
# 75 == Turing, int8 tensor cores
# 80 == Ampere, asynchronous data loading, faster tensor core instructions
# 86 == RTX 3000, needs CUDA v11.1
# 89 == RTX 4000, needs CUDA v11.8
#
# XX-virtual == compile CUDA code as PTX, do JIT compilation to binary code on first run
# XX-real == compile CUDA code as device code for this specific architecture
# no suffix == compile as both PTX and device code
#
# The default behavior for a non-native is to build virtual architectures as needed to cover all features needed
# for best performance and to also build real architectures for the most commonly used GPUs.
if (GGML_NATIVE AND CUDAToolkit_VERSION VERSION_GREATER_EQUAL "11.6" AND CMAKE_VERSION VERSION_GREATER_EQUAL "3.24")
set(CMAKE_CUDA_ARCHITECTURES "native")
elseif(GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
set(CMAKE_CUDA_ARCHITECTURES "60;61;70;75;80")
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "11.8")
set(CMAKE_CUDA_ARCHITECTURES "60-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real;89-real")
else()
set(CMAKE_CUDA_ARCHITECTURES "60-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real")
endif()
else()
set(CMAKE_CUDA_ARCHITECTURES "50;61;70;75;80")
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "11.8")
set(CMAKE_CUDA_ARCHITECTURES "50-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real;89-real")
else()
set(CMAKE_CUDA_ARCHITECTURES "50-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real")
endif()
endif()
endif()
message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")
@@ -133,6 +151,7 @@ if (CUDAToolkit_FOUND)
COMMAND ${NVCC_CMD} -Xcompiler "-dumpfullversion -dumpversion"
OUTPUT_VARIABLE CUDA_CCVER
ERROR_QUIET
OUTPUT_STRIP_TRAILING_WHITESPACE
)
else()
if (CUDA_CCFULLVER MATCHES Apple)
@@ -143,7 +162,7 @@ if (CUDAToolkit_FOUND)
string(REGEX REPLACE "^.* version ([0-9.]*).*$" "\\1" CUDA_CCVER ${CUDA_CCFULLVER})
endif()
message("-- CUDA host compiler is ${CUDA_CCID} ${CUDA_CCVER}")
message(STATUS "CUDA host compiler is ${CUDA_CCID} ${CUDA_CCVER}")
ggml_get_flags(${CUDA_CCID} ${CUDA_CCVER})
list(APPEND CUDA_CXX_FLAGS ${CXX_FLAGS} ${GF_CXX_FLAGS}) # This is passed to -Xcompiler later

View File

@@ -719,6 +719,7 @@ void launch_fattn(
size_t nb23 = V->nb[3];
if (need_f16_K && K->type != GGML_TYPE_F16) {
GGML_ASSERT(ggml_is_contiguously_allocated(K));
K_f16.alloc(ggml_nelements(K));
to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(K->type);
to_fp16(K_data, K_f16.ptr, ggml_nelements(K), main_stream);
@@ -733,6 +734,7 @@ void launch_fattn(
}
if (need_f16_V && V->type != GGML_TYPE_F16) {
GGML_ASSERT(ggml_is_contiguously_allocated(V));
V_f16.alloc(ggml_nelements(V));
to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(V->type);
to_fp16(V_data, V_f16.ptr, ggml_nelements(V), main_stream);

View File

@@ -555,8 +555,8 @@ static enum ggml_status ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer
if (ggml_is_quantized(tensor->type) && tensor->view_src == nullptr && ggml_backend_buffer_get_usage(buffer) != GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
// initialize padding to 0 to avoid possible NaN values
size_t original_size = ggml_nbytes(tensor);
size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
const size_t original_size = ggml_nbytes(tensor);
const size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
if (padded_size > original_size) {
ggml_cuda_set_device(ctx->device);
@@ -679,6 +679,7 @@ static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_t
if (ggml_is_quantized(tensor->type)) {
if (ne0 % MATRIX_ROW_PADDING != 0) {
GGML_ASSERT(tensor->nb[0] == ggml_element_size(tensor));
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
}
}
@@ -800,6 +801,7 @@ static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buff
static enum ggml_status ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
@@ -851,6 +853,7 @@ static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buff
// split tensors must always be set in their entirety at once
GGML_ASSERT(offset == 0);
GGML_ASSERT(size == ggml_nbytes(tensor));
GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
@@ -889,6 +892,7 @@ static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buff
// split tensors must always be set in their entirety at once
GGML_ASSERT(offset == 0);
GGML_ASSERT(size == ggml_nbytes(tensor));
GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
@@ -970,6 +974,7 @@ static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buf
static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
size_t total_size = 0;
@@ -1531,6 +1536,8 @@ static void ggml_cuda_op_mul_mat(
// If src0 is on a temporary compute buffer (partial offloading) there may be some padding that needs to be cleared:
if (ne00 % MATRIX_ROW_PADDING != 0 && ggml_is_quantized(src0->type) && ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE && src0->view_src == nullptr) {
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
GGML_ASSERT(!src0->view_src);
const size_t nbytes_data = ggml_row_size(src0->type, (dev[id].row_high - dev[id].row_low)*ne00);
const size_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING);
CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd + nbytes_data, 0, nbytes_padding, stream));
@@ -2062,9 +2069,11 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
}
ggml_tensor src0_slice = *src0;
src0_slice.ne[2] = 1;
src0_slice.nb[3] = src0_slice.nb[2];
src0_slice.data = (char *) src0->data + i02*nb02;
src0_slice.ne[2] = 1;
src0_slice.nb[3] = src0_slice.nb[2];
src0_slice.op = GGML_OP_VIEW;
src0_slice.view_src = dst->src[0]; // non-const pointer to src0
src0_slice.data = (char *) src0->data + i02*nb02;
ggml_tensor src1_slice;
memset(&src1_slice, 0, sizeof(src1_slice));

View File

@@ -89,6 +89,17 @@ void ggml_cuda_mul_mat_q(
const float * src1_d = (const float *) src1->data;
float * dst_d = (float *) dst->data;
// If src0 is a temporary compute buffer, clear any potential padding.
if (ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
GGML_ASSERT(!src0->view_src);
const size_t size_data = ggml_nbytes(src0);
const size_t size_alloc = ggml_backend_buffer_get_alloc_size(src0->buffer, src0);
if (size_alloc > size_data) {
CUDA_CHECK(cudaMemsetAsync((char *) src0->data + size_data, 0, size_alloc - size_data, stream));
}
}
const int64_t ne10_padded = GGML_PAD(ne10, MATRIX_ROW_PADDING);
const int64_t s01 = src0->nb[1] / ts_src0;
@@ -118,7 +129,7 @@ void ggml_cuda_mul_mat_q(
const mmq_args args = {
src0_d, src0->type, (const int *) src1_q8_1.ptr, nullptr, nullptr, dst_d,
ne00, ne01, ne1, s01, s1,
ne00, ne01, ne1, s01, ne11, s1,
ne02, ne12, s02, s12, s2,
ne03, ne13, s03, s13, s3,
use_stream_k};
@@ -202,7 +213,7 @@ void ggml_cuda_mul_mat_q(
// Note that ne02 is used instead of ne12 because the number of y channels determines the z dimension of the CUDA grid.
const mmq_args args = {
src0_d, src0->type, (const int *) src1_q8_1.ptr, ids_dst_dev, expert_bounds_dev, dst_d,
ne00, ne01, ne_get_rows, s01, s1,
ne00, ne01, ne_get_rows, s01, ne_get_rows, s1,
ne02, ne02, s02, s12, s2,
ne03, ne13, s03, s13, s3,
use_stream_k};
@@ -241,7 +252,7 @@ void ggml_cuda_op_mul_mat_q(
ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA && src1_ncols == ne11;
const mmq_args args = {
src0_dd_i, src0->type, (const int *) src1_ddq_i, nullptr, nullptr, dst_dd_i,
ne00, row_diff, src1_ncols, stride01, nrows_dst,
ne00, row_diff, src1_ncols, stride01, ne11, nrows_dst,
1, 1, 0, 0, 0,
1, 1, 0, 0, 0,
use_stream_k};

View File

@@ -2522,7 +2522,7 @@ template <ggml_type type, int mmq_x, int nwarps, bool need_check, bool fixup>
static __device__ __forceinline__ void mul_mat_q_process_tile(
const char * __restrict__ x, const int offset_x, const int * __restrict__ y,
const int * __restrict__ ids_dst, float * __restrict__ dst, float * __restrict__ tmp_fixup,
const int nrows_x, const int ncols_y, const int stride_row_x, const int stride_col_dst,
const int stride_row_x, const int ncols_y, const int stride_col_dst,
const int tile_x_max_i, const int tile_y_max_j, const int kb0_start, const int kb0_stop) {
constexpr int qk = ggml_cuda_type_traits<type>::qk;
@@ -2606,7 +2606,7 @@ template <ggml_type type, int mmq_x, int nwarps, bool need_check>
static __global__ void mul_mat_q(
const char * __restrict__ x, const int * __restrict__ y, const int32_t * __restrict__ ids_dst,
const int32_t * __restrict__ expert_bounds, float * __restrict__ dst, float * __restrict__ tmp_fixup,
const int ncols_x, const int nrows_x, const int ncols_y, const int stride_row_x, const int stride_col_dst,
const int ncols_x, const int nrows_x, const int ncols_dst, const int stride_row_x, const int ncols_y, const int stride_col_dst,
const int channel_ratio, const int nchannels_y, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
const int sample_ratio, const int nsamples_y, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
@@ -2619,8 +2619,8 @@ static __global__ void mul_mat_q(
constexpr int qk = ggml_cuda_type_traits<type>::qk;
constexpr int mmq_y = get_mmq_y_device();
const int ntx = (ncols_y + mmq_x - 1) / mmq_x; // Number of tiles x
const int nty = (nrows_x + mmq_y - 1) / mmq_y; // Number of tiles y
const int ntx = (ncols_dst + mmq_x - 1) / mmq_x; // Number of tiles x
const int nty = (nrows_x + mmq_y - 1) / mmq_y; // Number of tiles y
// Initialize the ids for writing back data with just the index.
// For regular matrix multiplications this is never changed.
@@ -2636,6 +2636,7 @@ static __global__ void mul_mat_q(
ids_dst_shared[j] = j;
}
__syncthreads();
// On AMD or old CUDA the performance with stream-k was worse, use conventional tiling instead:
#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < GGML_CUDA_CC_VOLTA
@@ -2647,8 +2648,8 @@ static __global__ void mul_mat_q(
// Defaults for regular matrix multiplication:
int col_low = 0;
int col_high = ncols_y;
int col_diff = ncols_y;
int col_high = ncols_dst;
int col_diff = ncols_dst;
int offset_y = wt*stride_sample_y + zt*stride_channel_y;
int offset_dst = wt*stride_sample_dst + zt*stride_channel_dst + jt*mmq_x*stride_col_dst;
@@ -2664,6 +2665,7 @@ static __global__ void mul_mat_q(
return;
}
// __syncthreads(); // There is no previous tile that could cause a race condition.
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps*WARP_SIZE) {
const int j = j0 + threadIdx.y*WARP_SIZE + threadIdx.x;
@@ -2674,6 +2676,7 @@ static __global__ void mul_mat_q(
ids_dst_shared[j] = ids_dst[col_low + jt*mmq_x + j];
}
__syncthreads();
}
offset_y += (col_low + jt*mmq_x)*(sizeof(block_q8_1_mmq)/sizeof(int));
@@ -2686,7 +2689,7 @@ static __global__ void mul_mat_q(
constexpr bool fixup = false;
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, nrows_x, ncols_y, stride_row_x, stride_col_dst,
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, stride_row_x, ncols_y, stride_col_dst,
tile_x_max_i, tile_y_max_j, 0, ncols_x/qk);
return;
}
@@ -2717,8 +2720,8 @@ static __global__ void mul_mat_q(
// Defaults for regular matrix multiplication:
int col_low = 0;
int col_high = ncols_y;
int col_diff = ncols_y;
int col_high = ncols_dst;
int col_diff = ncols_dst;
int offset_y = wt*stride_sample_y + zt*stride_channel_y;
int offset_dst = wt*stride_sample_dst + zt*stride_channel_dst + jt*mmq_x*stride_col_dst;
@@ -2740,6 +2743,7 @@ static __global__ void mul_mat_q(
continue;
}
__syncthreads();
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps*WARP_SIZE) {
const int j = j0 + threadIdx.y*WARP_SIZE + threadIdx.x;
@@ -2750,6 +2754,7 @@ static __global__ void mul_mat_q(
ids_dst_shared[j] = ids_dst[col_low + jt*mmq_x + j];
}
__syncthreads();
}
offset_y += (col_low + jt*mmq_x)*(sizeof(block_q8_1_mmq)/sizeof(int));
@@ -2762,7 +2767,7 @@ static __global__ void mul_mat_q(
constexpr bool fixup = false; // All but (potentially) the last iterations write their data to dst rather than the fixup buffer.
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, nrows_x, ncols_y, stride_row_x, stride_col_dst,
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, stride_row_x, ncols_y, stride_col_dst,
tile_x_max_i, tile_y_max_j, kb0_start, kb0_stop);
kbc += blocks_per_ne00;
@@ -2787,8 +2792,8 @@ static __global__ void mul_mat_q(
// Defaults for regular matrix multiplication:
int col_low = 0;
int col_high = ncols_y;
int col_diff = ncols_y;
int col_high = ncols_dst;
int col_diff = ncols_dst;
int offset_y = wt*stride_sample_y + zt*stride_channel_y;
int offset_dst = wt*stride_sample_dst + zt*stride_channel_dst + jt*mmq_x*stride_col_dst;
@@ -2805,6 +2810,7 @@ static __global__ void mul_mat_q(
}
// The memory layout for the fixup buffer is always contiguous, therefore reset ids:
__syncthreads();
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps*WARP_SIZE) {
const int j = j0 + threadIdx.y*WARP_SIZE + threadIdx.x;
@@ -2815,6 +2821,7 @@ static __global__ void mul_mat_q(
ids_dst_shared[j] = j;
}
__syncthreads();
}
offset_y += (col_low + jt*mmq_x)*(sizeof(block_q8_1_mmq)/sizeof(int));
@@ -2827,7 +2834,7 @@ static __global__ void mul_mat_q(
constexpr bool fixup = true; // Last index writes its data to fixup buffer to avoid data races with other blocks.
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, nrows_x, ncols_y, stride_row_x, stride_col_dst,
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, stride_row_x, ncols_y, stride_col_dst,
tile_x_max_i, tile_y_max_j, kb0_start, kb0_stop);
}
@@ -2835,7 +2842,7 @@ static __global__ void mul_mat_q(
template <ggml_type type, int mmq_x, int nwarps, bool need_check>
static __global__ void mul_mat_q_stream_k_fixup(
const int32_t * ids_dst, const int32_t * expert_bounds, float * __restrict__ dst, const float * __restrict__ tmp_last_tile,
const int ncols_x, const int nrows_x, const int ncols_y, const int stride_col_dst,
const int ncols_x, const int nrows_x, const int ncols_dst, const int stride_col_dst,
const int nchannels_y, const int stride_channel_dst, const int nsamples_y, const int stride_sample_dst) {
constexpr int mmq_y = get_mmq_y_device();
constexpr int qk = ggml_cuda_type_traits<type>::qk;
@@ -2844,8 +2851,8 @@ static __global__ void mul_mat_q_stream_k_fixup(
float sum[mmq_x*mmq_y / (nwarps*WARP_SIZE)] = {0.0f};
const int ntx = (ncols_y + mmq_x - 1) / mmq_x;
const int nty = (nrows_x + mmq_y - 1) / mmq_y;
const int ntx = (ncols_dst + mmq_x - 1) / mmq_x;
const int nty = (nrows_x + mmq_y - 1) / mmq_y;
const int bidx0 = blockIdx.x;
@@ -2918,8 +2925,8 @@ static __global__ void mul_mat_q_stream_k_fixup(
const int offset_dst = wt*stride_sample_dst + zt*stride_channel_dst + jt*mmq_x*stride_col_dst + it*mmq_y;
dst += offset_dst;
const int i_max = nrows_x - it*mmq_y - 1;
const int j_max = ncols_y - jt*mmq_x - 1;
const int i_max = nrows_x - it*mmq_y - 1;
const int j_max = ncols_dst - jt*mmq_x - 1;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
@@ -2951,6 +2958,7 @@ static __global__ void mul_mat_q_stream_k_fixup(
for (int j = threadIdx.y*WARP_SIZE + threadIdx.x; j < mmq_x; j += nwarps*WARP_SIZE) {
ids_dst_shared[j] = ids_dst[col_low + j];
}
__syncthreads();
const int offset_dst = it*mmq_y;
dst += offset_dst;
@@ -2981,7 +2989,7 @@ static __global__ void mul_mat_q_stream_k_fixup(
struct mmq_args {
const char * x; ggml_type type_x; const int * y; const int32_t * ids_dst; const int32_t * expert_bounds; float * dst;
int64_t ncols_x; int64_t nrows_x; int64_t ncols_y; int64_t stride_row_x; int64_t nrows_dst;
int64_t ncols_x; int64_t nrows_x; int64_t ncols_dst; int64_t stride_row_x; int64_t ncols_y; int64_t nrows_dst;
int64_t nchannels_x; int64_t nchannels_y; int64_t stride_channel_x; int64_t stride_channel_y; int64_t stride_channel_dst;
int64_t nsamples_x; int64_t nsamples_y; int64_t stride_sample_x; int64_t stride_sample_y; int64_t stride_sample_dst;
bool use_stream_k;
@@ -3017,8 +3025,8 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
}
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
const int nty = (args.nrows_x + mmq_y - 1) / mmq_y;
const int ntx = (args.ncols_y + mmq_x - 1) / mmq_x;
const int nty = (args.nrows_x + mmq_y - 1) / mmq_y;
const int ntx = (args.ncols_dst + mmq_x - 1) / mmq_x;
const int ntzw = args.nchannels_y * args.nsamples_y;
const dim3 block_nums_xy_tiling(nty, ntx, ntzw);
@@ -3032,14 +3040,14 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
constexpr bool need_check = false;
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, nbytes_shared, stream>>>
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, nullptr,
args.ncols_x, args.nrows_x, args.ncols_y, args.stride_row_x, args.nrows_dst,
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
} else {
constexpr bool need_check = true;
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, nbytes_shared, stream>>>
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, nullptr,
args.ncols_x, args.nrows_x, args.ncols_y, args.stride_row_x, args.nrows_dst,
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
}
@@ -3060,7 +3068,7 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_stream_k, block_dims, nbytes_shared, stream>>>
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr,
args.ncols_x, args.nrows_x, args.ncols_y, args.stride_row_x, args.nrows_dst,
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
@@ -3069,14 +3077,14 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
}
mul_mat_q_stream_k_fixup<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_stream_k, block_dims, 0, stream>>>
(args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_y,
(args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_dst,
args.nrows_dst, args.nchannels_y, args.stride_channel_dst, args.nsamples_y, args.stride_sample_dst);
} else {
constexpr bool need_check = true;
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_stream_k, block_dims, nbytes_shared, stream>>>
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr,
args.ncols_x, args.nrows_x, args.ncols_y, args.stride_row_x, args.nrows_dst,
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
@@ -3085,7 +3093,7 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
}
mul_mat_q_stream_k_fixup<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_stream_k, block_dims, 0, stream>>>
(args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_y,
(args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_dst,
args.nrows_dst, args.nchannels_y, args.stride_channel_dst, args.nsamples_y, args.stride_sample_dst);
}
}

View File

@@ -513,6 +513,17 @@ void ggml_cuda_mul_mat_vec_q(
const int32_t * ids_d = ids ? (const int32_t *) ids->data : nullptr;
float * dst_d = (float *) dst->data;
// If src0 is a temporary compute buffer, clear any potential padding.
if (ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
GGML_ASSERT(!src0->view_src);
const size_t size_data = ggml_nbytes(src0);
const size_t size_alloc = ggml_backend_buffer_get_alloc_size(src0->buffer, src0);
if (size_alloc > size_data) {
CUDA_CHECK(cudaMemsetAsync((char *) src0->data + size_data, 0, size_alloc - size_data, stream));
}
}
const int64_t ne10_padded = GGML_PAD(ne10, MATRIX_ROW_PADDING);
ggml_cuda_pool_alloc<char> src1_q8_1(ctx.pool(), ne13*ne12 * ne11*ne10_padded * sizeof(block_q8_1)/QK8_1);
{

View File

@@ -163,6 +163,7 @@ void quantize_mmq_q8_1_cuda(
const float * x, const int32_t * ids, void * vy, const ggml_type type_src0,
const int64_t ne00, const int64_t s01, const int64_t s02, const int64_t s03,
const int64_t ne0, const int64_t ne1, const int64_t ne2, const int64_t ne3, cudaStream_t stream) {
GGML_ASSERT(ne00 % 4 == 0);
GGML_ASSERT(ne0 % (4*QK8_1) == 0);
const int64_t block_num_x = (ne0 + 4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ - 1) / (4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ);

View File

@@ -518,6 +518,11 @@ static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
result.view_src = reinterpret_cast<uint64_t>(tensor->view_src);
result.view_offs = tensor->view_offs;
result.data = reinterpret_cast<uint64_t>(tensor->data);
// Avoid sending uninitialized data over the wire
memset(result.name, 0, sizeof(result.name));
memset(result.padding, 0, sizeof(result.padding));
snprintf(result.name, GGML_MAX_NAME, "%s", tensor->name);
return result;
}
@@ -1589,6 +1594,14 @@ static void rpc_serve_client(ggml_backend_t backend, const char * cache_dir,
void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint,
const char * cache_dir,
size_t free_mem, size_t total_mem) {
printf("Starting RPC server v%d.%d.%d\n",
RPC_PROTO_MAJOR_VERSION,
RPC_PROTO_MINOR_VERSION,
RPC_PROTO_PATCH_VERSION);
printf(" endpoint : %s\n", endpoint);
printf(" local cache : %s\n", cache_dir ? cache_dir : "n/a");
printf(" backend memory : %zu MB\n", free_mem / (1024 * 1024));
std::string host;
int port;
if (!parse_endpoint(endpoint, host, port)) {
@@ -1748,6 +1761,9 @@ static void * ggml_backend_rpc_get_proc_address(ggml_backend_reg_t reg, const ch
if (std::strcmp(name, "ggml_backend_rpc_add_device") == 0) {
return (void *)ggml_backend_rpc_add_device;
}
if (std::strcmp(name, "ggml_backend_rpc_start_server") == 0) {
return (void *)ggml_backend_rpc_start_server;
}
return NULL;
GGML_UNUSED(reg);

View File

@@ -193,7 +193,7 @@ static void ggml_check_sycl() try {
if (!initialized) {
g_ggml_sycl_debug = get_sycl_env("GGML_SYCL_DEBUG", 0);
g_ggml_sycl_disable_optimize= get_sycl_env("GGML_SYCL_DISABLE_OPT", 0);
g_ggml_sycl_disable_optimize= get_sycl_env("GGML_SYCL_DISABLE_OPT", 1);
g_ggml_sycl_disable_graph = get_sycl_env("GGML_SYCL_DISABLE_GRAPH", 1);
GGML_SYCL_DEBUG("[SYCL] call ggml_check_sycl\n");
GGML_LOG_INFO("Running with Environment Variables:\n");
@@ -338,7 +338,7 @@ ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer,
assert(tensor->view_src->buffer->buft == buffer->buft);
return GGML_STATUS_SUCCESS;
}
if (tensor->type == GGML_TYPE_Q4_0) {
if (tensor->type == GGML_TYPE_Q4_0 && !g_ggml_sycl_disable_optimize) {
ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
tensor->extra = extra;
ctx->tensor_extras.push_back(extra); //used to release it when destroy ctx.
@@ -3873,6 +3873,9 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
if (a->ne[3] != b->ne[3]) {
return false;
}
if (!ggml_is_contiguous(b)) {
return false;
}
ggml_type a_type = a->type;
if (a_type == GGML_TYPE_IQ4_NL || a_type == GGML_TYPE_IQ4_XS ||
a_type == GGML_TYPE_IQ3_XXS || a_type == GGML_TYPE_IQ3_S ||

View File

@@ -71,6 +71,22 @@ if (Vulkan_FOUND)
add_compile_definitions(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
endif()
# Compile a test shader to determine whether GL_EXT_bfloat16 is supported.
# If it's not, there will be an error to stderr.
# If it's supported, set a define to indicate that we should compile those shaders
execute_process(COMMAND ${Vulkan_GLSLC_EXECUTABLE} -o - -fshader-stage=compute --target-env=vulkan1.3 "${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders/test_bfloat16_support.comp"
OUTPUT_VARIABLE glslc_output
ERROR_VARIABLE glslc_error)
if (${glslc_error} MATCHES ".*extension not supported: GL_EXT_bfloat16.*")
message(STATUS "GL_EXT_bfloat16 not supported by glslc")
set(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT OFF)
else()
message(STATUS "GL_EXT_bfloat16 supported by glslc")
set(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT ON)
add_compile_definitions(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
endif()
target_link_libraries(ggml-vulkan PRIVATE Vulkan::Vulkan)
target_include_directories(ggml-vulkan PRIVATE ${CMAKE_CURRENT_BINARY_DIR})
@@ -142,6 +158,7 @@ if (Vulkan_FOUND)
-DGGML_VULKAN_COOPMAT_GLSLC_SUPPORT=${GGML_VULKAN_COOPMAT_GLSLC_SUPPORT}
-DGGML_VULKAN_COOPMAT2_GLSLC_SUPPORT=${GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT}
-DGGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT=${GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT}
-DGGML_VULKAN_BFLOAT16_GLSLC_SUPPORT=${GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT}
BUILD_COMMAND ${CMAKE_COMMAND} --build .
INSTALL_COMMAND ${CMAKE_COMMAND} --install .
INSTALL_DIR ${CMAKE_BINARY_DIR}

View File

@@ -51,6 +51,24 @@
#include "ggml-vulkan-shaders.hpp"
// remove this once it's more widely available in the SDK
#if !defined(VK_KHR_shader_bfloat16)
#define VK_KHR_shader_bfloat16 1
#define VK_KHR_SHADER_BFLOAT16_SPEC_VERSION 1
#define VK_KHR_SHADER_BFLOAT16_EXTENSION_NAME "VK_KHR_shader_bfloat16"
#define VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_BFLOAT16_FEATURES_KHR ((VkStructureType)1000141000)
#define VK_COMPONENT_TYPE_BFLOAT16_KHR ((VkComponentTypeKHR)1000141000)
typedef struct VkPhysicalDeviceShaderBfloat16FeaturesKHR {
VkStructureType sType;
void* pNext;
VkBool32 shaderBFloat16Type;
VkBool32 shaderBFloat16DotProduct;
VkBool32 shaderBFloat16CooperativeMatrix;
} VkPhysicalDeviceShaderBfloat16FeaturesKHR;
#endif
#define ROUNDUP_POW2(M, N) (((M) + (N) - 1) & ~((N) - 1))
#define CEIL_DIV(M, N) (((M) + (N)-1) / (N))
static bool is_pow2(uint32_t x) { return x > 1 && (x & (x-1)) == 0; }
@@ -266,8 +284,9 @@ struct vk_device_struct {
bool subgroup_require_full_support;
bool coopmat_support;
bool coopmat_acc_f32_support;
bool coopmat_acc_f16_support;
bool coopmat_acc_f32_support {};
bool coopmat_acc_f16_support {};
bool coopmat_bf16_support {};
uint32_t coopmat_m;
uint32_t coopmat_n;
uint32_t coopmat_k;
@@ -293,6 +312,7 @@ struct vk_device_struct {
vk_matmul_pipeline pipeline_matmul_f32 {};
vk_matmul_pipeline pipeline_matmul_f32_f16 {};
vk_matmul_pipeline pipeline_matmul_bf16 {};
vk_matmul_pipeline2 pipeline_matmul_f16;
vk_matmul_pipeline2 pipeline_matmul_f16_f32;
@@ -301,6 +321,7 @@ struct vk_device_struct {
vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_COUNT];
vk_matmul_pipeline pipeline_matmul_id_f32 {};
vk_matmul_pipeline pipeline_matmul_id_bf16 {};
vk_matmul_pipeline2 pipeline_matmul_id_f16;
vk_matmul_pipeline2 pipeline_matmul_id_f16_f32;
@@ -319,11 +340,17 @@ struct vk_device_struct {
vk_pipeline pipeline_get_rows[GGML_TYPE_COUNT];
vk_pipeline pipeline_get_rows_f32[GGML_TYPE_COUNT];
vk_pipeline pipeline_acc_f32;
vk_pipeline pipeline_add_f32, pipeline_add_f32_norepeat;
vk_pipeline pipeline_add_f16_f32_f16, pipeline_add_f16_f32_f16_norepeat;
vk_pipeline pipeline_sub_f32, pipeline_sub_f32_norepeat;
vk_pipeline pipeline_mul_f32, pipeline_mul_f32_norepeat;
vk_pipeline pipeline_div_f32, pipeline_div_f32_norepeat;
// [src0 0=fp32,1=fp16][src1 0=fp32,1=fp16][dst 0=fp32,1=fp16]
vk_pipeline pipeline_add[2][2][2];
vk_pipeline pipeline_add_norepeat[2][2][2];
vk_pipeline pipeline_sub[2][2][2];
vk_pipeline pipeline_sub_norepeat[2][2][2];
vk_pipeline pipeline_mul[2][2][2];
vk_pipeline pipeline_mul_norepeat[2][2][2];
vk_pipeline pipeline_div[2][2][2];
vk_pipeline pipeline_div_norepeat[2][2][2];
vk_pipeline pipeline_concat_f32, pipeline_concat_f16, pipeline_concat_i32;
vk_pipeline pipeline_upscale_f32;
vk_pipeline pipeline_scale_f32;
@@ -333,8 +360,8 @@ struct vk_device_struct {
vk_pipeline pipeline_clamp_f32;
vk_pipeline pipeline_pad_f32;
vk_pipeline pipeline_repeat_f32, pipeline_repeat_back_f32;
vk_pipeline pipeline_cpy_f32_f32, pipeline_cpy_f32_f16, pipeline_cpy_f16_f16;
vk_pipeline pipeline_contig_cpy_f32_f32, pipeline_contig_cpy_f32_f16, pipeline_contig_cpy_f16_f16;
vk_pipeline pipeline_cpy_f32_f32, pipeline_cpy_f32_f16, pipeline_cpy_f16_f16, pipeline_cpy_f16_f32, pipeline_cpy_f32_bf16;
vk_pipeline pipeline_contig_cpy_f32_f32, pipeline_contig_cpy_f32_f16, pipeline_contig_cpy_f16_f16, pipeline_contig_cpy_f16_f32, pipeline_contig_cpy_f32_bf16;
vk_pipeline pipeline_cpy_f32_quant[GGML_TYPE_COUNT];
vk_pipeline pipeline_cpy_quant_f32[GGML_TYPE_COUNT];
vk_pipeline pipeline_norm_f32;
@@ -342,14 +369,17 @@ struct vk_device_struct {
vk_pipeline pipeline_rms_norm_f32;
vk_pipeline pipeline_rms_norm_back_f32;
vk_pipeline pipeline_l2_norm_f32;
vk_pipeline pipeline_gelu_f32;
vk_pipeline pipeline_gelu_quick_f32;
vk_pipeline pipeline_silu_f32;
vk_pipeline pipeline_silu_back_f32;
vk_pipeline pipeline_relu_f32;
// [src/dst 0=fp32,1=fp16]
vk_pipeline pipeline_gelu[2];
vk_pipeline pipeline_gelu_quick[2];
vk_pipeline pipeline_silu[2];
vk_pipeline pipeline_relu[2];
vk_pipeline pipeline_tanh[2];
vk_pipeline pipeline_sigmoid[2];
vk_pipeline pipeline_leaky_relu_f32;
vk_pipeline pipeline_tanh_f32;
vk_pipeline pipeline_sigmoid_f32;
vk_pipeline pipeline_silu_back_f32;
vk_pipeline pipeline_diag_mask_inf_f32;
vk_pipeline pipeline_soft_max_f32, pipeline_soft_max_f32_f16;
vk_pipeline pipeline_soft_max_f32_wg512, pipeline_soft_max_f32_f16_wg512;
@@ -368,6 +398,8 @@ struct vk_device_struct {
vk_pipeline pipeline_rwkv_wkv6_f32;
vk_pipeline pipeline_rwkv_wkv7_f32;
vk_pipeline pipeline_opt_step_adamw_f32;
vk_pipeline pipeline_conv2d_dw_whcn_f32;
vk_pipeline pipeline_conv2d_dw_cwhn_f32;
// [2][2][2] is for {f16acc,f32acc}x{large,small_rows}x{unaligned, aligned}
vk_pipeline pipeline_flash_attn_f32_f16_D64[GGML_TYPE_COUNT][2][2][2];
@@ -680,6 +712,24 @@ struct vk_op_rwkv_wkv7_push_constants {
uint32_t H;
};
struct vk_op_conv2d_dw_push_constants {
uint32_t ne;
uint32_t batches;
uint32_t channels;
uint32_t dst_w;
uint32_t dst_h;
uint32_t src_w;
uint32_t src_h;
uint32_t knl_w;
uint32_t knl_h;
int32_t stride_x;
int32_t stride_y;
int32_t pad_x;
int32_t pad_y;
int32_t dilation_x;
int32_t dilation_y;
};
struct vk_op_upscale_push_constants {
uint32_t ne; uint32_t a_offset; uint32_t d_offset;
uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
@@ -1791,6 +1841,12 @@ static void ggml_vk_load_shaders(vk_device& device) {
if (!device->pipeline_matmul_id_f32) {
device->pipeline_matmul_id_f32 = std::make_shared<vk_matmul_pipeline_struct>();
}
if (!device->pipeline_matmul_bf16) {
device->pipeline_matmul_bf16 = std::make_shared<vk_matmul_pipeline_struct>();
}
if (!device->pipeline_matmul_id_bf16) {
device->pipeline_matmul_id_bf16 = std::make_shared<vk_matmul_pipeline_struct>();
}
std::vector<std::future<void>> compiles;
auto const &ggml_vk_create_pipeline = [&](vk_device& device, vk_pipeline& pipeline, const std::string &name, size_t spv_size, const void* spv_data, const std::string &entrypoint,
@@ -1900,6 +1956,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(PIPELINE_NAME . f32acc, NAMELC, , WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT) \
CREATE_MM2(pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3)
#if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
if (device->coopmat_bf16_support) {
CREATE_MM(pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3)
}
#endif
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
@@ -1921,6 +1982,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM2(pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_id_push_constants, 4)
#if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
if (device->coopmat_bf16_support) {
CREATE_MM(pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4)
}
#endif
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
@@ -1974,6 +2040,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16_f32, matmul_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
#if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
if (device->coopmat_bf16_support) {
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, )
}
#endif
if (device->coopmat_acc_f16_support) {
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
@@ -2022,6 +2093,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
#if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
if (device->coopmat_bf16_support) {
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
}
#endif
if (device->coopmat_acc_f16_support) {
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
@@ -2104,6 +2180,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16_f32, matmul_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
@@ -2139,6 +2217,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
@@ -2191,6 +2271,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_f16.f32acc, matmul_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_f16_f32.f32acc, matmul_f16_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f32acc, matmul_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f32acc, matmul_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f32acc, matmul_q5_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
@@ -2226,6 +2308,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16.f32acc, matmul_id_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16_f32.f32acc, matmul_id_f16_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f32acc, matmul_id_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f32acc, matmul_id_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f32acc, matmul_id_q5_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
@@ -2246,8 +2330,26 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S].f32acc, matmul_id_iq3_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS].f32acc, matmul_id_iq4_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f32acc, matmul_id_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
#undef CREATE_MM
}
// reusing CREATE_MM from the fp32 path
if ((device->coopmat2 || device->coopmat_support)
#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
&& !device->coopmat_bf16_support
#endif
) {
// use scalar tile sizes
l_warptile = { 128, 128, 128, 16, subgroup_size_8 * 2, 64, 2, 4, 4, 1, subgroup_size_8 };
m_warptile = { 128, 64, 64, 16, subgroup_size_8, 32, 2, 4, 2, 1, subgroup_size_8 };
s_warptile = { subgroup_size_16, 32, 32, 16, 32, 32, 2, 2, 2, 1, subgroup_size_8 };
l_wg_denoms = {128, 128, 1 };
m_wg_denoms = { 64, 64, 1 };
s_wg_denoms = { 32, 32, 1 };
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4, _id);
}
#undef CREATE_MM
// mul mat vec
@@ -2266,6 +2368,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
for (uint32_t i = 0; i < mul_mat_vec_max_cols; ++i) {
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f32_f32_"+std::to_string(i+1), mul_mat_vec_f32_f32_f32_len, mul_mat_vec_f32_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f32_f32_"+std::to_string(i+1), mul_mat_vec_f16_f32_f32_len, mul_mat_vec_f16_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_BF16][i], "mul_mat_vec_bf16_f32_f32_"+std::to_string(i+1), mul_mat_vec_bf16_f32_f32_len, mul_mat_vec_bf16_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f32_f32_"+std::to_string(i+1), mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_f32_f32_"+std::to_string(i+1), mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_f32_f32_"+std::to_string(i+1), mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
@@ -2288,6 +2391,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f16_f32_"+std::to_string(i+1), mul_mat_vec_f32_f16_f32_len, mul_mat_vec_f32_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f16_f32_"+std::to_string(i+1), mul_mat_vec_f16_f16_f32_len, mul_mat_vec_f16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_BF16][i], "mul_mat_vec_bf16_f16_f32_"+std::to_string(i+1), mul_mat_vec_bf16_f16_f32_len, mul_mat_vec_bf16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f16_f32_"+std::to_string(i+1), mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_f16_f32_"+std::to_string(i+1), mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_f16_f32_"+std::to_string(i+1), mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
@@ -2311,6 +2415,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32", mul_mat_vec_id_f32_f32_len, mul_mat_vec_id_f32_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F16 ], "mul_mat_vec_id_f16_f32", mul_mat_vec_id_f16_f32_len, mul_mat_vec_id_f16_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_BF16], "mul_mat_vec_id_bf16_f32", mul_mat_vec_id_bf16_f32_len, mul_mat_vec_id_bf16_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
@@ -2356,6 +2461,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
// get_rows
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_F32 ], "get_rows_f32", get_rows_f32_len, get_rows_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_F16 ], "get_rows_f16", get_rows_f16_len, get_rows_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_BF16], "get_rows_bf16", get_rows_bf16_len, get_rows_bf16_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q4_0], "get_rows_q4_0", get_rows_q4_0_len, get_rows_q4_0_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q4_1], "get_rows_q4_1", get_rows_q4_1_len, get_rows_q4_1_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q5_0], "get_rows_q5_0", get_rows_q5_0_len, get_rows_q5_0_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
@@ -2373,6 +2479,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_F32 ], "get_rows_f32_f32", get_rows_f32_f32_len, get_rows_f32_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_F16 ], "get_rows_f16_f32", get_rows_f16_f32_len, get_rows_f16_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_BF16], "get_rows_bf16_f32", get_rows_bf16_f32_len, get_rows_bf16_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q4_0], "get_rows_q4_0_f32", get_rows_q4_0_f32_len, get_rows_q4_0_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q4_1], "get_rows_q4_1_f32", get_rows_q4_1_f32_len, get_rows_q4_1_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q5_0], "get_rows_q5_0_f32", get_rows_q5_0_f32_len, get_rows_q5_0_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
@@ -2399,7 +2506,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_p021_f16_f32[i], "mul_mat_vec_p021_f16_f32"+std::to_string(i+1), mul_mat_vec_p021_f16_f32_len, mul_mat_vec_p021_f16_f32_data, "main", 3, 6 * sizeof(uint32_t), {1, 1, 1}, {device->subgroup_size, i + 1}, 1, true);
}
}
ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_nc_f16_f32, "mul_mat_vec_nc_f16_f32", mul_mat_vec_nc_f16_f32_len, mul_mat_vec_nc_f16_f32_data, "main", 3, 7 * sizeof(uint32_t), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_nc_f16_f32, "mul_mat_vec_nc_f16_f32", mul_mat_vec_nc_f16_f32_len, mul_mat_vec_nc_f16_f32_data, "main", 3, 9 * sizeof(uint32_t), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_norm_f32, "norm_f32", norm_f32_len, norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_group_norm_f32, "group_norm_f32", group_norm_f32_len, group_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
@@ -2410,10 +2517,15 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_f32, "cpy_f32_f32", cpy_f32_f32_len, cpy_f32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_f16, "cpy_f32_f16", cpy_f32_f16_len, cpy_f32_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f16_f16, "cpy_f16_f16", cpy_f16_f16_len, cpy_f16_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f16_f32, "cpy_f16_f32", cpy_f16_f32_len, cpy_f16_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_bf16,"cpy_f32_bf16",cpy_f32_bf16_len,cpy_f32_bf16_data,"main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_f32, "contig_cpy_f32_f32", contig_cpy_f32_f32_len, contig_cpy_f32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_f16, "contig_cpy_f32_f16", contig_cpy_f32_f16_len, contig_cpy_f32_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f16_f16, "contig_cpy_f16_f16", contig_cpy_f16_f16_len, contig_cpy_f16_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f16_f32, "contig_cpy_f16_f32", contig_cpy_f16_f32_len, contig_cpy_f16_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_bf16,"contig_cpy_f32_bf16",contig_cpy_f32_bf16_len,contig_cpy_f32_bf16_data,"main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
if (device->float_controls_rte_fp16) {
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_0], "cpy_f32_q4_0", cpy_f32_q4_0_rte_len, cpy_f32_q4_0_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_1], "cpy_f32_q4_1", cpy_f32_q4_1_rte_len, cpy_f32_q4_1_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_1), 1, 1}, {}, 1);
@@ -2437,20 +2549,32 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_Q8_0], "cpy_q8_0_f32", cpy_q8_0_f32_len, cpy_q8_0_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q8_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_IQ4_NL], "cpy_iq4_nl_f32", cpy_iq4_nl_f32_len, cpy_iq4_nl_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_IQ4_NL), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_add_f32, "add_f32", add_f32_len, add_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
ggml_vk_create_pipeline(device, device->pipeline_add_f32_norepeat, "add_f32_norepeat", add_f32_len, add_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_add_f16_f32_f16, "add_f16_f32_f16", add_f16_f32_f16_len, add_f16_f32_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
ggml_vk_create_pipeline(device, device->pipeline_add_f16_f32_f16_norepeat, "add_f16_f32_f16_norepeat", add_f16_f32_f16_len, add_f16_f32_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
auto get_suffix = [](bool src0_f16, bool src1_f16, bool dst_f16) {
std::string s;
s += std::string(src0_f16 ? "_f16" : "_f32");
s += std::string(src1_f16 ? "_f16" : "_f32");
s += std::string(dst_f16 ? "_f16" : "_f32");
return s;
};
#define CREATE_BINARY(name, namemod, spec) \
for (int s0 : {0,1}) for (int s1 : {0,1}) for (int d : {0,1}) \
ggml_vk_create_pipeline(device, device->pipeline_ ## name ## namemod[s0][s1][d], \
#name + get_suffix(s0, s1, d) + #namemod, name ## _len[s0][s1][d], name ## _data[s0][s1][d], \
"main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, spec, 1);
CREATE_BINARY(add, , {0})
CREATE_BINARY(add, _norepeat, {1})
CREATE_BINARY(sub, , {0})
CREATE_BINARY(sub, _norepeat, {1})
CREATE_BINARY(mul, , {0})
CREATE_BINARY(mul, _norepeat, {1})
CREATE_BINARY(div, , {0})
CREATE_BINARY(div, _norepeat, {1})
#undef CREATE_BINARY
ggml_vk_create_pipeline(device, device->pipeline_acc_f32, "acc_f32", acc_f32_len, acc_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_sub_f32, "sub_f32", sub_f32_len, sub_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
ggml_vk_create_pipeline(device, device->pipeline_sub_f32_norepeat, "sub_f32_norepeat", sub_f32_len, sub_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_mul_f32, "mul_f32", mul_f32_len, mul_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
ggml_vk_create_pipeline(device, device->pipeline_mul_f32_norepeat, "mul_f32_norepeat", mul_f32_len, mul_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_div_f32, "div_f32", div_f32_len, div_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
ggml_vk_create_pipeline(device, device->pipeline_div_f32_norepeat, "div_f32_norepeat", div_f32_len, div_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_concat_f32, "concat_f32", concat_f32_len, concat_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_concat_f16, "concat_f16", concat_f16_len, concat_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_concat_i32, "concat_i32", concat_i32_len, concat_i32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
@@ -2470,14 +2594,20 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_repeat_f32, "repeat_f32", repeat_f32_len, repeat_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_repeat_back_f32, "repeat_back_f32", repeat_back_f32_len, repeat_back_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_gelu_f32, "gelu_f32", gelu_f32_len, gelu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_gelu_quick_f32, "gelu_quick_f32", gelu_quick_f32_len, gelu_quick_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_silu_f32, "silu_f32", silu_f32_len, silu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_silu_back_f32, "silu_back_f32", silu_back_f32_len, silu_back_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_relu_f32, "relu_f32", relu_f32_len, relu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
#define CREATE_UNARY(name) \
ggml_vk_create_pipeline(device, device->pipeline_ ## name [0], #name "_f32", name ## _f32_len, name ## _f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); \
ggml_vk_create_pipeline(device, device->pipeline_ ## name [1], #name "_f16", name ## _f16_len, name ## _f16_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
CREATE_UNARY(gelu)
CREATE_UNARY(gelu_quick)
CREATE_UNARY(silu)
CREATE_UNARY(relu)
CREATE_UNARY(tanh)
CREATE_UNARY(sigmoid)
#undef CREATE_UNARY
ggml_vk_create_pipeline(device, device->pipeline_leaky_relu_f32, "leaky_relu_f32", leaky_relu_f32_len, leaky_relu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_tanh_f32, "tanh_f32", tanh_f32_len, tanh_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_sigmoid_f32, "sigmoid_f32", sigmoid_f32_len, sigmoid_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_silu_back_f32, "silu_back_f32", silu_back_f32_len, silu_back_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_diag_mask_inf_f32, "diag_mask_inf_f32", diag_mask_inf_f32_len, diag_mask_inf_f32_data, "main", 2, sizeof(vk_op_diag_mask_push_constants), {1, 512, 1}, {}, 1, true);
@@ -2529,6 +2659,9 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_opt_step_adamw_f32, "opt_step_adamw_f32", opt_step_adamw_f32_len, opt_step_adamw_f32_data, "main", 5, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_whcn_f32, "conv2d_dw_whcn_f32", conv2d_dw_whcn_f32_len, conv2d_dw_whcn_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_cwhn_f32, "conv2d_dw_cwhn_f32", conv2d_dw_cwhn_f32_len, conv2d_dw_cwhn_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
for (auto &c : compiles) {
c.wait();
}
@@ -2578,6 +2711,7 @@ static vk_device ggml_vk_get_device(size_t idx) {
bool coopmat2_support = false;
device->coopmat_support = false;
device->integer_dot_product = false;
bool bfloat16_support = false;
for (const auto& properties : ext_props) {
if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) {
@@ -2608,6 +2742,9 @@ static vk_device ggml_vk_get_device(size_t idx) {
!getenv("GGML_VK_DISABLE_INTEGER_DOT_PRODUCT")) {
device->integer_dot_product = true;
#endif
} else if (strcmp("VK_KHR_shader_bfloat16", properties.extensionName) == 0 &&
!getenv("GGML_VK_DISABLE_BFLOAT16")) {
bfloat16_support = true;
}
}
@@ -2794,6 +2931,17 @@ static vk_device ggml_vk_get_device(size_t idx) {
}
#endif
#if defined(VK_KHR_shader_bfloat16)
VkPhysicalDeviceShaderBfloat16FeaturesKHR bfloat16_features {};
bfloat16_features.pNext = nullptr;
bfloat16_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_BFLOAT16_FEATURES_KHR;
if (bfloat16_support) {
last_struct->pNext = (VkBaseOutStructure *)&bfloat16_features;
last_struct = (VkBaseOutStructure *)&bfloat16_features;
device_extensions.push_back("VK_KHR_shader_bfloat16");
}
#endif
VkPhysicalDeviceMaintenance4Features maint4_features {};
maint4_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_FEATURES;
if (maintenance4_support) {
@@ -2991,6 +3139,25 @@ static vk_device ggml_vk_get_device(size_t idx) {
device->coopmat_int_n = prop.NSize;
device->coopmat_int_k = prop.KSize;
}
#if defined(VK_KHR_shader_bfloat16) && defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
if (prop.AType == VK_COMPONENT_TYPE_BFLOAT16_KHR &&
prop.BType == VK_COMPONENT_TYPE_BFLOAT16_KHR &&
prop.CType == VK_COMPONENT_TYPE_FLOAT32_KHR &&
prop.ResultType == VK_COMPONENT_TYPE_FLOAT32_KHR &&
(vk::ScopeKHR)prop.scope == vk::ScopeKHR::eSubgroup
) {
// coopmat sizes not set yet
if (device->coopmat_m == 0) {
device->coopmat_bf16_support = true;
device->coopmat_m = prop.MSize;
device->coopmat_n = prop.NSize;
device->coopmat_k = prop.KSize;
} else if (device->coopmat_m == prop.MSize && device->coopmat_n == prop.NSize && device->coopmat_k == prop.KSize) {
// Only enable if shape is identical
device->coopmat_bf16_support = true;
}
}
#endif
}
if (device->coopmat_m == 0 || !device->coopmat_acc_f32_support) {
@@ -2998,11 +3165,19 @@ static vk_device ggml_vk_get_device(size_t idx) {
GGML_LOG_DEBUG("ggml_vulkan: WARNING: No suitable matrix core mode found. Disabling matrix cores.\n");
device->coopmat_support = false;
}
if (getenv("GGML_VK_DISABLE_BFLOAT16")) {
device->coopmat_bf16_support = false;
}
}
if (device->coopmat_support) {
device_extensions.push_back("VK_KHR_cooperative_matrix");
}
#if defined(VK_KHR_shader_bfloat16)
if (device->coopmat_bf16_support) {
device_extensions.push_back("VK_KHR_shader_bfloat16");
}
#endif
#endif
device->name = GGML_VK_NAME + std::to_string(idx);
@@ -3459,6 +3634,9 @@ static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_pipeline(ggml_backend_vk_conte
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
return ctx->device->pipeline_matmul_f32_f16;
}
if (src0_type == GGML_TYPE_BF16 && src1_type == GGML_TYPE_BF16) {
return ctx->device->pipeline_matmul_bf16;
}
if (prec == GGML_PREC_DEFAULT && ctx->device->fp16 && !(ctx->device->coopmat_support && !ctx->device->coopmat_acc_f16_support)) {
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
return ctx->device->pipeline_matmul_f16_f32.f16acc;
@@ -3530,6 +3708,7 @@ static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec(ggml_backend_vk_context *
switch (a_type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_BF16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
@@ -3562,6 +3741,9 @@ static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_id_pipeline(ggml_backend_vk_co
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
return ctx->device->pipeline_matmul_id_f32;
}
if (src0_type == GGML_TYPE_BF16 && src1_type == GGML_TYPE_BF16) {
return ctx->device->pipeline_matmul_id_bf16;
}
if (prec == GGML_PREC_DEFAULT && ctx->device->fp16 && !(ctx->device->coopmat_support && !ctx->device->coopmat_acc_f16_support)) {
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
return ctx->device->pipeline_matmul_id_f16_f32.f16acc;
@@ -3615,6 +3797,7 @@ static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec_id(ggml_backend_vk_context
switch (a_type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_BF16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
@@ -4350,6 +4533,20 @@ static vk_pipeline ggml_vk_get_cpy_pipeline(ggml_backend_vk_context * ctx, const
return ctx->device->pipeline_cpy_f16_f16;
}
}
if (src->type == GGML_TYPE_F16 && to == GGML_TYPE_F32) {
if (contig) {
return ctx->device->pipeline_contig_cpy_f16_f32;
} else {
return ctx->device->pipeline_cpy_f16_f32;
}
}
if (src->type == GGML_TYPE_F32 && to == GGML_TYPE_BF16) {
if (contig) {
return ctx->device->pipeline_contig_cpy_f32_bf16;
} else {
return ctx->device->pipeline_cpy_f32_bf16;
}
}
if (src->type == GGML_TYPE_F32) {
switch (to) {
case GGML_TYPE_Q4_0:
@@ -4477,8 +4674,12 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
const bool x_non_contig = (ctx->device->coopmat2 && src0->type == GGML_TYPE_F32) ||
!ggml_vk_dim01_contiguous(src0);
const bool y_non_contig = (ctx->device->coopmat2 && src1->type == GGML_TYPE_F32) ||
(src0->type == GGML_TYPE_BF16 && src1->type != GGML_TYPE_BF16) ||
!ggml_vk_dim01_contiguous(src1);
// If src0 is BF16, try to use a BF16 x BF16 multiply
ggml_type f16_type = src0->type == GGML_TYPE_BF16 ? GGML_TYPE_BF16 : GGML_TYPE_F16;
const bool y_f32_kernel = src1->type == GGML_TYPE_F32 && !y_non_contig;
bool quantize_y = ctx->device->integer_dot_product && src1->type == GGML_TYPE_F32 && ggml_is_contiguous(src1) && (ne11 * ne10) % 4 == 0;
@@ -4488,25 +4689,25 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
if (mmp == nullptr) {
// Fall back to f16 dequant mul mat
mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, src0->type, y_non_contig ? GGML_TYPE_F16 : src1->type, (ggml_prec)dst->op_params[0]);
mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, src0->type, y_non_contig ? f16_type : src1->type, (ggml_prec)dst->op_params[0]);
quantize_y = false;
}
const bool qx_needs_dequant = mmp == nullptr || x_non_contig;
const bool qy_needs_dequant = !quantize_y && ((src1->type != GGML_TYPE_F16 && !y_f32_kernel) || y_non_contig);
const bool qy_needs_dequant = !quantize_y && ((src1->type != f16_type && !y_f32_kernel) || y_non_contig);
if (qx_needs_dequant) {
// Fall back to dequant + f16 mulmat
mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, GGML_TYPE_F16, y_f32_kernel ? GGML_TYPE_F32 : GGML_TYPE_F16, (ggml_prec)dst->op_params[0]);
mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, f16_type, y_f32_kernel ? GGML_TYPE_F32 : f16_type, (ggml_prec)dst->op_params[0]);
}
// Not implemented
GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT
const uint32_t kpad = quantize_y ? 0 : ggml_vk_align_size(ne10, ggml_vk_guess_matmul_pipeline_align(ctx, mmp, ne01, ne11, qx_needs_dequant ? GGML_TYPE_F16 : src0->type, quantize_y ? GGML_TYPE_Q8_1 : (y_f32_kernel ? GGML_TYPE_F32 : src1->type)));
const uint32_t kpad = quantize_y ? 0 : ggml_vk_align_size(ne10, ggml_vk_guess_matmul_pipeline_align(ctx, mmp, ne01, ne11, qx_needs_dequant ? f16_type : src0->type, quantize_y ? GGML_TYPE_Q8_1 : (y_f32_kernel ? GGML_TYPE_F32 : src1->type)));
const bool aligned = !quantize_y && ne10 == kpad && ne01 > 8 && ne11 > 8;
vk_pipeline pipeline = ggml_vk_guess_matmul_pipeline(ctx, mmp, ne01, ne11, aligned, qx_needs_dequant ? GGML_TYPE_F16 : src0->type, quantize_y ? GGML_TYPE_Q8_1 : (y_f32_kernel ? GGML_TYPE_F32 : src1->type));
vk_pipeline pipeline = ggml_vk_guess_matmul_pipeline(ctx, mmp, ne01, ne11, aligned, qx_needs_dequant ? f16_type : src0->type, quantize_y ? GGML_TYPE_Q8_1 : (y_f32_kernel ? GGML_TYPE_F32 : src1->type));
// Reserve extra storage in the N dimension for the Y matrix, so we can avoid bounds-checking
uint32_t padded_n = qy_needs_dequant ? ROUNDUP_POW2(ne11, pipeline->wg_denoms[1]) : ne11;
@@ -4527,12 +4728,12 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
vk_pipeline to_q8_1 = nullptr;
if (x_non_contig) {
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, GGML_TYPE_F16);
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, f16_type);
} else {
to_fp16_vk_0 = ggml_vk_get_to_fp16(ctx, src0->type);
}
if (y_non_contig) {
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, GGML_TYPE_F16);
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, f16_type);
} else {
to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
}
@@ -4949,6 +5150,8 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
const uint64_t nb01 = src0->nb[1];
const uint64_t nb02 = src0->nb[2];
const uint64_t nb12 = src1->nb[2];
// const uint64_t ne10 = src1->ne[0];
const uint64_t ne11 = src1->ne[1];
const uint64_t ne12 = src1->ne[2];
@@ -4974,6 +5177,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
const uint32_t row_stride_x = nb01 / sizeof(ggml_fp16_t);
const uint32_t channel_stride_x = nb02 / sizeof(ggml_fp16_t);
const uint32_t channel_stride_y = nb12 / sizeof(float);
const uint64_t qx_sz = ggml_nbytes(src0);
const uint64_t qy_sz = ggml_nbytes(src1);
@@ -5004,7 +5208,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
const uint64_t d_shader_offset = d_buf_offset - d_buffer_offset;
// compute
const std::array<uint32_t, 7> pc = { (uint32_t)ne00, (uint32_t)ne01, row_stride_x, channel_stride_x, (uint32_t)(ne12 / ne02), (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
const std::array<uint32_t, 9> pc = { (uint32_t)ne00, (uint32_t)ne01, row_stride_x, channel_stride_x, channel_stride_y, (uint32_t)(ne12 / ne02), (uint32_t)ne12, (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_nc_f16_f32,
{ vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz }, vk_subbuffer{ d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, vk_subbuffer{ d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
@@ -5029,7 +5233,7 @@ static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context& subctx, c
// mul_mat_vec supports batching ne12*ne13 when ne11==1, or treating ne11 as the batch size (up to four)
// when ne12 and ne13 are one.
} else if ((dst->ne[1] == 1 || (dst->ne[1] <= mul_mat_vec_max_cols && src1->ne[2] * src1->ne[3] == 1)) &&
(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type))) {
(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16 || ggml_is_quantized(src0->type))) {
ggml_vk_mul_mat_vec_q_f16(ctx, subctx, src0, src1, dst, dryrun);
} else {
ggml_vk_mul_mat_q_f16(ctx, subctx, src0, src1, dst, dryrun);
@@ -5097,27 +5301,31 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
const bool x_non_contig = (ctx->device->coopmat2 && src0->type == GGML_TYPE_F32) ||
!ggml_vk_dim01_contiguous(src0);
const bool y_non_contig = (ctx->device->coopmat2 && src1->type == GGML_TYPE_F32) ||
(src0->type == GGML_TYPE_BF16 && src1->type != GGML_TYPE_BF16) ||
!ggml_vk_dim01_contiguous(src1);
// If src0 is BF16, try to use a BF16 x BF16 multiply
ggml_type f16_type = src0->type == GGML_TYPE_BF16 ? GGML_TYPE_BF16 : GGML_TYPE_F16;
const bool y_f32_kernel = src1->type == GGML_TYPE_F32 && !y_non_contig;
vk_matmul_pipeline mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, src0->type, y_non_contig ? GGML_TYPE_F16 : src1->type, (ggml_prec)dst->op_params[0]);
vk_matmul_pipeline mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, src0->type, y_non_contig ? f16_type : src1->type, (ggml_prec)dst->op_params[0]);
const bool qx_needs_dequant = mmp == nullptr || x_non_contig;
const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !y_f32_kernel) || y_non_contig;
const bool qy_needs_dequant = (src1->type != f16_type && !y_f32_kernel) || y_non_contig;
if (qx_needs_dequant) {
// Fall back to dequant + f16 mulmat
mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, GGML_TYPE_F16, y_f32_kernel ? GGML_TYPE_F32 : GGML_TYPE_F16, (ggml_prec)dst->op_params[0]);
mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, f16_type, y_f32_kernel ? GGML_TYPE_F32 : f16_type, (ggml_prec)dst->op_params[0]);
}
// Not implemented
GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT
const uint32_t kpad = ggml_vk_align_size(ne10, ggml_vk_guess_matmul_id_pipeline_align(ctx, mmp, ne01, nei1, qx_needs_dequant ? GGML_TYPE_F16 : src0->type));
const uint32_t kpad = ggml_vk_align_size(ne10, ggml_vk_guess_matmul_id_pipeline_align(ctx, mmp, ne01, nei1, qx_needs_dequant ? f16_type : src0->type));
const bool aligned = ne10 == kpad && ne01 > 8 && nei1 > 8;
vk_pipeline pipeline = ggml_vk_guess_matmul_id_pipeline(ctx, mmp, ne01, nei1, aligned, qx_needs_dequant ? GGML_TYPE_F16 : src0->type);
vk_pipeline pipeline = ggml_vk_guess_matmul_id_pipeline(ctx, mmp, ne01, nei1, aligned, qx_needs_dequant ? f16_type : src0->type);
// Reserve extra storage in the N dimension for the Y matrix, so we can avoid bounds-checking
uint32_t padded_n = qy_needs_dequant ? ROUNDUP_POW2(ne11, pipeline->wg_denoms[1]) :ne11;
@@ -5136,12 +5344,12 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
vk_pipeline to_fp16_vk_1 = nullptr;
if (x_non_contig) {
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, GGML_TYPE_F16);
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, f16_type);
} else {
to_fp16_vk_0 = ggml_vk_get_to_fp16(ctx, src0->type);
}
if (y_non_contig) {
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, GGML_TYPE_F16);
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, f16_type);
} else {
to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
}
@@ -5722,26 +5930,37 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
}
return nullptr;
case GGML_OP_ADD:
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_add_f32_norepeat : ctx->device->pipeline_add_f32;
}
if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) {
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_add_f16_f32_f16_norepeat : ctx->device->pipeline_add_f16_f32_f16;
}
return nullptr;
case GGML_OP_SUB:
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_sub_f32_norepeat : ctx->device->pipeline_sub_f32;
}
return nullptr;
case GGML_OP_MUL:
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_mul_f32_norepeat : ctx->device->pipeline_mul_f32;
}
return nullptr;
case GGML_OP_DIV:
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_div_f32_norepeat : ctx->device->pipeline_div_f32;
if ((src0->type != GGML_TYPE_F32 && src0->type != GGML_TYPE_F16) ||
(src1->type != GGML_TYPE_F32 && src1->type != GGML_TYPE_F16) ||
(dst->type != GGML_TYPE_F32 && dst->type != GGML_TYPE_F16)) {
return nullptr;
}
switch (op) {
case GGML_OP_ADD:
{
auto pipelines = ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_add_norepeat : ctx->device->pipeline_add;
return pipelines[src0->type == GGML_TYPE_F16][src1->type == GGML_TYPE_F16][dst->type == GGML_TYPE_F16];
}
case GGML_OP_SUB:
{
auto pipelines = ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_sub_norepeat : ctx->device->pipeline_sub;
return pipelines[src0->type == GGML_TYPE_F16][src1->type == GGML_TYPE_F16][dst->type == GGML_TYPE_F16];
}
case GGML_OP_MUL:
{
auto pipelines = ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_mul_norepeat : ctx->device->pipeline_mul;
return pipelines[src0->type == GGML_TYPE_F16][src1->type == GGML_TYPE_F16][dst->type == GGML_TYPE_F16];
}
case GGML_OP_DIV:
{
auto pipelines = ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_div_norepeat : ctx->device->pipeline_div;
return pipelines[src0->type == GGML_TYPE_F16][src1->type == GGML_TYPE_F16][dst->type == GGML_TYPE_F16];
}
default:
break;
}
return nullptr;
case GGML_OP_CONCAT:
@@ -5835,37 +6054,25 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
}
return nullptr;
case GGML_OP_UNARY:
if ((src0->type != GGML_TYPE_F32 && src0->type != GGML_TYPE_F16) ||
(dst->type != GGML_TYPE_F32 && dst->type != GGML_TYPE_F16) ||
(src0->type != dst->type)) {
return nullptr;
}
switch (ggml_get_unary_op(dst)) {
case GGML_UNARY_OP_SILU:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_silu_f32;
}
break;
return ctx->device->pipeline_silu[dst->type == GGML_TYPE_F16];
case GGML_UNARY_OP_GELU:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_gelu_f32;
}
break;
return ctx->device->pipeline_gelu[dst->type == GGML_TYPE_F16];
case GGML_UNARY_OP_GELU_QUICK:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_gelu_quick_f32;
}
break;
return ctx->device->pipeline_gelu_quick[dst->type == GGML_TYPE_F16];
case GGML_UNARY_OP_RELU:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_relu_f32;
}
break;
return ctx->device->pipeline_relu[dst->type == GGML_TYPE_F16];
case GGML_UNARY_OP_TANH:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_tanh_f32;
}
break;
return ctx->device->pipeline_tanh[dst->type == GGML_TYPE_F16];
case GGML_UNARY_OP_SIGMOID:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_sigmoid_f32;
}
break;
return ctx->device->pipeline_sigmoid[dst->type == GGML_TYPE_F16];
default:
break;
}
@@ -5988,6 +6195,15 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
return ctx->device->pipeline_leaky_relu_f32;
}
return nullptr;
case GGML_OP_CONV_2D_DW:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
if (ggml_is_contiguous(src1)) {
return ctx->device->pipeline_conv2d_dw_whcn_f32;
} else if (ggml_is_contiguous_channels(src1)) {
return ctx->device->pipeline_conv2d_dw_cwhn_f32;
}
}
return nullptr;
default:
return nullptr;
}
@@ -6014,6 +6230,7 @@ static bool ggml_vk_op_supports_incontiguous(ggml_op op) {
case GGML_OP_REPEAT_BACK:
case GGML_OP_ROPE:
case GGML_OP_RMS_NORM:
case GGML_OP_CONV_2D_DW:
return true;
default:
return false;
@@ -6310,6 +6527,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
case GGML_OP_CONCAT:
case GGML_OP_UPSCALE:
case GGML_OP_UNARY:
case GGML_OP_CONV_2D_DW:
{
const uint32_t ne = ggml_nelements(dst);
if (ne > 262144) {
@@ -7096,6 +7314,30 @@ static void ggml_vk_pool_2d(ggml_backend_vk_context * ctx, vk_context& subctx, c
}, dryrun);
}
static void ggml_vk_conv_2d_dw(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
vk_op_conv2d_dw_push_constants p{};
p.ne = ggml_nelements(dst);
p.channels = dst->ne[2];
p.batches = dst->ne[3];
p.dst_w = dst->ne[0];
p.dst_h = dst->ne[1];
p.src_w = src1->ne[0];
p.src_h = src1->ne[1];
p.knl_w = src0->ne[0];
p.knl_h = src0->ne[1];
p.stride_x = dst->op_params[0];
p.stride_y = dst->op_params[1];
p.pad_x = dst->op_params[2];
p.pad_y = dst->op_params[3];
p.dilation_x = dst->op_params[4];
p.dilation_y = dst->op_params[5];
GGML_ASSERT(src0->ne[3] == p.channels);
GGML_ASSERT(src1->ne[3] == p.batches);
ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_CONV_2D_DW, std::move(p), dryrun);
}
static void ggml_vk_leaky_relu(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
const float * op_params = (const float *)dst->op_params;
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_LEAKY_RELU, { (uint32_t)ggml_nelements(src0), 0, op_params[0], 0.0f }, dryrun);
@@ -8116,6 +8358,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
case GGML_OP_IM2COL:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_POOL_2D:
case GGML_OP_CONV_2D_DW:
case GGML_OP_RWKV_WKV6:
case GGML_OP_RWKV_WKV7:
case GGML_OP_LEAKY_RELU:
@@ -8179,6 +8422,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
case GGML_OP_IM2COL:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_POOL_2D:
case GGML_OP_CONV_2D_DW:
case GGML_OP_LEAKY_RELU:
{
// These operations all go through ggml_vk_op_f32, so short-circuit and
@@ -8352,6 +8596,10 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
case GGML_OP_POOL_2D:
ggml_vk_pool_2d(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_CONV_2D_DW:
ggml_vk_conv_2d_dw(ctx, compute_ctx, src0, src1, node, dryrun);
break;
case GGML_OP_LEAKY_RELU:
ggml_vk_leaky_relu(ctx, compute_ctx, src0, node, dryrun);
@@ -8473,6 +8721,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor *
case GGML_OP_IM2COL:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_POOL_2D:
case GGML_OP_CONV_2D_DW:
case GGML_OP_RWKV_WKV6:
case GGML_OP_RWKV_WKV7:
case GGML_OP_LEAKY_RELU:
@@ -9209,7 +9458,10 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_SIGMOID:
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
return ggml_is_contiguous(op->src[0]) &&
(op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
(op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16) &&
(op->src[0]->type == op->type);
default:
return false;
}
@@ -9227,6 +9479,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
switch (src0_type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_BF16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
@@ -9262,10 +9515,15 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
if (a->ne[3] != b->ne[3]) {
return false;
}
if (!(ggml_vk_dim01_contiguous(op->src[0]) || op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) ||
if (!(ggml_vk_dim01_contiguous(op->src[0]) || op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16 || op->src[0]->type == GGML_TYPE_BF16) ||
!(ggml_vk_dim01_contiguous(op->src[1]) || op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_F16)) {
return false;
}
if (op->src[0]->type == GGML_TYPE_BF16 && op->src[1]->type == GGML_TYPE_F16) {
// We currently don't have a bf16 x f16 shader, or an fp16->bf16 copy shader.
// So don't support this combination for now.
return false;
}
return true;
} break;
@@ -9338,6 +9596,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
switch (op->src[0]->type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_BF16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
@@ -9368,6 +9627,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
switch (src1_type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_BF16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
@@ -9381,6 +9641,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
}
if (src1_type == GGML_TYPE_F32) {
switch (src0_type) {
case GGML_TYPE_F16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
@@ -9419,6 +9680,9 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
return (op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
(op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_F16) &&
(op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16);
case GGML_OP_SILU_BACK:
case GGML_OP_RMS_NORM_BACK:
case GGML_OP_SQR:
@@ -9442,6 +9706,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_OP_COUNT_EQUAL:
case GGML_OP_IM2COL:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_CONV_2D_DW:
case GGML_OP_POOL_2D:
case GGML_OP_RWKV_WKV6:
case GGML_OP_RWKV_WKV7:

View File

@@ -12,6 +12,9 @@ endif()
if (GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
add_compile_definitions(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
endif()
if (GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
add_compile_definitions(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
endif()
set(TARGET vulkan-shaders-gen)
add_executable(${TARGET} vulkan-shaders-gen.cpp)
install(TARGETS ${TARGET} RUNTIME)

View File

@@ -18,7 +18,11 @@ void main() {
// fast path for when all four iterations are in-bounds
if (idx + (num_iter-1)*num_threads < p.ne) {
[[unroll]] for (uint i = 0; i < num_iter; ++i) {
#ifndef OPTIMIZATION_ERROR_WORKAROUND
#if defined(DATA_D_BF16)
float f = float(data_a[get_aoffset() + idx]);
data_d[get_doffset() + idx] = D_TYPE(fp32_to_bf16(f));
#elif !defined(OPTIMIZATION_ERROR_WORKAROUND)
data_d[get_doffset() + idx] = D_TYPE(data_a[get_aoffset() + idx]);
#else
data_d[get_doffset() + idx] = data_a[get_aoffset() + idx];
@@ -31,7 +35,10 @@ void main() {
continue;
}
#ifndef OPTIMIZATION_ERROR_WORKAROUND
#if defined(DATA_D_BF16)
float f = float(data_a[get_aoffset() + idx]);
data_d[get_doffset() + idx] = D_TYPE(fp32_to_bf16(f));
#elif !defined(OPTIMIZATION_ERROR_WORKAROUND)
data_d[get_doffset() + idx] = D_TYPE(data_a[get_aoffset() + idx]);
#else
data_d[get_doffset() + idx] = data_a[get_aoffset() + idx];

View File

@@ -0,0 +1,105 @@
#version 450
#include "types.comp"
layout (push_constant) uniform parameter
{
uint ne;
uint batches;
uint channels;
uint dst_w;
uint dst_h;
uint src_w;
uint src_h;
uint knl_w;
uint knl_h;
int stride_x;
int stride_y;
int pad_x;
int pad_y;
int dilation_x;
int dilation_y;
} p;
layout (binding = 0) readonly buffer A {A_TYPE knl_data[];};
layout (binding = 1) readonly buffer B {B_TYPE src_data[];};
layout (binding = 2) writeonly buffer D {D_TYPE dst_data[];};
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
FLOAT_TYPE conv_2d_dw_whcn(uint idx) {
uint i0 = idx / p.dst_w;
uint dst_x = idx - i0 * p.dst_w;
uint i1 = i0 / p.dst_h;
uint dst_y = i0 - i1 * p.dst_h;
uint n = i1 / p.channels;
uint c = i1 - n * p.channels;
uint src_i = n * p.channels * p.src_h * p.src_w + c * p.src_h * p.src_w;
uint knl_i = c * p.knl_h * p.knl_w;
FLOAT_TYPE sum = 0.0;
for (uint knl_y = 0; knl_y < p.knl_h; ++knl_y) {
uint src_y = dst_y * p.stride_y + knl_y * p.dilation_y - p.pad_y;
if (src_y >= p.src_h) { // src_y < 0 will wrap to a large unsigned int
continue;
}
for (uint knl_x = 0; knl_x < p.knl_w; ++knl_x) {
uint src_x = dst_x * p.stride_x + knl_x * p.dilation_x - p.pad_x;
if (src_x >= p.src_w) { // src_x < 0 will wrap to a large unsigned int
continue;
}
FLOAT_TYPE v = FLOAT_TYPE(src_data[src_i + src_y * p.src_w + src_x]);
FLOAT_TYPE k = FLOAT_TYPE(knl_data[knl_i + knl_y * p.knl_w + knl_x]);
sum = fma(v, k, sum);
}
}
return sum;
}
FLOAT_TYPE conv_2d_dw_cwhn(uint idx) {
uint i0 = idx / p.channels;
uint c = idx - i0 * p.channels;
uint i1 = i0 / p.dst_w;
uint dst_x = i0 - i1 * p.dst_w;
uint n = i1 / p.dst_h;
uint dst_y = i1 - n * p.dst_h;
uint src_i = n * p.channels * p.src_h * p.src_w;
uint src_row = p.src_w * p.channels;
uint knl_row = p.knl_w * p.channels;
FLOAT_TYPE sum = 0.0;
for (uint knl_y = 0; knl_y < p.knl_h; ++knl_y) {
uint src_y = dst_y * p.stride_y + knl_y * p.dilation_y - p.pad_y;
if (src_y >= p.src_h) { // src_y < 0 will wrap to a large unsigned int
continue;
}
for (uint knl_x = 0; knl_x < p.knl_w; ++knl_x) {
uint src_x = dst_x * p.stride_x + knl_x * p.dilation_x - p.pad_x;
if (src_x >= p.src_w) { // src_x < 0 will wrap to a large unsigned int
continue;
}
FLOAT_TYPE v = FLOAT_TYPE(src_data[src_i + src_y * src_row + src_x * p.channels + c]);
FLOAT_TYPE k = FLOAT_TYPE(knl_data[ knl_y * knl_row + knl_x * p.channels + c]);
sum = fma(v, k, sum);
}
}
return sum;
}
void main() {
uint idx = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x;
if (idx >= p.ne) {
return;
}
FLOAT_TYPE result =
#ifdef WHCN
conv_2d_dw_whcn(idx);
#else
conv_2d_dw_cwhn(idx);
#endif
dst_data[idx] = D_TYPE(result);
}

View File

@@ -12,7 +12,10 @@ void main() {
return;
}
#ifndef OPTIMIZATION_ERROR_WORKAROUND
#if defined(DATA_D_BF16)
float f = float(data_a[get_aoffset() + src0_idx(idx)]);
data_d[get_doffset() + dst_idx(idx)] = D_TYPE(fp32_to_bf16(f));
#elif !defined(OPTIMIZATION_ERROR_WORKAROUND)
data_d[get_doffset() + dst_idx(idx)] = D_TYPE(data_a[get_aoffset() + src0_idx(idx)]);
#else
data_d[get_doffset() + dst_idx(idx)] = data_a[get_aoffset() + src0_idx(idx)];

View File

@@ -23,6 +23,12 @@ vec2 dequantize(uint ib, uint iqs, uint a_offset) {
}
#endif
#if defined(DATA_A_BF16)
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
return vec2(bf16_to_fp32(data_a[a_offset + ib]), bf16_to_fp32(data_a[a_offset + ib + 1]));
}
#endif
#if defined(DATA_A_Q4_0)
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
@@ -428,7 +434,7 @@ vec4 dequantize4(uint ib, uint iqs, uint a_offset) {
}
#endif
#if defined(DATA_A_F32) || defined(DATA_A_F16)
#if defined(DATA_A_F32) || defined(DATA_A_F16) || defined(DATA_A_BF16)
vec2 get_dm(uint ib, uint a_offset) {
return vec2(0, 0);
}

View File

@@ -20,9 +20,14 @@ void main() {
const uint a_offset = get_aoffset() + i01*p.nb01 + i11*p.nb02 + i12*p.nb03;
const uint d_offset = get_doffset() + i10*p.nb21 + i11*p.nb22 + i12*p.nb23;
#ifndef OPTIMIZATION_ERROR_WORKAROUND
data_d[d_offset + i00] = D_TYPE(data_a[a_offset + i00]);
#if defined(DATA_A_BF16)
FLOAT_TYPE v = FLOAT_TYPE(bf16_to_fp32(data_a[a_offset + i00]));
#else
data_d[d_offset + i00] = data_a[a_offset + i00];
FLOAT_TYPE v = FLOAT_TYPE(data_a[a_offset + i00]);
#endif
#ifndef OPTIMIZATION_ERROR_WORKAROUND
data_d[d_offset + i00] = D_TYPE(v);
#else
data_d[d_offset + i00] = D_TYPE(v);
#endif
}

View File

@@ -6,7 +6,7 @@
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
#if !defined(DATA_A_F32) && !defined(DATA_A_F16)
#if !defined(DATA_A_F32) && !defined(DATA_A_F16) && !defined(DATA_A_BF16)
#define K_PER_ITER 8
#else
#define K_PER_ITER 2

View File

@@ -21,7 +21,9 @@ layout (push_constant) uniform parameter
uint nrows_x;
uint row_stride_x;
uint channel_stride_x;
uint channel_stride_y;
uint channel_x_divisor;
uint ne12;
uint b_offset;
uint d_offset;
} p;
@@ -33,6 +35,7 @@ void main() {
const uint row_x = gl_GlobalInvocationID.y;
const uint channel = gl_GlobalInvocationID.z;
const uint channel_x = channel / p.channel_x_divisor;
const uint channel_y = channel % p.ne12;
const uint nrows_y = p.ncols_x;
const uint nrows_dst = p.nrows_x;
@@ -56,7 +59,7 @@ void main() {
const uint row_y = col_x;
const uint ix = channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x;
const uint iy = channel*nrows_y + row_y;
const uint iy = channel_y*p.channel_stride_y + row_y;
const vec4 av4 = vec4(data_a_v4[ix / 4]);
const vec4 bv4 = vec4(data_b_v4[iy / 4]);
@@ -72,7 +75,7 @@ void main() {
const uint row_y = col_x;
const uint ix = channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x;
const uint iy = channel*nrows_y + row_y;
const uint iy = channel_y*p.channel_stride_y + row_y;
const vec4 av4 = vec4(data_a_v4[ix / 4]);
const vec4 bv4 = vec4(data_b_v4[iy / 4]);
@@ -89,7 +92,7 @@ void main() {
const uint row_y = col_x;
const uint ix = channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x;
const uint iy = channel*nrows_y + row_y;
const uint iy = channel_y*p.channel_stride_y + row_y;
const FLOAT_TYPE xi = FLOAT_TYPE(data_a[ix]);

View File

@@ -10,6 +10,10 @@
#extension GL_EXT_shader_explicit_arithmetic_types_float16 : require
#endif
#if defined(DATA_A_BF16) && defined(COOPMAT)
#extension GL_EXT_bfloat16 : enable
#endif
#ifdef COOPMAT
#extension GL_KHR_cooperative_matrix : enable
#extension GL_KHR_memory_scope_semantics : enable
@@ -29,6 +33,10 @@
#define LOAD_VEC_B 1
#endif
#if !defined(TO_FLOAT_TYPE)
#define TO_FLOAT_TYPE FLOAT_TYPE
#endif
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
@@ -202,8 +210,8 @@ void main() {
#endif
#ifdef COOPMAT
coopmat<float16_t, gl_ScopeSubgroup, TM, TK, gl_MatrixUseA> cache_a;
coopmat<float16_t, gl_ScopeSubgroup, TK, TN, gl_MatrixUseB> cache_b;
coopmat<FLOAT_TYPE, gl_ScopeSubgroup, TM, TK, gl_MatrixUseA> cache_a;
coopmat<FLOAT_TYPE, gl_ScopeSubgroup, TK, TN, gl_MatrixUseB> cache_b;
coopmat<ACC_TYPE, gl_ScopeSubgroup, TM, TN, gl_MatrixUseAccumulator> sums[cms_per_row * cms_per_col];
[[unroll]] for (uint i = 0; i < cms_per_row * cms_per_col; i++) {
@@ -248,6 +256,21 @@ void main() {
buf_a[(loadc_a + l) * SHMEM_STRIDE + loadr_a] = FLOAT_TYPE(0.0f);
}
#endif
#elif defined(DATA_A_BF16)
#if LOAD_VEC_A == 4
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;
buf_a[buf_idx ] = TO_FLOAT_TYPE(data_a[idx].x);
buf_a[buf_idx + 1] = TO_FLOAT_TYPE(data_a[idx].y);
buf_a[buf_idx + 2] = TO_FLOAT_TYPE(data_a[idx].z);
buf_a[buf_idx + 3] = TO_FLOAT_TYPE(data_a[idx].w);
#else
if (ir * BM + loadc_a + l < p.M && block + loadr_a < end_k) {
buf_a[(loadc_a + l) * SHMEM_STRIDE + loadr_a] = TO_FLOAT_TYPE(data_a[pos_a + (loadc_a + l) * p.stride_a + loadr_a]);
} else {
buf_a[(loadc_a + l) * SHMEM_STRIDE + loadr_a] = TO_FLOAT_TYPE(uint16_t(0));
}
#endif
#elif defined(DATA_A_Q4_0)
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + 4 * loadr_a;
@@ -695,13 +718,13 @@ void main() {
const uint idx = pos_b + (loadc_b + l) * p.stride_b / LOAD_VEC_B + loadr_b;
#endif
const uint buf_idx = (loadc_b + l) * SHMEM_STRIDE + loadr_b * LOAD_VEC_B;
buf_b[buf_idx + 0] = FLOAT_TYPE(data_b[idx].x);
buf_b[buf_idx + 1] = FLOAT_TYPE(data_b[idx].y);
buf_b[buf_idx + 2] = FLOAT_TYPE(data_b[idx].z);
buf_b[buf_idx + 3] = FLOAT_TYPE(data_b[idx].w);
buf_b[buf_idx + 0] = TO_FLOAT_TYPE(data_b[idx].x);
buf_b[buf_idx + 1] = TO_FLOAT_TYPE(data_b[idx].y);
buf_b[buf_idx + 2] = TO_FLOAT_TYPE(data_b[idx].z);
buf_b[buf_idx + 3] = TO_FLOAT_TYPE(data_b[idx].w);
#elif !MUL_MAT_ID
if (ic * BN + loadc_b + l < p.N && block + loadr_b < end_k) {
buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = FLOAT_TYPE(data_b[pos_b + (loadc_b + l) * p.stride_b + loadr_b]);
buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = TO_FLOAT_TYPE(data_b[pos_b + (loadc_b + l) * p.stride_b + loadr_b]);
} else {
buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = FLOAT_TYPE(0.0f);
}
@@ -709,7 +732,7 @@ void main() {
const uint row_i = ic * BN + loadc_b + l;
if (row_i < _ne1) {
const u16vec2 row_idx = row_ids[row_i];
buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = FLOAT_TYPE(data_b[pos_b + row_idx.y * p.batch_stride_b + (row_idx.x % p.ne11) * p.stride_b + loadr_b]);
buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = TO_FLOAT_TYPE(data_b[pos_b + row_idx.y * p.batch_stride_b + (row_idx.x % p.ne11) * p.stride_b + loadr_b]);
} else {
buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = FLOAT_TYPE(0.0f);
}

View File

@@ -14,6 +14,9 @@
#extension GL_EXT_buffer_reference : enable
#extension GL_KHR_shader_subgroup_ballot : enable
#extension GL_KHR_shader_subgroup_vote : enable
#ifdef DATA_A_BF16
#extension GL_EXT_bfloat16 : enable
#endif
#include "types.comp"
@@ -80,6 +83,12 @@ layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
#define store_scales(a)
#endif
#if defined(DATA_A_BF16)
#define MAT_TYPE bfloat16_t
#else
#define MAT_TYPE FLOAT_TYPE
#endif
#ifdef MUL_MAT_ID
layout (binding = 3) readonly buffer IDS {int data_ids[];};
@@ -271,8 +280,8 @@ void main() {
// Manually partial unroll
[[unroll]] for (uint j = 0; j < unroll_count; ++j) {
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BNover4, gl_MatrixUseB> mat_b;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BNover4, gl_MatrixUseB> mat_b;
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA);
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BNover4, block_k, BK), tensorViewTranspose);
@@ -286,8 +295,8 @@ void main() {
store_scales(tid);
}
while (block_k < end_k) {
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BNover4, gl_MatrixUseB> mat_b;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BNover4, gl_MatrixUseB> mat_b;
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA);
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BNover4, block_k, BK), tensorViewTranspose);
@@ -310,8 +319,8 @@ void main() {
// Manually partial unroll
[[unroll]] for (uint j = 0; j < unroll_count; ++j) {
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BNover2, gl_MatrixUseB> mat_b;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BNover2, gl_MatrixUseB> mat_b;
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA);
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BNover2, block_k, BK), tensorViewTranspose);
@@ -325,8 +334,8 @@ void main() {
store_scales(tid);
}
while (block_k < end_k) {
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BNover2, gl_MatrixUseB> mat_b;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BNover2, gl_MatrixUseB> mat_b;
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA);
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BNover2, block_k, BK), tensorViewTranspose);
@@ -350,8 +359,8 @@ void main() {
// Manually partial unroll
[[unroll]] for (uint j = 0; j < unroll_count; ++j) {
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA);
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BN, block_k, BK), tensorViewTranspose);
@@ -365,8 +374,8 @@ void main() {
store_scales(tid);
}
while (block_k < end_k) {
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA);
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BN, block_k, BK), tensorViewTranspose);
@@ -405,8 +414,8 @@ void main() {
fetch_scales(ir * BM, pos_a, stride_a, block_k + BK, tid, false);
}
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutAClamp, ir * BM, BM, block_k, BK) DECODEFUNCA);
#ifdef MUL_MAT_ID

View File

@@ -17,5 +17,5 @@ void main() {
return;
}
data_d[i] = max(float(data_a[i]), 0);
data_d[i] = D_TYPE(max(float(data_a[i]), 0));
}

View File

@@ -16,5 +16,5 @@ void main() {
if (i >= p.KX) {
return;
}
data_d[i] = D_TYPE(1. / (1 + exp(-1. *data_a[i])));
data_d[i] = D_TYPE(1. / (1 + exp(-1. * float(data_a[i]))));
}

View File

@@ -16,5 +16,5 @@ void main() {
if (i >= p.KX) {
return;
}
data_d[i] = D_TYPE(1. - 2. / (exp(2.*data_a[i]) + 1.));
data_d[i] = D_TYPE(1. - 2. / (exp(2.*float(data_a[i])) + 1.));
}

View File

@@ -0,0 +1,7 @@
#version 460
#extension GL_EXT_bfloat16 : require
void main()
{
}

View File

@@ -33,6 +33,19 @@
#endif
#endif
#if defined(DATA_A_BF16)
#define QUANT_K 1
#define QUANT_R 1
#if !defined(LOAD_VEC_A) || LOAD_VEC_A == 1
#define A_TYPE uint16_t
#elif LOAD_VEC_A == 4
#define A_TYPE u16vec4
#elif LOAD_VEC_A == 8
#error unsupported
#endif
#endif
#define QUANT_K_Q4_0 32
#define QUANT_R_Q4_0 2
@@ -1343,4 +1356,18 @@ void init_iq_shmem(uvec3 wgsize)
}
#endif
// returns the bfloat value in the low 16b.
// See ggml_compute_fp32_to_bf16
uint32_t fp32_to_bf16(float f)
{
uint32_t u = floatBitsToUint(f);
u = (u + (0x7fff + ((u >> 16) & 1))) >> 16;
return u;
}
float bf16_to_fp32(uint32_t u)
{
return uintBitsToFloat(u << 16);
}
#endif // !defined(GGML_TYPES_COMP)

View File

@@ -63,7 +63,8 @@ const std::vector<std::string> type_names = {
"iq3_xxs",
"iq3_s",
"iq4_xs",
"iq4_nl"
"iq4_nl",
"bf16",
};
namespace {
@@ -296,7 +297,6 @@ void matmul_shaders(bool fp16, bool matmul_id, bool coopmat, bool coopmat2, bool
std::string aligned_b_type_f16 = coopmat2 ? "float16_t" : fp16 ? "f16mat2x4" : "f16vec4";
std::map<std::string, std::string> base_dict = {
{"FLOAT_TYPE", (coopmat2 || fp16) ? "float16_t" : "float"},
{"FLOAT_TYPE_VEC2", (coopmat2 || fp16) ? "f16vec2" : "vec2"},
};
std::string shader_name = "matmul";
@@ -318,12 +318,45 @@ void matmul_shaders(bool fp16, bool matmul_id, bool coopmat, bool coopmat2, bool
const std::string source_name = coopmat2 ? "mul_mm_cm2.comp" : "mul_mm.comp";
// Shaders with f16 B_TYPE
string_to_spv(shader_name + "_f32_f16", source_name, merge_maps(base_dict, {{"DATA_A_F32", "1"}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}, }), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_f32_f16_aligned", source_name, merge_maps(base_dict, {{"DATA_A_F32", "1"}, {"LOAD_VEC_A", load_vec}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
auto const &FLOAT_TYPE = [&](const std::string &t) -> std::string {
if (t == "bf16") {
// scalar path promotes to float
if (!coopmat && !coopmat2) {
return "float";
}
return "bfloat16_t";
}
if (coopmat2 || fp16) {
return "float16_t";
}
return "float";
};
string_to_spv(shader_name + "_f16_aligned", source_name, merge_maps(base_dict, {{"DATA_A_F16", "1"}, {"LOAD_VEC_A", load_vec}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_f16", source_name, merge_maps(base_dict, {{"DATA_A_F16", "1"}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}}), fp16, coopmat, coopmat2, f16acc);
// Shaders with f16 B_TYPE
string_to_spv(shader_name + "_f32_f16", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE("f16")}, {"DATA_A_F32", "1"}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}, }), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_f32_f16_aligned", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE("f16")}, {"DATA_A_F32", "1"}, {"LOAD_VEC_A", load_vec}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_f16_aligned", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE("f16")}, {"DATA_A_F16", "1"}, {"LOAD_VEC_A", load_vec}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_f16", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE("f16")}, {"DATA_A_F16", "1"}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}}), fp16, coopmat, coopmat2, f16acc);
// bf16
{
std::string load_vec_a_unaligned = "1";
// For aligned matmul loads
std::string load_vec_a = coopmat2 ? "1" : "4";
// scalar path promotes to float
std::string to_float_type = (coopmat || coopmat2) ? "uintBitsToBFloat16EXT" : "bf16_to_fp32";
// If bfloat16 is not supported, then only compile the scalar (promote to fp32) shader
#if !defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
if (!(coopmat || coopmat2))
#endif
{
string_to_spv(shader_name + "_bf16_aligned", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE("bf16")}, {"TO_FLOAT_TYPE", to_float_type}, {"DATA_A_BF16", "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", "4"}, {"B_TYPE", coopmat2 ? "bfloat16_t" : "u16vec4"}, {"D_TYPE", "float"}, {"B_IS_FLOAT", "1"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_bf16", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE("bf16")}, {"TO_FLOAT_TYPE", to_float_type}, {"DATA_A_BF16", "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", coopmat2 ? "bfloat16_t" : "uint16_t"}, {"D_TYPE", "float"}, {"B_IS_FLOAT", "1"}}), fp16, coopmat, coopmat2, f16acc);
}
}
for (const auto& tname : type_names) {
std::string load_vec_quant = "2";
@@ -332,26 +365,30 @@ void matmul_shaders(bool fp16, bool matmul_id, bool coopmat, bool coopmat2, bool
else if ((tname == "q5_0") || (tname == "q5_1") || (tname == "q8_0") || (tname == "iq4_nl"))
load_vec_quant = "4";
if (tname == "bf16") {
continue;
}
std::string data_a_key = "DATA_A_" + to_uppercase(tname);
// For unaligned, load one at a time for f32/f16, or two at a time for quants
std::string load_vec_a_unaligned = (coopmat2 || tname == "f32" || tname == "f16") ? "1" : load_vec_quant;
std::string load_vec_a_unaligned = (coopmat2 || tname == "f32" || tname == "f16" || tname == "bf16") ? "1" : load_vec_quant;
// For aligned matmul loads
std::string load_vec_a = (coopmat2 || tname == "f32" || tname == "f16") ? load_vec : load_vec_quant;
std::string load_vec_a = (coopmat2 || tname == "f32" || tname == "f16" || tname == "bf16") ? load_vec : load_vec_quant;
// don't generate f32 variants for coopmat2
if (!coopmat2) {
string_to_spv(shader_name + "_" + tname + "_f32", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_" + tname + "_f32_aligned", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f32}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_" + tname + "_f32", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE(tname)}, {data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_" + tname + "_f32_aligned", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE(tname)}, {data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f32}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
}
if (tname != "f16" && tname != "f32") {
string_to_spv(shader_name + "_" + tname + "_f16", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_" + tname + "_f16_aligned", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_" + tname + "_f16", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE(tname)}, {data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_" + tname + "_f16_aligned", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE(tname)}, {data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
}
#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
if (!coopmat && !coopmat2 && !matmul_id && (tname == "q4_0" || tname == "q4_1" || tname == "q5_0" || tname == "q5_1" || tname == "q8_0")) {
string_to_spv(shader_name + "_" + tname + "_q8_1", "mul_mmq.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float"},}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_" + tname + "_q8_1", "mul_mmq.comp", merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE(tname)}, {data_a_key, "1"}, {"D_TYPE", "float"},}), fp16, coopmat, coopmat2, f16acc);
}
#endif
}
@@ -393,6 +430,7 @@ void process_shaders() {
if (tname == "f32") {
continue;
}
if (tname == "bf16") continue;
if (tname == "f16") {
string_to_spv("flash_attn_f32_f16_" + tname, "flash_attn_cm2.comp",
@@ -417,12 +455,12 @@ void process_shaders() {
string_to_spv("mul_mat_vec_id_" + tname + "_f32", shader, merge_maps(base_dict, {{"MUL_MAT_ID", "1"}, {data_a_key, "1"}, {"B_TYPE", "float"}, {"B_TYPE_VEC2", "vec2"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}}));
// Dequant shaders
if (tname != "f16") {
if (tname != "f16" && tname != "bf16") {
string_to_spv("dequant_" + tname, "dequant_" + tname + ".comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float16_t"}}));
}
if (!string_ends_with(tname, "_k")) {
shader = (tname == "f32" || tname == "f16") ? "get_rows.comp" : "get_rows_quant.comp";
shader = (tname == "f32" || tname == "f16" || tname == "bf16") ? "get_rows.comp" : "get_rows_quant.comp";
if (tname == "f16") {
string_to_spv("get_rows_" + tname, shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "int"}, {"D_TYPE", "float16_t"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}}));
@@ -447,9 +485,13 @@ void process_shaders() {
string_to_spv("cpy_f32_f32", "copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("cpy_f32_f16", "copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float16_t"}});
string_to_spv("cpy_f16_f16", "copy.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}});
string_to_spv("cpy_f16_f32", "copy.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}});
string_to_spv("cpy_f32_bf16","copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "uint16_t"}, {"DATA_D_BF16", "1"}});
string_to_spv("contig_cpy_f32_f32", "contig_copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("contig_cpy_f32_f16", "contig_copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float16_t"}});
string_to_spv("contig_cpy_f16_f16", "contig_copy.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}});
string_to_spv("contig_cpy_f16_f32", "contig_copy.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}});
string_to_spv("contig_cpy_f32_bf16","contig_copy.comp",{{"A_TYPE", "float"}, {"D_TYPE", "uint16_t"}, {"DATA_D_BF16", "1"}});
for (std::string t : {"q4_0", "q4_1", "q5_0", "q5_1", "q8_0", "iq4_nl"}) {
string_to_spv("cpy_f32_" + t, "copy_to_quant.comp", {{"DATA_A_" + to_uppercase(t), "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
@@ -457,8 +499,26 @@ void process_shaders() {
string_to_spv("cpy_" + t + "_f32", "copy_from_quant.comp", {{"DATA_A_" + to_uppercase(t), "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
}
string_to_spv("add_f32", "add.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
string_to_spv("add_f16_f32_f16", "add.comp", {{"A_TYPE", "float16_t"}, {"B_TYPE", "float"}, {"D_TYPE", "float16_t"}, {"FLOAT_TYPE", "float"}});
auto get_type_str = [](bool f16) {
return f16 ? "float16_t" : "float";
};
auto get_suffix = [](bool src0_f16, bool src1_f16, bool dst_f16) {
std::string s;
s += std::string(src0_f16 ? "_f16" : "_f32");
s += std::string(src1_f16 ? "_f16" : "_f32");
s += std::string(dst_f16 ? "_f16" : "_f32");
return s;
};
for (std::string op : {"add", "sub", "mul", "div"}) {
for (auto src0_f16 : {false, true}) {
for (auto src1_f16 : {false, true}) {
for (auto dst_f16 : {false, true}) {
auto name = op + get_suffix(src0_f16, src1_f16, dst_f16);
string_to_spv(name.c_str(), op + ".comp", {{"A_TYPE", get_type_str(src0_f16)}, {"B_TYPE", get_type_str(src1_f16)}, {"D_TYPE", get_type_str(dst_f16)}, {"FLOAT_TYPE", "float"}});
}
}
}
}
string_to_spv("sub_f32", "sub.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
@@ -493,14 +553,21 @@ void process_shaders() {
string_to_spv("upscale_f32", "upscale.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("gelu_f32", "gelu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("gelu_quick_f32", "gelu_quick.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("silu_f32", "silu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("silu_back_f32", "silu_back.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("relu_f32", "relu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("leaky_relu_f32", "leaky_relu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("tanh_f32", "tanh.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("sigmoid_f32", "sigmoid.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("gelu_f16", "gelu.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("gelu_f32", "gelu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("gelu_quick_f16", "gelu_quick.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("gelu_quick_f32", "gelu_quick.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("silu_f16", "silu.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("silu_f32", "silu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("relu_f16", "relu.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("relu_f32", "relu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("tanh_f16", "tanh.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("tanh_f32", "tanh.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("sigmoid_f16", "sigmoid.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("sigmoid_f32", "sigmoid.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("leaky_relu_f32", "leaky_relu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("silu_back_f32", "silu_back.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("diag_mask_inf_f32", "diag_mask_inf.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
@@ -544,6 +611,9 @@ void process_shaders() {
string_to_spv("opt_step_adamw_f32", "opt_step_adamw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}}));
string_to_spv("conv2d_dw_whcn_f32", "conv2d_dw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"WHCN", "1"}}));
string_to_spv("conv2d_dw_cwhn_f32", "conv2d_dw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"CWHN", "1"}}));
for (auto &c : compiles) {
c.wait();
}
@@ -598,7 +668,12 @@ void write_output_files() {
std::remove(path.c_str());
}
}
for (const char *op : {"add", "sub", "mul", "div"}) {
fprintf(hdr, "extern unsigned char *%s_data[2][2][2];\n", op);
fprintf(hdr, "extern uint64_t %s_len[2][2][2];\n", op);
fprintf(src, "unsigned char *%s_data[2][2][2] = {{{%s_f32_f32_f32_data, %s_f32_f32_f16_data}, {%s_f32_f16_f32_data, %s_f32_f16_f16_data}}, {{%s_f16_f32_f32_data, %s_f16_f32_f16_data}, {%s_f16_f16_f32_data, %s_f16_f16_f16_data}}};\n", op, op, op, op, op, op, op, op, op);
fprintf(src, "uint64_t %s_len[2][2][2] = {{{%s_f32_f32_f32_len, %s_f32_f32_f16_len}, {%s_f32_f16_f32_len, %s_f32_f16_f16_len}}, {{%s_f16_f32_f32_len, %s_f16_f32_f16_len}, {%s_f16_f16_f32_len, %s_f16_f16_f16_len}}};\n", op, op, op, op, op, op, op, op, op);
}
fclose(hdr);
fclose(src);
}

View File

@@ -1299,6 +1299,10 @@ bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
return ggml_is_contiguous_n(tensor, 2);
}
bool ggml_is_contiguously_allocated(const struct ggml_tensor * tensor) {
return ggml_nbytes(tensor) == ggml_nelements(tensor) * ggml_type_size(tensor->type)/ggml_blck_size(tensor->type);
}
bool ggml_is_permuted(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");

View File

@@ -231,8 +231,10 @@ class Keys:
BLOCK_COUNT = "clip.vision.block_count"
IMAGE_MEAN = "clip.vision.image_mean"
IMAGE_STD = "clip.vision.image_std"
SPATIAL_MERGE_SIZE = "clip.vision.spatial_merge_size"
USE_GELU = "clip.use_gelu"
USE_SILU = "clip.use_silu"
N_WA_PATTERN = "clip.vision.n_wa_pattern" # used by qwen2.5vl
class Attention:
HEAD_COUNT = "clip.vision.attention.head_count"
@@ -491,6 +493,7 @@ class MODEL_TENSOR(IntEnum):
V_ENC_FFN_DOWN = auto()
V_PRE_NORM = auto()
V_POST_NORM = auto()
V_MM_INP_NORM = auto()
V_MM_INP_PROJ = auto() # gemma3
V_MM_SOFT_EMB_NORM = auto() # gemma3
V_RESMPL_POS_EMBD_K = auto() # minicpmv
@@ -505,6 +508,7 @@ class MODEL_TENSOR(IntEnum):
V_RESMPL_PROJ = auto() # minicpmv
V_RESMPL_QUERY = auto() # minicpmv
V_TOK_EMBD_IMG_BREAK = auto() # pixtral
V_MM_PATCH_MERGER = auto() # mistral small 3.1
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
@@ -747,6 +751,7 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.V_PRE_NORM: "v.pre_ln",
MODEL_TENSOR.V_POST_NORM: "v.post_ln",
MODEL_TENSOR.V_MM_INP_PROJ: "mm.input_projection",
MODEL_TENSOR.V_MM_INP_NORM: "mm.input_norm",
MODEL_TENSOR.V_MM_SOFT_EMB_NORM: "mm.soft_emb_norm",
MODEL_TENSOR.V_RESMPL_POS_EMBD_K: "resampler.pos_embd_k",
MODEL_TENSOR.V_RESMPL_ATTN_Q: "resampler.attn.q",
@@ -760,6 +765,7 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.V_RESMPL_PROJ: "resampler.proj",
MODEL_TENSOR.V_RESMPL_QUERY: "resampler.query",
MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: "v.token_embd.img_break", # pixtral
MODEL_TENSOR.V_MM_PATCH_MERGER: "mm.patch_merger", # mistral small 3.1
}
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
@@ -783,6 +789,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.V_PRE_NORM,
MODEL_TENSOR.V_POST_NORM,
MODEL_TENSOR.V_MM_INP_PROJ,
MODEL_TENSOR.V_MM_INP_NORM,
MODEL_TENSOR.V_MM_SOFT_EMB_NORM,
MODEL_TENSOR.V_RESMPL_POS_EMBD_K,
MODEL_TENSOR.V_RESMPL_ATTN_Q,
@@ -796,6 +803,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.V_RESMPL_PROJ,
MODEL_TENSOR.V_RESMPL_QUERY,
MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK,
MODEL_TENSOR.V_MM_PATCH_MERGER,
],
MODEL_ARCH.LLAMA: [
MODEL_TENSOR.TOKEN_EMBD,
@@ -2025,6 +2033,8 @@ class PoolingType(IntEnum):
NONE = 0
MEAN = 1
CLS = 2
LAST = 3
RANK = 4
class GGMLQuantizationType(IntEnum):
@@ -2155,6 +2165,8 @@ class VisionProjectorType:
GEMMA3 = "gemma3"
IDEFICS3 = "idefics3"
PIXTRAL = "pixtral"
QWEN2VL = "qwen2vl_merger"
QWEN25VL = "qwen2.5vl_merger"
# Items here are (block size, type size)

View File

@@ -972,6 +972,9 @@ class GGUFWriter:
def add_vision_image_std(self, values: Sequence[float]) -> None:
self.add_array(Keys.ClipVision.IMAGE_STD, values)
def add_vision_spatial_merge_size(self, value: int) -> None:
self.add_uint32(Keys.ClipVision.SPATIAL_MERGE_SIZE, value)
def add_vision_use_gelu(self, value: bool) -> None:
self.add_bool(Keys.ClipVision.USE_GELU, value)
@@ -981,6 +984,9 @@ class GGUFWriter:
def add_vision_projector_scale_factor(self, value: int) -> None:
self.add_uint32(Keys.ClipVision.Projector.SCALE_FACTOR, value)
def add_vision_n_wa_pattern(self, value: int) -> None:
self.add_uint32(Keys.ClipVision.N_WA_PATTERN, value)
def _pack(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> bytes:
pack_prefix = ''
if not skip_pack_prefix:

View File

@@ -1,7 +0,0 @@
# pyright: reportUnusedImport=false
from .gguf_convert_endian import main as gguf_convert_endian_entrypoint
from .gguf_dump import main as gguf_dump_entrypoint
from .gguf_set_metadata import main as gguf_set_metadata_entrypoint
from .gguf_new_metadata import main as gguf_new_metadata_entrypoint
from .gguf_editor_gui import main as gguf_editor_gui_entrypoint

View File

@@ -896,6 +896,7 @@ class TensorNameMap:
MODEL_TENSOR.V_MMPROJ: (
"multi_modal_projector.linear_{bid}",
"visual.merger.mlp.{bid}", # qwen2vl
),
MODEL_TENSOR.V_MMPROJ_FC: (
@@ -919,6 +920,7 @@ class TensorNameMap:
"vpm.embeddings.patch_embedding",
"model.vision_model.embeddings.patch_embedding", # SmolVLM
"vision_tower.patch_conv", # pixtral
"visual.patch_embed.proj", # qwen2vl
),
MODEL_TENSOR.V_ENC_EMBD_POS: (
@@ -932,6 +934,7 @@ class TensorNameMap:
"vpm.encoder.layers.{bid}.self_attn.q_proj",
"model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
"vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral
"visual.blocks.{bid}.attn.q", # qwen2vl, generated
),
MODEL_TENSOR.V_ENC_ATTN_K: (
@@ -939,6 +942,7 @@ class TensorNameMap:
"vpm.encoder.layers.{bid}.self_attn.k_proj",
"model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
"vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral
"visual.blocks.{bid}.attn.k", # qwen2vl, generated
),
MODEL_TENSOR.V_ENC_ATTN_V: (
@@ -946,6 +950,7 @@ class TensorNameMap:
"vpm.encoder.layers.{bid}.self_attn.v_proj",
"model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
"vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral
"visual.blocks.{bid}.attn.v", # qwen2vl, generated
),
MODEL_TENSOR.V_ENC_INPUT_NORM: (
@@ -953,6 +958,7 @@ class TensorNameMap:
"vpm.encoder.layers.{bid}.layer_norm1",
"model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
"vision_tower.transformer.layers.{bid}.attention_norm", # pixtral
"visual.blocks.{bid}.norm1", # qwen2vl
),
MODEL_TENSOR.V_ENC_OUTPUT: (
@@ -960,6 +966,7 @@ class TensorNameMap:
"vpm.encoder.layers.{bid}.self_attn.out_proj",
"model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
"vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral
"visual.blocks.{bid}.attn.proj", # qwen2vl
),
MODEL_TENSOR.V_ENC_OUTPUT_NORM: (
@@ -967,24 +974,30 @@ class TensorNameMap:
"vpm.encoder.layers.{bid}.layer_norm2",
"model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
"vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral
"visual.blocks.{bid}.norm2", # qwen2vl
),
MODEL_TENSOR.V_ENC_FFN_UP: (
"vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
"vpm.encoder.layers.{bid}.mlp.fc1",
"model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3 (note: name is swapped)
"model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
"vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral
"visual.blocks.{bid}.mlp.fc1", # qwen2vl
"visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
),
MODEL_TENSOR.V_ENC_FFN_GATE: (
"vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral
"visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
),
MODEL_TENSOR.V_ENC_FFN_DOWN: (
"vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
"vpm.encoder.layers.{bid}.mlp.fc2",
"model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3 (note: name is swapped)
"model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
"vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral
"visual.blocks.{bid}.mlp.fc2", # qwen2vl
"visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
),
MODEL_TENSOR.V_PRE_NORM: (
@@ -995,12 +1008,17 @@ class TensorNameMap:
MODEL_TENSOR.V_POST_NORM: (
"vision_tower.vision_model.post_layernorm",
"model.vision_model.post_layernorm", # SmolVLM
"visual.merger.ln_q", # qwen2vl
),
MODEL_TENSOR.V_MM_INP_PROJ: (
"multi_modal_projector.mm_input_projection",
),
MODEL_TENSOR.V_MM_INP_NORM: (
"multi_modal_projector.norm",
),
MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
"multi_modal_projector.mm_soft_emb_norm",
),
@@ -1052,6 +1070,10 @@ class TensorNameMap:
MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: (
"v.token_embd.img_break", # for pixtral, this is a generated vector
),
MODEL_TENSOR.V_MM_PATCH_MERGER: (
"multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1
),
}
# architecture-specific block mappings

View File

@@ -1,6 +1,6 @@
[tool.poetry]
name = "gguf"
version = "0.16.2"
version = "0.16.3"
description = "Read and write ML models in GGUF for GGML"
authors = ["GGML <ggml@ggml.ai>"]
packages = [
@@ -36,8 +36,8 @@ requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api"
[tool.poetry.scripts]
gguf-convert-endian = "gguf.scripts:gguf_convert_endian_entrypoint"
gguf-dump = "gguf.scripts:gguf_dump_entrypoint"
gguf-set-metadata = "gguf.scripts:gguf_set_metadata_entrypoint"
gguf-new-metadata = "gguf.scripts:gguf_new_metadata_entrypoint"
gguf-editor-gui = "gguf.scripts:gguf_editor_gui_entrypoint"
gguf-convert-endian = "gguf.scripts.gguf_convert_endian:main"
gguf-dump = "gguf.scripts.gguf_dump:main"
gguf-set-metadata = "gguf.scripts.gguf_set_metadata:main"
gguf-new-metadata = "gguf.scripts.gguf_new_metadata:main"
gguf-editor-gui = "gguf.scripts.gguf_editor_gui:main"

View File

@@ -1,6 +1,6 @@
# GBNF Guide
GBNF (GGML BNF) is a format for defining [formal grammars](https://en.wikipedia.org/wiki/Formal_grammar) to constrain model outputs in `llama.cpp`. For example, you can use it to force the model to generate valid JSON, or speak only in emojis. GBNF grammars are supported in various ways in `examples/main` and `examples/server`.
GBNF (GGML BNF) is a format for defining [formal grammars](https://en.wikipedia.org/wiki/Formal_grammar) to constrain model outputs in `llama.cpp`. For example, you can use it to force the model to generate valid JSON, or speak only in emojis. GBNF grammars are supported in various ways in `tools/main` and `tools/server`.
## Background
@@ -110,21 +110,21 @@ While semantically correct, the syntax `x? x? x?.... x?` (with N repetitions) ma
You can use GBNF grammars:
- In [llama-server](../examples/server)'s completion endpoints, passed as the `grammar` body field
- In [llama-cli](../examples/main), passed as the `--grammar` & `--grammar-file` flags
- In [llama-server](../tools/server)'s completion endpoints, passed as the `grammar` body field
- In [llama-cli](../tools/main), passed as the `--grammar` & `--grammar-file` flags
- With [test-gbnf-validator](../tests/test-gbnf-validator.cpp), to test them against strings.
## JSON Schemas → GBNF
`llama.cpp` supports converting a subset of https://json-schema.org/ to GBNF grammars:
- In [llama-server](../examples/server):
- In [llama-server](../tools/server):
- For any completion endpoints, passed as the `json_schema` body field
- For the `/chat/completions` endpoint, passed inside the `response_format` body field (e.g. `{"type", "json_object", "schema": {"items": {}}}` or `{ type: "json_schema", json_schema: {"schema": ...} }`)
- In [llama-cli](../examples/main), passed as the `--json` / `-j` flag
- In [llama-cli](../tools/main), passed as the `--json` / `-j` flag
- To convert to a grammar ahead of time:
- in CLI, with [examples/json_schema_to_grammar.py](../examples/json_schema_to_grammar.py)
- in JavaScript with [json-schema-to-grammar.mjs](../examples/server/public_legacy/json-schema-to-grammar.mjs) (this is used by the [server](../examples/server)'s Web UI)
- in JavaScript with [json-schema-to-grammar.mjs](../tools/server/public_legacy/json-schema-to-grammar.mjs) (this is used by the [server](../tools/server)'s Web UI)
Take a look at [tests](../tests/test-json-schema-to-grammar.cpp) to see which features are likely supported (you'll also find usage examples in https://github.com/ggml-org/llama.cpp/pull/5978, https://github.com/ggml-org/llama.cpp/pull/6659 & https://github.com/ggml-org/llama.cpp/pull/6555).

View File

@@ -40,5 +40,6 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry.scripts]
llama-convert-hf-to-gguf = "convert_hf_to_gguf:main"
llama-convert-lora-to-gguf = "convert_lora_to_gguf:main"
llama-convert-llama-ggml-to-gguf = "convert_llama_ggml_to_gguf:main"
llama-ggml-vk-generate-shaders = "ggml_vk_generate_shaders:main"

View File

@@ -15,7 +15,7 @@
},
{
// uses match expressions in steps.py
"root": "examples/server/tests",
"root": "tools/server/tests",
"pythonVersion": "3.10",
},
],

View File

@@ -1,6 +1,6 @@
-r ../examples/llava/requirements.txt
-r ../examples/server/bench/requirements.txt
-r ../examples/server/tests/requirements.txt
-r ../tools/mtmd/requirements.txt
-r ../tools/server/bench/requirements.txt
-r ../tools/server/tests/requirements.txt
-r ./requirements-compare-llama-bench.txt
-r ./requirements-pydantic.txt

View File

@@ -8,7 +8,7 @@
Example:
python scripts/fetch_server_test_models.py
( cd examples/server/tests && ./tests.sh -v -x -m slow )
( cd tools/server/tests && ./tests.sh -v -x -m slow )
'''
import ast
import glob
@@ -66,7 +66,7 @@ if __name__ == '__main__':
models = sorted(list(set([
model
for test_file in glob.glob('examples/server/tests/unit/test_*.py')
for test_file in glob.glob('tools/server/tests/unit/test_*.py')
for model in collect_hf_model_test_parameters(test_file)
])), key=lambda m: (m.hf_repo, m.hf_file))

View File

@@ -1 +1 @@
13bcf9ce50651a8b4238ec6d136f46f2c1b23b6f
0482de9c63b9134eb462c7732888c0ee0dbc2755

View File

@@ -2,7 +2,7 @@
'''
Simplistic tool call benchmarks for llama-server and ollama.
Essentially runs the tests at server/examples/server/tests/unit/test_tool_call.py N times, at different temperatures and on different backends (current llama-server, baseline llama-server and ollama),
Essentially runs the tests at server/tools/server/tests/unit/test_tool_call.py N times, at different temperatures and on different backends (current llama-server, baseline llama-server and ollama),
and plots the results of multiple runs (from same .jsonl file or multiple ones) as a success rate heatmap.
Simple usage example:
@@ -51,8 +51,8 @@ import typer
sys.path.insert(0, Path(__file__).parent.parent.as_posix())
if True:
from examples.server.tests.utils import ServerProcess
from examples.server.tests.unit.test_tool_call import TIMEOUT_SERVER_START, do_test_calc_result, do_test_hello_world, do_test_weather
from tools.server.tests.utils import ServerProcess
from tools.server.tests.unit.test_tool_call import TIMEOUT_SERVER_START, do_test_calc_result, do_test_hello_world, do_test_weather
@contextmanager

View File

@@ -1,5 +1,5 @@
# CMake equivalent of `xxd -i ${INPUT} ${OUTPUT}`
# Usage: cmake -DINPUT=examples/server/public/index.html -DOUTPUT=examples/server/index.html.hpp -P scripts/xxd.cmake
# Usage: cmake -DINPUT=tools/server/public/index.html -DOUTPUT=tools/server/index.html.hpp -P scripts/xxd.cmake
SET(INPUT "" CACHE STRING "Input File")
SET(OUTPUT "" CACHE STRING "Output File")

View File

@@ -189,7 +189,7 @@ llama_ubatch llama_sbatch::split_seq(size_t n_ubatch) {
return ubatch;
}
void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool simple_split, bool logits_all) {
llama_sbatch::llama_sbatch(const llama_batch & batch, size_t n_embd, bool simple_split, bool logits_all) {
GGML_ASSERT(batch.n_tokens >= 0);
this->batch = &batch;
this->n_embd = n_embd;
@@ -203,6 +203,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
for (size_t i = 0; i < n_tokens; ++i) {
ids[i] = i;
}
if (simple_split) {
seq.resize(1);
llama_sbatch_seq & s = seq[0];
@@ -212,6 +213,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
s.length = n_tokens;
return;
}
std::sort(ids.begin(), ids.end(),
[&batch](size_t a, size_t b) {
int32_t n_seq_a = batch.n_seq_id ? batch.n_seq_id[a] : 1;
@@ -239,6 +241,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
return n_seq_a > n_seq_b;
}
);
// init seq
llama_sbatch_seq * last_seq = nullptr;
@@ -262,6 +265,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
seq.push_back(new_seq);
last_seq = &seq.back();
}
// keep shared prompts first at the end, then sort by length descending.
std::sort(seq.begin(), seq.end(),
[](llama_sbatch_seq & a, llama_sbatch_seq & b) {

View File

@@ -70,7 +70,8 @@ struct llama_sbatch {
// sequence-wise split
llama_ubatch split_seq(size_t n_ubatch);
void from_batch(const llama_batch & batch, size_t n_embd, bool simple_split = false, bool logits_all = false);
llama_sbatch() = default;
llama_sbatch(const llama_batch & batch, size_t n_embd, bool simple_split = false, bool logits_all = false);
};
// temporary allocate memory for the input batch if needed

View File

@@ -447,8 +447,16 @@ int32_t llm_chat_apply_template(
if (add_ass) {
ss << "<|assistant|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGLM_4 || tmpl == LLM_CHAT_TEMPLATE_GLMEDGE) {
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGLM_4) {
ss << "[gMASK]" << "<sop>";
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>" << "\n" << message->content;
}
if (add_ass) {
ss << "<|assistant|>\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_GLMEDGE) {
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>" << "\n" << message->content;

View File

@@ -6,11 +6,9 @@
#include "llama-model.h"
#include "llama-kv-cache.h"
#include <cassert>
#include <cstring>
#include <stdexcept>
#include <cinttypes>
#include <cmath>
//
// llama_context
@@ -177,44 +175,13 @@ llama_context::llama_context(
}
// init the memory module
// TODO: for now, always create a unified KV cache
if (!hparams.vocab_only) {
kv_self.reset(static_cast<llama_kv_cache_unified *>(model.create_memory()));
llama_memory_params params_mem = {
/*.type_k =*/ params.type_k,
/*.type_v =*/ params.type_v,
};
LLAMA_LOG_DEBUG("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
cparams.n_ctx = GGML_PAD(cparams.n_ctx, kv_self->get_padding(cparams));
LLAMA_LOG_DEBUG("%s: n_ctx = %u (padded)\n", __func__, cparams.n_ctx);
uint32_t kv_size = cparams.n_ctx;
ggml_type type_k = params.type_k;
ggml_type type_v = params.type_v;
if (llama_model_is_recurrent(&model)) {
// Mamba needs at least as many KV cells as there are sequences kept at any time
kv_size = std::max((uint32_t) 1, params.n_seq_max);
// it's probably best to keep as much precision as possible for the states
type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
}
GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
if (!kv_self->init(model, cparams, type_k, type_v, kv_size, cparams.offload_kqv)) {
throw std::runtime_error("failed to initialize self-attention cache");
}
{
const size_t memory_size_k = kv_self->size_k_bytes();
const size_t memory_size_v = kv_self->size_v_bytes();
LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
(float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
}
memory.reset(model.create_memory(params_mem, cparams));
}
// init backends
@@ -305,7 +272,9 @@ llama_context::llama_context(
int n_nodes_tg = -1;
// simulate full KV cache
kv_self->n = kv_self->size;
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
kv_self->set_full();
cross.v_embd.clear();
@@ -427,6 +396,18 @@ const llama_model & llama_context::get_model() const {
return model;
}
const llama_cparams & llama_context::get_cparams() const {
return cparams;
}
ggml_backend_sched_t llama_context::get_sched() const {
return sched.get();
}
ggml_context * llama_context::get_ctx_compute() const {
return ctx_compute.get();
}
uint32_t llama_context::n_ctx() const {
return cparams.n_ctx;
}
@@ -456,337 +437,21 @@ uint32_t llama_context::n_threads_batch() const {
}
llama_kv_cache * llama_context::get_kv_self() {
return kv_self.get();
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
return kv_self;
}
const llama_kv_cache * llama_context::get_kv_self() const {
return kv_self.get();
}
ggml_tensor * llama_context::build_rope_shift(
ggml_context * ctx0,
ggml_tensor * cur,
ggml_tensor * shift,
ggml_tensor * factors,
float freq_base,
float freq_scale) const {
const auto & n_ctx_orig = cparams.n_ctx_orig_yarn;
const auto & yarn_ext_factor = cparams.yarn_ext_factor;
const auto & yarn_beta_fast = cparams.yarn_beta_fast;
const auto & yarn_beta_slow = cparams.yarn_beta_slow;
const auto & hparams = model.hparams;
const auto & n_rot = hparams.n_rot;
const auto & rope_type = hparams.rope_type;
// See llm_build_deepseek2() for why attn_factor has to be scaled for YaRN RoPE to work correctly.
// See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
const float yarn_attn_factor = model.arch == LLM_ARCH_DEEPSEEK2 ? 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale)) : cparams.yarn_attn_factor;
ggml_tensor * tmp;
if (ggml_is_quantized(cur->type)) {
// dequantize to f32 -> RoPE -> quantize back
tmp = ggml_cast(ctx0, cur, GGML_TYPE_F32);
tmp = ggml_rope_ext(ctx0, tmp,
shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
tmp = ggml_cpy(ctx0, tmp, cur);
} else {
// we rotate only the first n_rot dimensions
tmp = ggml_rope_ext_inplace(ctx0, cur,
shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
}
return tmp;
}
class llm_graph_input_k_shift : public llm_graph_input_i {
public:
llm_graph_input_k_shift(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
virtual ~llm_graph_input_k_shift() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * k_shift; // I32 [kv_size]
const llama_kv_cache_unified * kv_self;
};
void llm_graph_input_k_shift::set_input(const llama_ubatch * ubatch) {
GGML_UNUSED(ubatch);
if (k_shift) {
assert(ggml_backend_buffer_is_host(k_shift->buffer));
int32_t * data = (int32_t *) k_shift->data;
for (uint32_t i = 0; i < kv_self->size; ++i) {
data[i] = kv_self->cells[i].delta;
}
}
}
llm_graph_result_ptr llama_context::build_kv_self_shift(
ggml_context * ctx0,
ggml_cgraph * gf) const {
auto res = std::make_unique<llm_graph_result>();
const auto & hparams = model.hparams;
const auto & n_layer = hparams.n_layer;
const auto & n_embd_head_k = hparams.n_embd_head_k;
//const auto & n_embd_head_v = hparams.n_embd_head_v;
//GGML_ASSERT(kv_self->size == n_ctx);
auto inp = std::make_unique<llm_graph_input_k_shift>(kv_self.get());
inp->k_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, cparams.n_ctx);
ggml_set_input(inp->k_shift);
for (uint32_t il = 0; il < n_layer; ++il) {
const int64_t n_head_kv = hparams.n_head_kv(il);
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
const bool is_swa = hparams.is_swa(il);
// note: the swa rope params could become part of the cparams in the future
// if we decide to make them configurable, like the non-sliding ones
const float freq_base_l = is_swa ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
const float freq_scale_l = is_swa ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
ggml_tensor * rope_factors = kv_self->cbs.get_rope_factors(n_ctx_per_seq(), il);
ggml_tensor * k =
ggml_view_3d(ctx0, kv_self->k_l[il],
n_embd_head_k, n_head_kv, kv_self->size,
ggml_row_size(kv_self->k_l[il]->type, n_embd_head_k),
ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa),
0);
ggml_tensor * cur = build_rope_shift(ctx0, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l);
ggml_build_forward_expand(gf, cur);
}
res->add_input(std::move(inp));
return res;
}
llm_graph_result_ptr llama_context::build_kv_self_defrag(
ggml_context * ctx0,
ggml_cgraph * gf) const {
auto res = std::make_unique<llm_graph_result>();
const auto & hparams = model.hparams;
const auto & ids = kv_self->defrag_info.ids;
#if 0
// CPU defrag
//
// TODO: optimizations are possible:
// - multiple threads
// - avoid copying to the host memory when already there
//
// likely not worth the effort, as we have ggml_graph based defrag
//
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
const uint32_t kv_size = size;
std::vector<uint8_t> buf_k;
std::vector<uint8_t> buf_v;
for (uint32_t il = 0; il < n_layer; ++il) {
const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
const size_t k_size = ggml_row_size(k_l[il]->type, n_embd_k_gqa*kv_size);
const size_t v_size_el = ggml_type_size(v_l[il]->type);
const size_t v_size = ggml_row_size (v_l[il]->type, n_embd_v_gqa*kv_size);
buf_k.resize(k_size);
buf_v.resize(v_size);
ggml_backend_tensor_get(k_l[il], buf_k.data(), 0, buf_k.size());
ggml_backend_tensor_get(v_l[il], buf_v.data(), 0, buf_v.size());
// batch move [i, i+nm) to [id, id+nm)
// note: cells can move only to a lower index
for (uint32_t i = 0; i < n_kv; ++i) {
const uint32_t id = ids[i];
if (i == id || id == n_kv) {
continue;
}
uint32_t nm = 1;
while (i + nm < n_kv && ids[i + nm] == id + nm) {
nm++;
}
// move keys
{
const int64_t os = i*k_size_row;
const int64_t od = id*k_size_row;
memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
}
// move values (note: they are transposed)
{
const int64_t os = i;
const int64_t od = id;
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
}
}
i += nm - 1;
}
ggml_backend_tensor_set(k_l[il], buf_k.data(), 0, buf_k.size());
ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size());
}
#else
for (uint32_t i = 0; i < ids.size(); ++i) {
const uint32_t id = ids[i];
if (i == id || id == ids.size()) {
continue;
}
uint32_t nm = 1;
while (i + nm < ids.size() && ids[i + nm] == id + nm) {
nm++;
}
for (uint32_t il = 0; il < hparams.n_layer; ++il) { // NOLINT
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self->k_l[il],
n_embd_k_gqa, nm,
ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa),
ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa*i));
ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self->k_l[il],
n_embd_k_gqa, nm,
ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa),
ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa*id));
ggml_tensor * view_v_src;
ggml_tensor * view_v_dst;
if (cparams.flash_attn) {
// NOTE: the V cache is not transposed when using flash attention
view_v_src = ggml_view_2d(ctx0, kv_self->v_l[il],
n_embd_v_gqa, nm,
ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa),
ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa*i));
view_v_dst = ggml_view_2d(ctx0, kv_self->v_l[il],
n_embd_v_gqa, nm,
ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa),
ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa*id));
} else {
view_v_src = ggml_view_2d(ctx0, kv_self->v_l[il],
nm, n_embd_v_gqa,
ggml_row_size(kv_self->v_l[il]->type, kv_self->size),
ggml_row_size(kv_self->v_l[il]->type, i));
view_v_dst = ggml_view_2d(ctx0, kv_self->v_l[il],
nm, n_embd_v_gqa,
ggml_row_size(kv_self->v_l[il]->type, kv_self->size),
ggml_row_size(kv_self->v_l[il]->type, id));
}
ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
}
i += nm - 1;
}
//LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
#endif
return res;
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
return kv_self;
}
void llama_context::kv_self_update() {
auto & kv = kv_self;
bool need_reserve = false;
if (kv->has_shift) {
if (!kv->get_can_shift()) {
GGML_ABORT("The current context does not support K-shift");
}
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
LLAMA_LOG_DEBUG("%s: applying K-shift\n", __func__);
// apply K-shift if needed
if (model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE) {
ggml_backend_sched_reset(sched.get());
auto * gf = graph_init();
auto res = build_kv_self_shift(ctx_compute.get(), gf);
ggml_backend_sched_alloc_graph(sched.get(), gf);
res->set_inputs(nullptr);
graph_compute(gf, false);
need_reserve = true;
}
{
kv->has_shift = false;
for (uint32_t i = 0; i < kv->size; ++i) {
kv->cells[i].delta = 0;
}
}
}
// defragment the KV cache if needed
if (kv->do_defrag) {
LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__);
if (kv->defrag_prepare(graph_max_nodes())) {
ggml_backend_sched_reset(sched.get());
auto * gf = graph_init();
auto res = build_kv_self_defrag(ctx_compute.get(), gf);
ggml_backend_sched_alloc_graph(sched.get(), gf);
res->set_inputs(nullptr);
graph_compute(gf, false);
need_reserve = true;
}
kv->do_defrag = false;
}
need_reserve = kv_self->update(*this);
// reserve a worst case graph if needed
if (need_reserve) {
@@ -797,7 +462,7 @@ void llama_context::kv_self_update() {
uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
// simulate full KV cache
kv_self->n = kv_self->size;
kv_self->set_full();
llama_token token = model.vocab.token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
llama_ubatch ubatch = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
@@ -818,9 +483,6 @@ enum llama_pooling_type llama_context::pooling_type() const {
}
float * llama_context::get_logits() {
// reorder logits for backward compatibility
output_reorder();
return logits;
}
@@ -863,9 +525,6 @@ float * llama_context::get_logits_ith(int32_t i) {
}
float * llama_context::get_embeddings() {
// reorder embeddings for backward compatibility
output_reorder();
return embd;
}
@@ -1017,8 +676,8 @@ int llama_context::encode(llama_batch & inp_batch) {
}
// temporary allocate memory for the input batch if needed
// TODO: this is incorrect for multiple sequences because pos_max() is the maximum across all sequences
llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : kv_self->pos_max() + 1);
// note: during encode, we always pass the full sequence starting from pos = 0
llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : 0);
const llama_batch & batch = batch_allocr.batch;
const int32_t n_tokens = batch.n_tokens;
@@ -1047,7 +706,7 @@ int llama_context::encode(llama_batch & inp_batch) {
const int64_t n_embd = hparams.n_embd;
sbatch.from_batch(batch, n_embd, /* simple_split */ true, /* logits_all */ true);
llama_sbatch sbatch = llama_sbatch(batch, n_embd, /* simple_split */ true, /* logits_all */ true);
const llama_ubatch ubatch = sbatch.split_simple(n_tokens);
@@ -1181,9 +840,11 @@ int llama_context::decode(llama_batch & inp_batch) {
return -1;
}
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
// temporary allocate memory for the input batch if needed
// TODO: this is incorrect for multiple sequences because pos_max() is the maximum across all sequences
llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : kv_self->pos_max() + 1);
// TODO: this is incorrect for multiple sequences because get_pos_max() is the maximum across all sequences
llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : kv_self->get_pos_max() + 1);
const llama_batch & batch = batch_allocr.batch;
@@ -1195,7 +856,7 @@ int llama_context::decode(llama_batch & inp_batch) {
const int64_t n_tokens_all = batch.n_tokens;
const int64_t n_embd = hparams.n_embd;
llama_kv_cache_guard kv_guard(kv_self.get());
llama_kv_cache_guard kv_guard(kv_self);
GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
@@ -1236,11 +897,7 @@ int llama_context::decode(llama_batch & inp_batch) {
n_outputs_all = 1;
}
const bool logits_all = n_outputs_all == n_tokens_all;
sbatch.from_batch(batch, n_embd,
/* simple_split */ !kv_self->recurrent,
/* logits_all */ logits_all);
llama_sbatch sbatch = kv_self->sbatch_init(batch, /* logits_all */ n_outputs_all == n_tokens_all);
// reserve output buffer
if (output_reserve(n_outputs_all) < n_outputs_all) {
@@ -1254,22 +911,7 @@ int llama_context::decode(llama_batch & inp_batch) {
int64_t n_outputs_prev = 0;
while (sbatch.n_tokens > 0) {
llama_ubatch ubatch = llama_ubatch();
const auto & n_ubatch = cparams.n_ubatch;
if (kv_self->recurrent) {
if (embd_pooled) {
// Pooled embeddings cannot be split across ubatches (yet)
ubatch = sbatch.split_seq(cparams.n_ubatch);
} else {
// recurrent model architectures are easier to implement
// with equal-length sequences
ubatch = sbatch.split_equal(cparams.n_ubatch);
}
} else {
ubatch = sbatch.split_simple(n_ubatch);
}
llama_ubatch ubatch = kv_self->ubatch_next(sbatch, cparams.n_ubatch, embd_pooled);
// count the outputs in this u_batch
{
@@ -1289,24 +931,12 @@ int llama_context::decode(llama_batch & inp_batch) {
}
// find KV slot
{
if (!kv_self->find_slot(ubatch)) {
LLAMA_LOG_WARN("%s: failed to find KV cache slot for ubatch of size %d\n", __func__, ubatch.n_tokens);
if (!kv_self->find_slot(ubatch)) {
LLAMA_LOG_WARN("%s: failed to find KV cache slot for ubatch of size %d\n", __func__, ubatch.n_tokens);
return 1;
}
if (!kv_self->recurrent) {
// a heuristic, to avoid attending the full cache if it is not yet utilized
// after enough generations, the benefit from this heuristic disappears
// if we start defragmenting the cache, the benefit from this will be more important
const uint32_t pad = kv_self->get_padding(cparams);
kv_self->n = std::min(kv_self->size, std::max(pad, GGML_PAD(kv_self->cell_max(), pad)));
}
return 1;
}
//printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self->n, kv_self->used, kv_self->head);
ggml_backend_sched_reset(sched.get());
ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data);
@@ -1420,43 +1050,68 @@ int llama_context::decode(llama_batch & inp_batch) {
// finalize the batch processing
kv_guard.commit();
// set to total number of outputs in the batch, for use in llama_get_logits_ith
n_outputs = n_outputs_all;
// set output mappings
{
bool sorted_output = true;
GGML_ASSERT(sbatch.out_ids.size() == (size_t) n_outputs_all);
auto & out_ids = sbatch.out_ids;
GGML_ASSERT(out_ids.size() == (size_t) n_outputs_all);
for (int64_t i = 0; i < n_outputs_all; ++i) {
int64_t out_id = sbatch.out_ids[i];
int64_t out_id = out_ids[i];
output_ids[out_id] = i;
if (out_id != i) {
sorted_output = false;
}
}
if (sorted_output) {
sbatch.out_ids.clear();
// make the outputs have the same order they had in the user-provided batch
// note: this is mostly relevant for recurrent models atm
if (!sorted_output) {
const uint32_t n_vocab = model.vocab.n_tokens();
const uint32_t n_embd = model.hparams.n_embd;
GGML_ASSERT((size_t) n_outputs == out_ids.size());
// TODO: is there something more efficient which also minimizes swaps?
// selection sort, to minimize swaps (from https://en.wikipedia.org/wiki/Selection_sort)
for (int32_t i = 0; i < n_outputs - 1; ++i) {
int32_t j_min = i;
for (int32_t j = i + 1; j < n_outputs; ++j) {
if (out_ids[j] < out_ids[j_min]) {
j_min = j;
}
}
if (j_min == i) { continue; }
std::swap(out_ids[i], out_ids[j_min]);
if (logits_size > 0) {
for (uint32_t k = 0; k < n_vocab; k++) {
std::swap(logits[i*n_vocab + k], logits[j_min*n_vocab + k]);
}
}
if (embd_size > 0) {
for (uint32_t k = 0; k < n_embd; k++) {
std::swap(embd[i*n_embd + k], embd[j_min*n_embd + k]);
}
}
}
std::fill(output_ids.begin(), output_ids.end(), -1);
for (int32_t i = 0; i < n_outputs; ++i) {
output_ids[out_ids[i]] = i;
}
}
}
// set to total number of outputs in the batch, for use in llama_get_logits_ith
n_outputs = n_outputs_all;
// wait for the computation to finish (automatically done when obtaining the model output)
//synchronize();
// decide if we need to defrag the kv cache
if (cparams.causal_attn && cparams.defrag_thold > 0.0f) {
// - do not defrag small contexts (i.e. < 2048 tokens)
// - count the padding towards the number of used tokens
const float fragmentation = kv_self->n >= 2048 ? std::max(0.0f, 1.0f - float(kv_self->used + kv_self->get_padding(cparams))/float(kv_self->n)) : 0.0f;
// queue defragmentation for next llama_kv_cache_update
if (fragmentation > cparams.defrag_thold) {
LLAMA_LOG_DEBUG("%s: fragmentation: %.2f - requesting defrag\n", __func__, fragmentation);
kv_self->defrag();
}
if (cparams.defrag_thold > 0.0f) {
kv_self->defrag_sched(cparams.defrag_thold);
}
// Reset state for the next token before backend sync, to allow the CPU activities in the reset to
@@ -1542,44 +1197,6 @@ int32_t llama_context::output_reserve(int32_t n_outputs) {
return n_outputs_max;
}
void llama_context::output_reorder() {
auto & out_ids = sbatch.out_ids;
if (!out_ids.empty()) {
const uint32_t n_vocab = model.vocab.n_tokens();
const uint32_t n_embd = model.hparams.n_embd;
GGML_ASSERT((size_t) n_outputs == out_ids.size());
// TODO: is there something more efficient which also minimizes swaps?
// selection sort, to minimize swaps (from https://en.wikipedia.org/wiki/Selection_sort)
for (int32_t i = 0; i < n_outputs - 1; ++i) {
int32_t j_min = i;
for (int32_t j = i + 1; j < n_outputs; ++j) {
if (out_ids[j] < out_ids[j_min]) {
j_min = j;
}
}
if (j_min == i) { continue; }
std::swap(out_ids[i], out_ids[j_min]);
if (logits_size > 0) {
for (uint32_t k = 0; k < n_vocab; k++) {
std::swap(logits[i*n_vocab + k], logits[j_min*n_vocab + k]);
}
}
if (embd_size > 0) {
for (uint32_t k = 0; k < n_embd; k++) {
std::swap(embd[i*n_embd + k], embd[j_min*n_embd + k]);
}
}
}
std::fill(output_ids.begin(), output_ids.end(), -1);
for (int32_t i = 0; i < n_outputs; ++i) {
output_ids[out_ids[i]] = i;
}
out_ids.clear();
}
}
//
// graph
//
@@ -1616,7 +1233,7 @@ llm_graph_result_ptr llama_context::graph_build(
/*.backend_cpu =*/ backend_cpu,
/*.cvec =*/ &cvec,
/*.loras =*/ &loras,
/*.memory =*/ kv_self.get(),
/*.memory =*/ memory.get(),
/*.cross =*/ &cross,
/*.n_outputs =*/ n_outputs,
/*.cb =*/ graph_get_cb(),
@@ -2020,8 +1637,6 @@ size_t llama_context::state_write_data(llama_io_write_i & io) {
{
LLAMA_LOG_DEBUG("%s: - writing output ids\n", __func__);
output_reorder();
const auto n_outputs = this->n_outputs;
const auto & output_ids = this->output_ids;
@@ -2075,6 +1690,8 @@ size_t llama_context::state_write_data(llama_io_write_i & io) {
}
LLAMA_LOG_DEBUG("%s: - writing KV self\n", __func__);
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
kv_self->state_write(io);
return io.n_bytes();
@@ -2159,6 +1776,8 @@ size_t llama_context::state_read_data(llama_io_read_i & io) {
}
LLAMA_LOG_DEBUG("%s: - reading KV self\n", __func__);
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
kv_self->state_read(io);
return io.n_bytes();
@@ -2167,6 +1786,8 @@ size_t llama_context::state_read_data(llama_io_read_i & io) {
size_t llama_context::state_seq_write_data(llama_io_write_i & io, llama_seq_id seq_id) {
GGML_UNUSED(seq_id);
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
kv_self->state_write(io, seq_id);
return io.n_bytes();
@@ -2175,6 +1796,8 @@ size_t llama_context::state_seq_write_data(llama_io_write_i & io, llama_seq_id s
size_t llama_context::state_seq_read_data(llama_io_read_i & io, llama_seq_id seq_id) {
GGML_UNUSED(seq_id);
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
kv_self->state_read(io, seq_id);
return io.n_bytes();
@@ -2530,7 +2153,7 @@ void llama_kv_cache_seq_cp(
llama_seq_id seq_id_dst,
llama_pos p0,
llama_pos p1) {
return llama_kv_self_seq_cp(ctx, seq_id_src, seq_id_dst, p0, p1);
llama_kv_self_seq_cp(ctx, seq_id_src, seq_id_dst, p0, p1);
}
void llama_kv_self_seq_cp(
@@ -2544,14 +2167,14 @@ void llama_kv_self_seq_cp(
return;
}
return kv->seq_cp(seq_id_src, seq_id_dst, p0, p1);
kv->seq_cp(seq_id_src, seq_id_dst, p0, p1);
}
// deprecated
void llama_kv_cache_seq_keep(
llama_context * ctx,
llama_seq_id seq_id) {
return llama_kv_self_seq_keep(ctx, seq_id);
llama_kv_self_seq_keep(ctx, seq_id);
}
void llama_kv_self_seq_keep(llama_context * ctx, llama_seq_id seq_id) {
@@ -2560,7 +2183,7 @@ void llama_kv_self_seq_keep(llama_context * ctx, llama_seq_id seq_id) {
return;
}
return kv->seq_keep(seq_id);
kv->seq_keep(seq_id);
}
// deprecated
@@ -2570,7 +2193,7 @@ void llama_kv_cache_seq_add(
llama_pos p0,
llama_pos p1,
llama_pos delta) {
return llama_kv_self_seq_add(ctx, seq_id, p0, p1, delta);
llama_kv_self_seq_add(ctx, seq_id, p0, p1, delta);
}
void llama_kv_self_seq_add(
@@ -2584,7 +2207,7 @@ void llama_kv_self_seq_add(
return;
}
return kv->seq_add(seq_id, p0, p1, delta);
kv->seq_add(seq_id, p0, p1, delta);
}
// deprecated
@@ -2594,7 +2217,7 @@ void llama_kv_cache_seq_div(
llama_pos p0,
llama_pos p1,
int d) {
return llama_kv_self_seq_div(ctx, seq_id, p0, p1, d);
llama_kv_self_seq_div(ctx, seq_id, p0, p1, d);
}
void llama_kv_self_seq_div(
@@ -2608,7 +2231,7 @@ void llama_kv_self_seq_div(
return;
}
return kv->seq_div(seq_id, p0, p1, d);
kv->seq_div(seq_id, p0, p1, d);
}
// deprecated
@@ -2627,7 +2250,7 @@ llama_pos llama_kv_self_seq_pos_max(llama_context * ctx, llama_seq_id seq_id) {
// deprecated
void llama_kv_cache_defrag(llama_context * ctx) {
return llama_kv_self_defrag(ctx);
llama_kv_self_defrag(ctx);
}
void llama_kv_self_defrag(llama_context * ctx) {
@@ -2636,7 +2259,8 @@ void llama_kv_self_defrag(llama_context * ctx) {
return;
}
return kv->defrag();
// force defrag
kv->defrag_sched(-1.0f);
}
// deprecated

View File

@@ -27,7 +27,12 @@ struct llama_context {
void synchronize();
const llama_model & get_model() const;
const llama_model & get_model() const;
const llama_cparams & get_cparams() const;
ggml_backend_sched_t get_sched() const;
ggml_context * get_ctx_compute() const;
uint32_t n_ctx() const;
uint32_t n_ctx_per_seq() const;
@@ -137,49 +142,30 @@ private:
// Returns max number of outputs for which space was reserved.
int32_t output_reserve(int32_t n_outputs);
// make the outputs have the same order they had in the user-provided batch
// TODO: maybe remove this
void output_reorder();
//
// graph
//
public:
int32_t graph_max_nodes() const;
// zero-out inputs and create the ctx_compute for the compute graph
ggml_cgraph * graph_init();
llm_graph_result_ptr graph_build(
ggml_context * ctx,
ggml_cgraph * gf,
const llama_ubatch & ubatch,
llm_graph_type gtype);
// returns the result of ggml_backend_sched_graph_compute_async execution
ggml_status graph_compute(
ggml_cgraph * gf,
bool batched);
private:
llm_graph_result_ptr graph_build(
ggml_context * ctx,
ggml_cgraph * gf,
const llama_ubatch & ubatch,
llm_graph_type gtype);
llm_graph_cb graph_get_cb() const;
// used by kv_self_update()
ggml_tensor * build_rope_shift(
ggml_context * ctx0,
ggml_tensor * cur,
ggml_tensor * shift,
ggml_tensor * factors,
float freq_base,
float freq_scale) const;
llm_graph_result_ptr build_kv_self_shift(
ggml_context * ctx0,
ggml_cgraph * gf) const;
llm_graph_result_ptr build_kv_self_defrag(
ggml_context * ctx0,
ggml_cgraph * gf) const;
// TODO: read/write lora adapters and cvec
size_t state_write_data(llama_io_write_i & io);
size_t state_read_data (llama_io_read_i & io);
@@ -196,11 +182,10 @@ private:
llama_cparams cparams;
llama_adapter_cvec cvec;
llama_adapter_loras loras;
llama_sbatch sbatch;
llama_cross cross; // TODO: tmp for handling cross-attention - need something better probably
std::unique_ptr<llama_kv_cache_unified> kv_self;
std::unique_ptr<llama_memory_i> memory;
// TODO: remove
bool logits_all = false;

View File

@@ -284,24 +284,7 @@ void llm_graph_input_s_copy::set_input(const llama_ubatch * ubatch) {
// assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
for (uint32_t i = 0; i < n_kv; ++i) {
const uint32_t cell_id = i + kv_self->head;
//////////////////////////////////////////////
// TODO: this should not mutate the KV cache !
llama_kv_cell & kv_cell = const_cast<class llama_kv_cache_unified *>(kv_self)->cells[i];
// prevent out-of-bound sources
if (kv_cell.src < 0 || (uint32_t) kv_cell.src >= kv_self->size) {
kv_cell.src = cell_id;
}
data[i] = kv_cell.src;
// TODO: do not mutate the KV cache
// ensure copy only happens once
if (kv_cell.src != (int32_t) cell_id) {
kv_cell.src = cell_id;
}
data[i] = kv_self->s_copy(i);
}
}
}
@@ -317,18 +300,7 @@ void llm_graph_input_s_mask::set_input(const llama_ubatch * ubatch) {
// clear unused states
for (int i = 0; i < n_kv; ++i) {
const uint32_t cell_id = i + kv_self->head;
//////////////////////////////////////////////
// TODO: this should not mutate the KV cache !
llama_kv_cell & kv_cell = const_cast<class llama_kv_cache_unified *>(kv_self)->cells[i];
data[i] = (float) (kv_cell.src >= 0);
// only clear once
if (kv_cell.src < 0) {
kv_cell.src = cell_id;
}
data[i] = kv_self->s_mask(i);
}
}
}
@@ -810,7 +782,7 @@ ggml_tensor * llm_graph_context::build_ffn(
} break;
}
if (type_gate == LLM_FFN_PAR) {
if (gate && type_gate == LLM_FFN_PAR) {
cur = ggml_mul(ctx0, cur, tmp);
cb(cur, "ffn_gate_par", il);
}
@@ -1105,7 +1077,7 @@ ggml_tensor * llm_graph_context::build_inp_cls() const {
}
ggml_tensor * llm_graph_context::build_inp_s_copy() const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
auto inp = std::make_unique<llm_graph_input_s_copy>(kv_self);
@@ -1122,7 +1094,7 @@ ggml_tensor * llm_graph_context::build_inp_s_copy() const {
}
ggml_tensor * llm_graph_context::build_inp_s_mask() const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
auto inp = std::make_unique<llm_graph_input_s_mask>(kv_self);
@@ -1436,8 +1408,6 @@ ggml_tensor * llm_graph_context::build_attn(
// store to KV cache
{
GGML_ASSERT(!kv_self->recurrent);
const auto kv_head = kv_self->head;
GGML_ASSERT(kv_self->size == n_ctx);
@@ -1587,7 +1557,7 @@ ggml_tensor * llm_graph_context::build_copy_mask_state(
ggml_tensor * state_mask,
int32_t n_state,
int32_t n_seqs) const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
const auto n_kv = kv_self->n;
const auto kv_head = kv_self->head;
@@ -1619,7 +1589,7 @@ ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il) const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
const auto token_shift_count = hparams.token_shift_count;
@@ -1640,7 +1610,7 @@ ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
ggml_tensor * token_shift,
const llama_ubatch & ubatch,
int il) const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
const auto token_shift_count = hparams.token_shift_count;
const auto n_embd = hparams.n_embd;

View File

@@ -19,6 +19,7 @@ struct llama_cparams;
class llama_memory_i;
class llama_kv_cache_unified;
class llama_kv_cache_recurrent;
// certain models (typically multi-modal) can produce different types of graphs
enum llm_graph_type {
@@ -186,26 +187,26 @@ public:
class llm_graph_input_s_copy : public llm_graph_input_i {
public:
llm_graph_input_s_copy(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
llm_graph_input_s_copy(const llama_kv_cache_recurrent * kv_self) : kv_self(kv_self) {}
virtual ~llm_graph_input_s_copy() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * s_copy; // I32 [kv_size]
const llama_kv_cache_unified * kv_self;
const llama_kv_cache_recurrent * kv_self;
};
class llm_graph_input_s_mask : public llm_graph_input_i {
public:
llm_graph_input_s_mask(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
llm_graph_input_s_mask(const llama_kv_cache_recurrent * kv_self) : kv_self(kv_self) {}
virtual ~llm_graph_input_s_mask() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * s_mask; // F32 [1, n_kv]
const llama_kv_cache_unified * kv_self;
const llama_kv_cache_recurrent * kv_self;
};
class llm_graph_input_cross_embd : public llm_graph_input_i {
@@ -350,8 +351,8 @@ struct llm_graph_params {
const llama_cparams & cparams;
const llama_ubatch & ubatch;
ggml_backend_sched * sched;
ggml_backend * backend_cpu;
ggml_backend_sched_t sched;
ggml_backend_t backend_cpu;
const llama_adapter_cvec * cvec;
const llama_adapter_loras * loras;
@@ -402,9 +403,9 @@ struct llm_graph_context {
ggml_context * ctx0 = nullptr;
ggml_backend_sched * sched;
ggml_backend_sched_t sched;
ggml_backend * backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove?
ggml_backend_t backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove?
const llama_adapter_cvec * cvec;
const llama_adapter_loras * loras;

File diff suppressed because it is too large Load Diff

View File

@@ -2,32 +2,72 @@
#include "llama.h"
#include "llama-io.h"
#include "llama-graph.h"
#include "llama-memory.h"
#include "ggml-cpp.h"
#include <functional>
#include <set>
#include <vector>
struct llama_cparams;
struct llama_hparams;
struct llama_ubatch;
struct llama_sbatch;
struct llama_model;
struct llama_context;
struct llama_kv_cache : public llama_memory_i {
using llama_memory_i::llama_memory_i;
virtual ~llama_kv_cache() = default;
virtual void restore() = 0; // call if batch processing fails - restores the cache state
virtual void commit() = 0; // call after successful batch processing - clears any pending state
// call if batch processing fails - restores the cache state
virtual void restore() = 0;
virtual int32_t get_n_tokens() const = 0;
virtual int32_t get_used_cells() const = 0; // TODO: remove, this is too-specific to the unified cache
// call after successful batch processing - clears any pending state
virtual void commit() = 0;
virtual bool get_can_shift() const = 0;
// process any pending defrag/shift/etc. operations
// optionally call once before processing a new batch
virtual bool update(llama_context & lctx) = 0;
// schedule a defrag if the fragmentation threshold is exceeded. otherwise, do nothing
virtual void defrag_sched(float thold) = 0;
// simulate full cache, used for allocating worst-case compute buffers
virtual void set_full() = 0;
//
// batch processing
//
virtual llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) = 0;
// different KV caches require different batch splitting strategies
virtual llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const = 0;
// find an empty slot of size "n_tokens" in the cache
virtual bool find_slot(const llama_ubatch & batch) = 0;
// getters
virtual int32_t get_n_tokens() const = 0;
virtual int32_t get_used_cells() const = 0; // TODO: remove, this is too-specific to the unified cache
virtual llama_pos get_pos_max() const = 0;
virtual bool get_can_shift() const = 0;
bool get_can_edit() const override { return get_can_shift(); }
//
// state write/read
//
virtual void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const = 0;
virtual void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) = 0;
};
//
// llama_kv_cache_guard
//
struct llama_kv_cache_guard {
llama_kv_cache_guard(llama_kv_cache * kv) : kv(kv) {}
@@ -43,65 +83,50 @@ private:
llama_kv_cache * kv;
};
struct llama_kv_cell {
llama_pos pos = -1;
llama_pos delta = 0;
int32_t src = -1; // used by recurrent state models to copy states
int32_t tail = -1;
//
// llama_kv_cache_unified
//
std::set<llama_seq_id> seq_id;
bool has_seq_id(const llama_seq_id & id) const {
return seq_id.find(id) != seq_id.end();
}
bool is_empty() const {
return seq_id.empty();
}
bool is_same_seq(const llama_kv_cell & other) const {
return seq_id == other.seq_id;
}
};
// ring-buffer of cached KV data
// TODO: pimpl
// TODO: add notion of max sequences
class llama_kv_cache_unified : public llama_kv_cache {
public:
// can be used to query data from the model if needed
struct callbacks {
std::function<ggml_tensor * (uint32_t n_ctx_per_seq, int il)> get_rope_factors;
struct kv_cell {
llama_pos pos = -1;
llama_pos delta = 0;
std::set<llama_seq_id> seq_id;
bool has_seq_id(const llama_seq_id & id) const {
return seq_id.find(id) != seq_id.end();
}
bool is_empty() const {
return seq_id.empty();
}
bool is_same_seq(const kv_cell & other) const {
return seq_id == other.seq_id;
}
};
static uint32_t get_padding(const llama_cparams & cparams);
llama_kv_cache_unified(
const llama_hparams & hparams,
callbacks cbs);
virtual ~llama_kv_cache_unified() = default;
// TODO: become constructor
bool init(
const llama_model & model, // TODO: do not reference the model
const llama_cparams & cparams,
const llama_model & model,
ggml_type type_k,
ggml_type type_v,
bool v_trans,
bool offload,
uint32_t kv_size,
bool offload);
uint32_t padding);
int32_t get_n_tokens() const override;
int32_t get_used_cells() const override;
~llama_kv_cache_unified() = default;
size_t total_size() const;
// TODO: better data structures to reduce the cost of this operation
llama_pos pos_max() const;
//
// llama_memory_i
//
void clear() override;
void defrag() override;
virtual void restore() override;
virtual void commit() override;
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;
@@ -111,63 +136,40 @@ public:
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
bool get_can_shift() const override;
//
// llama_kv_cache
//
void restore() override;
void commit() override;
bool update(llama_context & ctx) override;
void defrag_sched(float thold) override;
void set_full() override;
llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) override;
llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const override;
// find an empty slot of size "n_tokens" in the cache
// updates the cache head
// Note: On success, it's important that cache.head points
// to the first cell of the slot.
bool find_slot(const llama_ubatch & batch);
bool find_slot(const llama_ubatch & batch) override;
// TODO: maybe not needed
uint32_t get_padding(const llama_cparams & cparams) const;
int32_t get_n_tokens() const override;
int32_t get_used_cells() const override;
// find how many cells are currently in use
uint32_t cell_max() const;
// TODO: better data structures to reduce the cost of this operation
llama_pos get_pos_max() const override;
size_t size_k_bytes() const;
size_t size_v_bytes() const;
// defrag
struct {
std::vector<uint32_t> ids;
} defrag_info;
// return true if cells have been moved
bool defrag_prepare(int32_t n_max_nodes);
// commit/restore cache
struct slot_range {
uint32_t c0 = 0; // note: these are cell indices, not sequence positions
uint32_t c1 = 0;
};
// pending cell updates that are not yet committed
struct {
std::vector<slot_range> ranges;
} pending;
bool get_can_shift() const override;
// state write/load
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const;
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1);
// members
const llama_hparams & hparams;
callbacks cbs;
bool has_shift = false;
bool do_defrag = false;
// TODO: remove this and implement llama_kv_cache_recurrent instead
bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
bool v_trans = true; // the value tensor is transposed
bool can_shift = false;
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override;
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override;
// Note: The value of head isn't only used to optimize searching
// for a free KV slot. llama_decode_impl also uses it, so it
@@ -179,18 +181,213 @@ public:
// computed before each graph build
uint32_t n = 0;
std::vector<llama_kv_cell> cells;
std::vector<kv_cell> cells;
std::vector<ggml_tensor *> k_l; // per layer
std::vector<ggml_tensor *> v_l;
private:
const llama_model & model;
const llama_hparams & hparams;
bool has_shift = false;
bool do_defrag = false;
bool v_trans = true; // the value tensor is transposed
bool can_shift = false;
// required padding
uint32_t padding = 1;
ggml_type type_k = GGML_TYPE_F16;
ggml_type type_v = GGML_TYPE_F16;
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
// defrag
struct {
std::vector<uint32_t> ids;
} defrag_info;
// return true if cells have been moved
bool defrag_prepare(int32_t n_max_nodes);
// commit/restore cache
struct slot_range {
uint32_t c0 = 0; // note: these are cell indices, not sequence positions
uint32_t c1 = 0;
};
// pending cell updates that are not yet committed
struct {
std::vector<slot_range> ranges;
} pending;
// find how many cells are currently in use
uint32_t cell_max() const;
size_t total_size() const;
size_t size_k_bytes() const;
size_t size_v_bytes() const;
ggml_tensor * build_rope_shift(
const llama_cparams & cparams,
ggml_context * ctx,
ggml_tensor * cur,
ggml_tensor * shift,
ggml_tensor * factors,
float freq_base,
float freq_scale) const;
llm_graph_result_ptr build_graph_shift(
const llama_cparams & cparams,
ggml_context * ctx,
ggml_cgraph * gf) const;
llm_graph_result_ptr build_graph_defrag(
const llama_cparams & cparams,
ggml_context * ctx,
ggml_cgraph * gf) const;
void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const;
void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const;
bool state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1);
bool state_read_data(llama_io_read_i & io, uint32_t cell_count);
};
//
// llama_kv_cache_recurrent
//
class llama_kv_cache_recurrent : public llama_kv_cache {
public:
struct kv_cell {
llama_pos pos = -1;
int32_t src = -1; // used to copy states
int32_t tail = -1;
std::set<llama_seq_id> seq_id;
bool has_seq_id(const llama_seq_id & id) const {
return seq_id.find(id) != seq_id.end();
}
bool is_empty() const {
return seq_id.empty();
}
bool is_same_seq(const kv_cell & other) const {
return seq_id == other.seq_id;
}
};
llama_kv_cache_recurrent(
const llama_model & model,
ggml_type type_k,
ggml_type type_v,
bool offload,
uint32_t kv_size);
~llama_kv_cache_recurrent() = default;
//
// llama_memory_i
//
void clear() override;
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;
void seq_keep(llama_seq_id seq_id) override;
void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) override;
void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override;
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
//
// llama_kv_cache
//
void restore() override;
void commit() override;
bool update(llama_context & lctx) override;
void defrag_sched(float thold) override;
void set_full() override;
llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) override;
llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const override;
bool find_slot(const llama_ubatch & batch) override;
int32_t get_n_tokens() const override;
int32_t get_used_cells() const override;
// TODO: better data structures to reduce the cost of this operation
llama_pos get_pos_max() const override;
bool get_can_shift() const override;
// TODO: temporary methods - they are not really const as they do const_cast<>, fix this
int32_t s_copy(int i) const;
float s_mask(int i) const;
// state write/load
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override;
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override;
// Note: The value of head isn't only used to optimize searching
// for a free KV slot. llama_decode_impl also uses it, so it
// cannot be freely changed after a slot has been allocated.
uint32_t head = 0;
uint32_t size = 0;
uint32_t used = 0; // used cells (i.e. at least one seq_id)
// computed before each graph build
uint32_t n = 0;
std::vector<kv_cell> cells;
std::vector<ggml_tensor *> k_l; // per layer
std::vector<ggml_tensor *> v_l;
private:
//const llama_model & model;
const llama_hparams & hparams;
// commit/restore cache
// TODO: rework for recurrent cache
struct slot_range {
uint32_t c0 = 0; // note: these are cell indices, not sequence positions
uint32_t c1 = 0;
};
// pending cell updates that are not yet committed
struct {
std::vector<slot_range> ranges;
} pending;
ggml_type type_k = GGML_TYPE_F16;
ggml_type type_v = GGML_TYPE_F16;
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
// find how many cells are currently in use
uint32_t cell_max() const;
size_t total_size() const;
size_t size_k_bytes() const;
size_t size_v_bytes() const;
void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const;
void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const;
@@ -198,11 +395,6 @@ private:
bool state_read_data(llama_io_read_i & io, uint32_t cell_count);
};
// TODO: temporary reusing llama_kv_cache_unified -- implement recurrent cache and simplify llama_kv_cache_unified
//class llama_kv_cache_recurrent : public llama_kv_cache_unified {
//public:
// using llama_kv_cache_unified::llama_kv_cache_unified;
//};
//
// kv cache view

View File

@@ -2,12 +2,22 @@
#include "llama.h"
struct llama_memory_params {
// kv cache
ggml_type type_k;
ggml_type type_v;
// parameters for other types of memory
// ...
};
// general concept of LLM memory
// the KV cache is a type of LLM memory, but there can be other types
class llama_memory_i {
public:
virtual ~llama_memory_i() = default;
virtual void clear() = 0;
virtual void defrag() = 0;
virtual bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) = 0;
virtual void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) = 0;

View File

@@ -40,6 +40,7 @@ const char * llm_type_name(llm_type type) {
case LLM_TYPE_335M: return "335M";
case LLM_TYPE_410M: return "410M";
case LLM_TYPE_450M: return "450M";
case LLM_TYPE_475M: return "475M";
case LLM_TYPE_770M: return "770M";
case LLM_TYPE_780M: return "780M";
case LLM_TYPE_0_5B: return "0.5B";
@@ -79,6 +80,7 @@ const char * llm_type_name(llm_type type) {
case LLM_TYPE_236B: return "236B";
case LLM_TYPE_290B: return "290B";
case LLM_TYPE_314B: return "314B";
case LLM_TYPE_405B: return "405B";
case LLM_TYPE_671B: return "671B";
case LLM_TYPE_SMALL: return "0.1B";
case LLM_TYPE_MEDIUM: return "0.4B";
@@ -581,6 +583,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
switch (hparams.n_layer) {
case 32: type = LLM_TYPE_7B; break;
case 80: type = LLM_TYPE_70B; break;
case 162: type = LLM_TYPE_405B; break;
default: type = LLM_TYPE_UNKNOWN;
}
} break;
@@ -707,7 +710,11 @@ void llama_model::load_hparams(llama_model_loader & ml) {
ml.get_key(LLM_KV_MOE_EVERY_N_LAYERS, hparams.moe_every_n_layers, 0);
if (hparams.n_layer == 12 && hparams.n_embd == 768) {
type = LLM_TYPE_137M;
if (arch == LLM_ARCH_NOMIC_BERT) {
type = LLM_TYPE_137M;
} else if (arch == LLM_ARCH_NOMIC_BERT_MOE && hparams.moe_every_n_layers == 2) {
type = LLM_TYPE_475M;
}
}
} break;
case LLM_ARCH_BLOOM:
@@ -768,6 +775,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
// fall through
case LLM_ARCH_QWEN2:
{
ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break;
@@ -1842,7 +1850,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
if (n_ff > 0) {
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
}
if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
@@ -1852,9 +1862,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
}
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
if (n_ff > 0) {
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
}
// optional MLP bias
layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
@@ -3498,7 +3510,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed
if (output == NULL) {
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
}
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
@@ -4440,6 +4456,19 @@ const ggml_tensor * llama_model::get_tensor(const char * name) const {
return it->second;
}
ggml_tensor * llama_model::get_rope_factors(uint32_t n_ctx_per_seq, int il) const {
// choose long/short freq factors based on the context size
if (layers[il].rope_freqs != nullptr) {
return layers[il].rope_freqs;
}
if (n_ctx_per_seq > hparams.n_ctx_orig_yarn) {
return layers[il].rope_long;
}
return layers[il].rope_short;
}
struct llm_build_llama : public llm_graph_context {
llm_build_llama(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
@@ -4480,7 +4509,7 @@ struct llm_build_llama : public llm_graph_context {
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
@@ -4686,6 +4715,7 @@ struct llm_build_deci : public llm_graph_context {
ggml_tensor * inpSA = inpL;
const int64_t n_head_kv = hparams.n_head_kv(il);
const int64_t n_head = hparams.n_head(il);
const int64_t n_ff = hparams.n_ff(il);
if (n_head == 0) {
// attention-free layer of Llama-3_1-Nemotron-51B
@@ -4705,7 +4735,7 @@ struct llm_build_deci : public llm_graph_context {
} else if (n_head > 0) {
// self-attention
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
@@ -4761,6 +4791,11 @@ struct llm_build_deci : public llm_graph_context {
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
// FFN-free layer of Llama-3_1-Nemotron-Ultra-253B
if (n_head == 0 && n_ff == 0) {
continue;
}
// For Granite architecture
if (hparams.f_residual_scale) {
cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
@@ -7187,7 +7222,7 @@ struct llm_build_phi3 : public llm_graph_context {
// self-attention
{
// rope freq factors for 128k context
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
ggml_tensor* attn_norm_output = build_norm(inpL,
model.layers[il].attn_norm,
@@ -7939,7 +7974,7 @@ struct llm_build_minicpm3 : public llm_graph_context {
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
// norm
cur = build_norm(inpL,
@@ -8706,7 +8741,7 @@ struct llm_build_mamba : public llm_graph_context {
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il) const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
const auto kv_head = kv_self->head;
@@ -9007,7 +9042,7 @@ struct llm_build_cohere2 : public llm_graph_context {
// self-attention
{
// rope freq factors for 128k context
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
@@ -9945,7 +9980,7 @@ struct llm_build_deepseek : public llm_graph_context {
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
@@ -11309,7 +11344,7 @@ struct llm_build_exaone : public llm_graph_context {
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
@@ -11454,7 +11489,7 @@ struct llm_build_rwkv6_base : public llm_graph_context {
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il) const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
const auto n_tokens = ubatch.n_tokens;
const auto n_seqs = ubatch.n_seqs;
@@ -11850,7 +11885,7 @@ struct llm_build_rwkv7_base : public llm_graph_context {
ggml_tensor *& first_layer_value,
const llama_ubatch & ubatch,
int il) const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
const auto n_tokens = ubatch.n_tokens;
const auto n_seqs = ubatch.n_seqs;
@@ -12690,7 +12725,7 @@ struct llm_build_bailingmoe : public llm_graph_context {
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
@@ -12810,7 +12845,7 @@ struct llm_build_bailingmoe : public llm_graph_context {
}
};
llama_memory_i * llama_model::create_memory() const {
llama_memory_i * llama_model::create_memory(const llama_memory_params & params, llama_cparams & cparams) const {
llama_memory_i * res;
switch (arch) {
@@ -12820,26 +12855,29 @@ llama_memory_i * llama_model::create_memory() const {
case LLM_ARCH_RWKV7:
case LLM_ARCH_ARWKV7:
{
res = new llama_kv_cache_unified(hparams, {
/*.get_rope_factors =*/ nullptr
});
res = new llama_kv_cache_recurrent(
*this,
GGML_TYPE_F32,
GGML_TYPE_F32,
cparams.offload_kqv,
std::max((uint32_t) 1, cparams.n_seq_max));
} break;
default:
{
res = new llama_kv_cache_unified(hparams, {
/*.get_rope_factors =*/ [this](uint32_t n_ctx_per_seq, int il) {
// choose long/short freq factors based on the context size
if (layers[il].rope_freqs != nullptr) {
return layers[il].rope_freqs;
}
const auto padding = llama_kv_cache_unified::get_padding(cparams);
if (n_ctx_per_seq > hparams.n_ctx_orig_yarn) {
return layers[il].rope_long;
}
cparams.n_ctx = GGML_PAD(cparams.n_ctx, padding);
return layers[il].rope_short;
}
});
LLAMA_LOG_DEBUG("%s: n_ctx = %u (padded)\n", __func__, cparams.n_ctx);
res = new llama_kv_cache_unified(
*this,
params.type_k,
params.type_v,
!cparams.flash_attn,
cparams.offload_kqv,
cparams.n_ctx,
padding);
}
}
@@ -13221,8 +13259,6 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_DECI:
case LLM_ARCH_BAICHUAN:
case LLM_ARCH_STARCODER:
case LLM_ARCH_PLAMO:
case LLM_ARCH_ORION:
case LLM_ARCH_INTERNLM2:
case LLM_ARCH_MINICPM:
case LLM_ARCH_XVERSE:
@@ -13260,6 +13296,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_PHI2:
case LLM_ARCH_PHI3:
case LLM_ARCH_PHIMOE:
case LLM_ARCH_PLAMO:
case LLM_ARCH_GEMMA:
case LLM_ARCH_GEMMA2:
case LLM_ARCH_GEMMA3:
@@ -13267,6 +13304,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_OPENELM:
case LLM_ARCH_GPTNEOX:
case LLM_ARCH_CODESHELL:
case LLM_ARCH_ORION:
case LLM_ARCH_NEMOTRON:
case LLM_ARCH_EXAONE:
case LLM_ARCH_MINICPM3:

View File

@@ -36,6 +36,7 @@ enum llm_type {
LLM_TYPE_335M,
LLM_TYPE_410M,
LLM_TYPE_450M,
LLM_TYPE_475M,
LLM_TYPE_770M,
LLM_TYPE_780M,
LLM_TYPE_0_5B,
@@ -75,6 +76,7 @@ enum llm_type {
LLM_TYPE_236B,
LLM_TYPE_290B,
LLM_TYPE_314B,
LLM_TYPE_405B,
LLM_TYPE_671B,
LLM_TYPE_SMALL,
LLM_TYPE_MEDIUM,
@@ -394,8 +396,11 @@ struct llama_model {
const struct ggml_tensor * get_tensor(const char * name) const;
ggml_tensor * get_rope_factors(uint32_t n_ctx_per_seq, int il) const;
// note: can mutate `cparams`
// TODO: move this to new llm_arch_model_i interface
llama_memory_i * create_memory() const; // TODO: params
llama_memory_i * create_memory(const llama_memory_params & params, llama_cparams & cparams) const;
// TODO: move this to new llm_arch_model_i interface
llm_graph_result_ptr build_graph(

Some files were not shown because too many files have changed in this diff Show More