mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-05 13:53:23 +02:00
Compare commits
126 Commits
b5254
...
gg/server-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
237acc7cd5 | ||
|
|
6190e1c1c9 | ||
|
|
09d13d94fb | ||
|
|
24e86cae72 | ||
|
|
bb1681fbd5 | ||
|
|
d486dd3e8e | ||
|
|
21ca987fba | ||
|
|
be1d4a13db | ||
|
|
ab3971f2a0 | ||
|
|
e5c834f718 | ||
|
|
71bdbdb587 | ||
|
|
f0995d28ce | ||
|
|
c252e0c409 | ||
|
|
4f711afed5 | ||
|
|
b89d605a91 | ||
|
|
b4726345ac | ||
|
|
bf79371120 | ||
|
|
d590cd4c24 | ||
|
|
1e2809bc4b | ||
|
|
cf0a43bb64 | ||
|
|
f0d46ef157 | ||
|
|
de4c07f937 | ||
|
|
10d2af0eaa | ||
|
|
064cc596ac | ||
|
|
91159ee9df | ||
|
|
22cdab343b | ||
|
|
a71a4075cd | ||
|
|
95e18884fc | ||
|
|
df8491922f | ||
|
|
14492144c2 | ||
|
|
c104023994 | ||
|
|
9a390c4829 | ||
|
|
09232370fc | ||
|
|
7474e00b34 | ||
|
|
7f323a589f | ||
|
|
3eac209319 | ||
|
|
a634d75d1b | ||
|
|
62d4250e52 | ||
|
|
0208355f42 | ||
|
|
d2a4ef05c6 | ||
|
|
15e6125a39 | ||
|
|
3b24d26c22 | ||
|
|
43dfd741a5 | ||
|
|
b064a51a4e | ||
|
|
053367d149 | ||
|
|
d8919424f1 | ||
|
|
7fef11766c | ||
|
|
dc1d2adfc0 | ||
|
|
7c28a74e07 | ||
|
|
33eff40240 | ||
|
|
17512a94d6 | ||
|
|
611aa914ef | ||
|
|
0cf6725e9f | ||
|
|
27ebfcacba | ||
|
|
5c86c9ed3e | ||
|
|
efb8b47eda | ||
|
|
0527771dd8 | ||
|
|
2189fd3b63 | ||
|
|
3f96aeff39 | ||
|
|
b486ba05bf | ||
|
|
02115dcd9a | ||
|
|
d9c4accaff | ||
|
|
15e03282bb | ||
|
|
f05a6d71a0 | ||
|
|
ee01d71e58 | ||
|
|
8c83449cb7 | ||
|
|
1a844be132 | ||
|
|
0ccc121354 | ||
|
|
6562e5a4d6 | ||
|
|
51fb96b1ff | ||
|
|
70a6991edf | ||
|
|
f061021206 | ||
|
|
8733e0cf6e | ||
|
|
814f795e06 | ||
|
|
d879433824 | ||
|
|
13b0a04597 | ||
|
|
bba9d945c1 | ||
|
|
bc4e1128f7 | ||
|
|
39e73ae0d6 | ||
|
|
1f73301b63 | ||
|
|
4773d7a02f | ||
|
|
6c7fd67b64 | ||
|
|
141a908a59 | ||
|
|
32916a4907 | ||
|
|
ffc727203a | ||
|
|
91a86a6f35 | ||
|
|
f4ed10b69c | ||
|
|
1e333d5bba | ||
|
|
2f54e348ad | ||
|
|
2356fb1d53 | ||
|
|
764b85627b | ||
|
|
15a28ec8c7 | ||
|
|
a7366faa5b | ||
|
|
9070365020 | ||
|
|
233461f812 | ||
|
|
b34c859146 | ||
|
|
9b61acf060 | ||
|
|
5215b91e93 | ||
|
|
ae803bfc3d | ||
|
|
66645a5285 | ||
|
|
27aa259532 | ||
|
|
9fdfcdaedd | ||
|
|
6eb7d25c70 | ||
|
|
86bd60d3fe | ||
|
|
9f2da5871f | ||
|
|
93c4e23905 | ||
|
|
8afbd96818 | ||
|
|
8ae5ebcf85 | ||
|
|
3e959f0976 | ||
|
|
36667c8edc | ||
|
|
3bf785f3ef | ||
|
|
1d36b3670b | ||
|
|
b34443923c | ||
|
|
a75cb30dc9 | ||
|
|
3f3769ba76 | ||
|
|
2f567611c0 | ||
|
|
7d2123484e | ||
|
|
074e42ab31 | ||
|
|
c642bc014c | ||
|
|
cb06a3c363 | ||
|
|
626083faf7 | ||
|
|
2af6880178 | ||
|
|
e84773ab60 | ||
|
|
fab647e884 | ||
|
|
dcf886007d | ||
|
|
d24d592808 |
@@ -21,15 +21,15 @@ indent_style = tab
|
||||
[prompts/*.txt]
|
||||
insert_final_newline = unset
|
||||
|
||||
[examples/server/public/*]
|
||||
[tools/server/public/*]
|
||||
indent_size = 2
|
||||
|
||||
[examples/server/public/deps_*]
|
||||
[tools/server/public/deps_*]
|
||||
trim_trailing_whitespace = unset
|
||||
indent_style = unset
|
||||
indent_size = unset
|
||||
|
||||
[examples/server/deps_*]
|
||||
[tools/server/deps_*]
|
||||
trim_trailing_whitespace = unset
|
||||
indent_style = unset
|
||||
indent_size = unset
|
||||
@@ -37,7 +37,7 @@ indent_size = unset
|
||||
[examples/llama.swiftui/llama.swiftui.xcodeproj/*]
|
||||
indent_style = tab
|
||||
|
||||
[examples/cvector-generator/*.txt]
|
||||
[tools/cvector-generator/*.txt]
|
||||
trim_trailing_whitespace = unset
|
||||
insert_final_newline = unset
|
||||
|
||||
|
||||
3
.flake8
3
.flake8
@@ -2,8 +2,9 @@
|
||||
max-line-length = 125
|
||||
ignore = E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704,W503
|
||||
exclude =
|
||||
# Do not traverse examples
|
||||
# Do not traverse examples and tools
|
||||
examples,
|
||||
tools,
|
||||
# Do not include package initializers
|
||||
__init__.py,
|
||||
# No need to traverse our git directory
|
||||
|
||||
22
.github/actions/get-tag-name/action.yml
vendored
Normal file
22
.github/actions/get-tag-name/action.yml
vendored
Normal file
@@ -0,0 +1,22 @@
|
||||
name: "Determine tag name"
|
||||
description: "Determine the tag name to use for a release"
|
||||
outputs:
|
||||
name:
|
||||
description: "The name of the tag"
|
||||
value: ${{ steps.tag.outputs.name }}
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
shell: bash
|
||||
run: |
|
||||
BUILD_NUMBER="$(git rev-list --count HEAD)"
|
||||
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
|
||||
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
|
||||
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
|
||||
else
|
||||
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
|
||||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
67
.github/actions/windows-setup-cuda/action.yml
vendored
Normal file
67
.github/actions/windows-setup-cuda/action.yml
vendored
Normal file
@@ -0,0 +1,67 @@
|
||||
name: "Windows - Setup CUDA Toolkit"
|
||||
description: "Setup CUDA Toolkit for Windows"
|
||||
inputs:
|
||||
cuda_version:
|
||||
description: "CUDA toolkit version"
|
||||
required: true
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Install Cuda Toolkit 11.7
|
||||
if: ${{ inputs.cuda_version == '11.7' }}
|
||||
shell: pwsh
|
||||
run: |
|
||||
mkdir -p "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7"
|
||||
choco install unzip -y
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cudart/windows-x86_64/cuda_cudart-windows-x86_64-11.7.99-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvcc/windows-x86_64/cuda_nvcc-windows-x86_64-11.7.99-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvrtc/windows-x86_64/cuda_nvrtc-windows-x86_64-11.7.99-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/libcublas/windows-x86_64/libcublas-windows-x86_64-11.7.4.6-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvtx/windows-x86_64/cuda_nvtx-windows-x86_64-11.7.91-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/visual_studio_integration/windows-x86_64/visual_studio_integration-windows-x86_64-11.7.91-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvprof/windows-x86_64/cuda_nvprof-windows-x86_64-11.7.101-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cccl/windows-x86_64/cuda_cccl-windows-x86_64-11.7.91-archive.zip"
|
||||
unzip '*.zip' -d "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7"
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_cudart-windows-x86_64-11.7.99-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_nvcc-windows-x86_64-11.7.99-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_nvrtc-windows-x86_64-11.7.99-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\libcublas-windows-x86_64-11.7.4.6-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_nvtx-windows-x86_64-11.7.91-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\visual_studio_integration-windows-x86_64-11.7.91-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_nvprof-windows-x86_64-11.7.101-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_cccl-windows-x86_64-11.7.91-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
|
||||
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\libnvvp" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
|
||||
echo "CUDA_PATH_V11_7=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
|
||||
|
||||
- name: Install Cuda Toolkit 12.4
|
||||
if: ${{ inputs.cuda_version == '12.4' }}
|
||||
shell: pwsh
|
||||
run: |
|
||||
mkdir -p "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4"
|
||||
choco install unzip -y
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cudart/windows-x86_64/cuda_cudart-windows-x86_64-12.4.127-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvcc/windows-x86_64/cuda_nvcc-windows-x86_64-12.4.131-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvrtc/windows-x86_64/cuda_nvrtc-windows-x86_64-12.4.127-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/libcublas/windows-x86_64/libcublas-windows-x86_64-12.4.5.8-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvtx/windows-x86_64/cuda_nvtx-windows-x86_64-12.4.127-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_profiler_api/windows-x86_64/cuda_profiler_api-windows-x86_64-12.4.127-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/visual_studio_integration/windows-x86_64/visual_studio_integration-windows-x86_64-12.4.127-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvprof/windows-x86_64/cuda_nvprof-windows-x86_64-12.4.127-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cccl/windows-x86_64/cuda_cccl-windows-x86_64-12.4.127-archive.zip"
|
||||
unzip '*.zip' -d "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4"
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_cudart-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_nvcc-windows-x86_64-12.4.131-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_nvrtc-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\libcublas-windows-x86_64-12.4.5.8-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_nvtx-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_profiler_api-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\visual_studio_integration-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_nvprof-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_cccl-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
|
||||
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\libnvvp" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
|
||||
echo "CUDA_PATH_V12_4=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
|
||||
6
.github/labeler.yml
vendored
6
.github/labeler.yml
vendored
@@ -45,7 +45,9 @@ build:
|
||||
- CMakePresets.json
|
||||
examples:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file: examples/**
|
||||
- any-glob-to-any-file:
|
||||
- examples/**
|
||||
- tools/**
|
||||
devops:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
@@ -70,7 +72,7 @@ android:
|
||||
server:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- examples/server/**
|
||||
- tools/server/**
|
||||
ggml:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
|
||||
30
.github/workflows/bench.yml.disabled
vendored
30
.github/workflows/bench.yml.disabled
vendored
@@ -27,10 +27,10 @@ on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
|
||||
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'tools/server/*.h*', 'tools/server/*.cpp']
|
||||
pull_request_target:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
|
||||
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'tools/server/*.h*', 'tools/server/*.cpp']
|
||||
schedule:
|
||||
- cron: '04 2 * * *'
|
||||
|
||||
@@ -69,7 +69,7 @@ jobs:
|
||||
- name: Install python env
|
||||
id: pipenv
|
||||
run: |
|
||||
cd examples/server/bench
|
||||
cd tools/server/bench
|
||||
python3 -m venv venv
|
||||
source venv/bin/activate
|
||||
pip install -r requirements.txt
|
||||
@@ -79,7 +79,7 @@ jobs:
|
||||
run: |
|
||||
wget --quiet https://github.com/prometheus/prometheus/releases/download/v2.51.0/prometheus-2.51.0.linux-amd64.tar.gz
|
||||
tar xzf prometheus*.tar.gz --strip-components=1
|
||||
./prometheus --config.file=examples/server/bench/prometheus.yml &
|
||||
./prometheus --config.file=tools/server/bench/prometheus.yml &
|
||||
while ! nc -z localhost 9090; do
|
||||
sleep 0.1
|
||||
done
|
||||
@@ -92,7 +92,7 @@ jobs:
|
||||
- name: Install k6 and xk6-sse
|
||||
id: k6_installation
|
||||
run: |
|
||||
cd examples/server/bench
|
||||
cd tools/server/bench
|
||||
go install go.k6.io/xk6/cmd/xk6@latest
|
||||
xk6 build master \
|
||||
--with github.com/phymbert/xk6-sse
|
||||
@@ -116,7 +116,7 @@ jobs:
|
||||
- name: Download the dataset
|
||||
id: download_dataset
|
||||
run: |
|
||||
cd examples/server/bench
|
||||
cd tools/server/bench
|
||||
wget --quiet https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
|
||||
- name: Server bench
|
||||
@@ -126,7 +126,7 @@ jobs:
|
||||
run: |
|
||||
set -eux
|
||||
|
||||
cd examples/server/bench
|
||||
cd tools/server/bench
|
||||
source venv/bin/activate
|
||||
python bench.py \
|
||||
--runner-label ${{ env.RUNNER_LABEL }} \
|
||||
@@ -157,9 +157,9 @@ jobs:
|
||||
name: bench-server-${{ github.job }}-${{ env.RUNNER_LABEL }}-${{ matrix.model }}-${{ matrix.ftype }}
|
||||
compression-level: 9
|
||||
path: |
|
||||
examples/server/bench/*.jpg
|
||||
examples/server/bench/*.json
|
||||
examples/server/bench/*.log
|
||||
tools/server/bench/*.jpg
|
||||
tools/server/bench/*.json
|
||||
tools/server/bench/*.log
|
||||
|
||||
- name: Commit status
|
||||
uses: Sibz/github-status-action@v1
|
||||
@@ -178,17 +178,17 @@ jobs:
|
||||
with:
|
||||
client_id: ${{secrets.IMGUR_CLIENT_ID}}
|
||||
path: |
|
||||
examples/server/bench/prompt_tokens_seconds.jpg
|
||||
examples/server/bench/predicted_tokens_seconds.jpg
|
||||
examples/server/bench/kv_cache_usage_ratio.jpg
|
||||
examples/server/bench/requests_processing.jpg
|
||||
tools/server/bench/prompt_tokens_seconds.jpg
|
||||
tools/server/bench/predicted_tokens_seconds.jpg
|
||||
tools/server/bench/kv_cache_usage_ratio.jpg
|
||||
tools/server/bench/requests_processing.jpg
|
||||
|
||||
- name: Extract mermaid
|
||||
id: set_mermaid
|
||||
run: |
|
||||
set -eux
|
||||
|
||||
cd examples/server/bench
|
||||
cd tools/server/bench
|
||||
PROMPT_TOKENS_SECONDS=$(cat prompt_tokens_seconds.mermaid)
|
||||
echo "PROMPT_TOKENS_SECONDS<<EOF" >> $GITHUB_ENV
|
||||
echo "$PROMPT_TOKENS_SECONDS" >> $GITHUB_ENV
|
||||
|
||||
66
.github/workflows/build-linux-cross.yml
vendored
66
.github/workflows/build-linux-cross.yml
vendored
@@ -4,18 +4,25 @@ on:
|
||||
workflow_call:
|
||||
|
||||
jobs:
|
||||
ubuntu-latest-riscv64-cpu-cross:
|
||||
runs-on: ubuntu-latest
|
||||
ubuntu-24-riscv64-cpu-cross:
|
||||
runs-on: ubuntu-24.04
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Setup Riscv
|
||||
run: |
|
||||
sudo dpkg --add-architecture riscv64
|
||||
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
|
||||
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
|
||||
sudo apt-get clean
|
||||
sudo apt-get update
|
||||
|
||||
# Add arch-specific repositories for non-amd64 architectures
|
||||
cat << EOF | sudo tee /etc/apt/sources.list.d/riscv64-ports.list
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
|
||||
EOF
|
||||
|
||||
sudo apt-get update || true ;# Prevent failure due to missing URLs.
|
||||
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
gcc-14-riscv64-linux-gnu \
|
||||
@@ -27,6 +34,7 @@ jobs:
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
|
||||
@@ -40,21 +48,25 @@ jobs:
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
ubuntu-latest-riscv64-vulkan-cross:
|
||||
runs-on: ubuntu-latest
|
||||
ubuntu-24-riscv64-vulkan-cross:
|
||||
runs-on: ubuntu-24.04
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Setup Riscv
|
||||
run: |
|
||||
sudo dpkg --add-architecture riscv64
|
||||
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
|
||||
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
|
||||
sudo apt-get clean
|
||||
sudo apt-get update
|
||||
|
||||
# Add arch-specific repositories for non-amd64 architectures
|
||||
cat << EOF | sudo tee /etc/apt/sources.list.d/riscv64-ports.list
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
|
||||
EOF
|
||||
|
||||
sudo apt-get update || true ;# Prevent failure due to missing URLs.
|
||||
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
glslc \
|
||||
@@ -69,6 +81,7 @@ jobs:
|
||||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
|
||||
@@ -82,21 +95,25 @@ jobs:
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
ubuntu-latest-arm64-vulkan-cross:
|
||||
runs-on: ubuntu-latest
|
||||
ubuntu-24-arm64-vulkan-cross:
|
||||
runs-on: ubuntu-24.04
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Setup Arm64
|
||||
run: |
|
||||
sudo dpkg --add-architecture arm64
|
||||
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
|
||||
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
|
||||
sudo apt-get clean
|
||||
sudo apt-get update
|
||||
|
||||
# Add arch-specific repositories for non-amd64 architectures
|
||||
cat << EOF | sudo tee /etc/apt/sources.list.d/arm64-ports.list
|
||||
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
|
||||
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
|
||||
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
|
||||
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
|
||||
EOF
|
||||
|
||||
sudo apt-get update || true ;# Prevent failure due to missing URLs.
|
||||
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
glslc \
|
||||
@@ -110,6 +127,7 @@ jobs:
|
||||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=aarch64 \
|
||||
|
||||
803
.github/workflows/build.yml
vendored
803
.github/workflows/build.yml
vendored
File diff suppressed because it is too large
Load Diff
7
.github/workflows/docker.yml
vendored
7
.github/workflows/docker.yml
vendored
@@ -36,10 +36,13 @@ jobs:
|
||||
matrix:
|
||||
config:
|
||||
# Multi-stage build
|
||||
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: false }
|
||||
# Note: the arm64 images are failing, which prevents the amd64 images from being built
|
||||
# https://github.com/ggml-org/llama.cpp/issues/11888
|
||||
#- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: false }
|
||||
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
|
||||
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
|
||||
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true }
|
||||
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
|
||||
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true }
|
||||
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
|
||||
# Note: the rocm images are failing due to a compiler error and are disabled until this is fixed to allow the workflow to complete
|
||||
#- {tag: "rocm", dockerfile: ".devops/rocm.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: true }
|
||||
|
||||
709
.github/workflows/release.yml
vendored
Normal file
709
.github/workflows/release.yml
vendored
Normal file
@@ -0,0 +1,709 @@
|
||||
name: Create Release
|
||||
|
||||
on:
|
||||
workflow_dispatch: # allows manual triggering
|
||||
inputs:
|
||||
create_release:
|
||||
description: 'Create new release'
|
||||
required: true
|
||||
type: boolean
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['.github/workflows/release.yml', '**/CMakeLists.txt', '**/.cmake', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal', '**/*.comp']
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
env:
|
||||
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
|
||||
CMAKE_ARGS: "-DLLAMA_BUILD_EXAMPLES=OFF -DLLAMA_BUILD_TESTS=OFF -DLLAMA_BUILD_TOOLS=ON -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON"
|
||||
|
||||
jobs:
|
||||
macOS-arm64:
|
||||
runs-on: macos-14
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
with:
|
||||
key: macOS-latest-cmake-arm64
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
brew install curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
sysctl -a
|
||||
cmake -B build \
|
||||
-DCMAKE_BUILD_RPATH="@loader_path" \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DGGML_RPC=ON \
|
||||
${{ env.CMAKE_ARGS }}
|
||||
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
uses: ./.github/actions/get-tag-name
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip
|
||||
name: llama-bin-macos-arm64.zip
|
||||
|
||||
macOS-x64:
|
||||
runs-on: macos-13
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
with:
|
||||
key: macOS-latest-cmake-x64
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
brew install curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
sysctl -a
|
||||
# Metal is disabled due to intermittent failures with Github runners not having a GPU:
|
||||
# https://github.com/ggml-org/llama.cpp/actions/runs/8635935781/job/23674807267#step:5:2313
|
||||
cmake -B build \
|
||||
-DCMAKE_BUILD_RPATH="@loader_path" \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DGGML_METAL=OFF \
|
||||
-DGGML_RPC=ON
|
||||
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
uses: ./.github/actions/get-tag-name
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip
|
||||
name: llama-bin-macos-x64.zip
|
||||
|
||||
ubuntu-22-cpu:
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build: 'x64'
|
||||
os: ubuntu-22.04
|
||||
- build: 'arm64'
|
||||
os: ubuntu-22.04-arm
|
||||
|
||||
runs-on: ${{ matrix.os }}
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
with:
|
||||
key: ubuntu-cpu-cmake
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential libcurl4-openssl-dev
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
${{ env.CMAKE_ARGS }}
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
uses: ./.github/actions/get-tag-name
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip
|
||||
name: llama-bin-ubuntu-${{ matrix.build }}.zip
|
||||
|
||||
ubuntu-22-vulkan:
|
||||
runs-on: ubuntu-22.04
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
with:
|
||||
key: ubuntu-22-cmake-vulkan
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | sudo apt-key add -
|
||||
sudo wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
|
||||
sudo apt-get update -y
|
||||
sudo apt-get install -y build-essential mesa-vulkan-drivers vulkan-sdk libcurl4-openssl-dev
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DGGML_VULKAN=ON \
|
||||
${{ env.CMAKE_ARGS }}
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
uses: ./.github/actions/get-tag-name
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip
|
||||
name: llama-bin-ubuntu-vulkan-x64.zip
|
||||
|
||||
windows:
|
||||
runs-on: windows-latest
|
||||
|
||||
env:
|
||||
OPENBLAS_VERSION: 0.3.23
|
||||
VULKAN_VERSION: 1.4.309.0
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build: 'cpu-x64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF'
|
||||
#- build: 'openblas-x64'
|
||||
# defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
|
||||
- build: 'vulkan-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON'
|
||||
- build: 'cpu-arm64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF'
|
||||
- build: 'opencl-adreno-arm64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON'
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
with:
|
||||
key: windows-latest-cmake-${{ matrix.build }}
|
||||
variant: ccache
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Download OpenBLAS
|
||||
id: get_openblas
|
||||
if: ${{ matrix.build == 'openblas-x64' }}
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/openblas.zip -L "https://github.com/xianyi/OpenBLAS/releases/download/v${env:OPENBLAS_VERSION}/OpenBLAS-${env:OPENBLAS_VERSION}-x64.zip"
|
||||
curl.exe -o $env:RUNNER_TEMP/OpenBLAS.LICENSE.txt -L "https://github.com/xianyi/OpenBLAS/raw/v${env:OPENBLAS_VERSION}/LICENSE"
|
||||
mkdir $env:RUNNER_TEMP/openblas
|
||||
tar.exe -xvf $env:RUNNER_TEMP/openblas.zip -C $env:RUNNER_TEMP/openblas
|
||||
$vcdir = $(vswhere -latest -products * -requires Microsoft.VisualStudio.Component.VC.Tools.x86.x64 -property installationPath)
|
||||
$msvc = $(join-path $vcdir $('VC\Tools\MSVC\'+$(gc -raw $(join-path $vcdir 'VC\Auxiliary\Build\Microsoft.VCToolsVersion.default.txt')).Trim()))
|
||||
$lib = $(join-path $msvc 'bin\Hostx64\x64\lib.exe')
|
||||
& $lib /machine:x64 "/def:${env:RUNNER_TEMP}/openblas/lib/libopenblas.def" "/out:${env:RUNNER_TEMP}/openblas/lib/openblas.lib" /name:openblas.dll
|
||||
|
||||
- name: Install Vulkan SDK
|
||||
id: get_vulkan
|
||||
if: ${{ matrix.build == 'vulkan-x64' }}
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/VulkanSDK-Installer.exe -L "https://sdk.lunarg.com/sdk/download/${env:VULKAN_VERSION}/windows/VulkanSDK-${env:VULKAN_VERSION}-Installer.exe"
|
||||
& "$env:RUNNER_TEMP\VulkanSDK-Installer.exe" --accept-licenses --default-answer --confirm-command install
|
||||
Add-Content $env:GITHUB_ENV "VULKAN_SDK=C:\VulkanSDK\${env:VULKAN_VERSION}"
|
||||
Add-Content $env:GITHUB_PATH "C:\VulkanSDK\${env:VULKAN_VERSION}\bin"
|
||||
|
||||
- name: Install Ninja
|
||||
id: install_ninja
|
||||
run: |
|
||||
choco install ninja
|
||||
|
||||
- name: Install OpenCL Headers and Libs
|
||||
id: install_opencl
|
||||
if: ${{ matrix.build == 'opencl-adreno-arm64' }}
|
||||
run: |
|
||||
git clone https://github.com/KhronosGroup/OpenCL-Headers
|
||||
cd OpenCL-Headers
|
||||
cmake -B build `
|
||||
-DBUILD_TESTING=OFF `
|
||||
-DOPENCL_HEADERS_BUILD_TESTING=OFF `
|
||||
-DOPENCL_HEADERS_BUILD_CXX_TESTS=OFF `
|
||||
-DCMAKE_INSTALL_PREFIX="$env:RUNNER_TEMP/opencl-arm64-release"
|
||||
cmake --build build --target install
|
||||
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader
|
||||
cd OpenCL-ICD-Loader
|
||||
cmake -B build-arm64-release `
|
||||
-A arm64 `
|
||||
-DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" `
|
||||
-DCMAKE_INSTALL_PREFIX="$env:RUNNER_TEMP/opencl-arm64-release"
|
||||
cmake --build build-arm64-release --target install --config release
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cmake -S . -B build ${{ matrix.defines }} `
|
||||
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include" `
|
||||
${{ env.CMAKE_ARGS }}
|
||||
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS}
|
||||
|
||||
- name: Add libopenblas.dll
|
||||
id: add_libopenblas_dll
|
||||
if: ${{ matrix.build == 'openblas-x64' }}
|
||||
run: |
|
||||
cp $env:RUNNER_TEMP/openblas/bin/libopenblas.dll ./build/bin/Release/openblas.dll
|
||||
cp $env:RUNNER_TEMP/OpenBLAS.LICENSE.txt ./build/bin/Release/OpenBLAS-${env:OPENBLAS_VERSION}.txt
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
uses: ./.github/actions/get-tag-name
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
Copy-Item $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\Release\libcurl-x64.dll
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}.zip .\build\bin\Release\*
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}.zip
|
||||
name: llama-bin-win-${{ matrix.build }}.zip
|
||||
|
||||
windows-cuda:
|
||||
runs-on: windows-2019
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
cuda: ['12.4', '11.7']
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Install ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
with:
|
||||
key: windows-cuda-${{ matrix.cuda }}
|
||||
variant: ccache
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Install Cuda Toolkit
|
||||
uses: ./.github/actions/windows-setup-cuda
|
||||
with:
|
||||
cuda_version: ${{ matrix.cuda }}
|
||||
|
||||
- name: Install Ninja
|
||||
id: install_ninja
|
||||
run: |
|
||||
choco install ninja
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
shell: cmd
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
|
||||
cmake -S . -B build -G "Ninja Multi-Config" ^
|
||||
-DGGML_NATIVE=OFF ^
|
||||
-DGGML_BACKEND_DL=ON ^
|
||||
-DGGML_CPU_ALL_VARIANTS=ON ^
|
||||
-DGGML_CUDA=ON ^
|
||||
-DCURL_LIBRARY="%CURL_PATH%/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="%CURL_PATH%/include" ^
|
||||
${{ env.CMAKE_ARGS }}
|
||||
set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1
|
||||
cmake --build build --config Release -j %NINJA_JOBS% -t ggml
|
||||
cmake --build build --config Release
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
uses: ./.github/actions/get-tag-name
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cp $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\Release\libcurl-x64.dll
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-cuda${{ matrix.cuda }}-x64.zip .\build\bin\Release\*
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-win-cuda${{ matrix.cuda }}-x64.zip
|
||||
name: llama-bin-win-cuda${{ matrix.cuda }}-x64.zip
|
||||
|
||||
- name: Copy and pack Cuda runtime
|
||||
run: |
|
||||
echo "Cuda install location: ${{ env.CUDA_PATH }}"
|
||||
$dst='.\build\bin\cudart\'
|
||||
robocopy "${{env.CUDA_PATH}}\bin" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
|
||||
robocopy "${{env.CUDA_PATH}}\lib" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
|
||||
7z a cudart-llama-bin-win-cuda${{ matrix.cuda }}-x64.zip $dst\*
|
||||
|
||||
- name: Upload Cuda runtime
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: cudart-llama-bin-win-cuda${{ matrix.cuda }}-x64.zip
|
||||
name: cudart-llama-bin-win-cuda${{ matrix.cuda }}-x64.zip
|
||||
|
||||
windows-sycl:
|
||||
runs-on: windows-latest
|
||||
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
|
||||
env:
|
||||
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/b380d914-366b-4b77-a74a-05e3c38b3514/intel-oneapi-base-toolkit-2025.0.0.882_offline.exe
|
||||
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel:intel.oneapi.win.dnnl:intel.oneapi.win.tbb.devel
|
||||
ONEAPI_ROOT: "C:/Program Files (x86)/Intel/oneAPI"
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
with:
|
||||
key: windows-latest-cmake-sycl
|
||||
variant: ccache
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Install
|
||||
run: |
|
||||
scripts/install-oneapi.bat $WINDOWS_BASEKIT_URL $WINDOWS_DPCPP_MKL
|
||||
|
||||
# TODO: add libcurl support ; we will also need to modify win-build-sycl.bat to accept user-specified args
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: examples/sycl/win-build-sycl.bat
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
uses: ./.github/actions/get-tag-name
|
||||
|
||||
- name: Build the release package
|
||||
id: pack_artifacts
|
||||
run: |
|
||||
echo "cp oneAPI running time dll files in ${{ env.ONEAPI_ROOT }} to ./build/bin"
|
||||
|
||||
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_sycl_blas.5.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_core.2.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_tbb_thread.2.dll" ./build/bin
|
||||
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_adapter_level_zero.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_adapter_opencl.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_loader.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_win_proxy_loader.dll" ./build/bin
|
||||
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/sycl8.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/svml_dispmd.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libmmd.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libiomp5md.dll" ./build/bin
|
||||
|
||||
cp "${{ env.ONEAPI_ROOT }}/dnnl/latest/bin/dnnl.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/tbb/latest/bin/tbb12.dll" ./build/bin
|
||||
|
||||
echo "cp oneAPI running time dll files to ./build/bin done"
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip ./build/bin/*
|
||||
|
||||
- name: Upload the release package
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip
|
||||
name: llama-bin-win-sycl-x64.zip
|
||||
|
||||
windows-hip:
|
||||
runs-on: windows-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
gpu_target: [gfx1100, gfx1101, gfx1030]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Clone rocWMMA repository
|
||||
id: clone_rocwmma
|
||||
run: |
|
||||
git clone https://github.com/rocm/rocwmma --branch rocm-6.2.4 --depth 1
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
with:
|
||||
key: windows-latest-cmake-hip-release
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Install
|
||||
id: depends
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
write-host "Downloading AMD HIP SDK Installer"
|
||||
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
|
||||
write-host "Installing AMD HIP SDK"
|
||||
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
|
||||
write-host "Completed AMD HIP SDK installation"
|
||||
|
||||
- name: Verify ROCm
|
||||
id: verify
|
||||
run: |
|
||||
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
|
||||
cmake -G "Unix Makefiles" -B build -S . `
|
||||
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
|
||||
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
|
||||
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/rocwmma/library/include/" `
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DAMDGPU_TARGETS=${{ matrix.gpu_target }} `
|
||||
-DGGML_HIP_ROCWMMA_FATTN=ON `
|
||||
-DGGML_HIP=ON `
|
||||
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include" `
|
||||
${{ env.CMAKE_ARGS }}
|
||||
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
|
||||
md "build\bin\rocblas\library\"
|
||||
cp "${env:HIP_PATH}\bin\hipblas.dll" "build\bin\"
|
||||
cp "${env:HIP_PATH}\bin\rocblas.dll" "build\bin\"
|
||||
cp "${env:HIP_PATH}\bin\rocblas\library\*" "build\bin\rocblas\library\"
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
uses: ./.github/actions/get-tag-name
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cp $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\libcurl-x64.dll
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-hip-x64-${{ matrix.gpu_target }}.zip .\build\bin\*
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-win-hip-x64-${{ matrix.gpu_target }}.zip
|
||||
name: llama-bin-win-hip-x64-${{ matrix.gpu_target }}.zip
|
||||
|
||||
ios-xcode-build:
|
||||
runs-on: macos-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
sysctl -a
|
||||
cmake -B build -G Xcode \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TOOLS=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=iOS \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0 \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
|
||||
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu) -- CODE_SIGNING_ALLOWED=NO
|
||||
|
||||
- name: xcodebuild for swift package
|
||||
id: xcodebuild
|
||||
run: |
|
||||
./build-xcframework.sh
|
||||
|
||||
- name: Build Xcode project
|
||||
run: xcodebuild -project examples/llama.swiftui/llama.swiftui.xcodeproj -scheme llama.swiftui -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' FRAMEWORK_FOLDER_PATH=./build-ios build
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
uses: ./.github/actions/get-tag-name
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
run: |
|
||||
zip --symlinks -r llama-${{ steps.tag.outputs.name }}-xcframework.zip build-apple/llama.xcframework
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-xcframework.zip
|
||||
name: llama-${{ steps.tag.outputs.name }}-xcframework
|
||||
|
||||
release:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
|
||||
# Fine-grant permission
|
||||
# https://docs.github.com/en/actions/security-for-github-actions/security-guides/automatic-token-authentication#modifying-the-permissions-for-the-github_token
|
||||
permissions:
|
||||
contents: write # for creating release
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
needs:
|
||||
- ubuntu-22-cpu
|
||||
- ubuntu-22-vulkan
|
||||
- windows
|
||||
- windows-cuda
|
||||
- windows-sycl
|
||||
- windows-hip
|
||||
- macOS-arm64
|
||||
- macOS-x64
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
uses: ./.github/actions/get-tag-name
|
||||
|
||||
- name: Download artifacts
|
||||
id: download-artifact
|
||||
uses: actions/download-artifact@v4
|
||||
with:
|
||||
path: ./artifact
|
||||
|
||||
- name: Move artifacts
|
||||
id: move_artifacts
|
||||
run: mkdir -p ./artifact/release && mv ./artifact/*/*.zip ./artifact/release
|
||||
|
||||
- name: Create release
|
||||
id: create_release
|
||||
uses: ggml-org/action-create-release@v1
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
with:
|
||||
tag_name: ${{ steps.tag.outputs.name }}
|
||||
|
||||
- name: Upload release
|
||||
id: upload_release
|
||||
uses: actions/github-script@v3
|
||||
with:
|
||||
github-token: ${{secrets.GITHUB_TOKEN}}
|
||||
script: |
|
||||
const path = require('path');
|
||||
const fs = require('fs');
|
||||
const release_id = '${{ steps.create_release.outputs.id }}';
|
||||
for (let file of await fs.readdirSync('./artifact/release')) {
|
||||
if (path.extname(file) === '.zip') {
|
||||
console.log('uploadReleaseAsset', file);
|
||||
await github.repos.uploadReleaseAsset({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
release_id: release_id,
|
||||
name: file,
|
||||
data: await fs.readFileSync(`./artifact/release/${file}`)
|
||||
});
|
||||
}
|
||||
}
|
||||
24
.github/workflows/server.yml
vendored
24
.github/workflows/server.yml
vendored
@@ -15,10 +15,10 @@ on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
|
||||
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'tools/server/**.*']
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
|
||||
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'tools/server/**.*']
|
||||
|
||||
env:
|
||||
LLAMA_LOG_COLORS: 1
|
||||
@@ -74,7 +74,7 @@ jobs:
|
||||
- name: Tests dependencies
|
||||
id: test_dependencies
|
||||
run: |
|
||||
pip install -r examples/server/tests/requirements.txt
|
||||
pip install -r tools/server/tests/requirements.txt
|
||||
|
||||
# Setup nodejs (to be used for verifying bundled index.html)
|
||||
- uses: actions/setup-node@v4
|
||||
@@ -84,14 +84,14 @@ jobs:
|
||||
- name: WebUI - Install dependencies
|
||||
id: webui_lint
|
||||
run: |
|
||||
cd examples/server/webui
|
||||
cd tools/server/webui
|
||||
npm ci
|
||||
|
||||
- name: WebUI - Check code format
|
||||
id: webui_format
|
||||
run: |
|
||||
git config --global --add safe.directory $(realpath .)
|
||||
cd examples/server/webui
|
||||
cd tools/server/webui
|
||||
git status
|
||||
|
||||
npm run format
|
||||
@@ -108,7 +108,7 @@ jobs:
|
||||
id: verify_server_index_html
|
||||
run: |
|
||||
git config --global --add safe.directory $(realpath .)
|
||||
cd examples/server/webui
|
||||
cd tools/server/webui
|
||||
git status
|
||||
|
||||
npm run build
|
||||
@@ -161,21 +161,21 @@ jobs:
|
||||
env:
|
||||
GITHUB_ACTIONS: "true"
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
cd tools/server/tests
|
||||
./tests.sh
|
||||
|
||||
- name: Tests (sanitizers)
|
||||
id: server_integration_tests_sanitizers
|
||||
if: ${{ matrix.sanitizer != '' }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
cd tools/server/tests
|
||||
LLAMA_SANITIZE=1 ./tests.sh
|
||||
|
||||
- name: Slow tests
|
||||
id: server_integration_tests_slow
|
||||
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
cd tools/server/tests
|
||||
SLOW_TESTS=1 ./tests.sh
|
||||
|
||||
|
||||
@@ -211,7 +211,7 @@ jobs:
|
||||
- name: Tests dependencies
|
||||
id: test_dependencies
|
||||
run: |
|
||||
pip install -r examples/server/tests/requirements.txt
|
||||
pip install -r tools/server/tests/requirements.txt
|
||||
|
||||
- name: Copy Libcurl
|
||||
id: prepare_libcurl
|
||||
@@ -224,7 +224,7 @@ jobs:
|
||||
id: server_integration_tests
|
||||
if: ${{ !matrix.disabled_on_pr || !github.event.pull_request }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
cd tools/server/tests
|
||||
$env:PYTHONIOENCODING = ":replace"
|
||||
pytest -v -x -m "not slow"
|
||||
|
||||
@@ -232,6 +232,6 @@ jobs:
|
||||
id: server_integration_tests_slow
|
||||
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
cd tools/server/tests
|
||||
$env:SLOW_TESTS = "1"
|
||||
pytest -v -x
|
||||
|
||||
12
.gitignore
vendored
12
.gitignore
vendored
@@ -96,11 +96,11 @@ perf-*.txt
|
||||
# Examples
|
||||
|
||||
examples/jeopardy/results.txt
|
||||
examples/server/*.css.hpp
|
||||
examples/server/*.html.hpp
|
||||
examples/server/*.js.hpp
|
||||
examples/server/*.mjs.hpp
|
||||
examples/server/*.gz.hpp
|
||||
tools/server/*.css.hpp
|
||||
tools/server/*.html.hpp
|
||||
tools/server/*.js.hpp
|
||||
tools/server/*.mjs.hpp
|
||||
tools/server/*.gz.hpp
|
||||
!build_64.sh
|
||||
!examples/*.bat
|
||||
!examples/*/*.kts
|
||||
@@ -110,7 +110,7 @@ examples/server/*.gz.hpp
|
||||
|
||||
# Server Web UI temporary files
|
||||
node_modules
|
||||
examples/server/webui/dist
|
||||
tools/server/webui/dist
|
||||
|
||||
# Python
|
||||
|
||||
|
||||
@@ -77,6 +77,7 @@ option(LLAMA_BUILD_COMMON "llama: build common utils library" ${LLAMA_STANDALONE
|
||||
|
||||
# extra artifacts
|
||||
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_TOOLS "llama: build tools" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_SERVER "llama: build server example" ${LLAMA_STANDALONE})
|
||||
|
||||
@@ -187,6 +188,10 @@ if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_EXAMPLES)
|
||||
add_subdirectory(pocs)
|
||||
endif()
|
||||
|
||||
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_TOOLS)
|
||||
add_subdirectory(tools)
|
||||
endif()
|
||||
|
||||
#
|
||||
# install
|
||||
#
|
||||
@@ -247,20 +252,3 @@ configure_file(cmake/llama.pc.in
|
||||
|
||||
install(FILES "${CMAKE_CURRENT_BINARY_DIR}/llama.pc"
|
||||
DESTINATION ${CMAKE_INSTALL_LIBDIR}/pkgconfig)
|
||||
|
||||
#
|
||||
# copy the license files
|
||||
#
|
||||
|
||||
# Check if running in GitHub Actions
|
||||
if(DEFINED ENV{GITHUB_ACTIONS} AND "$ENV{GITHUB_ACTIONS}" STREQUAL "true")
|
||||
message(STATUS "Running inside GitHub Actions - copying license files")
|
||||
|
||||
# Copy all files from licenses/ to build/bin/
|
||||
file(GLOB LICENSE_FILES "${CMAKE_SOURCE_DIR}/licenses/*")
|
||||
foreach(LICENSE_FILE ${LICENSE_FILES})
|
||||
get_filename_component(FILENAME ${LICENSE_FILE} NAME)
|
||||
configure_file(${LICENSE_FILE} "${CMAKE_BINARY_DIR}/bin/${FILENAME}" COPYONLY)
|
||||
endforeach()
|
||||
endif()
|
||||
|
||||
|
||||
@@ -38,15 +38,6 @@
|
||||
}
|
||||
},
|
||||
|
||||
{
|
||||
"name": "arm64-windows-msvc", "hidden": true,
|
||||
"architecture": { "value": "arm64", "strategy": "external" },
|
||||
"toolset": { "value": "host=x64", "strategy": "external" },
|
||||
"cacheVariables": {
|
||||
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-windows-msvc.cmake"
|
||||
}
|
||||
},
|
||||
|
||||
{
|
||||
"name": "arm64-windows-llvm", "hidden": true,
|
||||
"architecture": { "value": "arm64", "strategy": "external" },
|
||||
@@ -73,10 +64,6 @@
|
||||
{ "name": "arm64-apple-clang-release", "inherits": [ "base", "arm64-apple-clang", "reldbg" ] },
|
||||
{ "name": "arm64-apple-clang+static-release", "inherits": [ "base", "arm64-apple-clang", "reldbg", "static" ] },
|
||||
|
||||
{ "name": "arm64-windows-msvc-debug", "inherits": [ "base", "arm64-windows-msvc", "debug" ] },
|
||||
{ "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg" ] },
|
||||
{ "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg", "static" ] },
|
||||
|
||||
{ "name": "x64-windows-llvm-debug", "inherits": [ "base", "x64-windows-llvm", "debug" ] },
|
||||
{ "name": "x64-windows-llvm-release", "inherits": [ "base", "x64-windows-llvm", "release" ] },
|
||||
{ "name": "x64-windows-llvm-reldbg", "inherits": [ "base", "x64-windows-llvm", "reldbg" ] },
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
|
||||
/ci/ @ggerganov
|
||||
/.devops/*.Dockerfile @ngxson
|
||||
/examples/server/ @ngxson
|
||||
/tools/server/ @ngxson
|
||||
/ggml/src/ggml-cuda/fattn* @JohannesGaessler
|
||||
/ggml/src/ggml-cuda/mmq.* @JohannesGaessler
|
||||
/ggml/src/ggml-cuda/mmv.* @JohannesGaessler
|
||||
|
||||
97
Makefile
97
Makefile
@@ -1156,10 +1156,10 @@ $(LIB_COMMON_S): $(OBJ_COMMON)
|
||||
|
||||
# Clean generated server assets
|
||||
clean-server-assets:
|
||||
find examples/server -type f -name "*.js.hpp" -delete
|
||||
find examples/server -type f -name "*.mjs.hpp" -delete
|
||||
find examples/server -type f -name "*.css.hpp" -delete
|
||||
find examples/server -type f -name "*.html.hpp" -delete
|
||||
find tools/server -type f -name "*.js.hpp" -delete
|
||||
find tools/server -type f -name "*.mjs.hpp" -delete
|
||||
find tools/server -type f -name "*.css.hpp" -delete
|
||||
find tools/server -type f -name "*.html.hpp" -delete
|
||||
|
||||
# Clean rule
|
||||
clean: clean-server-assets
|
||||
@@ -1179,7 +1179,7 @@ clean: clean-server-assets
|
||||
# Helper function that replaces .c, .cpp, and .cu file endings with .o:
|
||||
GET_OBJ_FILE = $(patsubst %.c,%.o,$(patsubst %.cpp,%.o,$(patsubst %.cu,%.o,$(1))))
|
||||
|
||||
llama-cli: examples/main/main.cpp \
|
||||
llama-cli: tools/main/main.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
@@ -1187,12 +1187,7 @@ llama-cli: examples/main/main.cpp \
|
||||
@echo '==== Run ./llama-cli -h for help. ===='
|
||||
@echo
|
||||
|
||||
llama-infill: examples/infill/infill.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-run: examples/run/run.cpp \
|
||||
llama-run: tools/run/run.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
@@ -1207,7 +1202,7 @@ llama-simple-chat: examples/simple-chat/simple-chat.cpp \
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-tokenize: examples/tokenize/tokenize.cpp \
|
||||
llama-tokenize: tools/tokenize/tokenize.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
@@ -1217,27 +1212,27 @@ llama-batched: examples/batched/batched.cpp \
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-batched-bench: examples/batched-bench/batched-bench.cpp \
|
||||
llama-batched-bench: tools/batched-bench/batched-bench.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-quantize: examples/quantize/quantize.cpp \
|
||||
llama-quantize: tools/quantize/quantize.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-quantize-stats: examples/quantize-stats/quantize-stats.cpp \
|
||||
llama-quantize-stats: tools/quantize-stats/quantize-stats.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-perplexity: examples/perplexity/perplexity.cpp \
|
||||
llama-perplexity: tools/perplexity/perplexity.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-imatrix: examples/imatrix/imatrix.cpp \
|
||||
llama-imatrix: tools/imatrix/imatrix.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
@@ -1279,7 +1274,7 @@ llama-gguf-hash: examples/gguf-hash/gguf-hash.cpp examples/gguf-hash/deps/sha1/s
|
||||
$(CXX) $(CXXFLAGS) -Iexamples/gguf-hash/deps -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-gguf-split: examples/gguf-split/gguf-split.cpp \
|
||||
llama-gguf-split: tools/gguf-split/gguf-split.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
@@ -1289,7 +1284,7 @@ llama-eval-callback: examples/eval-callback/eval-callback.cpp \
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-cvector-generator: examples/cvector-generator/cvector-generator.cpp \
|
||||
llama-cvector-generator: tools/cvector-generator/cvector-generator.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
@@ -1299,12 +1294,12 @@ llama-convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-bench: examples/llama-bench/llama-bench.cpp \
|
||||
llama-bench: tools/llama-bench/llama-bench.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-export-lora: examples/export-lora/export-lora.cpp \
|
||||
llama-export-lora: tools/export-lora/export-lora.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
@@ -1360,17 +1355,17 @@ llama-gbnf-validator: examples/gbnf-validator/gbnf-validator.cpp \
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
ifdef GGML_RPC
|
||||
rpc-server: examples/rpc/rpc-server.cpp \
|
||||
rpc-server: tools/rpc/rpc-server.cpp \
|
||||
$(OBJ_GGML)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
endif # GGML_RPC
|
||||
|
||||
llama-server: \
|
||||
examples/server/server.cpp \
|
||||
examples/server/utils.hpp \
|
||||
examples/server/httplib.h \
|
||||
examples/server/index.html.hpp \
|
||||
examples/server/loading.html.hpp \
|
||||
tools/server/server.cpp \
|
||||
tools/server/utils.hpp \
|
||||
tools/server/httplib.h \
|
||||
tools/server/index.html.hpp \
|
||||
tools/server/loading.html.hpp \
|
||||
common/chat.cpp \
|
||||
common/chat.h \
|
||||
common/chat-template.hpp \
|
||||
@@ -1378,10 +1373,10 @@ llama-server: \
|
||||
common/minja.hpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Iexamples/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Itools/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2)
|
||||
|
||||
# Portable equivalent of `cd examples/server/public && xxd -i $(notdir $<) ../$(notdir $<).hpp`:
|
||||
examples/server/%.hpp: examples/server/public/% FORCE Makefile
|
||||
# Portable equivalent of `cd tools/server/public && xxd -i $(notdir $<) ../$(notdir $<).hpp`:
|
||||
tools/server/%.hpp: tools/server/public/% FORCE Makefile
|
||||
@( export NAME=$(subst .,_,$(subst -,_,$(notdir $<))) && \
|
||||
echo "unsigned char $${NAME}[] = {" && \
|
||||
cat $< | od -v -t x1 -An | sed -E 's/([0-9a-fA-F]+)/0x\1, /g' && \
|
||||
@@ -1394,36 +1389,36 @@ llama-gen-docs: examples/gen-docs/gen-docs.cpp \
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
libllava.a: examples/llava/llava.cpp \
|
||||
examples/llava/llava.h \
|
||||
examples/llava/clip.cpp \
|
||||
examples/llava/clip.h \
|
||||
libllava.a: tools/mtmd/llava.cpp \
|
||||
tools/mtmd/llava.h \
|
||||
tools/mtmd/clip.cpp \
|
||||
tools/mtmd/clip.h \
|
||||
common/stb_image.h \
|
||||
common/base64.hpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -static -fPIC -c $< -o $@ -Wno-cast-qual
|
||||
|
||||
llama-llava-cli: examples/llava/llava-cli.cpp \
|
||||
examples/llava/llava.cpp \
|
||||
examples/llava/llava.h \
|
||||
examples/llava/clip.cpp \
|
||||
examples/llava/clip.h \
|
||||
llama-llava-cli: tools/mtmd/llava-cli.cpp \
|
||||
tools/mtmd/llava.cpp \
|
||||
tools/mtmd/llava.h \
|
||||
tools/mtmd/clip.cpp \
|
||||
tools/mtmd/clip.h \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) $< $(filter-out %.h $<,$^) -o $@ $(LDFLAGS) -Wno-cast-qual
|
||||
|
||||
llama-minicpmv-cli: examples/llava/minicpmv-cli.cpp \
|
||||
examples/llava/llava.cpp \
|
||||
examples/llava/llava.h \
|
||||
examples/llava/clip.cpp \
|
||||
examples/llava/clip.h \
|
||||
llama-minicpmv-cli: tools/mtmd/minicpmv-cli.cpp \
|
||||
tools/mtmd/llava.cpp \
|
||||
tools/mtmd/llava.h \
|
||||
tools/mtmd/clip.cpp \
|
||||
tools/mtmd/clip.h \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) $< $(filter-out %.h $<,$^) -o $@ $(LDFLAGS) -Wno-cast-qual
|
||||
|
||||
llama-qwen2vl-cli: examples/llava/qwen2vl-cli.cpp \
|
||||
examples/llava/llava.cpp \
|
||||
examples/llava/llava.h \
|
||||
examples/llava/clip.cpp \
|
||||
examples/llava/clip.h \
|
||||
llama-qwen2vl-cli: tools/mtmd/qwen2vl-cli.cpp \
|
||||
tools/mtmd/llava.cpp \
|
||||
tools/mtmd/llava.h \
|
||||
tools/mtmd/clip.cpp \
|
||||
tools/mtmd/clip.h \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) $< $(filter-out %.h $<,$^) -o $@ $(LDFLAGS) -Wno-cast-qual
|
||||
|
||||
@@ -1480,12 +1475,12 @@ tests/test-double-float: tests/test-double-float.cpp
|
||||
|
||||
tests/test-json-schema-to-grammar: tests/test-json-schema-to-grammar.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -Iexamples/server -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) -Itools/server -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-chat: tests/test-chat.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -Iexamples/server -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) -Itools/server -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-opt: tests/test-opt.cpp \
|
||||
|
||||
23
README.md
23
README.md
@@ -16,8 +16,9 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
|
||||
|
||||
## Hot topics
|
||||
|
||||
- 🔥 Multimodal support arrived in `llama-server`: [#12898](https://github.com/ggml-org/llama.cpp/pull/12898) | [documentation](./docs/multimodal.md)
|
||||
- **GGML developer experience survey (organized and reviewed by NVIDIA):** [link](https://forms.gle/Gasw3cRgyhNEnrwK9)
|
||||
- A new binary `llama-mtmd-cli` is introduced to replace `llava-cli`, `minicpmv-cli`, `gemma3-cli` ([#13012](https://github.com/ggml-org/llama.cpp/pull/13012)) and `qwen2vl-cli` ([#13141]((https://github.com/ggml-org/llama.cpp/pull/13141))), `libllava` will be deprecated
|
||||
- A new binary `llama-mtmd-cli` is introduced to replace `llava-cli`, `minicpmv-cli`, `gemma3-cli` ([#13012](https://github.com/ggml-org/llama.cpp/pull/13012)) and `qwen2vl-cli` ([#13141](https://github.com/ggml-org/llama.cpp/pull/13141)), `libllava` will be deprecated
|
||||
- VS Code extension for FIM completions: https://github.com/ggml-org/llama.vscode
|
||||
- Universal [tool call support](./docs/function-calling.md) in `llama-server` https://github.com/ggml-org/llama.cpp/pull/9639
|
||||
- Vim/Neovim plugin for FIM completions: https://github.com/ggml-org/llama.vim
|
||||
@@ -242,7 +243,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
| [Vulkan](docs/build.md#vulkan) | GPU |
|
||||
| [CANN](docs/build.md#cann) | Ascend NPU |
|
||||
| [OpenCL](docs/backend/OPENCL.md) | Adreno GPU |
|
||||
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/examples/rpc) | All |
|
||||
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) | All |
|
||||
|
||||
## Building the project
|
||||
|
||||
@@ -276,9 +277,9 @@ The Hugging Face platform provides a variety of online tools for converting, qua
|
||||
- Use the [GGUF-editor space](https://huggingface.co/spaces/CISCai/gguf-editor) to edit GGUF meta data in the browser (more info: https://github.com/ggml-org/llama.cpp/discussions/9268)
|
||||
- Use the [Inference Endpoints](https://ui.endpoints.huggingface.co/) to directly host `llama.cpp` in the cloud (more info: https://github.com/ggml-org/llama.cpp/discussions/9669)
|
||||
|
||||
To learn more about model quantization, [read this documentation](examples/quantize/README.md)
|
||||
To learn more about model quantization, [read this documentation](tools/quantize/README.md)
|
||||
|
||||
## [`llama-cli`](examples/main)
|
||||
## [`llama-cli`](tools/main)
|
||||
|
||||
#### A CLI tool for accessing and experimenting with most of `llama.cpp`'s functionality.
|
||||
|
||||
@@ -341,7 +342,7 @@ To learn more about model quantization, [read this documentation](examples/quant
|
||||
</details>
|
||||
|
||||
|
||||
## [`llama-server`](examples/server)
|
||||
## [`llama-server`](tools/server)
|
||||
|
||||
#### A lightweight, [OpenAI API](https://github.com/openai/openai-openapi) compatible, HTTP server for serving LLMs.
|
||||
|
||||
@@ -411,7 +412,7 @@ To learn more about model quantization, [read this documentation](examples/quant
|
||||
</details>
|
||||
|
||||
|
||||
## [`llama-perplexity`](examples/perplexity)
|
||||
## [`llama-perplexity`](tools/perplexity)
|
||||
|
||||
#### A tool for measuring the perplexity [^1][^2] (and other quality metrics) of a model over a given text.
|
||||
|
||||
@@ -436,10 +437,10 @@ To learn more about model quantization, [read this documentation](examples/quant
|
||||
|
||||
</details>
|
||||
|
||||
[^1]: [examples/perplexity/README.md](./examples/perplexity/README.md)
|
||||
[^1]: [tools/perplexity/README.md](./tools/perplexity/README.md)
|
||||
[^2]: [https://huggingface.co/docs/transformers/perplexity](https://huggingface.co/docs/transformers/perplexity)
|
||||
|
||||
## [`llama-bench`](examples/llama-bench)
|
||||
## [`llama-bench`](tools/llama-bench)
|
||||
|
||||
#### Benchmark the performance of the inference for various parameters.
|
||||
|
||||
@@ -460,7 +461,7 @@ To learn more about model quantization, [read this documentation](examples/quant
|
||||
|
||||
</details>
|
||||
|
||||
## [`llama-run`](examples/run)
|
||||
## [`llama-run`](tools/run)
|
||||
|
||||
#### A comprehensive example for running `llama.cpp` models. Useful for inferencing. Used with RamaLama [^3].
|
||||
|
||||
@@ -504,8 +505,8 @@ To learn more about model quantization, [read this documentation](examples/quant
|
||||
|
||||
## Other documentation
|
||||
|
||||
- [main (cli)](examples/main/README.md)
|
||||
- [server](examples/server/README.md)
|
||||
- [main (cli)](tools/main/README.md)
|
||||
- [server](tools/server/README.md)
|
||||
- [GBNF grammars](grammars/README.md)
|
||||
|
||||
#### Development documentation
|
||||
|
||||
@@ -40,7 +40,7 @@ To protect sensitive data from potential leaks or unauthorized access, it is cru
|
||||
### Untrusted environments or networks
|
||||
|
||||
If you can't run your models in a secure and isolated environment or if it must be exposed to an untrusted network, make sure to take the following security precautions:
|
||||
* Do not use the RPC backend, [rpc-server](https://github.com/ggml-org/llama.cpp/tree/master/examples/rpc) and [llama-server](https://github.com/ggml-org/llama.cpp/tree/master/examples/server) functionality (see https://github.com/ggml-org/llama.cpp/pull/13061).
|
||||
* Do not use the RPC backend, [rpc-server](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) and [llama-server](https://github.com/ggml-org/llama.cpp/tree/master/tools/server) functionality (see https://github.com/ggml-org/llama.cpp/pull/13061).
|
||||
* Confirm the hash of any downloaded artifact (e.g. pre-trained model weights) matches a known-good value.
|
||||
* Encrypt your data if sending it over the network.
|
||||
|
||||
|
||||
@@ -8,6 +8,7 @@ TVOS_MIN_OS_VERSION=16.4
|
||||
|
||||
BUILD_SHARED_LIBS=OFF
|
||||
LLAMA_BUILD_EXAMPLES=OFF
|
||||
LLAMA_BUILD_TOOLS=OFF
|
||||
LLAMA_BUILD_TESTS=OFF
|
||||
LLAMA_BUILD_SERVER=OFF
|
||||
GGML_METAL=ON
|
||||
@@ -31,6 +32,7 @@ COMMON_CMAKE_ARGS=(
|
||||
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
|
||||
-DBUILD_SHARED_LIBS=${BUILD_SHARED_LIBS}
|
||||
-DLLAMA_BUILD_EXAMPLES=${LLAMA_BUILD_EXAMPLES}
|
||||
-DLLAMA_BUILD_TOOLS=${LLAMA_BUILD_TOOLS}
|
||||
-DLLAMA_BUILD_TESTS=${LLAMA_BUILD_TESTS}
|
||||
-DLLAMA_BUILD_SERVER=${LLAMA_BUILD_SERVER}
|
||||
-DGGML_METAL_EMBED_LIBRARY=${GGML_METAL_EMBED_LIBRARY}
|
||||
@@ -115,6 +117,7 @@ setup_framework_structure() {
|
||||
# Copy all required headers (common for all platforms)
|
||||
cp include/llama.h ${header_path}
|
||||
cp ggml/include/ggml.h ${header_path}
|
||||
cp ggml/include/ggml-opt.h ${header_path}
|
||||
cp ggml/include/ggml-alloc.h ${header_path}
|
||||
cp ggml/include/ggml-backend.h ${header_path}
|
||||
cp ggml/include/ggml-metal.h ${header_path}
|
||||
|
||||
@@ -187,8 +187,8 @@ function gg_run_test_scripts_debug {
|
||||
|
||||
set -e
|
||||
|
||||
(cd ./examples/gguf-split && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
(cd ./examples/quantize && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
(cd ./tools/gguf-split && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
(cd ./tools/quantize && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
|
||||
set +e
|
||||
}
|
||||
@@ -211,8 +211,8 @@ function gg_run_test_scripts_release {
|
||||
|
||||
set -e
|
||||
|
||||
(cd ./examples/gguf-split && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
(cd ./examples/quantize && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
(cd ./tools/gguf-split && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
(cd ./tools/quantize && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
|
||||
|
||||
set +e
|
||||
}
|
||||
|
||||
@@ -1,6 +0,0 @@
|
||||
set( CMAKE_SYSTEM_NAME Windows )
|
||||
set( CMAKE_SYSTEM_PROCESSOR arm64 )
|
||||
|
||||
set( target arm64-pc-windows-msvc )
|
||||
set( CMAKE_C_COMPILER_TARGET ${target} )
|
||||
set( CMAKE_CXX_COMPILER_TARGET ${target} )
|
||||
@@ -3,9 +3,3 @@ set( CMAKE_SYSTEM_PROCESSOR x86_64 )
|
||||
|
||||
set( CMAKE_C_COMPILER clang )
|
||||
set( CMAKE_CXX_COMPILER clang++ )
|
||||
|
||||
set( arch_c_flags "-march=native" )
|
||||
|
||||
set( CMAKE_C_FLAGS_INIT "${arch_c_flags}" )
|
||||
set( CMAKE_CXX_FLAGS_INIT "${arch_c_flags}" )
|
||||
|
||||
|
||||
@@ -119,8 +119,8 @@ if (LLAMA_LLGUIDANCE)
|
||||
|
||||
ExternalProject_Add(llguidance_ext
|
||||
GIT_REPOSITORY https://github.com/guidance-ai/llguidance
|
||||
# v0.7.10:
|
||||
GIT_TAG 0309d2a6bf40abda35344a362edc71e06d5009f8
|
||||
# v0.7.19 (+ fancy-regex build fix):
|
||||
GIT_TAG b59f98f85269892a7de3d3641ad155366f13daa6
|
||||
PREFIX ${CMAKE_BINARY_DIR}/llguidance
|
||||
SOURCE_DIR ${LLGUIDANCE_SRC}
|
||||
BUILD_IN_SOURCE TRUE
|
||||
@@ -144,3 +144,27 @@ endif ()
|
||||
target_include_directories(${TARGET} PUBLIC .)
|
||||
target_compile_features (${TARGET} PUBLIC cxx_std_17)
|
||||
target_link_libraries (${TARGET} PRIVATE ${LLAMA_COMMON_EXTRA_LIBS} PUBLIC llama Threads::Threads)
|
||||
|
||||
|
||||
#
|
||||
# copy the license files
|
||||
#
|
||||
|
||||
# Check if running in GitHub Actions
|
||||
if (DEFINED ENV{GITHUB_ACTIONS} AND "$ENV{GITHUB_ACTIONS}" STREQUAL "true")
|
||||
message(STATUS "Running inside GitHub Actions - copying license files")
|
||||
|
||||
# Copy all files from licenses/ to build/bin/
|
||||
file(GLOB LICENSE_FILES "${CMAKE_SOURCE_DIR}/licenses/*")
|
||||
foreach(LICENSE_FILE ${LICENSE_FILES})
|
||||
get_filename_component(FILENAME ${LICENSE_FILE} NAME)
|
||||
add_custom_command(
|
||||
POST_BUILD
|
||||
TARGET ${TARGET}
|
||||
COMMAND ${CMAKE_COMMAND} -E copy_if_different
|
||||
"${LICENSE_FILE}"
|
||||
"$<TARGET_FILE_DIR:llama>/${FILENAME}"
|
||||
COMMENT "Copying ${FILENAME} to ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}")
|
||||
message(STATUS "Copying ${LICENSE_FILE} to ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/${FILENAME}")
|
||||
endforeach()
|
||||
endif()
|
||||
|
||||
@@ -40,7 +40,7 @@ using json = nlohmann::ordered_json;
|
||||
|
||||
std::initializer_list<enum llama_example> mmproj_examples = {
|
||||
LLAMA_EXAMPLE_LLAVA,
|
||||
// TODO: add LLAMA_EXAMPLE_SERVER when it's ready
|
||||
LLAMA_EXAMPLE_SERVER,
|
||||
};
|
||||
|
||||
static std::string read_file(const std::string & fname) {
|
||||
@@ -1283,7 +1283,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params) {
|
||||
params.use_color = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
|
||||
add_opt(common_arg(
|
||||
{"-t", "--threads"}, "N",
|
||||
string_format("number of threads to use during generation (default: %d)", params.cpuparams.n_threads),
|
||||
@@ -1416,7 +1416,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
add_opt(common_arg(
|
||||
{"-n", "--predict", "--n-predict"}, "N",
|
||||
string_format(
|
||||
ex == LLAMA_EXAMPLE_MAIN || ex == LLAMA_EXAMPLE_INFILL
|
||||
ex == LLAMA_EXAMPLE_MAIN
|
||||
? "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)"
|
||||
: "number of tokens to predict (default: %d, -1 = infinity)",
|
||||
params.n_predict),
|
||||
@@ -1655,7 +1655,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.input_prefix = value;
|
||||
params.enable_chat_template = false;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN}));
|
||||
add_opt(common_arg(
|
||||
{"--in-suffix"}, "STRING",
|
||||
"string to suffix after user inputs with (default: empty)",
|
||||
@@ -1663,7 +1663,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.input_suffix = value;
|
||||
params.enable_chat_template = false;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN}));
|
||||
add_opt(common_arg(
|
||||
{"--no-warmup"},
|
||||
"skip warming up the model with an empty run",
|
||||
@@ -1680,7 +1680,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params) {
|
||||
params.spm_infill = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_INFILL}));
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"--samplers"}, "SAMPLERS",
|
||||
string_format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()),
|
||||
@@ -2097,13 +2097,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.cache_type_v = kv_cache_type_from_str(value);
|
||||
}
|
||||
).set_env("LLAMA_ARG_CACHE_TYPE_V"));
|
||||
add_opt(common_arg(
|
||||
{"--perplexity", "--all-logits"},
|
||||
string_format("return logits for all tokens in the batch (default: %s)", params.logits_all ? "true" : "false"),
|
||||
[](common_params & params) {
|
||||
params.logits_all = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
|
||||
add_opt(common_arg(
|
||||
{"--hellaswag"},
|
||||
"compute HellaSwag score over random tasks from datafile supplied with -f",
|
||||
@@ -2211,32 +2204,33 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONT_BATCHING"));
|
||||
add_opt(common_arg(
|
||||
{"--mmproj"}, "FILE",
|
||||
"path to a multimodal projector file. see examples/llava/README.md",
|
||||
"path to a multimodal projector file. see tools/mtmd/README.md\n"
|
||||
"note: if -hf is used, this argument can be omitted",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.mmproj.path = value;
|
||||
}
|
||||
).set_examples(mmproj_examples));
|
||||
).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ"));
|
||||
add_opt(common_arg(
|
||||
{"--mmproj-url"}, "URL",
|
||||
"URL to a multimodal projector file. see examples/llava/README.md",
|
||||
"URL to a multimodal projector file. see tools/mtmd/README.md",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.mmproj.url = value;
|
||||
}
|
||||
).set_examples(mmproj_examples));
|
||||
).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ_URL"));
|
||||
add_opt(common_arg(
|
||||
{"--no-mmproj"},
|
||||
"explicitly disable multimodal projector, useful when using -hf",
|
||||
[](common_params & params) {
|
||||
params.no_mmproj = true;
|
||||
}
|
||||
).set_examples(mmproj_examples));
|
||||
).set_examples(mmproj_examples).set_env("LLAMA_ARG_NO_MMPROJ"));
|
||||
add_opt(common_arg(
|
||||
{"--no-mmproj-offload"},
|
||||
"do not offload multimodal projector to GPU",
|
||||
[](common_params & params) {
|
||||
params.mmproj_use_gpu = false;
|
||||
}
|
||||
).set_examples(mmproj_examples));
|
||||
).set_examples(mmproj_examples).set_env("LLAMA_ARG_NO_MMPROJ_OFFLOAD"));
|
||||
add_opt(common_arg(
|
||||
{"--image"}, "FILE",
|
||||
"path to an image file. use with multimodal models. Specify multiple times for batching",
|
||||
@@ -2443,6 +2437,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
}
|
||||
}
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"--no-op-offload"},
|
||||
string_format("disable offloading host tensor operations to device (default: %s)", params.no_op_offload ? "true" : "false"),
|
||||
[](common_params & params) {
|
||||
params.no_op_offload = true;
|
||||
}
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"--lora"}, "FNAME",
|
||||
"path to LoRA adapter (can be repeated to use multiple adapters)",
|
||||
@@ -2634,6 +2635,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.i_chunk = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_IMATRIX}));
|
||||
add_opt(common_arg(
|
||||
{"--parse-special"},
|
||||
string_format("prase special tokens (chat, tool, etc) (default: %s)", params.parse_special ? "true" : "false"),
|
||||
[](common_params & params) {
|
||||
params.parse_special = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_IMATRIX}));
|
||||
add_opt(common_arg(
|
||||
{"-pps"},
|
||||
string_format("is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false"),
|
||||
@@ -2783,7 +2791,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_THREADS_HTTP"));
|
||||
add_opt(common_arg(
|
||||
{"--cache-reuse"}, "N",
|
||||
string_format("min chunk size to attempt reusing from the cache via KV shifting (default: %d)", params.n_cache_reuse),
|
||||
string_format(
|
||||
"min chunk size to attempt reusing from the cache via KV shifting (default: %d)\n"
|
||||
"[(card)](https://ggml.ai/f0.png)", params.n_cache_reuse
|
||||
),
|
||||
[](common_params & params, int value) {
|
||||
params.n_cache_reuse = value;
|
||||
}
|
||||
@@ -2889,7 +2900,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params) {
|
||||
params.simple_io = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN}));
|
||||
add_opt(common_arg(
|
||||
{"--positive-file"}, "FNAME",
|
||||
string_format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()),
|
||||
|
||||
@@ -125,7 +125,9 @@ std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const json & messa
|
||||
msgs.push_back(msg);
|
||||
}
|
||||
} catch (const std::exception & e) {
|
||||
throw std::runtime_error("Failed to parse messages: " + std::string(e.what()) + "; messages = " + messages.dump(2));
|
||||
// @ngxson : disable otherwise it's bloating the API response
|
||||
// printf("%s\n", std::string("; messages = ") + messages.dump(2));
|
||||
throw std::runtime_error("Failed to parse messages: " + std::string(e.what()));
|
||||
}
|
||||
|
||||
return msgs;
|
||||
|
||||
@@ -1096,7 +1096,6 @@ struct llama_context_params common_context_params_to_llama(const common_params &
|
||||
cparams.n_threads = params.cpuparams.n_threads;
|
||||
cparams.n_threads_batch = params.cpuparams_batch.n_threads == -1 ?
|
||||
params.cpuparams.n_threads : params.cpuparams_batch.n_threads;
|
||||
cparams.logits_all = params.logits_all;
|
||||
cparams.embeddings = params.embedding;
|
||||
cparams.rope_scaling_type = params.rope_scaling_type;
|
||||
cparams.rope_freq_base = params.rope_freq_base;
|
||||
@@ -1114,6 +1113,7 @@ struct llama_context_params common_context_params_to_llama(const common_params &
|
||||
cparams.offload_kqv = !params.no_kv_offload;
|
||||
cparams.flash_attn = params.flash_attn;
|
||||
cparams.no_perf = params.no_perf;
|
||||
cparams.op_offload = !params.no_op_offload;
|
||||
|
||||
if (params.reranking) {
|
||||
cparams.embeddings = true;
|
||||
@@ -1565,3 +1565,20 @@ common_control_vector_data common_control_vector_load(const std::vector<common_c
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride) {
|
||||
const int64_t ne_datapoint = llama_n_ctx(ctx);
|
||||
const int64_t ndata = (tokens.size() - ne_datapoint - 1) / stride;
|
||||
ggml_opt_dataset_t result = ggml_opt_dataset_init(
|
||||
GGML_TYPE_I32, GGML_TYPE_I32, ne_datapoint, ne_datapoint, ndata, /*ndata_shard =*/ 1);
|
||||
|
||||
llama_token * data = (llama_token *) ggml_opt_dataset_data(result)->data;
|
||||
llama_token * labels = (llama_token *) ggml_opt_dataset_labels(result)->data;
|
||||
|
||||
for (int64_t idata = 0; idata < ndata; ++idata) {
|
||||
memcpy(data + idata*ne_datapoint, tokens.data() + idata*stride + 0, ne_datapoint*sizeof(llama_token));
|
||||
memcpy(labels + idata*ne_datapoint, tokens.data() + idata*stride + 1, ne_datapoint*sizeof(llama_token));
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
@@ -66,7 +66,6 @@ enum llama_example {
|
||||
LLAMA_EXAMPLE_COMMON,
|
||||
LLAMA_EXAMPLE_SPECULATIVE,
|
||||
LLAMA_EXAMPLE_MAIN,
|
||||
LLAMA_EXAMPLE_INFILL,
|
||||
LLAMA_EXAMPLE_EMBEDDING,
|
||||
LLAMA_EXAMPLE_PERPLEXITY,
|
||||
LLAMA_EXAMPLE_RETRIEVAL,
|
||||
@@ -96,6 +95,7 @@ enum common_sampler_type {
|
||||
COMMON_SAMPLER_TYPE_XTC = 8,
|
||||
COMMON_SAMPLER_TYPE_INFILL = 9,
|
||||
COMMON_SAMPLER_TYPE_PENALTIES = 10,
|
||||
COMMON_SAMPLER_TYPE_TOP_N_SIGMA = 11,
|
||||
};
|
||||
|
||||
// dimensionality reduction methods, used by cvector-generator
|
||||
@@ -161,6 +161,7 @@ struct common_params_sampling {
|
||||
std::vector<enum common_sampler_type> samplers = {
|
||||
COMMON_SAMPLER_TYPE_PENALTIES,
|
||||
COMMON_SAMPLER_TYPE_DRY,
|
||||
COMMON_SAMPLER_TYPE_TOP_N_SIGMA,
|
||||
COMMON_SAMPLER_TYPE_TOP_K,
|
||||
COMMON_SAMPLER_TYPE_TYPICAL_P,
|
||||
COMMON_SAMPLER_TYPE_TOP_P,
|
||||
@@ -323,7 +324,6 @@ struct common_params {
|
||||
bool ctx_shift = true; // context shift on inifinite text generation
|
||||
|
||||
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
|
||||
bool logits_all = false; // return logits for all tokens in the batch
|
||||
bool use_mmap = true; // use mmap for faster loads
|
||||
bool use_mlock = false; // use mlock to keep model in memory
|
||||
bool verbose_prompt = false; // print prompt tokens before generation
|
||||
@@ -332,6 +332,7 @@ struct common_params {
|
||||
bool no_kv_offload = false; // disable KV offloading
|
||||
bool warmup = true; // warmup run
|
||||
bool check_tensors = false; // validate tensor data
|
||||
bool no_op_offload = false; // globally disable offload host tensor operations to device
|
||||
|
||||
bool single_turn = false; // single turn chat conversation
|
||||
|
||||
@@ -340,7 +341,7 @@ struct common_params {
|
||||
|
||||
common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
|
||||
|
||||
// multimodal models (see examples/llava)
|
||||
// multimodal models (see tools/mtmd)
|
||||
struct common_params_model mmproj;
|
||||
bool mmproj_use_gpu = true; // use GPU for multimodal model
|
||||
bool no_mmproj = false; // explicitly disable multimodal model
|
||||
@@ -409,13 +410,14 @@ struct common_params {
|
||||
|
||||
bool process_output = false; // collect data for the output tensor
|
||||
bool compute_ppl = true; // whether to compute perplexity
|
||||
bool parse_special = false; // whether to parse special tokens during imatrix tokenization
|
||||
|
||||
// cvector-generator params
|
||||
int n_pca_batch = 100;
|
||||
int n_pca_iterations = 1000;
|
||||
dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
|
||||
std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
|
||||
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
|
||||
std::string cvector_positive_file = "tools/cvector-generator/positive.txt";
|
||||
std::string cvector_negative_file = "tools/cvector-generator/negative.txt";
|
||||
|
||||
bool spm_infill = false; // suffix/prefix/middle pattern for infill
|
||||
|
||||
@@ -664,3 +666,9 @@ const char * const LLM_KV_SPLIT_COUNT = "split.count";
|
||||
const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
|
||||
|
||||
}
|
||||
|
||||
//
|
||||
// training utils
|
||||
//
|
||||
|
||||
ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride);
|
||||
|
||||
@@ -189,6 +189,7 @@ static LlgTokenizer * llama_sampler_llg_new_tokenizer(const llama_vocab * vocab)
|
||||
/* .tokenize_fn = */ llama_sampler_llg_tokenize_fn,
|
||||
/* .use_approximate_greedy_tokenize_fn = */ false,
|
||||
/* .tokenize_user_data = */ vocab,
|
||||
/* .slices = */ nullptr,
|
||||
};
|
||||
|
||||
char error_buffer[1024];
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
#include "sampling.h"
|
||||
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <unordered_map>
|
||||
@@ -229,51 +230,48 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
||||
params.logit_bias.data()));
|
||||
|
||||
if (params.mirostat == 0) {
|
||||
if (params.top_n_sigma >= 0) {
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp (params.temp));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
|
||||
} else {
|
||||
for (const auto & cnstr : params.samplers) {
|
||||
switch (cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_DRY:
|
||||
{
|
||||
std::vector<const char *> c_breakers;
|
||||
c_breakers.reserve(params.dry_sequence_breakers.size());
|
||||
for (const auto & str : params.dry_sequence_breakers) {
|
||||
c_breakers.push_back(str.c_str());
|
||||
}
|
||||
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
|
||||
for (const auto & cnstr : params.samplers) {
|
||||
switch (cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_DRY:
|
||||
{
|
||||
std::vector<const char *> c_breakers;
|
||||
c_breakers.reserve(params.dry_sequence_breakers.size());
|
||||
for (const auto & str : params.dry_sequence_breakers) {
|
||||
c_breakers.push_back(str.c_str());
|
||||
}
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_K:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_MIN_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_XTC:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_INFILL:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_PENALTIES:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false && "unknown sampler type");
|
||||
}
|
||||
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
|
||||
}
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_K:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_MIN_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_XTC:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_INFILL:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_PENALTIES:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties (params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false && "unknown sampler type");
|
||||
}
|
||||
}
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
|
||||
@@ -475,6 +473,7 @@ char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_TOP_K: return 'k';
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P: return 'y';
|
||||
case COMMON_SAMPLER_TYPE_TOP_P: return 'p';
|
||||
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return 's';
|
||||
case COMMON_SAMPLER_TYPE_MIN_P: return 'm';
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
|
||||
case COMMON_SAMPLER_TYPE_XTC: return 'x';
|
||||
@@ -490,6 +489,7 @@ std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_TOP_K: return "top_k";
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
|
||||
case COMMON_SAMPLER_TYPE_TOP_P: return "top_p";
|
||||
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return "top_n_sigma";
|
||||
case COMMON_SAMPLER_TYPE_MIN_P: return "min_p";
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
|
||||
case COMMON_SAMPLER_TYPE_XTC: return "xtc";
|
||||
@@ -504,6 +504,7 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
|
||||
{ "dry", COMMON_SAMPLER_TYPE_DRY },
|
||||
{ "top_k", COMMON_SAMPLER_TYPE_TOP_K },
|
||||
{ "top_p", COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ "top_n_sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
|
||||
{ "typ_p", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "min_p", COMMON_SAMPLER_TYPE_MIN_P },
|
||||
{ "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
|
||||
@@ -517,6 +518,7 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
|
||||
std::unordered_map<std::string, common_sampler_type> sampler_alt_name_map {
|
||||
{ "top-k", COMMON_SAMPLER_TYPE_TOP_K },
|
||||
{ "top-p", COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ "top-n-sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
|
||||
{ "nucleus", COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ "typical-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typical", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
@@ -533,14 +535,16 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
|
||||
auto sampler = sampler_canonical_name_map.find(name);
|
||||
if (sampler != sampler_canonical_name_map.end()) {
|
||||
samplers.push_back(sampler->second);
|
||||
} else {
|
||||
if (allow_alt_names) {
|
||||
sampler = sampler_alt_name_map.find(name);
|
||||
if (sampler != sampler_alt_name_map.end()) {
|
||||
samplers.push_back(sampler->second);
|
||||
}
|
||||
continue;
|
||||
}
|
||||
if (allow_alt_names) {
|
||||
sampler = sampler_alt_name_map.find(name);
|
||||
if (sampler != sampler_alt_name_map.end()) {
|
||||
samplers.push_back(sampler->second);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
LOG_WRN("%s: unable to match sampler by name '%s'\n", __func__, name.c_str());
|
||||
}
|
||||
|
||||
return samplers;
|
||||
@@ -552,6 +556,7 @@ std::vector<common_sampler_type> common_sampler_types_from_chars(const std::stri
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K), COMMON_SAMPLER_TYPE_TOP_K },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P), COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P), COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_N_SIGMA), COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P), COMMON_SAMPLER_TYPE_MIN_P },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC), COMMON_SAMPLER_TYPE_XTC },
|
||||
@@ -566,6 +571,8 @@ std::vector<common_sampler_type> common_sampler_types_from_chars(const std::stri
|
||||
const auto sampler = sampler_name_map.find(c);
|
||||
if (sampler != sampler_name_map.end()) {
|
||||
samplers.push_back(sampler->second);
|
||||
} else {
|
||||
LOG_WRN("%s: unable to match sampler by char '%c'\n", __func__, c);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -419,12 +419,18 @@ class ModelBase:
|
||||
@staticmethod
|
||||
def load_hparams(dir_model: Path):
|
||||
try:
|
||||
return AutoConfig.from_pretrained(dir_model).to_dict()
|
||||
# for security reason, we don't allow loading remote code by default
|
||||
# if a model need remote code, we will fallback to config.json
|
||||
return AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to load model config from {dir_model}: {e}")
|
||||
logger.warning("Trying to load config.json instead")
|
||||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||
return json.load(f)
|
||||
config = json.load(f)
|
||||
if "llm_config" in config:
|
||||
# rename for InternVL
|
||||
config["text_config"] = config["llm_config"]
|
||||
return config
|
||||
|
||||
@classmethod
|
||||
def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
|
||||
@@ -453,8 +459,12 @@ class ModelBase:
|
||||
|
||||
|
||||
class TextModel(ModelBase):
|
||||
model_type = ModelType.TEXT
|
||||
hf_arch: str
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.hf_arch = get_model_architecture(self.hparams, self.model_type)
|
||||
|
||||
if "text_config" in self.hparams:
|
||||
# move the text_config to the root level
|
||||
@@ -504,7 +514,7 @@ class TextModel(ModelBase):
|
||||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
|
||||
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
|
||||
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions"], optional=True)) is not None:
|
||||
self.gguf_writer.add_context_length(n_ctx)
|
||||
logger.info(f"gguf: context length = {n_ctx}")
|
||||
|
||||
@@ -788,6 +798,9 @@ class TextModel(ModelBase):
|
||||
if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
|
||||
# ref: https://huggingface.co/mistral-community/pixtral-12b
|
||||
res = "pixtral"
|
||||
if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
|
||||
# ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
|
||||
res = "seed-coder"
|
||||
|
||||
if res is None:
|
||||
logger.warning("\n")
|
||||
@@ -1073,10 +1086,36 @@ class TextModel(ModelBase):
|
||||
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
|
||||
self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
|
||||
|
||||
def _try_set_pooling_type(self) -> None:
|
||||
# get pooling path
|
||||
pooling_path = None
|
||||
module_path = self.dir_model / "modules.json"
|
||||
if module_path.is_file():
|
||||
with open(module_path, encoding="utf-8") as f:
|
||||
modules = json.load(f)
|
||||
for mod in modules:
|
||||
if mod["type"] == "sentence_transformers.models.Pooling":
|
||||
pooling_path = mod["path"]
|
||||
break
|
||||
|
||||
# get pooling type
|
||||
if pooling_path is not None:
|
||||
with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
|
||||
pooling = json.load(f)
|
||||
if pooling["pooling_mode_mean_tokens"]:
|
||||
pooling_type = gguf.PoolingType.MEAN
|
||||
elif pooling["pooling_mode_cls_token"]:
|
||||
pooling_type = gguf.PoolingType.CLS
|
||||
elif pooling["pooling_mode_lasttoken"]:
|
||||
pooling_type = gguf.PoolingType.LAST
|
||||
else:
|
||||
raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
|
||||
self.gguf_writer.add_pooling_type(pooling_type)
|
||||
|
||||
|
||||
class VisionModel(ModelBase):
|
||||
model_type = ModelType.VISION
|
||||
model_arch = gguf.MODEL_ARCH.CLIP_VISION
|
||||
n_text_embd = 0
|
||||
preprocessor_config: dict[str, Any]
|
||||
global_config: dict[str, Any]
|
||||
|
||||
@@ -1087,6 +1126,8 @@ class VisionModel(ModelBase):
|
||||
raise TypeError("VisionModel must be subclassed with model_arch = gguf.MODEL_ARCH.CLIP_VISION")
|
||||
|
||||
# get n_embd of the text model
|
||||
if "text_config" not in self.hparams:
|
||||
self.hparams["text_config"] = {}
|
||||
text_config = {**self.hparams, **self.hparams["text_config"]}
|
||||
self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
|
||||
assert self.n_embd_text > 0, "n_embd not found in hparams"
|
||||
@@ -1354,10 +1395,10 @@ class BaichuanModel(TextModel):
|
||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||||
if self.hparams["rope_scaling"].get("type") == "linear":
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||
rope_scaling = self.hparams.get("rope_scaling") or {}
|
||||
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
head_count = self.hparams["num_attention_heads"]
|
||||
@@ -1478,10 +1519,10 @@ class XverseModel(TextModel):
|
||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||||
if self.hparams["rope_scaling"].get("type") == "linear":
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||
rope_scaling = self.hparams.get("rope_scaling") or {}
|
||||
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
@@ -1744,6 +1785,12 @@ class LlamaModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
undo_permute = True
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
# fix for SmolVLM2, missing `num_attention_heads` in config.json
|
||||
if self.hf_arch == "VLlama3ForCausalLM":
|
||||
self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
|
||||
|
||||
def set_vocab(self):
|
||||
try:
|
||||
self._set_vocab_sentencepiece()
|
||||
@@ -1788,10 +1835,10 @@ class LlamaModel(TextModel):
|
||||
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
|
||||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||||
if self.hparams["rope_scaling"].get("type") == "linear":
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||
rope_scaling = self.hparams.get("rope_scaling") or {}
|
||||
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
|
||||
|
||||
@staticmethod
|
||||
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
|
||||
@@ -2089,6 +2136,9 @@ class DeciModel(TextModel):
|
||||
# if n_heads_in_group is not None, then
|
||||
# _num_kv_heads[il] is num_attention_head // n_heads_in_group and
|
||||
# _num_heads[il] is num_attention_head
|
||||
# ***dummy layer*** for nemotron 253B
|
||||
# if n_heads_in_group is None and ffn_mult is None
|
||||
# then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
|
||||
for il in range(len(_block_configs)):
|
||||
if _block_configs[il]["attention"]["n_heads_in_group"] is None:
|
||||
if _block_configs[il]["attention"]["replace_with_linear"] is True:
|
||||
@@ -2100,7 +2150,10 @@ class DeciModel(TextModel):
|
||||
else:
|
||||
self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
|
||||
self._num_heads.append(self.hparams["num_attention_heads"])
|
||||
_ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
|
||||
if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
|
||||
_ffn_multipliers.append(0.0)
|
||||
else:
|
||||
_ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
|
||||
assert self.block_count == len(self._num_kv_heads)
|
||||
assert self.block_count == len(self._num_heads)
|
||||
assert self.block_count == len(_ffn_multipliers)
|
||||
@@ -2160,10 +2213,10 @@ class DeciModel(TextModel):
|
||||
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
|
||||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||||
if self.hparams["rope_scaling"].get("type") == "linear":
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||
rope_scaling = self.hparams.get("rope_scaling") or {}
|
||||
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
|
||||
|
||||
@staticmethod
|
||||
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
|
||||
@@ -2403,10 +2456,10 @@ class MiniCPMModel(TextModel):
|
||||
logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
|
||||
self.gguf_writer.add_logit_scale(logit_scale)
|
||||
logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
|
||||
if self.hparams.get("rope_scaling") is not None:
|
||||
if self.hparams["rope_scaling"].get("type") == "longrope":
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
|
||||
logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
|
||||
rope_scaling = self.hparams.get("rope_scaling") or {}
|
||||
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
|
||||
logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
|
||||
|
||||
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
|
||||
rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
|
||||
@@ -2538,7 +2591,7 @@ class QwenModel(TextModel):
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
|
||||
@ModelBase.register("Qwen2ForCausalLM")
|
||||
@ModelBase.register("Qwen2Model", "Qwen2ForCausalLM")
|
||||
class Qwen2Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN2
|
||||
|
||||
@@ -2550,11 +2603,22 @@ class Qwen2Model(TextModel):
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||||
if self.hparams["rope_scaling"].get("type") == "yarn":
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
|
||||
self._try_set_pooling_type()
|
||||
rope_scaling = self.hparams.get("rope_scaling") or {}
|
||||
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
||||
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
if self.hf_arch == "Qwen2Model":
|
||||
name = f"model.{name}" # map to Qwen2ForCausalLM tensors
|
||||
if "language_model." in name:
|
||||
name = name.replace("language_model.", "") # for InternVL
|
||||
if name.startswith("mlp") or name.startswith("vision_model"):
|
||||
# skip visual tensors
|
||||
return []
|
||||
yield from super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
|
||||
@@ -2581,6 +2645,138 @@ class Qwen2VLModel(TextModel):
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
|
||||
class Qwen2VLVisionModel(VisionModel):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.hparams["image_size"] = self.hparams.get("image_size", 560)
|
||||
# rename config.json values
|
||||
self.hparams["num_attention_heads"] = self.hparams.get("num_heads")
|
||||
self.hparams["num_hidden_layers"] = self.hparams.get("depth")
|
||||
if "embed_dim" in self.hparams: # qwen2vl
|
||||
self.hparams["intermediate_size"] = self.hparams.get("hidden_size")
|
||||
self.hparams["hidden_size"] = self.hparams.get("embed_dim")
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
if self.global_config['model_type'] == 'qwen2_vl':
|
||||
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.QWEN2VL)
|
||||
elif self.global_config['model_type'] == 'qwen2_5_vl':
|
||||
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.QWEN25VL)
|
||||
self.gguf_writer.add_vision_use_silu(True)
|
||||
# find n_wa_pattern (window attention pattern)
|
||||
fullatt_block_indexes = hparams.get("fullatt_block_indexes")
|
||||
assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
|
||||
n_wa_pattern = fullatt_block_indexes[0] + 1
|
||||
# validate n_wa_pattern
|
||||
for i in range(1, len(fullatt_block_indexes)):
|
||||
if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
|
||||
raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
|
||||
self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
|
||||
else:
|
||||
raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
|
||||
# default values below are taken from HF tranformers code
|
||||
self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
|
||||
|
||||
def tensor_force_quant(self, name, new_name, bid, n_dims):
|
||||
del bid, name, n_dims # unused
|
||||
if ".patch_embd." in new_name:
|
||||
return gguf.GGMLQuantizationType.F16
|
||||
if ".position_embd." in new_name:
|
||||
return gguf.GGMLQuantizationType.F32
|
||||
return False
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
if name.startswith("visual."):
|
||||
# process visual tensors
|
||||
# split QKV tensors if needed
|
||||
if ".qkv." in name:
|
||||
if data_torch.ndim == 2: # weight
|
||||
c3, _ = data_torch.shape
|
||||
else: # bias
|
||||
c3 = data_torch.shape[0]
|
||||
assert c3 % 3 == 0
|
||||
c = c3 // 3
|
||||
wq = data_torch[:c]
|
||||
wk = data_torch[c: c * 2]
|
||||
wv = data_torch[c * 2:]
|
||||
return [
|
||||
(self.map_tensor_name(name.replace("qkv", "q")), wq),
|
||||
(self.map_tensor_name(name.replace("qkv", "k")), wk),
|
||||
(self.map_tensor_name(name.replace("qkv", "v")), wv),
|
||||
]
|
||||
elif 'patch_embed.proj.weight' in name:
|
||||
# split Conv3D into Conv2Ds
|
||||
c1, c2, kt, kh, kw = data_torch.shape
|
||||
del c1, c2, kh, kw # unused
|
||||
assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
|
||||
return [
|
||||
(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
|
||||
(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
|
||||
]
|
||||
else:
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
return [] # skip other tensors
|
||||
|
||||
|
||||
@ModelBase.register("InternVisionModel")
|
||||
class InternVisionModel(VisionModel):
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.INTERNVL)
|
||||
self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
|
||||
# hidden_act
|
||||
if hparams["hidden_act"] == "silu":
|
||||
self.gguf_writer.add_vision_use_silu(True)
|
||||
elif hparams["hidden_act"] == "gelu":
|
||||
self.gguf_writer.add_vision_use_gelu(True)
|
||||
else:
|
||||
raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
|
||||
# downsample_ratio
|
||||
downsample_ratio = self.global_config.get("downsample_ratio")
|
||||
assert downsample_ratio is not None
|
||||
self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
|
||||
|
||||
def tensor_force_quant(self, name, new_name, bid, n_dims):
|
||||
del bid, name, n_dims # unused
|
||||
if ".patch_embd." in new_name:
|
||||
return gguf.GGMLQuantizationType.F16
|
||||
if ".position_embd." in new_name:
|
||||
return gguf.GGMLQuantizationType.F32
|
||||
return False
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
if name.startswith("vision_model") or name.startswith("mlp"):
|
||||
# process visual tensors
|
||||
# correct name
|
||||
if name.startswith("vision_model"):
|
||||
name = "vision_tower." + name
|
||||
if (".ls" in name or "position_embedding" in name) and not name.endswith(".weight"):
|
||||
name += ".weight"
|
||||
# split QKV tensors if needed
|
||||
if ".qkv." in name:
|
||||
if data_torch.ndim == 2: # weight
|
||||
c3, _ = data_torch.shape
|
||||
else: # bias
|
||||
c3 = data_torch.shape[0]
|
||||
assert c3 % 3 == 0
|
||||
c = c3 // 3
|
||||
wq = data_torch[:c]
|
||||
wk = data_torch[c: c * 2]
|
||||
wv = data_torch[c * 2:]
|
||||
return [
|
||||
(self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
|
||||
(self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
|
||||
(self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
|
||||
]
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
return [] # skip other tensors
|
||||
|
||||
|
||||
@ModelBase.register("WavTokenizerDec")
|
||||
class WavTokenizerDecModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
|
||||
@@ -2633,6 +2829,13 @@ class Qwen2MoeModel(TextModel):
|
||||
if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
|
||||
self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
|
||||
logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
|
||||
# YaRN is not enabled by default
|
||||
# To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
|
||||
rope_scaling = self.hparams.get("rope_scaling") or {}
|
||||
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
||||
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
|
||||
|
||||
_experts: list[dict[str, Tensor]] | None = None
|
||||
|
||||
@@ -2900,7 +3103,7 @@ class Phi3MiniModel(TextModel):
|
||||
|
||||
scale = max_pos_embds / orig_max_pos_embds
|
||||
|
||||
rope_scaling_type = rope_scaling.get('type', '').lower()
|
||||
rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
|
||||
if len(rope_scaling_type) == 0:
|
||||
raise KeyError('Missing the required key rope_scaling.type')
|
||||
|
||||
@@ -3212,10 +3415,10 @@ class InternLM2Model(TextModel):
|
||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||||
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||||
if self.hparams["rope_scaling"].get("type") == "linear":
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||
rope_scaling = self.hparams.get("rope_scaling") or {}
|
||||
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
num_heads = self.hparams["num_attention_heads"]
|
||||
@@ -3225,6 +3428,11 @@ class InternLM2Model(TextModel):
|
||||
head_dim = n_embd // num_heads
|
||||
num_groups = num_heads // q_per_kv
|
||||
|
||||
name = name.replace("language_model.", "") # InternVL
|
||||
if name.startswith("mlp") or name.startswith("vision_model"):
|
||||
# skip visual tensors
|
||||
return []
|
||||
|
||||
if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
|
||||
qkv = data_torch
|
||||
|
||||
@@ -3290,14 +3498,18 @@ class InternLM3Model(TextModel):
|
||||
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
|
||||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||||
if self.hparams["rope_scaling"].get("type") == "linear" or self.hparams["rope_scaling"].get("rope_type") == "linear":
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||
rope_scaling = self.hparams.get("rope_scaling") or {}
|
||||
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
n_head = self.hparams["num_attention_heads"]
|
||||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||
name = name.replace("language_model.", "") # InternVL
|
||||
if name.startswith("mlp") or name.startswith("vision_model"):
|
||||
# skip visual tensors
|
||||
return []
|
||||
if name.endswith(("q_proj.weight", "q_proj.bias")):
|
||||
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
|
||||
if name.endswith(("k_proj.weight", "k_proj.bias")):
|
||||
@@ -3316,29 +3528,7 @@ class BertModel(TextModel):
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_causal_attention(False)
|
||||
|
||||
# get pooling path
|
||||
pooling_path = None
|
||||
module_path = self.dir_model / "modules.json"
|
||||
if module_path.is_file():
|
||||
with open(module_path, encoding="utf-8") as f:
|
||||
modules = json.load(f)
|
||||
for mod in modules:
|
||||
if mod["type"] == "sentence_transformers.models.Pooling":
|
||||
pooling_path = mod["path"]
|
||||
break
|
||||
|
||||
# get pooling type
|
||||
if pooling_path is not None:
|
||||
with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
|
||||
pooling = json.load(f)
|
||||
if pooling["pooling_mode_mean_tokens"]:
|
||||
pooling_type = gguf.PoolingType.MEAN
|
||||
elif pooling["pooling_mode_cls_token"]:
|
||||
pooling_type = gguf.PoolingType.CLS
|
||||
else:
|
||||
raise NotImplementedError("Only MEAN and CLS pooling types supported")
|
||||
self.gguf_writer.add_pooling_type(pooling_type)
|
||||
self._try_set_pooling_type()
|
||||
|
||||
def set_vocab(self):
|
||||
tokens, toktypes, tokpre = self.get_vocab_base()
|
||||
@@ -3547,8 +3737,13 @@ class NomicBertModel(BertModel):
|
||||
if self._tokenizer_is_xlmroberta:
|
||||
self._xlmroberta_tokenizer_init()
|
||||
|
||||
# the HF config claims n_ctx=8192, but it uses RoPE scaling
|
||||
self.hparams["n_ctx"] = 2048
|
||||
npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
|
||||
if npos == 8192 and mtp == 2048:
|
||||
self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
|
||||
elif npos == 2048 and mtp == 2048:
|
||||
self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
|
||||
else:
|
||||
raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
|
||||
|
||||
assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
|
||||
|
||||
@@ -3797,6 +3992,16 @@ class Gemma3VisionModel(VisionModel):
|
||||
# default values below are taken from HF tranformers code
|
||||
self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
|
||||
self.gguf_writer.add_vision_use_gelu(True)
|
||||
# calculate proj_scale_factor (used by tinygemma3 test model)
|
||||
image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
|
||||
n_per_side = int(image_seq_length ** 0.5)
|
||||
image_size = self.hparams["image_size"]
|
||||
patch_size = self.hparams["patch_size"]
|
||||
proj_scale_factor = (image_size // patch_size) // n_per_side
|
||||
if proj_scale_factor > 0 and proj_scale_factor != 4:
|
||||
# we only need to write this if it's not the default value
|
||||
# in this case, we are converting a test model
|
||||
self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
|
||||
|
||||
def tensor_force_quant(self, name, new_name, bid, n_dims):
|
||||
del bid, new_name, n_dims # unused
|
||||
@@ -3810,6 +4015,9 @@ class Gemma3VisionModel(VisionModel):
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
|
||||
if "vision_model.head." in name:
|
||||
return [] # skip redundant tensors for tinygemma3
|
||||
|
||||
if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
|
||||
or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
|
||||
# process vision tensors
|
||||
@@ -4735,12 +4943,12 @@ class DeepseekV2Model(TextModel):
|
||||
|
||||
self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
|
||||
|
||||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||||
if self.hparams["rope_scaling"].get("type") == "yarn":
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
|
||||
self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
|
||||
rope_scaling = self.hparams.get("rope_scaling") or {}
|
||||
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
||||
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
|
||||
self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
|
||||
|
||||
_experts: list[dict[str, Tensor]] | None = None
|
||||
|
||||
@@ -5232,11 +5440,11 @@ class Glm4Model(TextModel):
|
||||
super().set_gguf_parameters()
|
||||
rope_dim = self.hparams["head_dim"]
|
||||
self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
|
||||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||||
if self.hparams["rope_scaling"].get("type") == "yarn":
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
|
||||
rope_scaling = self.hparams.get("rope_scaling") or {}
|
||||
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
||||
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
|
||||
|
||||
|
||||
@ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
|
||||
@@ -5469,10 +5677,10 @@ class ExaoneModel(TextModel):
|
||||
rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
|
||||
rotary_factor = rotary_factor if rotary_factor is not None else 1.0
|
||||
self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
|
||||
if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
|
||||
if hparams["rope_scaling"].get("type") == "linear":
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
|
||||
rope_scaling = self.hparams.get("rope_scaling") or {}
|
||||
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
|
||||
|
||||
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
|
||||
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
|
||||
@@ -5538,11 +5746,20 @@ class GraniteModel(LlamaModel):
|
||||
logger.info("gguf: (granite) logits_scale = %s", logits_scale)
|
||||
|
||||
|
||||
@ModelBase.register("GraniteMoeForCausalLM")
|
||||
@ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
|
||||
class GraniteMoeModel(GraniteModel):
|
||||
"""Conversion for IBM's GraniteMoeForCausalLM"""
|
||||
model_arch = gguf.MODEL_ARCH.GRANITE_MOE
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
"""GraniteMoeShared uses GraniteMoe parameters plus the following:
|
||||
- shared_intermediate_size
|
||||
"""
|
||||
super().set_gguf_parameters()
|
||||
if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
|
||||
self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
|
||||
logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
"""In modeling_granitemoe, the JetMoe implementation of parallel experts
|
||||
is used. This essentially merges w1 and w3 into a single tensor with 2x
|
||||
@@ -5553,12 +5770,21 @@ class GraniteMoeModel(GraniteModel):
|
||||
if name.endswith("block_sparse_moe.input_linear.weight"):
|
||||
ffn_dim = self.hparams["intermediate_size"]
|
||||
assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
|
||||
gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
|
||||
gate, up = data_torch.split(ffn_dim, dim=-2)
|
||||
return [
|
||||
(self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
|
||||
(self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
|
||||
]
|
||||
|
||||
if name.endswith("shared_mlp.input_linear.weight"):
|
||||
ffn_dim = self.hparams["shared_intermediate_size"]
|
||||
assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
|
||||
gate, up = data_torch.split(ffn_dim, dim=-2)
|
||||
return [
|
||||
(self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
|
||||
(self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
|
||||
]
|
||||
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@@ -5575,7 +5801,13 @@ class BailingMoeModel(TextModel):
|
||||
rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
|
||||
rope_scaling = self.hparams.get("rope_scaling") or {}
|
||||
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
||||
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
|
||||
else:
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
|
||||
self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
|
||||
@@ -5877,8 +6109,7 @@ def split_str_to_n_bytes(split_str: str) -> int:
|
||||
return n
|
||||
|
||||
|
||||
def get_model_architecture(dir_model: Path, model_type: ModelType, hparams: Any = None) -> str:
|
||||
hparams = ModelBase.load_hparams(dir_model) if hparams is None else hparams
|
||||
def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
|
||||
text_config = hparams.get("text_config", {})
|
||||
vision_config = hparams.get("vision_config", {})
|
||||
arch = hparams["architectures"][0]
|
||||
@@ -5949,7 +6180,8 @@ def main() -> None:
|
||||
with torch.inference_mode():
|
||||
output_type = ftype_map[args.outtype]
|
||||
model_type = ModelType.VISION if args.mmproj else ModelType.TEXT
|
||||
model_architecture = get_model_architecture(dir_model, model_type)
|
||||
hparams = ModelBase.load_hparams(dir_model)
|
||||
model_architecture = get_model_architecture(hparams, model_type)
|
||||
logger.info(f"Model architecture: {model_architecture}")
|
||||
try:
|
||||
model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
|
||||
|
||||
@@ -116,6 +116,7 @@ models = [
|
||||
{"name": "llama4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct", },
|
||||
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", },
|
||||
{"name": "pixtral", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistral-community/pixtral-12b", },
|
||||
{"name": "seed-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base", },
|
||||
]
|
||||
|
||||
|
||||
|
||||
@@ -9,10 +9,10 @@ Adding a model requires few steps:
|
||||
After following these steps, you can open PR.
|
||||
|
||||
Also, it is important to check that the examples and main ggml backends (CUDA, METAL, CPU) are working with the new architecture, especially:
|
||||
- [main](/examples/main/)
|
||||
- [imatrix](/examples/imatrix/)
|
||||
- [quantize](/examples/quantize/)
|
||||
- [server](/examples/server/)
|
||||
- [main](/tools/main/)
|
||||
- [imatrix](/tools/imatrix/)
|
||||
- [quantize](/tools/quantize/)
|
||||
- [server](/tools/server/)
|
||||
|
||||
### 1. Convert the model to GGUF
|
||||
|
||||
|
||||
77
docs/multimodal.md
Normal file
77
docs/multimodal.md
Normal file
@@ -0,0 +1,77 @@
|
||||
# Multimodal
|
||||
|
||||
llama.cpp supports multimodal input via `libmtmd`. Currently, there are 2 tools support this feature:
|
||||
- [llama-mtmd-cli](../tools/mtmd/README.md)
|
||||
- [llama-server](../tools/server/README.md) via OpenAI-compatible `/chat/completions` API
|
||||
|
||||
To enable it, can use use one of the 2 methods below:
|
||||
|
||||
- Use `-hf` option with a supported model (see a list of pre-quantized model below)
|
||||
- To load a model using `-hf` while disabling multimodal, use `--no-mmproj`
|
||||
- To load a model using `-hf` while using a custom mmproj file, use `--mmproj local_file.gguf`
|
||||
- Use `-m model.gguf` option with `--mmproj file.gguf` to specify text and multimodal projector respectively
|
||||
|
||||
By default, multimodal projector will be offloaded to GPU. To disable this, add `--no-mmproj-offload`
|
||||
|
||||
For example:
|
||||
|
||||
```sh
|
||||
# simple usage with CLI
|
||||
llama-mtmd-cli -hf ggml-org/gemma-3-4b-it-GGUF
|
||||
|
||||
# simple usage with server
|
||||
llama-server -hf ggml-org/gemma-3-4b-it-GGUF
|
||||
|
||||
# using local file
|
||||
llama-server -m gemma-3-4b-it-Q4_K_M.gguf --mmproj mmproj-gemma-3-4b-it-Q4_K_M.gguf
|
||||
|
||||
# no GPU offload
|
||||
llama-server -hf ggml-org/gemma-3-4b-it-GGUF --no-mmproj-offload
|
||||
```
|
||||
|
||||
## Pre-quantized models
|
||||
|
||||
These are ready-to-use models, most of them come with `Q4_K_M` quantization by default. They can be found at the Hugging Face page of the ggml-org: https://huggingface.co/ggml-org
|
||||
|
||||
Replaces the `(tool_name)` with the name of binary you want to use. For example, `llama-mtmd-cli` or `llama-server`
|
||||
|
||||
NOTE: some models may require large context window, for example: `-c 8192`
|
||||
|
||||
```sh
|
||||
# Gemma 3
|
||||
(tool_name) -hf ggml-org/gemma-3-4b-it-GGUF
|
||||
(tool_name) -hf ggml-org/gemma-3-12b-it-GGUF
|
||||
(tool_name) -hf ggml-org/gemma-3-27b-it-GGUF
|
||||
|
||||
# SmolVLM
|
||||
(tool_name) -hf ggml-org/SmolVLM-Instruct-GGUF
|
||||
(tool_name) -hf ggml-org/SmolVLM-256M-Instruct-GGUF
|
||||
(tool_name) -hf ggml-org/SmolVLM-500M-Instruct-GGUF
|
||||
(tool_name) -hf ggml-org/SmolVLM2-2.2B-Instruct-GGUF
|
||||
(tool_name) -hf ggml-org/SmolVLM2-256M-Video-Instruct-GGUF
|
||||
(tool_name) -hf ggml-org/SmolVLM2-500M-Video-Instruct-GGUF
|
||||
|
||||
# Pixtral 12B
|
||||
(tool_name) -hf ggml-org/pixtral-12b-GGUF
|
||||
|
||||
# Qwen 2 VL
|
||||
(tool_name) -hf ggml-org/Qwen2-VL-2B-Instruct-GGUF
|
||||
(tool_name) -hf ggml-org/Qwen2-VL-7B-Instruct-GGUF
|
||||
|
||||
# Qwen 2.5 VL
|
||||
(tool_name) -hf ggml-org/Qwen2.5-VL-3B-Instruct-GGUF
|
||||
(tool_name) -hf ggml-org/Qwen2.5-VL-7B-Instruct-GGUF
|
||||
(tool_name) -hf ggml-org/Qwen2.5-VL-32B-Instruct-GGUF
|
||||
(tool_name) -hf ggml-org/Qwen2.5-VL-72B-Instruct-GGUF
|
||||
|
||||
# Mistral Small 3.1 24B (IQ2_M quantization)
|
||||
(tool_name) -hf ggml-org/Mistral-Small-3.1-24B-Instruct-2503-GGUF
|
||||
|
||||
# InternVL 2.5 and 3
|
||||
(tool_name) -hf ggml-org/InternVL2_5-1B-GGUF
|
||||
(tool_name) -hf ggml-org/InternVL2_5-4B-GGUF
|
||||
(tool_name) -hf ggml-org/InternVL3-1B-Instruct-GGUF
|
||||
(tool_name) -hf ggml-org/InternVL3-2B-Instruct-GGUF
|
||||
(tool_name) -hf ggml-org/InternVL3-8B-Instruct-GGUF
|
||||
(tool_name) -hf ggml-org/InternVL3-14B-Instruct-GGUF
|
||||
```
|
||||
@@ -33,13 +33,13 @@ git clone https://huggingface.co/openai/clip-vit-large-patch14-336
|
||||
2. Use `llava_surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/llava_surgery.py -m path/to/MobileVLM-1.7B
|
||||
python ./tools/mtmd/llava_surgery.py -m path/to/MobileVLM-1.7B
|
||||
```
|
||||
|
||||
3. Use `convert_image_encoder_to_gguf.py` with `--projector-type ldp` (for **V2** please use `--projector-type ldpv2`) to convert the LLaVA image encoder to GGUF:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/convert_image_encoder_to_gguf.py \
|
||||
python ./tools/mtmd/convert_image_encoder_to_gguf.py \
|
||||
-m path/to/clip-vit-large-patch14-336 \
|
||||
--llava-projector path/to/MobileVLM-1.7B/llava.projector \
|
||||
--output-dir path/to/MobileVLM-1.7B \
|
||||
@@ -47,7 +47,7 @@ python ./examples/llava/convert_image_encoder_to_gguf.py \
|
||||
```
|
||||
|
||||
```sh
|
||||
python ./examples/llava/convert_image_encoder_to_gguf.py \
|
||||
python ./tools/mtmd/convert_image_encoder_to_gguf.py \
|
||||
-m path/to/clip-vit-large-patch14-336 \
|
||||
--llava-projector path/to/MobileVLM-1.7B_V2/llava.projector \
|
||||
--output-dir path/to/MobileVLM-1.7B_V2 \
|
||||
@@ -69,10 +69,10 @@ Now both the LLaMA part and the image encoder is in the `MobileVLM-1.7B` directo
|
||||
|
||||
## Android compile and run
|
||||
### compile
|
||||
refer to `examples/llava/android/build_64.sh`
|
||||
refer to `tools/mtmd/android/build_64.sh`
|
||||
```sh
|
||||
mkdir examples/llava/android/build_64
|
||||
cd examples/llava/android/build_64
|
||||
mkdir tools/mtmd/android/build_64
|
||||
cd tools/mtmd/android/build_64
|
||||
../build_64.sh
|
||||
```
|
||||
### run on Android
|
||||
|
||||
@@ -25,13 +25,13 @@ git clone https://huggingface.co/THUDM/glm-edge-v-5b or https://huggingface.co/T
|
||||
2. Use `glmedge-surgery.py` to split the GLMV-EDGE model to LLM and multimodel projector constituents:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/glmedge-surgery.py -m ../model_path
|
||||
python ./tools/mtmd/glmedge-surgery.py -m ../model_path
|
||||
```
|
||||
|
||||
4. Use `glmedge-convert-image-encoder-to-gguf.py` to convert the GLMV-EDGE image encoder to GGUF:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/glmedge-convert-image-encoder-to-gguf.py -m ../model_path --llava-projector ../model_path/glm.projector --output-dir ../model_path
|
||||
python ./tools/mtmd/glmedge-convert-image-encoder-to-gguf.py -m ../model_path --llava-projector ../model_path/glm.projector --output-dir ../model_path
|
||||
```
|
||||
|
||||
5. Use `examples/convert_hf_to_gguf.py` to convert the LLM part of GLMV-EDGE to GGUF:
|
||||
|
||||
@@ -37,19 +37,19 @@ git clone https://huggingface.co/openai/clip-vit-large-patch14-336
|
||||
2. Install the required Python packages:
|
||||
|
||||
```sh
|
||||
pip install -r examples/llava/requirements.txt
|
||||
pip install -r tools/mtmd/requirements.txt
|
||||
```
|
||||
|
||||
3. Use `llava_surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/llava_surgery.py -m ../llava-v1.5-7b
|
||||
python ./tools/mtmd/llava_surgery.py -m ../llava-v1.5-7b
|
||||
```
|
||||
|
||||
4. Use `convert_image_encoder_to_gguf.py` to convert the LLaVA image encoder to GGUF:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/convert_image_encoder_to_gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
|
||||
python ./tools/mtmd/convert_image_encoder_to_gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
|
||||
```
|
||||
|
||||
5. Use `examples/convert_legacy_llama.py` to convert the LLaMA part of LLaVA to GGUF:
|
||||
@@ -69,12 +69,12 @@ git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
|
||||
2) Install the required Python packages:
|
||||
|
||||
```sh
|
||||
pip install -r examples/llava/requirements.txt
|
||||
pip install -r tools/mtmd/requirements.txt
|
||||
```
|
||||
|
||||
3) Use `llava_surgery_v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models:
|
||||
```console
|
||||
python examples/llava/llava_surgery_v2.py -C -m ../llava-v1.6-vicuna-7b/
|
||||
python tools/mtmd/llava_surgery_v2.py -C -m ../llava-v1.6-vicuna-7b/
|
||||
```
|
||||
- you will find a llava.projector and a llava.clip file in your model directory
|
||||
|
||||
@@ -88,7 +88,7 @@ curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.jso
|
||||
|
||||
5) Create the visual gguf model:
|
||||
```console
|
||||
python ./examples/llava/convert_image_encoder_to_gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
|
||||
python ./tools/mtmd/convert_image_encoder_to_gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
|
||||
```
|
||||
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP
|
||||
|
||||
|
||||
@@ -29,8 +29,8 @@ cmake --build build --config Release
|
||||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-o-2_6-gguf) by us)
|
||||
|
||||
```bash
|
||||
python ./examples/llava/minicpmv-surgery.py -m ../MiniCPM-o-2_6
|
||||
python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-o-2_6 --minicpmv-projector ../MiniCPM-o-2_6/minicpmv.projector --output-dir ../MiniCPM-o-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 4
|
||||
python ./tools/mtmd/minicpmv-surgery.py -m ../MiniCPM-o-2_6
|
||||
python ./tools/mtmd/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-o-2_6 --minicpmv-projector ../MiniCPM-o-2_6/minicpmv.projector --output-dir ../MiniCPM-o-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 4
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-o-2_6/model
|
||||
|
||||
# quantize int4 version
|
||||
|
||||
@@ -28,8 +28,8 @@ cmake --build build --config Release
|
||||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) by us)
|
||||
|
||||
```bash
|
||||
python ./examples/llava/minicpmv-surgery.py -m ../MiniCPM-Llama3-V-2_5
|
||||
python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-Llama3-V-2_5 --minicpmv-projector ../MiniCPM-Llama3-V-2_5/minicpmv.projector --output-dir ../MiniCPM-Llama3-V-2_5/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 2
|
||||
python ./tools/mtmd/minicpmv-surgery.py -m ../MiniCPM-Llama3-V-2_5
|
||||
python ./tools/mtmd/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-Llama3-V-2_5 --minicpmv-projector ../MiniCPM-Llama3-V-2_5/minicpmv.projector --output-dir ../MiniCPM-Llama3-V-2_5/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 2
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-Llama3-V-2_5/model
|
||||
|
||||
# quantize int4 version
|
||||
|
||||
@@ -28,8 +28,8 @@ cmake --build build --config Release
|
||||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf) by us)
|
||||
|
||||
```bash
|
||||
python ./examples/llava/minicpmv-surgery.py -m ../MiniCPM-V-2_6
|
||||
python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-V-2_6 --minicpmv-projector ../MiniCPM-V-2_6/minicpmv.projector --output-dir ../MiniCPM-V-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 3
|
||||
python ./tools/mtmd/minicpmv-surgery.py -m ../MiniCPM-V-2_6
|
||||
python ./tools/mtmd/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-V-2_6 --minicpmv-projector ../MiniCPM-V-2_6/minicpmv.projector --output-dir ../MiniCPM-V-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 3
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-V-2_6/model
|
||||
|
||||
# quantize int4 version
|
||||
|
||||
@@ -12,51 +12,30 @@ llama_add_compile_flags()
|
||||
|
||||
# examples
|
||||
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
|
||||
if (EMSCRIPTEN)
|
||||
else()
|
||||
add_subdirectory(batched-bench)
|
||||
add_subdirectory(batched)
|
||||
add_subdirectory(embedding)
|
||||
add_subdirectory(eval-callback)
|
||||
|
||||
add_subdirectory(gguf-hash)
|
||||
add_subdirectory(gguf-split)
|
||||
add_subdirectory(gguf)
|
||||
add_subdirectory(gritlm)
|
||||
add_subdirectory(imatrix)
|
||||
add_subdirectory(infill)
|
||||
add_subdirectory(llama-bench)
|
||||
add_subdirectory(lookahead)
|
||||
add_subdirectory(lookup)
|
||||
add_subdirectory(main)
|
||||
add_subdirectory(parallel)
|
||||
add_subdirectory(passkey)
|
||||
add_subdirectory(perplexity)
|
||||
add_subdirectory(quantize)
|
||||
add_subdirectory(retrieval)
|
||||
if (LLAMA_BUILD_SERVER)
|
||||
add_subdirectory(server)
|
||||
endif()
|
||||
add_subdirectory(save-load-state)
|
||||
add_subdirectory(run)
|
||||
add_subdirectory(simple)
|
||||
add_subdirectory(simple-chat)
|
||||
add_subdirectory(speculative)
|
||||
add_subdirectory(speculative-simple)
|
||||
add_subdirectory(tokenize)
|
||||
add_subdirectory(tts)
|
||||
add_subdirectory(gen-docs)
|
||||
add_subdirectory(training)
|
||||
if (NOT GGML_BACKEND_DL)
|
||||
# these examples use the backends directly and cannot be built with dynamic loading
|
||||
add_subdirectory(convert-llama2c-to-ggml)
|
||||
add_subdirectory(cvector-generator)
|
||||
add_subdirectory(export-lora)
|
||||
add_subdirectory(llava)
|
||||
if (GGML_RPC)
|
||||
add_subdirectory(rpc)
|
||||
endif()
|
||||
# these examples use the backends directly and cannot be built with dynamic loading
|
||||
if (GGML_SYCL)
|
||||
add_subdirectory(sycl)
|
||||
endif()
|
||||
|
||||
@@ -35,23 +35,14 @@ static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & toke
|
||||
|
||||
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd, int embd_norm) {
|
||||
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
|
||||
const struct llama_model * model = llama_get_model(ctx);
|
||||
|
||||
// clear previous kv_cache values (irrelevant for embeddings)
|
||||
llama_kv_self_clear(ctx);
|
||||
|
||||
// run model
|
||||
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
|
||||
if (llama_model_has_encoder(model) && !llama_model_has_decoder(model)) {
|
||||
// encoder-only model
|
||||
if (llama_encode(ctx, batch) < 0) {
|
||||
LOG_ERR("%s : failed to encode\n", __func__);
|
||||
}
|
||||
} else if (!llama_model_has_encoder(model) && llama_model_has_decoder(model)) {
|
||||
// decoder-only model
|
||||
if (llama_decode(ctx, batch) < 0) {
|
||||
LOG_ERR("%s : failed to decode\n", __func__);
|
||||
}
|
||||
if (llama_encode(ctx, batch) < 0) {
|
||||
LOG_ERR("%s : failed to encode\n", __func__);
|
||||
}
|
||||
|
||||
for (int i = 0; i < batch.n_tokens; i++) {
|
||||
|
||||
@@ -1,5 +0,0 @@
|
||||
set(TARGET llama-infill)
|
||||
add_executable(${TARGET} infill.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_17)
|
||||
@@ -1,47 +0,0 @@
|
||||
# llama.cpp/example/infill
|
||||
|
||||
This example shows how to use the infill mode with Code Llama models supporting infill mode.
|
||||
Currently the 7B and 13B models support infill mode.
|
||||
|
||||
Infill supports most of the options available in the main example.
|
||||
|
||||
For further information have a look at the main README.md in llama.cpp/example/main/README.md
|
||||
|
||||
## Common Options
|
||||
|
||||
In this section, we cover the most commonly used options for running the `infill` program with the LLaMA models:
|
||||
|
||||
- `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.bin`).
|
||||
- `-i, --interactive`: Run the program in interactive mode, allowing you to provide input directly and receive real-time responses.
|
||||
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text. Adjusting this value can influence the length of the generated text.
|
||||
- `-c N, --ctx-size N`: Set the size of the prompt context. The default is 4096, but if a LLaMA model was built with a longer context, increasing this value will provide better results for longer input/inference.
|
||||
- `--spm-infill`: Use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this.
|
||||
|
||||
## Input Prompts
|
||||
|
||||
The `infill` program provides several ways to interact with the LLaMA models using input prompts:
|
||||
|
||||
- `--in-prefix PROMPT_BEFORE_CURSOR`: Provide the prefix directly as a command-line option.
|
||||
- `--in-suffix PROMPT_AFTER_CURSOR`: Provide the suffix directly as a command-line option.
|
||||
- `--interactive-first`: Run the program in interactive mode and wait for input right away. (More on this below.)
|
||||
|
||||
## Interaction
|
||||
|
||||
The `infill` program offers a seamless way to interact with LLaMA models, allowing users to receive real-time infill suggestions. The interactive mode can be triggered using `--interactive`, and `--interactive-first`
|
||||
|
||||
### Interaction Options
|
||||
|
||||
- `-i, --interactive`: Run the program in interactive mode, allowing users to get real time code suggestions from model.
|
||||
- `--interactive-first`: Run the program in interactive mode and immediately wait for user input before starting the text generation.
|
||||
- `--color`: Enable colorized output to differentiate visually distinguishing between prompts, user input, and generated text.
|
||||
|
||||
### Example
|
||||
|
||||
Download a model that supports infill, for example CodeLlama:
|
||||
```console
|
||||
scripts/hf.sh --repo TheBloke/CodeLlama-13B-GGUF --file codellama-13b.Q5_K_S.gguf --outdir models
|
||||
```
|
||||
|
||||
```bash
|
||||
./llama-infill -t 10 -ngl 0 -m models/codellama-13b.Q5_K_S.gguf -c 4096 --temp 0.7 --repeat_penalty 1.1 -n 20 --in-prefix "def helloworld():\n print(\"hell" --in-suffix "\n print(\"goodbye world\")\n "
|
||||
```
|
||||
@@ -1,590 +0,0 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "console.h"
|
||||
#include "sampling.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cinttypes>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
||||
#include <signal.h>
|
||||
#include <unistd.h>
|
||||
#elif defined (_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
#define NOMINMAX
|
||||
#endif
|
||||
#include <windows.h>
|
||||
#include <signal.h>
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
static llama_context ** g_ctx;
|
||||
static llama_model ** g_model;
|
||||
static common_sampler ** g_smpl;
|
||||
static common_params * g_params;
|
||||
static std::vector<llama_token> * g_input_tokens;
|
||||
static std::ostringstream * g_output_ss;
|
||||
static std::vector<llama_token> * g_output_tokens;
|
||||
|
||||
static bool is_interacting = false;
|
||||
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
||||
static void sigint_handler(int signo) {
|
||||
if (signo == SIGINT) {
|
||||
if (!is_interacting) {
|
||||
is_interacting = true;
|
||||
} else {
|
||||
console::cleanup();
|
||||
LOG("\n");
|
||||
common_perf_print(*g_ctx, *g_smpl);
|
||||
|
||||
// make sure all logs are flushed
|
||||
LOG("Interrupted by user\n");
|
||||
common_log_pause(common_log_main());
|
||||
|
||||
_exit(130);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
g_params = ¶ms;
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_INFILL)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
common_init();
|
||||
|
||||
auto & sparams = params.sampling;
|
||||
|
||||
console::init(params.simple_io, params.use_color);
|
||||
atexit([]() { console::cleanup(); });
|
||||
|
||||
if (params.logits_all) {
|
||||
LOG_ERR("\n************\n");
|
||||
LOG_ERR("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
|
||||
LOG_ERR("************\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (params.embedding) {
|
||||
LOG_ERR("\n************\n");
|
||||
LOG_ERR("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
|
||||
LOG_ERR("************\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (params.n_ctx != 0 && params.n_ctx < 8) {
|
||||
LOG_WRN("%s: minimum context size is 8, using minimum size.\n", __func__);
|
||||
params.n_ctx = 8;
|
||||
}
|
||||
|
||||
if (!params.interactive_first && (params.input_prefix.empty() && params.input_suffix.empty())) {
|
||||
LOG_ERR("\n************\n");
|
||||
LOG_ERR("%s: please use '--interactive_first' or specify '--in_prefix' and/or '--in_suffix'\n", __func__);
|
||||
LOG_ERR("************\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (params.rope_freq_base != 0.0) {
|
||||
LOG_WRN("%s: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
|
||||
}
|
||||
|
||||
if (params.rope_freq_scale != 0.0) {
|
||||
LOG_WRN("%s: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
|
||||
}
|
||||
|
||||
LOG_INF("%s: llama backend init\n", __func__);
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model * model = nullptr;
|
||||
llama_context * ctx = nullptr;
|
||||
common_sampler * smpl = nullptr;
|
||||
|
||||
g_model = &model;
|
||||
g_ctx = &ctx;
|
||||
g_smpl = &smpl;
|
||||
|
||||
// load the model and apply lora adapter, if any
|
||||
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
model = llama_init.model.get();
|
||||
ctx = llama_init.context.get();
|
||||
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: unable to load model\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
const int n_ctx_train = llama_model_n_ctx_train(model);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
LOG_DBG("n_ctx: %d\n", n_ctx);
|
||||
|
||||
if (n_ctx > n_ctx_train) {
|
||||
LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx);
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||
}
|
||||
const bool add_bos = llama_vocab_get_add_bos(vocab);
|
||||
GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
|
||||
|
||||
std::vector<llama_token> embd_inp;
|
||||
std::vector<llama_token> embd_end;
|
||||
std::vector<llama_token> inp_pfx = common_tokenize(ctx, params.input_prefix, false);
|
||||
std::vector<llama_token> inp_sfx = common_tokenize(ctx, params.input_suffix, false);
|
||||
|
||||
GGML_ASSERT(llama_vocab_fim_pre(vocab) >= 0);
|
||||
GGML_ASSERT(llama_vocab_fim_suf(vocab) >= 0);
|
||||
|
||||
inp_pfx.insert(inp_pfx.begin(), llama_vocab_fim_pre(vocab));
|
||||
inp_sfx.insert(inp_sfx.begin(), llama_vocab_fim_suf(vocab));
|
||||
|
||||
embd_inp = params.spm_infill ? inp_sfx : inp_pfx;
|
||||
embd_end = params.spm_infill ? inp_pfx : inp_sfx;
|
||||
if (add_bos) {
|
||||
embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab));
|
||||
}
|
||||
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
|
||||
|
||||
const llama_token middle_token = llama_vocab_fim_mid(vocab);
|
||||
if (middle_token >= 0) {
|
||||
embd_inp.push_back(middle_token);
|
||||
}
|
||||
|
||||
LOG_DBG("add_bos: %d\n", add_bos);
|
||||
LOG_DBG("prefix: \"%s\"\n", params.input_prefix.c_str());
|
||||
LOG_DBG("suffix: \"%s\"\n", params.input_suffix.c_str());
|
||||
LOG_DBG("tokens: %s\n", string_from(ctx, embd_inp).c_str());
|
||||
|
||||
// Should not run without any tokens
|
||||
if (embd_inp.empty()) {
|
||||
embd_inp.push_back(llama_vocab_bos(vocab));
|
||||
LOG_WRN("embd_inp was considered empty and bos was added: %s\n", string_from(ctx, embd_inp).c_str());
|
||||
}
|
||||
|
||||
if ((int) embd_inp.size() > n_ctx - 4) {
|
||||
LOG_ERR("%s: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// number of tokens to keep when resetting context
|
||||
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) {
|
||||
params.n_keep = (int)embd_inp.size();
|
||||
}
|
||||
|
||||
LOG_INF("inp_pfx: %s\n", string_from(ctx, inp_pfx).c_str());
|
||||
LOG_INF("inp_sfx: %s\n", string_from(ctx, inp_sfx).c_str());
|
||||
|
||||
// enable interactive mode if interactive start is specified
|
||||
if (params.interactive_first) {
|
||||
params.interactive = true;
|
||||
}
|
||||
|
||||
if (params.verbose_prompt) {
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
||||
LOG_INF("%6d -> '%s'\n", embd_inp[i], common_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
}
|
||||
|
||||
if (params.n_keep > 0) {
|
||||
LOG_INF("%s: static prompt based on n_keep: '", __func__);
|
||||
for (int i = 0; i < params.n_keep; i++) {
|
||||
LOG_CNT("%s", common_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
}
|
||||
LOG_CNT("'\n");
|
||||
}
|
||||
LOG_INF("\n");
|
||||
}
|
||||
|
||||
if (params.interactive) {
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
||||
struct sigaction sigint_action;
|
||||
sigint_action.sa_handler = sigint_handler;
|
||||
sigemptyset (&sigint_action.sa_mask);
|
||||
sigint_action.sa_flags = 0;
|
||||
sigaction(SIGINT, &sigint_action, NULL);
|
||||
#elif defined (_WIN32)
|
||||
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
|
||||
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
|
||||
};
|
||||
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
|
||||
#endif
|
||||
|
||||
LOG_INF("%s: interactive mode on.\n", __func__);
|
||||
|
||||
if (params.input_prefix_bos) {
|
||||
LOG_INF("Input prefix with BOS\n");
|
||||
}
|
||||
|
||||
if (!params.input_prefix.empty()) {
|
||||
LOG_INF("Input prefix: '%s'\n", params.input_prefix.c_str());
|
||||
}
|
||||
|
||||
if (!params.input_suffix.empty()) {
|
||||
LOG_INF("Input suffix: '%s'\n", params.input_suffix.c_str());
|
||||
}
|
||||
}
|
||||
smpl = common_sampler_init(model, sparams);
|
||||
|
||||
LOG_INF("sampler seed: %u\n", common_sampler_get_seed(smpl));
|
||||
LOG_INF("sampler params: \n%s\n", sparams.print().c_str());
|
||||
LOG_INF("sampler chain: %s\n", common_sampler_print(smpl).c_str());
|
||||
|
||||
LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||
|
||||
LOG_INF("\n");
|
||||
LOG_INF("\n##### Infill mode #####\n\n");
|
||||
if (params.interactive) {
|
||||
const char *control_message;
|
||||
if (params.multiline_input) {
|
||||
control_message = " - To return control to LLaMA, end your input with '\\'.\n"
|
||||
" - To return control without starting a new line, end your input with '/'.\n";
|
||||
} else {
|
||||
control_message = " - Press Return to return control to LLaMA.\n"
|
||||
" - To return control without starting a new line, end your input with '/'.\n"
|
||||
" - If you want to submit another line, end your input with '\\'.\n";
|
||||
}
|
||||
LOG_INF("== Running in interactive mode. ==\n");
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
||||
LOG_INF( " - Press Ctrl+C to interject at any time.\n");
|
||||
#endif
|
||||
LOG_INF( "%s\n", control_message);
|
||||
|
||||
is_interacting = params.interactive_first;
|
||||
}
|
||||
|
||||
bool input_echo = true;
|
||||
|
||||
int n_past = 0;
|
||||
int n_remain = params.n_predict;
|
||||
int n_consumed = 0;
|
||||
|
||||
std::vector<int> input_tokens; g_input_tokens = &input_tokens;
|
||||
std::vector<int> output_tokens; g_output_tokens = &output_tokens;
|
||||
std::ostringstream output_ss; g_output_ss = &output_ss;
|
||||
|
||||
// the first thing we will do is to output the prompt, so set color accordingly
|
||||
console::set_display(console::prompt);
|
||||
|
||||
std::vector<llama_token> embd;
|
||||
|
||||
while (n_remain != 0 || params.interactive) {
|
||||
// predict
|
||||
if (!embd.empty()) {
|
||||
// Note: n_ctx - 4 here is to match the logic for commandline prompt handling via
|
||||
// --prompt or --file which uses the same value.
|
||||
int max_embd_size = n_ctx - 4;
|
||||
|
||||
// Ensure the input doesn't exceed the context size by truncating embd if necessary.
|
||||
if ((int) embd.size() > max_embd_size) {
|
||||
const int skipped_tokens = (int) embd.size() - max_embd_size;
|
||||
embd.resize(max_embd_size);
|
||||
|
||||
console::set_display(console::error);
|
||||
LOG_WRN("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
|
||||
console::set_display(console::reset);
|
||||
}
|
||||
|
||||
// infinite text generation via context swapping
|
||||
// if we run out of context:
|
||||
// - take the n_keep first tokens from the original prompt (via n_past)
|
||||
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
|
||||
if (n_past + (int) embd.size() > n_ctx) {
|
||||
if (params.n_predict == -2) {
|
||||
LOG_DBG("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
|
||||
break;
|
||||
}
|
||||
|
||||
const int n_left = n_past - params.n_keep - 1;
|
||||
const int n_discard = n_left/2;
|
||||
|
||||
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
|
||||
n_past, n_left, n_ctx, params.n_keep, n_discard);
|
||||
|
||||
llama_kv_self_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
|
||||
llama_kv_self_seq_add(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
|
||||
|
||||
n_past -= n_discard;
|
||||
|
||||
LOG_DBG("after swap: n_past = %d\n", n_past);
|
||||
|
||||
LOG_DBG("embd: %s\n", string_from(ctx, embd).c_str());
|
||||
|
||||
}
|
||||
|
||||
// evaluate tokens in batches
|
||||
// embd is typically prepared beforehand to fit within a batch, but not always
|
||||
for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
|
||||
int n_eval = (int) embd.size() - i;
|
||||
if (n_eval > params.n_batch) {
|
||||
n_eval = params.n_batch;
|
||||
}
|
||||
|
||||
LOG_DBG("eval: %s\n", string_from(ctx, embd).c_str());
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval))) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
n_past += n_eval;
|
||||
|
||||
LOG_DBG("n_past = %d\n", n_past);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
embd.clear();
|
||||
|
||||
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
|
||||
const llama_token id = common_sampler_sample(smpl, ctx, -1);
|
||||
|
||||
common_sampler_accept(smpl, id, true);
|
||||
|
||||
// LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str());
|
||||
|
||||
embd.push_back(id);
|
||||
|
||||
// echo this to console
|
||||
input_echo = true;
|
||||
|
||||
// decrement remaining sampling budget
|
||||
--n_remain;
|
||||
|
||||
LOG_DBG("n_remain: %d\n", n_remain);
|
||||
} else {
|
||||
// some user input remains from prompt or interaction, forward it to processing
|
||||
LOG_DBG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
|
||||
while ((int) embd_inp.size() > n_consumed) {
|
||||
embd.push_back(embd_inp[n_consumed]);
|
||||
|
||||
// push the prompt in the sampling context in order to apply repetition penalties later
|
||||
// for the prompt, we don't apply grammar rules
|
||||
common_sampler_accept(smpl, embd_inp[n_consumed], false);
|
||||
|
||||
++n_consumed;
|
||||
if ((int) embd.size() >= params.n_batch) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// display text
|
||||
if (input_echo) {
|
||||
for (auto id : embd) {
|
||||
const std::string token_str = common_token_to_piece(ctx, id);
|
||||
LOG("%s", token_str.c_str());
|
||||
|
||||
if (embd.size() > 1) {
|
||||
input_tokens.push_back(id);
|
||||
} else {
|
||||
output_tokens.push_back(id);
|
||||
output_ss << token_str;
|
||||
}
|
||||
}
|
||||
}
|
||||
// reset color to default if we there is no pending user input
|
||||
if (input_echo && (int) embd_inp.size() == n_consumed) {
|
||||
console::set_display(console::reset);
|
||||
}
|
||||
|
||||
// if not currently processing queued inputs;
|
||||
if ((int) embd_inp.size() <= n_consumed) {
|
||||
// deal with eot token in infill mode
|
||||
if ((common_sampler_last(smpl) == llama_vocab_eot(vocab) || is_interacting) && params.interactive){
|
||||
if (is_interacting && !params.interactive_first) {
|
||||
// print an eot token
|
||||
LOG("%s", common_token_to_piece(ctx, llama_vocab_eot(vocab)).c_str());
|
||||
}
|
||||
LOG("\n");
|
||||
console::set_display(console::user_input);
|
||||
std::string buffer;
|
||||
std::string line;
|
||||
bool another_line=true;
|
||||
// set a new prefix via stdin
|
||||
do {
|
||||
another_line = console::readline(line, params.multiline_input);
|
||||
buffer += line;
|
||||
} while (another_line);
|
||||
// check if we got an empty line, if so we use the old input
|
||||
if (!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
|
||||
params.input_prefix = buffer;
|
||||
}
|
||||
buffer.clear();
|
||||
// set a new suffix via stdin
|
||||
do {
|
||||
another_line = console::readline(line, params.multiline_input);
|
||||
buffer += line;
|
||||
} while (another_line);
|
||||
// check if we got an empty line
|
||||
if (!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
|
||||
params.input_suffix = buffer;
|
||||
}
|
||||
buffer.clear();
|
||||
// done taking input, reset color
|
||||
console::set_display(console::reset);
|
||||
|
||||
if (params.escape) {
|
||||
//process escape sequences, for the initial prompt this is done in common.cpp when we load the params, but for the interactive mode we need to do it here
|
||||
string_process_escapes(params.input_prefix);
|
||||
string_process_escapes(params.input_suffix);
|
||||
}
|
||||
|
||||
// tokenize new prefix and suffix
|
||||
std::vector<llama_token> inp_pfx = common_tokenize(ctx, params.input_prefix, false);
|
||||
std::vector<llama_token> inp_sfx = common_tokenize(ctx, params.input_suffix, false);
|
||||
|
||||
inp_pfx.insert(inp_pfx.begin(), llama_vocab_fim_pre(vocab));
|
||||
inp_sfx.insert(inp_sfx.begin(), llama_vocab_fim_suf(vocab));
|
||||
|
||||
embd_inp = params.spm_infill ? inp_sfx : inp_pfx;
|
||||
embd_end = params.spm_infill ? inp_pfx : inp_sfx;
|
||||
if (add_bos) {
|
||||
embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab));
|
||||
}
|
||||
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
|
||||
|
||||
if (middle_token >= 0) {
|
||||
embd_inp.push_back(middle_token);
|
||||
}
|
||||
|
||||
embd.clear();
|
||||
n_remain = params.n_predict;
|
||||
n_past = 0;
|
||||
n_consumed = 0;
|
||||
is_interacting = false;
|
||||
}
|
||||
// deal with end of generation tokens in interactive mode
|
||||
else if (llama_vocab_is_eog(vocab, common_sampler_last(smpl))) {
|
||||
LOG_DBG("found EOS token\n");
|
||||
|
||||
if (params.interactive) {
|
||||
|
||||
is_interacting = true;
|
||||
LOG("\n");
|
||||
console::set_display(console::user_input);
|
||||
}
|
||||
}
|
||||
|
||||
if (n_past > 0 && is_interacting && !params.interactive) {
|
||||
LOG_DBG("waiting for user input\n");
|
||||
|
||||
if (params.input_prefix_bos) {
|
||||
LOG_DBG("adding input prefix BOS token\n");
|
||||
embd_inp.push_back(llama_vocab_bos(vocab));
|
||||
}
|
||||
|
||||
std::string buffer;
|
||||
if (!params.input_prefix.empty()) {
|
||||
LOG_DBG("appending input prefix: '%s'\n", params.input_prefix.c_str());
|
||||
buffer += params.input_prefix;
|
||||
LOG("%s", buffer.c_str());
|
||||
}
|
||||
|
||||
std::string line;
|
||||
bool another_line = true;
|
||||
do {
|
||||
another_line = console::readline(line, params.multiline_input);
|
||||
buffer += line;
|
||||
} while (another_line);
|
||||
|
||||
// done taking input, reset color
|
||||
console::set_display(console::reset);
|
||||
|
||||
// Add tokens to embd only if the input buffer is non-empty
|
||||
// Entering a empty line lets the user pass control back
|
||||
if (buffer.length() > 1) {
|
||||
// append input suffix if any
|
||||
if (!params.input_suffix.empty()) {
|
||||
LOG_DBG("appending input suffix: '%s'\n", params.input_suffix.c_str());
|
||||
buffer += params.input_suffix;
|
||||
LOG("%s", params.input_suffix.c_str());
|
||||
}
|
||||
|
||||
LOG_DBG("buffer: '%s'\n", buffer.c_str());
|
||||
|
||||
const size_t original_size = embd_inp.size();
|
||||
|
||||
const auto line_inp = common_tokenize(ctx, buffer, false);
|
||||
LOG_DBG("input tokens: %s\n", string_from(ctx, line_inp).c_str());
|
||||
|
||||
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
||||
|
||||
for (size_t i = original_size; i < embd_inp.size(); ++i) {
|
||||
const llama_token token = embd_inp[i];
|
||||
output_tokens.push_back(token);
|
||||
output_ss << common_token_to_piece(ctx, token);
|
||||
}
|
||||
|
||||
n_remain -= line_inp.size();
|
||||
LOG_DBG("n_remain: %d\n", n_remain);
|
||||
} else {
|
||||
LOG_DBG("empty line, passing control back\n");
|
||||
}
|
||||
|
||||
input_echo = false; // do not echo this again
|
||||
}
|
||||
|
||||
if (n_past > 0) {
|
||||
if (is_interacting) {
|
||||
common_sampler_reset(smpl);
|
||||
}
|
||||
is_interacting = false;
|
||||
}
|
||||
}
|
||||
|
||||
// end of generation
|
||||
if (!embd.empty() && llama_vocab_is_eog(vocab, embd.back()) && !params.interactive) {
|
||||
break;
|
||||
}
|
||||
|
||||
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
|
||||
// We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size).
|
||||
if (params.interactive && n_remain <= 0 && params.n_predict >= 0) {
|
||||
n_remain = params.n_predict;
|
||||
is_interacting = true;
|
||||
}
|
||||
}
|
||||
if (!params.interactive && n_remain <= 0) {
|
||||
LOG("%s", common_token_to_piece(ctx, llama_vocab_eot(vocab)).c_str());
|
||||
}
|
||||
|
||||
LOG("\n");
|
||||
common_perf_print(ctx, smpl);
|
||||
|
||||
common_sampler_free(smpl);
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
}
|
||||
@@ -1,44 +0,0 @@
|
||||
# Quantizing CLIP Visual Projector
|
||||
|
||||
This is the tool for quantizing the CLIP visual projector model. Quantization reduces the precision of the model's weights, which can significantly decrease the model size and improve inference speed, often with minimal impact on performance.
|
||||
|
||||
## Usage
|
||||
|
||||
To quantize a CLIP visual projector model, use the following command:
|
||||
|
||||
```sh
|
||||
./bin/llama-llava-clip-quantize-cli /path/to/ggml-model-f32.gguf /path/to/ggml-model-quantized.gguf <type>
|
||||
```
|
||||
|
||||
After the quantization, the visual projector can be used freely with the existing LLAVA cli (LLAVA, Qwen2VL, etc).
|
||||
|
||||
### Arguments
|
||||
|
||||
- `/path/to/ggml-model-f32.gguf`: The path to the input model file in FP32 or FP16 format.
|
||||
- `/path/to/ggml-model-quantized.gguf`: The path where the quantized model will be saved.
|
||||
- `<type>`: The quantization type to apply. This should be an integer corresponding to one of the quantization types defined in the `enum ggml_type`.
|
||||
|
||||
### Quantization Types
|
||||
|
||||
The following quantization types are supported, based on the `enum ggml_type` definition:
|
||||
|
||||
- `2` - `q4_0`: 4-bit quantization with a single scale value.
|
||||
- `3` - `q4_1`: 4-bit quantization with a separate scale value for each block.
|
||||
- `6` - `q5_0`: 5-bit quantization with a single scale value.
|
||||
- `7` - `q5_1`: 5-bit quantization with a separate scale value for each block.
|
||||
- `8` - `q8_0`: 8-bit quantization with a single scale value.
|
||||
|
||||
### Example
|
||||
|
||||
To quantize a model using the `q4_0` quantization type, you would run:
|
||||
|
||||
```sh
|
||||
./bin/llama-llava-clip-quantize-cli /path/to/ggml-model-f32.gguf /path/to/ggml-model-quantized.gguf 2
|
||||
```
|
||||
|
||||
This command will generate a quantized model at `/path/to/ggml-model-quantized.gguf` using the `q4_0` quantization method.
|
||||
|
||||
## Notes
|
||||
|
||||
- Quantization can lead to a loss in model accuracy, depending on the chosen quantization type. It is recommended to evaluate the quantized model's performance on your specific task to ensure it meets your requirements.
|
||||
- The quantized model will typically be smaller in size and faster to run, making it more suitable for deployment in resource-constrained environments.
|
||||
@@ -1,53 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
model_dir="/Users/cxt/model/llm/mobileVLM/MobileVLM-1.7B_processed"
|
||||
projector_name="mmproj-model-f16.gguf"
|
||||
llama_name="ggml-model-q4_k.gguf"
|
||||
img_dir="/Users/cxt/model/llm"
|
||||
img_name="demo.jpg"
|
||||
prompt="A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWho is the author of this book? \nAnswer the question using a single word or phrase. ASSISTANT:"
|
||||
# img_name="cat.jpeg"
|
||||
# prompt="A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat is in the image? ASSISTANT:"
|
||||
|
||||
program_dir="build_64/bin"
|
||||
binName="llama-mtmd-cli"
|
||||
n_threads=4
|
||||
|
||||
|
||||
deviceDir="/data/local/tmp"
|
||||
saveDir="output"
|
||||
if [ ! -d ${saveDir} ]; then
|
||||
mkdir ${saveDir}
|
||||
fi
|
||||
|
||||
|
||||
function android_run() {
|
||||
# # copy resource into device
|
||||
# adb push ${model_dir}/${projector_name} ${deviceDir}/${projector_name}
|
||||
# adb push ${model_dir}/${llama_name} ${deviceDir}/${llama_name}
|
||||
adb push ${img_dir}/${img_name} ${deviceDir}/${img_name}
|
||||
# copy program into device
|
||||
adb push ${program_dir}/${binName} ${deviceDir}/${binName}
|
||||
adb shell "chmod 0777 ${deviceDir}/${binName}"
|
||||
|
||||
# run
|
||||
adb shell "echo cd ${deviceDir} ${deviceDir}/${binName} \
|
||||
-m ${deviceDir}/${llama_name} \
|
||||
--mmproj ${deviceDir}/${projector_name} \
|
||||
-t ${n_threads} \
|
||||
--image ${deviceDir}/${img_name} \
|
||||
-p \"${prompt}\" \
|
||||
> ${deviceDir}/${modelName}_${projector_name}_${n_threads}_${img_name}.txt"
|
||||
adb shell "cd ${deviceDir}; pwd; ${deviceDir}/${binName} \
|
||||
-m ${deviceDir}/${llama_name} \
|
||||
--mmproj ${deviceDir}/${projector_name} \
|
||||
-t ${n_threads} \
|
||||
--image ${deviceDir}/${img_name} \
|
||||
-p \"${prompt}\" \
|
||||
>> ${deviceDir}/${modelName}_${projector_name}_${n_threads}_${img_name}.txt 2>&1"
|
||||
adb pull ${deviceDir}/${modelName}_${projector_name}_${n_threads}_${img_name}.txt ${saveDir}
|
||||
}
|
||||
|
||||
android_run
|
||||
|
||||
echo "android_run is Done!"
|
||||
@@ -1,8 +0,0 @@
|
||||
#!/bin/bash
|
||||
cmake ../../../../ \
|
||||
-DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DANDROID_ABI="arm64-v8a" \
|
||||
-DANDROID_PLATFORM=android-23 $1
|
||||
|
||||
make -j4
|
||||
@@ -1,59 +0,0 @@
|
||||
#include "arg.h"
|
||||
#include "base64.hpp"
|
||||
#include "log.h"
|
||||
#include "common.h"
|
||||
#include "sampling.h"
|
||||
#include "clip.h"
|
||||
#include "llava.h"
|
||||
#include "llama.h"
|
||||
#include "ggml.h"
|
||||
|
||||
static void print_usage(int argc, char ** argv) {
|
||||
(void) argc;
|
||||
|
||||
fprintf(stderr, "usage: %s /path/to/ggml-model-f32.gguf /path/to/ggml-model-quantized.gguf type\n", argv[0]);
|
||||
fprintf(stderr, " type = 2 - q4_0\n");
|
||||
fprintf(stderr, " type = 3 - q4_1\n");
|
||||
fprintf(stderr, " type = 6 - q5_0\n");
|
||||
fprintf(stderr, " type = 7 - q5_1\n");
|
||||
fprintf(stderr, " type = 8 - q8_0\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
if (argc != 4) {
|
||||
print_usage(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const std::string fname_inp = argv[1];
|
||||
const std::string fname_out = argv[2];
|
||||
|
||||
const int itype = atoi(argv[3]);
|
||||
|
||||
const int64_t t_main_start_us = ggml_time_us();
|
||||
|
||||
int64_t t_quantize_us = 0;
|
||||
|
||||
// load the model
|
||||
{
|
||||
const int64_t t_start_us = ggml_time_us();
|
||||
|
||||
if (!clip_model_quantize(fname_inp.c_str(), fname_out.c_str(), itype)) {
|
||||
fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
|
||||
return 1;
|
||||
}
|
||||
|
||||
t_quantize_us = ggml_time_us() - t_start_us;
|
||||
}
|
||||
|
||||
// report timing
|
||||
{
|
||||
const int64_t t_main_end_us = ggml_time_us();
|
||||
|
||||
printf("\n");
|
||||
printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us / 1000.0f);
|
||||
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us) / 1000.0f);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
@@ -1,135 +0,0 @@
|
||||
#ifndef CLIP_H
|
||||
#define CLIP_H
|
||||
|
||||
#include "ggml.h"
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef LLAMA_SHARED
|
||||
# if defined(_WIN32) && !defined(__MINGW32__)
|
||||
# ifdef LLAMA_BUILD
|
||||
# define CLIP_API __declspec(dllexport)
|
||||
# else
|
||||
# define CLIP_API __declspec(dllimport)
|
||||
# endif
|
||||
# else
|
||||
# define CLIP_API __attribute__ ((visibility ("default")))
|
||||
# endif
|
||||
#else
|
||||
# define CLIP_API
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct clip_ctx;
|
||||
|
||||
struct clip_image_size {
|
||||
int width;
|
||||
int height;
|
||||
};
|
||||
|
||||
struct clip_image_f32;
|
||||
struct clip_image_u8_batch;
|
||||
struct clip_image_f32_batch;
|
||||
|
||||
struct clip_context_params {
|
||||
bool use_gpu;
|
||||
enum ggml_log_level verbosity;
|
||||
};
|
||||
|
||||
// deprecated, use clip_init
|
||||
CLIP_API struct clip_ctx * clip_model_load(const char * fname, int verbosity);
|
||||
|
||||
CLIP_API struct clip_ctx * clip_init(const char * fname, struct clip_context_params ctx_params);
|
||||
|
||||
CLIP_API void clip_free(struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API size_t clip_embd_nbytes(const struct clip_ctx * ctx);
|
||||
CLIP_API size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h);
|
||||
|
||||
CLIP_API int32_t clip_get_image_size (const struct clip_ctx * ctx);
|
||||
CLIP_API int32_t clip_get_patch_size (const struct clip_ctx * ctx);
|
||||
CLIP_API int32_t clip_get_hidden_size(const struct clip_ctx * ctx);
|
||||
|
||||
// TODO: should be enum, not string
|
||||
CLIP_API const char * clip_patch_merge_type(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API const int32_t * clip_image_grid(const struct clip_ctx * ctx);
|
||||
CLIP_API size_t get_clip_image_grid_size(const struct clip_ctx * ctx);
|
||||
|
||||
GGML_DEPRECATED(CLIP_API int clip_n_patches(const struct clip_ctx * ctx),
|
||||
"use clip_n_output_tokens instead");
|
||||
GGML_DEPRECATED(CLIP_API int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * img),
|
||||
"use clip_n_output_tokens instead");
|
||||
|
||||
CLIP_API int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img);
|
||||
|
||||
// for M-RoPE, this will be the number of token positions in X and Y directions
|
||||
// for other models, X will be the total number of tokens and Y will be 1
|
||||
CLIP_API int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img);
|
||||
CLIP_API int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img);
|
||||
|
||||
// this should be equal to the embedding dimension of the text model
|
||||
CLIP_API int clip_n_mmproj_embd(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip);
|
||||
CLIP_API void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size);
|
||||
CLIP_API struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip);
|
||||
|
||||
CLIP_API struct clip_image_size * clip_image_size_init();
|
||||
CLIP_API struct clip_image_u8 * clip_image_u8_init ();
|
||||
CLIP_API struct clip_image_f32 * clip_image_f32_init();
|
||||
CLIP_API struct clip_image_f32_batch * clip_image_f32_batch_init(); // only used by libllava
|
||||
|
||||
// nx, ny are the output image dimensions
|
||||
CLIP_API unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny);
|
||||
|
||||
CLIP_API void clip_image_size_free (struct clip_image_size * img_size);
|
||||
CLIP_API void clip_image_u8_free (struct clip_image_u8 * img);
|
||||
CLIP_API void clip_image_f32_free(struct clip_image_f32 * img);
|
||||
CLIP_API void clip_image_u8_batch_free (struct clip_image_u8_batch * batch);
|
||||
CLIP_API void clip_image_f32_batch_free(struct clip_image_f32_batch * batch);
|
||||
|
||||
// use for accessing underlay data of clip_image_f32_batch
|
||||
CLIP_API size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch); // equivalent to batch->size()
|
||||
CLIP_API size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->nx
|
||||
CLIP_API size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->ny
|
||||
CLIP_API struct clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->data
|
||||
|
||||
/**
|
||||
* Build image from pixels decoded by other libraries instead of stb_image.h for better performance.
|
||||
* The memory layout is RGBRGBRGB..., input buffer length must be 3*nx*ny bytes
|
||||
*/
|
||||
CLIP_API void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, struct clip_image_u8 * img);
|
||||
|
||||
CLIP_API bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img);
|
||||
|
||||
/** interpret bytes as an image file with length bytes_length, and use the result to populate img */
|
||||
CLIP_API bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img);
|
||||
|
||||
/** preprocess img and store the result in res_imgs, pad_to_square may be overridden to false depending on model configuration */
|
||||
CLIP_API bool clip_image_preprocess(struct clip_ctx * ctx, const struct clip_image_u8 * img, struct clip_image_f32_batch * res_imgs );
|
||||
|
||||
CLIP_API struct ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API bool clip_image_encode (struct clip_ctx * ctx, int n_threads, struct clip_image_f32 * img, float * vec);
|
||||
CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, const struct clip_image_f32_batch * imgs, float * vec);
|
||||
|
||||
CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out, int itype);
|
||||
|
||||
CLIP_API int clip_is_minicpmv(const struct clip_ctx * ctx);
|
||||
CLIP_API bool clip_is_glm(const struct clip_ctx * ctx);
|
||||
CLIP_API bool clip_is_qwen2vl(const struct clip_ctx * ctx);
|
||||
CLIP_API bool clip_is_llava(const struct clip_ctx * ctx);
|
||||
CLIP_API bool clip_is_gemma3(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // CLIP_H
|
||||
@@ -1,586 +0,0 @@
|
||||
#include "clip.h"
|
||||
#include "llava.h"
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cerrno>
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <limits>
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
|
||||
#if defined(LLAVA_LOG_OFF)
|
||||
# define LOG_INF(...)
|
||||
# define LOG_WRN(...)
|
||||
# define LOG_ERR(...)
|
||||
# define LOG_DBG(...)
|
||||
#else // defined(LLAVA_LOG_OFF)
|
||||
# define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
|
||||
# define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
|
||||
# define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
|
||||
# define LOG_DBG(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
|
||||
#endif // defined(LLAVA_LOG_OFF)
|
||||
|
||||
// RGB uint8 image
|
||||
struct clip_image_u8 {
|
||||
int nx;
|
||||
int ny;
|
||||
|
||||
std::vector<uint8_t> buf;
|
||||
};
|
||||
|
||||
// RGB float32 image (NHWC)
|
||||
// Memory layout: RGBRGBRGB...
|
||||
struct clip_image_f32 {
|
||||
int nx;
|
||||
int ny;
|
||||
|
||||
std::vector<float> buf;
|
||||
};
|
||||
|
||||
struct clip_image_grid_shape {
|
||||
int first;
|
||||
int second;
|
||||
};
|
||||
|
||||
// convenience cpp wrapper
|
||||
struct clip_image_f32_batch_deleter {
|
||||
void operator()(clip_image_f32_batch * val) { clip_image_f32_batch_free(val); }
|
||||
};
|
||||
typedef std::unique_ptr<clip_image_f32_batch, clip_image_f32_batch_deleter> clip_image_f32_batch_ptr;
|
||||
|
||||
struct clip_image_size_deleter {
|
||||
void operator()(clip_image_f32_batch * val) { clip_image_f32_batch_free(val); }
|
||||
};
|
||||
typedef std::unique_ptr<clip_image_size, clip_image_size_deleter> clip_image_size_ptr;
|
||||
|
||||
/**
|
||||
* Selects the best resolution from a list of possible resolutions based on the original size.
|
||||
*
|
||||
* @param original_size The original size of the image in the format (width, height).
|
||||
* @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
|
||||
* @return The best fit resolution in the format (width, height).
|
||||
*/
|
||||
static std::pair<int, int> select_best_resolution(const std::pair<int, int>& original_size, const std::vector<std::pair<int, int>>& possible_resolutions) {
|
||||
int original_width = original_size.first;
|
||||
int original_height = original_size.second;
|
||||
|
||||
std::pair<int, int> best_fit;
|
||||
int max_effective_resolution = 0;
|
||||
int min_wasted_resolution = std::numeric_limits<int>::max();
|
||||
|
||||
for (const auto& resolution : possible_resolutions) {
|
||||
int width = resolution.first;
|
||||
int height = resolution.second;
|
||||
float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
|
||||
int downscaled_width = static_cast<int>(original_width * scale);
|
||||
int downscaled_height = static_cast<int>(original_height * scale);
|
||||
int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
|
||||
int wasted_resolution = (width * height) - effective_resolution;
|
||||
// LOG_DBG("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
|
||||
if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
|
||||
max_effective_resolution = effective_resolution;
|
||||
min_wasted_resolution = wasted_resolution;
|
||||
best_fit = resolution;
|
||||
}
|
||||
}
|
||||
|
||||
return best_fit;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Get the anyres image grid shape object
|
||||
*
|
||||
* @param image_size
|
||||
* @param grid_pinpoints
|
||||
* @param image_patch_size
|
||||
* @return <int, int>
|
||||
*/
|
||||
static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<int, int> & image_size, const std::vector<std::pair<int, int>> & grid_pinpoints, int image_patch_size) {
|
||||
/**
|
||||
Conversion from gguf flat array to vector:
|
||||
std::vector<std::pair<int, int>> possible_resolutions;
|
||||
for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
|
||||
possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
|
||||
}
|
||||
*/
|
||||
auto best_resolution = select_best_resolution(image_size, grid_pinpoints);
|
||||
return {best_resolution.first / image_patch_size, best_resolution.second / image_patch_size};
|
||||
}
|
||||
|
||||
// Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out)
|
||||
static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out, clip_image_f32 * img_input) {
|
||||
struct {
|
||||
struct ggml_context * ctx;
|
||||
} model;
|
||||
|
||||
const int32_t image_size = clip_get_image_size(ctx_clip);
|
||||
const int32_t patch_size = clip_get_patch_size(ctx_clip);
|
||||
|
||||
int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches)
|
||||
|
||||
int num_patches_width = grid_shape.first; // grid 1-4
|
||||
int num_patches_height = grid_shape.second; // grid 1-4
|
||||
|
||||
const size_t num_images = num_patches_width * num_patches_height + 1;
|
||||
|
||||
// TODO: size calculation is not calculated - it's only tens of MB
|
||||
size_t ctx_size = 0;
|
||||
|
||||
{
|
||||
ctx_size += clip_embd_nbytes(ctx_clip) * num_images * 8; // image_features
|
||||
ctx_size += 1024*1024 * ggml_type_size(GGML_TYPE_F32);
|
||||
}
|
||||
|
||||
struct ggml_init_params params {
|
||||
/*.mem_size =*/ ctx_size,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ false, // NOTE: this should be false when using the legacy API
|
||||
};
|
||||
|
||||
// Python reference code for full unpad:
|
||||
/*
|
||||
base_image_feature = image_feature[0]
|
||||
image_feature = image_feature[1:]
|
||||
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
|
||||
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
|
||||
image_feature = unpad_image(image_feature, image_sizes[image_idx])
|
||||
image_feature = torch.cat((
|
||||
image_feature,
|
||||
self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1)
|
||||
), dim=-1)
|
||||
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
|
||||
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
|
||||
*/
|
||||
// We now have two options: unpad or no unpad. Unpad removes tokens for faster llm eval.
|
||||
// In terms of result quality it appears to make no difference, so we'll start with the easier approach given 5D tensors are not supported in ggml yet.
|
||||
// Without unpad we have to split the sub-image embeddings into patches of 24 features each and permute them.
|
||||
// Once all images are processed to prepended the base_image_features without any changes.
|
||||
|
||||
// Pytorch reference simplified, modified for ggml compatibility - confirmed identical output in python (for a 2x2 grid image (676x676 scaling))
|
||||
/*
|
||||
image_feature = image_feature.view(2, 2, 24, 24, 4096)
|
||||
image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
|
||||
image_feature = image_feature.view(2, 24, 2, 24, 4096)
|
||||
image_feature = image_feature.flatten(0, 3)
|
||||
|
||||
// Reshape to 4D tensor by merging the last two dimensions
|
||||
image_feature = image_feature.view(2, 2, 24, 24*4096)
|
||||
image_feature = image_feature.permute(0, 2, 1, 3).contiguous()
|
||||
image_feature = image_feature.view(-1, 4096)
|
||||
*/
|
||||
|
||||
model.ctx = ggml_init(params);
|
||||
|
||||
struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_output_tokens(ctx_clip, img_input), num_images - 1); // example: 4096 x 576 x 4
|
||||
// ggml_tensor_printf(image_features,"image_features",__LINE__,false,false);
|
||||
// fill it with the image embeddings, ignoring the base
|
||||
for (size_t i = 1; i < num_images; i++) {
|
||||
size_t offset = (i-1) * clip_embd_nbytes(ctx_clip);
|
||||
memcpy((uint8_t *)(image_features->data) + offset, image_embd_v[i], clip_embd_nbytes(ctx_clip));
|
||||
}
|
||||
|
||||
struct ggml_cgraph * gf = ggml_new_graph(model.ctx);
|
||||
size_t size_ele = ggml_type_size(GGML_TYPE_F32);
|
||||
|
||||
struct ggml_tensor *image_features_patchview = ggml_view_4d(model.ctx, image_features,
|
||||
num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
|
||||
num_patches_per_side,
|
||||
num_patches_width,
|
||||
num_patches_height,
|
||||
size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
|
||||
size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side,
|
||||
size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side * num_patches_width, 0);
|
||||
// ggml_tensor_printf(image_features_patchview,"image_features_patchview",__LINE__,false,false);
|
||||
struct ggml_tensor *permuted_cont = ggml_cont(model.ctx, ggml_permute(model.ctx, image_features_patchview, 0, 2, 1, 3));
|
||||
/**
|
||||
At the end of each row we have to add the row_end embeddings, which are the same as the newline embeddings
|
||||
image_feature = torch.cat((
|
||||
image_feature,
|
||||
self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
|
||||
), dim=-1)
|
||||
*
|
||||
*/
|
||||
|
||||
// ggml_tensor_printf(permuted_cont,"permuted_cont",__LINE__,false,false);
|
||||
struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side, size_ele * clip_n_mmproj_embd(ctx_clip), 0);
|
||||
// ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
|
||||
ggml_build_forward_expand(gf, flatten);
|
||||
ggml_graph_compute_with_ctx(model.ctx, gf, 1);
|
||||
struct ggml_tensor* result = ggml_graph_node(gf, -1);
|
||||
|
||||
memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
|
||||
// append without newline tokens (default behavior in llava_arch when not using unpad ):
|
||||
memcpy(image_embd_out + clip_n_output_tokens(ctx_clip, img_input) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches
|
||||
*n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_output_tokens(ctx_clip, img_input));
|
||||
|
||||
// Debug: Test single segments
|
||||
// Current findings: sending base image, sending a segment embedding all works similar to python
|
||||
// However, permuted embeddings do not work yet (stride issue?)
|
||||
// memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as context
|
||||
// memcpy(image_embd_out, (float*)prepared_cont->data, clip_embd_nbytes(ctx_clip)); // main image as context
|
||||
// *n_img_pos_out=576;
|
||||
|
||||
ggml_free(model.ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
static clip_image_f32 * reshape_by_patch(clip_image_f32 * image, int patch_size) {
|
||||
int width = image->nx;
|
||||
int height = image->ny;
|
||||
int num_patches = (height / patch_size) * (width / patch_size);
|
||||
clip_image_f32 * patch = clip_image_f32_init();
|
||||
patch->nx = patch_size * num_patches;
|
||||
patch->ny = patch_size;
|
||||
patch->buf.resize(3 * patch->nx * patch->ny);
|
||||
|
||||
int patch_index = 0;
|
||||
|
||||
for (int i = 0; i < height; i += patch_size) {
|
||||
for (int j = 0; j < width; j += patch_size) {
|
||||
for (int pi = 0; pi < patch_size; ++pi) {
|
||||
for (int pj = 0; pj < patch_size; ++pj) {
|
||||
int input_index = ((i + pi) * width + (j + pj)) * 3;
|
||||
int output_index = (pi * patch_size * num_patches + patch_index * patch_size + pj) * 3;
|
||||
patch->buf[output_index] = image->buf[input_index];
|
||||
patch->buf[output_index+1] = image->buf[input_index+1];
|
||||
patch->buf[output_index+2] = image->buf[input_index+2];
|
||||
}
|
||||
}
|
||||
patch_index++;
|
||||
}
|
||||
}
|
||||
return patch;
|
||||
}
|
||||
|
||||
static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
|
||||
// std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
|
||||
clip_image_f32_batch_ptr img_res_v(clip_image_f32_batch_init());
|
||||
if (!clip_image_preprocess(ctx_clip, img, img_res_v.get())) {
|
||||
LOG_ERR("%s: unable to preprocess image\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
const int64_t t_img_enc_start_us = ggml_time_us();
|
||||
|
||||
const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);
|
||||
|
||||
const size_t n_imgs = clip_image_f32_batch_n_images(img_res_v.get());
|
||||
|
||||
if (clip_is_minicpmv(ctx_clip) || clip_is_qwen2vl(ctx_clip)) {
|
||||
std::vector<float *> image_embd_v;
|
||||
image_embd_v.resize(n_imgs);
|
||||
clip_image_size load_image_size;
|
||||
|
||||
for (size_t i = 0; i < n_imgs; i++) {
|
||||
const int64_t t_img_enc_step_start_us = ggml_time_us();
|
||||
int nx = clip_image_f32_batch_nx(img_res_v.get(), i);
|
||||
int ny = clip_image_f32_batch_ny(img_res_v.get(), i);
|
||||
image_embd_v[i] = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, nx, ny));
|
||||
int patch_size = 14;
|
||||
load_image_size.width = nx;
|
||||
load_image_size.height = ny;
|
||||
clip_add_load_image_size(ctx_clip, &load_image_size);
|
||||
|
||||
bool encoded = false;
|
||||
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), i);
|
||||
if (clip_is_qwen2vl(ctx_clip)) {
|
||||
encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd_v[i]);
|
||||
}
|
||||
else {
|
||||
encoded = clip_image_encode(ctx_clip, n_threads, reshape_by_patch(img_res, patch_size), image_embd_v[i]);
|
||||
}
|
||||
|
||||
if (!encoded) {
|
||||
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) n_imgs);
|
||||
return false;
|
||||
}
|
||||
const int64_t t_img_enc_steop_batch_us = ggml_time_us();
|
||||
LOG_INF("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)n_imgs, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
|
||||
}
|
||||
const int64_t t_img_enc_batch_us = ggml_time_us();
|
||||
LOG_INF("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)n_imgs, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
|
||||
|
||||
int n_img_pos_out = 0;
|
||||
for (size_t i = 0; i < image_embd_v.size(); i++) {
|
||||
int nx = clip_image_f32_batch_nx(img_res_v.get(), i);
|
||||
int ny = clip_image_f32_batch_ny(img_res_v.get(), i);
|
||||
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), i);
|
||||
std::memcpy(
|
||||
image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip),
|
||||
image_embd_v[i],
|
||||
clip_embd_nbytes_by_img(ctx_clip, nx, ny));
|
||||
n_img_pos_out += clip_n_output_tokens(ctx_clip, img_res);
|
||||
}
|
||||
*n_img_pos = n_img_pos_out;
|
||||
for (size_t i = 0; i < image_embd_v.size(); i++) {
|
||||
free(image_embd_v[i]);
|
||||
}
|
||||
image_embd_v.clear();
|
||||
load_image_size.width = img->nx;
|
||||
load_image_size.height = img->ny;
|
||||
clip_add_load_image_size(ctx_clip, &load_image_size);
|
||||
LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size.width, load_image_size.height);
|
||||
}
|
||||
else if (clip_is_glm(ctx_clip)){
|
||||
struct clip_image_size * load_image_size = clip_image_size_init();
|
||||
load_image_size->width = clip_image_f32_batch_nx(img_res_v.get(), 0);
|
||||
load_image_size->height = clip_image_f32_batch_ny(img_res_v.get(), 0);
|
||||
clip_add_load_image_size(ctx_clip, load_image_size);
|
||||
|
||||
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), 0);
|
||||
bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd);
|
||||
int pos = int(load_image_size->width/clip_get_patch_size(ctx_clip)/2);
|
||||
*n_img_pos = (pos * pos + 2);
|
||||
if (!encoded){
|
||||
LOG_ERR("Unable to encode image \n");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
|
||||
// flat / default llava-1.5 type embedding
|
||||
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), 0);
|
||||
*n_img_pos = clip_n_output_tokens(ctx_clip, img_res);
|
||||
bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd); // image_embd shape is 576 x 4096
|
||||
if (!encoded) {
|
||||
LOG_ERR("Unable to encode image\n");
|
||||
|
||||
return false;
|
||||
}
|
||||
}
|
||||
else {
|
||||
// spatial_unpad llava-1.6 type embedding
|
||||
// TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
|
||||
std::vector<float *> image_embd_v;
|
||||
image_embd_v.resize(n_imgs);
|
||||
for (size_t i = 0; i < n_imgs; i++) {
|
||||
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), i);
|
||||
image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184
|
||||
const bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
|
||||
if (!encoded) {
|
||||
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) n_imgs);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
const int64_t t_img_enc_batch_us = ggml_time_us();
|
||||
LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)n_imgs, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
|
||||
|
||||
const int32_t * image_grid = clip_image_grid(ctx_clip);
|
||||
const size_t num_gridpoints = get_clip_image_grid_size(ctx_clip);
|
||||
|
||||
std::vector<std::pair<int, int>> grid_pinpoints;
|
||||
for (size_t i = 0; i < num_gridpoints; i += 2) {
|
||||
grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
|
||||
}
|
||||
|
||||
const int32_t image_size = clip_get_image_size(ctx_clip);
|
||||
|
||||
struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);
|
||||
|
||||
int n_img_pos_out;
|
||||
clip_image_f32 * img_input = clip_image_f32_get_img(img_res_v.get(), 0);
|
||||
clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out, img_input);
|
||||
*n_img_pos = n_img_pos_out;
|
||||
|
||||
for (size_t i = 0; i < image_embd_v.size(); i++) {
|
||||
free(image_embd_v[i]);
|
||||
}
|
||||
image_embd_v.clear();
|
||||
|
||||
// debug image/segment/normalization content:
|
||||
// clip_image_u8 * tmp = clip_image_u8_init();
|
||||
// clip_image_convert_f32_to_u8(*image_feature, *tmp);
|
||||
// clip_image_save_to_bmp(*tmp, "image_feature.bmp");
|
||||
}
|
||||
|
||||
LOG_INF("%s: image embedding created: %d tokens\n", __func__, *n_img_pos);
|
||||
|
||||
const int64_t t_img_enc_end_us = ggml_time_us();
|
||||
float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;
|
||||
|
||||
LOG_INF("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip) {
|
||||
// make sure that the correct mmproj was used, i.e., compare apples to apples
|
||||
int n_llama_embd = llama_model_n_embd(llama_get_model(ctx_llama));
|
||||
auto n_image_embd = clip_n_mmproj_embd(ctx_clip);
|
||||
if (n_image_embd != n_llama_embd) {
|
||||
LOG_ERR("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
|
||||
// Granite vision uses up to 10 patches + base patch
|
||||
int num_max_patches = 11;
|
||||
if (clip_is_minicpmv(ctx_clip)) {
|
||||
num_max_patches = 10;
|
||||
}
|
||||
if (clip_is_glm(ctx_clip)) {
|
||||
num_max_patches = 1;
|
||||
}
|
||||
float * image_embd;
|
||||
if (clip_is_qwen2vl(ctx_clip)) {
|
||||
// qwen2vl don't split image into chunks, so `num_max_patches` is not needed.
|
||||
image_embd = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, img->nx, img->ny));
|
||||
} else {
|
||||
image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*num_max_patches); // TODO: base on gridsize/llava model
|
||||
}
|
||||
if (!image_embd) {
|
||||
LOG_ERR("Unable to allocate memory for image embeddings\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
int n_img_pos;
|
||||
if (!encode_image_with_clip(ctx_clip, n_threads, img, image_embd, &n_img_pos)) {
|
||||
LOG_ERR("%s: cannot encode image, aborting\n", __func__);
|
||||
free(image_embd);
|
||||
return false;
|
||||
}
|
||||
*image_embd_out = image_embd;
|
||||
*n_img_pos_out = n_img_pos;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
struct llava_embd_batch {
|
||||
std::vector<llama_pos> pos;
|
||||
std::vector<int32_t> n_seq_id;
|
||||
std::vector<llama_seq_id> seq_id_0;
|
||||
std::vector<llama_seq_id *> seq_ids;
|
||||
std::vector<int8_t> logits;
|
||||
llama_batch batch;
|
||||
llava_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
|
||||
pos .resize(n_tokens);
|
||||
n_seq_id.resize(n_tokens);
|
||||
seq_ids .resize(n_tokens + 1);
|
||||
logits .resize(n_tokens);
|
||||
seq_id_0.resize(1);
|
||||
seq_id_0[0] = seq_id;
|
||||
seq_ids [n_tokens] = nullptr;
|
||||
batch = {
|
||||
/*n_tokens =*/ n_tokens,
|
||||
/*tokens =*/ nullptr,
|
||||
/*embd =*/ embd,
|
||||
/*pos =*/ pos.data(),
|
||||
/*n_seq_id =*/ n_seq_id.data(),
|
||||
/*seq_id =*/ seq_ids.data(),
|
||||
/*logits =*/ logits.data(),
|
||||
};
|
||||
for (int i = 0; i < n_tokens; i++) {
|
||||
batch.pos [i] = pos_0 + i;
|
||||
batch.n_seq_id[i] = 1;
|
||||
batch.seq_id [i] = seq_id_0.data();
|
||||
batch.logits [i] = false;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) {
|
||||
int n_embd = llama_model_n_embd(llama_get_model(ctx_llama));
|
||||
|
||||
for (int i = 0; i < image_embed->n_image_pos; i += n_batch) {
|
||||
int n_eval = image_embed->n_image_pos - i;
|
||||
if (n_eval > n_batch) {
|
||||
n_eval = n_batch;
|
||||
}
|
||||
float * embd = image_embed->embed+i*n_embd;
|
||||
llava_embd_batch llava_batch = llava_embd_batch(embd, n_eval, *n_past, 0);
|
||||
if (llama_decode(ctx_llama, llava_batch.batch)) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
*n_past += n_eval;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) {
|
||||
clip_image_u8 * img = clip_image_u8_init();
|
||||
if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
|
||||
clip_image_u8_free(img);
|
||||
LOG_ERR("%s: can't load image from bytes, is it a valid image?", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
float* image_embed = NULL;
|
||||
int n_image_pos = 0;
|
||||
bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, img, &image_embed, &n_image_pos);
|
||||
if (!image_embed_result) {
|
||||
clip_image_u8_free(img);
|
||||
LOG_ERR("%s: couldn't embed the image\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
clip_image_u8_free(img);
|
||||
auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed));
|
||||
result->embed = image_embed;
|
||||
result->n_image_pos = n_image_pos;
|
||||
return result;
|
||||
}
|
||||
|
||||
static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) {
|
||||
auto file = fopen(path, "rb");
|
||||
if (file == NULL) {
|
||||
LOG_ERR("%s: can't read file %s\n", __func__, path);
|
||||
return false;
|
||||
}
|
||||
|
||||
fseek(file, 0, SEEK_END);
|
||||
auto fileSize = ftell(file);
|
||||
fseek(file, 0, SEEK_SET);
|
||||
|
||||
auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data
|
||||
if (buffer == NULL) {
|
||||
LOG_ERR("%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path);
|
||||
perror("Memory allocation error");
|
||||
fclose(file);
|
||||
return false;
|
||||
}
|
||||
errno = 0;
|
||||
size_t ret = fread(buffer, 1, fileSize, file); // Read the file into the buffer
|
||||
if (ferror(file)) {
|
||||
LOG_ERR("read error: %s", strerror(errno));
|
||||
free(buffer);
|
||||
fclose(file);
|
||||
return false;
|
||||
}
|
||||
if (ret != (size_t) fileSize) {
|
||||
LOG_ERR("unexpectedly reached end of file");
|
||||
free(buffer);
|
||||
fclose(file);
|
||||
return false;
|
||||
}
|
||||
fclose(file); // Close the file
|
||||
|
||||
*bytesOut = buffer;
|
||||
*sizeOut = fileSize;
|
||||
return true;
|
||||
}
|
||||
|
||||
struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) {
|
||||
unsigned char* image_bytes;
|
||||
long image_bytes_length;
|
||||
auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length);
|
||||
if (!loaded) {
|
||||
LOG_ERR("%s: failed to load %s\n", __func__, image_path);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
llava_image_embed *embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, image_bytes, image_bytes_length);
|
||||
free(image_bytes);
|
||||
|
||||
return embed;
|
||||
}
|
||||
|
||||
void llava_image_embed_free(struct llava_image_embed * embed) {
|
||||
free(embed->embed);
|
||||
free(embed);
|
||||
}
|
||||
@@ -1,49 +0,0 @@
|
||||
#ifndef LLAVA_H
|
||||
#define LLAVA_H
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
#ifdef LLAMA_SHARED
|
||||
# if defined(_WIN32) && !defined(__MINGW32__)
|
||||
# ifdef LLAMA_BUILD
|
||||
# define LLAVA_API __declspec(dllexport)
|
||||
# else
|
||||
# define LLAVA_API __declspec(dllimport)
|
||||
# endif
|
||||
# else
|
||||
# define LLAVA_API __attribute__ ((visibility ("default")))
|
||||
# endif
|
||||
#else
|
||||
# define LLAVA_API
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct clip_ctx;
|
||||
struct llava_image_embed {
|
||||
float * embed;
|
||||
int n_image_pos;
|
||||
};
|
||||
|
||||
/** sanity check for clip <-> llava embed size match */
|
||||
LLAVA_API bool llava_validate_embed_size(const struct llama_context * ctx_llama, const struct clip_ctx * ctx_clip);
|
||||
|
||||
LLAVA_API bool llava_image_embed_make_with_clip_img(struct clip_ctx * ctx_clip, int n_threads, const struct clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out);
|
||||
|
||||
/** build an image embed from image file bytes */
|
||||
LLAVA_API struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length);
|
||||
/** build an image embed from a path to an image filename */
|
||||
LLAVA_API struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path);
|
||||
/** free an embedding made with llava_image_embed_make_* */
|
||||
LLAVA_API void llava_image_embed_free(struct llava_image_embed * embed);
|
||||
|
||||
/** write the image represented by embed into the llama context with batch size n_batch, starting at context pos n_past. on completion, n_past points to the next position in the context after the image embed. */
|
||||
LLAVA_API bool llava_eval_image_embed(struct llama_context * ctx_llama, const struct llava_image_embed * embed, int n_batch, int * n_past);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
@@ -1,168 +0,0 @@
|
||||
#ifndef MTMD_H
|
||||
#define MTMD_H
|
||||
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "clip.h"
|
||||
|
||||
#include <vector>
|
||||
#include <cinttypes>
|
||||
#include <memory>
|
||||
|
||||
#ifdef LLAMA_SHARED
|
||||
# if defined(_WIN32) && !defined(__MINGW32__)
|
||||
# ifdef LLAMA_BUILD
|
||||
# define MTMD_API __declspec(dllexport)
|
||||
# else
|
||||
# define MTMD_API __declspec(dllimport)
|
||||
# endif
|
||||
# else
|
||||
# define MTMD_API __attribute__ ((visibility ("default")))
|
||||
# endif
|
||||
#else
|
||||
# define MTMD_API
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
||||
enum mtmd_input_chunk_type {
|
||||
MTMD_INPUT_CHUNK_TYPE_TEXT,
|
||||
MTMD_INPUT_CHUNK_TYPE_IMAGE,
|
||||
};
|
||||
|
||||
struct mtmd_context;
|
||||
struct mtmd_image_tokens;
|
||||
|
||||
// represents raw image data, layout is RGBRGBRGB...
|
||||
// length of data must be nx * ny * 3
|
||||
struct mtmd_bitmap {
|
||||
uint32_t nx;
|
||||
uint32_t ny;
|
||||
std::vector<unsigned char> data;
|
||||
std::string id; // optional user-defined id, for ex: can be set to image hash, useful for KV cache tracking
|
||||
};
|
||||
|
||||
struct mtmd_image_tokens_deleter {
|
||||
void operator()(mtmd_image_tokens * val); // forward declaration
|
||||
};
|
||||
using mtmd_image_tokens_ptr = std::unique_ptr<mtmd_image_tokens, mtmd_image_tokens_deleter>;
|
||||
|
||||
struct mtmd_input_chunk {
|
||||
mtmd_input_chunk_type type;
|
||||
std::vector<llama_token> tokens_text;
|
||||
mtmd_image_tokens_ptr tokens_image;
|
||||
};
|
||||
|
||||
using mtmd_input_chunks = std::vector<mtmd_input_chunk>;
|
||||
|
||||
struct mtmd_context_params {
|
||||
bool use_gpu = true;
|
||||
bool print_timings = true;
|
||||
int n_threads = 4;
|
||||
enum ggml_log_level verbosity = GGML_LOG_LEVEL_INFO;
|
||||
const char * image_marker = "<__image__>";
|
||||
};
|
||||
|
||||
struct mtmd_input_text {
|
||||
std::string text;
|
||||
bool add_special;
|
||||
bool parse_special;
|
||||
};
|
||||
|
||||
// initialize the mtmd context
|
||||
// return nullptr on failure
|
||||
MTMD_API mtmd_context * mtmd_init_from_file(const char * mmproj_fname,
|
||||
const llama_model * text_model,
|
||||
const mtmd_context_params ctx_params);
|
||||
|
||||
MTMD_API void mtmd_free(mtmd_context * ctx);
|
||||
|
||||
// tokenize an input text prompt and an image
|
||||
// the prompt must have the input image marker (default: "<__image__>") in it
|
||||
// the marker will be replaced with the image tokens
|
||||
// for example:
|
||||
// "here is an image: <__image__>\ndescribe it in detail."
|
||||
// this will gives 3 chunks:
|
||||
// 1. "here is an image: <start_of_image>"
|
||||
// 2. (image tokens)
|
||||
// 3. "<end_of_image>\ndescribe it in detail."
|
||||
// number of bitmaps must be equal to the number of image markers in the prompt
|
||||
// this function is thread-safe (shared ctx)
|
||||
// return values:
|
||||
// 0 on success
|
||||
// 1 on number of images not matching the number of markers
|
||||
// 2 on image preprocessing error
|
||||
MTMD_API int32_t mtmd_tokenize(mtmd_context * ctx,
|
||||
std::vector<mtmd_input_chunk> & output,
|
||||
const mtmd_input_text & text,
|
||||
const std::vector<mtmd_bitmap> & bitmaps);
|
||||
|
||||
// access mtmd_image_tokens
|
||||
MTMD_API size_t mtmd_image_tokens_get_n_tokens(const mtmd_image_tokens * image_tokens);
|
||||
MTMD_API size_t mtmd_image_tokens_get_nx(const mtmd_image_tokens * image_tokens);
|
||||
MTMD_API size_t mtmd_image_tokens_get_ny(const mtmd_image_tokens * image_tokens);
|
||||
MTMD_API std::string mtmd_image_tokens_get_id(const mtmd_image_tokens * image_tokens);
|
||||
MTMD_API llama_pos mtmd_image_tokens_get_n_pos(const mtmd_image_tokens * image_tokens); // number of temporal positions (always 1 for M-RoPE, n_tokens otherwise)
|
||||
MTMD_API void mtmd_image_tokens_free(mtmd_image_tokens * image_tokens);
|
||||
|
||||
// returns 0 on success
|
||||
MTMD_API int32_t mtmd_encode(mtmd_context * ctx,
|
||||
const mtmd_image_tokens * image_tokens);
|
||||
|
||||
// get output embeddings from the last encode pass
|
||||
MTMD_API float * mtmd_get_output_embd(mtmd_context * ctx);
|
||||
|
||||
// whether we need to set non-causal mask before llama_decode
|
||||
MTMD_API bool mtmd_decode_use_non_causal(mtmd_context * ctx);
|
||||
|
||||
// whether the current model use M-RoPE for llama_decode
|
||||
MTMD_API bool mtmd_decode_use_mrope(mtmd_context * ctx);
|
||||
|
||||
|
||||
|
||||
//
|
||||
// helper functions (can be implemented based on other functions)
|
||||
//
|
||||
|
||||
// helper to count the total number of tokens from a list of chunks, useful to keep track of KV cache
|
||||
MTMD_API size_t mtmd_helper_get_n_tokens(mtmd_input_chunks & chunks);
|
||||
|
||||
// helper to count the total position of tokens from a list of chunks, useful to keep track of n_past
|
||||
MTMD_API llama_pos mtmd_helper_get_n_pos(mtmd_input_chunks & chunks);
|
||||
|
||||
// helper function that automatically:
|
||||
// 1. run llama_decode() on text chunks
|
||||
// 2. run mtmd_encode() on image chunks, then mtmd_get_output_embd() and then llama_decode()
|
||||
// if any of the mtmd_encode() or llama_decode() calls return non-zero, stop and forward the error
|
||||
// otherwise, returns 0 on success
|
||||
MTMD_API int32_t mtmd_helper_eval(mtmd_context * ctx,
|
||||
llama_context * lctx,
|
||||
mtmd_input_chunks & chunks,
|
||||
llama_pos pos0,
|
||||
llama_seq_id seq_id,
|
||||
int32_t n_batch);
|
||||
|
||||
// helper function to construct a mtmd_bitmap from a file
|
||||
// returns 0 on success
|
||||
// this function is thread-safe
|
||||
MTMD_API int32_t mtmd_helper_bitmap_init_from_file(const char * fname, mtmd_bitmap & output);
|
||||
|
||||
// helper function to construct a mtmd_bitmap from a buffer
|
||||
// the buffer must be an image in format supported by stb_image (jpg, png, bmp, gif, etc.)
|
||||
// returns 0 on success
|
||||
// this function is thread-safe
|
||||
MTMD_API int32_t mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len, mtmd_bitmap & output);
|
||||
|
||||
// convenient unique_ptr wrappers
|
||||
struct mtmd_context_deleter {
|
||||
void operator()(mtmd_context * val) { mtmd_free(val); }
|
||||
};
|
||||
using mtmd_context_ptr = std::unique_ptr<mtmd_context, mtmd_context_deleter>;
|
||||
|
||||
#else
|
||||
|
||||
static_assert(false && "C header is not yet supported by this library");
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
@@ -1,217 +0,0 @@
|
||||
import argparse
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from gguf import *
|
||||
from transformers import (
|
||||
AutoProcessor,
|
||||
Qwen2VLConfig,
|
||||
Qwen2VLProcessor,
|
||||
Qwen2VLForConditionalGeneration,
|
||||
Qwen2_5_VLConfig, # type: ignore[reportAttributeAccessIssue]
|
||||
Qwen2_5_VLForConditionalGeneration, # type: ignore[reportAttributeAccessIssue]
|
||||
)
|
||||
|
||||
|
||||
VISION = "clip.vision"
|
||||
|
||||
|
||||
def k(raw_key: str, arch: str) -> str:
|
||||
return raw_key.format(arch=arch)
|
||||
|
||||
|
||||
def get_n_wa_pattern(fullatt_block_indexes: Optional[List[int]]):
|
||||
if fullatt_block_indexes is None:
|
||||
return 0
|
||||
n_wa = fullatt_block_indexes[0]
|
||||
for a, b in zip(fullatt_block_indexes, fullatt_block_indexes[1:]):
|
||||
if b - a - 1 != n_wa:
|
||||
raise ValueError(
|
||||
f"window/full attention layer should have fix pattern of "
|
||||
f"for each full-attention layer followed by {n_wa} window-attention layers"
|
||||
)
|
||||
return n_wa + 1
|
||||
|
||||
|
||||
class VL2:
|
||||
|
||||
@staticmethod
|
||||
def to_gguf_name(name: str) -> str:
|
||||
og = name
|
||||
name = name.replace("text_model", "t").replace("vision_model", "v")
|
||||
name = name.replace("blocks", "blk").replace("embeddings.", "")
|
||||
name = name.replace("attn.", "attn_")
|
||||
name = name.replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("proj.", "out.")
|
||||
# name = name.replace("layrnorm", "ln").replace("layer_norm", "ln").replace("layernorm", "ln")
|
||||
name = name.replace("norm1", "ln1").replace("norm2", "ln2")
|
||||
name = name.replace("merger.mlp", 'mm')
|
||||
print(f"[to_gguf_name] {og} --> {name}")
|
||||
return name
|
||||
|
||||
@classmethod
|
||||
def find_vision_tensors(cls, qwen2vl, dtype) -> Dict[str, np.ndarray]:
|
||||
vision_model = qwen2vl.visual
|
||||
tensor_map = {}
|
||||
for name, ten in vision_model.state_dict().items():
|
||||
ten = ten.numpy()
|
||||
if 'qkv' in name:
|
||||
if ten.ndim == 2: # weight
|
||||
c3, _ = ten.shape
|
||||
else: # bias
|
||||
c3 = ten.shape[0]
|
||||
assert c3 % 3 == 0
|
||||
c = c3 // 3
|
||||
wq = ten[:c]
|
||||
wk = ten[c: c * 2]
|
||||
wv = ten[c * 2:]
|
||||
tensor_map[cls.to_gguf_name(f"vision_model.{name}").replace("qkv", "q")] = wq
|
||||
tensor_map[cls.to_gguf_name(f"vision_model.{name}").replace("qkv", "k")] = wk
|
||||
tensor_map[cls.to_gguf_name(f"vision_model.{name}").replace("qkv", "v")] = wv
|
||||
elif 'merger' in name:
|
||||
if name.endswith("ln_q.weight"):
|
||||
tensor_map['v.post_ln.weight'] = ten
|
||||
elif name.endswith("ln_q.bias"):
|
||||
tensor_map['v.post_ln.bias'] = ten
|
||||
else:
|
||||
# "merger.mlp.%d.weight/bias" --> "mm.%d.weight/bias"
|
||||
tensor_map[cls.to_gguf_name(name)] = ten
|
||||
elif 'patch_embed.proj.weight' in name:
|
||||
# NOTE: split Conv3D into Conv2Ds
|
||||
c1, c2, kt, kh, kw = ten.shape
|
||||
assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
|
||||
tensor_map["v.patch_embd.weight"] = ten[:, :, 0, ...]
|
||||
tensor_map["v.patch_embd.weight.1"] = ten[:, :, 1, ...]
|
||||
else:
|
||||
tensor_map[cls.to_gguf_name(f"vision_model.{name}")] = ten
|
||||
|
||||
for new_name, ten in tensor_map.items():
|
||||
if ten.ndim <= 1 or new_name.endswith("_norm.weight"):
|
||||
tensor_map[new_name] = ten.astype(np.float32)
|
||||
else:
|
||||
tensor_map[new_name] = ten.astype(dtype)
|
||||
tensor_map["v.position_embd.weight"] = np.zeros([10, 10], dtype=np.float32) # dummy tensor, just here as a placeholder
|
||||
return tensor_map
|
||||
|
||||
|
||||
class VL25(VL2):
|
||||
|
||||
@staticmethod
|
||||
def to_gguf_name(name: str) -> str:
|
||||
og = name
|
||||
name = name.replace("text_model", "t").replace("vision_model", "v")
|
||||
name = name.replace("blocks", "blk").replace("embeddings.", "")
|
||||
name = name.replace("attn.", "attn_")
|
||||
name = name.replace("mlp.down_proj", "ffn_down").replace("mlp.up_proj", "ffn_up")
|
||||
name = name.replace("mlp.gate_proj", "ffn_gate").replace("proj.", "out.")
|
||||
name = name.replace("norm1", "ln1").replace("norm2", "ln2")
|
||||
name = name.replace("merger.mlp", 'mm')
|
||||
print(f"[vl25][to_gguf_name] {og} --> {name}")
|
||||
return name
|
||||
|
||||
|
||||
def main(args):
|
||||
if args.data_type == 'fp32':
|
||||
dtype = torch.float32
|
||||
np_dtype = np.float32
|
||||
ftype = 0
|
||||
elif args.data_type == 'fp16':
|
||||
dtype = torch.float16
|
||||
np_dtype = np.float16
|
||||
ftype = 1
|
||||
else:
|
||||
raise ValueError()
|
||||
|
||||
local_model = False
|
||||
model_path = ""
|
||||
model_name = args.model_name
|
||||
print("model_name: ", model_name)
|
||||
if args.model_type == "qwen2vl":
|
||||
qwen2vl = Qwen2VLForConditionalGeneration.from_pretrained(
|
||||
model_name, torch_dtype=dtype, device_map="cpu"
|
||||
)
|
||||
cfg: Qwen2VLConfig = qwen2vl.config # type: ignore[reportAssignmentType]
|
||||
vcfg = cfg.vision_config
|
||||
else:
|
||||
qwen2vl = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
||||
model_name, torch_dtype=dtype, device_map="cpu"
|
||||
)
|
||||
cfg: Qwen2_5_VLConfig = qwen2vl.config # type: ignore[reportAssignmentType]
|
||||
vcfg = cfg.vision_config
|
||||
|
||||
if os.path.isdir(model_name):
|
||||
local_model = True
|
||||
if model_name.endswith(os.sep):
|
||||
model_name = model_name[:-1]
|
||||
model_path = model_name
|
||||
model_name = os.path.basename(model_name)
|
||||
fname_out = f"{model_name.replace('/', '-').lower()}-vision.gguf"
|
||||
|
||||
fout = GGUFWriter(path=fname_out, arch="clip")
|
||||
fout.add_description("image encoder for Qwen2VL")
|
||||
|
||||
fout.add_file_type(ftype)
|
||||
fout.add_bool("clip.has_text_encoder", False)
|
||||
fout.add_bool("clip.has_vision_encoder", True)
|
||||
fout.add_bool("clip.has_qwen2vl_merger", True)
|
||||
|
||||
print(cfg.vision_config)
|
||||
if 'silu' in cfg.vision_config.hidden_act.lower():
|
||||
fout.add_bool("clip.use_silu", True)
|
||||
fout.add_bool("clip.use_gelu", False)
|
||||
elif 'gelu' in cfg.vision_config.hidden_act.lower():
|
||||
fout.add_bool("clip.use_silu", False)
|
||||
fout.add_bool("clip.use_gelu", 'quick' not in cfg.vision_config.hidden_act.lower())
|
||||
else:
|
||||
raise ValueError()
|
||||
|
||||
if args.model_type == "qwen2.5vl":
|
||||
fout.add_uint32("clip.vision.n_wa_pattern", get_n_wa_pattern(vcfg.fullatt_block_indexes))
|
||||
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.hidden_size)
|
||||
fout.add_uint32("clip.vision.projection_dim", vcfg.out_hidden_size)
|
||||
fout.add_string("clip.projector_type", "qwen2.5vl_merger")
|
||||
else:
|
||||
fout.add_string("clip.projector_type", "qwen2vl_merger")
|
||||
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.embed_dim)
|
||||
fout.add_uint32("clip.vision.projection_dim", vcfg.hidden_size)
|
||||
|
||||
if args.model_type == "qwen2.5vl":
|
||||
tensor_map = VL25.find_vision_tensors(qwen2vl, np_dtype)
|
||||
else:
|
||||
tensor_map = VL2.find_vision_tensors(qwen2vl, np_dtype)
|
||||
for name, data in tensor_map.items():
|
||||
fout.add_tensor(name, data)
|
||||
|
||||
fout.add_uint32("clip.vision.patch_size", vcfg.patch_size)
|
||||
fout.add_uint32("clip.vision.image_size", 14 * 40) # some reasonable size that is divable by (14*2)
|
||||
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), vcfg.num_heads)
|
||||
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
|
||||
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), vcfg.depth)
|
||||
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), 0) # not sure what this does, put 0 here as a placeholder
|
||||
fout.add_name(model_name)
|
||||
"""
|
||||
HACK: Since vision rope related parameter aren't stored in the `Qwen2VLConfig,
|
||||
it will be hardcoded in the `clip_image_build_graph` from `clip.cpp`.
|
||||
"""
|
||||
|
||||
if local_model:
|
||||
processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_path)
|
||||
else:
|
||||
processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_name)
|
||||
fout.add_array("clip.vision.image_mean", processor.image_processor.image_mean) # type: ignore[reportAttributeAccessIssue]
|
||||
fout.add_array("clip.vision.image_std", processor.image_processor.image_std) # type: ignore[reportAttributeAccessIssue]
|
||||
|
||||
fout.write_header_to_file()
|
||||
fout.write_kv_data_to_file()
|
||||
fout.write_tensors_to_file()
|
||||
fout.close()
|
||||
print("save model as: ", fname_out)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("model_name", nargs='?', default="Qwen/Qwen2-VL-2B-Instruct")
|
||||
parser.add_argument("--model_type", nargs='?', choices=['qwen2vl', 'qwen2.5vl'], default="qwen2vl")
|
||||
parser.add_argument("--data_type", nargs='?', choices=['fp32', 'fp16'], default="fp32")
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
@@ -1,636 +0,0 @@
|
||||
#include "arg.h"
|
||||
#include "base64.hpp"
|
||||
#include "log.h"
|
||||
#include "common.h"
|
||||
#include "sampling.h"
|
||||
#include "clip.h"
|
||||
#include "llava.h"
|
||||
#include "llama.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#ifdef GGML_USE_CUDA
|
||||
#include "ggml-cuda.h"
|
||||
#endif
|
||||
#ifdef NDEBUG
|
||||
#include "ggml-alloc.h"
|
||||
#include "ggml-backend.h"
|
||||
#endif
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <limits>
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
|
||||
// THIS FILE IS ONLY USED FOR TESTING THE QWEN2VL MODEL
|
||||
// IT IS NOT A PRODUCTION CODE
|
||||
|
||||
static bool qwen2vl_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed,
|
||||
int n_batch, int * n_past, int * st_pos_id, struct clip_image_size * image_size) {
|
||||
int n_embd = llama_model_n_embd(llama_get_model(ctx_llama));
|
||||
const int patch_size = 14 * 2;
|
||||
const int ph = image_size->height / patch_size + (image_size->height % patch_size > 0);
|
||||
const int pw = image_size->width / patch_size + (image_size->width % patch_size > 0);
|
||||
auto img_tokens = image_embed->n_image_pos;
|
||||
// llama_pos mrope_pos[img_tokens * 4];
|
||||
std::vector<llama_pos> mrope_pos;
|
||||
mrope_pos.resize(img_tokens * 4);
|
||||
|
||||
for (int y = 0; y < ph; y++)
|
||||
{
|
||||
for (int x = 0; x < pw; x++)
|
||||
{
|
||||
int i = y * pw + x;
|
||||
mrope_pos[i] = *st_pos_id;
|
||||
mrope_pos[i + img_tokens] = *st_pos_id + y;
|
||||
mrope_pos[i + img_tokens * 2] = *st_pos_id + x;
|
||||
mrope_pos[i + img_tokens * 3] = 0;
|
||||
}
|
||||
}
|
||||
*st_pos_id += std::max(pw, ph);
|
||||
|
||||
int processed = 0;
|
||||
std::vector<llama_pos> batch_mrope_pos;
|
||||
batch_mrope_pos.resize(img_tokens * 4);
|
||||
|
||||
for (int i = 0; i < img_tokens; i += n_batch) {
|
||||
int n_eval = img_tokens - i;
|
||||
if (n_eval > n_batch) {
|
||||
n_eval = n_batch;
|
||||
}
|
||||
|
||||
// llama_pos batch_mrope_pos[n_eval * 4];
|
||||
std::fill(batch_mrope_pos.begin(), batch_mrope_pos.end(), 0);
|
||||
memcpy(batch_mrope_pos.data(), &mrope_pos[processed], n_eval * sizeof(llama_pos));
|
||||
memcpy(&batch_mrope_pos[n_eval * 1], &mrope_pos[img_tokens * 1 + processed], n_eval * sizeof(llama_pos));
|
||||
memcpy(&batch_mrope_pos[n_eval * 2], &mrope_pos[img_tokens * 2 + processed], n_eval * sizeof(llama_pos));
|
||||
memcpy(&batch_mrope_pos[n_eval * 3], &mrope_pos[img_tokens * 3 + processed], n_eval * sizeof(llama_pos));
|
||||
|
||||
llama_batch batch = {
|
||||
int32_t(n_eval), // n_tokens
|
||||
nullptr, // token
|
||||
(image_embed->embed+i*n_embd), // embed
|
||||
batch_mrope_pos.data(), // pos
|
||||
nullptr, // n_seq_id
|
||||
nullptr, // seq_id
|
||||
nullptr, // logits
|
||||
};
|
||||
|
||||
if (llama_decode(ctx_llama, batch)) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
*n_past += n_eval;
|
||||
processed += n_eval;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past, int * st_pos_id) {
|
||||
int N = (int) tokens.size();
|
||||
for (int i = 0; i < N; i += n_batch) {
|
||||
int n_eval = (int) tokens.size() - i;
|
||||
if (n_eval > n_batch) {
|
||||
n_eval = n_batch;
|
||||
}
|
||||
auto batch = llama_batch_get_one(&tokens[i], n_eval);
|
||||
|
||||
if (llama_decode(ctx_llama, batch)) {
|
||||
LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
|
||||
return false;
|
||||
}
|
||||
*n_past += n_eval;
|
||||
*st_pos_id += n_eval;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past, int * st_pos_id) {
|
||||
std::vector<llama_token> tokens;
|
||||
tokens.push_back(id);
|
||||
return eval_tokens(ctx_llama, tokens, 1, n_past, st_pos_id);
|
||||
}
|
||||
|
||||
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, int * st_pos_id, bool add_bos){
|
||||
std::string str2 = str;
|
||||
std::vector<llama_token> embd_inp = common_tokenize(ctx_llama, str2, add_bos, true);
|
||||
eval_tokens(ctx_llama, embd_inp, n_batch, n_past, st_pos_id);
|
||||
return true;
|
||||
}
|
||||
|
||||
static const char * sample(struct common_sampler * smpl,
|
||||
struct llama_context * ctx_llama,
|
||||
int * n_past, int * st_pos_id) {
|
||||
const llama_token id = common_sampler_sample(smpl, ctx_llama, -1);
|
||||
common_sampler_accept(smpl, id, true);
|
||||
|
||||
const llama_model * model = llama_get_model(ctx_llama);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
static std::string ret;
|
||||
if (llama_vocab_is_eog(vocab, id)) {
|
||||
ret = "</s>";
|
||||
} else {
|
||||
ret = common_token_to_piece(ctx_llama, id);
|
||||
}
|
||||
eval_id(ctx_llama, id, n_past, st_pos_id);
|
||||
return ret.c_str();
|
||||
}
|
||||
|
||||
static const char* IMG_BASE64_TAG_BEGIN = "<img src=\"data:image/jpeg;base64,";
|
||||
static const char* IMG_BASE64_TAG_END = "\">";
|
||||
|
||||
static void find_image_tag_in_prompt(const std::string& prompt, size_t& begin_out, size_t& end_out) {
|
||||
begin_out = prompt.find(IMG_BASE64_TAG_BEGIN);
|
||||
end_out = prompt.find(IMG_BASE64_TAG_END, (begin_out == std::string::npos) ? 0UL : begin_out);
|
||||
}
|
||||
|
||||
static bool prompt_contains_image(const std::string& prompt) {
|
||||
size_t begin, end;
|
||||
find_image_tag_in_prompt(prompt, begin, end);
|
||||
return (begin != std::string::npos);
|
||||
}
|
||||
|
||||
// replaces the base64 image tag in the prompt with `replacement`
|
||||
static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip_ctx * ctx_clip, int n_threads, const std::string& prompt) {
|
||||
size_t img_base64_str_start, img_base64_str_end;
|
||||
find_image_tag_in_prompt(prompt, img_base64_str_start, img_base64_str_end);
|
||||
if (img_base64_str_start == std::string::npos || img_base64_str_end == std::string::npos) {
|
||||
LOG_ERR("%s: invalid base64 image tag. must be %s<base64 byte string>%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
auto base64_bytes_start = img_base64_str_start + strlen(IMG_BASE64_TAG_BEGIN);
|
||||
auto base64_bytes_count = img_base64_str_end - base64_bytes_start;
|
||||
auto base64_str = prompt.substr(base64_bytes_start, base64_bytes_count );
|
||||
|
||||
auto required_bytes = base64::required_encode_size(base64_str.size());
|
||||
auto img_bytes = std::vector<unsigned char>(required_bytes);
|
||||
base64::decode(base64_str.begin(), base64_str.end(), img_bytes.begin());
|
||||
|
||||
auto embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, img_bytes.data(), img_bytes.size());
|
||||
if (!embed) {
|
||||
LOG_ERR("%s: could not load image from base64 string.\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return embed;
|
||||
}
|
||||
|
||||
static std::string remove_image_from_prompt(const std::string& prompt, const char * replacement = "") {
|
||||
size_t begin, end;
|
||||
find_image_tag_in_prompt(prompt, begin, end);
|
||||
if (begin == std::string::npos || end == std::string::npos) {
|
||||
return prompt;
|
||||
}
|
||||
auto pre = prompt.substr(0, begin);
|
||||
auto post = prompt.substr(end + strlen(IMG_BASE64_TAG_END));
|
||||
return pre + replacement + post;
|
||||
}
|
||||
|
||||
struct llava_context {
|
||||
struct clip_ctx * ctx_clip = NULL;
|
||||
struct llama_context * ctx_llama = NULL;
|
||||
struct llama_model * model = NULL;
|
||||
};
|
||||
|
||||
static void print_usage(int, char ** argv) {
|
||||
LOG("\n example usage:\n");
|
||||
LOG("\n %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
|
||||
LOG("\n note: a lower temperature value like 0.1 is recommended for better quality.\n");
|
||||
}
|
||||
|
||||
static struct llava_image_embed * load_image(llava_context * ctx_llava, common_params * params, const std::string & fname) {
|
||||
|
||||
// load and preprocess the image
|
||||
llava_image_embed * embed = NULL;
|
||||
auto prompt = params->prompt;
|
||||
if (prompt_contains_image(prompt)) {
|
||||
if (!params->image.empty()) {
|
||||
LOG_INF("using base64 encoded image instead of command line image path\n");
|
||||
}
|
||||
embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->cpuparams.n_threads, prompt);
|
||||
if (!embed) {
|
||||
LOG_ERR("%s: can't load image from prompt\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
params->prompt = remove_image_from_prompt(prompt);
|
||||
} else {
|
||||
embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->cpuparams.n_threads, fname.c_str());
|
||||
if (!embed) {
|
||||
fprintf(stderr, "%s: is %s really an image file?\n", __func__, fname.c_str());
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
return embed;
|
||||
}
|
||||
|
||||
static void process_prompt(struct llava_context * ctx_llava, struct llava_image_embed * image_embed, common_params * params, const std::string & prompt) {
|
||||
int n_past = 0;
|
||||
int cur_pos_id = 0;
|
||||
|
||||
const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict;
|
||||
|
||||
std::string system_prompt, user_prompt;
|
||||
size_t image_pos = prompt.find("<|vision_start|>");
|
||||
if (image_pos != std::string::npos) {
|
||||
// new templating mode: Provide the full prompt including system message and use <image> as a placeholder for the image
|
||||
system_prompt = prompt.substr(0, image_pos);
|
||||
user_prompt = prompt.substr(image_pos + std::string("<|vision_pad|>").length());
|
||||
LOG_INF("system_prompt: %s\n", system_prompt.c_str());
|
||||
if (params->verbose_prompt) {
|
||||
auto tmp = common_tokenize(ctx_llava->ctx_llama, system_prompt, true, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
LOG_INF("user_prompt: %s\n", user_prompt.c_str());
|
||||
if (params->verbose_prompt) {
|
||||
auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// llava-1.5 native mode
|
||||
system_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|>";
|
||||
user_prompt = "<|vision_end|>" + prompt + "<|im_end|>\n<|im_start|>assistant\n";
|
||||
if (params->verbose_prompt) {
|
||||
auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, &cur_pos_id, true);
|
||||
if (image_embed != nullptr) {
|
||||
auto image_size = clip_get_load_image_size(ctx_llava->ctx_clip);
|
||||
qwen2vl_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past, &cur_pos_id, image_size);
|
||||
}
|
||||
eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, &cur_pos_id, false);
|
||||
|
||||
// generate the response
|
||||
|
||||
LOG("\n");
|
||||
|
||||
struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sampling);
|
||||
if (!smpl) {
|
||||
LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
std::string response = "";
|
||||
for (int i = 0; i < max_tgt_len; i++) {
|
||||
const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past, &cur_pos_id);
|
||||
response += tmp;
|
||||
if (strcmp(tmp, "</s>") == 0) break;
|
||||
if (strstr(tmp, "###")) break; // Yi-VL behavior
|
||||
LOG("%s", tmp);
|
||||
if (strstr(response.c_str(), "<|im_end|>")) break; // Yi-34B llava-1.6 - for some reason those decode not as the correct token (tokenizer works)
|
||||
if (strstr(response.c_str(), "<|im_start|>")) break; // Yi-34B llava-1.6
|
||||
if (strstr(response.c_str(), "USER:")) break; // mistral llava-1.6
|
||||
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
common_sampler_free(smpl);
|
||||
LOG("\n");
|
||||
}
|
||||
|
||||
static struct llama_model * llava_init(common_params * params) {
|
||||
llama_backend_init();
|
||||
llama_numa_init(params->numa);
|
||||
|
||||
llama_model_params model_params = common_model_params_to_llama(*params);
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params->model.path.c_str(), model_params);
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: unable to load model\n" , __func__);
|
||||
return NULL;
|
||||
}
|
||||
return model;
|
||||
}
|
||||
|
||||
static struct llava_context * llava_init_context(common_params * params, llama_model * model) {
|
||||
const char * clip_path = params->mmproj.path.c_str();
|
||||
|
||||
auto prompt = params->prompt;
|
||||
if (prompt.empty()) {
|
||||
prompt = "describe the image in detail.";
|
||||
}
|
||||
|
||||
auto ctx_clip = clip_model_load(clip_path, GGML_LOG_LEVEL_INFO);
|
||||
|
||||
llama_context_params ctx_params = common_context_params_to_llama(*params);
|
||||
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
|
||||
|
||||
llama_context * ctx_llama = llama_init_from_model(model, ctx_params);
|
||||
|
||||
if (ctx_llama == NULL) {
|
||||
LOG_ERR("%s: failed to create the llama_context\n" , __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
auto * ctx_llava = (struct llava_context *)malloc(sizeof(llava_context));
|
||||
|
||||
ctx_llava->ctx_llama = ctx_llama;
|
||||
ctx_llava->ctx_clip = ctx_clip;
|
||||
ctx_llava->model = model;
|
||||
return ctx_llava;
|
||||
}
|
||||
|
||||
static void llava_free(struct llava_context * ctx_llava) {
|
||||
if (ctx_llava->ctx_clip) {
|
||||
clip_free(ctx_llava->ctx_clip);
|
||||
ctx_llava->ctx_clip = NULL;
|
||||
}
|
||||
|
||||
llama_free(ctx_llava->ctx_llama);
|
||||
llama_model_free(ctx_llava->model);
|
||||
llama_backend_free();
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
|
||||
static void debug_test_mrope_2d() {
|
||||
// 1. Initialize backend
|
||||
ggml_backend_t backend = NULL;
|
||||
std::string backend_name = "";
|
||||
// #ifdef GGML_USE_CUDA
|
||||
// fprintf(stderr, "%s: using CUDA backend\n", __func__);
|
||||
// backend = ggml_backend_cuda_init(0); // init device 0
|
||||
// backend_name = "cuda";
|
||||
// if (!backend) {
|
||||
// fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
|
||||
// }
|
||||
// #endif
|
||||
// if there aren't GPU Backends fallback to CPU backend
|
||||
if (!backend) {
|
||||
backend = ggml_backend_cpu_init();
|
||||
backend_name = "cpu";
|
||||
}
|
||||
|
||||
// Calculate the size needed to allocate
|
||||
size_t ctx_size = 0;
|
||||
ctx_size += 2 * ggml_tensor_overhead(); // tensors
|
||||
// no need to allocate anything else!
|
||||
|
||||
// 2. Allocate `ggml_context` to store tensor data
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ ctx_size,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_backend_alloc_ctx_tensors()
|
||||
};
|
||||
struct ggml_context * ctx = ggml_init(params);
|
||||
|
||||
struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 128, 12, 30);
|
||||
ggml_set_name(inp_raw, "inp_raw");
|
||||
ggml_set_input(inp_raw);
|
||||
|
||||
struct ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 30 * 4);
|
||||
ggml_set_name(pos, "pos");
|
||||
ggml_set_input(pos);
|
||||
|
||||
std::vector<float> dummy_q;
|
||||
dummy_q.resize(128 * 12 * 30);
|
||||
std::fill(dummy_q.begin(), dummy_q.end(), 0.1);
|
||||
// memcpy(inp_raw->data, dummy_q.data(), 128 * 12 * 30 * ggml_element_size(inp_raw));
|
||||
|
||||
std::vector<int> pos_id;
|
||||
pos_id.resize(30 * 4);
|
||||
for (int i = 0; i < 30; i ++) {
|
||||
pos_id[i] = i;
|
||||
pos_id[i + 30] = i + 10;
|
||||
pos_id[i + 60] = i + 20;
|
||||
pos_id[i + 90] = i + 30;
|
||||
}
|
||||
int sections[4] = {32, 32, 0, 0};
|
||||
|
||||
// 4. Allocate a `ggml_backend_buffer` to store all tensors
|
||||
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
|
||||
|
||||
// 5. Copy tensor data from main memory (RAM) to backend buffer
|
||||
ggml_backend_tensor_set(inp_raw, dummy_q.data(), 0, ggml_nbytes(inp_raw));
|
||||
ggml_backend_tensor_set(pos, pos_id.data(), 0, ggml_nbytes(pos));
|
||||
|
||||
// 6. Create a `ggml_cgraph` for mul_mat operation
|
||||
struct ggml_cgraph * gf = NULL;
|
||||
struct ggml_context * ctx_cgraph = NULL;
|
||||
|
||||
// create a temporally context to build the graph
|
||||
struct ggml_init_params params0 = {
|
||||
/*.mem_size =*/ ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(),
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph()
|
||||
};
|
||||
ctx_cgraph = ggml_init(params0);
|
||||
gf = ggml_new_graph(ctx_cgraph);
|
||||
|
||||
struct ggml_tensor * result0 = ggml_rope_multi(
|
||||
ctx_cgraph, inp_raw, pos, nullptr,
|
||||
128/2, sections, LLAMA_ROPE_TYPE_VISION, 32768, 1000000, 1,
|
||||
0, 1, 32, 1);
|
||||
|
||||
// Add "result" tensor and all of its dependencies to the cgraph
|
||||
ggml_build_forward_expand(gf, result0);
|
||||
|
||||
// 7. Create a `ggml_gallocr` for cgraph computation
|
||||
ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));
|
||||
ggml_gallocr_alloc_graph(allocr, gf);
|
||||
|
||||
// 9. Run the computation
|
||||
int n_threads = 1; // Optional: number of threads to perform some operations with multi-threading
|
||||
if (ggml_backend_is_cpu(backend)) {
|
||||
ggml_backend_cpu_set_n_threads(backend, n_threads);
|
||||
}
|
||||
ggml_backend_graph_compute(backend, gf);
|
||||
|
||||
// 10. Retrieve results (output tensors)
|
||||
// in this example, output tensor is always the last tensor in the graph
|
||||
struct ggml_tensor * result = result0;
|
||||
// struct ggml_tensor * result = gf->nodes[gf->n_nodes - 1];
|
||||
float * result_data = (float *)malloc(ggml_nbytes(result));
|
||||
// because the tensor data is stored in device buffer, we need to copy it back to RAM
|
||||
ggml_backend_tensor_get(result, result_data, 0, ggml_nbytes(result));
|
||||
const std::string bin_file = "mrope_2d_" + backend_name +".bin";
|
||||
std::ofstream outFile(bin_file, std::ios::binary);
|
||||
|
||||
if (outFile.is_open()) {
|
||||
outFile.write(reinterpret_cast<const char*>(result_data), ggml_nbytes(result));
|
||||
outFile.close();
|
||||
std::cout << "Data successfully written to " + bin_file << std::endl;
|
||||
} else {
|
||||
std::cerr << "Error opening file!" << std::endl;
|
||||
}
|
||||
|
||||
free(result_data);
|
||||
// 11. Free memory and exit
|
||||
ggml_free(ctx_cgraph);
|
||||
ggml_gallocr_free(allocr);
|
||||
ggml_free(ctx);
|
||||
ggml_backend_buffer_free(buffer);
|
||||
ggml_backend_free(backend);
|
||||
}
|
||||
|
||||
enum model_output_type {
|
||||
conv3d,
|
||||
patch_embed,
|
||||
patch_win_attn_scatter,
|
||||
first_attn_layer,
|
||||
last_attn_layer,
|
||||
attn_softmax,
|
||||
final_layer,
|
||||
};
|
||||
|
||||
static void debug_dump_img_embed(struct llava_context * ctx_llava, model_output_type output_type) {
|
||||
constexpr int ih = 140;
|
||||
constexpr int iw = 196;
|
||||
// constexpr int ih = 56;
|
||||
// constexpr int iw = 56;
|
||||
// int n_embd = llama_model_n_embd(llama_get_model(ctx_llava->ctx_llama));
|
||||
int n_embd = 1280;
|
||||
int merge = 1;
|
||||
if (output_type == model_output_type::final_layer) {
|
||||
n_embd = 2048;
|
||||
merge = 2;
|
||||
}
|
||||
else if (output_type == model_output_type::attn_softmax) {
|
||||
merge = 1;
|
||||
n_embd = (ih/14/merge) * (iw/14/merge) * 16;
|
||||
}
|
||||
|
||||
int ne = (ih/14/merge) * (iw/14/merge) * n_embd;
|
||||
float vals[iw * ih * 3];
|
||||
// float embd[ne];
|
||||
std::vector<float> embd;
|
||||
embd.resize(ne);
|
||||
|
||||
for (int i = 0; i < iw*ih; i++)
|
||||
{
|
||||
for (int c = 0; c < 3; c++)
|
||||
vals[i * 3 + c] = (float)i / (iw*ih);
|
||||
}
|
||||
|
||||
clip_encode_float_image(ctx_llava->ctx_clip, 8, vals, ih, iw, embd.data());
|
||||
|
||||
std::string file_postfix = "";
|
||||
switch (output_type)
|
||||
{
|
||||
case model_output_type::conv3d:
|
||||
file_postfix = "conv3d";
|
||||
break;
|
||||
case model_output_type::patch_embed:
|
||||
file_postfix = "patch_embed";
|
||||
break;
|
||||
case model_output_type::patch_win_attn_scatter:
|
||||
file_postfix = "scatter";
|
||||
break;
|
||||
case model_output_type::first_attn_layer:
|
||||
file_postfix = "first_attn";
|
||||
break;
|
||||
case model_output_type::last_attn_layer:
|
||||
file_postfix = "last_attn";
|
||||
break;
|
||||
case model_output_type::attn_softmax:
|
||||
file_postfix = "attn_softmax";
|
||||
break;
|
||||
case model_output_type::final_layer:
|
||||
file_postfix = "final";
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
auto output_path = "img_embed_" + file_postfix + ".bin";
|
||||
|
||||
std::ofstream outFile(output_path, std::ios::binary);
|
||||
if (outFile.is_open()) {
|
||||
outFile.write(reinterpret_cast<const char*>(embd.data()), ne * sizeof(float));
|
||||
|
||||
outFile.close();
|
||||
std::cout << "Data successfully written to ::[ " << output_path << std::endl;
|
||||
} else {
|
||||
std::cerr << "Error opening file!" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
ggml_time_init();
|
||||
|
||||
common_params params;
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
common_init();
|
||||
|
||||
if (params.mmproj.path.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
|
||||
print_usage(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
|
||||
auto * model = llava_init(¶ms);
|
||||
if (model == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to init llava model\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (prompt_contains_image(params.prompt)) {
|
||||
auto * ctx_llava = llava_init_context(¶ms, model);
|
||||
|
||||
auto * image_embed = load_image(ctx_llava, ¶ms, "");
|
||||
|
||||
// process the prompt
|
||||
process_prompt(ctx_llava, image_embed, ¶ms, params.prompt);
|
||||
|
||||
llama_perf_context_print(ctx_llava->ctx_llama);
|
||||
llava_image_embed_free(image_embed);
|
||||
ctx_llava->model = NULL;
|
||||
llava_free(ctx_llava);
|
||||
#ifndef NDEBUG
|
||||
} else if (params.image[0].empty()) {
|
||||
auto ctx_llava = llava_init_context(¶ms, model);
|
||||
|
||||
// debug_test_mrope_2d();
|
||||
debug_dump_img_embed(ctx_llava, model_output_type::final_layer);
|
||||
// debug_dump_img_embed(ctx_llava, model_output_type::last_attn_layer);
|
||||
|
||||
llama_perf_context_print(ctx_llava->ctx_llama);
|
||||
ctx_llava->model = NULL;
|
||||
llava_free(ctx_llava);
|
||||
#endif
|
||||
} else {
|
||||
for (auto & image : params.image) {
|
||||
auto * ctx_llava = llava_init_context(¶ms, model);
|
||||
|
||||
auto * image_embed = load_image(ctx_llava, ¶ms, image);
|
||||
if (!image_embed) {
|
||||
LOG_ERR("%s: failed to load image %s. Terminating\n\n", __func__, image.c_str());
|
||||
return 1;
|
||||
}
|
||||
|
||||
// process the prompt
|
||||
process_prompt(ctx_llava, image_embed, ¶ms, params.prompt);
|
||||
|
||||
llama_perf_context_print(ctx_llava->ctx_llama);
|
||||
llava_image_embed_free(image_embed);
|
||||
ctx_llava->model = NULL;
|
||||
llava_free(ctx_llava);
|
||||
}
|
||||
}
|
||||
|
||||
llama_model_free(model);
|
||||
|
||||
return 0;
|
||||
}
|
||||
@@ -23,7 +23,7 @@ def create_completion(host, prompt, gbnf_grammar):
|
||||
"""Calls the /completion API on llama-server.
|
||||
|
||||
See
|
||||
https://github.com/ggml-org/llama.cpp/tree/HEAD/examples/server#api-endpoints
|
||||
https://github.com/ggml-org/llama.cpp/tree/HEAD/tools/server#api-endpoints
|
||||
"""
|
||||
print(f" Request:\n Grammar:\n{textwrap.indent(gbnf_grammar, ' ')}\n Prompt:\n{textwrap.indent(prompt.rstrip(), ' ')}")
|
||||
headers = {"Content-Type": "application/json"}
|
||||
|
||||
Binary file not shown.
@@ -1,178 +0,0 @@
|
||||
import { useEffect, useState } from 'react';
|
||||
import StorageUtils from '../utils/storage';
|
||||
import { useAppContext } from '../utils/app.context';
|
||||
import { classNames } from '../utils/misc';
|
||||
import daisyuiThemes from 'daisyui/theme/object';
|
||||
import { THEMES } from '../Config';
|
||||
import { useNavigate } from 'react-router';
|
||||
|
||||
export default function Header() {
|
||||
const navigate = useNavigate();
|
||||
const [selectedTheme, setSelectedTheme] = useState(StorageUtils.getTheme());
|
||||
const { setShowSettings } = useAppContext();
|
||||
|
||||
const setTheme = (theme: string) => {
|
||||
StorageUtils.setTheme(theme);
|
||||
setSelectedTheme(theme);
|
||||
};
|
||||
|
||||
useEffect(() => {
|
||||
document.body.setAttribute('data-theme', selectedTheme);
|
||||
document.body.setAttribute(
|
||||
'data-color-scheme',
|
||||
daisyuiThemes[selectedTheme]?.['color-scheme'] ?? 'auto'
|
||||
);
|
||||
}, [selectedTheme]);
|
||||
|
||||
const { isGenerating, viewingChat } = useAppContext();
|
||||
const isCurrConvGenerating = isGenerating(viewingChat?.conv.id ?? '');
|
||||
|
||||
const removeConversation = () => {
|
||||
if (isCurrConvGenerating || !viewingChat) return;
|
||||
const convId = viewingChat?.conv.id;
|
||||
if (window.confirm('Are you sure to delete this conversation?')) {
|
||||
StorageUtils.remove(convId);
|
||||
navigate('/');
|
||||
}
|
||||
};
|
||||
|
||||
const downloadConversation = () => {
|
||||
if (isCurrConvGenerating || !viewingChat) return;
|
||||
const convId = viewingChat?.conv.id;
|
||||
const conversationJson = JSON.stringify(viewingChat, null, 2);
|
||||
const blob = new Blob([conversationJson], { type: 'application/json' });
|
||||
const url = URL.createObjectURL(blob);
|
||||
const a = document.createElement('a');
|
||||
a.href = url;
|
||||
a.download = `conversation_${convId}.json`;
|
||||
document.body.appendChild(a);
|
||||
a.click();
|
||||
document.body.removeChild(a);
|
||||
URL.revokeObjectURL(url);
|
||||
};
|
||||
|
||||
return (
|
||||
<div className="flex flex-row items-center pt-6 pb-6 sticky top-0 z-10 bg-base-100">
|
||||
{/* open sidebar button */}
|
||||
<label htmlFor="toggle-drawer" className="btn btn-ghost lg:hidden">
|
||||
<svg
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
width="16"
|
||||
height="16"
|
||||
fill="currentColor"
|
||||
className="bi bi-list"
|
||||
viewBox="0 0 16 16"
|
||||
>
|
||||
<path
|
||||
fillRule="evenodd"
|
||||
d="M2.5 12a.5.5 0 0 1 .5-.5h10a.5.5 0 0 1 0 1H3a.5.5 0 0 1-.5-.5m0-4a.5.5 0 0 1 .5-.5h10a.5.5 0 0 1 0 1H3a.5.5 0 0 1-.5-.5m0-4a.5.5 0 0 1 .5-.5h10a.5.5 0 0 1 0 1H3a.5.5 0 0 1-.5-.5"
|
||||
/>
|
||||
</svg>
|
||||
</label>
|
||||
|
||||
<div className="grow text-2xl font-bold ml-2">llama.cpp</div>
|
||||
|
||||
{/* action buttons (top right) */}
|
||||
<div className="flex items-center">
|
||||
{viewingChat && (
|
||||
<div className="dropdown dropdown-end">
|
||||
{/* "..." button */}
|
||||
<button
|
||||
tabIndex={0}
|
||||
role="button"
|
||||
className="btn m-1"
|
||||
disabled={isCurrConvGenerating}
|
||||
>
|
||||
<svg
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
width="16"
|
||||
height="16"
|
||||
fill="currentColor"
|
||||
className="bi bi-three-dots-vertical"
|
||||
viewBox="0 0 16 16"
|
||||
>
|
||||
<path d="M9.5 13a1.5 1.5 0 1 1-3 0 1.5 1.5 0 0 1 3 0m0-5a1.5 1.5 0 1 1-3 0 1.5 1.5 0 0 1 3 0m0-5a1.5 1.5 0 1 1-3 0 1.5 1.5 0 0 1 3 0" />
|
||||
</svg>
|
||||
</button>
|
||||
{/* dropdown menu */}
|
||||
<ul
|
||||
tabIndex={0}
|
||||
className="dropdown-content menu bg-base-100 rounded-box z-[1] w-52 p-2 shadow"
|
||||
>
|
||||
<li onClick={downloadConversation}>
|
||||
<a>Download</a>
|
||||
</li>
|
||||
<li className="text-error" onClick={removeConversation}>
|
||||
<a>Delete</a>
|
||||
</li>
|
||||
</ul>
|
||||
</div>
|
||||
)}
|
||||
|
||||
<div className="tooltip tooltip-bottom" data-tip="Settings">
|
||||
<button className="btn" onClick={() => setShowSettings(true)}>
|
||||
{/* settings button */}
|
||||
<svg
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
width="16"
|
||||
height="16"
|
||||
fill="currentColor"
|
||||
className="bi bi-gear"
|
||||
viewBox="0 0 16 16"
|
||||
>
|
||||
<path d="M8 4.754a3.246 3.246 0 1 0 0 6.492 3.246 3.246 0 0 0 0-6.492M5.754 8a2.246 2.246 0 1 1 4.492 0 2.246 2.246 0 0 1-4.492 0" />
|
||||
<path d="M9.796 1.343c-.527-1.79-3.065-1.79-3.592 0l-.094.319a.873.873 0 0 1-1.255.52l-.292-.16c-1.64-.892-3.433.902-2.54 2.541l.159.292a.873.873 0 0 1-.52 1.255l-.319.094c-1.79.527-1.79 3.065 0 3.592l.319.094a.873.873 0 0 1 .52 1.255l-.16.292c-.892 1.64.901 3.434 2.541 2.54l.292-.159a.873.873 0 0 1 1.255.52l.094.319c.527 1.79 3.065 1.79 3.592 0l.094-.319a.873.873 0 0 1 1.255-.52l.292.16c1.64.893 3.434-.902 2.54-2.541l-.159-.292a.873.873 0 0 1 .52-1.255l.319-.094c1.79-.527 1.79-3.065 0-3.592l-.319-.094a.873.873 0 0 1-.52-1.255l.16-.292c.893-1.64-.902-3.433-2.541-2.54l-.292.159a.873.873 0 0 1-1.255-.52zm-2.633.283c.246-.835 1.428-.835 1.674 0l.094.319a1.873 1.873 0 0 0 2.693 1.115l.291-.16c.764-.415 1.6.42 1.184 1.185l-.159.292a1.873 1.873 0 0 0 1.116 2.692l.318.094c.835.246.835 1.428 0 1.674l-.319.094a1.873 1.873 0 0 0-1.115 2.693l.16.291c.415.764-.42 1.6-1.185 1.184l-.291-.159a1.873 1.873 0 0 0-2.693 1.116l-.094.318c-.246.835-1.428.835-1.674 0l-.094-.319a1.873 1.873 0 0 0-2.692-1.115l-.292.16c-.764.415-1.6-.42-1.184-1.185l.159-.291A1.873 1.873 0 0 0 1.945 8.93l-.319-.094c-.835-.246-.835-1.428 0-1.674l.319-.094A1.873 1.873 0 0 0 3.06 4.377l-.16-.292c-.415-.764.42-1.6 1.185-1.184l.292.159a1.873 1.873 0 0 0 2.692-1.115z" />
|
||||
</svg>
|
||||
</button>
|
||||
</div>
|
||||
|
||||
{/* theme controller is copied from https://daisyui.com/components/theme-controller/ */}
|
||||
<div className="tooltip tooltip-bottom" data-tip="Themes">
|
||||
<div className="dropdown dropdown-end dropdown-bottom">
|
||||
<div tabIndex={0} role="button" className="btn m-1">
|
||||
<svg
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
width="16"
|
||||
height="16"
|
||||
fill="currentColor"
|
||||
className="bi bi-palette2"
|
||||
viewBox="0 0 16 16"
|
||||
>
|
||||
<path d="M0 .5A.5.5 0 0 1 .5 0h5a.5.5 0 0 1 .5.5v5.277l4.147-4.131a.5.5 0 0 1 .707 0l3.535 3.536a.5.5 0 0 1 0 .708L10.261 10H15.5a.5.5 0 0 1 .5.5v5a.5.5 0 0 1-.5.5H3a3 3 0 0 1-2.121-.879A3 3 0 0 1 0 13.044m6-.21 7.328-7.3-2.829-2.828L6 7.188zM4.5 13a1.5 1.5 0 1 0-3 0 1.5 1.5 0 0 0 3 0M15 15v-4H9.258l-4.015 4zM0 .5v12.495zm0 12.495V13z" />
|
||||
</svg>
|
||||
</div>
|
||||
<ul
|
||||
tabIndex={0}
|
||||
className="dropdown-content bg-base-300 rounded-box z-[1] w-52 p-2 shadow-2xl h-80 overflow-y-auto"
|
||||
>
|
||||
<li>
|
||||
<button
|
||||
className={classNames({
|
||||
'btn btn-sm btn-block btn-ghost justify-start': true,
|
||||
'btn-active': selectedTheme === 'auto',
|
||||
})}
|
||||
onClick={() => setTheme('auto')}
|
||||
>
|
||||
auto
|
||||
</button>
|
||||
</li>
|
||||
{THEMES.map((theme) => (
|
||||
<li key={theme}>
|
||||
<input
|
||||
type="radio"
|
||||
name="theme-dropdown"
|
||||
className="theme-controller btn btn-sm btn-block btn-ghost justify-start"
|
||||
aria-label={theme}
|
||||
value={theme}
|
||||
checked={selectedTheme === theme}
|
||||
onChange={(e) => e.target.checked && setTheme(theme)}
|
||||
/>
|
||||
</li>
|
||||
))}
|
||||
</ul>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
@@ -1,96 +0,0 @@
|
||||
import { useEffect, useState } from 'react';
|
||||
import { classNames } from '../utils/misc';
|
||||
import { Conversation } from '../utils/types';
|
||||
import StorageUtils from '../utils/storage';
|
||||
import { useNavigate, useParams } from 'react-router';
|
||||
|
||||
export default function Sidebar() {
|
||||
const params = useParams();
|
||||
const navigate = useNavigate();
|
||||
|
||||
const [conversations, setConversations] = useState<Conversation[]>([]);
|
||||
const [currConv, setCurrConv] = useState<Conversation | null>(null);
|
||||
|
||||
useEffect(() => {
|
||||
StorageUtils.getOneConversation(params.convId ?? '').then(setCurrConv);
|
||||
}, [params.convId]);
|
||||
|
||||
useEffect(() => {
|
||||
const handleConversationChange = async () => {
|
||||
setConversations(await StorageUtils.getAllConversations());
|
||||
};
|
||||
StorageUtils.onConversationChanged(handleConversationChange);
|
||||
handleConversationChange();
|
||||
return () => {
|
||||
StorageUtils.offConversationChanged(handleConversationChange);
|
||||
};
|
||||
}, []);
|
||||
|
||||
return (
|
||||
<>
|
||||
<input
|
||||
id="toggle-drawer"
|
||||
type="checkbox"
|
||||
className="drawer-toggle"
|
||||
defaultChecked
|
||||
/>
|
||||
|
||||
<div className="drawer-side h-screen lg:h-screen z-50 lg:max-w-64">
|
||||
<label
|
||||
htmlFor="toggle-drawer"
|
||||
aria-label="close sidebar"
|
||||
className="drawer-overlay"
|
||||
></label>
|
||||
<div className="flex flex-col bg-base-200 min-h-full max-w-64 py-4 px-4">
|
||||
<div className="flex flex-row items-center justify-between mb-4 mt-4">
|
||||
<h2 className="font-bold ml-4">Conversations</h2>
|
||||
|
||||
{/* close sidebar button */}
|
||||
<label htmlFor="toggle-drawer" className="btn btn-ghost lg:hidden">
|
||||
<svg
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
width="16"
|
||||
height="16"
|
||||
fill="currentColor"
|
||||
className="bi bi-arrow-bar-left"
|
||||
viewBox="0 0 16 16"
|
||||
>
|
||||
<path
|
||||
fillRule="evenodd"
|
||||
d="M12.5 15a.5.5 0 0 1-.5-.5v-13a.5.5 0 0 1 1 0v13a.5.5 0 0 1-.5.5M10 8a.5.5 0 0 1-.5.5H3.707l2.147 2.146a.5.5 0 0 1-.708.708l-3-3a.5.5 0 0 1 0-.708l3-3a.5.5 0 1 1 .708.708L3.707 7.5H9.5a.5.5 0 0 1 .5.5"
|
||||
/>
|
||||
</svg>
|
||||
</label>
|
||||
</div>
|
||||
|
||||
{/* list of conversations */}
|
||||
<div
|
||||
className={classNames({
|
||||
'btn btn-ghost justify-start': true,
|
||||
'btn-active': !currConv,
|
||||
})}
|
||||
onClick={() => navigate('/')}
|
||||
>
|
||||
+ New conversation
|
||||
</div>
|
||||
{conversations.map((conv) => (
|
||||
<div
|
||||
key={conv.id}
|
||||
className={classNames({
|
||||
'btn btn-ghost justify-start font-normal': true,
|
||||
'btn-active': conv.id === currConv?.id,
|
||||
})}
|
||||
onClick={() => navigate(`/chat/${conv.id}`)}
|
||||
dir="auto"
|
||||
>
|
||||
<span className="truncate">{conv.name}</span>
|
||||
</div>
|
||||
))}
|
||||
<div className="text-center text-xs opacity-40 mt-auto mx-4">
|
||||
Conversations are saved to browser's IndexedDB
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</>
|
||||
);
|
||||
}
|
||||
5
examples/training/CMakeLists.txt
Normal file
5
examples/training/CMakeLists.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
set(TARGET llama-finetune)
|
||||
add_executable(${TARGET} finetune.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
17
examples/training/README.md
Normal file
17
examples/training/README.md
Normal file
@@ -0,0 +1,17 @@
|
||||
# llama.cpp/examples/training
|
||||
|
||||
This directory contains examples related to language model training using llama.cpp/GGML.
|
||||
So far finetuning is technically functional (for FP32 models and limited hardware setups) but the code is very much WIP.
|
||||
Finetuning of Stories 260K and LLaMA 3.2 1b seems to work with 24 GB of memory.
|
||||
**For CPU training, compile llama.cpp without any additional backends such as CUDA.**
|
||||
**For CUDA training, use the maximum number of GPU layers.**
|
||||
|
||||
Proof of concept:
|
||||
|
||||
``` sh
|
||||
export model_name=llama_3.2-1b && export quantization=f32
|
||||
./build/bin/finetune --file wikitext-2-raw/wiki.test.raw -ngl 999 --model models/${model_name}-${quantization}.gguf -c 512 -b 512 -ub 512
|
||||
./build/bin/perplexity --file wikitext-2-raw/wiki.test.raw -ngl 999 --model finetuned-model.gguf
|
||||
```
|
||||
|
||||
The perplexity value of the finetuned model should be lower after training on the test set for 2 epochs.
|
||||
96
examples/training/finetune.cpp
Normal file
96
examples/training/finetune.cpp
Normal file
@@ -0,0 +1,96 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
#include <vector>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
|
||||
params.escape = false;
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PERPLEXITY)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (params.use_mmap) {
|
||||
LOG_INF("%s: force disabling memory mapping because it would result in-read-only pointers to the weights\n", __func__);
|
||||
params.use_mmap = false;
|
||||
}
|
||||
if (params.cache_type_k != GGML_TYPE_F32) {
|
||||
LOG_INF("%s: force changing k cache type to f32 due to a lack of f16 support for OUT_PROD\n", __func__);
|
||||
params.cache_type_k = GGML_TYPE_F32;
|
||||
}
|
||||
if (params.cache_type_v != GGML_TYPE_F32) {
|
||||
LOG_INF("%s: force changing v cache type to f32 due to a lack of f16 support for OUT_PROD\n", __func__);
|
||||
params.cache_type_v = GGML_TYPE_F32;
|
||||
}
|
||||
|
||||
common_init();
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// load the model and apply lora adapter, if any
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
llama_model_ptr & model = llama_init.model;
|
||||
llama_context_ptr & ctx = llama_init.context;
|
||||
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: unable to load model\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
constexpr float val_split = 0.05f;
|
||||
|
||||
std::vector<llama_token> tokens = common_tokenize(ctx.get(), params.prompt, true);
|
||||
ggml_opt_dataset_t dataset = common_opt_dataset_init(ctx.get(), tokens, llama_n_ctx(ctx.get())/2);
|
||||
|
||||
struct ggml_opt_optimizer_params optimizer_params = ggml_opt_get_default_optimizer_params(nullptr);
|
||||
optimizer_params.adamw.alpha = 1e-7f; // learning rate
|
||||
|
||||
struct llama_opt_params lopt_params {
|
||||
/*n_ctx_train =*/ 0,
|
||||
/*param_filter =*/ llama_opt_param_filter_all,
|
||||
/*param_filter_ud =*/ nullptr,
|
||||
/*get_opt_pars =*/ ggml_opt_get_constant_optimizer_params,
|
||||
/*get_opt_pars_ud =*/ &optimizer_params,
|
||||
};
|
||||
llama_opt_init(ctx.get(), model.get(), lopt_params);
|
||||
|
||||
const int64_t idata_split = ggml_opt_dataset_ndata(dataset) * (1.0f - val_split);
|
||||
|
||||
ggml_opt_result_t result_train = ggml_opt_result_init();
|
||||
ggml_opt_result_t result_eval = ggml_opt_result_init();
|
||||
|
||||
for (int epoch = 0; epoch < 2; ++epoch) {
|
||||
llama_opt_epoch(ctx.get(), dataset, result_train, result_eval, idata_split,
|
||||
ggml_opt_epoch_callback_progress_bar, ggml_opt_epoch_callback_progress_bar);
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
ggml_opt_result_reset(result_train);
|
||||
ggml_opt_result_reset(result_eval);
|
||||
}
|
||||
ggml_opt_result_free(result_train);
|
||||
ggml_opt_result_free(result_eval);
|
||||
|
||||
llama_model_save_to_file(model.get(), "finetuned-model.gguf");
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
}
|
||||
@@ -366,6 +366,8 @@ if (MSVC)
|
||||
/wd4005 # Macro redefinition
|
||||
/wd4244 # Conversion from one type to another type, possible loss of data
|
||||
/wd4267 # Conversion from 'size_t' to a smaller type, possible loss of data
|
||||
/wd4996 # Disable POSIX deprecation warnings
|
||||
/wd4702 # Unreachable code warnings
|
||||
)
|
||||
function(disable_msvc_warnings target_name)
|
||||
if(TARGET ${target_name})
|
||||
|
||||
@@ -38,7 +38,7 @@ extern "C" {
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
|
||||
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
|
||||
GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft);
|
||||
GGML_API size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
|
||||
GGML_API ggml_backend_dev_t ggml_backend_buft_get_device (ggml_backend_buffer_type_t buft);
|
||||
|
||||
@@ -59,7 +59,7 @@ extern "C" {
|
||||
GGML_API enum ggml_status ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
|
||||
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
|
||||
@@ -248,7 +248,7 @@ extern "C" {
|
||||
// preferrably to run on the same backend as the buffer
|
||||
ggml_backend_buffer_set_usage(buf_weights, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
|
||||
|
||||
sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, NULL, num_backends, GGML_DEFAULT_GRAPH_SIZE, false);
|
||||
sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, NULL, num_backends, GGML_DEFAULT_GRAPH_SIZE, false, true);
|
||||
|
||||
// initialize buffers from a max size graph (optional)
|
||||
reserve_graph = build_graph(sched, max_batch_size);
|
||||
@@ -289,7 +289,7 @@ extern "C" {
|
||||
typedef bool (*ggml_backend_sched_eval_callback)(struct ggml_tensor * t, bool ask, void * user_data);
|
||||
|
||||
// Initialize a backend scheduler, backends with low index are given priority over backends with high index
|
||||
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel);
|
||||
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel, bool op_offload);
|
||||
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
|
||||
|
||||
// Initialize backend buffers from a measure graph
|
||||
|
||||
@@ -37,13 +37,16 @@ extern "C" {
|
||||
// ====== Dataset ======
|
||||
|
||||
GGML_API ggml_opt_dataset_t ggml_opt_dataset_init(
|
||||
int64_t ne_datapoint, // number of elements per datapoint
|
||||
int64_t ne_label, // number of elements per label
|
||||
int64_t ndata, // total number of datapoints/labels
|
||||
int64_t ndata_shard); // number of datapoints/labels per shard (unit at which the dataset is shuffled/copied)
|
||||
enum ggml_type type_data, // the type for the internal data tensor
|
||||
enum ggml_type type_label, // the type for the internal labels tensor
|
||||
int64_t ne_datapoint, // number of elements per datapoint
|
||||
int64_t ne_label, // number of elements per label
|
||||
int64_t ndata, // total number of datapoints/labels
|
||||
int64_t ndata_shard); // number of datapoints/labels per shard (unit at which the dataset is shuffled/copied)
|
||||
GGML_API void ggml_opt_dataset_free(ggml_opt_dataset_t dataset);
|
||||
|
||||
// get underlying tensors that store the data
|
||||
GGML_API int64_t ggml_opt_dataset_ndata (ggml_opt_dataset_t dataset);
|
||||
GGML_API struct ggml_tensor * ggml_opt_dataset_data (ggml_opt_dataset_t dataset); // shape = [ne_datapoint, ndata]
|
||||
GGML_API struct ggml_tensor * ggml_opt_dataset_labels(ggml_opt_dataset_t dataset); // shape = [nd_label, ndata]
|
||||
|
||||
@@ -56,13 +59,19 @@ extern "C" {
|
||||
struct ggml_tensor * data_batch, // shape = [ne_datapoint, ndata_batch]
|
||||
struct ggml_tensor * labels_batch, // shape = [ne_label, ndata_batch]
|
||||
int64_t ibatch);
|
||||
GGML_API void ggml_opt_dataset_get_batch_host(
|
||||
ggml_opt_dataset_t dataset,
|
||||
void * data_batch,
|
||||
size_t nb_data_batch,
|
||||
void * labels_batch,
|
||||
int64_t ibatch);
|
||||
|
||||
// ====== Model / Context ======
|
||||
|
||||
enum ggml_opt_build_type {
|
||||
GGML_OPT_BUILD_TYPE_FORWARD,
|
||||
GGML_OPT_BUILD_TYPE_GRAD,
|
||||
GGML_OPT_BUILD_TYPE_OPT,
|
||||
GGML_OPT_BUILD_TYPE_FORWARD = 10,
|
||||
GGML_OPT_BUILD_TYPE_GRAD = 20,
|
||||
GGML_OPT_BUILD_TYPE_OPT = 30,
|
||||
};
|
||||
|
||||
// parameters that control which optimizer is used and how said optimizer tries to find the minimal loss
|
||||
@@ -81,20 +90,22 @@ extern "C" {
|
||||
// userdata can be used to pass arbitrary data
|
||||
typedef struct ggml_opt_optimizer_params (*ggml_opt_get_optimizer_params)(void * userdata);
|
||||
|
||||
// returns the default optimizer params (constant)
|
||||
// returns the default optimizer params (constant, hard-coded values)
|
||||
// userdata is not used
|
||||
GGML_API struct ggml_opt_optimizer_params ggml_opt_get_default_optimizer_params(void * userdata);
|
||||
|
||||
// casts userdata to ggml_opt_optimizer_params and returns it
|
||||
GGML_API struct ggml_opt_optimizer_params ggml_opt_get_constant_optimizer_params(void * userdata);
|
||||
|
||||
// parameters for initializing a new optimization context
|
||||
struct ggml_opt_params {
|
||||
ggml_backend_sched_t backend_sched; // defines which backends are used to construct the compute graphs
|
||||
|
||||
struct ggml_context * ctx_compute; // created in user code, holds non-static tensors
|
||||
|
||||
// the forward graph is defined by inputs and outputs
|
||||
// those tensors and all tensors inbetween are not intended to be reusable between multiple optimization contexts
|
||||
struct ggml_tensor * inputs;
|
||||
struct ggml_tensor * outputs;
|
||||
// by default the forward graph needs to be reconstructed for each eval
|
||||
// if ctx_compute, inputs, and outputs are set the graphs are instead allocated statically
|
||||
struct ggml_context * ctx_compute;
|
||||
struct ggml_tensor * inputs;
|
||||
struct ggml_tensor * outputs;
|
||||
|
||||
enum ggml_opt_loss_type loss_type;
|
||||
enum ggml_opt_build_type build_type;
|
||||
@@ -107,12 +118,9 @@ extern "C" {
|
||||
|
||||
// get parameters for an optimization context with defaults set where possible
|
||||
// parameters for which no sensible defaults exist are supplied as arguments to this function
|
||||
GGML_API ggml_opt_params ggml_opt_default_params(
|
||||
ggml_backend_sched_t backend_sched,
|
||||
struct ggml_context * ctx_compute,
|
||||
struct ggml_tensor * inputs,
|
||||
struct ggml_tensor * outputs,
|
||||
enum ggml_opt_loss_type loss_type);
|
||||
GGML_API struct ggml_opt_params ggml_opt_default_params(
|
||||
ggml_backend_sched_t backend_sched,
|
||||
enum ggml_opt_loss_type loss_type);
|
||||
|
||||
GGML_API ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params);
|
||||
GGML_API void ggml_opt_free(ggml_opt_context_t opt_ctx);
|
||||
@@ -121,6 +129,7 @@ extern "C" {
|
||||
GGML_API void ggml_opt_reset(ggml_opt_context_t opt_ctx, bool optimizer);
|
||||
|
||||
// get underlying tensors that store data
|
||||
// if not using static graphs these pointers become invalid with the next call to ggml_opt_alloc
|
||||
GGML_API struct ggml_tensor * ggml_opt_inputs( ggml_opt_context_t opt_ctx); // forward graph input tensor
|
||||
GGML_API struct ggml_tensor * ggml_opt_outputs( ggml_opt_context_t opt_ctx); // forward graph output tensor
|
||||
GGML_API struct ggml_tensor * ggml_opt_labels( ggml_opt_context_t opt_ctx); // labels to compare outputs against
|
||||
@@ -128,11 +137,12 @@ extern "C" {
|
||||
GGML_API struct ggml_tensor * ggml_opt_pred( ggml_opt_context_t opt_ctx); // predictions made by outputs
|
||||
GGML_API struct ggml_tensor * ggml_opt_ncorrect(ggml_opt_context_t opt_ctx); // number of matching predictions between outputs and labels
|
||||
|
||||
// get the gradient accumulator for a node from the forward graph
|
||||
GGML_API struct ggml_tensor * ggml_opt_grad_acc(ggml_opt_context_t opt_ctx, struct ggml_tensor * node);
|
||||
|
||||
// ====== Optimization Result ======
|
||||
|
||||
GGML_API ggml_opt_result_t ggml_opt_result_init();
|
||||
GGML_API ggml_opt_result_t ggml_opt_result_init(void);
|
||||
GGML_API void ggml_opt_result_free(ggml_opt_result_t result);
|
||||
GGML_API void ggml_opt_result_reset(ggml_opt_result_t result);
|
||||
|
||||
@@ -144,11 +154,20 @@ extern "C" {
|
||||
|
||||
// ====== Computation ======
|
||||
|
||||
// do forward pass, increment result if not NULL
|
||||
GGML_API void ggml_opt_forward(ggml_opt_context_t opt_ctx, ggml_opt_result_t result);
|
||||
// if not using static graphs, this function must be called prior to ggml_opt_alloc
|
||||
GGML_API void ggml_opt_prepare_alloc(
|
||||
ggml_opt_context_t opt_ctx,
|
||||
struct ggml_context * ctx_compute,
|
||||
struct ggml_cgraph * gf,
|
||||
struct ggml_tensor * inputs,
|
||||
struct ggml_tensor * outputs);
|
||||
|
||||
// do forward pass, increment result if not NULL, do backward pass
|
||||
GGML_API void ggml_opt_forward_backward(ggml_opt_context_t opt_ctx, ggml_opt_result_t result);
|
||||
// allocate the next graph for evaluation, either forward or forward + backward
|
||||
// must be called exactly once prior to calling ggml_opt_eval
|
||||
GGML_API void ggml_opt_alloc(ggml_opt_context_t opt_ctx, bool backward);
|
||||
|
||||
// do forward pass, increment result if not NULL, do backward pass if allocated
|
||||
GGML_API void ggml_opt_eval(ggml_opt_context_t opt_ctx, ggml_opt_result_t result);
|
||||
|
||||
// ############################################################################
|
||||
// ## The high-level functions start here. They do not depend on any private ##
|
||||
@@ -200,9 +219,9 @@ extern "C" {
|
||||
// fit model defined by inputs and outputs to dataset
|
||||
GGML_API void ggml_opt_fit(
|
||||
ggml_backend_sched_t backend_sched, // backend scheduler for constructing the compute graphs
|
||||
ggml_context * ctx_compute, // context with temporarily allocated tensors to calculate the outputs
|
||||
ggml_tensor * inputs, // input tensor with shape [ne_datapoint, ndata_batch]
|
||||
ggml_tensor * outputs, // output tensor, must have shape [ne_label, ndata_batch] if labels are used
|
||||
struct ggml_context * ctx_compute, // context with temporarily allocated tensors to calculate the outputs
|
||||
struct ggml_tensor * inputs, // input tensor with shape [ne_datapoint, ndata_batch]
|
||||
struct ggml_tensor * outputs, // output tensor, must have shape [ne_label, ndata_batch] if labels are used
|
||||
ggml_opt_dataset_t dataset, // dataset with data and optionally also labels
|
||||
enum ggml_opt_loss_type loss_type, // loss to minimize
|
||||
ggml_opt_get_optimizer_params get_opt_pars, // callback to get optimizer params, userdata is pointer to epoch (of type int64_t)
|
||||
|
||||
@@ -673,11 +673,15 @@ extern "C" {
|
||||
GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
|
||||
GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
|
||||
|
||||
// returns whether the tensor elements can be iterated over with a flattened index (no gaps, no permutation)
|
||||
GGML_API bool ggml_is_contiguous (const struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
|
||||
GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
|
||||
GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
|
||||
|
||||
// returns whether the tensor elements are allocated as one contiguous block of memory (no gaps, but permutation ok)
|
||||
GGML_API bool ggml_is_contiguously_allocated(const struct ggml_tensor * tensor);
|
||||
|
||||
// true for tensor that is stored in memory as CxWxHxN and has been permuted to WxHxCxN
|
||||
GGML_API bool ggml_is_contiguous_channels(const struct ggml_tensor * tensor);
|
||||
|
||||
@@ -764,7 +768,7 @@ extern "C" {
|
||||
// Tensor flags
|
||||
GGML_API void ggml_set_input(struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_set_output(struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_set_param(struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
|
||||
|
||||
//
|
||||
@@ -934,7 +938,7 @@ extern "C" {
|
||||
GGML_API struct ggml_tensor * ggml_repeat_back(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
struct ggml_tensor * b); // sum up values that are adjacent in dims > 0 instead of repeated with same stride
|
||||
|
||||
// concat a and b along dim
|
||||
// used in stable-diffusion
|
||||
@@ -2045,15 +2049,14 @@ extern "C" {
|
||||
|
||||
GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_build_backward_expand(
|
||||
struct ggml_context * ctx_static, // context for static gradients (loss + gradient accumulation)
|
||||
struct ggml_context * ctx_compute, // context for gradient computation
|
||||
struct ggml_cgraph * cgraph,
|
||||
bool accumulate); // whether or not gradients should be accumulated, requires static allocation of tensors in ctx_static
|
||||
struct ggml_context * ctx, // context for gradient computation
|
||||
struct ggml_cgraph * cgraph,
|
||||
struct ggml_tensor ** grad_accs);
|
||||
|
||||
// graph allocation in a context
|
||||
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
|
||||
GGML_API struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads);
|
||||
GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
|
||||
GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph, bool force_grads);
|
||||
GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
|
||||
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // set regular grads + optimizer momenta to 0, set loss grad to 1
|
||||
GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
|
||||
|
||||
@@ -214,7 +214,7 @@ add_library(ggml
|
||||
target_link_libraries(ggml PUBLIC ggml-base)
|
||||
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||
target_link_libraries(ggml PRIVATE dl stdc++fs)
|
||||
target_link_libraries(ggml PRIVATE dl)
|
||||
endif()
|
||||
|
||||
function(ggml_add_backend_library backend)
|
||||
|
||||
@@ -56,7 +56,7 @@ size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
|
||||
return SIZE_MAX;
|
||||
}
|
||||
|
||||
size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
|
||||
size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor) {
|
||||
// get_alloc_size is optional, defaults to ggml_nbytes
|
||||
if (buft->iface.get_alloc_size) {
|
||||
size_t size = buft->iface.get_alloc_size(buft, tensor);
|
||||
@@ -152,7 +152,7 @@ size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
|
||||
return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
|
||||
}
|
||||
|
||||
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor) {
|
||||
return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
|
||||
}
|
||||
|
||||
@@ -674,6 +674,8 @@ struct ggml_backend_sched {
|
||||
char * context_buffer;
|
||||
size_t context_buffer_size;
|
||||
|
||||
bool op_offload;
|
||||
|
||||
int debug;
|
||||
};
|
||||
|
||||
@@ -766,7 +768,7 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
|
||||
if (tensor->op != GGML_OP_ROPE && src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
|
||||
int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src, tensor);
|
||||
// check if a backend with higher prio wants to offload the op
|
||||
if (src_backend_id == sched->n_backends - 1 && ggml_backend_buffer_is_host(src->buffer)) {
|
||||
if (sched->op_offload && src_backend_id == sched->n_backends - 1 && ggml_backend_buffer_is_host(src->buffer)) {
|
||||
for (int b = 0; b < src_backend_id; b++) {
|
||||
if (ggml_backend_supports_op(sched->backends[b], tensor) && ggml_backend_offload_op(sched->backends[b], tensor)) {
|
||||
SET_CAUSE(tensor, "1.off");
|
||||
@@ -1109,7 +1111,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
|
||||
const int node_backend_id = tensor_backend_id(node);
|
||||
|
||||
assert(node_backend_id != -1); // all nodes should be assigned by now
|
||||
assert(node_backend_id != -1); // all nodes should be assigned by now, this can happen if there is no CPU fallback
|
||||
|
||||
// check if we should start a new split based on the sources of the current node
|
||||
bool need_new_split = false;
|
||||
@@ -1452,7 +1454,8 @@ ggml_backend_sched_t ggml_backend_sched_new(
|
||||
ggml_backend_buffer_type_t * bufts,
|
||||
int n_backends,
|
||||
size_t graph_size,
|
||||
bool parallel) {
|
||||
bool parallel,
|
||||
bool op_offload) {
|
||||
GGML_ASSERT(n_backends > 0);
|
||||
GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
|
||||
GGML_ASSERT(ggml_backend_dev_type(ggml_backend_get_device(backends[n_backends - 1])) == GGML_BACKEND_DEVICE_TYPE_CPU);
|
||||
@@ -1497,6 +1500,7 @@ ggml_backend_sched_t ggml_backend_sched_new(
|
||||
}
|
||||
|
||||
sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
|
||||
sched->op_offload = op_offload;
|
||||
|
||||
ggml_backend_sched_reset(sched);
|
||||
|
||||
|
||||
@@ -385,9 +385,9 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
|
||||
# Fetch KleidiAI sources:
|
||||
include(FetchContent)
|
||||
set(KLEIDIAI_COMMIT_TAG "v1.5.0")
|
||||
set(KLEIDIAI_COMMIT_TAG "v1.6.0")
|
||||
set(KLEIDIAI_DOWNLOAD_URL "https://github.com/ARM-software/kleidiai/archive/refs/tags/${KLEIDIAI_COMMIT_TAG}.tar.gz")
|
||||
set(KLEIDIAI_ARCHIVE_MD5 "ea22e1aefb800e9bc8c74d91633cc58e")
|
||||
set(KLEIDIAI_ARCHIVE_MD5 "75b4ad68f25ab673dcc01065e5a0b05f")
|
||||
|
||||
if (POLICY CMP0135)
|
||||
cmake_policy(SET CMP0135 NEW)
|
||||
@@ -428,6 +428,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
${KLEIDIAI_SRC}/kai/ukernels/
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_fp32_bf16p_bf16p/
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/)
|
||||
|
||||
set(ARCH_FLAGS_TEMP "${ARCH_FLAGS}")
|
||||
@@ -438,17 +439,19 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
string(FIND "${ARCH_FLAGS_TEMP}" "+i8mm" I8MM_ENABLED)
|
||||
string(FIND "${ARCH_FLAGS_TEMP}" "+sme" SME_ENABLED)
|
||||
|
||||
set(PRIVATE_ARCH_FLAGS ${ARCH_FLAGS})
|
||||
set(PRIVATE_ARCH_FLAGS ${ARCH_FLAGS_TEMP})
|
||||
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32_neon.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32_neon.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.c)
|
||||
|
||||
if (NOT DOTPROD_ENABLED MATCHES -1)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod.c)
|
||||
endif()
|
||||
|
||||
if (NOT I8MM_ENABLED MATCHES -1)
|
||||
@@ -456,9 +459,13 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
endif()
|
||||
|
||||
if (NOT SME_ENABLED MATCHES -1)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.c)
|
||||
set(PRIVATE_ARCH_FLAGS "${PRIVATE_ARCH_FLAGS}+sve+sve2")
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_fp32_bf16p_bf16p/kai_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_pack_bf16p2vlx2_f32_sme.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.c)
|
||||
set(PRIVATE_ARCH_FLAGS "-fno-tree-vectorize;${PRIVATE_ARCH_FLAGS}+sve+sve2")
|
||||
endif()
|
||||
|
||||
set_source_files_properties(${GGML_KLEIDIAI_SOURCES} PROPERTIES COMPILE_OPTIONS "${PRIVATE_ARCH_FLAGS}")
|
||||
|
||||
@@ -72,8 +72,6 @@ static_assert(sizeof(block_iq4_nlx4) == 4 * sizeof(ggml_half) + QK4_NL * 2, "wro
|
||||
|
||||
#if defined(__GNUC__)
|
||||
#pragma GCC diagnostic ignored "-Woverlength-strings"
|
||||
#elif defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
#define UNUSED GGML_UNUSED
|
||||
|
||||
@@ -20,12 +20,6 @@
|
||||
#define GROUP_MAX_EPS_IQ1_M 1e-7f
|
||||
#define GROUP_MAX_EPS_IQ1_S 1e-12f
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
// disable "possible loss of data" to avoid warnings for hundreds of casts
|
||||
// we should just be careful :)
|
||||
#pragma warning(disable: 4244 4267)
|
||||
#endif
|
||||
|
||||
#define UNUSED GGML_UNUSED
|
||||
|
||||
// some compilers don't provide _mm256_set_m128i, e.g. gcc 7
|
||||
@@ -6596,7 +6590,118 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
}
|
||||
|
||||
*s = hsum_float_8(acc);
|
||||
#elif defined(__VXE__) || defined(__VXE2__)
|
||||
uint32_t aux[3];
|
||||
uint32_t utmp[4];
|
||||
|
||||
const int32x4_t v_z = vec_splat_s32(0);
|
||||
const uint8x16_t v_3m = vec_splat_u8(0x03);
|
||||
|
||||
const uint8x16_t v_0c = vec_splat_u8(1);
|
||||
const uint8x16_t v_1c = vec_sl(v_0c, 1);
|
||||
const uint8x16_t v_2c = vec_sl(v_0c, 2);
|
||||
const uint8x16_t v_3c = vec_sl(v_0c, 3);
|
||||
|
||||
uint8x16_t q3h[4];
|
||||
uint8x16_t q3b[2];
|
||||
int8x16_t q3bytes[4];
|
||||
int8x16_t q8bytes[4];
|
||||
uint8x16_t qhbits[2];
|
||||
|
||||
float sum = 0;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
|
||||
const uint8_t * restrict x0l = x[i].qs;
|
||||
const uint8_t * restrict x0h = x[i].hmask;
|
||||
const int8_t * restrict y0 = y[i].qs;
|
||||
|
||||
qhbits[0] = vec_xl(0 , x0h);
|
||||
qhbits[1] = vec_xl(16, x0h);
|
||||
|
||||
int32_t isum = 0;
|
||||
|
||||
memcpy(aux, x[i].scales, 12);
|
||||
utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
|
||||
utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
|
||||
utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
|
||||
utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
|
||||
|
||||
int8_t * scale = (int8_t *)utmp;
|
||||
for (int j = 0; j < 16; ++j) scale[j] -= 32;
|
||||
|
||||
for (int j = 0; j < QK_K/128; ++j) {
|
||||
int32x4_t isum0, isum1, isum2, isum3;
|
||||
|
||||
q3b[0] = vec_xl(0 , x0l);
|
||||
q3b[1] = vec_xl(16, x0l);
|
||||
x0l += 32;
|
||||
|
||||
q8bytes[0] = vec_xl(0 , y0);
|
||||
q8bytes[1] = vec_xl(16 , y0);
|
||||
q8bytes[2] = vec_xl(32 , y0);
|
||||
q8bytes[3] = vec_xl(48 , y0);
|
||||
q8bytes[4] = vec_xl(64 , y0);
|
||||
q8bytes[5] = vec_xl(80 , y0);
|
||||
q8bytes[6] = vec_xl(96 , y0);
|
||||
q8bytes[7] = vec_xl(112, y0);
|
||||
y0 += 128;
|
||||
|
||||
q3h[0] = vec_sl(vec_andc(v_0c, qhbits[0]), 2);
|
||||
q3h[1] = vec_sl(vec_andc(v_0c, qhbits[1]), 2);
|
||||
q3h[2] = vec_sl(vec_andc(v_1c, qhbits[0]), 1);
|
||||
q3h[3] = vec_sl(vec_andc(v_1c, qhbits[1]), 1);
|
||||
|
||||
q3bytes[0] = vec_sub((int8x16_t)vec_and(q3b[0], v_3m), (int8x16_t)q3h[0]);
|
||||
q3bytes[1] = vec_sub((int8x16_t)vec_and(q3b[1], v_3m), (int8x16_t)q3h[1]);
|
||||
q3bytes[2] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[0], 2), v_3m), (int8x16_t)q3h[2]);
|
||||
q3bytes[3] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[1], 2), v_3m), (int8x16_t)q3h[3]);
|
||||
|
||||
isum0 = ggml_vec_dot(v_z, q3bytes[0], q8bytes[0]);
|
||||
isum1 = ggml_vec_dot(v_z, q3bytes[1], q8bytes[1]);
|
||||
isum2 = ggml_vec_dot(v_z, q3bytes[2], q8bytes[2]);
|
||||
isum3 = ggml_vec_dot(v_z, q3bytes[3], q8bytes[3]);
|
||||
|
||||
isum += (isum0[0] + isum0[1] + isum0[2] + isum0[3]) * scale[0];
|
||||
isum += (isum1[0] + isum1[1] + isum1[2] + isum1[3]) * scale[1];
|
||||
isum += (isum2[0] + isum2[1] + isum2[2] + isum2[3]) * scale[2];
|
||||
isum += (isum3[0] + isum3[1] + isum3[2] + isum3[3]) * scale[3];
|
||||
|
||||
scale += 4;
|
||||
|
||||
q3h[0] = vec_andc(v_2c, qhbits[0]);
|
||||
q3h[1] = vec_andc(v_2c, qhbits[1]);
|
||||
q3h[2] = vec_sr(vec_andc(v_3c, qhbits[0]), 1);
|
||||
q3h[3] = vec_sr(vec_andc(v_3c, qhbits[1]), 1);
|
||||
|
||||
q3bytes[0] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[0], 4), v_3m), (int8x16_t)q3h[0]);
|
||||
q3bytes[1] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[1], 4), v_3m), (int8x16_t)q3h[1]);
|
||||
q3bytes[2] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[0], 6), v_3m), (int8x16_t)q3h[2]);
|
||||
q3bytes[3] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[1], 6), v_3m), (int8x16_t)q3h[3]);
|
||||
|
||||
isum0 = ggml_vec_dot(v_z, q3bytes[0], q8bytes[4]);
|
||||
isum1 = ggml_vec_dot(v_z, q3bytes[1], q8bytes[5]);
|
||||
isum2 = ggml_vec_dot(v_z, q3bytes[2], q8bytes[6]);
|
||||
isum3 = ggml_vec_dot(v_z, q3bytes[3], q8bytes[7]);
|
||||
|
||||
isum += (isum0[0] + isum0[1] + isum0[2] + isum0[3]) * scale[0];
|
||||
isum += (isum1[0] + isum1[1] + isum1[2] + isum1[3]) * scale[1];
|
||||
isum += (isum2[0] + isum2[1] + isum2[2] + isum2[3]) * scale[2];
|
||||
isum += (isum3[0] + isum3[1] + isum3[2] + isum3[3]) * scale[3];
|
||||
|
||||
scale += 4;
|
||||
|
||||
if (j == 0) {
|
||||
qhbits[0] = vec_sr(qhbits[0], 4);
|
||||
qhbits[1] = vec_sr(qhbits[1], 4);
|
||||
}
|
||||
}
|
||||
|
||||
sum += d * isum;
|
||||
}
|
||||
|
||||
*s = sum;
|
||||
#else
|
||||
// scalar version
|
||||
// This function is written like this so the compiler can manage to vectorize most of it
|
||||
|
||||
@@ -50,19 +50,6 @@
|
||||
#include "llamafile/sgemm.h"
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
// disable "possible loss of data" to avoid hundreds of casts
|
||||
// we should just be careful :)
|
||||
#pragma warning(disable: 4244 4267)
|
||||
|
||||
// disable POSIX deprecation warnings
|
||||
// these functions are never going away, anyway
|
||||
#pragma warning(disable: 4996)
|
||||
|
||||
// unreachable code because of multiple instances of code after GGML_ABORT
|
||||
#pragma warning(disable: 4702)
|
||||
#endif
|
||||
|
||||
// Note: once we move threading into a separate C++ file
|
||||
// will use std::hardware_destructive_interference_size instead of hardcoding it here
|
||||
// and we'll use C++ attribute syntax.
|
||||
|
||||
@@ -11,24 +11,26 @@
|
||||
#include <vector>
|
||||
|
||||
#ifdef GGML_USE_CPU_HBM
|
||||
#include "ggml-cpu-hbm.h"
|
||||
# include "ggml-cpu-hbm.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CPU_KLEIDIAI
|
||||
#include "kleidiai/kleidiai.h"
|
||||
#endif
|
||||
|
||||
#if defined(__APPLE__)
|
||||
#include <sys/types.h>
|
||||
#include <sys/sysctl.h>
|
||||
# include "kleidiai/kleidiai.h"
|
||||
#endif
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
#define NOMINMAX
|
||||
# define WIN32_LEAN_AND_MEAN
|
||||
# ifndef NOMINMAX
|
||||
# define NOMINMAX
|
||||
# endif
|
||||
# include <windows.h>
|
||||
#else
|
||||
# include <unistd.h>
|
||||
#endif
|
||||
#include <windows.h>
|
||||
|
||||
#if defined(__APPLE__)
|
||||
# include <sys/sysctl.h>
|
||||
# include <sys/types.h>
|
||||
#endif
|
||||
|
||||
// ggml-backend interface
|
||||
@@ -70,8 +72,10 @@ static ggml_backend_buffer_type_t * ggml_backend_cpu_device_get_extra_buffers_ty
|
||||
}
|
||||
|
||||
static bool ggml_backend_cpu_is_extra_buffer_type(ggml_backend_buffer_type_t buft) {
|
||||
for (auto extra : ggml_backend_cpu_get_extra_buffers_type()) {
|
||||
if (extra && extra == buft) return true;
|
||||
for (auto * extra : ggml_backend_cpu_get_extra_buffers_type()) {
|
||||
if (extra && extra == buft) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
@@ -330,9 +334,18 @@ static const char * ggml_backend_cpu_device_get_description(ggml_backend_dev_t d
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
||||
// TODO
|
||||
*free = 0;
|
||||
*total = 0;
|
||||
#ifdef _WIN32
|
||||
MEMORYSTATUSEX status;
|
||||
status.dwLength = sizeof(status);
|
||||
GlobalMemoryStatusEx(&status);
|
||||
*total = status.ullTotalPhys;
|
||||
*free = status.ullAvailPhys;
|
||||
#else
|
||||
long pages = sysconf(_SC_PHYS_PAGES);
|
||||
long page_size = sysconf(_SC_PAGE_SIZE);
|
||||
*total = pages * page_size;
|
||||
*free = *total;
|
||||
#endif
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
@@ -4,16 +4,22 @@
|
||||
|
||||
// KleidiAI micro-kernels
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p_qsi4c32p_interface.h"
|
||||
#include "kai_lhs_quant_pack_qsi8d32p_f32.h"
|
||||
#include "kai_lhs_quant_pack_qsi8d32p_f32_neon.h"
|
||||
#include "kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.h"
|
||||
#include "kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.h"
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod.h"
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod.h"
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod.h"
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm.h"
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa.h"
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.h"
|
||||
#include "kai_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa.h"
|
||||
|
||||
#include "kai_lhs_pack_bf16p2vlx2_f32_sme.h"
|
||||
#include "kai_lhs_quant_pack_qsi8d32p_f32.h"
|
||||
#include "kai_lhs_quant_pack_qsi8d32p_f32_neon.h"
|
||||
|
||||
#include "kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.h"
|
||||
#include "kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.h"
|
||||
#include "kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.h"
|
||||
|
||||
#include "kai_common.h"
|
||||
|
||||
#include "kernels.h"
|
||||
@@ -61,6 +67,53 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_SME,
|
||||
/* .lhs_type = */ GGML_TYPE_F32,
|
||||
/* .rhs_type = */ GGML_TYPE_Q4_0,
|
||||
/* .op_type = */ GGML_TYPE_F32,
|
||||
},
|
||||
{
|
||||
/* SME GEMM */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
},
|
||||
/* SME GEMV */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
},
|
||||
/* .lhs_info = */ {
|
||||
/* .get_offset = */ kai_get_lhs_offset_lhs_pack_bf16p2vlx2_f32_sme,
|
||||
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_pack_bf16p2vlx2_f32_sme,
|
||||
/* .packed_size = */ kai_get_lhs_packed_size_lhs_pack_bf16p2vlx2_f32_sme,
|
||||
/* .pack_func = */ kai_run_lhs_pack_bf16p2vlx2_f32_sme,
|
||||
},
|
||||
/* .rhs_info = */ {
|
||||
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme,
|
||||
/* .pack_func = */ kai_run_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_SME,
|
||||
/* .lhs_type = */ GGML_TYPE_F32,
|
||||
/* .rhs_type = */ GGML_TYPE_F16,
|
||||
/* .op_type = */ GGML_TYPE_F32,
|
||||
},
|
||||
#endif
|
||||
#if defined(__APPLE__)
|
||||
@@ -105,6 +158,9 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_DOTPROD,
|
||||
/* .lhs_type = */ GGML_TYPE_F32,
|
||||
/* .rhs_type = */ GGML_TYPE_Q4_0,
|
||||
/* .op_type = */ GGML_TYPE_F32,
|
||||
},
|
||||
#endif
|
||||
#if defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
@@ -148,6 +204,9 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_DOTPROD | CPU_FEATURE_I8MM,
|
||||
/* .lhs_type = */ GGML_TYPE_F32,
|
||||
/* .rhs_type = */ GGML_TYPE_Q4_0,
|
||||
/* .op_type = */ GGML_TYPE_F32,
|
||||
},
|
||||
#endif
|
||||
#else
|
||||
@@ -192,6 +251,9 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_DOTPROD | CPU_FEATURE_I8MM,
|
||||
/* .lhs_type = */ GGML_TYPE_F32,
|
||||
/* .rhs_type = */ GGML_TYPE_Q4_0,
|
||||
/* .op_type = */ GGML_TYPE_F32,
|
||||
},
|
||||
#endif
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
@@ -235,12 +297,33 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_DOTPROD,
|
||||
/* .lhs_type = */ GGML_TYPE_F32,
|
||||
/* .rhs_type = */ GGML_TYPE_Q4_0,
|
||||
/* .op_type = */ GGML_TYPE_F32,
|
||||
},
|
||||
#endif
|
||||
#endif
|
||||
};
|
||||
|
||||
ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature features) {
|
||||
ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features, const ggml_tensor * tensor) {
|
||||
ggml_kleidiai_kernels * kernel = nullptr;
|
||||
|
||||
if (tensor->op == GGML_OP_MUL_MAT && tensor->src[0] != nullptr && tensor->src[1] != nullptr) {
|
||||
for (size_t i = 0; i < NELEMS(gemm_gemv_kernels); ++i) {
|
||||
if ((cpu_features & gemm_gemv_kernels[i].required_cpu) == gemm_gemv_kernels[i].required_cpu &&
|
||||
gemm_gemv_kernels[i].lhs_type == tensor->src[1]->type &&
|
||||
gemm_gemv_kernels[i].rhs_type == tensor->src[0]->type &&
|
||||
gemm_gemv_kernels[i].op_type == tensor->type) {
|
||||
kernel = &gemm_gemv_kernels[i];
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return kernel;
|
||||
}
|
||||
|
||||
ggml_kleidiai_kernels * ggml_kleidiai_select_kernels_q4_0(cpu_feature features) {
|
||||
ggml_kleidiai_kernels * kernels = nullptr;
|
||||
|
||||
for (size_t i = 0; i < NELEMS(gemm_gemv_kernels); ++i) {
|
||||
|
||||
@@ -4,6 +4,10 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <functional>
|
||||
#include <variant>
|
||||
#include "ggml.h"
|
||||
|
||||
enum cpu_feature {
|
||||
CPU_FEATURE_NONE = 0,
|
||||
CPU_FEATURE_DOTPROD = 1,
|
||||
@@ -26,26 +30,53 @@ struct kernel_info {
|
||||
size_t (*get_nr)(void);
|
||||
size_t (*get_kr)(void);
|
||||
size_t (*get_sr)(void);
|
||||
size_t (*get_lhs_offset)(size_t m_idx, size_t k, size_t bl);
|
||||
size_t (*get_rhs_packed_offset)(size_t n_idx, size_t k, size_t bl);
|
||||
std::variant<
|
||||
std::function<size_t(size_t n_idx, size_t k, size_t bl)>,
|
||||
std::function<size_t(size_t m_idx, size_t k)>
|
||||
> get_lhs_offset;
|
||||
std::variant<
|
||||
std::function<size_t(size_t n_idx, size_t k, size_t bl)>,
|
||||
std::function<size_t(size_t n_idx, size_t k)>
|
||||
> get_rhs_packed_offset;
|
||||
size_t (*get_dst_offset)(size_t m_idx, size_t n_idx, size_t stride);
|
||||
size_t (*get_dst_size)(size_t m, size_t n);
|
||||
void (*run_kernel)(size_t m, size_t n, size_t k, size_t bl, const void* lhs_packed, const void* rhs_packed,
|
||||
float* dst, size_t dst_stride_row, size_t dst_stride_col, float scalar_min, float scalar_max);
|
||||
std::variant<
|
||||
std::function<void(size_t m, size_t n, size_t k, size_t bl, const void* lhs_packed, const void* rhs_packed,
|
||||
float* dst, size_t dst_stride_row, size_t dst_stride_col, float scalar_min, float scalar_max)>,
|
||||
std::function<void(size_t m, size_t n, size_t k, const void* lhs_packed, const void* rhs_packed, void* dst, size_t dst_stride_row,
|
||||
size_t dst_stride_col, float clamp_min, float clamp_max)>
|
||||
> run_kernel;
|
||||
};
|
||||
|
||||
struct lhs_packing_info {
|
||||
size_t (*get_offset)(size_t m_idx, size_t lhs_stride);
|
||||
size_t (*get_packed_offset)(size_t m_idx, size_t k, size_t bl, size_t mr, size_t kr, size_t sr);
|
||||
size_t (*packed_size)(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr);
|
||||
void (*pack_func)(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr, size_t m_idx_start, const float* lhs,
|
||||
size_t lhs_stride, void* lhs_packed);
|
||||
std::variant<
|
||||
std::function<size_t(size_t m_idx, size_t k, size_t bl, size_t mr, size_t kr, size_t sr)>,
|
||||
std::function<size_t(size_t m_idx, size_t k, size_t mr, size_t kr, size_t sr)>
|
||||
> get_packed_offset;
|
||||
std::variant<
|
||||
std::function<size_t(size_t m_idx, size_t k, size_t bl, size_t mr, size_t kr, size_t sr)>,
|
||||
std::function<size_t(size_t m, size_t k, size_t mr, size_t kr, size_t sr)>
|
||||
> packed_size;
|
||||
std::variant<
|
||||
std::function<void(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr, size_t m_idx_start, const float* lhs,
|
||||
size_t lhs_stride, void* lhs_packed)>,
|
||||
std::function<void(size_t m, size_t k, size_t mr, size_t kr, size_t sr, size_t m_idx_start, const void* lhs, size_t lhs_stride,
|
||||
void* lhs_packed)>
|
||||
> pack_func;
|
||||
};
|
||||
|
||||
struct rhs_packing_info {
|
||||
size_t (*packed_size)(size_t n, size_t k, size_t nr, size_t kr, size_t bl);
|
||||
void (*pack_func)(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t bl, const uint8_t* rhs,
|
||||
const float* bias, void* rhs_packed, size_t extra_bytes, const struct kai_rhs_pack_qs4cxs1s0_param* params);
|
||||
std::variant<
|
||||
std::function<size_t(size_t n, size_t k, size_t nr, size_t kr, size_t bl)>,
|
||||
std::function<size_t(size_t n, size_t k)>
|
||||
> packed_size;
|
||||
std::variant<
|
||||
std::function<void(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t bl, const uint8_t* rhs,
|
||||
const float* bias, void* rhs_packed, size_t extra_bytes, const struct kai_rhs_pack_qs4cxs1s0_param* params)>,
|
||||
std::function<void(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t rhs_stride, const void* rhs,
|
||||
const void* bias, const void* scale, void* rhs_packed, size_t extra_bytes, const void* params)>
|
||||
> pack_func;
|
||||
};
|
||||
|
||||
struct ggml_kleidiai_kernels {
|
||||
@@ -55,6 +86,10 @@ struct ggml_kleidiai_kernels {
|
||||
rhs_packing_info rhs_info;
|
||||
|
||||
cpu_feature required_cpu;
|
||||
ggml_type lhs_type;
|
||||
ggml_type rhs_type;
|
||||
ggml_type op_type;
|
||||
};
|
||||
|
||||
ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features);
|
||||
ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features, const ggml_tensor * tensor);
|
||||
ggml_kleidiai_kernels * ggml_kleidiai_select_kernels_q4_0(cpu_feature features);
|
||||
|
||||
@@ -3,7 +3,9 @@
|
||||
//
|
||||
#include <arm_neon.h>
|
||||
#include <assert.h>
|
||||
#include <atomic>
|
||||
#include <cfloat>
|
||||
#include <stdexcept>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#if defined(__linux__)
|
||||
@@ -34,8 +36,9 @@
|
||||
#include "ggml-common.h"
|
||||
|
||||
struct ggml_kleidiai_context {
|
||||
cpu_feature features;
|
||||
ggml_kleidiai_kernels * kernels;
|
||||
} static ctx = { NULL };
|
||||
} static ctx = { CPU_FEATURE_NONE, NULL };
|
||||
|
||||
static void init_kleidiai_context(void) {
|
||||
|
||||
@@ -47,18 +50,18 @@ static void init_kleidiai_context(void) {
|
||||
const char *env_var = getenv("GGML_KLEIDIAI_SME");
|
||||
int sme_enabled = 0;
|
||||
|
||||
cpu_feature features = (ggml_cpu_has_dotprod() ? CPU_FEATURE_DOTPROD : CPU_FEATURE_NONE) |
|
||||
(ggml_cpu_has_matmul_int8() ? CPU_FEATURE_I8MM : CPU_FEATURE_NONE) |
|
||||
(ggml_cpu_has_sve() ? CPU_FEATURE_SVE : CPU_FEATURE_NONE);
|
||||
ctx.features = (ggml_cpu_has_dotprod() ? CPU_FEATURE_DOTPROD : CPU_FEATURE_NONE) |
|
||||
(ggml_cpu_has_matmul_int8() ? CPU_FEATURE_I8MM : CPU_FEATURE_NONE) |
|
||||
(ggml_cpu_has_sve() ? CPU_FEATURE_SVE : CPU_FEATURE_NONE);
|
||||
|
||||
if (env_var) {
|
||||
sme_enabled = atoi(env_var);
|
||||
}
|
||||
|
||||
if (sme_enabled != 0) {
|
||||
features |= ggml_cpu_has_sme() ? CPU_FEATURE_SME : CPU_FEATURE_NONE;
|
||||
ctx.features |= ggml_cpu_has_sme() ? CPU_FEATURE_SME : CPU_FEATURE_NONE;
|
||||
}
|
||||
ctx.kernels = ggml_kleidiai_select_kernels(features);
|
||||
ctx.kernels = ggml_kleidiai_select_kernels_q4_0(ctx.features);
|
||||
}
|
||||
ggml_critical_section_end();
|
||||
}
|
||||
@@ -68,95 +71,275 @@ static inline int64_t ggml_ne(const ggml_tensor * tensor, int dim) {
|
||||
return tensor->ne[dim];
|
||||
}
|
||||
|
||||
template<typename Ret, typename Variant, typename... Args>
|
||||
static Ret variant_call(const Variant & var, Args&&... args) {
|
||||
return std::visit([&](auto&& func) -> Ret {
|
||||
if constexpr (std::is_invocable_r_v<Ret, decltype(func), Args...>) {
|
||||
return func(std::forward<Args>(args)...);
|
||||
} else {
|
||||
throw std::runtime_error("Invalid function type in variant_call");
|
||||
}
|
||||
}, var);
|
||||
}
|
||||
|
||||
namespace ggml::cpu::kleidiai {
|
||||
|
||||
static size_t round_down(size_t x, size_t y) {
|
||||
return y == 0 ? x : x - (x % y);
|
||||
}
|
||||
|
||||
static void transpose_f32kxn_f16nxk(size_t n, size_t k, float * dst, const uint16_t * src, size_t rhs_stride) {
|
||||
size_t src_stride = rhs_stride / sizeof(uint16_t);
|
||||
size_t dst_stride = n;
|
||||
|
||||
for (size_t k_idx = 0; k_idx < k; ++k_idx) {
|
||||
for (size_t n_idx = 0; n_idx < n; ++n_idx) {
|
||||
uint16_t v = *(src + k_idx + n_idx * src_stride);
|
||||
*(dst + n_idx + k_idx * dst_stride) = kai_cast_f32_f16(v);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
class tensor_traits : public ggml::cpu::tensor_traits {
|
||||
bool work_size(int /* n_threads */, const struct ggml_tensor * op, size_t & size) override {
|
||||
GGML_ASSERT(ctx.kernels);
|
||||
kernel_info * kernel = op->src[1]->ne[1] == 1 ? &ctx.kernels->gemv : &ctx.kernels->gemm;
|
||||
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, op);
|
||||
GGML_ASSERT(kernels);
|
||||
kernel_info * kernel = op->src[1]->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
|
||||
|
||||
size_t k = op->src[0]->ne[0];
|
||||
size_t n = op->src[0]->ne[1];
|
||||
size_t m = op->src[1]->ne[1];
|
||||
|
||||
size_t mr = kernel->get_mr();
|
||||
size_t kr = kernel->get_kr();
|
||||
size_t sr = kernel->get_sr();
|
||||
|
||||
size = ctx.kernels->lhs_info.packed_size(m, k, QK4_0, mr, kr, sr);
|
||||
if (kernels->rhs_type == GGML_TYPE_Q4_0) {
|
||||
size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, QK4_0, mr, kr, sr);
|
||||
} else if (kernels->rhs_type == GGML_TYPE_F16) {
|
||||
size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, mr, kr, sr) +
|
||||
variant_call<size_t>(kernels->rhs_info.packed_size, n, k) +
|
||||
k * n * sizeof(float) + n * sizeof(float);
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool compute_forward(struct ggml_compute_params * params, struct ggml_tensor * dst) override {
|
||||
if (dst->op == GGML_OP_MUL_MAT) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
if (dst->src[0]->type == GGML_TYPE_Q4_0) {
|
||||
return compute_forward_q4_0(params, dst);
|
||||
} else if (dst->src[0]->type == GGML_TYPE_F16) {
|
||||
return compute_forward_kv_cache(params, dst);
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
bool compute_forward_kv_cache(ggml_compute_params * params, struct ggml_tensor * dst) {
|
||||
static std::atomic_flag first_to_arrive = ATOMIC_FLAG_INIT;
|
||||
|
||||
GGML_ASSERT(ctx.kernels);
|
||||
kernel_info * kernel = src1->ne[1] == 1 ? &ctx.kernels->gemv : &ctx.kernels->gemm;
|
||||
lhs_packing_info * lhs_info = &ctx.kernels->lhs_info;
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_ASSERT(kernel);
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst);
|
||||
GGML_ASSERT(kernels);
|
||||
|
||||
const size_t k = ne00;
|
||||
const size_t m = ne11;
|
||||
const size_t n = ne01;
|
||||
kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
|
||||
GGML_ASSERT(kernel);
|
||||
|
||||
const size_t n_step = kernel->get_n_step();
|
||||
const size_t num_n_per_thread = kai_roundup(kai_roundup(n, nth) / nth, n_step);
|
||||
const size_t n_start = ith * num_n_per_thread;
|
||||
const int nth = params->nth;
|
||||
const int ith = params->ith;
|
||||
|
||||
size_t n_to_process = num_n_per_thread;
|
||||
if ((n_start + n_to_process) > n) {
|
||||
n_to_process = n - n_start;
|
||||
const int64_t lhs_batch_size0 = ne12;
|
||||
const int64_t rhs_batch_size0 = ne02;
|
||||
const int64_t batch_size = rhs_batch_size0;
|
||||
|
||||
const int64_t r = lhs_batch_size0 / rhs_batch_size0;
|
||||
|
||||
const int64_t m = ne11 * r;
|
||||
const int64_t n = ne01;
|
||||
const int64_t k = ne00;
|
||||
|
||||
const size_t lhs_stride = src1->nb[1];
|
||||
const size_t rhs_stride = src0->nb[1];
|
||||
const size_t dst_stride = dst->nb[1];
|
||||
|
||||
const int64_t mr = static_cast<int64_t>(kernel->get_mr());
|
||||
const int64_t nr = static_cast<int64_t>(kernel->get_nr());
|
||||
const int64_t kr = static_cast<int64_t>(kernel->get_kr());
|
||||
const int64_t sr = static_cast<int64_t>(kernel->get_sr());
|
||||
|
||||
const size_t lhs_packed_size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, mr, kr, sr);
|
||||
const size_t rhs_packed_size = variant_call<size_t>(kernels->rhs_info.packed_size, n, k);
|
||||
const size_t kxn_size = k * n * sizeof(float);
|
||||
const size_t bias_size = n * sizeof(float);
|
||||
|
||||
const size_t wsize_required = lhs_packed_size + rhs_packed_size + kxn_size + bias_size;
|
||||
GGML_ASSERT(wsize_required <= params->wsize);
|
||||
|
||||
uint8_t * lhs_packed = static_cast<uint8_t *>(params->wdata);
|
||||
uint8_t * rhs_packed = lhs_packed + lhs_packed_size;
|
||||
uint8_t * rhs_kxn = rhs_packed + rhs_packed_size;
|
||||
uint8_t * bias = rhs_kxn + kxn_size;
|
||||
|
||||
for (int64_t batch_idx = 0; batch_idx < batch_size; ++batch_idx) {
|
||||
const uint8_t * lhs_batch = static_cast<const uint8_t *>(src1->data) + batch_idx * m * lhs_stride;
|
||||
const uint8_t * rhs_batch = static_cast<const uint8_t *>(src0->data) + batch_idx * n * rhs_stride;
|
||||
uint8_t * dst_batch = static_cast<uint8_t *>(dst->data) + batch_idx * m * dst_stride;
|
||||
|
||||
// LHS packing
|
||||
{
|
||||
const int64_t m_roundup_mr = kai_roundup(m, mr);
|
||||
const int64_t num_threads = KAI_MIN(m_roundup_mr / mr, nth);
|
||||
|
||||
if (ith < num_threads) {
|
||||
const int64_t num_m_per_thread0 = round_down(m_roundup_mr / num_threads, mr);
|
||||
const int64_t num_m_per_threadN_1 = m - (num_threads - 1) * num_m_per_thread0;
|
||||
|
||||
const int64_t m_start = ith * num_m_per_thread0;
|
||||
const int64_t num_m_per_thread = (ith == num_threads - 1) ? num_m_per_threadN_1 : num_m_per_thread0;
|
||||
|
||||
const size_t lhs_offset = variant_call<size_t>(kernels->gemm.get_lhs_offset, m_start, lhs_stride);
|
||||
const size_t lhs_packed_offset = variant_call<size_t>(kernels->lhs_info.get_packed_offset, m_start, k, mr, kr, sr);
|
||||
|
||||
const void * src_ptr = static_cast<const uint8_t *>(lhs_batch) + lhs_offset;
|
||||
void * dst_ptr = static_cast<uint8_t *>(lhs_packed) + lhs_packed_offset;
|
||||
|
||||
variant_call<void>(kernels->lhs_info.pack_func, num_m_per_thread, k, mr, kr, sr, 0, src_ptr, lhs_stride, dst_ptr);
|
||||
}
|
||||
}
|
||||
|
||||
const uint8_t * lhs = static_cast<const uint8_t *>(src1->data);
|
||||
uint8_t * lhs_packed = (uint8_t*)params->wdata;
|
||||
const uint8_t * rhs_packed = static_cast<const uint8_t *>(src0->data);
|
||||
// RHS packing
|
||||
if (first_to_arrive.test_and_set(std::memory_order_acquire) == false) {
|
||||
// First thread to reach this point handles RHS packing
|
||||
memset(bias, 0, n * sizeof(float));
|
||||
transpose_f32kxn_f16nxk(n, k, reinterpret_cast<float *>(rhs_kxn),
|
||||
reinterpret_cast<const uint16_t *>(rhs_batch), rhs_stride);
|
||||
|
||||
size_t mr = kernel->get_mr();
|
||||
size_t kr = kernel->get_kr();
|
||||
size_t sr = kernel->get_sr();
|
||||
|
||||
// Calculate number of columns to be processed per thread
|
||||
const size_t num_m_per_thread = kai_roundup(m, mr * nth) / nth;
|
||||
const size_t m_start = ith * num_m_per_thread;
|
||||
size_t m_to_process = num_m_per_thread;
|
||||
if ((m_start + m_to_process) > m) {
|
||||
m_to_process = m - m_start;
|
||||
}
|
||||
|
||||
if(m_start < m) {
|
||||
// Transform LHS
|
||||
const size_t src_stride = src1->nb[1];
|
||||
const float * src_ptr = reinterpret_cast<const float *>(lhs + lhs_info->get_offset(m_start, dst->src[1]->nb[1]));
|
||||
const size_t lhs_packed_offset = lhs_info->get_packed_offset(m_start, k, QK4_0, mr, kr, sr);
|
||||
void * lhs_packed_ptr = static_cast<void *>(lhs_packed + lhs_packed_offset);
|
||||
|
||||
lhs_info->pack_func(m_to_process, k, QK4_0, mr, kr, sr, 0, src_ptr, src_stride, lhs_packed_ptr);
|
||||
variant_call<void>(kernels->rhs_info.pack_func, 1, n, k, nr, kr, sr, n * sizeof(float),
|
||||
rhs_kxn, bias, nullptr, rhs_packed, 0, nullptr);
|
||||
}
|
||||
|
||||
ggml_barrier(params->threadpool);
|
||||
|
||||
// Perform the operation
|
||||
const size_t dst_stride = dst->nb[1];
|
||||
const size_t lhs_packed_offset = lhs_info->get_packed_offset(0, k, QK4_0, mr, kr, sr);
|
||||
const size_t rhs_packed_offset = kernel->get_rhs_packed_offset(n_start, k, QK4_0);
|
||||
const size_t dst_offset = kernel->get_dst_offset(0, n_start, dst_stride);
|
||||
const void * rhs_ptr = static_cast<const void *>(rhs_packed + rhs_packed_offset);
|
||||
const void* lhs_ptr = (const void*)((const char *)lhs_packed + lhs_packed_offset);
|
||||
float *dst_ptr = reinterpret_cast<float *>(static_cast<uint8_t *>(dst->data) + dst_offset);
|
||||
first_to_arrive.clear(std::memory_order_release);
|
||||
|
||||
kernel->run_kernel(m, n_to_process, k, QK4_0, lhs_ptr, rhs_ptr, dst_ptr,
|
||||
dst_stride, sizeof(float), -FLT_MAX, FLT_MAX);
|
||||
return true;
|
||||
// Perform the matmul
|
||||
{
|
||||
const int64_t m_to_process = m;
|
||||
const int64_t m_start = 0;
|
||||
|
||||
const int64_t n_step = static_cast<int64_t>(kernel->get_n_step());
|
||||
const int64_t num_threads = KAI_MIN(n / n_step, nth);
|
||||
|
||||
if (ith < num_threads) {
|
||||
const int64_t num_n_per_thread0 = round_down(n / num_threads, n_step);
|
||||
const int64_t num_n_per_threadN_1 = n - (num_threads - 1) * num_n_per_thread0;
|
||||
|
||||
const int64_t n_start = ith * num_n_per_thread0;
|
||||
const int64_t n_to_process = (ith == num_threads - 1) ? num_n_per_threadN_1 : num_n_per_thread0;
|
||||
|
||||
const size_t lhs_packed_offset = variant_call<size_t>(kernel->get_lhs_offset, m_start, k);
|
||||
const size_t rhs_packed_offset = variant_call<size_t>(kernel->get_rhs_packed_offset, n_start, k);
|
||||
const size_t dst_offset = kernel->get_dst_offset(m_start, n_start, dst_stride);
|
||||
|
||||
const void * lhs_ptr = lhs_packed + lhs_packed_offset;
|
||||
const void * rhs_ptr = rhs_packed + rhs_packed_offset;
|
||||
float * dst_ptr = reinterpret_cast<float *>(dst_batch + dst_offset);
|
||||
|
||||
variant_call<void>(kernel->run_kernel, m_to_process, n_to_process, k, lhs_ptr, rhs_ptr, dst_ptr, dst_stride, sizeof(float), -FLT_MAX, FLT_MAX);
|
||||
}
|
||||
}
|
||||
|
||||
if (batch_idx != batch_size - 1) {
|
||||
// This barrier is necessary when the batch size is larger than 1. While processing a batch,
|
||||
// the work data buffer (params->wdata) is used as temporary storage which means that only
|
||||
// a single batch can be processed at any given time. No barrier is needed for the last
|
||||
// batch since GGML inserts a barrier between the execution of every operator.
|
||||
ggml_barrier(params->threadpool);
|
||||
}
|
||||
}
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool compute_forward_q4_0(struct ggml_compute_params * params, struct ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst);
|
||||
GGML_ASSERT(kernels);
|
||||
|
||||
kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
|
||||
lhs_packing_info * lhs_info = &kernels->lhs_info;
|
||||
|
||||
GGML_ASSERT(kernel);
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const size_t k = ne00;
|
||||
const size_t m = ne11;
|
||||
const size_t n = ne01;
|
||||
|
||||
size_t mr = kernel->get_mr();
|
||||
size_t kr = kernel->get_kr();
|
||||
size_t sr = kernel->get_sr();
|
||||
|
||||
const uint8_t * lhs = static_cast<const uint8_t *>(src1->data);
|
||||
uint8_t * lhs_packed = (uint8_t*)params->wdata;
|
||||
const uint8_t * rhs_packed = static_cast<const uint8_t *>(src0->data);
|
||||
|
||||
const size_t n_step = kernel->get_n_step();
|
||||
const size_t num_n_per_thread = kai_roundup(kai_roundup(n, nth) / nth, n_step);
|
||||
const size_t n_start = ith * num_n_per_thread;
|
||||
|
||||
size_t n_to_process = num_n_per_thread;
|
||||
if ((n_start + n_to_process) > n) {
|
||||
n_to_process = n - n_start;
|
||||
}
|
||||
|
||||
// Calculate number of columns to be processed per thread
|
||||
const size_t num_m_per_thread = kai_roundup(m, mr * nth) / nth;
|
||||
const size_t m_start = ith * num_m_per_thread;
|
||||
size_t m_to_process = num_m_per_thread;
|
||||
if ((m_start + m_to_process) > m) {
|
||||
m_to_process = m - m_start;
|
||||
}
|
||||
|
||||
if (m_start < m) {
|
||||
// Transform LHS
|
||||
const size_t src_stride = src1->nb[1];
|
||||
const float * src_ptr = reinterpret_cast<const float *>(lhs + lhs_info->get_offset(m_start, dst->src[1]->nb[1]));
|
||||
const size_t lhs_packed_offset = variant_call<size_t>(lhs_info->get_packed_offset, m_start, k, QK4_0, mr, kr, sr);
|
||||
void * lhs_packed_ptr = static_cast<void *>(lhs_packed + lhs_packed_offset);
|
||||
|
||||
variant_call<void>(lhs_info->pack_func, m_to_process, k, QK4_0, mr, kr, sr, 0, src_ptr, src_stride, lhs_packed_ptr);
|
||||
}
|
||||
|
||||
ggml_barrier(params->threadpool);
|
||||
|
||||
// Perform the operation
|
||||
const size_t dst_stride = dst->nb[1];
|
||||
const size_t lhs_packed_offset = variant_call<size_t>(lhs_info->get_packed_offset, 0, k, QK4_0, mr, kr, sr);
|
||||
const size_t rhs_packed_offset = variant_call<size_t>(kernel->get_rhs_packed_offset, n_start, k, QK4_0);
|
||||
const size_t dst_offset = kernel->get_dst_offset(0, n_start, dst_stride);
|
||||
const void * rhs_ptr = static_cast<const void *>(rhs_packed + rhs_packed_offset);
|
||||
const void* lhs_ptr = (const void*)((const char *)lhs_packed + lhs_packed_offset);
|
||||
float *dst_ptr = reinterpret_cast<float *>(static_cast<uint8_t *>(dst->data) + dst_offset);
|
||||
|
||||
variant_call<void>(kernel->run_kernel, m, n_to_process, k, QK4_0, lhs_ptr, rhs_ptr, dst_ptr, dst_stride,
|
||||
sizeof(float), -FLT_MAX, FLT_MAX);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
public:
|
||||
@@ -169,13 +352,13 @@ public:
|
||||
size_t sr = ctx.kernels->gemm.get_sr();
|
||||
|
||||
#ifndef NDEBUG
|
||||
const size_t repacked_size = ctx.kernels->rhs_info.packed_size(n, k, nr, kr, QK4_0);
|
||||
const size_t repacked_size = variant_call<size_t>(ctx.kernels->rhs_info.packed_size, n, k, nr, kr, QK4_0);
|
||||
GGML_ASSERT(repacked_size <= data_size && "repacked size larger than the packed size!");
|
||||
#endif
|
||||
struct kai_rhs_pack_qs4cxs1s0_param params;
|
||||
params.lhs_zero_point = 1;
|
||||
params.rhs_zero_point = 8;
|
||||
ctx.kernels->rhs_info.pack_func(1, n, k, nr, kr, sr, QK4_0, (const uint8_t *)data, NULL, tensor->data, 0, ¶ms);
|
||||
variant_call<void>(ctx.kernels->rhs_info.pack_func, 1, n, k, nr, kr, sr, QK4_0, (const uint8_t*)data, nullptr, tensor->data, 0, ¶ms);
|
||||
|
||||
return 0;
|
||||
|
||||
@@ -189,7 +372,7 @@ static ggml::cpu::tensor_traits * get_tensor_traits(ggml_backend_buffer_t, struc
|
||||
}
|
||||
} // namespace ggml::cpu::kleidiai
|
||||
|
||||
GGML_API enum ggml_status ggml_backend_cpu_kleidiai_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
static enum ggml_status ggml_backend_cpu_kleidiai_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
tensor->extra = (void *) ggml::cpu::kleidiai::get_tensor_traits(buffer, tensor);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
@@ -238,12 +421,11 @@ static size_t ggml_backend_cpu_kleidiai_buffer_type_get_alignment(ggml_backend_b
|
||||
namespace ggml::cpu::kleidiai {
|
||||
class extra_buffer_type : ggml::cpu::extra_buffer_type {
|
||||
bool supports_op(ggml_backend_dev_t, const struct ggml_tensor * op) override {
|
||||
if ( op->op == GGML_OP_MUL_MAT &&
|
||||
op->src[0]->type == GGML_TYPE_Q4_0 &&
|
||||
op->src[0]->buffer &&
|
||||
(ggml_n_dims(op->src[0]) == 2) &&
|
||||
op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type() && ctx.kernels
|
||||
) {
|
||||
if (op->op == GGML_OP_MUL_MAT &&
|
||||
op->src[0]->type == GGML_TYPE_Q4_0 &&
|
||||
op->src[0]->buffer &&
|
||||
(ggml_n_dims(op->src[0]) == 2) &&
|
||||
op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type() && ctx.kernels) {
|
||||
if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) {
|
||||
return false;
|
||||
}
|
||||
@@ -260,6 +442,19 @@ class extra_buffer_type : ggml::cpu::extra_buffer_type {
|
||||
if (op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type()) {
|
||||
return (ggml::cpu::tensor_traits *) op->src[0]->extra;
|
||||
}
|
||||
else if (ggml_kleidiai_select_kernels(ctx.features, op) &&
|
||||
op->src[0]->op == GGML_OP_VIEW &&
|
||||
(op->src[1]->op == GGML_OP_PERMUTE || op->src[1]->op == GGML_OP_SOFT_MAX) &&
|
||||
op->src[1]->ne[1] > 1) {
|
||||
if ((op->src[0]->nb[0] != 2) ||
|
||||
(op->src[1]->nb[0] != 4) ||
|
||||
(op->src[0]->nb[1] * op->src[0]->ne[1] != op->src[0]->nb[2]) ||
|
||||
(op->src[1]->nb[1] * op->src[1]->ne[1] != op->src[1]->nb[2])) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return ggml::cpu::kleidiai::get_tensor_traits(NULL, NULL);
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
@@ -1054,6 +1054,493 @@ class tinyBLAS_Q0_AVX {
|
||||
} \
|
||||
} \
|
||||
|
||||
template <typename TA, typename TB, typename TC>
|
||||
class tinyBLAS_BF16_PPC {
|
||||
public:
|
||||
tinyBLAS_BF16_PPC(int64_t k,
|
||||
const TA *A, int64_t lda,
|
||||
const TB *B, int64_t ldb,
|
||||
TC *C, int64_t ldc,
|
||||
int ith, int nth)
|
||||
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
|
||||
}
|
||||
|
||||
void matmul(int64_t m, int64_t n) {
|
||||
mnpack(0, m, 0, n);
|
||||
}
|
||||
|
||||
private:
|
||||
void vector_permute_store(vec_t *c, int numVec, unsigned char *vecOffset) {
|
||||
vec_t t[8], s[8];
|
||||
vec_t swiz1 = {0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23};
|
||||
vec_t swiz2 = {8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31};
|
||||
vec_t swiz3 = {0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23};
|
||||
vec_t swiz4 = {8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31};
|
||||
|
||||
if (numVec == 2) {
|
||||
t[0] = vec_perm(c[0], c[1], swiz1);
|
||||
t[1] = vec_perm(c[2], c[3], swiz1);
|
||||
s[0] = vec_perm(t[0], t[1], swiz3);
|
||||
s[1] = vec_perm(t[0], t[1], swiz4);
|
||||
vec_xst(s[0], 0, (vec_t*)vecOffset);
|
||||
vec_xst(s[1], 0, (vec_t*)(vecOffset + 16));
|
||||
} else if (numVec == 4) {
|
||||
t[0] = vec_perm(c[0], c[1], swiz1);
|
||||
t[1] = vec_perm(c[0], c[1], swiz2);
|
||||
t[2] = vec_perm(c[2], c[3], swiz1);
|
||||
t[3] = vec_perm(c[2], c[3], swiz2);
|
||||
s[0] = vec_perm(t[0], t[2], swiz3);
|
||||
s[1] = vec_perm(t[0], t[2], swiz4);
|
||||
s[2] = vec_perm(t[1], t[3], swiz3);
|
||||
s[3] = vec_perm(t[1], t[3], swiz4);
|
||||
for (int i = 0; i < 4; ++i)
|
||||
vec_xst(s[i], 0, (vec_t*)(vecOffset + i * 16));
|
||||
} else if (numVec == 8) {
|
||||
for (int i = 0; i < 4; i += 2) {
|
||||
t[i+0] = vec_perm(c[i+0], c[i+1], swiz1);
|
||||
t[i+1] = vec_perm(c[i+0], c[i+1], swiz2);
|
||||
}
|
||||
for (int i = 4; i < 8; i += 2) {
|
||||
t[i+0] = vec_perm(c[i+0], c[i+1], swiz1);
|
||||
t[i+1] = vec_perm(c[i+0], c[i+1], swiz2);
|
||||
}
|
||||
s[0] = vec_perm(t[0], t[2], swiz3);
|
||||
s[1] = vec_perm(t[0], t[2], swiz4);
|
||||
s[2] = vec_perm(t[1], t[3], swiz3);
|
||||
s[3] = vec_perm(t[1], t[3], swiz4);
|
||||
s[4] = vec_perm(t[4], t[6], swiz3);
|
||||
s[5] = vec_perm(t[4], t[6], swiz4);
|
||||
s[6] = vec_perm(t[5], t[7], swiz3);
|
||||
s[7] = vec_perm(t[5], t[7], swiz4);
|
||||
for (int i = 0; i < 8; ++i)
|
||||
vec_xst(s[i], 0, (vec_t*)(vecOffset + i * 16));
|
||||
}
|
||||
}
|
||||
|
||||
void packNormal(const TA* a, int64_t lda, int rows, int cols, unsigned char* vec) {
|
||||
int64_t i, j;
|
||||
TA *aoffset = NULL;
|
||||
unsigned char *vecOffset = NULL;
|
||||
TA * aoffsets[8];
|
||||
vector unsigned char c_arr[8];
|
||||
aoffset = const_cast<TA*>(a);
|
||||
vecOffset = vec;
|
||||
j = (rows >> 3);
|
||||
if (j > 0) {
|
||||
do {
|
||||
if (cols == 4) {
|
||||
aoffsets[0] = aoffset;
|
||||
for (int it = 1; it < 4; ++it)
|
||||
aoffsets[it] = aoffsets[it-1] + lda;
|
||||
aoffset += 4 * lda;
|
||||
for (int i = 0; i < 4; ++i)
|
||||
c_arr[i] = vec_xl(0, (vector unsigned char*)aoffsets[i]);
|
||||
vector_permute_store(c_arr, 4, vecOffset);
|
||||
for (int i = 0; i<4; i++)
|
||||
aoffsets[i] = aoffsets[i]+lda;
|
||||
vecOffset +=64;
|
||||
}
|
||||
i = (cols >> 3);
|
||||
if (i > 0) {
|
||||
aoffsets[0] = aoffset;
|
||||
for (int it = 1; it < 8; ++it) {
|
||||
aoffsets[it] = aoffsets[it-1] + lda;
|
||||
}
|
||||
aoffset += 8 * lda;
|
||||
do {
|
||||
for (int it = 0; it < 8; ++it)
|
||||
c_arr[it] = vec_xl(0, (vector unsigned char*)aoffsets[it]);
|
||||
vector_permute_store(c_arr, 8, vecOffset);
|
||||
for (int it = 0; it < 8; ++it)
|
||||
aoffsets[it] = aoffsets[it] + 8*lda;
|
||||
vecOffset += 128;
|
||||
i--;
|
||||
} while(i > 0);
|
||||
}
|
||||
j--;
|
||||
} while(j > 0);
|
||||
}
|
||||
if (rows & 4) {
|
||||
aoffsets[0] = aoffset;
|
||||
for (int it = 1; it < 4; ++it)
|
||||
aoffsets[it] = aoffsets[it-1] + lda;
|
||||
aoffset += 4 * lda;
|
||||
if (cols == 4) {
|
||||
for (int it = 0; it < 4; ++it)
|
||||
c_arr[it] = vec_xl(0, (vector unsigned char*)aoffsets[it]);
|
||||
vector_permute_store(c_arr, 2, vecOffset);
|
||||
for (int it = 0; it< 4; it++)
|
||||
aoffsets[it] = aoffsets[it] + lda;
|
||||
vecOffset += 32;
|
||||
}
|
||||
i = (cols >> 3);
|
||||
if (i > 0) {
|
||||
do {
|
||||
for (int it = 0; it < 4; ++it)
|
||||
c_arr[it] = vec_xl(0, (vector unsigned char*)aoffsets[it]);
|
||||
vector_permute_store(c_arr, 4, vecOffset);
|
||||
for (int it = 0; it< 4; it++)
|
||||
aoffsets[it] = aoffsets[it] + 8*lda;
|
||||
vecOffset += 64;
|
||||
i--;
|
||||
} while(i > 0);
|
||||
}
|
||||
}
|
||||
if (rows & 3) {
|
||||
aoffsets[0] = aoffset;
|
||||
for (int it = 1; it < 4; ++it)
|
||||
aoffsets[it] = aoffsets[it-1] + lda;
|
||||
if (cols == 4) {
|
||||
switch(rows) {
|
||||
case 3: c_arr[2] = vec_xl(0, (vector unsigned char*)aoffsets[2]);
|
||||
case 2: c_arr[1] = vec_xl(0, (vector unsigned char*)aoffsets[1]);
|
||||
case 1: c_arr[0] = vec_xl(0, (vector unsigned char*)aoffsets[0]);
|
||||
break;
|
||||
}
|
||||
vector_permute_store(c_arr, 2, vecOffset);
|
||||
for (int it = 0; it< 4; it++)
|
||||
aoffsets[it] = aoffsets[it] + lda;
|
||||
vecOffset += 32;
|
||||
}
|
||||
i = (cols >> 3);
|
||||
if (i > 0) {
|
||||
do {
|
||||
switch(rows) {
|
||||
case 3: c_arr[2] = vec_xl(0, (vector unsigned char*)aoffsets[2]);
|
||||
case 2: c_arr[1] = vec_xl(0, (vector unsigned char*)aoffsets[1]);
|
||||
case 1: c_arr[0] = vec_xl(0, (vector unsigned char*)aoffsets[0]);
|
||||
break;
|
||||
}
|
||||
vector_permute_store(c_arr, 4, vecOffset);
|
||||
for (int it = 0; it <4; it++)
|
||||
aoffsets[it] = aoffsets[it] + 8* lda;
|
||||
vecOffset += 64;
|
||||
i--;
|
||||
} while(i > 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||||
int64_t mc, nc, mp, np;
|
||||
int m_rem = MIN(m - m0, 8);
|
||||
int n_rem = MIN(n - n0, 8);
|
||||
|
||||
if (m_rem >= 8 && n_rem >= 8) {
|
||||
mc = 8;
|
||||
nc = 8;
|
||||
gemm<8,8>(m0, m, n0, n);
|
||||
} else if (m_rem >= 4 && n_rem >= 8) {
|
||||
mc = 4;
|
||||
nc = 8;
|
||||
gemm<4,8>(m0, m, n0, n);
|
||||
} else if (m_rem >=8 && n_rem >=4){
|
||||
mc = 8;
|
||||
nc = 4;
|
||||
gemm<8,4>(m0, m, n0, n);
|
||||
} else if ((m_rem < 4) && (n_rem >= 8)) {
|
||||
nc = 8;
|
||||
switch(m_rem) {
|
||||
case 1:
|
||||
mc = 1;
|
||||
gemm_Mx8<1>(m0, m, n0, n);
|
||||
break;
|
||||
case 2:
|
||||
mc = 2;
|
||||
gemm_Mx8<2>(m0, m, n0, n);
|
||||
break;
|
||||
case 3:
|
||||
mc = 3;
|
||||
gemm_Mx8<3>(m0, m, n0, n);
|
||||
break;
|
||||
default:
|
||||
return;
|
||||
}
|
||||
} else if (m_rem >= 4 && n_rem >= 4) {
|
||||
mc = 4;
|
||||
nc = 4;
|
||||
gemm_small<4, 4>(m0, m, n0, n);
|
||||
} else if ((m_rem > 4) && (n_rem < 4)) {
|
||||
mc = 4;
|
||||
switch(n_rem) {
|
||||
case 1:
|
||||
nc = 1;
|
||||
gemm_small<4, 1>(m0, m, n0, n);
|
||||
break;
|
||||
case 2:
|
||||
nc = 2;
|
||||
gemm_small<4, 2>(m0, m, n0, n);
|
||||
break;
|
||||
case 3:
|
||||
nc = 3;
|
||||
gemm_small<4, 3>(m0, m, n0, n);
|
||||
break;
|
||||
|
||||
default:
|
||||
return;
|
||||
}
|
||||
} else {
|
||||
switch((m_rem << 4) | n_rem) {
|
||||
case 0x43:
|
||||
mc = 4;
|
||||
nc = 3;
|
||||
gemm_small<4, 3>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x42:
|
||||
mc = 4;
|
||||
nc = 2;
|
||||
gemm_small<4, 2>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x41:
|
||||
mc = 4;
|
||||
nc = 1;
|
||||
gemm_small<4, 1>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x34:
|
||||
mc = 3;
|
||||
nc = 4;
|
||||
gemm_small<3, 4>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x33:
|
||||
mc = 3;
|
||||
nc = 3;
|
||||
gemm_small<3, 3>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x32:
|
||||
mc = 3;
|
||||
nc = 2;
|
||||
gemm_small<3, 2>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x31:
|
||||
mc = 3;
|
||||
nc = 1;
|
||||
gemm_small<3, 1>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x24:
|
||||
mc = 2;
|
||||
nc = 4;
|
||||
gemm_small<2,4>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x23:
|
||||
mc = 2;
|
||||
nc = 3;
|
||||
gemm_small<2, 3>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x22:
|
||||
mc = 2;
|
||||
nc = 2;
|
||||
gemm_small<2, 2>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x21:
|
||||
mc = 2;
|
||||
nc = 1;
|
||||
gemm_small<2, 1>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x14:
|
||||
mc = 1;
|
||||
nc = 4;
|
||||
gemm_small<1, 4>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x13:
|
||||
mc = 1;
|
||||
nc = 3;
|
||||
gemm_small<1, 3>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x12:
|
||||
mc = 1;
|
||||
nc = 2;
|
||||
gemm_small<1, 2>(m0, m, n0, n);
|
||||
break;
|
||||
case 0x11:
|
||||
mc = 1;
|
||||
nc = 1;
|
||||
gemm_small<1, 1>(m0, m, n0, n);
|
||||
break;
|
||||
default:
|
||||
return;
|
||||
}
|
||||
}
|
||||
mp = m0 + (m - m0) / mc * mc;
|
||||
np = n0 + (n - n0) / nc * nc;
|
||||
mnpack(mp, m, n0, np);
|
||||
mnpack(m0, m, np, n);
|
||||
}
|
||||
|
||||
void KERNEL_4x8(int64_t ii, int64_t jj) {
|
||||
vec_t vec_A[4], vec_B[8] , vec_C[4];
|
||||
acc_t acc_0, acc_1;
|
||||
__builtin_mma_xxsetaccz(&acc_0);
|
||||
__builtin_mma_xxsetaccz(&acc_1);
|
||||
for (int l = 0; l < k; l+=8) {
|
||||
packNormal((A+(ii*lda)+l), lda, 4, 8, (uint8_t*)vec_A);
|
||||
packNormal((B+(jj*ldb)+l), ldb, 8, 8, (uint8_t*)vec_B);
|
||||
for (int x = 0; x < 4; x++) {
|
||||
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
|
||||
__builtin_mma_xvbf16ger2pp(&acc_1, vec_A[x], vec_B[x+4]);
|
||||
}
|
||||
}
|
||||
SAVE_ACC(&acc_0, ii, jj);
|
||||
SAVE_ACC(&acc_1, ii, jj+4);
|
||||
}
|
||||
|
||||
void KERNEL_8x4(int64_t ii, int64_t jj) {
|
||||
vec_t vec_A[8], vec_B[4] , vec_C[4];
|
||||
acc_t acc_0, acc_1;
|
||||
__builtin_mma_xxsetaccz(&acc_0);
|
||||
__builtin_mma_xxsetaccz(&acc_1);
|
||||
for (int l = 0; l < k; l+=8) {
|
||||
packNormal((A+(ii*lda)+l), lda, 8, 8, (uint8_t*)vec_A);
|
||||
packNormal((B+(jj*ldb)+l), ldb, 8, 4, (uint8_t*)vec_B);
|
||||
for (int x = 0; x < 4; x++) {
|
||||
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
|
||||
__builtin_mma_xvbf16ger2pp(&acc_1, vec_A[x+4], vec_B[x]);
|
||||
}
|
||||
}
|
||||
SAVE_ACC(&acc_0, ii, jj);
|
||||
SAVE_ACC(&acc_1, ii+4, jj);
|
||||
}
|
||||
|
||||
|
||||
void KERNEL_8x8(int64_t ii, int64_t jj) {
|
||||
vec_t vec_A[8], vec_B[8], vec_C[4];
|
||||
acc_t acc_0, acc_1, acc_2, acc_3;
|
||||
__builtin_mma_xxsetaccz(&acc_0);
|
||||
__builtin_mma_xxsetaccz(&acc_1);
|
||||
__builtin_mma_xxsetaccz(&acc_2);
|
||||
__builtin_mma_xxsetaccz(&acc_3);
|
||||
for (int l = 0; l < k; l+=8) {
|
||||
packNormal(A+(ii*lda)+l, lda, 8, 8, (uint8_t*)vec_A);
|
||||
packNormal(B+(jj*ldb)+l, ldb, 8, 8, (uint8_t*)vec_B);
|
||||
for (int x = 0; x < 4; x++) {
|
||||
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
|
||||
__builtin_mma_xvbf16ger2pp(&acc_1, (vec_t)vec_A[x], (vec_t)vec_B[x+4]);
|
||||
__builtin_mma_xvbf16ger2pp(&acc_2, (vec_t)vec_A[x+4], (vec_t)vec_B[x]);
|
||||
__builtin_mma_xvbf16ger2pp(&acc_3, (vec_t)vec_A[x+4], (vec_t)vec_B[x+4]);
|
||||
}
|
||||
}
|
||||
|
||||
SAVE_ACC(&acc_0, ii, jj);
|
||||
SAVE_ACC(&acc_1, ii, jj+4);
|
||||
SAVE_ACC(&acc_2, ii+4, jj);
|
||||
SAVE_ACC(&acc_3, ii+4, jj+4);
|
||||
}
|
||||
|
||||
template<int RM, int RN>
|
||||
void gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||||
int64_t ytiles = (m - m0) / RM;
|
||||
int64_t xtiles = (n - n0) / RN;
|
||||
int64_t tiles = xtiles * ytiles;
|
||||
int64_t duty = (tiles + nth - 1) / nth;
|
||||
int64_t start = duty * ith;
|
||||
int64_t end = start + duty;
|
||||
if (end > tiles)
|
||||
end = tiles;
|
||||
for (int64_t job = start; job < end; ++job) {
|
||||
int64_t ii = m0 + job / xtiles * RM;
|
||||
int64_t jj = n0 + job % xtiles * RN;
|
||||
vec_t vec_C[4];
|
||||
acc_t acc_0;
|
||||
__builtin_mma_xxsetaccz(&acc_0);
|
||||
vec_t vec_A[2], vec_B[2];
|
||||
for (int l=0; l<k; l+=4) {
|
||||
packNormal(A+(ii*lda)+l, lda, RM, 4, (uint8_t*)vec_A);
|
||||
packNormal(B+(jj*ldb)+l, ldb, RN, 4, (uint8_t*)vec_B);
|
||||
for (int x = 0; x<2; x++) {
|
||||
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
|
||||
}
|
||||
}
|
||||
__builtin_mma_disassemble_acc(vec_C, &acc_0);
|
||||
for (int I = 0; I < RM; I++) {
|
||||
for (int J = 0; J < RN; J++) {
|
||||
*((TC*)(C+ii+((jj+J)*ldc)+I)) = *((TC*)&vec_C[I]+J);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<int RM>
|
||||
void gemm_Mx8(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||||
int RN = 8;
|
||||
int64_t ytiles = (m - m0) / RM;
|
||||
int64_t xtiles = (n - n0) / RN;
|
||||
int64_t tiles = xtiles * ytiles;
|
||||
int64_t duty = (tiles + nth - 1) / nth;
|
||||
int64_t start = duty * ith;
|
||||
int64_t end = start + duty;
|
||||
if (end > tiles)
|
||||
end = tiles;
|
||||
for (int64_t job = start; job < end; ++job) {
|
||||
int64_t ii = m0 + job / xtiles * RM;
|
||||
int64_t jj = n0 + job % xtiles * RN;
|
||||
vec_t vec_C[4];
|
||||
acc_t acc_0, acc_1;
|
||||
__builtin_mma_xxsetaccz(&acc_0);
|
||||
__builtin_mma_xxsetaccz(&acc_1);
|
||||
vec_t vec_A[4], vec_B[8];
|
||||
for (int l=0; l<k; l+=8) {
|
||||
packNormal(A+(ii*lda)+l, lda, RM, 8, (uint8_t*)vec_A);
|
||||
packNormal(B+(jj*ldb)+l, ldb, RN, 8, (uint8_t*)vec_B);
|
||||
for (int x = 0; x<4; x++) {
|
||||
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
|
||||
__builtin_mma_xvbf16ger2pp(&acc_1, vec_A[x], vec_B[x+4]);
|
||||
}
|
||||
}
|
||||
__builtin_mma_disassemble_acc(vec_C, &acc_0);
|
||||
for (int I = 0; I < RM; I++) {
|
||||
for (int J = 0; J < 4; J++) {
|
||||
*((TC*)(C+ii+((jj+J)*ldc)+I)) = *((TC*)&vec_C[I]+J);
|
||||
}
|
||||
}
|
||||
__builtin_mma_disassemble_acc(vec_C, &acc_1);
|
||||
for (int I = 0; I < RM; I++) {
|
||||
for (int J = 0; J < 4; J++) {
|
||||
*((TC*)(C+ii+((jj+4+J)*ldc)+I)) = *((TC*)&vec_C[I]+J);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<int RM, int RN>
|
||||
inline void kernel(int64_t ii, int64_t jj) {
|
||||
if constexpr(RM == 4 && RN == 8) {
|
||||
KERNEL_4x8(ii,jj);
|
||||
} else if constexpr(RM == 8 && RN == 8) {
|
||||
KERNEL_8x8(ii,jj);
|
||||
} else if constexpr(RM == 8 && RN == 4) {
|
||||
KERNEL_8x4(ii,jj);
|
||||
} else {
|
||||
static_assert(false, "RN/RM values not supported");
|
||||
}
|
||||
}
|
||||
|
||||
template <int RM, int RN>
|
||||
NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||||
int64_t ytiles = (m - m0) / RM;
|
||||
int64_t xtiles = (n - n0) / RN;
|
||||
int64_t tiles = xtiles * ytiles;
|
||||
int64_t duty = (tiles + nth - 1) / nth;
|
||||
int64_t start = duty * ith;
|
||||
int64_t end = start + duty;
|
||||
if (end > tiles)
|
||||
end = tiles;
|
||||
for (int64_t job = start; job < end; ++job) {
|
||||
int64_t ii = m0 + job / xtiles * RM;
|
||||
int64_t jj = n0 + job % xtiles * RN;
|
||||
kernel<RM, RN>(ii, jj);
|
||||
}
|
||||
}
|
||||
|
||||
const TA *const A;
|
||||
const TB *const B;
|
||||
TC *C;
|
||||
const int64_t k;
|
||||
const int64_t lda;
|
||||
const int64_t ldb;
|
||||
const int64_t ldc;
|
||||
const int ith;
|
||||
const int nth;
|
||||
};
|
||||
|
||||
template <typename TA, typename TB, typename TC>
|
||||
class tinyBLAS_Q0_PPC {
|
||||
public:
|
||||
@@ -2202,6 +2689,7 @@ class tinyBLAS_PPC {
|
||||
boffset = vec;
|
||||
j = (rows >> 3);
|
||||
if (j > 0) {
|
||||
|
||||
do {
|
||||
aoffset1 = aoffset;
|
||||
aoffset2 = aoffset1 + lda;
|
||||
@@ -2875,9 +3363,22 @@ bool llamafile_sgemm(const struct ggml_compute_params * params, int64_t m, int64
|
||||
(float *)C, ldc};
|
||||
return tb.matmul(m, n);
|
||||
}
|
||||
#elif defined(__MMA__)
|
||||
if ((k % 8))
|
||||
return false;
|
||||
if(Btype == GGML_TYPE_BF16) {
|
||||
tinyBLAS_BF16_PPC<ggml_bf16_t, ggml_bf16_t, float> tb{ k,
|
||||
(const ggml_bf16_t *)A, lda,
|
||||
(const ggml_bf16_t *)B, ldb,
|
||||
(float *)C, ldc,
|
||||
params->ith, params->nth};
|
||||
tb.matmul(m, n);
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
|
||||
case GGML_TYPE_F16: {
|
||||
#if defined(__AVX512F__)
|
||||
if (Btype == GGML_TYPE_F16) {
|
||||
|
||||
@@ -8,19 +8,6 @@
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
// disable "possible loss of data" to avoid hundreds of casts
|
||||
// we should just be careful :)
|
||||
#pragma warning(disable: 4244 4267)
|
||||
|
||||
// disable POSIX deprecation warnings
|
||||
// these functions are never going away, anyway
|
||||
#pragma warning(disable: 4996)
|
||||
|
||||
// unreachable code because of multiple instances of code after GGML_ABORT
|
||||
#pragma warning(disable: 4702)
|
||||
#endif
|
||||
|
||||
// ggml_compute_forward_dup
|
||||
|
||||
static void ggml_compute_forward_dup_same_cont(
|
||||
|
||||
@@ -2,12 +2,6 @@
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
// disable "possible loss of data" to avoid hundreds of casts
|
||||
// we should just be careful :)
|
||||
#pragma warning(disable: 4244 4267)
|
||||
#endif
|
||||
|
||||
// precomputed gelu table for f16 (128 KB)
|
||||
ggml_fp16_t ggml_table_gelu_f16[1 << 16];
|
||||
|
||||
|
||||
@@ -12,12 +12,30 @@ if (CUDAToolkit_FOUND)
|
||||
# 61 == Pascal, __dp4a instruction (per-byte integer dot product)
|
||||
# 70 == V100, FP16 tensor cores
|
||||
# 75 == Turing, int8 tensor cores
|
||||
# 80 == Ampere, asynchronous data loading, faster tensor core instructions
|
||||
# 86 == RTX 3000, needs CUDA v11.1
|
||||
# 89 == RTX 4000, needs CUDA v11.8
|
||||
#
|
||||
# XX-virtual == compile CUDA code as PTX, do JIT compilation to binary code on first run
|
||||
# XX-real == compile CUDA code as device code for this specific architecture
|
||||
# no suffix == compile as both PTX and device code
|
||||
#
|
||||
# The default behavior for a non-native is to build virtual architectures as needed to cover all features needed
|
||||
# for best performance and to also build real architectures for the most commonly used GPUs.
|
||||
if (GGML_NATIVE AND CUDAToolkit_VERSION VERSION_GREATER_EQUAL "11.6" AND CMAKE_VERSION VERSION_GREATER_EQUAL "3.24")
|
||||
set(CMAKE_CUDA_ARCHITECTURES "native")
|
||||
elseif(GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
|
||||
set(CMAKE_CUDA_ARCHITECTURES "60;61;70;75;80")
|
||||
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "11.8")
|
||||
set(CMAKE_CUDA_ARCHITECTURES "60-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real;89-real")
|
||||
else()
|
||||
set(CMAKE_CUDA_ARCHITECTURES "60-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real")
|
||||
endif()
|
||||
else()
|
||||
set(CMAKE_CUDA_ARCHITECTURES "50;61;70;75;80")
|
||||
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "11.8")
|
||||
set(CMAKE_CUDA_ARCHITECTURES "50-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real;89-real")
|
||||
else()
|
||||
set(CMAKE_CUDA_ARCHITECTURES "50-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real")
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")
|
||||
@@ -100,7 +118,7 @@ if (CUDAToolkit_FOUND)
|
||||
|
||||
set(CUDA_CXX_FLAGS "")
|
||||
|
||||
set(CUDA_FLAGS -use_fast_math)
|
||||
set(CUDA_FLAGS -use_fast_math -extended-lambda)
|
||||
|
||||
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "12.8")
|
||||
# Options are:
|
||||
|
||||
@@ -1,47 +1,61 @@
|
||||
#include "acc.cuh"
|
||||
|
||||
static __global__ void acc_f32(const float * x, const float * y, float * dst, const int ne,
|
||||
const int ne10, const int ne11, const int ne12,
|
||||
const int nb1, const int nb2, int offset) {
|
||||
const int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
static __global__ void acc_f32(const float * x, const float * y, float * dst, const int64_t ne,
|
||||
const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13,
|
||||
const int64_t s11, const int64_t s12, const int64_t s13, const int64_t offset) {
|
||||
const int64_t i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
}
|
||||
int src1_idx = i - offset;
|
||||
int oz = src1_idx / nb2;
|
||||
int oy = (src1_idx - (oz * nb2)) / nb1;
|
||||
int ox = src1_idx % nb1;
|
||||
if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
|
||||
dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
|
||||
} else {
|
||||
dst[i] = x[i];
|
||||
|
||||
int64_t src1_idx = i - offset;
|
||||
|
||||
int64_t tmp = src1_idx;
|
||||
const int64_t i13 = tmp / s13;
|
||||
tmp -= i13 * s13;
|
||||
const int64_t i12 = tmp / s12;
|
||||
tmp -= i12 * s12;
|
||||
const int64_t i11 = tmp / s11;
|
||||
tmp -= i11 * s11;
|
||||
const int64_t i10 = tmp;
|
||||
|
||||
float val = x[i];
|
||||
if (src1_idx >= 0 && i10 < ne10 && i11 < ne11 && i12 < ne12 && i13 < ne13) {
|
||||
val += y[((i13*ne12 + i12) * ne11 + i11) * ne10 + i10];
|
||||
}
|
||||
dst[i] = val;
|
||||
}
|
||||
|
||||
static void acc_f32_cuda(const float * x, const float * y, float * dst, const int n_elements,
|
||||
const int ne10, const int ne11, const int ne12,
|
||||
const int nb1, const int nb2, const int offset, cudaStream_t stream) {
|
||||
int num_blocks = (n_elements + CUDA_ACC_BLOCK_SIZE - 1) / CUDA_ACC_BLOCK_SIZE;
|
||||
acc_f32<<<num_blocks, CUDA_ACC_BLOCK_SIZE, 0, stream>>>(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset);
|
||||
static void acc_f32_cuda(const float * x, const float * y, float * dst, const int64_t n_elements,
|
||||
const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13,
|
||||
const int64_t s1, const int64_t s2, const int64_t s3, const int64_t offset, cudaStream_t stream) {
|
||||
const int num_blocks = (n_elements + CUDA_ACC_BLOCK_SIZE - 1) / CUDA_ACC_BLOCK_SIZE;
|
||||
acc_f32<<<num_blocks, CUDA_ACC_BLOCK_SIZE, 0, stream>>>(x, y, dst, n_elements, ne10, ne11, ne12, ne13, s1, s2, s3, offset);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_acc(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
const float * src1_d = (const float *)src1->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
const float * src1_d = (const float *) src1->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
|
||||
|
||||
int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
|
||||
int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
|
||||
// int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
|
||||
int offset = dst->op_params[3] / 4; // offset in bytes
|
||||
GGML_ASSERT(ggml_is_contiguous(src1));
|
||||
GGML_ASSERT(dst->nb[0] == ggml_element_size(dst));
|
||||
GGML_ASSERT(ggml_is_contiguously_allocated(dst));
|
||||
|
||||
acc_f32_cuda(src0_d, src1_d, dst_d, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, stream);
|
||||
const int64_t s1 = dst->op_params[0] / sizeof(float);
|
||||
const int64_t s2 = dst->op_params[1] / sizeof(float);
|
||||
const int64_t s3 = dst->op_params[2] / sizeof(float);
|
||||
const int64_t offset = dst->op_params[3] / sizeof(float);
|
||||
|
||||
acc_f32_cuda(src0_d, src1_d, dst_d, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3], s1, s2, s3, offset, stream);
|
||||
}
|
||||
|
||||
@@ -130,10 +130,6 @@ static int ggml_cuda_highest_compiled_arch(const int arch) {
|
||||
|
||||
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
#define GGML_CUDA_MAX_STREAMS 8
|
||||
|
||||
[[noreturn]]
|
||||
@@ -300,6 +296,25 @@ static __device__ void no_device_code(
|
||||
#define NO_DEVICE_CODE //GGML_ABORT("NO_DEVICE_CODE not valid in host code.")
|
||||
#endif // __CUDA_ARCH__
|
||||
|
||||
// The compiler is always able to unroll loops if they contain continue expressions.
|
||||
// In such cases loop unrolling can still be achieved via recursion:
|
||||
template <int n>
|
||||
struct ggml_cuda_unroll {
|
||||
template <typename Func, typename... Args>
|
||||
__device__ void operator()(const Func & f, Args... args) const {
|
||||
f(n - 1, args...);
|
||||
ggml_cuda_unroll<n - 1>{}(f, args...);
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct ggml_cuda_unroll<1> {
|
||||
template <typename Func, typename... Args>
|
||||
__device__ void operator()(const Func & f, Args... args) const {
|
||||
f(0, args...);
|
||||
}
|
||||
};
|
||||
|
||||
template<int width = WARP_SIZE>
|
||||
static __device__ __forceinline__ int warp_reduce_sum(int x) {
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
|
||||
@@ -2,6 +2,17 @@
|
||||
|
||||
#include "common.cuh"
|
||||
|
||||
|
||||
static __device__ __forceinline__ unsigned int ggml_cuda_cvta_generic_to_shared(void * generic_ptr) {
|
||||
#ifdef CP_ASYNC_AVAILABLE
|
||||
return __cvta_generic_to_shared(generic_ptr);
|
||||
#else
|
||||
GGML_UNUSED(generic_ptr);
|
||||
NO_DEVICE_CODE;
|
||||
return 0;
|
||||
#endif // CP_ASYNC_AVAILABLE
|
||||
}
|
||||
|
||||
// Copies data from global to shared memory, cg == cache global.
|
||||
// Both the src and dst pointers must be aligned to 16 bit.
|
||||
// Shared memory uses 32 bit addressing, the pointer is passed as unsigned int.
|
||||
|
||||
@@ -516,7 +516,7 @@ constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) {
|
||||
nullptr;
|
||||
}
|
||||
|
||||
template<int D, int ncols1, int ncols2, int KQ_stride> // D == head size
|
||||
template<int D, int ncols1, int ncols2> // D == head size
|
||||
__launch_bounds__(D, 1)
|
||||
static __global__ void flash_attn_stream_k_fixup(
|
||||
float * __restrict__ dst, const float2 * __restrict__ dst_fixup, const int ne01, const int ne02, const int ne11) {
|
||||
@@ -665,13 +665,13 @@ static void on_no_fattn_vec_case(const int D) {
|
||||
fprintf(stderr, "Compile with GGML_CUDA_FA_ALL_QUANTS for all combinations of q4_0, q4_1, q5_0, q5_1, q8_0, and f16.\n");
|
||||
GGML_ABORT("fatal error");
|
||||
} else {
|
||||
fprintf(stderr, "Unsupported KV type combination for head_size 256.\n");
|
||||
fprintf(stderr, "Unsupported KV type combination for head_size %d.\n", D);
|
||||
fprintf(stderr, "Only f16 is supported.\n");
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
|
||||
template <int D, int ncols1, int ncols2, int KQ_stride>
|
||||
template <int DV, int ncols1, int ncols2>
|
||||
void launch_fattn(
|
||||
ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel, const int nwarps, const size_t nbytes_shared,
|
||||
const int KQ_row_granularity, const bool need_f16_K, const bool need_f16_V, const bool stream_k, const int warp_size = WARP_SIZE
|
||||
@@ -691,7 +691,7 @@ void launch_fattn(
|
||||
|
||||
GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) &&
|
||||
"the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big");
|
||||
"the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big");
|
||||
|
||||
GGML_ASSERT(K->ne[1] % FATTN_KQ_STRIDE == 0 && "Incorrect KV cache padding.");
|
||||
|
||||
@@ -719,6 +719,7 @@ void launch_fattn(
|
||||
size_t nb23 = V->nb[3];
|
||||
|
||||
if (need_f16_K && K->type != GGML_TYPE_F16) {
|
||||
GGML_ASSERT(ggml_is_contiguously_allocated(K));
|
||||
K_f16.alloc(ggml_nelements(K));
|
||||
to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(K->type);
|
||||
to_fp16(K_data, K_f16.ptr, ggml_nelements(K), main_stream);
|
||||
@@ -733,6 +734,7 @@ void launch_fattn(
|
||||
}
|
||||
|
||||
if (need_f16_V && V->type != GGML_TYPE_F16) {
|
||||
GGML_ASSERT(ggml_is_contiguously_allocated(V));
|
||||
V_f16.alloc(ggml_nelements(V));
|
||||
to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(V->type);
|
||||
to_fp16(V_data, V_f16.ptr, ggml_nelements(V), main_stream);
|
||||
@@ -752,10 +754,13 @@ void launch_fattn(
|
||||
const int ntiles_total = ntiles_x * (Q->ne[2] / ncols2) * Q->ne[3];
|
||||
|
||||
const dim3 block_dim(warp_size, nwarps, 1);
|
||||
int max_blocks_per_sm = 1; // Max. number of active blocks limited by occupancy.
|
||||
CUDA_CHECK(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&max_blocks_per_sm, fattn_kernel, block_dim.x * block_dim.y * block_dim.z, nbytes_shared));
|
||||
|
||||
dim3 blocks_num;
|
||||
if (stream_k) {
|
||||
// For short contexts it can be faster to have the SMs work on whole tiles because this lets us skip the fixup.
|
||||
const int max_blocks = 2*nsm;
|
||||
const int max_blocks = max_blocks_per_sm*nsm;
|
||||
const int tiles_nwaves = (ntiles_total + max_blocks - 1) / max_blocks;
|
||||
const int tiles_efficiency_percent = 100 * ntiles_total / (max_blocks*tiles_nwaves);
|
||||
|
||||
@@ -767,14 +772,11 @@ void launch_fattn(
|
||||
blocks_num.y = 1;
|
||||
blocks_num.z = 1;
|
||||
|
||||
dst_tmp_meta.alloc(blocks_num.x*ncols * (2*2 + D) * sizeof(float));
|
||||
dst_tmp_meta.alloc(blocks_num.x*ncols * (2*2 + DV) * sizeof(float));
|
||||
} else {
|
||||
GGML_ASSERT(K->ne[1] % KQ_row_granularity == 0);
|
||||
const int ntiles_KQ = K->ne[1] / KQ_row_granularity; // Max. number of parallel blocks limited by tensor size.
|
||||
|
||||
int max_blocks_per_sm = 1; // Max. number of active blocks limited by occupancy.
|
||||
CUDA_CHECK(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&max_blocks_per_sm, fattn_kernel, block_dim.x * block_dim.y * block_dim.z, nbytes_shared));
|
||||
|
||||
// parallel_blocks should be at least large enough to achieve max. occupancy for a single wave:
|
||||
parallel_blocks = std::max((nsm * max_blocks_per_sm) / ntiles_total, 1);
|
||||
|
||||
@@ -851,19 +853,19 @@ void launch_fattn(
|
||||
|
||||
if (stream_k) {
|
||||
if (ntiles_total % blocks_num.x != 0) { // Fixup is only needed if the SMs work on fractional tiles.
|
||||
const dim3 block_dim_combine(D, 1, 1);
|
||||
const dim3 block_dim_combine(DV, 1, 1);
|
||||
const dim3 blocks_num_combine = {blocks_num.x, ncols1, ncols2};
|
||||
|
||||
flash_attn_stream_k_fixup<D, ncols1, ncols2, KQ_stride>
|
||||
flash_attn_stream_k_fixup<DV, ncols1, ncols2>
|
||||
<<<blocks_num_combine, block_dim_combine, 0, main_stream>>>
|
||||
((float *) KQV->data, dst_tmp_meta.ptr, Q->ne[1], Q->ne[2], K->ne[1]);
|
||||
}
|
||||
} else if (parallel_blocks > 1) {
|
||||
const dim3 block_dim_combine(D, 1, 1);
|
||||
const dim3 block_dim_combine(DV, 1, 1);
|
||||
const dim3 blocks_num_combine(Q->ne[1], 1, blocks_num.z);
|
||||
const size_t nbytes_shared_combine = parallel_blocks*sizeof(float2);
|
||||
|
||||
flash_attn_combine_results<D>
|
||||
flash_attn_combine_results<DV>
|
||||
<<<blocks_num_combine, block_dim_combine, nbytes_shared_combine, main_stream>>>
|
||||
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data, parallel_blocks);
|
||||
}
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -307,7 +307,7 @@ void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor *
|
||||
constexpr int nwarps = 8;
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, use_logit_softcap>;
|
||||
launch_fattn<D, cols_per_block, 1, -1>
|
||||
launch_fattn<D, cols_per_block, 1>
|
||||
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F16, true, true, false);
|
||||
} break;
|
||||
case 128: {
|
||||
@@ -315,7 +315,7 @@ void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor *
|
||||
constexpr int nwarps = 8;
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, use_logit_softcap>;
|
||||
launch_fattn<D, cols_per_block, 1, -1>
|
||||
launch_fattn<D, cols_per_block, 1>
|
||||
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F16, true, true, false);
|
||||
} break;
|
||||
default: {
|
||||
|
||||
@@ -318,7 +318,7 @@ void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor *
|
||||
constexpr int nwarps = 8;
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, use_logit_softcap>;
|
||||
launch_fattn<D, cols_per_block, 1, -1>
|
||||
launch_fattn<D, cols_per_block, 1>
|
||||
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F32, true, true, false);
|
||||
} break;
|
||||
case 128: {
|
||||
@@ -326,7 +326,7 @@ void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor *
|
||||
constexpr int nwarps = 8;
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, use_logit_softcap>;
|
||||
launch_fattn<D, cols_per_block, 1, -1>
|
||||
launch_fattn<D, cols_per_block, 1>
|
||||
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F32, true, true, false);
|
||||
} break;
|
||||
default: {
|
||||
|
||||
@@ -168,6 +168,7 @@ static __global__ void flash_attn_vec_ext_f16(
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
KQ[j*D + tid] = -HALF_MAX_HALF;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
half2 VKQ[ncols] = {{0.0f, 0.0f}};
|
||||
|
||||
@@ -315,7 +316,7 @@ void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx,
|
||||
constexpr bool need_f16_K = D != 128;
|
||||
constexpr bool need_f16_V = D != 128 && D != 64;
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
launch_fattn<D, cols_per_block, 1, -1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, D, need_f16_K, need_f16_V, false);
|
||||
launch_fattn<D, cols_per_block, 1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, D, need_f16_K, need_f16_V, false);
|
||||
}
|
||||
|
||||
template <int D, ggml_type type_K, ggml_type type_V>
|
||||
|
||||
@@ -310,7 +310,7 @@ void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx,
|
||||
constexpr bool need_f16_K = D != 128;
|
||||
constexpr bool need_f16_V = D != 128 && D != 64;
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
launch_fattn<D, cols_per_block, 1, -1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, D, need_f16_K, need_f16_V, false);
|
||||
launch_fattn<D, cols_per_block, 1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, D, need_f16_K, need_f16_V, false);
|
||||
}
|
||||
|
||||
template <int D, ggml_type type_K, ggml_type type_V>
|
||||
|
||||
@@ -490,7 +490,7 @@ void ggml_cuda_flash_attn_ext_wmma_f16_case(ggml_backend_cuda_context & ctx, ggm
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), KQ_acc_t, use_logit_softcap>;
|
||||
}
|
||||
launch_fattn<D, cols_per_block, 1, -1>(ctx, dst, fattn_kernel, nwarps, 0, FATTN_KQ_STRIDE, true, true, false, warp_size);
|
||||
launch_fattn<D, cols_per_block, 1>(ctx, dst, fattn_kernel, nwarps, 0, FATTN_KQ_STRIDE, true, true, false, warp_size);
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
||||
@@ -8,58 +8,32 @@
|
||||
#include "fattn-wmma-f16.cuh"
|
||||
#include "fattn.cuh"
|
||||
|
||||
template <int D, int ncols2>
|
||||
template <int DKQ, int DV, int ncols2>
|
||||
static void ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
if (Q->ne[1] <= 8/ncols2) {
|
||||
ggml_cuda_flash_attn_ext_mma_f16_case<D, 8/ncols2, ncols2>(ctx, dst);
|
||||
return;
|
||||
if constexpr (ncols2 <= 8) {
|
||||
if (Q->ne[1] <= 8/ncols2) {
|
||||
ggml_cuda_flash_attn_ext_mma_f16_case<DKQ, DV, 8/ncols2, ncols2>(ctx, dst);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 16/ncols2) {
|
||||
ggml_cuda_flash_attn_ext_mma_f16_case<D, 16/ncols2, ncols2>(ctx, dst);
|
||||
ggml_cuda_flash_attn_ext_mma_f16_case<DKQ, DV, 16/ncols2, ncols2>(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 32/ncols2) {
|
||||
ggml_cuda_flash_attn_ext_mma_f16_case<D, 32/ncols2, ncols2>(ctx, dst);
|
||||
ggml_cuda_flash_attn_ext_mma_f16_case<DKQ, DV, 32/ncols2, ncols2>(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
ggml_cuda_flash_attn_ext_mma_f16_case<D, 64/ncols2, ncols2>(ctx, dst);
|
||||
ggml_cuda_flash_attn_ext_mma_f16_case<DKQ, DV, 64/ncols2, ncols2>(ctx, dst);
|
||||
}
|
||||
|
||||
template <int ncols2>
|
||||
static void ggml_cuda_flash_attn_ext_mma_f16_switch_hs(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1< 64, ncols2>(ctx, dst);
|
||||
break;
|
||||
case 80:
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1< 80, ncols2>(ctx, dst);
|
||||
break;
|
||||
case 96:
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1< 96, ncols2>(ctx, dst);
|
||||
break;
|
||||
case 112:
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<112, ncols2>(ctx, dst);
|
||||
break;
|
||||
case 128:
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<128, ncols2>(ctx, dst);
|
||||
break;
|
||||
case 256:
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<256, ncols2>(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_cuda_flash_attn_ext_mma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
template <int DKQ, int DV>
|
||||
static void ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
@@ -68,27 +42,79 @@ static void ggml_cuda_flash_attn_ext_mma_f16(ggml_backend_cuda_context & ctx, gg
|
||||
float max_bias = 0.0f;
|
||||
memcpy(&max_bias, (const float *) KQV->op_params + 1, sizeof(float));
|
||||
|
||||
const float use_gqa_opt = mask && max_bias == 0.0f;
|
||||
const bool use_gqa_opt = mask && max_bias == 0.0f;
|
||||
|
||||
GGML_ASSERT(Q->ne[2] % K->ne[2] == 0);
|
||||
const int gqa_ratio = Q->ne[2] / K->ne[2];
|
||||
|
||||
if (use_gqa_opt && gqa_ratio % 8 == 0) {
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_hs<8>(ctx, dst);
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<DKQ, DV, 8>(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
if (use_gqa_opt && gqa_ratio == 4) {
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_hs<4>(ctx, dst);
|
||||
if (use_gqa_opt && gqa_ratio % 4 == 0) {
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<DKQ, DV, 4>(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
if (use_gqa_opt && gqa_ratio == 2) {
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_hs<2>(ctx, dst);
|
||||
if (use_gqa_opt && gqa_ratio % 2 == 0) {
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<DKQ, DV, 2>(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_hs<1>(ctx, dst);
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<DKQ, DV, 1>(ctx, dst);
|
||||
}
|
||||
|
||||
static void ggml_cuda_flash_attn_ext_mma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
const ggml_tensor * V = dst->src[2];
|
||||
const ggml_tensor * mask = dst->src[3];
|
||||
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
GGML_ASSERT(V->ne[0] == 64);
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2< 64, 64>(ctx, dst);
|
||||
break;
|
||||
case 80:
|
||||
GGML_ASSERT(V->ne[0] == 80);
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2< 80, 80>(ctx, dst);
|
||||
break;
|
||||
case 96:
|
||||
GGML_ASSERT(V->ne[0] == 96);
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2< 96, 96>(ctx, dst);
|
||||
break;
|
||||
case 112:
|
||||
GGML_ASSERT(V->ne[0] == 112);
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2<112, 112>(ctx, dst);
|
||||
break;
|
||||
case 128:
|
||||
GGML_ASSERT(V->ne[0] == 128);
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2<128, 128>(ctx, dst);
|
||||
break;
|
||||
case 256:
|
||||
GGML_ASSERT(V->ne[0] == 256);
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2<256, 256>(ctx, dst);
|
||||
break;
|
||||
case 576: {
|
||||
// For Deepseek, go straight to the ncols1 switch to avoid compiling unnecessary kernels.
|
||||
GGML_ASSERT(V->ne[0] == 512);
|
||||
float max_bias = 0.0f;
|
||||
memcpy(&max_bias, (const float *) KQV->op_params + 1, sizeof(float));
|
||||
|
||||
const bool use_gqa_opt = mask && max_bias == 0.0f;
|
||||
GGML_ASSERT(use_gqa_opt);
|
||||
|
||||
GGML_ASSERT(Q->ne[2] % K->ne[2] == 0);
|
||||
const int gqa_ratio = Q->ne[2] / K->ne[2];
|
||||
GGML_ASSERT(gqa_ratio % 16 == 0);
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<576, 512, 16>(ctx, dst);
|
||||
} break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
#define FATTN_VEC_F16_CASE(D, type_K, type_V) \
|
||||
@@ -299,7 +325,7 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
||||
const bool gqa_opt_applies = ((Q->ne[2] / K->ne[2]) % 2 == 0) && mask; // The mma-based kernels have GQA-specific optimizations
|
||||
const bool mma_needs_data_conversion = K->type != GGML_TYPE_F16 || V->type != GGML_TYPE_F16;
|
||||
const bool mma_faster_for_bs1 = new_mma_available(cc) && gqa_opt_applies && cc < GGML_CUDA_CC_ADA_LOVELACE && !mma_needs_data_conversion;
|
||||
const bool can_use_vector_kernel = Q->ne[0] % (2*warp_size) == 0;
|
||||
const bool can_use_vector_kernel = Q->ne[0] <= 256 && Q->ne[0] % (2*warp_size) == 0;
|
||||
if (Q->ne[1] == 1 && can_use_vector_kernel && !mma_faster_for_bs1) {
|
||||
if (prec == GGML_PREC_DEFAULT) {
|
||||
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
||||
|
||||
@@ -10,10 +10,11 @@ static __global__ void k_get_rows(
|
||||
/*const size_t nb00,*/ const size_t nb01, const size_t nb02, const size_t nb03,
|
||||
const size_t s10, const size_t s11, const size_t s12/*, const size_t s13*/) {
|
||||
|
||||
const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2;
|
||||
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
|
||||
const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
|
||||
const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
|
||||
// The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher.
|
||||
const int i00 = (blockIdx.y * blockDim.x + threadIdx.x)*2;
|
||||
const int i10 = blockIdx.x;
|
||||
const int i11 = blockIdx.z / ne12;
|
||||
const int i12 = blockIdx.z % ne12;
|
||||
|
||||
if (i00 >= ne00) {
|
||||
return;
|
||||
@@ -46,10 +47,11 @@ static __global__ void k_get_rows_float(
|
||||
/*const size_t nb00,*/ const size_t nb01, const size_t nb02, const size_t nb03,
|
||||
const size_t s10, const size_t s11, const size_t s12/*, const size_t s13*/) {
|
||||
|
||||
const int i00 = blockIdx.x*blockDim.x + threadIdx.x;
|
||||
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
|
||||
const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
|
||||
const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
|
||||
// The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher.
|
||||
const int i00 = blockIdx.y * blockDim.x + threadIdx.x;
|
||||
const int i10 = blockIdx.x;
|
||||
const int i11 = blockIdx.z / ne12;
|
||||
const int i12 = blockIdx.z % ne12;
|
||||
|
||||
if (i00 >= ne00) {
|
||||
return;
|
||||
@@ -94,8 +96,8 @@ static void get_rows_cuda_q(
|
||||
const size_t nb1, const size_t nb2, const size_t nb3,
|
||||
cudaStream_t stream) {
|
||||
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
|
||||
const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
|
||||
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
|
||||
const int block_num_y = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
|
||||
const dim3 block_nums(ne10, block_num_y, ne11*ne12);
|
||||
|
||||
// strides in elements
|
||||
// const size_t s0 = nb0 / sizeof(dst_t);
|
||||
@@ -127,8 +129,8 @@ static void get_rows_cuda_float(
|
||||
const size_t nb1, const size_t nb2, const size_t nb3,
|
||||
cudaStream_t stream) {
|
||||
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
|
||||
const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
|
||||
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
|
||||
const int block_num_y = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
|
||||
const dim3 block_nums(ne10, block_num_y, ne11*ne12);
|
||||
|
||||
// strides in elements
|
||||
// const size_t s0 = nb0 / sizeof(dst_t);
|
||||
|
||||
@@ -555,8 +555,8 @@ static enum ggml_status ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer
|
||||
|
||||
if (ggml_is_quantized(tensor->type) && tensor->view_src == nullptr && ggml_backend_buffer_get_usage(buffer) != GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
|
||||
// initialize padding to 0 to avoid possible NaN values
|
||||
size_t original_size = ggml_nbytes(tensor);
|
||||
size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
|
||||
const size_t original_size = ggml_nbytes(tensor);
|
||||
const size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
|
||||
|
||||
if (padded_size > original_size) {
|
||||
ggml_cuda_set_device(ctx->device);
|
||||
@@ -679,6 +679,7 @@ static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_t
|
||||
|
||||
if (ggml_is_quantized(tensor->type)) {
|
||||
if (ne0 % MATRIX_ROW_PADDING != 0) {
|
||||
GGML_ASSERT(tensor->nb[0] == ggml_element_size(tensor));
|
||||
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
|
||||
}
|
||||
}
|
||||
@@ -800,6 +801,7 @@ static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buff
|
||||
|
||||
static enum ggml_status ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
||||
GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
|
||||
GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
|
||||
|
||||
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
|
||||
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
|
||||
@@ -851,6 +853,7 @@ static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buff
|
||||
// split tensors must always be set in their entirety at once
|
||||
GGML_ASSERT(offset == 0);
|
||||
GGML_ASSERT(size == ggml_nbytes(tensor));
|
||||
GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
|
||||
|
||||
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
|
||||
|
||||
@@ -889,6 +892,7 @@ static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buff
|
||||
// split tensors must always be set in their entirety at once
|
||||
GGML_ASSERT(offset == 0);
|
||||
GGML_ASSERT(size == ggml_nbytes(tensor));
|
||||
GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
|
||||
|
||||
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
|
||||
|
||||
@@ -970,6 +974,7 @@ static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buf
|
||||
|
||||
static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
|
||||
ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
|
||||
GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
|
||||
|
||||
size_t total_size = 0;
|
||||
|
||||
@@ -1531,6 +1536,8 @@ static void ggml_cuda_op_mul_mat(
|
||||
|
||||
// If src0 is on a temporary compute buffer (partial offloading) there may be some padding that needs to be cleared:
|
||||
if (ne00 % MATRIX_ROW_PADDING != 0 && ggml_is_quantized(src0->type) && ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE && src0->view_src == nullptr) {
|
||||
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
|
||||
GGML_ASSERT(!src0->view_src);
|
||||
const size_t nbytes_data = ggml_row_size(src0->type, (dev[id].row_high - dev[id].row_low)*ne00);
|
||||
const size_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING);
|
||||
CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd + nbytes_data, 0, nbytes_padding, stream));
|
||||
@@ -1902,13 +1909,19 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
|
||||
static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft);
|
||||
|
||||
// If src0 is a temporary compute buffer it may have some padding that needs to be cleared for mul_mat_vec_q or mul_mat_q.
|
||||
// But if src0 is also a view of another tensor then this cannot be done safely because it may overwrite valid tensor data.
|
||||
// Therefore, in such cases use cuBLAS.
|
||||
const bool bad_padding_clear = ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE
|
||||
&& ggml_nbytes(src0) != ggml_backend_buffer_get_alloc_size(src0->buffer, src0) && src0->view_src;
|
||||
|
||||
bool use_mul_mat_vec = (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16)
|
||||
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
|
||||
&& src0->ne[0] % 2 == 0 && src1->ne[1] == 1;
|
||||
bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
|
||||
bool use_mul_mat_vec_q = ggml_is_quantized(src0->type) && !bad_padding_clear
|
||||
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
|
||||
&& src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
|
||||
bool use_mul_mat_q = ggml_is_quantized(src0->type)
|
||||
bool use_mul_mat_q = ggml_is_quantized(src0->type) && !bad_padding_clear
|
||||
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
|
||||
|
||||
bool any_gpus_with_slow_fp16 = false;
|
||||
@@ -2062,9 +2075,11 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
|
||||
}
|
||||
|
||||
ggml_tensor src0_slice = *src0;
|
||||
src0_slice.ne[2] = 1;
|
||||
src0_slice.nb[3] = src0_slice.nb[2];
|
||||
src0_slice.data = (char *) src0->data + i02*nb02;
|
||||
src0_slice.ne[2] = 1;
|
||||
src0_slice.nb[3] = src0_slice.nb[2];
|
||||
src0_slice.op = GGML_OP_VIEW;
|
||||
src0_slice.view_src = dst->src[0]; // non-const pointer to src0
|
||||
src0_slice.data = (char *) src0->data + i02*nb02;
|
||||
|
||||
ggml_tensor src1_slice;
|
||||
memset(&src1_slice, 0, sizeof(src1_slice));
|
||||
@@ -3206,16 +3221,16 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
return false;
|
||||
#endif // FLASH_ATTN_AVAILABLE
|
||||
if (op->src[1]->ne[0] != op->src[2]->ne[0]) {
|
||||
// different head sizes of K and V are not supported yet
|
||||
return false;
|
||||
const int cc = ggml_cuda_info().devices[dev_ctx->device].cc;
|
||||
if (!new_mma_available(cc) || cc < GGML_CUDA_CC_AMPERE) {
|
||||
return false;
|
||||
}
|
||||
const int gqa_ratio = op->src[0]->ne[2] / op->src[1]->ne[2];
|
||||
return op->src[1]->ne[0] == 576 && op->src[2]->ne[0] == 512 && op->src[3] && gqa_ratio % 16 == 0;
|
||||
}
|
||||
if (op->src[0]->ne[0] == 192) {
|
||||
return false;
|
||||
}
|
||||
if (op->src[0]->ne[0] == 576) {
|
||||
// DeepSeek MLA
|
||||
return false;
|
||||
}
|
||||
if (op->src[0]->ne[3] != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -89,6 +89,17 @@ void ggml_cuda_mul_mat_q(
|
||||
const float * src1_d = (const float *) src1->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
// If src0 is a temporary compute buffer, clear any potential padding.
|
||||
if (ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
|
||||
const size_t size_data = ggml_nbytes(src0);
|
||||
const size_t size_alloc = ggml_backend_buffer_get_alloc_size(src0->buffer, src0);
|
||||
if (size_alloc > size_data) {
|
||||
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
|
||||
GGML_ASSERT(!src0->view_src);
|
||||
CUDA_CHECK(cudaMemsetAsync((char *) src0->data + size_data, 0, size_alloc - size_data, stream));
|
||||
}
|
||||
}
|
||||
|
||||
const int64_t ne10_padded = GGML_PAD(ne10, MATRIX_ROW_PADDING);
|
||||
|
||||
const int64_t s01 = src0->nb[1] / ts_src0;
|
||||
@@ -118,7 +129,7 @@ void ggml_cuda_mul_mat_q(
|
||||
|
||||
const mmq_args args = {
|
||||
src0_d, src0->type, (const int *) src1_q8_1.ptr, nullptr, nullptr, dst_d,
|
||||
ne00, ne01, ne1, s01, s1,
|
||||
ne00, ne01, ne1, s01, ne11, s1,
|
||||
ne02, ne12, s02, s12, s2,
|
||||
ne03, ne13, s03, s13, s3,
|
||||
use_stream_k};
|
||||
@@ -202,7 +213,7 @@ void ggml_cuda_mul_mat_q(
|
||||
// Note that ne02 is used instead of ne12 because the number of y channels determines the z dimension of the CUDA grid.
|
||||
const mmq_args args = {
|
||||
src0_d, src0->type, (const int *) src1_q8_1.ptr, ids_dst_dev, expert_bounds_dev, dst_d,
|
||||
ne00, ne01, ne_get_rows, s01, s1,
|
||||
ne00, ne01, ne_get_rows, s01, ne_get_rows, s1,
|
||||
ne02, ne02, s02, s12, s2,
|
||||
ne03, ne13, s03, s13, s3,
|
||||
use_stream_k};
|
||||
@@ -241,7 +252,7 @@ void ggml_cuda_op_mul_mat_q(
|
||||
ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA && src1_ncols == ne11;
|
||||
const mmq_args args = {
|
||||
src0_dd_i, src0->type, (const int *) src1_ddq_i, nullptr, nullptr, dst_dd_i,
|
||||
ne00, row_diff, src1_ncols, stride01, nrows_dst,
|
||||
ne00, row_diff, src1_ncols, stride01, ne11, nrows_dst,
|
||||
1, 1, 0, 0, 0,
|
||||
1, 1, 0, 0, 0,
|
||||
use_stream_k};
|
||||
|
||||
@@ -2522,7 +2522,7 @@ template <ggml_type type, int mmq_x, int nwarps, bool need_check, bool fixup>
|
||||
static __device__ __forceinline__ void mul_mat_q_process_tile(
|
||||
const char * __restrict__ x, const int offset_x, const int * __restrict__ y,
|
||||
const int * __restrict__ ids_dst, float * __restrict__ dst, float * __restrict__ tmp_fixup,
|
||||
const int nrows_x, const int ncols_y, const int stride_row_x, const int stride_col_dst,
|
||||
const int stride_row_x, const int ncols_y, const int stride_col_dst,
|
||||
const int tile_x_max_i, const int tile_y_max_j, const int kb0_start, const int kb0_stop) {
|
||||
|
||||
constexpr int qk = ggml_cuda_type_traits<type>::qk;
|
||||
@@ -2606,7 +2606,7 @@ template <ggml_type type, int mmq_x, int nwarps, bool need_check>
|
||||
static __global__ void mul_mat_q(
|
||||
const char * __restrict__ x, const int * __restrict__ y, const int32_t * __restrict__ ids_dst,
|
||||
const int32_t * __restrict__ expert_bounds, float * __restrict__ dst, float * __restrict__ tmp_fixup,
|
||||
const int ncols_x, const int nrows_x, const int ncols_y, const int stride_row_x, const int stride_col_dst,
|
||||
const int ncols_x, const int nrows_x, const int ncols_dst, const int stride_row_x, const int ncols_y, const int stride_col_dst,
|
||||
const int channel_ratio, const int nchannels_y, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
|
||||
const int sample_ratio, const int nsamples_y, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
|
||||
|
||||
@@ -2619,8 +2619,8 @@ static __global__ void mul_mat_q(
|
||||
constexpr int qk = ggml_cuda_type_traits<type>::qk;
|
||||
constexpr int mmq_y = get_mmq_y_device();
|
||||
|
||||
const int ntx = (ncols_y + mmq_x - 1) / mmq_x; // Number of tiles x
|
||||
const int nty = (nrows_x + mmq_y - 1) / mmq_y; // Number of tiles y
|
||||
const int ntx = (ncols_dst + mmq_x - 1) / mmq_x; // Number of tiles x
|
||||
const int nty = (nrows_x + mmq_y - 1) / mmq_y; // Number of tiles y
|
||||
|
||||
// Initialize the ids for writing back data with just the index.
|
||||
// For regular matrix multiplications this is never changed.
|
||||
@@ -2636,6 +2636,7 @@ static __global__ void mul_mat_q(
|
||||
|
||||
ids_dst_shared[j] = j;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
// On AMD or old CUDA the performance with stream-k was worse, use conventional tiling instead:
|
||||
#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < GGML_CUDA_CC_VOLTA
|
||||
@@ -2647,8 +2648,8 @@ static __global__ void mul_mat_q(
|
||||
|
||||
// Defaults for regular matrix multiplication:
|
||||
int col_low = 0;
|
||||
int col_high = ncols_y;
|
||||
int col_diff = ncols_y;
|
||||
int col_high = ncols_dst;
|
||||
int col_diff = ncols_dst;
|
||||
int offset_y = wt*stride_sample_y + zt*stride_channel_y;
|
||||
int offset_dst = wt*stride_sample_dst + zt*stride_channel_dst + jt*mmq_x*stride_col_dst;
|
||||
|
||||
@@ -2664,6 +2665,7 @@ static __global__ void mul_mat_q(
|
||||
return;
|
||||
}
|
||||
|
||||
// __syncthreads(); // There is no previous tile that could cause a race condition.
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < mmq_x; j0 += nwarps*WARP_SIZE) {
|
||||
const int j = j0 + threadIdx.y*WARP_SIZE + threadIdx.x;
|
||||
@@ -2674,6 +2676,7 @@ static __global__ void mul_mat_q(
|
||||
|
||||
ids_dst_shared[j] = ids_dst[col_low + jt*mmq_x + j];
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
offset_y += (col_low + jt*mmq_x)*(sizeof(block_q8_1_mmq)/sizeof(int));
|
||||
@@ -2686,7 +2689,7 @@ static __global__ void mul_mat_q(
|
||||
|
||||
constexpr bool fixup = false;
|
||||
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
|
||||
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, nrows_x, ncols_y, stride_row_x, stride_col_dst,
|
||||
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, stride_row_x, ncols_y, stride_col_dst,
|
||||
tile_x_max_i, tile_y_max_j, 0, ncols_x/qk);
|
||||
return;
|
||||
}
|
||||
@@ -2717,8 +2720,8 @@ static __global__ void mul_mat_q(
|
||||
|
||||
// Defaults for regular matrix multiplication:
|
||||
int col_low = 0;
|
||||
int col_high = ncols_y;
|
||||
int col_diff = ncols_y;
|
||||
int col_high = ncols_dst;
|
||||
int col_diff = ncols_dst;
|
||||
int offset_y = wt*stride_sample_y + zt*stride_channel_y;
|
||||
int offset_dst = wt*stride_sample_dst + zt*stride_channel_dst + jt*mmq_x*stride_col_dst;
|
||||
|
||||
@@ -2740,6 +2743,7 @@ static __global__ void mul_mat_q(
|
||||
continue;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < mmq_x; j0 += nwarps*WARP_SIZE) {
|
||||
const int j = j0 + threadIdx.y*WARP_SIZE + threadIdx.x;
|
||||
@@ -2750,6 +2754,7 @@ static __global__ void mul_mat_q(
|
||||
|
||||
ids_dst_shared[j] = ids_dst[col_low + jt*mmq_x + j];
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
offset_y += (col_low + jt*mmq_x)*(sizeof(block_q8_1_mmq)/sizeof(int));
|
||||
@@ -2762,7 +2767,7 @@ static __global__ void mul_mat_q(
|
||||
|
||||
constexpr bool fixup = false; // All but (potentially) the last iterations write their data to dst rather than the fixup buffer.
|
||||
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
|
||||
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, nrows_x, ncols_y, stride_row_x, stride_col_dst,
|
||||
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, stride_row_x, ncols_y, stride_col_dst,
|
||||
tile_x_max_i, tile_y_max_j, kb0_start, kb0_stop);
|
||||
|
||||
kbc += blocks_per_ne00;
|
||||
@@ -2787,8 +2792,8 @@ static __global__ void mul_mat_q(
|
||||
|
||||
// Defaults for regular matrix multiplication:
|
||||
int col_low = 0;
|
||||
int col_high = ncols_y;
|
||||
int col_diff = ncols_y;
|
||||
int col_high = ncols_dst;
|
||||
int col_diff = ncols_dst;
|
||||
int offset_y = wt*stride_sample_y + zt*stride_channel_y;
|
||||
int offset_dst = wt*stride_sample_dst + zt*stride_channel_dst + jt*mmq_x*stride_col_dst;
|
||||
|
||||
@@ -2805,6 +2810,7 @@ static __global__ void mul_mat_q(
|
||||
}
|
||||
|
||||
// The memory layout for the fixup buffer is always contiguous, therefore reset ids:
|
||||
__syncthreads();
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < mmq_x; j0 += nwarps*WARP_SIZE) {
|
||||
const int j = j0 + threadIdx.y*WARP_SIZE + threadIdx.x;
|
||||
@@ -2815,6 +2821,7 @@ static __global__ void mul_mat_q(
|
||||
|
||||
ids_dst_shared[j] = j;
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
offset_y += (col_low + jt*mmq_x)*(sizeof(block_q8_1_mmq)/sizeof(int));
|
||||
@@ -2827,7 +2834,7 @@ static __global__ void mul_mat_q(
|
||||
|
||||
constexpr bool fixup = true; // Last index writes its data to fixup buffer to avoid data races with other blocks.
|
||||
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
|
||||
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, nrows_x, ncols_y, stride_row_x, stride_col_dst,
|
||||
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, stride_row_x, ncols_y, stride_col_dst,
|
||||
tile_x_max_i, tile_y_max_j, kb0_start, kb0_stop);
|
||||
}
|
||||
|
||||
@@ -2835,7 +2842,7 @@ static __global__ void mul_mat_q(
|
||||
template <ggml_type type, int mmq_x, int nwarps, bool need_check>
|
||||
static __global__ void mul_mat_q_stream_k_fixup(
|
||||
const int32_t * ids_dst, const int32_t * expert_bounds, float * __restrict__ dst, const float * __restrict__ tmp_last_tile,
|
||||
const int ncols_x, const int nrows_x, const int ncols_y, const int stride_col_dst,
|
||||
const int ncols_x, const int nrows_x, const int ncols_dst, const int stride_col_dst,
|
||||
const int nchannels_y, const int stride_channel_dst, const int nsamples_y, const int stride_sample_dst) {
|
||||
constexpr int mmq_y = get_mmq_y_device();
|
||||
constexpr int qk = ggml_cuda_type_traits<type>::qk;
|
||||
@@ -2844,8 +2851,8 @@ static __global__ void mul_mat_q_stream_k_fixup(
|
||||
|
||||
float sum[mmq_x*mmq_y / (nwarps*WARP_SIZE)] = {0.0f};
|
||||
|
||||
const int ntx = (ncols_y + mmq_x - 1) / mmq_x;
|
||||
const int nty = (nrows_x + mmq_y - 1) / mmq_y;
|
||||
const int ntx = (ncols_dst + mmq_x - 1) / mmq_x;
|
||||
const int nty = (nrows_x + mmq_y - 1) / mmq_y;
|
||||
|
||||
const int bidx0 = blockIdx.x;
|
||||
|
||||
@@ -2918,8 +2925,8 @@ static __global__ void mul_mat_q_stream_k_fixup(
|
||||
const int offset_dst = wt*stride_sample_dst + zt*stride_channel_dst + jt*mmq_x*stride_col_dst + it*mmq_y;
|
||||
dst += offset_dst;
|
||||
|
||||
const int i_max = nrows_x - it*mmq_y - 1;
|
||||
const int j_max = ncols_y - jt*mmq_x - 1;
|
||||
const int i_max = nrows_x - it*mmq_y - 1;
|
||||
const int j_max = ncols_dst - jt*mmq_x - 1;
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
|
||||
@@ -2951,6 +2958,7 @@ static __global__ void mul_mat_q_stream_k_fixup(
|
||||
for (int j = threadIdx.y*WARP_SIZE + threadIdx.x; j < mmq_x; j += nwarps*WARP_SIZE) {
|
||||
ids_dst_shared[j] = ids_dst[col_low + j];
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
const int offset_dst = it*mmq_y;
|
||||
dst += offset_dst;
|
||||
@@ -2981,7 +2989,7 @@ static __global__ void mul_mat_q_stream_k_fixup(
|
||||
|
||||
struct mmq_args {
|
||||
const char * x; ggml_type type_x; const int * y; const int32_t * ids_dst; const int32_t * expert_bounds; float * dst;
|
||||
int64_t ncols_x; int64_t nrows_x; int64_t ncols_y; int64_t stride_row_x; int64_t nrows_dst;
|
||||
int64_t ncols_x; int64_t nrows_x; int64_t ncols_dst; int64_t stride_row_x; int64_t ncols_y; int64_t nrows_dst;
|
||||
int64_t nchannels_x; int64_t nchannels_y; int64_t stride_channel_x; int64_t stride_channel_y; int64_t stride_channel_dst;
|
||||
int64_t nsamples_x; int64_t nsamples_y; int64_t stride_sample_x; int64_t stride_sample_y; int64_t stride_sample_dst;
|
||||
bool use_stream_k;
|
||||
@@ -3017,8 +3025,8 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
|
||||
}
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
|
||||
|
||||
const int nty = (args.nrows_x + mmq_y - 1) / mmq_y;
|
||||
const int ntx = (args.ncols_y + mmq_x - 1) / mmq_x;
|
||||
const int nty = (args.nrows_x + mmq_y - 1) / mmq_y;
|
||||
const int ntx = (args.ncols_dst + mmq_x - 1) / mmq_x;
|
||||
const int ntzw = args.nchannels_y * args.nsamples_y;
|
||||
const dim3 block_nums_xy_tiling(nty, ntx, ntzw);
|
||||
|
||||
@@ -3032,14 +3040,14 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
|
||||
constexpr bool need_check = false;
|
||||
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, nbytes_shared, stream>>>
|
||||
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, nullptr,
|
||||
args.ncols_x, args.nrows_x, args.ncols_y, args.stride_row_x, args.nrows_dst,
|
||||
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
|
||||
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
|
||||
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
|
||||
} else {
|
||||
constexpr bool need_check = true;
|
||||
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, nbytes_shared, stream>>>
|
||||
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, nullptr,
|
||||
args.ncols_x, args.nrows_x, args.ncols_y, args.stride_row_x, args.nrows_dst,
|
||||
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
|
||||
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
|
||||
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
|
||||
}
|
||||
@@ -3060,7 +3068,7 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
|
||||
|
||||
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_stream_k, block_dims, nbytes_shared, stream>>>
|
||||
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr,
|
||||
args.ncols_x, args.nrows_x, args.ncols_y, args.stride_row_x, args.nrows_dst,
|
||||
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
|
||||
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
|
||||
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
|
||||
|
||||
@@ -3069,14 +3077,14 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
|
||||
}
|
||||
|
||||
mul_mat_q_stream_k_fixup<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_stream_k, block_dims, 0, stream>>>
|
||||
(args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_y,
|
||||
(args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_dst,
|
||||
args.nrows_dst, args.nchannels_y, args.stride_channel_dst, args.nsamples_y, args.stride_sample_dst);
|
||||
} else {
|
||||
constexpr bool need_check = true;
|
||||
|
||||
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_stream_k, block_dims, nbytes_shared, stream>>>
|
||||
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr,
|
||||
args.ncols_x, args.nrows_x, args.ncols_y, args.stride_row_x, args.nrows_dst,
|
||||
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
|
||||
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
|
||||
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
|
||||
|
||||
@@ -3085,7 +3093,7 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
|
||||
}
|
||||
|
||||
mul_mat_q_stream_k_fixup<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_stream_k, block_dims, 0, stream>>>
|
||||
(args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_y,
|
||||
(args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_dst,
|
||||
args.nrows_dst, args.nchannels_y, args.stride_channel_dst, args.nsamples_y, args.stride_sample_dst);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -513,6 +513,17 @@ void ggml_cuda_mul_mat_vec_q(
|
||||
const int32_t * ids_d = ids ? (const int32_t *) ids->data : nullptr;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
// If src0 is a temporary compute buffer, clear any potential padding.
|
||||
if (ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
|
||||
const size_t size_data = ggml_nbytes(src0);
|
||||
const size_t size_alloc = ggml_backend_buffer_get_alloc_size(src0->buffer, src0);
|
||||
if (size_alloc > size_data) {
|
||||
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
|
||||
GGML_ASSERT(!src0->view_src);
|
||||
CUDA_CHECK(cudaMemsetAsync((char *) src0->data + size_data, 0, size_alloc - size_data, stream));
|
||||
}
|
||||
}
|
||||
|
||||
const int64_t ne10_padded = GGML_PAD(ne10, MATRIX_ROW_PADDING);
|
||||
ggml_cuda_pool_alloc<char> src1_q8_1(ctx.pool(), ne13*ne12 * ne11*ne10_padded * sizeof(block_q8_1)/QK8_1);
|
||||
{
|
||||
|
||||
@@ -163,6 +163,7 @@ void quantize_mmq_q8_1_cuda(
|
||||
const float * x, const int32_t * ids, void * vy, const ggml_type type_src0,
|
||||
const int64_t ne00, const int64_t s01, const int64_t s02, const int64_t s03,
|
||||
const int64_t ne0, const int64_t ne1, const int64_t ne2, const int64_t ne3, cudaStream_t stream) {
|
||||
GGML_ASSERT(ne00 % 4 == 0);
|
||||
GGML_ASSERT(ne0 % (4*QK8_1) == 0);
|
||||
|
||||
const int64_t block_num_x = (ne0 + 4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ - 1) / (4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ);
|
||||
|
||||
@@ -31,7 +31,7 @@ void ggml_cuda_op_sum(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
|
||||
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
@@ -0,0 +1,5 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-mma-f16.cuh"
|
||||
|
||||
DECL_FATTN_MMA_F16_CASE(576, 512, 1, 16);
|
||||
@@ -2,9 +2,9 @@
|
||||
|
||||
#include "../fattn-mma-f16.cuh"
|
||||
|
||||
DECL_FATTN_MMA_F16_CASE(64, 1, 8);
|
||||
DECL_FATTN_MMA_F16_CASE(80, 1, 8);
|
||||
DECL_FATTN_MMA_F16_CASE(96, 1, 8);
|
||||
DECL_FATTN_MMA_F16_CASE(112, 1, 8);
|
||||
DECL_FATTN_MMA_F16_CASE(128, 1, 8);
|
||||
DECL_FATTN_MMA_F16_CASE(256, 1, 8);
|
||||
DECL_FATTN_MMA_F16_CASE(64, 64, 1, 8);
|
||||
DECL_FATTN_MMA_F16_CASE(80, 80, 1, 8);
|
||||
DECL_FATTN_MMA_F16_CASE(96, 96, 1, 8);
|
||||
DECL_FATTN_MMA_F16_CASE(112, 112, 1, 8);
|
||||
DECL_FATTN_MMA_F16_CASE(128, 128, 1, 8);
|
||||
DECL_FATTN_MMA_F16_CASE(256, 256, 1, 8);
|
||||
|
||||
@@ -2,9 +2,9 @@
|
||||
|
||||
#include "../fattn-mma-f16.cuh"
|
||||
|
||||
DECL_FATTN_MMA_F16_CASE(64, 16, 1);
|
||||
DECL_FATTN_MMA_F16_CASE(80, 16, 1);
|
||||
DECL_FATTN_MMA_F16_CASE(96, 16, 1);
|
||||
DECL_FATTN_MMA_F16_CASE(112, 16, 1);
|
||||
DECL_FATTN_MMA_F16_CASE(128, 16, 1);
|
||||
DECL_FATTN_MMA_F16_CASE(256, 16, 1);
|
||||
DECL_FATTN_MMA_F16_CASE(64, 64, 16, 1);
|
||||
DECL_FATTN_MMA_F16_CASE(80, 80, 16, 1);
|
||||
DECL_FATTN_MMA_F16_CASE(96, 96, 16, 1);
|
||||
DECL_FATTN_MMA_F16_CASE(112, 112, 16, 1);
|
||||
DECL_FATTN_MMA_F16_CASE(128, 128, 16, 1);
|
||||
DECL_FATTN_MMA_F16_CASE(256, 256, 16, 1);
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user