Compare commits

...

82 Commits
b5259 ... b5341

Author SHA1 Message Date
Sigbjørn Skjæret
d2a4ef05c6 vocab : add ByteDance-Seed/Seed-Coder (#13423) 2025-05-10 22:08:07 +02:00
Xuan-Son Nguyen
15e6125a39 mtmd : add hard limit on image resolution for qwen2vl / qwen2.5vl (#13434)
* mtmd : add hard limit on image resolution for qwen2vl / qwen2.5vl

* fix typo
2025-05-10 19:57:54 +02:00
Xuan-Son Nguyen
3b24d26c22 server : update docs (#13432) 2025-05-10 18:44:49 +02:00
Sigbjørn Skjæret
43dfd741a5 llguidance : set tokenizer slices to default (#13424) 2025-05-10 17:19:52 +02:00
Thammachart Chinvarapon
b064a51a4e ci: free_disk_space flag enabled for intel variant (#13426)
before cleanup: 20G
after cleanup: 44G
after all built and pushed: 24G

https://github.com/Thammachart/llama.cpp/actions/runs/14945093573/job/41987371245
2025-05-10 16:34:48 +02:00
Xuan-Son Nguyen
053367d149 mtmd : support InternVL 2.5 and 3 (#13422)
* convert : internvl support

* InternVL3-1B working

* fix regression

* rm mobilevlm from test

* fix conversion

* add test for internvl

* add to list of pre-quant

* restore boi/eoi check

* add clarify comment for norm eps
2025-05-10 16:26:42 +02:00
Johannes Gäßler
d8919424f1 CUDA: fix FlashAttention on Turing (#13415) 2025-05-10 09:16:52 +02:00
Xuan-Son Nguyen
7fef11766c arg : add env var to control mmproj (#13416)
* arg : add env var to control mmproj

* small note about -hf --mmproj
2025-05-10 08:16:29 +02:00
Jeff Bolz
dc1d2adfc0 vulkan: scalar flash attention implementation (#13324)
* vulkan: scalar flash attention implementation

* vulkan: always use fp32 for scalar flash attention

* vulkan: use vector loads in scalar flash attention shader

* vulkan: remove PV matrix, helps with register usage

* vulkan: reduce register usage in scalar FA, but perf may be slightly worse

* vulkan: load each Q value once. optimize O reduction. more tuning

* vulkan: support q4_0/q8_0 KV in scalar FA

* CI: increase timeout to accommodate newly-supported tests

* vulkan: for scalar FA, select between 1 and 8 rows

* vulkan: avoid using Float16 capability in scalar FA
2025-05-10 08:07:07 +02:00
Helton Reis
7c28a74e07 chore(llguidance): use tagged version that does not break the build (#13413) 2025-05-09 23:15:39 +03:00
Xuan-Son Nguyen
33eff40240 server : vision support via libmtmd (#12898)
* server : (experimental) vision support via libmtmd

* mtmd : add more api around mtmd_image_tokens

* mtmd : add more api around mtmd_image_tokens

* mtmd : ability to calc image hash

* shared_ptr for mtmd_image_tokens

* move hash to user-define ID (fixed)

* abstract out the batch management

* small fix

* refactor logic adding tokens to batch

* implement hashing image

* use FNV hash, now hash bitmap instead of file data

* allow decoding image embedding to be split into batches

* rm whitespace

* disable some features when mtmd is on

* fix --no-mmproj-offload

* mtmd_context_params no timings

* refactor server_inp to server_tokens

* fix the failing test case

* init

* wip

* working version

* add mtmd::bitmaps

* add test target

* rm redundant define

* test: mtmd_input_chunks_free

* rm outdated comment

* fix merging issue

* explicitly create mtmd::input_chunks

* mtmd_input_chunk_copy

* add clone()

* improve server_input struct

* clip :  fix confused naming ffn_up and ffn_down

* rm ffn_i/o/g naming

* rename n_embd, n_ff

* small fix

* no check n_ff

* fix detokenize

* add const to various places

* add warning about breaking changes

* add c api

* helper: use mtmd_image_tokens_get_n_pos

* fix ctx_shift

* fix name shadowing

* more strict condition

* support remote image_url

* remote image_url log

* add CI test

* do not log base64

* add "has_multimodal" to /props

* remove dangling image

* speculative: use slot.cache_tokens.insert

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* rm can_be_detokenized

* on prmpt processing done, assert cache_tokens.size

* handle_completions_impl returns void

* adapt the new web ui

* update docs and hot topics

* rm assert

* small fix (2)

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-05-09 19:29:37 +02:00
Alberto Cabrera Pérez
17512a94d6 sycl : implementation of reordered Q4_0 MMVQ for Intel GPUs (#12858)
* sycl : Implemented reorder Q4_0 mmvq

Signed-off-by: Alberto Cabrera <alberto.cabrera@codeplay.com>

* sycl : Fixed mmvq being called when reorder is disabled

* sycl : Improved comments in the quants header

Signed-off-by: Alberto Cabrera <alberto.cabrera@codeplay.com>

* Use static_assert

* safe_div -> ceil_div

* Clarify qi comment

* change the reorder tensor from init to execute OP

* dbg

* Undo changes to test-backend-ops

* Refactor changes on top of q4_0 reorder fix

* Missing Reverts

* Refactored opt_for_reorder logic to simplify code path

* Explicit inlining and unroll

* Renamed mul_mat_algo enum for consistency

---------

Signed-off-by: Alberto Cabrera <alberto.cabrera@codeplay.com>
Co-authored-by: romain.biessy <romain.biessy@codeplay.com>
2025-05-09 16:34:08 +01:00
Georgi Gerganov
611aa914ef metal : optimize MoE for large batches (#13388)
ggml-ci
2025-05-09 15:14:56 +03:00
Johannes Gäßler
0cf6725e9f CUDA: FA support for Deepseek (Ampere or newer) (#13306)
* CUDA: FA support for Deepseek (Ampere or newer)

* do loop unrolling via C++ template
2025-05-09 13:34:58 +02:00
Diego Devesa
27ebfcacba llama : do not crash if there is no CPU backend (#13395)
* llama : do not crash if there is no CPU backend

* add checks to examples
2025-05-09 13:02:07 +02:00
Johannes Gäßler
5c86c9ed3e CUDA: fix crash on large batch size for MoE models (#13384) 2025-05-09 12:14:04 +02:00
Bartowski
efb8b47eda imatrix : Add --parse-special for enabling parsing of special tokens in imatrix calculation (#13389)
* Add --parse-special for enabling parsing of special tokens in imatrix calculation

* whitespace
2025-05-09 11:53:58 +02:00
R0CKSTAR
0527771dd8 llama-run: add support for downloading models from ModelScope (#13370)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-05-09 10:25:50 +01:00
Xuan-Son Nguyen
2189fd3b63 mtmd : fix batch_view for m-rope (#13397)
* mtmd : fix batch_view for m-rope

* nits : fix comment
2025-05-09 11:18:02 +02:00
Xuan-Son Nguyen
3f96aeff39 llama : one-off chat template fix for Mistral-Small-2503 (#13398)
* llama : one-off chat template fix for Mistral-Small-2503

* update readme

* add mistral-v7-tekken
2025-05-09 11:17:51 +02:00
Radoslav Gerganov
b486ba05bf rpc : add rpc_msg_set_tensor_hash_req (#13353)
* rpc : add rpc_msg_set_tensor_hash_req

Use a dedicated struct for the request of RPC_CMD_SET_TENSOR_HASH which
makes the code cleaner.

* fix
2025-05-09 10:31:07 +03:00
Jeff Bolz
02115dcd9a vulkan: Allow up to 4096 elements for mul_mat_id row_ids (#13326)
This assert fired running Qwen_Qwen3-30B-A3B-Q2_K.gguf:

GGML_ASSERT(nei0 * nei1 <= 3072);

The tensor is 8 x 512. Increase this array size to accommodate.
2025-05-09 09:23:41 +02:00
Xuan-Son Nguyen
d9c4accaff server : (webui) rename has_multimodal --> modalities (#13393)
* server : (webui) rename has_multimodal --> modalities

* allow converting SVG to PNG

* less complicated code
2025-05-09 09:06:37 +02:00
Diego Devesa
15e03282bb ci : limit write permission to only the release step + fixes (#13392)
* ci : limit write permission to only the release step

* fix win cuda file name

* fix license file copy on multi-config generators
2025-05-08 23:45:22 +02:00
Matt Clayton
f05a6d71a0 mtmd : Expose helper_decode_image_chunk (#13366)
* mtmd: Expose helper_decode_image, output_embd_copy, image_tokens_copy/free

* Slim down

* Cleanups
2025-05-08 20:25:39 +02:00
Xuan-Son Nguyen
ee01d71e58 server : (webui) fix a very small misalignment (#13387)
* server : (webui) fix a very small misalignment

* restore font-bold
2025-05-08 18:51:45 +02:00
Xuan-Son Nguyen
8c83449cb7 server : (webui) revamp the input area, plus many small UI improvements (#13365)
* rework the input area

* process selected file

* change all icons to heroicons

* fix thought process collapse

* move conversation more menu to sidebar

* sun icon --> moon icon

* rm default system message

* stricter upload file check, only allow image if server has mtmd

* build it

* add renaming

* better autoscroll

* build

* add conversation group

* fix scroll

* extra context first, then user input in the end

* fix <hr> tag

* clean up a bit

* build

* add mb-3 for <pre>

* throttle adjustTextareaHeight to make it less laggy

* (nits) missing padding in sidebar

* rm stray console log
2025-05-08 15:37:29 +02:00
Sigbjørn Skjæret
1a844be132 convert : support rope_scaling type and rope_type (#13349) 2025-05-08 15:34:29 +02:00
welix
0ccc121354 mtmd : fix the calculation of n_tokens for smolvlm (#13381)
Co-authored-by: Taichi Nishimura <Taichi.A.Nishimura@sony.com>
2025-05-08 15:03:53 +02:00
Georgi Gerganov
6562e5a4d6 context : allow cache-less context for embeddings (#13108)
* context : allow cache-less context for embeddings

ggml-ci

* context : enable reranking with encode()

ggml-ci

* context : encode() clears embd_seq

ggml-ci

* examples : use llama_encode() when appropriate

ggml-ci

* models : nomic bert moe does not require KV cache

* llama : update comments for llama_decode/llama_encode

ggml-ci

* context : update warning log [no ci]
2025-05-08 14:28:33 +03:00
Georgi Gerganov
51fb96b1ff context : remove logits_all flag (#13284)
* context : remove logits_all flag

ggml-ci

* llama : remove logits_all flag + reorder llama_context_params

ggml-ci
2025-05-08 14:26:50 +03:00
Diego Devesa
70a6991edf ci : move release workflow to a separate file (#13362) 2025-05-08 13:15:28 +02:00
Diego Devesa
f061021206 llama : print size and type of overridden tensors (#13364) 2025-05-08 13:15:15 +02:00
Alberto Cabrera Pérez
8733e0cf6e sycl: addressing non-contiguous src1 mul_mats (nc and batched) (#13343)
* sycl: fixed non-contiguous src1 mul_mats (nc and batched)

* Fixed wrong static_cast inside kernel
2025-05-08 10:08:01 +01:00
Diego Devesa
814f795e06 docker : disable arm64 and intel images (#13356) 2025-05-07 16:36:33 +02:00
Georgi Gerganov
d879433824 sync : ggml
ggml-ci
2025-05-07 17:28:36 +03:00
Daniel Bevenius
13b0a04597 whisper: remove MSVC warnings pragmas (whisper/3090)
* ggml : remove MSVC warnings pragmas

This commit removes the MSVC-specific pragmas as these are now handled
in ggml/CMakeLists.txt.

* whisper : remove MSVC warning pragmas

This commit removes the MSVC-specific pragmas. These are now handled in
the ggml/CMakeLists.txt file.
2025-05-07 17:28:36 +03:00
Jared Tweed
bba9d945c1 cmake : removed stdc++fs (whisper/3097)
* removed stdc++fs

* kept line, but removed stdc++fs
2025-05-07 17:28:36 +03:00
Sigbjørn Skjæret
bc4e1128f7 llama : deci : support ffn-free with attention (#13296) 2025-05-07 12:49:27 +02:00
Ycros
39e73ae0d6 common : Add a warning when we can't match samplers from a string or char. (#13330) 2025-05-07 11:23:28 +03:00
R0CKSTAR
1f73301b63 cuda : remove nrows_x in mul_mat_q_process_tile (#13325)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-05-07 09:48:23 +02:00
Georgi Gerganov
4773d7a02f examples : remove infill (#13283)
ggml-ci
2025-05-07 10:28:02 +03:00
piDack
6c7fd67b64 llama : support tie embedding for chatglm models (#13328) 2025-05-07 09:23:11 +02:00
Johannes Gäßler
141a908a59 CUDA: mix virt/real CUDA archs for GGML_NATIVE=OFF (#13135) 2025-05-06 23:35:51 +02:00
Xuan-Son Nguyen
32916a4907 clip : refactor graph builder (#13321)
* mtmd : refactor graph builder

* fix qwen2vl

* clean up siglip cgraph

* pixtral migrated

* move minicpmv to a dedicated build function

* move max_feature_layer to build_llava

* use build_attn for minicpm resampler

* fix windows build

* add comment for batch_size

* also support tinygemma3 test model

* qwen2vl does not use RMS norm

* fix qwen2vl norm (2)
2025-05-06 22:40:24 +02:00
DocShotgun
ffc727203a sampling : make top_n_sigma no-op at <=0 or a single candidate (#13345) 2025-05-06 22:36:24 +02:00
oobabooga
91a86a6f35 sampling : don't consider -infinity values in top_n_sigma (#13344) 2025-05-06 20:24:15 +02:00
Diego Devesa
f4ed10b69c cmake : remove arm64 msvc presets (#13342) 2025-05-06 20:15:31 +02:00
Akarshan Biswas
1e333d5bba SYCL: Disable reorder optimize by default and stop setting tensor extras when optimize is disabled (#13254)
* SYCL: Do not set tensor extras when reorder optimize is disabled

* SYCL: Disable reorder optimize by default
2025-05-06 20:27:06 +05:30
Xuan-Son Nguyen
2f54e348ad llama : fix build_ffn without gate (#13336)
* llama : fix build_ffn without gate

* fix build on windows

* Revert "fix build on windows"

This reverts commit fc420d3c7e.
2025-05-06 14:25:40 +02:00
Johannes Gäßler
2356fb1d53 CUDA: fix bad asserts for partial offload (#13337) 2025-05-06 13:58:51 +02:00
Sigbjørn Skjæret
764b85627b convert : qwen2/3moe : set yarn metadata if present (#13331)
* set yarn metadata if present

* add comment about enabling YaRN

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>

---------

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>
2025-05-06 11:12:06 +02:00
Johannes Gäßler
15a28ec8c7 CUDA: fix --split-mode row for MMQ (#13323) 2025-05-06 08:36:46 +02:00
compilade
a7366faa5b gguf-py : avoid requiring pyside6 for other scripts (#13036)
- gguf-py : remove gguf-py/gguf/scripts/__init__.py because it's not needed

Implicit namespaces are supported since Python 3.3 (https://peps.python.org/pep-0420/),
and the entrypoints in pyproject.toml can directly refer to the main functions.
2025-05-05 22:27:31 -04:00
Johannes Gäßler
9070365020 CUDA: fix logic for clearing padding with -ngl 0 (#13320) 2025-05-05 22:32:13 +02:00
oobabooga
233461f812 sampling : Integrate Top-nσ into main sampling chain (and add it to the server) (#13264)
* sampling: add Top-nσ sampler to `llama-server` and sampler ordering

* revert: sampler ordering

* revert: VS' crappy auto-formatting

* revert: VS' crappy auto-formatting pt.2

* revert: my crappy eye sight...

* sampling: add XTC to Top-nσ sampler chain

* sampling: add Dyna. Temp. to Top-nσ sampler chain

* sampling: actually remove Top-nσ from sampler(oops)

* Integrate top_n_sigma into main sampler chain

* Define COMMON_SAMPLER_TYPE_TOP_N_SIGMA

* Formatting

* Lint

* Exit early in the sampler if nsigma < 0

---------

Co-authored-by: CasualAutopsy <casual_autopsy@outlook.com>
2025-05-05 22:12:19 +02:00
igardev
b34c859146 server : Webui - change setText command from parent window to also send the message. (#13309)
* setText command from parent window for llama-vscode now sends the message automatically.

* Upgrade packages versions to fix vulnerabilities with "npm audit fix" command.

* Fix code formatting.

* Add index.html.gz changes.

* Revert "Upgrade packages versions to fix vulnerabilities with "npm audit fix" command."

This reverts commit 67687b7fda.

* easier approach

* add setTimeout

---------

Co-authored-by: igardev <ivailo.gardev@akros.ch>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-05-05 16:03:31 +02:00
Xuan-Son Nguyen
9b61acf060 mtmd : rename llava directory to mtmd (#13311)
* mv llava to mtmd

* change ref everywhere
2025-05-05 16:02:55 +02:00
Xuan-Son Nguyen
5215b91e93 clip : fix confused naming ffn_up and ffn_down (#13290)
* clip :  fix confused naming ffn_up and ffn_down

* rm ffn_i/o/g naming

* rename n_embd, n_ff

* small fix

* no check n_ff
2025-05-05 12:54:44 +02:00
Sigbjørn Skjæret
ae803bfc3d convert : bailingmoe : set yarn metadata if present (#13312) 2025-05-05 12:34:26 +02:00
Akarshan Biswas
66645a5285 SYCL: Disable mul_mat kernels for noncontiguous tensor b (#13308)
ggml-ci
2025-05-05 13:39:10 +05:30
Xuan-Son Nguyen
27aa259532 mtmd : add C public API (#13184)
* init

* wip

* working version

* add mtmd::bitmaps

* add test target

* rm redundant define

* test: mtmd_input_chunks_free

* rm outdated comment

* fix merging issue

* explicitly create mtmd::input_chunks

* mtmd_input_chunk_copy

* add clone()

* add const to various places

* add warning about breaking changes

* helper: use mtmd_image_tokens_get_n_pos
2025-05-04 23:43:42 +02:00
Diego Devesa
9fdfcdaedd rpc : use backend registry, support dl backends (#13304) 2025-05-04 21:25:43 +02:00
Aaron Teo
6eb7d25c70 ggml : activate s390x simd for Q3_K (#13301)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-05-04 19:49:12 +02:00
Diego Devesa
86bd60d3fe llava/mtmd : fixes to fully support dl backends (#13303) 2025-05-04 17:05:20 +02:00
Diego Devesa
9f2da5871f llama : build windows releases with dl backends (#13220) 2025-05-04 14:20:49 +02:00
Johannes Gäßler
93c4e23905 CUDA: fix race condition in MMQ stream-k fixup (#13299) 2025-05-04 14:16:39 +02:00
Johannes Gäßler
8afbd96818 CUDA: fix race condition in MMQ ids_dst (#13294) 2025-05-04 13:58:38 +02:00
Jeff Bolz
8ae5ebcf85 vulkan: Additional type support for unary, binary, and copy (#13266)
Support f16->f32 copy.
Support f16->f16 and f32->f32 unary ops.
Support all combinations of f16/f32 for src0/src1/dst for add/sub/mul/div.
2025-05-04 07:17:16 +02:00
Johannes Gäßler
3e959f0976 imatrix: fix oob writes if src1 is not contiguous (#13286) 2025-05-04 00:50:37 +02:00
Xuan-Son Nguyen
36667c8edc clip : revert the change of BOI/EOI token for GLM-edge (⚠️ breaking change) (#13259) 2025-05-03 20:07:54 +02:00
ymcki
3bf785f3ef llama : Llama-3_1-Nemotron-Ultra-253B-v1 support (#12843) 2025-05-03 17:39:51 +02:00
Diego Devesa
1d36b3670b llama : move end-user examples to tools directory (#13249)
* llama : move end-user examples to tools directory

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-05-02 20:27:13 +02:00
Georgi Gerganov
b34443923c sync : ggml (#13268)
* vulkan : kernels for depthwise 2D convolution (CONV_2D_DW) (ggml/1204)

* vulkan : add kernels for depthwise 2d convolution (OP_CONV_2D_DW)

* review: remove src_x/y < 0 checks; add performance tests

* sync : ggml

ggml-ci

* vulkan : fix lint (#0)

---------

Co-authored-by: Acly <aclysia@gmail.com>
2025-05-02 20:54:30 +03:00
Georgi Gerganov
a75cb30dc9 context : fix reorder logic (#13267)
ggml-ci
2025-05-02 20:54:13 +03:00
shalinib-ibm
3f3769ba76 ggml : Enable MMA for BF16 in llamafile_sgemm (#13148)
This patch upstreams llamafile's cpu matrix multiplication kernels for ppc64le using MMA builtins for BF16 data type.

This change results in 9x - 40x gains
in total speed S t/s (ie all tokens/total time), across various batch sizes tested using llama-batched-bench benchmark.

The patch is tested with Meta-Lllama-3-8B,
and Mistral-7B models (BF16 models generated by using llama-quantize from corresponding FP32 models) on an IBM POWER10 machine.

Signed-off-by: Shalini Salomi Bodapati <Shalini.Salomi.Bodapati@ibm.com>
2025-05-02 19:53:12 +03:00
Jared Van Bortel
2f567611c0 llama-model : support Qwen2 embedding models and pooling_mode_lasttoken (#13245) 2025-05-02 11:42:30 -04:00
Jared Van Bortel
7d2123484e convert : use correct context length for nomic-embed-text-v2 (#13216) 2025-05-02 11:41:54 -04:00
Xuan-Son Nguyen
074e42ab31 convert : converting mmproj for Qwen2/2.5VL from convert_hf_to_gguf (#13209)
* wip

* qwen2.5vl ok

* vision: fix models missing "text_config"

* add test

* fix test repo name

* fix 32B model

* Revert "fix 32B model"

This reverts commit 651752f1ae.

* clarify about 32B

* rm qwen surgery script

* update llava/readme

* move V_ENC_EMBD_PATCH handling to Qwen2VLVisionModel
2025-05-02 17:17:15 +02:00
Georgi Gerganov
c642bc014c kv-cache : separate recurrent vs non-recurrent impl (#12799)
* kv-cache : serparate recurrent vs non-recurrent impl (wip)

ggml-ci

* kv-cache : init -> contructor + add llama_memory_params

ggml-ci

* kv-cache : fix callback reference

ggml-ci

* context : llama_kv_cache -> llama_memory_i

ggml-ci

* context : move memory creation logic to model

ggml-ci

* llama : remove reference of memory during encode

ggml-ci

* kv-cache : hide padding details in the implementation

ggml-ci

* kv-cache : add ubatch_next()

ggml-ci

* context : simplify sbatch logic

ggml-ci

* kv-cache : hide defrag logic in the implementation

ggml-ci

* context : hide kv cache details in implementation

ggml-ci

* build : fix

ggml-ci

* cont : another fix

ggml-ci

* kv-cache : simplify interface (wip)

ggml-ci

* kv-cache : use separate KV cell structs for unified/recurrent

ggml-ci

* kv-cache : clean-up

ggml-ci

* model : better llama_model::create_model() signature

ggml-ci

* kv-cache : fix recurrent seq_rm()

ggml-ci

* kv-cache : replace `struct callbacks` with `llama_model &`

ggml-ci

* kv-cache : replace `struct graph_params` with `llama_context &`

ggml-ci

* kv-cache : fix offload check

ggml-ci

* context : avoid passing unique_ptr

ggml-ci

* kv-cache : avoid using the backends from the llama_context

ref #13113

ggml-ci

* kv-cache : more consistent debug logs [no ci]

* kv-cache : do not pass the full llama_context for kv graphs

ggml-ci

* kv-cache : remove comment

* kv-cache : ggml_rope_ext_inplace -> ggml_rope_ext

ggml-ci

* kv-cache : fix recurrent multi-user case

ggml-ci

* memory : remove comments [no ci]
2025-05-02 17:48:36 +03:00
Sigbjørn Skjæret
cb06a3c363 llama : orion rope type is neox (#13261) 2025-05-02 12:44:24 +02:00
Sigbjørn Skjæret
626083faf7 llama : plamo rope type is neox (#13260) 2025-05-02 12:40:56 +02:00
341 changed files with 12072 additions and 6991 deletions

View File

@@ -21,15 +21,15 @@ indent_style = tab
[prompts/*.txt]
insert_final_newline = unset
[examples/server/public/*]
[tools/server/public/*]
indent_size = 2
[examples/server/public/deps_*]
[tools/server/public/deps_*]
trim_trailing_whitespace = unset
indent_style = unset
indent_size = unset
[examples/server/deps_*]
[tools/server/deps_*]
trim_trailing_whitespace = unset
indent_style = unset
indent_size = unset
@@ -37,7 +37,7 @@ indent_size = unset
[examples/llama.swiftui/llama.swiftui.xcodeproj/*]
indent_style = tab
[examples/cvector-generator/*.txt]
[tools/cvector-generator/*.txt]
trim_trailing_whitespace = unset
insert_final_newline = unset

View File

@@ -2,8 +2,9 @@
max-line-length = 125
ignore = E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704,W503
exclude =
# Do not traverse examples
# Do not traverse examples and tools
examples,
tools,
# Do not include package initializers
__init__.py,
# No need to traverse our git directory

22
.github/actions/get-tag-name/action.yml vendored Normal file
View File

@@ -0,0 +1,22 @@
name: "Determine tag name"
description: "Determine the tag name to use for a release"
outputs:
name:
description: "The name of the tag"
value: ${{ steps.tag.outputs.name }}
runs:
using: "composite"
steps:
- name: Determine tag name
id: tag
shell: bash
run: |
BUILD_NUMBER="$(git rev-list --count HEAD)"
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
else
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
fi

View File

@@ -0,0 +1,67 @@
name: "Windows - Setup CUDA Toolkit"
description: "Setup CUDA Toolkit for Windows"
inputs:
cuda_version:
description: "CUDA toolkit version"
required: true
runs:
using: "composite"
steps:
- name: Install Cuda Toolkit 11.7
if: ${{ inputs.cuda_version == '11.7' }}
shell: pwsh
run: |
mkdir -p "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7"
choco install unzip -y
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cudart/windows-x86_64/cuda_cudart-windows-x86_64-11.7.99-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvcc/windows-x86_64/cuda_nvcc-windows-x86_64-11.7.99-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvrtc/windows-x86_64/cuda_nvrtc-windows-x86_64-11.7.99-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/libcublas/windows-x86_64/libcublas-windows-x86_64-11.7.4.6-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvtx/windows-x86_64/cuda_nvtx-windows-x86_64-11.7.91-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/visual_studio_integration/windows-x86_64/visual_studio_integration-windows-x86_64-11.7.91-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvprof/windows-x86_64/cuda_nvprof-windows-x86_64-11.7.101-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cccl/windows-x86_64/cuda_cccl-windows-x86_64-11.7.91-archive.zip"
unzip '*.zip' -d "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7"
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_cudart-windows-x86_64-11.7.99-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_nvcc-windows-x86_64-11.7.99-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_nvrtc-windows-x86_64-11.7.99-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\libcublas-windows-x86_64-11.7.4.6-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_nvtx-windows-x86_64-11.7.91-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\visual_studio_integration-windows-x86_64-11.7.91-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_nvprof-windows-x86_64-11.7.101-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_cccl-windows-x86_64-11.7.91-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\libnvvp" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
echo "CUDA_PATH_V11_7=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
- name: Install Cuda Toolkit 12.4
if: ${{ inputs.cuda_version == '12.4' }}
shell: pwsh
run: |
mkdir -p "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4"
choco install unzip -y
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cudart/windows-x86_64/cuda_cudart-windows-x86_64-12.4.127-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvcc/windows-x86_64/cuda_nvcc-windows-x86_64-12.4.131-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvrtc/windows-x86_64/cuda_nvrtc-windows-x86_64-12.4.127-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/libcublas/windows-x86_64/libcublas-windows-x86_64-12.4.5.8-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvtx/windows-x86_64/cuda_nvtx-windows-x86_64-12.4.127-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_profiler_api/windows-x86_64/cuda_profiler_api-windows-x86_64-12.4.127-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/visual_studio_integration/windows-x86_64/visual_studio_integration-windows-x86_64-12.4.127-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvprof/windows-x86_64/cuda_nvprof-windows-x86_64-12.4.127-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cccl/windows-x86_64/cuda_cccl-windows-x86_64-12.4.127-archive.zip"
unzip '*.zip' -d "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4"
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_cudart-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_nvcc-windows-x86_64-12.4.131-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_nvrtc-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\libcublas-windows-x86_64-12.4.5.8-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_nvtx-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_profiler_api-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\visual_studio_integration-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_nvprof-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_cccl-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\libnvvp" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
echo "CUDA_PATH_V12_4=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8

6
.github/labeler.yml vendored
View File

@@ -45,7 +45,9 @@ build:
- CMakePresets.json
examples:
- changed-files:
- any-glob-to-any-file: examples/**
- any-glob-to-any-file:
- examples/**
- tools/**
devops:
- changed-files:
- any-glob-to-any-file:
@@ -70,7 +72,7 @@ android:
server:
- changed-files:
- any-glob-to-any-file:
- examples/server/**
- tools/server/**
ggml:
- changed-files:
- any-glob-to-any-file:

View File

@@ -27,10 +27,10 @@ on:
push:
branches:
- master
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'tools/server/*.h*', 'tools/server/*.cpp']
pull_request_target:
types: [opened, synchronize, reopened]
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'tools/server/*.h*', 'tools/server/*.cpp']
schedule:
- cron: '04 2 * * *'
@@ -69,7 +69,7 @@ jobs:
- name: Install python env
id: pipenv
run: |
cd examples/server/bench
cd tools/server/bench
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
@@ -79,7 +79,7 @@ jobs:
run: |
wget --quiet https://github.com/prometheus/prometheus/releases/download/v2.51.0/prometheus-2.51.0.linux-amd64.tar.gz
tar xzf prometheus*.tar.gz --strip-components=1
./prometheus --config.file=examples/server/bench/prometheus.yml &
./prometheus --config.file=tools/server/bench/prometheus.yml &
while ! nc -z localhost 9090; do
sleep 0.1
done
@@ -92,7 +92,7 @@ jobs:
- name: Install k6 and xk6-sse
id: k6_installation
run: |
cd examples/server/bench
cd tools/server/bench
go install go.k6.io/xk6/cmd/xk6@latest
xk6 build master \
--with github.com/phymbert/xk6-sse
@@ -116,7 +116,7 @@ jobs:
- name: Download the dataset
id: download_dataset
run: |
cd examples/server/bench
cd tools/server/bench
wget --quiet https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
- name: Server bench
@@ -126,7 +126,7 @@ jobs:
run: |
set -eux
cd examples/server/bench
cd tools/server/bench
source venv/bin/activate
python bench.py \
--runner-label ${{ env.RUNNER_LABEL }} \
@@ -157,9 +157,9 @@ jobs:
name: bench-server-${{ github.job }}-${{ env.RUNNER_LABEL }}-${{ matrix.model }}-${{ matrix.ftype }}
compression-level: 9
path: |
examples/server/bench/*.jpg
examples/server/bench/*.json
examples/server/bench/*.log
tools/server/bench/*.jpg
tools/server/bench/*.json
tools/server/bench/*.log
- name: Commit status
uses: Sibz/github-status-action@v1
@@ -178,17 +178,17 @@ jobs:
with:
client_id: ${{secrets.IMGUR_CLIENT_ID}}
path: |
examples/server/bench/prompt_tokens_seconds.jpg
examples/server/bench/predicted_tokens_seconds.jpg
examples/server/bench/kv_cache_usage_ratio.jpg
examples/server/bench/requests_processing.jpg
tools/server/bench/prompt_tokens_seconds.jpg
tools/server/bench/predicted_tokens_seconds.jpg
tools/server/bench/kv_cache_usage_ratio.jpg
tools/server/bench/requests_processing.jpg
- name: Extract mermaid
id: set_mermaid
run: |
set -eux
cd examples/server/bench
cd tools/server/bench
PROMPT_TOKENS_SECONDS=$(cat prompt_tokens_seconds.mermaid)
echo "PROMPT_TOKENS_SECONDS<<EOF" >> $GITHUB_ENV
echo "$PROMPT_TOKENS_SECONDS" >> $GITHUB_ENV

View File

@@ -34,6 +34,7 @@ jobs:
cmake -B build -DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
@@ -80,6 +81,7 @@ jobs:
-DGGML_VULKAN=ON \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
@@ -125,6 +127,7 @@ jobs:
-DGGML_VULKAN=ON \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=aarch64 \

File diff suppressed because it is too large Load Diff

View File

@@ -36,10 +36,13 @@ jobs:
matrix:
config:
# Multi-stage build
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: false }
# Note: the arm64 images are failing, which prevents the amd64 images from being built
# https://github.com/ggml-org/llama.cpp/issues/11888
#- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true }
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true }
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
# Note: the rocm images are failing due to a compiler error and are disabled until this is fixed to allow the workflow to complete
#- {tag: "rocm", dockerfile: ".devops/rocm.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: true }

709
.github/workflows/release.yml vendored Normal file
View File

@@ -0,0 +1,709 @@
name: Create Release
on:
workflow_dispatch: # allows manual triggering
inputs:
create_release:
description: 'Create new release'
required: true
type: boolean
push:
branches:
- master
paths: ['.github/workflows/release.yml', '**/CMakeLists.txt', '**/.cmake', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal', '**/*.comp']
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
env:
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
CMAKE_ARGS: "-DLLAMA_BUILD_EXAMPLES=OFF -DLLAMA_BUILD_TESTS=OFF -DLLAMA_BUILD_TOOLS=ON -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON"
jobs:
macOS-arm64:
runs-on: macos-14
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: macOS-latest-cmake-arm64
evict-old-files: 1d
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
brew install curl
- name: Build
id: cmake_build
run: |
sysctl -a
cmake -B build \
-DCMAKE_BUILD_RPATH="@loader_path" \
-DLLAMA_FATAL_WARNINGS=ON \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DGGML_RPC=ON \
${{ env.CMAKE_ARGS }}
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
- name: Determine tag name
id: tag
uses: ./.github/actions/get-tag-name
- name: Pack artifacts
id: pack_artifacts
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip ./build/bin/*
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip
name: llama-bin-macos-arm64.zip
macOS-x64:
runs-on: macos-13
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: macOS-latest-cmake-x64
evict-old-files: 1d
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
brew install curl
- name: Build
id: cmake_build
run: |
sysctl -a
# Metal is disabled due to intermittent failures with Github runners not having a GPU:
# https://github.com/ggml-org/llama.cpp/actions/runs/8635935781/job/23674807267#step:5:2313
cmake -B build \
-DCMAKE_BUILD_RPATH="@loader_path" \
-DLLAMA_FATAL_WARNINGS=ON \
-DGGML_METAL=OFF \
-DGGML_RPC=ON
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
- name: Determine tag name
id: tag
uses: ./.github/actions/get-tag-name
- name: Pack artifacts
id: pack_artifacts
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip ./build/bin/*
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip
name: llama-bin-macos-x64.zip
ubuntu-22-cpu:
strategy:
matrix:
include:
- build: 'x64'
os: ubuntu-22.04
- build: 'arm64'
os: ubuntu-22.04-arm
runs-on: ${{ matrix.os }}
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: ubuntu-cpu-cmake
evict-old-files: 1d
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential libcurl4-openssl-dev
- name: Build
id: cmake_build
run: |
cmake -B build \
-DLLAMA_FATAL_WARNINGS=ON \
${{ env.CMAKE_ARGS }}
cmake --build build --config Release -j $(nproc)
- name: Determine tag name
id: tag
uses: ./.github/actions/get-tag-name
- name: Pack artifacts
id: pack_artifacts
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip ./build/bin/*
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip
name: llama-bin-ubuntu-${{ matrix.build }}.zip
ubuntu-22-vulkan:
runs-on: ubuntu-22.04
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: ubuntu-22-cmake-vulkan
evict-old-files: 1d
- name: Dependencies
id: depends
run: |
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | sudo apt-key add -
sudo wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
sudo apt-get update -y
sudo apt-get install -y build-essential mesa-vulkan-drivers vulkan-sdk libcurl4-openssl-dev
- name: Build
id: cmake_build
run: |
cmake -B build \
-DGGML_VULKAN=ON \
${{ env.CMAKE_ARGS }}
cmake --build build --config Release -j $(nproc)
- name: Determine tag name
id: tag
uses: ./.github/actions/get-tag-name
- name: Pack artifacts
id: pack_artifacts
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip ./build/bin/*
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip
name: llama-bin-ubuntu-vulkan-x64.zip
windows:
runs-on: windows-latest
env:
OPENBLAS_VERSION: 0.3.23
VULKAN_VERSION: 1.4.309.0
strategy:
matrix:
include:
- build: 'cpu-x64'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF'
#- build: 'openblas-x64'
# defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
- build: 'vulkan-x64'
defines: '-DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON'
- build: 'cpu-arm64'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF'
- build: 'opencl-adreno-arm64'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON'
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: windows-latest-cmake-${{ matrix.build }}
variant: ccache
evict-old-files: 1d
- name: Download OpenBLAS
id: get_openblas
if: ${{ matrix.build == 'openblas-x64' }}
run: |
curl.exe -o $env:RUNNER_TEMP/openblas.zip -L "https://github.com/xianyi/OpenBLAS/releases/download/v${env:OPENBLAS_VERSION}/OpenBLAS-${env:OPENBLAS_VERSION}-x64.zip"
curl.exe -o $env:RUNNER_TEMP/OpenBLAS.LICENSE.txt -L "https://github.com/xianyi/OpenBLAS/raw/v${env:OPENBLAS_VERSION}/LICENSE"
mkdir $env:RUNNER_TEMP/openblas
tar.exe -xvf $env:RUNNER_TEMP/openblas.zip -C $env:RUNNER_TEMP/openblas
$vcdir = $(vswhere -latest -products * -requires Microsoft.VisualStudio.Component.VC.Tools.x86.x64 -property installationPath)
$msvc = $(join-path $vcdir $('VC\Tools\MSVC\'+$(gc -raw $(join-path $vcdir 'VC\Auxiliary\Build\Microsoft.VCToolsVersion.default.txt')).Trim()))
$lib = $(join-path $msvc 'bin\Hostx64\x64\lib.exe')
& $lib /machine:x64 "/def:${env:RUNNER_TEMP}/openblas/lib/libopenblas.def" "/out:${env:RUNNER_TEMP}/openblas/lib/openblas.lib" /name:openblas.dll
- name: Install Vulkan SDK
id: get_vulkan
if: ${{ matrix.build == 'vulkan-x64' }}
run: |
curl.exe -o $env:RUNNER_TEMP/VulkanSDK-Installer.exe -L "https://sdk.lunarg.com/sdk/download/${env:VULKAN_VERSION}/windows/VulkanSDK-${env:VULKAN_VERSION}-Installer.exe"
& "$env:RUNNER_TEMP\VulkanSDK-Installer.exe" --accept-licenses --default-answer --confirm-command install
Add-Content $env:GITHUB_ENV "VULKAN_SDK=C:\VulkanSDK\${env:VULKAN_VERSION}"
Add-Content $env:GITHUB_PATH "C:\VulkanSDK\${env:VULKAN_VERSION}\bin"
- name: Install Ninja
id: install_ninja
run: |
choco install ninja
- name: Install OpenCL Headers and Libs
id: install_opencl
if: ${{ matrix.build == 'opencl-adreno-arm64' }}
run: |
git clone https://github.com/KhronosGroup/OpenCL-Headers
cd OpenCL-Headers
cmake -B build `
-DBUILD_TESTING=OFF `
-DOPENCL_HEADERS_BUILD_TESTING=OFF `
-DOPENCL_HEADERS_BUILD_CXX_TESTS=OFF `
-DCMAKE_INSTALL_PREFIX="$env:RUNNER_TEMP/opencl-arm64-release"
cmake --build build --target install
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader
cd OpenCL-ICD-Loader
cmake -B build-arm64-release `
-A arm64 `
-DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" `
-DCMAKE_INSTALL_PREFIX="$env:RUNNER_TEMP/opencl-arm64-release"
cmake --build build-arm64-release --target install --config release
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build
id: cmake_build
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cmake -S . -B build ${{ matrix.defines }} `
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include" `
${{ env.CMAKE_ARGS }}
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS}
- name: Add libopenblas.dll
id: add_libopenblas_dll
if: ${{ matrix.build == 'openblas-x64' }}
run: |
cp $env:RUNNER_TEMP/openblas/bin/libopenblas.dll ./build/bin/Release/openblas.dll
cp $env:RUNNER_TEMP/OpenBLAS.LICENSE.txt ./build/bin/Release/OpenBLAS-${env:OPENBLAS_VERSION}.txt
- name: Determine tag name
id: tag
uses: ./.github/actions/get-tag-name
- name: Pack artifacts
id: pack_artifacts
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
Copy-Item $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\Release\libcurl-x64.dll
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}.zip .\build\bin\Release\*
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}.zip
name: llama-bin-win-${{ matrix.build }}.zip
windows-cuda:
runs-on: windows-2019
strategy:
matrix:
cuda: ['12.4', '11.7']
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Install ccache
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: windows-cuda-${{ matrix.cuda }}
variant: ccache
evict-old-files: 1d
- name: Install Cuda Toolkit
uses: ./.github/actions/windows-setup-cuda
with:
cuda_version: ${{ matrix.cuda }}
- name: Install Ninja
id: install_ninja
run: |
choco install ninja
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build
id: cmake_build
shell: cmd
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
cmake -S . -B build -G "Ninja Multi-Config" ^
-DGGML_NATIVE=OFF ^
-DGGML_BACKEND_DL=ON ^
-DGGML_CPU_ALL_VARIANTS=ON ^
-DGGML_CUDA=ON ^
-DCURL_LIBRARY="%CURL_PATH%/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="%CURL_PATH%/include" ^
${{ env.CMAKE_ARGS }}
set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1
cmake --build build --config Release -j %NINJA_JOBS% -t ggml
cmake --build build --config Release
- name: Determine tag name
id: tag
uses: ./.github/actions/get-tag-name
- name: Pack artifacts
id: pack_artifacts
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cp $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\Release\libcurl-x64.dll
7z a llama-${{ steps.tag.outputs.name }}-bin-win-cuda${{ matrix.cuda }}-x64.zip .\build\bin\Release\*
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-win-cuda${{ matrix.cuda }}-x64.zip
name: llama-bin-win-cuda${{ matrix.cuda }}-x64.zip
- name: Copy and pack Cuda runtime
run: |
echo "Cuda install location: ${{ env.CUDA_PATH }}"
$dst='.\build\bin\cudart\'
robocopy "${{env.CUDA_PATH}}\bin" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
robocopy "${{env.CUDA_PATH}}\lib" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
7z a cudart-llama-bin-win-cuda${{ matrix.cuda }}-x64.zip $dst\*
- name: Upload Cuda runtime
uses: actions/upload-artifact@v4
with:
path: cudart-llama-bin-win-cuda${{ matrix.cuda }}-x64.zip
name: cudart-llama-bin-win-cuda${{ matrix.cuda }}-x64.zip
windows-sycl:
runs-on: windows-latest
defaults:
run:
shell: bash
env:
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/b380d914-366b-4b77-a74a-05e3c38b3514/intel-oneapi-base-toolkit-2025.0.0.882_offline.exe
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel:intel.oneapi.win.dnnl:intel.oneapi.win.tbb.devel
ONEAPI_ROOT: "C:/Program Files (x86)/Intel/oneAPI"
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: windows-latest-cmake-sycl
variant: ccache
evict-old-files: 1d
- name: Install
run: |
scripts/install-oneapi.bat $WINDOWS_BASEKIT_URL $WINDOWS_DPCPP_MKL
# TODO: add libcurl support ; we will also need to modify win-build-sycl.bat to accept user-specified args
- name: Build
id: cmake_build
run: examples/sycl/win-build-sycl.bat
- name: Determine tag name
id: tag
uses: ./.github/actions/get-tag-name
- name: Build the release package
id: pack_artifacts
run: |
echo "cp oneAPI running time dll files in ${{ env.ONEAPI_ROOT }} to ./build/bin"
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_sycl_blas.5.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_core.2.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_tbb_thread.2.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_adapter_level_zero.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_adapter_opencl.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_loader.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_win_proxy_loader.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/sycl8.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/svml_dispmd.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libmmd.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libiomp5md.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/dnnl/latest/bin/dnnl.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/tbb/latest/bin/tbb12.dll" ./build/bin
echo "cp oneAPI running time dll files to ./build/bin done"
7z a llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip ./build/bin/*
- name: Upload the release package
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip
name: llama-bin-win-sycl-x64.zip
windows-hip:
runs-on: windows-latest
strategy:
matrix:
gpu_target: [gfx1100, gfx1101, gfx1030]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Clone rocWMMA repository
id: clone_rocwmma
run: |
git clone https://github.com/rocm/rocwmma --branch rocm-6.2.4 --depth 1
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: windows-latest-cmake-hip-release
evict-old-files: 1d
- name: Install
id: depends
run: |
$ErrorActionPreference = "Stop"
write-host "Downloading AMD HIP SDK Installer"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
write-host "Installing AMD HIP SDK"
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
write-host "Completed AMD HIP SDK installation"
- name: Verify ROCm
id: verify
run: |
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build
id: cmake_build
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
cmake -G "Unix Makefiles" -B build -S . `
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/rocwmma/library/include/" `
-DCMAKE_BUILD_TYPE=Release `
-DAMDGPU_TARGETS=${{ matrix.gpu_target }} `
-DGGML_HIP_ROCWMMA_FATTN=ON `
-DGGML_HIP=ON `
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include" `
${{ env.CMAKE_ARGS }}
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
md "build\bin\rocblas\library\"
cp "${env:HIP_PATH}\bin\hipblas.dll" "build\bin\"
cp "${env:HIP_PATH}\bin\rocblas.dll" "build\bin\"
cp "${env:HIP_PATH}\bin\rocblas\library\*" "build\bin\rocblas\library\"
- name: Determine tag name
id: tag
uses: ./.github/actions/get-tag-name
- name: Pack artifacts
id: pack_artifacts
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cp $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\libcurl-x64.dll
7z a llama-${{ steps.tag.outputs.name }}-bin-win-hip-x64-${{ matrix.gpu_target }}.zip .\build\bin\*
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-win-hip-x64-${{ matrix.gpu_target }}.zip
name: llama-bin-win-hip-x64-${{ matrix.gpu_target }}.zip
ios-xcode-build:
runs-on: macos-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Build
id: cmake_build
run: |
sysctl -a
cmake -B build -G Xcode \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_CURL=OFF \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TOOLS=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
-DCMAKE_SYSTEM_NAME=iOS \
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0 \
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu) -- CODE_SIGNING_ALLOWED=NO
- name: xcodebuild for swift package
id: xcodebuild
run: |
./build-xcframework.sh
- name: Build Xcode project
run: xcodebuild -project examples/llama.swiftui/llama.swiftui.xcodeproj -scheme llama.swiftui -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' FRAMEWORK_FOLDER_PATH=./build-ios build
- name: Determine tag name
id: tag
uses: ./.github/actions/get-tag-name
- name: Pack artifacts
id: pack_artifacts
run: |
zip --symlinks -r llama-${{ steps.tag.outputs.name }}-xcframework.zip build-apple/llama.xcframework
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-xcframework.zip
name: llama-${{ steps.tag.outputs.name }}-xcframework
release:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
# Fine-grant permission
# https://docs.github.com/en/actions/security-for-github-actions/security-guides/automatic-token-authentication#modifying-the-permissions-for-the-github_token
permissions:
contents: write # for creating release
runs-on: ubuntu-latest
needs:
- ubuntu-22-cpu
- ubuntu-22-vulkan
- windows
- windows-cuda
- windows-sycl
- windows-hip
- macOS-arm64
- macOS-x64
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Determine tag name
id: tag
uses: ./.github/actions/get-tag-name
- name: Download artifacts
id: download-artifact
uses: actions/download-artifact@v4
with:
path: ./artifact
- name: Move artifacts
id: move_artifacts
run: mkdir -p ./artifact/release && mv ./artifact/*/*.zip ./artifact/release
- name: Create release
id: create_release
uses: ggml-org/action-create-release@v1
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:
tag_name: ${{ steps.tag.outputs.name }}
- name: Upload release
id: upload_release
uses: actions/github-script@v3
with:
github-token: ${{secrets.GITHUB_TOKEN}}
script: |
const path = require('path');
const fs = require('fs');
const release_id = '${{ steps.create_release.outputs.id }}';
for (let file of await fs.readdirSync('./artifact/release')) {
if (path.extname(file) === '.zip') {
console.log('uploadReleaseAsset', file);
await github.repos.uploadReleaseAsset({
owner: context.repo.owner,
repo: context.repo.repo,
release_id: release_id,
name: file,
data: await fs.readFileSync(`./artifact/release/${file}`)
});
}
}

View File

@@ -15,10 +15,10 @@ on:
push:
branches:
- master
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'tools/server/**.*']
pull_request:
types: [opened, synchronize, reopened]
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'tools/server/**.*']
env:
LLAMA_LOG_COLORS: 1
@@ -74,7 +74,7 @@ jobs:
- name: Tests dependencies
id: test_dependencies
run: |
pip install -r examples/server/tests/requirements.txt
pip install -r tools/server/tests/requirements.txt
# Setup nodejs (to be used for verifying bundled index.html)
- uses: actions/setup-node@v4
@@ -84,14 +84,14 @@ jobs:
- name: WebUI - Install dependencies
id: webui_lint
run: |
cd examples/server/webui
cd tools/server/webui
npm ci
- name: WebUI - Check code format
id: webui_format
run: |
git config --global --add safe.directory $(realpath .)
cd examples/server/webui
cd tools/server/webui
git status
npm run format
@@ -108,7 +108,7 @@ jobs:
id: verify_server_index_html
run: |
git config --global --add safe.directory $(realpath .)
cd examples/server/webui
cd tools/server/webui
git status
npm run build
@@ -161,21 +161,21 @@ jobs:
env:
GITHUB_ACTIONS: "true"
run: |
cd examples/server/tests
cd tools/server/tests
./tests.sh
- name: Tests (sanitizers)
id: server_integration_tests_sanitizers
if: ${{ matrix.sanitizer != '' }}
run: |
cd examples/server/tests
cd tools/server/tests
LLAMA_SANITIZE=1 ./tests.sh
- name: Slow tests
id: server_integration_tests_slow
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
run: |
cd examples/server/tests
cd tools/server/tests
SLOW_TESTS=1 ./tests.sh
@@ -211,7 +211,7 @@ jobs:
- name: Tests dependencies
id: test_dependencies
run: |
pip install -r examples/server/tests/requirements.txt
pip install -r tools/server/tests/requirements.txt
- name: Copy Libcurl
id: prepare_libcurl
@@ -224,7 +224,7 @@ jobs:
id: server_integration_tests
if: ${{ !matrix.disabled_on_pr || !github.event.pull_request }}
run: |
cd examples/server/tests
cd tools/server/tests
$env:PYTHONIOENCODING = ":replace"
pytest -v -x -m "not slow"
@@ -232,6 +232,6 @@ jobs:
id: server_integration_tests_slow
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
run: |
cd examples/server/tests
cd tools/server/tests
$env:SLOW_TESTS = "1"
pytest -v -x

12
.gitignore vendored
View File

@@ -96,11 +96,11 @@ perf-*.txt
# Examples
examples/jeopardy/results.txt
examples/server/*.css.hpp
examples/server/*.html.hpp
examples/server/*.js.hpp
examples/server/*.mjs.hpp
examples/server/*.gz.hpp
tools/server/*.css.hpp
tools/server/*.html.hpp
tools/server/*.js.hpp
tools/server/*.mjs.hpp
tools/server/*.gz.hpp
!build_64.sh
!examples/*.bat
!examples/*/*.kts
@@ -110,7 +110,7 @@ examples/server/*.gz.hpp
# Server Web UI temporary files
node_modules
examples/server/webui/dist
tools/server/webui/dist
# Python

View File

@@ -77,6 +77,7 @@ option(LLAMA_BUILD_COMMON "llama: build common utils library" ${LLAMA_STANDALONE
# extra artifacts
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_TOOLS "llama: build tools" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_SERVER "llama: build server example" ${LLAMA_STANDALONE})
@@ -187,6 +188,10 @@ if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_EXAMPLES)
add_subdirectory(pocs)
endif()
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_TOOLS)
add_subdirectory(tools)
endif()
#
# install
#
@@ -247,20 +252,3 @@ configure_file(cmake/llama.pc.in
install(FILES "${CMAKE_CURRENT_BINARY_DIR}/llama.pc"
DESTINATION ${CMAKE_INSTALL_LIBDIR}/pkgconfig)
#
# copy the license files
#
# Check if running in GitHub Actions
if(DEFINED ENV{GITHUB_ACTIONS} AND "$ENV{GITHUB_ACTIONS}" STREQUAL "true")
message(STATUS "Running inside GitHub Actions - copying license files")
# Copy all files from licenses/ to build/bin/
file(GLOB LICENSE_FILES "${CMAKE_SOURCE_DIR}/licenses/*")
foreach(LICENSE_FILE ${LICENSE_FILES})
get_filename_component(FILENAME ${LICENSE_FILE} NAME)
configure_file(${LICENSE_FILE} "${CMAKE_BINARY_DIR}/bin/${FILENAME}" COPYONLY)
endforeach()
endif()

View File

@@ -38,15 +38,6 @@
}
},
{
"name": "arm64-windows-msvc", "hidden": true,
"architecture": { "value": "arm64", "strategy": "external" },
"toolset": { "value": "host=x64", "strategy": "external" },
"cacheVariables": {
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-windows-msvc.cmake"
}
},
{
"name": "arm64-windows-llvm", "hidden": true,
"architecture": { "value": "arm64", "strategy": "external" },
@@ -73,10 +64,6 @@
{ "name": "arm64-apple-clang-release", "inherits": [ "base", "arm64-apple-clang", "reldbg" ] },
{ "name": "arm64-apple-clang+static-release", "inherits": [ "base", "arm64-apple-clang", "reldbg", "static" ] },
{ "name": "arm64-windows-msvc-debug", "inherits": [ "base", "arm64-windows-msvc", "debug" ] },
{ "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg" ] },
{ "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg", "static" ] },
{ "name": "x64-windows-llvm-debug", "inherits": [ "base", "x64-windows-llvm", "debug" ] },
{ "name": "x64-windows-llvm-release", "inherits": [ "base", "x64-windows-llvm", "release" ] },
{ "name": "x64-windows-llvm-reldbg", "inherits": [ "base", "x64-windows-llvm", "reldbg" ] },

View File

@@ -2,7 +2,7 @@
/ci/ @ggerganov
/.devops/*.Dockerfile @ngxson
/examples/server/ @ngxson
/tools/server/ @ngxson
/ggml/src/ggml-cuda/fattn* @JohannesGaessler
/ggml/src/ggml-cuda/mmq.* @JohannesGaessler
/ggml/src/ggml-cuda/mmv.* @JohannesGaessler

View File

@@ -1156,10 +1156,10 @@ $(LIB_COMMON_S): $(OBJ_COMMON)
# Clean generated server assets
clean-server-assets:
find examples/server -type f -name "*.js.hpp" -delete
find examples/server -type f -name "*.mjs.hpp" -delete
find examples/server -type f -name "*.css.hpp" -delete
find examples/server -type f -name "*.html.hpp" -delete
find tools/server -type f -name "*.js.hpp" -delete
find tools/server -type f -name "*.mjs.hpp" -delete
find tools/server -type f -name "*.css.hpp" -delete
find tools/server -type f -name "*.html.hpp" -delete
# Clean rule
clean: clean-server-assets
@@ -1179,7 +1179,7 @@ clean: clean-server-assets
# Helper function that replaces .c, .cpp, and .cu file endings with .o:
GET_OBJ_FILE = $(patsubst %.c,%.o,$(patsubst %.cpp,%.o,$(patsubst %.cu,%.o,$(1))))
llama-cli: examples/main/main.cpp \
llama-cli: tools/main/main.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
@@ -1187,12 +1187,7 @@ llama-cli: examples/main/main.cpp \
@echo '==== Run ./llama-cli -h for help. ===='
@echo
llama-infill: examples/infill/infill.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-run: examples/run/run.cpp \
llama-run: tools/run/run.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
@@ -1207,7 +1202,7 @@ llama-simple-chat: examples/simple-chat/simple-chat.cpp \
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-tokenize: examples/tokenize/tokenize.cpp \
llama-tokenize: tools/tokenize/tokenize.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
@@ -1217,27 +1212,27 @@ llama-batched: examples/batched/batched.cpp \
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-batched-bench: examples/batched-bench/batched-bench.cpp \
llama-batched-bench: tools/batched-bench/batched-bench.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-quantize: examples/quantize/quantize.cpp \
llama-quantize: tools/quantize/quantize.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-quantize-stats: examples/quantize-stats/quantize-stats.cpp \
llama-quantize-stats: tools/quantize-stats/quantize-stats.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-perplexity: examples/perplexity/perplexity.cpp \
llama-perplexity: tools/perplexity/perplexity.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-imatrix: examples/imatrix/imatrix.cpp \
llama-imatrix: tools/imatrix/imatrix.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
@@ -1279,7 +1274,7 @@ llama-gguf-hash: examples/gguf-hash/gguf-hash.cpp examples/gguf-hash/deps/sha1/s
$(CXX) $(CXXFLAGS) -Iexamples/gguf-hash/deps -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-gguf-split: examples/gguf-split/gguf-split.cpp \
llama-gguf-split: tools/gguf-split/gguf-split.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
@@ -1289,7 +1284,7 @@ llama-eval-callback: examples/eval-callback/eval-callback.cpp \
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-cvector-generator: examples/cvector-generator/cvector-generator.cpp \
llama-cvector-generator: tools/cvector-generator/cvector-generator.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
@@ -1299,12 +1294,12 @@ llama-convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-bench: examples/llama-bench/llama-bench.cpp \
llama-bench: tools/llama-bench/llama-bench.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-export-lora: examples/export-lora/export-lora.cpp \
llama-export-lora: tools/export-lora/export-lora.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
@@ -1360,17 +1355,17 @@ llama-gbnf-validator: examples/gbnf-validator/gbnf-validator.cpp \
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
ifdef GGML_RPC
rpc-server: examples/rpc/rpc-server.cpp \
rpc-server: tools/rpc/rpc-server.cpp \
$(OBJ_GGML)
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
endif # GGML_RPC
llama-server: \
examples/server/server.cpp \
examples/server/utils.hpp \
examples/server/httplib.h \
examples/server/index.html.hpp \
examples/server/loading.html.hpp \
tools/server/server.cpp \
tools/server/utils.hpp \
tools/server/httplib.h \
tools/server/index.html.hpp \
tools/server/loading.html.hpp \
common/chat.cpp \
common/chat.h \
common/chat-template.hpp \
@@ -1378,10 +1373,10 @@ llama-server: \
common/minja.hpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Iexamples/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2)
$(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Itools/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2)
# Portable equivalent of `cd examples/server/public && xxd -i $(notdir $<) ../$(notdir $<).hpp`:
examples/server/%.hpp: examples/server/public/% FORCE Makefile
# Portable equivalent of `cd tools/server/public && xxd -i $(notdir $<) ../$(notdir $<).hpp`:
tools/server/%.hpp: tools/server/public/% FORCE Makefile
@( export NAME=$(subst .,_,$(subst -,_,$(notdir $<))) && \
echo "unsigned char $${NAME}[] = {" && \
cat $< | od -v -t x1 -An | sed -E 's/([0-9a-fA-F]+)/0x\1, /g' && \
@@ -1394,36 +1389,36 @@ llama-gen-docs: examples/gen-docs/gen-docs.cpp \
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
libllava.a: examples/llava/llava.cpp \
examples/llava/llava.h \
examples/llava/clip.cpp \
examples/llava/clip.h \
libllava.a: tools/mtmd/llava.cpp \
tools/mtmd/llava.h \
tools/mtmd/clip.cpp \
tools/mtmd/clip.h \
common/stb_image.h \
common/base64.hpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -static -fPIC -c $< -o $@ -Wno-cast-qual
llama-llava-cli: examples/llava/llava-cli.cpp \
examples/llava/llava.cpp \
examples/llava/llava.h \
examples/llava/clip.cpp \
examples/llava/clip.h \
llama-llava-cli: tools/mtmd/llava-cli.cpp \
tools/mtmd/llava.cpp \
tools/mtmd/llava.h \
tools/mtmd/clip.cpp \
tools/mtmd/clip.h \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) $< $(filter-out %.h $<,$^) -o $@ $(LDFLAGS) -Wno-cast-qual
llama-minicpmv-cli: examples/llava/minicpmv-cli.cpp \
examples/llava/llava.cpp \
examples/llava/llava.h \
examples/llava/clip.cpp \
examples/llava/clip.h \
llama-minicpmv-cli: tools/mtmd/minicpmv-cli.cpp \
tools/mtmd/llava.cpp \
tools/mtmd/llava.h \
tools/mtmd/clip.cpp \
tools/mtmd/clip.h \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) $< $(filter-out %.h $<,$^) -o $@ $(LDFLAGS) -Wno-cast-qual
llama-qwen2vl-cli: examples/llava/qwen2vl-cli.cpp \
examples/llava/llava.cpp \
examples/llava/llava.h \
examples/llava/clip.cpp \
examples/llava/clip.h \
llama-qwen2vl-cli: tools/mtmd/qwen2vl-cli.cpp \
tools/mtmd/llava.cpp \
tools/mtmd/llava.h \
tools/mtmd/clip.cpp \
tools/mtmd/clip.h \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) $< $(filter-out %.h $<,$^) -o $@ $(LDFLAGS) -Wno-cast-qual
@@ -1480,12 +1475,12 @@ tests/test-double-float: tests/test-double-float.cpp
tests/test-json-schema-to-grammar: tests/test-json-schema-to-grammar.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -Iexamples/server -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) -Itools/server -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-chat: tests/test-chat.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -Iexamples/server -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) -Itools/server -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-opt: tests/test-opt.cpp \

View File

@@ -16,8 +16,9 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
## Hot topics
- 🔥 Multimodal support arrived in `llama-server`: [#12898](https://github.com/ggml-org/llama.cpp/pull/12898) | [documentation](./docs/multimodal.md)
- **GGML developer experience survey (organized and reviewed by NVIDIA):** [link](https://forms.gle/Gasw3cRgyhNEnrwK9)
- A new binary `llama-mtmd-cli` is introduced to replace `llava-cli`, `minicpmv-cli`, `gemma3-cli` ([#13012](https://github.com/ggml-org/llama.cpp/pull/13012)) and `qwen2vl-cli` ([#13141]((https://github.com/ggml-org/llama.cpp/pull/13141))), `libllava` will be deprecated
- A new binary `llama-mtmd-cli` is introduced to replace `llava-cli`, `minicpmv-cli`, `gemma3-cli` ([#13012](https://github.com/ggml-org/llama.cpp/pull/13012)) and `qwen2vl-cli` ([#13141](https://github.com/ggml-org/llama.cpp/pull/13141)), `libllava` will be deprecated
- VS Code extension for FIM completions: https://github.com/ggml-org/llama.vscode
- Universal [tool call support](./docs/function-calling.md) in `llama-server` https://github.com/ggml-org/llama.cpp/pull/9639
- Vim/Neovim plugin for FIM completions: https://github.com/ggml-org/llama.vim
@@ -242,7 +243,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
| [Vulkan](docs/build.md#vulkan) | GPU |
| [CANN](docs/build.md#cann) | Ascend NPU |
| [OpenCL](docs/backend/OPENCL.md) | Adreno GPU |
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/examples/rpc) | All |
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) | All |
## Building the project
@@ -276,9 +277,9 @@ The Hugging Face platform provides a variety of online tools for converting, qua
- Use the [GGUF-editor space](https://huggingface.co/spaces/CISCai/gguf-editor) to edit GGUF meta data in the browser (more info: https://github.com/ggml-org/llama.cpp/discussions/9268)
- Use the [Inference Endpoints](https://ui.endpoints.huggingface.co/) to directly host `llama.cpp` in the cloud (more info: https://github.com/ggml-org/llama.cpp/discussions/9669)
To learn more about model quantization, [read this documentation](examples/quantize/README.md)
To learn more about model quantization, [read this documentation](tools/quantize/README.md)
## [`llama-cli`](examples/main)
## [`llama-cli`](tools/main)
#### A CLI tool for accessing and experimenting with most of `llama.cpp`'s functionality.
@@ -341,7 +342,7 @@ To learn more about model quantization, [read this documentation](examples/quant
</details>
## [`llama-server`](examples/server)
## [`llama-server`](tools/server)
#### A lightweight, [OpenAI API](https://github.com/openai/openai-openapi) compatible, HTTP server for serving LLMs.
@@ -411,7 +412,7 @@ To learn more about model quantization, [read this documentation](examples/quant
</details>
## [`llama-perplexity`](examples/perplexity)
## [`llama-perplexity`](tools/perplexity)
#### A tool for measuring the perplexity [^1][^2] (and other quality metrics) of a model over a given text.
@@ -436,10 +437,10 @@ To learn more about model quantization, [read this documentation](examples/quant
</details>
[^1]: [examples/perplexity/README.md](./examples/perplexity/README.md)
[^1]: [tools/perplexity/README.md](./tools/perplexity/README.md)
[^2]: [https://huggingface.co/docs/transformers/perplexity](https://huggingface.co/docs/transformers/perplexity)
## [`llama-bench`](examples/llama-bench)
## [`llama-bench`](tools/llama-bench)
#### Benchmark the performance of the inference for various parameters.
@@ -460,7 +461,7 @@ To learn more about model quantization, [read this documentation](examples/quant
</details>
## [`llama-run`](examples/run)
## [`llama-run`](tools/run)
#### A comprehensive example for running `llama.cpp` models. Useful for inferencing. Used with RamaLama [^3].
@@ -504,8 +505,8 @@ To learn more about model quantization, [read this documentation](examples/quant
## Other documentation
- [main (cli)](examples/main/README.md)
- [server](examples/server/README.md)
- [main (cli)](tools/main/README.md)
- [server](tools/server/README.md)
- [GBNF grammars](grammars/README.md)
#### Development documentation

View File

@@ -40,7 +40,7 @@ To protect sensitive data from potential leaks or unauthorized access, it is cru
### Untrusted environments or networks
If you can't run your models in a secure and isolated environment or if it must be exposed to an untrusted network, make sure to take the following security precautions:
* Do not use the RPC backend, [rpc-server](https://github.com/ggml-org/llama.cpp/tree/master/examples/rpc) and [llama-server](https://github.com/ggml-org/llama.cpp/tree/master/examples/server) functionality (see https://github.com/ggml-org/llama.cpp/pull/13061).
* Do not use the RPC backend, [rpc-server](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) and [llama-server](https://github.com/ggml-org/llama.cpp/tree/master/tools/server) functionality (see https://github.com/ggml-org/llama.cpp/pull/13061).
* Confirm the hash of any downloaded artifact (e.g. pre-trained model weights) matches a known-good value.
* Encrypt your data if sending it over the network.

View File

@@ -8,6 +8,7 @@ TVOS_MIN_OS_VERSION=16.4
BUILD_SHARED_LIBS=OFF
LLAMA_BUILD_EXAMPLES=OFF
LLAMA_BUILD_TOOLS=OFF
LLAMA_BUILD_TESTS=OFF
LLAMA_BUILD_SERVER=OFF
GGML_METAL=ON
@@ -31,6 +32,7 @@ COMMON_CMAKE_ARGS=(
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
-DBUILD_SHARED_LIBS=${BUILD_SHARED_LIBS}
-DLLAMA_BUILD_EXAMPLES=${LLAMA_BUILD_EXAMPLES}
-DLLAMA_BUILD_TOOLS=${LLAMA_BUILD_TOOLS}
-DLLAMA_BUILD_TESTS=${LLAMA_BUILD_TESTS}
-DLLAMA_BUILD_SERVER=${LLAMA_BUILD_SERVER}
-DGGML_METAL_EMBED_LIBRARY=${GGML_METAL_EMBED_LIBRARY}

View File

@@ -187,8 +187,8 @@ function gg_run_test_scripts_debug {
set -e
(cd ./examples/gguf-split && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
(cd ./examples/quantize && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
(cd ./tools/gguf-split && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
(cd ./tools/quantize && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
set +e
}
@@ -211,8 +211,8 @@ function gg_run_test_scripts_release {
set -e
(cd ./examples/gguf-split && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
(cd ./examples/quantize && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
(cd ./tools/gguf-split && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
(cd ./tools/quantize && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
set +e
}

View File

@@ -1,6 +0,0 @@
set( CMAKE_SYSTEM_NAME Windows )
set( CMAKE_SYSTEM_PROCESSOR arm64 )
set( target arm64-pc-windows-msvc )
set( CMAKE_C_COMPILER_TARGET ${target} )
set( CMAKE_CXX_COMPILER_TARGET ${target} )

View File

@@ -3,9 +3,3 @@ set( CMAKE_SYSTEM_PROCESSOR x86_64 )
set( CMAKE_C_COMPILER clang )
set( CMAKE_CXX_COMPILER clang++ )
set( arch_c_flags "-march=native" )
set( CMAKE_C_FLAGS_INIT "${arch_c_flags}" )
set( CMAKE_CXX_FLAGS_INIT "${arch_c_flags}" )

View File

@@ -119,8 +119,8 @@ if (LLAMA_LLGUIDANCE)
ExternalProject_Add(llguidance_ext
GIT_REPOSITORY https://github.com/guidance-ai/llguidance
# v0.7.10:
GIT_TAG 0309d2a6bf40abda35344a362edc71e06d5009f8
# v0.7.19 (+ fancy-regex build fix):
GIT_TAG b59f98f85269892a7de3d3641ad155366f13daa6
PREFIX ${CMAKE_BINARY_DIR}/llguidance
SOURCE_DIR ${LLGUIDANCE_SRC}
BUILD_IN_SOURCE TRUE
@@ -144,3 +144,27 @@ endif ()
target_include_directories(${TARGET} PUBLIC .)
target_compile_features (${TARGET} PUBLIC cxx_std_17)
target_link_libraries (${TARGET} PRIVATE ${LLAMA_COMMON_EXTRA_LIBS} PUBLIC llama Threads::Threads)
#
# copy the license files
#
# Check if running in GitHub Actions
if (DEFINED ENV{GITHUB_ACTIONS} AND "$ENV{GITHUB_ACTIONS}" STREQUAL "true")
message(STATUS "Running inside GitHub Actions - copying license files")
# Copy all files from licenses/ to build/bin/
file(GLOB LICENSE_FILES "${CMAKE_SOURCE_DIR}/licenses/*")
foreach(LICENSE_FILE ${LICENSE_FILES})
get_filename_component(FILENAME ${LICENSE_FILE} NAME)
add_custom_command(
POST_BUILD
TARGET ${TARGET}
COMMAND ${CMAKE_COMMAND} -E copy_if_different
"${LICENSE_FILE}"
"$<TARGET_FILE_DIR:llama>/${FILENAME}"
COMMENT "Copying ${FILENAME} to ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}")
message(STATUS "Copying ${LICENSE_FILE} to ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/${FILENAME}")
endforeach()
endif()

View File

@@ -40,7 +40,7 @@ using json = nlohmann::ordered_json;
std::initializer_list<enum llama_example> mmproj_examples = {
LLAMA_EXAMPLE_LLAVA,
// TODO: add LLAMA_EXAMPLE_SERVER when it's ready
LLAMA_EXAMPLE_SERVER,
};
static std::string read_file(const std::string & fname) {
@@ -1283,7 +1283,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params) {
params.use_color = true;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
add_opt(common_arg(
{"-t", "--threads"}, "N",
string_format("number of threads to use during generation (default: %d)", params.cpuparams.n_threads),
@@ -1416,7 +1416,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
add_opt(common_arg(
{"-n", "--predict", "--n-predict"}, "N",
string_format(
ex == LLAMA_EXAMPLE_MAIN || ex == LLAMA_EXAMPLE_INFILL
ex == LLAMA_EXAMPLE_MAIN
? "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)"
: "number of tokens to predict (default: %d, -1 = infinity)",
params.n_predict),
@@ -1655,7 +1655,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.input_prefix = value;
params.enable_chat_template = false;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(common_arg(
{"--in-suffix"}, "STRING",
"string to suffix after user inputs with (default: empty)",
@@ -1663,7 +1663,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.input_suffix = value;
params.enable_chat_template = false;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(common_arg(
{"--no-warmup"},
"skip warming up the model with an empty run",
@@ -1680,7 +1680,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params) {
params.spm_infill = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_INFILL}));
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--samplers"}, "SAMPLERS",
string_format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()),
@@ -2097,13 +2097,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.cache_type_v = kv_cache_type_from_str(value);
}
).set_env("LLAMA_ARG_CACHE_TYPE_V"));
add_opt(common_arg(
{"--perplexity", "--all-logits"},
string_format("return logits for all tokens in the batch (default: %s)", params.logits_all ? "true" : "false"),
[](common_params & params) {
params.logits_all = true;
}
).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
add_opt(common_arg(
{"--hellaswag"},
"compute HellaSwag score over random tasks from datafile supplied with -f",
@@ -2211,32 +2204,33 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONT_BATCHING"));
add_opt(common_arg(
{"--mmproj"}, "FILE",
"path to a multimodal projector file. see examples/llava/README.md",
"path to a multimodal projector file. see tools/mtmd/README.md\n"
"note: if -hf is used, this argument can be omitted",
[](common_params & params, const std::string & value) {
params.mmproj.path = value;
}
).set_examples(mmproj_examples));
).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ"));
add_opt(common_arg(
{"--mmproj-url"}, "URL",
"URL to a multimodal projector file. see examples/llava/README.md",
"URL to a multimodal projector file. see tools/mtmd/README.md",
[](common_params & params, const std::string & value) {
params.mmproj.url = value;
}
).set_examples(mmproj_examples));
).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ_URL"));
add_opt(common_arg(
{"--no-mmproj"},
"explicitly disable multimodal projector, useful when using -hf",
[](common_params & params) {
params.no_mmproj = true;
}
).set_examples(mmproj_examples));
).set_examples(mmproj_examples).set_env("LLAMA_ARG_NO_MMPROJ"));
add_opt(common_arg(
{"--no-mmproj-offload"},
"do not offload multimodal projector to GPU",
[](common_params & params) {
params.mmproj_use_gpu = false;
}
).set_examples(mmproj_examples));
).set_examples(mmproj_examples).set_env("LLAMA_ARG_NO_MMPROJ_OFFLOAD"));
add_opt(common_arg(
{"--image"}, "FILE",
"path to an image file. use with multimodal models. Specify multiple times for batching",
@@ -2634,6 +2628,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.i_chunk = value;
}
).set_examples({LLAMA_EXAMPLE_IMATRIX}));
add_opt(common_arg(
{"--parse-special"},
string_format("prase special tokens (chat, tool, etc) (default: %s)", params.parse_special ? "true" : "false"),
[](common_params & params) {
params.parse_special = true;
}
).set_examples({LLAMA_EXAMPLE_IMATRIX}));
add_opt(common_arg(
{"-pps"},
string_format("is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false"),
@@ -2892,7 +2893,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params) {
params.simple_io = true;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(common_arg(
{"--positive-file"}, "FNAME",
string_format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()),

View File

@@ -125,7 +125,9 @@ std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const json & messa
msgs.push_back(msg);
}
} catch (const std::exception & e) {
throw std::runtime_error("Failed to parse messages: " + std::string(e.what()) + "; messages = " + messages.dump(2));
// @ngxson : disable otherwise it's bloating the API response
// printf("%s\n", std::string("; messages = ") + messages.dump(2));
throw std::runtime_error("Failed to parse messages: " + std::string(e.what()));
}
return msgs;

View File

@@ -1096,7 +1096,6 @@ struct llama_context_params common_context_params_to_llama(const common_params &
cparams.n_threads = params.cpuparams.n_threads;
cparams.n_threads_batch = params.cpuparams_batch.n_threads == -1 ?
params.cpuparams.n_threads : params.cpuparams_batch.n_threads;
cparams.logits_all = params.logits_all;
cparams.embeddings = params.embedding;
cparams.rope_scaling_type = params.rope_scaling_type;
cparams.rope_freq_base = params.rope_freq_base;

View File

@@ -66,7 +66,6 @@ enum llama_example {
LLAMA_EXAMPLE_COMMON,
LLAMA_EXAMPLE_SPECULATIVE,
LLAMA_EXAMPLE_MAIN,
LLAMA_EXAMPLE_INFILL,
LLAMA_EXAMPLE_EMBEDDING,
LLAMA_EXAMPLE_PERPLEXITY,
LLAMA_EXAMPLE_RETRIEVAL,
@@ -96,6 +95,7 @@ enum common_sampler_type {
COMMON_SAMPLER_TYPE_XTC = 8,
COMMON_SAMPLER_TYPE_INFILL = 9,
COMMON_SAMPLER_TYPE_PENALTIES = 10,
COMMON_SAMPLER_TYPE_TOP_N_SIGMA = 11,
};
// dimensionality reduction methods, used by cvector-generator
@@ -161,6 +161,7 @@ struct common_params_sampling {
std::vector<enum common_sampler_type> samplers = {
COMMON_SAMPLER_TYPE_PENALTIES,
COMMON_SAMPLER_TYPE_DRY,
COMMON_SAMPLER_TYPE_TOP_N_SIGMA,
COMMON_SAMPLER_TYPE_TOP_K,
COMMON_SAMPLER_TYPE_TYPICAL_P,
COMMON_SAMPLER_TYPE_TOP_P,
@@ -323,7 +324,6 @@ struct common_params {
bool ctx_shift = true; // context shift on inifinite text generation
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool logits_all = false; // return logits for all tokens in the batch
bool use_mmap = true; // use mmap for faster loads
bool use_mlock = false; // use mlock to keep model in memory
bool verbose_prompt = false; // print prompt tokens before generation
@@ -340,7 +340,7 @@ struct common_params {
common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
// multimodal models (see examples/llava)
// multimodal models (see tools/mtmd)
struct common_params_model mmproj;
bool mmproj_use_gpu = true; // use GPU for multimodal model
bool no_mmproj = false; // explicitly disable multimodal model
@@ -409,13 +409,14 @@ struct common_params {
bool process_output = false; // collect data for the output tensor
bool compute_ppl = true; // whether to compute perplexity
bool parse_special = false; // whether to parse special tokens during imatrix tokenization
// cvector-generator params
int n_pca_batch = 100;
int n_pca_iterations = 1000;
dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
std::string cvector_positive_file = "tools/cvector-generator/positive.txt";
std::string cvector_negative_file = "tools/cvector-generator/negative.txt";
bool spm_infill = false; // suffix/prefix/middle pattern for infill

View File

@@ -189,6 +189,7 @@ static LlgTokenizer * llama_sampler_llg_new_tokenizer(const llama_vocab * vocab)
/* .tokenize_fn = */ llama_sampler_llg_tokenize_fn,
/* .use_approximate_greedy_tokenize_fn = */ false,
/* .tokenize_user_data = */ vocab,
/* .slices = */ nullptr,
};
char error_buffer[1024];

View File

@@ -1,6 +1,7 @@
#include "sampling.h"
#include "common.h"
#include "log.h"
#include <cmath>
#include <unordered_map>
@@ -229,51 +230,48 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
params.logit_bias.data()));
if (params.mirostat == 0) {
if (params.top_n_sigma >= 0) {
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
llama_sampler_chain_add(result->chain, llama_sampler_init_temp (params.temp));
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
} else {
for (const auto & cnstr : params.samplers) {
switch (cnstr) {
case COMMON_SAMPLER_TYPE_DRY:
{
std::vector<const char *> c_breakers;
c_breakers.reserve(params.dry_sequence_breakers.size());
for (const auto & str : params.dry_sequence_breakers) {
c_breakers.push_back(str.c_str());
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
for (const auto & cnstr : params.samplers) {
switch (cnstr) {
case COMMON_SAMPLER_TYPE_DRY:
{
std::vector<const char *> c_breakers;
c_breakers.reserve(params.dry_sequence_breakers.size());
for (const auto & str : params.dry_sequence_breakers) {
c_breakers.push_back(str.c_str());
}
break;
case COMMON_SAMPLER_TYPE_TOP_K:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
break;
case COMMON_SAMPLER_TYPE_TOP_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_MIN_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_XTC:
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
break;
case COMMON_SAMPLER_TYPE_TYPICAL_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TEMPERATURE:
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
break;
case COMMON_SAMPLER_TYPE_INFILL:
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
break;
case COMMON_SAMPLER_TYPE_PENALTIES:
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
break;
default:
GGML_ASSERT(false && "unknown sampler type");
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
}
break;
case COMMON_SAMPLER_TYPE_TOP_K:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
break;
case COMMON_SAMPLER_TYPE_TOP_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
break;
case COMMON_SAMPLER_TYPE_MIN_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_XTC:
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
break;
case COMMON_SAMPLER_TYPE_TYPICAL_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TEMPERATURE:
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
break;
case COMMON_SAMPLER_TYPE_INFILL:
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
break;
case COMMON_SAMPLER_TYPE_PENALTIES:
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties (params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
break;
default:
GGML_ASSERT(false && "unknown sampler type");
}
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
@@ -475,6 +473,7 @@ char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
case COMMON_SAMPLER_TYPE_TOP_K: return 'k';
case COMMON_SAMPLER_TYPE_TYPICAL_P: return 'y';
case COMMON_SAMPLER_TYPE_TOP_P: return 'p';
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return 's';
case COMMON_SAMPLER_TYPE_MIN_P: return 'm';
case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
case COMMON_SAMPLER_TYPE_XTC: return 'x';
@@ -490,6 +489,7 @@ std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
case COMMON_SAMPLER_TYPE_TOP_K: return "top_k";
case COMMON_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
case COMMON_SAMPLER_TYPE_TOP_P: return "top_p";
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return "top_n_sigma";
case COMMON_SAMPLER_TYPE_MIN_P: return "min_p";
case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
case COMMON_SAMPLER_TYPE_XTC: return "xtc";
@@ -504,6 +504,7 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
{ "dry", COMMON_SAMPLER_TYPE_DRY },
{ "top_k", COMMON_SAMPLER_TYPE_TOP_K },
{ "top_p", COMMON_SAMPLER_TYPE_TOP_P },
{ "top_n_sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
{ "typ_p", COMMON_SAMPLER_TYPE_TYPICAL_P },
{ "min_p", COMMON_SAMPLER_TYPE_MIN_P },
{ "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
@@ -517,6 +518,7 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
std::unordered_map<std::string, common_sampler_type> sampler_alt_name_map {
{ "top-k", COMMON_SAMPLER_TYPE_TOP_K },
{ "top-p", COMMON_SAMPLER_TYPE_TOP_P },
{ "top-n-sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
{ "nucleus", COMMON_SAMPLER_TYPE_TOP_P },
{ "typical-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
{ "typical", COMMON_SAMPLER_TYPE_TYPICAL_P },
@@ -533,14 +535,16 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
auto sampler = sampler_canonical_name_map.find(name);
if (sampler != sampler_canonical_name_map.end()) {
samplers.push_back(sampler->second);
} else {
if (allow_alt_names) {
sampler = sampler_alt_name_map.find(name);
if (sampler != sampler_alt_name_map.end()) {
samplers.push_back(sampler->second);
}
continue;
}
if (allow_alt_names) {
sampler = sampler_alt_name_map.find(name);
if (sampler != sampler_alt_name_map.end()) {
samplers.push_back(sampler->second);
continue;
}
}
LOG_WRN("%s: unable to match sampler by name '%s'\n", __func__, name.c_str());
}
return samplers;
@@ -552,6 +556,7 @@ std::vector<common_sampler_type> common_sampler_types_from_chars(const std::stri
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K), COMMON_SAMPLER_TYPE_TOP_K },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P), COMMON_SAMPLER_TYPE_TYPICAL_P },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P), COMMON_SAMPLER_TYPE_TOP_P },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_N_SIGMA), COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P), COMMON_SAMPLER_TYPE_MIN_P },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC), COMMON_SAMPLER_TYPE_XTC },
@@ -566,6 +571,8 @@ std::vector<common_sampler_type> common_sampler_types_from_chars(const std::stri
const auto sampler = sampler_name_map.find(c);
if (sampler != sampler_name_map.end()) {
samplers.push_back(sampler->second);
} else {
LOG_WRN("%s: unable to match sampler by char '%c'\n", __func__, c);
}
}

View File

@@ -426,7 +426,11 @@ class ModelBase:
logger.warning(f"Failed to load model config from {dir_model}: {e}")
logger.warning("Trying to load config.json instead")
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
return json.load(f)
config = json.load(f)
if "llm_config" in config:
# rename for InternVL
config["text_config"] = config["llm_config"]
return config
@classmethod
def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
@@ -455,8 +459,12 @@ class ModelBase:
class TextModel(ModelBase):
model_type = ModelType.TEXT
hf_arch: str
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.hf_arch = get_model_architecture(self.hparams, self.model_type)
if "text_config" in self.hparams:
# move the text_config to the root level
@@ -506,7 +514,7 @@ class TextModel(ModelBase):
def set_gguf_parameters(self):
self.gguf_writer.add_block_count(self.block_count)
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions"], optional=True)) is not None:
self.gguf_writer.add_context_length(n_ctx)
logger.info(f"gguf: context length = {n_ctx}")
@@ -790,6 +798,9 @@ class TextModel(ModelBase):
if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
# ref: https://huggingface.co/mistral-community/pixtral-12b
res = "pixtral"
if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
# ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
res = "seed-coder"
if res is None:
logger.warning("\n")
@@ -1075,10 +1086,36 @@ class TextModel(ModelBase):
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
def _try_set_pooling_type(self) -> None:
# get pooling path
pooling_path = None
module_path = self.dir_model / "modules.json"
if module_path.is_file():
with open(module_path, encoding="utf-8") as f:
modules = json.load(f)
for mod in modules:
if mod["type"] == "sentence_transformers.models.Pooling":
pooling_path = mod["path"]
break
# get pooling type
if pooling_path is not None:
with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
pooling = json.load(f)
if pooling["pooling_mode_mean_tokens"]:
pooling_type = gguf.PoolingType.MEAN
elif pooling["pooling_mode_cls_token"]:
pooling_type = gguf.PoolingType.CLS
elif pooling["pooling_mode_lasttoken"]:
pooling_type = gguf.PoolingType.LAST
else:
raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
self.gguf_writer.add_pooling_type(pooling_type)
class VisionModel(ModelBase):
model_type = ModelType.VISION
model_arch = gguf.MODEL_ARCH.CLIP_VISION
n_text_embd = 0
preprocessor_config: dict[str, Any]
global_config: dict[str, Any]
@@ -1089,6 +1126,8 @@ class VisionModel(ModelBase):
raise TypeError("VisionModel must be subclassed with model_arch = gguf.MODEL_ARCH.CLIP_VISION")
# get n_embd of the text model
if "text_config" not in self.hparams:
self.hparams["text_config"] = {}
text_config = {**self.hparams, **self.hparams["text_config"]}
self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
assert self.n_embd_text > 0, "n_embd not found in hparams"
@@ -1356,10 +1395,10 @@ class BaichuanModel(TextModel):
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
self.gguf_writer.add_file_type(self.ftype)
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "linear":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
head_count = self.hparams["num_attention_heads"]
@@ -1480,10 +1519,10 @@ class XverseModel(TextModel):
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
self.gguf_writer.add_file_type(self.ftype)
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "linear":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
@@ -1746,6 +1785,12 @@ class LlamaModel(TextModel):
model_arch = gguf.MODEL_ARCH.LLAMA
undo_permute = True
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# fix for SmolVLM2, missing `num_attention_heads` in config.json
if self.hf_arch == "VLlama3ForCausalLM":
self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
def set_vocab(self):
try:
self._set_vocab_sentencepiece()
@@ -1790,10 +1835,10 @@ class LlamaModel(TextModel):
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(rope_dim)
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "linear":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
@staticmethod
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
@@ -2091,6 +2136,9 @@ class DeciModel(TextModel):
# if n_heads_in_group is not None, then
# _num_kv_heads[il] is num_attention_head // n_heads_in_group and
# _num_heads[il] is num_attention_head
# ***dummy layer*** for nemotron 253B
# if n_heads_in_group is None and ffn_mult is None
# then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
for il in range(len(_block_configs)):
if _block_configs[il]["attention"]["n_heads_in_group"] is None:
if _block_configs[il]["attention"]["replace_with_linear"] is True:
@@ -2102,7 +2150,10 @@ class DeciModel(TextModel):
else:
self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
self._num_heads.append(self.hparams["num_attention_heads"])
_ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
_ffn_multipliers.append(0.0)
else:
_ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
assert self.block_count == len(self._num_kv_heads)
assert self.block_count == len(self._num_heads)
assert self.block_count == len(_ffn_multipliers)
@@ -2162,10 +2213,10 @@ class DeciModel(TextModel):
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(rope_dim)
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "linear":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
@staticmethod
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
@@ -2405,10 +2456,10 @@ class MiniCPMModel(TextModel):
logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
self.gguf_writer.add_logit_scale(logit_scale)
logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
if self.hparams.get("rope_scaling") is not None:
if self.hparams["rope_scaling"].get("type") == "longrope":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
@@ -2540,7 +2591,7 @@ class QwenModel(TextModel):
self.gguf_writer.add_file_type(self.ftype)
@ModelBase.register("Qwen2ForCausalLM")
@ModelBase.register("Qwen2Model", "Qwen2ForCausalLM")
class Qwen2Model(TextModel):
model_arch = gguf.MODEL_ARCH.QWEN2
@@ -2552,11 +2603,22 @@ class Qwen2Model(TextModel):
def set_gguf_parameters(self):
super().set_gguf_parameters()
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "yarn":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
self._try_set_pooling_type()
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
if self.hf_arch == "Qwen2Model":
name = f"model.{name}" # map to Qwen2ForCausalLM tensors
if "language_model." in name:
name = name.replace("language_model.", "") # for InternVL
if name.startswith("mlp") or name.startswith("vision_model"):
# skip visual tensors
return []
yield from super().modify_tensors(data_torch, name, bid)
@ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
@@ -2583,6 +2645,138 @@ class Qwen2VLModel(TextModel):
return [(self.map_tensor_name(name), data_torch)]
@ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
class Qwen2VLVisionModel(VisionModel):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.hparams["image_size"] = self.hparams.get("image_size", 560)
# rename config.json values
self.hparams["num_attention_heads"] = self.hparams.get("num_heads")
self.hparams["num_hidden_layers"] = self.hparams.get("depth")
if "embed_dim" in self.hparams: # qwen2vl
self.hparams["intermediate_size"] = self.hparams.get("hidden_size")
self.hparams["hidden_size"] = self.hparams.get("embed_dim")
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
if self.global_config['model_type'] == 'qwen2_vl':
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.QWEN2VL)
elif self.global_config['model_type'] == 'qwen2_5_vl':
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.QWEN25VL)
self.gguf_writer.add_vision_use_silu(True)
# find n_wa_pattern (window attention pattern)
fullatt_block_indexes = hparams.get("fullatt_block_indexes")
assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
n_wa_pattern = fullatt_block_indexes[0] + 1
# validate n_wa_pattern
for i in range(1, len(fullatt_block_indexes)):
if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
else:
raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
# default values below are taken from HF tranformers code
self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
def tensor_force_quant(self, name, new_name, bid, n_dims):
del bid, name, n_dims # unused
if ".patch_embd." in new_name:
return gguf.GGMLQuantizationType.F16
if ".position_embd." in new_name:
return gguf.GGMLQuantizationType.F32
return False
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
if name.startswith("visual."):
# process visual tensors
# split QKV tensors if needed
if ".qkv." in name:
if data_torch.ndim == 2: # weight
c3, _ = data_torch.shape
else: # bias
c3 = data_torch.shape[0]
assert c3 % 3 == 0
c = c3 // 3
wq = data_torch[:c]
wk = data_torch[c: c * 2]
wv = data_torch[c * 2:]
return [
(self.map_tensor_name(name.replace("qkv", "q")), wq),
(self.map_tensor_name(name.replace("qkv", "k")), wk),
(self.map_tensor_name(name.replace("qkv", "v")), wv),
]
elif 'patch_embed.proj.weight' in name:
# split Conv3D into Conv2Ds
c1, c2, kt, kh, kw = data_torch.shape
del c1, c2, kh, kw # unused
assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
return [
(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
]
else:
return [(self.map_tensor_name(name), data_torch)]
return [] # skip other tensors
@ModelBase.register("InternVisionModel")
class InternVisionModel(VisionModel):
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.INTERNVL)
self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
# hidden_act
if hparams["hidden_act"] == "silu":
self.gguf_writer.add_vision_use_silu(True)
elif hparams["hidden_act"] == "gelu":
self.gguf_writer.add_vision_use_gelu(True)
else:
raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
# downsample_ratio
downsample_ratio = self.global_config.get("downsample_ratio")
assert downsample_ratio is not None
self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
def tensor_force_quant(self, name, new_name, bid, n_dims):
del bid, name, n_dims # unused
if ".patch_embd." in new_name:
return gguf.GGMLQuantizationType.F16
if ".position_embd." in new_name:
return gguf.GGMLQuantizationType.F32
return False
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
if name.startswith("vision_model") or name.startswith("mlp"):
# process visual tensors
# correct name
if name.startswith("vision_model"):
name = "vision_tower." + name
if (".ls" in name or "position_embedding" in name) and not name.endswith(".weight"):
name += ".weight"
# split QKV tensors if needed
if ".qkv." in name:
if data_torch.ndim == 2: # weight
c3, _ = data_torch.shape
else: # bias
c3 = data_torch.shape[0]
assert c3 % 3 == 0
c = c3 // 3
wq = data_torch[:c]
wk = data_torch[c: c * 2]
wv = data_torch[c * 2:]
return [
(self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
(self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
(self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
]
return [(self.map_tensor_name(name), data_torch)]
return [] # skip other tensors
@ModelBase.register("WavTokenizerDec")
class WavTokenizerDecModel(TextModel):
model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
@@ -2635,6 +2829,13 @@ class Qwen2MoeModel(TextModel):
if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
# YaRN is not enabled by default
# To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
_experts: list[dict[str, Tensor]] | None = None
@@ -2902,7 +3103,7 @@ class Phi3MiniModel(TextModel):
scale = max_pos_embds / orig_max_pos_embds
rope_scaling_type = rope_scaling.get('type', '').lower()
rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
if len(rope_scaling_type) == 0:
raise KeyError('Missing the required key rope_scaling.type')
@@ -3214,10 +3415,10 @@ class InternLM2Model(TextModel):
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
self.gguf_writer.add_file_type(self.ftype)
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "linear":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
num_heads = self.hparams["num_attention_heads"]
@@ -3227,6 +3428,11 @@ class InternLM2Model(TextModel):
head_dim = n_embd // num_heads
num_groups = num_heads // q_per_kv
name = name.replace("language_model.", "") # InternVL
if name.startswith("mlp") or name.startswith("vision_model"):
# skip visual tensors
return []
if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
qkv = data_torch
@@ -3292,14 +3498,18 @@ class InternLM3Model(TextModel):
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(rope_dim)
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "linear" or self.hparams["rope_scaling"].get("rope_type") == "linear":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams.get("num_key_value_heads")
name = name.replace("language_model.", "") # InternVL
if name.startswith("mlp") or name.startswith("vision_model"):
# skip visual tensors
return []
if name.endswith(("q_proj.weight", "q_proj.bias")):
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
if name.endswith(("k_proj.weight", "k_proj.bias")):
@@ -3318,29 +3528,7 @@ class BertModel(TextModel):
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_causal_attention(False)
# get pooling path
pooling_path = None
module_path = self.dir_model / "modules.json"
if module_path.is_file():
with open(module_path, encoding="utf-8") as f:
modules = json.load(f)
for mod in modules:
if mod["type"] == "sentence_transformers.models.Pooling":
pooling_path = mod["path"]
break
# get pooling type
if pooling_path is not None:
with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
pooling = json.load(f)
if pooling["pooling_mode_mean_tokens"]:
pooling_type = gguf.PoolingType.MEAN
elif pooling["pooling_mode_cls_token"]:
pooling_type = gguf.PoolingType.CLS
else:
raise NotImplementedError("Only MEAN and CLS pooling types supported")
self.gguf_writer.add_pooling_type(pooling_type)
self._try_set_pooling_type()
def set_vocab(self):
tokens, toktypes, tokpre = self.get_vocab_base()
@@ -3549,8 +3737,13 @@ class NomicBertModel(BertModel):
if self._tokenizer_is_xlmroberta:
self._xlmroberta_tokenizer_init()
# the HF config claims n_ctx=8192, but it uses RoPE scaling
self.hparams["n_ctx"] = 2048
npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
if npos == 8192 and mtp == 2048:
self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
elif npos == 2048 and mtp == 2048:
self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
else:
raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
@@ -3799,6 +3992,16 @@ class Gemma3VisionModel(VisionModel):
# default values below are taken from HF tranformers code
self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
self.gguf_writer.add_vision_use_gelu(True)
# calculate proj_scale_factor (used by tinygemma3 test model)
image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
n_per_side = int(image_seq_length ** 0.5)
image_size = self.hparams["image_size"]
patch_size = self.hparams["patch_size"]
proj_scale_factor = (image_size // patch_size) // n_per_side
if proj_scale_factor > 0 and proj_scale_factor != 4:
# we only need to write this if it's not the default value
# in this case, we are converting a test model
self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
def tensor_force_quant(self, name, new_name, bid, n_dims):
del bid, new_name, n_dims # unused
@@ -3812,6 +4015,9 @@ class Gemma3VisionModel(VisionModel):
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
if "vision_model.head." in name:
return [] # skip redundant tensors for tinygemma3
if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
# process vision tensors
@@ -4737,12 +4943,12 @@ class DeepseekV2Model(TextModel):
self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "yarn":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
_experts: list[dict[str, Tensor]] | None = None
@@ -5234,11 +5440,11 @@ class Glm4Model(TextModel):
super().set_gguf_parameters()
rope_dim = self.hparams["head_dim"]
self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "yarn":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
@ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
@@ -5471,10 +5677,10 @@ class ExaoneModel(TextModel):
rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
rotary_factor = rotary_factor if rotary_factor is not None else 1.0
self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
if hparams["rope_scaling"].get("type") == "linear":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
@@ -5577,7 +5783,13 @@ class BailingMoeModel(TextModel):
rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(rope_dim)
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
else:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
@@ -5879,8 +6091,7 @@ def split_str_to_n_bytes(split_str: str) -> int:
return n
def get_model_architecture(dir_model: Path, model_type: ModelType, hparams: Any = None) -> str:
hparams = ModelBase.load_hparams(dir_model) if hparams is None else hparams
def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
text_config = hparams.get("text_config", {})
vision_config = hparams.get("vision_config", {})
arch = hparams["architectures"][0]
@@ -5951,7 +6162,8 @@ def main() -> None:
with torch.inference_mode():
output_type = ftype_map[args.outtype]
model_type = ModelType.VISION if args.mmproj else ModelType.TEXT
model_architecture = get_model_architecture(dir_model, model_type)
hparams = ModelBase.load_hparams(dir_model)
model_architecture = get_model_architecture(hparams, model_type)
logger.info(f"Model architecture: {model_architecture}")
try:
model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)

View File

@@ -116,6 +116,7 @@ models = [
{"name": "llama4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct", },
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", },
{"name": "pixtral", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistral-community/pixtral-12b", },
{"name": "seed-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base", },
]

View File

@@ -9,10 +9,10 @@ Adding a model requires few steps:
After following these steps, you can open PR.
Also, it is important to check that the examples and main ggml backends (CUDA, METAL, CPU) are working with the new architecture, especially:
- [main](/examples/main/)
- [imatrix](/examples/imatrix/)
- [quantize](/examples/quantize/)
- [server](/examples/server/)
- [main](/tools/main/)
- [imatrix](/tools/imatrix/)
- [quantize](/tools/quantize/)
- [server](/tools/server/)
### 1. Convert the model to GGUF

77
docs/multimodal.md Normal file
View File

@@ -0,0 +1,77 @@
# Multimodal
llama.cpp supports multimodal input via `libmtmd`. Currently, there are 2 tools support this feature:
- [llama-mtmd-cli](../tools/mtmd/README.md)
- [llama-server](../tools/server/README.md) via OpenAI-compatible `/chat/completions` API
To enable it, can use use one of the 2 methods below:
- Use `-hf` option with a supported model (see a list of pre-quantized model below)
- To load a model using `-hf` while disabling multimodal, use `--no-mmproj`
- To load a model using `-hf` while using a custom mmproj file, use `--mmproj local_file.gguf`
- Use `-m model.gguf` option with `--mmproj file.gguf` to specify text and multimodal projector respectively
By default, multimodal projector will be offloaded to GPU. To disable this, add `--no-mmproj-offload`
For example:
```sh
# simple usage with CLI
llama-mtmd-cli -hf ggml-org/gemma-3-4b-it-GGUF
# simple usage with server
llama-server -hf ggml-org/gemma-3-4b-it-GGUF
# using local file
llama-server -m gemma-3-4b-it-Q4_K_M.gguf --mmproj mmproj-gemma-3-4b-it-Q4_K_M.gguf
# no GPU offload
llama-server -hf ggml-org/gemma-3-4b-it-GGUF --no-mmproj-offload
```
## Pre-quantized models
These are ready-to-use models, most of them come with `Q4_K_M` quantization by default.
Replaces the `(tool_name)` with the name of binary you want to use. For example, `llama-mtmd-cli` or `llama-server`
NOTE: some models may require large context window, for example: `-c 8192`
```sh
# Gemma 3
(tool_name) -hf ggml-org/gemma-3-4b-it-GGUF
(tool_name) -hf ggml-org/gemma-3-12b-it-GGUF
(tool_name) -hf ggml-org/gemma-3-27b-it-GGUF
# SmolVLM
(tool_name) -hf ggml-org/SmolVLM-Instruct-GGUF
(tool_name) -hf ggml-org/SmolVLM-256M-Instruct-GGUF
(tool_name) -hf ggml-org/SmolVLM-500M-Instruct-GGUF
(tool_name) -hf ggml-org/SmolVLM2-2.2B-Instruct-GGUF
(tool_name) -hf ggml-org/SmolVLM2-256M-Video-Instruct-GGUF
(tool_name) -hf ggml-org/SmolVLM2-500M-Video-Instruct-GGUF
# Pixtral 12B
(tool_name) -hf ggml-org/pixtral-12b-GGUF
# Qwen 2 VL
(tool_name) -hf ggml-org/Qwen2-VL-2B-Instruct-GGUF
(tool_name) -hf ggml-org/Qwen2-VL-7B-Instruct-GGUF
# Qwen 2.5 VL
(tool_name) -hf ggml-org/Qwen2.5-VL-3B-Instruct-GGUF
(tool_name) -hf ggml-org/Qwen2.5-VL-7B-Instruct-GGUF
(tool_name) -hf ggml-org/Qwen2.5-VL-32B-Instruct-GGUF
(tool_name) -hf ggml-org/Qwen2.5-VL-72B-Instruct-GGUF
# Mistral Small 3.1 24B (IQ2_M quantization)
(tool_name) -hf ggml-org/Mistral-Small-3.1-24B-Instruct-2503-GGUF
# InternVL 2.5 and 3
(tool_name) -hf ggml-org/InternVL2_5-1B-GGUF
(tool_name) -hf ggml-org/InternVL2_5-2B-GGUF
(tool_name) -hf ggml-org/InternVL3-1B-Instruct-GGUF
(tool_name) -hf ggml-org/InternVL3-2B-Instruct-GGUF
(tool_name) -hf ggml-org/InternVL3-4B-Instruct-GGUF
(tool_name) -hf ggml-org/InternVL3-14B-Instruct-GGUF
```

View File

@@ -33,13 +33,13 @@ git clone https://huggingface.co/openai/clip-vit-large-patch14-336
2. Use `llava_surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
```sh
python ./examples/llava/llava_surgery.py -m path/to/MobileVLM-1.7B
python ./tools/mtmd/llava_surgery.py -m path/to/MobileVLM-1.7B
```
3. Use `convert_image_encoder_to_gguf.py` with `--projector-type ldp` (for **V2** please use `--projector-type ldpv2`) to convert the LLaVA image encoder to GGUF:
```sh
python ./examples/llava/convert_image_encoder_to_gguf.py \
python ./tools/mtmd/convert_image_encoder_to_gguf.py \
-m path/to/clip-vit-large-patch14-336 \
--llava-projector path/to/MobileVLM-1.7B/llava.projector \
--output-dir path/to/MobileVLM-1.7B \
@@ -47,7 +47,7 @@ python ./examples/llava/convert_image_encoder_to_gguf.py \
```
```sh
python ./examples/llava/convert_image_encoder_to_gguf.py \
python ./tools/mtmd/convert_image_encoder_to_gguf.py \
-m path/to/clip-vit-large-patch14-336 \
--llava-projector path/to/MobileVLM-1.7B_V2/llava.projector \
--output-dir path/to/MobileVLM-1.7B_V2 \
@@ -69,10 +69,10 @@ Now both the LLaMA part and the image encoder is in the `MobileVLM-1.7B` directo
## Android compile and run
### compile
refer to `examples/llava/android/build_64.sh`
refer to `tools/mtmd/android/build_64.sh`
```sh
mkdir examples/llava/android/build_64
cd examples/llava/android/build_64
mkdir tools/mtmd/android/build_64
cd tools/mtmd/android/build_64
../build_64.sh
```
### run on Android

View File

@@ -25,13 +25,13 @@ git clone https://huggingface.co/THUDM/glm-edge-v-5b or https://huggingface.co/T
2. Use `glmedge-surgery.py` to split the GLMV-EDGE model to LLM and multimodel projector constituents:
```sh
python ./examples/llava/glmedge-surgery.py -m ../model_path
python ./tools/mtmd/glmedge-surgery.py -m ../model_path
```
4. Use `glmedge-convert-image-encoder-to-gguf.py` to convert the GLMV-EDGE image encoder to GGUF:
```sh
python ./examples/llava/glmedge-convert-image-encoder-to-gguf.py -m ../model_path --llava-projector ../model_path/glm.projector --output-dir ../model_path
python ./tools/mtmd/glmedge-convert-image-encoder-to-gguf.py -m ../model_path --llava-projector ../model_path/glm.projector --output-dir ../model_path
```
5. Use `examples/convert_hf_to_gguf.py` to convert the LLM part of GLMV-EDGE to GGUF:

View File

@@ -37,19 +37,19 @@ git clone https://huggingface.co/openai/clip-vit-large-patch14-336
2. Install the required Python packages:
```sh
pip install -r examples/llava/requirements.txt
pip install -r tools/mtmd/requirements.txt
```
3. Use `llava_surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
```sh
python ./examples/llava/llava_surgery.py -m ../llava-v1.5-7b
python ./tools/mtmd/llava_surgery.py -m ../llava-v1.5-7b
```
4. Use `convert_image_encoder_to_gguf.py` to convert the LLaVA image encoder to GGUF:
```sh
python ./examples/llava/convert_image_encoder_to_gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
python ./tools/mtmd/convert_image_encoder_to_gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
```
5. Use `examples/convert_legacy_llama.py` to convert the LLaMA part of LLaVA to GGUF:
@@ -69,12 +69,12 @@ git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
2) Install the required Python packages:
```sh
pip install -r examples/llava/requirements.txt
pip install -r tools/mtmd/requirements.txt
```
3) Use `llava_surgery_v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models:
```console
python examples/llava/llava_surgery_v2.py -C -m ../llava-v1.6-vicuna-7b/
python tools/mtmd/llava_surgery_v2.py -C -m ../llava-v1.6-vicuna-7b/
```
- you will find a llava.projector and a llava.clip file in your model directory
@@ -88,7 +88,7 @@ curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.jso
5) Create the visual gguf model:
```console
python ./examples/llava/convert_image_encoder_to_gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
python ./tools/mtmd/convert_image_encoder_to_gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
```
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP

View File

@@ -29,8 +29,8 @@ cmake --build build --config Release
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-o-2_6-gguf) by us)
```bash
python ./examples/llava/minicpmv-surgery.py -m ../MiniCPM-o-2_6
python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-o-2_6 --minicpmv-projector ../MiniCPM-o-2_6/minicpmv.projector --output-dir ../MiniCPM-o-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 4
python ./tools/mtmd/minicpmv-surgery.py -m ../MiniCPM-o-2_6
python ./tools/mtmd/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-o-2_6 --minicpmv-projector ../MiniCPM-o-2_6/minicpmv.projector --output-dir ../MiniCPM-o-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 4
python ./convert_hf_to_gguf.py ../MiniCPM-o-2_6/model
# quantize int4 version

View File

@@ -28,8 +28,8 @@ cmake --build build --config Release
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) by us)
```bash
python ./examples/llava/minicpmv-surgery.py -m ../MiniCPM-Llama3-V-2_5
python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-Llama3-V-2_5 --minicpmv-projector ../MiniCPM-Llama3-V-2_5/minicpmv.projector --output-dir ../MiniCPM-Llama3-V-2_5/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 2
python ./tools/mtmd/minicpmv-surgery.py -m ../MiniCPM-Llama3-V-2_5
python ./tools/mtmd/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-Llama3-V-2_5 --minicpmv-projector ../MiniCPM-Llama3-V-2_5/minicpmv.projector --output-dir ../MiniCPM-Llama3-V-2_5/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 2
python ./convert_hf_to_gguf.py ../MiniCPM-Llama3-V-2_5/model
# quantize int4 version

View File

@@ -28,8 +28,8 @@ cmake --build build --config Release
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf) by us)
```bash
python ./examples/llava/minicpmv-surgery.py -m ../MiniCPM-V-2_6
python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-V-2_6 --minicpmv-projector ../MiniCPM-V-2_6/minicpmv.projector --output-dir ../MiniCPM-V-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 3
python ./tools/mtmd/minicpmv-surgery.py -m ../MiniCPM-V-2_6
python ./tools/mtmd/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-V-2_6 --minicpmv-projector ../MiniCPM-V-2_6/minicpmv.projector --output-dir ../MiniCPM-V-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 3
python ./convert_hf_to_gguf.py ../MiniCPM-V-2_6/model
# quantize int4 version

View File

@@ -12,51 +12,29 @@ llama_add_compile_flags()
# examples
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
if (EMSCRIPTEN)
else()
add_subdirectory(batched-bench)
add_subdirectory(batched)
add_subdirectory(embedding)
add_subdirectory(eval-callback)
add_subdirectory(gguf-hash)
add_subdirectory(gguf-split)
add_subdirectory(gguf)
add_subdirectory(gritlm)
add_subdirectory(imatrix)
add_subdirectory(infill)
add_subdirectory(llama-bench)
add_subdirectory(lookahead)
add_subdirectory(lookup)
add_subdirectory(main)
add_subdirectory(parallel)
add_subdirectory(passkey)
add_subdirectory(perplexity)
add_subdirectory(quantize)
add_subdirectory(retrieval)
if (LLAMA_BUILD_SERVER)
add_subdirectory(server)
endif()
add_subdirectory(save-load-state)
add_subdirectory(run)
add_subdirectory(simple)
add_subdirectory(simple-chat)
add_subdirectory(speculative)
add_subdirectory(speculative-simple)
add_subdirectory(tokenize)
add_subdirectory(tts)
add_subdirectory(gen-docs)
if (NOT GGML_BACKEND_DL)
# these examples use the backends directly and cannot be built with dynamic loading
add_subdirectory(convert-llama2c-to-ggml)
add_subdirectory(cvector-generator)
add_subdirectory(export-lora)
add_subdirectory(llava)
if (GGML_RPC)
add_subdirectory(rpc)
endif()
# these examples use the backends directly and cannot be built with dynamic loading
if (GGML_SYCL)
add_subdirectory(sycl)
endif()

View File

@@ -35,23 +35,14 @@ static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & toke
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd, int embd_norm) {
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
const struct llama_model * model = llama_get_model(ctx);
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_self_clear(ctx);
// run model
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
if (llama_model_has_encoder(model) && !llama_model_has_decoder(model)) {
// encoder-only model
if (llama_encode(ctx, batch) < 0) {
LOG_ERR("%s : failed to encode\n", __func__);
}
} else if (!llama_model_has_encoder(model) && llama_model_has_decoder(model)) {
// decoder-only model
if (llama_decode(ctx, batch) < 0) {
LOG_ERR("%s : failed to decode\n", __func__);
}
if (llama_encode(ctx, batch) < 0) {
LOG_ERR("%s : failed to encode\n", __func__);
}
for (int i = 0; i < batch.n_tokens; i++) {

View File

@@ -1,5 +0,0 @@
set(TARGET llama-infill)
add_executable(${TARGET} infill.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -1,47 +0,0 @@
# llama.cpp/example/infill
This example shows how to use the infill mode with Code Llama models supporting infill mode.
Currently the 7B and 13B models support infill mode.
Infill supports most of the options available in the main example.
For further information have a look at the main README.md in llama.cpp/example/main/README.md
## Common Options
In this section, we cover the most commonly used options for running the `infill` program with the LLaMA models:
- `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.bin`).
- `-i, --interactive`: Run the program in interactive mode, allowing you to provide input directly and receive real-time responses.
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text. Adjusting this value can influence the length of the generated text.
- `-c N, --ctx-size N`: Set the size of the prompt context. The default is 4096, but if a LLaMA model was built with a longer context, increasing this value will provide better results for longer input/inference.
- `--spm-infill`: Use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this.
## Input Prompts
The `infill` program provides several ways to interact with the LLaMA models using input prompts:
- `--in-prefix PROMPT_BEFORE_CURSOR`: Provide the prefix directly as a command-line option.
- `--in-suffix PROMPT_AFTER_CURSOR`: Provide the suffix directly as a command-line option.
- `--interactive-first`: Run the program in interactive mode and wait for input right away. (More on this below.)
## Interaction
The `infill` program offers a seamless way to interact with LLaMA models, allowing users to receive real-time infill suggestions. The interactive mode can be triggered using `--interactive`, and `--interactive-first`
### Interaction Options
- `-i, --interactive`: Run the program in interactive mode, allowing users to get real time code suggestions from model.
- `--interactive-first`: Run the program in interactive mode and immediately wait for user input before starting the text generation.
- `--color`: Enable colorized output to differentiate visually distinguishing between prompts, user input, and generated text.
### Example
Download a model that supports infill, for example CodeLlama:
```console
scripts/hf.sh --repo TheBloke/CodeLlama-13B-GGUF --file codellama-13b.Q5_K_S.gguf --outdir models
```
```bash
./llama-infill -t 10 -ngl 0 -m models/codellama-13b.Q5_K_S.gguf -c 4096 --temp 0.7 --repeat_penalty 1.1 -n 20 --in-prefix "def helloworld():\n print(\"hell" --in-suffix "\n print(\"goodbye world\")\n "
```

View File

@@ -1,590 +0,0 @@
#include "arg.h"
#include "common.h"
#include "console.h"
#include "sampling.h"
#include "log.h"
#include "llama.h"
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
#include <signal.h>
#include <unistd.h>
#elif defined (_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <signal.h>
#endif
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
static llama_context ** g_ctx;
static llama_model ** g_model;
static common_sampler ** g_smpl;
static common_params * g_params;
static std::vector<llama_token> * g_input_tokens;
static std::ostringstream * g_output_ss;
static std::vector<llama_token> * g_output_tokens;
static bool is_interacting = false;
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
static void sigint_handler(int signo) {
if (signo == SIGINT) {
if (!is_interacting) {
is_interacting = true;
} else {
console::cleanup();
LOG("\n");
common_perf_print(*g_ctx, *g_smpl);
// make sure all logs are flushed
LOG("Interrupted by user\n");
common_log_pause(common_log_main());
_exit(130);
}
}
}
#endif
int main(int argc, char ** argv) {
common_params params;
g_params = &params;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_INFILL)) {
return 1;
}
common_init();
auto & sparams = params.sampling;
console::init(params.simple_io, params.use_color);
atexit([]() { console::cleanup(); });
if (params.logits_all) {
LOG_ERR("\n************\n");
LOG_ERR("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
LOG_ERR("************\n\n");
return 0;
}
if (params.embedding) {
LOG_ERR("\n************\n");
LOG_ERR("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
LOG_ERR("************\n\n");
return 0;
}
if (params.n_ctx != 0 && params.n_ctx < 8) {
LOG_WRN("%s: minimum context size is 8, using minimum size.\n", __func__);
params.n_ctx = 8;
}
if (!params.interactive_first && (params.input_prefix.empty() && params.input_suffix.empty())) {
LOG_ERR("\n************\n");
LOG_ERR("%s: please use '--interactive_first' or specify '--in_prefix' and/or '--in_suffix'\n", __func__);
LOG_ERR("************\n\n");
return 0;
}
if (params.rope_freq_base != 0.0) {
LOG_WRN("%s: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
}
if (params.rope_freq_scale != 0.0) {
LOG_WRN("%s: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
}
LOG_INF("%s: llama backend init\n", __func__);
llama_backend_init();
llama_numa_init(params.numa);
llama_model * model = nullptr;
llama_context * ctx = nullptr;
common_sampler * smpl = nullptr;
g_model = &model;
g_ctx = &ctx;
g_smpl = &smpl;
// load the model and apply lora adapter, if any
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
common_init_result llama_init = common_init_from_params(params);
model = llama_init.model.get();
ctx = llama_init.context.get();
if (model == NULL) {
LOG_ERR("%s: unable to load model\n", __func__);
return 1;
}
const llama_vocab * vocab = llama_model_get_vocab(model);
const int n_ctx_train = llama_model_n_ctx_train(model);
const int n_ctx = llama_n_ctx(ctx);
LOG_DBG("n_ctx: %d\n", n_ctx);
if (n_ctx > n_ctx_train) {
LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx);
}
// print system information
{
LOG_INF("\n");
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
}
const bool add_bos = llama_vocab_get_add_bos(vocab);
GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
std::vector<llama_token> embd_inp;
std::vector<llama_token> embd_end;
std::vector<llama_token> inp_pfx = common_tokenize(ctx, params.input_prefix, false);
std::vector<llama_token> inp_sfx = common_tokenize(ctx, params.input_suffix, false);
GGML_ASSERT(llama_vocab_fim_pre(vocab) >= 0);
GGML_ASSERT(llama_vocab_fim_suf(vocab) >= 0);
inp_pfx.insert(inp_pfx.begin(), llama_vocab_fim_pre(vocab));
inp_sfx.insert(inp_sfx.begin(), llama_vocab_fim_suf(vocab));
embd_inp = params.spm_infill ? inp_sfx : inp_pfx;
embd_end = params.spm_infill ? inp_pfx : inp_sfx;
if (add_bos) {
embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab));
}
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
const llama_token middle_token = llama_vocab_fim_mid(vocab);
if (middle_token >= 0) {
embd_inp.push_back(middle_token);
}
LOG_DBG("add_bos: %d\n", add_bos);
LOG_DBG("prefix: \"%s\"\n", params.input_prefix.c_str());
LOG_DBG("suffix: \"%s\"\n", params.input_suffix.c_str());
LOG_DBG("tokens: %s\n", string_from(ctx, embd_inp).c_str());
// Should not run without any tokens
if (embd_inp.empty()) {
embd_inp.push_back(llama_vocab_bos(vocab));
LOG_WRN("embd_inp was considered empty and bos was added: %s\n", string_from(ctx, embd_inp).c_str());
}
if ((int) embd_inp.size() > n_ctx - 4) {
LOG_ERR("%s: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
return 1;
}
// number of tokens to keep when resetting context
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) {
params.n_keep = (int)embd_inp.size();
}
LOG_INF("inp_pfx: %s\n", string_from(ctx, inp_pfx).c_str());
LOG_INF("inp_sfx: %s\n", string_from(ctx, inp_sfx).c_str());
// enable interactive mode if interactive start is specified
if (params.interactive_first) {
params.interactive = true;
}
if (params.verbose_prompt) {
LOG_INF("\n");
LOG_INF("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
for (int i = 0; i < (int) embd_inp.size(); i++) {
LOG_INF("%6d -> '%s'\n", embd_inp[i], common_token_to_piece(ctx, embd_inp[i]).c_str());
}
if (params.n_keep > 0) {
LOG_INF("%s: static prompt based on n_keep: '", __func__);
for (int i = 0; i < params.n_keep; i++) {
LOG_CNT("%s", common_token_to_piece(ctx, embd_inp[i]).c_str());
}
LOG_CNT("'\n");
}
LOG_INF("\n");
}
if (params.interactive) {
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
struct sigaction sigint_action;
sigint_action.sa_handler = sigint_handler;
sigemptyset (&sigint_action.sa_mask);
sigint_action.sa_flags = 0;
sigaction(SIGINT, &sigint_action, NULL);
#elif defined (_WIN32)
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
};
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
#endif
LOG_INF("%s: interactive mode on.\n", __func__);
if (params.input_prefix_bos) {
LOG_INF("Input prefix with BOS\n");
}
if (!params.input_prefix.empty()) {
LOG_INF("Input prefix: '%s'\n", params.input_prefix.c_str());
}
if (!params.input_suffix.empty()) {
LOG_INF("Input suffix: '%s'\n", params.input_suffix.c_str());
}
}
smpl = common_sampler_init(model, sparams);
LOG_INF("sampler seed: %u\n", common_sampler_get_seed(smpl));
LOG_INF("sampler params: \n%s\n", sparams.print().c_str());
LOG_INF("sampler chain: %s\n", common_sampler_print(smpl).c_str());
LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
LOG_INF("\n");
LOG_INF("\n##### Infill mode #####\n\n");
if (params.interactive) {
const char *control_message;
if (params.multiline_input) {
control_message = " - To return control to LLaMA, end your input with '\\'.\n"
" - To return control without starting a new line, end your input with '/'.\n";
} else {
control_message = " - Press Return to return control to LLaMA.\n"
" - To return control without starting a new line, end your input with '/'.\n"
" - If you want to submit another line, end your input with '\\'.\n";
}
LOG_INF("== Running in interactive mode. ==\n");
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
LOG_INF( " - Press Ctrl+C to interject at any time.\n");
#endif
LOG_INF( "%s\n", control_message);
is_interacting = params.interactive_first;
}
bool input_echo = true;
int n_past = 0;
int n_remain = params.n_predict;
int n_consumed = 0;
std::vector<int> input_tokens; g_input_tokens = &input_tokens;
std::vector<int> output_tokens; g_output_tokens = &output_tokens;
std::ostringstream output_ss; g_output_ss = &output_ss;
// the first thing we will do is to output the prompt, so set color accordingly
console::set_display(console::prompt);
std::vector<llama_token> embd;
while (n_remain != 0 || params.interactive) {
// predict
if (!embd.empty()) {
// Note: n_ctx - 4 here is to match the logic for commandline prompt handling via
// --prompt or --file which uses the same value.
int max_embd_size = n_ctx - 4;
// Ensure the input doesn't exceed the context size by truncating embd if necessary.
if ((int) embd.size() > max_embd_size) {
const int skipped_tokens = (int) embd.size() - max_embd_size;
embd.resize(max_embd_size);
console::set_display(console::error);
LOG_WRN("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
console::set_display(console::reset);
}
// infinite text generation via context swapping
// if we run out of context:
// - take the n_keep first tokens from the original prompt (via n_past)
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
if (n_past + (int) embd.size() > n_ctx) {
if (params.n_predict == -2) {
LOG_DBG("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
break;
}
const int n_left = n_past - params.n_keep - 1;
const int n_discard = n_left/2;
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
n_past, n_left, n_ctx, params.n_keep, n_discard);
llama_kv_self_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
llama_kv_self_seq_add(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
n_past -= n_discard;
LOG_DBG("after swap: n_past = %d\n", n_past);
LOG_DBG("embd: %s\n", string_from(ctx, embd).c_str());
}
// evaluate tokens in batches
// embd is typically prepared beforehand to fit within a batch, but not always
for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
int n_eval = (int) embd.size() - i;
if (n_eval > params.n_batch) {
n_eval = params.n_batch;
}
LOG_DBG("eval: %s\n", string_from(ctx, embd).c_str());
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval))) {
LOG_ERR("%s : failed to eval\n", __func__);
return 1;
}
n_past += n_eval;
LOG_DBG("n_past = %d\n", n_past);
}
}
embd.clear();
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
const llama_token id = common_sampler_sample(smpl, ctx, -1);
common_sampler_accept(smpl, id, true);
// LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str());
embd.push_back(id);
// echo this to console
input_echo = true;
// decrement remaining sampling budget
--n_remain;
LOG_DBG("n_remain: %d\n", n_remain);
} else {
// some user input remains from prompt or interaction, forward it to processing
LOG_DBG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
while ((int) embd_inp.size() > n_consumed) {
embd.push_back(embd_inp[n_consumed]);
// push the prompt in the sampling context in order to apply repetition penalties later
// for the prompt, we don't apply grammar rules
common_sampler_accept(smpl, embd_inp[n_consumed], false);
++n_consumed;
if ((int) embd.size() >= params.n_batch) {
break;
}
}
}
// display text
if (input_echo) {
for (auto id : embd) {
const std::string token_str = common_token_to_piece(ctx, id);
LOG("%s", token_str.c_str());
if (embd.size() > 1) {
input_tokens.push_back(id);
} else {
output_tokens.push_back(id);
output_ss << token_str;
}
}
}
// reset color to default if we there is no pending user input
if (input_echo && (int) embd_inp.size() == n_consumed) {
console::set_display(console::reset);
}
// if not currently processing queued inputs;
if ((int) embd_inp.size() <= n_consumed) {
// deal with eot token in infill mode
if ((common_sampler_last(smpl) == llama_vocab_eot(vocab) || is_interacting) && params.interactive){
if (is_interacting && !params.interactive_first) {
// print an eot token
LOG("%s", common_token_to_piece(ctx, llama_vocab_eot(vocab)).c_str());
}
LOG("\n");
console::set_display(console::user_input);
std::string buffer;
std::string line;
bool another_line=true;
// set a new prefix via stdin
do {
another_line = console::readline(line, params.multiline_input);
buffer += line;
} while (another_line);
// check if we got an empty line, if so we use the old input
if (!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
params.input_prefix = buffer;
}
buffer.clear();
// set a new suffix via stdin
do {
another_line = console::readline(line, params.multiline_input);
buffer += line;
} while (another_line);
// check if we got an empty line
if (!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
params.input_suffix = buffer;
}
buffer.clear();
// done taking input, reset color
console::set_display(console::reset);
if (params.escape) {
//process escape sequences, for the initial prompt this is done in common.cpp when we load the params, but for the interactive mode we need to do it here
string_process_escapes(params.input_prefix);
string_process_escapes(params.input_suffix);
}
// tokenize new prefix and suffix
std::vector<llama_token> inp_pfx = common_tokenize(ctx, params.input_prefix, false);
std::vector<llama_token> inp_sfx = common_tokenize(ctx, params.input_suffix, false);
inp_pfx.insert(inp_pfx.begin(), llama_vocab_fim_pre(vocab));
inp_sfx.insert(inp_sfx.begin(), llama_vocab_fim_suf(vocab));
embd_inp = params.spm_infill ? inp_sfx : inp_pfx;
embd_end = params.spm_infill ? inp_pfx : inp_sfx;
if (add_bos) {
embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab));
}
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
if (middle_token >= 0) {
embd_inp.push_back(middle_token);
}
embd.clear();
n_remain = params.n_predict;
n_past = 0;
n_consumed = 0;
is_interacting = false;
}
// deal with end of generation tokens in interactive mode
else if (llama_vocab_is_eog(vocab, common_sampler_last(smpl))) {
LOG_DBG("found EOS token\n");
if (params.interactive) {
is_interacting = true;
LOG("\n");
console::set_display(console::user_input);
}
}
if (n_past > 0 && is_interacting && !params.interactive) {
LOG_DBG("waiting for user input\n");
if (params.input_prefix_bos) {
LOG_DBG("adding input prefix BOS token\n");
embd_inp.push_back(llama_vocab_bos(vocab));
}
std::string buffer;
if (!params.input_prefix.empty()) {
LOG_DBG("appending input prefix: '%s'\n", params.input_prefix.c_str());
buffer += params.input_prefix;
LOG("%s", buffer.c_str());
}
std::string line;
bool another_line = true;
do {
another_line = console::readline(line, params.multiline_input);
buffer += line;
} while (another_line);
// done taking input, reset color
console::set_display(console::reset);
// Add tokens to embd only if the input buffer is non-empty
// Entering a empty line lets the user pass control back
if (buffer.length() > 1) {
// append input suffix if any
if (!params.input_suffix.empty()) {
LOG_DBG("appending input suffix: '%s'\n", params.input_suffix.c_str());
buffer += params.input_suffix;
LOG("%s", params.input_suffix.c_str());
}
LOG_DBG("buffer: '%s'\n", buffer.c_str());
const size_t original_size = embd_inp.size();
const auto line_inp = common_tokenize(ctx, buffer, false);
LOG_DBG("input tokens: %s\n", string_from(ctx, line_inp).c_str());
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
for (size_t i = original_size; i < embd_inp.size(); ++i) {
const llama_token token = embd_inp[i];
output_tokens.push_back(token);
output_ss << common_token_to_piece(ctx, token);
}
n_remain -= line_inp.size();
LOG_DBG("n_remain: %d\n", n_remain);
} else {
LOG_DBG("empty line, passing control back\n");
}
input_echo = false; // do not echo this again
}
if (n_past > 0) {
if (is_interacting) {
common_sampler_reset(smpl);
}
is_interacting = false;
}
}
// end of generation
if (!embd.empty() && llama_vocab_is_eog(vocab, embd.back()) && !params.interactive) {
break;
}
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
// We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size).
if (params.interactive && n_remain <= 0 && params.n_predict >= 0) {
n_remain = params.n_predict;
is_interacting = true;
}
}
if (!params.interactive && n_remain <= 0) {
LOG("%s", common_token_to_piece(ctx, llama_vocab_eot(vocab)).c_str());
}
LOG("\n");
common_perf_print(ctx, smpl);
common_sampler_free(smpl);
llama_backend_free();
return 0;
}

View File

@@ -1,168 +0,0 @@
#ifndef MTMD_H
#define MTMD_H
#include "ggml.h"
#include "llama.h"
#include "clip.h"
#include <vector>
#include <cinttypes>
#include <memory>
#ifdef LLAMA_SHARED
# if defined(_WIN32) && !defined(__MINGW32__)
# ifdef LLAMA_BUILD
# define MTMD_API __declspec(dllexport)
# else
# define MTMD_API __declspec(dllimport)
# endif
# else
# define MTMD_API __attribute__ ((visibility ("default")))
# endif
#else
# define MTMD_API
#endif
#ifdef __cplusplus
enum mtmd_input_chunk_type {
MTMD_INPUT_CHUNK_TYPE_TEXT,
MTMD_INPUT_CHUNK_TYPE_IMAGE,
};
struct mtmd_context;
struct mtmd_image_tokens;
// represents raw image data, layout is RGBRGBRGB...
// length of data must be nx * ny * 3
struct mtmd_bitmap {
uint32_t nx;
uint32_t ny;
std::vector<unsigned char> data;
std::string id; // optional user-defined id, for ex: can be set to image hash, useful for KV cache tracking
};
struct mtmd_image_tokens_deleter {
void operator()(mtmd_image_tokens * val); // forward declaration
};
using mtmd_image_tokens_ptr = std::unique_ptr<mtmd_image_tokens, mtmd_image_tokens_deleter>;
struct mtmd_input_chunk {
mtmd_input_chunk_type type;
std::vector<llama_token> tokens_text;
mtmd_image_tokens_ptr tokens_image;
};
using mtmd_input_chunks = std::vector<mtmd_input_chunk>;
struct mtmd_context_params {
bool use_gpu = true;
bool print_timings = true;
int n_threads = 4;
enum ggml_log_level verbosity = GGML_LOG_LEVEL_INFO;
const char * image_marker = "<__image__>";
};
struct mtmd_input_text {
std::string text;
bool add_special;
bool parse_special;
};
// initialize the mtmd context
// return nullptr on failure
MTMD_API mtmd_context * mtmd_init_from_file(const char * mmproj_fname,
const llama_model * text_model,
const mtmd_context_params ctx_params);
MTMD_API void mtmd_free(mtmd_context * ctx);
// tokenize an input text prompt and an image
// the prompt must have the input image marker (default: "<__image__>") in it
// the marker will be replaced with the image tokens
// for example:
// "here is an image: <__image__>\ndescribe it in detail."
// this will gives 3 chunks:
// 1. "here is an image: <start_of_image>"
// 2. (image tokens)
// 3. "<end_of_image>\ndescribe it in detail."
// number of bitmaps must be equal to the number of image markers in the prompt
// this function is thread-safe (shared ctx)
// return values:
// 0 on success
// 1 on number of images not matching the number of markers
// 2 on image preprocessing error
MTMD_API int32_t mtmd_tokenize(mtmd_context * ctx,
std::vector<mtmd_input_chunk> & output,
const mtmd_input_text & text,
const std::vector<mtmd_bitmap> & bitmaps);
// access mtmd_image_tokens
MTMD_API size_t mtmd_image_tokens_get_n_tokens(const mtmd_image_tokens * image_tokens);
MTMD_API size_t mtmd_image_tokens_get_nx(const mtmd_image_tokens * image_tokens);
MTMD_API size_t mtmd_image_tokens_get_ny(const mtmd_image_tokens * image_tokens);
MTMD_API std::string mtmd_image_tokens_get_id(const mtmd_image_tokens * image_tokens);
MTMD_API llama_pos mtmd_image_tokens_get_n_pos(const mtmd_image_tokens * image_tokens); // number of temporal positions (always 1 for M-RoPE, n_tokens otherwise)
MTMD_API void mtmd_image_tokens_free(mtmd_image_tokens * image_tokens);
// returns 0 on success
MTMD_API int32_t mtmd_encode(mtmd_context * ctx,
const mtmd_image_tokens * image_tokens);
// get output embeddings from the last encode pass
MTMD_API float * mtmd_get_output_embd(mtmd_context * ctx);
// whether we need to set non-causal mask before llama_decode
MTMD_API bool mtmd_decode_use_non_causal(mtmd_context * ctx);
// whether the current model use M-RoPE for llama_decode
MTMD_API bool mtmd_decode_use_mrope(mtmd_context * ctx);
//
// helper functions (can be implemented based on other functions)
//
// helper to count the total number of tokens from a list of chunks, useful to keep track of KV cache
MTMD_API size_t mtmd_helper_get_n_tokens(mtmd_input_chunks & chunks);
// helper to count the total position of tokens from a list of chunks, useful to keep track of n_past
MTMD_API llama_pos mtmd_helper_get_n_pos(mtmd_input_chunks & chunks);
// helper function that automatically:
// 1. run llama_decode() on text chunks
// 2. run mtmd_encode() on image chunks, then mtmd_get_output_embd() and then llama_decode()
// if any of the mtmd_encode() or llama_decode() calls return non-zero, stop and forward the error
// otherwise, returns 0 on success
MTMD_API int32_t mtmd_helper_eval(mtmd_context * ctx,
llama_context * lctx,
mtmd_input_chunks & chunks,
llama_pos pos0,
llama_seq_id seq_id,
int32_t n_batch);
// helper function to construct a mtmd_bitmap from a file
// returns 0 on success
// this function is thread-safe
MTMD_API int32_t mtmd_helper_bitmap_init_from_file(const char * fname, mtmd_bitmap & output);
// helper function to construct a mtmd_bitmap from a buffer
// the buffer must be an image in format supported by stb_image (jpg, png, bmp, gif, etc.)
// returns 0 on success
// this function is thread-safe
MTMD_API int32_t mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len, mtmd_bitmap & output);
// convenient unique_ptr wrappers
struct mtmd_context_deleter {
void operator()(mtmd_context * val) { mtmd_free(val); }
};
using mtmd_context_ptr = std::unique_ptr<mtmd_context, mtmd_context_deleter>;
#else
static_assert(false && "C header is not yet supported by this library");
#endif
#endif

View File

@@ -1,217 +0,0 @@
import argparse
from typing import Dict, List, Optional
import torch
import numpy as np
from gguf import *
from transformers import (
AutoProcessor,
Qwen2VLConfig,
Qwen2VLProcessor,
Qwen2VLForConditionalGeneration,
Qwen2_5_VLConfig, # type: ignore[reportAttributeAccessIssue]
Qwen2_5_VLForConditionalGeneration, # type: ignore[reportAttributeAccessIssue]
)
VISION = "clip.vision"
def k(raw_key: str, arch: str) -> str:
return raw_key.format(arch=arch)
def get_n_wa_pattern(fullatt_block_indexes: Optional[List[int]]):
if fullatt_block_indexes is None:
return 0
n_wa = fullatt_block_indexes[0]
for a, b in zip(fullatt_block_indexes, fullatt_block_indexes[1:]):
if b - a - 1 != n_wa:
raise ValueError(
f"window/full attention layer should have fix pattern of "
f"for each full-attention layer followed by {n_wa} window-attention layers"
)
return n_wa + 1
class VL2:
@staticmethod
def to_gguf_name(name: str) -> str:
og = name
name = name.replace("text_model", "t").replace("vision_model", "v")
name = name.replace("blocks", "blk").replace("embeddings.", "")
name = name.replace("attn.", "attn_")
name = name.replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("proj.", "out.")
# name = name.replace("layrnorm", "ln").replace("layer_norm", "ln").replace("layernorm", "ln")
name = name.replace("norm1", "ln1").replace("norm2", "ln2")
name = name.replace("merger.mlp", 'mm')
print(f"[to_gguf_name] {og} --> {name}")
return name
@classmethod
def find_vision_tensors(cls, qwen2vl, dtype) -> Dict[str, np.ndarray]:
vision_model = qwen2vl.visual
tensor_map = {}
for name, ten in vision_model.state_dict().items():
ten = ten.numpy()
if 'qkv' in name:
if ten.ndim == 2: # weight
c3, _ = ten.shape
else: # bias
c3 = ten.shape[0]
assert c3 % 3 == 0
c = c3 // 3
wq = ten[:c]
wk = ten[c: c * 2]
wv = ten[c * 2:]
tensor_map[cls.to_gguf_name(f"vision_model.{name}").replace("qkv", "q")] = wq
tensor_map[cls.to_gguf_name(f"vision_model.{name}").replace("qkv", "k")] = wk
tensor_map[cls.to_gguf_name(f"vision_model.{name}").replace("qkv", "v")] = wv
elif 'merger' in name:
if name.endswith("ln_q.weight"):
tensor_map['v.post_ln.weight'] = ten
elif name.endswith("ln_q.bias"):
tensor_map['v.post_ln.bias'] = ten
else:
# "merger.mlp.%d.weight/bias" --> "mm.%d.weight/bias"
tensor_map[cls.to_gguf_name(name)] = ten
elif 'patch_embed.proj.weight' in name:
# NOTE: split Conv3D into Conv2Ds
c1, c2, kt, kh, kw = ten.shape
assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
tensor_map["v.patch_embd.weight"] = ten[:, :, 0, ...]
tensor_map["v.patch_embd.weight.1"] = ten[:, :, 1, ...]
else:
tensor_map[cls.to_gguf_name(f"vision_model.{name}")] = ten
for new_name, ten in tensor_map.items():
if ten.ndim <= 1 or new_name.endswith("_norm.weight"):
tensor_map[new_name] = ten.astype(np.float32)
else:
tensor_map[new_name] = ten.astype(dtype)
tensor_map["v.position_embd.weight"] = np.zeros([10, 10], dtype=np.float32) # dummy tensor, just here as a placeholder
return tensor_map
class VL25(VL2):
@staticmethod
def to_gguf_name(name: str) -> str:
og = name
name = name.replace("text_model", "t").replace("vision_model", "v")
name = name.replace("blocks", "blk").replace("embeddings.", "")
name = name.replace("attn.", "attn_")
name = name.replace("mlp.down_proj", "ffn_down").replace("mlp.up_proj", "ffn_up")
name = name.replace("mlp.gate_proj", "ffn_gate").replace("proj.", "out.")
name = name.replace("norm1", "ln1").replace("norm2", "ln2")
name = name.replace("merger.mlp", 'mm')
print(f"[vl25][to_gguf_name] {og} --> {name}")
return name
def main(args):
if args.data_type == 'fp32':
dtype = torch.float32
np_dtype = np.float32
ftype = 0
elif args.data_type == 'fp16':
dtype = torch.float16
np_dtype = np.float16
ftype = 1
else:
raise ValueError()
local_model = False
model_path = ""
model_name = args.model_name
print("model_name: ", model_name)
if args.model_type == "qwen2vl":
qwen2vl = Qwen2VLForConditionalGeneration.from_pretrained(
model_name, torch_dtype=dtype, device_map="cpu"
)
cfg: Qwen2VLConfig = qwen2vl.config # type: ignore[reportAssignmentType]
vcfg = cfg.vision_config
else:
qwen2vl = Qwen2_5_VLForConditionalGeneration.from_pretrained(
model_name, torch_dtype=dtype, device_map="cpu"
)
cfg: Qwen2_5_VLConfig = qwen2vl.config # type: ignore[reportAssignmentType]
vcfg = cfg.vision_config
if os.path.isdir(model_name):
local_model = True
if model_name.endswith(os.sep):
model_name = model_name[:-1]
model_path = model_name
model_name = os.path.basename(model_name)
fname_out = f"{model_name.replace('/', '-').lower()}-vision.gguf"
fout = GGUFWriter(path=fname_out, arch="clip")
fout.add_description("image encoder for Qwen2VL")
fout.add_file_type(ftype)
fout.add_bool("clip.has_text_encoder", False)
fout.add_bool("clip.has_vision_encoder", True)
fout.add_bool("clip.has_qwen2vl_merger", True)
print(cfg.vision_config)
if 'silu' in cfg.vision_config.hidden_act.lower():
fout.add_bool("clip.use_silu", True)
fout.add_bool("clip.use_gelu", False)
elif 'gelu' in cfg.vision_config.hidden_act.lower():
fout.add_bool("clip.use_silu", False)
fout.add_bool("clip.use_gelu", 'quick' not in cfg.vision_config.hidden_act.lower())
else:
raise ValueError()
if args.model_type == "qwen2.5vl":
fout.add_uint32("clip.vision.n_wa_pattern", get_n_wa_pattern(vcfg.fullatt_block_indexes))
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.hidden_size)
fout.add_uint32("clip.vision.projection_dim", vcfg.out_hidden_size)
fout.add_string("clip.projector_type", "qwen2.5vl_merger")
else:
fout.add_string("clip.projector_type", "qwen2vl_merger")
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.embed_dim)
fout.add_uint32("clip.vision.projection_dim", vcfg.hidden_size)
if args.model_type == "qwen2.5vl":
tensor_map = VL25.find_vision_tensors(qwen2vl, np_dtype)
else:
tensor_map = VL2.find_vision_tensors(qwen2vl, np_dtype)
for name, data in tensor_map.items():
fout.add_tensor(name, data)
fout.add_uint32("clip.vision.patch_size", vcfg.patch_size)
fout.add_uint32("clip.vision.image_size", 14 * 40) # some reasonable size that is divable by (14*2)
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), vcfg.num_heads)
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), vcfg.depth)
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), 0) # not sure what this does, put 0 here as a placeholder
fout.add_name(model_name)
"""
HACK: Since vision rope related parameter aren't stored in the `Qwen2VLConfig,
it will be hardcoded in the `clip_image_build_graph` from `clip.cpp`.
"""
if local_model:
processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_path)
else:
processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_name)
fout.add_array("clip.vision.image_mean", processor.image_processor.image_mean) # type: ignore[reportAttributeAccessIssue]
fout.add_array("clip.vision.image_std", processor.image_processor.image_std) # type: ignore[reportAttributeAccessIssue]
fout.write_header_to_file()
fout.write_kv_data_to_file()
fout.write_tensors_to_file()
fout.close()
print("save model as: ", fname_out)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("model_name", nargs='?', default="Qwen/Qwen2-VL-2B-Instruct")
parser.add_argument("--model_type", nargs='?', choices=['qwen2vl', 'qwen2.5vl'], default="qwen2vl")
parser.add_argument("--data_type", nargs='?', choices=['fp32', 'fp16'], default="fp32")
args = parser.parse_args()
main(args)

View File

@@ -23,7 +23,7 @@ def create_completion(host, prompt, gbnf_grammar):
"""Calls the /completion API on llama-server.
See
https://github.com/ggml-org/llama.cpp/tree/HEAD/examples/server#api-endpoints
https://github.com/ggml-org/llama.cpp/tree/HEAD/tools/server#api-endpoints
"""
print(f" Request:\n Grammar:\n{textwrap.indent(gbnf_grammar, ' ')}\n Prompt:\n{textwrap.indent(prompt.rstrip(), ' ')}")
headers = {"Content-Type": "application/json"}

Binary file not shown.

View File

@@ -1,178 +0,0 @@
import { useEffect, useState } from 'react';
import StorageUtils from '../utils/storage';
import { useAppContext } from '../utils/app.context';
import { classNames } from '../utils/misc';
import daisyuiThemes from 'daisyui/theme/object';
import { THEMES } from '../Config';
import { useNavigate } from 'react-router';
export default function Header() {
const navigate = useNavigate();
const [selectedTheme, setSelectedTheme] = useState(StorageUtils.getTheme());
const { setShowSettings } = useAppContext();
const setTheme = (theme: string) => {
StorageUtils.setTheme(theme);
setSelectedTheme(theme);
};
useEffect(() => {
document.body.setAttribute('data-theme', selectedTheme);
document.body.setAttribute(
'data-color-scheme',
daisyuiThemes[selectedTheme]?.['color-scheme'] ?? 'auto'
);
}, [selectedTheme]);
const { isGenerating, viewingChat } = useAppContext();
const isCurrConvGenerating = isGenerating(viewingChat?.conv.id ?? '');
const removeConversation = () => {
if (isCurrConvGenerating || !viewingChat) return;
const convId = viewingChat?.conv.id;
if (window.confirm('Are you sure to delete this conversation?')) {
StorageUtils.remove(convId);
navigate('/');
}
};
const downloadConversation = () => {
if (isCurrConvGenerating || !viewingChat) return;
const convId = viewingChat?.conv.id;
const conversationJson = JSON.stringify(viewingChat, null, 2);
const blob = new Blob([conversationJson], { type: 'application/json' });
const url = URL.createObjectURL(blob);
const a = document.createElement('a');
a.href = url;
a.download = `conversation_${convId}.json`;
document.body.appendChild(a);
a.click();
document.body.removeChild(a);
URL.revokeObjectURL(url);
};
return (
<div className="flex flex-row items-center pt-6 pb-6 sticky top-0 z-10 bg-base-100">
{/* open sidebar button */}
<label htmlFor="toggle-drawer" className="btn btn-ghost lg:hidden">
<svg
xmlns="http://www.w3.org/2000/svg"
width="16"
height="16"
fill="currentColor"
className="bi bi-list"
viewBox="0 0 16 16"
>
<path
fillRule="evenodd"
d="M2.5 12a.5.5 0 0 1 .5-.5h10a.5.5 0 0 1 0 1H3a.5.5 0 0 1-.5-.5m0-4a.5.5 0 0 1 .5-.5h10a.5.5 0 0 1 0 1H3a.5.5 0 0 1-.5-.5m0-4a.5.5 0 0 1 .5-.5h10a.5.5 0 0 1 0 1H3a.5.5 0 0 1-.5-.5"
/>
</svg>
</label>
<div className="grow text-2xl font-bold ml-2">llama.cpp</div>
{/* action buttons (top right) */}
<div className="flex items-center">
{viewingChat && (
<div className="dropdown dropdown-end">
{/* "..." button */}
<button
tabIndex={0}
role="button"
className="btn m-1"
disabled={isCurrConvGenerating}
>
<svg
xmlns="http://www.w3.org/2000/svg"
width="16"
height="16"
fill="currentColor"
className="bi bi-three-dots-vertical"
viewBox="0 0 16 16"
>
<path d="M9.5 13a1.5 1.5 0 1 1-3 0 1.5 1.5 0 0 1 3 0m0-5a1.5 1.5 0 1 1-3 0 1.5 1.5 0 0 1 3 0m0-5a1.5 1.5 0 1 1-3 0 1.5 1.5 0 0 1 3 0" />
</svg>
</button>
{/* dropdown menu */}
<ul
tabIndex={0}
className="dropdown-content menu bg-base-100 rounded-box z-[1] w-52 p-2 shadow"
>
<li onClick={downloadConversation}>
<a>Download</a>
</li>
<li className="text-error" onClick={removeConversation}>
<a>Delete</a>
</li>
</ul>
</div>
)}
<div className="tooltip tooltip-bottom" data-tip="Settings">
<button className="btn" onClick={() => setShowSettings(true)}>
{/* settings button */}
<svg
xmlns="http://www.w3.org/2000/svg"
width="16"
height="16"
fill="currentColor"
className="bi bi-gear"
viewBox="0 0 16 16"
>
<path d="M8 4.754a3.246 3.246 0 1 0 0 6.492 3.246 3.246 0 0 0 0-6.492M5.754 8a2.246 2.246 0 1 1 4.492 0 2.246 2.246 0 0 1-4.492 0" />
<path d="M9.796 1.343c-.527-1.79-3.065-1.79-3.592 0l-.094.319a.873.873 0 0 1-1.255.52l-.292-.16c-1.64-.892-3.433.902-2.54 2.541l.159.292a.873.873 0 0 1-.52 1.255l-.319.094c-1.79.527-1.79 3.065 0 3.592l.319.094a.873.873 0 0 1 .52 1.255l-.16.292c-.892 1.64.901 3.434 2.541 2.54l.292-.159a.873.873 0 0 1 1.255.52l.094.319c.527 1.79 3.065 1.79 3.592 0l.094-.319a.873.873 0 0 1 1.255-.52l.292.16c1.64.893 3.434-.902 2.54-2.541l-.159-.292a.873.873 0 0 1 .52-1.255l.319-.094c1.79-.527 1.79-3.065 0-3.592l-.319-.094a.873.873 0 0 1-.52-1.255l.16-.292c.893-1.64-.902-3.433-2.541-2.54l-.292.159a.873.873 0 0 1-1.255-.52zm-2.633.283c.246-.835 1.428-.835 1.674 0l.094.319a1.873 1.873 0 0 0 2.693 1.115l.291-.16c.764-.415 1.6.42 1.184 1.185l-.159.292a1.873 1.873 0 0 0 1.116 2.692l.318.094c.835.246.835 1.428 0 1.674l-.319.094a1.873 1.873 0 0 0-1.115 2.693l.16.291c.415.764-.42 1.6-1.185 1.184l-.291-.159a1.873 1.873 0 0 0-2.693 1.116l-.094.318c-.246.835-1.428.835-1.674 0l-.094-.319a1.873 1.873 0 0 0-2.692-1.115l-.292.16c-.764.415-1.6-.42-1.184-1.185l.159-.291A1.873 1.873 0 0 0 1.945 8.93l-.319-.094c-.835-.246-.835-1.428 0-1.674l.319-.094A1.873 1.873 0 0 0 3.06 4.377l-.16-.292c-.415-.764.42-1.6 1.185-1.184l.292.159a1.873 1.873 0 0 0 2.692-1.115z" />
</svg>
</button>
</div>
{/* theme controller is copied from https://daisyui.com/components/theme-controller/ */}
<div className="tooltip tooltip-bottom" data-tip="Themes">
<div className="dropdown dropdown-end dropdown-bottom">
<div tabIndex={0} role="button" className="btn m-1">
<svg
xmlns="http://www.w3.org/2000/svg"
width="16"
height="16"
fill="currentColor"
className="bi bi-palette2"
viewBox="0 0 16 16"
>
<path d="M0 .5A.5.5 0 0 1 .5 0h5a.5.5 0 0 1 .5.5v5.277l4.147-4.131a.5.5 0 0 1 .707 0l3.535 3.536a.5.5 0 0 1 0 .708L10.261 10H15.5a.5.5 0 0 1 .5.5v5a.5.5 0 0 1-.5.5H3a3 3 0 0 1-2.121-.879A3 3 0 0 1 0 13.044m6-.21 7.328-7.3-2.829-2.828L6 7.188zM4.5 13a1.5 1.5 0 1 0-3 0 1.5 1.5 0 0 0 3 0M15 15v-4H9.258l-4.015 4zM0 .5v12.495zm0 12.495V13z" />
</svg>
</div>
<ul
tabIndex={0}
className="dropdown-content bg-base-300 rounded-box z-[1] w-52 p-2 shadow-2xl h-80 overflow-y-auto"
>
<li>
<button
className={classNames({
'btn btn-sm btn-block btn-ghost justify-start': true,
'btn-active': selectedTheme === 'auto',
})}
onClick={() => setTheme('auto')}
>
auto
</button>
</li>
{THEMES.map((theme) => (
<li key={theme}>
<input
type="radio"
name="theme-dropdown"
className="theme-controller btn btn-sm btn-block btn-ghost justify-start"
aria-label={theme}
value={theme}
checked={selectedTheme === theme}
onChange={(e) => e.target.checked && setTheme(theme)}
/>
</li>
))}
</ul>
</div>
</div>
</div>
</div>
);
}

View File

@@ -1,96 +0,0 @@
import { useEffect, useState } from 'react';
import { classNames } from '../utils/misc';
import { Conversation } from '../utils/types';
import StorageUtils from '../utils/storage';
import { useNavigate, useParams } from 'react-router';
export default function Sidebar() {
const params = useParams();
const navigate = useNavigate();
const [conversations, setConversations] = useState<Conversation[]>([]);
const [currConv, setCurrConv] = useState<Conversation | null>(null);
useEffect(() => {
StorageUtils.getOneConversation(params.convId ?? '').then(setCurrConv);
}, [params.convId]);
useEffect(() => {
const handleConversationChange = async () => {
setConversations(await StorageUtils.getAllConversations());
};
StorageUtils.onConversationChanged(handleConversationChange);
handleConversationChange();
return () => {
StorageUtils.offConversationChanged(handleConversationChange);
};
}, []);
return (
<>
<input
id="toggle-drawer"
type="checkbox"
className="drawer-toggle"
defaultChecked
/>
<div className="drawer-side h-screen lg:h-screen z-50 lg:max-w-64">
<label
htmlFor="toggle-drawer"
aria-label="close sidebar"
className="drawer-overlay"
></label>
<div className="flex flex-col bg-base-200 min-h-full max-w-64 py-4 px-4">
<div className="flex flex-row items-center justify-between mb-4 mt-4">
<h2 className="font-bold ml-4">Conversations</h2>
{/* close sidebar button */}
<label htmlFor="toggle-drawer" className="btn btn-ghost lg:hidden">
<svg
xmlns="http://www.w3.org/2000/svg"
width="16"
height="16"
fill="currentColor"
className="bi bi-arrow-bar-left"
viewBox="0 0 16 16"
>
<path
fillRule="evenodd"
d="M12.5 15a.5.5 0 0 1-.5-.5v-13a.5.5 0 0 1 1 0v13a.5.5 0 0 1-.5.5M10 8a.5.5 0 0 1-.5.5H3.707l2.147 2.146a.5.5 0 0 1-.708.708l-3-3a.5.5 0 0 1 0-.708l3-3a.5.5 0 1 1 .708.708L3.707 7.5H9.5a.5.5 0 0 1 .5.5"
/>
</svg>
</label>
</div>
{/* list of conversations */}
<div
className={classNames({
'btn btn-ghost justify-start': true,
'btn-active': !currConv,
})}
onClick={() => navigate('/')}
>
+ New conversation
</div>
{conversations.map((conv) => (
<div
key={conv.id}
className={classNames({
'btn btn-ghost justify-start font-normal': true,
'btn-active': conv.id === currConv?.id,
})}
onClick={() => navigate(`/chat/${conv.id}`)}
dir="auto"
>
<span className="truncate">{conv.name}</span>
</div>
))}
<div className="text-center text-xs opacity-40 mt-auto mx-4">
Conversations are saved to browser's IndexedDB
</div>
</div>
</div>
</>
);
}

View File

@@ -366,6 +366,8 @@ if (MSVC)
/wd4005 # Macro redefinition
/wd4244 # Conversion from one type to another type, possible loss of data
/wd4267 # Conversion from 'size_t' to a smaller type, possible loss of data
/wd4996 # Disable POSIX deprecation warnings
/wd4702 # Unreachable code warnings
)
function(disable_msvc_warnings target_name)
if(TARGET ${target_name})

View File

@@ -38,7 +38,7 @@ extern "C" {
GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft);
GGML_API size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
GGML_API size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor);
GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
GGML_API ggml_backend_dev_t ggml_backend_buft_get_device (ggml_backend_buffer_type_t buft);
@@ -59,7 +59,7 @@ extern "C" {
GGML_API enum ggml_status ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor);
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);

View File

@@ -673,11 +673,15 @@ extern "C" {
GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
// returns whether the tensor elements can be iterated over with a flattened index (no gaps, no permutation)
GGML_API bool ggml_is_contiguous (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
// returns whether the tensor elements are allocated as one contiguous block of memory (no gaps, but permutation ok)
GGML_API bool ggml_is_contiguously_allocated(const struct ggml_tensor * tensor);
// true for tensor that is stored in memory as CxWxHxN and has been permuted to WxHxCxN
GGML_API bool ggml_is_contiguous_channels(const struct ggml_tensor * tensor);

View File

@@ -214,7 +214,7 @@ add_library(ggml
target_link_libraries(ggml PUBLIC ggml-base)
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
target_link_libraries(ggml PRIVATE dl stdc++fs)
target_link_libraries(ggml PRIVATE dl)
endif()
function(ggml_add_backend_library backend)

View File

@@ -56,7 +56,7 @@ size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
return SIZE_MAX;
}
size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor) {
// get_alloc_size is optional, defaults to ggml_nbytes
if (buft->iface.get_alloc_size) {
size_t size = buft->iface.get_alloc_size(buft, tensor);
@@ -152,7 +152,7 @@ size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
}
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor) {
return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
}

View File

@@ -72,8 +72,6 @@ static_assert(sizeof(block_iq4_nlx4) == 4 * sizeof(ggml_half) + QK4_NL * 2, "wro
#if defined(__GNUC__)
#pragma GCC diagnostic ignored "-Woverlength-strings"
#elif defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#define UNUSED GGML_UNUSED

View File

@@ -20,12 +20,6 @@
#define GROUP_MAX_EPS_IQ1_M 1e-7f
#define GROUP_MAX_EPS_IQ1_S 1e-12f
#if defined(_MSC_VER)
// disable "possible loss of data" to avoid warnings for hundreds of casts
// we should just be careful :)
#pragma warning(disable: 4244 4267)
#endif
#define UNUSED GGML_UNUSED
// some compilers don't provide _mm256_set_m128i, e.g. gcc 7
@@ -6596,7 +6590,118 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
}
*s = hsum_float_8(acc);
#elif defined(__VXE__) || defined(__VXE2__)
uint32_t aux[3];
uint32_t utmp[4];
const int32x4_t v_z = vec_splat_s32(0);
const uint8x16_t v_3m = vec_splat_u8(0x03);
const uint8x16_t v_0c = vec_splat_u8(1);
const uint8x16_t v_1c = vec_sl(v_0c, 1);
const uint8x16_t v_2c = vec_sl(v_0c, 2);
const uint8x16_t v_3c = vec_sl(v_0c, 3);
uint8x16_t q3h[4];
uint8x16_t q3b[2];
int8x16_t q3bytes[4];
int8x16_t q8bytes[4];
uint8x16_t qhbits[2];
float sum = 0;
for (int i = 0; i < nb; ++i) {
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
const uint8_t * restrict x0l = x[i].qs;
const uint8_t * restrict x0h = x[i].hmask;
const int8_t * restrict y0 = y[i].qs;
qhbits[0] = vec_xl(0 , x0h);
qhbits[1] = vec_xl(16, x0h);
int32_t isum = 0;
memcpy(aux, x[i].scales, 12);
utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
int8_t * scale = (int8_t *)utmp;
for (int j = 0; j < 16; ++j) scale[j] -= 32;
for (int j = 0; j < QK_K/128; ++j) {
int32x4_t isum0, isum1, isum2, isum3;
q3b[0] = vec_xl(0 , x0l);
q3b[1] = vec_xl(16, x0l);
x0l += 32;
q8bytes[0] = vec_xl(0 , y0);
q8bytes[1] = vec_xl(16 , y0);
q8bytes[2] = vec_xl(32 , y0);
q8bytes[3] = vec_xl(48 , y0);
q8bytes[4] = vec_xl(64 , y0);
q8bytes[5] = vec_xl(80 , y0);
q8bytes[6] = vec_xl(96 , y0);
q8bytes[7] = vec_xl(112, y0);
y0 += 128;
q3h[0] = vec_sl(vec_andc(v_0c, qhbits[0]), 2);
q3h[1] = vec_sl(vec_andc(v_0c, qhbits[1]), 2);
q3h[2] = vec_sl(vec_andc(v_1c, qhbits[0]), 1);
q3h[3] = vec_sl(vec_andc(v_1c, qhbits[1]), 1);
q3bytes[0] = vec_sub((int8x16_t)vec_and(q3b[0], v_3m), (int8x16_t)q3h[0]);
q3bytes[1] = vec_sub((int8x16_t)vec_and(q3b[1], v_3m), (int8x16_t)q3h[1]);
q3bytes[2] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[0], 2), v_3m), (int8x16_t)q3h[2]);
q3bytes[3] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[1], 2), v_3m), (int8x16_t)q3h[3]);
isum0 = ggml_vec_dot(v_z, q3bytes[0], q8bytes[0]);
isum1 = ggml_vec_dot(v_z, q3bytes[1], q8bytes[1]);
isum2 = ggml_vec_dot(v_z, q3bytes[2], q8bytes[2]);
isum3 = ggml_vec_dot(v_z, q3bytes[3], q8bytes[3]);
isum += (isum0[0] + isum0[1] + isum0[2] + isum0[3]) * scale[0];
isum += (isum1[0] + isum1[1] + isum1[2] + isum1[3]) * scale[1];
isum += (isum2[0] + isum2[1] + isum2[2] + isum2[3]) * scale[2];
isum += (isum3[0] + isum3[1] + isum3[2] + isum3[3]) * scale[3];
scale += 4;
q3h[0] = vec_andc(v_2c, qhbits[0]);
q3h[1] = vec_andc(v_2c, qhbits[1]);
q3h[2] = vec_sr(vec_andc(v_3c, qhbits[0]), 1);
q3h[3] = vec_sr(vec_andc(v_3c, qhbits[1]), 1);
q3bytes[0] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[0], 4), v_3m), (int8x16_t)q3h[0]);
q3bytes[1] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[1], 4), v_3m), (int8x16_t)q3h[1]);
q3bytes[2] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[0], 6), v_3m), (int8x16_t)q3h[2]);
q3bytes[3] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[1], 6), v_3m), (int8x16_t)q3h[3]);
isum0 = ggml_vec_dot(v_z, q3bytes[0], q8bytes[4]);
isum1 = ggml_vec_dot(v_z, q3bytes[1], q8bytes[5]);
isum2 = ggml_vec_dot(v_z, q3bytes[2], q8bytes[6]);
isum3 = ggml_vec_dot(v_z, q3bytes[3], q8bytes[7]);
isum += (isum0[0] + isum0[1] + isum0[2] + isum0[3]) * scale[0];
isum += (isum1[0] + isum1[1] + isum1[2] + isum1[3]) * scale[1];
isum += (isum2[0] + isum2[1] + isum2[2] + isum2[3]) * scale[2];
isum += (isum3[0] + isum3[1] + isum3[2] + isum3[3]) * scale[3];
scale += 4;
if (j == 0) {
qhbits[0] = vec_sr(qhbits[0], 4);
qhbits[1] = vec_sr(qhbits[1], 4);
}
}
sum += d * isum;
}
*s = sum;
#else
// scalar version
// This function is written like this so the compiler can manage to vectorize most of it

View File

@@ -50,19 +50,6 @@
#include "llamafile/sgemm.h"
#endif
#if defined(_MSC_VER)
// disable "possible loss of data" to avoid hundreds of casts
// we should just be careful :)
#pragma warning(disable: 4244 4267)
// disable POSIX deprecation warnings
// these functions are never going away, anyway
#pragma warning(disable: 4996)
// unreachable code because of multiple instances of code after GGML_ABORT
#pragma warning(disable: 4702)
#endif
// Note: once we move threading into a separate C++ file
// will use std::hardware_destructive_interference_size instead of hardcoding it here
// and we'll use C++ attribute syntax.

View File

@@ -11,24 +11,26 @@
#include <vector>
#ifdef GGML_USE_CPU_HBM
#include "ggml-cpu-hbm.h"
# include "ggml-cpu-hbm.h"
#endif
#ifdef GGML_USE_CPU_KLEIDIAI
#include "kleidiai/kleidiai.h"
#endif
#if defined(__APPLE__)
#include <sys/types.h>
#include <sys/sysctl.h>
# include "kleidiai/kleidiai.h"
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
# define WIN32_LEAN_AND_MEAN
# ifndef NOMINMAX
# define NOMINMAX
# endif
# include <windows.h>
#else
# include <unistd.h>
#endif
#include <windows.h>
#if defined(__APPLE__)
# include <sys/sysctl.h>
# include <sys/types.h>
#endif
// ggml-backend interface
@@ -70,8 +72,10 @@ static ggml_backend_buffer_type_t * ggml_backend_cpu_device_get_extra_buffers_ty
}
static bool ggml_backend_cpu_is_extra_buffer_type(ggml_backend_buffer_type_t buft) {
for (auto extra : ggml_backend_cpu_get_extra_buffers_type()) {
if (extra && extra == buft) return true;
for (auto * extra : ggml_backend_cpu_get_extra_buffers_type()) {
if (extra && extra == buft) {
return true;
}
}
return false;
}
@@ -330,9 +334,18 @@ static const char * ggml_backend_cpu_device_get_description(ggml_backend_dev_t d
}
static void ggml_backend_cpu_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
// TODO
*free = 0;
*total = 0;
#ifdef _WIN32
MEMORYSTATUSEX status;
status.dwLength = sizeof(status);
GlobalMemoryStatusEx(&status);
*total = status.ullTotalPhys;
*free = status.ullAvailPhys;
#else
long pages = sysconf(_SC_PHYS_PAGES);
long page_size = sysconf(_SC_PAGE_SIZE);
*total = pages * page_size;
*free = *total;
#endif
GGML_UNUSED(dev);
}

View File

@@ -1054,6 +1054,493 @@ class tinyBLAS_Q0_AVX {
} \
} \
template <typename TA, typename TB, typename TC>
class tinyBLAS_BF16_PPC {
public:
tinyBLAS_BF16_PPC(int64_t k,
const TA *A, int64_t lda,
const TB *B, int64_t ldb,
TC *C, int64_t ldc,
int ith, int nth)
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
}
void matmul(int64_t m, int64_t n) {
mnpack(0, m, 0, n);
}
private:
void vector_permute_store(vec_t *c, int numVec, unsigned char *vecOffset) {
vec_t t[8], s[8];
vec_t swiz1 = {0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23};
vec_t swiz2 = {8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31};
vec_t swiz3 = {0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23};
vec_t swiz4 = {8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31};
if (numVec == 2) {
t[0] = vec_perm(c[0], c[1], swiz1);
t[1] = vec_perm(c[2], c[3], swiz1);
s[0] = vec_perm(t[0], t[1], swiz3);
s[1] = vec_perm(t[0], t[1], swiz4);
vec_xst(s[0], 0, (vec_t*)vecOffset);
vec_xst(s[1], 0, (vec_t*)(vecOffset + 16));
} else if (numVec == 4) {
t[0] = vec_perm(c[0], c[1], swiz1);
t[1] = vec_perm(c[0], c[1], swiz2);
t[2] = vec_perm(c[2], c[3], swiz1);
t[3] = vec_perm(c[2], c[3], swiz2);
s[0] = vec_perm(t[0], t[2], swiz3);
s[1] = vec_perm(t[0], t[2], swiz4);
s[2] = vec_perm(t[1], t[3], swiz3);
s[3] = vec_perm(t[1], t[3], swiz4);
for (int i = 0; i < 4; ++i)
vec_xst(s[i], 0, (vec_t*)(vecOffset + i * 16));
} else if (numVec == 8) {
for (int i = 0; i < 4; i += 2) {
t[i+0] = vec_perm(c[i+0], c[i+1], swiz1);
t[i+1] = vec_perm(c[i+0], c[i+1], swiz2);
}
for (int i = 4; i < 8; i += 2) {
t[i+0] = vec_perm(c[i+0], c[i+1], swiz1);
t[i+1] = vec_perm(c[i+0], c[i+1], swiz2);
}
s[0] = vec_perm(t[0], t[2], swiz3);
s[1] = vec_perm(t[0], t[2], swiz4);
s[2] = vec_perm(t[1], t[3], swiz3);
s[3] = vec_perm(t[1], t[3], swiz4);
s[4] = vec_perm(t[4], t[6], swiz3);
s[5] = vec_perm(t[4], t[6], swiz4);
s[6] = vec_perm(t[5], t[7], swiz3);
s[7] = vec_perm(t[5], t[7], swiz4);
for (int i = 0; i < 8; ++i)
vec_xst(s[i], 0, (vec_t*)(vecOffset + i * 16));
}
}
void packNormal(const TA* a, int64_t lda, int rows, int cols, unsigned char* vec) {
int64_t i, j;
TA *aoffset = NULL;
unsigned char *vecOffset = NULL;
TA * aoffsets[8];
vector unsigned char c_arr[8];
aoffset = const_cast<TA*>(a);
vecOffset = vec;
j = (rows >> 3);
if (j > 0) {
do {
if (cols == 4) {
aoffsets[0] = aoffset;
for (int it = 1; it < 4; ++it)
aoffsets[it] = aoffsets[it-1] + lda;
aoffset += 4 * lda;
for (int i = 0; i < 4; ++i)
c_arr[i] = vec_xl(0, (vector unsigned char*)aoffsets[i]);
vector_permute_store(c_arr, 4, vecOffset);
for (int i = 0; i<4; i++)
aoffsets[i] = aoffsets[i]+lda;
vecOffset +=64;
}
i = (cols >> 3);
if (i > 0) {
aoffsets[0] = aoffset;
for (int it = 1; it < 8; ++it) {
aoffsets[it] = aoffsets[it-1] + lda;
}
aoffset += 8 * lda;
do {
for (int it = 0; it < 8; ++it)
c_arr[it] = vec_xl(0, (vector unsigned char*)aoffsets[it]);
vector_permute_store(c_arr, 8, vecOffset);
for (int it = 0; it < 8; ++it)
aoffsets[it] = aoffsets[it] + 8*lda;
vecOffset += 128;
i--;
} while(i > 0);
}
j--;
} while(j > 0);
}
if (rows & 4) {
aoffsets[0] = aoffset;
for (int it = 1; it < 4; ++it)
aoffsets[it] = aoffsets[it-1] + lda;
aoffset += 4 * lda;
if (cols == 4) {
for (int it = 0; it < 4; ++it)
c_arr[it] = vec_xl(0, (vector unsigned char*)aoffsets[it]);
vector_permute_store(c_arr, 2, vecOffset);
for (int it = 0; it< 4; it++)
aoffsets[it] = aoffsets[it] + lda;
vecOffset += 32;
}
i = (cols >> 3);
if (i > 0) {
do {
for (int it = 0; it < 4; ++it)
c_arr[it] = vec_xl(0, (vector unsigned char*)aoffsets[it]);
vector_permute_store(c_arr, 4, vecOffset);
for (int it = 0; it< 4; it++)
aoffsets[it] = aoffsets[it] + 8*lda;
vecOffset += 64;
i--;
} while(i > 0);
}
}
if (rows & 3) {
aoffsets[0] = aoffset;
for (int it = 1; it < 4; ++it)
aoffsets[it] = aoffsets[it-1] + lda;
if (cols == 4) {
switch(rows) {
case 3: c_arr[2] = vec_xl(0, (vector unsigned char*)aoffsets[2]);
case 2: c_arr[1] = vec_xl(0, (vector unsigned char*)aoffsets[1]);
case 1: c_arr[0] = vec_xl(0, (vector unsigned char*)aoffsets[0]);
break;
}
vector_permute_store(c_arr, 2, vecOffset);
for (int it = 0; it< 4; it++)
aoffsets[it] = aoffsets[it] + lda;
vecOffset += 32;
}
i = (cols >> 3);
if (i > 0) {
do {
switch(rows) {
case 3: c_arr[2] = vec_xl(0, (vector unsigned char*)aoffsets[2]);
case 2: c_arr[1] = vec_xl(0, (vector unsigned char*)aoffsets[1]);
case 1: c_arr[0] = vec_xl(0, (vector unsigned char*)aoffsets[0]);
break;
}
vector_permute_store(c_arr, 4, vecOffset);
for (int it = 0; it <4; it++)
aoffsets[it] = aoffsets[it] + 8* lda;
vecOffset += 64;
i--;
} while(i > 0);
}
}
}
void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t mc, nc, mp, np;
int m_rem = MIN(m - m0, 8);
int n_rem = MIN(n - n0, 8);
if (m_rem >= 8 && n_rem >= 8) {
mc = 8;
nc = 8;
gemm<8,8>(m0, m, n0, n);
} else if (m_rem >= 4 && n_rem >= 8) {
mc = 4;
nc = 8;
gemm<4,8>(m0, m, n0, n);
} else if (m_rem >=8 && n_rem >=4){
mc = 8;
nc = 4;
gemm<8,4>(m0, m, n0, n);
} else if ((m_rem < 4) && (n_rem >= 8)) {
nc = 8;
switch(m_rem) {
case 1:
mc = 1;
gemm_Mx8<1>(m0, m, n0, n);
break;
case 2:
mc = 2;
gemm_Mx8<2>(m0, m, n0, n);
break;
case 3:
mc = 3;
gemm_Mx8<3>(m0, m, n0, n);
break;
default:
return;
}
} else if (m_rem >= 4 && n_rem >= 4) {
mc = 4;
nc = 4;
gemm_small<4, 4>(m0, m, n0, n);
} else if ((m_rem > 4) && (n_rem < 4)) {
mc = 4;
switch(n_rem) {
case 1:
nc = 1;
gemm_small<4, 1>(m0, m, n0, n);
break;
case 2:
nc = 2;
gemm_small<4, 2>(m0, m, n0, n);
break;
case 3:
nc = 3;
gemm_small<4, 3>(m0, m, n0, n);
break;
default:
return;
}
} else {
switch((m_rem << 4) | n_rem) {
case 0x43:
mc = 4;
nc = 3;
gemm_small<4, 3>(m0, m, n0, n);
break;
case 0x42:
mc = 4;
nc = 2;
gemm_small<4, 2>(m0, m, n0, n);
break;
case 0x41:
mc = 4;
nc = 1;
gemm_small<4, 1>(m0, m, n0, n);
break;
case 0x34:
mc = 3;
nc = 4;
gemm_small<3, 4>(m0, m, n0, n);
break;
case 0x33:
mc = 3;
nc = 3;
gemm_small<3, 3>(m0, m, n0, n);
break;
case 0x32:
mc = 3;
nc = 2;
gemm_small<3, 2>(m0, m, n0, n);
break;
case 0x31:
mc = 3;
nc = 1;
gemm_small<3, 1>(m0, m, n0, n);
break;
case 0x24:
mc = 2;
nc = 4;
gemm_small<2,4>(m0, m, n0, n);
break;
case 0x23:
mc = 2;
nc = 3;
gemm_small<2, 3>(m0, m, n0, n);
break;
case 0x22:
mc = 2;
nc = 2;
gemm_small<2, 2>(m0, m, n0, n);
break;
case 0x21:
mc = 2;
nc = 1;
gemm_small<2, 1>(m0, m, n0, n);
break;
case 0x14:
mc = 1;
nc = 4;
gemm_small<1, 4>(m0, m, n0, n);
break;
case 0x13:
mc = 1;
nc = 3;
gemm_small<1, 3>(m0, m, n0, n);
break;
case 0x12:
mc = 1;
nc = 2;
gemm_small<1, 2>(m0, m, n0, n);
break;
case 0x11:
mc = 1;
nc = 1;
gemm_small<1, 1>(m0, m, n0, n);
break;
default:
return;
}
}
mp = m0 + (m - m0) / mc * mc;
np = n0 + (n - n0) / nc * nc;
mnpack(mp, m, n0, np);
mnpack(m0, m, np, n);
}
void KERNEL_4x8(int64_t ii, int64_t jj) {
vec_t vec_A[4], vec_B[8] , vec_C[4];
acc_t acc_0, acc_1;
__builtin_mma_xxsetaccz(&acc_0);
__builtin_mma_xxsetaccz(&acc_1);
for (int l = 0; l < k; l+=8) {
packNormal((A+(ii*lda)+l), lda, 4, 8, (uint8_t*)vec_A);
packNormal((B+(jj*ldb)+l), ldb, 8, 8, (uint8_t*)vec_B);
for (int x = 0; x < 4; x++) {
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
__builtin_mma_xvbf16ger2pp(&acc_1, vec_A[x], vec_B[x+4]);
}
}
SAVE_ACC(&acc_0, ii, jj);
SAVE_ACC(&acc_1, ii, jj+4);
}
void KERNEL_8x4(int64_t ii, int64_t jj) {
vec_t vec_A[8], vec_B[4] , vec_C[4];
acc_t acc_0, acc_1;
__builtin_mma_xxsetaccz(&acc_0);
__builtin_mma_xxsetaccz(&acc_1);
for (int l = 0; l < k; l+=8) {
packNormal((A+(ii*lda)+l), lda, 8, 8, (uint8_t*)vec_A);
packNormal((B+(jj*ldb)+l), ldb, 8, 4, (uint8_t*)vec_B);
for (int x = 0; x < 4; x++) {
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
__builtin_mma_xvbf16ger2pp(&acc_1, vec_A[x+4], vec_B[x]);
}
}
SAVE_ACC(&acc_0, ii, jj);
SAVE_ACC(&acc_1, ii+4, jj);
}
void KERNEL_8x8(int64_t ii, int64_t jj) {
vec_t vec_A[8], vec_B[8], vec_C[4];
acc_t acc_0, acc_1, acc_2, acc_3;
__builtin_mma_xxsetaccz(&acc_0);
__builtin_mma_xxsetaccz(&acc_1);
__builtin_mma_xxsetaccz(&acc_2);
__builtin_mma_xxsetaccz(&acc_3);
for (int l = 0; l < k; l+=8) {
packNormal(A+(ii*lda)+l, lda, 8, 8, (uint8_t*)vec_A);
packNormal(B+(jj*ldb)+l, ldb, 8, 8, (uint8_t*)vec_B);
for (int x = 0; x < 4; x++) {
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
__builtin_mma_xvbf16ger2pp(&acc_1, (vec_t)vec_A[x], (vec_t)vec_B[x+4]);
__builtin_mma_xvbf16ger2pp(&acc_2, (vec_t)vec_A[x+4], (vec_t)vec_B[x]);
__builtin_mma_xvbf16ger2pp(&acc_3, (vec_t)vec_A[x+4], (vec_t)vec_B[x+4]);
}
}
SAVE_ACC(&acc_0, ii, jj);
SAVE_ACC(&acc_1, ii, jj+4);
SAVE_ACC(&acc_2, ii+4, jj);
SAVE_ACC(&acc_3, ii+4, jj+4);
}
template<int RM, int RN>
void gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t ytiles = (m - m0) / RM;
int64_t xtiles = (n - n0) / RN;
int64_t tiles = xtiles * ytiles;
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
if (end > tiles)
end = tiles;
for (int64_t job = start; job < end; ++job) {
int64_t ii = m0 + job / xtiles * RM;
int64_t jj = n0 + job % xtiles * RN;
vec_t vec_C[4];
acc_t acc_0;
__builtin_mma_xxsetaccz(&acc_0);
vec_t vec_A[2], vec_B[2];
for (int l=0; l<k; l+=4) {
packNormal(A+(ii*lda)+l, lda, RM, 4, (uint8_t*)vec_A);
packNormal(B+(jj*ldb)+l, ldb, RN, 4, (uint8_t*)vec_B);
for (int x = 0; x<2; x++) {
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
}
}
__builtin_mma_disassemble_acc(vec_C, &acc_0);
for (int I = 0; I < RM; I++) {
for (int J = 0; J < RN; J++) {
*((TC*)(C+ii+((jj+J)*ldc)+I)) = *((TC*)&vec_C[I]+J);
}
}
}
}
template<int RM>
void gemm_Mx8(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int RN = 8;
int64_t ytiles = (m - m0) / RM;
int64_t xtiles = (n - n0) / RN;
int64_t tiles = xtiles * ytiles;
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
if (end > tiles)
end = tiles;
for (int64_t job = start; job < end; ++job) {
int64_t ii = m0 + job / xtiles * RM;
int64_t jj = n0 + job % xtiles * RN;
vec_t vec_C[4];
acc_t acc_0, acc_1;
__builtin_mma_xxsetaccz(&acc_0);
__builtin_mma_xxsetaccz(&acc_1);
vec_t vec_A[4], vec_B[8];
for (int l=0; l<k; l+=8) {
packNormal(A+(ii*lda)+l, lda, RM, 8, (uint8_t*)vec_A);
packNormal(B+(jj*ldb)+l, ldb, RN, 8, (uint8_t*)vec_B);
for (int x = 0; x<4; x++) {
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
__builtin_mma_xvbf16ger2pp(&acc_1, vec_A[x], vec_B[x+4]);
}
}
__builtin_mma_disassemble_acc(vec_C, &acc_0);
for (int I = 0; I < RM; I++) {
for (int J = 0; J < 4; J++) {
*((TC*)(C+ii+((jj+J)*ldc)+I)) = *((TC*)&vec_C[I]+J);
}
}
__builtin_mma_disassemble_acc(vec_C, &acc_1);
for (int I = 0; I < RM; I++) {
for (int J = 0; J < 4; J++) {
*((TC*)(C+ii+((jj+4+J)*ldc)+I)) = *((TC*)&vec_C[I]+J);
}
}
}
}
template<int RM, int RN>
inline void kernel(int64_t ii, int64_t jj) {
if constexpr(RM == 4 && RN == 8) {
KERNEL_4x8(ii,jj);
} else if constexpr(RM == 8 && RN == 8) {
KERNEL_8x8(ii,jj);
} else if constexpr(RM == 8 && RN == 4) {
KERNEL_8x4(ii,jj);
} else {
static_assert(false, "RN/RM values not supported");
}
}
template <int RM, int RN>
NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t ytiles = (m - m0) / RM;
int64_t xtiles = (n - n0) / RN;
int64_t tiles = xtiles * ytiles;
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
if (end > tiles)
end = tiles;
for (int64_t job = start; job < end; ++job) {
int64_t ii = m0 + job / xtiles * RM;
int64_t jj = n0 + job % xtiles * RN;
kernel<RM, RN>(ii, jj);
}
}
const TA *const A;
const TB *const B;
TC *C;
const int64_t k;
const int64_t lda;
const int64_t ldb;
const int64_t ldc;
const int ith;
const int nth;
};
template <typename TA, typename TB, typename TC>
class tinyBLAS_Q0_PPC {
public:
@@ -2202,6 +2689,7 @@ class tinyBLAS_PPC {
boffset = vec;
j = (rows >> 3);
if (j > 0) {
do {
aoffset1 = aoffset;
aoffset2 = aoffset1 + lda;
@@ -2875,9 +3363,22 @@ bool llamafile_sgemm(const struct ggml_compute_params * params, int64_t m, int64
(float *)C, ldc};
return tb.matmul(m, n);
}
#elif defined(__MMA__)
if ((k % 8))
return false;
if(Btype == GGML_TYPE_BF16) {
tinyBLAS_BF16_PPC<ggml_bf16_t, ggml_bf16_t, float> tb{ k,
(const ggml_bf16_t *)A, lda,
(const ggml_bf16_t *)B, ldb,
(float *)C, ldc,
params->ith, params->nth};
tb.matmul(m, n);
return true;
}
#endif
return false;
}
case GGML_TYPE_F16: {
#if defined(__AVX512F__)
if (Btype == GGML_TYPE_F16) {

View File

@@ -8,19 +8,6 @@
#include <float.h>
#if defined(_MSC_VER)
// disable "possible loss of data" to avoid hundreds of casts
// we should just be careful :)
#pragma warning(disable: 4244 4267)
// disable POSIX deprecation warnings
// these functions are never going away, anyway
#pragma warning(disable: 4996)
// unreachable code because of multiple instances of code after GGML_ABORT
#pragma warning(disable: 4702)
#endif
// ggml_compute_forward_dup
static void ggml_compute_forward_dup_same_cont(

View File

@@ -2,12 +2,6 @@
#include <cassert>
#if defined(_MSC_VER)
// disable "possible loss of data" to avoid hundreds of casts
// we should just be careful :)
#pragma warning(disable: 4244 4267)
#endif
// precomputed gelu table for f16 (128 KB)
ggml_fp16_t ggml_table_gelu_f16[1 << 16];

View File

@@ -12,12 +12,30 @@ if (CUDAToolkit_FOUND)
# 61 == Pascal, __dp4a instruction (per-byte integer dot product)
# 70 == V100, FP16 tensor cores
# 75 == Turing, int8 tensor cores
# 80 == Ampere, asynchronous data loading, faster tensor core instructions
# 86 == RTX 3000, needs CUDA v11.1
# 89 == RTX 4000, needs CUDA v11.8
#
# XX-virtual == compile CUDA code as PTX, do JIT compilation to binary code on first run
# XX-real == compile CUDA code as device code for this specific architecture
# no suffix == compile as both PTX and device code
#
# The default behavior for a non-native is to build virtual architectures as needed to cover all features needed
# for best performance and to also build real architectures for the most commonly used GPUs.
if (GGML_NATIVE AND CUDAToolkit_VERSION VERSION_GREATER_EQUAL "11.6" AND CMAKE_VERSION VERSION_GREATER_EQUAL "3.24")
set(CMAKE_CUDA_ARCHITECTURES "native")
elseif(GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
set(CMAKE_CUDA_ARCHITECTURES "60;61;70;75;80")
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "11.8")
set(CMAKE_CUDA_ARCHITECTURES "60-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real;89-real")
else()
set(CMAKE_CUDA_ARCHITECTURES "60-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real")
endif()
else()
set(CMAKE_CUDA_ARCHITECTURES "50;61;70;75;80")
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "11.8")
set(CMAKE_CUDA_ARCHITECTURES "50-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real;89-real")
else()
set(CMAKE_CUDA_ARCHITECTURES "50-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real")
endif()
endif()
endif()
message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")
@@ -100,7 +118,7 @@ if (CUDAToolkit_FOUND)
set(CUDA_CXX_FLAGS "")
set(CUDA_FLAGS -use_fast_math)
set(CUDA_FLAGS -use_fast_math -extended-lambda)
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "12.8")
# Options are:

View File

@@ -130,10 +130,6 @@ static int ggml_cuda_highest_compiled_arch(const int arch) {
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#define GGML_CUDA_MAX_STREAMS 8
[[noreturn]]
@@ -300,6 +296,25 @@ static __device__ void no_device_code(
#define NO_DEVICE_CODE //GGML_ABORT("NO_DEVICE_CODE not valid in host code.")
#endif // __CUDA_ARCH__
// The compiler is always able to unroll loops if they contain continue expressions.
// In such cases loop unrolling can still be achieved via recursion:
template <int n>
struct ggml_cuda_unroll {
template <typename Func, typename... Args>
__device__ void operator()(const Func & f, Args... args) const {
f(n - 1, args...);
ggml_cuda_unroll<n - 1>{}(f, args...);
}
};
template <>
struct ggml_cuda_unroll<1> {
template <typename Func, typename... Args>
__device__ void operator()(const Func & f, Args... args) const {
f(0, args...);
}
};
template<int width = WARP_SIZE>
static __device__ __forceinline__ int warp_reduce_sum(int x) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE

View File

@@ -2,6 +2,17 @@
#include "common.cuh"
static __device__ __forceinline__ unsigned int ggml_cuda_cvta_generic_to_shared(void * generic_ptr) {
#ifdef CP_ASYNC_AVAILABLE
return __cvta_generic_to_shared(generic_ptr);
#else
GGML_UNUSED(generic_ptr);
NO_DEVICE_CODE;
return 0;
#endif // CP_ASYNC_AVAILABLE
}
// Copies data from global to shared memory, cg == cache global.
// Both the src and dst pointers must be aligned to 16 bit.
// Shared memory uses 32 bit addressing, the pointer is passed as unsigned int.

View File

@@ -516,7 +516,7 @@ constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) {
nullptr;
}
template<int D, int ncols1, int ncols2, int KQ_stride> // D == head size
template<int D, int ncols1, int ncols2> // D == head size
__launch_bounds__(D, 1)
static __global__ void flash_attn_stream_k_fixup(
float * __restrict__ dst, const float2 * __restrict__ dst_fixup, const int ne01, const int ne02, const int ne11) {
@@ -665,13 +665,13 @@ static void on_no_fattn_vec_case(const int D) {
fprintf(stderr, "Compile with GGML_CUDA_FA_ALL_QUANTS for all combinations of q4_0, q4_1, q5_0, q5_1, q8_0, and f16.\n");
GGML_ABORT("fatal error");
} else {
fprintf(stderr, "Unsupported KV type combination for head_size 256.\n");
fprintf(stderr, "Unsupported KV type combination for head_size %d.\n", D);
fprintf(stderr, "Only f16 is supported.\n");
GGML_ABORT("fatal error");
}
}
template <int D, int ncols1, int ncols2, int KQ_stride>
template <int DV, int ncols1, int ncols2>
void launch_fattn(
ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel, const int nwarps, const size_t nbytes_shared,
const int KQ_row_granularity, const bool need_f16_K, const bool need_f16_V, const bool stream_k, const int warp_size = WARP_SIZE
@@ -691,7 +691,7 @@ void launch_fattn(
GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) &&
"the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big");
"the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big");
GGML_ASSERT(K->ne[1] % FATTN_KQ_STRIDE == 0 && "Incorrect KV cache padding.");
@@ -719,6 +719,7 @@ void launch_fattn(
size_t nb23 = V->nb[3];
if (need_f16_K && K->type != GGML_TYPE_F16) {
GGML_ASSERT(ggml_is_contiguously_allocated(K));
K_f16.alloc(ggml_nelements(K));
to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(K->type);
to_fp16(K_data, K_f16.ptr, ggml_nelements(K), main_stream);
@@ -733,6 +734,7 @@ void launch_fattn(
}
if (need_f16_V && V->type != GGML_TYPE_F16) {
GGML_ASSERT(ggml_is_contiguously_allocated(V));
V_f16.alloc(ggml_nelements(V));
to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(V->type);
to_fp16(V_data, V_f16.ptr, ggml_nelements(V), main_stream);
@@ -752,10 +754,13 @@ void launch_fattn(
const int ntiles_total = ntiles_x * (Q->ne[2] / ncols2) * Q->ne[3];
const dim3 block_dim(warp_size, nwarps, 1);
int max_blocks_per_sm = 1; // Max. number of active blocks limited by occupancy.
CUDA_CHECK(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&max_blocks_per_sm, fattn_kernel, block_dim.x * block_dim.y * block_dim.z, nbytes_shared));
dim3 blocks_num;
if (stream_k) {
// For short contexts it can be faster to have the SMs work on whole tiles because this lets us skip the fixup.
const int max_blocks = 2*nsm;
const int max_blocks = max_blocks_per_sm*nsm;
const int tiles_nwaves = (ntiles_total + max_blocks - 1) / max_blocks;
const int tiles_efficiency_percent = 100 * ntiles_total / (max_blocks*tiles_nwaves);
@@ -767,14 +772,11 @@ void launch_fattn(
blocks_num.y = 1;
blocks_num.z = 1;
dst_tmp_meta.alloc(blocks_num.x*ncols * (2*2 + D) * sizeof(float));
dst_tmp_meta.alloc(blocks_num.x*ncols * (2*2 + DV) * sizeof(float));
} else {
GGML_ASSERT(K->ne[1] % KQ_row_granularity == 0);
const int ntiles_KQ = K->ne[1] / KQ_row_granularity; // Max. number of parallel blocks limited by tensor size.
int max_blocks_per_sm = 1; // Max. number of active blocks limited by occupancy.
CUDA_CHECK(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&max_blocks_per_sm, fattn_kernel, block_dim.x * block_dim.y * block_dim.z, nbytes_shared));
// parallel_blocks should be at least large enough to achieve max. occupancy for a single wave:
parallel_blocks = std::max((nsm * max_blocks_per_sm) / ntiles_total, 1);
@@ -851,19 +853,19 @@ void launch_fattn(
if (stream_k) {
if (ntiles_total % blocks_num.x != 0) { // Fixup is only needed if the SMs work on fractional tiles.
const dim3 block_dim_combine(D, 1, 1);
const dim3 block_dim_combine(DV, 1, 1);
const dim3 blocks_num_combine = {blocks_num.x, ncols1, ncols2};
flash_attn_stream_k_fixup<D, ncols1, ncols2, KQ_stride>
flash_attn_stream_k_fixup<DV, ncols1, ncols2>
<<<blocks_num_combine, block_dim_combine, 0, main_stream>>>
((float *) KQV->data, dst_tmp_meta.ptr, Q->ne[1], Q->ne[2], K->ne[1]);
}
} else if (parallel_blocks > 1) {
const dim3 block_dim_combine(D, 1, 1);
const dim3 block_dim_combine(DV, 1, 1);
const dim3 blocks_num_combine(Q->ne[1], 1, blocks_num.z);
const size_t nbytes_shared_combine = parallel_blocks*sizeof(float2);
flash_attn_combine_results<D>
flash_attn_combine_results<DV>
<<<blocks_num_combine, block_dim_combine, nbytes_shared_combine, main_stream>>>
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data, parallel_blocks);
}

File diff suppressed because it is too large Load Diff

View File

@@ -307,7 +307,7 @@ void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor *
constexpr int nwarps = 8;
constexpr size_t nbytes_shared = 0;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, use_logit_softcap>;
launch_fattn<D, cols_per_block, 1, -1>
launch_fattn<D, cols_per_block, 1>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F16, true, true, false);
} break;
case 128: {
@@ -315,7 +315,7 @@ void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor *
constexpr int nwarps = 8;
constexpr size_t nbytes_shared = 0;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, use_logit_softcap>;
launch_fattn<D, cols_per_block, 1, -1>
launch_fattn<D, cols_per_block, 1>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F16, true, true, false);
} break;
default: {

View File

@@ -318,7 +318,7 @@ void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor *
constexpr int nwarps = 8;
constexpr size_t nbytes_shared = 0;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, use_logit_softcap>;
launch_fattn<D, cols_per_block, 1, -1>
launch_fattn<D, cols_per_block, 1>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F32, true, true, false);
} break;
case 128: {
@@ -326,7 +326,7 @@ void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor *
constexpr int nwarps = 8;
constexpr size_t nbytes_shared = 0;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, use_logit_softcap>;
launch_fattn<D, cols_per_block, 1, -1>
launch_fattn<D, cols_per_block, 1>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F32, true, true, false);
} break;
default: {

View File

@@ -315,7 +315,7 @@ void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx,
constexpr bool need_f16_K = D != 128;
constexpr bool need_f16_V = D != 128 && D != 64;
constexpr size_t nbytes_shared = 0;
launch_fattn<D, cols_per_block, 1, -1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, D, need_f16_K, need_f16_V, false);
launch_fattn<D, cols_per_block, 1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, D, need_f16_K, need_f16_V, false);
}
template <int D, ggml_type type_K, ggml_type type_V>

View File

@@ -310,7 +310,7 @@ void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx,
constexpr bool need_f16_K = D != 128;
constexpr bool need_f16_V = D != 128 && D != 64;
constexpr size_t nbytes_shared = 0;
launch_fattn<D, cols_per_block, 1, -1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, D, need_f16_K, need_f16_V, false);
launch_fattn<D, cols_per_block, 1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, D, need_f16_K, need_f16_V, false);
}
template <int D, ggml_type type_K, ggml_type type_V>

View File

@@ -490,7 +490,7 @@ void ggml_cuda_flash_attn_ext_wmma_f16_case(ggml_backend_cuda_context & ctx, ggm
fattn_kernel = flash_attn_ext_f16<
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), KQ_acc_t, use_logit_softcap>;
}
launch_fattn<D, cols_per_block, 1, -1>(ctx, dst, fattn_kernel, nwarps, 0, FATTN_KQ_STRIDE, true, true, false, warp_size);
launch_fattn<D, cols_per_block, 1>(ctx, dst, fattn_kernel, nwarps, 0, FATTN_KQ_STRIDE, true, true, false, warp_size);
}
void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {

View File

@@ -8,58 +8,32 @@
#include "fattn-wmma-f16.cuh"
#include "fattn.cuh"
template <int D, int ncols2>
template <int DKQ, int DV, int ncols2>
static void ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
if (Q->ne[1] <= 8/ncols2) {
ggml_cuda_flash_attn_ext_mma_f16_case<D, 8/ncols2, ncols2>(ctx, dst);
return;
if constexpr (ncols2 <= 8) {
if (Q->ne[1] <= 8/ncols2) {
ggml_cuda_flash_attn_ext_mma_f16_case<DKQ, DV, 8/ncols2, ncols2>(ctx, dst);
return;
}
}
if (Q->ne[1] <= 16/ncols2) {
ggml_cuda_flash_attn_ext_mma_f16_case<D, 16/ncols2, ncols2>(ctx, dst);
ggml_cuda_flash_attn_ext_mma_f16_case<DKQ, DV, 16/ncols2, ncols2>(ctx, dst);
return;
}
if (Q->ne[1] <= 32/ncols2) {
ggml_cuda_flash_attn_ext_mma_f16_case<D, 32/ncols2, ncols2>(ctx, dst);
ggml_cuda_flash_attn_ext_mma_f16_case<DKQ, DV, 32/ncols2, ncols2>(ctx, dst);
return;
}
ggml_cuda_flash_attn_ext_mma_f16_case<D, 64/ncols2, ncols2>(ctx, dst);
ggml_cuda_flash_attn_ext_mma_f16_case<DKQ, DV, 64/ncols2, ncols2>(ctx, dst);
}
template <int ncols2>
static void ggml_cuda_flash_attn_ext_mma_f16_switch_hs(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
switch (Q->ne[0]) {
case 64:
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1< 64, ncols2>(ctx, dst);
break;
case 80:
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1< 80, ncols2>(ctx, dst);
break;
case 96:
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1< 96, ncols2>(ctx, dst);
break;
case 112:
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<112, ncols2>(ctx, dst);
break;
case 128:
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<128, ncols2>(ctx, dst);
break;
case 256:
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<256, ncols2>(ctx, dst);
break;
default:
GGML_ABORT("fatal error");
break;
}
}
static void ggml_cuda_flash_attn_ext_mma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
template <int DKQ, int DV>
static void ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
const ggml_tensor * K = dst->src[1];
@@ -68,27 +42,79 @@ static void ggml_cuda_flash_attn_ext_mma_f16(ggml_backend_cuda_context & ctx, gg
float max_bias = 0.0f;
memcpy(&max_bias, (const float *) KQV->op_params + 1, sizeof(float));
const float use_gqa_opt = mask && max_bias == 0.0f;
const bool use_gqa_opt = mask && max_bias == 0.0f;
GGML_ASSERT(Q->ne[2] % K->ne[2] == 0);
const int gqa_ratio = Q->ne[2] / K->ne[2];
if (use_gqa_opt && gqa_ratio % 8 == 0) {
ggml_cuda_flash_attn_ext_mma_f16_switch_hs<8>(ctx, dst);
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<DKQ, DV, 8>(ctx, dst);
return;
}
if (use_gqa_opt && gqa_ratio == 4) {
ggml_cuda_flash_attn_ext_mma_f16_switch_hs<4>(ctx, dst);
if (use_gqa_opt && gqa_ratio % 4 == 0) {
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<DKQ, DV, 4>(ctx, dst);
return;
}
if (use_gqa_opt && gqa_ratio == 2) {
ggml_cuda_flash_attn_ext_mma_f16_switch_hs<2>(ctx, dst);
if (use_gqa_opt && gqa_ratio % 2 == 0) {
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<DKQ, DV, 2>(ctx, dst);
return;
}
ggml_cuda_flash_attn_ext_mma_f16_switch_hs<1>(ctx, dst);
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<DKQ, DV, 1>(ctx, dst);
}
static void ggml_cuda_flash_attn_ext_mma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
const ggml_tensor * K = dst->src[1];
const ggml_tensor * V = dst->src[2];
const ggml_tensor * mask = dst->src[3];
switch (Q->ne[0]) {
case 64:
GGML_ASSERT(V->ne[0] == 64);
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2< 64, 64>(ctx, dst);
break;
case 80:
GGML_ASSERT(V->ne[0] == 80);
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2< 80, 80>(ctx, dst);
break;
case 96:
GGML_ASSERT(V->ne[0] == 96);
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2< 96, 96>(ctx, dst);
break;
case 112:
GGML_ASSERT(V->ne[0] == 112);
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2<112, 112>(ctx, dst);
break;
case 128:
GGML_ASSERT(V->ne[0] == 128);
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2<128, 128>(ctx, dst);
break;
case 256:
GGML_ASSERT(V->ne[0] == 256);
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2<256, 256>(ctx, dst);
break;
case 576: {
// For Deepseek, go straight to the ncols1 switch to avoid compiling unnecessary kernels.
GGML_ASSERT(V->ne[0] == 512);
float max_bias = 0.0f;
memcpy(&max_bias, (const float *) KQV->op_params + 1, sizeof(float));
const bool use_gqa_opt = mask && max_bias == 0.0f;
GGML_ASSERT(use_gqa_opt);
GGML_ASSERT(Q->ne[2] % K->ne[2] == 0);
const int gqa_ratio = Q->ne[2] / K->ne[2];
GGML_ASSERT(gqa_ratio % 16 == 0);
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<576, 512, 16>(ctx, dst);
} break;
default:
GGML_ABORT("fatal error");
break;
}
}
#define FATTN_VEC_F16_CASE(D, type_K, type_V) \
@@ -299,7 +325,7 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
const bool gqa_opt_applies = ((Q->ne[2] / K->ne[2]) % 2 == 0) && mask; // The mma-based kernels have GQA-specific optimizations
const bool mma_needs_data_conversion = K->type != GGML_TYPE_F16 || V->type != GGML_TYPE_F16;
const bool mma_faster_for_bs1 = new_mma_available(cc) && gqa_opt_applies && cc < GGML_CUDA_CC_ADA_LOVELACE && !mma_needs_data_conversion;
const bool can_use_vector_kernel = Q->ne[0] % (2*warp_size) == 0;
const bool can_use_vector_kernel = Q->ne[0] <= 256 && Q->ne[0] % (2*warp_size) == 0;
if (Q->ne[1] == 1 && can_use_vector_kernel && !mma_faster_for_bs1) {
if (prec == GGML_PREC_DEFAULT) {
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);

View File

@@ -10,10 +10,11 @@ static __global__ void k_get_rows(
/*const size_t nb00,*/ const size_t nb01, const size_t nb02, const size_t nb03,
const size_t s10, const size_t s11, const size_t s12/*, const size_t s13*/) {
const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2;
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
// The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher.
const int i00 = (blockIdx.y * blockDim.x + threadIdx.x)*2;
const int i10 = blockIdx.x;
const int i11 = blockIdx.z / ne12;
const int i12 = blockIdx.z % ne12;
if (i00 >= ne00) {
return;
@@ -46,10 +47,11 @@ static __global__ void k_get_rows_float(
/*const size_t nb00,*/ const size_t nb01, const size_t nb02, const size_t nb03,
const size_t s10, const size_t s11, const size_t s12/*, const size_t s13*/) {
const int i00 = blockIdx.x*blockDim.x + threadIdx.x;
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
// The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher.
const int i00 = blockIdx.y * blockDim.x + threadIdx.x;
const int i10 = blockIdx.x;
const int i11 = blockIdx.z / ne12;
const int i12 = blockIdx.z % ne12;
if (i00 >= ne00) {
return;
@@ -94,8 +96,8 @@ static void get_rows_cuda_q(
const size_t nb1, const size_t nb2, const size_t nb3,
cudaStream_t stream) {
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
const int block_num_y = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
const dim3 block_nums(ne10, block_num_y, ne11*ne12);
// strides in elements
// const size_t s0 = nb0 / sizeof(dst_t);
@@ -127,8 +129,8 @@ static void get_rows_cuda_float(
const size_t nb1, const size_t nb2, const size_t nb3,
cudaStream_t stream) {
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
const int block_num_y = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
const dim3 block_nums(ne10, block_num_y, ne11*ne12);
// strides in elements
// const size_t s0 = nb0 / sizeof(dst_t);

View File

@@ -555,8 +555,8 @@ static enum ggml_status ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer
if (ggml_is_quantized(tensor->type) && tensor->view_src == nullptr && ggml_backend_buffer_get_usage(buffer) != GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
// initialize padding to 0 to avoid possible NaN values
size_t original_size = ggml_nbytes(tensor);
size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
const size_t original_size = ggml_nbytes(tensor);
const size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
if (padded_size > original_size) {
ggml_cuda_set_device(ctx->device);
@@ -679,6 +679,7 @@ static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_t
if (ggml_is_quantized(tensor->type)) {
if (ne0 % MATRIX_ROW_PADDING != 0) {
GGML_ASSERT(tensor->nb[0] == ggml_element_size(tensor));
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
}
}
@@ -800,6 +801,7 @@ static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buff
static enum ggml_status ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
@@ -851,6 +853,7 @@ static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buff
// split tensors must always be set in their entirety at once
GGML_ASSERT(offset == 0);
GGML_ASSERT(size == ggml_nbytes(tensor));
GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
@@ -889,6 +892,7 @@ static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buff
// split tensors must always be set in their entirety at once
GGML_ASSERT(offset == 0);
GGML_ASSERT(size == ggml_nbytes(tensor));
GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
@@ -970,6 +974,7 @@ static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buf
static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
size_t total_size = 0;
@@ -1531,6 +1536,8 @@ static void ggml_cuda_op_mul_mat(
// If src0 is on a temporary compute buffer (partial offloading) there may be some padding that needs to be cleared:
if (ne00 % MATRIX_ROW_PADDING != 0 && ggml_is_quantized(src0->type) && ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE && src0->view_src == nullptr) {
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
GGML_ASSERT(!src0->view_src);
const size_t nbytes_data = ggml_row_size(src0->type, (dev[id].row_high - dev[id].row_low)*ne00);
const size_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING);
CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd + nbytes_data, 0, nbytes_padding, stream));
@@ -2062,9 +2069,11 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
}
ggml_tensor src0_slice = *src0;
src0_slice.ne[2] = 1;
src0_slice.nb[3] = src0_slice.nb[2];
src0_slice.data = (char *) src0->data + i02*nb02;
src0_slice.ne[2] = 1;
src0_slice.nb[3] = src0_slice.nb[2];
src0_slice.op = GGML_OP_VIEW;
src0_slice.view_src = dst->src[0]; // non-const pointer to src0
src0_slice.data = (char *) src0->data + i02*nb02;
ggml_tensor src1_slice;
memset(&src1_slice, 0, sizeof(src1_slice));
@@ -3206,16 +3215,16 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
return false;
#endif // FLASH_ATTN_AVAILABLE
if (op->src[1]->ne[0] != op->src[2]->ne[0]) {
// different head sizes of K and V are not supported yet
return false;
const int cc = ggml_cuda_info().devices[dev_ctx->device].cc;
if (!new_mma_available(cc) || cc < GGML_CUDA_CC_AMPERE) {
return false;
}
const int gqa_ratio = op->src[0]->ne[2] / op->src[1]->ne[2];
return op->src[1]->ne[0] == 576 && op->src[2]->ne[0] == 512 && op->src[3] && gqa_ratio % 16 == 0;
}
if (op->src[0]->ne[0] == 192) {
return false;
}
if (op->src[0]->ne[0] == 576) {
// DeepSeek MLA
return false;
}
if (op->src[0]->ne[3] != 1) {
return false;
}

View File

@@ -89,6 +89,17 @@ void ggml_cuda_mul_mat_q(
const float * src1_d = (const float *) src1->data;
float * dst_d = (float *) dst->data;
// If src0 is a temporary compute buffer, clear any potential padding.
if (ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
GGML_ASSERT(!src0->view_src);
const size_t size_data = ggml_nbytes(src0);
const size_t size_alloc = ggml_backend_buffer_get_alloc_size(src0->buffer, src0);
if (size_alloc > size_data) {
CUDA_CHECK(cudaMemsetAsync((char *) src0->data + size_data, 0, size_alloc - size_data, stream));
}
}
const int64_t ne10_padded = GGML_PAD(ne10, MATRIX_ROW_PADDING);
const int64_t s01 = src0->nb[1] / ts_src0;
@@ -118,7 +129,7 @@ void ggml_cuda_mul_mat_q(
const mmq_args args = {
src0_d, src0->type, (const int *) src1_q8_1.ptr, nullptr, nullptr, dst_d,
ne00, ne01, ne1, s01, s1,
ne00, ne01, ne1, s01, ne11, s1,
ne02, ne12, s02, s12, s2,
ne03, ne13, s03, s13, s3,
use_stream_k};
@@ -202,7 +213,7 @@ void ggml_cuda_mul_mat_q(
// Note that ne02 is used instead of ne12 because the number of y channels determines the z dimension of the CUDA grid.
const mmq_args args = {
src0_d, src0->type, (const int *) src1_q8_1.ptr, ids_dst_dev, expert_bounds_dev, dst_d,
ne00, ne01, ne_get_rows, s01, s1,
ne00, ne01, ne_get_rows, s01, ne_get_rows, s1,
ne02, ne02, s02, s12, s2,
ne03, ne13, s03, s13, s3,
use_stream_k};
@@ -241,7 +252,7 @@ void ggml_cuda_op_mul_mat_q(
ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA && src1_ncols == ne11;
const mmq_args args = {
src0_dd_i, src0->type, (const int *) src1_ddq_i, nullptr, nullptr, dst_dd_i,
ne00, row_diff, src1_ncols, stride01, nrows_dst,
ne00, row_diff, src1_ncols, stride01, ne11, nrows_dst,
1, 1, 0, 0, 0,
1, 1, 0, 0, 0,
use_stream_k};

View File

@@ -2522,7 +2522,7 @@ template <ggml_type type, int mmq_x, int nwarps, bool need_check, bool fixup>
static __device__ __forceinline__ void mul_mat_q_process_tile(
const char * __restrict__ x, const int offset_x, const int * __restrict__ y,
const int * __restrict__ ids_dst, float * __restrict__ dst, float * __restrict__ tmp_fixup,
const int nrows_x, const int ncols_y, const int stride_row_x, const int stride_col_dst,
const int stride_row_x, const int ncols_y, const int stride_col_dst,
const int tile_x_max_i, const int tile_y_max_j, const int kb0_start, const int kb0_stop) {
constexpr int qk = ggml_cuda_type_traits<type>::qk;
@@ -2606,7 +2606,7 @@ template <ggml_type type, int mmq_x, int nwarps, bool need_check>
static __global__ void mul_mat_q(
const char * __restrict__ x, const int * __restrict__ y, const int32_t * __restrict__ ids_dst,
const int32_t * __restrict__ expert_bounds, float * __restrict__ dst, float * __restrict__ tmp_fixup,
const int ncols_x, const int nrows_x, const int ncols_y, const int stride_row_x, const int stride_col_dst,
const int ncols_x, const int nrows_x, const int ncols_dst, const int stride_row_x, const int ncols_y, const int stride_col_dst,
const int channel_ratio, const int nchannels_y, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
const int sample_ratio, const int nsamples_y, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
@@ -2619,8 +2619,8 @@ static __global__ void mul_mat_q(
constexpr int qk = ggml_cuda_type_traits<type>::qk;
constexpr int mmq_y = get_mmq_y_device();
const int ntx = (ncols_y + mmq_x - 1) / mmq_x; // Number of tiles x
const int nty = (nrows_x + mmq_y - 1) / mmq_y; // Number of tiles y
const int ntx = (ncols_dst + mmq_x - 1) / mmq_x; // Number of tiles x
const int nty = (nrows_x + mmq_y - 1) / mmq_y; // Number of tiles y
// Initialize the ids for writing back data with just the index.
// For regular matrix multiplications this is never changed.
@@ -2636,6 +2636,7 @@ static __global__ void mul_mat_q(
ids_dst_shared[j] = j;
}
__syncthreads();
// On AMD or old CUDA the performance with stream-k was worse, use conventional tiling instead:
#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < GGML_CUDA_CC_VOLTA
@@ -2647,8 +2648,8 @@ static __global__ void mul_mat_q(
// Defaults for regular matrix multiplication:
int col_low = 0;
int col_high = ncols_y;
int col_diff = ncols_y;
int col_high = ncols_dst;
int col_diff = ncols_dst;
int offset_y = wt*stride_sample_y + zt*stride_channel_y;
int offset_dst = wt*stride_sample_dst + zt*stride_channel_dst + jt*mmq_x*stride_col_dst;
@@ -2664,6 +2665,7 @@ static __global__ void mul_mat_q(
return;
}
// __syncthreads(); // There is no previous tile that could cause a race condition.
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps*WARP_SIZE) {
const int j = j0 + threadIdx.y*WARP_SIZE + threadIdx.x;
@@ -2674,6 +2676,7 @@ static __global__ void mul_mat_q(
ids_dst_shared[j] = ids_dst[col_low + jt*mmq_x + j];
}
__syncthreads();
}
offset_y += (col_low + jt*mmq_x)*(sizeof(block_q8_1_mmq)/sizeof(int));
@@ -2686,7 +2689,7 @@ static __global__ void mul_mat_q(
constexpr bool fixup = false;
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, nrows_x, ncols_y, stride_row_x, stride_col_dst,
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, stride_row_x, ncols_y, stride_col_dst,
tile_x_max_i, tile_y_max_j, 0, ncols_x/qk);
return;
}
@@ -2717,8 +2720,8 @@ static __global__ void mul_mat_q(
// Defaults for regular matrix multiplication:
int col_low = 0;
int col_high = ncols_y;
int col_diff = ncols_y;
int col_high = ncols_dst;
int col_diff = ncols_dst;
int offset_y = wt*stride_sample_y + zt*stride_channel_y;
int offset_dst = wt*stride_sample_dst + zt*stride_channel_dst + jt*mmq_x*stride_col_dst;
@@ -2740,6 +2743,7 @@ static __global__ void mul_mat_q(
continue;
}
__syncthreads();
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps*WARP_SIZE) {
const int j = j0 + threadIdx.y*WARP_SIZE + threadIdx.x;
@@ -2750,6 +2754,7 @@ static __global__ void mul_mat_q(
ids_dst_shared[j] = ids_dst[col_low + jt*mmq_x + j];
}
__syncthreads();
}
offset_y += (col_low + jt*mmq_x)*(sizeof(block_q8_1_mmq)/sizeof(int));
@@ -2762,7 +2767,7 @@ static __global__ void mul_mat_q(
constexpr bool fixup = false; // All but (potentially) the last iterations write their data to dst rather than the fixup buffer.
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, nrows_x, ncols_y, stride_row_x, stride_col_dst,
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, stride_row_x, ncols_y, stride_col_dst,
tile_x_max_i, tile_y_max_j, kb0_start, kb0_stop);
kbc += blocks_per_ne00;
@@ -2787,8 +2792,8 @@ static __global__ void mul_mat_q(
// Defaults for regular matrix multiplication:
int col_low = 0;
int col_high = ncols_y;
int col_diff = ncols_y;
int col_high = ncols_dst;
int col_diff = ncols_dst;
int offset_y = wt*stride_sample_y + zt*stride_channel_y;
int offset_dst = wt*stride_sample_dst + zt*stride_channel_dst + jt*mmq_x*stride_col_dst;
@@ -2805,6 +2810,7 @@ static __global__ void mul_mat_q(
}
// The memory layout for the fixup buffer is always contiguous, therefore reset ids:
__syncthreads();
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps*WARP_SIZE) {
const int j = j0 + threadIdx.y*WARP_SIZE + threadIdx.x;
@@ -2815,6 +2821,7 @@ static __global__ void mul_mat_q(
ids_dst_shared[j] = j;
}
__syncthreads();
}
offset_y += (col_low + jt*mmq_x)*(sizeof(block_q8_1_mmq)/sizeof(int));
@@ -2827,7 +2834,7 @@ static __global__ void mul_mat_q(
constexpr bool fixup = true; // Last index writes its data to fixup buffer to avoid data races with other blocks.
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, nrows_x, ncols_y, stride_row_x, stride_col_dst,
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, stride_row_x, ncols_y, stride_col_dst,
tile_x_max_i, tile_y_max_j, kb0_start, kb0_stop);
}
@@ -2835,7 +2842,7 @@ static __global__ void mul_mat_q(
template <ggml_type type, int mmq_x, int nwarps, bool need_check>
static __global__ void mul_mat_q_stream_k_fixup(
const int32_t * ids_dst, const int32_t * expert_bounds, float * __restrict__ dst, const float * __restrict__ tmp_last_tile,
const int ncols_x, const int nrows_x, const int ncols_y, const int stride_col_dst,
const int ncols_x, const int nrows_x, const int ncols_dst, const int stride_col_dst,
const int nchannels_y, const int stride_channel_dst, const int nsamples_y, const int stride_sample_dst) {
constexpr int mmq_y = get_mmq_y_device();
constexpr int qk = ggml_cuda_type_traits<type>::qk;
@@ -2844,8 +2851,8 @@ static __global__ void mul_mat_q_stream_k_fixup(
float sum[mmq_x*mmq_y / (nwarps*WARP_SIZE)] = {0.0f};
const int ntx = (ncols_y + mmq_x - 1) / mmq_x;
const int nty = (nrows_x + mmq_y - 1) / mmq_y;
const int ntx = (ncols_dst + mmq_x - 1) / mmq_x;
const int nty = (nrows_x + mmq_y - 1) / mmq_y;
const int bidx0 = blockIdx.x;
@@ -2918,8 +2925,8 @@ static __global__ void mul_mat_q_stream_k_fixup(
const int offset_dst = wt*stride_sample_dst + zt*stride_channel_dst + jt*mmq_x*stride_col_dst + it*mmq_y;
dst += offset_dst;
const int i_max = nrows_x - it*mmq_y - 1;
const int j_max = ncols_y - jt*mmq_x - 1;
const int i_max = nrows_x - it*mmq_y - 1;
const int j_max = ncols_dst - jt*mmq_x - 1;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
@@ -2951,6 +2958,7 @@ static __global__ void mul_mat_q_stream_k_fixup(
for (int j = threadIdx.y*WARP_SIZE + threadIdx.x; j < mmq_x; j += nwarps*WARP_SIZE) {
ids_dst_shared[j] = ids_dst[col_low + j];
}
__syncthreads();
const int offset_dst = it*mmq_y;
dst += offset_dst;
@@ -2981,7 +2989,7 @@ static __global__ void mul_mat_q_stream_k_fixup(
struct mmq_args {
const char * x; ggml_type type_x; const int * y; const int32_t * ids_dst; const int32_t * expert_bounds; float * dst;
int64_t ncols_x; int64_t nrows_x; int64_t ncols_y; int64_t stride_row_x; int64_t nrows_dst;
int64_t ncols_x; int64_t nrows_x; int64_t ncols_dst; int64_t stride_row_x; int64_t ncols_y; int64_t nrows_dst;
int64_t nchannels_x; int64_t nchannels_y; int64_t stride_channel_x; int64_t stride_channel_y; int64_t stride_channel_dst;
int64_t nsamples_x; int64_t nsamples_y; int64_t stride_sample_x; int64_t stride_sample_y; int64_t stride_sample_dst;
bool use_stream_k;
@@ -3017,8 +3025,8 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
}
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
const int nty = (args.nrows_x + mmq_y - 1) / mmq_y;
const int ntx = (args.ncols_y + mmq_x - 1) / mmq_x;
const int nty = (args.nrows_x + mmq_y - 1) / mmq_y;
const int ntx = (args.ncols_dst + mmq_x - 1) / mmq_x;
const int ntzw = args.nchannels_y * args.nsamples_y;
const dim3 block_nums_xy_tiling(nty, ntx, ntzw);
@@ -3032,14 +3040,14 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
constexpr bool need_check = false;
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, nbytes_shared, stream>>>
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, nullptr,
args.ncols_x, args.nrows_x, args.ncols_y, args.stride_row_x, args.nrows_dst,
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
} else {
constexpr bool need_check = true;
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, nbytes_shared, stream>>>
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, nullptr,
args.ncols_x, args.nrows_x, args.ncols_y, args.stride_row_x, args.nrows_dst,
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
}
@@ -3060,7 +3068,7 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_stream_k, block_dims, nbytes_shared, stream>>>
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr,
args.ncols_x, args.nrows_x, args.ncols_y, args.stride_row_x, args.nrows_dst,
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
@@ -3069,14 +3077,14 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
}
mul_mat_q_stream_k_fixup<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_stream_k, block_dims, 0, stream>>>
(args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_y,
(args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_dst,
args.nrows_dst, args.nchannels_y, args.stride_channel_dst, args.nsamples_y, args.stride_sample_dst);
} else {
constexpr bool need_check = true;
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_stream_k, block_dims, nbytes_shared, stream>>>
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr,
args.ncols_x, args.nrows_x, args.ncols_y, args.stride_row_x, args.nrows_dst,
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
@@ -3085,7 +3093,7 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
}
mul_mat_q_stream_k_fixup<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_stream_k, block_dims, 0, stream>>>
(args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_y,
(args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_dst,
args.nrows_dst, args.nchannels_y, args.stride_channel_dst, args.nsamples_y, args.stride_sample_dst);
}
}

View File

@@ -513,6 +513,17 @@ void ggml_cuda_mul_mat_vec_q(
const int32_t * ids_d = ids ? (const int32_t *) ids->data : nullptr;
float * dst_d = (float *) dst->data;
// If src0 is a temporary compute buffer, clear any potential padding.
if (ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
GGML_ASSERT(!src0->view_src);
const size_t size_data = ggml_nbytes(src0);
const size_t size_alloc = ggml_backend_buffer_get_alloc_size(src0->buffer, src0);
if (size_alloc > size_data) {
CUDA_CHECK(cudaMemsetAsync((char *) src0->data + size_data, 0, size_alloc - size_data, stream));
}
}
const int64_t ne10_padded = GGML_PAD(ne10, MATRIX_ROW_PADDING);
ggml_cuda_pool_alloc<char> src1_q8_1(ctx.pool(), ne13*ne12 * ne11*ne10_padded * sizeof(block_q8_1)/QK8_1);
{

View File

@@ -163,6 +163,7 @@ void quantize_mmq_q8_1_cuda(
const float * x, const int32_t * ids, void * vy, const ggml_type type_src0,
const int64_t ne00, const int64_t s01, const int64_t s02, const int64_t s03,
const int64_t ne0, const int64_t ne1, const int64_t ne2, const int64_t ne3, cudaStream_t stream) {
GGML_ASSERT(ne00 % 4 == 0);
GGML_ASSERT(ne0 % (4*QK8_1) == 0);
const int64_t block_num_x = (ne0 + 4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ - 1) / (4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ);

View File

@@ -0,0 +1,5 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(576, 512, 1, 16);

View File

@@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 1, 8);
DECL_FATTN_MMA_F16_CASE(80, 1, 8);
DECL_FATTN_MMA_F16_CASE(96, 1, 8);
DECL_FATTN_MMA_F16_CASE(112, 1, 8);
DECL_FATTN_MMA_F16_CASE(128, 1, 8);
DECL_FATTN_MMA_F16_CASE(256, 1, 8);
DECL_FATTN_MMA_F16_CASE(64, 64, 1, 8);
DECL_FATTN_MMA_F16_CASE(80, 80, 1, 8);
DECL_FATTN_MMA_F16_CASE(96, 96, 1, 8);
DECL_FATTN_MMA_F16_CASE(112, 112, 1, 8);
DECL_FATTN_MMA_F16_CASE(128, 128, 1, 8);
DECL_FATTN_MMA_F16_CASE(256, 256, 1, 8);

View File

@@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 16, 1);
DECL_FATTN_MMA_F16_CASE(80, 16, 1);
DECL_FATTN_MMA_F16_CASE(96, 16, 1);
DECL_FATTN_MMA_F16_CASE(112, 16, 1);
DECL_FATTN_MMA_F16_CASE(128, 16, 1);
DECL_FATTN_MMA_F16_CASE(256, 16, 1);
DECL_FATTN_MMA_F16_CASE(64, 64, 16, 1);
DECL_FATTN_MMA_F16_CASE(80, 80, 16, 1);
DECL_FATTN_MMA_F16_CASE(96, 96, 16, 1);
DECL_FATTN_MMA_F16_CASE(112, 112, 16, 1);
DECL_FATTN_MMA_F16_CASE(128, 128, 16, 1);
DECL_FATTN_MMA_F16_CASE(256, 256, 16, 1);

View File

@@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 16, 2);
DECL_FATTN_MMA_F16_CASE(80, 16, 2);
DECL_FATTN_MMA_F16_CASE(96, 16, 2);
DECL_FATTN_MMA_F16_CASE(112, 16, 2);
DECL_FATTN_MMA_F16_CASE(128, 16, 2);
DECL_FATTN_MMA_F16_CASE(256, 16, 2);
DECL_FATTN_MMA_F16_CASE(64, 64, 16, 2);
DECL_FATTN_MMA_F16_CASE(80, 80, 16, 2);
DECL_FATTN_MMA_F16_CASE(96, 96, 16, 2);
DECL_FATTN_MMA_F16_CASE(112, 112, 16, 2);
DECL_FATTN_MMA_F16_CASE(128, 128, 16, 2);
DECL_FATTN_MMA_F16_CASE(256, 256, 16, 2);

View File

@@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 16, 4);
DECL_FATTN_MMA_F16_CASE(80, 16, 4);
DECL_FATTN_MMA_F16_CASE(96, 16, 4);
DECL_FATTN_MMA_F16_CASE(112, 16, 4);
DECL_FATTN_MMA_F16_CASE(128, 16, 4);
DECL_FATTN_MMA_F16_CASE(256, 16, 4);
DECL_FATTN_MMA_F16_CASE(64, 64, 16, 4);
DECL_FATTN_MMA_F16_CASE(80, 80, 16, 4);
DECL_FATTN_MMA_F16_CASE(96, 96, 16, 4);
DECL_FATTN_MMA_F16_CASE(112, 112, 16, 4);
DECL_FATTN_MMA_F16_CASE(128, 128, 16, 4);
DECL_FATTN_MMA_F16_CASE(256, 256, 16, 4);

View File

@@ -0,0 +1,5 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(576, 512, 2, 16);

View File

@@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 2, 4);
DECL_FATTN_MMA_F16_CASE(80, 2, 4);
DECL_FATTN_MMA_F16_CASE(96, 2, 4);
DECL_FATTN_MMA_F16_CASE(112, 2, 4);
DECL_FATTN_MMA_F16_CASE(128, 2, 4);
DECL_FATTN_MMA_F16_CASE(256, 2, 4);
DECL_FATTN_MMA_F16_CASE(64, 64, 2, 4);
DECL_FATTN_MMA_F16_CASE(80, 80, 2, 4);
DECL_FATTN_MMA_F16_CASE(96, 96, 2, 4);
DECL_FATTN_MMA_F16_CASE(112, 112, 2, 4);
DECL_FATTN_MMA_F16_CASE(128, 128, 2, 4);
DECL_FATTN_MMA_F16_CASE(256, 256, 2, 4);

View File

@@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 2, 8);
DECL_FATTN_MMA_F16_CASE(80, 2, 8);
DECL_FATTN_MMA_F16_CASE(96, 2, 8);
DECL_FATTN_MMA_F16_CASE(112, 2, 8);
DECL_FATTN_MMA_F16_CASE(128, 2, 8);
DECL_FATTN_MMA_F16_CASE(256, 2, 8);
DECL_FATTN_MMA_F16_CASE(64, 64, 2, 8);
DECL_FATTN_MMA_F16_CASE(80, 80, 2, 8);
DECL_FATTN_MMA_F16_CASE(96, 96, 2, 8);
DECL_FATTN_MMA_F16_CASE(112, 112, 2, 8);
DECL_FATTN_MMA_F16_CASE(128, 128, 2, 8);
DECL_FATTN_MMA_F16_CASE(256, 256, 2, 8);

View File

@@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 32, 1);
DECL_FATTN_MMA_F16_CASE(80, 32, 1);
DECL_FATTN_MMA_F16_CASE(96, 32, 1);
DECL_FATTN_MMA_F16_CASE(112, 32, 1);
DECL_FATTN_MMA_F16_CASE(128, 32, 1);
DECL_FATTN_MMA_F16_CASE(256, 32, 1);
DECL_FATTN_MMA_F16_CASE(64, 64, 32, 1);
DECL_FATTN_MMA_F16_CASE(80, 80, 32, 1);
DECL_FATTN_MMA_F16_CASE(96, 96, 32, 1);
DECL_FATTN_MMA_F16_CASE(112, 112, 32, 1);
DECL_FATTN_MMA_F16_CASE(128, 128, 32, 1);
DECL_FATTN_MMA_F16_CASE(256, 256, 32, 1);

View File

@@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 32, 2);
DECL_FATTN_MMA_F16_CASE(80, 32, 2);
DECL_FATTN_MMA_F16_CASE(96, 32, 2);
DECL_FATTN_MMA_F16_CASE(112, 32, 2);
DECL_FATTN_MMA_F16_CASE(128, 32, 2);
DECL_FATTN_MMA_F16_CASE(256, 32, 2);
DECL_FATTN_MMA_F16_CASE(64, 64, 32, 2);
DECL_FATTN_MMA_F16_CASE(80, 80, 32, 2);
DECL_FATTN_MMA_F16_CASE(96, 96, 32, 2);
DECL_FATTN_MMA_F16_CASE(112, 112, 32, 2);
DECL_FATTN_MMA_F16_CASE(128, 128, 32, 2);
DECL_FATTN_MMA_F16_CASE(256, 256, 32, 2);

View File

@@ -0,0 +1,5 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(576, 512, 4, 16);

View File

@@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 4, 2);
DECL_FATTN_MMA_F16_CASE(80, 4, 2);
DECL_FATTN_MMA_F16_CASE(96, 4, 2);
DECL_FATTN_MMA_F16_CASE(112, 4, 2);
DECL_FATTN_MMA_F16_CASE(128, 4, 2);
DECL_FATTN_MMA_F16_CASE(256, 4, 2);
DECL_FATTN_MMA_F16_CASE(64, 64, 4, 2);
DECL_FATTN_MMA_F16_CASE(80, 80, 4, 2);
DECL_FATTN_MMA_F16_CASE(96, 96, 4, 2);
DECL_FATTN_MMA_F16_CASE(112, 112, 4, 2);
DECL_FATTN_MMA_F16_CASE(128, 128, 4, 2);
DECL_FATTN_MMA_F16_CASE(256, 256, 4, 2);

View File

@@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 4, 4);
DECL_FATTN_MMA_F16_CASE(80, 4, 4);
DECL_FATTN_MMA_F16_CASE(96, 4, 4);
DECL_FATTN_MMA_F16_CASE(112, 4, 4);
DECL_FATTN_MMA_F16_CASE(128, 4, 4);
DECL_FATTN_MMA_F16_CASE(256, 4, 4);
DECL_FATTN_MMA_F16_CASE(64, 64, 4, 4);
DECL_FATTN_MMA_F16_CASE(80, 80, 4, 4);
DECL_FATTN_MMA_F16_CASE(96, 96, 4, 4);
DECL_FATTN_MMA_F16_CASE(112, 112, 4, 4);
DECL_FATTN_MMA_F16_CASE(128, 128, 4, 4);
DECL_FATTN_MMA_F16_CASE(256, 256, 4, 4);

View File

@@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 4, 8);
DECL_FATTN_MMA_F16_CASE(80, 4, 8);
DECL_FATTN_MMA_F16_CASE(96, 4, 8);
DECL_FATTN_MMA_F16_CASE(112, 4, 8);
DECL_FATTN_MMA_F16_CASE(128, 4, 8);
DECL_FATTN_MMA_F16_CASE(256, 4, 8);
DECL_FATTN_MMA_F16_CASE(64, 64, 4, 8);
DECL_FATTN_MMA_F16_CASE(80, 80, 4, 8);
DECL_FATTN_MMA_F16_CASE(96, 96, 4, 8);
DECL_FATTN_MMA_F16_CASE(112, 112, 4, 8);
DECL_FATTN_MMA_F16_CASE(128, 128, 4, 8);
DECL_FATTN_MMA_F16_CASE(256, 256, 4, 8);

View File

@@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 64, 1);
DECL_FATTN_MMA_F16_CASE(80, 64, 1);
DECL_FATTN_MMA_F16_CASE(96, 64, 1);
DECL_FATTN_MMA_F16_CASE(112, 64, 1);
DECL_FATTN_MMA_F16_CASE(128, 64, 1);
DECL_FATTN_MMA_F16_CASE(256, 64, 1);
DECL_FATTN_MMA_F16_CASE(64, 64, 64, 1);
DECL_FATTN_MMA_F16_CASE(80, 80, 64, 1);
DECL_FATTN_MMA_F16_CASE(96, 96, 64, 1);
DECL_FATTN_MMA_F16_CASE(112, 112, 64, 1);
DECL_FATTN_MMA_F16_CASE(128, 128, 64, 1);
DECL_FATTN_MMA_F16_CASE(256, 256, 64, 1);

View File

@@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 8, 1);
DECL_FATTN_MMA_F16_CASE(80, 8, 1);
DECL_FATTN_MMA_F16_CASE(96, 8, 1);
DECL_FATTN_MMA_F16_CASE(112, 8, 1);
DECL_FATTN_MMA_F16_CASE(128, 8, 1);
DECL_FATTN_MMA_F16_CASE(256, 8, 1);
DECL_FATTN_MMA_F16_CASE(64, 64, 8, 1);
DECL_FATTN_MMA_F16_CASE(80, 80, 8, 1);
DECL_FATTN_MMA_F16_CASE(96, 96, 8, 1);
DECL_FATTN_MMA_F16_CASE(112, 112, 8, 1);
DECL_FATTN_MMA_F16_CASE(128, 128, 8, 1);
DECL_FATTN_MMA_F16_CASE(256, 256, 8, 1);

View File

@@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 8, 2);
DECL_FATTN_MMA_F16_CASE(80, 8, 2);
DECL_FATTN_MMA_F16_CASE(96, 8, 2);
DECL_FATTN_MMA_F16_CASE(112, 8, 2);
DECL_FATTN_MMA_F16_CASE(128, 8, 2);
DECL_FATTN_MMA_F16_CASE(256, 8, 2);
DECL_FATTN_MMA_F16_CASE(64, 64, 8, 2);
DECL_FATTN_MMA_F16_CASE(80, 80, 8, 2);
DECL_FATTN_MMA_F16_CASE(96, 96, 8, 2);
DECL_FATTN_MMA_F16_CASE(112, 112, 8, 2);
DECL_FATTN_MMA_F16_CASE(128, 128, 8, 2);
DECL_FATTN_MMA_F16_CASE(256, 256, 8, 2);

View File

@@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 8, 4);
DECL_FATTN_MMA_F16_CASE(80, 8, 4);
DECL_FATTN_MMA_F16_CASE(96, 8, 4);
DECL_FATTN_MMA_F16_CASE(112, 8, 4);
DECL_FATTN_MMA_F16_CASE(128, 8, 4);
DECL_FATTN_MMA_F16_CASE(256, 8, 4);
DECL_FATTN_MMA_F16_CASE(64, 64, 8, 4);
DECL_FATTN_MMA_F16_CASE(80, 80, 8, 4);
DECL_FATTN_MMA_F16_CASE(96, 96, 8, 4);
DECL_FATTN_MMA_F16_CASE(112, 112, 8, 4);
DECL_FATTN_MMA_F16_CASE(128, 128, 8, 4);
DECL_FATTN_MMA_F16_CASE(256, 256, 8, 4);

View File

@@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 8, 8);
DECL_FATTN_MMA_F16_CASE(80, 8, 8);
DECL_FATTN_MMA_F16_CASE(96, 8, 8);
DECL_FATTN_MMA_F16_CASE(112, 8, 8);
DECL_FATTN_MMA_F16_CASE(128, 8, 8);
DECL_FATTN_MMA_F16_CASE(256, 8, 8);
DECL_FATTN_MMA_F16_CASE(64, 64, 8, 8);
DECL_FATTN_MMA_F16_CASE(80, 80, 8, 8);
DECL_FATTN_MMA_F16_CASE(96, 96, 8, 8);
DECL_FATTN_MMA_F16_CASE(112, 112, 8, 8);
DECL_FATTN_MMA_F16_CASE(128, 128, 8, 8);
DECL_FATTN_MMA_F16_CASE(256, 256, 8, 8);

View File

@@ -18,7 +18,7 @@ SOURCE_FATTN_MMA_START = """// This file has been autogenerated by generate_cu_f
"""
SOURCE_FATTN_MMA_CASE = "DECL_FATTN_MMA_F16_CASE({head_size}, {ncols1}, {ncols2});\n"
SOURCE_FATTN_MMA_CASE = "DECL_FATTN_MMA_F16_CASE({head_size_kq}, {head_size_v}, {ncols1}, {ncols2});\n"
TYPES_MMQ = [
"GGML_TYPE_Q4_0", "GGML_TYPE_Q4_1", "GGML_TYPE_Q5_0", "GGML_TYPE_Q5_1", "GGML_TYPE_Q8_0",
@@ -57,18 +57,21 @@ for vkq_size in [16, 32]:
with open(f"fattn-vec-f{vkq_size}-instance-hs{head_size}-{get_short_name(type_k)}-{get_short_name(type_v)}.cu", "w") as f:
f.write(SOURCE_FATTN_VEC.format(vkq_size=vkq_size, head_size=head_size, type_k=type_k, type_v=type_v))
for ncols in [8, 16, 32, 64, 128]:
for ncols2 in [1, 2, 4, 8]:
for ncols in [8, 16, 32, 64]:
for ncols2 in [1, 2, 4, 8, 16]:
if ncols2 > ncols:
continue
ncols1 = ncols // ncols2
if ncols == 128:
continue # Too much register pressure.
with open(f"fattn-mma-f16-instance-ncols1_{ncols1}-ncols2_{ncols2}.cu", "w") as f:
f.write(SOURCE_FATTN_MMA_START)
for head_size in [64, 80, 96, 112, 128, 256]:
if ncols == 128 and head_size == 256:
continue # Needs too much shared memory.
f.write(SOURCE_FATTN_MMA_CASE.format(ncols1=ncols1, ncols2=ncols2, head_size=head_size))
for head_size_kq in [64, 80, 96, 112, 128, 256, 576]:
if head_size_kq != 576 and ncols2 == 16:
continue
if head_size_kq == 576 and ncols2 != 16:
continue
head_size_v = head_size_kq if head_size_kq != 576 else 512
f.write(SOURCE_FATTN_MMA_CASE.format(ncols1=ncols1, ncols2=ncols2, head_size_kq=head_size_kq, head_size_v=head_size_v))
for type in TYPES_MMQ:
with open(f"mmq-instance-{get_short_name(type)}.cu", "w") as f:

View File

@@ -299,21 +299,42 @@ typedef struct {
} ggml_metal_kargs_mul_mv_ext;
typedef struct {
int32_t nei0;
int32_t nei1;
uint64_t nbi1;
int32_t ne10;
int32_t ne11; // n_expert_used (bcast)
uint64_t nb11;
uint64_t nb12;
int32_t neh11; // n_tokens
uint64_t nbh11;
int32_t ne20; // n_expert_used
uint64_t nb21;
} ggml_metal_kargs_mul_mm_id_map0;
typedef struct {
int32_t ne20; // n_expert_used
int32_t neh0;
int32_t neh1;
uint64_t nbh1;
uint64_t nbh2;
int32_t ne0;
uint64_t nb1;
uint64_t nb2;
} ggml_metal_kargs_mul_mm_id_map1;
typedef struct {
int32_t ne00;
int32_t ne02;
uint64_t nb01;
uint64_t nb02;
int32_t ne11;
int32_t ne12;
int32_t ne13;
uint64_t nb10;
uint64_t nb11;
uint64_t nb12;
int32_t ne0;
int32_t ne1;
uint64_t nb03;
int32_t neh12;
uint64_t nbh10;
uint64_t nbh11;
uint64_t nbh12;
uint64_t nbh13;
int32_t neh0;
int32_t neh1;
int16_t r2;
int16_t r3;
} ggml_metal_kargs_mul_mm_id;
typedef struct {

Some files were not shown because too many files have changed in this diff Show More