Compare commits

...

24 Commits
b5284 ... b5308

Author SHA1 Message Date
Alberto Cabrera Pérez
8733e0cf6e sycl: addressing non-contiguous src1 mul_mats (nc and batched) (#13343)
* sycl: fixed non-contiguous src1 mul_mats (nc and batched)

* Fixed wrong static_cast inside kernel
2025-05-08 10:08:01 +01:00
Diego Devesa
814f795e06 docker : disable arm64 and intel images (#13356) 2025-05-07 16:36:33 +02:00
Georgi Gerganov
d879433824 sync : ggml
ggml-ci
2025-05-07 17:28:36 +03:00
Daniel Bevenius
13b0a04597 whisper: remove MSVC warnings pragmas (whisper/3090)
* ggml : remove MSVC warnings pragmas

This commit removes the MSVC-specific pragmas as these are now handled
in ggml/CMakeLists.txt.

* whisper : remove MSVC warning pragmas

This commit removes the MSVC-specific pragmas. These are now handled in
the ggml/CMakeLists.txt file.
2025-05-07 17:28:36 +03:00
Jared Tweed
bba9d945c1 cmake : removed stdc++fs (whisper/3097)
* removed stdc++fs

* kept line, but removed stdc++fs
2025-05-07 17:28:36 +03:00
Sigbjørn Skjæret
bc4e1128f7 llama : deci : support ffn-free with attention (#13296) 2025-05-07 12:49:27 +02:00
Ycros
39e73ae0d6 common : Add a warning when we can't match samplers from a string or char. (#13330) 2025-05-07 11:23:28 +03:00
R0CKSTAR
1f73301b63 cuda : remove nrows_x in mul_mat_q_process_tile (#13325)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-05-07 09:48:23 +02:00
Georgi Gerganov
4773d7a02f examples : remove infill (#13283)
ggml-ci
2025-05-07 10:28:02 +03:00
piDack
6c7fd67b64 llama : support tie embedding for chatglm models (#13328) 2025-05-07 09:23:11 +02:00
Johannes Gäßler
141a908a59 CUDA: mix virt/real CUDA archs for GGML_NATIVE=OFF (#13135) 2025-05-06 23:35:51 +02:00
Xuan-Son Nguyen
32916a4907 clip : refactor graph builder (#13321)
* mtmd : refactor graph builder

* fix qwen2vl

* clean up siglip cgraph

* pixtral migrated

* move minicpmv to a dedicated build function

* move max_feature_layer to build_llava

* use build_attn for minicpm resampler

* fix windows build

* add comment for batch_size

* also support tinygemma3 test model

* qwen2vl does not use RMS norm

* fix qwen2vl norm (2)
2025-05-06 22:40:24 +02:00
DocShotgun
ffc727203a sampling : make top_n_sigma no-op at <=0 or a single candidate (#13345) 2025-05-06 22:36:24 +02:00
oobabooga
91a86a6f35 sampling : don't consider -infinity values in top_n_sigma (#13344) 2025-05-06 20:24:15 +02:00
Diego Devesa
f4ed10b69c cmake : remove arm64 msvc presets (#13342) 2025-05-06 20:15:31 +02:00
Akarshan Biswas
1e333d5bba SYCL: Disable reorder optimize by default and stop setting tensor extras when optimize is disabled (#13254)
* SYCL: Do not set tensor extras when reorder optimize is disabled

* SYCL: Disable reorder optimize by default
2025-05-06 20:27:06 +05:30
Xuan-Son Nguyen
2f54e348ad llama : fix build_ffn without gate (#13336)
* llama : fix build_ffn without gate

* fix build on windows

* Revert "fix build on windows"

This reverts commit fc420d3c7e.
2025-05-06 14:25:40 +02:00
Johannes Gäßler
2356fb1d53 CUDA: fix bad asserts for partial offload (#13337) 2025-05-06 13:58:51 +02:00
Sigbjørn Skjæret
764b85627b convert : qwen2/3moe : set yarn metadata if present (#13331)
* set yarn metadata if present

* add comment about enabling YaRN

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>

---------

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>
2025-05-06 11:12:06 +02:00
Johannes Gäßler
15a28ec8c7 CUDA: fix --split-mode row for MMQ (#13323) 2025-05-06 08:36:46 +02:00
compilade
a7366faa5b gguf-py : avoid requiring pyside6 for other scripts (#13036)
- gguf-py : remove gguf-py/gguf/scripts/__init__.py because it's not needed

Implicit namespaces are supported since Python 3.3 (https://peps.python.org/pep-0420/),
and the entrypoints in pyproject.toml can directly refer to the main functions.
2025-05-05 22:27:31 -04:00
Johannes Gäßler
9070365020 CUDA: fix logic for clearing padding with -ngl 0 (#13320) 2025-05-05 22:32:13 +02:00
oobabooga
233461f812 sampling : Integrate Top-nσ into main sampling chain (and add it to the server) (#13264)
* sampling: add Top-nσ sampler to `llama-server` and sampler ordering

* revert: sampler ordering

* revert: VS' crappy auto-formatting

* revert: VS' crappy auto-formatting pt.2

* revert: my crappy eye sight...

* sampling: add XTC to Top-nσ sampler chain

* sampling: add Dyna. Temp. to Top-nσ sampler chain

* sampling: actually remove Top-nσ from sampler(oops)

* Integrate top_n_sigma into main sampler chain

* Define COMMON_SAMPLER_TYPE_TOP_N_SIGMA

* Formatting

* Lint

* Exit early in the sampler if nsigma < 0

---------

Co-authored-by: CasualAutopsy <casual_autopsy@outlook.com>
2025-05-05 22:12:19 +02:00
igardev
b34c859146 server : Webui - change setText command from parent window to also send the message. (#13309)
* setText command from parent window for llama-vscode now sends the message automatically.

* Upgrade packages versions to fix vulnerabilities with "npm audit fix" command.

* Fix code formatting.

* Add index.html.gz changes.

* Revert "Upgrade packages versions to fix vulnerabilities with "npm audit fix" command."

This reverts commit 67687b7fda.

* easier approach

* add setTimeout

---------

Co-authored-by: igardev <ivailo.gardev@akros.ch>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-05-05 16:03:31 +02:00
49 changed files with 1721 additions and 2276 deletions

View File

@@ -36,10 +36,14 @@ jobs:
matrix:
config:
# Multi-stage build
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: false }
# Note: the arm64 images are failing, which prevents the amd64 images from being built
# https://github.com/ggml-org/llama.cpp/issues/11888
#- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true }
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
# Note: the intel images are failing due to an out of disk space error
# - { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
# Note: the rocm images are failing due to a compiler error and are disabled until this is fixed to allow the workflow to complete
#- {tag: "rocm", dockerfile: ".devops/rocm.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: true }

View File

@@ -38,15 +38,6 @@
}
},
{
"name": "arm64-windows-msvc", "hidden": true,
"architecture": { "value": "arm64", "strategy": "external" },
"toolset": { "value": "host=x64", "strategy": "external" },
"cacheVariables": {
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-windows-msvc.cmake"
}
},
{
"name": "arm64-windows-llvm", "hidden": true,
"architecture": { "value": "arm64", "strategy": "external" },
@@ -73,10 +64,6 @@
{ "name": "arm64-apple-clang-release", "inherits": [ "base", "arm64-apple-clang", "reldbg" ] },
{ "name": "arm64-apple-clang+static-release", "inherits": [ "base", "arm64-apple-clang", "reldbg", "static" ] },
{ "name": "arm64-windows-msvc-debug", "inherits": [ "base", "arm64-windows-msvc", "debug" ] },
{ "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg" ] },
{ "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg", "static" ] },
{ "name": "x64-windows-llvm-debug", "inherits": [ "base", "x64-windows-llvm", "debug" ] },
{ "name": "x64-windows-llvm-release", "inherits": [ "base", "x64-windows-llvm", "release" ] },
{ "name": "x64-windows-llvm-reldbg", "inherits": [ "base", "x64-windows-llvm", "reldbg" ] },

View File

@@ -1187,11 +1187,6 @@ llama-cli: tools/main/main.cpp \
@echo '==== Run ./llama-cli -h for help. ===='
@echo
llama-infill: examples/infill/infill.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-run: tools/run/run.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)

View File

@@ -1283,7 +1283,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params) {
params.use_color = true;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
add_opt(common_arg(
{"-t", "--threads"}, "N",
string_format("number of threads to use during generation (default: %d)", params.cpuparams.n_threads),
@@ -1416,7 +1416,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
add_opt(common_arg(
{"-n", "--predict", "--n-predict"}, "N",
string_format(
ex == LLAMA_EXAMPLE_MAIN || ex == LLAMA_EXAMPLE_INFILL
ex == LLAMA_EXAMPLE_MAIN
? "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)"
: "number of tokens to predict (default: %d, -1 = infinity)",
params.n_predict),
@@ -1655,7 +1655,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.input_prefix = value;
params.enable_chat_template = false;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(common_arg(
{"--in-suffix"}, "STRING",
"string to suffix after user inputs with (default: empty)",
@@ -1663,7 +1663,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.input_suffix = value;
params.enable_chat_template = false;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(common_arg(
{"--no-warmup"},
"skip warming up the model with an empty run",
@@ -1680,7 +1680,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params) {
params.spm_infill = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_INFILL}));
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--samplers"}, "SAMPLERS",
string_format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()),
@@ -2892,7 +2892,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params) {
params.simple_io = true;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(common_arg(
{"--positive-file"}, "FNAME",
string_format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()),

View File

@@ -66,7 +66,6 @@ enum llama_example {
LLAMA_EXAMPLE_COMMON,
LLAMA_EXAMPLE_SPECULATIVE,
LLAMA_EXAMPLE_MAIN,
LLAMA_EXAMPLE_INFILL,
LLAMA_EXAMPLE_EMBEDDING,
LLAMA_EXAMPLE_PERPLEXITY,
LLAMA_EXAMPLE_RETRIEVAL,
@@ -96,6 +95,7 @@ enum common_sampler_type {
COMMON_SAMPLER_TYPE_XTC = 8,
COMMON_SAMPLER_TYPE_INFILL = 9,
COMMON_SAMPLER_TYPE_PENALTIES = 10,
COMMON_SAMPLER_TYPE_TOP_N_SIGMA = 11,
};
// dimensionality reduction methods, used by cvector-generator
@@ -161,6 +161,7 @@ struct common_params_sampling {
std::vector<enum common_sampler_type> samplers = {
COMMON_SAMPLER_TYPE_PENALTIES,
COMMON_SAMPLER_TYPE_DRY,
COMMON_SAMPLER_TYPE_TOP_N_SIGMA,
COMMON_SAMPLER_TYPE_TOP_K,
COMMON_SAMPLER_TYPE_TYPICAL_P,
COMMON_SAMPLER_TYPE_TOP_P,

View File

@@ -1,6 +1,7 @@
#include "sampling.h"
#include "common.h"
#include "log.h"
#include <cmath>
#include <unordered_map>
@@ -229,51 +230,48 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
params.logit_bias.data()));
if (params.mirostat == 0) {
if (params.top_n_sigma >= 0) {
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
llama_sampler_chain_add(result->chain, llama_sampler_init_temp (params.temp));
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
} else {
for (const auto & cnstr : params.samplers) {
switch (cnstr) {
case COMMON_SAMPLER_TYPE_DRY:
{
std::vector<const char *> c_breakers;
c_breakers.reserve(params.dry_sequence_breakers.size());
for (const auto & str : params.dry_sequence_breakers) {
c_breakers.push_back(str.c_str());
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
for (const auto & cnstr : params.samplers) {
switch (cnstr) {
case COMMON_SAMPLER_TYPE_DRY:
{
std::vector<const char *> c_breakers;
c_breakers.reserve(params.dry_sequence_breakers.size());
for (const auto & str : params.dry_sequence_breakers) {
c_breakers.push_back(str.c_str());
}
break;
case COMMON_SAMPLER_TYPE_TOP_K:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
break;
case COMMON_SAMPLER_TYPE_TOP_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_MIN_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_XTC:
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
break;
case COMMON_SAMPLER_TYPE_TYPICAL_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TEMPERATURE:
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
break;
case COMMON_SAMPLER_TYPE_INFILL:
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
break;
case COMMON_SAMPLER_TYPE_PENALTIES:
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
break;
default:
GGML_ASSERT(false && "unknown sampler type");
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
}
break;
case COMMON_SAMPLER_TYPE_TOP_K:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
break;
case COMMON_SAMPLER_TYPE_TOP_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
break;
case COMMON_SAMPLER_TYPE_MIN_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_XTC:
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
break;
case COMMON_SAMPLER_TYPE_TYPICAL_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TEMPERATURE:
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
break;
case COMMON_SAMPLER_TYPE_INFILL:
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
break;
case COMMON_SAMPLER_TYPE_PENALTIES:
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties (params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
break;
default:
GGML_ASSERT(false && "unknown sampler type");
}
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
@@ -475,6 +473,7 @@ char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
case COMMON_SAMPLER_TYPE_TOP_K: return 'k';
case COMMON_SAMPLER_TYPE_TYPICAL_P: return 'y';
case COMMON_SAMPLER_TYPE_TOP_P: return 'p';
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return 's';
case COMMON_SAMPLER_TYPE_MIN_P: return 'm';
case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
case COMMON_SAMPLER_TYPE_XTC: return 'x';
@@ -490,6 +489,7 @@ std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
case COMMON_SAMPLER_TYPE_TOP_K: return "top_k";
case COMMON_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
case COMMON_SAMPLER_TYPE_TOP_P: return "top_p";
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return "top_n_sigma";
case COMMON_SAMPLER_TYPE_MIN_P: return "min_p";
case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
case COMMON_SAMPLER_TYPE_XTC: return "xtc";
@@ -504,6 +504,7 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
{ "dry", COMMON_SAMPLER_TYPE_DRY },
{ "top_k", COMMON_SAMPLER_TYPE_TOP_K },
{ "top_p", COMMON_SAMPLER_TYPE_TOP_P },
{ "top_n_sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
{ "typ_p", COMMON_SAMPLER_TYPE_TYPICAL_P },
{ "min_p", COMMON_SAMPLER_TYPE_MIN_P },
{ "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
@@ -517,6 +518,7 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
std::unordered_map<std::string, common_sampler_type> sampler_alt_name_map {
{ "top-k", COMMON_SAMPLER_TYPE_TOP_K },
{ "top-p", COMMON_SAMPLER_TYPE_TOP_P },
{ "top-n-sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
{ "nucleus", COMMON_SAMPLER_TYPE_TOP_P },
{ "typical-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
{ "typical", COMMON_SAMPLER_TYPE_TYPICAL_P },
@@ -533,14 +535,16 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
auto sampler = sampler_canonical_name_map.find(name);
if (sampler != sampler_canonical_name_map.end()) {
samplers.push_back(sampler->second);
} else {
if (allow_alt_names) {
sampler = sampler_alt_name_map.find(name);
if (sampler != sampler_alt_name_map.end()) {
samplers.push_back(sampler->second);
}
continue;
}
if (allow_alt_names) {
sampler = sampler_alt_name_map.find(name);
if (sampler != sampler_alt_name_map.end()) {
samplers.push_back(sampler->second);
continue;
}
}
LOG_WRN("%s: unable to match sampler by name '%s'\n", __func__, name.c_str());
}
return samplers;
@@ -552,6 +556,7 @@ std::vector<common_sampler_type> common_sampler_types_from_chars(const std::stri
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K), COMMON_SAMPLER_TYPE_TOP_K },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P), COMMON_SAMPLER_TYPE_TYPICAL_P },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P), COMMON_SAMPLER_TYPE_TOP_P },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_N_SIGMA), COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P), COMMON_SAMPLER_TYPE_MIN_P },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC), COMMON_SAMPLER_TYPE_XTC },
@@ -566,6 +571,8 @@ std::vector<common_sampler_type> common_sampler_types_from_chars(const std::stri
const auto sampler = sampler_name_map.find(c);
if (sampler != sampler_name_map.end()) {
samplers.push_back(sampler->second);
} else {
LOG_WRN("%s: unable to match sampler by char '%c'\n", __func__, c);
}
}

View File

@@ -2761,6 +2761,13 @@ class Qwen2MoeModel(TextModel):
if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
# YaRN is not enabled by default
# To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "yarn":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
_experts: list[dict[str, Tensor]] | None = None
@@ -3908,6 +3915,16 @@ class Gemma3VisionModel(VisionModel):
# default values below are taken from HF tranformers code
self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
self.gguf_writer.add_vision_use_gelu(True)
# calculate proj_scale_factor (used by tinygemma3 test model)
image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
n_per_side = int(image_seq_length ** 0.5)
image_size = self.hparams["image_size"]
patch_size = self.hparams["patch_size"]
proj_scale_factor = (image_size // patch_size) // n_per_side
if proj_scale_factor > 0 and proj_scale_factor != 4:
# we only need to write this if it's not the default value
# in this case, we are converting a test model
self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
def tensor_force_quant(self, name, new_name, bid, n_dims):
del bid, new_name, n_dims # unused
@@ -3921,6 +3938,9 @@ class Gemma3VisionModel(VisionModel):
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
if "vision_model.head." in name:
return [] # skip redundant tensors for tinygemma3
if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
# process vision tensors

View File

@@ -21,7 +21,6 @@ else()
add_subdirectory(gguf-hash)
add_subdirectory(gguf)
add_subdirectory(gritlm)
add_subdirectory(infill)
add_subdirectory(lookahead)
add_subdirectory(lookup)
add_subdirectory(parallel)

View File

@@ -1,5 +0,0 @@
set(TARGET llama-infill)
add_executable(${TARGET} infill.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -1,47 +0,0 @@
# llama.cpp/example/infill
This example shows how to use the infill mode with Code Llama models supporting infill mode.
Currently the 7B and 13B models support infill mode.
Infill supports most of the options available in the main example.
For further information have a look at the main README.md in llama.cpp/example/main/README.md
## Common Options
In this section, we cover the most commonly used options for running the `infill` program with the LLaMA models:
- `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.bin`).
- `-i, --interactive`: Run the program in interactive mode, allowing you to provide input directly and receive real-time responses.
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text. Adjusting this value can influence the length of the generated text.
- `-c N, --ctx-size N`: Set the size of the prompt context. The default is 4096, but if a LLaMA model was built with a longer context, increasing this value will provide better results for longer input/inference.
- `--spm-infill`: Use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this.
## Input Prompts
The `infill` program provides several ways to interact with the LLaMA models using input prompts:
- `--in-prefix PROMPT_BEFORE_CURSOR`: Provide the prefix directly as a command-line option.
- `--in-suffix PROMPT_AFTER_CURSOR`: Provide the suffix directly as a command-line option.
- `--interactive-first`: Run the program in interactive mode and wait for input right away. (More on this below.)
## Interaction
The `infill` program offers a seamless way to interact with LLaMA models, allowing users to receive real-time infill suggestions. The interactive mode can be triggered using `--interactive`, and `--interactive-first`
### Interaction Options
- `-i, --interactive`: Run the program in interactive mode, allowing users to get real time code suggestions from model.
- `--interactive-first`: Run the program in interactive mode and immediately wait for user input before starting the text generation.
- `--color`: Enable colorized output to differentiate visually distinguishing between prompts, user input, and generated text.
### Example
Download a model that supports infill, for example CodeLlama:
```console
scripts/hf.sh --repo TheBloke/CodeLlama-13B-GGUF --file codellama-13b.Q5_K_S.gguf --outdir models
```
```bash
./llama-infill -t 10 -ngl 0 -m models/codellama-13b.Q5_K_S.gguf -c 4096 --temp 0.7 --repeat_penalty 1.1 -n 20 --in-prefix "def helloworld():\n print(\"hell" --in-suffix "\n print(\"goodbye world\")\n "
```

View File

@@ -1,590 +0,0 @@
#include "arg.h"
#include "common.h"
#include "console.h"
#include "sampling.h"
#include "log.h"
#include "llama.h"
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
#include <signal.h>
#include <unistd.h>
#elif defined (_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <signal.h>
#endif
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
static llama_context ** g_ctx;
static llama_model ** g_model;
static common_sampler ** g_smpl;
static common_params * g_params;
static std::vector<llama_token> * g_input_tokens;
static std::ostringstream * g_output_ss;
static std::vector<llama_token> * g_output_tokens;
static bool is_interacting = false;
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
static void sigint_handler(int signo) {
if (signo == SIGINT) {
if (!is_interacting) {
is_interacting = true;
} else {
console::cleanup();
LOG("\n");
common_perf_print(*g_ctx, *g_smpl);
// make sure all logs are flushed
LOG("Interrupted by user\n");
common_log_pause(common_log_main());
_exit(130);
}
}
}
#endif
int main(int argc, char ** argv) {
common_params params;
g_params = &params;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_INFILL)) {
return 1;
}
common_init();
auto & sparams = params.sampling;
console::init(params.simple_io, params.use_color);
atexit([]() { console::cleanup(); });
if (params.logits_all) {
LOG_ERR("\n************\n");
LOG_ERR("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
LOG_ERR("************\n\n");
return 0;
}
if (params.embedding) {
LOG_ERR("\n************\n");
LOG_ERR("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
LOG_ERR("************\n\n");
return 0;
}
if (params.n_ctx != 0 && params.n_ctx < 8) {
LOG_WRN("%s: minimum context size is 8, using minimum size.\n", __func__);
params.n_ctx = 8;
}
if (!params.interactive_first && (params.input_prefix.empty() && params.input_suffix.empty())) {
LOG_ERR("\n************\n");
LOG_ERR("%s: please use '--interactive_first' or specify '--in_prefix' and/or '--in_suffix'\n", __func__);
LOG_ERR("************\n\n");
return 0;
}
if (params.rope_freq_base != 0.0) {
LOG_WRN("%s: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
}
if (params.rope_freq_scale != 0.0) {
LOG_WRN("%s: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
}
LOG_INF("%s: llama backend init\n", __func__);
llama_backend_init();
llama_numa_init(params.numa);
llama_model * model = nullptr;
llama_context * ctx = nullptr;
common_sampler * smpl = nullptr;
g_model = &model;
g_ctx = &ctx;
g_smpl = &smpl;
// load the model and apply lora adapter, if any
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
common_init_result llama_init = common_init_from_params(params);
model = llama_init.model.get();
ctx = llama_init.context.get();
if (model == NULL) {
LOG_ERR("%s: unable to load model\n", __func__);
return 1;
}
const llama_vocab * vocab = llama_model_get_vocab(model);
const int n_ctx_train = llama_model_n_ctx_train(model);
const int n_ctx = llama_n_ctx(ctx);
LOG_DBG("n_ctx: %d\n", n_ctx);
if (n_ctx > n_ctx_train) {
LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx);
}
// print system information
{
LOG_INF("\n");
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
}
const bool add_bos = llama_vocab_get_add_bos(vocab);
GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
std::vector<llama_token> embd_inp;
std::vector<llama_token> embd_end;
std::vector<llama_token> inp_pfx = common_tokenize(ctx, params.input_prefix, false);
std::vector<llama_token> inp_sfx = common_tokenize(ctx, params.input_suffix, false);
GGML_ASSERT(llama_vocab_fim_pre(vocab) >= 0);
GGML_ASSERT(llama_vocab_fim_suf(vocab) >= 0);
inp_pfx.insert(inp_pfx.begin(), llama_vocab_fim_pre(vocab));
inp_sfx.insert(inp_sfx.begin(), llama_vocab_fim_suf(vocab));
embd_inp = params.spm_infill ? inp_sfx : inp_pfx;
embd_end = params.spm_infill ? inp_pfx : inp_sfx;
if (add_bos) {
embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab));
}
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
const llama_token middle_token = llama_vocab_fim_mid(vocab);
if (middle_token >= 0) {
embd_inp.push_back(middle_token);
}
LOG_DBG("add_bos: %d\n", add_bos);
LOG_DBG("prefix: \"%s\"\n", params.input_prefix.c_str());
LOG_DBG("suffix: \"%s\"\n", params.input_suffix.c_str());
LOG_DBG("tokens: %s\n", string_from(ctx, embd_inp).c_str());
// Should not run without any tokens
if (embd_inp.empty()) {
embd_inp.push_back(llama_vocab_bos(vocab));
LOG_WRN("embd_inp was considered empty and bos was added: %s\n", string_from(ctx, embd_inp).c_str());
}
if ((int) embd_inp.size() > n_ctx - 4) {
LOG_ERR("%s: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
return 1;
}
// number of tokens to keep when resetting context
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) {
params.n_keep = (int)embd_inp.size();
}
LOG_INF("inp_pfx: %s\n", string_from(ctx, inp_pfx).c_str());
LOG_INF("inp_sfx: %s\n", string_from(ctx, inp_sfx).c_str());
// enable interactive mode if interactive start is specified
if (params.interactive_first) {
params.interactive = true;
}
if (params.verbose_prompt) {
LOG_INF("\n");
LOG_INF("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
for (int i = 0; i < (int) embd_inp.size(); i++) {
LOG_INF("%6d -> '%s'\n", embd_inp[i], common_token_to_piece(ctx, embd_inp[i]).c_str());
}
if (params.n_keep > 0) {
LOG_INF("%s: static prompt based on n_keep: '", __func__);
for (int i = 0; i < params.n_keep; i++) {
LOG_CNT("%s", common_token_to_piece(ctx, embd_inp[i]).c_str());
}
LOG_CNT("'\n");
}
LOG_INF("\n");
}
if (params.interactive) {
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
struct sigaction sigint_action;
sigint_action.sa_handler = sigint_handler;
sigemptyset (&sigint_action.sa_mask);
sigint_action.sa_flags = 0;
sigaction(SIGINT, &sigint_action, NULL);
#elif defined (_WIN32)
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
};
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
#endif
LOG_INF("%s: interactive mode on.\n", __func__);
if (params.input_prefix_bos) {
LOG_INF("Input prefix with BOS\n");
}
if (!params.input_prefix.empty()) {
LOG_INF("Input prefix: '%s'\n", params.input_prefix.c_str());
}
if (!params.input_suffix.empty()) {
LOG_INF("Input suffix: '%s'\n", params.input_suffix.c_str());
}
}
smpl = common_sampler_init(model, sparams);
LOG_INF("sampler seed: %u\n", common_sampler_get_seed(smpl));
LOG_INF("sampler params: \n%s\n", sparams.print().c_str());
LOG_INF("sampler chain: %s\n", common_sampler_print(smpl).c_str());
LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
LOG_INF("\n");
LOG_INF("\n##### Infill mode #####\n\n");
if (params.interactive) {
const char *control_message;
if (params.multiline_input) {
control_message = " - To return control to LLaMA, end your input with '\\'.\n"
" - To return control without starting a new line, end your input with '/'.\n";
} else {
control_message = " - Press Return to return control to LLaMA.\n"
" - To return control without starting a new line, end your input with '/'.\n"
" - If you want to submit another line, end your input with '\\'.\n";
}
LOG_INF("== Running in interactive mode. ==\n");
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
LOG_INF( " - Press Ctrl+C to interject at any time.\n");
#endif
LOG_INF( "%s\n", control_message);
is_interacting = params.interactive_first;
}
bool input_echo = true;
int n_past = 0;
int n_remain = params.n_predict;
int n_consumed = 0;
std::vector<int> input_tokens; g_input_tokens = &input_tokens;
std::vector<int> output_tokens; g_output_tokens = &output_tokens;
std::ostringstream output_ss; g_output_ss = &output_ss;
// the first thing we will do is to output the prompt, so set color accordingly
console::set_display(console::prompt);
std::vector<llama_token> embd;
while (n_remain != 0 || params.interactive) {
// predict
if (!embd.empty()) {
// Note: n_ctx - 4 here is to match the logic for commandline prompt handling via
// --prompt or --file which uses the same value.
int max_embd_size = n_ctx - 4;
// Ensure the input doesn't exceed the context size by truncating embd if necessary.
if ((int) embd.size() > max_embd_size) {
const int skipped_tokens = (int) embd.size() - max_embd_size;
embd.resize(max_embd_size);
console::set_display(console::error);
LOG_WRN("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
console::set_display(console::reset);
}
// infinite text generation via context swapping
// if we run out of context:
// - take the n_keep first tokens from the original prompt (via n_past)
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
if (n_past + (int) embd.size() > n_ctx) {
if (params.n_predict == -2) {
LOG_DBG("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
break;
}
const int n_left = n_past - params.n_keep - 1;
const int n_discard = n_left/2;
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
n_past, n_left, n_ctx, params.n_keep, n_discard);
llama_kv_self_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
llama_kv_self_seq_add(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
n_past -= n_discard;
LOG_DBG("after swap: n_past = %d\n", n_past);
LOG_DBG("embd: %s\n", string_from(ctx, embd).c_str());
}
// evaluate tokens in batches
// embd is typically prepared beforehand to fit within a batch, but not always
for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
int n_eval = (int) embd.size() - i;
if (n_eval > params.n_batch) {
n_eval = params.n_batch;
}
LOG_DBG("eval: %s\n", string_from(ctx, embd).c_str());
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval))) {
LOG_ERR("%s : failed to eval\n", __func__);
return 1;
}
n_past += n_eval;
LOG_DBG("n_past = %d\n", n_past);
}
}
embd.clear();
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
const llama_token id = common_sampler_sample(smpl, ctx, -1);
common_sampler_accept(smpl, id, true);
// LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str());
embd.push_back(id);
// echo this to console
input_echo = true;
// decrement remaining sampling budget
--n_remain;
LOG_DBG("n_remain: %d\n", n_remain);
} else {
// some user input remains from prompt or interaction, forward it to processing
LOG_DBG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
while ((int) embd_inp.size() > n_consumed) {
embd.push_back(embd_inp[n_consumed]);
// push the prompt in the sampling context in order to apply repetition penalties later
// for the prompt, we don't apply grammar rules
common_sampler_accept(smpl, embd_inp[n_consumed], false);
++n_consumed;
if ((int) embd.size() >= params.n_batch) {
break;
}
}
}
// display text
if (input_echo) {
for (auto id : embd) {
const std::string token_str = common_token_to_piece(ctx, id);
LOG("%s", token_str.c_str());
if (embd.size() > 1) {
input_tokens.push_back(id);
} else {
output_tokens.push_back(id);
output_ss << token_str;
}
}
}
// reset color to default if we there is no pending user input
if (input_echo && (int) embd_inp.size() == n_consumed) {
console::set_display(console::reset);
}
// if not currently processing queued inputs;
if ((int) embd_inp.size() <= n_consumed) {
// deal with eot token in infill mode
if ((common_sampler_last(smpl) == llama_vocab_eot(vocab) || is_interacting) && params.interactive){
if (is_interacting && !params.interactive_first) {
// print an eot token
LOG("%s", common_token_to_piece(ctx, llama_vocab_eot(vocab)).c_str());
}
LOG("\n");
console::set_display(console::user_input);
std::string buffer;
std::string line;
bool another_line=true;
// set a new prefix via stdin
do {
another_line = console::readline(line, params.multiline_input);
buffer += line;
} while (another_line);
// check if we got an empty line, if so we use the old input
if (!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
params.input_prefix = buffer;
}
buffer.clear();
// set a new suffix via stdin
do {
another_line = console::readline(line, params.multiline_input);
buffer += line;
} while (another_line);
// check if we got an empty line
if (!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
params.input_suffix = buffer;
}
buffer.clear();
// done taking input, reset color
console::set_display(console::reset);
if (params.escape) {
//process escape sequences, for the initial prompt this is done in common.cpp when we load the params, but for the interactive mode we need to do it here
string_process_escapes(params.input_prefix);
string_process_escapes(params.input_suffix);
}
// tokenize new prefix and suffix
std::vector<llama_token> inp_pfx = common_tokenize(ctx, params.input_prefix, false);
std::vector<llama_token> inp_sfx = common_tokenize(ctx, params.input_suffix, false);
inp_pfx.insert(inp_pfx.begin(), llama_vocab_fim_pre(vocab));
inp_sfx.insert(inp_sfx.begin(), llama_vocab_fim_suf(vocab));
embd_inp = params.spm_infill ? inp_sfx : inp_pfx;
embd_end = params.spm_infill ? inp_pfx : inp_sfx;
if (add_bos) {
embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab));
}
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
if (middle_token >= 0) {
embd_inp.push_back(middle_token);
}
embd.clear();
n_remain = params.n_predict;
n_past = 0;
n_consumed = 0;
is_interacting = false;
}
// deal with end of generation tokens in interactive mode
else if (llama_vocab_is_eog(vocab, common_sampler_last(smpl))) {
LOG_DBG("found EOS token\n");
if (params.interactive) {
is_interacting = true;
LOG("\n");
console::set_display(console::user_input);
}
}
if (n_past > 0 && is_interacting && !params.interactive) {
LOG_DBG("waiting for user input\n");
if (params.input_prefix_bos) {
LOG_DBG("adding input prefix BOS token\n");
embd_inp.push_back(llama_vocab_bos(vocab));
}
std::string buffer;
if (!params.input_prefix.empty()) {
LOG_DBG("appending input prefix: '%s'\n", params.input_prefix.c_str());
buffer += params.input_prefix;
LOG("%s", buffer.c_str());
}
std::string line;
bool another_line = true;
do {
another_line = console::readline(line, params.multiline_input);
buffer += line;
} while (another_line);
// done taking input, reset color
console::set_display(console::reset);
// Add tokens to embd only if the input buffer is non-empty
// Entering a empty line lets the user pass control back
if (buffer.length() > 1) {
// append input suffix if any
if (!params.input_suffix.empty()) {
LOG_DBG("appending input suffix: '%s'\n", params.input_suffix.c_str());
buffer += params.input_suffix;
LOG("%s", params.input_suffix.c_str());
}
LOG_DBG("buffer: '%s'\n", buffer.c_str());
const size_t original_size = embd_inp.size();
const auto line_inp = common_tokenize(ctx, buffer, false);
LOG_DBG("input tokens: %s\n", string_from(ctx, line_inp).c_str());
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
for (size_t i = original_size; i < embd_inp.size(); ++i) {
const llama_token token = embd_inp[i];
output_tokens.push_back(token);
output_ss << common_token_to_piece(ctx, token);
}
n_remain -= line_inp.size();
LOG_DBG("n_remain: %d\n", n_remain);
} else {
LOG_DBG("empty line, passing control back\n");
}
input_echo = false; // do not echo this again
}
if (n_past > 0) {
if (is_interacting) {
common_sampler_reset(smpl);
}
is_interacting = false;
}
}
// end of generation
if (!embd.empty() && llama_vocab_is_eog(vocab, embd.back()) && !params.interactive) {
break;
}
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
// We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size).
if (params.interactive && n_remain <= 0 && params.n_predict >= 0) {
n_remain = params.n_predict;
is_interacting = true;
}
}
if (!params.interactive && n_remain <= 0) {
LOG("%s", common_token_to_piece(ctx, llama_vocab_eot(vocab)).c_str());
}
LOG("\n");
common_perf_print(ctx, smpl);
common_sampler_free(smpl);
llama_backend_free();
return 0;
}

View File

@@ -366,6 +366,8 @@ if (MSVC)
/wd4005 # Macro redefinition
/wd4244 # Conversion from one type to another type, possible loss of data
/wd4267 # Conversion from 'size_t' to a smaller type, possible loss of data
/wd4996 # Disable POSIX deprecation warnings
/wd4702 # Unreachable code warnings
)
function(disable_msvc_warnings target_name)
if(TARGET ${target_name})

View File

@@ -38,7 +38,7 @@ extern "C" {
GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft);
GGML_API size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
GGML_API size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor);
GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
GGML_API ggml_backend_dev_t ggml_backend_buft_get_device (ggml_backend_buffer_type_t buft);
@@ -59,7 +59,7 @@ extern "C" {
GGML_API enum ggml_status ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor);
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);

View File

@@ -673,11 +673,15 @@ extern "C" {
GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
// returns whether the tensor elements can be iterated over with a flattened index (no gaps, no permutation)
GGML_API bool ggml_is_contiguous (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
// returns whether the tensor elements are allocated as one contiguous block of memory (no gaps, but permutation ok)
GGML_API bool ggml_is_contiguously_allocated(const struct ggml_tensor * tensor);
// true for tensor that is stored in memory as CxWxHxN and has been permuted to WxHxCxN
GGML_API bool ggml_is_contiguous_channels(const struct ggml_tensor * tensor);

View File

@@ -214,7 +214,7 @@ add_library(ggml
target_link_libraries(ggml PUBLIC ggml-base)
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
target_link_libraries(ggml PRIVATE dl stdc++fs)
target_link_libraries(ggml PRIVATE dl)
endif()
function(ggml_add_backend_library backend)

View File

@@ -56,7 +56,7 @@ size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
return SIZE_MAX;
}
size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor) {
// get_alloc_size is optional, defaults to ggml_nbytes
if (buft->iface.get_alloc_size) {
size_t size = buft->iface.get_alloc_size(buft, tensor);
@@ -152,7 +152,7 @@ size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
}
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor) {
return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
}

View File

@@ -72,8 +72,6 @@ static_assert(sizeof(block_iq4_nlx4) == 4 * sizeof(ggml_half) + QK4_NL * 2, "wro
#if defined(__GNUC__)
#pragma GCC diagnostic ignored "-Woverlength-strings"
#elif defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#define UNUSED GGML_UNUSED

View File

@@ -20,12 +20,6 @@
#define GROUP_MAX_EPS_IQ1_M 1e-7f
#define GROUP_MAX_EPS_IQ1_S 1e-12f
#if defined(_MSC_VER)
// disable "possible loss of data" to avoid warnings for hundreds of casts
// we should just be careful :)
#pragma warning(disable: 4244 4267)
#endif
#define UNUSED GGML_UNUSED
// some compilers don't provide _mm256_set_m128i, e.g. gcc 7

View File

@@ -50,19 +50,6 @@
#include "llamafile/sgemm.h"
#endif
#if defined(_MSC_VER)
// disable "possible loss of data" to avoid hundreds of casts
// we should just be careful :)
#pragma warning(disable: 4244 4267)
// disable POSIX deprecation warnings
// these functions are never going away, anyway
#pragma warning(disable: 4996)
// unreachable code because of multiple instances of code after GGML_ABORT
#pragma warning(disable: 4702)
#endif
// Note: once we move threading into a separate C++ file
// will use std::hardware_destructive_interference_size instead of hardcoding it here
// and we'll use C++ attribute syntax.

View File

@@ -8,19 +8,6 @@
#include <float.h>
#if defined(_MSC_VER)
// disable "possible loss of data" to avoid hundreds of casts
// we should just be careful :)
#pragma warning(disable: 4244 4267)
// disable POSIX deprecation warnings
// these functions are never going away, anyway
#pragma warning(disable: 4996)
// unreachable code because of multiple instances of code after GGML_ABORT
#pragma warning(disable: 4702)
#endif
// ggml_compute_forward_dup
static void ggml_compute_forward_dup_same_cont(

View File

@@ -2,12 +2,6 @@
#include <cassert>
#if defined(_MSC_VER)
// disable "possible loss of data" to avoid hundreds of casts
// we should just be careful :)
#pragma warning(disable: 4244 4267)
#endif
// precomputed gelu table for f16 (128 KB)
ggml_fp16_t ggml_table_gelu_f16[1 << 16];

View File

@@ -12,12 +12,30 @@ if (CUDAToolkit_FOUND)
# 61 == Pascal, __dp4a instruction (per-byte integer dot product)
# 70 == V100, FP16 tensor cores
# 75 == Turing, int8 tensor cores
# 80 == Ampere, asynchronous data loading, faster tensor core instructions
# 86 == RTX 3000, needs CUDA v11.1
# 89 == RTX 4000, needs CUDA v11.8
#
# XX-virtual == compile CUDA code as PTX, do JIT compilation to binary code on first run
# XX-real == compile CUDA code as device code for this specific architecture
# no suffix == compile as both PTX and device code
#
# The default behavior for a non-native is to build virtual architectures as needed to cover all features needed
# for best performance and to also build real architectures for the most commonly used GPUs.
if (GGML_NATIVE AND CUDAToolkit_VERSION VERSION_GREATER_EQUAL "11.6" AND CMAKE_VERSION VERSION_GREATER_EQUAL "3.24")
set(CMAKE_CUDA_ARCHITECTURES "native")
elseif(GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
set(CMAKE_CUDA_ARCHITECTURES "60;61;70;75;80")
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "11.8")
set(CMAKE_CUDA_ARCHITECTURES "60-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real;89-real")
else()
set(CMAKE_CUDA_ARCHITECTURES "60-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real")
endif()
else()
set(CMAKE_CUDA_ARCHITECTURES "50;61;70;75;80")
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "11.8")
set(CMAKE_CUDA_ARCHITECTURES "50-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real;89-real")
else()
set(CMAKE_CUDA_ARCHITECTURES "50-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real")
endif()
endif()
endif()
message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")

View File

@@ -130,10 +130,6 @@ static int ggml_cuda_highest_compiled_arch(const int arch) {
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#define GGML_CUDA_MAX_STREAMS 8
[[noreturn]]

View File

@@ -719,6 +719,7 @@ void launch_fattn(
size_t nb23 = V->nb[3];
if (need_f16_K && K->type != GGML_TYPE_F16) {
GGML_ASSERT(ggml_is_contiguously_allocated(K));
K_f16.alloc(ggml_nelements(K));
to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(K->type);
to_fp16(K_data, K_f16.ptr, ggml_nelements(K), main_stream);
@@ -733,6 +734,7 @@ void launch_fattn(
}
if (need_f16_V && V->type != GGML_TYPE_F16) {
GGML_ASSERT(ggml_is_contiguously_allocated(V));
V_f16.alloc(ggml_nelements(V));
to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(V->type);
to_fp16(V_data, V_f16.ptr, ggml_nelements(V), main_stream);

View File

@@ -555,8 +555,8 @@ static enum ggml_status ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer
if (ggml_is_quantized(tensor->type) && tensor->view_src == nullptr && ggml_backend_buffer_get_usage(buffer) != GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
// initialize padding to 0 to avoid possible NaN values
size_t original_size = ggml_nbytes(tensor);
size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
const size_t original_size = ggml_nbytes(tensor);
const size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
if (padded_size > original_size) {
ggml_cuda_set_device(ctx->device);
@@ -679,6 +679,7 @@ static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_t
if (ggml_is_quantized(tensor->type)) {
if (ne0 % MATRIX_ROW_PADDING != 0) {
GGML_ASSERT(tensor->nb[0] == ggml_element_size(tensor));
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
}
}
@@ -800,6 +801,7 @@ static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buff
static enum ggml_status ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
@@ -851,6 +853,7 @@ static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buff
// split tensors must always be set in their entirety at once
GGML_ASSERT(offset == 0);
GGML_ASSERT(size == ggml_nbytes(tensor));
GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
@@ -889,6 +892,7 @@ static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buff
// split tensors must always be set in their entirety at once
GGML_ASSERT(offset == 0);
GGML_ASSERT(size == ggml_nbytes(tensor));
GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
@@ -970,6 +974,7 @@ static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buf
static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
size_t total_size = 0;
@@ -1531,6 +1536,8 @@ static void ggml_cuda_op_mul_mat(
// If src0 is on a temporary compute buffer (partial offloading) there may be some padding that needs to be cleared:
if (ne00 % MATRIX_ROW_PADDING != 0 && ggml_is_quantized(src0->type) && ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE && src0->view_src == nullptr) {
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
GGML_ASSERT(!src0->view_src);
const size_t nbytes_data = ggml_row_size(src0->type, (dev[id].row_high - dev[id].row_low)*ne00);
const size_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING);
CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd + nbytes_data, 0, nbytes_padding, stream));
@@ -2062,9 +2069,11 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
}
ggml_tensor src0_slice = *src0;
src0_slice.ne[2] = 1;
src0_slice.nb[3] = src0_slice.nb[2];
src0_slice.data = (char *) src0->data + i02*nb02;
src0_slice.ne[2] = 1;
src0_slice.nb[3] = src0_slice.nb[2];
src0_slice.op = GGML_OP_VIEW;
src0_slice.view_src = dst->src[0]; // non-const pointer to src0
src0_slice.data = (char *) src0->data + i02*nb02;
ggml_tensor src1_slice;
memset(&src1_slice, 0, sizeof(src1_slice));

View File

@@ -89,6 +89,17 @@ void ggml_cuda_mul_mat_q(
const float * src1_d = (const float *) src1->data;
float * dst_d = (float *) dst->data;
// If src0 is a temporary compute buffer, clear any potential padding.
if (ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
GGML_ASSERT(!src0->view_src);
const size_t size_data = ggml_nbytes(src0);
const size_t size_alloc = ggml_backend_buffer_get_alloc_size(src0->buffer, src0);
if (size_alloc > size_data) {
CUDA_CHECK(cudaMemsetAsync((char *) src0->data + size_data, 0, size_alloc - size_data, stream));
}
}
const int64_t ne10_padded = GGML_PAD(ne10, MATRIX_ROW_PADDING);
const int64_t s01 = src0->nb[1] / ts_src0;
@@ -118,7 +129,7 @@ void ggml_cuda_mul_mat_q(
const mmq_args args = {
src0_d, src0->type, (const int *) src1_q8_1.ptr, nullptr, nullptr, dst_d,
ne00, ne01, ne1, s01, s1,
ne00, ne01, ne1, s01, ne11, s1,
ne02, ne12, s02, s12, s2,
ne03, ne13, s03, s13, s3,
use_stream_k};
@@ -202,7 +213,7 @@ void ggml_cuda_mul_mat_q(
// Note that ne02 is used instead of ne12 because the number of y channels determines the z dimension of the CUDA grid.
const mmq_args args = {
src0_d, src0->type, (const int *) src1_q8_1.ptr, ids_dst_dev, expert_bounds_dev, dst_d,
ne00, ne01, ne_get_rows, s01, s1,
ne00, ne01, ne_get_rows, s01, ne_get_rows, s1,
ne02, ne02, s02, s12, s2,
ne03, ne13, s03, s13, s3,
use_stream_k};
@@ -241,7 +252,7 @@ void ggml_cuda_op_mul_mat_q(
ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA && src1_ncols == ne11;
const mmq_args args = {
src0_dd_i, src0->type, (const int *) src1_ddq_i, nullptr, nullptr, dst_dd_i,
ne00, row_diff, src1_ncols, stride01, nrows_dst,
ne00, row_diff, src1_ncols, stride01, ne11, nrows_dst,
1, 1, 0, 0, 0,
1, 1, 0, 0, 0,
use_stream_k};

View File

@@ -2522,7 +2522,7 @@ template <ggml_type type, int mmq_x, int nwarps, bool need_check, bool fixup>
static __device__ __forceinline__ void mul_mat_q_process_tile(
const char * __restrict__ x, const int offset_x, const int * __restrict__ y,
const int * __restrict__ ids_dst, float * __restrict__ dst, float * __restrict__ tmp_fixup,
const int nrows_x, const int ncols_y, const int stride_row_x, const int stride_col_dst,
const int stride_row_x, const int ncols_y, const int stride_col_dst,
const int tile_x_max_i, const int tile_y_max_j, const int kb0_start, const int kb0_stop) {
constexpr int qk = ggml_cuda_type_traits<type>::qk;
@@ -2606,7 +2606,7 @@ template <ggml_type type, int mmq_x, int nwarps, bool need_check>
static __global__ void mul_mat_q(
const char * __restrict__ x, const int * __restrict__ y, const int32_t * __restrict__ ids_dst,
const int32_t * __restrict__ expert_bounds, float * __restrict__ dst, float * __restrict__ tmp_fixup,
const int ncols_x, const int nrows_x, const int ncols_y, const int stride_row_x, const int stride_col_dst,
const int ncols_x, const int nrows_x, const int ncols_dst, const int stride_row_x, const int ncols_y, const int stride_col_dst,
const int channel_ratio, const int nchannels_y, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
const int sample_ratio, const int nsamples_y, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
@@ -2619,8 +2619,8 @@ static __global__ void mul_mat_q(
constexpr int qk = ggml_cuda_type_traits<type>::qk;
constexpr int mmq_y = get_mmq_y_device();
const int ntx = (ncols_y + mmq_x - 1) / mmq_x; // Number of tiles x
const int nty = (nrows_x + mmq_y - 1) / mmq_y; // Number of tiles y
const int ntx = (ncols_dst + mmq_x - 1) / mmq_x; // Number of tiles x
const int nty = (nrows_x + mmq_y - 1) / mmq_y; // Number of tiles y
// Initialize the ids for writing back data with just the index.
// For regular matrix multiplications this is never changed.
@@ -2648,8 +2648,8 @@ static __global__ void mul_mat_q(
// Defaults for regular matrix multiplication:
int col_low = 0;
int col_high = ncols_y;
int col_diff = ncols_y;
int col_high = ncols_dst;
int col_diff = ncols_dst;
int offset_y = wt*stride_sample_y + zt*stride_channel_y;
int offset_dst = wt*stride_sample_dst + zt*stride_channel_dst + jt*mmq_x*stride_col_dst;
@@ -2689,7 +2689,7 @@ static __global__ void mul_mat_q(
constexpr bool fixup = false;
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, nrows_x, ncols_y, stride_row_x, stride_col_dst,
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, stride_row_x, ncols_y, stride_col_dst,
tile_x_max_i, tile_y_max_j, 0, ncols_x/qk);
return;
}
@@ -2720,8 +2720,8 @@ static __global__ void mul_mat_q(
// Defaults for regular matrix multiplication:
int col_low = 0;
int col_high = ncols_y;
int col_diff = ncols_y;
int col_high = ncols_dst;
int col_diff = ncols_dst;
int offset_y = wt*stride_sample_y + zt*stride_channel_y;
int offset_dst = wt*stride_sample_dst + zt*stride_channel_dst + jt*mmq_x*stride_col_dst;
@@ -2767,7 +2767,7 @@ static __global__ void mul_mat_q(
constexpr bool fixup = false; // All but (potentially) the last iterations write their data to dst rather than the fixup buffer.
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, nrows_x, ncols_y, stride_row_x, stride_col_dst,
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, stride_row_x, ncols_y, stride_col_dst,
tile_x_max_i, tile_y_max_j, kb0_start, kb0_stop);
kbc += blocks_per_ne00;
@@ -2792,8 +2792,8 @@ static __global__ void mul_mat_q(
// Defaults for regular matrix multiplication:
int col_low = 0;
int col_high = ncols_y;
int col_diff = ncols_y;
int col_high = ncols_dst;
int col_diff = ncols_dst;
int offset_y = wt*stride_sample_y + zt*stride_channel_y;
int offset_dst = wt*stride_sample_dst + zt*stride_channel_dst + jt*mmq_x*stride_col_dst;
@@ -2834,7 +2834,7 @@ static __global__ void mul_mat_q(
constexpr bool fixup = true; // Last index writes its data to fixup buffer to avoid data races with other blocks.
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, nrows_x, ncols_y, stride_row_x, stride_col_dst,
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, stride_row_x, ncols_y, stride_col_dst,
tile_x_max_i, tile_y_max_j, kb0_start, kb0_stop);
}
@@ -2842,7 +2842,7 @@ static __global__ void mul_mat_q(
template <ggml_type type, int mmq_x, int nwarps, bool need_check>
static __global__ void mul_mat_q_stream_k_fixup(
const int32_t * ids_dst, const int32_t * expert_bounds, float * __restrict__ dst, const float * __restrict__ tmp_last_tile,
const int ncols_x, const int nrows_x, const int ncols_y, const int stride_col_dst,
const int ncols_x, const int nrows_x, const int ncols_dst, const int stride_col_dst,
const int nchannels_y, const int stride_channel_dst, const int nsamples_y, const int stride_sample_dst) {
constexpr int mmq_y = get_mmq_y_device();
constexpr int qk = ggml_cuda_type_traits<type>::qk;
@@ -2851,8 +2851,8 @@ static __global__ void mul_mat_q_stream_k_fixup(
float sum[mmq_x*mmq_y / (nwarps*WARP_SIZE)] = {0.0f};
const int ntx = (ncols_y + mmq_x - 1) / mmq_x;
const int nty = (nrows_x + mmq_y - 1) / mmq_y;
const int ntx = (ncols_dst + mmq_x - 1) / mmq_x;
const int nty = (nrows_x + mmq_y - 1) / mmq_y;
const int bidx0 = blockIdx.x;
@@ -2925,8 +2925,8 @@ static __global__ void mul_mat_q_stream_k_fixup(
const int offset_dst = wt*stride_sample_dst + zt*stride_channel_dst + jt*mmq_x*stride_col_dst + it*mmq_y;
dst += offset_dst;
const int i_max = nrows_x - it*mmq_y - 1;
const int j_max = ncols_y - jt*mmq_x - 1;
const int i_max = nrows_x - it*mmq_y - 1;
const int j_max = ncols_dst - jt*mmq_x - 1;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
@@ -2989,7 +2989,7 @@ static __global__ void mul_mat_q_stream_k_fixup(
struct mmq_args {
const char * x; ggml_type type_x; const int * y; const int32_t * ids_dst; const int32_t * expert_bounds; float * dst;
int64_t ncols_x; int64_t nrows_x; int64_t ncols_y; int64_t stride_row_x; int64_t nrows_dst;
int64_t ncols_x; int64_t nrows_x; int64_t ncols_dst; int64_t stride_row_x; int64_t ncols_y; int64_t nrows_dst;
int64_t nchannels_x; int64_t nchannels_y; int64_t stride_channel_x; int64_t stride_channel_y; int64_t stride_channel_dst;
int64_t nsamples_x; int64_t nsamples_y; int64_t stride_sample_x; int64_t stride_sample_y; int64_t stride_sample_dst;
bool use_stream_k;
@@ -3025,8 +3025,8 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
}
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
const int nty = (args.nrows_x + mmq_y - 1) / mmq_y;
const int ntx = (args.ncols_y + mmq_x - 1) / mmq_x;
const int nty = (args.nrows_x + mmq_y - 1) / mmq_y;
const int ntx = (args.ncols_dst + mmq_x - 1) / mmq_x;
const int ntzw = args.nchannels_y * args.nsamples_y;
const dim3 block_nums_xy_tiling(nty, ntx, ntzw);
@@ -3040,14 +3040,14 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
constexpr bool need_check = false;
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, nbytes_shared, stream>>>
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, nullptr,
args.ncols_x, args.nrows_x, args.ncols_y, args.stride_row_x, args.nrows_dst,
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
} else {
constexpr bool need_check = true;
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, nbytes_shared, stream>>>
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, nullptr,
args.ncols_x, args.nrows_x, args.ncols_y, args.stride_row_x, args.nrows_dst,
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
}
@@ -3068,7 +3068,7 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_stream_k, block_dims, nbytes_shared, stream>>>
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr,
args.ncols_x, args.nrows_x, args.ncols_y, args.stride_row_x, args.nrows_dst,
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
@@ -3077,14 +3077,14 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
}
mul_mat_q_stream_k_fixup<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_stream_k, block_dims, 0, stream>>>
(args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_y,
(args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_dst,
args.nrows_dst, args.nchannels_y, args.stride_channel_dst, args.nsamples_y, args.stride_sample_dst);
} else {
constexpr bool need_check = true;
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_stream_k, block_dims, nbytes_shared, stream>>>
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr,
args.ncols_x, args.nrows_x, args.ncols_y, args.stride_row_x, args.nrows_dst,
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
@@ -3093,7 +3093,7 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
}
mul_mat_q_stream_k_fixup<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_stream_k, block_dims, 0, stream>>>
(args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_y,
(args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_dst,
args.nrows_dst, args.nchannels_y, args.stride_channel_dst, args.nsamples_y, args.stride_sample_dst);
}
}

View File

@@ -513,6 +513,17 @@ void ggml_cuda_mul_mat_vec_q(
const int32_t * ids_d = ids ? (const int32_t *) ids->data : nullptr;
float * dst_d = (float *) dst->data;
// If src0 is a temporary compute buffer, clear any potential padding.
if (ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
GGML_ASSERT(!src0->view_src);
const size_t size_data = ggml_nbytes(src0);
const size_t size_alloc = ggml_backend_buffer_get_alloc_size(src0->buffer, src0);
if (size_alloc > size_data) {
CUDA_CHECK(cudaMemsetAsync((char *) src0->data + size_data, 0, size_alloc - size_data, stream));
}
}
const int64_t ne10_padded = GGML_PAD(ne10, MATRIX_ROW_PADDING);
ggml_cuda_pool_alloc<char> src1_q8_1(ctx.pool(), ne13*ne12 * ne11*ne10_padded * sizeof(block_q8_1)/QK8_1);
{

View File

@@ -163,6 +163,7 @@ void quantize_mmq_q8_1_cuda(
const float * x, const int32_t * ids, void * vy, const ggml_type type_src0,
const int64_t ne00, const int64_t s01, const int64_t s02, const int64_t s03,
const int64_t ne0, const int64_t ne1, const int64_t ne2, const int64_t ne3, cudaStream_t stream) {
GGML_ASSERT(ne00 % 4 == 0);
GGML_ASSERT(ne0 % (4*QK8_1) == 0);
const int64_t block_num_x = (ne0 + 4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ - 1) / (4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ);

View File

@@ -19,12 +19,6 @@
#define GROUP_MAX_EPS_IQ1_M 1e-7f
#define GROUP_MAX_EPS_IQ1_S 1e-12f
#if defined(_MSC_VER)
// disable "possible loss of data" to avoid warnings for hundreds of casts
// we should just be careful :)
#pragma warning(disable: 4244 4267)
#endif
#define UNUSED GGML_UNUSED
// reference implementation for deterministic creation of model files

View File

@@ -80,10 +80,6 @@ extern int g_ggml_sycl_disable_optimize;
// max batch size to use MMQ kernels when tensor cores are available
#define MMQ_MAX_BATCH_SIZE 32
#if defined(_MSC_VER)
#pragma warning(disable : 4244 4267) // possible loss of data
#endif
// dmmv = dequantize_mul_mat_vec
#ifndef GGML_SYCL_DMMV_X
#define GGML_SYCL_DMMV_X 32
@@ -118,17 +114,12 @@ static void crash() {
GGML_ABORT("SYCL error");
}
#define SYCL_CHECK(err) \
do { \
auto err_ = (err); \
if (err_ != 0) \
ggml_sycl_error( \
#err, \
__func__, \
__FILE__, \
__LINE__, \
"Meet error in this line code!"); \
} while (0)
#define SYCL_CHECK(err) \
do { \
auto err_ = (err); \
if (err_ != 0) \
ggml_sycl_error(#err, __func__, __FILE__, __LINE__, "Exception caught in this line of code."); \
} while (0)
#if DPCT_COMPAT_RT_VERSION >= 11100
#define GGML_SYCL_ASSUME(x) __builtin_assume(x)

View File

@@ -437,41 +437,52 @@ static void dequantize_row_iq4_nl_sycl(const void *vx, dst_t *y, const int64_t k
}
template <typename src_t, typename dst_t>
static void convert_unary(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k,
const sycl::nd_item<3> &item_ct1) {
static void convert_unary_nc(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t ne00, const int64_t ne01,
const int64_t ne02, const int64_t s01, const int64_t s02, const int64_t s03,
const sycl::nd_item<3> & item_ct1) {
const int64_t work_group_size = item_ct1.get_local_range(2);
const int64_t global_id = item_ct1.get_local_id(2) + work_group_size * item_ct1.get_group(2);
const int64_t global_id = item_ct1.get_local_id(2) + work_group_size * item_ct1.get_group(2);
const int64_t i01 = item_ct1.get_group(1);
const int64_t i02 = item_ct1.get_group(0) % ne02;
const int64_t i03 = item_ct1.get_group(0) / ne02;
// make each work-item deal with more elements since sycl global range can not exceed max int
const src_t * x = (const src_t *) vx;
for (int64_t i = global_id; i < k; i += work_group_size * item_ct1.get_group_range(2)) {
y[i] = x[i];
const src_t * x = static_cast<const src_t *>(vx);
const int64_t ix = i03 * s03 + i02 * s02 + i01 * s01;
const int64_t iy = ((i03 * ne02 + i02) * ne01 + i01) * ne00;
#pragma unroll
for (int64_t i00 = global_id; i00 < ne00; i00 += work_group_size * item_ct1.get_group_range(2)) {
y[iy + i00] = static_cast<dst_t>(x[ix + i00]);
}
}
template <typename src_t, typename dst_t>
static void convert_unary_sycl(const void *__restrict__ vx,
dst_t *__restrict__ y, const int64_t k,
dpct::queue_ptr stream) {
const int64_t num_blocks = (k + SYCL_DEQUANTIZE_BLOCK_SIZE - 1) / SYCL_DEQUANTIZE_BLOCK_SIZE;
static void convert_unary_nc_sycl(const void * __restrict__ vx, dst_t * __restrict__ y,
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
const int64_t s01, const int64_t s02, const int64_t s03, dpct::queue_ptr queue) {
dpct::has_capability_or_fail(queue->get_device(), { sycl::aspect::fp16 });
sycl::range<3> global_size(ne02 * ne03, ne01, ceil_div(ne00, SYCL_DEQUANTIZE_BLOCK_SIZE));
// decrease global range when it exceeds the max int
int64_t local_size = downsample_sycl_global_range(num_blocks, SYCL_DEQUANTIZE_BLOCK_SIZE);
sycl::range<3> block_nums(1, 1, num_blocks);
sycl::range<3> local_range(1, 1, local_size);
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
// TODO: Downsample logic is separated from the kernel, a rewrite is desirable
int64_t downsized_workgroup = downsample_sycl_global_range(global_size[0], SYCL_DEQUANTIZE_BLOCK_SIZE);
sycl::range<3> workgroup_size(1, 1, downsized_workgroup);
stream->parallel_for(
sycl::nd_range<3>(block_nums * local_range, local_range),
[=](sycl::nd_item<3> item_ct1) {
convert_unary<src_t>(vx, y, k, item_ct1);
});
}
queue->parallel_for(sycl::nd_range<3>(global_size * workgroup_size, workgroup_size), [=](sycl::nd_item<3> item_ct1) {
convert_unary_nc<src_t>(vx, y, ne00, ne01, ne02, s01, s02, s03, item_ct1);
});
}
to_fp16_sycl_t ggml_get_to_fp16_sycl(ggml_type type, ggml_tensor *dst) {
template <typename src_t, typename dst_t>
static void convert_unary_sycl(const void * vx, dst_t * y, const int64_t k, dpct::queue_ptr queue) {
convert_unary_nc_sycl<src_t>(vx, y, k, 1, 1, 1, k, k, k, queue);
}
to_fp16_sycl_t ggml_get_to_fp16_sycl(ggml_type type, ggml_tensor * dst) {
switch (type) {
case GGML_TYPE_Q4_0:
if (dst->src[0]->extra &&
@@ -574,3 +585,12 @@ to_fp32_sycl_t ggml_get_to_fp32_sycl(ggml_type type, ggml_tensor *dst) {
return nullptr;
}
}
to_fp16_nc_sycl_t get_to_fp16_nc_sycl(ggml_type type) {
switch (type) {
case GGML_TYPE_F32:
return convert_unary_nc_sycl<float>;
default:
return nullptr;
}
}

View File

@@ -1,6 +1,6 @@
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// Copyright (C) 2025 Intel Corporation
// SPDX-License-Identifier: MIT
//
@@ -16,12 +16,19 @@
#include "common.hpp"
template <typename T>
using to_t_sycl_t = void (*)(const void *__restrict__ x, T *__restrict__ y,
int64_t k, dpct::queue_ptr stream);
typedef to_t_sycl_t<float> to_fp32_sycl_t;
using to_t_sycl_t = void (*)(const void * __restrict__ x, T * __restrict__ y, int64_t k, dpct::queue_ptr stream);
typedef to_t_sycl_t<float> to_fp32_sycl_t;
typedef to_t_sycl_t<sycl::half> to_fp16_sycl_t;
to_fp16_sycl_t ggml_get_to_fp16_sycl(ggml_type type, ggml_tensor *dst);
to_fp32_sycl_t ggml_get_to_fp32_sycl(ggml_type type, ggml_tensor *dst);
to_fp16_sycl_t ggml_get_to_fp16_sycl(ggml_type type, ggml_tensor * dst);
to_fp32_sycl_t ggml_get_to_fp32_sycl(ggml_type type, ggml_tensor * dst);
#endif // GGML_SYCL_CONVERT_HPP
// Nc = Non-contiguous
template <typename T>
using to_t_nc_sycl_t = void (*)(const void * x, T * y, int64_t ne00, int64_t ne01, int64_t ne02, int64_t ne03,
int64_t s01, int64_t s02, int64_t s03, dpct::queue_ptr queue);
typedef to_t_nc_sycl_t<sycl::half> to_fp16_nc_sycl_t;
to_fp16_nc_sycl_t get_to_fp16_nc_sycl(ggml_type type);
#endif // GGML_SYCL_CONVERT_HPP

View File

@@ -193,7 +193,7 @@ static void ggml_check_sycl() try {
if (!initialized) {
g_ggml_sycl_debug = get_sycl_env("GGML_SYCL_DEBUG", 0);
g_ggml_sycl_disable_optimize= get_sycl_env("GGML_SYCL_DISABLE_OPT", 0);
g_ggml_sycl_disable_optimize= get_sycl_env("GGML_SYCL_DISABLE_OPT", 1);
g_ggml_sycl_disable_graph = get_sycl_env("GGML_SYCL_DISABLE_GRAPH", 1);
GGML_SYCL_DEBUG("[SYCL] call ggml_check_sycl\n");
GGML_LOG_INFO("Running with Environment Variables:\n");
@@ -338,7 +338,7 @@ ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer,
assert(tensor->view_src->buffer->buft == buffer->buft);
return GGML_STATUS_SUCCESS;
}
if (tensor->type == GGML_TYPE_Q4_0) {
if (tensor->type == GGML_TYPE_Q4_0 && !g_ggml_sycl_disable_optimize) {
ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
tensor->extra = extra;
ctx->tensor_extras.push_back(extra); //used to release it when destroy ctx.
@@ -2694,35 +2694,31 @@ catch (sycl::exception const &exc) {
std::exit(1);
}
static void k_compute_batched_ptrs(const sycl::half *src0_as_f16,
const sycl::half *src1_as_f16, char *dst,
const void **ptrs_src, void **ptrs_dst,
int64_t ne12, int64_t ne13, int64_t ne23,
size_t nb02, size_t nb03, size_t nb12,
size_t nb13, size_t nbd2, size_t nbd3,
int64_t r2, int64_t r3,
const sycl::nd_item<3> &item_ct1) {
int64_t i13 = item_ct1.get_group(2) * item_ct1.get_local_range(2) +
item_ct1.get_local_id(2);
int64_t i12 = item_ct1.get_group(1) * item_ct1.get_local_range(1) +
item_ct1.get_local_id(1);
static void k_compute_batched_ptrs(const sycl::half * src0_as_f16, const sycl::half * src1_as_f16, char * dst,
const void ** ptrs_src, void ** ptrs_dst, int64_t ne12, int64_t ne13, int64_t ne23,
size_t nb02, size_t nb03, size_t nb12, size_t nb13, size_t nbd2, size_t nbd3,
int64_t r2, int64_t r3, const sycl::nd_item<3> & item_ct1) {
const int64_t i13 = item_ct1.get_group(2) * item_ct1.get_local_range(2) + item_ct1.get_local_id(2);
const int64_t i12 = item_ct1.get_group(1) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1);
if (i13 >= ne13 || i12 >= ne12) {
return;
}
int64_t i03 = i13 / r3;
int64_t i02 = i12 / r2;
const int64_t i03 = i13 / r3;
const int64_t i02 = i12 / r2;
ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3;
const uint8_t * src0_bytes = reinterpret_cast<const uint8_t *>(src0_as_f16);
const uint8_t * src1_bytes = reinterpret_cast<const uint8_t *>(src1_as_f16);
uint8_t * dst_bytes = reinterpret_cast<uint8_t *>(dst);
ptrs_src[0 * ne23 + i12 + i13 * ne12] = src0_bytes + i02 * nb02 + i03 * nb03;
ptrs_src[1 * ne23 + i12 + i13 * ne12] = src1_bytes + i12 * nb12 + i13 * nb13;
ptrs_dst[0 * ne23 + i12 + i13 * ne12] = dst_bytes + i12 * nbd2 + i13 * nbd3;
}
static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx,
const ggml_tensor *src0,
const ggml_tensor *src1,
ggml_tensor *dst) try {
static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx, const ggml_tensor * src0,
const ggml_tensor * src1, ggml_tensor * dst) try {
GGML_ASSERT(!ggml_is_transposed(src0));
GGML_ASSERT(!ggml_is_transposed(src1));
GGML_ASSERT(!ggml_backend_buffer_is_sycl_split(src0->buffer));
@@ -2730,102 +2726,100 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx,
GGML_TENSOR_BINARY_OP_LOCALS
// TODO: see https://github.com/ggml-org/llama.cpp/pull/13155
// Batched mul_mat requires a rewrite to support both oneDNN and non-contiguous dst
GGML_ASSERT(ggml_is_contiguous(dst));
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
queue_ptr main_stream = ctx.stream();;
queue_ptr queue = ctx.stream();
void * src0_ddq = src0->data;
sycl::half *src0_as_f16 = (sycl::half *)src0_ddq;
float * src1_ddf = (float *) src1->data;
float * dst_ddf = (float *) dst->data;
dpct::has_capability_or_fail(queue->get_device(), { sycl::aspect::fp16 });
const sycl::half * src0_f16 = static_cast<const sycl::half *>(src0->data);
float * dst_ddf = static_cast<float *>(dst->data);
const sycl::half * src1_f16 = static_cast<const sycl::half *>(src1->data);
const size_t type_size_src1 = ggml_type_size(src1->type);
GGML_ASSERT(nb10 == type_size_src1);
// SRC1 strides
int64_t s11 = nb11 / type_size_src1;
int64_t s12 = nb12 / type_size_src1;
int64_t s13 = nb13 / type_size_src1;
ggml_sycl_pool_alloc<sycl::half> src1_f16_alloc(ctx.pool());
// convert src1 to fp16
ggml_sycl_pool_alloc<sycl::half> src1_f16_alloc(ctx.pool());
if (src1->type != GGML_TYPE_F16) {
const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type, dst);
const to_fp16_nc_sycl_t to_fp16_nc_sycl = get_to_fp16_nc_sycl(src1->type);
GGML_ASSERT(to_fp16_nc_sycl != nullptr);
const int64_t ne_src1 = ggml_nelements(src1);
src1_f16_alloc.alloc(ne_src1);
GGML_ASSERT(to_fp16_sycl != nullptr);
to_fp16_sycl(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream);
to_fp16_nc_sycl(src1_f16, src1_f16_alloc.get(), ne10, ne11, ne12, ne13, s11, s12, s13, queue);
src1_f16 = src1_f16_alloc.get();
s11 = ne10;
s12 = ne11 * s11;
s13 = ne12 * s12;
}
sycl::half *src1_f16 = src1->type == GGML_TYPE_F16 ? (sycl::half *)src1_ddf
: src1_f16_alloc.get();
char * dst_t;
ggml_sycl_pool_alloc<sycl::half> dst_f16(ctx.pool());
char * dst_t = reinterpret_cast<char *>(dst_ddf);
dpct::library_data_t cu_compute_type = dpct::library_data_t::real_float;
dpct::library_data_t cu_data_type = dpct::library_data_t::real_float;
dpct::library_data_t mkl_compute_type = dpct::library_data_t::real_float;
dpct::library_data_t mkl_data_type = dpct::library_data_t::real_float;
// dst strides
size_t nbd2 = dst->nb[2];
size_t nbd3 = dst->nb[3];
const float alpha_f32 = 1.0f;
const float beta_f32 = 0.0f;
const float beta_f32 = 0.0f;
const void * alpha = &alpha_f32;
const void * beta = &beta_f32;
dst_t = (char *) dst_ddf;
GGML_ASSERT(ne12 % ne02 == 0);
GGML_ASSERT(ne13 % ne03 == 0);
// broadcast factors
const int64_t r2 = ne12/ne02;
const int64_t r3 = ne13/ne03;
const int64_t r2 = ne12 / ne02;
const int64_t r3 = ne13 / ne03;
if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) {
// there is no broadcast and src0, src1 are contiguous across dims 2, 3
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
*main_stream, oneapi::math::transpose::trans, oneapi::math::transpose::nontrans, ne01, ne11, ne10, alpha,
(const char *) src0_as_f16, dpct::library_data_t::real_half, nb01 / nb00, nb02 / nb00,
(const char *) src1_f16, dpct::library_data_t::real_half, nb11 / nb10, nb12 / nb10, beta, (char *) dst_t,
cu_data_type, ne01, nb2 / nb0, ne12 * ne13, cu_compute_type)));
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(*queue, oneapi::math::transpose::trans,
oneapi::math::transpose::nontrans, ne01, ne11, ne10, alpha,
src0_f16, dpct::library_data_t::real_half, nb01 / nb00, nb02 / nb00,
src1_f16, dpct::library_data_t::real_half, s11, s12, beta, dst_t,
mkl_data_type, ne0, ne1 * ne0, ne12 * ne13, mkl_compute_type)));
} else {
const int ne23 = ne12*ne13;
const int ne23 = ne12 * ne13;
ggml_sycl_pool_alloc<const void *> ptrs_src(ctx.pool(), 2*ne23);
ggml_sycl_pool_alloc< void *> ptrs_dst(ctx.pool(), 1*ne23);
ggml_sycl_pool_alloc<const void *> ptrs_src(ctx.pool(), 2 * ne23);
ggml_sycl_pool_alloc<void *> ptrs_dst(ctx.pool(), 1 * ne23);
ggml_sycl_pool_alloc<matrix_info_t<float>> matrix_info(ctx.host_pool(), 1);
sycl::range<3> block_dims(1, ne12, ne13);
/*
DPCT1049:47: The work-group size passed to the SYCL kernel may exceed
the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if needed.
*/
{
dpct::has_capability_or_fail(main_stream->get_device(),
{sycl::aspect::fp16});
main_stream->submit([&](sycl::handler &cgh) {
const void **ptrs_src_get = ptrs_src.get();
void **ptrs_dst_get = ptrs_dst.get();
size_t nb12_scaled = src1->type == GGML_TYPE_F16 ? nb12 : nb12 / 2;
size_t nb13_scaled = src1->type == GGML_TYPE_F16 ? nb13 : nb13 / 2;
cgh.parallel_for(sycl::nd_range<3>(block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
k_compute_batched_ptrs(
src0_as_f16, src1_f16,
dst_t, ptrs_src_get,
ptrs_dst_get, ne12, ne13, ne23,
nb02, nb03, nb12_scaled, nb13_scaled,
nbd2, nbd3, r2, r3, item_ct1);
});
queue->submit([&](sycl::handler & cgh) {
const void ** ptrs_src_get = ptrs_src.get();
void ** ptrs_dst_get = ptrs_dst.get();
size_t nb12_scaled = src1->type == GGML_TYPE_F16 ? nb12 : s12 * sizeof(sycl::half);
size_t nb13_scaled = src1->type == GGML_TYPE_F16 ? nb13 : s13 * sizeof(sycl::half);
cgh.parallel_for(sycl::nd_range<3>(block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) {
k_compute_batched_ptrs(src0_f16, src1_f16, dst_t, ptrs_src_get, ptrs_dst_get, ne12, ne13, ne23, nb02,
nb03, nb12_scaled, nb13_scaled, nbd2, nbd3, r2, r3, item_ct1);
});
}
});
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
*main_stream, oneapi::math::transpose::trans, oneapi::math::transpose::nontrans, ne01, ne11, ne10, alpha,
*queue, oneapi::math::transpose::trans, oneapi::math::transpose::nontrans, ne01, ne11, ne10, alpha,
(const void **) (ptrs_src.get() + 0 * ne23), dpct::library_data_t::real_half, nb01 / nb00,
(const void **) (ptrs_src.get() + 1 * ne23), dpct::library_data_t::real_half, nb11 / nb10, beta,
(void **) (ptrs_dst.get() + 0 * ne23), cu_data_type, ne01, ne23, cu_compute_type, matrix_info.get())));
(const void **) (ptrs_src.get() + 1 * ne23), dpct::library_data_t::real_half, s11, beta,
(void **) (ptrs_dst.get() + 0 * ne23), mkl_data_type, ne0, ne23, mkl_compute_type, matrix_info.get())));
}
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
} catch (const sycl::exception & exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl;
std::exit(1);
}
inline bool ggml_sycl_supports_mmq(enum ggml_type type) {
@@ -2966,7 +2960,7 @@ static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor
// The kernel from the if path is faster for that specific case, but does not support all mul mats.
ggml_sycl_mul_mat_batched_sycl(ctx, src0, src1, dst);
}
} else if (!split && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
} else if (!split && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
// KQV single-batch
ggml_sycl_mul_mat_vec_nc(ctx, src0, src1, dst);
} else if (!split && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
@@ -3873,9 +3867,6 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
if (a->ne[3] != b->ne[3]) {
return false;
}
if (!ggml_is_contiguous(b)) {
return false;
}
ggml_type a_type = a->type;
if (a_type == GGML_TYPE_IQ4_NL || a_type == GGML_TYPE_IQ4_XS ||
a_type == GGML_TYPE_IQ3_XXS || a_type == GGML_TYPE_IQ3_S ||

View File

@@ -1299,6 +1299,10 @@ bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
return ggml_is_contiguous_n(tensor, 2);
}
bool ggml_is_contiguously_allocated(const struct ggml_tensor * tensor) {
return ggml_nbytes(tensor) == ggml_nelements(tensor) * ggml_type_size(tensor->type)/ggml_blck_size(tensor->type);
}
bool ggml_is_permuted(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");

View File

@@ -1,7 +0,0 @@
# pyright: reportUnusedImport=false
from .gguf_convert_endian import main as gguf_convert_endian_entrypoint
from .gguf_dump import main as gguf_dump_entrypoint
from .gguf_set_metadata import main as gguf_set_metadata_entrypoint
from .gguf_new_metadata import main as gguf_new_metadata_entrypoint
from .gguf_editor_gui import main as gguf_editor_gui_entrypoint

View File

@@ -1,6 +1,6 @@
[tool.poetry]
name = "gguf"
version = "0.16.2"
version = "0.16.3"
description = "Read and write ML models in GGUF for GGML"
authors = ["GGML <ggml@ggml.ai>"]
packages = [
@@ -36,8 +36,8 @@ requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api"
[tool.poetry.scripts]
gguf-convert-endian = "gguf.scripts:gguf_convert_endian_entrypoint"
gguf-dump = "gguf.scripts:gguf_dump_entrypoint"
gguf-set-metadata = "gguf.scripts:gguf_set_metadata_entrypoint"
gguf-new-metadata = "gguf.scripts:gguf_new_metadata_entrypoint"
gguf-editor-gui = "gguf.scripts:gguf_editor_gui_entrypoint"
gguf-convert-endian = "gguf.scripts.gguf_convert_endian:main"
gguf-dump = "gguf.scripts.gguf_dump:main"
gguf-set-metadata = "gguf.scripts.gguf_set_metadata:main"
gguf-new-metadata = "gguf.scripts.gguf_new_metadata:main"
gguf-editor-gui = "gguf.scripts.gguf_editor_gui:main"

View File

@@ -40,5 +40,6 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry.scripts]
llama-convert-hf-to-gguf = "convert_hf_to_gguf:main"
llama-convert-lora-to-gguf = "convert_lora_to_gguf:main"
llama-convert-llama-ggml-to-gguf = "convert_llama_ggml_to_gguf:main"
llama-ggml-vk-generate-shaders = "ggml_vk_generate_shaders:main"

View File

@@ -1 +1 @@
0482de9c63b9134eb462c7732888c0ee0dbc2755
b59bddafe278877dfa22a80e53a637513862babb

View File

@@ -782,7 +782,7 @@ ggml_tensor * llm_graph_context::build_ffn(
} break;
}
if (type_gate == LLM_FFN_PAR) {
if (gate && type_gate == LLM_FFN_PAR) {
cur = ggml_mul(ctx0, cur, tmp);
cb(cur, "ffn_gate_par", il);
}

View File

@@ -3510,7 +3510,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed
if (output == NULL) {
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
}
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
@@ -4788,7 +4792,7 @@ struct llm_build_deci : public llm_graph_context {
}
// FFN-free layer of Llama-3_1-Nemotron-Ultra-253B
if (n_head == 0 && n_ff == 0) {
if (n_ff == 0) {
continue;
}

View File

@@ -1750,23 +1750,35 @@ static const char * llama_sampler_top_n_sigma_name(const struct llama_sampler *
static void llama_sampler_top_n_sigma_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
const auto * ctx = (llama_sampler_top_n_sigma *) smpl->ctx;
if (ctx->n <= 0.0f || cur_p->size <= 1) {
return;
}
// find max logit and calculate mean
float max = cur_p->data[0].logit;
float logits_sum = 0;
size_t valid_count = 0;
for (size_t i = 0; i < cur_p->size; ++i) {
if (cur_p->data[i].logit > max) {
max = cur_p->data[i].logit;
// Only count non-negative infinity values
if (cur_p->data[i].logit != -INFINITY) {
if (cur_p->data[i].logit > max) {
max = cur_p->data[i].logit;
}
logits_sum += cur_p->data[i].logit;
valid_count++;
}
logits_sum += cur_p->data[i].logit;
}
float mean = logits_sum/cur_p->size;
float mean = valid_count > 0 ? logits_sum/valid_count : 0;
// calculate standard deviation
float acc = 0;
for (size_t i = 0; i < cur_p->size; ++i) {
acc += pow(cur_p->data[i].logit - mean, 2);
// Skip -infinity in std calculation
if (cur_p->data[i].logit != -INFINITY) {
acc += pow(cur_p->data[i].logit - mean, 2);
}
}
float std = sqrt(acc/cur_p->size);
float std = valid_count > 0 ? sqrt(acc/valid_count) : 0;
//apply mask
for (size_t i = 0; i < cur_p->size; ++i) {

View File

@@ -360,7 +360,7 @@ int main(void) {
test_dry({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 3, 4, 0, 1}, {0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, 1.0f, 1.1f, 4, 7, {});
test_top_n_sigma({0.1f, 0.2f, 0.3f, 0.4f}, {0.571429f, 0.428571f, 0.0f, 0.0f}, 1.00f);
test_top_n_sigma({0.1f, 0.2f, 0.3f, 0.4f}, {1.0f, 0.0f, 0.0f, 0.0f}, 0.00f);
test_top_n_sigma({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0.00f); // top_n_sigma == 0 now represents a no-op rather than greedy decoding as of PR#13345
test_top_n_sigma({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 3.00f);
test_sampler_queue(10000, "k", 10000, 1.0f, 1.0f);

File diff suppressed because it is too large Load Diff

Binary file not shown.

View File

@@ -146,6 +146,7 @@ struct slot_params {
{"top_k", sampling.top_k},
{"top_p", sampling.top_p},
{"min_p", sampling.min_p},
{"top_n_sigma", sampling.top_n_sigma},
{"xtc_probability", sampling.xtc_probability},
{"xtc_threshold", sampling.xtc_threshold},
{"typical_p", sampling.typ_p},
@@ -248,6 +249,7 @@ struct server_task {
params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
params.sampling.top_n_sigma = json_value(data, "top_n_sigma", defaults.sampling.top_n_sigma);
params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);

View File

@@ -157,6 +157,9 @@ export default function ChatScreen() {
clearExtraContext();
};
// for vscode context
textarea.refOnSubmit.current = sendNewMessage;
const handleEditMessage = async (msg: Message, content: string) => {
if (!viewingChat) return;
setCurrNodeId(msg.id);

View File

@@ -37,6 +37,7 @@ export interface ChatTextareaApi {
setValue: (value: string) => void;
focus: () => void;
ref: React.RefObject<HTMLTextAreaElement>;
refOnSubmit: React.MutableRefObject<(() => void) | null>; // Submit handler
onInput: (event: React.FormEvent<HTMLTextAreaElement>) => void; // Input handler
}
@@ -46,6 +47,7 @@ export interface ChatTextareaApi {
export function useChatTextarea(initValue: string): ChatTextareaApi {
const [savedInitValue, setSavedInitValue] = useState<string>(initValue);
const textareaRef = useRef<HTMLTextAreaElement>(null);
const onSubmitRef = useRef<(() => void) | null>(null);
// Effect to set initial value and height on mount or when initValue changes
useEffect(() => {
@@ -91,6 +93,7 @@ export function useChatTextarea(initValue: string): ChatTextareaApi {
}
},
ref: textareaRef,
refOnSubmit: onSubmitRef,
onInput: handleInput,
};
}

View File

@@ -33,6 +33,9 @@ export const useVSCodeContext = (textarea: ChatTextareaApi) => {
});
}
textarea.focus();
setTimeout(() => {
textarea.refOnSubmit.current?.();
}, 10); // wait for setExtraContext to finish
}
};