mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-12 14:03:20 +02:00
Compare commits
216 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
51fa76f172 | ||
|
|
12d0188c0d | ||
|
|
eb3949938e | ||
|
|
e562eece7c | ||
|
|
b47ab7b8e9 | ||
|
|
dd665cc9d4 | ||
|
|
df0c0c7d02 | ||
|
|
b49a8ff96b | ||
|
|
53f925074d | ||
|
|
db38704f01 | ||
|
|
07e4351ce6 | ||
|
|
291f2b6913 | ||
|
|
2c90da4c7e | ||
|
|
ec9e0301fe | ||
|
|
e83ba3e460 | ||
|
|
2b131621e6 | ||
|
|
54a2c7a8cd | ||
|
|
21fcc21ad5 | ||
|
|
dd8ba93416 | ||
|
|
66c92061f5 | ||
|
|
5ca82fc1d7 | ||
|
|
6385b843a8 | ||
|
|
1b8fb8152d | ||
|
|
53ae30640e | ||
|
|
763d06edb7 | ||
|
|
10961339b2 | ||
|
|
d98f2a35fc | ||
|
|
e0e3aa231d | ||
|
|
aa6dff05be | ||
|
|
c962ae3382 | ||
|
|
a3938fb53d | ||
|
|
f7873fc698 | ||
|
|
a68247439b | ||
|
|
26b79b6cb3 | ||
|
|
1e8659e65a | ||
|
|
a3c30846e4 | ||
|
|
1701d4c54f | ||
|
|
bef8176387 | ||
|
|
34b7c0439e | ||
|
|
f3101a8cc6 | ||
|
|
1c49c70d07 | ||
|
|
a8ea03d8ad | ||
|
|
05f6ac6283 | ||
|
|
bc583e3c63 | ||
|
|
72b090da2c | ||
|
|
7fe03e7446 | ||
|
|
952f3953c1 | ||
|
|
81713121ee | ||
|
|
f9cd68398b | ||
|
|
4f81b33e32 | ||
|
|
cdf94a1802 | ||
|
|
a26c4cc11e | ||
|
|
4265a87b59 | ||
|
|
6f180b915c | ||
|
|
03f582ae8f | ||
|
|
88c125f2ac | ||
|
|
d74e94c1b3 | ||
|
|
f13847cfb5 | ||
|
|
79c137f776 | ||
|
|
22229314fc | ||
|
|
9012eb9b45 | ||
|
|
fef693dc6b | ||
|
|
2d38b6e400 | ||
|
|
e121edc432 | ||
|
|
2f099b510f | ||
|
|
aa50ba462f | ||
|
|
de2ef53a4b | ||
|
|
c508256db2 | ||
|
|
40aaa8a403 | ||
|
|
a08c1d2845 | ||
|
|
d785f9c1fd | ||
|
|
4032ca4066 | ||
|
|
515fdbf7ed | ||
|
|
f5cd27b71d | ||
|
|
a2d02d5793 | ||
|
|
17fc817b58 | ||
|
|
2bd1b30f69 | ||
|
|
259469c4b5 | ||
|
|
4c32832c59 | ||
|
|
c3a2624339 | ||
|
|
ffd0eae60b | ||
|
|
b775345d78 | ||
|
|
a70a8a69c2 | ||
|
|
d13d0f6135 | ||
|
|
8a2afb7520 | ||
|
|
9ecf3e66a3 | ||
|
|
faaaff5f94 | ||
|
|
e16c4731c7 | ||
|
|
1dcd01960c | ||
|
|
c10ed6cbcc | ||
|
|
a127ff1780 | ||
|
|
3079e9ac8e | ||
|
|
8a1d206f1d | ||
|
|
797990c4bc | ||
|
|
ab86335760 | ||
|
|
cc74d5be99 | ||
|
|
5be24af73d | ||
|
|
d394a9aedc | ||
|
|
6b56a64690 | ||
|
|
a4e8912dfd | ||
|
|
edbf42edfd | ||
|
|
d643bb2c79 | ||
|
|
8e186ef0e7 | ||
|
|
5fbfe384d4 | ||
|
|
c76532e7ba | ||
|
|
2aa777d86d | ||
|
|
eb0f5c28d3 | ||
|
|
cf4cb59e64 | ||
|
|
0d5c742161 | ||
|
|
42158ae2e8 | ||
|
|
797f2ac062 | ||
|
|
b44890df2e | ||
|
|
33983057d0 | ||
|
|
fb1cab201c | ||
|
|
b7a17463ec | ||
|
|
be0239693c | ||
|
|
a4090d1174 | ||
|
|
b69f1647f9 | ||
|
|
759e37b0d8 | ||
|
|
4245e622e0 | ||
|
|
c9c64dee57 | ||
|
|
c00a2634be | ||
|
|
e298d2fbd0 | ||
|
|
f0adb80bf7 | ||
|
|
f7c9429c85 | ||
|
|
1dfbf2cf3a | ||
|
|
8960efd0a6 | ||
|
|
725f23f1f3 | ||
|
|
92ecdcc06a | ||
|
|
f71f40a284 | ||
|
|
d30cb5a7fa | ||
|
|
6c35981a64 | ||
|
|
8b5e19aea6 | ||
|
|
60aea028b5 | ||
|
|
9c55e5c5c2 | ||
|
|
33d7aed4a8 | ||
|
|
6a2bc8bfb7 | ||
|
|
e3a7cf6c5b | ||
|
|
518329b2d4 | ||
|
|
2f5a4e1e09 | ||
|
|
4f41ee11d6 | ||
|
|
3e0be1cace | ||
|
|
6aa892ec2a | ||
|
|
aea9f8b4e7 | ||
|
|
06c1e4abc1 | ||
|
|
415e40a357 | ||
|
|
654a67794f | ||
|
|
5364ae4ba5 | ||
|
|
7c07ac244d | ||
|
|
0a338ed013 | ||
|
|
bc098c3cf0 | ||
|
|
c6a2c9e741 | ||
|
|
07ad2b6db3 | ||
|
|
c531edfa34 | ||
|
|
02cdd2d8b0 | ||
|
|
64bb51cf90 | ||
|
|
9c404ed54c | ||
|
|
6c8b91500e | ||
|
|
3cc1f1f1d2 | ||
|
|
c753d7bed0 | ||
|
|
b2838049cc | ||
|
|
aa48e373f2 | ||
|
|
e3a9421b78 | ||
|
|
5ab5d5fb25 | ||
|
|
3198405e98 | ||
|
|
f5170c1d7a | ||
|
|
017f10b5fa | ||
|
|
4696d56749 | ||
|
|
b7d2672082 | ||
|
|
6da34fa276 | ||
|
|
5e7d95e22e | ||
|
|
053174436f | ||
|
|
360a9c98e1 | ||
|
|
09d13d94fb | ||
|
|
24e86cae72 | ||
|
|
bb1681fbd5 | ||
|
|
d486dd3e8e | ||
|
|
21ca987fba | ||
|
|
be1d4a13db | ||
|
|
ab3971f2a0 | ||
|
|
e5c834f718 | ||
|
|
71bdbdb587 | ||
|
|
f0995d28ce | ||
|
|
c252e0c409 | ||
|
|
4f711afed5 | ||
|
|
b89d605a91 | ||
|
|
b4726345ac | ||
|
|
bf79371120 | ||
|
|
d590cd4c24 | ||
|
|
1e2809bc4b | ||
|
|
cf0a43bb64 | ||
|
|
f0d46ef157 | ||
|
|
de4c07f937 | ||
|
|
10d2af0eaa | ||
|
|
064cc596ac | ||
|
|
91159ee9df | ||
|
|
22cdab343b | ||
|
|
a71a4075cd | ||
|
|
95e18884fc | ||
|
|
df8491922f | ||
|
|
14492144c2 | ||
|
|
c104023994 | ||
|
|
9a390c4829 | ||
|
|
09232370fc | ||
|
|
7474e00b34 | ||
|
|
7f323a589f | ||
|
|
3eac209319 | ||
|
|
a634d75d1b | ||
|
|
62d4250e52 | ||
|
|
0208355f42 | ||
|
|
d2a4ef05c6 | ||
|
|
15e6125a39 | ||
|
|
3b24d26c22 | ||
|
|
43dfd741a5 | ||
|
|
b064a51a4e | ||
|
|
053367d149 |
@@ -1,4 +1,4 @@
|
||||
ARG ONEAPI_VERSION=2025.0.0-0-devel-ubuntu22.04
|
||||
ARG ONEAPI_VERSION=2025.1.1-0-devel-ubuntu24.04
|
||||
|
||||
## Build Image
|
||||
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG MUSA_VERSION=rc3.1.1
|
||||
ARG MUSA_VERSION=rc4.0.1
|
||||
# Target the MUSA build image
|
||||
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-mudnn-devel-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
ARG BASE_MUSA_RUN_CONTAINER=mthreads/musa:${MUSA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
|
||||
ARG BASE_MUSA_RUN_CONTAINER=mthreads/musa:${MUSA_VERSION}-mudnn-runtime-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
FROM ${BASE_MUSA_DEV_CONTAINER} AS build
|
||||
|
||||
@@ -21,21 +21,14 @@ RUN apt-get update && \
|
||||
libcurl4-openssl-dev \
|
||||
libgomp1
|
||||
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements requirements
|
||||
|
||||
RUN pip install --upgrade pip setuptools wheel \
|
||||
&& pip install -r requirements.txt
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
# Use the default MUSA archs if not specified
|
||||
RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_BUILD_TESTS=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_BUILD_TESTS=OFF ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib && \
|
||||
|
||||
@@ -48,3 +48,7 @@ end_of_line = unset
|
||||
charset = unset
|
||||
trim_trailing_whitespace = unset
|
||||
insert_final_newline = unset
|
||||
|
||||
[vendor/miniaudio/miniaudio.h]
|
||||
trim_trailing_whitespace = unset
|
||||
insert_final_newline = unset
|
||||
|
||||
@@ -5,6 +5,10 @@ inputs:
|
||||
description: 'CURL version'
|
||||
required: false
|
||||
default: '8.6.0_6'
|
||||
architecture:
|
||||
description: 'Architecture of the libcurl to download'
|
||||
required: false
|
||||
default: 'win64'
|
||||
outputs:
|
||||
curl_path:
|
||||
description: "Path to the downloaded libcurl"
|
||||
@@ -18,8 +22,9 @@ runs:
|
||||
shell: powershell
|
||||
env:
|
||||
CURL_VERSION: ${{ inputs.curl_version }}
|
||||
ARCHITECTURE: ${{ inputs.architecture }}
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/curl.zip -L "https://curl.se/windows/dl-${env:CURL_VERSION}/curl-${env:CURL_VERSION}-win64-mingw.zip"
|
||||
curl.exe -o $env:RUNNER_TEMP/curl.zip -L "https://curl.se/windows/dl-${env:CURL_VERSION}/curl-${env:CURL_VERSION}-${env:ARCHITECTURE}-mingw.zip"
|
||||
mkdir $env:RUNNER_TEMP/libcurl
|
||||
tar.exe -xvf $env:RUNNER_TEMP/curl.zip --strip-components=1 -C $env:RUNNER_TEMP/libcurl
|
||||
echo "curl_path=$env:RUNNER_TEMP/libcurl" >> $env:GITHUB_OUTPUT
|
||||
|
||||
109
.github/workflows/build-linux-cross.yml
vendored
109
.github/workflows/build-linux-cross.yml
vendored
@@ -26,12 +26,12 @@ jobs:
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
gcc-14-riscv64-linux-gnu \
|
||||
g++-14-riscv64-linux-gnu \
|
||||
libcurl4-openssl-dev:riscv64
|
||||
g++-14-riscv64-linux-gnu
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
cmake -B build -DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
@@ -72,12 +72,12 @@ jobs:
|
||||
glslc \
|
||||
gcc-14-riscv64-linux-gnu \
|
||||
g++-14-riscv64-linux-gnu \
|
||||
libvulkan-dev:riscv64 \
|
||||
libcurl4-openssl-dev:riscv64
|
||||
libvulkan-dev:riscv64
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
cmake -B build -DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
@@ -118,12 +118,12 @@ jobs:
|
||||
build-essential \
|
||||
glslc \
|
||||
crossbuild-essential-arm64 \
|
||||
libvulkan-dev:arm64 \
|
||||
libcurl4-openssl-dev:arm64
|
||||
libvulkan-dev:arm64
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
cmake -B build -DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
@@ -140,3 +140,94 @@ jobs:
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
ubuntu-24-ppc64el-cpu-cross:
|
||||
runs-on: ubuntu-24.04
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Setup PowerPC64le
|
||||
run: |
|
||||
sudo dpkg --add-architecture ppc64el
|
||||
|
||||
# Add arch-specific repositories for non-amd64 architectures
|
||||
cat << EOF | sudo tee /etc/apt/sources.list.d/ppc64el-ports.list
|
||||
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
|
||||
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
|
||||
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
|
||||
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
|
||||
EOF
|
||||
|
||||
sudo apt-get update || true ;# Prevent failure due to missing URLs.
|
||||
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
gcc-14-powerpc64le-linux-gnu \
|
||||
g++-14-powerpc64le-linux-gnu
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=ppc64 \
|
||||
-DCMAKE_C_COMPILER=powerpc64le-linux-gnu-gcc-14 \
|
||||
-DCMAKE_CXX_COMPILER=powerpc64le-linux-gnu-g++-14 \
|
||||
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
-DCMAKE_FIND_ROOT_PATH=/usr/lib/powerpc64le-linux-gnu \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
ubuntu-24-ppc64el-vulkan-cross:
|
||||
runs-on: ubuntu-24.04
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Setup PowerPC64le
|
||||
run: |
|
||||
sudo dpkg --add-architecture ppc64el
|
||||
|
||||
# Add arch-specific repositories for non-amd64 architectures
|
||||
cat << EOF | sudo tee /etc/apt/sources.list.d/ppc64el-ports.list
|
||||
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
|
||||
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
|
||||
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
|
||||
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
|
||||
EOF
|
||||
|
||||
sudo apt-get update || true ;# Prevent failure due to missing URLs.
|
||||
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
glslc \
|
||||
gcc-14-powerpc64le-linux-gnu \
|
||||
g++-14-powerpc64le-linux-gnu \
|
||||
libvulkan-dev:ppc64el
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=ppc64 \
|
||||
-DCMAKE_C_COMPILER=powerpc64le-linux-gnu-gcc-14 \
|
||||
-DCMAKE_CXX_COMPILER=powerpc64le-linux-gnu-g++-14 \
|
||||
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
-DCMAKE_FIND_ROOT_PATH=/usr/lib/powerpc64le-linux-gnu \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
4
.github/workflows/build.yml
vendored
4
.github/workflows/build.yml
vendored
@@ -351,7 +351,7 @@ jobs:
|
||||
|
||||
ubuntu-22-cmake-musa:
|
||||
runs-on: ubuntu-22.04
|
||||
container: mthreads/musa:rc3.1.1-devel-ubuntu22.04
|
||||
container: mthreads/musa:rc4.0.1-mudnn-devel-ubuntu22.04
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@@ -899,7 +899,7 @@ jobs:
|
||||
shell: bash
|
||||
|
||||
env:
|
||||
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/b380d914-366b-4b77-a74a-05e3c38b3514/intel-oneapi-base-toolkit-2025.0.0.882_offline.exe
|
||||
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/7cd9bba0-7aab-4e30-b3ae-2221006a4a05/intel-oneapi-base-toolkit-2025.1.1.34_offline.exe
|
||||
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel:intel.oneapi.win.dnnl:intel.oneapi.win.tbb.devel
|
||||
ONEAPI_ROOT: "C:/Program Files (x86)/Intel/oneAPI"
|
||||
steps:
|
||||
|
||||
3
.github/workflows/docker.yml
vendored
3
.github/workflows/docker.yml
vendored
@@ -42,8 +42,7 @@ jobs:
|
||||
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
|
||||
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
|
||||
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true }
|
||||
# Note: the intel images are failing due to an out of disk space error
|
||||
# - { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
|
||||
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true }
|
||||
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
|
||||
# Note: the rocm images are failing due to a compiler error and are disabled until this is fixed to allow the workflow to complete
|
||||
#- {tag: "rocm", dockerfile: ".devops/rocm.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: true }
|
||||
|
||||
281
.github/workflows/release.yml
vendored
281
.github/workflows/release.yml
vendored
@@ -1,4 +1,4 @@
|
||||
name: Create Release
|
||||
name: Release
|
||||
|
||||
on:
|
||||
workflow_dispatch: # allows manual triggering
|
||||
@@ -227,6 +227,69 @@ jobs:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip
|
||||
name: llama-bin-ubuntu-vulkan-x64.zip
|
||||
|
||||
windows-cpu:
|
||||
runs-on: windows-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- arch: 'x64'
|
||||
- arch: 'arm64'
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
with:
|
||||
key: windows-latest-cmake-cpu-${{ matrix.arch }}
|
||||
variant: ccache
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Install Ninja
|
||||
run: |
|
||||
choco install ninja
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
with:
|
||||
architecture: ${{ matrix.arch == 'x64' && 'win64' || 'win64a' }}
|
||||
|
||||
- name: Build
|
||||
shell: cmd
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" ${{ matrix.arch }}
|
||||
cmake -S . -B build -G "Ninja Multi-Config" ^
|
||||
-D CMAKE_TOOLCHAIN_FILE=cmake/${{ matrix.arch }}-windows-llvm.cmake ^
|
||||
-DGGML_NATIVE=OFF ^
|
||||
-DGGML_BACKEND_DL=ON ^
|
||||
-DGGML_CPU_ALL_VARIANTS=${{ matrix.arch == 'x64' && 'ON' || 'OFF' }} ^
|
||||
-DGGML_OPENMP=ON ^
|
||||
-DCURL_LIBRARY="%CURL_PATH%/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="%CURL_PATH%/include" ^
|
||||
${{ env.CMAKE_ARGS }}
|
||||
cmake --build build --config Release
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
Copy-Item $env:CURL_PATH\bin\libcurl-${{ matrix.arch }}.dll .\build\bin\Release\
|
||||
Copy-Item "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Redist\MSVC\14.42.34433\debug_nonredist\${{ matrix.arch }}\Microsoft.VC143.OpenMP.LLVM\libomp140.${{ matrix.arch == 'x64' && 'x86_64' || 'aarch64' }}.dll" .\build\bin\Release\
|
||||
7z a llama-bin-win-cpu-${{ matrix.arch }}.zip .\build\bin\Release\*
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-bin-win-cpu-${{ matrix.arch }}.zip
|
||||
name: llama-bin-win-cpu-${{ matrix.arch }}.zip
|
||||
|
||||
windows:
|
||||
runs-on: windows-latest
|
||||
|
||||
@@ -237,47 +300,30 @@ jobs:
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build: 'cpu-x64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF'
|
||||
#- build: 'openblas-x64'
|
||||
# defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
|
||||
- build: 'vulkan-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON'
|
||||
- build: 'cpu-arm64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF'
|
||||
- build: 'opencl-adreno-arm64'
|
||||
- backend: 'vulkan'
|
||||
arch: 'x64'
|
||||
defines: '-DGGML_VULKAN=ON'
|
||||
target: 'ggml-vulkan'
|
||||
- backend: 'opencl-adreno'
|
||||
arch: 'arm64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON'
|
||||
target: 'ggml-opencl'
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
with:
|
||||
key: windows-latest-cmake-${{ matrix.build }}
|
||||
key: windows-latest-cmake-${{ matrix.backend }}-${{ matrix.arch }}
|
||||
variant: ccache
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Download OpenBLAS
|
||||
id: get_openblas
|
||||
if: ${{ matrix.build == 'openblas-x64' }}
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/openblas.zip -L "https://github.com/xianyi/OpenBLAS/releases/download/v${env:OPENBLAS_VERSION}/OpenBLAS-${env:OPENBLAS_VERSION}-x64.zip"
|
||||
curl.exe -o $env:RUNNER_TEMP/OpenBLAS.LICENSE.txt -L "https://github.com/xianyi/OpenBLAS/raw/v${env:OPENBLAS_VERSION}/LICENSE"
|
||||
mkdir $env:RUNNER_TEMP/openblas
|
||||
tar.exe -xvf $env:RUNNER_TEMP/openblas.zip -C $env:RUNNER_TEMP/openblas
|
||||
$vcdir = $(vswhere -latest -products * -requires Microsoft.VisualStudio.Component.VC.Tools.x86.x64 -property installationPath)
|
||||
$msvc = $(join-path $vcdir $('VC\Tools\MSVC\'+$(gc -raw $(join-path $vcdir 'VC\Auxiliary\Build\Microsoft.VCToolsVersion.default.txt')).Trim()))
|
||||
$lib = $(join-path $msvc 'bin\Hostx64\x64\lib.exe')
|
||||
& $lib /machine:x64 "/def:${env:RUNNER_TEMP}/openblas/lib/libopenblas.def" "/out:${env:RUNNER_TEMP}/openblas/lib/openblas.lib" /name:openblas.dll
|
||||
|
||||
- name: Install Vulkan SDK
|
||||
id: get_vulkan
|
||||
if: ${{ matrix.build == 'vulkan-x64' }}
|
||||
if: ${{ matrix.backend == 'vulkan' }}
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/VulkanSDK-Installer.exe -L "https://sdk.lunarg.com/sdk/download/${env:VULKAN_VERSION}/windows/VulkanSDK-${env:VULKAN_VERSION}-Installer.exe"
|
||||
& "$env:RUNNER_TEMP\VulkanSDK-Installer.exe" --accept-licenses --default-answer --confirm-command install
|
||||
@@ -291,7 +337,7 @@ jobs:
|
||||
|
||||
- name: Install OpenCL Headers and Libs
|
||||
id: install_opencl
|
||||
if: ${{ matrix.build == 'opencl-adreno-arm64' }}
|
||||
if: ${{ matrix.backend == 'opencl-adreno' && matrix.arch == 'arm64' }}
|
||||
run: |
|
||||
git clone https://github.com/KhronosGroup/OpenCL-Headers
|
||||
cd OpenCL-Headers
|
||||
@@ -309,44 +355,22 @@ jobs:
|
||||
-DCMAKE_INSTALL_PREFIX="$env:RUNNER_TEMP/opencl-arm64-release"
|
||||
cmake --build build-arm64-release --target install --config release
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cmake -S . -B build ${{ matrix.defines }} `
|
||||
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include" `
|
||||
${{ env.CMAKE_ARGS }}
|
||||
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS}
|
||||
|
||||
- name: Add libopenblas.dll
|
||||
id: add_libopenblas_dll
|
||||
if: ${{ matrix.build == 'openblas-x64' }}
|
||||
run: |
|
||||
cp $env:RUNNER_TEMP/openblas/bin/libopenblas.dll ./build/bin/Release/openblas.dll
|
||||
cp $env:RUNNER_TEMP/OpenBLAS.LICENSE.txt ./build/bin/Release/OpenBLAS-${env:OPENBLAS_VERSION}.txt
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
uses: ./.github/actions/get-tag-name
|
||||
cmake -S . -B build ${{ matrix.defines }} -DGGML_NATIVE=OFF -DGGML_CPU=OFF -DGGML_BACKEND_DL=ON -DLLAMA_CURL=OFF
|
||||
cmake --build build --config Release --target ${{ matrix.target }}
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
Copy-Item $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\Release\libcurl-x64.dll
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}.zip .\build\bin\Release\*
|
||||
7z a llama-bin-win-${{ matrix.backend }}-${{ matrix.arch }}.zip .\build\bin\Release\${{ matrix.target }}.dll
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}.zip
|
||||
name: llama-bin-win-${{ matrix.build }}.zip
|
||||
path: llama-bin-win-${{ matrix.backend }}-${{ matrix.arch }}.zip
|
||||
name: llama-bin-win-${{ matrix.backend }}-${{ matrix.arch }}.zip
|
||||
|
||||
windows-cuda:
|
||||
runs-on: windows-2019
|
||||
@@ -359,8 +383,6 @@ jobs:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Install ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
@@ -379,45 +401,30 @@ jobs:
|
||||
run: |
|
||||
choco install ninja
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
shell: cmd
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
|
||||
cmake -S . -B build -G "Ninja Multi-Config" ^
|
||||
-DGGML_NATIVE=OFF ^
|
||||
-DGGML_BACKEND_DL=ON ^
|
||||
-DGGML_CPU_ALL_VARIANTS=ON ^
|
||||
-DGGML_NATIVE=OFF ^
|
||||
-DGGML_CPU=OFF ^
|
||||
-DGGML_CUDA=ON ^
|
||||
-DCURL_LIBRARY="%CURL_PATH%/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="%CURL_PATH%/include" ^
|
||||
${{ env.CMAKE_ARGS }}
|
||||
-DLLAMA_CURL=OFF
|
||||
set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1
|
||||
cmake --build build --config Release -j %NINJA_JOBS% -t ggml
|
||||
cmake --build build --config Release
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
uses: ./.github/actions/get-tag-name
|
||||
cmake --build build --config Release -j %NINJA_JOBS% --target ggml-cuda
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cp $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\Release\libcurl-x64.dll
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-cuda${{ matrix.cuda }}-x64.zip .\build\bin\Release\*
|
||||
7z a llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip .\build\bin\Release\ggml-cuda.dll
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-win-cuda${{ matrix.cuda }}-x64.zip
|
||||
name: llama-bin-win-cuda${{ matrix.cuda }}-x64.zip
|
||||
path: llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip
|
||||
name: llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip
|
||||
|
||||
- name: Copy and pack Cuda runtime
|
||||
run: |
|
||||
@@ -425,13 +432,13 @@ jobs:
|
||||
$dst='.\build\bin\cudart\'
|
||||
robocopy "${{env.CUDA_PATH}}\bin" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
|
||||
robocopy "${{env.CUDA_PATH}}\lib" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
|
||||
7z a cudart-llama-bin-win-cuda${{ matrix.cuda }}-x64.zip $dst\*
|
||||
7z a cudart-llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip $dst\*
|
||||
|
||||
- name: Upload Cuda runtime
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: cudart-llama-bin-win-cuda${{ matrix.cuda }}-x64.zip
|
||||
name: cudart-llama-bin-win-cuda${{ matrix.cuda }}-x64.zip
|
||||
path: cudart-llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip
|
||||
name: cudart-llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip
|
||||
|
||||
windows-sycl:
|
||||
runs-on: windows-latest
|
||||
@@ -441,15 +448,14 @@ jobs:
|
||||
shell: bash
|
||||
|
||||
env:
|
||||
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/b380d914-366b-4b77-a74a-05e3c38b3514/intel-oneapi-base-toolkit-2025.0.0.882_offline.exe
|
||||
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/7cd9bba0-7aab-4e30-b3ae-2221006a4a05/intel-oneapi-base-toolkit-2025.1.1.34_offline.exe
|
||||
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel:intel.oneapi.win.dnnl:intel.oneapi.win.tbb.devel
|
||||
ONEAPI_ROOT: "C:/Program Files (x86)/Intel/oneAPI"
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
@@ -462,15 +468,18 @@ jobs:
|
||||
run: |
|
||||
scripts/install-oneapi.bat $WINDOWS_BASEKIT_URL $WINDOWS_DPCPP_MKL
|
||||
|
||||
# TODO: add libcurl support ; we will also need to modify win-build-sycl.bat to accept user-specified args
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: examples/sycl/win-build-sycl.bat
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
uses: ./.github/actions/get-tag-name
|
||||
shell: cmd
|
||||
run: |
|
||||
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
|
||||
cmake -G "Ninja" -B build ^
|
||||
-DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx ^
|
||||
-DCMAKE_BUILD_TYPE=Release ^
|
||||
-DGGML_BACKEND_DL=ON -DBUILD_SHARED_LIBS=ON ^
|
||||
-DGGML_CPU=OFF -DGGML_SYCL=ON ^
|
||||
-DLLAMA_CURL=OFF
|
||||
cmake --build build --target ggml-sycl -j
|
||||
|
||||
- name: Build the release package
|
||||
id: pack_artifacts
|
||||
@@ -495,12 +504,12 @@ jobs:
|
||||
cp "${{ env.ONEAPI_ROOT }}/tbb/latest/bin/tbb12.dll" ./build/bin
|
||||
|
||||
echo "cp oneAPI running time dll files to ./build/bin done"
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip ./build/bin/*
|
||||
7z a llama-bin-win-sycl-x64.zip ./build/bin/*
|
||||
|
||||
- name: Upload the release package
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip
|
||||
path: llama-bin-win-sycl-x64.zip
|
||||
name: llama-bin-win-sycl-x64.zip
|
||||
|
||||
windows-hip:
|
||||
@@ -508,14 +517,14 @@ jobs:
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
gpu_target: [gfx1100, gfx1101, gfx1030]
|
||||
include:
|
||||
- name: "radeon"
|
||||
gpu_targets: "gfx1100;gfx1101;gfx1102;gfx1030;gfx1031;gfx1032"
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Clone rocWMMA repository
|
||||
id: clone_rocwmma
|
||||
@@ -525,7 +534,7 @@ jobs:
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
with:
|
||||
key: windows-latest-cmake-hip-release
|
||||
key: windows-latest-cmake-hip-${{ matrix.name }}-x64
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Install
|
||||
@@ -543,50 +552,39 @@ jobs:
|
||||
run: |
|
||||
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
|
||||
cmake -G "Unix Makefiles" -B build -S . `
|
||||
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
|
||||
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
|
||||
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/rocwmma/library/include/" `
|
||||
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/rocwmma/library/include/ -Wno-ignored-attributes -Wno-nested-anon-types" `
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DAMDGPU_TARGETS=${{ matrix.gpu_target }} `
|
||||
-DGGML_BACKEND_DL=ON `
|
||||
-DGGML_NATIVE=OFF `
|
||||
-DGGML_CPU=OFF `
|
||||
-DAMDGPU_TARGETS="${{ matrix.gpu_targets }}" `
|
||||
-DGGML_HIP_ROCWMMA_FATTN=ON `
|
||||
-DGGML_HIP=ON `
|
||||
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include" `
|
||||
${{ env.CMAKE_ARGS }}
|
||||
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
|
||||
-DLLAMA_CURL=OFF
|
||||
cmake --build build --target ggml-hip -j ${env:NUMBER_OF_PROCESSORS}
|
||||
md "build\bin\rocblas\library\"
|
||||
cp "${env:HIP_PATH}\bin\hipblas.dll" "build\bin\"
|
||||
cp "${env:HIP_PATH}\bin\rocblas.dll" "build\bin\"
|
||||
cp "${env:HIP_PATH}\bin\rocblas\library\*" "build\bin\rocblas\library\"
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
uses: ./.github/actions/get-tag-name
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cp $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\libcurl-x64.dll
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-hip-x64-${{ matrix.gpu_target }}.zip .\build\bin\*
|
||||
7z a llama-bin-win-hip-${{ matrix.name }}-x64.zip .\build\bin\*
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-win-hip-x64-${{ matrix.gpu_target }}.zip
|
||||
name: llama-bin-win-hip-x64-${{ matrix.gpu_target }}.zip
|
||||
path: llama-bin-win-hip-${{ matrix.name }}-x64.zip
|
||||
name: llama-bin-win-hip-${{ matrix.name }}-x64.zip
|
||||
|
||||
ios-xcode-build:
|
||||
runs-on: macos-latest
|
||||
@@ -648,14 +646,16 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
needs:
|
||||
- ubuntu-22-cpu
|
||||
- ubuntu-22-vulkan
|
||||
- windows
|
||||
- windows-cpu
|
||||
- windows-cuda
|
||||
- windows-sycl
|
||||
- windows-hip
|
||||
- ubuntu-22-cpu
|
||||
- ubuntu-22-vulkan
|
||||
- macOS-arm64
|
||||
- macOS-x64
|
||||
- ios-xcode-build
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@@ -673,10 +673,43 @@ jobs:
|
||||
uses: actions/download-artifact@v4
|
||||
with:
|
||||
path: ./artifact
|
||||
merge-multiple: true
|
||||
|
||||
- name: Move artifacts
|
||||
id: move_artifacts
|
||||
run: mkdir -p ./artifact/release && mv ./artifact/*/*.zip ./artifact/release
|
||||
run: |
|
||||
mkdir -p release
|
||||
|
||||
echo "Adding CPU backend files to existing zips..."
|
||||
for arch in x64 arm64; do
|
||||
cpu_zip="artifact/llama-bin-win-cpu-${arch}.zip"
|
||||
temp_dir=$(mktemp -d)
|
||||
echo "Extracting CPU backend for $arch..."
|
||||
unzip "$cpu_zip" -d "$temp_dir"
|
||||
|
||||
echo "Adding CPU files to $arch zips..."
|
||||
for target_zip in artifact/llama-bin-win-*-${arch}.zip; do
|
||||
if [[ "$target_zip" == "$cpu_zip" ]]; then
|
||||
continue
|
||||
fi
|
||||
echo "Adding CPU backend to $(basename "$target_zip")"
|
||||
realpath_target_zip=$(realpath "$target_zip")
|
||||
(cd "$temp_dir" && zip -r "$realpath_target_zip" .)
|
||||
done
|
||||
|
||||
rm -rf "$temp_dir"
|
||||
done
|
||||
|
||||
echo "Renaming and moving zips to release..."
|
||||
for zip_file in artifact/llama-bin-win-*.zip; do
|
||||
base_name=$(basename "$zip_file" .zip)
|
||||
zip_name="llama-${{ steps.tag.outputs.name }}-${base_name#llama-}.zip"
|
||||
echo "Moving $zip_file to release/$zip_name"
|
||||
mv "$zip_file" "release/$zip_name"
|
||||
done
|
||||
|
||||
echo "Moving other artifacts..."
|
||||
mv -v artifact/*.zip release
|
||||
|
||||
- name: Create release
|
||||
id: create_release
|
||||
@@ -695,7 +728,7 @@ jobs:
|
||||
const path = require('path');
|
||||
const fs = require('fs');
|
||||
const release_id = '${{ steps.create_release.outputs.id }}';
|
||||
for (let file of await fs.readdirSync('./artifact/release')) {
|
||||
for (let file of await fs.readdirSync('./release')) {
|
||||
if (path.extname(file) === '.zip') {
|
||||
console.log('uploadReleaseAsset', file);
|
||||
await github.repos.uploadReleaseAsset({
|
||||
@@ -703,7 +736,7 @@ jobs:
|
||||
repo: context.repo.repo,
|
||||
release_id: release_id,
|
||||
name: file,
|
||||
data: await fs.readFileSync(`./artifact/release/${file}`)
|
||||
data: await fs.readFileSync(`./release/${file}`)
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
42
.github/workflows/winget.yml
vendored
Normal file
42
.github/workflows/winget.yml
vendored
Normal file
@@ -0,0 +1,42 @@
|
||||
name: Update Winget Package
|
||||
|
||||
on:
|
||||
workflow_dispatch: # allows manual triggering
|
||||
schedule:
|
||||
- cron: '28 5 * * *' # Update every day at 5:28 UTC
|
||||
|
||||
jobs:
|
||||
update:
|
||||
name: Update Winget Package
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Install cargo binstall
|
||||
uses: cargo-bins/cargo-binstall@268643a6b5ea099f5718ee5cd3ff7dc89a5eb49b
|
||||
|
||||
- name: Install komac
|
||||
run: |
|
||||
cargo binstall komac@2.11.2 -y
|
||||
|
||||
- name: Find latest release
|
||||
id: find_latest_release
|
||||
uses: actions/github-script@v6
|
||||
with:
|
||||
script: |
|
||||
const { data: releases } = await github.rest.repos.listReleases({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
});
|
||||
console.log("Latest release:", releases[0].tag_name);
|
||||
return releases[0].tag_name;
|
||||
|
||||
- name: Update manifest
|
||||
env:
|
||||
VERSION: ${{ steps.find_latest_release.outputs.result }}
|
||||
run: |
|
||||
echo "Updating manifest..."
|
||||
komac update --version ${{ env.VERSION }} \
|
||||
--urls "https://github.com/ggml-org/llama.cpp/releases/download/${{ env.VERSION }}/llama-${{ env.VERSION }}-bin-win-vulkan-x64.zip" \
|
||||
--token ${{ secrets.WINGET_GITHUB_TOKEN }} \
|
||||
--submit \
|
||||
ggml.llamacpp
|
||||
14
README.md
14
README.md
@@ -37,7 +37,7 @@ range of hardware - locally and in the cloud.
|
||||
- Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
|
||||
- AVX, AVX2, AVX512 and AMX support for x86 architectures
|
||||
- 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use
|
||||
- Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP and Moore Threads MTT GPUs via MUSA)
|
||||
- Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP and Moore Threads GPUs via MUSA)
|
||||
- Vulkan and SYCL backend support
|
||||
- CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity
|
||||
|
||||
@@ -237,7 +237,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
| [BLAS](docs/build.md#blas-build) | All |
|
||||
| [BLIS](docs/backend/BLIS.md) | All |
|
||||
| [SYCL](docs/backend/SYCL.md) | Intel and Nvidia GPU |
|
||||
| [MUSA](docs/build.md#musa) | Moore Threads MTT GPU |
|
||||
| [MUSA](docs/build.md#musa) | Moore Threads GPU |
|
||||
| [CUDA](docs/build.md#cuda) | Nvidia GPU |
|
||||
| [HIP](docs/build.md#hip) | AMD GPU |
|
||||
| [Vulkan](docs/build.md#vulkan) | GPU |
|
||||
@@ -572,4 +572,12 @@ automatically. For example:
|
||||
$ echo "source ~/.llama-completion.bash" >> ~/.bashrc
|
||||
```
|
||||
|
||||
## References
|
||||
## Dependencies
|
||||
|
||||
- [yhirose/cpp-httplib](https://github.com/yhirose/cpp-httplib) - Single-header HTTP server, used by `llama-server` - MIT license
|
||||
- [stb-image](https://github.com/nothings/stb) - Single-header image format decoder, used by multimodal subsystem - Public domain
|
||||
- [nlohmann/json](https://github.com/nlohmann/json) - Single-header JSON library, used by various tools/examples - MIT License
|
||||
- [minja](https://github.com/google/minja) - Minimal Jinja parser in C++, used by various tools/examples - MIT License
|
||||
- [linenoise.cpp](./tools/run/linenoise.cpp/linenoise.cpp) - C++ library that provides readline-like line editing capabilities, used by `llama-run` - BSD 2-Clause License
|
||||
- [curl](https://curl.se/) - Client-side URL transfer library, used by various tools/examples - [CURL License](https://curl.se/docs/copyright.html)
|
||||
- [miniaudio.h](https://github.com/mackron/miniaudio) - Single-header audio format decoder, used by multimodal subsystem - Public domain
|
||||
|
||||
@@ -117,6 +117,7 @@ setup_framework_structure() {
|
||||
# Copy all required headers (common for all platforms)
|
||||
cp include/llama.h ${header_path}
|
||||
cp ggml/include/ggml.h ${header_path}
|
||||
cp ggml/include/ggml-opt.h ${header_path}
|
||||
cp ggml/include/ggml-alloc.h ${header_path}
|
||||
cp ggml/include/ggml-backend.h ${header_path}
|
||||
cp ggml/include/ggml-metal.h ${header_path}
|
||||
|
||||
@@ -54,7 +54,7 @@ docker run --privileged -it \
|
||||
-v $HOME/llama.cpp/ci-cache:/ci-cache \
|
||||
-v $HOME/llama.cpp/ci-results:/ci-results \
|
||||
-v $PWD:/ws -w /ws \
|
||||
mthreads/musa:rc3.1.1-devel-ubuntu22.04
|
||||
mthreads/musa:rc4.0.1-mudnn-devel-ubuntu22.04
|
||||
```
|
||||
|
||||
Inside the container, execute the following commands:
|
||||
|
||||
@@ -58,21 +58,24 @@ add_library(${TARGET} STATIC
|
||||
arg.cpp
|
||||
arg.h
|
||||
base64.hpp
|
||||
chat-parser.cpp
|
||||
chat-parser.h
|
||||
chat.cpp
|
||||
chat.h
|
||||
common.cpp
|
||||
common.h
|
||||
console.cpp
|
||||
console.h
|
||||
json-partial.cpp
|
||||
json-partial.h
|
||||
json-schema-to-grammar.cpp
|
||||
json.hpp
|
||||
llguidance.cpp
|
||||
log.cpp
|
||||
log.h
|
||||
minja/chat-template.hpp
|
||||
minja/minja.hpp
|
||||
ngram-cache.cpp
|
||||
ngram-cache.h
|
||||
regex-partial.cpp
|
||||
regex-partial.h
|
||||
sampling.cpp
|
||||
sampling.h
|
||||
speculative.cpp
|
||||
@@ -119,8 +122,8 @@ if (LLAMA_LLGUIDANCE)
|
||||
|
||||
ExternalProject_Add(llguidance_ext
|
||||
GIT_REPOSITORY https://github.com/guidance-ai/llguidance
|
||||
# v0.7.19 (+ fancy-regex build fix):
|
||||
GIT_TAG b59f98f85269892a7de3d3641ad155366f13daa6
|
||||
# v0.7.20 (+ fix to build on GCC 15):
|
||||
GIT_TAG b5b8b64dba11c4e4ee6b1d1450d3a3ae279891e8
|
||||
PREFIX ${CMAKE_BINARY_DIR}/llguidance
|
||||
SOURCE_DIR ${LLGUIDANCE_SRC}
|
||||
BUILD_IN_SOURCE TRUE
|
||||
@@ -141,7 +144,7 @@ if (LLAMA_LLGUIDANCE)
|
||||
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} llguidance ${LLGUIDANCE_PLATFORM_LIBS})
|
||||
endif ()
|
||||
|
||||
target_include_directories(${TARGET} PUBLIC .)
|
||||
target_include_directories(${TARGET} PUBLIC . ../vendor)
|
||||
target_compile_features (${TARGET} PUBLIC cxx_std_17)
|
||||
target_link_libraries (${TARGET} PRIVATE ${LLAMA_COMMON_EXTRA_LIBS} PUBLIC llama Threads::Threads)
|
||||
|
||||
|
||||
309
common/arg.cpp
309
common/arg.cpp
@@ -1,10 +1,11 @@
|
||||
#include "gguf.h" // for reading GGUF splits
|
||||
#include "arg.h"
|
||||
|
||||
#include "chat.h"
|
||||
#include "common.h"
|
||||
#include "gguf.h" // for reading GGUF splits
|
||||
#include "json-schema-to-grammar.h"
|
||||
#include "log.h"
|
||||
#include "sampling.h"
|
||||
#include "chat.h"
|
||||
|
||||
// fix problem with std::min and std::max
|
||||
#if defined(_WIN32)
|
||||
@@ -15,6 +16,9 @@
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
#define JSON_ASSERT GGML_ASSERT
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
#include <algorithm>
|
||||
#include <climits>
|
||||
#include <cstdarg>
|
||||
@@ -34,12 +38,10 @@
|
||||
#include <future>
|
||||
#endif
|
||||
|
||||
#include "json-schema-to-grammar.h"
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
std::initializer_list<enum llama_example> mmproj_examples = {
|
||||
LLAMA_EXAMPLE_LLAVA,
|
||||
LLAMA_EXAMPLE_MTMD,
|
||||
LLAMA_EXAMPLE_SERVER,
|
||||
};
|
||||
|
||||
@@ -242,7 +244,56 @@ static bool curl_perform_with_retry(const std::string & url, CURL * curl, int ma
|
||||
}
|
||||
|
||||
// download one single file from remote URL to local path
|
||||
static bool common_download_file_single(const std::string & url, const std::string & path, const std::string & bearer_token) {
|
||||
static bool common_download_file_single(const std::string & url, const std::string & path, const std::string & bearer_token, bool offline) {
|
||||
// Check if the file already exists locally
|
||||
auto file_exists = std::filesystem::exists(path);
|
||||
|
||||
// If the file exists, check its JSON metadata companion file.
|
||||
std::string metadata_path = path + ".json";
|
||||
nlohmann::json metadata; // TODO @ngxson : get rid of this json, use regex instead
|
||||
std::string etag;
|
||||
std::string last_modified;
|
||||
|
||||
if (file_exists) {
|
||||
if (offline) {
|
||||
LOG_INF("%s: using cached file (offline mode): %s\n", __func__, path.c_str());
|
||||
return true; // skip verification/downloading
|
||||
}
|
||||
// Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
|
||||
std::ifstream metadata_in(metadata_path);
|
||||
if (metadata_in.good()) {
|
||||
try {
|
||||
metadata_in >> metadata;
|
||||
LOG_DBG("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
|
||||
if (metadata.contains("etag") && metadata.at("etag").is_string()) {
|
||||
etag = metadata.at("etag");
|
||||
}
|
||||
if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
|
||||
last_modified = metadata.at("lastModified");
|
||||
}
|
||||
} catch (const nlohmann::json::exception & e) {
|
||||
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
|
||||
}
|
||||
}
|
||||
// if we cannot open the metadata file, we assume that the downloaded file is not valid (etag and last-modified are left empty, so we will download it again)
|
||||
} else {
|
||||
if (offline) {
|
||||
LOG_ERR("%s: required file is not available in cache (offline mode): %s\n", __func__, path.c_str());
|
||||
return false;
|
||||
}
|
||||
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
|
||||
}
|
||||
|
||||
// Send a HEAD request to retrieve the etag and last-modified headers
|
||||
struct common_load_model_from_url_headers {
|
||||
std::string etag;
|
||||
std::string last_modified;
|
||||
};
|
||||
|
||||
common_load_model_from_url_headers headers;
|
||||
bool head_request_ok = false;
|
||||
bool should_download = !file_exists; // by default, we should download if the file does not exist
|
||||
|
||||
// Initialize libcurl
|
||||
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
|
||||
curl_slist_ptr http_headers;
|
||||
@@ -269,91 +320,47 @@ static bool common_download_file_single(const std::string & url, const std::stri
|
||||
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
|
||||
#endif
|
||||
|
||||
// Check if the file already exists locally
|
||||
auto file_exists = std::filesystem::exists(path);
|
||||
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
|
||||
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
|
||||
common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
|
||||
|
||||
// If the file exists, check its JSON metadata companion file.
|
||||
std::string metadata_path = path + ".json";
|
||||
nlohmann::json metadata; // TODO @ngxson : get rid of this json, use regex instead
|
||||
std::string etag;
|
||||
std::string last_modified;
|
||||
static std::regex header_regex("([^:]+): (.*)\r\n");
|
||||
static std::regex etag_regex("ETag", std::regex_constants::icase);
|
||||
static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
|
||||
|
||||
if (file_exists) {
|
||||
// Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
|
||||
std::ifstream metadata_in(metadata_path);
|
||||
if (metadata_in.good()) {
|
||||
try {
|
||||
metadata_in >> metadata;
|
||||
LOG_DBG("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
|
||||
if (metadata.contains("etag") && metadata.at("etag").is_string()) {
|
||||
etag = metadata.at("etag");
|
||||
}
|
||||
if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
|
||||
last_modified = metadata.at("lastModified");
|
||||
}
|
||||
} catch (const nlohmann::json::exception & e) {
|
||||
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
|
||||
std::string header(buffer, n_items);
|
||||
std::smatch match;
|
||||
if (std::regex_match(header, match, header_regex)) {
|
||||
const std::string & key = match[1];
|
||||
const std::string & value = match[2];
|
||||
if (std::regex_match(key, match, etag_regex)) {
|
||||
headers->etag = value;
|
||||
} else if (std::regex_match(key, match, last_modified_regex)) {
|
||||
headers->last_modified = value;
|
||||
}
|
||||
}
|
||||
// if we cannot open the metadata file, we assume that the downloaded file is not valid (etag and last-modified are left empty, so we will download it again)
|
||||
} else {
|
||||
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
|
||||
}
|
||||
|
||||
// Send a HEAD request to retrieve the etag and last-modified headers
|
||||
struct common_load_model_from_url_headers {
|
||||
std::string etag;
|
||||
std::string last_modified;
|
||||
return n_items;
|
||||
};
|
||||
|
||||
common_load_model_from_url_headers headers;
|
||||
bool head_request_ok = false;
|
||||
bool should_download = !file_exists; // by default, we should download if the file does not exist
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
|
||||
|
||||
// get ETag to see if the remote file has changed
|
||||
{
|
||||
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
|
||||
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
|
||||
common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
|
||||
// we only allow retrying once for HEAD requests
|
||||
// this is for the use case of using running offline (no internet), retrying can be annoying
|
||||
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), 1, 0, "HEAD");
|
||||
if (!was_perform_successful) {
|
||||
head_request_ok = false;
|
||||
}
|
||||
|
||||
static std::regex header_regex("([^:]+): (.*)\r\n");
|
||||
static std::regex etag_regex("ETag", std::regex_constants::icase);
|
||||
static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
|
||||
|
||||
std::string header(buffer, n_items);
|
||||
std::smatch match;
|
||||
if (std::regex_match(header, match, header_regex)) {
|
||||
const std::string & key = match[1];
|
||||
const std::string & value = match[2];
|
||||
if (std::regex_match(key, match, etag_regex)) {
|
||||
headers->etag = value;
|
||||
} else if (std::regex_match(key, match, last_modified_regex)) {
|
||||
headers->last_modified = value;
|
||||
}
|
||||
}
|
||||
return n_items;
|
||||
};
|
||||
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
|
||||
|
||||
// we only allow retrying once for HEAD requests
|
||||
// this is for the use case of using running offline (no internet), retrying can be annoying
|
||||
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), 1, 0, "HEAD");
|
||||
if (!was_perform_successful) {
|
||||
head_request_ok = false;
|
||||
}
|
||||
|
||||
long http_code = 0;
|
||||
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
|
||||
if (http_code == 200) {
|
||||
head_request_ok = true;
|
||||
} else {
|
||||
LOG_WRN("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
|
||||
head_request_ok = false;
|
||||
}
|
||||
long http_code = 0;
|
||||
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
|
||||
if (http_code == 200) {
|
||||
head_request_ok = true;
|
||||
} else {
|
||||
LOG_WRN("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
|
||||
head_request_ok = false;
|
||||
}
|
||||
|
||||
// if head_request_ok is false, we don't have the etag or last-modified headers
|
||||
@@ -460,12 +467,12 @@ static bool common_download_file_single(const std::string & url, const std::stri
|
||||
|
||||
// download multiple files from remote URLs to local paths
|
||||
// the input is a vector of pairs <url, path>
|
||||
static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> & urls, const std::string & bearer_token) {
|
||||
static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> & urls, const std::string & bearer_token, bool offline) {
|
||||
// Prepare download in parallel
|
||||
std::vector<std::future<bool>> futures_download;
|
||||
for (auto const & item : urls) {
|
||||
futures_download.push_back(std::async(std::launch::async, [bearer_token](const std::pair<std::string, std::string> & it) -> bool {
|
||||
return common_download_file_single(it.first, it.second, bearer_token);
|
||||
futures_download.push_back(std::async(std::launch::async, [bearer_token, offline](const std::pair<std::string, std::string> & it) -> bool {
|
||||
return common_download_file_single(it.first, it.second, bearer_token, offline);
|
||||
}, item));
|
||||
}
|
||||
|
||||
@@ -481,14 +488,15 @@ static bool common_download_file_multiple(const std::vector<std::pair<std::strin
|
||||
|
||||
static bool common_download_model(
|
||||
const common_params_model & model,
|
||||
const std::string & bearer_token) {
|
||||
const std::string & bearer_token,
|
||||
bool offline) {
|
||||
// Basic validation of the model.url
|
||||
if (model.url.empty()) {
|
||||
LOG_ERR("%s: invalid model url\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!common_download_file_single(model.url, model.path, bearer_token)) {
|
||||
if (!common_download_file_single(model.url, model.path, bearer_token, offline)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -547,7 +555,7 @@ static bool common_download_model(
|
||||
}
|
||||
|
||||
// Download in parallel
|
||||
common_download_file_multiple(urls, bearer_token);
|
||||
common_download_file_multiple(urls, bearer_token, offline);
|
||||
}
|
||||
|
||||
return true;
|
||||
@@ -608,7 +616,7 @@ std::pair<long, std::vector<char>> common_remote_get_content(const std::string &
|
||||
*
|
||||
* Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
|
||||
*/
|
||||
static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & bearer_token) {
|
||||
static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & bearer_token, bool offline) {
|
||||
auto parts = string_split<std::string>(hf_repo_with_tag, ':');
|
||||
std::string tag = parts.size() > 1 ? parts.back() : "latest";
|
||||
std::string hf_repo = parts[0];
|
||||
@@ -638,20 +646,25 @@ static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_
|
||||
long res_code = 0;
|
||||
std::string res_str;
|
||||
bool use_cache = false;
|
||||
try {
|
||||
auto res = common_remote_get_content(url, params);
|
||||
res_code = res.first;
|
||||
res_str = std::string(res.second.data(), res.second.size());
|
||||
} catch (const std::exception & e) {
|
||||
LOG_WRN("error: failed to get manifest: %s\n", e.what());
|
||||
LOG_WRN("try reading from cache\n");
|
||||
// try to read from cache
|
||||
if (!offline) {
|
||||
try {
|
||||
auto res = common_remote_get_content(url, params);
|
||||
res_code = res.first;
|
||||
res_str = std::string(res.second.data(), res.second.size());
|
||||
} catch (const std::exception & e) {
|
||||
LOG_WRN("error: failed to get manifest at %s: %s\n", url.c_str(), e.what());
|
||||
}
|
||||
}
|
||||
if (res_code == 0) {
|
||||
if (std::filesystem::exists(cached_response_path)) {
|
||||
LOG_WRN("trying to read manifest from cache: %s\n", cached_response_path.c_str());
|
||||
res_str = read_file(cached_response_path);
|
||||
res_code = 200;
|
||||
use_cache = true;
|
||||
} catch (const std::exception & e) {
|
||||
throw std::runtime_error("error: failed to get manifest (check your internet connection)");
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
offline ? "error: failed to get manifest (offline mode)"
|
||||
: "error: failed to get manifest (check your internet connection)");
|
||||
}
|
||||
}
|
||||
std::string ggufFile;
|
||||
@@ -698,24 +711,25 @@ bool common_has_curl() {
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool common_download_file_single(const std::string &, const std::string &, const std::string &) {
|
||||
static bool common_download_file_single(const std::string &, const std::string &, const std::string &, bool) {
|
||||
LOG_ERR("error: built without CURL, cannot download model from internet\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> &, const std::string &) {
|
||||
static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> &, const std::string &, bool) {
|
||||
LOG_ERR("error: built without CURL, cannot download model from the internet\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool common_download_model(
|
||||
const common_params_model &,
|
||||
const std::string &) {
|
||||
const std::string &,
|
||||
bool) {
|
||||
LOG_ERR("error: built without CURL, cannot download model from the internet\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
static struct common_hf_file_res common_get_hf_file(const std::string &, const std::string &) {
|
||||
static struct common_hf_file_res common_get_hf_file(const std::string &, const std::string &, bool) {
|
||||
LOG_ERR("error: built without CURL, cannot download model from the internet\n");
|
||||
return {};
|
||||
}
|
||||
@@ -742,7 +756,8 @@ struct handle_model_result {
|
||||
static handle_model_result common_params_handle_model(
|
||||
struct common_params_model & model,
|
||||
const std::string & bearer_token,
|
||||
const std::string & model_path_default) {
|
||||
const std::string & model_path_default,
|
||||
bool offline) {
|
||||
handle_model_result result;
|
||||
// handle pre-fill default model path and url based on hf_repo and hf_file
|
||||
{
|
||||
@@ -750,7 +765,7 @@ static handle_model_result common_params_handle_model(
|
||||
// short-hand to avoid specifying --hf-file -> default it to --model
|
||||
if (model.hf_file.empty()) {
|
||||
if (model.path.empty()) {
|
||||
auto auto_detected = common_get_hf_file(model.hf_repo, bearer_token);
|
||||
auto auto_detected = common_get_hf_file(model.hf_repo, bearer_token, offline);
|
||||
if (auto_detected.repo.empty() || auto_detected.ggufFile.empty()) {
|
||||
exit(1); // built without CURL, error message already printed
|
||||
}
|
||||
@@ -791,7 +806,7 @@ static handle_model_result common_params_handle_model(
|
||||
|
||||
// then, download it if needed
|
||||
if (!model.url.empty()) {
|
||||
bool ok = common_download_model(model, bearer_token);
|
||||
bool ok = common_download_model(model, bearer_token, offline);
|
||||
if (!ok) {
|
||||
LOG_ERR("error: failed to download model from %s\n", model.url.c_str());
|
||||
exit(1);
|
||||
@@ -934,7 +949,7 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
|
||||
|
||||
// handle model and download
|
||||
{
|
||||
auto res = common_params_handle_model(params.model, params.hf_token, DEFAULT_MODEL_PATH);
|
||||
auto res = common_params_handle_model(params.model, params.hf_token, DEFAULT_MODEL_PATH, params.offline);
|
||||
if (params.no_mmproj) {
|
||||
params.mmproj = {};
|
||||
} else if (res.found_mmproj && params.mmproj.path.empty() && params.mmproj.url.empty()) {
|
||||
@@ -944,12 +959,12 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
|
||||
// only download mmproj if the current example is using it
|
||||
for (auto & ex : mmproj_examples) {
|
||||
if (ctx_arg.ex == ex) {
|
||||
common_params_handle_model(params.mmproj, params.hf_token, "");
|
||||
common_params_handle_model(params.mmproj, params.hf_token, "", params.offline);
|
||||
break;
|
||||
}
|
||||
}
|
||||
common_params_handle_model(params.speculative.model, params.hf_token, "");
|
||||
common_params_handle_model(params.vocoder.model, params.hf_token, "");
|
||||
common_params_handle_model(params.speculative.model, params.hf_token, "", params.offline);
|
||||
common_params_handle_model(params.vocoder.model, params.hf_token, "", params.offline);
|
||||
}
|
||||
|
||||
if (params.escape) {
|
||||
@@ -1445,6 +1460,14 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.n_keep = value;
|
||||
}
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"--swa-full"},
|
||||
string_format("use full-size SWA cache (default: %s)\n"
|
||||
"[(more info)](https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)", params.swa_full ? "true" : "false"),
|
||||
[](common_params & params) {
|
||||
params.swa_full = true;
|
||||
}
|
||||
).set_env("LLAMA_ARG_SWA_FULL"));
|
||||
add_opt(common_arg(
|
||||
{"--no-context-shift"},
|
||||
string_format("disables context shift on infinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"),
|
||||
@@ -1670,7 +1693,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params) {
|
||||
params.warmup = false;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_EMBEDDING}));
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL}));
|
||||
add_opt(common_arg(
|
||||
{"--spm-infill"},
|
||||
string_format(
|
||||
@@ -2057,13 +2080,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.grp_attn_w = value;
|
||||
}
|
||||
).set_env("LLAMA_ARG_GRP_ATTN_W").set_examples({LLAMA_EXAMPLE_MAIN}));
|
||||
add_opt(common_arg(
|
||||
{"-dkvc", "--dump-kv-cache"},
|
||||
"verbose print of the KV cache",
|
||||
[](common_params & params) {
|
||||
params.dump_kv_cache = true;
|
||||
}
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"-nkvo", "--no-kv-offload"},
|
||||
"disable KV offload",
|
||||
@@ -2232,12 +2248,12 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
}
|
||||
).set_examples(mmproj_examples).set_env("LLAMA_ARG_NO_MMPROJ_OFFLOAD"));
|
||||
add_opt(common_arg(
|
||||
{"--image"}, "FILE",
|
||||
"path to an image file. use with multimodal models. Specify multiple times for batching",
|
||||
{"--image", "--audio"}, "FILE",
|
||||
"path to an image or audio file. use with multimodal models, can be repeated if you have multiple files\n",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.image.emplace_back(value);
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_LLAVA}));
|
||||
).set_examples({LLAMA_EXAMPLE_MTMD}));
|
||||
if (llama_supports_rpc()) {
|
||||
add_opt(common_arg(
|
||||
{"--rpc"}, "SERVERS",
|
||||
@@ -2437,6 +2453,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
}
|
||||
}
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"--no-op-offload"},
|
||||
string_format("disable offloading host tensor operations to device (default: %s)", params.no_op_offload ? "true" : "false"),
|
||||
[](common_params & params) {
|
||||
params.no_op_offload = true;
|
||||
}
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"--lora"}, "FNAME",
|
||||
"path to LoRA adapter (can be repeated to use multiple adapters)",
|
||||
@@ -2578,7 +2601,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params, int value) {
|
||||
params.n_junk = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_PASSKEY}));
|
||||
).set_examples({LLAMA_EXAMPLE_PASSKEY, LLAMA_EXAMPLE_PARALLEL}));
|
||||
add_opt(common_arg(
|
||||
{"--pos"}, "N",
|
||||
string_format("position of the passkey in the junk text (default: %d)", params.i_pos),
|
||||
@@ -2641,7 +2664,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params) {
|
||||
params.is_pp_shared = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_BENCH}));
|
||||
).set_examples({LLAMA_EXAMPLE_BENCH, LLAMA_EXAMPLE_PARALLEL}));
|
||||
add_opt(common_arg(
|
||||
{"-npp"}, "n0,n1,...",
|
||||
"number of prompt tokens",
|
||||
@@ -2840,15 +2863,24 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_JINJA"));
|
||||
add_opt(common_arg(
|
||||
{"--reasoning-format"}, "FORMAT",
|
||||
"reasoning format (default: deepseek; allowed values: deepseek, none)\n"
|
||||
"controls whether thought tags are extracted from the response, and in which format they're returned. 'none' leaves thoughts unparsed in `message.content`, 'deepseek' puts them in `message.reasoning_content` (for DeepSeek R1 & Command R7B only).\n"
|
||||
"only supported for non-streamed responses",
|
||||
"controls whether thought tags are allowed and/or extracted from the response, and in which format they're returned; one of:\n"
|
||||
"- none: leaves thoughts unparsed in `message.content`\n"
|
||||
"- deepseek: puts thoughts in `message.reasoning_content` (except in streaming mode, which behaves as `none`)\n"
|
||||
"(default: deepseek)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
/**/ if (value == "deepseek") { params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK; }
|
||||
else if (value == "none") { params.reasoning_format = COMMON_REASONING_FORMAT_NONE; }
|
||||
else { std::invalid_argument("invalid value"); }
|
||||
else { throw std::invalid_argument("invalid value"); }
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_THINK"));
|
||||
add_opt(common_arg(
|
||||
{"--reasoning-budget"}, "N",
|
||||
"controls the amount of thinking allowed; currently only one of: -1 for unrestricted thinking budget, or 0 to disable thinking (default: -1)",
|
||||
[](common_params & params, int value) {
|
||||
if (value != 0 && value != -1) { throw std::invalid_argument("invalid value"); }
|
||||
params.reasoning_budget = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_THINK_BUDGET"));
|
||||
add_opt(common_arg(
|
||||
{"--chat-template"}, "JINJA_TEMPLATE",
|
||||
string_format(
|
||||
@@ -2860,7 +2892,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.chat_template = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_LLAVA}).set_env("LLAMA_ARG_CHAT_TEMPLATE"));
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MTMD}).set_env("LLAMA_ARG_CHAT_TEMPLATE"));
|
||||
add_opt(common_arg(
|
||||
{"--chat-template-file"}, "JINJA_TEMPLATE_FILE",
|
||||
string_format(
|
||||
@@ -2873,6 +2905,16 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.chat_template = read_file(value);
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE_FILE"));
|
||||
add_opt(common_arg(
|
||||
{"--no-prefill-assistant"},
|
||||
string_format(
|
||||
"whether to prefill the assistant's response if the last message is an assistant message (default: prefill enabled)\n"
|
||||
"when this flag is set, if the last message is an assistant message then it will be treated as a full message and not prefilled\n"
|
||||
),
|
||||
[](common_params & params) {
|
||||
params.prefill_assistant = false;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_PREFILL_ASSISTANT"));
|
||||
add_opt(common_arg(
|
||||
{"-sps", "--slot-prompt-similarity"}, "SIMILARITY",
|
||||
string_format("how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity),
|
||||
@@ -2937,7 +2979,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params, const std::string & value) {
|
||||
/**/ if (value == "jsonl") { params.batched_bench_output_jsonl = true; }
|
||||
else if (value == "md") { params.batched_bench_output_jsonl = false; }
|
||||
else { std::invalid_argument("invalid value"); }
|
||||
else { throw std::invalid_argument("invalid value"); }
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_BENCH}));
|
||||
add_opt(common_arg(
|
||||
@@ -2969,6 +3011,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
common_log_set_verbosity_thold(INT_MAX);
|
||||
}
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"--offline"},
|
||||
"Offline mode: forces use of cache, prevents network access",
|
||||
[](common_params & params) {
|
||||
params.offline = true;
|
||||
}
|
||||
).set_env("LLAMA_OFFLINE"));
|
||||
add_opt(common_arg(
|
||||
{"-lv", "--verbosity", "--log-verbosity"}, "N",
|
||||
"Set the verbosity threshold. Messages with a higher verbosity will be ignored.",
|
||||
|
||||
379
common/chat-parser.cpp
Normal file
379
common/chat-parser.cpp
Normal file
@@ -0,0 +1,379 @@
|
||||
#include "chat-parser.h"
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "regex-partial.h"
|
||||
|
||||
#include <optional>
|
||||
#include <stdexcept>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
common_chat_msg_parser::common_chat_msg_parser(const std::string & input, bool is_partial, const common_chat_syntax & syntax)
|
||||
: input_(input), is_partial_(is_partial), syntax_(syntax)
|
||||
{
|
||||
result_.role = "assistant";
|
||||
|
||||
while (true) {
|
||||
std::string id = std::to_string(std::rand());
|
||||
if (input.find(id) == std::string::npos) {
|
||||
healing_marker_ = id;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::string common_chat_msg_parser::str(const common_string_range & rng) const {
|
||||
GGML_ASSERT(rng.begin <= rng.end);
|
||||
return input_.substr(rng.begin, rng.end - rng.begin);
|
||||
}
|
||||
|
||||
void common_chat_msg_parser::add_content(const std::string &content) {
|
||||
result_.content += content;
|
||||
}
|
||||
|
||||
void common_chat_msg_parser::add_reasoning_content(const std::string &reasoning_content) {
|
||||
result_.reasoning_content += reasoning_content;
|
||||
}
|
||||
|
||||
bool common_chat_msg_parser::add_tool_call(const std::string & name, const std::string & id, const std::string & arguments) {
|
||||
if (name.empty()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
common_chat_tool_call tool_call;
|
||||
tool_call.name = name;
|
||||
tool_call.arguments = arguments;
|
||||
tool_call.id = id;
|
||||
|
||||
// LOG_DBG("Tool call arguments:\n\traw: %s\n\tresult: %s\n", arguments.c_str(), tool_call.arguments.c_str());
|
||||
result_.tool_calls.emplace_back(tool_call);
|
||||
return true;
|
||||
}
|
||||
bool common_chat_msg_parser::add_tool_call(const json & tool_call) {
|
||||
std::string name = tool_call.contains("name") ? tool_call.at("name") : "";
|
||||
std::string id = tool_call.contains("id") ? tool_call.at("id") : "";
|
||||
std::string arguments = tool_call.contains("arguments") ? tool_call.at("arguments") : "";
|
||||
return add_tool_call(name, id, arguments);
|
||||
}
|
||||
|
||||
bool common_chat_msg_parser::add_tool_calls(const json & arr) {
|
||||
for (const auto & item : arr) {
|
||||
if (!add_tool_call(item)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
void common_chat_msg_parser::finish() {
|
||||
if (!is_partial_ && pos_ != input_.size()) {
|
||||
throw std::runtime_error("Unexpected content at end of input");// + input_.substr(pos_));
|
||||
}
|
||||
}
|
||||
|
||||
bool common_chat_msg_parser::consume_spaces() {
|
||||
const auto length = input_.size();
|
||||
auto consumed = false;
|
||||
while (pos_ < length && std::isspace(input_[pos_])) {
|
||||
++pos_;
|
||||
consumed = true;
|
||||
}
|
||||
return consumed;
|
||||
}
|
||||
|
||||
bool common_chat_msg_parser::try_consume_literal(const std::string & literal) {
|
||||
auto pos = pos_;
|
||||
for (auto i = 0u; i < literal.size(); ++i) {
|
||||
if (pos >= input_.size()) {
|
||||
return false;
|
||||
}
|
||||
if (input_[pos] != literal[i]) {
|
||||
return false;
|
||||
}
|
||||
++pos;
|
||||
}
|
||||
pos_ = pos;
|
||||
return true;
|
||||
}
|
||||
|
||||
std::optional<common_chat_msg_parser::find_regex_result> common_chat_msg_parser::try_find_literal(const std::string & literal) {
|
||||
auto idx = input_.find(literal, pos_);
|
||||
if (idx != std::string::npos) {
|
||||
find_regex_result res;
|
||||
res.prelude = input_.substr(pos_, idx - pos_);
|
||||
auto end = idx + literal.size();
|
||||
res.groups.emplace_back(common_string_range{idx, end});
|
||||
move_to(end);
|
||||
return res;
|
||||
}
|
||||
if (is_partial_) {
|
||||
idx = string_find_partial_stop(input_, literal);
|
||||
if (idx != std::string::npos && idx >= pos_) {
|
||||
find_regex_result res;
|
||||
res.prelude = input_.substr(pos_, idx - pos_);
|
||||
auto end = input_.size();
|
||||
res.groups.emplace_back(common_string_range{idx, end});
|
||||
move_to(end);
|
||||
return res;
|
||||
}
|
||||
}
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
void common_chat_msg_parser::consume_literal(const std::string & literal) {
|
||||
if (!try_consume_literal(literal)) {
|
||||
throw common_chat_msg_partial_exception(literal);
|
||||
}
|
||||
}
|
||||
|
||||
bool common_chat_msg_parser::try_parse_reasoning(const std::string & start_think, const std::string & end_think) {
|
||||
auto handle_reasoning = [&](const std::string & reasoning, bool closed) {
|
||||
auto stripped_reasoning = string_strip(reasoning);
|
||||
if (stripped_reasoning.empty()) {
|
||||
return;
|
||||
}
|
||||
if (syntax_.reasoning_in_content) {
|
||||
add_content(syntax_.reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK ? "<think>" : start_think);
|
||||
add_content(stripped_reasoning);
|
||||
if (closed) {
|
||||
add_content(syntax_.reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK ? "</think>" : end_think);
|
||||
}
|
||||
} else {
|
||||
add_reasoning_content(stripped_reasoning);
|
||||
}
|
||||
};
|
||||
if (syntax_.reasoning_format != COMMON_REASONING_FORMAT_NONE) {
|
||||
if (syntax_.thinking_forced_open || try_consume_literal(start_think)) {
|
||||
if (auto res = try_find_literal(end_think)) {
|
||||
handle_reasoning(res->prelude, /* closed */ true);
|
||||
consume_spaces();
|
||||
return true;
|
||||
}
|
||||
auto rest = consume_rest();
|
||||
if (!rest.empty()) {
|
||||
handle_reasoning(rest, /* closed */ !is_partial());
|
||||
}
|
||||
if (!syntax_.thinking_forced_open) {
|
||||
throw common_chat_msg_partial_exception(end_think);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
std::string common_chat_msg_parser::consume_rest() {
|
||||
auto rest = input_.substr(pos_);
|
||||
pos_ = input_.size();
|
||||
return rest;
|
||||
}
|
||||
|
||||
// Tries to find the regex, consumes it (pos right after it) and gives the prelude (right before it) and the groups to the callback.
|
||||
std::optional<common_chat_msg_parser::find_regex_result> common_chat_msg_parser::try_find_regex(const common_regex & regex, size_t from, bool add_prelude_to_content) {
|
||||
auto m = regex.search(input_, from == std::string::npos ? pos_ : from);
|
||||
if (m.type == COMMON_REGEX_MATCH_TYPE_NONE) {
|
||||
return std::nullopt;
|
||||
}
|
||||
auto prelude = input_.substr(pos_, m.groups[0].begin - pos_);
|
||||
pos_ = m.groups[0].end;
|
||||
|
||||
if (add_prelude_to_content) {
|
||||
add_content(prelude);
|
||||
}
|
||||
if (m.type == COMMON_REGEX_MATCH_TYPE_PARTIAL) {
|
||||
if (is_partial()) {
|
||||
throw common_chat_msg_partial_exception(regex.str());
|
||||
}
|
||||
return std::nullopt;
|
||||
}
|
||||
return find_regex_result{prelude, m.groups};
|
||||
}
|
||||
|
||||
common_chat_msg_parser::find_regex_result common_chat_msg_parser::consume_regex(const common_regex & regex) {
|
||||
if (auto result = try_consume_regex(regex)) {
|
||||
return *result;
|
||||
}
|
||||
throw common_chat_msg_partial_exception(regex.str());
|
||||
}
|
||||
|
||||
std::optional<common_chat_msg_parser::find_regex_result> common_chat_msg_parser::try_consume_regex(const common_regex & regex) {
|
||||
auto m = regex.search(input_, pos_);
|
||||
if (m.type == COMMON_REGEX_MATCH_TYPE_NONE) {
|
||||
return std::nullopt;
|
||||
}
|
||||
if (m.type == COMMON_REGEX_MATCH_TYPE_PARTIAL) {
|
||||
if (is_partial()) {
|
||||
throw common_chat_msg_partial_exception(regex.str());
|
||||
}
|
||||
return std::nullopt;
|
||||
}
|
||||
if (m.groups[0].begin != pos_) {
|
||||
// Didn't match at the current position.
|
||||
return std::nullopt;
|
||||
}
|
||||
pos_ = m.groups[0].end;
|
||||
|
||||
return find_regex_result {
|
||||
/* .prelude = */ "",
|
||||
m.groups,
|
||||
};
|
||||
}
|
||||
|
||||
std::optional<common_json> common_chat_msg_parser::try_consume_json() {
|
||||
auto it = input_.cbegin() + pos_;
|
||||
const auto end = input_.cend();
|
||||
common_json result;
|
||||
if (!common_json_parse(it, end, healing_marker_, result)) {
|
||||
return std::nullopt;
|
||||
}
|
||||
pos_ = std::distance(input_.cbegin(), it);
|
||||
if (result.healing_marker.marker.empty()) {
|
||||
// No healing marker, just return the parsed json
|
||||
return result;
|
||||
}
|
||||
if (!is_partial()) {
|
||||
throw common_chat_msg_partial_exception("JSON");
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
common_json common_chat_msg_parser::consume_json() {
|
||||
if (auto result = try_consume_json()) {
|
||||
return *result;
|
||||
}
|
||||
throw common_chat_msg_partial_exception("JSON");
|
||||
}
|
||||
|
||||
common_chat_msg_parser::consume_json_result common_chat_msg_parser::consume_json_with_dumped_args(
|
||||
const std::vector<std::vector<std::string>> & args_paths,
|
||||
const std::vector<std::vector<std::string>> & content_paths
|
||||
) {
|
||||
if (auto result = try_consume_json_with_dumped_args(args_paths, content_paths)) {
|
||||
return *result;
|
||||
}
|
||||
throw common_chat_msg_partial_exception("JSON");
|
||||
}
|
||||
|
||||
std::optional<common_chat_msg_parser::consume_json_result> common_chat_msg_parser::try_consume_json_with_dumped_args(
|
||||
const std::vector<std::vector<std::string>> & args_paths,
|
||||
const std::vector<std::vector<std::string>> & content_paths
|
||||
) {
|
||||
auto partial = try_consume_json();
|
||||
if (!partial) {
|
||||
return std::nullopt;
|
||||
}
|
||||
auto is_arguments_path = [&](const std::vector<std::string> & path) {
|
||||
return std::find(args_paths.begin(), args_paths.end(), path) != args_paths.end();
|
||||
};
|
||||
auto is_content_path = [&](const std::vector<std::string> & path) {
|
||||
return std::find(content_paths.begin(), content_paths.end(), path) != content_paths.end();
|
||||
};
|
||||
|
||||
if (partial->healing_marker.marker.empty()) {
|
||||
if (args_paths.empty()) {
|
||||
// No arguments to dump, and JSON was parsed fully.
|
||||
return consume_json_result {
|
||||
partial->json,
|
||||
/* .is_partial = */ false,
|
||||
};
|
||||
}
|
||||
if (is_arguments_path({})) {
|
||||
// Entire JSON is the arguments and was parsed fully.
|
||||
return consume_json_result {
|
||||
partial->json.dump(),
|
||||
/* .is_partial = */ false,
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
LOG_DBG("Parsed partial JSON: %s (json_healing_marker: %s)\n", partial->json.dump().c_str(), partial->healing_marker.json_dump_marker.c_str());
|
||||
|
||||
auto found_healing_marker = false;
|
||||
std::vector<std::string> path;
|
||||
std::function<json(const json &)> remove_unsupported_healings_and_dump_args = [&](const json & j) -> json {
|
||||
if (is_arguments_path(path)) {
|
||||
auto arguments = j.dump();
|
||||
if (is_partial() && !partial->healing_marker.marker.empty()) {
|
||||
auto idx = arguments.find(partial->healing_marker.json_dump_marker);
|
||||
if (idx != std::string::npos) {
|
||||
arguments.resize(idx);
|
||||
found_healing_marker = true;
|
||||
}
|
||||
if (arguments == "\"") {
|
||||
// This happens because of completing `:"$magic` after `"arguments"`
|
||||
arguments = "";
|
||||
}
|
||||
}
|
||||
return arguments;
|
||||
}
|
||||
if (is_content_path(path)) {
|
||||
if (!j.is_string()) {
|
||||
throw std::runtime_error("Content path must be a string");
|
||||
}
|
||||
std::string str = j;
|
||||
auto idx = str.find(partial->healing_marker.marker); // not using json_dump_marker as we're inside a string
|
||||
if (idx != std::string::npos) {
|
||||
str.resize(idx);
|
||||
found_healing_marker = true;
|
||||
}
|
||||
return str;
|
||||
}
|
||||
if (j.is_object()) {
|
||||
auto obj = json::object();
|
||||
for (const auto & p : j.items()) {
|
||||
const auto & key = p.key();
|
||||
const auto & value = p.value();
|
||||
const std::string key_str = key; // NOLINT
|
||||
auto idx = key_str.find(healing_marker_);
|
||||
if (idx != std::string::npos) {
|
||||
found_healing_marker = true;
|
||||
break;
|
||||
}
|
||||
path.push_back(key_str);
|
||||
if (value.is_string()) {
|
||||
const std::string value_str = value;
|
||||
if (value_str.find(healing_marker_) != std::string::npos) {
|
||||
found_healing_marker = true;
|
||||
if (is_content_path(path)) {
|
||||
if (partial->healing_marker.marker == partial->healing_marker.json_dump_marker) {
|
||||
// The healing occurred inside the string: good. Otherwise we just ditch the entire key/value pair.
|
||||
obj[key] = remove_unsupported_healings_and_dump_args(value);
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
obj[key] = value;
|
||||
} else {
|
||||
obj[key] = remove_unsupported_healings_and_dump_args(value);
|
||||
}
|
||||
path.pop_back();
|
||||
}
|
||||
return obj;
|
||||
}
|
||||
if (j.is_array()) {
|
||||
auto arr = json::array();
|
||||
for (const auto & value : j) {
|
||||
if (value.is_string()) {
|
||||
std::string str = value;
|
||||
auto idx = str.find(healing_marker_);
|
||||
if (idx != std::string::npos) {
|
||||
// Don't heal array values that aren't in the arguments.
|
||||
found_healing_marker = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
arr.push_back(remove_unsupported_healings_and_dump_args(value));
|
||||
}
|
||||
return arr;
|
||||
}
|
||||
return j;
|
||||
};
|
||||
|
||||
auto cleaned = remove_unsupported_healings_and_dump_args(partial->json);
|
||||
LOG_DBG("Cleaned up JSON %s to %s (json_healing_marker : '%s')\n", partial->json.dump().c_str(), cleaned.dump().c_str(), partial->healing_marker.json_dump_marker.c_str());
|
||||
return consume_json_result {
|
||||
cleaned,
|
||||
/* .is_partial = */ found_healing_marker,
|
||||
};
|
||||
}
|
||||
118
common/chat-parser.h
Normal file
118
common/chat-parser.h
Normal file
@@ -0,0 +1,118 @@
|
||||
#pragma once
|
||||
|
||||
#include "chat.h"
|
||||
#include "json-partial.h"
|
||||
#include "regex-partial.h"
|
||||
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
#include <optional>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
class common_chat_msg_partial_exception : public std::runtime_error {
|
||||
public:
|
||||
common_chat_msg_partial_exception(const std::string & message) : std::runtime_error(message) {}
|
||||
};
|
||||
|
||||
class common_chat_msg_parser {
|
||||
std::string input_;
|
||||
bool is_partial_;
|
||||
common_chat_syntax syntax_;
|
||||
std::string healing_marker_;
|
||||
|
||||
size_t pos_ = 0;
|
||||
common_chat_msg result_;
|
||||
|
||||
public:
|
||||
common_chat_msg_parser(const std::string & input, bool is_partial, const common_chat_syntax & syntax);
|
||||
const std::string & input() const { return input_; }
|
||||
size_t pos() const { return pos_; }
|
||||
const std::string & healing_marker() const { return healing_marker_; }
|
||||
const bool & is_partial() const { return is_partial_; }
|
||||
const common_chat_msg & result() const { return result_; }
|
||||
const common_chat_syntax & syntax() const { return syntax_; }
|
||||
|
||||
void move_to(size_t pos) {
|
||||
if (pos > input_.size()) {
|
||||
throw std::runtime_error("Invalid position!");
|
||||
}
|
||||
pos_ = pos;
|
||||
}
|
||||
void move_back(size_t n) {
|
||||
if (pos_ < n) {
|
||||
throw std::runtime_error("Can't move back that far!");
|
||||
}
|
||||
pos_ -= n;
|
||||
}
|
||||
|
||||
// Get the substring of the input at the given range
|
||||
std::string str(const common_string_range & rng) const;
|
||||
|
||||
// Appends to the result.content field
|
||||
void add_content(const std::string & content);
|
||||
|
||||
// Appends to the result.reasoning_content field
|
||||
void add_reasoning_content(const std::string & reasoning_content);
|
||||
|
||||
// Adds a tool call to the result. If the tool call is too incomplete (e.g. name empty), it won't add anything.
|
||||
bool add_tool_call(const std::string & name, const std::string & id, const std::string & arguments);
|
||||
|
||||
// Adds a tool call using the "name", "id" and "arguments" fields of the json object
|
||||
bool add_tool_call(const nlohmann::ordered_json & tool_call);
|
||||
|
||||
// Adds an array of tool calls using their "name", "id" and "arguments" fields.
|
||||
bool add_tool_calls(const nlohmann::ordered_json & arr);
|
||||
|
||||
void finish();
|
||||
|
||||
bool consume_spaces();
|
||||
|
||||
void consume_literal(const std::string & literal);
|
||||
|
||||
bool try_parse_reasoning(const std::string & start_think, const std::string & end_think);
|
||||
|
||||
std::string consume_rest();
|
||||
|
||||
struct find_regex_result {
|
||||
std::string prelude;
|
||||
std::vector<common_string_range> groups;
|
||||
};
|
||||
|
||||
std::optional<find_regex_result> try_find_regex(const common_regex & regex, size_t from = std::string::npos, bool add_prelude_to_content = true);
|
||||
|
||||
bool try_consume_literal(const std::string & literal);
|
||||
|
||||
std::optional<find_regex_result> try_find_literal(const std::string & literal);
|
||||
|
||||
find_regex_result consume_regex(const common_regex & regex);
|
||||
|
||||
std::optional<find_regex_result> try_consume_regex(const common_regex & regex);
|
||||
|
||||
std::optional<common_json> try_consume_json();
|
||||
common_json consume_json();
|
||||
|
||||
struct consume_json_result {
|
||||
nlohmann::ordered_json value;
|
||||
bool is_partial;
|
||||
};
|
||||
|
||||
/*
|
||||
Consume (possibly partial) json and converts specific subtrees to (possibly truncated) JSON strings.
|
||||
|
||||
By default, object keys can't be truncated, nor can string values (their corresponding key is removed,
|
||||
e.g. `{"foo": "bar", "baz": "b` -> `{"foo": "bar"}`
|
||||
|
||||
But one can allow subpaths to be kept truncated, and possibly json-dumped to truncated json strings
|
||||
- with `content_paths={{"foo"}}` -> `{"foo": "b` -> {"foo": "b"}`
|
||||
- with `args_paths={{"foo"}}` -> `{"foo": {"b` -> `{"foo": "{b"}`
|
||||
*/
|
||||
consume_json_result consume_json_with_dumped_args(
|
||||
const std::vector<std::vector<std::string>> & args_paths = {},
|
||||
const std::vector<std::vector<std::string>> & content_paths = {}
|
||||
);
|
||||
std::optional<consume_json_result> try_consume_json_with_dumped_args(
|
||||
const std::vector<std::vector<std::string>> & args_paths = {},
|
||||
const std::vector<std::vector<std::string>> & content_paths = {}
|
||||
);
|
||||
};
|
||||
1594
common/chat.cpp
1594
common/chat.cpp
File diff suppressed because it is too large
Load Diff
@@ -3,6 +3,8 @@
|
||||
#pragma once
|
||||
|
||||
#include "common.h"
|
||||
#include <functional>
|
||||
#include <chrono>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
@@ -12,11 +14,19 @@ struct common_chat_tool_call {
|
||||
std::string name;
|
||||
std::string arguments;
|
||||
std::string id;
|
||||
|
||||
bool operator==(const common_chat_tool_call & other) const {
|
||||
return name == other.name && arguments == other.arguments && id == other.id;
|
||||
}
|
||||
};
|
||||
|
||||
struct common_chat_msg_content_part {
|
||||
std::string type;
|
||||
std::string text;
|
||||
|
||||
bool operator==(const common_chat_msg_content_part & other) const {
|
||||
return type == other.type && text == other.text;
|
||||
}
|
||||
};
|
||||
|
||||
struct common_chat_msg {
|
||||
@@ -27,6 +37,51 @@ struct common_chat_msg {
|
||||
std::string reasoning_content;
|
||||
std::string tool_name;
|
||||
std::string tool_call_id;
|
||||
|
||||
template <class T> T to_json_oaicompat() const;
|
||||
|
||||
bool empty() const {
|
||||
return content.empty() && content_parts.empty() && tool_calls.empty() && reasoning_content.empty() && tool_name.empty() && tool_call_id.empty();
|
||||
}
|
||||
void ensure_tool_call_ids_set(std::vector<std::string> & ids_cache, const std::function<std::string()> & gen_tool_call_id) {
|
||||
for (auto i = 0u; i < tool_calls.size(); i++) {
|
||||
if (ids_cache.size() <= i) {
|
||||
auto id = tool_calls[i].id;
|
||||
if (id.empty()) {
|
||||
id = gen_tool_call_id();
|
||||
}
|
||||
ids_cache.push_back(id);
|
||||
}
|
||||
tool_calls[i].id = ids_cache[i];
|
||||
}
|
||||
}
|
||||
bool operator==(const common_chat_msg & other) const {
|
||||
return role == other.role
|
||||
&& content == other.content
|
||||
&& content_parts == other.content_parts
|
||||
&& tool_calls == other.tool_calls
|
||||
&& reasoning_content == other.reasoning_content
|
||||
&& tool_name == other.tool_name
|
||||
&& tool_call_id == other.tool_call_id;
|
||||
}
|
||||
bool operator!=(const common_chat_msg & other) const {
|
||||
return !(*this == other);
|
||||
}
|
||||
};
|
||||
|
||||
struct common_chat_msg_diff {
|
||||
// std::string reasoning_content_delta;
|
||||
std::string content_delta;
|
||||
size_t tool_call_index = std::string::npos;
|
||||
common_chat_tool_call tool_call_delta;
|
||||
|
||||
static std::vector<common_chat_msg_diff> compute_diffs(const common_chat_msg & previous_msg, const common_chat_msg & new_msg);
|
||||
|
||||
bool operator==(const common_chat_msg_diff & other) const {
|
||||
return content_delta == other.content_delta
|
||||
&& tool_call_index == other.tool_call_index
|
||||
&& tool_call_delta == other.tool_call_delta;
|
||||
}
|
||||
};
|
||||
|
||||
struct common_chat_tool {
|
||||
@@ -48,14 +103,11 @@ enum common_chat_format {
|
||||
COMMON_CHAT_FORMAT_LLAMA_3_X,
|
||||
COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS,
|
||||
COMMON_CHAT_FORMAT_DEEPSEEK_R1,
|
||||
COMMON_CHAT_FORMAT_DEEPSEEK_R1_EXTRACT_REASONING,
|
||||
COMMON_CHAT_FORMAT_FIREFUNCTION_V2,
|
||||
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2,
|
||||
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1,
|
||||
COMMON_CHAT_FORMAT_HERMES_2_PRO,
|
||||
COMMON_CHAT_FORMAT_HERMES_2_PRO_EXTRACT_REASONING,
|
||||
COMMON_CHAT_FORMAT_COMMAND_R7B,
|
||||
COMMON_CHAT_FORMAT_COMMAND_R7B_EXTRACT_REASONING,
|
||||
|
||||
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
|
||||
};
|
||||
@@ -70,7 +122,9 @@ struct common_chat_templates_inputs {
|
||||
std::vector<common_chat_tool> tools;
|
||||
common_chat_tool_choice tool_choice = COMMON_CHAT_TOOL_CHOICE_AUTO;
|
||||
bool parallel_tool_calls = false;
|
||||
bool extract_reasoning = true;
|
||||
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_NONE;
|
||||
bool enable_thinking = true;
|
||||
std::chrono::system_clock::time_point now = std::chrono::system_clock::now();
|
||||
};
|
||||
|
||||
struct common_chat_params {
|
||||
@@ -78,11 +132,21 @@ struct common_chat_params {
|
||||
std::string prompt;
|
||||
std::string grammar;
|
||||
bool grammar_lazy = false;
|
||||
bool thinking_forced_open = false;
|
||||
std::vector<common_grammar_trigger> grammar_triggers;
|
||||
std::vector<std::string> preserved_tokens;
|
||||
std::vector<std::string> additional_stops;
|
||||
};
|
||||
|
||||
struct common_chat_syntax {
|
||||
common_chat_format format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
|
||||
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_NONE;
|
||||
// Whether reasoning_content should be inlined in the content (e.g. for reasoning_format=deepseek in stream mode)
|
||||
bool reasoning_in_content = false;
|
||||
bool thinking_forced_open = false;
|
||||
bool parse_tool_calls = true;
|
||||
};
|
||||
|
||||
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
|
||||
bool common_chat_verify_template(const std::string & tmpl, bool use_jinja);
|
||||
|
||||
@@ -119,8 +183,9 @@ std::string common_chat_format_example(
|
||||
const struct common_chat_templates * tmpls,
|
||||
bool use_jinja);
|
||||
|
||||
std::string common_chat_format_name(common_chat_format format);
|
||||
common_chat_msg common_chat_parse( const std::string & input, common_chat_format format);
|
||||
const char* common_chat_format_name(common_chat_format format);
|
||||
const char* common_reasoning_format_name(common_reasoning_format format);
|
||||
common_chat_msg common_chat_parse(const std::string & input, bool is_partial, const common_chat_syntax & syntax);
|
||||
|
||||
common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::string & tool_choice);
|
||||
|
||||
@@ -133,3 +198,5 @@ template <class T> T common_chat_msgs_to_json_oaicompat(const std::vector<common
|
||||
// T can be std::string containing JSON or nlohmann::ordered_json
|
||||
template <class T> std::vector<common_chat_tool> common_chat_tools_parse_oaicompat(const T & tools);
|
||||
template <class T> T common_chat_tools_to_json_oaicompat(const std::vector<common_chat_tool> & tools);
|
||||
|
||||
template <class T> T common_chat_msg_diff_to_json_oaicompat(const common_chat_msg_diff & diff);
|
||||
|
||||
@@ -443,6 +443,25 @@ void string_replace_all(std::string & s, const std::string & search, const std::
|
||||
s = std::move(builder);
|
||||
}
|
||||
|
||||
bool string_ends_with(const std::string_view & str, const std::string_view & suffix) {
|
||||
return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
|
||||
}
|
||||
size_t string_find_partial_stop(const std::string_view & str, const std::string_view & stop) {
|
||||
if (!str.empty() && !stop.empty()) {
|
||||
const char text_last_char = str.back();
|
||||
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) {
|
||||
if (stop[char_index] == text_last_char) {
|
||||
const auto current_partial = stop.substr(0, char_index + 1);
|
||||
if (string_ends_with(str, current_partial)) {
|
||||
return str.size() - char_index - 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return std::string::npos;
|
||||
}
|
||||
|
||||
std::string regex_escape(const std::string & s) {
|
||||
static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]");
|
||||
return std::regex_replace(s, special_chars, "\\$0");
|
||||
@@ -830,7 +849,7 @@ std::string fs_get_cache_directory() {
|
||||
if (getenv("LLAMA_CACHE")) {
|
||||
cache_directory = std::getenv("LLAMA_CACHE");
|
||||
} else {
|
||||
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX)
|
||||
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX) || defined(__OpenBSD__)
|
||||
if (std::getenv("XDG_CACHE_HOME")) {
|
||||
cache_directory = std::getenv("XDG_CACHE_HOME");
|
||||
} else {
|
||||
@@ -884,13 +903,16 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
ok = false;
|
||||
}
|
||||
|
||||
if (llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: vocab does not have an EOS token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
}
|
||||
bool has_eos = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
|
||||
bool has_sep = llama_vocab_sep(vocab) != LLAMA_TOKEN_NULL;
|
||||
|
||||
if (llama_vocab_sep(vocab) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
|
||||
if (!has_eos && !has_sep) {
|
||||
LOG_WRN("%s: warning: vocab does not have an EOS token or SEP token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
} else if (!has_eos) {
|
||||
LOG_WRN("%s: warning: vocab does not have an EOS token, using SEP token as fallback\n", __func__);
|
||||
} else if (!has_sep) {
|
||||
LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
}
|
||||
|
||||
@@ -1083,6 +1105,9 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
|
||||
mparams.tensor_buft_overrides = params.tensor_buft_overrides.data();
|
||||
}
|
||||
|
||||
mparams.progress_callback = params.load_progress_callback;
|
||||
mparams.progress_callback_user_data = params.load_progress_callback_user_data;
|
||||
|
||||
return mparams;
|
||||
}
|
||||
|
||||
@@ -1113,6 +1138,8 @@ struct llama_context_params common_context_params_to_llama(const common_params &
|
||||
cparams.offload_kqv = !params.no_kv_offload;
|
||||
cparams.flash_attn = params.flash_attn;
|
||||
cparams.no_perf = params.no_perf;
|
||||
cparams.op_offload = !params.no_op_offload;
|
||||
cparams.swa_full = params.swa_full;
|
||||
|
||||
if (params.reranking) {
|
||||
cparams.embeddings = true;
|
||||
@@ -1305,81 +1332,6 @@ std::string common_detokenize(const struct llama_vocab * vocab, const std::vecto
|
||||
return text;
|
||||
}
|
||||
|
||||
//
|
||||
// KV cache utils
|
||||
//
|
||||
|
||||
void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size) {
|
||||
static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";
|
||||
|
||||
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
|
||||
view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
|
||||
|
||||
llama_kv_cache_view_cell * c_curr = view.cells;
|
||||
llama_seq_id * cs_curr = view.cells_sequences;
|
||||
|
||||
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
|
||||
if (i % row_size == 0) {
|
||||
printf("\n%5d: ", i);
|
||||
}
|
||||
int seq_count = 0;
|
||||
for (int j = 0; j < view.n_seq_max; j++) {
|
||||
if (cs_curr[j] >= 0) { seq_count++; }
|
||||
}
|
||||
putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]);
|
||||
}
|
||||
|
||||
printf("\n=== Done dumping\n");
|
||||
}
|
||||
|
||||
void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size) {
|
||||
static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
|
||||
|
||||
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
|
||||
view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
|
||||
|
||||
std::unordered_map<llama_seq_id, size_t> seqs;
|
||||
llama_kv_cache_view_cell * c_curr = view.cells;
|
||||
llama_seq_id * cs_curr = view.cells_sequences;
|
||||
|
||||
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
|
||||
for (int j = 0; j < view.n_seq_max; j++) {
|
||||
if (cs_curr[j] < 0) { continue; }
|
||||
if (seqs.find(cs_curr[j]) == seqs.end()) {
|
||||
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
|
||||
const size_t sz = seqs.size();
|
||||
seqs[cs_curr[j]] = sz;
|
||||
}
|
||||
}
|
||||
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
|
||||
}
|
||||
|
||||
printf("=== Sequence legend: ");
|
||||
for (const auto & it : seqs) {
|
||||
printf("%zu=%d, ", it.second, it.first);
|
||||
}
|
||||
printf("'+'=other sequence ids");
|
||||
|
||||
c_curr = view.cells;
|
||||
cs_curr = view.cells_sequences;
|
||||
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
|
||||
if (i % row_size == 0) {
|
||||
printf("\n%5d: ", i);
|
||||
}
|
||||
for (int j = 0; j < view.n_seq_max; j++) {
|
||||
if (cs_curr[j] >= 0) {
|
||||
const auto & it = seqs.find(cs_curr[j]);
|
||||
putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+');
|
||||
} else {
|
||||
putchar('.');
|
||||
}
|
||||
}
|
||||
putchar(' ');
|
||||
}
|
||||
|
||||
printf("\n=== Done dumping\n");
|
||||
}
|
||||
|
||||
//
|
||||
// Embedding utils
|
||||
//
|
||||
@@ -1564,3 +1516,20 @@ common_control_vector_data common_control_vector_load(const std::vector<common_c
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride) {
|
||||
const int64_t ne_datapoint = llama_n_ctx(ctx);
|
||||
const int64_t ndata = (tokens.size() - ne_datapoint - 1) / stride;
|
||||
ggml_opt_dataset_t result = ggml_opt_dataset_init(
|
||||
GGML_TYPE_I32, GGML_TYPE_I32, ne_datapoint, ne_datapoint, ndata, /*ndata_shard =*/ 1);
|
||||
|
||||
llama_token * data = (llama_token *) ggml_opt_dataset_data(result)->data;
|
||||
llama_token * labels = (llama_token *) ggml_opt_dataset_labels(result)->data;
|
||||
|
||||
for (int64_t idata = 0; idata < ndata; ++idata) {
|
||||
memcpy(data + idata*ne_datapoint, tokens.data() + idata*stride + 0, ne_datapoint*sizeof(llama_token));
|
||||
memcpy(labels + idata*ne_datapoint, tokens.data() + idata*stride + 1, ne_datapoint*sizeof(llama_token));
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
@@ -6,6 +6,7 @@
|
||||
|
||||
#include <set>
|
||||
#include <string>
|
||||
#include <string_view>
|
||||
#include <vector>
|
||||
#include <sstream>
|
||||
|
||||
@@ -75,7 +76,7 @@ enum llama_example {
|
||||
LLAMA_EXAMPLE_SERVER,
|
||||
LLAMA_EXAMPLE_CVECTOR_GENERATOR,
|
||||
LLAMA_EXAMPLE_EXPORT_LORA,
|
||||
LLAMA_EXAMPLE_LLAVA,
|
||||
LLAMA_EXAMPLE_MTMD,
|
||||
LLAMA_EXAMPLE_LOOKUP,
|
||||
LLAMA_EXAMPLE_PARALLEL,
|
||||
LLAMA_EXAMPLE_TTS,
|
||||
@@ -114,7 +115,7 @@ enum common_grammar_trigger_type {
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN,
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_WORD,
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN,
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START,
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
|
||||
};
|
||||
|
||||
struct common_grammar_trigger {
|
||||
@@ -290,6 +291,7 @@ struct common_params {
|
||||
int32_t verbosity = 0;
|
||||
int32_t control_vector_layer_start = -1; // layer range for control vector
|
||||
int32_t control_vector_layer_end = -1; // layer range for control vector
|
||||
bool offline = false;
|
||||
|
||||
int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
|
||||
int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
|
||||
@@ -322,16 +324,17 @@ struct common_params {
|
||||
bool flash_attn = false; // flash attention
|
||||
bool no_perf = false; // disable performance metrics
|
||||
bool ctx_shift = true; // context shift on inifinite text generation
|
||||
bool swa_full = false; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
|
||||
|
||||
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
|
||||
bool use_mmap = true; // use mmap for faster loads
|
||||
bool use_mlock = false; // use mlock to keep model in memory
|
||||
bool verbose_prompt = false; // print prompt tokens before generation
|
||||
bool display_prompt = true; // print prompt before generation
|
||||
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
|
||||
bool no_kv_offload = false; // disable KV offloading
|
||||
bool warmup = true; // warmup run
|
||||
bool check_tensors = false; // validate tensor data
|
||||
bool no_op_offload = false; // globally disable offload host tensor operations to device
|
||||
|
||||
bool single_turn = false; // single turn chat conversation
|
||||
|
||||
@@ -366,6 +369,8 @@ struct common_params {
|
||||
bool use_jinja = false; // NOLINT
|
||||
bool enable_chat_template = true;
|
||||
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
|
||||
int reasoning_budget = -1;
|
||||
bool prefill_assistant = true; // if true, any trailing assistant message will be prefilled into the response
|
||||
|
||||
std::vector<std::string> api_keys;
|
||||
|
||||
@@ -425,6 +430,11 @@ struct common_params {
|
||||
|
||||
// common params
|
||||
std::string out_file; // output filename for all example programs
|
||||
// optional callback for model loading progress and cancellation:
|
||||
// called with a progress value between 0.0 and 1.0.
|
||||
// return false from callback to abort model loading or true to continue
|
||||
llama_progress_callback load_progress_callback = NULL;
|
||||
void * load_progress_callback_user_data = NULL;
|
||||
};
|
||||
|
||||
// call once at the start of a program if it uses libcommon
|
||||
@@ -502,10 +512,9 @@ static bool string_starts_with(const std::string & str,
|
||||
return str.rfind(prefix, 0) == 0;
|
||||
}
|
||||
|
||||
static bool string_ends_with(const std::string & str,
|
||||
const std::string & suffix) { // While we wait for C++20's std::string::ends_with...
|
||||
return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
|
||||
}
|
||||
// While we wait for C++20's std::string::ends_with...
|
||||
bool string_ends_with(const std::string_view & str, const std::string_view & suffix);
|
||||
size_t string_find_partial_stop(const std::string_view & str, const std::string_view & stop);
|
||||
|
||||
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
|
||||
void string_process_escapes(std::string & input);
|
||||
@@ -614,16 +623,6 @@ std::string common_detokenize(
|
||||
const std::vector<llama_token> & tokens,
|
||||
bool special = true);
|
||||
|
||||
//
|
||||
// KV cache utils
|
||||
//
|
||||
|
||||
// Dump the KV cache view with the number of sequences per cell.
|
||||
void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
|
||||
|
||||
// Dump the KV cache view showing individual sequences in each cell (long output).
|
||||
void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
|
||||
|
||||
//
|
||||
// Embedding utils
|
||||
//
|
||||
@@ -665,3 +664,9 @@ const char * const LLM_KV_SPLIT_COUNT = "split.count";
|
||||
const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
|
||||
|
||||
}
|
||||
|
||||
//
|
||||
// training utils
|
||||
//
|
||||
|
||||
ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride);
|
||||
|
||||
256
common/json-partial.cpp
Normal file
256
common/json-partial.cpp
Normal file
@@ -0,0 +1,256 @@
|
||||
#include "json-partial.h"
|
||||
|
||||
#include "log.h"
|
||||
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
#include <string>
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
enum common_json_stack_element_type {
|
||||
COMMON_JSON_STACK_ELEMENT_OBJECT,
|
||||
COMMON_JSON_STACK_ELEMENT_KEY,
|
||||
COMMON_JSON_STACK_ELEMENT_ARRAY,
|
||||
};
|
||||
|
||||
struct common_json_stack_element {
|
||||
common_json_stack_element_type type;
|
||||
std::string key;
|
||||
};
|
||||
|
||||
bool common_json_parse(
|
||||
const std::string & input,
|
||||
const std::string & healing_marker,
|
||||
common_json & out)
|
||||
{
|
||||
std::string::const_iterator it = input.begin();
|
||||
const auto end = input.end();
|
||||
return common_json_parse(it, end, healing_marker, out);
|
||||
}
|
||||
|
||||
bool common_json_parse(
|
||||
std::string::const_iterator & it,
|
||||
const std::string::const_iterator & end,
|
||||
const std::string & healing_marker,
|
||||
common_json & out)
|
||||
{
|
||||
// // https://json.nlohmann.me/features/parsing/sax_interface/
|
||||
struct json_error_locator : public nlohmann::json_sax<json> {
|
||||
std::size_t position;
|
||||
bool found_error;
|
||||
std::string last_token;
|
||||
std::string exception_message;
|
||||
std::vector<common_json_stack_element> stack;
|
||||
|
||||
json_error_locator() : position(0), found_error(false) {}
|
||||
|
||||
bool parse_error(std::size_t position, const std::string & last_token, const json::exception & ex) override { // NOLINT
|
||||
this->position = position - 1;
|
||||
this->found_error = true;
|
||||
this->last_token = last_token;
|
||||
this->exception_message = ex.what();
|
||||
return false;
|
||||
}
|
||||
void close_value() {
|
||||
if (!stack.empty() && (stack.back().type == COMMON_JSON_STACK_ELEMENT_KEY)) {
|
||||
stack.pop_back();
|
||||
}
|
||||
}
|
||||
bool null() override { // NOLINT
|
||||
close_value();
|
||||
return true;
|
||||
}
|
||||
bool boolean(bool) override { // NOLINT
|
||||
close_value();
|
||||
return true;
|
||||
}
|
||||
bool number_integer(number_integer_t) override { // NOLINT
|
||||
close_value();
|
||||
return true;
|
||||
}
|
||||
bool number_unsigned(number_unsigned_t) override { // NOLINT
|
||||
close_value();
|
||||
return true;
|
||||
}
|
||||
bool number_float(number_float_t, const string_t &) override { // NOLINT
|
||||
close_value();
|
||||
return true;
|
||||
}
|
||||
bool string(string_t &) override { // NOLINT
|
||||
close_value();
|
||||
return true;
|
||||
}
|
||||
bool binary(binary_t &) override { // NOLINT
|
||||
close_value();
|
||||
return true;
|
||||
}
|
||||
bool start_object(std::size_t) override { // NOLINT
|
||||
stack.push_back({COMMON_JSON_STACK_ELEMENT_OBJECT, ""});
|
||||
return true;
|
||||
}
|
||||
bool end_object() override {
|
||||
GGML_ASSERT(!stack.empty() && stack.back().type == COMMON_JSON_STACK_ELEMENT_OBJECT);
|
||||
stack.pop_back();
|
||||
close_value();
|
||||
return true;
|
||||
}
|
||||
bool key(string_t & key) override { // NOLINT
|
||||
stack.push_back({COMMON_JSON_STACK_ELEMENT_KEY, key});
|
||||
return true;
|
||||
}
|
||||
bool start_array(std::size_t) override { // NOLINT
|
||||
stack.push_back({COMMON_JSON_STACK_ELEMENT_ARRAY, ""});
|
||||
return true;
|
||||
}
|
||||
bool end_array() override {
|
||||
GGML_ASSERT(!stack.empty() && stack.back().type == COMMON_JSON_STACK_ELEMENT_ARRAY);
|
||||
stack.pop_back();
|
||||
close_value();
|
||||
return true;
|
||||
}
|
||||
};
|
||||
json_error_locator err_loc;
|
||||
auto start = it;
|
||||
json::sax_parse(it, end, &err_loc);
|
||||
|
||||
if (err_loc.found_error) {
|
||||
it = start;
|
||||
auto temptative_end = it + err_loc.position;
|
||||
// LOG_DBG("Error at position %zu (is_end = %s): %s\n", err_loc.position, temptative_end == end ? "true" : "false", err_loc.exception_message.c_str());
|
||||
|
||||
auto input = std::string(it, temptative_end);
|
||||
try {
|
||||
out.json = json::parse(input);
|
||||
// out.json = json::parse(it, temptative_end);
|
||||
it = temptative_end;
|
||||
return true;
|
||||
} catch (const std::exception & ex) {
|
||||
// No, needs healing.
|
||||
LOG_DBG("Failed to parse up to error: %s: <<<%s>>>\n", ex.what(), std::string(it, temptative_end).c_str());
|
||||
}
|
||||
auto can_parse = [](const std::string & str) {
|
||||
try {
|
||||
auto _ = json::parse(str); // NOLINT
|
||||
return true;
|
||||
} catch (const std::exception &) {
|
||||
return false;
|
||||
}
|
||||
};
|
||||
if (!healing_marker.empty() && !err_loc.stack.empty()) {
|
||||
std::string str(it, temptative_end);
|
||||
auto last_non_sp_pos = str.find_last_not_of(" \n\r\t");
|
||||
if (last_non_sp_pos == std::string::npos) {
|
||||
throw std::runtime_error("Cannot heal a truncated JSON that stopped in an unknown location");
|
||||
}
|
||||
auto last_non_sp_char = str[last_non_sp_pos];
|
||||
// Used to detect stops on a number, which may not be complete.
|
||||
auto was_maybe_number = [&]() {
|
||||
if (!str.empty() && std::isspace(str.back())) {
|
||||
return false;
|
||||
}
|
||||
return std::isdigit(last_non_sp_char) ||
|
||||
last_non_sp_char == '.' ||
|
||||
last_non_sp_char == 'e' ||
|
||||
last_non_sp_char == 'E' ||
|
||||
last_non_sp_char == '-';
|
||||
};
|
||||
|
||||
std::string closing;
|
||||
for (size_t i = err_loc.stack.size(); i > 0; i--) {
|
||||
auto & el = err_loc.stack[i - 1];
|
||||
if (el.type == COMMON_JSON_STACK_ELEMENT_OBJECT) {
|
||||
closing += "}";
|
||||
} else if (el.type == COMMON_JSON_STACK_ELEMENT_ARRAY) {
|
||||
closing += "]";
|
||||
} else if (el.type != COMMON_JSON_STACK_ELEMENT_KEY) {
|
||||
throw std::runtime_error("Unexpected stack element type");
|
||||
}
|
||||
}
|
||||
|
||||
const auto & magic_seed = out.healing_marker.marker = healing_marker;//"$llama.cpp.json$";
|
||||
|
||||
if (err_loc.stack.back().type == COMMON_JSON_STACK_ELEMENT_KEY) {
|
||||
// We're inside an object value
|
||||
if (last_non_sp_char == ':' && can_parse(str + "1" + closing)) {
|
||||
// Was about to create an object value
|
||||
str += (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\"" + closing;
|
||||
} else if (can_parse(str + ": 1" + closing)) {
|
||||
str += (out.healing_marker.json_dump_marker = ":\"" + magic_seed) + "\"" + closing;
|
||||
} else if (last_non_sp_char == '{' && can_parse(str + closing)) {
|
||||
// Was about to create an object
|
||||
str += (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\": 1" + closing;
|
||||
} else if (can_parse(str + "\"" + closing)) {
|
||||
// Was inside an object value string
|
||||
str += (out.healing_marker.json_dump_marker = magic_seed) + "\"" + closing;
|
||||
} else if (str[str.length() - 1] == '\\' && can_parse(str + "\\\"" + closing)) {
|
||||
// Was inside an object value string after an escape
|
||||
str += (out.healing_marker.json_dump_marker = "\\" + magic_seed) + "\"" + closing;
|
||||
} else {
|
||||
// find last :
|
||||
auto last_pos = str.find_last_of(':');
|
||||
if (last_pos == std::string::npos) {
|
||||
throw std::runtime_error("Cannot heal a truncated JSON that stopped in an unknown location");
|
||||
}
|
||||
// Cutting back to opening : for object value
|
||||
str = str.substr(0, last_pos + 1) + (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\"" + closing;
|
||||
}
|
||||
} else if (err_loc.stack.back().type == COMMON_JSON_STACK_ELEMENT_ARRAY) {
|
||||
if ((last_non_sp_char == ',' || last_non_sp_char == '[') && can_parse(str + "1" + closing)) {
|
||||
// Was about to create an array value
|
||||
str += (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\"" + closing;
|
||||
} else if (can_parse(str + "\"" + closing)) {
|
||||
// Was inside an array value string
|
||||
str += (out.healing_marker.json_dump_marker = magic_seed) + "\"" + closing;
|
||||
} else if (str[str.length() - 1] == '\\' && can_parse(str + "\\\"" + closing)) {
|
||||
// Was inside an array value string after an escape
|
||||
str += (out.healing_marker.json_dump_marker = "\\" + magic_seed) + "\"" + closing;
|
||||
} else if (!was_maybe_number() && can_parse(str + ", 1" + closing)) {
|
||||
// Had just finished a value
|
||||
str += (out.healing_marker.json_dump_marker = ",\"" + magic_seed) + "\"" + closing;
|
||||
} else {
|
||||
auto last_pos = str.find_last_of("[,");
|
||||
if (last_pos == std::string::npos) {
|
||||
throw std::runtime_error("Cannot heal a truncated JSON array stopped in an unknown location");
|
||||
}
|
||||
// Cutting back to last [ or , for array value
|
||||
str = str.substr(0, last_pos + 1) + (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\"" + closing;
|
||||
}
|
||||
} else if (err_loc.stack.back().type == COMMON_JSON_STACK_ELEMENT_OBJECT) {
|
||||
if ((last_non_sp_char == '{' && can_parse(str + closing)) ||
|
||||
(last_non_sp_char == ',' && can_parse(str + "\"\": 1" + closing))) {
|
||||
// Was about to create an object key+value
|
||||
str += (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\": 1" + closing;
|
||||
} else if (!was_maybe_number() && can_parse(str + ",\"\": 1" + closing)) {
|
||||
// Was about to create an object key+value
|
||||
str += (out.healing_marker.json_dump_marker = ",\"" + magic_seed) + "\": 1" + closing;
|
||||
} else if (can_parse(str + "\": 1" + closing)) {
|
||||
// Was inside an object key string
|
||||
str += (out.healing_marker.json_dump_marker = magic_seed) + "\": 1" + closing;
|
||||
} else if (str[str.length() - 1] == '\\' && can_parse(str + "\\\": 1" + closing)) {
|
||||
// Was inside an object key string after an escape
|
||||
str += (out.healing_marker.json_dump_marker = "\\" + magic_seed) + "\": 1" + closing;
|
||||
} else {
|
||||
auto last_pos = str.find_last_of(':');
|
||||
if (last_pos == std::string::npos) {
|
||||
throw std::runtime_error("Cannot heal a truncated JSON object stopped in an unknown location");
|
||||
}
|
||||
// fprintf(stderr, "Cutting back to last : for object key+value\n");
|
||||
str = str.substr(0, last_pos + 1) + (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\"" + closing;
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error("Cannot heal a truncated JSON object stopped in an unknown location");
|
||||
}
|
||||
// fprintf(stderr, "HEALED:\nSTRING <<<\n%s\n>>>\n\nmagic_cut: <<<\n%s\n>>>\n\n", str.c_str(), out.healing_marker.json_dump_marker.c_str());
|
||||
out.json = json::parse(str);
|
||||
it = temptative_end;
|
||||
return true;
|
||||
}
|
||||
// TODO: handle unclosed top-level primitive if the stack was empty but we got an error (e.g. "tru", "\"", etc...)
|
||||
// fprintf(stderr, "Closing: TODO\n");
|
||||
return false;
|
||||
}
|
||||
out.json = json::parse(it, end);
|
||||
it = end;
|
||||
return true;
|
||||
}
|
||||
38
common/json-partial.h
Normal file
38
common/json-partial.h
Normal file
@@ -0,0 +1,38 @@
|
||||
#pragma once
|
||||
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
// Healing marker (empty if the JSON was fully parsed / wasn't healed).
|
||||
struct common_healing_marker {
|
||||
// Raw marker.
|
||||
std::string marker;
|
||||
|
||||
// Cutting the `common_json.json.dump()` string at the (only) occurrence of this marker should yield the original partial JSON string (modulo spaces / if it had the same dump format).
|
||||
std::string json_dump_marker;
|
||||
};
|
||||
|
||||
// Represents a parsed JSON object, with its optional healing marker (a JSON dump fragment that can be used to find the position of healing in the JSON dump string)
|
||||
struct common_json {
|
||||
nlohmann::ordered_json json;
|
||||
|
||||
common_healing_marker healing_marker;
|
||||
};
|
||||
|
||||
// Parse the JSON string, healing (closing) any partial JSON if `healing_marker` is not empty.
|
||||
//
|
||||
// Healing completes partial JSON strings by adding a (possibly modified) healing marker, then whatever is needed to close the JSON.
|
||||
// This allows to parse the resulting healed JSON string, yet be able to cut it again if needed at the healing marker.
|
||||
// (this is used when parsing JSON outputs from the models, then crafting partial JSONs for the partial tool calls in OAI format).
|
||||
//
|
||||
// For instance, parsing `{` with a healing marker `foo` will produce a healed JSON `{"foo":1}`, w/ json_dump_marker = `"foo"` (which can be used to break the JSON again).
|
||||
bool common_json_parse(
|
||||
const std::string & input,
|
||||
const std::string & healing_marker,
|
||||
common_json & out);
|
||||
|
||||
// Parse the JSON string (see overload above), but advancing an iterator to the end of the input when the (potentially partial) parsing succeeds.
|
||||
bool common_json_parse(
|
||||
std::string::const_iterator & it,
|
||||
const std::string::const_iterator & end,
|
||||
const std::string & healing_marker,
|
||||
common_json & out);
|
||||
@@ -1,8 +1,9 @@
|
||||
#include "json-schema-to-grammar.h"
|
||||
#include "common.h"
|
||||
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
#include <algorithm>
|
||||
#include <fstream>
|
||||
#include <map>
|
||||
#include <regex>
|
||||
#include <sstream>
|
||||
|
||||
@@ -1,9 +1,9 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
// Change JSON_ASSERT from assert() to GGML_ASSERT:
|
||||
#define JSON_ASSERT GGML_ASSERT
|
||||
#include "json.hpp"
|
||||
#include <nlohmann/json_fwd.hpp>
|
||||
|
||||
#include <functional>
|
||||
#include <string>
|
||||
|
||||
std::string json_schema_to_grammar(const nlohmann::ordered_json & schema,
|
||||
bool force_gbnf = false);
|
||||
|
||||
@@ -189,6 +189,7 @@ static LlgTokenizer * llama_sampler_llg_new_tokenizer(const llama_vocab * vocab)
|
||||
/* .tokenize_fn = */ llama_sampler_llg_tokenize_fn,
|
||||
/* .use_approximate_greedy_tokenize_fn = */ false,
|
||||
/* .tokenize_user_data = */ vocab,
|
||||
/* .slices = */ nullptr,
|
||||
};
|
||||
|
||||
char error_buffer[1024];
|
||||
|
||||
204
common/regex-partial.cpp
Normal file
204
common/regex-partial.cpp
Normal file
@@ -0,0 +1,204 @@
|
||||
#include "regex-partial.h"
|
||||
#include "common.h"
|
||||
#include <functional>
|
||||
#include <optional>
|
||||
|
||||
common_regex::common_regex(const std::string & pattern) :
|
||||
pattern(pattern),
|
||||
rx(pattern),
|
||||
rx_reversed_partial(regex_to_reversed_partial_regex(pattern)) {}
|
||||
|
||||
common_regex_match common_regex::search(const std::string & input, size_t pos, bool as_match) const {
|
||||
std::smatch match;
|
||||
if (pos > input.size()) {
|
||||
throw std::runtime_error("Position out of bounds");
|
||||
}
|
||||
auto start = input.begin() + pos;
|
||||
auto found = as_match
|
||||
? std::regex_match(start, input.end(), match, rx)
|
||||
: std::regex_search(start, input.end(), match, rx);
|
||||
if (found) {
|
||||
common_regex_match res;
|
||||
res.type = COMMON_REGEX_MATCH_TYPE_FULL;
|
||||
for (size_t i = 0; i < match.size(); ++i) {
|
||||
auto begin = pos + match.position(i);
|
||||
res.groups.emplace_back(begin, begin + match.length(i));
|
||||
}
|
||||
return res;
|
||||
}
|
||||
std::match_results<std::string::const_reverse_iterator> srmatch;
|
||||
if (std::regex_match(input.rbegin(), input.rend() - pos, srmatch, rx_reversed_partial)) {
|
||||
auto group = srmatch[1].str();
|
||||
if (group.length() != 0) {
|
||||
auto it = srmatch[1].second.base();
|
||||
// auto position = static_cast<size_t>(std::distance(input.begin(), it));
|
||||
if ((!as_match) || it == input.begin()) {
|
||||
common_regex_match res;
|
||||
res.type = COMMON_REGEX_MATCH_TYPE_PARTIAL;
|
||||
const size_t begin = std::distance(input.begin(), it);
|
||||
const size_t end = input.size();
|
||||
if (begin == std::string::npos || end == std::string::npos || begin > end) {
|
||||
throw std::runtime_error("Invalid range");
|
||||
}
|
||||
res.groups.push_back({begin, end});
|
||||
return res;
|
||||
}
|
||||
}
|
||||
}
|
||||
return {};
|
||||
}
|
||||
|
||||
/*
|
||||
Transforms a regex pattern to a partial match pattern that operates on a reversed input string to find partial final matches of the original pattern.
|
||||
|
||||
Ideally we'd like to use boost::match_partial (https://beta.boost.org/doc/libs/1_59_0/libs/regex/doc/html/boost_regex/partial_matches.html)
|
||||
to see if a string ends with a partial regex match, but but it's not in std::regex yet.
|
||||
Instead, we'll the regex into a partial match regex operating as a full match on the reverse iterators of the input.
|
||||
|
||||
- /abcd/ -> (dcba|cba|ba|a).* -> ((?:(?:(?:(?:d)?c)?b)?a).*
|
||||
- /a|b/ -> (a|b).*
|
||||
- /a*?/ -> error, could match ""
|
||||
- /a*b/ -> ((?:b)?a*+).* (final repetitions become eager)
|
||||
- /.*?ab/ -> ((?:b)?a).* (merge .*)
|
||||
- /a.*?b/ -> ((?:b)?.*?a).* (keep reluctant matches)
|
||||
- /a(bc)d/ -> ((?:(?:d)?(?:(?:c)?b))?a).*
|
||||
- /a(bc|de)/ -> ((?:(?:(?:e)?d)?|(?:(?:c)?b)?)?a).*
|
||||
- /ab{2,4}c/ -> abbb?b?c -> ((?:(?:(?:(?:(?:c)?b)?b)?b?)?b?)?a).*
|
||||
|
||||
The regex will match a reversed string fully, and the end of the first (And only) capturing group will indicate the reversed start of the original partial pattern
|
||||
(i.e. just where the final .* starts in the inverted pattern; all other groups are turned into non-capturing groups, and reluctant quantifiers are ignored)
|
||||
*/
|
||||
std::string regex_to_reversed_partial_regex(const std::string & pattern) {
|
||||
auto it = pattern.begin();
|
||||
const auto end = pattern.end();
|
||||
|
||||
std::function<std::string()> process = [&]() {
|
||||
std::vector<std::vector<std::string>> alternatives(1);
|
||||
std::vector<std::string> * sequence = &alternatives.back();
|
||||
|
||||
while (it != end) {
|
||||
if (*it == '[') {
|
||||
auto start = it;
|
||||
++it;
|
||||
while (it != end) {
|
||||
if ((*it == '\\') && (++it != end)) {
|
||||
++it;
|
||||
} else if ((it != end) && (*it == ']')) {
|
||||
break;
|
||||
} else {
|
||||
++it;
|
||||
}
|
||||
}
|
||||
if (it == end) {
|
||||
throw std::runtime_error("Unmatched '[' in pattern");
|
||||
}
|
||||
++it;
|
||||
sequence->push_back(std::string(start, it));
|
||||
} else if (*it == '*' || *it == '?' || *it == '+') {
|
||||
if (sequence->empty()) {
|
||||
throw std::runtime_error("Quantifier without preceding element");
|
||||
}
|
||||
sequence->back() += *it;
|
||||
auto is_star = *it == '*';
|
||||
++it;
|
||||
if (is_star) {
|
||||
if (*it == '?') {
|
||||
++it;
|
||||
}
|
||||
}
|
||||
} else if (*it == '{') {
|
||||
if (sequence->empty()) {
|
||||
throw std::runtime_error("Repetition without preceding element");
|
||||
}
|
||||
++it;
|
||||
auto start = it;
|
||||
while (it != end && *it != '}') {
|
||||
++it;
|
||||
}
|
||||
if (it == end) {
|
||||
throw std::runtime_error("Unmatched '{' in pattern");
|
||||
}
|
||||
auto parts = string_split(std::string(start, it), ",");
|
||||
++it;
|
||||
if (parts.size() > 2) {
|
||||
throw std::runtime_error("Invalid repetition range in pattern");
|
||||
}
|
||||
|
||||
auto parseOptInt = [&](const std::string & s, const std::optional<int> & def = std::nullopt) -> std::optional<int> {
|
||||
if (s.empty()) {
|
||||
return def;
|
||||
}
|
||||
return std::stoi(s);
|
||||
};
|
||||
auto min = parseOptInt(parts[0], 0);
|
||||
auto max = parts.size() == 1 ? min : parseOptInt(parts[1]);
|
||||
if (min && max && *max < *min) {
|
||||
throw std::runtime_error("Invalid repetition range in pattern");
|
||||
}
|
||||
// Brutal but... let's repeat at least min times, then ? for the delta between min & max (or * for unbounded)
|
||||
auto part = sequence->back();
|
||||
sequence->pop_back();
|
||||
for (int i = 0; i < *min; i++) {
|
||||
sequence->push_back(part);
|
||||
}
|
||||
if (max) {
|
||||
for (int i = *min; i < *max; i++) {
|
||||
sequence->push_back(part + "?");
|
||||
}
|
||||
} else {
|
||||
sequence->push_back(part + "*");
|
||||
}
|
||||
} else if (*it == '(') {
|
||||
++it;
|
||||
if (it != end && *it == '?' && (it + 1 != end) && *(it + 1) == ':') {
|
||||
it += 2;
|
||||
}
|
||||
auto sub = process();
|
||||
if (*it != ')') {
|
||||
throw std::runtime_error("Unmatched '(' in pattern");
|
||||
}
|
||||
++it;
|
||||
auto & part = sequence->emplace_back("(?:");
|
||||
part += sub;
|
||||
part += ")";
|
||||
} else if (*it == ')') {
|
||||
break;
|
||||
} else if (*it == '|') {
|
||||
++it;
|
||||
alternatives.emplace_back();
|
||||
sequence = &alternatives.back();
|
||||
} else if (*it == '\\' && (++it != end)) {
|
||||
auto str = std::string("\\") + *it;
|
||||
sequence->push_back(str);
|
||||
++it;
|
||||
} else if (it != end) {
|
||||
sequence->push_back(std::string(1, *it));
|
||||
++it;
|
||||
}
|
||||
}
|
||||
|
||||
// /abcd/ -> (dcba|cba|ba|a).* -> ((?:(?:(?:d)?c)?b)?a).*
|
||||
// if n(=4) parts, opening n-1(=3) non-capturing groups after the 1 capturing group
|
||||
// We'll do the outermost capturing group and final .* in the enclosing function.
|
||||
std::vector<std::string> res_alts;
|
||||
for (const auto & parts : alternatives) {
|
||||
auto & res = res_alts.emplace_back();
|
||||
for (size_t i = 0; i < parts.size() - 1; i++) {
|
||||
res += "(?:";
|
||||
}
|
||||
for (auto it = parts.rbegin(); it != parts.rend(); ++it) {
|
||||
res += *it;
|
||||
if (it != parts.rend() - 1) {
|
||||
res += ")?";
|
||||
}
|
||||
}
|
||||
}
|
||||
return string_join(res_alts, "|");
|
||||
};
|
||||
auto res = process();
|
||||
if (it != end) {
|
||||
throw std::runtime_error("Unmatched '(' in pattern");
|
||||
}
|
||||
|
||||
return "(" + res + ")[\\s\\S]*";
|
||||
}
|
||||
56
common/regex-partial.h
Normal file
56
common/regex-partial.h
Normal file
@@ -0,0 +1,56 @@
|
||||
#pragma once
|
||||
|
||||
#include <regex>
|
||||
#include <string>
|
||||
|
||||
enum common_regex_match_type {
|
||||
COMMON_REGEX_MATCH_TYPE_NONE,
|
||||
COMMON_REGEX_MATCH_TYPE_PARTIAL,
|
||||
COMMON_REGEX_MATCH_TYPE_FULL,
|
||||
};
|
||||
|
||||
struct common_string_range {
|
||||
size_t begin;
|
||||
size_t end;
|
||||
common_string_range(size_t begin, size_t end) : begin(begin), end(end) {
|
||||
if (begin > end) {
|
||||
throw std::runtime_error("Invalid range");
|
||||
}
|
||||
}
|
||||
// prevent default ctor
|
||||
common_string_range() = delete;
|
||||
bool empty() const {
|
||||
return begin == end;
|
||||
}
|
||||
bool operator==(const common_string_range & other) const {
|
||||
return begin == other.begin && end == other.end;
|
||||
}
|
||||
};
|
||||
|
||||
struct common_regex_match {
|
||||
common_regex_match_type type = COMMON_REGEX_MATCH_TYPE_NONE;
|
||||
std::vector<common_string_range> groups;
|
||||
|
||||
bool operator==(const common_regex_match & other) const {
|
||||
return type == other.type && groups == other.groups;
|
||||
}
|
||||
bool operator!=(const common_regex_match & other) const {
|
||||
return !(*this == other);
|
||||
}
|
||||
};
|
||||
|
||||
class common_regex {
|
||||
std::string pattern;
|
||||
std::regex rx;
|
||||
std::regex rx_reversed_partial;
|
||||
|
||||
public:
|
||||
explicit common_regex(const std::string & pattern);
|
||||
|
||||
common_regex_match search(const std::string & input, size_t pos, bool as_match = false) const;
|
||||
|
||||
const std::string & str() const { return pattern; }
|
||||
};
|
||||
|
||||
// For testing only (pretty print of failures).
|
||||
std::string regex_to_reversed_partial_regex(const std::string & pattern);
|
||||
@@ -161,7 +161,7 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
||||
GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
|
||||
#endif // LLAMA_USE_LLGUIDANCE
|
||||
} else {
|
||||
std::vector<std::string> patterns_at_start;
|
||||
std::vector<std::string> trigger_patterns;
|
||||
std::vector<std::string> patterns_anywhere;
|
||||
std::vector<llama_token> trigger_tokens;
|
||||
for (const auto & trigger : params.grammar_triggers) {
|
||||
@@ -173,10 +173,13 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
||||
break;
|
||||
}
|
||||
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN:
|
||||
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START:
|
||||
{
|
||||
const auto & pattern = trigger.value;
|
||||
(trigger.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START ? patterns_at_start : patterns_anywhere).push_back(pattern);
|
||||
patterns_anywhere.push_back(trigger.value);
|
||||
break;
|
||||
}
|
||||
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL:
|
||||
{
|
||||
trigger_patterns.push_back(trigger.value);
|
||||
break;
|
||||
}
|
||||
case COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN:
|
||||
@@ -190,10 +193,6 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::string> trigger_patterns;
|
||||
if (!patterns_at_start.empty()) {
|
||||
trigger_patterns.push_back("^(" + string_join(patterns_at_start, "|") + ")[\\s\\S]*");
|
||||
}
|
||||
if (!patterns_anywhere.empty()) {
|
||||
trigger_patterns.push_back("^[\\s\\S]*?(" + string_join(patterns_anywhere, "|") + ")[\\s\\S]*");
|
||||
}
|
||||
|
||||
@@ -45,7 +45,7 @@ class SentencePieceTokenTypes(IntEnum):
|
||||
|
||||
class ModelType(IntEnum):
|
||||
TEXT = 1
|
||||
VISION = 2
|
||||
MMPROJ = 2
|
||||
|
||||
|
||||
AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
|
||||
@@ -54,7 +54,7 @@ AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
|
||||
class ModelBase:
|
||||
_model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
|
||||
ModelType.TEXT: {},
|
||||
ModelType.VISION: {},
|
||||
ModelType.MMPROJ: {},
|
||||
}
|
||||
|
||||
dir_model: Path
|
||||
@@ -88,7 +88,7 @@ class ModelBase:
|
||||
small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
|
||||
if type(self) is ModelBase or \
|
||||
type(self) is TextModel or \
|
||||
type(self) is VisionModel:
|
||||
type(self) is MmprojModel:
|
||||
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
|
||||
|
||||
self.dir_model = dir_model
|
||||
@@ -308,6 +308,8 @@ class ModelBase:
|
||||
gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
|
||||
gguf.MODEL_TENSOR.POSNET_NORM1,
|
||||
gguf.MODEL_TENSOR.POSNET_NORM2,
|
||||
gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
|
||||
gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
|
||||
)
|
||||
)
|
||||
or not new_name.endswith(".weight")
|
||||
@@ -421,19 +423,26 @@ class ModelBase:
|
||||
try:
|
||||
# for security reason, we don't allow loading remote code by default
|
||||
# if a model need remote code, we will fallback to config.json
|
||||
return AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
|
||||
config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to load model config from {dir_model}: {e}")
|
||||
logger.warning("Trying to load config.json instead")
|
||||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||
return json.load(f)
|
||||
config = json.load(f)
|
||||
if "llm_config" in config:
|
||||
# rename for InternVL
|
||||
config["text_config"] = config["llm_config"]
|
||||
if "thinker_config" in config:
|
||||
# rename for Qwen2.5-Omni
|
||||
config["text_config"] = config["thinker_config"]["text_config"]
|
||||
return config
|
||||
|
||||
@classmethod
|
||||
def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
|
||||
assert names
|
||||
|
||||
def func(modelcls: AnyModel) -> AnyModel:
|
||||
model_type = ModelType.VISION if modelcls.model_arch == gguf.MODEL_ARCH.CLIP_VISION else ModelType.TEXT
|
||||
model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
|
||||
for name in names:
|
||||
cls._model_classes[model_type][name] = modelcls
|
||||
return modelcls
|
||||
@@ -514,15 +523,15 @@ class TextModel(ModelBase):
|
||||
self.gguf_writer.add_context_length(n_ctx)
|
||||
logger.info(f"gguf: context length = {n_ctx}")
|
||||
|
||||
if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
|
||||
if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
|
||||
self.gguf_writer.add_embedding_length(n_embd)
|
||||
logger.info(f"gguf: embedding length = {n_embd}")
|
||||
|
||||
if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
|
||||
if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
|
||||
self.gguf_writer.add_feed_forward_length(n_ff)
|
||||
logger.info(f"gguf: feed forward length = {n_ff}")
|
||||
|
||||
if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
|
||||
if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
|
||||
self.gguf_writer.add_head_count(n_head)
|
||||
logger.info(f"gguf: head count = {n_head}")
|
||||
|
||||
@@ -665,12 +674,12 @@ class TextModel(ModelBase):
|
||||
if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
|
||||
# ref: https://huggingface.co/tiiuae/falcon-7b
|
||||
res = "falcon"
|
||||
if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
|
||||
# ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
|
||||
res = "falcon3"
|
||||
if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
|
||||
# ref: https://huggingface.co/BAAI/bge-small-en-v1.5
|
||||
res = "bert-bge"
|
||||
if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
|
||||
# ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
|
||||
res = "falcon3"
|
||||
if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
|
||||
# ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
|
||||
res = "bert-bge-large"
|
||||
@@ -722,9 +731,6 @@ class TextModel(ModelBase):
|
||||
if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
|
||||
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
|
||||
res = "jina-v2-code"
|
||||
if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
|
||||
# ref: https://huggingface.co/THUDM/glm-4-9b-chat
|
||||
res = "chatglm-bpe"
|
||||
if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
|
||||
# ref: https://huggingface.co/LumiOpen/Viking-7B
|
||||
res = "viking"
|
||||
@@ -755,9 +761,6 @@ class TextModel(ModelBase):
|
||||
if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
|
||||
# ref: https://huggingface.co/facebook/chameleon-7b
|
||||
res = "chameleon"
|
||||
if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
|
||||
# ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
|
||||
res = "minerva-7b"
|
||||
if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
|
||||
# ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
|
||||
res = "roberta-bpe"
|
||||
@@ -788,12 +791,24 @@ class TextModel(ModelBase):
|
||||
if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
|
||||
# ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
|
||||
res = "llama4"
|
||||
if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
|
||||
# ref: https://huggingface.co/THUDM/glm-4-9b-hf
|
||||
res = "glm4"
|
||||
if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
|
||||
# ref: https://huggingface.co/mistral-community/pixtral-12b
|
||||
res = "pixtral"
|
||||
if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
|
||||
# ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
|
||||
res = "seed-coder"
|
||||
if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
|
||||
# ref: https://huggingface.co/THUDM/glm-4-9b-chat
|
||||
res = "chatglm-bpe"
|
||||
if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
|
||||
# ref: https://huggingface.co/THUDM/glm-4-9b-chat
|
||||
res = "chatglm-bpe"
|
||||
if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
|
||||
# ref: https://huggingface.co/THUDM/glm-4-9b-hf
|
||||
res = "glm4"
|
||||
if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
|
||||
# ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
|
||||
res = "minerva-7b"
|
||||
|
||||
if res is None:
|
||||
logger.warning("\n")
|
||||
@@ -1032,6 +1047,10 @@ class TextModel(ModelBase):
|
||||
special_vocab.chat_template = "rwkv-world"
|
||||
# hack: Add '\n\n' as the EOT token to make it chat normally
|
||||
special_vocab._set_special_token("eot", 261)
|
||||
# hack: Override these as they have already been set (incorrectly)
|
||||
special_vocab.special_token_ids["bos"] = 0
|
||||
special_vocab.special_token_ids["eos"] = 0
|
||||
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
|
||||
@@ -1106,60 +1125,116 @@ class TextModel(ModelBase):
|
||||
self.gguf_writer.add_pooling_type(pooling_type)
|
||||
|
||||
|
||||
class VisionModel(ModelBase):
|
||||
model_type = ModelType.VISION
|
||||
model_arch = gguf.MODEL_ARCH.CLIP_VISION
|
||||
class MmprojModel(ModelBase):
|
||||
model_type = ModelType.MMPROJ
|
||||
model_arch = gguf.MODEL_ARCH.MMPROJ
|
||||
preprocessor_config: dict[str, Any]
|
||||
global_config: dict[str, Any]
|
||||
|
||||
n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
|
||||
|
||||
has_vision_encoder: bool = True # by default
|
||||
has_audio_encoder: bool = False
|
||||
|
||||
# for models having multiple encoders, we need to separate their hparams
|
||||
hparams_vision: dict[str, Any] | None = None
|
||||
hparams_audio: dict[str, Any] | None = None
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
if self.model_arch != gguf.MODEL_ARCH.CLIP_VISION:
|
||||
raise TypeError("VisionModel must be subclassed with model_arch = gguf.MODEL_ARCH.CLIP_VISION")
|
||||
if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
|
||||
raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
|
||||
|
||||
# get n_embd of the text model
|
||||
if "text_config" not in self.hparams:
|
||||
self.hparams["text_config"] = {}
|
||||
if "audio_config" not in self.hparams:
|
||||
self.hparams["audio_config"] = {}
|
||||
text_config = {**self.hparams, **self.hparams["text_config"]}
|
||||
self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
|
||||
assert self.n_embd_text > 0, "n_embd not found in hparams"
|
||||
|
||||
if "vision_config" not in self.hparams:
|
||||
raise ValueError("vision_config not found in hparams")
|
||||
# move vision config to the top level, while preserving the original hparams in global_config
|
||||
self.global_config = self.hparams
|
||||
self.hparams = self.hparams["vision_config"]
|
||||
import copy
|
||||
self.global_config = copy.deepcopy(self.hparams)
|
||||
self.hparams_vision = self.get_vision_config()
|
||||
self.hparams_audio = self.get_audio_config()
|
||||
|
||||
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"])
|
||||
self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.CLIP_VISION, self.block_count)
|
||||
if self.hparams_vision is None and self.hparams_audio is None:
|
||||
raise ValueError("vision_config / audio_config not found in hparams")
|
||||
|
||||
# for compat with vision-only models
|
||||
self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
|
||||
|
||||
# TODO @ngxson : this is a hack to support both vision and audio encoders
|
||||
have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
|
||||
self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
|
||||
self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
|
||||
|
||||
# load preprocessor config
|
||||
with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
|
||||
self.preprocessor_config = json.load(f)
|
||||
|
||||
def get_vision_config(self) -> dict[str, Any] | None:
|
||||
return self.global_config.get("vision_config")
|
||||
|
||||
def get_audio_config(self) -> dict[str, Any] | None:
|
||||
return self.global_config.get("audio_config")
|
||||
|
||||
def set_type(self):
|
||||
self.gguf_writer.add_type(gguf.GGUFType.CLIP_VISION)
|
||||
self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
|
||||
self.gguf_writer.add_vision_has_vision_encoder(True)
|
||||
|
||||
# vision config
|
||||
self.gguf_writer.add_vision_image_size(self.find_hparam(["image_size"]))
|
||||
self.gguf_writer.add_vision_patch_size(self.find_hparam(["patch_size"]))
|
||||
self.gguf_writer.add_vision_embedding_length(self.find_hparam(["hidden_size"]))
|
||||
self.gguf_writer.add_vision_feed_forward_length(self.find_hparam(["intermediate_size"]))
|
||||
self.gguf_writer.add_vision_block_count(self.block_count)
|
||||
self.gguf_writer.add_vision_head_count(self.find_hparam(["num_attention_heads"]))
|
||||
if self.has_vision_encoder:
|
||||
self.gguf_writer.add_clip_has_vision_encoder(True)
|
||||
self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
|
||||
|
||||
# preprocessor config
|
||||
self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
|
||||
self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
|
||||
# vision config
|
||||
self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
|
||||
self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
|
||||
self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
|
||||
self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
|
||||
self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
|
||||
self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
|
||||
|
||||
# preprocessor config
|
||||
self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
|
||||
self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
|
||||
|
||||
if self.has_audio_encoder:
|
||||
self.gguf_writer.add_clip_has_audio_encoder(True)
|
||||
self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
|
||||
|
||||
# audio config
|
||||
self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
|
||||
self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
|
||||
self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
|
||||
self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
|
||||
|
||||
if not self.has_vision_encoder and not self.has_audio_encoder:
|
||||
raise ValueError("MmprojModel must have either vision or audio encoder")
|
||||
|
||||
def write_vocab(self):
|
||||
raise ValueError("VisionModel does not support vocab writing")
|
||||
raise ValueError("MmprojModel does not support vocab writing")
|
||||
|
||||
def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
|
||||
assert self.hparams_vision is not None
|
||||
return self._find_param(self.hparams_vision, keys, optional)
|
||||
|
||||
def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
|
||||
assert self.hparams_audio is not None
|
||||
return self._find_param(self.hparams_audio, keys, optional)
|
||||
|
||||
def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
|
||||
key = next((k for k in keys if k in obj), None)
|
||||
if key is not None:
|
||||
return obj[key]
|
||||
if optional:
|
||||
return None
|
||||
raise KeyError(f"could not find any of: {keys}")
|
||||
|
||||
|
||||
@ModelBase.register("GPTNeoXForCausalLM")
|
||||
@@ -1773,7 +1848,8 @@ class StableLMModel(TextModel):
|
||||
"MistralForCausalLM",
|
||||
"MixtralForCausalLM",
|
||||
"VLlama3ForCausalLM",
|
||||
"LlavaForConditionalGeneration")
|
||||
"LlavaForConditionalGeneration",
|
||||
"LlamaModel")
|
||||
class LlamaModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
undo_permute = True
|
||||
@@ -1853,6 +1929,8 @@ class LlamaModel(TextModel):
|
||||
|
||||
if is_vision_tensor:
|
||||
return [] # skip vision tensors
|
||||
elif self.hf_arch == "LlamaModel":
|
||||
name = "model." + name
|
||||
elif name.startswith("model.text_model"):
|
||||
name = name.replace("text_model.", "") # for SmolVLM
|
||||
elif name.startswith("language_model."):
|
||||
@@ -1943,7 +2021,7 @@ class LlamaModel(TextModel):
|
||||
"LlavaForConditionalGeneration", # pixtral
|
||||
"Mistral3ForConditionalGeneration", # mistral small 3.1
|
||||
)
|
||||
class LlavaVisionModel(VisionModel):
|
||||
class LlavaVisionModel(MmprojModel):
|
||||
img_break_tok_id = -1
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
@@ -1969,7 +2047,7 @@ class LlavaVisionModel(VisionModel):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
if hparams["model_type"] == "pixtral":
|
||||
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.PIXTRAL)
|
||||
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
|
||||
self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
|
||||
|
||||
# hidden_act
|
||||
@@ -2008,7 +2086,7 @@ class LlavaVisionModel(VisionModel):
|
||||
|
||||
|
||||
@ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
|
||||
class SmolVLMModel(VisionModel):
|
||||
class SmolVLMModel(MmprojModel):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
if self.hparams["model_type"] == "smolvlm_vision":
|
||||
@@ -2020,7 +2098,7 @@ class SmolVLMModel(VisionModel):
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.IDEFICS3)
|
||||
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
|
||||
self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
|
||||
self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
|
||||
self.gguf_writer.add_vision_use_gelu(True)
|
||||
@@ -2062,6 +2140,9 @@ class Llama4Model(LlamaModel):
|
||||
self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
|
||||
if name.startswith("language_model."):
|
||||
name = name.replace("language_model.", "")
|
||||
|
||||
# split the gate_up into gate and up
|
||||
if "gate_up_proj" in name:
|
||||
name_up = name.replace("gate_up_proj", "up_proj.weight")
|
||||
@@ -2082,6 +2163,29 @@ class Llama4Model(LlamaModel):
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("Llama4ForConditionalGeneration")
|
||||
class Llama4VisionModel(MmprojModel):
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
|
||||
self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
|
||||
self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
|
||||
assert self.hparams["hidden_act"] == "gelu"
|
||||
self.gguf_writer.add_vision_use_gelu(True)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
if "multi_modal_projector" in name or "vision_model" in name:
|
||||
# process vision tensors
|
||||
if "positional_embedding_vlm" in name and ".weight" not in name:
|
||||
name += ".weight"
|
||||
if "multi_modal_projector.linear_1" in name:
|
||||
# despite the name with number postfix, this is a single fully connected layer
|
||||
return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC], data_torch)]
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
return []
|
||||
|
||||
|
||||
@ModelBase.register("Mistral3ForConditionalGeneration")
|
||||
class Mistral3Model(LlamaModel):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
@@ -2584,7 +2688,7 @@ class QwenModel(TextModel):
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
|
||||
@ModelBase.register("Qwen2Model", "Qwen2ForCausalLM")
|
||||
@ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
|
||||
class Qwen2Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN2
|
||||
|
||||
@@ -2606,10 +2710,21 @@ class Qwen2Model(TextModel):
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
if self.hf_arch == "Qwen2Model":
|
||||
name = f"model.{name}" # map to Qwen2ForCausalLM tensors
|
||||
if "language_model." in name:
|
||||
name = name.replace("language_model.", "") # for InternVL
|
||||
if name.startswith("mlp") or name.startswith("multi_modal_projector") \
|
||||
or name.startswith("vision_model") or name.startswith("audio_tower"):
|
||||
# skip vision and audio tensors
|
||||
return []
|
||||
yield from super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
|
||||
@ModelBase.register(
|
||||
"Qwen2VLModel",
|
||||
"Qwen2VLForConditionalGeneration",
|
||||
"Qwen2_5_VLForConditionalGeneration",
|
||||
"Qwen2_5OmniModel",
|
||||
)
|
||||
class Qwen2VLModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN2VL
|
||||
|
||||
@@ -2627,31 +2742,40 @@ class Qwen2VLModel(TextModel):
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
if name.startswith("visual."):
|
||||
# skip visual tensors
|
||||
if name.startswith("thinker."):
|
||||
name = name.replace("thinker.", "")
|
||||
if name.startswith("visual") or name.startswith("audio") or \
|
||||
name.startswith("talker") or name.startswith("token2wav"):
|
||||
# skip multimodal tensors
|
||||
return []
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
|
||||
class Qwen2VLVisionModel(VisionModel):
|
||||
@ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
|
||||
class Qwen2VLVisionModel(MmprojModel):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.hparams["image_size"] = self.hparams.get("image_size", 560)
|
||||
assert self.hparams_vision is not None
|
||||
self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
|
||||
# rename config.json values
|
||||
self.hparams["num_attention_heads"] = self.hparams.get("num_heads")
|
||||
self.hparams["num_hidden_layers"] = self.hparams.get("depth")
|
||||
if "embed_dim" in self.hparams: # qwen2vl
|
||||
self.hparams["intermediate_size"] = self.hparams.get("hidden_size")
|
||||
self.hparams["hidden_size"] = self.hparams.get("embed_dim")
|
||||
self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
|
||||
self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
|
||||
if "embed_dim" in self.hparams_vision: # qwen2vl
|
||||
self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
|
||||
self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
if self.global_config['model_type'] == 'qwen2_vl':
|
||||
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.QWEN2VL)
|
||||
elif self.global_config['model_type'] == 'qwen2_5_vl':
|
||||
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.QWEN25VL)
|
||||
assert self.hparams_vision is not None
|
||||
hparams = self.hparams_vision
|
||||
model_type = self.global_config['model_type']
|
||||
if model_type == 'qwen2_vl':
|
||||
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
|
||||
elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
|
||||
if model_type == 'qwen2_5_omni':
|
||||
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
|
||||
else:
|
||||
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
|
||||
self.gguf_writer.add_vision_use_silu(True)
|
||||
# find n_wa_pattern (window attention pattern)
|
||||
fullatt_block_indexes = hparams.get("fullatt_block_indexes")
|
||||
@@ -2709,6 +2833,122 @@ class Qwen2VLVisionModel(VisionModel):
|
||||
return [] # skip other tensors
|
||||
|
||||
|
||||
@ModelBase.register("Qwen2_5OmniModel")
|
||||
class Qwen25OmniModel(Qwen2VLVisionModel):
|
||||
has_vision_encoder = True
|
||||
has_audio_encoder = True
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
assert self.hparams_audio is not None
|
||||
self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
|
||||
self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
|
||||
self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
assert self.hparams_audio is not None
|
||||
self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
|
||||
self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
|
||||
|
||||
def get_vision_config(self) -> dict[str, Any] | None:
|
||||
return self.global_config["thinker_config"].get("vision_config")
|
||||
|
||||
def get_audio_config(self) -> dict[str, Any] | None:
|
||||
return self.global_config["thinker_config"].get("audio_config")
|
||||
|
||||
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
|
||||
# SinusoidsPositionEmbedding
|
||||
assert self.hparams_audio is not None
|
||||
max_timescale = 10000
|
||||
length = 1500
|
||||
channels = self.hparams_audio["hidden_size"]
|
||||
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
|
||||
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
|
||||
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
|
||||
pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
|
||||
yield ("audio_tower.embed_positions.weight", pos_embd)
|
||||
|
||||
def tensor_force_quant(self, name, new_name, bid, n_dims):
|
||||
del bid, new_name, n_dims # unused
|
||||
if ".conv" in name and ".weight" in name:
|
||||
return gguf.GGMLQuantizationType.F16
|
||||
return False
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
if name.startswith("thinker."):
|
||||
name = name.replace("thinker.", "")
|
||||
|
||||
if name.startswith("audio_tower"):
|
||||
# process audio tensors
|
||||
if "conv1.bias" in name or "conv2.bias" in name:
|
||||
# transpose conv1 and conv2 bias
|
||||
data_torch = data_torch.unsqueeze(-1)
|
||||
if "audio_bos_eos_token" in name:
|
||||
# this tensor is left unused in transformers code
|
||||
# https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
|
||||
return []
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("InternVisionModel")
|
||||
class InternVisionModel(MmprojModel):
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
|
||||
self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
|
||||
# hidden_act
|
||||
if hparams["hidden_act"] == "silu":
|
||||
self.gguf_writer.add_vision_use_silu(True)
|
||||
elif hparams["hidden_act"] == "gelu":
|
||||
self.gguf_writer.add_vision_use_gelu(True)
|
||||
else:
|
||||
raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
|
||||
# downsample_ratio
|
||||
downsample_ratio = self.global_config.get("downsample_ratio")
|
||||
assert downsample_ratio is not None
|
||||
self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
|
||||
|
||||
def tensor_force_quant(self, name, new_name, bid, n_dims):
|
||||
del bid, name, n_dims # unused
|
||||
if ".patch_embd." in new_name:
|
||||
return gguf.GGMLQuantizationType.F16
|
||||
if ".position_embd." in new_name:
|
||||
return gguf.GGMLQuantizationType.F32
|
||||
return False
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
if name.startswith("vision_model") or name.startswith("mlp"):
|
||||
# process visual tensors
|
||||
# correct name
|
||||
if name.startswith("vision_model"):
|
||||
name = "vision_tower." + name
|
||||
if (".ls" in name or "position_embedding" in name) and not name.endswith(".weight"):
|
||||
name += ".weight"
|
||||
# split QKV tensors if needed
|
||||
if ".qkv." in name:
|
||||
if data_torch.ndim == 2: # weight
|
||||
c3, _ = data_torch.shape
|
||||
else: # bias
|
||||
c3 = data_torch.shape[0]
|
||||
assert c3 % 3 == 0
|
||||
c = c3 // 3
|
||||
wq = data_torch[:c]
|
||||
wk = data_torch[c: c * 2]
|
||||
wv = data_torch[c * 2:]
|
||||
return [
|
||||
(self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
|
||||
(self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
|
||||
(self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
|
||||
]
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
return [] # skip other tensors
|
||||
|
||||
|
||||
@ModelBase.register("WavTokenizerDec")
|
||||
class WavTokenizerDecModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
|
||||
@@ -3360,6 +3600,11 @@ class InternLM2Model(TextModel):
|
||||
head_dim = n_embd // num_heads
|
||||
num_groups = num_heads // q_per_kv
|
||||
|
||||
name = name.replace("language_model.", "") # InternVL
|
||||
if name.startswith("mlp") or name.startswith("vision_model"):
|
||||
# skip visual tensors
|
||||
return []
|
||||
|
||||
if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
|
||||
qkv = data_torch
|
||||
|
||||
@@ -3433,6 +3678,10 @@ class InternLM3Model(TextModel):
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
n_head = self.hparams["num_attention_heads"]
|
||||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||
name = name.replace("language_model.", "") # InternVL
|
||||
if name.startswith("mlp") or name.startswith("vision_model"):
|
||||
# skip visual tensors
|
||||
return []
|
||||
if name.endswith(("q_proj.weight", "q_proj.bias")):
|
||||
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
|
||||
if name.endswith(("k_proj.weight", "k_proj.bias")):
|
||||
@@ -3440,7 +3689,7 @@ class InternLM3Model(TextModel):
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel")
|
||||
@ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
|
||||
class BertModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.BERT
|
||||
|
||||
@@ -3448,11 +3697,21 @@ class BertModel(TextModel):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.vocab_size = None
|
||||
|
||||
if cls_out_labels := self.hparams.get("id2label"):
|
||||
if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
|
||||
# Remove dummy labels added by AutoConfig
|
||||
cls_out_labels = None
|
||||
self.cls_out_labels = cls_out_labels
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_causal_attention(False)
|
||||
self._try_set_pooling_type()
|
||||
|
||||
if self.cls_out_labels:
|
||||
key_name = gguf.Keys.Classifier.OUTPUT_LABELS.format(arch = gguf.MODEL_ARCH_NAMES[self.model_arch])
|
||||
self.gguf_writer.add_array(key_name, [v for k, v in sorted(self.cls_out_labels.items())])
|
||||
|
||||
def set_vocab(self):
|
||||
tokens, toktypes, tokpre = self.get_vocab_base()
|
||||
self.vocab_size = len(tokens)
|
||||
@@ -3503,6 +3762,14 @@ class BertModel(TextModel):
|
||||
if name.startswith("cls.seq_relationship"):
|
||||
return []
|
||||
|
||||
if self.cls_out_labels:
|
||||
# For BertForSequenceClassification (direct projection layer)
|
||||
if name == "classifier.weight":
|
||||
name = "classifier.out_proj.weight"
|
||||
|
||||
if name == "classifier.bias":
|
||||
name = "classifier.out_proj.bias"
|
||||
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
def _xlmroberta_tokenizer_init(self) -> None:
|
||||
@@ -3522,44 +3789,93 @@ class BertModel(TextModel):
|
||||
from sentencepiece import sentencepiece_model_pb2 as model
|
||||
|
||||
tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
|
||||
|
||||
tokenizer_json = {}
|
||||
tokenizer_config_json = {}
|
||||
if not tokenizer_path.is_file():
|
||||
raise FileNotFoundError(f"File not found: {tokenizer_path}")
|
||||
tokenizer_path = self.dir_model / 'tokenizer.json'
|
||||
tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
|
||||
|
||||
sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
|
||||
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
|
||||
assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
|
||||
if not tokenizer_path.is_file():
|
||||
raise FileNotFoundError(f"File not found: {tokenizer_path}")
|
||||
|
||||
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
|
||||
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
|
||||
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
|
||||
from base64 import b64decode
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
|
||||
|
||||
tokenizer = SentencePieceProcessor()
|
||||
tokenizer.LoadFromFile(str(tokenizer_path))
|
||||
with open(tokenizer_path, "r", encoding="utf-8") as fp:
|
||||
tokenizer_json = json.load(fp)
|
||||
|
||||
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||||
if tokenizer_config_path.is_file():
|
||||
with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
|
||||
tokenizer_config_json = json.load(fp)
|
||||
|
||||
add_prefix = tokenizer.add_prefix_space
|
||||
remove_whitespaces = tokenizer.clean_up_tokenization_spaces
|
||||
precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
|
||||
|
||||
vocab_size = self.hparams.get("vocab_size", tokenizer.vocab_size)
|
||||
else:
|
||||
sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
|
||||
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
|
||||
assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
|
||||
|
||||
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
|
||||
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
|
||||
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
|
||||
|
||||
tokenizer = SentencePieceProcessor()
|
||||
tokenizer.LoadFromFile(str(tokenizer_path))
|
||||
|
||||
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||||
|
||||
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
||||
scores: list[float] = [-10000.0] * vocab_size
|
||||
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
|
||||
|
||||
for token_id in range(tokenizer.vocab_size()):
|
||||
piece = tokenizer.IdToPiece(token_id)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.GetScore(token_id)
|
||||
if isinstance(tokenizer, SentencePieceProcessor):
|
||||
for token_id in range(tokenizer.vocab_size()):
|
||||
piece = tokenizer.IdToPiece(token_id)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.GetScore(token_id)
|
||||
|
||||
toktype = SentencePieceTokenTypes.NORMAL
|
||||
if tokenizer.IsUnknown(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||||
elif tokenizer.IsControl(token_id):
|
||||
toktype = SentencePieceTokenTypes.CONTROL
|
||||
elif tokenizer.IsUnused(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNUSED
|
||||
elif tokenizer.IsByte(token_id):
|
||||
toktype = SentencePieceTokenTypes.BYTE
|
||||
toktype = SentencePieceTokenTypes.NORMAL
|
||||
if tokenizer.IsUnknown(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||||
elif tokenizer.IsControl(token_id):
|
||||
toktype = SentencePieceTokenTypes.CONTROL
|
||||
elif tokenizer.IsUnused(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNUSED
|
||||
elif tokenizer.IsByte(token_id):
|
||||
toktype = SentencePieceTokenTypes.BYTE
|
||||
|
||||
tokens[token_id] = text
|
||||
scores[token_id] = score
|
||||
toktypes[token_id] = toktype
|
||||
tokens[token_id] = text
|
||||
scores[token_id] = score
|
||||
toktypes[token_id] = toktype
|
||||
else:
|
||||
added_vocab = tokenizer.get_added_vocab()
|
||||
unk_token = tokenizer_config_json.get("unk_token")
|
||||
unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
|
||||
|
||||
for token_id in range(vocab_size):
|
||||
piece = tokenizer._convert_id_to_token(token_id)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer_json["model"]["vocab"][token_id][1]
|
||||
|
||||
toktype = SentencePieceTokenTypes.NORMAL
|
||||
if token_id == unk_token_id:
|
||||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||||
elif token_id in tokenizer.all_special_ids:
|
||||
toktype = SentencePieceTokenTypes.CONTROL
|
||||
elif token_id in added_vocab.values():
|
||||
toktype = SentencePieceTokenTypes.USER_DEFINED
|
||||
# No reliable way to detect this, but jina doesn't have any
|
||||
# elif tokenizer.IsByte(token_id):
|
||||
# toktype = SentencePieceTokenTypes.BYTE
|
||||
|
||||
tokens[token_id] = text
|
||||
scores[token_id] = score
|
||||
toktypes[token_id] = toktype
|
||||
|
||||
if vocab_size > len(tokens):
|
||||
pad_count = vocab_size - len(tokens)
|
||||
@@ -3569,15 +3885,16 @@ class BertModel(TextModel):
|
||||
scores.append(-1000.0)
|
||||
toktypes.append(SentencePieceTokenTypes.UNUSED)
|
||||
|
||||
# realign tokens (see HF tokenizer code)
|
||||
tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
|
||||
scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
|
||||
toktypes = [
|
||||
SentencePieceTokenTypes.CONTROL,
|
||||
SentencePieceTokenTypes.CONTROL,
|
||||
SentencePieceTokenTypes.CONTROL,
|
||||
SentencePieceTokenTypes.UNKNOWN,
|
||||
] + toktypes[3:-1]
|
||||
if isinstance(tokenizer, SentencePieceProcessor):
|
||||
# realign tokens (see HF tokenizer code)
|
||||
tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
|
||||
scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
|
||||
toktypes = [
|
||||
SentencePieceTokenTypes.CONTROL,
|
||||
SentencePieceTokenTypes.CONTROL,
|
||||
SentencePieceTokenTypes.CONTROL,
|
||||
SentencePieceTokenTypes.UNKNOWN,
|
||||
] + toktypes[3:-1]
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("t5")
|
||||
self.gguf_writer.add_tokenizer_pre("default")
|
||||
@@ -3597,7 +3914,27 @@ class BertModel(TextModel):
|
||||
self.gguf_writer.add_add_eos_token(True)
|
||||
|
||||
|
||||
@ModelBase.register("RobertaModel")
|
||||
@ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
|
||||
class DistilBertModel(BertModel):
|
||||
model_arch = gguf.MODEL_ARCH.BERT
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_layer_norm_eps(1e-12)
|
||||
logger.info("gguf: layer norm epsilon = 1e-12")
|
||||
super().set_gguf_parameters()
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
if name.startswith("distilbert."):
|
||||
name = name[11:]
|
||||
|
||||
# These layers act as MLM head, so we don't need them
|
||||
if name.startswith("vocab_"):
|
||||
return []
|
||||
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
|
||||
class RobertaModel(BertModel):
|
||||
model_arch = gguf.MODEL_ARCH.BERT
|
||||
|
||||
@@ -3907,11 +4244,11 @@ class Gemma3Model(TextModel):
|
||||
|
||||
|
||||
@ModelBase.register("Gemma3ForConditionalGeneration")
|
||||
class Gemma3VisionModel(VisionModel):
|
||||
class Gemma3VisionModel(MmprojModel):
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.GEMMA3)
|
||||
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
|
||||
# default values below are taken from HF tranformers code
|
||||
self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
|
||||
self.gguf_writer.add_vision_use_gelu(True)
|
||||
@@ -5669,11 +6006,20 @@ class GraniteModel(LlamaModel):
|
||||
logger.info("gguf: (granite) logits_scale = %s", logits_scale)
|
||||
|
||||
|
||||
@ModelBase.register("GraniteMoeForCausalLM")
|
||||
@ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
|
||||
class GraniteMoeModel(GraniteModel):
|
||||
"""Conversion for IBM's GraniteMoeForCausalLM"""
|
||||
model_arch = gguf.MODEL_ARCH.GRANITE_MOE
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
"""GraniteMoeShared uses GraniteMoe parameters plus the following:
|
||||
- shared_intermediate_size
|
||||
"""
|
||||
super().set_gguf_parameters()
|
||||
if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
|
||||
self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
|
||||
logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
"""In modeling_granitemoe, the JetMoe implementation of parallel experts
|
||||
is used. This essentially merges w1 and w3 into a single tensor with 2x
|
||||
@@ -5684,12 +6030,21 @@ class GraniteMoeModel(GraniteModel):
|
||||
if name.endswith("block_sparse_moe.input_linear.weight"):
|
||||
ffn_dim = self.hparams["intermediate_size"]
|
||||
assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
|
||||
gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
|
||||
gate, up = data_torch.split(ffn_dim, dim=-2)
|
||||
return [
|
||||
(self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
|
||||
(self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
|
||||
]
|
||||
|
||||
if name.endswith("shared_mlp.input_linear.weight"):
|
||||
ffn_dim = self.hparams["shared_intermediate_size"]
|
||||
assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
|
||||
gate, up = data_torch.split(ffn_dim, dim=-2)
|
||||
return [
|
||||
(self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
|
||||
(self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
|
||||
]
|
||||
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@@ -5840,6 +6195,65 @@ class ChameleonModel(TextModel):
|
||||
return data_torch
|
||||
|
||||
|
||||
@ModelBase.register("UltravoxModel")
|
||||
class UltravoxModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA # dummy
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
|
||||
|
||||
|
||||
@ModelBase.register("Qwen2AudioForConditionalGeneration")
|
||||
class WhisperEncoderModel(MmprojModel):
|
||||
has_vision_encoder = False # no vision encoder
|
||||
has_audio_encoder = True
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.hparams["hidden_size"] = self.hparams["d_model"]
|
||||
self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
|
||||
self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
|
||||
self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
|
||||
self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
|
||||
|
||||
def tensor_force_quant(self, name, new_name, bid, n_dims):
|
||||
del bid, new_name, n_dims # unused
|
||||
if ".conv" in name and ".weight" in name:
|
||||
return gguf.GGMLQuantizationType.F16
|
||||
return False
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
|
||||
if name.startswith("language_model."):
|
||||
# skip language model tensors
|
||||
return []
|
||||
|
||||
# prevent clash naming with vision tensors
|
||||
if name.startswith("multi_modal_projector"):
|
||||
name = "audio." + name
|
||||
|
||||
if "conv1.bias" in name or "conv2.bias" in name:
|
||||
# transpose conv1 and conv2 bias
|
||||
data_torch = data_torch.unsqueeze(-1)
|
||||
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@ModelBase.register("UltravoxModel")
|
||||
class UltravoxWhisperEncoderModel(WhisperEncoderModel):
|
||||
has_vision_encoder = False # no vision encoder
|
||||
has_audio_encoder = True
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
|
||||
|
||||
###### CONVERSION LOGIC ######
|
||||
|
||||
|
||||
@@ -6015,13 +6429,15 @@ def split_str_to_n_bytes(split_str: str) -> int:
|
||||
|
||||
|
||||
def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
|
||||
# TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
|
||||
# maybe we should fallback to text model's arch in that case, since not many models have both
|
||||
text_config = hparams.get("text_config", {})
|
||||
vision_config = hparams.get("vision_config", {})
|
||||
arch = hparams["architectures"][0]
|
||||
# if "architectures" is found in the sub-config, use that instead
|
||||
if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
|
||||
arch = text_config["architectures"][0]
|
||||
elif model_type == ModelType.VISION and vision_config.get("architectures") is not None:
|
||||
elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
|
||||
arch = vision_config["architectures"][0]
|
||||
return arch
|
||||
|
||||
@@ -6084,7 +6500,7 @@ def main() -> None:
|
||||
|
||||
with torch.inference_mode():
|
||||
output_type = ftype_map[args.outtype]
|
||||
model_type = ModelType.VISION if args.mmproj else ModelType.TEXT
|
||||
model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
|
||||
hparams = ModelBase.load_hparams(dir_model)
|
||||
model_architecture = get_model_architecture(hparams, model_type)
|
||||
logger.info(f"Model architecture: {model_architecture}")
|
||||
|
||||
@@ -1,28 +1,6 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# This script downloads the tokenizer models of the specified models from Huggingface and
|
||||
# generates the get_vocab_base_pre() function for convert_hf_to_gguf.py
|
||||
#
|
||||
# This is necessary in order to analyze the type of pre-tokenizer used by the model and
|
||||
# provide the necessary information to llama.cpp via the GGUF header in order to implement
|
||||
# the same pre-tokenizer.
|
||||
#
|
||||
# ref: https://github.com/ggml-org/llama.cpp/pull/6920
|
||||
#
|
||||
# Instructions:
|
||||
#
|
||||
# - Add a new model to the "models" list
|
||||
# - Run the script with your huggingface token:
|
||||
#
|
||||
# python3 convert_hf_to_gguf_update.py <huggingface_token>
|
||||
#
|
||||
# - The convert_hf_to_gguf.py script will have had its get_vocab_base_pre() function updated
|
||||
# - Update llama.cpp with the new pre-tokenizer if necessary
|
||||
#
|
||||
# TODO: generate tokenizer tests for llama.cpp
|
||||
#
|
||||
|
||||
import logging
|
||||
import os
|
||||
import pathlib
|
||||
@@ -32,6 +10,7 @@ import requests
|
||||
import sys
|
||||
import json
|
||||
import shutil
|
||||
import argparse
|
||||
|
||||
from hashlib import sha256
|
||||
from enum import IntEnum, auto
|
||||
@@ -41,6 +20,11 @@ logging.basicConfig(level=logging.DEBUG)
|
||||
logger = logging.getLogger("convert_hf_to_gguf_update")
|
||||
sess = requests.Session()
|
||||
|
||||
convert_py_pth = pathlib.Path("convert_hf_to_gguf.py")
|
||||
convert_py = convert_py_pth.read_text(encoding="utf-8")
|
||||
hf_token_pth = pathlib.Path.home() / ".cache" / "huggingface" / "token"
|
||||
hf_token = hf_token_pth.read_text(encoding="utf-8").strip() if hf_token_pth.exists() else None
|
||||
|
||||
|
||||
class TOKENIZER_TYPE(IntEnum):
|
||||
SPM = auto()
|
||||
@@ -49,20 +33,49 @@ class TOKENIZER_TYPE(IntEnum):
|
||||
UGM = auto()
|
||||
|
||||
|
||||
DOC_STRING = """
|
||||
This script downloads the tokenizer models of the specified models from Huggingface and
|
||||
generates the get_vocab_base_pre() function for convert_hf_to_gguf.py
|
||||
|
||||
/!\\ It is intended to be used by contributors and is not meant to be run by end users
|
||||
|
||||
This is necessary in order to analyze the type of pre-tokenizer used by the model and
|
||||
provide the necessary information to llama.cpp via the GGUF header in order to implement
|
||||
the same pre-tokenizer.
|
||||
|
||||
ref: https://github.com/ggml-org/llama.cpp/pull/6920
|
||||
|
||||
Instructions:
|
||||
|
||||
- Add a new model to the "models" list
|
||||
- Run the script with your huggingface token
|
||||
By default, token will be read from ~/.cache/huggingface/token
|
||||
- The convert_hf_to_gguf.py script will have had its get_vocab_base_pre() function updated
|
||||
- Update llama.cpp with the new pre-tokenizer if necessary
|
||||
"""
|
||||
# TODO: generate tokenizer tests for llama.cpp
|
||||
|
||||
parser = argparse.ArgumentParser(description=DOC_STRING, formatter_class=argparse.RawTextHelpFormatter)
|
||||
parser.add_argument(
|
||||
"--full", action="store_true",
|
||||
help="download full list of models - make sure you have access to all of them",
|
||||
)
|
||||
parser.add_argument(
|
||||
"hf_token",
|
||||
help="optional HF token",
|
||||
nargs="?",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
hf_token = args.hf_token if args.hf_token is not None else hf_token
|
||||
|
||||
if hf_token is None:
|
||||
logger.error("HF token is required. Please provide it as an argument or set it in ~/.cache/huggingface/token")
|
||||
sys.exit(1)
|
||||
|
||||
# TODO: this string has to exercise as much pre-tokenizer functionality as possible
|
||||
# will be updated with time - contributions welcome
|
||||
CHK_TXT = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
|
||||
|
||||
if len(sys.argv) == 2:
|
||||
token = sys.argv[1]
|
||||
if not token.startswith("hf_"):
|
||||
logger.info("Huggingface token seems invalid")
|
||||
logger.info("Usage: python convert_hf_to_gguf_update.py <huggingface_token>")
|
||||
sys.exit(1)
|
||||
else:
|
||||
logger.info("Usage: python convert_hf_to_gguf_update.py <huggingface_token>")
|
||||
sys.exit(1)
|
||||
|
||||
# TODO: add models here, base models preferred
|
||||
models = [
|
||||
{"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
|
||||
@@ -103,7 +116,6 @@ models = [
|
||||
{"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", },
|
||||
{"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", },
|
||||
{"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", },
|
||||
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", },
|
||||
{"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"},
|
||||
{"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"},
|
||||
{"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"},
|
||||
@@ -114,8 +126,17 @@ models = [
|
||||
{"name": "trillion", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/trillionlabs/Trillion-7B-preview", },
|
||||
{"name": "bailingmoe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-lite", },
|
||||
{"name": "llama4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct", },
|
||||
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", },
|
||||
{"name": "pixtral", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistral-community/pixtral-12b", },
|
||||
{"name": "seed-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base", },
|
||||
]
|
||||
|
||||
# some models are known to be broken upstream, so we will skip them as exceptions
|
||||
pre_computed_hashes = [
|
||||
# chatglm-bpe has 2 hashes, why?
|
||||
{"name": "chatglm-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-chat", "chkhsh": "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b"},
|
||||
{"name": "chatglm-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-chat", "chkhsh": "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516"},
|
||||
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", "chkhsh": "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2"},
|
||||
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", "chkhsh": "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35"},
|
||||
]
|
||||
|
||||
|
||||
@@ -168,9 +189,29 @@ def download_model(model):
|
||||
if os.path.isfile(save_path):
|
||||
logger.info(f"{name}: File {save_path} already exists - skipping")
|
||||
continue
|
||||
download_file_with_auth(f"{repo}/resolve/main/{file}", token, save_path)
|
||||
download_file_with_auth(f"{repo}/resolve/main/{file}", hf_token, save_path)
|
||||
|
||||
|
||||
# get list of existing models and chkhsh from the convert_hf_to_gguf.py file
|
||||
# returns mapping res --> chkhsh
|
||||
def get_existing_models(convert_py):
|
||||
pattern = r'if chkhsh == "([a-f0-9]{64})":\s*\n\s*.*\s*res = "([^"]+)"'
|
||||
matches = re.findall(pattern, convert_py)
|
||||
output = {}
|
||||
for chkhsh, res in matches:
|
||||
output[res] = chkhsh
|
||||
return output
|
||||
|
||||
|
||||
existing_models = {}
|
||||
all_models = models.copy()
|
||||
if not args.full:
|
||||
# Filter out models that already exist in convert_hf_to_gguf.py
|
||||
existing_models = get_existing_models(convert_py)
|
||||
all_models = models.copy()
|
||||
models = [model for model in all_models if model["name"] not in existing_models]
|
||||
|
||||
logging.info(f"Downloading {len(models)} models...")
|
||||
for model in models:
|
||||
try:
|
||||
download_model(model)
|
||||
@@ -181,9 +222,10 @@ for model in models:
|
||||
# generate the source code for the convert_hf_to_gguf.py:get_vocab_base_pre() function:
|
||||
|
||||
src_ifs = ""
|
||||
for model in models:
|
||||
for model in [*all_models, *pre_computed_hashes]:
|
||||
name = model["name"]
|
||||
tokt = model["tokt"]
|
||||
chkhsh = model.get("chkhsh")
|
||||
|
||||
if tokt == TOKENIZER_TYPE.SPM or tokt == TOKENIZER_TYPE.UGM:
|
||||
continue
|
||||
@@ -194,35 +236,44 @@ for model in models:
|
||||
continue
|
||||
|
||||
# create the tokenizer
|
||||
try:
|
||||
if name == "t5":
|
||||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False)
|
||||
else:
|
||||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
|
||||
except OSError as e:
|
||||
logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}")
|
||||
continue # Skip to the next model if the tokenizer can't be loaded
|
||||
if chkhsh is not None:
|
||||
# if the model has a pre-computed hash, use it
|
||||
logger.info(f"Using pre-computed hash for model {name}: {chkhsh}")
|
||||
elif name in existing_models:
|
||||
# if the model already exists in convert_hf_to_gguf.py, skip compute hash
|
||||
chkhsh = existing_models[name]
|
||||
else:
|
||||
# otherwise, compute the hash of the tokenizer
|
||||
try:
|
||||
logger.info(f"Loading tokenizer from {f'models/tokenizers/{name}'}...")
|
||||
if name == "t5":
|
||||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False)
|
||||
else:
|
||||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
|
||||
except OSError as e:
|
||||
logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}")
|
||||
continue # Skip to the next model if the tokenizer can't be loaded
|
||||
|
||||
chktok = tokenizer.encode(CHK_TXT)
|
||||
chkhsh = sha256(str(chktok).encode()).hexdigest()
|
||||
chktok = tokenizer.encode(CHK_TXT)
|
||||
chkhsh = sha256(str(chktok).encode()).hexdigest()
|
||||
|
||||
logger.info(f"model: {name}")
|
||||
logger.info(f"tokt: {tokt}")
|
||||
logger.info(f"repo: {model['repo']}")
|
||||
logger.info(f"chktok: {chktok}")
|
||||
logger.info(f"chkhsh: {chkhsh}")
|
||||
logger.info(f"model: {name}")
|
||||
logger.info(f"tokt: {tokt}")
|
||||
logger.info(f"repo: {model['repo']}")
|
||||
logger.info(f"chktok: {chktok}")
|
||||
logger.info(f"chkhsh: {chkhsh}")
|
||||
|
||||
# print the "pre_tokenizer" content from the tokenizer.json
|
||||
with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f:
|
||||
cfg = json.load(f)
|
||||
normalizer = cfg["normalizer"]
|
||||
logger.info("normalizer: " + json.dumps(normalizer, indent=4))
|
||||
pre_tokenizer = cfg["pre_tokenizer"]
|
||||
logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
|
||||
if "ignore_merges" in cfg["model"]:
|
||||
logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4))
|
||||
# print the "pre_tokenizer" content from the tokenizer.json
|
||||
with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f:
|
||||
cfg = json.load(f)
|
||||
normalizer = cfg["normalizer"]
|
||||
logger.info("normalizer: " + json.dumps(normalizer, indent=4))
|
||||
pre_tokenizer = cfg["pre_tokenizer"]
|
||||
logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
|
||||
if "ignore_merges" in cfg["model"]:
|
||||
logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4))
|
||||
|
||||
logger.info("")
|
||||
logger.info("")
|
||||
|
||||
src_ifs += f" if chkhsh == \"{chkhsh}\":\n"
|
||||
src_ifs += f" # ref: {model['repo']}\n"
|
||||
@@ -270,8 +321,6 @@ src_func = f"""
|
||||
return res
|
||||
"""
|
||||
|
||||
convert_py_pth = pathlib.Path("convert_hf_to_gguf.py")
|
||||
convert_py = convert_py_pth.read_text(encoding="utf-8")
|
||||
convert_py = re.sub(
|
||||
r"(# Marker: Start get_vocab_base_pre)(.+?)( +# Marker: End get_vocab_base_pre)",
|
||||
lambda m: m.group(1) + src_func + m.group(3),
|
||||
@@ -287,7 +336,7 @@ logger.info("+++ convert_hf_to_gguf.py was updated")
|
||||
|
||||
tests = [
|
||||
"ied 4 ½ months",
|
||||
"Führer",
|
||||
"Äpfel",
|
||||
"",
|
||||
" ",
|
||||
" ",
|
||||
@@ -366,6 +415,10 @@ for model in models:
|
||||
logger.error(f"Failed to load tokenizer for model {name}. Error: {e}")
|
||||
continue # Skip this model and continue with the next one in the loop
|
||||
|
||||
if not os.path.exists(f"models/ggml-vocab-{name}.gguf"):
|
||||
logger.info(f"Skip vocab files for model {name}, no GGUF file found")
|
||||
continue
|
||||
|
||||
with open(f"models/ggml-vocab-{name}.gguf.inp", "w", encoding="utf-8") as f:
|
||||
for text in tests:
|
||||
f.write(f"{text}")
|
||||
|
||||
135
docs/backend/CANN.md
Normal file → Executable file
135
docs/backend/CANN.md
Normal file → Executable file
@@ -56,60 +56,82 @@ The llama.cpp CANN backend is designed to support Ascend NPU. It utilize the abi
|
||||
|
||||
## Model Supports
|
||||
|
||||
| Model Name | FP16 | Q8_0 | Q4_0 |
|
||||
| Model Name | FP16 | Q4_0 | Q8_0 |
|
||||
|:----------------------------|:-----:|:----:|:----:|
|
||||
| AquilaChat2-7B | √ | √ | √ |
|
||||
| Baichuan-7b | √ | √ | √ |
|
||||
| Baichuan2-7B-Chat | √ | √ | √ |
|
||||
| bitnet_b1_58-large | √ | √ | √ |
|
||||
| bloom-560m | √ | x | √ |
|
||||
| bloomz-alpaca-560m | √ | x | √ |
|
||||
| c4ai-command-r-35B-v01 | x | x | x |
|
||||
| chatglm3-6B | x | x | x |
|
||||
| chinese-alpaca-2-1.3b | √ | √ | √ |
|
||||
| CodeShell-7B | √ | √ | √ |
|
||||
| deepseek-ai_deepseek-coder-1.3B-base | x | x | x |
|
||||
| deepseek-ai_DeepSeek-V2-Lite | x | x | x |
|
||||
| deepseek-coder-6.7B-instruct | x | x | x |
|
||||
| DeepSeek-V2-Lite-64x1.5B | x | x | x |
|
||||
| falcon-7b-instruct | √ | √ | √ |
|
||||
| flan-t5-large | √ | √ | √ |
|
||||
| gemma-2-9b-it | √ | √ | √ |
|
||||
| glm-4-9B | x | x | x |
|
||||
| gpt2 | √ | √ | √ |
|
||||
| Gpt2-163M | √ | √ | √ |
|
||||
| granite-3B-code-instruct | √ | √ | √ |
|
||||
| Llama-2 | √ | √ | √ |
|
||||
| Llama-3 | √ | √ | √ |
|
||||
| Mistral-7B | √ | √ | √ |
|
||||
| Mistral MOE | √ | √ | √ |
|
||||
| DBRX | - | - | - |
|
||||
| Falcon | √ | √ | √ |
|
||||
| Chinese LLaMA/Alpaca | √ | √ | √ |
|
||||
| Vigogne(French) | √ | √ | √ |
|
||||
| BERT | x | x | x |
|
||||
| Koala | √ | √ | √ |
|
||||
| Baichuan | √ | √ | √ |
|
||||
| Aquila 1 & 2 | √ | √ | √ |
|
||||
| Starcoder models | √ | √ | √ |
|
||||
| Refact | √ | √ | √ |
|
||||
| MPT | √ | √ | √ |
|
||||
| Bloom | √ | √ | √ |
|
||||
| Yi models | √ | √ | √ |
|
||||
| stablelm models | √ | √ | √ |
|
||||
| DeepSeek models | x | x | x |
|
||||
| Qwen models | √ | √ | √ |
|
||||
| PLaMo-13B | √ | √ | √ |
|
||||
| Phi models | √ | √ | √ |
|
||||
| PhiMoE | √ | √ | √ |
|
||||
| GPT-2 | √ | √ | √ |
|
||||
| Orion | √ | √ | √ |
|
||||
| InternlLM2 | √ | √ | √ |
|
||||
| CodeShell | √ | √ | √ |
|
||||
| Gemma | √ | √ | √ |
|
||||
| Mamba | √ | √ | √ |
|
||||
| Xverse | √ | √ | √ |
|
||||
| command-r models | √ | √ | √ |
|
||||
| Grok-1 | - | - | - |
|
||||
| SEA-LION | √ | √ | √ |
|
||||
| GritLM-7B | √ | √ | √ |
|
||||
| internlm2_5-7b-chat | √ | √ | √ |
|
||||
| koala-7B-HF | √ | √ | √ |
|
||||
| Llama-2-7b-chat-hf | √ | √ | √ |
|
||||
| Llama-3-Smaug-8B | √ | √ | √ |
|
||||
| Llama2-Chinese-7b-Chat | √ | √ | √ |
|
||||
| Llama3-8B | √ | √ | √ |
|
||||
| Llama3-8b-chinese | √ | √ | √ |
|
||||
| mamba-130m-hf | √ | √ | √ |
|
||||
| Mistral-7B-Instruct-v0.2 | √ | √ | √ |
|
||||
| Mixtral-8x7B-Instruct-v0.1 | x | √ | √ |
|
||||
| mpt-7B | √ | √ | √ |
|
||||
| OLMo-1B-hf | √ | √ | √ |
|
||||
| OpenELM-3B-Instruct | √ | √ | √ |
|
||||
| Orion-14b-base | √ | √ | √ |
|
||||
| phi1 | x | x | x |
|
||||
| phi2 | x | x | x |
|
||||
| Phi-3-mini-4k-instruct | √ | √ | √ |
|
||||
| plamo-13b | √ | √ | √ |
|
||||
| pythia-70M | x | x | x |
|
||||
| Qwen-7B | √ | √ | √ |
|
||||
| Qwen2-1.5B-Instruct | √ | x | √ |
|
||||
| Refact-1_6B-fim | √ | √ | √ |
|
||||
| SmolLM-135M | √ | √ | √ |
|
||||
| stablelm-zephyr | x | x | x |
|
||||
| stablelm-2-zephyr-1_6b | x | x | x |
|
||||
| starcoderbase-1b | √ | √ | √ |
|
||||
| starcoder2-3b | √ | √ | √ |
|
||||
| vigogne-7b-chat | √ | √ | √ |
|
||||
| xverse-7b-chat | √ | √ | √ |
|
||||
| Yi-6b-Chat | √ | √ | √ |
|
||||
| OLMo | √ | √ | √ |
|
||||
| OLMo 2 | √ | √ | √ |
|
||||
| OLMoE | √ | √ | √ |
|
||||
| Granite models | √ | √ | √ |
|
||||
| GPT-NeoX | √ | √ | √ |
|
||||
| Pythia | √ | √ | √ |
|
||||
| Snowflake-Arctic MoE | - | - | - |
|
||||
| Smaug | √ | √ | √ |
|
||||
| Poro 34B | √ | √ | √ |
|
||||
| Bitnet b1.58 models | √ | x | x |
|
||||
| Flan-T5 | √ | √ | √ |
|
||||
| Open Elm models | x | √ | √ |
|
||||
| chatGLM3-6B + ChatGLM4-9b + GLMEdge-1.5b + GLMEdge-4b | √ | √ | √ |
|
||||
| GLM-4-0414 | √ | √ | √ |
|
||||
| SmolLM | √ | √ | √ |
|
||||
| EXAONE-3.0-7.8B-Instruct | √ | √ | √ |
|
||||
| FalconMamba Models | √ | √ | √ |
|
||||
| Jais Models | - | x | x |
|
||||
| Bielik-11B-v2.3 | √ | √ | √ |
|
||||
| RWKV-6 | - | √ | √ |
|
||||
| QRWKV-6 | √ | √ | √ |
|
||||
| GigaChat-20B-A3B | x | x | x |
|
||||
| Trillion-7B-preview | √ | √ | √ |
|
||||
| Ling models | √ | √ | √ |
|
||||
|
||||
|
||||
**Multimodal**
|
||||
| Model Name | FP16 | Q4_0 | Q8_0 |
|
||||
|:----------------------------|:-----:|:----:|:----:|
|
||||
| LLaVA 1.5 models, LLaVA 1.6 models | x | x | x |
|
||||
| BakLLaVA | √ | √ | √ |
|
||||
| Obsidian | √ | - | - |
|
||||
| ShareGPT4V | x | - | - |
|
||||
| MobileVLM 1.7B/3B models | - | - | - |
|
||||
| Yi-VL | - | - | - |
|
||||
| Mini CPM | √ | √ | √ |
|
||||
| Moondream | √ | √ | √ |
|
||||
| Bunny | √ | - | - |
|
||||
| GLM-EDGE | √ | √ | √ |
|
||||
| Qwen2-VL | √ | √ | √ |
|
||||
|
||||
|
||||
|
||||
@@ -258,6 +280,15 @@ cmake --build build --config release
|
||||
### **GitHub contribution**:
|
||||
Please add the **[CANN]** prefix/tag in issues/PRs titles to help the CANN-team check/address them without delay.
|
||||
|
||||
## Updates
|
||||
### Basic Flash Attention Support
|
||||
The basic FA kernel with aclnnops has been added in aclnn_ops.cpp.
|
||||
Currently, the FA only supports the cases with FP16 KV tensors and NO logit softcap.
|
||||
Since the aclnn interface for flash attention cannot support the logit softcap, we will only update the quantized version in the future.
|
||||
|
||||
Authors from Peking University: Bizhao Shi (bshi@pku.edu.cn), Yuxin Yang (yxyang@pku.edu.cn), Ruiyang Ma (ruiyang@stu.pku.edu.cn), and Guojie Luo (gluo@pku.edu.cn).
|
||||
|
||||
We would like to thank Tuo Dai, Shanni Li, and all of the project maintainers from Huawei Technologies Co., Ltd for their help during the code development and pull request.
|
||||
|
||||
## TODO
|
||||
- Support more models and data types.
|
||||
|
||||
@@ -17,25 +17,25 @@
|
||||
|
||||
**SYCL** is a high-level parallel programming model designed to improve developers productivity writing code across various hardware accelerators such as CPUs, GPUs, and FPGAs. It is a single-source language designed for heterogeneous computing and based on standard C++17.
|
||||
|
||||
**oneAPI** is an open ecosystem and a standard-based specification, supporting multiple architectures including but not limited to intel CPUs, GPUs and FPGAs. The key components of the oneAPI ecosystem include:
|
||||
**oneAPI** is an open ecosystem and a standard-based specification, supporting multiple architectures including but not limited to Intel CPUs, GPUs and FPGAs. The key components of the oneAPI ecosystem include:
|
||||
|
||||
- **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers.
|
||||
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. Intel oneMKL, oneMath and oneDNN)*.
|
||||
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over intel iGPUs and dGPUs.
|
||||
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over Intel iGPUs and dGPUs.
|
||||
- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets.
|
||||
|
||||
### Llama.cpp + SYCL
|
||||
|
||||
The llama.cpp SYCL backend is designed to support **Intel GPU** firstly. Based on the cross-platform feature of SYCL, it also supports other vendor GPUs: Nvidia and AMD.
|
||||
The llama.cpp SYCL backend is primarily designed for **Intel GPUs**.
|
||||
SYCL cross-platform capabilities enable support for Nvidia GPUs as well, with limited support for AMD.
|
||||
|
||||
## Recommended Release
|
||||
|
||||
The SYCL backend would be broken by some PRs due to no online CI.
|
||||
|
||||
The following release is verified with good quality:
|
||||
The following releases are verified and recommended:
|
||||
|
||||
|Commit ID|Tag|Release|Verified Platform| Update date|
|
||||
|-|-|-|-|-|
|
||||
|24e86cae7219b0f3ede1d5abdf5bf3ad515cccb8|b5377 |[llama-b5377-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b5377/llama-b5377-bin-win-sycl-x64.zip) |ArcB580/Linux/oneAPI 2025.1<br>LNL Arc GPU/Windows 11/oneAPI 2025.1.1|2025-05-15|
|
||||
|3bcd40b3c593d14261fb2abfabad3c0fb5b9e318|b4040 |[llama-b4040-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b4040/llama-b4040-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1| 2024-11-19|
|
||||
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1||
|
||||
|
||||
@@ -106,15 +106,14 @@ SYCL backend supports Intel GPU Family:
|
||||
|-------------------------------|---------|---------------------------------------|
|
||||
| Intel Data Center Max Series | Support | Max 1550, 1100 |
|
||||
| Intel Data Center Flex Series | Support | Flex 170 |
|
||||
| Intel Arc Series | Support | Arc 770, 730M, Arc A750 |
|
||||
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake, Arrow Lake |
|
||||
| Intel iGPU | Support | iGPU in 13700k,iGPU in 13400, i5-1250P, i7-1260P, i7-1165G7 |
|
||||
| Intel Arc Series | Support | Arc 770, 730M, Arc A750, B580 |
|
||||
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake, Arrow Lake, Lunar Lake |
|
||||
| Intel iGPU | Support | iGPU in 13700k, 13400, i5-1250P, i7-1260P, i7-1165G7 |
|
||||
|
||||
*Notes:*
|
||||
|
||||
- **Memory**
|
||||
- The device memory is a limitation when running a large model. The loaded model size, *`llm_load_tensors: buffer_size`*, is displayed in the log when running `./bin/llama-cli`.
|
||||
|
||||
- Please make sure the GPU shared memory from the host is large enough to account for the model's size. For e.g. the *llama-2-7b.Q4_0* requires at least 8.0GB for integrated GPU and 4.0GB for discrete GPU.
|
||||
|
||||
- **Execution Unit (EU)**
|
||||
@@ -138,9 +137,11 @@ Note: AMD GPU support is highly experimental and is incompatible with F16.
|
||||
Additionally, it only supports GPUs with a sub_group_size (warp size) of 32.
|
||||
|
||||
## Docker
|
||||
The docker build option is currently limited to *intel GPU* targets.
|
||||
|
||||
The docker build option is currently limited to *Intel GPU* targets.
|
||||
|
||||
### Build image
|
||||
|
||||
```sh
|
||||
# Using FP16
|
||||
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" --target light -f .devops/intel.Dockerfile .
|
||||
@@ -148,9 +149,10 @@ docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" --target light -f
|
||||
|
||||
*Notes*:
|
||||
|
||||
To build in default FP32 *(Slower than FP16 alternative)*, you can remove the `--build-arg="GGML_SYCL_F16=ON"` argument from the previous command.
|
||||
To build in default FP32 *(Slower than FP16 alternative)*, set `--build-arg="GGML_SYCL_F16=OFF"` in the previous command.
|
||||
|
||||
You can also use the `.devops/llama-server-intel.Dockerfile`, which builds the *"server"* alternative.
|
||||
Check the [documentation for Docker](../docker.md) to see the available images.
|
||||
|
||||
### Run container
|
||||
|
||||
@@ -250,7 +252,7 @@ sycl-ls
|
||||
|
||||
- **Intel GPU**
|
||||
|
||||
When targeting an intel GPU, the user should expect one or more level-zero devices among the available SYCL devices. Please make sure that at least one GPU is present, for instance [`level_zero:gpu`] in the sample output below:
|
||||
When targeting an intel GPU, the user should expect one or more devices among the available SYCL devices. Please make sure that at least one GPU is present via `sycl-ls`, for instance `[level_zero:gpu]` in the sample output below:
|
||||
|
||||
```
|
||||
[opencl:acc][opencl:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
|
||||
@@ -282,7 +284,7 @@ For AMD GPUs we should expect at least one SYCL-HIP device [`hip:gpu`]:
|
||||
|
||||
#### Intel GPU
|
||||
|
||||
```
|
||||
```sh
|
||||
./examples/sycl/build.sh
|
||||
```
|
||||
|
||||
@@ -351,7 +353,7 @@ cmake --build build --config Release -j -v
|
||||
|
||||
#### Retrieve and prepare model
|
||||
|
||||
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example.
|
||||
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model preparation, or download an already quantized model like [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) or [Meta-Llama-3-8B-Instruct-Q4_0.gguf](https://huggingface.co/aptha/Meta-Llama-3-8B-Instruct-Q4_0-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q4_0.gguf).
|
||||
|
||||
##### Check device
|
||||
|
||||
@@ -398,11 +400,15 @@ Choose one of following methods to run.
|
||||
|
||||
```sh
|
||||
./examples/sycl/run-llama2.sh 0
|
||||
# OR
|
||||
./examples/sycl/run-llama3.sh 0
|
||||
```
|
||||
- Use multiple devices:
|
||||
|
||||
```sh
|
||||
./examples/sycl/run-llama2.sh
|
||||
# OR
|
||||
./examples/sycl/run-llama3.sh
|
||||
```
|
||||
|
||||
2. Command line
|
||||
@@ -425,13 +431,13 @@ Examples:
|
||||
- Use device 0:
|
||||
|
||||
```sh
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 99 -sm none -mg 0
|
||||
```
|
||||
|
||||
- Use multiple devices:
|
||||
|
||||
```sh
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 99 -sm layer
|
||||
```
|
||||
|
||||
*Notes:*
|
||||
@@ -452,7 +458,7 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
|
||||
1. Install GPU driver
|
||||
|
||||
Intel GPU drivers instructions guide and download page can be found here: [Get intel GPU Drivers](https://www.intel.com/content/www/us/en/products/docs/discrete-gpus/arc/software/drivers.html).
|
||||
Intel GPU drivers instructions guide and download page can be found here: [Get Intel GPU Drivers](https://www.intel.com/content/www/us/en/products/docs/discrete-gpus/arc/software/drivers.html).
|
||||
|
||||
2. Install Visual Studio
|
||||
|
||||
@@ -629,7 +635,7 @@ Once it is completed, final results will be in **build/Release/bin**
|
||||
|
||||
#### Retrieve and prepare model
|
||||
|
||||
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example.
|
||||
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model preparation, or download an already quantized model like [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) or [Meta-Llama-3-8B-Instruct-Q4_0.gguf](https://huggingface.co/aptha/Meta-Llama-3-8B-Instruct-Q4_0-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q4_0.gguf).
|
||||
|
||||
##### Check device
|
||||
|
||||
@@ -648,7 +654,7 @@ Similar to the native `sycl-ls`, available SYCL devices can be queried as follow
|
||||
build\bin\llama-ls-sycl-device.exe
|
||||
```
|
||||
|
||||
This command will only display the selected backend that is supported by SYCL. The default backend is level_zero. For example, in a system with 2 *intel GPU* it would look like the following:
|
||||
This command will only display the selected backend that is supported by SYCL. The default backend is level_zero. For example, in a system with 2 *Intel GPU* it would look like the following:
|
||||
```
|
||||
found 2 SYCL devices:
|
||||
| | | |Compute |Max compute|Max work|Max sub| |
|
||||
@@ -658,13 +664,14 @@ found 2 SYCL devices:
|
||||
| 1|[level_zero:gpu:1]| Intel(R) UHD Graphics 770| 1.3| 32| 512| 32| 53651849216|
|
||||
|
||||
```
|
||||
|
||||
#### Choose level-zero devices
|
||||
|
||||
|Chosen Device ID|Setting|
|
||||
|-|-|
|
||||
|0|`set ONEAPI_DEVICE_SELECTOR="level_zero:1"` or no action|
|
||||
|0|Default option. You may also want to `set ONEAPI_DEVICE_SELECTOR="level_zero:0"`|
|
||||
|1|`set ONEAPI_DEVICE_SELECTOR="level_zero:1"`|
|
||||
|0 & 1|`set ONEAPI_DEVICE_SELECTOR="level_zero:0;level_zero:1"`|
|
||||
|0 & 1|`set ONEAPI_DEVICE_SELECTOR="level_zero:0;level_zero:1"` or `set ONEAPI_DEVICE_SELECTOR="level_zero:*"`|
|
||||
|
||||
#### Execute
|
||||
|
||||
@@ -673,7 +680,13 @@ Choose one of following methods to run.
|
||||
1. Script
|
||||
|
||||
```
|
||||
examples\sycl\win-run-llama2.bat
|
||||
examples\sycl\win-run-llama-2.bat
|
||||
```
|
||||
|
||||
or
|
||||
|
||||
```
|
||||
examples\sycl\win-run-llama-3.bat
|
||||
```
|
||||
|
||||
2. Command line
|
||||
@@ -697,13 +710,13 @@ Examples:
|
||||
- Use device 0:
|
||||
|
||||
```
|
||||
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm none -mg 0
|
||||
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 99 -sm none -mg 0
|
||||
```
|
||||
|
||||
- Use multiple devices:
|
||||
|
||||
```
|
||||
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
|
||||
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 99 -sm layer
|
||||
```
|
||||
|
||||
|
||||
@@ -714,7 +727,9 @@ Note:
|
||||
```sh
|
||||
detect 1 SYCL GPUs: [0] with top Max compute units:512
|
||||
```
|
||||
|
||||
Or
|
||||
|
||||
```sh
|
||||
use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
```
|
||||
@@ -726,14 +741,17 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
|
||||
| Name | Value | Function |
|
||||
|--------------------|---------------------------------------|---------------------------------------------|
|
||||
| GGML_SYCL | ON (mandatory) | Enable build with SYCL code path.<br>FP32 path - recommended for better perforemance than FP16 on quantized model|
|
||||
| GGML_SYCL | ON (mandatory) | Enable build with SYCL code path. |
|
||||
| GGML_SYCL_TARGET | INTEL *(default)* \| NVIDIA \| AMD | Set the SYCL target device type. |
|
||||
| GGML_SYCL_DEVICE_ARCH | Optional (except for AMD) | Set the SYCL device architecture, optional except for AMD. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. |
|
||||
| GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. |
|
||||
| GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. (1.) |
|
||||
| GGML_SYCL_GRAPH | ON *(default)* \|OFF *(Optional)* | Enable build with [SYCL Graph extension](https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_graph.asciidoc). |
|
||||
| GGML_SYCL_DNN | ON *(default)* \|OFF *(Optional)* | Enable build with oneDNN. |
|
||||
| CMAKE_C_COMPILER | `icx` *(Linux)*, `icx/cl` *(Windows)* | Set `icx` compiler for SYCL code path. |
|
||||
| CMAKE_CXX_COMPILER | `icpx` *(Linux)*, `icx` *(Windows)* | Set `icpx/icx` compiler for SYCL code path. |
|
||||
|
||||
1. FP16 is recommended for better prompt processing performance on quantized models. Performance is equivalent in text generation but set `GGML_SYCL_F16=OFF` if you are experiencing issues with FP16 builds.
|
||||
|
||||
#### Runtime
|
||||
|
||||
| Name | Value | Function |
|
||||
@@ -741,6 +759,7 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
| GGML_SYCL_DEBUG | 0 (default) or 1 | Enable log function by macro: GGML_SYCL_DEBUG |
|
||||
| GGML_SYCL_DISABLE_OPT | 0 (default) or 1 | Disable optimize features based on Intel GPU type, to compare the performance increase |
|
||||
| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because graph performance isn't yet better than non-graph performance. |
|
||||
| GGML_SYCL_DISABLE_DNN | 0 (default) or 1 | Disable running computations through oneDNN and always use oneMKL. |
|
||||
| ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer |
|
||||
|
||||
|
||||
@@ -750,7 +769,7 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
|
||||
## Q&A
|
||||
|
||||
- Error: `error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory`.
|
||||
- Error: `error while loading shared libraries: libsycl.so: cannot open shared object file: No such file or directory`.
|
||||
|
||||
- Potential cause: Unavailable oneAPI installation or not set ENV variables.
|
||||
- Solution: Install *oneAPI base toolkit* and enable its ENV through: `source /opt/intel/oneapi/setvars.sh`.
|
||||
@@ -779,18 +798,18 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
|
||||
It's same for other projects including llama.cpp SYCL backend.
|
||||
|
||||
- Meet issue: `Native API failed. Native API returns: -6 (PI_ERROR_OUT_OF_HOST_MEMORY) -6 (PI_ERROR_OUT_OF_HOST_MEMORY) -999 (UNKNOWN PI error)` or `failed to allocate SYCL0 buffer`
|
||||
- `Native API failed. Native API returns: 39 (UR_RESULT_ERROR_OUT_OF_DEVICE_MEMORY)`, `ggml_backend_sycl_buffer_type_alloc_buffer: can't allocate 3503030272 Bytes of memory on device`, or `failed to allocate SYCL0 buffer`
|
||||
|
||||
Device Memory is not enough.
|
||||
You are running out of Device Memory.
|
||||
|
||||
|Reason|Solution|
|
||||
|-|-|
|
||||
|Default Context is too big. It leads to more memory usage.|Set `-c 8192` or smaller value.|
|
||||
|Model is big and require more memory than device's.|Choose smaller quantized model, like Q5 -> Q4;<br>Use more than one devices to load model.|
|
||||
| The default context is too big. It leads to excessive memory usage.|Set `-c 8192` or a smaller value.|
|
||||
| The model is too big and requires more memory than what is available.|Choose a smaller model or change to a smaller quantization, like Q5 -> Q4;<br>Alternatively, use more than one device to load model.|
|
||||
|
||||
### **GitHub contribution**:
|
||||
Please add the **[SYCL]** prefix/tag in issues/PRs titles to help the SYCL-team check/address them without delay.
|
||||
Please add the `SYCL :` prefix/tag in issues/PRs titles to help the SYCL contributors to check/address them without delay.
|
||||
|
||||
## TODO
|
||||
|
||||
- NA
|
||||
- Review ZES_ENABLE_SYSMAN: https://github.com/intel/compute-runtime/blob/master/programmers-guide/SYSMAN.md#support-and-limitations
|
||||
|
||||
@@ -22,6 +22,9 @@ Additionally, there the following images, similar to the above:
|
||||
- `ghcr.io/ggml-org/llama.cpp:full-musa`: Same as `full` but compiled with MUSA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:light-musa`: Same as `light` but compiled with MUSA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:server-musa`: Same as `server` but compiled with MUSA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:full-intel`: Same as `full` but compiled with SYCL support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:light-intel`: Same as `light` but compiled with SYCL support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:server-intel`: Same as `server` but compiled with SYCL support. (platforms: `linux/amd64`)
|
||||
|
||||
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](../.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](../.github/workflows/docker.yml). If you need different settings (for example, a different CUDA, ROCm or MUSA library, you'll need to build the images locally for now).
|
||||
|
||||
@@ -104,7 +107,7 @@ You may want to pass in some different `ARGS`, depending on the MUSA environment
|
||||
|
||||
The defaults are:
|
||||
|
||||
- `MUSA_VERSION` set to `rc3.1.1`
|
||||
- `MUSA_VERSION` set to `rc4.0.1`
|
||||
|
||||
The resulting images, are essentially the same as the non-MUSA images:
|
||||
|
||||
|
||||
@@ -2,7 +2,6 @@
|
||||
|
||||
[chat.h](../common/chat.h) (https://github.com/ggml-org/llama.cpp/pull/9639) adds support for [OpenAI-style function calling](https://platform.openai.com/docs/guides/function-calling) and is used in:
|
||||
- `llama-server` when started w/ `--jinja` flag
|
||||
- `llama-cli` (WIP: https://github.com/ggml-org/llama.cpp/pull/11556)
|
||||
|
||||
## Universal support w/ Native & Generic handlers
|
||||
|
||||
@@ -325,36 +324,65 @@ To get the official template from original HuggingFace repos, you can use [scrip
|
||||
> [!TIP]
|
||||
> If there is no official `tool_use` Jinja template, you may want to set `--chat-template chatml` to use a default that works with many models (YMMV!), or write your own (e.g. we provide a custom [llama-cpp-deepseek-r1.jinja](../models/templates/llama-cpp-deepseek-r1.jinja) for DeepSeek R1 distills)
|
||||
|
||||
> [!CAUTION]
|
||||
> Beware of extreme KV quantizations (e.g. `-ctk q4_0`), they can substantially degrade the model's tool calling performance.
|
||||
|
||||
Test in CLI (or with any library / software that can use OpenAI-compatible API backends):
|
||||
|
||||
```bash
|
||||
curl http://localhost:8080/v1/chat/completions -d '{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"tools": [
|
||||
{
|
||||
"type":"function",
|
||||
"function":{
|
||||
"name":"python",
|
||||
"description":"Runs code in an ipython interpreter and returns the result of the execution after 60 seconds.",
|
||||
"parameters":{
|
||||
"type":"object",
|
||||
"properties":{
|
||||
"code":{
|
||||
"type":"string",
|
||||
"description":"The code to run in the ipython interpreter."
|
||||
"model": "gpt-3.5-turbo",
|
||||
"tools": [
|
||||
{
|
||||
"type":"function",
|
||||
"function":{
|
||||
"name":"python",
|
||||
"description":"Runs code in an ipython interpreter and returns the result of the execution after 60 seconds.",
|
||||
"parameters":{
|
||||
"type":"object",
|
||||
"properties":{
|
||||
"code":{
|
||||
"type":"string",
|
||||
"description":"The code to run in the ipython interpreter."
|
||||
}
|
||||
},
|
||||
"required":["code"]
|
||||
}
|
||||
},
|
||||
"required":["code"]
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Print a hello world message with python."
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Print a hello world message with python."
|
||||
}
|
||||
]
|
||||
}'
|
||||
|
||||
|
||||
curl http://localhost:8080/v1/chat/completions -d '{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"messages": [
|
||||
{"role": "system", "content": "You are a chatbot that uses tools/functions. Dont overthink things."},
|
||||
{"role": "user", "content": "What is the weather in Istanbul?"}
|
||||
],
|
||||
"tools": [{
|
||||
"type":"function",
|
||||
"function":{
|
||||
"name":"get_current_weather",
|
||||
"description":"Get the current weather in a given location",
|
||||
"parameters":{
|
||||
"type":"object",
|
||||
"properties":{
|
||||
"location":{
|
||||
"type":"string",
|
||||
"description":"The city and country/state, e.g. `San Francisco, CA`, or `Paris, France`"
|
||||
}
|
||||
},
|
||||
"required":["location"]
|
||||
}
|
||||
}
|
||||
}]
|
||||
}'
|
||||
```
|
||||
|
||||
|
||||
@@ -4,9 +4,11 @@ llama.cpp supports multimodal input via `libmtmd`. Currently, there are 2 tools
|
||||
- [llama-mtmd-cli](../tools/mtmd/README.md)
|
||||
- [llama-server](../tools/server/README.md) via OpenAI-compatible `/chat/completions` API
|
||||
|
||||
To enable it, can use use one of the 2 methods below:
|
||||
Currently, we support **image** and **audio** input. Audio is highly experimental and may have reduced quality.
|
||||
|
||||
- Use `-hf` option with a [supported model](../../docs/multimodal.md)
|
||||
To enable it, you can use one of the 2 methods below:
|
||||
|
||||
- Use `-hf` option with a supported model (see a list of pre-quantized model below)
|
||||
- To load a model using `-hf` while disabling multimodal, use `--no-mmproj`
|
||||
- To load a model using `-hf` while using a custom mmproj file, use `--mmproj local_file.gguf`
|
||||
- Use `-m model.gguf` option with `--mmproj file.gguf` to specify text and multimodal projector respectively
|
||||
@@ -31,12 +33,14 @@ llama-server -hf ggml-org/gemma-3-4b-it-GGUF --no-mmproj-offload
|
||||
|
||||
## Pre-quantized models
|
||||
|
||||
These are ready-to-use models, most of them come with `Q4_K_M` quantization by default.
|
||||
These are ready-to-use models, most of them come with `Q4_K_M` quantization by default. They can be found at the Hugging Face page of the ggml-org: https://huggingface.co/collections/ggml-org/multimodal-ggufs-68244e01ff1f39e5bebeeedc
|
||||
|
||||
Replaces the `(tool_name)` with the name of binary you want to use. For example, `llama-mtmd-cli` or `llama-server`
|
||||
|
||||
NOTE: some models may require large context window, for example: `-c 8192`
|
||||
|
||||
**Vision models**:
|
||||
|
||||
```sh
|
||||
# Gemma 3
|
||||
(tool_name) -hf ggml-org/gemma-3-4b-it-GGUF
|
||||
@@ -66,4 +70,40 @@ NOTE: some models may require large context window, for example: `-c 8192`
|
||||
|
||||
# Mistral Small 3.1 24B (IQ2_M quantization)
|
||||
(tool_name) -hf ggml-org/Mistral-Small-3.1-24B-Instruct-2503-GGUF
|
||||
|
||||
# InternVL 2.5 and 3
|
||||
(tool_name) -hf ggml-org/InternVL2_5-1B-GGUF
|
||||
(tool_name) -hf ggml-org/InternVL2_5-4B-GGUF
|
||||
(tool_name) -hf ggml-org/InternVL3-1B-Instruct-GGUF
|
||||
(tool_name) -hf ggml-org/InternVL3-2B-Instruct-GGUF
|
||||
(tool_name) -hf ggml-org/InternVL3-8B-Instruct-GGUF
|
||||
(tool_name) -hf ggml-org/InternVL3-14B-Instruct-GGUF
|
||||
|
||||
# Llama 4 Scout
|
||||
(tool_name) -hf ggml-org/Llama-4-Scout-17B-16E-Instruct-GGUF
|
||||
|
||||
# Moondream2 20250414 version
|
||||
(tool_name) -hf ggml-org/moondream2-20250414-GGUF
|
||||
|
||||
```
|
||||
|
||||
**Audio models**:
|
||||
|
||||
```sh
|
||||
# Ultravox 0.5
|
||||
(tool_name) -hf ggml-org/ultravox-v0_5-llama-3_2-1b-GGUF
|
||||
(tool_name) -hf ggml-org/ultravox-v0_5-llama-3_1-8b-GGUF
|
||||
|
||||
# Qwen2-Audio and SeaLLM-Audio
|
||||
# note: no pre-quantized GGUF this model, as they have very poor result
|
||||
# ref: https://github.com/ggml-org/llama.cpp/pull/13760
|
||||
```
|
||||
|
||||
**Mixed modalities**:
|
||||
|
||||
```sh
|
||||
# Qwen2.5 Omni
|
||||
# Capabilities: audio input, vision input
|
||||
(tool_name) -hf ggml-org/Qwen2.5-Omni-3B-GGUF
|
||||
(tool_name) -hf ggml-org/Qwen2.5-Omni-7B-GGUF
|
||||
```
|
||||
|
||||
@@ -32,6 +32,7 @@ else()
|
||||
add_subdirectory(speculative)
|
||||
add_subdirectory(speculative-simple)
|
||||
add_subdirectory(gen-docs)
|
||||
add_subdirectory(training)
|
||||
if (NOT GGML_BACKEND_DL)
|
||||
add_subdirectory(convert-llama2c-to-ggml)
|
||||
# these examples use the backends directly and cannot be built with dynamic loading
|
||||
|
||||
@@ -41,8 +41,8 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
|
||||
|
||||
// run model
|
||||
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
|
||||
if (llama_encode(ctx, batch) < 0) {
|
||||
LOG_ERR("%s : failed to encode\n", __func__);
|
||||
if (llama_decode(ctx, batch) < 0) {
|
||||
LOG_ERR("%s : failed to process\n", __func__);
|
||||
}
|
||||
|
||||
for (int i = 0; i < batch.n_tokens; i++) {
|
||||
|
||||
@@ -50,8 +50,6 @@ int main(int argc, char ** argv) {
|
||||
const int N = 5; // n-gram size
|
||||
const int G = 15; // max verification n-grams
|
||||
|
||||
const bool dump_kv_cache = params.dump_kv_cache;
|
||||
|
||||
// init llama.cpp
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
@@ -152,9 +150,6 @@ int main(int argc, char ** argv) {
|
||||
// here we keep adding new n-grams as we go
|
||||
ngram_container ngrams_observed(llama_vocab_n_tokens(vocab), N, G);
|
||||
|
||||
// debug
|
||||
struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, W + G + 1);
|
||||
|
||||
const auto t_dec_start = ggml_time_us();
|
||||
|
||||
// sample first token
|
||||
@@ -172,12 +167,6 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
while (true) {
|
||||
// debug
|
||||
if (dump_kv_cache) {
|
||||
llama_kv_cache_view_update(ctx, &kvc_view);
|
||||
common_kv_cache_dump_view_seqs(kvc_view, 40);
|
||||
}
|
||||
|
||||
// build the mask from https://lmsys.org/blog/2023-11-21-lookahead-decoding/
|
||||
//
|
||||
// Example for W = 5, N = 4, G = 2:
|
||||
@@ -473,8 +462,6 @@ int main(int argc, char ** argv) {
|
||||
|
||||
common_sampler_free(smpl);
|
||||
|
||||
llama_kv_cache_view_free(&kvc_view);
|
||||
|
||||
llama_batch_free(batch);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
@@ -24,8 +24,6 @@ int main(int argc, char ** argv){
|
||||
// max. number of additional tokens to draft if match is found
|
||||
const int n_draft = params.speculative.n_max;
|
||||
|
||||
const bool dump_kv_cache = params.dump_kv_cache;
|
||||
|
||||
// init llama.cpp
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
@@ -110,18 +108,9 @@ int main(int argc, char ** argv){
|
||||
|
||||
llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, 1);
|
||||
|
||||
// debug
|
||||
struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, 1);
|
||||
|
||||
const auto t_dec_start = ggml_time_us();
|
||||
|
||||
while (true) {
|
||||
// debug
|
||||
if (dump_kv_cache) {
|
||||
llama_kv_cache_view_update(ctx, &kvc_view);
|
||||
common_kv_cache_dump_view_seqs(kvc_view, 40);
|
||||
}
|
||||
|
||||
// print current draft sequence
|
||||
LOG_DBG("drafted %s\n", string_from(ctx, draft).c_str());
|
||||
|
||||
|
||||
@@ -1,3 +1,14 @@
|
||||
# llama.cpp/example/parallel
|
||||
|
||||
Simplified simulation of serving incoming requests in parallel
|
||||
|
||||
## Example
|
||||
|
||||
Generate 128 client requests (`-ns 128`), simulating 8 concurrent clients (`-np 8`). The system prompt is shared (`-pps`), meaning that it is computed once at the start. The client requests consist of up to 10 junk questions (`--junk 10`) followed by the actual question.
|
||||
|
||||
```bash
|
||||
llama-parallel -m model.gguf -np 8 -ns 128 --top-k 1 -pps --junk 10 -c 16384
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> It's recommended to use base models with this example. Instruction tuned models might not be able to properly follow the custom chat template specified here, so the results might not be as expected.
|
||||
|
||||
@@ -34,11 +34,61 @@ static std::string k_system =
|
||||
R"(Transcript of a never ending dialog, where the User interacts with an Assistant.
|
||||
The Assistant is helpful, kind, honest, good at writing, and never fails to answer the User's requests immediately and with precision.
|
||||
|
||||
User: Recommend a nice restaurant in the area.
|
||||
Assistant: I recommend the restaurant "The Golden Duck". It is a 5 star restaurant with a great view of the city. The food is delicious and the service is excellent. The prices are reasonable and the portions are generous. The restaurant is located at 123 Main Street, New York, NY 10001. The phone number is (212) 555-1234. The hours are Monday through Friday from 11:00 am to 10:00 pm. The restaurant is closed on Saturdays and Sundays.
|
||||
User: Who is Richard Feynman?
|
||||
Assistant: Richard Feynman was an American physicist who is best known for his work in quantum mechanics and particle physics. He was awarded the Nobel Prize in Physics in 1965 for his contributions to the development of quantum electrodynamics. He was a popular lecturer and author, and he wrote several books, including "Surely You're Joking, Mr. Feynman!" and "What Do You Care What Other People Think?".
|
||||
User:)";
|
||||
User:
|
||||
Recommend a nice restaurant in the area.
|
||||
Assistant:
|
||||
I recommend the restaurant "The Golden Duck". It is a 5 star restaurant with a great view of the city. The food is delicious and the service is excellent. The prices are reasonable and the portions are generous. The restaurant is located at 123 Main Street, New York, NY 10001. The phone number is (212) 555-1234. The hours are Monday through Friday from 11:00 am to 10:00 pm. The restaurant is closed on Saturdays and Sundays.
|
||||
User:
|
||||
Who is Richard Feynman?
|
||||
Assistant:
|
||||
Richard Feynman was an American physicist who is best known for his work in quantum mechanics and particle physics. He was awarded the Nobel Prize in Physics in 1965 for his contributions to the development of quantum electrodynamics. He was a popular lecturer and author, and he wrote several books, including "Surely You're Joking, Mr. Feynman!" and "What Do You Care What Other People Think?".
|
||||
)";
|
||||
|
||||
static std::vector<std::string> k_questions = {
|
||||
"What is the tallest mountain in the world?",
|
||||
"Who was the first person to win two Nobel Prizes?",
|
||||
"Which country invented paper?",
|
||||
"What organ is primarily responsible for pumping blood throughout the body?",
|
||||
"Which planet is known for its prominent ring system?",
|
||||
"Who directed the movie 'Inception'?",
|
||||
"What is the freezing point of water in Fahrenheit?",
|
||||
"Which animal is known to have the longest lifespan?",
|
||||
"What language has the most native speakers worldwide?",
|
||||
"What is the capital city of Canada?",
|
||||
"Who is credited with inventing the World Wide Web?",
|
||||
"Which metal is liquid at room temperature?",
|
||||
"What is the term for an animal that eats both plants and meat?",
|
||||
"Who painted 'The Starry Night'?",
|
||||
"What gas do humans exhale that plants use for photosynthesis?",
|
||||
"What year did World War II end?",
|
||||
"Which continent has the most countries?",
|
||||
"Who wrote the novel 'Frankenstein'?",
|
||||
"What does DNA stand for?",
|
||||
"What is the main ingredient in traditional Japanese miso soup?"
|
||||
};
|
||||
|
||||
static std::vector<std::string> k_answers = {
|
||||
"The tallest mountain in the world is Mount Everest.",
|
||||
"Marie Curie was the first person to win two Nobel Prizes.",
|
||||
"Paper was invented in China.",
|
||||
"The heart is the organ responsible for pumping blood.",
|
||||
"Saturn is known for its prominent ring system.",
|
||||
"Christopher Nolan directed the movie 'Inception'.",
|
||||
"The freezing point of water in Fahrenheit is 32°F.",
|
||||
"The bowhead whale is known to have the longest lifespan among mammals.",
|
||||
"Mandarin Chinese has the most native speakers in the world.",
|
||||
"The capital city of Canada is Ottawa.",
|
||||
"Tim Berners-Lee is credited with inventing the World Wide Web.",
|
||||
"Mercury is the metal that is liquid at room temperature.",
|
||||
"An animal that eats both plants and meat is called an omnivore.",
|
||||
"'The Starry Night' was painted by Vincent van Gogh.",
|
||||
"Humans exhale carbon dioxide, which plants use in photosynthesis.",
|
||||
"World War II ended in 1945.",
|
||||
"Africa is the continent with the most countries.",
|
||||
"The novel 'Frankenstein' was written by Mary Shelley.",
|
||||
"DNA stands for Deoxyribonucleic Acid.",
|
||||
"The main ingredient in traditional Japanese miso soup is fermented soybean paste."
|
||||
};
|
||||
|
||||
static std::vector<std::string> k_prompts = {
|
||||
"What is the meaning of life?",
|
||||
@@ -49,7 +99,7 @@ static std::vector<std::string> k_prompts = {
|
||||
"What is the best way to learn a new language?",
|
||||
"How to get a job at Google?",
|
||||
"If you could have any superpower, what would it be?",
|
||||
"I want to learn how to play the piano.",
|
||||
"I want to learn how to play the piano. What would be the best way to do it?",
|
||||
};
|
||||
|
||||
struct client {
|
||||
@@ -68,6 +118,7 @@ struct client {
|
||||
int64_t t_start_prompt;
|
||||
int64_t t_start_gen;
|
||||
|
||||
int32_t n_past = 0;
|
||||
int32_t n_prompt = 0;
|
||||
int32_t n_decoded = 0;
|
||||
int32_t i_batch = -1;
|
||||
@@ -107,6 +158,7 @@ int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
|
||||
params.n_predict = 128;
|
||||
params.n_junk = 0;
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PARALLEL)) {
|
||||
return 1;
|
||||
@@ -126,7 +178,11 @@ int main(int argc, char ** argv) {
|
||||
// insert new requests as soon as the previous one is done
|
||||
const bool cont_batching = params.cont_batching;
|
||||
|
||||
const bool dump_kv_cache = params.dump_kv_cache;
|
||||
// is the system prompt shared in the cache
|
||||
const bool is_sp_shared = params.is_pp_shared;
|
||||
|
||||
// extra text to insert in each client's prompt in order to make it larger
|
||||
const int32_t n_junk = params.n_junk;
|
||||
|
||||
// init llama.cpp
|
||||
llama_backend_init();
|
||||
@@ -169,6 +225,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
std::vector<llama_token> tokens_system;
|
||||
|
||||
tokens_system = common_tokenize(ctx, k_system, true);
|
||||
const int32_t n_tokens_system = tokens_system.size();
|
||||
|
||||
@@ -182,15 +239,13 @@ int main(int argc, char ** argv) {
|
||||
int32_t n_total_gen = 0;
|
||||
int32_t n_cache_miss = 0;
|
||||
|
||||
struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, n_clients);
|
||||
|
||||
const auto t_main_start = ggml_time_us();
|
||||
|
||||
LOG_INF("%s: Simulating parallel requests from clients:\n", __func__);
|
||||
LOG_INF("%s: n_parallel = %d, n_sequences = %d, cont_batching = %d, system tokens = %d\n", __func__, n_clients, n_seq, cont_batching, n_tokens_system);
|
||||
LOG_INF("\n");
|
||||
|
||||
{
|
||||
if (is_sp_shared) {
|
||||
LOG_INF("%s: Evaluating the system prompt ...\n", __func__);
|
||||
|
||||
for (int32_t i = 0; i < n_tokens_system; ++i) {
|
||||
@@ -213,11 +268,6 @@ int main(int argc, char ** argv) {
|
||||
LOG_INF("Processing requests ...\n\n");
|
||||
|
||||
while (true) {
|
||||
if (dump_kv_cache) {
|
||||
llama_kv_cache_view_update(ctx, &kvc_view);
|
||||
common_kv_cache_dump_view_seqs(kvc_view, 40);
|
||||
}
|
||||
|
||||
common_batch_clear(batch);
|
||||
|
||||
// decode any currently ongoing sequences
|
||||
@@ -228,7 +278,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
client.i_batch = batch.n_tokens;
|
||||
|
||||
common_batch_add(batch, client.sampled, n_tokens_system + client.n_prompt + client.n_decoded, { client.id + 1 }, true);
|
||||
common_batch_add(batch, client.sampled, client.n_past++, { client.id + 1 }, true);
|
||||
|
||||
client.n_decoded += 1;
|
||||
}
|
||||
@@ -254,9 +304,26 @@ int main(int argc, char ** argv) {
|
||||
client.t_start_gen = 0;
|
||||
|
||||
client.input = k_prompts[rand() % k_prompts.size()];
|
||||
client.prompt = client.input + "\nAssistant:";
|
||||
client.response = "";
|
||||
|
||||
// construct the prompt:
|
||||
// [system prompt] + [junk] + [user prompt]
|
||||
client.n_past = 0;
|
||||
client.prompt = "";
|
||||
if (is_sp_shared) {
|
||||
client.n_past = n_tokens_system;
|
||||
} else {
|
||||
client.prompt += k_system;
|
||||
}
|
||||
|
||||
const int n_junk_cur = rand() % n_junk;
|
||||
|
||||
for (int i = 0; i < n_junk_cur; ++i) {
|
||||
const int r = rand() % k_questions.size();
|
||||
client.prompt += "User:\n" + k_questions[r] + "\nAssistant:\n " + k_answers[r] + "\n";
|
||||
}
|
||||
client.prompt += "User:\n" + client.input + "\nAssistant:\n";
|
||||
|
||||
common_sampler_reset(client.smpl);
|
||||
|
||||
// do not prepend BOS because we have a system prompt!
|
||||
@@ -264,7 +331,7 @@ int main(int argc, char ** argv) {
|
||||
tokens_prompt = common_tokenize(ctx, client.prompt, false);
|
||||
|
||||
for (size_t i = 0; i < tokens_prompt.size(); ++i) {
|
||||
common_batch_add(batch, tokens_prompt[i], i + n_tokens_system, { client.id + 1 }, false);
|
||||
common_batch_add(batch, tokens_prompt[i], client.n_past++, { client.id + 1 }, false);
|
||||
}
|
||||
|
||||
// extract the logits only for the last token
|
||||
@@ -276,7 +343,7 @@ int main(int argc, char ** argv) {
|
||||
client.n_decoded = 0;
|
||||
client.i_batch = batch.n_tokens - 1;
|
||||
|
||||
LOG_INF("\033[31mClient %3d, seq %4d, started decoding ...\033[0m\n", client.id, client.seq_id);
|
||||
LOG_INF("\033[31mClient %3d, seq %4d, junk = %4d, started decoding ...\033[0m\n", client.id, client.seq_id, n_junk_cur);
|
||||
|
||||
g_seq_id += 1;
|
||||
|
||||
@@ -295,7 +362,9 @@ int main(int argc, char ** argv) {
|
||||
// process in chunks of params.n_batch
|
||||
int32_t n_batch = params.n_batch;
|
||||
|
||||
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
|
||||
int32_t i_next = 0;
|
||||
|
||||
for (int32_t i = 0; i < batch.n_tokens; i = i_next) {
|
||||
// experiment: process in powers of 2
|
||||
//if (i + n_batch > (int32_t) batch.n_tokens && n_batch > 32) {
|
||||
// n_batch /= 2;
|
||||
@@ -303,7 +372,7 @@ int main(int argc, char ** argv) {
|
||||
// continue;
|
||||
//}
|
||||
|
||||
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
|
||||
const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
|
||||
|
||||
llama_batch batch_view = {
|
||||
n_tokens,
|
||||
@@ -329,13 +398,18 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// retry with half the batch size to try to find a free slot in the KV cache
|
||||
n_batch /= 2;
|
||||
i -= n_batch;
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
LOG_DBG("%s : decoded batch of %d tokens\n", __func__, n_tokens);
|
||||
|
||||
// move the head of the batch forward with the number of tokens we just processed
|
||||
i_next = i + n_tokens;
|
||||
|
||||
// on successful decode, restore the original batch size
|
||||
n_batch = params.n_batch;
|
||||
|
||||
for (auto & client : clients) {
|
||||
if (client.i_batch < (int) i || client.i_batch >= (int) (i + n_tokens)) {
|
||||
continue;
|
||||
@@ -363,10 +437,9 @@ int main(int argc, char ** argv) {
|
||||
// client.id, client.seq_id, id, client.n_decoded, client.i_batch, token_str.c_str());
|
||||
|
||||
if (client.n_decoded > 2 &&
|
||||
(llama_vocab_is_eog(vocab, id) ||
|
||||
(params.n_predict > 0 && client.n_decoded + client.n_prompt >= params.n_predict) ||
|
||||
client.response.find("User:") != std::string::npos ||
|
||||
client.response.find('\n') != std::string::npos)) {
|
||||
(llama_vocab_is_eog(vocab, id) ||
|
||||
(params.n_predict > 0 && client.n_decoded >= params.n_predict) ||
|
||||
client.response.find("User:") != std::string::npos)) {
|
||||
// basic reverse prompt
|
||||
const size_t pos = client.response.find("User:");
|
||||
if (pos != std::string::npos) {
|
||||
|
||||
@@ -81,14 +81,14 @@ static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & toke
|
||||
}
|
||||
}
|
||||
|
||||
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
|
||||
static void batch_process(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
|
||||
// clear previous kv_cache values (irrelevant for embeddings)
|
||||
llama_kv_self_clear(ctx);
|
||||
|
||||
// run model
|
||||
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
|
||||
if (llama_decode(ctx, batch) < 0) {
|
||||
LOG_ERR("%s : failed to decode\n", __func__);
|
||||
LOG_ERR("%s : failed to process\n", __func__);
|
||||
}
|
||||
|
||||
for (int i = 0; i < batch.n_tokens; i++) {
|
||||
@@ -233,7 +233,7 @@ int main(int argc, char ** argv) {
|
||||
// encode if at capacity
|
||||
if (batch.n_tokens + n_toks > n_batch) {
|
||||
float * out = emb + p * n_embd;
|
||||
batch_decode(ctx, batch, out, s, n_embd);
|
||||
batch_process(ctx, batch, out, s, n_embd);
|
||||
common_batch_clear(batch);
|
||||
p += s;
|
||||
s = 0;
|
||||
@@ -246,7 +246,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// final batch
|
||||
float * out = emb + p * n_embd;
|
||||
batch_decode(ctx, batch, out, s, n_embd);
|
||||
batch_process(ctx, batch, out, s, n_embd);
|
||||
|
||||
// save embeddings to chunks
|
||||
for (int i = 0; i < n_chunks; i++) {
|
||||
@@ -267,7 +267,7 @@ int main(int argc, char ** argv) {
|
||||
batch_add_seq(query_batch, query_tokens, 0);
|
||||
|
||||
std::vector<float> query_emb(n_embd, 0);
|
||||
batch_decode(ctx, query_batch, query_emb.data(), 1, n_embd);
|
||||
batch_process(ctx, query_batch, query_emb.data(), 1, n_embd);
|
||||
|
||||
common_batch_clear(query_batch);
|
||||
|
||||
|
||||
@@ -98,7 +98,7 @@ int main(int argc, char ** argv) {
|
||||
auto generate = [&](const std::string & prompt) {
|
||||
std::string response;
|
||||
|
||||
const bool is_first = llama_kv_self_used_cells(ctx) == 0;
|
||||
const bool is_first = llama_kv_self_seq_pos_max(ctx, 0) == 0;
|
||||
|
||||
// tokenize the prompt
|
||||
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true);
|
||||
@@ -113,7 +113,7 @@ int main(int argc, char ** argv) {
|
||||
while (true) {
|
||||
// check if we have enough space in the context to evaluate this batch
|
||||
int n_ctx = llama_n_ctx(ctx);
|
||||
int n_ctx_used = llama_kv_self_used_cells(ctx);
|
||||
int n_ctx_used = llama_kv_self_seq_pos_max(ctx, 0);
|
||||
if (n_ctx_used + batch.n_tokens > n_ctx) {
|
||||
printf("\033[0m\n");
|
||||
fprintf(stderr, "context size exceeded\n");
|
||||
|
||||
@@ -84,13 +84,13 @@ int main(int argc, char ** argv) {
|
||||
model_params.n_gpu_layers = ngl;
|
||||
|
||||
llama_model * model = llama_model_load_from_file(model_path.c_str(), model_params);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
if (model == NULL) {
|
||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
// tokenize the prompt
|
||||
|
||||
// find the number of tokens in the prompt
|
||||
|
||||
@@ -12,16 +12,16 @@ source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
INPUT_PROMPT="Building a website can be done in 10 simple steps:\nStep 1:"
|
||||
MODEL_FILE=models/llama-2-7b.Q4_0.gguf
|
||||
NGL=33
|
||||
CONEXT=4096
|
||||
NGL=99
|
||||
CONTEXT=4096
|
||||
|
||||
if [ $# -gt 0 ]; then
|
||||
GGML_SYCL_DEVICE=$1
|
||||
echo "use $GGML_SYCL_DEVICE as main GPU"
|
||||
#use signle GPU only
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m ${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONEXT} -mg $GGML_SYCL_DEVICE -sm none
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m ${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT} -mg $GGML_SYCL_DEVICE -sm none
|
||||
|
||||
else
|
||||
#use multiple GPUs with same max compute units
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m ${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONEXT}
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m ${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT}
|
||||
fi
|
||||
|
||||
28
examples/sycl/run-llama3.sh
Executable file
28
examples/sycl/run-llama3.sh
Executable file
@@ -0,0 +1,28 @@
|
||||
#!/bin/bash
|
||||
|
||||
# MIT license
|
||||
# Copyright (C) 2025 Intel Corporation
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
# If you want more control, DPC++ Allows selecting a specific device through the
|
||||
# following environment variable
|
||||
#export ONEAPI_DEVICE_SELECTOR="level_zero:0"
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
#export GGML_SYCL_DEBUG=1
|
||||
|
||||
#ZES_ENABLE_SYSMAN=1, Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory. Recommended to use when --split-mode = layer.
|
||||
|
||||
INPUT_PROMPT="Building a website can be done in 10 simple steps:\nStep 1:"
|
||||
MODEL_FILE=models/Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf
|
||||
NGL=99 # Layers offloaded to the GPU. If the device runs out of memory, reduce this value according to the model you are using.
|
||||
CONTEXT=4096
|
||||
|
||||
if [ $# -gt 0 ]; then
|
||||
GGML_SYCL_DEVICE=$1
|
||||
echo "Using $GGML_SYCL_DEVICE as the main GPU"
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m ${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -c ${CONTEXT} -mg $GGML_SYCL_DEVICE -sm none
|
||||
else
|
||||
#use multiple GPUs with same max compute units
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m ${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -c ${CONTEXT}
|
||||
fi
|
||||
@@ -6,4 +6,4 @@ set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
|
||||
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
|
||||
|
||||
|
||||
.\build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p %INPUT2% -n 400 -e -ngl 33 -s 0
|
||||
.\build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p %INPUT2% -n 400 -e -ngl 99 -s 0
|
||||
|
||||
9
examples/sycl/win-run-llama3.bat
Normal file
9
examples/sycl/win-run-llama3.bat
Normal file
@@ -0,0 +1,9 @@
|
||||
:: MIT license
|
||||
:: Copyright (C) 2024 Intel Corporation
|
||||
:: SPDX-License-Identifier: MIT
|
||||
|
||||
set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
|
||||
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
|
||||
|
||||
|
||||
.\build\bin\llama-cli.exe -m models\Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf -p %INPUT2% -n 400 -e -ngl 99
|
||||
5
examples/training/CMakeLists.txt
Normal file
5
examples/training/CMakeLists.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
set(TARGET llama-finetune)
|
||||
add_executable(${TARGET} finetune.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
17
examples/training/README.md
Normal file
17
examples/training/README.md
Normal file
@@ -0,0 +1,17 @@
|
||||
# llama.cpp/examples/training
|
||||
|
||||
This directory contains examples related to language model training using llama.cpp/GGML.
|
||||
So far finetuning is technically functional (for FP32 models and limited hardware setups) but the code is very much WIP.
|
||||
Finetuning of Stories 260K and LLaMA 3.2 1b seems to work with 24 GB of memory.
|
||||
**For CPU training, compile llama.cpp without any additional backends such as CUDA.**
|
||||
**For CUDA training, use the maximum number of GPU layers.**
|
||||
|
||||
Proof of concept:
|
||||
|
||||
``` sh
|
||||
export model_name=llama_3.2-1b && export quantization=f32
|
||||
./build/bin/llama-finetune --file wikitext-2-raw/wiki.test.raw -ngl 999 --model models/${model_name}-${quantization}.gguf -c 512 -b 512 -ub 512
|
||||
./build/bin/llama-perplexity --file wikitext-2-raw/wiki.test.raw -ngl 999 --model finetuned-model.gguf
|
||||
```
|
||||
|
||||
The perplexity value of the finetuned model should be lower after training on the test set for 2 epochs.
|
||||
96
examples/training/finetune.cpp
Normal file
96
examples/training/finetune.cpp
Normal file
@@ -0,0 +1,96 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
#include <vector>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
|
||||
params.escape = false;
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PERPLEXITY)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (params.use_mmap) {
|
||||
LOG_INF("%s: force disabling memory mapping because it would result in-read-only pointers to the weights\n", __func__);
|
||||
params.use_mmap = false;
|
||||
}
|
||||
if (params.cache_type_k != GGML_TYPE_F32) {
|
||||
LOG_INF("%s: force changing k cache type to f32 due to a lack of f16 support for OUT_PROD\n", __func__);
|
||||
params.cache_type_k = GGML_TYPE_F32;
|
||||
}
|
||||
if (params.cache_type_v != GGML_TYPE_F32) {
|
||||
LOG_INF("%s: force changing v cache type to f32 due to a lack of f16 support for OUT_PROD\n", __func__);
|
||||
params.cache_type_v = GGML_TYPE_F32;
|
||||
}
|
||||
|
||||
common_init();
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// load the model and apply lora adapter, if any
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
llama_model_ptr & model = llama_init.model;
|
||||
llama_context_ptr & ctx = llama_init.context;
|
||||
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: unable to load model\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
constexpr float val_split = 0.05f;
|
||||
|
||||
std::vector<llama_token> tokens = common_tokenize(ctx.get(), params.prompt, true);
|
||||
ggml_opt_dataset_t dataset = common_opt_dataset_init(ctx.get(), tokens, llama_n_ctx(ctx.get())/2);
|
||||
|
||||
struct ggml_opt_optimizer_params optimizer_params = ggml_opt_get_default_optimizer_params(nullptr);
|
||||
optimizer_params.adamw.alpha = 1e-7f; // learning rate
|
||||
|
||||
struct llama_opt_params lopt_params {
|
||||
/*n_ctx_train =*/ 0,
|
||||
/*param_filter =*/ llama_opt_param_filter_all,
|
||||
/*param_filter_ud =*/ nullptr,
|
||||
/*get_opt_pars =*/ ggml_opt_get_constant_optimizer_params,
|
||||
/*get_opt_pars_ud =*/ &optimizer_params,
|
||||
};
|
||||
llama_opt_init(ctx.get(), model.get(), lopt_params);
|
||||
|
||||
const int64_t idata_split = ggml_opt_dataset_ndata(dataset) * (1.0f - val_split);
|
||||
|
||||
ggml_opt_result_t result_train = ggml_opt_result_init();
|
||||
ggml_opt_result_t result_eval = ggml_opt_result_init();
|
||||
|
||||
for (int epoch = 0; epoch < 2; ++epoch) {
|
||||
llama_opt_epoch(ctx.get(), dataset, result_train, result_eval, idata_split,
|
||||
ggml_opt_epoch_callback_progress_bar, ggml_opt_epoch_callback_progress_bar);
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
ggml_opt_result_reset(result_train);
|
||||
ggml_opt_result_reset(result_eval);
|
||||
}
|
||||
ggml_opt_result_free(result_train);
|
||||
ggml_opt_result_free(result_eval);
|
||||
|
||||
llama_model_save_to_file(model.get(), "finetuned-model.gguf");
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
}
|
||||
@@ -129,6 +129,7 @@ option(GGML_LASX "ggml: enable lasx" ON)
|
||||
option(GGML_LSX "ggml: enable lsx" ON)
|
||||
option(GGML_RVV "ggml: enable rvv" ON)
|
||||
option(GGML_RV_ZFH "ggml: enable riscv zfh" OFF)
|
||||
option(GGML_XTHEADVECTOR "ggml: enable xtheadvector" OFF)
|
||||
option(GGML_VXE "ggml: enable vxe" ON)
|
||||
|
||||
option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requires GGML_BACKEND_DL)" OFF)
|
||||
@@ -176,7 +177,6 @@ option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks"
|
||||
option(GGML_VULKAN_DEBUG "ggml: enable Vulkan debug output" OFF)
|
||||
option(GGML_VULKAN_MEMORY_DEBUG "ggml: enable Vulkan memory debug output" OFF)
|
||||
option(GGML_VULKAN_SHADER_DEBUG_INFO "ggml: enable Vulkan shader debug info" OFF)
|
||||
option(GGML_VULKAN_PERF "ggml: enable Vulkan perf output" OFF)
|
||||
option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation" OFF)
|
||||
option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF)
|
||||
option(GGML_KOMPUTE "ggml: use Kompute" OFF)
|
||||
@@ -193,6 +193,7 @@ option(GGML_RPC "ggml: use RPC"
|
||||
option(GGML_SYCL "ggml: use SYCL" OFF)
|
||||
option(GGML_SYCL_F16 "ggml: use 16 bit floats for sycl calculations" OFF)
|
||||
option(GGML_SYCL_GRAPH "ggml: enable graphs in the SYCL backend" ON)
|
||||
option(GGML_SYCL_DNN "ggml: enable oneDNN in the SYCL backend" ON)
|
||||
set (GGML_SYCL_TARGET "INTEL" CACHE STRING
|
||||
"ggml: sycl target device")
|
||||
set (GGML_SYCL_DEVICE_ARCH "" CACHE STRING
|
||||
|
||||
@@ -24,3 +24,28 @@ function(ggml_get_flags CCID CCVER)
|
||||
set(GF_C_FLAGS ${C_FLAGS} PARENT_SCOPE)
|
||||
set(GF_CXX_FLAGS ${CXX_FLAGS} PARENT_SCOPE)
|
||||
endfunction()
|
||||
|
||||
function(ggml_get_system_arch)
|
||||
if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR
|
||||
CMAKE_GENERATOR_PLATFORM_LWR STREQUAL "arm64" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(aarch64|arm.*|ARM64)$"))
|
||||
set(GGML_SYSTEM_ARCH "ARM" PARENT_SCOPE)
|
||||
elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR
|
||||
CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64|amd64)$"))
|
||||
set(GGML_SYSTEM_ARCH "x86" PARENT_SCOPE)
|
||||
elseif ("${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "ppc64le " OR
|
||||
"${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "powerpc ")
|
||||
set(GGML_SYSTEM_ARCH "PowerPC" PARENT_SCOPE)
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
|
||||
set(GGML_SYSTEM_ARCH "loongarch64" PARENT_SCOPE)
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "riscv64")
|
||||
set(GGML_SYSTEM_ARCH "riscv64" PARENT_SCOPE)
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "s390x")
|
||||
set(GGML_SYSTEM_ARCH "s390x" PARENT_SCOPE)
|
||||
else()
|
||||
set(GGML_SYSTEM_ARCH "UNKNOWN" PARENT_SCOPE)
|
||||
endif()
|
||||
endfunction()
|
||||
|
||||
@@ -248,7 +248,7 @@ extern "C" {
|
||||
// preferrably to run on the same backend as the buffer
|
||||
ggml_backend_buffer_set_usage(buf_weights, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
|
||||
|
||||
sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, NULL, num_backends, GGML_DEFAULT_GRAPH_SIZE, false);
|
||||
sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, NULL, num_backends, GGML_DEFAULT_GRAPH_SIZE, false, true);
|
||||
|
||||
// initialize buffers from a max size graph (optional)
|
||||
reserve_graph = build_graph(sched, max_batch_size);
|
||||
@@ -289,7 +289,7 @@ extern "C" {
|
||||
typedef bool (*ggml_backend_sched_eval_callback)(struct ggml_tensor * t, bool ask, void * user_data);
|
||||
|
||||
// Initialize a backend scheduler, backends with low index are given priority over backends with high index
|
||||
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel);
|
||||
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel, bool op_offload);
|
||||
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
|
||||
|
||||
// Initialize backend buffers from a measure graph
|
||||
|
||||
@@ -37,13 +37,16 @@ extern "C" {
|
||||
// ====== Dataset ======
|
||||
|
||||
GGML_API ggml_opt_dataset_t ggml_opt_dataset_init(
|
||||
int64_t ne_datapoint, // number of elements per datapoint
|
||||
int64_t ne_label, // number of elements per label
|
||||
int64_t ndata, // total number of datapoints/labels
|
||||
int64_t ndata_shard); // number of datapoints/labels per shard (unit at which the dataset is shuffled/copied)
|
||||
enum ggml_type type_data, // the type for the internal data tensor
|
||||
enum ggml_type type_label, // the type for the internal labels tensor
|
||||
int64_t ne_datapoint, // number of elements per datapoint
|
||||
int64_t ne_label, // number of elements per label
|
||||
int64_t ndata, // total number of datapoints/labels
|
||||
int64_t ndata_shard); // number of datapoints/labels per shard (unit at which the dataset is shuffled/copied)
|
||||
GGML_API void ggml_opt_dataset_free(ggml_opt_dataset_t dataset);
|
||||
|
||||
// get underlying tensors that store the data
|
||||
GGML_API int64_t ggml_opt_dataset_ndata (ggml_opt_dataset_t dataset);
|
||||
GGML_API struct ggml_tensor * ggml_opt_dataset_data (ggml_opt_dataset_t dataset); // shape = [ne_datapoint, ndata]
|
||||
GGML_API struct ggml_tensor * ggml_opt_dataset_labels(ggml_opt_dataset_t dataset); // shape = [nd_label, ndata]
|
||||
|
||||
@@ -56,13 +59,19 @@ extern "C" {
|
||||
struct ggml_tensor * data_batch, // shape = [ne_datapoint, ndata_batch]
|
||||
struct ggml_tensor * labels_batch, // shape = [ne_label, ndata_batch]
|
||||
int64_t ibatch);
|
||||
GGML_API void ggml_opt_dataset_get_batch_host(
|
||||
ggml_opt_dataset_t dataset,
|
||||
void * data_batch,
|
||||
size_t nb_data_batch,
|
||||
void * labels_batch,
|
||||
int64_t ibatch);
|
||||
|
||||
// ====== Model / Context ======
|
||||
|
||||
enum ggml_opt_build_type {
|
||||
GGML_OPT_BUILD_TYPE_FORWARD,
|
||||
GGML_OPT_BUILD_TYPE_GRAD,
|
||||
GGML_OPT_BUILD_TYPE_OPT,
|
||||
GGML_OPT_BUILD_TYPE_FORWARD = 10,
|
||||
GGML_OPT_BUILD_TYPE_GRAD = 20,
|
||||
GGML_OPT_BUILD_TYPE_OPT = 30,
|
||||
};
|
||||
|
||||
// parameters that control which optimizer is used and how said optimizer tries to find the minimal loss
|
||||
@@ -81,20 +90,22 @@ extern "C" {
|
||||
// userdata can be used to pass arbitrary data
|
||||
typedef struct ggml_opt_optimizer_params (*ggml_opt_get_optimizer_params)(void * userdata);
|
||||
|
||||
// returns the default optimizer params (constant)
|
||||
// returns the default optimizer params (constant, hard-coded values)
|
||||
// userdata is not used
|
||||
GGML_API struct ggml_opt_optimizer_params ggml_opt_get_default_optimizer_params(void * userdata);
|
||||
|
||||
// casts userdata to ggml_opt_optimizer_params and returns it
|
||||
GGML_API struct ggml_opt_optimizer_params ggml_opt_get_constant_optimizer_params(void * userdata);
|
||||
|
||||
// parameters for initializing a new optimization context
|
||||
struct ggml_opt_params {
|
||||
ggml_backend_sched_t backend_sched; // defines which backends are used to construct the compute graphs
|
||||
|
||||
struct ggml_context * ctx_compute; // created in user code, holds non-static tensors
|
||||
|
||||
// the forward graph is defined by inputs and outputs
|
||||
// those tensors and all tensors inbetween are not intended to be reusable between multiple optimization contexts
|
||||
struct ggml_tensor * inputs;
|
||||
struct ggml_tensor * outputs;
|
||||
// by default the forward graph needs to be reconstructed for each eval
|
||||
// if ctx_compute, inputs, and outputs are set the graphs are instead allocated statically
|
||||
struct ggml_context * ctx_compute;
|
||||
struct ggml_tensor * inputs;
|
||||
struct ggml_tensor * outputs;
|
||||
|
||||
enum ggml_opt_loss_type loss_type;
|
||||
enum ggml_opt_build_type build_type;
|
||||
@@ -107,12 +118,9 @@ extern "C" {
|
||||
|
||||
// get parameters for an optimization context with defaults set where possible
|
||||
// parameters for which no sensible defaults exist are supplied as arguments to this function
|
||||
GGML_API ggml_opt_params ggml_opt_default_params(
|
||||
ggml_backend_sched_t backend_sched,
|
||||
struct ggml_context * ctx_compute,
|
||||
struct ggml_tensor * inputs,
|
||||
struct ggml_tensor * outputs,
|
||||
enum ggml_opt_loss_type loss_type);
|
||||
GGML_API struct ggml_opt_params ggml_opt_default_params(
|
||||
ggml_backend_sched_t backend_sched,
|
||||
enum ggml_opt_loss_type loss_type);
|
||||
|
||||
GGML_API ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params);
|
||||
GGML_API void ggml_opt_free(ggml_opt_context_t opt_ctx);
|
||||
@@ -120,7 +128,10 @@ extern "C" {
|
||||
// set gradients to zero, initilize loss, and optionally reset the optimizer
|
||||
GGML_API void ggml_opt_reset(ggml_opt_context_t opt_ctx, bool optimizer);
|
||||
|
||||
GGML_API bool ggml_opt_static_graphs(ggml_opt_context_t opt_ctx); // whether the graphs are allocated_statically
|
||||
|
||||
// get underlying tensors that store data
|
||||
// if not using static graphs these pointers become invalid with the next call to ggml_opt_alloc
|
||||
GGML_API struct ggml_tensor * ggml_opt_inputs( ggml_opt_context_t opt_ctx); // forward graph input tensor
|
||||
GGML_API struct ggml_tensor * ggml_opt_outputs( ggml_opt_context_t opt_ctx); // forward graph output tensor
|
||||
GGML_API struct ggml_tensor * ggml_opt_labels( ggml_opt_context_t opt_ctx); // labels to compare outputs against
|
||||
@@ -128,11 +139,12 @@ extern "C" {
|
||||
GGML_API struct ggml_tensor * ggml_opt_pred( ggml_opt_context_t opt_ctx); // predictions made by outputs
|
||||
GGML_API struct ggml_tensor * ggml_opt_ncorrect(ggml_opt_context_t opt_ctx); // number of matching predictions between outputs and labels
|
||||
|
||||
// get the gradient accumulator for a node from the forward graph
|
||||
GGML_API struct ggml_tensor * ggml_opt_grad_acc(ggml_opt_context_t opt_ctx, struct ggml_tensor * node);
|
||||
|
||||
// ====== Optimization Result ======
|
||||
|
||||
GGML_API ggml_opt_result_t ggml_opt_result_init();
|
||||
GGML_API ggml_opt_result_t ggml_opt_result_init(void);
|
||||
GGML_API void ggml_opt_result_free(ggml_opt_result_t result);
|
||||
GGML_API void ggml_opt_result_reset(ggml_opt_result_t result);
|
||||
|
||||
@@ -144,11 +156,20 @@ extern "C" {
|
||||
|
||||
// ====== Computation ======
|
||||
|
||||
// do forward pass, increment result if not NULL
|
||||
GGML_API void ggml_opt_forward(ggml_opt_context_t opt_ctx, ggml_opt_result_t result);
|
||||
// if not using static graphs, this function must be called prior to ggml_opt_alloc
|
||||
GGML_API void ggml_opt_prepare_alloc(
|
||||
ggml_opt_context_t opt_ctx,
|
||||
struct ggml_context * ctx_compute,
|
||||
struct ggml_cgraph * gf,
|
||||
struct ggml_tensor * inputs,
|
||||
struct ggml_tensor * outputs);
|
||||
|
||||
// do forward pass, increment result if not NULL, do backward pass
|
||||
GGML_API void ggml_opt_forward_backward(ggml_opt_context_t opt_ctx, ggml_opt_result_t result);
|
||||
// allocate the next graph for evaluation, either forward or forward + backward
|
||||
// must be called exactly once prior to calling ggml_opt_eval
|
||||
GGML_API void ggml_opt_alloc(ggml_opt_context_t opt_ctx, bool backward);
|
||||
|
||||
// do forward pass, increment result if not NULL, do backward pass if allocated
|
||||
GGML_API void ggml_opt_eval(ggml_opt_context_t opt_ctx, ggml_opt_result_t result);
|
||||
|
||||
// ############################################################################
|
||||
// ## The high-level functions start here. They do not depend on any private ##
|
||||
@@ -200,9 +221,9 @@ extern "C" {
|
||||
// fit model defined by inputs and outputs to dataset
|
||||
GGML_API void ggml_opt_fit(
|
||||
ggml_backend_sched_t backend_sched, // backend scheduler for constructing the compute graphs
|
||||
ggml_context * ctx_compute, // context with temporarily allocated tensors to calculate the outputs
|
||||
ggml_tensor * inputs, // input tensor with shape [ne_datapoint, ndata_batch]
|
||||
ggml_tensor * outputs, // output tensor, must have shape [ne_label, ndata_batch] if labels are used
|
||||
struct ggml_context * ctx_compute, // context with temporarily allocated tensors to calculate the outputs
|
||||
struct ggml_tensor * inputs, // input tensor with shape [ne_datapoint, ndata_batch]
|
||||
struct ggml_tensor * outputs, // output tensor, must have shape [ne_label, ndata_batch] if labels are used
|
||||
ggml_opt_dataset_t dataset, // dataset with data and optionally also labels
|
||||
enum ggml_opt_loss_type loss_type, // loss to minimize
|
||||
ggml_opt_get_optimizer_params get_opt_pars, // callback to get optimizer params, userdata is pointer to epoch (of type int64_t)
|
||||
|
||||
@@ -536,6 +536,7 @@ extern "C" {
|
||||
GGML_UNARY_OP_HARDSWISH,
|
||||
GGML_UNARY_OP_HARDSIGMOID,
|
||||
GGML_UNARY_OP_EXP,
|
||||
GGML_UNARY_OP_GELU_ERF,
|
||||
|
||||
GGML_UNARY_OP_COUNT,
|
||||
};
|
||||
@@ -768,7 +769,7 @@ extern "C" {
|
||||
// Tensor flags
|
||||
GGML_API void ggml_set_input(struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_set_output(struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_set_param(struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
|
||||
|
||||
//
|
||||
@@ -934,11 +935,20 @@ extern "C" {
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// repeat a to the specified shape
|
||||
GGML_API struct ggml_tensor * ggml_repeat_4d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int64_t ne0,
|
||||
int64_t ne1,
|
||||
int64_t ne2,
|
||||
int64_t ne3);
|
||||
|
||||
// sums repetitions in a into shape of b
|
||||
GGML_API struct ggml_tensor * ggml_repeat_back(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
struct ggml_tensor * b); // sum up values that are adjacent in dims > 0 instead of repeated with same stride
|
||||
|
||||
// concat a and b along dim
|
||||
// used in stable-diffusion
|
||||
@@ -1024,6 +1034,16 @@ extern "C" {
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// GELU using erf (error function) when possible
|
||||
// some backends may fallback to approximation based on Abramowitz and Stegun formula
|
||||
GGML_API struct ggml_tensor * ggml_gelu_erf(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_gelu_erf_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_gelu_quick(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
@@ -2049,15 +2069,14 @@ extern "C" {
|
||||
|
||||
GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_build_backward_expand(
|
||||
struct ggml_context * ctx_static, // context for static gradients (loss + gradient accumulation)
|
||||
struct ggml_context * ctx_compute, // context for gradient computation
|
||||
struct ggml_cgraph * cgraph,
|
||||
bool accumulate); // whether or not gradients should be accumulated, requires static allocation of tensors in ctx_static
|
||||
struct ggml_context * ctx, // context for gradient computation
|
||||
struct ggml_cgraph * cgraph,
|
||||
struct ggml_tensor ** grad_accs);
|
||||
|
||||
// graph allocation in a context
|
||||
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
|
||||
GGML_API struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads);
|
||||
GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
|
||||
GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph, bool force_grads);
|
||||
GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
|
||||
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // set regular grads + optimizer momenta to 0, set loss grad to 1
|
||||
GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
|
||||
|
||||
@@ -109,6 +109,8 @@ if (MSVC)
|
||||
else ()
|
||||
set(CMAKE_GENERATOR_PLATFORM_LWR "")
|
||||
endif ()
|
||||
ggml_get_system_arch()
|
||||
message(STATUS "GGML_SYSTEM_ARCH: ${GGML_SYSTEM_ARCH}")
|
||||
|
||||
if (NOT MSVC)
|
||||
if (GGML_STATIC)
|
||||
@@ -287,16 +289,20 @@ if (GGML_CPU_ALL_VARIANTS)
|
||||
if (NOT GGML_BACKEND_DL)
|
||||
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS requires GGML_BACKEND_DL")
|
||||
endif()
|
||||
ggml_add_cpu_backend_variant(x64)
|
||||
ggml_add_cpu_backend_variant(sse42 SSE42)
|
||||
ggml_add_cpu_backend_variant(sandybridge SSE42 AVX)
|
||||
ggml_add_cpu_backend_variant(haswell SSE42 AVX F16C AVX2 BMI2 FMA)
|
||||
ggml_add_cpu_backend_variant(skylakex SSE42 AVX F16C AVX2 BMI2 FMA AVX512)
|
||||
ggml_add_cpu_backend_variant(icelake SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
|
||||
ggml_add_cpu_backend_variant(alderlake SSE42 AVX F16C AVX2 BMI2 FMA AVX_VNNI)
|
||||
if (NOT MSVC)
|
||||
# MSVC doesn't support AMX
|
||||
ggml_add_cpu_backend_variant(sapphirerapids SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
|
||||
if (GGML_SYSTEM_ARCH STREQUAL "x86")
|
||||
ggml_add_cpu_backend_variant(x64)
|
||||
ggml_add_cpu_backend_variant(sse42 SSE42)
|
||||
ggml_add_cpu_backend_variant(sandybridge SSE42 AVX)
|
||||
ggml_add_cpu_backend_variant(haswell SSE42 AVX F16C AVX2 BMI2 FMA)
|
||||
ggml_add_cpu_backend_variant(skylakex SSE42 AVX F16C AVX2 BMI2 FMA AVX512)
|
||||
ggml_add_cpu_backend_variant(icelake SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
|
||||
ggml_add_cpu_backend_variant(alderlake SSE42 AVX F16C AVX2 BMI2 FMA AVX_VNNI)
|
||||
if (NOT MSVC)
|
||||
# MSVC doesn't support AMX
|
||||
ggml_add_cpu_backend_variant(sapphirerapids SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
|
||||
endif()
|
||||
else()
|
||||
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS not yet supported on ${GGML_SYSTEM_ARCH}")
|
||||
endif()
|
||||
elseif (GGML_CPU)
|
||||
ggml_add_cpu_backend_variant_impl("")
|
||||
|
||||
@@ -674,6 +674,8 @@ struct ggml_backend_sched {
|
||||
char * context_buffer;
|
||||
size_t context_buffer_size;
|
||||
|
||||
bool op_offload;
|
||||
|
||||
int debug;
|
||||
};
|
||||
|
||||
@@ -766,7 +768,7 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
|
||||
if (tensor->op != GGML_OP_ROPE && src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
|
||||
int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src, tensor);
|
||||
// check if a backend with higher prio wants to offload the op
|
||||
if (src_backend_id == sched->n_backends - 1 && ggml_backend_buffer_is_host(src->buffer)) {
|
||||
if (sched->op_offload && src_backend_id == sched->n_backends - 1 && ggml_backend_buffer_is_host(src->buffer)) {
|
||||
for (int b = 0; b < src_backend_id; b++) {
|
||||
if (ggml_backend_supports_op(sched->backends[b], tensor) && ggml_backend_offload_op(sched->backends[b], tensor)) {
|
||||
SET_CAUSE(tensor, "1.off");
|
||||
@@ -1109,7 +1111,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
|
||||
const int node_backend_id = tensor_backend_id(node);
|
||||
|
||||
assert(node_backend_id != -1); // all nodes should be assigned by now
|
||||
assert(node_backend_id != -1); // all nodes should be assigned by now, this can happen if there is no CPU fallback
|
||||
|
||||
// check if we should start a new split based on the sources of the current node
|
||||
bool need_new_split = false;
|
||||
@@ -1338,7 +1340,10 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
|
||||
// allocate graph
|
||||
if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
|
||||
// the re-allocation may cause the split inputs to be moved to a different address
|
||||
ggml_backend_sched_synchronize(sched);
|
||||
// synchronize without ggml_backend_sched_synchronize to avoid changing cur_copy
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
ggml_backend_synchronize(sched->backends[i]);
|
||||
}
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
|
||||
#endif
|
||||
@@ -1452,7 +1457,8 @@ ggml_backend_sched_t ggml_backend_sched_new(
|
||||
ggml_backend_buffer_type_t * bufts,
|
||||
int n_backends,
|
||||
size_t graph_size,
|
||||
bool parallel) {
|
||||
bool parallel,
|
||||
bool op_offload) {
|
||||
GGML_ASSERT(n_backends > 0);
|
||||
GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
|
||||
GGML_ASSERT(ggml_backend_dev_type(ggml_backend_get_device(backends[n_backends - 1])) == GGML_BACKEND_DEVICE_TYPE_CPU);
|
||||
@@ -1497,6 +1503,7 @@ ggml_backend_sched_t ggml_backend_sched_new(
|
||||
}
|
||||
|
||||
sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
|
||||
sched->op_offload = op_offload;
|
||||
|
||||
ggml_backend_sched_reset(sched);
|
||||
|
||||
@@ -1560,7 +1567,6 @@ bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgra
|
||||
|
||||
ggml_backend_sched_split_graph(sched, graph);
|
||||
|
||||
|
||||
if (!ggml_backend_sched_alloc_splits(sched)) {
|
||||
return false;
|
||||
}
|
||||
@@ -1594,6 +1600,12 @@ void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
ggml_backend_synchronize(sched->backends[i]);
|
||||
}
|
||||
if (!sched->is_alloc) {
|
||||
// if the graph is not already allocated, always use copy 0 after a synchronization
|
||||
// this ensures that during generation the same copy is used every time,
|
||||
// which avoids changes in the graph that could cause CUDA or other graphs to be disabled
|
||||
sched->cur_copy = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
|
||||
|
||||
1
ggml/src/ggml-cann/CMakeLists.txt
Normal file → Executable file
1
ggml/src/ggml-cann/CMakeLists.txt
Normal file → Executable file
@@ -30,6 +30,7 @@ string(TOLOWER ${SOC_TYPE} SOC_VERSION) # SOC_VERSION need lower
|
||||
string(REGEX MATCH "[0-9]+[a-zA-Z]" SOC_TYPE_MAJOR_SN "${SOC_VERSION}")
|
||||
set(SOC_TYPE_COMPILE_OPTION "ASCEND_${SOC_TYPE_MAJOR_SN}")
|
||||
string(TOUPPER ${SOC_TYPE_COMPILE_OPTION} SOC_TYPE_COMPILE_OPTION)
|
||||
message(STATUS "CANN: SOC_VERSION = ${SOC_VERSION}")
|
||||
|
||||
if (CANN_INSTALL_DIR)
|
||||
# Only Support Linux.
|
||||
|
||||
0
ggml/src/ggml-cann/Doxyfile
Normal file → Executable file
0
ggml/src/ggml-cann/Doxyfile
Normal file → Executable file
2
ggml/src/ggml-cann/acl_tensor.cpp
Normal file → Executable file
2
ggml/src/ggml-cann/acl_tensor.cpp
Normal file → Executable file
@@ -31,6 +31,8 @@ aclDataType ggml_cann_type_mapping(ggml_type type) {
|
||||
return ACL_FLOAT;
|
||||
case GGML_TYPE_F16:
|
||||
return ACL_FLOAT16;
|
||||
case GGML_TYPE_BF16:
|
||||
return ACL_BF16;
|
||||
case GGML_TYPE_I8:
|
||||
return ACL_INT8;
|
||||
case GGML_TYPE_I16:
|
||||
|
||||
0
ggml/src/ggml-cann/acl_tensor.h
Normal file → Executable file
0
ggml/src/ggml-cann/acl_tensor.h
Normal file → Executable file
604
ggml/src/ggml-cann/aclnn_ops.cpp
Normal file → Executable file
604
ggml/src/ggml-cann/aclnn_ops.cpp
Normal file → Executable file
@@ -65,6 +65,8 @@
|
||||
#include <aclnnop/aclnn_eq_tensor.h>
|
||||
#include <aclnnop/aclnn_gt_scalar.h>
|
||||
#include <aclnnop/aclnn_pow.h>
|
||||
#include <aclnnop/aclnn_grouped_matmul_v2.h>
|
||||
#include <aclnnop/aclnn_fused_infer_attention_score_v2.h>
|
||||
#include <float.h>
|
||||
|
||||
#include <cmath>
|
||||
@@ -73,11 +75,13 @@
|
||||
#include <vector>
|
||||
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#define GGML_COMMON_DECL_C
|
||||
|
||||
#include "../ggml-common.h"
|
||||
|
||||
|
||||
void bcast_shape(ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst, aclTensor ** acl_src0,
|
||||
aclTensor ** acl_src1, aclTensor ** acl_dst) {
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_can_repeat(src1, src0));
|
||||
@@ -2587,3 +2591,603 @@ void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst){
|
||||
|
||||
ggml_cann_release_resources(ctx, acl_src, acl_dst, alpha);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Performs expert-specific matrix multiplication (MoE) with
|
||||
* floating-point precision using the CANN backend.
|
||||
*
|
||||
* This function executes a matrix multiplication operation tailored for
|
||||
* Mixture of Experts (MoE) models, where the input tensor is multiplied
|
||||
* with expert-specific weight matrices. It uses the CANN backend for
|
||||
* efficient computation and stores the result in the destination tensor `dst`.
|
||||
* The operation may leverage identity-based optimizations or routing masks
|
||||
* as part of sparse expert selection.
|
||||
*
|
||||
* @param ctx The context for executing CANN backend operations.
|
||||
* @param dst The destination tensor where the MoE multiplication result
|
||||
* will be stored.
|
||||
*
|
||||
* @note This function assumes floating-point data types and is designed for
|
||||
* MoE architectures, possibly involving sparse expert routing.
|
||||
*/
|
||||
static void ggml_cann_mul_mat_id_fp(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
//dst [M, K, N, 1]
|
||||
ggml_tensor * src0 = dst->src[0]; //src0 [D, M, A, 1]
|
||||
ggml_tensor * src1 = dst->src[1]; //src1 [D, B, N, 1], B = K or B = 1
|
||||
ggml_tensor * ids = dst->src[2]; //ids [K, N]
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
// copy index from npu to cpu
|
||||
int64_t n_as = ne02; // A
|
||||
int64_t n_ids = ids->ne[0]; // K
|
||||
|
||||
std::vector<char> ids_host(ggml_nbytes(ids));
|
||||
ggml_cann_async_memcpy(ctx, ids_host.data(), ids->data, ggml_nbytes(ids),
|
||||
ACL_MEMCPY_DEVICE_TO_HOST);
|
||||
ACL_CHECK(aclrtSynchronizeStream(ctx.stream()));
|
||||
|
||||
char * src0_original = (char *) src0->data;
|
||||
char * src1_original = (char *) src1->data;
|
||||
char * dst_original = (char *) dst->data;
|
||||
size_t ori_src0_nb[4] = {nb00, nb01, nb02, nb03};
|
||||
|
||||
// src0 is F16, src1 is F32, dst is F32
|
||||
ggml_cann_pool_alloc src0_cast_allocator;
|
||||
if (src0->type == GGML_TYPE_F16) {
|
||||
src0_cast_allocator.alloc(ctx.pool(), sizeof(float) * ggml_nelements(src0));
|
||||
void* src0_cast_buf = src0_cast_allocator.get();
|
||||
|
||||
size_t cast_nb[GGML_MAX_DIMS];
|
||||
cast_nb[0] = sizeof(float_t);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
cast_nb[i] = cast_nb[i - 1] * src0->ne[i - 1];
|
||||
}
|
||||
|
||||
aclTensor* acl_src0_f16 = ggml_cann_create_tensor(src0);
|
||||
aclTensor* acl_cast = ggml_cann_create_tensor(src0_cast_buf,
|
||||
ACL_FLOAT, sizeof(float), src0->ne, cast_nb, 4);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, Cast, acl_src0_f16, ACL_FLOAT, acl_cast);
|
||||
ggml_cann_release_resources(ctx, acl_cast, acl_src0_f16);
|
||||
|
||||
src0_original = (char *) src0_cast_buf;
|
||||
memcpy(ori_src0_nb, cast_nb, sizeof(ori_src0_nb));
|
||||
}
|
||||
|
||||
std::vector<aclTensor*> src0_tensor_vec;
|
||||
std::vector<aclTensor*> src1_tensor_vec;
|
||||
std::vector<aclTensor*> dst_tensor_vec;
|
||||
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
|
||||
for (int64_t id = 0; id < n_ids; id++) {
|
||||
// src0_row [M, D] -> weight && permute
|
||||
int64_t src0_ne[2] = {ne01, ne00};
|
||||
size_t src0_nb[2] = {ori_src0_nb[1], ori_src0_nb[0]};
|
||||
// src1_row [D, 1] -> input
|
||||
int64_t src1_ne[2] = {ne10, 1};
|
||||
size_t src1_nb[2] = {nb10, nb11};
|
||||
// dst_row [M, 1] -> out
|
||||
int64_t dst_ne[2] = {ne0, 1};
|
||||
size_t dst_nb[2] = {nb0, nb1};
|
||||
|
||||
// expert index
|
||||
int32_t i02 = *(int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
|
||||
GGML_ASSERT(i02 >= 0 && i02 < n_as);
|
||||
|
||||
// If B = 1 (broadcast), always use 0; otherwise, use id.
|
||||
int64_t i11 = (ne11 == 1 ? 0 : id);
|
||||
int64_t i12 = iid1;
|
||||
|
||||
int64_t i1 = id;
|
||||
int64_t i2 = i12;
|
||||
|
||||
void* src0_tmp_ptr = src0_original + i02*ori_src0_nb[2];
|
||||
void* src1_tmp_ptr = src1_original + i11*nb11 + i12*nb12;
|
||||
void* dst_tmp_ptr = dst_original + i1*nb1 + i2*nb2;
|
||||
|
||||
aclTensor* acl_src0 = ggml_cann_create_tensor(src0_tmp_ptr,
|
||||
ACL_FLOAT, sizeof(float),
|
||||
src0_ne, src0_nb, 2);
|
||||
aclTensor* acl_src1 = ggml_cann_create_tensor(src1_tmp_ptr,
|
||||
ACL_FLOAT, sizeof(float),
|
||||
src1_ne, src1_nb, 2);
|
||||
aclTensor* acl_dst = ggml_cann_create_tensor(dst_tmp_ptr,
|
||||
ACL_FLOAT, sizeof(float),
|
||||
dst_ne, dst_nb, 2);
|
||||
|
||||
src0_tensor_vec.push_back(acl_src0);
|
||||
src1_tensor_vec.push_back(acl_src1);
|
||||
dst_tensor_vec.push_back(acl_dst);
|
||||
}
|
||||
}
|
||||
|
||||
size_t GROUP_SIZE = 128;
|
||||
// GroupedMatmulV2 required tensor_list.size < 128
|
||||
for (size_t i = 0; i < src0_tensor_vec.size(); i += GROUP_SIZE) {
|
||||
// split and call GroupedMatmulV2
|
||||
size_t end = std::min(i + GROUP_SIZE, src0_tensor_vec.size());
|
||||
std::vector<aclTensor*> src0_tensor_vec_split(src0_tensor_vec.begin() + i, src0_tensor_vec.begin() + end);
|
||||
std::vector<aclTensor*> src1_tensor_vec_split(src1_tensor_vec.begin() + i, src1_tensor_vec.begin() + end);
|
||||
std::vector<aclTensor*> dst_tensor_vec_split(dst_tensor_vec.begin() + i, dst_tensor_vec.begin() + end);
|
||||
|
||||
aclTensorList* src0_tensor_list = aclCreateTensorList(src0_tensor_vec_split.data(), src0_tensor_vec_split.size());
|
||||
aclTensorList* src1_tensor_list = aclCreateTensorList(src1_tensor_vec_split.data(), src1_tensor_vec_split.size());
|
||||
aclTensorList* dst_tensor_list = aclCreateTensorList(dst_tensor_vec_split.data(), dst_tensor_vec_split.size());
|
||||
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, GroupedMatmulV2, src1_tensor_list, src0_tensor_list,
|
||||
nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, -1, dst_tensor_list);
|
||||
|
||||
ggml_cann_release_resources(ctx, src0_tensor_list, src1_tensor_list, dst_tensor_list);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Performs expert-specific matrix multiplication (MoE) with
|
||||
* quantized precision using the CANN backend.
|
||||
*
|
||||
* This function executes a matrix multiplication operation tailored for
|
||||
* Mixture of Experts (MoE) models, where the input tensor is multiplied
|
||||
* with expert-specific quantized weight matrices. It leverages the CANN
|
||||
* backend to perform efficient low-precision computations and stores the
|
||||
* quantized result in the destination tensor `dst`.
|
||||
*
|
||||
* Quantization techniques reduce memory footprint and improve performance
|
||||
* by using lower-bit representations (e.g., int8) instead of floating-point.
|
||||
* This function is designed to work with such formats and may incorporate
|
||||
* optimizations like identity-based fast paths or routing masks for sparse
|
||||
* expert selection.
|
||||
*
|
||||
* @param ctx The context for executing CANN backend operations.
|
||||
* @param dst The destination tensor where the quantized MoE multiplication result
|
||||
* will be stored.
|
||||
*
|
||||
* @note This function assumes quantized data types and is designed for
|
||||
* MoE architectures with potential sparse expert routing.
|
||||
*/
|
||||
static void ggml_cann_mul_mat_id_quant(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
// TODO: Use aclnnGroupedMatMul
|
||||
//dst [M, K, N, 1]
|
||||
ggml_tensor * src0 = dst->src[0]; //src0 [D, M, A, 1]
|
||||
ggml_tensor * src1 = dst->src[1]; //src1 [D, B, N, 1], B = K or B = 1
|
||||
ggml_tensor * ids = dst->src[2]; //ids [K, N]
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
// copy index from npu to cpu
|
||||
int64_t n_as = ne02; // A
|
||||
int64_t n_ids = ids->ne[0]; // K
|
||||
|
||||
std::vector<char> ids_host(ggml_nbytes(ids));
|
||||
ggml_cann_async_memcpy(ctx, ids_host.data(), ids->data, ggml_nbytes(ids),
|
||||
ACL_MEMCPY_DEVICE_TO_HOST);
|
||||
ACL_CHECK(aclrtSynchronizeStream(ctx.stream()));
|
||||
|
||||
char * src0_original = (char *) src0->data;
|
||||
char * src1_original = (char *) src1->data;
|
||||
char * dst_original = (char *) dst->data;
|
||||
|
||||
ggml_tensor src0_row = *src0;
|
||||
ggml_tensor src1_row = *src1;
|
||||
ggml_tensor dst_row = *dst;
|
||||
|
||||
const enum ggml_type type = dst->src[0]->type;
|
||||
float weight_elem_size;
|
||||
if (type == GGML_TYPE_Q4_0) {
|
||||
weight_elem_size = float(sizeof(uint8_t)) / 2;
|
||||
} else if (type == GGML_TYPE_Q8_0) {
|
||||
weight_elem_size = float(sizeof(uint8_t));
|
||||
} else {
|
||||
GGML_ABORT("MUL_MAT_ID only support quant type Q4_0 and Q8_0 ");
|
||||
}
|
||||
|
||||
// src0_row [D, M, 1, 1] weight without permute
|
||||
src0_row.ne[2] = 1;
|
||||
src0_row.ne[3] = 1;
|
||||
src0_row.nb[0] = weight_elem_size;
|
||||
src0_row.nb[1] = weight_elem_size * ne00;
|
||||
src0_row.nb[2] = weight_elem_size * ne00;
|
||||
src0_row.nb[3] = weight_elem_size * ne00;
|
||||
size_t weight_stride = ne00 * ne01 * weight_elem_size;
|
||||
size_t weight_size = weight_stride * ne02 * ne03;
|
||||
|
||||
// scale [D, M, 1, 1] -> scale && permute
|
||||
size_t scale_elem_size = sizeof(uint16_t);
|
||||
size_t scale_stride = src0->ne[1] * src0->ne[0] / QK8_0 * scale_elem_size;
|
||||
|
||||
// src1_row [D, 1, 1, 1] -> input
|
||||
src1_row.ne[1] = 1;
|
||||
src1_row.ne[2] = 1;
|
||||
src1_row.ne[3] = 1;
|
||||
src1_row.nb[2] = nb11;
|
||||
src1_row.nb[3] = nb11;
|
||||
|
||||
// dst_row [M, 1, 1, 1] -> out
|
||||
dst_row.ne[1] = 1;
|
||||
dst_row.ne[2] = 1;
|
||||
dst_row.ne[3] = 1;
|
||||
dst_row.nb[2] = nb1;
|
||||
dst_row.nb[3] = nb1;
|
||||
|
||||
//create weight for one row
|
||||
ggml_cann_pool_alloc weight_allocator(ctx.pool());
|
||||
void* weight_buffer = weight_allocator.alloc(nb02);
|
||||
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
|
||||
for (int64_t id = 0; id < n_ids; id++) {
|
||||
// expert index
|
||||
int32_t i02 = *(int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
|
||||
GGML_ASSERT(i02 >= 0 && i02 < n_as);
|
||||
|
||||
// If B = 1 (broadcast), always use 0; otherwise, use id.
|
||||
int64_t i11 = (ne11 == 1 ? 0 : id);
|
||||
int64_t i12 = iid1;
|
||||
|
||||
int64_t i1 = id;
|
||||
int64_t i2 = i12;
|
||||
|
||||
void* src0_tmp_ptr = src0_original + i02*weight_stride;
|
||||
void* scale_tmp_ptr = src0_original + weight_size + i02*scale_stride;
|
||||
void* src1_tmp_ptr = src1_original + i11*nb11 + i12*nb12;
|
||||
void* dst_tmp_ptr = dst_original + i1*nb1 + i2*nb2;
|
||||
|
||||
// mem cpy
|
||||
ggml_cann_async_memcpy(ctx, weight_buffer, src0_tmp_ptr, weight_stride,
|
||||
ACL_MEMCPY_DEVICE_TO_DEVICE);
|
||||
void* scale_buffer = (char*)weight_buffer + weight_stride;
|
||||
ggml_cann_async_memcpy(ctx, scale_buffer, scale_tmp_ptr, scale_stride,
|
||||
ACL_MEMCPY_DEVICE_TO_DEVICE);
|
||||
|
||||
src0_row.data = weight_buffer;
|
||||
src1_row.data = src1_tmp_ptr;
|
||||
dst_row.data = dst_tmp_ptr;
|
||||
dst_row.src[0] = &src0_row;
|
||||
dst_row.src[1] = &src1_row;
|
||||
|
||||
ggml_cann_mul_mat(ctx, &dst_row);
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
void ggml_cann_mul_mat_id(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
const enum ggml_type type = dst->src[0]->type;
|
||||
switch (type) {
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_F16:
|
||||
ggml_cann_mul_mat_id_fp(ctx, dst);
|
||||
break;
|
||||
case GGML_TYPE_Q4_0:
|
||||
case GGML_TYPE_Q8_0:
|
||||
ggml_cann_mul_mat_id_quant(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("Unsupported type for mul_mat_id");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst){
|
||||
|
||||
ggml_tensor* src0 = dst->src[0]; // q, fp32
|
||||
ggml_tensor* src1 = dst->src[1]; // k, fp16
|
||||
ggml_tensor* src2 = dst->src[2]; // v, fp16
|
||||
ggml_tensor* src3 = dst->src[3]; // mask, fp16
|
||||
|
||||
float maxBias = 0.0f;
|
||||
float scaleValue = 1.0f;
|
||||
float logitSoftcap = 0.0f;
|
||||
memcpy(&scaleValue, (float*)dst->op_params + 0, sizeof(float));
|
||||
memcpy(&maxBias, (float*)dst->op_params + 1, sizeof(float));
|
||||
memcpy(&logitSoftcap, (float*)dst->op_params + 2, sizeof(float));
|
||||
|
||||
if(logitSoftcap == 0.0f){
|
||||
size_t faElemSize = sizeof(uint16_t);
|
||||
auto faDataType = ACL_FLOAT16; //ACL_BF16;
|
||||
|
||||
aclTensor* acl_src0_f16_tensor = nullptr;
|
||||
aclTensor* acl_src1_f16_tensor = nullptr;
|
||||
aclTensor* acl_src2_f16_tensor = nullptr;
|
||||
aclTensor* acl_dst_f16_tensor = nullptr;
|
||||
|
||||
// Step 1: cast the src0 (Query) to fp16 if needed
|
||||
ggml_cann_pool_alloc src0_f16_allocator(ctx.pool());
|
||||
void* src0_f16_buffer = nullptr;
|
||||
|
||||
if(ggml_cann_type_mapping(src0->type) != faDataType){
|
||||
aclTensor* acl_src0_f32_tensor = ggml_cann_create_tensor(src0);
|
||||
src0_f16_buffer = src0_f16_allocator.alloc(
|
||||
ggml_nelements(src0) * faElemSize);
|
||||
|
||||
int64_t* src0_f16_ne = src0->ne;
|
||||
size_t src0_f16_nb[GGML_MAX_DIMS];
|
||||
src0_f16_nb[0] = sizeof(uint16_t);
|
||||
for(int i = 1; i < GGML_MAX_DIMS; ++i){
|
||||
src0_f16_nb[i] = src0_f16_nb[i - 1] * src0_f16_ne[i - 1];
|
||||
}
|
||||
|
||||
acl_src0_f16_tensor = ggml_cann_create_tensor(
|
||||
src0_f16_buffer, faDataType, faElemSize,
|
||||
src0_f16_ne, src0_f16_nb, GGML_MAX_DIMS
|
||||
);
|
||||
aclnn_cast(ctx, acl_src0_f32_tensor, acl_src0_f16_tensor, faDataType);
|
||||
ggml_cann_release_resources(ctx, acl_src0_f32_tensor);
|
||||
}else{
|
||||
acl_src0_f16_tensor = ggml_cann_create_tensor(src0);
|
||||
}
|
||||
|
||||
// Step 2: create the acl tensors for src1 (Key), src2 (Value),
|
||||
// and the direct output from FusedInferAttention
|
||||
|
||||
acl_src1_f16_tensor = ggml_cann_create_tensor(src1);
|
||||
acl_src2_f16_tensor = ggml_cann_create_tensor(src2);
|
||||
|
||||
ggml_cann_pool_alloc out_f16_allocator(ctx.pool());
|
||||
void* out_f16_buffer = out_f16_allocator.alloc(
|
||||
ggml_nelements(dst) * faElemSize);
|
||||
|
||||
int64_t* out_f16_ne = src0->ne;
|
||||
size_t out_f16_nb[GGML_MAX_DIMS];
|
||||
out_f16_nb[0] = faElemSize;
|
||||
for(int i = 1; i < GGML_MAX_DIMS; ++i){
|
||||
out_f16_nb[i] = out_f16_nb[i - 1] * out_f16_ne[i - 1];
|
||||
}
|
||||
|
||||
acl_dst_f16_tensor = ggml_cann_create_tensor(
|
||||
out_f16_buffer, faDataType, faElemSize,
|
||||
out_f16_ne, out_f16_nb, GGML_MAX_DIMS
|
||||
);
|
||||
|
||||
// Step 3: create the PSEShift tensor if needed
|
||||
// this tensor is considered as mask (f16) in the llama.cpp
|
||||
|
||||
aclTensor* bcast_pse_tensor = nullptr;
|
||||
int64_t bcast_pse_ne[GGML_MAX_DIMS];
|
||||
size_t bcast_pse_nb[GGML_MAX_DIMS];
|
||||
ggml_cann_pool_alloc bcast_pse_allocator(ctx.pool());
|
||||
void* bcast_pse_buffer = nullptr;
|
||||
|
||||
if(src3 != nullptr){
|
||||
bcast_pse_buffer = bcast_pse_allocator.alloc(
|
||||
ggml_nelements(src3) * src0->ne[2] * sizeof(uint16_t));
|
||||
|
||||
if(src0->ne[1] > 1){
|
||||
// Case 1: broadcast pse for prefill stage with multiple head
|
||||
aclTensor* acl_mask_f16_tensor = ggml_cann_create_tensor(src3);
|
||||
bcast_pse_ne[0] = src3->ne[0];
|
||||
bcast_pse_ne[1] = src3->ne[1];
|
||||
bcast_pse_ne[2] = src0->ne[2];
|
||||
bcast_pse_ne[3] = src3->ne[3];
|
||||
|
||||
bcast_pse_nb[0] = sizeof(uint16_t);
|
||||
for(int i = 1; i < GGML_MAX_DIMS; ++i){
|
||||
bcast_pse_nb[i] = bcast_pse_nb[i - 1] * bcast_pse_ne[i - 1];
|
||||
}
|
||||
|
||||
bcast_pse_tensor = ggml_cann_create_tensor(
|
||||
bcast_pse_buffer, ACL_FLOAT16, sizeof(uint16_t),
|
||||
bcast_pse_ne, bcast_pse_nb, GGML_MAX_DIMS);
|
||||
|
||||
int64_t repeats[] = {1, src0->ne[2], 1, 1};
|
||||
aclnn_repeat(ctx, acl_mask_f16_tensor, bcast_pse_tensor, repeats);
|
||||
|
||||
ggml_cann_release_resources(ctx, acl_mask_f16_tensor);
|
||||
}else{
|
||||
// Case 2: trunc the first row and broadcast pse for decode stage with multiple head
|
||||
int64_t trunc_pse_ne[GGML_MAX_DIMS] = {src3->ne[0], src0->ne[1], src3->ne[2], src3->ne[3]};
|
||||
size_t* trunc_pse_nb = src3->nb;
|
||||
|
||||
aclTensor* acl_mask_f16_trunc_tensor = ggml_cann_create_tensor(
|
||||
src3->data, ACL_FLOAT16, sizeof(uint16_t),
|
||||
trunc_pse_ne, trunc_pse_nb, GGML_MAX_DIMS);
|
||||
|
||||
bcast_pse_ne[0] = src3->ne[0];
|
||||
bcast_pse_ne[1] = src0->ne[1];
|
||||
bcast_pse_ne[2] = src0->ne[2];
|
||||
bcast_pse_ne[3] = src3->ne[3];
|
||||
|
||||
bcast_pse_nb[0] = sizeof(uint16_t);
|
||||
for(int i = 1; i < GGML_MAX_DIMS; ++i){
|
||||
bcast_pse_nb[i] = bcast_pse_nb[i - 1] * bcast_pse_ne[i - 1];
|
||||
}
|
||||
|
||||
bcast_pse_tensor = ggml_cann_create_tensor(
|
||||
bcast_pse_buffer, ACL_FLOAT16, sizeof(uint16_t),
|
||||
bcast_pse_ne, bcast_pse_nb, GGML_MAX_DIMS);
|
||||
|
||||
int64_t repeats[] = {1, src0->ne[2], 1, 1};
|
||||
aclnn_repeat(ctx, acl_mask_f16_trunc_tensor, bcast_pse_tensor, repeats);
|
||||
|
||||
ggml_cann_release_resources(ctx, acl_mask_f16_trunc_tensor);
|
||||
}
|
||||
|
||||
// Compute the slope if needed. Derived from ggml_cann_softmax().
|
||||
if(maxBias != 0.0f){
|
||||
// alibi
|
||||
const int64_t ne2_ne3 = src0->ne[2] * src0->ne[3];
|
||||
const int64_t n_head = src0->ne[2];
|
||||
const int n_heads_log2_floor = 1u << (uint32_t)floor(log2(n_head));
|
||||
float m0 = powf(2.0f, -(maxBias) / n_heads_log2_floor);
|
||||
float m1 = powf(2.0f, -(maxBias / 2.0f) / n_heads_log2_floor);
|
||||
// init arange
|
||||
ggml_cann_pool_alloc arange_allocator(ctx.pool(),
|
||||
ne2_ne3 * faElemSize);
|
||||
void* tmp_arange_buffer = arange_allocator.get();
|
||||
|
||||
// arange1: [1, ..., n_heads_log2_floor+1)
|
||||
float start = 1;
|
||||
float stop = n_heads_log2_floor + 1;
|
||||
float step = 1;
|
||||
int64_t n_elements_arange = n_heads_log2_floor;
|
||||
|
||||
int64_t tmp_arange1_ne[] = {n_heads_log2_floor};
|
||||
size_t tmp_arange1_nb[] = {faElemSize};
|
||||
aclTensor* tmp_arange1_tensor = ggml_cann_create_tensor(
|
||||
tmp_arange_buffer, faDataType, faElemSize,
|
||||
tmp_arange1_ne, tmp_arange1_nb,
|
||||
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
|
||||
|
||||
aclnn_arange(ctx, tmp_arange1_tensor, start, stop, step, n_elements_arange);
|
||||
|
||||
aclTensor* tmp_arange2_tensor = nullptr;
|
||||
if (n_heads_log2_floor < ne2_ne3) {
|
||||
// arange2: [1, ..., 2 * (k - n_heads_log2_floor) + 1)
|
||||
start = 1;
|
||||
stop = 2 * (ne2_ne3 - n_heads_log2_floor) + 1;
|
||||
step = 2;
|
||||
n_elements_arange = ne2_ne3 - n_heads_log2_floor;
|
||||
int64_t tmp_arange2_ne[] = {ne2_ne3 - n_heads_log2_floor};
|
||||
size_t tmp_arange2_nb[] = {faElemSize};
|
||||
|
||||
aclTensor* tmp_arange2_tensor = ggml_cann_create_tensor(
|
||||
(char*)tmp_arange_buffer +
|
||||
n_heads_log2_floor * faElemSize,
|
||||
faDataType, faElemSize,
|
||||
tmp_arange2_ne, tmp_arange2_nb, GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
|
||||
aclnn_arange(ctx, tmp_arange2_tensor, start, stop, step,
|
||||
n_elements_arange);
|
||||
}
|
||||
|
||||
// init mk_base
|
||||
ggml_cann_pool_alloc mk_base_allocator(ctx.pool(),
|
||||
ne2_ne3 * faElemSize);
|
||||
void* tmp_mk_base_buffer = mk_base_allocator.get();
|
||||
int64_t tmp_mk_base1_ne[] = {n_heads_log2_floor};
|
||||
size_t tmp_mk_base1_nb[] = {faElemSize};
|
||||
aclTensor* tmp_mk_base1_tensor = ggml_cann_create_tensor(
|
||||
tmp_mk_base_buffer, faDataType, faElemSize,
|
||||
tmp_mk_base1_ne, tmp_mk_base1_nb,
|
||||
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
|
||||
|
||||
aclnn_fill_scalar(ctx, m0, tmp_mk_base1_tensor);
|
||||
|
||||
aclTensor* tmp_mk_base2_tensor = nullptr;
|
||||
if (n_heads_log2_floor < ne2_ne3) {
|
||||
int64_t tmp_mk_base2_ne[] = {ne2_ne3 - n_heads_log2_floor};
|
||||
size_t tmp_mk_base2_nb[] = {faElemSize};
|
||||
aclTensor* tmp_mk_base2_tensor = ggml_cann_create_tensor(
|
||||
(char*)tmp_mk_base_buffer +
|
||||
n_heads_log2_floor * faElemSize,
|
||||
faDataType, faElemSize,
|
||||
tmp_mk_base2_ne, tmp_mk_base2_nb, GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
|
||||
aclnn_fill_scalar(ctx, m1, tmp_mk_base2_tensor);
|
||||
}
|
||||
|
||||
// init mk
|
||||
int64_t tmp_mk_base_ne[] = {ne2_ne3};
|
||||
size_t tmp_mk_base_nb[] = {faElemSize};
|
||||
aclTensor* tmp_mk_base_tensor = ggml_cann_create_tensor(
|
||||
tmp_mk_base_buffer, faDataType, faElemSize,
|
||||
tmp_mk_base_ne, tmp_mk_base_nb,
|
||||
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
|
||||
aclTensor* tmp_arange_tensor = ggml_cann_create_tensor(
|
||||
tmp_arange_buffer, faDataType, faElemSize,
|
||||
tmp_mk_base_ne, tmp_mk_base_nb,
|
||||
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
|
||||
aclnn_pow_tensor_tensor(ctx, tmp_mk_base_tensor, tmp_arange_tensor);
|
||||
|
||||
// reshape mk
|
||||
int64_t tmp_mk_ne[] = {1, 1, src0->ne[2], src0->ne[3]};
|
||||
size_t tmp_mk_nb[GGML_MAX_DIMS];
|
||||
tmp_mk_nb[0] = faElemSize;
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
tmp_mk_nb[i] = tmp_mk_nb[i - 1] * tmp_mk_ne[i - 1];
|
||||
}
|
||||
aclTensor* tmp_mk_tensor = ggml_cann_create_tensor(
|
||||
tmp_mk_base_buffer, faDataType, faElemSize,
|
||||
tmp_mk_ne, tmp_mk_nb, GGML_MAX_DIMS,
|
||||
ACL_FORMAT_ND);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceMul, bcast_pse_tensor, tmp_mk_tensor);
|
||||
|
||||
ggml_cann_release_resources(ctx, tmp_arange1_tensor, tmp_arange2_tensor,
|
||||
tmp_mk_base1_tensor, tmp_mk_base2_tensor, tmp_mk_base_tensor,
|
||||
tmp_arange_tensor, tmp_mk_tensor);
|
||||
}
|
||||
}
|
||||
|
||||
// Step 4: set the inputs for FusedInferAttention.
|
||||
int kvTensorNum = 1;
|
||||
aclTensor* acl_q_tensor = acl_src0_f16_tensor;
|
||||
aclTensor* acl_k_tensors[] = {acl_src1_f16_tensor};
|
||||
aclTensor* acl_v_tensors[] = {acl_src2_f16_tensor};
|
||||
auto acl_k_tensor_list = aclCreateTensorList(acl_k_tensors, kvTensorNum);
|
||||
auto acl_v_tensor_list = aclCreateTensorList(acl_v_tensors, kvTensorNum);
|
||||
|
||||
int64_t numHeads = src0->ne[2]; // N
|
||||
int64_t numKeyValueHeads = src1->ne[2];
|
||||
// double scaleValue = 1 / sqrt(src0->ne[0]); // 1/sqrt(d)
|
||||
int64_t preTokens = 65535;
|
||||
int64_t nextTokens = 65535;
|
||||
char layout[5] = {'B', 'N', 'S', 'D', 0};
|
||||
int64_t sparseMode = 0;
|
||||
int64_t innerPrecise = (src0->ne[1] == 1) ? 0 : 2;
|
||||
int64_t blockSize = 0;
|
||||
int64_t antiquantMode = 0;
|
||||
bool softmaxLseFlag = false;
|
||||
int64_t keyAntiquantMode = 0;
|
||||
int64_t valueAntiquantMode = 0;
|
||||
|
||||
// Step 5: launch the FusedInferAttentionScoreV2 kernel.
|
||||
// Refer to https://gitee.com/ascend/cann-ops-adv/blob/master/docs/FusedInferAttentionScoreV2.md
|
||||
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, FusedInferAttentionScoreV2,
|
||||
acl_q_tensor, acl_k_tensor_list, acl_v_tensor_list, // q, k, v
|
||||
bcast_pse_tensor, nullptr, // pse, mask
|
||||
nullptr, nullptr, // actSeqLen, actSeqLenkv
|
||||
nullptr, nullptr, // deqScale1, quantScale1
|
||||
nullptr, nullptr, nullptr, // deqScale2, quantScale2, quantOffset2
|
||||
nullptr, nullptr, // antiquantScale, antiquantOffset
|
||||
nullptr, // blockTable
|
||||
nullptr, nullptr, // qPadSize, kvPadSize
|
||||
nullptr, nullptr, // kAntiquantScale, kAntiQuantOffset
|
||||
nullptr, nullptr, // vAntiquantScale, vAntiQuantOffset
|
||||
nullptr, nullptr, nullptr, // kSharedPrefix, vSharedPrefix, actSharedLen
|
||||
numHeads, scaleValue, // heads, scaleValue
|
||||
preTokens, nextTokens, // preTokens, nextTokens
|
||||
layout, // inputLayout
|
||||
numKeyValueHeads, // numKVHeads
|
||||
sparseMode, innerPrecise, // sparseMode, innerPrecise
|
||||
blockSize, antiquantMode, // blockSize, antiquantMode
|
||||
softmaxLseFlag, // softmaxLseFlag
|
||||
keyAntiquantMode, valueAntiquantMode, // keyAntiqMode, valueAntiqMode
|
||||
acl_dst_f16_tensor, // attentionOut
|
||||
nullptr // softmaxLse
|
||||
);
|
||||
|
||||
// Step 6: post-processing, permute and cast to f32
|
||||
|
||||
int64_t new_dim[] = {0, 2, 1, 3};
|
||||
aclTensor* acl_dst_tensor = ggml_cann_create_tensor(dst);
|
||||
|
||||
if(ggml_cann_type_mapping(dst->type) != faDataType){
|
||||
ggml_cann_pool_alloc perm_out_f16_allocator(ctx.pool());
|
||||
perm_out_f16_allocator.alloc(ggml_nelements(dst) * faElemSize);
|
||||
void* perm_out_f16_buffer = perm_out_f16_allocator.get();
|
||||
|
||||
int64_t* perm_out_f16_ne = dst->ne;
|
||||
size_t perm_out_f16_nb[GGML_MAX_DIMS];
|
||||
perm_out_f16_nb[0] = faElemSize;
|
||||
for(int i = 1; i < GGML_MAX_DIMS; ++i){
|
||||
perm_out_f16_nb[i] = perm_out_f16_nb[i - 1] * perm_out_f16_ne[i - 1];
|
||||
}
|
||||
aclTensor* acl_perm_out_f16_tensor = ggml_cann_create_tensor(
|
||||
perm_out_f16_buffer, faDataType, faElemSize,
|
||||
perm_out_f16_ne, perm_out_f16_nb, GGML_MAX_DIMS);
|
||||
aclnn_permute(ctx, acl_dst_f16_tensor, acl_perm_out_f16_tensor, new_dim, GGML_MAX_DIMS);
|
||||
aclnn_cast(ctx,
|
||||
acl_perm_out_f16_tensor, acl_dst_tensor, ggml_cann_type_mapping(dst->type));
|
||||
ggml_cann_release_resources(ctx, acl_perm_out_f16_tensor);
|
||||
}else{
|
||||
// only need to permute
|
||||
aclnn_permute(ctx, acl_dst_f16_tensor, acl_dst_tensor, new_dim, GGML_MAX_DIMS);
|
||||
}
|
||||
ggml_cann_release_resources(ctx, acl_src0_f16_tensor,
|
||||
acl_src1_f16_tensor,
|
||||
acl_src2_f16_tensor,
|
||||
acl_dst_f16_tensor,
|
||||
acl_dst_tensor);
|
||||
if(src3 != nullptr){
|
||||
ggml_cann_release_resources(ctx, bcast_pse_tensor);
|
||||
}
|
||||
}else{
|
||||
GGML_ABORT("Function is not implemented.");
|
||||
}
|
||||
}
|
||||
|
||||
42
ggml/src/ggml-cann/aclnn_ops.h
Normal file → Executable file
42
ggml/src/ggml-cann/aclnn_ops.h
Normal file → Executable file
@@ -714,6 +714,21 @@ void ggml_cann_count_equal(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
*/
|
||||
void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Performs the Flash Attention extended operator using the CANN backend.
|
||||
*
|
||||
* @details This function implements the memory-efficient Flash Attention algorithm
|
||||
* for computing scaled dot-product attention with hardware acceleration.
|
||||
* The result is stored in the destination tensor `dst`.
|
||||
*
|
||||
* This operation is accelerated using the CANN backend to improve runtime performance.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the result will be stored.
|
||||
* dst->op is expected to be `GGML_OP_FLASH_ATTN_EXT`.
|
||||
*/
|
||||
void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/*
|
||||
* @brief A generic wrapper for ACL resources with custom deleter support.
|
||||
*/
|
||||
@@ -978,6 +993,33 @@ inline void ggml_cann_async_memset(ggml_backend_cann_context & ctx, void * buffe
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Performs sparse expert-based matrix multiplication using the CANN backend.
|
||||
*
|
||||
* @details This function implements a MoE-style batched matrix multiplication, where each input token
|
||||
* is routed to one or more experts, and each expert corresponds to a specific [D, M] weight matrix
|
||||
* in the source tensor `src0`. The routing indices are provided via the `ids` tensor.
|
||||
*
|
||||
* For each token (from `src1`), the function selects the corresponding expert(s) as specified by `ids`,
|
||||
* performs the matrix multiplication with the selected expert's weight submatrix (from `src0`),
|
||||
* and stores the results in `dst`. This operation is optimized and executed on the CANN backend.
|
||||
*
|
||||
* Dimensions:
|
||||
* - src0: [D, M, A, 1], where A is the number of experts
|
||||
* - src1: [D, B, N, 1], where N is batch size and B is the slot count per sample
|
||||
* - ids : [K, N], where K is the number of experts each token is routed to
|
||||
* - dst : [M, K, N, 1], output tensor storing the result of expert × token multiplication
|
||||
*
|
||||
* The function handles two main modes:
|
||||
* - If `ne12 == 1`, a simpler per-token loop is used.
|
||||
* - TODO: If `ne12 > 1`, grouped multiplication and memory copying is used for efficiency.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the expert-weighted token outputs are stored.
|
||||
* Expected to be of shape [M, K, N, 1].
|
||||
*/
|
||||
void ggml_cann_mul_mat_id(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Applies a element-wise operation to two input tensors using the CANN
|
||||
* backend.
|
||||
|
||||
0
ggml/src/ggml-cann/common.h
Normal file → Executable file
0
ggml/src/ggml-cann/common.h
Normal file → Executable file
56
ggml/src/ggml-cann/ggml-cann.cpp
Normal file → Executable file
56
ggml/src/ggml-cann/ggml-cann.cpp
Normal file → Executable file
@@ -36,6 +36,7 @@
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-cann/aclnn_ops.h"
|
||||
#include "ggml-cann/common.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#define GGML_COMMON_DECL_C
|
||||
|
||||
@@ -1672,7 +1673,8 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
|
||||
ggml_cann_mul_mat(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
return false;
|
||||
ggml_cann_mul_mat_id(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SCALE:
|
||||
ggml_cann_scale(ctx, dst);
|
||||
break;
|
||||
@@ -1747,6 +1749,9 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
|
||||
case GGML_OP_COUNT_EQUAL:
|
||||
ggml_cann_count_equal(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_FLASH_ATTN_EXT:
|
||||
ggml_cann_flash_attn_ext(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
@@ -2030,7 +2035,22 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
}
|
||||
}
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
return false;
|
||||
switch (op->src[0]->type) {
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_F32:
|
||||
return true;
|
||||
case GGML_TYPE_Q8_0:
|
||||
case GGML_TYPE_Q4_0:
|
||||
#ifdef ASCEND_310P
|
||||
// Q4 && Q8 per group is not suppor on 310p device
|
||||
return false;
|
||||
#endif
|
||||
// only support contiguous for quantized types.
|
||||
return ggml_is_contiguous(op->src[0]) &&
|
||||
ggml_is_contiguous(op->src[1]);
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
// embedding
|
||||
case GGML_OP_GET_ROWS: {
|
||||
switch (op->src[0]->type) {
|
||||
@@ -2161,6 +2181,38 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
case GGML_OP_PAD_REFLECT_1D:
|
||||
case GGML_OP_COUNT_EQUAL:
|
||||
return true;
|
||||
case GGML_OP_FLASH_ATTN_EXT:{
|
||||
// derived from [ggml-cuda.cu]
|
||||
if(op->src[1]->type != GGML_TYPE_F16 || op->src[2]->type != GGML_TYPE_F16){
|
||||
return false;
|
||||
}
|
||||
if(op->src[1]->type != GGML_TYPE_F16 && op->src[1]->type != GGML_TYPE_F32 && op->src[1]->type != GGML_TYPE_BF16){
|
||||
return false;
|
||||
}
|
||||
if(op->type != GGML_TYPE_F16 && op->type != GGML_TYPE_F32 && op->type != GGML_TYPE_BF16){
|
||||
return false;
|
||||
}
|
||||
if (op->src[1]->ne[0] != op->src[2]->ne[0]) {
|
||||
// different head sizes of K and V are not supported yet
|
||||
return false;
|
||||
}
|
||||
if (op->src[0]->ne[0] == 192) {
|
||||
return false;
|
||||
}
|
||||
if (op->src[0]->ne[0] == 576) {
|
||||
// DeepSeek MLA
|
||||
return false;
|
||||
}
|
||||
if (op->src[0]->ne[3] != 1) {
|
||||
return false;
|
||||
}
|
||||
float logitSoftcap = 0.0f;
|
||||
memcpy(&logitSoftcap, (float*)op->op_params + 2, sizeof(float));
|
||||
if(logitSoftcap != 0.0f) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -82,13 +82,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
target_link_libraries(${GGML_CPU_NAME} PUBLIC memkind)
|
||||
endif()
|
||||
|
||||
if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR
|
||||
CMAKE_GENERATOR_PLATFORM_LWR STREQUAL "arm64" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(aarch64|arm.*|ARM64)$"))
|
||||
|
||||
if (GGML_SYSTEM_ARCH STREQUAL "ARM")
|
||||
message(STATUS "ARM detected")
|
||||
|
||||
if (MSVC AND NOT CMAKE_C_COMPILER_ID STREQUAL "Clang")
|
||||
message(FATAL_ERROR "MSVC is not supported for ARM, use clang")
|
||||
else()
|
||||
@@ -170,12 +165,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
endforeach()
|
||||
endif()
|
||||
endif()
|
||||
elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64|amd64)$"))
|
||||
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "x86")
|
||||
message(STATUS "x86 detected")
|
||||
|
||||
if (MSVC)
|
||||
# instruction set detection for MSVC only
|
||||
if (GGML_NATIVE)
|
||||
@@ -299,7 +290,26 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
elseif ("${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "ppc64le " OR "${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "powerpc ")
|
||||
|
||||
if (GGML_BACKEND_DL)
|
||||
if (GGML_NATIVE)
|
||||
# the feature check relies on ARCH_DEFINITIONS, but it is not set with GGML_NATIVE
|
||||
message(FATAL_ERROR "GGML_NATIVE is not compatible with GGML_BACKEND_DL, consider using GGML_CPU_ALL_VARIANTS")
|
||||
endif()
|
||||
|
||||
# The feature detection code is compiled as a separate target so that
|
||||
# it can be built without the architecture flags
|
||||
# Since multiple variants of the CPU backend may be included in the same
|
||||
# build, using set_source_files_properties() to set the arch flags is not possible
|
||||
set(GGML_CPU_FEATS_NAME ${GGML_CPU_NAME}-feats)
|
||||
add_library(${GGML_CPU_FEATS_NAME} OBJECT ggml-cpu/cpu-feats-x86.cpp)
|
||||
target_include_directories(${GGML_CPU_FEATS_NAME} PRIVATE . .. ../include)
|
||||
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE ${ARCH_DEFINITIONS})
|
||||
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE GGML_BACKEND_DL GGML_BACKEND_BUILD GGML_BACKEND_SHARED)
|
||||
set_target_properties(${GGML_CPU_FEATS_NAME} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
target_link_libraries(${GGML_CPU_NAME} PRIVATE ${GGML_CPU_FEATS_NAME})
|
||||
endif()
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "PowerPC")
|
||||
message(STATUS "PowerPC detected")
|
||||
if (GGML_NATIVE)
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64")
|
||||
@@ -325,9 +335,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
list(APPEND ARCH_FLAGS -mcpu=${GGML_CPU_POWERPC_CPUTYPE})
|
||||
endif()
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "loongarch64")
|
||||
message(STATUS "loongarch64 detected")
|
||||
|
||||
list(APPEND ARCH_FLAGS -march=loongarch64)
|
||||
if (GGML_LASX)
|
||||
list(APPEND ARCH_FLAGS -mlasx)
|
||||
@@ -335,16 +344,18 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
if (GGML_LSX)
|
||||
list(APPEND ARCH_FLAGS -mlsx)
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "riscv64")
|
||||
message(STATUS "RISC-V detected")
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "riscv64")
|
||||
message(STATUS "riscv64 detected")
|
||||
if (GGML_RVV)
|
||||
if (GGML_RV_ZFH)
|
||||
list(APPEND ARCH_FLAGS -march=rv64gcv_zfhmin -DGGML_RV_ZFH -mabi=lp64d)
|
||||
if (GGML_XTHEADVECTOR)
|
||||
list(APPEND ARCH_FLAGS -march=rv64gc_xtheadvector -mabi=lp64d)
|
||||
elseif (GGML_RV_ZFH)
|
||||
list(APPEND ARCH_FLAGS -march=rv64gcv_zfhmin -mabi=lp64d)
|
||||
else()
|
||||
list(APPEND ARCH_FLAGS -march=rv64gcv -mabi=lp64d)
|
||||
endif()
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "s390x")
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "s390x")
|
||||
message(STATUS "s390x detected")
|
||||
file(READ "/proc/cpuinfo" CPUINFO_CONTENTS)
|
||||
string(REGEX REPLACE "machine[ \t\r\n]*=[ \t\r\n]*([0-9]+)" "\\1" S390X_M ${CPUINFO_CONTENTS})
|
||||
@@ -385,9 +396,9 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
|
||||
# Fetch KleidiAI sources:
|
||||
include(FetchContent)
|
||||
set(KLEIDIAI_COMMIT_TAG "v1.5.0")
|
||||
set(KLEIDIAI_COMMIT_TAG "v1.6.0")
|
||||
set(KLEIDIAI_DOWNLOAD_URL "https://github.com/ARM-software/kleidiai/archive/refs/tags/${KLEIDIAI_COMMIT_TAG}.tar.gz")
|
||||
set(KLEIDIAI_ARCHIVE_MD5 "ea22e1aefb800e9bc8c74d91633cc58e")
|
||||
set(KLEIDIAI_ARCHIVE_MD5 "75b4ad68f25ab673dcc01065e5a0b05f")
|
||||
|
||||
if (POLICY CMP0135)
|
||||
cmake_policy(SET CMP0135 NEW)
|
||||
@@ -428,6 +439,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
${KLEIDIAI_SRC}/kai/ukernels/
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_fp32_bf16p_bf16p/
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/)
|
||||
|
||||
set(ARCH_FLAGS_TEMP "${ARCH_FLAGS}")
|
||||
@@ -438,17 +450,19 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
string(FIND "${ARCH_FLAGS_TEMP}" "+i8mm" I8MM_ENABLED)
|
||||
string(FIND "${ARCH_FLAGS_TEMP}" "+sme" SME_ENABLED)
|
||||
|
||||
set(PRIVATE_ARCH_FLAGS ${ARCH_FLAGS})
|
||||
set(PRIVATE_ARCH_FLAGS ${ARCH_FLAGS_TEMP})
|
||||
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32_neon.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32_neon.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.c)
|
||||
|
||||
if (NOT DOTPROD_ENABLED MATCHES -1)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod.c)
|
||||
endif()
|
||||
|
||||
if (NOT I8MM_ENABLED MATCHES -1)
|
||||
@@ -456,9 +470,13 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
endif()
|
||||
|
||||
if (NOT SME_ENABLED MATCHES -1)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.c)
|
||||
set(PRIVATE_ARCH_FLAGS "${PRIVATE_ARCH_FLAGS}+sve+sve2")
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_fp32_bf16p_bf16p/kai_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_pack_bf16p2vlx2_f32_sme.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.c)
|
||||
set(PRIVATE_ARCH_FLAGS "-fno-tree-vectorize;${PRIVATE_ARCH_FLAGS}+sve+sve2")
|
||||
endif()
|
||||
|
||||
set_source_files_properties(${GGML_KLEIDIAI_SOURCES} PROPERTIES COMPILE_OPTIONS "${PRIVATE_ARCH_FLAGS}")
|
||||
@@ -470,25 +488,6 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
target_compile_options(${GGML_CPU_NAME} PRIVATE ${ARCH_FLAGS})
|
||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE ${ARCH_DEFINITIONS})
|
||||
|
||||
if (GGML_BACKEND_DL)
|
||||
if (GGML_NATIVE)
|
||||
# the feature check relies on ARCH_DEFINITIONS, but it is not set with GGML_NATIVE
|
||||
message(FATAL_ERROR "GGML_NATIVE is not compatible with GGML_BACKEND_DL, consider using GGML_CPU_ALL_VARIANTS")
|
||||
endif()
|
||||
|
||||
# The feature detection code is compiled as a separate target so that
|
||||
# it can be built without the architecture flags
|
||||
# Since multiple variants of the CPU backend may be included in the same
|
||||
# build, using set_source_files_properties() to set the arch flags is not possible
|
||||
set(GGML_CPU_FEATS_NAME ${GGML_CPU_NAME}-feats)
|
||||
add_library(${GGML_CPU_FEATS_NAME} OBJECT ggml-cpu/cpu-feats-x86.cpp)
|
||||
target_include_directories(${GGML_CPU_FEATS_NAME} PRIVATE . .. ../include)
|
||||
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE ${ARCH_DEFINITIONS})
|
||||
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE GGML_BACKEND_DL GGML_BACKEND_BUILD GGML_BACKEND_SHARED)
|
||||
set_target_properties(${GGML_CPU_FEATS_NAME} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
target_link_libraries(${GGML_CPU_NAME} PRIVATE ${GGML_CPU_FEATS_NAME})
|
||||
endif()
|
||||
|
||||
if (EMSCRIPTEN)
|
||||
set_target_properties(${GGML_CPU_NAME} PROPERTIES COMPILE_FLAGS "-msimd128")
|
||||
endif()
|
||||
|
||||
@@ -1191,7 +1191,7 @@ static void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, c
|
||||
}
|
||||
}
|
||||
return;
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
#elif defined __riscv_v
|
||||
if (__riscv_vlenb() >= QK4_0) {
|
||||
const size_t vl = QK4_0;
|
||||
|
||||
@@ -3783,7 +3783,7 @@ static void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, c
|
||||
}
|
||||
return;
|
||||
}
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
#elif defined __riscv_v
|
||||
if (__riscv_vlenb() >= QK4_0) {
|
||||
const size_t vl = QK4_0;
|
||||
|
||||
|
||||
@@ -320,21 +320,17 @@ inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b)
|
||||
|
||||
#ifdef __wasm_simd128__
|
||||
#include <wasm_simd128.h>
|
||||
#else
|
||||
#endif
|
||||
|
||||
#ifdef __POWER9_VECTOR__
|
||||
#include <altivec.h>
|
||||
#else
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
#include <intrin.h>
|
||||
#else
|
||||
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) || defined(__SSE__)
|
||||
#if !defined(__riscv)
|
||||
#elif defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) || defined(__SSE__)
|
||||
#include <immintrin.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef __riscv_v_intrinsic
|
||||
#include <riscv_vector.h>
|
||||
|
||||
@@ -883,7 +883,7 @@ void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
|
||||
_mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
|
||||
#endif
|
||||
}
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
#elif defined(__riscv_v)
|
||||
|
||||
size_t vl = QK8_0;
|
||||
|
||||
@@ -1221,7 +1221,7 @@ void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
|
||||
_mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
|
||||
#endif
|
||||
}
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
#elif defined(__riscv_v)
|
||||
|
||||
size_t vl = QK8_1;
|
||||
|
||||
@@ -2384,7 +2384,7 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
}
|
||||
|
||||
sumf = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
#elif defined(__riscv_v)
|
||||
size_t vl = qk / 2;
|
||||
|
||||
for (; ib < nb; ++ib) {
|
||||
@@ -2774,7 +2774,7 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
}
|
||||
|
||||
sumf = hsum_float_8(acc) + summs;
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
#elif defined(__riscv_v)
|
||||
size_t vl = qk / 2;
|
||||
|
||||
for (; ib < nb; ++ib) {
|
||||
@@ -3121,7 +3121,7 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
}
|
||||
|
||||
sumf = hsum_float_8(acc);
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
#elif defined(__riscv_v)
|
||||
size_t vl;
|
||||
size_t vlenb = __riscv_vlenb();
|
||||
|
||||
@@ -3460,7 +3460,7 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
}
|
||||
|
||||
sumf = hsum_float_8(acc) + summs;
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
#elif defined(__riscv_v)
|
||||
size_t vl;
|
||||
size_t vlenb = __riscv_vlenb();
|
||||
|
||||
@@ -3897,7 +3897,7 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
}
|
||||
|
||||
sumf = hsum_float_8(accum);
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
#elif defined(__riscv_v)
|
||||
size_t vl = qk;
|
||||
|
||||
for (; ib < nb; ++ib) {
|
||||
@@ -5100,14 +5100,111 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
*s = sumf;
|
||||
|
||||
#elif defined __riscv_v_intrinsic
|
||||
#elif defined __riscv_xtheadvector
|
||||
|
||||
float sumf = 0;
|
||||
uint8_t atmp[16];
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * q2 = x[i].qs;
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * sc = x[i].scales;
|
||||
const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
|
||||
uint8_t *patmp = atmp;
|
||||
int vsums;
|
||||
int tmp;
|
||||
__asm__ __volatile__(
|
||||
"th.vsetvli zero, %[vl16], e8, m1\n\t"
|
||||
"th.vmv.v.x v8, zero\n\t"
|
||||
"th.vlb.v v1, (%[sc])\n\t"
|
||||
"th.vand.vi v0, v1, 0xF\n\t"
|
||||
"th.vsrl.vi v1, v1, 4\n\t"
|
||||
"th.vsb.v v0, (%[scale])\n\t"
|
||||
"th.vwaddu.vx v16, v1, zero\n\t"
|
||||
"th.vsetvli zero, %[vl16], e16, m2\n\t"
|
||||
"th.vlh.v v2, (%[bsums])\n\t"
|
||||
"th.vwmul.vv v4, v16, v2\n\t"
|
||||
"th.vsetvli zero, %[vl16], e32, m4\n\t"
|
||||
"th.vredsum.vs v8, v4, v8\n\t"
|
||||
"th.vmv.x.s %[vsums], v8"
|
||||
: [tmp] "=&r" (tmp), [vsums] "=&r" (vsums)
|
||||
: [sc] "r" (sc), [scale] "r" (atmp), [bsums] "r" (y[i].bsums)
|
||||
, [vl16] "r" (16)
|
||||
: "memory"
|
||||
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
|
||||
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
|
||||
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
|
||||
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
|
||||
);
|
||||
sumf += dmin * vsums;
|
||||
int isum = 0;
|
||||
|
||||
for (int j = 0; j < QK_K/128; ++j) {
|
||||
__asm__ __volatile__(
|
||||
"th.vsetvli zero, %[vl32], e8, m2\n\t"
|
||||
"th.vlb.v v0, (%[q2])\n\t"
|
||||
"th.vsrl.vi v2, v0, 2\n\t"
|
||||
"th.vsrl.vi v4, v0, 4\n\t"
|
||||
"th.vsrl.vi v6, v0, 6\n\t"
|
||||
"th.vand.vi v0, v0, 0x3\n\t"
|
||||
"th.vand.vi v2, v2, 0x3\n\t"
|
||||
"th.vand.vi v4, v4, 0x3\n\t"
|
||||
"th.vsetvli zero, %[vl128], e8, m8\n\t"
|
||||
"th.vlb.v v8, (%[q8])\n\t"
|
||||
"th.vsetvli zero, %[vl64], e8, m4\n\t"
|
||||
"th.vwmul.vv v16, v0, v8\n\t"
|
||||
"th.vwmul.vv v24, v4, v12\n\t"
|
||||
"th.vsetvli zero, %[vl16], e16, m2\n\t"
|
||||
"th.vmv.v.x v0, zero\n\t"
|
||||
"th.vwredsum.vs v10, v16, v0\n\t"
|
||||
"th.vwredsum.vs v9, v18, v0\n\t"
|
||||
"th.vwredsum.vs v8, v20, v0\n\t"
|
||||
"th.vwredsum.vs v7, v22, v0\n\t"
|
||||
"th.vwredsum.vs v11, v24, v0\n\t"
|
||||
"th.vwredsum.vs v12, v26, v0\n\t"
|
||||
"th.vwredsum.vs v13, v28, v0\n\t"
|
||||
"th.vwredsum.vs v14, v30, v0\n\t"
|
||||
"li %[tmp], 4\n\t"
|
||||
"th.vsetvli zero, %[tmp], e32, m1\n\t"
|
||||
"th.vslideup.vi v10, v9, 1\n\t"
|
||||
"th.vslideup.vi v8, v7, 1\n\t"
|
||||
"th.vslideup.vi v11, v12, 1\n\t"
|
||||
"th.vslideup.vi v13, v14, 1\n\t"
|
||||
"th.vslideup.vi v10, v8, 2\n\t"
|
||||
"th.vslideup.vi v11, v13, 2\n\t"
|
||||
"li %[tmp], 8\n\t"
|
||||
"th.vsetvli zero, %[tmp], e32, m2\n\t"
|
||||
"th.vlbu.v v12, (%[scale])\n\t"
|
||||
"th.vmul.vv v10, v10, v12\n\t"
|
||||
"th.vredsum.vs v0, v10, v0\n\t"
|
||||
"th.vmv.x.s %[tmp], v0\n\t"
|
||||
"add %[isum], %[isum], %[tmp]"
|
||||
: [tmp] "=&r" (tmp), [isum] "+&r" (isum)
|
||||
: [q2] "r" (q2), [scale] "r" (patmp), [q8] "r" (q8)
|
||||
, [vl16] "r" (16), [vl32] "r" (32), [vl64] "r" (64), [vl128] "r" (128)
|
||||
: "memory"
|
||||
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
|
||||
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
|
||||
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
|
||||
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
|
||||
);
|
||||
q2 += 32; q8 += 128; patmp += 8;
|
||||
}
|
||||
|
||||
sumf += dall * isum;
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
|
||||
#elif defined __riscv_v
|
||||
|
||||
float sumf = 0;
|
||||
uint8_t atmp[16];
|
||||
|
||||
const int vector_length = __riscv_vlenb() * 8;
|
||||
float sumf = 0;
|
||||
|
||||
uint8_t temp_01[32] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
|
||||
uint8_t atmp[16];
|
||||
|
||||
switch (vector_length) {
|
||||
case 256:
|
||||
@@ -6137,14 +6234,141 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
*s = sumf;
|
||||
|
||||
#elif defined __riscv_v_intrinsic
|
||||
#elif defined __riscv_xtheadvector
|
||||
|
||||
uint32_t aux[3];
|
||||
uint32_t utmp[4];
|
||||
|
||||
const int vector_length = __riscv_vlenb() * 8;
|
||||
float sumf = 0;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * restrict q3 = x[i].qs;
|
||||
const uint8_t * restrict qh = x[i].hmask;
|
||||
const int8_t * restrict q8 = y[i].qs;
|
||||
|
||||
int8_t * scale = (int8_t *)utmp;
|
||||
int tmp;
|
||||
__asm__ __volatile__(
|
||||
"li %[tmp], 12\n\t"
|
||||
"th.vsetvli zero, %[tmp], e8, m1\n\t"
|
||||
"th.vlb.v v0, (%[s6b])\n\t"
|
||||
"th.vmv.v.v v2, v0\n\t"
|
||||
"li %[tmp], 2\n\t"
|
||||
"th.vsetvli zero, %[tmp], e64, m1\n\t"
|
||||
"th.vmv.v.x v9, %[sh]\n\t"\
|
||||
"th.vslidedown.vi v1, v0, 1\n\t"
|
||||
"th.vslide1up.vx v8, v9, zero\n\t" // {0, 0, 4, 4}
|
||||
"th.vslideup.vi v0, v2, 1\n\t" // {aux[0], aux[1], aux[0], aux[1]}
|
||||
"li %[tmp], 4\n\t"
|
||||
"th.vsetvli zero, %[tmp], e32, m1\n\t"
|
||||
"th.vid.v v9\n\t"
|
||||
"th.vmv.x.s %[tmp], v1\n\t"
|
||||
"th.vsll.vi v9, v9, 1\n\t" // {0, 2, 4, 6}
|
||||
"th.vmv.v.x v1, %[tmp]\n\t" // {aux[2], aux[2], aux[2], aux[2]}
|
||||
"th.vsrl.vv v4, v1, v9\n\t"
|
||||
"th.vsrl.vv v2, v0, v8\n\t"
|
||||
"th.vand.vx v5, v4, %[kmask1]\n\t"
|
||||
"th.vand.vx v3, v2, %[kmask2]\n\t"
|
||||
"th.vsll.vi v6, v5, 4\n\t"
|
||||
"th.vor.vv v7, v6, v3\n\t"
|
||||
"li %[tmp], 16\n\t"
|
||||
"th.vsetvli zero, %[tmp], e8, m1\n\t"
|
||||
"th.vsub.vx v0, v7, %[c]\n\t"
|
||||
"th.vsb.v v0, (%[scale])"
|
||||
: [tmp] "=&r" (tmp)
|
||||
: [sh] "r" (0x0000000400000004), [s6b] "r" (x[i].scales), [c] "r" (32)
|
||||
, [scale] "r" (scale), [kmask1] "r" (kmask1), [kmask2] "r" (kmask2)
|
||||
: "memory"
|
||||
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
|
||||
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
|
||||
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
|
||||
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
|
||||
);
|
||||
|
||||
uint8_t m = 1;
|
||||
int isum = 0;
|
||||
for (int j = 0; j < QK_K; j += 128) {
|
||||
__asm__ __volatile__(
|
||||
// fixme: use v0p7 mask layout directly
|
||||
"th.vsetvli zero, %[vl32], e8, m2\n\t"
|
||||
"th.vlb.v v8, (%[q3])\n\t"
|
||||
"th.vsrl.vi v10, v8, 2\n\t"
|
||||
"th.vsrl.vi v12, v8, 4\n\t"
|
||||
"th.vsrl.vi v14, v8, 6\n\t"
|
||||
"th.vand.vi v8, v8, 3\n\t"
|
||||
"th.vand.vi v10, v10, 3\n\t"
|
||||
"th.vand.vi v12, v12, 3\n\t"
|
||||
"th.vlb.v v2, (%[qh])\n\t"
|
||||
"th.vand.vx v4, v2, %[m]\n\t"
|
||||
"slli %[m], %[m], 1\n\t"
|
||||
"th.vmseq.vx v0, v4, zero\n\t"
|
||||
"th.vadd.vi v8, v8, -4, v0.t\n\t"
|
||||
"th.vand.vx v4, v2, %[m]\n\t"
|
||||
"slli %[m], %[m], 1\n\t"
|
||||
"th.vmseq.vx v0, v4, zero\n\t"
|
||||
"th.vadd.vi v10, v10, -4, v0.t\n\t"
|
||||
"th.vand.vx v4, v2, %[m]\n\t"
|
||||
"slli %[m], %[m], 1\n\t"
|
||||
"th.vmseq.vx v0, v4, zero\n\t"
|
||||
"th.vadd.vi v12, v12, -4, v0.t\n\t"
|
||||
"th.vand.vx v4, v2, %[m]\n\t"
|
||||
"slli %[m], %[m], 1\n\t"
|
||||
"th.vmseq.vx v0, v4, zero\n\t"
|
||||
"th.vadd.vi v14, v14, -4, v0.t\n\t"
|
||||
"th.vsetvli zero, %[vl128], e8, m8\n\t"
|
||||
"th.vlb.v v0, (%[q8])\n\t"
|
||||
"th.vsetvli zero, %[vl64], e8, m4\n\t"
|
||||
"th.vwmul.vv v16, v0, v8\n\t"
|
||||
"th.vwmul.vv v24, v4, v12\n\t"
|
||||
"li %[tmp], 16\n\t"
|
||||
"th.vsetvli zero, %[tmp], e16, m2\n\t"
|
||||
"th.vmv.v.x v0, zero\n\t"
|
||||
"th.vwredsum.vs v10, v16, v0\n\t"
|
||||
"th.vwredsum.vs v9, v18, v0\n\t"
|
||||
"th.vwredsum.vs v8, v20, v0\n\t"
|
||||
"th.vwredsum.vs v7, v22, v0\n\t"
|
||||
"th.vwredsum.vs v11, v24, v0\n\t"
|
||||
"th.vwredsum.vs v12, v26, v0\n\t"
|
||||
"th.vwredsum.vs v13, v28, v0\n\t"
|
||||
"th.vwredsum.vs v14, v30, v0\n\t"
|
||||
"li %[tmp], 4\n\t"
|
||||
"th.vsetvli zero, %[tmp], e32, m1\n\t"
|
||||
"th.vslideup.vi v10, v9, 1\n\t"
|
||||
"th.vslideup.vi v8, v7, 1\n\t"
|
||||
"th.vslideup.vi v11, v12, 1\n\t"
|
||||
"th.vslideup.vi v13, v14, 1\n\t"
|
||||
"th.vslideup.vi v10, v8, 2\n\t"
|
||||
"th.vslideup.vi v11, v13, 2\n\t"
|
||||
"li %[tmp], 8\n\t"
|
||||
"th.vsetvli zero, %[tmp], e32, m2\n\t"
|
||||
"th.vlb.v v12, (%[scale])\n\t"
|
||||
"th.vmul.vv v10, v10, v12\n\t"
|
||||
"th.vredsum.vs v0, v10, v0\n\t"
|
||||
"th.vmv.x.s %[tmp], v0\n\t"
|
||||
"add %[isum], %[isum], %[tmp]"
|
||||
: [tmp] "=&r" (tmp), [m] "+&r" (m), [isum] "+&r" (isum)
|
||||
: [vl128] "r" (128), [vl64] "r" (64), [vl32] "r" (32)
|
||||
, [q3] "r" (q3), [qh] "r" (qh), [scale] "r" (scale), [q8] "r" (q8)
|
||||
: "memory"
|
||||
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
|
||||
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
|
||||
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
|
||||
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
|
||||
);
|
||||
q3 += 32; q8 += 128; scale += 8;
|
||||
}
|
||||
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
sumf += d * isum;
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
|
||||
#elif defined __riscv_v
|
||||
|
||||
uint32_t utmp[4];
|
||||
float sumf = 0;
|
||||
uint32_t aux[3];
|
||||
const int vector_length = __riscv_vlenb() * 8;
|
||||
|
||||
switch (vector_length) {
|
||||
case 256:
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
@@ -6331,7 +6555,7 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
"vslideup.vi v13, v14, 1\n\t"
|
||||
"vslideup.vi v10, v8, 2\n\t"
|
||||
"vslideup.vi v11, v13, 2\n\t"
|
||||
"vsetivli zero, 8, e32, m2\n\t"\
|
||||
"vsetivli zero, 8, e32, m2\n\t"
|
||||
"vle8.v v15, (%[scale])\n\t"
|
||||
"vsext.vf4 v12, v15\n\t"
|
||||
"vmul.vv v10, v10, v12\n\t"
|
||||
@@ -6771,7 +6995,11 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
assert(n % QK_K == 0);
|
||||
#ifdef __ARM_FEATURE_MATMUL_INT8
|
||||
assert((nrc == 2) || (nrc == 1));
|
||||
#else
|
||||
assert(nrc == 1);
|
||||
#endif
|
||||
UNUSED(nrc);
|
||||
UNUSED(bx);
|
||||
UNUSED(by);
|
||||
@@ -6788,6 +7016,146 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
uint32_t utmp[4];
|
||||
|
||||
#if defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
if (nrc == 2) {
|
||||
const block_q4_K * GGML_RESTRICT x0 = x;
|
||||
const block_q4_K * GGML_RESTRICT x1 = (const block_q4_K *) ((const uint8_t *)vx + bx);
|
||||
const block_q8_K * GGML_RESTRICT y0 = y;
|
||||
const block_q8_K * GGML_RESTRICT y1 = (const block_q8_K *) ((const uint8_t *)vy + by);
|
||||
|
||||
const uint8x16_t m4b = vdupq_n_u8(0x0f);
|
||||
|
||||
float32x4_t vfsum = vdupq_n_f32(0.0f);
|
||||
|
||||
for (int i = 0; i < nb; ++i, ++x0, ++x1, ++y0, ++y1) {
|
||||
const uint8_t * GGML_RESTRICT qx0 = x0->qs;
|
||||
const uint8_t * GGML_RESTRICT qx1 = x1->qs;
|
||||
const int8_t * GGML_RESTRICT qy0 = y0->qs;
|
||||
const int8_t * GGML_RESTRICT qy1 = y1->qs;
|
||||
|
||||
// decode scales and mins
|
||||
int8_t x0_scales[8], x1_scales[8];
|
||||
int16x8_t x0_mins, x1_mins;
|
||||
{
|
||||
uint32_t scales_mins[3];
|
||||
memcpy(scales_mins, x0->scales, 12);
|
||||
const uint32_t mins_0_3 = scales_mins[1] & kmask1;
|
||||
const uint32_t mins_4_7 = ((scales_mins[2] >> 4) & kmask2) | (((scales_mins[1] >> 6) & kmask3) << 4);
|
||||
const uint32x2_t mins = {mins_0_3, mins_4_7};
|
||||
x0_mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins)));
|
||||
uint32_t scales[2];
|
||||
scales[0] = scales_mins[0] & kmask1; // scales 0~3
|
||||
scales[1] = (scales_mins[2] & kmask2) | (((scales_mins[0] >> 6) & kmask3) << 4); // scales 4~7
|
||||
memcpy(x0_scales, scales, 8);
|
||||
}
|
||||
{
|
||||
uint32_t scales_mins[3];
|
||||
memcpy(scales_mins, x1->scales, 12);
|
||||
const uint32_t mins_0_3 = scales_mins[1] & kmask1;
|
||||
const uint32_t mins_4_7 = ((scales_mins[2] >> 4) & kmask2) | (((scales_mins[1] >> 6) & kmask3) << 4);
|
||||
const uint32x2_t mins = {mins_0_3, mins_4_7};
|
||||
x1_mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins)));
|
||||
uint32_t scales[2];
|
||||
scales[0] = scales_mins[0] & kmask1; // scales 0~3
|
||||
scales[1] = (scales_mins[2] & kmask2) | (((scales_mins[0] >> 6) & kmask3) << 4); // scales 4~7
|
||||
memcpy(x1_scales, scales, 8);
|
||||
}
|
||||
|
||||
int32x4_t visum = {0};
|
||||
|
||||
// process 64 data points per iteration, totally 256 data points
|
||||
for (int j = 0; j < QK_K / 64; ++j, qx0 += 32, qx1 += 32, qy0 += 64, qy1 += 64) {
|
||||
const int8x16x4_t vy0 = vld1q_s8_x4(qy0);
|
||||
const int8x16x4_t vy1 = vld1q_s8_x4(qy1);
|
||||
|
||||
int8x16_t vx0[4], vx1[4];
|
||||
{
|
||||
const uint8x16x2_t vv = vld1q_u8_x2(qx0);
|
||||
vx0[0] = vreinterpretq_s8_u8(vandq_u8(vv.val[0], m4b));
|
||||
vx0[1] = vreinterpretq_s8_u8(vandq_u8(vv.val[1], m4b));
|
||||
vx0[2] = vreinterpretq_s8_u8(vshrq_n_u8(vv.val[0], 4));
|
||||
vx0[3] = vreinterpretq_s8_u8(vshrq_n_u8(vv.val[1], 4));
|
||||
}
|
||||
{
|
||||
const uint8x16x2_t vv = vld1q_u8_x2(qx1);
|
||||
vx1[0] = vreinterpretq_s8_u8(vandq_u8(vv.val[0], m4b));
|
||||
vx1[1] = vreinterpretq_s8_u8(vandq_u8(vv.val[1], m4b));
|
||||
vx1[2] = vreinterpretq_s8_u8(vshrq_n_u8(vv.val[0], 4));
|
||||
vx1[3] = vreinterpretq_s8_u8(vshrq_n_u8(vv.val[1], 4));
|
||||
}
|
||||
|
||||
// process 32 data points (share same block scale) per iteration
|
||||
for (int k = 0; k < 2; ++k) {
|
||||
const int blk = j * 2 + k;
|
||||
const int32x4_t block_scale = {
|
||||
x0_scales[blk],
|
||||
x0_scales[blk],
|
||||
x1_scales[blk],
|
||||
x1_scales[blk],
|
||||
};
|
||||
|
||||
int32x4_t vr = {0};
|
||||
for (int l = 0; l < 2; ++l) {
|
||||
const int idx = k * 2 + l;
|
||||
const int64x2_t vx0_s64 = vreinterpretq_s64_s8(vx0[idx]);
|
||||
const int64x2_t vx1_s64 = vreinterpretq_s64_s8(vx1[idx]);
|
||||
const int64x2_t vy0_s64 = vreinterpretq_s64_s8(vy0.val[idx]);
|
||||
const int64x2_t vy1_s64 = vreinterpretq_s64_s8(vy1.val[idx]);
|
||||
const int8x16_t vx_l = vreinterpretq_s8_s64(vzip1q_s64(vx0_s64, vx1_s64));
|
||||
const int8x16_t vx_h = vreinterpretq_s8_s64(vzip2q_s64(vx0_s64, vx1_s64));
|
||||
const int8x16_t vy_l = vreinterpretq_s8_s64(vzip1q_s64(vy0_s64, vy1_s64));
|
||||
const int8x16_t vy_h = vreinterpretq_s8_s64(vzip2q_s64(vy0_s64, vy1_s64));
|
||||
vr = vmmlaq_s32(vr, vx_l, vy_l);
|
||||
vr = vmmlaq_s32(vr, vx_h, vy_h);
|
||||
}
|
||||
// apply block scale, will NOT overflow
|
||||
// block_scale * sum_256(int4*int8) <= 2^(8+8+4+8) = 28 bits
|
||||
visum = vmlaq_s32(visum, vr, block_scale);
|
||||
}
|
||||
}
|
||||
|
||||
// adjust bias, apply superblock scale
|
||||
{
|
||||
int32_t bias[4];
|
||||
// no obvious uplift from sve sdot-16, just use neon mul add
|
||||
const int16x8_t y0_sums = vpaddq_s16(vld1q_s16(y0->bsums), vld1q_s16(y0->bsums+8));
|
||||
const int16x8_t y1_sums = vpaddq_s16(vld1q_s16(y1->bsums), vld1q_s16(y1->bsums+8));
|
||||
bias[0] = vaddvq_s32(vaddq_s32(vmull_s16(vget_low_s16(y0_sums), vget_low_s16(x0_mins)),
|
||||
vmull_s16(vget_high_s16(y0_sums), vget_high_s16(x0_mins))));
|
||||
bias[1] = vaddvq_s32(vaddq_s32(vmull_s16(vget_low_s16(y1_sums), vget_low_s16(x0_mins)),
|
||||
vmull_s16(vget_high_s16(y1_sums), vget_high_s16(x0_mins))));
|
||||
bias[2] = vaddvq_s32(vaddq_s32(vmull_s16(vget_low_s16(y0_sums), vget_low_s16(x1_mins)),
|
||||
vmull_s16(vget_high_s16(y0_sums), vget_high_s16(x1_mins))));
|
||||
bias[3] = vaddvq_s32(vaddq_s32(vmull_s16(vget_low_s16(y1_sums), vget_low_s16(x1_mins)),
|
||||
vmull_s16(vget_high_s16(y1_sums), vget_high_s16(x1_mins))));
|
||||
const float32x4_t dmins = {
|
||||
GGML_FP16_TO_FP32(x0->dmin) * y0->d,
|
||||
GGML_FP16_TO_FP32(x0->dmin) * y1->d,
|
||||
GGML_FP16_TO_FP32(x1->dmin) * y0->d,
|
||||
GGML_FP16_TO_FP32(x1->dmin) * y1->d,
|
||||
};
|
||||
vfsum = vmlsq_f32(vfsum, vcvtq_f32_s32(vld1q_s32(bias)), dmins);
|
||||
|
||||
const float32x4_t superblock_scale = {
|
||||
GGML_FP16_TO_FP32(x0->d) * y0->d,
|
||||
GGML_FP16_TO_FP32(x0->d) * y1->d,
|
||||
GGML_FP16_TO_FP32(x1->d) * y0->d,
|
||||
GGML_FP16_TO_FP32(x1->d) * y1->d,
|
||||
};
|
||||
vfsum = vmlaq_f32(vfsum, vcvtq_f32_s32(visum), superblock_scale);
|
||||
}
|
||||
}
|
||||
|
||||
// vfsum = ABCD -> ACBD
|
||||
// AC -> s, BD -> (s+bs)
|
||||
vfsum = vzip1q_f32(vfsum, vextq_f32(vfsum, vfsum, 2));
|
||||
vst1_f32(s, vget_low_f32 (vfsum));
|
||||
vst1_f32(s + bs, vget_high_f32(vfsum));
|
||||
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef __ARM_FEATURE_SVE
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
@@ -7180,14 +7548,130 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
*s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
|
||||
|
||||
#elif defined __riscv_v_intrinsic
|
||||
#elif defined __riscv_xtheadvector
|
||||
|
||||
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
||||
|
||||
const int vector_length = __riscv_vlenb() * 8;
|
||||
float sumf = 0;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
|
||||
|
||||
int tmp, tmp2, sumi;
|
||||
__asm__ __volatile__(
|
||||
"li %[t1], 12\n\t"
|
||||
"th.vsetvli zero, %[t1], e8, m1\n\t"
|
||||
"th.vlb.v v1, (%[s6b])\n\t" // {aux[0], aux[1], aux[2]}
|
||||
"li %[t1], 4\n\t"
|
||||
"th.vsetvli zero, %[t1], e32, m1\n\t"
|
||||
"th.vslidedown.vi v2, v1, 2\n\t"
|
||||
"th.vmv.v.v v3, v2\n\t"
|
||||
"th.vslideup.vi v2, v3, 1\n\t" // {aux[2], aux[2]}
|
||||
"li %[t1], 2\n\t"
|
||||
"th.vsetvli zero, %[t1], e32, m1\n\t"
|
||||
"th.vmv.v.i v4, 4\n\t"
|
||||
"th.vand.vx v8, v1, %[kmask1]\n\t"
|
||||
"th.vslide1up.vx v5, v4, zero\n\t" // {0, 4}
|
||||
"th.vsrl.vi v6, v1, 6\n\t"
|
||||
"th.vsrl.vv v7, v2, v5\n\t"
|
||||
"th.vand.vx v0, v6, %[kmask3]\n\t"
|
||||
"th.vand.vx v2, v7, %[kmask2]\n\t"
|
||||
"th.vsll.vi v6, v0, 4\n\t"
|
||||
"li %[t2], 8\n\t"
|
||||
"addi %[t1], %[utmp], 4\n\t"
|
||||
"th.vor.vv v1, v6, v2\n\t"
|
||||
"th.vssw.v v8, (%[utmp]), %[t2]\n\t"
|
||||
"th.vssw.v v1, (%[t1]), %[t2]\n\t"
|
||||
"th.vsetvli zero, zero, e32, m2\n\t" // vl == 8
|
||||
"th.vlw.v v2, (%[bsums])\n\t"
|
||||
"th.vsetvli zero, %[t2], e16, m1\n\t"
|
||||
"th.vnsrl.vi v0, v2, 0\n\t"
|
||||
"th.vnsrl.vi v1, v2, 16\n\t"
|
||||
"th.vadd.vv v2, v0, v1\n\t"
|
||||
"th.vlbu.v v4, (%[mins])\n\t"
|
||||
"th.vwmul.vv v6, v4, v2\n\t"
|
||||
"th.vmv.v.x v0, zero\n\t"
|
||||
"th.vsetvli zero, %[t2], e32, m2\n\t"
|
||||
"th.vredsum.vs v0, v6, v0\n\t"
|
||||
"th.vmv.x.s %[sumi], v0"
|
||||
: [t1] "=&r" (tmp), [t2] "=&r" (tmp2), [sumi] "=&r" (sumi)
|
||||
: [bsums] "r" (y[i].bsums), [mins] "r" (mins), [utmp] "r" (utmp)
|
||||
, [s6b] "r" (x[i].scales), [kmask1] "r" (kmask1)
|
||||
, [kmask2] "r" (kmask2), [kmask3] "r" (kmask3)
|
||||
: "memory"
|
||||
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
|
||||
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
|
||||
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
|
||||
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
|
||||
);
|
||||
sumf -= dmin * sumi;
|
||||
|
||||
const uint8_t * restrict q4 = x[i].qs;
|
||||
const int8_t * restrict q8 = y[i].qs;
|
||||
|
||||
sumi = 0;
|
||||
const uint8_t * scale = scales;
|
||||
|
||||
for (int j = 0; j < QK_K/128; ++j) {
|
||||
int vl128 = 128, vl64 = 64, vl32 = 32;
|
||||
__asm__ __volatile__(
|
||||
"th.vsetvli zero, %[vl128], e8, m8\n\t"
|
||||
"th.vlb.v v8, (%[q8])\n\t"
|
||||
"th.vsetvli zero, %[vl64], e8, m4\n\t"
|
||||
"th.vlb.v v0, (%[q4])\n\t"
|
||||
"th.vsrl.vi v4, v0, 4\n\t"
|
||||
"th.vand.vi v0, v0, 0xF\n\t"
|
||||
"th.vsetvli zero, %[vl32], e8, m2\n\t"
|
||||
"th.vwmul.vv v28, v6, v14\n\t"
|
||||
"th.vwmul.vv v20, v4, v10\n\t"
|
||||
"th.vwmul.vv v24, v2, v12\n\t"
|
||||
"th.vwmul.vv v16, v0, v8\n\t"
|
||||
"li %[tmp], 4\n\t"
|
||||
"th.vsetvli zero, %[tmp], e32, m1\n\t"
|
||||
"th.vlbu.v v1, (%[scale])\n\t"
|
||||
"th.vmv.v.x v0, zero\n\t"
|
||||
"th.vsetvli zero, %[vl32], e16, m4\n\t"
|
||||
"th.vwredsum.vs v6, v24, v0\n\t"
|
||||
"th.vwredsum.vs v7, v28, v0\n\t"
|
||||
"th.vwredsum.vs v4, v16, v0\n\t"
|
||||
"th.vwredsum.vs v5, v20, v0\n\t"
|
||||
"th.vsetvli zero, %[tmp], e32, m1\n\t"
|
||||
"th.vslideup.vi v6, v7, 1\n\t"
|
||||
"th.vslideup.vi v4, v5, 1\n\t"
|
||||
"th.vslideup.vi v4, v6, 2\n\t"
|
||||
"th.vmul.vv v8, v4, v1\n\t"
|
||||
"th.vredsum.vs v0, v8, v0\n\t"
|
||||
"th.vmv.x.s %[tmp], v0\n\t"
|
||||
"add %[sumi], %[sumi], %[tmp]"
|
||||
: [tmp] "=&r" (tmp), [sumi] "+&r" (sumi)
|
||||
: [vl128] "r" (vl128), [vl64] "r" (vl64), [vl32] "r" (vl32)
|
||||
, [q4] "r" (q4), [q8] "r" (q8), [scale] "r" (scale)
|
||||
: "memory"
|
||||
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
|
||||
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
|
||||
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
|
||||
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
|
||||
);
|
||||
|
||||
q4 += 64; q8 += 128; scale += 4;
|
||||
}
|
||||
|
||||
sumf += d * sumi;
|
||||
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
|
||||
#elif defined __riscv_v
|
||||
|
||||
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
||||
|
||||
float sumf = 0;
|
||||
const int vector_length = __riscv_vlenb() * 8;
|
||||
|
||||
switch (vector_length) {
|
||||
case 256:
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
@@ -8074,7 +8558,7 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
*s = sumf;
|
||||
|
||||
#elif defined __riscv_v_intrinsic
|
||||
#elif defined __riscv_v
|
||||
|
||||
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
||||
@@ -8519,7 +9003,11 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
assert(n % QK_K == 0);
|
||||
#ifdef __ARM_FEATURE_MATMUL_INT8
|
||||
assert((nrc == 2) || (nrc == 1));
|
||||
#else
|
||||
assert(nrc == 1);
|
||||
#endif
|
||||
UNUSED(nrc);
|
||||
UNUSED(bx);
|
||||
UNUSED(by);
|
||||
@@ -8530,6 +9018,197 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
const int nb = n / QK_K;
|
||||
|
||||
#if defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
if (nrc == 2) {
|
||||
const block_q6_K * GGML_RESTRICT x0 = x;
|
||||
const block_q6_K * GGML_RESTRICT x1 = (const block_q6_K *) ((const uint8_t *)vx + bx);
|
||||
const block_q8_K * GGML_RESTRICT y0 = y;
|
||||
const block_q8_K * GGML_RESTRICT y1 = (const block_q8_K *) ((const uint8_t *)vy + by);
|
||||
|
||||
float32x4_t vfsum = vdupq_n_f32(0.0f);
|
||||
|
||||
for (int i = 0; i < nb; ++i, ++x0, ++x1, ++y0, ++y1) {
|
||||
const uint8_t * GGML_RESTRICT ql0 = x0->ql;
|
||||
const uint8_t * GGML_RESTRICT ql1 = x1->ql;
|
||||
const uint8_t * GGML_RESTRICT qh0 = x0->qh;
|
||||
const uint8_t * GGML_RESTRICT qh1 = x1->qh;
|
||||
const int8_t * GGML_RESTRICT qy0 = y0->qs;
|
||||
const int8_t * GGML_RESTRICT qy1 = y1->qs;
|
||||
|
||||
const uint8x16_t mone = vdupq_n_u8(0x30);
|
||||
const uint8x16_t m4b = vdupq_n_u8(0x0f);
|
||||
|
||||
int32x4_t visum = vdupq_n_s32(0);
|
||||
|
||||
// process 8 blocks per iteration, totally 16 blocks
|
||||
for (int j = 0; j < 2; ++j, qh0 += 32, ql0 += 64, qh1 += 32, ql1 += 64) {
|
||||
int8x16_t vx0[8], vx1[8];
|
||||
|
||||
// de-quantize vx0[8]
|
||||
{
|
||||
const uint8x16x2_t qh_bits = vld1q_u8_x2(qh0);
|
||||
const uint8x16x4_t ql_bits = vld1q_u8_x4(ql0);
|
||||
|
||||
uint8x16_t q6h_0 = vandq_u8(mone, vshlq_n_u8(qh_bits.val[0], 4));
|
||||
uint8x16_t q6h_1 = vandq_u8(mone, vshlq_n_u8(qh_bits.val[1], 4));
|
||||
uint8x16_t q6h_2 = vandq_u8(mone, vshlq_n_u8(qh_bits.val[0], 2));
|
||||
uint8x16_t q6h_3 = vandq_u8(mone, vshlq_n_u8(qh_bits.val[1], 2));
|
||||
|
||||
vx0[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(ql_bits.val[0], m4b), q6h_0));
|
||||
vx0[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(ql_bits.val[1], m4b), q6h_1));
|
||||
vx0[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(ql_bits.val[2], m4b), q6h_2));
|
||||
vx0[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(ql_bits.val[3], m4b), q6h_3));
|
||||
|
||||
q6h_0 = vandq_u8(mone, qh_bits.val[0]);
|
||||
q6h_1 = vandq_u8(mone, qh_bits.val[1]);
|
||||
q6h_2 = vandq_u8(mone, vshrq_n_u8(qh_bits.val[0], 2));
|
||||
q6h_3 = vandq_u8(mone, vshrq_n_u8(qh_bits.val[1], 2));
|
||||
|
||||
vx0[4] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(ql_bits.val[0], 4), q6h_0));
|
||||
vx0[5] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(ql_bits.val[1], 4), q6h_1));
|
||||
vx0[6] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(ql_bits.val[2], 4), q6h_2));
|
||||
vx0[7] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(ql_bits.val[3], 4), q6h_3));
|
||||
}
|
||||
|
||||
// de-quantize vx1[8]
|
||||
{
|
||||
const uint8x16x2_t qh_bits = vld1q_u8_x2(qh1);
|
||||
const uint8x16x4_t ql_bits = vld1q_u8_x4(ql1);
|
||||
|
||||
uint8x16_t q6h_0 = vandq_u8(mone, vshlq_n_u8(qh_bits.val[0], 4));
|
||||
uint8x16_t q6h_1 = vandq_u8(mone, vshlq_n_u8(qh_bits.val[1], 4));
|
||||
uint8x16_t q6h_2 = vandq_u8(mone, vshlq_n_u8(qh_bits.val[0], 2));
|
||||
uint8x16_t q6h_3 = vandq_u8(mone, vshlq_n_u8(qh_bits.val[1], 2));
|
||||
|
||||
vx1[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(ql_bits.val[0], m4b), q6h_0));
|
||||
vx1[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(ql_bits.val[1], m4b), q6h_1));
|
||||
vx1[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(ql_bits.val[2], m4b), q6h_2));
|
||||
vx1[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(ql_bits.val[3], m4b), q6h_3));
|
||||
|
||||
q6h_0 = vandq_u8(mone, qh_bits.val[0]);
|
||||
q6h_1 = vandq_u8(mone, qh_bits.val[1]);
|
||||
q6h_2 = vandq_u8(mone, vshrq_n_u8(qh_bits.val[0], 2));
|
||||
q6h_3 = vandq_u8(mone, vshrq_n_u8(qh_bits.val[1], 2));
|
||||
|
||||
vx1[4] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(ql_bits.val[0], 4), q6h_0));
|
||||
vx1[5] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(ql_bits.val[1], 4), q6h_1));
|
||||
vx1[6] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(ql_bits.val[2], 4), q6h_2));
|
||||
vx1[7] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(ql_bits.val[3], 4), q6h_3));
|
||||
}
|
||||
|
||||
// process 16 elements (one block with same scale) per iteration
|
||||
// - vx = concat(ql, qh) - 32
|
||||
// - r1,r2,r3,r4 = smmla(vx, vy)
|
||||
for (int k = 0; k < 8; ++k) {
|
||||
const int blk = j * 8 + k;
|
||||
|
||||
const int8x16_t vy0 = vld1q_s8(qy0);
|
||||
const int8x16_t vy1 = vld1q_s8(qy1);
|
||||
qy0 += 16;
|
||||
qy1 += 16;
|
||||
|
||||
const int32x4_t block_scale = {
|
||||
x0->scales[blk],
|
||||
x0->scales[blk],
|
||||
x1->scales[blk],
|
||||
x1->scales[blk],
|
||||
};
|
||||
|
||||
// calculate four results at once with outer product
|
||||
const int8x16_t vx_l = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(vx0[k]), vreinterpretq_s64_s8(vx1[k])));
|
||||
const int8x16_t vx_h = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(vx0[k]), vreinterpretq_s64_s8(vx1[k])));
|
||||
const int8x16_t vy_l = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(vy0), vreinterpretq_s64_s8(vy1)));
|
||||
const int8x16_t vy_h = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(vy0), vreinterpretq_s64_s8(vy1)));
|
||||
int32x4_t vr = vdupq_n_s32(0);
|
||||
vr = vmmlaq_s32(vr, vx_l, vy_l);
|
||||
vr = vmmlaq_s32(vr, vx_h, vy_h);
|
||||
|
||||
// apply block scale, will NOT overflow
|
||||
// block_scale * sum_256(int6*int8) <= 2^(8+8+6+8) = 30 bits
|
||||
visum = vmlaq_s32(visum, vr, block_scale);
|
||||
}
|
||||
}
|
||||
|
||||
// adjust bias, apply superblock scale
|
||||
{
|
||||
int32_t bias[4];
|
||||
#ifdef __ARM_FEATURE_SVE
|
||||
const svbool_t pg16_8 = svptrue_pat_b16(SV_VL8);
|
||||
const svbool_t pg8_8 = svptrue_pat_b8(SV_VL8);
|
||||
const svint16_t y0_q8sums_0 = svld1_s16(pg16_8, y0->bsums);
|
||||
const svint16_t y0_q8sums_1 = svld1_s16(pg16_8, y0->bsums + 8);
|
||||
const svint16_t y1_q8sums_0 = svld1_s16(pg16_8, y1->bsums);
|
||||
const svint16_t y1_q8sums_1 = svld1_s16(pg16_8, y1->bsums + 8);
|
||||
const svint16_t x0_q6scales_0 = svunpklo_s16(svld1_s8(pg8_8, x0->scales));
|
||||
const svint16_t x0_q6scales_1 = svunpklo_s16(svld1_s8(pg8_8, x0->scales + 8));
|
||||
const svint16_t x1_q6scales_0 = svunpklo_s16(svld1_s8(pg8_8, x1->scales));
|
||||
const svint16_t x1_q6scales_1 = svunpklo_s16(svld1_s8(pg8_8, x1->scales + 8));
|
||||
const svint64_t zero = svdup_n_s64(0);
|
||||
bias[0] = svaddv_s64(svptrue_b64(), svadd_s64_x(svptrue_b64(), svdot_s64(zero, y0_q8sums_0, x0_q6scales_0),
|
||||
svdot_s64(zero, y0_q8sums_1, x0_q6scales_1)));
|
||||
bias[1] = svaddv_s64(svptrue_b64(), svadd_s64_x(svptrue_b64(), svdot_s64(zero, y1_q8sums_0, x0_q6scales_0),
|
||||
svdot_s64(zero, y1_q8sums_1, x0_q6scales_1)));
|
||||
bias[2] = svaddv_s64(svptrue_b64(), svadd_s64_x(svptrue_b64(), svdot_s64(zero, y0_q8sums_0, x1_q6scales_0),
|
||||
svdot_s64(zero, y0_q8sums_1, x1_q6scales_1)));
|
||||
bias[3] = svaddv_s64(svptrue_b64(), svadd_s64_x(svptrue_b64(), svdot_s64(zero, y1_q8sums_0, x1_q6scales_0),
|
||||
svdot_s64(zero, y1_q8sums_1, x1_q6scales_1)));
|
||||
#else
|
||||
// NEON doesn't support int16 dot product, fallback to separated mul and add
|
||||
const int16x8x2_t q8sums0 = vld1q_s16_x2(y0->bsums);
|
||||
const int16x8x2_t q8sums1 = vld1q_s16_x2(y1->bsums);
|
||||
|
||||
int8x16_t scales_s8 = vld1q_s8(x0->scales);
|
||||
const int16x8x2_t q6scales0 = {{vmovl_s8(vget_low_s8(scales_s8)), vmovl_s8(vget_high_s8(scales_s8))}};
|
||||
scales_s8 = vld1q_s8(x1->scales);
|
||||
const int16x8x2_t q6scales1 = {{vmovl_s8(vget_low_s8(scales_s8)), vmovl_s8(vget_high_s8(scales_s8))}};
|
||||
|
||||
int32x4_t prod;
|
||||
prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums0.val[0]), vget_low_s16 (q6scales0.val[0])),
|
||||
vmull_s16(vget_high_s16(q8sums0.val[0]), vget_high_s16(q6scales0.val[0]))),
|
||||
vaddq_s32(vmull_s16(vget_low_s16 (q8sums0.val[1]), vget_low_s16 (q6scales0.val[1])),
|
||||
vmull_s16(vget_high_s16(q8sums0.val[1]), vget_high_s16(q6scales0.val[1]))));
|
||||
bias[0] = vaddvq_s32(prod);
|
||||
prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums1.val[0]), vget_low_s16 (q6scales0.val[0])),
|
||||
vmull_s16(vget_high_s16(q8sums1.val[0]), vget_high_s16(q6scales0.val[0]))),
|
||||
vaddq_s32(vmull_s16(vget_low_s16 (q8sums1.val[1]), vget_low_s16 (q6scales0.val[1])),
|
||||
vmull_s16(vget_high_s16(q8sums1.val[1]), vget_high_s16(q6scales0.val[1]))));
|
||||
bias[1] = vaddvq_s32(prod);
|
||||
prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums0.val[0]), vget_low_s16 (q6scales1.val[0])),
|
||||
vmull_s16(vget_high_s16(q8sums0.val[0]), vget_high_s16(q6scales1.val[0]))),
|
||||
vaddq_s32(vmull_s16(vget_low_s16 (q8sums0.val[1]), vget_low_s16 (q6scales1.val[1])),
|
||||
vmull_s16(vget_high_s16(q8sums0.val[1]), vget_high_s16(q6scales1.val[1]))));
|
||||
bias[2] = vaddvq_s32(prod);
|
||||
prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums1.val[0]), vget_low_s16 (q6scales1.val[0])),
|
||||
vmull_s16(vget_high_s16(q8sums1.val[0]), vget_high_s16(q6scales1.val[0]))),
|
||||
vaddq_s32(vmull_s16(vget_low_s16 (q8sums1.val[1]), vget_low_s16 (q6scales1.val[1])),
|
||||
vmull_s16(vget_high_s16(q8sums1.val[1]), vget_high_s16(q6scales1.val[1]))));
|
||||
bias[3] = vaddvq_s32(prod);
|
||||
|
||||
#endif
|
||||
const int32x4_t vibias = vmulq_n_s32(vld1q_s32(bias), 32);
|
||||
|
||||
const float32x4_t superblock_scale = {
|
||||
GGML_FP16_TO_FP32(x0->d) * y0->d,
|
||||
GGML_FP16_TO_FP32(x0->d) * y1->d,
|
||||
GGML_FP16_TO_FP32(x1->d) * y0->d,
|
||||
GGML_FP16_TO_FP32(x1->d) * y1->d,
|
||||
};
|
||||
|
||||
visum = vsubq_s32(visum, vibias);
|
||||
vfsum = vmlaq_f32(vfsum, vcvtq_f32_s32(visum), superblock_scale);
|
||||
}
|
||||
}
|
||||
|
||||
// vfsum = ABCD -> ACBD
|
||||
// AC -> s, BD -> (s+bs)
|
||||
vfsum = vzip1q_f32(vfsum, vextq_f32(vfsum, vfsum, 2));
|
||||
vst1_f32(s, vget_low_f32 (vfsum));
|
||||
vst1_f32(s + bs, vget_high_f32(vfsum));
|
||||
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef __ARM_FEATURE_SVE
|
||||
const int vector_length = ggml_cpu_get_sve_cnt()*8;
|
||||
float sum = 0;
|
||||
@@ -9037,11 +9716,92 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
}
|
||||
*s = sumf;
|
||||
|
||||
#elif defined __riscv_v_intrinsic
|
||||
#elif defined __riscv_xtheadvector
|
||||
|
||||
const int vector_length = __riscv_vlenb() * 8;
|
||||
float sumf = 0;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
|
||||
const uint8_t * restrict q6 = x[i].ql;
|
||||
const uint8_t * restrict qh = x[i].qh;
|
||||
const int8_t * restrict q8 = y[i].qs;
|
||||
|
||||
const int8_t * restrict scale = x[i].scales;
|
||||
|
||||
int sum_t = 0;
|
||||
int t0;
|
||||
|
||||
for (int j = 0; j < QK_K/128; ++j) {
|
||||
__asm__ __volatile__(
|
||||
"th.vsetvli zero, %[vl32], e8, m2\n\t" // vl == 32
|
||||
"th.vlb.v v4, (%[qh])\n\t"
|
||||
"th.vsll.vi v0, v4, 4\n\t"
|
||||
"th.vsll.vi v2, v4, 2\n\t"
|
||||
"th.vsrl.vi v6, v4, 2\n\t"
|
||||
"th.vsetvli zero, %[vl64], e8, m4\n\t" // vl == 64
|
||||
"th.vlb.v v8, (%[q6])\n\t"
|
||||
"th.vsrl.vi v12, v8, 4\n\t"
|
||||
"th.vand.vi v8, v8, 0xF\n\t"
|
||||
"th.vsetvli zero, %[vl128], e8, m8\n\t" // vl == 128
|
||||
"th.vand.vx v0, v0, %[mask]\n\t"
|
||||
"th.vor.vv v8, v8, v0\n\t"
|
||||
"th.vlb.v v0, (%[q8])\n\t"
|
||||
"th.vsub.vx v8, v8, %[vl32]\n\t"
|
||||
"th.vsetvli zero, %[vl64], e8, m4\n\t" // vl == 64
|
||||
"th.vwmul.vv v16, v0, v8\n\t"
|
||||
"th.vwmul.vv v24, v4, v12\n\t"
|
||||
"li %[t0], 16\n\t"
|
||||
"th.vsetvli zero, %[t0], e16, m2\n\t" // vl == 16
|
||||
"th.vmv.v.x v0, zero\n\t"
|
||||
"th.vwredsum.vs v10, v16, v0\n\t"
|
||||
"th.vwredsum.vs v9, v18, v0\n\t"
|
||||
"th.vwredsum.vs v8, v20, v0\n\t"
|
||||
"th.vwredsum.vs v7, v22, v0\n\t"
|
||||
"th.vwredsum.vs v11, v24, v0\n\t"
|
||||
"th.vwredsum.vs v12, v26, v0\n\t"
|
||||
"th.vwredsum.vs v13, v28, v0\n\t"
|
||||
"th.vwredsum.vs v14, v30, v0\n\t"
|
||||
"li %[t0], 4\n\t"
|
||||
"th.vsetvli zero, %[t0], e32, m1\n\t" // vl == 4
|
||||
"th.vslideup.vi v10, v9, 1\n\t"
|
||||
"th.vslideup.vi v8, v7, 1\n\t"
|
||||
"th.vslideup.vi v11, v12, 1\n\t"
|
||||
"th.vslideup.vi v13, v14, 1\n\t"
|
||||
"th.vslideup.vi v10, v8, 2\n\t"
|
||||
"th.vslideup.vi v11, v13, 2\n\t"
|
||||
"li %[t0], 8\n\t"
|
||||
"th.vsetvli zero, %[t0], e32, m2\n\t" // vl == 8
|
||||
"th.vlb.v v4, (%[scale])\n\t"
|
||||
"th.vmul.vv v2, v4, v10\n\t"
|
||||
"th.vredsum.vs v0, v2, v0\n\t"
|
||||
"th.vmv.x.s %[t0], v0\n\t"
|
||||
"add %[sumi], %[sumi], %[t0]"
|
||||
: [sumi] "+&r" (sum_t), [t0] "=&r" (t0)
|
||||
: [qh] "r" (qh), [q6] "r" (q6), [q8] "r" (q8), [scale] "r" (scale)
|
||||
, [vl32] "r" (32), [vl64] "r" (64), [vl128] "r" (128)
|
||||
, [mask] "r" (0x30)
|
||||
: "memory"
|
||||
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
|
||||
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
|
||||
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
|
||||
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
|
||||
);
|
||||
q6 += 64; qh += 32; q8 += 128; scale += 8;
|
||||
}
|
||||
|
||||
sumf += d * sum_t;
|
||||
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
|
||||
#elif defined __riscv_v
|
||||
|
||||
float sumf = 0;
|
||||
const int vector_length = __riscv_vlenb() * 8;
|
||||
|
||||
switch (vector_length) {
|
||||
case 256:
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
@@ -270,7 +270,11 @@ static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
|
||||
.from_float = quantize_row_q4_K,
|
||||
.vec_dot = ggml_vec_dot_q4_K_q8_K,
|
||||
.vec_dot_type = GGML_TYPE_Q8_K,
|
||||
#if defined (__ARM_FEATURE_MATMUL_INT8)
|
||||
.nrows = 2,
|
||||
#else
|
||||
.nrows = 1,
|
||||
#endif
|
||||
},
|
||||
[GGML_TYPE_Q5_K] = {
|
||||
.from_float = quantize_row_q5_K,
|
||||
@@ -282,7 +286,11 @@ static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
|
||||
.from_float = quantize_row_q6_K,
|
||||
.vec_dot = ggml_vec_dot_q6_K_q8_K,
|
||||
.vec_dot_type = GGML_TYPE_Q8_K,
|
||||
#if defined (__ARM_FEATURE_MATMUL_INT8)
|
||||
.nrows = 2,
|
||||
#else
|
||||
.nrows = 1,
|
||||
#endif
|
||||
},
|
||||
[GGML_TYPE_IQ2_XXS] = {
|
||||
.from_float = NULL,
|
||||
@@ -2198,6 +2206,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
} break;
|
||||
|
||||
case GGML_UNARY_OP_GELU:
|
||||
case GGML_UNARY_OP_GELU_ERF:
|
||||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
case GGML_UNARY_OP_SILU:
|
||||
{
|
||||
@@ -3479,6 +3488,19 @@ void ggml_cpu_init(void) {
|
||||
const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
|
||||
|
||||
GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0);
|
||||
|
||||
#ifdef GGML_USE_OPENMP
|
||||
//if (!getenv("OMP_WAIT_POLICY")) {
|
||||
// // set the wait policy to active, so that OpenMP threads don't sleep
|
||||
// putenv("OMP_WAIT_POLICY=active");
|
||||
//}
|
||||
|
||||
if (!getenv("KMP_BLOCKTIME")) {
|
||||
// set the time to wait before sleeping a thread
|
||||
// this is less aggressive than setting the wait policy to active, but should achieve similar results in most cases
|
||||
putenv("KMP_BLOCKTIME=200"); // 200ms
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
#if defined(__ARM_ARCH)
|
||||
|
||||
@@ -4,16 +4,22 @@
|
||||
|
||||
// KleidiAI micro-kernels
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p_qsi4c32p_interface.h"
|
||||
#include "kai_lhs_quant_pack_qsi8d32p_f32.h"
|
||||
#include "kai_lhs_quant_pack_qsi8d32p_f32_neon.h"
|
||||
#include "kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.h"
|
||||
#include "kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.h"
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod.h"
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod.h"
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod.h"
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm.h"
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa.h"
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.h"
|
||||
#include "kai_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa.h"
|
||||
|
||||
#include "kai_lhs_pack_bf16p2vlx2_f32_sme.h"
|
||||
#include "kai_lhs_quant_pack_qsi8d32p_f32.h"
|
||||
#include "kai_lhs_quant_pack_qsi8d32p_f32_neon.h"
|
||||
|
||||
#include "kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.h"
|
||||
#include "kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.h"
|
||||
#include "kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.h"
|
||||
|
||||
#include "kai_common.h"
|
||||
|
||||
#include "kernels.h"
|
||||
@@ -61,6 +67,53 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_SME,
|
||||
/* .lhs_type = */ GGML_TYPE_F32,
|
||||
/* .rhs_type = */ GGML_TYPE_Q4_0,
|
||||
/* .op_type = */ GGML_TYPE_F32,
|
||||
},
|
||||
{
|
||||
/* SME GEMM */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
},
|
||||
/* SME GEMV */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
},
|
||||
/* .lhs_info = */ {
|
||||
/* .get_offset = */ kai_get_lhs_offset_lhs_pack_bf16p2vlx2_f32_sme,
|
||||
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_pack_bf16p2vlx2_f32_sme,
|
||||
/* .packed_size = */ kai_get_lhs_packed_size_lhs_pack_bf16p2vlx2_f32_sme,
|
||||
/* .pack_func = */ kai_run_lhs_pack_bf16p2vlx2_f32_sme,
|
||||
},
|
||||
/* .rhs_info = */ {
|
||||
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme,
|
||||
/* .pack_func = */ kai_run_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_SME,
|
||||
/* .lhs_type = */ GGML_TYPE_F32,
|
||||
/* .rhs_type = */ GGML_TYPE_F16,
|
||||
/* .op_type = */ GGML_TYPE_F32,
|
||||
},
|
||||
#endif
|
||||
#if defined(__APPLE__)
|
||||
@@ -105,6 +158,9 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_DOTPROD,
|
||||
/* .lhs_type = */ GGML_TYPE_F32,
|
||||
/* .rhs_type = */ GGML_TYPE_Q4_0,
|
||||
/* .op_type = */ GGML_TYPE_F32,
|
||||
},
|
||||
#endif
|
||||
#if defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
@@ -148,6 +204,9 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_DOTPROD | CPU_FEATURE_I8MM,
|
||||
/* .lhs_type = */ GGML_TYPE_F32,
|
||||
/* .rhs_type = */ GGML_TYPE_Q4_0,
|
||||
/* .op_type = */ GGML_TYPE_F32,
|
||||
},
|
||||
#endif
|
||||
#else
|
||||
@@ -192,6 +251,9 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_DOTPROD | CPU_FEATURE_I8MM,
|
||||
/* .lhs_type = */ GGML_TYPE_F32,
|
||||
/* .rhs_type = */ GGML_TYPE_Q4_0,
|
||||
/* .op_type = */ GGML_TYPE_F32,
|
||||
},
|
||||
#endif
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
@@ -235,12 +297,33 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_DOTPROD,
|
||||
/* .lhs_type = */ GGML_TYPE_F32,
|
||||
/* .rhs_type = */ GGML_TYPE_Q4_0,
|
||||
/* .op_type = */ GGML_TYPE_F32,
|
||||
},
|
||||
#endif
|
||||
#endif
|
||||
};
|
||||
|
||||
ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature features) {
|
||||
ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features, const ggml_tensor * tensor) {
|
||||
ggml_kleidiai_kernels * kernel = nullptr;
|
||||
|
||||
if (tensor->op == GGML_OP_MUL_MAT && tensor->src[0] != nullptr && tensor->src[1] != nullptr) {
|
||||
for (size_t i = 0; i < NELEMS(gemm_gemv_kernels); ++i) {
|
||||
if ((cpu_features & gemm_gemv_kernels[i].required_cpu) == gemm_gemv_kernels[i].required_cpu &&
|
||||
gemm_gemv_kernels[i].lhs_type == tensor->src[1]->type &&
|
||||
gemm_gemv_kernels[i].rhs_type == tensor->src[0]->type &&
|
||||
gemm_gemv_kernels[i].op_type == tensor->type) {
|
||||
kernel = &gemm_gemv_kernels[i];
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return kernel;
|
||||
}
|
||||
|
||||
ggml_kleidiai_kernels * ggml_kleidiai_select_kernels_q4_0(cpu_feature features) {
|
||||
ggml_kleidiai_kernels * kernels = nullptr;
|
||||
|
||||
for (size_t i = 0; i < NELEMS(gemm_gemv_kernels); ++i) {
|
||||
|
||||
@@ -4,6 +4,10 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <functional>
|
||||
#include <variant>
|
||||
#include "ggml.h"
|
||||
|
||||
enum cpu_feature {
|
||||
CPU_FEATURE_NONE = 0,
|
||||
CPU_FEATURE_DOTPROD = 1,
|
||||
@@ -26,26 +30,53 @@ struct kernel_info {
|
||||
size_t (*get_nr)(void);
|
||||
size_t (*get_kr)(void);
|
||||
size_t (*get_sr)(void);
|
||||
size_t (*get_lhs_offset)(size_t m_idx, size_t k, size_t bl);
|
||||
size_t (*get_rhs_packed_offset)(size_t n_idx, size_t k, size_t bl);
|
||||
std::variant<
|
||||
std::function<size_t(size_t n_idx, size_t k, size_t bl)>,
|
||||
std::function<size_t(size_t m_idx, size_t k)>
|
||||
> get_lhs_offset;
|
||||
std::variant<
|
||||
std::function<size_t(size_t n_idx, size_t k, size_t bl)>,
|
||||
std::function<size_t(size_t n_idx, size_t k)>
|
||||
> get_rhs_packed_offset;
|
||||
size_t (*get_dst_offset)(size_t m_idx, size_t n_idx, size_t stride);
|
||||
size_t (*get_dst_size)(size_t m, size_t n);
|
||||
void (*run_kernel)(size_t m, size_t n, size_t k, size_t bl, const void* lhs_packed, const void* rhs_packed,
|
||||
float* dst, size_t dst_stride_row, size_t dst_stride_col, float scalar_min, float scalar_max);
|
||||
std::variant<
|
||||
std::function<void(size_t m, size_t n, size_t k, size_t bl, const void* lhs_packed, const void* rhs_packed,
|
||||
float* dst, size_t dst_stride_row, size_t dst_stride_col, float scalar_min, float scalar_max)>,
|
||||
std::function<void(size_t m, size_t n, size_t k, const void* lhs_packed, const void* rhs_packed, void* dst, size_t dst_stride_row,
|
||||
size_t dst_stride_col, float clamp_min, float clamp_max)>
|
||||
> run_kernel;
|
||||
};
|
||||
|
||||
struct lhs_packing_info {
|
||||
size_t (*get_offset)(size_t m_idx, size_t lhs_stride);
|
||||
size_t (*get_packed_offset)(size_t m_idx, size_t k, size_t bl, size_t mr, size_t kr, size_t sr);
|
||||
size_t (*packed_size)(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr);
|
||||
void (*pack_func)(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr, size_t m_idx_start, const float* lhs,
|
||||
size_t lhs_stride, void* lhs_packed);
|
||||
std::variant<
|
||||
std::function<size_t(size_t m_idx, size_t k, size_t bl, size_t mr, size_t kr, size_t sr)>,
|
||||
std::function<size_t(size_t m_idx, size_t k, size_t mr, size_t kr, size_t sr)>
|
||||
> get_packed_offset;
|
||||
std::variant<
|
||||
std::function<size_t(size_t m_idx, size_t k, size_t bl, size_t mr, size_t kr, size_t sr)>,
|
||||
std::function<size_t(size_t m, size_t k, size_t mr, size_t kr, size_t sr)>
|
||||
> packed_size;
|
||||
std::variant<
|
||||
std::function<void(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr, size_t m_idx_start, const float* lhs,
|
||||
size_t lhs_stride, void* lhs_packed)>,
|
||||
std::function<void(size_t m, size_t k, size_t mr, size_t kr, size_t sr, size_t m_idx_start, const void* lhs, size_t lhs_stride,
|
||||
void* lhs_packed)>
|
||||
> pack_func;
|
||||
};
|
||||
|
||||
struct rhs_packing_info {
|
||||
size_t (*packed_size)(size_t n, size_t k, size_t nr, size_t kr, size_t bl);
|
||||
void (*pack_func)(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t bl, const uint8_t* rhs,
|
||||
const float* bias, void* rhs_packed, size_t extra_bytes, const struct kai_rhs_pack_qs4cxs1s0_param* params);
|
||||
std::variant<
|
||||
std::function<size_t(size_t n, size_t k, size_t nr, size_t kr, size_t bl)>,
|
||||
std::function<size_t(size_t n, size_t k)>
|
||||
> packed_size;
|
||||
std::variant<
|
||||
std::function<void(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t bl, const uint8_t* rhs,
|
||||
const float* bias, void* rhs_packed, size_t extra_bytes, const struct kai_rhs_pack_qs4cxs1s0_param* params)>,
|
||||
std::function<void(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t rhs_stride, const void* rhs,
|
||||
const void* bias, const void* scale, void* rhs_packed, size_t extra_bytes, const void* params)>
|
||||
> pack_func;
|
||||
};
|
||||
|
||||
struct ggml_kleidiai_kernels {
|
||||
@@ -55,6 +86,10 @@ struct ggml_kleidiai_kernels {
|
||||
rhs_packing_info rhs_info;
|
||||
|
||||
cpu_feature required_cpu;
|
||||
ggml_type lhs_type;
|
||||
ggml_type rhs_type;
|
||||
ggml_type op_type;
|
||||
};
|
||||
|
||||
ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features);
|
||||
ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features, const ggml_tensor * tensor);
|
||||
ggml_kleidiai_kernels * ggml_kleidiai_select_kernels_q4_0(cpu_feature features);
|
||||
|
||||
@@ -3,7 +3,9 @@
|
||||
//
|
||||
#include <arm_neon.h>
|
||||
#include <assert.h>
|
||||
#include <atomic>
|
||||
#include <cfloat>
|
||||
#include <stdexcept>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#if defined(__linux__)
|
||||
@@ -34,8 +36,9 @@
|
||||
#include "ggml-common.h"
|
||||
|
||||
struct ggml_kleidiai_context {
|
||||
cpu_feature features;
|
||||
ggml_kleidiai_kernels * kernels;
|
||||
} static ctx = { NULL };
|
||||
} static ctx = { CPU_FEATURE_NONE, NULL };
|
||||
|
||||
static void init_kleidiai_context(void) {
|
||||
|
||||
@@ -47,18 +50,18 @@ static void init_kleidiai_context(void) {
|
||||
const char *env_var = getenv("GGML_KLEIDIAI_SME");
|
||||
int sme_enabled = 0;
|
||||
|
||||
cpu_feature features = (ggml_cpu_has_dotprod() ? CPU_FEATURE_DOTPROD : CPU_FEATURE_NONE) |
|
||||
(ggml_cpu_has_matmul_int8() ? CPU_FEATURE_I8MM : CPU_FEATURE_NONE) |
|
||||
(ggml_cpu_has_sve() ? CPU_FEATURE_SVE : CPU_FEATURE_NONE);
|
||||
ctx.features = (ggml_cpu_has_dotprod() ? CPU_FEATURE_DOTPROD : CPU_FEATURE_NONE) |
|
||||
(ggml_cpu_has_matmul_int8() ? CPU_FEATURE_I8MM : CPU_FEATURE_NONE) |
|
||||
(ggml_cpu_has_sve() ? CPU_FEATURE_SVE : CPU_FEATURE_NONE);
|
||||
|
||||
if (env_var) {
|
||||
sme_enabled = atoi(env_var);
|
||||
}
|
||||
|
||||
if (sme_enabled != 0) {
|
||||
features |= ggml_cpu_has_sme() ? CPU_FEATURE_SME : CPU_FEATURE_NONE;
|
||||
ctx.features |= ggml_cpu_has_sme() ? CPU_FEATURE_SME : CPU_FEATURE_NONE;
|
||||
}
|
||||
ctx.kernels = ggml_kleidiai_select_kernels(features);
|
||||
ctx.kernels = ggml_kleidiai_select_kernels_q4_0(ctx.features);
|
||||
}
|
||||
ggml_critical_section_end();
|
||||
}
|
||||
@@ -68,95 +71,275 @@ static inline int64_t ggml_ne(const ggml_tensor * tensor, int dim) {
|
||||
return tensor->ne[dim];
|
||||
}
|
||||
|
||||
template<typename Ret, typename Variant, typename... Args>
|
||||
static Ret variant_call(const Variant & var, Args&&... args) {
|
||||
return std::visit([&](auto&& func) -> Ret {
|
||||
if constexpr (std::is_invocable_r_v<Ret, decltype(func), Args...>) {
|
||||
return func(std::forward<Args>(args)...);
|
||||
} else {
|
||||
throw std::runtime_error("Invalid function type in variant_call");
|
||||
}
|
||||
}, var);
|
||||
}
|
||||
|
||||
namespace ggml::cpu::kleidiai {
|
||||
|
||||
static size_t round_down(size_t x, size_t y) {
|
||||
return y == 0 ? x : x - (x % y);
|
||||
}
|
||||
|
||||
static void transpose_f32kxn_f16nxk(size_t n, size_t k, float * dst, const uint16_t * src, size_t rhs_stride) {
|
||||
size_t src_stride = rhs_stride / sizeof(uint16_t);
|
||||
size_t dst_stride = n;
|
||||
|
||||
for (size_t k_idx = 0; k_idx < k; ++k_idx) {
|
||||
for (size_t n_idx = 0; n_idx < n; ++n_idx) {
|
||||
uint16_t v = *(src + k_idx + n_idx * src_stride);
|
||||
*(dst + n_idx + k_idx * dst_stride) = kai_cast_f32_f16(v);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
class tensor_traits : public ggml::cpu::tensor_traits {
|
||||
bool work_size(int /* n_threads */, const struct ggml_tensor * op, size_t & size) override {
|
||||
GGML_ASSERT(ctx.kernels);
|
||||
kernel_info * kernel = op->src[1]->ne[1] == 1 ? &ctx.kernels->gemv : &ctx.kernels->gemm;
|
||||
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, op);
|
||||
GGML_ASSERT(kernels);
|
||||
kernel_info * kernel = op->src[1]->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
|
||||
|
||||
size_t k = op->src[0]->ne[0];
|
||||
size_t n = op->src[0]->ne[1];
|
||||
size_t m = op->src[1]->ne[1];
|
||||
|
||||
size_t mr = kernel->get_mr();
|
||||
size_t kr = kernel->get_kr();
|
||||
size_t sr = kernel->get_sr();
|
||||
|
||||
size = ctx.kernels->lhs_info.packed_size(m, k, QK4_0, mr, kr, sr);
|
||||
if (kernels->rhs_type == GGML_TYPE_Q4_0) {
|
||||
size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, QK4_0, mr, kr, sr);
|
||||
} else if (kernels->rhs_type == GGML_TYPE_F16) {
|
||||
size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, mr, kr, sr) +
|
||||
variant_call<size_t>(kernels->rhs_info.packed_size, n, k) +
|
||||
k * n * sizeof(float) + n * sizeof(float);
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool compute_forward(struct ggml_compute_params * params, struct ggml_tensor * dst) override {
|
||||
if (dst->op == GGML_OP_MUL_MAT) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
if (dst->src[0]->type == GGML_TYPE_Q4_0) {
|
||||
return compute_forward_q4_0(params, dst);
|
||||
} else if (dst->src[0]->type == GGML_TYPE_F16) {
|
||||
return compute_forward_kv_cache(params, dst);
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
bool compute_forward_kv_cache(ggml_compute_params * params, struct ggml_tensor * dst) {
|
||||
static std::atomic_flag first_to_arrive = ATOMIC_FLAG_INIT;
|
||||
|
||||
GGML_ASSERT(ctx.kernels);
|
||||
kernel_info * kernel = src1->ne[1] == 1 ? &ctx.kernels->gemv : &ctx.kernels->gemm;
|
||||
lhs_packing_info * lhs_info = &ctx.kernels->lhs_info;
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_ASSERT(kernel);
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst);
|
||||
GGML_ASSERT(kernels);
|
||||
|
||||
const size_t k = ne00;
|
||||
const size_t m = ne11;
|
||||
const size_t n = ne01;
|
||||
kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
|
||||
GGML_ASSERT(kernel);
|
||||
|
||||
const size_t n_step = kernel->get_n_step();
|
||||
const size_t num_n_per_thread = kai_roundup(kai_roundup(n, nth) / nth, n_step);
|
||||
const size_t n_start = ith * num_n_per_thread;
|
||||
const int nth = params->nth;
|
||||
const int ith = params->ith;
|
||||
|
||||
size_t n_to_process = num_n_per_thread;
|
||||
if ((n_start + n_to_process) > n) {
|
||||
n_to_process = n - n_start;
|
||||
const int64_t lhs_batch_size0 = ne12;
|
||||
const int64_t rhs_batch_size0 = ne02;
|
||||
const int64_t batch_size = rhs_batch_size0;
|
||||
|
||||
const int64_t r = lhs_batch_size0 / rhs_batch_size0;
|
||||
|
||||
const int64_t m = ne11 * r;
|
||||
const int64_t n = ne01;
|
||||
const int64_t k = ne00;
|
||||
|
||||
const size_t lhs_stride = src1->nb[1];
|
||||
const size_t rhs_stride = src0->nb[1];
|
||||
const size_t dst_stride = dst->nb[1];
|
||||
|
||||
const int64_t mr = static_cast<int64_t>(kernel->get_mr());
|
||||
const int64_t nr = static_cast<int64_t>(kernel->get_nr());
|
||||
const int64_t kr = static_cast<int64_t>(kernel->get_kr());
|
||||
const int64_t sr = static_cast<int64_t>(kernel->get_sr());
|
||||
|
||||
const size_t lhs_packed_size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, mr, kr, sr);
|
||||
const size_t rhs_packed_size = variant_call<size_t>(kernels->rhs_info.packed_size, n, k);
|
||||
const size_t kxn_size = k * n * sizeof(float);
|
||||
const size_t bias_size = n * sizeof(float);
|
||||
|
||||
const size_t wsize_required = lhs_packed_size + rhs_packed_size + kxn_size + bias_size;
|
||||
GGML_ASSERT(wsize_required <= params->wsize);
|
||||
|
||||
uint8_t * lhs_packed = static_cast<uint8_t *>(params->wdata);
|
||||
uint8_t * rhs_packed = lhs_packed + lhs_packed_size;
|
||||
uint8_t * rhs_kxn = rhs_packed + rhs_packed_size;
|
||||
uint8_t * bias = rhs_kxn + kxn_size;
|
||||
|
||||
for (int64_t batch_idx = 0; batch_idx < batch_size; ++batch_idx) {
|
||||
const uint8_t * lhs_batch = static_cast<const uint8_t *>(src1->data) + batch_idx * m * lhs_stride;
|
||||
const uint8_t * rhs_batch = static_cast<const uint8_t *>(src0->data) + batch_idx * n * rhs_stride;
|
||||
uint8_t * dst_batch = static_cast<uint8_t *>(dst->data) + batch_idx * m * dst_stride;
|
||||
|
||||
// LHS packing
|
||||
{
|
||||
const int64_t m_roundup_mr = kai_roundup(m, mr);
|
||||
const int64_t num_threads = KAI_MIN(m_roundup_mr / mr, nth);
|
||||
|
||||
if (ith < num_threads) {
|
||||
const int64_t num_m_per_thread0 = round_down(m_roundup_mr / num_threads, mr);
|
||||
const int64_t num_m_per_threadN_1 = m - (num_threads - 1) * num_m_per_thread0;
|
||||
|
||||
const int64_t m_start = ith * num_m_per_thread0;
|
||||
const int64_t num_m_per_thread = (ith == num_threads - 1) ? num_m_per_threadN_1 : num_m_per_thread0;
|
||||
|
||||
const size_t lhs_offset = variant_call<size_t>(kernels->gemm.get_lhs_offset, m_start, lhs_stride);
|
||||
const size_t lhs_packed_offset = variant_call<size_t>(kernels->lhs_info.get_packed_offset, m_start, k, mr, kr, sr);
|
||||
|
||||
const void * src_ptr = static_cast<const uint8_t *>(lhs_batch) + lhs_offset;
|
||||
void * dst_ptr = static_cast<uint8_t *>(lhs_packed) + lhs_packed_offset;
|
||||
|
||||
variant_call<void>(kernels->lhs_info.pack_func, num_m_per_thread, k, mr, kr, sr, 0, src_ptr, lhs_stride, dst_ptr);
|
||||
}
|
||||
}
|
||||
|
||||
const uint8_t * lhs = static_cast<const uint8_t *>(src1->data);
|
||||
uint8_t * lhs_packed = (uint8_t*)params->wdata;
|
||||
const uint8_t * rhs_packed = static_cast<const uint8_t *>(src0->data);
|
||||
// RHS packing
|
||||
if (first_to_arrive.test_and_set(std::memory_order_acquire) == false) {
|
||||
// First thread to reach this point handles RHS packing
|
||||
memset(bias, 0, n * sizeof(float));
|
||||
transpose_f32kxn_f16nxk(n, k, reinterpret_cast<float *>(rhs_kxn),
|
||||
reinterpret_cast<const uint16_t *>(rhs_batch), rhs_stride);
|
||||
|
||||
size_t mr = kernel->get_mr();
|
||||
size_t kr = kernel->get_kr();
|
||||
size_t sr = kernel->get_sr();
|
||||
|
||||
// Calculate number of columns to be processed per thread
|
||||
const size_t num_m_per_thread = kai_roundup(m, mr * nth) / nth;
|
||||
const size_t m_start = ith * num_m_per_thread;
|
||||
size_t m_to_process = num_m_per_thread;
|
||||
if ((m_start + m_to_process) > m) {
|
||||
m_to_process = m - m_start;
|
||||
}
|
||||
|
||||
if(m_start < m) {
|
||||
// Transform LHS
|
||||
const size_t src_stride = src1->nb[1];
|
||||
const float * src_ptr = reinterpret_cast<const float *>(lhs + lhs_info->get_offset(m_start, dst->src[1]->nb[1]));
|
||||
const size_t lhs_packed_offset = lhs_info->get_packed_offset(m_start, k, QK4_0, mr, kr, sr);
|
||||
void * lhs_packed_ptr = static_cast<void *>(lhs_packed + lhs_packed_offset);
|
||||
|
||||
lhs_info->pack_func(m_to_process, k, QK4_0, mr, kr, sr, 0, src_ptr, src_stride, lhs_packed_ptr);
|
||||
variant_call<void>(kernels->rhs_info.pack_func, 1, n, k, nr, kr, sr, n * sizeof(float),
|
||||
rhs_kxn, bias, nullptr, rhs_packed, 0, nullptr);
|
||||
}
|
||||
|
||||
ggml_barrier(params->threadpool);
|
||||
|
||||
// Perform the operation
|
||||
const size_t dst_stride = dst->nb[1];
|
||||
const size_t lhs_packed_offset = lhs_info->get_packed_offset(0, k, QK4_0, mr, kr, sr);
|
||||
const size_t rhs_packed_offset = kernel->get_rhs_packed_offset(n_start, k, QK4_0);
|
||||
const size_t dst_offset = kernel->get_dst_offset(0, n_start, dst_stride);
|
||||
const void * rhs_ptr = static_cast<const void *>(rhs_packed + rhs_packed_offset);
|
||||
const void* lhs_ptr = (const void*)((const char *)lhs_packed + lhs_packed_offset);
|
||||
float *dst_ptr = reinterpret_cast<float *>(static_cast<uint8_t *>(dst->data) + dst_offset);
|
||||
first_to_arrive.clear(std::memory_order_release);
|
||||
|
||||
kernel->run_kernel(m, n_to_process, k, QK4_0, lhs_ptr, rhs_ptr, dst_ptr,
|
||||
dst_stride, sizeof(float), -FLT_MAX, FLT_MAX);
|
||||
return true;
|
||||
// Perform the matmul
|
||||
{
|
||||
const int64_t m_to_process = m;
|
||||
const int64_t m_start = 0;
|
||||
|
||||
const int64_t n_step = static_cast<int64_t>(kernel->get_n_step());
|
||||
const int64_t num_threads = KAI_MIN(n / n_step, nth);
|
||||
|
||||
if (ith < num_threads) {
|
||||
const int64_t num_n_per_thread0 = round_down(n / num_threads, n_step);
|
||||
const int64_t num_n_per_threadN_1 = n - (num_threads - 1) * num_n_per_thread0;
|
||||
|
||||
const int64_t n_start = ith * num_n_per_thread0;
|
||||
const int64_t n_to_process = (ith == num_threads - 1) ? num_n_per_threadN_1 : num_n_per_thread0;
|
||||
|
||||
const size_t lhs_packed_offset = variant_call<size_t>(kernel->get_lhs_offset, m_start, k);
|
||||
const size_t rhs_packed_offset = variant_call<size_t>(kernel->get_rhs_packed_offset, n_start, k);
|
||||
const size_t dst_offset = kernel->get_dst_offset(m_start, n_start, dst_stride);
|
||||
|
||||
const void * lhs_ptr = lhs_packed + lhs_packed_offset;
|
||||
const void * rhs_ptr = rhs_packed + rhs_packed_offset;
|
||||
float * dst_ptr = reinterpret_cast<float *>(dst_batch + dst_offset);
|
||||
|
||||
variant_call<void>(kernel->run_kernel, m_to_process, n_to_process, k, lhs_ptr, rhs_ptr, dst_ptr, dst_stride, sizeof(float), -FLT_MAX, FLT_MAX);
|
||||
}
|
||||
}
|
||||
|
||||
if (batch_idx != batch_size - 1) {
|
||||
// This barrier is necessary when the batch size is larger than 1. While processing a batch,
|
||||
// the work data buffer (params->wdata) is used as temporary storage which means that only
|
||||
// a single batch can be processed at any given time. No barrier is needed for the last
|
||||
// batch since GGML inserts a barrier between the execution of every operator.
|
||||
ggml_barrier(params->threadpool);
|
||||
}
|
||||
}
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool compute_forward_q4_0(struct ggml_compute_params * params, struct ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst);
|
||||
GGML_ASSERT(kernels);
|
||||
|
||||
kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
|
||||
lhs_packing_info * lhs_info = &kernels->lhs_info;
|
||||
|
||||
GGML_ASSERT(kernel);
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const size_t k = ne00;
|
||||
const size_t m = ne11;
|
||||
const size_t n = ne01;
|
||||
|
||||
size_t mr = kernel->get_mr();
|
||||
size_t kr = kernel->get_kr();
|
||||
size_t sr = kernel->get_sr();
|
||||
|
||||
const uint8_t * lhs = static_cast<const uint8_t *>(src1->data);
|
||||
uint8_t * lhs_packed = (uint8_t*)params->wdata;
|
||||
const uint8_t * rhs_packed = static_cast<const uint8_t *>(src0->data);
|
||||
|
||||
const size_t n_step = kernel->get_n_step();
|
||||
const size_t num_n_per_thread = kai_roundup(kai_roundup(n, nth) / nth, n_step);
|
||||
const size_t n_start = ith * num_n_per_thread;
|
||||
|
||||
size_t n_to_process = num_n_per_thread;
|
||||
if ((n_start + n_to_process) > n) {
|
||||
n_to_process = n - n_start;
|
||||
}
|
||||
|
||||
// Calculate number of columns to be processed per thread
|
||||
const size_t num_m_per_thread = kai_roundup(m, mr * nth) / nth;
|
||||
const size_t m_start = ith * num_m_per_thread;
|
||||
size_t m_to_process = num_m_per_thread;
|
||||
if ((m_start + m_to_process) > m) {
|
||||
m_to_process = m - m_start;
|
||||
}
|
||||
|
||||
if (m_start < m) {
|
||||
// Transform LHS
|
||||
const size_t src_stride = src1->nb[1];
|
||||
const float * src_ptr = reinterpret_cast<const float *>(lhs + lhs_info->get_offset(m_start, dst->src[1]->nb[1]));
|
||||
const size_t lhs_packed_offset = variant_call<size_t>(lhs_info->get_packed_offset, m_start, k, QK4_0, mr, kr, sr);
|
||||
void * lhs_packed_ptr = static_cast<void *>(lhs_packed + lhs_packed_offset);
|
||||
|
||||
variant_call<void>(lhs_info->pack_func, m_to_process, k, QK4_0, mr, kr, sr, 0, src_ptr, src_stride, lhs_packed_ptr);
|
||||
}
|
||||
|
||||
ggml_barrier(params->threadpool);
|
||||
|
||||
// Perform the operation
|
||||
const size_t dst_stride = dst->nb[1];
|
||||
const size_t lhs_packed_offset = variant_call<size_t>(lhs_info->get_packed_offset, 0, k, QK4_0, mr, kr, sr);
|
||||
const size_t rhs_packed_offset = variant_call<size_t>(kernel->get_rhs_packed_offset, n_start, k, QK4_0);
|
||||
const size_t dst_offset = kernel->get_dst_offset(0, n_start, dst_stride);
|
||||
const void * rhs_ptr = static_cast<const void *>(rhs_packed + rhs_packed_offset);
|
||||
const void* lhs_ptr = (const void*)((const char *)lhs_packed + lhs_packed_offset);
|
||||
float *dst_ptr = reinterpret_cast<float *>(static_cast<uint8_t *>(dst->data) + dst_offset);
|
||||
|
||||
variant_call<void>(kernel->run_kernel, m, n_to_process, k, QK4_0, lhs_ptr, rhs_ptr, dst_ptr, dst_stride,
|
||||
sizeof(float), -FLT_MAX, FLT_MAX);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
public:
|
||||
@@ -169,13 +352,13 @@ public:
|
||||
size_t sr = ctx.kernels->gemm.get_sr();
|
||||
|
||||
#ifndef NDEBUG
|
||||
const size_t repacked_size = ctx.kernels->rhs_info.packed_size(n, k, nr, kr, QK4_0);
|
||||
const size_t repacked_size = variant_call<size_t>(ctx.kernels->rhs_info.packed_size, n, k, nr, kr, QK4_0);
|
||||
GGML_ASSERT(repacked_size <= data_size && "repacked size larger than the packed size!");
|
||||
#endif
|
||||
struct kai_rhs_pack_qs4cxs1s0_param params;
|
||||
params.lhs_zero_point = 1;
|
||||
params.rhs_zero_point = 8;
|
||||
ctx.kernels->rhs_info.pack_func(1, n, k, nr, kr, sr, QK4_0, (const uint8_t *)data, NULL, tensor->data, 0, ¶ms);
|
||||
variant_call<void>(ctx.kernels->rhs_info.pack_func, 1, n, k, nr, kr, sr, QK4_0, (const uint8_t*)data, nullptr, tensor->data, 0, ¶ms);
|
||||
|
||||
return 0;
|
||||
|
||||
@@ -189,7 +372,7 @@ static ggml::cpu::tensor_traits * get_tensor_traits(ggml_backend_buffer_t, struc
|
||||
}
|
||||
} // namespace ggml::cpu::kleidiai
|
||||
|
||||
GGML_API enum ggml_status ggml_backend_cpu_kleidiai_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
static enum ggml_status ggml_backend_cpu_kleidiai_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
tensor->extra = (void *) ggml::cpu::kleidiai::get_tensor_traits(buffer, tensor);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
@@ -238,12 +421,11 @@ static size_t ggml_backend_cpu_kleidiai_buffer_type_get_alignment(ggml_backend_b
|
||||
namespace ggml::cpu::kleidiai {
|
||||
class extra_buffer_type : ggml::cpu::extra_buffer_type {
|
||||
bool supports_op(ggml_backend_dev_t, const struct ggml_tensor * op) override {
|
||||
if ( op->op == GGML_OP_MUL_MAT &&
|
||||
op->src[0]->type == GGML_TYPE_Q4_0 &&
|
||||
op->src[0]->buffer &&
|
||||
(ggml_n_dims(op->src[0]) == 2) &&
|
||||
op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type() && ctx.kernels
|
||||
) {
|
||||
if (op->op == GGML_OP_MUL_MAT &&
|
||||
op->src[0]->type == GGML_TYPE_Q4_0 &&
|
||||
op->src[0]->buffer &&
|
||||
(ggml_n_dims(op->src[0]) == 2) &&
|
||||
op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type() && ctx.kernels) {
|
||||
if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) {
|
||||
return false;
|
||||
}
|
||||
@@ -260,6 +442,19 @@ class extra_buffer_type : ggml::cpu::extra_buffer_type {
|
||||
if (op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type()) {
|
||||
return (ggml::cpu::tensor_traits *) op->src[0]->extra;
|
||||
}
|
||||
else if (ggml_kleidiai_select_kernels(ctx.features, op) &&
|
||||
op->src[0]->op == GGML_OP_VIEW &&
|
||||
(op->src[1]->op == GGML_OP_PERMUTE || op->src[1]->op == GGML_OP_SOFT_MAX) &&
|
||||
op->src[1]->ne[1] > 1) {
|
||||
if ((op->src[0]->nb[0] != 2) ||
|
||||
(op->src[1]->nb[0] != 4) ||
|
||||
(op->src[0]->nb[1] * op->src[0]->ne[1] != op->src[0]->nb[2]) ||
|
||||
(op->src[1]->nb[1] * op->src[1]->ne[1] != op->src[1]->nb[2])) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return ggml::cpu::kleidiai::get_tensor_traits(NULL, NULL);
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
@@ -2691,6 +2691,109 @@ static void ggml_compute_forward_gelu(
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_gelu_erf
|
||||
|
||||
static void ggml_compute_forward_gelu_erf_f32(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
assert(ggml_is_contiguous_1(src0));
|
||||
assert(ggml_is_contiguous_1(dst));
|
||||
assert(ggml_are_same_shape(src0, dst));
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int nc = src0->ne[0];
|
||||
const int nr = ggml_nrows(src0);
|
||||
|
||||
// rows per thread
|
||||
const int dr = (nr + nth - 1)/nth;
|
||||
|
||||
// row range for this thread
|
||||
const int ir0 = dr*ith;
|
||||
const int ir1 = MIN(ir0 + dr, nr);
|
||||
|
||||
for (int i1 = ir0; i1 < ir1; i1++) {
|
||||
ggml_vec_gelu_erf_f32(nc,
|
||||
(float *) ((char *) dst->data + i1*( dst->nb[1])),
|
||||
(float *) ((char *) src0->data + i1*(src0->nb[1])));
|
||||
|
||||
#ifndef NDEBUG
|
||||
for (int k = 0; k < nc; k++) {
|
||||
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
|
||||
GGML_UNUSED(x);
|
||||
assert(!isnan(x));
|
||||
assert(!isinf(x));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_gelu_erf_f16(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
assert(ggml_is_contiguous_1(src0));
|
||||
assert(ggml_is_contiguous_1(dst));
|
||||
assert(ggml_are_same_shape(src0, dst));
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int nc = src0->ne[0];
|
||||
const int nr = ggml_nrows(src0);
|
||||
|
||||
// rows per thread
|
||||
const int dr = (nr + nth - 1)/nth;
|
||||
|
||||
// row range for this thread
|
||||
const int ir0 = dr*ith;
|
||||
const int ir1 = MIN(ir0 + dr, nr);
|
||||
|
||||
for (int i1 = ir0; i1 < ir1; i1++) {
|
||||
ggml_vec_gelu_erf_f16(nc,
|
||||
(ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
|
||||
(ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
|
||||
|
||||
#ifndef NDEBUG
|
||||
for (int k = 0; k < nc; k++) {
|
||||
const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
|
||||
const float v = GGML_FP16_TO_FP32(x);
|
||||
GGML_UNUSED(v);
|
||||
assert(!isnan(v));
|
||||
assert(!isinf(v));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_gelu_erf(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
ggml_compute_forward_gelu_erf_f32(params, dst);
|
||||
} break;
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
ggml_compute_forward_gelu_erf_f16(params, dst);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_gelu_quick
|
||||
|
||||
static void ggml_compute_forward_gelu_quick_f32(
|
||||
@@ -7530,39 +7633,83 @@ static void ggml_compute_forward_ssm_scan_f32(
|
||||
const int ir1 = MIN(ir0 + dr, nr);
|
||||
const int ir = ir1 - ir0;
|
||||
|
||||
for (int i3 = 0; i3 < n_s; ++i3) {
|
||||
for (int i2 = 0; i2 < n_t; ++i2) {
|
||||
const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
|
||||
const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
||||
const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
|
||||
const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
|
||||
const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
|
||||
const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
|
||||
float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
||||
float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
|
||||
#ifdef __ARM_FEATURE_SVE
|
||||
for (int i3 = 0; i3 < n_s; ++i3) {
|
||||
for (int i2 = 0; i2 < n_t; ++i2) {
|
||||
const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
|
||||
const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
||||
const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
|
||||
const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
|
||||
const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
|
||||
const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
|
||||
float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
||||
float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
|
||||
|
||||
// use the output as the source for the next token-wise iterations
|
||||
if (i2 > 0) { s0 = s; }
|
||||
// use the output as the source for the next token-wise iterations
|
||||
if (i2 > 0) { s0 = s; }
|
||||
|
||||
// d_inner
|
||||
for (int i1 = 0; i1 < ir; ++i1) {
|
||||
// ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
|
||||
float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
|
||||
float x_dt = x[i1] * dt_soft_plus;
|
||||
float sumf = 0.0f;
|
||||
// d_state
|
||||
for (int i0 = 0; i0 < nc; ++i0) {
|
||||
int i = i0 + i1*nc;
|
||||
// state = prev_state * dA + dB * x
|
||||
float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
|
||||
// y = rowwise_dotprod(state, C)
|
||||
sumf += state * C[i0];
|
||||
s[i] = state;
|
||||
// d_inner
|
||||
for (int i1 = 0; i1 < ir; ++i1) {
|
||||
float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
|
||||
float x_dt = x[i1] * dt_soft_plus;
|
||||
svfloat32_t vx_dt = GGML_F32_VEC_SET1(x_dt);
|
||||
svfloat32_t vdt_soft_plus = GGML_F32_VEC_SET1(dt_soft_plus);
|
||||
svfloat32_t r1_vector = GGML_F32_VEC_ZERO;
|
||||
|
||||
for (int64_t k = 0; k < nc; k += svcntw()) {
|
||||
svfloat32_t vA = GGML_F32_VEC_LOAD(&A[i1*nc + k]);
|
||||
svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k]);
|
||||
svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k]);
|
||||
svfloat32_t vs0 = GGML_F32_VEC_LOAD(&s0[i1*nc + k]);
|
||||
|
||||
svfloat32_t t1 = GGML_F32_VEC_MUL(vdt_soft_plus, vA);
|
||||
t1 = exp_ps_sve(svptrue_b32(), t1);
|
||||
svfloat32_t t2 = GGML_F32_VEC_MUL(vx_dt, vB);
|
||||
|
||||
vs0 = GGML_F32_VEC_FMA(vs0, t1, t2);
|
||||
r1_vector = GGML_F32_VEC_ADD(GGML_F32_VEC_MUL(vs0, vC), r1_vector);
|
||||
|
||||
GGML_F32_VEC_STORE(&s[i1*nc + k], vs0);
|
||||
}
|
||||
y[i1] = GGML_F32xt_REDUCE_ONE(r1_vector);
|
||||
}
|
||||
y[i1] = sumf;
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
for (int i3 = 0; i3 < n_s; ++i3) {
|
||||
for (int i2 = 0; i2 < n_t; ++i2) {
|
||||
const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
|
||||
const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
||||
const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
|
||||
const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
|
||||
const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
|
||||
const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
|
||||
float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
||||
float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
|
||||
|
||||
// use the output as the source for the next token-wise iterations
|
||||
if (i2 > 0) { s0 = s; }
|
||||
|
||||
// d_inner
|
||||
for (int i1 = 0; i1 < ir; ++i1) {
|
||||
// ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
|
||||
float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
|
||||
float x_dt = x[i1] * dt_soft_plus;
|
||||
float sumf = 0.0f;
|
||||
// d_state
|
||||
for (int i0 = 0; i0 < nc; ++i0) {
|
||||
int i = i0 + i1*nc;
|
||||
// state = prev_state * dA + dB * x
|
||||
float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
|
||||
// y = rowwise_dotprod(state, C)
|
||||
sumf += state * C[i0];
|
||||
s[i] = state;
|
||||
}
|
||||
y[i1] = sumf;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_compute_forward_ssm_scan(
|
||||
@@ -7749,6 +7896,10 @@ void ggml_compute_forward_unary(
|
||||
{
|
||||
ggml_compute_forward_gelu(params, dst);
|
||||
} break;
|
||||
case GGML_UNARY_OP_GELU_ERF:
|
||||
{
|
||||
ggml_compute_forward_gelu_erf(params, dst);
|
||||
} break;
|
||||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
{
|
||||
ggml_compute_forward_gelu_quick(params, dst);
|
||||
@@ -7963,6 +8114,14 @@ static void ggml_compute_forward_rwkv_wkv6_f32(
|
||||
#define GGML_F32X_MUL GGML_F32x16_MUL
|
||||
#define GGML_F32X_FMA GGML_F32x16_FMA
|
||||
#define WKV_VECTOR_SIZE 16
|
||||
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
|
||||
#define GGML_F32X GGML_F32xt
|
||||
#define GGML_F32X_SET1 GGML_F32xt_SET1
|
||||
#define GGML_F32X_LOAD GGML_F32xt_LOAD
|
||||
#define GGML_F32X_STORE GGML_F32xt_STORE
|
||||
#define GGML_F32X_MUL GGML_F32xt_MUL
|
||||
#define GGML_F32X_FMA GGML_F32xt_FMA
|
||||
#define WKV_VECTOR_SIZE 8
|
||||
#elif defined(__ARM_NEON) && defined(__aarch64__)
|
||||
#define GGML_F32X GGML_F32x4
|
||||
#define GGML_F32X_SET1 GGML_F32x4_SET1
|
||||
@@ -7973,8 +8132,14 @@ static void ggml_compute_forward_rwkv_wkv6_f32(
|
||||
#define WKV_VECTOR_SIZE 4
|
||||
#endif
|
||||
|
||||
int wkv_vector_size;
|
||||
#ifdef WKV_VECTOR_SIZE
|
||||
const int64_t vec_count = head_size / WKV_VECTOR_SIZE;
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
wkv_vector_size = svcntw();
|
||||
#else
|
||||
wkv_vector_size = WKV_VECTOR_SIZE;
|
||||
#endif
|
||||
const int64_t vec_count = head_size / wkv_vector_size;
|
||||
|
||||
for (int64_t t = 0; t < T; t++) {
|
||||
size_t t_offset = t * t_stride;
|
||||
@@ -8004,7 +8169,7 @@ static void ggml_compute_forward_rwkv_wkv6_f32(
|
||||
GGML_F32X time_decay_vec = GGML_F32X_SET1(time_decay_val);
|
||||
|
||||
for (int64_t j = 0; j < vec_count; j++) {
|
||||
size_t base_j = j * WKV_VECTOR_SIZE;
|
||||
size_t base_j = j * wkv_vector_size;
|
||||
size_t t_h_j_offset = t_h_offset + base_j;
|
||||
size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
|
||||
|
||||
@@ -8029,7 +8194,7 @@ static void ggml_compute_forward_rwkv_wkv6_f32(
|
||||
}
|
||||
|
||||
// Handle remaining elements, this will not be used.
|
||||
for (int64_t j = vec_count * WKV_VECTOR_SIZE; j < head_size; j++) {
|
||||
for (int64_t j = vec_count * wkv_vector_size; j < head_size; j++) {
|
||||
size_t t_h_j_offset = t_h_offset + j;
|
||||
size_t h_2d_i_j_offset = h_2d_i_offset + j;
|
||||
float v_val = v[t_h_j_offset];
|
||||
@@ -8165,6 +8330,14 @@ static void ggml_compute_forward_gla_f32(
|
||||
#define GGML_F32X_MUL GGML_F32x16_MUL
|
||||
#define GGML_F32X_FMA GGML_F32x16_FMA
|
||||
#define GLA_VECTOR_SIZE 16
|
||||
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
|
||||
#define GGML_F32X GGML_F32xt
|
||||
#define GGML_F32X_SET1 GGML_F32xt_SET1
|
||||
#define GGML_F32X_LOAD GGML_F32xt_LOAD
|
||||
#define GGML_F32X_STORE GGML_F32xt_STORE
|
||||
#define GGML_F32X_MUL GGML_F32xt_MUL
|
||||
#define GGML_F32X_FMA GGML_F32xt_FMA
|
||||
#define GLA_VECTOR_SIZE 8
|
||||
#elif defined(__ARM_NEON) && defined(__aarch64__)
|
||||
#define GGML_F32X GGML_F32x4
|
||||
#define GGML_F32X_SET1 GGML_F32x4_SET1
|
||||
@@ -8175,8 +8348,14 @@ static void ggml_compute_forward_gla_f32(
|
||||
#define GLA_VECTOR_SIZE 4
|
||||
#endif
|
||||
|
||||
int gla_vector_size;
|
||||
#ifdef GLA_VECTOR_SIZE
|
||||
const int64_t vec_count = head_size / GLA_VECTOR_SIZE;
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
gla_vector_size = svcntw();
|
||||
#else
|
||||
gla_vector_size = GLA_VECTOR_SIZE;
|
||||
#endif
|
||||
const int64_t vec_count = head_size / gla_vector_size;
|
||||
|
||||
for (int64_t t = 0; t < T; t++) {
|
||||
size_t t_offset = t * t_stride;
|
||||
@@ -8203,7 +8382,7 @@ static void ggml_compute_forward_gla_f32(
|
||||
GGML_F32X g_vec = GGML_F32X_SET1(g_val);
|
||||
|
||||
for (int64_t j = 0; j < vec_count; j++) {
|
||||
size_t base_j = j * GLA_VECTOR_SIZE;
|
||||
size_t base_j = j * gla_vector_size;
|
||||
size_t t_h_j_offset = t_h_offset + base_j;
|
||||
size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
|
||||
|
||||
@@ -8227,7 +8406,7 @@ static void ggml_compute_forward_gla_f32(
|
||||
}
|
||||
|
||||
// Handle remaining elements, this will not be used.
|
||||
for (int64_t j = vec_count * GLA_VECTOR_SIZE; j < head_size; j++) {
|
||||
for (int64_t j = vec_count * gla_vector_size; j < head_size; j++) {
|
||||
size_t t_h_j_offset = t_h_offset + j;
|
||||
size_t h_2d_i_j_offset = h_2d_i_offset + j;
|
||||
float v_val = v[t_h_j_offset];
|
||||
@@ -8336,83 +8515,126 @@ static void ggml_compute_forward_rwkv_wkv7_f32(
|
||||
int64_t h_stride_2d = head_size * head_size;
|
||||
|
||||
#if defined(GGML_SIMD)
|
||||
for (int64_t t = 0; t < T; t++) {
|
||||
int64_t t_offset = t * t_stride;
|
||||
int64_t state_offset = head_size * C * (t / (T / n_seqs));
|
||||
float * state_cur = state + state_offset;
|
||||
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
// scalar Route to scalar implementation //TODO: Write SVE code
|
||||
for (int64_t t = 0; t < T; t++) {
|
||||
int64_t t_offset = t * t_stride;
|
||||
int64_t state_offset = head_size * C * (t / (T / n_seqs));
|
||||
float * state_cur = state + state_offset;
|
||||
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
|
||||
|
||||
for (int64_t h = h_start; h < h_end; h++) {
|
||||
int64_t h_offset = h * h_stride;
|
||||
int64_t t_h_offset = t_offset + h_offset;
|
||||
int64_t h_2d_offset = h * h_stride_2d;
|
||||
for (int64_t h = h_start; h < h_end; h++) {
|
||||
int64_t h_offset = h * h_stride;
|
||||
int64_t t_h_offset = t_offset + h_offset;
|
||||
int64_t h_2d_offset = h * h_stride_2d;
|
||||
|
||||
for (int64_t ii = 0; ii < head_size; ii++) {
|
||||
int64_t t_h_i_offset = t_h_offset + ii;
|
||||
int64_t h_2d_i_offset = h_2d_offset + ii * h_stride;
|
||||
for (int64_t i = 0; i < head_size; i++) {
|
||||
int64_t t_h_i_offset = t_h_offset + i;
|
||||
int64_t h_2d_i_offset = h_2d_offset + i * h_stride;
|
||||
|
||||
GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]);
|
||||
float v_val = v[t_h_i_offset];
|
||||
|
||||
float sa = 0;
|
||||
{
|
||||
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
|
||||
GGML_F32_VEC ax[GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) {
|
||||
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
|
||||
ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]);
|
||||
ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]);
|
||||
sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]);
|
||||
}
|
||||
float sa = 0, result = 0;
|
||||
for (int64_t j = 0; j < head_size; j++) {
|
||||
sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j];
|
||||
}
|
||||
GGML_F32_VEC_REDUCE(sa, sum);
|
||||
}
|
||||
|
||||
GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa);
|
||||
for (int64_t j = 0; j < head_size; j++) {
|
||||
int64_t t_h_j_offset = t_h_offset + j;
|
||||
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
|
||||
|
||||
int64_t j = 0;
|
||||
GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
|
||||
for (; j < head_size; j += GGML_F32_STEP) {
|
||||
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
|
||||
int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR;
|
||||
int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR;
|
||||
|
||||
GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]);
|
||||
GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]);
|
||||
GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]);
|
||||
GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]);
|
||||
|
||||
k_vec = GGML_F32_VEC_MUL(v_vec, k_vec);
|
||||
|
||||
GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]);
|
||||
// kv + s * decay + sa * b
|
||||
state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec);
|
||||
state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec);
|
||||
GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec);
|
||||
|
||||
result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec);
|
||||
float r_val = r[t_h_j_offset];
|
||||
float w_val = w[t_h_j_offset];
|
||||
float k_val = k[t_h_j_offset];
|
||||
float b_val = b[t_h_j_offset];
|
||||
float kv_val = v_val * k_val;
|
||||
float prev_state_val = state_prev[h_2d_i_j_offset];
|
||||
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
|
||||
result += state_cur[h_2d_i_j_offset] * r_val;
|
||||
}
|
||||
}
|
||||
GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec);
|
||||
|
||||
// There shouldn't be left-overs though.
|
||||
for (; j < head_size; j++) {
|
||||
int64_t t_h_j_offset = t_h_offset + j;
|
||||
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
|
||||
|
||||
float r_val = r[t_h_j_offset];
|
||||
float w_val = w[t_h_j_offset];
|
||||
float k_val = k[t_h_j_offset];
|
||||
float b_val = b[t_h_j_offset];
|
||||
float kv_val = v[t_h_i_offset] * k_val;
|
||||
|
||||
float prev_state_val = state_prev[h_2d_i_j_offset];
|
||||
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
|
||||
dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val;
|
||||
dst_data[t_h_i_offset] = result;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
for (int64_t t = 0; t < T; t++) {
|
||||
int64_t t_offset = t * t_stride;
|
||||
int64_t state_offset = head_size * C * (t / (T / n_seqs));
|
||||
float * state_cur = state + state_offset;
|
||||
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
|
||||
|
||||
for (int64_t h = h_start; h < h_end; h++) {
|
||||
int64_t h_offset = h * h_stride;
|
||||
int64_t t_h_offset = t_offset + h_offset;
|
||||
int64_t h_2d_offset = h * h_stride_2d;
|
||||
|
||||
for (int64_t ii = 0; ii < head_size; ii++) {
|
||||
int64_t t_h_i_offset = t_h_offset + ii;
|
||||
int64_t h_2d_i_offset = h_2d_offset + ii * h_stride;
|
||||
|
||||
GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]);
|
||||
|
||||
float sa = 0;
|
||||
{
|
||||
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
|
||||
GGML_F32_VEC ax[GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) {
|
||||
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
|
||||
ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]);
|
||||
ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]);
|
||||
sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]);
|
||||
}
|
||||
}
|
||||
GGML_F32_VEC_REDUCE(sa, sum);
|
||||
}
|
||||
|
||||
GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa);
|
||||
|
||||
int64_t j = 0;
|
||||
GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
|
||||
for (; j < head_size; j += GGML_F32_STEP) {
|
||||
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
|
||||
int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR;
|
||||
int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR;
|
||||
|
||||
GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]);
|
||||
GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]);
|
||||
GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]);
|
||||
GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]);
|
||||
|
||||
k_vec = GGML_F32_VEC_MUL(v_vec, k_vec);
|
||||
|
||||
GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]);
|
||||
// kv + s * decay + sa * b
|
||||
state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec);
|
||||
state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec);
|
||||
GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec);
|
||||
|
||||
result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec);
|
||||
}
|
||||
}
|
||||
GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec);
|
||||
|
||||
// There shouldn't be left-overs though.
|
||||
for (; j < head_size; j++) {
|
||||
int64_t t_h_j_offset = t_h_offset + j;
|
||||
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
|
||||
|
||||
float r_val = r[t_h_j_offset];
|
||||
float w_val = w[t_h_j_offset];
|
||||
float k_val = k[t_h_j_offset];
|
||||
float b_val = b[t_h_j_offset];
|
||||
float kv_val = v[t_h_i_offset] * k_val;
|
||||
|
||||
float prev_state_val = state_prev[h_2d_i_j_offset];
|
||||
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
|
||||
dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
for (int64_t t = 0; t < T; t++) {
|
||||
int64_t t_offset = t * t_stride;
|
||||
|
||||
@@ -17,7 +17,123 @@
|
||||
// number of elements to fit in a single register
|
||||
//
|
||||
|
||||
#if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
|
||||
#if defined(__ARM_FEATURE_SVE) && defined(__ARM_FEATURE_FMA)
|
||||
|
||||
#define GGML_SIMD
|
||||
|
||||
// F32 SVE
|
||||
#define GGML_F32_EPR 8
|
||||
#define DEFAULT_PG svptrue_b32()
|
||||
|
||||
#define GGML_F32xt svfloat32_t
|
||||
#define GGML_F32xt_ZERO svdup_n_f32(0.0f)
|
||||
#define GGML_F32xt_SET1(x) svdup_n_f32(x)
|
||||
#define GGML_F32xt_LOAD_IMPL(pg, a, ...) svld1_f32(pg, a)
|
||||
#define GGML_F32xt_LOAD(...) GGML_F32xt_LOAD_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_STORE_IMPL(pg,a,b) svst1_f32(pg, a, b)
|
||||
#define GGML_F32xt_STORE(...) GGML_F32xt_STORE_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_FMA_IMPL(pg, a, b, c) svmad_f32_m(pg, a, b, c)
|
||||
#define GGML_F32xt_FMA(...) GGML_F32xt_FMA_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_ADD_IMPL(pg, a, b) svadd_f32_m(pg, a, b)
|
||||
#define GGML_F32xt_ADD(...) GGML_F32xt_ADD_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_MUL_IMPL(pg, a, b) svmul_f32_m(pg, a, b)
|
||||
#define GGML_F32xt_MUL(...) GGML_F32xt_MUL_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_REDUCE_ONE_IMPL(pg, a) svaddv(pg, a)
|
||||
#define GGML_F32xt_REDUCE_ONE(...) GGML_F32xt_REDUCE_ONE_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_REDUCE_IMPL(pg, res, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8) \
|
||||
{ \
|
||||
sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum2); \
|
||||
sum3 = svadd_f32_m(DEFAULT_PG, sum3, sum4); \
|
||||
sum5 = svadd_f32_m(DEFAULT_PG, sum5, sum6); \
|
||||
sum7 = svadd_f32_m(DEFAULT_PG, sum7, sum8); \
|
||||
sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum3); \
|
||||
sum5 = svadd_f32_m(DEFAULT_PG, sum5, sum7); \
|
||||
sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum5); \
|
||||
(res) = (ggml_float) GGML_F32xt_REDUCE_ONE(sum1); \
|
||||
}
|
||||
#define GGML_F32xt_REDUCE(...) GGML_F32xt_REDUCE_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
|
||||
#define GGML_F32_VEC GGML_F32xt
|
||||
#define GGML_F32_VEC_ZERO GGML_F32xt_ZERO
|
||||
#define GGML_F32_VEC_SET1 GGML_F32xt_SET1
|
||||
#define GGML_F32_VEC_LOAD GGML_F32xt_LOAD
|
||||
#define GGML_F32_VEC_STORE GGML_F32xt_STORE
|
||||
#define GGML_F32_VEC_FMA GGML_F32xt_FMA
|
||||
#define GGML_F32_VEC_ADD GGML_F32xt_ADD
|
||||
#define GGML_F32_VEC_MUL GGML_F32xt_MUL
|
||||
#define GGML_F32_VEC_REDUCE GGML_F32xt_REDUCE
|
||||
|
||||
// F16 NEON
|
||||
|
||||
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
|
||||
#define GGML_F16_STEP 32
|
||||
#define GGML_F16_EPR 8
|
||||
|
||||
#define GGML_F16x8 float16x8_t
|
||||
#define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
|
||||
#define GGML_F16x8_SET1(x) vdupq_n_f16(x)
|
||||
#define GGML_F16x8_LOAD(x) vld1q_f16((const __fp16 *)(x))
|
||||
#define GGML_F16x8_STORE vst1q_f16
|
||||
#define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
|
||||
#define GGML_F16x8_ADD vaddq_f16
|
||||
#define GGML_F16x8_MUL vmulq_f16
|
||||
#define GGML_F16x8_REDUCE(res, x) \
|
||||
do { \
|
||||
int offset = GGML_F16_ARR >> 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
|
||||
} \
|
||||
const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 ((x)[0])); \
|
||||
const float32x4_t t1 = vcvt_f32_f16(vget_high_f16((x)[0])); \
|
||||
(res) = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
|
||||
} while (0)
|
||||
|
||||
#define GGML_F16_VEC GGML_F16x8
|
||||
#define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
|
||||
#define GGML_F16_VEC_SET1 GGML_F16x8_SET1
|
||||
#define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
|
||||
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((__fp16 *)(p), (r)[i])
|
||||
#define GGML_F16_VEC_FMA GGML_F16x8_FMA
|
||||
#define GGML_F16_VEC_ADD GGML_F16x8_ADD
|
||||
#define GGML_F16_VEC_MUL GGML_F16x8_MUL
|
||||
#define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
|
||||
#else
|
||||
// if FP16 vector arithmetic is not supported, we use FP32 instead
|
||||
// and take advantage of the vcvt_ functions to convert to/from FP16
|
||||
|
||||
#define GGML_F16_STEP 16
|
||||
#define GGML_F16_EPR 4
|
||||
|
||||
#define GGML_F32Cx4 float32x4_t
|
||||
#define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
|
||||
#define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
|
||||
#define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const __fp16 *)(x)))
|
||||
#define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
|
||||
#define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
|
||||
#define GGML_F32Cx4_ADD vaddq_f32
|
||||
#define GGML_F32Cx4_MUL vmulq_f32
|
||||
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
|
||||
|
||||
#define GGML_F16_VEC GGML_F32Cx4
|
||||
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
|
||||
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
|
||||
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
|
||||
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((__fp16 *)(p), r[i])
|
||||
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
|
||||
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
|
||||
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
|
||||
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
|
||||
#endif
|
||||
|
||||
#elif defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
|
||||
|
||||
#define GGML_SIMD
|
||||
|
||||
|
||||
@@ -17,29 +17,98 @@ void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * G
|
||||
|
||||
#if defined(GGML_SIMD)
|
||||
float sumf = 0.0f;
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
const int sve_register_length = ggml_cpu_get_sve_cnt() * 8;
|
||||
const int ggml_f32_epr = sve_register_length / 32;//8;//svcntw(); // SVE128:4, SVE256:8, SVE512:16
|
||||
const int ggml_f32_step = 8 * ggml_f32_epr; // choose 8 SVE registers
|
||||
|
||||
GGML_F32_VEC ax[GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
const int np = (n & ~(ggml_f32_step - 1));
|
||||
svfloat32_t sum1 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum2 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum3 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum4 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum5 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum6 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum7 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum8 = svdup_n_f32(0.0f);
|
||||
svfloat32_t ax1,ax2,ax3,ax4,ax5,ax6,ax7,ax8;
|
||||
svfloat32_t ay1,ay2,ay3,ay4,ay5,ay6,ay7,ay8;
|
||||
for (int i = 0; i < np; i += ggml_f32_step) {
|
||||
ax1 = GGML_F32_VEC_LOAD(x + i);
|
||||
ay1 = GGML_F32_VEC_LOAD(y + i);
|
||||
sum1 = GGML_F32_VEC_FMA(ax1, ay1, sum1);
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
ax2 = GGML_F32_VEC_LOAD(x + i + 1*ggml_f32_epr);
|
||||
ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr);
|
||||
sum2 = GGML_F32_VEC_FMA(ax2, ay2, sum2);
|
||||
|
||||
sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
|
||||
ax3 = GGML_F32_VEC_LOAD(x + i + 2*ggml_f32_epr);
|
||||
ay3 = GGML_F32_VEC_LOAD(y + i + 2*ggml_f32_epr);
|
||||
sum3 = GGML_F32_VEC_FMA(ax3, ay3, sum3);
|
||||
|
||||
ax4 = GGML_F32_VEC_LOAD(x + i + 3*ggml_f32_epr);
|
||||
ay4 = GGML_F32_VEC_LOAD(y + i + 3*ggml_f32_epr);
|
||||
sum4 = GGML_F32_VEC_FMA(ax4, ay4, sum4);
|
||||
|
||||
ax5 = GGML_F32_VEC_LOAD(x + i + 4*ggml_f32_epr);
|
||||
ay5 = GGML_F32_VEC_LOAD(y + i + 4*ggml_f32_epr);
|
||||
sum5 = GGML_F32_VEC_FMA(ax5, ay5, sum5);
|
||||
|
||||
ax6 = GGML_F32_VEC_LOAD(x + i + 5*ggml_f32_epr);
|
||||
ay6 = GGML_F32_VEC_LOAD(y + i + 5*ggml_f32_epr);
|
||||
sum6 = GGML_F32_VEC_FMA(ax6, ay6, sum6);
|
||||
|
||||
ax7 = GGML_F32_VEC_LOAD(x + i + 6*ggml_f32_epr);
|
||||
ay7 = GGML_F32_VEC_LOAD(y + i + 6*ggml_f32_epr);
|
||||
sum7 = GGML_F32_VEC_FMA(ax7, ay7, sum7);
|
||||
|
||||
ax8 = GGML_F32_VEC_LOAD(x + i + 7*ggml_f32_epr);
|
||||
ay8 = GGML_F32_VEC_LOAD(y + i + 7*ggml_f32_epr);
|
||||
sum8 = GGML_F32_VEC_FMA(ax8, ay8, sum8);
|
||||
}
|
||||
}
|
||||
// leftovers
|
||||
// Since 8 unrolls are done in above loop, leftovers lie in range [0, ggml_f32_step] which is handled in below loop
|
||||
const int np2 = (n & ~(ggml_f32_epr - 1));
|
||||
for (int i = np; i < np2; i += ggml_f32_epr) {
|
||||
ax1 = GGML_F32_VEC_LOAD(x + i);
|
||||
ay1 = GGML_F32_VEC_LOAD(y + i);
|
||||
sum1 = GGML_F32_VEC_FMA(ax1, ay1, sum1);
|
||||
}
|
||||
// maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only
|
||||
if (np2 < n) {
|
||||
svbool_t pg = svwhilelt_b32(np2, n);
|
||||
ax1 = svld1_f32(pg, x + np2);
|
||||
ay1 = svld1_f32(pg, y + np2);
|
||||
sum1 = svmad_f32_m(pg, ax1, ay1, sum1);
|
||||
}
|
||||
// reduce sum1,sum2 to sum1
|
||||
GGML_F32_VEC_REDUCE(sumf, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8);
|
||||
#else
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
// reduce sum0..sum3 to sum0
|
||||
GGML_F32_VEC_REDUCE(sumf, sum);
|
||||
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
sumf += x[i]*y[i];
|
||||
}
|
||||
GGML_F32_VEC ax[GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
|
||||
sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
|
||||
}
|
||||
}
|
||||
|
||||
// reduce sum0..sum3 to sum0
|
||||
GGML_F32_VEC_REDUCE(sumf, sum);
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
sumf += x[i]*y[i];
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
// scalar
|
||||
ggml_float sumf = 0.0;
|
||||
|
||||
@@ -5,6 +5,7 @@
|
||||
#include "ggml-impl.h"
|
||||
#include "simd-mappings.h"
|
||||
#include "ggml.h"
|
||||
#include "ggml-cpu.h"
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE)
|
||||
#include <Accelerate/Accelerate.h>
|
||||
@@ -148,27 +149,108 @@ inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * GG
|
||||
|
||||
inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const float * GGML_RESTRICT x, const float v) {
|
||||
#if defined(GGML_SIMD)
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
|
||||
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
|
||||
const int sve_register_length = ggml_cpu_get_sve_cnt() * 8;
|
||||
const int ggml_f32_epr = sve_register_length / 32;//8;//svcntw(); // SVE128:4, SVE256:8, SVE512:16
|
||||
const int ggml_f32_step = 8 * ggml_f32_epr; // choose 8 SVE registers
|
||||
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
|
||||
|
||||
GGML_F32_VEC ax[GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
const int np = (n & ~(ggml_f32_step - 1));
|
||||
svfloat32_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8;
|
||||
svfloat32_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8;
|
||||
for (int i = 0; i < np; i += ggml_f32_step) {
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
|
||||
ax1 = GGML_F32_VEC_LOAD(x + i);
|
||||
ay1 = GGML_F32_VEC_LOAD(y + i);
|
||||
ay1 = GGML_F32_VEC_FMA(ax1, vx, ay1);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
|
||||
GGML_F32_VEC_STORE(y + i, ay1);
|
||||
|
||||
ax2 = GGML_F32_VEC_LOAD(x + i + 1*ggml_f32_epr);
|
||||
ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr);
|
||||
ay2 = GGML_F32_VEC_FMA(ax2, vx, ay2);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 1*ggml_f32_epr, ay2);
|
||||
|
||||
ax3 = GGML_F32_VEC_LOAD(x + i + 2*ggml_f32_epr);
|
||||
ay3 = GGML_F32_VEC_LOAD(y + i + 2*ggml_f32_epr);
|
||||
ay3 = GGML_F32_VEC_FMA(ax3, vx, ay3);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 2*ggml_f32_epr, ay3);
|
||||
|
||||
ax4 = GGML_F32_VEC_LOAD(x + i + 3*ggml_f32_epr);
|
||||
ay4 = GGML_F32_VEC_LOAD(y + i + 3*ggml_f32_epr);
|
||||
ay4 = GGML_F32_VEC_FMA(ax4, vx, ay4);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 3*ggml_f32_epr, ay4);
|
||||
|
||||
ax5 = GGML_F32_VEC_LOAD(x + i + 4*ggml_f32_epr);
|
||||
ay5 = GGML_F32_VEC_LOAD(y + i + 4*ggml_f32_epr);
|
||||
ay5 = GGML_F32_VEC_FMA(ax5, vx, ay5);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 4*ggml_f32_epr, ay5);
|
||||
|
||||
ax6 = GGML_F32_VEC_LOAD(x + i + 5*ggml_f32_epr);
|
||||
ay6 = GGML_F32_VEC_LOAD(y + i + 5*ggml_f32_epr);
|
||||
ay6 = GGML_F32_VEC_FMA(ax6, vx, ay6);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 5*ggml_f32_epr, ay6);
|
||||
|
||||
ax7 = GGML_F32_VEC_LOAD(x + i + 6*ggml_f32_epr);
|
||||
ay7 = GGML_F32_VEC_LOAD(y + i + 6*ggml_f32_epr);
|
||||
ay7 = GGML_F32_VEC_FMA(ax7, vx, ay7);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 6*ggml_f32_epr, ay7);
|
||||
|
||||
ax8 = GGML_F32_VEC_LOAD(x + i + 7*ggml_f32_epr);
|
||||
ay8 = GGML_F32_VEC_LOAD(y + i + 7*ggml_f32_epr);
|
||||
ay8 = GGML_F32_VEC_FMA(ax8, vx, ay8);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 7*ggml_f32_epr, ay8);
|
||||
}
|
||||
}
|
||||
// leftovers
|
||||
// Since 8 unrolls are done in above loop, leftovers lie in range [0, ggml_f32_step] which is handled in below loop
|
||||
const int np2 = (n & ~(ggml_f32_epr - 1));
|
||||
for (int i = np; i < np2; i += ggml_f32_epr) {
|
||||
ax1 = GGML_F32_VEC_LOAD(x + i);
|
||||
ay1 = GGML_F32_VEC_LOAD(y + i);
|
||||
ay1 = GGML_F32_VEC_FMA(ax1, vx, ay1);
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] += x[i]*v;
|
||||
}
|
||||
GGML_F32_VEC_STORE(y + i, ay1);
|
||||
}
|
||||
// maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only
|
||||
if (np2 < n) {
|
||||
svbool_t pg =svwhilelt_b32(np2, n);
|
||||
ax1 = svld1_f32(pg, x + np2);
|
||||
ay1 = svld1_f32(pg, y + np2);
|
||||
ay1 = svmad_f32_m(pg, ax1, vx, ay1);
|
||||
|
||||
svst1_f32(pg, y + np2, ay1);
|
||||
}
|
||||
#else
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
|
||||
|
||||
GGML_F32_VEC ax[GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
|
||||
}
|
||||
}
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] += x[i]*v;
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
// scalar
|
||||
for (int i = 0; i < n; ++i) {
|
||||
@@ -220,36 +302,45 @@ inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int
|
||||
}
|
||||
|
||||
#if defined(GGML_SIMD)
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
|
||||
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
vx[k] = GGML_F32_VEC_SET1(v[k][0]);
|
||||
}
|
||||
|
||||
GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
// scalar Route to scalar implementation //TODO: Write SVE code
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] += x[k][i]*v[k][0];
|
||||
}
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
|
||||
}
|
||||
}
|
||||
#else
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
// leftovers
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] += x[k][i]*v[k][0];
|
||||
GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
|
||||
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
vx[k] = GGML_F32_VEC_SET1(v[k][0]);
|
||||
}
|
||||
}
|
||||
|
||||
GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
|
||||
}
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
|
||||
}
|
||||
}
|
||||
|
||||
// leftovers
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] += x[k][i]*v[k][0];
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
// scalar
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
@@ -265,25 +356,53 @@ inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
|
||||
#if defined(GGML_USE_ACCELERATE)
|
||||
vDSP_vsmul(y, 1, &v, y, 1, n);
|
||||
#elif defined(GGML_SIMD)
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
const int sve_register_length = ggml_cpu_get_sve_cnt() * 8;
|
||||
const int ggml_f32_epr = sve_register_length / 32;//8;//svcntw(); // SVE128:4, SVE256:8, SVE512:16
|
||||
const int ggml_f32_step = 2 * ggml_f32_epr;
|
||||
|
||||
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
|
||||
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
|
||||
const int np = (n & ~(ggml_f32_step - 1));
|
||||
svfloat32_t ay1;
|
||||
svfloat32_t ay2;
|
||||
for (int i = 0; i < np; i += ggml_f32_step) {
|
||||
ay1 = GGML_F32_VEC_LOAD(y + i);
|
||||
ay1 = GGML_F32_VEC_MUL(ay1, vx);
|
||||
GGML_F32_VEC_STORE(y + i, ay1);
|
||||
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
|
||||
ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr);
|
||||
ay2 = GGML_F32_VEC_MUL(ay2, vx);
|
||||
GGML_F32_VEC_STORE(y + i + 1*ggml_f32_epr, ay2);
|
||||
}
|
||||
}
|
||||
// leftovers
|
||||
// maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only
|
||||
if (np < n) {
|
||||
svbool_t pg = svwhilelt_b32(np, n);
|
||||
ay1 = svld1_f32(pg, y + np);
|
||||
ay1 = svmul_f32_m(pg, ay1, vx);
|
||||
svst1_f32(pg, y + np, ay1);
|
||||
}
|
||||
#else
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] *= v;
|
||||
}
|
||||
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
|
||||
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
|
||||
}
|
||||
}
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] *= v;
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
// scalar
|
||||
for (int i = 0; i < n; ++i) {
|
||||
@@ -428,6 +547,7 @@ inline static void ggml_vec_exp_f16 (const int n, ggml_fp16_t * y, const ggml_fp
|
||||
static const float GELU_COEF_A = 0.044715f;
|
||||
static const float GELU_QUICK_COEF = -1.702f;
|
||||
static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
||||
static const float SQRT_2_INV = 0.70710678118654752440084436210484f;
|
||||
|
||||
inline static float ggml_gelu_f32(float x) {
|
||||
return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
|
||||
@@ -440,6 +560,14 @@ inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp
|
||||
}
|
||||
}
|
||||
|
||||
inline static void ggml_vec_gelu_erf_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
float xi = GGML_FP16_TO_FP32(x[i]);
|
||||
float res = 0.5f*xi*(1.0f + erff(xi*SQRT_2_INV));
|
||||
y[i] = GGML_FP32_TO_FP16(res);
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GGML_GELU_FP16
|
||||
inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
|
||||
uint16_t t;
|
||||
@@ -463,6 +591,13 @@ inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
|
||||
}
|
||||
#endif
|
||||
|
||||
inline static void ggml_vec_gelu_erf_f32(const int n, float * y, const float * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
float xi = x[i];
|
||||
y[i] = 0.5f*xi*(1.0f + erff(xi*SQRT_2_INV));
|
||||
}
|
||||
}
|
||||
|
||||
inline static float ggml_gelu_quick_f32(float x) {
|
||||
return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
|
||||
}
|
||||
@@ -512,6 +647,42 @@ inline static ggml_fp16_t ggml_silu_f16(ggml_fp16_t x) {
|
||||
#error "ref: https://github.com/ggml-org/llama.cpp/pull/7154#issuecomment-2143844461"
|
||||
#endif
|
||||
|
||||
/* Below function was borrowed from the GitHub repository:
|
||||
https://github.com/openvinotoolkit/openvino/blob/master/src/plugins/intel_cpu/src/nodes/kernels/scaled_attn/common.hpp */
|
||||
#if defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
|
||||
inline static svfloat32_t exp_ps_sve(svbool_t pg, svfloat32_t src) {
|
||||
// Constants
|
||||
const svfloat32_t log2_e = svdup_n_f32(1.4426950409f);
|
||||
const svfloat32_t ln2 = svdup_n_f32(0.6931473921f);
|
||||
const svfloat32_t half_ln2_sq = svdup_n_f32(0.2413862043f);
|
||||
const svuint32_t not_mask17 = svdup_n_u32(~((1u << 17) - 1));
|
||||
const svfloat32_t one = svdup_n_f32(1.0f);
|
||||
const svfloat32_t inactive1 = svdup_n_f32(0.0f);
|
||||
const svint32_t inactive2 = svdup_n_s32(0);
|
||||
|
||||
// Algorithm starts here
|
||||
svfloat32_t t0 = svmul_f32_m(pg, src, log2_e); // y = x * log2(e)
|
||||
svfloat32_t t1 = svrintm_f32_m(inactive1, pg, t0); // rount to int (float)
|
||||
svint32_t t2 = svcvt_s32_f32_m(inactive2, pg, t1); // n
|
||||
|
||||
t1 = svsub_f32_m(pg, t0, t1); // a = y - floor(y)
|
||||
t1 = svadd_f32_m(pg, t1, one); // b = a + 1
|
||||
|
||||
svuint32_t t3 = svlsr_n_u32_m(pg, svreinterpret_u32_f32(t1), 17); // v = b >> 17 (u32)
|
||||
svfloat32_t t4 = svexpa_f32(t3); // c = fexpa(v)
|
||||
t4 = svscale_f32_m(pg, t4, t2); // fexpa(v) * 2^(n)
|
||||
|
||||
// and_(t2.d, t1.d, not_mask17.d)
|
||||
svfloat32_t t5 = svreinterpret_f32_u32(svand_u32_m(pg, svreinterpret_u32_f32(t1), not_mask17));
|
||||
t5 = svsub_f32_m(pg, t1, t5); // z
|
||||
t0 = svmla_f32_m(pg, ln2, t5, half_ln2_sq); // ln2 + half_ln2_sq * z
|
||||
t0 = svmla_f32_m(pg, one, t5, t0); // 1 + (ln2 * z) + (half_ln2_sq * z * z)
|
||||
t0 = svmul_f32_m(pg, t0, t4); // Final result
|
||||
|
||||
return t0;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_NEON) && defined(__aarch64__)
|
||||
|
||||
// adapted from arm limited optimized routine
|
||||
|
||||
@@ -1,47 +1,61 @@
|
||||
#include "acc.cuh"
|
||||
|
||||
static __global__ void acc_f32(const float * x, const float * y, float * dst, const int ne,
|
||||
const int ne10, const int ne11, const int ne12,
|
||||
const int nb1, const int nb2, int offset) {
|
||||
const int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
static __global__ void acc_f32(const float * x, const float * y, float * dst, const int64_t ne,
|
||||
const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13,
|
||||
const int64_t s11, const int64_t s12, const int64_t s13, const int64_t offset) {
|
||||
const int64_t i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
}
|
||||
int src1_idx = i - offset;
|
||||
int oz = src1_idx / nb2;
|
||||
int oy = (src1_idx - (oz * nb2)) / nb1;
|
||||
int ox = src1_idx % nb1;
|
||||
if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
|
||||
dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
|
||||
} else {
|
||||
dst[i] = x[i];
|
||||
|
||||
int64_t src1_idx = i - offset;
|
||||
|
||||
int64_t tmp = src1_idx;
|
||||
const int64_t i13 = tmp / s13;
|
||||
tmp -= i13 * s13;
|
||||
const int64_t i12 = tmp / s12;
|
||||
tmp -= i12 * s12;
|
||||
const int64_t i11 = tmp / s11;
|
||||
tmp -= i11 * s11;
|
||||
const int64_t i10 = tmp;
|
||||
|
||||
float val = x[i];
|
||||
if (src1_idx >= 0 && i10 < ne10 && i11 < ne11 && i12 < ne12 && i13 < ne13) {
|
||||
val += y[((i13*ne12 + i12) * ne11 + i11) * ne10 + i10];
|
||||
}
|
||||
dst[i] = val;
|
||||
}
|
||||
|
||||
static void acc_f32_cuda(const float * x, const float * y, float * dst, const int n_elements,
|
||||
const int ne10, const int ne11, const int ne12,
|
||||
const int nb1, const int nb2, const int offset, cudaStream_t stream) {
|
||||
int num_blocks = (n_elements + CUDA_ACC_BLOCK_SIZE - 1) / CUDA_ACC_BLOCK_SIZE;
|
||||
acc_f32<<<num_blocks, CUDA_ACC_BLOCK_SIZE, 0, stream>>>(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset);
|
||||
static void acc_f32_cuda(const float * x, const float * y, float * dst, const int64_t n_elements,
|
||||
const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13,
|
||||
const int64_t s1, const int64_t s2, const int64_t s3, const int64_t offset, cudaStream_t stream) {
|
||||
const int num_blocks = (n_elements + CUDA_ACC_BLOCK_SIZE - 1) / CUDA_ACC_BLOCK_SIZE;
|
||||
acc_f32<<<num_blocks, CUDA_ACC_BLOCK_SIZE, 0, stream>>>(x, y, dst, n_elements, ne10, ne11, ne12, ne13, s1, s2, s3, offset);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_acc(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
const float * src1_d = (const float *)src1->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
const float * src1_d = (const float *) src1->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
|
||||
|
||||
int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
|
||||
int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
|
||||
// int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
|
||||
int offset = dst->op_params[3] / 4; // offset in bytes
|
||||
GGML_ASSERT(ggml_is_contiguous(src1));
|
||||
GGML_ASSERT(dst->nb[0] == ggml_element_size(dst));
|
||||
GGML_ASSERT(ggml_is_contiguously_allocated(dst));
|
||||
|
||||
acc_f32_cuda(src0_d, src1_d, dst_d, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, stream);
|
||||
const int64_t s1 = dst->op_params[0] / sizeof(float);
|
||||
const int64_t s2 = dst->op_params[1] / sizeof(float);
|
||||
const int64_t s3 = dst->op_params[2] / sizeof(float);
|
||||
const int64_t offset = dst->op_params[3] / sizeof(float);
|
||||
|
||||
acc_f32_cuda(src0_d, src1_d, dst_d, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3], s1, s2, s3, offset, stream);
|
||||
}
|
||||
|
||||
@@ -168,7 +168,7 @@ void ggml_cuda_error(const char * stmt, const char * func, const char * file, in
|
||||
|
||||
#define CUBLAS_CHECK(err) CUDA_CHECK_GEN(err, CUBLAS_STATUS_SUCCESS, cublas_get_error_str)
|
||||
|
||||
#if !defined(GGML_USE_HIP)
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)
|
||||
static const char * cu_get_error_str(CUresult err) {
|
||||
const char * err_str;
|
||||
cuGetErrorString(err, &err_str);
|
||||
@@ -635,6 +635,7 @@ struct ggml_cuda_device_info {
|
||||
int nsm; // number of streaming multiprocessors
|
||||
size_t smpb; // max. shared memory per block
|
||||
size_t smpbo; // max. shared memory per block (with opt-in)
|
||||
bool integrated; // Device is integrated as opposed to discrete
|
||||
bool vmm; // virtual memory support
|
||||
size_t vmm_granularity; // granularity of virtual memory
|
||||
size_t total_vram;
|
||||
|
||||
@@ -1,5 +1,8 @@
|
||||
#include "cpy.cuh"
|
||||
#include "dequantize.cuh"
|
||||
#ifdef GGML_USE_MUSA
|
||||
#include "ggml-musa/mudnn.cuh"
|
||||
#endif // GGML_USE_MUSA
|
||||
|
||||
typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
|
||||
|
||||
@@ -597,7 +600,14 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
|
||||
#endif
|
||||
if (src0->type == src1->type && ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
|
||||
GGML_ASSERT(ggml_nbytes(src0) == ggml_nbytes(src1));
|
||||
CUDA_CHECK(cudaMemcpyAsync(src1_ddc, src0_ddc, ggml_nbytes(src0), cudaMemcpyDeviceToDevice, main_stream));
|
||||
#ifdef GGML_USE_MUSA
|
||||
if (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16) {
|
||||
CUDA_CHECK(mudnnMemcpyAsync(ctx, src1, src0));
|
||||
} else
|
||||
#endif // GGML_USE_MUSA
|
||||
{
|
||||
CUDA_CHECK(cudaMemcpyAsync(src1_ddc, src0_ddc, ggml_nbytes(src0), cudaMemcpyDeviceToDevice, main_stream));
|
||||
}
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_BF16) {
|
||||
|
||||
@@ -623,8 +623,8 @@ static __global__ void flash_attn_combine_results(
|
||||
__builtin_assume(tid < D);
|
||||
|
||||
extern __shared__ float2 meta[];
|
||||
if (tid < 2*parallel_blocks) {
|
||||
((float *) meta)[threadIdx.x] = ((const float *)VKQ_meta) [blockIdx.z*(2*parallel_blocks) + tid];
|
||||
for (int i = tid; i < 2*parallel_blocks; i += D) {
|
||||
((float *) meta)[i] = ((const float *)VKQ_meta) [blockIdx.z*(2*parallel_blocks) + i];
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
@@ -678,10 +678,14 @@ void launch_fattn(
|
||||
) {
|
||||
constexpr int ncols = ncols1 * ncols2;
|
||||
|
||||
const bool is_mla = DV == 512; // TODO better parameterization
|
||||
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
const ggml_tensor * V = dst->src[2];
|
||||
|
||||
GGML_ASSERT(V || is_mla);
|
||||
|
||||
const ggml_tensor * mask = dst->src[3];
|
||||
|
||||
ggml_tensor * KQV = dst;
|
||||
@@ -689,6 +693,10 @@ void launch_fattn(
|
||||
GGML_ASSERT(Q->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(KQV->type == GGML_TYPE_F32);
|
||||
|
||||
GGML_ASSERT( Q->nb[0] == ggml_element_size(Q));
|
||||
GGML_ASSERT( K->nb[0] == ggml_element_size(K));
|
||||
GGML_ASSERT(!V || V->nb[0] == ggml_element_size(V));
|
||||
|
||||
GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) &&
|
||||
"the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big");
|
||||
@@ -713,10 +721,10 @@ void launch_fattn(
|
||||
size_t nb12 = K->nb[2];
|
||||
size_t nb13 = K->nb[3];
|
||||
|
||||
const char * V_data = (const char *) V->data;
|
||||
size_t nb21 = V->nb[1];
|
||||
size_t nb22 = V->nb[2];
|
||||
size_t nb23 = V->nb[3];
|
||||
const char * V_data = V ? (const char *) V->data : nullptr;
|
||||
size_t nb21 = V ? V->nb[1] : nb11;
|
||||
size_t nb22 = V ? V->nb[2] : nb12;
|
||||
size_t nb23 = V ? V->nb[3] : nb13;
|
||||
|
||||
if (need_f16_K && K->type != GGML_TYPE_F16) {
|
||||
GGML_ASSERT(ggml_is_contiguously_allocated(K));
|
||||
@@ -733,7 +741,7 @@ void launch_fattn(
|
||||
nb13 = nb13*bs*sizeof(half)/ts;
|
||||
}
|
||||
|
||||
if (need_f16_V && V->type != GGML_TYPE_F16) {
|
||||
if (V && need_f16_V && V->type != GGML_TYPE_F16) {
|
||||
GGML_ASSERT(ggml_is_contiguously_allocated(V));
|
||||
V_f16.alloc(ggml_nelements(V));
|
||||
to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(V->type);
|
||||
|
||||
@@ -33,9 +33,30 @@ struct fattn_mma_f16_config< 64, 64> {
|
||||
static constexpr int nwarps_max = 4;
|
||||
static constexpr bool Q_in_reg = true;
|
||||
static constexpr int nstages_target = 2;
|
||||
static constexpr int nbatch_K2 = 32;
|
||||
static constexpr int nbatch_V2 = 32;
|
||||
static constexpr int nbatch_combine = 32;
|
||||
|
||||
static int get_nbatch_K2_host(const int /*cc*/, const int /*ncols*/) {
|
||||
return 32;
|
||||
}
|
||||
|
||||
static constexpr __device__ int get_nbatch_K2_device(int /*ncols*/) {
|
||||
return 32;
|
||||
}
|
||||
|
||||
static int get_nbatch_V2_host(const int /*cc*/, const int /*ncols*/) {
|
||||
return 32;
|
||||
}
|
||||
|
||||
static constexpr __device__ int get_nbatch_V2_device(int /*ncols*/) {
|
||||
return 32;
|
||||
}
|
||||
|
||||
static int get_nbatch_combine_host(const int /*cc*/, const int /*ncols*/) {
|
||||
return 32;
|
||||
}
|
||||
|
||||
static constexpr __device__ int get_nbatch_combine_device(int /*ncols*/) {
|
||||
return 32;
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
@@ -44,9 +65,30 @@ struct fattn_mma_f16_config< 80, 80> {
|
||||
static constexpr int nwarps_max = 4;
|
||||
static constexpr bool Q_in_reg = true;
|
||||
static constexpr int nstages_target = 2;
|
||||
static constexpr int nbatch_K2 = 40;
|
||||
static constexpr int nbatch_V2 = 40;
|
||||
static constexpr int nbatch_combine = 40;
|
||||
|
||||
static int get_nbatch_K2_host(const int /*cc*/, const int /*ncols*/) {
|
||||
return 40;
|
||||
}
|
||||
|
||||
static constexpr __device__ int get_nbatch_K2_device(int /*ncols*/) {
|
||||
return 40;
|
||||
}
|
||||
|
||||
static int get_nbatch_V2_host(const int /*cc*/, const int /*ncols*/) {
|
||||
return 40;
|
||||
}
|
||||
|
||||
static constexpr __device__ int get_nbatch_V2_device(int /*ncols*/) {
|
||||
return 40;
|
||||
}
|
||||
|
||||
static int get_nbatch_combine_host(const int /*cc*/, const int /*ncols*/) {
|
||||
return 40;
|
||||
}
|
||||
|
||||
static constexpr __device__ int get_nbatch_combine_device(int /*ncols*/) {
|
||||
return 40;
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
@@ -55,9 +97,30 @@ struct fattn_mma_f16_config< 96, 96> {
|
||||
static constexpr int nwarps_max = 4;
|
||||
static constexpr bool Q_in_reg = true;
|
||||
static constexpr int nstages_target = 2;
|
||||
static constexpr int nbatch_K2 = 48;
|
||||
static constexpr int nbatch_V2 = 48;
|
||||
static constexpr int nbatch_combine = 48;
|
||||
|
||||
static int get_nbatch_K2_host(const int /*cc*/, const int /*ncols*/) {
|
||||
return 48;
|
||||
}
|
||||
|
||||
static constexpr __device__ int get_nbatch_K2_device(int /*ncols*/) {
|
||||
return 48;
|
||||
}
|
||||
|
||||
static int get_nbatch_V2_host(const int /*cc*/, const int /*ncols*/) {
|
||||
return 48;
|
||||
}
|
||||
|
||||
static constexpr __device__ int get_nbatch_V2_device(int /*ncols*/) {
|
||||
return 48;
|
||||
}
|
||||
|
||||
static int get_nbatch_combine_host(const int /*cc*/, const int /*ncols*/) {
|
||||
return 48;
|
||||
}
|
||||
|
||||
static constexpr __device__ int get_nbatch_combine_device(int /*ncols*/) {
|
||||
return 48;
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
@@ -66,9 +129,30 @@ struct fattn_mma_f16_config<112, 112> {
|
||||
static constexpr int nwarps_max = 4;
|
||||
static constexpr bool Q_in_reg = true;
|
||||
static constexpr int nstages_target = 2;
|
||||
static constexpr int nbatch_K2 = 56;
|
||||
static constexpr int nbatch_V2 = 56;
|
||||
static constexpr int nbatch_combine = 56;
|
||||
|
||||
static int get_nbatch_K2_host(const int /*cc*/, const int /*ncols*/) {
|
||||
return 56;
|
||||
}
|
||||
|
||||
static constexpr __device__ int get_nbatch_K2_device(int /*ncols*/) {
|
||||
return 56;
|
||||
}
|
||||
|
||||
static int get_nbatch_V2_host(const int /*cc*/, const int /*ncols*/) {
|
||||
return 56;
|
||||
}
|
||||
|
||||
static constexpr __device__ int get_nbatch_V2_device(int /*ncols*/) {
|
||||
return 56;
|
||||
}
|
||||
|
||||
static int get_nbatch_combine_host(const int /*cc*/, const int /*ncols*/) {
|
||||
return 56;
|
||||
}
|
||||
|
||||
static constexpr __device__ int get_nbatch_combine_device(int /*ncols*/) {
|
||||
return 56;
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
@@ -77,9 +161,30 @@ struct fattn_mma_f16_config<128, 128> {
|
||||
static constexpr int nwarps_max = 4;
|
||||
static constexpr bool Q_in_reg = true;
|
||||
static constexpr int nstages_target = 2;
|
||||
static constexpr int nbatch_K2 = 64;
|
||||
static constexpr int nbatch_V2 = 64;
|
||||
static constexpr int nbatch_combine = 64;
|
||||
|
||||
static int get_nbatch_K2_host(const int /*cc*/, const int /*ncols*/) {
|
||||
return 64;
|
||||
}
|
||||
|
||||
static constexpr __device__ int get_nbatch_K2_device(int /*ncols*/) {
|
||||
return 64;
|
||||
}
|
||||
|
||||
static int get_nbatch_V2_host(const int /*cc*/, const int /*ncols*/) {
|
||||
return 64;
|
||||
}
|
||||
|
||||
static constexpr __device__ int get_nbatch_V2_device(int /*ncols*/) {
|
||||
return 64;
|
||||
}
|
||||
|
||||
static int get_nbatch_combine_host(const int /*cc*/, const int /*ncols*/) {
|
||||
return 64;
|
||||
}
|
||||
|
||||
static constexpr __device__ int get_nbatch_combine_device(int /*ncols*/) {
|
||||
return 64;
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
@@ -88,9 +193,38 @@ struct fattn_mma_f16_config<256, 256> {
|
||||
static constexpr int nwarps_max = 4;
|
||||
static constexpr bool Q_in_reg = true;
|
||||
static constexpr int nstages_target = 2;
|
||||
static constexpr int nbatch_K2 = 128;
|
||||
static constexpr int nbatch_V2 = 128;
|
||||
static constexpr int nbatch_combine = 128;
|
||||
|
||||
static int get_nbatch_K2_host(const int /*cc*/, const int /*ncols*/) {
|
||||
return 128;
|
||||
}
|
||||
|
||||
static constexpr __device__ int get_nbatch_K2_device(int /*ncols*/) {
|
||||
return 128;
|
||||
}
|
||||
|
||||
static int get_nbatch_V2_host(const int /*cc*/, const int /*ncols*/) {
|
||||
return 128;
|
||||
}
|
||||
|
||||
static constexpr __device__ int get_nbatch_V2_device(int /*ncols*/) {
|
||||
return 128;
|
||||
}
|
||||
|
||||
static int get_nbatch_combine_host(const int cc, const int ncols) {
|
||||
if (ggml_cuda_highest_compiled_arch(cc) == GGML_CUDA_CC_TURING) {
|
||||
return ncols <= 16 ? 128 : 64;
|
||||
}
|
||||
return 64;
|
||||
}
|
||||
|
||||
static constexpr __device__ int get_nbatch_combine_device(int ncols) {
|
||||
#if __CUDA_ARCH__ == GGML_CUDA_CC_TURING
|
||||
return ncols <= 16 ? 128 : 64;
|
||||
#else
|
||||
GGML_UNUSED(ncols);
|
||||
return 128;
|
||||
#endif // __CUDA_ARCH__ == GGML_CUDA_CC_TURING
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
@@ -99,9 +233,44 @@ struct fattn_mma_f16_config<576, 512> {
|
||||
static constexpr int nwarps_max = 8;
|
||||
static constexpr bool Q_in_reg = false;
|
||||
static constexpr int nstages_target = 1;
|
||||
static constexpr int nbatch_K2 = 160;
|
||||
static constexpr int nbatch_V2 = 128;
|
||||
static constexpr int nbatch_combine = 128;
|
||||
|
||||
static int get_nbatch_K2_host(const int cc, const int ncols) {
|
||||
if (ggml_cuda_highest_compiled_arch(cc) == GGML_CUDA_CC_TURING) {
|
||||
return ncols <= 16 ? 96 : 160;
|
||||
}
|
||||
return ncols <= 16 ? 288 : 160;
|
||||
}
|
||||
|
||||
static constexpr __device__ int get_nbatch_K2_device(int ncols) {
|
||||
#if __CUDA_ARCH__ == GGML_CUDA_CC_TURING
|
||||
return ncols <= 16 ? 96 : 160;
|
||||
#else
|
||||
return ncols <= 16 ? 288 : 160;
|
||||
#endif // __CUDA_ARCH__ == GGML_CUDA_CC_TURING
|
||||
}
|
||||
|
||||
static int get_nbatch_V2_host(const int cc, const int ncols) {
|
||||
if (ggml_cuda_highest_compiled_arch(cc) == GGML_CUDA_CC_TURING) {
|
||||
return ncols <= 16 ? 64 : 128;
|
||||
}
|
||||
return ncols <= 16 ? 256 : 128;
|
||||
}
|
||||
|
||||
static constexpr __device__ int get_nbatch_V2_device(int ncols) {
|
||||
#if __CUDA_ARCH__ == GGML_CUDA_CC_TURING
|
||||
return ncols <= 16 ? 64 : 128;
|
||||
#else
|
||||
return ncols <= 16 ? 256 : 128;
|
||||
#endif // __CUDA_ARCH__ == GGML_CUDA_CC_TURING
|
||||
}
|
||||
|
||||
static int get_nbatch_combine_host(const int /*cc*/, const int /*ncols*/) {
|
||||
return 128;
|
||||
}
|
||||
|
||||
static constexpr __device__ int get_nbatch_combine_device(int /*ncols*/) {
|
||||
return 128;
|
||||
}
|
||||
};
|
||||
|
||||
// ------------------------------------------------------------------------------------------------------------------
|
||||
@@ -120,7 +289,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_load_tile(
|
||||
|
||||
const unsigned int tile_KV_32 = ggml_cuda_cvta_generic_to_shared(tile_KV);
|
||||
|
||||
auto load = [&] __device__ (const int n) {
|
||||
auto load = [&] __device__ (auto n) {
|
||||
const int stride_k = WARP_SIZE >> n;
|
||||
const int k0_start = stride_k == WARP_SIZE ? 0 : chunks_per_row - chunks_per_row % (2*stride_k);
|
||||
const int k0_stop = chunks_per_row - chunks_per_row % (1*stride_k);
|
||||
@@ -223,7 +392,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_load_mask(
|
||||
}
|
||||
}
|
||||
|
||||
template<int DKQ, int DV, int ncols1, int ncols2, int nwarps, int ntiles, bool use_logit_softcap, bool needs_fixup, bool is_fixup, bool last_iter>
|
||||
template<int DKQ, int DV, int ncols1, int ncols2, int nwarps, int ntiles, bool use_logit_softcap, bool mla, bool needs_fixup, bool is_fixup, bool last_iter>
|
||||
static __device__ __forceinline__ void flash_attn_ext_f16_iter(
|
||||
const float2 * const __restrict__ Q_f2,
|
||||
const half2 * const __restrict__ K_h2,
|
||||
@@ -261,10 +430,15 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
|
||||
constexpr int cols_per_warp = ntiles * tile_B::I;
|
||||
constexpr int cols_per_thread = ntiles == 1 ? 2 : ntiles;
|
||||
constexpr int np = nwarps * (cols_per_warp/ncols2) / ncols1; // Number of parallel CUDA warps per Q column.
|
||||
constexpr int ncols = ncols1 * ncols2;
|
||||
constexpr int nbatch_K2 = c::get_nbatch_K2_device(ncols);
|
||||
constexpr int nbatch_V2 = c::get_nbatch_V2_device(ncols);
|
||||
|
||||
constexpr int stride_tile_Q = DKQ/2 + 4;
|
||||
constexpr int stride_tile_K = c::nbatch_K2 + 4;
|
||||
constexpr int stride_tile_V = c::nbatch_V2 + 4;
|
||||
constexpr int stride_tile_Q = DKQ/2 + 4;
|
||||
constexpr int stride_tile_K = nbatch_K2 + 4;
|
||||
|
||||
static_assert(!mla || nbatch_K2 >= nbatch_V2, "bad nbatch_K2, nbatch_V2 for MLA");
|
||||
constexpr int stride_tile_V = mla ? stride_tile_K : nbatch_V2 + 4;
|
||||
|
||||
const int k_VKQ_0 = kb0 * c::nbatch_fa;
|
||||
tile_C_KQ KQ_C[c::nbatch_fa/(np*tile_C_KQ::I) * ntiles];
|
||||
@@ -275,12 +449,13 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
|
||||
tile_C_KQ_16 * KQ_C_16 = (tile_C_KQ_16 *) KQ_C;
|
||||
|
||||
if constexpr (nstages > 1) {
|
||||
static_assert(c::nbatch_K2 == DKQ/2, "batching not implemented for multi stage loading");
|
||||
static_assert(!mla, "multi-stage loading not implemented for MLA");
|
||||
static_assert(nbatch_K2 == DKQ/2, "batching not implemented for multi stage loading");
|
||||
constexpr bool use_cp_async = true;
|
||||
cp_async_wait_all();
|
||||
__syncthreads();
|
||||
flash_attn_ext_f16_load_tile<stride_tile_V, nwarps, c::nbatch_fa, use_cp_async>
|
||||
(V_h2 + k_VKQ_0*stride_V, tile_V, c::nbatch_V2, stride_V);
|
||||
(V_h2 + k_VKQ_0*stride_V, tile_V, nbatch_V2, stride_V);
|
||||
} else {
|
||||
constexpr bool use_cp_async = nstages == 1;
|
||||
if (ncols2 > 1 || mask_h2) {
|
||||
@@ -289,8 +464,8 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int k0_start = 0; k0_start < DKQ/2; k0_start += c::nbatch_K2) {
|
||||
const int k0_stop = k0_start + c::nbatch_K2 < DKQ/2 ? k0_start + c::nbatch_K2 : DKQ/2;
|
||||
for (int k0_start = 0; k0_start < DKQ/2; k0_start += nbatch_K2) {
|
||||
const int k0_stop = k0_start + nbatch_K2 < DKQ/2 ? k0_start + nbatch_K2 : DKQ/2;
|
||||
const int k0_diff = k0_stop - k0_start;
|
||||
|
||||
if (nstages <= 1) {
|
||||
@@ -537,16 +712,21 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
|
||||
(mask_h2 + (k_VKQ_0 + c::nbatch_fa)/2, tile_mask, stride_mask);
|
||||
}
|
||||
flash_attn_ext_f16_load_tile<stride_tile_K, nwarps, c::nbatch_fa, use_cp_async>
|
||||
(K_h2 + (k_VKQ_0 + c::nbatch_fa)*stride_K, tile_K, c::nbatch_K2, stride_K);
|
||||
(K_h2 + (k_VKQ_0 + c::nbatch_fa)*stride_K, tile_K, nbatch_K2, stride_K);
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0_start = 0; i0_start < DV; i0_start += 2*c::nbatch_V2) {
|
||||
const int i0_stop = i0_start + 2*c::nbatch_V2 < DV ? i0_start + 2*c::nbatch_V2 : DV;
|
||||
const int i0_diff = i0_stop - i0_start;
|
||||
|
||||
if (nstages <= 1) {
|
||||
// For MLA K and V have the same data.
|
||||
// Therefore, iterate over V in reverse and re-use the data if possible.
|
||||
static_assert(!mla || nstages <= 1, "combination of MLA and multi-stage loading not implemented");
|
||||
constexpr int reusable_cutoff = mla ? (DKQ - 1) - (DKQ - 1) % (2*nbatch_K2) - (DKQ - DV) : DV;
|
||||
#pragma unroll
|
||||
for (int i0_stop = DV; i0_stop > 0; i0_stop -= 2*nbatch_V2) {
|
||||
const int i0_start = i0_stop - 2*nbatch_V2 > 0 ? i0_stop - 2*nbatch_V2 : 0;
|
||||
const int i0_diff = i0_stop - i0_start;
|
||||
|
||||
if (nstages <= 1 && i0_start < reusable_cutoff) {
|
||||
constexpr bool use_cp_async = nstages == 1;
|
||||
flash_attn_ext_f16_load_tile<stride_tile_V, nwarps, c::nbatch_fa, use_cp_async>
|
||||
(V_h2 + k_VKQ_0*stride_V + i0_start/2, tile_V, i0_diff/2, stride_V);
|
||||
@@ -555,6 +735,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
const half2 * tile_V_i = i0_start < reusable_cutoff ? tile_V : tile_V + (i0_start - reusable_cutoff)/2;
|
||||
|
||||
// Calculate VKQ tile:
|
||||
#pragma unroll
|
||||
@@ -565,7 +746,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
|
||||
const int k0 = k00 + (threadIdx.y % np)*tile_A::J;
|
||||
|
||||
tile_A A;
|
||||
load_ldmatrix_trans(A, tile_V + 2*k0*stride_tile_V + (i_VKQ_0 - i0_start)/2, stride_tile_V);
|
||||
load_ldmatrix_trans(A, tile_V_i + 2*k0*stride_tile_V + (i_VKQ_0 - i0_start)/2, stride_tile_V);
|
||||
if (ntiles == 1) {
|
||||
mma(VKQ_C[i_VKQ_0/tile_C_VKQ::I], A, B[k00/(np*tile_A::J)]);
|
||||
} else {
|
||||
@@ -591,12 +772,12 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
|
||||
GGML_UNUSED(stride_mask); GGML_UNUSED(jt); GGML_UNUSED(tile_K);
|
||||
GGML_UNUSED(tile_V); GGML_UNUSED(tile_mask); GGML_UNUSED(Q_B);
|
||||
GGML_UNUSED(VKQ_C); GGML_UNUSED(KQ_max); GGML_UNUSED(KQ_rowsum);
|
||||
GGML_UNUSED(kb0);
|
||||
GGML_UNUSED(kb0); GGML_UNUSED(tile_Q);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
template<int DKQ, int DV, int ncols1, int ncols2, int nwarps, int ntiles, bool use_logit_softcap, bool needs_fixup, bool is_fixup>
|
||||
template<int DKQ, int DV, int ncols1, int ncols2, int nwarps, int ntiles, bool use_logit_softcap, bool mla, bool needs_fixup, bool is_fixup>
|
||||
static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
|
||||
const float2 * const __restrict__ Q_f2,
|
||||
const half2 * const __restrict__ K_h2,
|
||||
@@ -632,13 +813,16 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
|
||||
constexpr int cols_per_warp = ntiles * tile_B::I;
|
||||
constexpr int cols_per_thread = ntiles == 1 ? 2 : ntiles;
|
||||
constexpr int np = nwarps * (cols_per_warp/ncols2) / ncols1; // Number of parallel CUDA warps per Q column.
|
||||
constexpr int nbatch_K2 = c::get_nbatch_K2_device(ncols);
|
||||
constexpr int nbatch_V2 = c::get_nbatch_V2_device(ncols);
|
||||
|
||||
static_assert(nwarps * (cols_per_warp/ncols2) % ncols1 == 0, "bad nwarps");
|
||||
|
||||
constexpr int stride_tile_Q = DKQ/2 + 4;
|
||||
constexpr int stride_tile_K = c::nbatch_K2 + 4;
|
||||
constexpr int stride_tile_V = c::nbatch_V2 + 4;
|
||||
constexpr int stride_tile_Q = DKQ/2 + 4;
|
||||
constexpr int stride_tile_K = nbatch_K2 + 4;
|
||||
|
||||
static_assert(!mla || nbatch_K2 >= nbatch_V2, "bad nbatch_K2, nbatch_V2 for MLA");
|
||||
constexpr int stride_tile_V = mla ? stride_tile_K : nbatch_V2 + 4;
|
||||
constexpr int stride_tile_KV_max = stride_tile_K > stride_tile_V ? stride_tile_K : stride_tile_V;
|
||||
|
||||
extern __shared__ half2 tile_Q[];
|
||||
@@ -726,26 +910,26 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
|
||||
|
||||
// Preload mask and K data for first iteration when using cp_async with multiple stages:
|
||||
if constexpr (nstages > 1) {
|
||||
static_assert(c::nbatch_K2 == DKQ/2, "batching not implemented for multi-stage pipeline");
|
||||
static_assert(nbatch_K2 == DKQ/2, "batching not implemented for multi-stage pipeline");
|
||||
constexpr bool use_cp_async = true;
|
||||
if (ncols2 > 1 || mask_h2) {
|
||||
flash_attn_ext_f16_load_mask<ncols1, nwarps, c::nbatch_fa, use_cp_async>
|
||||
(mask_h2 + kb0_start*c::nbatch_fa/2, tile_mask, stride_mask);
|
||||
}
|
||||
flash_attn_ext_f16_load_tile<stride_tile_K, nwarps, c::nbatch_fa, use_cp_async>
|
||||
(K_h2 + kb0_start*c::nbatch_fa*stride_K, tile_K, c::nbatch_K2, stride_K);
|
||||
(K_h2 + kb0_start*c::nbatch_fa*stride_K, tile_K, nbatch_K2, stride_K);
|
||||
}
|
||||
|
||||
// Iterate over ne11 == previous tokens:
|
||||
for (int kb0 = kb0_start; kb0 < kb0_stop-1; ++kb0) {
|
||||
constexpr bool last_iter = false;
|
||||
flash_attn_ext_f16_iter<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, needs_fixup, is_fixup, last_iter>
|
||||
flash_attn_ext_f16_iter<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla, needs_fixup, is_fixup, last_iter>
|
||||
(Q_f2, K_h2, V_h2, mask_h2, dstk, dstk_fixup, scale, slope, logit_softcap,
|
||||
ne01, ne02, stride_K, stride_V, stride_mask, jt, tile_Q, tile_K, tile_V, tile_mask, Q_B, VKQ_C, KQ_max, KQ_rowsum, kb0);
|
||||
}
|
||||
{ // kb0_start is always < kb0_stop so the last iter can be executed unconditionally.
|
||||
constexpr bool last_iter = true;
|
||||
flash_attn_ext_f16_iter<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, needs_fixup, is_fixup, last_iter>
|
||||
flash_attn_ext_f16_iter<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla, needs_fixup, is_fixup, last_iter>
|
||||
(Q_f2, K_h2, V_h2, mask_h2, dstk, dstk_fixup, scale, slope, logit_softcap,
|
||||
ne01, ne02, stride_K, stride_V, stride_mask, jt, tile_Q, tile_K, tile_V, tile_mask, Q_B, VKQ_C, KQ_max, KQ_rowsum, kb0_stop-1);
|
||||
}
|
||||
@@ -774,7 +958,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
|
||||
// It's also faster to do small writes to shared memory, then large write to VRAM than to do small writes to VRAM.
|
||||
// So also write VKQ accumulators to shared memory in column-major format if np == 1.
|
||||
|
||||
constexpr int nbatch_combine = c::Q_in_reg ? DV/2 : DV/4;
|
||||
constexpr int nbatch_combine = c::get_nbatch_combine_device(ncols);
|
||||
constexpr int tile_stride = nbatch_combine + 4;
|
||||
static_assert((DV/2) % nbatch_combine == 0, "bad nbatch_combine");
|
||||
|
||||
@@ -874,6 +1058,8 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Write back combined meta data:
|
||||
#pragma unroll
|
||||
for (int imeta = 0; imeta < nmeta; ++imeta) {
|
||||
@@ -893,6 +1079,11 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
|
||||
float2 * dstk_fixup_meta = dstk_fixup + (gridDim.x + blockIdx.x)*ncols;
|
||||
dstk_fixup_meta[(threadIdx.y/np)*cols_per_warp + threadIdx.x] = make_float2(KQ_cmn, KQ_crs);
|
||||
}
|
||||
} else if (np > 1) {
|
||||
// Warps with threadIdx.y % np == 0 execute a __syncthreads() in the if branch.
|
||||
// Therefore, all other warps also need to execute a __syncthreads().
|
||||
// Otherwise the points at which warps synchronize with each other would become misaligned.
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
@@ -1005,7 +1196,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
template<int DKQ, int DV, int ncols1, int ncols2, int nwarps, int ntiles, bool use_logit_softcap>
|
||||
template<int DKQ, int DV, int ncols1, int ncols2, int nwarps, int ntiles, bool use_logit_softcap, bool mla>
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
||||
static __global__ void flash_attn_ext_f16(
|
||||
const char * __restrict__ Q,
|
||||
@@ -1050,6 +1241,14 @@ static __global__ void flash_attn_ext_f16(
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
#if __CUDA_ARCH__ == GGML_CUDA_CC_TURING
|
||||
if (ncols1*ncols2 > 32) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
#endif // __CUDA_ARCH__ == GGML_CUDA_CC_TURING
|
||||
|
||||
static_assert(!mla || DKQ >= DV, "MLA needs DKQ >= DV");
|
||||
|
||||
typedef fattn_mma_f16_config<DKQ, DV> c;
|
||||
|
||||
@@ -1060,9 +1259,10 @@ static __global__ void flash_attn_ext_f16(
|
||||
const int stride_Q1 = nb01 / sizeof(float2);
|
||||
const int stride_Q2 = nb02 / sizeof(float2);
|
||||
const int stride_K = nb11 / sizeof(half2);
|
||||
const int stride_V = nb21 / sizeof(half2);
|
||||
const int stride_mask = nb31 / sizeof(half2);
|
||||
|
||||
const int stride_V = mla ? stride_K : nb21 / sizeof(half2);
|
||||
|
||||
const int iter_k = ne11 / FATTN_KQ_STRIDE;
|
||||
const int iter_j = (ne01 + (ncols1 - 1)) / ncols1;
|
||||
|
||||
@@ -1085,10 +1285,11 @@ static __global__ void flash_attn_ext_f16(
|
||||
|
||||
const float2 * Q_f2 = (const float2 *) (Q + nb02* channel*ncols2);
|
||||
const half2 * K_h2 = (const half2 *) (K + nb12*(channel*ncols2 / gqa_ratio));
|
||||
const half2 * V_h2 = (const half2 *) (V + nb22*(channel*ncols2 / gqa_ratio));
|
||||
const half2 * mask_h2 = ncols2 > 1 || mask ? (const half2 *) mask + (nb31/sizeof(half2))*jt*ncols1 : nullptr;
|
||||
float2 * dstk = ((float2 *) dst) + channel*(ncols2 * DV/2);
|
||||
|
||||
const half2 * V_h2 = mla ? K_h2 + (DKQ/2 - DV/2) : (const half2 *) (V + nb22*(channel*ncols2 / gqa_ratio));
|
||||
|
||||
const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, channel, n_head_log2, m0, m1) : 1.0f;
|
||||
|
||||
const int kb0_start_kernel = kb0_start * kb_niter;
|
||||
@@ -1097,12 +1298,12 @@ static __global__ void flash_attn_ext_f16(
|
||||
constexpr bool is_fixup = false; // All but (potentially) the last iterations write their data to dst rather than the fixup buffer.
|
||||
if (kb0_start == 0) {
|
||||
constexpr bool needs_fixup = false; // CUDA block is working on an entire tile.
|
||||
flash_attn_ext_f16_process_tile<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, needs_fixup, is_fixup>
|
||||
flash_attn_ext_f16_process_tile<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla, needs_fixup, is_fixup>
|
||||
(Q_f2, K_h2, V_h2, mask_h2, dstk, dst_meta, scale, slope, logit_softcap,
|
||||
ne01, ne02, stride_Q1, stride_Q2, stride_K, stride_V, stride_mask, jt, kb0_start_kernel, kb0_stop_kernel);
|
||||
} else {
|
||||
constexpr bool needs_fixup = true; // CUDA block is working on the beginning of a tile.
|
||||
flash_attn_ext_f16_process_tile<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, needs_fixup, is_fixup>
|
||||
flash_attn_ext_f16_process_tile<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla, needs_fixup, is_fixup>
|
||||
(Q_f2, K_h2, V_h2, mask_h2, dstk, dst_meta, scale, slope, logit_softcap,
|
||||
ne01, ne02, stride_Q1, stride_Q2, stride_K, stride_V, stride_mask, jt, kb0_start_kernel, kb0_stop_kernel);
|
||||
}
|
||||
@@ -1123,10 +1324,11 @@ static __global__ void flash_attn_ext_f16(
|
||||
|
||||
const float2 * Q_f2 = (const float2 *) (Q + nb02* channel*ncols2);
|
||||
const half2 * K_h2 = (const half2 *) (K + nb12*(channel*ncols2 / gqa_ratio));
|
||||
const half2 * V_h2 = (const half2 *) (V + nb22*(channel*ncols2 / gqa_ratio)); // K and V have same shape
|
||||
const half2 * mask_h2 = ncols2 > 1 || mask ? (const half2 *) mask + (nb31/sizeof(half2))*jt*ncols1 : nullptr;
|
||||
float2 * dstk = ((float2 *) dst) + channel*(ncols2 * DV/2);
|
||||
|
||||
const half2 * V_h2 = mla ? K_h2 + (DKQ/2 - DV/2) : (const half2 *) (V + nb22*(channel*ncols2 / gqa_ratio));
|
||||
|
||||
const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, channel, n_head_log2, m0, m1) : 1.0f;
|
||||
|
||||
const int kb0_start_kernel = kb0_start * kb_niter;
|
||||
@@ -1134,7 +1336,7 @@ static __global__ void flash_attn_ext_f16(
|
||||
|
||||
constexpr bool is_fixup = true; // Last index writes its data to fixup buffer to avoid data races with other blocks.
|
||||
constexpr bool needs_fixup = false;
|
||||
flash_attn_ext_f16_process_tile<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, needs_fixup, is_fixup>
|
||||
flash_attn_ext_f16_process_tile<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla, needs_fixup, is_fixup>
|
||||
(Q_f2, K_h2, V_h2, mask_h2, dstk, dst_meta, scale, slope, logit_softcap,
|
||||
ne01, ne02, stride_Q1, stride_Q2, stride_K, stride_V, stride_mask, jt, kb0_start_kernel, kb0_stop_kernel);
|
||||
#else
|
||||
@@ -1160,10 +1362,6 @@ void ggml_cuda_flash_attn_ext_mma_f16_case(ggml_backend_cuda_context & ctx, ggml
|
||||
|
||||
typedef fattn_mma_f16_config<DKQ, DV> c;
|
||||
|
||||
constexpr int nbatch_K2 = c::nbatch_K2 < 1 ? DKQ/2 : c::nbatch_K2;
|
||||
constexpr int nbatch_V2 = c::nbatch_V2 < 1 ? DV /2 : c::nbatch_V2;
|
||||
constexpr int nbatch_combine = c::nbatch_combine < 1 ? DV /2 : c::nbatch_combine;
|
||||
|
||||
const int nstages = cp_async_available(cc) ? c::nstages_target : 0;
|
||||
|
||||
constexpr int ncols = ncols1 * ncols2;
|
||||
@@ -1173,15 +1371,21 @@ void ggml_cuda_flash_attn_ext_mma_f16_case(ggml_backend_cuda_context & ctx, ggml
|
||||
constexpr int nwarps_max_y = c::nbatch_fa / tile_A::I;
|
||||
constexpr int nwarps = nwarps_max_x*nwarps_max_y <= c::nwarps_max ? nwarps_max_x*nwarps_max_y : c::nwarps_max;
|
||||
|
||||
constexpr bool mla = DKQ == 576;
|
||||
|
||||
const int nbatch_K2 = c::get_nbatch_K2_host (cc, ncols);
|
||||
const int nbatch_V2 = c::get_nbatch_K2_host (cc, ncols);
|
||||
const int nbatch_combine = c::get_nbatch_combine_host(cc, ncols);
|
||||
|
||||
static_assert(DKQ % tile_B::J == 0, "bad DKQ");
|
||||
static_assert(DV % tile_A::J == 0, "bad DV");
|
||||
static_assert(ncols % cols_per_warp == 0, "bad ncols");
|
||||
|
||||
const size_t nbytes_shared_KV_1stage = c::nbatch_fa * std::max(c::nbatch_K2 + 4, c::nbatch_V2 + 4) * sizeof(half2);
|
||||
const size_t nbytes_shared_KV_2stage = c::nbatch_fa * (c::nbatch_K2 + 4 + c::nbatch_V2 + 4) * sizeof(half2);
|
||||
const size_t nbytes_shared_Q = ncols * (DKQ/2 + 4) * sizeof(half2);
|
||||
const size_t nbytes_shared_mask = ncols1 * (c::nbatch_fa/2 + 4) * sizeof(half2);
|
||||
const size_t nbytes_shared_combine = nwarps*cols_per_warp * (nbatch_combine + 4) * sizeof(half2);
|
||||
const size_t nbytes_shared_KV_1stage = c::nbatch_fa * std::max(nbatch_K2 + 4, nbatch_V2 + 4) * sizeof(half2);
|
||||
const size_t nbytes_shared_KV_2stage = c::nbatch_fa * (nbatch_K2 + 4 + nbatch_V2 + 4) * sizeof(half2);
|
||||
const size_t nbytes_shared_Q = ncols * (DKQ/2 + 4) * sizeof(half2);
|
||||
const size_t nbytes_shared_mask = ncols1 * (c::nbatch_fa/2 + 4) * sizeof(half2);
|
||||
const size_t nbytes_shared_combine = nwarps*cols_per_warp * (nbatch_combine + 4) * sizeof(half2);
|
||||
|
||||
const size_t nbytes_shared_KV = nstages <= 1 ? nbytes_shared_KV_1stage : nbytes_shared_KV_2stage;
|
||||
|
||||
@@ -1195,7 +1399,7 @@ void ggml_cuda_flash_attn_ext_mma_f16_case(ggml_backend_cuda_context & ctx, ggml
|
||||
fattn_kernel_t fattn_kernel;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
fattn_kernel = flash_attn_ext_f16<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap>;
|
||||
fattn_kernel = flash_attn_ext_f16<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla>;
|
||||
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
|
||||
static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
|
||||
@@ -1206,7 +1410,7 @@ void ggml_cuda_flash_attn_ext_mma_f16_case(ggml_backend_cuda_context & ctx, ggml
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
fattn_kernel = flash_attn_ext_f16<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap>;
|
||||
fattn_kernel = flash_attn_ext_f16<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla>;
|
||||
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
|
||||
static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
|
||||
|
||||
@@ -2,9 +2,9 @@
|
||||
#include "fattn-common.cuh"
|
||||
|
||||
template<int D, int ncols, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
#ifndef GGML_USE_HIP
|
||||
__launch_bounds__(D, 1)
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
#endif // GGML_USE_HIP
|
||||
static __global__ void flash_attn_vec_ext_f16(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
@@ -48,6 +48,12 @@ static __global__ void flash_attn_vec_ext_f16(
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
if (ncols > 1) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
@@ -91,6 +97,13 @@ static __global__ void flash_attn_vec_ext_f16(
|
||||
kqsum_shared[j][threadIdx.x] = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
__shared__ half maskh_shared[ncols*D];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
maskh_shared[j*D + tid] = 0.0f;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Convert Q to half2 (f16 K) or q8_1 (quantized K) and store in registers:
|
||||
@@ -168,12 +181,43 @@ static __global__ void flash_attn_vec_ext_f16(
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
KQ[j*D + tid] = -HALF_MAX_HALF;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
half2 VKQ[ncols] = {{0.0f, 0.0f}};
|
||||
|
||||
for (int k_VKQ_0 = blockIdx.y*D; k_VKQ_0 < ne11; k_VKQ_0 += gridDim.y*D) {
|
||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||
|
||||
if (mask) {
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
maskh_shared[j*D + tid] = slopeh*maskh[j*ne11 + k_VKQ_0 + tid];
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// When using multiple parallel sequences in llama.cpp, some KV slices can be fully masked out.
|
||||
// In such cases, skip the KV slice.
|
||||
// On AMD __all_sync would not work correctly because it assumes a warp size of 64.
|
||||
#ifndef GGML_USE_HIP
|
||||
bool skip = true;
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
const float2 tmp = __half22float2(((const half2 *) maskh_shared)[j*(D/2) + i]);
|
||||
skip = skip && isinf(tmp.x) && isinf(tmp.y);
|
||||
}
|
||||
}
|
||||
if (__all_sync(0xFFFFFFFF, skip)) {
|
||||
__syncthreads();
|
||||
continue;
|
||||
}
|
||||
#endif // GGML_USE_HIP
|
||||
}
|
||||
|
||||
// For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression,
|
||||
// see https://github.com/ggerganov/llama.cpp/pull/7061 .
|
||||
// Therefore this variable is defined twice but only used once (so that the compiler can optimize out the unused variable).
|
||||
@@ -201,7 +245,7 @@ static __global__ void flash_attn_vec_ext_f16(
|
||||
sum = logit_softcap*tanhf(sum);
|
||||
}
|
||||
|
||||
sum += mask ? slopeh*maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
|
||||
sum += maskh_shared[j*D + i_KQ];
|
||||
|
||||
if (ncols == 1) {
|
||||
kqmax_new = ggml_cuda_hmax(kqmax_new, sum);
|
||||
@@ -334,7 +378,9 @@ void ggml_cuda_flash_attn_ext_vec_f16_case(ggml_backend_cuda_context & ctx, ggml
|
||||
float logit_softcap;
|
||||
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
||||
|
||||
if (Q->ne[1] == 1) {
|
||||
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
||||
|
||||
if (Q->ne[1] == 1 || GGML_CUDA_CC_IS_NVIDIA(cc)) {
|
||||
constexpr int cols_per_block = 1;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
|
||||
@@ -2,9 +2,9 @@
|
||||
#include "fattn-common.cuh"
|
||||
|
||||
template<int D, int ncols, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
#ifndef GGML_USE_HIP
|
||||
__launch_bounds__(D, 1)
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
#endif // GGML_USE_HIP
|
||||
static __global__ void flash_attn_vec_ext_f32(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
@@ -60,6 +60,12 @@ static __global__ void flash_attn_vec_ext_f32(
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
if (ncols > 1) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
@@ -104,6 +110,13 @@ static __global__ void flash_attn_vec_ext_f32(
|
||||
kqsum_shared[j][threadIdx.x] = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
__shared__ float maskf_shared[ncols*D];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
maskf_shared[j*D + tid] = 0.0f;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Convert Q to float2 (f16 K) or q8_1 (quantized K) and store in registers:
|
||||
@@ -181,6 +194,35 @@ static __global__ void flash_attn_vec_ext_f32(
|
||||
for (int k_VKQ_0 = blockIdx.y*D; k_VKQ_0 < ne11; k_VKQ_0 += gridDim.y*D) {
|
||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||
|
||||
if (mask) {
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
maskf_shared[j*D + tid] = slope*__half2float(maskh[j*ne11 + k_VKQ_0 + tid]);
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// When using multiple parallel sequences in llama.cpp, some KV slices can be fully masked out.
|
||||
// In such cases, skip the KV slice.
|
||||
// On AMD __all_sync would not work correctly because it assumes a warp size of 64.
|
||||
#ifndef GGML_USE_HIP
|
||||
bool skip = true;
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
skip = skip && isinf(maskf_shared[j*D + i]);
|
||||
}
|
||||
}
|
||||
if (__all_sync(0xFFFFFFFF, skip)) {
|
||||
__syncthreads();
|
||||
continue;
|
||||
}
|
||||
#endif // GGML_USE_HIP
|
||||
}
|
||||
|
||||
float kqmax_new_arr[ncols];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
@@ -204,7 +246,7 @@ static __global__ void flash_attn_vec_ext_f32(
|
||||
sum = logit_softcap*tanhf(sum);
|
||||
}
|
||||
|
||||
sum += mask ? slope*__half2float(maskh[j*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
|
||||
sum += maskf_shared[j*D + i_KQ];
|
||||
|
||||
kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum);
|
||||
|
||||
@@ -326,7 +368,9 @@ void ggml_cuda_flash_attn_ext_vec_f32_case(ggml_backend_cuda_context & ctx, ggml
|
||||
float logit_softcap;
|
||||
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
||||
|
||||
if (Q->ne[1] == 1) {
|
||||
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
||||
|
||||
if (Q->ne[1] == 1 || GGML_CUDA_CC_IS_NVIDIA(cc)) {
|
||||
constexpr int cols_per_block = 1;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
|
||||
@@ -10,6 +10,7 @@
|
||||
|
||||
template <int DKQ, int DV, int ncols2>
|
||||
static void ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
if constexpr (ncols2 <= 8) {
|
||||
@@ -24,7 +25,7 @@ static void ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1(ggml_backend_cuda_con
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 32/ncols2) {
|
||||
if (ggml_cuda_highest_compiled_arch(cc) == GGML_CUDA_CC_TURING || Q->ne[1] <= 32/ncols2) {
|
||||
ggml_cuda_flash_attn_ext_mma_f16_case<DKQ, DV, 32/ncols2, ncols2>(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -243,10 +243,10 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
||||
|
||||
info.default_tensor_split[id] = total_vram;
|
||||
total_vram += prop.totalGlobalMem;
|
||||
|
||||
info.devices[id].nsm = prop.multiProcessorCount;
|
||||
info.devices[id].smpb = prop.sharedMemPerBlock;
|
||||
info.devices[id].warp_size = prop.warpSize;
|
||||
info.devices[id].integrated = prop.integrated;
|
||||
info.devices[id].nsm = prop.multiProcessorCount;
|
||||
info.devices[id].smpb = prop.sharedMemPerBlock;
|
||||
info.devices[id].warp_size = prop.warpSize;
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
info.devices[id].smpbo = prop.sharedMemPerBlock;
|
||||
|
||||
@@ -1065,6 +1065,10 @@ static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static bool ggml_backend_buft_is_cuda_host(ggml_backend_buffer_type_t buft) {
|
||||
return buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name;
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
CUDA_CHECK(cudaFreeHost(buffer->context));
|
||||
}
|
||||
@@ -1909,13 +1913,19 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
|
||||
static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft);
|
||||
|
||||
// If src0 is a temporary compute buffer it may have some padding that needs to be cleared for mul_mat_vec_q or mul_mat_q.
|
||||
// But if src0 is also a view of another tensor then this cannot be done safely because it may overwrite valid tensor data.
|
||||
// Therefore, in such cases use cuBLAS.
|
||||
const bool bad_padding_clear = ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE
|
||||
&& ggml_nbytes(src0) != ggml_backend_buffer_get_alloc_size(src0->buffer, src0) && src0->view_src;
|
||||
|
||||
bool use_mul_mat_vec = (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16)
|
||||
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
|
||||
&& src0->ne[0] % 2 == 0 && src1->ne[1] == 1;
|
||||
bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
|
||||
bool use_mul_mat_vec_q = ggml_is_quantized(src0->type) && !bad_padding_clear
|
||||
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
|
||||
&& src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
|
||||
bool use_mul_mat_q = ggml_is_quantized(src0->type)
|
||||
bool use_mul_mat_q = ggml_is_quantized(src0->type) && !bad_padding_clear
|
||||
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
|
||||
|
||||
bool any_gpus_with_slow_fp16 = false;
|
||||
@@ -2186,6 +2196,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_UNARY_OP_SILU:
|
||||
ggml_cuda_op_silu(ctx, dst);
|
||||
break;
|
||||
case GGML_UNARY_OP_GELU_ERF:
|
||||
ggml_cuda_op_gelu_erf(ctx, dst);
|
||||
break;
|
||||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
ggml_cuda_op_gelu_quick(ctx, dst);
|
||||
break;
|
||||
@@ -2632,6 +2645,8 @@ static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) {
|
||||
|
||||
static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
|
||||
bool & graph_evaluated_or_captured, bool & use_cuda_graph, bool & cuda_graph_update_required) {
|
||||
// flag used to determine whether it is an integrated_gpu
|
||||
const bool integrated = ggml_cuda_info().devices[cuda_ctx->device].integrated;
|
||||
|
||||
while (!graph_evaluated_or_captured) {
|
||||
// Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph.
|
||||
@@ -2650,7 +2665,7 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
||||
if (node->src[j] != nullptr) {
|
||||
assert(node->src[j]->buffer);
|
||||
assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) ||
|
||||
ggml_backend_buft_is_cuda_split(node->src[j]->buffer->buft));
|
||||
ggml_backend_buft_is_cuda_split(node->src[j]->buffer->buft) || (integrated && ggml_backend_buft_is_cuda_host(node->src[j]->buffer->buft)));
|
||||
}
|
||||
}
|
||||
#endif
|
||||
@@ -2971,6 +2986,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
case GGML_UNARY_OP_SIGMOID:
|
||||
case GGML_UNARY_OP_HARDSIGMOID:
|
||||
case GGML_UNARY_OP_HARDSWISH:
|
||||
case GGML_UNARY_OP_GELU_ERF:
|
||||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
case GGML_UNARY_OP_TANH:
|
||||
case GGML_UNARY_OP_EXP:
|
||||
@@ -2984,9 +3000,12 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
{
|
||||
struct ggml_tensor * a = op->src[0];
|
||||
struct ggml_tensor * b = op->src[1];
|
||||
// for small weight matrices the active device can end up without any rows, don't use row split in those cases
|
||||
// this avoids some edge cases (and the performance would not be good anyways)
|
||||
if (a->buffer && ggml_backend_buft_is_cuda_split(a->buffer->buft)) {
|
||||
if (a->ne[2] > 1 || a->ne[3] > 1) {
|
||||
return false;
|
||||
}
|
||||
// for small weight matrices the active device can end up without any rows, don't use row split in those cases
|
||||
// this avoids some edge cases (and the performance would not be good anyways)
|
||||
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) a->buffer->buft->context;
|
||||
int64_t row_low;
|
||||
int64_t row_high;
|
||||
@@ -3216,7 +3235,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
#endif // FLASH_ATTN_AVAILABLE
|
||||
if (op->src[1]->ne[0] != op->src[2]->ne[0]) {
|
||||
const int cc = ggml_cuda_info().devices[dev_ctx->device].cc;
|
||||
if (!new_mma_available(cc) || cc < GGML_CUDA_CC_AMPERE) {
|
||||
if (!new_mma_available(cc)) {
|
||||
return false;
|
||||
}
|
||||
const int gqa_ratio = op->src[0]->ne[2] / op->src[1]->ne[2];
|
||||
@@ -3253,7 +3272,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
}
|
||||
|
||||
static bool ggml_backend_cuda_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
|
||||
return (ggml_backend_buft_is_cuda(buft) || ggml_backend_buft_is_cuda_split(buft)) && buft->device == dev;
|
||||
ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *) dev->context;
|
||||
const bool integrated = ggml_cuda_info().devices[dev_ctx->device].integrated;
|
||||
return (((ggml_backend_buft_is_cuda(buft) || ggml_backend_buft_is_cuda_split(buft)) && buft->device == dev) || (integrated && ggml_backend_buft_is_cuda_host(buft)));
|
||||
}
|
||||
|
||||
static int64_t get_op_batch_size(const ggml_tensor * op) {
|
||||
|
||||
@@ -91,11 +91,11 @@ void ggml_cuda_mul_mat_q(
|
||||
|
||||
// If src0 is a temporary compute buffer, clear any potential padding.
|
||||
if (ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
|
||||
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
|
||||
GGML_ASSERT(!src0->view_src);
|
||||
const size_t size_data = ggml_nbytes(src0);
|
||||
const size_t size_alloc = ggml_backend_buffer_get_alloc_size(src0->buffer, src0);
|
||||
if (size_alloc > size_data) {
|
||||
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
|
||||
GGML_ASSERT(!src0->view_src);
|
||||
CUDA_CHECK(cudaMemsetAsync((char *) src0->data + size_data, 0, size_alloc - size_data, stream));
|
||||
}
|
||||
}
|
||||
@@ -122,6 +122,7 @@ void ggml_cuda_mul_mat_q(
|
||||
const int64_t s13 = src1->nb[3] / ts_src1;
|
||||
quantize_mmq_q8_1_cuda(src1_d, nullptr, src1_q8_1.get(), src0->type,
|
||||
ne10, s11, s12, s13, ne10_padded, ne11, ne12, ne13, stream);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
const int64_t s12 = ne11*ne10_padded * sizeof(block_q8_1)/(QK8_1*sizeof(int));
|
||||
@@ -205,6 +206,7 @@ void ggml_cuda_mul_mat_q(
|
||||
const int64_t s13 = src1->nb[2] / ts_src1;
|
||||
quantize_mmq_q8_1_cuda(src1_d, ids_src1_dev, src1_q8_1.get(), src0->type,
|
||||
ne10, s11, s12, s13, ne10_padded, ne11_flat, ne12_flat, ne13_flat, stream);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
const int64_t s12 = ne11*ne10_padded * sizeof(block_q8_1)/(QK8_1*sizeof(int));
|
||||
|
||||
@@ -515,11 +515,11 @@ void ggml_cuda_mul_mat_vec_q(
|
||||
|
||||
// If src0 is a temporary compute buffer, clear any potential padding.
|
||||
if (ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
|
||||
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
|
||||
GGML_ASSERT(!src0->view_src);
|
||||
const size_t size_data = ggml_nbytes(src0);
|
||||
const size_t size_alloc = ggml_backend_buffer_get_alloc_size(src0->buffer, src0);
|
||||
if (size_alloc > size_data) {
|
||||
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
|
||||
GGML_ASSERT(!src0->view_src);
|
||||
CUDA_CHECK(cudaMemsetAsync((char *) src0->data + size_data, 0, size_alloc - size_data, stream));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -56,13 +56,13 @@ static __global__ void quantize_mmq_q8_1(
|
||||
constexpr int vals_per_scale = ds_layout == MMQ_Q8_1_DS_LAYOUT_D2S6 ? 64 : 32;
|
||||
constexpr int vals_per_sum = ds_layout == MMQ_Q8_1_DS_LAYOUT_D2S6 ? 16 : 32;
|
||||
|
||||
const int64_t i0 = ((int64_t)blockDim.x*blockIdx.x + threadIdx.x)*4;
|
||||
const int64_t i0 = ((int64_t)blockDim.x*blockIdx.y + threadIdx.x)*4;
|
||||
|
||||
if (i0 >= ne0) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int64_t i1 = blockIdx.y;
|
||||
const int64_t i1 = blockIdx.x;
|
||||
const int64_t i2 = blockIdx.z % ne2;
|
||||
const int64_t i3 = blockIdx.z / ne2;
|
||||
|
||||
@@ -75,8 +75,8 @@ static __global__ void quantize_mmq_q8_1(
|
||||
|
||||
block_q8_1_mmq * y = (block_q8_1_mmq *) vy;
|
||||
|
||||
const int64_t ib0 = blockIdx.z*((int64_t)gridDim.y*gridDim.x*blockDim.x/QK8_1); // first block of channel
|
||||
const int64_t ib = ib0 + (i0 / (4*QK8_1))*ne1 + blockIdx.y; // block index in channel
|
||||
const int64_t ib0 = blockIdx.z*((int64_t)gridDim.x*gridDim.y*blockDim.x/QK8_1); // first block of channel
|
||||
const int64_t ib = ib0 + (i0 / (4*QK8_1))*ne1 + blockIdx.x; // block index in channel
|
||||
const int64_t iqs = i0 % (4*QK8_1); // quant index in block
|
||||
|
||||
// Load 4 floats per thread and calculate max. abs. value between them:
|
||||
@@ -166,8 +166,9 @@ void quantize_mmq_q8_1_cuda(
|
||||
GGML_ASSERT(ne00 % 4 == 0);
|
||||
GGML_ASSERT(ne0 % (4*QK8_1) == 0);
|
||||
|
||||
const int64_t block_num_x = (ne0 + 4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ - 1) / (4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ);
|
||||
const dim3 num_blocks(block_num_x, ne1, ne2*ne3);
|
||||
// ne1 tends to assume the highest values, therefore use it as the "x" dimension of the CUDA grid:
|
||||
const int64_t block_num_y = (ne0 + 4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ - 1) / (4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ);
|
||||
const dim3 num_blocks(ne1, block_num_y, ne2*ne3);
|
||||
const dim3 block_size(CUDA_QUANTIZE_BLOCK_SIZE_MMQ, 1, 1);
|
||||
switch (mmq_get_q8_1_ds_layout(type_src0)) {
|
||||
case MMQ_Q8_1_DS_LAYOUT_D4:
|
||||
|
||||
@@ -31,7 +31,7 @@ void ggml_cuda_op_sum(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
|
||||
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
@@ -23,6 +23,12 @@ static __device__ __forceinline__ float op_gelu(float x) {
|
||||
return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float op_gelu_erf(float x) {
|
||||
const float SQRT_2_INV = 0.70710678118654752440084436210484f;
|
||||
|
||||
return 0.5f*x*(1.0f + erff(x*SQRT_2_INV));
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float op_gelu_quick(float x) {
|
||||
const float GELU_QUICK_COEF = -1.702f;
|
||||
|
||||
@@ -134,6 +140,10 @@ void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_unary<op_gelu>(ctx, dst);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_gelu_erf(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_unary<op_gelu_erf>(ctx, dst);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_unary<op_gelu_quick>(ctx, dst);
|
||||
}
|
||||
|
||||
@@ -30,6 +30,8 @@ void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_silu_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_gelu_erf(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
@@ -386,7 +386,7 @@ GGML_API void ggml_aligned_free(void * ptr, size_t size);
|
||||
return r;
|
||||
}
|
||||
|
||||
#elif defined(__riscv) && defined(GGML_RV_ZFH)
|
||||
#elif defined(__riscv) && defined(__riscv_zfhmin)
|
||||
|
||||
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
|
||||
float f;
|
||||
|
||||
@@ -207,6 +207,10 @@ typedef struct {
|
||||
float attn_factor;
|
||||
float beta_fast;
|
||||
float beta_slow;
|
||||
int32_t sect_0;
|
||||
int32_t sect_1;
|
||||
int32_t sect_2;
|
||||
int32_t sect_3;
|
||||
} ggml_metal_kargs_rope;
|
||||
|
||||
typedef struct {
|
||||
|
||||
@@ -149,6 +149,8 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_SIGMOID,
|
||||
GGML_METAL_KERNEL_TYPE_GELU,
|
||||
GGML_METAL_KERNEL_TYPE_GELU_4,
|
||||
GGML_METAL_KERNEL_TYPE_GELU_ERF,
|
||||
GGML_METAL_KERNEL_TYPE_GELU_ERF_4,
|
||||
GGML_METAL_KERNEL_TYPE_GELU_QUICK,
|
||||
GGML_METAL_KERNEL_TYPE_GELU_QUICK_4,
|
||||
GGML_METAL_KERNEL_TYPE_SILU,
|
||||
@@ -332,6 +334,10 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F16,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F16,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_VISION_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_VISION_F16,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16,
|
||||
GGML_METAL_KERNEL_TYPE_IM2COL_F16,
|
||||
@@ -411,6 +417,13 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK192_HV128,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H256,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK576_HV512,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H64,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H64,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H64,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H64,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H64,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H64,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H64,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H96,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H96,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H96,
|
||||
@@ -1092,6 +1105,8 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIGMOID, sigmoid, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU, gelu, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_4, gelu_4, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_ERF, gelu_erf, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_ERF_4, gelu_erf_4, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK, gelu_quick, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK_4, gelu_quick_4, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU, silu, true);
|
||||
@@ -1275,6 +1290,10 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F16, mul_mm_id_iq4_xs_f16, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32, rope_norm_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16, rope_norm_f16, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F32, rope_multi_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F16, rope_multi_f16, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_VISION_F32, rope_vision_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_VISION_F16, rope_vision_f16, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32, rope_neox_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16, rope_neox_f16, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F16, im2col_f16, true);
|
||||
@@ -1354,6 +1373,13 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK192_HV128, flash_attn_ext_q8_0_hk192_hv128, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H256, flash_attn_ext_q8_0_h256, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK576_HV512, flash_attn_ext_q8_0_hk576_hv512, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H64, flash_attn_ext_vec_f16_h64, has_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H64, flash_attn_ext_vec_bf16_h64, has_simdgroup_reduction && use_bfloat);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H64, flash_attn_ext_vec_q4_0_h64, has_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H64, flash_attn_ext_vec_q4_1_h64, has_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H64, flash_attn_ext_vec_q5_0_h64, has_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H64, flash_attn_ext_vec_q5_1_h64, has_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H64, flash_attn_ext_vec_q8_0_h64, has_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H96, flash_attn_ext_vec_f16_h96, has_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H96, flash_attn_ext_vec_bf16_h96, has_simdgroup_reduction && use_bfloat);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H96, flash_attn_ext_vec_q4_0_h96, has_simdgroup_reduction);
|
||||
@@ -1591,6 +1617,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
|
||||
case GGML_UNARY_OP_RELU:
|
||||
case GGML_UNARY_OP_SIGMOID:
|
||||
case GGML_UNARY_OP_GELU:
|
||||
case GGML_UNARY_OP_GELU_ERF:
|
||||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
case GGML_UNARY_OP_SILU:
|
||||
case GGML_UNARY_OP_ELU:
|
||||
@@ -1637,16 +1664,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
|
||||
case GGML_OP_NORM:
|
||||
return has_simdgroup_reduction && (op->ne[0] % 4 == 0 && ggml_is_contiguous_1(op->src[0]));
|
||||
case GGML_OP_ROPE:
|
||||
{
|
||||
const int mode = ((const int32_t *) op->op_params)[2];
|
||||
if (mode & GGML_ROPE_TYPE_MROPE) {
|
||||
return false;
|
||||
}
|
||||
if (mode & GGML_ROPE_TYPE_VISION) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
return true;
|
||||
case GGML_OP_IM2COL:
|
||||
return op->src[0]->type == GGML_TYPE_F16;
|
||||
case GGML_OP_POOL_1D:
|
||||
@@ -2238,6 +2256,25 @@ static bool ggml_metal_encode_node(
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
case GGML_UNARY_OP_GELU_ERF:
|
||||
{
|
||||
int64_t n = ggml_nelements(dst);
|
||||
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
if (n % 4 == 0) {
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_ERF_4].pipeline;
|
||||
n /= 4;
|
||||
} else {
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_ERF].pipeline;
|
||||
}
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
{
|
||||
int64_t n = ggml_nelements(dst);
|
||||
@@ -3826,6 +3863,7 @@ static bool ggml_metal_encode_node(
|
||||
} break;
|
||||
case GGML_OP_ROPE:
|
||||
{
|
||||
|
||||
// make sure we have one or more position id(ne10) per token(ne02)
|
||||
GGML_ASSERT(ne10 % ne02 == 0);
|
||||
GGML_ASSERT(ne10 >= ne02);
|
||||
@@ -3852,20 +3890,42 @@ static bool ggml_metal_encode_node(
|
||||
memcpy(&beta_fast, (const int32_t *) dst->op_params + 9, sizeof(float));
|
||||
memcpy(&beta_slow, (const int32_t *) dst->op_params + 10, sizeof(float));
|
||||
|
||||
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
||||
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
||||
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
|
||||
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
|
||||
|
||||
// mrope
|
||||
const int sect_0 = ((const int32_t *) dst->op_params)[11];
|
||||
const int sect_1 = ((const int32_t *) dst->op_params)[12];
|
||||
const int sect_2 = ((const int32_t *) dst->op_params)[13];
|
||||
const int sect_3 = ((const int32_t *) dst->op_params)[14];
|
||||
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
if (!is_neox) {
|
||||
if (is_neox) {
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32].pipeline; break;
|
||||
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16].pipeline; break;
|
||||
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32].pipeline; break;
|
||||
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16].pipeline; break;
|
||||
default: GGML_ABORT("fatal error");
|
||||
};
|
||||
} else if (is_mrope && !is_vision) {
|
||||
GGML_ASSERT(ne10*4 >= ne02); // need at least 4 pos per token
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F32].pipeline; break;
|
||||
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F16].pipeline; break;
|
||||
default: GGML_ABORT("fatal error");
|
||||
};
|
||||
} else if (is_vision) {
|
||||
GGML_ASSERT(ne10*4 >= ne02); // need at least 4 pos per token
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_VISION_F32].pipeline; break;
|
||||
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_VISION_F16].pipeline; break;
|
||||
default: GGML_ABORT("fatal error");
|
||||
};
|
||||
} else {
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32].pipeline; break;
|
||||
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16].pipeline; break;
|
||||
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32].pipeline; break;
|
||||
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16].pipeline; break;
|
||||
default: GGML_ABORT("fatal error");
|
||||
};
|
||||
}
|
||||
@@ -3896,6 +3956,10 @@ static bool ggml_metal_encode_node(
|
||||
/*.attn_factor =*/ attn_factor,
|
||||
/*.beta_fast =*/ beta_fast,
|
||||
/*.beta_slow =*/ beta_slow,
|
||||
/* sect_0 =*/ sect_0,
|
||||
/* sect_1 =*/ sect_1,
|
||||
/* sect_2 =*/ sect_2,
|
||||
/* sect_3 =*/ sect_3,
|
||||
};
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
@@ -4332,7 +4396,7 @@ static bool ggml_metal_encode_node(
|
||||
// TODO: add vec kernels for (ne00%64 == 0) and maybe also for (ne00%32 == 0)
|
||||
// for now avoiding mainly to keep the number of templates/kernels a bit lower
|
||||
// these are now trivial to add after: https://github.com/ggml-org/llama.cpp/pull/12612
|
||||
if (ne01 >= 4 || (ne00%128 != 0 && ne00 != 96 && ne00 != 192 && ne00 != 576)) {
|
||||
if (ne01 >= 20 || (ne00%128 != 0 && ne00 != 64 && ne00 != 96 && ne00 != 192 && ne00 != 576)) {
|
||||
switch (src1->type) {
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
@@ -4513,6 +4577,24 @@ static bool ggml_metal_encode_node(
|
||||
use_vec_kernel = true;
|
||||
|
||||
switch (ne00) {
|
||||
case 64:
|
||||
{
|
||||
switch (src1->type) {
|
||||
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H64].pipeline; break;
|
||||
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H64].pipeline; break;
|
||||
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H64].pipeline; break;
|
||||
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H64].pipeline; break;
|
||||
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H64].pipeline; break;
|
||||
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H64].pipeline; break;
|
||||
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H64].pipeline; break;
|
||||
default:
|
||||
{
|
||||
GGML_LOG_ERROR("unsupported type: %d\n", src1->type);
|
||||
GGML_LOG_ERROR("add template specialization for this type\n");
|
||||
GGML_ABORT("add template specialization for this type");
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case 96:
|
||||
{
|
||||
switch (src1->type) {
|
||||
|
||||
@@ -856,6 +856,7 @@ kernel void kernel_tanh(
|
||||
constant float GELU_COEF_A = 0.044715f;
|
||||
constant float GELU_QUICK_COEF = -1.702f;
|
||||
constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
||||
constant float SQRT_2_INV = 0.70710678118654752440084436210484f;
|
||||
|
||||
kernel void kernel_gelu(
|
||||
device const float * src0,
|
||||
@@ -897,6 +898,42 @@ kernel void kernel_gelu_quick_4(
|
||||
dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
|
||||
}
|
||||
|
||||
// based on Abramowitz and Stegun formula 7.1.26 or similar Hastings' approximation
|
||||
// ref: https://www.johndcook.com/blog/python_erf/
|
||||
constant float p_erf = 0.3275911f;
|
||||
constant float a1_erf = 0.254829592f;
|
||||
constant float a2_erf = -0.284496736f;
|
||||
constant float a3_erf = 1.421413741f;
|
||||
constant float a4_erf = -1.453152027f;
|
||||
constant float a5_erf = 1.061405429f;
|
||||
|
||||
template<typename T>
|
||||
T erf_approx(T x) {
|
||||
T sign_x = sign(x);
|
||||
x = fabs(x);
|
||||
T t = 1.0f / (1.0f + p_erf * x);
|
||||
T y = 1.0f - (((((a5_erf * t + a4_erf) * t) + a3_erf) * t + a2_erf) * t + a1_erf) * t * exp(-x * x);
|
||||
return sign_x * y;
|
||||
}
|
||||
|
||||
kernel void kernel_gelu_erf(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
device const float & x = src0[tpig];
|
||||
|
||||
dst[tpig] = 0.5f*x*(1.0f+erf_approx<float>(x*SQRT_2_INV));
|
||||
}
|
||||
|
||||
kernel void kernel_gelu_erf_4(
|
||||
device const float4 * src0,
|
||||
device float4 * dst,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
device const float4 & x = src0[tpig];
|
||||
|
||||
dst[tpig] = 0.5f*x*(1.0f+erf_approx<float4>(x*SQRT_2_INV));
|
||||
}
|
||||
|
||||
kernel void kernel_silu(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
@@ -2713,8 +2750,148 @@ kernel void kernel_rope_neox(
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
kernel void kernel_rope_multi(
|
||||
constant ggml_metal_kargs_rope & args,
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
device const char * src2,
|
||||
device char * dst,
|
||||
ushort tiitg[[thread_index_in_threadgroup]],
|
||||
ushort3 tptg [[threads_per_threadgroup]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]]) {
|
||||
const int i3 = tgpig[2];
|
||||
const int i2 = tgpig[1];
|
||||
const int i1 = tgpig[0];
|
||||
|
||||
float corr_dims[2];
|
||||
rope_yarn_corr_dims(args.n_dims, args.n_ctx_orig, args.freq_base, args.beta_fast, args.beta_slow, corr_dims);
|
||||
|
||||
device const int32_t * pos = (device const int32_t *) src1;
|
||||
|
||||
const float inv_ndims = -1.f/args.n_dims;
|
||||
|
||||
float cos_theta;
|
||||
float sin_theta;
|
||||
|
||||
for (int i0 = 2*tiitg; i0 < args.ne0; i0 += 2*tptg.x) {
|
||||
if (i0 < args.n_dims) {
|
||||
const int ic = i0/2;
|
||||
|
||||
// mrope theta calculations
|
||||
// note: the rest is the same as kernel_rope_neox
|
||||
const int sect_dims = args.sect_0 + args.sect_1 + args.sect_2 + args.sect_3;
|
||||
const int sec_w01 = args.sect_0 + args.sect_1; // end of section 1
|
||||
const int sec_w012 = args.sect_0 + args.sect_1 + args.sect_2; // end of section 2
|
||||
const int sector = ic % sect_dims;
|
||||
|
||||
float theta_base;
|
||||
if (sector < args.sect_0) {
|
||||
theta_base = (float) pos[i2];
|
||||
} else if (sector < sec_w01) {
|
||||
theta_base = (float) pos[i2 + args.ne02];
|
||||
} else if (sector < sec_w012) {
|
||||
theta_base = (float) pos[i2 + args.ne02 * 2];
|
||||
} else {
|
||||
theta_base = (float) pos[i2 + args.ne02 * 3];
|
||||
}
|
||||
// end of mrope
|
||||
|
||||
const float theta = theta_base * pow(args.freq_base, inv_ndims*i0);
|
||||
|
||||
const float freq_factor = src2 != src0 ? ((device const float *) src2)[ic] : 1.0f;
|
||||
|
||||
rope_yarn(theta/freq_factor, args.freq_scale, corr_dims, i0, args.ext_factor, args.attn_factor, &cos_theta, &sin_theta);
|
||||
|
||||
device const T * const src = (device T *)(src0 + i3*args.nb03 + i2*args.nb02 + i1*args.nb01 + ic*args.nb00);
|
||||
device T * dst_data = (device T *)( dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + ic*args.nb0);
|
||||
|
||||
const float x0 = src[0];
|
||||
const float x1 = src[args.n_dims/2];
|
||||
|
||||
dst_data[0] = x0*cos_theta - x1*sin_theta;
|
||||
dst_data[args.n_dims/2] = x0*sin_theta + x1*cos_theta;
|
||||
} else {
|
||||
device const T * const src = (device T *)(src0 + i3*args.nb03 + i2*args.nb02 + i1*args.nb01 + i0*args.nb00);
|
||||
device T * dst_data = (device T *)( dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + i0*args.nb0);
|
||||
|
||||
dst_data[0] = src[0];
|
||||
dst_data[1] = src[1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
kernel void kernel_rope_vision(
|
||||
constant ggml_metal_kargs_rope & args,
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
device const char * src2,
|
||||
device char * dst,
|
||||
ushort tiitg[[thread_index_in_threadgroup]],
|
||||
ushort3 tptg [[threads_per_threadgroup]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]]) {
|
||||
const int i3 = tgpig[2];
|
||||
const int i2 = tgpig[1];
|
||||
const int i1 = tgpig[0];
|
||||
|
||||
float corr_dims[2];
|
||||
rope_yarn_corr_dims(args.n_dims, args.n_ctx_orig, args.freq_base, args.beta_fast, args.beta_slow, corr_dims);
|
||||
|
||||
device const int32_t * pos = (device const int32_t *) src1;
|
||||
|
||||
const float inv_ndims = -1.f/args.n_dims;
|
||||
|
||||
float cos_theta;
|
||||
float sin_theta;
|
||||
|
||||
for (int i0 = 2*tiitg; i0 < args.ne0; i0 += 2*tptg.x) {
|
||||
if (i0 < 2*args.n_dims) { // different from kernel_rope_multi
|
||||
const int ic = i0/2;
|
||||
|
||||
// mrope theta calculations (only support 2 dimensions)
|
||||
const int sect_dims = args.sect_0 + args.sect_1;
|
||||
const int sector = ic % sect_dims;
|
||||
|
||||
float p;
|
||||
float theta_base;
|
||||
if (sector < args.sect_1) {
|
||||
p = (float) sector;
|
||||
theta_base = (float) pos[i2];
|
||||
} else {
|
||||
p = (float) sector - args.sect_0;
|
||||
theta_base = (float) pos[i2 + args.ne02];
|
||||
}
|
||||
|
||||
const float theta = theta_base * pow(args.freq_base, 2.0f * inv_ndims * p);
|
||||
// end of mrope
|
||||
|
||||
const float freq_factor = src2 != src0 ? ((device const float *) src2)[ic] : 1.0f;
|
||||
|
||||
rope_yarn(theta/freq_factor, args.freq_scale, corr_dims, i0, args.ext_factor, args.attn_factor, &cos_theta, &sin_theta);
|
||||
|
||||
device const T * const src = (device T *)(src0 + i3*args.nb03 + i2*args.nb02 + i1*args.nb01 + ic*args.nb00);
|
||||
device T * dst_data = (device T *)( dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + ic*args.nb0);
|
||||
|
||||
const float x0 = src[0];
|
||||
const float x1 = src[args.n_dims]; // different from kernel_rope_multi
|
||||
|
||||
dst_data[0] = x0*cos_theta - x1*sin_theta;
|
||||
dst_data[args.n_dims] = x0*sin_theta + x1*cos_theta; // different from kernel_rope_multi
|
||||
} else {
|
||||
device const T * const src = (device T *)(src0 + i3*args.nb03 + i2*args.nb02 + i1*args.nb01 + i0*args.nb00);
|
||||
device T * dst_data = (device T *)( dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + i0*args.nb0);
|
||||
|
||||
dst_data[0] = src[0];
|
||||
dst_data[1] = src[1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
typedef decltype(kernel_rope_norm<float>) kernel_rope_norm_t;
|
||||
typedef decltype(kernel_rope_neox<float>) kernel_rope_neox_t;
|
||||
typedef decltype(kernel_rope_multi<float>) kernel_rope_multi_t;
|
||||
typedef decltype(kernel_rope_vision<float>) kernel_rope_vision_t;
|
||||
|
||||
template [[host_name("kernel_rope_norm_f32")]] kernel kernel_rope_norm_t kernel_rope_norm<float>;
|
||||
template [[host_name("kernel_rope_norm_f16")]] kernel kernel_rope_norm_t kernel_rope_norm<half>;
|
||||
@@ -2722,6 +2899,12 @@ template [[host_name("kernel_rope_norm_f16")]] kernel kernel_rope_norm_t kernel_
|
||||
template [[host_name("kernel_rope_neox_f32")]] kernel kernel_rope_neox_t kernel_rope_neox<float>;
|
||||
template [[host_name("kernel_rope_neox_f16")]] kernel kernel_rope_neox_t kernel_rope_neox<half>;
|
||||
|
||||
template [[host_name("kernel_rope_multi_f32")]] kernel kernel_rope_multi_t kernel_rope_multi<float>;
|
||||
template [[host_name("kernel_rope_multi_f16")]] kernel kernel_rope_multi_t kernel_rope_multi<half>;
|
||||
|
||||
template [[host_name("kernel_rope_vision_f32")]] kernel kernel_rope_vision_t kernel_rope_vision<float>;
|
||||
template [[host_name("kernel_rope_vision_f16")]] kernel kernel_rope_vision_t kernel_rope_vision<half>;
|
||||
|
||||
typedef void (im2col_t)(
|
||||
device const float * x,
|
||||
device char * dst,
|
||||
@@ -3109,7 +3292,7 @@ template<
|
||||
typename kd4x4_t, // key type in device memory
|
||||
short nl_k,
|
||||
void (*deq_k)(device const kd4x4_t *, short, thread k4x4_t &),
|
||||
typename vd4x4_t, // key type in device memory
|
||||
typename vd4x4_t, // value type in device memory
|
||||
short nl_v,
|
||||
void (*deq_v)(device const vd4x4_t *, short, thread v4x4_t &),
|
||||
short DK, // K head size
|
||||
@@ -3630,7 +3813,7 @@ template<
|
||||
typename kd4_t, // key type in device memory
|
||||
short nl_k,
|
||||
void (*deq_k_t4)(device const kd4_t *, short, thread k4_t &),
|
||||
typename vd4_t, // key type in device memory
|
||||
typename vd4_t, // value type in device memory
|
||||
short nl_v,
|
||||
void (*deq_v_t4)(device const vd4_t *, short, thread v4_t &),
|
||||
short DK, // K head size
|
||||
@@ -3741,6 +3924,11 @@ kernel void kernel_flash_attn_ext_vec(
|
||||
sm[tiisg] = pm[ic + tiisg];
|
||||
}
|
||||
|
||||
// skip -INF blocks
|
||||
if (simd_max(sm[tiisg]) == -INFINITY) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Q*K^T
|
||||
{
|
||||
// each simdgroup processes 1 query and NE (NW/NL) head elements
|
||||
@@ -3973,6 +4161,16 @@ kernel void kernel_flash_attn_ext_vec(
|
||||
|
||||
typedef decltype(kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 128, 128, 4>) flash_attn_ext_vec_t;
|
||||
|
||||
template [[host_name("kernel_flash_attn_ext_vec_f16_h64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 64, 64, 8>;
|
||||
#if defined(GGML_METAL_USE_BF16)
|
||||
template [[host_name("kernel_flash_attn_ext_vec_bf16_h64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 64, 64, 8>;
|
||||
#endif
|
||||
template [[host_name("kernel_flash_attn_ext_vec_q4_0_h64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 64, 64, 8>;
|
||||
template [[host_name("kernel_flash_attn_ext_vec_q4_1_h64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 64, 64, 8>;
|
||||
template [[host_name("kernel_flash_attn_ext_vec_q5_0_h64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 64, 64, 8>;
|
||||
template [[host_name("kernel_flash_attn_ext_vec_q5_1_h64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 64, 64, 8>;
|
||||
template [[host_name("kernel_flash_attn_ext_vec_q8_0_h64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 64, 64, 8>;
|
||||
|
||||
template [[host_name("kernel_flash_attn_ext_vec_f16_h96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 96, 96, 4>;
|
||||
#if defined(GGML_METAL_USE_BF16)
|
||||
template [[host_name("kernel_flash_attn_ext_vec_bf16_h96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 96, 96, 4>;
|
||||
|
||||
@@ -27,12 +27,15 @@ if (MUSAToolkit_FOUND)
|
||||
|
||||
file(GLOB GGML_HEADERS_MUSA "../ggml-cuda/*.cuh")
|
||||
list(APPEND GGML_HEADERS_MUSA "../../include/ggml-cuda.h")
|
||||
list(APPEND GGML_HEADERS_MUSA "../ggml-musa/mudnn.cuh")
|
||||
|
||||
file(GLOB GGML_SOURCES_MUSA "../ggml-cuda/*.cu")
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-mma*.cu")
|
||||
list(APPEND GGML_SOURCES_MUSA ${SRCS})
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/mmq*.cu")
|
||||
list(APPEND GGML_SOURCES_MUSA ${SRCS})
|
||||
file(GLOB SRCS "../ggml-musa/*.cu")
|
||||
list(APPEND GGML_SOURCES_MUSA ${SRCS})
|
||||
|
||||
if (GGML_CUDA_FA_ALL_QUANTS)
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-vec*.cu")
|
||||
@@ -62,7 +65,9 @@ if (MUSAToolkit_FOUND)
|
||||
)
|
||||
|
||||
# TODO: do not use CUDA definitions for MUSA
|
||||
target_compile_definitions(ggml PUBLIC GGML_USE_CUDA)
|
||||
if (NOT GGML_BACKEND_DL)
|
||||
target_compile_definitions(ggml PUBLIC GGML_USE_CUDA)
|
||||
endif()
|
||||
|
||||
add_compile_definitions(GGML_USE_MUSA)
|
||||
add_compile_definitions(GGML_CUDA_PEER_MAX_BATCH_SIZE=${GGML_CUDA_PEER_MAX_BATCH_SIZE})
|
||||
@@ -92,9 +97,10 @@ if (MUSAToolkit_FOUND)
|
||||
endif()
|
||||
|
||||
if (GGML_STATIC)
|
||||
# TODO: mudnn has not provided static libraries yet
|
||||
target_link_libraries(ggml-musa PRIVATE MUSA::musart_static MUSA::mublas_static)
|
||||
else()
|
||||
target_link_libraries(ggml-musa PRIVATE MUSA::musart MUSA::mublas)
|
||||
target_link_libraries(ggml-musa PRIVATE MUSA::musart MUSA::mublas mudnn)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_NO_VMM)
|
||||
|
||||
112
ggml/src/ggml-musa/mudnn.cu
Normal file
112
ggml/src/ggml-musa/mudnn.cu
Normal file
@@ -0,0 +1,112 @@
|
||||
#include <mutex>
|
||||
#include <mudnn.h>
|
||||
|
||||
#include "mudnn.cuh"
|
||||
|
||||
namespace mudnn = musa::dnn;
|
||||
|
||||
// Returns a human-readable error string for mudnn::Status
|
||||
const char* mudnnGetErrorString(mudnn::Status err) {
|
||||
switch (err) {
|
||||
case mudnn::Status::SUCCESS:
|
||||
return "Success";
|
||||
case mudnn::Status::INVALID_PARAMETER:
|
||||
return "Invalid parameter";
|
||||
case mudnn::Status::NOT_INITIALIZED:
|
||||
return "Not initialized";
|
||||
case mudnn::Status::ALLOC_FAILED:
|
||||
return "Allocation failed";
|
||||
case mudnn::Status::NOT_SUPPORTED:
|
||||
return "Not supported";
|
||||
case mudnn::Status::INTERNAL_ERROR:
|
||||
return "Internal error";
|
||||
case mudnn::Status::ARCH_MISMATCH:
|
||||
return "Architecture mismatch";
|
||||
case mudnn::Status::EXECUTION_FAILED:
|
||||
return "Execution failed";
|
||||
default:
|
||||
return "Unknown mudnn status";
|
||||
}
|
||||
}
|
||||
|
||||
// Error checking macro for MUDNN calls
|
||||
#define MUDNN_CHECK(err) CUDA_CHECK_GEN(err, mudnn::Status::SUCCESS, mudnnGetErrorString)
|
||||
|
||||
namespace {
|
||||
// Thread-safe cache for mudnn::Handle objects per device
|
||||
std::unordered_map<int, std::unique_ptr<mudnn::Handle>> handle_cache;
|
||||
std::mutex handle_cache_mutex;
|
||||
|
||||
mudnn::Handle* get_cached_handle(int device_id) {
|
||||
std::lock_guard<std::mutex> lock(handle_cache_mutex);
|
||||
auto it = handle_cache.find(device_id);
|
||||
if (it != handle_cache.end()) {
|
||||
return it->second.get();
|
||||
}
|
||||
auto handle = std::make_unique<mudnn::Handle>(device_id);
|
||||
mudnn::Handle* handle_ptr = handle.get();
|
||||
handle_cache[device_id] = std::move(handle);
|
||||
return handle_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
// Extracts dimensions and strides from a ggml_tensor
|
||||
int get_ggml_dims_and_strides(const ggml_tensor* tensor,
|
||||
std::vector<int64_t>& dims,
|
||||
std::vector<int64_t>& strides) {
|
||||
const int ndims = ggml_n_dims(tensor);
|
||||
const size_t element_size = ggml_element_size(tensor);
|
||||
|
||||
dims.resize(ndims);
|
||||
strides.resize(ndims);
|
||||
|
||||
for (int i = 0; i < ndims; ++i) {
|
||||
dims[i] = tensor->ne[i];
|
||||
strides[i] = tensor->nb[i] / static_cast<int64_t>(element_size);
|
||||
}
|
||||
return ndims;
|
||||
}
|
||||
|
||||
// Converts ggml_type to mudnn::Tensor::Type
|
||||
mudnn::Tensor::Type ggml_type_to_mudnn_type(ggml_type type) {
|
||||
switch (type) {
|
||||
case GGML_TYPE_F32:
|
||||
return mudnn::Tensor::Type::FLOAT;
|
||||
case GGML_TYPE_F16:
|
||||
return mudnn::Tensor::Type::HALF;
|
||||
|
||||
// TODO: Add support for other types
|
||||
|
||||
default:
|
||||
MUDNN_CHECK(mudnn::Status::NOT_SUPPORTED);
|
||||
}
|
||||
|
||||
return mudnn::Tensor::Type::FLOAT; // Default fallback
|
||||
}
|
||||
|
||||
// Asynchronous memory copy using mudnn::Unary::IDENTITY
|
||||
musaError_t mudnnMemcpyAsync(ggml_backend_cuda_context& ctx, const ggml_tensor* dst, const ggml_tensor* src) {
|
||||
mudnn::Tensor tensor_dst, tensor_src;
|
||||
|
||||
MUDNN_CHECK(tensor_dst.SetType(ggml_type_to_mudnn_type(dst->type)));
|
||||
MUDNN_CHECK(tensor_src.SetType(ggml_type_to_mudnn_type(src->type)));
|
||||
|
||||
std::vector<int64_t> dims, strides;
|
||||
const int ndims = get_ggml_dims_and_strides(src, dims, strides);
|
||||
|
||||
MUDNN_CHECK(tensor_dst.SetNdInfo(ndims, dims.data(), strides.data()));
|
||||
MUDNN_CHECK(tensor_src.SetNdInfo(ndims, dims.data(), strides.data()));
|
||||
MUDNN_CHECK(tensor_dst.SetAddr(dst->data));
|
||||
MUDNN_CHECK(tensor_src.SetAddr(src->data));
|
||||
|
||||
mudnn::Unary op;
|
||||
MUDNN_CHECK(op.SetMode(mudnn::Unary::Mode::IDENTITY));
|
||||
MUDNN_CHECK(op.SetAlpha(0.0f));
|
||||
MUDNN_CHECK(op.SetBeta(0.0f));
|
||||
|
||||
mudnn::Handle* handle = get_cached_handle(ctx.device);
|
||||
MUDNN_CHECK(handle->SetStream(ctx.stream()));
|
||||
MUDNN_CHECK(op.Run(*handle, tensor_dst, tensor_src));
|
||||
|
||||
return musaSuccess;
|
||||
}
|
||||
12
ggml/src/ggml-musa/mudnn.cuh
Normal file
12
ggml/src/ggml-musa/mudnn.cuh
Normal file
@@ -0,0 +1,12 @@
|
||||
#pragma once
|
||||
|
||||
#include "../include/ggml.h"
|
||||
#include "../ggml-cuda/common.cuh"
|
||||
|
||||
// Asynchronously copies data from src tensor to dst tensor using the provided context.
|
||||
// Returns a musaError_t indicating success or failure.
|
||||
musaError_t mudnnMemcpyAsync(
|
||||
ggml_backend_cuda_context &ctx,
|
||||
const ggml_tensor *dst,
|
||||
const ggml_tensor *src
|
||||
);
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user