Compare commits

..

148 Commits
b5426 ... b5574

Author SHA1 Message Date
shalinib-ibm
093e3f1feb cmake : Handle mixed-case 'Power' strings in POWER CPU detection (#13966)
Some systems report the CPU implementation as "Power11" instead of "POWER11".
The existing CMake logic uses a case-sensitive regular expression to extract
the CPU generation, which fails when the casing doesn't exactly match "POWER".

This patch provides a fix by first converting the string to uppercase before applying the regex.

Signed-off-by: root <root@rheldb2v.pperf.tadn.ibm.com>
Co-authored-by: root <root@rheldb2v.pperf.tadn.ibm.com>
2025-06-02 15:18:36 +03:00
Atharva Dubey
663445b0de sycl: quantize and reorder the input to q8_1 when reorder is enabled (#13826)
* [WIP]: fuse q8 quantization and reorder

* wip2: fuse q8 quantization and reorder

* working q8 reorder commit

* restored common.hpp

* remove debug prints

* remove unnecessary headers and remove trailing whitespace

* Update ggml/src/ggml-sycl/ggml-sycl.cpp

Co-authored-by: Alberto Cabrera Pérez <alberto.cabrera@intel.com>

---------

Co-authored-by: Alberto Cabrera Pérez <alberto.cabrera@intel.com>
2025-06-02 10:12:20 +01:00
Johannes Gäßler
7675c555a1 gguf: fix failure on version == 0 (#13956) 2025-06-01 18:08:05 +02:00
Sigbjørn Skjæret
5e1c3aed40 convert : fix nomic-bert-moe mask token (#13757) 2025-06-01 18:07:21 +02:00
Sigbjørn Skjæret
c496fe0b1d convert : fix vocab padding code for bert models (#13954) 2025-06-01 17:23:11 +02:00
Aaron Teo
e57bb87ced ggml: check if non-native endian model is being loaded (#13943)
* gguf: prevent non-native endian models from being loaded

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* gguf: update error message

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* gguf: make the non-native endian check more verbose

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: move ggml_assert location

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: reword the endianness check error message

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-06-01 16:53:57 +02:00
Georgi Gerganov
f3a4b1659c sync : ggml
ggml-ci
2025-06-01 13:43:57 +03:00
Kai Pastor
108009f5c7 vulkan : Remove unexpected ; (ggml/1253) 2025-06-01 13:43:57 +03:00
Kai Pastor
d337252acf cmake : Fix broken CMake error messages (ggml/1252) 2025-06-01 13:43:57 +03:00
Radoslav Gerganov
af6f91db47 ggml : remove ggml_graph_import and ggml_graph_export declarations (ggml/1247)
The implementation is already deleted with commit 9d0762e.

closes: #1235
2025-06-01 13:43:57 +03:00
Georgi Gerganov
a7b8d35f78 sync : whisper.cpp (ggml/1250)
* ggml : Fix backtrace breaking Windows build (whisper/3203)

* sync : whisper.cpp

ggml-ci

---------

Co-authored-by: Daniel Tang <danielzgtg.opensource@gmail.com>
2025-06-01 13:43:57 +03:00
Radoslav Gerganov
6eba72b71c ggml : install dynamic backends (ggml/1240)
* ggml : install dynamic backends

Make sure dynamic backends are installed in $CMAKE_INSTALL_BINDIR
2025-06-01 13:43:57 +03:00
Daniel Tang
fedf034a98 ggml : Print backtrace on uncaught C++ exceptions (ggml/1232)
The goal is to have what users call "full logs" contain the backtrace.

This is registered upon ggml_init. Also fixes a minor fd leak on Linux.
2025-06-01 13:43:57 +03:00
ddh0
8726392d3d readme : update bindings (#13950) 2025-06-01 11:44:30 +03:00
Georgi Gerganov
c04621711a parallel : fix n_junk == 0 (#13952) 2025-06-01 11:42:16 +03:00
Georgi Gerganov
0fc16b42e8 kv-cache : split implementation in separate sources (#13920)
ggml-ci
2025-06-01 11:39:27 +03:00
Max Krasnyansky
053b1539c0 threading: support for GGML_SCHED_PRIO_LOW, update thread info on Windows to avoid throttling (#12995)
* threading: support for GGML_SCHED_PRIO_LOW, update thread info on Windows to avoid throttling

We talked about adding LOW priority for GGML threads in the original threadpool PR.
It might be useful for some cases to avoid contention.

Latest Windows ARM64 releases started parking (offlining) the CPU cores
more aggresively which results in suboptimal performance with n_threads > 4.
To deal with that we now disable Power Throttling for our threads for the NORMAL
and higher priorities.

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* threading: disable SetThreadInfo() calls for older Windows versions

* Update tools/llama-bench/llama-bench.cpp

Co-authored-by: Diego Devesa <slarengh@gmail.com>

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-05-31 15:39:19 -07:00
Jiří Podivín
b3a89c3d9e docs : Note about necessity of having libcurl installed for standard build. (#13945)
Signed-off-by: Jiri Podivin <jpodivin@gmail.com>
2025-05-31 18:58:35 +02:00
Olivier Chafik
e15898d1c7 server: allow unclosed thinking tags (#13931) 2025-05-31 08:26:10 -07:00
Georgi Gerganov
803f8baf4f llama : deprecate explicit kv_self defrag/update calls (#13921)
ggml-ci
2025-05-31 15:58:33 +03:00
Georgi Gerganov
3600cc2886 llama : use n_swa + n_ubatch cells for SWA cache (#13833)
* llama : use n_swa + n_ubatch cells for SWA cache

ggml-ci

* llama : add warning about multi-sqeuence SWA contexts
2025-05-31 15:57:44 +03:00
igardev
c7e0a2054b webui : Replace alert and confirm with custom modals. (#13711)
* Replace alert and confirm with custom modals. This is needed as Webview in VS Code doesn't permit alert and confirm for security reasons.

* use Modal Provider to simplify the use of confirm and alert modals.

* Increase the z index of the modal dialogs.

* Update index.html.gz

* also add showPrompt

* rebuild

---------

Co-authored-by: igardev <ivailo.gardev@akros.ch>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-05-31 11:56:08 +02:00
Georgi Gerganov
3f55f781f1 llama : auto-batch preparation (#13845)
* llama : auto-batch

ggml-ci

* context : simplify if branching
2025-05-31 12:55:57 +03:00
Xuan-Son Nguyen
51fa76f172 mtmd : drop _shared from libmtmd name, merge helpers into libmtmd (⚠️ breaking change) (#13917)
* mtmd : fix missing public header

* no object

* apply suggestion from Georgi

* rm mtmd-helper, merge it to mtmd

* missing vendor include dir
2025-05-31 10:14:29 +02:00
Georgi Gerganov
12d0188c0d kv-cache : refactor + add llama_memory_state_i (#13746)
* kv-cache : simplify the "struct llama_kv_cache" interface

ggml-ci

* kv-cache : revert the (n_swa + n_ubatch) change (for next PR)

ggml-ci

* kv-cache : some comments

ggml-ci

* context : fix graph reserve for multiple sequences

ggml-ci

* kv-cache : fix typo [no ci]

* kv-cache : fix find_slot() logic for free slots

ggml-ci

* llama : add TODO for deprecating the defrag API in the future

* kv-cache : improve find_slot() using min/max seq pos info

ggml-ci

* llama : handle aborts and compute errors

ggml-ci

* memory : extract state into llama_memory_state

ggml-ci

* kv-cache : add comments

ggml-ci

* server : update batching logic to reset n_batch on successful decode

* server : upon full re-processing, remove the sequence from the cache

* kv-cache : add TODO for doing split_equal when split_simple fails

ggml-ci
2025-05-31 10:24:04 +03:00
Shawn yang
eb3949938e CUDA: add a prop in ggml_cuda_device_infor for distinguish iGPU or dGPU in cuda (#13856) (#13895)
* 1.  add "integrated" in ggml_cuda_device_info for distinguish whether it is Intergrate_gpu or discrete_gpu
2. Adjust the func:"ggml_backend_cuda_device_supports_buft" for this new feature

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Adjusted code indentation

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Fixed incorrect setting of variable types

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Adjusted the judgment logic

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* add a host_buft assert in case of integrated_cuda_device with func:'evaluate_and_capture_cuda_graph()'

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Add a defensive security assert

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Adjusted the support judgment logic.

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* revoke the suggest commit changes due to it's not applicable in jetson_device

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Add parentheses to enforce operator precedence​

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Fix ci bug: add a spaces

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: yangxiao <yang_xl@tju.edu.cn>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: yangxiao <yangxl_zz@qq.com>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-05-31 08:48:04 +02:00
Johannes Gäßler
e562eece7c CUDA: fix typo in FlashAttention code (#13926) 2025-05-30 21:22:03 +02:00
Diego Devesa
b47ab7b8e9 sched : avoid changing cur_copy when a graph is already allocated (#13922) 2025-05-30 18:56:19 +02:00
Georgi Gerganov
dd665cc9d4 parallel : increase the variability of the prompt lengths (#13927)
ggml-ci
2025-05-30 19:38:07 +03:00
Diego Devesa
df0c0c7d02 cuda : prevent using split buffers with 3d/4d matrices (#13919) 2025-05-30 16:37:18 +02:00
Akarshan Biswas
b49a8ff96b SYCL: Add mrope kernel (#13755)
* SYCL: Add mrope kernel

* feat: Optimize rope operations with vectorization

Uses `sycl::vec` to load and store two elements at a time,
significantly improving performance in `rope_norm`,
`rope_neox`, and `rope_multi`. This reduces the number of memory
accesses and leverages SIMD instructions for faster execution.

* Use ceil_div
2025-05-30 19:40:57 +05:30
Georgi Gerganov
53f925074d sync : vendor (#13901)
* sync : vendor

ggml-ci

* cont : fix httplib version

ggml-ci

* cont : fix lint

* cont : fix lint

* vendor : move to common folder /vendor

ggml-ci

* cont : fix lint

* cont : move httplib to /vendor + use json_fwd.hpp

ggml-ci

* cont : fix server build

ggml-ci

* cont : add missing headers

ggml-ci

* cont : header clean-up

ggml-ci
2025-05-30 16:25:45 +03:00
Sigbjørn Skjæret
db38704f01 convert : fix rwkv bos/eos token (#13844) 2025-05-30 14:50:43 +02:00
Xuan-Son Nguyen
07e4351ce6 convert : allow partial update to the chkhsh pre-tokenizer list (#13847)
* convert : allow partial update to the chkhsh pre-tokenizer list

* code style

* update tokenizer out

* rm inp/out files for models not having gguf

* fixed hash for glm

* skip nomic-bert-moe test

* Update convert_hf_to_gguf_update.py

* fix minerva-7b hash

* rm redundant import
2025-05-30 12:24:37 +02:00
Đinh Trọng Huy
291f2b6913 llama : add support for DistilBert (#13907)
* add distilbert

* small fixes

* add note for LLM_ARCH_DISTIL_BERT

* Use MODEL_ARCH.BERT for DistilBert

---------

Co-authored-by: dinhhuy <huy.dinh@brains-tech.co.jp>
2025-05-30 11:56:02 +02:00
zhangkaihuo
2c90da4c7e llama : use llm_build_granite for minicpm (#13911) 2025-05-30 10:31:48 +02:00
Christian Kastner
ec9e0301fe cmake: Guard GGML_CPU_ALL_VARIANTS by architecture (#13890) 2025-05-30 01:28:54 +02:00
Sigbjørn Skjæret
e83ba3e460 llama : add support for jina-reranker-v2 (#13900) 2025-05-29 21:42:31 +02:00
Sigbjørn Skjæret
2b131621e6 gguf-py : add support for sub_type (in arrays) in GGUFWriter add_key_value method (#13561) 2025-05-29 15:36:05 +02:00
Yibo Cai
54a2c7a8cd arm64: optimize q4_k_q8_k kernel with i8mm (#13886)
This PR improves q4_k_q8_k gemm kernel with arm64 i8mm instruction.

Tested on neoverse-n2 with llama3 8b q4_k_m quantization model.
- 34% ~ 50% S_PP uplift for all batch sizes
- 12% ~ 37% S_TG uplift for batch size 4 and above

Perplexity doesn't change with this PR.

```
// tested on neoverse-n2
$ llama-batched-bench \
      -m Meta-Llama-3-8B-Instruct-Q4_K_M.gguf \
      --no-mmap -fa \
      -c 8192 -b 4096 -ub 512 -npp 128 -ntg 128 \
      -npl 1,2,4,8,16,32 \
      -t 64

---------------------------------------------------------------------
|    PP |     TG |    B |       S_PP t/s      |       S_TG t/s      |
|       |        |      | original |  this pr | original |  this pr |
|-------|--------|------|----------|----------|----------|----------|
|   128 |    128 |    1 |   110.12 |   147.83 |    24.36 |    24.28 |
|   128 |    128 |    2 |   121.16 |   172.42 |    46.36 |    47.93 |
|   128 |    128 |    4 |   120.15 |   169.75 |    74.68 |    84.00 |
|   128 |    128 |    8 |   130.97 |   196.81 |    91.04 |   114.74 |
|   128 |    128 |   16 |   131.01 |   196.88 |   101.43 |   135.79 |
|   128 |    128 |   32 |   130.85 |   196.51 |   106.97 |   147.29 |
---------------------------------------------------------------------
```
2025-05-29 14:39:20 +03:00
Christian Kastner
21fcc21ad5 cmake: Factor out CPU architecture detection (#13883)
* cmake: Define function for querying architecture

The tests and results match exactly those of ggml/src/CMakeLists.txt

* Switch arch detection over to new function
2025-05-29 12:50:25 +02:00
Vineel Abhinav
dd8ba93416 ggml: aarch64: Implement SVE F32 kernels for Mamba Sequential Scan Algorithm (#13882)
* F32-Mamba-Seq_Scan-SVE

* Fix formatting

* ggml : missing space

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-05-29 12:18:43 +03:00
Georgi Gerganov
66c92061f5 tests : remove json.hpp from a test (#13880)
ggml-ci
2025-05-29 12:17:16 +03:00
Sigbjørn Skjæret
5ca82fc1d7 convert : workaround for AutoConfig dummy labels (#13881) 2025-05-29 10:00:57 +02:00
Sigbjørn Skjæret
6385b843a8 llama : add RobertaForSequenceClassification reranker support (#13875) 2025-05-29 08:15:01 +02:00
Vineel Abhinav
1b8fb8152d ggml: aarch64: Implement SVE F32 kernels for vector functions (#13843)
* F32-Mamba-SVE

* F32-Mamba-SVE

* Resolve test errors-1

* Resolve test errors-2

* F32-vec-SVE

* F32-vec-SVE

* F32-vec-SVE
2025-05-29 09:01:33 +03:00
Beinsezii
53ae30640e gguf-py : fix SafetensorRemote return on undefined size (< 0) (#13841) 2025-05-28 23:50:20 +02:00
Xuan-Son Nguyen
763d06edb7 llama : fix KV shift for qwen2vl (#13870)
* llama : fix KV shift for qwen2vl

* add ref to the PR
2025-05-28 22:35:31 +02:00
Xuan-Son Nguyen
10961339b2 mtmd : move helpers to dedicated library (⚠️ breaking change) (#13866)
* mtmd : move helpers to dedicated library

* fix server build

* rm leftover cmakelist code
2025-05-28 22:35:22 +02:00
bandoti
d98f2a35fc ci: disable LLAMA_CURL for Linux cross-builds (#13871) 2025-05-28 15:46:47 -03:00
Đinh Trọng Huy
e0e3aa231d llama : add support for BertForSequenceClassification reranker (#13858)
* convert: add support for BertForSequenceClassification

* add support for reranking using BertForSequenceClassification

* merge checks of eos and sep

* fix lint

---------

Co-authored-by: dinhhuy <huy.dinh@brains-tech.co.jp>
2025-05-28 19:01:58 +02:00
Đinh Trọng Huy
aa6dff05be convert: small addition to support LlamaModel (#13838)
Co-authored-by: dinhhuy <huy.dinh@brains-tech.co.jp>
2025-05-28 16:34:18 +02:00
Sky
c962ae3382 server: fix remove 'image_url'/'input_audio' json-object effectlly for 'llama_params' in multimodal-model-mode (#13853)
[fix]: remove 'image_url'/'input_audio' effectlly for 'llama_params' in multimodal-model-mode
2025-05-28 16:33:54 +02:00
Xuan-Son Nguyen
a3938fb53d convert : fix qwen omni conversion (#13859)
* convert : fix qwen omni conversion

* fix typo
2025-05-28 16:12:35 +02:00
Alex Fanthome
f7873fc698 tests : change umlaut test (#11600) 2025-05-28 15:49:28 +02:00
Johannes Gäßler
a68247439b CUDA: fix FA tg at long context for CC >= 8.9 (#13852) 2025-05-28 13:33:37 +02:00
Xuan-Son Nguyen
26b79b6cb3 convert : fix tensor naming conflict for llama 4 vision (#13836)
* convert : fix tensor naming conflict for llama 4 vision

* add comment
2025-05-28 10:05:54 +02:00
leo-pony
1e8659e65a CANN: Add SOC TYPE printing in cmake configuration (#13837) 2025-05-28 11:54:20 +08:00
lhez
a3c30846e4 opencl: add new ops - argsort, div, sub, addrows, sigmoid, group_norm (#13787)
* opencl: add `argsort`

* opencl: add `div`

* opencl: add `add_rows`

* opencl: add `sub`

* opencl: add `sigmoid`, both `f16` and `f32`

* opencl: add `group_norm`
2025-05-27 12:56:08 -07:00
lhez
1701d4c54f opencl: mark mul_mat f32f32 as supporting non-contiguous tensors (#13790) 2025-05-27 12:53:14 -07:00
Jeff Bolz
bef8176387 vulkan: use timestamp queries for GGML_VULKAN_PERF (#13817)
Also change it to be controlled by an env var rather than cmake flag
2025-05-27 18:39:07 +02:00
Georgi Gerganov
34b7c0439e cmake : add llama-cparams.cpp to build (#13832) 2025-05-27 19:08:44 +03:00
Akarshan Biswas
f3101a8cc6 SYCL: add gelu_erf kernel (#13749)
* SYCL: add gelu_erf kernel

* refactor code

Co-authored-by: Atharva Dubey <atharva.dubey@codeplay.com>

* Use scope_op_debug_print

---------

Co-authored-by: Atharva Dubey <atharva.dubey@codeplay.com>
2025-05-27 20:52:59 +05:30
Georgi Gerganov
1c49c70d07 sync : ggml 2025-05-27 18:05:33 +03:00
Xuan-Son Nguyen
a8ea03d8ad ggml : add ggml_repeat_4d (#13824) 2025-05-27 15:53:55 +02:00
xctan
05f6ac6283 ggml : riscv: add xtheadvector support (#13720)
* ggml : riscv: add xtheadvector support

* ggml : clean up some macro usage
2025-05-27 16:21:36 +03:00
Xuan-Son Nguyen
bc583e3c63 mtmd : support Qwen 2.5 Omni (input audio+vision, no audio output) (#13784)
* mtmd : allow multiple modalities at the same time

* refactor mtmd tokenizer

* fix compile

* ok, missing SinusoidsPositionEmbedding

* first working version

* fix style

* more strict validate of n_embd

* refactor if..else to switch

* fix regression

* add test for 3B

* update docs

* fix tokenizing with add_special

* add more tests

* fix test case "huge"

* rm redundant code

* set_position_mrope_1d rm n_tokens
2025-05-27 14:06:10 +02:00
bandoti
72b090da2c docs: remove link for llama-cli function calling (#13810) 2025-05-27 08:52:40 -03:00
Christian Kastner
7fe03e7446 ggml-cpu: x86 feature detection is specific to x86 (#13811) 2025-05-27 13:18:39 +02:00
Diego Devesa
952f3953c1 ggml : allow CUDA graphs when using pipeline parallelism (#13814) 2025-05-27 13:05:18 +02:00
Georgi Gerganov
81713121ee kv-cells : track min/max used cells and per-sequence positions (#13808)
* kv-cells : track min/max used cells and per-sequence positions

ggml-ci

* kv-cells : fix pos-modification updates for seq_pos

ggml-ci

* kv-cells : add comments

ggml-ci
2025-05-27 13:49:41 +03:00
Georgi Gerganov
f9cd68398b sampling : make sure samplers return at least 1 token (#13822)
* sampling : min-p should always return at least one token

ggml-ci

* sampling : same for typical sampling

* tests : sampling tests use min_keep == 0

ggml-ci
2025-05-27 12:07:52 +03:00
Georgi Gerganov
4f81b33e32 llama : validate seq id batch input (#13809)
* llama : validate seq id batch input

ggml-ci

* cont : fix the fix

ggml-ci
2025-05-27 09:40:59 +03:00
Olivier Chafik
cdf94a1802 server: --offline mode (#13804)
* server: --offline mode (env: LLAMA_OFFLINE)

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-05-26 22:34:27 +01:00
Georgi Gerganov
a26c4cc11e scripts : add option to compare commits in Debug (#13806)
* scripts : add option to compare commits in Debug

* cont : reuse existing CMAKE_OPTS
2025-05-26 22:24:01 +03:00
Georgi Gerganov
4265a87b59 cuda : avoid cuGetErrorString (#13791)
ggml-ci
2025-05-26 22:14:52 +03:00
Akarshan Biswas
6f180b915c SYCL: Add non contiguous support in RMS_NORM and NORM kernels (#13611)
* SYCL: Add non contiguous input support to norm kernel

* refactor and add RMS_NORM non contiguous input support

ggml-ci

* restore subgroup reduction for multi-subgroup thread blocks in norm kernels

* Swap grid dims of nsamples and nrows

ggml-ci

* Revert "Swap grid dims of nsamples and nrows"

This reverts commit 43be2d657fec7f7fba54e2cd154106bc0fc45adf.

* restore not required changes
ggml-ci

* address review comments: change it to more like SYCL

* Use a common function to calculate offset

* remove wrap around logic for handling broadcasts

* remove static from calculate_offset fn and use ceil_div
2025-05-26 21:10:36 +05:30
Olivier Chafik
03f582ae8f server: fix streaming crashes (#13786)
* add preludes to content on partial regex match

* allow all parsers to parse non-tool-call content.

* tweak order of <|python_tag|> vs <function= parsing for functionary v3.1 format. still not ideal but hopefully less prone to crash
2025-05-26 16:03:57 +01:00
standby24x7
88c125f2ac examples/training: Fix file name in README (#13803)
This patch fixes binary file names in README.md.

Signed-off-by: Masanari Iida <standby24x7@gmail.com>
2025-05-26 16:55:24 +02:00
Olivier Chafik
d74e94c1b3 server: fix format of streamed tool call deltas (diff name, fix id location) (#13800)
* fix deltas of tool_call.function.name

* fix tool_call.id (was in tool_call.function.id!) + add function type

* add tool_call.type

* populate empty tool_call.function.arguments on first delta
2025-05-26 14:56:49 +01:00
Olivier Chafik
f13847cfb5 server: fix regression on streamed non-chat completion w/ stops (#13785)
* more forgiving message diffs: partial stop words aren't erased, full stops are

* Add (slow) server test for completion + stream + stop
2025-05-26 14:16:37 +01:00
Georgi Gerganov
79c137f776 examples : allow extracting embeddings from decoder contexts (#13797)
ggml-ci
2025-05-26 14:03:54 +03:00
Georgi Gerganov
22229314fc llama : clarify deprecation message (#13794) 2025-05-26 12:57:50 +03:00
Romain Biessy
9012eb9b45 sycl: Add more debug prints (#13640) 2025-05-26 10:28:53 +02:00
Jeff Bolz
fef693dc6b vulkan: mark IM2COL as supporting non-contig (#13783) 2025-05-26 06:02:07 +02:00
Bizhao Shi
2d38b6e400 CANN: Add the basic supports of Flash Attention kernel (#13627)
* cann: add the basic FA support

* cann: update the readme

* cann: update the FlashAttention with PSEShift

* cann: update the input parameters in FA

* cann: update the alibi with max_bias

* cann: add the constrints of softcap

* cann: update the docs CANN.md

* cann: update the docs CANN.md

* cann: fix typo of CANN.md

* cann: add some comments and update the CANN.md

* cann: update the CANN.md

* cann: update the inner precise for fusedInferAttention

* cann: update the constraints of flash_attn_ext on ggml-cann.cpp

* cann: clean the whitespace

* cann: clean the whitespace

* cann: add a new endline
2025-05-26 10:20:18 +08:00
Olivier Chafik
e121edc432 server: add --reasoning-budget 0 to disable thinking (incl. qwen3 w/ enable_thinking:false) (#13771)
---------

Co-authored-by: ochafik <ochafik@google.com>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-05-26 00:30:51 +01:00
Xuan-Son Nguyen
2f099b510f webui : bump max upload file size to 500MB (#13779) 2025-05-25 18:02:18 +01:00
Sigbjørn Skjæret
aa50ba462f tests : improve UGM tokenizer test coverage (#13773) 2025-05-25 16:22:29 +02:00
Georgi Gerganov
de2ef53a4b kv-cache : rework kv_cell (#13706)
* kv-cache : rework kv_cell

ggml-ci

* kv-cells : use "shift" instead of "delta" consistently

ggml-ci

* llama : add llama_max_parallel_sequences()

ggml-ci

* kv-cells : update comments [no ci]

* context : fail upon construction if sequences exceed max value

ggml-ci

* kv-cells : get_pos() -> pos_get() + comments

ggml-ci

* kv-cells : fix tracking of "used" cells

ggml-ci
2025-05-25 16:34:36 +03:00
Percy Piper
c508256db2 rpc : Fix build on OpenBSD (#13541) 2025-05-25 15:35:53 +03:00
Xuan-Son Nguyen
40aaa8a403 mtmd : add support for Qwen2-Audio and SeaLLM-Audio (#13760)
* mtmd : add Qwen2-Audio support

* small clean up

* update discussion link

* clarify mtmd_get_output_embd

* clarification in multimodal.md

* fix ultravox bug

* ggml_cont
2025-05-25 14:06:32 +02:00
ddpasa
a08c1d2845 docs : add Moondream2 pre-quantized link (#13745)
* Multimodal: Added Moondream2 model and fixed ggml.org link

* Apply suggestions from code review

---------

Co-authored-by: name <none@none.com>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-05-25 14:04:49 +02:00
Olivier Chafik
d785f9c1fd server: fix/test add_generation_prompt (#13770)
Co-authored-by: ochafik <ochafik@google.com>
2025-05-25 10:45:49 +01:00
Piotr Jasiukajtis
4032ca4066 llama : add support for Qwen3 MoE tied word embeddings (#13768) 2025-05-25 10:29:43 +02:00
Akarshan Biswas
515fdbf7ed SYCL: revert "sycl: simplify bin_bcast_kernel (#13383)" (#13752)
Temporarily reverted due to failing fp16 DIV operation

This reverts commit 02cdd2d8b0.

ggml-ci
2025-05-25 10:08:37 +03:00
Olivier Chafik
f5cd27b71d server: streaming of tool calls and thoughts when --jinja is on (#12379)
* add common_json w/ support for truncated json healing

* add common_chat_msg_diff

* partial common_chat_parse

* refactor parser w/ optionals

* server: wire chat diffs in stream mode

* fix trigger of thinking models (must happen after thoughts are closed)

* fix functionary v3.2 raw python!

* rename: common_chat_syntax (now contains format)

* rm common_regex.at_start

* don't return empty <think></think>

* accommodate yet another deepseek r1 distill fantasy syntax (`<|tool▁calls|>`)

* fix QwQ 32B tool call parsing after thoughts (hermes2)

* better logs for grammar triggers

* consume spaces after parse_json_tool_calls

* fix required tool calls w/ thinking models that have pre-opened thinking tags

* fix thinking model's initial trigger + test qwq's template

* run most test_tool_call tests in stream + non-stream modes

* make functionary v3.2 parsing more strict (differentiate first match from others)

* send final diff from server, to close off raw python arguments

* support partial content streaming in Generic mode

* tool-call: allow content prelude before hermes2 tool calls (for Qwen2.5)

* Update function-calling.md

* Update tool_bench.py

* chat-parser: remove input from exception (llm output may contain PII)

---------

Co-authored-by: ochafik <ochafik@google.com>
Co-authored-by: Olivier Chafik <ochafik@users.noreply.github.com>
2025-05-25 01:48:08 +01:00
Diego Devesa
a2d02d5793 releases : bundle llvm omp library in windows release (#13763) 2025-05-25 00:55:16 +02:00
Diego Devesa
17fc817b58 releases : enable openmp in windows cpu backend build (#13756) 2025-05-24 22:27:03 +02:00
Diego Devesa
2bd1b30f69 ggml-cpu : set openmp wait time if not set (#13758) 2025-05-24 22:26:47 +02:00
0cc4m
259469c4b5 Move GLM4 f32 attention fix to the correct function (#13750) 2025-05-24 16:49:12 +02:00
Xuan-Son Nguyen
4c32832c59 ggml : add ggml_gelu_erf() CUDA kernel (#13719)
* ggml : add ggml_gelu_erf() CUDA kernel

* missing semicolon
2025-05-24 13:06:47 +02:00
Sigbjørn Skjæret
c3a2624339 vocab : fix ugm tokenizer precision (#13743) 2025-05-24 12:29:09 +02:00
Johannes Gäßler
ffd0eae60b CUDA: fix race condition in FA vector kernels (#13742) 2025-05-24 11:46:19 +02:00
Diego Devesa
b775345d78 ci : enable winget package updates (#13734) 2025-05-23 23:14:00 +03:00
Diego Devesa
a70a8a69c2 ci : add winget package updater (#13732) 2025-05-23 22:09:38 +02:00
Georgi Gerganov
d13d0f6135 hparams : initialize arrays (#13728)
ggml-ci
2025-05-23 20:16:13 +03:00
Xuan-Son Nguyen
8a2afb7520 llama : allow custom list of swa_layers (#13726) 2025-05-23 17:07:04 +02:00
Xuan-Son Nguyen
9ecf3e66a3 server : support audio input (#13714)
* server : support audio input

* add audio support on webui
2025-05-23 11:03:47 +02:00
Chenguang Li
faaaff5f94 CANN: Support MUL_MAT_ID for q8_0 and q4_0 (#13705)
* [CANN]Support MUL_MAT_ID Q8 && Q4

Signed-off-by: noemotiovon <757486878@qq.com>

* codestyle adjustment

Signed-off-by: noemotiovon <757486878@qq.com>

---------

Signed-off-by: noemotiovon <757486878@qq.com>
2025-05-23 16:47:53 +08:00
Xuan-Son Nguyen
e16c4731c7 ggml : fix the order of ggml_unary_op (#13718) 2025-05-23 08:12:48 +02:00
Jeff Bolz
1dcd01960c vulkan: support CPY from any type to itself (#13695)
Reuse the f16/f32 copy shaders, and just scale the number of elements
according to the type size.
2025-05-23 06:45:02 +02:00
Jeff Bolz
c10ed6cbcc vulkan: Disable coopmat/coopmat2/bfloat extensions if glslc doesn't support it (#13696) 2025-05-23 06:33:45 +02:00
Judd
a127ff1780 use LOG_WARN to replace std::cerr (#13657) 2025-05-23 06:33:08 +02:00
Diego Devesa
3079e9ac8e release : fix windows hip release (#13707)
* release : fix windows hip release

* make single hip release with multiple targets
2025-05-23 00:21:37 +02:00
Georgi Gerganov
8a1d206f1d tts : fix n_ubatch + make WavTokenizer cache-less (#13713)
ggml-ci
2025-05-22 22:21:07 +03:00
Xuan-Son Nguyen
797990c4bc mtmd : add ultravox audio input (#13623)
* convert ok, load ok

* warmup ok

* test

* still does not work?

* fix padding

* temporary give up

* fix merge conflict

* build_ultravox()

* rm test

* fix merge conflict

* add necessary mtmd APIs

* first working version (only 4s of audio)

* will this monster compile?

* fix compile

* please compile

* fPIC

* fix windows

* various fixes

* clean up audio_helpers

* fix conversion

* add some debug stuff

* long audio input ok

* adapt the api

* add --audio arg

* final touch UX

* add miniaudio to readme

* fix typo

* refactor kv metadata

* mtmd_default_marker()
2025-05-22 20:42:48 +02:00
Aaron Teo
ab86335760 common: Include torch package for s390x (#13699)
* common: update requirements.txt to include pytorch nightly for s390x

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* common: fix torch installation via pip for s390x

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-05-22 21:31:29 +03:00
Georgi Gerganov
cc74d5be99 server : pad small embedding batches (#13692)
ggml-ci
2025-05-22 16:33:39 +03:00
Sigbjørn Skjæret
5be24af73d gguf-py : correct charsmap parameter typing (#13701) 2025-05-22 14:25:05 +02:00
Nicolò Scipione
d394a9aedc sycl : Remove waits from function calls (#13702)
* removes the waits in async memcpy functions
2025-05-22 12:54:43 +01:00
Ewan Crawford
6b56a64690 SYCL: Avoid using with SYCL-Graph for unsupported nodes (#13587)
Currently on a CUDA backend to SYCL when running
`GGML_SYCL_DISABLE_GRAPH=0 ./bin/test-backend-ops -b SYCL0` there
are two operations that throw an exception from the blocking
waits during queue recording.

* `-o CONCAT` : Use of blocking waits on a queue that's being recorded https://github.com/ggml-org/llama.cpp/blob/master/ggml/src/ggml-sycl/concat.cpp#L185-L187
* `-o MUL_MAT_ID`: Blocking wait on a recording queue for a copy to host memory https://github.com/ggml-org/llama.cpp/blob/master/ggml/src/ggml-sycl/ggml-sycl.cpp#L3072-L3074

We've noticed that `ggml-cuda.cu` has the
[check_node_graph_compatibility_and_refresh_copy_ops](39e73ae0d6/ggml/src/ggml-cuda/ggml-cuda.cu (L2458-L2458))
method for checking if a graph can be used, even if enabled. I've taken a
similar approach in this PR by adding a method to `ggml-sycl.cpp` for checking
if a graph can be used for the operations even if a user has asked for it to be
enabled.
2025-05-22 16:24:09 +08:00
Henry Linjamäki
a4e8912dfd opencl: Add support for multiple devices (#12622)
* opencl: Add support for multiple devices

... but limited to one platform. A platform with a GPU will be preferred.

Additionally:

* Filter out devices that lack capabilities needed by the backend
  implementation (half support, OpenCL 2.0+, etc).

* Make ggml_backend_opencl_reg() thread-safe.

* fixup: fix an error in sync_with_other_backends

... when there is only one OpenCL device available.
2025-05-21 16:21:45 -07:00
Henry Linjamäki
edbf42edfd opencl: fix couple crashes (#12795)
* opencl: fix couple crashes

* fix kernel launches failed on devices which do not support
  non-uniform work-groups. When non-uniform work-groups are not
  supported, set `local_work_size` to NULL (= let driver choose the
  work-group sizes). This patch does not cover everything - just the
  cases tested by test-backend-ops.

* fix sub-buffer creation failed due to `cl_buffer_region::origin` not
  being aligned to `CL_DEVICE_MEM_BASE_ADDR_ALIGN`.

* OpenCL: query non-uniform WG sizes only on OpenCL 3.0+
2025-05-21 13:21:17 -07:00
Diego Devesa
d643bb2c79 releases : build CPU backend separately (windows) (#13642) 2025-05-21 22:09:57 +02:00
Georgi Gerganov
8e186ef0e7 hparams : support models for which all layers use SWA (#13682)
ggml-ci
2025-05-21 20:00:49 +03:00
Georgi Gerganov
5fbfe384d4 server : improve error reporting (#13680) 2025-05-21 19:46:56 +03:00
antichristHater
c76532e7ba convert : add qwen2vl support for unsloth merges (#13686) 2025-05-21 18:40:35 +02:00
Sigbjørn Skjæret
2aa777d86d examples : switch retrieval to llama_encode (#13685)
* switch retrieval to llama_encode

* enable --no-warmup for retrieval
2025-05-21 16:57:38 +02:00
Emmanuel Ferdman
eb0f5c28d3 gguf-py : display the invalid gguf type (#13687)
Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
2025-05-21 16:33:54 +02:00
Xuan-Son Nguyen
cf4cb59e64 ggml : add ggml_gelu_erf() (#13667)
* ggml : add ggml_gelu_na (not approximated)

* fix naming order

* rename na --> erf

* apply review suggesions

* revert naming order
2025-05-21 16:26:33 +02:00
Robin Davidsson
0d5c742161 server : Add the endpoints /api/tags and /api/chat (#13659)
* Add the endpoints /api/tags and /api/chat

Add the endpoints /api/tags and /api/chat, and improved the model metadata response

* Remove trailing whitespaces

* Removed code that is not needed for copilot to work.
2025-05-21 15:15:27 +02:00
Dorin-Andrei Geman
42158ae2e8 server : fix first message identification (#13634)
* server : fix first message identification

When using the OpenAI SDK (https://github.com/openai/openai-node/blob/master/src/lib/ChatCompletionStream.ts#L623-L626) we noticed that the expected assistant role is missing in the first streaming message. Fix this by correctly checking for the first message.

Co-authored-by: Piotr Stankiewicz <piotr.stankiewicz@docker.com>
Signed-off-by: Dorin Geman <dorin.geman@docker.com>

* server : Fix checks for first role message for stream=True

Co-authored-by: Piotr Stankiewicz <piotr.stankiewicz@docker.com>
Signed-off-by: Dorin Geman <dorin.geman@docker.com>

---------

Signed-off-by: Dorin Geman <dorin.geman@docker.com>
Co-authored-by: Piotr Stankiewicz <piotr.stankiewicz@docker.com>
2025-05-21 15:07:57 +02:00
Georgi Gerganov
797f2ac062 kv-cache : simplify the interface (#13660)
* kv-cache : simplify the interface

ggml-ci

* context : revert llama_batch_allocr position change

ggml-ci
2025-05-21 15:11:13 +03:00
Georgi Gerganov
b44890df2e model : disable SWA for Phi models (#13676)
* model : disable SWA for Phi models

ggml-ci

* model : update warning message

* model : print warning only if n_swa > 0

* model : fix typo
2025-05-21 13:09:21 +03:00
R0CKSTAR
33983057d0 musa: Upgrade MUSA SDK version to rc4.0.1 and use mudnn::Unary::IDENTITY op to accelerate D2D memory copy (#13647)
* musa: fix build warning (unused parameter)

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* musa: upgrade MUSA SDK version to rc4.0.1

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* musa: use mudnn::Unary::IDENTITY op to accelerate D2D memory copy

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Update ggml/src/ggml-cuda/cpy.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* musa: remove MUDNN_CHECK_GEN and use CUDA_CHECK_GEN instead in MUDNN_CHECK

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-05-21 09:58:49 +08:00
Eve
fb1cab201c vulkan: fix warnings (#13626)
* small fixes

* remove ifdef
2025-05-20 21:35:16 +00:00
l3utterfly
b7a17463ec mtmd-helper : bug fix to token batching in mtmd (#13650)
* Update mtmd-helper.cpp

* Update tools/mtmd/mtmd-helper.cpp

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-05-20 18:55:30 +02:00
Georgi Gerganov
be0239693c model : fix llama4 graph (#13663)
ggml-ci
2025-05-20 19:21:04 +03:00
Georgi Gerganov
a4090d1174 llama : remove llama_kv_cache_view API + remove deprecated (#13653)
ggml-ci
2025-05-20 16:13:16 +03:00
Johannes Gäßler
b69f1647f9 CUDA: skip fully masked-out KV in FA vec kernel (#13584)
* CUDA: skip fully masked-out KV in FA vec kernel
2025-05-20 14:45:07 +02:00
Sigbjørn Skjæret
759e37b0d8 tests : avoid github urls due to throttling (#13654) 2025-05-20 12:03:17 +02:00
Svetlozar Georgiev
4245e622e0 sycl: disable reorder for sycl mulmat (#13536) 2025-05-20 11:34:15 +02:00
0cc4m
c9c64dee57 Set GLM4 blk.*.attn_output.weight, kqv_out-* matmul to GGML_PREC_F32 to fix infinity values in output (#13639) 2025-05-20 10:11:56 +02:00
Georgi Gerganov
c00a2634be metal : fix typo in FA kernel comments (#13651) 2025-05-20 10:41:40 +03:00
Georgi Gerganov
e298d2fbd0 kv-cache : add SWA support (#13194)
* kv-cache : prepare for SWA

ggml-ci

* kv-cache : initial iSWA implementation

ggml-ci

* kv-cache : rework error recovery logic

ggml-ci

* models : fix Phi-3 SWA parameters

ggml-ci

* model : adjust Granite to rope factor changes

ggml-ci

* server : check if context can do shifts

ggml-ci

* iswa : for now, always enable shifts (experiment)

ggml-ci

* kv-cache : simplify SWA logic

ggml-ci

* kv-cache : apply defrag when we fail to find slots for the batch

ggml-ci

* llama : update docs about llama_decode

ggml-ci

* kv-cache : update warning logs when no space for the batch is available

ggml-ci

* llama : add llama_kv_self_seq_pos_min()

* kv-cache : keep track of partial SWA computes and print warnings

* server : disallow use cases involving partial SWA context

ggml-ci

* llama : add param to control SWA cache size

ggml-ci

* minor : clean-up

ggml-ci
2025-05-20 08:05:46 +03:00
Xinpeng Dou
f0adb80bf7 CANN: Update CANN model support (#13162)
* Update CANN model support status

* Update of model support

* update

* update

* update

* fix format of CANN.md

* fix format of CANN.md

* fix format of CANN.md
2025-05-20 11:43:43 +08:00
Nicolò Scipione
f7c9429c85 sycl : Overcoming workaround for mmap() allocation on Windows (#13482)
* Remove mmap workaround on windows

After some testing I found that mmap is supported on windows and for
many GPUs on Linux. Therefore I remove the workaround for windows since
it is not necessary.

* Update llama-bench README

SYCL backend introduced a workaround that allows execution of
llama-bench also without specifying `--mmp 0` flag
2025-05-20 08:54:43 +08:00
251 changed files with 113786 additions and 9600 deletions

View File

@@ -1,10 +1,10 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG MUSA_VERSION=rc3.1.1
ARG MUSA_VERSION=rc4.0.1
# Target the MUSA build image
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-mudnn-devel-ubuntu${UBUNTU_VERSION}
ARG BASE_MUSA_RUN_CONTAINER=mthreads/musa:${MUSA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
ARG BASE_MUSA_RUN_CONTAINER=mthreads/musa:${MUSA_VERSION}-mudnn-runtime-ubuntu${UBUNTU_VERSION}
FROM ${BASE_MUSA_DEV_CONTAINER} AS build
@@ -21,21 +21,14 @@ RUN apt-get update && \
libcurl4-openssl-dev \
libgomp1
COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt
WORKDIR /app
COPY . .
# Use the default MUSA archs if not specified
RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \
export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \
fi && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_BUILD_TESTS=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_BUILD_TESTS=OFF ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \

View File

@@ -48,3 +48,7 @@ end_of_line = unset
charset = unset
trim_trailing_whitespace = unset
insert_final_newline = unset
[vendor/miniaudio/miniaudio.h]
trim_trailing_whitespace = unset
insert_final_newline = unset

View File

@@ -26,12 +26,12 @@ jobs:
sudo apt-get install -y --no-install-recommends \
build-essential \
gcc-14-riscv64-linux-gnu \
g++-14-riscv64-linux-gnu \
libcurl4-openssl-dev:riscv64
g++-14-riscv64-linux-gnu
- name: Build
run: |
cmake -B build -DCMAKE_BUILD_TYPE=Release \
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
@@ -72,12 +72,12 @@ jobs:
glslc \
gcc-14-riscv64-linux-gnu \
g++-14-riscv64-linux-gnu \
libvulkan-dev:riscv64 \
libcurl4-openssl-dev:riscv64
libvulkan-dev:riscv64
- name: Build
run: |
cmake -B build -DCMAKE_BUILD_TYPE=Release \
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_VULKAN=ON \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
@@ -118,12 +118,12 @@ jobs:
build-essential \
glslc \
crossbuild-essential-arm64 \
libvulkan-dev:arm64 \
libcurl4-openssl-dev:arm64
libvulkan-dev:arm64
- name: Build
run: |
cmake -B build -DCMAKE_BUILD_TYPE=Release \
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_VULKAN=ON \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
@@ -163,12 +163,12 @@ jobs:
sudo apt-get install -y --no-install-recommends \
build-essential \
gcc-14-powerpc64le-linux-gnu \
g++-14-powerpc64le-linux-gnu \
libcurl4-openssl-dev:ppc64el
g++-14-powerpc64le-linux-gnu
- name: Build
run: |
cmake -B build -DCMAKE_BUILD_TYPE=Release \
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
@@ -209,12 +209,12 @@ jobs:
glslc \
gcc-14-powerpc64le-linux-gnu \
g++-14-powerpc64le-linux-gnu \
libvulkan-dev:ppc64el \
libcurl4-openssl-dev:ppc64el
libvulkan-dev:ppc64el
- name: Build
run: |
cmake -B build -DCMAKE_BUILD_TYPE=Release \
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_VULKAN=ON \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \

View File

@@ -351,7 +351,7 @@ jobs:
ubuntu-22-cmake-musa:
runs-on: ubuntu-22.04
container: mthreads/musa:rc3.1.1-devel-ubuntu22.04
container: mthreads/musa:rc4.0.1-mudnn-devel-ubuntu22.04
steps:
- name: Clone

View File

@@ -1,4 +1,4 @@
name: Create Release
name: Release
on:
workflow_dispatch: # allows manual triggering
@@ -227,6 +227,69 @@ jobs:
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip
name: llama-bin-ubuntu-vulkan-x64.zip
windows-cpu:
runs-on: windows-latest
strategy:
matrix:
include:
- arch: 'x64'
- arch: 'arm64'
steps:
- name: Clone
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: windows-latest-cmake-cpu-${{ matrix.arch }}
variant: ccache
evict-old-files: 1d
- name: Install Ninja
run: |
choco install ninja
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
with:
architecture: ${{ matrix.arch == 'x64' && 'win64' || 'win64a' }}
- name: Build
shell: cmd
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" ${{ matrix.arch }}
cmake -S . -B build -G "Ninja Multi-Config" ^
-D CMAKE_TOOLCHAIN_FILE=cmake/${{ matrix.arch }}-windows-llvm.cmake ^
-DGGML_NATIVE=OFF ^
-DGGML_BACKEND_DL=ON ^
-DGGML_CPU_ALL_VARIANTS=${{ matrix.arch == 'x64' && 'ON' || 'OFF' }} ^
-DGGML_OPENMP=ON ^
-DCURL_LIBRARY="%CURL_PATH%/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="%CURL_PATH%/include" ^
${{ env.CMAKE_ARGS }}
cmake --build build --config Release
- name: Pack artifacts
id: pack_artifacts
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
Copy-Item $env:CURL_PATH\bin\libcurl-${{ matrix.arch }}.dll .\build\bin\Release\
Copy-Item "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Redist\MSVC\14.42.34433\debug_nonredist\${{ matrix.arch }}\Microsoft.VC143.OpenMP.LLVM\libomp140.${{ matrix.arch == 'x64' && 'x86_64' || 'aarch64' }}.dll" .\build\bin\Release\
7z a llama-bin-win-cpu-${{ matrix.arch }}.zip .\build\bin\Release\*
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
path: llama-bin-win-cpu-${{ matrix.arch }}.zip
name: llama-bin-win-cpu-${{ matrix.arch }}.zip
windows:
runs-on: windows-latest
@@ -237,52 +300,30 @@ jobs:
strategy:
matrix:
include:
- build: 'cpu-x64'
- backend: 'vulkan'
arch: 'x64'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF'
#- build: 'openblas-x64'
# arch: 'x64'
# defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
- build: 'vulkan-x64'
arch: 'x64'
defines: '-DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON'
- build: 'cpu-arm64'
arch: 'arm64'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF'
- build: 'opencl-adreno-arm64'
defines: '-DGGML_VULKAN=ON'
target: 'ggml-vulkan'
- backend: 'opencl-adreno'
arch: 'arm64'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON'
target: 'ggml-opencl'
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: windows-latest-cmake-${{ matrix.build }}
key: windows-latest-cmake-${{ matrix.backend }}-${{ matrix.arch }}
variant: ccache
evict-old-files: 1d
- name: Download OpenBLAS
id: get_openblas
if: ${{ matrix.build == 'openblas-x64' }}
run: |
curl.exe -o $env:RUNNER_TEMP/openblas.zip -L "https://github.com/xianyi/OpenBLAS/releases/download/v${env:OPENBLAS_VERSION}/OpenBLAS-${env:OPENBLAS_VERSION}-x64.zip"
curl.exe -o $env:RUNNER_TEMP/OpenBLAS.LICENSE.txt -L "https://github.com/xianyi/OpenBLAS/raw/v${env:OPENBLAS_VERSION}/LICENSE"
mkdir $env:RUNNER_TEMP/openblas
tar.exe -xvf $env:RUNNER_TEMP/openblas.zip -C $env:RUNNER_TEMP/openblas
$vcdir = $(vswhere -latest -products * -requires Microsoft.VisualStudio.Component.VC.Tools.x86.x64 -property installationPath)
$msvc = $(join-path $vcdir $('VC\Tools\MSVC\'+$(gc -raw $(join-path $vcdir 'VC\Auxiliary\Build\Microsoft.VCToolsVersion.default.txt')).Trim()))
$lib = $(join-path $msvc 'bin\Hostx64\x64\lib.exe')
& $lib /machine:x64 "/def:${env:RUNNER_TEMP}/openblas/lib/libopenblas.def" "/out:${env:RUNNER_TEMP}/openblas/lib/openblas.lib" /name:openblas.dll
- name: Install Vulkan SDK
id: get_vulkan
if: ${{ matrix.build == 'vulkan-x64' }}
if: ${{ matrix.backend == 'vulkan' }}
run: |
curl.exe -o $env:RUNNER_TEMP/VulkanSDK-Installer.exe -L "https://sdk.lunarg.com/sdk/download/${env:VULKAN_VERSION}/windows/VulkanSDK-${env:VULKAN_VERSION}-Installer.exe"
& "$env:RUNNER_TEMP\VulkanSDK-Installer.exe" --accept-licenses --default-answer --confirm-command install
@@ -296,7 +337,7 @@ jobs:
- name: Install OpenCL Headers and Libs
id: install_opencl
if: ${{ matrix.build == 'opencl-adreno-arm64' }}
if: ${{ matrix.backend == 'opencl-adreno' && matrix.arch == 'arm64' }}
run: |
git clone https://github.com/KhronosGroup/OpenCL-Headers
cd OpenCL-Headers
@@ -314,46 +355,22 @@ jobs:
-DCMAKE_INSTALL_PREFIX="$env:RUNNER_TEMP/opencl-arm64-release"
cmake --build build-arm64-release --target install --config release
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
with:
architecture: ${{ matrix.arch == 'x64' && 'win64' || 'win64a' }}
- name: Build
id: cmake_build
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cmake -S . -B build ${{ matrix.defines }} `
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include" `
${{ env.CMAKE_ARGS }}
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS}
- name: Add libopenblas.dll
id: add_libopenblas_dll
if: ${{ matrix.build == 'openblas-x64' }}
run: |
cp $env:RUNNER_TEMP/openblas/bin/libopenblas.dll ./build/bin/Release/openblas.dll
cp $env:RUNNER_TEMP/OpenBLAS.LICENSE.txt ./build/bin/Release/OpenBLAS-${env:OPENBLAS_VERSION}.txt
- name: Determine tag name
id: tag
uses: ./.github/actions/get-tag-name
cmake -S . -B build ${{ matrix.defines }} -DGGML_NATIVE=OFF -DGGML_CPU=OFF -DGGML_BACKEND_DL=ON -DLLAMA_CURL=OFF
cmake --build build --config Release --target ${{ matrix.target }}
- name: Pack artifacts
id: pack_artifacts
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
Copy-Item $env:CURL_PATH\bin\libcurl-${{ matrix.arch }}.dll .\build\bin\Release\
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}.zip .\build\bin\Release\*
7z a llama-bin-win-${{ matrix.backend }}-${{ matrix.arch }}.zip .\build\bin\Release\${{ matrix.target }}.dll
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}.zip
name: llama-bin-win-${{ matrix.build }}.zip
path: llama-bin-win-${{ matrix.backend }}-${{ matrix.arch }}.zip
name: llama-bin-win-${{ matrix.backend }}-${{ matrix.arch }}.zip
windows-cuda:
runs-on: windows-2019
@@ -366,8 +383,6 @@ jobs:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Install ccache
uses: hendrikmuhs/ccache-action@v1.2.16
@@ -386,45 +401,30 @@ jobs:
run: |
choco install ninja
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build
id: cmake_build
shell: cmd
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
cmake -S . -B build -G "Ninja Multi-Config" ^
-DGGML_NATIVE=OFF ^
-DGGML_BACKEND_DL=ON ^
-DGGML_CPU_ALL_VARIANTS=ON ^
-DGGML_NATIVE=OFF ^
-DGGML_CPU=OFF ^
-DGGML_CUDA=ON ^
-DCURL_LIBRARY="%CURL_PATH%/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="%CURL_PATH%/include" ^
${{ env.CMAKE_ARGS }}
-DLLAMA_CURL=OFF
set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1
cmake --build build --config Release -j %NINJA_JOBS% -t ggml
cmake --build build --config Release
- name: Determine tag name
id: tag
uses: ./.github/actions/get-tag-name
cmake --build build --config Release -j %NINJA_JOBS% --target ggml-cuda
- name: Pack artifacts
id: pack_artifacts
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cp $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\Release\libcurl-x64.dll
7z a llama-${{ steps.tag.outputs.name }}-bin-win-cuda${{ matrix.cuda }}-x64.zip .\build\bin\Release\*
7z a llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip .\build\bin\Release\ggml-cuda.dll
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-win-cuda${{ matrix.cuda }}-x64.zip
name: llama-bin-win-cuda${{ matrix.cuda }}-x64.zip
path: llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip
name: llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip
- name: Copy and pack Cuda runtime
run: |
@@ -432,13 +432,13 @@ jobs:
$dst='.\build\bin\cudart\'
robocopy "${{env.CUDA_PATH}}\bin" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
robocopy "${{env.CUDA_PATH}}\lib" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
7z a cudart-llama-bin-win-cuda${{ matrix.cuda }}-x64.zip $dst\*
7z a cudart-llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip $dst\*
- name: Upload Cuda runtime
uses: actions/upload-artifact@v4
with:
path: cudart-llama-bin-win-cuda${{ matrix.cuda }}-x64.zip
name: cudart-llama-bin-win-cuda${{ matrix.cuda }}-x64.zip
path: cudart-llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip
name: cudart-llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip
windows-sycl:
runs-on: windows-latest
@@ -451,12 +451,11 @@ jobs:
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/7cd9bba0-7aab-4e30-b3ae-2221006a4a05/intel-oneapi-base-toolkit-2025.1.1.34_offline.exe
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel:intel.oneapi.win.dnnl:intel.oneapi.win.tbb.devel
ONEAPI_ROOT: "C:/Program Files (x86)/Intel/oneAPI"
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
@@ -469,15 +468,18 @@ jobs:
run: |
scripts/install-oneapi.bat $WINDOWS_BASEKIT_URL $WINDOWS_DPCPP_MKL
# TODO: add libcurl support ; we will also need to modify win-build-sycl.bat to accept user-specified args
- name: Build
id: cmake_build
run: examples/sycl/win-build-sycl.bat
- name: Determine tag name
id: tag
uses: ./.github/actions/get-tag-name
shell: cmd
run: |
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
cmake -G "Ninja" -B build ^
-DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx ^
-DCMAKE_BUILD_TYPE=Release ^
-DGGML_BACKEND_DL=ON -DBUILD_SHARED_LIBS=ON ^
-DGGML_CPU=OFF -DGGML_SYCL=ON ^
-DLLAMA_CURL=OFF
cmake --build build --target ggml-sycl -j
- name: Build the release package
id: pack_artifacts
@@ -502,12 +504,12 @@ jobs:
cp "${{ env.ONEAPI_ROOT }}/tbb/latest/bin/tbb12.dll" ./build/bin
echo "cp oneAPI running time dll files to ./build/bin done"
7z a llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip ./build/bin/*
7z a llama-bin-win-sycl-x64.zip ./build/bin/*
- name: Upload the release package
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip
path: llama-bin-win-sycl-x64.zip
name: llama-bin-win-sycl-x64.zip
windows-hip:
@@ -515,14 +517,14 @@ jobs:
strategy:
matrix:
gpu_target: [gfx1100, gfx1101, gfx1030]
include:
- name: "radeon"
gpu_targets: "gfx1100;gfx1101;gfx1102;gfx1030;gfx1031;gfx1032"
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Clone rocWMMA repository
id: clone_rocwmma
@@ -532,7 +534,7 @@ jobs:
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: windows-latest-cmake-hip-release
key: windows-latest-cmake-hip-${{ matrix.name }}-x64
evict-old-files: 1d
- name: Install
@@ -550,50 +552,39 @@ jobs:
run: |
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build
id: cmake_build
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
cmake -G "Unix Makefiles" -B build -S . `
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/rocwmma/library/include/" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/rocwmma/library/include/ -Wno-ignored-attributes -Wno-nested-anon-types" `
-DCMAKE_BUILD_TYPE=Release `
-DAMDGPU_TARGETS=${{ matrix.gpu_target }} `
-DGGML_BACKEND_DL=ON `
-DGGML_NATIVE=OFF `
-DGGML_CPU=OFF `
-DAMDGPU_TARGETS="${{ matrix.gpu_targets }}" `
-DGGML_HIP_ROCWMMA_FATTN=ON `
-DGGML_HIP=ON `
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include" `
${{ env.CMAKE_ARGS }}
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
-DLLAMA_CURL=OFF
cmake --build build --target ggml-hip -j ${env:NUMBER_OF_PROCESSORS}
md "build\bin\rocblas\library\"
cp "${env:HIP_PATH}\bin\hipblas.dll" "build\bin\"
cp "${env:HIP_PATH}\bin\rocblas.dll" "build\bin\"
cp "${env:HIP_PATH}\bin\rocblas\library\*" "build\bin\rocblas\library\"
- name: Determine tag name
id: tag
uses: ./.github/actions/get-tag-name
- name: Pack artifacts
id: pack_artifacts
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cp $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\libcurl-x64.dll
7z a llama-${{ steps.tag.outputs.name }}-bin-win-hip-x64-${{ matrix.gpu_target }}.zip .\build\bin\*
7z a llama-bin-win-hip-${{ matrix.name }}-x64.zip .\build\bin\*
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-win-hip-x64-${{ matrix.gpu_target }}.zip
name: llama-bin-win-hip-x64-${{ matrix.gpu_target }}.zip
path: llama-bin-win-hip-${{ matrix.name }}-x64.zip
name: llama-bin-win-hip-${{ matrix.name }}-x64.zip
ios-xcode-build:
runs-on: macos-latest
@@ -655,14 +646,16 @@ jobs:
runs-on: ubuntu-latest
needs:
- ubuntu-22-cpu
- ubuntu-22-vulkan
- windows
- windows-cpu
- windows-cuda
- windows-sycl
- windows-hip
- ubuntu-22-cpu
- ubuntu-22-vulkan
- macOS-arm64
- macOS-x64
- ios-xcode-build
steps:
- name: Clone
@@ -680,10 +673,43 @@ jobs:
uses: actions/download-artifact@v4
with:
path: ./artifact
merge-multiple: true
- name: Move artifacts
id: move_artifacts
run: mkdir -p ./artifact/release && mv ./artifact/*/*.zip ./artifact/release
run: |
mkdir -p release
echo "Adding CPU backend files to existing zips..."
for arch in x64 arm64; do
cpu_zip="artifact/llama-bin-win-cpu-${arch}.zip"
temp_dir=$(mktemp -d)
echo "Extracting CPU backend for $arch..."
unzip "$cpu_zip" -d "$temp_dir"
echo "Adding CPU files to $arch zips..."
for target_zip in artifact/llama-bin-win-*-${arch}.zip; do
if [[ "$target_zip" == "$cpu_zip" ]]; then
continue
fi
echo "Adding CPU backend to $(basename "$target_zip")"
realpath_target_zip=$(realpath "$target_zip")
(cd "$temp_dir" && zip -r "$realpath_target_zip" .)
done
rm -rf "$temp_dir"
done
echo "Renaming and moving zips to release..."
for zip_file in artifact/llama-bin-win-*.zip; do
base_name=$(basename "$zip_file" .zip)
zip_name="llama-${{ steps.tag.outputs.name }}-${base_name#llama-}.zip"
echo "Moving $zip_file to release/$zip_name"
mv "$zip_file" "release/$zip_name"
done
echo "Moving other artifacts..."
mv -v artifact/*.zip release
- name: Create release
id: create_release
@@ -702,7 +728,7 @@ jobs:
const path = require('path');
const fs = require('fs');
const release_id = '${{ steps.create_release.outputs.id }}';
for (let file of await fs.readdirSync('./artifact/release')) {
for (let file of await fs.readdirSync('./release')) {
if (path.extname(file) === '.zip') {
console.log('uploadReleaseAsset', file);
await github.repos.uploadReleaseAsset({
@@ -710,7 +736,7 @@ jobs:
repo: context.repo.repo,
release_id: release_id,
name: file,
data: await fs.readFileSync(`./artifact/release/${file}`)
data: await fs.readFileSync(`./release/${file}`)
});
}
}

42
.github/workflows/winget.yml vendored Normal file
View File

@@ -0,0 +1,42 @@
name: Update Winget Package
on:
workflow_dispatch: # allows manual triggering
schedule:
- cron: '28 5 * * *' # Update every day at 5:28 UTC
jobs:
update:
name: Update Winget Package
runs-on: ubuntu-latest
steps:
- name: Install cargo binstall
uses: cargo-bins/cargo-binstall@268643a6b5ea099f5718ee5cd3ff7dc89a5eb49b
- name: Install komac
run: |
cargo binstall komac@2.11.2 -y
- name: Find latest release
id: find_latest_release
uses: actions/github-script@v6
with:
script: |
const { data: releases } = await github.rest.repos.listReleases({
owner: context.repo.owner,
repo: context.repo.repo,
});
console.log("Latest release:", releases[0].tag_name);
return releases[0].tag_name;
- name: Update manifest
env:
VERSION: ${{ steps.find_latest_release.outputs.result }}
run: |
echo "Updating manifest..."
komac update --version ${{ env.VERSION }} \
--urls "https://github.com/ggml-org/llama.cpp/releases/download/${{ env.VERSION }}/llama-${{ env.VERSION }}-bin-win-vulkan-x64.zip" \
--token ${{ secrets.WINGET_GITHUB_TOKEN }} \
--submit \
ggml.llamacpp

View File

@@ -37,7 +37,7 @@ range of hardware - locally and in the cloud.
- Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
- AVX, AVX2, AVX512 and AMX support for x86 architectures
- 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use
- Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP and Moore Threads MTT GPUs via MUSA)
- Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP and Moore Threads GPUs via MUSA)
- Vulkan and SYCL backend support
- CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity
@@ -130,6 +130,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
<details>
<summary>Bindings</summary>
- Python: [ddh0/easy-llama](https://github.com/ddh0/easy-llama)
- Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
- Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp)
- Node.js: [withcatai/node-llama-cpp](https://github.com/withcatai/node-llama-cpp)
@@ -237,7 +238,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
| [BLAS](docs/build.md#blas-build) | All |
| [BLIS](docs/backend/BLIS.md) | All |
| [SYCL](docs/backend/SYCL.md) | Intel and Nvidia GPU |
| [MUSA](docs/build.md#musa) | Moore Threads MTT GPU |
| [MUSA](docs/build.md#musa) | Moore Threads GPU |
| [CUDA](docs/build.md#cuda) | Nvidia GPU |
| [HIP](docs/build.md#hip) | AMD GPU |
| [Vulkan](docs/build.md#vulkan) | GPU |
@@ -580,3 +581,4 @@ $ echo "source ~/.llama-completion.bash" >> ~/.bashrc
- [minja](https://github.com/google/minja) - Minimal Jinja parser in C++, used by various tools/examples - MIT License
- [linenoise.cpp](./tools/run/linenoise.cpp/linenoise.cpp) - C++ library that provides readline-like line editing capabilities, used by `llama-run` - BSD 2-Clause License
- [curl](https://curl.se/) - Client-side URL transfer library, used by various tools/examples - [CURL License](https://curl.se/docs/copyright.html)
- [miniaudio.h](https://github.com/mackron/miniaudio) - Single-header audio format decoder, used by multimodal subsystem - Public domain

View File

@@ -54,7 +54,7 @@ docker run --privileged -it \
-v $HOME/llama.cpp/ci-cache:/ci-cache \
-v $HOME/llama.cpp/ci-results:/ci-results \
-v $PWD:/ws -w /ws \
mthreads/musa:rc3.1.1-devel-ubuntu22.04
mthreads/musa:rc4.0.1-mudnn-devel-ubuntu22.04
```
Inside the container, execute the following commands:

View File

@@ -58,19 +58,20 @@ add_library(${TARGET} STATIC
arg.cpp
arg.h
base64.hpp
chat-parser.cpp
chat-parser.h
chat.cpp
chat.h
common.cpp
common.h
console.cpp
console.h
json-partial.cpp
json-partial.h
json-schema-to-grammar.cpp
json.hpp
llguidance.cpp
log.cpp
log.h
minja/chat-template.hpp
minja/minja.hpp
ngram-cache.cpp
ngram-cache.h
regex-partial.cpp
@@ -143,7 +144,7 @@ if (LLAMA_LLGUIDANCE)
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} llguidance ${LLGUIDANCE_PLATFORM_LIBS})
endif ()
target_include_directories(${TARGET} PUBLIC .)
target_include_directories(${TARGET} PUBLIC . ../vendor)
target_compile_features (${TARGET} PUBLIC cxx_std_17)
target_link_libraries (${TARGET} PRIVATE ${LLAMA_COMMON_EXTRA_LIBS} PUBLIC llama Threads::Threads)

View File

@@ -1,10 +1,11 @@
#include "gguf.h" // for reading GGUF splits
#include "arg.h"
#include "chat.h"
#include "common.h"
#include "gguf.h" // for reading GGUF splits
#include "json-schema-to-grammar.h"
#include "log.h"
#include "sampling.h"
#include "chat.h"
// fix problem with std::min and std::max
#if defined(_WIN32)
@@ -15,6 +16,9 @@
#include <windows.h>
#endif
#define JSON_ASSERT GGML_ASSERT
#include <nlohmann/json.hpp>
#include <algorithm>
#include <climits>
#include <cstdarg>
@@ -34,12 +38,10 @@
#include <future>
#endif
#include "json-schema-to-grammar.h"
using json = nlohmann::ordered_json;
std::initializer_list<enum llama_example> mmproj_examples = {
LLAMA_EXAMPLE_LLAVA,
LLAMA_EXAMPLE_MTMD,
LLAMA_EXAMPLE_SERVER,
};
@@ -242,7 +244,56 @@ static bool curl_perform_with_retry(const std::string & url, CURL * curl, int ma
}
// download one single file from remote URL to local path
static bool common_download_file_single(const std::string & url, const std::string & path, const std::string & bearer_token) {
static bool common_download_file_single(const std::string & url, const std::string & path, const std::string & bearer_token, bool offline) {
// Check if the file already exists locally
auto file_exists = std::filesystem::exists(path);
// If the file exists, check its JSON metadata companion file.
std::string metadata_path = path + ".json";
nlohmann::json metadata; // TODO @ngxson : get rid of this json, use regex instead
std::string etag;
std::string last_modified;
if (file_exists) {
if (offline) {
LOG_INF("%s: using cached file (offline mode): %s\n", __func__, path.c_str());
return true; // skip verification/downloading
}
// Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
std::ifstream metadata_in(metadata_path);
if (metadata_in.good()) {
try {
metadata_in >> metadata;
LOG_DBG("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
if (metadata.contains("etag") && metadata.at("etag").is_string()) {
etag = metadata.at("etag");
}
if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
last_modified = metadata.at("lastModified");
}
} catch (const nlohmann::json::exception & e) {
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
}
}
// if we cannot open the metadata file, we assume that the downloaded file is not valid (etag and last-modified are left empty, so we will download it again)
} else {
if (offline) {
LOG_ERR("%s: required file is not available in cache (offline mode): %s\n", __func__, path.c_str());
return false;
}
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
}
// Send a HEAD request to retrieve the etag and last-modified headers
struct common_load_model_from_url_headers {
std::string etag;
std::string last_modified;
};
common_load_model_from_url_headers headers;
bool head_request_ok = false;
bool should_download = !file_exists; // by default, we should download if the file does not exist
// Initialize libcurl
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
curl_slist_ptr http_headers;
@@ -269,91 +320,47 @@ static bool common_download_file_single(const std::string & url, const std::stri
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
#endif
// Check if the file already exists locally
auto file_exists = std::filesystem::exists(path);
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
// If the file exists, check its JSON metadata companion file.
std::string metadata_path = path + ".json";
nlohmann::json metadata; // TODO @ngxson : get rid of this json, use regex instead
std::string etag;
std::string last_modified;
static std::regex header_regex("([^:]+): (.*)\r\n");
static std::regex etag_regex("ETag", std::regex_constants::icase);
static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
if (file_exists) {
// Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
std::ifstream metadata_in(metadata_path);
if (metadata_in.good()) {
try {
metadata_in >> metadata;
LOG_DBG("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
if (metadata.contains("etag") && metadata.at("etag").is_string()) {
etag = metadata.at("etag");
}
if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
last_modified = metadata.at("lastModified");
}
} catch (const nlohmann::json::exception & e) {
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
std::string header(buffer, n_items);
std::smatch match;
if (std::regex_match(header, match, header_regex)) {
const std::string & key = match[1];
const std::string & value = match[2];
if (std::regex_match(key, match, etag_regex)) {
headers->etag = value;
} else if (std::regex_match(key, match, last_modified_regex)) {
headers->last_modified = value;
}
}
// if we cannot open the metadata file, we assume that the downloaded file is not valid (etag and last-modified are left empty, so we will download it again)
} else {
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
}
// Send a HEAD request to retrieve the etag and last-modified headers
struct common_load_model_from_url_headers {
std::string etag;
std::string last_modified;
return n_items;
};
common_load_model_from_url_headers headers;
bool head_request_ok = false;
bool should_download = !file_exists; // by default, we should download if the file does not exist
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
// get ETag to see if the remote file has changed
{
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
// we only allow retrying once for HEAD requests
// this is for the use case of using running offline (no internet), retrying can be annoying
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), 1, 0, "HEAD");
if (!was_perform_successful) {
head_request_ok = false;
}
static std::regex header_regex("([^:]+): (.*)\r\n");
static std::regex etag_regex("ETag", std::regex_constants::icase);
static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
std::string header(buffer, n_items);
std::smatch match;
if (std::regex_match(header, match, header_regex)) {
const std::string & key = match[1];
const std::string & value = match[2];
if (std::regex_match(key, match, etag_regex)) {
headers->etag = value;
} else if (std::regex_match(key, match, last_modified_regex)) {
headers->last_modified = value;
}
}
return n_items;
};
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
// we only allow retrying once for HEAD requests
// this is for the use case of using running offline (no internet), retrying can be annoying
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), 1, 0, "HEAD");
if (!was_perform_successful) {
head_request_ok = false;
}
long http_code = 0;
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
if (http_code == 200) {
head_request_ok = true;
} else {
LOG_WRN("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
head_request_ok = false;
}
long http_code = 0;
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
if (http_code == 200) {
head_request_ok = true;
} else {
LOG_WRN("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
head_request_ok = false;
}
// if head_request_ok is false, we don't have the etag or last-modified headers
@@ -460,12 +467,12 @@ static bool common_download_file_single(const std::string & url, const std::stri
// download multiple files from remote URLs to local paths
// the input is a vector of pairs <url, path>
static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> & urls, const std::string & bearer_token) {
static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> & urls, const std::string & bearer_token, bool offline) {
// Prepare download in parallel
std::vector<std::future<bool>> futures_download;
for (auto const & item : urls) {
futures_download.push_back(std::async(std::launch::async, [bearer_token](const std::pair<std::string, std::string> & it) -> bool {
return common_download_file_single(it.first, it.second, bearer_token);
futures_download.push_back(std::async(std::launch::async, [bearer_token, offline](const std::pair<std::string, std::string> & it) -> bool {
return common_download_file_single(it.first, it.second, bearer_token, offline);
}, item));
}
@@ -481,14 +488,15 @@ static bool common_download_file_multiple(const std::vector<std::pair<std::strin
static bool common_download_model(
const common_params_model & model,
const std::string & bearer_token) {
const std::string & bearer_token,
bool offline) {
// Basic validation of the model.url
if (model.url.empty()) {
LOG_ERR("%s: invalid model url\n", __func__);
return false;
}
if (!common_download_file_single(model.url, model.path, bearer_token)) {
if (!common_download_file_single(model.url, model.path, bearer_token, offline)) {
return false;
}
@@ -547,7 +555,7 @@ static bool common_download_model(
}
// Download in parallel
common_download_file_multiple(urls, bearer_token);
common_download_file_multiple(urls, bearer_token, offline);
}
return true;
@@ -608,7 +616,7 @@ std::pair<long, std::vector<char>> common_remote_get_content(const std::string &
*
* Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
*/
static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & bearer_token) {
static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & bearer_token, bool offline) {
auto parts = string_split<std::string>(hf_repo_with_tag, ':');
std::string tag = parts.size() > 1 ? parts.back() : "latest";
std::string hf_repo = parts[0];
@@ -638,20 +646,25 @@ static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_
long res_code = 0;
std::string res_str;
bool use_cache = false;
try {
auto res = common_remote_get_content(url, params);
res_code = res.first;
res_str = std::string(res.second.data(), res.second.size());
} catch (const std::exception & e) {
LOG_WRN("error: failed to get manifest: %s\n", e.what());
LOG_WRN("try reading from cache\n");
// try to read from cache
if (!offline) {
try {
auto res = common_remote_get_content(url, params);
res_code = res.first;
res_str = std::string(res.second.data(), res.second.size());
} catch (const std::exception & e) {
LOG_WRN("error: failed to get manifest at %s: %s\n", url.c_str(), e.what());
}
}
if (res_code == 0) {
if (std::filesystem::exists(cached_response_path)) {
LOG_WRN("trying to read manifest from cache: %s\n", cached_response_path.c_str());
res_str = read_file(cached_response_path);
res_code = 200;
use_cache = true;
} catch (const std::exception & e) {
throw std::runtime_error("error: failed to get manifest (check your internet connection)");
} else {
throw std::runtime_error(
offline ? "error: failed to get manifest (offline mode)"
: "error: failed to get manifest (check your internet connection)");
}
}
std::string ggufFile;
@@ -698,24 +711,25 @@ bool common_has_curl() {
return false;
}
static bool common_download_file_single(const std::string &, const std::string &, const std::string &) {
static bool common_download_file_single(const std::string &, const std::string &, const std::string &, bool) {
LOG_ERR("error: built without CURL, cannot download model from internet\n");
return false;
}
static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> &, const std::string &) {
static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> &, const std::string &, bool) {
LOG_ERR("error: built without CURL, cannot download model from the internet\n");
return false;
}
static bool common_download_model(
const common_params_model &,
const std::string &) {
const std::string &,
bool) {
LOG_ERR("error: built without CURL, cannot download model from the internet\n");
return false;
}
static struct common_hf_file_res common_get_hf_file(const std::string &, const std::string &) {
static struct common_hf_file_res common_get_hf_file(const std::string &, const std::string &, bool) {
LOG_ERR("error: built without CURL, cannot download model from the internet\n");
return {};
}
@@ -742,7 +756,8 @@ struct handle_model_result {
static handle_model_result common_params_handle_model(
struct common_params_model & model,
const std::string & bearer_token,
const std::string & model_path_default) {
const std::string & model_path_default,
bool offline) {
handle_model_result result;
// handle pre-fill default model path and url based on hf_repo and hf_file
{
@@ -750,7 +765,7 @@ static handle_model_result common_params_handle_model(
// short-hand to avoid specifying --hf-file -> default it to --model
if (model.hf_file.empty()) {
if (model.path.empty()) {
auto auto_detected = common_get_hf_file(model.hf_repo, bearer_token);
auto auto_detected = common_get_hf_file(model.hf_repo, bearer_token, offline);
if (auto_detected.repo.empty() || auto_detected.ggufFile.empty()) {
exit(1); // built without CURL, error message already printed
}
@@ -791,7 +806,7 @@ static handle_model_result common_params_handle_model(
// then, download it if needed
if (!model.url.empty()) {
bool ok = common_download_model(model, bearer_token);
bool ok = common_download_model(model, bearer_token, offline);
if (!ok) {
LOG_ERR("error: failed to download model from %s\n", model.url.c_str());
exit(1);
@@ -934,7 +949,7 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
// handle model and download
{
auto res = common_params_handle_model(params.model, params.hf_token, DEFAULT_MODEL_PATH);
auto res = common_params_handle_model(params.model, params.hf_token, DEFAULT_MODEL_PATH, params.offline);
if (params.no_mmproj) {
params.mmproj = {};
} else if (res.found_mmproj && params.mmproj.path.empty() && params.mmproj.url.empty()) {
@@ -944,12 +959,12 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
// only download mmproj if the current example is using it
for (auto & ex : mmproj_examples) {
if (ctx_arg.ex == ex) {
common_params_handle_model(params.mmproj, params.hf_token, "");
common_params_handle_model(params.mmproj, params.hf_token, "", params.offline);
break;
}
}
common_params_handle_model(params.speculative.model, params.hf_token, "");
common_params_handle_model(params.vocoder.model, params.hf_token, "");
common_params_handle_model(params.speculative.model, params.hf_token, "", params.offline);
common_params_handle_model(params.vocoder.model, params.hf_token, "", params.offline);
}
if (params.escape) {
@@ -1333,9 +1348,9 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
));
add_opt(common_arg(
{"--prio"}, "N",
string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams.priority),
string_format("set process/thread priority : low(-1), normal(0), medium(1), high(2), realtime(3) (default: %d)\n", params.cpuparams.priority),
[](common_params & params, int prio) {
if (prio < 0 || prio > 3) {
if (prio < GGML_SCHED_PRIO_LOW || prio > GGML_SCHED_PRIO_REALTIME) {
throw std::invalid_argument("invalid value");
}
params.cpuparams.priority = (enum ggml_sched_priority) prio;
@@ -1445,6 +1460,14 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.n_keep = value;
}
));
add_opt(common_arg(
{"--swa-full"},
string_format("use full-size SWA cache (default: %s)\n"
"[(more info)](https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)", params.swa_full ? "true" : "false"),
[](common_params & params) {
params.swa_full = true;
}
).set_env("LLAMA_ARG_SWA_FULL"));
add_opt(common_arg(
{"--no-context-shift"},
string_format("disables context shift on infinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"),
@@ -1670,7 +1693,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params) {
params.warmup = false;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_EMBEDDING}));
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL}));
add_opt(common_arg(
{"--spm-infill"},
string_format(
@@ -2057,13 +2080,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.grp_attn_w = value;
}
).set_env("LLAMA_ARG_GRP_ATTN_W").set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(common_arg(
{"-dkvc", "--dump-kv-cache"},
"verbose print of the KV cache",
[](common_params & params) {
params.dump_kv_cache = true;
}
));
add_opt(common_arg(
{"-nkvo", "--no-kv-offload"},
"disable KV offload",
@@ -2232,12 +2248,12 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
).set_examples(mmproj_examples).set_env("LLAMA_ARG_NO_MMPROJ_OFFLOAD"));
add_opt(common_arg(
{"--image"}, "FILE",
"path to an image file. use with multimodal models. Specify multiple times for batching",
{"--image", "--audio"}, "FILE",
"path to an image or audio file. use with multimodal models, can be repeated if you have multiple files\n",
[](common_params & params, const std::string & value) {
params.image.emplace_back(value);
}
).set_examples({LLAMA_EXAMPLE_LLAVA}));
).set_examples({LLAMA_EXAMPLE_MTMD}));
if (llama_supports_rpc()) {
add_opt(common_arg(
{"--rpc"}, "SERVERS",
@@ -2847,15 +2863,24 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_JINJA"));
add_opt(common_arg(
{"--reasoning-format"}, "FORMAT",
"reasoning format (default: deepseek; allowed values: deepseek, none)\n"
"controls whether thought tags are extracted from the response, and in which format they're returned. 'none' leaves thoughts unparsed in `message.content`, 'deepseek' puts them in `message.reasoning_content` (for DeepSeek R1 & Command R7B only).\n"
"only supported for non-streamed responses",
"controls whether thought tags are allowed and/or extracted from the response, and in which format they're returned; one of:\n"
"- none: leaves thoughts unparsed in `message.content`\n"
"- deepseek: puts thoughts in `message.reasoning_content` (except in streaming mode, which behaves as `none`)\n"
"(default: deepseek)",
[](common_params & params, const std::string & value) {
/**/ if (value == "deepseek") { params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK; }
else if (value == "none") { params.reasoning_format = COMMON_REASONING_FORMAT_NONE; }
else { std::invalid_argument("invalid value"); }
else { throw std::invalid_argument("invalid value"); }
}
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_THINK"));
add_opt(common_arg(
{"--reasoning-budget"}, "N",
"controls the amount of thinking allowed; currently only one of: -1 for unrestricted thinking budget, or 0 to disable thinking (default: -1)",
[](common_params & params, int value) {
if (value != 0 && value != -1) { throw std::invalid_argument("invalid value"); }
params.reasoning_budget = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_THINK_BUDGET"));
add_opt(common_arg(
{"--chat-template"}, "JINJA_TEMPLATE",
string_format(
@@ -2867,7 +2892,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params, const std::string & value) {
params.chat_template = value;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_LLAVA}).set_env("LLAMA_ARG_CHAT_TEMPLATE"));
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MTMD}).set_env("LLAMA_ARG_CHAT_TEMPLATE"));
add_opt(common_arg(
{"--chat-template-file"}, "JINJA_TEMPLATE_FILE",
string_format(
@@ -2954,7 +2979,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params, const std::string & value) {
/**/ if (value == "jsonl") { params.batched_bench_output_jsonl = true; }
else if (value == "md") { params.batched_bench_output_jsonl = false; }
else { std::invalid_argument("invalid value"); }
else { throw std::invalid_argument("invalid value"); }
}
).set_examples({LLAMA_EXAMPLE_BENCH}));
add_opt(common_arg(
@@ -2986,6 +3011,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
common_log_set_verbosity_thold(INT_MAX);
}
));
add_opt(common_arg(
{"--offline"},
"Offline mode: forces use of cache, prevents network access",
[](common_params & params) {
params.offline = true;
}
).set_env("LLAMA_OFFLINE"));
add_opt(common_arg(
{"-lv", "--verbosity", "--log-verbosity"}, "N",
"Set the verbosity threshold. Messages with a higher verbosity will be ignored.",

380
common/chat-parser.cpp Normal file
View File

@@ -0,0 +1,380 @@
#include "chat-parser.h"
#include "common.h"
#include "log.h"
#include "regex-partial.h"
#include <optional>
#include <stdexcept>
#include <string>
#include <vector>
using json = nlohmann::ordered_json;
common_chat_msg_parser::common_chat_msg_parser(const std::string & input, bool is_partial, const common_chat_syntax & syntax)
: input_(input), is_partial_(is_partial), syntax_(syntax)
{
result_.role = "assistant";
while (true) {
std::string id = std::to_string(std::rand());
if (input.find(id) == std::string::npos) {
healing_marker_ = id;
break;
}
}
}
std::string common_chat_msg_parser::str(const common_string_range & rng) const {
GGML_ASSERT(rng.begin <= rng.end);
return input_.substr(rng.begin, rng.end - rng.begin);
}
void common_chat_msg_parser::add_content(const std::string &content) {
result_.content += content;
}
void common_chat_msg_parser::add_reasoning_content(const std::string &reasoning_content) {
result_.reasoning_content += reasoning_content;
}
bool common_chat_msg_parser::add_tool_call(const std::string & name, const std::string & id, const std::string & arguments) {
if (name.empty()) {
return false;
}
common_chat_tool_call tool_call;
tool_call.name = name;
tool_call.arguments = arguments;
tool_call.id = id;
// LOG_DBG("Tool call arguments:\n\traw: %s\n\tresult: %s\n", arguments.c_str(), tool_call.arguments.c_str());
result_.tool_calls.emplace_back(tool_call);
return true;
}
bool common_chat_msg_parser::add_tool_call(const json & tool_call) {
std::string name = tool_call.contains("name") ? tool_call.at("name") : "";
std::string id = tool_call.contains("id") ? tool_call.at("id") : "";
std::string arguments = tool_call.contains("arguments") ? tool_call.at("arguments") : "";
return add_tool_call(name, id, arguments);
}
bool common_chat_msg_parser::add_tool_calls(const json & arr) {
for (const auto & item : arr) {
if (!add_tool_call(item)) {
return false;
}
}
return true;
}
void common_chat_msg_parser::finish() {
if (!is_partial_ && pos_ != input_.size()) {
throw std::runtime_error("Unexpected content at end of input");// + input_.substr(pos_));
}
}
bool common_chat_msg_parser::consume_spaces() {
const auto length = input_.size();
auto consumed = false;
while (pos_ < length && std::isspace(input_[pos_])) {
++pos_;
consumed = true;
}
return consumed;
}
bool common_chat_msg_parser::try_consume_literal(const std::string & literal) {
auto pos = pos_;
for (auto i = 0u; i < literal.size(); ++i) {
if (pos >= input_.size()) {
return false;
}
if (input_[pos] != literal[i]) {
return false;
}
++pos;
}
pos_ = pos;
return true;
}
std::optional<common_chat_msg_parser::find_regex_result> common_chat_msg_parser::try_find_literal(const std::string & literal) {
auto idx = input_.find(literal, pos_);
if (idx != std::string::npos) {
find_regex_result res;
res.prelude = input_.substr(pos_, idx - pos_);
auto end = idx + literal.size();
res.groups.emplace_back(common_string_range{idx, end});
move_to(end);
return res;
}
if (is_partial_) {
idx = string_find_partial_stop(input_, literal);
if (idx != std::string::npos && idx >= pos_) {
find_regex_result res;
res.prelude = input_.substr(pos_, idx - pos_);
auto end = input_.size();
res.groups.emplace_back(common_string_range{idx, end});
move_to(end);
return res;
}
}
return std::nullopt;
}
void common_chat_msg_parser::consume_literal(const std::string & literal) {
if (!try_consume_literal(literal)) {
throw common_chat_msg_partial_exception(literal);
}
}
bool common_chat_msg_parser::try_parse_reasoning(const std::string & start_think, const std::string & end_think) {
auto handle_reasoning = [&](const std::string & reasoning, bool closed) {
auto stripped_reasoning = string_strip(reasoning);
if (stripped_reasoning.empty()) {
return;
}
if (syntax_.reasoning_in_content) {
add_content(syntax_.reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK ? "<think>" : start_think);
add_content(stripped_reasoning);
if (closed) {
add_content(syntax_.reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK ? "</think>" : end_think);
}
} else {
add_reasoning_content(stripped_reasoning);
}
};
if (syntax_.reasoning_format != COMMON_REASONING_FORMAT_NONE) {
if (syntax_.thinking_forced_open || try_consume_literal(start_think)) {
if (auto res = try_find_literal(end_think)) {
handle_reasoning(res->prelude, /* closed */ true);
consume_spaces();
return true;
}
auto rest = consume_rest();
if (!rest.empty()) {
handle_reasoning(rest, /* closed */ !is_partial());
}
// Allow unclosed thinking tags, for now (https://github.com/ggml-org/llama.cpp/issues/13812, https://github.com/ggml-org/llama.cpp/issues/13877)
// if (!syntax_.thinking_forced_open) {
// throw common_chat_msg_partial_exception(end_think);
// }
return true;
}
}
return false;
}
std::string common_chat_msg_parser::consume_rest() {
auto rest = input_.substr(pos_);
pos_ = input_.size();
return rest;
}
// Tries to find the regex, consumes it (pos right after it) and gives the prelude (right before it) and the groups to the callback.
std::optional<common_chat_msg_parser::find_regex_result> common_chat_msg_parser::try_find_regex(const common_regex & regex, size_t from, bool add_prelude_to_content) {
auto m = regex.search(input_, from == std::string::npos ? pos_ : from);
if (m.type == COMMON_REGEX_MATCH_TYPE_NONE) {
return std::nullopt;
}
auto prelude = input_.substr(pos_, m.groups[0].begin - pos_);
pos_ = m.groups[0].end;
if (add_prelude_to_content) {
add_content(prelude);
}
if (m.type == COMMON_REGEX_MATCH_TYPE_PARTIAL) {
if (is_partial()) {
throw common_chat_msg_partial_exception(regex.str());
}
return std::nullopt;
}
return find_regex_result{prelude, m.groups};
}
common_chat_msg_parser::find_regex_result common_chat_msg_parser::consume_regex(const common_regex & regex) {
if (auto result = try_consume_regex(regex)) {
return *result;
}
throw common_chat_msg_partial_exception(regex.str());
}
std::optional<common_chat_msg_parser::find_regex_result> common_chat_msg_parser::try_consume_regex(const common_regex & regex) {
auto m = regex.search(input_, pos_);
if (m.type == COMMON_REGEX_MATCH_TYPE_NONE) {
return std::nullopt;
}
if (m.type == COMMON_REGEX_MATCH_TYPE_PARTIAL) {
if (is_partial()) {
throw common_chat_msg_partial_exception(regex.str());
}
return std::nullopt;
}
if (m.groups[0].begin != pos_) {
// Didn't match at the current position.
return std::nullopt;
}
pos_ = m.groups[0].end;
return find_regex_result {
/* .prelude = */ "",
m.groups,
};
}
std::optional<common_json> common_chat_msg_parser::try_consume_json() {
auto it = input_.cbegin() + pos_;
const auto end = input_.cend();
common_json result;
if (!common_json_parse(it, end, healing_marker_, result)) {
return std::nullopt;
}
pos_ = std::distance(input_.cbegin(), it);
if (result.healing_marker.marker.empty()) {
// No healing marker, just return the parsed json
return result;
}
if (!is_partial()) {
throw common_chat_msg_partial_exception("JSON");
}
return result;
}
common_json common_chat_msg_parser::consume_json() {
if (auto result = try_consume_json()) {
return *result;
}
throw common_chat_msg_partial_exception("JSON");
}
common_chat_msg_parser::consume_json_result common_chat_msg_parser::consume_json_with_dumped_args(
const std::vector<std::vector<std::string>> & args_paths,
const std::vector<std::vector<std::string>> & content_paths
) {
if (auto result = try_consume_json_with_dumped_args(args_paths, content_paths)) {
return *result;
}
throw common_chat_msg_partial_exception("JSON");
}
std::optional<common_chat_msg_parser::consume_json_result> common_chat_msg_parser::try_consume_json_with_dumped_args(
const std::vector<std::vector<std::string>> & args_paths,
const std::vector<std::vector<std::string>> & content_paths
) {
auto partial = try_consume_json();
if (!partial) {
return std::nullopt;
}
auto is_arguments_path = [&](const std::vector<std::string> & path) {
return std::find(args_paths.begin(), args_paths.end(), path) != args_paths.end();
};
auto is_content_path = [&](const std::vector<std::string> & path) {
return std::find(content_paths.begin(), content_paths.end(), path) != content_paths.end();
};
if (partial->healing_marker.marker.empty()) {
if (args_paths.empty()) {
// No arguments to dump, and JSON was parsed fully.
return consume_json_result {
partial->json,
/* .is_partial = */ false,
};
}
if (is_arguments_path({})) {
// Entire JSON is the arguments and was parsed fully.
return consume_json_result {
partial->json.dump(),
/* .is_partial = */ false,
};
}
}
LOG_DBG("Parsed partial JSON: %s (json_healing_marker: %s)\n", partial->json.dump().c_str(), partial->healing_marker.json_dump_marker.c_str());
auto found_healing_marker = false;
std::vector<std::string> path;
std::function<json(const json &)> remove_unsupported_healings_and_dump_args = [&](const json & j) -> json {
if (is_arguments_path(path)) {
auto arguments = j.dump();
if (is_partial() && !partial->healing_marker.marker.empty()) {
auto idx = arguments.find(partial->healing_marker.json_dump_marker);
if (idx != std::string::npos) {
arguments.resize(idx);
found_healing_marker = true;
}
if (arguments == "\"") {
// This happens because of completing `:"$magic` after `"arguments"`
arguments = "";
}
}
return arguments;
}
if (is_content_path(path)) {
if (!j.is_string()) {
throw std::runtime_error("Content path must be a string");
}
std::string str = j;
auto idx = str.find(partial->healing_marker.marker); // not using json_dump_marker as we're inside a string
if (idx != std::string::npos) {
str.resize(idx);
found_healing_marker = true;
}
return str;
}
if (j.is_object()) {
auto obj = json::object();
for (const auto & p : j.items()) {
const auto & key = p.key();
const auto & value = p.value();
const std::string key_str = key; // NOLINT
auto idx = key_str.find(healing_marker_);
if (idx != std::string::npos) {
found_healing_marker = true;
break;
}
path.push_back(key_str);
if (value.is_string()) {
const std::string value_str = value;
if (value_str.find(healing_marker_) != std::string::npos) {
found_healing_marker = true;
if (is_content_path(path)) {
if (partial->healing_marker.marker == partial->healing_marker.json_dump_marker) {
// The healing occurred inside the string: good. Otherwise we just ditch the entire key/value pair.
obj[key] = remove_unsupported_healings_and_dump_args(value);
}
}
break;
}
obj[key] = value;
} else {
obj[key] = remove_unsupported_healings_and_dump_args(value);
}
path.pop_back();
}
return obj;
}
if (j.is_array()) {
auto arr = json::array();
for (const auto & value : j) {
if (value.is_string()) {
std::string str = value;
auto idx = str.find(healing_marker_);
if (idx != std::string::npos) {
// Don't heal array values that aren't in the arguments.
found_healing_marker = true;
break;
}
}
arr.push_back(remove_unsupported_healings_and_dump_args(value));
}
return arr;
}
return j;
};
auto cleaned = remove_unsupported_healings_and_dump_args(partial->json);
LOG_DBG("Cleaned up JSON %s to %s (json_healing_marker : '%s')\n", partial->json.dump().c_str(), cleaned.dump().c_str(), partial->healing_marker.json_dump_marker.c_str());
return consume_json_result {
cleaned,
/* .is_partial = */ found_healing_marker,
};
}

118
common/chat-parser.h Normal file
View File

@@ -0,0 +1,118 @@
#pragma once
#include "chat.h"
#include "json-partial.h"
#include "regex-partial.h"
#include <nlohmann/json.hpp>
#include <optional>
#include <string>
#include <vector>
class common_chat_msg_partial_exception : public std::runtime_error {
public:
common_chat_msg_partial_exception(const std::string & message) : std::runtime_error(message) {}
};
class common_chat_msg_parser {
std::string input_;
bool is_partial_;
common_chat_syntax syntax_;
std::string healing_marker_;
size_t pos_ = 0;
common_chat_msg result_;
public:
common_chat_msg_parser(const std::string & input, bool is_partial, const common_chat_syntax & syntax);
const std::string & input() const { return input_; }
size_t pos() const { return pos_; }
const std::string & healing_marker() const { return healing_marker_; }
const bool & is_partial() const { return is_partial_; }
const common_chat_msg & result() const { return result_; }
const common_chat_syntax & syntax() const { return syntax_; }
void move_to(size_t pos) {
if (pos > input_.size()) {
throw std::runtime_error("Invalid position!");
}
pos_ = pos;
}
void move_back(size_t n) {
if (pos_ < n) {
throw std::runtime_error("Can't move back that far!");
}
pos_ -= n;
}
// Get the substring of the input at the given range
std::string str(const common_string_range & rng) const;
// Appends to the result.content field
void add_content(const std::string & content);
// Appends to the result.reasoning_content field
void add_reasoning_content(const std::string & reasoning_content);
// Adds a tool call to the result. If the tool call is too incomplete (e.g. name empty), it won't add anything.
bool add_tool_call(const std::string & name, const std::string & id, const std::string & arguments);
// Adds a tool call using the "name", "id" and "arguments" fields of the json object
bool add_tool_call(const nlohmann::ordered_json & tool_call);
// Adds an array of tool calls using their "name", "id" and "arguments" fields.
bool add_tool_calls(const nlohmann::ordered_json & arr);
void finish();
bool consume_spaces();
void consume_literal(const std::string & literal);
bool try_parse_reasoning(const std::string & start_think, const std::string & end_think);
std::string consume_rest();
struct find_regex_result {
std::string prelude;
std::vector<common_string_range> groups;
};
std::optional<find_regex_result> try_find_regex(const common_regex & regex, size_t from = std::string::npos, bool add_prelude_to_content = true);
bool try_consume_literal(const std::string & literal);
std::optional<find_regex_result> try_find_literal(const std::string & literal);
find_regex_result consume_regex(const common_regex & regex);
std::optional<find_regex_result> try_consume_regex(const common_regex & regex);
std::optional<common_json> try_consume_json();
common_json consume_json();
struct consume_json_result {
nlohmann::ordered_json value;
bool is_partial;
};
/*
Consume (possibly partial) json and converts specific subtrees to (possibly truncated) JSON strings.
By default, object keys can't be truncated, nor can string values (their corresponding key is removed,
e.g. `{"foo": "bar", "baz": "b` -> `{"foo": "bar"}`
But one can allow subpaths to be kept truncated, and possibly json-dumped to truncated json strings
- with `content_paths={{"foo"}}` -> `{"foo": "b` -> {"foo": "b"}`
- with `args_paths={{"foo"}}` -> `{"foo": {"b` -> `{"foo": "{b"}`
*/
consume_json_result consume_json_with_dumped_args(
const std::vector<std::vector<std::string>> & args_paths = {},
const std::vector<std::vector<std::string>> & content_paths = {}
);
std::optional<consume_json_result> try_consume_json_with_dumped_args(
const std::vector<std::vector<std::string>> & args_paths = {},
const std::vector<std::vector<std::string>> & content_paths = {}
);
};

File diff suppressed because it is too large Load Diff

View File

@@ -3,6 +3,7 @@
#pragma once
#include "common.h"
#include <functional>
#include <chrono>
#include <string>
#include <vector>
@@ -13,11 +14,19 @@ struct common_chat_tool_call {
std::string name;
std::string arguments;
std::string id;
bool operator==(const common_chat_tool_call & other) const {
return name == other.name && arguments == other.arguments && id == other.id;
}
};
struct common_chat_msg_content_part {
std::string type;
std::string text;
bool operator==(const common_chat_msg_content_part & other) const {
return type == other.type && text == other.text;
}
};
struct common_chat_msg {
@@ -28,6 +37,51 @@ struct common_chat_msg {
std::string reasoning_content;
std::string tool_name;
std::string tool_call_id;
template <class T> T to_json_oaicompat() const;
bool empty() const {
return content.empty() && content_parts.empty() && tool_calls.empty() && reasoning_content.empty() && tool_name.empty() && tool_call_id.empty();
}
void ensure_tool_call_ids_set(std::vector<std::string> & ids_cache, const std::function<std::string()> & gen_tool_call_id) {
for (auto i = 0u; i < tool_calls.size(); i++) {
if (ids_cache.size() <= i) {
auto id = tool_calls[i].id;
if (id.empty()) {
id = gen_tool_call_id();
}
ids_cache.push_back(id);
}
tool_calls[i].id = ids_cache[i];
}
}
bool operator==(const common_chat_msg & other) const {
return role == other.role
&& content == other.content
&& content_parts == other.content_parts
&& tool_calls == other.tool_calls
&& reasoning_content == other.reasoning_content
&& tool_name == other.tool_name
&& tool_call_id == other.tool_call_id;
}
bool operator!=(const common_chat_msg & other) const {
return !(*this == other);
}
};
struct common_chat_msg_diff {
// std::string reasoning_content_delta;
std::string content_delta;
size_t tool_call_index = std::string::npos;
common_chat_tool_call tool_call_delta;
static std::vector<common_chat_msg_diff> compute_diffs(const common_chat_msg & previous_msg, const common_chat_msg & new_msg);
bool operator==(const common_chat_msg_diff & other) const {
return content_delta == other.content_delta
&& tool_call_index == other.tool_call_index
&& tool_call_delta == other.tool_call_delta;
}
};
struct common_chat_tool {
@@ -49,14 +103,11 @@ enum common_chat_format {
COMMON_CHAT_FORMAT_LLAMA_3_X,
COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS,
COMMON_CHAT_FORMAT_DEEPSEEK_R1,
COMMON_CHAT_FORMAT_DEEPSEEK_R1_EXTRACT_REASONING,
COMMON_CHAT_FORMAT_FIREFUNCTION_V2,
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2,
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1,
COMMON_CHAT_FORMAT_HERMES_2_PRO,
COMMON_CHAT_FORMAT_HERMES_2_PRO_EXTRACT_REASONING,
COMMON_CHAT_FORMAT_COMMAND_R7B,
COMMON_CHAT_FORMAT_COMMAND_R7B_EXTRACT_REASONING,
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
};
@@ -71,7 +122,8 @@ struct common_chat_templates_inputs {
std::vector<common_chat_tool> tools;
common_chat_tool_choice tool_choice = COMMON_CHAT_TOOL_CHOICE_AUTO;
bool parallel_tool_calls = false;
bool extract_reasoning = true;
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_NONE;
bool enable_thinking = true;
std::chrono::system_clock::time_point now = std::chrono::system_clock::now();
};
@@ -80,11 +132,21 @@ struct common_chat_params {
std::string prompt;
std::string grammar;
bool grammar_lazy = false;
bool thinking_forced_open = false;
std::vector<common_grammar_trigger> grammar_triggers;
std::vector<std::string> preserved_tokens;
std::vector<std::string> additional_stops;
};
struct common_chat_syntax {
common_chat_format format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_NONE;
// Whether reasoning_content should be inlined in the content (e.g. for reasoning_format=deepseek in stream mode)
bool reasoning_in_content = false;
bool thinking_forced_open = false;
bool parse_tool_calls = true;
};
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
bool common_chat_verify_template(const std::string & tmpl, bool use_jinja);
@@ -121,8 +183,9 @@ std::string common_chat_format_example(
const struct common_chat_templates * tmpls,
bool use_jinja);
std::string common_chat_format_name(common_chat_format format);
common_chat_msg common_chat_parse( const std::string & input, common_chat_format format);
const char* common_chat_format_name(common_chat_format format);
const char* common_reasoning_format_name(common_reasoning_format format);
common_chat_msg common_chat_parse(const std::string & input, bool is_partial, const common_chat_syntax & syntax);
common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::string & tool_choice);
@@ -135,3 +198,5 @@ template <class T> T common_chat_msgs_to_json_oaicompat(const std::vector<common
// T can be std::string containing JSON or nlohmann::ordered_json
template <class T> std::vector<common_chat_tool> common_chat_tools_parse_oaicompat(const T & tools);
template <class T> T common_chat_tools_to_json_oaicompat(const std::vector<common_chat_tool> & tools);
template <class T> T common_chat_msg_diff_to_json_oaicompat(const common_chat_msg_diff & diff);

View File

@@ -203,6 +203,7 @@ bool set_process_priority(enum ggml_sched_priority prio) {
DWORD p = NORMAL_PRIORITY_CLASS;
switch (prio) {
case GGML_SCHED_PRIO_LOW: p = BELOW_NORMAL_PRIORITY_CLASS; break;
case GGML_SCHED_PRIO_NORMAL: p = NORMAL_PRIORITY_CLASS; break;
case GGML_SCHED_PRIO_MEDIUM: p = ABOVE_NORMAL_PRIORITY_CLASS; break;
case GGML_SCHED_PRIO_HIGH: p = HIGH_PRIORITY_CLASS; break;
@@ -228,6 +229,7 @@ bool set_process_priority(enum ggml_sched_priority prio) {
int p = 0;
switch (prio) {
case GGML_SCHED_PRIO_LOW: p = 5; break;
case GGML_SCHED_PRIO_NORMAL: p = 0; break;
case GGML_SCHED_PRIO_MEDIUM: p = -5; break;
case GGML_SCHED_PRIO_HIGH: p = -10; break;
@@ -849,7 +851,7 @@ std::string fs_get_cache_directory() {
if (getenv("LLAMA_CACHE")) {
cache_directory = std::getenv("LLAMA_CACHE");
} else {
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX)
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX) || defined(__OpenBSD__)
if (std::getenv("XDG_CACHE_HOME")) {
cache_directory = std::getenv("XDG_CACHE_HOME");
} else {
@@ -903,13 +905,16 @@ struct common_init_result common_init_from_params(common_params & params) {
ok = false;
}
if (llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have an EOS token, reranking will not work\n", __func__);
ok = false;
}
bool has_eos = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
bool has_sep = llama_vocab_sep(vocab) != LLAMA_TOKEN_NULL;
if (llama_vocab_sep(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
if (!has_eos && !has_sep) {
LOG_WRN("%s: warning: vocab does not have an EOS token or SEP token, reranking will not work\n", __func__);
ok = false;
} else if (!has_eos) {
LOG_WRN("%s: warning: vocab does not have an EOS token, using SEP token as fallback\n", __func__);
} else if (!has_sep) {
LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
ok = false;
}
@@ -1136,6 +1141,7 @@ struct llama_context_params common_context_params_to_llama(const common_params &
cparams.flash_attn = params.flash_attn;
cparams.no_perf = params.no_perf;
cparams.op_offload = !params.no_op_offload;
cparams.swa_full = params.swa_full;
if (params.reranking) {
cparams.embeddings = true;
@@ -1328,81 +1334,6 @@ std::string common_detokenize(const struct llama_vocab * vocab, const std::vecto
return text;
}
//
// KV cache utils
//
void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size) {
static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
llama_kv_cache_view_cell * c_curr = view.cells;
llama_seq_id * cs_curr = view.cells_sequences;
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
if (i % row_size == 0) {
printf("\n%5d: ", i);
}
int seq_count = 0;
for (int j = 0; j < view.n_seq_max; j++) {
if (cs_curr[j] >= 0) { seq_count++; }
}
putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]);
}
printf("\n=== Done dumping\n");
}
void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size) {
static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
std::unordered_map<llama_seq_id, size_t> seqs;
llama_kv_cache_view_cell * c_curr = view.cells;
llama_seq_id * cs_curr = view.cells_sequences;
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
for (int j = 0; j < view.n_seq_max; j++) {
if (cs_curr[j] < 0) { continue; }
if (seqs.find(cs_curr[j]) == seqs.end()) {
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
const size_t sz = seqs.size();
seqs[cs_curr[j]] = sz;
}
}
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
}
printf("=== Sequence legend: ");
for (const auto & it : seqs) {
printf("%zu=%d, ", it.second, it.first);
}
printf("'+'=other sequence ids");
c_curr = view.cells;
cs_curr = view.cells_sequences;
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
if (i % row_size == 0) {
printf("\n%5d: ", i);
}
for (int j = 0; j < view.n_seq_max; j++) {
if (cs_curr[j] >= 0) {
const auto & it = seqs.find(cs_curr[j]);
putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+');
} else {
putchar('.');
}
}
putchar(' ');
}
printf("\n=== Done dumping\n");
}
//
// Embedding utils
//

View File

@@ -76,7 +76,7 @@ enum llama_example {
LLAMA_EXAMPLE_SERVER,
LLAMA_EXAMPLE_CVECTOR_GENERATOR,
LLAMA_EXAMPLE_EXPORT_LORA,
LLAMA_EXAMPLE_LLAVA,
LLAMA_EXAMPLE_MTMD,
LLAMA_EXAMPLE_LOOKUP,
LLAMA_EXAMPLE_PARALLEL,
LLAMA_EXAMPLE_TTS,
@@ -115,7 +115,7 @@ enum common_grammar_trigger_type {
COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN,
COMMON_GRAMMAR_TRIGGER_TYPE_WORD,
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN,
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START,
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
};
struct common_grammar_trigger {
@@ -291,6 +291,7 @@ struct common_params {
int32_t verbosity = 0;
int32_t control_vector_layer_start = -1; // layer range for control vector
int32_t control_vector_layer_end = -1; // layer range for control vector
bool offline = false;
int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
@@ -323,13 +324,13 @@ struct common_params {
bool flash_attn = false; // flash attention
bool no_perf = false; // disable performance metrics
bool ctx_shift = true; // context shift on inifinite text generation
bool swa_full = false; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool use_mmap = true; // use mmap for faster loads
bool use_mlock = false; // use mlock to keep model in memory
bool verbose_prompt = false; // print prompt tokens before generation
bool display_prompt = true; // print prompt before generation
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
bool no_kv_offload = false; // disable KV offloading
bool warmup = true; // warmup run
bool check_tensors = false; // validate tensor data
@@ -368,6 +369,7 @@ struct common_params {
bool use_jinja = false; // NOLINT
bool enable_chat_template = true;
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
int reasoning_budget = -1;
bool prefill_assistant = true; // if true, any trailing assistant message will be prefilled into the response
std::vector<std::string> api_keys;
@@ -621,16 +623,6 @@ std::string common_detokenize(
const std::vector<llama_token> & tokens,
bool special = true);
//
// KV cache utils
//
// Dump the KV cache view with the number of sequences per cell.
void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
// Dump the KV cache view showing individual sequences in each cell (long output).
void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
//
// Embedding utils
//

256
common/json-partial.cpp Normal file
View File

@@ -0,0 +1,256 @@
#include "json-partial.h"
#include "log.h"
#include <nlohmann/json.hpp>
#include <string>
using json = nlohmann::ordered_json;
enum common_json_stack_element_type {
COMMON_JSON_STACK_ELEMENT_OBJECT,
COMMON_JSON_STACK_ELEMENT_KEY,
COMMON_JSON_STACK_ELEMENT_ARRAY,
};
struct common_json_stack_element {
common_json_stack_element_type type;
std::string key;
};
bool common_json_parse(
const std::string & input,
const std::string & healing_marker,
common_json & out)
{
std::string::const_iterator it = input.begin();
const auto end = input.end();
return common_json_parse(it, end, healing_marker, out);
}
bool common_json_parse(
std::string::const_iterator & it,
const std::string::const_iterator & end,
const std::string & healing_marker,
common_json & out)
{
// // https://json.nlohmann.me/features/parsing/sax_interface/
struct json_error_locator : public nlohmann::json_sax<json> {
std::size_t position;
bool found_error;
std::string last_token;
std::string exception_message;
std::vector<common_json_stack_element> stack;
json_error_locator() : position(0), found_error(false) {}
bool parse_error(std::size_t position, const std::string & last_token, const json::exception & ex) override { // NOLINT
this->position = position - 1;
this->found_error = true;
this->last_token = last_token;
this->exception_message = ex.what();
return false;
}
void close_value() {
if (!stack.empty() && (stack.back().type == COMMON_JSON_STACK_ELEMENT_KEY)) {
stack.pop_back();
}
}
bool null() override { // NOLINT
close_value();
return true;
}
bool boolean(bool) override { // NOLINT
close_value();
return true;
}
bool number_integer(number_integer_t) override { // NOLINT
close_value();
return true;
}
bool number_unsigned(number_unsigned_t) override { // NOLINT
close_value();
return true;
}
bool number_float(number_float_t, const string_t &) override { // NOLINT
close_value();
return true;
}
bool string(string_t &) override { // NOLINT
close_value();
return true;
}
bool binary(binary_t &) override { // NOLINT
close_value();
return true;
}
bool start_object(std::size_t) override { // NOLINT
stack.push_back({COMMON_JSON_STACK_ELEMENT_OBJECT, ""});
return true;
}
bool end_object() override {
GGML_ASSERT(!stack.empty() && stack.back().type == COMMON_JSON_STACK_ELEMENT_OBJECT);
stack.pop_back();
close_value();
return true;
}
bool key(string_t & key) override { // NOLINT
stack.push_back({COMMON_JSON_STACK_ELEMENT_KEY, key});
return true;
}
bool start_array(std::size_t) override { // NOLINT
stack.push_back({COMMON_JSON_STACK_ELEMENT_ARRAY, ""});
return true;
}
bool end_array() override {
GGML_ASSERT(!stack.empty() && stack.back().type == COMMON_JSON_STACK_ELEMENT_ARRAY);
stack.pop_back();
close_value();
return true;
}
};
json_error_locator err_loc;
auto start = it;
json::sax_parse(it, end, &err_loc);
if (err_loc.found_error) {
it = start;
auto temptative_end = it + err_loc.position;
// LOG_DBG("Error at position %zu (is_end = %s): %s\n", err_loc.position, temptative_end == end ? "true" : "false", err_loc.exception_message.c_str());
auto input = std::string(it, temptative_end);
try {
out.json = json::parse(input);
// out.json = json::parse(it, temptative_end);
it = temptative_end;
return true;
} catch (const std::exception & ex) {
// No, needs healing.
LOG_DBG("Failed to parse up to error: %s: <<<%s>>>\n", ex.what(), std::string(it, temptative_end).c_str());
}
auto can_parse = [](const std::string & str) {
try {
auto _ = json::parse(str); // NOLINT
return true;
} catch (const std::exception &) {
return false;
}
};
if (!healing_marker.empty() && !err_loc.stack.empty()) {
std::string str(it, temptative_end);
auto last_non_sp_pos = str.find_last_not_of(" \n\r\t");
if (last_non_sp_pos == std::string::npos) {
throw std::runtime_error("Cannot heal a truncated JSON that stopped in an unknown location");
}
auto last_non_sp_char = str[last_non_sp_pos];
// Used to detect stops on a number, which may not be complete.
auto was_maybe_number = [&]() {
if (!str.empty() && std::isspace(str.back())) {
return false;
}
return std::isdigit(last_non_sp_char) ||
last_non_sp_char == '.' ||
last_non_sp_char == 'e' ||
last_non_sp_char == 'E' ||
last_non_sp_char == '-';
};
std::string closing;
for (size_t i = err_loc.stack.size(); i > 0; i--) {
auto & el = err_loc.stack[i - 1];
if (el.type == COMMON_JSON_STACK_ELEMENT_OBJECT) {
closing += "}";
} else if (el.type == COMMON_JSON_STACK_ELEMENT_ARRAY) {
closing += "]";
} else if (el.type != COMMON_JSON_STACK_ELEMENT_KEY) {
throw std::runtime_error("Unexpected stack element type");
}
}
const auto & magic_seed = out.healing_marker.marker = healing_marker;//"$llama.cpp.json$";
if (err_loc.stack.back().type == COMMON_JSON_STACK_ELEMENT_KEY) {
// We're inside an object value
if (last_non_sp_char == ':' && can_parse(str + "1" + closing)) {
// Was about to create an object value
str += (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\"" + closing;
} else if (can_parse(str + ": 1" + closing)) {
str += (out.healing_marker.json_dump_marker = ":\"" + magic_seed) + "\"" + closing;
} else if (last_non_sp_char == '{' && can_parse(str + closing)) {
// Was about to create an object
str += (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\": 1" + closing;
} else if (can_parse(str + "\"" + closing)) {
// Was inside an object value string
str += (out.healing_marker.json_dump_marker = magic_seed) + "\"" + closing;
} else if (str[str.length() - 1] == '\\' && can_parse(str + "\\\"" + closing)) {
// Was inside an object value string after an escape
str += (out.healing_marker.json_dump_marker = "\\" + magic_seed) + "\"" + closing;
} else {
// find last :
auto last_pos = str.find_last_of(':');
if (last_pos == std::string::npos) {
throw std::runtime_error("Cannot heal a truncated JSON that stopped in an unknown location");
}
// Cutting back to opening : for object value
str = str.substr(0, last_pos + 1) + (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\"" + closing;
}
} else if (err_loc.stack.back().type == COMMON_JSON_STACK_ELEMENT_ARRAY) {
if ((last_non_sp_char == ',' || last_non_sp_char == '[') && can_parse(str + "1" + closing)) {
// Was about to create an array value
str += (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\"" + closing;
} else if (can_parse(str + "\"" + closing)) {
// Was inside an array value string
str += (out.healing_marker.json_dump_marker = magic_seed) + "\"" + closing;
} else if (str[str.length() - 1] == '\\' && can_parse(str + "\\\"" + closing)) {
// Was inside an array value string after an escape
str += (out.healing_marker.json_dump_marker = "\\" + magic_seed) + "\"" + closing;
} else if (!was_maybe_number() && can_parse(str + ", 1" + closing)) {
// Had just finished a value
str += (out.healing_marker.json_dump_marker = ",\"" + magic_seed) + "\"" + closing;
} else {
auto last_pos = str.find_last_of("[,");
if (last_pos == std::string::npos) {
throw std::runtime_error("Cannot heal a truncated JSON array stopped in an unknown location");
}
// Cutting back to last [ or , for array value
str = str.substr(0, last_pos + 1) + (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\"" + closing;
}
} else if (err_loc.stack.back().type == COMMON_JSON_STACK_ELEMENT_OBJECT) {
if ((last_non_sp_char == '{' && can_parse(str + closing)) ||
(last_non_sp_char == ',' && can_parse(str + "\"\": 1" + closing))) {
// Was about to create an object key+value
str += (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\": 1" + closing;
} else if (!was_maybe_number() && can_parse(str + ",\"\": 1" + closing)) {
// Was about to create an object key+value
str += (out.healing_marker.json_dump_marker = ",\"" + magic_seed) + "\": 1" + closing;
} else if (can_parse(str + "\": 1" + closing)) {
// Was inside an object key string
str += (out.healing_marker.json_dump_marker = magic_seed) + "\": 1" + closing;
} else if (str[str.length() - 1] == '\\' && can_parse(str + "\\\": 1" + closing)) {
// Was inside an object key string after an escape
str += (out.healing_marker.json_dump_marker = "\\" + magic_seed) + "\": 1" + closing;
} else {
auto last_pos = str.find_last_of(':');
if (last_pos == std::string::npos) {
throw std::runtime_error("Cannot heal a truncated JSON object stopped in an unknown location");
}
// fprintf(stderr, "Cutting back to last : for object key+value\n");
str = str.substr(0, last_pos + 1) + (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\"" + closing;
}
} else {
throw std::runtime_error("Cannot heal a truncated JSON object stopped in an unknown location");
}
// fprintf(stderr, "HEALED:\nSTRING <<<\n%s\n>>>\n\nmagic_cut: <<<\n%s\n>>>\n\n", str.c_str(), out.healing_marker.json_dump_marker.c_str());
out.json = json::parse(str);
it = temptative_end;
return true;
}
// TODO: handle unclosed top-level primitive if the stack was empty but we got an error (e.g. "tru", "\"", etc...)
// fprintf(stderr, "Closing: TODO\n");
return false;
}
out.json = json::parse(it, end);
it = end;
return true;
}

38
common/json-partial.h Normal file
View File

@@ -0,0 +1,38 @@
#pragma once
#include <nlohmann/json.hpp>
// Healing marker (empty if the JSON was fully parsed / wasn't healed).
struct common_healing_marker {
// Raw marker.
std::string marker;
// Cutting the `common_json.json.dump()` string at the (only) occurrence of this marker should yield the original partial JSON string (modulo spaces / if it had the same dump format).
std::string json_dump_marker;
};
// Represents a parsed JSON object, with its optional healing marker (a JSON dump fragment that can be used to find the position of healing in the JSON dump string)
struct common_json {
nlohmann::ordered_json json;
common_healing_marker healing_marker;
};
// Parse the JSON string, healing (closing) any partial JSON if `healing_marker` is not empty.
//
// Healing completes partial JSON strings by adding a (possibly modified) healing marker, then whatever is needed to close the JSON.
// This allows to parse the resulting healed JSON string, yet be able to cut it again if needed at the healing marker.
// (this is used when parsing JSON outputs from the models, then crafting partial JSONs for the partial tool calls in OAI format).
//
// For instance, parsing `{` with a healing marker `foo` will produce a healed JSON `{"foo":1}`, w/ json_dump_marker = `"foo"` (which can be used to break the JSON again).
bool common_json_parse(
const std::string & input,
const std::string & healing_marker,
common_json & out);
// Parse the JSON string (see overload above), but advancing an iterator to the end of the input when the (potentially partial) parsing succeeds.
bool common_json_parse(
std::string::const_iterator & it,
const std::string::const_iterator & end,
const std::string & healing_marker,
common_json & out);

View File

@@ -1,8 +1,9 @@
#include "json-schema-to-grammar.h"
#include "common.h"
#include <nlohmann/json.hpp>
#include <algorithm>
#include <fstream>
#include <map>
#include <regex>
#include <sstream>

View File

@@ -1,9 +1,9 @@
#pragma once
#include "ggml.h"
// Change JSON_ASSERT from assert() to GGML_ASSERT:
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
#include <nlohmann/json_fwd.hpp>
#include <functional>
#include <string>
std::string json_schema_to_grammar(const nlohmann::ordered_json & schema,
bool force_gbnf = false);

View File

@@ -161,7 +161,7 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
#endif // LLAMA_USE_LLGUIDANCE
} else {
std::vector<std::string> patterns_at_start;
std::vector<std::string> trigger_patterns;
std::vector<std::string> patterns_anywhere;
std::vector<llama_token> trigger_tokens;
for (const auto & trigger : params.grammar_triggers) {
@@ -173,10 +173,13 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
break;
}
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN:
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START:
{
const auto & pattern = trigger.value;
(trigger.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START ? patterns_at_start : patterns_anywhere).push_back(pattern);
patterns_anywhere.push_back(trigger.value);
break;
}
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL:
{
trigger_patterns.push_back(trigger.value);
break;
}
case COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN:
@@ -190,10 +193,6 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
}
}
std::vector<std::string> trigger_patterns;
if (!patterns_at_start.empty()) {
trigger_patterns.push_back("^(" + string_join(patterns_at_start, "|") + ")[\\s\\S]*");
}
if (!patterns_anywhere.empty()) {
trigger_patterns.push_back("^[\\s\\S]*?(" + string_join(patterns_anywhere, "|") + ")[\\s\\S]*");
}

View File

@@ -45,7 +45,7 @@ class SentencePieceTokenTypes(IntEnum):
class ModelType(IntEnum):
TEXT = 1
VISION = 2
MMPROJ = 2
AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
@@ -54,7 +54,7 @@ AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
class ModelBase:
_model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
ModelType.TEXT: {},
ModelType.VISION: {},
ModelType.MMPROJ: {},
}
dir_model: Path
@@ -88,7 +88,7 @@ class ModelBase:
small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
if type(self) is ModelBase or \
type(self) is TextModel or \
type(self) is VisionModel:
type(self) is MmprojModel:
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
self.dir_model = dir_model
@@ -309,6 +309,7 @@ class ModelBase:
gguf.MODEL_TENSOR.POSNET_NORM1,
gguf.MODEL_TENSOR.POSNET_NORM2,
gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
)
)
or not new_name.endswith(".weight")
@@ -422,23 +423,26 @@ class ModelBase:
try:
# for security reason, we don't allow loading remote code by default
# if a model need remote code, we will fallback to config.json
return AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
except Exception as e:
logger.warning(f"Failed to load model config from {dir_model}: {e}")
logger.warning("Trying to load config.json instead")
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
config = json.load(f)
if "llm_config" in config:
# rename for InternVL
config["text_config"] = config["llm_config"]
return config
if "llm_config" in config:
# rename for InternVL
config["text_config"] = config["llm_config"]
if "thinker_config" in config:
# rename for Qwen2.5-Omni
config["text_config"] = config["thinker_config"]["text_config"]
return config
@classmethod
def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
assert names
def func(modelcls: AnyModel) -> AnyModel:
model_type = ModelType.VISION if modelcls.model_arch == gguf.MODEL_ARCH.CLIP_VISION else ModelType.TEXT
model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
for name in names:
cls._model_classes[model_type][name] = modelcls
return modelcls
@@ -519,15 +523,15 @@ class TextModel(ModelBase):
self.gguf_writer.add_context_length(n_ctx)
logger.info(f"gguf: context length = {n_ctx}")
if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
self.gguf_writer.add_embedding_length(n_embd)
logger.info(f"gguf: embedding length = {n_embd}")
if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
self.gguf_writer.add_feed_forward_length(n_ff)
logger.info(f"gguf: feed forward length = {n_ff}")
if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
self.gguf_writer.add_head_count(n_head)
logger.info(f"gguf: head count = {n_head}")
@@ -670,12 +674,12 @@ class TextModel(ModelBase):
if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
# ref: https://huggingface.co/tiiuae/falcon-7b
res = "falcon"
if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
# ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
res = "falcon3"
if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
# ref: https://huggingface.co/BAAI/bge-small-en-v1.5
res = "bert-bge"
if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
# ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
res = "falcon3"
if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
# ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
res = "bert-bge-large"
@@ -727,9 +731,6 @@ class TextModel(ModelBase):
if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
res = "jina-v2-code"
if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
# ref: https://huggingface.co/THUDM/glm-4-9b-chat
res = "chatglm-bpe"
if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
# ref: https://huggingface.co/LumiOpen/Viking-7B
res = "viking"
@@ -760,9 +761,6 @@ class TextModel(ModelBase):
if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
# ref: https://huggingface.co/facebook/chameleon-7b
res = "chameleon"
if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
# ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
res = "minerva-7b"
if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
# ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
res = "roberta-bpe"
@@ -793,15 +791,24 @@ class TextModel(ModelBase):
if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
# ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
res = "llama4"
if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
# ref: https://huggingface.co/THUDM/glm-4-9b-hf
res = "glm4"
if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
# ref: https://huggingface.co/mistral-community/pixtral-12b
res = "pixtral"
if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
# ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
res = "seed-coder"
if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
# ref: https://huggingface.co/THUDM/glm-4-9b-chat
res = "chatglm-bpe"
if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
# ref: https://huggingface.co/THUDM/glm-4-9b-chat
res = "chatglm-bpe"
if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
# ref: https://huggingface.co/THUDM/glm-4-9b-hf
res = "glm4"
if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
# ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
res = "minerva-7b"
if res is None:
logger.warning("\n")
@@ -1040,6 +1047,10 @@ class TextModel(ModelBase):
special_vocab.chat_template = "rwkv-world"
# hack: Add '\n\n' as the EOT token to make it chat normally
special_vocab._set_special_token("eot", 261)
# hack: Override these as they have already been set (incorrectly)
special_vocab.special_token_ids["bos"] = 0
special_vocab.special_token_ids["eos"] = 0
special_vocab.add_to_gguf(self.gguf_writer)
def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
@@ -1114,60 +1125,116 @@ class TextModel(ModelBase):
self.gguf_writer.add_pooling_type(pooling_type)
class VisionModel(ModelBase):
model_type = ModelType.VISION
model_arch = gguf.MODEL_ARCH.CLIP_VISION
class MmprojModel(ModelBase):
model_type = ModelType.MMPROJ
model_arch = gguf.MODEL_ARCH.MMPROJ
preprocessor_config: dict[str, Any]
global_config: dict[str, Any]
n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
has_vision_encoder: bool = True # by default
has_audio_encoder: bool = False
# for models having multiple encoders, we need to separate their hparams
hparams_vision: dict[str, Any] | None = None
hparams_audio: dict[str, Any] | None = None
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if self.model_arch != gguf.MODEL_ARCH.CLIP_VISION:
raise TypeError("VisionModel must be subclassed with model_arch = gguf.MODEL_ARCH.CLIP_VISION")
if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
# get n_embd of the text model
if "text_config" not in self.hparams:
self.hparams["text_config"] = {}
if "audio_config" not in self.hparams:
self.hparams["audio_config"] = {}
text_config = {**self.hparams, **self.hparams["text_config"]}
self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
assert self.n_embd_text > 0, "n_embd not found in hparams"
if "vision_config" not in self.hparams:
raise ValueError("vision_config not found in hparams")
# move vision config to the top level, while preserving the original hparams in global_config
self.global_config = self.hparams
self.hparams = self.hparams["vision_config"]
import copy
self.global_config = copy.deepcopy(self.hparams)
self.hparams_vision = self.get_vision_config()
self.hparams_audio = self.get_audio_config()
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"])
self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.CLIP_VISION, self.block_count)
if self.hparams_vision is None and self.hparams_audio is None:
raise ValueError("vision_config / audio_config not found in hparams")
# for compat with vision-only models
self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
# TODO @ngxson : this is a hack to support both vision and audio encoders
have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
# load preprocessor config
with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
self.preprocessor_config = json.load(f)
def get_vision_config(self) -> dict[str, Any] | None:
return self.global_config.get("vision_config")
def get_audio_config(self) -> dict[str, Any] | None:
return self.global_config.get("audio_config")
def set_type(self):
self.gguf_writer.add_type(gguf.GGUFType.CLIP_VISION)
self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
def set_gguf_parameters(self):
self.gguf_writer.add_file_type(self.ftype)
self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
self.gguf_writer.add_vision_has_vision_encoder(True)
# vision config
self.gguf_writer.add_vision_image_size(self.find_hparam(["image_size"]))
self.gguf_writer.add_vision_patch_size(self.find_hparam(["patch_size"]))
self.gguf_writer.add_vision_embedding_length(self.find_hparam(["hidden_size"]))
self.gguf_writer.add_vision_feed_forward_length(self.find_hparam(["intermediate_size"]))
self.gguf_writer.add_vision_block_count(self.block_count)
self.gguf_writer.add_vision_head_count(self.find_hparam(["num_attention_heads"]))
if self.has_vision_encoder:
self.gguf_writer.add_clip_has_vision_encoder(True)
self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
# preprocessor config
self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
# vision config
self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
# preprocessor config
self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
if self.has_audio_encoder:
self.gguf_writer.add_clip_has_audio_encoder(True)
self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
# audio config
self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
if not self.has_vision_encoder and not self.has_audio_encoder:
raise ValueError("MmprojModel must have either vision or audio encoder")
def write_vocab(self):
raise ValueError("VisionModel does not support vocab writing")
raise ValueError("MmprojModel does not support vocab writing")
def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
assert self.hparams_vision is not None
return self._find_param(self.hparams_vision, keys, optional)
def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
assert self.hparams_audio is not None
return self._find_param(self.hparams_audio, keys, optional)
def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
key = next((k for k in keys if k in obj), None)
if key is not None:
return obj[key]
if optional:
return None
raise KeyError(f"could not find any of: {keys}")
@ModelBase.register("GPTNeoXForCausalLM")
@@ -1781,7 +1848,8 @@ class StableLMModel(TextModel):
"MistralForCausalLM",
"MixtralForCausalLM",
"VLlama3ForCausalLM",
"LlavaForConditionalGeneration")
"LlavaForConditionalGeneration",
"LlamaModel")
class LlamaModel(TextModel):
model_arch = gguf.MODEL_ARCH.LLAMA
undo_permute = True
@@ -1861,6 +1929,8 @@ class LlamaModel(TextModel):
if is_vision_tensor:
return [] # skip vision tensors
elif self.hf_arch == "LlamaModel":
name = "model." + name
elif name.startswith("model.text_model"):
name = name.replace("text_model.", "") # for SmolVLM
elif name.startswith("language_model."):
@@ -1951,7 +2021,7 @@ class LlamaModel(TextModel):
"LlavaForConditionalGeneration", # pixtral
"Mistral3ForConditionalGeneration", # mistral small 3.1
)
class LlavaVisionModel(VisionModel):
class LlavaVisionModel(MmprojModel):
img_break_tok_id = -1
def __init__(self, *args, **kwargs):
@@ -1977,7 +2047,7 @@ class LlavaVisionModel(VisionModel):
super().set_gguf_parameters()
hparams = self.hparams
if hparams["model_type"] == "pixtral":
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.PIXTRAL)
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
# hidden_act
@@ -2016,7 +2086,7 @@ class LlavaVisionModel(VisionModel):
@ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
class SmolVLMModel(VisionModel):
class SmolVLMModel(MmprojModel):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if self.hparams["model_type"] == "smolvlm_vision":
@@ -2028,7 +2098,7 @@ class SmolVLMModel(VisionModel):
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.IDEFICS3)
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
self.gguf_writer.add_vision_use_gelu(True)
@@ -2094,10 +2164,10 @@ class Llama4Model(LlamaModel):
@ModelBase.register("Llama4ForConditionalGeneration")
class Llama4VisionModel(VisionModel):
class Llama4VisionModel(MmprojModel):
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.LLAMA4)
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
assert self.hparams["hidden_act"] == "gelu"
@@ -2109,6 +2179,9 @@ class Llama4VisionModel(VisionModel):
# process vision tensors
if "positional_embedding_vlm" in name and ".weight" not in name:
name += ".weight"
if "multi_modal_projector.linear_1" in name:
# despite the name with number postfix, this is a single fully connected layer
return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC], data_torch)]
return [(self.map_tensor_name(name), data_torch)]
return []
@@ -2615,7 +2688,7 @@ class QwenModel(TextModel):
self.gguf_writer.add_file_type(self.ftype)
@ModelBase.register("Qwen2Model", "Qwen2ForCausalLM")
@ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
class Qwen2Model(TextModel):
model_arch = gguf.MODEL_ARCH.QWEN2
@@ -2639,13 +2712,19 @@ class Qwen2Model(TextModel):
name = f"model.{name}" # map to Qwen2ForCausalLM tensors
if "language_model." in name:
name = name.replace("language_model.", "") # for InternVL
if name.startswith("mlp") or name.startswith("vision_model"):
# skip visual tensors
if name.startswith("mlp") or name.startswith("multi_modal_projector") \
or name.startswith("vision_model") or name.startswith("audio_tower"):
# skip vision and audio tensors
return []
yield from super().modify_tensors(data_torch, name, bid)
@ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
@ModelBase.register(
"Qwen2VLModel",
"Qwen2VLForConditionalGeneration",
"Qwen2_5_VLForConditionalGeneration",
"Qwen2_5OmniModel",
)
class Qwen2VLModel(TextModel):
model_arch = gguf.MODEL_ARCH.QWEN2VL
@@ -2663,31 +2742,40 @@ class Qwen2VLModel(TextModel):
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
if name.startswith("visual."):
# skip visual tensors
if name.startswith("thinker."):
name = name.replace("thinker.", "")
if name.startswith("visual") or name.startswith("audio") or \
name.startswith("talker") or name.startswith("token2wav"):
# skip multimodal tensors
return []
return [(self.map_tensor_name(name), data_torch)]
@ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
class Qwen2VLVisionModel(VisionModel):
@ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
class Qwen2VLVisionModel(MmprojModel):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.hparams["image_size"] = self.hparams.get("image_size", 560)
assert self.hparams_vision is not None
self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
# rename config.json values
self.hparams["num_attention_heads"] = self.hparams.get("num_heads")
self.hparams["num_hidden_layers"] = self.hparams.get("depth")
if "embed_dim" in self.hparams: # qwen2vl
self.hparams["intermediate_size"] = self.hparams.get("hidden_size")
self.hparams["hidden_size"] = self.hparams.get("embed_dim")
self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
if "embed_dim" in self.hparams_vision: # qwen2vl
self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
if self.global_config['model_type'] == 'qwen2_vl':
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.QWEN2VL)
elif self.global_config['model_type'] == 'qwen2_5_vl':
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.QWEN25VL)
assert self.hparams_vision is not None
hparams = self.hparams_vision
model_type = self.global_config['model_type']
if model_type == 'qwen2_vl':
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
if model_type == 'qwen2_5_omni':
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
else:
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
self.gguf_writer.add_vision_use_silu(True)
# find n_wa_pattern (window attention pattern)
fullatt_block_indexes = hparams.get("fullatt_block_indexes")
@@ -2745,12 +2833,72 @@ class Qwen2VLVisionModel(VisionModel):
return [] # skip other tensors
@ModelBase.register("Qwen2_5OmniModel")
class Qwen25OmniModel(Qwen2VLVisionModel):
has_vision_encoder = True
has_audio_encoder = True
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
assert self.hparams_audio is not None
self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
def set_gguf_parameters(self):
super().set_gguf_parameters()
assert self.hparams_audio is not None
self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
def get_vision_config(self) -> dict[str, Any] | None:
return self.global_config["thinker_config"].get("vision_config")
def get_audio_config(self) -> dict[str, Any] | None:
return self.global_config["thinker_config"].get("audio_config")
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
# SinusoidsPositionEmbedding
assert self.hparams_audio is not None
max_timescale = 10000
length = 1500
channels = self.hparams_audio["hidden_size"]
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
yield ("audio_tower.embed_positions.weight", pos_embd)
def tensor_force_quant(self, name, new_name, bid, n_dims):
del bid, new_name, n_dims # unused
if ".conv" in name and ".weight" in name:
return gguf.GGMLQuantizationType.F16
return False
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
if name.startswith("thinker."):
name = name.replace("thinker.", "")
if name.startswith("audio_tower"):
# process audio tensors
if "conv1.bias" in name or "conv2.bias" in name:
# transpose conv1 and conv2 bias
data_torch = data_torch.unsqueeze(-1)
if "audio_bos_eos_token" in name:
# this tensor is left unused in transformers code
# https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
return []
return [(self.map_tensor_name(name), data_torch)]
return super().modify_tensors(data_torch, name, bid)
@ModelBase.register("InternVisionModel")
class InternVisionModel(VisionModel):
class InternVisionModel(MmprojModel):
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.INTERNVL)
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
# hidden_act
if hparams["hidden_act"] == "silu":
@@ -3541,7 +3689,7 @@ class InternLM3Model(TextModel):
return [(self.map_tensor_name(name), data_torch)]
@ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel")
@ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
class BertModel(TextModel):
model_arch = gguf.MODEL_ARCH.BERT
@@ -3549,11 +3697,21 @@ class BertModel(TextModel):
super().__init__(*args, **kwargs)
self.vocab_size = None
if cls_out_labels := self.hparams.get("id2label"):
if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
# Remove dummy labels added by AutoConfig
cls_out_labels = None
self.cls_out_labels = cls_out_labels
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_causal_attention(False)
self._try_set_pooling_type()
if self.cls_out_labels:
key_name = gguf.Keys.Classifier.OUTPUT_LABELS.format(arch = gguf.MODEL_ARCH_NAMES[self.model_arch])
self.gguf_writer.add_array(key_name, [v for k, v in sorted(self.cls_out_labels.items())])
def set_vocab(self):
tokens, toktypes, tokpre = self.get_vocab_base()
self.vocab_size = len(tokens)
@@ -3604,6 +3762,14 @@ class BertModel(TextModel):
if name.startswith("cls.seq_relationship"):
return []
if self.cls_out_labels:
# For BertForSequenceClassification (direct projection layer)
if name == "classifier.weight":
name = "classifier.out_proj.weight"
if name == "classifier.bias":
name = "classifier.out_proj.bias"
return [(self.map_tensor_name(name), data_torch)]
def _xlmroberta_tokenizer_init(self) -> None:
@@ -3623,62 +3789,111 @@ class BertModel(TextModel):
from sentencepiece import sentencepiece_model_pb2 as model
tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
tokenizer_json = {}
tokenizer_config_json = {}
if not tokenizer_path.is_file():
raise FileNotFoundError(f"File not found: {tokenizer_path}")
tokenizer_path = self.dir_model / 'tokenizer.json'
tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
if not tokenizer_path.is_file():
raise FileNotFoundError(f"File not found: {tokenizer_path}")
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
from base64 import b64decode
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
tokenizer = SentencePieceProcessor()
tokenizer.LoadFromFile(str(tokenizer_path))
with open(tokenizer_path, "r", encoding="utf-8") as fp:
tokenizer_json = json.load(fp)
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
if tokenizer_config_path.is_file():
with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
tokenizer_config_json = json.load(fp)
add_prefix = tokenizer.add_prefix_space
remove_whitespaces = tokenizer.clean_up_tokenization_spaces
precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
else:
sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
tokenizer = SentencePieceProcessor()
tokenizer.LoadFromFile(str(tokenizer_path))
vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
scores: list[float] = [-10000.0] * vocab_size
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
for token_id in range(tokenizer.vocab_size()):
piece = tokenizer.IdToPiece(token_id)
text = piece.encode("utf-8")
score = tokenizer.GetScore(token_id)
if isinstance(tokenizer, SentencePieceProcessor):
for token_id in range(tokenizer.vocab_size()):
piece = tokenizer.IdToPiece(token_id)
text = piece.encode("utf-8")
score = tokenizer.GetScore(token_id)
toktype = SentencePieceTokenTypes.NORMAL
if tokenizer.IsUnknown(token_id):
toktype = SentencePieceTokenTypes.UNKNOWN
elif tokenizer.IsControl(token_id):
toktype = SentencePieceTokenTypes.CONTROL
elif tokenizer.IsUnused(token_id):
toktype = SentencePieceTokenTypes.UNUSED
elif tokenizer.IsByte(token_id):
toktype = SentencePieceTokenTypes.BYTE
toktype = SentencePieceTokenTypes.NORMAL
if tokenizer.IsUnknown(token_id):
toktype = SentencePieceTokenTypes.UNKNOWN
elif tokenizer.IsControl(token_id):
toktype = SentencePieceTokenTypes.CONTROL
elif tokenizer.IsUnused(token_id):
toktype = SentencePieceTokenTypes.UNUSED
elif tokenizer.IsByte(token_id):
toktype = SentencePieceTokenTypes.BYTE
tokens[token_id] = text
scores[token_id] = score
toktypes[token_id] = toktype
tokens[token_id] = text
scores[token_id] = score
toktypes[token_id] = toktype
else:
added_vocab = tokenizer.get_added_vocab()
unk_token = tokenizer_config_json.get("unk_token")
unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
if vocab_size > len(tokens):
pad_count = vocab_size - len(tokens)
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
for i in range(1, pad_count + 1):
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
scores.append(-1000.0)
toktypes.append(SentencePieceTokenTypes.UNUSED)
for token_id in range(tokenizer.vocab_size):
piece = tokenizer._convert_id_to_token(token_id)
if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
text = piece.encode("utf-8")
score = tokenizer_json["model"]["vocab"][token_id][1]
# realign tokens (see HF tokenizer code)
tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
toktypes = [
SentencePieceTokenTypes.CONTROL,
SentencePieceTokenTypes.CONTROL,
SentencePieceTokenTypes.CONTROL,
SentencePieceTokenTypes.UNKNOWN,
] + toktypes[3:-1]
toktype = SentencePieceTokenTypes.NORMAL
if token_id == unk_token_id:
toktype = SentencePieceTokenTypes.UNKNOWN
elif token_id in tokenizer.all_special_ids:
toktype = SentencePieceTokenTypes.CONTROL
elif token_id in added_vocab.values():
toktype = SentencePieceTokenTypes.USER_DEFINED
# No reliable way to detect this, but jina doesn't have any
# elif tokenizer.IsByte(token_id):
# toktype = SentencePieceTokenTypes.BYTE
tokens[token_id] = text
scores[token_id] = score
toktypes[token_id] = toktype
if isinstance(tokenizer, SentencePieceProcessor):
# realign tokens (see HF tokenizer code)
tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
toktypes = [
SentencePieceTokenTypes.CONTROL,
SentencePieceTokenTypes.CONTROL,
SentencePieceTokenTypes.CONTROL,
SentencePieceTokenTypes.UNKNOWN,
] + toktypes[3:-1]
if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
# Add mask token missing from sentencepiece.bpe.model
tokens[250001] = b'<mask>'
scores[250001] = 0.0
toktypes[250001] = SentencePieceTokenTypes.CONTROL
self.gguf_writer.add_tokenizer_model("t5")
self.gguf_writer.add_tokenizer_pre("default")
@@ -3698,7 +3913,27 @@ class BertModel(TextModel):
self.gguf_writer.add_add_eos_token(True)
@ModelBase.register("RobertaModel")
@ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
class DistilBertModel(BertModel):
model_arch = gguf.MODEL_ARCH.BERT
def set_gguf_parameters(self):
self.gguf_writer.add_layer_norm_eps(1e-12)
logger.info("gguf: layer norm epsilon = 1e-12")
super().set_gguf_parameters()
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
if name.startswith("distilbert."):
name = name[11:]
# These layers act as MLM head, so we don't need them
if name.startswith("vocab_"):
return []
return super().modify_tensors(data_torch, name, bid)
@ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
class RobertaModel(BertModel):
model_arch = gguf.MODEL_ARCH.BERT
@@ -4008,11 +4243,11 @@ class Gemma3Model(TextModel):
@ModelBase.register("Gemma3ForConditionalGeneration")
class Gemma3VisionModel(VisionModel):
class Gemma3VisionModel(MmprojModel):
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.GEMMA3)
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
# default values below are taken from HF tranformers code
self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
self.gguf_writer.add_vision_use_gelu(True)
@@ -5959,6 +6194,65 @@ class ChameleonModel(TextModel):
return data_torch
@ModelBase.register("UltravoxModel")
class UltravoxModel(TextModel):
model_arch = gguf.MODEL_ARCH.LLAMA # dummy
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
@ModelBase.register("Qwen2AudioForConditionalGeneration")
class WhisperEncoderModel(MmprojModel):
has_vision_encoder = False # no vision encoder
has_audio_encoder = True
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.hparams["hidden_size"] = self.hparams["d_model"]
self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
def tensor_force_quant(self, name, new_name, bid, n_dims):
del bid, new_name, n_dims # unused
if ".conv" in name and ".weight" in name:
return gguf.GGMLQuantizationType.F16
return False
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
if name.startswith("language_model."):
# skip language model tensors
return []
# prevent clash naming with vision tensors
if name.startswith("multi_modal_projector"):
name = "audio." + name
if "conv1.bias" in name or "conv2.bias" in name:
# transpose conv1 and conv2 bias
data_torch = data_torch.unsqueeze(-1)
return [(self.map_tensor_name(name), data_torch)]
@ModelBase.register("UltravoxModel")
class UltravoxWhisperEncoderModel(WhisperEncoderModel):
has_vision_encoder = False # no vision encoder
has_audio_encoder = True
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
###### CONVERSION LOGIC ######
@@ -6134,13 +6428,15 @@ def split_str_to_n_bytes(split_str: str) -> int:
def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
# TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
# maybe we should fallback to text model's arch in that case, since not many models have both
text_config = hparams.get("text_config", {})
vision_config = hparams.get("vision_config", {})
arch = hparams["architectures"][0]
# if "architectures" is found in the sub-config, use that instead
if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
arch = text_config["architectures"][0]
elif model_type == ModelType.VISION and vision_config.get("architectures") is not None:
elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
arch = vision_config["architectures"][0]
return arch
@@ -6203,7 +6499,7 @@ def main() -> None:
with torch.inference_mode():
output_type = ftype_map[args.outtype]
model_type = ModelType.VISION if args.mmproj else ModelType.TEXT
model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
hparams = ModelBase.load_hparams(dir_model)
model_architecture = get_model_architecture(hparams, model_type)
logger.info(f"Model architecture: {model_architecture}")

View File

@@ -1,28 +1,6 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# This script downloads the tokenizer models of the specified models from Huggingface and
# generates the get_vocab_base_pre() function for convert_hf_to_gguf.py
#
# This is necessary in order to analyze the type of pre-tokenizer used by the model and
# provide the necessary information to llama.cpp via the GGUF header in order to implement
# the same pre-tokenizer.
#
# ref: https://github.com/ggml-org/llama.cpp/pull/6920
#
# Instructions:
#
# - Add a new model to the "models" list
# - Run the script with your huggingface token:
#
# python3 convert_hf_to_gguf_update.py <huggingface_token>
#
# - The convert_hf_to_gguf.py script will have had its get_vocab_base_pre() function updated
# - Update llama.cpp with the new pre-tokenizer if necessary
#
# TODO: generate tokenizer tests for llama.cpp
#
import logging
import os
import pathlib
@@ -32,6 +10,7 @@ import requests
import sys
import json
import shutil
import argparse
from hashlib import sha256
from enum import IntEnum, auto
@@ -41,6 +20,11 @@ logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger("convert_hf_to_gguf_update")
sess = requests.Session()
convert_py_pth = pathlib.Path("convert_hf_to_gguf.py")
convert_py = convert_py_pth.read_text(encoding="utf-8")
hf_token_pth = pathlib.Path.home() / ".cache" / "huggingface" / "token"
hf_token = hf_token_pth.read_text(encoding="utf-8").strip() if hf_token_pth.exists() else None
class TOKENIZER_TYPE(IntEnum):
SPM = auto()
@@ -49,20 +33,49 @@ class TOKENIZER_TYPE(IntEnum):
UGM = auto()
DOC_STRING = """
This script downloads the tokenizer models of the specified models from Huggingface and
generates the get_vocab_base_pre() function for convert_hf_to_gguf.py
/!\\ It is intended to be used by contributors and is not meant to be run by end users
This is necessary in order to analyze the type of pre-tokenizer used by the model and
provide the necessary information to llama.cpp via the GGUF header in order to implement
the same pre-tokenizer.
ref: https://github.com/ggml-org/llama.cpp/pull/6920
Instructions:
- Add a new model to the "models" list
- Run the script with your huggingface token
By default, token will be read from ~/.cache/huggingface/token
- The convert_hf_to_gguf.py script will have had its get_vocab_base_pre() function updated
- Update llama.cpp with the new pre-tokenizer if necessary
"""
# TODO: generate tokenizer tests for llama.cpp
parser = argparse.ArgumentParser(description=DOC_STRING, formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument(
"--full", action="store_true",
help="download full list of models - make sure you have access to all of them",
)
parser.add_argument(
"hf_token",
help="optional HF token",
nargs="?",
)
args = parser.parse_args()
hf_token = args.hf_token if args.hf_token is not None else hf_token
if hf_token is None:
logger.error("HF token is required. Please provide it as an argument or set it in ~/.cache/huggingface/token")
sys.exit(1)
# TODO: this string has to exercise as much pre-tokenizer functionality as possible
# will be updated with time - contributions welcome
CHK_TXT = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天 ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
if len(sys.argv) == 2:
token = sys.argv[1]
if not token.startswith("hf_"):
logger.info("Huggingface token seems invalid")
logger.info("Usage: python convert_hf_to_gguf_update.py <huggingface_token>")
sys.exit(1)
else:
logger.info("Usage: python convert_hf_to_gguf_update.py <huggingface_token>")
sys.exit(1)
# TODO: add models here, base models preferred
models = [
{"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
@@ -103,7 +116,6 @@ models = [
{"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", },
{"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", },
{"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", },
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", },
{"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"},
{"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"},
{"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"},
@@ -114,11 +126,19 @@ models = [
{"name": "trillion", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/trillionlabs/Trillion-7B-preview", },
{"name": "bailingmoe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-lite", },
{"name": "llama4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct", },
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", },
{"name": "pixtral", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistral-community/pixtral-12b", },
{"name": "seed-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base", },
]
# some models are known to be broken upstream, so we will skip them as exceptions
pre_computed_hashes = [
# chatglm-bpe has 2 hashes, why?
{"name": "chatglm-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-chat", "chkhsh": "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b"},
{"name": "chatglm-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-chat", "chkhsh": "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516"},
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", "chkhsh": "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2"},
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", "chkhsh": "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35"},
]
def download_file_with_auth(url, token, save_path):
headers = {"Authorization": f"Bearer {token}"}
@@ -169,9 +189,29 @@ def download_model(model):
if os.path.isfile(save_path):
logger.info(f"{name}: File {save_path} already exists - skipping")
continue
download_file_with_auth(f"{repo}/resolve/main/{file}", token, save_path)
download_file_with_auth(f"{repo}/resolve/main/{file}", hf_token, save_path)
# get list of existing models and chkhsh from the convert_hf_to_gguf.py file
# returns mapping res --> chkhsh
def get_existing_models(convert_py):
pattern = r'if chkhsh == "([a-f0-9]{64})":\s*\n\s*.*\s*res = "([^"]+)"'
matches = re.findall(pattern, convert_py)
output = {}
for chkhsh, res in matches:
output[res] = chkhsh
return output
existing_models = {}
all_models = models.copy()
if not args.full:
# Filter out models that already exist in convert_hf_to_gguf.py
existing_models = get_existing_models(convert_py)
all_models = models.copy()
models = [model for model in all_models if model["name"] not in existing_models]
logging.info(f"Downloading {len(models)} models...")
for model in models:
try:
download_model(model)
@@ -182,9 +222,10 @@ for model in models:
# generate the source code for the convert_hf_to_gguf.py:get_vocab_base_pre() function:
src_ifs = ""
for model in models:
for model in [*all_models, *pre_computed_hashes]:
name = model["name"]
tokt = model["tokt"]
chkhsh = model.get("chkhsh")
if tokt == TOKENIZER_TYPE.SPM or tokt == TOKENIZER_TYPE.UGM:
continue
@@ -195,35 +236,44 @@ for model in models:
continue
# create the tokenizer
try:
if name == "t5":
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False)
else:
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
except OSError as e:
logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}")
continue # Skip to the next model if the tokenizer can't be loaded
if chkhsh is not None:
# if the model has a pre-computed hash, use it
logger.info(f"Using pre-computed hash for model {name}: {chkhsh}")
elif name in existing_models:
# if the model already exists in convert_hf_to_gguf.py, skip compute hash
chkhsh = existing_models[name]
else:
# otherwise, compute the hash of the tokenizer
try:
logger.info(f"Loading tokenizer from {f'models/tokenizers/{name}'}...")
if name == "t5":
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False)
else:
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
except OSError as e:
logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}")
continue # Skip to the next model if the tokenizer can't be loaded
chktok = tokenizer.encode(CHK_TXT)
chkhsh = sha256(str(chktok).encode()).hexdigest()
chktok = tokenizer.encode(CHK_TXT)
chkhsh = sha256(str(chktok).encode()).hexdigest()
logger.info(f"model: {name}")
logger.info(f"tokt: {tokt}")
logger.info(f"repo: {model['repo']}")
logger.info(f"chktok: {chktok}")
logger.info(f"chkhsh: {chkhsh}")
logger.info(f"model: {name}")
logger.info(f"tokt: {tokt}")
logger.info(f"repo: {model['repo']}")
logger.info(f"chktok: {chktok}")
logger.info(f"chkhsh: {chkhsh}")
# print the "pre_tokenizer" content from the tokenizer.json
with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f:
cfg = json.load(f)
normalizer = cfg["normalizer"]
logger.info("normalizer: " + json.dumps(normalizer, indent=4))
pre_tokenizer = cfg["pre_tokenizer"]
logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
if "ignore_merges" in cfg["model"]:
logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4))
# print the "pre_tokenizer" content from the tokenizer.json
with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f:
cfg = json.load(f)
normalizer = cfg["normalizer"]
logger.info("normalizer: " + json.dumps(normalizer, indent=4))
pre_tokenizer = cfg["pre_tokenizer"]
logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
if "ignore_merges" in cfg["model"]:
logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4))
logger.info("")
logger.info("")
src_ifs += f" if chkhsh == \"{chkhsh}\":\n"
src_ifs += f" # ref: {model['repo']}\n"
@@ -271,8 +321,6 @@ src_func = f"""
return res
"""
convert_py_pth = pathlib.Path("convert_hf_to_gguf.py")
convert_py = convert_py_pth.read_text(encoding="utf-8")
convert_py = re.sub(
r"(# Marker: Start get_vocab_base_pre)(.+?)( +# Marker: End get_vocab_base_pre)",
lambda m: m.group(1) + src_func + m.group(3),
@@ -288,7 +336,7 @@ logger.info("+++ convert_hf_to_gguf.py was updated")
tests = [
"ied 4 ½ months",
"Führer",
"Äpfel",
"",
" ",
" ",
@@ -367,6 +415,10 @@ for model in models:
logger.error(f"Failed to load tokenizer for model {name}. Error: {e}")
continue # Skip this model and continue with the next one in the loop
if not os.path.exists(f"models/ggml-vocab-{name}.gguf"):
logger.info(f"Skip vocab files for model {name}, no GGUF file found")
continue
with open(f"models/ggml-vocab-{name}.gguf.inp", "w", encoding="utf-8") as f:
for text in tests:
f.write(f"{text}")

135
docs/backend/CANN.md Normal file → Executable file
View File

@@ -56,60 +56,82 @@ The llama.cpp CANN backend is designed to support Ascend NPU. It utilize the abi
## Model Supports
| Model Name | FP16 | Q8_0 | Q4_0 |
| Model Name | FP16 | Q4_0 | Q8_0 |
|:----------------------------|:-----:|:----:|:----:|
| AquilaChat2-7B | √ | √ | √ |
| Baichuan-7b | √ | √ | √ |
| Baichuan2-7B-Chat | √ | √ | √ |
| bitnet_b1_58-large | √ | √ | √ |
| bloom-560m | | x | |
| bloomz-alpaca-560m | √ | x | √ |
| c4ai-command-r-35B-v01 | x | x | x |
| chatglm3-6B | x | x | x |
| chinese-alpaca-2-1.3b | | | |
| CodeShell-7B | √ | √ | √ |
| deepseek-ai_deepseek-coder-1.3B-base | x | x | x |
| deepseek-ai_DeepSeek-V2-Lite | x | x | x |
| deepseek-coder-6.7B-instruct | x | x | x |
| DeepSeek-V2-Lite-64x1.5B | x | x | x |
| falcon-7b-instruct | √ | √ | √ |
| flan-t5-large | √ | √ | √ |
| gemma-2-9b-it | √ | √ | √ |
| glm-4-9B | x | x | x |
| gpt2 | | | |
| Gpt2-163M | √ | √ | √ |
| granite-3B-code-instruct | √ | √ | √ |
| Llama-2 | √ | √ | √ |
| Llama-3 | √ | √ | √ |
| Mistral-7B | √ | √ | √ |
| Mistral MOE | √ | √ | √ |
| DBRX | - | - | - |
| Falcon | √ | | √ |
| Chinese LLaMA/Alpaca | | | |
| Vigogne(French) | | | |
| BERT | x | x | x |
| Koala | √ | √ | √ |
| Baichuan | √ | | |
| Aquila 1 & 2 | | √ | √ |
| Starcoder models | | √ | √ |
| Refact | | | |
| MPT | √ | √ | √ |
| Bloom | √ | √ | √ |
| Yi models | √ | √ | √ |
| stablelm models | | | |
| DeepSeek models | x | x | x |
| Qwen models | √ | √ | √ |
| PLaMo-13B | √ | √ | √ |
| Phi models | √ | √ | √ |
| PhiMoE | √ | √ | √ |
| GPT-2 | √ | √ | √ |
| Orion | √ | √ | √ |
| InternlLM2 | √ | √ | √ |
| CodeShell | √ | √ | √ |
| Gemma | √ | √ | √ |
| Mamba | √ | √ | √ |
| Xverse | √ | √ | √ |
| command-r models | √ | √ | √ |
| Grok-1 | - | - | - |
| SEA-LION | √ | √ | √ |
| GritLM-7B | √ | √ | √ |
| internlm2_5-7b-chat | √ | √ | √ |
| koala-7B-HF | √ | √ | √ |
| Llama-2-7b-chat-hf | √ | √ | √ |
| Llama-3-Smaug-8B | √ | √ | √ |
| Llama2-Chinese-7b-Chat | √ | √ | √ |
| Llama3-8B | √ | √ | √ |
| Llama3-8b-chinese | | | |
| mamba-130m-hf | √ | √ | √ |
| Mistral-7B-Instruct-v0.2 | √ | √ | √ |
| Mixtral-8x7B-Instruct-v0.1 | x | √ | |
| mpt-7B | √ | √ | √ |
| OLMo-1B-hf | | √ | √ |
| OpenELM-3B-Instruct | √ | √ | √ |
| Orion-14b-base | √ | √ | √ |
| phi1 | x | x | x |
| phi2 | x | x | x |
| Phi-3-mini-4k-instruct | √ | √ | √ |
| plamo-13b | | | |
| pythia-70M | x | x | x |
| Qwen-7B | | √ | √ |
| Qwen2-1.5B-Instruct | √ | x | √ |
| Refact-1_6B-fim | | | |
| SmolLM-135M | √ | √ | √ |
| stablelm-zephyr | x | x | x |
| stablelm-2-zephyr-1_6b | x | x | x |
| starcoderbase-1b | √ | √ | √ |
| starcoder2-3b | √ | √ | √ |
| vigogne-7b-chat | | √ | √ |
| xverse-7b-chat | √ | √ | √ |
| Yi-6b-Chat | | | |
| OLMo | √ | √ | √ |
| OLMo 2 | √ | √ | √ |
| OLMoE | √ | √ | √ |
| Granite models | √ | √ | √ |
| GPT-NeoX | √ | √ | √ |
| Pythia | √ | √ | √ |
| Snowflake-Arctic MoE | - | - | - |
| Smaug | √ | √ | √ |
| Poro 34B | √ | √ | √ |
| Bitnet b1.58 models | √ | x | x |
| Flan-T5 | √ | √ | √ |
| Open Elm models | x | √ | √ |
| chatGLM3-6B + ChatGLM4-9b + GLMEdge-1.5b + GLMEdge-4b | √ | √ | √ |
| GLM-4-0414 | √ | √ | √ |
| SmolLM | | | |
| EXAONE-3.0-7.8B-Instruct | | | |
| FalconMamba Models | √ | √ | √ |
| Jais Models | - | x | x |
| Bielik-11B-v2.3 | | | |
| RWKV-6 | - | √ | √ |
| QRWKV-6 | √ | | √ |
| GigaChat-20B-A3B | x | x | x |
| Trillion-7B-preview | √ | √ | √ |
| Ling models | | | |
**Multimodal**
| Model Name | FP16 | Q4_0 | Q8_0 |
|:----------------------------|:-----:|:----:|:----:|
| LLaVA 1.5 models, LLaVA 1.6 models | x | x | x |
| BakLLaVA | √ | √ | √ |
| Obsidian | √ | - | - |
| ShareGPT4V | x | - | - |
| MobileVLM 1.7B/3B models | - | - | - |
| Yi-VL | - | - | - |
| Mini CPM | √ | √ | √ |
| Moondream | √ | √ | √ |
| Bunny | √ | - | - |
| GLM-EDGE | √ | √ | √ |
| Qwen2-VL | √ | √ | √ |
@@ -258,6 +280,15 @@ cmake --build build --config release
### **GitHub contribution**:
Please add the **[CANN]** prefix/tag in issues/PRs titles to help the CANN-team check/address them without delay.
## Updates
### Basic Flash Attention Support
The basic FA kernel with aclnnops has been added in aclnn_ops.cpp.
Currently, the FA only supports the cases with FP16 KV tensors and NO logit softcap.
Since the aclnn interface for flash attention cannot support the logit softcap, we will only update the quantized version in the future.
Authors from Peking University: Bizhao Shi (bshi@pku.edu.cn), Yuxin Yang (yxyang@pku.edu.cn), Ruiyang Ma (ruiyang@stu.pku.edu.cn), and Guojie Luo (gluo@pku.edu.cn).
We would like to thank Tuo Dai, Shanni Li, and all of the project maintainers from Huawei Technologies Co., Ltd for their help during the code development and pull request.
## TODO
- Support more models and data types.

View File

@@ -63,6 +63,7 @@ cmake --build build --config Release
cmake --preset x64-windows-llvm-release
cmake --build build-x64-windows-llvm-release
```
- Curl usage is enabled by default and can be turned off with `-DLLAMA_CURL=OFF`. Otherwise you need to install development libraries for libcurl.
## BLAS Build

View File

@@ -107,7 +107,7 @@ You may want to pass in some different `ARGS`, depending on the MUSA environment
The defaults are:
- `MUSA_VERSION` set to `rc3.1.1`
- `MUSA_VERSION` set to `rc4.0.1`
The resulting images, are essentially the same as the non-MUSA images:

View File

@@ -2,7 +2,6 @@
[chat.h](../common/chat.h) (https://github.com/ggml-org/llama.cpp/pull/9639) adds support for [OpenAI-style function calling](https://platform.openai.com/docs/guides/function-calling) and is used in:
- `llama-server` when started w/ `--jinja` flag
- `llama-cli` (WIP: https://github.com/ggml-org/llama.cpp/pull/11556)
## Universal support w/ Native & Generic handlers
@@ -325,36 +324,65 @@ To get the official template from original HuggingFace repos, you can use [scrip
> [!TIP]
> If there is no official `tool_use` Jinja template, you may want to set `--chat-template chatml` to use a default that works with many models (YMMV!), or write your own (e.g. we provide a custom [llama-cpp-deepseek-r1.jinja](../models/templates/llama-cpp-deepseek-r1.jinja) for DeepSeek R1 distills)
> [!CAUTION]
> Beware of extreme KV quantizations (e.g. `-ctk q4_0`), they can substantially degrade the model's tool calling performance.
Test in CLI (or with any library / software that can use OpenAI-compatible API backends):
```bash
curl http://localhost:8080/v1/chat/completions -d '{
"model": "gpt-3.5-turbo",
"tools": [
{
"type":"function",
"function":{
"name":"python",
"description":"Runs code in an ipython interpreter and returns the result of the execution after 60 seconds.",
"parameters":{
"type":"object",
"properties":{
"code":{
"type":"string",
"description":"The code to run in the ipython interpreter."
"model": "gpt-3.5-turbo",
"tools": [
{
"type":"function",
"function":{
"name":"python",
"description":"Runs code in an ipython interpreter and returns the result of the execution after 60 seconds.",
"parameters":{
"type":"object",
"properties":{
"code":{
"type":"string",
"description":"The code to run in the ipython interpreter."
}
},
"required":["code"]
}
},
"required":["code"]
}
}
}
],
"messages": [
{
"role": "user",
"content": "Print a hello world message with python."
}
]
}
],
"messages": [
{
"role": "user",
"content": "Print a hello world message with python."
}
]
}'
curl http://localhost:8080/v1/chat/completions -d '{
"model": "gpt-3.5-turbo",
"messages": [
{"role": "system", "content": "You are a chatbot that uses tools/functions. Dont overthink things."},
{"role": "user", "content": "What is the weather in Istanbul?"}
],
"tools": [{
"type":"function",
"function":{
"name":"get_current_weather",
"description":"Get the current weather in a given location",
"parameters":{
"type":"object",
"properties":{
"location":{
"type":"string",
"description":"The city and country/state, e.g. `San Francisco, CA`, or `Paris, France`"
}
},
"required":["location"]
}
}
}]
}'
```

View File

@@ -4,7 +4,9 @@ llama.cpp supports multimodal input via `libmtmd`. Currently, there are 2 tools
- [llama-mtmd-cli](../tools/mtmd/README.md)
- [llama-server](../tools/server/README.md) via OpenAI-compatible `/chat/completions` API
To enable it, can use use one of the 2 methods below:
Currently, we support **image** and **audio** input. Audio is highly experimental and may have reduced quality.
To enable it, you can use one of the 2 methods below:
- Use `-hf` option with a supported model (see a list of pre-quantized model below)
- To load a model using `-hf` while disabling multimodal, use `--no-mmproj`
@@ -31,12 +33,14 @@ llama-server -hf ggml-org/gemma-3-4b-it-GGUF --no-mmproj-offload
## Pre-quantized models
These are ready-to-use models, most of them come with `Q4_K_M` quantization by default. They can be found at the Hugging Face page of the ggml-org: https://huggingface.co/ggml-org
These are ready-to-use models, most of them come with `Q4_K_M` quantization by default. They can be found at the Hugging Face page of the ggml-org: https://huggingface.co/collections/ggml-org/multimodal-ggufs-68244e01ff1f39e5bebeeedc
Replaces the `(tool_name)` with the name of binary you want to use. For example, `llama-mtmd-cli` or `llama-server`
NOTE: some models may require large context window, for example: `-c 8192`
**Vision models**:
```sh
# Gemma 3
(tool_name) -hf ggml-org/gemma-3-4b-it-GGUF
@@ -77,4 +81,29 @@ NOTE: some models may require large context window, for example: `-c 8192`
# Llama 4 Scout
(tool_name) -hf ggml-org/Llama-4-Scout-17B-16E-Instruct-GGUF
# Moondream2 20250414 version
(tool_name) -hf ggml-org/moondream2-20250414-GGUF
```
**Audio models**:
```sh
# Ultravox 0.5
(tool_name) -hf ggml-org/ultravox-v0_5-llama-3_2-1b-GGUF
(tool_name) -hf ggml-org/ultravox-v0_5-llama-3_1-8b-GGUF
# Qwen2-Audio and SeaLLM-Audio
# note: no pre-quantized GGUF this model, as they have very poor result
# ref: https://github.com/ggml-org/llama.cpp/pull/13760
```
**Mixed modalities**:
```sh
# Qwen2.5 Omni
# Capabilities: audio input, vision input
(tool_name) -hf ggml-org/Qwen2.5-Omni-3B-GGUF
(tool_name) -hf ggml-org/Qwen2.5-Omni-7B-GGUF
```

View File

@@ -41,8 +41,8 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
// run model
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
if (llama_encode(ctx, batch) < 0) {
LOG_ERR("%s : failed to encode\n", __func__);
if (llama_decode(ctx, batch) < 0) {
LOG_ERR("%s : failed to process\n", __func__);
}
for (int i = 0; i < batch.n_tokens; i++) {

View File

@@ -50,8 +50,6 @@ int main(int argc, char ** argv) {
const int N = 5; // n-gram size
const int G = 15; // max verification n-grams
const bool dump_kv_cache = params.dump_kv_cache;
// init llama.cpp
llama_backend_init();
llama_numa_init(params.numa);
@@ -152,9 +150,6 @@ int main(int argc, char ** argv) {
// here we keep adding new n-grams as we go
ngram_container ngrams_observed(llama_vocab_n_tokens(vocab), N, G);
// debug
struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, W + G + 1);
const auto t_dec_start = ggml_time_us();
// sample first token
@@ -172,12 +167,6 @@ int main(int argc, char ** argv) {
}
while (true) {
// debug
if (dump_kv_cache) {
llama_kv_cache_view_update(ctx, &kvc_view);
common_kv_cache_dump_view_seqs(kvc_view, 40);
}
// build the mask from https://lmsys.org/blog/2023-11-21-lookahead-decoding/
//
// Example for W = 5, N = 4, G = 2:
@@ -473,8 +462,6 @@ int main(int argc, char ** argv) {
common_sampler_free(smpl);
llama_kv_cache_view_free(&kvc_view);
llama_batch_free(batch);
llama_backend_free();

View File

@@ -24,8 +24,6 @@ int main(int argc, char ** argv){
// max. number of additional tokens to draft if match is found
const int n_draft = params.speculative.n_max;
const bool dump_kv_cache = params.dump_kv_cache;
// init llama.cpp
llama_backend_init();
llama_numa_init(params.numa);
@@ -110,18 +108,9 @@ int main(int argc, char ** argv){
llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, 1);
// debug
struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, 1);
const auto t_dec_start = ggml_time_us();
while (true) {
// debug
if (dump_kv_cache) {
llama_kv_cache_view_update(ctx, &kvc_view);
common_kv_cache_dump_view_seqs(kvc_view, 40);
}
// print current draft sequence
LOG_DBG("drafted %s\n", string_from(ctx, draft).c_str());

View File

@@ -4,7 +4,7 @@ Simplified simulation of serving incoming requests in parallel
## Example
Generate 128 client requests (`-ns 128`), simulating 8 concurrent clients (`-np 8`). The system prompt is shared (`-pps`), meaning that it is computed once at the start. The client requests consist of 10 junk questions (`-j 10`) followed by the actual question.
Generate 128 client requests (`-ns 128`), simulating 8 concurrent clients (`-np 8`). The system prompt is shared (`-pps`), meaning that it is computed once at the start. The client requests consist of up to 10 junk questions (`--junk 10`) followed by the actual question.
```bash
llama-parallel -m model.gguf -np 8 -ns 128 --top-k 1 -pps --junk 10 -c 16384

View File

@@ -158,7 +158,7 @@ int main(int argc, char ** argv) {
common_params params;
params.n_predict = 128;
params.n_junk = 0;
params.n_junk = 1;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PARALLEL)) {
return 1;
@@ -178,13 +178,11 @@ int main(int argc, char ** argv) {
// insert new requests as soon as the previous one is done
const bool cont_batching = params.cont_batching;
const bool dump_kv_cache = params.dump_kv_cache;
// is the system prompt shared in the cache
const bool is_sp_shared = params.is_pp_shared;
// extra text to insert in each client's prompt in order to make it larger
const int32_t n_junk = params.n_junk;
const int32_t n_junk = std::max(1, params.n_junk);
// init llama.cpp
llama_backend_init();
@@ -241,8 +239,6 @@ int main(int argc, char ** argv) {
int32_t n_total_gen = 0;
int32_t n_cache_miss = 0;
struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, n_clients);
const auto t_main_start = ggml_time_us();
LOG_INF("%s: Simulating parallel requests from clients:\n", __func__);
@@ -272,11 +268,6 @@ int main(int argc, char ** argv) {
LOG_INF("Processing requests ...\n\n");
while (true) {
if (dump_kv_cache) {
llama_kv_cache_view_update(ctx, &kvc_view);
common_kv_cache_dump_view_seqs(kvc_view, 40);
}
common_batch_clear(batch);
// decode any currently ongoing sequences
@@ -324,7 +315,10 @@ int main(int argc, char ** argv) {
} else {
client.prompt += k_system;
}
for (int i = 0; i < n_junk; ++i) {
const int n_junk_cur = rand() % n_junk;
for (int i = 0; i < n_junk_cur; ++i) {
const int r = rand() % k_questions.size();
client.prompt += "User:\n" + k_questions[r] + "\nAssistant:\n " + k_answers[r] + "\n";
}
@@ -349,7 +343,7 @@ int main(int argc, char ** argv) {
client.n_decoded = 0;
client.i_batch = batch.n_tokens - 1;
LOG_INF("\033[31mClient %3d, seq %4d, started decoding ...\033[0m\n", client.id, client.seq_id);
LOG_INF("\033[31mClient %3d, seq %4d, junk = %4d, started decoding ...\033[0m\n", client.id, client.seq_id, n_junk_cur);
g_seq_id += 1;
@@ -368,7 +362,9 @@ int main(int argc, char ** argv) {
// process in chunks of params.n_batch
int32_t n_batch = params.n_batch;
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
int32_t i_next = 0;
for (int32_t i = 0; i < batch.n_tokens; i = i_next) {
// experiment: process in powers of 2
//if (i + n_batch > (int32_t) batch.n_tokens && n_batch > 32) {
// n_batch /= 2;
@@ -376,7 +372,7 @@ int main(int argc, char ** argv) {
// continue;
//}
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
llama_batch batch_view = {
n_tokens,
@@ -396,19 +392,24 @@ int main(int argc, char ** argv) {
return 1;
}
LOG_ERR("%s : failed to decode the batch, retrying with n_batch = %d\n", __func__, n_batch / 2);
LOG_WRN("%s : failed to decode the batch, retrying with n_batch = %d\n", __func__, n_batch / 2);
n_cache_miss += 1;
// retry with half the batch size to try to find a free slot in the KV cache
n_batch /= 2;
i -= n_batch;
continue;
}
LOG_DBG("%s : decoded batch of %d tokens\n", __func__, n_tokens);
// move the head of the batch forward with the number of tokens we just processed
i_next = i + n_tokens;
// on successful decode, restore the original batch size
n_batch = params.n_batch;
for (auto & client : clients) {
if (client.i_batch < (int) i || client.i_batch >= (int) (i + n_tokens)) {
continue;

View File

@@ -133,9 +133,8 @@ int main(int argc, char ** argv) {
const int ib = i/n_batch - 1;
const int bd = n_batch_grp*(n_grp - 1);
llama_kv_self_seq_add (ctx, 0, n_past - n_batch, n_past, ib*bd);
llama_kv_self_seq_div (ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
llama_kv_self_update (ctx);
llama_kv_self_seq_add(ctx, 0, n_past - n_batch, n_past, ib*bd);
llama_kv_self_seq_div(ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
}
@@ -169,8 +168,6 @@ int main(int argc, char ** argv) {
llama_kv_self_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
llama_kv_self_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
//llama_kv_self_defrag (ctx);
llama_kv_self_update (ctx);
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
@@ -200,8 +197,6 @@ int main(int argc, char ** argv) {
llama_kv_self_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
llama_kv_self_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
//llama_kv_self_defrag (ctx);
llama_kv_self_update (ctx);
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
}

View File

@@ -81,14 +81,14 @@ static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & toke
}
}
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
static void batch_process(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_self_clear(ctx);
// run model
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
if (llama_decode(ctx, batch) < 0) {
LOG_ERR("%s : failed to decode\n", __func__);
LOG_ERR("%s : failed to process\n", __func__);
}
for (int i = 0; i < batch.n_tokens; i++) {
@@ -233,7 +233,7 @@ int main(int argc, char ** argv) {
// encode if at capacity
if (batch.n_tokens + n_toks > n_batch) {
float * out = emb + p * n_embd;
batch_decode(ctx, batch, out, s, n_embd);
batch_process(ctx, batch, out, s, n_embd);
common_batch_clear(batch);
p += s;
s = 0;
@@ -246,7 +246,7 @@ int main(int argc, char ** argv) {
// final batch
float * out = emb + p * n_embd;
batch_decode(ctx, batch, out, s, n_embd);
batch_process(ctx, batch, out, s, n_embd);
// save embeddings to chunks
for (int i = 0; i < n_chunks; i++) {
@@ -267,7 +267,7 @@ int main(int argc, char ** argv) {
batch_add_seq(query_batch, query_tokens, 0);
std::vector<float> query_emb(n_embd, 0);
batch_decode(ctx, query_batch, query_emb.data(), 1, n_embd);
batch_process(ctx, query_batch, query_emb.data(), 1, n_embd);
common_batch_clear(query_batch);

View File

@@ -98,7 +98,7 @@ int main(int argc, char ** argv) {
auto generate = [&](const std::string & prompt) {
std::string response;
const bool is_first = llama_kv_self_used_cells(ctx) == 0;
const bool is_first = llama_kv_self_seq_pos_max(ctx, 0) == 0;
// tokenize the prompt
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true);
@@ -113,7 +113,7 @@ int main(int argc, char ** argv) {
while (true) {
// check if we have enough space in the context to evaluate this batch
int n_ctx = llama_n_ctx(ctx);
int n_ctx_used = llama_kv_self_used_cells(ctx);
int n_ctx_used = llama_kv_self_seq_pos_max(ctx, 0);
if (n_ctx_used + batch.n_tokens > n_ctx) {
printf("\033[0m\n");
fprintf(stderr, "context size exceeded\n");

View File

@@ -10,8 +10,8 @@ Proof of concept:
``` sh
export model_name=llama_3.2-1b && export quantization=f32
./build/bin/finetune --file wikitext-2-raw/wiki.test.raw -ngl 999 --model models/${model_name}-${quantization}.gguf -c 512 -b 512 -ub 512
./build/bin/perplexity --file wikitext-2-raw/wiki.test.raw -ngl 999 --model finetuned-model.gguf
./build/bin/llama-finetune --file wikitext-2-raw/wiki.test.raw -ngl 999 --model models/${model_name}-${quantization}.gguf -c 512 -b 512 -ub 512
./build/bin/llama-perplexity --file wikitext-2-raw/wiki.test.raw -ngl 999 --model finetuned-model.gguf
```
The perplexity value of the finetuned model should be lower after training on the test set for 2 epochs.

View File

@@ -129,6 +129,7 @@ option(GGML_LASX "ggml: enable lasx" ON)
option(GGML_LSX "ggml: enable lsx" ON)
option(GGML_RVV "ggml: enable rvv" ON)
option(GGML_RV_ZFH "ggml: enable riscv zfh" OFF)
option(GGML_XTHEADVECTOR "ggml: enable xtheadvector" OFF)
option(GGML_VXE "ggml: enable vxe" ON)
option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requires GGML_BACKEND_DL)" OFF)
@@ -176,7 +177,6 @@ option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks"
option(GGML_VULKAN_DEBUG "ggml: enable Vulkan debug output" OFF)
option(GGML_VULKAN_MEMORY_DEBUG "ggml: enable Vulkan memory debug output" OFF)
option(GGML_VULKAN_SHADER_DEBUG_INFO "ggml: enable Vulkan shader debug info" OFF)
option(GGML_VULKAN_PERF "ggml: enable Vulkan perf output" OFF)
option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation" OFF)
option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF)
option(GGML_KOMPUTE "ggml: use Kompute" OFF)

View File

@@ -24,3 +24,28 @@ function(ggml_get_flags CCID CCVER)
set(GF_C_FLAGS ${C_FLAGS} PARENT_SCOPE)
set(GF_CXX_FLAGS ${CXX_FLAGS} PARENT_SCOPE)
endfunction()
function(ggml_get_system_arch)
if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR
CMAKE_GENERATOR_PLATFORM_LWR STREQUAL "arm64" OR
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
CMAKE_SYSTEM_PROCESSOR MATCHES "^(aarch64|arm.*|ARM64)$"))
set(GGML_SYSTEM_ARCH "ARM" PARENT_SCOPE)
elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR
CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64|amd64)$"))
set(GGML_SYSTEM_ARCH "x86" PARENT_SCOPE)
elseif ("${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "ppc64le " OR
"${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "powerpc ")
set(GGML_SYSTEM_ARCH "PowerPC" PARENT_SCOPE)
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
set(GGML_SYSTEM_ARCH "loongarch64" PARENT_SCOPE)
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "riscv64")
set(GGML_SYSTEM_ARCH "riscv64" PARENT_SCOPE)
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "s390x")
set(GGML_SYSTEM_ARCH "s390x" PARENT_SCOPE)
else()
set(GGML_SYSTEM_ARCH "UNKNOWN" PARENT_SCOPE)
endif()
endfunction()

View File

@@ -536,6 +536,7 @@ extern "C" {
GGML_UNARY_OP_HARDSWISH,
GGML_UNARY_OP_HARDSIGMOID,
GGML_UNARY_OP_EXP,
GGML_UNARY_OP_GELU_ERF,
GGML_UNARY_OP_COUNT,
};
@@ -934,6 +935,15 @@ extern "C" {
struct ggml_tensor * a,
struct ggml_tensor * b);
// repeat a to the specified shape
GGML_API struct ggml_tensor * ggml_repeat_4d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3);
// sums repetitions in a into shape of b
GGML_API struct ggml_tensor * ggml_repeat_back(
struct ggml_context * ctx,
@@ -1024,6 +1034,16 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a);
// GELU using erf (error function) when possible
// some backends may fallback to approximation based on Abramowitz and Stegun formula
GGML_API struct ggml_tensor * ggml_gelu_erf(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_gelu_erf_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_gelu_quick(
struct ggml_context * ctx,
struct ggml_tensor * a);
@@ -2075,9 +2095,6 @@ extern "C" {
GGML_API struct ggml_tensor * ggml_graph_get_grad (const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
GGML_API struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
// print info and performance information for the graph
GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
@@ -2161,6 +2178,7 @@ extern "C" {
// scheduling priorities
enum ggml_sched_priority {
GGML_SCHED_PRIO_LOW = -1,
GGML_SCHED_PRIO_NORMAL,
GGML_SCHED_PRIO_MEDIUM,
GGML_SCHED_PRIO_HIGH,

View File

@@ -109,6 +109,8 @@ if (MSVC)
else ()
set(CMAKE_GENERATOR_PLATFORM_LWR "")
endif ()
ggml_get_system_arch()
message(STATUS "GGML_SYSTEM_ARCH: ${GGML_SYSTEM_ARCH}")
if (NOT MSVC)
if (GGML_STATIC)
@@ -194,6 +196,7 @@ add_library(ggml-base
../include/ggml-opt.h
../include/gguf.h
ggml.c
ggml.cpp
ggml-alloc.c
ggml-backend.cpp
ggml-opt.cpp
@@ -224,6 +227,7 @@ function(ggml_add_backend_library backend)
set_target_properties(${backend} PROPERTIES LIBRARY_OUTPUT_DIRECTORY ${CMAKE_RUNTIME_OUTPUT_DIRECTORY})
target_compile_definitions(${backend} PRIVATE GGML_BACKEND_DL)
add_dependencies(ggml ${backend})
install(TARGETS ${backend} LIBRARY DESTINATION ${CMAKE_INSTALL_BINDIR})
else()
add_library(${backend} ${ARGN})
target_link_libraries(ggml PUBLIC ${backend})
@@ -287,16 +291,20 @@ if (GGML_CPU_ALL_VARIANTS)
if (NOT GGML_BACKEND_DL)
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS requires GGML_BACKEND_DL")
endif()
ggml_add_cpu_backend_variant(x64)
ggml_add_cpu_backend_variant(sse42 SSE42)
ggml_add_cpu_backend_variant(sandybridge SSE42 AVX)
ggml_add_cpu_backend_variant(haswell SSE42 AVX F16C AVX2 BMI2 FMA)
ggml_add_cpu_backend_variant(skylakex SSE42 AVX F16C AVX2 BMI2 FMA AVX512)
ggml_add_cpu_backend_variant(icelake SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
ggml_add_cpu_backend_variant(alderlake SSE42 AVX F16C AVX2 BMI2 FMA AVX_VNNI)
if (NOT MSVC)
# MSVC doesn't support AMX
ggml_add_cpu_backend_variant(sapphirerapids SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
if (GGML_SYSTEM_ARCH STREQUAL "x86")
ggml_add_cpu_backend_variant(x64)
ggml_add_cpu_backend_variant(sse42 SSE42)
ggml_add_cpu_backend_variant(sandybridge SSE42 AVX)
ggml_add_cpu_backend_variant(haswell SSE42 AVX F16C AVX2 BMI2 FMA)
ggml_add_cpu_backend_variant(skylakex SSE42 AVX F16C AVX2 BMI2 FMA AVX512)
ggml_add_cpu_backend_variant(icelake SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
ggml_add_cpu_backend_variant(alderlake SSE42 AVX F16C AVX2 BMI2 FMA AVX_VNNI)
if (NOT MSVC)
# MSVC doesn't support AMX
ggml_add_cpu_backend_variant(sapphirerapids SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
endif()
else()
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS not yet supported on ${GGML_SYSTEM_ARCH}")
endif()
elseif (GGML_CPU)
ggml_add_cpu_backend_variant_impl("")

View File

@@ -1340,7 +1340,10 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
// allocate graph
if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
// the re-allocation may cause the split inputs to be moved to a different address
ggml_backend_sched_synchronize(sched);
// synchronize without ggml_backend_sched_synchronize to avoid changing cur_copy
for (int i = 0; i < sched->n_backends; i++) {
ggml_backend_synchronize(sched->backends[i]);
}
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
#endif
@@ -1564,7 +1567,6 @@ bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgra
ggml_backend_sched_split_graph(sched, graph);
if (!ggml_backend_sched_alloc_splits(sched)) {
return false;
}
@@ -1598,6 +1600,12 @@ void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
for (int i = 0; i < sched->n_backends; i++) {
ggml_backend_synchronize(sched->backends[i]);
}
if (!sched->is_alloc) {
// if the graph is not already allocated, always use copy 0 after a synchronization
// this ensures that during generation the same copy is used every time,
// which avoids changes in the graph that could cause CUDA or other graphs to be disabled
sched->cur_copy = 0;
}
}
void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {

View File

@@ -81,7 +81,7 @@ if (BLAS_FOUND)
target_link_libraries (ggml-blas PRIVATE ${BLAS_LIBRARIES})
target_include_directories(ggml-blas PRIVATE ${BLAS_INCLUDE_DIRS})
else()
message(ERROR "BLAS not found, please refer to "
"https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors"
" to set correct GGML_BLAS_VENDOR")
message(FATAL_ERROR "BLAS not found, please refer to "
"https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors"
" to set correct GGML_BLAS_VENDOR")
endif()

1
ggml/src/ggml-cann/CMakeLists.txt Normal file → Executable file
View File

@@ -30,6 +30,7 @@ string(TOLOWER ${SOC_TYPE} SOC_VERSION) # SOC_VERSION need lower
string(REGEX MATCH "[0-9]+[a-zA-Z]" SOC_TYPE_MAJOR_SN "${SOC_VERSION}")
set(SOC_TYPE_COMPILE_OPTION "ASCEND_${SOC_TYPE_MAJOR_SN}")
string(TOUPPER ${SOC_TYPE_COMPILE_OPTION} SOC_TYPE_COMPILE_OPTION)
message(STATUS "CANN: SOC_VERSION = ${SOC_VERSION}")
if (CANN_INSTALL_DIR)
# Only Support Linux.

0
ggml/src/ggml-cann/Doxyfile Normal file → Executable file
View File

2
ggml/src/ggml-cann/acl_tensor.cpp Normal file → Executable file
View File

@@ -31,6 +31,8 @@ aclDataType ggml_cann_type_mapping(ggml_type type) {
return ACL_FLOAT;
case GGML_TYPE_F16:
return ACL_FLOAT16;
case GGML_TYPE_BF16:
return ACL_BF16;
case GGML_TYPE_I8:
return ACL_INT8;
case GGML_TYPE_I16:

0
ggml/src/ggml-cann/acl_tensor.h Normal file → Executable file
View File

469
ggml/src/ggml-cann/aclnn_ops.cpp Normal file → Executable file
View File

@@ -66,6 +66,7 @@
#include <aclnnop/aclnn_gt_scalar.h>
#include <aclnnop/aclnn_pow.h>
#include <aclnnop/aclnn_grouped_matmul_v2.h>
#include <aclnnop/aclnn_fused_infer_attention_score_v2.h>
#include <float.h>
#include <cmath>
@@ -74,11 +75,13 @@
#include <vector>
#include "ggml-impl.h"
#include "ggml.h"
#define GGML_COMMON_DECL_C
#include "../ggml-common.h"
void bcast_shape(ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst, aclTensor ** acl_src0,
aclTensor ** acl_src1, aclTensor ** acl_dst) {
GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_can_repeat(src1, src0));
@@ -2697,14 +2700,10 @@ static void ggml_cann_mul_mat_id_fp(ggml_backend_cann_context& ctx, ggml_tensor*
}
}
// GroupedMatmulV2 required tensor_list.size < 128
size_t GROUP_SIZE = 128;
std::vector<std::vector<aclTensor*>> src0_tensor_vec_vec;
std::vector<std::vector<aclTensor*>> src1_tensor_vec_vec;
std::vector<std::vector<aclTensor*>> dst_tensor_vec_vec;
// split and call GroupedMatmulV2
// GroupedMatmulV2 required tensor_list.size < 128
for (size_t i = 0; i < src0_tensor_vec.size(); i += GROUP_SIZE) {
// split and call GroupedMatmulV2
size_t end = std::min(i + GROUP_SIZE, src0_tensor_vec.size());
std::vector<aclTensor*> src0_tensor_vec_split(src0_tensor_vec.begin() + i, src0_tensor_vec.begin() + end);
std::vector<aclTensor*> src1_tensor_vec_split(src1_tensor_vec.begin() + i, src1_tensor_vec.begin() + end);
@@ -2722,6 +2721,133 @@ static void ggml_cann_mul_mat_id_fp(ggml_backend_cann_context& ctx, ggml_tensor*
return;
}
/**
* @brief Performs expert-specific matrix multiplication (MoE) with
* quantized precision using the CANN backend.
*
* This function executes a matrix multiplication operation tailored for
* Mixture of Experts (MoE) models, where the input tensor is multiplied
* with expert-specific quantized weight matrices. It leverages the CANN
* backend to perform efficient low-precision computations and stores the
* quantized result in the destination tensor `dst`.
*
* Quantization techniques reduce memory footprint and improve performance
* by using lower-bit representations (e.g., int8) instead of floating-point.
* This function is designed to work with such formats and may incorporate
* optimizations like identity-based fast paths or routing masks for sparse
* expert selection.
*
* @param ctx The context for executing CANN backend operations.
* @param dst The destination tensor where the quantized MoE multiplication result
* will be stored.
*
* @note This function assumes quantized data types and is designed for
* MoE architectures with potential sparse expert routing.
*/
static void ggml_cann_mul_mat_id_quant(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
// TODO: Use aclnnGroupedMatMul
//dst [M, K, N, 1]
ggml_tensor * src0 = dst->src[0]; //src0 [D, M, A, 1]
ggml_tensor * src1 = dst->src[1]; //src1 [D, B, N, 1], B = K or B = 1
ggml_tensor * ids = dst->src[2]; //ids [K, N]
GGML_TENSOR_BINARY_OP_LOCALS
// copy index from npu to cpu
int64_t n_as = ne02; // A
int64_t n_ids = ids->ne[0]; // K
std::vector<char> ids_host(ggml_nbytes(ids));
ggml_cann_async_memcpy(ctx, ids_host.data(), ids->data, ggml_nbytes(ids),
ACL_MEMCPY_DEVICE_TO_HOST);
ACL_CHECK(aclrtSynchronizeStream(ctx.stream()));
char * src0_original = (char *) src0->data;
char * src1_original = (char *) src1->data;
char * dst_original = (char *) dst->data;
ggml_tensor src0_row = *src0;
ggml_tensor src1_row = *src1;
ggml_tensor dst_row = *dst;
const enum ggml_type type = dst->src[0]->type;
float weight_elem_size;
if (type == GGML_TYPE_Q4_0) {
weight_elem_size = float(sizeof(uint8_t)) / 2;
} else if (type == GGML_TYPE_Q8_0) {
weight_elem_size = float(sizeof(uint8_t));
} else {
GGML_ABORT("MUL_MAT_ID only support quant type Q4_0 and Q8_0 ");
}
// src0_row [D, M, 1, 1] weight without permute
src0_row.ne[2] = 1;
src0_row.ne[3] = 1;
src0_row.nb[0] = weight_elem_size;
src0_row.nb[1] = weight_elem_size * ne00;
src0_row.nb[2] = weight_elem_size * ne00;
src0_row.nb[3] = weight_elem_size * ne00;
size_t weight_stride = ne00 * ne01 * weight_elem_size;
size_t weight_size = weight_stride * ne02 * ne03;
// scale [D, M, 1, 1] -> scale && permute
size_t scale_elem_size = sizeof(uint16_t);
size_t scale_stride = src0->ne[1] * src0->ne[0] / QK8_0 * scale_elem_size;
// src1_row [D, 1, 1, 1] -> input
src1_row.ne[1] = 1;
src1_row.ne[2] = 1;
src1_row.ne[3] = 1;
src1_row.nb[2] = nb11;
src1_row.nb[3] = nb11;
// dst_row [M, 1, 1, 1] -> out
dst_row.ne[1] = 1;
dst_row.ne[2] = 1;
dst_row.ne[3] = 1;
dst_row.nb[2] = nb1;
dst_row.nb[3] = nb1;
//create weight for one row
ggml_cann_pool_alloc weight_allocator(ctx.pool());
void* weight_buffer = weight_allocator.alloc(nb02);
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
for (int64_t id = 0; id < n_ids; id++) {
// expert index
int32_t i02 = *(int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
GGML_ASSERT(i02 >= 0 && i02 < n_as);
// If B = 1 (broadcast), always use 0; otherwise, use id.
int64_t i11 = (ne11 == 1 ? 0 : id);
int64_t i12 = iid1;
int64_t i1 = id;
int64_t i2 = i12;
void* src0_tmp_ptr = src0_original + i02*weight_stride;
void* scale_tmp_ptr = src0_original + weight_size + i02*scale_stride;
void* src1_tmp_ptr = src1_original + i11*nb11 + i12*nb12;
void* dst_tmp_ptr = dst_original + i1*nb1 + i2*nb2;
// mem cpy
ggml_cann_async_memcpy(ctx, weight_buffer, src0_tmp_ptr, weight_stride,
ACL_MEMCPY_DEVICE_TO_DEVICE);
void* scale_buffer = (char*)weight_buffer + weight_stride;
ggml_cann_async_memcpy(ctx, scale_buffer, scale_tmp_ptr, scale_stride,
ACL_MEMCPY_DEVICE_TO_DEVICE);
src0_row.data = weight_buffer;
src1_row.data = src1_tmp_ptr;
dst_row.data = dst_tmp_ptr;
dst_row.src[0] = &src0_row;
dst_row.src[1] = &src1_row;
ggml_cann_mul_mat(ctx, &dst_row);
}
}
return;
}
void ggml_cann_mul_mat_id(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
const enum ggml_type type = dst->src[0]->type;
switch (type) {
@@ -2729,8 +2855,339 @@ void ggml_cann_mul_mat_id(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
case GGML_TYPE_F16:
ggml_cann_mul_mat_id_fp(ctx, dst);
break;
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q8_0:
ggml_cann_mul_mat_id_quant(ctx, dst);
break;
default:
GGML_ABORT("Unsupported type for mul_mat_id");
break;
}
}
void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst){
ggml_tensor* src0 = dst->src[0]; // q, fp32
ggml_tensor* src1 = dst->src[1]; // k, fp16
ggml_tensor* src2 = dst->src[2]; // v, fp16
ggml_tensor* src3 = dst->src[3]; // mask, fp16
float maxBias = 0.0f;
float scaleValue = 1.0f;
float logitSoftcap = 0.0f;
memcpy(&scaleValue, (float*)dst->op_params + 0, sizeof(float));
memcpy(&maxBias, (float*)dst->op_params + 1, sizeof(float));
memcpy(&logitSoftcap, (float*)dst->op_params + 2, sizeof(float));
if(logitSoftcap == 0.0f){
size_t faElemSize = sizeof(uint16_t);
auto faDataType = ACL_FLOAT16; //ACL_BF16;
aclTensor* acl_src0_f16_tensor = nullptr;
aclTensor* acl_src1_f16_tensor = nullptr;
aclTensor* acl_src2_f16_tensor = nullptr;
aclTensor* acl_dst_f16_tensor = nullptr;
// Step 1: cast the src0 (Query) to fp16 if needed
ggml_cann_pool_alloc src0_f16_allocator(ctx.pool());
void* src0_f16_buffer = nullptr;
if(ggml_cann_type_mapping(src0->type) != faDataType){
aclTensor* acl_src0_f32_tensor = ggml_cann_create_tensor(src0);
src0_f16_buffer = src0_f16_allocator.alloc(
ggml_nelements(src0) * faElemSize);
int64_t* src0_f16_ne = src0->ne;
size_t src0_f16_nb[GGML_MAX_DIMS];
src0_f16_nb[0] = sizeof(uint16_t);
for(int i = 1; i < GGML_MAX_DIMS; ++i){
src0_f16_nb[i] = src0_f16_nb[i - 1] * src0_f16_ne[i - 1];
}
acl_src0_f16_tensor = ggml_cann_create_tensor(
src0_f16_buffer, faDataType, faElemSize,
src0_f16_ne, src0_f16_nb, GGML_MAX_DIMS
);
aclnn_cast(ctx, acl_src0_f32_tensor, acl_src0_f16_tensor, faDataType);
ggml_cann_release_resources(ctx, acl_src0_f32_tensor);
}else{
acl_src0_f16_tensor = ggml_cann_create_tensor(src0);
}
// Step 2: create the acl tensors for src1 (Key), src2 (Value),
// and the direct output from FusedInferAttention
acl_src1_f16_tensor = ggml_cann_create_tensor(src1);
acl_src2_f16_tensor = ggml_cann_create_tensor(src2);
ggml_cann_pool_alloc out_f16_allocator(ctx.pool());
void* out_f16_buffer = out_f16_allocator.alloc(
ggml_nelements(dst) * faElemSize);
int64_t* out_f16_ne = src0->ne;
size_t out_f16_nb[GGML_MAX_DIMS];
out_f16_nb[0] = faElemSize;
for(int i = 1; i < GGML_MAX_DIMS; ++i){
out_f16_nb[i] = out_f16_nb[i - 1] * out_f16_ne[i - 1];
}
acl_dst_f16_tensor = ggml_cann_create_tensor(
out_f16_buffer, faDataType, faElemSize,
out_f16_ne, out_f16_nb, GGML_MAX_DIMS
);
// Step 3: create the PSEShift tensor if needed
// this tensor is considered as mask (f16) in the llama.cpp
aclTensor* bcast_pse_tensor = nullptr;
int64_t bcast_pse_ne[GGML_MAX_DIMS];
size_t bcast_pse_nb[GGML_MAX_DIMS];
ggml_cann_pool_alloc bcast_pse_allocator(ctx.pool());
void* bcast_pse_buffer = nullptr;
if(src3 != nullptr){
bcast_pse_buffer = bcast_pse_allocator.alloc(
ggml_nelements(src3) * src0->ne[2] * sizeof(uint16_t));
if(src0->ne[1] > 1){
// Case 1: broadcast pse for prefill stage with multiple head
aclTensor* acl_mask_f16_tensor = ggml_cann_create_tensor(src3);
bcast_pse_ne[0] = src3->ne[0];
bcast_pse_ne[1] = src3->ne[1];
bcast_pse_ne[2] = src0->ne[2];
bcast_pse_ne[3] = src3->ne[3];
bcast_pse_nb[0] = sizeof(uint16_t);
for(int i = 1; i < GGML_MAX_DIMS; ++i){
bcast_pse_nb[i] = bcast_pse_nb[i - 1] * bcast_pse_ne[i - 1];
}
bcast_pse_tensor = ggml_cann_create_tensor(
bcast_pse_buffer, ACL_FLOAT16, sizeof(uint16_t),
bcast_pse_ne, bcast_pse_nb, GGML_MAX_DIMS);
int64_t repeats[] = {1, src0->ne[2], 1, 1};
aclnn_repeat(ctx, acl_mask_f16_tensor, bcast_pse_tensor, repeats);
ggml_cann_release_resources(ctx, acl_mask_f16_tensor);
}else{
// Case 2: trunc the first row and broadcast pse for decode stage with multiple head
int64_t trunc_pse_ne[GGML_MAX_DIMS] = {src3->ne[0], src0->ne[1], src3->ne[2], src3->ne[3]};
size_t* trunc_pse_nb = src3->nb;
aclTensor* acl_mask_f16_trunc_tensor = ggml_cann_create_tensor(
src3->data, ACL_FLOAT16, sizeof(uint16_t),
trunc_pse_ne, trunc_pse_nb, GGML_MAX_DIMS);
bcast_pse_ne[0] = src3->ne[0];
bcast_pse_ne[1] = src0->ne[1];
bcast_pse_ne[2] = src0->ne[2];
bcast_pse_ne[3] = src3->ne[3];
bcast_pse_nb[0] = sizeof(uint16_t);
for(int i = 1; i < GGML_MAX_DIMS; ++i){
bcast_pse_nb[i] = bcast_pse_nb[i - 1] * bcast_pse_ne[i - 1];
}
bcast_pse_tensor = ggml_cann_create_tensor(
bcast_pse_buffer, ACL_FLOAT16, sizeof(uint16_t),
bcast_pse_ne, bcast_pse_nb, GGML_MAX_DIMS);
int64_t repeats[] = {1, src0->ne[2], 1, 1};
aclnn_repeat(ctx, acl_mask_f16_trunc_tensor, bcast_pse_tensor, repeats);
ggml_cann_release_resources(ctx, acl_mask_f16_trunc_tensor);
}
// Compute the slope if needed. Derived from ggml_cann_softmax().
if(maxBias != 0.0f){
// alibi
const int64_t ne2_ne3 = src0->ne[2] * src0->ne[3];
const int64_t n_head = src0->ne[2];
const int n_heads_log2_floor = 1u << (uint32_t)floor(log2(n_head));
float m0 = powf(2.0f, -(maxBias) / n_heads_log2_floor);
float m1 = powf(2.0f, -(maxBias / 2.0f) / n_heads_log2_floor);
// init arange
ggml_cann_pool_alloc arange_allocator(ctx.pool(),
ne2_ne3 * faElemSize);
void* tmp_arange_buffer = arange_allocator.get();
// arange1: [1, ..., n_heads_log2_floor+1)
float start = 1;
float stop = n_heads_log2_floor + 1;
float step = 1;
int64_t n_elements_arange = n_heads_log2_floor;
int64_t tmp_arange1_ne[] = {n_heads_log2_floor};
size_t tmp_arange1_nb[] = {faElemSize};
aclTensor* tmp_arange1_tensor = ggml_cann_create_tensor(
tmp_arange_buffer, faDataType, faElemSize,
tmp_arange1_ne, tmp_arange1_nb,
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclnn_arange(ctx, tmp_arange1_tensor, start, stop, step, n_elements_arange);
aclTensor* tmp_arange2_tensor = nullptr;
if (n_heads_log2_floor < ne2_ne3) {
// arange2: [1, ..., 2 * (k - n_heads_log2_floor) + 1)
start = 1;
stop = 2 * (ne2_ne3 - n_heads_log2_floor) + 1;
step = 2;
n_elements_arange = ne2_ne3 - n_heads_log2_floor;
int64_t tmp_arange2_ne[] = {ne2_ne3 - n_heads_log2_floor};
size_t tmp_arange2_nb[] = {faElemSize};
aclTensor* tmp_arange2_tensor = ggml_cann_create_tensor(
(char*)tmp_arange_buffer +
n_heads_log2_floor * faElemSize,
faDataType, faElemSize,
tmp_arange2_ne, tmp_arange2_nb, GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclnn_arange(ctx, tmp_arange2_tensor, start, stop, step,
n_elements_arange);
}
// init mk_base
ggml_cann_pool_alloc mk_base_allocator(ctx.pool(),
ne2_ne3 * faElemSize);
void* tmp_mk_base_buffer = mk_base_allocator.get();
int64_t tmp_mk_base1_ne[] = {n_heads_log2_floor};
size_t tmp_mk_base1_nb[] = {faElemSize};
aclTensor* tmp_mk_base1_tensor = ggml_cann_create_tensor(
tmp_mk_base_buffer, faDataType, faElemSize,
tmp_mk_base1_ne, tmp_mk_base1_nb,
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclnn_fill_scalar(ctx, m0, tmp_mk_base1_tensor);
aclTensor* tmp_mk_base2_tensor = nullptr;
if (n_heads_log2_floor < ne2_ne3) {
int64_t tmp_mk_base2_ne[] = {ne2_ne3 - n_heads_log2_floor};
size_t tmp_mk_base2_nb[] = {faElemSize};
aclTensor* tmp_mk_base2_tensor = ggml_cann_create_tensor(
(char*)tmp_mk_base_buffer +
n_heads_log2_floor * faElemSize,
faDataType, faElemSize,
tmp_mk_base2_ne, tmp_mk_base2_nb, GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclnn_fill_scalar(ctx, m1, tmp_mk_base2_tensor);
}
// init mk
int64_t tmp_mk_base_ne[] = {ne2_ne3};
size_t tmp_mk_base_nb[] = {faElemSize};
aclTensor* tmp_mk_base_tensor = ggml_cann_create_tensor(
tmp_mk_base_buffer, faDataType, faElemSize,
tmp_mk_base_ne, tmp_mk_base_nb,
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclTensor* tmp_arange_tensor = ggml_cann_create_tensor(
tmp_arange_buffer, faDataType, faElemSize,
tmp_mk_base_ne, tmp_mk_base_nb,
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclnn_pow_tensor_tensor(ctx, tmp_mk_base_tensor, tmp_arange_tensor);
// reshape mk
int64_t tmp_mk_ne[] = {1, 1, src0->ne[2], src0->ne[3]};
size_t tmp_mk_nb[GGML_MAX_DIMS];
tmp_mk_nb[0] = faElemSize;
for (int i = 1; i < GGML_MAX_DIMS; i++) {
tmp_mk_nb[i] = tmp_mk_nb[i - 1] * tmp_mk_ne[i - 1];
}
aclTensor* tmp_mk_tensor = ggml_cann_create_tensor(
tmp_mk_base_buffer, faDataType, faElemSize,
tmp_mk_ne, tmp_mk_nb, GGML_MAX_DIMS,
ACL_FORMAT_ND);
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceMul, bcast_pse_tensor, tmp_mk_tensor);
ggml_cann_release_resources(ctx, tmp_arange1_tensor, tmp_arange2_tensor,
tmp_mk_base1_tensor, tmp_mk_base2_tensor, tmp_mk_base_tensor,
tmp_arange_tensor, tmp_mk_tensor);
}
}
// Step 4: set the inputs for FusedInferAttention.
int kvTensorNum = 1;
aclTensor* acl_q_tensor = acl_src0_f16_tensor;
aclTensor* acl_k_tensors[] = {acl_src1_f16_tensor};
aclTensor* acl_v_tensors[] = {acl_src2_f16_tensor};
auto acl_k_tensor_list = aclCreateTensorList(acl_k_tensors, kvTensorNum);
auto acl_v_tensor_list = aclCreateTensorList(acl_v_tensors, kvTensorNum);
int64_t numHeads = src0->ne[2]; // N
int64_t numKeyValueHeads = src1->ne[2];
// double scaleValue = 1 / sqrt(src0->ne[0]); // 1/sqrt(d)
int64_t preTokens = 65535;
int64_t nextTokens = 65535;
char layout[5] = {'B', 'N', 'S', 'D', 0};
int64_t sparseMode = 0;
int64_t innerPrecise = (src0->ne[1] == 1) ? 0 : 2;
int64_t blockSize = 0;
int64_t antiquantMode = 0;
bool softmaxLseFlag = false;
int64_t keyAntiquantMode = 0;
int64_t valueAntiquantMode = 0;
// Step 5: launch the FusedInferAttentionScoreV2 kernel.
// Refer to https://gitee.com/ascend/cann-ops-adv/blob/master/docs/FusedInferAttentionScoreV2.md
GGML_CANN_CALL_ACLNN_OP(ctx, FusedInferAttentionScoreV2,
acl_q_tensor, acl_k_tensor_list, acl_v_tensor_list, // q, k, v
bcast_pse_tensor, nullptr, // pse, mask
nullptr, nullptr, // actSeqLen, actSeqLenkv
nullptr, nullptr, // deqScale1, quantScale1
nullptr, nullptr, nullptr, // deqScale2, quantScale2, quantOffset2
nullptr, nullptr, // antiquantScale, antiquantOffset
nullptr, // blockTable
nullptr, nullptr, // qPadSize, kvPadSize
nullptr, nullptr, // kAntiquantScale, kAntiQuantOffset
nullptr, nullptr, // vAntiquantScale, vAntiQuantOffset
nullptr, nullptr, nullptr, // kSharedPrefix, vSharedPrefix, actSharedLen
numHeads, scaleValue, // heads, scaleValue
preTokens, nextTokens, // preTokens, nextTokens
layout, // inputLayout
numKeyValueHeads, // numKVHeads
sparseMode, innerPrecise, // sparseMode, innerPrecise
blockSize, antiquantMode, // blockSize, antiquantMode
softmaxLseFlag, // softmaxLseFlag
keyAntiquantMode, valueAntiquantMode, // keyAntiqMode, valueAntiqMode
acl_dst_f16_tensor, // attentionOut
nullptr // softmaxLse
);
// Step 6: post-processing, permute and cast to f32
int64_t new_dim[] = {0, 2, 1, 3};
aclTensor* acl_dst_tensor = ggml_cann_create_tensor(dst);
if(ggml_cann_type_mapping(dst->type) != faDataType){
ggml_cann_pool_alloc perm_out_f16_allocator(ctx.pool());
perm_out_f16_allocator.alloc(ggml_nelements(dst) * faElemSize);
void* perm_out_f16_buffer = perm_out_f16_allocator.get();
int64_t* perm_out_f16_ne = dst->ne;
size_t perm_out_f16_nb[GGML_MAX_DIMS];
perm_out_f16_nb[0] = faElemSize;
for(int i = 1; i < GGML_MAX_DIMS; ++i){
perm_out_f16_nb[i] = perm_out_f16_nb[i - 1] * perm_out_f16_ne[i - 1];
}
aclTensor* acl_perm_out_f16_tensor = ggml_cann_create_tensor(
perm_out_f16_buffer, faDataType, faElemSize,
perm_out_f16_ne, perm_out_f16_nb, GGML_MAX_DIMS);
aclnn_permute(ctx, acl_dst_f16_tensor, acl_perm_out_f16_tensor, new_dim, GGML_MAX_DIMS);
aclnn_cast(ctx,
acl_perm_out_f16_tensor, acl_dst_tensor, ggml_cann_type_mapping(dst->type));
ggml_cann_release_resources(ctx, acl_perm_out_f16_tensor);
}else{
// only need to permute
aclnn_permute(ctx, acl_dst_f16_tensor, acl_dst_tensor, new_dim, GGML_MAX_DIMS);
}
ggml_cann_release_resources(ctx, acl_src0_f16_tensor,
acl_src1_f16_tensor,
acl_src2_f16_tensor,
acl_dst_f16_tensor,
acl_dst_tensor);
if(src3 != nullptr){
ggml_cann_release_resources(ctx, bcast_pse_tensor);
}
}else{
GGML_ABORT("Function is not implemented.");
}
}

15
ggml/src/ggml-cann/aclnn_ops.h Normal file → Executable file
View File

@@ -714,6 +714,21 @@ void ggml_cann_count_equal(ggml_backend_cann_context& ctx, ggml_tensor* dst);
*/
void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Performs the Flash Attention extended operator using the CANN backend.
*
* @details This function implements the memory-efficient Flash Attention algorithm
* for computing scaled dot-product attention with hardware acceleration.
* The result is stored in the destination tensor `dst`.
*
* This operation is accelerated using the CANN backend to improve runtime performance.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the result will be stored.
* dst->op is expected to be `GGML_OP_FLASH_ATTN_EXT`.
*/
void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/*
* @brief A generic wrapper for ACL resources with custom deleter support.
*/

0
ggml/src/ggml-cann/common.h Normal file → Executable file
View File

45
ggml/src/ggml-cann/ggml-cann.cpp Normal file → Executable file
View File

@@ -36,6 +36,7 @@
#include "ggml-backend-impl.h"
#include "ggml-cann/aclnn_ops.h"
#include "ggml-cann/common.h"
#include "ggml.h"
#define GGML_COMMON_DECL_C
@@ -1748,6 +1749,9 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
case GGML_OP_COUNT_EQUAL:
ggml_cann_count_equal(ctx, dst);
break;
case GGML_OP_FLASH_ATTN_EXT:
ggml_cann_flash_attn_ext(ctx, dst);
break;
default:
return false;
}
@@ -2035,6 +2039,15 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
case GGML_TYPE_F16:
case GGML_TYPE_F32:
return true;
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q4_0:
#ifdef ASCEND_310P
// Q4 && Q8 per group is not suppor on 310p device
return false;
#endif
// only support contiguous for quantized types.
return ggml_is_contiguous(op->src[0]) &&
ggml_is_contiguous(op->src[1]);
default:
return false;
}
@@ -2168,6 +2181,38 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
case GGML_OP_PAD_REFLECT_1D:
case GGML_OP_COUNT_EQUAL:
return true;
case GGML_OP_FLASH_ATTN_EXT:{
// derived from [ggml-cuda.cu]
if(op->src[1]->type != GGML_TYPE_F16 || op->src[2]->type != GGML_TYPE_F16){
return false;
}
if(op->src[1]->type != GGML_TYPE_F16 && op->src[1]->type != GGML_TYPE_F32 && op->src[1]->type != GGML_TYPE_BF16){
return false;
}
if(op->type != GGML_TYPE_F16 && op->type != GGML_TYPE_F32 && op->type != GGML_TYPE_BF16){
return false;
}
if (op->src[1]->ne[0] != op->src[2]->ne[0]) {
// different head sizes of K and V are not supported yet
return false;
}
if (op->src[0]->ne[0] == 192) {
return false;
}
if (op->src[0]->ne[0] == 576) {
// DeepSeek MLA
return false;
}
if (op->src[0]->ne[3] != 1) {
return false;
}
float logitSoftcap = 0.0f;
memcpy(&logitSoftcap, (float*)op->op_params + 2, sizeof(float));
if(logitSoftcap != 0.0f) {
return false;
}
return true;
}
default:
return false;
}

View File

@@ -82,13 +82,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
target_link_libraries(${GGML_CPU_NAME} PUBLIC memkind)
endif()
if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR
CMAKE_GENERATOR_PLATFORM_LWR STREQUAL "arm64" OR
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
CMAKE_SYSTEM_PROCESSOR MATCHES "^(aarch64|arm.*|ARM64)$"))
if (GGML_SYSTEM_ARCH STREQUAL "ARM")
message(STATUS "ARM detected")
if (MSVC AND NOT CMAKE_C_COMPILER_ID STREQUAL "Clang")
message(FATAL_ERROR "MSVC is not supported for ARM, use clang")
else()
@@ -170,12 +165,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
endforeach()
endif()
endif()
elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64|amd64)$"))
elseif (GGML_SYSTEM_ARCH STREQUAL "x86")
message(STATUS "x86 detected")
if (MSVC)
# instruction set detection for MSVC only
if (GGML_NATIVE)
@@ -299,7 +290,26 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
endif()
endif()
endif()
elseif ("${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "ppc64le " OR "${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "powerpc ")
if (GGML_BACKEND_DL)
if (GGML_NATIVE)
# the feature check relies on ARCH_DEFINITIONS, but it is not set with GGML_NATIVE
message(FATAL_ERROR "GGML_NATIVE is not compatible with GGML_BACKEND_DL, consider using GGML_CPU_ALL_VARIANTS")
endif()
# The feature detection code is compiled as a separate target so that
# it can be built without the architecture flags
# Since multiple variants of the CPU backend may be included in the same
# build, using set_source_files_properties() to set the arch flags is not possible
set(GGML_CPU_FEATS_NAME ${GGML_CPU_NAME}-feats)
add_library(${GGML_CPU_FEATS_NAME} OBJECT ggml-cpu/cpu-feats-x86.cpp)
target_include_directories(${GGML_CPU_FEATS_NAME} PRIVATE . .. ../include)
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE ${ARCH_DEFINITIONS})
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE GGML_BACKEND_DL GGML_BACKEND_BUILD GGML_BACKEND_SHARED)
set_target_properties(${GGML_CPU_FEATS_NAME} PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_link_libraries(${GGML_CPU_NAME} PRIVATE ${GGML_CPU_FEATS_NAME})
endif()
elseif (GGML_SYSTEM_ARCH STREQUAL "PowerPC")
message(STATUS "PowerPC detected")
if (GGML_NATIVE)
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64")
@@ -308,7 +318,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
execute_process(COMMAND bash -c "prtconf |grep 'Implementation' | head -n 1" OUTPUT_VARIABLE POWER10_M)
endif()
string(REGEX MATCHALL "POWER *([0-9]+)" MATCHED_STRING "${POWER10_M}")
string(TOUPPER "${POWER10_M}" POWER10_M_UPPER)
string(REGEX MATCHALL "POWER *([0-9]+)" MATCHED_STRING "${POWER10_M_UPPER}")
string(REGEX REPLACE "POWER *([0-9]+)" "\\1" EXTRACTED_NUMBER "${MATCHED_STRING}")
if (EXTRACTED_NUMBER GREATER_EQUAL 10)
@@ -325,9 +336,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
list(APPEND ARCH_FLAGS -mcpu=${GGML_CPU_POWERPC_CPUTYPE})
endif()
endif()
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
elseif (GGML_SYSTEM_ARCH STREQUAL "loongarch64")
message(STATUS "loongarch64 detected")
list(APPEND ARCH_FLAGS -march=loongarch64)
if (GGML_LASX)
list(APPEND ARCH_FLAGS -mlasx)
@@ -335,16 +345,18 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
if (GGML_LSX)
list(APPEND ARCH_FLAGS -mlsx)
endif()
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "riscv64")
message(STATUS "RISC-V detected")
elseif (GGML_SYSTEM_ARCH STREQUAL "riscv64")
message(STATUS "riscv64 detected")
if (GGML_RVV)
if (GGML_RV_ZFH)
list(APPEND ARCH_FLAGS -march=rv64gcv_zfhmin -DGGML_RV_ZFH -mabi=lp64d)
if (GGML_XTHEADVECTOR)
list(APPEND ARCH_FLAGS -march=rv64gc_xtheadvector -mabi=lp64d)
elseif (GGML_RV_ZFH)
list(APPEND ARCH_FLAGS -march=rv64gcv_zfhmin -mabi=lp64d)
else()
list(APPEND ARCH_FLAGS -march=rv64gcv -mabi=lp64d)
endif()
endif()
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "s390x")
elseif (GGML_SYSTEM_ARCH STREQUAL "s390x")
message(STATUS "s390x detected")
file(READ "/proc/cpuinfo" CPUINFO_CONTENTS)
string(REGEX REPLACE "machine[ \t\r\n]*=[ \t\r\n]*([0-9]+)" "\\1" S390X_M ${CPUINFO_CONTENTS})
@@ -477,25 +489,6 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
target_compile_options(${GGML_CPU_NAME} PRIVATE ${ARCH_FLAGS})
target_compile_definitions(${GGML_CPU_NAME} PRIVATE ${ARCH_DEFINITIONS})
if (GGML_BACKEND_DL)
if (GGML_NATIVE)
# the feature check relies on ARCH_DEFINITIONS, but it is not set with GGML_NATIVE
message(FATAL_ERROR "GGML_NATIVE is not compatible with GGML_BACKEND_DL, consider using GGML_CPU_ALL_VARIANTS")
endif()
# The feature detection code is compiled as a separate target so that
# it can be built without the architecture flags
# Since multiple variants of the CPU backend may be included in the same
# build, using set_source_files_properties() to set the arch flags is not possible
set(GGML_CPU_FEATS_NAME ${GGML_CPU_NAME}-feats)
add_library(${GGML_CPU_FEATS_NAME} OBJECT ggml-cpu/cpu-feats-x86.cpp)
target_include_directories(${GGML_CPU_FEATS_NAME} PRIVATE . .. ../include)
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE ${ARCH_DEFINITIONS})
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE GGML_BACKEND_DL GGML_BACKEND_BUILD GGML_BACKEND_SHARED)
set_target_properties(${GGML_CPU_FEATS_NAME} PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_link_libraries(${GGML_CPU_NAME} PRIVATE ${GGML_CPU_FEATS_NAME})
endif()
if (EMSCRIPTEN)
set_target_properties(${GGML_CPU_NAME} PROPERTIES COMPILE_FLAGS "-msimd128")
endif()

View File

@@ -1191,7 +1191,7 @@ static void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, c
}
}
return;
#elif defined(__riscv_v_intrinsic)
#elif defined __riscv_v
if (__riscv_vlenb() >= QK4_0) {
const size_t vl = QK4_0;
@@ -3783,7 +3783,7 @@ static void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, c
}
return;
}
#elif defined(__riscv_v_intrinsic)
#elif defined __riscv_v
if (__riscv_vlenb() >= QK4_0) {
const size_t vl = QK4_0;

View File

@@ -320,21 +320,17 @@ inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b)
#ifdef __wasm_simd128__
#include <wasm_simd128.h>
#else
#endif
#ifdef __POWER9_VECTOR__
#include <altivec.h>
#else
#endif
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <intrin.h>
#else
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) || defined(__SSE__)
#if !defined(__riscv)
#elif defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) || defined(__SSE__)
#include <immintrin.h>
#endif
#endif
#endif
#endif
#endif
#ifdef __riscv_v_intrinsic
#include <riscv_vector.h>

View File

@@ -883,7 +883,7 @@ void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
_mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
#endif
}
#elif defined(__riscv_v_intrinsic)
#elif defined(__riscv_v)
size_t vl = QK8_0;
@@ -1221,7 +1221,7 @@ void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
_mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
#endif
}
#elif defined(__riscv_v_intrinsic)
#elif defined(__riscv_v)
size_t vl = QK8_1;
@@ -2384,7 +2384,7 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
}
sumf = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
#elif defined(__riscv_v_intrinsic)
#elif defined(__riscv_v)
size_t vl = qk / 2;
for (; ib < nb; ++ib) {
@@ -2774,7 +2774,7 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
}
sumf = hsum_float_8(acc) + summs;
#elif defined(__riscv_v_intrinsic)
#elif defined(__riscv_v)
size_t vl = qk / 2;
for (; ib < nb; ++ib) {
@@ -3121,7 +3121,7 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
}
sumf = hsum_float_8(acc);
#elif defined(__riscv_v_intrinsic)
#elif defined(__riscv_v)
size_t vl;
size_t vlenb = __riscv_vlenb();
@@ -3460,7 +3460,7 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
}
sumf = hsum_float_8(acc) + summs;
#elif defined(__riscv_v_intrinsic)
#elif defined(__riscv_v)
size_t vl;
size_t vlenb = __riscv_vlenb();
@@ -3897,7 +3897,7 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
}
sumf = hsum_float_8(accum);
#elif defined(__riscv_v_intrinsic)
#elif defined(__riscv_v)
size_t vl = qk;
for (; ib < nb; ++ib) {
@@ -5100,14 +5100,111 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = sumf;
#elif defined __riscv_v_intrinsic
#elif defined __riscv_xtheadvector
float sumf = 0;
uint8_t atmp[16];
for (int i = 0; i < nb; ++i) {
const uint8_t * q2 = x[i].qs;
const int8_t * q8 = y[i].qs;
const uint8_t * sc = x[i].scales;
const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
uint8_t *patmp = atmp;
int vsums;
int tmp;
__asm__ __volatile__(
"th.vsetvli zero, %[vl16], e8, m1\n\t"
"th.vmv.v.x v8, zero\n\t"
"th.vlb.v v1, (%[sc])\n\t"
"th.vand.vi v0, v1, 0xF\n\t"
"th.vsrl.vi v1, v1, 4\n\t"
"th.vsb.v v0, (%[scale])\n\t"
"th.vwaddu.vx v16, v1, zero\n\t"
"th.vsetvli zero, %[vl16], e16, m2\n\t"
"th.vlh.v v2, (%[bsums])\n\t"
"th.vwmul.vv v4, v16, v2\n\t"
"th.vsetvli zero, %[vl16], e32, m4\n\t"
"th.vredsum.vs v8, v4, v8\n\t"
"th.vmv.x.s %[vsums], v8"
: [tmp] "=&r" (tmp), [vsums] "=&r" (vsums)
: [sc] "r" (sc), [scale] "r" (atmp), [bsums] "r" (y[i].bsums)
, [vl16] "r" (16)
: "memory"
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
);
sumf += dmin * vsums;
int isum = 0;
for (int j = 0; j < QK_K/128; ++j) {
__asm__ __volatile__(
"th.vsetvli zero, %[vl32], e8, m2\n\t"
"th.vlb.v v0, (%[q2])\n\t"
"th.vsrl.vi v2, v0, 2\n\t"
"th.vsrl.vi v4, v0, 4\n\t"
"th.vsrl.vi v6, v0, 6\n\t"
"th.vand.vi v0, v0, 0x3\n\t"
"th.vand.vi v2, v2, 0x3\n\t"
"th.vand.vi v4, v4, 0x3\n\t"
"th.vsetvli zero, %[vl128], e8, m8\n\t"
"th.vlb.v v8, (%[q8])\n\t"
"th.vsetvli zero, %[vl64], e8, m4\n\t"
"th.vwmul.vv v16, v0, v8\n\t"
"th.vwmul.vv v24, v4, v12\n\t"
"th.vsetvli zero, %[vl16], e16, m2\n\t"
"th.vmv.v.x v0, zero\n\t"
"th.vwredsum.vs v10, v16, v0\n\t"
"th.vwredsum.vs v9, v18, v0\n\t"
"th.vwredsum.vs v8, v20, v0\n\t"
"th.vwredsum.vs v7, v22, v0\n\t"
"th.vwredsum.vs v11, v24, v0\n\t"
"th.vwredsum.vs v12, v26, v0\n\t"
"th.vwredsum.vs v13, v28, v0\n\t"
"th.vwredsum.vs v14, v30, v0\n\t"
"li %[tmp], 4\n\t"
"th.vsetvli zero, %[tmp], e32, m1\n\t"
"th.vslideup.vi v10, v9, 1\n\t"
"th.vslideup.vi v8, v7, 1\n\t"
"th.vslideup.vi v11, v12, 1\n\t"
"th.vslideup.vi v13, v14, 1\n\t"
"th.vslideup.vi v10, v8, 2\n\t"
"th.vslideup.vi v11, v13, 2\n\t"
"li %[tmp], 8\n\t"
"th.vsetvli zero, %[tmp], e32, m2\n\t"
"th.vlbu.v v12, (%[scale])\n\t"
"th.vmul.vv v10, v10, v12\n\t"
"th.vredsum.vs v0, v10, v0\n\t"
"th.vmv.x.s %[tmp], v0\n\t"
"add %[isum], %[isum], %[tmp]"
: [tmp] "=&r" (tmp), [isum] "+&r" (isum)
: [q2] "r" (q2), [scale] "r" (patmp), [q8] "r" (q8)
, [vl16] "r" (16), [vl32] "r" (32), [vl64] "r" (64), [vl128] "r" (128)
: "memory"
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
);
q2 += 32; q8 += 128; patmp += 8;
}
sumf += dall * isum;
}
*s = sumf;
#elif defined __riscv_v
float sumf = 0;
uint8_t atmp[16];
const int vector_length = __riscv_vlenb() * 8;
float sumf = 0;
uint8_t temp_01[32] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
uint8_t atmp[16];
switch (vector_length) {
case 256:
@@ -6137,14 +6234,141 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = sumf;
#elif defined __riscv_v_intrinsic
#elif defined __riscv_xtheadvector
uint32_t aux[3];
uint32_t utmp[4];
const int vector_length = __riscv_vlenb() * 8;
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * restrict q3 = x[i].qs;
const uint8_t * restrict qh = x[i].hmask;
const int8_t * restrict q8 = y[i].qs;
int8_t * scale = (int8_t *)utmp;
int tmp;
__asm__ __volatile__(
"li %[tmp], 12\n\t"
"th.vsetvli zero, %[tmp], e8, m1\n\t"
"th.vlb.v v0, (%[s6b])\n\t"
"th.vmv.v.v v2, v0\n\t"
"li %[tmp], 2\n\t"
"th.vsetvli zero, %[tmp], e64, m1\n\t"
"th.vmv.v.x v9, %[sh]\n\t"\
"th.vslidedown.vi v1, v0, 1\n\t"
"th.vslide1up.vx v8, v9, zero\n\t" // {0, 0, 4, 4}
"th.vslideup.vi v0, v2, 1\n\t" // {aux[0], aux[1], aux[0], aux[1]}
"li %[tmp], 4\n\t"
"th.vsetvli zero, %[tmp], e32, m1\n\t"
"th.vid.v v9\n\t"
"th.vmv.x.s %[tmp], v1\n\t"
"th.vsll.vi v9, v9, 1\n\t" // {0, 2, 4, 6}
"th.vmv.v.x v1, %[tmp]\n\t" // {aux[2], aux[2], aux[2], aux[2]}
"th.vsrl.vv v4, v1, v9\n\t"
"th.vsrl.vv v2, v0, v8\n\t"
"th.vand.vx v5, v4, %[kmask1]\n\t"
"th.vand.vx v3, v2, %[kmask2]\n\t"
"th.vsll.vi v6, v5, 4\n\t"
"th.vor.vv v7, v6, v3\n\t"
"li %[tmp], 16\n\t"
"th.vsetvli zero, %[tmp], e8, m1\n\t"
"th.vsub.vx v0, v7, %[c]\n\t"
"th.vsb.v v0, (%[scale])"
: [tmp] "=&r" (tmp)
: [sh] "r" (0x0000000400000004), [s6b] "r" (x[i].scales), [c] "r" (32)
, [scale] "r" (scale), [kmask1] "r" (kmask1), [kmask2] "r" (kmask2)
: "memory"
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
);
uint8_t m = 1;
int isum = 0;
for (int j = 0; j < QK_K; j += 128) {
__asm__ __volatile__(
// fixme: use v0p7 mask layout directly
"th.vsetvli zero, %[vl32], e8, m2\n\t"
"th.vlb.v v8, (%[q3])\n\t"
"th.vsrl.vi v10, v8, 2\n\t"
"th.vsrl.vi v12, v8, 4\n\t"
"th.vsrl.vi v14, v8, 6\n\t"
"th.vand.vi v8, v8, 3\n\t"
"th.vand.vi v10, v10, 3\n\t"
"th.vand.vi v12, v12, 3\n\t"
"th.vlb.v v2, (%[qh])\n\t"
"th.vand.vx v4, v2, %[m]\n\t"
"slli %[m], %[m], 1\n\t"
"th.vmseq.vx v0, v4, zero\n\t"
"th.vadd.vi v8, v8, -4, v0.t\n\t"
"th.vand.vx v4, v2, %[m]\n\t"
"slli %[m], %[m], 1\n\t"
"th.vmseq.vx v0, v4, zero\n\t"
"th.vadd.vi v10, v10, -4, v0.t\n\t"
"th.vand.vx v4, v2, %[m]\n\t"
"slli %[m], %[m], 1\n\t"
"th.vmseq.vx v0, v4, zero\n\t"
"th.vadd.vi v12, v12, -4, v0.t\n\t"
"th.vand.vx v4, v2, %[m]\n\t"
"slli %[m], %[m], 1\n\t"
"th.vmseq.vx v0, v4, zero\n\t"
"th.vadd.vi v14, v14, -4, v0.t\n\t"
"th.vsetvli zero, %[vl128], e8, m8\n\t"
"th.vlb.v v0, (%[q8])\n\t"
"th.vsetvli zero, %[vl64], e8, m4\n\t"
"th.vwmul.vv v16, v0, v8\n\t"
"th.vwmul.vv v24, v4, v12\n\t"
"li %[tmp], 16\n\t"
"th.vsetvli zero, %[tmp], e16, m2\n\t"
"th.vmv.v.x v0, zero\n\t"
"th.vwredsum.vs v10, v16, v0\n\t"
"th.vwredsum.vs v9, v18, v0\n\t"
"th.vwredsum.vs v8, v20, v0\n\t"
"th.vwredsum.vs v7, v22, v0\n\t"
"th.vwredsum.vs v11, v24, v0\n\t"
"th.vwredsum.vs v12, v26, v0\n\t"
"th.vwredsum.vs v13, v28, v0\n\t"
"th.vwredsum.vs v14, v30, v0\n\t"
"li %[tmp], 4\n\t"
"th.vsetvli zero, %[tmp], e32, m1\n\t"
"th.vslideup.vi v10, v9, 1\n\t"
"th.vslideup.vi v8, v7, 1\n\t"
"th.vslideup.vi v11, v12, 1\n\t"
"th.vslideup.vi v13, v14, 1\n\t"
"th.vslideup.vi v10, v8, 2\n\t"
"th.vslideup.vi v11, v13, 2\n\t"
"li %[tmp], 8\n\t"
"th.vsetvli zero, %[tmp], e32, m2\n\t"
"th.vlb.v v12, (%[scale])\n\t"
"th.vmul.vv v10, v10, v12\n\t"
"th.vredsum.vs v0, v10, v0\n\t"
"th.vmv.x.s %[tmp], v0\n\t"
"add %[isum], %[isum], %[tmp]"
: [tmp] "=&r" (tmp), [m] "+&r" (m), [isum] "+&r" (isum)
: [vl128] "r" (128), [vl64] "r" (64), [vl32] "r" (32)
, [q3] "r" (q3), [qh] "r" (qh), [scale] "r" (scale), [q8] "r" (q8)
: "memory"
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
);
q3 += 32; q8 += 128; scale += 8;
}
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
sumf += d * isum;
}
*s = sumf;
#elif defined __riscv_v
uint32_t utmp[4];
float sumf = 0;
uint32_t aux[3];
const int vector_length = __riscv_vlenb() * 8;
switch (vector_length) {
case 256:
for (int i = 0; i < nb; ++i) {
@@ -6331,7 +6555,7 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
"vslideup.vi v13, v14, 1\n\t"
"vslideup.vi v10, v8, 2\n\t"
"vslideup.vi v11, v13, 2\n\t"
"vsetivli zero, 8, e32, m2\n\t"\
"vsetivli zero, 8, e32, m2\n\t"
"vle8.v v15, (%[scale])\n\t"
"vsext.vf4 v12, v15\n\t"
"vmul.vv v10, v10, v12\n\t"
@@ -6771,7 +6995,11 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
assert(n % QK_K == 0);
#ifdef __ARM_FEATURE_MATMUL_INT8
assert((nrc == 2) || (nrc == 1));
#else
assert(nrc == 1);
#endif
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
@@ -6788,6 +7016,146 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
uint32_t utmp[4];
#if defined(__ARM_FEATURE_MATMUL_INT8)
if (nrc == 2) {
const block_q4_K * GGML_RESTRICT x0 = x;
const block_q4_K * GGML_RESTRICT x1 = (const block_q4_K *) ((const uint8_t *)vx + bx);
const block_q8_K * GGML_RESTRICT y0 = y;
const block_q8_K * GGML_RESTRICT y1 = (const block_q8_K *) ((const uint8_t *)vy + by);
const uint8x16_t m4b = vdupq_n_u8(0x0f);
float32x4_t vfsum = vdupq_n_f32(0.0f);
for (int i = 0; i < nb; ++i, ++x0, ++x1, ++y0, ++y1) {
const uint8_t * GGML_RESTRICT qx0 = x0->qs;
const uint8_t * GGML_RESTRICT qx1 = x1->qs;
const int8_t * GGML_RESTRICT qy0 = y0->qs;
const int8_t * GGML_RESTRICT qy1 = y1->qs;
// decode scales and mins
int8_t x0_scales[8], x1_scales[8];
int16x8_t x0_mins, x1_mins;
{
uint32_t scales_mins[3];
memcpy(scales_mins, x0->scales, 12);
const uint32_t mins_0_3 = scales_mins[1] & kmask1;
const uint32_t mins_4_7 = ((scales_mins[2] >> 4) & kmask2) | (((scales_mins[1] >> 6) & kmask3) << 4);
const uint32x2_t mins = {mins_0_3, mins_4_7};
x0_mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins)));
uint32_t scales[2];
scales[0] = scales_mins[0] & kmask1; // scales 0~3
scales[1] = (scales_mins[2] & kmask2) | (((scales_mins[0] >> 6) & kmask3) << 4); // scales 4~7
memcpy(x0_scales, scales, 8);
}
{
uint32_t scales_mins[3];
memcpy(scales_mins, x1->scales, 12);
const uint32_t mins_0_3 = scales_mins[1] & kmask1;
const uint32_t mins_4_7 = ((scales_mins[2] >> 4) & kmask2) | (((scales_mins[1] >> 6) & kmask3) << 4);
const uint32x2_t mins = {mins_0_3, mins_4_7};
x1_mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins)));
uint32_t scales[2];
scales[0] = scales_mins[0] & kmask1; // scales 0~3
scales[1] = (scales_mins[2] & kmask2) | (((scales_mins[0] >> 6) & kmask3) << 4); // scales 4~7
memcpy(x1_scales, scales, 8);
}
int32x4_t visum = {0};
// process 64 data points per iteration, totally 256 data points
for (int j = 0; j < QK_K / 64; ++j, qx0 += 32, qx1 += 32, qy0 += 64, qy1 += 64) {
const int8x16x4_t vy0 = vld1q_s8_x4(qy0);
const int8x16x4_t vy1 = vld1q_s8_x4(qy1);
int8x16_t vx0[4], vx1[4];
{
const uint8x16x2_t vv = vld1q_u8_x2(qx0);
vx0[0] = vreinterpretq_s8_u8(vandq_u8(vv.val[0], m4b));
vx0[1] = vreinterpretq_s8_u8(vandq_u8(vv.val[1], m4b));
vx0[2] = vreinterpretq_s8_u8(vshrq_n_u8(vv.val[0], 4));
vx0[3] = vreinterpretq_s8_u8(vshrq_n_u8(vv.val[1], 4));
}
{
const uint8x16x2_t vv = vld1q_u8_x2(qx1);
vx1[0] = vreinterpretq_s8_u8(vandq_u8(vv.val[0], m4b));
vx1[1] = vreinterpretq_s8_u8(vandq_u8(vv.val[1], m4b));
vx1[2] = vreinterpretq_s8_u8(vshrq_n_u8(vv.val[0], 4));
vx1[3] = vreinterpretq_s8_u8(vshrq_n_u8(vv.val[1], 4));
}
// process 32 data points (share same block scale) per iteration
for (int k = 0; k < 2; ++k) {
const int blk = j * 2 + k;
const int32x4_t block_scale = {
x0_scales[blk],
x0_scales[blk],
x1_scales[blk],
x1_scales[blk],
};
int32x4_t vr = {0};
for (int l = 0; l < 2; ++l) {
const int idx = k * 2 + l;
const int64x2_t vx0_s64 = vreinterpretq_s64_s8(vx0[idx]);
const int64x2_t vx1_s64 = vreinterpretq_s64_s8(vx1[idx]);
const int64x2_t vy0_s64 = vreinterpretq_s64_s8(vy0.val[idx]);
const int64x2_t vy1_s64 = vreinterpretq_s64_s8(vy1.val[idx]);
const int8x16_t vx_l = vreinterpretq_s8_s64(vzip1q_s64(vx0_s64, vx1_s64));
const int8x16_t vx_h = vreinterpretq_s8_s64(vzip2q_s64(vx0_s64, vx1_s64));
const int8x16_t vy_l = vreinterpretq_s8_s64(vzip1q_s64(vy0_s64, vy1_s64));
const int8x16_t vy_h = vreinterpretq_s8_s64(vzip2q_s64(vy0_s64, vy1_s64));
vr = vmmlaq_s32(vr, vx_l, vy_l);
vr = vmmlaq_s32(vr, vx_h, vy_h);
}
// apply block scale, will NOT overflow
// block_scale * sum_256(int4*int8) <= 2^(8+8+4+8) = 28 bits
visum = vmlaq_s32(visum, vr, block_scale);
}
}
// adjust bias, apply superblock scale
{
int32_t bias[4];
// no obvious uplift from sve sdot-16, just use neon mul add
const int16x8_t y0_sums = vpaddq_s16(vld1q_s16(y0->bsums), vld1q_s16(y0->bsums+8));
const int16x8_t y1_sums = vpaddq_s16(vld1q_s16(y1->bsums), vld1q_s16(y1->bsums+8));
bias[0] = vaddvq_s32(vaddq_s32(vmull_s16(vget_low_s16(y0_sums), vget_low_s16(x0_mins)),
vmull_s16(vget_high_s16(y0_sums), vget_high_s16(x0_mins))));
bias[1] = vaddvq_s32(vaddq_s32(vmull_s16(vget_low_s16(y1_sums), vget_low_s16(x0_mins)),
vmull_s16(vget_high_s16(y1_sums), vget_high_s16(x0_mins))));
bias[2] = vaddvq_s32(vaddq_s32(vmull_s16(vget_low_s16(y0_sums), vget_low_s16(x1_mins)),
vmull_s16(vget_high_s16(y0_sums), vget_high_s16(x1_mins))));
bias[3] = vaddvq_s32(vaddq_s32(vmull_s16(vget_low_s16(y1_sums), vget_low_s16(x1_mins)),
vmull_s16(vget_high_s16(y1_sums), vget_high_s16(x1_mins))));
const float32x4_t dmins = {
GGML_FP16_TO_FP32(x0->dmin) * y0->d,
GGML_FP16_TO_FP32(x0->dmin) * y1->d,
GGML_FP16_TO_FP32(x1->dmin) * y0->d,
GGML_FP16_TO_FP32(x1->dmin) * y1->d,
};
vfsum = vmlsq_f32(vfsum, vcvtq_f32_s32(vld1q_s32(bias)), dmins);
const float32x4_t superblock_scale = {
GGML_FP16_TO_FP32(x0->d) * y0->d,
GGML_FP16_TO_FP32(x0->d) * y1->d,
GGML_FP16_TO_FP32(x1->d) * y0->d,
GGML_FP16_TO_FP32(x1->d) * y1->d,
};
vfsum = vmlaq_f32(vfsum, vcvtq_f32_s32(visum), superblock_scale);
}
}
// vfsum = ABCD -> ACBD
// AC -> s, BD -> (s+bs)
vfsum = vzip1q_f32(vfsum, vextq_f32(vfsum, vfsum, 2));
vst1_f32(s, vget_low_f32 (vfsum));
vst1_f32(s + bs, vget_high_f32(vfsum));
return;
}
#endif
#ifdef __ARM_FEATURE_SVE
float sumf = 0;
for (int i = 0; i < nb; ++i) {
@@ -7180,14 +7548,130 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
#elif defined __riscv_v_intrinsic
#elif defined __riscv_xtheadvector
const uint8_t * scales = (const uint8_t*)&utmp[0];
const uint8_t * mins = (const uint8_t*)&utmp[2];
const int vector_length = __riscv_vlenb() * 8;
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
int tmp, tmp2, sumi;
__asm__ __volatile__(
"li %[t1], 12\n\t"
"th.vsetvli zero, %[t1], e8, m1\n\t"
"th.vlb.v v1, (%[s6b])\n\t" // {aux[0], aux[1], aux[2]}
"li %[t1], 4\n\t"
"th.vsetvli zero, %[t1], e32, m1\n\t"
"th.vslidedown.vi v2, v1, 2\n\t"
"th.vmv.v.v v3, v2\n\t"
"th.vslideup.vi v2, v3, 1\n\t" // {aux[2], aux[2]}
"li %[t1], 2\n\t"
"th.vsetvli zero, %[t1], e32, m1\n\t"
"th.vmv.v.i v4, 4\n\t"
"th.vand.vx v8, v1, %[kmask1]\n\t"
"th.vslide1up.vx v5, v4, zero\n\t" // {0, 4}
"th.vsrl.vi v6, v1, 6\n\t"
"th.vsrl.vv v7, v2, v5\n\t"
"th.vand.vx v0, v6, %[kmask3]\n\t"
"th.vand.vx v2, v7, %[kmask2]\n\t"
"th.vsll.vi v6, v0, 4\n\t"
"li %[t2], 8\n\t"
"addi %[t1], %[utmp], 4\n\t"
"th.vor.vv v1, v6, v2\n\t"
"th.vssw.v v8, (%[utmp]), %[t2]\n\t"
"th.vssw.v v1, (%[t1]), %[t2]\n\t"
"th.vsetvli zero, zero, e32, m2\n\t" // vl == 8
"th.vlw.v v2, (%[bsums])\n\t"
"th.vsetvli zero, %[t2], e16, m1\n\t"
"th.vnsrl.vi v0, v2, 0\n\t"
"th.vnsrl.vi v1, v2, 16\n\t"
"th.vadd.vv v2, v0, v1\n\t"
"th.vlbu.v v4, (%[mins])\n\t"
"th.vwmul.vv v6, v4, v2\n\t"
"th.vmv.v.x v0, zero\n\t"
"th.vsetvli zero, %[t2], e32, m2\n\t"
"th.vredsum.vs v0, v6, v0\n\t"
"th.vmv.x.s %[sumi], v0"
: [t1] "=&r" (tmp), [t2] "=&r" (tmp2), [sumi] "=&r" (sumi)
: [bsums] "r" (y[i].bsums), [mins] "r" (mins), [utmp] "r" (utmp)
, [s6b] "r" (x[i].scales), [kmask1] "r" (kmask1)
, [kmask2] "r" (kmask2), [kmask3] "r" (kmask3)
: "memory"
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
);
sumf -= dmin * sumi;
const uint8_t * restrict q4 = x[i].qs;
const int8_t * restrict q8 = y[i].qs;
sumi = 0;
const uint8_t * scale = scales;
for (int j = 0; j < QK_K/128; ++j) {
int vl128 = 128, vl64 = 64, vl32 = 32;
__asm__ __volatile__(
"th.vsetvli zero, %[vl128], e8, m8\n\t"
"th.vlb.v v8, (%[q8])\n\t"
"th.vsetvli zero, %[vl64], e8, m4\n\t"
"th.vlb.v v0, (%[q4])\n\t"
"th.vsrl.vi v4, v0, 4\n\t"
"th.vand.vi v0, v0, 0xF\n\t"
"th.vsetvli zero, %[vl32], e8, m2\n\t"
"th.vwmul.vv v28, v6, v14\n\t"
"th.vwmul.vv v20, v4, v10\n\t"
"th.vwmul.vv v24, v2, v12\n\t"
"th.vwmul.vv v16, v0, v8\n\t"
"li %[tmp], 4\n\t"
"th.vsetvli zero, %[tmp], e32, m1\n\t"
"th.vlbu.v v1, (%[scale])\n\t"
"th.vmv.v.x v0, zero\n\t"
"th.vsetvli zero, %[vl32], e16, m4\n\t"
"th.vwredsum.vs v6, v24, v0\n\t"
"th.vwredsum.vs v7, v28, v0\n\t"
"th.vwredsum.vs v4, v16, v0\n\t"
"th.vwredsum.vs v5, v20, v0\n\t"
"th.vsetvli zero, %[tmp], e32, m1\n\t"
"th.vslideup.vi v6, v7, 1\n\t"
"th.vslideup.vi v4, v5, 1\n\t"
"th.vslideup.vi v4, v6, 2\n\t"
"th.vmul.vv v8, v4, v1\n\t"
"th.vredsum.vs v0, v8, v0\n\t"
"th.vmv.x.s %[tmp], v0\n\t"
"add %[sumi], %[sumi], %[tmp]"
: [tmp] "=&r" (tmp), [sumi] "+&r" (sumi)
: [vl128] "r" (vl128), [vl64] "r" (vl64), [vl32] "r" (vl32)
, [q4] "r" (q4), [q8] "r" (q8), [scale] "r" (scale)
: "memory"
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
);
q4 += 64; q8 += 128; scale += 4;
}
sumf += d * sumi;
}
*s = sumf;
#elif defined __riscv_v
const uint8_t * scales = (const uint8_t*)&utmp[0];
const uint8_t * mins = (const uint8_t*)&utmp[2];
float sumf = 0;
const int vector_length = __riscv_vlenb() * 8;
switch (vector_length) {
case 256:
for (int i = 0; i < nb; ++i) {
@@ -8074,7 +8558,7 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = sumf;
#elif defined __riscv_v_intrinsic
#elif defined __riscv_v
const uint8_t * scales = (const uint8_t*)&utmp[0];
const uint8_t * mins = (const uint8_t*)&utmp[2];
@@ -9232,11 +9716,92 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
}
*s = sumf;
#elif defined __riscv_v_intrinsic
#elif defined __riscv_xtheadvector
const int vector_length = __riscv_vlenb() * 8;
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
const uint8_t * restrict q6 = x[i].ql;
const uint8_t * restrict qh = x[i].qh;
const int8_t * restrict q8 = y[i].qs;
const int8_t * restrict scale = x[i].scales;
int sum_t = 0;
int t0;
for (int j = 0; j < QK_K/128; ++j) {
__asm__ __volatile__(
"th.vsetvli zero, %[vl32], e8, m2\n\t" // vl == 32
"th.vlb.v v4, (%[qh])\n\t"
"th.vsll.vi v0, v4, 4\n\t"
"th.vsll.vi v2, v4, 2\n\t"
"th.vsrl.vi v6, v4, 2\n\t"
"th.vsetvli zero, %[vl64], e8, m4\n\t" // vl == 64
"th.vlb.v v8, (%[q6])\n\t"
"th.vsrl.vi v12, v8, 4\n\t"
"th.vand.vi v8, v8, 0xF\n\t"
"th.vsetvli zero, %[vl128], e8, m8\n\t" // vl == 128
"th.vand.vx v0, v0, %[mask]\n\t"
"th.vor.vv v8, v8, v0\n\t"
"th.vlb.v v0, (%[q8])\n\t"
"th.vsub.vx v8, v8, %[vl32]\n\t"
"th.vsetvli zero, %[vl64], e8, m4\n\t" // vl == 64
"th.vwmul.vv v16, v0, v8\n\t"
"th.vwmul.vv v24, v4, v12\n\t"
"li %[t0], 16\n\t"
"th.vsetvli zero, %[t0], e16, m2\n\t" // vl == 16
"th.vmv.v.x v0, zero\n\t"
"th.vwredsum.vs v10, v16, v0\n\t"
"th.vwredsum.vs v9, v18, v0\n\t"
"th.vwredsum.vs v8, v20, v0\n\t"
"th.vwredsum.vs v7, v22, v0\n\t"
"th.vwredsum.vs v11, v24, v0\n\t"
"th.vwredsum.vs v12, v26, v0\n\t"
"th.vwredsum.vs v13, v28, v0\n\t"
"th.vwredsum.vs v14, v30, v0\n\t"
"li %[t0], 4\n\t"
"th.vsetvli zero, %[t0], e32, m1\n\t" // vl == 4
"th.vslideup.vi v10, v9, 1\n\t"
"th.vslideup.vi v8, v7, 1\n\t"
"th.vslideup.vi v11, v12, 1\n\t"
"th.vslideup.vi v13, v14, 1\n\t"
"th.vslideup.vi v10, v8, 2\n\t"
"th.vslideup.vi v11, v13, 2\n\t"
"li %[t0], 8\n\t"
"th.vsetvli zero, %[t0], e32, m2\n\t" // vl == 8
"th.vlb.v v4, (%[scale])\n\t"
"th.vmul.vv v2, v4, v10\n\t"
"th.vredsum.vs v0, v2, v0\n\t"
"th.vmv.x.s %[t0], v0\n\t"
"add %[sumi], %[sumi], %[t0]"
: [sumi] "+&r" (sum_t), [t0] "=&r" (t0)
: [qh] "r" (qh), [q6] "r" (q6), [q8] "r" (q8), [scale] "r" (scale)
, [vl32] "r" (32), [vl64] "r" (64), [vl128] "r" (128)
, [mask] "r" (0x30)
: "memory"
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
);
q6 += 64; qh += 32; q8 += 128; scale += 8;
}
sumf += d * sum_t;
}
*s = sumf;
#elif defined __riscv_v
float sumf = 0;
const int vector_length = __riscv_vlenb() * 8;
switch (vector_length) {
case 256:
for (int i = 0; i < nb; ++i) {

View File

@@ -270,7 +270,11 @@ static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
.from_float = quantize_row_q4_K,
.vec_dot = ggml_vec_dot_q4_K_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
#if defined (__ARM_FEATURE_MATMUL_INT8)
.nrows = 2,
#else
.nrows = 1,
#endif
},
[GGML_TYPE_Q5_K] = {
.from_float = quantize_row_q5_K,
@@ -2202,6 +2206,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
} break;
case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_GELU_ERF:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_SILU:
{
@@ -2413,12 +2418,32 @@ static bool ggml_thread_apply_priority(int32_t prio) {
// This is up to the applications.
DWORD p = THREAD_PRIORITY_NORMAL;
switch (prio) {
case GGML_SCHED_PRIO_LOW: p = THREAD_PRIORITY_BELOW_NORMAL; break;
case GGML_SCHED_PRIO_NORMAL: p = THREAD_PRIORITY_NORMAL; break;
case GGML_SCHED_PRIO_MEDIUM: p = THREAD_PRIORITY_ABOVE_NORMAL; break;
case GGML_SCHED_PRIO_HIGH: p = THREAD_PRIORITY_HIGHEST; break;
case GGML_SCHED_PRIO_REALTIME: p = THREAD_PRIORITY_TIME_CRITICAL; break;
}
if (prio != GGML_SCHED_PRIO_LOW) {
// Tell Windows that this thread should not be throttled (needs its own CPU core).
// Newer Windows 11 versions aggresively park (offline) CPU cores and often place
// all our threads onto the first 4 cores which results in terrible performance with
// n_threads > 4
#if _WIN32_WINNT >= 0x0602
THREAD_POWER_THROTTLING_STATE t;
ZeroMemory(&t, sizeof(t));
t.Version = THREAD_POWER_THROTTLING_CURRENT_VERSION;
t.ControlMask = THREAD_POWER_THROTTLING_EXECUTION_SPEED;
t.StateMask = 0;
if (!SetThreadInformation(GetCurrentThread(), ThreadPowerThrottling, &t, sizeof(t))) {
GGML_LOG_DEBUG("failed to disable thread power throttling %d : (%d)\n", prio, (int) GetLastError());
return false;
}
#endif
}
if (prio == GGML_SCHED_PRIO_NORMAL) {
// Keep inherited policy/priority
return true;
@@ -2446,6 +2471,8 @@ static bool ggml_thread_apply_priority(int32_t prio) {
struct sched_param p;
int32_t policy = SCHED_OTHER;
switch (prio) {
// TODO: there seems to be no way to set lower prio on Apple platforms
case GGML_SCHED_PRIO_LOW: policy = SCHED_OTHER; p.sched_priority = 0; break;
case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
@@ -2502,6 +2529,7 @@ static bool ggml_thread_apply_priority(int32_t prio) {
struct sched_param p;
int32_t policy = SCHED_OTHER;
switch (prio) {
case GGML_SCHED_PRIO_LOW: policy = SCHED_BATCH; p.sched_priority = 0; break;
case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
@@ -3483,6 +3511,19 @@ void ggml_cpu_init(void) {
const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0);
#ifdef GGML_USE_OPENMP
//if (!getenv("OMP_WAIT_POLICY")) {
// // set the wait policy to active, so that OpenMP threads don't sleep
// putenv("OMP_WAIT_POLICY=active");
//}
if (!getenv("KMP_BLOCKTIME")) {
// set the time to wait before sleeping a thread
// this is less aggressive than setting the wait policy to active, but should achieve similar results in most cases
putenv("KMP_BLOCKTIME=200"); // 200ms
}
#endif
}
#if defined(__ARM_ARCH)

View File

@@ -2691,6 +2691,109 @@ static void ggml_compute_forward_gelu(
}
}
// ggml_compute_forward_gelu_erf
static void ggml_compute_forward_gelu_erf_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
assert(ggml_is_contiguous_1(src0));
assert(ggml_is_contiguous_1(dst));
assert(ggml_are_same_shape(src0, dst));
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_vec_gelu_erf_f32(nc,
(float *) ((char *) dst->data + i1*( dst->nb[1])),
(float *) ((char *) src0->data + i1*(src0->nb[1])));
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
GGML_UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}
static void ggml_compute_forward_gelu_erf_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
assert(ggml_is_contiguous_1(src0));
assert(ggml_is_contiguous_1(dst));
assert(ggml_are_same_shape(src0, dst));
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_vec_gelu_erf_f16(nc,
(ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
(ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
const float v = GGML_FP16_TO_FP32(x);
GGML_UNUSED(v);
assert(!isnan(v));
assert(!isinf(v));
}
#endif
}
}
static void ggml_compute_forward_gelu_erf(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_gelu_erf_f32(params, dst);
} break;
case GGML_TYPE_F16:
{
ggml_compute_forward_gelu_erf_f16(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_gelu_quick
static void ggml_compute_forward_gelu_quick_f32(
@@ -7530,39 +7633,83 @@ static void ggml_compute_forward_ssm_scan_f32(
const int ir1 = MIN(ir0 + dr, nr);
const int ir = ir1 - ir0;
for (int i3 = 0; i3 < n_s; ++i3) {
for (int i2 = 0; i2 < n_t; ++i2) {
const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
#ifdef __ARM_FEATURE_SVE
for (int i3 = 0; i3 < n_s; ++i3) {
for (int i2 = 0; i2 < n_t; ++i2) {
const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
// use the output as the source for the next token-wise iterations
if (i2 > 0) { s0 = s; }
// use the output as the source for the next token-wise iterations
if (i2 > 0) { s0 = s; }
// d_inner
for (int i1 = 0; i1 < ir; ++i1) {
// ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
float x_dt = x[i1] * dt_soft_plus;
float sumf = 0.0f;
// d_state
for (int i0 = 0; i0 < nc; ++i0) {
int i = i0 + i1*nc;
// state = prev_state * dA + dB * x
float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
// y = rowwise_dotprod(state, C)
sumf += state * C[i0];
s[i] = state;
// d_inner
for (int i1 = 0; i1 < ir; ++i1) {
float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
float x_dt = x[i1] * dt_soft_plus;
svfloat32_t vx_dt = GGML_F32_VEC_SET1(x_dt);
svfloat32_t vdt_soft_plus = GGML_F32_VEC_SET1(dt_soft_plus);
svfloat32_t r1_vector = GGML_F32_VEC_ZERO;
for (int64_t k = 0; k < nc; k += svcntw()) {
svfloat32_t vA = GGML_F32_VEC_LOAD(&A[i1*nc + k]);
svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k]);
svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k]);
svfloat32_t vs0 = GGML_F32_VEC_LOAD(&s0[i1*nc + k]);
svfloat32_t t1 = GGML_F32_VEC_MUL(vdt_soft_plus, vA);
t1 = exp_ps_sve(svptrue_b32(), t1);
svfloat32_t t2 = GGML_F32_VEC_MUL(vx_dt, vB);
vs0 = GGML_F32_VEC_FMA(vs0, t1, t2);
r1_vector = GGML_F32_VEC_ADD(GGML_F32_VEC_MUL(vs0, vC), r1_vector);
GGML_F32_VEC_STORE(&s[i1*nc + k], vs0);
}
y[i1] = GGML_F32xt_REDUCE_ONE(r1_vector);
}
y[i1] = sumf;
}
}
}
#else
for (int i3 = 0; i3 < n_s; ++i3) {
for (int i2 = 0; i2 < n_t; ++i2) {
const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
// use the output as the source for the next token-wise iterations
if (i2 > 0) { s0 = s; }
// d_inner
for (int i1 = 0; i1 < ir; ++i1) {
// ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
float x_dt = x[i1] * dt_soft_plus;
float sumf = 0.0f;
// d_state
for (int i0 = 0; i0 < nc; ++i0) {
int i = i0 + i1*nc;
// state = prev_state * dA + dB * x
float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
// y = rowwise_dotprod(state, C)
sumf += state * C[i0];
s[i] = state;
}
y[i1] = sumf;
}
}
}
#endif
}
void ggml_compute_forward_ssm_scan(
@@ -7749,6 +7896,10 @@ void ggml_compute_forward_unary(
{
ggml_compute_forward_gelu(params, dst);
} break;
case GGML_UNARY_OP_GELU_ERF:
{
ggml_compute_forward_gelu_erf(params, dst);
} break;
case GGML_UNARY_OP_GELU_QUICK:
{
ggml_compute_forward_gelu_quick(params, dst);
@@ -7963,6 +8114,14 @@ static void ggml_compute_forward_rwkv_wkv6_f32(
#define GGML_F32X_MUL GGML_F32x16_MUL
#define GGML_F32X_FMA GGML_F32x16_FMA
#define WKV_VECTOR_SIZE 16
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
#define GGML_F32X GGML_F32xt
#define GGML_F32X_SET1 GGML_F32xt_SET1
#define GGML_F32X_LOAD GGML_F32xt_LOAD
#define GGML_F32X_STORE GGML_F32xt_STORE
#define GGML_F32X_MUL GGML_F32xt_MUL
#define GGML_F32X_FMA GGML_F32xt_FMA
#define WKV_VECTOR_SIZE 8
#elif defined(__ARM_NEON) && defined(__aarch64__)
#define GGML_F32X GGML_F32x4
#define GGML_F32X_SET1 GGML_F32x4_SET1
@@ -7973,8 +8132,14 @@ static void ggml_compute_forward_rwkv_wkv6_f32(
#define WKV_VECTOR_SIZE 4
#endif
int wkv_vector_size;
#ifdef WKV_VECTOR_SIZE
const int64_t vec_count = head_size / WKV_VECTOR_SIZE;
#if defined(__ARM_FEATURE_SVE)
wkv_vector_size = svcntw();
#else
wkv_vector_size = WKV_VECTOR_SIZE;
#endif
const int64_t vec_count = head_size / wkv_vector_size;
for (int64_t t = 0; t < T; t++) {
size_t t_offset = t * t_stride;
@@ -8004,7 +8169,7 @@ static void ggml_compute_forward_rwkv_wkv6_f32(
GGML_F32X time_decay_vec = GGML_F32X_SET1(time_decay_val);
for (int64_t j = 0; j < vec_count; j++) {
size_t base_j = j * WKV_VECTOR_SIZE;
size_t base_j = j * wkv_vector_size;
size_t t_h_j_offset = t_h_offset + base_j;
size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
@@ -8029,7 +8194,7 @@ static void ggml_compute_forward_rwkv_wkv6_f32(
}
// Handle remaining elements, this will not be used.
for (int64_t j = vec_count * WKV_VECTOR_SIZE; j < head_size; j++) {
for (int64_t j = vec_count * wkv_vector_size; j < head_size; j++) {
size_t t_h_j_offset = t_h_offset + j;
size_t h_2d_i_j_offset = h_2d_i_offset + j;
float v_val = v[t_h_j_offset];
@@ -8165,6 +8330,14 @@ static void ggml_compute_forward_gla_f32(
#define GGML_F32X_MUL GGML_F32x16_MUL
#define GGML_F32X_FMA GGML_F32x16_FMA
#define GLA_VECTOR_SIZE 16
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
#define GGML_F32X GGML_F32xt
#define GGML_F32X_SET1 GGML_F32xt_SET1
#define GGML_F32X_LOAD GGML_F32xt_LOAD
#define GGML_F32X_STORE GGML_F32xt_STORE
#define GGML_F32X_MUL GGML_F32xt_MUL
#define GGML_F32X_FMA GGML_F32xt_FMA
#define GLA_VECTOR_SIZE 8
#elif defined(__ARM_NEON) && defined(__aarch64__)
#define GGML_F32X GGML_F32x4
#define GGML_F32X_SET1 GGML_F32x4_SET1
@@ -8175,8 +8348,14 @@ static void ggml_compute_forward_gla_f32(
#define GLA_VECTOR_SIZE 4
#endif
int gla_vector_size;
#ifdef GLA_VECTOR_SIZE
const int64_t vec_count = head_size / GLA_VECTOR_SIZE;
#if defined(__ARM_FEATURE_SVE)
gla_vector_size = svcntw();
#else
gla_vector_size = GLA_VECTOR_SIZE;
#endif
const int64_t vec_count = head_size / gla_vector_size;
for (int64_t t = 0; t < T; t++) {
size_t t_offset = t * t_stride;
@@ -8203,7 +8382,7 @@ static void ggml_compute_forward_gla_f32(
GGML_F32X g_vec = GGML_F32X_SET1(g_val);
for (int64_t j = 0; j < vec_count; j++) {
size_t base_j = j * GLA_VECTOR_SIZE;
size_t base_j = j * gla_vector_size;
size_t t_h_j_offset = t_h_offset + base_j;
size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
@@ -8227,7 +8406,7 @@ static void ggml_compute_forward_gla_f32(
}
// Handle remaining elements, this will not be used.
for (int64_t j = vec_count * GLA_VECTOR_SIZE; j < head_size; j++) {
for (int64_t j = vec_count * gla_vector_size; j < head_size; j++) {
size_t t_h_j_offset = t_h_offset + j;
size_t h_2d_i_j_offset = h_2d_i_offset + j;
float v_val = v[t_h_j_offset];
@@ -8336,83 +8515,126 @@ static void ggml_compute_forward_rwkv_wkv7_f32(
int64_t h_stride_2d = head_size * head_size;
#if defined(GGML_SIMD)
for (int64_t t = 0; t < T; t++) {
int64_t t_offset = t * t_stride;
int64_t state_offset = head_size * C * (t / (T / n_seqs));
float * state_cur = state + state_offset;
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
#if defined(__ARM_FEATURE_SVE)
// scalar Route to scalar implementation //TODO: Write SVE code
for (int64_t t = 0; t < T; t++) {
int64_t t_offset = t * t_stride;
int64_t state_offset = head_size * C * (t / (T / n_seqs));
float * state_cur = state + state_offset;
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
for (int64_t h = h_start; h < h_end; h++) {
int64_t h_offset = h * h_stride;
int64_t t_h_offset = t_offset + h_offset;
int64_t h_2d_offset = h * h_stride_2d;
for (int64_t h = h_start; h < h_end; h++) {
int64_t h_offset = h * h_stride;
int64_t t_h_offset = t_offset + h_offset;
int64_t h_2d_offset = h * h_stride_2d;
for (int64_t ii = 0; ii < head_size; ii++) {
int64_t t_h_i_offset = t_h_offset + ii;
int64_t h_2d_i_offset = h_2d_offset + ii * h_stride;
for (int64_t i = 0; i < head_size; i++) {
int64_t t_h_i_offset = t_h_offset + i;
int64_t h_2d_i_offset = h_2d_offset + i * h_stride;
GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]);
float v_val = v[t_h_i_offset];
float sa = 0;
{
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) {
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]);
ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]);
sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]);
}
float sa = 0, result = 0;
for (int64_t j = 0; j < head_size; j++) {
sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j];
}
GGML_F32_VEC_REDUCE(sa, sum);
}
GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa);
for (int64_t j = 0; j < head_size; j++) {
int64_t t_h_j_offset = t_h_offset + j;
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
int64_t j = 0;
GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
for (; j < head_size; j += GGML_F32_STEP) {
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR;
int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR;
GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]);
GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]);
GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]);
GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]);
k_vec = GGML_F32_VEC_MUL(v_vec, k_vec);
GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]);
// kv + s * decay + sa * b
state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec);
state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec);
GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec);
result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec);
float r_val = r[t_h_j_offset];
float w_val = w[t_h_j_offset];
float k_val = k[t_h_j_offset];
float b_val = b[t_h_j_offset];
float kv_val = v_val * k_val;
float prev_state_val = state_prev[h_2d_i_j_offset];
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
result += state_cur[h_2d_i_j_offset] * r_val;
}
}
GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec);
// There shouldn't be left-overs though.
for (; j < head_size; j++) {
int64_t t_h_j_offset = t_h_offset + j;
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
float r_val = r[t_h_j_offset];
float w_val = w[t_h_j_offset];
float k_val = k[t_h_j_offset];
float b_val = b[t_h_j_offset];
float kv_val = v[t_h_i_offset] * k_val;
float prev_state_val = state_prev[h_2d_i_j_offset];
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val;
dst_data[t_h_i_offset] = result;
}
}
}
}
#else
for (int64_t t = 0; t < T; t++) {
int64_t t_offset = t * t_stride;
int64_t state_offset = head_size * C * (t / (T / n_seqs));
float * state_cur = state + state_offset;
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
for (int64_t h = h_start; h < h_end; h++) {
int64_t h_offset = h * h_stride;
int64_t t_h_offset = t_offset + h_offset;
int64_t h_2d_offset = h * h_stride_2d;
for (int64_t ii = 0; ii < head_size; ii++) {
int64_t t_h_i_offset = t_h_offset + ii;
int64_t h_2d_i_offset = h_2d_offset + ii * h_stride;
GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]);
float sa = 0;
{
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) {
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]);
ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]);
sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]);
}
}
GGML_F32_VEC_REDUCE(sa, sum);
}
GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa);
int64_t j = 0;
GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
for (; j < head_size; j += GGML_F32_STEP) {
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR;
int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR;
GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]);
GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]);
GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]);
GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]);
k_vec = GGML_F32_VEC_MUL(v_vec, k_vec);
GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]);
// kv + s * decay + sa * b
state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec);
state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec);
GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec);
result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec);
}
}
GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec);
// There shouldn't be left-overs though.
for (; j < head_size; j++) {
int64_t t_h_j_offset = t_h_offset + j;
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
float r_val = r[t_h_j_offset];
float w_val = w[t_h_j_offset];
float k_val = k[t_h_j_offset];
float b_val = b[t_h_j_offset];
float kv_val = v[t_h_i_offset] * k_val;
float prev_state_val = state_prev[h_2d_i_j_offset];
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val;
}
}
}
}
#endif
#else
for (int64_t t = 0; t < T; t++) {
int64_t t_offset = t * t_stride;

View File

@@ -17,7 +17,123 @@
// number of elements to fit in a single register
//
#if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
#if defined(__ARM_FEATURE_SVE) && defined(__ARM_FEATURE_FMA)
#define GGML_SIMD
// F32 SVE
#define GGML_F32_EPR 8
#define DEFAULT_PG svptrue_b32()
#define GGML_F32xt svfloat32_t
#define GGML_F32xt_ZERO svdup_n_f32(0.0f)
#define GGML_F32xt_SET1(x) svdup_n_f32(x)
#define GGML_F32xt_LOAD_IMPL(pg, a, ...) svld1_f32(pg, a)
#define GGML_F32xt_LOAD(...) GGML_F32xt_LOAD_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_STORE_IMPL(pg,a,b) svst1_f32(pg, a, b)
#define GGML_F32xt_STORE(...) GGML_F32xt_STORE_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_FMA_IMPL(pg, a, b, c) svmad_f32_m(pg, a, b, c)
#define GGML_F32xt_FMA(...) GGML_F32xt_FMA_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_ADD_IMPL(pg, a, b) svadd_f32_m(pg, a, b)
#define GGML_F32xt_ADD(...) GGML_F32xt_ADD_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_MUL_IMPL(pg, a, b) svmul_f32_m(pg, a, b)
#define GGML_F32xt_MUL(...) GGML_F32xt_MUL_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_REDUCE_ONE_IMPL(pg, a) svaddv(pg, a)
#define GGML_F32xt_REDUCE_ONE(...) GGML_F32xt_REDUCE_ONE_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_REDUCE_IMPL(pg, res, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8) \
{ \
sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum2); \
sum3 = svadd_f32_m(DEFAULT_PG, sum3, sum4); \
sum5 = svadd_f32_m(DEFAULT_PG, sum5, sum6); \
sum7 = svadd_f32_m(DEFAULT_PG, sum7, sum8); \
sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum3); \
sum5 = svadd_f32_m(DEFAULT_PG, sum5, sum7); \
sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum5); \
(res) = (ggml_float) GGML_F32xt_REDUCE_ONE(sum1); \
}
#define GGML_F32xt_REDUCE(...) GGML_F32xt_REDUCE_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32_VEC GGML_F32xt
#define GGML_F32_VEC_ZERO GGML_F32xt_ZERO
#define GGML_F32_VEC_SET1 GGML_F32xt_SET1
#define GGML_F32_VEC_LOAD GGML_F32xt_LOAD
#define GGML_F32_VEC_STORE GGML_F32xt_STORE
#define GGML_F32_VEC_FMA GGML_F32xt_FMA
#define GGML_F32_VEC_ADD GGML_F32xt_ADD
#define GGML_F32_VEC_MUL GGML_F32xt_MUL
#define GGML_F32_VEC_REDUCE GGML_F32xt_REDUCE
// F16 NEON
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
#define GGML_F16_STEP 32
#define GGML_F16_EPR 8
#define GGML_F16x8 float16x8_t
#define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
#define GGML_F16x8_SET1(x) vdupq_n_f16(x)
#define GGML_F16x8_LOAD(x) vld1q_f16((const __fp16 *)(x))
#define GGML_F16x8_STORE vst1q_f16
#define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
#define GGML_F16x8_ADD vaddq_f16
#define GGML_F16x8_MUL vmulq_f16
#define GGML_F16x8_REDUCE(res, x) \
do { \
int offset = GGML_F16_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
} \
const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 ((x)[0])); \
const float32x4_t t1 = vcvt_f32_f16(vget_high_f16((x)[0])); \
(res) = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
} while (0)
#define GGML_F16_VEC GGML_F16x8
#define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
#define GGML_F16_VEC_SET1 GGML_F16x8_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((__fp16 *)(p), (r)[i])
#define GGML_F16_VEC_FMA GGML_F16x8_FMA
#define GGML_F16_VEC_ADD GGML_F16x8_ADD
#define GGML_F16_VEC_MUL GGML_F16x8_MUL
#define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
#else
// if FP16 vector arithmetic is not supported, we use FP32 instead
// and take advantage of the vcvt_ functions to convert to/from FP16
#define GGML_F16_STEP 16
#define GGML_F16_EPR 4
#define GGML_F32Cx4 float32x4_t
#define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
#define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
#define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const __fp16 *)(x)))
#define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
#define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
#define GGML_F32Cx4_ADD vaddq_f32
#define GGML_F32Cx4_MUL vmulq_f32
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
#define GGML_F16_VEC GGML_F32Cx4
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((__fp16 *)(p), r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
#endif
#elif defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
#define GGML_SIMD

View File

@@ -17,29 +17,98 @@ void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * G
#if defined(GGML_SIMD)
float sumf = 0.0f;
const int np = (n & ~(GGML_F32_STEP - 1));
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
#if defined(__ARM_FEATURE_SVE)
const int sve_register_length = ggml_cpu_get_sve_cnt() * 8;
const int ggml_f32_epr = sve_register_length / 32;//8;//svcntw(); // SVE128:4, SVE256:8, SVE512:16
const int ggml_f32_step = 8 * ggml_f32_epr; // choose 8 SVE registers
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
const int np = (n & ~(ggml_f32_step - 1));
svfloat32_t sum1 = svdup_n_f32(0.0f);
svfloat32_t sum2 = svdup_n_f32(0.0f);
svfloat32_t sum3 = svdup_n_f32(0.0f);
svfloat32_t sum4 = svdup_n_f32(0.0f);
svfloat32_t sum5 = svdup_n_f32(0.0f);
svfloat32_t sum6 = svdup_n_f32(0.0f);
svfloat32_t sum7 = svdup_n_f32(0.0f);
svfloat32_t sum8 = svdup_n_f32(0.0f);
svfloat32_t ax1,ax2,ax3,ax4,ax5,ax6,ax7,ax8;
svfloat32_t ay1,ay2,ay3,ay4,ay5,ay6,ay7,ay8;
for (int i = 0; i < np; i += ggml_f32_step) {
ax1 = GGML_F32_VEC_LOAD(x + i);
ay1 = GGML_F32_VEC_LOAD(y + i);
sum1 = GGML_F32_VEC_FMA(ax1, ay1, sum1);
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
ax2 = GGML_F32_VEC_LOAD(x + i + 1*ggml_f32_epr);
ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr);
sum2 = GGML_F32_VEC_FMA(ax2, ay2, sum2);
sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
ax3 = GGML_F32_VEC_LOAD(x + i + 2*ggml_f32_epr);
ay3 = GGML_F32_VEC_LOAD(y + i + 2*ggml_f32_epr);
sum3 = GGML_F32_VEC_FMA(ax3, ay3, sum3);
ax4 = GGML_F32_VEC_LOAD(x + i + 3*ggml_f32_epr);
ay4 = GGML_F32_VEC_LOAD(y + i + 3*ggml_f32_epr);
sum4 = GGML_F32_VEC_FMA(ax4, ay4, sum4);
ax5 = GGML_F32_VEC_LOAD(x + i + 4*ggml_f32_epr);
ay5 = GGML_F32_VEC_LOAD(y + i + 4*ggml_f32_epr);
sum5 = GGML_F32_VEC_FMA(ax5, ay5, sum5);
ax6 = GGML_F32_VEC_LOAD(x + i + 5*ggml_f32_epr);
ay6 = GGML_F32_VEC_LOAD(y + i + 5*ggml_f32_epr);
sum6 = GGML_F32_VEC_FMA(ax6, ay6, sum6);
ax7 = GGML_F32_VEC_LOAD(x + i + 6*ggml_f32_epr);
ay7 = GGML_F32_VEC_LOAD(y + i + 6*ggml_f32_epr);
sum7 = GGML_F32_VEC_FMA(ax7, ay7, sum7);
ax8 = GGML_F32_VEC_LOAD(x + i + 7*ggml_f32_epr);
ay8 = GGML_F32_VEC_LOAD(y + i + 7*ggml_f32_epr);
sum8 = GGML_F32_VEC_FMA(ax8, ay8, sum8);
}
}
// leftovers
// Since 8 unrolls are done in above loop, leftovers lie in range [0, ggml_f32_step] which is handled in below loop
const int np2 = (n & ~(ggml_f32_epr - 1));
for (int i = np; i < np2; i += ggml_f32_epr) {
ax1 = GGML_F32_VEC_LOAD(x + i);
ay1 = GGML_F32_VEC_LOAD(y + i);
sum1 = GGML_F32_VEC_FMA(ax1, ay1, sum1);
}
// maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only
if (np2 < n) {
svbool_t pg = svwhilelt_b32(np2, n);
ax1 = svld1_f32(pg, x + np2);
ay1 = svld1_f32(pg, y + np2);
sum1 = svmad_f32_m(pg, ax1, ay1, sum1);
}
// reduce sum1,sum2 to sum1
GGML_F32_VEC_REDUCE(sumf, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8);
#else
const int np = (n & ~(GGML_F32_STEP - 1));
// reduce sum0..sum3 to sum0
GGML_F32_VEC_REDUCE(sumf, sum);
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
// leftovers
for (int i = np; i < n; ++i) {
sumf += x[i]*y[i];
}
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
}
}
// reduce sum0..sum3 to sum0
GGML_F32_VEC_REDUCE(sumf, sum);
// leftovers
for (int i = np; i < n; ++i) {
sumf += x[i]*y[i];
}
#endif
#else
// scalar
ggml_float sumf = 0.0;

View File

@@ -5,6 +5,7 @@
#include "ggml-impl.h"
#include "simd-mappings.h"
#include "ggml.h"
#include "ggml-cpu.h"
#if defined(GGML_USE_ACCELERATE)
#include <Accelerate/Accelerate.h>
@@ -148,27 +149,108 @@ inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * GG
inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const float * GGML_RESTRICT x, const float v) {
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F32_STEP - 1));
#if defined(__ARM_FEATURE_SVE)
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
const int sve_register_length = ggml_cpu_get_sve_cnt() * 8;
const int ggml_f32_epr = sve_register_length / 32;//8;//svcntw(); // SVE128:4, SVE256:8, SVE512:16
const int ggml_f32_step = 8 * ggml_f32_epr; // choose 8 SVE registers
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
const int np = (n & ~(ggml_f32_step - 1));
svfloat32_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8;
svfloat32_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8;
for (int i = 0; i < np; i += ggml_f32_step) {
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
ax1 = GGML_F32_VEC_LOAD(x + i);
ay1 = GGML_F32_VEC_LOAD(y + i);
ay1 = GGML_F32_VEC_FMA(ax1, vx, ay1);
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
GGML_F32_VEC_STORE(y + i, ay1);
ax2 = GGML_F32_VEC_LOAD(x + i + 1*ggml_f32_epr);
ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr);
ay2 = GGML_F32_VEC_FMA(ax2, vx, ay2);
GGML_F32_VEC_STORE(y + i + 1*ggml_f32_epr, ay2);
ax3 = GGML_F32_VEC_LOAD(x + i + 2*ggml_f32_epr);
ay3 = GGML_F32_VEC_LOAD(y + i + 2*ggml_f32_epr);
ay3 = GGML_F32_VEC_FMA(ax3, vx, ay3);
GGML_F32_VEC_STORE(y + i + 2*ggml_f32_epr, ay3);
ax4 = GGML_F32_VEC_LOAD(x + i + 3*ggml_f32_epr);
ay4 = GGML_F32_VEC_LOAD(y + i + 3*ggml_f32_epr);
ay4 = GGML_F32_VEC_FMA(ax4, vx, ay4);
GGML_F32_VEC_STORE(y + i + 3*ggml_f32_epr, ay4);
ax5 = GGML_F32_VEC_LOAD(x + i + 4*ggml_f32_epr);
ay5 = GGML_F32_VEC_LOAD(y + i + 4*ggml_f32_epr);
ay5 = GGML_F32_VEC_FMA(ax5, vx, ay5);
GGML_F32_VEC_STORE(y + i + 4*ggml_f32_epr, ay5);
ax6 = GGML_F32_VEC_LOAD(x + i + 5*ggml_f32_epr);
ay6 = GGML_F32_VEC_LOAD(y + i + 5*ggml_f32_epr);
ay6 = GGML_F32_VEC_FMA(ax6, vx, ay6);
GGML_F32_VEC_STORE(y + i + 5*ggml_f32_epr, ay6);
ax7 = GGML_F32_VEC_LOAD(x + i + 6*ggml_f32_epr);
ay7 = GGML_F32_VEC_LOAD(y + i + 6*ggml_f32_epr);
ay7 = GGML_F32_VEC_FMA(ax7, vx, ay7);
GGML_F32_VEC_STORE(y + i + 6*ggml_f32_epr, ay7);
ax8 = GGML_F32_VEC_LOAD(x + i + 7*ggml_f32_epr);
ay8 = GGML_F32_VEC_LOAD(y + i + 7*ggml_f32_epr);
ay8 = GGML_F32_VEC_FMA(ax8, vx, ay8);
GGML_F32_VEC_STORE(y + i + 7*ggml_f32_epr, ay8);
}
}
// leftovers
// Since 8 unrolls are done in above loop, leftovers lie in range [0, ggml_f32_step] which is handled in below loop
const int np2 = (n & ~(ggml_f32_epr - 1));
for (int i = np; i < np2; i += ggml_f32_epr) {
ax1 = GGML_F32_VEC_LOAD(x + i);
ay1 = GGML_F32_VEC_LOAD(y + i);
ay1 = GGML_F32_VEC_FMA(ax1, vx, ay1);
// leftovers
for (int i = np; i < n; ++i) {
y[i] += x[i]*v;
}
GGML_F32_VEC_STORE(y + i, ay1);
}
// maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only
if (np2 < n) {
svbool_t pg =svwhilelt_b32(np2, n);
ax1 = svld1_f32(pg, x + np2);
ay1 = svld1_f32(pg, y + np2);
ay1 = svmad_f32_m(pg, ax1, vx, ay1);
svst1_f32(pg, y + np2, ay1);
}
#else
const int np = (n & ~(GGML_F32_STEP - 1));
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] += x[i]*v;
}
#endif
#else
// scalar
for (int i = 0; i < n; ++i) {
@@ -220,36 +302,45 @@ inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int
}
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F32_STEP - 1));
GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
vx[k] = GGML_F32_VEC_SET1(v[k][0]);
}
GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
#if defined(__ARM_FEATURE_SVE)
// scalar Route to scalar implementation //TODO: Write SVE code
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
for (int i = 0; i < n; ++i) {
y[i] += x[k][i]*v[k][0];
}
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
}
}
#else
const int np = (n & ~(GGML_F32_STEP - 1));
// leftovers
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
for (int i = np; i < n; ++i) {
y[i] += x[k][i]*v[k][0];
GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
vx[k] = GGML_F32_VEC_SET1(v[k][0]);
}
}
GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
}
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
}
}
// leftovers
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
for (int i = np; i < n; ++i) {
y[i] += x[k][i]*v[k][0];
}
}
#endif
#else
// scalar
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
@@ -265,25 +356,53 @@ inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
#if defined(GGML_USE_ACCELERATE)
vDSP_vsmul(y, 1, &v, y, 1, n);
#elif defined(GGML_SIMD)
const int np = (n & ~(GGML_F32_STEP - 1));
#if defined(__ARM_FEATURE_SVE)
const int sve_register_length = ggml_cpu_get_sve_cnt() * 8;
const int ggml_f32_epr = sve_register_length / 32;//8;//svcntw(); // SVE128:4, SVE256:8, SVE512:16
const int ggml_f32_step = 2 * ggml_f32_epr;
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
const int np = (n & ~(ggml_f32_step - 1));
svfloat32_t ay1;
svfloat32_t ay2;
for (int i = 0; i < np; i += ggml_f32_step) {
ay1 = GGML_F32_VEC_LOAD(y + i);
ay1 = GGML_F32_VEC_MUL(ay1, vx);
GGML_F32_VEC_STORE(y + i, ay1);
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr);
ay2 = GGML_F32_VEC_MUL(ay2, vx);
GGML_F32_VEC_STORE(y + i + 1*ggml_f32_epr, ay2);
}
}
// leftovers
// maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only
if (np < n) {
svbool_t pg = svwhilelt_b32(np, n);
ay1 = svld1_f32(pg, y + np);
ay1 = svmul_f32_m(pg, ay1, vx);
svst1_f32(pg, y + np, ay1);
}
#else
const int np = (n & ~(GGML_F32_STEP - 1));
// leftovers
for (int i = np; i < n; ++i) {
y[i] *= v;
}
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] *= v;
}
#endif
#else
// scalar
for (int i = 0; i < n; ++i) {
@@ -428,6 +547,7 @@ inline static void ggml_vec_exp_f16 (const int n, ggml_fp16_t * y, const ggml_fp
static const float GELU_COEF_A = 0.044715f;
static const float GELU_QUICK_COEF = -1.702f;
static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
static const float SQRT_2_INV = 0.70710678118654752440084436210484f;
inline static float ggml_gelu_f32(float x) {
return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
@@ -440,6 +560,14 @@ inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp
}
}
inline static void ggml_vec_gelu_erf_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
for (int i = 0; i < n; ++i) {
float xi = GGML_FP16_TO_FP32(x[i]);
float res = 0.5f*xi*(1.0f + erff(xi*SQRT_2_INV));
y[i] = GGML_FP32_TO_FP16(res);
}
}
#ifdef GGML_GELU_FP16
inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
uint16_t t;
@@ -463,6 +591,13 @@ inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
}
#endif
inline static void ggml_vec_gelu_erf_f32(const int n, float * y, const float * x) {
for (int i = 0; i < n; ++i) {
float xi = x[i];
y[i] = 0.5f*xi*(1.0f + erff(xi*SQRT_2_INV));
}
}
inline static float ggml_gelu_quick_f32(float x) {
return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
}
@@ -512,6 +647,42 @@ inline static ggml_fp16_t ggml_silu_f16(ggml_fp16_t x) {
#error "ref: https://github.com/ggml-org/llama.cpp/pull/7154#issuecomment-2143844461"
#endif
/* Below function was borrowed from the GitHub repository:
https://github.com/openvinotoolkit/openvino/blob/master/src/plugins/intel_cpu/src/nodes/kernels/scaled_attn/common.hpp */
#if defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
inline static svfloat32_t exp_ps_sve(svbool_t pg, svfloat32_t src) {
// Constants
const svfloat32_t log2_e = svdup_n_f32(1.4426950409f);
const svfloat32_t ln2 = svdup_n_f32(0.6931473921f);
const svfloat32_t half_ln2_sq = svdup_n_f32(0.2413862043f);
const svuint32_t not_mask17 = svdup_n_u32(~((1u << 17) - 1));
const svfloat32_t one = svdup_n_f32(1.0f);
const svfloat32_t inactive1 = svdup_n_f32(0.0f);
const svint32_t inactive2 = svdup_n_s32(0);
// Algorithm starts here
svfloat32_t t0 = svmul_f32_m(pg, src, log2_e); // y = x * log2(e)
svfloat32_t t1 = svrintm_f32_m(inactive1, pg, t0); // rount to int (float)
svint32_t t2 = svcvt_s32_f32_m(inactive2, pg, t1); // n
t1 = svsub_f32_m(pg, t0, t1); // a = y - floor(y)
t1 = svadd_f32_m(pg, t1, one); // b = a + 1
svuint32_t t3 = svlsr_n_u32_m(pg, svreinterpret_u32_f32(t1), 17); // v = b >> 17 (u32)
svfloat32_t t4 = svexpa_f32(t3); // c = fexpa(v)
t4 = svscale_f32_m(pg, t4, t2); // fexpa(v) * 2^(n)
// and_(t2.d, t1.d, not_mask17.d)
svfloat32_t t5 = svreinterpret_f32_u32(svand_u32_m(pg, svreinterpret_u32_f32(t1), not_mask17));
t5 = svsub_f32_m(pg, t1, t5); // z
t0 = svmla_f32_m(pg, ln2, t5, half_ln2_sq); // ln2 + half_ln2_sq * z
t0 = svmla_f32_m(pg, one, t5, t0); // 1 + (ln2 * z) + (half_ln2_sq * z * z)
t0 = svmul_f32_m(pg, t0, t4); // Final result
return t0;
}
#endif
#if defined(__ARM_NEON) && defined(__aarch64__)
// adapted from arm limited optimized routine

View File

@@ -168,7 +168,7 @@ void ggml_cuda_error(const char * stmt, const char * func, const char * file, in
#define CUBLAS_CHECK(err) CUDA_CHECK_GEN(err, CUBLAS_STATUS_SUCCESS, cublas_get_error_str)
#if !defined(GGML_USE_HIP)
#if !defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)
static const char * cu_get_error_str(CUresult err) {
const char * err_str;
cuGetErrorString(err, &err_str);
@@ -635,6 +635,7 @@ struct ggml_cuda_device_info {
int nsm; // number of streaming multiprocessors
size_t smpb; // max. shared memory per block
size_t smpbo; // max. shared memory per block (with opt-in)
bool integrated; // Device is integrated as opposed to discrete
bool vmm; // virtual memory support
size_t vmm_granularity; // granularity of virtual memory
size_t total_vram;

View File

@@ -1,5 +1,8 @@
#include "cpy.cuh"
#include "dequantize.cuh"
#ifdef GGML_USE_MUSA
#include "ggml-musa/mudnn.cuh"
#endif // GGML_USE_MUSA
typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
@@ -597,7 +600,14 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
#endif
if (src0->type == src1->type && ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
GGML_ASSERT(ggml_nbytes(src0) == ggml_nbytes(src1));
CUDA_CHECK(cudaMemcpyAsync(src1_ddc, src0_ddc, ggml_nbytes(src0), cudaMemcpyDeviceToDevice, main_stream));
#ifdef GGML_USE_MUSA
if (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16) {
CUDA_CHECK(mudnnMemcpyAsync(ctx, src1, src0));
} else
#endif // GGML_USE_MUSA
{
CUDA_CHECK(cudaMemcpyAsync(src1_ddc, src0_ddc, ggml_nbytes(src0), cudaMemcpyDeviceToDevice, main_stream));
}
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_BF16) {

View File

@@ -623,8 +623,8 @@ static __global__ void flash_attn_combine_results(
__builtin_assume(tid < D);
extern __shared__ float2 meta[];
if (tid < 2*parallel_blocks) {
((float *) meta)[threadIdx.x] = ((const float *)VKQ_meta) [blockIdx.z*(2*parallel_blocks) + tid];
for (int i = tid; i < 2*parallel_blocks; i += D) {
((float *) meta)[i] = ((const float *)VKQ_meta) [blockIdx.z*(2*parallel_blocks) + i];
}
__syncthreads();

View File

@@ -772,7 +772,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
GGML_UNUSED(stride_mask); GGML_UNUSED(jt); GGML_UNUSED(tile_K);
GGML_UNUSED(tile_V); GGML_UNUSED(tile_mask); GGML_UNUSED(Q_B);
GGML_UNUSED(VKQ_C); GGML_UNUSED(KQ_max); GGML_UNUSED(KQ_rowsum);
GGML_UNUSED(kb0);
GGML_UNUSED(kb0); GGML_UNUSED(tile_Q);
NO_DEVICE_CODE;
#endif // NEW_MMA_AVAILABLE
}
@@ -1246,7 +1246,7 @@ static __global__ void flash_attn_ext_f16(
NO_DEVICE_CODE;
return;
}
#endif __CUDA_ARCH__ == GGML_CUDA_CC_TURING
#endif // __CUDA_ARCH__ == GGML_CUDA_CC_TURING
static_assert(!mla || DKQ >= DV, "MLA needs DKQ >= DV");

View File

@@ -2,9 +2,9 @@
#include "fattn-common.cuh"
template<int D, int ncols, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#ifndef GGML_USE_HIP
__launch_bounds__(D, 1)
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#endif // GGML_USE_HIP
static __global__ void flash_attn_vec_ext_f16(
const char * __restrict__ Q,
const char * __restrict__ K,
@@ -48,6 +48,12 @@ static __global__ void flash_attn_vec_ext_f16(
NO_DEVICE_CODE;
return;
}
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
if (ncols > 1) {
NO_DEVICE_CODE;
return;
}
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
@@ -91,6 +97,13 @@ static __global__ void flash_attn_vec_ext_f16(
kqsum_shared[j][threadIdx.x] = 0.0f;
}
}
__shared__ half maskh_shared[ncols*D];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
maskh_shared[j*D + tid] = 0.0f;
}
__syncthreads();
// Convert Q to half2 (f16 K) or q8_1 (quantized K) and store in registers:
@@ -175,6 +188,36 @@ static __global__ void flash_attn_vec_ext_f16(
for (int k_VKQ_0 = blockIdx.y*D; k_VKQ_0 < ne11; k_VKQ_0 += gridDim.y*D) {
// Calculate KQ tile and keep track of new maximum KQ values:
if (mask) {
#pragma unroll
for (int j = 0; j < ncols; ++j) {
maskh_shared[j*D + tid] = slopeh*maskh[j*ne11 + k_VKQ_0 + tid];
}
__syncthreads();
// When using multiple parallel sequences in llama.cpp, some KV slices can be fully masked out.
// In such cases, skip the KV slice.
// On AMD __all_sync would not work correctly because it assumes a warp size of 64.
#ifndef GGML_USE_HIP
bool skip = true;
#pragma unroll
for (int j = 0; j < ncols; ++j) {
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
const float2 tmp = __half22float2(((const half2 *) maskh_shared)[j*(D/2) + i]);
skip = skip && isinf(tmp.x) && isinf(tmp.y);
}
}
if (__all_sync(0xFFFFFFFF, skip)) {
__syncthreads();
continue;
}
#endif // GGML_USE_HIP
}
// For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression,
// see https://github.com/ggerganov/llama.cpp/pull/7061 .
// Therefore this variable is defined twice but only used once (so that the compiler can optimize out the unused variable).
@@ -202,7 +245,7 @@ static __global__ void flash_attn_vec_ext_f16(
sum = logit_softcap*tanhf(sum);
}
sum += mask ? slopeh*maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
sum += maskh_shared[j*D + i_KQ];
if (ncols == 1) {
kqmax_new = ggml_cuda_hmax(kqmax_new, sum);
@@ -335,7 +378,9 @@ void ggml_cuda_flash_attn_ext_vec_f16_case(ggml_backend_cuda_context & ctx, ggml
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
if (Q->ne[1] == 1) {
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
if (Q->ne[1] == 1 || GGML_CUDA_CC_IS_NVIDIA(cc)) {
constexpr int cols_per_block = 1;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;

View File

@@ -2,9 +2,9 @@
#include "fattn-common.cuh"
template<int D, int ncols, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#ifndef GGML_USE_HIP
__launch_bounds__(D, 1)
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#endif // GGML_USE_HIP
static __global__ void flash_attn_vec_ext_f32(
const char * __restrict__ Q,
const char * __restrict__ K,
@@ -60,6 +60,12 @@ static __global__ void flash_attn_vec_ext_f32(
NO_DEVICE_CODE;
return;
}
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
if (ncols > 1) {
NO_DEVICE_CODE;
return;
}
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
@@ -104,6 +110,13 @@ static __global__ void flash_attn_vec_ext_f32(
kqsum_shared[j][threadIdx.x] = 0.0f;
}
}
__shared__ float maskf_shared[ncols*D];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
maskf_shared[j*D + tid] = 0.0f;
}
__syncthreads();
// Convert Q to float2 (f16 K) or q8_1 (quantized K) and store in registers:
@@ -181,6 +194,35 @@ static __global__ void flash_attn_vec_ext_f32(
for (int k_VKQ_0 = blockIdx.y*D; k_VKQ_0 < ne11; k_VKQ_0 += gridDim.y*D) {
// Calculate KQ tile and keep track of new maximum KQ values:
if (mask) {
#pragma unroll
for (int j = 0; j < ncols; ++j) {
maskf_shared[j*D + tid] = slope*__half2float(maskh[j*ne11 + k_VKQ_0 + tid]);
}
__syncthreads();
// When using multiple parallel sequences in llama.cpp, some KV slices can be fully masked out.
// In such cases, skip the KV slice.
// On AMD __all_sync would not work correctly because it assumes a warp size of 64.
#ifndef GGML_USE_HIP
bool skip = true;
#pragma unroll
for (int j = 0; j < ncols; ++j) {
#pragma unroll
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
skip = skip && isinf(maskf_shared[j*D + i]);
}
}
if (__all_sync(0xFFFFFFFF, skip)) {
__syncthreads();
continue;
}
#endif // GGML_USE_HIP
}
float kqmax_new_arr[ncols];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
@@ -204,7 +246,7 @@ static __global__ void flash_attn_vec_ext_f32(
sum = logit_softcap*tanhf(sum);
}
sum += mask ? slope*__half2float(maskh[j*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
sum += maskf_shared[j*D + i_KQ];
kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum);
@@ -326,7 +368,9 @@ void ggml_cuda_flash_attn_ext_vec_f32_case(ggml_backend_cuda_context & ctx, ggml
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
if (Q->ne[1] == 1) {
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
if (Q->ne[1] == 1 || GGML_CUDA_CC_IS_NVIDIA(cc)) {
constexpr int cols_per_block = 1;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;

View File

@@ -243,10 +243,10 @@ static ggml_cuda_device_info ggml_cuda_init() {
info.default_tensor_split[id] = total_vram;
total_vram += prop.totalGlobalMem;
info.devices[id].nsm = prop.multiProcessorCount;
info.devices[id].smpb = prop.sharedMemPerBlock;
info.devices[id].warp_size = prop.warpSize;
info.devices[id].integrated = prop.integrated;
info.devices[id].nsm = prop.multiProcessorCount;
info.devices[id].smpb = prop.sharedMemPerBlock;
info.devices[id].warp_size = prop.warpSize;
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
info.devices[id].smpbo = prop.sharedMemPerBlock;
@@ -1065,6 +1065,10 @@ static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_
GGML_UNUSED(buft);
}
static bool ggml_backend_buft_is_cuda_host(ggml_backend_buffer_type_t buft) {
return buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name;
}
static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
CUDA_CHECK(cudaFreeHost(buffer->context));
}
@@ -2192,6 +2196,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_UNARY_OP_SILU:
ggml_cuda_op_silu(ctx, dst);
break;
case GGML_UNARY_OP_GELU_ERF:
ggml_cuda_op_gelu_erf(ctx, dst);
break;
case GGML_UNARY_OP_GELU_QUICK:
ggml_cuda_op_gelu_quick(ctx, dst);
break;
@@ -2638,6 +2645,8 @@ static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) {
static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
bool & graph_evaluated_or_captured, bool & use_cuda_graph, bool & cuda_graph_update_required) {
// flag used to determine whether it is an integrated_gpu
const bool integrated = ggml_cuda_info().devices[cuda_ctx->device].integrated;
while (!graph_evaluated_or_captured) {
// Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph.
@@ -2656,7 +2665,7 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
if (node->src[j] != nullptr) {
assert(node->src[j]->buffer);
assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) ||
ggml_backend_buft_is_cuda_split(node->src[j]->buffer->buft));
ggml_backend_buft_is_cuda_split(node->src[j]->buffer->buft) || (integrated && ggml_backend_buft_is_cuda_host(node->src[j]->buffer->buft)));
}
}
#endif
@@ -2977,6 +2986,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_UNARY_OP_SIGMOID:
case GGML_UNARY_OP_HARDSIGMOID:
case GGML_UNARY_OP_HARDSWISH:
case GGML_UNARY_OP_GELU_ERF:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_EXP:
@@ -2990,9 +3000,12 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
{
struct ggml_tensor * a = op->src[0];
struct ggml_tensor * b = op->src[1];
// for small weight matrices the active device can end up without any rows, don't use row split in those cases
// this avoids some edge cases (and the performance would not be good anyways)
if (a->buffer && ggml_backend_buft_is_cuda_split(a->buffer->buft)) {
if (a->ne[2] > 1 || a->ne[3] > 1) {
return false;
}
// for small weight matrices the active device can end up without any rows, don't use row split in those cases
// this avoids some edge cases (and the performance would not be good anyways)
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) a->buffer->buft->context;
int64_t row_low;
int64_t row_high;
@@ -3259,7 +3272,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
}
static bool ggml_backend_cuda_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
return (ggml_backend_buft_is_cuda(buft) || ggml_backend_buft_is_cuda_split(buft)) && buft->device == dev;
ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *) dev->context;
const bool integrated = ggml_cuda_info().devices[dev_ctx->device].integrated;
return (((ggml_backend_buft_is_cuda(buft) || ggml_backend_buft_is_cuda_split(buft)) && buft->device == dev) || (integrated && ggml_backend_buft_is_cuda_host(buft)));
}
static int64_t get_op_batch_size(const ggml_tensor * op) {

View File

@@ -23,6 +23,12 @@ static __device__ __forceinline__ float op_gelu(float x) {
return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
}
static __device__ __forceinline__ float op_gelu_erf(float x) {
const float SQRT_2_INV = 0.70710678118654752440084436210484f;
return 0.5f*x*(1.0f + erff(x*SQRT_2_INV));
}
static __device__ __forceinline__ float op_gelu_quick(float x) {
const float GELU_QUICK_COEF = -1.702f;
@@ -134,6 +140,10 @@ void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary<op_gelu>(ctx, dst);
}
void ggml_cuda_op_gelu_erf(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary<op_gelu_erf>(ctx, dst);
}
void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary<op_gelu_quick>(ctx, dst);
}

View File

@@ -30,6 +30,8 @@ void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_silu_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_gelu_erf(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -32,6 +32,8 @@
extern "C" {
#endif
void ggml_print_backtrace(void);
#ifndef MIN
# define MIN(a, b) ((a) < (b) ? (a) : (b))
#endif
@@ -386,7 +388,7 @@ GGML_API void ggml_aligned_free(void * ptr, size_t size);
return r;
}
#elif defined(__riscv) && defined(GGML_RV_ZFH)
#elif defined(__riscv) && defined(__riscv_zfhmin)
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
float f;

View File

@@ -149,6 +149,8 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_SIGMOID,
GGML_METAL_KERNEL_TYPE_GELU,
GGML_METAL_KERNEL_TYPE_GELU_4,
GGML_METAL_KERNEL_TYPE_GELU_ERF,
GGML_METAL_KERNEL_TYPE_GELU_ERF_4,
GGML_METAL_KERNEL_TYPE_GELU_QUICK,
GGML_METAL_KERNEL_TYPE_GELU_QUICK_4,
GGML_METAL_KERNEL_TYPE_SILU,
@@ -1103,6 +1105,8 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIGMOID, sigmoid, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU, gelu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_4, gelu_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_ERF, gelu_erf, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_ERF_4, gelu_erf_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK, gelu_quick, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK_4, gelu_quick_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU, silu, true);
@@ -1613,6 +1617,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_SIGMOID:
case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_GELU_ERF:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_ELU:
@@ -2251,6 +2256,25 @@ static bool ggml_metal_encode_node(
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_GELU_ERF:
{
int64_t n = ggml_nelements(dst);
id<MTLComputePipelineState> pipeline = nil;
if (n % 4 == 0) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_ERF_4].pipeline;
n /= 4;
} else {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_ERF].pipeline;
}
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_GELU_QUICK:
{
int64_t n = ggml_nelements(dst);

View File

@@ -856,6 +856,7 @@ kernel void kernel_tanh(
constant float GELU_COEF_A = 0.044715f;
constant float GELU_QUICK_COEF = -1.702f;
constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
constant float SQRT_2_INV = 0.70710678118654752440084436210484f;
kernel void kernel_gelu(
device const float * src0,
@@ -897,6 +898,42 @@ kernel void kernel_gelu_quick_4(
dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
}
// based on Abramowitz and Stegun formula 7.1.26 or similar Hastings' approximation
// ref: https://www.johndcook.com/blog/python_erf/
constant float p_erf = 0.3275911f;
constant float a1_erf = 0.254829592f;
constant float a2_erf = -0.284496736f;
constant float a3_erf = 1.421413741f;
constant float a4_erf = -1.453152027f;
constant float a5_erf = 1.061405429f;
template<typename T>
T erf_approx(T x) {
T sign_x = sign(x);
x = fabs(x);
T t = 1.0f / (1.0f + p_erf * x);
T y = 1.0f - (((((a5_erf * t + a4_erf) * t) + a3_erf) * t + a2_erf) * t + a1_erf) * t * exp(-x * x);
return sign_x * y;
}
kernel void kernel_gelu_erf(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
device const float & x = src0[tpig];
dst[tpig] = 0.5f*x*(1.0f+erf_approx<float>(x*SQRT_2_INV));
}
kernel void kernel_gelu_erf_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
device const float4 & x = src0[tpig];
dst[tpig] = 0.5f*x*(1.0f+erf_approx<float4>(x*SQRT_2_INV));
}
kernel void kernel_silu(
device const float * src0,
device float * dst,
@@ -3255,7 +3292,7 @@ template<
typename kd4x4_t, // key type in device memory
short nl_k,
void (*deq_k)(device const kd4x4_t *, short, thread k4x4_t &),
typename vd4x4_t, // key type in device memory
typename vd4x4_t, // value type in device memory
short nl_v,
void (*deq_v)(device const vd4x4_t *, short, thread v4x4_t &),
short DK, // K head size
@@ -3776,7 +3813,7 @@ template<
typename kd4_t, // key type in device memory
short nl_k,
void (*deq_k_t4)(device const kd4_t *, short, thread k4_t &),
typename vd4_t, // key type in device memory
typename vd4_t, // value type in device memory
short nl_v,
void (*deq_v_t4)(device const vd4_t *, short, thread v4_t &),
short DK, // K head size

View File

@@ -27,12 +27,15 @@ if (MUSAToolkit_FOUND)
file(GLOB GGML_HEADERS_MUSA "../ggml-cuda/*.cuh")
list(APPEND GGML_HEADERS_MUSA "../../include/ggml-cuda.h")
list(APPEND GGML_HEADERS_MUSA "../ggml-musa/mudnn.cuh")
file(GLOB GGML_SOURCES_MUSA "../ggml-cuda/*.cu")
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-mma*.cu")
list(APPEND GGML_SOURCES_MUSA ${SRCS})
file(GLOB SRCS "../ggml-cuda/template-instances/mmq*.cu")
list(APPEND GGML_SOURCES_MUSA ${SRCS})
file(GLOB SRCS "../ggml-musa/*.cu")
list(APPEND GGML_SOURCES_MUSA ${SRCS})
if (GGML_CUDA_FA_ALL_QUANTS)
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-vec*.cu")
@@ -62,7 +65,9 @@ if (MUSAToolkit_FOUND)
)
# TODO: do not use CUDA definitions for MUSA
target_compile_definitions(ggml PUBLIC GGML_USE_CUDA)
if (NOT GGML_BACKEND_DL)
target_compile_definitions(ggml PUBLIC GGML_USE_CUDA)
endif()
add_compile_definitions(GGML_USE_MUSA)
add_compile_definitions(GGML_CUDA_PEER_MAX_BATCH_SIZE=${GGML_CUDA_PEER_MAX_BATCH_SIZE})
@@ -92,9 +97,10 @@ if (MUSAToolkit_FOUND)
endif()
if (GGML_STATIC)
# TODO: mudnn has not provided static libraries yet
target_link_libraries(ggml-musa PRIVATE MUSA::musart_static MUSA::mublas_static)
else()
target_link_libraries(ggml-musa PRIVATE MUSA::musart MUSA::mublas)
target_link_libraries(ggml-musa PRIVATE MUSA::musart MUSA::mublas mudnn)
endif()
if (GGML_CUDA_NO_VMM)

112
ggml/src/ggml-musa/mudnn.cu Normal file
View File

@@ -0,0 +1,112 @@
#include <mutex>
#include <mudnn.h>
#include "mudnn.cuh"
namespace mudnn = musa::dnn;
// Returns a human-readable error string for mudnn::Status
const char* mudnnGetErrorString(mudnn::Status err) {
switch (err) {
case mudnn::Status::SUCCESS:
return "Success";
case mudnn::Status::INVALID_PARAMETER:
return "Invalid parameter";
case mudnn::Status::NOT_INITIALIZED:
return "Not initialized";
case mudnn::Status::ALLOC_FAILED:
return "Allocation failed";
case mudnn::Status::NOT_SUPPORTED:
return "Not supported";
case mudnn::Status::INTERNAL_ERROR:
return "Internal error";
case mudnn::Status::ARCH_MISMATCH:
return "Architecture mismatch";
case mudnn::Status::EXECUTION_FAILED:
return "Execution failed";
default:
return "Unknown mudnn status";
}
}
// Error checking macro for MUDNN calls
#define MUDNN_CHECK(err) CUDA_CHECK_GEN(err, mudnn::Status::SUCCESS, mudnnGetErrorString)
namespace {
// Thread-safe cache for mudnn::Handle objects per device
std::unordered_map<int, std::unique_ptr<mudnn::Handle>> handle_cache;
std::mutex handle_cache_mutex;
mudnn::Handle* get_cached_handle(int device_id) {
std::lock_guard<std::mutex> lock(handle_cache_mutex);
auto it = handle_cache.find(device_id);
if (it != handle_cache.end()) {
return it->second.get();
}
auto handle = std::make_unique<mudnn::Handle>(device_id);
mudnn::Handle* handle_ptr = handle.get();
handle_cache[device_id] = std::move(handle);
return handle_ptr;
}
}
// Extracts dimensions and strides from a ggml_tensor
int get_ggml_dims_and_strides(const ggml_tensor* tensor,
std::vector<int64_t>& dims,
std::vector<int64_t>& strides) {
const int ndims = ggml_n_dims(tensor);
const size_t element_size = ggml_element_size(tensor);
dims.resize(ndims);
strides.resize(ndims);
for (int i = 0; i < ndims; ++i) {
dims[i] = tensor->ne[i];
strides[i] = tensor->nb[i] / static_cast<int64_t>(element_size);
}
return ndims;
}
// Converts ggml_type to mudnn::Tensor::Type
mudnn::Tensor::Type ggml_type_to_mudnn_type(ggml_type type) {
switch (type) {
case GGML_TYPE_F32:
return mudnn::Tensor::Type::FLOAT;
case GGML_TYPE_F16:
return mudnn::Tensor::Type::HALF;
// TODO: Add support for other types
default:
MUDNN_CHECK(mudnn::Status::NOT_SUPPORTED);
}
return mudnn::Tensor::Type::FLOAT; // Default fallback
}
// Asynchronous memory copy using mudnn::Unary::IDENTITY
musaError_t mudnnMemcpyAsync(ggml_backend_cuda_context& ctx, const ggml_tensor* dst, const ggml_tensor* src) {
mudnn::Tensor tensor_dst, tensor_src;
MUDNN_CHECK(tensor_dst.SetType(ggml_type_to_mudnn_type(dst->type)));
MUDNN_CHECK(tensor_src.SetType(ggml_type_to_mudnn_type(src->type)));
std::vector<int64_t> dims, strides;
const int ndims = get_ggml_dims_and_strides(src, dims, strides);
MUDNN_CHECK(tensor_dst.SetNdInfo(ndims, dims.data(), strides.data()));
MUDNN_CHECK(tensor_src.SetNdInfo(ndims, dims.data(), strides.data()));
MUDNN_CHECK(tensor_dst.SetAddr(dst->data));
MUDNN_CHECK(tensor_src.SetAddr(src->data));
mudnn::Unary op;
MUDNN_CHECK(op.SetMode(mudnn::Unary::Mode::IDENTITY));
MUDNN_CHECK(op.SetAlpha(0.0f));
MUDNN_CHECK(op.SetBeta(0.0f));
mudnn::Handle* handle = get_cached_handle(ctx.device);
MUDNN_CHECK(handle->SetStream(ctx.stream()));
MUDNN_CHECK(op.Run(*handle, tensor_dst, tensor_src));
return musaSuccess;
}

View File

@@ -0,0 +1,12 @@
#pragma once
#include "../include/ggml.h"
#include "../ggml-cuda/common.cuh"
// Asynchronously copies data from src tensor to dst tensor using the provided context.
// Returns a musaError_t indicating success or failure.
musaError_t mudnnMemcpyAsync(
ggml_backend_cuda_context &ctx,
const ggml_tensor *dst,
const ggml_tensor *src
);

View File

@@ -55,14 +55,17 @@ endfunction()
set(GGML_OPENCL_KERNELS
add
argsort
clamp
cpy
cvt
diag_mask_inf
div
gelu
gemv_noshuffle_general
gemv_noshuffle
get_rows
group_norm
im2col_f32
im2col_f16
mul_mat_Ab_Bi_8x4
@@ -83,11 +86,14 @@ set(GGML_OPENCL_KERNELS
rms_norm
rope
scale
sigmoid
silu
softmax_4_f32
softmax_4_f16
softmax_f32
softmax_f16
sub
sum_rows
transpose
)

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,86 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#ifdef cl_intel_subgroups
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
#else
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
#endif
#ifdef cl_intel_required_subgroup_size
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
#define INTEL_GPU 1
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
#elif defined(cl_qcom_reqd_sub_group_size)
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#define ADRENO_GPU 1
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
#endif
#define SWAP(x, y, T) { T tmp = (x); (x) = (y); (y) = tmp; }
enum ggml_sort_order {
GGML_SORT_ORDER_ASC,
GGML_SORT_ORDER_DESC,
};
kernel void kernel_argsort_f32_i32(
global float * src0,
ulong offset0,
global int * dst,
ulong offsetd,
const int ne00,
const int ne00_pad,
const int order,
local int * dst_row
) {
// bitonic sort
int col = get_local_id(0);
int row = get_group_id(1);
if (col >= ne00_pad) {
return;
}
src0 = (global char *)((global char *)src0 + offset0);
dst = (global float *)((global char *)dst + offsetd);
global float * x_row = src0 + row * ne00;
// initialize indices
dst_row[col] = col;
barrier(CLK_LOCAL_MEM_FENCE);
for (int k = 2; k <= ne00_pad; k *= 2) {
for (int j = k / 2; j > 0; j /= 2) {
int ixj = col ^ j;
if (ixj > col) {
if ((col & k) == 0) {
if (dst_row[col] >= ne00 ||
(dst_row[ixj] < ne00 && (order == GGML_SORT_ORDER_ASC ?
x_row[dst_row[col]] > x_row[dst_row[ixj]] :
x_row[dst_row[col]] < x_row[dst_row[ixj]]))
) {
SWAP(dst_row[col], dst_row[ixj], int);
}
} else {
if (dst_row[ixj] >= ne00 ||
(dst_row[col] < ne00 && (order == GGML_SORT_ORDER_ASC ?
x_row[dst_row[col]] < x_row[dst_row[ixj]] :
x_row[dst_row[col]] > x_row[dst_row[ixj]]))
) {
SWAP(dst_row[col], dst_row[ixj], int);
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
}
}
// copy the result to dst without the padding
if (col < ne00) {
dst[row * ne00 + col] = dst_row[col];
}
}

View File

@@ -0,0 +1,72 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
//------------------------------------------------------------------------------
// div
//------------------------------------------------------------------------------
kernel void kernel_div(
global char * src0,
ulong offset0,
global char * src1,
ulong offset1,
global char * dst,
ulong offsetd,
ulong nb00,
ulong nb01,
ulong nb02,
ulong nb03,
int ne10,
int ne11,
int ne12,
int ne13,
ulong nb10,
ulong nb11,
ulong nb12,
ulong nb13,
int ne0,
ulong nb0,
ulong nb1,
ulong nb2,
ulong nb3
) {
src0 = src0 + offset0;
src1 = src1 + offset1;
dst = dst + offsetd;
int i03 = get_group_id(2);
int i02 = get_group_id(1);
int i01 = get_group_id(0);
int i13 = i03 % ne13;
int i12 = i02 % ne12;
int i11 = i01 % ne11;
global char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
global char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
global char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
const int i10 = i0 % ne10;
*((global float *)(dst_ptr + i0*nb0)) = *((global float *)(src0_ptr + i0*nb00)) / *((global float *)(src1_ptr + i10*nb10));
}
}
// assumption: src1 is a row
// broadcast src1 into src0
kernel void kernel_div_row(
global float4 * src0,
ulong offset0,
global float4 * src1,
ulong offset1,
global float4 * dst,
ulong offsetd,
int ne
) {
src0 = (global float4*)((global char*)src0 + offset0);
src1 = (global float4*)((global char*)src1 + offset1);
dst = (global float4*)((global char*)dst + offsetd);
// This performs better than using %.
uint gid = get_global_id(0);
uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne
dst[gid] = src0[gid] / src1[idx1];
}

View File

@@ -0,0 +1,72 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#ifdef cl_intel_subgroups
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
#else
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
#endif
#ifdef cl_intel_required_subgroup_size
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
#define INTEL_GPU 1
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
#elif defined(cl_qcom_reqd_sub_group_size)
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#define ADRENO_GPU 1
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
#endif
// Workgroup must be a subgroup
#ifdef INTEL_GPU
REQD_SUBGROUP_SIZE_32
#elif defined (ADRENO_GPU)
REQD_SUBGROUP_SIZE_64
#endif
kernel void kernel_group_norm(
global float * src0,
ulong offset0,
global float * dst,
ulong offsetd,
int ne,
int group_size,
float eps
) {
src0 = (global float *)((global char *)src0 + offset0);
dst = (global float *)((global char *)dst + offsetd);
int start = get_group_id(0) * group_size;
int end = start + group_size;
start += get_local_id(0);
if (end >= ne) {
end = ne;
}
float tmp = 0.0f;
for (int j = start; j < end; j += get_local_size(0)) {
tmp += src0[j];
}
tmp = sub_group_reduce_add(tmp);
const float mean = tmp / group_size;
tmp = 0.0f;
for (int j = start; j < end; j += get_local_size(0)) {
float xi = src0[j] - mean;
dst[j] = xi;
tmp += xi * xi;
}
tmp = sub_group_reduce_add(tmp);
const float variance = tmp / group_size;
const float scale = 1.0f/sqrt(variance + eps);
for (int j = start; j < end; j += get_local_size(0)) {
dst[j] *= scale;
}
}

View File

@@ -0,0 +1,29 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
//------------------------------------------------------------------------------
// sigmoid
//------------------------------------------------------------------------------
kernel void kernel_sigmoid_f32(
global float * src0,
ulong offset0,
global float * dst,
ulong offsetd
) {
src0 = (global float*)((global char*)src0 + offset0);
dst = (global float*)((global char*)dst + offsetd);
dst[get_global_id(0)] = 1.0f / (1.0f + exp(-src0[get_global_id(0)]));
}
kernel void kernel_sigmoid_f16(
global half * src0,
ulong offset0,
global half * dst,
ulong offsetd
) {
src0 = (global half*)((global char*)src0 + offset0);
dst = (global half*)((global char*)dst + offsetd);
dst[get_global_id(0)] = 1.0f / (1.0f + exp(-src0[get_global_id(0)]));
}

View File

@@ -0,0 +1,72 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
//------------------------------------------------------------------------------
// div
//------------------------------------------------------------------------------
kernel void kernel_sub(
global char * src0,
ulong offset0,
global char * src1,
ulong offset1,
global char * dst,
ulong offsetd,
ulong nb00,
ulong nb01,
ulong nb02,
ulong nb03,
int ne10,
int ne11,
int ne12,
int ne13,
ulong nb10,
ulong nb11,
ulong nb12,
ulong nb13,
int ne0,
ulong nb0,
ulong nb1,
ulong nb2,
ulong nb3
) {
src0 = src0 + offset0;
src1 = src1 + offset1;
dst = dst + offsetd;
int i03 = get_group_id(2);
int i02 = get_group_id(1);
int i01 = get_group_id(0);
int i13 = i03 % ne13;
int i12 = i02 % ne12;
int i11 = i01 % ne11;
global char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
global char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
global char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
const int i10 = i0 % ne10;
*((global float *)(dst_ptr + i0*nb0)) = *((global float *)(src0_ptr + i0*nb00)) - *((global float *)(src1_ptr + i10*nb10));
}
}
// assumption: src1 is a row
// broadcast src1 into src0
kernel void kernel_sub_row(
global float4 * src0,
ulong offset0,
global float4 * src1,
ulong offset1,
global float4 * dst,
ulong offsetd,
int ne
) {
src0 = (global float4*)((global char*)src0 + offset0);
src1 = (global float4*)((global char*)src1 + offset1);
dst = (global float4*)((global char*)dst + offsetd);
// This performs better than using %.
uint gid = get_global_id(0);
uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne
dst[gid] = src0[gid] - src1[idx1];
}

View File

@@ -0,0 +1,39 @@
kernel void kernel_sum_rows_f32(
global float * src0,
ulong offset0,
global float * dst,
ulong offsetd,
int ne00,
int ne01,
int ne02,
int ne03,
ulong nb01,
ulong nb02,
ulong nb03,
ulong nb1,
ulong nb2,
ulong nb3
) {
src0 = (global float *)((global char *)src0 + offset0);
dst = (global float *)((global char *)dst + offsetd);
int i3 = get_global_id(2);
int i2 = get_global_id(1);
int i1 = get_global_id(0);
if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) {
return;
}
global float * src_row = (global float *) ((global char *) src0 + i1*nb01 + i2*nb02 + i3*nb03);
global float * dst_row = (global float *) ((global char *) dst + i1*nb1 + i2*nb2 + i3*nb3);
float row_sum = 0;
for (int i0 = 0; i0 < ne00; i0++) {
row_sum += src_row[i0];
}
dst_row[0] = row_sum;
}

View File

@@ -13,7 +13,7 @@ elseif(SUPPORTS_SYCL)
If you expected the oneAPI Release compiler, please install oneAPI & source it, like:
source /opt/intel/oneapi/setvars.sh")
else()
message(FATAL_ERROR, "C++ compiler lacks SYCL support.")
message(FATAL_ERROR "C++ compiler lacks SYCL support.")
endif()
message(STATUS "SYCL found")
#todo: AOT
@@ -170,7 +170,7 @@ else()
target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_NVIDIA)
elseif (GGML_SYCL_TARGET STREQUAL "AMD")
if (NOT GGML_SYCL_DEVICE_ARCH)
message(ERROR "Can't enable SYCL hip backend, GGML_SYCL_DEVICE_ARCH has not been set.")
message(FATAL_ERROR "Can't enable SYCL hip backend, GGML_SYCL_DEVICE_ARCH has not been set.")
endif()
target_link_libraries(ggml-sycl PRIVATE ONEMATH::onemath_blas_rocblas)
target_compile_options(ggml-sycl PRIVATE "-fsycl-targets=amdgcn-amd-amdhsa")

View File

@@ -1,74 +1,93 @@
#include "binbcast.hpp"
#include <array>
#include <cstddef>
#include <cstdint>
#include <sycl/sycl.hpp>
#include "dpct/helper.hpp"
#include "ggml.h"
template <float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
static __dpct_inline__ void k_bin_bcast_contiguous(const src0_t * __restrict__ src0, const src1_t * __restrict__ src1,
dst_t * dst, std::size_t num_elements, const sycl::nd_item<1> & it) {
auto element_id = it.get_global_id(0);
auto global_range = it.get_global_range(0);
for (; element_id < num_elements; element_id += global_range) {
auto src0_float_val = sycl::vec(src0[element_id]).template convert<float, sycl::rounding_mode::rte>();
auto src1_float_val = sycl::vec(src1[element_id]).template convert<float, sycl::rounding_mode::rte>();
float dst_val = bin_op(src0_float_val[0], src1_float_val[0]);
auto val_to_store = sycl::vec(dst_val).template convert<dst_t, sycl::rounding_mode::rte>();
dst[element_id] = val_to_store;
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
static void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
int ne0, int ne1, int ne2, int ne3,
int ne10, int ne11, int ne12, int ne13,
/*int s0, */ int s1, int s2, int s3,
/*int s00,*/ int s01, int s02, int s03,
/*int s10,*/ int s11, int s12, int s13,
const sycl::nd_item<3> &item_ct1) {
const int i0s = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
const int i1 = (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
item_ct1.get_local_id(1));
const int i2 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
item_ct1.get_local_id(0)) /
ne3;
const int i3 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
item_ct1.get_local_id(0)) %
ne3;
if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
return;
}
const int i11 = i1 % ne11;
const int i12 = i2 % ne12;
const int i13 = i3 % ne13;
const size_t i_src0 = i3*s03 + i2*s02 + i1*s01;
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
const src0_t * src0_row = src0 + i_src0;
const src1_t * src1_row = src1 + i_src1;
dst_t * dst_row = dst + i_dst;
for (int i0 = i0s; i0 < ne0;
i0 += item_ct1.get_local_range(2) * item_ct1.get_group_range(2)) {
const int i10 = i0 % ne10;
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
}
}
template <float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
static __dpct_inline__ void k_bin_bcast(const src0_t * __restrict__ src0, const src1_t * __restrict__ src1, dst_t * dst,
int ne0, int ne1, int ne2, int ne3, int ne10, int ne11, int ne12, int ne13,
int s0, int s1, int s2, int s3, int s00, int s01, int s02, int s03, int s10,
int s11, int s12, int s13, std::size_t num_dst_elements,
const sycl::nd_item<1> & item_ct1) {
auto calculate_logical_index =
[](const std::array<int, 4> & dims, std::size_t element_id) __attribute__((always_inline))->std::array<int, 4> {
std::array<int, 4> logical_index;
#pragma unroll(4)
for (int i = 3; i >= 0; i--) {
logical_index[i] = element_id % dims[i];
element_id /= dims[i];
}
return logical_index;
};
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
static void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
int ne0, int ne1, int ne2, int ne3,
int ne10, int ne11, int ne12, int ne13,
/*int s0, */ int s1, int s2, int s3,
/*int s00,*/ int s01, int s02, int s03,
/*int s10,*/ int s11, int s12, int s13,
const sycl::nd_item<3> &item_ct1) {
auto calculate_index = [](const std::array<int, 4> & dims, const std::array<int, 4> & strides,
const std::array<int, 4> & indices) __attribute__((always_inline))
->std::size_t {
std::size_t index = 0;
#pragma unroll(4)
for (int i = 0; i < 4; i++) {
auto index_i = indices[i];
if (indices[i] >= dims[i]) {
index_i = indices[i] % dims[i];
}
index += strides[i] * index_i;
}
return index;
};
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
auto element_id = item_ct1.get_global_id(0);
for (; element_id < num_dst_elements; element_id += item_ct1.get_global_range(0)) {
auto logical_index = calculate_logical_index({ ne3, ne2, ne1, ne0 }, element_id);
auto src_0_index = calculate_index({ ne3, ne2, ne1, ne0 }, { s03, s02, s01, s00 }, logical_index);
auto src_1_index = calculate_index({ ne13, ne12, ne11, ne10 }, { s13, s12, s11, s10 }, logical_index);
auto dst_index = calculate_index({ ne3, ne2, ne1, ne0 }, { s3, s2, s1, s0 }, logical_index);
auto src0_float_val = sycl::vec(src0[src_0_index]).template convert<float, sycl::rounding_mode::rte>();
auto src1_float_val = sycl::vec(src1[src_1_index]).template convert<float, sycl::rounding_mode::rte>();
float dst_val = bin_op(src0_float_val[0], src1_float_val[0]);
auto val_to_store = sycl::vec(dst_val).template convert<dst_t, sycl::rounding_mode::rte>();
dst[dst_index] = val_to_store;
const int i3 = i/(ne2*ne1*ne0);
const int i2 = (i/(ne1*ne0)) % ne2;
const int i1 = (i/ne0) % ne1;
const int i0 = i % ne0;
if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
return;
}
const int i11 = i1 % ne11;
const int i12 = i2 % ne12;
const int i13 = i3 % ne13;
const size_t i_src0 = i3*s03 + i2*s02 + i1*s01;
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
const src0_t * src0_row = src0 + i_src0;
const src1_t * src1_row = src1 + i_src1;
dst_t * dst_row = dst + i_dst;
const int i10 = i0 % ne10;
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
}
template <float (*bin_op)(const float, const float)> struct bin_bcast_sycl {
template<float (*bin_op)(const float, const float)>
struct bin_bcast_sycl {
template <typename src0_t, typename src1_t, typename dst_t>
void operator()(const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd, const int64_t ne00,
const int64_t ne01, const int64_t ne02, const int64_t ne03, const int64_t ne10, const int64_t ne11,
@@ -77,73 +96,165 @@ template <float (*bin_op)(const float, const float)> struct bin_bcast_sycl {
const size_t nb10, const size_t nb11, const size_t nb12, const size_t nb13, const size_t nb0,
const size_t nb1, const size_t nb2, const size_t nb3, const bool src0_is_contiguous,
const bool src1_is_contiguous, const bool dst_is_contiguous, queue_ptr stream) {
auto check_bcast_required = [](const std::array<int64_t, 4> & src_dims,
const std::array<int64_t, 4> & dst_dims) -> bool {
for (int i = 0; i < 4; i++) {
if (dst_dims[i] > src_dims[i]) {
return true;
}
}
return false;
int nr0 = ne10 / ne0;
int nr1 = ne11/ne1;
int nr2 = ne12/ne2;
int nr3 = ne13/ne3;
int nr[4] = { nr0, nr1, nr2, nr3 };
// collapse dimensions until first broadcast dimension
int64_t cne[] = {ne0, ne1, ne2, ne3};
int64_t cne0[] = {ne00, ne01, ne02, ne03};
int64_t cne1[] = {ne10, ne11, ne12, ne13};
size_t cnb[] = {nb0, nb1, nb2, nb3};
size_t cnb0[] = {nb00, nb01, nb02, nb03};
size_t cnb1[] = {nb10, nb11, nb12, nb13};
auto collapse = [](int64_t cne[]) {
cne[0] *= cne[1];
cne[1] = cne[2];
cne[2] = cne[3];
cne[3] = 1;
};
dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
auto collapse_nb = [](size_t cnb[], int64_t cne[]) {
cnb[1] *= cne[1];
cnb[2] *= cne[2];
cnb[3] *= cne[3];
};
GGML_ASSERT(nb0 % sizeof(dst_t) == 0);
GGML_ASSERT(nb1 % sizeof(dst_t) == 0);
GGML_ASSERT(nb2 % sizeof(dst_t) == 0);
GGML_ASSERT(nb3 % sizeof(dst_t) == 0);
if (src0_is_contiguous && src1_is_contiguous && dst_is_contiguous) {
for (int i = 0; i < 4; i++) {
if (nr[i] != 1) {
break;
}
if (i > 0) {
collapse_nb(cnb, cne);
collapse_nb(cnb0, cne0);
collapse_nb(cnb1, cne1);
collapse(cne);
collapse(cne0);
collapse(cne1);
}
}
}
{
int64_t ne0 = cne[0];
int64_t ne1 = cne[1];
int64_t ne2 = cne[2];
int64_t ne3 = cne[3];
GGML_ASSERT(nb00 % sizeof(src0_t) == 0);
GGML_ASSERT(nb01 % sizeof(src0_t) == 0);
GGML_ASSERT(nb02 % sizeof(src0_t) == 0);
GGML_ASSERT(nb03 % sizeof(src0_t) == 0);
int64_t ne10 = cne1[0];
int64_t ne11 = cne1[1];
int64_t ne12 = cne1[2];
int64_t ne13 = cne1[3];
GGML_ASSERT(nb10 % sizeof(src1_t) == 0);
GGML_ASSERT(nb11 % sizeof(src1_t) == 0);
GGML_ASSERT(nb12 % sizeof(src1_t) == 0);
GGML_ASSERT(nb13 % sizeof(src1_t) == 0);
size_t nb0 = cnb[0];
size_t nb1 = cnb[1];
size_t nb2 = cnb[2];
size_t nb3 = cnb[3];
// dst strides in number of elements
size_t s0 = nb0 / sizeof(dst_t);
size_t s1 = nb1 / sizeof(dst_t);
size_t s2 = nb2 / sizeof(dst_t);
size_t s3 = nb3 / sizeof(dst_t);
size_t nb00 = cnb0[0];
size_t nb01 = cnb0[1];
size_t nb02 = cnb0[2];
size_t nb03 = cnb0[3];
// src1 strides in number of elements
size_t s10 = nb10 / sizeof(src0_t);
size_t s11 = nb11 / sizeof(src1_t);
size_t s12 = nb12 / sizeof(src1_t);
size_t s13 = nb13 / sizeof(src1_t);
size_t nb10 = cnb1[0];
size_t nb11 = cnb1[1];
size_t nb12 = cnb1[2];
size_t nb13 = cnb1[3];
// src0 strides in number of elements
size_t s00 = nb00 / sizeof(src0_t);
size_t s01 = nb01 / sizeof(src0_t);
size_t s02 = nb02 / sizeof(src0_t);
size_t s03 = nb03 / sizeof(src0_t);
size_t s0 = nb0 / sizeof(dst_t);
size_t s1 = nb1 / sizeof(dst_t);
size_t s2 = nb2 / sizeof(dst_t);
size_t s3 = nb3 / sizeof(dst_t);
std::size_t num_dst_elements = static_cast<std::size_t>(ne0) * static_cast<std::size_t>(ne1) *
static_cast<std::size_t>(ne2) * static_cast<std::size_t>(ne3);
std::size_t local_range = 256;
std::size_t global_range = ceil_div(num_dst_elements, local_range) * local_range;
size_t s10 = nb10 / sizeof(src1_t);
size_t s11 = nb11 / sizeof(src1_t);
size_t s12 = nb12 / sizeof(src1_t);
size_t s13 = nb13 / sizeof(src1_t);
bool needs_broadcasting = check_bcast_required({ ne00, ne01, ne02, ne03 }, { ne0, ne1, ne2, ne3 }) ||
check_bcast_required({ ne10, ne11, ne12, ne13 }, { ne0, ne1, ne2, ne3 });
bool all_contiguous = src0_is_contiguous && src1_is_contiguous && dst_is_contiguous;
size_t s00 = nb00 / sizeof(src0_t);
size_t s01 = nb01 / sizeof(src0_t);
size_t s02 = nb02 / sizeof(src0_t);
size_t s03 = nb03 / sizeof(src0_t);
if (! needs_broadcasting && all_contiguous) {
stream->submit([&](sycl::handler & cgh) {
cgh.parallel_for(sycl::nd_range<1>({ global_range }, { local_range }), [=](sycl::nd_item<1> it) {
k_bin_bcast_contiguous<bin_op>(src0_dd, src1_dd, dst_dd, num_dst_elements, it);
});
});
} else {
stream->submit([&](sycl::handler & cgh) {
cgh.parallel_for(sycl::nd_range<1>({ global_range }, { local_range }), [=](sycl::nd_item<1> it) {
k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3, ne10, ne11, ne12, ne13, s0, s1,
s2, s3, s00, s01, s02, s03, s10, s11, s12, s13, num_dst_elements, it);
});
});
GGML_UNUSED(s00);
GGML_ASSERT(nb0 % sizeof(dst_t) == 0);
GGML_ASSERT(nb1 % sizeof(dst_t) == 0);
GGML_ASSERT(nb2 % sizeof(dst_t) == 0);
GGML_ASSERT(nb3 % sizeof(dst_t) == 0);
GGML_ASSERT(nb00 % sizeof(src0_t) == 0);
GGML_ASSERT(nb01 % sizeof(src0_t) == 0);
GGML_ASSERT(nb02 % sizeof(src0_t) == 0);
GGML_ASSERT(nb03 % sizeof(src0_t) == 0);
GGML_ASSERT(nb10 % sizeof(src1_t) == 0);
GGML_ASSERT(nb11 % sizeof(src1_t) == 0);
GGML_ASSERT(nb12 % sizeof(src1_t) == 0);
GGML_ASSERT(nb13 % sizeof(src1_t) == 0);
GGML_ASSERT(s0 == 1);
GGML_ASSERT(s10 == 1);
const int block_size = 128;
int64_t hne0 = std::max(ne0/2LL, 1LL);
sycl::range<3> block_dims(1, 1, 1);
block_dims[2] = std::min<unsigned int>(hne0, block_size);
block_dims[1] = std::min<unsigned int>(
ne1, block_size / (unsigned int)block_dims[2]);
block_dims[0] = std::min(
std::min<unsigned int>(
ne2 * ne3, block_size / (unsigned int)block_dims[2] /
(unsigned int)block_dims[1]),
64U);
sycl::range<3> block_nums(
(ne2 * ne3 + block_dims[0] - 1) / block_dims[0],
(ne1 + block_dims[1] - 1) / block_dims[1],
(hne0 + block_dims[2] - 1) / block_dims[2]);
if (block_nums[0] > 65535) {
// this is the maximum number of blocks in z direction, fallback to 1D grid kernel
int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, block_num) *
sycl::range<3>(1, 1, block_size),
sycl::range<3>(1, 1, block_size)),
[=](sycl::nd_item<3> item_ct1) {
k_bin_bcast_unravel<bin_op>(
src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3,
ne10, ne11, ne12, ne13, s1, s2, s3, s01, s02,
s03, s11, s12, s13, item_ct1);
});
}
} else {
/*
DPCT1049:16: The work-group size passed to the SYCL kernel may
exceed the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if
needed.
*/
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1,
ne2, ne3, ne10, ne11, ne12, ne13,
s1, s2, s3, s01, s02, s03, s11, s12, s13,
item_ct1);
});
}
}
}
};
@@ -208,32 +319,27 @@ inline void ggml_sycl_op_repeat(ggml_backend_sycl_context & ctx, ggml_tensor *ds
void ggml_sycl_add(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/2);
ggml_sycl_op_add(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_sub(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/2);
ggml_sycl_op_sub(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_mul(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/2);
ggml_sycl_op_mul(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_div(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/2);
ggml_sycl_op_div(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_repeat(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_repeat(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}

View File

@@ -13,8 +13,10 @@
#ifndef GGML_SYCL_COMMON_HPP
#define GGML_SYCL_COMMON_HPP
#include <cstddef>
#include <fstream>
#include <iostream>
#include <string>
#include "dpct/helper.hpp"
#include "ggml-sycl.h"
@@ -44,11 +46,20 @@ extern int g_ggml_sycl_debug;
extern int g_ggml_sycl_disable_optimize;
extern int g_ggml_sycl_prioritize_dmmv;
#define GGML_SYCL_DEBUG(...) \
do { \
if (g_ggml_sycl_debug) \
fprintf(stderr, __VA_ARGS__); \
} while (0)
#if defined(__clang__) && __has_builtin(__builtin_expect)
// Hint the optimizer to pipeline the more likely following instruction in branches
# define LIKELY(expr) __builtin_expect(expr, true)
# define UNLIKELY(expr) __builtin_expect(expr, false)
#else
# define LIKELY(expr) (expr)
# define UNLIKELY(expr) (expr)
#endif
#define GGML_SYCL_DEBUG(...) \
do { \
if (UNLIKELY(g_ggml_sycl_debug)) \
fprintf(stderr, __VA_ARGS__); \
} while (0)
#define CHECK_TRY_ERROR(expr) \
[&]() { \
@@ -471,6 +482,19 @@ static __dpct_inline__ float warp_reduce_max(float x,
return x;
}
/* Helper for Computing the linear offset of a ggml_tensor given
per-dimension sizes, strides, and indices */
template<int N>
__dpct_inline__ size_t calculate_offset(const std::array<int, N> & strides, const std::array<int, N> & indices) {
size_t offset = 0;
#pragma unroll
for (int i = 0; i < N; i++) {
auto index_i = indices[i];
offset += strides[i] * index_i;
}
return offset;
}
// Helper for vec loading aligned data
template <typename Tp, int n>
inline sycl::vec<Tp, n> vec_aligned_load(const Tp* aligned_ptr) {
@@ -490,4 +514,76 @@ constexpr size_t ceil_div(const size_t m, const size_t n) {
}
bool gpu_has_xmx(sycl::device &dev);
template <int N, class T> void debug_print_array(const std::string & prefix, const T array[N]) {
if (LIKELY(!g_ggml_sycl_debug)) {
return;
}
std::stringstream ss;
ss << prefix << "=[";
for (std::size_t i = 0; i < N - 1; ++i) {
ss << array[i] << ", ";
}
if constexpr (N > 0) {
ss << array[N - 1];
}
ss << "]";
GGML_SYCL_DEBUG("%s", ss.str().c_str());
}
inline void debug_print_tensor(const std::string & prefix, const ggml_tensor * tensor,
const std::string & suffix = "") {
if (LIKELY(!g_ggml_sycl_debug)) {
return;
}
GGML_SYCL_DEBUG("%s=", prefix.c_str());
if (tensor) {
GGML_SYCL_DEBUG("'%s':type=%s", tensor->name, ggml_type_name(tensor->type));
debug_print_array<GGML_MAX_DIMS>(";ne", tensor->ne);
debug_print_array<GGML_MAX_DIMS>(";nb", tensor->nb);
if (!ggml_is_contiguous(tensor)) {
GGML_SYCL_DEBUG(";strided");
}
if (ggml_is_permuted(tensor)) {
GGML_SYCL_DEBUG(";permuted");
}
} else {
GGML_SYCL_DEBUG("nullptr");
}
GGML_SYCL_DEBUG("%s", suffix.c_str());
}
// Use scope_op_debug_print to log operations coming from running a model
struct scope_op_debug_print {
// Use string_views to avoid the cost of creating a string and concatenating them
// string_views must be alive for as long as the object is alive
// scope_op_debug_print are used with string literals in practice which are stored in constant space so always accessible
scope_op_debug_print(const std::string_view & func, const std::string_view & func_suffix, const ggml_tensor * dst,
std::size_t num_src, const std::string_view & suffix = "") :
func(func),
func_suffix(func_suffix) {
if (LIKELY(!g_ggml_sycl_debug)) {
return;
}
GGML_SYCL_DEBUG("[SYCL][OP] call %s%s:", func.data(), func_suffix.data());
debug_print_tensor(" dst", dst);
if (dst) {
for (std::size_t i = 0; i < num_src; ++i) {
debug_print_tensor("\tsrc" + std::to_string(i), dst->src[i]);
}
}
GGML_SYCL_DEBUG("%s\n", suffix.data());
}
scope_op_debug_print(const std::string_view & func, const ggml_tensor * dst, std::size_t num_src,
const std::string_view & suffix = "") :
scope_op_debug_print(func, "", dst, num_src, suffix) {}
~scope_op_debug_print() { GGML_SYCL_DEBUG("[SYCL][OP] call %s%s done\n", func.data(), func_suffix.data()); }
private:
std::string_view func;
std::string_view func_suffix;
};
#endif // GGML_SYCL_COMMON_HPP

View File

@@ -159,39 +159,37 @@ static void concat_f32_sycl_non_cont(
}
void ggml_sycl_op_concat(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
const ggml_tensor *src0 = dst->src[0];
const ggml_tensor *src1 = dst->src[1];
queue_ptr stream = ctx.stream();
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/2);
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
queue_ptr stream = ctx.stream();
const int32_t dim = ((int32_t *)dst->op_params)[0];
const int32_t dim = ((int32_t *) dst->op_params)[0];
if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
const float *src0_d = (const float *)src0->data;
const float *src1_d = (const float *)src1->data;
if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
const float * src0_d = (const float *) src0->data;
const float * src1_d = (const float *) src1->data;
float *dst_d = (float *)dst->data;
float * dst_d = (float *) dst->data;
if (dim != 3) {
for (int i3 = 0; i3 < dst->ne[3]; i3++) {
concat_f32_sycl(
src0_d + i3 * (src0->nb[3] / 4), src1_d + i3 * (src1->nb[3] / 4),
dst_d + i3 * (dst->nb[3] / 4), src0->ne[0], src0->ne[1],
src0->ne[2], dst->ne[0], dst->ne[1], dst->ne[2], dim, stream);
}
if (dim != 3) {
for (int i3 = 0; i3 < dst->ne[3]; i3++) {
concat_f32_sycl(src0_d + i3 * (src0->nb[3] / 4), src1_d + i3 * (src1->nb[3] / 4),
dst_d + i3 * (dst->nb[3] / 4), src0->ne[0], src0->ne[1], src0->ne[2], dst->ne[0],
dst->ne[1], dst->ne[2], dim, stream);
}
} else {
const size_t size0 = ggml_nbytes(src0);
const size_t size1 = ggml_nbytes(src1);
SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy(dst_d, src0_d, size0).wait()));
SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy(dst_d + size0 / 4, src1_d, size1).wait()));
}
} else {
const size_t size0 = ggml_nbytes(src0);
const size_t size1 = ggml_nbytes(src1);
SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy(dst_d, src0_d, size0).wait()));
SYCL_CHECK(CHECK_TRY_ERROR(
stream->memcpy(dst_d + size0 / 4, src1_d, size1).wait()));
concat_f32_sycl_non_cont(stream, (const char *) src0->data, (const char *) src1->data, (char *) dst->data,
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], src0->nb[0], src0->nb[1],
src0->nb[2], src0->nb[3], src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3], dst->ne[0], dst->ne[1], dst->ne[2],
dst->ne[3], dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3], dim);
}
} else
concat_f32_sycl_non_cont(
stream, (const char *)src0->data, (const char *)src1->data,
(char *)dst->data, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3], src1->ne[0],
src1->ne[1], src1->ne[2], src1->ne[3], src1->nb[0], src1->nb[1],
src1->nb[2], src1->nb[3], dst->ne[0], dst->ne[1], dst->ne[2],
dst->ne[3], dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3], dim);
}

View File

@@ -72,6 +72,7 @@ static void conv_transpose_1d_f32_f32_sycl(
}
void ggml_sycl_op_conv_transpose_1d(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/2);
const ggml_tensor *src0 = dst->src[0];
const ggml_tensor *src1 = dst->src[1];
const float * src0_d = (const float *)src0->data;

View File

@@ -616,6 +616,9 @@ static void ggml_cpy_i32_i32_sycl(const char * cx, char * cdst, const int ne, co
}
void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1) try {
// Unlike other operators ggml_sycl_cpy takes 2 distinct tensors instead of a dst ggml_tensor and rely on its src field
scope_op_debug_print scope_dbg_print(__func__, src1, /*num_src=*/0,
std::string(" src0 type=") + ggml_type_name(src0->type));
const int64_t ne = ggml_nelements(src0);
GGML_ASSERT(ne == ggml_nelements(src1));
@@ -629,8 +632,6 @@ void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, co
char * src0_ddc = (char *) src0->data;
char * src1_ddc = (char *) src1->data;
GGML_SYCL_DEBUG("[SYCL] %s: Tensor supplied: %s to %s\n", __func__, ggml_type_name(src0->type),
ggml_type_name(src1->type));
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
ggml_cpy_f32_f32_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10,
@@ -694,8 +695,6 @@ void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, co
}
void ggml_sycl_dup(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
// TODO: why do we pass dst as src1 here?
GGML_SYCL_DEBUG("[SYCL] call %s\n", __func__);
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_cpy(ctx, dst->src[0], dst);
GGML_SYCL_DEBUG("[SYCL] call %s done\n", __func__);
}

View File

@@ -1092,6 +1092,8 @@ void ggml_sycl_op_dequantize_mul_mat_vec(
src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
if (src1_convert_f16) {
scope_op_debug_print scope_dbg_print(__func__, "/to_fp16_sycl", dst, /*num_src=*/2,
" : converting src1 to fp16");
src1_dfloat = src1_dfloat_a.alloc(ne00);
const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type, dst);
GGML_ASSERT(to_fp16_sycl != nullptr);

View File

@@ -84,6 +84,15 @@ static void gelu_quick(const T *x, T *dst, int k,
dst[i] = x[i] * (static_cast<T>(1.0f) / (static_cast<T>(1.0f) + sycl::native::exp(GELU_QUICK_COEF * x[i])));
}
template<typename T>
static void gelu_erf(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) {
const T SQRT_2_INV = static_cast<T>(0.70710678118654752440084436210484f);
for(auto i = item_ct1.get_global_id(2); i < (const size_t)k; i += item_ct1.get_global_range(2)) {
auto x_i = x[i];
dst[i] = static_cast<T>(0.5f) * x_i * (static_cast<T>(1.0f) + sycl::erf(x_i * SQRT_2_INV));
}
}
template<typename T>
static void tanh(const T *x, T *dst, int k,
const sycl::nd_item<3> &item_ct1) {
@@ -400,6 +409,20 @@ static void gelu_quick_sycl(const T *x, T *dst, const int k,
});
}
template<typename T>
static void gelu_erf_sycl(const T *x, T *dst, const int k,
queue_ptr stream) {
const int num_blocks = ceil_div(k, SYCL_GELU_BLOCK_SIZE);
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
gelu_erf(x, dst, k, item_ct1);
});
}
template<typename T>
static void tanh_sycl(const T *x, T *dst, const int k,
queue_ptr stream) {
@@ -816,6 +839,38 @@ inline void ggml_sycl_op_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor
}
}
inline void ggml_sycl_op_gelu_erf(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
#if defined (GGML_SYCL_F16)
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
#else
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
#endif
GGML_ASSERT(dst->src[0]->type == dst->type);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
switch (dst->type) {
#if defined (GGML_SYCL_F16)
case GGML_TYPE_F16:
{
auto data_pts = cast_data<sycl::half>(dst);
gelu_erf_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
break;
}
#endif
case GGML_TYPE_F32:
{
auto data_pts = cast_data<float>(dst);
gelu_erf_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
break;
}
default:
GGML_ABORT("GGML tensor type not supported!\n");
}
}
inline void ggml_sycl_op_tanh(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
#if defined (GGML_SYCL_F16)
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
@@ -1391,146 +1446,126 @@ inline void ggml_sycl_op_acc(ggml_backend_sycl_context & ctx, ggml_tensor *dst)
void ggml_sycl_sqrt(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_sqrt(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_sin(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_sin(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_cos(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_cos(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_acc(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/2);
ggml_sycl_op_acc(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_gelu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_gelu(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_silu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_silu(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_gelu_quick(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_gelu_erf(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_gelu_erf(ctx, dst);
}
void ggml_sycl_tanh(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_tanh(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_relu(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_sigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_sigmoid(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_hardsigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_hardsigmoid(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_hardswish(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_hardswish(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_exp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_exp(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_log(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_log(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_neg(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_neg(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_step(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_step(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_leaky_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_leaky_relu(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_sqr(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_sqr(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_upscale(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_upscale(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_pad(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_clamp(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_sgn(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_sgn(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_abs(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_abs(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_elu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_elu(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}

View File

@@ -38,6 +38,8 @@ void ggml_sycl_silu(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_gelu_erf(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_tanh(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst);

View File

@@ -257,8 +257,7 @@ static void get_rows_sycl_float(ggml_backend_sycl_context & ctx, const ggml_tens
GGML_UNUSED(ctx);
}
void ggml_sycl_op_get_rows(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
void ggml_sycl_op_get_rows(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(dst->src[1]->type == GGML_TYPE_I32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
@@ -308,4 +307,3 @@ void ggml_sycl_op_get_rows(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ABORT("fatal error");
}
}

View File

@@ -346,6 +346,8 @@ static void * ggml_backend_sycl_buffer_get_base(ggml_backend_buffer_t buffer) {
static enum ggml_status
ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer,
ggml_tensor *tensor) try {
GGML_SYCL_DEBUG("[SYCL] call %s", __func__);
debug_print_tensor(": tensor=", tensor, "\n");
ggml_backend_sycl_buffer_context * ctx = (ggml_backend_sycl_buffer_context *)buffer->context;
if (tensor->view_src != NULL) {
@@ -381,20 +383,23 @@ static void ggml_backend_sycl_buffer_set_tensor(ggml_backend_buffer_t buffer,
ggml_tensor *tensor,
const void *data, size_t offset,
size_t size) try {
GGML_SYCL_DEBUG("[SYCL] call %s", __func__);
debug_print_tensor(": tensor=", tensor);
GGML_SYCL_DEBUG(" size=%zu offset=%zu\n", size, offset);
ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
ggml_sycl_set_device(ctx->device);
auto stream = &(dpct::dev_mgr::instance().get_device(ctx->device).default_queue());
SYCL_CHECK(
CHECK_TRY_ERROR(dpct::dev_mgr::instance().get_device(ctx->device).queues_wait_and_throw()));
SYCL_CHECK(CHECK_TRY_ERROR(dpct::dev_mgr::instance().get_device(ctx->device).queues_wait_and_throw()));
#ifndef _WIN32
// Note: Use host buffer to save the data from mmap(), then copy to device. It's workaround for mmap() issue on PVC GPU.
// This function will be called during load model from disk. Use memory buffer replace dynamic won't save more time and brings potential memory leak risk here.
char* host_buf = (char*)malloc(size);
char * host_buf = (char *) malloc(size);
memcpy(host_buf, data, size);
SYCL_CHECK(
CHECK_TRY_ERROR((*stream).memcpy((char *)tensor->data + offset, host_buf, size)
.wait()));
SYCL_CHECK(CHECK_TRY_ERROR((*stream).memcpy((char *) tensor->data + offset, host_buf, size).wait()));
free(host_buf);
#else
SYCL_CHECK(CHECK_TRY_ERROR((*stream).memcpy((char *) tensor->data + offset, data, size).wait()));
#endif
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
@@ -406,7 +411,9 @@ static void ggml_backend_sycl_buffer_get_tensor(ggml_backend_buffer_t buffer,
const ggml_tensor *tensor,
void *data, size_t offset,
size_t size) try {
GGML_SYCL_DEBUG("[SYCL] call %s", __func__);
debug_print_tensor(": tensor=", tensor);
GGML_SYCL_DEBUG(" size=%zu offset=%zu\n", size, offset);
ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
ggml_sycl_set_device(ctx->device);
@@ -434,7 +441,12 @@ static bool
ggml_backend_sycl_buffer_cpy_tensor(ggml_backend_buffer_t buffer,
const ggml_tensor *src,
ggml_tensor *dst) try {
if (ggml_backend_buffer_is_sycl(src->buffer)) {
bool is_cpy_supported = ggml_backend_buffer_is_sycl(src->buffer);
GGML_SYCL_DEBUG("[SYCL] call %s", __func__);
debug_print_tensor(": dst=", dst);
debug_print_tensor(" src=", src);
GGML_SYCL_DEBUG(" is_cpy_supported=%d\n", is_cpy_supported);
if (is_cpy_supported) {
ggml_backend_sycl_buffer_context * src_ctx = (ggml_backend_sycl_buffer_context *)src->buffer->context;
ggml_backend_sycl_buffer_context * dst_ctx = (ggml_backend_sycl_buffer_context *)dst->buffer->context;
@@ -491,7 +503,8 @@ ggml_backend_sycl_buffer_cpy_tensor(ggml_backend_buffer_t buffer,
static void ggml_backend_sycl_buffer_clear(ggml_backend_buffer_t buffer,
uint8_t value) try {
ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
GGML_SYCL_DEBUG("[SYCL] call %s: size=%zu\n", __func__, buffer->size);
ggml_backend_sycl_buffer_context * ctx = (ggml_backend_sycl_buffer_context *) buffer->context;
ggml_sycl_set_device(ctx->device);
queue_ptr stream = ctx->stream;
@@ -510,7 +523,9 @@ catch (sycl::exception const &exc) {
static void ggml_backend_sycl_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value,
size_t offset, size_t size) {
GGML_SYCL_DEBUG(" [SYCL] call %s\n", __func__);
GGML_SYCL_DEBUG("[SYCL] call %s", __func__);
debug_print_tensor(": tensor=", tensor);
GGML_SYCL_DEBUG(" size=%zu offset=%zu value=%u\n", size, offset, value);
ggml_backend_sycl_buffer_context * ctx = (ggml_backend_sycl_buffer_context *) buffer->context;
SYCL_CHECK(ggml_sycl_set_device(ctx->device));
auto stream = &(dpct::dev_mgr::instance().get_device(ctx->device).default_queue());
@@ -788,6 +803,8 @@ static void * ggml_backend_sycl_split_buffer_get_base(ggml_backend_buffer_t buff
static enum ggml_status
ggml_backend_sycl_split_buffer_init_tensor(ggml_backend_buffer_t buffer,
ggml_tensor *tensor) try {
GGML_SYCL_DEBUG("[SYCL] call %s", __func__);
debug_print_tensor(": tensor=", tensor, "\n");
GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
@@ -872,6 +889,9 @@ static void
ggml_backend_sycl_split_buffer_set_tensor(ggml_backend_buffer_t buffer,
ggml_tensor *tensor, const void *data,
size_t offset, size_t size) try {
GGML_SYCL_DEBUG("[SYCL] call %s", __func__);
debug_print_tensor(": tensor=", tensor);
GGML_SYCL_DEBUG(" size=%zu offset=%zu\n", size, offset);
// split tensors must always be set in their entirety at once
GGML_ASSERT(offset == 0);
GGML_ASSERT(size == ggml_nbytes(tensor));
@@ -925,6 +945,9 @@ static void
ggml_backend_sycl_split_buffer_get_tensor(ggml_backend_buffer_t buffer,
const ggml_tensor *tensor, void *data,
size_t offset, size_t size) try {
GGML_SYCL_DEBUG("[SYCL] call %s", __func__);
debug_print_tensor(": tensor=", tensor);
GGML_SYCL_DEBUG(" size=%zu offset=%zu\n", size, offset);
// split tensors must always be set in their entirety at once
GGML_ASSERT(offset == 0);
GGML_ASSERT(size == ggml_nbytes(tensor));
@@ -1411,6 +1434,59 @@ static void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy,
reinterpret_cast<sycl::half &>(y[ib].ds.y()) = sum;
}
template <int ElementsPerWI>
static __dpct_inline__ void quantize_and_reorder_q8_1(const float * __restrict__ x, void * reordered_q8_tensor,
const int kx, const int kx_padded, const sycl::nd_item<1> & it) {
/*
Quantizes and reorders the resultant q8 tensor in a per row fashion
Each sub-group calculates one quant block. i.e. QK8_1 quant values and the d and sum values
*/
auto subgroup_id = it.get_group(0);
auto wi_id = it.get_local_id(0);
const int num_blocks_per_row = kx / QK8_1;
auto row = subgroup_id / num_blocks_per_row;
auto col = subgroup_id % num_blocks_per_row;
auto row_offset = row * (kx_padded / QK8_1) * sizeof(block_q8_1);
auto col_offset = QK8_1 * col + wi_id * ElementsPerWI;
auto quant_ptr = (int8_t *) ((char *) reordered_q8_tensor + row_offset + col_offset);
auto ds_ptr = (sycl::half2 *) ((char *) reordered_q8_tensor + row_offset + kx + col * sizeof(sycl::half2));
sycl::vec<float, ElementsPerWI> wi_f32_vals;
sycl::vec<int8_t, ElementsPerWI> quantized_values;
auto float_ptr_offset = subgroup_id * QK8_1 + ElementsPerWI * wi_id;
wi_f32_vals = *reinterpret_cast<const sycl::vec<float, ElementsPerWI> *>(x + float_ptr_offset);
float sum = 0.0f;
float amax = 0.0f;
#pragma unroll(ElementsPerWI)
for (int i = 0; i < ElementsPerWI; i++) {
sum += wi_f32_vals[i];
amax = sycl::fmax(amax, sycl::fabs(wi_f32_vals[i]));
quantized_values[i] = 0;
}
sum = sycl::reduce_over_group(it.get_group(), sum, sycl::plus<float>());
amax = sycl::reduce_over_group(it.get_group(), amax, sycl::maximum<float>());
float d = amax == 0 ? 1 : amax / 127;
#pragma unroll(ElementsPerWI)
for (int i = 0; i < ElementsPerWI; i++) {
quantized_values[i] = sycl::round(wi_f32_vals[i] / d);
}
d = amax == 0 ? 0 : d;
*reinterpret_cast<sycl::vec<int8_t, ElementsPerWI> *>(quant_ptr) = quantized_values;
if (wi_id == 0) {
*ds_ptr = sycl::half2(sycl::half(d), sycl::half(sum));
}
}
static void mul_mat_p021_f16_f32(
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y,
@@ -1695,23 +1771,30 @@ static void pool2d_nchw_kernel(
o_ptr[cur_oh * ow + cur_ow] = res;
}
static void quantize_row_q8_1_sycl(const float *x, void *vy, const int kx,
const int ky, const int kx_padded,
queue_ptr stream) {
const int block_num_x = (kx_padded + SYCL_QUANTIZE_BLOCK_SIZE - 1) / SYCL_QUANTIZE_BLOCK_SIZE;
const sycl::range<3> num_blocks(1, ky, block_num_x);
int constexpr QUANT_BLOCK_TILE = QK8_1 / WARP_SIZE;
static_assert(QK8_1 % WARP_SIZE == 0);
const sycl::range<3> block_size(1, 1, SYCL_QUANTIZE_BLOCK_SIZE / QUANT_BLOCK_TILE);
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
static void quantize_row_q8_1_sycl(const float * x, void * vy, const int kx, const int ky, const int kx_padded,
bool reorder_q8_tensor, queue_ptr stream) {
if (reorder_q8_tensor) {
auto local_range = std::size_t(WARP_SIZE);
auto num_quant_blocks = ky * (kx / QK8_1);
auto global_range = num_quant_blocks * local_range;
stream->parallel_for(sycl::nd_range<1>({ global_range }, { local_range }),
[=](sycl::nd_item<1> it) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
quantize_and_reorder_q8_1<QK8_1 / WARP_SIZE>(x, vy, kx, kx_padded, it);
});
} else {
const int block_num_x = (kx_padded + SYCL_QUANTIZE_BLOCK_SIZE - 1) / SYCL_QUANTIZE_BLOCK_SIZE;
const sycl::range<3> num_blocks(1, ky, block_num_x);
int constexpr QUANT_BLOCK_TILE = QK8_1 / WARP_SIZE;
static_assert(QK8_1 % WARP_SIZE == 0);
const sycl::range<3> block_size(1, 1, SYCL_QUANTIZE_BLOCK_SIZE / QUANT_BLOCK_TILE);
{
dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
stream->parallel_for(
sycl::nd_range<3>(num_blocks * block_size, block_size),
[=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
quantize_q8_1<QUANT_BLOCK_TILE>(x, vy, kx, kx_padded, item_ct1);
});
stream->parallel_for(sycl::nd_range<3>(num_blocks * block_size, block_size),
[=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
quantize_q8_1<QUANT_BLOCK_TILE>(x, vy, kx, kx_padded, item_ct1);
});
}
}
}
@@ -2014,12 +2097,12 @@ inline void ggml_sycl_op_mul_mat_sycl(
#else
bool use_fp16 = false;
#endif
if ((src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
use_fp16 && ggml_is_contiguous(src0) && row_diff == src0->ne[1] &&
dst->op_params[0] == GGML_PREC_DEFAULT) {
// GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat_sycl - fp16 path\n");
if ((src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && use_fp16 && ggml_is_contiguous(src0) &&
row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
ggml_sycl_pool_alloc<sycl::half> src0_as_f16(ctx.pool());
if (src0->type != GGML_TYPE_F16) {
scope_op_debug_print scope_dbg_print(__func__, "/to_fp16_sycl", dst, /*num_src=*/2,
" : converting src0 to fp16");
const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src0->type, dst);
GGML_ASSERT(to_fp16_sycl != nullptr);
size_t ne = row_diff*ne00;
@@ -2032,6 +2115,8 @@ inline void ggml_sycl_op_mul_mat_sycl(
ggml_sycl_pool_alloc<sycl::half> src1_as_f16(ctx.pool());
if (src1->type != GGML_TYPE_F16) {
scope_op_debug_print scope_dbg_print(__func__, "/to_fp16_sycl", dst, /*num_src=*/2,
" : converting src1 to fp16");
const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type, dst);
GGML_ASSERT(to_fp16_sycl != nullptr);
size_t ne = src1_ncols*ne10;
@@ -2048,6 +2133,8 @@ inline void ggml_sycl_op_mul_mat_sycl(
DnnlGemmWrapper::row_gemm(ctx, src1_ncols, row_diff, ne10, src1_ptr,
DnnlGemmWrapper::to_dt<sycl::half>(), src0_ptr, DnnlGemmWrapper::to_dt<sycl::half>(),
dst_f16.get(), DnnlGemmWrapper::to_dt<sycl::half>(), stream);
scope_op_debug_print scope_dbg_print(__func__, "/to_fp32_sycl", dst, /*num_src=*/2,
" : converting dst to fp32");
const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16, dst);
to_fp32_sycl(dst_f16.get(), dst_dd_i, row_diff* src1_ncols, stream);
}
@@ -2063,21 +2150,25 @@ inline void ggml_sycl_op_mul_mat_sycl(
src1_ptr, dpct::library_data_t::real_half, ne10, &beta_f16,
dst_f16.get(), dpct::library_data_t::real_half, ldc,
dpct::library_data_t::real_half)));
scope_op_debug_print scope_dbg_print(__func__, "/to_fp32_sycl", dst, /*num_src=*/2,
" : converting dst to fp32");
const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16, dst);
to_fp32_sycl(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
}
}
else {
// GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat_sycl - fp32 path\n");
} else {
ggml_sycl_pool_alloc<float> src0_ddq_as_f32(ctx.pool());
ggml_sycl_pool_alloc<float> src1_ddq_as_f32(ctx.pool());
if (src0->type != GGML_TYPE_F32) {
scope_op_debug_print scope_dbg_print(__func__, "/to_fp32_sycl", dst, /*num_src=*/2,
" : converting src0 to fp32");
const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(src0->type, dst);
GGML_ASSERT(to_fp32_sycl != nullptr);
src0_ddq_as_f32.alloc(row_diff*ne00);
to_fp32_sycl(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream);
}
if (src1->type != GGML_TYPE_F32) {
scope_op_debug_print scope_dbg_print(__func__, "/to_fp32_sycl", dst, /*num_src=*/2,
" : converting src1 to fp32");
const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(src1->type, dst);
GGML_ASSERT(to_fp32_sycl != nullptr);
src1_ddq_as_f32.alloc(src1_ncols*ne10);
@@ -2113,8 +2204,7 @@ catch (sycl::exception const &exc) {
std::exit(1);
}
static void ggml_sycl_op_pool2d(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
static void ggml_sycl_op_pool2d(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
@@ -2166,8 +2256,7 @@ inline void ggml_sycl_op_sum(ggml_backend_sycl_context & ctx, ggml_tensor *dst)
sum_rows_f32_sycl(src0_dd, dst_dd, ne, 1, main_stream);
}
inline void ggml_sycl_op_sum_rows(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
inline void ggml_sycl_op_sum_rows(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
@@ -2198,8 +2287,7 @@ inline void ggml_sycl_op_argsort(ggml_backend_sycl_context & ctx, ggml_tensor *
argsort_f32_i32_sycl(src0_dd, (int *) dst_dd, ncols, nrows, order, main_stream);
}
inline void ggml_sycl_op_argmax(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
inline void ggml_sycl_op_argmax(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_I32);
@@ -2214,8 +2302,7 @@ inline void ggml_sycl_op_argmax(ggml_backend_sycl_context & ctx, ggml_tensor *ds
argmax_f32_i32_sycl(src0_dd, dst_dd, ncols, nrows, main_stream);
}
inline void ggml_sycl_op_diag_mask_inf(ggml_backend_sycl_context & ctx,ggml_tensor *dst) {
inline void ggml_sycl_op_diag_mask_inf(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
@@ -2232,8 +2319,7 @@ inline void ggml_sycl_op_diag_mask_inf(ggml_backend_sycl_context & ctx,ggml_tens
diag_mask_inf_f32_sycl(src0_dd, dst_dd, ne00, nrows0, ne01, n_past, main_stream);
}
inline void ggml_sycl_op_scale(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
inline void ggml_sycl_op_scale(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
@@ -2420,7 +2506,10 @@ static void ggml_sycl_op_mul_mat(ggml_backend_sycl_context & ctx, const ggml_ten
dev[i].src1_ddq = dev[i].src1_ddq_alloc.alloc(ctx.pool(i), nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs);
if (src1_on_device && src1_is_contiguous) {
quantize_row_q8_1_sycl(dev[i].src1_ddf, dev[i].src1_ddq, ne10, nrows1, src1_padded_col_size, stream);
bool reorder_q8_tensor = src0->extra && ((ggml_tensor_extra_gpu *)src0->extra)->optimized_feature.reorder;
scope_op_debug_print scope_dbg_print(__func__, "/quantize_row_q8_1_sycl", dst,
/*num_src=*/2, " : converting src1 to Q8_1");
quantize_row_q8_1_sycl(dev[i].src1_ddf, dev[i].src1_ddq, ne10, nrows1, src1_padded_col_size, reorder_q8_tensor, stream);
/*
DPCT1010:90: SYCL uses exceptions to report errors and does not
use the error codes. The call was replaced with 0. You need to
@@ -2524,7 +2613,9 @@ static void ggml_sycl_op_mul_mat(ggml_backend_sycl_context & ctx, const ggml_ten
}
if (convert_src1_to_q8_1 && !src1_is_contiguous) {
quantize_row_q8_1_sycl(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
scope_op_debug_print scope_dbg_print(__func__, "/quantize_row_q8_1_sycl", dst,
/*num_src=*/2, " : converting src1 to Q8_1");
quantize_row_q8_1_sycl(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, false, stream);
/*
DPCT1010:92: SYCL uses exceptions to report errors and does
not use the error codes. The call was replaced with 0. You
@@ -2618,33 +2709,28 @@ catch (sycl::exception const &exc) {
static void ggml_sycl_get_rows(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/2);
ggml_sycl_op_get_rows(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
static void ggml_sycl_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_norm(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
static void ggml_sycl_rms_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_rms_norm(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
static void ggml_sycl_l2_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_l2_norm(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
static void ggml_sycl_group_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_group_norm(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
static void ggml_sycl_mul_mat_vec_p021(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
@@ -2772,6 +2858,8 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx, cons
// convert src1 to fp16
if (src1->type != GGML_TYPE_F16) {
scope_op_debug_print scope_dbg_print(__func__, "/to_fp16_nc_sycl", dst, /*num_src=*/2,
" : converting src1 to fp16");
const to_fp16_nc_sycl_t to_fp16_nc_sycl = get_to_fp16_nc_sycl(src1->type);
GGML_ASSERT(to_fp16_nc_sycl != nullptr);
const int64_t ne_src1 = ggml_nelements(src1);
@@ -3027,7 +3115,7 @@ static bool should_reorder_tensor(ggml_backend_sycl_context& ctx, const ggml_ten
return !g_ggml_sycl_disable_optimize && //allow optimize, controlled by $GGML_SYCL_DISABLE_OPT
ctx.opt_feature.reorder && //allow this device due to good perf, skip the devices with bad perf.
dst->op == GGML_OP_MUL_MAT && //limit to some supported cases of Q4_0, to do for more cases.
dst->src[1]->ne[2]==1 && dst->src[1]->ne[3]==1;
dst->src[1]->ne[1]==1 && dst->src[1]->ne[2]==1 && dst->src[1]->ne[3]==1;
}
static void opt_for_reorder(ggml_backend_sycl_context * ctx, const ggml_tensor * src0, const ggml_tensor * /* src1 */,
@@ -3075,6 +3163,7 @@ static bool can_use_mul_mat_vec_q(const ggml_tensor * src0, const ggml_tensor *
}
static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/2);
const bool split = ggml_backend_buffer_is_sycl_split(src0->buffer);
int64_t min_compute_capability = INT_MAX;
@@ -3150,11 +3239,8 @@ static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor
ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_q, convert_src1_to_q8_1);
} else {
constexpr bool convert_src1_to_q8_1 = false;
// MUL_MAT_SYCL supports reorder
opt_for_reorder(&ctx, src0, src1, dst, mul_mat_algo::MUL_MAT_SYCL);
ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_sycl, convert_src1_to_q8_1);
}
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
@@ -3225,6 +3311,7 @@ __dpct_inline__ static void k_copy_dst_from_contiguous(
static void ggml_sycl_mul_mat_id(ggml_backend_sycl_context & ctx,
ggml_tensor *dst) try {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/3);
const ggml_tensor *src0 = dst->src[0];
const ggml_tensor *src1 = dst->src[1];
GGML_ASSERT(!ggml_backend_buffer_is_sycl_split(src0->buffer) && "mul_mat_id does not support split buffers");
@@ -3393,37 +3480,45 @@ catch (sycl::exception const &exc) {
}
static void ggml_sycl_scale(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_scale(ctx, dst);
}
static void ggml_sycl_diag_mask_inf(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_diag_mask_inf(ctx, dst);
}
static void ggml_sycl_pool2d(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_pool2d(ctx, dst);
}
static void ggml_sycl_im2col(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/2);
ggml_sycl_op_im2col(ctx, dst);
}
static void ggml_sycl_sum(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
GGML_ASSERT(ggml_is_contiguous(dst->src[0]));
ggml_sycl_op_sum(ctx, dst);
}
static void ggml_sycl_sum_rows(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
GGML_ASSERT(ggml_is_contiguous(dst->src[0]));
ggml_sycl_op_sum_rows(ctx, dst);
}
static void ggml_sycl_argsort(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
GGML_ASSERT(ggml_is_contiguous(dst->src[0]));
ggml_sycl_op_argsort(ctx, dst);
}
static void ggml_sycl_argmax(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
GGML_ASSERT(ggml_is_contiguous(dst->src[0]));
ggml_sycl_op_argmax(ctx, dst);
}
@@ -3509,6 +3604,9 @@ static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct gg
case GGML_UNARY_OP_GELU_QUICK:
ggml_sycl_gelu_quick(ctx, dst);
break;
case GGML_UNARY_OP_GELU_ERF:
ggml_sycl_gelu_erf(ctx, dst);
break;
case GGML_UNARY_OP_TANH:
ggml_sycl_tanh(ctx, dst);
break;
@@ -3717,6 +3815,9 @@ static void ggml_backend_sycl_set_tensor_async(ggml_backend_t backend,
ggml_tensor *tensor,
const void *data, size_t offset,
size_t size) try {
GGML_SYCL_DEBUG("[SYCL] call %s", __func__);
debug_print_tensor(": tensor=", tensor);
GGML_SYCL_DEBUG(" size=%zu offset=%zu\n", size, offset);
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
@@ -3735,13 +3836,16 @@ static void ggml_backend_sycl_get_tensor_async(ggml_backend_t backend,
const ggml_tensor *tensor,
void *data, size_t offset,
size_t size) try {
GGML_SYCL_DEBUG("[SYCL] call %s", __func__);
debug_print_tensor(": tensor=", tensor);
GGML_SYCL_DEBUG(" size=%zu offset=%zu\n", size, offset);
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(buf->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type");
const queue_ptr stream = sycl_ctx->stream(sycl_ctx->device, 0);
SYCL_CHECK(CHECK_TRY_ERROR((stream)->memcpy(
data, (const char *)tensor->data + offset, size).wait()));
data, (const char *)tensor->data + offset, size)));
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
@@ -3753,7 +3857,13 @@ static bool ggml_backend_sycl_cpy_tensor_async(ggml_backend_t backend,
const ggml_tensor *src,
ggml_tensor *dst) try {
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
if (dst->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && ggml_backend_buffer_is_sycl(src->buffer)) {
bool is_cpy_supported = dst->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) &&
ggml_backend_buffer_is_sycl(src->buffer);
GGML_SYCL_DEBUG("[SYCL] call %s", __func__);
debug_print_tensor(": dst=", dst);
debug_print_tensor(" src=", src);
GGML_SYCL_DEBUG(" is_cpy_supported=%d\n", is_cpy_supported);
if (is_cpy_supported) {
/*
DPCT1009:215: SYCL uses exceptions to report errors and does not use the
error codes. The original code was commented out and a warning string
@@ -3761,7 +3871,7 @@ static bool ggml_backend_sycl_cpy_tensor_async(ggml_backend_t backend,
*/
const queue_ptr stream = sycl_ctx->stream(sycl_ctx->device, 0);
SYCL_CHECK(CHECK_TRY_ERROR((stream)->memcpy(
dst->data, src->data, ggml_nbytes(dst)).wait()));
dst->data, src->data, ggml_nbytes(dst))));
return true;
}
@@ -3774,6 +3884,7 @@ catch (sycl::exception const &exc) {
}
static void ggml_backend_sycl_synchronize(ggml_backend_t backend) try {
GGML_SYCL_DEBUG("[SYCL] call %s\n", __func__);
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
const queue_ptr stream = sycl_ctx->stream(sycl_ctx->device, 0);
SYCL_CHECK(CHECK_TRY_ERROR((stream)->wait()));
@@ -3810,11 +3921,43 @@ static void ggml_backend_sycl_graph_compute_impl(ggml_backend_sycl_context * syc
}
}
#ifdef GGML_SYCL_GRAPH
static bool check_graph_compatibility(ggml_cgraph * cgraph) {
if (ggml_sycl_info().device_count > 1) {
// A sycl_ex::command_graph object can only be created for a single device
GGML_LOG_INFO("%s: disabling SYCL graphs due to multiple devices\n", __func__);
return false;
}
for (int i = 0; i < cgraph->n_nodes; i++) {
const ggml_op node_op = cgraph->nodes[i]->op;
switch (node_op) {
default:
break;
case GGML_OP_CONCAT:
// ggml_sycl_op_concat() does a blocking host wait after memcpy operations,
// but wait() can't be called on the events returned by a queue recording
// to a graph.
[[fallthrough]];
case GGML_OP_MUL_MAT_ID:
// ggml_sycl_mul_mat_id() does a blocking host wait on the sycl queue after
// submitting a memcpy operation, but wait() can't be called on a queue that
// is recording to a graph.
GGML_LOG_INFO("%s: disabling SYCL graphs due to unsupported node type %s\n", __func__,
ggml_op_name(node_op));
return false;
}
}
return true;
}
#endif
static ggml_status ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
auto * sycl_ctx = static_cast<ggml_backend_sycl_context *>(backend->context);
#ifdef GGML_SYCL_GRAPH
if (!g_ggml_sycl_disable_graph) {
bool use_sycl_graph = !g_ggml_sycl_disable_graph && check_graph_compatibility(cgraph);
if (use_sycl_graph) {
const bool graph_support = dpct::get_device(sycl_ctx->device).has(sycl::aspect::ext_oneapi_limited_graph);
if (!graph_support) {
GGML_SYCL_DEBUG("[SYCL-GRAPH] can not use graphs on device:%d\n", sycl_ctx->device);
@@ -3875,7 +4018,7 @@ catch (sycl::exception const &exc)
}
static void ggml_backend_sycl_event_wait(ggml_backend_t backend, ggml_backend_event_t event) try {
GGML_SYCL_DEBUG("[SYCL] call %s\n", __func__);
sycl::event* sycl_event = static_cast<sycl::event*>(event->context);
if (ggml_backend_is_sycl(backend)) {
@@ -4017,6 +4160,7 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_UNARY_OP_HARDSIGMOID:
case GGML_UNARY_OP_HARDSWISH:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_GELU_ERF:
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_EXP:
case GGML_UNARY_OP_SGN:
@@ -4162,6 +4306,7 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
#endif
case GGML_OP_NORM:
case GGML_OP_RMS_NORM:
return true;
case GGML_OP_L2_NORM:
case GGML_OP_GROUP_NORM:
return ggml_is_contiguous(op->src[0]);
@@ -4173,14 +4318,6 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_SOFT_MAX:
return true;
case GGML_OP_ROPE:
{
const int mode = ((const int32_t *) op->op_params)[2];
// mode is not used as a bitmask in practice, the various rope type modes are independent implementations
if (mode == GGML_ROPE_TYPE_MROPE) {
return false;
}
return true;
}
case GGML_OP_IM2COL:
return true;
case GGML_OP_UPSCALE:
@@ -4270,6 +4407,7 @@ static void ggml_backend_sycl_device_event_free(ggml_backend_dev_t dev, ggml_bac
static void ggml_backend_sycl_device_event_synchronize(ggml_backend_dev_t dev, ggml_backend_event_t event) try {
GGML_UNUSED(dev);
GGML_SYCL_DEBUG("[SYCL] call %s\n", __func__);
sycl::event *sycl_event = static_cast<sycl::event *>(event->context);
SYCL_CHECK(CHECK_TRY_ERROR(sycl_event->wait()));

View File

@@ -76,6 +76,7 @@ static void gated_linear_attn_f32_kernel(const dpct::queue_ptr stream, u_int B,
}
void ggml_sycl_op_gated_linear_attn(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/5);
const float * k_d = static_cast<const float *>(dst->src[0]->data);
const float * v_d = static_cast<const float *>(dst->src[1]->data);
const float * r_d = static_cast<const float *>(dst->src[2]->data);

View File

@@ -29,8 +29,6 @@ static void mul_mat_vec_q_reorder(const void * __restrict__ vx, const void * __r
static_assert(blocks_per_subgroup > 0);
static_assert(block_elements_per_subgroup > 0);
const block_q8_1 * y = (const block_q8_1 *) vy;
float partial_sum = 0.0f;
for (int i = sg.get_local_linear_id() / block_elements_per_subgroup; i < blocks_per_row; i += blocks_per_subgroup) {
const int ibx = row * blocks_per_row + i; // x block index
@@ -40,13 +38,15 @@ static void mul_mat_vec_q_reorder(const void * __restrict__ vx, const void * __r
// Y block index that aligns with ibx
const int iby = i * block_type::block_to_q8_1_ratio();
const int8_t* q8_1_quant_ptr = (const int8_t*)vy + iby * QK8_1;
const sycl::half2* q8_1_ds_ptr = (const sycl::half2*)((const char*)vy + ncols + iby * sizeof(sycl::half2));
#pragma unroll
for (int elem = 0; elem < block_elements_per_subgroup; elem += WARP_SIZE) {
// x block quant index when casting the quants to int
const int iqs = elem + block_traits::vdr_mmvq * (sg.get_local_linear_id() % block_elements_per_subgroup);
partial_sum += reorder_vec_dot_q_sycl()(vx, bx_offset, d_offset, &y[iby], iqs, nblocks);
partial_sum += reorder_vec_dot_q_sycl()(vx, bx_offset, d_offset, q8_1_quant_ptr, q8_1_ds_ptr, iqs, nblocks);
}
}
@@ -1059,8 +1059,10 @@ void ggml_sycl_op_mul_mat_vec_q(ggml_backend_sycl_context & ctx, const ggml_tens
case GGML_TYPE_Q4_K:
if ((ggml_tensor_extra_gpu *) dst->src[0]->extra &&
((ggml_tensor_extra_gpu *) dst->src[0]->extra)->optimized_feature.reorder) {
GGML_SYCL_DEBUG("Calling reorder_mul_mat_vec_q4_k_q8_1_sycl\n");
reorder_mul_mat_vec_q4_k_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
} else {
GGML_SYCL_DEBUG("Calling mul_mat_vec_q4_K_q8_1_sycl\n");
mul_mat_vec_q4_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
}
break;

View File

@@ -1,40 +1,50 @@
#include "norm.hpp"
#include "ggml-sycl/common.hpp"
#include "ggml-sycl/presets.hpp"
static void norm_f32(const float* x, float* dst, const int ncols, const float eps,
const sycl::nd_item<3>& item_ct1, sycl::float2* s_sum, int block_size) {
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
item_ct1.get_local_id(1);
const int tid = item_ct1.get_local_id(2);
static void norm_f32(const float* x, float* dst, const int ncols, const int64_t stride_row, const int64_t stride_channel,
const int64_t stride_sample, const float eps, const sycl::nd_item<3>& item_ct1, sycl::float2* s_sum, int block_size) {
const int nrows = item_ct1.get_group_range(2);
const int nchannels = item_ct1.get_group_range(1);
const int nthreads = item_ct1.get_local_range(2);
const int sample = item_ct1.get_group(0);
const int channel = item_ct1.get_group(1);
const int row = item_ct1.get_group(2);
const int tid = item_ct1.get_local_id(2);
const int nwarps = nthreads / WARP_SIZE;
const auto strided_offset = calculate_offset<3>({stride_sample, stride_channel, stride_row}, {sample, channel, row});
const auto packed_offset = calculate_offset<3>({nchannels * nrows * ncols, nrows * ncols, ncols}, {sample, channel, row});
x += strided_offset;
dst += packed_offset;
sycl::float2 mean_var = sycl::float2(0.f, 0.f);
for (int col = tid; col < ncols; col += block_size) {
const float xi = x[row * ncols + col];
const float xi = x[col];
mean_var.x() += xi;
mean_var.y() += xi * xi;
}
// sum up partial sums
mean_var = warp_reduce_sum(mean_var, item_ct1);
if (block_size > WARP_SIZE) {
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = mean_var;
if (block_size > WARP_SIZE) {
const auto sub_group = item_ct1.get_sub_group();
const auto sg_id = sub_group.get_group_linear_id();
const auto wi_in_sg = sub_group.get_local_linear_id();
if (wi_in_sg == 0) {
s_sum[sg_id] = mean_var;
}
/*
DPCT1118:0: SYCL group functions and algorithms must be encountered in
converged control flow. You may need to adjust the code.
*/
item_ct1.barrier(sycl::access::fence_space::local_space);
mean_var = 0.f;
size_t nreduce = nwarps / WARP_SIZE;
const size_t nreduce = ceil_div(nwarps, WARP_SIZE);
for (size_t i = 0; i < nreduce; i += 1)
{
mean_var += s_sum[lane_id + i * WARP_SIZE];
mean_var += s_sum[wi_in_sg + i * WARP_SIZE];
}
mean_var = warp_reduce_sum(mean_var, item_ct1);
}
@@ -44,7 +54,7 @@ static void norm_f32(const float* x, float* dst, const int ncols, const float ep
const float inv_std = sycl::rsqrt(var + eps);
for (int col = tid; col < ncols; col += block_size) {
dst[row * ncols + col] = (x[row * ncols + col] - mean) * inv_std;
dst[col] = (x[col] - mean) * inv_std;
}
}
@@ -135,39 +145,51 @@ static void group_norm_f32(const float* x, float* dst, const int group_size, con
}
}
static void rms_norm_f32(const float* x, float* dst, const int ncols, const float eps,
const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) {
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
item_ct1.get_local_id(1);
const int tid = item_ct1.get_local_id(2);
static void rms_norm_f32(const float* x, float* dst, const int ncols, const int64_t stride_row, const int64_t stride_channel,
const int64_t stride_sample, const float eps, const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) {
const int nrows = item_ct1.get_group_range(2);
const int nchannels = item_ct1.get_group_range(1);
const int sample = item_ct1.get_group(0);
const int channel = item_ct1.get_group(1);
const int row = item_ct1.get_group(2);
const int nthreads = item_ct1.get_local_range(2);
const int tid = item_ct1.get_local_id(2);
const int nwarps = nthreads / WARP_SIZE;
const auto strided_offset = calculate_offset<3>({stride_sample, stride_channel, stride_row}, {sample, channel, row});
const auto packed_offset = calculate_offset<3>({nchannels * nrows * ncols, nrows * ncols, ncols}, {sample, channel, row});
x += strided_offset;
dst += packed_offset;
float tmp = 0.0f; // partial sum for thread in warp
for (int col = tid; col < ncols; col += block_size) {
const float xi = x[row * ncols + col];
const float xi = x[col];
tmp += xi * xi;
}
// sum up partial sums
tmp = warp_reduce_sum(tmp, item_ct1);
if (block_size > WARP_SIZE) {
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = tmp;
const auto sub_group = item_ct1.get_sub_group();
const auto sg_id = sub_group.get_group_linear_id();
const auto wi_in_sg = sub_group.get_local_linear_id();
if (wi_in_sg == 0) {
s_sum[sg_id] = tmp;
}
/*
DPCT1118:3: SYCL group functions and algorithms must be encountered in
converged control flow. You may need to adjust the code.
*/
item_ct1.barrier(sycl::access::fence_space::local_space);
size_t nreduce = nwarps / WARP_SIZE;
const size_t nreduce = ceil_div(nwarps, WARP_SIZE);
tmp = 0.f;
for (size_t i = 0; i < nreduce; i += 1)
{
tmp += s_sum[lane_id + i * WARP_SIZE];
tmp += s_sum[wi_in_sg + i * WARP_SIZE];
}
tmp = warp_reduce_sum(tmp, item_ct1);
}
@@ -176,7 +198,7 @@ static void rms_norm_f32(const float* x, float* dst, const int ncols, const floa
const float scale = sycl::rsqrt(mean + eps);
for (int col = tid; col < ncols; col += block_size) {
dst[row * ncols + col] = scale * x[row * ncols + col];
dst[col] = scale * x[col];
}
}
@@ -224,20 +246,20 @@ static void l2_norm_f32(const float* x, float* dst, const int ncols, const float
}
}
static void norm_f32_sycl(const float* x, float* dst, const int ncols,
const int nrows, const float eps,
queue_ptr stream, int device) {
static void norm_f32_sycl(const float * x, float * dst, const int ncols, const int nrows, const int nchannels, const int nsamples,
const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample,
const float eps, queue_ptr stream, int device) {
const sycl::range<3> global_dims(nsamples, nchannels, nrows);
GGML_ASSERT(ncols % WARP_SIZE == 0);
if (ncols < 1024) {
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
stream->submit([&](sycl::handler& cgh) {
cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
block_dims),
sycl::nd_range<3>(global_dims * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
[[sycl::reqd_sub_group_size(WARP_SIZE)]] {
norm_f32(x, dst, ncols, eps, item_ct1,
nullptr, WARP_SIZE);
norm_f32(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, item_ct1, nullptr, WARP_SIZE);
});
});
}
@@ -252,15 +274,12 @@ static void norm_f32_sycl(const float* x, float* dst, const int ncols,
*/
stream->submit([&](sycl::handler& cgh) {
sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
sycl::range<1>(work_group_size / WARP_SIZE), cgh);
sycl::range<1>(work_group_size / WARP_SIZE), cgh);
cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
block_dims),
sycl::nd_range<3>(global_dims * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
[[sycl::reqd_sub_group_size(WARP_SIZE)]] {
norm_f32(x, dst, ncols, eps, item_ct1,
get_pointer(s_sum_acc_ct1), work_group_size);
norm_f32(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, item_ct1, get_pointer(s_sum_acc_ct1), work_group_size);
});
});
}
@@ -313,21 +332,20 @@ static void group_norm_f32_sycl(const float* x, float* dst,
}
}
static void rms_norm_f32_sycl(const float* x, float* dst, const int ncols,
const int nrows, const float eps,
queue_ptr stream, int device) {
static void rms_norm_f32_sycl(const float* x, float* dst, const int ncols, const int nrows, const int nchannels, const int nsamples,
const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample, const float eps, queue_ptr stream, int device) {
GGML_ASSERT(ncols % WARP_SIZE == 0);
// printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE);
const sycl::range<3> global_dims(nsamples, nchannels, nrows);
if (ncols < 1024) {
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
stream->submit([&](sycl::handler& cgh) {
cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
block_dims),
sycl::nd_range<3>(global_dims * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
[[sycl::reqd_sub_group_size(WARP_SIZE)]] {
rms_norm_f32(x, dst, ncols, eps, item_ct1,
nullptr, WARP_SIZE);
rms_norm_f32(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, item_ct1, nullptr, WARP_SIZE);
});
});
}
@@ -344,12 +362,10 @@ static void rms_norm_f32_sycl(const float* x, float* dst, const int ncols,
sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE),
cgh);
cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
block_dims),
sycl::nd_range<3>(global_dims * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
[[sycl::reqd_sub_group_size(WARP_SIZE)]] {
rms_norm_f32(x, dst, ncols, eps, item_ct1,
get_pointer(s_sum_acc_ct1), work_group_size);
rms_norm_f32(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, item_ct1, get_pointer(s_sum_acc_ct1), work_group_size);
});
});
}
@@ -398,12 +414,12 @@ static void l2_norm_f32_sycl(const float* x, float* dst, const int ncols,
}
void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const int64_t ne00 = dst->src[0]->ne[0];
const int64_t nrows = ggml_nrows(dst->src[0]);
GGML_TENSOR_UNARY_OP_LOCALS
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
@@ -411,8 +427,14 @@ void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
GGML_ASSERT(eps >= 0.0f);
const size_t ts0 = ggml_type_size(src0->type);
GGML_ASSERT(nb00 == ts0);
const int64_t s01 = nb01 / ts0;
const int64_t s02 = nb02 / ts0;
const int64_t s03 = nb03 / ts0;
norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream, ctx.device);
norm_f32_sycl(src0_dd, dst_dd, ne00, ne01, ne02, ne03, s01, s02, s03, eps, main_stream, ctx.device);
}
void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
@@ -436,11 +458,10 @@ void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
void ggml_sycl_op_rms_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const int64_t ne00 = dst->src[0]->ne[0];
const int64_t nrows = ggml_nrows(dst->src[0]);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
@@ -450,7 +471,13 @@ void ggml_sycl_op_rms_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
rms_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream, ctx.device);
GGML_TENSOR_UNARY_OP_LOCALS
const size_t ts0 = ggml_type_size(src0->type);
GGML_ASSERT(nb00 == ts0);
const int64_t s01 = nb01 / ts0;
const int64_t s02 = nb02 / ts0;
const int64_t s03 = nb03 / ts0;
rms_norm_f32_sycl(src0_dd, dst_dd, ne00, ne01, ne02, ne03, s01, s02, s03, eps, main_stream, ctx.device);
}
void ggml_sycl_op_l2_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {

View File

@@ -1,6 +1,7 @@
#include "outprod.hpp"
void ggml_sycl_op_out_prod(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/2);
const ggml_tensor *src0 = dst->src[0];
const ggml_tensor *src1 = dst->src[1];

View File

@@ -49,10 +49,7 @@ static void rope_norm(const T * x, T * dst, const int ne0, const int ne1, const
if (i0 >= n_dims) {
const int i = row * ne0 + i0;
dst[i + 0] = x[i + 0];
dst[i + 1] = x[i + 1];
*reinterpret_cast<sycl::vec<T, 2> *>(dst + i) = *reinterpret_cast<const sycl::vec<T, 2> *>(x + i);
return;
}
@@ -93,10 +90,7 @@ static void rope_neox(const T * x, T * dst, const int ne0, const int ne1, const
if (i0 >= n_dims) {
const int i = row * ne0 + i0;
dst[i + 0] = x[i + 0];
dst[i + 1] = x[i + 1];
*reinterpret_cast<sycl::vec<T, 2> *>(dst + i) = *reinterpret_cast<const sycl::vec<T, 2> *>(x + i);
return;
}
@@ -122,6 +116,63 @@ static void rope_neox(const T * x, T * dst, const int ne0, const int ne1, const
dst[i + n_dims / 2] = x0 * sin_theta + x1 * cos_theta;
}
template <typename T, bool has_ff>
static void rope_multi(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
const size_t s2, const int n_dims, const int32_t * pos, const float freq_scale,
const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims,
const float theta_scale, const float * freq_factors, const mrope_sections sections,
const sycl::nd_item<3> & item_ct1) {
// get index pos
const int i0 = 2 * (item_ct1.get_group(1) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1));
if (i0 >= ne0) {
return;
}
const int row_dst = (item_ct1.get_group(2) * item_ct1.get_local_range(2)) + item_ct1.get_local_id(2);
if (i0 >= n_dims) {
const int i = row_dst*ne0 + i0;
*reinterpret_cast<sycl::vec<T, 2> *>(dst + i) = *reinterpret_cast<const sycl::vec<T, 2> *>(x + i);
return;
}
const int row_x = row_dst % ne1;
const int channel_x = row_dst / ne1;
const int idst = (row_dst * ne0) + (i0 / 2);
const size_t ix = ((size_t) channel_x * s2) + ((size_t) row_x * s1) + (i0 / 2);
const int sect_dims = sections.v[0] + sections.v[1] + sections.v[2] + sections.v[3];
const int sec_w = sections.v[1] + sections.v[0];
const int sector = (i0 / 2) % sect_dims;
float theta_base = 0.0;
if (sector < sections.v[0]) {
theta_base = pos[channel_x]*sycl::pow(theta_scale, i0/2.0f);
}
else if (sector >= sections.v[0] && sector < sec_w) {
theta_base = pos[channel_x + ne2 * 1]*sycl::pow(theta_scale, i0/2.0f);
}
else if (sector >= sec_w && sector < sec_w + sections.v[2]) {
theta_base = pos[channel_x + ne2 * 2]*sycl::pow(theta_scale, i0/2.0f);
}
else if (sector >= sec_w + sections.v[2]) {
theta_base = pos[channel_x + ne2 * 3]*sycl::pow(theta_scale, i0/2.0f);
}
const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f;
float cos_theta;
float sin_theta;
rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
const float x0 = x[ix + 0];
const float x1 = x[ix + n_dims/2];
// store results in dst
dst[idst + 0] = x0 * cos_theta - x1 * sin_theta;
dst[idst + n_dims/2] = x0 * sin_theta + x1 * cos_theta;
}
template <typename T, bool has_ff>
static void rope_vision(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
const size_t s2, const int n_dims, const int32_t * pos, const float freq_scale,
@@ -171,7 +222,7 @@ static void rope_norm_sycl(const T * x, T * dst, const int ne0, const int ne1, c
const float * freq_factors, queue_ptr stream) {
GGML_ASSERT(ne0 % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
const int num_blocks_x = (ne0 + 2 * SYCL_ROPE_BLOCK_SIZE - 1) / (2 * SYCL_ROPE_BLOCK_SIZE);
const int num_blocks_x = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
const sycl::range<3> block_nums(1, num_blocks_x, nr);
const float theta_scale = powf(freq_base, -2.0f / n_dims);
@@ -208,7 +259,7 @@ static void rope_neox_sycl(const T * x, T * dst, const int ne0, const int ne1, c
const rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) {
GGML_ASSERT(ne0 % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
const int num_blocks_x = (ne0 + 2 * SYCL_ROPE_BLOCK_SIZE - 1) / (2 * SYCL_ROPE_BLOCK_SIZE);
const int num_blocks_x = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
const sycl::range<3> block_nums(1, num_blocks_x, nr);
const float theta_scale = powf(freq_base, -2.0f / n_dims);
@@ -228,6 +279,40 @@ static void rope_neox_sycl(const T * x, T * dst, const int ne0, const int ne1, c
}
}
template <typename T>
static void rope_multi_sycl(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
const size_t s2, const int n_dims, const int nr, const int32_t * pos,
const float freq_scale, const float freq_base, const float ext_factor,
const float attn_factor, const rope_corr_dims corr_dims, const float * freq_factors,
const mrope_sections sections, queue_ptr stream) {
GGML_ASSERT(ne0 % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
const int n_blocks_y = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
const sycl::range<3> grid_dims(1, n_blocks_y, nr);
const sycl::nd_range<3> nd_range(grid_dims * block_dims, block_dims);
const float theta_scale = std::pow(freq_base, -2.0f / n_dims);
// Add FP16 capability check if T could be sycl::half
if constexpr (std::is_same_v<T, sycl::half>) {
dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
}
// launch kernel
if (freq_factors == nullptr) {
stream->parallel_for(nd_range, [=](sycl::nd_item<3> item_ct1) {
rope_multi<T, false>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
corr_dims, theta_scale, freq_factors, sections, item_ct1);
});
} else {
stream->parallel_for(nd_range, [=](sycl::nd_item<3> item_ct1) {
rope_multi<T, true>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
corr_dims, theta_scale, freq_factors, sections, item_ct1);
});
}
}
// rope vision
template <typename T>
static void rope_vision_sycl(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
@@ -237,7 +322,7 @@ static void rope_vision_sycl(const T * x, T * dst, const int ne0, const int ne1,
const mrope_sections sections, queue_ptr stream) {
GGML_ASSERT(ne0 % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
const int n_blocks_y = (ne0 + 2 * SYCL_ROPE_BLOCK_SIZE - 1) / (2 * SYCL_ROPE_BLOCK_SIZE);
const int n_blocks_y = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
const sycl::range<3> grid_dims(1, n_blocks_y, nr);
const sycl::nd_range<3> nd_range(grid_dims * block_dims, block_dims);
@@ -298,8 +383,17 @@ inline void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst)
memcpy(&sections.v, (int32_t *) dst->op_params + 11, sizeof(int)*4);
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
if (is_mrope) {
GGML_ASSERT(sections.v[0] > 0 || sections.v[1] > 0 || sections.v[2] > 0);
}
if (is_vision) {
GGML_ASSERT(n_dims == ne00/2);
}
const int32_t * pos = (const int32_t *) dst->src[1]->data;
const float * freq_factors = nullptr;
@@ -326,6 +420,19 @@ inline void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst)
} else {
GGML_ABORT("fatal error");
}
} else if (is_mrope && !is_vision) {
GGML_SYCL_DEBUG("%s: mrope path\n", __func__);
if (dst->src[0]->type == GGML_TYPE_F16) {
rope_multi_sycl((const sycl::half *)dst->src[0]->data, (sycl::half *)dst->data, ne00, ne01, ne02, s01,
s02, n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims,
freq_factors, sections, main_stream);
} else if (dst->src[0]->type == GGML_TYPE_F32) {
rope_multi_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, ne02, s01, s02, n_dims,
nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections,
main_stream);
} else {
GGML_ABORT("Fatal error: Tensor type unsupported!");
}
} else if (is_vision) {
GGML_SYCL_DEBUG("%s: vision path\n", __func__);
if (dst->src[0]->type == GGML_TYPE_F16) {
@@ -355,8 +462,7 @@ inline void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst)
}
void ggml_sycl_rope(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/3);
ggml_sycl_op_rope(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}

View File

@@ -225,7 +225,7 @@ static void soft_max_f32_sycl(const float * x, const T * mask,
}
void ggml_sycl_op_soft_max(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/2);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
@@ -249,16 +249,13 @@ void ggml_sycl_op_soft_max(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
if (dst->src[1] && dst->src[1]->type == GGML_TYPE_F16) {
const sycl::half * src1_dd = static_cast<sycl::half *>(dst->src[1]->data);
GGML_SYCL_DEBUG("%s: F16 mask\n", __func__);
soft_max_f32_sycl<sycl::half>(src0_dd, src1_dd, dst_dd, ne00, nrows_x, nrows_y, scale, max_bias,
main_stream, ctx.device);
} else if (dst->src[1] && dst->src[1]->type == GGML_TYPE_F32) {
const float * src1_dd = static_cast<const float *>(dst->src[1]->data);
GGML_SYCL_DEBUG("%s: F32 mask\n", __func__);
soft_max_f32_sycl<float>(src0_dd, src1_dd, dst_dd, ne00, nrows_x, nrows_y, scale, max_bias, main_stream, ctx.device);
} else {
/* mask unavailable */
GGML_SYCL_DEBUG("%s: No mask\n", __func__);
soft_max_f32_sycl<float>(src0_dd, nullptr, dst_dd, ne00, nrows_x, nrows_y, scale, max_bias, main_stream, ctx.device);
}
}

Some files were not shown because too many files have changed in this diff Show More