* Add parameter buffer pool, batching of submissions, refactor command building/submission
* Add header for linux builds
* Free staged parameter buffers at once
* Format with clang-format
* Fix thread-safe implementation
* Use device implicit synchronization
* Update workflow to use custom release
* Remove testing branch workflow
This commit removes the right alignment the `n_stream` value in the
log message in the `llama_kv_cache_unified` constructor.
The motivation for this change is to enhance the readability of log
message. Currently the output looks like this:
```console
llama_kv_cache_unified: size = 2048.00 MiB ( 4096 cells, 32 layers, 1/ 1 seqs), K (f16): 1024.00 MiB, V (f16): 1024.00 MiB
```
Notice that the `n_stream` value is right aligned, which makes it a
little harder to read.
With the change in this commit the output will look like
```console
llama_kv_cache_unified: size = 2048.00 MiB ( 4096 cells, 32 layers, 1/1 seqs), K (f16): 1024.00 MiB, V (f16): 1024.00 MiB
```
- Increase tile size for k-quants, to match non-k-quants
- Choose more carefully between large and medium tiles, considering how it
interacts with split_k
- Allow larger/non-power of two split_k, and make the splits a multiple of 256
- Use split_k==3 to when >1/2 and <=2/3 of the SMs would hae been used
* vulkan: optimizations for direct convolution
- Empirically choose a better tile size. Reducing BS_K/BS_NPQ helps fill
the GPU. The new size should be amenable to using coopmat, too.
- Fix shmem bank conflicts. 16B padding should work with coopmat.
- Some explicit loop unrolling.
- Skip math/stores work for parts of the tile that are OOB.
- Apply fastdiv opt.
- Disable shuffles for NV.
* Three tiles sizes for CONV_2D, and a heuristic to choose
* reallow collectives for pre-Turing
* make SHMEM_PAD a spec constant
* fixes for intel perf - no shmem padding, placeholder shader core count
* shader variants with/without unrolling
* 0cc4m's fixes for AMD perf
Co-authored-by: 0cc4m <picard12@live.de>
---------
Co-authored-by: 0cc4m <picard12@live.de>
* Initial Q2_K Block Interleaving Implementation
* Addressed review comments and clean up of the code
* Post rebase fixes
* Initial CI/CD fixes
* Update declarations in arch-fallback.h
* Changes for GEMV Q2_K in arch-fallback.h
* Enable repacking only on AVX-512 machines
* Update comments in repack.cpp
* Address q2k comments
---------
Co-authored-by: Manogna-Sree <elisetti.manognasree@multicorewareinc.com>
* llama-server : implement universal assisted decoding
* Erase prompt tail for kv-cache
* set vocab_dft_compatible in common_speculative
* rename ctx_main to ctx_tgt
* move vocab_dft_compatible to spec struct
* clear mem_dft, remove mem
* detokenize id_last for incompatible models
* update comment
* add --spec-replace flag
* accept special tokens when translating between draft/main models
* Escape spec-replace
* clamp draft result to size to params.n_draft
* fix comment
* clean up code
* restore old example
* log common_speculative_are_compatible in speculative example
* fix
* Update common/speculative.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update common/speculative.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update common/speculative.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Add support for Llada-8b: diffusion model
* Add README
* Fix README and convert_hf_to_gguf
* convert_hf_to_gguf.py: address review comments
* Make everything in a single example
* Remove model-specific sampling
* Remove unused argmax
* Remove braced initializers, improve README.md a bit
* Add diffusion specific gguf params in set_vocab, remove setting rope_theta and rms_norm_eps
* Remove adding the mask token
* Move add_add_bos_token to set_vocab
* use add_bool in gguf_writer.py
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-22-cmake-vulkan (push) Waiting to run
CI / ubuntu-22-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=macOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=tvOS) (push) Waiting to run
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
This commit adds support for the `embd_normalize` parameter in the
server code.
The motivation for this is that currently if the server is started with
a pooling type that is not `none`, then Euclidean/L2 normalization will
be the normalization method used for embeddings. However, this is not
always the desired behavior, and users may want to use other
normalization (or none) and this commit allows that.
Example usage:
```console
curl --request POST \
--url http://localhost:8080/embedding \
--header "Content-Type: application/json" \
--data '{"input": "Hello world today", "embd_normalize": -1}
```
The pipeline member can be cast to VkPipeline.
This is a VkPipeline_T* on 64 bit but a uint64_t on 32 bit.
Cf. VK_DEFINE_NON_DISPATCHABLE_HANDLE documentation.
This is useful for testing for regressions on GCN with CDNA hardware.
With GGML_HIP_MMQ_MFMA=Off and GGML_CUDA_FORCE_MMQ=On we can conveniently test the GCN code path on CDNA. As CDNA is just GCN renamed with MFMA added and limited use ACC registers, this provides a good alternative for regression testing when GCN hardware is not available.
llvm with the amdgcn target dose not support unrolling loops with conditional break statements, when those statements can not be resolved at compile time. Similar to other places in GGML lets simply ignore this warning.
* Extend test case filtering
1. Allow passing multiple (comma-separated?) ops to test-backend-ops. This can be convenient when working on a set of ops, when you'd want to test them together (but without having to run every single op). For example:
`test-backend-ops.exe test -o "ADD,RMS_NORM,ROPE,SILU,SOFT_MAX"`
2. Support full test-case variation string in addition to basic op names. This would make it easy to select a single variation, either for testing or for benchmarking. It can be particularly useful for profiling a particular variation (ex. a CUDA kernel), for example:
`test-backend-ops.exe perf -b CUDA0 -o "MUL_MAT(type_a=f16,type_b=f32,m=4096,n=512,k=14336,bs=[1,1],nr=[1,1],per=[0,1,2,3],v=2)"`
These two can be combined. As the current `-o`, this change doesn't try to detect/report an error if an filter doesn't name existing ops (ex. misspelled)
* Updating the usage help text
* Update tests/test-backend-ops.cpp
Currently if RPC servers are specified with '--rpc' and there is a local
GPU available (e.g. CUDA), the benchmark will be performed only on the
RPC device(s) but the backend result column will say "CUDA,RPC" which is
incorrect. This patch is adding all local GPU devices and makes
llama-bench consistent with llama-cli.
* remove redundant code in riscv
* remove redundant code in arm
* remove redundant code in loongarch
* remove redundant code in ppc
* remove redundant code in s390
* remove redundant code in wasm
* remove redundant code in x86
* remove fallback headers
* fix x86 ggml_vec_dot_q8_0_q8_0
* SYCL: Add set_rows support for quantized types
This commit adds support for GGML_OP_SET_ROWS operation for various
quantized tensor types (Q8_0, Q5_1, Q5_0, Q4_1, Q4_0, IQ4_NL) and BF16
type in the SYCL backend.
The quantization/dequantization copy kernels were moved from cpy.cpp
to cpy.hpp to make them available for set_rows.cpp.
This addresses part of the TODOs mentioned in the code.
* Use get_global_linear_id() instead
ggml-ci
* Fix formatting
ggml-ci
* Use const for ne11 and size_t variables in set_rows_sycl_q
ggml-ci
* Increase block size for q kernel to 256
ggml-ci
* Cleanup imports
* Add float.h to cpy.hpp
* support smallthinker
* support 20b softmax, 4b no sliding window
* new build_moe_ffn_from_probs, and can run 4b
* fix 4b rope bug
* fix python type check
* remove is_moe judge
* remove set_dense_start_swa_pattern function and modify set_swa_pattern function
* trim trailing whitespace
* remove get_vocab_base of SmallThinkerModel in convert_hf_to_gguf.py
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* better whitespace
Apply suggestions from code review
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* use GGML_ASSERT for expert count validation
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Improve null pointer check for probs
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* use template parameter for SWA attention logic
* better whitespace
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* move the creation of inp_out_ids before the layer loop
* remove redundant judge for probs
---------
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : clarify comment about pp and tg graphs [no ci]
This commit clarifies the comment in `llama-context.cpp` regarding the
prefill prompt (pp), and token generation (tg) graphs.
The motivation for this is that I've struggled to remember these and had
to look them up more than once, so I thought it would be helpful to add
a comment that makes it clear what these stand for.
* squash! llama : clarify comment about pp and tg graphs [no ci]
Change "pp" to "prompt processing".
This commit adds support for MFMA instructions to MMQ. CDNA1/GFX908 CDNA2/GFX90a and CDNA3/GFX942 are supported by the MFMA-enabled code path added by this commit. The code path and stream-k is only enabled on CDNA3 for now as it fails to outperform blas in all cases on the other devices.
Blas is currently only consistently outperformed on CDNA3 due to issues in the amd-provided blas libraries.
This commit also improves the awareness of MMQ towards different warp sizes and as a side effect improves the performance of all quant formats besides q4_0 and q4_1, which regress slightly, on GCN gpus.
* feat: Add s_off as a parameter in the args struct
This may not be necessary, but it more closely mirrors the CUDA kernel
Branch: GraniteFourPerf
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* perf: Parallelize mamba2 SSM_SCAN metal kernel over d_state
This is a first attempt at optimizing the metal kernel. The changes here
are:
- Launch the kernel with a thread group of size d_state
- Use simd groups and shared memory to do the summation for the y
computation
When tested with G4 tiny preview, this shows roughly a 3x speedup on
prefill and 15% speedup on decode.
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Update logic to correctly do the multi-layer parallel sum
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Correctly size the shared memory bufer and assert expected size relationships
Branch: GraniteFourPerf
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* refactor: Compute block offsets once rather than once per token
Branch: GraniteFourPerf
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Use local variable for state recursion
Branch: GraniteFourPerf
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Use a secondary simd_sum instead of a for loop
Branch: GraniteFourPerf
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Add assertion and comment about relationship between simd size and num simd groups
Branch: GraniteFourPerf
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Parallelize of d_state for mamba-1
Branch: GraniteFourPerf
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Parallel sum in SSM_CONV
Branch: GraniteFourPerf
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* Revert "feat: Parallel sum in SSM_CONV"
After discussion with @compilade, the size of the parallelism here is
not worth the cost in complexity or overhead of the parallel for.
https://github.com/ggml-org/llama.cpp/pull/14743#discussion_r2223395357
This reverts commit 16bc059660.
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* refactor: Simplify shared memory sizing
Branch: GraniteFourPerf
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-Authored-By: Georgi Gerganov <ggerganov@gmail.com>
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This patch updates the example in docs/development/HOWTO-add-model.md to
reflect recent changes after `TextModel` and `MmprojModel` were introduced.
It replaces the outdated `Model` base class with `TextModel` or `MmprojModel`
and updates the registration example accordingly.
Signed-off-by: Wook Song <wook16.song@samsung.com>
Neither "g" nor "x" are valid portPos specifiers per the official
[graphviz documents](https://graphviz.org/docs/attr-types/portPos/):
> If a compass point is used, it must have the form "n","ne","e","se","s","sw","w","nw","c","_".
I tested locally for it to fall back to default portPos specifier if an
invalid portPos is specified. As a consequence, we can remove associated
code.
* CMake config: Create target only once
Fix error on repeated find_package(ggml).
For simplicity, check only for the top-level ggml::ggml.
* CMake config: Add CUDA link libs
* CMake config: Add OpenCL link libs
* CMake config: Use canonical find_dependency
Use set and append to control link lib variables.
Apply more $<LINK_ONLY...>.
* CMake config: Wire OpenMP dependency
This commit removes the inclusion of `<cstdlib>`.
The motivation for this change is that this source file does not seem to
use any functions from this header and the comment about `qsort` is a
little misleading/confusing.
MiniCPM models use the llm_build_granite constructor which was changed
in the Granite Four PR to use hparams.rope_finetuned instead of a
use_rope parameter. MiniCPM models need rope enabled by default.
Fixes inference from gibberish to correct responses.
* weight format to nz for 310p
* remove quant weight format to nz
* clean code
* fix
* make the conditions for converting weights to NZ format consistent
* clean code
* Mtmd: add a way to select device for vision encoder
* simplify
* format
* Warn user if manual device selection failed
* initialize backend to nullptr
* Documentation: Revised and further improved the Vulkan instructions for Linux users in build.md.
* Minor: Revise step 2 of the Vulkan instructions for Linux users in build.md
* ggml/ggml-vulkan/test-backend-ops: adds CONV_2D for Vulkan
* ggml-vulkan: adds f32 scalar shader to compute 2D convolution directly
with gemm (no need for im2col),
* test-backend-ops: adds test_case_ref to check the validity/performance of ops
against reference implementations having different graphs, adds tests
* * Performance fixes: minimized branch divergence, uses collectives to
eliminate redundant calculation, macros removed.
* Kernel shared memory size check
* Updates test-backend-ops to support graphs for performance
measurement.
* * Apple/Win32 compile errors fixed
* Subgroup size used to determine tile size -> fixes llvmpipe errors.
* Collectives disabled by default.
* Intel support is disabled as the performance is poor.
* Conv2d enabled for Intel with disabled collectives, disabled for Apple
* test-backend-ops modifications are reverted
* Trailing spaces and missing override fixed.
* Triggering pipeline relaunch.
* Code formatted with .clang-format.
* imatrix : allow processing multiple chunks per batch
* perplexity : simplify filling the batch
* imatrix : fix segfault when using a single chunk per batch
* imatrix : use GGUF to store imatrix data
* imatrix : fix conversion problems
* imatrix : use FMA and sort tensor names
* py : add requirements for legacy imatrix convert script
* perplexity : revert changes
* py : include imatrix converter requirements in toplevel requirements
* imatrix : avoid using designated initializers in C++
* imatrix : remove unused n_entries
* imatrix : allow loading mis-ordered tensors
Sums and counts tensors no longer need to be consecutive.
* imatrix : more sanity checks when loading multiple imatrix files
* imatrix : use ggml_format_name instead of std::string concatenation
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
* quantize : use unused imatrix chunk_size with LLAMA_TRACE
* common : use GGUF for imatrix output by default
* imatrix : two-way conversion between old format and GGUF
* convert : remove imatrix to gguf python script
* imatrix : use the function name in more error messages
* imatrix : don't use FMA explicitly
This should make comparisons between the formats easier
because this matches the behavior of the previous version.
* imatrix : avoid returning from void function save_imatrix
* imatrix : support 3d tensors with MUL_MAT
* quantize : fix dataset name loading from gguf imatrix
* common : move string_remove_suffix from quantize and imatrix
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* imatrix : add warning when legacy format is written
* imatrix : warn when writing partial data, to help guess dataset coverage
Also make the legacy format store partial data
by using neutral values for missing data.
This matches what is done at read-time for the new format,
and so should get the same quality in case the old format is still used.
* imatrix : avoid loading model to convert or combine imatrix
* imatrix : avoid using imatrix.dat in README
---------
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Fix Gemma3n not executed as CUDA_GRAPH on NVGPUs
Gemma3n uses Matrix-Matrix addition as part of their input processing,
wrongly triggering CUDA_GRAPH disablement on NVGPUs even when batch-size
of 1 is used.
* Exclude `project_per_layer_input` by matching node names
This ensures that all other graphs which don't exhibit this pattern do
not have their behavior changed.
* Revert unnecessary formatting changes
* Minimal setup of webgpu backend with dawn. Just prints out the adapter and segfaults
* Initialize webgpu device
* Making progress on setting up the backend
* Finish more boilerplate/utility functions
* Organize file and work on alloc buffer
* Add webgpu_context to prepare for actually running some shaders
* Work on memset and add shader loading
* Work on memset polyfill
* Implement set_tensor as webgpu WriteBuffer, remove host_buffer stubs since webgpu doesn't support it
* Implement get_tensor and buffer_clear
* Finish rest of setup
* Start work on compute graph
* Basic mat mul working
* Work on emscripten build
* Basic WebGPU backend instructions
* Use EMSCRIPTEN flag
* Work on passing ci, implement 4d tensor multiplication
* Pass thread safety test
* Implement permuting for mul_mat and cpy
* minor cleanups
* Address feedback
* Remove division by type size in cpy op
* Fix formatting and add github action workflows for vulkan and metal (m-series) webgpu backends
* Fix name
* Fix macos dawn prefix path
* Support diffusion models: Add Dream 7B
* Move diffusion to examples
* Move stuff to examples. Add patch to not use kv-cache
* Address review comments
* Make sampling fast
* llama: remove diffusion functions
* Add basic timings + cleanup
* More cleanup
* Review comments: better formating, use LOG instead std::cerr, re-use batch, use ubatch instead of max_length
* fixup!
* Review: move everything to diffusion-cli for now
Add LLAMA_API to fix the run-time error with llama-cpp-python in Windows env:
attributeError: function 'llama_kv_self_seq_div' not found.
Did you mean: 'llama_kv_self_seq_add'?
Although llama_kv_self_seq_div() has been marked deprecated but
it is necessary to export it to make llama-cpp-python happy.
Observed software version:
OS: windows
compiler: MSVC
llama-cpp-python: tag: v0.3.12-cu124
llama.cpp: tag: b5833
Signed-off-by: Min-Hua Chen <minhuadotchen@gmail.com>
Co-authored-by: Min-Hua Chen <minhua.chen@neuchips.ai>
* Add PLaMo-2 model using hybrid memory module
* Fix z shape
* Add cmath to include from llama-vocab.h
* Explicitly dequantize normalization weights before RoPE apply
* Revert unnecessary cast because the problem can be solved by excluding attn_k, attn_q when quantizing
* Use ATTN_K/Q_NORM for k,q weights to prevent quantization
* Remove SSM_BCDT that is not used from anywhere
* Do not duplicate embedding weights for output.weight
* Fix tokenizer encoding problem for multibyte strings
* Apply suggestion from @CISC
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Update src/llama-model.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Use LLM_FFN_SWIGLU instead of splitting ffn_gate and ffn_up
* Remove unnecessary part for Grouped Query Attention
* Fix how to load special token id to gguf
* Remove unused tensor mapping
* Update src/llama-model.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Remove llama_vocab_plamo2 class and replace it with llm_tokenizer_plamo2_session to follow the other tokenizer implementations
* Update src/llama-vocab.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update convert_hf_to_gguf.py
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Update src/llama-model.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Update src/llama-model.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Update convert_hf_to_gguf.py
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Update convert_hf_to_gguf.py
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Fix plamo2 tokenizer session to prevent multiple calls of build()
---------
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Remove un-necessary templates from class definition and packing functions
Reduce deeply nested conditionals, if-else switching in mnapck function
Replace repetitive code with inline functions in Packing functions
2 ~ 7% improvement in Q8 Model
15 ~ 50% improvement in Q4 Model
Signed-off-by: Shalini Salomi Bodapati <Shalini.Salomi.Bodapati@ibm.com>
* CUDA: add set rows for f32 and f16
* Review: change kernel params, use strides from host
* Use 1-d kernel
* Review: use int64_t for blockDim.x, rename nb->s for clarity
* vulkan: support SET_ROWS
Add variants of the copy_to_quant shader that do the SET_ROWS operation.
Change these shaders to spread the work across the workgroup.
The memory access pattern is probably not great (one thread per quant block),
but should be fine for now.
* vulkan: optimize set_rows
Larger workgroups for non-quant types.
Set "norepeat" (there is manual repeat logic).
Use fastmod.
* vulkan: allow unclamped loads in coopmat2 mul_mat_id shader
* vulkan: increase coopmat2 mul_mat_id tile size
* vulkan: optimize mat_mul_id row_ids search to batch loads, and port to coopmat1 path
* vulkan: use smaller FA row size when head size is large. applies to both scalar and CM2 paths (CM1 isn't used due to shared memory limits)
* wip: llama : separate recurrent states from the KV cache
This will be necessary to support Jamba
(and other recurrent models mixed with Attention).
Doesn't compile yet, and finding a slot isn't yet done correctly for recurrent states.
* llama : use std::find for seq_nodes in llama_rs_cache
* llama : state checkpoints for recurrent models
* llama : correctly handle more edge cases for the rs cache
* llama : rename many llama_kv_cache_* functions
* llama : remove useless return value for some llama_cache_* functions
* llama : rethink recurrent state cell counts
* llama : begin work on support for variable GQA
This will also be useful for Jamba if we consider the Mamba layers
to have 0 KV heads.
* llama : gracefully fail when not finding hybrid slot
* llama : support Jamba
* llama : fix BERT inference without KV cache
* convert-hf : check for unprocessed Jamba experts
* convert-hf : support Mini-Jamba conversion
* llama : fix Jamba quantization sanity checks
* llama : sequence-length-aware batch splitting
* llama : use equal-sequence-length sub-batches for recurrent models
* ggml : simplify SSM-related operators
* llama : make recurrent state slot allocation contiguous
* llama : adapt internal uses of batches to llama_ubatch
* llama : fix batch split output count for embeddings
* llama : minimize swaps when reordering logits
This reduces overhead when running hellaswag
on thousands of sequences with very small 100k params Mamba models.
* llama : fix edge case finding batch seq_id of split recurrent cell
This otherwise was a problem when running the HellaSwag benchmark
with small batch sizes, making it crash.
* llama : avoid copies for simple batch splits
* llama : use im2col and mul_mat to perform convolution for Mamba
This removes the need for ggml_ssm_conv!!!
But performance seems slighly worse on my system,
especially for prompt processing.
Maybe ggml_mul_mat isn't optimized for small row sizes?
More performance testing is necessary until GGML_OP_SSM_CONV is removed.
* ggml : make ggml_ssm_scan not modify its source tensors
* llama : fix shared recurrent tail cell count for small ubatch sizes
Otherwise it was impossible to run the 'parallel' example with '-ub 1'
with a Mamba or Jamba model.
* llama : fix .base() compilation error on Windows
* llama : allow doing the equivalent of SSM_CONV with SUM_ROWS and MUL
* ggml : allow GGML_OP_CONCAT to work on non-contiguous tensors
The implementation already supported it,
and this makes Mamba's conv step slightly faster.
* llama : rename llama_cache to llama_past
This can be changed back later if the name change is wrong.
I was renaming the functions anyway to generalize kv-cache-related
functions to hybrid and recurrent model architectures.
I think llama_past is a better name than llama_cache for a combined
kv cache and recurrent state cache, because the states it contains
pretty much always come before the newly-added ones for any particular
sequence. Also 'llama_past_clear' sounds more obvious in what it does
than 'llama_kv_cache_clear'. The future is what the models generate.
(For embeddings, the kv cache isn't really used anyway)
Still, I'm open to better suggestions.
* examples : replace llama_kv_cache_seq_* with llama_past_seq_*
* mamba : fix non-contiguous usage of ggml_silu
* llama : initial Mamba-2 support
* ggml : SIMD ggml_ssm_scan for Mamba-2
* ggml : improve ggml_mul speed when masking recurrent states
* llama : support running Mamba-Codestral-7B-v0.1
* llama : fix Mamba-2 conv state saving
* ggml : make the ggml_mul fast broadcast path more consistently formatted
* llama : remove unused variable
* llama : add missing break
* convert_hf : prefer SentencePiece tokenizer for Mamba-2 when present
The tokenzier.json of Mamba-Codestral-7B-v0.1 otherwise requires
workarounds to work correctly.
* llama : session saving and reloading for hybrid models
* convert_hf : fix Jamba conversion
* llama : fix mixed signedness comparison
* llama : use unused n_embd_k_gqa in k_shift
This also slightly reduces the diff from the master branch
* llama : begin renaming llama_past back to llama_kv_cache
* llama : avoid redundant state copy for Mamba 1 and 2
* metal : attempt to adapt SSM_SCAN for Mamba-2
* metal : fix SSM_SCAN pipeline scope
* metal : use log and exp instead of log1pf and expf in SSM_SCAN
* metal : remove unused arguments for SSM_SCAN
The max index is 31, so trimming the arguments is necessary.
* metal : add back n_seqs to SSM_SCAN args
Whoops, this is needed for the offset in the concatenated output.
* metal : fix SSM_SCAN state head offset
* metal : fix wrong number of tokens per sequence in SSM_SCAN
* ggml : remove unused fast broadcast path in GGML_MUL
This was initially added because states were masked with ggml_mul,
but this is no longer done and so this "optimisation" is no longer
necessary, or at least not worth the additional code complexity.
* ggml : avoid multiply by D in GGML_OP_SSM_SCAN
This makes the weight buft detection in src/llama.cpp simpler.
* convert : transpose Mamba-2 A, D and reshape SSM_NORM
This breaks existing conversions of Mamba-2 models
to avoid some reshapes.
Not sure if it's a good idea,
but it makes the graph slightly cleaner.
* llama : more appropriate SSM_SCAN and SSM_CONV buft support checks
* convert : fix flake8 lint
* llama : remove implicit recurrent state rollbacks
* llama : partially apply clang-format style
* metal : fix confusion between ; and ,
* metal : add missing args for nb references in ssm_scan_f32_group
* metal : single-user mamba2 inference works
* kv-cache : remove const_cast when setting inputs for s_copy
And also fix multi-user inference for recurrent models
by using cell_id instead of i as the kv cell index
when populating s_copy.
* convert : avoid AutoConfig for Mamba and Mamba2 hparams
* kv-cache : allow context shift for recurrent models
* graph : fix recurrent state copies when avoiding copies
Works, but using lambda functions might not be that clean.
* ggml : fix mamba2 ssm scan when compiled with SVE
* ggml-cpu : reorder SVE FMA for consistency with other SIMD arches
* cuda : implement ssm scan for Mamba2
There is still room for improvement, but it works!
* cuda : adapt Mamba1 ssm scan to shape changes from Mamba2
* feat: Add conversion for Bamba models
This is borrowed and adapted from the original implementation
https://github.com/ggml-org/llama.cpp/pull/10810
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Add Granite 4 conversion
This is a manual copy from my draft branch
https://github.com/gabe-l-hart/llama.cpp/blob/GraniteFourDraft/convert_hf_to_gguf.py#L5076
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Plumb bamba through llama-arch
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Add bamba to llama_arch_is_hybrid_recurrent
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Add optional mamba ssm_in bias tensor
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Add template specialization for get_arr to load a vector<uint32_t> for layer index arr in hparams
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Use an explicit bool to determine mamaba vs mamba2
This allows other architectures like bamba and granitemoehybrid to use
mamab2 without a growing architecture `if` statement inside the mamba
implementation.
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Isolate mamba(2) and granite attention layer building in static methods
This will allow these layer-builder methods to be used from other build
structs without complex inheritance.
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Use per-layer sizes in granite build_attention_layer
Also no need to pass in kv cache since it's already in the inp_attn
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: First (broken) pass at end-to-end Bamba implementation
It generates (garbage) tokens! Still lots of debugging to do.
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Only do Granite multipliers if set
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* refactor: Pull granite ffn portion into a static function and reuse in hybrid
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(py): Allow gguf duplicate keys if they match by value and type
This is helpful for hybrid models that want to do gguf param setting by
calling multiple parent classes without needing to make those parent
classes try/except on every attempt to set a gguf value.
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* refactor(py): Simplify granitemoehybrid conversion to use parents better
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Add GRANITE_MOE_HYBRID through llama-arch
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Support GRANITE_MOE_HYBRID in llama-model
This re-uses the Bamba code paths heavily and simply adds the missing parts
for loading MoE and the shared expert.
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* style: Fix flake8 errors
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Fix recurrent cache get after rebase
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Fix hybrid granite implementation for signature changes in build_mamba*_layer
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* refactor: Refactor relationship between non-hybrid classes and hybrid impl to use mixins
The challenge here is to give both the non-hybrid classes (llm_build_mamba
and llm_build_granite) AND the hybrid class (llm_build_hybrid_mamba) access
to the same intermediate "base class" functionality (build_mamba*_layer,
build_granite_attention_layer) without running into trouble with diamond
inheritance of llm_graph_context. Due to the non-trivial initialization
that happens in llm_graph_context, diamond inheritance results in multiple
initializations of the common base which cause problems around the unique
ptrs. I wanted to get away from `self->` everywhere, but this is still a
bit cleaner than making those methods static I think.
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* refactor: Implement the full copy-paste version to duplicate the layer builders
This follows the pattern where the type of input is pinned to the type of
memory and that is used to dispatch to the correct version of `build_rs` /
`build_attn`. There's a lot of code duplication that can hopefully be
pulled into common functions in the graph later.
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* refactor: Rename llm_build_hybrid_mamba -> llm_build_granite_hybrid
I've got back-and-forth a lot about how/if to try to implement reuse of the
"child model" layer types for hybrid models. At the end of the day, I think
hybrid models are their own beast and even if their layers are inspired by
other models, they should maintain control of their own layer building (in
other words, the copy-paste method). Given that, the name should reflect
that this is not a generic hybrid model builder, but rather a granite-
specific hybrid model builder that can do MoE (granite 4) or dense (bamba).
As part if this, I also cleaned up dangling comments from previous attempts
at using static methods for reusability.
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* mamba : fix mismatched new and delete size for llm_build_mamba
Subclasses of llm_graph_context cannot have extra fields,
because the called destructor is not the one from the subclass.
This otherwise would cause problems when runnning Mamba-(1|2) inference
when compiled -DGGML_SANITIZE_ADDRESS=ON
* memory : correctly handle failure in apply()
ggml-ci
* style: Remove TODO for adding first hybrid models to the switch
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Fix bad merge in tensor_mapping.py w/ SSM_NORM
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Fix bad merge resolution with variable renames/moves in llm_build_mamba
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* docs: Fix comment about duplicate key check
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Conform to standard way of initializing inp_out_ids
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* convert : fix jamba conv1d shape squeezing
* fix: Fix input initialization in granite_hybrid after removal of hybrid inputs
Branch: GraniteFourWithJamba
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Use llm_graph_context_mamba in llm_build_granite_hybrid
Branch: GraniteFourWithJamba
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* refactor: Refactor mamba2/granite/jamba/granite_hybrid relationships as mixins
The key is for the mixin classes (llm_graph_context_mamba,
llm_graph_context_granite) to use virtual inheritance from
llm_graph_context. This allows the common members to exist only once in the
class hierarchy. The downside is that llm_graph_context will be
re-initialized once for each parent (ie 2x for single mixin, 3x for two
mixins, etc...).
Branch: GraniteFourWithJamba
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* graph : add back hybrid memory graph input
But this time it contains the sub-cache graph inputs.
This *should* make it easier to handle updating the inputs
when caching the graph (eventually).
* model : add Jamba to Mamba-specific hparams printing
* fix: Fix input setup after upstream merge
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* jamba : remove redundant nullptr initializations
* model : remove unnecessary prefix for tensor loading constants
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* model : use ggml_swiglu_split for Mamba
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* feat: Add support for dense FFN in GraniteMoeHybrid
This was already partially supported via reusing the granite ffn builder,
and there may be models that leverage this architecture going forward. The
naming is a bit odd, but in the transformers version, it reuses the same
model class and simply has zero regular experts and a single shared expert
(which is the same as a single dense FFN).
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Add support for dense FFN tensor names on c++ side
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Use child inputs for Falcon H1 after merge resolution
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Remove unnecessary prefix on tensor constants
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* model : make falcon-h1 use shared mamba2 layer builder
* memory : avoid referring to KV in recurrent cache logs
* fix: Revert order changes for Falcon H1 to stay consistent with upstream
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* gguf-py : avoid adding duplicate tensor mappings for Jamba
Some of the tensor names are common with Llama4
* refactor: Collapse Bamba and GraniteMoeHybrid into GraniteHybrid
The only key difference is the use of rope which is now set via
rope_finetuned in the hparams
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* refactor: Remove use of diamond inheritance
Per PR discussion, it's simpler to keep this with basic inheritance and not
introduce the complexity of virtual inheritance and multiple inheritance
https://github.com/ggml-org/llama.cpp/pull/13550#issuecomment-3053787556
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Log mamba params for Granite Hybrid
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Remove unused ssm_in_b
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* refactor: Remove ATTENTION_LAYER_INDICES hparam in favor of n_head_kv
This matches how recurrent vs attention heads are identified for Jamba
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Remove unused template expansion for get_arr
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Review cleanup in convert_hf_to_gguf
The gist is to be explicit about which base class is being used with the
multiple inheritance setup
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Undo hidden warnings about duplicate identical keys in add_key_value
After further discussion, this encourages sloppy overwriting in the model
converters
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: If not using ROPE, context is "infinite"
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* doc: Add a comment outlining expected duplicate key warnings
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Remove unnecessary duplicate keys in converter
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
(thanks for the sharp eyes and patience!)
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* wip: llama : separate recurrent states from the KV cache
This will be necessary to support Jamba
(and other recurrent models mixed with Attention).
Doesn't compile yet, and finding a slot isn't yet done correctly for recurrent states.
* llama : use std::find for seq_nodes in llama_rs_cache
* llama : state checkpoints for recurrent models
* llama : correctly handle more edge cases for the rs cache
* llama : rename many llama_kv_cache_* functions
* llama : remove useless return value for some llama_cache_* functions
* llama : rethink recurrent state cell counts
* llama : begin work on support for variable GQA
This will also be useful for Jamba if we consider the Mamba layers
to have 0 KV heads.
* llama : gracefully fail when not finding hybrid slot
* llama : support Jamba
* llama : fix BERT inference without KV cache
* convert-hf : check for unprocessed Jamba experts
* convert-hf : support Mini-Jamba conversion
* llama : fix Jamba quantization sanity checks
* llama : sequence-length-aware batch splitting
* llama : use equal-sequence-length sub-batches for recurrent models
* ggml : simplify SSM-related operators
* llama : make recurrent state slot allocation contiguous
* llama : adapt internal uses of batches to llama_ubatch
* llama : fix batch split output count for embeddings
* llama : minimize swaps when reordering logits
This reduces overhead when running hellaswag
on thousands of sequences with very small 100k params Mamba models.
* llama : fix edge case finding batch seq_id of split recurrent cell
This otherwise was a problem when running the HellaSwag benchmark
with small batch sizes, making it crash.
* llama : avoid copies for simple batch splits
* ggml : make ggml_ssm_scan not modify its source tensors
* llama : fix shared recurrent tail cell count for small ubatch sizes
Otherwise it was impossible to run the 'parallel' example with '-ub 1'
with a Mamba or Jamba model.
* llama : fix .base() compilation error on Windows
* llama : allow doing the equivalent of SSM_CONV with SUM_ROWS and MUL
* ggml : allow GGML_OP_CONCAT to work on non-contiguous tensors
The implementation already supported it,
and this makes Mamba's conv step slightly faster.
* mamba : fix non-contiguous usage of ggml_silu
* llama : session saving and reloading for hybrid models
* convert_hf : fix Jamba conversion
* llama : fix mixed signedness comparison
* llama : use unused n_embd_k_gqa in k_shift
This also slightly reduces the diff from the master branch
* llama : begin renaming llama_past back to llama_kv_cache
* llama : remove implicit recurrent state rollbacks
* llama : partially apply clang-format style
* convert : fix jamba conv1d shape squeezing
* graph : add back hybrid memory graph input
But this time it contains the sub-cache graph inputs.
This *should* make it easier to handle updating the inputs
when caching the graph (eventually).
* model : add Jamba to Mamba-specific hparams printing
* jamba : remove redundant nullptr initializations
* model : remove unnecessary prefix for tensor loading constants
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* model : use ggml_swiglu_split for Mamba
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* model : make falcon-h1 use shared mamba2 layer builder
* memory : avoid referring to KV in recurrent cache logs
* gguf-py : avoid adding duplicate tensor mappings for Jamba
Some of the tensor names are common with Llama4
---------
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* ggml : add ggml_scale_bias
* ggml_vec_mad1_f32
* add more simd
* add CUDA
* sycl
* vulkan
* cann (placeholder)
* opencl
* will this fix cpu?
* fix cuda
* suggestions from coderabbit
* fix cann compile error
* vDSP_vsmsa
* rm __ARM_FEATURE_SVE
* use memcpy for op params
* make code looks more consistent
* use scalar for __ARM_FEATURE_SVE
* add x param to ggml_vec_mad1_f32
* vulkan: allow FA split_k with smaller KV values
* vulkan: spread split_k_reduce work across more threads
k_num can get rather large. Use the whole workgroup to reduce the M/L values.
Launch a thread for each element in the HSV dimension of the output. Helps a
lot for large HSV (like deepseek).
Splits producing more than one ubatch per batch for recurrent models
were broken with #14512.
This fixes it by moving the completeness check after the ubatch split loop.
The fused operation was grabbing the epsilon value from the wrong place.
Add an env var to disable fusion.
Add some missing checks for supported shapes/types.
Handle fused rms_norm+mul in check_results.
* vulkan: Handle updated FA dim2/3 definition
Pack mask boolean and n_head_log2 into a single dword to keep the push
constant block under the 128B limit.
* handle null mask for gqa
* allow gqa with dim3>1
* kv-cache : use ggml_set_rows
ggml-ci
* graph : separate k and v indices
ggml-ci
* cont : remove redundant ifs
ggml-ci
* kv-cache : improve find_slot impl
* kv-cache : bounds-check when accessing slot_info indices
* kv-cache : add comments
ggml-ci
* ggml : add TODOs for adding GGML_OP_SET_ROWS support in the backends
ggml-ci
* llama : initial Mamba-2 support
* ggml : SIMD ggml_ssm_scan for Mamba-2
* ggml : improve ggml_mul speed when masking recurrent states
* llama : support running Mamba-Codestral-7B-v0.1
* llama : fix Mamba-2 conv state saving
* ggml : make the ggml_mul fast broadcast path more consistently formatted
* llama : remove unused variable
* llama : add missing break
* convert_hf : prefer SentencePiece tokenizer for Mamba-2 when present
The tokenzier.json of Mamba-Codestral-7B-v0.1 otherwise requires
workarounds to work correctly.
* llama : avoid redundant state copy for Mamba 1 and 2
* metal : attempt to adapt SSM_SCAN for Mamba-2
* metal : fix SSM_SCAN pipeline scope
* metal : use log and exp instead of log1pf and expf in SSM_SCAN
* metal : remove unused arguments for SSM_SCAN
The max index is 31, so trimming the arguments is necessary.
* metal : add back n_seqs to SSM_SCAN args
Whoops, this is needed for the offset in the concatenated output.
* metal : fix SSM_SCAN state head offset
* metal : fix wrong number of tokens per sequence in SSM_SCAN
* ggml : remove unused fast broadcast path in GGML_MUL
This was initially added because states were masked with ggml_mul,
but this is no longer done and so this "optimisation" is no longer
necessary, or at least not worth the additional code complexity.
* ggml : avoid multiply by D in GGML_OP_SSM_SCAN
This makes the weight buft detection in src/llama.cpp simpler.
* convert : transpose Mamba-2 A, D and reshape SSM_NORM
This breaks existing conversions of Mamba-2 models
to avoid some reshapes.
Not sure if it's a good idea,
but it makes the graph slightly cleaner.
* llama : more appropriate SSM_SCAN and SSM_CONV buft support checks
* convert : fix flake8 lint
* metal : fix confusion between ; and ,
* metal : add missing args for nb references in ssm_scan_f32_group
* metal : single-user mamba2 inference works
* kv-cache : remove const_cast when setting inputs for s_copy
And also fix multi-user inference for recurrent models
by using cell_id instead of i as the kv cell index
when populating s_copy.
* convert : avoid AutoConfig for Mamba and Mamba2 hparams
* kv-cache : allow context shift for recurrent models
* graph : fix recurrent state copies when avoiding copies
Works, but using lambda functions might not be that clean.
* ggml : fix mamba2 ssm scan when compiled with SVE
* ggml-cpu : reorder SVE FMA for consistency with other SIMD arches
* cuda : implement ssm scan for Mamba2
There is still room for improvement, but it works!
* cuda : adapt Mamba1 ssm scan to shape changes from Mamba2
* mamba : fix mismatched new and delete size for llm_build_mamba
Subclasses of llm_graph_context cannot have extra fields,
because the called destructor is not the one from the subclass.
This otherwise would cause problems when runnning Mamba-(1|2) inference
when compiled -DGGML_SANITIZE_ADDRESS=ON
* cuda : graceful fallback for Mamba-1 models with weird embd size
* ggml : add version function to get lib version
This commit adds a function `ggml_version()` to the ggml library that
returns the version of the library as a string.
The motivation for this is that it can be useful to be able to
programmatically check the version of the ggml library being used.
Usage:
```c
printf("GGML version: %s\n", ggml_version());
```
Output:
```console
GGML version: 0.0.2219
```
* ggml : add ggml_commit()
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* CUDA: add softmax broadcast
* Pass by const ref
* Review: Use blockDims for indexing, remove designated initializers
* Add TODO for noncontigous input/output
CI / macOS-latest-cmake-arm64 (push) Has been cancelled
CI / macOS-latest-cmake-x64 (push) Has been cancelled
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Has been cancelled
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Has been cancelled
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Has been cancelled
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Has been cancelled
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Has been cancelled
CI / ubuntu-latest-llguidance (push) Has been cancelled
CI / ubuntu-latest-cmake-rpc (push) Has been cancelled
CI / ubuntu-22-cmake-vulkan (push) Has been cancelled
CI / ubuntu-22-cmake-hip (push) Has been cancelled
CI / ubuntu-22-cmake-musa (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (push) Has been cancelled
CI / build-linux-cross (push) Has been cancelled
CI / build-cmake-pkg (push) Has been cancelled
CI / macOS-latest-cmake-ios (push) Has been cancelled
CI / macOS-latest-cmake-tvos (push) Has been cancelled
CI / macOS-latest-cmake-visionos (push) Has been cancelled
CI / macOS-latest-swift (generic/platform=iOS) (push) Has been cancelled
CI / macOS-latest-swift (generic/platform=macOS) (push) Has been cancelled
CI / macOS-latest-swift (generic/platform=tvOS) (push) Has been cancelled
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Has been cancelled
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Has been cancelled
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Has been cancelled
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Has been cancelled
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Has been cancelled
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Has been cancelled
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Has been cancelled
CI / ubuntu-latest-cmake-cuda (push) Has been cancelled
CI / windows-2022-cmake-cuda (12.4) (push) Has been cancelled
CI / windows-latest-cmake-sycl (push) Has been cancelled
CI / windows-latest-cmake-hip (push) Has been cancelled
CI / ios-xcode-build (push) Has been cancelled
CI / android-build (push) Has been cancelled
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Has been cancelled
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Has been cancelled
* Add a callback that will be called just before abort. This allows apps without a console to display a message to the user and save data if needed.
* Return previous callback to allow callback chaining
* style fixes
---------
Co-authored-by: Diego Devesa <slarengh@gmail.com>
* add "align corners" mode for bilinear upscale, and allow downscaling
* add ggml_interpolate, deprecate ggml_upscale_ext, pass in align-corners as bit-flag
* test-backend-ops: replace ggml_upscale_ext with ggml_interpolate, add test cases for downscale and align-corners
This commit renames the variable `best_mad` to `best_error` in the
`make_qkx2_quants` function.
The motivation for this is that the name `best_mad` can be somewhat
confusing if mean absolute deviation (MAD) is not in use.
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-22-cmake-vulkan (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=macOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=tvOS) (push) Waiting to run
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
* Conv2D: Add CPU version
* Half decent
* Tiled approach for F32
* remove file
* Fix tests
* Support F16 operations
* add assert about size
* Review: further formatting fixes, add assert and use CPU version of fp32->fp16
* Update docker.yml
修改docker.yml文件中的内容使其停止周期性的运行该workflow,如果想要运行该workflow可以手动启动
* Remove redundant include path in CMakeLists.txt
The parent directory '..' was removed from the include directories for the ggml-cpu-feats target, to avoid unnecessary include paths.
* Enable scheduled Docker image builds
Uncomments the workflow schedule to trigger daily Docker image rebuilds at 04:12 UTC, improving automation and keeping images up to date.
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-22-cmake-vulkan (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=macOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=tvOS) (push) Waiting to run
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
* initial commit for handling extra template kwargs
* enable_thinking and assistant prefill cannot be enabled at the same time
* can set chat_template_kwargs in command line
* added doc
* fixed formatting
* add support for extra context in generic template init
* coding standard: common/chat.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* coding standard: common/chat.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Apply suggestions from code review
coding standard: cosmetic changes
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* fix merge conflict
* chat.cpp: simplify calls to apply to ensure systematic propagation of extra_context (+ the odd existing additional_context)
* normalize environment variable name
* simplify code
* prefill cannot be used with thinking models
* compatibility with the new reasoning-budget parameter
* fix prefill for non thinking models
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Olivier Chafik <olivier.chafik@gmail.com>
* SYCL: disable faulty fp16 CPU exponent for now
* Revert "SYCL: disable faulty fp16 CPU exponent for now"
This reverts commit ed0aab1ec3.
* SYCL: disable faulty fp16 CPU exponent for now
* Fix logic of disabling exponent kernel
* implement unary REGLU/GEGLU/SWIGLU cpu ops
* relax constraints
* duplicate shape of source
* fix ggml_vec_geglu_f16
* special case gated ops
* implement unary REGLU/GEGLU/SWIGLU cuda ops
* tighten constraints again
* refactor into GGML_GLU_OP
* metal : add glu kernels
ggml-ci
* add CUDA_GLU_BLOCK_SIZE [no ci]
* more constraints and use 64bit ints
ggml-ci
* 64bit multiplication [no ci]
* implement swapped variants (cpu/cuda)
* update comment [no ci]
ggml-ci
* Vulkan: Add GLU ops and shaders
* SYCL: Implement fused kernel GEGLU, SWIGLU and REGLU for single up+gate
* ggml : implement GLU for split up/gate (#14181)
* implement GLU for split up/gate
* add tests for ggml_glu_split
* Vulkan: Implement glu_split logic and shader support
* add split to logging [no ci]
* SYCL: refactor element_size ops and add split up and gate support to gated kernels
* SYCL: switch GEGLU to use tanh approximation
---------
Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Akarshan <akarshan@menlo.ai>
* GGML: increase OP count in assertion
* Refactor: Optimize SYCL element-wise operations with unary function inlining
This commit refactors the SYCL element-wise operations to improve performance by:
- Inlining unary operations (sgn, abs, elu, gelu, silu, etc.) to reduce kernel launch overhead.
- Introducing helper functions `op_xxx` for each unary operation to encapsulate the logic.
- Replacing direct kernel calls with calls to these inlined functions.
- Using `__dpct_inline__` to encourage compiler inlining.
- Minor code cleanup and consistency improvements.
The changes aim to reduce kernel launch overhead and improve the overall efficiency of element-wise operations on SYCL devices.
* vulkan: Increase workgroup size for GLU, for performance (#14345)
* vulkan: Increase workgroup size for GLU, for performance
* vulkan: change GLU shaders to do one element per invocation rather than one row per workgroup
* merge fix
* metal : add support for split and swap
ggml-ci
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Akarshan <akarshan@menlo.ai>
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
* vulkan: Add fusion support for RMS_NORM+MUL
- Add a use_count to ggml_tensor, so we can detect if an output is used more than once.
- Change the ggml-vulkan rms_norm shader to optionally multiply by another tensor.
- Add detection logic and basic fusion logic in ggml-vulkan.
- Add some testing support for fusion. Rather than computing one node at a time, allow
for computing the whole graph and just testing one node's results. Add rms_norm_mul tests
and enable a llama test.
* extract some common fusion logic
* fix -Winconsistent-missing-override
* move ggml_can_fuse to a common function
* build fix
* C and C++ versions of can_fuse
* move use count to the graph to avoid data races and double increments when used in multiple threads
* use hash table lookup to find node index
* change use_counts to be indexed by hash table slot
* minimize hash lookups
style fixes
* last node doesn't need single use.
fix type.
handle mul operands being swapped.
* remove redundant parameter
---------
Co-authored-by: slaren <slarengh@gmail.com>
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-22-cmake-vulkan (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=macOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=tvOS) (push) Waiting to run
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* CUDA: add bf16 and f32 support to cublas_mul_mat_batched
* Review: add type traits and make function more generic
* Review: make check more explicit, add back comments, and fix formatting
* Review: fix formatting, remove useless type conversion, fix naming for bools
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-22-cmake-vulkan (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=macOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=tvOS) (push) Waiting to run
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=ON -D… (push) Waiting to run
CI / windows-latest-cmake (vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
* ggml : add ggml_set_rows
Add ggml_set_rows(a, b, c) which copies rows from 'b' into 'a' using
indices from 'c'.
ref: #8366
* use I64 for indices
* ggml : add repeat impl for i64
* ggml : add ggml_is_contiguous_rows
* ggml : ggml_set_rows support broadcast
* ggml : ggml_set_rows support quantized dst
ggml-ci
* ggml : support GGML_TYPE_F32 ".from_float" trait
* ggml : ggml_set_rows update comment + better index name
* tests : add ggml_set_rows
* metal : add ggml_set_rows implementation
ggml-ci
* ggml : simplify forward_dup_f32
* ggml : fix supports_op
* tests : add comment to set_rows
* ggml : leave the repeat_i64 for a separate PR
ggml-ci
* ggml : set_rows use std::min instead of MIN
* ggml : better error message for set_rows unsupported type
* metal : perform op->type check only once
* tests : more consistent implementation + more tests
ggml-ci
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-22-cmake-vulkan (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=macOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=tvOS) (push) Waiting to run
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=ON -D… (push) Waiting to run
CI / windows-latest-cmake (vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Mistral Small 2506 models using Pixtral vision encoder were running out
of GPU memory when processing images larger than 1024x1024 pixels due to
exponential memory growth from unlimited image size.
This fix applies the same 1024x1024 limit used by Qwen2VL models to
prevent OOM issues while maintaining compatibility with existing models.
* Add support for VK_EXT_debug_utils to add labels to Vulkan objects. In step 1 compute pipelines are getting labeled.
* remove #ifdef for debug utils and add queue marker.
* Add header and namespace to use enqueue_functions extension
* Convert submit and parallel_for to use new extension in convert.cpp
* Convert submit and parallel_for to use extension in ggml-sycl.cpp
* Convert submit and parallel_for to use extension in gla.cpp
* Convert submit and parallel_for in mmq.cpp
* Convert submit and parallel_for in mmvq.cpp
* Convert submit and parallel_for in remaining files
* Convert all simple parallel_for to nd_launch from enqueue_functions
extension
* Wrapping extension in general function
Create a general function that enable the enqueue_functions extension if
it is enable in the compiler, otherwise call the general SYCL function
to launch kernels.
---------
Signed-off-by: nscipione <nicolo.scipione@codeplay.com>
* Add PowerPC feature detection and scoring
* ggml-cpu: Implement GGML_CPU_ALL_VARIANTS for PowerPC
* ggml-cpu: Delay some initializations until function is called
When using GGML_BACKEND_DL=ON, these initializations might use
instructions that are not supported by the current CPU.
---------
Co-authored-by: Diego Devesa <slarengh@gmail.com>
Add no_warmup parameter to cmd_params struct and command-line parsing to allow users to skip warmup runs before benchmarking.
- Add no_warmup boolean field to cmd_params struct
- Add --no-warmup command-line argument parsing
- Add help text documentation for the new flag
- Wrap existing warmup logic in conditional check
- Maintain full backward compatibility (warmup enabled by default)
Addresses #14224
* feat: Add llama_model_is_hybrid API call
Also, split llama_model_is_recurrent into llm_arch_is_recurrent in
llama-arch with llama_model_is_recurrent delegating to
llm_arch_is_recurrent. The same split is done for hybird. This is needed
because there are places where the llama_model has not yet been initialized
but we need to check if the model is recurrent (specifically for the
per-layer recurrent check array in hparams).
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Add c++ side constants for attention layer indices hparam
Branch: GraniteFour
* feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* refactor: rename *_is_hybrid -> *_is_hybrid_recurrent
The implementation of the hybrid cache intentionally does not specify the
types of the child caches, so there was a naming mismatch with these
predicate functions that used "hybrid" to imply "hybrid recurrent."
Branch: HybridCache
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Add layer filter to recurrent cache
Branch: HybridCache
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Use per-layer sizing everywhere in kv caches
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: First pass at llama_kv_cache_hybrid_recurrent
This follows the pattern in iswa where the two child caches are held
explicitly to support the case where a model requires a single attention
cache and a single recurrent cache where each layer uses exactly one of the
caches.
This is a rewrite of the more generic approach in the original hybrid cache
PR: https://github.com/ggml-org/llama.cpp/pull/13276
Branch: HybridRecurrentCache
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Construct hybrid recurrent cache for hybrid recurrent models
This includes a refactor of the create_memory logic to avoid needing to use
the arch enum explicitly unless a model needs explicit cache instantiation
logic beyond the standard logic for recurrent, hybrid, unified, and iswa.
Branch: HybridRecurrentCache
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Fix wrong bool condition for split equal in hybrid cache
Branch: HybridRecurrentCache
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Fix shift logic to defer to unified cache
Branch: HybridRecurrentCache
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Support hybrid recurrent in llama-graph
NOTE: I intentionally did not add support for s_mask since it will be going
away soon
Branch: HybridRecurrentCache
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Fix logic for initializing inputs and attn layers for hybrid caches
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Update recurrent cache for changes to remove intermediate kv_cache interface
Branch: HybridRecurrentCache
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Fix status for init_update sig for recurrent cache state
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Add missing padding to n_ctx for hybrid cache construction
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Update clear signature for data argument after rebase
Branch: HybridRecurrentCache
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Remove errant virtual destructor leftover from previous impl attempt
Branch: HybridRecurrentCache
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers
Branch: HybridRecurrentCache
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* refactor: Remove n_embd_k/v_s from unified cache
No longer needed now that unified isn't also supporting recurrent
https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069
Branch: HybridRecurrentCache
* refactor: Remove layer index from n_embd_k/v_s
Now that it's not used at all in the unified cache, we don't need to use
the layer index to zero it out for attention layers.
Branch: HybridRecurrentCache
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* refactor: Remove n_embd_k/v_gqa from recurrent cache
This is no longer needed now that there are separate implementations
https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128
Branch: HybridRecurrentCache
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Allow custom layer filters for hybrid recurrent
This should help support architectures like Falcon H1 where there is
overlap between layers that need attention and recurrent caches.
https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922
Branch: HybridRecurrentCache
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Remove logits_all after rebase
Branch: HybridRecurrentCache
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Remove llama_model_is_hybrid_Recurrent public API
https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423
Branch: HybridRecurrentCache
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* refactor: Use llama_memory_state_ptr for child states in hybrid memory state
Branch: HybridRecurrentCache
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern
https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738
This is a big overhaul to bring consistency between how inputs and per-
layer components are created for attention layers and recurrent layers. The
main changes are:
- Rename class llm_graph_input_s_copy -> llm_graph_input_rs
- Add a corresponding llm_graph_input_rs_hybrid_recurrent
- Rename build_inp_s_copy -> build_rs_inp_recurrent
- Add a corresponding build_rs_inp_hybrid_recurrent
- Rename build_recurrent_state -> build_rs to match build_attn w/
llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input
- Add a corresponding overload of build_rs w/
llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input
- Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to
llm_graph_input_attn_kv_unified
- Add a build_attn override that takes
llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input
This makes the two paradigms fully consistent. The main drawback is the
code duplication in the build_attn and build_rs implementations where the
only difference between implementations is how they cast the memory state.
Branch: HybridRecurrentCache
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Fix resize vs reserve and skip null tensors in size computation
https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788
Branch: HybridRecurrentCache
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-Authored-By: @younesbelkada
* fix: Fix initialization of child states
Since initially writing this PR, the logic in the child state types changed
such that using the "init full" signature and keeping the ubatches on the
parent struct no longer worked.
Branch: HybridRecurrentCache
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* refactor: Use a common build_recurrent_state method that is cache-agnostic
This reduces the code duplication between the different build_rs impls and
also retains a similar signature to the previous build_recurrent_state
method while standardizing on the input-dispatched build_rs implementation.
Branch: HybridRecurrentCache
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* recurrent : rework graph inputs + add TODOs
ggml-ci
* refactor: Make status and child states const in hybrid and iswa
Branch: HybridRecurrentCache
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache
This removes the notion of "kv" from the interface names for these memory
types. There are still many references to kv in the implementation of the
recurrent memory which will need further adjustment.
Branch: HybridRecurrentCache
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* refactor!: Rename all k/v related values for recurrent/hybrid to r/s
Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more
generic "mem_" prefix. The specifics of "k" (key) translate to "r"
(recurrent state) and "v" (value) translate to "s" (state-space embedding
states).
Branch: HybridRecurrentCache
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* refacor: _recurrent -> _recr for brevity
It just _happens_ to have the same number of letters as _attn!
Branch: HybridRecurrentCache
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* style: Fix spacing for ref
Branch: HybridRecurrentCache
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* refactor: recurrent_layer() -> is_recurrent()
Branch: HybridRecurrentCache
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* style: Fix spacing for size_s_bytes declaration
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* ggml : disable warnings for tests when using MSVC
This commit disables warnings for tests on windows when using MSVC.
The motivation for this is that this brings the build output more
inline with what Linux/MacOS systems produce.
There is still one warning generated for the tests which is:
```console
Building Custom Rule C:/ggml/tests/CMakeLists.txt
cl : command line warning D9025: overriding '/DNDEBUG' with '/UNDEBUG'
[C:\ggml\build\tests\test-arange.vcxproj]
test-arange.cpp
test-arange.vcxproj -> C:\ggml\build\bin\Release\test-arange.exe
```
* ggml : fix typo in tests disable list
This commit removes the unused `ggml_context_container` structure from
the ggml library. It looks like the usage of this struct was removed in
Commit 4757fe18d56ec11bf9c07feaca6e9d5b5357e7f4 ("ggml : alloc
ggml_contexts on the heap (whisper/2525)").
The motivation for this changes is to improve code clarity/readability.
This commit adds the examples in the "list" of targets to ignore MSVC
warnings.
The motivation for this is that currently the examples generate a number
of warnings that are ignore/disabled for the core ggml project. This
makes for a cleaner output when building.
* llama : add thread safety test
* llamafile : remove global state
* llama : better LLAMA_SPLIT_MODE_NONE logic
when main_gpu < 0 GPU devices are not used
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Add Arcee AFM support
* Add draft update code
* Fix linter and update URL, may still not be final
* Update src/llama-model.cpp
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
* Remote accidental blank line
---------
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
Adds:
* Dots1Model to convert_hf_to_gguf.py
* Computation graph code to llama-model.cpp
* Chat template to llama-chat.cpp to detect this model's template.
---
The model is called "dots.llm1" (I decided to shorten it to dots1 or
DOTS1 in the code generally) architecture.
The only models that exist as of writing of this commit that follow this
architecture are "dots.llm1.inst" and "dots.llm1.base" from here:
* https://huggingface.co/rednote-hilab/dots.llm1.inst
* https://huggingface.co/rednote-hilab/dots.llm1.base
The model architecture is a combination of Qwen and Deepseek parts, as
seen here:
ffe12627b4/src/transformers/models/dots1/modular_dots1.py
Currently when a model generates output which looks like a tool call,
but is invalid an exception is thrown and not handled, causing the cli
or llama-server to bail. Instead, handle the chat parser exception and
simply return the generated text in such cases.
Signed-off-by: Piotr Stankiewicz <piotr.stankiewicz@docker.com>
* compare llama-bench: add option to plot
* Address review comments: convert case + add type hints
* Add matplotlib to requirements
* fix tests
* Improve comment and fix assert condition for test
* Add back default test_name, add --plot_log_scale
* use log_scale regardless of x_values
Update oneMath commit to merged PR https://github.com/uxlfoundation/oneMath/pull/669
which adds SYCL-Graph support for recording CUDA BLAS commands.
With this change the `MUL_MAT` tests now pass on DPC++ CUDA backends with SYCL-Graph
enabled. Prior to this change, an error would be thrown.
```
$ GGML_SYCL_DISABLE_GRAPH=0 ./bin/test-backend-ops -b SYCL0 -o MUL_MAT -p type_a=f16,type_b=f32,m=16,n=1,k=256,bs=\\[1,1\\],nr=\\[2
UR CUDA ERROR:
Value: 700
Name: CUDA_ERROR_ILLEGAL_ADDRESS
Description: an illegal memory access was encountered
Function: operator()
Source Location: $HOME/dpcpp/unified-runtime/source/adapters/cuda/queue.cpp:154
Native API failed. Native API returns: 2147483646 (UR_RESULT_ERROR_UNKNOWN)
Exception caught at file:$HOME/llama.cpp/ggml/src/ggml-sycl/ggml-sycl.cpp, line:3598, func:operator()
SYCL error: CHECK_TRY_ERROR((stream)->wait()): Meet error in this line code!
in function ggml_backend_sycl_synchronize at $HOME/llama.cpp/ggml/src/ggml-sycl/ggml-sycl.cpp:3598
$HOME/llama.cpp/ggml/src/ggml-sycl/../ggml-sycl/common.hpp:118: SYCL error
Could not attach to process. If your uid matches the uid of the target
process, check the setting of /proc/sys/kernel/yama/ptrace_scope, or try
again as the root user. For more details, see /etc/sysctl.d/10-ptrace.conf
ptrace: Operation not permitted.
No stack.
The program is not being run.
```
* cmake: Simplify build-info.cpp generation
The rebuild of build-info.cpp still gets triggered when .git/index gets
changes.
* cmake: generate build-info.cpp in build dir
* ggml-cpu: Factor out feature detection build from x86
* ggml-cpu: Add ARM feature detection and scoring
This is analogous to cpu-feats-x86.cpp. However, to detect compile-time
activation of features, we rely on GGML_USE_<FEAT> which need to be set
in cmake, instead of GGML_<FEAT> that users would set for x86.
This is because on ARM, users specify features with GGML_CPU_ARM_ARCH,
rather than with individual flags.
* ggml-cpu: Implement GGML_CPU_ALL_VARIANTS for ARM
Like x86, however to pass around arch flags within cmake, we use
GGML_INTERNAL_<FEAT> as we don't have GGML_<FEAT>.
Some features are optional, so we may need to build multiple backends
per arch version (armv8.2_1, armv8.2_2, ...), and let the scoring
function sort out which one can be used.
* ggml-cpu: Limit ARM GGML_CPU_ALL_VARIANTS to Linux for now
The other platforms will need their own specific variants.
This also fixes the bug that the the variant-building branch was always
being executed as the else-branch of GGML_NATIVE=OFF. The branch is
moved to an elseif-branch which restores the previous behavior.
This change moves the command pool/buffer tracking into a vk_command_pool
structure. There are two instances per context (for compute+transfer) and
two instances per device for operations that don't go through a context.
This should prevent separate contexts from stomping on each other.
Use the same descriptor set layout for all pipelines (MAX_PARAMETER_COUNT == 8)
and move it to the vk_device. Move all the descriptor pool and set tracking to
the context - none of it is specific to pipelines anymore. It has a single vector
of pools and vector of sets, and a single counter to track requests and a single
counter to track use.
* kv-cache : avoid modifying recurrent cells when setting inputs
* kv-cache : remove inp_s_mask
It was replaced with equivalent and simpler functionality
with rs_z (the first zeroed state) and the already-existing inp_s_copy.
* kv-cache : fix non-consecutive token pos warning for recurrent models
The problem was apparently caused by how the tail cells were swapped.
* graph : simplify logic for recurrent state copies
* kv-cache : use cell without src refs for rs_z in recurrent cache
* llama-graph : fix recurrent state copy
The `state_copy` shuffle assumes everything is moved at once,
which is not true when `states_extra` is copied back to the cache
before copying the range of states between `head` and `head + n_seqs`.
This is only a problem if any of the cells in [`head`, `head + n_seqs`)
have an `src` in [`head + n_seqs`, `head + n_kv`),
which does happen when `n_ubatch > 1` in the `llama-parallel` example.
Changing the order of the operations avoids the potential overwrite
before use, although when copies are avoided (like with Mamba2),
this will require further changes.
* llama-graph : rename n_state to state_size in build_recurrent_state
This naming should reduce confusion between the state size
and the number of states.
* llama : allow building all tests on windows when not using shared libraries
* add static windows build to ci
* tests : enable debug logs for test-chat
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Simplify the environment variable setting to specify the memory pool type.
* Adjust the GGML_CANN_ASYNC_MODE setting to accept yes, enable, 1, or on (case-insensitive) as valid options.
* update
* fix CI
* update
* delete whitespace
* fix according to review
* update CANN.md
* update CANN.md
* Add Reorder to Q6_K mmvq implementation
* Address PR comments: clean up comments
* Remove unused parameter after refactoring q4_k
* Adding inline to function and removing unnecessary reference to int
---------
Signed-off-by: nscipione <nicolo.scipione@codeplay.com>
* SYCL: Implement few same quantized type copy kernels
* Use memcpy for copying contiguous tensors
ggml-ci
* feat(sycl): add contiguous tensor copy support and device checks
Adds a memcpy path for contiguous tensors of the same type to optimize data transfer. Updates device support checks to recognize contiguous tensor operations, improving compatibility and performance.
* refactor: replace specific block copy functions with template
The changes replace multiple redundant block copy functions (e.g., cpy_block_q8_0_q8_0, cpy_block_q5_0_q5_0) with a single templated function cpy_blck_q_q. This reduces code duplication by using a generic template that works for any block type, improving maintainability while preserving the same functionality. The template is instantiated with specific block types (e.g., block_q8_0) where needed.
* Exclude BF16 support for COPY tensors for now
ggml-ci
* perf: adjust SYCL copy kernel block sizes for efficiency
Use ceil_div to ensure full element coverage and update nd_range parameters to better align with SYCL block sizes, improving parallelism and device utilization in copy operations.
* llama : deprecate llama_kv_self_ API
ggml-ci
* llama : allow llama_memory_(nullptr)
ggml-ci
* memory : add flag for optional data clear in llama_memory_clear
ggml-ci
Replace CMAKE_CUDA_ARCHITECTURES=native with nvidia-smi detection
as 'native' fails on autodl cloud environments.
Co-authored-by: pockers21 <liyang2@uniontech.com>
* * ggml-vulkan: adds op CONV_TRANSPOSE_1D
* test-backend-ops: adds more spohisticated tests for CONV_TRANSPOSE_1D
* Missing barrier added to shader.
Number of additional tests reduced to 108.
* * Fixes typo in variable name.
* Removes extra whitespaces.
* Adds int64->int32 casts to prevent possible warnings.
* Problem size reduced in tests to pass tests with llvmpipe.
* supports_op condition moved from unintended position
* This is not needed by the normal use where the result is read
using `tensor_get`, but it allows perf mode of `test-backend-ops`
to properly measure performance.
Some systems report the CPU implementation as "Power11" instead of "POWER11".
The existing CMake logic uses a case-sensitive regular expression to extract
the CPU generation, which fails when the casing doesn't exactly match "POWER".
This patch provides a fix by first converting the string to uppercase before applying the regex.
Signed-off-by: root <root@rheldb2v.pperf.tadn.ibm.com>
Co-authored-by: root <root@rheldb2v.pperf.tadn.ibm.com>
* threading: support for GGML_SCHED_PRIO_LOW, update thread info on Windows to avoid throttling
We talked about adding LOW priority for GGML threads in the original threadpool PR.
It might be useful for some cases to avoid contention.
Latest Windows ARM64 releases started parking (offlining) the CPU cores
more aggresively which results in suboptimal performance with n_threads > 4.
To deal with that we now disable Power Throttling for our threads for the NORMAL
and higher priorities.
Co-authored-by: Diego Devesa <slarengh@gmail.com>
* threading: disable SetThreadInfo() calls for older Windows versions
* Update tools/llama-bench/llama-bench.cpp
Co-authored-by: Diego Devesa <slarengh@gmail.com>
---------
Co-authored-by: Diego Devesa <slarengh@gmail.com>
* Replace alert and confirm with custom modals. This is needed as Webview in VS Code doesn't permit alert and confirm for security reasons.
* use Modal Provider to simplify the use of confirm and alert modals.
* Increase the z index of the modal dialogs.
* Update index.html.gz
* also add showPrompt
* rebuild
---------
Co-authored-by: igardev <ivailo.gardev@akros.ch>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
* kv-cache : simplify the "struct llama_kv_cache" interface
ggml-ci
* kv-cache : revert the (n_swa + n_ubatch) change (for next PR)
ggml-ci
* kv-cache : some comments
ggml-ci
* context : fix graph reserve for multiple sequences
ggml-ci
* kv-cache : fix typo [no ci]
* kv-cache : fix find_slot() logic for free slots
ggml-ci
* llama : add TODO for deprecating the defrag API in the future
* kv-cache : improve find_slot() using min/max seq pos info
ggml-ci
* llama : handle aborts and compute errors
ggml-ci
* memory : extract state into llama_memory_state
ggml-ci
* kv-cache : add comments
ggml-ci
* server : update batching logic to reset n_batch on successful decode
* server : upon full re-processing, remove the sequence from the cache
* kv-cache : add TODO for doing split_equal when split_simple fails
ggml-ci
* 1. add "integrated" in ggml_cuda_device_info for distinguish whether it is Intergrate_gpu or discrete_gpu
2. Adjust the func:"ggml_backend_cuda_device_supports_buft" for this new feature
* Update ggml/src/ggml-cuda/ggml-cuda.cu
Adjusted code indentation
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Update ggml/src/ggml-cuda/ggml-cuda.cu
Fixed incorrect setting of variable types
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Update ggml/src/ggml-cuda/ggml-cuda.cu
Adjusted the judgment logic
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* add a host_buft assert in case of integrated_cuda_device with func:'evaluate_and_capture_cuda_graph()'
* Update ggml/src/ggml-cuda/ggml-cuda.cu
Add a defensive security assert
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Update ggml/src/ggml-cuda/ggml-cuda.cu
Adjusted the support judgment logic.
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* revoke the suggest commit changes due to it's not applicable in jetson_device
* Update ggml/src/ggml-cuda/ggml-cuda.cu
Add parentheses to enforce operator precedence
Co-authored-by: Diego Devesa <slarengh@gmail.com>
* Update ggml/src/ggml-cuda/ggml-cuda.cu
Fix ci bug: add a spaces
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
---------
Co-authored-by: yangxiao <yang_xl@tju.edu.cn>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: yangxiao <yangxl_zz@qq.com>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
* SYCL: Add mrope kernel
* feat: Optimize rope operations with vectorization
Uses `sycl::vec` to load and store two elements at a time,
significantly improving performance in `rope_norm`,
`rope_neox`, and `rope_multi`. This reduces the number of memory
accesses and leverages SIMD instructions for faster execution.
* Use ceil_div
* add distilbert
* small fixes
* add note for LLM_ARCH_DISTIL_BERT
* Use MODEL_ARCH.BERT for DistilBert
---------
Co-authored-by: dinhhuy <huy.dinh@brains-tech.co.jp>
* cmake: Define function for querying architecture
The tests and results match exactly those of ggml/src/CMakeLists.txt
* Switch arch detection over to new function
* convert: add support for BertForSequenceClassification
* add support for reranking using BertForSequenceClassification
* merge checks of eos and sep
* fix lint
---------
Co-authored-by: dinhhuy <huy.dinh@brains-tech.co.jp>
* mtmd : allow multiple modalities at the same time
* refactor mtmd tokenizer
* fix compile
* ok, missing SinusoidsPositionEmbedding
* first working version
* fix style
* more strict validate of n_embd
* refactor if..else to switch
* fix regression
* add test for 3B
* update docs
* fix tokenizing with add_special
* add more tests
* fix test case "huge"
* rm redundant code
* set_position_mrope_1d rm n_tokens
* sampling : min-p should always return at least one token
ggml-ci
* sampling : same for typical sampling
* tests : sampling tests use min_keep == 0
ggml-ci
* SYCL: Add non contiguous input support to norm kernel
* refactor and add RMS_NORM non contiguous input support
ggml-ci
* restore subgroup reduction for multi-subgroup thread blocks in norm kernels
* Swap grid dims of nsamples and nrows
ggml-ci
* Revert "Swap grid dims of nsamples and nrows"
This reverts commit 43be2d657fec7f7fba54e2cd154106bc0fc45adf.
* restore not required changes
ggml-ci
* address review comments: change it to more like SYCL
* Use a common function to calculate offset
* remove wrap around logic for handling broadcasts
* remove static from calculate_offset fn and use ceil_div
* add preludes to content on partial regex match
* allow all parsers to parse non-tool-call content.
* tweak order of <|python_tag|> vs <function= parsing for functionary v3.1 format. still not ideal but hopefully less prone to crash
* fix deltas of tool_call.function.name
* fix tool_call.id (was in tool_call.function.id!) + add function type
* add tool_call.type
* populate empty tool_call.function.arguments on first delta
* cann: add the basic FA support
* cann: update the readme
* cann: update the FlashAttention with PSEShift
* cann: update the input parameters in FA
* cann: update the alibi with max_bias
* cann: add the constrints of softcap
* cann: update the docs CANN.md
* cann: update the docs CANN.md
* cann: fix typo of CANN.md
* cann: add some comments and update the CANN.md
* cann: update the CANN.md
* cann: update the inner precise for fusedInferAttention
* cann: update the constraints of flash_attn_ext on ggml-cann.cpp
* cann: clean the whitespace
* cann: clean the whitespace
* cann: add a new endline
* Multimodal: Added Moondream2 model and fixed ggml.org link
* Apply suggestions from code review
---------
Co-authored-by: name <none@none.com>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
* convert ok, load ok
* warmup ok
* test
* still does not work?
* fix padding
* temporary give up
* fix merge conflict
* build_ultravox()
* rm test
* fix merge conflict
* add necessary mtmd APIs
* first working version (only 4s of audio)
* will this monster compile?
* fix compile
* please compile
* fPIC
* fix windows
* various fixes
* clean up audio_helpers
* fix conversion
* add some debug stuff
* long audio input ok
* adapt the api
* add --audio arg
* final touch UX
* add miniaudio to readme
* fix typo
* refactor kv metadata
* mtmd_default_marker()
* opencl: Add support for multiple devices
... but limited to one platform. A platform with a GPU will be preferred.
Additionally:
* Filter out devices that lack capabilities needed by the backend
implementation (half support, OpenCL 2.0+, etc).
* Make ggml_backend_opencl_reg() thread-safe.
* fixup: fix an error in sync_with_other_backends
... when there is only one OpenCL device available.
* opencl: fix couple crashes
* fix kernel launches failed on devices which do not support
non-uniform work-groups. When non-uniform work-groups are not
supported, set `local_work_size` to NULL (= let driver choose the
work-group sizes). This patch does not cover everything - just the
cases tested by test-backend-ops.
* fix sub-buffer creation failed due to `cl_buffer_region::origin` not
being aligned to `CL_DEVICE_MEM_BASE_ADDR_ALIGN`.
* OpenCL: query non-uniform WG sizes only on OpenCL 3.0+
* Add the endpoints /api/tags and /api/chat
Add the endpoints /api/tags and /api/chat, and improved the model metadata response
* Remove trailing whitespaces
* Removed code that is not needed for copilot to work.
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
LLM inference in C/C++
## Recent API changes
@@ -16,11 +17,9 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
## Hot topics
-🔥 Multimodal support arrived in `llama-server`: [#12898](https://github.com/ggml-org/llama.cpp/pull/12898) | [documentation](./docs/multimodal.md)
-**GGML developer experience survey (organized and reviewed by NVIDIA):** [link](https://forms.gle/Gasw3cRgyhNEnrwK9)
- A new binary `llama-mtmd-cli` is introduced to replace `llava-cli`, `minicpmv-cli`, `gemma3-cli` ([#13012](https://github.com/ggml-org/llama.cpp/pull/13012)) and `qwen2vl-cli` ([#13141](https://github.com/ggml-org/llama.cpp/pull/13141)), `libllava` will be deprecated
- Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggml-org/llama.cpp/discussions/9669
@@ -28,6 +27,30 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
----
## Quick start
Getting started with llama.cpp is straightforward. Here are several ways to install it on your machine:
- Install `llama.cpp` using [brew, nix or winget](docs/install.md)
- Run with Docker - see our [Docker documentation](docs/docker.md)
- Download pre-built binaries from the [releases page](https://github.com/ggml-org/llama.cpp/releases)
- Build from source by cloning this repository - check out [our build guide](docs/build.md)
Once installed, you'll need a model to work with. Head to the [Obtaining and quantizing models](#obtaining-and-quantizing-models) section to learn more.
Example command:
```sh
# Use a local model file
llama-cli -m my_model.gguf
# Or download and run a model directly from Hugging Face
llama-cli -hf ggml-org/gemma-3-1b-it-GGUF
# Launch OpenAI-compatible API server
llama-server -hf ggml-org/gemma-3-1b-it-GGUF
```
## Description
The main goal of `llama.cpp` is to enable LLM inference with minimal setup and state-of-the-art performance on a wide
@@ -110,6 +133,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
@@ -229,6 +254,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
</details>
## Supported backends
| Backend | Target devices |
@@ -243,18 +269,9 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
| [Vulkan](docs/build.md#vulkan) | GPU |
| [CANN](docs/build.md#cann) | Ascend NPU |
| [OpenCL](docs/backend/OPENCL.md) | Adreno GPU |
| [WebGPU [In Progress]](docs/build.md#webgpu) | All |
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) | All |
## Building the project
The main product of this project is the `llama` library. Its C-style interface can be found in [include/llama.h](include/llama.h).
The project also includes many example programs and tools using the `llama` library. The examples range from simple, minimal code snippets to sophisticated sub-projects such as an OpenAI-compatible HTTP server. Possible methods for obtaining the binaries:
- Clone this repository and build locally, see [how to build](docs/build.md)
- On MacOS or Linux, install `llama.cpp` via [brew, flox or nix](docs/install.md)
- Use a Docker image, see [documentation for Docker](docs/docker.md)
- Download pre-built binaries from [releases](https://github.com/ggml-org/llama.cpp/releases)
## Obtaining and quantizing models
The [Hugging Face](https://huggingface.co) platform hosts a [number of LLMs](https://huggingface.co/models?library=gguf&sort=trending) compatible with `llama.cpp`:
@@ -262,7 +279,11 @@ The [Hugging Face](https://huggingface.co) platform hosts a [number of LLMs](htt
You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from [Hugging Face](https://huggingface.co/) or other model hosting sites, such as [ModelScope](https://modelscope.cn/), by using this CLI argument: `-hf <user>/<model>[:quant]`.
You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from [Hugging Face](https://huggingface.co/) or other model hosting sites, such as [ModelScope](https://modelscope.cn/), by using this CLI argument: `-hf <user>/<model>[:quant]`. For example:
```sh
llama-cli -hf ggml-org/gemma-3-1b-it-GGUF
```
By default, the CLI would download from Hugging Face, you can switch to other options with the environment variable `MODEL_ENDPOINT`. For example, you may opt to downloading model checkpoints from ModelScope or other model sharing communities by setting the environment variable, e.g. `MODEL_ENDPOINT=https://www.modelscope.cn/`.
@@ -414,7 +435,7 @@ To learn more about model quantization, [read this documentation](tools/quantize
## [`llama-perplexity`](tools/perplexity)
#### A tool for measuring the perplexity [^1][^2] (and other quality metrics) of a model over a given text.
#### A tool for measuring the [perplexity](tools/perplexity/README.md) [^1] (and other quality metrics) of a model over a given text.
- <details open>
<summary>Measure the perplexity over a text file</summary>
@@ -437,8 +458,7 @@ To learn more about model quantization, [read this documentation](tools/quantize
- [minja](https://github.com/google/minja) - Minimal Jinja parser in C++, used by various tools/examples - MIT License
- [linenoise.cpp](./tools/run/linenoise.cpp/linenoise.cpp) - C++ library that provides readline-like line editing capabilities, used by `llama-run` - BSD 2-Clause License
- [curl](https://curl.se/) - Client-side URL transfer library, used by various tools/examples - [CURL License](https://curl.se/docs/copyright.html)
- [miniaudio.h](https://github.com/mackron/miniaudio) - Single-header audio format decoder, used by multimodal subsystem - Public domain
echo"Error: nvidia-smi not found, cannot build with CUDA"
exit1
fi
fi
if[ ! -z ${GG_BUILD_SYCL}];then
@@ -68,6 +84,10 @@ if [ ! -z ${GG_BUILD_VULKAN} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_VULKAN=1"
fi
if[ ! -z ${GG_BUILD_WEBGPU}];then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_WEBGPU=1"
fi
if[ ! -z ${GG_BUILD_MUSA}];then
# Use qy1 by default (MTT S80)
MUSA_ARCH=${MUSA_ARCH:-21}
@@ -766,7 +786,7 @@ function gg_run_rerank_tiny {
model_f16="${path_models}/ggml-model-f16.gguf"
# for this model, the SEP token is "</s>"
(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?</s></s>hi\nwhat is panda?</s></s>it's a bear\nwhat is panda?</s></s>The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." -ngl 99 -c 0 --pooling rank --embd-normalize -1 --verbose-prompt) 2>&1| tee -a $OUT/${ci}-rk-f16.log
(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?\thi\nwhat is panda?\tit's a bear\nwhat is panda?\tThe giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." -ngl 99 -c 0 --pooling rank --embd-normalize -1 --verbose-prompt) 2>&1| tee -a $OUT/${ci}-rk-f16.log
message(WARNING"Git index not found in git repository.")
set(GIT_INDEX"")
endif()
else()
message(WARNING"Git repository not found; to enable automatic generation of build info, make sure Git is installed and the project is a Git repository.")
set(GIT_INDEX"")
endif()
# Add a custom command to rebuild build-info.cpp when .git/index changes
// if we cannot open the metadata file, we assume that the downloaded file is not valid (etag and last-modified are left empty, so we will download it again)
}else{
if(offline){
LOG_ERR("%s: required file is not available in cache (offline mode): %s\n",__func__,path.c_str());
returnfalse;
}
LOG_INF("%s: no previous model file found %s\n",__func__,path.c_str());
}
// Send a HEAD request to retrieve the etag and last-modified headers
structcommon_load_model_from_url_headers{
std::stringetag;
std::stringlast_modified;
};
common_load_model_from_url_headersheaders;
boolhead_request_ok=false;
boolshould_download=!file_exists;// by default, we should download if the file does not exist
// if we cannot open the metadata file, we assume that the downloaded file is not valid (etag and last-modified are left empty, so we will download it again)
}else{
LOG_INF("%s: no previous model file found %s\n",__func__,path.c_str());
}
// Send a HEAD request to retrieve the etag and last-modified headers
structcommon_load_model_from_url_headers{
std::stringetag;
std::stringlast_modified;
returnn_items;
};
common_load_model_from_url_headersheaders;
boolhead_request_ok=false;
boolshould_download=!file_exists;// by default, we should download if the file does not exist
curl_easy_setopt(curl.get(),CURLOPT_NOBODY,1L);// will trigger the HEAD verb
* Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
"reasoning format (default: deepseek; allowed values: deepseek, none)\n"
"controls whether thought tags are extracted from the response, and in which format they're returned. 'none' leaves thoughts unparsed in `message.content`, 'deepseek' puts them in `message.reasoning_content` (for DeepSeek R1 & Command R7B only).\n"
"only supported for non-streamed responses",
"controls whether thought tags are allowed and/or extracted from the response, and in which format they're returned; one of:\n"
"- none: leaves thoughts unparsed in `message.content`\n"
"- deepseek: puts thoughts in `message.reasoning_content` (except in streaming mode, which behaves as `none`)\n"
LOG_DBG("Cleaned up JSON %s to %s (json_healing_marker : '%s')\n",partial->json.dump().c_str(),cleaned.dump().c_str(),partial->healing_marker.json_dump_marker.c_str());
booladd_gumbel_noise=false;// add gumbel noise to the logits if temp > 0.0
};
enumcommon_reasoning_format{
COMMON_REASONING_FORMAT_NONE,
COMMON_REASONING_FORMAT_DEEPSEEK,// Extract thinking tag contents and return as `message.reasoning_content`
COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY,// Extract thinking tag contents and return as `message.reasoning_content`, or leave inline in <think> tags in stream mode
COMMON_REASONING_FORMAT_DEEPSEEK,// Extract thinking tag contents and return as `message.reasoning_content`, including in streaming deltas.
};
structcommon_params{
@@ -263,6 +285,7 @@ struct common_params {
structcommon_params_samplingsampling;
structcommon_params_speculativespeculative;
structcommon_params_vocodervocoder;
structcommon_params_diffusiondiffusion;
structcommon_params_modelmodel;
@@ -291,6 +314,7 @@ struct common_params {
int32_tverbosity=0;
int32_tcontrol_vector_layer_start=-1;// layer range for control vector
int32_tcontrol_vector_layer_end=-1;// layer range for control vector
booloffline=false;
int32_tppl_stride=0;// stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
int32_tppl_output_type=0;// = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
@@ -324,6 +348,7 @@ struct common_params {
boolno_perf=false;// disable performance metrics
boolctx_shift=true;// context shift on inifinite text generation
boolswa_full=false;// use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
boolkv_unified=false;// enable unified KV cache
boolinput_prefix_bos=false;// prefix BOS to user inputs, preceding input_prefix
booluse_mmap=true;// use mmap for faster loads
@@ -334,6 +359,7 @@ struct common_params {
boolwarmup=true;// warmup run
boolcheck_tensors=false;// validate tensor data
boolno_op_offload=false;// globally disable offload host tensor operations to device
boolno_extra_bufts=false;// disable extra buffer types (used for weight repacking)
boolsingle_turn=false;// single turn chat conversation
// Healing marker (empty if the JSON was fully parsed / wasn't healed).
structcommon_healing_marker{
// Raw marker.
std::stringmarker;
// Cutting the `common_json.json.dump()` string at the (only) occurrence of this marker should yield the original partial JSON string (modulo spaces / if it had the same dump format).
std::stringjson_dump_marker;
};
// Represents a parsed JSON object, with its optional healing marker (a JSON dump fragment that can be used to find the position of healing in the JSON dump string)
structcommon_json{
nlohmann::ordered_jsonjson;
common_healing_markerhealing_marker;
};
// Parse the JSON string, healing (closing) any partial JSON if `healing_marker` is not empty.
//
// Healing completes partial JSON strings by adding a (possibly modified) healing marker, then whatever is needed to close the JSON.
// This allows to parse the resulting healed JSON string, yet be able to cut it again if needed at the healing marker.
// (this is used when parsing JSON outputs from the models, then crafting partial JSONs for the partial tool calls in OAI format).
//
// For instance, parsing `{` with a healing marker `foo` will produce a healed JSON `{"foo":1}`, w/ json_dump_marker = `"foo"` (which can be used to break the JSON again).
boolcommon_json_parse(
conststd::string&input,
conststd::string&healing_marker,
common_json&out);
// Parse the JSON string (see overload above), but advancing an iterator to the end of the input when the (potentially partial) parsing succeeds.
logger.warning("HF token not found. You can provide it as an argument or set it in ~/.cache/huggingface/token")
ifargs.check_missingandargs.full:
logger.warning("Downloading full list of models requested, ignoring --check-missing!")
args.check_missing=False
# TODO: this string has to exercise as much pre-tokenizer functionality as possible
# will be updated with time - contributions welcome
CHK_TXT='\n\n\n\n\n\n\t\t\t\t\n\n\n\n\n🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
Please add the **[CANN]** prefix/tag in issues/PRs titles to help the CANN-team check/address them without delay.
## Updates
### Basic Flash Attention Support
The basic FA kernel with aclnnops has been added in aclnn_ops.cpp.
Currently, the FA only supports the cases with FP16 KV tensors and NO logit softcap.
Since the aclnn interface for flash attention cannot support the logit softcap, we will only update the quantized version in the future.
Authors from Peking University: Bizhao Shi (bshi@pku.edu.cn), Yuxin Yang (yxyang@pku.edu.cn), Ruiyang Ma (ruiyang@stu.pku.edu.cn), and Guojie Luo (gluo@pku.edu.cn).
We would like to thank Tuo Dai, Shanni Li, and all of the project maintainers from Huawei Technologies Co., Ltd for their help during the code development and pull request.
## Environment variable setup
### GGML_CANN_ASYNC_MODE
Enables asynchronous operator submission. Disabled by default.
### GGML_CANN_MEM_POOL
Specifies the memory pool management strategy:
- vmm: Utilizes a virtual memory manager pool. If hardware support for VMM is unavailable, falls back to the legacy (leg) memory pool.
- prio: Employs a priority queue-based memory pool management.
- leg: Uses a fixed-size buffer pool.
### GGML_CANN_DISABLE_BUF_POOL_CLEAN
Controls automatic cleanup of the memory pool. This option is only effective when using the prio or leg memory pool strategies.
### GGML_CANN_WEIGHT_NZ
Converting the matmul weight format from ND to NZ can significantly improve performance on the 310I DUO NPU.
| GGML_SYCL_DEBUG | 0 (default) or 1 | Enable log function by macro: GGML_SYCL_DEBUG |
| GGML_SYCL_DISABLE_OPT | 0 (default) or 1 | Disable optimize features based on Intel GPU type, to compare the performance increase |
| GGML_SYCL_DISABLE_OPT | 0 (default) or 1 | Disable optimize features for Intel GPUs. (Recommended to 1 for intel devices older than Gen 10) |
| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because graph performance isn't yet better than non-graph performance. |
| GGML_SYCL_DISABLE_DNN | 0 (default) or 1 | Disable running computations through oneDNN and always use oneMKL. |
| ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer |
> This build documentation is specific only to IBM Z & LinuxONE mainframes (s390x). You can find the build documentation for other architectures: [build.md](build.md).
# Build llama.cpp locally (for s390x)
The main product of this project is the `llama` library. Its C-style interface can be found in [include/llama.h](../include/llama.h).
The project also includes many example programs and tools using the `llama` library. The examples range from simple, minimal code snippets to sophisticated sub-projects such as an OpenAI-compatible HTTP server.
**To get the code:**
```bash
git clone https://github.com/ggml-org/llama.cpp
cd llama.cpp
```
## CPU Build with BLAS
Building llama.cpp with BLAS support is highly recommended as it has shown to provide performance improvements. Make sure to have OpenBLAS installed in your environment.
```bash
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_BLAS=ON \
-DGGML_BLAS_VENDOR=OpenBLAS
cmake --build build --config Release -j $(nproc)
```
**Notes**:
- For faster repeated compilation, install [ccache](https://ccache.dev/)
- By default, VXE/VXE2 is enabled. To disable it (not recommended):
```bash
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_BLAS=ON \
-DGGML_BLAS_VENDOR=OpenBLAS \
-DGGML_VXE=OFF
cmake --build build --config Release -j $(nproc)
```
- By default, NNPA is disabled by default. To enable it:
```bash
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_BLAS=ON \
-DGGML_BLAS_VENDOR=OpenBLAS \
-DGGML_NNPA=ON
cmake --build build --config Release -j $(nproc)
```
- For debug builds:
```bash
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=Debug \
-DGGML_BLAS=ON \
-DGGML_BLAS_VENDOR=OpenBLAS
cmake --build build --config Debug -j $(nproc)
```
- For static builds, add `-DBUILD_SHARED_LIBS=OFF`:
```bash
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_BLAS=ON \
-DGGML_BLAS_VENDOR=OpenBLAS \
-DBUILD_SHARED_LIBS=OFF
cmake --build build --config Release -j $(nproc)
```
## Getting GGUF Models
All models need to be converted to Big-Endian. You can achieve this in three cases:
1. **Use pre-converted models verified for use on IBM Z & LinuxONE (easiest)**

You can find popular models pre-converted and verified at [s390x Verified Models](https://huggingface.co/collections/taronaeo/s390x-verified-models-672765393af438d0ccb72a08) or [s390x Runnable Models](https://huggingface.co/collections/taronaeo/s390x-runnable-models-686e951824198df12416017e).
These models have already been converted from `safetensors` to `GGUF` Big-Endian and their respective tokenizers verified to run correctly on IBM z15 and later system.
2. **Convert safetensors model to GGUF Big-Endian directly (recommended)**

The model you are trying to convert must be in `safetensors` file format (for example [IBM Granite 3.3 2B](https://huggingface.co/ibm-granite/granite-3.3-2b-instruct)). Make sure you have downloaded the model repository for this case.
Ensure that you have installed the required packages in advance
```bash
pip3 install -r requirements.txt
```
Convert the `safetensors` model to `GGUF`
```bash
python3 convert_hf_to_gguf.py \
--outfile model-name-be.f16.gguf \
--outtype f16 \
--bigendian \
model-directory/
```
For example,
```bash
python3 convert_hf_to_gguf.py \
--outfile granite-3.3-2b-instruct-be.f16.gguf \
--outtype f16 \
--bigendian \
granite-3.3-2b-instruct/
```
3. **Convert existing GGUF Little-Endian model to Big-Endian**

The model you are trying to convert must be in `gguf` file format (for example [IBM Granite 3.3 2B GGUF](https://huggingface.co/ibm-granite/granite-3.3-2b-instruct-GGUF)). Make sure you have downloaded the model file for this case.
```bash
python3 gguf-py/gguf/scripts/gguf_convert_endian.py model-name.f16.gguf BIG
```
For example,
```bash
python3 gguf-py/gguf/scripts/gguf_convert_endian.py granite-3.3-2b-instruct-le.f16.gguf BIG
- The GGUF endian conversion script may not support all data types at the moment and may fail for some models/quantizations. When that happens, please try manually converting the safetensors model to GGUF Big-Endian via Step 2.
## IBM Accelerators
### 1. SIMD Acceleration
Only available in IBM z15 or later system with the `-DGGML_VXE=ON` (turned on by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z14/arch12. In such systems, the APIs can still run but will use a scalar implementation.
### 2. NNPA Vector Intrinsics Acceleration
Only available in IBM z16 or later system with the `-DGGML_NNPA=ON` (turned off by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z15/arch13. In such systems, the APIs can still run but will use a scalar implementation.
### 3. zDNN Accelerator
_Only available in IBM z16 / LinuxONE 4 or later system. No support currently available._
### 4. Spyre Accelerator
_Only available with IBM z17 / LinuxONE 5 or later system. No support currently available._
## Performance Tuning
### 1. Virtualization Setup
It is strongly recommended to use only LPAR (Type-1) virtualization to get the most performance.
Note: Type-2 virtualization is not supported at the moment, while you can get it running, the performance will not be the best.
### 2. IFL (Core) Count
It is recommended to allocate a minimum of 8 shared IFLs assigned to the LPAR. Increasing the IFL count past 8 shared IFLs will only improve Prompt Processing performance but not Token Generation.
Note: IFL count does not equate to vCPU count.
### 3. SMT vs NOSMT (Simultaneous Multithreading)
It is strongly recommended to disable SMT via the kernel boot parameters as it negatively affects performance. Please refer to your Linux distribution's guide on disabling SMT via kernel boot parameters.
### 4. BLAS vs NOBLAS
IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongly recommended to use BLAS.
## Frequently Asked Questions (FAQ)
1. I'm getting the following error message while trying to load a model: `gguf_init_from_file_impl: failed to load model: this GGUF file version 50331648 is extremely large, is there a mismatch between the host and model endianness?`
Answer: Please ensure that the model you have downloaded/converted is GGUFv3 Big-Endian. These models are usually denoted with the `-be` suffix, i.e., `granite-3.3-2b-instruct-be.F16.gguf`.
You may refer to the [Getting GGUF Models](#getting-gguf-models) section to manually convert a `safetensors` model to `GGUF` Big Endian.
2. I'm getting extremely poor performance when running inference on a model
Answer: Please refer to the [Appendix B: SIMD Support Matrix](#appendix-b-simd-support-matrix) to check if your model quantization is supported by SIMD acceleration.
3. I'm building on IBM z17 and getting the following error messages: `invalid switch -march=z17`
Answer: Please ensure that your GCC compiler is of minimum GCC 15.1.0 version, and have `binutils` updated to the latest version. If this does not fix the problem, kindly open an issue.
4. Failing to install the `sentencepiece` package using GCC 15+
Answer: The `sentencepiece` team are aware of this as seen in [this issue](https://github.com/google/sentencepiece/issues/1108).
As a temporary workaround, please run the installation command with the following environment variables.
Answer: We are aware of this as detailed in [this issue](https://github.com/ggml-org/llama.cpp/issues/14877). Please either try reducing the number of threads, or disable the compile option using `-DGGML_NNPA=OFF`.
## Getting Help on IBM Z & LinuxONE
1.**Bugs, Feature Requests**
Please file an issue in llama.cpp and ensure that the title contains "s390x".
2.**Other Questions**
Please reach out directly to [aionz@us.ibm.com](mailto:aionz@us.ibm.com).
## Appendix A: Hardware Support Matrix
| | Support | Minimum Compiler Version |
| ------- | ------- | ------------------------ |
| IBM z15 | ✅ | |
| IBM z16 | ✅ | |
| IBM z17 | ✅ | GCC 15.1.0 |
- ✅ - supported and verified to run as intended
- 🚫 - unsupported, we are unlikely able to provide support
The main product of this project is the `llama` library. Its C-style interface can be found in [include/llama.h](../include/llama.h).
The project also includes many example programs and tools using the `llama` library. The examples range from simple, minimal code snippets to sophisticated sub-projects such as an OpenAI-compatible HTTP server.
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-vulkan -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
```
**Without docker**:
### For Linux users:
Firstly, you need to make sure you have installed [Vulkan SDK](https://vulkan.lunarg.com/doc/view/latest/linux/getting_started_ubuntu.html)
First, follow the official LunarG instructions for the installation and setup of the Vulkan SDK in the [Getting Started with the Linux Tarball Vulkan SDK](https://vulkan.lunarg.com/doc/sdk/latest/linux/getting_started.html) guide.
For example, on Ubuntu 22.04 (jammy), use the command below:
> [!IMPORTANT]
> After completing the first step, ensure that you have used the `source` command on the `setup_env.sh` file inside of the Vulkan SDK in your current terminal session. Otherwise, the build won't work. Additionally, if you close out of your terminal, you must perform this step again if you intend to perform a build. However, there are ways to make this persistent. Refer to the Vulkan SDK guide linked in the first step for more information about any of this.
Second, after verifying that you have followed all of the SDK installation/setup steps, use this command to make sure before proceeding:
# To verify the installation, use the command below:
vulkaninfo
```
Alternatively your package manager might be able to provide the appropriate libraries.
For example for Ubuntu 22.04 you can install `libvulkan-dev` instead.
For Fedora 40, you can install `vulkan-devel`, `glslc` and `glslang` packages.
Then, build llama.cpp using the cmake command below:
Then, assuming you have `cd` into your llama.cpp folder and there are no errors with running `vulkaninfo`, you can proceed to build llama.cpp using the CMake commands below:
```bash
cmake -B build -DGGML_VULKAN=1
cmake --build build --config Release
# Test the output binary (with "-ngl 33" to offload all layers to GPU)
./bin/llama-cli -m "PATH_TO_MODEL" -p "Hi you how are you" -n 50 -e -ngl 33 -t 4
```
Finally, after finishing your build, you should be able to do something like this:
```bash
# Test the output binary
# "-ngl 99" should offload all of the layers to GPU for most (if not all) models.
./build/bin/llama-cli -m "PATH_TO_MODEL" -p "Hi you how are you" -ngl 99
# You should see in the output, ggml_vulkan detected your GPU. For example:
To read documentation for how to build on Android, [click here](./android.md)
## WebGPU [In Progress]
The WebGPU backend relies on [Dawn](https://dawn.googlesource.com/dawn). Follow the instructions [here](https://dawn.googlesource.com/dawn/+/refs/heads/main/docs/quickstart-cmake.md) to install Dawn locally so that llama.cpp can find it using CMake. The currrent implementation is up-to-date with Dawn commit `bed1a61`.
In the llama.cpp directory, build with CMake:
```
cmake -B build -DGGML_WEBGPU=ON
cmake --build build --config Release
```
### Browser Support
WebGPU allows cross-platform access to the GPU from supported browsers. We utilize [Emscripten](https://emscripten.org/) to compile ggml's WebGPU backend to WebAssembly. Emscripten does not officially support WebGPU bindings yet, but Dawn currently maintains its own WebGPU bindings called emdawnwebgpu.
Follow the instructions [here](https://dawn.googlesource.com/dawn/+/refs/heads/main/src/emdawnwebgpu/) to download or build the emdawnwebgpu package (Note that it might be safer to build the emdawbwebgpu package locally, so that it stays in sync with the version of Dawn you have installed above). When building using CMake, the path to the emdawnwebgpu port file needs to be set with the flag `EMDAWNWEBGPU_DIR`.
## IBM Z & LinuxONE
To read documentation for how to build on IBM Z & LinuxONE, [click here](./build-s390x.md)
## Notes about GPU-accelerated backends
The GPU may still be used to accelerate some parts of the computation even when using the `-ngl 0` option. You can fully disable GPU acceleration by using `--device none`.
`transformer.blocks.{bid}.norm_1` will be mapped to `blk.{bid}.attn_norm` in GGUF.
Depending on the model configuration, tokenizer, code and tensors layout, you will have to override:
-`Model#set_gguf_parameters`
-`Model#set_vocab`
-`Model#write_tensors`
-`TextModel#set_gguf_parameters`
-`MmprojModel#set_gguf_parameters`
-`ModelBase#set_vocab`
-`ModelBase#modify_tensors`
NOTE: Tensor names must end with `.weight` or `.bias` suffixes, that is the convention and several tools like `quantize` expect this to proceed the weights.
### 2. Define the model architecture in `llama.cpp`
The model params and tensors layout must be defined in `llama.cpp`:
1. Define a new `llm_arch`
2.Define the tensors layout in `LLM_TENSOR_NAMES`
3. Add any non-standard metadata in `llm_load_hparams`
4. Create the tensors for inference in `llm_load_tensors`
5.If the model has a RoPE operation, add the rope type in `llama_rope_type`
The model params and tensors layout must be defined in `llama.cpp` source files:
1. Define a new `llm_arch` enum value in `src/llama-arch.h`.
2.In `src/llama-arch.cpp`:
- Add the architecture name to the `LLM_ARCH_NAMES` map.
- Add the tensor mappings to the `LLM_TENSOR_NAMES` map.
3.Add any non-standard metadata loading in the `llama_model_loader` constructor in `src/llama-model-loader.cpp`.
4. If the model has a RoPE operation, add a case for the architecture in `llama_model_rope_type` function in `src/llama-model.cpp`.
NOTE: The dimensions in `ggml` are typically in the reverse order of the `pytorch` dimensions.
### 3. Build the GGML graph implementation
This is the funniest part, you have to provide the inference graph implementation of the new model architecture in `llama_build_graph`.
Have a look at existing implementations like `build_llama`, `build_dbrx` or `build_bert`.
This is the funniest part, you have to provide the inference graph implementation of the new model architecture in `src/llama-model.cpp`.
Create a new struct that inherits from `llm_graph_context` and implement the graph-building logic in its constructor.
Have a look at existing implementations like `llm_build_llama`, `llm_build_dbrx` or `llm_build_bert`.
Then, in the `llama_model::build_graph` method, add a case for your architecture to instantiate your new graph-building struct.
Some `ggml` backends do not support all operations. Backend implementations can be added in a separate PR.
@@ -25,6 +25,9 @@ Additionally, there the following images, similar to the above:
-`ghcr.io/ggml-org/llama.cpp:full-intel`: Same as `full` but compiled with SYCL support. (platforms: `linux/amd64`)
-`ghcr.io/ggml-org/llama.cpp:light-intel`: Same as `light` but compiled with SYCL support. (platforms: `linux/amd64`)
-`ghcr.io/ggml-org/llama.cpp:server-intel`: Same as `server` but compiled with SYCL support. (platforms: `linux/amd64`)
-`ghcr.io/ggml-org/llama.cpp:full-vulkan`: Same as `full` but compiled with Vulkan support. (platforms: `linux/amd64`)
-`ghcr.io/ggml-org/llama.cpp:light-vulkan`: Same as `light` but compiled with Vulkan support. (platforms: `linux/amd64`)
-`ghcr.io/ggml-org/llama.cpp:server-vulkan`: Same as `server` but compiled with Vulkan support. (platforms: `linux/amd64`)
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](../.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](../.github/workflows/docker.yml). If you need different settings (for example, a different CUDA, ROCm or MUSA library, you'll need to build the images locally for now).
@@ -107,7 +110,7 @@ You may want to pass in some different `ARGS`, depending on the MUSA environment
The defaults are:
-`MUSA_VERSION` set to `rc4.0.1`
-`MUSA_VERSION` set to `rc4.2.0`
The resulting images, are essentially the same as the non-MUSA images:
[chat.h](../common/chat.h) (https://github.com/ggml-org/llama.cpp/pull/9639) adds support for [OpenAI-style function calling](https://platform.openai.com/docs/guides/function-calling) and is used in:
@@ -325,36 +324,65 @@ To get the official template from original HuggingFace repos, you can use [scrip
> [!TIP]
> If there is no official `tool_use` Jinja template, you may want to set `--chat-template chatml` to use a default that works with many models (YMMV!), or write your own (e.g. we provide a custom [llama-cpp-deepseek-r1.jinja](../models/templates/llama-cpp-deepseek-r1.jinja) for DeepSeek R1 distills)
> [!CAUTION]
> Beware of extreme KV quantizations (e.g. `-ctk q4_0`), they can substantially degrade the model's tool calling performance.
Test in CLI (or with any library / software that can use OpenAI-compatible API backends):
This expression is automatically updated within the [nixpkgs repo](https://github.com/NixOS/nixpkgs/blob/nixos-24.05/pkgs/by-name/ll/llama-cpp/package.nix#L164).
## Flox
On Mac and Linux, Flox can be used to install llama.cpp within a Flox environment via
These are ready-to-use models, most of them come with `Q4_K_M` quantization by default. They can be found at the Hugging Face page of the ggml-org: https://huggingface.co/ggml-org
These are ready-to-use models, most of them come with `Q4_K_M` quantization by default. They can be found at the Hugging Face page of the ggml-org: https://huggingface.co/collections/ggml-org/multimodal-ggufs-68244e01ff1f39e5bebeeedc
Replaces the `(tool_name)` with the name of binary you want to use. For example, `llama-mtmd-cli` or `llama-server`
NOTE: some models may require large context window, for example: `-c 8192`
**Vision models**:
```sh
# Gemma 3
(tool_name) -hf ggml-org/gemma-3-4b-it-GGUF
@@ -77,4 +81,36 @@ NOTE: some models may require large context window, for example: `-c 8192`
GGUF models on Huggingface with vision capabilities can be found here: https://huggingface.co/models?pipeline_tag=image-text-to-text&sort=trending&search=gguf
Download [MiniCPM-o-4](https://huggingface.co/openbmb/MiniCPM-o-4) PyTorch model from huggingface to "MiniCPM-o-4" folder.
### Build llama.cpp
Readme modification time: 20250206
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
Clone llama.cpp:
```bash
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
```
Build llama.cpp using `CMake`:
```bash
cmake -B build
cmake --build build --config Release
```
### Usage of MiniCPM-o 4
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-o-4-gguf) by us)
Download [MiniCPM-V-4](https://huggingface.co/openbmb/MiniCPM-V-4) PyTorch model from huggingface to "MiniCPM-V-4" folder.
### Build llama.cpp
Readme modification time: 20250206
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
Clone llama.cpp:
```bash
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
```
Build llama.cpp using `CMake`:
```bash
cmake -B build
cmake --build build --config Release
```
### Usage of MiniCPM-V 4
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-V-4-gguf) by us)
Example of using Dream architechture: `llama-diffusion-cli -m dream7b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-eps 0.001 --diffusion-algorithm 3 --diffusion-steps 256 --diffusion-visual`
Example of using LLaDA architechture: `llama-diffusion-cli -m llada-8b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-block-length 32 --diffusion-steps 256 --diffusion-visual`
@@ -4,7 +4,7 @@ Simplified simulation of serving incoming requests in parallel
## Example
Generate 128 client requests (`-ns 128`), simulating 8 concurrent clients (`-np 8`). The system prompt is shared (`-pps`), meaning that it is computed once at the start. The client requests consist of 10 junk questions (`-j 10`) followed by the actual question.
Generate 128 client requests (`-ns 128`), simulating 8 concurrent clients (`-np 8`). The system prompt is shared (`-pps`), meaning that it is computed once at the start. The client requests consist of up to 10 junk questions (`--junk 10`) followed by the actual question.
LOG_INF("the draft model '%s' is not compatible with the target model '%s'. tokens will be translated between the draft and target models.\n",params.speculative.model.path.c_str(),params.model.path.c_str());
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.