mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-05 13:53:23 +02:00
Compare commits
199 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
cd355eda7d | ||
|
|
30e5b01de2 | ||
|
|
e54b394082 | ||
|
|
2c2caa4443 | ||
|
|
5fce5f948d | ||
|
|
9ae4143bc6 | ||
|
|
c311ac664d | ||
|
|
b9912ac570 | ||
|
|
00ba772610 | ||
|
|
3cb203c89f | ||
|
|
2e42be42bd | ||
|
|
fb85a288d7 | ||
|
|
40643edb86 | ||
|
|
3cfbbdb44e | ||
|
|
80709b70a2 | ||
|
|
26ff3685bf | ||
|
|
60c666347b | ||
|
|
b7cc7745e3 | ||
|
|
cc8d081879 | ||
|
|
d714dadb57 | ||
|
|
ffad043973 | ||
|
|
0889eba570 | ||
|
|
c61285e739 | ||
|
|
09cf2c7c65 | ||
|
|
c33fe8b8c4 | ||
|
|
ed52f3668e | ||
|
|
a681b4ba83 | ||
|
|
7d516443dd | ||
|
|
f6e1a7aa87 | ||
|
|
c3ee46fab4 | ||
|
|
e2c0b6e46a | ||
|
|
9596506965 | ||
|
|
a20b2b05bc | ||
|
|
2e89f76b7a | ||
|
|
532802f938 | ||
|
|
d4e0d95cf5 | ||
|
|
cc66a7f78f | ||
|
|
bd248d4dc7 | ||
|
|
7781e5fe99 | ||
|
|
89a184fa71 | ||
|
|
2baf07727f | ||
|
|
7ae2932116 | ||
|
|
1f7d50b293 | ||
|
|
4c763c8d1b | ||
|
|
dad5c44398 | ||
|
|
55f6b9fa65 | ||
|
|
3678b838bb | ||
|
|
652b70e667 | ||
|
|
3a12db23b6 | ||
|
|
ae92c1855b | ||
|
|
b7ce1ad1e3 | ||
|
|
97340b4c99 | ||
|
|
2bb0467043 | ||
|
|
b8e2194efc | ||
|
|
1a3b5e80f7 | ||
|
|
1f63e75f3b | ||
|
|
40cbf571c9 | ||
|
|
7f4fbe5183 | ||
|
|
f470bc36be | ||
|
|
8f47e25f56 | ||
|
|
201b31dc2e | ||
|
|
e21d2d4ae2 | ||
|
|
dc0623fddb | ||
|
|
87d34b381d | ||
|
|
b460d16ae8 | ||
|
|
91a8ee6a6f | ||
|
|
056eb74534 | ||
|
|
247e5c6e44 | ||
|
|
5787b5da57 | ||
|
|
228f34c9ce | ||
|
|
0974ad7a7c | ||
|
|
745aa5319b | ||
|
|
487a5e0401 | ||
|
|
d17a809ef0 | ||
|
|
1caae7fc6c | ||
|
|
669c13e0f6 | ||
|
|
146b88e8b3 | ||
|
|
7f37b6cf1e | ||
|
|
3a077146a4 | ||
|
|
d01d112abb | ||
|
|
9f47fa5792 | ||
|
|
9e31bec4fd | ||
|
|
5a8ae3053c | ||
|
|
0d3984424f | ||
|
|
3e63a58ef7 | ||
|
|
2589ad3704 | ||
|
|
482548716f | ||
|
|
3ac67535c8 | ||
|
|
0b4be4c435 | ||
|
|
e0e806f52e | ||
|
|
7e00e60ef8 | ||
|
|
ea1431b0fa | ||
|
|
71e74a3ac9 | ||
|
|
bfb1e012a0 | ||
|
|
3637576288 | ||
|
|
ea394d7ab1 | ||
|
|
5582c49c39 | ||
|
|
c9bbc77931 | ||
|
|
bfd322796c | ||
|
|
093e3f1feb | ||
|
|
663445b0de | ||
|
|
7675c555a1 | ||
|
|
5e1c3aed40 | ||
|
|
c496fe0b1d | ||
|
|
e57bb87ced | ||
|
|
f3a4b1659c | ||
|
|
108009f5c7 | ||
|
|
d337252acf | ||
|
|
af6f91db47 | ||
|
|
a7b8d35f78 | ||
|
|
6eba72b71c | ||
|
|
fedf034a98 | ||
|
|
8726392d3d | ||
|
|
c04621711a | ||
|
|
0fc16b42e8 | ||
|
|
053b1539c0 | ||
|
|
b3a89c3d9e | ||
|
|
e15898d1c7 | ||
|
|
803f8baf4f | ||
|
|
3600cc2886 | ||
|
|
c7e0a2054b | ||
|
|
3f55f781f1 | ||
|
|
51fa76f172 | ||
|
|
12d0188c0d | ||
|
|
eb3949938e | ||
|
|
e562eece7c | ||
|
|
b47ab7b8e9 | ||
|
|
dd665cc9d4 | ||
|
|
df0c0c7d02 | ||
|
|
b49a8ff96b | ||
|
|
53f925074d | ||
|
|
db38704f01 | ||
|
|
07e4351ce6 | ||
|
|
291f2b6913 | ||
|
|
2c90da4c7e | ||
|
|
ec9e0301fe | ||
|
|
e83ba3e460 | ||
|
|
2b131621e6 | ||
|
|
54a2c7a8cd | ||
|
|
21fcc21ad5 | ||
|
|
dd8ba93416 | ||
|
|
66c92061f5 | ||
|
|
5ca82fc1d7 | ||
|
|
6385b843a8 | ||
|
|
1b8fb8152d | ||
|
|
53ae30640e | ||
|
|
763d06edb7 | ||
|
|
10961339b2 | ||
|
|
d98f2a35fc | ||
|
|
e0e3aa231d | ||
|
|
aa6dff05be | ||
|
|
c962ae3382 | ||
|
|
a3938fb53d | ||
|
|
f7873fc698 | ||
|
|
a68247439b | ||
|
|
26b79b6cb3 | ||
|
|
1e8659e65a | ||
|
|
a3c30846e4 | ||
|
|
1701d4c54f | ||
|
|
bef8176387 | ||
|
|
34b7c0439e | ||
|
|
f3101a8cc6 | ||
|
|
1c49c70d07 | ||
|
|
a8ea03d8ad | ||
|
|
05f6ac6283 | ||
|
|
bc583e3c63 | ||
|
|
72b090da2c | ||
|
|
7fe03e7446 | ||
|
|
952f3953c1 | ||
|
|
81713121ee | ||
|
|
f9cd68398b | ||
|
|
4f81b33e32 | ||
|
|
cdf94a1802 | ||
|
|
a26c4cc11e | ||
|
|
4265a87b59 | ||
|
|
6f180b915c | ||
|
|
03f582ae8f | ||
|
|
88c125f2ac | ||
|
|
d74e94c1b3 | ||
|
|
f13847cfb5 | ||
|
|
79c137f776 | ||
|
|
22229314fc | ||
|
|
9012eb9b45 | ||
|
|
fef693dc6b | ||
|
|
2d38b6e400 | ||
|
|
e121edc432 | ||
|
|
2f099b510f | ||
|
|
aa50ba462f | ||
|
|
de2ef53a4b | ||
|
|
c508256db2 | ||
|
|
40aaa8a403 | ||
|
|
a08c1d2845 | ||
|
|
d785f9c1fd | ||
|
|
4032ca4066 | ||
|
|
515fdbf7ed | ||
|
|
f5cd27b71d | ||
|
|
a2d02d5793 | ||
|
|
17fc817b58 | ||
|
|
2bd1b30f69 |
@@ -49,19 +49,23 @@ COPY --from=build /app/full /app
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y \
|
||||
git \
|
||||
python3 \
|
||||
python3-pip \
|
||||
&& pip install --upgrade pip setuptools wheel \
|
||||
&& pip install -r requirements.txt \
|
||||
&& apt autoremove -y \
|
||||
&& apt clean -y \
|
||||
&& rm -rf /tmp/* /var/tmp/* \
|
||||
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
|
||||
&& find /var/cache -type f -delete
|
||||
RUN apt-get update && \
|
||||
apt-get install -y \
|
||||
git \
|
||||
python3 \
|
||||
python3-pip \
|
||||
python3-venv && \
|
||||
python3 -m venv /opt/venv && \
|
||||
. /opt/venv/bin/activate && \
|
||||
pip install --upgrade pip setuptools wheel && \
|
||||
pip install -r requirements.txt && \
|
||||
apt autoremove -y && \
|
||||
apt clean -y && \
|
||||
rm -rf /tmp/* /var/tmp/* && \
|
||||
find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete && \
|
||||
find /var/cache -type f -delete
|
||||
|
||||
ENV PATH="/opt/venv/bin:$PATH"
|
||||
|
||||
ENTRYPOINT ["/app/tools.sh"]
|
||||
|
||||
|
||||
@@ -49,6 +49,6 @@ charset = unset
|
||||
trim_trailing_whitespace = unset
|
||||
insert_final_newline = unset
|
||||
|
||||
[tools/mtmd/miniaudio.h]
|
||||
[vendor/miniaudio/miniaudio.h]
|
||||
trim_trailing_whitespace = unset
|
||||
insert_final_newline = unset
|
||||
|
||||
7
.github/labeler.yml
vendored
7
.github/labeler.yml
vendored
@@ -86,3 +86,10 @@ nix:
|
||||
embedding:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file: examples/embedding/
|
||||
|
||||
Ascend NPU:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ggml/include/ggml-cann.h
|
||||
- ggml/src/ggml-cann/**
|
||||
- docs/backend/CANN.md
|
||||
|
||||
143
.github/workflows/build-linux-cross.yml
vendored
143
.github/workflows/build-linux-cross.yml
vendored
@@ -26,12 +26,12 @@ jobs:
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
gcc-14-riscv64-linux-gnu \
|
||||
g++-14-riscv64-linux-gnu \
|
||||
libcurl4-openssl-dev:riscv64
|
||||
g++-14-riscv64-linux-gnu
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
cmake -B build -DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
@@ -72,12 +72,12 @@ jobs:
|
||||
glslc \
|
||||
gcc-14-riscv64-linux-gnu \
|
||||
g++-14-riscv64-linux-gnu \
|
||||
libvulkan-dev:riscv64 \
|
||||
libcurl4-openssl-dev:riscv64
|
||||
libvulkan-dev:riscv64
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
cmake -B build -DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
@@ -118,12 +118,12 @@ jobs:
|
||||
build-essential \
|
||||
glslc \
|
||||
crossbuild-essential-arm64 \
|
||||
libvulkan-dev:arm64 \
|
||||
libcurl4-openssl-dev:arm64
|
||||
libvulkan-dev:arm64
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
cmake -B build -DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
@@ -163,12 +163,12 @@ jobs:
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
gcc-14-powerpc64le-linux-gnu \
|
||||
g++-14-powerpc64le-linux-gnu \
|
||||
libcurl4-openssl-dev:ppc64el
|
||||
g++-14-powerpc64le-linux-gnu
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
cmake -B build -DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
@@ -209,12 +209,12 @@ jobs:
|
||||
glslc \
|
||||
gcc-14-powerpc64le-linux-gnu \
|
||||
g++-14-powerpc64le-linux-gnu \
|
||||
libvulkan-dev:ppc64el \
|
||||
libcurl4-openssl-dev:ppc64el
|
||||
libvulkan-dev:ppc64el
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
cmake -B build -DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
@@ -231,3 +231,116 @@ jobs:
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
debian-13-loongarch64-cpu-cross:
|
||||
runs-on: ubuntu-24.04
|
||||
container: debian@sha256:653dfb9f86c3782e8369d5f7d29bb8faba1f4bff9025db46e807fa4c22903671
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Setup LoongArch
|
||||
run: |
|
||||
rm -f /etc/apt/sources.list.d/*
|
||||
cat << EOF | tee /etc/apt/sources.list.d/debian-ports.list
|
||||
deb http://snapshot.debian.org/archive/debian/20250515T202920Z/ trixie main
|
||||
EOF
|
||||
( echo 'quiet "true";'; \
|
||||
echo 'APT::Get::Assume-Yes "true";'; \
|
||||
echo 'APT::Install-Recommends "false";'; \
|
||||
echo 'Acquire::Check-Valid-Until "false";'; \
|
||||
echo 'Acquire::Retries "5";'; \
|
||||
) > /etc/apt/apt.conf.d/99snapshot-repos
|
||||
|
||||
apt-get update
|
||||
apt-get install -y ca-certificates debian-ports-archive-keyring cmake git zip
|
||||
dpkg --add-architecture loong64
|
||||
|
||||
# Add arch-specific repositories for non-amd64 architectures
|
||||
cat << EOF | tee /etc/apt/sources.list.d/loong64-ports.list
|
||||
deb [arch=loong64] http://snapshot.debian.org/archive/debian-ports/20250515T194251Z/ sid main
|
||||
EOF
|
||||
|
||||
apt-get update || true ;# Prevent failure due to missing URLs.
|
||||
|
||||
apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
gcc-14-loongarch64-linux-gnu \
|
||||
g++-14-loongarch64-linux-gnu
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=loongarch64 \
|
||||
-DCMAKE_C_COMPILER=loongarch64-linux-gnu-gcc-14 \
|
||||
-DCMAKE_CXX_COMPILER=loongarch64-linux-gnu-g++-14 \
|
||||
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
-DCMAKE_FIND_ROOT_PATH=/usr/lib/loongarch64-linux-gnu \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
debian-13-loongarch64-vulkan-cross:
|
||||
runs-on: ubuntu-24.04
|
||||
container: debian@sha256:653dfb9f86c3782e8369d5f7d29bb8faba1f4bff9025db46e807fa4c22903671
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Setup LoongArch
|
||||
run: |
|
||||
rm -f /etc/apt/sources.list.d/*
|
||||
cat << EOF | tee /etc/apt/sources.list.d/debian-ports.list
|
||||
deb http://snapshot.debian.org/archive/debian/20250515T202920Z/ trixie main
|
||||
EOF
|
||||
( echo 'quiet "true";'; \
|
||||
echo 'APT::Get::Assume-Yes "true";'; \
|
||||
echo 'APT::Install-Recommends "false";'; \
|
||||
echo 'Acquire::Check-Valid-Until "false";'; \
|
||||
echo 'Acquire::Retries "5";'; \
|
||||
) > /etc/apt/apt.conf.d/99snapshot-repos
|
||||
|
||||
apt-get update
|
||||
apt-get install -y ca-certificates debian-ports-archive-keyring cmake git zip
|
||||
dpkg --add-architecture loong64
|
||||
|
||||
# Add arch-specific repositories for non-amd64 architectures
|
||||
cat << EOF | tee /etc/apt/sources.list.d/loong64-ports.list
|
||||
deb [arch=loong64] http://snapshot.debian.org/archive/debian-ports/20250515T194251Z/ sid main
|
||||
EOF
|
||||
|
||||
apt-get update || true ;# Prevent failure due to missing URLs.
|
||||
|
||||
apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
glslc \
|
||||
gcc-14-loongarch64-linux-gnu \
|
||||
g++-14-loongarch64-linux-gnu \
|
||||
libvulkan-dev:loong64
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=loongarch64 \
|
||||
-DCMAKE_C_COMPILER=loongarch64-linux-gnu-gcc-14 \
|
||||
-DCMAKE_CXX_COMPILER=loongarch64-linux-gnu-g++-14 \
|
||||
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
-DCMAKE_FIND_ROOT_PATH=/usr/lib/loongarch64-linux-gnu \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
13
.github/workflows/build.yml
vendored
13
.github/workflows/build.yml
vendored
@@ -306,6 +306,7 @@ jobs:
|
||||
id: cmake_test
|
||||
run: |
|
||||
cd build
|
||||
export GGML_VK_VISIBLE_DEVICES=0
|
||||
# This is using llvmpipe and runs slower than other backends
|
||||
ctest -L main --verbose --timeout 3600
|
||||
|
||||
@@ -687,8 +688,8 @@ jobs:
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build: 'cpu-x64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF'
|
||||
- build: 'cpu-x64 (static)'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF'
|
||||
- build: 'openblas-x64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
|
||||
- build: 'vulkan-x64'
|
||||
@@ -839,12 +840,12 @@ jobs:
|
||||
-DGGML_CUDA=ON
|
||||
cmake --build build
|
||||
|
||||
windows-2019-cmake-cuda:
|
||||
runs-on: windows-2019
|
||||
windows-2022-cmake-cuda:
|
||||
runs-on: windows-2022
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
cuda: ['12.4', '11.7']
|
||||
cuda: ['12.4']
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@@ -878,7 +879,7 @@ jobs:
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
|
||||
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" x64
|
||||
cmake -S . -B build -G "Ninja Multi-Config" ^
|
||||
-DLLAMA_BUILD_SERVER=ON ^
|
||||
-DGGML_NATIVE=OFF ^
|
||||
|
||||
34
.github/workflows/release.yml
vendored
34
.github/workflows/release.yml
vendored
@@ -131,8 +131,9 @@ jobs:
|
||||
include:
|
||||
- build: 'x64'
|
||||
os: ubuntu-22.04
|
||||
- build: 'arm64'
|
||||
os: ubuntu-22.04-arm
|
||||
# GGML_BACKEND_DL and GGML_CPU_ALL_VARIANTS are not currently supported on arm
|
||||
# - build: 'arm64'
|
||||
# os: ubuntu-22.04-arm
|
||||
|
||||
runs-on: ${{ matrix.os }}
|
||||
|
||||
@@ -159,6 +160,9 @@ jobs:
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DGGML_BACKEND_DL=ON \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DGGML_CPU_ALL_VARIANTS=ON \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
${{ env.CMAKE_ARGS }}
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
@@ -207,6 +211,9 @@ jobs:
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DGGML_BACKEND_DL=ON \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DGGML_CPU_ALL_VARIANTS=ON \
|
||||
-DGGML_VULKAN=ON \
|
||||
${{ env.CMAKE_ARGS }}
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
@@ -260,16 +267,18 @@ jobs:
|
||||
architecture: ${{ matrix.arch == 'x64' && 'win64' || 'win64a' }}
|
||||
|
||||
- name: Build
|
||||
shell: cmd
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cmake -S . -B build -G "Ninja Multi-Config" `
|
||||
-D CMAKE_TOOLCHAIN_FILE=cmake/${{ matrix.arch }}-windows-llvm.cmake `
|
||||
-DGGML_NATIVE=OFF `
|
||||
-DGGML_BACKEND_DL=ON `
|
||||
-DGGML_CPU_ALL_VARIANTS=ON `
|
||||
-DGGML_OPENMP=OFF `
|
||||
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include" `
|
||||
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" ${{ matrix.arch }}
|
||||
cmake -S . -B build -G "Ninja Multi-Config" ^
|
||||
-D CMAKE_TOOLCHAIN_FILE=cmake/${{ matrix.arch }}-windows-llvm.cmake ^
|
||||
-DGGML_NATIVE=OFF ^
|
||||
-DGGML_BACKEND_DL=ON ^
|
||||
-DGGML_CPU_ALL_VARIANTS=${{ matrix.arch == 'x64' && 'ON' || 'OFF' }} ^
|
||||
-DGGML_OPENMP=ON ^
|
||||
-DCURL_LIBRARY="%CURL_PATH%/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="%CURL_PATH%/include" ^
|
||||
${{ env.CMAKE_ARGS }}
|
||||
cmake --build build --config Release
|
||||
|
||||
@@ -279,6 +288,7 @@ jobs:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
Copy-Item $env:CURL_PATH\bin\libcurl-${{ matrix.arch }}.dll .\build\bin\Release\
|
||||
Copy-Item "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Redist\MSVC\14.42.34433\debug_nonredist\${{ matrix.arch }}\Microsoft.VC143.OpenMP.LLVM\libomp140.${{ matrix.arch == 'x64' && 'x86_64' || 'aarch64' }}.dll" .\build\bin\Release\
|
||||
7z a llama-bin-win-cpu-${{ matrix.arch }}.zip .\build\bin\Release\*
|
||||
|
||||
- name: Upload artifacts
|
||||
@@ -370,11 +380,11 @@ jobs:
|
||||
name: llama-bin-win-${{ matrix.backend }}-${{ matrix.arch }}.zip
|
||||
|
||||
windows-cuda:
|
||||
runs-on: windows-2019
|
||||
runs-on: windows-2022
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
cuda: ['12.4', '11.7']
|
||||
cuda: ['12.4']
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@@ -402,7 +412,7 @@ jobs:
|
||||
id: cmake_build
|
||||
shell: cmd
|
||||
run: |
|
||||
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
|
||||
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" x64
|
||||
cmake -S . -B build -G "Ninja Multi-Config" ^
|
||||
-DGGML_BACKEND_DL=ON ^
|
||||
-DGGML_NATIVE=OFF ^
|
||||
|
||||
2
.github/workflows/server.yml
vendored
2
.github/workflows/server.yml
vendored
@@ -180,7 +180,7 @@ jobs:
|
||||
|
||||
|
||||
server-windows:
|
||||
runs-on: windows-2019
|
||||
runs-on: windows-2022
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
|
||||
@@ -89,6 +89,14 @@ option(LLAMA_LLGUIDANCE "llama-common: include LLGuidance library for structured
|
||||
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake)
|
||||
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/common.cmake)
|
||||
|
||||
if (NOT DEFINED LLAMA_BUILD_NUMBER)
|
||||
set(LLAMA_BUILD_NUMBER ${BUILD_NUMBER})
|
||||
endif()
|
||||
if (NOT DEFINED LLAMA_BUILD_COMMIT)
|
||||
set(LLAMA_BUILD_COMMIT ${BUILD_COMMIT})
|
||||
endif()
|
||||
set(LLAMA_INSTALL_VERSION 0.0.${BUILD_NUMBER})
|
||||
|
||||
# override ggml options
|
||||
set(GGML_ALL_WARNINGS ${LLAMA_ALL_WARNINGS})
|
||||
set(GGML_FATAL_WARNINGS ${LLAMA_FATAL_WARNINGS})
|
||||
@@ -155,10 +163,17 @@ if (LLAMA_USE_SYSTEM_GGML)
|
||||
endif()
|
||||
|
||||
if (NOT TARGET ggml AND NOT LLAMA_USE_SYSTEM_GGML)
|
||||
set(GGML_BUILD_NUMBER ${LLAMA_BUILD_NUMBER})
|
||||
set(GGML_BUILD_COMMIT ${LLAMA_BUILD_COMMIT})
|
||||
add_subdirectory(ggml)
|
||||
# ... otherwise assume ggml is added by a parent CMakeLists.txt
|
||||
endif()
|
||||
|
||||
if (MINGW)
|
||||
# Target Windows 8 for PrefetchVirtualMemory
|
||||
add_compile_definitions(_WIN32_WINNT=${GGML_WIN_VER})
|
||||
endif()
|
||||
|
||||
#
|
||||
# build the library
|
||||
#
|
||||
@@ -199,10 +214,6 @@ endif()
|
||||
include(GNUInstallDirs)
|
||||
include(CMakePackageConfigHelpers)
|
||||
|
||||
set(LLAMA_BUILD_NUMBER ${BUILD_NUMBER})
|
||||
set(LLAMA_BUILD_COMMIT ${BUILD_COMMIT})
|
||||
set(LLAMA_INSTALL_VERSION 0.0.${BUILD_NUMBER})
|
||||
|
||||
set(LLAMA_INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR} CACHE PATH "Location of header files")
|
||||
set(LLAMA_LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR} CACHE PATH "Location of library files")
|
||||
set(LLAMA_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR} CACHE PATH "Location of binary files")
|
||||
|
||||
4
Makefile
4
Makefile
@@ -367,7 +367,7 @@ ifdef LLAMA_SERVER_SSL
|
||||
endif
|
||||
|
||||
ifndef GGML_NO_CPU_AARCH64
|
||||
MK_CPPFLAGS += -DGGML_USE_CPU_AARCH64
|
||||
MK_CPPFLAGS += -DGGML_USE_CPU_REPACK
|
||||
endif
|
||||
|
||||
# warnings
|
||||
@@ -970,7 +970,7 @@ OBJ_GGML = \
|
||||
$(DIR_GGML)/src/ggml-threading.o \
|
||||
$(DIR_GGML)/src/ggml-cpu/ggml-cpu.o \
|
||||
$(DIR_GGML)/src/ggml-cpu/ggml-cpu_cpp.o \
|
||||
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-aarch64.o \
|
||||
$(DIR_GGML)/src/ggml-cpu/repack.o \
|
||||
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-hbm.o \
|
||||
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-quants.o \
|
||||
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-traits.o \
|
||||
|
||||
46
README.md
46
README.md
@@ -3,9 +3,10 @@
|
||||

|
||||
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://github.com/ggml-org/llama.cpp/releases)
|
||||
[](https://github.com/ggml-org/llama.cpp/actions/workflows/server.yml)
|
||||
|
||||
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggml-org/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggml-org/llama.cpp/discussions/205) / [ggml](https://github.com/ggml-org/ggml)
|
||||
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Manifesto](https://github.com/ggml-org/llama.cpp/discussions/205) / [ggml](https://github.com/ggml-org/ggml)
|
||||
|
||||
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
|
||||
|
||||
@@ -17,7 +18,6 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
|
||||
## Hot topics
|
||||
|
||||
- 🔥 Multimodal support arrived in `llama-server`: [#12898](https://github.com/ggml-org/llama.cpp/pull/12898) | [documentation](./docs/multimodal.md)
|
||||
- **GGML developer experience survey (organized and reviewed by NVIDIA):** [link](https://forms.gle/Gasw3cRgyhNEnrwK9)
|
||||
- A new binary `llama-mtmd-cli` is introduced to replace `llava-cli`, `minicpmv-cli`, `gemma3-cli` ([#13012](https://github.com/ggml-org/llama.cpp/pull/13012)) and `qwen2vl-cli` ([#13141](https://github.com/ggml-org/llama.cpp/pull/13141)), `libllava` will be deprecated
|
||||
- VS Code extension for FIM completions: https://github.com/ggml-org/llama.vscode
|
||||
- Universal [tool call support](./docs/function-calling.md) in `llama-server` https://github.com/ggml-org/llama.cpp/pull/9639
|
||||
@@ -28,6 +28,30 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
|
||||
|
||||
----
|
||||
|
||||
## Quick start
|
||||
|
||||
Getting started with llama.cpp is straightforward. Here are several ways to install it on your machine:
|
||||
|
||||
- Install `llama.cpp` using [brew, nix or winget](docs/install.md)
|
||||
- Run with Docker - see our [Docker documentation](docs/docker.md)
|
||||
- Download pre-built binaries from the [releases page](https://github.com/ggml-org/llama.cpp/releases)
|
||||
- Build from source by cloning this repository - check out [our build guide](docs/build.md)
|
||||
|
||||
Once installed, you'll need a model to work with. Head to the [Obtaining and quantizing models](#obtaining-and-quantizing-models) section to learn more.
|
||||
|
||||
Example command:
|
||||
|
||||
```sh
|
||||
# Use a local model file
|
||||
llama-cli -m my_model.gguf
|
||||
|
||||
# Or download and run a model directly from Hugging Face
|
||||
llama-cli -hf ggml-org/gemma-3-1b-it-GGUF
|
||||
|
||||
# Launch OpenAI-compatible API server
|
||||
llama-server -hf ggml-org/gemma-3-1b-it-GGUF
|
||||
```
|
||||
|
||||
## Description
|
||||
|
||||
The main goal of `llama.cpp` is to enable LLM inference with minimal setup and state-of-the-art performance on a wide
|
||||
@@ -130,6 +154,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
<details>
|
||||
<summary>Bindings</summary>
|
||||
|
||||
- Python: [ddh0/easy-llama](https://github.com/ddh0/easy-llama)
|
||||
- Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
|
||||
- Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp)
|
||||
- Node.js: [withcatai/node-llama-cpp](https://github.com/withcatai/node-llama-cpp)
|
||||
@@ -229,6 +254,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
## Supported backends
|
||||
|
||||
| Backend | Target devices |
|
||||
@@ -245,16 +271,6 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
| [OpenCL](docs/backend/OPENCL.md) | Adreno GPU |
|
||||
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) | All |
|
||||
|
||||
## Building the project
|
||||
|
||||
The main product of this project is the `llama` library. Its C-style interface can be found in [include/llama.h](include/llama.h).
|
||||
The project also includes many example programs and tools using the `llama` library. The examples range from simple, minimal code snippets to sophisticated sub-projects such as an OpenAI-compatible HTTP server. Possible methods for obtaining the binaries:
|
||||
|
||||
- Clone this repository and build locally, see [how to build](docs/build.md)
|
||||
- On MacOS or Linux, install `llama.cpp` via [brew, flox or nix](docs/install.md)
|
||||
- Use a Docker image, see [documentation for Docker](docs/docker.md)
|
||||
- Download pre-built binaries from [releases](https://github.com/ggml-org/llama.cpp/releases)
|
||||
|
||||
## Obtaining and quantizing models
|
||||
|
||||
The [Hugging Face](https://huggingface.co) platform hosts a [number of LLMs](https://huggingface.co/models?library=gguf&sort=trending) compatible with `llama.cpp`:
|
||||
@@ -262,7 +278,11 @@ The [Hugging Face](https://huggingface.co) platform hosts a [number of LLMs](htt
|
||||
- [Trending](https://huggingface.co/models?library=gguf&sort=trending)
|
||||
- [LLaMA](https://huggingface.co/models?sort=trending&search=llama+gguf)
|
||||
|
||||
You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from [Hugging Face](https://huggingface.co/) or other model hosting sites, such as [ModelScope](https://modelscope.cn/), by using this CLI argument: `-hf <user>/<model>[:quant]`.
|
||||
You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from [Hugging Face](https://huggingface.co/) or other model hosting sites, such as [ModelScope](https://modelscope.cn/), by using this CLI argument: `-hf <user>/<model>[:quant]`. For example:
|
||||
|
||||
```sh
|
||||
llama-cli -hf ggml-org/gemma-3-1b-it-GGUF
|
||||
```
|
||||
|
||||
By default, the CLI would download from Hugging Face, you can switch to other options with the environment variable `MODEL_ENDPOINT`. For example, you may opt to downloading model checkpoints from ModelScope or other model sharing communities by setting the environment variable, e.g. `MODEL_ENDPOINT=https://www.modelscope.cn/`.
|
||||
|
||||
|
||||
15
ci/run.sh
15
ci/run.sh
@@ -46,7 +46,20 @@ if [ ! -z ${GG_BUILD_METAL} ]; then
|
||||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_CUDA} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES=native"
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=ON"
|
||||
|
||||
if command -v nvidia-smi >/dev/null 2>&1; then
|
||||
CUDA_ARCH=$(nvidia-smi --query-gpu=compute_cap --format=csv,noheader,nounits 2>/dev/null | head -1 | tr -d '.')
|
||||
if [[ -n "$CUDA_ARCH" && "$CUDA_ARCH" =~ ^[0-9]+$ ]]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DCMAKE_CUDA_ARCHITECTURES=${CUDA_ARCH}"
|
||||
else
|
||||
echo "Warning: Using fallback CUDA architectures"
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DCMAKE_CUDA_ARCHITECTURES=61;70;75;80;86;89"
|
||||
fi
|
||||
else
|
||||
echo "Error: nvidia-smi not found, cannot build with CUDA"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_SYCL} ]; then
|
||||
|
||||
@@ -7,8 +7,8 @@ llama_add_compile_flags()
|
||||
# Build info header
|
||||
#
|
||||
|
||||
if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/../.git")
|
||||
set(GIT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../.git")
|
||||
if(EXISTS "${PROJECT_SOURCE_DIR}/.git")
|
||||
set(GIT_DIR "${PROJECT_SOURCE_DIR}/.git")
|
||||
|
||||
# Is git submodule
|
||||
if(NOT IS_DIRECTORY "${GIT_DIR}")
|
||||
@@ -18,36 +18,26 @@ if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/../.git")
|
||||
if (SLASH_POS EQUAL 0)
|
||||
set(GIT_DIR "${REAL_GIT_DIR}")
|
||||
else()
|
||||
set(GIT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../${REAL_GIT_DIR}")
|
||||
set(GIT_DIR "${PROJECT_SOURCE_DIR}/${REAL_GIT_DIR}")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if(EXISTS "${GIT_DIR}/index")
|
||||
set(GIT_INDEX "${GIT_DIR}/index")
|
||||
# For build-info.cpp below
|
||||
set_property(DIRECTORY APPEND PROPERTY CMAKE_CONFIGURE_DEPENDS "${GIT_DIR}/index")
|
||||
else()
|
||||
message(WARNING "Git index not found in git repository.")
|
||||
set(GIT_INDEX "")
|
||||
endif()
|
||||
else()
|
||||
message(WARNING "Git repository not found; to enable automatic generation of build info, make sure Git is installed and the project is a Git repository.")
|
||||
set(GIT_INDEX "")
|
||||
endif()
|
||||
|
||||
# Add a custom command to rebuild build-info.cpp when .git/index changes
|
||||
add_custom_command(
|
||||
OUTPUT "${CMAKE_CURRENT_SOURCE_DIR}/build-info.cpp"
|
||||
COMMENT "Generating build details from Git"
|
||||
COMMAND ${CMAKE_COMMAND} -DMSVC=${MSVC} -DCMAKE_C_COMPILER_VERSION=${CMAKE_C_COMPILER_VERSION}
|
||||
-DCMAKE_C_COMPILER_ID=${CMAKE_C_COMPILER_ID} -DCMAKE_VS_PLATFORM_NAME=${CMAKE_VS_PLATFORM_NAME}
|
||||
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
|
||||
-DCMAKE_SYSTEM_NAME=${CMAKE_SYSTEM_NAME} -DCMAKE_SYSTEM_PROCESSOR=${CMAKE_SYSTEM_PROCESSOR}
|
||||
-P "${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info-gen-cpp.cmake"
|
||||
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}/.."
|
||||
DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/build-info.cpp.in" ${GIT_INDEX}
|
||||
VERBATIM
|
||||
)
|
||||
set(TEMPLATE_FILE "${CMAKE_CURRENT_SOURCE_DIR}/build-info.cpp.in")
|
||||
set(OUTPUT_FILE "${CMAKE_CURRENT_BINARY_DIR}/build-info.cpp")
|
||||
configure_file(${TEMPLATE_FILE} ${OUTPUT_FILE})
|
||||
|
||||
set(TARGET build_info)
|
||||
add_library(${TARGET} OBJECT build-info.cpp)
|
||||
add_library(${TARGET} OBJECT ${OUTPUT_FILE})
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
endif()
|
||||
@@ -58,19 +48,20 @@ add_library(${TARGET} STATIC
|
||||
arg.cpp
|
||||
arg.h
|
||||
base64.hpp
|
||||
chat-parser.cpp
|
||||
chat-parser.h
|
||||
chat.cpp
|
||||
chat.h
|
||||
common.cpp
|
||||
common.h
|
||||
console.cpp
|
||||
console.h
|
||||
json-partial.cpp
|
||||
json-partial.h
|
||||
json-schema-to-grammar.cpp
|
||||
json.hpp
|
||||
llguidance.cpp
|
||||
log.cpp
|
||||
log.h
|
||||
minja/chat-template.hpp
|
||||
minja/minja.hpp
|
||||
ngram-cache.cpp
|
||||
ngram-cache.h
|
||||
regex-partial.cpp
|
||||
@@ -143,7 +134,7 @@ if (LLAMA_LLGUIDANCE)
|
||||
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} llguidance ${LLGUIDANCE_PLATFORM_LIBS})
|
||||
endif ()
|
||||
|
||||
target_include_directories(${TARGET} PUBLIC .)
|
||||
target_include_directories(${TARGET} PUBLIC . ../vendor)
|
||||
target_compile_features (${TARGET} PUBLIC cxx_std_17)
|
||||
target_link_libraries (${TARGET} PRIVATE ${LLAMA_COMMON_EXTRA_LIBS} PUBLIC llama Threads::Threads)
|
||||
|
||||
|
||||
266
common/arg.cpp
266
common/arg.cpp
@@ -1,10 +1,11 @@
|
||||
#include "gguf.h" // for reading GGUF splits
|
||||
#include "arg.h"
|
||||
|
||||
#include "chat.h"
|
||||
#include "common.h"
|
||||
#include "gguf.h" // for reading GGUF splits
|
||||
#include "json-schema-to-grammar.h"
|
||||
#include "log.h"
|
||||
#include "sampling.h"
|
||||
#include "chat.h"
|
||||
|
||||
// fix problem with std::min and std::max
|
||||
#if defined(_WIN32)
|
||||
@@ -15,6 +16,9 @@
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
#define JSON_ASSERT GGML_ASSERT
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
#include <algorithm>
|
||||
#include <climits>
|
||||
#include <cstdarg>
|
||||
@@ -34,8 +38,6 @@
|
||||
#include <future>
|
||||
#endif
|
||||
|
||||
#include "json-schema-to-grammar.h"
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
std::initializer_list<enum llama_example> mmproj_examples = {
|
||||
@@ -242,7 +244,56 @@ static bool curl_perform_with_retry(const std::string & url, CURL * curl, int ma
|
||||
}
|
||||
|
||||
// download one single file from remote URL to local path
|
||||
static bool common_download_file_single(const std::string & url, const std::string & path, const std::string & bearer_token) {
|
||||
static bool common_download_file_single(const std::string & url, const std::string & path, const std::string & bearer_token, bool offline) {
|
||||
// Check if the file already exists locally
|
||||
auto file_exists = std::filesystem::exists(path);
|
||||
|
||||
// If the file exists, check its JSON metadata companion file.
|
||||
std::string metadata_path = path + ".json";
|
||||
nlohmann::json metadata; // TODO @ngxson : get rid of this json, use regex instead
|
||||
std::string etag;
|
||||
std::string last_modified;
|
||||
|
||||
if (file_exists) {
|
||||
if (offline) {
|
||||
LOG_INF("%s: using cached file (offline mode): %s\n", __func__, path.c_str());
|
||||
return true; // skip verification/downloading
|
||||
}
|
||||
// Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
|
||||
std::ifstream metadata_in(metadata_path);
|
||||
if (metadata_in.good()) {
|
||||
try {
|
||||
metadata_in >> metadata;
|
||||
LOG_DBG("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
|
||||
if (metadata.contains("etag") && metadata.at("etag").is_string()) {
|
||||
etag = metadata.at("etag");
|
||||
}
|
||||
if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
|
||||
last_modified = metadata.at("lastModified");
|
||||
}
|
||||
} catch (const nlohmann::json::exception & e) {
|
||||
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
|
||||
}
|
||||
}
|
||||
// if we cannot open the metadata file, we assume that the downloaded file is not valid (etag and last-modified are left empty, so we will download it again)
|
||||
} else {
|
||||
if (offline) {
|
||||
LOG_ERR("%s: required file is not available in cache (offline mode): %s\n", __func__, path.c_str());
|
||||
return false;
|
||||
}
|
||||
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
|
||||
}
|
||||
|
||||
// Send a HEAD request to retrieve the etag and last-modified headers
|
||||
struct common_load_model_from_url_headers {
|
||||
std::string etag;
|
||||
std::string last_modified;
|
||||
};
|
||||
|
||||
common_load_model_from_url_headers headers;
|
||||
bool head_request_ok = false;
|
||||
bool should_download = !file_exists; // by default, we should download if the file does not exist
|
||||
|
||||
// Initialize libcurl
|
||||
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
|
||||
curl_slist_ptr http_headers;
|
||||
@@ -269,91 +320,47 @@ static bool common_download_file_single(const std::string & url, const std::stri
|
||||
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
|
||||
#endif
|
||||
|
||||
// Check if the file already exists locally
|
||||
auto file_exists = std::filesystem::exists(path);
|
||||
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
|
||||
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
|
||||
common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
|
||||
|
||||
// If the file exists, check its JSON metadata companion file.
|
||||
std::string metadata_path = path + ".json";
|
||||
nlohmann::json metadata; // TODO @ngxson : get rid of this json, use regex instead
|
||||
std::string etag;
|
||||
std::string last_modified;
|
||||
static std::regex header_regex("([^:]+): (.*)\r\n");
|
||||
static std::regex etag_regex("ETag", std::regex_constants::icase);
|
||||
static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
|
||||
|
||||
if (file_exists) {
|
||||
// Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
|
||||
std::ifstream metadata_in(metadata_path);
|
||||
if (metadata_in.good()) {
|
||||
try {
|
||||
metadata_in >> metadata;
|
||||
LOG_DBG("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
|
||||
if (metadata.contains("etag") && metadata.at("etag").is_string()) {
|
||||
etag = metadata.at("etag");
|
||||
}
|
||||
if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
|
||||
last_modified = metadata.at("lastModified");
|
||||
}
|
||||
} catch (const nlohmann::json::exception & e) {
|
||||
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
|
||||
std::string header(buffer, n_items);
|
||||
std::smatch match;
|
||||
if (std::regex_match(header, match, header_regex)) {
|
||||
const std::string & key = match[1];
|
||||
const std::string & value = match[2];
|
||||
if (std::regex_match(key, match, etag_regex)) {
|
||||
headers->etag = value;
|
||||
} else if (std::regex_match(key, match, last_modified_regex)) {
|
||||
headers->last_modified = value;
|
||||
}
|
||||
}
|
||||
// if we cannot open the metadata file, we assume that the downloaded file is not valid (etag and last-modified are left empty, so we will download it again)
|
||||
} else {
|
||||
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
|
||||
}
|
||||
|
||||
// Send a HEAD request to retrieve the etag and last-modified headers
|
||||
struct common_load_model_from_url_headers {
|
||||
std::string etag;
|
||||
std::string last_modified;
|
||||
return n_items;
|
||||
};
|
||||
|
||||
common_load_model_from_url_headers headers;
|
||||
bool head_request_ok = false;
|
||||
bool should_download = !file_exists; // by default, we should download if the file does not exist
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
|
||||
|
||||
// get ETag to see if the remote file has changed
|
||||
{
|
||||
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
|
||||
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
|
||||
common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
|
||||
// we only allow retrying once for HEAD requests
|
||||
// this is for the use case of using running offline (no internet), retrying can be annoying
|
||||
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), 1, 0, "HEAD");
|
||||
if (!was_perform_successful) {
|
||||
head_request_ok = false;
|
||||
}
|
||||
|
||||
static std::regex header_regex("([^:]+): (.*)\r\n");
|
||||
static std::regex etag_regex("ETag", std::regex_constants::icase);
|
||||
static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
|
||||
|
||||
std::string header(buffer, n_items);
|
||||
std::smatch match;
|
||||
if (std::regex_match(header, match, header_regex)) {
|
||||
const std::string & key = match[1];
|
||||
const std::string & value = match[2];
|
||||
if (std::regex_match(key, match, etag_regex)) {
|
||||
headers->etag = value;
|
||||
} else if (std::regex_match(key, match, last_modified_regex)) {
|
||||
headers->last_modified = value;
|
||||
}
|
||||
}
|
||||
return n_items;
|
||||
};
|
||||
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
|
||||
|
||||
// we only allow retrying once for HEAD requests
|
||||
// this is for the use case of using running offline (no internet), retrying can be annoying
|
||||
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), 1, 0, "HEAD");
|
||||
if (!was_perform_successful) {
|
||||
head_request_ok = false;
|
||||
}
|
||||
|
||||
long http_code = 0;
|
||||
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
|
||||
if (http_code == 200) {
|
||||
head_request_ok = true;
|
||||
} else {
|
||||
LOG_WRN("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
|
||||
head_request_ok = false;
|
||||
}
|
||||
long http_code = 0;
|
||||
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
|
||||
if (http_code == 200) {
|
||||
head_request_ok = true;
|
||||
} else {
|
||||
LOG_WRN("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
|
||||
head_request_ok = false;
|
||||
}
|
||||
|
||||
// if head_request_ok is false, we don't have the etag or last-modified headers
|
||||
@@ -460,12 +467,12 @@ static bool common_download_file_single(const std::string & url, const std::stri
|
||||
|
||||
// download multiple files from remote URLs to local paths
|
||||
// the input is a vector of pairs <url, path>
|
||||
static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> & urls, const std::string & bearer_token) {
|
||||
static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> & urls, const std::string & bearer_token, bool offline) {
|
||||
// Prepare download in parallel
|
||||
std::vector<std::future<bool>> futures_download;
|
||||
for (auto const & item : urls) {
|
||||
futures_download.push_back(std::async(std::launch::async, [bearer_token](const std::pair<std::string, std::string> & it) -> bool {
|
||||
return common_download_file_single(it.first, it.second, bearer_token);
|
||||
futures_download.push_back(std::async(std::launch::async, [bearer_token, offline](const std::pair<std::string, std::string> & it) -> bool {
|
||||
return common_download_file_single(it.first, it.second, bearer_token, offline);
|
||||
}, item));
|
||||
}
|
||||
|
||||
@@ -481,14 +488,15 @@ static bool common_download_file_multiple(const std::vector<std::pair<std::strin
|
||||
|
||||
static bool common_download_model(
|
||||
const common_params_model & model,
|
||||
const std::string & bearer_token) {
|
||||
const std::string & bearer_token,
|
||||
bool offline) {
|
||||
// Basic validation of the model.url
|
||||
if (model.url.empty()) {
|
||||
LOG_ERR("%s: invalid model url\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!common_download_file_single(model.url, model.path, bearer_token)) {
|
||||
if (!common_download_file_single(model.url, model.path, bearer_token, offline)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -547,7 +555,7 @@ static bool common_download_model(
|
||||
}
|
||||
|
||||
// Download in parallel
|
||||
common_download_file_multiple(urls, bearer_token);
|
||||
common_download_file_multiple(urls, bearer_token, offline);
|
||||
}
|
||||
|
||||
return true;
|
||||
@@ -608,7 +616,7 @@ std::pair<long, std::vector<char>> common_remote_get_content(const std::string &
|
||||
*
|
||||
* Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
|
||||
*/
|
||||
static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & bearer_token) {
|
||||
static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & bearer_token, bool offline) {
|
||||
auto parts = string_split<std::string>(hf_repo_with_tag, ':');
|
||||
std::string tag = parts.size() > 1 ? parts.back() : "latest";
|
||||
std::string hf_repo = parts[0];
|
||||
@@ -638,20 +646,25 @@ static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_
|
||||
long res_code = 0;
|
||||
std::string res_str;
|
||||
bool use_cache = false;
|
||||
try {
|
||||
auto res = common_remote_get_content(url, params);
|
||||
res_code = res.first;
|
||||
res_str = std::string(res.second.data(), res.second.size());
|
||||
} catch (const std::exception & e) {
|
||||
LOG_WRN("error: failed to get manifest: %s\n", e.what());
|
||||
LOG_WRN("try reading from cache\n");
|
||||
// try to read from cache
|
||||
if (!offline) {
|
||||
try {
|
||||
auto res = common_remote_get_content(url, params);
|
||||
res_code = res.first;
|
||||
res_str = std::string(res.second.data(), res.second.size());
|
||||
} catch (const std::exception & e) {
|
||||
LOG_WRN("error: failed to get manifest at %s: %s\n", url.c_str(), e.what());
|
||||
}
|
||||
}
|
||||
if (res_code == 0) {
|
||||
if (std::filesystem::exists(cached_response_path)) {
|
||||
LOG_WRN("trying to read manifest from cache: %s\n", cached_response_path.c_str());
|
||||
res_str = read_file(cached_response_path);
|
||||
res_code = 200;
|
||||
use_cache = true;
|
||||
} catch (const std::exception & e) {
|
||||
throw std::runtime_error("error: failed to get manifest (check your internet connection)");
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
offline ? "error: failed to get manifest (offline mode)"
|
||||
: "error: failed to get manifest (check your internet connection)");
|
||||
}
|
||||
}
|
||||
std::string ggufFile;
|
||||
@@ -698,24 +711,25 @@ bool common_has_curl() {
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool common_download_file_single(const std::string &, const std::string &, const std::string &) {
|
||||
static bool common_download_file_single(const std::string &, const std::string &, const std::string &, bool) {
|
||||
LOG_ERR("error: built without CURL, cannot download model from internet\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> &, const std::string &) {
|
||||
static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> &, const std::string &, bool) {
|
||||
LOG_ERR("error: built without CURL, cannot download model from the internet\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool common_download_model(
|
||||
const common_params_model &,
|
||||
const std::string &) {
|
||||
const std::string &,
|
||||
bool) {
|
||||
LOG_ERR("error: built without CURL, cannot download model from the internet\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
static struct common_hf_file_res common_get_hf_file(const std::string &, const std::string &) {
|
||||
static struct common_hf_file_res common_get_hf_file(const std::string &, const std::string &, bool) {
|
||||
LOG_ERR("error: built without CURL, cannot download model from the internet\n");
|
||||
return {};
|
||||
}
|
||||
@@ -742,7 +756,8 @@ struct handle_model_result {
|
||||
static handle_model_result common_params_handle_model(
|
||||
struct common_params_model & model,
|
||||
const std::string & bearer_token,
|
||||
const std::string & model_path_default) {
|
||||
const std::string & model_path_default,
|
||||
bool offline) {
|
||||
handle_model_result result;
|
||||
// handle pre-fill default model path and url based on hf_repo and hf_file
|
||||
{
|
||||
@@ -750,7 +765,7 @@ static handle_model_result common_params_handle_model(
|
||||
// short-hand to avoid specifying --hf-file -> default it to --model
|
||||
if (model.hf_file.empty()) {
|
||||
if (model.path.empty()) {
|
||||
auto auto_detected = common_get_hf_file(model.hf_repo, bearer_token);
|
||||
auto auto_detected = common_get_hf_file(model.hf_repo, bearer_token, offline);
|
||||
if (auto_detected.repo.empty() || auto_detected.ggufFile.empty()) {
|
||||
exit(1); // built without CURL, error message already printed
|
||||
}
|
||||
@@ -791,7 +806,7 @@ static handle_model_result common_params_handle_model(
|
||||
|
||||
// then, download it if needed
|
||||
if (!model.url.empty()) {
|
||||
bool ok = common_download_model(model, bearer_token);
|
||||
bool ok = common_download_model(model, bearer_token, offline);
|
||||
if (!ok) {
|
||||
LOG_ERR("error: failed to download model from %s\n", model.url.c_str());
|
||||
exit(1);
|
||||
@@ -934,7 +949,7 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
|
||||
|
||||
// handle model and download
|
||||
{
|
||||
auto res = common_params_handle_model(params.model, params.hf_token, DEFAULT_MODEL_PATH);
|
||||
auto res = common_params_handle_model(params.model, params.hf_token, DEFAULT_MODEL_PATH, params.offline);
|
||||
if (params.no_mmproj) {
|
||||
params.mmproj = {};
|
||||
} else if (res.found_mmproj && params.mmproj.path.empty() && params.mmproj.url.empty()) {
|
||||
@@ -944,12 +959,12 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
|
||||
// only download mmproj if the current example is using it
|
||||
for (auto & ex : mmproj_examples) {
|
||||
if (ctx_arg.ex == ex) {
|
||||
common_params_handle_model(params.mmproj, params.hf_token, "");
|
||||
common_params_handle_model(params.mmproj, params.hf_token, "", params.offline);
|
||||
break;
|
||||
}
|
||||
}
|
||||
common_params_handle_model(params.speculative.model, params.hf_token, "");
|
||||
common_params_handle_model(params.vocoder.model, params.hf_token, "");
|
||||
common_params_handle_model(params.speculative.model, params.hf_token, "", params.offline);
|
||||
common_params_handle_model(params.vocoder.model, params.hf_token, "", params.offline);
|
||||
}
|
||||
|
||||
if (params.escape) {
|
||||
@@ -1333,9 +1348,9 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"--prio"}, "N",
|
||||
string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams.priority),
|
||||
string_format("set process/thread priority : low(-1), normal(0), medium(1), high(2), realtime(3) (default: %d)\n", params.cpuparams.priority),
|
||||
[](common_params & params, int prio) {
|
||||
if (prio < 0 || prio > 3) {
|
||||
if (prio < GGML_SCHED_PRIO_LOW || prio > GGML_SCHED_PRIO_REALTIME) {
|
||||
throw std::invalid_argument("invalid value");
|
||||
}
|
||||
params.cpuparams.priority = (enum ggml_sched_priority) prio;
|
||||
@@ -2848,15 +2863,25 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_JINJA"));
|
||||
add_opt(common_arg(
|
||||
{"--reasoning-format"}, "FORMAT",
|
||||
"reasoning format (default: deepseek; allowed values: deepseek, none)\n"
|
||||
"controls whether thought tags are extracted from the response, and in which format they're returned. 'none' leaves thoughts unparsed in `message.content`, 'deepseek' puts them in `message.reasoning_content` (for DeepSeek R1 & Command R7B only).\n"
|
||||
"only supported for non-streamed responses",
|
||||
"controls whether thought tags are allowed and/or extracted from the response, and in which format they're returned; one of:\n"
|
||||
"- none: leaves thoughts unparsed in `message.content`\n"
|
||||
"- deepseek: puts thoughts in `message.reasoning_content` (except in streaming mode, which behaves as `none`)\n"
|
||||
"(default: deepseek)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
/**/ if (value == "deepseek") { params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK; }
|
||||
else if (value == "deepseek-legacy") { params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY; }
|
||||
else if (value == "none") { params.reasoning_format = COMMON_REASONING_FORMAT_NONE; }
|
||||
else { std::invalid_argument("invalid value"); }
|
||||
else { throw std::invalid_argument("invalid value"); }
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_THINK"));
|
||||
add_opt(common_arg(
|
||||
{"--reasoning-budget"}, "N",
|
||||
"controls the amount of thinking allowed; currently only one of: -1 for unrestricted thinking budget, or 0 to disable thinking (default: -1)",
|
||||
[](common_params & params, int value) {
|
||||
if (value != 0 && value != -1) { throw std::invalid_argument("invalid value"); }
|
||||
params.reasoning_budget = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_THINK_BUDGET"));
|
||||
add_opt(common_arg(
|
||||
{"--chat-template"}, "JINJA_TEMPLATE",
|
||||
string_format(
|
||||
@@ -2955,7 +2980,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params, const std::string & value) {
|
||||
/**/ if (value == "jsonl") { params.batched_bench_output_jsonl = true; }
|
||||
else if (value == "md") { params.batched_bench_output_jsonl = false; }
|
||||
else { std::invalid_argument("invalid value"); }
|
||||
else { throw std::invalid_argument("invalid value"); }
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_BENCH}));
|
||||
add_opt(common_arg(
|
||||
@@ -2987,6 +3012,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
common_log_set_verbosity_thold(INT_MAX);
|
||||
}
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"--offline"},
|
||||
"Offline mode: forces use of cache, prevents network access",
|
||||
[](common_params & params) {
|
||||
params.offline = true;
|
||||
}
|
||||
).set_env("LLAMA_OFFLINE"));
|
||||
add_opt(common_arg(
|
||||
{"-lv", "--verbosity", "--log-verbosity"}, "N",
|
||||
"Set the verbosity threshold. Messages with a higher verbosity will be ignored.",
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
int LLAMA_BUILD_NUMBER = @BUILD_NUMBER@;
|
||||
char const *LLAMA_COMMIT = "@BUILD_COMMIT@";
|
||||
int LLAMA_BUILD_NUMBER = @LLAMA_BUILD_NUMBER@;
|
||||
char const *LLAMA_COMMIT = "@LLAMA_BUILD_COMMIT@";
|
||||
char const *LLAMA_COMPILER = "@BUILD_COMPILER@";
|
||||
char const *LLAMA_BUILD_TARGET = "@BUILD_TARGET@";
|
||||
|
||||
385
common/chat-parser.cpp
Normal file
385
common/chat-parser.cpp
Normal file
@@ -0,0 +1,385 @@
|
||||
#include "chat-parser.h"
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "regex-partial.h"
|
||||
|
||||
#include <optional>
|
||||
#include <stdexcept>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
common_chat_msg_parser::common_chat_msg_parser(const std::string & input, bool is_partial, const common_chat_syntax & syntax)
|
||||
: input_(input), is_partial_(is_partial), syntax_(syntax)
|
||||
{
|
||||
result_.role = "assistant";
|
||||
|
||||
while (true) {
|
||||
std::string id = std::to_string(std::rand());
|
||||
if (input.find(id) == std::string::npos) {
|
||||
healing_marker_ = id;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::string common_chat_msg_parser::str(const common_string_range & rng) const {
|
||||
GGML_ASSERT(rng.begin <= rng.end);
|
||||
return input_.substr(rng.begin, rng.end - rng.begin);
|
||||
}
|
||||
|
||||
void common_chat_msg_parser::add_content(const std::string &content) {
|
||||
result_.content += content;
|
||||
}
|
||||
|
||||
void common_chat_msg_parser::add_reasoning_content(const std::string &reasoning_content) {
|
||||
result_.reasoning_content += reasoning_content;
|
||||
}
|
||||
|
||||
bool common_chat_msg_parser::add_tool_call(const std::string & name, const std::string & id, const std::string & arguments) {
|
||||
if (name.empty()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
common_chat_tool_call tool_call;
|
||||
tool_call.name = name;
|
||||
tool_call.arguments = arguments;
|
||||
tool_call.id = id;
|
||||
|
||||
// LOG_DBG("Tool call arguments:\n\traw: %s\n\tresult: %s\n", arguments.c_str(), tool_call.arguments.c_str());
|
||||
result_.tool_calls.emplace_back(tool_call);
|
||||
|
||||
return true;
|
||||
}
|
||||
bool common_chat_msg_parser::add_tool_call(const json & tool_call) {
|
||||
std::string name = tool_call.contains("name") ? tool_call.at("name") : "";
|
||||
std::string id = tool_call.contains("id") ? tool_call.at("id") : "";
|
||||
std::string arguments = tool_call.contains("arguments") ? tool_call.at("arguments") : "";
|
||||
return add_tool_call(name, id, arguments);
|
||||
}
|
||||
|
||||
bool common_chat_msg_parser::add_tool_calls(const json & arr) {
|
||||
for (const auto & item : arr) {
|
||||
if (!add_tool_call(item)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
void common_chat_msg_parser::finish() {
|
||||
if (!is_partial_ && pos_ != input_.size()) {
|
||||
throw std::runtime_error("Unexpected content at end of input");// + input_.substr(pos_));
|
||||
}
|
||||
}
|
||||
|
||||
bool common_chat_msg_parser::consume_spaces() {
|
||||
const auto length = input_.size();
|
||||
auto consumed = false;
|
||||
while (pos_ < length && std::isspace(input_[pos_])) {
|
||||
++pos_;
|
||||
consumed = true;
|
||||
}
|
||||
return consumed;
|
||||
}
|
||||
|
||||
bool common_chat_msg_parser::try_consume_literal(const std::string & literal) {
|
||||
auto pos = pos_;
|
||||
for (auto i = 0u; i < literal.size(); ++i) {
|
||||
if (pos >= input_.size()) {
|
||||
return false;
|
||||
}
|
||||
if (input_[pos] != literal[i]) {
|
||||
return false;
|
||||
}
|
||||
++pos;
|
||||
}
|
||||
pos_ = pos;
|
||||
return true;
|
||||
}
|
||||
|
||||
std::optional<common_chat_msg_parser::find_regex_result> common_chat_msg_parser::try_find_literal(const std::string & literal) {
|
||||
auto idx = input_.find(literal, pos_);
|
||||
if (idx != std::string::npos) {
|
||||
find_regex_result res;
|
||||
res.prelude = input_.substr(pos_, idx - pos_);
|
||||
auto end = idx + literal.size();
|
||||
res.groups.emplace_back(common_string_range{idx, end});
|
||||
move_to(end);
|
||||
return res;
|
||||
}
|
||||
if (is_partial_) {
|
||||
idx = string_find_partial_stop(input_, literal);
|
||||
if (idx != std::string::npos && idx >= pos_) {
|
||||
find_regex_result res;
|
||||
res.prelude = input_.substr(pos_, idx - pos_);
|
||||
auto end = input_.size();
|
||||
res.groups.emplace_back(common_string_range{idx, end});
|
||||
move_to(end);
|
||||
return res;
|
||||
}
|
||||
}
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
void common_chat_msg_parser::consume_literal(const std::string & literal) {
|
||||
if (!try_consume_literal(literal)) {
|
||||
throw common_chat_msg_partial_exception(literal);
|
||||
}
|
||||
}
|
||||
|
||||
bool common_chat_msg_parser::try_parse_reasoning(const std::string & start_think, const std::string & end_think) {
|
||||
auto handle_reasoning = [&](const std::string & reasoning, bool closed) {
|
||||
auto stripped_reasoning = string_strip(reasoning);
|
||||
if (stripped_reasoning.empty()) {
|
||||
return;
|
||||
}
|
||||
if (syntax_.reasoning_in_content) {
|
||||
add_content(syntax_.reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK ? "<think>" : start_think);
|
||||
add_content(stripped_reasoning);
|
||||
if (closed) {
|
||||
add_content(syntax_.reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK ? "</think>" : end_think);
|
||||
}
|
||||
} else {
|
||||
add_reasoning_content(stripped_reasoning);
|
||||
}
|
||||
};
|
||||
if (syntax_.reasoning_format != COMMON_REASONING_FORMAT_NONE) {
|
||||
if (syntax_.thinking_forced_open || try_consume_literal(start_think)) {
|
||||
if (auto res = try_find_literal(end_think)) {
|
||||
handle_reasoning(res->prelude, /* closed */ true);
|
||||
consume_spaces();
|
||||
return true;
|
||||
}
|
||||
auto rest = consume_rest();
|
||||
if (!rest.empty()) {
|
||||
handle_reasoning(rest, /* closed */ !is_partial());
|
||||
}
|
||||
// Allow unclosed thinking tags, for now (https://github.com/ggml-org/llama.cpp/issues/13812, https://github.com/ggml-org/llama.cpp/issues/13877)
|
||||
// if (!syntax_.thinking_forced_open) {
|
||||
// throw common_chat_msg_partial_exception(end_think);
|
||||
// }
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
std::string common_chat_msg_parser::consume_rest() {
|
||||
auto rest = input_.substr(pos_);
|
||||
pos_ = input_.size();
|
||||
return rest;
|
||||
}
|
||||
|
||||
// Tries to find the regex, consumes it (pos right after it) and gives the prelude (right before it) and the groups to the callback.
|
||||
std::optional<common_chat_msg_parser::find_regex_result> common_chat_msg_parser::try_find_regex(const common_regex & regex, size_t from, bool add_prelude_to_content) {
|
||||
auto m = regex.search(input_, from == std::string::npos ? pos_ : from);
|
||||
if (m.type == COMMON_REGEX_MATCH_TYPE_NONE) {
|
||||
return std::nullopt;
|
||||
}
|
||||
auto prelude = input_.substr(pos_, m.groups[0].begin - pos_);
|
||||
pos_ = m.groups[0].end;
|
||||
|
||||
if (add_prelude_to_content) {
|
||||
add_content(prelude);
|
||||
}
|
||||
if (m.type == COMMON_REGEX_MATCH_TYPE_PARTIAL) {
|
||||
if (is_partial()) {
|
||||
throw common_chat_msg_partial_exception(regex.str());
|
||||
}
|
||||
return std::nullopt;
|
||||
}
|
||||
return find_regex_result{prelude, m.groups};
|
||||
}
|
||||
|
||||
common_chat_msg_parser::find_regex_result common_chat_msg_parser::consume_regex(const common_regex & regex) {
|
||||
if (auto result = try_consume_regex(regex)) {
|
||||
return *result;
|
||||
}
|
||||
throw common_chat_msg_partial_exception(regex.str());
|
||||
}
|
||||
|
||||
std::optional<common_chat_msg_parser::find_regex_result> common_chat_msg_parser::try_consume_regex(const common_regex & regex) {
|
||||
auto m = regex.search(input_, pos_);
|
||||
if (m.type == COMMON_REGEX_MATCH_TYPE_NONE) {
|
||||
return std::nullopt;
|
||||
}
|
||||
if (m.type == COMMON_REGEX_MATCH_TYPE_PARTIAL) {
|
||||
if (is_partial()) {
|
||||
throw common_chat_msg_partial_exception(regex.str());
|
||||
}
|
||||
return std::nullopt;
|
||||
}
|
||||
if (m.groups[0].begin != pos_) {
|
||||
// Didn't match at the current position.
|
||||
return std::nullopt;
|
||||
}
|
||||
pos_ = m.groups[0].end;
|
||||
|
||||
return find_regex_result {
|
||||
/* .prelude = */ "",
|
||||
m.groups,
|
||||
};
|
||||
}
|
||||
|
||||
std::optional<common_json> common_chat_msg_parser::try_consume_json() {
|
||||
auto it = input_.cbegin() + pos_;
|
||||
const auto end = input_.cend();
|
||||
common_json result;
|
||||
if (!common_json_parse(it, end, healing_marker_, result)) {
|
||||
return std::nullopt;
|
||||
}
|
||||
pos_ = std::distance(input_.cbegin(), it);
|
||||
if (result.healing_marker.marker.empty()) {
|
||||
// No healing marker, just return the parsed json
|
||||
return result;
|
||||
}
|
||||
if (!is_partial()) {
|
||||
throw common_chat_msg_partial_exception("JSON");
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
common_json common_chat_msg_parser::consume_json() {
|
||||
if (auto result = try_consume_json()) {
|
||||
return *result;
|
||||
}
|
||||
throw common_chat_msg_partial_exception("JSON");
|
||||
}
|
||||
|
||||
common_chat_msg_parser::consume_json_result common_chat_msg_parser::consume_json_with_dumped_args(
|
||||
const std::vector<std::vector<std::string>> & args_paths,
|
||||
const std::vector<std::vector<std::string>> & content_paths
|
||||
) {
|
||||
if (auto result = try_consume_json_with_dumped_args(args_paths, content_paths)) {
|
||||
return *result;
|
||||
}
|
||||
throw common_chat_msg_partial_exception("JSON");
|
||||
}
|
||||
|
||||
std::optional<common_chat_msg_parser::consume_json_result> common_chat_msg_parser::try_consume_json_with_dumped_args(
|
||||
const std::vector<std::vector<std::string>> & args_paths,
|
||||
const std::vector<std::vector<std::string>> & content_paths
|
||||
) {
|
||||
auto partial = try_consume_json();
|
||||
if (!partial) {
|
||||
return std::nullopt;
|
||||
}
|
||||
auto is_arguments_path = [&](const std::vector<std::string> & path) {
|
||||
return std::find(args_paths.begin(), args_paths.end(), path) != args_paths.end();
|
||||
};
|
||||
auto is_content_path = [&](const std::vector<std::string> & path) {
|
||||
return std::find(content_paths.begin(), content_paths.end(), path) != content_paths.end();
|
||||
};
|
||||
|
||||
if (partial->healing_marker.marker.empty()) {
|
||||
if (args_paths.empty()) {
|
||||
// No arguments to dump, and JSON was parsed fully.
|
||||
return consume_json_result {
|
||||
partial->json,
|
||||
/* .is_partial = */ false,
|
||||
};
|
||||
}
|
||||
if (is_arguments_path({})) {
|
||||
// Entire JSON is the arguments and was parsed fully.
|
||||
return consume_json_result {
|
||||
partial->json.dump(),
|
||||
/* .is_partial = */ false,
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
LOG_DBG("Parsed partial JSON: %s (json_healing_marker: %s)\n", partial->json.dump().c_str(), partial->healing_marker.json_dump_marker.c_str());
|
||||
|
||||
auto found_healing_marker = false;
|
||||
std::vector<std::string> path;
|
||||
std::function<json(const json &)> remove_unsupported_healings_and_dump_args = [&](const json & j) -> json {
|
||||
if (is_arguments_path(path)) {
|
||||
auto arguments = j.dump();
|
||||
if (is_partial() && !partial->healing_marker.marker.empty()) {
|
||||
auto idx = arguments.find(partial->healing_marker.json_dump_marker);
|
||||
if (idx != std::string::npos) {
|
||||
arguments.resize(idx);
|
||||
found_healing_marker = true;
|
||||
}
|
||||
if (arguments == "\"") {
|
||||
// This happens because of completing `:"$magic` after `"arguments"`
|
||||
arguments = "";
|
||||
}
|
||||
}
|
||||
return arguments;
|
||||
}
|
||||
if (is_content_path(path)) {
|
||||
if (!j.is_string()) {
|
||||
throw std::runtime_error("Content path must be a string");
|
||||
}
|
||||
std::string str = j;
|
||||
auto idx = str.find(partial->healing_marker.marker); // not using json_dump_marker as we're inside a string
|
||||
if (idx != std::string::npos) {
|
||||
str.resize(idx);
|
||||
found_healing_marker = true;
|
||||
}
|
||||
return str;
|
||||
}
|
||||
if (j.is_object()) {
|
||||
auto obj = json::object();
|
||||
for (const auto & p : j.items()) {
|
||||
const auto & key = p.key();
|
||||
const auto & value = p.value();
|
||||
const std::string key_str = key; // NOLINT
|
||||
auto idx = key_str.find(healing_marker_);
|
||||
if (idx != std::string::npos) {
|
||||
found_healing_marker = true;
|
||||
break;
|
||||
}
|
||||
path.push_back(key_str);
|
||||
if (value.is_string()) {
|
||||
const std::string value_str = value;
|
||||
if (value_str.find(healing_marker_) != std::string::npos) {
|
||||
found_healing_marker = true;
|
||||
if (is_content_path(path)) {
|
||||
if (partial->healing_marker.marker == partial->healing_marker.json_dump_marker) {
|
||||
// The healing occurred inside the string: good. Otherwise we just ditch the entire key/value pair.
|
||||
obj[key] = remove_unsupported_healings_and_dump_args(value);
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
obj[key] = value;
|
||||
} else {
|
||||
obj[key] = remove_unsupported_healings_and_dump_args(value);
|
||||
}
|
||||
path.pop_back();
|
||||
}
|
||||
return obj;
|
||||
}
|
||||
if (j.is_array()) {
|
||||
auto arr = json::array();
|
||||
for (const auto & value : j) {
|
||||
if (value.is_string()) {
|
||||
std::string str = value;
|
||||
auto idx = str.find(healing_marker_);
|
||||
if (idx != std::string::npos) {
|
||||
// Don't heal array values that aren't in the arguments.
|
||||
found_healing_marker = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
arr.push_back(remove_unsupported_healings_and_dump_args(value));
|
||||
}
|
||||
return arr;
|
||||
}
|
||||
return j;
|
||||
};
|
||||
|
||||
auto cleaned = remove_unsupported_healings_and_dump_args(partial->json);
|
||||
LOG_DBG("Cleaned up JSON %s to %s (json_healing_marker : '%s')\n", partial->json.dump().c_str(), cleaned.dump().c_str(), partial->healing_marker.json_dump_marker.c_str());
|
||||
return consume_json_result {
|
||||
cleaned,
|
||||
/* .is_partial = */ found_healing_marker,
|
||||
};
|
||||
}
|
||||
|
||||
void common_chat_msg_parser::clear_tools() {
|
||||
result_.tool_calls.clear();
|
||||
}
|
||||
120
common/chat-parser.h
Normal file
120
common/chat-parser.h
Normal file
@@ -0,0 +1,120 @@
|
||||
#pragma once
|
||||
|
||||
#include "chat.h"
|
||||
#include "json-partial.h"
|
||||
#include "regex-partial.h"
|
||||
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
#include <optional>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
class common_chat_msg_partial_exception : public std::runtime_error {
|
||||
public:
|
||||
common_chat_msg_partial_exception(const std::string & message) : std::runtime_error(message) {}
|
||||
};
|
||||
|
||||
class common_chat_msg_parser {
|
||||
std::string input_;
|
||||
bool is_partial_;
|
||||
common_chat_syntax syntax_;
|
||||
std::string healing_marker_;
|
||||
|
||||
size_t pos_ = 0;
|
||||
common_chat_msg result_;
|
||||
|
||||
public:
|
||||
common_chat_msg_parser(const std::string & input, bool is_partial, const common_chat_syntax & syntax);
|
||||
const std::string & input() const { return input_; }
|
||||
size_t pos() const { return pos_; }
|
||||
const std::string & healing_marker() const { return healing_marker_; }
|
||||
const bool & is_partial() const { return is_partial_; }
|
||||
const common_chat_msg & result() const { return result_; }
|
||||
const common_chat_syntax & syntax() const { return syntax_; }
|
||||
|
||||
void move_to(size_t pos) {
|
||||
if (pos > input_.size()) {
|
||||
throw std::runtime_error("Invalid position!");
|
||||
}
|
||||
pos_ = pos;
|
||||
}
|
||||
void move_back(size_t n) {
|
||||
if (pos_ < n) {
|
||||
throw std::runtime_error("Can't move back that far!");
|
||||
}
|
||||
pos_ -= n;
|
||||
}
|
||||
|
||||
// Get the substring of the input at the given range
|
||||
std::string str(const common_string_range & rng) const;
|
||||
|
||||
// Appends to the result.content field
|
||||
void add_content(const std::string & content);
|
||||
|
||||
// Appends to the result.reasoning_content field
|
||||
void add_reasoning_content(const std::string & reasoning_content);
|
||||
|
||||
// Adds a tool call to the result. If the tool call is too incomplete (e.g. name empty), it won't add anything.
|
||||
bool add_tool_call(const std::string & name, const std::string & id, const std::string & arguments);
|
||||
|
||||
// Adds a tool call using the "name", "id" and "arguments" fields of the json object
|
||||
bool add_tool_call(const nlohmann::ordered_json & tool_call);
|
||||
|
||||
// Adds an array of tool calls using their "name", "id" and "arguments" fields.
|
||||
bool add_tool_calls(const nlohmann::ordered_json & arr);
|
||||
|
||||
void finish();
|
||||
|
||||
bool consume_spaces();
|
||||
|
||||
void consume_literal(const std::string & literal);
|
||||
|
||||
bool try_parse_reasoning(const std::string & start_think, const std::string & end_think);
|
||||
|
||||
std::string consume_rest();
|
||||
|
||||
struct find_regex_result {
|
||||
std::string prelude;
|
||||
std::vector<common_string_range> groups;
|
||||
};
|
||||
|
||||
std::optional<find_regex_result> try_find_regex(const common_regex & regex, size_t from = std::string::npos, bool add_prelude_to_content = true);
|
||||
|
||||
bool try_consume_literal(const std::string & literal);
|
||||
|
||||
std::optional<find_regex_result> try_find_literal(const std::string & literal);
|
||||
|
||||
find_regex_result consume_regex(const common_regex & regex);
|
||||
|
||||
std::optional<find_regex_result> try_consume_regex(const common_regex & regex);
|
||||
|
||||
std::optional<common_json> try_consume_json();
|
||||
common_json consume_json();
|
||||
|
||||
struct consume_json_result {
|
||||
nlohmann::ordered_json value;
|
||||
bool is_partial;
|
||||
};
|
||||
|
||||
/*
|
||||
Consume (possibly partial) json and converts specific subtrees to (possibly truncated) JSON strings.
|
||||
|
||||
By default, object keys can't be truncated, nor can string values (their corresponding key is removed,
|
||||
e.g. `{"foo": "bar", "baz": "b` -> `{"foo": "bar"}`
|
||||
|
||||
But one can allow subpaths to be kept truncated, and possibly json-dumped to truncated json strings
|
||||
- with `content_paths={{"foo"}}` -> `{"foo": "b` -> {"foo": "b"}`
|
||||
- with `args_paths={{"foo"}}` -> `{"foo": {"b` -> `{"foo": "{b"}`
|
||||
*/
|
||||
consume_json_result consume_json_with_dumped_args(
|
||||
const std::vector<std::vector<std::string>> & args_paths = {},
|
||||
const std::vector<std::vector<std::string>> & content_paths = {}
|
||||
);
|
||||
std::optional<consume_json_result> try_consume_json_with_dumped_args(
|
||||
const std::vector<std::vector<std::string>> & args_paths = {},
|
||||
const std::vector<std::vector<std::string>> & content_paths = {}
|
||||
);
|
||||
|
||||
void clear_tools();
|
||||
};
|
||||
1341
common/chat.cpp
1341
common/chat.cpp
File diff suppressed because it is too large
Load Diff
@@ -3,6 +3,7 @@
|
||||
#pragma once
|
||||
|
||||
#include "common.h"
|
||||
#include <functional>
|
||||
#include <chrono>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
@@ -13,11 +14,19 @@ struct common_chat_tool_call {
|
||||
std::string name;
|
||||
std::string arguments;
|
||||
std::string id;
|
||||
|
||||
bool operator==(const common_chat_tool_call & other) const {
|
||||
return name == other.name && arguments == other.arguments && id == other.id;
|
||||
}
|
||||
};
|
||||
|
||||
struct common_chat_msg_content_part {
|
||||
std::string type;
|
||||
std::string text;
|
||||
|
||||
bool operator==(const common_chat_msg_content_part & other) const {
|
||||
return type == other.type && text == other.text;
|
||||
}
|
||||
};
|
||||
|
||||
struct common_chat_msg {
|
||||
@@ -28,6 +37,51 @@ struct common_chat_msg {
|
||||
std::string reasoning_content;
|
||||
std::string tool_name;
|
||||
std::string tool_call_id;
|
||||
|
||||
template <class T> T to_json_oaicompat() const;
|
||||
|
||||
bool empty() const {
|
||||
return content.empty() && content_parts.empty() && tool_calls.empty() && reasoning_content.empty() && tool_name.empty() && tool_call_id.empty();
|
||||
}
|
||||
void ensure_tool_call_ids_set(std::vector<std::string> & ids_cache, const std::function<std::string()> & gen_tool_call_id) {
|
||||
for (auto i = 0u; i < tool_calls.size(); i++) {
|
||||
if (ids_cache.size() <= i) {
|
||||
auto id = tool_calls[i].id;
|
||||
if (id.empty()) {
|
||||
id = gen_tool_call_id();
|
||||
}
|
||||
ids_cache.push_back(id);
|
||||
}
|
||||
tool_calls[i].id = ids_cache[i];
|
||||
}
|
||||
}
|
||||
bool operator==(const common_chat_msg & other) const {
|
||||
return role == other.role
|
||||
&& content == other.content
|
||||
&& content_parts == other.content_parts
|
||||
&& tool_calls == other.tool_calls
|
||||
&& reasoning_content == other.reasoning_content
|
||||
&& tool_name == other.tool_name
|
||||
&& tool_call_id == other.tool_call_id;
|
||||
}
|
||||
bool operator!=(const common_chat_msg & other) const {
|
||||
return !(*this == other);
|
||||
}
|
||||
};
|
||||
|
||||
struct common_chat_msg_diff {
|
||||
std::string reasoning_content_delta;
|
||||
std::string content_delta;
|
||||
size_t tool_call_index = std::string::npos;
|
||||
common_chat_tool_call tool_call_delta;
|
||||
|
||||
static std::vector<common_chat_msg_diff> compute_diffs(const common_chat_msg & previous_msg, const common_chat_msg & new_msg);
|
||||
|
||||
bool operator==(const common_chat_msg_diff & other) const {
|
||||
return content_delta == other.content_delta
|
||||
&& tool_call_index == other.tool_call_index
|
||||
&& tool_call_delta == other.tool_call_delta;
|
||||
}
|
||||
};
|
||||
|
||||
struct common_chat_tool {
|
||||
@@ -49,14 +103,11 @@ enum common_chat_format {
|
||||
COMMON_CHAT_FORMAT_LLAMA_3_X,
|
||||
COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS,
|
||||
COMMON_CHAT_FORMAT_DEEPSEEK_R1,
|
||||
COMMON_CHAT_FORMAT_DEEPSEEK_R1_EXTRACT_REASONING,
|
||||
COMMON_CHAT_FORMAT_FIREFUNCTION_V2,
|
||||
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2,
|
||||
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1,
|
||||
COMMON_CHAT_FORMAT_HERMES_2_PRO,
|
||||
COMMON_CHAT_FORMAT_HERMES_2_PRO_EXTRACT_REASONING,
|
||||
COMMON_CHAT_FORMAT_COMMAND_R7B,
|
||||
COMMON_CHAT_FORMAT_COMMAND_R7B_EXTRACT_REASONING,
|
||||
|
||||
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
|
||||
};
|
||||
@@ -71,7 +122,8 @@ struct common_chat_templates_inputs {
|
||||
std::vector<common_chat_tool> tools;
|
||||
common_chat_tool_choice tool_choice = COMMON_CHAT_TOOL_CHOICE_AUTO;
|
||||
bool parallel_tool_calls = false;
|
||||
bool extract_reasoning = true;
|
||||
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_NONE;
|
||||
bool enable_thinking = true;
|
||||
std::chrono::system_clock::time_point now = std::chrono::system_clock::now();
|
||||
};
|
||||
|
||||
@@ -80,11 +132,21 @@ struct common_chat_params {
|
||||
std::string prompt;
|
||||
std::string grammar;
|
||||
bool grammar_lazy = false;
|
||||
bool thinking_forced_open = false;
|
||||
std::vector<common_grammar_trigger> grammar_triggers;
|
||||
std::vector<std::string> preserved_tokens;
|
||||
std::vector<std::string> additional_stops;
|
||||
};
|
||||
|
||||
struct common_chat_syntax {
|
||||
common_chat_format format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
|
||||
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_NONE;
|
||||
// Whether reasoning_content should be inlined in the content (e.g. for reasoning_format=deepseek in stream mode)
|
||||
bool reasoning_in_content = false;
|
||||
bool thinking_forced_open = false;
|
||||
bool parse_tool_calls = true;
|
||||
};
|
||||
|
||||
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
|
||||
bool common_chat_verify_template(const std::string & tmpl, bool use_jinja);
|
||||
|
||||
@@ -121,8 +183,9 @@ std::string common_chat_format_example(
|
||||
const struct common_chat_templates * tmpls,
|
||||
bool use_jinja);
|
||||
|
||||
std::string common_chat_format_name(common_chat_format format);
|
||||
common_chat_msg common_chat_parse( const std::string & input, common_chat_format format);
|
||||
const char* common_chat_format_name(common_chat_format format);
|
||||
const char* common_reasoning_format_name(common_reasoning_format format);
|
||||
common_chat_msg common_chat_parse(const std::string & input, bool is_partial, const common_chat_syntax & syntax);
|
||||
|
||||
common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::string & tool_choice);
|
||||
|
||||
@@ -135,3 +198,5 @@ template <class T> T common_chat_msgs_to_json_oaicompat(const std::vector<common
|
||||
// T can be std::string containing JSON or nlohmann::ordered_json
|
||||
template <class T> std::vector<common_chat_tool> common_chat_tools_parse_oaicompat(const T & tools);
|
||||
template <class T> T common_chat_tools_to_json_oaicompat(const std::vector<common_chat_tool> & tools);
|
||||
|
||||
template <class T> T common_chat_msg_diff_to_json_oaicompat(const common_chat_msg_diff & diff);
|
||||
|
||||
@@ -1,24 +0,0 @@
|
||||
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake)
|
||||
|
||||
set(TEMPLATE_FILE "${CMAKE_CURRENT_SOURCE_DIR}/common/build-info.cpp.in")
|
||||
set(OUTPUT_FILE "${CMAKE_CURRENT_SOURCE_DIR}/common/build-info.cpp")
|
||||
|
||||
# Only write the build info if it changed
|
||||
if(EXISTS ${OUTPUT_FILE})
|
||||
file(READ ${OUTPUT_FILE} CONTENTS)
|
||||
string(REGEX MATCH "LLAMA_COMMIT = \"([^\"]*)\";" _ ${CONTENTS})
|
||||
set(OLD_COMMIT ${CMAKE_MATCH_1})
|
||||
string(REGEX MATCH "LLAMA_COMPILER = \"([^\"]*)\";" _ ${CONTENTS})
|
||||
set(OLD_COMPILER ${CMAKE_MATCH_1})
|
||||
string(REGEX MATCH "LLAMA_BUILD_TARGET = \"([^\"]*)\";" _ ${CONTENTS})
|
||||
set(OLD_TARGET ${CMAKE_MATCH_1})
|
||||
if (
|
||||
NOT OLD_COMMIT STREQUAL BUILD_COMMIT OR
|
||||
NOT OLD_COMPILER STREQUAL BUILD_COMPILER OR
|
||||
NOT OLD_TARGET STREQUAL BUILD_TARGET
|
||||
)
|
||||
configure_file(${TEMPLATE_FILE} ${OUTPUT_FILE})
|
||||
endif()
|
||||
else()
|
||||
configure_file(${TEMPLATE_FILE} ${OUTPUT_FILE})
|
||||
endif()
|
||||
@@ -203,6 +203,7 @@ bool set_process_priority(enum ggml_sched_priority prio) {
|
||||
|
||||
DWORD p = NORMAL_PRIORITY_CLASS;
|
||||
switch (prio) {
|
||||
case GGML_SCHED_PRIO_LOW: p = BELOW_NORMAL_PRIORITY_CLASS; break;
|
||||
case GGML_SCHED_PRIO_NORMAL: p = NORMAL_PRIORITY_CLASS; break;
|
||||
case GGML_SCHED_PRIO_MEDIUM: p = ABOVE_NORMAL_PRIORITY_CLASS; break;
|
||||
case GGML_SCHED_PRIO_HIGH: p = HIGH_PRIORITY_CLASS; break;
|
||||
@@ -228,6 +229,7 @@ bool set_process_priority(enum ggml_sched_priority prio) {
|
||||
|
||||
int p = 0;
|
||||
switch (prio) {
|
||||
case GGML_SCHED_PRIO_LOW: p = 5; break;
|
||||
case GGML_SCHED_PRIO_NORMAL: p = 0; break;
|
||||
case GGML_SCHED_PRIO_MEDIUM: p = -5; break;
|
||||
case GGML_SCHED_PRIO_HIGH: p = -10; break;
|
||||
@@ -464,7 +466,7 @@ size_t string_find_partial_stop(const std::string_view & str, const std::string_
|
||||
|
||||
std::string regex_escape(const std::string & s) {
|
||||
static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]");
|
||||
return std::regex_replace(s, special_chars, "\\$0");
|
||||
return std::regex_replace(s, special_chars, "\\$&");
|
||||
}
|
||||
|
||||
std::string string_join(const std::vector<std::string> & values, const std::string & separator) {
|
||||
@@ -849,7 +851,7 @@ std::string fs_get_cache_directory() {
|
||||
if (getenv("LLAMA_CACHE")) {
|
||||
cache_directory = std::getenv("LLAMA_CACHE");
|
||||
} else {
|
||||
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX)
|
||||
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX) || defined(__OpenBSD__)
|
||||
if (std::getenv("XDG_CACHE_HOME")) {
|
||||
cache_directory = std::getenv("XDG_CACHE_HOME");
|
||||
} else {
|
||||
@@ -903,13 +905,16 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
ok = false;
|
||||
}
|
||||
|
||||
if (llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: vocab does not have an EOS token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
}
|
||||
bool has_eos = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
|
||||
bool has_sep = llama_vocab_sep(vocab) != LLAMA_TOKEN_NULL;
|
||||
|
||||
if (llama_vocab_sep(vocab) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
|
||||
if (!has_eos && !has_sep) {
|
||||
LOG_WRN("%s: warning: vocab does not have an EOS token or SEP token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
} else if (!has_eos) {
|
||||
LOG_WRN("%s: warning: vocab does not have an EOS token, using SEP token as fallback\n", __func__);
|
||||
} else if (!has_sep) {
|
||||
LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
}
|
||||
|
||||
@@ -929,7 +934,7 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
return iparams;
|
||||
}
|
||||
|
||||
if (params.ctx_shift && !llama_kv_self_can_shift(lctx)) {
|
||||
if (params.ctx_shift && !llama_memory_can_shift(llama_get_memory(lctx))) {
|
||||
LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__);
|
||||
params.ctx_shift = false;
|
||||
}
|
||||
@@ -1036,7 +1041,7 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
if (llama_model_has_decoder(model)) {
|
||||
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch)));
|
||||
}
|
||||
llama_kv_self_clear(lctx);
|
||||
llama_memory_clear(llama_get_memory(lctx), true);
|
||||
llama_synchronize(lctx);
|
||||
llama_perf_context_reset(lctx);
|
||||
llama_set_warmup(lctx, false);
|
||||
|
||||
@@ -115,7 +115,7 @@ enum common_grammar_trigger_type {
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN,
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_WORD,
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN,
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START,
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
|
||||
};
|
||||
|
||||
struct common_grammar_trigger {
|
||||
@@ -215,7 +215,8 @@ struct common_params_vocoder {
|
||||
|
||||
enum common_reasoning_format {
|
||||
COMMON_REASONING_FORMAT_NONE,
|
||||
COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`
|
||||
COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY, // Extract thinking tag contents and return as `message.reasoning_content`, or leave inline in <think> tags in stream mode
|
||||
COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`, including in streaming deltas.
|
||||
};
|
||||
|
||||
struct common_params {
|
||||
@@ -291,6 +292,7 @@ struct common_params {
|
||||
int32_t verbosity = 0;
|
||||
int32_t control_vector_layer_start = -1; // layer range for control vector
|
||||
int32_t control_vector_layer_end = -1; // layer range for control vector
|
||||
bool offline = false;
|
||||
|
||||
int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
|
||||
int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
|
||||
@@ -368,6 +370,7 @@ struct common_params {
|
||||
bool use_jinja = false; // NOLINT
|
||||
bool enable_chat_template = true;
|
||||
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
|
||||
int reasoning_budget = -1;
|
||||
bool prefill_assistant = true; // if true, any trailing assistant message will be prefilled into the response
|
||||
|
||||
std::vector<std::string> api_keys;
|
||||
|
||||
256
common/json-partial.cpp
Normal file
256
common/json-partial.cpp
Normal file
@@ -0,0 +1,256 @@
|
||||
#include "json-partial.h"
|
||||
|
||||
#include "log.h"
|
||||
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
#include <string>
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
enum common_json_stack_element_type {
|
||||
COMMON_JSON_STACK_ELEMENT_OBJECT,
|
||||
COMMON_JSON_STACK_ELEMENT_KEY,
|
||||
COMMON_JSON_STACK_ELEMENT_ARRAY,
|
||||
};
|
||||
|
||||
struct common_json_stack_element {
|
||||
common_json_stack_element_type type;
|
||||
std::string key;
|
||||
};
|
||||
|
||||
bool common_json_parse(
|
||||
const std::string & input,
|
||||
const std::string & healing_marker,
|
||||
common_json & out)
|
||||
{
|
||||
std::string::const_iterator it = input.begin();
|
||||
const auto end = input.end();
|
||||
return common_json_parse(it, end, healing_marker, out);
|
||||
}
|
||||
|
||||
bool common_json_parse(
|
||||
std::string::const_iterator & it,
|
||||
const std::string::const_iterator & end,
|
||||
const std::string & healing_marker,
|
||||
common_json & out)
|
||||
{
|
||||
// // https://json.nlohmann.me/features/parsing/sax_interface/
|
||||
struct json_error_locator : public nlohmann::json_sax<json> {
|
||||
std::size_t position;
|
||||
bool found_error;
|
||||
std::string last_token;
|
||||
std::string exception_message;
|
||||
std::vector<common_json_stack_element> stack;
|
||||
|
||||
json_error_locator() : position(0), found_error(false) {}
|
||||
|
||||
bool parse_error(std::size_t position, const std::string & last_token, const json::exception & ex) override { // NOLINT
|
||||
this->position = position - 1;
|
||||
this->found_error = true;
|
||||
this->last_token = last_token;
|
||||
this->exception_message = ex.what();
|
||||
return false;
|
||||
}
|
||||
void close_value() {
|
||||
if (!stack.empty() && (stack.back().type == COMMON_JSON_STACK_ELEMENT_KEY)) {
|
||||
stack.pop_back();
|
||||
}
|
||||
}
|
||||
bool null() override { // NOLINT
|
||||
close_value();
|
||||
return true;
|
||||
}
|
||||
bool boolean(bool) override { // NOLINT
|
||||
close_value();
|
||||
return true;
|
||||
}
|
||||
bool number_integer(number_integer_t) override { // NOLINT
|
||||
close_value();
|
||||
return true;
|
||||
}
|
||||
bool number_unsigned(number_unsigned_t) override { // NOLINT
|
||||
close_value();
|
||||
return true;
|
||||
}
|
||||
bool number_float(number_float_t, const string_t &) override { // NOLINT
|
||||
close_value();
|
||||
return true;
|
||||
}
|
||||
bool string(string_t &) override { // NOLINT
|
||||
close_value();
|
||||
return true;
|
||||
}
|
||||
bool binary(binary_t &) override { // NOLINT
|
||||
close_value();
|
||||
return true;
|
||||
}
|
||||
bool start_object(std::size_t) override { // NOLINT
|
||||
stack.push_back({COMMON_JSON_STACK_ELEMENT_OBJECT, ""});
|
||||
return true;
|
||||
}
|
||||
bool end_object() override {
|
||||
GGML_ASSERT(!stack.empty() && stack.back().type == COMMON_JSON_STACK_ELEMENT_OBJECT);
|
||||
stack.pop_back();
|
||||
close_value();
|
||||
return true;
|
||||
}
|
||||
bool key(string_t & key) override { // NOLINT
|
||||
stack.push_back({COMMON_JSON_STACK_ELEMENT_KEY, key});
|
||||
return true;
|
||||
}
|
||||
bool start_array(std::size_t) override { // NOLINT
|
||||
stack.push_back({COMMON_JSON_STACK_ELEMENT_ARRAY, ""});
|
||||
return true;
|
||||
}
|
||||
bool end_array() override {
|
||||
GGML_ASSERT(!stack.empty() && stack.back().type == COMMON_JSON_STACK_ELEMENT_ARRAY);
|
||||
stack.pop_back();
|
||||
close_value();
|
||||
return true;
|
||||
}
|
||||
};
|
||||
json_error_locator err_loc;
|
||||
auto start = it;
|
||||
json::sax_parse(it, end, &err_loc);
|
||||
|
||||
if (err_loc.found_error) {
|
||||
it = start;
|
||||
auto temptative_end = it + err_loc.position;
|
||||
// LOG_DBG("Error at position %zu (is_end = %s): %s\n", err_loc.position, temptative_end == end ? "true" : "false", err_loc.exception_message.c_str());
|
||||
|
||||
auto input = std::string(it, temptative_end);
|
||||
try {
|
||||
out.json = json::parse(input);
|
||||
// out.json = json::parse(it, temptative_end);
|
||||
it = temptative_end;
|
||||
return true;
|
||||
} catch (const std::exception & ex) {
|
||||
// No, needs healing.
|
||||
LOG_DBG("Failed to parse up to error: %s: <<<%s>>>\n", ex.what(), std::string(it, temptative_end).c_str());
|
||||
}
|
||||
auto can_parse = [](const std::string & str) {
|
||||
try {
|
||||
auto _ = json::parse(str); // NOLINT
|
||||
return true;
|
||||
} catch (const std::exception &) {
|
||||
return false;
|
||||
}
|
||||
};
|
||||
if (!healing_marker.empty() && !err_loc.stack.empty()) {
|
||||
std::string str(it, temptative_end);
|
||||
auto last_non_sp_pos = str.find_last_not_of(" \n\r\t");
|
||||
if (last_non_sp_pos == std::string::npos) {
|
||||
throw std::runtime_error("Cannot heal a truncated JSON that stopped in an unknown location");
|
||||
}
|
||||
auto last_non_sp_char = str[last_non_sp_pos];
|
||||
// Used to detect stops on a number, which may not be complete.
|
||||
auto was_maybe_number = [&]() {
|
||||
if (!str.empty() && std::isspace(str.back())) {
|
||||
return false;
|
||||
}
|
||||
return std::isdigit(last_non_sp_char) ||
|
||||
last_non_sp_char == '.' ||
|
||||
last_non_sp_char == 'e' ||
|
||||
last_non_sp_char == 'E' ||
|
||||
last_non_sp_char == '-';
|
||||
};
|
||||
|
||||
std::string closing;
|
||||
for (size_t i = err_loc.stack.size(); i > 0; i--) {
|
||||
auto & el = err_loc.stack[i - 1];
|
||||
if (el.type == COMMON_JSON_STACK_ELEMENT_OBJECT) {
|
||||
closing += "}";
|
||||
} else if (el.type == COMMON_JSON_STACK_ELEMENT_ARRAY) {
|
||||
closing += "]";
|
||||
} else if (el.type != COMMON_JSON_STACK_ELEMENT_KEY) {
|
||||
throw std::runtime_error("Unexpected stack element type");
|
||||
}
|
||||
}
|
||||
|
||||
const auto & magic_seed = out.healing_marker.marker = healing_marker;//"$llama.cpp.json$";
|
||||
|
||||
if (err_loc.stack.back().type == COMMON_JSON_STACK_ELEMENT_KEY) {
|
||||
// We're inside an object value
|
||||
if (last_non_sp_char == ':' && can_parse(str + "1" + closing)) {
|
||||
// Was about to create an object value
|
||||
str += (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\"" + closing;
|
||||
} else if (can_parse(str + ": 1" + closing)) {
|
||||
str += (out.healing_marker.json_dump_marker = ":\"" + magic_seed) + "\"" + closing;
|
||||
} else if (last_non_sp_char == '{' && can_parse(str + closing)) {
|
||||
// Was about to create an object
|
||||
str += (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\": 1" + closing;
|
||||
} else if (can_parse(str + "\"" + closing)) {
|
||||
// Was inside an object value string
|
||||
str += (out.healing_marker.json_dump_marker = magic_seed) + "\"" + closing;
|
||||
} else if (str[str.length() - 1] == '\\' && can_parse(str + "\\\"" + closing)) {
|
||||
// Was inside an object value string after an escape
|
||||
str += (out.healing_marker.json_dump_marker = "\\" + magic_seed) + "\"" + closing;
|
||||
} else {
|
||||
// find last :
|
||||
auto last_pos = str.find_last_of(':');
|
||||
if (last_pos == std::string::npos) {
|
||||
throw std::runtime_error("Cannot heal a truncated JSON that stopped in an unknown location");
|
||||
}
|
||||
// Cutting back to opening : for object value
|
||||
str = str.substr(0, last_pos + 1) + (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\"" + closing;
|
||||
}
|
||||
} else if (err_loc.stack.back().type == COMMON_JSON_STACK_ELEMENT_ARRAY) {
|
||||
if ((last_non_sp_char == ',' || last_non_sp_char == '[') && can_parse(str + "1" + closing)) {
|
||||
// Was about to create an array value
|
||||
str += (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\"" + closing;
|
||||
} else if (can_parse(str + "\"" + closing)) {
|
||||
// Was inside an array value string
|
||||
str += (out.healing_marker.json_dump_marker = magic_seed) + "\"" + closing;
|
||||
} else if (str[str.length() - 1] == '\\' && can_parse(str + "\\\"" + closing)) {
|
||||
// Was inside an array value string after an escape
|
||||
str += (out.healing_marker.json_dump_marker = "\\" + magic_seed) + "\"" + closing;
|
||||
} else if (!was_maybe_number() && can_parse(str + ", 1" + closing)) {
|
||||
// Had just finished a value
|
||||
str += (out.healing_marker.json_dump_marker = ",\"" + magic_seed) + "\"" + closing;
|
||||
} else {
|
||||
auto last_pos = str.find_last_of("[,");
|
||||
if (last_pos == std::string::npos) {
|
||||
throw std::runtime_error("Cannot heal a truncated JSON array stopped in an unknown location");
|
||||
}
|
||||
// Cutting back to last [ or , for array value
|
||||
str = str.substr(0, last_pos + 1) + (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\"" + closing;
|
||||
}
|
||||
} else if (err_loc.stack.back().type == COMMON_JSON_STACK_ELEMENT_OBJECT) {
|
||||
if ((last_non_sp_char == '{' && can_parse(str + closing)) ||
|
||||
(last_non_sp_char == ',' && can_parse(str + "\"\": 1" + closing))) {
|
||||
// Was about to create an object key+value
|
||||
str += (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\": 1" + closing;
|
||||
} else if (!was_maybe_number() && can_parse(str + ",\"\": 1" + closing)) {
|
||||
// Was about to create an object key+value
|
||||
str += (out.healing_marker.json_dump_marker = ",\"" + magic_seed) + "\": 1" + closing;
|
||||
} else if (can_parse(str + "\": 1" + closing)) {
|
||||
// Was inside an object key string
|
||||
str += (out.healing_marker.json_dump_marker = magic_seed) + "\": 1" + closing;
|
||||
} else if (str[str.length() - 1] == '\\' && can_parse(str + "\\\": 1" + closing)) {
|
||||
// Was inside an object key string after an escape
|
||||
str += (out.healing_marker.json_dump_marker = "\\" + magic_seed) + "\": 1" + closing;
|
||||
} else {
|
||||
auto last_pos = str.find_last_of(':');
|
||||
if (last_pos == std::string::npos) {
|
||||
throw std::runtime_error("Cannot heal a truncated JSON object stopped in an unknown location");
|
||||
}
|
||||
// fprintf(stderr, "Cutting back to last : for object key+value\n");
|
||||
str = str.substr(0, last_pos + 1) + (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\"" + closing;
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error("Cannot heal a truncated JSON object stopped in an unknown location");
|
||||
}
|
||||
// fprintf(stderr, "HEALED:\nSTRING <<<\n%s\n>>>\n\nmagic_cut: <<<\n%s\n>>>\n\n", str.c_str(), out.healing_marker.json_dump_marker.c_str());
|
||||
out.json = json::parse(str);
|
||||
it = temptative_end;
|
||||
return true;
|
||||
}
|
||||
// TODO: handle unclosed top-level primitive if the stack was empty but we got an error (e.g. "tru", "\"", etc...)
|
||||
// fprintf(stderr, "Closing: TODO\n");
|
||||
return false;
|
||||
}
|
||||
out.json = json::parse(it, end);
|
||||
it = end;
|
||||
return true;
|
||||
}
|
||||
38
common/json-partial.h
Normal file
38
common/json-partial.h
Normal file
@@ -0,0 +1,38 @@
|
||||
#pragma once
|
||||
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
// Healing marker (empty if the JSON was fully parsed / wasn't healed).
|
||||
struct common_healing_marker {
|
||||
// Raw marker.
|
||||
std::string marker;
|
||||
|
||||
// Cutting the `common_json.json.dump()` string at the (only) occurrence of this marker should yield the original partial JSON string (modulo spaces / if it had the same dump format).
|
||||
std::string json_dump_marker;
|
||||
};
|
||||
|
||||
// Represents a parsed JSON object, with its optional healing marker (a JSON dump fragment that can be used to find the position of healing in the JSON dump string)
|
||||
struct common_json {
|
||||
nlohmann::ordered_json json;
|
||||
|
||||
common_healing_marker healing_marker;
|
||||
};
|
||||
|
||||
// Parse the JSON string, healing (closing) any partial JSON if `healing_marker` is not empty.
|
||||
//
|
||||
// Healing completes partial JSON strings by adding a (possibly modified) healing marker, then whatever is needed to close the JSON.
|
||||
// This allows to parse the resulting healed JSON string, yet be able to cut it again if needed at the healing marker.
|
||||
// (this is used when parsing JSON outputs from the models, then crafting partial JSONs for the partial tool calls in OAI format).
|
||||
//
|
||||
// For instance, parsing `{` with a healing marker `foo` will produce a healed JSON `{"foo":1}`, w/ json_dump_marker = `"foo"` (which can be used to break the JSON again).
|
||||
bool common_json_parse(
|
||||
const std::string & input,
|
||||
const std::string & healing_marker,
|
||||
common_json & out);
|
||||
|
||||
// Parse the JSON string (see overload above), but advancing an iterator to the end of the input when the (potentially partial) parsing succeeds.
|
||||
bool common_json_parse(
|
||||
std::string::const_iterator & it,
|
||||
const std::string::const_iterator & end,
|
||||
const std::string & healing_marker,
|
||||
common_json & out);
|
||||
@@ -1,8 +1,9 @@
|
||||
#include "json-schema-to-grammar.h"
|
||||
#include "common.h"
|
||||
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
#include <algorithm>
|
||||
#include <fstream>
|
||||
#include <map>
|
||||
#include <regex>
|
||||
#include <sstream>
|
||||
|
||||
@@ -1,9 +1,9 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
// Change JSON_ASSERT from assert() to GGML_ASSERT:
|
||||
#define JSON_ASSERT GGML_ASSERT
|
||||
#include "json.hpp"
|
||||
#include <nlohmann/json_fwd.hpp>
|
||||
|
||||
#include <functional>
|
||||
#include <string>
|
||||
|
||||
std::string json_schema_to_grammar(const nlohmann::ordered_json & schema,
|
||||
bool force_gbnf = false);
|
||||
|
||||
@@ -161,7 +161,7 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
||||
GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
|
||||
#endif // LLAMA_USE_LLGUIDANCE
|
||||
} else {
|
||||
std::vector<std::string> patterns_at_start;
|
||||
std::vector<std::string> trigger_patterns;
|
||||
std::vector<std::string> patterns_anywhere;
|
||||
std::vector<llama_token> trigger_tokens;
|
||||
for (const auto & trigger : params.grammar_triggers) {
|
||||
@@ -173,10 +173,13 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
||||
break;
|
||||
}
|
||||
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN:
|
||||
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START:
|
||||
{
|
||||
const auto & pattern = trigger.value;
|
||||
(trigger.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START ? patterns_at_start : patterns_anywhere).push_back(pattern);
|
||||
patterns_anywhere.push_back(trigger.value);
|
||||
break;
|
||||
}
|
||||
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL:
|
||||
{
|
||||
trigger_patterns.push_back(trigger.value);
|
||||
break;
|
||||
}
|
||||
case COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN:
|
||||
@@ -190,10 +193,6 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::string> trigger_patterns;
|
||||
if (!patterns_at_start.empty()) {
|
||||
trigger_patterns.push_back("^(" + string_join(patterns_at_start, "|") + ")[\\s\\S]*");
|
||||
}
|
||||
if (!patterns_anywhere.empty()) {
|
||||
trigger_patterns.push_back("^[\\s\\S]*?(" + string_join(patterns_anywhere, "|") + ")[\\s\\S]*");
|
||||
}
|
||||
|
||||
@@ -144,6 +144,8 @@ llama_tokens common_speculative_gen_draft(
|
||||
auto & smpl = spec->smpl;
|
||||
auto & prompt = spec->prompt;
|
||||
|
||||
auto * mem = llama_get_memory(ctx);
|
||||
|
||||
int reuse_i = 0;
|
||||
int reuse_n = 0;
|
||||
|
||||
@@ -173,7 +175,7 @@ llama_tokens common_speculative_gen_draft(
|
||||
result.reserve(params.n_draft);
|
||||
|
||||
if (reuse_n == 0) {
|
||||
llama_kv_self_clear(ctx);
|
||||
llama_memory_clear(mem, false);
|
||||
|
||||
prompt.clear();
|
||||
} else {
|
||||
@@ -192,14 +194,14 @@ llama_tokens common_speculative_gen_draft(
|
||||
}
|
||||
|
||||
if (reuse_i > 0) {
|
||||
llama_kv_self_seq_rm (ctx, 0, 0, reuse_i);
|
||||
llama_kv_self_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
|
||||
llama_memory_seq_rm (mem, 0, 0, reuse_i);
|
||||
llama_memory_seq_add(mem, 0, reuse_i, -1, -reuse_i);
|
||||
|
||||
prompt.erase(prompt.begin(), prompt.begin() + reuse_i);
|
||||
}
|
||||
|
||||
if (reuse_n < (int) prompt.size()) {
|
||||
llama_kv_self_seq_rm (ctx, 0, reuse_n, -1);
|
||||
llama_memory_seq_rm (mem, 0, reuse_n, -1);
|
||||
|
||||
prompt.erase(prompt.begin() + reuse_n, prompt.end());
|
||||
}
|
||||
|
||||
@@ -423,16 +423,19 @@ class ModelBase:
|
||||
try:
|
||||
# for security reason, we don't allow loading remote code by default
|
||||
# if a model need remote code, we will fallback to config.json
|
||||
return AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
|
||||
config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to load model config from {dir_model}: {e}")
|
||||
logger.warning("Trying to load config.json instead")
|
||||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||
config = json.load(f)
|
||||
if "llm_config" in config:
|
||||
# rename for InternVL
|
||||
config["text_config"] = config["llm_config"]
|
||||
return config
|
||||
if "llm_config" in config:
|
||||
# rename for InternVL
|
||||
config["text_config"] = config["llm_config"]
|
||||
if "thinker_config" in config:
|
||||
# rename for Qwen2.5-Omni
|
||||
config["text_config"] = config["thinker_config"]["text_config"]
|
||||
return config
|
||||
|
||||
@classmethod
|
||||
def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
|
||||
@@ -520,15 +523,15 @@ class TextModel(ModelBase):
|
||||
self.gguf_writer.add_context_length(n_ctx)
|
||||
logger.info(f"gguf: context length = {n_ctx}")
|
||||
|
||||
if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
|
||||
if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
|
||||
self.gguf_writer.add_embedding_length(n_embd)
|
||||
logger.info(f"gguf: embedding length = {n_embd}")
|
||||
|
||||
if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
|
||||
if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
|
||||
self.gguf_writer.add_feed_forward_length(n_ff)
|
||||
logger.info(f"gguf: feed forward length = {n_ff}")
|
||||
|
||||
if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
|
||||
if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
|
||||
self.gguf_writer.add_head_count(n_head)
|
||||
logger.info(f"gguf: head count = {n_head}")
|
||||
|
||||
@@ -553,8 +556,11 @@ class TextModel(ModelBase):
|
||||
logger.info(f"gguf: experts used count = {n_experts_used}")
|
||||
|
||||
if (head_dim := self.hparams.get("head_dim")) is not None:
|
||||
self.gguf_writer.add_key_length(head_dim)
|
||||
self.gguf_writer.add_value_length(head_dim)
|
||||
# Workaround for incorrect AutoConfig value for DeepSeekV3 (is set correctly in DeepSeekV2Model class)
|
||||
# https://github.com/huggingface/transformers/blob/19224c3642705c5b6988c9f5f4251f83323d05ae/src/transformers/models/deepseek_v3/configuration_deepseek_v3.py#L210
|
||||
if self.hparams.get("model_type") != "deepseek_v3":
|
||||
self.gguf_writer.add_key_length(head_dim)
|
||||
self.gguf_writer.add_value_length(head_dim)
|
||||
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
logger.info(f"gguf: file type = {self.ftype}")
|
||||
@@ -671,12 +677,12 @@ class TextModel(ModelBase):
|
||||
if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
|
||||
# ref: https://huggingface.co/tiiuae/falcon-7b
|
||||
res = "falcon"
|
||||
if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
|
||||
# ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
|
||||
res = "falcon3"
|
||||
if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
|
||||
# ref: https://huggingface.co/BAAI/bge-small-en-v1.5
|
||||
res = "bert-bge"
|
||||
if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
|
||||
# ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
|
||||
res = "falcon3"
|
||||
if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
|
||||
# ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
|
||||
res = "bert-bge-large"
|
||||
@@ -728,9 +734,6 @@ class TextModel(ModelBase):
|
||||
if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
|
||||
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
|
||||
res = "jina-v2-code"
|
||||
if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
|
||||
# ref: https://huggingface.co/THUDM/glm-4-9b-chat
|
||||
res = "chatglm-bpe"
|
||||
if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
|
||||
# ref: https://huggingface.co/LumiOpen/Viking-7B
|
||||
res = "viking"
|
||||
@@ -761,9 +764,6 @@ class TextModel(ModelBase):
|
||||
if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
|
||||
# ref: https://huggingface.co/facebook/chameleon-7b
|
||||
res = "chameleon"
|
||||
if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
|
||||
# ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
|
||||
res = "minerva-7b"
|
||||
if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
|
||||
# ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
|
||||
res = "roberta-bpe"
|
||||
@@ -794,15 +794,24 @@ class TextModel(ModelBase):
|
||||
if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
|
||||
# ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
|
||||
res = "llama4"
|
||||
if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
|
||||
# ref: https://huggingface.co/THUDM/glm-4-9b-hf
|
||||
res = "glm4"
|
||||
if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
|
||||
# ref: https://huggingface.co/mistral-community/pixtral-12b
|
||||
res = "pixtral"
|
||||
if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
|
||||
# ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
|
||||
res = "seed-coder"
|
||||
if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
|
||||
# ref: https://huggingface.co/THUDM/glm-4-9b-chat
|
||||
res = "chatglm-bpe"
|
||||
if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
|
||||
# ref: https://huggingface.co/THUDM/glm-4-9b-chat
|
||||
res = "chatglm-bpe"
|
||||
if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
|
||||
# ref: https://huggingface.co/THUDM/glm-4-9b-hf
|
||||
res = "glm4"
|
||||
if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
|
||||
# ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
|
||||
res = "minerva-7b"
|
||||
|
||||
if res is None:
|
||||
logger.warning("\n")
|
||||
@@ -1041,6 +1050,10 @@ class TextModel(ModelBase):
|
||||
special_vocab.chat_template = "rwkv-world"
|
||||
# hack: Add '\n\n' as the EOT token to make it chat normally
|
||||
special_vocab._set_special_token("eot", 261)
|
||||
# hack: Override these as they have already been set (incorrectly)
|
||||
special_vocab.special_token_ids["bos"] = 0
|
||||
special_vocab.special_token_ids["eos"] = 0
|
||||
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
|
||||
@@ -1121,18 +1134,21 @@ class MmprojModel(ModelBase):
|
||||
preprocessor_config: dict[str, Any]
|
||||
global_config: dict[str, Any]
|
||||
|
||||
n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
|
||||
|
||||
has_vision_encoder: bool = True # by default
|
||||
has_audio_encoder: bool = False
|
||||
|
||||
# for models having multiple encoders, we need to separate their hparams
|
||||
hparams_vision: dict[str, Any] | None = None
|
||||
hparams_audio: dict[str, Any] | None = None
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
|
||||
raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
|
||||
|
||||
if self.has_vision_encoder and self.has_audio_encoder:
|
||||
raise NotImplementedError("both vision + audio not supported yet")
|
||||
|
||||
# get n_embd of the text model
|
||||
if "text_config" not in self.hparams:
|
||||
self.hparams["text_config"] = {}
|
||||
@@ -1143,22 +1159,32 @@ class MmprojModel(ModelBase):
|
||||
assert self.n_embd_text > 0, "n_embd not found in hparams"
|
||||
|
||||
# move vision config to the top level, while preserving the original hparams in global_config
|
||||
self.global_config = self.hparams
|
||||
import copy
|
||||
self.global_config = copy.deepcopy(self.hparams)
|
||||
self.hparams_vision = self.get_vision_config()
|
||||
self.hparams_audio = self.get_audio_config()
|
||||
|
||||
if "vision_config" in self.hparams:
|
||||
self.hparams = self.hparams["vision_config"]
|
||||
elif "audio_config" in self.hparams:
|
||||
self.hparams = self.hparams["audio_config"]
|
||||
else:
|
||||
if self.hparams_vision is None and self.hparams_audio is None:
|
||||
raise ValueError("vision_config / audio_config not found in hparams")
|
||||
|
||||
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"])
|
||||
# for compat with vision-only models
|
||||
self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
|
||||
|
||||
# TODO @ngxson : this is a hack to support both vision and audio encoders
|
||||
have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
|
||||
self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
|
||||
self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
|
||||
|
||||
# load preprocessor config
|
||||
with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
|
||||
self.preprocessor_config = json.load(f)
|
||||
|
||||
def get_vision_config(self) -> dict[str, Any] | None:
|
||||
return self.global_config.get("vision_config")
|
||||
|
||||
def get_audio_config(self) -> dict[str, Any] | None:
|
||||
return self.global_config.get("audio_config")
|
||||
|
||||
def set_type(self):
|
||||
self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
|
||||
|
||||
@@ -1170,33 +1196,49 @@ class MmprojModel(ModelBase):
|
||||
self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
|
||||
|
||||
# vision config
|
||||
self.gguf_writer.add_vision_image_size(self.find_hparam(["image_size"]))
|
||||
self.gguf_writer.add_vision_patch_size(self.find_hparam(["patch_size"]))
|
||||
self.gguf_writer.add_vision_embedding_length(self.find_hparam(["hidden_size"]))
|
||||
self.gguf_writer.add_vision_feed_forward_length(self.find_hparam(["intermediate_size"]))
|
||||
self.gguf_writer.add_vision_block_count(self.block_count)
|
||||
self.gguf_writer.add_vision_head_count(self.find_hparam(["num_attention_heads"]))
|
||||
self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
|
||||
self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
|
||||
self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
|
||||
self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
|
||||
self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
|
||||
self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
|
||||
|
||||
# preprocessor config
|
||||
self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
|
||||
self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
|
||||
|
||||
elif self.has_audio_encoder:
|
||||
if self.has_audio_encoder:
|
||||
self.gguf_writer.add_clip_has_audio_encoder(True)
|
||||
self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
|
||||
|
||||
# audio config
|
||||
self.gguf_writer.add_audio_embedding_length(self.find_hparam(["hidden_size"]))
|
||||
self.gguf_writer.add_audio_feed_forward_length(self.find_hparam(["intermediate_size"]))
|
||||
self.gguf_writer.add_audio_block_count(self.block_count)
|
||||
self.gguf_writer.add_audio_head_count(self.find_hparam(["num_attention_heads"]))
|
||||
self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
|
||||
self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
|
||||
self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
|
||||
self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
|
||||
|
||||
else:
|
||||
if not self.has_vision_encoder and not self.has_audio_encoder:
|
||||
raise ValueError("MmprojModel must have either vision or audio encoder")
|
||||
|
||||
def write_vocab(self):
|
||||
raise ValueError("MmprojModel does not support vocab writing")
|
||||
|
||||
def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
|
||||
assert self.hparams_vision is not None
|
||||
return self._find_param(self.hparams_vision, keys, optional)
|
||||
|
||||
def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
|
||||
assert self.hparams_audio is not None
|
||||
return self._find_param(self.hparams_audio, keys, optional)
|
||||
|
||||
def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
|
||||
key = next((k for k in keys if k in obj), None)
|
||||
if key is not None:
|
||||
return obj[key]
|
||||
if optional:
|
||||
return None
|
||||
raise KeyError(f"could not find any of: {keys}")
|
||||
|
||||
|
||||
@ModelBase.register("GPTNeoXForCausalLM")
|
||||
class GPTNeoXModel(TextModel):
|
||||
@@ -1809,7 +1851,8 @@ class StableLMModel(TextModel):
|
||||
"MistralForCausalLM",
|
||||
"MixtralForCausalLM",
|
||||
"VLlama3ForCausalLM",
|
||||
"LlavaForConditionalGeneration")
|
||||
"LlavaForConditionalGeneration",
|
||||
"LlamaModel")
|
||||
class LlamaModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
undo_permute = True
|
||||
@@ -1889,6 +1932,8 @@ class LlamaModel(TextModel):
|
||||
|
||||
if is_vision_tensor:
|
||||
return [] # skip vision tensors
|
||||
elif self.hf_arch == "LlamaModel":
|
||||
name = "model." + name
|
||||
elif name.startswith("model.text_model"):
|
||||
name = name.replace("text_model.", "") # for SmolVLM
|
||||
elif name.startswith("language_model."):
|
||||
@@ -2137,6 +2182,9 @@ class Llama4VisionModel(MmprojModel):
|
||||
# process vision tensors
|
||||
if "positional_embedding_vlm" in name and ".weight" not in name:
|
||||
name += ".weight"
|
||||
if "multi_modal_projector.linear_1" in name:
|
||||
# despite the name with number postfix, this is a single fully connected layer
|
||||
return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC], data_torch)]
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
return []
|
||||
|
||||
@@ -2643,7 +2691,7 @@ class QwenModel(TextModel):
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
|
||||
@ModelBase.register("Qwen2Model", "Qwen2ForCausalLM")
|
||||
@ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
|
||||
class Qwen2Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN2
|
||||
|
||||
@@ -2667,13 +2715,19 @@ class Qwen2Model(TextModel):
|
||||
name = f"model.{name}" # map to Qwen2ForCausalLM tensors
|
||||
if "language_model." in name:
|
||||
name = name.replace("language_model.", "") # for InternVL
|
||||
if name.startswith("mlp") or name.startswith("vision_model"):
|
||||
# skip visual tensors
|
||||
if name.startswith("mlp") or name.startswith("multi_modal_projector") \
|
||||
or name.startswith("vision_model") or name.startswith("audio_tower"):
|
||||
# skip vision and audio tensors
|
||||
return []
|
||||
yield from super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
|
||||
@ModelBase.register(
|
||||
"Qwen2VLModel",
|
||||
"Qwen2VLForConditionalGeneration",
|
||||
"Qwen2_5_VLForConditionalGeneration",
|
||||
"Qwen2_5OmniModel",
|
||||
)
|
||||
class Qwen2VLModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN2VL
|
||||
|
||||
@@ -2691,8 +2745,11 @@ class Qwen2VLModel(TextModel):
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
if name.startswith("visual."):
|
||||
# skip visual tensors
|
||||
if name.startswith("thinker."):
|
||||
name = name.replace("thinker.", "")
|
||||
if name.startswith("visual") or name.startswith("audio") or \
|
||||
name.startswith("talker") or name.startswith("token2wav"):
|
||||
# skip multimodal tensors
|
||||
return []
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
@@ -2701,21 +2758,27 @@ class Qwen2VLModel(TextModel):
|
||||
class Qwen2VLVisionModel(MmprojModel):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.hparams["image_size"] = self.hparams.get("image_size", 560)
|
||||
assert self.hparams_vision is not None
|
||||
self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
|
||||
# rename config.json values
|
||||
self.hparams["num_attention_heads"] = self.hparams.get("num_heads")
|
||||
self.hparams["num_hidden_layers"] = self.hparams.get("depth")
|
||||
if "embed_dim" in self.hparams: # qwen2vl
|
||||
self.hparams["intermediate_size"] = self.hparams.get("hidden_size")
|
||||
self.hparams["hidden_size"] = self.hparams.get("embed_dim")
|
||||
self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
|
||||
self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
|
||||
if "embed_dim" in self.hparams_vision: # qwen2vl
|
||||
self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
|
||||
self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
if self.global_config['model_type'] == 'qwen2_vl':
|
||||
assert self.hparams_vision is not None
|
||||
hparams = self.hparams_vision
|
||||
model_type = self.global_config['model_type']
|
||||
if model_type == 'qwen2_vl':
|
||||
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
|
||||
elif self.global_config['model_type'] == 'qwen2_5_vl':
|
||||
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
|
||||
elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
|
||||
if model_type == 'qwen2_5_omni':
|
||||
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
|
||||
else:
|
||||
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
|
||||
self.gguf_writer.add_vision_use_silu(True)
|
||||
# find n_wa_pattern (window attention pattern)
|
||||
fullatt_block_indexes = hparams.get("fullatt_block_indexes")
|
||||
@@ -2773,6 +2836,66 @@ class Qwen2VLVisionModel(MmprojModel):
|
||||
return [] # skip other tensors
|
||||
|
||||
|
||||
@ModelBase.register("Qwen2_5OmniModel")
|
||||
class Qwen25OmniModel(Qwen2VLVisionModel):
|
||||
has_vision_encoder = True
|
||||
has_audio_encoder = True
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
assert self.hparams_audio is not None
|
||||
self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
|
||||
self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
|
||||
self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
assert self.hparams_audio is not None
|
||||
self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
|
||||
self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
|
||||
|
||||
def get_vision_config(self) -> dict[str, Any] | None:
|
||||
return self.global_config["thinker_config"].get("vision_config")
|
||||
|
||||
def get_audio_config(self) -> dict[str, Any] | None:
|
||||
return self.global_config["thinker_config"].get("audio_config")
|
||||
|
||||
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
|
||||
# SinusoidsPositionEmbedding
|
||||
assert self.hparams_audio is not None
|
||||
max_timescale = 10000
|
||||
length = 1500
|
||||
channels = self.hparams_audio["hidden_size"]
|
||||
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
|
||||
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
|
||||
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
|
||||
pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
|
||||
yield ("audio_tower.embed_positions.weight", pos_embd)
|
||||
|
||||
def tensor_force_quant(self, name, new_name, bid, n_dims):
|
||||
del bid, new_name, n_dims # unused
|
||||
if ".conv" in name and ".weight" in name:
|
||||
return gguf.GGMLQuantizationType.F16
|
||||
return False
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
if name.startswith("thinker."):
|
||||
name = name.replace("thinker.", "")
|
||||
|
||||
if name.startswith("audio_tower"):
|
||||
# process audio tensors
|
||||
if "conv1.bias" in name or "conv2.bias" in name:
|
||||
# transpose conv1 and conv2 bias
|
||||
data_torch = data_torch.unsqueeze(-1)
|
||||
if "audio_bos_eos_token" in name:
|
||||
# this tensor is left unused in transformers code
|
||||
# https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
|
||||
return []
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("InternVisionModel")
|
||||
class InternVisionModel(MmprojModel):
|
||||
def set_gguf_parameters(self):
|
||||
@@ -3569,7 +3692,7 @@ class InternLM3Model(TextModel):
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel")
|
||||
@ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
|
||||
class BertModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.BERT
|
||||
|
||||
@@ -3577,11 +3700,20 @@ class BertModel(TextModel):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.vocab_size = None
|
||||
|
||||
if cls_out_labels := self.hparams.get("id2label"):
|
||||
if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
|
||||
# Remove dummy labels added by AutoConfig
|
||||
cls_out_labels = None
|
||||
self.cls_out_labels = cls_out_labels
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_causal_attention(False)
|
||||
self._try_set_pooling_type()
|
||||
|
||||
if self.cls_out_labels:
|
||||
self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
|
||||
|
||||
def set_vocab(self):
|
||||
tokens, toktypes, tokpre = self.get_vocab_base()
|
||||
self.vocab_size = len(tokens)
|
||||
@@ -3632,6 +3764,14 @@ class BertModel(TextModel):
|
||||
if name.startswith("cls.seq_relationship"):
|
||||
return []
|
||||
|
||||
if self.cls_out_labels:
|
||||
# For BertForSequenceClassification (direct projection layer)
|
||||
if name == "classifier.weight":
|
||||
name = "classifier.out_proj.weight"
|
||||
|
||||
if name == "classifier.bias":
|
||||
name = "classifier.out_proj.bias"
|
||||
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
def _xlmroberta_tokenizer_init(self) -> None:
|
||||
@@ -3651,62 +3791,111 @@ class BertModel(TextModel):
|
||||
from sentencepiece import sentencepiece_model_pb2 as model
|
||||
|
||||
tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
|
||||
|
||||
tokenizer_json = {}
|
||||
tokenizer_config_json = {}
|
||||
if not tokenizer_path.is_file():
|
||||
raise FileNotFoundError(f"File not found: {tokenizer_path}")
|
||||
tokenizer_path = self.dir_model / 'tokenizer.json'
|
||||
tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
|
||||
|
||||
sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
|
||||
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
|
||||
assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
|
||||
if not tokenizer_path.is_file():
|
||||
raise FileNotFoundError(f"File not found: {tokenizer_path}")
|
||||
|
||||
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
|
||||
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
|
||||
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
|
||||
from base64 import b64decode
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
|
||||
|
||||
tokenizer = SentencePieceProcessor()
|
||||
tokenizer.LoadFromFile(str(tokenizer_path))
|
||||
with open(tokenizer_path, "r", encoding="utf-8") as fp:
|
||||
tokenizer_json = json.load(fp)
|
||||
|
||||
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||||
if tokenizer_config_path.is_file():
|
||||
with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
|
||||
tokenizer_config_json = json.load(fp)
|
||||
|
||||
add_prefix = tokenizer.add_prefix_space
|
||||
remove_whitespaces = tokenizer.clean_up_tokenization_spaces
|
||||
precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
|
||||
|
||||
vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
|
||||
else:
|
||||
sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
|
||||
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
|
||||
assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
|
||||
|
||||
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
|
||||
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
|
||||
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
|
||||
|
||||
tokenizer = SentencePieceProcessor()
|
||||
tokenizer.LoadFromFile(str(tokenizer_path))
|
||||
|
||||
vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
|
||||
|
||||
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
||||
scores: list[float] = [-10000.0] * vocab_size
|
||||
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
|
||||
|
||||
for token_id in range(tokenizer.vocab_size()):
|
||||
piece = tokenizer.IdToPiece(token_id)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.GetScore(token_id)
|
||||
if isinstance(tokenizer, SentencePieceProcessor):
|
||||
for token_id in range(tokenizer.vocab_size()):
|
||||
piece = tokenizer.IdToPiece(token_id)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.GetScore(token_id)
|
||||
|
||||
toktype = SentencePieceTokenTypes.NORMAL
|
||||
if tokenizer.IsUnknown(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||||
elif tokenizer.IsControl(token_id):
|
||||
toktype = SentencePieceTokenTypes.CONTROL
|
||||
elif tokenizer.IsUnused(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNUSED
|
||||
elif tokenizer.IsByte(token_id):
|
||||
toktype = SentencePieceTokenTypes.BYTE
|
||||
toktype = SentencePieceTokenTypes.NORMAL
|
||||
if tokenizer.IsUnknown(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||||
elif tokenizer.IsControl(token_id):
|
||||
toktype = SentencePieceTokenTypes.CONTROL
|
||||
elif tokenizer.IsUnused(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNUSED
|
||||
elif tokenizer.IsByte(token_id):
|
||||
toktype = SentencePieceTokenTypes.BYTE
|
||||
|
||||
tokens[token_id] = text
|
||||
scores[token_id] = score
|
||||
toktypes[token_id] = toktype
|
||||
tokens[token_id] = text
|
||||
scores[token_id] = score
|
||||
toktypes[token_id] = toktype
|
||||
else:
|
||||
added_vocab = tokenizer.get_added_vocab()
|
||||
unk_token = tokenizer_config_json.get("unk_token")
|
||||
unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
|
||||
|
||||
if vocab_size > len(tokens):
|
||||
pad_count = vocab_size - len(tokens)
|
||||
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
|
||||
for i in range(1, pad_count + 1):
|
||||
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
|
||||
scores.append(-1000.0)
|
||||
toktypes.append(SentencePieceTokenTypes.UNUSED)
|
||||
for token_id in range(tokenizer.vocab_size):
|
||||
piece = tokenizer._convert_id_to_token(token_id)
|
||||
if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer_json["model"]["vocab"][token_id][1]
|
||||
|
||||
# realign tokens (see HF tokenizer code)
|
||||
tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
|
||||
scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
|
||||
toktypes = [
|
||||
SentencePieceTokenTypes.CONTROL,
|
||||
SentencePieceTokenTypes.CONTROL,
|
||||
SentencePieceTokenTypes.CONTROL,
|
||||
SentencePieceTokenTypes.UNKNOWN,
|
||||
] + toktypes[3:-1]
|
||||
toktype = SentencePieceTokenTypes.NORMAL
|
||||
if token_id == unk_token_id:
|
||||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||||
elif token_id in tokenizer.all_special_ids:
|
||||
toktype = SentencePieceTokenTypes.CONTROL
|
||||
elif token_id in added_vocab.values():
|
||||
toktype = SentencePieceTokenTypes.USER_DEFINED
|
||||
# No reliable way to detect this, but jina doesn't have any
|
||||
# elif tokenizer.IsByte(token_id):
|
||||
# toktype = SentencePieceTokenTypes.BYTE
|
||||
|
||||
tokens[token_id] = text
|
||||
scores[token_id] = score
|
||||
toktypes[token_id] = toktype
|
||||
|
||||
if isinstance(tokenizer, SentencePieceProcessor):
|
||||
# realign tokens (see HF tokenizer code)
|
||||
tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
|
||||
scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
|
||||
toktypes = [
|
||||
SentencePieceTokenTypes.CONTROL,
|
||||
SentencePieceTokenTypes.CONTROL,
|
||||
SentencePieceTokenTypes.CONTROL,
|
||||
SentencePieceTokenTypes.UNKNOWN,
|
||||
] + toktypes[3:-1]
|
||||
|
||||
if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
|
||||
# Add mask token missing from sentencepiece.bpe.model
|
||||
tokens[250001] = b'<mask>'
|
||||
scores[250001] = 0.0
|
||||
toktypes[250001] = SentencePieceTokenTypes.CONTROL
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("t5")
|
||||
self.gguf_writer.add_tokenizer_pre("default")
|
||||
@@ -3726,7 +3915,27 @@ class BertModel(TextModel):
|
||||
self.gguf_writer.add_add_eos_token(True)
|
||||
|
||||
|
||||
@ModelBase.register("RobertaModel")
|
||||
@ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
|
||||
class DistilBertModel(BertModel):
|
||||
model_arch = gguf.MODEL_ARCH.BERT
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_layer_norm_eps(1e-12)
|
||||
logger.info("gguf: layer norm epsilon = 1e-12")
|
||||
super().set_gguf_parameters()
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
if name.startswith("distilbert."):
|
||||
name = name[11:]
|
||||
|
||||
# These layers act as MLM head, so we don't need them
|
||||
if name.startswith("vocab_"):
|
||||
return []
|
||||
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
|
||||
class RobertaModel(BertModel):
|
||||
model_arch = gguf.MODEL_ARCH.BERT
|
||||
|
||||
@@ -4592,25 +4801,6 @@ class OlmoeModel(TextModel):
|
||||
class JinaBertV2Model(BertModel):
|
||||
model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.intermediate_size = self.hparams["intermediate_size"]
|
||||
|
||||
def get_tensors(self):
|
||||
for name, data in super().get_tensors():
|
||||
if 'gated_layer' in name:
|
||||
d1 = data[:self.intermediate_size, :]
|
||||
name1 = name.replace('gated_layers', 'gated_layers_w')
|
||||
name1 = name1.replace('up_gated_layer', 'gated_layers_v')
|
||||
d2 = data[self.intermediate_size:, :]
|
||||
name2 = name.replace('gated_layers', 'gated_layers_v')
|
||||
name2 = name2.replace('up_gated_layer', 'gated_layers_w')
|
||||
yield name1, d1
|
||||
yield name2, d2
|
||||
continue
|
||||
|
||||
yield name, data
|
||||
|
||||
def set_vocab(self):
|
||||
tokenizer_class = 'BertTokenizer'
|
||||
with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
|
||||
@@ -4626,14 +4816,6 @@ class JinaBertV2Model(BertModel):
|
||||
self.gguf_writer.add_add_bos_token(True)
|
||||
self.gguf_writer.add_add_eos_token(True)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
# if name starts with "bert.", remove the prefix
|
||||
# e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
|
||||
if name.startswith("bert."):
|
||||
name = name[5:]
|
||||
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("OpenELMForCausalLM")
|
||||
class OpenELMModel(TextModel):
|
||||
@@ -5080,6 +5262,34 @@ class DeepseekV2Model(TextModel):
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@ModelBase.register("Dots1ForCausalLM")
|
||||
class Dots1Model(Qwen2MoeModel):
|
||||
model_arch = gguf.MODEL_ARCH.DOTS1
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.hparams["num_experts"] = self.hparams["n_routed_experts"]
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
|
||||
self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
|
||||
self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
|
||||
self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
|
||||
|
||||
if self.hparams["scoring_func"] == "noaux_tc":
|
||||
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
|
||||
else:
|
||||
raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
|
||||
if name.endswith("e_score_correction_bias"):
|
||||
name = name.replace("e_score_correction_bias", "e_score_correction.bias")
|
||||
if "shared_experts" in name:
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("PLMForCausalLM")
|
||||
class PLMModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.PLM
|
||||
@@ -5993,11 +6203,11 @@ class UltravoxModel(TextModel):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
raise NotImplementedError("Ultravox does not have text decoder. Please use --mmproj argument")
|
||||
raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
|
||||
|
||||
|
||||
@ModelBase.register("UltravoxModel")
|
||||
class UltravoxAudioModel(MmprojModel):
|
||||
@ModelBase.register("Qwen2AudioForConditionalGeneration")
|
||||
class WhisperEncoderModel(MmprojModel):
|
||||
has_vision_encoder = False # no vision encoder
|
||||
has_audio_encoder = True
|
||||
|
||||
@@ -6009,10 +6219,9 @@ class UltravoxAudioModel(MmprojModel):
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
|
||||
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
|
||||
self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
|
||||
self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
|
||||
self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
|
||||
|
||||
def tensor_force_quant(self, name, new_name, bid, n_dims):
|
||||
del bid, new_name, n_dims # unused
|
||||
@@ -6023,6 +6232,10 @@ class UltravoxAudioModel(MmprojModel):
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
|
||||
if name.startswith("language_model."):
|
||||
# skip language model tensors
|
||||
return []
|
||||
|
||||
# prevent clash naming with vision tensors
|
||||
if name.startswith("multi_modal_projector"):
|
||||
name = "audio." + name
|
||||
@@ -6033,6 +6246,16 @@ class UltravoxAudioModel(MmprojModel):
|
||||
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@ModelBase.register("UltravoxModel")
|
||||
class UltravoxWhisperEncoderModel(WhisperEncoderModel):
|
||||
has_vision_encoder = False # no vision encoder
|
||||
has_audio_encoder = True
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
|
||||
|
||||
###### CONVERSION LOGIC ######
|
||||
|
||||
|
||||
|
||||
@@ -1,28 +1,6 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# This script downloads the tokenizer models of the specified models from Huggingface and
|
||||
# generates the get_vocab_base_pre() function for convert_hf_to_gguf.py
|
||||
#
|
||||
# This is necessary in order to analyze the type of pre-tokenizer used by the model and
|
||||
# provide the necessary information to llama.cpp via the GGUF header in order to implement
|
||||
# the same pre-tokenizer.
|
||||
#
|
||||
# ref: https://github.com/ggml-org/llama.cpp/pull/6920
|
||||
#
|
||||
# Instructions:
|
||||
#
|
||||
# - Add a new model to the "models" list
|
||||
# - Run the script with your huggingface token:
|
||||
#
|
||||
# python3 convert_hf_to_gguf_update.py <huggingface_token>
|
||||
#
|
||||
# - The convert_hf_to_gguf.py script will have had its get_vocab_base_pre() function updated
|
||||
# - Update llama.cpp with the new pre-tokenizer if necessary
|
||||
#
|
||||
# TODO: generate tokenizer tests for llama.cpp
|
||||
#
|
||||
|
||||
import logging
|
||||
import os
|
||||
import pathlib
|
||||
@@ -32,6 +10,7 @@ import requests
|
||||
import sys
|
||||
import json
|
||||
import shutil
|
||||
import argparse
|
||||
|
||||
from hashlib import sha256
|
||||
from enum import IntEnum, auto
|
||||
@@ -41,6 +20,11 @@ logging.basicConfig(level=logging.DEBUG)
|
||||
logger = logging.getLogger("convert_hf_to_gguf_update")
|
||||
sess = requests.Session()
|
||||
|
||||
convert_py_pth = pathlib.Path("convert_hf_to_gguf.py")
|
||||
convert_py = convert_py_pth.read_text(encoding="utf-8")
|
||||
hf_token_pth = pathlib.Path.home() / ".cache" / "huggingface" / "token"
|
||||
hf_token = hf_token_pth.read_text(encoding="utf-8").strip() if hf_token_pth.exists() else None
|
||||
|
||||
|
||||
class TOKENIZER_TYPE(IntEnum):
|
||||
SPM = auto()
|
||||
@@ -49,20 +33,49 @@ class TOKENIZER_TYPE(IntEnum):
|
||||
UGM = auto()
|
||||
|
||||
|
||||
DOC_STRING = """
|
||||
This script downloads the tokenizer models of the specified models from Huggingface and
|
||||
generates the get_vocab_base_pre() function for convert_hf_to_gguf.py
|
||||
|
||||
/!\\ It is intended to be used by contributors and is not meant to be run by end users
|
||||
|
||||
This is necessary in order to analyze the type of pre-tokenizer used by the model and
|
||||
provide the necessary information to llama.cpp via the GGUF header in order to implement
|
||||
the same pre-tokenizer.
|
||||
|
||||
ref: https://github.com/ggml-org/llama.cpp/pull/6920
|
||||
|
||||
Instructions:
|
||||
|
||||
- Add a new model to the "models" list
|
||||
- Run the script with your huggingface token
|
||||
By default, token will be read from ~/.cache/huggingface/token
|
||||
- The convert_hf_to_gguf.py script will have had its get_vocab_base_pre() function updated
|
||||
- Update llama.cpp with the new pre-tokenizer if necessary
|
||||
"""
|
||||
# TODO: generate tokenizer tests for llama.cpp
|
||||
|
||||
parser = argparse.ArgumentParser(description=DOC_STRING, formatter_class=argparse.RawTextHelpFormatter)
|
||||
parser.add_argument(
|
||||
"--full", action="store_true",
|
||||
help="download full list of models - make sure you have access to all of them",
|
||||
)
|
||||
parser.add_argument(
|
||||
"hf_token",
|
||||
help="optional HF token",
|
||||
nargs="?",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
hf_token = args.hf_token if args.hf_token is not None else hf_token
|
||||
|
||||
if hf_token is None:
|
||||
logger.error("HF token is required. Please provide it as an argument or set it in ~/.cache/huggingface/token")
|
||||
sys.exit(1)
|
||||
|
||||
# TODO: this string has to exercise as much pre-tokenizer functionality as possible
|
||||
# will be updated with time - contributions welcome
|
||||
CHK_TXT = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
|
||||
|
||||
if len(sys.argv) == 2:
|
||||
token = sys.argv[1]
|
||||
if not token.startswith("hf_"):
|
||||
logger.info("Huggingface token seems invalid")
|
||||
logger.info("Usage: python convert_hf_to_gguf_update.py <huggingface_token>")
|
||||
sys.exit(1)
|
||||
else:
|
||||
logger.info("Usage: python convert_hf_to_gguf_update.py <huggingface_token>")
|
||||
sys.exit(1)
|
||||
|
||||
# TODO: add models here, base models preferred
|
||||
models = [
|
||||
{"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
|
||||
@@ -103,7 +116,6 @@ models = [
|
||||
{"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", },
|
||||
{"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", },
|
||||
{"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", },
|
||||
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", },
|
||||
{"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"},
|
||||
{"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"},
|
||||
{"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"},
|
||||
@@ -114,11 +126,19 @@ models = [
|
||||
{"name": "trillion", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/trillionlabs/Trillion-7B-preview", },
|
||||
{"name": "bailingmoe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-lite", },
|
||||
{"name": "llama4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct", },
|
||||
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", },
|
||||
{"name": "pixtral", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistral-community/pixtral-12b", },
|
||||
{"name": "seed-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base", },
|
||||
]
|
||||
|
||||
# some models are known to be broken upstream, so we will skip them as exceptions
|
||||
pre_computed_hashes = [
|
||||
# chatglm-bpe has 2 hashes, why?
|
||||
{"name": "chatglm-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-chat", "chkhsh": "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b"},
|
||||
{"name": "chatglm-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-chat", "chkhsh": "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516"},
|
||||
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", "chkhsh": "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2"},
|
||||
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", "chkhsh": "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35"},
|
||||
]
|
||||
|
||||
|
||||
def download_file_with_auth(url, token, save_path):
|
||||
headers = {"Authorization": f"Bearer {token}"}
|
||||
@@ -169,9 +189,29 @@ def download_model(model):
|
||||
if os.path.isfile(save_path):
|
||||
logger.info(f"{name}: File {save_path} already exists - skipping")
|
||||
continue
|
||||
download_file_with_auth(f"{repo}/resolve/main/{file}", token, save_path)
|
||||
download_file_with_auth(f"{repo}/resolve/main/{file}", hf_token, save_path)
|
||||
|
||||
|
||||
# get list of existing models and chkhsh from the convert_hf_to_gguf.py file
|
||||
# returns mapping res --> chkhsh
|
||||
def get_existing_models(convert_py):
|
||||
pattern = r'if chkhsh == "([a-f0-9]{64})":\s*\n\s*.*\s*res = "([^"]+)"'
|
||||
matches = re.findall(pattern, convert_py)
|
||||
output = {}
|
||||
for chkhsh, res in matches:
|
||||
output[res] = chkhsh
|
||||
return output
|
||||
|
||||
|
||||
existing_models = {}
|
||||
all_models = models.copy()
|
||||
if not args.full:
|
||||
# Filter out models that already exist in convert_hf_to_gguf.py
|
||||
existing_models = get_existing_models(convert_py)
|
||||
all_models = models.copy()
|
||||
models = [model for model in all_models if model["name"] not in existing_models]
|
||||
|
||||
logging.info(f"Downloading {len(models)} models...")
|
||||
for model in models:
|
||||
try:
|
||||
download_model(model)
|
||||
@@ -182,9 +222,10 @@ for model in models:
|
||||
# generate the source code for the convert_hf_to_gguf.py:get_vocab_base_pre() function:
|
||||
|
||||
src_ifs = ""
|
||||
for model in models:
|
||||
for model in [*all_models, *pre_computed_hashes]:
|
||||
name = model["name"]
|
||||
tokt = model["tokt"]
|
||||
chkhsh = model.get("chkhsh")
|
||||
|
||||
if tokt == TOKENIZER_TYPE.SPM or tokt == TOKENIZER_TYPE.UGM:
|
||||
continue
|
||||
@@ -195,35 +236,44 @@ for model in models:
|
||||
continue
|
||||
|
||||
# create the tokenizer
|
||||
try:
|
||||
if name == "t5":
|
||||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False)
|
||||
else:
|
||||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
|
||||
except OSError as e:
|
||||
logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}")
|
||||
continue # Skip to the next model if the tokenizer can't be loaded
|
||||
if chkhsh is not None:
|
||||
# if the model has a pre-computed hash, use it
|
||||
logger.info(f"Using pre-computed hash for model {name}: {chkhsh}")
|
||||
elif name in existing_models:
|
||||
# if the model already exists in convert_hf_to_gguf.py, skip compute hash
|
||||
chkhsh = existing_models[name]
|
||||
else:
|
||||
# otherwise, compute the hash of the tokenizer
|
||||
try:
|
||||
logger.info(f"Loading tokenizer from {f'models/tokenizers/{name}'}...")
|
||||
if name == "t5":
|
||||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False)
|
||||
else:
|
||||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
|
||||
except OSError as e:
|
||||
logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}")
|
||||
continue # Skip to the next model if the tokenizer can't be loaded
|
||||
|
||||
chktok = tokenizer.encode(CHK_TXT)
|
||||
chkhsh = sha256(str(chktok).encode()).hexdigest()
|
||||
chktok = tokenizer.encode(CHK_TXT)
|
||||
chkhsh = sha256(str(chktok).encode()).hexdigest()
|
||||
|
||||
logger.info(f"model: {name}")
|
||||
logger.info(f"tokt: {tokt}")
|
||||
logger.info(f"repo: {model['repo']}")
|
||||
logger.info(f"chktok: {chktok}")
|
||||
logger.info(f"chkhsh: {chkhsh}")
|
||||
logger.info(f"model: {name}")
|
||||
logger.info(f"tokt: {tokt}")
|
||||
logger.info(f"repo: {model['repo']}")
|
||||
logger.info(f"chktok: {chktok}")
|
||||
logger.info(f"chkhsh: {chkhsh}")
|
||||
|
||||
# print the "pre_tokenizer" content from the tokenizer.json
|
||||
with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f:
|
||||
cfg = json.load(f)
|
||||
normalizer = cfg["normalizer"]
|
||||
logger.info("normalizer: " + json.dumps(normalizer, indent=4))
|
||||
pre_tokenizer = cfg["pre_tokenizer"]
|
||||
logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
|
||||
if "ignore_merges" in cfg["model"]:
|
||||
logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4))
|
||||
# print the "pre_tokenizer" content from the tokenizer.json
|
||||
with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f:
|
||||
cfg = json.load(f)
|
||||
normalizer = cfg["normalizer"]
|
||||
logger.info("normalizer: " + json.dumps(normalizer, indent=4))
|
||||
pre_tokenizer = cfg["pre_tokenizer"]
|
||||
logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
|
||||
if "ignore_merges" in cfg["model"]:
|
||||
logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4))
|
||||
|
||||
logger.info("")
|
||||
logger.info("")
|
||||
|
||||
src_ifs += f" if chkhsh == \"{chkhsh}\":\n"
|
||||
src_ifs += f" # ref: {model['repo']}\n"
|
||||
@@ -271,8 +321,6 @@ src_func = f"""
|
||||
return res
|
||||
"""
|
||||
|
||||
convert_py_pth = pathlib.Path("convert_hf_to_gguf.py")
|
||||
convert_py = convert_py_pth.read_text(encoding="utf-8")
|
||||
convert_py = re.sub(
|
||||
r"(# Marker: Start get_vocab_base_pre)(.+?)( +# Marker: End get_vocab_base_pre)",
|
||||
lambda m: m.group(1) + src_func + m.group(3),
|
||||
@@ -288,7 +336,7 @@ logger.info("+++ convert_hf_to_gguf.py was updated")
|
||||
|
||||
tests = [
|
||||
"ied 4 ½ months",
|
||||
"Führer",
|
||||
"Äpfel",
|
||||
"",
|
||||
" ",
|
||||
" ",
|
||||
@@ -367,6 +415,10 @@ for model in models:
|
||||
logger.error(f"Failed to load tokenizer for model {name}. Error: {e}")
|
||||
continue # Skip this model and continue with the next one in the loop
|
||||
|
||||
if not os.path.exists(f"models/ggml-vocab-{name}.gguf"):
|
||||
logger.info(f"Skip vocab files for model {name}, no GGUF file found")
|
||||
continue
|
||||
|
||||
with open(f"models/ggml-vocab-{name}.gguf.inp", "w", encoding="utf-8") as f:
|
||||
for text in tests:
|
||||
f.write(f"{text}")
|
||||
|
||||
29
docs/backend/CANN.md
Normal file → Executable file
29
docs/backend/CANN.md
Normal file → Executable file
@@ -8,6 +8,7 @@
|
||||
- [DataType Supports](#datatype-supports)
|
||||
- [Docker](#docker)
|
||||
- [Linux](#linux)
|
||||
- [Environment variable setup](#environment-variable-setup)
|
||||
- [TODO](#todo)
|
||||
|
||||
|
||||
@@ -280,6 +281,34 @@ cmake --build build --config release
|
||||
### **GitHub contribution**:
|
||||
Please add the **[CANN]** prefix/tag in issues/PRs titles to help the CANN-team check/address them without delay.
|
||||
|
||||
## Updates
|
||||
### Basic Flash Attention Support
|
||||
The basic FA kernel with aclnnops has been added in aclnn_ops.cpp.
|
||||
Currently, the FA only supports the cases with FP16 KV tensors and NO logit softcap.
|
||||
Since the aclnn interface for flash attention cannot support the logit softcap, we will only update the quantized version in the future.
|
||||
|
||||
Authors from Peking University: Bizhao Shi (bshi@pku.edu.cn), Yuxin Yang (yxyang@pku.edu.cn), Ruiyang Ma (ruiyang@stu.pku.edu.cn), and Guojie Luo (gluo@pku.edu.cn).
|
||||
|
||||
We would like to thank Tuo Dai, Shanni Li, and all of the project maintainers from Huawei Technologies Co., Ltd for their help during the code development and pull request.
|
||||
|
||||
## Environment variable setup
|
||||
|
||||
### GGML_CANN_ASYNC_MODE
|
||||
|
||||
Enables asynchronous operator submission. Disabled by default.
|
||||
|
||||
### GGML_CANN_MEM_POOL
|
||||
|
||||
Specifies the memory pool management strategy:
|
||||
|
||||
- vmm: Utilizes a virtual memory manager pool. If hardware support for VMM is unavailable, falls back to the legacy (leg) memory pool.
|
||||
|
||||
- prio: Employs a priority queue-based memory pool management.
|
||||
- leg: Uses a fixed-size buffer pool.
|
||||
|
||||
### GGML_CANN_DISABLE_BUF_POOL_CLEAN
|
||||
|
||||
Controls automatic cleanup of the memory pool. This option is only effective when using the prio or leg memory pool strategies.
|
||||
|
||||
## TODO
|
||||
- Support more models and data types.
|
||||
|
||||
@@ -1,5 +1,9 @@
|
||||
# Build llama.cpp locally
|
||||
|
||||
The main product of this project is the `llama` library. Its C-style interface can be found in [include/llama.h](include/llama.h).
|
||||
|
||||
The project also includes many example programs and tools using the `llama` library. The examples range from simple, minimal code snippets to sophisticated sub-projects such as an OpenAI-compatible HTTP server.
|
||||
|
||||
**To get the Code:**
|
||||
|
||||
```bash
|
||||
@@ -63,6 +67,7 @@ cmake --build build --config Release
|
||||
cmake --preset x64-windows-llvm-release
|
||||
cmake --build build-x64-windows-llvm-release
|
||||
```
|
||||
- Curl usage is enabled by default and can be turned off with `-DLLAMA_CURL=OFF`. Otherwise you need to install development libraries for libcurl.
|
||||
|
||||
## BLAS Build
|
||||
|
||||
|
||||
@@ -2,7 +2,6 @@
|
||||
|
||||
[chat.h](../common/chat.h) (https://github.com/ggml-org/llama.cpp/pull/9639) adds support for [OpenAI-style function calling](https://platform.openai.com/docs/guides/function-calling) and is used in:
|
||||
- `llama-server` when started w/ `--jinja` flag
|
||||
- `llama-cli` (WIP: https://github.com/ggml-org/llama.cpp/pull/11556)
|
||||
|
||||
## Universal support w/ Native & Generic handlers
|
||||
|
||||
@@ -12,7 +11,7 @@ Function calling is supported for all models (see https://github.com/ggml-org/ll
|
||||
- Llama 3.1 / 3.3 (including builtin tools support - tool names for `wolfram_alpha`, `web_search` / `brave_search`, `code_interpreter`), Llama 3.2
|
||||
- Functionary v3.1 / v3.2
|
||||
- Hermes 2/3, Qwen 2.5
|
||||
- Qwen 2.5 Coder (WIP: https://github.com/ggml-org/llama.cpp/pull/12034)
|
||||
- Qwen 2.5 Coder
|
||||
- Mistral Nemo
|
||||
- Firefunction v2
|
||||
- Command R7B
|
||||
@@ -325,36 +324,65 @@ To get the official template from original HuggingFace repos, you can use [scrip
|
||||
> [!TIP]
|
||||
> If there is no official `tool_use` Jinja template, you may want to set `--chat-template chatml` to use a default that works with many models (YMMV!), or write your own (e.g. we provide a custom [llama-cpp-deepseek-r1.jinja](../models/templates/llama-cpp-deepseek-r1.jinja) for DeepSeek R1 distills)
|
||||
|
||||
> [!CAUTION]
|
||||
> Beware of extreme KV quantizations (e.g. `-ctk q4_0`), they can substantially degrade the model's tool calling performance.
|
||||
|
||||
Test in CLI (or with any library / software that can use OpenAI-compatible API backends):
|
||||
|
||||
```bash
|
||||
curl http://localhost:8080/v1/chat/completions -d '{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"tools": [
|
||||
{
|
||||
"type":"function",
|
||||
"function":{
|
||||
"name":"python",
|
||||
"description":"Runs code in an ipython interpreter and returns the result of the execution after 60 seconds.",
|
||||
"parameters":{
|
||||
"type":"object",
|
||||
"properties":{
|
||||
"code":{
|
||||
"type":"string",
|
||||
"description":"The code to run in the ipython interpreter."
|
||||
"model": "gpt-3.5-turbo",
|
||||
"tools": [
|
||||
{
|
||||
"type":"function",
|
||||
"function":{
|
||||
"name":"python",
|
||||
"description":"Runs code in an ipython interpreter and returns the result of the execution after 60 seconds.",
|
||||
"parameters":{
|
||||
"type":"object",
|
||||
"properties":{
|
||||
"code":{
|
||||
"type":"string",
|
||||
"description":"The code to run in the ipython interpreter."
|
||||
}
|
||||
},
|
||||
"required":["code"]
|
||||
}
|
||||
},
|
||||
"required":["code"]
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Print a hello world message with python."
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Print a hello world message with python."
|
||||
}
|
||||
]
|
||||
}'
|
||||
|
||||
|
||||
curl http://localhost:8080/v1/chat/completions -d '{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"messages": [
|
||||
{"role": "system", "content": "You are a chatbot that uses tools/functions. Dont overthink things."},
|
||||
{"role": "user", "content": "What is the weather in Istanbul?"}
|
||||
],
|
||||
"tools": [{
|
||||
"type":"function",
|
||||
"function":{
|
||||
"name":"get_current_weather",
|
||||
"description":"Get the current weather in a given location",
|
||||
"parameters":{
|
||||
"type":"object",
|
||||
"properties":{
|
||||
"location":{
|
||||
"type":"string",
|
||||
"description":"The city and country/state, e.g. `San Francisco, CA`, or `Paris, France`"
|
||||
}
|
||||
},
|
||||
"required":["location"]
|
||||
}
|
||||
}
|
||||
}]
|
||||
}'
|
||||
```
|
||||
|
||||
|
||||
@@ -1,28 +1,42 @@
|
||||
# Install pre-built version of llama.cpp
|
||||
|
||||
## Homebrew
|
||||
| Install via | Windows | Mac | Linux |
|
||||
|-------------|---------|-----|-------|
|
||||
| Winget | ✅ | | |
|
||||
| Homebrew | | ✅ | ✅ |
|
||||
| MacPorts | | ✅ | |
|
||||
| Nix | | ✅ | ✅ |
|
||||
|
||||
On Mac and Linux, the homebrew package manager can be used via
|
||||
## Winget (Windows)
|
||||
|
||||
```sh
|
||||
winget install llama.cpp
|
||||
```
|
||||
|
||||
The package is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggml-org/llama.cpp/issues/8188
|
||||
|
||||
## Homebrew (Mac and Linux)
|
||||
|
||||
```sh
|
||||
brew install llama.cpp
|
||||
```
|
||||
|
||||
The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggml-org/llama.cpp/discussions/7668
|
||||
|
||||
## MacPorts
|
||||
## MacPorts (Mac)
|
||||
|
||||
```sh
|
||||
sudo port install llama.cpp
|
||||
```
|
||||
see also: https://ports.macports.org/port/llama.cpp/details/
|
||||
|
||||
## Nix
|
||||
See also: https://ports.macports.org/port/llama.cpp/details/
|
||||
|
||||
On Mac and Linux, the Nix package manager can be used via
|
||||
## Nix (Mac and Linux)
|
||||
|
||||
```sh
|
||||
nix profile install nixpkgs#llama-cpp
|
||||
```
|
||||
|
||||
For flake enabled installs.
|
||||
|
||||
Or
|
||||
@@ -34,13 +48,3 @@ nix-env --file '<nixpkgs>' --install --attr llama-cpp
|
||||
For non-flake enabled installs.
|
||||
|
||||
This expression is automatically updated within the [nixpkgs repo](https://github.com/NixOS/nixpkgs/blob/nixos-24.05/pkgs/by-name/ll/llama-cpp/package.nix#L164).
|
||||
|
||||
## Flox
|
||||
|
||||
On Mac and Linux, Flox can be used to install llama.cpp within a Flox environment via
|
||||
|
||||
```sh
|
||||
flox install llama-cpp
|
||||
```
|
||||
|
||||
Flox follows the nixpkgs build of llama.cpp.
|
||||
|
||||
@@ -33,7 +33,7 @@ llama-server -hf ggml-org/gemma-3-4b-it-GGUF --no-mmproj-offload
|
||||
|
||||
## Pre-quantized models
|
||||
|
||||
These are ready-to-use models, most of them come with `Q4_K_M` quantization by default. They can be found at the Hugging Face page of the ggml-org: https://huggingface.co/ggml-org
|
||||
These are ready-to-use models, most of them come with `Q4_K_M` quantization by default. They can be found at the Hugging Face page of the ggml-org: https://huggingface.co/collections/ggml-org/multimodal-ggufs-68244e01ff1f39e5bebeeedc
|
||||
|
||||
Replaces the `(tool_name)` with the name of binary you want to use. For example, `llama-mtmd-cli` or `llama-server`
|
||||
|
||||
@@ -81,6 +81,10 @@ NOTE: some models may require large context window, for example: `-c 8192`
|
||||
|
||||
# Llama 4 Scout
|
||||
(tool_name) -hf ggml-org/Llama-4-Scout-17B-16E-Instruct-GGUF
|
||||
|
||||
# Moondream2 20250414 version
|
||||
(tool_name) -hf ggml-org/moondream2-20250414-GGUF
|
||||
|
||||
```
|
||||
|
||||
**Audio models**:
|
||||
@@ -89,4 +93,21 @@ NOTE: some models may require large context window, for example: `-c 8192`
|
||||
# Ultravox 0.5
|
||||
(tool_name) -hf ggml-org/ultravox-v0_5-llama-3_2-1b-GGUF
|
||||
(tool_name) -hf ggml-org/ultravox-v0_5-llama-3_1-8b-GGUF
|
||||
|
||||
# Qwen2-Audio and SeaLLM-Audio
|
||||
# note: no pre-quantized GGUF this model, as they have very poor result
|
||||
# ref: https://github.com/ggml-org/llama.cpp/pull/13760
|
||||
```
|
||||
|
||||
**Mixed modalities**:
|
||||
|
||||
```sh
|
||||
# Qwen2.5 Omni
|
||||
# Capabilities: audio input, vision input
|
||||
(tool_name) -hf ggml-org/Qwen2.5-Omni-3B-GGUF
|
||||
(tool_name) -hf ggml-org/Qwen2.5-Omni-7B-GGUF
|
||||
```
|
||||
|
||||
## Finding more models:
|
||||
|
||||
GGUF models on Huggingface with vision capabilities can be found here: https://huggingface.co/models?pipeline_tag=image-text-to-text&sort=trending&search=gguf
|
||||
|
||||
@@ -116,7 +116,7 @@ if llama_decode(context, batch) != 0 {
|
||||
}
|
||||
|
||||
for i in 1 ..< n_parallel {
|
||||
llama_kv_self_seq_cp(context, 0, Int32(i), 0, batch.n_tokens)
|
||||
llama_memory_seq_cp(llama_get_memory(context), 0, Int32(i), 0, batch.n_tokens)
|
||||
}
|
||||
|
||||
if n_parallel > 1 {
|
||||
|
||||
@@ -37,12 +37,12 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
|
||||
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
|
||||
|
||||
// clear previous kv_cache values (irrelevant for embeddings)
|
||||
llama_kv_self_clear(ctx);
|
||||
llama_memory_clear(llama_get_memory(ctx), true);
|
||||
|
||||
// run model
|
||||
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
|
||||
if (llama_encode(ctx, batch) < 0) {
|
||||
LOG_ERR("%s : failed to encode\n", __func__);
|
||||
if (llama_decode(ctx, batch) < 0) {
|
||||
LOG_ERR("%s : failed to process\n", __func__);
|
||||
}
|
||||
|
||||
for (int i = 0; i < batch.n_tokens; i++) {
|
||||
@@ -236,9 +236,24 @@ int main(int argc, char ** argv) {
|
||||
LOG("\n");
|
||||
}
|
||||
} else if (pooling_type == LLAMA_POOLING_TYPE_RANK) {
|
||||
const uint32_t n_cls_out = llama_model_n_cls_out(model);
|
||||
std::vector<std::string> cls_out_labels;
|
||||
|
||||
for (uint32_t i = 0; i < n_cls_out; i++) {
|
||||
const char * label = llama_model_cls_label(model, i);
|
||||
const std::string label_i(label == nullptr ? "" : label);
|
||||
cls_out_labels.emplace_back(label_i.empty() ? std::to_string(i) : label_i);
|
||||
}
|
||||
|
||||
for (int j = 0; j < n_embd_count; j++) {
|
||||
// NOTE: if you change this log - update the tests in ci/run.sh
|
||||
LOG("rerank score %d: %8.3f\n", j, emb[j * n_embd]);
|
||||
for (uint32_t i = 0; i < n_cls_out; i++) {
|
||||
// NOTE: if you change this log - update the tests in ci/run.sh
|
||||
if (n_cls_out == 1) {
|
||||
LOG("rerank score %d: %8.3f\n", j, emb[j * n_embd]);
|
||||
} else {
|
||||
LOG("rerank score %d: %8.3f [%s]\n", j, emb[j * n_embd + i], cls_out_labels[i].c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// print the first part of the embeddings or for a single prompt, the full embedding
|
||||
|
||||
@@ -45,7 +45,7 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
|
||||
}
|
||||
|
||||
// clear previous kv_cache values (irrelevant for embeddings)
|
||||
llama_kv_self_clear(ctx);
|
||||
llama_memory_clear(llama_get_memory(ctx), true);
|
||||
llama_set_embeddings(ctx, true);
|
||||
llama_set_causal_attn(ctx, false);
|
||||
|
||||
@@ -102,7 +102,7 @@ static std::string generate(llama_context * ctx, llama_sampler * smpl, const std
|
||||
|
||||
llama_token eos_token = llama_vocab_eos(vocab);
|
||||
|
||||
llama_kv_self_clear(ctx);
|
||||
llama_memory_clear(llama_get_memory(ctx), true);
|
||||
llama_set_embeddings(ctx, false);
|
||||
llama_set_causal_attn(ctx, true);
|
||||
|
||||
|
||||
@@ -194,7 +194,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
|
||||
}
|
||||
|
||||
batch->logits[batch->n_tokens - 1] = true;
|
||||
llama_kv_self_clear(context);
|
||||
llama_memory_clear(llama_get_memory(context), false);
|
||||
|
||||
const auto t_pp_start = ggml_time_us();
|
||||
if (llama_decode(context, *batch) != 0) {
|
||||
@@ -206,7 +206,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
|
||||
|
||||
LOGi("Benchmark text generation (tg)");
|
||||
|
||||
llama_kv_self_clear(context);
|
||||
llama_memory_clear(llama_get_memory(context), false);
|
||||
const auto t_tg_start = ggml_time_us();
|
||||
for (i = 0; i < tg; i++) {
|
||||
|
||||
@@ -223,7 +223,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
|
||||
|
||||
const auto t_tg_end = ggml_time_us();
|
||||
|
||||
llama_kv_self_clear(context);
|
||||
llama_memory_clear(llama_get_memory(context), false);
|
||||
|
||||
const auto t_pp = double(t_pp_end - t_pp_start) / 1000000.0;
|
||||
const auto t_tg = double(t_tg_end - t_tg_start) / 1000000.0;
|
||||
@@ -448,5 +448,5 @@ Java_android_llama_cpp_LLamaAndroid_completion_1loop(
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_android_llama_cpp_LLamaAndroid_kv_1cache_1clear(JNIEnv *, jobject, jlong context) {
|
||||
llama_kv_self_clear(reinterpret_cast<llama_context *>(context));
|
||||
llama_memory_clear(llama_get_memory(reinterpret_cast<llama_context *>(context)), true);
|
||||
}
|
||||
|
||||
@@ -210,7 +210,7 @@ actor LlamaContext {
|
||||
}
|
||||
batch.logits[Int(batch.n_tokens) - 1] = 1 // true
|
||||
|
||||
llama_kv_self_clear(context)
|
||||
llama_memory_clear(llama_get_memory(context), false)
|
||||
|
||||
let t_pp_start = DispatchTime.now().uptimeNanoseconds / 1000;
|
||||
|
||||
@@ -223,7 +223,7 @@ actor LlamaContext {
|
||||
|
||||
// bench text generation
|
||||
|
||||
llama_kv_self_clear(context)
|
||||
llama_memory_clear(llama_get_memory(context), false)
|
||||
|
||||
let t_tg_start = DispatchTime.now().uptimeNanoseconds / 1000;
|
||||
|
||||
@@ -242,7 +242,7 @@ actor LlamaContext {
|
||||
|
||||
let t_tg_end = DispatchTime.now().uptimeNanoseconds / 1000;
|
||||
|
||||
llama_kv_self_clear(context)
|
||||
llama_memory_clear(llama_get_memory(context), false)
|
||||
|
||||
let t_pp = Double(t_pp_end - t_pp_start) / 1000000.0
|
||||
let t_tg = Double(t_tg_end - t_tg_start) / 1000000.0
|
||||
@@ -292,7 +292,7 @@ actor LlamaContext {
|
||||
func clear() {
|
||||
tokens_list.removeAll()
|
||||
temporary_invalid_cchars.removeAll()
|
||||
llama_kv_self_clear(context)
|
||||
llama_memory_clear(llama_get_memory(context), true)
|
||||
}
|
||||
|
||||
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
|
||||
|
||||
@@ -60,6 +60,8 @@ int main(int argc, char ** argv) {
|
||||
llama_model * model = llama_init.model.get();
|
||||
llama_context * ctx = llama_init.context.get();
|
||||
|
||||
auto * mem = llama_get_memory(ctx);
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
// Tokenize the prompt
|
||||
@@ -94,7 +96,7 @@ int main(int argc, char ** argv) {
|
||||
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1));
|
||||
|
||||
for (int s = 1; s < W + G + 1; ++s) {
|
||||
llama_kv_self_seq_cp(ctx, 0, s, -1, -1);
|
||||
llama_memory_seq_cp(mem, 0, s, -1, -1);
|
||||
}
|
||||
|
||||
const auto t_enc_end = ggml_time_us();
|
||||
@@ -427,17 +429,17 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// KV cache management
|
||||
// if no verification token matched, we simply remove all cells from this batch -> no fragmentation
|
||||
llama_kv_self_seq_rm(ctx, -1, n_past, -1);
|
||||
llama_memory_seq_rm(mem, -1, n_past, -1);
|
||||
|
||||
if (seq_id_best != 0) {
|
||||
// if a verification token matched, we keep the best sequence and remove the rest
|
||||
// this leads to some KV cache fragmentation
|
||||
llama_kv_self_seq_keep(ctx, seq_id_best);
|
||||
llama_kv_self_seq_cp (ctx, seq_id_best, 0, -1, -1);
|
||||
llama_kv_self_seq_rm (ctx, seq_id_best, -1, -1);
|
||||
llama_memory_seq_keep(mem, seq_id_best);
|
||||
llama_memory_seq_cp (mem, seq_id_best, 0, -1, -1);
|
||||
llama_memory_seq_rm (mem, seq_id_best, -1, -1);
|
||||
|
||||
for (int s = 1; s < W + G + 1; ++s) {
|
||||
llama_kv_self_seq_cp(ctx, 0, s, -1, -1);
|
||||
llama_memory_seq_cp(mem, 0, s, -1, -1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -181,7 +181,7 @@ int main(int argc, char ** argv){
|
||||
|
||||
// KV cache management
|
||||
// clean the cache of draft tokens that weren't accepted
|
||||
llama_kv_self_seq_rm(ctx, 0, n_past, -1);
|
||||
llama_memory_seq_rm(llama_get_memory(ctx), 0, n_past, -1);
|
||||
|
||||
common_batch_clear(batch_tgt);
|
||||
common_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);
|
||||
|
||||
@@ -4,7 +4,7 @@ Simplified simulation of serving incoming requests in parallel
|
||||
|
||||
## Example
|
||||
|
||||
Generate 128 client requests (`-ns 128`), simulating 8 concurrent clients (`-np 8`). The system prompt is shared (`-pps`), meaning that it is computed once at the start. The client requests consist of 10 junk questions (`-j 10`) followed by the actual question.
|
||||
Generate 128 client requests (`-ns 128`), simulating 8 concurrent clients (`-np 8`). The system prompt is shared (`-pps`), meaning that it is computed once at the start. The client requests consist of up to 10 junk questions (`--junk 10`) followed by the actual question.
|
||||
|
||||
```bash
|
||||
llama-parallel -m model.gguf -np 8 -ns 128 --top-k 1 -pps --junk 10 -c 16384
|
||||
|
||||
@@ -158,7 +158,7 @@ int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
|
||||
params.n_predict = 128;
|
||||
params.n_junk = 0;
|
||||
params.n_junk = 1;
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PARALLEL)) {
|
||||
return 1;
|
||||
@@ -182,7 +182,7 @@ int main(int argc, char ** argv) {
|
||||
const bool is_sp_shared = params.is_pp_shared;
|
||||
|
||||
// extra text to insert in each client's prompt in order to make it larger
|
||||
const int32_t n_junk = params.n_junk;
|
||||
const int32_t n_junk = std::max(1, params.n_junk);
|
||||
|
||||
// init llama.cpp
|
||||
llama_backend_init();
|
||||
@@ -194,6 +194,8 @@ int main(int argc, char ** argv) {
|
||||
llama_model * model = llama_init.model.get();
|
||||
llama_context * ctx = llama_init.context.get();
|
||||
|
||||
auto * mem = llama_get_memory(ctx);
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
// load the prompts from an external file if there are any
|
||||
@@ -259,7 +261,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// assign the system KV cache to all parallel sequences
|
||||
for (int32_t i = 1; i <= n_clients; ++i) {
|
||||
llama_kv_self_seq_cp(ctx, 0, i, -1, -1);
|
||||
llama_memory_seq_cp(mem, 0, i, -1, -1);
|
||||
}
|
||||
|
||||
LOG_INF("\n");
|
||||
@@ -286,9 +288,9 @@ int main(int argc, char ** argv) {
|
||||
if (batch.n_tokens == 0) {
|
||||
// all sequences have ended - clear the entire KV cache
|
||||
for (int i = 1; i <= n_clients; ++i) {
|
||||
llama_kv_self_seq_rm(ctx, i, -1, -1);
|
||||
llama_memory_seq_rm(mem, i, -1, -1);
|
||||
// but keep the system prompt
|
||||
llama_kv_self_seq_cp(ctx, 0, i, -1, -1);
|
||||
llama_memory_seq_cp(mem, 0, i, -1, -1);
|
||||
}
|
||||
|
||||
LOG_INF("%s: clearing the KV cache\n", __func__);
|
||||
@@ -315,7 +317,10 @@ int main(int argc, char ** argv) {
|
||||
} else {
|
||||
client.prompt += k_system;
|
||||
}
|
||||
for (int i = 0; i < n_junk; ++i) {
|
||||
|
||||
const int n_junk_cur = rand() % n_junk;
|
||||
|
||||
for (int i = 0; i < n_junk_cur; ++i) {
|
||||
const int r = rand() % k_questions.size();
|
||||
client.prompt += "User:\n" + k_questions[r] + "\nAssistant:\n " + k_answers[r] + "\n";
|
||||
}
|
||||
@@ -340,7 +345,7 @@ int main(int argc, char ** argv) {
|
||||
client.n_decoded = 0;
|
||||
client.i_batch = batch.n_tokens - 1;
|
||||
|
||||
LOG_INF("\033[31mClient %3d, seq %4d, started decoding ...\033[0m\n", client.id, client.seq_id);
|
||||
LOG_INF("\033[31mClient %3d, seq %4d, junk = %4d, started decoding ...\033[0m\n", client.id, client.seq_id, n_junk_cur);
|
||||
|
||||
g_seq_id += 1;
|
||||
|
||||
@@ -359,7 +364,9 @@ int main(int argc, char ** argv) {
|
||||
// process in chunks of params.n_batch
|
||||
int32_t n_batch = params.n_batch;
|
||||
|
||||
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
|
||||
int32_t i_next = 0;
|
||||
|
||||
for (int32_t i = 0; i < batch.n_tokens; i = i_next) {
|
||||
// experiment: process in powers of 2
|
||||
//if (i + n_batch > (int32_t) batch.n_tokens && n_batch > 32) {
|
||||
// n_batch /= 2;
|
||||
@@ -367,7 +374,7 @@ int main(int argc, char ** argv) {
|
||||
// continue;
|
||||
//}
|
||||
|
||||
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
|
||||
const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
|
||||
|
||||
llama_batch batch_view = {
|
||||
n_tokens,
|
||||
@@ -387,19 +394,24 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
LOG_ERR("%s : failed to decode the batch, retrying with n_batch = %d\n", __func__, n_batch / 2);
|
||||
LOG_WRN("%s : failed to decode the batch, retrying with n_batch = %d\n", __func__, n_batch / 2);
|
||||
|
||||
n_cache_miss += 1;
|
||||
|
||||
// retry with half the batch size to try to find a free slot in the KV cache
|
||||
n_batch /= 2;
|
||||
i -= n_batch;
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
LOG_DBG("%s : decoded batch of %d tokens\n", __func__, n_tokens);
|
||||
|
||||
// move the head of the batch forward with the number of tokens we just processed
|
||||
i_next = i + n_tokens;
|
||||
|
||||
// on successful decode, restore the original batch size
|
||||
n_batch = params.n_batch;
|
||||
|
||||
for (auto & client : clients) {
|
||||
if (client.i_batch < (int) i || client.i_batch >= (int) (i + n_tokens)) {
|
||||
continue;
|
||||
@@ -437,8 +449,8 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// delete only the generated part of the sequence, i.e. keep the system prompt in the cache
|
||||
llama_kv_self_seq_rm(ctx, client.id + 1, -1, -1);
|
||||
llama_kv_self_seq_cp(ctx, 0, client.id + 1, -1, -1);
|
||||
llama_memory_seq_rm(mem, client.id + 1, -1, -1);
|
||||
llama_memory_seq_cp(mem, 0, client.id + 1, -1, -1);
|
||||
|
||||
const auto t_main_end = ggml_time_us();
|
||||
|
||||
|
||||
@@ -126,6 +126,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
int n_past = 0;
|
||||
|
||||
auto * mem = llama_get_memory(ctx);
|
||||
|
||||
// fill the KV cache
|
||||
for (int i = 0; i < n_ctx; i += n_batch) {
|
||||
if (i > 0 && n_grp > 1) {
|
||||
@@ -133,11 +135,10 @@ int main(int argc, char ** argv) {
|
||||
const int ib = i/n_batch - 1;
|
||||
const int bd = n_batch_grp*(n_grp - 1);
|
||||
|
||||
llama_kv_self_seq_add (ctx, 0, n_past - n_batch, n_past, ib*bd);
|
||||
llama_kv_self_seq_div (ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
|
||||
llama_kv_self_update (ctx);
|
||||
llama_memory_seq_add(mem, 0, n_past - n_batch, n_past, ib*bd);
|
||||
llama_memory_seq_div(mem, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
|
||||
|
||||
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
|
||||
n_past = llama_memory_seq_pos_max(mem, 0) + 1;
|
||||
}
|
||||
|
||||
common_batch_clear(batch);
|
||||
@@ -167,12 +168,10 @@ int main(int argc, char ** argv) {
|
||||
|
||||
LOG_INF("%s: shifting KV cache with %d\n", __func__, n_discard);
|
||||
|
||||
llama_kv_self_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
|
||||
llama_kv_self_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
|
||||
//llama_kv_self_defrag (ctx);
|
||||
llama_kv_self_update (ctx);
|
||||
llama_memory_seq_rm (mem, 0, n_keep , n_keep + n_discard);
|
||||
llama_memory_seq_add(mem, 0, n_keep + n_discard, n_ctx, -n_discard);
|
||||
|
||||
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
|
||||
n_past = llama_memory_seq_pos_max(mem, 0) + 1;
|
||||
|
||||
common_batch_clear(batch);
|
||||
|
||||
@@ -198,12 +197,10 @@ int main(int argc, char ** argv) {
|
||||
if (n_discard > 0) {
|
||||
LOG_INF("%s: shifting KV cache with %d to free space for the answer\n", __func__, n_discard);
|
||||
|
||||
llama_kv_self_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
|
||||
llama_kv_self_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
|
||||
//llama_kv_self_defrag (ctx);
|
||||
llama_kv_self_update (ctx);
|
||||
llama_memory_seq_rm (mem, 0, n_keep , n_keep + n_discard);
|
||||
llama_memory_seq_add(mem, 0, n_keep + n_discard, n_ctx, -n_discard);
|
||||
|
||||
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
|
||||
n_past = llama_memory_seq_pos_max(mem, 0) + 1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -81,14 +81,14 @@ static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & toke
|
||||
}
|
||||
}
|
||||
|
||||
static void batch_encode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
|
||||
static void batch_process(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
|
||||
// clear previous kv_cache values (irrelevant for embeddings)
|
||||
llama_kv_self_clear(ctx);
|
||||
llama_memory_clear(llama_get_memory(ctx), false);
|
||||
|
||||
// run model
|
||||
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
|
||||
if (llama_encode(ctx, batch) < 0) {
|
||||
LOG_ERR("%s : failed to encode\n", __func__);
|
||||
if (llama_decode(ctx, batch) < 0) {
|
||||
LOG_ERR("%s : failed to process\n", __func__);
|
||||
}
|
||||
|
||||
for (int i = 0; i < batch.n_tokens; i++) {
|
||||
@@ -233,7 +233,7 @@ int main(int argc, char ** argv) {
|
||||
// encode if at capacity
|
||||
if (batch.n_tokens + n_toks > n_batch) {
|
||||
float * out = emb + p * n_embd;
|
||||
batch_encode(ctx, batch, out, s, n_embd);
|
||||
batch_process(ctx, batch, out, s, n_embd);
|
||||
common_batch_clear(batch);
|
||||
p += s;
|
||||
s = 0;
|
||||
@@ -246,7 +246,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// final batch
|
||||
float * out = emb + p * n_embd;
|
||||
batch_encode(ctx, batch, out, s, n_embd);
|
||||
batch_process(ctx, batch, out, s, n_embd);
|
||||
|
||||
// save embeddings to chunks
|
||||
for (int i = 0; i < n_chunks; i++) {
|
||||
@@ -267,7 +267,7 @@ int main(int argc, char ** argv) {
|
||||
batch_add_seq(query_batch, query_tokens, 0);
|
||||
|
||||
std::vector<float> query_emb(n_embd, 0);
|
||||
batch_encode(ctx, query_batch, query_emb.data(), 1, n_embd);
|
||||
batch_process(ctx, query_batch, query_emb.data(), 1, n_embd);
|
||||
|
||||
common_batch_clear(query_batch);
|
||||
|
||||
|
||||
@@ -196,7 +196,7 @@ int main(int argc, char ** argv) {
|
||||
fprintf(stderr, "%s : seq 0 copied, %zd bytes\n", __func__, ncopy);
|
||||
|
||||
// erase whole kv
|
||||
llama_kv_self_clear(ctx3);
|
||||
llama_memory_clear(llama_get_memory(ctx3), true);
|
||||
fprintf(stderr, "%s : kv cache cleared\n", __func__);
|
||||
|
||||
// restore kv into seq 1
|
||||
|
||||
@@ -98,7 +98,7 @@ int main(int argc, char ** argv) {
|
||||
auto generate = [&](const std::string & prompt) {
|
||||
std::string response;
|
||||
|
||||
const bool is_first = llama_kv_self_seq_pos_max(ctx, 0) == 0;
|
||||
const bool is_first = llama_memory_seq_pos_max(llama_get_memory(ctx), 0) == 0;
|
||||
|
||||
// tokenize the prompt
|
||||
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true);
|
||||
@@ -113,7 +113,7 @@ int main(int argc, char ** argv) {
|
||||
while (true) {
|
||||
// check if we have enough space in the context to evaluate this batch
|
||||
int n_ctx = llama_n_ctx(ctx);
|
||||
int n_ctx_used = llama_kv_self_seq_pos_max(ctx, 0);
|
||||
int n_ctx_used = llama_memory_seq_pos_max(llama_get_memory(ctx), 0);
|
||||
if (n_ctx_used + batch.n_tokens > n_ctx) {
|
||||
printf("\033[0m\n");
|
||||
fprintf(stderr, "context size exceeded\n");
|
||||
|
||||
@@ -217,7 +217,7 @@ int main(int argc, char ** argv) {
|
||||
{
|
||||
LOG_DBG("clear kv cache from any extra tokens, n_past = %d\n", n_past);
|
||||
|
||||
llama_kv_self_seq_rm(ctx_tgt, 0, n_past, -1);
|
||||
llama_memory_seq_rm(llama_get_memory(ctx_tgt), 0, n_past, -1);
|
||||
}
|
||||
|
||||
if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {
|
||||
|
||||
@@ -142,6 +142,8 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
auto * mem_tgt = llama_get_memory(ctx_tgt);
|
||||
auto * mem_dft = llama_get_memory(ctx_dft);
|
||||
|
||||
// Tokenize the prompt
|
||||
std::vector<llama_token> inp;
|
||||
@@ -420,14 +422,14 @@ int main(int argc, char ** argv) {
|
||||
{
|
||||
LOG_DBG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft);
|
||||
|
||||
llama_kv_self_seq_keep(ctx_dft, s_keep);
|
||||
llama_kv_self_seq_cp (ctx_dft, s_keep, 0, -1, -1);
|
||||
llama_kv_self_seq_keep(ctx_dft, 0);
|
||||
llama_memory_seq_keep(mem_dft, s_keep);
|
||||
llama_memory_seq_cp (mem_dft, s_keep, 0, -1, -1);
|
||||
llama_memory_seq_keep(mem_dft, 0);
|
||||
|
||||
llama_kv_self_seq_rm (ctx_tgt, s_keep, n_past_tgt, -1);
|
||||
llama_kv_self_seq_keep(ctx_tgt, s_keep);
|
||||
llama_kv_self_seq_cp (ctx_tgt, s_keep, 0, -1, -1);
|
||||
llama_kv_self_seq_keep(ctx_tgt, 0);
|
||||
llama_memory_seq_rm (mem_tgt, s_keep, n_past_tgt, -1);
|
||||
llama_memory_seq_keep(mem_tgt, s_keep);
|
||||
llama_memory_seq_cp (mem_tgt, s_keep, 0, -1, -1);
|
||||
llama_memory_seq_keep(mem_tgt, 0);
|
||||
}
|
||||
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
@@ -444,7 +446,7 @@ int main(int argc, char ** argv) {
|
||||
common_batch_clear(batch_dft);
|
||||
common_batch_add (batch_dft, token_id, n_past_dft, { 0 }, true);
|
||||
|
||||
llama_kv_self_seq_rm(ctx_dft, 0, n_past_dft, -1);
|
||||
llama_memory_seq_rm(mem_dft, 0, n_past_dft, -1);
|
||||
// LOG_DBG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
|
||||
llama_decode(ctx_dft, batch_dft);
|
||||
|
||||
@@ -503,8 +505,8 @@ int main(int argc, char ** argv) {
|
||||
if (n_seq_cur < n_seq_dft && cur_p->data[f].p > p_draft_split) {
|
||||
LOG_DBG("splitting seq %3d into %3d\n", s, n_seq_cur);
|
||||
|
||||
llama_kv_self_seq_rm(ctx_dft, n_seq_cur, -1, -1);
|
||||
llama_kv_self_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);
|
||||
llama_memory_seq_rm(mem_dft, n_seq_cur, -1, -1);
|
||||
llama_memory_seq_cp(mem_dft, s, n_seq_cur, -1, -1);
|
||||
|
||||
// all previous tokens from this branch are now also part of the new branch
|
||||
for (int t = 0; t < batch_tgt.n_tokens; ++t) {
|
||||
@@ -585,9 +587,9 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// evaluate the target model on the drafted tokens
|
||||
{
|
||||
llama_kv_self_seq_keep(ctx_tgt, 0);
|
||||
llama_memory_seq_keep(mem_tgt, 0);
|
||||
for (int s = 1; s < n_seq_dft; ++s) {
|
||||
llama_kv_self_seq_cp(ctx_tgt, 0, s, -1, -1);
|
||||
llama_memory_seq_cp(mem_tgt, 0, s, -1, -1);
|
||||
}
|
||||
|
||||
// LOG_DBG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt).c_str());
|
||||
|
||||
@@ -10,8 +10,8 @@ Proof of concept:
|
||||
|
||||
``` sh
|
||||
export model_name=llama_3.2-1b && export quantization=f32
|
||||
./build/bin/finetune --file wikitext-2-raw/wiki.test.raw -ngl 999 --model models/${model_name}-${quantization}.gguf -c 512 -b 512 -ub 512
|
||||
./build/bin/perplexity --file wikitext-2-raw/wiki.test.raw -ngl 999 --model finetuned-model.gguf
|
||||
./build/bin/llama-finetune --file wikitext-2-raw/wiki.test.raw -ngl 999 --model models/${model_name}-${quantization}.gguf -c 512 -b 512 -ub 512
|
||||
./build/bin/llama-perplexity --file wikitext-2-raw/wiki.test.raw -ngl 999 --model finetuned-model.gguf
|
||||
```
|
||||
|
||||
The perplexity value of the finetuned model should be lower after training on the test set for 2 epochs.
|
||||
|
||||
@@ -105,7 +105,7 @@ message(DEBUG "GGML_NATIVE_DEFAULT : ${GGML_NATIVE_DEFAULT}")
|
||||
message(DEBUG "INS_ENB : ${INS_ENB}")
|
||||
|
||||
option(GGML_CPU_HBM "ggml: use memkind for CPU HBM" OFF)
|
||||
option(GGML_CPU_AARCH64 "ggml: use runtime weight conversion of Q4_0 to Q4_X_X" ON)
|
||||
option(GGML_CPU_REPACK "ggml: use runtime weight conversion of Q4_0 to Q4_X_X" ON)
|
||||
option(GGML_CPU_KLEIDIAI "ggml: use KleidiAI optimized kernels if applicable" OFF)
|
||||
option(GGML_SSE42 "ggml: enable SSE 4.2" ${INS_ENB})
|
||||
option(GGML_AVX "ggml: enable AVX" ${INS_ENB})
|
||||
@@ -129,6 +129,7 @@ option(GGML_LASX "ggml: enable lasx" ON)
|
||||
option(GGML_LSX "ggml: enable lsx" ON)
|
||||
option(GGML_RVV "ggml: enable rvv" ON)
|
||||
option(GGML_RV_ZFH "ggml: enable riscv zfh" OFF)
|
||||
option(GGML_XTHEADVECTOR "ggml: enable xtheadvector" OFF)
|
||||
option(GGML_VXE "ggml: enable vxe" ON)
|
||||
|
||||
option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requires GGML_BACKEND_DL)" OFF)
|
||||
@@ -136,7 +137,7 @@ set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM")
|
||||
set(GGML_CPU_POWERPC_CPUTYPE "" CACHE STRING "ggml: CPU type for PowerPC")
|
||||
|
||||
|
||||
if (WIN32)
|
||||
if (MINGW)
|
||||
set(GGML_WIN_VER "0x602" CACHE STRING "ggml: Windows version")
|
||||
endif()
|
||||
|
||||
@@ -176,7 +177,6 @@ option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks"
|
||||
option(GGML_VULKAN_DEBUG "ggml: enable Vulkan debug output" OFF)
|
||||
option(GGML_VULKAN_MEMORY_DEBUG "ggml: enable Vulkan memory debug output" OFF)
|
||||
option(GGML_VULKAN_SHADER_DEBUG_INFO "ggml: enable Vulkan shader debug info" OFF)
|
||||
option(GGML_VULKAN_PERF "ggml: enable Vulkan perf output" OFF)
|
||||
option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation" OFF)
|
||||
option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF)
|
||||
option(GGML_KOMPUTE "ggml: use Kompute" OFF)
|
||||
|
||||
@@ -24,3 +24,28 @@ function(ggml_get_flags CCID CCVER)
|
||||
set(GF_C_FLAGS ${C_FLAGS} PARENT_SCOPE)
|
||||
set(GF_CXX_FLAGS ${CXX_FLAGS} PARENT_SCOPE)
|
||||
endfunction()
|
||||
|
||||
function(ggml_get_system_arch)
|
||||
if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR
|
||||
CMAKE_GENERATOR_PLATFORM_LWR STREQUAL "arm64" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(aarch64|arm.*|ARM64)$"))
|
||||
set(GGML_SYSTEM_ARCH "ARM" PARENT_SCOPE)
|
||||
elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR
|
||||
CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64|amd64)$"))
|
||||
set(GGML_SYSTEM_ARCH "x86" PARENT_SCOPE)
|
||||
elseif ("${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "ppc64le " OR
|
||||
"${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "powerpc ")
|
||||
set(GGML_SYSTEM_ARCH "PowerPC" PARENT_SCOPE)
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
|
||||
set(GGML_SYSTEM_ARCH "loongarch64" PARENT_SCOPE)
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "riscv64")
|
||||
set(GGML_SYSTEM_ARCH "riscv64" PARENT_SCOPE)
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "s390x")
|
||||
set(GGML_SYSTEM_ARCH "s390x" PARENT_SCOPE)
|
||||
else()
|
||||
set(GGML_SYSTEM_ARCH "UNKNOWN" PARENT_SCOPE)
|
||||
endif()
|
||||
endfunction()
|
||||
|
||||
@@ -935,6 +935,15 @@ extern "C" {
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// repeat a to the specified shape
|
||||
GGML_API struct ggml_tensor * ggml_repeat_4d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int64_t ne0,
|
||||
int64_t ne1,
|
||||
int64_t ne2,
|
||||
int64_t ne3);
|
||||
|
||||
// sums repetitions in a into shape of b
|
||||
GGML_API struct ggml_tensor * ggml_repeat_back(
|
||||
struct ggml_context * ctx,
|
||||
@@ -2086,9 +2095,6 @@ extern "C" {
|
||||
GGML_API struct ggml_tensor * ggml_graph_get_grad (const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
|
||||
GGML_API struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
|
||||
|
||||
GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
|
||||
GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
|
||||
|
||||
// print info and performance information for the graph
|
||||
GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
|
||||
|
||||
@@ -2172,6 +2178,7 @@ extern "C" {
|
||||
|
||||
// scheduling priorities
|
||||
enum ggml_sched_priority {
|
||||
GGML_SCHED_PRIO_LOW = -1,
|
||||
GGML_SCHED_PRIO_NORMAL,
|
||||
GGML_SCHED_PRIO_MEDIUM,
|
||||
GGML_SCHED_PRIO_HIGH,
|
||||
|
||||
@@ -109,6 +109,8 @@ if (MSVC)
|
||||
else ()
|
||||
set(CMAKE_GENERATOR_PLATFORM_LWR "")
|
||||
endif ()
|
||||
ggml_get_system_arch()
|
||||
message(STATUS "GGML_SYSTEM_ARCH: ${GGML_SYSTEM_ARCH}")
|
||||
|
||||
if (NOT MSVC)
|
||||
if (GGML_STATIC)
|
||||
@@ -123,7 +125,6 @@ if (NOT MSVC)
|
||||
endif()
|
||||
|
||||
if (MINGW)
|
||||
# Target Windows 8 for PrefetchVirtualMemory
|
||||
add_compile_definitions(_WIN32_WINNT=${GGML_WIN_VER})
|
||||
endif()
|
||||
|
||||
@@ -194,6 +195,7 @@ add_library(ggml-base
|
||||
../include/ggml-opt.h
|
||||
../include/gguf.h
|
||||
ggml.c
|
||||
ggml.cpp
|
||||
ggml-alloc.c
|
||||
ggml-backend.cpp
|
||||
ggml-opt.cpp
|
||||
@@ -210,6 +212,7 @@ endif()
|
||||
|
||||
add_library(ggml
|
||||
ggml-backend-reg.cpp)
|
||||
add_library(ggml::ggml ALIAS ggml)
|
||||
|
||||
target_link_libraries(ggml PUBLIC ggml-base)
|
||||
|
||||
@@ -224,6 +227,7 @@ function(ggml_add_backend_library backend)
|
||||
set_target_properties(${backend} PROPERTIES LIBRARY_OUTPUT_DIRECTORY ${CMAKE_RUNTIME_OUTPUT_DIRECTORY})
|
||||
target_compile_definitions(${backend} PRIVATE GGML_BACKEND_DL)
|
||||
add_dependencies(ggml ${backend})
|
||||
install(TARGETS ${backend} LIBRARY DESTINATION ${CMAKE_INSTALL_BINDIR})
|
||||
else()
|
||||
add_library(${backend} ${ARGN})
|
||||
target_link_libraries(ggml PUBLIC ${backend})
|
||||
@@ -266,17 +270,23 @@ endfunction()
|
||||
function(ggml_add_cpu_backend_variant tag_name)
|
||||
set(GGML_CPU_TAG_NAME ${tag_name})
|
||||
# other: OPENMP LLAMAFILE CPU_HBM
|
||||
foreach (feat NATIVE
|
||||
SSE42
|
||||
AVX AVX2 BMI2 AVX_VNNI FMA F16C
|
||||
AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16
|
||||
AMX_TILE AMX_INT8 AMX_BF16)
|
||||
set(GGML_${feat} OFF)
|
||||
endforeach()
|
||||
if (GGML_SYSTEM_ARCH STREQUAL "x86")
|
||||
foreach (feat NATIVE
|
||||
SSE42
|
||||
AVX AVX2 BMI2 AVX_VNNI FMA F16C
|
||||
AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16
|
||||
AMX_TILE AMX_INT8 AMX_BF16)
|
||||
set(GGML_${feat} OFF)
|
||||
endforeach()
|
||||
|
||||
foreach (feat ${ARGN})
|
||||
set(GGML_${feat} ON)
|
||||
endforeach()
|
||||
foreach (feat ${ARGN})
|
||||
set(GGML_${feat} ON)
|
||||
endforeach()
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "ARM")
|
||||
foreach (feat ${ARGN})
|
||||
set(GGML_INTERNAL_${feat} ON)
|
||||
endforeach()
|
||||
endif()
|
||||
|
||||
ggml_add_cpu_backend_variant_impl(${tag_name})
|
||||
endfunction()
|
||||
@@ -286,17 +296,35 @@ ggml_add_backend(CPU)
|
||||
if (GGML_CPU_ALL_VARIANTS)
|
||||
if (NOT GGML_BACKEND_DL)
|
||||
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS requires GGML_BACKEND_DL")
|
||||
elseif (GGML_CPU_ARM_ARCH)
|
||||
message(FATAL_ERROR "Cannot use both GGML_CPU_ARM_ARCH and GGML_CPU_ALL_VARIANTS")
|
||||
endif()
|
||||
ggml_add_cpu_backend_variant(x64)
|
||||
ggml_add_cpu_backend_variant(sse42 SSE42)
|
||||
ggml_add_cpu_backend_variant(sandybridge SSE42 AVX)
|
||||
ggml_add_cpu_backend_variant(haswell SSE42 AVX F16C AVX2 BMI2 FMA)
|
||||
ggml_add_cpu_backend_variant(skylakex SSE42 AVX F16C AVX2 BMI2 FMA AVX512)
|
||||
ggml_add_cpu_backend_variant(icelake SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
|
||||
ggml_add_cpu_backend_variant(alderlake SSE42 AVX F16C AVX2 BMI2 FMA AVX_VNNI)
|
||||
if (NOT MSVC)
|
||||
# MSVC doesn't support AMX
|
||||
ggml_add_cpu_backend_variant(sapphirerapids SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
|
||||
if (GGML_SYSTEM_ARCH STREQUAL "x86")
|
||||
ggml_add_cpu_backend_variant(x64)
|
||||
ggml_add_cpu_backend_variant(sse42 SSE42)
|
||||
ggml_add_cpu_backend_variant(sandybridge SSE42 AVX)
|
||||
ggml_add_cpu_backend_variant(haswell SSE42 AVX F16C AVX2 BMI2 FMA)
|
||||
ggml_add_cpu_backend_variant(skylakex SSE42 AVX F16C AVX2 BMI2 FMA AVX512)
|
||||
ggml_add_cpu_backend_variant(icelake SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
|
||||
ggml_add_cpu_backend_variant(alderlake SSE42 AVX F16C AVX2 BMI2 FMA AVX_VNNI)
|
||||
if (NOT MSVC)
|
||||
# MSVC doesn't support AMX
|
||||
ggml_add_cpu_backend_variant(sapphirerapids SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
|
||||
endif()
|
||||
elseif(GGML_SYSTEM_ARCH STREQUAL "ARM" AND CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||
# Many of these features are optional so we build versions with popular
|
||||
# combinations and name the backends based on the version they were
|
||||
# first released with
|
||||
ggml_add_cpu_backend_variant(armv8.0_1)
|
||||
ggml_add_cpu_backend_variant(armv8.2_1 DOTPROD)
|
||||
ggml_add_cpu_backend_variant(armv8.2_2 DOTPROD FP16_VECTOR_ARITHMETIC)
|
||||
ggml_add_cpu_backend_variant(armv8.2_3 DOTPROD FP16_VECTOR_ARITHMETIC SVE)
|
||||
ggml_add_cpu_backend_variant(armv8.6_1 DOTPROD FP16_VECTOR_ARITHMETIC SVE MATMUL_INT8)
|
||||
ggml_add_cpu_backend_variant(armv8.6_2 DOTPROD FP16_VECTOR_ARITHMETIC SVE MATMUL_INT8 SVE2)
|
||||
ggml_add_cpu_backend_variant(armv9.2_1 DOTPROD FP16_VECTOR_ARITHMETIC SVE MATMUL_INT8 SME)
|
||||
ggml_add_cpu_backend_variant(armv9.2_2 DOTPROD FP16_VECTOR_ARITHMETIC SVE MATMUL_INT8 SVE2 SME)
|
||||
else()
|
||||
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS not yet supported with ${GGML_SYSTEM_ARCH} on ${CMAKE_SYSTEM_NAME}")
|
||||
endif()
|
||||
elseif (GGML_CPU)
|
||||
ggml_add_cpu_backend_variant_impl("")
|
||||
|
||||
@@ -1340,7 +1340,10 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
|
||||
// allocate graph
|
||||
if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
|
||||
// the re-allocation may cause the split inputs to be moved to a different address
|
||||
ggml_backend_sched_synchronize(sched);
|
||||
// synchronize without ggml_backend_sched_synchronize to avoid changing cur_copy
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
ggml_backend_synchronize(sched->backends[i]);
|
||||
}
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
|
||||
#endif
|
||||
@@ -1564,7 +1567,6 @@ bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgra
|
||||
|
||||
ggml_backend_sched_split_graph(sched, graph);
|
||||
|
||||
|
||||
if (!ggml_backend_sched_alloc_splits(sched)) {
|
||||
return false;
|
||||
}
|
||||
@@ -1598,6 +1600,12 @@ void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
ggml_backend_synchronize(sched->backends[i]);
|
||||
}
|
||||
if (!sched->is_alloc) {
|
||||
// if the graph is not already allocated, always use copy 0 after a synchronization
|
||||
// this ensures that during generation the same copy is used every time,
|
||||
// which avoids changes in the graph that could cause CUDA or other graphs to be disabled
|
||||
sched->cur_copy = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
|
||||
|
||||
@@ -81,7 +81,7 @@ if (BLAS_FOUND)
|
||||
target_link_libraries (ggml-blas PRIVATE ${BLAS_LIBRARIES})
|
||||
target_include_directories(ggml-blas PRIVATE ${BLAS_INCLUDE_DIRS})
|
||||
else()
|
||||
message(ERROR "BLAS not found, please refer to "
|
||||
"https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors"
|
||||
" to set correct GGML_BLAS_VENDOR")
|
||||
message(FATAL_ERROR "BLAS not found, please refer to "
|
||||
"https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors"
|
||||
" to set correct GGML_BLAS_VENDOR")
|
||||
endif()
|
||||
|
||||
1
ggml/src/ggml-cann/CMakeLists.txt
Normal file → Executable file
1
ggml/src/ggml-cann/CMakeLists.txt
Normal file → Executable file
@@ -30,6 +30,7 @@ string(TOLOWER ${SOC_TYPE} SOC_VERSION) # SOC_VERSION need lower
|
||||
string(REGEX MATCH "[0-9]+[a-zA-Z]" SOC_TYPE_MAJOR_SN "${SOC_VERSION}")
|
||||
set(SOC_TYPE_COMPILE_OPTION "ASCEND_${SOC_TYPE_MAJOR_SN}")
|
||||
string(TOUPPER ${SOC_TYPE_COMPILE_OPTION} SOC_TYPE_COMPILE_OPTION)
|
||||
message(STATUS "CANN: SOC_VERSION = ${SOC_VERSION}")
|
||||
|
||||
if (CANN_INSTALL_DIR)
|
||||
# Only Support Linux.
|
||||
|
||||
0
ggml/src/ggml-cann/Doxyfile
Normal file → Executable file
0
ggml/src/ggml-cann/Doxyfile
Normal file → Executable file
2
ggml/src/ggml-cann/acl_tensor.cpp
Normal file → Executable file
2
ggml/src/ggml-cann/acl_tensor.cpp
Normal file → Executable file
@@ -31,6 +31,8 @@ aclDataType ggml_cann_type_mapping(ggml_type type) {
|
||||
return ACL_FLOAT;
|
||||
case GGML_TYPE_F16:
|
||||
return ACL_FLOAT16;
|
||||
case GGML_TYPE_BF16:
|
||||
return ACL_BF16;
|
||||
case GGML_TYPE_I8:
|
||||
return ACL_INT8;
|
||||
case GGML_TYPE_I16:
|
||||
|
||||
0
ggml/src/ggml-cann/acl_tensor.h
Normal file → Executable file
0
ggml/src/ggml-cann/acl_tensor.h
Normal file → Executable file
330
ggml/src/ggml-cann/aclnn_ops.cpp
Normal file → Executable file
330
ggml/src/ggml-cann/aclnn_ops.cpp
Normal file → Executable file
@@ -66,6 +66,7 @@
|
||||
#include <aclnnop/aclnn_gt_scalar.h>
|
||||
#include <aclnnop/aclnn_pow.h>
|
||||
#include <aclnnop/aclnn_grouped_matmul_v2.h>
|
||||
#include <aclnnop/aclnn_fused_infer_attention_score_v2.h>
|
||||
#include <float.h>
|
||||
|
||||
#include <cmath>
|
||||
@@ -74,11 +75,13 @@
|
||||
#include <vector>
|
||||
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#define GGML_COMMON_DECL_C
|
||||
|
||||
#include "../ggml-common.h"
|
||||
|
||||
|
||||
void bcast_shape(ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst, aclTensor ** acl_src0,
|
||||
aclTensor ** acl_src1, aclTensor ** acl_dst) {
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_can_repeat(src1, src0));
|
||||
@@ -2861,3 +2864,330 @@ void ggml_cann_mul_mat_id(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst){
|
||||
|
||||
ggml_tensor* src0 = dst->src[0]; // q, fp32
|
||||
ggml_tensor* src1 = dst->src[1]; // k, fp16
|
||||
ggml_tensor* src2 = dst->src[2]; // v, fp16
|
||||
ggml_tensor* src3 = dst->src[3]; // mask, fp16
|
||||
|
||||
float maxBias = 0.0f;
|
||||
float scaleValue = 1.0f;
|
||||
float logitSoftcap = 0.0f;
|
||||
memcpy(&scaleValue, (float*)dst->op_params + 0, sizeof(float));
|
||||
memcpy(&maxBias, (float*)dst->op_params + 1, sizeof(float));
|
||||
memcpy(&logitSoftcap, (float*)dst->op_params + 2, sizeof(float));
|
||||
|
||||
if(logitSoftcap == 0.0f){
|
||||
size_t faElemSize = sizeof(uint16_t);
|
||||
auto faDataType = ACL_FLOAT16; //ACL_BF16;
|
||||
|
||||
aclTensor* acl_src0_f16_tensor = nullptr;
|
||||
aclTensor* acl_src1_f16_tensor = nullptr;
|
||||
aclTensor* acl_src2_f16_tensor = nullptr;
|
||||
aclTensor* acl_dst_f16_tensor = nullptr;
|
||||
|
||||
// Step 1: cast the src0 (Query) to fp16 if needed
|
||||
ggml_cann_pool_alloc src0_f16_allocator(ctx.pool());
|
||||
void* src0_f16_buffer = nullptr;
|
||||
|
||||
if(ggml_cann_type_mapping(src0->type) != faDataType){
|
||||
aclTensor* acl_src0_f32_tensor = ggml_cann_create_tensor(src0);
|
||||
src0_f16_buffer = src0_f16_allocator.alloc(
|
||||
ggml_nelements(src0) * faElemSize);
|
||||
|
||||
int64_t* src0_f16_ne = src0->ne;
|
||||
size_t src0_f16_nb[GGML_MAX_DIMS];
|
||||
src0_f16_nb[0] = sizeof(uint16_t);
|
||||
for(int i = 1; i < GGML_MAX_DIMS; ++i){
|
||||
src0_f16_nb[i] = src0_f16_nb[i - 1] * src0_f16_ne[i - 1];
|
||||
}
|
||||
|
||||
acl_src0_f16_tensor = ggml_cann_create_tensor(
|
||||
src0_f16_buffer, faDataType, faElemSize,
|
||||
src0_f16_ne, src0_f16_nb, GGML_MAX_DIMS
|
||||
);
|
||||
aclnn_cast(ctx, acl_src0_f32_tensor, acl_src0_f16_tensor, faDataType);
|
||||
ggml_cann_release_resources(ctx, acl_src0_f32_tensor);
|
||||
}else{
|
||||
acl_src0_f16_tensor = ggml_cann_create_tensor(src0);
|
||||
}
|
||||
|
||||
// Step 2: create the acl tensors for src1 (Key), src2 (Value),
|
||||
// and the direct output from FusedInferAttention
|
||||
|
||||
acl_src1_f16_tensor = ggml_cann_create_tensor(src1);
|
||||
acl_src2_f16_tensor = ggml_cann_create_tensor(src2);
|
||||
|
||||
ggml_cann_pool_alloc out_f16_allocator(ctx.pool());
|
||||
void* out_f16_buffer = out_f16_allocator.alloc(
|
||||
ggml_nelements(dst) * faElemSize);
|
||||
|
||||
int64_t* out_f16_ne = src0->ne;
|
||||
size_t out_f16_nb[GGML_MAX_DIMS];
|
||||
out_f16_nb[0] = faElemSize;
|
||||
for(int i = 1; i < GGML_MAX_DIMS; ++i){
|
||||
out_f16_nb[i] = out_f16_nb[i - 1] * out_f16_ne[i - 1];
|
||||
}
|
||||
|
||||
acl_dst_f16_tensor = ggml_cann_create_tensor(
|
||||
out_f16_buffer, faDataType, faElemSize,
|
||||
out_f16_ne, out_f16_nb, GGML_MAX_DIMS
|
||||
);
|
||||
|
||||
// Step 3: create the PSEShift tensor if needed
|
||||
// this tensor is considered as mask (f16) in the llama.cpp
|
||||
|
||||
aclTensor* bcast_pse_tensor = nullptr;
|
||||
int64_t bcast_pse_ne[GGML_MAX_DIMS];
|
||||
size_t bcast_pse_nb[GGML_MAX_DIMS];
|
||||
ggml_cann_pool_alloc bcast_pse_allocator(ctx.pool());
|
||||
void* bcast_pse_buffer = nullptr;
|
||||
|
||||
if(src3 != nullptr){
|
||||
bcast_pse_buffer = bcast_pse_allocator.alloc(
|
||||
ggml_nelements(src3) * src0->ne[2] * sizeof(uint16_t));
|
||||
|
||||
if(src0->ne[1] > 1){
|
||||
// Case 1: broadcast pse for prefill stage with multiple head
|
||||
aclTensor* acl_mask_f16_tensor = ggml_cann_create_tensor(src3);
|
||||
bcast_pse_ne[0] = src3->ne[0];
|
||||
bcast_pse_ne[1] = src3->ne[1];
|
||||
bcast_pse_ne[2] = src0->ne[2];
|
||||
bcast_pse_ne[3] = src3->ne[3];
|
||||
|
||||
bcast_pse_nb[0] = sizeof(uint16_t);
|
||||
for(int i = 1; i < GGML_MAX_DIMS; ++i){
|
||||
bcast_pse_nb[i] = bcast_pse_nb[i - 1] * bcast_pse_ne[i - 1];
|
||||
}
|
||||
|
||||
bcast_pse_tensor = ggml_cann_create_tensor(
|
||||
bcast_pse_buffer, ACL_FLOAT16, sizeof(uint16_t),
|
||||
bcast_pse_ne, bcast_pse_nb, GGML_MAX_DIMS);
|
||||
|
||||
int64_t repeats[] = {1, src0->ne[2], 1, 1};
|
||||
aclnn_repeat(ctx, acl_mask_f16_tensor, bcast_pse_tensor, repeats);
|
||||
|
||||
ggml_cann_release_resources(ctx, acl_mask_f16_tensor);
|
||||
}else{
|
||||
// Case 2: trunc the first row and broadcast pse for decode stage with multiple head
|
||||
int64_t trunc_pse_ne[GGML_MAX_DIMS] = {src3->ne[0], src0->ne[1], src3->ne[2], src3->ne[3]};
|
||||
size_t* trunc_pse_nb = src3->nb;
|
||||
|
||||
aclTensor* acl_mask_f16_trunc_tensor = ggml_cann_create_tensor(
|
||||
src3->data, ACL_FLOAT16, sizeof(uint16_t),
|
||||
trunc_pse_ne, trunc_pse_nb, GGML_MAX_DIMS);
|
||||
|
||||
bcast_pse_ne[0] = src3->ne[0];
|
||||
bcast_pse_ne[1] = src0->ne[1];
|
||||
bcast_pse_ne[2] = src0->ne[2];
|
||||
bcast_pse_ne[3] = src3->ne[3];
|
||||
|
||||
bcast_pse_nb[0] = sizeof(uint16_t);
|
||||
for(int i = 1; i < GGML_MAX_DIMS; ++i){
|
||||
bcast_pse_nb[i] = bcast_pse_nb[i - 1] * bcast_pse_ne[i - 1];
|
||||
}
|
||||
|
||||
bcast_pse_tensor = ggml_cann_create_tensor(
|
||||
bcast_pse_buffer, ACL_FLOAT16, sizeof(uint16_t),
|
||||
bcast_pse_ne, bcast_pse_nb, GGML_MAX_DIMS);
|
||||
|
||||
int64_t repeats[] = {1, src0->ne[2], 1, 1};
|
||||
aclnn_repeat(ctx, acl_mask_f16_trunc_tensor, bcast_pse_tensor, repeats);
|
||||
|
||||
ggml_cann_release_resources(ctx, acl_mask_f16_trunc_tensor);
|
||||
}
|
||||
|
||||
// Compute the slope if needed. Derived from ggml_cann_softmax().
|
||||
if(maxBias != 0.0f){
|
||||
// alibi
|
||||
const int64_t ne2_ne3 = src0->ne[2] * src0->ne[3];
|
||||
const int64_t n_head = src0->ne[2];
|
||||
const int n_heads_log2_floor = 1u << (uint32_t)floor(log2(n_head));
|
||||
float m0 = powf(2.0f, -(maxBias) / n_heads_log2_floor);
|
||||
float m1 = powf(2.0f, -(maxBias / 2.0f) / n_heads_log2_floor);
|
||||
// init arange
|
||||
ggml_cann_pool_alloc arange_allocator(ctx.pool(),
|
||||
ne2_ne3 * faElemSize);
|
||||
void* tmp_arange_buffer = arange_allocator.get();
|
||||
|
||||
// arange1: [1, ..., n_heads_log2_floor+1)
|
||||
float start = 1;
|
||||
float stop = n_heads_log2_floor + 1;
|
||||
float step = 1;
|
||||
int64_t n_elements_arange = n_heads_log2_floor;
|
||||
|
||||
int64_t tmp_arange1_ne[] = {n_heads_log2_floor};
|
||||
size_t tmp_arange1_nb[] = {faElemSize};
|
||||
aclTensor* tmp_arange1_tensor = ggml_cann_create_tensor(
|
||||
tmp_arange_buffer, faDataType, faElemSize,
|
||||
tmp_arange1_ne, tmp_arange1_nb,
|
||||
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
|
||||
|
||||
aclnn_arange(ctx, tmp_arange1_tensor, start, stop, step, n_elements_arange);
|
||||
|
||||
aclTensor* tmp_arange2_tensor = nullptr;
|
||||
if (n_heads_log2_floor < ne2_ne3) {
|
||||
// arange2: [1, ..., 2 * (k - n_heads_log2_floor) + 1)
|
||||
start = 1;
|
||||
stop = 2 * (ne2_ne3 - n_heads_log2_floor) + 1;
|
||||
step = 2;
|
||||
n_elements_arange = ne2_ne3 - n_heads_log2_floor;
|
||||
int64_t tmp_arange2_ne[] = {ne2_ne3 - n_heads_log2_floor};
|
||||
size_t tmp_arange2_nb[] = {faElemSize};
|
||||
|
||||
aclTensor* tmp_arange2_tensor = ggml_cann_create_tensor(
|
||||
(char*)tmp_arange_buffer +
|
||||
n_heads_log2_floor * faElemSize,
|
||||
faDataType, faElemSize,
|
||||
tmp_arange2_ne, tmp_arange2_nb, GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
|
||||
aclnn_arange(ctx, tmp_arange2_tensor, start, stop, step,
|
||||
n_elements_arange);
|
||||
}
|
||||
|
||||
// init mk_base
|
||||
ggml_cann_pool_alloc mk_base_allocator(ctx.pool(),
|
||||
ne2_ne3 * faElemSize);
|
||||
void* tmp_mk_base_buffer = mk_base_allocator.get();
|
||||
int64_t tmp_mk_base1_ne[] = {n_heads_log2_floor};
|
||||
size_t tmp_mk_base1_nb[] = {faElemSize};
|
||||
aclTensor* tmp_mk_base1_tensor = ggml_cann_create_tensor(
|
||||
tmp_mk_base_buffer, faDataType, faElemSize,
|
||||
tmp_mk_base1_ne, tmp_mk_base1_nb,
|
||||
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
|
||||
|
||||
aclnn_fill_scalar(ctx, m0, tmp_mk_base1_tensor);
|
||||
|
||||
aclTensor* tmp_mk_base2_tensor = nullptr;
|
||||
if (n_heads_log2_floor < ne2_ne3) {
|
||||
int64_t tmp_mk_base2_ne[] = {ne2_ne3 - n_heads_log2_floor};
|
||||
size_t tmp_mk_base2_nb[] = {faElemSize};
|
||||
aclTensor* tmp_mk_base2_tensor = ggml_cann_create_tensor(
|
||||
(char*)tmp_mk_base_buffer +
|
||||
n_heads_log2_floor * faElemSize,
|
||||
faDataType, faElemSize,
|
||||
tmp_mk_base2_ne, tmp_mk_base2_nb, GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
|
||||
aclnn_fill_scalar(ctx, m1, tmp_mk_base2_tensor);
|
||||
}
|
||||
|
||||
// init mk
|
||||
int64_t tmp_mk_base_ne[] = {ne2_ne3};
|
||||
size_t tmp_mk_base_nb[] = {faElemSize};
|
||||
aclTensor* tmp_mk_base_tensor = ggml_cann_create_tensor(
|
||||
tmp_mk_base_buffer, faDataType, faElemSize,
|
||||
tmp_mk_base_ne, tmp_mk_base_nb,
|
||||
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
|
||||
aclTensor* tmp_arange_tensor = ggml_cann_create_tensor(
|
||||
tmp_arange_buffer, faDataType, faElemSize,
|
||||
tmp_mk_base_ne, tmp_mk_base_nb,
|
||||
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
|
||||
aclnn_pow_tensor_tensor(ctx, tmp_mk_base_tensor, tmp_arange_tensor);
|
||||
|
||||
// reshape mk
|
||||
int64_t tmp_mk_ne[] = {1, 1, src0->ne[2], src0->ne[3]};
|
||||
size_t tmp_mk_nb[GGML_MAX_DIMS];
|
||||
tmp_mk_nb[0] = faElemSize;
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
tmp_mk_nb[i] = tmp_mk_nb[i - 1] * tmp_mk_ne[i - 1];
|
||||
}
|
||||
aclTensor* tmp_mk_tensor = ggml_cann_create_tensor(
|
||||
tmp_mk_base_buffer, faDataType, faElemSize,
|
||||
tmp_mk_ne, tmp_mk_nb, GGML_MAX_DIMS,
|
||||
ACL_FORMAT_ND);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceMul, bcast_pse_tensor, tmp_mk_tensor);
|
||||
|
||||
ggml_cann_release_resources(ctx, tmp_arange1_tensor, tmp_arange2_tensor,
|
||||
tmp_mk_base1_tensor, tmp_mk_base2_tensor, tmp_mk_base_tensor,
|
||||
tmp_arange_tensor, tmp_mk_tensor);
|
||||
}
|
||||
}
|
||||
|
||||
// Step 4: set the inputs for FusedInferAttention.
|
||||
int kvTensorNum = 1;
|
||||
aclTensor* acl_q_tensor = acl_src0_f16_tensor;
|
||||
aclTensor* acl_k_tensors[] = {acl_src1_f16_tensor};
|
||||
aclTensor* acl_v_tensors[] = {acl_src2_f16_tensor};
|
||||
auto acl_k_tensor_list = aclCreateTensorList(acl_k_tensors, kvTensorNum);
|
||||
auto acl_v_tensor_list = aclCreateTensorList(acl_v_tensors, kvTensorNum);
|
||||
|
||||
int64_t numHeads = src0->ne[2]; // N
|
||||
int64_t numKeyValueHeads = src1->ne[2];
|
||||
// double scaleValue = 1 / sqrt(src0->ne[0]); // 1/sqrt(d)
|
||||
int64_t preTokens = 65535;
|
||||
int64_t nextTokens = 65535;
|
||||
char layout[5] = {'B', 'N', 'S', 'D', 0};
|
||||
int64_t sparseMode = 0;
|
||||
int64_t innerPrecise = (src0->ne[1] == 1) ? 0 : 2;
|
||||
int64_t blockSize = 0;
|
||||
int64_t antiquantMode = 0;
|
||||
bool softmaxLseFlag = false;
|
||||
int64_t keyAntiquantMode = 0;
|
||||
int64_t valueAntiquantMode = 0;
|
||||
|
||||
// Step 5: launch the FusedInferAttentionScoreV2 kernel.
|
||||
// Refer to https://gitee.com/ascend/cann-ops-adv/blob/master/docs/FusedInferAttentionScoreV2.md
|
||||
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, FusedInferAttentionScoreV2,
|
||||
acl_q_tensor, acl_k_tensor_list, acl_v_tensor_list, // q, k, v
|
||||
bcast_pse_tensor, nullptr, // pse, mask
|
||||
nullptr, nullptr, // actSeqLen, actSeqLenkv
|
||||
nullptr, nullptr, // deqScale1, quantScale1
|
||||
nullptr, nullptr, nullptr, // deqScale2, quantScale2, quantOffset2
|
||||
nullptr, nullptr, // antiquantScale, antiquantOffset
|
||||
nullptr, // blockTable
|
||||
nullptr, nullptr, // qPadSize, kvPadSize
|
||||
nullptr, nullptr, // kAntiquantScale, kAntiQuantOffset
|
||||
nullptr, nullptr, // vAntiquantScale, vAntiQuantOffset
|
||||
nullptr, nullptr, nullptr, // kSharedPrefix, vSharedPrefix, actSharedLen
|
||||
numHeads, scaleValue, // heads, scaleValue
|
||||
preTokens, nextTokens, // preTokens, nextTokens
|
||||
layout, // inputLayout
|
||||
numKeyValueHeads, // numKVHeads
|
||||
sparseMode, innerPrecise, // sparseMode, innerPrecise
|
||||
blockSize, antiquantMode, // blockSize, antiquantMode
|
||||
softmaxLseFlag, // softmaxLseFlag
|
||||
keyAntiquantMode, valueAntiquantMode, // keyAntiqMode, valueAntiqMode
|
||||
acl_dst_f16_tensor, // attentionOut
|
||||
nullptr // softmaxLse
|
||||
);
|
||||
|
||||
// Step 6: post-processing, permute and cast to f32
|
||||
|
||||
int64_t new_dim[] = {0, 2, 1, 3};
|
||||
aclTensor* acl_dst_tensor = ggml_cann_create_tensor(dst);
|
||||
|
||||
if(ggml_cann_type_mapping(dst->type) != faDataType){
|
||||
ggml_cann_pool_alloc perm_out_f16_allocator(ctx.pool());
|
||||
perm_out_f16_allocator.alloc(ggml_nelements(dst) * faElemSize);
|
||||
void* perm_out_f16_buffer = perm_out_f16_allocator.get();
|
||||
|
||||
int64_t* perm_out_f16_ne = dst->ne;
|
||||
size_t perm_out_f16_nb[GGML_MAX_DIMS];
|
||||
perm_out_f16_nb[0] = faElemSize;
|
||||
for(int i = 1; i < GGML_MAX_DIMS; ++i){
|
||||
perm_out_f16_nb[i] = perm_out_f16_nb[i - 1] * perm_out_f16_ne[i - 1];
|
||||
}
|
||||
aclTensor* acl_perm_out_f16_tensor = ggml_cann_create_tensor(
|
||||
perm_out_f16_buffer, faDataType, faElemSize,
|
||||
perm_out_f16_ne, perm_out_f16_nb, GGML_MAX_DIMS);
|
||||
aclnn_permute(ctx, acl_dst_f16_tensor, acl_perm_out_f16_tensor, new_dim, GGML_MAX_DIMS);
|
||||
aclnn_cast(ctx,
|
||||
acl_perm_out_f16_tensor, acl_dst_tensor, ggml_cann_type_mapping(dst->type));
|
||||
ggml_cann_release_resources(ctx, acl_perm_out_f16_tensor);
|
||||
}else{
|
||||
// only need to permute
|
||||
aclnn_permute(ctx, acl_dst_f16_tensor, acl_dst_tensor, new_dim, GGML_MAX_DIMS);
|
||||
}
|
||||
ggml_cann_release_resources(ctx, acl_src0_f16_tensor,
|
||||
acl_src1_f16_tensor,
|
||||
acl_src2_f16_tensor,
|
||||
acl_dst_f16_tensor,
|
||||
acl_dst_tensor);
|
||||
if(src3 != nullptr){
|
||||
ggml_cann_release_resources(ctx, bcast_pse_tensor);
|
||||
}
|
||||
}else{
|
||||
GGML_ABORT("Function is not implemented.");
|
||||
}
|
||||
}
|
||||
|
||||
15
ggml/src/ggml-cann/aclnn_ops.h
Normal file → Executable file
15
ggml/src/ggml-cann/aclnn_ops.h
Normal file → Executable file
@@ -714,6 +714,21 @@ void ggml_cann_count_equal(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
*/
|
||||
void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Performs the Flash Attention extended operator using the CANN backend.
|
||||
*
|
||||
* @details This function implements the memory-efficient Flash Attention algorithm
|
||||
* for computing scaled dot-product attention with hardware acceleration.
|
||||
* The result is stored in the destination tensor `dst`.
|
||||
*
|
||||
* This operation is accelerated using the CANN backend to improve runtime performance.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the result will be stored.
|
||||
* dst->op is expected to be `GGML_OP_FLASH_ATTN_EXT`.
|
||||
*/
|
||||
void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/*
|
||||
* @brief A generic wrapper for ACL resources with custom deleter support.
|
||||
*/
|
||||
|
||||
7
ggml/src/ggml-cann/common.h
Normal file → Executable file
7
ggml/src/ggml-cann/common.h
Normal file → Executable file
@@ -37,6 +37,7 @@
|
||||
#include <thread>
|
||||
#include <unistd.h>
|
||||
#include <functional>
|
||||
#include <optional>
|
||||
|
||||
#include "../include/ggml-cann.h"
|
||||
#include "../include/ggml.h"
|
||||
@@ -103,6 +104,9 @@ const ggml_cann_device_info& ggml_cann_info();
|
||||
void ggml_cann_set_device(int32_t device);
|
||||
int32_t ggml_cann_get_device();
|
||||
|
||||
std::optional<std::string> get_env(const std::string& name);
|
||||
bool parse_bool(const std::string& value);
|
||||
|
||||
/**
|
||||
* @brief Abstract base class for memory pools used by CANN.
|
||||
*/
|
||||
@@ -354,7 +358,8 @@ struct ggml_backend_cann_context {
|
||||
: device(device), name("CANN" + std::to_string(device)), task_queue(1024, device) {
|
||||
ggml_cann_set_device(device);
|
||||
description = aclrtGetSocName();
|
||||
async_mode = (getenv("GGML_CANN_ASYNC_MODE") != nullptr);
|
||||
|
||||
bool async_mode = parse_bool(get_env("GGML_CANN_ASYNC_MODE").value_or(""));
|
||||
GGML_LOG_INFO("%s: device %d async operator submission is %s\n", __func__,
|
||||
device, async_mode ? "ON" : "OFF");
|
||||
}
|
||||
|
||||
78
ggml/src/ggml-cann/ggml-cann.cpp
Normal file → Executable file
78
ggml/src/ggml-cann/ggml-cann.cpp
Normal file → Executable file
@@ -31,11 +31,14 @@
|
||||
#include <mutex>
|
||||
#include <queue>
|
||||
#include <chrono>
|
||||
#include <unordered_set>
|
||||
#include <optional>
|
||||
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-cann/aclnn_ops.h"
|
||||
#include "ggml-cann/common.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#define GGML_COMMON_DECL_C
|
||||
|
||||
@@ -92,6 +95,26 @@ int32_t ggml_cann_get_device() {
|
||||
return id;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Get the value of the specified environment variable (name).
|
||||
* if not empty, return a std::string object
|
||||
*/
|
||||
std::optional<std::string> get_env(const std::string& name) {
|
||||
const char* val = std::getenv(name.c_str());
|
||||
if (!val) return std::nullopt;
|
||||
std::string res = std::string(val);
|
||||
std::transform(res.begin(), res.end(), res.begin(), ::tolower);
|
||||
return res;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Verify whether the environment variable is a valid value.
|
||||
*/
|
||||
bool parse_bool(const std::string& value) {
|
||||
std::unordered_set<std::string> valid_values = {"on", "1", "yes", "y", "enable", "true"};
|
||||
return valid_values.find(value) != valid_values.end();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Initialize the CANN device information.
|
||||
*
|
||||
@@ -213,7 +236,7 @@ struct ggml_cann_pool_buf_prio : public ggml_cann_pool {
|
||||
* @param device The device ID to associate with this buffer pool.
|
||||
*/
|
||||
explicit ggml_cann_pool_buf_prio(int device) : device(device) {
|
||||
disable_clean = getenv("GGML_CANN_DISABLE_BUF_POOL_CLEAN") != nullptr;
|
||||
disable_clean = parse_bool(get_env("GGML_CANN_DISABLE_BUF_POOL_CLEAN").value_or(""));
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -409,7 +432,7 @@ struct ggml_cann_pool_buf : public ggml_cann_pool {
|
||||
* @param device The device ID to associate with this buffer pool.
|
||||
*/
|
||||
explicit ggml_cann_pool_buf(int device) : device(device) {
|
||||
disable_clean = getenv("GGML_CANN_DISABLE_BUF_POOL_CLEAN") != nullptr;
|
||||
disable_clean = parse_bool(get_env("GGML_CANN_DISABLE_BUF_POOL_CLEAN").value_or(""));
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -730,16 +753,18 @@ struct ggml_cann_pool_vmm : public ggml_cann_pool {
|
||||
*/
|
||||
std::unique_ptr<ggml_cann_pool> ggml_backend_cann_context::new_pool_for_device(
|
||||
int device) {
|
||||
bool disable_vmm = (getenv("GGML_CANN_DISABLE_VMM_POOL") != nullptr);
|
||||
if (!disable_vmm && ggml_cann_info().devices[device].vmm) {
|
||||
GGML_LOG_INFO("%s: device %d use vmm pool\n", __func__, device);
|
||||
return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_vmm(device));
|
||||
}
|
||||
bool enable_buf_prio = (getenv("GGML_CANN_ENABLE_BUF_PRIO_POOL") != nullptr);
|
||||
if (enable_buf_prio) {
|
||||
std::string mem_pool_type = get_env("GGML_CANN_MEM_POOL").value_or("");
|
||||
|
||||
if (mem_pool_type == "prio") {
|
||||
GGML_LOG_INFO("%s: device %d use buffer pool with priority queue\n", __func__, device);
|
||||
return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_buf_prio(device));
|
||||
}
|
||||
|
||||
if (ggml_cann_info().devices[device].vmm && mem_pool_type != "leg") {
|
||||
GGML_LOG_INFO("%s: device %d use vmm pool\n", __func__, device);
|
||||
return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_vmm(device));
|
||||
}
|
||||
|
||||
GGML_LOG_INFO("%s: device %d use buffer pool\n", __func__, device);
|
||||
return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_buf(device));
|
||||
}
|
||||
@@ -1748,6 +1773,9 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
|
||||
case GGML_OP_COUNT_EQUAL:
|
||||
ggml_cann_count_equal(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_FLASH_ATTN_EXT:
|
||||
ggml_cann_flash_attn_ext(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
@@ -2177,6 +2205,38 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
case GGML_OP_PAD_REFLECT_1D:
|
||||
case GGML_OP_COUNT_EQUAL:
|
||||
return true;
|
||||
case GGML_OP_FLASH_ATTN_EXT:{
|
||||
// derived from [ggml-cuda.cu]
|
||||
if(op->src[1]->type != GGML_TYPE_F16 || op->src[2]->type != GGML_TYPE_F16){
|
||||
return false;
|
||||
}
|
||||
if(op->src[1]->type != GGML_TYPE_F16 && op->src[1]->type != GGML_TYPE_F32 && op->src[1]->type != GGML_TYPE_BF16){
|
||||
return false;
|
||||
}
|
||||
if(op->type != GGML_TYPE_F16 && op->type != GGML_TYPE_F32 && op->type != GGML_TYPE_BF16){
|
||||
return false;
|
||||
}
|
||||
if (op->src[1]->ne[0] != op->src[2]->ne[0]) {
|
||||
// different head sizes of K and V are not supported yet
|
||||
return false;
|
||||
}
|
||||
if (op->src[0]->ne[0] == 192) {
|
||||
return false;
|
||||
}
|
||||
if (op->src[0]->ne[0] == 576) {
|
||||
// DeepSeek MLA
|
||||
return false;
|
||||
}
|
||||
if (op->src[0]->ne[3] != 1) {
|
||||
return false;
|
||||
}
|
||||
float logitSoftcap = 0.0f;
|
||||
memcpy(&logitSoftcap, (float*)op->op_params + 2, sizeof(float));
|
||||
if(logitSoftcap != 0.0f) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -1074,6 +1074,10 @@ GGML_TABLE_BEGIN(uint32_t, iq3s_grid, 512)
|
||||
0x0f090307, 0x0f090501, 0x0f090b01, 0x0f0b0505, 0x0f0b0905, 0x0f0d0105, 0x0f0d0703, 0x0f0f0101,
|
||||
GGML_TABLE_END()
|
||||
|
||||
GGML_TABLE_BEGIN(int8_t, kvalues_iq4nl, 16)
|
||||
-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113,
|
||||
GGML_TABLE_END()
|
||||
|
||||
#define NGRID_IQ1S 2048
|
||||
#define IQ1S_DELTA 0.125f
|
||||
#define IQ1M_DELTA 0.125f
|
||||
|
||||
@@ -1,3 +1,17 @@
|
||||
function(ggml_add_cpu_backend_features cpu_name arch)
|
||||
# The feature detection code is compiled as a separate target so that
|
||||
# it can be built without the architecture flags
|
||||
# Since multiple variants of the CPU backend may be included in the same
|
||||
# build, using set_source_files_properties() to set the arch flags is not possible
|
||||
set(GGML_CPU_FEATS_NAME ${cpu_name}-feats)
|
||||
add_library(${GGML_CPU_FEATS_NAME} OBJECT ggml-cpu/arch/${arch}/cpu-feats.cpp)
|
||||
target_include_directories(${GGML_CPU_FEATS_NAME} PRIVATE . .. ../include)
|
||||
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE ${ARGN})
|
||||
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE GGML_BACKEND_DL GGML_BACKEND_BUILD GGML_BACKEND_SHARED)
|
||||
set_target_properties(${GGML_CPU_FEATS_NAME} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
target_link_libraries(${cpu_name} PRIVATE ${GGML_CPU_FEATS_NAME})
|
||||
endfunction()
|
||||
|
||||
function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
if (tag_name)
|
||||
set(GGML_CPU_NAME ggml-cpu-${tag_name})
|
||||
@@ -10,14 +24,14 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
list (APPEND GGML_CPU_SOURCES
|
||||
ggml-cpu/ggml-cpu.c
|
||||
ggml-cpu/ggml-cpu.cpp
|
||||
ggml-cpu/ggml-cpu-aarch64.cpp
|
||||
ggml-cpu/ggml-cpu-aarch64.h
|
||||
ggml-cpu/ggml-cpu-hbm.cpp
|
||||
ggml-cpu/ggml-cpu-hbm.h
|
||||
ggml-cpu/ggml-cpu-quants.c
|
||||
ggml-cpu/ggml-cpu-quants.h
|
||||
ggml-cpu/ggml-cpu-traits.cpp
|
||||
ggml-cpu/ggml-cpu-traits.h
|
||||
ggml-cpu/repack.cpp
|
||||
ggml-cpu/repack.h
|
||||
ggml-cpu/hbm.cpp
|
||||
ggml-cpu/hbm.h
|
||||
ggml-cpu/quants.c
|
||||
ggml-cpu/quants.h
|
||||
ggml-cpu/traits.cpp
|
||||
ggml-cpu/traits.h
|
||||
ggml-cpu/amx/amx.cpp
|
||||
ggml-cpu/amx/amx.h
|
||||
ggml-cpu/amx/mmq.cpp
|
||||
@@ -82,12 +96,12 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
target_link_libraries(${GGML_CPU_NAME} PUBLIC memkind)
|
||||
endif()
|
||||
|
||||
if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR
|
||||
CMAKE_GENERATOR_PLATFORM_LWR STREQUAL "arm64" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(aarch64|arm.*|ARM64)$"))
|
||||
|
||||
if (GGML_SYSTEM_ARCH STREQUAL "ARM")
|
||||
message(STATUS "ARM detected")
|
||||
list(APPEND GGML_CPU_SOURCES
|
||||
ggml-cpu/arch/arm/quants.c
|
||||
ggml-cpu/arch/arm/repack.cpp
|
||||
)
|
||||
|
||||
if (MSVC AND NOT CMAKE_C_COMPILER_ID STREQUAL "Clang")
|
||||
message(FATAL_ERROR "MSVC is not supported for ARM, use clang")
|
||||
@@ -143,6 +157,49 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
else()
|
||||
if (GGML_CPU_ARM_ARCH)
|
||||
list(APPEND ARCH_FLAGS -march=${GGML_CPU_ARM_ARCH})
|
||||
elseif(GGML_CPU_ALL_VARIANTS)
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||
# Begin with the lowest baseline
|
||||
set(ARM_MCPU "armv8-a")
|
||||
set(ARCH_TAGS "")
|
||||
set(ARCH_DEFINITIONS "")
|
||||
|
||||
# When a feature is selected, bump the MCPU to the first
|
||||
# version that supported it
|
||||
if (GGML_INTERNAL_DOTPROD)
|
||||
set(ARM_MCPU "armv8.2-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+dotprod")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_DOTPROD)
|
||||
endif()
|
||||
if (GGML_INTERNAL_FP16_VECTOR_ARITHMETIC)
|
||||
set(ARM_MCPU "armv8.2-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+fp16")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_FP16_VECTOR_ARITHMETIC)
|
||||
endif()
|
||||
if (GGML_INTERNAL_SVE)
|
||||
set(ARM_MCPU "armv8.2-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+sve")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_SVE)
|
||||
endif()
|
||||
if (GGML_INTERNAL_MATMUL_INT8)
|
||||
set(ARM_MCPU "armv8.6-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+i8mm")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_MATMUL_INT8)
|
||||
endif()
|
||||
if (GGML_INTERNAL_SVE2)
|
||||
set(ARM_MCPU "armv8.6-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+sve2")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_SVE2)
|
||||
endif()
|
||||
if (GGML_INTERNAL_SME)
|
||||
set(ARM_MCPU "armv9.2-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+sme")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_SME)
|
||||
endif()
|
||||
|
||||
list(APPEND ARCH_FLAGS "-march=${ARM_MCPU}${ARCH_TAGS}")
|
||||
ggml_add_cpu_backend_features(${GGML_CPU_NAME} arm ${ARCH_DEFINITIONS})
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
|
||||
@@ -170,11 +227,12 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
endforeach()
|
||||
endif()
|
||||
endif()
|
||||
elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64|amd64)$"))
|
||||
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "x86")
|
||||
message(STATUS "x86 detected")
|
||||
list(APPEND GGML_CPU_SOURCES
|
||||
ggml-cpu/arch/x86/quants.c
|
||||
ggml-cpu/arch/x86/repack.cpp
|
||||
)
|
||||
|
||||
if (MSVC)
|
||||
# instruction set detection for MSVC only
|
||||
@@ -299,8 +357,17 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
elseif ("${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "ppc64le " OR "${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "powerpc ")
|
||||
|
||||
if (GGML_BACKEND_DL)
|
||||
if (GGML_NATIVE)
|
||||
# the feature check relies on ARCH_DEFINITIONS, but it is not set with GGML_NATIVE
|
||||
message(FATAL_ERROR "GGML_NATIVE is not compatible with GGML_BACKEND_DL, consider using GGML_CPU_ALL_VARIANTS")
|
||||
endif()
|
||||
ggml_add_cpu_backend_features(${GGML_CPU_NAME} x86 ${ARCH_DEFINITIONS})
|
||||
endif()
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "PowerPC")
|
||||
message(STATUS "PowerPC detected")
|
||||
list(APPEND GGML_CPU_SOURCES ggml-cpu/arch/powerpc/quants.c)
|
||||
if (GGML_NATIVE)
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64")
|
||||
file(READ "/proc/cpuinfo" POWER10_M)
|
||||
@@ -308,7 +375,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
execute_process(COMMAND bash -c "prtconf |grep 'Implementation' | head -n 1" OUTPUT_VARIABLE POWER10_M)
|
||||
endif()
|
||||
|
||||
string(REGEX MATCHALL "POWER *([0-9]+)" MATCHED_STRING "${POWER10_M}")
|
||||
string(TOUPPER "${POWER10_M}" POWER10_M_UPPER)
|
||||
string(REGEX MATCHALL "POWER *([0-9]+)" MATCHED_STRING "${POWER10_M_UPPER}")
|
||||
string(REGEX REPLACE "POWER *([0-9]+)" "\\1" EXTRACTED_NUMBER "${MATCHED_STRING}")
|
||||
|
||||
if (EXTRACTED_NUMBER GREATER_EQUAL 10)
|
||||
@@ -325,8 +393,9 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
list(APPEND ARCH_FLAGS -mcpu=${GGML_CPU_POWERPC_CPUTYPE})
|
||||
endif()
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "loongarch64")
|
||||
message(STATUS "loongarch64 detected")
|
||||
list(APPEND GGML_CPU_SOURCES ggml-cpu/arch/loongarch/quants.c)
|
||||
|
||||
list(APPEND ARCH_FLAGS -march=loongarch64)
|
||||
if (GGML_LASX)
|
||||
@@ -335,17 +404,24 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
if (GGML_LSX)
|
||||
list(APPEND ARCH_FLAGS -mlsx)
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "riscv64")
|
||||
message(STATUS "RISC-V detected")
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "riscv64")
|
||||
message(STATUS "riscv64 detected")
|
||||
list(APPEND GGML_CPU_SOURCES
|
||||
ggml-cpu/arch/riscv/quants.c
|
||||
ggml-cpu/arch/riscv/repack.cpp
|
||||
)
|
||||
if (GGML_RVV)
|
||||
if (GGML_RV_ZFH)
|
||||
list(APPEND ARCH_FLAGS -march=rv64gcv_zfhmin -DGGML_RV_ZFH -mabi=lp64d)
|
||||
if (GGML_XTHEADVECTOR)
|
||||
list(APPEND ARCH_FLAGS -march=rv64gc_xtheadvector -mabi=lp64d)
|
||||
elseif (GGML_RV_ZFH)
|
||||
list(APPEND ARCH_FLAGS -march=rv64gcv_zfhmin -mabi=lp64d)
|
||||
else()
|
||||
list(APPEND ARCH_FLAGS -march=rv64gcv -mabi=lp64d)
|
||||
endif()
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "s390x")
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "s390x")
|
||||
message(STATUS "s390x detected")
|
||||
list(APPEND GGML_CPU_SOURCES ggml-cpu/arch/s390/quants.c)
|
||||
file(READ "/proc/cpuinfo" CPUINFO_CONTENTS)
|
||||
string(REGEX REPLACE "machine[ \t\r\n]*=[ \t\r\n]*([0-9]+)" "\\1" S390X_M ${CPUINFO_CONTENTS})
|
||||
|
||||
@@ -369,12 +445,16 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
if (GGML_VXE)
|
||||
list(APPEND ARCH_FLAGS -mvx -mzvector)
|
||||
endif()
|
||||
elseif (CMAKE_SYSTEM_PROCESSOR MATCHES "wasm")
|
||||
message(STATUS "Wasm detected")
|
||||
list (APPEND GGML_CPU_SOURCES ggml-cpu/arch/wasm/quants.c)
|
||||
else()
|
||||
message(STATUS "Unknown architecture")
|
||||
message(WARNING "Unknown CPU architecture. Falling back to generic implementations.")
|
||||
list(APPEND ARCH_FLAGS -DGGML_CPU_GENERIC)
|
||||
endif()
|
||||
|
||||
if (GGML_CPU_AARCH64)
|
||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE GGML_USE_CPU_AARCH64)
|
||||
if (GGML_CPU_REPACK)
|
||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE GGML_USE_CPU_REPACK)
|
||||
endif()
|
||||
|
||||
if (GGML_CPU_KLEIDIAI)
|
||||
@@ -477,25 +557,6 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
target_compile_options(${GGML_CPU_NAME} PRIVATE ${ARCH_FLAGS})
|
||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE ${ARCH_DEFINITIONS})
|
||||
|
||||
if (GGML_BACKEND_DL)
|
||||
if (GGML_NATIVE)
|
||||
# the feature check relies on ARCH_DEFINITIONS, but it is not set with GGML_NATIVE
|
||||
message(FATAL_ERROR "GGML_NATIVE is not compatible with GGML_BACKEND_DL, consider using GGML_CPU_ALL_VARIANTS")
|
||||
endif()
|
||||
|
||||
# The feature detection code is compiled as a separate target so that
|
||||
# it can be built without the architecture flags
|
||||
# Since multiple variants of the CPU backend may be included in the same
|
||||
# build, using set_source_files_properties() to set the arch flags is not possible
|
||||
set(GGML_CPU_FEATS_NAME ${GGML_CPU_NAME}-feats)
|
||||
add_library(${GGML_CPU_FEATS_NAME} OBJECT ggml-cpu/cpu-feats-x86.cpp)
|
||||
target_include_directories(${GGML_CPU_FEATS_NAME} PRIVATE . .. ../include)
|
||||
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE ${ARCH_DEFINITIONS})
|
||||
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE GGML_BACKEND_DL GGML_BACKEND_BUILD GGML_BACKEND_SHARED)
|
||||
set_target_properties(${GGML_CPU_FEATS_NAME} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
target_link_libraries(${GGML_CPU_NAME} PRIVATE ${GGML_CPU_FEATS_NAME})
|
||||
endif()
|
||||
|
||||
if (EMSCRIPTEN)
|
||||
set_target_properties(${GGML_CPU_NAME} PROPERTIES COMPILE_FLAGS "-msimd128")
|
||||
endif()
|
||||
|
||||
@@ -5,7 +5,7 @@
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-cpu-traits.h"
|
||||
#include "traits.h"
|
||||
|
||||
#if defined(__gnu_linux__)
|
||||
#include <sys/syscall.h>
|
||||
|
||||
@@ -8,7 +8,7 @@
|
||||
#include "mmq.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "ggml-cpu-quants.h"
|
||||
#include "quants.h"
|
||||
#include "ggml-quants.h"
|
||||
#include <algorithm>
|
||||
#include <type_traits>
|
||||
|
||||
94
ggml/src/ggml-cpu/arch/arm/cpu-feats.cpp
Normal file
94
ggml/src/ggml-cpu/arch/arm/cpu-feats.cpp
Normal file
@@ -0,0 +1,94 @@
|
||||
#include "ggml-backend-impl.h"
|
||||
|
||||
#if defined(__aarch64__)
|
||||
|
||||
#if defined(__linux__)
|
||||
#include <sys/auxv.h>
|
||||
#elif defined(__APPLE__)
|
||||
#include <sys/sysctl.h>
|
||||
#endif
|
||||
|
||||
#if !defined(HWCAP2_I8MM)
|
||||
#define HWCAP2_I8MM (1 << 13)
|
||||
#endif
|
||||
|
||||
#if !defined(HWCAP2_SME)
|
||||
#define HWCAP2_SME (1 << 23)
|
||||
#endif
|
||||
|
||||
struct aarch64_features {
|
||||
// has_neon not needed, aarch64 has NEON guaranteed
|
||||
bool has_dotprod = false;
|
||||
bool has_fp16_va = false;
|
||||
bool has_sve = false;
|
||||
bool has_sve2 = false;
|
||||
bool has_i8mm = false;
|
||||
bool has_sme = false;
|
||||
|
||||
aarch64_features() {
|
||||
#if defined(__linux__)
|
||||
uint32_t hwcap = getauxval(AT_HWCAP);
|
||||
uint32_t hwcap2 = getauxval(AT_HWCAP2);
|
||||
|
||||
has_dotprod = !!(hwcap & HWCAP_ASIMDDP);
|
||||
has_fp16_va = !!(hwcap & HWCAP_FPHP);
|
||||
has_sve = !!(hwcap & HWCAP_SVE);
|
||||
has_sve2 = !!(hwcap2 & HWCAP2_SVE2);
|
||||
has_i8mm = !!(hwcap2 & HWCAP2_I8MM);
|
||||
has_sme = !!(hwcap2 & HWCAP2_SME);
|
||||
#elif defined(__APPLE__)
|
||||
int oldp = 0;
|
||||
size_t size = sizeof(oldp);
|
||||
|
||||
if (sysctlbyname("hw.optional.arm.FEAT_DotProd", &oldp, &size, NULL, 0) == 0) {
|
||||
has_dotprod = static_cast<bool>(oldp);
|
||||
}
|
||||
|
||||
if (sysctlbyname("hw.optional.arm.FEAT_I8MM", &oldp, &size, NULL, 0) == 0) {
|
||||
has_i8mm = static_cast<bool>(oldp);
|
||||
}
|
||||
|
||||
if (sysctlbyname("hw.optional.arm.FEAT_SME", &oldp, &size, NULL, 0) == 0) {
|
||||
has_sme = static_cast<bool>(oldp);
|
||||
}
|
||||
|
||||
// Apple apparently does not implement SVE yet
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
static int ggml_backend_cpu_aarch64_score() {
|
||||
int score = 1;
|
||||
aarch64_features af;
|
||||
|
||||
#ifdef GGML_USE_DOTPROD
|
||||
if (!af.has_dotprod) { return 0; }
|
||||
score += 1<<1;
|
||||
#endif
|
||||
#ifdef GGML_USE_FP16_VECTOR_ARITHMETIC
|
||||
if (!af.has_fp16_va) { return 0; }
|
||||
score += 1<<2;
|
||||
#endif
|
||||
#ifdef GGML_USE_SVE
|
||||
if (!af.has_sve) { return 0; }
|
||||
score += 1<<3;
|
||||
#endif
|
||||
#ifdef GGML_USE_MATMUL_INT8
|
||||
if (!af.has_i8mm) { return 0; }
|
||||
score += 1<<4;
|
||||
#endif
|
||||
#ifdef GGML_USE_SVE2
|
||||
if (!af.has_sve2) { return 0; }
|
||||
score += 1<<5;
|
||||
#endif
|
||||
#ifdef GGML_USE_SME
|
||||
if (!af.has_sme) { return 0; }
|
||||
score += 1<<6;
|
||||
#endif
|
||||
|
||||
return score;
|
||||
}
|
||||
|
||||
GGML_BACKEND_DL_SCORE_IMPL(ggml_backend_cpu_aarch64_score)
|
||||
|
||||
# endif // defined(__aarch64__)
|
||||
4113
ggml/src/ggml-cpu/arch/arm/quants.c
Normal file
4113
ggml/src/ggml-cpu/arch/arm/quants.c
Normal file
File diff suppressed because it is too large
Load Diff
2174
ggml/src/ggml-cpu/arch/arm/repack.cpp
Normal file
2174
ggml/src/ggml-cpu/arch/arm/repack.cpp
Normal file
File diff suppressed because it is too large
Load Diff
2638
ggml/src/ggml-cpu/arch/loongarch/quants.c
Normal file
2638
ggml/src/ggml-cpu/arch/loongarch/quants.c
Normal file
File diff suppressed because it is too large
Load Diff
2731
ggml/src/ggml-cpu/arch/powerpc/quants.c
Normal file
2731
ggml/src/ggml-cpu/arch/powerpc/quants.c
Normal file
File diff suppressed because it is too large
Load Diff
2068
ggml/src/ggml-cpu/arch/riscv/quants.c
Normal file
2068
ggml/src/ggml-cpu/arch/riscv/quants.c
Normal file
File diff suppressed because it is too large
Load Diff
396
ggml/src/ggml-cpu/arch/riscv/repack.cpp
Normal file
396
ggml/src/ggml-cpu/arch/riscv/repack.cpp
Normal file
@@ -0,0 +1,396 @@
|
||||
#define GGML_COMMON_IMPL_CPP
|
||||
#define GGML_COMMON_DECL_CPP
|
||||
#include "ggml-common.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "traits.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstring>
|
||||
#include <cassert>
|
||||
#include <cstdlib> // for qsort
|
||||
#include <cstdio> // for GGML_ASSERT
|
||||
|
||||
#define GGML_CPU_CLANG_WORKAROUND
|
||||
#include "../../repack.h"
|
||||
|
||||
#if defined(__GNUC__)
|
||||
#pragma GCC diagnostic ignored "-Woverlength-strings"
|
||||
#endif
|
||||
|
||||
#define UNUSED GGML_UNUSED
|
||||
|
||||
void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
const int qk = QK8_0;
|
||||
const int nb = n / qk;
|
||||
const int ncols_interleaved = 8;
|
||||
const int blocklen = 8;
|
||||
|
||||
assert (n % qk == 0);
|
||||
assert (nc % ncols_interleaved == 0);
|
||||
|
||||
UNUSED(s);
|
||||
UNUSED(bs);
|
||||
UNUSED(vx);
|
||||
UNUSED(vy);
|
||||
UNUSED(nr);
|
||||
UNUSED(nc);
|
||||
UNUSED(nb);
|
||||
UNUSED(ncols_interleaved);
|
||||
UNUSED(blocklen);
|
||||
|
||||
#if defined __riscv_v
|
||||
if (__riscv_vlenb() >= QK4_0) {
|
||||
const size_t vl = QK4_0;
|
||||
|
||||
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
|
||||
|
||||
vfloat32m1_t sumf = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
|
||||
for (int l = 0; l < nb; l++) {
|
||||
const int64_t a0 = *(const int64_t *)&a_ptr[l].qs[0];
|
||||
const int64_t a1 = *(const int64_t *)&a_ptr[l].qs[8];
|
||||
const int64_t a2 = *(const int64_t *)&a_ptr[l].qs[16];
|
||||
const int64_t a3 = *(const int64_t *)&a_ptr[l].qs[24];
|
||||
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment constraints
|
||||
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(a0, vl / 4));
|
||||
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(a1, vl / 4));
|
||||
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(a2, vl / 4));
|
||||
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(a3, vl / 4));
|
||||
|
||||
const vint8m4_t rhs_raw_vec = __riscv_vle8_v_i8m4((const int8_t *)b_ptr[l].qs, vl * 4);
|
||||
const vint8m4_t rhs_vec_lo = __riscv_vsra_vx_i8m4(__riscv_vsll_vx_i8m4(rhs_raw_vec, 4, vl * 4), 4, vl * 4);
|
||||
const vint8m4_t rhs_vec_hi = __riscv_vsra_vx_i8m4(rhs_raw_vec, 4, vl * 4);
|
||||
const vint8m2_t rhs_vec_lo_0 = __riscv_vget_v_i8m4_i8m2(rhs_vec_lo, 0);
|
||||
const vint8m2_t rhs_vec_lo_1 = __riscv_vget_v_i8m4_i8m2(rhs_vec_lo, 1);
|
||||
const vint8m2_t rhs_vec_hi_0 = __riscv_vget_v_i8m4_i8m2(rhs_vec_hi, 0);
|
||||
const vint8m2_t rhs_vec_hi_1 = __riscv_vget_v_i8m4_i8m2(rhs_vec_hi, 1);
|
||||
|
||||
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
|
||||
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
|
||||
|
||||
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_hi_m));
|
||||
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
|
||||
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
|
||||
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
|
||||
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
|
||||
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
|
||||
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
|
||||
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
|
||||
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
|
||||
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
|
||||
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
|
||||
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
|
||||
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
|
||||
|
||||
// vector version needs Zvfhmin extension
|
||||
const float a_scale = GGML_FP16_TO_FP32(a_ptr[l].d);
|
||||
const float b_scales[8] = {
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[0]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[1]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[2]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[3]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[4]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[5]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[6]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[7])
|
||||
};
|
||||
const vfloat32m1_t b_scales_vec = __riscv_vle32_v_f32m1(b_scales, vl / 4);
|
||||
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scale, vl / 4);
|
||||
sumf = __riscv_vfmacc_vv_f32m1(sumf, tmp1, b_scales_vec, vl / 4);
|
||||
}
|
||||
__riscv_vse32_v_f32m1(s + x * ncols_interleaved, sumf, vl / 4);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
#endif
|
||||
{
|
||||
float sumf[8];
|
||||
int sumi;
|
||||
|
||||
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
|
||||
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
|
||||
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
|
||||
}
|
||||
sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
const int qk = QK8_0;
|
||||
const int nb = n / qk;
|
||||
const int ncols_interleaved = 8;
|
||||
const int blocklen = 8;
|
||||
|
||||
assert (n % qk == 0);
|
||||
assert (nr % 4 == 0);
|
||||
assert (nc % ncols_interleaved == 0);
|
||||
|
||||
UNUSED(s);
|
||||
UNUSED(bs);
|
||||
UNUSED(vx);
|
||||
UNUSED(vy);
|
||||
UNUSED(nr);
|
||||
UNUSED(nc);
|
||||
UNUSED(nb);
|
||||
UNUSED(ncols_interleaved);
|
||||
UNUSED(blocklen);
|
||||
|
||||
#if defined __riscv_v
|
||||
if (__riscv_vlenb() >= QK4_0) {
|
||||
const size_t vl = QK4_0;
|
||||
|
||||
for (int y = 0; y < nr / 4; y++) {
|
||||
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
|
||||
vfloat32m1_t sumf0 = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
|
||||
vfloat32m1_t sumf1 = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
|
||||
vfloat32m1_t sumf2 = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
|
||||
vfloat32m1_t sumf3 = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
|
||||
for (int l = 0; l < nb; l++) {
|
||||
const vint8m4_t rhs_raw_vec = __riscv_vle8_v_i8m4((const int8_t *)b_ptr[l].qs, vl * 4);
|
||||
const vint8m4_t rhs_vec_lo = __riscv_vsra_vx_i8m4(__riscv_vsll_vx_i8m4(rhs_raw_vec, 4, vl * 4), 4, vl * 4);
|
||||
const vint8m4_t rhs_vec_hi = __riscv_vsra_vx_i8m4(rhs_raw_vec, 4, vl * 4);
|
||||
const vint8m2_t rhs_vec_lo_0 = __riscv_vget_v_i8m4_i8m2(rhs_vec_lo, 0);
|
||||
const vint8m2_t rhs_vec_lo_1 = __riscv_vget_v_i8m4_i8m2(rhs_vec_lo, 1);
|
||||
const vint8m2_t rhs_vec_hi_0 = __riscv_vget_v_i8m4_i8m2(rhs_vec_hi, 0);
|
||||
const vint8m2_t rhs_vec_hi_1 = __riscv_vget_v_i8m4_i8m2(rhs_vec_hi, 1);
|
||||
|
||||
// vector version needs Zvfhmin extension
|
||||
const float a_scales[4] = {
|
||||
GGML_FP16_TO_FP32(a_ptr[l].d[0]),
|
||||
GGML_FP16_TO_FP32(a_ptr[l].d[1]),
|
||||
GGML_FP16_TO_FP32(a_ptr[l].d[2]),
|
||||
GGML_FP16_TO_FP32(a_ptr[l].d[3])
|
||||
};
|
||||
const float b_scales[8] = {
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[0]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[1]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[2]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[3]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[4]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[5]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[6]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[7])
|
||||
};
|
||||
const vfloat32m1_t b_scales_vec = __riscv_vle32_v_f32m1(b_scales, vl / 4);
|
||||
|
||||
const int64_t A0 = *(const int64_t *)&a_ptr[l].qs[0];
|
||||
const int64_t A4 = *(const int64_t *)&a_ptr[l].qs[32];
|
||||
const int64_t A8 = *(const int64_t *)&a_ptr[l].qs[64];
|
||||
const int64_t Ac = *(const int64_t *)&a_ptr[l].qs[96];
|
||||
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment
|
||||
vint16m4_t sumi_l0;
|
||||
{
|
||||
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A0, vl / 4));
|
||||
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A4, vl / 4));
|
||||
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A8, vl / 4));
|
||||
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Ac, vl / 4));
|
||||
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
|
||||
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
|
||||
|
||||
sumi_l0 = sumi_hi_m;
|
||||
}
|
||||
|
||||
{
|
||||
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_l0));
|
||||
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
|
||||
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
|
||||
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
|
||||
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
|
||||
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
|
||||
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
|
||||
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
|
||||
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
|
||||
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
|
||||
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
|
||||
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
|
||||
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
|
||||
|
||||
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scales[0], vl / 4);
|
||||
sumf0 = __riscv_vfmacc_vv_f32m1(sumf0, tmp1, b_scales_vec, vl / 4);
|
||||
}
|
||||
|
||||
const int64_t A1 = *(const int64_t *)&a_ptr[l].qs[8];
|
||||
const int64_t A5 = *(const int64_t *)&a_ptr[l].qs[40];
|
||||
const int64_t A9 = *(const int64_t *)&a_ptr[l].qs[72];
|
||||
const int64_t Ad = *(const int64_t *)&a_ptr[l].qs[104];
|
||||
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment
|
||||
vint16m4_t sumi_l1;
|
||||
{
|
||||
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A1, vl / 4));
|
||||
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A5, vl / 4));
|
||||
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A9, vl / 4));
|
||||
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Ad, vl / 4));
|
||||
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
|
||||
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
|
||||
|
||||
sumi_l1 = sumi_hi_m;
|
||||
}
|
||||
|
||||
{
|
||||
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_l1));
|
||||
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
|
||||
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
|
||||
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
|
||||
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
|
||||
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
|
||||
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
|
||||
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
|
||||
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
|
||||
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
|
||||
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
|
||||
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
|
||||
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
|
||||
|
||||
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scales[1], vl / 4);
|
||||
sumf1 = __riscv_vfmacc_vv_f32m1(sumf1, tmp1, b_scales_vec, vl / 4);
|
||||
}
|
||||
|
||||
const int64_t A2 = *(const int64_t *)&a_ptr[l].qs[16];
|
||||
const int64_t A6 = *(const int64_t *)&a_ptr[l].qs[48];
|
||||
const int64_t Aa = *(const int64_t *)&a_ptr[l].qs[80];
|
||||
const int64_t Ae = *(const int64_t *)&a_ptr[l].qs[112];
|
||||
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment
|
||||
vint16m4_t sumi_l2;
|
||||
{
|
||||
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A2, vl / 4));
|
||||
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A6, vl / 4));
|
||||
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Aa, vl / 4));
|
||||
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Ae, vl / 4));
|
||||
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
|
||||
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
|
||||
|
||||
sumi_l2 = sumi_hi_m;
|
||||
}
|
||||
|
||||
{
|
||||
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_l2));
|
||||
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
|
||||
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
|
||||
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
|
||||
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
|
||||
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
|
||||
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
|
||||
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
|
||||
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
|
||||
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
|
||||
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
|
||||
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
|
||||
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
|
||||
|
||||
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scales[2], vl / 4);
|
||||
sumf2 = __riscv_vfmacc_vv_f32m1(sumf2, tmp1, b_scales_vec, vl / 4);
|
||||
}
|
||||
|
||||
const int64_t A3 = *(const int64_t *)&a_ptr[l].qs[24];
|
||||
const int64_t A7 = *(const int64_t *)&a_ptr[l].qs[56];
|
||||
const int64_t Ab = *(const int64_t *)&a_ptr[l].qs[88];
|
||||
const int64_t Af = *(const int64_t *)&a_ptr[l].qs[120];
|
||||
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment
|
||||
vint16m4_t sumi_l3;
|
||||
{
|
||||
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A3, vl / 4));
|
||||
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A7, vl / 4));
|
||||
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Ab, vl / 4));
|
||||
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Af, vl / 4));
|
||||
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
|
||||
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
|
||||
|
||||
sumi_l3 = sumi_hi_m;
|
||||
}
|
||||
|
||||
{
|
||||
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_l3));
|
||||
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
|
||||
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
|
||||
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
|
||||
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
|
||||
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
|
||||
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
|
||||
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
|
||||
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
|
||||
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
|
||||
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
|
||||
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
|
||||
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
|
||||
|
||||
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scales[3], vl / 4);
|
||||
sumf3 = __riscv_vfmacc_vv_f32m1(sumf3, tmp1, b_scales_vec, vl / 4);
|
||||
}
|
||||
}
|
||||
__riscv_vse32_v_f32m1(&s[(y * 4 + 0) * bs + x * ncols_interleaved], sumf0, vl / 4);
|
||||
__riscv_vse32_v_f32m1(&s[(y * 4 + 1) * bs + x * ncols_interleaved], sumf1, vl / 4);
|
||||
__riscv_vse32_v_f32m1(&s[(y * 4 + 2) * bs + x * ncols_interleaved], sumf2, vl / 4);
|
||||
__riscv_vse32_v_f32m1(&s[(y * 4 + 3) * bs + x * ncols_interleaved], sumf3, vl / 4);
|
||||
}
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__)
|
||||
float sumf[4][8];
|
||||
int sumi;
|
||||
|
||||
for (int y = 0; y < nr / 4; y++) {
|
||||
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
|
||||
}
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
|
||||
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
|
||||
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
|
||||
}
|
||||
sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d[m]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++)
|
||||
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
1299
ggml/src/ggml-cpu/arch/s390/quants.c
Normal file
1299
ggml/src/ggml-cpu/arch/s390/quants.c
Normal file
File diff suppressed because it is too large
Load Diff
1480
ggml/src/ggml-cpu/arch/wasm/quants.c
Normal file
1480
ggml/src/ggml-cpu/arch/wasm/quants.c
Normal file
File diff suppressed because it is too large
Load Diff
4310
ggml/src/ggml-cpu/arch/x86/quants.c
Normal file
4310
ggml/src/ggml-cpu/arch/x86/quants.c
Normal file
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -1,7 +1,7 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-cpu-traits.h"
|
||||
#include "traits.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "ggml-impl.h"
|
||||
|
||||
|
||||
@@ -1,8 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml-cpu-traits.h"
|
||||
#include "ggml.h"
|
||||
|
||||
// GGML internal header
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_cpu_aarch64_buffer_type(void);
|
||||
@@ -320,21 +320,17 @@ inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b)
|
||||
|
||||
#ifdef __wasm_simd128__
|
||||
#include <wasm_simd128.h>
|
||||
#else
|
||||
#endif
|
||||
|
||||
#ifdef __POWER9_VECTOR__
|
||||
#include <altivec.h>
|
||||
#else
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
#include <intrin.h>
|
||||
#else
|
||||
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) || defined(__SSE__)
|
||||
#if !defined(__riscv)
|
||||
#elif defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) || defined(__SSE__)
|
||||
#include <immintrin.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef __riscv_v_intrinsic
|
||||
#include <riscv_vector.h>
|
||||
@@ -510,3 +506,28 @@ void ggml_barrier(struct ggml_threadpool * tp);
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#define GGML_DO_PRAGMA_(x) _Pragma (#x)
|
||||
#define GGML_DO_PRAGMA(x) GGML_DO_PRAGMA_(x)
|
||||
#if defined(GGML_CPU_GENERIC) || defined(__HIPCC__)
|
||||
// Note for Apple targets:
|
||||
// - clang: aliases are not supported on darwin
|
||||
// - all native kernels need to be implemented in both x86 and arm files
|
||||
// - on iOS, tvOS, and visionOS, if cmake cannot determine the target architecture, all `_generic` names are replaced by defines
|
||||
# define GGML_WEAK_ALIAS(name, alias)
|
||||
#elif defined(__GNUC__)
|
||||
// GCC/Clang on *nix
|
||||
# define GGML_WEAK_ALIAS(name, alias) GGML_DO_PRAGMA(weak name = alias) // NOLINT
|
||||
#elif defined(_MSC_VER) && defined(_WIN64)
|
||||
// MSVC
|
||||
// Note: C name mangling varies across different calling conventions
|
||||
// see https://learn.microsoft.com/en-us/cpp/build/reference/decorated-names?view=msvc-170
|
||||
# define GGML_WEAK_ALIAS(name, alias) GGML_DO_PRAGMA(comment(linker, "/alternatename:" #name "=" #alias))
|
||||
#elif defined(_MSC_VER) && defined(WIN32)
|
||||
// ref: https://github.com/ggml-org/whisper.cpp/pull/3239#issuecomment-2958224591
|
||||
# define GGML_WEAK_ALIAS(name, alias) GGML_DO_PRAGMA(comment(linker, "/alternatename:_" #name "=_" #alias))
|
||||
#else
|
||||
# error "Unsupported compiler for GGML_WEAK_ALIAS"
|
||||
#endif
|
||||
|
||||
#define GGML_CPU_NATIVE_IMPL(name) GGML_WEAK_ALIAS(name, name ## _generic)
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,63 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#define GGML_COMMON_DECL_C
|
||||
#include "ggml-common.h"
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
// GGML CPU internal header
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Quantization
|
||||
void quantize_row_q4_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q4_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_q2_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q3_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q4_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q6_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_tq1_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_tq2_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_iq4_nl (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq4_xs (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
// Dot product
|
||||
void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_dot_tq1_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_tq2_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq1_m_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_nl_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
@@ -3,11 +3,11 @@
|
||||
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-cpu-traits.h"
|
||||
#include "traits.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-cpu-quants.h"
|
||||
#include "quants.h"
|
||||
#include "ggml-threading.h"
|
||||
#include "unary-ops.h"
|
||||
#include "binary-ops.h"
|
||||
@@ -270,7 +270,11 @@ static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
|
||||
.from_float = quantize_row_q4_K,
|
||||
.vec_dot = ggml_vec_dot_q4_K_q8_K,
|
||||
.vec_dot_type = GGML_TYPE_Q8_K,
|
||||
#if defined (__ARM_FEATURE_MATMUL_INT8)
|
||||
.nrows = 2,
|
||||
#else
|
||||
.nrows = 1,
|
||||
#endif
|
||||
},
|
||||
[GGML_TYPE_Q5_K] = {
|
||||
.from_float = quantize_row_q5_K,
|
||||
@@ -2414,12 +2418,32 @@ static bool ggml_thread_apply_priority(int32_t prio) {
|
||||
// This is up to the applications.
|
||||
DWORD p = THREAD_PRIORITY_NORMAL;
|
||||
switch (prio) {
|
||||
case GGML_SCHED_PRIO_LOW: p = THREAD_PRIORITY_BELOW_NORMAL; break;
|
||||
case GGML_SCHED_PRIO_NORMAL: p = THREAD_PRIORITY_NORMAL; break;
|
||||
case GGML_SCHED_PRIO_MEDIUM: p = THREAD_PRIORITY_ABOVE_NORMAL; break;
|
||||
case GGML_SCHED_PRIO_HIGH: p = THREAD_PRIORITY_HIGHEST; break;
|
||||
case GGML_SCHED_PRIO_REALTIME: p = THREAD_PRIORITY_TIME_CRITICAL; break;
|
||||
}
|
||||
|
||||
if (prio != GGML_SCHED_PRIO_LOW) {
|
||||
// Tell Windows that this thread should not be throttled (needs its own CPU core).
|
||||
// Newer Windows 11 versions aggresively park (offline) CPU cores and often place
|
||||
// all our threads onto the first 4 cores which results in terrible performance with
|
||||
// n_threads > 4
|
||||
#if _WIN32_WINNT >= 0x0602
|
||||
THREAD_POWER_THROTTLING_STATE t;
|
||||
ZeroMemory(&t, sizeof(t));
|
||||
t.Version = THREAD_POWER_THROTTLING_CURRENT_VERSION;
|
||||
t.ControlMask = THREAD_POWER_THROTTLING_EXECUTION_SPEED;
|
||||
t.StateMask = 0;
|
||||
|
||||
if (!SetThreadInformation(GetCurrentThread(), ThreadPowerThrottling, &t, sizeof(t))) {
|
||||
GGML_LOG_DEBUG("failed to disable thread power throttling %d : (%d)\n", prio, (int) GetLastError());
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
if (prio == GGML_SCHED_PRIO_NORMAL) {
|
||||
// Keep inherited policy/priority
|
||||
return true;
|
||||
@@ -2447,6 +2471,8 @@ static bool ggml_thread_apply_priority(int32_t prio) {
|
||||
struct sched_param p;
|
||||
int32_t policy = SCHED_OTHER;
|
||||
switch (prio) {
|
||||
// TODO: there seems to be no way to set lower prio on Apple platforms
|
||||
case GGML_SCHED_PRIO_LOW: policy = SCHED_OTHER; p.sched_priority = 0; break;
|
||||
case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
|
||||
case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
|
||||
case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
|
||||
@@ -2503,6 +2529,7 @@ static bool ggml_thread_apply_priority(int32_t prio) {
|
||||
struct sched_param p;
|
||||
int32_t policy = SCHED_OTHER;
|
||||
switch (prio) {
|
||||
case GGML_SCHED_PRIO_LOW: policy = SCHED_BATCH; p.sched_priority = 0; break;
|
||||
case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
|
||||
case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
|
||||
case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
|
||||
@@ -3484,6 +3511,19 @@ void ggml_cpu_init(void) {
|
||||
const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
|
||||
|
||||
GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0);
|
||||
|
||||
#ifdef GGML_USE_OPENMP
|
||||
//if (!getenv("OMP_WAIT_POLICY")) {
|
||||
// // set the wait policy to active, so that OpenMP threads don't sleep
|
||||
// putenv("OMP_WAIT_POLICY=active");
|
||||
//}
|
||||
|
||||
if (!getenv("KMP_BLOCKTIME")) {
|
||||
// set the time to wait before sleeping a thread
|
||||
// this is less aggressive than setting the wait policy to active, but should achieve similar results in most cases
|
||||
putenv("KMP_BLOCKTIME=200"); // 200ms
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
#if defined(__ARM_ARCH)
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-cpu-aarch64.h"
|
||||
#include "ggml-cpu-traits.h"
|
||||
#include "repack.h"
|
||||
#include "traits.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "amx/amx.h"
|
||||
|
||||
@@ -11,7 +11,7 @@
|
||||
#include <vector>
|
||||
|
||||
#ifdef GGML_USE_CPU_HBM
|
||||
# include "ggml-cpu-hbm.h"
|
||||
# include "hbm.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CPU_KLEIDIAI
|
||||
@@ -51,9 +51,9 @@ std::vector<ggml_backend_buffer_type_t>& ggml_backend_cpu_get_extra_buffers_type
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CPU_AARCH64
|
||||
if (ggml_backend_cpu_aarch64_buffer_type()) {
|
||||
bufts.push_back(ggml_backend_cpu_aarch64_buffer_type());
|
||||
#ifdef GGML_USE_CPU_REPACK
|
||||
if (ggml_backend_cpu_repack_buffer_type()) {
|
||||
bufts.push_back(ggml_backend_cpu_repack_buffer_type());
|
||||
}
|
||||
#endif
|
||||
|
||||
@@ -596,8 +596,8 @@ static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t r
|
||||
#ifdef GGML_USE_CPU_KLEIDIAI
|
||||
features.push_back({ "KLEIDIAI", "1" });
|
||||
#endif
|
||||
#ifdef GGML_USE_CPU_AARCH64
|
||||
features.push_back({ "AARCH64_REPACK", "1" });
|
||||
#ifdef GGML_USE_CPU_REPACK
|
||||
features.push_back({ "REPACK", "1" });
|
||||
#endif
|
||||
|
||||
features.push_back({ nullptr, nullptr });
|
||||
|
||||
@@ -5,7 +5,7 @@
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-impl.h"
|
||||
|
||||
#include "ggml-cpu-hbm.h"
|
||||
#include "hbm.h"
|
||||
|
||||
// buffer type HBM
|
||||
|
||||
@@ -26,7 +26,7 @@
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-threading.h"
|
||||
#include "ggml-cpu-traits.h"
|
||||
#include "traits.h"
|
||||
|
||||
#include "kernels.h"
|
||||
|
||||
|
||||
@@ -7633,39 +7633,83 @@ static void ggml_compute_forward_ssm_scan_f32(
|
||||
const int ir1 = MIN(ir0 + dr, nr);
|
||||
const int ir = ir1 - ir0;
|
||||
|
||||
for (int i3 = 0; i3 < n_s; ++i3) {
|
||||
for (int i2 = 0; i2 < n_t; ++i2) {
|
||||
const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
|
||||
const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
||||
const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
|
||||
const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
|
||||
const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
|
||||
const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
|
||||
float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
||||
float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
|
||||
#ifdef __ARM_FEATURE_SVE
|
||||
for (int i3 = 0; i3 < n_s; ++i3) {
|
||||
for (int i2 = 0; i2 < n_t; ++i2) {
|
||||
const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
|
||||
const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
||||
const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
|
||||
const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
|
||||
const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
|
||||
const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
|
||||
float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
||||
float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
|
||||
|
||||
// use the output as the source for the next token-wise iterations
|
||||
if (i2 > 0) { s0 = s; }
|
||||
// use the output as the source for the next token-wise iterations
|
||||
if (i2 > 0) { s0 = s; }
|
||||
|
||||
// d_inner
|
||||
for (int i1 = 0; i1 < ir; ++i1) {
|
||||
// ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
|
||||
float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
|
||||
float x_dt = x[i1] * dt_soft_plus;
|
||||
float sumf = 0.0f;
|
||||
// d_state
|
||||
for (int i0 = 0; i0 < nc; ++i0) {
|
||||
int i = i0 + i1*nc;
|
||||
// state = prev_state * dA + dB * x
|
||||
float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
|
||||
// y = rowwise_dotprod(state, C)
|
||||
sumf += state * C[i0];
|
||||
s[i] = state;
|
||||
// d_inner
|
||||
for (int i1 = 0; i1 < ir; ++i1) {
|
||||
float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
|
||||
float x_dt = x[i1] * dt_soft_plus;
|
||||
svfloat32_t vx_dt = GGML_F32_VEC_SET1(x_dt);
|
||||
svfloat32_t vdt_soft_plus = GGML_F32_VEC_SET1(dt_soft_plus);
|
||||
svfloat32_t r1_vector = GGML_F32_VEC_ZERO;
|
||||
|
||||
for (int64_t k = 0; k < nc; k += svcntw()) {
|
||||
svfloat32_t vA = GGML_F32_VEC_LOAD(&A[i1*nc + k]);
|
||||
svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k]);
|
||||
svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k]);
|
||||
svfloat32_t vs0 = GGML_F32_VEC_LOAD(&s0[i1*nc + k]);
|
||||
|
||||
svfloat32_t t1 = GGML_F32_VEC_MUL(vdt_soft_plus, vA);
|
||||
t1 = exp_ps_sve(svptrue_b32(), t1);
|
||||
svfloat32_t t2 = GGML_F32_VEC_MUL(vx_dt, vB);
|
||||
|
||||
vs0 = GGML_F32_VEC_FMA(vs0, t1, t2);
|
||||
r1_vector = GGML_F32_VEC_ADD(GGML_F32_VEC_MUL(vs0, vC), r1_vector);
|
||||
|
||||
GGML_F32_VEC_STORE(&s[i1*nc + k], vs0);
|
||||
}
|
||||
y[i1] = GGML_F32xt_REDUCE_ONE(r1_vector);
|
||||
}
|
||||
y[i1] = sumf;
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
for (int i3 = 0; i3 < n_s; ++i3) {
|
||||
for (int i2 = 0; i2 < n_t; ++i2) {
|
||||
const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
|
||||
const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
||||
const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
|
||||
const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
|
||||
const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
|
||||
const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
|
||||
float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
||||
float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
|
||||
|
||||
// use the output as the source for the next token-wise iterations
|
||||
if (i2 > 0) { s0 = s; }
|
||||
|
||||
// d_inner
|
||||
for (int i1 = 0; i1 < ir; ++i1) {
|
||||
// ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
|
||||
float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
|
||||
float x_dt = x[i1] * dt_soft_plus;
|
||||
float sumf = 0.0f;
|
||||
// d_state
|
||||
for (int i0 = 0; i0 < nc; ++i0) {
|
||||
int i = i0 + i1*nc;
|
||||
// state = prev_state * dA + dB * x
|
||||
float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
|
||||
// y = rowwise_dotprod(state, C)
|
||||
sumf += state * C[i0];
|
||||
s[i] = state;
|
||||
}
|
||||
y[i1] = sumf;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_compute_forward_ssm_scan(
|
||||
@@ -8070,6 +8114,14 @@ static void ggml_compute_forward_rwkv_wkv6_f32(
|
||||
#define GGML_F32X_MUL GGML_F32x16_MUL
|
||||
#define GGML_F32X_FMA GGML_F32x16_FMA
|
||||
#define WKV_VECTOR_SIZE 16
|
||||
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
|
||||
#define GGML_F32X GGML_F32xt
|
||||
#define GGML_F32X_SET1 GGML_F32xt_SET1
|
||||
#define GGML_F32X_LOAD GGML_F32xt_LOAD
|
||||
#define GGML_F32X_STORE GGML_F32xt_STORE
|
||||
#define GGML_F32X_MUL GGML_F32xt_MUL
|
||||
#define GGML_F32X_FMA GGML_F32xt_FMA
|
||||
#define WKV_VECTOR_SIZE 8
|
||||
#elif defined(__ARM_NEON) && defined(__aarch64__)
|
||||
#define GGML_F32X GGML_F32x4
|
||||
#define GGML_F32X_SET1 GGML_F32x4_SET1
|
||||
@@ -8081,7 +8133,13 @@ static void ggml_compute_forward_rwkv_wkv6_f32(
|
||||
#endif
|
||||
|
||||
#ifdef WKV_VECTOR_SIZE
|
||||
const int64_t vec_count = head_size / WKV_VECTOR_SIZE;
|
||||
int wkv_vector_size;
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
wkv_vector_size = svcntw();
|
||||
#else
|
||||
wkv_vector_size = WKV_VECTOR_SIZE;
|
||||
#endif
|
||||
const int64_t vec_count = head_size / wkv_vector_size;
|
||||
|
||||
for (int64_t t = 0; t < T; t++) {
|
||||
size_t t_offset = t * t_stride;
|
||||
@@ -8111,7 +8169,7 @@ static void ggml_compute_forward_rwkv_wkv6_f32(
|
||||
GGML_F32X time_decay_vec = GGML_F32X_SET1(time_decay_val);
|
||||
|
||||
for (int64_t j = 0; j < vec_count; j++) {
|
||||
size_t base_j = j * WKV_VECTOR_SIZE;
|
||||
size_t base_j = j * wkv_vector_size;
|
||||
size_t t_h_j_offset = t_h_offset + base_j;
|
||||
size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
|
||||
|
||||
@@ -8136,7 +8194,7 @@ static void ggml_compute_forward_rwkv_wkv6_f32(
|
||||
}
|
||||
|
||||
// Handle remaining elements, this will not be used.
|
||||
for (int64_t j = vec_count * WKV_VECTOR_SIZE; j < head_size; j++) {
|
||||
for (int64_t j = vec_count * wkv_vector_size; j < head_size; j++) {
|
||||
size_t t_h_j_offset = t_h_offset + j;
|
||||
size_t h_2d_i_j_offset = h_2d_i_offset + j;
|
||||
float v_val = v[t_h_j_offset];
|
||||
@@ -8272,6 +8330,14 @@ static void ggml_compute_forward_gla_f32(
|
||||
#define GGML_F32X_MUL GGML_F32x16_MUL
|
||||
#define GGML_F32X_FMA GGML_F32x16_FMA
|
||||
#define GLA_VECTOR_SIZE 16
|
||||
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
|
||||
#define GGML_F32X GGML_F32xt
|
||||
#define GGML_F32X_SET1 GGML_F32xt_SET1
|
||||
#define GGML_F32X_LOAD GGML_F32xt_LOAD
|
||||
#define GGML_F32X_STORE GGML_F32xt_STORE
|
||||
#define GGML_F32X_MUL GGML_F32xt_MUL
|
||||
#define GGML_F32X_FMA GGML_F32xt_FMA
|
||||
#define GLA_VECTOR_SIZE 8
|
||||
#elif defined(__ARM_NEON) && defined(__aarch64__)
|
||||
#define GGML_F32X GGML_F32x4
|
||||
#define GGML_F32X_SET1 GGML_F32x4_SET1
|
||||
@@ -8283,7 +8349,13 @@ static void ggml_compute_forward_gla_f32(
|
||||
#endif
|
||||
|
||||
#ifdef GLA_VECTOR_SIZE
|
||||
const int64_t vec_count = head_size / GLA_VECTOR_SIZE;
|
||||
int gla_vector_size;
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
gla_vector_size = svcntw();
|
||||
#else
|
||||
gla_vector_size = GLA_VECTOR_SIZE;
|
||||
#endif
|
||||
const int64_t vec_count = head_size / gla_vector_size;
|
||||
|
||||
for (int64_t t = 0; t < T; t++) {
|
||||
size_t t_offset = t * t_stride;
|
||||
@@ -8310,7 +8382,7 @@ static void ggml_compute_forward_gla_f32(
|
||||
GGML_F32X g_vec = GGML_F32X_SET1(g_val);
|
||||
|
||||
for (int64_t j = 0; j < vec_count; j++) {
|
||||
size_t base_j = j * GLA_VECTOR_SIZE;
|
||||
size_t base_j = j * gla_vector_size;
|
||||
size_t t_h_j_offset = t_h_offset + base_j;
|
||||
size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
|
||||
|
||||
@@ -8334,7 +8406,7 @@ static void ggml_compute_forward_gla_f32(
|
||||
}
|
||||
|
||||
// Handle remaining elements, this will not be used.
|
||||
for (int64_t j = vec_count * GLA_VECTOR_SIZE; j < head_size; j++) {
|
||||
for (int64_t j = vec_count * gla_vector_size; j < head_size; j++) {
|
||||
size_t t_h_j_offset = t_h_offset + j;
|
||||
size_t h_2d_i_j_offset = h_2d_i_offset + j;
|
||||
float v_val = v[t_h_j_offset];
|
||||
@@ -8443,83 +8515,126 @@ static void ggml_compute_forward_rwkv_wkv7_f32(
|
||||
int64_t h_stride_2d = head_size * head_size;
|
||||
|
||||
#if defined(GGML_SIMD)
|
||||
for (int64_t t = 0; t < T; t++) {
|
||||
int64_t t_offset = t * t_stride;
|
||||
int64_t state_offset = head_size * C * (t / (T / n_seqs));
|
||||
float * state_cur = state + state_offset;
|
||||
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
// scalar Route to scalar implementation //TODO: Write SVE code
|
||||
for (int64_t t = 0; t < T; t++) {
|
||||
int64_t t_offset = t * t_stride;
|
||||
int64_t state_offset = head_size * C * (t / (T / n_seqs));
|
||||
float * state_cur = state + state_offset;
|
||||
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
|
||||
|
||||
for (int64_t h = h_start; h < h_end; h++) {
|
||||
int64_t h_offset = h * h_stride;
|
||||
int64_t t_h_offset = t_offset + h_offset;
|
||||
int64_t h_2d_offset = h * h_stride_2d;
|
||||
for (int64_t h = h_start; h < h_end; h++) {
|
||||
int64_t h_offset = h * h_stride;
|
||||
int64_t t_h_offset = t_offset + h_offset;
|
||||
int64_t h_2d_offset = h * h_stride_2d;
|
||||
|
||||
for (int64_t ii = 0; ii < head_size; ii++) {
|
||||
int64_t t_h_i_offset = t_h_offset + ii;
|
||||
int64_t h_2d_i_offset = h_2d_offset + ii * h_stride;
|
||||
for (int64_t i = 0; i < head_size; i++) {
|
||||
int64_t t_h_i_offset = t_h_offset + i;
|
||||
int64_t h_2d_i_offset = h_2d_offset + i * h_stride;
|
||||
|
||||
GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]);
|
||||
float v_val = v[t_h_i_offset];
|
||||
|
||||
float sa = 0;
|
||||
{
|
||||
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
|
||||
GGML_F32_VEC ax[GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) {
|
||||
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
|
||||
ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]);
|
||||
ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]);
|
||||
sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]);
|
||||
}
|
||||
float sa = 0, result = 0;
|
||||
for (int64_t j = 0; j < head_size; j++) {
|
||||
sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j];
|
||||
}
|
||||
GGML_F32_VEC_REDUCE(sa, sum);
|
||||
}
|
||||
|
||||
GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa);
|
||||
for (int64_t j = 0; j < head_size; j++) {
|
||||
int64_t t_h_j_offset = t_h_offset + j;
|
||||
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
|
||||
|
||||
int64_t j = 0;
|
||||
GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
|
||||
for (; j < head_size; j += GGML_F32_STEP) {
|
||||
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
|
||||
int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR;
|
||||
int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR;
|
||||
|
||||
GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]);
|
||||
GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]);
|
||||
GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]);
|
||||
GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]);
|
||||
|
||||
k_vec = GGML_F32_VEC_MUL(v_vec, k_vec);
|
||||
|
||||
GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]);
|
||||
// kv + s * decay + sa * b
|
||||
state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec);
|
||||
state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec);
|
||||
GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec);
|
||||
|
||||
result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec);
|
||||
float r_val = r[t_h_j_offset];
|
||||
float w_val = w[t_h_j_offset];
|
||||
float k_val = k[t_h_j_offset];
|
||||
float b_val = b[t_h_j_offset];
|
||||
float kv_val = v_val * k_val;
|
||||
float prev_state_val = state_prev[h_2d_i_j_offset];
|
||||
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
|
||||
result += state_cur[h_2d_i_j_offset] * r_val;
|
||||
}
|
||||
}
|
||||
GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec);
|
||||
|
||||
// There shouldn't be left-overs though.
|
||||
for (; j < head_size; j++) {
|
||||
int64_t t_h_j_offset = t_h_offset + j;
|
||||
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
|
||||
|
||||
float r_val = r[t_h_j_offset];
|
||||
float w_val = w[t_h_j_offset];
|
||||
float k_val = k[t_h_j_offset];
|
||||
float b_val = b[t_h_j_offset];
|
||||
float kv_val = v[t_h_i_offset] * k_val;
|
||||
|
||||
float prev_state_val = state_prev[h_2d_i_j_offset];
|
||||
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
|
||||
dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val;
|
||||
dst_data[t_h_i_offset] = result;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
for (int64_t t = 0; t < T; t++) {
|
||||
int64_t t_offset = t * t_stride;
|
||||
int64_t state_offset = head_size * C * (t / (T / n_seqs));
|
||||
float * state_cur = state + state_offset;
|
||||
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
|
||||
|
||||
for (int64_t h = h_start; h < h_end; h++) {
|
||||
int64_t h_offset = h * h_stride;
|
||||
int64_t t_h_offset = t_offset + h_offset;
|
||||
int64_t h_2d_offset = h * h_stride_2d;
|
||||
|
||||
for (int64_t ii = 0; ii < head_size; ii++) {
|
||||
int64_t t_h_i_offset = t_h_offset + ii;
|
||||
int64_t h_2d_i_offset = h_2d_offset + ii * h_stride;
|
||||
|
||||
GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]);
|
||||
|
||||
float sa = 0;
|
||||
{
|
||||
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
|
||||
GGML_F32_VEC ax[GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) {
|
||||
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
|
||||
ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]);
|
||||
ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]);
|
||||
sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]);
|
||||
}
|
||||
}
|
||||
GGML_F32_VEC_REDUCE(sa, sum);
|
||||
}
|
||||
|
||||
GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa);
|
||||
|
||||
int64_t j = 0;
|
||||
GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
|
||||
for (; j < head_size; j += GGML_F32_STEP) {
|
||||
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
|
||||
int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR;
|
||||
int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR;
|
||||
|
||||
GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]);
|
||||
GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]);
|
||||
GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]);
|
||||
GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]);
|
||||
|
||||
k_vec = GGML_F32_VEC_MUL(v_vec, k_vec);
|
||||
|
||||
GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]);
|
||||
// kv + s * decay + sa * b
|
||||
state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec);
|
||||
state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec);
|
||||
GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec);
|
||||
|
||||
result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec);
|
||||
}
|
||||
}
|
||||
GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec);
|
||||
|
||||
// There shouldn't be left-overs though.
|
||||
for (; j < head_size; j++) {
|
||||
int64_t t_h_j_offset = t_h_offset + j;
|
||||
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
|
||||
|
||||
float r_val = r[t_h_j_offset];
|
||||
float w_val = w[t_h_j_offset];
|
||||
float k_val = k[t_h_j_offset];
|
||||
float b_val = b[t_h_j_offset];
|
||||
float kv_val = v[t_h_i_offset] * k_val;
|
||||
|
||||
float prev_state_val = state_prev[h_2d_i_j_offset];
|
||||
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
|
||||
dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
for (int64_t t = 0; t < T; t++) {
|
||||
int64_t t_offset = t * t_stride;
|
||||
|
||||
1179
ggml/src/ggml-cpu/quants.c
Normal file
1179
ggml/src/ggml-cpu/quants.c
Normal file
File diff suppressed because it is too large
Load Diff
116
ggml/src/ggml-cpu/quants.h
Normal file
116
ggml/src/ggml-cpu/quants.h
Normal file
@@ -0,0 +1,116 @@
|
||||
#pragma once
|
||||
|
||||
#define GGML_COMMON_DECL_C
|
||||
#include "ggml-common.h"
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
// GGML CPU internal header
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Quantization
|
||||
void quantize_row_q4_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q4_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_q2_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q3_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q4_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q6_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_tq1_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_tq2_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_iq4_nl (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq4_xs (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
// Dot product
|
||||
void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_dot_tq1_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_tq2_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq1_m_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_nl_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
// Generic implementation
|
||||
void quantize_row_q8_0_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
void quantize_row_q8_1_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
void quantize_row_q8_K_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void ggml_vec_dot_q4_0_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q4_1_q8_1_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_0_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_1_q8_1_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q8_0_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_tq1_0_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_tq2_0_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q2_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q3_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q4_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q6_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_xxs_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_xs_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_s_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_xxs_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_s_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq1_s_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq1_m_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_nl_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_xs_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
#if defined(GGML_CPU_GENERIC)
|
||||
#define quantize_row_q8_0_generic quantize_row_q8_0
|
||||
#define quantize_row_q8_1_generic quantize_row_q8_1
|
||||
#define quantize_row_q8_K_generic quantize_row_q8_K
|
||||
#define ggml_vec_dot_q4_0_q8_0_generic ggml_vec_dot_q4_0_q8_0
|
||||
#define ggml_vec_dot_q4_1_q8_1_generic ggml_vec_dot_q4_1_q8_1
|
||||
#define ggml_vec_dot_q5_0_q8_0_generic ggml_vec_dot_q5_0_q8_0
|
||||
#define ggml_vec_dot_q5_1_q8_1_generic ggml_vec_dot_q5_1_q8_1
|
||||
#define ggml_vec_dot_q8_0_q8_0_generic ggml_vec_dot_q8_0_q8_0
|
||||
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
|
||||
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
|
||||
#define ggml_vec_dot_q2_K_q8_K_generic ggml_vec_dot_q2_K_q8_K
|
||||
#define ggml_vec_dot_q3_K_q8_K_generic ggml_vec_dot_q3_K_q8_K
|
||||
#define ggml_vec_dot_q4_K_q8_K_generic ggml_vec_dot_q4_K_q8_K
|
||||
#define ggml_vec_dot_q5_K_q8_K_generic ggml_vec_dot_q5_K_q8_K
|
||||
#define ggml_vec_dot_q6_K_q8_K_generic ggml_vec_dot_q6_K_q8_K
|
||||
#define ggml_vec_dot_iq2_xxs_q8_K_generic ggml_vec_dot_iq2_xxs_q8_K
|
||||
#define ggml_vec_dot_iq2_xs_q8_K_generic ggml_vec_dot_iq2_xs_q8_K
|
||||
#define ggml_vec_dot_iq2_s_q8_K_generic ggml_vec_dot_iq2_s_q8_K
|
||||
#define ggml_vec_dot_iq3_xxs_q8_K_generic ggml_vec_dot_iq3_xxs_q8_K
|
||||
#define ggml_vec_dot_iq3_s_q8_K_generic ggml_vec_dot_iq3_s_q8_K
|
||||
#define ggml_vec_dot_iq1_s_q8_K_generic ggml_vec_dot_iq1_s_q8_K
|
||||
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
||||
#define ggml_vec_dot_iq4_nl_q8_0_generic ggml_vec_dot_iq4_nl_q8_0
|
||||
#define ggml_vec_dot_iq4_xs_q8_K_generic ggml_vec_dot_iq4_xs_q8_K
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
1566
ggml/src/ggml-cpu/repack.cpp
Normal file
1566
ggml/src/ggml-cpu/repack.cpp
Normal file
File diff suppressed because it is too large
Load Diff
119
ggml/src/ggml-cpu/repack.h
Normal file
119
ggml/src/ggml-cpu/repack.h
Normal file
@@ -0,0 +1,119 @@
|
||||
#pragma once
|
||||
|
||||
#define GGML_COMMON_DECL_CPP
|
||||
#include "ggml-common.h"
|
||||
|
||||
#include "traits.h"
|
||||
#include "ggml.h"
|
||||
|
||||
// GGML internal header
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_cpu_repack_buffer_type(void);
|
||||
|
||||
template <int K> constexpr int QK_0() {
|
||||
if constexpr (K == 4) {
|
||||
return QK4_0;
|
||||
}
|
||||
if constexpr (K == 8) {
|
||||
return QK8_0;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
template <int K, int N> struct block {
|
||||
ggml_half d[N]; // deltas for N qK_0 blocks
|
||||
int8_t qs[(QK_0<K>() * N * K) / 8]; // quants for N qK_0 blocks
|
||||
};
|
||||
|
||||
// control size
|
||||
static_assert(sizeof(block<4, 4>) == 4 * sizeof(ggml_half) + QK8_0 * 2, "wrong block<4,4> size/padding");
|
||||
static_assert(sizeof(block<4, 8>) == 8 * sizeof(ggml_half) + QK8_0 * 4, "wrong block<4,8> size/padding");
|
||||
static_assert(sizeof(block<8, 4>) == 4 * sizeof(ggml_half) + QK8_0 * 4, "wrong block<8,4> size/padding");
|
||||
static_assert(sizeof(block<8, 8>) == 8 * sizeof(ggml_half) + QK8_0 * 8, "wrong block<8,8> size/padding");
|
||||
|
||||
using block_q4_0x4 = block<4, 4>;
|
||||
using block_q4_0x8 = block<4, 8>;
|
||||
using block_q8_0x4 = block<8, 4>;
|
||||
using block_q8_0x8 = block<8, 8>;
|
||||
|
||||
struct block_q4_Kx8 {
|
||||
ggml_half d[8]; // super-block scale for quantized scales
|
||||
ggml_half dmin[8]; // super-block scale for quantized mins
|
||||
uint8_t scales[96]; // scales and mins, quantized with 6 bits
|
||||
uint8_t qs[1024]; // 4--bit quants
|
||||
};
|
||||
|
||||
static_assert(sizeof(block_q4_Kx8) == sizeof(ggml_half) * 16 + K_SCALE_SIZE * 8 + QK_K * 4, "wrong q4_K block size/padding");
|
||||
|
||||
struct block_q8_Kx4 {
|
||||
float d[4]; // delta
|
||||
int8_t qs[QK_K * 4]; // quants
|
||||
int16_t bsums[QK_K / 4]; // sum of quants in groups of 16
|
||||
};
|
||||
|
||||
static_assert(sizeof(block_q8_Kx4) == sizeof(float) * 4 + QK_K * 4 + (QK_K / 4) * sizeof(int16_t), "wrong q8_K block size/padding");
|
||||
|
||||
struct block_iq4_nlx4 {
|
||||
ggml_half d[4]; // deltas for 4 iq4_nl blocks
|
||||
uint8_t qs[QK4_NL * 2]; // nibbles / quants for 4 iq4_nl blocks
|
||||
};
|
||||
|
||||
static_assert(sizeof(block_iq4_nlx4) == 4 * sizeof(ggml_half) + QK4_NL * 2, "wrong iq4_nlx4 block size/padding");
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Workaround for clang:
|
||||
// clang++ complains: ``error: call to 'ggml_gemm_q4_0_4x4_q8_0' is ambiguous''
|
||||
// repro: https://godbolt.org/z/oKdeWKonM (ICE), https://godbolt.org/z/1szq6P36v (ambiguous call)
|
||||
#if defined(GGML_CPU_CLANG_WORKAROUND) || !(defined(__GNUC__) && defined(__clang__)) || defined(__HIPCC__)
|
||||
void ggml_quantize_mat_q8_0_4x4(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
void ggml_quantize_mat_q8_0_4x8(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
void ggml_quantize_mat_q8_K_4x8(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
void ggml_gemv_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
#endif // !defined(__clang__)
|
||||
|
||||
// Native implementations
|
||||
void ggml_quantize_mat_q8_0_4x4_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
void ggml_quantize_mat_q8_0_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
void ggml_quantize_mat_q8_K_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
void ggml_gemv_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
|
||||
#if defined(GGML_CPU_GENERIC)
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
@@ -17,7 +17,123 @@
|
||||
// number of elements to fit in a single register
|
||||
//
|
||||
|
||||
#if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
|
||||
#if defined(__ARM_FEATURE_SVE) && defined(__ARM_FEATURE_FMA)
|
||||
|
||||
#define GGML_SIMD
|
||||
|
||||
// F32 SVE
|
||||
#define GGML_F32_EPR 8
|
||||
#define DEFAULT_PG svptrue_b32()
|
||||
|
||||
#define GGML_F32xt svfloat32_t
|
||||
#define GGML_F32xt_ZERO svdup_n_f32(0.0f)
|
||||
#define GGML_F32xt_SET1(x) svdup_n_f32(x)
|
||||
#define GGML_F32xt_LOAD_IMPL(pg, a, ...) svld1_f32(pg, a)
|
||||
#define GGML_F32xt_LOAD(...) GGML_F32xt_LOAD_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_STORE_IMPL(pg,a,b) svst1_f32(pg, a, b)
|
||||
#define GGML_F32xt_STORE(...) GGML_F32xt_STORE_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_FMA_IMPL(pg, a, b, c) svmad_f32_m(pg, a, b, c)
|
||||
#define GGML_F32xt_FMA(...) GGML_F32xt_FMA_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_ADD_IMPL(pg, a, b) svadd_f32_m(pg, a, b)
|
||||
#define GGML_F32xt_ADD(...) GGML_F32xt_ADD_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_MUL_IMPL(pg, a, b) svmul_f32_m(pg, a, b)
|
||||
#define GGML_F32xt_MUL(...) GGML_F32xt_MUL_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_REDUCE_ONE_IMPL(pg, a) svaddv(pg, a)
|
||||
#define GGML_F32xt_REDUCE_ONE(...) GGML_F32xt_REDUCE_ONE_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_REDUCE_IMPL(pg, res, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8) \
|
||||
{ \
|
||||
sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum2); \
|
||||
sum3 = svadd_f32_m(DEFAULT_PG, sum3, sum4); \
|
||||
sum5 = svadd_f32_m(DEFAULT_PG, sum5, sum6); \
|
||||
sum7 = svadd_f32_m(DEFAULT_PG, sum7, sum8); \
|
||||
sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum3); \
|
||||
sum5 = svadd_f32_m(DEFAULT_PG, sum5, sum7); \
|
||||
sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum5); \
|
||||
(res) = (ggml_float) GGML_F32xt_REDUCE_ONE(sum1); \
|
||||
}
|
||||
#define GGML_F32xt_REDUCE(...) GGML_F32xt_REDUCE_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
|
||||
#define GGML_F32_VEC GGML_F32xt
|
||||
#define GGML_F32_VEC_ZERO GGML_F32xt_ZERO
|
||||
#define GGML_F32_VEC_SET1 GGML_F32xt_SET1
|
||||
#define GGML_F32_VEC_LOAD GGML_F32xt_LOAD
|
||||
#define GGML_F32_VEC_STORE GGML_F32xt_STORE
|
||||
#define GGML_F32_VEC_FMA GGML_F32xt_FMA
|
||||
#define GGML_F32_VEC_ADD GGML_F32xt_ADD
|
||||
#define GGML_F32_VEC_MUL GGML_F32xt_MUL
|
||||
#define GGML_F32_VEC_REDUCE GGML_F32xt_REDUCE
|
||||
|
||||
// F16 NEON
|
||||
|
||||
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
|
||||
#define GGML_F16_STEP 32
|
||||
#define GGML_F16_EPR 8
|
||||
|
||||
#define GGML_F16x8 float16x8_t
|
||||
#define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
|
||||
#define GGML_F16x8_SET1(x) vdupq_n_f16(x)
|
||||
#define GGML_F16x8_LOAD(x) vld1q_f16((const __fp16 *)(x))
|
||||
#define GGML_F16x8_STORE vst1q_f16
|
||||
#define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
|
||||
#define GGML_F16x8_ADD vaddq_f16
|
||||
#define GGML_F16x8_MUL vmulq_f16
|
||||
#define GGML_F16x8_REDUCE(res, x) \
|
||||
do { \
|
||||
int offset = GGML_F16_ARR >> 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
|
||||
} \
|
||||
const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 ((x)[0])); \
|
||||
const float32x4_t t1 = vcvt_f32_f16(vget_high_f16((x)[0])); \
|
||||
(res) = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
|
||||
} while (0)
|
||||
|
||||
#define GGML_F16_VEC GGML_F16x8
|
||||
#define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
|
||||
#define GGML_F16_VEC_SET1 GGML_F16x8_SET1
|
||||
#define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
|
||||
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((__fp16 *)(p), (r)[i])
|
||||
#define GGML_F16_VEC_FMA GGML_F16x8_FMA
|
||||
#define GGML_F16_VEC_ADD GGML_F16x8_ADD
|
||||
#define GGML_F16_VEC_MUL GGML_F16x8_MUL
|
||||
#define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
|
||||
#else
|
||||
// if FP16 vector arithmetic is not supported, we use FP32 instead
|
||||
// and take advantage of the vcvt_ functions to convert to/from FP16
|
||||
|
||||
#define GGML_F16_STEP 16
|
||||
#define GGML_F16_EPR 4
|
||||
|
||||
#define GGML_F32Cx4 float32x4_t
|
||||
#define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
|
||||
#define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
|
||||
#define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const __fp16 *)(x)))
|
||||
#define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
|
||||
#define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
|
||||
#define GGML_F32Cx4_ADD vaddq_f32
|
||||
#define GGML_F32Cx4_MUL vmulq_f32
|
||||
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
|
||||
|
||||
#define GGML_F16_VEC GGML_F32Cx4
|
||||
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
|
||||
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
|
||||
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
|
||||
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((__fp16 *)(p), r[i])
|
||||
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
|
||||
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
|
||||
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
|
||||
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
|
||||
#endif
|
||||
|
||||
#elif defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
|
||||
|
||||
#define GGML_SIMD
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#include "ggml-cpu-traits.h"
|
||||
#include "traits.h"
|
||||
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-backend.h"
|
||||
@@ -17,29 +17,98 @@ void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * G
|
||||
|
||||
#if defined(GGML_SIMD)
|
||||
float sumf = 0.0f;
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
const int sve_register_length = ggml_cpu_get_sve_cnt() * 8;
|
||||
const int ggml_f32_epr = sve_register_length / 32;//8;//svcntw(); // SVE128:4, SVE256:8, SVE512:16
|
||||
const int ggml_f32_step = 8 * ggml_f32_epr; // choose 8 SVE registers
|
||||
|
||||
GGML_F32_VEC ax[GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
const int np = (n & ~(ggml_f32_step - 1));
|
||||
svfloat32_t sum1 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum2 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum3 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum4 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum5 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum6 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum7 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum8 = svdup_n_f32(0.0f);
|
||||
svfloat32_t ax1,ax2,ax3,ax4,ax5,ax6,ax7,ax8;
|
||||
svfloat32_t ay1,ay2,ay3,ay4,ay5,ay6,ay7,ay8;
|
||||
for (int i = 0; i < np; i += ggml_f32_step) {
|
||||
ax1 = GGML_F32_VEC_LOAD(x + i);
|
||||
ay1 = GGML_F32_VEC_LOAD(y + i);
|
||||
sum1 = GGML_F32_VEC_FMA(ax1, ay1, sum1);
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
ax2 = GGML_F32_VEC_LOAD(x + i + 1*ggml_f32_epr);
|
||||
ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr);
|
||||
sum2 = GGML_F32_VEC_FMA(ax2, ay2, sum2);
|
||||
|
||||
sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
|
||||
ax3 = GGML_F32_VEC_LOAD(x + i + 2*ggml_f32_epr);
|
||||
ay3 = GGML_F32_VEC_LOAD(y + i + 2*ggml_f32_epr);
|
||||
sum3 = GGML_F32_VEC_FMA(ax3, ay3, sum3);
|
||||
|
||||
ax4 = GGML_F32_VEC_LOAD(x + i + 3*ggml_f32_epr);
|
||||
ay4 = GGML_F32_VEC_LOAD(y + i + 3*ggml_f32_epr);
|
||||
sum4 = GGML_F32_VEC_FMA(ax4, ay4, sum4);
|
||||
|
||||
ax5 = GGML_F32_VEC_LOAD(x + i + 4*ggml_f32_epr);
|
||||
ay5 = GGML_F32_VEC_LOAD(y + i + 4*ggml_f32_epr);
|
||||
sum5 = GGML_F32_VEC_FMA(ax5, ay5, sum5);
|
||||
|
||||
ax6 = GGML_F32_VEC_LOAD(x + i + 5*ggml_f32_epr);
|
||||
ay6 = GGML_F32_VEC_LOAD(y + i + 5*ggml_f32_epr);
|
||||
sum6 = GGML_F32_VEC_FMA(ax6, ay6, sum6);
|
||||
|
||||
ax7 = GGML_F32_VEC_LOAD(x + i + 6*ggml_f32_epr);
|
||||
ay7 = GGML_F32_VEC_LOAD(y + i + 6*ggml_f32_epr);
|
||||
sum7 = GGML_F32_VEC_FMA(ax7, ay7, sum7);
|
||||
|
||||
ax8 = GGML_F32_VEC_LOAD(x + i + 7*ggml_f32_epr);
|
||||
ay8 = GGML_F32_VEC_LOAD(y + i + 7*ggml_f32_epr);
|
||||
sum8 = GGML_F32_VEC_FMA(ax8, ay8, sum8);
|
||||
}
|
||||
}
|
||||
// leftovers
|
||||
// Since 8 unrolls are done in above loop, leftovers lie in range [0, ggml_f32_step] which is handled in below loop
|
||||
const int np2 = (n & ~(ggml_f32_epr - 1));
|
||||
for (int i = np; i < np2; i += ggml_f32_epr) {
|
||||
ax1 = GGML_F32_VEC_LOAD(x + i);
|
||||
ay1 = GGML_F32_VEC_LOAD(y + i);
|
||||
sum1 = GGML_F32_VEC_FMA(ax1, ay1, sum1);
|
||||
}
|
||||
// maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only
|
||||
if (np2 < n) {
|
||||
svbool_t pg = svwhilelt_b32(np2, n);
|
||||
ax1 = svld1_f32(pg, x + np2);
|
||||
ay1 = svld1_f32(pg, y + np2);
|
||||
sum1 = svmad_f32_m(pg, ax1, ay1, sum1);
|
||||
}
|
||||
// reduce sum1,sum2 to sum1
|
||||
GGML_F32_VEC_REDUCE(sumf, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8);
|
||||
#else
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
// reduce sum0..sum3 to sum0
|
||||
GGML_F32_VEC_REDUCE(sumf, sum);
|
||||
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
sumf += x[i]*y[i];
|
||||
}
|
||||
GGML_F32_VEC ax[GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
|
||||
sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
|
||||
}
|
||||
}
|
||||
|
||||
// reduce sum0..sum3 to sum0
|
||||
GGML_F32_VEC_REDUCE(sumf, sum);
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
sumf += x[i]*y[i];
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
// scalar
|
||||
ggml_float sumf = 0.0;
|
||||
|
||||
@@ -5,6 +5,7 @@
|
||||
#include "ggml-impl.h"
|
||||
#include "simd-mappings.h"
|
||||
#include "ggml.h"
|
||||
#include "ggml-cpu.h"
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE)
|
||||
#include <Accelerate/Accelerate.h>
|
||||
@@ -148,27 +149,108 @@ inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * GG
|
||||
|
||||
inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const float * GGML_RESTRICT x, const float v) {
|
||||
#if defined(GGML_SIMD)
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
|
||||
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
|
||||
const int sve_register_length = ggml_cpu_get_sve_cnt() * 8;
|
||||
const int ggml_f32_epr = sve_register_length / 32;//8;//svcntw(); // SVE128:4, SVE256:8, SVE512:16
|
||||
const int ggml_f32_step = 8 * ggml_f32_epr; // choose 8 SVE registers
|
||||
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
|
||||
|
||||
GGML_F32_VEC ax[GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
const int np = (n & ~(ggml_f32_step - 1));
|
||||
svfloat32_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8;
|
||||
svfloat32_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8;
|
||||
for (int i = 0; i < np; i += ggml_f32_step) {
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
|
||||
ax1 = GGML_F32_VEC_LOAD(x + i);
|
||||
ay1 = GGML_F32_VEC_LOAD(y + i);
|
||||
ay1 = GGML_F32_VEC_FMA(ax1, vx, ay1);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
|
||||
GGML_F32_VEC_STORE(y + i, ay1);
|
||||
|
||||
ax2 = GGML_F32_VEC_LOAD(x + i + 1*ggml_f32_epr);
|
||||
ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr);
|
||||
ay2 = GGML_F32_VEC_FMA(ax2, vx, ay2);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 1*ggml_f32_epr, ay2);
|
||||
|
||||
ax3 = GGML_F32_VEC_LOAD(x + i + 2*ggml_f32_epr);
|
||||
ay3 = GGML_F32_VEC_LOAD(y + i + 2*ggml_f32_epr);
|
||||
ay3 = GGML_F32_VEC_FMA(ax3, vx, ay3);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 2*ggml_f32_epr, ay3);
|
||||
|
||||
ax4 = GGML_F32_VEC_LOAD(x + i + 3*ggml_f32_epr);
|
||||
ay4 = GGML_F32_VEC_LOAD(y + i + 3*ggml_f32_epr);
|
||||
ay4 = GGML_F32_VEC_FMA(ax4, vx, ay4);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 3*ggml_f32_epr, ay4);
|
||||
|
||||
ax5 = GGML_F32_VEC_LOAD(x + i + 4*ggml_f32_epr);
|
||||
ay5 = GGML_F32_VEC_LOAD(y + i + 4*ggml_f32_epr);
|
||||
ay5 = GGML_F32_VEC_FMA(ax5, vx, ay5);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 4*ggml_f32_epr, ay5);
|
||||
|
||||
ax6 = GGML_F32_VEC_LOAD(x + i + 5*ggml_f32_epr);
|
||||
ay6 = GGML_F32_VEC_LOAD(y + i + 5*ggml_f32_epr);
|
||||
ay6 = GGML_F32_VEC_FMA(ax6, vx, ay6);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 5*ggml_f32_epr, ay6);
|
||||
|
||||
ax7 = GGML_F32_VEC_LOAD(x + i + 6*ggml_f32_epr);
|
||||
ay7 = GGML_F32_VEC_LOAD(y + i + 6*ggml_f32_epr);
|
||||
ay7 = GGML_F32_VEC_FMA(ax7, vx, ay7);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 6*ggml_f32_epr, ay7);
|
||||
|
||||
ax8 = GGML_F32_VEC_LOAD(x + i + 7*ggml_f32_epr);
|
||||
ay8 = GGML_F32_VEC_LOAD(y + i + 7*ggml_f32_epr);
|
||||
ay8 = GGML_F32_VEC_FMA(ax8, vx, ay8);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 7*ggml_f32_epr, ay8);
|
||||
}
|
||||
}
|
||||
// leftovers
|
||||
// Since 8 unrolls are done in above loop, leftovers lie in range [0, ggml_f32_step] which is handled in below loop
|
||||
const int np2 = (n & ~(ggml_f32_epr - 1));
|
||||
for (int i = np; i < np2; i += ggml_f32_epr) {
|
||||
ax1 = GGML_F32_VEC_LOAD(x + i);
|
||||
ay1 = GGML_F32_VEC_LOAD(y + i);
|
||||
ay1 = GGML_F32_VEC_FMA(ax1, vx, ay1);
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] += x[i]*v;
|
||||
}
|
||||
GGML_F32_VEC_STORE(y + i, ay1);
|
||||
}
|
||||
// maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only
|
||||
if (np2 < n) {
|
||||
svbool_t pg =svwhilelt_b32(np2, n);
|
||||
ax1 = svld1_f32(pg, x + np2);
|
||||
ay1 = svld1_f32(pg, y + np2);
|
||||
ay1 = svmad_f32_m(pg, ax1, vx, ay1);
|
||||
|
||||
svst1_f32(pg, y + np2, ay1);
|
||||
}
|
||||
#else
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
|
||||
|
||||
GGML_F32_VEC ax[GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
|
||||
}
|
||||
}
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] += x[i]*v;
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
// scalar
|
||||
for (int i = 0; i < n; ++i) {
|
||||
@@ -220,36 +302,45 @@ inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int
|
||||
}
|
||||
|
||||
#if defined(GGML_SIMD)
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
|
||||
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
vx[k] = GGML_F32_VEC_SET1(v[k][0]);
|
||||
}
|
||||
|
||||
GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
// scalar Route to scalar implementation //TODO: Write SVE code
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] += x[k][i]*v[k][0];
|
||||
}
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
|
||||
}
|
||||
}
|
||||
#else
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
// leftovers
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] += x[k][i]*v[k][0];
|
||||
GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
|
||||
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
vx[k] = GGML_F32_VEC_SET1(v[k][0]);
|
||||
}
|
||||
}
|
||||
|
||||
GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
|
||||
}
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
|
||||
}
|
||||
}
|
||||
|
||||
// leftovers
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] += x[k][i]*v[k][0];
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
// scalar
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
@@ -265,25 +356,53 @@ inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
|
||||
#if defined(GGML_USE_ACCELERATE)
|
||||
vDSP_vsmul(y, 1, &v, y, 1, n);
|
||||
#elif defined(GGML_SIMD)
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
const int sve_register_length = ggml_cpu_get_sve_cnt() * 8;
|
||||
const int ggml_f32_epr = sve_register_length / 32;//8;//svcntw(); // SVE128:4, SVE256:8, SVE512:16
|
||||
const int ggml_f32_step = 2 * ggml_f32_epr;
|
||||
|
||||
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
|
||||
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
|
||||
const int np = (n & ~(ggml_f32_step - 1));
|
||||
svfloat32_t ay1;
|
||||
svfloat32_t ay2;
|
||||
for (int i = 0; i < np; i += ggml_f32_step) {
|
||||
ay1 = GGML_F32_VEC_LOAD(y + i);
|
||||
ay1 = GGML_F32_VEC_MUL(ay1, vx);
|
||||
GGML_F32_VEC_STORE(y + i, ay1);
|
||||
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
|
||||
ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr);
|
||||
ay2 = GGML_F32_VEC_MUL(ay2, vx);
|
||||
GGML_F32_VEC_STORE(y + i + 1*ggml_f32_epr, ay2);
|
||||
}
|
||||
}
|
||||
// leftovers
|
||||
// maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only
|
||||
if (np < n) {
|
||||
svbool_t pg = svwhilelt_b32(np, n);
|
||||
ay1 = svld1_f32(pg, y + np);
|
||||
ay1 = svmul_f32_m(pg, ay1, vx);
|
||||
svst1_f32(pg, y + np, ay1);
|
||||
}
|
||||
#else
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] *= v;
|
||||
}
|
||||
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
|
||||
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
|
||||
}
|
||||
}
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] *= v;
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
// scalar
|
||||
for (int i = 0; i < n; ++i) {
|
||||
@@ -528,6 +647,42 @@ inline static ggml_fp16_t ggml_silu_f16(ggml_fp16_t x) {
|
||||
#error "ref: https://github.com/ggml-org/llama.cpp/pull/7154#issuecomment-2143844461"
|
||||
#endif
|
||||
|
||||
/* Below function was borrowed from the GitHub repository:
|
||||
https://github.com/openvinotoolkit/openvino/blob/master/src/plugins/intel_cpu/src/nodes/kernels/scaled_attn/common.hpp */
|
||||
#if defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
|
||||
inline static svfloat32_t exp_ps_sve(svbool_t pg, svfloat32_t src) {
|
||||
// Constants
|
||||
const svfloat32_t log2_e = svdup_n_f32(1.4426950409f);
|
||||
const svfloat32_t ln2 = svdup_n_f32(0.6931473921f);
|
||||
const svfloat32_t half_ln2_sq = svdup_n_f32(0.2413862043f);
|
||||
const svuint32_t not_mask17 = svdup_n_u32(~((1u << 17) - 1));
|
||||
const svfloat32_t one = svdup_n_f32(1.0f);
|
||||
const svfloat32_t inactive1 = svdup_n_f32(0.0f);
|
||||
const svint32_t inactive2 = svdup_n_s32(0);
|
||||
|
||||
// Algorithm starts here
|
||||
svfloat32_t t0 = svmul_f32_m(pg, src, log2_e); // y = x * log2(e)
|
||||
svfloat32_t t1 = svrintm_f32_m(inactive1, pg, t0); // rount to int (float)
|
||||
svint32_t t2 = svcvt_s32_f32_m(inactive2, pg, t1); // n
|
||||
|
||||
t1 = svsub_f32_m(pg, t0, t1); // a = y - floor(y)
|
||||
t1 = svadd_f32_m(pg, t1, one); // b = a + 1
|
||||
|
||||
svuint32_t t3 = svlsr_n_u32_m(pg, svreinterpret_u32_f32(t1), 17); // v = b >> 17 (u32)
|
||||
svfloat32_t t4 = svexpa_f32(t3); // c = fexpa(v)
|
||||
t4 = svscale_f32_m(pg, t4, t2); // fexpa(v) * 2^(n)
|
||||
|
||||
// and_(t2.d, t1.d, not_mask17.d)
|
||||
svfloat32_t t5 = svreinterpret_f32_u32(svand_u32_m(pg, svreinterpret_u32_f32(t1), not_mask17));
|
||||
t5 = svsub_f32_m(pg, t1, t5); // z
|
||||
t0 = svmla_f32_m(pg, ln2, t5, half_ln2_sq); // ln2 + half_ln2_sq * z
|
||||
t0 = svmla_f32_m(pg, one, t5, t0); // 1 + (ln2 * z) + (half_ln2_sq * z * z)
|
||||
t0 = svmul_f32_m(pg, t0, t4); // Final result
|
||||
|
||||
return t0;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_NEON) && defined(__aarch64__)
|
||||
|
||||
// adapted from arm limited optimized routine
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user