mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-12 14:03:20 +02:00
Compare commits
206 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
9230dbe2c7 | ||
|
|
812939a9e9 | ||
|
|
4c9fdfbe15 | ||
|
|
9eaa51e7f0 | ||
|
|
8f71d0f3e8 | ||
|
|
381174bbda | ||
|
|
d67341dc18 | ||
|
|
456af35eb7 | ||
|
|
600e3e9b50 | ||
|
|
fffcce535e | ||
|
|
5fc7856815 | ||
|
|
faed5a5f5d | ||
|
|
10bb545c5b | ||
|
|
edc4a29eff | ||
|
|
ed3290ab34 | ||
|
|
8d94713654 | ||
|
|
50d2227953 | ||
|
|
6231c5cd6d | ||
|
|
ef035803eb | ||
|
|
413977de32 | ||
|
|
95402553a5 | ||
|
|
3865cff4f5 | ||
|
|
d03172cc79 | ||
|
|
dd8e59f443 | ||
|
|
bbe98d2784 | ||
|
|
c2056ed6d4 | ||
|
|
c46503014d | ||
|
|
860a9e4eef | ||
|
|
fe9d60e74a | ||
|
|
e434e69183 | ||
|
|
89fea80d29 | ||
|
|
6adc3c3ebc | ||
|
|
0dbcabde8c | ||
|
|
ad590be98c | ||
|
|
7d6d91babf | ||
|
|
d3e64b9f49 | ||
|
|
3ba0d843c6 | ||
|
|
0bf49eb668 | ||
|
|
4ad243677b | ||
|
|
c89c2d1ab9 | ||
|
|
3555b3004b | ||
|
|
d7da8dc83a | ||
|
|
cd355eda7d | ||
|
|
30e5b01de2 | ||
|
|
e54b394082 | ||
|
|
2c2caa4443 | ||
|
|
5fce5f948d | ||
|
|
9ae4143bc6 | ||
|
|
c311ac664d | ||
|
|
b9912ac570 | ||
|
|
00ba772610 | ||
|
|
3cb203c89f | ||
|
|
2e42be42bd | ||
|
|
fb85a288d7 | ||
|
|
40643edb86 | ||
|
|
3cfbbdb44e | ||
|
|
80709b70a2 | ||
|
|
26ff3685bf | ||
|
|
60c666347b | ||
|
|
b7cc7745e3 | ||
|
|
cc8d081879 | ||
|
|
d714dadb57 | ||
|
|
ffad043973 | ||
|
|
0889eba570 | ||
|
|
c61285e739 | ||
|
|
09cf2c7c65 | ||
|
|
c33fe8b8c4 | ||
|
|
ed52f3668e | ||
|
|
a681b4ba83 | ||
|
|
7d516443dd | ||
|
|
f6e1a7aa87 | ||
|
|
c3ee46fab4 | ||
|
|
e2c0b6e46a | ||
|
|
9596506965 | ||
|
|
a20b2b05bc | ||
|
|
2e89f76b7a | ||
|
|
532802f938 | ||
|
|
d4e0d95cf5 | ||
|
|
cc66a7f78f | ||
|
|
bd248d4dc7 | ||
|
|
7781e5fe99 | ||
|
|
89a184fa71 | ||
|
|
2baf07727f | ||
|
|
7ae2932116 | ||
|
|
1f7d50b293 | ||
|
|
4c763c8d1b | ||
|
|
dad5c44398 | ||
|
|
55f6b9fa65 | ||
|
|
3678b838bb | ||
|
|
652b70e667 | ||
|
|
3a12db23b6 | ||
|
|
ae92c1855b | ||
|
|
b7ce1ad1e3 | ||
|
|
97340b4c99 | ||
|
|
2bb0467043 | ||
|
|
b8e2194efc | ||
|
|
1a3b5e80f7 | ||
|
|
1f63e75f3b | ||
|
|
40cbf571c9 | ||
|
|
7f4fbe5183 | ||
|
|
f470bc36be | ||
|
|
8f47e25f56 | ||
|
|
201b31dc2e | ||
|
|
e21d2d4ae2 | ||
|
|
dc0623fddb | ||
|
|
87d34b381d | ||
|
|
b460d16ae8 | ||
|
|
91a8ee6a6f | ||
|
|
056eb74534 | ||
|
|
247e5c6e44 | ||
|
|
5787b5da57 | ||
|
|
228f34c9ce | ||
|
|
0974ad7a7c | ||
|
|
745aa5319b | ||
|
|
487a5e0401 | ||
|
|
d17a809ef0 | ||
|
|
1caae7fc6c | ||
|
|
669c13e0f6 | ||
|
|
146b88e8b3 | ||
|
|
7f37b6cf1e | ||
|
|
3a077146a4 | ||
|
|
d01d112abb | ||
|
|
9f47fa5792 | ||
|
|
9e31bec4fd | ||
|
|
5a8ae3053c | ||
|
|
0d3984424f | ||
|
|
3e63a58ef7 | ||
|
|
2589ad3704 | ||
|
|
482548716f | ||
|
|
3ac67535c8 | ||
|
|
0b4be4c435 | ||
|
|
e0e806f52e | ||
|
|
7e00e60ef8 | ||
|
|
ea1431b0fa | ||
|
|
71e74a3ac9 | ||
|
|
bfb1e012a0 | ||
|
|
3637576288 | ||
|
|
ea394d7ab1 | ||
|
|
5582c49c39 | ||
|
|
c9bbc77931 | ||
|
|
bfd322796c | ||
|
|
093e3f1feb | ||
|
|
663445b0de | ||
|
|
7675c555a1 | ||
|
|
5e1c3aed40 | ||
|
|
c496fe0b1d | ||
|
|
e57bb87ced | ||
|
|
f3a4b1659c | ||
|
|
108009f5c7 | ||
|
|
d337252acf | ||
|
|
af6f91db47 | ||
|
|
a7b8d35f78 | ||
|
|
6eba72b71c | ||
|
|
fedf034a98 | ||
|
|
8726392d3d | ||
|
|
c04621711a | ||
|
|
0fc16b42e8 | ||
|
|
053b1539c0 | ||
|
|
b3a89c3d9e | ||
|
|
e15898d1c7 | ||
|
|
803f8baf4f | ||
|
|
3600cc2886 | ||
|
|
c7e0a2054b | ||
|
|
3f55f781f1 | ||
|
|
51fa76f172 | ||
|
|
12d0188c0d | ||
|
|
eb3949938e | ||
|
|
e562eece7c | ||
|
|
b47ab7b8e9 | ||
|
|
dd665cc9d4 | ||
|
|
df0c0c7d02 | ||
|
|
b49a8ff96b | ||
|
|
53f925074d | ||
|
|
db38704f01 | ||
|
|
07e4351ce6 | ||
|
|
291f2b6913 | ||
|
|
2c90da4c7e | ||
|
|
ec9e0301fe | ||
|
|
e83ba3e460 | ||
|
|
2b131621e6 | ||
|
|
54a2c7a8cd | ||
|
|
21fcc21ad5 | ||
|
|
dd8ba93416 | ||
|
|
66c92061f5 | ||
|
|
5ca82fc1d7 | ||
|
|
6385b843a8 | ||
|
|
1b8fb8152d | ||
|
|
53ae30640e | ||
|
|
763d06edb7 | ||
|
|
10961339b2 | ||
|
|
d98f2a35fc | ||
|
|
e0e3aa231d | ||
|
|
aa6dff05be | ||
|
|
c962ae3382 | ||
|
|
a3938fb53d | ||
|
|
f7873fc698 | ||
|
|
a68247439b | ||
|
|
26b79b6cb3 | ||
|
|
1e8659e65a | ||
|
|
a3c30846e4 | ||
|
|
1701d4c54f | ||
|
|
bef8176387 | ||
|
|
34b7c0439e | ||
|
|
f3101a8cc6 | ||
|
|
1c49c70d07 | ||
|
|
a8ea03d8ad |
@@ -49,19 +49,23 @@ COPY --from=build /app/full /app
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y \
|
||||
git \
|
||||
python3 \
|
||||
python3-pip \
|
||||
&& pip install --upgrade pip setuptools wheel \
|
||||
&& pip install -r requirements.txt \
|
||||
&& apt autoremove -y \
|
||||
&& apt clean -y \
|
||||
&& rm -rf /tmp/* /var/tmp/* \
|
||||
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
|
||||
&& find /var/cache -type f -delete
|
||||
RUN apt-get update && \
|
||||
apt-get install -y \
|
||||
git \
|
||||
python3 \
|
||||
python3-pip \
|
||||
python3-venv && \
|
||||
python3 -m venv /opt/venv && \
|
||||
. /opt/venv/bin/activate && \
|
||||
pip install --upgrade pip setuptools wheel && \
|
||||
pip install -r requirements.txt && \
|
||||
apt autoremove -y && \
|
||||
apt clean -y && \
|
||||
rm -rf /tmp/* /var/tmp/* && \
|
||||
find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete && \
|
||||
find /var/cache -type f -delete
|
||||
|
||||
ENV PATH="/opt/venv/bin:$PATH"
|
||||
|
||||
ENTRYPOINT ["/app/tools.sh"]
|
||||
|
||||
|
||||
@@ -49,6 +49,6 @@ charset = unset
|
||||
trim_trailing_whitespace = unset
|
||||
insert_final_newline = unset
|
||||
|
||||
[tools/mtmd/miniaudio.h]
|
||||
[vendor/miniaudio/miniaudio.h]
|
||||
trim_trailing_whitespace = unset
|
||||
insert_final_newline = unset
|
||||
|
||||
7
.github/labeler.yml
vendored
7
.github/labeler.yml
vendored
@@ -86,3 +86,10 @@ nix:
|
||||
embedding:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file: examples/embedding/
|
||||
|
||||
Ascend NPU:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ggml/include/ggml-cann.h
|
||||
- ggml/src/ggml-cann/**
|
||||
- docs/backend/CANN.md
|
||||
|
||||
143
.github/workflows/build-linux-cross.yml
vendored
143
.github/workflows/build-linux-cross.yml
vendored
@@ -26,12 +26,12 @@ jobs:
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
gcc-14-riscv64-linux-gnu \
|
||||
g++-14-riscv64-linux-gnu \
|
||||
libcurl4-openssl-dev:riscv64
|
||||
g++-14-riscv64-linux-gnu
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
cmake -B build -DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
@@ -72,12 +72,12 @@ jobs:
|
||||
glslc \
|
||||
gcc-14-riscv64-linux-gnu \
|
||||
g++-14-riscv64-linux-gnu \
|
||||
libvulkan-dev:riscv64 \
|
||||
libcurl4-openssl-dev:riscv64
|
||||
libvulkan-dev:riscv64
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
cmake -B build -DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
@@ -118,12 +118,12 @@ jobs:
|
||||
build-essential \
|
||||
glslc \
|
||||
crossbuild-essential-arm64 \
|
||||
libvulkan-dev:arm64 \
|
||||
libcurl4-openssl-dev:arm64
|
||||
libvulkan-dev:arm64
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
cmake -B build -DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
@@ -163,12 +163,12 @@ jobs:
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
gcc-14-powerpc64le-linux-gnu \
|
||||
g++-14-powerpc64le-linux-gnu \
|
||||
libcurl4-openssl-dev:ppc64el
|
||||
g++-14-powerpc64le-linux-gnu
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
cmake -B build -DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
@@ -209,12 +209,12 @@ jobs:
|
||||
glslc \
|
||||
gcc-14-powerpc64le-linux-gnu \
|
||||
g++-14-powerpc64le-linux-gnu \
|
||||
libvulkan-dev:ppc64el \
|
||||
libcurl4-openssl-dev:ppc64el
|
||||
libvulkan-dev:ppc64el
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
cmake -B build -DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
@@ -231,3 +231,116 @@ jobs:
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
debian-13-loongarch64-cpu-cross:
|
||||
runs-on: ubuntu-24.04
|
||||
container: debian@sha256:653dfb9f86c3782e8369d5f7d29bb8faba1f4bff9025db46e807fa4c22903671
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Setup LoongArch
|
||||
run: |
|
||||
rm -f /etc/apt/sources.list.d/*
|
||||
cat << EOF | tee /etc/apt/sources.list.d/debian-ports.list
|
||||
deb http://snapshot.debian.org/archive/debian/20250515T202920Z/ trixie main
|
||||
EOF
|
||||
( echo 'quiet "true";'; \
|
||||
echo 'APT::Get::Assume-Yes "true";'; \
|
||||
echo 'APT::Install-Recommends "false";'; \
|
||||
echo 'Acquire::Check-Valid-Until "false";'; \
|
||||
echo 'Acquire::Retries "5";'; \
|
||||
) > /etc/apt/apt.conf.d/99snapshot-repos
|
||||
|
||||
apt-get update
|
||||
apt-get install -y ca-certificates debian-ports-archive-keyring cmake git zip
|
||||
dpkg --add-architecture loong64
|
||||
|
||||
# Add arch-specific repositories for non-amd64 architectures
|
||||
cat << EOF | tee /etc/apt/sources.list.d/loong64-ports.list
|
||||
deb [arch=loong64] http://snapshot.debian.org/archive/debian-ports/20250515T194251Z/ sid main
|
||||
EOF
|
||||
|
||||
apt-get update || true ;# Prevent failure due to missing URLs.
|
||||
|
||||
apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
gcc-14-loongarch64-linux-gnu \
|
||||
g++-14-loongarch64-linux-gnu
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=loongarch64 \
|
||||
-DCMAKE_C_COMPILER=loongarch64-linux-gnu-gcc-14 \
|
||||
-DCMAKE_CXX_COMPILER=loongarch64-linux-gnu-g++-14 \
|
||||
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
-DCMAKE_FIND_ROOT_PATH=/usr/lib/loongarch64-linux-gnu \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
debian-13-loongarch64-vulkan-cross:
|
||||
runs-on: ubuntu-24.04
|
||||
container: debian@sha256:653dfb9f86c3782e8369d5f7d29bb8faba1f4bff9025db46e807fa4c22903671
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Setup LoongArch
|
||||
run: |
|
||||
rm -f /etc/apt/sources.list.d/*
|
||||
cat << EOF | tee /etc/apt/sources.list.d/debian-ports.list
|
||||
deb http://snapshot.debian.org/archive/debian/20250515T202920Z/ trixie main
|
||||
EOF
|
||||
( echo 'quiet "true";'; \
|
||||
echo 'APT::Get::Assume-Yes "true";'; \
|
||||
echo 'APT::Install-Recommends "false";'; \
|
||||
echo 'Acquire::Check-Valid-Until "false";'; \
|
||||
echo 'Acquire::Retries "5";'; \
|
||||
) > /etc/apt/apt.conf.d/99snapshot-repos
|
||||
|
||||
apt-get update
|
||||
apt-get install -y ca-certificates debian-ports-archive-keyring cmake git zip
|
||||
dpkg --add-architecture loong64
|
||||
|
||||
# Add arch-specific repositories for non-amd64 architectures
|
||||
cat << EOF | tee /etc/apt/sources.list.d/loong64-ports.list
|
||||
deb [arch=loong64] http://snapshot.debian.org/archive/debian-ports/20250515T194251Z/ sid main
|
||||
EOF
|
||||
|
||||
apt-get update || true ;# Prevent failure due to missing URLs.
|
||||
|
||||
apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
glslc \
|
||||
gcc-14-loongarch64-linux-gnu \
|
||||
g++-14-loongarch64-linux-gnu \
|
||||
libvulkan-dev:loong64
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=loongarch64 \
|
||||
-DCMAKE_C_COMPILER=loongarch64-linux-gnu-gcc-14 \
|
||||
-DCMAKE_CXX_COMPILER=loongarch64-linux-gnu-g++-14 \
|
||||
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
-DCMAKE_FIND_ROOT_PATH=/usr/lib/loongarch64-linux-gnu \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
16
.github/workflows/build.yml
vendored
16
.github/workflows/build.yml
vendored
@@ -306,6 +306,7 @@ jobs:
|
||||
id: cmake_test
|
||||
run: |
|
||||
cd build
|
||||
export GGML_VK_VISIBLE_DEVICES=0
|
||||
# This is using llvmpipe and runs slower than other backends
|
||||
ctest -L main --verbose --timeout 3600
|
||||
|
||||
@@ -687,12 +688,12 @@ jobs:
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build: 'cpu-x64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF'
|
||||
- build: 'cpu-x64 (static)'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF'
|
||||
- build: 'openblas-x64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
|
||||
- build: 'vulkan-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON'
|
||||
defines: '-DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON'
|
||||
- build: 'llvm-arm64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON'
|
||||
- build: 'llvm-arm64-opencl-adreno'
|
||||
@@ -777,6 +778,7 @@ jobs:
|
||||
cmake -S . -B build ${{ matrix.defines }} `
|
||||
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
|
||||
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS}
|
||||
cp $env:CURL_PATH/bin/libcurl-*.dll build/bin/Release
|
||||
|
||||
- name: Add libopenblas.dll
|
||||
id: add_libopenblas_dll
|
||||
@@ -839,12 +841,12 @@ jobs:
|
||||
-DGGML_CUDA=ON
|
||||
cmake --build build
|
||||
|
||||
windows-2019-cmake-cuda:
|
||||
runs-on: windows-2019
|
||||
windows-2022-cmake-cuda:
|
||||
runs-on: windows-2022
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
cuda: ['12.4', '11.7']
|
||||
cuda: ['12.4']
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@@ -878,7 +880,7 @@ jobs:
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
|
||||
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" x64
|
||||
cmake -S . -B build -G "Ninja Multi-Config" ^
|
||||
-DLLAMA_BUILD_SERVER=ON ^
|
||||
-DGGML_NATIVE=OFF ^
|
||||
|
||||
17
.github/workflows/release.yml
vendored
17
.github/workflows/release.yml
vendored
@@ -131,8 +131,9 @@ jobs:
|
||||
include:
|
||||
- build: 'x64'
|
||||
os: ubuntu-22.04
|
||||
- build: 'arm64'
|
||||
os: ubuntu-22.04-arm
|
||||
# GGML_BACKEND_DL and GGML_CPU_ALL_VARIANTS are not currently supported on arm
|
||||
# - build: 'arm64'
|
||||
# os: ubuntu-22.04-arm
|
||||
|
||||
runs-on: ${{ matrix.os }}
|
||||
|
||||
@@ -159,6 +160,9 @@ jobs:
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DGGML_BACKEND_DL=ON \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DGGML_CPU_ALL_VARIANTS=ON \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
${{ env.CMAKE_ARGS }}
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
@@ -207,6 +211,9 @@ jobs:
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DGGML_BACKEND_DL=ON \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DGGML_CPU_ALL_VARIANTS=ON \
|
||||
-DGGML_VULKAN=ON \
|
||||
${{ env.CMAKE_ARGS }}
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
@@ -373,11 +380,11 @@ jobs:
|
||||
name: llama-bin-win-${{ matrix.backend }}-${{ matrix.arch }}.zip
|
||||
|
||||
windows-cuda:
|
||||
runs-on: windows-2019
|
||||
runs-on: windows-2022
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
cuda: ['12.4', '11.7']
|
||||
cuda: ['12.4']
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@@ -405,7 +412,7 @@ jobs:
|
||||
id: cmake_build
|
||||
shell: cmd
|
||||
run: |
|
||||
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
|
||||
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" x64
|
||||
cmake -S . -B build -G "Ninja Multi-Config" ^
|
||||
-DGGML_BACKEND_DL=ON ^
|
||||
-DGGML_NATIVE=OFF ^
|
||||
|
||||
2
.github/workflows/server.yml
vendored
2
.github/workflows/server.yml
vendored
@@ -180,7 +180,7 @@ jobs:
|
||||
|
||||
|
||||
server-windows:
|
||||
runs-on: windows-2019
|
||||
runs-on: windows-2022
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
|
||||
@@ -89,6 +89,14 @@ option(LLAMA_LLGUIDANCE "llama-common: include LLGuidance library for structured
|
||||
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake)
|
||||
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/common.cmake)
|
||||
|
||||
if (NOT DEFINED LLAMA_BUILD_NUMBER)
|
||||
set(LLAMA_BUILD_NUMBER ${BUILD_NUMBER})
|
||||
endif()
|
||||
if (NOT DEFINED LLAMA_BUILD_COMMIT)
|
||||
set(LLAMA_BUILD_COMMIT ${BUILD_COMMIT})
|
||||
endif()
|
||||
set(LLAMA_INSTALL_VERSION 0.0.${BUILD_NUMBER})
|
||||
|
||||
# override ggml options
|
||||
set(GGML_ALL_WARNINGS ${LLAMA_ALL_WARNINGS})
|
||||
set(GGML_FATAL_WARNINGS ${LLAMA_FATAL_WARNINGS})
|
||||
@@ -155,10 +163,17 @@ if (LLAMA_USE_SYSTEM_GGML)
|
||||
endif()
|
||||
|
||||
if (NOT TARGET ggml AND NOT LLAMA_USE_SYSTEM_GGML)
|
||||
set(GGML_BUILD_NUMBER ${LLAMA_BUILD_NUMBER})
|
||||
set(GGML_BUILD_COMMIT ${LLAMA_BUILD_COMMIT})
|
||||
add_subdirectory(ggml)
|
||||
# ... otherwise assume ggml is added by a parent CMakeLists.txt
|
||||
endif()
|
||||
|
||||
if (MINGW)
|
||||
# Target Windows 8 for PrefetchVirtualMemory
|
||||
add_compile_definitions(_WIN32_WINNT=${GGML_WIN_VER})
|
||||
endif()
|
||||
|
||||
#
|
||||
# build the library
|
||||
#
|
||||
@@ -199,10 +214,6 @@ endif()
|
||||
include(GNUInstallDirs)
|
||||
include(CMakePackageConfigHelpers)
|
||||
|
||||
set(LLAMA_BUILD_NUMBER ${BUILD_NUMBER})
|
||||
set(LLAMA_BUILD_COMMIT ${BUILD_COMMIT})
|
||||
set(LLAMA_INSTALL_VERSION 0.0.${BUILD_NUMBER})
|
||||
|
||||
set(LLAMA_INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR} CACHE PATH "Location of header files")
|
||||
set(LLAMA_LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR} CACHE PATH "Location of library files")
|
||||
set(LLAMA_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR} CACHE PATH "Location of binary files")
|
||||
|
||||
4
Makefile
4
Makefile
@@ -367,7 +367,7 @@ ifdef LLAMA_SERVER_SSL
|
||||
endif
|
||||
|
||||
ifndef GGML_NO_CPU_AARCH64
|
||||
MK_CPPFLAGS += -DGGML_USE_CPU_AARCH64
|
||||
MK_CPPFLAGS += -DGGML_USE_CPU_REPACK
|
||||
endif
|
||||
|
||||
# warnings
|
||||
@@ -970,7 +970,7 @@ OBJ_GGML = \
|
||||
$(DIR_GGML)/src/ggml-threading.o \
|
||||
$(DIR_GGML)/src/ggml-cpu/ggml-cpu.o \
|
||||
$(DIR_GGML)/src/ggml-cpu/ggml-cpu_cpp.o \
|
||||
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-aarch64.o \
|
||||
$(DIR_GGML)/src/ggml-cpu/repack.o \
|
||||
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-hbm.o \
|
||||
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-quants.o \
|
||||
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-traits.o \
|
||||
|
||||
46
README.md
46
README.md
@@ -3,9 +3,10 @@
|
||||

|
||||
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://github.com/ggml-org/llama.cpp/releases)
|
||||
[](https://github.com/ggml-org/llama.cpp/actions/workflows/server.yml)
|
||||
|
||||
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggml-org/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggml-org/llama.cpp/discussions/205) / [ggml](https://github.com/ggml-org/ggml)
|
||||
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Manifesto](https://github.com/ggml-org/llama.cpp/discussions/205) / [ggml](https://github.com/ggml-org/ggml)
|
||||
|
||||
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
|
||||
|
||||
@@ -17,7 +18,6 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
|
||||
## Hot topics
|
||||
|
||||
- 🔥 Multimodal support arrived in `llama-server`: [#12898](https://github.com/ggml-org/llama.cpp/pull/12898) | [documentation](./docs/multimodal.md)
|
||||
- **GGML developer experience survey (organized and reviewed by NVIDIA):** [link](https://forms.gle/Gasw3cRgyhNEnrwK9)
|
||||
- A new binary `llama-mtmd-cli` is introduced to replace `llava-cli`, `minicpmv-cli`, `gemma3-cli` ([#13012](https://github.com/ggml-org/llama.cpp/pull/13012)) and `qwen2vl-cli` ([#13141](https://github.com/ggml-org/llama.cpp/pull/13141)), `libllava` will be deprecated
|
||||
- VS Code extension for FIM completions: https://github.com/ggml-org/llama.vscode
|
||||
- Universal [tool call support](./docs/function-calling.md) in `llama-server` https://github.com/ggml-org/llama.cpp/pull/9639
|
||||
@@ -28,6 +28,30 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
|
||||
|
||||
----
|
||||
|
||||
## Quick start
|
||||
|
||||
Getting started with llama.cpp is straightforward. Here are several ways to install it on your machine:
|
||||
|
||||
- Install `llama.cpp` using [brew, nix or winget](docs/install.md)
|
||||
- Run with Docker - see our [Docker documentation](docs/docker.md)
|
||||
- Download pre-built binaries from the [releases page](https://github.com/ggml-org/llama.cpp/releases)
|
||||
- Build from source by cloning this repository - check out [our build guide](docs/build.md)
|
||||
|
||||
Once installed, you'll need a model to work with. Head to the [Obtaining and quantizing models](#obtaining-and-quantizing-models) section to learn more.
|
||||
|
||||
Example command:
|
||||
|
||||
```sh
|
||||
# Use a local model file
|
||||
llama-cli -m my_model.gguf
|
||||
|
||||
# Or download and run a model directly from Hugging Face
|
||||
llama-cli -hf ggml-org/gemma-3-1b-it-GGUF
|
||||
|
||||
# Launch OpenAI-compatible API server
|
||||
llama-server -hf ggml-org/gemma-3-1b-it-GGUF
|
||||
```
|
||||
|
||||
## Description
|
||||
|
||||
The main goal of `llama.cpp` is to enable LLM inference with minimal setup and state-of-the-art performance on a wide
|
||||
@@ -130,6 +154,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
<details>
|
||||
<summary>Bindings</summary>
|
||||
|
||||
- Python: [ddh0/easy-llama](https://github.com/ddh0/easy-llama)
|
||||
- Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
|
||||
- Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp)
|
||||
- Node.js: [withcatai/node-llama-cpp](https://github.com/withcatai/node-llama-cpp)
|
||||
@@ -229,6 +254,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
## Supported backends
|
||||
|
||||
| Backend | Target devices |
|
||||
@@ -245,16 +271,6 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
| [OpenCL](docs/backend/OPENCL.md) | Adreno GPU |
|
||||
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) | All |
|
||||
|
||||
## Building the project
|
||||
|
||||
The main product of this project is the `llama` library. Its C-style interface can be found in [include/llama.h](include/llama.h).
|
||||
The project also includes many example programs and tools using the `llama` library. The examples range from simple, minimal code snippets to sophisticated sub-projects such as an OpenAI-compatible HTTP server. Possible methods for obtaining the binaries:
|
||||
|
||||
- Clone this repository and build locally, see [how to build](docs/build.md)
|
||||
- On MacOS or Linux, install `llama.cpp` via [brew, flox or nix](docs/install.md)
|
||||
- Use a Docker image, see [documentation for Docker](docs/docker.md)
|
||||
- Download pre-built binaries from [releases](https://github.com/ggml-org/llama.cpp/releases)
|
||||
|
||||
## Obtaining and quantizing models
|
||||
|
||||
The [Hugging Face](https://huggingface.co) platform hosts a [number of LLMs](https://huggingface.co/models?library=gguf&sort=trending) compatible with `llama.cpp`:
|
||||
@@ -262,7 +278,11 @@ The [Hugging Face](https://huggingface.co) platform hosts a [number of LLMs](htt
|
||||
- [Trending](https://huggingface.co/models?library=gguf&sort=trending)
|
||||
- [LLaMA](https://huggingface.co/models?sort=trending&search=llama+gguf)
|
||||
|
||||
You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from [Hugging Face](https://huggingface.co/) or other model hosting sites, such as [ModelScope](https://modelscope.cn/), by using this CLI argument: `-hf <user>/<model>[:quant]`.
|
||||
You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from [Hugging Face](https://huggingface.co/) or other model hosting sites, such as [ModelScope](https://modelscope.cn/), by using this CLI argument: `-hf <user>/<model>[:quant]`. For example:
|
||||
|
||||
```sh
|
||||
llama-cli -hf ggml-org/gemma-3-1b-it-GGUF
|
||||
```
|
||||
|
||||
By default, the CLI would download from Hugging Face, you can switch to other options with the environment variable `MODEL_ENDPOINT`. For example, you may opt to downloading model checkpoints from ModelScope or other model sharing communities by setting the environment variable, e.g. `MODEL_ENDPOINT=https://www.modelscope.cn/`.
|
||||
|
||||
|
||||
17
ci/run.sh
17
ci/run.sh
@@ -39,14 +39,27 @@ sd=`dirname $0`
|
||||
cd $sd/../
|
||||
SRC=`pwd`
|
||||
|
||||
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=OFF"
|
||||
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON"
|
||||
|
||||
if [ ! -z ${GG_BUILD_METAL} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON -DGGML_METAL_USE_BF16=ON"
|
||||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_CUDA} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES=native"
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=ON"
|
||||
|
||||
if command -v nvidia-smi >/dev/null 2>&1; then
|
||||
CUDA_ARCH=$(nvidia-smi --query-gpu=compute_cap --format=csv,noheader,nounits 2>/dev/null | head -1 | tr -d '.')
|
||||
if [[ -n "$CUDA_ARCH" && "$CUDA_ARCH" =~ ^[0-9]+$ ]]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DCMAKE_CUDA_ARCHITECTURES=${CUDA_ARCH}"
|
||||
else
|
||||
echo "Warning: Using fallback CUDA architectures"
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DCMAKE_CUDA_ARCHITECTURES=61;70;75;80;86;89"
|
||||
fi
|
||||
else
|
||||
echo "Error: nvidia-smi not found, cannot build with CUDA"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_SYCL} ]; then
|
||||
|
||||
@@ -7,8 +7,8 @@ llama_add_compile_flags()
|
||||
# Build info header
|
||||
#
|
||||
|
||||
if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/../.git")
|
||||
set(GIT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../.git")
|
||||
if(EXISTS "${PROJECT_SOURCE_DIR}/.git")
|
||||
set(GIT_DIR "${PROJECT_SOURCE_DIR}/.git")
|
||||
|
||||
# Is git submodule
|
||||
if(NOT IS_DIRECTORY "${GIT_DIR}")
|
||||
@@ -18,36 +18,26 @@ if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/../.git")
|
||||
if (SLASH_POS EQUAL 0)
|
||||
set(GIT_DIR "${REAL_GIT_DIR}")
|
||||
else()
|
||||
set(GIT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../${REAL_GIT_DIR}")
|
||||
set(GIT_DIR "${PROJECT_SOURCE_DIR}/${REAL_GIT_DIR}")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if(EXISTS "${GIT_DIR}/index")
|
||||
set(GIT_INDEX "${GIT_DIR}/index")
|
||||
# For build-info.cpp below
|
||||
set_property(DIRECTORY APPEND PROPERTY CMAKE_CONFIGURE_DEPENDS "${GIT_DIR}/index")
|
||||
else()
|
||||
message(WARNING "Git index not found in git repository.")
|
||||
set(GIT_INDEX "")
|
||||
endif()
|
||||
else()
|
||||
message(WARNING "Git repository not found; to enable automatic generation of build info, make sure Git is installed and the project is a Git repository.")
|
||||
set(GIT_INDEX "")
|
||||
endif()
|
||||
|
||||
# Add a custom command to rebuild build-info.cpp when .git/index changes
|
||||
add_custom_command(
|
||||
OUTPUT "${CMAKE_CURRENT_SOURCE_DIR}/build-info.cpp"
|
||||
COMMENT "Generating build details from Git"
|
||||
COMMAND ${CMAKE_COMMAND} -DMSVC=${MSVC} -DCMAKE_C_COMPILER_VERSION=${CMAKE_C_COMPILER_VERSION}
|
||||
-DCMAKE_C_COMPILER_ID=${CMAKE_C_COMPILER_ID} -DCMAKE_VS_PLATFORM_NAME=${CMAKE_VS_PLATFORM_NAME}
|
||||
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
|
||||
-DCMAKE_SYSTEM_NAME=${CMAKE_SYSTEM_NAME} -DCMAKE_SYSTEM_PROCESSOR=${CMAKE_SYSTEM_PROCESSOR}
|
||||
-P "${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info-gen-cpp.cmake"
|
||||
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}/.."
|
||||
DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/build-info.cpp.in" ${GIT_INDEX}
|
||||
VERBATIM
|
||||
)
|
||||
set(TEMPLATE_FILE "${CMAKE_CURRENT_SOURCE_DIR}/build-info.cpp.in")
|
||||
set(OUTPUT_FILE "${CMAKE_CURRENT_BINARY_DIR}/build-info.cpp")
|
||||
configure_file(${TEMPLATE_FILE} ${OUTPUT_FILE})
|
||||
|
||||
set(TARGET build_info)
|
||||
add_library(${TARGET} OBJECT build-info.cpp)
|
||||
add_library(${TARGET} OBJECT ${OUTPUT_FILE})
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
endif()
|
||||
@@ -58,23 +48,20 @@ add_library(${TARGET} STATIC
|
||||
arg.cpp
|
||||
arg.h
|
||||
base64.hpp
|
||||
chat.cpp
|
||||
chat.h
|
||||
chat-parser.cpp
|
||||
chat-parser.h
|
||||
chat.cpp
|
||||
chat.h
|
||||
common.cpp
|
||||
common.h
|
||||
console.cpp
|
||||
console.h
|
||||
json-schema-to-grammar.cpp
|
||||
json.hpp
|
||||
json-partial.h
|
||||
json-partial.cpp
|
||||
json-partial.h
|
||||
json-schema-to-grammar.cpp
|
||||
llguidance.cpp
|
||||
log.cpp
|
||||
log.h
|
||||
minja/chat-template.hpp
|
||||
minja/minja.hpp
|
||||
ngram-cache.cpp
|
||||
ngram-cache.h
|
||||
regex-partial.cpp
|
||||
@@ -147,7 +134,7 @@ if (LLAMA_LLGUIDANCE)
|
||||
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} llguidance ${LLGUIDANCE_PLATFORM_LIBS})
|
||||
endif ()
|
||||
|
||||
target_include_directories(${TARGET} PUBLIC .)
|
||||
target_include_directories(${TARGET} PUBLIC . ../vendor)
|
||||
target_compile_features (${TARGET} PUBLIC cxx_std_17)
|
||||
target_link_libraries (${TARGET} PRIVATE ${LLAMA_COMMON_EXTRA_LIBS} PUBLIC llama Threads::Threads)
|
||||
|
||||
|
||||
@@ -1,10 +1,11 @@
|
||||
#include "gguf.h" // for reading GGUF splits
|
||||
#include "arg.h"
|
||||
|
||||
#include "chat.h"
|
||||
#include "common.h"
|
||||
#include "gguf.h" // for reading GGUF splits
|
||||
#include "json-schema-to-grammar.h"
|
||||
#include "log.h"
|
||||
#include "sampling.h"
|
||||
#include "chat.h"
|
||||
|
||||
// fix problem with std::min and std::max
|
||||
#if defined(_WIN32)
|
||||
@@ -15,6 +16,9 @@
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
#define JSON_ASSERT GGML_ASSERT
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
#include <algorithm>
|
||||
#include <climits>
|
||||
#include <cstdarg>
|
||||
@@ -34,8 +38,6 @@
|
||||
#include <future>
|
||||
#endif
|
||||
|
||||
#include "json-schema-to-grammar.h"
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
std::initializer_list<enum llama_example> mmproj_examples = {
|
||||
@@ -986,10 +988,6 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
|
||||
params.tensor_buft_overrides.push_back({nullptr, nullptr});
|
||||
}
|
||||
|
||||
if (params.reranking && params.embedding) {
|
||||
throw std::invalid_argument("error: either --embedding or --reranking can be specified, but not both");
|
||||
}
|
||||
|
||||
if (!params.chat_template.empty() && !common_chat_verify_template(params.chat_template, params.use_jinja)) {
|
||||
throw std::runtime_error(string_format(
|
||||
"error: the supplied chat template is not supported: %s%s\n",
|
||||
@@ -1346,9 +1344,9 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"--prio"}, "N",
|
||||
string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams.priority),
|
||||
string_format("set process/thread priority : low(-1), normal(0), medium(1), high(2), realtime(3) (default: %d)\n", params.cpuparams.priority),
|
||||
[](common_params & params, int prio) {
|
||||
if (prio < 0 || prio > 3) {
|
||||
if (prio < GGML_SCHED_PRIO_LOW || prio > GGML_SCHED_PRIO_REALTIME) {
|
||||
throw std::invalid_argument("invalid value");
|
||||
}
|
||||
params.cpuparams.priority = (enum ggml_sched_priority) prio;
|
||||
@@ -2745,9 +2743,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_EMBEDDINGS"));
|
||||
add_opt(common_arg(
|
||||
{"--reranking", "--rerank"},
|
||||
string_format("enable reranking endpoint on server (default: %s)", params.reranking ? "enabled" : "disabled"),
|
||||
string_format("enable reranking endpoint on server (default: %s)", "disabled"),
|
||||
[](common_params & params) {
|
||||
params.reranking = true;
|
||||
params.embedding = true;
|
||||
params.pooling_type = LLAMA_POOLING_TYPE_RANK;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_RERANKING"));
|
||||
add_opt(common_arg(
|
||||
@@ -2867,6 +2866,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
"(default: deepseek)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
/**/ if (value == "deepseek") { params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK; }
|
||||
else if (value == "deepseek-legacy") { params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY; }
|
||||
else if (value == "none") { params.reasoning_format = COMMON_REASONING_FORMAT_NONE; }
|
||||
else { throw std::invalid_argument("invalid value"); }
|
||||
}
|
||||
@@ -3210,6 +3210,32 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.speculative.model.path = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL_DRAFT"));
|
||||
add_opt(common_arg(
|
||||
{"-ctkd", "--cache-type-k-draft"}, "TYPE",
|
||||
string_format(
|
||||
"KV cache data type for K for the draft model\n"
|
||||
"allowed values: %s\n"
|
||||
"(default: %s)",
|
||||
get_all_kv_cache_types().c_str(),
|
||||
ggml_type_name(params.speculative.cache_type_k)
|
||||
),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.speculative.cache_type_k = kv_cache_type_from_str(value);
|
||||
}
|
||||
).set_env("LLAMA_ARG_CACHE_TYPE_K_DRAFT"));
|
||||
add_opt(common_arg(
|
||||
{"-ctvd", "--cache-type-v-draft"}, "TYPE",
|
||||
string_format(
|
||||
"KV cache data type for V for the draft model\n"
|
||||
"allowed values: %s\n"
|
||||
"(default: %s)",
|
||||
get_all_kv_cache_types().c_str(),
|
||||
ggml_type_name(params.speculative.cache_type_v)
|
||||
),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.speculative.cache_type_v = kv_cache_type_from_str(value);
|
||||
}
|
||||
).set_env("LLAMA_ARG_CACHE_TYPE_V_DRAFT"));
|
||||
|
||||
add_opt(common_arg(
|
||||
{"-mv", "--model-vocoder"}, "FNAME",
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
int LLAMA_BUILD_NUMBER = @BUILD_NUMBER@;
|
||||
char const *LLAMA_COMMIT = "@BUILD_COMMIT@";
|
||||
int LLAMA_BUILD_NUMBER = @LLAMA_BUILD_NUMBER@;
|
||||
char const *LLAMA_COMMIT = "@LLAMA_BUILD_COMMIT@";
|
||||
char const *LLAMA_COMPILER = "@BUILD_COMPILER@";
|
||||
char const *LLAMA_BUILD_TARGET = "@BUILD_TARGET@";
|
||||
|
||||
@@ -49,6 +49,7 @@ bool common_chat_msg_parser::add_tool_call(const std::string & name, const std::
|
||||
|
||||
// LOG_DBG("Tool call arguments:\n\traw: %s\n\tresult: %s\n", arguments.c_str(), tool_call.arguments.c_str());
|
||||
result_.tool_calls.emplace_back(tool_call);
|
||||
|
||||
return true;
|
||||
}
|
||||
bool common_chat_msg_parser::add_tool_call(const json & tool_call) {
|
||||
@@ -154,9 +155,10 @@ bool common_chat_msg_parser::try_parse_reasoning(const std::string & start_think
|
||||
if (!rest.empty()) {
|
||||
handle_reasoning(rest, /* closed */ !is_partial());
|
||||
}
|
||||
if (!syntax_.thinking_forced_open) {
|
||||
throw common_chat_msg_partial_exception(end_think);
|
||||
}
|
||||
// Allow unclosed thinking tags, for now (https://github.com/ggml-org/llama.cpp/issues/13812, https://github.com/ggml-org/llama.cpp/issues/13877)
|
||||
// if (!syntax_.thinking_forced_open) {
|
||||
// throw common_chat_msg_partial_exception(end_think);
|
||||
// }
|
||||
return true;
|
||||
}
|
||||
}
|
||||
@@ -377,3 +379,7 @@ std::optional<common_chat_msg_parser::consume_json_result> common_chat_msg_parse
|
||||
/* .is_partial = */ found_healing_marker,
|
||||
};
|
||||
}
|
||||
|
||||
void common_chat_msg_parser::clear_tools() {
|
||||
result_.tool_calls.clear();
|
||||
}
|
||||
|
||||
@@ -2,9 +2,10 @@
|
||||
|
||||
#include "chat.h"
|
||||
#include "json-partial.h"
|
||||
#include "json.hpp"
|
||||
#include "regex-partial.h"
|
||||
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
#include <optional>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
@@ -114,4 +115,6 @@ class common_chat_msg_parser {
|
||||
const std::vector<std::vector<std::string>> & args_paths = {},
|
||||
const std::vector<std::vector<std::string>> & content_paths = {}
|
||||
);
|
||||
|
||||
void clear_tools();
|
||||
};
|
||||
|
||||
@@ -1,13 +1,14 @@
|
||||
#include "chat.h"
|
||||
#include "chat-parser.h"
|
||||
#include "common.h"
|
||||
#include "json-partial.h"
|
||||
#include "json-schema-to-grammar.h"
|
||||
#include "log.h"
|
||||
#include "json-partial.h"
|
||||
#include "minja/chat-template.hpp"
|
||||
#include "minja/minja.hpp"
|
||||
#include "regex-partial.h"
|
||||
|
||||
#include <minja/chat-template.hpp>
|
||||
#include <minja/minja.hpp>
|
||||
|
||||
#include <cstdio>
|
||||
#include <exception>
|
||||
#include <iostream>
|
||||
@@ -16,7 +17,6 @@
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
|
||||
static std::string format_time(const std::chrono::system_clock::time_point & now, const std::string & format) {
|
||||
auto time = std::chrono::system_clock::to_time_t(now);
|
||||
auto local_time = *std::localtime(&time);
|
||||
@@ -82,10 +82,10 @@ json common_chat_msg::to_json_oaicompat() const
|
||||
|
||||
std::vector<common_chat_msg_diff> common_chat_msg_diff::compute_diffs(const common_chat_msg & previous_msg, const common_chat_msg & new_msg) {
|
||||
std::vector<common_chat_msg_diff> diffs;
|
||||
// if (previous_msg.reasoning_content != current.reasoning_content) {
|
||||
// auto & diff = diffs.emplace_back();
|
||||
// diff.reasoning_content_delta = string_diff(previous_msg.reasoning_content, current.reasoning_content);
|
||||
// }
|
||||
if (previous_msg.reasoning_content != new_msg.reasoning_content) {
|
||||
auto & diff = diffs.emplace_back();
|
||||
diff.reasoning_content_delta = string_diff(previous_msg.reasoning_content, new_msg.reasoning_content);
|
||||
}
|
||||
if (previous_msg.content != new_msg.content) {
|
||||
auto & diff = diffs.emplace_back();
|
||||
diff.content_delta = string_diff(previous_msg.content, new_msg.content);
|
||||
@@ -385,9 +385,9 @@ json common_chat_tools_to_json_oaicompat(const std::vector<common_chat_tool> & t
|
||||
|
||||
template <> json common_chat_msg_diff_to_json_oaicompat(const common_chat_msg_diff & diff) {
|
||||
json delta = json::object();
|
||||
// if (!diff.reasoning_content_delta.empty()) {
|
||||
// delta["reasoning_content"] = msg.reasoning_content;
|
||||
// }
|
||||
if (!diff.reasoning_content_delta.empty()) {
|
||||
delta["reasoning_content"] = diff.reasoning_content_delta;
|
||||
}
|
||||
if (!diff.content_delta.empty()) {
|
||||
delta["content"] = diff.content_delta;
|
||||
}
|
||||
@@ -598,6 +598,7 @@ const char * common_reasoning_format_name(common_reasoning_format format) {
|
||||
switch (format) {
|
||||
case COMMON_REASONING_FORMAT_NONE: return "none";
|
||||
case COMMON_REASONING_FORMAT_DEEPSEEK: return "deepseek";
|
||||
case COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY: return "deepseek-legacy";
|
||||
default:
|
||||
throw std::runtime_error("Unknown reasoning format");
|
||||
}
|
||||
@@ -1837,7 +1838,7 @@ static common_chat_params common_chat_templates_apply_legacy(
|
||||
if (res < 0) {
|
||||
// if the custom "tmpl" is not supported, we throw an error
|
||||
// this is a bit redundant (for good), since we're not sure if user validated the custom template with llama_chat_verify_template()
|
||||
throw std::runtime_error("this custom template is not supported");
|
||||
throw std::runtime_error("this custom template is not supported, try using --jinja");
|
||||
}
|
||||
|
||||
// if it turns out that our buffer is too small, we resize it
|
||||
@@ -1920,7 +1921,9 @@ common_chat_msg common_chat_parse(const std::string & input, bool is_partial, co
|
||||
} catch (const common_chat_msg_partial_exception & ex) {
|
||||
LOG_DBG("Partial parse: %s\n", ex.what());
|
||||
if (!is_partial) {
|
||||
throw std::runtime_error(ex.what());
|
||||
builder.clear_tools();
|
||||
builder.move_to(0);
|
||||
common_chat_parse_content_only(builder);
|
||||
}
|
||||
}
|
||||
auto msg = builder.result();
|
||||
|
||||
@@ -70,7 +70,7 @@ struct common_chat_msg {
|
||||
};
|
||||
|
||||
struct common_chat_msg_diff {
|
||||
// std::string reasoning_content_delta;
|
||||
std::string reasoning_content_delta;
|
||||
std::string content_delta;
|
||||
size_t tool_call_index = std::string::npos;
|
||||
common_chat_tool_call tool_call_delta;
|
||||
|
||||
@@ -1,24 +0,0 @@
|
||||
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake)
|
||||
|
||||
set(TEMPLATE_FILE "${CMAKE_CURRENT_SOURCE_DIR}/common/build-info.cpp.in")
|
||||
set(OUTPUT_FILE "${CMAKE_CURRENT_SOURCE_DIR}/common/build-info.cpp")
|
||||
|
||||
# Only write the build info if it changed
|
||||
if(EXISTS ${OUTPUT_FILE})
|
||||
file(READ ${OUTPUT_FILE} CONTENTS)
|
||||
string(REGEX MATCH "LLAMA_COMMIT = \"([^\"]*)\";" _ ${CONTENTS})
|
||||
set(OLD_COMMIT ${CMAKE_MATCH_1})
|
||||
string(REGEX MATCH "LLAMA_COMPILER = \"([^\"]*)\";" _ ${CONTENTS})
|
||||
set(OLD_COMPILER ${CMAKE_MATCH_1})
|
||||
string(REGEX MATCH "LLAMA_BUILD_TARGET = \"([^\"]*)\";" _ ${CONTENTS})
|
||||
set(OLD_TARGET ${CMAKE_MATCH_1})
|
||||
if (
|
||||
NOT OLD_COMMIT STREQUAL BUILD_COMMIT OR
|
||||
NOT OLD_COMPILER STREQUAL BUILD_COMPILER OR
|
||||
NOT OLD_TARGET STREQUAL BUILD_TARGET
|
||||
)
|
||||
configure_file(${TEMPLATE_FILE} ${OUTPUT_FILE})
|
||||
endif()
|
||||
else()
|
||||
configure_file(${TEMPLATE_FILE} ${OUTPUT_FILE})
|
||||
endif()
|
||||
@@ -203,6 +203,7 @@ bool set_process_priority(enum ggml_sched_priority prio) {
|
||||
|
||||
DWORD p = NORMAL_PRIORITY_CLASS;
|
||||
switch (prio) {
|
||||
case GGML_SCHED_PRIO_LOW: p = BELOW_NORMAL_PRIORITY_CLASS; break;
|
||||
case GGML_SCHED_PRIO_NORMAL: p = NORMAL_PRIORITY_CLASS; break;
|
||||
case GGML_SCHED_PRIO_MEDIUM: p = ABOVE_NORMAL_PRIORITY_CLASS; break;
|
||||
case GGML_SCHED_PRIO_HIGH: p = HIGH_PRIORITY_CLASS; break;
|
||||
@@ -228,6 +229,7 @@ bool set_process_priority(enum ggml_sched_priority prio) {
|
||||
|
||||
int p = 0;
|
||||
switch (prio) {
|
||||
case GGML_SCHED_PRIO_LOW: p = 5; break;
|
||||
case GGML_SCHED_PRIO_NORMAL: p = 0; break;
|
||||
case GGML_SCHED_PRIO_MEDIUM: p = -5; break;
|
||||
case GGML_SCHED_PRIO_HIGH: p = -10; break;
|
||||
@@ -464,7 +466,7 @@ size_t string_find_partial_stop(const std::string_view & str, const std::string_
|
||||
|
||||
std::string regex_escape(const std::string & s) {
|
||||
static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]");
|
||||
return std::regex_replace(s, special_chars, "\\$0");
|
||||
return std::regex_replace(s, special_chars, "\\$&");
|
||||
}
|
||||
|
||||
std::string string_join(const std::vector<std::string> & values, const std::string & separator) {
|
||||
@@ -704,11 +706,17 @@ bool fs_validate_filename(const std::string & filename) {
|
||||
// disable C++17 deprecation warning for std::codecvt_utf8
|
||||
# pragma clang diagnostic push
|
||||
# pragma clang diagnostic ignored "-Wdeprecated-declarations"
|
||||
#elif defined(__GNUC__)
|
||||
# pragma GCC diagnostic push
|
||||
# pragma GCC diagnostic ignored "-Wdeprecated-declarations"
|
||||
#endif
|
||||
|
||||
std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
|
||||
|
||||
#if defined(__clang__)
|
||||
# pragma clang diagnostic pop
|
||||
#elif defined(__GNUC__)
|
||||
# pragma GCC diagnostic pop
|
||||
#endif
|
||||
|
||||
filename_utf32 = converter.from_bytes(filename);
|
||||
@@ -765,6 +773,9 @@ bool fs_validate_filename(const std::string & filename) {
|
||||
return true;
|
||||
}
|
||||
|
||||
#include <iostream>
|
||||
|
||||
|
||||
// returns true if successful, false otherwise
|
||||
bool fs_create_directory_with_parents(const std::string & path) {
|
||||
#ifdef _WIN32
|
||||
@@ -782,9 +793,16 @@ bool fs_create_directory_with_parents(const std::string & path) {
|
||||
// process path from front to back, procedurally creating directories
|
||||
while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
|
||||
const std::wstring subpath = wpath.substr(0, pos_slash);
|
||||
const wchar_t * test = subpath.c_str();
|
||||
|
||||
const bool success = CreateDirectoryW(test, NULL);
|
||||
pos_slash += 1;
|
||||
|
||||
// skip the drive letter, in some systems it can return an access denied error
|
||||
if (subpath.length() == 2 && subpath[1] == ':') {
|
||||
continue;
|
||||
}
|
||||
|
||||
const bool success = CreateDirectoryW(subpath.c_str(), NULL);
|
||||
|
||||
if (!success) {
|
||||
const DWORD error = GetLastError();
|
||||
|
||||
@@ -798,8 +816,6 @@ bool fs_create_directory_with_parents(const std::string & path) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
pos_slash += 1;
|
||||
}
|
||||
|
||||
return true;
|
||||
@@ -895,31 +911,6 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
if (params.reranking) {
|
||||
bool ok = true;
|
||||
|
||||
if (llama_vocab_bos(vocab) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: vocab does not have a BOS token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
}
|
||||
|
||||
if (llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: vocab does not have an EOS token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
}
|
||||
|
||||
if (llama_vocab_sep(vocab) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
}
|
||||
|
||||
if (!ok) {
|
||||
llama_model_free(model);
|
||||
|
||||
return iparams;
|
||||
}
|
||||
}
|
||||
|
||||
auto cparams = common_context_params_to_llama(params);
|
||||
|
||||
llama_context * lctx = llama_init_from_model(model, cparams);
|
||||
@@ -929,7 +920,7 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
return iparams;
|
||||
}
|
||||
|
||||
if (params.ctx_shift && !llama_kv_self_can_shift(lctx)) {
|
||||
if (params.ctx_shift && !llama_memory_can_shift(llama_get_memory(lctx))) {
|
||||
LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__);
|
||||
params.ctx_shift = false;
|
||||
}
|
||||
@@ -961,6 +952,35 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
}
|
||||
}
|
||||
|
||||
if (llama_pooling_type(lctx) == LLAMA_POOLING_TYPE_RANK) {
|
||||
bool ok = true;
|
||||
|
||||
if (llama_vocab_bos(vocab) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: vocab does not have a BOS token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
}
|
||||
|
||||
bool has_eos = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
|
||||
bool has_sep = llama_vocab_sep(vocab) != LLAMA_TOKEN_NULL;
|
||||
|
||||
if (!has_eos && !has_sep) {
|
||||
LOG_WRN("%s: warning: vocab does not have an EOS token or SEP token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
} else if (!has_eos) {
|
||||
LOG_WRN("%s: warning: vocab does not have an EOS token, using SEP token as fallback\n", __func__);
|
||||
} else if (!has_sep) {
|
||||
LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
}
|
||||
|
||||
if (!ok) {
|
||||
llama_free(lctx);
|
||||
llama_model_free(model);
|
||||
|
||||
return iparams;
|
||||
}
|
||||
}
|
||||
|
||||
// load and optionally apply lora adapters
|
||||
for (auto & la : params.lora_adapters) {
|
||||
llama_adapter_lora_ptr lora;
|
||||
@@ -1036,7 +1056,7 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
if (llama_model_has_decoder(model)) {
|
||||
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch)));
|
||||
}
|
||||
llama_kv_self_clear(lctx);
|
||||
llama_memory_clear(llama_get_memory(lctx), true);
|
||||
llama_synchronize(lctx);
|
||||
llama_perf_context_reset(lctx);
|
||||
llama_set_warmup(lctx, false);
|
||||
@@ -1138,11 +1158,6 @@ struct llama_context_params common_context_params_to_llama(const common_params &
|
||||
cparams.op_offload = !params.no_op_offload;
|
||||
cparams.swa_full = params.swa_full;
|
||||
|
||||
if (params.reranking) {
|
||||
cparams.embeddings = true;
|
||||
cparams.pooling_type = LLAMA_POOLING_TYPE_RANK;
|
||||
}
|
||||
|
||||
cparams.type_k = params.cache_type_k;
|
||||
cparams.type_v = params.cache_type_v;
|
||||
|
||||
|
||||
@@ -199,6 +199,9 @@ struct common_params_speculative {
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
float p_min = 0.75f; // minimum speculative decoding probability (greedy)
|
||||
|
||||
ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
|
||||
ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
|
||||
|
||||
struct cpu_params cpuparams;
|
||||
struct cpu_params cpuparams_batch;
|
||||
|
||||
@@ -215,7 +218,8 @@ struct common_params_vocoder {
|
||||
|
||||
enum common_reasoning_format {
|
||||
COMMON_REASONING_FORMAT_NONE,
|
||||
COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`
|
||||
COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY, // Extract thinking tag contents and return as `message.reasoning_content`, or leave inline in <think> tags in stream mode
|
||||
COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`, including in streaming deltas.
|
||||
};
|
||||
|
||||
struct common_params {
|
||||
@@ -354,7 +358,6 @@ struct common_params {
|
||||
int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
|
||||
std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
|
||||
std::string embd_sep = "\n"; // separator of embeddings
|
||||
bool reranking = false; // enable reranking support on server
|
||||
|
||||
// server params
|
||||
int32_t port = 8080; // server listens on this network port
|
||||
|
||||
@@ -1,9 +1,10 @@
|
||||
#include <json-partial.h>
|
||||
#include "ggml.h"
|
||||
#include "log.h"
|
||||
#include <string>
|
||||
#include "json-partial.h"
|
||||
|
||||
#include <json.hpp>
|
||||
#include "log.h"
|
||||
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
#include <string>
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
#pragma once
|
||||
#include <json.hpp>
|
||||
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
// Healing marker (empty if the JSON was fully parsed / wasn't healed).
|
||||
struct common_healing_marker {
|
||||
|
||||
@@ -1,8 +1,9 @@
|
||||
#include "json-schema-to-grammar.h"
|
||||
#include "common.h"
|
||||
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
#include <algorithm>
|
||||
#include <fstream>
|
||||
#include <map>
|
||||
#include <regex>
|
||||
#include <sstream>
|
||||
|
||||
@@ -1,9 +1,9 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
// Change JSON_ASSERT from assert() to GGML_ASSERT:
|
||||
#define JSON_ASSERT GGML_ASSERT
|
||||
#include "json.hpp"
|
||||
#include <nlohmann/json_fwd.hpp>
|
||||
|
||||
#include <functional>
|
||||
#include <string>
|
||||
|
||||
std::string json_schema_to_grammar(const nlohmann::ordered_json & schema,
|
||||
bool force_gbnf = false);
|
||||
|
||||
@@ -144,6 +144,8 @@ llama_tokens common_speculative_gen_draft(
|
||||
auto & smpl = spec->smpl;
|
||||
auto & prompt = spec->prompt;
|
||||
|
||||
auto * mem = llama_get_memory(ctx);
|
||||
|
||||
int reuse_i = 0;
|
||||
int reuse_n = 0;
|
||||
|
||||
@@ -173,7 +175,7 @@ llama_tokens common_speculative_gen_draft(
|
||||
result.reserve(params.n_draft);
|
||||
|
||||
if (reuse_n == 0) {
|
||||
llama_kv_self_clear(ctx);
|
||||
llama_memory_clear(mem, false);
|
||||
|
||||
prompt.clear();
|
||||
} else {
|
||||
@@ -192,14 +194,14 @@ llama_tokens common_speculative_gen_draft(
|
||||
}
|
||||
|
||||
if (reuse_i > 0) {
|
||||
llama_kv_self_seq_rm (ctx, 0, 0, reuse_i);
|
||||
llama_kv_self_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
|
||||
llama_memory_seq_rm (mem, 0, 0, reuse_i);
|
||||
llama_memory_seq_add(mem, 0, reuse_i, -1, -reuse_i);
|
||||
|
||||
prompt.erase(prompt.begin(), prompt.begin() + reuse_i);
|
||||
}
|
||||
|
||||
if (reuse_n < (int) prompt.size()) {
|
||||
llama_kv_self_seq_rm (ctx, 0, reuse_n, -1);
|
||||
llama_memory_seq_rm (mem, 0, reuse_n, -1);
|
||||
|
||||
prompt.erase(prompt.begin() + reuse_n, prompt.end());
|
||||
}
|
||||
|
||||
@@ -423,19 +423,19 @@ class ModelBase:
|
||||
try:
|
||||
# for security reason, we don't allow loading remote code by default
|
||||
# if a model need remote code, we will fallback to config.json
|
||||
return AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
|
||||
config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to load model config from {dir_model}: {e}")
|
||||
logger.warning("Trying to load config.json instead")
|
||||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||
config = json.load(f)
|
||||
if "llm_config" in config:
|
||||
# rename for InternVL
|
||||
config["text_config"] = config["llm_config"]
|
||||
if "thinker_config" in config:
|
||||
# rename for Qwen2.5-Omni
|
||||
config["text_config"] = config["thinker_config"]["text_config"]
|
||||
return config
|
||||
if "llm_config" in config:
|
||||
# rename for InternVL
|
||||
config["text_config"] = config["llm_config"]
|
||||
if "thinker_config" in config:
|
||||
# rename for Qwen2.5-Omni
|
||||
config["text_config"] = config["thinker_config"]["text_config"]
|
||||
return config
|
||||
|
||||
@classmethod
|
||||
def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
|
||||
@@ -519,19 +519,19 @@ class TextModel(ModelBase):
|
||||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
|
||||
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions"], optional=True)) is not None:
|
||||
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
|
||||
self.gguf_writer.add_context_length(n_ctx)
|
||||
logger.info(f"gguf: context length = {n_ctx}")
|
||||
|
||||
if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
|
||||
if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
|
||||
self.gguf_writer.add_embedding_length(n_embd)
|
||||
logger.info(f"gguf: embedding length = {n_embd}")
|
||||
|
||||
if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
|
||||
if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
|
||||
self.gguf_writer.add_feed_forward_length(n_ff)
|
||||
logger.info(f"gguf: feed forward length = {n_ff}")
|
||||
|
||||
if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
|
||||
if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
|
||||
self.gguf_writer.add_head_count(n_head)
|
||||
logger.info(f"gguf: head count = {n_head}")
|
||||
|
||||
@@ -674,12 +674,12 @@ class TextModel(ModelBase):
|
||||
if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
|
||||
# ref: https://huggingface.co/tiiuae/falcon-7b
|
||||
res = "falcon"
|
||||
if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
|
||||
# ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
|
||||
res = "falcon3"
|
||||
if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
|
||||
# ref: https://huggingface.co/BAAI/bge-small-en-v1.5
|
||||
res = "bert-bge"
|
||||
if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
|
||||
# ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
|
||||
res = "falcon3"
|
||||
if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
|
||||
# ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
|
||||
res = "bert-bge-large"
|
||||
@@ -731,9 +731,6 @@ class TextModel(ModelBase):
|
||||
if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
|
||||
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
|
||||
res = "jina-v2-code"
|
||||
if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
|
||||
# ref: https://huggingface.co/THUDM/glm-4-9b-chat
|
||||
res = "chatglm-bpe"
|
||||
if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
|
||||
# ref: https://huggingface.co/LumiOpen/Viking-7B
|
||||
res = "viking"
|
||||
@@ -764,9 +761,6 @@ class TextModel(ModelBase):
|
||||
if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
|
||||
# ref: https://huggingface.co/facebook/chameleon-7b
|
||||
res = "chameleon"
|
||||
if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
|
||||
# ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
|
||||
res = "minerva-7b"
|
||||
if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
|
||||
# ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
|
||||
res = "roberta-bpe"
|
||||
@@ -797,15 +791,24 @@ class TextModel(ModelBase):
|
||||
if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
|
||||
# ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
|
||||
res = "llama4"
|
||||
if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
|
||||
# ref: https://huggingface.co/THUDM/glm-4-9b-hf
|
||||
res = "glm4"
|
||||
if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
|
||||
# ref: https://huggingface.co/mistral-community/pixtral-12b
|
||||
res = "pixtral"
|
||||
if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
|
||||
# ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
|
||||
res = "seed-coder"
|
||||
if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
|
||||
# ref: https://huggingface.co/THUDM/glm-4-9b-chat
|
||||
res = "chatglm-bpe"
|
||||
if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
|
||||
# ref: https://huggingface.co/THUDM/glm-4-9b-chat
|
||||
res = "chatglm-bpe"
|
||||
if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
|
||||
# ref: https://huggingface.co/THUDM/glm-4-9b-hf
|
||||
res = "glm4"
|
||||
if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
|
||||
# ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
|
||||
res = "minerva-7b"
|
||||
|
||||
if res is None:
|
||||
logger.warning("\n")
|
||||
@@ -1044,6 +1047,10 @@ class TextModel(ModelBase):
|
||||
special_vocab.chat_template = "rwkv-world"
|
||||
# hack: Add '\n\n' as the EOT token to make it chat normally
|
||||
special_vocab._set_special_token("eot", 261)
|
||||
# hack: Override these as they have already been set (incorrectly)
|
||||
special_vocab.special_token_ids["bos"] = 0
|
||||
special_vocab.special_token_ids["eos"] = 0
|
||||
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
|
||||
@@ -1207,7 +1214,7 @@ class MmprojModel(ModelBase):
|
||||
self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
|
||||
self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
|
||||
|
||||
else:
|
||||
if not self.has_vision_encoder and not self.has_audio_encoder:
|
||||
raise ValueError("MmprojModel must have either vision or audio encoder")
|
||||
|
||||
def write_vocab(self):
|
||||
@@ -1841,7 +1848,8 @@ class StableLMModel(TextModel):
|
||||
"MistralForCausalLM",
|
||||
"MixtralForCausalLM",
|
||||
"VLlama3ForCausalLM",
|
||||
"LlavaForConditionalGeneration")
|
||||
"LlavaForConditionalGeneration",
|
||||
"LlamaModel")
|
||||
class LlamaModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
undo_permute = True
|
||||
@@ -1890,9 +1898,7 @@ class LlamaModel(TextModel):
|
||||
hparams = self.hparams
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
|
||||
if "head_dim" in hparams:
|
||||
rope_dim = hparams["head_dim"]
|
||||
else:
|
||||
if (rope_dim := hparams.get("head_dim")) is None:
|
||||
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
|
||||
@@ -1921,6 +1927,8 @@ class LlamaModel(TextModel):
|
||||
|
||||
if is_vision_tensor:
|
||||
return [] # skip vision tensors
|
||||
elif self.hf_arch == "LlamaModel":
|
||||
name = "model." + name
|
||||
elif name.startswith("model.text_model"):
|
||||
name = name.replace("text_model.", "") # for SmolVLM
|
||||
elif name.startswith("language_model."):
|
||||
@@ -1972,7 +1980,8 @@ class LlamaModel(TextModel):
|
||||
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
|
||||
if rope_scaling.get("rope_type", '').lower() == "llama3":
|
||||
base = self.hparams.get("rope_theta", 10000.0)
|
||||
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||
if (dim := self.hparams.get("head_dim")) is None:
|
||||
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
|
||||
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
||||
|
||||
factor = rope_scaling.get("factor", 8.0)
|
||||
@@ -2007,6 +2016,20 @@ class LlamaModel(TextModel):
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@ModelBase.register("ArceeForCausalLM")
|
||||
class ArceeModel(LlamaModel):
|
||||
model_arch = gguf.MODEL_ARCH.ARCEE
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self._try_set_pooling_type()
|
||||
rope_scaling = self.hparams.get("rope_scaling") or {}
|
||||
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
||||
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
|
||||
|
||||
|
||||
@ModelBase.register(
|
||||
"LlavaForConditionalGeneration", # pixtral
|
||||
"Mistral3ForConditionalGeneration", # mistral small 3.1
|
||||
@@ -2169,6 +2192,9 @@ class Llama4VisionModel(MmprojModel):
|
||||
# process vision tensors
|
||||
if "positional_embedding_vlm" in name and ".weight" not in name:
|
||||
name += ".weight"
|
||||
if "multi_modal_projector.linear_1" in name:
|
||||
# despite the name with number postfix, this is a single fully connected layer
|
||||
return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC], data_torch)]
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
return []
|
||||
|
||||
@@ -2291,9 +2317,7 @@ class DeciModel(TextModel):
|
||||
hparams = self.hparams
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
|
||||
if "head_dim" in hparams:
|
||||
rope_dim = hparams["head_dim"]
|
||||
else:
|
||||
if (rope_dim := hparams.get("head_dim")) is None:
|
||||
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
|
||||
@@ -2333,7 +2357,8 @@ class DeciModel(TextModel):
|
||||
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
|
||||
if rope_scaling.get("rope_type", '').lower() == "llama3":
|
||||
base = self.hparams.get("rope_theta", 10000.0)
|
||||
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||
if (dim := self.hparams.get("head_dim")) is None:
|
||||
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
|
||||
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
||||
|
||||
factor = rope_scaling.get("factor", 8.0)
|
||||
@@ -3651,9 +3676,7 @@ class InternLM3Model(TextModel):
|
||||
hparams = self.hparams
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
|
||||
if "head_dim" in hparams:
|
||||
rope_dim = hparams["head_dim"]
|
||||
else:
|
||||
if (rope_dim := hparams.get("head_dim")) is None:
|
||||
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
|
||||
@@ -3676,7 +3699,7 @@ class InternLM3Model(TextModel):
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel")
|
||||
@ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
|
||||
class BertModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.BERT
|
||||
|
||||
@@ -3684,11 +3707,20 @@ class BertModel(TextModel):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.vocab_size = None
|
||||
|
||||
if cls_out_labels := self.hparams.get("id2label"):
|
||||
if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
|
||||
# Remove dummy labels added by AutoConfig
|
||||
cls_out_labels = None
|
||||
self.cls_out_labels = cls_out_labels
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_causal_attention(False)
|
||||
self._try_set_pooling_type()
|
||||
|
||||
if self.cls_out_labels:
|
||||
self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
|
||||
|
||||
def set_vocab(self):
|
||||
tokens, toktypes, tokpre = self.get_vocab_base()
|
||||
self.vocab_size = len(tokens)
|
||||
@@ -3739,6 +3771,14 @@ class BertModel(TextModel):
|
||||
if name.startswith("cls.seq_relationship"):
|
||||
return []
|
||||
|
||||
if self.cls_out_labels:
|
||||
# For BertForSequenceClassification (direct projection layer)
|
||||
if name == "classifier.weight":
|
||||
name = "classifier.out_proj.weight"
|
||||
|
||||
if name == "classifier.bias":
|
||||
name = "classifier.out_proj.bias"
|
||||
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
def _xlmroberta_tokenizer_init(self) -> None:
|
||||
@@ -3758,62 +3798,111 @@ class BertModel(TextModel):
|
||||
from sentencepiece import sentencepiece_model_pb2 as model
|
||||
|
||||
tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
|
||||
|
||||
tokenizer_json = {}
|
||||
tokenizer_config_json = {}
|
||||
if not tokenizer_path.is_file():
|
||||
raise FileNotFoundError(f"File not found: {tokenizer_path}")
|
||||
tokenizer_path = self.dir_model / 'tokenizer.json'
|
||||
tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
|
||||
|
||||
sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
|
||||
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
|
||||
assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
|
||||
if not tokenizer_path.is_file():
|
||||
raise FileNotFoundError(f"File not found: {tokenizer_path}")
|
||||
|
||||
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
|
||||
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
|
||||
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
|
||||
from base64 import b64decode
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
|
||||
|
||||
tokenizer = SentencePieceProcessor()
|
||||
tokenizer.LoadFromFile(str(tokenizer_path))
|
||||
with open(tokenizer_path, "r", encoding="utf-8") as fp:
|
||||
tokenizer_json = json.load(fp)
|
||||
|
||||
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||||
if tokenizer_config_path.is_file():
|
||||
with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
|
||||
tokenizer_config_json = json.load(fp)
|
||||
|
||||
add_prefix = tokenizer.add_prefix_space
|
||||
remove_whitespaces = tokenizer.clean_up_tokenization_spaces
|
||||
precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
|
||||
|
||||
vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
|
||||
else:
|
||||
sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
|
||||
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
|
||||
assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
|
||||
|
||||
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
|
||||
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
|
||||
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
|
||||
|
||||
tokenizer = SentencePieceProcessor()
|
||||
tokenizer.LoadFromFile(str(tokenizer_path))
|
||||
|
||||
vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
|
||||
|
||||
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
||||
scores: list[float] = [-10000.0] * vocab_size
|
||||
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
|
||||
|
||||
for token_id in range(tokenizer.vocab_size()):
|
||||
piece = tokenizer.IdToPiece(token_id)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.GetScore(token_id)
|
||||
if isinstance(tokenizer, SentencePieceProcessor):
|
||||
for token_id in range(tokenizer.vocab_size()):
|
||||
piece = tokenizer.IdToPiece(token_id)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.GetScore(token_id)
|
||||
|
||||
toktype = SentencePieceTokenTypes.NORMAL
|
||||
if tokenizer.IsUnknown(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||||
elif tokenizer.IsControl(token_id):
|
||||
toktype = SentencePieceTokenTypes.CONTROL
|
||||
elif tokenizer.IsUnused(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNUSED
|
||||
elif tokenizer.IsByte(token_id):
|
||||
toktype = SentencePieceTokenTypes.BYTE
|
||||
toktype = SentencePieceTokenTypes.NORMAL
|
||||
if tokenizer.IsUnknown(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||||
elif tokenizer.IsControl(token_id):
|
||||
toktype = SentencePieceTokenTypes.CONTROL
|
||||
elif tokenizer.IsUnused(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNUSED
|
||||
elif tokenizer.IsByte(token_id):
|
||||
toktype = SentencePieceTokenTypes.BYTE
|
||||
|
||||
tokens[token_id] = text
|
||||
scores[token_id] = score
|
||||
toktypes[token_id] = toktype
|
||||
tokens[token_id] = text
|
||||
scores[token_id] = score
|
||||
toktypes[token_id] = toktype
|
||||
else:
|
||||
added_vocab = tokenizer.get_added_vocab()
|
||||
unk_token = tokenizer_config_json.get("unk_token")
|
||||
unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
|
||||
|
||||
if vocab_size > len(tokens):
|
||||
pad_count = vocab_size - len(tokens)
|
||||
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
|
||||
for i in range(1, pad_count + 1):
|
||||
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
|
||||
scores.append(-1000.0)
|
||||
toktypes.append(SentencePieceTokenTypes.UNUSED)
|
||||
for token_id in range(tokenizer.vocab_size):
|
||||
piece = tokenizer._convert_id_to_token(token_id)
|
||||
if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer_json["model"]["vocab"][token_id][1]
|
||||
|
||||
# realign tokens (see HF tokenizer code)
|
||||
tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
|
||||
scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
|
||||
toktypes = [
|
||||
SentencePieceTokenTypes.CONTROL,
|
||||
SentencePieceTokenTypes.CONTROL,
|
||||
SentencePieceTokenTypes.CONTROL,
|
||||
SentencePieceTokenTypes.UNKNOWN,
|
||||
] + toktypes[3:-1]
|
||||
toktype = SentencePieceTokenTypes.NORMAL
|
||||
if token_id == unk_token_id:
|
||||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||||
elif token_id in tokenizer.all_special_ids:
|
||||
toktype = SentencePieceTokenTypes.CONTROL
|
||||
elif token_id in added_vocab.values():
|
||||
toktype = SentencePieceTokenTypes.USER_DEFINED
|
||||
# No reliable way to detect this, but jina doesn't have any
|
||||
# elif tokenizer.IsByte(token_id):
|
||||
# toktype = SentencePieceTokenTypes.BYTE
|
||||
|
||||
tokens[token_id] = text
|
||||
scores[token_id] = score
|
||||
toktypes[token_id] = toktype
|
||||
|
||||
if isinstance(tokenizer, SentencePieceProcessor):
|
||||
# realign tokens (see HF tokenizer code)
|
||||
tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
|
||||
scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
|
||||
toktypes = [
|
||||
SentencePieceTokenTypes.CONTROL,
|
||||
SentencePieceTokenTypes.CONTROL,
|
||||
SentencePieceTokenTypes.CONTROL,
|
||||
SentencePieceTokenTypes.UNKNOWN,
|
||||
] + toktypes[3:-1]
|
||||
|
||||
if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
|
||||
# Add mask token missing from sentencepiece.bpe.model
|
||||
tokens[250001] = b'<mask>'
|
||||
scores[250001] = 0.0
|
||||
toktypes[250001] = SentencePieceTokenTypes.CONTROL
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("t5")
|
||||
self.gguf_writer.add_tokenizer_pre("default")
|
||||
@@ -3833,7 +3922,27 @@ class BertModel(TextModel):
|
||||
self.gguf_writer.add_add_eos_token(True)
|
||||
|
||||
|
||||
@ModelBase.register("RobertaModel")
|
||||
@ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
|
||||
class DistilBertModel(BertModel):
|
||||
model_arch = gguf.MODEL_ARCH.BERT
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_layer_norm_eps(1e-12)
|
||||
logger.info("gguf: layer norm epsilon = 1e-12")
|
||||
super().set_gguf_parameters()
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
if name.startswith("distilbert."):
|
||||
name = name[11:]
|
||||
|
||||
# These layers act as MLM head, so we don't need them
|
||||
if name.startswith("vocab_"):
|
||||
return []
|
||||
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
|
||||
class RobertaModel(BertModel):
|
||||
model_arch = gguf.MODEL_ARCH.BERT
|
||||
|
||||
@@ -3960,6 +4069,34 @@ class NomicBertModel(BertModel):
|
||||
raise ValueError(f"unknown tokenizer: {toktyp}")
|
||||
|
||||
|
||||
@ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
|
||||
class NeoBert(BertModel):
|
||||
model_arch = gguf.MODEL_ARCH.NEO_BERT
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
|
||||
# NeoBERT uses 2/3 of the intermediate size as feed forward length
|
||||
self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
|
||||
self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
|
||||
|
||||
f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
|
||||
self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
|
||||
logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
|
||||
|
||||
self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
|
||||
|
||||
def modify_tensors(self, data_torch, name, bid):
|
||||
if name.startswith("decoder."):
|
||||
return []
|
||||
|
||||
if name.startswith("model."):
|
||||
name = name[6:]
|
||||
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
|
||||
class XLMRobertaModel(BertModel):
|
||||
model_arch = gguf.MODEL_ARCH.BERT
|
||||
@@ -4699,25 +4836,6 @@ class OlmoeModel(TextModel):
|
||||
class JinaBertV2Model(BertModel):
|
||||
model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.intermediate_size = self.hparams["intermediate_size"]
|
||||
|
||||
def get_tensors(self):
|
||||
for name, data in super().get_tensors():
|
||||
if 'gated_layer' in name:
|
||||
d1 = data[:self.intermediate_size, :]
|
||||
name1 = name.replace('gated_layers', 'gated_layers_w')
|
||||
name1 = name1.replace('up_gated_layer', 'gated_layers_v')
|
||||
d2 = data[self.intermediate_size:, :]
|
||||
name2 = name.replace('gated_layers', 'gated_layers_v')
|
||||
name2 = name2.replace('up_gated_layer', 'gated_layers_w')
|
||||
yield name1, d1
|
||||
yield name2, d2
|
||||
continue
|
||||
|
||||
yield name, data
|
||||
|
||||
def set_vocab(self):
|
||||
tokenizer_class = 'BertTokenizer'
|
||||
with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
|
||||
@@ -4733,14 +4851,6 @@ class JinaBertV2Model(BertModel):
|
||||
self.gguf_writer.add_add_bos_token(True)
|
||||
self.gguf_writer.add_add_eos_token(True)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
# if name starts with "bert.", remove the prefix
|
||||
# e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
|
||||
if name.startswith("bert."):
|
||||
name = name[5:]
|
||||
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("OpenELMForCausalLM")
|
||||
class OpenELMModel(TextModel):
|
||||
@@ -4981,9 +5091,7 @@ class DeepseekModel(TextModel):
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
if "head_dim" in hparams:
|
||||
rope_dim = hparams["head_dim"]
|
||||
else:
|
||||
if (rope_dim := hparams.get("head_dim")) is None:
|
||||
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
@@ -5187,6 +5295,34 @@ class DeepseekV2Model(TextModel):
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@ModelBase.register("Dots1ForCausalLM")
|
||||
class Dots1Model(Qwen2MoeModel):
|
||||
model_arch = gguf.MODEL_ARCH.DOTS1
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.hparams["num_experts"] = self.hparams["n_routed_experts"]
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
|
||||
self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
|
||||
self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
|
||||
self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
|
||||
|
||||
if self.hparams["scoring_func"] == "noaux_tc":
|
||||
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
|
||||
else:
|
||||
raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
|
||||
if name.endswith("e_score_correction_bias"):
|
||||
name = name.replace("e_score_correction_bias", "e_score_correction.bias")
|
||||
if "shared_experts" in name:
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("PLMForCausalLM")
|
||||
class PLMModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.PLM
|
||||
@@ -5845,7 +5981,8 @@ class ExaoneModel(TextModel):
|
||||
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
|
||||
if rope_scaling.get("rope_type", '').lower() == "llama3":
|
||||
base = self.hparams.get("rope_theta", 10000.0)
|
||||
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||
if (dim := self.hparams.get("head_dim")) is None:
|
||||
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
|
||||
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
||||
|
||||
factor = rope_scaling.get("factor", 8.0)
|
||||
@@ -5957,7 +6094,8 @@ class BailingMoeModel(TextModel):
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
if (rope_dim := hparams.get("head_dim")) is None:
|
||||
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
rope_scaling = self.hparams.get("rope_scaling") or {}
|
||||
@@ -5989,7 +6127,8 @@ class BailingMoeModel(TextModel):
|
||||
n_head = self.hparams["num_attention_heads"]
|
||||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||
n_embd = self.hparams["hidden_size"]
|
||||
head_dim = self.hparams.get("head_dim") or n_embd // n_head
|
||||
if (head_dim := self.hparams.get("head_dim")) is None:
|
||||
head_dim = n_embd // n_head
|
||||
|
||||
output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
|
||||
|
||||
@@ -6250,8 +6389,8 @@ def parse_args() -> argparse.Namespace:
|
||||
help="model is executed on big endian machine",
|
||||
)
|
||||
parser.add_argument(
|
||||
"model", type=Path,
|
||||
help="directory containing model file",
|
||||
"model", type=str,
|
||||
help="directory containing model file or huggingface repository ID (if --remote)",
|
||||
nargs="?",
|
||||
)
|
||||
parser.add_argument(
|
||||
@@ -6354,18 +6493,20 @@ def main() -> None:
|
||||
else:
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
dir_model = args.model
|
||||
|
||||
if args.remote:
|
||||
hf_repo_id = args.model
|
||||
from huggingface_hub import snapshot_download
|
||||
local_dir = snapshot_download(
|
||||
repo_id=str(dir_model),
|
||||
repo_id=hf_repo_id,
|
||||
allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
|
||||
dir_model = Path(local_dir)
|
||||
logger.info(f"Downloaded config and tokenizer to {local_dir}")
|
||||
else:
|
||||
hf_repo_id = None
|
||||
dir_model = Path(args.model)
|
||||
|
||||
if not dir_model.is_dir():
|
||||
logger.error(f'Error: {args.model} is not a directory')
|
||||
logger.error(f'Error: {dir_model} is not a directory')
|
||||
sys.exit(1)
|
||||
|
||||
ftype_map: dict[str, gguf.LlamaFileType] = {
|
||||
@@ -6385,9 +6526,9 @@ def main() -> None:
|
||||
|
||||
if args.outfile is not None:
|
||||
fname_out = args.outfile
|
||||
elif args.remote:
|
||||
elif hf_repo_id:
|
||||
# if remote, use the model ID as the output file name
|
||||
fname_out = Path("./" + str(args.model).replace("/", "-") + "-{ftype}.gguf")
|
||||
fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
|
||||
else:
|
||||
fname_out = dir_model
|
||||
|
||||
@@ -6416,7 +6557,7 @@ def main() -> None:
|
||||
split_max_tensors=args.split_max_tensors,
|
||||
split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
|
||||
small_first_shard=args.no_tensor_first_split,
|
||||
remote_hf_model_id=str(args.model) if args.remote else None)
|
||||
remote_hf_model_id=hf_repo_id)
|
||||
|
||||
if args.vocab_only:
|
||||
logger.info("Exporting model vocab...")
|
||||
|
||||
@@ -1,28 +1,6 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# This script downloads the tokenizer models of the specified models from Huggingface and
|
||||
# generates the get_vocab_base_pre() function for convert_hf_to_gguf.py
|
||||
#
|
||||
# This is necessary in order to analyze the type of pre-tokenizer used by the model and
|
||||
# provide the necessary information to llama.cpp via the GGUF header in order to implement
|
||||
# the same pre-tokenizer.
|
||||
#
|
||||
# ref: https://github.com/ggml-org/llama.cpp/pull/6920
|
||||
#
|
||||
# Instructions:
|
||||
#
|
||||
# - Add a new model to the "models" list
|
||||
# - Run the script with your huggingface token:
|
||||
#
|
||||
# python3 convert_hf_to_gguf_update.py <huggingface_token>
|
||||
#
|
||||
# - The convert_hf_to_gguf.py script will have had its get_vocab_base_pre() function updated
|
||||
# - Update llama.cpp with the new pre-tokenizer if necessary
|
||||
#
|
||||
# TODO: generate tokenizer tests for llama.cpp
|
||||
#
|
||||
|
||||
import logging
|
||||
import os
|
||||
import pathlib
|
||||
@@ -32,6 +10,7 @@ import requests
|
||||
import sys
|
||||
import json
|
||||
import shutil
|
||||
import argparse
|
||||
|
||||
from hashlib import sha256
|
||||
from enum import IntEnum, auto
|
||||
@@ -41,6 +20,11 @@ logging.basicConfig(level=logging.DEBUG)
|
||||
logger = logging.getLogger("convert_hf_to_gguf_update")
|
||||
sess = requests.Session()
|
||||
|
||||
convert_py_pth = pathlib.Path("convert_hf_to_gguf.py")
|
||||
convert_py = convert_py_pth.read_text(encoding="utf-8")
|
||||
hf_token_pth = pathlib.Path.home() / ".cache" / "huggingface" / "token"
|
||||
hf_token = hf_token_pth.read_text(encoding="utf-8").strip() if hf_token_pth.exists() else None
|
||||
|
||||
|
||||
class TOKENIZER_TYPE(IntEnum):
|
||||
SPM = auto()
|
||||
@@ -49,20 +33,49 @@ class TOKENIZER_TYPE(IntEnum):
|
||||
UGM = auto()
|
||||
|
||||
|
||||
DOC_STRING = """
|
||||
This script downloads the tokenizer models of the specified models from Huggingface and
|
||||
generates the get_vocab_base_pre() function for convert_hf_to_gguf.py
|
||||
|
||||
/!\\ It is intended to be used by contributors and is not meant to be run by end users
|
||||
|
||||
This is necessary in order to analyze the type of pre-tokenizer used by the model and
|
||||
provide the necessary information to llama.cpp via the GGUF header in order to implement
|
||||
the same pre-tokenizer.
|
||||
|
||||
ref: https://github.com/ggml-org/llama.cpp/pull/6920
|
||||
|
||||
Instructions:
|
||||
|
||||
- Add a new model to the "models" list
|
||||
- Run the script with your huggingface token
|
||||
By default, token will be read from ~/.cache/huggingface/token
|
||||
- The convert_hf_to_gguf.py script will have had its get_vocab_base_pre() function updated
|
||||
- Update llama.cpp with the new pre-tokenizer if necessary
|
||||
"""
|
||||
# TODO: generate tokenizer tests for llama.cpp
|
||||
|
||||
parser = argparse.ArgumentParser(description=DOC_STRING, formatter_class=argparse.RawTextHelpFormatter)
|
||||
parser.add_argument(
|
||||
"--full", action="store_true",
|
||||
help="download full list of models - make sure you have access to all of them",
|
||||
)
|
||||
parser.add_argument(
|
||||
"hf_token",
|
||||
help="optional HF token",
|
||||
nargs="?",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
hf_token = args.hf_token if args.hf_token is not None else hf_token
|
||||
|
||||
if hf_token is None:
|
||||
logger.error("HF token is required. Please provide it as an argument or set it in ~/.cache/huggingface/token")
|
||||
sys.exit(1)
|
||||
|
||||
# TODO: this string has to exercise as much pre-tokenizer functionality as possible
|
||||
# will be updated with time - contributions welcome
|
||||
CHK_TXT = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
|
||||
|
||||
if len(sys.argv) == 2:
|
||||
token = sys.argv[1]
|
||||
if not token.startswith("hf_"):
|
||||
logger.info("Huggingface token seems invalid")
|
||||
logger.info("Usage: python convert_hf_to_gguf_update.py <huggingface_token>")
|
||||
sys.exit(1)
|
||||
else:
|
||||
logger.info("Usage: python convert_hf_to_gguf_update.py <huggingface_token>")
|
||||
sys.exit(1)
|
||||
|
||||
# TODO: add models here, base models preferred
|
||||
models = [
|
||||
{"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
|
||||
@@ -103,7 +116,6 @@ models = [
|
||||
{"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", },
|
||||
{"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", },
|
||||
{"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", },
|
||||
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", },
|
||||
{"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"},
|
||||
{"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"},
|
||||
{"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"},
|
||||
@@ -114,11 +126,19 @@ models = [
|
||||
{"name": "trillion", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/trillionlabs/Trillion-7B-preview", },
|
||||
{"name": "bailingmoe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-lite", },
|
||||
{"name": "llama4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct", },
|
||||
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", },
|
||||
{"name": "pixtral", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistral-community/pixtral-12b", },
|
||||
{"name": "seed-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base", },
|
||||
]
|
||||
|
||||
# some models are known to be broken upstream, so we will skip them as exceptions
|
||||
pre_computed_hashes = [
|
||||
# chatglm-bpe has 2 hashes, why?
|
||||
{"name": "chatglm-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-chat", "chkhsh": "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b"},
|
||||
{"name": "chatglm-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-chat", "chkhsh": "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516"},
|
||||
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", "chkhsh": "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2"},
|
||||
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", "chkhsh": "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35"},
|
||||
]
|
||||
|
||||
|
||||
def download_file_with_auth(url, token, save_path):
|
||||
headers = {"Authorization": f"Bearer {token}"}
|
||||
@@ -169,9 +189,29 @@ def download_model(model):
|
||||
if os.path.isfile(save_path):
|
||||
logger.info(f"{name}: File {save_path} already exists - skipping")
|
||||
continue
|
||||
download_file_with_auth(f"{repo}/resolve/main/{file}", token, save_path)
|
||||
download_file_with_auth(f"{repo}/resolve/main/{file}", hf_token, save_path)
|
||||
|
||||
|
||||
# get list of existing models and chkhsh from the convert_hf_to_gguf.py file
|
||||
# returns mapping res --> chkhsh
|
||||
def get_existing_models(convert_py):
|
||||
pattern = r'if chkhsh == "([a-f0-9]{64})":\s*\n\s*.*\s*res = "([^"]+)"'
|
||||
matches = re.findall(pattern, convert_py)
|
||||
output = {}
|
||||
for chkhsh, res in matches:
|
||||
output[res] = chkhsh
|
||||
return output
|
||||
|
||||
|
||||
existing_models = {}
|
||||
all_models = models.copy()
|
||||
if not args.full:
|
||||
# Filter out models that already exist in convert_hf_to_gguf.py
|
||||
existing_models = get_existing_models(convert_py)
|
||||
all_models = models.copy()
|
||||
models = [model for model in all_models if model["name"] not in existing_models]
|
||||
|
||||
logging.info(f"Downloading {len(models)} models...")
|
||||
for model in models:
|
||||
try:
|
||||
download_model(model)
|
||||
@@ -182,9 +222,10 @@ for model in models:
|
||||
# generate the source code for the convert_hf_to_gguf.py:get_vocab_base_pre() function:
|
||||
|
||||
src_ifs = ""
|
||||
for model in models:
|
||||
for model in [*all_models, *pre_computed_hashes]:
|
||||
name = model["name"]
|
||||
tokt = model["tokt"]
|
||||
chkhsh = model.get("chkhsh")
|
||||
|
||||
if tokt == TOKENIZER_TYPE.SPM or tokt == TOKENIZER_TYPE.UGM:
|
||||
continue
|
||||
@@ -195,35 +236,44 @@ for model in models:
|
||||
continue
|
||||
|
||||
# create the tokenizer
|
||||
try:
|
||||
if name == "t5":
|
||||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False)
|
||||
else:
|
||||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
|
||||
except OSError as e:
|
||||
logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}")
|
||||
continue # Skip to the next model if the tokenizer can't be loaded
|
||||
if chkhsh is not None:
|
||||
# if the model has a pre-computed hash, use it
|
||||
logger.info(f"Using pre-computed hash for model {name}: {chkhsh}")
|
||||
elif name in existing_models:
|
||||
# if the model already exists in convert_hf_to_gguf.py, skip compute hash
|
||||
chkhsh = existing_models[name]
|
||||
else:
|
||||
# otherwise, compute the hash of the tokenizer
|
||||
try:
|
||||
logger.info(f"Loading tokenizer from {f'models/tokenizers/{name}'}...")
|
||||
if name == "t5":
|
||||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False)
|
||||
else:
|
||||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
|
||||
except OSError as e:
|
||||
logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}")
|
||||
continue # Skip to the next model if the tokenizer can't be loaded
|
||||
|
||||
chktok = tokenizer.encode(CHK_TXT)
|
||||
chkhsh = sha256(str(chktok).encode()).hexdigest()
|
||||
chktok = tokenizer.encode(CHK_TXT)
|
||||
chkhsh = sha256(str(chktok).encode()).hexdigest()
|
||||
|
||||
logger.info(f"model: {name}")
|
||||
logger.info(f"tokt: {tokt}")
|
||||
logger.info(f"repo: {model['repo']}")
|
||||
logger.info(f"chktok: {chktok}")
|
||||
logger.info(f"chkhsh: {chkhsh}")
|
||||
logger.info(f"model: {name}")
|
||||
logger.info(f"tokt: {tokt}")
|
||||
logger.info(f"repo: {model['repo']}")
|
||||
logger.info(f"chktok: {chktok}")
|
||||
logger.info(f"chkhsh: {chkhsh}")
|
||||
|
||||
# print the "pre_tokenizer" content from the tokenizer.json
|
||||
with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f:
|
||||
cfg = json.load(f)
|
||||
normalizer = cfg["normalizer"]
|
||||
logger.info("normalizer: " + json.dumps(normalizer, indent=4))
|
||||
pre_tokenizer = cfg["pre_tokenizer"]
|
||||
logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
|
||||
if "ignore_merges" in cfg["model"]:
|
||||
logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4))
|
||||
# print the "pre_tokenizer" content from the tokenizer.json
|
||||
with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f:
|
||||
cfg = json.load(f)
|
||||
normalizer = cfg["normalizer"]
|
||||
logger.info("normalizer: " + json.dumps(normalizer, indent=4))
|
||||
pre_tokenizer = cfg["pre_tokenizer"]
|
||||
logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
|
||||
if "ignore_merges" in cfg["model"]:
|
||||
logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4))
|
||||
|
||||
logger.info("")
|
||||
logger.info("")
|
||||
|
||||
src_ifs += f" if chkhsh == \"{chkhsh}\":\n"
|
||||
src_ifs += f" # ref: {model['repo']}\n"
|
||||
@@ -271,8 +321,6 @@ src_func = f"""
|
||||
return res
|
||||
"""
|
||||
|
||||
convert_py_pth = pathlib.Path("convert_hf_to_gguf.py")
|
||||
convert_py = convert_py_pth.read_text(encoding="utf-8")
|
||||
convert_py = re.sub(
|
||||
r"(# Marker: Start get_vocab_base_pre)(.+?)( +# Marker: End get_vocab_base_pre)",
|
||||
lambda m: m.group(1) + src_func + m.group(3),
|
||||
@@ -288,7 +336,7 @@ logger.info("+++ convert_hf_to_gguf.py was updated")
|
||||
|
||||
tests = [
|
||||
"ied 4 ½ months",
|
||||
"Führer",
|
||||
"Äpfel",
|
||||
"",
|
||||
" ",
|
||||
" ",
|
||||
@@ -367,6 +415,10 @@ for model in models:
|
||||
logger.error(f"Failed to load tokenizer for model {name}. Error: {e}")
|
||||
continue # Skip this model and continue with the next one in the loop
|
||||
|
||||
if not os.path.exists(f"models/ggml-vocab-{name}.gguf"):
|
||||
logger.info(f"Skip vocab files for model {name}, no GGUF file found")
|
||||
continue
|
||||
|
||||
with open(f"models/ggml-vocab-{name}.gguf.inp", "w", encoding="utf-8") as f:
|
||||
for text in tests:
|
||||
f.write(f"{text}")
|
||||
|
||||
@@ -8,6 +8,7 @@
|
||||
- [DataType Supports](#datatype-supports)
|
||||
- [Docker](#docker)
|
||||
- [Linux](#linux)
|
||||
- [Environment variable setup](#environment-variable-setup)
|
||||
- [TODO](#todo)
|
||||
|
||||
|
||||
@@ -290,5 +291,24 @@ Authors from Peking University: Bizhao Shi (bshi@pku.edu.cn), Yuxin Yang (yxyang
|
||||
|
||||
We would like to thank Tuo Dai, Shanni Li, and all of the project maintainers from Huawei Technologies Co., Ltd for their help during the code development and pull request.
|
||||
|
||||
## Environment variable setup
|
||||
|
||||
### GGML_CANN_ASYNC_MODE
|
||||
|
||||
Enables asynchronous operator submission. Disabled by default.
|
||||
|
||||
### GGML_CANN_MEM_POOL
|
||||
|
||||
Specifies the memory pool management strategy:
|
||||
|
||||
- vmm: Utilizes a virtual memory manager pool. If hardware support for VMM is unavailable, falls back to the legacy (leg) memory pool.
|
||||
|
||||
- prio: Employs a priority queue-based memory pool management.
|
||||
- leg: Uses a fixed-size buffer pool.
|
||||
|
||||
### GGML_CANN_DISABLE_BUF_POOL_CLEAN
|
||||
|
||||
Controls automatic cleanup of the memory pool. This option is only effective when using the prio or leg memory pool strategies.
|
||||
|
||||
## TODO
|
||||
- Support more models and data types.
|
||||
|
||||
157
docs/build-s390x.md
Normal file
157
docs/build-s390x.md
Normal file
@@ -0,0 +1,157 @@
|
||||
> [!IMPORTANT]
|
||||
> This build documentation is specific only to IBM Z & LinuxONE mainframes (s390x). You can find the build documentation for other architectures: [build.md](build.md).
|
||||
|
||||
# Build llama.cpp locally (for s390x)
|
||||
|
||||
The main product of this project is the `llama` library. Its C-style interface can be found in [include/llama.h](../include/llama.h).
|
||||
|
||||
The project also includes many example programs and tools using the `llama` library. The examples range from simple, minimal code snippets to sophisticated sub-projects such as an OpenAI-compatible HTTP server.
|
||||
|
||||
**To get the code:**
|
||||
|
||||
```bash
|
||||
git clone https://github.com/ggml-org/llama.cpp
|
||||
cd llama.cpp
|
||||
```
|
||||
|
||||
## CPU Build with BLAS
|
||||
|
||||
Building llama.cpp with BLAS support is highly recommended as it has shown to provide performance improvements.
|
||||
|
||||
```bash
|
||||
cmake -S . -B build \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_BLAS=ON \
|
||||
-DGGML_BLAS_VENDOR=OpenBLAS
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
```
|
||||
|
||||
**Notes**:
|
||||
- For faster repeated compilation, install [ccache](https://ccache.dev/)
|
||||
- By default, VXE/VXE2 is enabled. To disable it (not recommended):
|
||||
|
||||
```bash
|
||||
cmake -S . -B build \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_BLAS=ON \
|
||||
-DGGML_BLAS_VENDOR=OpenBLAS \
|
||||
-DGGML_VXE=OFF
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
```
|
||||
|
||||
- For debug builds:
|
||||
|
||||
```bash
|
||||
cmake -S . -B build \
|
||||
-DCMAKE_BUILD_TYPE=Debug \
|
||||
-DGGML_BLAS=ON \
|
||||
-DGGML_BLAS_VENDOR=OpenBLAS
|
||||
|
||||
cmake --build build --config Debug -j $(nproc)
|
||||
```
|
||||
|
||||
- For static builds, add `-DBUILD_SHARED_LIBS=OFF`:
|
||||
|
||||
```bash
|
||||
cmake -S . -B build \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_BLAS=ON \
|
||||
-DGGML_BLAS_VENDOR=OpenBLAS \
|
||||
-DBUILD_SHARED_LIBS=OFF
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
```
|
||||
|
||||
## Getting GGUF Models
|
||||
|
||||
All models need to be converted to Big-Endian. You can achieve this in three cases:
|
||||
|
||||
1. **Use pre-converted models verified for use on IBM Z & LinuxONE (easiest)**
|
||||
|
||||
You can find popular models pre-converted and verified at [s390x Ready Models](hf.co/collections/taronaeo/s390x-ready-models-672765393af438d0ccb72a08).
|
||||
|
||||
These models and their respective tokenizers are verified to run correctly on IBM Z & LinuxONE.
|
||||
|
||||
2. **Convert safetensors model to GGUF Big-Endian directly (recommended)**
|
||||
|
||||
```bash
|
||||
python3 convert_hf_to_gguf.py \
|
||||
--outfile model-name-be.f16.gguf \
|
||||
--outtype f16 \
|
||||
--bigendian \
|
||||
model-directory/
|
||||
```
|
||||
|
||||
For example,
|
||||
|
||||
```bash
|
||||
python3 convert_hf_to_gguf.py \
|
||||
--outfile granite-3.3-2b-instruct-be.f16.gguf \
|
||||
--outtype f16 \
|
||||
--bigendian \
|
||||
granite-3.3-2b-instruct/
|
||||
```
|
||||
|
||||
3. **Convert existing GGUF Little-Endian model to Big-Endian**
|
||||
|
||||
```bash
|
||||
python3 gguf-py/gguf/scripts/gguf_convert_endian.py model-name.f16.gguf BIG
|
||||
```
|
||||
|
||||
For example,
|
||||
```bash
|
||||
python3 gguf-py/gguf/scripts/gguf_convert_endian.py granite-3.3-2b-instruct-le.f16.gguf BIG
|
||||
mv granite-3.3-2b-instruct-le.f16.gguf granite-3.3-2b-instruct-be.f16.gguf
|
||||
```
|
||||
|
||||
**Notes:**
|
||||
- The GGUF endian conversion script may not support all data types at the moment and may fail for some models/quantizations. When that happens, please try manually converting the safetensors model to GGUF Big-Endian via Step 2.
|
||||
|
||||
## IBM Accelerators
|
||||
|
||||
### 1. SIMD Acceleration
|
||||
|
||||
Only available in IBM z15 or later system with the `-DGGML_VXE=ON` (turned on by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z14 or EC13. In such systems, the APIs can still run but will use a scalar implementation.
|
||||
|
||||
### 2. zDNN Accelerator
|
||||
|
||||
*Only available in IBM z16 or later system. No direction at the moment.*
|
||||
|
||||
### 3. Spyre Accelerator
|
||||
|
||||
*No direction at the moment.*
|
||||
|
||||
## Performance Tuning
|
||||
|
||||
### 1. Virtualization Setup
|
||||
|
||||
It is strongly recommended to use only LPAR (Type-1) virtualization to get the most performance.
|
||||
|
||||
Note: Type-2 virtualization is not supported at the moment, while you can get it running, the performance will not be the best.
|
||||
|
||||
### 2. IFL (Core) Count
|
||||
|
||||
It is recommended to allocate a minimum of 8 shared IFLs assigned to the LPAR. Increasing the IFL count past 8 shared IFLs will only improve Prompt Processing performance but not Token Generation.
|
||||
|
||||
Note: IFL count does not equate to vCPU count.
|
||||
|
||||
### 3. SMT vs NOSMT (Simultaneous Multithreading)
|
||||
|
||||
It is strongly recommended to disable SMT via the kernel boot parameters as it negatively affects performance. Please refer to your Linux distribution's guide on disabling SMT via kernel boot parameters.
|
||||
|
||||
### 4. BLAS vs NOBLAS
|
||||
|
||||
IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongly recommended to use BLAS.
|
||||
|
||||
## Getting Help on IBM Z & LinuxONE
|
||||
|
||||
1. **Bugs, Feature Requests**
|
||||
|
||||
Please file an issue in llama.cpp and ensure that the title contains "s390x".
|
||||
|
||||
2. **Other Questions**
|
||||
|
||||
Please reach out directly to [aionz@us.ibm.com](mailto:aionz@us.ibm.com).
|
||||
|
||||
@@ -1,5 +1,9 @@
|
||||
# Build llama.cpp locally
|
||||
|
||||
The main product of this project is the `llama` library. Its C-style interface can be found in [include/llama.h](include/llama.h).
|
||||
|
||||
The project also includes many example programs and tools using the `llama` library. The examples range from simple, minimal code snippets to sophisticated sub-projects such as an OpenAI-compatible HTTP server.
|
||||
|
||||
**To get the Code:**
|
||||
|
||||
```bash
|
||||
@@ -63,6 +67,7 @@ cmake --build build --config Release
|
||||
cmake --preset x64-windows-llvm-release
|
||||
cmake --build build-x64-windows-llvm-release
|
||||
```
|
||||
- Curl usage is enabled by default and can be turned off with `-DLLAMA_CURL=OFF`. Otherwise you need to install development libraries for libcurl.
|
||||
|
||||
## BLAS Build
|
||||
|
||||
|
||||
@@ -11,7 +11,7 @@ Function calling is supported for all models (see https://github.com/ggml-org/ll
|
||||
- Llama 3.1 / 3.3 (including builtin tools support - tool names for `wolfram_alpha`, `web_search` / `brave_search`, `code_interpreter`), Llama 3.2
|
||||
- Functionary v3.1 / v3.2
|
||||
- Hermes 2/3, Qwen 2.5
|
||||
- Qwen 2.5 Coder (WIP: https://github.com/ggml-org/llama.cpp/pull/12034)
|
||||
- Qwen 2.5 Coder
|
||||
- Mistral Nemo
|
||||
- Firefunction v2
|
||||
- Command R7B
|
||||
|
||||
@@ -1,28 +1,42 @@
|
||||
# Install pre-built version of llama.cpp
|
||||
|
||||
## Homebrew
|
||||
| Install via | Windows | Mac | Linux |
|
||||
|-------------|---------|-----|-------|
|
||||
| Winget | ✅ | | |
|
||||
| Homebrew | | ✅ | ✅ |
|
||||
| MacPorts | | ✅ | |
|
||||
| Nix | | ✅ | ✅ |
|
||||
|
||||
On Mac and Linux, the homebrew package manager can be used via
|
||||
## Winget (Windows)
|
||||
|
||||
```sh
|
||||
winget install llama.cpp
|
||||
```
|
||||
|
||||
The package is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggml-org/llama.cpp/issues/8188
|
||||
|
||||
## Homebrew (Mac and Linux)
|
||||
|
||||
```sh
|
||||
brew install llama.cpp
|
||||
```
|
||||
|
||||
The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggml-org/llama.cpp/discussions/7668
|
||||
|
||||
## MacPorts
|
||||
## MacPorts (Mac)
|
||||
|
||||
```sh
|
||||
sudo port install llama.cpp
|
||||
```
|
||||
see also: https://ports.macports.org/port/llama.cpp/details/
|
||||
|
||||
## Nix
|
||||
See also: https://ports.macports.org/port/llama.cpp/details/
|
||||
|
||||
On Mac and Linux, the Nix package manager can be used via
|
||||
## Nix (Mac and Linux)
|
||||
|
||||
```sh
|
||||
nix profile install nixpkgs#llama-cpp
|
||||
```
|
||||
|
||||
For flake enabled installs.
|
||||
|
||||
Or
|
||||
@@ -34,13 +48,3 @@ nix-env --file '<nixpkgs>' --install --attr llama-cpp
|
||||
For non-flake enabled installs.
|
||||
|
||||
This expression is automatically updated within the [nixpkgs repo](https://github.com/NixOS/nixpkgs/blob/nixos-24.05/pkgs/by-name/ll/llama-cpp/package.nix#L164).
|
||||
|
||||
## Flox
|
||||
|
||||
On Mac and Linux, Flox can be used to install llama.cpp within a Flox environment via
|
||||
|
||||
```sh
|
||||
flox install llama-cpp
|
||||
```
|
||||
|
||||
Flox follows the nixpkgs build of llama.cpp.
|
||||
|
||||
@@ -107,3 +107,7 @@ NOTE: some models may require large context window, for example: `-c 8192`
|
||||
(tool_name) -hf ggml-org/Qwen2.5-Omni-3B-GGUF
|
||||
(tool_name) -hf ggml-org/Qwen2.5-Omni-7B-GGUF
|
||||
```
|
||||
|
||||
## Finding more models:
|
||||
|
||||
GGUF models on Huggingface with vision capabilities can be found here: https://huggingface.co/models?pipeline_tag=image-text-to-text&sort=trending&search=gguf
|
||||
|
||||
@@ -116,7 +116,7 @@ if llama_decode(context, batch) != 0 {
|
||||
}
|
||||
|
||||
for i in 1 ..< n_parallel {
|
||||
llama_kv_self_seq_cp(context, 0, Int32(i), 0, batch.n_tokens)
|
||||
llama_memory_seq_cp(llama_get_memory(context), 0, Int32(i), 0, batch.n_tokens)
|
||||
}
|
||||
|
||||
if n_parallel > 1 {
|
||||
|
||||
@@ -37,7 +37,7 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
|
||||
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
|
||||
|
||||
// clear previous kv_cache values (irrelevant for embeddings)
|
||||
llama_kv_self_clear(ctx);
|
||||
llama_memory_clear(llama_get_memory(ctx), true);
|
||||
|
||||
// run model
|
||||
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
|
||||
@@ -236,9 +236,24 @@ int main(int argc, char ** argv) {
|
||||
LOG("\n");
|
||||
}
|
||||
} else if (pooling_type == LLAMA_POOLING_TYPE_RANK) {
|
||||
const uint32_t n_cls_out = llama_model_n_cls_out(model);
|
||||
std::vector<std::string> cls_out_labels;
|
||||
|
||||
for (uint32_t i = 0; i < n_cls_out; i++) {
|
||||
const char * label = llama_model_cls_label(model, i);
|
||||
const std::string label_i(label == nullptr ? "" : label);
|
||||
cls_out_labels.emplace_back(label_i.empty() ? std::to_string(i) : label_i);
|
||||
}
|
||||
|
||||
for (int j = 0; j < n_embd_count; j++) {
|
||||
// NOTE: if you change this log - update the tests in ci/run.sh
|
||||
LOG("rerank score %d: %8.3f\n", j, emb[j * n_embd]);
|
||||
for (uint32_t i = 0; i < n_cls_out; i++) {
|
||||
// NOTE: if you change this log - update the tests in ci/run.sh
|
||||
if (n_cls_out == 1) {
|
||||
LOG("rerank score %d: %8.3f\n", j, emb[j * n_embd]);
|
||||
} else {
|
||||
LOG("rerank score %d: %8.3f [%s]\n", j, emb[j * n_embd + i], cls_out_labels[i].c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// print the first part of the embeddings or for a single prompt, the full embedding
|
||||
|
||||
@@ -41,12 +41,11 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
|
||||
|
||||
// add input to batch (this increments n_tokens)
|
||||
for (int32_t j = 0; j < n_toks; j++) {
|
||||
common_batch_add(batch, inputs[j], j, { 0 }, j >= n_inst);
|
||||
common_batch_add(batch, inputs[j], j, { 0 }, true);
|
||||
}
|
||||
|
||||
// clear previous kv_cache values (irrelevant for embeddings)
|
||||
llama_kv_self_clear(ctx);
|
||||
llama_set_embeddings(ctx, true);
|
||||
llama_memory_clear(llama_get_memory(ctx), true);
|
||||
llama_set_causal_attn(ctx, false);
|
||||
|
||||
// run model
|
||||
@@ -102,8 +101,7 @@ static std::string generate(llama_context * ctx, llama_sampler * smpl, const std
|
||||
|
||||
llama_token eos_token = llama_vocab_eos(vocab);
|
||||
|
||||
llama_kv_self_clear(ctx);
|
||||
llama_set_embeddings(ctx, false);
|
||||
llama_memory_clear(llama_get_memory(ctx), true);
|
||||
llama_set_causal_attn(ctx, true);
|
||||
|
||||
llama_batch bat = llama_batch_init(llama_n_batch(ctx), 0, 1);
|
||||
@@ -166,6 +164,8 @@ int main(int argc, char * argv[]) {
|
||||
llama_model_params mparams = common_model_params_to_llama(params);
|
||||
llama_context_params cparams = common_context_params_to_llama(params);
|
||||
|
||||
cparams.embeddings = true;
|
||||
|
||||
llama_backend_init();
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
|
||||
@@ -213,6 +213,8 @@ int main(int argc, char * argv[]) {
|
||||
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[1].c_str(), documents[1].c_str(), cosine_sim_q1_d1);
|
||||
}
|
||||
|
||||
llama_set_embeddings(ctx, false);
|
||||
|
||||
// ### Generation ###
|
||||
// GritLM models are not finetuned with system prompts, as you can just include system-like instructions together with your user instruction
|
||||
{
|
||||
|
||||
@@ -194,7 +194,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
|
||||
}
|
||||
|
||||
batch->logits[batch->n_tokens - 1] = true;
|
||||
llama_kv_self_clear(context);
|
||||
llama_memory_clear(llama_get_memory(context), false);
|
||||
|
||||
const auto t_pp_start = ggml_time_us();
|
||||
if (llama_decode(context, *batch) != 0) {
|
||||
@@ -206,7 +206,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
|
||||
|
||||
LOGi("Benchmark text generation (tg)");
|
||||
|
||||
llama_kv_self_clear(context);
|
||||
llama_memory_clear(llama_get_memory(context), false);
|
||||
const auto t_tg_start = ggml_time_us();
|
||||
for (i = 0; i < tg; i++) {
|
||||
|
||||
@@ -223,7 +223,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
|
||||
|
||||
const auto t_tg_end = ggml_time_us();
|
||||
|
||||
llama_kv_self_clear(context);
|
||||
llama_memory_clear(llama_get_memory(context), false);
|
||||
|
||||
const auto t_pp = double(t_pp_end - t_pp_start) / 1000000.0;
|
||||
const auto t_tg = double(t_tg_end - t_tg_start) / 1000000.0;
|
||||
@@ -448,5 +448,5 @@ Java_android_llama_cpp_LLamaAndroid_completion_1loop(
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_android_llama_cpp_LLamaAndroid_kv_1cache_1clear(JNIEnv *, jobject, jlong context) {
|
||||
llama_kv_self_clear(reinterpret_cast<llama_context *>(context));
|
||||
llama_memory_clear(llama_get_memory(reinterpret_cast<llama_context *>(context)), true);
|
||||
}
|
||||
|
||||
@@ -210,7 +210,7 @@ actor LlamaContext {
|
||||
}
|
||||
batch.logits[Int(batch.n_tokens) - 1] = 1 // true
|
||||
|
||||
llama_kv_self_clear(context)
|
||||
llama_memory_clear(llama_get_memory(context), false)
|
||||
|
||||
let t_pp_start = DispatchTime.now().uptimeNanoseconds / 1000;
|
||||
|
||||
@@ -223,7 +223,7 @@ actor LlamaContext {
|
||||
|
||||
// bench text generation
|
||||
|
||||
llama_kv_self_clear(context)
|
||||
llama_memory_clear(llama_get_memory(context), false)
|
||||
|
||||
let t_tg_start = DispatchTime.now().uptimeNanoseconds / 1000;
|
||||
|
||||
@@ -242,7 +242,7 @@ actor LlamaContext {
|
||||
|
||||
let t_tg_end = DispatchTime.now().uptimeNanoseconds / 1000;
|
||||
|
||||
llama_kv_self_clear(context)
|
||||
llama_memory_clear(llama_get_memory(context), false)
|
||||
|
||||
let t_pp = Double(t_pp_end - t_pp_start) / 1000000.0
|
||||
let t_tg = Double(t_tg_end - t_tg_start) / 1000000.0
|
||||
@@ -292,7 +292,7 @@ actor LlamaContext {
|
||||
func clear() {
|
||||
tokens_list.removeAll()
|
||||
temporary_invalid_cchars.removeAll()
|
||||
llama_kv_self_clear(context)
|
||||
llama_memory_clear(llama_get_memory(context), true)
|
||||
}
|
||||
|
||||
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
|
||||
|
||||
@@ -60,6 +60,8 @@ int main(int argc, char ** argv) {
|
||||
llama_model * model = llama_init.model.get();
|
||||
llama_context * ctx = llama_init.context.get();
|
||||
|
||||
auto * mem = llama_get_memory(ctx);
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
// Tokenize the prompt
|
||||
@@ -94,7 +96,7 @@ int main(int argc, char ** argv) {
|
||||
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1));
|
||||
|
||||
for (int s = 1; s < W + G + 1; ++s) {
|
||||
llama_kv_self_seq_cp(ctx, 0, s, -1, -1);
|
||||
llama_memory_seq_cp(mem, 0, s, -1, -1);
|
||||
}
|
||||
|
||||
const auto t_enc_end = ggml_time_us();
|
||||
@@ -427,17 +429,17 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// KV cache management
|
||||
// if no verification token matched, we simply remove all cells from this batch -> no fragmentation
|
||||
llama_kv_self_seq_rm(ctx, -1, n_past, -1);
|
||||
llama_memory_seq_rm(mem, -1, n_past, -1);
|
||||
|
||||
if (seq_id_best != 0) {
|
||||
// if a verification token matched, we keep the best sequence and remove the rest
|
||||
// this leads to some KV cache fragmentation
|
||||
llama_kv_self_seq_keep(ctx, seq_id_best);
|
||||
llama_kv_self_seq_cp (ctx, seq_id_best, 0, -1, -1);
|
||||
llama_kv_self_seq_rm (ctx, seq_id_best, -1, -1);
|
||||
llama_memory_seq_keep(mem, seq_id_best);
|
||||
llama_memory_seq_cp (mem, seq_id_best, 0, -1, -1);
|
||||
llama_memory_seq_rm (mem, seq_id_best, -1, -1);
|
||||
|
||||
for (int s = 1; s < W + G + 1; ++s) {
|
||||
llama_kv_self_seq_cp(ctx, 0, s, -1, -1);
|
||||
llama_memory_seq_cp(mem, 0, s, -1, -1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -181,7 +181,7 @@ int main(int argc, char ** argv){
|
||||
|
||||
// KV cache management
|
||||
// clean the cache of draft tokens that weren't accepted
|
||||
llama_kv_self_seq_rm(ctx, 0, n_past, -1);
|
||||
llama_memory_seq_rm(llama_get_memory(ctx), 0, n_past, -1);
|
||||
|
||||
common_batch_clear(batch_tgt);
|
||||
common_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);
|
||||
|
||||
@@ -4,7 +4,7 @@ Simplified simulation of serving incoming requests in parallel
|
||||
|
||||
## Example
|
||||
|
||||
Generate 128 client requests (`-ns 128`), simulating 8 concurrent clients (`-np 8`). The system prompt is shared (`-pps`), meaning that it is computed once at the start. The client requests consist of 10 junk questions (`-j 10`) followed by the actual question.
|
||||
Generate 128 client requests (`-ns 128`), simulating 8 concurrent clients (`-np 8`). The system prompt is shared (`-pps`), meaning that it is computed once at the start. The client requests consist of up to 10 junk questions (`--junk 10`) followed by the actual question.
|
||||
|
||||
```bash
|
||||
llama-parallel -m model.gguf -np 8 -ns 128 --top-k 1 -pps --junk 10 -c 16384
|
||||
|
||||
@@ -158,7 +158,7 @@ int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
|
||||
params.n_predict = 128;
|
||||
params.n_junk = 0;
|
||||
params.n_junk = 1;
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PARALLEL)) {
|
||||
return 1;
|
||||
@@ -182,7 +182,7 @@ int main(int argc, char ** argv) {
|
||||
const bool is_sp_shared = params.is_pp_shared;
|
||||
|
||||
// extra text to insert in each client's prompt in order to make it larger
|
||||
const int32_t n_junk = params.n_junk;
|
||||
const int32_t n_junk = std::max(1, params.n_junk);
|
||||
|
||||
// init llama.cpp
|
||||
llama_backend_init();
|
||||
@@ -194,6 +194,8 @@ int main(int argc, char ** argv) {
|
||||
llama_model * model = llama_init.model.get();
|
||||
llama_context * ctx = llama_init.context.get();
|
||||
|
||||
auto * mem = llama_get_memory(ctx);
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
// load the prompts from an external file if there are any
|
||||
@@ -259,7 +261,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// assign the system KV cache to all parallel sequences
|
||||
for (int32_t i = 1; i <= n_clients; ++i) {
|
||||
llama_kv_self_seq_cp(ctx, 0, i, -1, -1);
|
||||
llama_memory_seq_cp(mem, 0, i, -1, -1);
|
||||
}
|
||||
|
||||
LOG_INF("\n");
|
||||
@@ -286,9 +288,9 @@ int main(int argc, char ** argv) {
|
||||
if (batch.n_tokens == 0) {
|
||||
// all sequences have ended - clear the entire KV cache
|
||||
for (int i = 1; i <= n_clients; ++i) {
|
||||
llama_kv_self_seq_rm(ctx, i, -1, -1);
|
||||
llama_memory_seq_rm(mem, i, -1, -1);
|
||||
// but keep the system prompt
|
||||
llama_kv_self_seq_cp(ctx, 0, i, -1, -1);
|
||||
llama_memory_seq_cp(mem, 0, i, -1, -1);
|
||||
}
|
||||
|
||||
LOG_INF("%s: clearing the KV cache\n", __func__);
|
||||
@@ -315,7 +317,10 @@ int main(int argc, char ** argv) {
|
||||
} else {
|
||||
client.prompt += k_system;
|
||||
}
|
||||
for (int i = 0; i < n_junk; ++i) {
|
||||
|
||||
const int n_junk_cur = rand() % n_junk;
|
||||
|
||||
for (int i = 0; i < n_junk_cur; ++i) {
|
||||
const int r = rand() % k_questions.size();
|
||||
client.prompt += "User:\n" + k_questions[r] + "\nAssistant:\n " + k_answers[r] + "\n";
|
||||
}
|
||||
@@ -340,7 +345,7 @@ int main(int argc, char ** argv) {
|
||||
client.n_decoded = 0;
|
||||
client.i_batch = batch.n_tokens - 1;
|
||||
|
||||
LOG_INF("\033[31mClient %3d, seq %4d, started decoding ...\033[0m\n", client.id, client.seq_id);
|
||||
LOG_INF("\033[31mClient %3d, seq %4d, junk = %4d, started decoding ...\033[0m\n", client.id, client.seq_id, n_junk_cur);
|
||||
|
||||
g_seq_id += 1;
|
||||
|
||||
@@ -359,7 +364,9 @@ int main(int argc, char ** argv) {
|
||||
// process in chunks of params.n_batch
|
||||
int32_t n_batch = params.n_batch;
|
||||
|
||||
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
|
||||
int32_t i_next = 0;
|
||||
|
||||
for (int32_t i = 0; i < batch.n_tokens; i = i_next) {
|
||||
// experiment: process in powers of 2
|
||||
//if (i + n_batch > (int32_t) batch.n_tokens && n_batch > 32) {
|
||||
// n_batch /= 2;
|
||||
@@ -367,7 +374,7 @@ int main(int argc, char ** argv) {
|
||||
// continue;
|
||||
//}
|
||||
|
||||
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
|
||||
const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
|
||||
|
||||
llama_batch batch_view = {
|
||||
n_tokens,
|
||||
@@ -387,19 +394,24 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
LOG_ERR("%s : failed to decode the batch, retrying with n_batch = %d\n", __func__, n_batch / 2);
|
||||
LOG_WRN("%s : failed to decode the batch, retrying with n_batch = %d\n", __func__, n_batch / 2);
|
||||
|
||||
n_cache_miss += 1;
|
||||
|
||||
// retry with half the batch size to try to find a free slot in the KV cache
|
||||
n_batch /= 2;
|
||||
i -= n_batch;
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
LOG_DBG("%s : decoded batch of %d tokens\n", __func__, n_tokens);
|
||||
|
||||
// move the head of the batch forward with the number of tokens we just processed
|
||||
i_next = i + n_tokens;
|
||||
|
||||
// on successful decode, restore the original batch size
|
||||
n_batch = params.n_batch;
|
||||
|
||||
for (auto & client : clients) {
|
||||
if (client.i_batch < (int) i || client.i_batch >= (int) (i + n_tokens)) {
|
||||
continue;
|
||||
@@ -437,8 +449,8 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// delete only the generated part of the sequence, i.e. keep the system prompt in the cache
|
||||
llama_kv_self_seq_rm(ctx, client.id + 1, -1, -1);
|
||||
llama_kv_self_seq_cp(ctx, 0, client.id + 1, -1, -1);
|
||||
llama_memory_seq_rm(mem, client.id + 1, -1, -1);
|
||||
llama_memory_seq_cp(mem, 0, client.id + 1, -1, -1);
|
||||
|
||||
const auto t_main_end = ggml_time_us();
|
||||
|
||||
|
||||
@@ -126,6 +126,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
int n_past = 0;
|
||||
|
||||
auto * mem = llama_get_memory(ctx);
|
||||
|
||||
// fill the KV cache
|
||||
for (int i = 0; i < n_ctx; i += n_batch) {
|
||||
if (i > 0 && n_grp > 1) {
|
||||
@@ -133,11 +135,10 @@ int main(int argc, char ** argv) {
|
||||
const int ib = i/n_batch - 1;
|
||||
const int bd = n_batch_grp*(n_grp - 1);
|
||||
|
||||
llama_kv_self_seq_add (ctx, 0, n_past - n_batch, n_past, ib*bd);
|
||||
llama_kv_self_seq_div (ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
|
||||
llama_kv_self_update (ctx);
|
||||
llama_memory_seq_add(mem, 0, n_past - n_batch, n_past, ib*bd);
|
||||
llama_memory_seq_div(mem, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
|
||||
|
||||
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
|
||||
n_past = llama_memory_seq_pos_max(mem, 0) + 1;
|
||||
}
|
||||
|
||||
common_batch_clear(batch);
|
||||
@@ -167,12 +168,10 @@ int main(int argc, char ** argv) {
|
||||
|
||||
LOG_INF("%s: shifting KV cache with %d\n", __func__, n_discard);
|
||||
|
||||
llama_kv_self_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
|
||||
llama_kv_self_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
|
||||
//llama_kv_self_defrag (ctx);
|
||||
llama_kv_self_update (ctx);
|
||||
llama_memory_seq_rm (mem, 0, n_keep , n_keep + n_discard);
|
||||
llama_memory_seq_add(mem, 0, n_keep + n_discard, n_ctx, -n_discard);
|
||||
|
||||
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
|
||||
n_past = llama_memory_seq_pos_max(mem, 0) + 1;
|
||||
|
||||
common_batch_clear(batch);
|
||||
|
||||
@@ -198,12 +197,10 @@ int main(int argc, char ** argv) {
|
||||
if (n_discard > 0) {
|
||||
LOG_INF("%s: shifting KV cache with %d to free space for the answer\n", __func__, n_discard);
|
||||
|
||||
llama_kv_self_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
|
||||
llama_kv_self_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
|
||||
//llama_kv_self_defrag (ctx);
|
||||
llama_kv_self_update (ctx);
|
||||
llama_memory_seq_rm (mem, 0, n_keep , n_keep + n_discard);
|
||||
llama_memory_seq_add(mem, 0, n_keep + n_discard, n_ctx, -n_discard);
|
||||
|
||||
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
|
||||
n_past = llama_memory_seq_pos_max(mem, 0) + 1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -83,7 +83,7 @@ static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & toke
|
||||
|
||||
static void batch_process(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
|
||||
// clear previous kv_cache values (irrelevant for embeddings)
|
||||
llama_kv_self_clear(ctx);
|
||||
llama_memory_clear(llama_get_memory(ctx), false);
|
||||
|
||||
// run model
|
||||
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
|
||||
|
||||
@@ -196,7 +196,7 @@ int main(int argc, char ** argv) {
|
||||
fprintf(stderr, "%s : seq 0 copied, %zd bytes\n", __func__, ncopy);
|
||||
|
||||
// erase whole kv
|
||||
llama_kv_self_clear(ctx3);
|
||||
llama_memory_clear(llama_get_memory(ctx3), true);
|
||||
fprintf(stderr, "%s : kv cache cleared\n", __func__);
|
||||
|
||||
// restore kv into seq 1
|
||||
|
||||
@@ -98,7 +98,7 @@ int main(int argc, char ** argv) {
|
||||
auto generate = [&](const std::string & prompt) {
|
||||
std::string response;
|
||||
|
||||
const bool is_first = llama_kv_self_seq_pos_max(ctx, 0) == 0;
|
||||
const bool is_first = llama_memory_seq_pos_max(llama_get_memory(ctx), 0) == 0;
|
||||
|
||||
// tokenize the prompt
|
||||
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true);
|
||||
@@ -113,7 +113,7 @@ int main(int argc, char ** argv) {
|
||||
while (true) {
|
||||
// check if we have enough space in the context to evaluate this batch
|
||||
int n_ctx = llama_n_ctx(ctx);
|
||||
int n_ctx_used = llama_kv_self_seq_pos_max(ctx, 0);
|
||||
int n_ctx_used = llama_memory_seq_pos_max(llama_get_memory(ctx), 0);
|
||||
if (n_ctx_used + batch.n_tokens > n_ctx) {
|
||||
printf("\033[0m\n");
|
||||
fprintf(stderr, "context size exceeded\n");
|
||||
|
||||
@@ -217,7 +217,7 @@ int main(int argc, char ** argv) {
|
||||
{
|
||||
LOG_DBG("clear kv cache from any extra tokens, n_past = %d\n", n_past);
|
||||
|
||||
llama_kv_self_seq_rm(ctx_tgt, 0, n_past, -1);
|
||||
llama_memory_seq_rm(llama_get_memory(ctx_tgt), 0, n_past, -1);
|
||||
}
|
||||
|
||||
if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {
|
||||
|
||||
@@ -142,6 +142,8 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
auto * mem_tgt = llama_get_memory(ctx_tgt);
|
||||
auto * mem_dft = llama_get_memory(ctx_dft);
|
||||
|
||||
// Tokenize the prompt
|
||||
std::vector<llama_token> inp;
|
||||
@@ -420,14 +422,14 @@ int main(int argc, char ** argv) {
|
||||
{
|
||||
LOG_DBG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft);
|
||||
|
||||
llama_kv_self_seq_keep(ctx_dft, s_keep);
|
||||
llama_kv_self_seq_cp (ctx_dft, s_keep, 0, -1, -1);
|
||||
llama_kv_self_seq_keep(ctx_dft, 0);
|
||||
llama_memory_seq_keep(mem_dft, s_keep);
|
||||
llama_memory_seq_cp (mem_dft, s_keep, 0, -1, -1);
|
||||
llama_memory_seq_keep(mem_dft, 0);
|
||||
|
||||
llama_kv_self_seq_rm (ctx_tgt, s_keep, n_past_tgt, -1);
|
||||
llama_kv_self_seq_keep(ctx_tgt, s_keep);
|
||||
llama_kv_self_seq_cp (ctx_tgt, s_keep, 0, -1, -1);
|
||||
llama_kv_self_seq_keep(ctx_tgt, 0);
|
||||
llama_memory_seq_rm (mem_tgt, s_keep, n_past_tgt, -1);
|
||||
llama_memory_seq_keep(mem_tgt, s_keep);
|
||||
llama_memory_seq_cp (mem_tgt, s_keep, 0, -1, -1);
|
||||
llama_memory_seq_keep(mem_tgt, 0);
|
||||
}
|
||||
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
@@ -444,7 +446,7 @@ int main(int argc, char ** argv) {
|
||||
common_batch_clear(batch_dft);
|
||||
common_batch_add (batch_dft, token_id, n_past_dft, { 0 }, true);
|
||||
|
||||
llama_kv_self_seq_rm(ctx_dft, 0, n_past_dft, -1);
|
||||
llama_memory_seq_rm(mem_dft, 0, n_past_dft, -1);
|
||||
// LOG_DBG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
|
||||
llama_decode(ctx_dft, batch_dft);
|
||||
|
||||
@@ -503,8 +505,8 @@ int main(int argc, char ** argv) {
|
||||
if (n_seq_cur < n_seq_dft && cur_p->data[f].p > p_draft_split) {
|
||||
LOG_DBG("splitting seq %3d into %3d\n", s, n_seq_cur);
|
||||
|
||||
llama_kv_self_seq_rm(ctx_dft, n_seq_cur, -1, -1);
|
||||
llama_kv_self_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);
|
||||
llama_memory_seq_rm(mem_dft, n_seq_cur, -1, -1);
|
||||
llama_memory_seq_cp(mem_dft, s, n_seq_cur, -1, -1);
|
||||
|
||||
// all previous tokens from this branch are now also part of the new branch
|
||||
for (int t = 0; t < batch_tgt.n_tokens; ++t) {
|
||||
@@ -585,9 +587,9 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// evaluate the target model on the drafted tokens
|
||||
{
|
||||
llama_kv_self_seq_keep(ctx_tgt, 0);
|
||||
llama_memory_seq_keep(mem_tgt, 0);
|
||||
for (int s = 1; s < n_seq_dft; ++s) {
|
||||
llama_kv_self_seq_cp(ctx_tgt, 0, s, -1, -1);
|
||||
llama_memory_seq_cp(mem_tgt, 0, s, -1, -1);
|
||||
}
|
||||
|
||||
// LOG_DBG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt).c_str());
|
||||
|
||||
@@ -105,7 +105,7 @@ message(DEBUG "GGML_NATIVE_DEFAULT : ${GGML_NATIVE_DEFAULT}")
|
||||
message(DEBUG "INS_ENB : ${INS_ENB}")
|
||||
|
||||
option(GGML_CPU_HBM "ggml: use memkind for CPU HBM" OFF)
|
||||
option(GGML_CPU_AARCH64 "ggml: use runtime weight conversion of Q4_0 to Q4_X_X" ON)
|
||||
option(GGML_CPU_REPACK "ggml: use runtime weight conversion of Q4_0 to Q4_X_X" ON)
|
||||
option(GGML_CPU_KLEIDIAI "ggml: use KleidiAI optimized kernels if applicable" OFF)
|
||||
option(GGML_SSE42 "ggml: enable SSE 4.2" ${INS_ENB})
|
||||
option(GGML_AVX "ggml: enable AVX" ${INS_ENB})
|
||||
@@ -137,7 +137,7 @@ set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM")
|
||||
set(GGML_CPU_POWERPC_CPUTYPE "" CACHE STRING "ggml: CPU type for PowerPC")
|
||||
|
||||
|
||||
if (WIN32)
|
||||
if (MINGW)
|
||||
set(GGML_WIN_VER "0x602" CACHE STRING "ggml: Windows version")
|
||||
endif()
|
||||
|
||||
@@ -172,12 +172,12 @@ option(GGML_HIP "ggml: use HIP"
|
||||
option(GGML_HIP_GRAPHS "ggml: use HIP graph, experimental, slow" OFF)
|
||||
option(GGML_HIP_NO_VMM "ggml: do not try to use HIP VMM" ON)
|
||||
option(GGML_HIP_ROCWMMA_FATTN "ggml: enable rocWMMA for FlashAttention" OFF)
|
||||
option(GGML_HIP_FORCE_ROCWMMA_FATTN_GFX12 "ggml: enable rocWMMA FlashAttention on GFX12" OFF)
|
||||
option(GGML_VULKAN "ggml: use Vulkan" OFF)
|
||||
option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF)
|
||||
option(GGML_VULKAN_DEBUG "ggml: enable Vulkan debug output" OFF)
|
||||
option(GGML_VULKAN_MEMORY_DEBUG "ggml: enable Vulkan memory debug output" OFF)
|
||||
option(GGML_VULKAN_SHADER_DEBUG_INFO "ggml: enable Vulkan shader debug info" OFF)
|
||||
option(GGML_VULKAN_PERF "ggml: enable Vulkan perf output" OFF)
|
||||
option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation" OFF)
|
||||
option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF)
|
||||
option(GGML_KOMPUTE "ggml: use Kompute" OFF)
|
||||
@@ -368,6 +368,8 @@ if (MSVC)
|
||||
/wd4005 # Macro redefinition
|
||||
/wd4244 # Conversion from one type to another type, possible loss of data
|
||||
/wd4267 # Conversion from 'size_t' to a smaller type, possible loss of data
|
||||
/wd4305 # Conversion from 'type1' to 'type2', possible loss of data
|
||||
/wd4566 # Conversion from 'char' to 'wchar_t', possible loss of data
|
||||
/wd4996 # Disable POSIX deprecation warnings
|
||||
/wd4702 # Unreachable code warnings
|
||||
)
|
||||
@@ -387,4 +389,46 @@ if (MSVC)
|
||||
disable_msvc_warnings(ggml-cpu-skylakex)
|
||||
disable_msvc_warnings(ggml-cpu-icelake)
|
||||
disable_msvc_warnings(ggml-cpu-alderlake)
|
||||
|
||||
if (GGML_BUILD_EXAMPLES)
|
||||
disable_msvc_warnings(common-ggml)
|
||||
disable_msvc_warnings(common)
|
||||
|
||||
disable_msvc_warnings(mnist-common)
|
||||
disable_msvc_warnings(mnist-eval)
|
||||
disable_msvc_warnings(mnist-train)
|
||||
|
||||
disable_msvc_warnings(gpt-2-ctx)
|
||||
disable_msvc_warnings(gpt-2-alloc)
|
||||
disable_msvc_warnings(gpt-2-backend)
|
||||
disable_msvc_warnings(gpt-2-sched)
|
||||
disable_msvc_warnings(gpt-2-quantize)
|
||||
disable_msvc_warnings(gpt-2-batched)
|
||||
|
||||
disable_msvc_warnings(gpt-j)
|
||||
disable_msvc_warnings(gpt-j-quantize)
|
||||
|
||||
disable_msvc_warnings(magika)
|
||||
disable_msvc_warnings(yolov3-tiny)
|
||||
disable_msvc_warnings(sam)
|
||||
|
||||
disable_msvc_warnings(simple-ctx)
|
||||
disable_msvc_warnings(simple-backend)
|
||||
endif()
|
||||
|
||||
if (GGML_BUILD_TESTS)
|
||||
disable_msvc_warnings(test-mul-mat)
|
||||
disable_msvc_warnings(test-arange)
|
||||
disable_msvc_warnings(test-backend-ops)
|
||||
disable_msvc_warnings(test-cont)
|
||||
disable_msvc_warnings(test-conv-transpose)
|
||||
disable_msvc_warnings(test-conv-transpose-1d)
|
||||
disable_msvc_warnings(test-conv1d)
|
||||
disable_msvc_warnings(test-conv2d)
|
||||
disable_msvc_warnings(test-conv2d-dw)
|
||||
disable_msvc_warnings(test-customop)
|
||||
disable_msvc_warnings(test-dup)
|
||||
disable_msvc_warnings(test-opt)
|
||||
disable_msvc_warnings(test-pool)
|
||||
endif ()
|
||||
endif()
|
||||
|
||||
@@ -24,3 +24,27 @@ function(ggml_get_flags CCID CCVER)
|
||||
set(GF_C_FLAGS ${C_FLAGS} PARENT_SCOPE)
|
||||
set(GF_CXX_FLAGS ${CXX_FLAGS} PARENT_SCOPE)
|
||||
endfunction()
|
||||
|
||||
function(ggml_get_system_arch)
|
||||
if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR
|
||||
CMAKE_GENERATOR_PLATFORM_LWR STREQUAL "arm64" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(aarch64|arm.*|ARM64)$"))
|
||||
set(GGML_SYSTEM_ARCH "ARM" PARENT_SCOPE)
|
||||
elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR
|
||||
CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64|amd64)$"))
|
||||
set(GGML_SYSTEM_ARCH "x86" PARENT_SCOPE)
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc|power")
|
||||
set(GGML_SYSTEM_ARCH "PowerPC" PARENT_SCOPE)
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
|
||||
set(GGML_SYSTEM_ARCH "loongarch64" PARENT_SCOPE)
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "riscv64")
|
||||
set(GGML_SYSTEM_ARCH "riscv64" PARENT_SCOPE)
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "s390x")
|
||||
set(GGML_SYSTEM_ARCH "s390x" PARENT_SCOPE)
|
||||
else()
|
||||
set(GGML_SYSTEM_ARCH "UNKNOWN" PARENT_SCOPE)
|
||||
endif()
|
||||
endfunction()
|
||||
|
||||
@@ -935,6 +935,15 @@ extern "C" {
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// repeat a to the specified shape
|
||||
GGML_API struct ggml_tensor * ggml_repeat_4d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int64_t ne0,
|
||||
int64_t ne1,
|
||||
int64_t ne2,
|
||||
int64_t ne3);
|
||||
|
||||
// sums repetitions in a into shape of b
|
||||
GGML_API struct ggml_tensor * ggml_repeat_back(
|
||||
struct ggml_context * ctx,
|
||||
@@ -2086,9 +2095,6 @@ extern "C" {
|
||||
GGML_API struct ggml_tensor * ggml_graph_get_grad (const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
|
||||
GGML_API struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
|
||||
|
||||
GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
|
||||
GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
|
||||
|
||||
// print info and performance information for the graph
|
||||
GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
|
||||
|
||||
@@ -2172,6 +2178,7 @@ extern "C" {
|
||||
|
||||
// scheduling priorities
|
||||
enum ggml_sched_priority {
|
||||
GGML_SCHED_PRIO_LOW = -1,
|
||||
GGML_SCHED_PRIO_NORMAL,
|
||||
GGML_SCHED_PRIO_MEDIUM,
|
||||
GGML_SCHED_PRIO_HIGH,
|
||||
|
||||
@@ -109,6 +109,8 @@ if (MSVC)
|
||||
else ()
|
||||
set(CMAKE_GENERATOR_PLATFORM_LWR "")
|
||||
endif ()
|
||||
ggml_get_system_arch()
|
||||
message(STATUS "GGML_SYSTEM_ARCH: ${GGML_SYSTEM_ARCH}")
|
||||
|
||||
if (NOT MSVC)
|
||||
if (GGML_STATIC)
|
||||
@@ -123,7 +125,6 @@ if (NOT MSVC)
|
||||
endif()
|
||||
|
||||
if (MINGW)
|
||||
# Target Windows 8 for PrefetchVirtualMemory
|
||||
add_compile_definitions(_WIN32_WINNT=${GGML_WIN_VER})
|
||||
endif()
|
||||
|
||||
@@ -194,6 +195,7 @@ add_library(ggml-base
|
||||
../include/ggml-opt.h
|
||||
../include/gguf.h
|
||||
ggml.c
|
||||
ggml.cpp
|
||||
ggml-alloc.c
|
||||
ggml-backend.cpp
|
||||
ggml-opt.cpp
|
||||
@@ -210,6 +212,7 @@ endif()
|
||||
|
||||
add_library(ggml
|
||||
ggml-backend-reg.cpp)
|
||||
add_library(ggml::ggml ALIAS ggml)
|
||||
|
||||
target_link_libraries(ggml PUBLIC ggml-base)
|
||||
|
||||
@@ -224,6 +227,7 @@ function(ggml_add_backend_library backend)
|
||||
set_target_properties(${backend} PROPERTIES LIBRARY_OUTPUT_DIRECTORY ${CMAKE_RUNTIME_OUTPUT_DIRECTORY})
|
||||
target_compile_definitions(${backend} PRIVATE GGML_BACKEND_DL)
|
||||
add_dependencies(ggml ${backend})
|
||||
install(TARGETS ${backend} LIBRARY DESTINATION ${CMAKE_INSTALL_BINDIR})
|
||||
else()
|
||||
add_library(${backend} ${ARGN})
|
||||
target_link_libraries(ggml PUBLIC ${backend})
|
||||
@@ -266,17 +270,23 @@ endfunction()
|
||||
function(ggml_add_cpu_backend_variant tag_name)
|
||||
set(GGML_CPU_TAG_NAME ${tag_name})
|
||||
# other: OPENMP LLAMAFILE CPU_HBM
|
||||
foreach (feat NATIVE
|
||||
SSE42
|
||||
AVX AVX2 BMI2 AVX_VNNI FMA F16C
|
||||
AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16
|
||||
AMX_TILE AMX_INT8 AMX_BF16)
|
||||
set(GGML_${feat} OFF)
|
||||
endforeach()
|
||||
if (GGML_SYSTEM_ARCH STREQUAL "x86")
|
||||
foreach (feat NATIVE
|
||||
SSE42
|
||||
AVX AVX2 BMI2 AVX_VNNI FMA F16C
|
||||
AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16
|
||||
AMX_TILE AMX_INT8 AMX_BF16)
|
||||
set(GGML_${feat} OFF)
|
||||
endforeach()
|
||||
|
||||
foreach (feat ${ARGN})
|
||||
set(GGML_${feat} ON)
|
||||
endforeach()
|
||||
foreach (feat ${ARGN})
|
||||
set(GGML_${feat} ON)
|
||||
endforeach()
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "ARM")
|
||||
foreach (feat ${ARGN})
|
||||
set(GGML_INTERNAL_${feat} ON)
|
||||
endforeach()
|
||||
endif()
|
||||
|
||||
ggml_add_cpu_backend_variant_impl(${tag_name})
|
||||
endfunction()
|
||||
@@ -286,17 +296,49 @@ ggml_add_backend(CPU)
|
||||
if (GGML_CPU_ALL_VARIANTS)
|
||||
if (NOT GGML_BACKEND_DL)
|
||||
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS requires GGML_BACKEND_DL")
|
||||
elseif (GGML_CPU_ARM_ARCH)
|
||||
message(FATAL_ERROR "Cannot use both GGML_CPU_ARM_ARCH and GGML_CPU_ALL_VARIANTS")
|
||||
endif()
|
||||
ggml_add_cpu_backend_variant(x64)
|
||||
ggml_add_cpu_backend_variant(sse42 SSE42)
|
||||
ggml_add_cpu_backend_variant(sandybridge SSE42 AVX)
|
||||
ggml_add_cpu_backend_variant(haswell SSE42 AVX F16C AVX2 BMI2 FMA)
|
||||
ggml_add_cpu_backend_variant(skylakex SSE42 AVX F16C AVX2 BMI2 FMA AVX512)
|
||||
ggml_add_cpu_backend_variant(icelake SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
|
||||
ggml_add_cpu_backend_variant(alderlake SSE42 AVX F16C AVX2 BMI2 FMA AVX_VNNI)
|
||||
if (NOT MSVC)
|
||||
# MSVC doesn't support AMX
|
||||
ggml_add_cpu_backend_variant(sapphirerapids SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
|
||||
if (GGML_SYSTEM_ARCH STREQUAL "x86")
|
||||
ggml_add_cpu_backend_variant(x64)
|
||||
ggml_add_cpu_backend_variant(sse42 SSE42)
|
||||
ggml_add_cpu_backend_variant(sandybridge SSE42 AVX)
|
||||
ggml_add_cpu_backend_variant(haswell SSE42 AVX F16C AVX2 BMI2 FMA)
|
||||
ggml_add_cpu_backend_variant(skylakex SSE42 AVX F16C AVX2 BMI2 FMA AVX512)
|
||||
ggml_add_cpu_backend_variant(icelake SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
|
||||
ggml_add_cpu_backend_variant(alderlake SSE42 AVX F16C AVX2 BMI2 FMA AVX_VNNI)
|
||||
if (NOT MSVC)
|
||||
# MSVC doesn't support AMX
|
||||
ggml_add_cpu_backend_variant(sapphirerapids SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
|
||||
endif()
|
||||
elseif(GGML_SYSTEM_ARCH STREQUAL "ARM")
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||
# Many of these features are optional so we build versions with popular
|
||||
# combinations and name the backends based on the version they were
|
||||
# first released with
|
||||
ggml_add_cpu_backend_variant(armv8.0_1)
|
||||
ggml_add_cpu_backend_variant(armv8.2_1 DOTPROD)
|
||||
ggml_add_cpu_backend_variant(armv8.2_2 DOTPROD FP16_VECTOR_ARITHMETIC)
|
||||
ggml_add_cpu_backend_variant(armv8.2_3 DOTPROD FP16_VECTOR_ARITHMETIC SVE)
|
||||
ggml_add_cpu_backend_variant(armv8.6_1 DOTPROD FP16_VECTOR_ARITHMETIC SVE MATMUL_INT8)
|
||||
ggml_add_cpu_backend_variant(armv8.6_2 DOTPROD FP16_VECTOR_ARITHMETIC SVE MATMUL_INT8 SVE2)
|
||||
ggml_add_cpu_backend_variant(armv9.2_1 DOTPROD FP16_VECTOR_ARITHMETIC SVE MATMUL_INT8 SME)
|
||||
ggml_add_cpu_backend_variant(armv9.2_2 DOTPROD FP16_VECTOR_ARITHMETIC SVE MATMUL_INT8 SVE2 SME)
|
||||
elseif (CMAKE_SYSTEM_NAME MATCHES "Android")
|
||||
# Android-specific backends with SoC-compatible feature sets
|
||||
ggml_add_cpu_backend_variant(android_armv8.0_1)
|
||||
ggml_add_cpu_backend_variant(android_armv8.2_1 DOTPROD)
|
||||
ggml_add_cpu_backend_variant(android_armv8.2_2 DOTPROD FP16_VECTOR_ARITHMETIC)
|
||||
ggml_add_cpu_backend_variant(android_armv8.6_1 DOTPROD FP16_VECTOR_ARITHMETIC MATMUL_INT8)
|
||||
elseif (APPLE)
|
||||
ggml_add_cpu_backend_variant(apple_m1 DOTPROD)
|
||||
ggml_add_cpu_backend_variant(apple_m2_m3 DOTPROD MATMUL_INT8)
|
||||
ggml_add_cpu_backend_variant(apple_m4 DOTPROD MATMUL_INT8 NOSVE SME)
|
||||
else()
|
||||
message(FATAL_ERROR "Unsupported ARM target OS: ${CMAKE_SYSTEM_NAME}")
|
||||
endif()
|
||||
else()
|
||||
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS not yet supported with ${GGML_SYSTEM_ARCH} on ${CMAKE_SYSTEM_NAME}")
|
||||
endif()
|
||||
elseif (GGML_CPU)
|
||||
ggml_add_cpu_backend_variant_impl("")
|
||||
|
||||
@@ -69,6 +69,9 @@
|
||||
#if defined(__clang__)
|
||||
# pragma clang diagnostic push
|
||||
# pragma clang diagnostic ignored "-Wdeprecated-declarations"
|
||||
#elif defined(__GNUC__)
|
||||
# pragma GCC diagnostic push
|
||||
# pragma GCC diagnostic ignored "-Wdeprecated-declarations"
|
||||
#endif
|
||||
|
||||
namespace fs = std::filesystem;
|
||||
@@ -91,6 +94,8 @@ static std::string path_str(const fs::path & path) {
|
||||
|
||||
#if defined(__clang__)
|
||||
# pragma clang diagnostic pop
|
||||
#elif defined(__GNUC__)
|
||||
# pragma GCC diagnostic pop
|
||||
#endif
|
||||
|
||||
#ifdef _WIN32
|
||||
|
||||
@@ -1340,7 +1340,10 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
|
||||
// allocate graph
|
||||
if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
|
||||
// the re-allocation may cause the split inputs to be moved to a different address
|
||||
ggml_backend_sched_synchronize(sched);
|
||||
// synchronize without ggml_backend_sched_synchronize to avoid changing cur_copy
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
ggml_backend_synchronize(sched->backends[i]);
|
||||
}
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
|
||||
#endif
|
||||
@@ -1564,7 +1567,6 @@ bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgra
|
||||
|
||||
ggml_backend_sched_split_graph(sched, graph);
|
||||
|
||||
|
||||
if (!ggml_backend_sched_alloc_splits(sched)) {
|
||||
return false;
|
||||
}
|
||||
@@ -1598,9 +1600,12 @@ void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
ggml_backend_synchronize(sched->backends[i]);
|
||||
}
|
||||
// reset the current copy to 0 so that the graphs will be similar during generation
|
||||
// necessary for CUDA graphs
|
||||
sched->cur_copy = 0;
|
||||
if (!sched->is_alloc) {
|
||||
// if the graph is not already allocated, always use copy 0 after a synchronization
|
||||
// this ensures that during generation the same copy is used every time,
|
||||
// which avoids changes in the graph that could cause CUDA or other graphs to be disabled
|
||||
sched->cur_copy = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
|
||||
|
||||
@@ -81,7 +81,7 @@ if (BLAS_FOUND)
|
||||
target_link_libraries (ggml-blas PRIVATE ${BLAS_LIBRARIES})
|
||||
target_include_directories(ggml-blas PRIVATE ${BLAS_INCLUDE_DIRS})
|
||||
else()
|
||||
message(ERROR "BLAS not found, please refer to "
|
||||
"https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors"
|
||||
" to set correct GGML_BLAS_VENDOR")
|
||||
message(FATAL_ERROR "BLAS not found, please refer to "
|
||||
"https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors"
|
||||
" to set correct GGML_BLAS_VENDOR")
|
||||
endif()
|
||||
|
||||
@@ -30,6 +30,7 @@ string(TOLOWER ${SOC_TYPE} SOC_VERSION) # SOC_VERSION need lower
|
||||
string(REGEX MATCH "[0-9]+[a-zA-Z]" SOC_TYPE_MAJOR_SN "${SOC_VERSION}")
|
||||
set(SOC_TYPE_COMPILE_OPTION "ASCEND_${SOC_TYPE_MAJOR_SN}")
|
||||
string(TOUPPER ${SOC_TYPE_COMPILE_OPTION} SOC_TYPE_COMPILE_OPTION)
|
||||
message(STATUS "CANN: SOC_VERSION = ${SOC_VERSION}")
|
||||
|
||||
if (CANN_INSTALL_DIR)
|
||||
# Only Support Linux.
|
||||
|
||||
@@ -37,6 +37,7 @@
|
||||
#include <thread>
|
||||
#include <unistd.h>
|
||||
#include <functional>
|
||||
#include <optional>
|
||||
|
||||
#include "../include/ggml-cann.h"
|
||||
#include "../include/ggml.h"
|
||||
@@ -103,6 +104,9 @@ const ggml_cann_device_info& ggml_cann_info();
|
||||
void ggml_cann_set_device(int32_t device);
|
||||
int32_t ggml_cann_get_device();
|
||||
|
||||
std::optional<std::string> get_env(const std::string& name);
|
||||
bool parse_bool(const std::string& value);
|
||||
|
||||
/**
|
||||
* @brief Abstract base class for memory pools used by CANN.
|
||||
*/
|
||||
@@ -354,7 +358,8 @@ struct ggml_backend_cann_context {
|
||||
: device(device), name("CANN" + std::to_string(device)), task_queue(1024, device) {
|
||||
ggml_cann_set_device(device);
|
||||
description = aclrtGetSocName();
|
||||
async_mode = (getenv("GGML_CANN_ASYNC_MODE") != nullptr);
|
||||
|
||||
bool async_mode = parse_bool(get_env("GGML_CANN_ASYNC_MODE").value_or(""));
|
||||
GGML_LOG_INFO("%s: device %d async operator submission is %s\n", __func__,
|
||||
device, async_mode ? "ON" : "OFF");
|
||||
}
|
||||
|
||||
@@ -31,6 +31,8 @@
|
||||
#include <mutex>
|
||||
#include <queue>
|
||||
#include <chrono>
|
||||
#include <unordered_set>
|
||||
#include <optional>
|
||||
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
@@ -93,6 +95,26 @@ int32_t ggml_cann_get_device() {
|
||||
return id;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Get the value of the specified environment variable (name).
|
||||
* if not empty, return a std::string object
|
||||
*/
|
||||
std::optional<std::string> get_env(const std::string& name) {
|
||||
const char* val = std::getenv(name.c_str());
|
||||
if (!val) return std::nullopt;
|
||||
std::string res = std::string(val);
|
||||
std::transform(res.begin(), res.end(), res.begin(), ::tolower);
|
||||
return res;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Verify whether the environment variable is a valid value.
|
||||
*/
|
||||
bool parse_bool(const std::string& value) {
|
||||
std::unordered_set<std::string> valid_values = {"on", "1", "yes", "y", "enable", "true"};
|
||||
return valid_values.find(value) != valid_values.end();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Initialize the CANN device information.
|
||||
*
|
||||
@@ -214,7 +236,7 @@ struct ggml_cann_pool_buf_prio : public ggml_cann_pool {
|
||||
* @param device The device ID to associate with this buffer pool.
|
||||
*/
|
||||
explicit ggml_cann_pool_buf_prio(int device) : device(device) {
|
||||
disable_clean = getenv("GGML_CANN_DISABLE_BUF_POOL_CLEAN") != nullptr;
|
||||
disable_clean = parse_bool(get_env("GGML_CANN_DISABLE_BUF_POOL_CLEAN").value_or(""));
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -410,7 +432,7 @@ struct ggml_cann_pool_buf : public ggml_cann_pool {
|
||||
* @param device The device ID to associate with this buffer pool.
|
||||
*/
|
||||
explicit ggml_cann_pool_buf(int device) : device(device) {
|
||||
disable_clean = getenv("GGML_CANN_DISABLE_BUF_POOL_CLEAN") != nullptr;
|
||||
disable_clean = parse_bool(get_env("GGML_CANN_DISABLE_BUF_POOL_CLEAN").value_or(""));
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -731,16 +753,18 @@ struct ggml_cann_pool_vmm : public ggml_cann_pool {
|
||||
*/
|
||||
std::unique_ptr<ggml_cann_pool> ggml_backend_cann_context::new_pool_for_device(
|
||||
int device) {
|
||||
bool disable_vmm = (getenv("GGML_CANN_DISABLE_VMM_POOL") != nullptr);
|
||||
if (!disable_vmm && ggml_cann_info().devices[device].vmm) {
|
||||
GGML_LOG_INFO("%s: device %d use vmm pool\n", __func__, device);
|
||||
return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_vmm(device));
|
||||
}
|
||||
bool enable_buf_prio = (getenv("GGML_CANN_ENABLE_BUF_PRIO_POOL") != nullptr);
|
||||
if (enable_buf_prio) {
|
||||
std::string mem_pool_type = get_env("GGML_CANN_MEM_POOL").value_or("");
|
||||
|
||||
if (mem_pool_type == "prio") {
|
||||
GGML_LOG_INFO("%s: device %d use buffer pool with priority queue\n", __func__, device);
|
||||
return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_buf_prio(device));
|
||||
}
|
||||
|
||||
if (ggml_cann_info().devices[device].vmm && mem_pool_type != "leg") {
|
||||
GGML_LOG_INFO("%s: device %d use vmm pool\n", __func__, device);
|
||||
return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_vmm(device));
|
||||
}
|
||||
|
||||
GGML_LOG_INFO("%s: device %d use buffer pool\n", __func__, device);
|
||||
return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_buf(device));
|
||||
}
|
||||
|
||||
@@ -1074,6 +1074,10 @@ GGML_TABLE_BEGIN(uint32_t, iq3s_grid, 512)
|
||||
0x0f090307, 0x0f090501, 0x0f090b01, 0x0f0b0505, 0x0f0b0905, 0x0f0d0105, 0x0f0d0703, 0x0f0f0101,
|
||||
GGML_TABLE_END()
|
||||
|
||||
GGML_TABLE_BEGIN(int8_t, kvalues_iq4nl, 16)
|
||||
-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113,
|
||||
GGML_TABLE_END()
|
||||
|
||||
#define NGRID_IQ1S 2048
|
||||
#define IQ1S_DELTA 0.125f
|
||||
#define IQ1M_DELTA 0.125f
|
||||
|
||||
@@ -1,3 +1,17 @@
|
||||
function(ggml_add_cpu_backend_features cpu_name arch)
|
||||
# The feature detection code is compiled as a separate target so that
|
||||
# it can be built without the architecture flags
|
||||
# Since multiple variants of the CPU backend may be included in the same
|
||||
# build, using set_source_files_properties() to set the arch flags is not possible
|
||||
set(GGML_CPU_FEATS_NAME ${cpu_name}-feats)
|
||||
add_library(${GGML_CPU_FEATS_NAME} OBJECT ggml-cpu/arch/${arch}/cpu-feats.cpp)
|
||||
target_include_directories(${GGML_CPU_FEATS_NAME} PRIVATE . .. ../include)
|
||||
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE ${ARGN})
|
||||
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE GGML_BACKEND_DL GGML_BACKEND_BUILD GGML_BACKEND_SHARED)
|
||||
set_target_properties(${GGML_CPU_FEATS_NAME} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
target_link_libraries(${cpu_name} PRIVATE ${GGML_CPU_FEATS_NAME})
|
||||
endfunction()
|
||||
|
||||
function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
if (tag_name)
|
||||
set(GGML_CPU_NAME ggml-cpu-${tag_name})
|
||||
@@ -10,14 +24,14 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
list (APPEND GGML_CPU_SOURCES
|
||||
ggml-cpu/ggml-cpu.c
|
||||
ggml-cpu/ggml-cpu.cpp
|
||||
ggml-cpu/ggml-cpu-aarch64.cpp
|
||||
ggml-cpu/ggml-cpu-aarch64.h
|
||||
ggml-cpu/ggml-cpu-hbm.cpp
|
||||
ggml-cpu/ggml-cpu-hbm.h
|
||||
ggml-cpu/ggml-cpu-quants.c
|
||||
ggml-cpu/ggml-cpu-quants.h
|
||||
ggml-cpu/ggml-cpu-traits.cpp
|
||||
ggml-cpu/ggml-cpu-traits.h
|
||||
ggml-cpu/repack.cpp
|
||||
ggml-cpu/repack.h
|
||||
ggml-cpu/hbm.cpp
|
||||
ggml-cpu/hbm.h
|
||||
ggml-cpu/quants.c
|
||||
ggml-cpu/quants.h
|
||||
ggml-cpu/traits.cpp
|
||||
ggml-cpu/traits.h
|
||||
ggml-cpu/amx/amx.cpp
|
||||
ggml-cpu/amx/amx.h
|
||||
ggml-cpu/amx/mmq.cpp
|
||||
@@ -82,12 +96,12 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
target_link_libraries(${GGML_CPU_NAME} PUBLIC memkind)
|
||||
endif()
|
||||
|
||||
if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR
|
||||
CMAKE_GENERATOR_PLATFORM_LWR STREQUAL "arm64" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(aarch64|arm.*|ARM64)$"))
|
||||
|
||||
if (GGML_SYSTEM_ARCH STREQUAL "ARM")
|
||||
message(STATUS "ARM detected")
|
||||
list(APPEND GGML_CPU_SOURCES
|
||||
ggml-cpu/arch/arm/quants.c
|
||||
ggml-cpu/arch/arm/repack.cpp
|
||||
)
|
||||
|
||||
if (MSVC AND NOT CMAKE_C_COMPILER_ID STREQUAL "Clang")
|
||||
message(FATAL_ERROR "MSVC is not supported for ARM, use clang")
|
||||
@@ -143,6 +157,49 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
else()
|
||||
if (GGML_CPU_ARM_ARCH)
|
||||
list(APPEND ARCH_FLAGS -march=${GGML_CPU_ARM_ARCH})
|
||||
elseif(GGML_CPU_ALL_VARIANTS)
|
||||
# Begin with the lowest baseline
|
||||
set(ARM_MCPU "armv8-a")
|
||||
set(ARCH_TAGS "")
|
||||
set(ARCH_DEFINITIONS "")
|
||||
|
||||
# When a feature is selected, bump the MCPU to the first
|
||||
# version that supported it
|
||||
if (GGML_INTERNAL_DOTPROD)
|
||||
set(ARM_MCPU "armv8.2-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+dotprod")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_DOTPROD)
|
||||
endif()
|
||||
if (GGML_INTERNAL_FP16_VECTOR_ARITHMETIC)
|
||||
set(ARM_MCPU "armv8.2-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+fp16")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_FP16_VECTOR_ARITHMETIC)
|
||||
endif()
|
||||
if (GGML_INTERNAL_SVE)
|
||||
set(ARM_MCPU "armv8.2-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+sve")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_SVE)
|
||||
endif()
|
||||
if (GGML_INTERNAL_MATMUL_INT8)
|
||||
set(ARM_MCPU "armv8.6-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+i8mm")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_MATMUL_INT8)
|
||||
endif()
|
||||
if (GGML_INTERNAL_SVE2)
|
||||
set(ARM_MCPU "armv8.6-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+sve2")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_SVE2)
|
||||
endif()
|
||||
if (GGML_INTERNAL_NOSVE)
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+nosve")
|
||||
endif()
|
||||
if (GGML_INTERNAL_SME)
|
||||
set(ARM_MCPU "armv9.2-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+sme")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_SME)
|
||||
endif()
|
||||
list(APPEND ARCH_FLAGS "-march=${ARM_MCPU}${ARCH_TAGS}")
|
||||
ggml_add_cpu_backend_features(${GGML_CPU_NAME} arm ${ARCH_DEFINITIONS})
|
||||
endif()
|
||||
endif()
|
||||
|
||||
@@ -170,11 +227,12 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
endforeach()
|
||||
endif()
|
||||
endif()
|
||||
elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64|amd64)$"))
|
||||
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "x86")
|
||||
message(STATUS "x86 detected")
|
||||
list(APPEND GGML_CPU_SOURCES
|
||||
ggml-cpu/arch/x86/quants.c
|
||||
ggml-cpu/arch/x86/repack.cpp
|
||||
)
|
||||
|
||||
if (MSVC)
|
||||
# instruction set detection for MSVC only
|
||||
@@ -305,21 +363,11 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
# the feature check relies on ARCH_DEFINITIONS, but it is not set with GGML_NATIVE
|
||||
message(FATAL_ERROR "GGML_NATIVE is not compatible with GGML_BACKEND_DL, consider using GGML_CPU_ALL_VARIANTS")
|
||||
endif()
|
||||
|
||||
# The feature detection code is compiled as a separate target so that
|
||||
# it can be built without the architecture flags
|
||||
# Since multiple variants of the CPU backend may be included in the same
|
||||
# build, using set_source_files_properties() to set the arch flags is not possible
|
||||
set(GGML_CPU_FEATS_NAME ${GGML_CPU_NAME}-feats)
|
||||
add_library(${GGML_CPU_FEATS_NAME} OBJECT ggml-cpu/cpu-feats-x86.cpp)
|
||||
target_include_directories(${GGML_CPU_FEATS_NAME} PRIVATE . .. ../include)
|
||||
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE ${ARCH_DEFINITIONS})
|
||||
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE GGML_BACKEND_DL GGML_BACKEND_BUILD GGML_BACKEND_SHARED)
|
||||
set_target_properties(${GGML_CPU_FEATS_NAME} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
target_link_libraries(${GGML_CPU_NAME} PRIVATE ${GGML_CPU_FEATS_NAME})
|
||||
ggml_add_cpu_backend_features(${GGML_CPU_NAME} x86 ${ARCH_DEFINITIONS})
|
||||
endif()
|
||||
elseif ("${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "ppc64le " OR "${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "powerpc ")
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "PowerPC")
|
||||
message(STATUS "PowerPC detected")
|
||||
list(APPEND GGML_CPU_SOURCES ggml-cpu/arch/powerpc/quants.c)
|
||||
if (GGML_NATIVE)
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64")
|
||||
file(READ "/proc/cpuinfo" POWER10_M)
|
||||
@@ -327,7 +375,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
execute_process(COMMAND bash -c "prtconf |grep 'Implementation' | head -n 1" OUTPUT_VARIABLE POWER10_M)
|
||||
endif()
|
||||
|
||||
string(REGEX MATCHALL "POWER *([0-9]+)" MATCHED_STRING "${POWER10_M}")
|
||||
string(TOUPPER "${POWER10_M}" POWER10_M_UPPER)
|
||||
string(REGEX MATCHALL "POWER *([0-9]+)" MATCHED_STRING "${POWER10_M_UPPER}")
|
||||
string(REGEX REPLACE "POWER *([0-9]+)" "\\1" EXTRACTED_NUMBER "${MATCHED_STRING}")
|
||||
|
||||
if (EXTRACTED_NUMBER GREATER_EQUAL 10)
|
||||
@@ -344,8 +393,9 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
list(APPEND ARCH_FLAGS -mcpu=${GGML_CPU_POWERPC_CPUTYPE})
|
||||
endif()
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "loongarch64")
|
||||
message(STATUS "loongarch64 detected")
|
||||
list(APPEND GGML_CPU_SOURCES ggml-cpu/arch/loongarch/quants.c)
|
||||
|
||||
list(APPEND ARCH_FLAGS -march=loongarch64)
|
||||
if (GGML_LASX)
|
||||
@@ -354,8 +404,12 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
if (GGML_LSX)
|
||||
list(APPEND ARCH_FLAGS -mlsx)
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "riscv64")
|
||||
message(STATUS "RISC-V detected")
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "riscv64")
|
||||
message(STATUS "riscv64 detected")
|
||||
list(APPEND GGML_CPU_SOURCES
|
||||
ggml-cpu/arch/riscv/quants.c
|
||||
ggml-cpu/arch/riscv/repack.cpp
|
||||
)
|
||||
if (GGML_RVV)
|
||||
if (GGML_XTHEADVECTOR)
|
||||
list(APPEND ARCH_FLAGS -march=rv64gc_xtheadvector -mabi=lp64d)
|
||||
@@ -365,8 +419,9 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
list(APPEND ARCH_FLAGS -march=rv64gcv -mabi=lp64d)
|
||||
endif()
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "s390x")
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "s390x")
|
||||
message(STATUS "s390x detected")
|
||||
list(APPEND GGML_CPU_SOURCES ggml-cpu/arch/s390/quants.c)
|
||||
file(READ "/proc/cpuinfo" CPUINFO_CONTENTS)
|
||||
string(REGEX REPLACE "machine[ \t\r\n]*=[ \t\r\n]*([0-9]+)" "\\1" S390X_M ${CPUINFO_CONTENTS})
|
||||
|
||||
@@ -390,12 +445,16 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
if (GGML_VXE)
|
||||
list(APPEND ARCH_FLAGS -mvx -mzvector)
|
||||
endif()
|
||||
elseif (CMAKE_SYSTEM_PROCESSOR MATCHES "wasm")
|
||||
message(STATUS "Wasm detected")
|
||||
list (APPEND GGML_CPU_SOURCES ggml-cpu/arch/wasm/quants.c)
|
||||
else()
|
||||
message(STATUS "Unknown architecture")
|
||||
message(WARNING "Unknown CPU architecture. Falling back to generic implementations.")
|
||||
list(APPEND ARCH_FLAGS -DGGML_CPU_GENERIC)
|
||||
endif()
|
||||
|
||||
if (GGML_CPU_AARCH64)
|
||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE GGML_USE_CPU_AARCH64)
|
||||
if (GGML_CPU_REPACK)
|
||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE GGML_USE_CPU_REPACK)
|
||||
endif()
|
||||
|
||||
if (GGML_CPU_KLEIDIAI)
|
||||
@@ -406,9 +465,9 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
|
||||
# Fetch KleidiAI sources:
|
||||
include(FetchContent)
|
||||
set(KLEIDIAI_COMMIT_TAG "v1.6.0")
|
||||
set(KLEIDIAI_COMMIT_TAG "v1.9.0")
|
||||
set(KLEIDIAI_DOWNLOAD_URL "https://github.com/ARM-software/kleidiai/archive/refs/tags/${KLEIDIAI_COMMIT_TAG}.tar.gz")
|
||||
set(KLEIDIAI_ARCHIVE_MD5 "75b4ad68f25ab673dcc01065e5a0b05f")
|
||||
set(KLEIDIAI_ARCHIVE_MD5 "2a8e1bb55d201557553545536489a017")
|
||||
|
||||
if (POLICY CMP0135)
|
||||
cmake_policy(SET CMP0135 NEW)
|
||||
|
||||
@@ -5,7 +5,7 @@
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-cpu-traits.h"
|
||||
#include "traits.h"
|
||||
|
||||
#if defined(__gnu_linux__)
|
||||
#include <sys/syscall.h>
|
||||
|
||||
@@ -8,7 +8,7 @@
|
||||
#include "mmq.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "ggml-cpu-quants.h"
|
||||
#include "quants.h"
|
||||
#include "ggml-quants.h"
|
||||
#include <algorithm>
|
||||
#include <type_traits>
|
||||
|
||||
184
ggml/src/ggml-cpu/arch-fallback.h
Normal file
184
ggml/src/ggml-cpu/arch-fallback.h
Normal file
@@ -0,0 +1,184 @@
|
||||
#pragma once
|
||||
|
||||
// Rename `_generic` functions if no native implementation is available.
|
||||
// This effectively selects the generic implementation.
|
||||
|
||||
#if defined(GGML_CPU_GENERIC)
|
||||
// quants.c
|
||||
#define quantize_row_q8_0_generic quantize_row_q8_0
|
||||
#define quantize_row_q8_1_generic quantize_row_q8_1
|
||||
#define quantize_row_q8_K_generic quantize_row_q8_K
|
||||
#define ggml_vec_dot_q4_0_q8_0_generic ggml_vec_dot_q4_0_q8_0
|
||||
#define ggml_vec_dot_q4_1_q8_1_generic ggml_vec_dot_q4_1_q8_1
|
||||
#define ggml_vec_dot_q5_0_q8_0_generic ggml_vec_dot_q5_0_q8_0
|
||||
#define ggml_vec_dot_q5_1_q8_1_generic ggml_vec_dot_q5_1_q8_1
|
||||
#define ggml_vec_dot_q8_0_q8_0_generic ggml_vec_dot_q8_0_q8_0
|
||||
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
|
||||
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
|
||||
#define ggml_vec_dot_q2_K_q8_K_generic ggml_vec_dot_q2_K_q8_K
|
||||
#define ggml_vec_dot_q3_K_q8_K_generic ggml_vec_dot_q3_K_q8_K
|
||||
#define ggml_vec_dot_q4_K_q8_K_generic ggml_vec_dot_q4_K_q8_K
|
||||
#define ggml_vec_dot_q5_K_q8_K_generic ggml_vec_dot_q5_K_q8_K
|
||||
#define ggml_vec_dot_q6_K_q8_K_generic ggml_vec_dot_q6_K_q8_K
|
||||
#define ggml_vec_dot_iq2_xxs_q8_K_generic ggml_vec_dot_iq2_xxs_q8_K
|
||||
#define ggml_vec_dot_iq2_xs_q8_K_generic ggml_vec_dot_iq2_xs_q8_K
|
||||
#define ggml_vec_dot_iq2_s_q8_K_generic ggml_vec_dot_iq2_s_q8_K
|
||||
#define ggml_vec_dot_iq3_xxs_q8_K_generic ggml_vec_dot_iq3_xxs_q8_K
|
||||
#define ggml_vec_dot_iq3_s_q8_K_generic ggml_vec_dot_iq3_s_q8_K
|
||||
#define ggml_vec_dot_iq1_s_q8_K_generic ggml_vec_dot_iq1_s_q8_K
|
||||
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
||||
#define ggml_vec_dot_iq4_nl_q8_0_generic ggml_vec_dot_iq4_nl_q8_0
|
||||
#define ggml_vec_dot_iq4_xs_q8_K_generic ggml_vec_dot_iq4_xs_q8_K
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#elif defined(__aarch64__) || defined(__arm__) || defined(_M_ARM) || defined(_M_ARM64)
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#elif defined(__x86_64__) || defined(__i386__) || defined(_M_IX86) || defined(_M_X64)
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#elif defined(__POWERPC__) || defined(__powerpc__)
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/14146#issuecomment-2972561679
|
||||
// quants.c
|
||||
#define quantize_row_q8_K_generic quantize_row_q8_K
|
||||
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
|
||||
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
|
||||
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#elif defined(__loongarch64)
|
||||
// quants.c
|
||||
#define quantize_row_q8_K_generic quantize_row_q8_K
|
||||
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
|
||||
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
|
||||
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#elif defined(__riscv)
|
||||
// quants.c
|
||||
#define quantize_row_q8_K_generic quantize_row_q8_K
|
||||
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
|
||||
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
|
||||
#define ggml_vec_dot_iq2_xxs_q8_K_generic ggml_vec_dot_iq2_xxs_q8_K
|
||||
#define ggml_vec_dot_iq2_xs_q8_K_generic ggml_vec_dot_iq2_xs_q8_K
|
||||
#define ggml_vec_dot_iq2_s_q8_K_generic ggml_vec_dot_iq2_s_q8_K
|
||||
#define ggml_vec_dot_iq3_xxs_q8_K_generic ggml_vec_dot_iq3_xxs_q8_K
|
||||
#define ggml_vec_dot_iq3_s_q8_K_generic ggml_vec_dot_iq3_s_q8_K
|
||||
#define ggml_vec_dot_iq1_s_q8_K_generic ggml_vec_dot_iq1_s_q8_K
|
||||
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
||||
#define ggml_vec_dot_iq4_nl_q8_0_generic ggml_vec_dot_iq4_nl_q8_0
|
||||
#define ggml_vec_dot_iq4_xs_q8_K_generic ggml_vec_dot_iq4_xs_q8_K
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#elif defined(__s390x__)
|
||||
// quants.c
|
||||
#define quantize_row_q8_K_generic quantize_row_q8_K
|
||||
#define ggml_vec_dot_q5_0_q8_0_generic ggml_vec_dot_q5_0_q8_0
|
||||
#define ggml_vec_dot_q5_1_q8_1_generic ggml_vec_dot_q5_1_q8_1
|
||||
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
|
||||
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
|
||||
#define ggml_vec_dot_q2_K_q8_K_generic ggml_vec_dot_q2_K_q8_K
|
||||
#define ggml_vec_dot_iq2_xxs_q8_K_generic ggml_vec_dot_iq2_xxs_q8_K
|
||||
#define ggml_vec_dot_iq2_xs_q8_K_generic ggml_vec_dot_iq2_xs_q8_K
|
||||
#define ggml_vec_dot_iq2_s_q8_K_generic ggml_vec_dot_iq2_s_q8_K
|
||||
#define ggml_vec_dot_iq3_xxs_q8_K_generic ggml_vec_dot_iq3_xxs_q8_K
|
||||
#define ggml_vec_dot_iq3_s_q8_K_generic ggml_vec_dot_iq3_s_q8_K
|
||||
#define ggml_vec_dot_iq1_s_q8_K_generic ggml_vec_dot_iq1_s_q8_K
|
||||
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#elif defined(__wasm__)
|
||||
// quants.c
|
||||
#define ggml_vec_dot_q4_1_q8_1_generic ggml_vec_dot_q4_1_q8_1
|
||||
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
|
||||
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
|
||||
#define ggml_vec_dot_iq2_xxs_q8_K_generic ggml_vec_dot_iq2_xxs_q8_K
|
||||
#define ggml_vec_dot_iq2_xs_q8_K_generic ggml_vec_dot_iq2_xs_q8_K
|
||||
#define ggml_vec_dot_iq2_s_q8_K_generic ggml_vec_dot_iq2_s_q8_K
|
||||
#define ggml_vec_dot_iq3_xxs_q8_K_generic ggml_vec_dot_iq3_xxs_q8_K
|
||||
#define ggml_vec_dot_iq3_s_q8_K_generic ggml_vec_dot_iq3_s_q8_K
|
||||
#define ggml_vec_dot_iq1_s_q8_K_generic ggml_vec_dot_iq1_s_q8_K
|
||||
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
||||
#define ggml_vec_dot_iq4_nl_q8_0_generic ggml_vec_dot_iq4_nl_q8_0
|
||||
#define ggml_vec_dot_iq4_xs_q8_K_generic ggml_vec_dot_iq4_xs_q8_K
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#endif
|
||||
94
ggml/src/ggml-cpu/arch/arm/cpu-feats.cpp
Normal file
94
ggml/src/ggml-cpu/arch/arm/cpu-feats.cpp
Normal file
@@ -0,0 +1,94 @@
|
||||
#include "ggml-backend-impl.h"
|
||||
|
||||
#if defined(__aarch64__)
|
||||
|
||||
#if defined(__linux__)
|
||||
#include <sys/auxv.h>
|
||||
#elif defined(__APPLE__)
|
||||
#include <sys/sysctl.h>
|
||||
#endif
|
||||
|
||||
#if !defined(HWCAP2_I8MM)
|
||||
#define HWCAP2_I8MM (1 << 13)
|
||||
#endif
|
||||
|
||||
#if !defined(HWCAP2_SME)
|
||||
#define HWCAP2_SME (1 << 23)
|
||||
#endif
|
||||
|
||||
struct aarch64_features {
|
||||
// has_neon not needed, aarch64 has NEON guaranteed
|
||||
bool has_dotprod = false;
|
||||
bool has_fp16_va = false;
|
||||
bool has_sve = false;
|
||||
bool has_sve2 = false;
|
||||
bool has_i8mm = false;
|
||||
bool has_sme = false;
|
||||
|
||||
aarch64_features() {
|
||||
#if defined(__linux__)
|
||||
uint32_t hwcap = getauxval(AT_HWCAP);
|
||||
uint32_t hwcap2 = getauxval(AT_HWCAP2);
|
||||
|
||||
has_dotprod = !!(hwcap & HWCAP_ASIMDDP);
|
||||
has_fp16_va = !!(hwcap & HWCAP_FPHP);
|
||||
has_sve = !!(hwcap & HWCAP_SVE);
|
||||
has_sve2 = !!(hwcap2 & HWCAP2_SVE2);
|
||||
has_i8mm = !!(hwcap2 & HWCAP2_I8MM);
|
||||
has_sme = !!(hwcap2 & HWCAP2_SME);
|
||||
#elif defined(__APPLE__)
|
||||
int oldp = 0;
|
||||
size_t size = sizeof(oldp);
|
||||
|
||||
if (sysctlbyname("hw.optional.arm.FEAT_DotProd", &oldp, &size, NULL, 0) == 0) {
|
||||
has_dotprod = static_cast<bool>(oldp);
|
||||
}
|
||||
|
||||
if (sysctlbyname("hw.optional.arm.FEAT_I8MM", &oldp, &size, NULL, 0) == 0) {
|
||||
has_i8mm = static_cast<bool>(oldp);
|
||||
}
|
||||
|
||||
if (sysctlbyname("hw.optional.arm.FEAT_SME", &oldp, &size, NULL, 0) == 0) {
|
||||
has_sme = static_cast<bool>(oldp);
|
||||
}
|
||||
|
||||
// Apple apparently does not implement SVE yet
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
static int ggml_backend_cpu_aarch64_score() {
|
||||
int score = 1;
|
||||
aarch64_features af;
|
||||
|
||||
#ifdef GGML_USE_DOTPROD
|
||||
if (!af.has_dotprod) { return 0; }
|
||||
score += 1<<1;
|
||||
#endif
|
||||
#ifdef GGML_USE_FP16_VECTOR_ARITHMETIC
|
||||
if (!af.has_fp16_va) { return 0; }
|
||||
score += 1<<2;
|
||||
#endif
|
||||
#ifdef GGML_USE_SVE
|
||||
if (!af.has_sve) { return 0; }
|
||||
score += 1<<3;
|
||||
#endif
|
||||
#ifdef GGML_USE_MATMUL_INT8
|
||||
if (!af.has_i8mm) { return 0; }
|
||||
score += 1<<4;
|
||||
#endif
|
||||
#ifdef GGML_USE_SVE2
|
||||
if (!af.has_sve2) { return 0; }
|
||||
score += 1<<5;
|
||||
#endif
|
||||
#ifdef GGML_USE_SME
|
||||
if (!af.has_sme) { return 0; }
|
||||
score += 1<<6;
|
||||
#endif
|
||||
|
||||
return score;
|
||||
}
|
||||
|
||||
GGML_BACKEND_DL_SCORE_IMPL(ggml_backend_cpu_aarch64_score)
|
||||
|
||||
# endif // defined(__aarch64__)
|
||||
4113
ggml/src/ggml-cpu/arch/arm/quants.c
Normal file
4113
ggml/src/ggml-cpu/arch/arm/quants.c
Normal file
File diff suppressed because it is too large
Load Diff
2162
ggml/src/ggml-cpu/arch/arm/repack.cpp
Normal file
2162
ggml/src/ggml-cpu/arch/arm/repack.cpp
Normal file
File diff suppressed because it is too large
Load Diff
2638
ggml/src/ggml-cpu/arch/loongarch/quants.c
Normal file
2638
ggml/src/ggml-cpu/arch/loongarch/quants.c
Normal file
File diff suppressed because it is too large
Load Diff
2731
ggml/src/ggml-cpu/arch/powerpc/quants.c
Normal file
2731
ggml/src/ggml-cpu/arch/powerpc/quants.c
Normal file
File diff suppressed because it is too large
Load Diff
2068
ggml/src/ggml-cpu/arch/riscv/quants.c
Normal file
2068
ggml/src/ggml-cpu/arch/riscv/quants.c
Normal file
File diff suppressed because it is too large
Load Diff
396
ggml/src/ggml-cpu/arch/riscv/repack.cpp
Normal file
396
ggml/src/ggml-cpu/arch/riscv/repack.cpp
Normal file
@@ -0,0 +1,396 @@
|
||||
#define GGML_COMMON_IMPL_CPP
|
||||
#define GGML_COMMON_DECL_CPP
|
||||
#include "ggml-common.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "traits.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstring>
|
||||
#include <cassert>
|
||||
#include <cstdlib> // for qsort
|
||||
#include <cstdio> // for GGML_ASSERT
|
||||
|
||||
#define GGML_CPU_CLANG_WORKAROUND
|
||||
#include "../../repack.h"
|
||||
|
||||
#if defined(__GNUC__)
|
||||
#pragma GCC diagnostic ignored "-Woverlength-strings"
|
||||
#endif
|
||||
|
||||
#define UNUSED GGML_UNUSED
|
||||
|
||||
void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
const int qk = QK8_0;
|
||||
const int nb = n / qk;
|
||||
const int ncols_interleaved = 8;
|
||||
const int blocklen = 8;
|
||||
|
||||
assert (n % qk == 0);
|
||||
assert (nc % ncols_interleaved == 0);
|
||||
|
||||
UNUSED(s);
|
||||
UNUSED(bs);
|
||||
UNUSED(vx);
|
||||
UNUSED(vy);
|
||||
UNUSED(nr);
|
||||
UNUSED(nc);
|
||||
UNUSED(nb);
|
||||
UNUSED(ncols_interleaved);
|
||||
UNUSED(blocklen);
|
||||
|
||||
#if defined __riscv_v
|
||||
if (__riscv_vlenb() >= QK4_0) {
|
||||
const size_t vl = QK4_0;
|
||||
|
||||
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
|
||||
|
||||
vfloat32m1_t sumf = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
|
||||
for (int l = 0; l < nb; l++) {
|
||||
const int64_t a0 = *(const int64_t *)&a_ptr[l].qs[0];
|
||||
const int64_t a1 = *(const int64_t *)&a_ptr[l].qs[8];
|
||||
const int64_t a2 = *(const int64_t *)&a_ptr[l].qs[16];
|
||||
const int64_t a3 = *(const int64_t *)&a_ptr[l].qs[24];
|
||||
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment constraints
|
||||
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(a0, vl / 4));
|
||||
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(a1, vl / 4));
|
||||
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(a2, vl / 4));
|
||||
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(a3, vl / 4));
|
||||
|
||||
const vint8m4_t rhs_raw_vec = __riscv_vle8_v_i8m4((const int8_t *)b_ptr[l].qs, vl * 4);
|
||||
const vint8m4_t rhs_vec_lo = __riscv_vsra_vx_i8m4(__riscv_vsll_vx_i8m4(rhs_raw_vec, 4, vl * 4), 4, vl * 4);
|
||||
const vint8m4_t rhs_vec_hi = __riscv_vsra_vx_i8m4(rhs_raw_vec, 4, vl * 4);
|
||||
const vint8m2_t rhs_vec_lo_0 = __riscv_vget_v_i8m4_i8m2(rhs_vec_lo, 0);
|
||||
const vint8m2_t rhs_vec_lo_1 = __riscv_vget_v_i8m4_i8m2(rhs_vec_lo, 1);
|
||||
const vint8m2_t rhs_vec_hi_0 = __riscv_vget_v_i8m4_i8m2(rhs_vec_hi, 0);
|
||||
const vint8m2_t rhs_vec_hi_1 = __riscv_vget_v_i8m4_i8m2(rhs_vec_hi, 1);
|
||||
|
||||
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
|
||||
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
|
||||
|
||||
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_hi_m));
|
||||
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
|
||||
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
|
||||
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
|
||||
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
|
||||
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
|
||||
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
|
||||
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
|
||||
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
|
||||
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
|
||||
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
|
||||
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
|
||||
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
|
||||
|
||||
// vector version needs Zvfhmin extension
|
||||
const float a_scale = GGML_FP16_TO_FP32(a_ptr[l].d);
|
||||
const float b_scales[8] = {
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[0]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[1]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[2]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[3]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[4]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[5]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[6]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[7])
|
||||
};
|
||||
const vfloat32m1_t b_scales_vec = __riscv_vle32_v_f32m1(b_scales, vl / 4);
|
||||
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scale, vl / 4);
|
||||
sumf = __riscv_vfmacc_vv_f32m1(sumf, tmp1, b_scales_vec, vl / 4);
|
||||
}
|
||||
__riscv_vse32_v_f32m1(s + x * ncols_interleaved, sumf, vl / 4);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
#endif
|
||||
{
|
||||
float sumf[8];
|
||||
int sumi;
|
||||
|
||||
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
|
||||
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
|
||||
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
|
||||
}
|
||||
sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
const int qk = QK8_0;
|
||||
const int nb = n / qk;
|
||||
const int ncols_interleaved = 8;
|
||||
const int blocklen = 8;
|
||||
|
||||
assert (n % qk == 0);
|
||||
assert (nr % 4 == 0);
|
||||
assert (nc % ncols_interleaved == 0);
|
||||
|
||||
UNUSED(s);
|
||||
UNUSED(bs);
|
||||
UNUSED(vx);
|
||||
UNUSED(vy);
|
||||
UNUSED(nr);
|
||||
UNUSED(nc);
|
||||
UNUSED(nb);
|
||||
UNUSED(ncols_interleaved);
|
||||
UNUSED(blocklen);
|
||||
|
||||
#if defined __riscv_v
|
||||
if (__riscv_vlenb() >= QK4_0) {
|
||||
const size_t vl = QK4_0;
|
||||
|
||||
for (int y = 0; y < nr / 4; y++) {
|
||||
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
|
||||
vfloat32m1_t sumf0 = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
|
||||
vfloat32m1_t sumf1 = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
|
||||
vfloat32m1_t sumf2 = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
|
||||
vfloat32m1_t sumf3 = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
|
||||
for (int l = 0; l < nb; l++) {
|
||||
const vint8m4_t rhs_raw_vec = __riscv_vle8_v_i8m4((const int8_t *)b_ptr[l].qs, vl * 4);
|
||||
const vint8m4_t rhs_vec_lo = __riscv_vsra_vx_i8m4(__riscv_vsll_vx_i8m4(rhs_raw_vec, 4, vl * 4), 4, vl * 4);
|
||||
const vint8m4_t rhs_vec_hi = __riscv_vsra_vx_i8m4(rhs_raw_vec, 4, vl * 4);
|
||||
const vint8m2_t rhs_vec_lo_0 = __riscv_vget_v_i8m4_i8m2(rhs_vec_lo, 0);
|
||||
const vint8m2_t rhs_vec_lo_1 = __riscv_vget_v_i8m4_i8m2(rhs_vec_lo, 1);
|
||||
const vint8m2_t rhs_vec_hi_0 = __riscv_vget_v_i8m4_i8m2(rhs_vec_hi, 0);
|
||||
const vint8m2_t rhs_vec_hi_1 = __riscv_vget_v_i8m4_i8m2(rhs_vec_hi, 1);
|
||||
|
||||
// vector version needs Zvfhmin extension
|
||||
const float a_scales[4] = {
|
||||
GGML_FP16_TO_FP32(a_ptr[l].d[0]),
|
||||
GGML_FP16_TO_FP32(a_ptr[l].d[1]),
|
||||
GGML_FP16_TO_FP32(a_ptr[l].d[2]),
|
||||
GGML_FP16_TO_FP32(a_ptr[l].d[3])
|
||||
};
|
||||
const float b_scales[8] = {
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[0]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[1]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[2]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[3]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[4]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[5]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[6]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[7])
|
||||
};
|
||||
const vfloat32m1_t b_scales_vec = __riscv_vle32_v_f32m1(b_scales, vl / 4);
|
||||
|
||||
const int64_t A0 = *(const int64_t *)&a_ptr[l].qs[0];
|
||||
const int64_t A4 = *(const int64_t *)&a_ptr[l].qs[32];
|
||||
const int64_t A8 = *(const int64_t *)&a_ptr[l].qs[64];
|
||||
const int64_t Ac = *(const int64_t *)&a_ptr[l].qs[96];
|
||||
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment
|
||||
vint16m4_t sumi_l0;
|
||||
{
|
||||
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A0, vl / 4));
|
||||
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A4, vl / 4));
|
||||
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A8, vl / 4));
|
||||
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Ac, vl / 4));
|
||||
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
|
||||
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
|
||||
|
||||
sumi_l0 = sumi_hi_m;
|
||||
}
|
||||
|
||||
{
|
||||
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_l0));
|
||||
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
|
||||
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
|
||||
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
|
||||
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
|
||||
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
|
||||
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
|
||||
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
|
||||
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
|
||||
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
|
||||
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
|
||||
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
|
||||
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
|
||||
|
||||
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scales[0], vl / 4);
|
||||
sumf0 = __riscv_vfmacc_vv_f32m1(sumf0, tmp1, b_scales_vec, vl / 4);
|
||||
}
|
||||
|
||||
const int64_t A1 = *(const int64_t *)&a_ptr[l].qs[8];
|
||||
const int64_t A5 = *(const int64_t *)&a_ptr[l].qs[40];
|
||||
const int64_t A9 = *(const int64_t *)&a_ptr[l].qs[72];
|
||||
const int64_t Ad = *(const int64_t *)&a_ptr[l].qs[104];
|
||||
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment
|
||||
vint16m4_t sumi_l1;
|
||||
{
|
||||
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A1, vl / 4));
|
||||
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A5, vl / 4));
|
||||
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A9, vl / 4));
|
||||
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Ad, vl / 4));
|
||||
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
|
||||
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
|
||||
|
||||
sumi_l1 = sumi_hi_m;
|
||||
}
|
||||
|
||||
{
|
||||
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_l1));
|
||||
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
|
||||
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
|
||||
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
|
||||
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
|
||||
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
|
||||
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
|
||||
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
|
||||
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
|
||||
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
|
||||
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
|
||||
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
|
||||
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
|
||||
|
||||
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scales[1], vl / 4);
|
||||
sumf1 = __riscv_vfmacc_vv_f32m1(sumf1, tmp1, b_scales_vec, vl / 4);
|
||||
}
|
||||
|
||||
const int64_t A2 = *(const int64_t *)&a_ptr[l].qs[16];
|
||||
const int64_t A6 = *(const int64_t *)&a_ptr[l].qs[48];
|
||||
const int64_t Aa = *(const int64_t *)&a_ptr[l].qs[80];
|
||||
const int64_t Ae = *(const int64_t *)&a_ptr[l].qs[112];
|
||||
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment
|
||||
vint16m4_t sumi_l2;
|
||||
{
|
||||
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A2, vl / 4));
|
||||
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A6, vl / 4));
|
||||
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Aa, vl / 4));
|
||||
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Ae, vl / 4));
|
||||
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
|
||||
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
|
||||
|
||||
sumi_l2 = sumi_hi_m;
|
||||
}
|
||||
|
||||
{
|
||||
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_l2));
|
||||
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
|
||||
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
|
||||
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
|
||||
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
|
||||
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
|
||||
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
|
||||
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
|
||||
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
|
||||
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
|
||||
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
|
||||
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
|
||||
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
|
||||
|
||||
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scales[2], vl / 4);
|
||||
sumf2 = __riscv_vfmacc_vv_f32m1(sumf2, tmp1, b_scales_vec, vl / 4);
|
||||
}
|
||||
|
||||
const int64_t A3 = *(const int64_t *)&a_ptr[l].qs[24];
|
||||
const int64_t A7 = *(const int64_t *)&a_ptr[l].qs[56];
|
||||
const int64_t Ab = *(const int64_t *)&a_ptr[l].qs[88];
|
||||
const int64_t Af = *(const int64_t *)&a_ptr[l].qs[120];
|
||||
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment
|
||||
vint16m4_t sumi_l3;
|
||||
{
|
||||
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A3, vl / 4));
|
||||
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A7, vl / 4));
|
||||
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Ab, vl / 4));
|
||||
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Af, vl / 4));
|
||||
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
|
||||
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
|
||||
|
||||
sumi_l3 = sumi_hi_m;
|
||||
}
|
||||
|
||||
{
|
||||
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_l3));
|
||||
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
|
||||
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
|
||||
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
|
||||
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
|
||||
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
|
||||
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
|
||||
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
|
||||
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
|
||||
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
|
||||
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
|
||||
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
|
||||
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
|
||||
|
||||
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scales[3], vl / 4);
|
||||
sumf3 = __riscv_vfmacc_vv_f32m1(sumf3, tmp1, b_scales_vec, vl / 4);
|
||||
}
|
||||
}
|
||||
__riscv_vse32_v_f32m1(&s[(y * 4 + 0) * bs + x * ncols_interleaved], sumf0, vl / 4);
|
||||
__riscv_vse32_v_f32m1(&s[(y * 4 + 1) * bs + x * ncols_interleaved], sumf1, vl / 4);
|
||||
__riscv_vse32_v_f32m1(&s[(y * 4 + 2) * bs + x * ncols_interleaved], sumf2, vl / 4);
|
||||
__riscv_vse32_v_f32m1(&s[(y * 4 + 3) * bs + x * ncols_interleaved], sumf3, vl / 4);
|
||||
}
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__)
|
||||
float sumf[4][8];
|
||||
int sumi;
|
||||
|
||||
for (int y = 0; y < nr / 4; y++) {
|
||||
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
|
||||
}
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
|
||||
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
|
||||
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
|
||||
}
|
||||
sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d[m]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++)
|
||||
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
1299
ggml/src/ggml-cpu/arch/s390/quants.c
Normal file
1299
ggml/src/ggml-cpu/arch/s390/quants.c
Normal file
File diff suppressed because it is too large
Load Diff
1480
ggml/src/ggml-cpu/arch/wasm/quants.c
Normal file
1480
ggml/src/ggml-cpu/arch/wasm/quants.c
Normal file
File diff suppressed because it is too large
Load Diff
4310
ggml/src/ggml-cpu/arch/x86/quants.c
Normal file
4310
ggml/src/ggml-cpu/arch/x86/quants.c
Normal file
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -1,7 +1,7 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-cpu-traits.h"
|
||||
#include "traits.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "ggml-impl.h"
|
||||
|
||||
|
||||
@@ -1,8 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml-cpu-traits.h"
|
||||
#include "ggml.h"
|
||||
|
||||
// GGML internal header
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_cpu_aarch64_buffer_type(void);
|
||||
@@ -371,7 +371,7 @@ inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b)
|
||||
#define vec_xor(a, b) ((a) ^ (b)) // Vector XOR
|
||||
#endif
|
||||
|
||||
typedef signed char char8x16_t __attribute__((vector_size(16)));
|
||||
typedef signed char char8x16_t __attribute__((vector_size(16)));
|
||||
typedef unsigned char uchar8x16_t __attribute__((vector_size(16)));
|
||||
|
||||
typedef int8_t int8x16_t __attribute__((vector_size(16)));
|
||||
@@ -382,10 +382,10 @@ typedef uint8_t uint8x16_t __attribute__((vector_size(16)));
|
||||
typedef uint16_t uint16x8_t __attribute__((vector_size(16)));
|
||||
typedef uint32_t uint32x4_t __attribute__((vector_size(16)));
|
||||
|
||||
typedef float float32x4_t __attribute__((vector_size(16)));
|
||||
typedef double double64x2_t __attribute((vector_size(16)));
|
||||
typedef float float32x4_t __attribute__((vector_size(16)));
|
||||
typedef double double64x2_t __attribute__((vector_size(16)));
|
||||
|
||||
typedef signed long long long64x2_t __attribute((vector_size(16)));
|
||||
typedef signed long long long64x2_t __attribute__((vector_size(16)));
|
||||
typedef unsigned long long ulong64x2_t __attribute__((vector_size(16)));
|
||||
|
||||
typedef struct ggml_uint8x16x2_t {
|
||||
@@ -503,6 +503,9 @@ static __m256 __lasx_xvreplfr2vr_s(const float val) {
|
||||
// TODO: move to ggml-threading
|
||||
void ggml_barrier(struct ggml_threadpool * tp);
|
||||
|
||||
void ggml_threadpool_chunk_set(struct ggml_threadpool * tp, int value);
|
||||
int ggml_threadpool_chunk_add(struct ggml_threadpool * tp, int value);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -3,11 +3,11 @@
|
||||
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-cpu-traits.h"
|
||||
#include "traits.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-cpu-quants.h"
|
||||
#include "quants.h"
|
||||
#include "ggml-threading.h"
|
||||
#include "unary-ops.h"
|
||||
#include "binary-ops.h"
|
||||
@@ -74,13 +74,8 @@
|
||||
|
||||
#if defined(__ARM_ARCH)
|
||||
struct ggml_arm_arch_features_type {
|
||||
int has_neon;
|
||||
int has_dotprod;
|
||||
int has_i8mm;
|
||||
int has_sve;
|
||||
int sve_cnt;
|
||||
int has_sme;
|
||||
} ggml_arm_arch_features = {-1, -1, -1, -1, 0, -1};
|
||||
} ggml_arm_arch_features = { 0 };
|
||||
#endif
|
||||
|
||||
|
||||
@@ -270,7 +265,11 @@ static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
|
||||
.from_float = quantize_row_q4_K,
|
||||
.vec_dot = ggml_vec_dot_q4_K_q8_K,
|
||||
.vec_dot_type = GGML_TYPE_Q8_K,
|
||||
#if defined (__ARM_FEATURE_MATMUL_INT8)
|
||||
.nrows = 2,
|
||||
#else
|
||||
.nrows = 1,
|
||||
#endif
|
||||
},
|
||||
[GGML_TYPE_Q5_K] = {
|
||||
.from_float = quantize_row_q5_K,
|
||||
@@ -555,6 +554,14 @@ void ggml_barrier(struct ggml_threadpool * tp) {
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_threadpool_chunk_set(struct ggml_threadpool * tp, int value) {
|
||||
atomic_store_explicit(&tp->current_chunk, value, memory_order_relaxed);
|
||||
}
|
||||
|
||||
int ggml_threadpool_chunk_add(struct ggml_threadpool * tp, int value) {
|
||||
return atomic_fetch_add_explicit(&tp->current_chunk, value, memory_order_relaxed);
|
||||
}
|
||||
|
||||
#if defined(__gnu_linux__)
|
||||
static cpu_set_t ggml_get_numa_affinity(void) {
|
||||
cpu_set_t cpuset;
|
||||
@@ -666,87 +673,15 @@ bool ggml_is_numa(void) {
|
||||
|
||||
#if defined(__linux__) && defined(__aarch64__)
|
||||
#include <sys/auxv.h>
|
||||
#elif defined(__APPLE__)
|
||||
#include <sys/sysctl.h>
|
||||
#endif
|
||||
|
||||
#if !defined(HWCAP2_I8MM)
|
||||
#define HWCAP2_I8MM (1 << 13)
|
||||
#endif
|
||||
|
||||
#if !defined(HWCAP2_SME)
|
||||
#define HWCAP2_SME (1 << 23)
|
||||
#endif
|
||||
|
||||
static void ggml_init_arm_arch_features(void) {
|
||||
#if defined(__linux__) && defined(__aarch64__)
|
||||
uint32_t hwcap = getauxval(AT_HWCAP);
|
||||
uint32_t hwcap2 = getauxval(AT_HWCAP2);
|
||||
|
||||
ggml_arm_arch_features.has_neon = !!(hwcap & HWCAP_ASIMD);
|
||||
ggml_arm_arch_features.has_dotprod = !!(hwcap & HWCAP_ASIMDDP);
|
||||
ggml_arm_arch_features.has_i8mm = !!(hwcap2 & HWCAP2_I8MM);
|
||||
ggml_arm_arch_features.has_sve = !!(hwcap & HWCAP_SVE);
|
||||
ggml_arm_arch_features.has_sme = !!(hwcap2 & HWCAP2_SME);
|
||||
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
#if defined(__linux__) && defined(__aarch64__) && defined(__ARM_FEATURE_SVE)
|
||||
ggml_arm_arch_features.sve_cnt = PR_SVE_VL_LEN_MASK & prctl(PR_SVE_GET_VL);
|
||||
#endif
|
||||
#elif defined(__APPLE__)
|
||||
int oldp = 0;
|
||||
size_t size = sizeof(oldp);
|
||||
if (sysctlbyname("hw.optional.AdvSIMD", &oldp, &size, NULL, 0) != 0) {
|
||||
oldp = 0;
|
||||
}
|
||||
ggml_arm_arch_features.has_neon = oldp;
|
||||
|
||||
if (sysctlbyname("hw.optional.arm.FEAT_DotProd", &oldp, &size, NULL, 0) != 0) {
|
||||
oldp = 0;
|
||||
}
|
||||
ggml_arm_arch_features.has_dotprod = oldp;
|
||||
|
||||
if (sysctlbyname("hw.optional.arm.FEAT_I8MM", &oldp, &size, NULL, 0) != 0) {
|
||||
oldp = 0;
|
||||
}
|
||||
ggml_arm_arch_features.has_i8mm = oldp;
|
||||
|
||||
if (sysctlbyname("hw.optional.arm.FEAT_SME", &oldp, &size, NULL, 0) != 0) {
|
||||
oldp = 0;
|
||||
}
|
||||
ggml_arm_arch_features.has_sme = oldp;
|
||||
|
||||
ggml_arm_arch_features.has_sve = 0;
|
||||
ggml_arm_arch_features.sve_cnt = 0;
|
||||
#else
|
||||
// Run-time CPU feature detection not implemented for this platform, fallback to compile time
|
||||
#if defined(__ARM_NEON)
|
||||
ggml_arm_arch_features.has_neon = 1;
|
||||
#else
|
||||
ggml_arm_arch_features.has_neon = 0;
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
ggml_arm_arch_features.has_i8mm = 1;
|
||||
#else
|
||||
ggml_arm_arch_features.has_i8mm = 0;
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
ggml_arm_arch_features.has_sve = 1;
|
||||
ggml_arm_arch_features.sve_cnt = 16;
|
||||
#else
|
||||
ggml_arm_arch_features.has_sve = 0;
|
||||
ggml_arm_arch_features.sve_cnt = 0;
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_FEATURE_SME) || defined(__ARM_FEATURE_SME2)
|
||||
ggml_arm_arch_features.has_sme = 1;
|
||||
#else
|
||||
ggml_arm_arch_features.has_sme = 0;
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // __ARM_ARCH
|
||||
|
||||
struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
|
||||
GGML_ASSERT(!ggml_get_no_alloc(ctx));
|
||||
@@ -2414,12 +2349,32 @@ static bool ggml_thread_apply_priority(int32_t prio) {
|
||||
// This is up to the applications.
|
||||
DWORD p = THREAD_PRIORITY_NORMAL;
|
||||
switch (prio) {
|
||||
case GGML_SCHED_PRIO_LOW: p = THREAD_PRIORITY_BELOW_NORMAL; break;
|
||||
case GGML_SCHED_PRIO_NORMAL: p = THREAD_PRIORITY_NORMAL; break;
|
||||
case GGML_SCHED_PRIO_MEDIUM: p = THREAD_PRIORITY_ABOVE_NORMAL; break;
|
||||
case GGML_SCHED_PRIO_HIGH: p = THREAD_PRIORITY_HIGHEST; break;
|
||||
case GGML_SCHED_PRIO_REALTIME: p = THREAD_PRIORITY_TIME_CRITICAL; break;
|
||||
}
|
||||
|
||||
if (prio != GGML_SCHED_PRIO_LOW) {
|
||||
// Tell Windows that this thread should not be throttled (needs its own CPU core).
|
||||
// Newer Windows 11 versions aggresively park (offline) CPU cores and often place
|
||||
// all our threads onto the first 4 cores which results in terrible performance with
|
||||
// n_threads > 4
|
||||
#if _WIN32_WINNT >= 0x0602
|
||||
THREAD_POWER_THROTTLING_STATE t;
|
||||
ZeroMemory(&t, sizeof(t));
|
||||
t.Version = THREAD_POWER_THROTTLING_CURRENT_VERSION;
|
||||
t.ControlMask = THREAD_POWER_THROTTLING_EXECUTION_SPEED;
|
||||
t.StateMask = 0;
|
||||
|
||||
if (!SetThreadInformation(GetCurrentThread(), ThreadPowerThrottling, &t, sizeof(t))) {
|
||||
GGML_LOG_DEBUG("failed to disable thread power throttling %d : (%d)\n", prio, (int) GetLastError());
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
if (prio == GGML_SCHED_PRIO_NORMAL) {
|
||||
// Keep inherited policy/priority
|
||||
return true;
|
||||
@@ -2447,6 +2402,8 @@ static bool ggml_thread_apply_priority(int32_t prio) {
|
||||
struct sched_param p;
|
||||
int32_t policy = SCHED_OTHER;
|
||||
switch (prio) {
|
||||
// TODO: there seems to be no way to set lower prio on Apple platforms
|
||||
case GGML_SCHED_PRIO_LOW: policy = SCHED_OTHER; p.sched_priority = 0; break;
|
||||
case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
|
||||
case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
|
||||
case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
|
||||
@@ -2503,6 +2460,7 @@ static bool ggml_thread_apply_priority(int32_t prio) {
|
||||
struct sched_param p;
|
||||
int32_t policy = SCHED_OTHER;
|
||||
switch (prio) {
|
||||
case GGML_SCHED_PRIO_LOW: policy = SCHED_BATCH; p.sched_priority = 0; break;
|
||||
case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
|
||||
case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
|
||||
case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
|
||||
@@ -3408,7 +3366,7 @@ int ggml_cpu_has_vxe(void) {
|
||||
|
||||
int ggml_cpu_has_neon(void) {
|
||||
#if defined(__ARM_ARCH) && defined(__ARM_NEON)
|
||||
return ggml_arm_arch_features.has_neon;
|
||||
return 1;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
@@ -3416,7 +3374,7 @@ int ggml_cpu_has_neon(void) {
|
||||
|
||||
int ggml_cpu_has_dotprod(void) {
|
||||
#if defined(__ARM_ARCH) && defined(__ARM_FEATURE_DOTPROD)
|
||||
return ggml_arm_arch_features.has_dotprod;
|
||||
return 1;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
@@ -3424,7 +3382,7 @@ int ggml_cpu_has_dotprod(void) {
|
||||
|
||||
int ggml_cpu_has_sve(void) {
|
||||
#if defined(__ARM_ARCH) && defined(__ARM_FEATURE_SVE)
|
||||
return ggml_arm_arch_features.has_sve;
|
||||
return 1;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
@@ -3432,7 +3390,7 @@ int ggml_cpu_has_sve(void) {
|
||||
|
||||
int ggml_cpu_has_matmul_int8(void) {
|
||||
#if defined(__ARM_ARCH) && defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
return ggml_arm_arch_features.has_i8mm;
|
||||
return 1;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
@@ -3448,7 +3406,7 @@ int ggml_cpu_get_sve_cnt(void) {
|
||||
|
||||
int ggml_cpu_has_sme(void) {
|
||||
#if defined(__ARM_ARCH) && defined(__ARM_FEATURE_SME)
|
||||
return ggml_arm_arch_features.has_sme;
|
||||
return 1;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-cpu-aarch64.h"
|
||||
#include "ggml-cpu-traits.h"
|
||||
#include "repack.h"
|
||||
#include "traits.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "amx/amx.h"
|
||||
|
||||
@@ -11,7 +11,7 @@
|
||||
#include <vector>
|
||||
|
||||
#ifdef GGML_USE_CPU_HBM
|
||||
# include "ggml-cpu-hbm.h"
|
||||
# include "hbm.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CPU_KLEIDIAI
|
||||
@@ -51,9 +51,9 @@ std::vector<ggml_backend_buffer_type_t>& ggml_backend_cpu_get_extra_buffers_type
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CPU_AARCH64
|
||||
if (ggml_backend_cpu_aarch64_buffer_type()) {
|
||||
bufts.push_back(ggml_backend_cpu_aarch64_buffer_type());
|
||||
#ifdef GGML_USE_CPU_REPACK
|
||||
if (ggml_backend_cpu_repack_buffer_type()) {
|
||||
bufts.push_back(ggml_backend_cpu_repack_buffer_type());
|
||||
}
|
||||
#endif
|
||||
|
||||
@@ -596,8 +596,8 @@ static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t r
|
||||
#ifdef GGML_USE_CPU_KLEIDIAI
|
||||
features.push_back({ "KLEIDIAI", "1" });
|
||||
#endif
|
||||
#ifdef GGML_USE_CPU_AARCH64
|
||||
features.push_back({ "AARCH64_REPACK", "1" });
|
||||
#ifdef GGML_USE_CPU_REPACK
|
||||
features.push_back({ "REPACK", "1" });
|
||||
#endif
|
||||
|
||||
features.push_back({ nullptr, nullptr });
|
||||
|
||||
@@ -5,7 +5,7 @@
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-impl.h"
|
||||
|
||||
#include "ggml-cpu-hbm.h"
|
||||
#include "hbm.h"
|
||||
|
||||
// buffer type HBM
|
||||
|
||||
@@ -26,7 +26,7 @@
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-threading.h"
|
||||
#include "ggml-cpu-traits.h"
|
||||
#include "traits.h"
|
||||
|
||||
#include "kernels.h"
|
||||
|
||||
|
||||
@@ -53,7 +53,6 @@
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "ggml-quants.h"
|
||||
|
||||
#include <atomic>
|
||||
#include <array>
|
||||
#include <type_traits>
|
||||
|
||||
@@ -63,7 +62,7 @@
|
||||
#define NOINLINE __attribute__((__noinline__))
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_NEON) || defined(__AVX512F__)
|
||||
#if defined(__ARM_NEON) || defined(__AVX512F__) || defined(__VXE__) || defined(__VXE2__)
|
||||
#define VECTOR_REGISTERS 32
|
||||
#else
|
||||
#define VECTOR_REGISTERS 16
|
||||
@@ -110,6 +109,12 @@ inline float16x8_t sub(float16x8_t x, float16x8_t y) { return vsubq_f16(x, y); }
|
||||
inline float16x8_t mul(float16x8_t x, float16x8_t y) { return vmulq_f16(x, y); }
|
||||
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
|
||||
#if defined(__VXE__) || defined(__VXE2__)
|
||||
inline float32x4_t add(float32x4_t x, float32x4_t y) { return vec_add(x, y); }
|
||||
inline float32x4_t sub(float32x4_t x, float32x4_t y) { return vec_sub(x, y); }
|
||||
inline float32x4_t mul(float32x4_t x, float32x4_t y) { return vec_mul(x, y); }
|
||||
#endif
|
||||
|
||||
#if defined(__MMA__)
|
||||
typedef vector unsigned char vec_t;
|
||||
typedef __vector_quad acc_t;
|
||||
@@ -163,6 +168,13 @@ inline float16x8_t madd(float16x8_t a, float16x8_t b, float16x8_t c) {
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(__VXE__) || defined(__VXE2__)
|
||||
template <>
|
||||
inline float32x4_t madd(float32x4_t a, float32x4_t b, float32x4_t c) {
|
||||
return vec_madd(a, b, c);
|
||||
}
|
||||
#endif
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// VECTORIZED HORIZONTAL SUM
|
||||
|
||||
@@ -179,6 +191,13 @@ inline float hsum(float16x8_t x) {
|
||||
}
|
||||
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
|
||||
#if defined(__VXE__) || defined(__VXE2__)
|
||||
inline float hsum(float32x4_t x) {
|
||||
float32x4_t tmp = x + vec_reve(x);
|
||||
return tmp[0] + tmp[1];
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
||||
inline float hsum(__m128 x) {
|
||||
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
||||
@@ -228,6 +247,21 @@ template <> inline float32x4_t load(const ggml_fp16_t *p) {
|
||||
#endif // _MSC_VER
|
||||
#endif // __ARM_NEON
|
||||
|
||||
#if defined(__VXE__) || defined(__VXE2__)
|
||||
template <> inline float32x4_t load(const ggml_fp16_t * p) {
|
||||
float tmp[4];
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
tmp[i] = GGML_FP16_TO_FP32(p[i]);
|
||||
}
|
||||
|
||||
return vec_xl(0, (const float *)(tmp));
|
||||
}
|
||||
template <> inline float32x4_t load(const float * p) {
|
||||
return vec_xl(0, p);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
||||
template <> inline __m128 load(const float *p) {
|
||||
return _mm_loadu_ps(p);
|
||||
@@ -394,8 +428,6 @@ class tinyBLAS {
|
||||
|
||||
template <int RM, int RN, int BM>
|
||||
NOINLINE void gemm(int64_t m, int64_t n, int64_t BN) {
|
||||
static std::atomic<int64_t> current_chunk;
|
||||
|
||||
GGML_ASSERT(m % (RM * BM) == 0);
|
||||
const int64_t ytiles = m / (RM * BM);
|
||||
const int64_t xtiles = (n + RN -1) / RN;
|
||||
@@ -410,7 +442,7 @@ class tinyBLAS {
|
||||
if (params->ith == 0) {
|
||||
GGML_ASSERT( jj_BN * SIZE_BN + (NB_BN - jj_BN) * (SIZE_BN - 1) == xtiles);
|
||||
// Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
|
||||
std::atomic_store_explicit(¤t_chunk, (int64_t)params->nth, std::memory_order_relaxed);
|
||||
ggml_threadpool_chunk_set(params->threadpool, params->nth);
|
||||
}
|
||||
|
||||
ggml_barrier(params->threadpool);
|
||||
@@ -439,8 +471,7 @@ class tinyBLAS {
|
||||
GGML_ASSERT(jj == jj2);
|
||||
}
|
||||
|
||||
// next step.
|
||||
job = std::atomic_fetch_add_explicit(¤t_chunk, (int64_t)1, std::memory_order_relaxed);
|
||||
job = ggml_threadpool_chunk_add(params->threadpool, 1);
|
||||
}
|
||||
|
||||
ggml_barrier(params->threadpool);
|
||||
@@ -3323,6 +3354,14 @@ bool llamafile_sgemm(const struct ggml_compute_params * params, int64_t m, int64
|
||||
(const float *)B, ldb,
|
||||
(float *)C, ldc};
|
||||
return tb.matmul(m, n);
|
||||
#elif defined(__VXE__) || defined(__VXE2__)
|
||||
if (n < 4)
|
||||
return false;
|
||||
tinyBLAS<4, float32x4_t, float32x4_t, float, float, float> tb{ params,
|
||||
k, (const float *)A, lda,
|
||||
(const float *)B, ldb,
|
||||
(float *)C, ldc};
|
||||
return tb.matmul(m, n);
|
||||
#elif defined(__MMA__)
|
||||
if (k % 8)
|
||||
return false;
|
||||
@@ -3414,6 +3453,16 @@ bool llamafile_sgemm(const struct ggml_compute_params * params, int64_t m, int64
|
||||
(float *)C, ldc};
|
||||
return tb.matmul(m, n);
|
||||
}
|
||||
#elif defined(__VXE__) || defined(__VXE2__)
|
||||
if (n < 4)
|
||||
return false;
|
||||
if (Btype == GGML_TYPE_F16) {
|
||||
tinyBLAS<4, float32x4_t, float32x4_t, ggml_fp16_t, ggml_fp16_t, float> tb{ params,
|
||||
k, (const ggml_fp16_t *)A, lda,
|
||||
(const ggml_fp16_t *)B, ldb,
|
||||
(float *)C, ldc};
|
||||
return tb.matmul(m, n);
|
||||
}
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -1,6 +1,11 @@
|
||||
#pragma once
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
#if defined(__VXE__) || defined(__VXE2__)
|
||||
#include <vecintrin.h>
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
@@ -7633,39 +7633,83 @@ static void ggml_compute_forward_ssm_scan_f32(
|
||||
const int ir1 = MIN(ir0 + dr, nr);
|
||||
const int ir = ir1 - ir0;
|
||||
|
||||
for (int i3 = 0; i3 < n_s; ++i3) {
|
||||
for (int i2 = 0; i2 < n_t; ++i2) {
|
||||
const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
|
||||
const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
||||
const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
|
||||
const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
|
||||
const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
|
||||
const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
|
||||
float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
||||
float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
|
||||
#ifdef __ARM_FEATURE_SVE
|
||||
for (int i3 = 0; i3 < n_s; ++i3) {
|
||||
for (int i2 = 0; i2 < n_t; ++i2) {
|
||||
const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
|
||||
const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
||||
const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
|
||||
const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
|
||||
const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
|
||||
const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
|
||||
float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
||||
float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
|
||||
|
||||
// use the output as the source for the next token-wise iterations
|
||||
if (i2 > 0) { s0 = s; }
|
||||
// use the output as the source for the next token-wise iterations
|
||||
if (i2 > 0) { s0 = s; }
|
||||
|
||||
// d_inner
|
||||
for (int i1 = 0; i1 < ir; ++i1) {
|
||||
// ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
|
||||
float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
|
||||
float x_dt = x[i1] * dt_soft_plus;
|
||||
float sumf = 0.0f;
|
||||
// d_state
|
||||
for (int i0 = 0; i0 < nc; ++i0) {
|
||||
int i = i0 + i1*nc;
|
||||
// state = prev_state * dA + dB * x
|
||||
float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
|
||||
// y = rowwise_dotprod(state, C)
|
||||
sumf += state * C[i0];
|
||||
s[i] = state;
|
||||
// d_inner
|
||||
for (int i1 = 0; i1 < ir; ++i1) {
|
||||
float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
|
||||
float x_dt = x[i1] * dt_soft_plus;
|
||||
svfloat32_t vx_dt = GGML_F32_VEC_SET1(x_dt);
|
||||
svfloat32_t vdt_soft_plus = GGML_F32_VEC_SET1(dt_soft_plus);
|
||||
svfloat32_t r1_vector = GGML_F32_VEC_ZERO;
|
||||
|
||||
for (int64_t k = 0; k < nc; k += svcntw()) {
|
||||
svfloat32_t vA = GGML_F32_VEC_LOAD(&A[i1*nc + k]);
|
||||
svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k]);
|
||||
svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k]);
|
||||
svfloat32_t vs0 = GGML_F32_VEC_LOAD(&s0[i1*nc + k]);
|
||||
|
||||
svfloat32_t t1 = GGML_F32_VEC_MUL(vdt_soft_plus, vA);
|
||||
t1 = exp_ps_sve(svptrue_b32(), t1);
|
||||
svfloat32_t t2 = GGML_F32_VEC_MUL(vx_dt, vB);
|
||||
|
||||
vs0 = GGML_F32_VEC_FMA(vs0, t1, t2);
|
||||
r1_vector = GGML_F32_VEC_ADD(GGML_F32_VEC_MUL(vs0, vC), r1_vector);
|
||||
|
||||
GGML_F32_VEC_STORE(&s[i1*nc + k], vs0);
|
||||
}
|
||||
y[i1] = GGML_F32xt_REDUCE_ONE(r1_vector);
|
||||
}
|
||||
y[i1] = sumf;
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
for (int i3 = 0; i3 < n_s; ++i3) {
|
||||
for (int i2 = 0; i2 < n_t; ++i2) {
|
||||
const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
|
||||
const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
||||
const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
|
||||
const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
|
||||
const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
|
||||
const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
|
||||
float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
||||
float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
|
||||
|
||||
// use the output as the source for the next token-wise iterations
|
||||
if (i2 > 0) { s0 = s; }
|
||||
|
||||
// d_inner
|
||||
for (int i1 = 0; i1 < ir; ++i1) {
|
||||
// ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
|
||||
float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
|
||||
float x_dt = x[i1] * dt_soft_plus;
|
||||
float sumf = 0.0f;
|
||||
// d_state
|
||||
for (int i0 = 0; i0 < nc; ++i0) {
|
||||
int i = i0 + i1*nc;
|
||||
// state = prev_state * dA + dB * x
|
||||
float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
|
||||
// y = rowwise_dotprod(state, C)
|
||||
sumf += state * C[i0];
|
||||
s[i] = state;
|
||||
}
|
||||
y[i1] = sumf;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_compute_forward_ssm_scan(
|
||||
@@ -8070,6 +8114,14 @@ static void ggml_compute_forward_rwkv_wkv6_f32(
|
||||
#define GGML_F32X_MUL GGML_F32x16_MUL
|
||||
#define GGML_F32X_FMA GGML_F32x16_FMA
|
||||
#define WKV_VECTOR_SIZE 16
|
||||
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
|
||||
#define GGML_F32X GGML_F32xt
|
||||
#define GGML_F32X_SET1 GGML_F32xt_SET1
|
||||
#define GGML_F32X_LOAD GGML_F32xt_LOAD
|
||||
#define GGML_F32X_STORE GGML_F32xt_STORE
|
||||
#define GGML_F32X_MUL GGML_F32xt_MUL
|
||||
#define GGML_F32X_FMA GGML_F32xt_FMA
|
||||
#define WKV_VECTOR_SIZE 8
|
||||
#elif defined(__ARM_NEON) && defined(__aarch64__)
|
||||
#define GGML_F32X GGML_F32x4
|
||||
#define GGML_F32X_SET1 GGML_F32x4_SET1
|
||||
@@ -8081,7 +8133,13 @@ static void ggml_compute_forward_rwkv_wkv6_f32(
|
||||
#endif
|
||||
|
||||
#ifdef WKV_VECTOR_SIZE
|
||||
const int64_t vec_count = head_size / WKV_VECTOR_SIZE;
|
||||
int wkv_vector_size;
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
wkv_vector_size = svcntw();
|
||||
#else
|
||||
wkv_vector_size = WKV_VECTOR_SIZE;
|
||||
#endif
|
||||
const int64_t vec_count = head_size / wkv_vector_size;
|
||||
|
||||
for (int64_t t = 0; t < T; t++) {
|
||||
size_t t_offset = t * t_stride;
|
||||
@@ -8111,7 +8169,7 @@ static void ggml_compute_forward_rwkv_wkv6_f32(
|
||||
GGML_F32X time_decay_vec = GGML_F32X_SET1(time_decay_val);
|
||||
|
||||
for (int64_t j = 0; j < vec_count; j++) {
|
||||
size_t base_j = j * WKV_VECTOR_SIZE;
|
||||
size_t base_j = j * wkv_vector_size;
|
||||
size_t t_h_j_offset = t_h_offset + base_j;
|
||||
size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
|
||||
|
||||
@@ -8136,7 +8194,7 @@ static void ggml_compute_forward_rwkv_wkv6_f32(
|
||||
}
|
||||
|
||||
// Handle remaining elements, this will not be used.
|
||||
for (int64_t j = vec_count * WKV_VECTOR_SIZE; j < head_size; j++) {
|
||||
for (int64_t j = vec_count * wkv_vector_size; j < head_size; j++) {
|
||||
size_t t_h_j_offset = t_h_offset + j;
|
||||
size_t h_2d_i_j_offset = h_2d_i_offset + j;
|
||||
float v_val = v[t_h_j_offset];
|
||||
@@ -8272,6 +8330,14 @@ static void ggml_compute_forward_gla_f32(
|
||||
#define GGML_F32X_MUL GGML_F32x16_MUL
|
||||
#define GGML_F32X_FMA GGML_F32x16_FMA
|
||||
#define GLA_VECTOR_SIZE 16
|
||||
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
|
||||
#define GGML_F32X GGML_F32xt
|
||||
#define GGML_F32X_SET1 GGML_F32xt_SET1
|
||||
#define GGML_F32X_LOAD GGML_F32xt_LOAD
|
||||
#define GGML_F32X_STORE GGML_F32xt_STORE
|
||||
#define GGML_F32X_MUL GGML_F32xt_MUL
|
||||
#define GGML_F32X_FMA GGML_F32xt_FMA
|
||||
#define GLA_VECTOR_SIZE 8
|
||||
#elif defined(__ARM_NEON) && defined(__aarch64__)
|
||||
#define GGML_F32X GGML_F32x4
|
||||
#define GGML_F32X_SET1 GGML_F32x4_SET1
|
||||
@@ -8283,7 +8349,13 @@ static void ggml_compute_forward_gla_f32(
|
||||
#endif
|
||||
|
||||
#ifdef GLA_VECTOR_SIZE
|
||||
const int64_t vec_count = head_size / GLA_VECTOR_SIZE;
|
||||
int gla_vector_size;
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
gla_vector_size = svcntw();
|
||||
#else
|
||||
gla_vector_size = GLA_VECTOR_SIZE;
|
||||
#endif
|
||||
const int64_t vec_count = head_size / gla_vector_size;
|
||||
|
||||
for (int64_t t = 0; t < T; t++) {
|
||||
size_t t_offset = t * t_stride;
|
||||
@@ -8310,7 +8382,7 @@ static void ggml_compute_forward_gla_f32(
|
||||
GGML_F32X g_vec = GGML_F32X_SET1(g_val);
|
||||
|
||||
for (int64_t j = 0; j < vec_count; j++) {
|
||||
size_t base_j = j * GLA_VECTOR_SIZE;
|
||||
size_t base_j = j * gla_vector_size;
|
||||
size_t t_h_j_offset = t_h_offset + base_j;
|
||||
size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
|
||||
|
||||
@@ -8334,7 +8406,7 @@ static void ggml_compute_forward_gla_f32(
|
||||
}
|
||||
|
||||
// Handle remaining elements, this will not be used.
|
||||
for (int64_t j = vec_count * GLA_VECTOR_SIZE; j < head_size; j++) {
|
||||
for (int64_t j = vec_count * gla_vector_size; j < head_size; j++) {
|
||||
size_t t_h_j_offset = t_h_offset + j;
|
||||
size_t h_2d_i_j_offset = h_2d_i_offset + j;
|
||||
float v_val = v[t_h_j_offset];
|
||||
@@ -8443,83 +8515,126 @@ static void ggml_compute_forward_rwkv_wkv7_f32(
|
||||
int64_t h_stride_2d = head_size * head_size;
|
||||
|
||||
#if defined(GGML_SIMD)
|
||||
for (int64_t t = 0; t < T; t++) {
|
||||
int64_t t_offset = t * t_stride;
|
||||
int64_t state_offset = head_size * C * (t / (T / n_seqs));
|
||||
float * state_cur = state + state_offset;
|
||||
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
// scalar Route to scalar implementation //TODO: Write SVE code
|
||||
for (int64_t t = 0; t < T; t++) {
|
||||
int64_t t_offset = t * t_stride;
|
||||
int64_t state_offset = head_size * C * (t / (T / n_seqs));
|
||||
float * state_cur = state + state_offset;
|
||||
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
|
||||
|
||||
for (int64_t h = h_start; h < h_end; h++) {
|
||||
int64_t h_offset = h * h_stride;
|
||||
int64_t t_h_offset = t_offset + h_offset;
|
||||
int64_t h_2d_offset = h * h_stride_2d;
|
||||
for (int64_t h = h_start; h < h_end; h++) {
|
||||
int64_t h_offset = h * h_stride;
|
||||
int64_t t_h_offset = t_offset + h_offset;
|
||||
int64_t h_2d_offset = h * h_stride_2d;
|
||||
|
||||
for (int64_t ii = 0; ii < head_size; ii++) {
|
||||
int64_t t_h_i_offset = t_h_offset + ii;
|
||||
int64_t h_2d_i_offset = h_2d_offset + ii * h_stride;
|
||||
for (int64_t i = 0; i < head_size; i++) {
|
||||
int64_t t_h_i_offset = t_h_offset + i;
|
||||
int64_t h_2d_i_offset = h_2d_offset + i * h_stride;
|
||||
|
||||
GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]);
|
||||
float v_val = v[t_h_i_offset];
|
||||
|
||||
float sa = 0;
|
||||
{
|
||||
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
|
||||
GGML_F32_VEC ax[GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) {
|
||||
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
|
||||
ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]);
|
||||
ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]);
|
||||
sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]);
|
||||
}
|
||||
float sa = 0, result = 0;
|
||||
for (int64_t j = 0; j < head_size; j++) {
|
||||
sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j];
|
||||
}
|
||||
GGML_F32_VEC_REDUCE(sa, sum);
|
||||
}
|
||||
|
||||
GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa);
|
||||
for (int64_t j = 0; j < head_size; j++) {
|
||||
int64_t t_h_j_offset = t_h_offset + j;
|
||||
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
|
||||
|
||||
int64_t j = 0;
|
||||
GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
|
||||
for (; j < head_size; j += GGML_F32_STEP) {
|
||||
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
|
||||
int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR;
|
||||
int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR;
|
||||
|
||||
GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]);
|
||||
GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]);
|
||||
GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]);
|
||||
GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]);
|
||||
|
||||
k_vec = GGML_F32_VEC_MUL(v_vec, k_vec);
|
||||
|
||||
GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]);
|
||||
// kv + s * decay + sa * b
|
||||
state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec);
|
||||
state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec);
|
||||
GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec);
|
||||
|
||||
result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec);
|
||||
float r_val = r[t_h_j_offset];
|
||||
float w_val = w[t_h_j_offset];
|
||||
float k_val = k[t_h_j_offset];
|
||||
float b_val = b[t_h_j_offset];
|
||||
float kv_val = v_val * k_val;
|
||||
float prev_state_val = state_prev[h_2d_i_j_offset];
|
||||
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
|
||||
result += state_cur[h_2d_i_j_offset] * r_val;
|
||||
}
|
||||
}
|
||||
GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec);
|
||||
|
||||
// There shouldn't be left-overs though.
|
||||
for (; j < head_size; j++) {
|
||||
int64_t t_h_j_offset = t_h_offset + j;
|
||||
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
|
||||
|
||||
float r_val = r[t_h_j_offset];
|
||||
float w_val = w[t_h_j_offset];
|
||||
float k_val = k[t_h_j_offset];
|
||||
float b_val = b[t_h_j_offset];
|
||||
float kv_val = v[t_h_i_offset] * k_val;
|
||||
|
||||
float prev_state_val = state_prev[h_2d_i_j_offset];
|
||||
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
|
||||
dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val;
|
||||
dst_data[t_h_i_offset] = result;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
for (int64_t t = 0; t < T; t++) {
|
||||
int64_t t_offset = t * t_stride;
|
||||
int64_t state_offset = head_size * C * (t / (T / n_seqs));
|
||||
float * state_cur = state + state_offset;
|
||||
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
|
||||
|
||||
for (int64_t h = h_start; h < h_end; h++) {
|
||||
int64_t h_offset = h * h_stride;
|
||||
int64_t t_h_offset = t_offset + h_offset;
|
||||
int64_t h_2d_offset = h * h_stride_2d;
|
||||
|
||||
for (int64_t ii = 0; ii < head_size; ii++) {
|
||||
int64_t t_h_i_offset = t_h_offset + ii;
|
||||
int64_t h_2d_i_offset = h_2d_offset + ii * h_stride;
|
||||
|
||||
GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]);
|
||||
|
||||
float sa = 0;
|
||||
{
|
||||
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
|
||||
GGML_F32_VEC ax[GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) {
|
||||
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
|
||||
ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]);
|
||||
ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]);
|
||||
sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]);
|
||||
}
|
||||
}
|
||||
GGML_F32_VEC_REDUCE(sa, sum);
|
||||
}
|
||||
|
||||
GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa);
|
||||
|
||||
int64_t j = 0;
|
||||
GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
|
||||
for (; j < head_size; j += GGML_F32_STEP) {
|
||||
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
|
||||
int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR;
|
||||
int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR;
|
||||
|
||||
GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]);
|
||||
GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]);
|
||||
GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]);
|
||||
GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]);
|
||||
|
||||
k_vec = GGML_F32_VEC_MUL(v_vec, k_vec);
|
||||
|
||||
GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]);
|
||||
// kv + s * decay + sa * b
|
||||
state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec);
|
||||
state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec);
|
||||
GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec);
|
||||
|
||||
result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec);
|
||||
}
|
||||
}
|
||||
GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec);
|
||||
|
||||
// There shouldn't be left-overs though.
|
||||
for (; j < head_size; j++) {
|
||||
int64_t t_h_j_offset = t_h_offset + j;
|
||||
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
|
||||
|
||||
float r_val = r[t_h_j_offset];
|
||||
float w_val = w[t_h_j_offset];
|
||||
float k_val = k[t_h_j_offset];
|
||||
float b_val = b[t_h_j_offset];
|
||||
float kv_val = v[t_h_i_offset] * k_val;
|
||||
|
||||
float prev_state_val = state_prev[h_2d_i_j_offset];
|
||||
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
|
||||
dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
for (int64_t t = 0; t < T; t++) {
|
||||
int64_t t_offset = t * t_stride;
|
||||
|
||||
1157
ggml/src/ggml-cpu/quants.c
Normal file
1157
ggml/src/ggml-cpu/quants.c
Normal file
File diff suppressed because it is too large
Load Diff
@@ -58,6 +58,32 @@ void ggml_vec_dot_iq4_nl_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const
|
||||
void ggml_vec_dot_iq4_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
// Generic implementation
|
||||
void quantize_row_q8_0_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
void quantize_row_q8_1_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
void quantize_row_q8_K_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void ggml_vec_dot_q4_0_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q4_1_q8_1_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_0_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_1_q8_1_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q8_0_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_tq1_0_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_tq2_0_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q2_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q3_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q4_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q6_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_xxs_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_xs_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_s_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_xxs_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_s_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq1_s_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq1_m_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_nl_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_xs_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
1555
ggml/src/ggml-cpu/repack.cpp
Normal file
1555
ggml/src/ggml-cpu/repack.cpp
Normal file
File diff suppressed because it is too large
Load Diff
98
ggml/src/ggml-cpu/repack.h
Normal file
98
ggml/src/ggml-cpu/repack.h
Normal file
@@ -0,0 +1,98 @@
|
||||
#pragma once
|
||||
|
||||
#define GGML_COMMON_DECL_CPP
|
||||
#include "ggml-common.h"
|
||||
|
||||
#include "traits.h"
|
||||
#include "ggml.h"
|
||||
|
||||
// GGML internal header
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_cpu_repack_buffer_type(void);
|
||||
|
||||
template <int K> constexpr int QK_0() {
|
||||
if constexpr (K == 4) {
|
||||
return QK4_0;
|
||||
}
|
||||
if constexpr (K == 8) {
|
||||
return QK8_0;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
template <int K, int N> struct block {
|
||||
ggml_half d[N]; // deltas for N qK_0 blocks
|
||||
int8_t qs[(QK_0<K>() * N * K) / 8]; // quants for N qK_0 blocks
|
||||
};
|
||||
|
||||
// control size
|
||||
static_assert(sizeof(block<4, 4>) == 4 * sizeof(ggml_half) + QK8_0 * 2, "wrong block<4,4> size/padding");
|
||||
static_assert(sizeof(block<4, 8>) == 8 * sizeof(ggml_half) + QK8_0 * 4, "wrong block<4,8> size/padding");
|
||||
static_assert(sizeof(block<8, 4>) == 4 * sizeof(ggml_half) + QK8_0 * 4, "wrong block<8,4> size/padding");
|
||||
static_assert(sizeof(block<8, 8>) == 8 * sizeof(ggml_half) + QK8_0 * 8, "wrong block<8,8> size/padding");
|
||||
|
||||
using block_q4_0x4 = block<4, 4>;
|
||||
using block_q4_0x8 = block<4, 8>;
|
||||
using block_q8_0x4 = block<8, 4>;
|
||||
using block_q8_0x8 = block<8, 8>;
|
||||
|
||||
struct block_q4_Kx8 {
|
||||
ggml_half d[8]; // super-block scale for quantized scales
|
||||
ggml_half dmin[8]; // super-block scale for quantized mins
|
||||
uint8_t scales[96]; // scales and mins, quantized with 6 bits
|
||||
uint8_t qs[1024]; // 4--bit quants
|
||||
};
|
||||
|
||||
static_assert(sizeof(block_q4_Kx8) == sizeof(ggml_half) * 16 + K_SCALE_SIZE * 8 + QK_K * 4, "wrong q4_K block size/padding");
|
||||
|
||||
struct block_q8_Kx4 {
|
||||
float d[4]; // delta
|
||||
int8_t qs[QK_K * 4]; // quants
|
||||
int16_t bsums[QK_K / 4]; // sum of quants in groups of 16
|
||||
};
|
||||
|
||||
static_assert(sizeof(block_q8_Kx4) == sizeof(float) * 4 + QK_K * 4 + (QK_K / 4) * sizeof(int16_t), "wrong q8_K block size/padding");
|
||||
|
||||
struct block_iq4_nlx4 {
|
||||
ggml_half d[4]; // deltas for 4 iq4_nl blocks
|
||||
uint8_t qs[QK4_NL * 2]; // nibbles / quants for 4 iq4_nl blocks
|
||||
};
|
||||
|
||||
static_assert(sizeof(block_iq4_nlx4) == 4 * sizeof(ggml_half) + QK4_NL * 2, "wrong iq4_nlx4 block size/padding");
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
void ggml_quantize_mat_q8_0_4x4(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
void ggml_quantize_mat_q8_0_4x8(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
void ggml_quantize_mat_q8_K_4x8(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
void ggml_gemv_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
|
||||
// Native implementations
|
||||
void ggml_quantize_mat_q8_0_4x4_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
void ggml_quantize_mat_q8_0_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
void ggml_quantize_mat_q8_K_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
void ggml_gemv_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
|
||||
#if defined(__cplusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
@@ -17,7 +17,123 @@
|
||||
// number of elements to fit in a single register
|
||||
//
|
||||
|
||||
#if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
|
||||
#if defined(__ARM_FEATURE_SVE) && defined(__ARM_FEATURE_FMA)
|
||||
|
||||
#define GGML_SIMD
|
||||
|
||||
// F32 SVE
|
||||
#define GGML_F32_EPR 8
|
||||
#define DEFAULT_PG svptrue_b32()
|
||||
|
||||
#define GGML_F32xt svfloat32_t
|
||||
#define GGML_F32xt_ZERO svdup_n_f32(0.0f)
|
||||
#define GGML_F32xt_SET1(x) svdup_n_f32(x)
|
||||
#define GGML_F32xt_LOAD_IMPL(pg, a, ...) svld1_f32(pg, a)
|
||||
#define GGML_F32xt_LOAD(...) GGML_F32xt_LOAD_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_STORE_IMPL(pg,a,b) svst1_f32(pg, a, b)
|
||||
#define GGML_F32xt_STORE(...) GGML_F32xt_STORE_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_FMA_IMPL(pg, a, b, c) svmad_f32_m(pg, a, b, c)
|
||||
#define GGML_F32xt_FMA(...) GGML_F32xt_FMA_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_ADD_IMPL(pg, a, b) svadd_f32_m(pg, a, b)
|
||||
#define GGML_F32xt_ADD(...) GGML_F32xt_ADD_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_MUL_IMPL(pg, a, b) svmul_f32_m(pg, a, b)
|
||||
#define GGML_F32xt_MUL(...) GGML_F32xt_MUL_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_REDUCE_ONE_IMPL(pg, a) svaddv(pg, a)
|
||||
#define GGML_F32xt_REDUCE_ONE(...) GGML_F32xt_REDUCE_ONE_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_REDUCE_IMPL(pg, res, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8) \
|
||||
{ \
|
||||
sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum2); \
|
||||
sum3 = svadd_f32_m(DEFAULT_PG, sum3, sum4); \
|
||||
sum5 = svadd_f32_m(DEFAULT_PG, sum5, sum6); \
|
||||
sum7 = svadd_f32_m(DEFAULT_PG, sum7, sum8); \
|
||||
sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum3); \
|
||||
sum5 = svadd_f32_m(DEFAULT_PG, sum5, sum7); \
|
||||
sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum5); \
|
||||
(res) = (ggml_float) GGML_F32xt_REDUCE_ONE(sum1); \
|
||||
}
|
||||
#define GGML_F32xt_REDUCE(...) GGML_F32xt_REDUCE_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
|
||||
#define GGML_F32_VEC GGML_F32xt
|
||||
#define GGML_F32_VEC_ZERO GGML_F32xt_ZERO
|
||||
#define GGML_F32_VEC_SET1 GGML_F32xt_SET1
|
||||
#define GGML_F32_VEC_LOAD GGML_F32xt_LOAD
|
||||
#define GGML_F32_VEC_STORE GGML_F32xt_STORE
|
||||
#define GGML_F32_VEC_FMA GGML_F32xt_FMA
|
||||
#define GGML_F32_VEC_ADD GGML_F32xt_ADD
|
||||
#define GGML_F32_VEC_MUL GGML_F32xt_MUL
|
||||
#define GGML_F32_VEC_REDUCE GGML_F32xt_REDUCE
|
||||
|
||||
// F16 NEON
|
||||
|
||||
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
|
||||
#define GGML_F16_STEP 32
|
||||
#define GGML_F16_EPR 8
|
||||
|
||||
#define GGML_F16x8 float16x8_t
|
||||
#define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
|
||||
#define GGML_F16x8_SET1(x) vdupq_n_f16(x)
|
||||
#define GGML_F16x8_LOAD(x) vld1q_f16((const __fp16 *)(x))
|
||||
#define GGML_F16x8_STORE vst1q_f16
|
||||
#define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
|
||||
#define GGML_F16x8_ADD vaddq_f16
|
||||
#define GGML_F16x8_MUL vmulq_f16
|
||||
#define GGML_F16x8_REDUCE(res, x) \
|
||||
do { \
|
||||
int offset = GGML_F16_ARR >> 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
|
||||
} \
|
||||
const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 ((x)[0])); \
|
||||
const float32x4_t t1 = vcvt_f32_f16(vget_high_f16((x)[0])); \
|
||||
(res) = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
|
||||
} while (0)
|
||||
|
||||
#define GGML_F16_VEC GGML_F16x8
|
||||
#define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
|
||||
#define GGML_F16_VEC_SET1 GGML_F16x8_SET1
|
||||
#define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
|
||||
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((__fp16 *)(p), (r)[i])
|
||||
#define GGML_F16_VEC_FMA GGML_F16x8_FMA
|
||||
#define GGML_F16_VEC_ADD GGML_F16x8_ADD
|
||||
#define GGML_F16_VEC_MUL GGML_F16x8_MUL
|
||||
#define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
|
||||
#else
|
||||
// if FP16 vector arithmetic is not supported, we use FP32 instead
|
||||
// and take advantage of the vcvt_ functions to convert to/from FP16
|
||||
|
||||
#define GGML_F16_STEP 16
|
||||
#define GGML_F16_EPR 4
|
||||
|
||||
#define GGML_F32Cx4 float32x4_t
|
||||
#define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
|
||||
#define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
|
||||
#define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const __fp16 *)(x)))
|
||||
#define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
|
||||
#define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
|
||||
#define GGML_F32Cx4_ADD vaddq_f32
|
||||
#define GGML_F32Cx4_MUL vmulq_f32
|
||||
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
|
||||
|
||||
#define GGML_F16_VEC GGML_F32Cx4
|
||||
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
|
||||
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
|
||||
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
|
||||
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((__fp16 *)(p), r[i])
|
||||
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
|
||||
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
|
||||
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
|
||||
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
|
||||
#endif
|
||||
|
||||
#elif defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
|
||||
|
||||
#define GGML_SIMD
|
||||
|
||||
@@ -828,10 +944,8 @@ static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = vec_add(x[i], x[offset + i]); \
|
||||
} \
|
||||
res = vec_extract(x[0], 0) + \
|
||||
vec_extract(x[0], 1) + \
|
||||
vec_extract(x[0], 2) + \
|
||||
vec_extract(x[0], 3); \
|
||||
float32x4_t tmp = x[0] + vec_reve(x[0]); \
|
||||
res = tmp[0] + tmp[1]; \
|
||||
}
|
||||
|
||||
#define GGML_F32_VEC GGML_F32x4
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#include "ggml-cpu-traits.h"
|
||||
#include "traits.h"
|
||||
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-backend.h"
|
||||
@@ -17,29 +17,98 @@ void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * G
|
||||
|
||||
#if defined(GGML_SIMD)
|
||||
float sumf = 0.0f;
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
const int sve_register_length = ggml_cpu_get_sve_cnt() * 8;
|
||||
const int ggml_f32_epr = sve_register_length / 32;//8;//svcntw(); // SVE128:4, SVE256:8, SVE512:16
|
||||
const int ggml_f32_step = 8 * ggml_f32_epr; // choose 8 SVE registers
|
||||
|
||||
GGML_F32_VEC ax[GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
const int np = (n & ~(ggml_f32_step - 1));
|
||||
svfloat32_t sum1 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum2 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum3 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum4 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum5 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum6 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum7 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum8 = svdup_n_f32(0.0f);
|
||||
svfloat32_t ax1,ax2,ax3,ax4,ax5,ax6,ax7,ax8;
|
||||
svfloat32_t ay1,ay2,ay3,ay4,ay5,ay6,ay7,ay8;
|
||||
for (int i = 0; i < np; i += ggml_f32_step) {
|
||||
ax1 = GGML_F32_VEC_LOAD(x + i);
|
||||
ay1 = GGML_F32_VEC_LOAD(y + i);
|
||||
sum1 = GGML_F32_VEC_FMA(ax1, ay1, sum1);
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
ax2 = GGML_F32_VEC_LOAD(x + i + 1*ggml_f32_epr);
|
||||
ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr);
|
||||
sum2 = GGML_F32_VEC_FMA(ax2, ay2, sum2);
|
||||
|
||||
sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
|
||||
ax3 = GGML_F32_VEC_LOAD(x + i + 2*ggml_f32_epr);
|
||||
ay3 = GGML_F32_VEC_LOAD(y + i + 2*ggml_f32_epr);
|
||||
sum3 = GGML_F32_VEC_FMA(ax3, ay3, sum3);
|
||||
|
||||
ax4 = GGML_F32_VEC_LOAD(x + i + 3*ggml_f32_epr);
|
||||
ay4 = GGML_F32_VEC_LOAD(y + i + 3*ggml_f32_epr);
|
||||
sum4 = GGML_F32_VEC_FMA(ax4, ay4, sum4);
|
||||
|
||||
ax5 = GGML_F32_VEC_LOAD(x + i + 4*ggml_f32_epr);
|
||||
ay5 = GGML_F32_VEC_LOAD(y + i + 4*ggml_f32_epr);
|
||||
sum5 = GGML_F32_VEC_FMA(ax5, ay5, sum5);
|
||||
|
||||
ax6 = GGML_F32_VEC_LOAD(x + i + 5*ggml_f32_epr);
|
||||
ay6 = GGML_F32_VEC_LOAD(y + i + 5*ggml_f32_epr);
|
||||
sum6 = GGML_F32_VEC_FMA(ax6, ay6, sum6);
|
||||
|
||||
ax7 = GGML_F32_VEC_LOAD(x + i + 6*ggml_f32_epr);
|
||||
ay7 = GGML_F32_VEC_LOAD(y + i + 6*ggml_f32_epr);
|
||||
sum7 = GGML_F32_VEC_FMA(ax7, ay7, sum7);
|
||||
|
||||
ax8 = GGML_F32_VEC_LOAD(x + i + 7*ggml_f32_epr);
|
||||
ay8 = GGML_F32_VEC_LOAD(y + i + 7*ggml_f32_epr);
|
||||
sum8 = GGML_F32_VEC_FMA(ax8, ay8, sum8);
|
||||
}
|
||||
}
|
||||
// leftovers
|
||||
// Since 8 unrolls are done in above loop, leftovers lie in range [0, ggml_f32_step] which is handled in below loop
|
||||
const int np2 = (n & ~(ggml_f32_epr - 1));
|
||||
for (int i = np; i < np2; i += ggml_f32_epr) {
|
||||
ax1 = GGML_F32_VEC_LOAD(x + i);
|
||||
ay1 = GGML_F32_VEC_LOAD(y + i);
|
||||
sum1 = GGML_F32_VEC_FMA(ax1, ay1, sum1);
|
||||
}
|
||||
// maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only
|
||||
if (np2 < n) {
|
||||
svbool_t pg = svwhilelt_b32(np2, n);
|
||||
ax1 = svld1_f32(pg, x + np2);
|
||||
ay1 = svld1_f32(pg, y + np2);
|
||||
sum1 = svmad_f32_m(pg, ax1, ay1, sum1);
|
||||
}
|
||||
// reduce sum1,sum2 to sum1
|
||||
GGML_F32_VEC_REDUCE(sumf, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8);
|
||||
#else
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
// reduce sum0..sum3 to sum0
|
||||
GGML_F32_VEC_REDUCE(sumf, sum);
|
||||
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
sumf += x[i]*y[i];
|
||||
}
|
||||
GGML_F32_VEC ax[GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
|
||||
sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
|
||||
}
|
||||
}
|
||||
|
||||
// reduce sum0..sum3 to sum0
|
||||
GGML_F32_VEC_REDUCE(sumf, sum);
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
sumf += x[i]*y[i];
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
// scalar
|
||||
ggml_float sumf = 0.0;
|
||||
|
||||
@@ -5,6 +5,7 @@
|
||||
#include "ggml-impl.h"
|
||||
#include "simd-mappings.h"
|
||||
#include "ggml.h"
|
||||
#include "ggml-cpu.h"
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE)
|
||||
#include <Accelerate/Accelerate.h>
|
||||
@@ -148,27 +149,108 @@ inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * GG
|
||||
|
||||
inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const float * GGML_RESTRICT x, const float v) {
|
||||
#if defined(GGML_SIMD)
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
|
||||
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
|
||||
const int sve_register_length = ggml_cpu_get_sve_cnt() * 8;
|
||||
const int ggml_f32_epr = sve_register_length / 32;//8;//svcntw(); // SVE128:4, SVE256:8, SVE512:16
|
||||
const int ggml_f32_step = 8 * ggml_f32_epr; // choose 8 SVE registers
|
||||
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
|
||||
|
||||
GGML_F32_VEC ax[GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
const int np = (n & ~(ggml_f32_step - 1));
|
||||
svfloat32_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8;
|
||||
svfloat32_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8;
|
||||
for (int i = 0; i < np; i += ggml_f32_step) {
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
|
||||
ax1 = GGML_F32_VEC_LOAD(x + i);
|
||||
ay1 = GGML_F32_VEC_LOAD(y + i);
|
||||
ay1 = GGML_F32_VEC_FMA(ax1, vx, ay1);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
|
||||
GGML_F32_VEC_STORE(y + i, ay1);
|
||||
|
||||
ax2 = GGML_F32_VEC_LOAD(x + i + 1*ggml_f32_epr);
|
||||
ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr);
|
||||
ay2 = GGML_F32_VEC_FMA(ax2, vx, ay2);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 1*ggml_f32_epr, ay2);
|
||||
|
||||
ax3 = GGML_F32_VEC_LOAD(x + i + 2*ggml_f32_epr);
|
||||
ay3 = GGML_F32_VEC_LOAD(y + i + 2*ggml_f32_epr);
|
||||
ay3 = GGML_F32_VEC_FMA(ax3, vx, ay3);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 2*ggml_f32_epr, ay3);
|
||||
|
||||
ax4 = GGML_F32_VEC_LOAD(x + i + 3*ggml_f32_epr);
|
||||
ay4 = GGML_F32_VEC_LOAD(y + i + 3*ggml_f32_epr);
|
||||
ay4 = GGML_F32_VEC_FMA(ax4, vx, ay4);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 3*ggml_f32_epr, ay4);
|
||||
|
||||
ax5 = GGML_F32_VEC_LOAD(x + i + 4*ggml_f32_epr);
|
||||
ay5 = GGML_F32_VEC_LOAD(y + i + 4*ggml_f32_epr);
|
||||
ay5 = GGML_F32_VEC_FMA(ax5, vx, ay5);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 4*ggml_f32_epr, ay5);
|
||||
|
||||
ax6 = GGML_F32_VEC_LOAD(x + i + 5*ggml_f32_epr);
|
||||
ay6 = GGML_F32_VEC_LOAD(y + i + 5*ggml_f32_epr);
|
||||
ay6 = GGML_F32_VEC_FMA(ax6, vx, ay6);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 5*ggml_f32_epr, ay6);
|
||||
|
||||
ax7 = GGML_F32_VEC_LOAD(x + i + 6*ggml_f32_epr);
|
||||
ay7 = GGML_F32_VEC_LOAD(y + i + 6*ggml_f32_epr);
|
||||
ay7 = GGML_F32_VEC_FMA(ax7, vx, ay7);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 6*ggml_f32_epr, ay7);
|
||||
|
||||
ax8 = GGML_F32_VEC_LOAD(x + i + 7*ggml_f32_epr);
|
||||
ay8 = GGML_F32_VEC_LOAD(y + i + 7*ggml_f32_epr);
|
||||
ay8 = GGML_F32_VEC_FMA(ax8, vx, ay8);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + 7*ggml_f32_epr, ay8);
|
||||
}
|
||||
}
|
||||
// leftovers
|
||||
// Since 8 unrolls are done in above loop, leftovers lie in range [0, ggml_f32_step] which is handled in below loop
|
||||
const int np2 = (n & ~(ggml_f32_epr - 1));
|
||||
for (int i = np; i < np2; i += ggml_f32_epr) {
|
||||
ax1 = GGML_F32_VEC_LOAD(x + i);
|
||||
ay1 = GGML_F32_VEC_LOAD(y + i);
|
||||
ay1 = GGML_F32_VEC_FMA(ax1, vx, ay1);
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] += x[i]*v;
|
||||
}
|
||||
GGML_F32_VEC_STORE(y + i, ay1);
|
||||
}
|
||||
// maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only
|
||||
if (np2 < n) {
|
||||
svbool_t pg =svwhilelt_b32(np2, n);
|
||||
ax1 = svld1_f32(pg, x + np2);
|
||||
ay1 = svld1_f32(pg, y + np2);
|
||||
ay1 = svmad_f32_m(pg, ax1, vx, ay1);
|
||||
|
||||
svst1_f32(pg, y + np2, ay1);
|
||||
}
|
||||
#else
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
|
||||
|
||||
GGML_F32_VEC ax[GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
|
||||
}
|
||||
}
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] += x[i]*v;
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
// scalar
|
||||
for (int i = 0; i < n; ++i) {
|
||||
@@ -220,36 +302,45 @@ inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int
|
||||
}
|
||||
|
||||
#if defined(GGML_SIMD)
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
|
||||
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
vx[k] = GGML_F32_VEC_SET1(v[k][0]);
|
||||
}
|
||||
|
||||
GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
// scalar Route to scalar implementation //TODO: Write SVE code
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] += x[k][i]*v[k][0];
|
||||
}
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
|
||||
}
|
||||
}
|
||||
#else
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
// leftovers
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] += x[k][i]*v[k][0];
|
||||
GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
|
||||
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
vx[k] = GGML_F32_VEC_SET1(v[k][0]);
|
||||
}
|
||||
}
|
||||
|
||||
GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
|
||||
}
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
|
||||
}
|
||||
}
|
||||
|
||||
// leftovers
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] += x[k][i]*v[k][0];
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
// scalar
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
@@ -265,25 +356,53 @@ inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
|
||||
#if defined(GGML_USE_ACCELERATE)
|
||||
vDSP_vsmul(y, 1, &v, y, 1, n);
|
||||
#elif defined(GGML_SIMD)
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
const int sve_register_length = ggml_cpu_get_sve_cnt() * 8;
|
||||
const int ggml_f32_epr = sve_register_length / 32;//8;//svcntw(); // SVE128:4, SVE256:8, SVE512:16
|
||||
const int ggml_f32_step = 2 * ggml_f32_epr;
|
||||
|
||||
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
|
||||
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
|
||||
const int np = (n & ~(ggml_f32_step - 1));
|
||||
svfloat32_t ay1;
|
||||
svfloat32_t ay2;
|
||||
for (int i = 0; i < np; i += ggml_f32_step) {
|
||||
ay1 = GGML_F32_VEC_LOAD(y + i);
|
||||
ay1 = GGML_F32_VEC_MUL(ay1, vx);
|
||||
GGML_F32_VEC_STORE(y + i, ay1);
|
||||
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
|
||||
ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr);
|
||||
ay2 = GGML_F32_VEC_MUL(ay2, vx);
|
||||
GGML_F32_VEC_STORE(y + i + 1*ggml_f32_epr, ay2);
|
||||
}
|
||||
}
|
||||
// leftovers
|
||||
// maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only
|
||||
if (np < n) {
|
||||
svbool_t pg = svwhilelt_b32(np, n);
|
||||
ay1 = svld1_f32(pg, y + np);
|
||||
ay1 = svmul_f32_m(pg, ay1, vx);
|
||||
svst1_f32(pg, y + np, ay1);
|
||||
}
|
||||
#else
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] *= v;
|
||||
}
|
||||
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
|
||||
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
|
||||
}
|
||||
}
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] *= v;
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
// scalar
|
||||
for (int i = 0; i < n; ++i) {
|
||||
@@ -528,6 +647,42 @@ inline static ggml_fp16_t ggml_silu_f16(ggml_fp16_t x) {
|
||||
#error "ref: https://github.com/ggml-org/llama.cpp/pull/7154#issuecomment-2143844461"
|
||||
#endif
|
||||
|
||||
/* Below function was borrowed from the GitHub repository:
|
||||
https://github.com/openvinotoolkit/openvino/blob/master/src/plugins/intel_cpu/src/nodes/kernels/scaled_attn/common.hpp */
|
||||
#if defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
|
||||
inline static svfloat32_t exp_ps_sve(svbool_t pg, svfloat32_t src) {
|
||||
// Constants
|
||||
const svfloat32_t log2_e = svdup_n_f32(1.4426950409f);
|
||||
const svfloat32_t ln2 = svdup_n_f32(0.6931473921f);
|
||||
const svfloat32_t half_ln2_sq = svdup_n_f32(0.2413862043f);
|
||||
const svuint32_t not_mask17 = svdup_n_u32(~((1u << 17) - 1));
|
||||
const svfloat32_t one = svdup_n_f32(1.0f);
|
||||
const svfloat32_t inactive1 = svdup_n_f32(0.0f);
|
||||
const svint32_t inactive2 = svdup_n_s32(0);
|
||||
|
||||
// Algorithm starts here
|
||||
svfloat32_t t0 = svmul_f32_m(pg, src, log2_e); // y = x * log2(e)
|
||||
svfloat32_t t1 = svrintm_f32_m(inactive1, pg, t0); // rount to int (float)
|
||||
svint32_t t2 = svcvt_s32_f32_m(inactive2, pg, t1); // n
|
||||
|
||||
t1 = svsub_f32_m(pg, t0, t1); // a = y - floor(y)
|
||||
t1 = svadd_f32_m(pg, t1, one); // b = a + 1
|
||||
|
||||
svuint32_t t3 = svlsr_n_u32_m(pg, svreinterpret_u32_f32(t1), 17); // v = b >> 17 (u32)
|
||||
svfloat32_t t4 = svexpa_f32(t3); // c = fexpa(v)
|
||||
t4 = svscale_f32_m(pg, t4, t2); // fexpa(v) * 2^(n)
|
||||
|
||||
// and_(t2.d, t1.d, not_mask17.d)
|
||||
svfloat32_t t5 = svreinterpret_f32_u32(svand_u32_m(pg, svreinterpret_u32_f32(t1), not_mask17));
|
||||
t5 = svsub_f32_m(pg, t1, t5); // z
|
||||
t0 = svmla_f32_m(pg, ln2, t5, half_ln2_sq); // ln2 + half_ln2_sq * z
|
||||
t0 = svmla_f32_m(pg, one, t5, t0); // 1 + (ln2 * z) + (half_ln2_sq * z * z)
|
||||
t0 = svmul_f32_m(pg, t0, t4); // Final result
|
||||
|
||||
return t0;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_NEON) && defined(__aarch64__)
|
||||
|
||||
// adapted from arm limited optimized routine
|
||||
|
||||
@@ -207,9 +207,9 @@ typedef float2 dfloat2;
|
||||
#define FP16_MMA_AVAILABLE
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
|
||||
|
||||
#if defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || defined(RDNA4))
|
||||
#if defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || (defined(GGML_HIP_ROCWMMA_FATTN_GFX12) && defined(RDNA4)))
|
||||
#define FP16_MMA_AVAILABLE
|
||||
#endif // defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || defined(RDNA4))
|
||||
#endif // defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || (defined(GGML_HIP_ROCWMMA_FATTN_GFX12) && defined(RDNA4)))
|
||||
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
|
||||
#define NEW_MMA_AVAILABLE
|
||||
@@ -262,11 +262,11 @@ static bool cp_async_available(const int cc) {
|
||||
}
|
||||
|
||||
static constexpr __device__ int ggml_cuda_get_physical_warp_size() {
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
return __AMDGCN_WAVEFRONT_SIZE;
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(__GFX9__) || defined(__GFX8__))
|
||||
return 64;
|
||||
#else
|
||||
return 32;
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(__GFX9__) || defined(__GFX8__))
|
||||
}
|
||||
|
||||
[[noreturn]]
|
||||
@@ -466,9 +466,6 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
}
|
||||
|
||||
// TODO: move to ggml-common.h
|
||||
static constexpr __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
|
||||
|
||||
typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, dfloat2 & v);
|
||||
|
||||
static __device__ __forceinline__ float get_alibi_slope(
|
||||
@@ -635,6 +632,7 @@ struct ggml_cuda_device_info {
|
||||
int nsm; // number of streaming multiprocessors
|
||||
size_t smpb; // max. shared memory per block
|
||||
size_t smpbo; // max. shared memory per block (with opt-in)
|
||||
bool integrated; // Device is integrated as opposed to discrete
|
||||
bool vmm; // virtual memory support
|
||||
size_t vmm_granularity; // granularity of virtual memory
|
||||
size_t total_vram;
|
||||
|
||||
161
ggml/src/ggml-cuda/conv2d-dw.cu
Normal file
161
ggml/src/ggml-cuda/conv2d-dw.cu
Normal file
@@ -0,0 +1,161 @@
|
||||
#include "conv2d-dw.cuh"
|
||||
|
||||
struct conv_params {
|
||||
int in_w, in_h;
|
||||
int out_w, out_h;
|
||||
int kernel_w, kernel_h;
|
||||
int stride_x, stride_y;
|
||||
int padding_x, padding_y;
|
||||
int dilation_x, dilation_y;
|
||||
int channels, batches;
|
||||
};
|
||||
|
||||
struct kernel_bounds {
|
||||
int y_min, y_max;
|
||||
int x_min, x_max;
|
||||
};
|
||||
|
||||
__device__ __forceinline__ kernel_bounds calculate_kernel_bounds(int out_x, int out_y, const conv_params & params) {
|
||||
kernel_bounds bounds;
|
||||
bounds.y_min = max(0, (params.padding_y - out_y * params.stride_y + params.dilation_y - 1) / params.dilation_y);
|
||||
bounds.y_max =
|
||||
min(params.kernel_h,
|
||||
(params.in_h + params.padding_y - out_y * params.stride_y + params.dilation_y - 1) / params.dilation_y);
|
||||
bounds.x_min = max(0, (params.padding_x - out_x * params.stride_x + params.dilation_x - 1) / params.dilation_x);
|
||||
bounds.x_max =
|
||||
min(params.kernel_w,
|
||||
(params.in_w + params.padding_x - out_x * params.stride_x + params.dilation_x - 1) / params.dilation_x);
|
||||
return bounds;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ int calculate_input_coord(int out_coord, int kern_coord, int stride, int dilation, int padding) {
|
||||
return out_coord * stride + kern_coord * dilation - padding;
|
||||
}
|
||||
|
||||
struct whcn_layout {
|
||||
__device__ static int input_index(int n, int c, int y, int x, const conv_params & params) {
|
||||
return n * (params.channels * params.in_w * params.in_h) + c * params.in_w * params.in_h + y * params.in_w + x;
|
||||
}
|
||||
|
||||
__device__ static int kernel_index(int c, int ky, int kx, const conv_params & params) {
|
||||
return c * params.kernel_h * params.kernel_w + ky * params.kernel_w + kx;
|
||||
}
|
||||
|
||||
__device__ static int output_index(int n, int c, int y, int x, const conv_params & params) {
|
||||
return n * (params.channels * params.out_w * params.out_h) + c * params.out_w * params.out_h +
|
||||
y * params.out_w + x;
|
||||
}
|
||||
|
||||
__device__ static void unpack_indices(int global_idx, const conv_params & params, int & n, int & c, int & out_y,
|
||||
int & out_x) {
|
||||
out_x = global_idx % params.out_w;
|
||||
out_y = (global_idx / params.out_w) % params.out_h;
|
||||
c = (global_idx / (params.out_w * params.out_h)) % params.channels;
|
||||
n = global_idx / (params.out_w * params.out_h * params.channels);
|
||||
}
|
||||
};
|
||||
|
||||
struct cwhn_layout {
|
||||
__device__ static int input_index(int n, int c, int y, int x, const conv_params & params) {
|
||||
return n * (params.channels * params.in_w * params.in_h) + (y * params.in_w + x) * params.channels + c;
|
||||
}
|
||||
|
||||
__device__ static int kernel_index(int c, int ky, int kx, const conv_params & params) {
|
||||
return (ky * params.kernel_w + kx) * params.channels + c;
|
||||
}
|
||||
|
||||
__device__ static int output_index(int n, int c, int y, int x, const conv_params & params) {
|
||||
return n * (params.channels * params.out_w * params.out_h) + y * (params.out_w * params.channels) +
|
||||
x * params.channels + c;
|
||||
}
|
||||
|
||||
__device__ static void unpack_indices(int global_idx, const conv_params & params, int & n, int & c, int & out_y,
|
||||
int & out_x) {
|
||||
c = global_idx % params.channels;
|
||||
out_x = (global_idx / params.channels) % params.out_w;
|
||||
out_y = (global_idx / (params.channels * params.out_w)) % params.out_h;
|
||||
n = global_idx / (params.channels * params.out_w * params.out_h);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename Layout>
|
||||
__global__ void conv2d_dw_kernel(const T * __restrict__ input, const T * __restrict__ kernel, T * __restrict__ output,
|
||||
const int in_w, const int in_h, const int out_w, const int out_h,
|
||||
const int kernel_w, const int kernel_h, const int stride_x, const int stride_y,
|
||||
const int padding_x, const int padding_y, const int dilation_x, const int dilation_y,
|
||||
const int channels, const int batches) {
|
||||
const int global_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int total_elements = batches * channels * out_h * out_w;
|
||||
|
||||
if (global_idx >= total_elements) {
|
||||
return;
|
||||
}
|
||||
|
||||
conv_params params = { in_w, in_h, out_w, out_h, kernel_w, kernel_h, stride_x,
|
||||
stride_y, padding_x, padding_y, dilation_x, dilation_y, channels, batches };
|
||||
|
||||
int batch_idx, channel_idx, out_y_idx, out_x_idx;
|
||||
Layout::unpack_indices(global_idx, params, batch_idx, channel_idx, out_y_idx, out_x_idx);
|
||||
|
||||
T accumulator = 0;
|
||||
kernel_bounds bounds = calculate_kernel_bounds(out_x_idx, out_y_idx, params);
|
||||
|
||||
for (int kern_y = bounds.y_min; kern_y < bounds.y_max; ++kern_y) {
|
||||
int in_y_idx = calculate_input_coord(out_y_idx, kern_y, params.stride_y, params.dilation_y, params.padding_y);
|
||||
|
||||
for (int kern_x = bounds.x_min; kern_x < bounds.x_max; ++kern_x) {
|
||||
int in_x_idx = calculate_input_coord(out_x_idx, kern_x, params.stride_x, params.dilation_x, params.padding_x);
|
||||
|
||||
const T input_val = input[Layout::input_index(batch_idx, channel_idx, in_y_idx, in_x_idx, params)];
|
||||
const T kernel_val = kernel[Layout::kernel_index(channel_idx, kern_y, kern_x, params)];
|
||||
|
||||
accumulator += input_val * kernel_val;
|
||||
}
|
||||
}
|
||||
|
||||
output[Layout::output_index(batch_idx, channel_idx, out_y_idx, out_x_idx, params)] = accumulator;
|
||||
}
|
||||
|
||||
void ggml_cuda_op_conv2d_dw(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * kernel = dst->src[0];
|
||||
const ggml_tensor * input = dst->src[1];
|
||||
|
||||
GGML_ASSERT(kernel->type == GGML_TYPE_F32 && input->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
||||
const float * w_d = (const float *) kernel->data;
|
||||
const float * x_d = (const float *) input->data;
|
||||
float * y_d = (float *) dst->data;
|
||||
|
||||
const int32_t * p = (const int32_t *) dst->op_params;
|
||||
const int stride_x = p[0];
|
||||
const int stride_y = p[1];
|
||||
const int padding_x = p[2];
|
||||
const int padding_y = p[3];
|
||||
const int dilation_x = p[4];
|
||||
const int dilation_y = p[5];
|
||||
|
||||
const int in_w = input->ne[0];
|
||||
const int in_h = input->ne[1];
|
||||
const int kernel_w = kernel->ne[0];
|
||||
const int kernel_h = kernel->ne[1];
|
||||
const int out_w = dst->ne[0];
|
||||
const int out_h = dst->ne[1];
|
||||
const int channels = dst->ne[2];
|
||||
const int batches = dst->ne[3];
|
||||
|
||||
cudaStream_t st = ctx.stream();
|
||||
|
||||
const int total = batches * channels * out_h * out_w;
|
||||
const int blocks = (total + CUDA_CONV2D_DW_BLOCK_SIZE - 1) / CUDA_CONV2D_DW_BLOCK_SIZE;
|
||||
|
||||
if (ggml_is_contiguous(input)) {
|
||||
conv2d_dw_kernel<float, whcn_layout><<<blocks, CUDA_CONV2D_DW_BLOCK_SIZE, 0, st>>>(
|
||||
x_d, w_d, y_d, in_w, in_h, out_w, out_h, kernel_w, kernel_h, stride_x, stride_y, padding_x, padding_y,
|
||||
dilation_x, dilation_y, channels, batches);
|
||||
} else if (ggml_is_contiguous_channels(input)) {
|
||||
conv2d_dw_kernel<float, cwhn_layout><<<blocks, CUDA_CONV2D_DW_BLOCK_SIZE, 0, st>>>(
|
||||
x_d, w_d, y_d, in_w, in_h, out_w, out_h, kernel_w, kernel_h, stride_x, stride_y, padding_x, padding_y,
|
||||
dilation_x, dilation_y, channels, batches);
|
||||
} else {
|
||||
GGML_ABORT("Unsupported memory layout for conv_2d_dw");
|
||||
}
|
||||
}
|
||||
5
ggml/src/ggml-cuda/conv2d-dw.cuh
Normal file
5
ggml/src/ggml-cuda/conv2d-dw.cuh
Normal file
@@ -0,0 +1,5 @@
|
||||
#pragma once
|
||||
#include "common.cuh"
|
||||
|
||||
#define CUDA_CONV2D_DW_BLOCK_SIZE 256
|
||||
void ggml_cuda_op_conv2d_dw(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user