Compare commits

..

149 Commits
b5546 ... b5695

Author SHA1 Message Date
Xuan-Son Nguyen
95402553a5 llama-chat : fix multiple system message for gemma, orion (#14246) 2025-06-18 09:58:43 +02:00
Sigbjørn Skjæret
3865cff4f5 convert : fix null head_dim AutoConfig regression (#14248) 2025-06-18 09:52:07 +02:00
Georgi Gerganov
d03172cc79 sync : ggml
ggml-ci
2025-06-18 09:59:21 +03:00
Daniel Bevenius
dd8e59f443 ggml : disable warnings for tests when using MSVC (ggml/1273)
* ggml : disable warnings for tests when using MSVC

This commit disables warnings for tests on windows when using MSVC.

The motivation for this is that this brings the build output more
inline with what Linux/MacOS systems produce.

There is still one warning generated for the tests which is:
```console
  Building Custom Rule C:/ggml/tests/CMakeLists.txt
cl : command line  warning D9025: overriding '/DNDEBUG' with '/UNDEBUG'
[C:\ggml\build\tests\test-arange.vcxproj]
  test-arange.cpp
  test-arange.vcxproj -> C:\ggml\build\bin\Release\test-arange.exe
```

* ggml : fix typo in tests disable list
2025-06-18 09:59:21 +03:00
Daniel Bevenius
bbe98d2784 ggml : remove unused ggml_context_container (ggml/1272)
This commit removes the unused `ggml_context_container` structure from
the ggml library. It looks like the usage of this struct was removed in
Commit 4757fe18d56ec11bf9c07feaca6e9d5b5357e7f4 ("ggml : alloc
ggml_contexts on the heap (whisper/2525)").

The motivation for this changes is to improve code clarity/readability.
2025-06-18 09:59:21 +03:00
Daniel Bevenius
c2056ed6d4 examples : include examples in msvc disable warn (ggml/1270)
This commit adds the examples in the "list" of targets to ignore MSVC
warnings.

The motivation for this is that currently the examples generate a number
of warnings that are ignore/disabled for the core ggml project. This
makes for a cleaner output when building.
2025-06-18 09:59:21 +03:00
bandoti
c46503014d cmake: remove shader-gen step-targets from ggml-vulkan (#14226)
* Remove step-targets from vulkan-shaders-gen

* Unset DESTDIR when building vulkan-shaders-gen
2025-06-17 22:33:25 +02:00
xctan
860a9e4eef ggml-cpu : remove the weak alias trick (#14221) 2025-06-17 12:58:32 +03:00
R0CKSTAR
fe9d60e74a musa: fix build warning (unused variable) (#14231)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-06-17 17:48:08 +08:00
Sigbjørn Skjæret
e434e69183 common : suggest --jinja when autodetection fails (#14222) 2025-06-16 21:58:42 +02:00
Georgi Gerganov
89fea80d29 server : fix incorrect usage of llama_get_embeddings() (#14225)
* server : fix incorrect usage of llama_get_embeddings()

ggml-ci

* cont : fix the fix

ggml-ci
2025-06-16 22:33:27 +03:00
Diego Devesa
6adc3c3ebc llama : add thread safety test (#14035)
* llama : add thread safety test

* llamafile : remove global state

* llama : better LLAMA_SPLIT_MODE_NONE logic

when main_gpu < 0 GPU devices are not used

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-16 08:11:43 -07:00
bandoti
0dbcabde8c cmake: clean up external project logic for vulkan-shaders-gen (#14179)
* Remove install step for vulkan-shaders-gen

* Add install step to normalize msvc with make

* Regenerate modified shaders at build-time
2025-06-16 10:32:13 -03:00
Đinh Trọng Huy
ad590be98c model : add NeoBERT (#14164)
* convert neobert model to gguf

* add inference graph

* fix flake8 lint

* followed reviewer suggestions

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* follow reviewers suggestions

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* override NeoBERT feed-forward length

---------

Co-authored-by: dinhhuy <huy.dinh@brains-tech.co.jp>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-16 14:53:41 +02:00
uvos
7d6d91babf HIP: disable rocwmma on gfx12 by default until rocm 7.0 (#14202) 2025-06-16 13:47:38 +02:00
Georgi Gerganov
d3e64b9f49 llama : rework embeddings logic (#14208)
* llama : rework embeddings logic

ggml-ci

* cont : fix rerank

ggml-ci

* cont : engrish [no ci]

* cont : fix rerank

ggml-ci

* server : support both embeddings and completions with single model

ggml-ci

* cont : avoid embeddings_org

ggml-ci
2025-06-16 14:14:00 +03:00
Charles Xu
3ba0d843c6 ggml: Add Android support for GGML_CPU_ALL_VARIANTS (#14206) 2025-06-16 11:47:57 +02:00
Bartowski
0bf49eb668 convert : remove arcee change in convert_hf_to_gguf_update.py (#14207) 2025-06-16 10:16:06 +02:00
Đinh Trọng Huy
4ad243677b gguf-py : allow key override when adding value to GGUFWriter (#14194)
Co-authored-by: dinhhuy <huy.dinh@brains-tech.co.jp>
2025-06-16 09:20:59 +02:00
Jeff Bolz
c89c2d1ab9 vulkan: mutex around vkQueueSubmit (#14127)
This fixes the remaining crash in test-thread-safety on my system.
2025-06-16 08:21:08 +02:00
xctan
3555b3004b ggml-cpu : rework weak alias on apple targets (#14146)
* ggml-cpu : rework weak alias on apple targets

* fix powerpc detection

* fix ppc detection

* fix powerpc detection on darwin
2025-06-16 13:54:15 +08:00
Bartowski
d7da8dc83a model : Add support for Arcee AI's upcoming AFM model (#14185)
* Add Arcee AFM support

* Add draft update code

* Fix linter and update URL, may still not be final

* Update src/llama-model.cpp

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

* Remote accidental blank line

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-06-16 01:04:06 +02:00
Eric Curtin
cd355eda7d server : When listening on a unix domain socket don't print http:// and port (#14180)
Instead show something like this:

main: server is listening on file.sock - starting the main loop

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-06-15 23:36:22 +02:00
Ed Addario
30e5b01de2 quantize : change int to unsigned int for KV overrides (#14197) 2025-06-15 18:53:45 +02:00
uvos
e54b394082 CUDA/HIP: fix ssm_scan on devices where warp size is not 32 (#14196) 2025-06-15 17:30:13 +02:00
uvos
2c2caa4443 HIP: Replace usage of depricated preprocessor macro __AMDGCN_WAVEFRONT_SIZE__ (#14183) 2025-06-15 15:45:27 +02:00
Georgi Gerganov
5fce5f948d kv-cache : fix use-after-move of defrag info (#14189)
ggml-ci
2025-06-15 10:52:11 +03:00
Mikko Juola
9ae4143bc6 model : add dots.llm1 architecture support (#14044) (#14118)
Adds:

* Dots1Model to convert_hf_to_gguf.py

* Computation graph code to llama-model.cpp

* Chat template to llama-chat.cpp to detect this model's template.

---

The model is called "dots.llm1" (I decided to shorten it to dots1 or
DOTS1 in the code generally) architecture.

The only models that exist as of writing of this commit that follow this
architecture are "dots.llm1.inst" and "dots.llm1.base" from here:

* https://huggingface.co/rednote-hilab/dots.llm1.inst

* https://huggingface.co/rednote-hilab/dots.llm1.base

The model architecture is a combination of Qwen and Deepseek parts, as
seen here:

ffe12627b4/src/transformers/models/dots1/modular_dots1.py
2025-06-15 09:52:06 +02:00
Georgi Gerganov
c311ac664d cparams : rename LLAMA_MAX_PARALLEL_SEQUENCES to LLAMA_MAX_SEQ (#14188)
ggml-ci
2025-06-15 10:08:58 +03:00
Georgi Gerganov
b9912ac570 batch : auto-gen positions + verify multi-sequence input (#14177)
* batch : verify multi-sequence input batches

ggml-ci

* cont : auto-gen positions + verify multi-seq input

ggml-ci

* cont : first print debug info, then perform validation

ggml-ci

* cont : fix position auto-gen + add comments

ggml-ci
2025-06-15 09:18:37 +03:00
Pepijn de Vos
00ba772610 docs : remove WIP since PR has been merged (#13912) 2025-06-15 08:06:37 +02:00
Piotr
3cb203c89f llama-chat : Do not throw when tool parsing fails (#14012)
Currently when a model generates output which looks like a tool call,
but is invalid an exception is thrown and not handled, causing the cli
or llama-server to bail. Instead, handle the chat parser exception and
simply return the generated text in such cases.

Signed-off-by: Piotr Stankiewicz <piotr.stankiewicz@docker.com>
2025-06-14 17:25:15 +01:00
Aman Gupta
2e42be42bd compare-llama-bench: add option to plot (#14169)
* compare llama-bench: add option to plot

* Address review comments: convert case + add type hints

* Add matplotlib to requirements

* fix tests

* Improve comment and fix assert condition for test

* Add back default test_name, add --plot_log_scale

* use log_scale regardless of x_values
2025-06-14 10:34:20 +02:00
Georgi Gerganov
fb85a288d7 vocab : fix build (#14175)
ggml-ci
2025-06-13 20:03:05 +03:00
Svetlozar Georgiev
40643edb86 sycl: fix docker image (#14144) 2025-06-13 18:32:56 +02:00
Guy Goldenberg
3cfbbdb44e Merge commit from fork
* vocab : prevent integer overflow during load

* Add static cast and GGML_ABORT

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-13 19:20:25 +03:00
Georgi Gerganov
80709b70a2 batch : add LLAMA_BATCH_DEBUG environment variable (#14172)
* batch : add LLAMA_BATCH_DEBUG environment variable

ggml-ci

* cont : improve seq_id display
2025-06-13 18:35:00 +03:00
ddpasa
26ff3685bf docs : Update multimodal.md (#14122)
* Update multimodal.md

* Update multimodal.md
2025-06-13 15:17:53 +02:00
Georgi Gerganov
60c666347b batch : rework llama_batch_allocr (#14153)
* batch : rework llama_batch_allocr

ggml-ci

* cont : move validation inside class

ggml-ci

* cont : move output counting to class

ggml-ci

* cont : minor

ggml-ci

* batch : add TODOs

ggml-ci
2025-06-13 13:47:55 +03:00
Georgi Gerganov
b7cc7745e3 readme : remove survey link (#14168) 2025-06-13 11:55:44 +03:00
Christian Kastner
cc8d081879 cmake: Add ability to pass in LLAMA_BUILD_NUMBER/COMMIT (#14167)
* cmake: Add ability to pass in LLAMA_BUILD_NUMBER/COMMIT

* cmake: Pass on LLAMA_BUILD_* to GGML_BUILD_*
2025-06-13 10:38:52 +02:00
Đinh Trọng Huy
d714dadb57 pooling : make cls_b and cls_out_b optional (#14165)
Co-authored-by: dinhhuy <huy.dinh@brains-tech.co.jp>
2025-06-13 11:34:08 +03:00
Georgi Gerganov
ffad043973 server : fix SWA condition for full context reprocess (#14163)
ggml-ci
2025-06-13 11:18:25 +03:00
Anton Mitkov
0889eba570 sycl: Adding additional cpy dbg print output (#14034) 2025-06-13 08:51:39 +01:00
Ewan Crawford
c61285e739 SYCL: Bump oneMath commit (#14152)
Update oneMath commit to merged PR https://github.com/uxlfoundation/oneMath/pull/669
which adds SYCL-Graph support for recording CUDA BLAS commands.

With this change the `MUL_MAT` tests now pass on DPC++ CUDA backends with SYCL-Graph
enabled. Prior to this change, an error would be thrown.

```
$ GGML_SYCL_DISABLE_GRAPH=0 ./bin/test-backend-ops -b SYCL0 -o MUL_MAT -p type_a=f16,type_b=f32,m=16,n=1,k=256,bs=\\[1,1\\],nr=\\[2

UR CUDA ERROR:
        Value:           700
        Name:            CUDA_ERROR_ILLEGAL_ADDRESS
        Description:     an illegal memory access was encountered
        Function:        operator()
        Source Location: $HOME/dpcpp/unified-runtime/source/adapters/cuda/queue.cpp:154

Native API failed. Native API returns: 2147483646 (UR_RESULT_ERROR_UNKNOWN)
Exception caught at file:$HOME/llama.cpp/ggml/src/ggml-sycl/ggml-sycl.cpp, line:3598, func:operator()
SYCL error: CHECK_TRY_ERROR((stream)->wait()): Meet error in this line code!
  in function ggml_backend_sycl_synchronize at $HOME/llama.cpp/ggml/src/ggml-sycl/ggml-sycl.cpp:3598
$HOME/llama.cpp/ggml/src/ggml-sycl/../ggml-sycl/common.hpp:118: SYCL error
Could not attach to process.  If your uid matches the uid of the target
process, check the setting of /proc/sys/kernel/yama/ptrace_scope, or try
again as the root user.  For more details, see /etc/sysctl.d/10-ptrace.conf
ptrace: Operation not permitted.
No stack.
The program is not being run.
```
2025-06-13 08:45:37 +01:00
Christian Kastner
09cf2c7c65 cmake : Improve build-info.cpp generation (#14156)
* cmake: Simplify build-info.cpp generation

The rebuild of build-info.cpp still gets triggered when .git/index gets
changes.

* cmake: generate build-info.cpp in build dir
2025-06-13 09:51:34 +03:00
Georgi Gerganov
c33fe8b8c4 vocab : prevent heap overflow when vocab is too small (#14145)
ggml-ci
2025-06-13 08:03:54 +03:00
Anton Mitkov
ed52f3668e sycl: Remove not needed copy f16->f32 for dnnl mul mat (#14125) 2025-06-12 15:15:11 +02:00
Georgi Gerganov
a681b4ba83 readme : remove project status link (#14149) 2025-06-12 14:43:09 +03:00
Georgi Gerganov
7d516443dd server : re-enable SWA speculative decoding (#14131)
ggml-ci
2025-06-12 11:51:38 +03:00
Georgi Gerganov
f6e1a7aa87 context : simplify output counting logic during decode (#14142)
* batch : remove logits_all flag

ggml-ci

* context : simplify output counting logic during decode

ggml-ci

* cont : fix comments
2025-06-12 11:50:01 +03:00
Georgi Gerganov
c3ee46fab4 batch : remove logits_all flag (#14141)
ggml-ci
2025-06-12 11:49:26 +03:00
Georgi Gerganov
e2c0b6e46a cmake : handle whitepsaces in path during metal build (#14126)
* cmake : handle whitepsaces in path during metal build

ggml-ci

* cont : proper fix

ggml-ci

---------

Co-authored-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2025-06-12 10:14:24 +03:00
Georgi Gerganov
9596506965 kv-cache : fix split_equal handling in unified implementation (#14130)
ggml-ci
2025-06-12 10:02:15 +03:00
compilade
a20b2b05bc context : round n_tokens to next multiple of n_seqs when reserving (#14140)
This fixes RWKV inference which otherwise failed
when the worst case ubatch.n_seq_tokens rounded to 0.
2025-06-12 02:56:04 -04:00
bandoti
2e89f76b7a common: fix issue with regex_escape routine on windows (#14133) 2025-06-11 17:19:44 -03:00
Christian Kastner
532802f938 Implement GGML_CPU_ALL_VARIANTS for ARM (#14080)
* ggml-cpu: Factor out feature detection build from x86

* ggml-cpu: Add ARM feature detection and scoring

This is analogous to cpu-feats-x86.cpp. However, to detect compile-time
activation of features, we rely on GGML_USE_<FEAT> which need to be set
in cmake, instead of GGML_<FEAT> that users would set for x86.

This is because on ARM, users specify features with GGML_CPU_ARM_ARCH,
rather than with individual flags.

* ggml-cpu: Implement GGML_CPU_ALL_VARIANTS for ARM

Like x86, however to pass around arch flags within cmake, we use
GGML_INTERNAL_<FEAT> as we don't have GGML_<FEAT>.

Some features are optional, so we may need to build multiple backends
per arch version (armv8.2_1, armv8.2_2, ...), and let the scoring
function sort out which one can be used.

* ggml-cpu: Limit ARM GGML_CPU_ALL_VARIANTS to Linux for now

The other platforms will need their own specific variants.

This also fixes the bug that the the variant-building branch was always
being executed as the else-branch of GGML_NATIVE=OFF. The branch is
moved to an elseif-branch which restores the previous behavior.
2025-06-11 21:07:44 +02:00
Sigbjørn Skjæret
d4e0d95cf5 chore : clean up relative source dir paths (#14128) 2025-06-11 19:04:23 +02:00
Sigbjørn Skjæret
cc66a7f78f tests : add test-tokenizers-repo (#14017) 2025-06-11 17:16:32 +02:00
Jeff Bolz
bd248d4dc7 vulkan: Better thread-safety for command pools/buffers (#14116)
This change moves the command pool/buffer tracking into a vk_command_pool
structure. There are two instances per context (for compute+transfer) and
two instances per device for operations that don't go through a context.
This should prevent separate contexts from stomping on each other.
2025-06-11 09:48:52 -05:00
Aman
7781e5fe99 webui: Wrap long numbers instead of infinite horizontal scroll (#14062)
* webui: Wrap long numbers instead of infinite horizontal scroll

* Use tailwind class

* update index.html.gz
2025-06-11 16:42:25 +02:00
Georgi Gerganov
89a184fa71 kv-cache : relax SWA masking condition (#14119)
ggml-ci
2025-06-11 16:48:45 +03:00
Taylor
2baf07727f server : pass default --keep argument (#14120) 2025-06-11 13:43:43 +03:00
Georgi Gerganov
7ae2932116 kv-cache : add LLAMA_KV_CACHE_DEBUG environment variable (#14121) 2025-06-11 12:52:45 +03:00
Jeff Bolz
1f7d50b293 vulkan: Track descriptor pools/sets per-context (#14109)
Use the same descriptor set layout for all pipelines (MAX_PARAMETER_COUNT == 8)
and move it to the vk_device. Move all the descriptor pool and set tracking to
the context - none of it is specific to pipelines anymore. It has a single vector
of pools and vector of sets, and a single counter to track requests and a single
counter to track use.
2025-06-11 07:19:25 +02:00
lhez
4c763c8d1b opencl: add mul_mv_id_q4_0_f32_8x_flat (#14003) 2025-06-10 16:55:58 -07:00
compilade
dad5c44398 kv-cache : avoid modifying recurrent cells when setting inputs (#13834)
* kv-cache : avoid modifying recurrent cells when setting inputs

* kv-cache : remove inp_s_mask

It was replaced with equivalent and simpler functionality
with rs_z (the first zeroed state) and the already-existing inp_s_copy.

* kv-cache : fix non-consecutive token pos warning for recurrent models

The problem was apparently caused by how the tail cells were swapped.

* graph : simplify logic for recurrent state copies

* kv-cache : use cell without src refs for rs_z in recurrent cache

* llama-graph : fix recurrent state copy

The `state_copy` shuffle assumes everything is moved at once,
which is not true when `states_extra` is copied back to the cache
before copying the range of states between `head` and `head + n_seqs`.
This is only a problem if any of the cells in [`head`, `head + n_seqs`)
have an `src` in [`head + n_seqs`, `head + n_kv`),
which does happen when `n_ubatch > 1` in the `llama-parallel` example.

Changing the order of the operations avoids the potential overwrite
before use, although when copies are avoided (like with Mamba2),
this will require further changes.

* llama-graph : rename n_state to state_size in build_recurrent_state

This naming should reduce confusion between the state size
and the number of states.
2025-06-10 18:20:14 -04:00
Sigbjørn Skjæret
55f6b9fa65 convert : fix duplicate key DeepSeek-R1 conversion error (#14103) 2025-06-10 23:29:52 +02:00
Sigbjørn Skjæret
3678b838bb llama : support GEGLU for jina-bert-v2 (#14090) 2025-06-10 18:02:08 +02:00
Jeff Bolz
652b70e667 vulkan: force device 0 in CI (#14106) 2025-06-10 10:53:47 -05:00
Juk Armstrong
3a12db23b6 Fixed spec timings to: accepted/tested instead of accepted/drafted (#14104) 2025-06-10 16:48:07 +01:00
Georgi Gerganov
ae92c1855b sync : ggml
ggml-ci
2025-06-10 18:39:33 +03:00
Georgi Gerganov
b7ce1ad1e3 ggml : fix weak alias win32 (whisper/0)
ggml-ci
2025-06-10 18:39:33 +03:00
0cc4m
97340b4c99 Vulkan: Don't default to CPU device (like llvmpipe), even if no other device is available, to allow fallback to CPU backend (#14099) 2025-06-10 13:01:33 +01:00
Isaac McFadyen
2bb0467043 rpc : nicer error messages for RPC server crash (#14076) 2025-06-10 09:41:01 +03:00
Georgi Gerganov
b8e2194efc sync : ggml
ggml-ci
2025-06-10 09:21:56 +03:00
Kai Pastor
1a3b5e80f7 Add in-build ggml::ggml ALIAS library (ggml/1260)
Enable uniform linking with subproject and with find_package.
2025-06-10 09:21:56 +03:00
Georgi Gerganov
1f63e75f3b metal : use less stack memory in FA kernel (#14088)
* metal : use less stack memory in FA kernel

ggml-ci

* cont : fix BF16 variant
2025-06-09 23:05:02 +03:00
Georgi Gerganov
40cbf571c9 kv-cache : fix shift and defrag logic (#14081)
* kv-cache : fix shift

ggml-ci

* cont : reset shift[i]

ggml-ci

* cont : fix defrag erasing cells that didn't move

ggml-ci
2025-06-09 23:04:35 +03:00
Diego Devesa
7f4fbe5183 llama : allow building all tests on windows when not using shared libs (#13980)
* llama : allow building all tests on windows when not using shared libraries

* add static windows build to ci

* tests : enable debug logs for test-chat

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-09 20:03:09 +02:00
xctan
f470bc36be ggml-cpu : split arch-specific implementations (#13892)
* move ggml-cpu-aarch64 to repack

* split quantize_row_q8_0/1

* split helper functions

* split ggml_vec_dot_q4_0_q8_0

* split ggml_vec_dot_q4_1_q8_1

* split ggml_vec_dot_q5_0_q8_0

* split ggml_vec_dot_q5_1_q8_1

* split ggml_vec_dot_q8_0_q8_0

* split ggml_vec_dot_tq1_0_q8_K

* split ggml_vec_dot_tq2_0_q8_K

* split ggml_vec_dot_q2_K_q8_K

* split ggml_vec_dot_q3_K_q8_K

* split ggml_vec_dot_q4_K_q8_K

* split ggml_vec_dot_q5_K_q8_K

* split ggml_vec_dot_q6_K_q8_K

* split ggml_vec_dot_iq2_xxs_q8_K

* split ggml_vec_dot_iq2_xs_q8_K

* split ggml_vec_dot_iq2_s_q8_K

* split ggml_vec_dot_iq3_xxs_q8_K

* split ggml_vec_dot_iq3_s_q8_K

* split ggml_vec_dot_iq1_s_q8_K

* split ggml_vec_dot_iq1_m_q8_K

* split ggml_vec_dot_iq4_nl_q8_0

* split ggml_vec_dot_iq4_xs_q8_K

* fix typos

* fix missing prototypes

* rename ggml-cpu-quants.c

* rename ggml-cpu-traits

* rename arm folder

* move cpu-feats-x86.cpp

* rename ggml-cpu-hbm

* update arm detection macro in quants.c

* move iq quant tables

* split ggml_quantize_mat_q8_0/K

* split ggml_gemv_*

* split ggml_gemm_*

* rename namespace aarch64 to repack

* use weak aliases to replace test macros

* rename GGML_CPU_AARCH64 to GGML_CPU_REPACK

* rename more aarch64 to repack

* clean up rebase leftover

* fix compilation errors

* remove trailing spaces

* try to fix clang compilation errors

* try to fix clang compilation errors again

* try to fix clang compilation errors, 3rd attempt

* try to fix clang compilation errors, 4th attempt

* try to fix clang compilation errors, 5th attempt

* try to fix clang compilation errors, 6th attempt

* try to fix clang compilation errors, 7th attempt

* try to fix clang compilation errors, 8th attempt

* try to fix clang compilation errors, 9th attempt

* more cleanup

* fix compilation errors

* fix apple targets

* fix a typo in arm version of ggml_vec_dot_q4_K_q8_K

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-09 16:47:13 +02:00
Diego Devesa
8f47e25f56 cuda : fix device sync on buffer clear (#14033) 2025-06-09 16:36:26 +02:00
Georgi Gerganov
201b31dc2e graph : fix geglu (#14077)
ggml-ci
2025-06-09 17:17:31 +03:00
Xinpeng Dou
e21d2d4ae2 CANN: Simplify the environment variable setting(#13104)
* Simplify the environment variable setting to specify the memory pool type.

* Adjust the GGML_CANN_ASYNC_MODE setting to accept yes, enable, 1, or on (case-insensitive) as valid options.

* update

* fix CI

* update

* delete whitespace

* fix according to review

* update CANN.md

* update CANN.md
2025-06-09 19:47:39 +08:00
R0CKSTAR
dc0623fddb webui: fix sidebar being covered by main content (#14082)
* webui: fix sidebar being covered by main content

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* webui: update index.html.gz

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-06-09 12:01:17 +02:00
Georgi Gerganov
87d34b381d server : fix LRU check (#14079)
ggml-ci
2025-06-09 12:57:58 +03:00
Nicolò Scipione
b460d16ae8 sycl: Add reorder to Q6_K mmvq implementation (#13885)
* Add Reorder to Q6_K mmvq implementation

* Address PR comments: clean up comments

* Remove unused parameter after refactoring q4_k

* Adding inline to function and removing unnecessary reference to int

---------

Signed-off-by: nscipione <nicolo.scipione@codeplay.com>
2025-06-09 11:47:07 +02:00
Đinh Trọng Huy
91a8ee6a6f add geglu activation function (#14074)
Co-authored-by: dinhhuy <huy.dinh@brains-tech.co.jp>
2025-06-09 05:15:31 +01:00
Yuanhao Ji
056eb74534 CANN: Enable labeler for Ascend NPU (#13914) 2025-06-09 11:20:06 +08:00
Diego Devesa
247e5c6e44 cuda : fix buffer type check with integrated GPUs (#14069) 2025-06-08 11:39:56 -07:00
吴小白
5787b5da57 ci: add LoongArch cross-compile build (#13944) 2025-06-07 10:39:11 -03:00
Akarshan Biswas
228f34c9ce SYCL: Implement few same quantized type copy kernels (#13739)
* SYCL: Implement few same quantized type copy kernels

* Use memcpy for copying contiguous tensors

ggml-ci

* feat(sycl): add contiguous tensor copy support and device checks

Adds a memcpy path for contiguous tensors of the same type to optimize data transfer. Updates device support checks to recognize contiguous tensor operations, improving compatibility and performance.

* refactor: replace specific block copy functions with template

The changes replace multiple redundant block copy functions (e.g., cpy_block_q8_0_q8_0, cpy_block_q5_0_q5_0) with a single templated function cpy_blck_q_q. This reduces code duplication by using a generic template that works for any block type, improving maintainability while preserving the same functionality. The template is instantiated with specific block types (e.g., block_q8_0) where needed.

* Exclude BF16 support for COPY tensors for now
ggml-ci

* perf: adjust SYCL copy kernel block sizes for efficiency

Use ceil_div to ensure full element coverage and update nd_range parameters to better align with SYCL block sizes, improving parallelism and device utilization in copy operations.
2025-06-07 18:58:20 +05:30
Sigbjørn Skjæret
0974ad7a7c llama : fix llama_model_chat_template with template name (LLM_KV with suffix) (#14050) 2025-06-07 14:13:12 +02:00
Georgi Gerganov
745aa5319b llama : deprecate llama_kv_self_ API (#14030)
* llama : deprecate llama_kv_self_ API

ggml-ci

* llama : allow llama_memory_(nullptr)

ggml-ci

* memory : add flag for optional data clear in llama_memory_clear

ggml-ci
2025-06-06 14:11:15 +03:00
Georgi Gerganov
487a5e0401 context : fix SWA-related warning for multiple sequences (#14045) 2025-06-06 13:29:18 +03:00
Sigbjørn Skjæret
d17a809ef0 llama : support multiple classifier outputs and labels (#13940) 2025-06-06 09:03:25 +02:00
Sigbjørn Skjæret
1caae7fc6c gguf-py : add add_classifier_output_labels method to writer (#14031)
* add add_classifier_output_labels

* use add_classifier_output_labels
2025-06-05 17:42:31 +02:00
Masato Nakasaka
669c13e0f6 vulkan: Enable VK_KHR_cooperative_matrix extension for Intel Xe2 GPUs (#14001)
* allowing B580 and U9-288V

* experimenting code to detect Xe2

* allowing coopmat only for Xe2 GPUs

* fixed comment wording

* fixed comment wording

* removed unnecessary driver check
2025-06-05 16:00:29 +02:00
pockers21
146b88e8b3 ci: fix CUDA build failure on autodl cloud machines (#14005)
Replace CMAKE_CUDA_ARCHITECTURES=native with nvidia-smi detection
as 'native' fails on autodl cloud environments.

Co-authored-by: pockers21 <liyang2@uniontech.com>
2025-06-05 16:25:29 +03:00
Georgi Gerganov
7f37b6cf1e memory : migrate from llama_kv_cache to more generic llama_memory (#14006)
* memory : merge llama_kv_cache into llama_memory + new `llama_memory` API

ggml-ci

* context : fix casts

ggml-ci
2025-06-05 15:29:22 +03:00
Diego Devesa
3a077146a4 llama : allow using mmap without PrefetchVirtualMemory, apply GGML_WIN_VER to llama.cpp sources (#14013) 2025-06-05 11:57:42 +02:00
Olexandr88
d01d112abb readme : add badge (#13938) 2025-06-05 10:50:55 +03:00
Sigbjørn Skjæret
9f47fa5792 vocab : warn about missing mask token (#14022) 2025-06-05 09:29:18 +02:00
Georgi Gerganov
9e31bec4fd context : fix pos_min initialization upon error decode (#14008)
ggml-ci
2025-06-05 09:06:29 +03:00
Jeff Bolz
5a8ae3053c vulkan: automatically deduce size of push constants (#13936) 2025-06-05 07:17:58 +02:00
Ervin Áron Tasnádi
0d3984424f ggml-vulkan: adds support for op CONV_TRANSPOSE_1D (#13813)
* * ggml-vulkan: adds op CONV_TRANSPOSE_1D

* test-backend-ops: adds more spohisticated tests for CONV_TRANSPOSE_1D

* Missing barrier added to shader.
Number of additional tests reduced to 108.

* * Fixes typo in variable name.

* Removes extra whitespaces.

* Adds int64->int32 casts to prevent possible warnings.

* Problem size reduced in tests to pass tests with llvmpipe.

* supports_op condition moved from unintended position
2025-06-04 22:02:00 +02:00
Georgi Gerganov
3e63a58ef7 kv-cache : refactor the update/defrag mechanism (#13988)
* kv-cache : refactor update mechanism

ggml-ci

* memory : improve status handling

* defrag : reset head + add comments

ggml-ci

* cont : minor fixes

ggml-ci
2025-06-04 18:58:20 +03:00
Diego Devesa
2589ad3704 ci : remove cuda 11.7 releases, switch runner to windows 2022 (#13997) 2025-06-04 15:37:40 +02:00
Diego Devesa
482548716f releases : use dl backend for linux release, remove arm64 linux release (#13996) 2025-06-04 13:15:54 +02:00
Xuan-Son Nguyen
3ac67535c8 llama-graph : use ggml_repeat_4d (#13998) 2025-06-04 10:11:26 +02:00
Johannes Gäßler
0b4be4c435 CUDA: fix FTZ in FA for Gemma 3 (#13991) 2025-06-04 08:57:05 +02:00
Georgi Gerganov
e0e806f52e kv-cache : fix unified::seq_rm to work with seq_id < 0 (#13985)
ggml-ci
2025-06-04 09:50:32 +03:00
Jeff Bolz
7e00e60ef8 vulkan: fix warnings in perf logger querypool code (#13937) 2025-06-03 20:30:22 +02:00
Xuan-Son Nguyen
ea1431b0fa docs : add "Quick start" section for new users (#13862)
* docs : add "Quick start" section for non-technical users

* rm flox

* Update README.md
2025-06-03 13:09:36 +02:00
lhez
71e74a3ac9 opencl: add backend_synchronize (#13939)
* This is not needed by the normal use where the result is read
  using `tensor_get`, but it allows perf mode of `test-backend-ops`
  to properly measure performance.
2025-06-02 16:54:58 -07:00
rmatif
bfb1e012a0 OpenCL: Add concat, tsembd, upscale, tanh, pad and repeat (#13840)
* add concat, pad, repeat, tsembd, tanh, upscale

* small fixes
2025-06-02 16:53:36 -07:00
Georgi Gerganov
3637576288 server : disable speculative decoding for SWA models (#13970)
* server : use swa-full fo draft context

ggml-ci

* server : disable speculative decoding for SWA models
2025-06-02 21:34:40 +03:00
Georgi Gerganov
ea394d7ab1 metal : use F32 accumulators in FA kernels (#13975)
ggml-ci
2025-06-02 21:33:40 +03:00
Georgi Gerganov
5582c49c39 gemma : more consistent attention scaling for v2 and v3 (#13951)
* gemma : fix attn scale for 27B

* cont : apply scale before attn

* cont : consistent attention scaling
2025-06-02 20:54:26 +03:00
Olivier Chafik
c9bbc77931 server: update deepseek reasoning format (pass reasoning_content as diffs) (#13933)
* server: update deepseek reasoning format (now in reasoning_content diffs), add legacy option for compat
* update unit/test_tool_call.py::test_thoughts
2025-06-02 10:15:44 -07:00
Xuan-Son Nguyen
bfd322796c mtmd : fix memory leak in mtmd_helper_eval_chunk_single (#13961)
* mtmd : fix memory in mtmd_helper_eval_chunk_single

* mtmd-cli : fix mem leak

* Update tools/mtmd/mtmd-cli.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-02 16:29:28 +02:00
shalinib-ibm
093e3f1feb cmake : Handle mixed-case 'Power' strings in POWER CPU detection (#13966)
Some systems report the CPU implementation as "Power11" instead of "POWER11".
The existing CMake logic uses a case-sensitive regular expression to extract
the CPU generation, which fails when the casing doesn't exactly match "POWER".

This patch provides a fix by first converting the string to uppercase before applying the regex.

Signed-off-by: root <root@rheldb2v.pperf.tadn.ibm.com>
Co-authored-by: root <root@rheldb2v.pperf.tadn.ibm.com>
2025-06-02 15:18:36 +03:00
Atharva Dubey
663445b0de sycl: quantize and reorder the input to q8_1 when reorder is enabled (#13826)
* [WIP]: fuse q8 quantization and reorder

* wip2: fuse q8 quantization and reorder

* working q8 reorder commit

* restored common.hpp

* remove debug prints

* remove unnecessary headers and remove trailing whitespace

* Update ggml/src/ggml-sycl/ggml-sycl.cpp

Co-authored-by: Alberto Cabrera Pérez <alberto.cabrera@intel.com>

---------

Co-authored-by: Alberto Cabrera Pérez <alberto.cabrera@intel.com>
2025-06-02 10:12:20 +01:00
Johannes Gäßler
7675c555a1 gguf: fix failure on version == 0 (#13956) 2025-06-01 18:08:05 +02:00
Sigbjørn Skjæret
5e1c3aed40 convert : fix nomic-bert-moe mask token (#13757) 2025-06-01 18:07:21 +02:00
Sigbjørn Skjæret
c496fe0b1d convert : fix vocab padding code for bert models (#13954) 2025-06-01 17:23:11 +02:00
Aaron Teo
e57bb87ced ggml: check if non-native endian model is being loaded (#13943)
* gguf: prevent non-native endian models from being loaded

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* gguf: update error message

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* gguf: make the non-native endian check more verbose

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: move ggml_assert location

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: reword the endianness check error message

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-06-01 16:53:57 +02:00
Georgi Gerganov
f3a4b1659c sync : ggml
ggml-ci
2025-06-01 13:43:57 +03:00
Kai Pastor
108009f5c7 vulkan : Remove unexpected ; (ggml/1253) 2025-06-01 13:43:57 +03:00
Kai Pastor
d337252acf cmake : Fix broken CMake error messages (ggml/1252) 2025-06-01 13:43:57 +03:00
Radoslav Gerganov
af6f91db47 ggml : remove ggml_graph_import and ggml_graph_export declarations (ggml/1247)
The implementation is already deleted with commit 9d0762e.

closes: #1235
2025-06-01 13:43:57 +03:00
Georgi Gerganov
a7b8d35f78 sync : whisper.cpp (ggml/1250)
* ggml : Fix backtrace breaking Windows build (whisper/3203)

* sync : whisper.cpp

ggml-ci

---------

Co-authored-by: Daniel Tang <danielzgtg.opensource@gmail.com>
2025-06-01 13:43:57 +03:00
Radoslav Gerganov
6eba72b71c ggml : install dynamic backends (ggml/1240)
* ggml : install dynamic backends

Make sure dynamic backends are installed in $CMAKE_INSTALL_BINDIR
2025-06-01 13:43:57 +03:00
Daniel Tang
fedf034a98 ggml : Print backtrace on uncaught C++ exceptions (ggml/1232)
The goal is to have what users call "full logs" contain the backtrace.

This is registered upon ggml_init. Also fixes a minor fd leak on Linux.
2025-06-01 13:43:57 +03:00
ddh0
8726392d3d readme : update bindings (#13950) 2025-06-01 11:44:30 +03:00
Georgi Gerganov
c04621711a parallel : fix n_junk == 0 (#13952) 2025-06-01 11:42:16 +03:00
Georgi Gerganov
0fc16b42e8 kv-cache : split implementation in separate sources (#13920)
ggml-ci
2025-06-01 11:39:27 +03:00
Max Krasnyansky
053b1539c0 threading: support for GGML_SCHED_PRIO_LOW, update thread info on Windows to avoid throttling (#12995)
* threading: support for GGML_SCHED_PRIO_LOW, update thread info on Windows to avoid throttling

We talked about adding LOW priority for GGML threads in the original threadpool PR.
It might be useful for some cases to avoid contention.

Latest Windows ARM64 releases started parking (offlining) the CPU cores
more aggresively which results in suboptimal performance with n_threads > 4.
To deal with that we now disable Power Throttling for our threads for the NORMAL
and higher priorities.

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* threading: disable SetThreadInfo() calls for older Windows versions

* Update tools/llama-bench/llama-bench.cpp

Co-authored-by: Diego Devesa <slarengh@gmail.com>

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-05-31 15:39:19 -07:00
Jiří Podivín
b3a89c3d9e docs : Note about necessity of having libcurl installed for standard build. (#13945)
Signed-off-by: Jiri Podivin <jpodivin@gmail.com>
2025-05-31 18:58:35 +02:00
Olivier Chafik
e15898d1c7 server: allow unclosed thinking tags (#13931) 2025-05-31 08:26:10 -07:00
Georgi Gerganov
803f8baf4f llama : deprecate explicit kv_self defrag/update calls (#13921)
ggml-ci
2025-05-31 15:58:33 +03:00
Georgi Gerganov
3600cc2886 llama : use n_swa + n_ubatch cells for SWA cache (#13833)
* llama : use n_swa + n_ubatch cells for SWA cache

ggml-ci

* llama : add warning about multi-sqeuence SWA contexts
2025-05-31 15:57:44 +03:00
igardev
c7e0a2054b webui : Replace alert and confirm with custom modals. (#13711)
* Replace alert and confirm with custom modals. This is needed as Webview in VS Code doesn't permit alert and confirm for security reasons.

* use Modal Provider to simplify the use of confirm and alert modals.

* Increase the z index of the modal dialogs.

* Update index.html.gz

* also add showPrompt

* rebuild

---------

Co-authored-by: igardev <ivailo.gardev@akros.ch>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-05-31 11:56:08 +02:00
Georgi Gerganov
3f55f781f1 llama : auto-batch preparation (#13845)
* llama : auto-batch

ggml-ci

* context : simplify if branching
2025-05-31 12:55:57 +03:00
Xuan-Son Nguyen
51fa76f172 mtmd : drop _shared from libmtmd name, merge helpers into libmtmd (⚠️ breaking change) (#13917)
* mtmd : fix missing public header

* no object

* apply suggestion from Georgi

* rm mtmd-helper, merge it to mtmd

* missing vendor include dir
2025-05-31 10:14:29 +02:00
Georgi Gerganov
12d0188c0d kv-cache : refactor + add llama_memory_state_i (#13746)
* kv-cache : simplify the "struct llama_kv_cache" interface

ggml-ci

* kv-cache : revert the (n_swa + n_ubatch) change (for next PR)

ggml-ci

* kv-cache : some comments

ggml-ci

* context : fix graph reserve for multiple sequences

ggml-ci

* kv-cache : fix typo [no ci]

* kv-cache : fix find_slot() logic for free slots

ggml-ci

* llama : add TODO for deprecating the defrag API in the future

* kv-cache : improve find_slot() using min/max seq pos info

ggml-ci

* llama : handle aborts and compute errors

ggml-ci

* memory : extract state into llama_memory_state

ggml-ci

* kv-cache : add comments

ggml-ci

* server : update batching logic to reset n_batch on successful decode

* server : upon full re-processing, remove the sequence from the cache

* kv-cache : add TODO for doing split_equal when split_simple fails

ggml-ci
2025-05-31 10:24:04 +03:00
Shawn yang
eb3949938e CUDA: add a prop in ggml_cuda_device_infor for distinguish iGPU or dGPU in cuda (#13856) (#13895)
* 1.  add "integrated" in ggml_cuda_device_info for distinguish whether it is Intergrate_gpu or discrete_gpu
2. Adjust the func:"ggml_backend_cuda_device_supports_buft" for this new feature

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Adjusted code indentation

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Fixed incorrect setting of variable types

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Adjusted the judgment logic

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* add a host_buft assert in case of integrated_cuda_device with func:'evaluate_and_capture_cuda_graph()'

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Add a defensive security assert

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Adjusted the support judgment logic.

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* revoke the suggest commit changes due to it's not applicable in jetson_device

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Add parentheses to enforce operator precedence​

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Fix ci bug: add a spaces

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: yangxiao <yang_xl@tju.edu.cn>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: yangxiao <yangxl_zz@qq.com>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-05-31 08:48:04 +02:00
Johannes Gäßler
e562eece7c CUDA: fix typo in FlashAttention code (#13926) 2025-05-30 21:22:03 +02:00
Diego Devesa
b47ab7b8e9 sched : avoid changing cur_copy when a graph is already allocated (#13922) 2025-05-30 18:56:19 +02:00
186 changed files with 35088 additions and 22179 deletions

View File

@@ -49,19 +49,23 @@ COPY --from=build /app/full /app
WORKDIR /app
RUN apt-get update \
&& apt-get install -y \
git \
python3 \
python3-pip \
&& pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt \
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
&& find /var/cache -type f -delete
RUN apt-get update && \
apt-get install -y \
git \
python3 \
python3-pip \
python3-venv && \
python3 -m venv /opt/venv && \
. /opt/venv/bin/activate && \
pip install --upgrade pip setuptools wheel && \
pip install -r requirements.txt && \
apt autoremove -y && \
apt clean -y && \
rm -rf /tmp/* /var/tmp/* && \
find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete && \
find /var/cache -type f -delete
ENV PATH="/opt/venv/bin:$PATH"
ENTRYPOINT ["/app/tools.sh"]

7
.github/labeler.yml vendored
View File

@@ -86,3 +86,10 @@ nix:
embedding:
- changed-files:
- any-glob-to-any-file: examples/embedding/
Ascend NPU:
- changed-files:
- any-glob-to-any-file:
- ggml/include/ggml-cann.h
- ggml/src/ggml-cann/**
- docs/backend/CANN.md

View File

@@ -231,3 +231,116 @@ jobs:
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
debian-13-loongarch64-cpu-cross:
runs-on: ubuntu-24.04
container: debian@sha256:653dfb9f86c3782e8369d5f7d29bb8faba1f4bff9025db46e807fa4c22903671
steps:
- uses: actions/checkout@v4
- name: Setup LoongArch
run: |
rm -f /etc/apt/sources.list.d/*
cat << EOF | tee /etc/apt/sources.list.d/debian-ports.list
deb http://snapshot.debian.org/archive/debian/20250515T202920Z/ trixie main
EOF
( echo 'quiet "true";'; \
echo 'APT::Get::Assume-Yes "true";'; \
echo 'APT::Install-Recommends "false";'; \
echo 'Acquire::Check-Valid-Until "false";'; \
echo 'Acquire::Retries "5";'; \
) > /etc/apt/apt.conf.d/99snapshot-repos
apt-get update
apt-get install -y ca-certificates debian-ports-archive-keyring cmake git zip
dpkg --add-architecture loong64
# Add arch-specific repositories for non-amd64 architectures
cat << EOF | tee /etc/apt/sources.list.d/loong64-ports.list
deb [arch=loong64] http://snapshot.debian.org/archive/debian-ports/20250515T194251Z/ sid main
EOF
apt-get update || true ;# Prevent failure due to missing URLs.
apt-get install -y --no-install-recommends \
build-essential \
gcc-14-loongarch64-linux-gnu \
g++-14-loongarch64-linux-gnu
- name: Build
run: |
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=loongarch64 \
-DCMAKE_C_COMPILER=loongarch64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=loongarch64-linux-gnu-g++-14 \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/loongarch64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
debian-13-loongarch64-vulkan-cross:
runs-on: ubuntu-24.04
container: debian@sha256:653dfb9f86c3782e8369d5f7d29bb8faba1f4bff9025db46e807fa4c22903671
steps:
- uses: actions/checkout@v4
- name: Setup LoongArch
run: |
rm -f /etc/apt/sources.list.d/*
cat << EOF | tee /etc/apt/sources.list.d/debian-ports.list
deb http://snapshot.debian.org/archive/debian/20250515T202920Z/ trixie main
EOF
( echo 'quiet "true";'; \
echo 'APT::Get::Assume-Yes "true";'; \
echo 'APT::Install-Recommends "false";'; \
echo 'Acquire::Check-Valid-Until "false";'; \
echo 'Acquire::Retries "5";'; \
) > /etc/apt/apt.conf.d/99snapshot-repos
apt-get update
apt-get install -y ca-certificates debian-ports-archive-keyring cmake git zip
dpkg --add-architecture loong64
# Add arch-specific repositories for non-amd64 architectures
cat << EOF | tee /etc/apt/sources.list.d/loong64-ports.list
deb [arch=loong64] http://snapshot.debian.org/archive/debian-ports/20250515T194251Z/ sid main
EOF
apt-get update || true ;# Prevent failure due to missing URLs.
apt-get install -y --no-install-recommends \
build-essential \
glslc \
gcc-14-loongarch64-linux-gnu \
g++-14-loongarch64-linux-gnu \
libvulkan-dev:loong64
- name: Build
run: |
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_VULKAN=ON \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=loongarch64 \
-DCMAKE_C_COMPILER=loongarch64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=loongarch64-linux-gnu-g++-14 \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/loongarch64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)

View File

@@ -306,6 +306,7 @@ jobs:
id: cmake_test
run: |
cd build
export GGML_VK_VISIBLE_DEVICES=0
# This is using llvmpipe and runs slower than other backends
ctest -L main --verbose --timeout 3600
@@ -687,12 +688,12 @@ jobs:
strategy:
matrix:
include:
- build: 'cpu-x64'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF'
- build: 'cpu-x64 (static)'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF'
- build: 'openblas-x64'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
- build: 'vulkan-x64'
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON'
defines: '-DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON'
- build: 'llvm-arm64'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON'
- build: 'llvm-arm64-opencl-adreno'
@@ -777,6 +778,7 @@ jobs:
cmake -S . -B build ${{ matrix.defines }} `
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS}
cp $env:CURL_PATH/bin/libcurl-*.dll build/bin/Release
- name: Add libopenblas.dll
id: add_libopenblas_dll
@@ -839,12 +841,12 @@ jobs:
-DGGML_CUDA=ON
cmake --build build
windows-2019-cmake-cuda:
runs-on: windows-2019
windows-2022-cmake-cuda:
runs-on: windows-2022
strategy:
matrix:
cuda: ['12.4', '11.7']
cuda: ['12.4']
steps:
- name: Clone
@@ -878,7 +880,7 @@ jobs:
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" x64
cmake -S . -B build -G "Ninja Multi-Config" ^
-DLLAMA_BUILD_SERVER=ON ^
-DGGML_NATIVE=OFF ^

View File

@@ -131,8 +131,9 @@ jobs:
include:
- build: 'x64'
os: ubuntu-22.04
- build: 'arm64'
os: ubuntu-22.04-arm
# GGML_BACKEND_DL and GGML_CPU_ALL_VARIANTS are not currently supported on arm
# - build: 'arm64'
# os: ubuntu-22.04-arm
runs-on: ${{ matrix.os }}
@@ -159,6 +160,9 @@ jobs:
id: cmake_build
run: |
cmake -B build \
-DGGML_BACKEND_DL=ON \
-DGGML_NATIVE=OFF \
-DGGML_CPU_ALL_VARIANTS=ON \
-DLLAMA_FATAL_WARNINGS=ON \
${{ env.CMAKE_ARGS }}
cmake --build build --config Release -j $(nproc)
@@ -207,6 +211,9 @@ jobs:
id: cmake_build
run: |
cmake -B build \
-DGGML_BACKEND_DL=ON \
-DGGML_NATIVE=OFF \
-DGGML_CPU_ALL_VARIANTS=ON \
-DGGML_VULKAN=ON \
${{ env.CMAKE_ARGS }}
cmake --build build --config Release -j $(nproc)
@@ -373,11 +380,11 @@ jobs:
name: llama-bin-win-${{ matrix.backend }}-${{ matrix.arch }}.zip
windows-cuda:
runs-on: windows-2019
runs-on: windows-2022
strategy:
matrix:
cuda: ['12.4', '11.7']
cuda: ['12.4']
steps:
- name: Clone
@@ -405,7 +412,7 @@ jobs:
id: cmake_build
shell: cmd
run: |
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" x64
cmake -S . -B build -G "Ninja Multi-Config" ^
-DGGML_BACKEND_DL=ON ^
-DGGML_NATIVE=OFF ^

View File

@@ -180,7 +180,7 @@ jobs:
server-windows:
runs-on: windows-2019
runs-on: windows-2022
steps:
- name: Clone

View File

@@ -89,6 +89,14 @@ option(LLAMA_LLGUIDANCE "llama-common: include LLGuidance library for structured
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake)
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/common.cmake)
if (NOT DEFINED LLAMA_BUILD_NUMBER)
set(LLAMA_BUILD_NUMBER ${BUILD_NUMBER})
endif()
if (NOT DEFINED LLAMA_BUILD_COMMIT)
set(LLAMA_BUILD_COMMIT ${BUILD_COMMIT})
endif()
set(LLAMA_INSTALL_VERSION 0.0.${BUILD_NUMBER})
# override ggml options
set(GGML_ALL_WARNINGS ${LLAMA_ALL_WARNINGS})
set(GGML_FATAL_WARNINGS ${LLAMA_FATAL_WARNINGS})
@@ -155,10 +163,17 @@ if (LLAMA_USE_SYSTEM_GGML)
endif()
if (NOT TARGET ggml AND NOT LLAMA_USE_SYSTEM_GGML)
set(GGML_BUILD_NUMBER ${LLAMA_BUILD_NUMBER})
set(GGML_BUILD_COMMIT ${LLAMA_BUILD_COMMIT})
add_subdirectory(ggml)
# ... otherwise assume ggml is added by a parent CMakeLists.txt
endif()
if (MINGW)
# Target Windows 8 for PrefetchVirtualMemory
add_compile_definitions(_WIN32_WINNT=${GGML_WIN_VER})
endif()
#
# build the library
#
@@ -199,10 +214,6 @@ endif()
include(GNUInstallDirs)
include(CMakePackageConfigHelpers)
set(LLAMA_BUILD_NUMBER ${BUILD_NUMBER})
set(LLAMA_BUILD_COMMIT ${BUILD_COMMIT})
set(LLAMA_INSTALL_VERSION 0.0.${BUILD_NUMBER})
set(LLAMA_INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR} CACHE PATH "Location of header files")
set(LLAMA_LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR} CACHE PATH "Location of library files")
set(LLAMA_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR} CACHE PATH "Location of binary files")

View File

@@ -367,7 +367,7 @@ ifdef LLAMA_SERVER_SSL
endif
ifndef GGML_NO_CPU_AARCH64
MK_CPPFLAGS += -DGGML_USE_CPU_AARCH64
MK_CPPFLAGS += -DGGML_USE_CPU_REPACK
endif
# warnings
@@ -970,7 +970,7 @@ OBJ_GGML = \
$(DIR_GGML)/src/ggml-threading.o \
$(DIR_GGML)/src/ggml-cpu/ggml-cpu.o \
$(DIR_GGML)/src/ggml-cpu/ggml-cpu_cpp.o \
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-aarch64.o \
$(DIR_GGML)/src/ggml-cpu/repack.o \
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-hbm.o \
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-quants.o \
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-traits.o \

View File

@@ -3,9 +3,10 @@
![llama](https://user-images.githubusercontent.com/1991296/230134379-7181e485-c521-4d23-a0d6-f7b3b61ba524.png)
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![Release](https://img.shields.io/github/v/release/ggml-org/llama.cpp)](https://github.com/ggml-org/llama.cpp/releases)
[![Server](https://github.com/ggml-org/llama.cpp/actions/workflows/server.yml/badge.svg)](https://github.com/ggml-org/llama.cpp/actions/workflows/server.yml)
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggml-org/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggml-org/llama.cpp/discussions/205) / [ggml](https://github.com/ggml-org/ggml)
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Manifesto](https://github.com/ggml-org/llama.cpp/discussions/205) / [ggml](https://github.com/ggml-org/ggml)
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
@@ -17,7 +18,6 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
## Hot topics
- 🔥 Multimodal support arrived in `llama-server`: [#12898](https://github.com/ggml-org/llama.cpp/pull/12898) | [documentation](./docs/multimodal.md)
- **GGML developer experience survey (organized and reviewed by NVIDIA):** [link](https://forms.gle/Gasw3cRgyhNEnrwK9)
- A new binary `llama-mtmd-cli` is introduced to replace `llava-cli`, `minicpmv-cli`, `gemma3-cli` ([#13012](https://github.com/ggml-org/llama.cpp/pull/13012)) and `qwen2vl-cli` ([#13141](https://github.com/ggml-org/llama.cpp/pull/13141)), `libllava` will be deprecated
- VS Code extension for FIM completions: https://github.com/ggml-org/llama.vscode
- Universal [tool call support](./docs/function-calling.md) in `llama-server` https://github.com/ggml-org/llama.cpp/pull/9639
@@ -28,6 +28,30 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
----
## Quick start
Getting started with llama.cpp is straightforward. Here are several ways to install it on your machine:
- Install `llama.cpp` using [brew, nix or winget](docs/install.md)
- Run with Docker - see our [Docker documentation](docs/docker.md)
- Download pre-built binaries from the [releases page](https://github.com/ggml-org/llama.cpp/releases)
- Build from source by cloning this repository - check out [our build guide](docs/build.md)
Once installed, you'll need a model to work with. Head to the [Obtaining and quantizing models](#obtaining-and-quantizing-models) section to learn more.
Example command:
```sh
# Use a local model file
llama-cli -m my_model.gguf
# Or download and run a model directly from Hugging Face
llama-cli -hf ggml-org/gemma-3-1b-it-GGUF
# Launch OpenAI-compatible API server
llama-server -hf ggml-org/gemma-3-1b-it-GGUF
```
## Description
The main goal of `llama.cpp` is to enable LLM inference with minimal setup and state-of-the-art performance on a wide
@@ -130,6 +154,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
<details>
<summary>Bindings</summary>
- Python: [ddh0/easy-llama](https://github.com/ddh0/easy-llama)
- Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
- Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp)
- Node.js: [withcatai/node-llama-cpp](https://github.com/withcatai/node-llama-cpp)
@@ -229,6 +254,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
</details>
## Supported backends
| Backend | Target devices |
@@ -245,16 +271,6 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
| [OpenCL](docs/backend/OPENCL.md) | Adreno GPU |
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) | All |
## Building the project
The main product of this project is the `llama` library. Its C-style interface can be found in [include/llama.h](include/llama.h).
The project also includes many example programs and tools using the `llama` library. The examples range from simple, minimal code snippets to sophisticated sub-projects such as an OpenAI-compatible HTTP server. Possible methods for obtaining the binaries:
- Clone this repository and build locally, see [how to build](docs/build.md)
- On MacOS or Linux, install `llama.cpp` via [brew, flox or nix](docs/install.md)
- Use a Docker image, see [documentation for Docker](docs/docker.md)
- Download pre-built binaries from [releases](https://github.com/ggml-org/llama.cpp/releases)
## Obtaining and quantizing models
The [Hugging Face](https://huggingface.co) platform hosts a [number of LLMs](https://huggingface.co/models?library=gguf&sort=trending) compatible with `llama.cpp`:
@@ -262,7 +278,11 @@ The [Hugging Face](https://huggingface.co) platform hosts a [number of LLMs](htt
- [Trending](https://huggingface.co/models?library=gguf&sort=trending)
- [LLaMA](https://huggingface.co/models?sort=trending&search=llama+gguf)
You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from [Hugging Face](https://huggingface.co/) or other model hosting sites, such as [ModelScope](https://modelscope.cn/), by using this CLI argument: `-hf <user>/<model>[:quant]`.
You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from [Hugging Face](https://huggingface.co/) or other model hosting sites, such as [ModelScope](https://modelscope.cn/), by using this CLI argument: `-hf <user>/<model>[:quant]`. For example:
```sh
llama-cli -hf ggml-org/gemma-3-1b-it-GGUF
```
By default, the CLI would download from Hugging Face, you can switch to other options with the environment variable `MODEL_ENDPOINT`. For example, you may opt to downloading model checkpoints from ModelScope or other model sharing communities by setting the environment variable, e.g. `MODEL_ENDPOINT=https://www.modelscope.cn/`.

View File

@@ -39,14 +39,27 @@ sd=`dirname $0`
cd $sd/../
SRC=`pwd`
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=OFF"
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON"
if [ ! -z ${GG_BUILD_METAL} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON -DGGML_METAL_USE_BF16=ON"
fi
if [ ! -z ${GG_BUILD_CUDA} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES=native"
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=ON"
if command -v nvidia-smi >/dev/null 2>&1; then
CUDA_ARCH=$(nvidia-smi --query-gpu=compute_cap --format=csv,noheader,nounits 2>/dev/null | head -1 | tr -d '.')
if [[ -n "$CUDA_ARCH" && "$CUDA_ARCH" =~ ^[0-9]+$ ]]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DCMAKE_CUDA_ARCHITECTURES=${CUDA_ARCH}"
else
echo "Warning: Using fallback CUDA architectures"
CMAKE_EXTRA="${CMAKE_EXTRA} -DCMAKE_CUDA_ARCHITECTURES=61;70;75;80;86;89"
fi
else
echo "Error: nvidia-smi not found, cannot build with CUDA"
exit 1
fi
fi
if [ ! -z ${GG_BUILD_SYCL} ]; then

View File

@@ -7,8 +7,8 @@ llama_add_compile_flags()
# Build info header
#
if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/../.git")
set(GIT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../.git")
if(EXISTS "${PROJECT_SOURCE_DIR}/.git")
set(GIT_DIR "${PROJECT_SOURCE_DIR}/.git")
# Is git submodule
if(NOT IS_DIRECTORY "${GIT_DIR}")
@@ -18,36 +18,26 @@ if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/../.git")
if (SLASH_POS EQUAL 0)
set(GIT_DIR "${REAL_GIT_DIR}")
else()
set(GIT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../${REAL_GIT_DIR}")
set(GIT_DIR "${PROJECT_SOURCE_DIR}/${REAL_GIT_DIR}")
endif()
endif()
if(EXISTS "${GIT_DIR}/index")
set(GIT_INDEX "${GIT_DIR}/index")
# For build-info.cpp below
set_property(DIRECTORY APPEND PROPERTY CMAKE_CONFIGURE_DEPENDS "${GIT_DIR}/index")
else()
message(WARNING "Git index not found in git repository.")
set(GIT_INDEX "")
endif()
else()
message(WARNING "Git repository not found; to enable automatic generation of build info, make sure Git is installed and the project is a Git repository.")
set(GIT_INDEX "")
endif()
# Add a custom command to rebuild build-info.cpp when .git/index changes
add_custom_command(
OUTPUT "${CMAKE_CURRENT_SOURCE_DIR}/build-info.cpp"
COMMENT "Generating build details from Git"
COMMAND ${CMAKE_COMMAND} -DMSVC=${MSVC} -DCMAKE_C_COMPILER_VERSION=${CMAKE_C_COMPILER_VERSION}
-DCMAKE_C_COMPILER_ID=${CMAKE_C_COMPILER_ID} -DCMAKE_VS_PLATFORM_NAME=${CMAKE_VS_PLATFORM_NAME}
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
-DCMAKE_SYSTEM_NAME=${CMAKE_SYSTEM_NAME} -DCMAKE_SYSTEM_PROCESSOR=${CMAKE_SYSTEM_PROCESSOR}
-P "${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info-gen-cpp.cmake"
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}/.."
DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/build-info.cpp.in" ${GIT_INDEX}
VERBATIM
)
set(TEMPLATE_FILE "${CMAKE_CURRENT_SOURCE_DIR}/build-info.cpp.in")
set(OUTPUT_FILE "${CMAKE_CURRENT_BINARY_DIR}/build-info.cpp")
configure_file(${TEMPLATE_FILE} ${OUTPUT_FILE})
set(TARGET build_info)
add_library(${TARGET} OBJECT build-info.cpp)
add_library(${TARGET} OBJECT ${OUTPUT_FILE})
if (BUILD_SHARED_LIBS)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif()

View File

@@ -988,10 +988,6 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
params.tensor_buft_overrides.push_back({nullptr, nullptr});
}
if (params.reranking && params.embedding) {
throw std::invalid_argument("error: either --embedding or --reranking can be specified, but not both");
}
if (!params.chat_template.empty() && !common_chat_verify_template(params.chat_template, params.use_jinja)) {
throw std::runtime_error(string_format(
"error: the supplied chat template is not supported: %s%s\n",
@@ -1348,9 +1344,9 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
));
add_opt(common_arg(
{"--prio"}, "N",
string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams.priority),
string_format("set process/thread priority : low(-1), normal(0), medium(1), high(2), realtime(3) (default: %d)\n", params.cpuparams.priority),
[](common_params & params, int prio) {
if (prio < 0 || prio > 3) {
if (prio < GGML_SCHED_PRIO_LOW || prio > GGML_SCHED_PRIO_REALTIME) {
throw std::invalid_argument("invalid value");
}
params.cpuparams.priority = (enum ggml_sched_priority) prio;
@@ -2747,9 +2743,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_EMBEDDINGS"));
add_opt(common_arg(
{"--reranking", "--rerank"},
string_format("enable reranking endpoint on server (default: %s)", params.reranking ? "enabled" : "disabled"),
string_format("enable reranking endpoint on server (default: %s)", "disabled"),
[](common_params & params) {
params.reranking = true;
params.embedding = true;
params.pooling_type = LLAMA_POOLING_TYPE_RANK;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_RERANKING"));
add_opt(common_arg(
@@ -2869,6 +2866,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
"(default: deepseek)",
[](common_params & params, const std::string & value) {
/**/ if (value == "deepseek") { params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK; }
else if (value == "deepseek-legacy") { params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY; }
else if (value == "none") { params.reasoning_format = COMMON_REASONING_FORMAT_NONE; }
else { throw std::invalid_argument("invalid value"); }
}

View File

@@ -1,4 +1,4 @@
int LLAMA_BUILD_NUMBER = @BUILD_NUMBER@;
char const *LLAMA_COMMIT = "@BUILD_COMMIT@";
int LLAMA_BUILD_NUMBER = @LLAMA_BUILD_NUMBER@;
char const *LLAMA_COMMIT = "@LLAMA_BUILD_COMMIT@";
char const *LLAMA_COMPILER = "@BUILD_COMPILER@";
char const *LLAMA_BUILD_TARGET = "@BUILD_TARGET@";

View File

@@ -49,6 +49,7 @@ bool common_chat_msg_parser::add_tool_call(const std::string & name, const std::
// LOG_DBG("Tool call arguments:\n\traw: %s\n\tresult: %s\n", arguments.c_str(), tool_call.arguments.c_str());
result_.tool_calls.emplace_back(tool_call);
return true;
}
bool common_chat_msg_parser::add_tool_call(const json & tool_call) {
@@ -154,9 +155,10 @@ bool common_chat_msg_parser::try_parse_reasoning(const std::string & start_think
if (!rest.empty()) {
handle_reasoning(rest, /* closed */ !is_partial());
}
if (!syntax_.thinking_forced_open) {
throw common_chat_msg_partial_exception(end_think);
}
// Allow unclosed thinking tags, for now (https://github.com/ggml-org/llama.cpp/issues/13812, https://github.com/ggml-org/llama.cpp/issues/13877)
// if (!syntax_.thinking_forced_open) {
// throw common_chat_msg_partial_exception(end_think);
// }
return true;
}
}
@@ -377,3 +379,7 @@ std::optional<common_chat_msg_parser::consume_json_result> common_chat_msg_parse
/* .is_partial = */ found_healing_marker,
};
}
void common_chat_msg_parser::clear_tools() {
result_.tool_calls.clear();
}

View File

@@ -115,4 +115,6 @@ class common_chat_msg_parser {
const std::vector<std::vector<std::string>> & args_paths = {},
const std::vector<std::vector<std::string>> & content_paths = {}
);
void clear_tools();
};

View File

@@ -82,10 +82,10 @@ json common_chat_msg::to_json_oaicompat() const
std::vector<common_chat_msg_diff> common_chat_msg_diff::compute_diffs(const common_chat_msg & previous_msg, const common_chat_msg & new_msg) {
std::vector<common_chat_msg_diff> diffs;
// if (previous_msg.reasoning_content != current.reasoning_content) {
// auto & diff = diffs.emplace_back();
// diff.reasoning_content_delta = string_diff(previous_msg.reasoning_content, current.reasoning_content);
// }
if (previous_msg.reasoning_content != new_msg.reasoning_content) {
auto & diff = diffs.emplace_back();
diff.reasoning_content_delta = string_diff(previous_msg.reasoning_content, new_msg.reasoning_content);
}
if (previous_msg.content != new_msg.content) {
auto & diff = diffs.emplace_back();
diff.content_delta = string_diff(previous_msg.content, new_msg.content);
@@ -385,9 +385,9 @@ json common_chat_tools_to_json_oaicompat(const std::vector<common_chat_tool> & t
template <> json common_chat_msg_diff_to_json_oaicompat(const common_chat_msg_diff & diff) {
json delta = json::object();
// if (!diff.reasoning_content_delta.empty()) {
// delta["reasoning_content"] = msg.reasoning_content;
// }
if (!diff.reasoning_content_delta.empty()) {
delta["reasoning_content"] = diff.reasoning_content_delta;
}
if (!diff.content_delta.empty()) {
delta["content"] = diff.content_delta;
}
@@ -598,6 +598,7 @@ const char * common_reasoning_format_name(common_reasoning_format format) {
switch (format) {
case COMMON_REASONING_FORMAT_NONE: return "none";
case COMMON_REASONING_FORMAT_DEEPSEEK: return "deepseek";
case COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY: return "deepseek-legacy";
default:
throw std::runtime_error("Unknown reasoning format");
}
@@ -1837,7 +1838,7 @@ static common_chat_params common_chat_templates_apply_legacy(
if (res < 0) {
// if the custom "tmpl" is not supported, we throw an error
// this is a bit redundant (for good), since we're not sure if user validated the custom template with llama_chat_verify_template()
throw std::runtime_error("this custom template is not supported");
throw std::runtime_error("this custom template is not supported, try using --jinja");
}
// if it turns out that our buffer is too small, we resize it
@@ -1920,7 +1921,9 @@ common_chat_msg common_chat_parse(const std::string & input, bool is_partial, co
} catch (const common_chat_msg_partial_exception & ex) {
LOG_DBG("Partial parse: %s\n", ex.what());
if (!is_partial) {
throw std::runtime_error(ex.what());
builder.clear_tools();
builder.move_to(0);
common_chat_parse_content_only(builder);
}
}
auto msg = builder.result();

View File

@@ -70,7 +70,7 @@ struct common_chat_msg {
};
struct common_chat_msg_diff {
// std::string reasoning_content_delta;
std::string reasoning_content_delta;
std::string content_delta;
size_t tool_call_index = std::string::npos;
common_chat_tool_call tool_call_delta;

View File

@@ -1,24 +0,0 @@
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake)
set(TEMPLATE_FILE "${CMAKE_CURRENT_SOURCE_DIR}/common/build-info.cpp.in")
set(OUTPUT_FILE "${CMAKE_CURRENT_SOURCE_DIR}/common/build-info.cpp")
# Only write the build info if it changed
if(EXISTS ${OUTPUT_FILE})
file(READ ${OUTPUT_FILE} CONTENTS)
string(REGEX MATCH "LLAMA_COMMIT = \"([^\"]*)\";" _ ${CONTENTS})
set(OLD_COMMIT ${CMAKE_MATCH_1})
string(REGEX MATCH "LLAMA_COMPILER = \"([^\"]*)\";" _ ${CONTENTS})
set(OLD_COMPILER ${CMAKE_MATCH_1})
string(REGEX MATCH "LLAMA_BUILD_TARGET = \"([^\"]*)\";" _ ${CONTENTS})
set(OLD_TARGET ${CMAKE_MATCH_1})
if (
NOT OLD_COMMIT STREQUAL BUILD_COMMIT OR
NOT OLD_COMPILER STREQUAL BUILD_COMPILER OR
NOT OLD_TARGET STREQUAL BUILD_TARGET
)
configure_file(${TEMPLATE_FILE} ${OUTPUT_FILE})
endif()
else()
configure_file(${TEMPLATE_FILE} ${OUTPUT_FILE})
endif()

View File

@@ -203,6 +203,7 @@ bool set_process_priority(enum ggml_sched_priority prio) {
DWORD p = NORMAL_PRIORITY_CLASS;
switch (prio) {
case GGML_SCHED_PRIO_LOW: p = BELOW_NORMAL_PRIORITY_CLASS; break;
case GGML_SCHED_PRIO_NORMAL: p = NORMAL_PRIORITY_CLASS; break;
case GGML_SCHED_PRIO_MEDIUM: p = ABOVE_NORMAL_PRIORITY_CLASS; break;
case GGML_SCHED_PRIO_HIGH: p = HIGH_PRIORITY_CLASS; break;
@@ -228,6 +229,7 @@ bool set_process_priority(enum ggml_sched_priority prio) {
int p = 0;
switch (prio) {
case GGML_SCHED_PRIO_LOW: p = 5; break;
case GGML_SCHED_PRIO_NORMAL: p = 0; break;
case GGML_SCHED_PRIO_MEDIUM: p = -5; break;
case GGML_SCHED_PRIO_HIGH: p = -10; break;
@@ -464,7 +466,7 @@ size_t string_find_partial_stop(const std::string_view & str, const std::string_
std::string regex_escape(const std::string & s) {
static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]");
return std::regex_replace(s, special_chars, "\\$0");
return std::regex_replace(s, special_chars, "\\$&");
}
std::string string_join(const std::vector<std::string> & values, const std::string & separator) {
@@ -765,6 +767,9 @@ bool fs_validate_filename(const std::string & filename) {
return true;
}
#include <iostream>
// returns true if successful, false otherwise
bool fs_create_directory_with_parents(const std::string & path) {
#ifdef _WIN32
@@ -782,9 +787,16 @@ bool fs_create_directory_with_parents(const std::string & path) {
// process path from front to back, procedurally creating directories
while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
const std::wstring subpath = wpath.substr(0, pos_slash);
const wchar_t * test = subpath.c_str();
const bool success = CreateDirectoryW(test, NULL);
pos_slash += 1;
// skip the drive letter, in some systems it can return an access denied error
if (subpath.length() == 2 && subpath[1] == ':') {
continue;
}
const bool success = CreateDirectoryW(subpath.c_str(), NULL);
if (!success) {
const DWORD error = GetLastError();
@@ -798,8 +810,6 @@ bool fs_create_directory_with_parents(const std::string & path) {
return false;
}
}
pos_slash += 1;
}
return true;
@@ -895,34 +905,6 @@ struct common_init_result common_init_from_params(common_params & params) {
const llama_vocab * vocab = llama_model_get_vocab(model);
if (params.reranking) {
bool ok = true;
if (llama_vocab_bos(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have a BOS token, reranking will not work\n", __func__);
ok = false;
}
bool has_eos = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
bool has_sep = llama_vocab_sep(vocab) != LLAMA_TOKEN_NULL;
if (!has_eos && !has_sep) {
LOG_WRN("%s: warning: vocab does not have an EOS token or SEP token, reranking will not work\n", __func__);
ok = false;
} else if (!has_eos) {
LOG_WRN("%s: warning: vocab does not have an EOS token, using SEP token as fallback\n", __func__);
} else if (!has_sep) {
LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
ok = false;
}
if (!ok) {
llama_model_free(model);
return iparams;
}
}
auto cparams = common_context_params_to_llama(params);
llama_context * lctx = llama_init_from_model(model, cparams);
@@ -932,7 +914,7 @@ struct common_init_result common_init_from_params(common_params & params) {
return iparams;
}
if (params.ctx_shift && !llama_kv_self_can_shift(lctx)) {
if (params.ctx_shift && !llama_memory_can_shift(llama_get_memory(lctx))) {
LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__);
params.ctx_shift = false;
}
@@ -964,6 +946,35 @@ struct common_init_result common_init_from_params(common_params & params) {
}
}
if (llama_pooling_type(lctx) == LLAMA_POOLING_TYPE_RANK) {
bool ok = true;
if (llama_vocab_bos(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have a BOS token, reranking will not work\n", __func__);
ok = false;
}
bool has_eos = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
bool has_sep = llama_vocab_sep(vocab) != LLAMA_TOKEN_NULL;
if (!has_eos && !has_sep) {
LOG_WRN("%s: warning: vocab does not have an EOS token or SEP token, reranking will not work\n", __func__);
ok = false;
} else if (!has_eos) {
LOG_WRN("%s: warning: vocab does not have an EOS token, using SEP token as fallback\n", __func__);
} else if (!has_sep) {
LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
ok = false;
}
if (!ok) {
llama_free(lctx);
llama_model_free(model);
return iparams;
}
}
// load and optionally apply lora adapters
for (auto & la : params.lora_adapters) {
llama_adapter_lora_ptr lora;
@@ -1039,7 +1050,7 @@ struct common_init_result common_init_from_params(common_params & params) {
if (llama_model_has_decoder(model)) {
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch)));
}
llama_kv_self_clear(lctx);
llama_memory_clear(llama_get_memory(lctx), true);
llama_synchronize(lctx);
llama_perf_context_reset(lctx);
llama_set_warmup(lctx, false);
@@ -1141,11 +1152,6 @@ struct llama_context_params common_context_params_to_llama(const common_params &
cparams.op_offload = !params.no_op_offload;
cparams.swa_full = params.swa_full;
if (params.reranking) {
cparams.embeddings = true;
cparams.pooling_type = LLAMA_POOLING_TYPE_RANK;
}
cparams.type_k = params.cache_type_k;
cparams.type_v = params.cache_type_v;

View File

@@ -215,7 +215,8 @@ struct common_params_vocoder {
enum common_reasoning_format {
COMMON_REASONING_FORMAT_NONE,
COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`
COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY, // Extract thinking tag contents and return as `message.reasoning_content`, or leave inline in <think> tags in stream mode
COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`, including in streaming deltas.
};
struct common_params {
@@ -354,7 +355,6 @@ struct common_params {
int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
std::string embd_sep = "\n"; // separator of embeddings
bool reranking = false; // enable reranking support on server
// server params
int32_t port = 8080; // server listens on this network port

View File

@@ -144,6 +144,8 @@ llama_tokens common_speculative_gen_draft(
auto & smpl = spec->smpl;
auto & prompt = spec->prompt;
auto * mem = llama_get_memory(ctx);
int reuse_i = 0;
int reuse_n = 0;
@@ -173,7 +175,7 @@ llama_tokens common_speculative_gen_draft(
result.reserve(params.n_draft);
if (reuse_n == 0) {
llama_kv_self_clear(ctx);
llama_memory_clear(mem, false);
prompt.clear();
} else {
@@ -192,14 +194,14 @@ llama_tokens common_speculative_gen_draft(
}
if (reuse_i > 0) {
llama_kv_self_seq_rm (ctx, 0, 0, reuse_i);
llama_kv_self_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
llama_memory_seq_rm (mem, 0, 0, reuse_i);
llama_memory_seq_add(mem, 0, reuse_i, -1, -reuse_i);
prompt.erase(prompt.begin(), prompt.begin() + reuse_i);
}
if (reuse_n < (int) prompt.size()) {
llama_kv_self_seq_rm (ctx, 0, reuse_n, -1);
llama_memory_seq_rm (mem, 0, reuse_n, -1);
prompt.erase(prompt.begin() + reuse_n, prompt.end());
}

View File

@@ -519,7 +519,7 @@ class TextModel(ModelBase):
def set_gguf_parameters(self):
self.gguf_writer.add_block_count(self.block_count)
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions"], optional=True)) is not None:
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
self.gguf_writer.add_context_length(n_ctx)
logger.info(f"gguf: context length = {n_ctx}")
@@ -1898,9 +1898,7 @@ class LlamaModel(TextModel):
hparams = self.hparams
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
if "head_dim" in hparams:
rope_dim = hparams["head_dim"]
else:
if (rope_dim := hparams.get("head_dim")) is None:
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(rope_dim)
@@ -1982,7 +1980,8 @@ class LlamaModel(TextModel):
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
if rope_scaling.get("rope_type", '').lower() == "llama3":
base = self.hparams.get("rope_theta", 10000.0)
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
if (dim := self.hparams.get("head_dim")) is None:
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
factor = rope_scaling.get("factor", 8.0)
@@ -2017,6 +2016,20 @@ class LlamaModel(TextModel):
raise ValueError(f"Unprocessed experts: {experts}")
@ModelBase.register("ArceeForCausalLM")
class ArceeModel(LlamaModel):
model_arch = gguf.MODEL_ARCH.ARCEE
def set_gguf_parameters(self):
super().set_gguf_parameters()
self._try_set_pooling_type()
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
@ModelBase.register(
"LlavaForConditionalGeneration", # pixtral
"Mistral3ForConditionalGeneration", # mistral small 3.1
@@ -2304,9 +2317,7 @@ class DeciModel(TextModel):
hparams = self.hparams
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
if "head_dim" in hparams:
rope_dim = hparams["head_dim"]
else:
if (rope_dim := hparams.get("head_dim")) is None:
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(rope_dim)
@@ -2346,7 +2357,8 @@ class DeciModel(TextModel):
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
if rope_scaling.get("rope_type", '').lower() == "llama3":
base = self.hparams.get("rope_theta", 10000.0)
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
if (dim := self.hparams.get("head_dim")) is None:
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
factor = rope_scaling.get("factor", 8.0)
@@ -3664,9 +3676,7 @@ class InternLM3Model(TextModel):
hparams = self.hparams
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
if "head_dim" in hparams:
rope_dim = hparams["head_dim"]
else:
if (rope_dim := hparams.get("head_dim")) is None:
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(rope_dim)
@@ -3709,8 +3719,7 @@ class BertModel(TextModel):
self._try_set_pooling_type()
if self.cls_out_labels:
key_name = gguf.Keys.Classifier.OUTPUT_LABELS.format(arch = gguf.MODEL_ARCH_NAMES[self.model_arch])
self.gguf_writer.add_array(key_name, [v for k, v in sorted(self.cls_out_labels.items())])
self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
def set_vocab(self):
tokens, toktypes, tokpre = self.get_vocab_base()
@@ -3814,7 +3823,7 @@ class BertModel(TextModel):
remove_whitespaces = tokenizer.clean_up_tokenization_spaces
precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
vocab_size = self.hparams.get("vocab_size", tokenizer.vocab_size)
vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
else:
sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
@@ -3827,7 +3836,7 @@ class BertModel(TextModel):
tokenizer = SentencePieceProcessor()
tokenizer.LoadFromFile(str(tokenizer_path))
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
scores: list[float] = [-10000.0] * vocab_size
@@ -3857,33 +3866,26 @@ class BertModel(TextModel):
unk_token = tokenizer_config_json.get("unk_token")
unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
for token_id in range(vocab_size):
for token_id in range(tokenizer.vocab_size):
piece = tokenizer._convert_id_to_token(token_id)
text = piece.encode("utf-8")
score = tokenizer_json["model"]["vocab"][token_id][1]
if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
text = piece.encode("utf-8")
score = tokenizer_json["model"]["vocab"][token_id][1]
toktype = SentencePieceTokenTypes.NORMAL
if token_id == unk_token_id:
toktype = SentencePieceTokenTypes.UNKNOWN
elif token_id in tokenizer.all_special_ids:
toktype = SentencePieceTokenTypes.CONTROL
elif token_id in added_vocab.values():
toktype = SentencePieceTokenTypes.USER_DEFINED
# No reliable way to detect this, but jina doesn't have any
# elif tokenizer.IsByte(token_id):
# toktype = SentencePieceTokenTypes.BYTE
toktype = SentencePieceTokenTypes.NORMAL
if token_id == unk_token_id:
toktype = SentencePieceTokenTypes.UNKNOWN
elif token_id in tokenizer.all_special_ids:
toktype = SentencePieceTokenTypes.CONTROL
elif token_id in added_vocab.values():
toktype = SentencePieceTokenTypes.USER_DEFINED
# No reliable way to detect this, but jina doesn't have any
# elif tokenizer.IsByte(token_id):
# toktype = SentencePieceTokenTypes.BYTE
tokens[token_id] = text
scores[token_id] = score
toktypes[token_id] = toktype
if vocab_size > len(tokens):
pad_count = vocab_size - len(tokens)
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
for i in range(1, pad_count + 1):
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
scores.append(-1000.0)
toktypes.append(SentencePieceTokenTypes.UNUSED)
tokens[token_id] = text
scores[token_id] = score
toktypes[token_id] = toktype
if isinstance(tokenizer, SentencePieceProcessor):
# realign tokens (see HF tokenizer code)
@@ -3896,6 +3898,12 @@ class BertModel(TextModel):
SentencePieceTokenTypes.UNKNOWN,
] + toktypes[3:-1]
if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
# Add mask token missing from sentencepiece.bpe.model
tokens[250001] = b'<mask>'
scores[250001] = 0.0
toktypes[250001] = SentencePieceTokenTypes.CONTROL
self.gguf_writer.add_tokenizer_model("t5")
self.gguf_writer.add_tokenizer_pre("default")
self.gguf_writer.add_token_list(tokens)
@@ -4061,6 +4069,34 @@ class NomicBertModel(BertModel):
raise ValueError(f"unknown tokenizer: {toktyp}")
@ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
class NeoBert(BertModel):
model_arch = gguf.MODEL_ARCH.NEO_BERT
def set_gguf_parameters(self):
super().set_gguf_parameters()
# NeoBERT uses 2/3 of the intermediate size as feed forward length
self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
def modify_tensors(self, data_torch, name, bid):
if name.startswith("decoder."):
return []
if name.startswith("model."):
name = name[6:]
return super().modify_tensors(data_torch, name, bid)
@ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
class XLMRobertaModel(BertModel):
model_arch = gguf.MODEL_ARCH.BERT
@@ -4800,25 +4836,6 @@ class OlmoeModel(TextModel):
class JinaBertV2Model(BertModel):
model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.intermediate_size = self.hparams["intermediate_size"]
def get_tensors(self):
for name, data in super().get_tensors():
if 'gated_layer' in name:
d1 = data[:self.intermediate_size, :]
name1 = name.replace('gated_layers', 'gated_layers_w')
name1 = name1.replace('up_gated_layer', 'gated_layers_v')
d2 = data[self.intermediate_size:, :]
name2 = name.replace('gated_layers', 'gated_layers_v')
name2 = name2.replace('up_gated_layer', 'gated_layers_w')
yield name1, d1
yield name2, d2
continue
yield name, data
def set_vocab(self):
tokenizer_class = 'BertTokenizer'
with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
@@ -4834,14 +4851,6 @@ class JinaBertV2Model(BertModel):
self.gguf_writer.add_add_bos_token(True)
self.gguf_writer.add_add_eos_token(True)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# if name starts with "bert.", remove the prefix
# e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
if name.startswith("bert."):
name = name[5:]
return super().modify_tensors(data_torch, name, bid)
@ModelBase.register("OpenELMForCausalLM")
class OpenELMModel(TextModel):
@@ -5082,9 +5091,7 @@ class DeepseekModel(TextModel):
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
if "head_dim" in hparams:
rope_dim = hparams["head_dim"]
else:
if (rope_dim := hparams.get("head_dim")) is None:
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(rope_dim)
@@ -5288,6 +5295,34 @@ class DeepseekV2Model(TextModel):
raise ValueError(f"Unprocessed experts: {experts}")
@ModelBase.register("Dots1ForCausalLM")
class Dots1Model(Qwen2MoeModel):
model_arch = gguf.MODEL_ARCH.DOTS1
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.hparams["num_experts"] = self.hparams["n_routed_experts"]
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
if self.hparams["scoring_func"] == "noaux_tc":
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
else:
raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
if name.endswith("e_score_correction_bias"):
name = name.replace("e_score_correction_bias", "e_score_correction.bias")
if "shared_experts" in name:
return [(self.map_tensor_name(name), data_torch)]
return super().modify_tensors(data_torch, name, bid)
@ModelBase.register("PLMForCausalLM")
class PLMModel(TextModel):
model_arch = gguf.MODEL_ARCH.PLM
@@ -5946,7 +5981,8 @@ class ExaoneModel(TextModel):
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
if rope_scaling.get("rope_type", '').lower() == "llama3":
base = self.hparams.get("rope_theta", 10000.0)
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
if (dim := self.hparams.get("head_dim")) is None:
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
factor = rope_scaling.get("factor", 8.0)
@@ -6058,7 +6094,8 @@ class BailingMoeModel(TextModel):
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
if (rope_dim := hparams.get("head_dim")) is None:
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(rope_dim)
rope_scaling = self.hparams.get("rope_scaling") or {}
@@ -6090,7 +6127,8 @@ class BailingMoeModel(TextModel):
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams.get("num_key_value_heads")
n_embd = self.hparams["hidden_size"]
head_dim = self.hparams.get("head_dim") or n_embd // n_head
if (head_dim := self.hparams.get("head_dim")) is None:
head_dim = n_embd // n_head
output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)

View File

@@ -8,6 +8,7 @@
- [DataType Supports](#datatype-supports)
- [Docker](#docker)
- [Linux](#linux)
- [Environment variable setup](#environment-variable-setup)
- [TODO](#todo)
@@ -290,5 +291,24 @@ Authors from Peking University: Bizhao Shi (bshi@pku.edu.cn), Yuxin Yang (yxyang
We would like to thank Tuo Dai, Shanni Li, and all of the project maintainers from Huawei Technologies Co., Ltd for their help during the code development and pull request.
## Environment variable setup
### GGML_CANN_ASYNC_MODE
Enables asynchronous operator submission. Disabled by default.
### GGML_CANN_MEM_POOL
Specifies the memory pool management strategy:
- vmm: Utilizes a virtual memory manager pool. If hardware support for VMM is unavailable, falls back to the legacy (leg) memory pool.
- prio: Employs a priority queue-based memory pool management.
- leg: Uses a fixed-size buffer pool.
### GGML_CANN_DISABLE_BUF_POOL_CLEAN
Controls automatic cleanup of the memory pool. This option is only effective when using the prio or leg memory pool strategies.
## TODO
- Support more models and data types.

View File

@@ -1,5 +1,9 @@
# Build llama.cpp locally
The main product of this project is the `llama` library. Its C-style interface can be found in [include/llama.h](include/llama.h).
The project also includes many example programs and tools using the `llama` library. The examples range from simple, minimal code snippets to sophisticated sub-projects such as an OpenAI-compatible HTTP server.
**To get the Code:**
```bash
@@ -63,6 +67,7 @@ cmake --build build --config Release
cmake --preset x64-windows-llvm-release
cmake --build build-x64-windows-llvm-release
```
- Curl usage is enabled by default and can be turned off with `-DLLAMA_CURL=OFF`. Otherwise you need to install development libraries for libcurl.
## BLAS Build

View File

@@ -11,7 +11,7 @@ Function calling is supported for all models (see https://github.com/ggml-org/ll
- Llama 3.1 / 3.3 (including builtin tools support - tool names for `wolfram_alpha`, `web_search` / `brave_search`, `code_interpreter`), Llama 3.2
- Functionary v3.1 / v3.2
- Hermes 2/3, Qwen 2.5
- Qwen 2.5 Coder (WIP: https://github.com/ggml-org/llama.cpp/pull/12034)
- Qwen 2.5 Coder
- Mistral Nemo
- Firefunction v2
- Command R7B

View File

@@ -1,28 +1,42 @@
# Install pre-built version of llama.cpp
## Homebrew
| Install via | Windows | Mac | Linux |
|-------------|---------|-----|-------|
| Winget | ✅ | | |
| Homebrew | | ✅ | ✅ |
| MacPorts | | ✅ | |
| Nix | | ✅ | ✅ |
On Mac and Linux, the homebrew package manager can be used via
## Winget (Windows)
```sh
winget install llama.cpp
```
The package is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggml-org/llama.cpp/issues/8188
## Homebrew (Mac and Linux)
```sh
brew install llama.cpp
```
The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggml-org/llama.cpp/discussions/7668
## MacPorts
## MacPorts (Mac)
```sh
sudo port install llama.cpp
```
see also: https://ports.macports.org/port/llama.cpp/details/
## Nix
See also: https://ports.macports.org/port/llama.cpp/details/
On Mac and Linux, the Nix package manager can be used via
## Nix (Mac and Linux)
```sh
nix profile install nixpkgs#llama-cpp
```
For flake enabled installs.
Or
@@ -34,13 +48,3 @@ nix-env --file '<nixpkgs>' --install --attr llama-cpp
For non-flake enabled installs.
This expression is automatically updated within the [nixpkgs repo](https://github.com/NixOS/nixpkgs/blob/nixos-24.05/pkgs/by-name/ll/llama-cpp/package.nix#L164).
## Flox
On Mac and Linux, Flox can be used to install llama.cpp within a Flox environment via
```sh
flox install llama-cpp
```
Flox follows the nixpkgs build of llama.cpp.

View File

@@ -107,3 +107,7 @@ NOTE: some models may require large context window, for example: `-c 8192`
(tool_name) -hf ggml-org/Qwen2.5-Omni-3B-GGUF
(tool_name) -hf ggml-org/Qwen2.5-Omni-7B-GGUF
```
## Finding more models:
GGUF models on Huggingface with vision capabilities can be found here: https://huggingface.co/models?pipeline_tag=image-text-to-text&sort=trending&search=gguf

View File

@@ -116,7 +116,7 @@ if llama_decode(context, batch) != 0 {
}
for i in 1 ..< n_parallel {
llama_kv_self_seq_cp(context, 0, Int32(i), 0, batch.n_tokens)
llama_memory_seq_cp(llama_get_memory(context), 0, Int32(i), 0, batch.n_tokens)
}
if n_parallel > 1 {

View File

@@ -37,7 +37,7 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_self_clear(ctx);
llama_memory_clear(llama_get_memory(ctx), true);
// run model
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
@@ -236,9 +236,24 @@ int main(int argc, char ** argv) {
LOG("\n");
}
} else if (pooling_type == LLAMA_POOLING_TYPE_RANK) {
const uint32_t n_cls_out = llama_model_n_cls_out(model);
std::vector<std::string> cls_out_labels;
for (uint32_t i = 0; i < n_cls_out; i++) {
const char * label = llama_model_cls_label(model, i);
const std::string label_i(label == nullptr ? "" : label);
cls_out_labels.emplace_back(label_i.empty() ? std::to_string(i) : label_i);
}
for (int j = 0; j < n_embd_count; j++) {
// NOTE: if you change this log - update the tests in ci/run.sh
LOG("rerank score %d: %8.3f\n", j, emb[j * n_embd]);
for (uint32_t i = 0; i < n_cls_out; i++) {
// NOTE: if you change this log - update the tests in ci/run.sh
if (n_cls_out == 1) {
LOG("rerank score %d: %8.3f\n", j, emb[j * n_embd]);
} else {
LOG("rerank score %d: %8.3f [%s]\n", j, emb[j * n_embd + i], cls_out_labels[i].c_str());
}
}
}
} else {
// print the first part of the embeddings or for a single prompt, the full embedding

View File

@@ -41,12 +41,11 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
// add input to batch (this increments n_tokens)
for (int32_t j = 0; j < n_toks; j++) {
common_batch_add(batch, inputs[j], j, { 0 }, j >= n_inst);
common_batch_add(batch, inputs[j], j, { 0 }, true);
}
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_self_clear(ctx);
llama_set_embeddings(ctx, true);
llama_memory_clear(llama_get_memory(ctx), true);
llama_set_causal_attn(ctx, false);
// run model
@@ -102,8 +101,7 @@ static std::string generate(llama_context * ctx, llama_sampler * smpl, const std
llama_token eos_token = llama_vocab_eos(vocab);
llama_kv_self_clear(ctx);
llama_set_embeddings(ctx, false);
llama_memory_clear(llama_get_memory(ctx), true);
llama_set_causal_attn(ctx, true);
llama_batch bat = llama_batch_init(llama_n_batch(ctx), 0, 1);
@@ -166,6 +164,8 @@ int main(int argc, char * argv[]) {
llama_model_params mparams = common_model_params_to_llama(params);
llama_context_params cparams = common_context_params_to_llama(params);
cparams.embeddings = true;
llama_backend_init();
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
@@ -213,6 +213,8 @@ int main(int argc, char * argv[]) {
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[1].c_str(), documents[1].c_str(), cosine_sim_q1_d1);
}
llama_set_embeddings(ctx, false);
// ### Generation ###
// GritLM models are not finetuned with system prompts, as you can just include system-like instructions together with your user instruction
{

View File

@@ -194,7 +194,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
}
batch->logits[batch->n_tokens - 1] = true;
llama_kv_self_clear(context);
llama_memory_clear(llama_get_memory(context), false);
const auto t_pp_start = ggml_time_us();
if (llama_decode(context, *batch) != 0) {
@@ -206,7 +206,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
LOGi("Benchmark text generation (tg)");
llama_kv_self_clear(context);
llama_memory_clear(llama_get_memory(context), false);
const auto t_tg_start = ggml_time_us();
for (i = 0; i < tg; i++) {
@@ -223,7 +223,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
const auto t_tg_end = ggml_time_us();
llama_kv_self_clear(context);
llama_memory_clear(llama_get_memory(context), false);
const auto t_pp = double(t_pp_end - t_pp_start) / 1000000.0;
const auto t_tg = double(t_tg_end - t_tg_start) / 1000000.0;
@@ -448,5 +448,5 @@ Java_android_llama_cpp_LLamaAndroid_completion_1loop(
extern "C"
JNIEXPORT void JNICALL
Java_android_llama_cpp_LLamaAndroid_kv_1cache_1clear(JNIEnv *, jobject, jlong context) {
llama_kv_self_clear(reinterpret_cast<llama_context *>(context));
llama_memory_clear(llama_get_memory(reinterpret_cast<llama_context *>(context)), true);
}

View File

@@ -210,7 +210,7 @@ actor LlamaContext {
}
batch.logits[Int(batch.n_tokens) - 1] = 1 // true
llama_kv_self_clear(context)
llama_memory_clear(llama_get_memory(context), false)
let t_pp_start = DispatchTime.now().uptimeNanoseconds / 1000;
@@ -223,7 +223,7 @@ actor LlamaContext {
// bench text generation
llama_kv_self_clear(context)
llama_memory_clear(llama_get_memory(context), false)
let t_tg_start = DispatchTime.now().uptimeNanoseconds / 1000;
@@ -242,7 +242,7 @@ actor LlamaContext {
let t_tg_end = DispatchTime.now().uptimeNanoseconds / 1000;
llama_kv_self_clear(context)
llama_memory_clear(llama_get_memory(context), false)
let t_pp = Double(t_pp_end - t_pp_start) / 1000000.0
let t_tg = Double(t_tg_end - t_tg_start) / 1000000.0
@@ -292,7 +292,7 @@ actor LlamaContext {
func clear() {
tokens_list.removeAll()
temporary_invalid_cchars.removeAll()
llama_kv_self_clear(context)
llama_memory_clear(llama_get_memory(context), true)
}
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {

View File

@@ -60,6 +60,8 @@ int main(int argc, char ** argv) {
llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context.get();
auto * mem = llama_get_memory(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
// Tokenize the prompt
@@ -94,7 +96,7 @@ int main(int argc, char ** argv) {
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1));
for (int s = 1; s < W + G + 1; ++s) {
llama_kv_self_seq_cp(ctx, 0, s, -1, -1);
llama_memory_seq_cp(mem, 0, s, -1, -1);
}
const auto t_enc_end = ggml_time_us();
@@ -427,17 +429,17 @@ int main(int argc, char ** argv) {
// KV cache management
// if no verification token matched, we simply remove all cells from this batch -> no fragmentation
llama_kv_self_seq_rm(ctx, -1, n_past, -1);
llama_memory_seq_rm(mem, -1, n_past, -1);
if (seq_id_best != 0) {
// if a verification token matched, we keep the best sequence and remove the rest
// this leads to some KV cache fragmentation
llama_kv_self_seq_keep(ctx, seq_id_best);
llama_kv_self_seq_cp (ctx, seq_id_best, 0, -1, -1);
llama_kv_self_seq_rm (ctx, seq_id_best, -1, -1);
llama_memory_seq_keep(mem, seq_id_best);
llama_memory_seq_cp (mem, seq_id_best, 0, -1, -1);
llama_memory_seq_rm (mem, seq_id_best, -1, -1);
for (int s = 1; s < W + G + 1; ++s) {
llama_kv_self_seq_cp(ctx, 0, s, -1, -1);
llama_memory_seq_cp(mem, 0, s, -1, -1);
}
}
}

View File

@@ -181,7 +181,7 @@ int main(int argc, char ** argv){
// KV cache management
// clean the cache of draft tokens that weren't accepted
llama_kv_self_seq_rm(ctx, 0, n_past, -1);
llama_memory_seq_rm(llama_get_memory(ctx), 0, n_past, -1);
common_batch_clear(batch_tgt);
common_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);

View File

@@ -158,7 +158,7 @@ int main(int argc, char ** argv) {
common_params params;
params.n_predict = 128;
params.n_junk = 0;
params.n_junk = 1;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PARALLEL)) {
return 1;
@@ -182,7 +182,7 @@ int main(int argc, char ** argv) {
const bool is_sp_shared = params.is_pp_shared;
// extra text to insert in each client's prompt in order to make it larger
const int32_t n_junk = params.n_junk;
const int32_t n_junk = std::max(1, params.n_junk);
// init llama.cpp
llama_backend_init();
@@ -194,6 +194,8 @@ int main(int argc, char ** argv) {
llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context.get();
auto * mem = llama_get_memory(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
// load the prompts from an external file if there are any
@@ -259,7 +261,7 @@ int main(int argc, char ** argv) {
// assign the system KV cache to all parallel sequences
for (int32_t i = 1; i <= n_clients; ++i) {
llama_kv_self_seq_cp(ctx, 0, i, -1, -1);
llama_memory_seq_cp(mem, 0, i, -1, -1);
}
LOG_INF("\n");
@@ -286,9 +288,9 @@ int main(int argc, char ** argv) {
if (batch.n_tokens == 0) {
// all sequences have ended - clear the entire KV cache
for (int i = 1; i <= n_clients; ++i) {
llama_kv_self_seq_rm(ctx, i, -1, -1);
llama_memory_seq_rm(mem, i, -1, -1);
// but keep the system prompt
llama_kv_self_seq_cp(ctx, 0, i, -1, -1);
llama_memory_seq_cp(mem, 0, i, -1, -1);
}
LOG_INF("%s: clearing the KV cache\n", __func__);
@@ -362,7 +364,9 @@ int main(int argc, char ** argv) {
// process in chunks of params.n_batch
int32_t n_batch = params.n_batch;
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
int32_t i_next = 0;
for (int32_t i = 0; i < batch.n_tokens; i = i_next) {
// experiment: process in powers of 2
//if (i + n_batch > (int32_t) batch.n_tokens && n_batch > 32) {
// n_batch /= 2;
@@ -370,7 +374,7 @@ int main(int argc, char ** argv) {
// continue;
//}
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
llama_batch batch_view = {
n_tokens,
@@ -390,19 +394,24 @@ int main(int argc, char ** argv) {
return 1;
}
LOG_ERR("%s : failed to decode the batch, retrying with n_batch = %d\n", __func__, n_batch / 2);
LOG_WRN("%s : failed to decode the batch, retrying with n_batch = %d\n", __func__, n_batch / 2);
n_cache_miss += 1;
// retry with half the batch size to try to find a free slot in the KV cache
n_batch /= 2;
i -= n_batch;
continue;
}
LOG_DBG("%s : decoded batch of %d tokens\n", __func__, n_tokens);
// move the head of the batch forward with the number of tokens we just processed
i_next = i + n_tokens;
// on successful decode, restore the original batch size
n_batch = params.n_batch;
for (auto & client : clients) {
if (client.i_batch < (int) i || client.i_batch >= (int) (i + n_tokens)) {
continue;
@@ -440,8 +449,8 @@ int main(int argc, char ** argv) {
}
// delete only the generated part of the sequence, i.e. keep the system prompt in the cache
llama_kv_self_seq_rm(ctx, client.id + 1, -1, -1);
llama_kv_self_seq_cp(ctx, 0, client.id + 1, -1, -1);
llama_memory_seq_rm(mem, client.id + 1, -1, -1);
llama_memory_seq_cp(mem, 0, client.id + 1, -1, -1);
const auto t_main_end = ggml_time_us();

View File

@@ -126,6 +126,8 @@ int main(int argc, char ** argv) {
int n_past = 0;
auto * mem = llama_get_memory(ctx);
// fill the KV cache
for (int i = 0; i < n_ctx; i += n_batch) {
if (i > 0 && n_grp > 1) {
@@ -133,11 +135,10 @@ int main(int argc, char ** argv) {
const int ib = i/n_batch - 1;
const int bd = n_batch_grp*(n_grp - 1);
llama_kv_self_seq_add (ctx, 0, n_past - n_batch, n_past, ib*bd);
llama_kv_self_seq_div (ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
llama_kv_self_update (ctx);
llama_memory_seq_add(mem, 0, n_past - n_batch, n_past, ib*bd);
llama_memory_seq_div(mem, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
n_past = llama_memory_seq_pos_max(mem, 0) + 1;
}
common_batch_clear(batch);
@@ -167,12 +168,10 @@ int main(int argc, char ** argv) {
LOG_INF("%s: shifting KV cache with %d\n", __func__, n_discard);
llama_kv_self_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
llama_kv_self_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
//llama_kv_self_defrag (ctx);
llama_kv_self_update (ctx);
llama_memory_seq_rm (mem, 0, n_keep , n_keep + n_discard);
llama_memory_seq_add(mem, 0, n_keep + n_discard, n_ctx, -n_discard);
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
n_past = llama_memory_seq_pos_max(mem, 0) + 1;
common_batch_clear(batch);
@@ -198,12 +197,10 @@ int main(int argc, char ** argv) {
if (n_discard > 0) {
LOG_INF("%s: shifting KV cache with %d to free space for the answer\n", __func__, n_discard);
llama_kv_self_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
llama_kv_self_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
//llama_kv_self_defrag (ctx);
llama_kv_self_update (ctx);
llama_memory_seq_rm (mem, 0, n_keep , n_keep + n_discard);
llama_memory_seq_add(mem, 0, n_keep + n_discard, n_ctx, -n_discard);
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
n_past = llama_memory_seq_pos_max(mem, 0) + 1;
}
}

View File

@@ -83,7 +83,7 @@ static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & toke
static void batch_process(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_self_clear(ctx);
llama_memory_clear(llama_get_memory(ctx), false);
// run model
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);

View File

@@ -196,7 +196,7 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s : seq 0 copied, %zd bytes\n", __func__, ncopy);
// erase whole kv
llama_kv_self_clear(ctx3);
llama_memory_clear(llama_get_memory(ctx3), true);
fprintf(stderr, "%s : kv cache cleared\n", __func__);
// restore kv into seq 1

View File

@@ -98,7 +98,7 @@ int main(int argc, char ** argv) {
auto generate = [&](const std::string & prompt) {
std::string response;
const bool is_first = llama_kv_self_seq_pos_max(ctx, 0) == 0;
const bool is_first = llama_memory_seq_pos_max(llama_get_memory(ctx), 0) == 0;
// tokenize the prompt
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true);
@@ -113,7 +113,7 @@ int main(int argc, char ** argv) {
while (true) {
// check if we have enough space in the context to evaluate this batch
int n_ctx = llama_n_ctx(ctx);
int n_ctx_used = llama_kv_self_seq_pos_max(ctx, 0);
int n_ctx_used = llama_memory_seq_pos_max(llama_get_memory(ctx), 0);
if (n_ctx_used + batch.n_tokens > n_ctx) {
printf("\033[0m\n");
fprintf(stderr, "context size exceeded\n");

View File

@@ -217,7 +217,7 @@ int main(int argc, char ** argv) {
{
LOG_DBG("clear kv cache from any extra tokens, n_past = %d\n", n_past);
llama_kv_self_seq_rm(ctx_tgt, 0, n_past, -1);
llama_memory_seq_rm(llama_get_memory(ctx_tgt), 0, n_past, -1);
}
if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {

View File

@@ -142,6 +142,8 @@ int main(int argc, char ** argv) {
}
}
auto * mem_tgt = llama_get_memory(ctx_tgt);
auto * mem_dft = llama_get_memory(ctx_dft);
// Tokenize the prompt
std::vector<llama_token> inp;
@@ -420,14 +422,14 @@ int main(int argc, char ** argv) {
{
LOG_DBG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft);
llama_kv_self_seq_keep(ctx_dft, s_keep);
llama_kv_self_seq_cp (ctx_dft, s_keep, 0, -1, -1);
llama_kv_self_seq_keep(ctx_dft, 0);
llama_memory_seq_keep(mem_dft, s_keep);
llama_memory_seq_cp (mem_dft, s_keep, 0, -1, -1);
llama_memory_seq_keep(mem_dft, 0);
llama_kv_self_seq_rm (ctx_tgt, s_keep, n_past_tgt, -1);
llama_kv_self_seq_keep(ctx_tgt, s_keep);
llama_kv_self_seq_cp (ctx_tgt, s_keep, 0, -1, -1);
llama_kv_self_seq_keep(ctx_tgt, 0);
llama_memory_seq_rm (mem_tgt, s_keep, n_past_tgt, -1);
llama_memory_seq_keep(mem_tgt, s_keep);
llama_memory_seq_cp (mem_tgt, s_keep, 0, -1, -1);
llama_memory_seq_keep(mem_tgt, 0);
}
for (int s = 0; s < n_seq_dft; ++s) {
@@ -444,7 +446,7 @@ int main(int argc, char ** argv) {
common_batch_clear(batch_dft);
common_batch_add (batch_dft, token_id, n_past_dft, { 0 }, true);
llama_kv_self_seq_rm(ctx_dft, 0, n_past_dft, -1);
llama_memory_seq_rm(mem_dft, 0, n_past_dft, -1);
// LOG_DBG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
llama_decode(ctx_dft, batch_dft);
@@ -503,8 +505,8 @@ int main(int argc, char ** argv) {
if (n_seq_cur < n_seq_dft && cur_p->data[f].p > p_draft_split) {
LOG_DBG("splitting seq %3d into %3d\n", s, n_seq_cur);
llama_kv_self_seq_rm(ctx_dft, n_seq_cur, -1, -1);
llama_kv_self_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);
llama_memory_seq_rm(mem_dft, n_seq_cur, -1, -1);
llama_memory_seq_cp(mem_dft, s, n_seq_cur, -1, -1);
// all previous tokens from this branch are now also part of the new branch
for (int t = 0; t < batch_tgt.n_tokens; ++t) {
@@ -585,9 +587,9 @@ int main(int argc, char ** argv) {
// evaluate the target model on the drafted tokens
{
llama_kv_self_seq_keep(ctx_tgt, 0);
llama_memory_seq_keep(mem_tgt, 0);
for (int s = 1; s < n_seq_dft; ++s) {
llama_kv_self_seq_cp(ctx_tgt, 0, s, -1, -1);
llama_memory_seq_cp(mem_tgt, 0, s, -1, -1);
}
// LOG_DBG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt).c_str());

View File

@@ -105,7 +105,7 @@ message(DEBUG "GGML_NATIVE_DEFAULT : ${GGML_NATIVE_DEFAULT}")
message(DEBUG "INS_ENB : ${INS_ENB}")
option(GGML_CPU_HBM "ggml: use memkind for CPU HBM" OFF)
option(GGML_CPU_AARCH64 "ggml: use runtime weight conversion of Q4_0 to Q4_X_X" ON)
option(GGML_CPU_REPACK "ggml: use runtime weight conversion of Q4_0 to Q4_X_X" ON)
option(GGML_CPU_KLEIDIAI "ggml: use KleidiAI optimized kernels if applicable" OFF)
option(GGML_SSE42 "ggml: enable SSE 4.2" ${INS_ENB})
option(GGML_AVX "ggml: enable AVX" ${INS_ENB})
@@ -137,7 +137,7 @@ set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM")
set(GGML_CPU_POWERPC_CPUTYPE "" CACHE STRING "ggml: CPU type for PowerPC")
if (WIN32)
if (MINGW)
set(GGML_WIN_VER "0x602" CACHE STRING "ggml: Windows version")
endif()
@@ -172,6 +172,7 @@ option(GGML_HIP "ggml: use HIP"
option(GGML_HIP_GRAPHS "ggml: use HIP graph, experimental, slow" OFF)
option(GGML_HIP_NO_VMM "ggml: do not try to use HIP VMM" ON)
option(GGML_HIP_ROCWMMA_FATTN "ggml: enable rocWMMA for FlashAttention" OFF)
option(GGML_HIP_FORCE_ROCWMMA_FATTN_GFX12 "ggml: enable rocWMMA FlashAttention on GFX12" OFF)
option(GGML_VULKAN "ggml: use Vulkan" OFF)
option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF)
option(GGML_VULKAN_DEBUG "ggml: enable Vulkan debug output" OFF)
@@ -367,6 +368,8 @@ if (MSVC)
/wd4005 # Macro redefinition
/wd4244 # Conversion from one type to another type, possible loss of data
/wd4267 # Conversion from 'size_t' to a smaller type, possible loss of data
/wd4305 # Conversion from 'type1' to 'type2', possible loss of data
/wd4566 # Conversion from 'char' to 'wchar_t', possible loss of data
/wd4996 # Disable POSIX deprecation warnings
/wd4702 # Unreachable code warnings
)
@@ -386,4 +389,46 @@ if (MSVC)
disable_msvc_warnings(ggml-cpu-skylakex)
disable_msvc_warnings(ggml-cpu-icelake)
disable_msvc_warnings(ggml-cpu-alderlake)
if (GGML_BUILD_EXAMPLES)
disable_msvc_warnings(common-ggml)
disable_msvc_warnings(common)
disable_msvc_warnings(mnist-common)
disable_msvc_warnings(mnist-eval)
disable_msvc_warnings(mnist-train)
disable_msvc_warnings(gpt-2-ctx)
disable_msvc_warnings(gpt-2-alloc)
disable_msvc_warnings(gpt-2-backend)
disable_msvc_warnings(gpt-2-sched)
disable_msvc_warnings(gpt-2-quantize)
disable_msvc_warnings(gpt-2-batched)
disable_msvc_warnings(gpt-j)
disable_msvc_warnings(gpt-j-quantize)
disable_msvc_warnings(magika)
disable_msvc_warnings(yolov3-tiny)
disable_msvc_warnings(sam)
disable_msvc_warnings(simple-ctx)
disable_msvc_warnings(simple-backend)
endif()
if (GGML_BUILD_TESTS)
disable_msvc_warnings(test-mul-mat)
disable_msvc_warnings(test-arange)
disable_msvc_warnings(test-backend-ops)
disable_msvc_warnings(test-cont)
disable_msvc_warnings(test-conv-transpose)
disable_msvc_warnings(test-conv-transpose-1d)
disable_msvc_warnings(test-conv1d)
disable_msvc_warnings(test-conv2d)
disable_msvc_warnings(test-conv2d-dw)
disable_msvc_warnings(test-customop)
disable_msvc_warnings(test-dup)
disable_msvc_warnings(test-opt)
disable_msvc_warnings(test-pool)
endif ()
endif()

View File

@@ -36,8 +36,7 @@ function(ggml_get_system_arch)
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64|amd64)$"))
set(GGML_SYSTEM_ARCH "x86" PARENT_SCOPE)
elseif ("${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "ppc64le " OR
"${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "powerpc ")
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc|power")
set(GGML_SYSTEM_ARCH "PowerPC" PARENT_SCOPE)
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
set(GGML_SYSTEM_ARCH "loongarch64" PARENT_SCOPE)

View File

@@ -2095,9 +2095,6 @@ extern "C" {
GGML_API struct ggml_tensor * ggml_graph_get_grad (const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
GGML_API struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
// print info and performance information for the graph
GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
@@ -2181,6 +2178,7 @@ extern "C" {
// scheduling priorities
enum ggml_sched_priority {
GGML_SCHED_PRIO_LOW = -1,
GGML_SCHED_PRIO_NORMAL,
GGML_SCHED_PRIO_MEDIUM,
GGML_SCHED_PRIO_HIGH,

View File

@@ -125,7 +125,6 @@ if (NOT MSVC)
endif()
if (MINGW)
# Target Windows 8 for PrefetchVirtualMemory
add_compile_definitions(_WIN32_WINNT=${GGML_WIN_VER})
endif()
@@ -196,6 +195,7 @@ add_library(ggml-base
../include/ggml-opt.h
../include/gguf.h
ggml.c
ggml.cpp
ggml-alloc.c
ggml-backend.cpp
ggml-opt.cpp
@@ -212,6 +212,7 @@ endif()
add_library(ggml
ggml-backend-reg.cpp)
add_library(ggml::ggml ALIAS ggml)
target_link_libraries(ggml PUBLIC ggml-base)
@@ -226,6 +227,7 @@ function(ggml_add_backend_library backend)
set_target_properties(${backend} PROPERTIES LIBRARY_OUTPUT_DIRECTORY ${CMAKE_RUNTIME_OUTPUT_DIRECTORY})
target_compile_definitions(${backend} PRIVATE GGML_BACKEND_DL)
add_dependencies(ggml ${backend})
install(TARGETS ${backend} LIBRARY DESTINATION ${CMAKE_INSTALL_BINDIR})
else()
add_library(${backend} ${ARGN})
target_link_libraries(ggml PUBLIC ${backend})
@@ -268,17 +270,23 @@ endfunction()
function(ggml_add_cpu_backend_variant tag_name)
set(GGML_CPU_TAG_NAME ${tag_name})
# other: OPENMP LLAMAFILE CPU_HBM
foreach (feat NATIVE
SSE42
AVX AVX2 BMI2 AVX_VNNI FMA F16C
AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16
AMX_TILE AMX_INT8 AMX_BF16)
set(GGML_${feat} OFF)
endforeach()
if (GGML_SYSTEM_ARCH STREQUAL "x86")
foreach (feat NATIVE
SSE42
AVX AVX2 BMI2 AVX_VNNI FMA F16C
AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16
AMX_TILE AMX_INT8 AMX_BF16)
set(GGML_${feat} OFF)
endforeach()
foreach (feat ${ARGN})
set(GGML_${feat} ON)
endforeach()
foreach (feat ${ARGN})
set(GGML_${feat} ON)
endforeach()
elseif (GGML_SYSTEM_ARCH STREQUAL "ARM")
foreach (feat ${ARGN})
set(GGML_INTERNAL_${feat} ON)
endforeach()
endif()
ggml_add_cpu_backend_variant_impl(${tag_name})
endfunction()
@@ -288,6 +296,8 @@ ggml_add_backend(CPU)
if (GGML_CPU_ALL_VARIANTS)
if (NOT GGML_BACKEND_DL)
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS requires GGML_BACKEND_DL")
elseif (GGML_CPU_ARM_ARCH)
message(FATAL_ERROR "Cannot use both GGML_CPU_ARM_ARCH and GGML_CPU_ALL_VARIANTS")
endif()
if (GGML_SYSTEM_ARCH STREQUAL "x86")
ggml_add_cpu_backend_variant(x64)
@@ -301,8 +311,30 @@ if (GGML_CPU_ALL_VARIANTS)
# MSVC doesn't support AMX
ggml_add_cpu_backend_variant(sapphirerapids SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
endif()
elseif(GGML_SYSTEM_ARCH STREQUAL "ARM")
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
# Many of these features are optional so we build versions with popular
# combinations and name the backends based on the version they were
# first released with
ggml_add_cpu_backend_variant(armv8.0_1)
ggml_add_cpu_backend_variant(armv8.2_1 DOTPROD)
ggml_add_cpu_backend_variant(armv8.2_2 DOTPROD FP16_VECTOR_ARITHMETIC)
ggml_add_cpu_backend_variant(armv8.2_3 DOTPROD FP16_VECTOR_ARITHMETIC SVE)
ggml_add_cpu_backend_variant(armv8.6_1 DOTPROD FP16_VECTOR_ARITHMETIC SVE MATMUL_INT8)
ggml_add_cpu_backend_variant(armv8.6_2 DOTPROD FP16_VECTOR_ARITHMETIC SVE MATMUL_INT8 SVE2)
ggml_add_cpu_backend_variant(armv9.2_1 DOTPROD FP16_VECTOR_ARITHMETIC SVE MATMUL_INT8 SME)
ggml_add_cpu_backend_variant(armv9.2_2 DOTPROD FP16_VECTOR_ARITHMETIC SVE MATMUL_INT8 SVE2 SME)
elseif (CMAKE_SYSTEM_NAME MATCHES "Android")
# Android-specific backends with SoC-compatible feature sets
ggml_add_cpu_backend_variant(android_armv8.0_1)
ggml_add_cpu_backend_variant(android_armv8.2_1 DOTPROD)
ggml_add_cpu_backend_variant(android_armv8.2_2 DOTPROD FP16_VECTOR_ARITHMETIC)
ggml_add_cpu_backend_variant(android_armv8.6_1 DOTPROD FP16_VECTOR_ARITHMETIC MATMUL_INT8)
else()
message(FATAL_ERROR "Unsupported ARM target OS: ${CMAKE_SYSTEM_NAME}")
endif()
else()
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS not yet supported on ${GGML_SYSTEM_ARCH}")
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS not yet supported with ${GGML_SYSTEM_ARCH} on ${CMAKE_SYSTEM_NAME}")
endif()
elseif (GGML_CPU)
ggml_add_cpu_backend_variant_impl("")

View File

@@ -1340,7 +1340,10 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
// allocate graph
if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
// the re-allocation may cause the split inputs to be moved to a different address
ggml_backend_sched_synchronize(sched);
// synchronize without ggml_backend_sched_synchronize to avoid changing cur_copy
for (int i = 0; i < sched->n_backends; i++) {
ggml_backend_synchronize(sched->backends[i]);
}
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
#endif
@@ -1564,7 +1567,6 @@ bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgra
ggml_backend_sched_split_graph(sched, graph);
if (!ggml_backend_sched_alloc_splits(sched)) {
return false;
}
@@ -1598,9 +1600,12 @@ void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
for (int i = 0; i < sched->n_backends; i++) {
ggml_backend_synchronize(sched->backends[i]);
}
// reset the current copy to 0 so that the graphs will be similar during generation
// necessary for CUDA graphs
sched->cur_copy = 0;
if (!sched->is_alloc) {
// if the graph is not already allocated, always use copy 0 after a synchronization
// this ensures that during generation the same copy is used every time,
// which avoids changes in the graph that could cause CUDA or other graphs to be disabled
sched->cur_copy = 0;
}
}
void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {

View File

@@ -81,7 +81,7 @@ if (BLAS_FOUND)
target_link_libraries (ggml-blas PRIVATE ${BLAS_LIBRARIES})
target_include_directories(ggml-blas PRIVATE ${BLAS_INCLUDE_DIRS})
else()
message(ERROR "BLAS not found, please refer to "
"https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors"
" to set correct GGML_BLAS_VENDOR")
message(FATAL_ERROR "BLAS not found, please refer to "
"https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors"
" to set correct GGML_BLAS_VENDOR")
endif()

View File

@@ -37,6 +37,7 @@
#include <thread>
#include <unistd.h>
#include <functional>
#include <optional>
#include "../include/ggml-cann.h"
#include "../include/ggml.h"
@@ -103,6 +104,9 @@ const ggml_cann_device_info& ggml_cann_info();
void ggml_cann_set_device(int32_t device);
int32_t ggml_cann_get_device();
std::optional<std::string> get_env(const std::string& name);
bool parse_bool(const std::string& value);
/**
* @brief Abstract base class for memory pools used by CANN.
*/
@@ -354,7 +358,8 @@ struct ggml_backend_cann_context {
: device(device), name("CANN" + std::to_string(device)), task_queue(1024, device) {
ggml_cann_set_device(device);
description = aclrtGetSocName();
async_mode = (getenv("GGML_CANN_ASYNC_MODE") != nullptr);
bool async_mode = parse_bool(get_env("GGML_CANN_ASYNC_MODE").value_or(""));
GGML_LOG_INFO("%s: device %d async operator submission is %s\n", __func__,
device, async_mode ? "ON" : "OFF");
}

View File

@@ -31,6 +31,8 @@
#include <mutex>
#include <queue>
#include <chrono>
#include <unordered_set>
#include <optional>
#include "ggml-impl.h"
#include "ggml-backend-impl.h"
@@ -93,6 +95,26 @@ int32_t ggml_cann_get_device() {
return id;
}
/**
* @brief Get the value of the specified environment variable (name).
* if not empty, return a std::string object
*/
std::optional<std::string> get_env(const std::string& name) {
const char* val = std::getenv(name.c_str());
if (!val) return std::nullopt;
std::string res = std::string(val);
std::transform(res.begin(), res.end(), res.begin(), ::tolower);
return res;
}
/**
* @brief Verify whether the environment variable is a valid value.
*/
bool parse_bool(const std::string& value) {
std::unordered_set<std::string> valid_values = {"on", "1", "yes", "y", "enable", "true"};
return valid_values.find(value) != valid_values.end();
}
/**
* @brief Initialize the CANN device information.
*
@@ -214,7 +236,7 @@ struct ggml_cann_pool_buf_prio : public ggml_cann_pool {
* @param device The device ID to associate with this buffer pool.
*/
explicit ggml_cann_pool_buf_prio(int device) : device(device) {
disable_clean = getenv("GGML_CANN_DISABLE_BUF_POOL_CLEAN") != nullptr;
disable_clean = parse_bool(get_env("GGML_CANN_DISABLE_BUF_POOL_CLEAN").value_or(""));
}
/**
@@ -410,7 +432,7 @@ struct ggml_cann_pool_buf : public ggml_cann_pool {
* @param device The device ID to associate with this buffer pool.
*/
explicit ggml_cann_pool_buf(int device) : device(device) {
disable_clean = getenv("GGML_CANN_DISABLE_BUF_POOL_CLEAN") != nullptr;
disable_clean = parse_bool(get_env("GGML_CANN_DISABLE_BUF_POOL_CLEAN").value_or(""));
}
/**
@@ -731,16 +753,18 @@ struct ggml_cann_pool_vmm : public ggml_cann_pool {
*/
std::unique_ptr<ggml_cann_pool> ggml_backend_cann_context::new_pool_for_device(
int device) {
bool disable_vmm = (getenv("GGML_CANN_DISABLE_VMM_POOL") != nullptr);
if (!disable_vmm && ggml_cann_info().devices[device].vmm) {
GGML_LOG_INFO("%s: device %d use vmm pool\n", __func__, device);
return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_vmm(device));
}
bool enable_buf_prio = (getenv("GGML_CANN_ENABLE_BUF_PRIO_POOL") != nullptr);
if (enable_buf_prio) {
std::string mem_pool_type = get_env("GGML_CANN_MEM_POOL").value_or("");
if (mem_pool_type == "prio") {
GGML_LOG_INFO("%s: device %d use buffer pool with priority queue\n", __func__, device);
return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_buf_prio(device));
}
if (ggml_cann_info().devices[device].vmm && mem_pool_type != "leg") {
GGML_LOG_INFO("%s: device %d use vmm pool\n", __func__, device);
return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_vmm(device));
}
GGML_LOG_INFO("%s: device %d use buffer pool\n", __func__, device);
return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_buf(device));
}

View File

@@ -1074,6 +1074,10 @@ GGML_TABLE_BEGIN(uint32_t, iq3s_grid, 512)
0x0f090307, 0x0f090501, 0x0f090b01, 0x0f0b0505, 0x0f0b0905, 0x0f0d0105, 0x0f0d0703, 0x0f0f0101,
GGML_TABLE_END()
GGML_TABLE_BEGIN(int8_t, kvalues_iq4nl, 16)
-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113,
GGML_TABLE_END()
#define NGRID_IQ1S 2048
#define IQ1S_DELTA 0.125f
#define IQ1M_DELTA 0.125f

View File

@@ -1,3 +1,17 @@
function(ggml_add_cpu_backend_features cpu_name arch)
# The feature detection code is compiled as a separate target so that
# it can be built without the architecture flags
# Since multiple variants of the CPU backend may be included in the same
# build, using set_source_files_properties() to set the arch flags is not possible
set(GGML_CPU_FEATS_NAME ${cpu_name}-feats)
add_library(${GGML_CPU_FEATS_NAME} OBJECT ggml-cpu/arch/${arch}/cpu-feats.cpp)
target_include_directories(${GGML_CPU_FEATS_NAME} PRIVATE . .. ../include)
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE ${ARGN})
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE GGML_BACKEND_DL GGML_BACKEND_BUILD GGML_BACKEND_SHARED)
set_target_properties(${GGML_CPU_FEATS_NAME} PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_link_libraries(${cpu_name} PRIVATE ${GGML_CPU_FEATS_NAME})
endfunction()
function(ggml_add_cpu_backend_variant_impl tag_name)
if (tag_name)
set(GGML_CPU_NAME ggml-cpu-${tag_name})
@@ -10,14 +24,14 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
list (APPEND GGML_CPU_SOURCES
ggml-cpu/ggml-cpu.c
ggml-cpu/ggml-cpu.cpp
ggml-cpu/ggml-cpu-aarch64.cpp
ggml-cpu/ggml-cpu-aarch64.h
ggml-cpu/ggml-cpu-hbm.cpp
ggml-cpu/ggml-cpu-hbm.h
ggml-cpu/ggml-cpu-quants.c
ggml-cpu/ggml-cpu-quants.h
ggml-cpu/ggml-cpu-traits.cpp
ggml-cpu/ggml-cpu-traits.h
ggml-cpu/repack.cpp
ggml-cpu/repack.h
ggml-cpu/hbm.cpp
ggml-cpu/hbm.h
ggml-cpu/quants.c
ggml-cpu/quants.h
ggml-cpu/traits.cpp
ggml-cpu/traits.h
ggml-cpu/amx/amx.cpp
ggml-cpu/amx/amx.h
ggml-cpu/amx/mmq.cpp
@@ -84,6 +98,11 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
if (GGML_SYSTEM_ARCH STREQUAL "ARM")
message(STATUS "ARM detected")
list(APPEND GGML_CPU_SOURCES
ggml-cpu/arch/arm/quants.c
ggml-cpu/arch/arm/repack.cpp
)
if (MSVC AND NOT CMAKE_C_COMPILER_ID STREQUAL "Clang")
message(FATAL_ERROR "MSVC is not supported for ARM, use clang")
else()
@@ -138,6 +157,46 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
else()
if (GGML_CPU_ARM_ARCH)
list(APPEND ARCH_FLAGS -march=${GGML_CPU_ARM_ARCH})
elseif(GGML_CPU_ALL_VARIANTS)
# Begin with the lowest baseline
set(ARM_MCPU "armv8-a")
set(ARCH_TAGS "")
set(ARCH_DEFINITIONS "")
# When a feature is selected, bump the MCPU to the first
# version that supported it
if (GGML_INTERNAL_DOTPROD)
set(ARM_MCPU "armv8.2-a")
set(ARCH_TAGS "${ARCH_TAGS}+dotprod")
list(APPEND ARCH_DEFINITIONS GGML_USE_DOTPROD)
endif()
if (GGML_INTERNAL_FP16_VECTOR_ARITHMETIC)
set(ARM_MCPU "armv8.2-a")
set(ARCH_TAGS "${ARCH_TAGS}+fp16")
list(APPEND ARCH_DEFINITIONS GGML_USE_FP16_VECTOR_ARITHMETIC)
endif()
if (GGML_INTERNAL_SVE)
set(ARM_MCPU "armv8.2-a")
set(ARCH_TAGS "${ARCH_TAGS}+sve")
list(APPEND ARCH_DEFINITIONS GGML_USE_SVE)
endif()
if (GGML_INTERNAL_MATMUL_INT8)
set(ARM_MCPU "armv8.6-a")
set(ARCH_TAGS "${ARCH_TAGS}+i8mm")
list(APPEND ARCH_DEFINITIONS GGML_USE_MATMUL_INT8)
endif()
if (GGML_INTERNAL_SVE2)
set(ARM_MCPU "armv8.6-a")
set(ARCH_TAGS "${ARCH_TAGS}+sve2")
list(APPEND ARCH_DEFINITIONS GGML_USE_SVE2)
endif()
if (GGML_INTERNAL_SME)
set(ARM_MCPU "armv9.2-a")
set(ARCH_TAGS "${ARCH_TAGS}+sme")
list(APPEND ARCH_DEFINITIONS GGML_USE_SME)
endif()
list(APPEND ARCH_FLAGS "-march=${ARM_MCPU}${ARCH_TAGS}")
ggml_add_cpu_backend_features(${GGML_CPU_NAME} arm ${ARCH_DEFINITIONS})
endif()
endif()
@@ -167,6 +226,11 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
endif()
elseif (GGML_SYSTEM_ARCH STREQUAL "x86")
message(STATUS "x86 detected")
list(APPEND GGML_CPU_SOURCES
ggml-cpu/arch/x86/quants.c
ggml-cpu/arch/x86/repack.cpp
)
if (MSVC)
# instruction set detection for MSVC only
if (GGML_NATIVE)
@@ -296,21 +360,11 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
# the feature check relies on ARCH_DEFINITIONS, but it is not set with GGML_NATIVE
message(FATAL_ERROR "GGML_NATIVE is not compatible with GGML_BACKEND_DL, consider using GGML_CPU_ALL_VARIANTS")
endif()
# The feature detection code is compiled as a separate target so that
# it can be built without the architecture flags
# Since multiple variants of the CPU backend may be included in the same
# build, using set_source_files_properties() to set the arch flags is not possible
set(GGML_CPU_FEATS_NAME ${GGML_CPU_NAME}-feats)
add_library(${GGML_CPU_FEATS_NAME} OBJECT ggml-cpu/cpu-feats-x86.cpp)
target_include_directories(${GGML_CPU_FEATS_NAME} PRIVATE . .. ../include)
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE ${ARCH_DEFINITIONS})
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE GGML_BACKEND_DL GGML_BACKEND_BUILD GGML_BACKEND_SHARED)
set_target_properties(${GGML_CPU_FEATS_NAME} PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_link_libraries(${GGML_CPU_NAME} PRIVATE ${GGML_CPU_FEATS_NAME})
ggml_add_cpu_backend_features(${GGML_CPU_NAME} x86 ${ARCH_DEFINITIONS})
endif()
elseif (GGML_SYSTEM_ARCH STREQUAL "PowerPC")
message(STATUS "PowerPC detected")
list(APPEND GGML_CPU_SOURCES ggml-cpu/arch/powerpc/quants.c)
if (GGML_NATIVE)
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64")
file(READ "/proc/cpuinfo" POWER10_M)
@@ -318,7 +372,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
execute_process(COMMAND bash -c "prtconf |grep 'Implementation' | head -n 1" OUTPUT_VARIABLE POWER10_M)
endif()
string(REGEX MATCHALL "POWER *([0-9]+)" MATCHED_STRING "${POWER10_M}")
string(TOUPPER "${POWER10_M}" POWER10_M_UPPER)
string(REGEX MATCHALL "POWER *([0-9]+)" MATCHED_STRING "${POWER10_M_UPPER}")
string(REGEX REPLACE "POWER *([0-9]+)" "\\1" EXTRACTED_NUMBER "${MATCHED_STRING}")
if (EXTRACTED_NUMBER GREATER_EQUAL 10)
@@ -337,6 +392,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
endif()
elseif (GGML_SYSTEM_ARCH STREQUAL "loongarch64")
message(STATUS "loongarch64 detected")
list(APPEND GGML_CPU_SOURCES ggml-cpu/arch/loongarch/quants.c)
list(APPEND ARCH_FLAGS -march=loongarch64)
if (GGML_LASX)
list(APPEND ARCH_FLAGS -mlasx)
@@ -346,6 +403,10 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
endif()
elseif (GGML_SYSTEM_ARCH STREQUAL "riscv64")
message(STATUS "riscv64 detected")
list(APPEND GGML_CPU_SOURCES
ggml-cpu/arch/riscv/quants.c
ggml-cpu/arch/riscv/repack.cpp
)
if (GGML_RVV)
if (GGML_XTHEADVECTOR)
list(APPEND ARCH_FLAGS -march=rv64gc_xtheadvector -mabi=lp64d)
@@ -357,6 +418,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
endif()
elseif (GGML_SYSTEM_ARCH STREQUAL "s390x")
message(STATUS "s390x detected")
list(APPEND GGML_CPU_SOURCES ggml-cpu/arch/s390/quants.c)
file(READ "/proc/cpuinfo" CPUINFO_CONTENTS)
string(REGEX REPLACE "machine[ \t\r\n]*=[ \t\r\n]*([0-9]+)" "\\1" S390X_M ${CPUINFO_CONTENTS})
@@ -380,12 +442,16 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
if (GGML_VXE)
list(APPEND ARCH_FLAGS -mvx -mzvector)
endif()
elseif (CMAKE_SYSTEM_PROCESSOR MATCHES "wasm")
message(STATUS "Wasm detected")
list (APPEND GGML_CPU_SOURCES ggml-cpu/arch/wasm/quants.c)
else()
message(STATUS "Unknown architecture")
message(WARNING "Unknown CPU architecture. Falling back to generic implementations.")
list(APPEND ARCH_FLAGS -DGGML_CPU_GENERIC)
endif()
if (GGML_CPU_AARCH64)
target_compile_definitions(${GGML_CPU_NAME} PRIVATE GGML_USE_CPU_AARCH64)
if (GGML_CPU_REPACK)
target_compile_definitions(${GGML_CPU_NAME} PRIVATE GGML_USE_CPU_REPACK)
endif()
if (GGML_CPU_KLEIDIAI)

View File

@@ -5,7 +5,7 @@
#include "ggml-backend.h"
#include "ggml-impl.h"
#include "ggml-cpu.h"
#include "ggml-cpu-traits.h"
#include "traits.h"
#if defined(__gnu_linux__)
#include <sys/syscall.h>

View File

@@ -8,7 +8,7 @@
#include "mmq.h"
#include "ggml-impl.h"
#include "ggml-cpu-impl.h"
#include "ggml-cpu-quants.h"
#include "quants.h"
#include "ggml-quants.h"
#include <algorithm>
#include <type_traits>

View File

@@ -0,0 +1,184 @@
#pragma once
// Rename `_generic` functions if no native implementation is available.
// This effectively selects the generic implementation.
#if defined(GGML_CPU_GENERIC)
// quants.c
#define quantize_row_q8_0_generic quantize_row_q8_0
#define quantize_row_q8_1_generic quantize_row_q8_1
#define quantize_row_q8_K_generic quantize_row_q8_K
#define ggml_vec_dot_q4_0_q8_0_generic ggml_vec_dot_q4_0_q8_0
#define ggml_vec_dot_q4_1_q8_1_generic ggml_vec_dot_q4_1_q8_1
#define ggml_vec_dot_q5_0_q8_0_generic ggml_vec_dot_q5_0_q8_0
#define ggml_vec_dot_q5_1_q8_1_generic ggml_vec_dot_q5_1_q8_1
#define ggml_vec_dot_q8_0_q8_0_generic ggml_vec_dot_q8_0_q8_0
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
#define ggml_vec_dot_q2_K_q8_K_generic ggml_vec_dot_q2_K_q8_K
#define ggml_vec_dot_q3_K_q8_K_generic ggml_vec_dot_q3_K_q8_K
#define ggml_vec_dot_q4_K_q8_K_generic ggml_vec_dot_q4_K_q8_K
#define ggml_vec_dot_q5_K_q8_K_generic ggml_vec_dot_q5_K_q8_K
#define ggml_vec_dot_q6_K_q8_K_generic ggml_vec_dot_q6_K_q8_K
#define ggml_vec_dot_iq2_xxs_q8_K_generic ggml_vec_dot_iq2_xxs_q8_K
#define ggml_vec_dot_iq2_xs_q8_K_generic ggml_vec_dot_iq2_xs_q8_K
#define ggml_vec_dot_iq2_s_q8_K_generic ggml_vec_dot_iq2_s_q8_K
#define ggml_vec_dot_iq3_xxs_q8_K_generic ggml_vec_dot_iq3_xxs_q8_K
#define ggml_vec_dot_iq3_s_q8_K_generic ggml_vec_dot_iq3_s_q8_K
#define ggml_vec_dot_iq1_s_q8_K_generic ggml_vec_dot_iq1_s_q8_K
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
#define ggml_vec_dot_iq4_nl_q8_0_generic ggml_vec_dot_iq4_nl_q8_0
#define ggml_vec_dot_iq4_xs_q8_K_generic ggml_vec_dot_iq4_xs_q8_K
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
#elif defined(__aarch64__) || defined(__arm__) || defined(_M_ARM) || defined(_M_ARM64)
// repack.cpp
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#elif defined(__x86_64__) || defined(__i386__) || defined(_M_IX86) || defined(_M_X64)
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
#elif defined(__POWERPC__) || defined(__powerpc__)
// ref: https://github.com/ggml-org/llama.cpp/pull/14146#issuecomment-2972561679
// quants.c
#define quantize_row_q8_K_generic quantize_row_q8_K
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
#elif defined(__loongarch64)
// quants.c
#define quantize_row_q8_K_generic quantize_row_q8_K
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
#elif defined(__riscv)
// quants.c
#define quantize_row_q8_K_generic quantize_row_q8_K
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
#define ggml_vec_dot_iq2_xxs_q8_K_generic ggml_vec_dot_iq2_xxs_q8_K
#define ggml_vec_dot_iq2_xs_q8_K_generic ggml_vec_dot_iq2_xs_q8_K
#define ggml_vec_dot_iq2_s_q8_K_generic ggml_vec_dot_iq2_s_q8_K
#define ggml_vec_dot_iq3_xxs_q8_K_generic ggml_vec_dot_iq3_xxs_q8_K
#define ggml_vec_dot_iq3_s_q8_K_generic ggml_vec_dot_iq3_s_q8_K
#define ggml_vec_dot_iq1_s_q8_K_generic ggml_vec_dot_iq1_s_q8_K
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
#define ggml_vec_dot_iq4_nl_q8_0_generic ggml_vec_dot_iq4_nl_q8_0
#define ggml_vec_dot_iq4_xs_q8_K_generic ggml_vec_dot_iq4_xs_q8_K
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
#elif defined(__s390x__)
// quants.c
#define quantize_row_q8_K_generic quantize_row_q8_K
#define ggml_vec_dot_q5_0_q8_0_generic ggml_vec_dot_q5_0_q8_0
#define ggml_vec_dot_q5_1_q8_1_generic ggml_vec_dot_q5_1_q8_1
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
#define ggml_vec_dot_q2_K_q8_K_generic ggml_vec_dot_q2_K_q8_K
#define ggml_vec_dot_iq2_xxs_q8_K_generic ggml_vec_dot_iq2_xxs_q8_K
#define ggml_vec_dot_iq2_xs_q8_K_generic ggml_vec_dot_iq2_xs_q8_K
#define ggml_vec_dot_iq2_s_q8_K_generic ggml_vec_dot_iq2_s_q8_K
#define ggml_vec_dot_iq3_xxs_q8_K_generic ggml_vec_dot_iq3_xxs_q8_K
#define ggml_vec_dot_iq3_s_q8_K_generic ggml_vec_dot_iq3_s_q8_K
#define ggml_vec_dot_iq1_s_q8_K_generic ggml_vec_dot_iq1_s_q8_K
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
#elif defined(__wasm__)
// quants.c
#define ggml_vec_dot_q4_1_q8_1_generic ggml_vec_dot_q4_1_q8_1
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
#define ggml_vec_dot_iq2_xxs_q8_K_generic ggml_vec_dot_iq2_xxs_q8_K
#define ggml_vec_dot_iq2_xs_q8_K_generic ggml_vec_dot_iq2_xs_q8_K
#define ggml_vec_dot_iq2_s_q8_K_generic ggml_vec_dot_iq2_s_q8_K
#define ggml_vec_dot_iq3_xxs_q8_K_generic ggml_vec_dot_iq3_xxs_q8_K
#define ggml_vec_dot_iq3_s_q8_K_generic ggml_vec_dot_iq3_s_q8_K
#define ggml_vec_dot_iq1_s_q8_K_generic ggml_vec_dot_iq1_s_q8_K
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
#define ggml_vec_dot_iq4_nl_q8_0_generic ggml_vec_dot_iq4_nl_q8_0
#define ggml_vec_dot_iq4_xs_q8_K_generic ggml_vec_dot_iq4_xs_q8_K
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
#endif

View File

@@ -0,0 +1,94 @@
#include "ggml-backend-impl.h"
#if defined(__aarch64__)
#if defined(__linux__)
#include <sys/auxv.h>
#elif defined(__APPLE__)
#include <sys/sysctl.h>
#endif
#if !defined(HWCAP2_I8MM)
#define HWCAP2_I8MM (1 << 13)
#endif
#if !defined(HWCAP2_SME)
#define HWCAP2_SME (1 << 23)
#endif
struct aarch64_features {
// has_neon not needed, aarch64 has NEON guaranteed
bool has_dotprod = false;
bool has_fp16_va = false;
bool has_sve = false;
bool has_sve2 = false;
bool has_i8mm = false;
bool has_sme = false;
aarch64_features() {
#if defined(__linux__)
uint32_t hwcap = getauxval(AT_HWCAP);
uint32_t hwcap2 = getauxval(AT_HWCAP2);
has_dotprod = !!(hwcap & HWCAP_ASIMDDP);
has_fp16_va = !!(hwcap & HWCAP_FPHP);
has_sve = !!(hwcap & HWCAP_SVE);
has_sve2 = !!(hwcap2 & HWCAP2_SVE2);
has_i8mm = !!(hwcap2 & HWCAP2_I8MM);
has_sme = !!(hwcap2 & HWCAP2_SME);
#elif defined(__APPLE__)
int oldp = 0;
size_t size = sizeof(oldp);
if (sysctlbyname("hw.optional.arm.FEAT_DotProd", &oldp, &size, NULL, 0) == 0) {
has_dotprod = static_cast<bool>(oldp);
}
if (sysctlbyname("hw.optional.arm.FEAT_I8MM", &oldp, &size, NULL, 0) == 0) {
has_i8mm = static_cast<bool>(oldp);
}
if (sysctlbyname("hw.optional.arm.FEAT_SME", &oldp, &size, NULL, 0) == 0) {
has_sme = static_cast<bool>(oldp);
}
// Apple apparently does not implement SVE yet
#endif
}
};
static int ggml_backend_cpu_aarch64_score() {
int score = 1;
aarch64_features af;
#ifdef GGML_USE_DOTPROD
if (!af.has_dotprod) { return 0; }
score += 1<<1;
#endif
#ifdef GGML_USE_FP16_VECTOR_ARITHMETIC
if (!af.has_fp16_va) { return 0; }
score += 1<<2;
#endif
#ifdef GGML_USE_SVE
if (!af.has_sve) { return 0; }
score += 1<<3;
#endif
#ifdef GGML_USE_MATMUL_INT8
if (!af.has_i8mm) { return 0; }
score += 1<<4;
#endif
#ifdef GGML_USE_SVE2
if (!af.has_sve2) { return 0; }
score += 1<<5;
#endif
#ifdef GGML_USE_SME
if (!af.has_sme) { return 0; }
score += 1<<6;
#endif
return score;
}
GGML_BACKEND_DL_SCORE_IMPL(ggml_backend_cpu_aarch64_score)
# endif // defined(__aarch64__)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,396 @@
#define GGML_COMMON_IMPL_CPP
#define GGML_COMMON_DECL_CPP
#include "ggml-common.h"
#include "ggml-backend-impl.h"
#include "ggml-impl.h"
#include "ggml-cpu.h"
#include "ggml-cpu-impl.h"
#include "traits.h"
#include <cmath>
#include <cstring>
#include <cassert>
#include <cstdlib> // for qsort
#include <cstdio> // for GGML_ASSERT
#define GGML_CPU_CLANG_WORKAROUND
#include "../../repack.h"
#if defined(__GNUC__)
#pragma GCC diagnostic ignored "-Woverlength-strings"
#endif
#define UNUSED GGML_UNUSED
void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK8_0;
const int nb = n / qk;
const int ncols_interleaved = 8;
const int blocklen = 8;
assert (n % qk == 0);
assert (nc % ncols_interleaved == 0);
UNUSED(s);
UNUSED(bs);
UNUSED(vx);
UNUSED(vy);
UNUSED(nr);
UNUSED(nc);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
#if defined __riscv_v
if (__riscv_vlenb() >= QK4_0) {
const size_t vl = QK4_0;
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
vfloat32m1_t sumf = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
for (int l = 0; l < nb; l++) {
const int64_t a0 = *(const int64_t *)&a_ptr[l].qs[0];
const int64_t a1 = *(const int64_t *)&a_ptr[l].qs[8];
const int64_t a2 = *(const int64_t *)&a_ptr[l].qs[16];
const int64_t a3 = *(const int64_t *)&a_ptr[l].qs[24];
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment constraints
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(a0, vl / 4));
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(a1, vl / 4));
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(a2, vl / 4));
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(a3, vl / 4));
const vint8m4_t rhs_raw_vec = __riscv_vle8_v_i8m4((const int8_t *)b_ptr[l].qs, vl * 4);
const vint8m4_t rhs_vec_lo = __riscv_vsra_vx_i8m4(__riscv_vsll_vx_i8m4(rhs_raw_vec, 4, vl * 4), 4, vl * 4);
const vint8m4_t rhs_vec_hi = __riscv_vsra_vx_i8m4(rhs_raw_vec, 4, vl * 4);
const vint8m2_t rhs_vec_lo_0 = __riscv_vget_v_i8m4_i8m2(rhs_vec_lo, 0);
const vint8m2_t rhs_vec_lo_1 = __riscv_vget_v_i8m4_i8m2(rhs_vec_lo, 1);
const vint8m2_t rhs_vec_hi_0 = __riscv_vget_v_i8m4_i8m2(rhs_vec_hi, 0);
const vint8m2_t rhs_vec_hi_1 = __riscv_vget_v_i8m4_i8m2(rhs_vec_hi, 1);
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_hi_m));
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
// vector version needs Zvfhmin extension
const float a_scale = GGML_FP16_TO_FP32(a_ptr[l].d);
const float b_scales[8] = {
GGML_FP16_TO_FP32(b_ptr[l].d[0]),
GGML_FP16_TO_FP32(b_ptr[l].d[1]),
GGML_FP16_TO_FP32(b_ptr[l].d[2]),
GGML_FP16_TO_FP32(b_ptr[l].d[3]),
GGML_FP16_TO_FP32(b_ptr[l].d[4]),
GGML_FP16_TO_FP32(b_ptr[l].d[5]),
GGML_FP16_TO_FP32(b_ptr[l].d[6]),
GGML_FP16_TO_FP32(b_ptr[l].d[7])
};
const vfloat32m1_t b_scales_vec = __riscv_vle32_v_f32m1(b_scales, vl / 4);
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scale, vl / 4);
sumf = __riscv_vfmacc_vv_f32m1(sumf, tmp1, b_scales_vec, vl / 4);
}
__riscv_vse32_v_f32m1(s + x * ncols_interleaved, sumf, vl / 4);
}
return;
}
#endif
{
float sumf[8];
int sumi;
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
}
sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d);
}
}
}
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
}
}
}
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK8_0;
const int nb = n / qk;
const int ncols_interleaved = 8;
const int blocklen = 8;
assert (n % qk == 0);
assert (nr % 4 == 0);
assert (nc % ncols_interleaved == 0);
UNUSED(s);
UNUSED(bs);
UNUSED(vx);
UNUSED(vy);
UNUSED(nr);
UNUSED(nc);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
#if defined __riscv_v
if (__riscv_vlenb() >= QK4_0) {
const size_t vl = QK4_0;
for (int y = 0; y < nr / 4; y++) {
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
vfloat32m1_t sumf0 = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
vfloat32m1_t sumf1 = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
vfloat32m1_t sumf2 = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
vfloat32m1_t sumf3 = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
for (int l = 0; l < nb; l++) {
const vint8m4_t rhs_raw_vec = __riscv_vle8_v_i8m4((const int8_t *)b_ptr[l].qs, vl * 4);
const vint8m4_t rhs_vec_lo = __riscv_vsra_vx_i8m4(__riscv_vsll_vx_i8m4(rhs_raw_vec, 4, vl * 4), 4, vl * 4);
const vint8m4_t rhs_vec_hi = __riscv_vsra_vx_i8m4(rhs_raw_vec, 4, vl * 4);
const vint8m2_t rhs_vec_lo_0 = __riscv_vget_v_i8m4_i8m2(rhs_vec_lo, 0);
const vint8m2_t rhs_vec_lo_1 = __riscv_vget_v_i8m4_i8m2(rhs_vec_lo, 1);
const vint8m2_t rhs_vec_hi_0 = __riscv_vget_v_i8m4_i8m2(rhs_vec_hi, 0);
const vint8m2_t rhs_vec_hi_1 = __riscv_vget_v_i8m4_i8m2(rhs_vec_hi, 1);
// vector version needs Zvfhmin extension
const float a_scales[4] = {
GGML_FP16_TO_FP32(a_ptr[l].d[0]),
GGML_FP16_TO_FP32(a_ptr[l].d[1]),
GGML_FP16_TO_FP32(a_ptr[l].d[2]),
GGML_FP16_TO_FP32(a_ptr[l].d[3])
};
const float b_scales[8] = {
GGML_FP16_TO_FP32(b_ptr[l].d[0]),
GGML_FP16_TO_FP32(b_ptr[l].d[1]),
GGML_FP16_TO_FP32(b_ptr[l].d[2]),
GGML_FP16_TO_FP32(b_ptr[l].d[3]),
GGML_FP16_TO_FP32(b_ptr[l].d[4]),
GGML_FP16_TO_FP32(b_ptr[l].d[5]),
GGML_FP16_TO_FP32(b_ptr[l].d[6]),
GGML_FP16_TO_FP32(b_ptr[l].d[7])
};
const vfloat32m1_t b_scales_vec = __riscv_vle32_v_f32m1(b_scales, vl / 4);
const int64_t A0 = *(const int64_t *)&a_ptr[l].qs[0];
const int64_t A4 = *(const int64_t *)&a_ptr[l].qs[32];
const int64_t A8 = *(const int64_t *)&a_ptr[l].qs[64];
const int64_t Ac = *(const int64_t *)&a_ptr[l].qs[96];
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment
vint16m4_t sumi_l0;
{
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A0, vl / 4));
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A4, vl / 4));
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A8, vl / 4));
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Ac, vl / 4));
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
sumi_l0 = sumi_hi_m;
}
{
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_l0));
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scales[0], vl / 4);
sumf0 = __riscv_vfmacc_vv_f32m1(sumf0, tmp1, b_scales_vec, vl / 4);
}
const int64_t A1 = *(const int64_t *)&a_ptr[l].qs[8];
const int64_t A5 = *(const int64_t *)&a_ptr[l].qs[40];
const int64_t A9 = *(const int64_t *)&a_ptr[l].qs[72];
const int64_t Ad = *(const int64_t *)&a_ptr[l].qs[104];
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment
vint16m4_t sumi_l1;
{
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A1, vl / 4));
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A5, vl / 4));
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A9, vl / 4));
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Ad, vl / 4));
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
sumi_l1 = sumi_hi_m;
}
{
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_l1));
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scales[1], vl / 4);
sumf1 = __riscv_vfmacc_vv_f32m1(sumf1, tmp1, b_scales_vec, vl / 4);
}
const int64_t A2 = *(const int64_t *)&a_ptr[l].qs[16];
const int64_t A6 = *(const int64_t *)&a_ptr[l].qs[48];
const int64_t Aa = *(const int64_t *)&a_ptr[l].qs[80];
const int64_t Ae = *(const int64_t *)&a_ptr[l].qs[112];
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment
vint16m4_t sumi_l2;
{
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A2, vl / 4));
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A6, vl / 4));
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Aa, vl / 4));
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Ae, vl / 4));
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
sumi_l2 = sumi_hi_m;
}
{
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_l2));
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scales[2], vl / 4);
sumf2 = __riscv_vfmacc_vv_f32m1(sumf2, tmp1, b_scales_vec, vl / 4);
}
const int64_t A3 = *(const int64_t *)&a_ptr[l].qs[24];
const int64_t A7 = *(const int64_t *)&a_ptr[l].qs[56];
const int64_t Ab = *(const int64_t *)&a_ptr[l].qs[88];
const int64_t Af = *(const int64_t *)&a_ptr[l].qs[120];
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment
vint16m4_t sumi_l3;
{
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A3, vl / 4));
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A7, vl / 4));
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Ab, vl / 4));
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Af, vl / 4));
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
sumi_l3 = sumi_hi_m;
}
{
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_l3));
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scales[3], vl / 4);
sumf3 = __riscv_vfmacc_vv_f32m1(sumf3, tmp1, b_scales_vec, vl / 4);
}
}
__riscv_vse32_v_f32m1(&s[(y * 4 + 0) * bs + x * ncols_interleaved], sumf0, vl / 4);
__riscv_vse32_v_f32m1(&s[(y * 4 + 1) * bs + x * ncols_interleaved], sumf1, vl / 4);
__riscv_vse32_v_f32m1(&s[(y * 4 + 2) * bs + x * ncols_interleaved], sumf2, vl / 4);
__riscv_vse32_v_f32m1(&s[(y * 4 + 3) * bs + x * ncols_interleaved], sumf3, vl / 4);
}
}
return;
}
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__)
float sumf[4][8];
int sumi;
for (int y = 0; y < nr / 4; y++) {
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
}
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
}
sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d[m]);
}
}
}
}
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++)
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
}
}
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,7 +1,7 @@
#pragma once
#include "ggml.h"
#include "ggml-cpu-traits.h"
#include "traits.h"
#include "ggml-cpu-impl.h"
#include "ggml-impl.h"

View File

@@ -1,8 +0,0 @@
#pragma once
#include "ggml-cpu-traits.h"
#include "ggml.h"
// GGML internal header
ggml_backend_buffer_type_t ggml_backend_cpu_aarch64_buffer_type(void);

View File

@@ -503,6 +503,9 @@ static __m256 __lasx_xvreplfr2vr_s(const float val) {
// TODO: move to ggml-threading
void ggml_barrier(struct ggml_threadpool * tp);
void ggml_threadpool_chunk_set(struct ggml_threadpool * tp, int value);
int ggml_threadpool_chunk_add(struct ggml_threadpool * tp, int value);
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -3,11 +3,11 @@
#include "ggml-backend-impl.h"
#include "ggml-backend.h"
#include "ggml-cpu-traits.h"
#include "traits.h"
#include "ggml-cpu-impl.h"
#include "ggml-cpu.h"
#include "ggml-impl.h"
#include "ggml-cpu-quants.h"
#include "quants.h"
#include "ggml-threading.h"
#include "unary-ops.h"
#include "binary-ops.h"
@@ -559,6 +559,14 @@ void ggml_barrier(struct ggml_threadpool * tp) {
#endif
}
void ggml_threadpool_chunk_set(struct ggml_threadpool * tp, int value) {
atomic_store_explicit(&tp->current_chunk, value, memory_order_relaxed);
}
int ggml_threadpool_chunk_add(struct ggml_threadpool * tp, int value) {
return atomic_fetch_add_explicit(&tp->current_chunk, value, memory_order_relaxed);
}
#if defined(__gnu_linux__)
static cpu_set_t ggml_get_numa_affinity(void) {
cpu_set_t cpuset;
@@ -2418,12 +2426,32 @@ static bool ggml_thread_apply_priority(int32_t prio) {
// This is up to the applications.
DWORD p = THREAD_PRIORITY_NORMAL;
switch (prio) {
case GGML_SCHED_PRIO_LOW: p = THREAD_PRIORITY_BELOW_NORMAL; break;
case GGML_SCHED_PRIO_NORMAL: p = THREAD_PRIORITY_NORMAL; break;
case GGML_SCHED_PRIO_MEDIUM: p = THREAD_PRIORITY_ABOVE_NORMAL; break;
case GGML_SCHED_PRIO_HIGH: p = THREAD_PRIORITY_HIGHEST; break;
case GGML_SCHED_PRIO_REALTIME: p = THREAD_PRIORITY_TIME_CRITICAL; break;
}
if (prio != GGML_SCHED_PRIO_LOW) {
// Tell Windows that this thread should not be throttled (needs its own CPU core).
// Newer Windows 11 versions aggresively park (offline) CPU cores and often place
// all our threads onto the first 4 cores which results in terrible performance with
// n_threads > 4
#if _WIN32_WINNT >= 0x0602
THREAD_POWER_THROTTLING_STATE t;
ZeroMemory(&t, sizeof(t));
t.Version = THREAD_POWER_THROTTLING_CURRENT_VERSION;
t.ControlMask = THREAD_POWER_THROTTLING_EXECUTION_SPEED;
t.StateMask = 0;
if (!SetThreadInformation(GetCurrentThread(), ThreadPowerThrottling, &t, sizeof(t))) {
GGML_LOG_DEBUG("failed to disable thread power throttling %d : (%d)\n", prio, (int) GetLastError());
return false;
}
#endif
}
if (prio == GGML_SCHED_PRIO_NORMAL) {
// Keep inherited policy/priority
return true;
@@ -2451,6 +2479,8 @@ static bool ggml_thread_apply_priority(int32_t prio) {
struct sched_param p;
int32_t policy = SCHED_OTHER;
switch (prio) {
// TODO: there seems to be no way to set lower prio on Apple platforms
case GGML_SCHED_PRIO_LOW: policy = SCHED_OTHER; p.sched_priority = 0; break;
case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
@@ -2507,6 +2537,7 @@ static bool ggml_thread_apply_priority(int32_t prio) {
struct sched_param p;
int32_t policy = SCHED_OTHER;
switch (prio) {
case GGML_SCHED_PRIO_LOW: policy = SCHED_BATCH; p.sched_priority = 0; break;
case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;

View File

@@ -1,8 +1,8 @@
#include "ggml-backend.h"
#include "ggml-backend-impl.h"
#include "ggml-cpu.h"
#include "ggml-cpu-aarch64.h"
#include "ggml-cpu-traits.h"
#include "repack.h"
#include "traits.h"
#include "ggml-impl.h"
#include "amx/amx.h"
@@ -11,7 +11,7 @@
#include <vector>
#ifdef GGML_USE_CPU_HBM
# include "ggml-cpu-hbm.h"
# include "hbm.h"
#endif
#ifdef GGML_USE_CPU_KLEIDIAI
@@ -51,9 +51,9 @@ std::vector<ggml_backend_buffer_type_t>& ggml_backend_cpu_get_extra_buffers_type
}
#endif
#ifdef GGML_USE_CPU_AARCH64
if (ggml_backend_cpu_aarch64_buffer_type()) {
bufts.push_back(ggml_backend_cpu_aarch64_buffer_type());
#ifdef GGML_USE_CPU_REPACK
if (ggml_backend_cpu_repack_buffer_type()) {
bufts.push_back(ggml_backend_cpu_repack_buffer_type());
}
#endif
@@ -596,8 +596,8 @@ static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t r
#ifdef GGML_USE_CPU_KLEIDIAI
features.push_back({ "KLEIDIAI", "1" });
#endif
#ifdef GGML_USE_CPU_AARCH64
features.push_back({ "AARCH64_REPACK", "1" });
#ifdef GGML_USE_CPU_REPACK
features.push_back({ "REPACK", "1" });
#endif
features.push_back({ nullptr, nullptr });

View File

@@ -5,7 +5,7 @@
#include "ggml-cpu.h"
#include "ggml-impl.h"
#include "ggml-cpu-hbm.h"
#include "hbm.h"
// buffer type HBM

View File

@@ -26,7 +26,7 @@
#include "ggml-impl.h"
#include "ggml-backend-impl.h"
#include "ggml-threading.h"
#include "ggml-cpu-traits.h"
#include "traits.h"
#include "kernels.h"

View File

@@ -53,7 +53,6 @@
#include "ggml-cpu-impl.h"
#include "ggml-quants.h"
#include <atomic>
#include <array>
#include <type_traits>
@@ -394,8 +393,6 @@ class tinyBLAS {
template <int RM, int RN, int BM>
NOINLINE void gemm(int64_t m, int64_t n, int64_t BN) {
static std::atomic<int64_t> current_chunk;
GGML_ASSERT(m % (RM * BM) == 0);
const int64_t ytiles = m / (RM * BM);
const int64_t xtiles = (n + RN -1) / RN;
@@ -410,7 +407,7 @@ class tinyBLAS {
if (params->ith == 0) {
GGML_ASSERT( jj_BN * SIZE_BN + (NB_BN - jj_BN) * (SIZE_BN - 1) == xtiles);
// Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
std::atomic_store_explicit(&current_chunk, (int64_t)params->nth, std::memory_order_relaxed);
ggml_threadpool_chunk_set(params->threadpool, params->nth);
}
ggml_barrier(params->threadpool);
@@ -439,8 +436,7 @@ class tinyBLAS {
GGML_ASSERT(jj == jj2);
}
// next step.
job = std::atomic_fetch_add_explicit(&current_chunk, (int64_t)1, std::memory_order_relaxed);
job = ggml_threadpool_chunk_add(params->threadpool, 1);
}
ggml_barrier(params->threadpool);

View File

@@ -8132,8 +8132,8 @@ static void ggml_compute_forward_rwkv_wkv6_f32(
#define WKV_VECTOR_SIZE 4
#endif
int wkv_vector_size;
#ifdef WKV_VECTOR_SIZE
int wkv_vector_size;
#if defined(__ARM_FEATURE_SVE)
wkv_vector_size = svcntw();
#else
@@ -8348,8 +8348,8 @@ static void ggml_compute_forward_gla_f32(
#define GLA_VECTOR_SIZE 4
#endif
int gla_vector_size;
#ifdef GLA_VECTOR_SIZE
int gla_vector_size;
#if defined(__ARM_FEATURE_SVE)
gla_vector_size = svcntw();
#else

1157
ggml/src/ggml-cpu/quants.c Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -58,6 +58,32 @@ void ggml_vec_dot_iq4_nl_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const
void ggml_vec_dot_iq4_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
// Generic implementation
void quantize_row_q8_0_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
void quantize_row_q8_1_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
void quantize_row_q8_K_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void ggml_vec_dot_q4_0_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q4_1_q8_1_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q5_0_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q5_1_q8_1_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q8_0_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_tq1_0_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_tq2_0_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q2_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q3_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q4_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q5_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q6_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq2_xxs_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq2_xs_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq2_s_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq3_xxs_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq3_s_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq1_s_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq1_m_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq4_nl_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq4_xs_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
#ifdef __cplusplus
}
#endif

1555
ggml/src/ggml-cpu/repack.cpp Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,98 @@
#pragma once
#define GGML_COMMON_DECL_CPP
#include "ggml-common.h"
#include "traits.h"
#include "ggml.h"
// GGML internal header
ggml_backend_buffer_type_t ggml_backend_cpu_repack_buffer_type(void);
template <int K> constexpr int QK_0() {
if constexpr (K == 4) {
return QK4_0;
}
if constexpr (K == 8) {
return QK8_0;
}
return -1;
}
template <int K, int N> struct block {
ggml_half d[N]; // deltas for N qK_0 blocks
int8_t qs[(QK_0<K>() * N * K) / 8]; // quants for N qK_0 blocks
};
// control size
static_assert(sizeof(block<4, 4>) == 4 * sizeof(ggml_half) + QK8_0 * 2, "wrong block<4,4> size/padding");
static_assert(sizeof(block<4, 8>) == 8 * sizeof(ggml_half) + QK8_0 * 4, "wrong block<4,8> size/padding");
static_assert(sizeof(block<8, 4>) == 4 * sizeof(ggml_half) + QK8_0 * 4, "wrong block<8,4> size/padding");
static_assert(sizeof(block<8, 8>) == 8 * sizeof(ggml_half) + QK8_0 * 8, "wrong block<8,8> size/padding");
using block_q4_0x4 = block<4, 4>;
using block_q4_0x8 = block<4, 8>;
using block_q8_0x4 = block<8, 4>;
using block_q8_0x8 = block<8, 8>;
struct block_q4_Kx8 {
ggml_half d[8]; // super-block scale for quantized scales
ggml_half dmin[8]; // super-block scale for quantized mins
uint8_t scales[96]; // scales and mins, quantized with 6 bits
uint8_t qs[1024]; // 4--bit quants
};
static_assert(sizeof(block_q4_Kx8) == sizeof(ggml_half) * 16 + K_SCALE_SIZE * 8 + QK_K * 4, "wrong q4_K block size/padding");
struct block_q8_Kx4 {
float d[4]; // delta
int8_t qs[QK_K * 4]; // quants
int16_t bsums[QK_K / 4]; // sum of quants in groups of 16
};
static_assert(sizeof(block_q8_Kx4) == sizeof(float) * 4 + QK_K * 4 + (QK_K / 4) * sizeof(int16_t), "wrong q8_K block size/padding");
struct block_iq4_nlx4 {
ggml_half d[4]; // deltas for 4 iq4_nl blocks
uint8_t qs[QK4_NL * 2]; // nibbles / quants for 4 iq4_nl blocks
};
static_assert(sizeof(block_iq4_nlx4) == 4 * sizeof(ggml_half) + QK4_NL * 2, "wrong iq4_nlx4 block size/padding");
#if defined(__cplusplus)
extern "C" {
#endif
void ggml_quantize_mat_q8_0_4x4(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
void ggml_quantize_mat_q8_0_4x8(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
void ggml_quantize_mat_q8_K_4x8(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
void ggml_gemv_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
// Native implementations
void ggml_quantize_mat_q8_0_4x4_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
void ggml_quantize_mat_q8_0_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
void ggml_quantize_mat_q8_K_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
void ggml_gemv_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
#if defined(__cplusplus)
} // extern "C"
#endif

View File

@@ -1,4 +1,4 @@
#include "ggml-cpu-traits.h"
#include "traits.h"
#include "ggml-backend-impl.h"
#include "ggml-backend.h"

View File

@@ -207,9 +207,9 @@ typedef float2 dfloat2;
#define FP16_MMA_AVAILABLE
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
#if defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || defined(RDNA4))
#if defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || (defined(GGML_HIP_ROCWMMA_FATTN_GFX12) && defined(RDNA4)))
#define FP16_MMA_AVAILABLE
#endif // defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || defined(RDNA4))
#endif // defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || (defined(GGML_HIP_ROCWMMA_FATTN_GFX12) && defined(RDNA4)))
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
#define NEW_MMA_AVAILABLE
@@ -262,11 +262,11 @@ static bool cp_async_available(const int cc) {
}
static constexpr __device__ int ggml_cuda_get_physical_warp_size() {
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
return __AMDGCN_WAVEFRONT_SIZE;
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(__GFX9__) || defined(__GFX8__))
return 64;
#else
return 32;
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(__GFX9__) || defined(__GFX8__))
}
[[noreturn]]
@@ -466,9 +466,6 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
}
// TODO: move to ggml-common.h
static constexpr __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, dfloat2 & v);
static __device__ __forceinline__ float get_alibi_slope(
@@ -635,6 +632,7 @@ struct ggml_cuda_device_info {
int nsm; // number of streaming multiprocessors
size_t smpb; // max. shared memory per block
size_t smpbo; // max. shared memory per block (with opt-in)
bool integrated; // Device is integrated as opposed to discrete
bool vmm; // virtual memory support
size_t vmm_granularity; // granularity of virtual memory
size_t total_vram;

View File

@@ -652,9 +652,12 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
float KQ_max_scale[cols_per_thread];
#pragma unroll
for (int col = 0; col < cols_per_thread; ++col) {
KQ_max_scale[col] = expf(KQ_max[col] - KQ_max_new[col]);
const float KQ_max_diff = KQ_max[col] - KQ_max_new[col];
KQ_max_scale[col] = expf(KQ_max_diff);
KQ_max[col] = KQ_max_new[col];
*((uint32_t *) &KQ_max_scale[col]) *= KQ_max_diff >= SOFTMAX_FTZ_THRESHOLD;
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
KQ_rowsum[col] = KQ_max_scale[col]*KQ_rowsum[col] + KQ_rowsum_add[col];
}
@@ -1246,7 +1249,7 @@ static __global__ void flash_attn_ext_f16(
NO_DEVICE_CODE;
return;
}
#endif __CUDA_ARCH__ == GGML_CUDA_CC_TURING
#endif // __CUDA_ARCH__ == GGML_CUDA_CC_TURING
static_assert(!mla || DKQ >= DV, "MLA needs DKQ >= DV");

View File

@@ -243,10 +243,10 @@ static ggml_cuda_device_info ggml_cuda_init() {
info.default_tensor_split[id] = total_vram;
total_vram += prop.totalGlobalMem;
info.devices[id].nsm = prop.multiProcessorCount;
info.devices[id].smpb = prop.sharedMemPerBlock;
info.devices[id].warp_size = prop.warpSize;
info.devices[id].integrated = prop.integrated;
info.devices[id].nsm = prop.multiProcessorCount;
info.devices[id].smpb = prop.sharedMemPerBlock;
info.devices[id].warp_size = prop.warpSize;
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
info.devices[id].smpbo = prop.sharedMemPerBlock;
@@ -615,9 +615,8 @@ static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaDeviceSynchronize());
CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size));
CUDA_CHECK(cudaDeviceSynchronize());
CUDA_CHECK(cudaMemsetAsync(ctx->dev_ptr, value, buffer->size, cudaStreamPerThread));
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
static const ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
@@ -1065,6 +1064,10 @@ static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_
GGML_UNUSED(buft);
}
static bool ggml_backend_buft_is_cuda_host(ggml_backend_buffer_type_t buft) {
return buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name;
}
static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
CUDA_CHECK(cudaFreeHost(buffer->context));
}
@@ -1140,7 +1143,6 @@ typedef void (*ggml_cuda_op_mul_mat_t)(
static cudaError_t ggml_cuda_cpy_tensor_2d(
void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
GGML_ASSERT(ggml_backend_buffer_is_cuda(src->buffer));
const char * src_ptr = (const char *) src->data;
char * dst_ptr = (char *) dst;
@@ -1423,8 +1425,6 @@ static void ggml_cuda_op_mul_mat(
const int64_t nb2 = dst->nb[2];
const int64_t nb3 = dst->nb[3];
GGML_ASSERT(ggml_backend_buffer_is_cuda(dst->buffer));
GGML_ASSERT(ggml_backend_buffer_is_cuda(src1->buffer));
ggml_backend_cuda_buffer_context * src1_ctx = (ggml_backend_cuda_buffer_context *) src1->buffer->context;
ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *) dst->buffer->context;
@@ -1746,7 +1746,7 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
GGML_ASSERT(!ggml_is_transposed(src0));
GGML_ASSERT(!ggml_is_transposed(src1));
GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
GGML_ASSERT(!ggml_backend_buft_is_cuda_split(src0->buffer->buft));
GGML_ASSERT(src0->type == GGML_TYPE_F16);
// Byte offsets and tensor dimensions are currently used in an inconsistent way for dst.
@@ -2641,6 +2641,8 @@ static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) {
static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
bool & graph_evaluated_or_captured, bool & use_cuda_graph, bool & cuda_graph_update_required) {
// flag used to determine whether it is an integrated_gpu
const bool integrated = ggml_cuda_info().devices[cuda_ctx->device].integrated;
while (!graph_evaluated_or_captured) {
// Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph.
@@ -2659,10 +2661,12 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
if (node->src[j] != nullptr) {
assert(node->src[j]->buffer);
assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) ||
ggml_backend_buft_is_cuda_split(node->src[j]->buffer->buft));
ggml_backend_buft_is_cuda_split(node->src[j]->buffer->buft) || (integrated && ggml_backend_buft_is_cuda_host(node->src[j]->buffer->buft)));
}
}
#endif
#else
GGML_UNUSED(integrated);
#endif // NDEBUG
bool ok = ggml_cuda_compute_forward(*cuda_ctx, node);
if (!ok) {
@@ -3266,7 +3270,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
}
static bool ggml_backend_cuda_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
return (ggml_backend_buft_is_cuda(buft) || ggml_backend_buft_is_cuda_split(buft)) && buft->device == dev;
ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *) dev->context;
const bool integrated = ggml_cuda_info().devices[dev_ctx->device].integrated;
return (((ggml_backend_buft_is_cuda(buft) || ggml_backend_buft_is_cuda_split(buft)) && buft->device == dev) || (integrated && ggml_backend_buft_is_cuda_host(buft)));
}
static int64_t get_op_batch_size(const ggml_tensor * op) {

View File

@@ -10,6 +10,8 @@ __global__ void __launch_bounds__(splitD, 2)
float * __restrict__ dst, const int64_t L) {
GGML_UNUSED(src1_nb0);
GGML_UNUSED(src2_nb0);
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
const int bidx = blockIdx.x; // split along B
const int bidy = blockIdx.y; // split along D
const int tid = threadIdx.x;
@@ -44,16 +46,16 @@ __global__ void __launch_bounds__(splitD, 2)
if (N == 16) {
#pragma unroll
for (size_t i = 0; i < splitD / 4; i += 2) {
float value = A_block[(wid * warpSize + i) * stride_A + wtid];
float value = A_block[(wid * warp_size + i) * stride_A + wtid];
// todo: bank conflict
// I am always confused with how to use the swizzling method to solve
// bank conflit. Hoping somebody can tell me.
smem_A[(wid * warpSize + i) * stride_sA + wtid + ((wtid / 16) > 0 ? 1 : 0)] = value;
smem_A[(wid * warp_size + i) * stride_sA + wtid + ((wtid / 16) > 0 ? 1 : 0)] = value;
}
#pragma unroll
for (size_t i = 0; i < splitD / 4; i += 2) {
float value = s0_block[(wid * warpSize + i) * stride_s0 + wtid];
smem_s0[(wid * warpSize + i) * stride_ss0 + wtid + ((wtid / 16) > 0 ? 1 : 0)] = value;
float value = s0_block[(wid * warp_size + i) * stride_s0 + wtid];
smem_s0[(wid * warp_size + i) * stride_ss0 + wtid + ((wtid / 16) > 0 ? 1 : 0)] = value;
}
}

View File

@@ -113,6 +113,10 @@ if (GGML_HIP_ROCWMMA_FATTN)
add_compile_definitions(GGML_HIP_ROCWMMA_FATTN)
endif()
if (GGML_HIP_FORCE_ROCWMMA_FATTN_GFX12 OR ${hip_VERSION} VERSION_GREATER_EQUAL 7.0)
add_compile_definitions(GGML_HIP_ROCWMMA_FATTN_GFX12)
endif()
if (NOT GGML_CUDA_FA)
add_compile_definitions(GGML_CUDA_NO_FA)
endif()

View File

@@ -32,6 +32,8 @@
extern "C" {
#endif
void ggml_print_backtrace(void);
#ifndef MIN
# define MIN(a, b) ((a) < (b) ? (a) : (b))
#endif

View File

@@ -44,21 +44,22 @@ if (GGML_METAL_EMBED_LIBRARY)
set(METALLIB_SOURCE_EMBED_TMP "${CMAKE_BINARY_DIR}/autogenerated/ggml-metal-embed.metal.tmp")
add_custom_command(
OUTPUT ${METALLIB_EMBED_ASM}
OUTPUT "${METALLIB_EMBED_ASM}"
COMMAND echo "Embedding Metal library"
COMMAND sed -e '/__embed_ggml-common.h__/r ${METALLIB_COMMON}' -e '/__embed_ggml-common.h__/d' < ${METALLIB_SOURCE} > ${METALLIB_SOURCE_EMBED_TMP}
COMMAND sed -e '/\#include \"ggml-metal-impl.h\"/r ${METALLIB_IMPL}' -e '/\#include \"ggml-metal-impl.h\"/d' < ${METALLIB_SOURCE_EMBED_TMP} > ${METALLIB_SOURCE_EMBED}
COMMAND echo ".section __DATA,__ggml_metallib" > ${METALLIB_EMBED_ASM}
COMMAND echo ".globl _ggml_metallib_start" >> ${METALLIB_EMBED_ASM}
COMMAND echo "_ggml_metallib_start:" >> ${METALLIB_EMBED_ASM}
COMMAND echo ".incbin \\\"${METALLIB_SOURCE_EMBED}\\\"" >> ${METALLIB_EMBED_ASM}
COMMAND echo ".globl _ggml_metallib_end" >> ${METALLIB_EMBED_ASM}
COMMAND echo "_ggml_metallib_end:" >> ${METALLIB_EMBED_ASM}
COMMAND sed -e "/__embed_ggml-common.h__/r ${METALLIB_COMMON}" -e "/__embed_ggml-common.h__/d" < "${METALLIB_SOURCE}" > "${METALLIB_SOURCE_EMBED_TMP}"
COMMAND sed -e "/\#include \"ggml-metal-impl.h\"/r ${METALLIB_IMPL}" -e "/\#include \"ggml-metal-impl.h\"/d" < "${METALLIB_SOURCE_EMBED_TMP}" > "${METALLIB_SOURCE_EMBED}"
COMMAND echo ".section __DATA,__ggml_metallib" > "${METALLIB_EMBED_ASM}"
COMMAND echo ".globl _ggml_metallib_start" >> "${METALLIB_EMBED_ASM}"
COMMAND echo "_ggml_metallib_start:" >> "${METALLIB_EMBED_ASM}"
COMMAND echo .incbin "\"${METALLIB_SOURCE_EMBED}\"" >> "${METALLIB_EMBED_ASM}"
COMMAND echo ".globl _ggml_metallib_end" >> "${METALLIB_EMBED_ASM}"
COMMAND echo "_ggml_metallib_end:" >> "${METALLIB_EMBED_ASM}"
DEPENDS ../ggml-common.h ggml-metal.metal ggml-metal-impl.h
COMMENT "Generate assembly for embedded Metal library"
VERBATIM
)
target_sources(ggml-metal PRIVATE ${METALLIB_EMBED_ASM})
target_sources(ggml-metal PRIVATE "${METALLIB_EMBED_ASM}")
else()
if (GGML_METAL_SHADER_DEBUG)
# custom command to do the following:

View File

@@ -4766,6 +4766,8 @@ static bool ggml_metal_encode_node(
GGML_ASSERT(nqptg % 8 == 0);
GGML_ASSERT(ncpsg % 32 == 0);
const int is_q = ggml_is_quantized(src1->type) ? 1 : 0;
// 2*(2*ncpsg + nqptg)*(nsg)
// ncpsg soft_max values + ncpsg mask values + a diagonal scaling matrix (in float)
//
@@ -4773,7 +4775,7 @@ static bool ggml_metal_encode_node(
// the shared memory needed for the simdgroups to load the KV cache
// each thread loads (dequantizes) 16 head elements, there are 32 threads in th SG
//
#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(ne00 + 2*(2*ncpsg + nqptg)*(nsg)) + 16*32*(nsg))*(sizeof(float)/2), 16))
#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(2*ne00 + 2*(2*ncpsg + nqptg)*(nsg)) + is_q*(16*32*(nsg)))*(sizeof(float)/2), 16))
int64_t nsgmax = 2;
@@ -4810,9 +4812,9 @@ static bool ggml_metal_encode_node(
// and store the soft_max values and the mask
//
// ne00*(nsg)
// each simdgroup has a full f16 head vector in shared mem to accumulate results
// each simdgroup has a full f32 head vector in shared mem to accumulate results
//
#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(GGML_PAD(ne00, 128) + 4*ncpsg*(nsg)) + ne20*(nsg))*(sizeof(float)/2), 16))
#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(GGML_PAD(ne00, 128) + 4*ncpsg*(nsg)) + 2*ne20*(nsg))*(sizeof(float)/2), 16))
int64_t nsgmax = 2;
while (true) {

View File

@@ -3328,14 +3328,12 @@ kernel void kernel_flash_attn_ext(
constexpr short NW = N_SIMDWIDTH;
constexpr short SH = (2*C + Q); // shared memory per simdgroup (s_t == float)
const short TS = nsg*SH; // shared memory size per query in (s_t == float)
const short T = DK + 2*TS; // shared memory size per query in (half)
const short TS = nsg*SH; // shared memory size per query in (s_t == float)
const short T = 2*DK + 2*TS; // shared memory size per query in (half)
threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*DK); // holds the query data
threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*DK); // same as above but in q4_t
threadgroup o_t * so = (threadgroup o_t *) (shmem_f16 + 0*DK); // reuse query data for accumulation
threadgroup o4_t * so4 = (threadgroup o4_t *) (shmem_f16 + 0*DK); // same as above but in o4_t
threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + 2*sgitg*SH + Q*DK); // scratch buffer for attention, mask and diagonal matrix
threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*DK); // holds the query data
threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*DK); // same as above but in q4_t
threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + 2*sgitg*SH + 2*Q*DK); // scratch buffer for attention, mask and diagonal matrix
threadgroup k_t * sk = (threadgroup k_t *) (shmem_f16 + sgitg*(4*16*KV) + Q*T); // scratch buffer to load K in shared memory
threadgroup k4x4_t * sk4x4 = (threadgroup k4x4_t *) (shmem_f16 + sgitg*(4*16*KV) + Q*T); // same as above but in k4x4_t
@@ -3354,7 +3352,7 @@ kernel void kernel_flash_attn_ext(
if (iq1 + j < args.ne01) {
sq4[j*DK4 + i] = (q4_t) q4[i];
} else {
sq4[j*DK4 + i] = (q4_t) 0.0f;
sq4[j*DK4 + i] = 0;
}
}
}
@@ -3548,20 +3546,20 @@ kernel void kernel_flash_attn_ext(
// O = diag(ms)*O
{
s8x8_t mm;
simdgroup_load(mm, ss + 2*C, TS, 0, false);
s8x8_t ms;
simdgroup_load(ms, ss + 2*C, TS, 0, false);
#pragma unroll(DV8)
for (short i = 0; i < DV8; ++i) {
simdgroup_multiply(lo[i], mm, lo[i]);
simdgroup_multiply(lo[i], ms, lo[i]);
}
}
// O = O + (Q*K^T)*V
{
for (short cc = 0; cc < C/8; ++cc) {
s8x8_t ms;
simdgroup_load(ms, ss + 8*cc, TS, 0, false);
s8x8_t vs;
simdgroup_load(vs, ss + 8*cc, TS, 0, false);
if (is_same<vd4x4_t, v4x4_t>::value) {
// we can read directly from global memory
@@ -3572,7 +3570,7 @@ kernel void kernel_flash_attn_ext(
v8x8_t mv;
simdgroup_load(mv, pv + i*8, args.nb21/sizeof(v_t), 0, false); // TODO: use ne20
simdgroup_multiply_accumulate(lo[i], ms, mv, lo[i]);
simdgroup_multiply_accumulate(lo[i], vs, mv, lo[i]);
}
} else {
for (short ii = 0; ii < DV16; ii += 4) {
@@ -3593,10 +3591,10 @@ kernel void kernel_flash_attn_ext(
v8x8_t mv;
simdgroup_load(mv, sv + 16*k + 0*8, 4*16, 0, false);
simdgroup_multiply_accumulate(lo[2*(ii + k) + 0], ms, mv, lo[2*(ii + k) + 0]);
simdgroup_multiply_accumulate(lo[2*(ii + k) + 0], vs, mv, lo[2*(ii + k) + 0]);
simdgroup_load(mv, sv + 16*k + 1*8, 4*16, 0, false);
simdgroup_multiply_accumulate(lo[2*(ii + k) + 1], ms, mv, lo[2*(ii + k) + 1]);
simdgroup_multiply_accumulate(lo[2*(ii + k) + 1], vs, mv, lo[2*(ii + k) + 1]);
}
} else {
if (ii + tx < DV16) {
@@ -3611,10 +3609,10 @@ kernel void kernel_flash_attn_ext(
v8x8_t mv;
simdgroup_load(mv, sv + 16*k + 0*8, 4*16, 0, false);
simdgroup_multiply_accumulate(lo[2*(ii + k) + 0], ms, mv, lo[2*(ii + k) + 0]);
simdgroup_multiply_accumulate(lo[2*(ii + k) + 0], vs, mv, lo[2*(ii + k) + 0]);
simdgroup_load(mv, sv + 16*k + 1*8, 4*16, 0, false);
simdgroup_multiply_accumulate(lo[2*(ii + k) + 1], ms, mv, lo[2*(ii + k) + 1]);
simdgroup_multiply_accumulate(lo[2*(ii + k) + 1], vs, mv, lo[2*(ii + k) + 1]);
}
}
}
@@ -3624,93 +3622,89 @@ kernel void kernel_flash_attn_ext(
}
// these are needed for reducing the results from the simdgroups (reuse the ss buffer)
for (short j = 0; j < Q; ++j) {
if (tiisg == 0) {
ss[j*TS + 0] = S[j];
ss[j*TS + 1] = M[j];
}
for (short j = tiisg; j < Q; j += NW) {
ss[j*TS + 0] = S[j];
ss[j*TS + 1] = M[j];
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
threadgroup float * so = (threadgroup float *) (shmem_f16 + 0*DK); // reuse query data for accumulation
threadgroup float4 * so4 = (threadgroup float4 *) (shmem_f16 + 0*DK);
// store result to shared memory in F32
if (sgitg == 0) {
for (short i = 0; i < DV8; ++i) {
//simdgroup_store(lo[i], so + i*8, DV, 0, false);
simdgroup_float8x8 t(1.0f);
simdgroup_multiply(t, lo[i], t);
simdgroup_store(t, so + i*8, DV, 0, false);
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// reduce the warps sequentially
for (ushort sg = 1; sg < nsg; ++sg) {
float S = { 0.0f };
float M = { -__FLT_MAX__/2 };
threadgroup_barrier(mem_flags::mem_threadgroup);
// each simdgroup stores its output to shared memory, reusing sq
if (sgitg == sg) {
for (short i = 0; i < DV8; ++i) {
simdgroup_store(lo[i], so + i*8, DV, 0, false);
for (short j = tiisg; j < Q; j += NW) {
const float S0 = ss[j*TS - 1*SH + 0];
const float S1 = ss[j*TS + 0];
const float M0 = ss[j*TS - 1*SH + 1];
const float M1 = ss[j*TS + 1];
const float M = max(M0, M1);
float ms0 = exp(M0 - M);
float ms1 = exp(M1 - M);
const float S = S0*ms0 + S1*ms1;
ss[j*TS + 0] = S;
ss[j*TS + 1] = M;
ss[j*TS + 2*C + j - 1*SH] = ms0;
ss[j*TS + 2*C + j ] = ms1;
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// the first simdgroup accumulates the results from the other simdgroups
if (sgitg == 0) {
for (short j = 0; j < Q; ++j) {
const float S0 = ss[j*TS + 0];
const float S1 = ss[j*TS + sg*SH + 0];
const float M0 = ss[j*TS + 1];
const float M1 = ss[j*TS + sg*SH + 1];
M = max(M0, M1);
const float ms0 = exp(M0 - M);
const float ms1 = exp(M1 - M);
S = S0*ms0 + S1*ms1;
if (tiisg == 0) {
ss[j*TS + 0] = S;
ss[j*TS + 1] = M;
ss[j*TS + 2*C + j ] = ms0;
ss[j*TS + 2*C + j + sg*SH] = ms1;
}
}
//simdgroup_barrier(mem_flags::mem_threadgroup);
// O_0 = diag(ms0)*O_0 + diag(ms1)*O_1
{
s8x8_t ms0;
s8x8_t ms1;
simdgroup_load(ms0, ss + 2*C, TS, 0, false);
simdgroup_load(ms1, ss + 2*C + sg*SH, TS, 0, false);
simdgroup_load(ms0, ss + 2*C - 1*SH, TS, 0, false);
simdgroup_load(ms1, ss + 2*C, TS, 0, false);
#pragma unroll(DV8)
for (short i = 0; i < DV8; ++i) {
o8x8_t t;
simdgroup_float8x8 t;
simdgroup_load (t, so + i*8, DV, 0, false);
simdgroup_multiply(t, ms1, t);
simdgroup_multiply(t, ms0, t);
simdgroup_multiply_accumulate(lo[i], ms0, lo[i], t);
simdgroup_multiply_accumulate(t, ms1, lo[i], t);
simdgroup_store(t, so + i*8, DV, 0, false);
}
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
// store result to shared memory (reuse sq)
if (sgitg == 0) {
for (short i = 0; i < DV8; ++i) {
simdgroup_store(lo[i], so + i*8, DV, 0, false);
}
}
device float4 * dst4 = (device float4 *) dst;
threadgroup s_t * sf = (threadgroup s_t *) (shmem_f16 + 2*(nsg-1)*SH + 2*Q*DK);
// final rescale with 1/S and store to global memory
if (sgitg == 0) {
for (short j = 0; j < Q && iq1 + j < args.ne01; ++j) {
const float S = ss[j*TS + 0];
for (short j = sgitg; j < Q && iq1 + j < args.ne01; j += nsg) {
const float S = 1.0f/sf[j*TS + 0];
for (short i = tiisg; i < DV4; i += NW) {
dst4[((uint64_t)iq3*args.ne2*args.ne1 + iq2 + (uint64_t)(iq1 + j)*args.ne1)*DV4 + i] = (float4) so4[j*DV4 + i]/S;
}
device float4 * dst4 = (device float4 *) dst + ((uint64_t)iq3*args.ne2*args.ne1 + iq2 + (uint64_t)(iq1 + j)*args.ne1)*DV4;
for (short i = tiisg; i < DV4; i += NW) {
dst4[i] = (float4) so4[j*DV4 + i]*S;
}
}
}
@@ -3719,12 +3713,22 @@ kernel void kernel_flash_attn_ext(
// template to be able to explore different combinations
//
#define FA_TYPES \
half, half4, simdgroup_half8x8, \
half, half4x4, simdgroup_half8x8, \
half, half4x4, simdgroup_half8x8, \
float, simdgroup_float8x8, \
float, simdgroup_float8x8, \
half, half4, simdgroup_half8x8
float, float4, simdgroup_float8x8, \
half, half4x4, simdgroup_half8x8, \
half, half4x4, simdgroup_half8x8, \
float, simdgroup_float8x8, \
float, simdgroup_float8x8, \
half, half4, simdgroup_half8x8
//float, float4, simdgroup_float8x8
#define FA_TYPES_BF \
bfloat, bfloat4, simdgroup_bfloat8x8, \
bfloat, bfloat4x4, simdgroup_bfloat8x8, \
bfloat, bfloat4x4, simdgroup_bfloat8x8, \
float, simdgroup_float8x8, \
float, simdgroup_float8x8, \
half, half4, simdgroup_half8x8
//float, float4, simdgroup_float8x8
typedef decltype(kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 64, 64>) flash_attn_ext_t;
@@ -3739,15 +3743,15 @@ template [[host_name("kernel_flash_attn_ext_f16_h256")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_f16_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 576, 512>;
#if defined(GGML_METAL_USE_BF16)
template [[host_name("kernel_flash_attn_ext_bf16_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 64, 64>;
template [[host_name("kernel_flash_attn_ext_bf16_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 80, 80>;
template [[host_name("kernel_flash_attn_ext_bf16_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 96, 96>;
template [[host_name("kernel_flash_attn_ext_bf16_h112")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 112, 112>;
template [[host_name("kernel_flash_attn_ext_bf16_h128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 128, 128>;
template [[host_name("kernel_flash_attn_ext_bf16_h192")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 192, 192>;
template [[host_name("kernel_flash_attn_ext_bf16_hk192_hv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 192, 128>;
template [[host_name("kernel_flash_attn_ext_bf16_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 256, 256>;
template [[host_name("kernel_flash_attn_ext_bf16_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 576, 512>;
template [[host_name("kernel_flash_attn_ext_bf16_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 64, 64>;
template [[host_name("kernel_flash_attn_ext_bf16_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 80, 80>;
template [[host_name("kernel_flash_attn_ext_bf16_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 96, 96>;
template [[host_name("kernel_flash_attn_ext_bf16_h112")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 112, 112>;
template [[host_name("kernel_flash_attn_ext_bf16_h128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 128, 128>;
template [[host_name("kernel_flash_attn_ext_bf16_h192")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 192, 192>;
template [[host_name("kernel_flash_attn_ext_bf16_hk192_hv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 192, 128>;
template [[host_name("kernel_flash_attn_ext_bf16_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 256, 256>;
template [[host_name("kernel_flash_attn_ext_bf16_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 576, 512>;
#endif
template [[host_name("kernel_flash_attn_ext_q4_0_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 64, 64>;
@@ -3801,6 +3805,7 @@ template [[host_name("kernel_flash_attn_ext_q8_0_h256")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_q8_0_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 576, 512>;
#undef FA_TYPES
#undef FA_TYPES_BF
template<
typename q4_t, // query types in shared memory
@@ -3847,12 +3852,12 @@ kernel void kernel_flash_attn_ext_vec(
const short T = DK + nsg*SH; // shared memory size per query in (half)
//threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*DK); // holds the query data
threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*DK); // same as above but in q4_t
threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + sgitg*SH + Q*DK); // scratch buffer for attention
threadgroup s4_t * ss4 = (threadgroup s4_t *) (shmem_f16 + sgitg*SH + Q*DK); // same as above but in s4_t
threadgroup float * sm = (threadgroup float *) (shmem_f16 + sgitg*SH + 2*C + Q*DK); // scratch buffer for mask
threadgroup o4_t * sr4 = (threadgroup o4_t *) (shmem_f16 + sgitg*DV + Q*T); // scratch buffer for the results
//threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*DK); // holds the query data
threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*DK); // same as above but in q4_t
threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + sgitg*SH + Q*DK); // scratch buffer for attention
threadgroup s4_t * ss4 = (threadgroup s4_t *) (shmem_f16 + sgitg*SH + Q*DK); // same as above but in s4_t
threadgroup float * sm = (threadgroup float *) (shmem_f16 + sgitg*SH + 2*C + Q*DK); // scratch buffer for mask
threadgroup o4_t * sr4 = (threadgroup o4_t *) (shmem_f16 + 2*sgitg*DV + Q*T); // scratch buffer for the results
// store the result for all queries in local memory (the O matrix from the paper)
o4_t lo[DV4/NL];
@@ -4157,7 +4162,7 @@ kernel void kernel_flash_attn_ext_vec(
half4, \
float, \
float, float4, \
half4
float4
typedef decltype(kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 128, 128, 4>) flash_attn_ext_vec_t;

View File

@@ -80,6 +80,7 @@ set(GGML_OPENCL_KERNELS
mul_mv_q4_0_f32_1d_8x_flat
mul_mv_q4_0_f32_1d_16x_flat
mul_mv_q6_k
mul_mv_id_q4_0_f32_8x_flat
mul
norm
relu
@@ -95,6 +96,12 @@ set(GGML_OPENCL_KERNELS
sub
sum_rows
transpose
concat
tsembd
upscale
tanh
pad
repeat
)
foreach (K ${GGML_OPENCL_KERNELS})

View File

@@ -315,6 +315,13 @@ struct ggml_backend_opencl_context {
cl_program program_softmax_4_f16;
cl_program program_argsort_f32_i32;
cl_program program_sum_rows_f32;
cl_program program_repeat;
cl_program program_pad;
cl_program program_tanh;
cl_program program_upscale;
cl_program program_concat;
cl_program program_tsembd;
cl_program program_mul_mv_id_q4_0_f32_8x_flat;
cl_kernel kernel_add, kernel_add_row;
cl_kernel kernel_mul, kernel_mul_row;
@@ -351,6 +358,16 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_im2col_f32, kernel_im2col_f16;
cl_kernel kernel_argsort_f32_i32;
cl_kernel kernel_sum_rows_f32;
cl_kernel kernel_repeat;
cl_kernel kernel_pad;
cl_kernel kernel_tanh_f32_nd;
cl_kernel kernel_tanh_f16_nd;
cl_kernel kernel_upscale;
cl_kernel kernel_upscale_bilinear;
cl_kernel kernel_concat_f32_contiguous;
cl_kernel kernel_concat_f32_non_contiguous;
cl_kernel kernel_timestep_embedding;
cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
// Transpose kernels
@@ -1097,6 +1114,166 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
GGML_LOG_CONT(".");
}
// repeat
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "repeat.cl.h"
};
#else
const std::string kernel_src = read_file("repeat.cl");
#endif
if (!kernel_src.empty()) {
backend_ctx->program_repeat =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_repeat = clCreateKernel(backend_ctx->program_repeat, "kernel_repeat", &err), err));
GGML_LOG_CONT(".");
} else {
GGML_LOG_WARN("ggml_opencl: repeat kernel source not found or empty. Repeat operations will not be available.\n");
backend_ctx->program_repeat = nullptr;
backend_ctx->kernel_repeat = nullptr;
}
}
// pad
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "pad.cl.h"
};
#else
const std::string kernel_src = read_file("pad.cl");
#endif
if (!kernel_src.empty()) {
backend_ctx->program_pad =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_pad = clCreateKernel(backend_ctx->program_pad, "kernel_pad", &err), err));
GGML_LOG_CONT(".");
} else {
GGML_LOG_WARN("ggml_opencl: pad kernel source not found or empty. Pad operations will not be available.\n");
backend_ctx->program_pad = nullptr;
backend_ctx->kernel_pad = nullptr;
}
}
// tanh
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "tanh.cl.h"
};
#else
const std::string kernel_src = read_file("tanh.cl");
#endif
if (!kernel_src.empty()) {
backend_ctx->program_tanh =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_tanh_f32_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f32_nd", &err), err));
CL_CHECK((backend_ctx->kernel_tanh_f16_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f16_nd", &err), err));
GGML_LOG_CONT(".");
} else {
GGML_LOG_WARN("ggml_opencl: tanh kernel source not found or empty. Tanh operation will not be available.\n");
backend_ctx->program_tanh = nullptr;
backend_ctx->kernel_tanh_f32_nd = nullptr;
backend_ctx->kernel_tanh_f16_nd = nullptr;
}
}
// upscale
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "upscale.cl.h"
};
#else
const std::string kernel_src = read_file("upscale.cl");
#endif
if (!kernel_src.empty()) {
backend_ctx->program_upscale =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_upscale = clCreateKernel(backend_ctx->program_upscale, "kernel_upscale", &err), err));
if (backend_ctx->program_upscale) {
cl_int err_bilinear;
backend_ctx->kernel_upscale_bilinear = clCreateKernel(backend_ctx->program_upscale, "kernel_upscale_bilinear", &err_bilinear);
if (err_bilinear != CL_SUCCESS) {
GGML_LOG_WARN("ggml_opencl: kernel_upscale_bilinear not found in upscale.cl. Bilinear upscale will not be available. Error: %d\n", err_bilinear);
backend_ctx->kernel_upscale_bilinear = nullptr;
}
} else {
backend_ctx->kernel_upscale_bilinear = nullptr;
}
GGML_LOG_CONT(".");
} else {
GGML_LOG_WARN("ggml_opencl: upscale kernel source not found or empty. Upscale operations will not be available.\n");
backend_ctx->program_upscale = nullptr;
backend_ctx->kernel_upscale = nullptr;
backend_ctx->kernel_upscale_bilinear = nullptr;
}
}
// concat
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "concat.cl.h"
};
#else
const std::string kernel_src = read_file("concat.cl");
#endif
if (!kernel_src.empty()) {
backend_ctx->program_concat =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_concat_f32_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_contiguous", &err), err));
CL_CHECK((backend_ctx->kernel_concat_f32_non_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_non_contiguous", &err), err));
GGML_LOG_CONT(".");
} else {
GGML_LOG_WARN("ggml_opencl: concat kernel source not found or empty. Concat operations will not be available.\n");
backend_ctx->program_concat = nullptr;
backend_ctx->kernel_concat_f32_contiguous = nullptr;
backend_ctx->kernel_concat_f32_non_contiguous = nullptr;
}
}
// timestep_embedding
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "tsembd.cl.h"
};
#else
const std::string kernel_src = read_file("tsembd.cl");
#endif
if (!kernel_src.empty()) {
backend_ctx->program_tsembd =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_timestep_embedding = clCreateKernel(backend_ctx->program_tsembd, "kernel_timestep_embedding", &err), err));
GGML_LOG_CONT(".");
} else {
GGML_LOG_WARN("ggml_opencl: timestep_embedding kernel source not found or empty. This op will not be available.\n");
backend_ctx->program_tsembd = nullptr;
backend_ctx->kernel_timestep_embedding = nullptr;
}
}
// mul_mv_id_q4_0_f32_8x_flat
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "mul_mv_id_q4_0_f32_8x_flat.cl.h"
};
#else
const std::string kernel_src = read_file("mul_mv_id_q4_0_f32_8x_flat.cl");
#endif
backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat, "kernel_mul_mv_id_q4_0_f32_8x_flat", &err), err));
GGML_LOG_CONT(".");
}
// Adreno kernels
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
// transpose
@@ -1863,7 +2040,12 @@ static bool ggml_backend_opencl_cpy_tensor_async(ggml_backend_t backend, const g
}
static void ggml_backend_opencl_synchronize(ggml_backend_t backend) {
GGML_UNUSED(backend);
auto * backend_ctx = static_cast<ggml_backend_opencl_context *>(backend->context);
cl_event evt;
CL_CHECK(clEnqueueBarrierWithWaitList(backend_ctx->queue, 0, nullptr, &evt));
CL_CHECK(clWaitForEvents(1, &evt));
CL_CHECK(clReleaseEvent(evt));
}
// Syncronizes the 'backend_ctx's device with others so that commands
@@ -1976,9 +2158,12 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_GELU_QUICK:
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
case GGML_UNARY_OP_SIGMOID:
return ggml_is_contiguous(op->src[0]);
case GGML_UNARY_OP_TANH:
return (op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
(op->src[0]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16);
default:
return false;
}
@@ -1988,6 +2173,17 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
case GGML_OP_NORM:
case GGML_OP_RMS_NORM:
return true;
case GGML_OP_REPEAT:
return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32; // Assuming F32 for now, can be expanded
case GGML_OP_PAD:
return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32 &&
op->src[0]->ne[3] == 1 && op->ne[3] == 1;
case GGML_OP_UPSCALE:
return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
case GGML_OP_CONCAT:
return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
case GGML_OP_TIMESTEP_EMBEDDING:
return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
case GGML_OP_GROUP_NORM:
return ggml_is_contiguous(op->src[0]);
case GGML_OP_MUL_MAT:
@@ -2000,6 +2196,13 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
}
return false;
case GGML_OP_MUL_MAT_ID:
if (op->src[0]->type == GGML_TYPE_Q4_0) {
if (op->src[1]->type == GGML_TYPE_F32) {
return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
}
}
return false;
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
@@ -2052,7 +2255,7 @@ static ggml_backend_i ggml_backend_opencl_i = {
/* .set_tensor_async = */ NULL, /* ggml_backend_opencl_set_tensor_async */
/* .get_tensor_async = */ NULL, /* ggml_backend_opencl_get_tensor_async */
/* .cpy_tensor_async = */ NULL, /* ggml_backend_opencl_cpy_tensor_async */
/* .synchronize = */ NULL, /* ggml_backend_opencl_synchronize */
/* .synchronize = */ ggml_backend_opencl_synchronize,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_update = */ NULL,
@@ -4108,6 +4311,536 @@ static void ggml_cl_group_norm(ggml_backend_t backend, const ggml_tensor * src0,
#endif
}
static void ggml_cl_tanh(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
UNUSED(src1);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0_abs = extra0->offset + src0->view_offs;
cl_ulong offsetd_abs = extrad->offset + dst->view_offs;
cl_kernel kernel;
if (dst->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_tanh_f32_nd;
} else if (dst->type == GGML_TYPE_F16) {
kernel = backend_ctx->kernel_tanh_f16_nd;
} else {
GGML_ASSERT(false && "Unsupported type for ggml_cl_tanh");
}
GGML_ASSERT(kernel != nullptr);
const int ne00 = src0->ne[0]; const int ne01 = src0->ne[1]; const int ne02 = src0->ne[2]; const int ne03 = src0->ne[3];
const cl_ulong nb00 = src0->nb[0]; const cl_ulong nb01 = src0->nb[1]; const cl_ulong nb02 = src0->nb[2]; const cl_ulong nb03 = src0->nb[3];
const int ne10 = dst->ne[0]; const int ne11 = dst->ne[1]; const int ne12 = dst->ne[2]; const int ne13 = dst->ne[3];
const cl_ulong nb10 = dst->nb[0]; const cl_ulong nb11 = dst->nb[1]; const cl_ulong nb12 = dst->nb[2]; const cl_ulong nb13 = dst->nb[3];
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0_abs));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd_abs));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong),&nb02));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong),&nb03));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong),&nb10));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong),&nb11));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong),&nb12));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong),&nb13));
size_t global_work_size[3];
if (ne10 == 0 || ne11 == 0 || ne12 == 0 || ne13 == 0) { // Handle case of 0 elements
return;
}
global_work_size[0] = (size_t)ne10;
global_work_size[1] = (size_t)ne11;
global_work_size[2] = (size_t)ne12;
size_t lws0 = 16, lws1 = 4, lws2 = 1;
if (ne10 < 16) lws0 = ne10;
if (ne11 < 4) lws1 = ne11;
if (ne12 < 1) lws2 = ne12 > 0 ? ne12 : 1;
while (lws0 * lws1 * lws2 > 256 && lws0 > 1) lws0 /= 2;
while (lws0 * lws1 * lws2 > 256 && lws1 > 1) lws1 /= 2;
while (lws0 * lws1 * lws2 > 256 && lws2 > 1) lws2 /= 2;
size_t local_work_size[] = {lws0, lws1, lws2};
size_t* local_work_size_ptr = local_work_size;
if (!backend_ctx->non_uniform_workgroups) {
if (global_work_size[0] % local_work_size[0] != 0 ||
global_work_size[1] % local_work_size[1] != 0 ||
global_work_size[2] % local_work_size[2] != 0) {
local_work_size_ptr = NULL;
}
}
if (global_work_size[0] == 0 || global_work_size[1] == 0 || global_work_size[2] == 0) return;
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size_ptr, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size_ptr ? local_work_size : (size_t[3]){0,0,0}, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size_ptr, 0, NULL, NULL));
#endif
}
static void ggml_cl_repeat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1_shape_def, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
GGML_ASSERT(dst->type == src0->type);
UNUSED(src1_shape_def);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
if (backend_ctx->kernel_repeat == nullptr) {
GGML_LOG_WARN("%s: repeat kernel not available, skipping OpenCL execution.\n", __func__);
return;
}
ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
cl_ulong off_dst = extra_dst->offset + dst->view_offs;
const int src0_ne0 = src0->ne[0]; const int src0_ne1 = src0->ne[1]; const int src0_ne2 = src0->ne[2]; const int src0_ne3 = src0->ne[3];
const cl_ulong src0_nb0 = src0->nb[0]; const cl_ulong src0_nb1 = src0->nb[1]; const cl_ulong src0_nb2 = src0->nb[2]; const cl_ulong src0_nb3 = src0->nb[3];
const int dst_ne0 = dst->ne[0]; const int dst_ne1 = dst->ne[1]; const int dst_ne2 = dst->ne[2]; const int dst_ne3 = dst->ne[3];
const cl_ulong dst_nb0 = dst->nb[0]; const cl_ulong dst_nb1 = dst->nb[1]; const cl_ulong dst_nb2 = dst->nb[2]; const cl_ulong dst_nb3 = dst->nb[3];
cl_kernel kernel = backend_ctx->kernel_repeat;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra_dst->data_device));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_ulong), &off_src0));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &src0_ne0));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &src0_ne1));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &src0_ne2));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &src0_ne3));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &src0_nb0));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &src0_nb1));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &src0_nb2));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &src0_nb3));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &dst_ne0));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &dst_ne1));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &dst_ne2));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dst_ne3));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &dst_nb0));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &dst_nb1));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &dst_nb2));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &dst_nb3));
size_t gws0 = dst_ne1 > 0 ? (size_t)dst_ne1 : 1;
size_t gws1 = dst_ne2 > 0 ? (size_t)dst_ne2 : 1;
size_t gws2 = dst_ne3 > 0 ? (size_t)dst_ne3 : 1;
size_t global_work_size[] = { gws0, gws1, gws2 };
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, NULL, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, (size_t[3]){0,0,0}, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, NULL, 0, NULL, NULL));
#endif
}
static void ggml_cl_pad(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
if (backend_ctx->kernel_pad == nullptr) {
GGML_LOG_WARN("%s: pad kernel not available, skipping OpenCL execution.\n", __func__);
return;
}
ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
cl_ulong off_dst = extra_dst->offset + dst->view_offs;
const int s_ne0 = src0->ne[0];
const int s_ne1 = src0->ne[1];
const int s_ne2 = src0->ne[2];
const int d_ne0 = dst->ne[0];
const int d_ne1 = dst->ne[1];
const int d_ne2 = dst->ne[2];
cl_kernel kernel = backend_ctx->kernel_pad;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &s_ne0));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &s_ne1));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &s_ne2));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &d_ne0));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &d_ne1));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &d_ne2));
size_t lws0 = 64;
size_t gws0 = (( (size_t)d_ne0 + lws0 - 1 ) / lws0) * lws0;
size_t global_work_size[] = { gws0, (size_t)d_ne1, (size_t)d_ne2 };
size_t local_work_size[] = { lws0, 1, 1 };
size_t * local_work_size_ptr = local_work_size;
if (d_ne0 % lws0 != 0 && !backend_ctx->non_uniform_workgroups) {
local_work_size_ptr = nullptr;
}
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size_ptr, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size_ptr ? local_work_size : (size_t[3]){0,0,0}, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size_ptr, 0, NULL, NULL));
#endif
}
static void ggml_cl_upscale(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
const ggml_scale_mode mode = (ggml_scale_mode) ggml_get_op_params_i32(dst, 0);
cl_kernel kernel = nullptr;
if (mode == GGML_SCALE_MODE_NEAREST) {
kernel = backend_ctx->kernel_upscale;
if (kernel == nullptr) {
GGML_LOG_WARN("%s: nearest upscale kernel not available, skipping OpenCL execution.\n", __func__);
return;
}
} else if (mode == GGML_SCALE_MODE_BILINEAR) {
kernel = backend_ctx->kernel_upscale_bilinear;
if (kernel == nullptr) {
GGML_LOG_WARN("%s: bilinear upscale kernel not available, skipping OpenCL execution.\n", __func__);
return;
}
} else {
GGML_LOG_WARN("%s: unsupported upscale mode %d, skipping OpenCL execution.\n", __func__, mode);
return;
}
ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
cl_ulong off_dst = extra_dst->offset + dst->view_offs;
const cl_ulong nb00 = src0->nb[0];
const cl_ulong nb01 = src0->nb[1];
const cl_ulong nb02 = src0->nb[2];
const cl_ulong nb03 = src0->nb[3];
const int ne00_src = src0->ne[0];
const int ne01_src = src0->ne[1];
const int ne10_dst = dst->ne[0];
const int ne11_dst = dst->ne[1];
const int ne12_dst = dst->ne[2];
const int ne13_dst = dst->ne[3];
const float sf0 = (float)dst->ne[0] / src0->ne[0];
const float sf1 = (float)dst->ne[1] / src0->ne[1];
const float sf2 = (float)dst->ne[2] / src0->ne[2];
const float sf3 = (float)dst->ne[3] / src0->ne[3];
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb03));
if (mode == GGML_SCALE_MODE_NEAREST) {
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne10_dst));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11_dst));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12_dst));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne13_dst));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &sf0));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(float), &sf1));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(float), &sf2));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(float), &sf3));
} else if (mode == GGML_SCALE_MODE_BILINEAR) {
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00_src));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01_src));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10_dst));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11_dst));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12_dst));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13_dst));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(float), &sf0));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(float), &sf1));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(float), &sf2));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(float), &sf3));
}
size_t dst_total_elements = (size_t)ne10_dst * ne11_dst * ne12_dst * ne13_dst;
if (dst_total_elements == 0) {
return;
}
size_t global_work_size[] = { dst_total_elements, 1, 1 };
size_t local_work_size_pref = 256;
size_t local_work_size[] = { MIN(local_work_size_pref, dst_total_elements), 1, 1};
size_t * local_work_size_ptr = local_work_size;
if (dst_total_elements % local_work_size[0] != 0 && !backend_ctx->non_uniform_workgroups) {
local_work_size_ptr = nullptr;
}
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 1, NULL, global_work_size, local_work_size_ptr, 0, NULL, &evt));
g_profiling_info.emplace_back();
size_t profiling_gws[3] = {global_work_size[0], 1, 1};
size_t profiling_lws[3] = {local_work_size_ptr ? local_work_size[0] : 0, 1, 1};
populateProfilingInfo(g_profiling_info.back(), evt, kernel, profiling_gws, profiling_lws, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 1, NULL, global_work_size, local_work_size_ptr, 0, NULL, NULL));
#endif
}
static void ggml_cl_concat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(src1);
GGML_ASSERT(src1->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
if (backend_ctx->kernel_concat_f32_contiguous == nullptr || backend_ctx->kernel_concat_f32_non_contiguous == nullptr) {
GGML_LOG_WARN("%s: concat kernels not available, skipping OpenCL execution.\n", __func__);
return;
}
ggml_tensor_extra_cl * extra0_cl = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extra1_cl = (ggml_tensor_extra_cl *)src1->extra;
ggml_tensor_extra_cl * extrad_cl = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong off_src0 = extra0_cl->offset + src0->view_offs;
cl_ulong off_src1 = extra1_cl->offset + src1->view_offs;
cl_ulong off_dst = extrad_cl->offset + dst->view_offs;
const int32_t dim = ((const int32_t *) dst->op_params)[0];
GGML_ASSERT(dim >= 0 && dim <= 3);
if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
if (dim == 3) {
size_t nbytes_src0 = ggml_nbytes(src0);
size_t nbytes_src1 = ggml_nbytes(src1);
CL_CHECK(clEnqueueCopyBuffer(queue, extra0_cl->data_device, extrad_cl->data_device,
off_src0, off_dst, nbytes_src0, 0, NULL, NULL));
CL_CHECK(clEnqueueCopyBuffer(queue, extra1_cl->data_device, extrad_cl->data_device,
off_src1, off_dst + nbytes_src0, nbytes_src1, 0, NULL, NULL));
} else {
cl_kernel kernel = backend_ctx->kernel_concat_f32_contiguous;
size_t global_work_size[3];
for (int i3 = 0; i3 < dst->ne[3]; ++i3) {
cl_ulong current_off_src0 = off_src0 + (i3 * src0->nb[3]);
cl_ulong current_off_src1 = off_src1 + (i3 * src1->nb[3]);
cl_ulong current_off_dst = off_dst + (i3 * dst->nb[3]);
int d_ne00 = src0->ne[0]; int d_ne01 = src0->ne[1]; int d_ne02 = src0->ne[2];
int d_ne10 = src1->ne[0]; int d_ne11 = src1->ne[1]; int d_ne12 = src1->ne[2];
int d_ne0 = dst->ne[0]; int d_ne1 = dst->ne[1]; int d_ne2 = dst->ne[2];
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &current_off_src0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &current_off_src1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &current_off_dst));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &d_ne00));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &d_ne01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &d_ne02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &d_ne10));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &d_ne11));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &d_ne12));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &d_ne0));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &d_ne1));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &d_ne2));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dim));
global_work_size[0] = d_ne0;
global_work_size[1] = d_ne1;
global_work_size[2] = d_ne2;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, NULL, 0, NULL, NULL));
}
}
} else {
cl_kernel kernel = backend_ctx->kernel_concat_f32_non_contiguous;
long ne00 = src0->ne[0], ne01 = src0->ne[1], ne02 = src0->ne[2], ne03 = src0->ne[3];
cl_ulong nb00 = src0->nb[0], nb01 = src0->nb[1], nb02 = src0->nb[2], nb03 = src0->nb[3];
cl_ulong nb10 = src1->nb[0], nb11 = src1->nb[1], nb12 = src1->nb[2], nb13 = src1->nb[3];
long d_ne0 = dst->ne[0], d_ne1 = dst->ne[1], d_ne2 = dst->ne[2], d_ne3 = dst->ne[3];
cl_ulong d_nb0 = dst->nb[0], d_nb1 = dst->nb[1], d_nb2 = dst->nb[2], d_nb3 = dst->nb[3];
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_src1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &off_dst));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(long), &ne00));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(long), &ne01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(long), &ne02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(long), &ne03));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(long), &d_ne0));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(long), &d_ne1));
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(long), &d_ne2));
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(long), &d_ne3));
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &d_nb0));
CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &d_nb1));
CL_CHECK(clSetKernelArg(kernel, 24, sizeof(cl_ulong), &d_nb2));
CL_CHECK(clSetKernelArg(kernel, 25, sizeof(cl_ulong), &d_nb3));
CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &dim));
size_t global_work_size_nc[] = { d_ne1 > 0 ? (size_t)d_ne1 : 1,
d_ne2 > 0 ? (size_t)d_ne2 : 1,
d_ne3 > 0 ? (size_t)d_ne3 : 1 };
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size_nc, NULL, 0, NULL, NULL));
}
}
static void ggml_cl_timestep_embedding(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
if (backend_ctx->kernel_timestep_embedding == nullptr) {
GGML_LOG_WARN("%s: timestep_embedding kernel not available, skipping OpenCL execution.\n", __func__);
return;
}
ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
cl_ulong off_dst = extra_dst->offset + dst->view_offs;
const int logical_dim = dst->op_params[0];
const int max_period = dst->op_params[1];
const int dst_nb1_bytes = dst->nb[1];
cl_kernel kernel = backend_ctx->kernel_timestep_embedding;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &dst_nb1_bytes));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &logical_dim));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &max_period));
size_t gws0 = (size_t)(((logical_dim + 1) / 2) + 1);
size_t gws1 = (size_t)src0->ne[0];
size_t global_work_size[] = {gws0, gws1, 1};
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 2, NULL, global_work_size, NULL, 0, NULL, &evt)); // Pass 2 for 2D problem
g_profiling_info.emplace_back();
size_t profiling_gws[3] = {global_work_size[0], global_work_size[1], 1};
size_t profiling_lws[3] = {0,0,0}; // Reflects NULL LWS
populateProfilingInfo(g_profiling_info.back(), evt, kernel, profiling_gws, profiling_lws, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 2, NULL, global_work_size, NULL, 0, NULL, NULL)); // Pass 2 for 2D problem
#endif
}
static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
@@ -4828,6 +5561,136 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
}
}
static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(src1);
GGML_ASSERT(src1->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
const ggml_tensor * src2 = dst->src[2];
GGML_ASSERT(src2);
GGML_ASSERT(src2->extra);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset1 = extra1->offset + src1->view_offs;
cl_ulong offset2 = extra2->offset + src2->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
#ifdef GGML_OPENCL_SOA_Q
ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
#endif
const int ne00 = src0->ne[0];
const int ne01 = src0->ne[1];
const int ne02 = src0->ne[2];
const int ne03 = src0->ne[3];
const cl_ulong nb00 = src0->nb[0];
const cl_ulong nb02 = src0->nb[2];
const int ne10 = src1->ne[0];
const int ne11 = src1->ne[1];
const int ne12 = src1->ne[2];
const int ne13 = src1->ne[3];
const cl_ulong nb11 = src1->nb[1];
const cl_ulong nb12 = src1->nb[2];
const int ne20 = src2->ne[0];
const int ne21 = src2->ne[1];
const cl_ulong nb21 = src2->nb[1];
const int ne0 = dst->ne[0];
const int ne1 = dst->ne[1];
const int r2 = ne12/ne02;
const int r3 = ne13/ne03;
const int dst_rows = ne20*ne21; // ne20 = n_used_experts, ne21 = n_rows
GGML_ASSERT(ne00 == ne10);
int sgs = 32; // subgroup size
int nsg = 1; // number of subgroups
int nrows = 1; // number of row in src1
int ndst = 4; // number of values produced by each subgroup
cl_kernel kernel;
// subgroup mat vec
switch (src0->type) {
case GGML_TYPE_Q4_0: {
kernel = backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat;
if (backend_ctx->gpu_family == INTEL) {
sgs = 16;
nsg = 1;
ndst = 8;
} else if (backend_ctx->gpu_family == ADRENO) {
sgs = 64;
nsg = 1;
ndst = 8;
} else {
GGML_ASSERT(false && "TODO: Unknown GPU");
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb11));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb12));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne20));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne21));
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb21));
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne1));
CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r2));
CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &r3));
break;
}
default:
GGML_ASSERT(false && "not implemented");;
}
int _ne1 = 1;
int ne123 = dst_rows;
size_t global_work_size[] = {(size_t)(ne01+ndst*nsg-1)/(ndst*nsg)*sgs, (size_t)(_ne1+nrows-1)/nrows*nsg, (size_t)ne123};
size_t local_work_size[] = {(size_t)sgs, (size_t)nsg, 1};
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}
static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
@@ -5667,6 +6530,12 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
}
func = ggml_cl_sigmoid;
break;
case GGML_UNARY_OP_TANH:
if (!any_on_device) {
return false;
}
func = ggml_cl_tanh;
break;
default:
return false;
} break;
@@ -5694,12 +6563,48 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
}
func = ggml_cl_group_norm;
break;
case GGML_OP_REPEAT:
if (!any_on_device) {
return false;
}
func = ggml_cl_repeat;
break;
case GGML_OP_PAD:
if (!any_on_device) {
return false;
}
ggml_cl_pad(backend, tensor->src[0], tensor);
return true;
case GGML_OP_UPSCALE:
if (!any_on_device) {
return false;
}
ggml_cl_upscale(backend, tensor->src[0], tensor);
return true;
case GGML_OP_CONCAT:
if (!any_on_device) {
return false;
}
func = ggml_cl_concat;
break;
case GGML_OP_TIMESTEP_EMBEDDING:
if (!any_on_device) {
return false;
}
ggml_cl_timestep_embedding(backend, tensor->src[0], tensor);
return true;
case GGML_OP_MUL_MAT:
if (!any_on_device && !ggml_cl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
return false;
}
func = ggml_cl_mul_mat;
break;
case GGML_OP_MUL_MAT_ID:
if (!any_on_device) {
return false;
}
func = ggml_cl_mul_mat_id;
break;
case GGML_OP_SCALE:
if (!any_on_device) {
return false;

View File

@@ -0,0 +1,109 @@
kernel void kernel_concat_f32_contiguous(
global const char * p_src0, ulong off_src0,
global const char * p_src1, ulong off_src1,
global char * p_dst, ulong off_dst,
int d_ne00, int d_ne01, int d_ne02, // src0->ne[0..2] for the slice
int d_ne10, int d_ne11, int d_ne12, // src1->ne[0..2] for the slice (d_ne1X must match d_ne0X on non-concat axes)
int d_ne0, int d_ne1, int d_ne2, // dst->ne[0..2] for the slice
int dim
) {
global const float * src0 = (global const float*)((global char*)p_src0 + off_src0);
global const float * src1 = (global const float*)((global char*)p_src1 + off_src1);
global float * dst = (global float*)((global char*)p_dst + off_dst);
int i0 = get_global_id(0); // Index along dst's 0th dimension
int i1 = get_global_id(1); // Index along dst's 1st dimension
int i2 = get_global_id(2); // Index along dst's 2nd dimension
if (i0 >= d_ne0 || i1 >= d_ne1 || i2 >= d_ne2) {
return;
}
ulong dst_idx = (ulong)i2 * d_ne0 * d_ne1 + (ulong)i1 * d_ne0 + i0;
ulong src_idx;
if (dim == 0) {
if (i0 < d_ne00) { // Data from src0
src_idx = (ulong)i2 * d_ne00 * d_ne01 + (ulong)i1 * d_ne00 + i0;
dst[dst_idx] = src0[src_idx];
} else { // Data from src1
src_idx = (ulong)i2 * d_ne10 * d_ne11 + (ulong)i1 * d_ne10 + (i0 - d_ne00);
dst[dst_idx] = src1[src_idx];
}
} else if (dim == 1) {
if (i1 < d_ne01) { // Data from src0
src_idx = (ulong)i2 * d_ne00 * d_ne01 + (ulong)i1 * d_ne00 + i0;
dst[dst_idx] = src0[src_idx];
} else { // Data from src1
src_idx = (ulong)i2 * d_ne10 * d_ne11 + (ulong)(i1 - d_ne01) * d_ne10 + i0;
dst[dst_idx] = src1[src_idx];
}
} else if (dim == 2) {
if (i2 < d_ne02) { // Data from src0
src_idx = (ulong)i2 * d_ne00 * d_ne01 + (ulong)i1 * d_ne00 + i0;
dst[dst_idx] = src0[src_idx];
} else { // Data from src1
src_idx = (ulong)(i2 - d_ne02) * d_ne10 * d_ne11 + (ulong)i1 * d_ne10 + i0;
dst[dst_idx] = src1[src_idx];
}
}
}
kernel void kernel_concat_f32_non_contiguous(
global const char * p_src0, ulong off_src0,
global const char * p_src1, ulong off_src1,
global char * p_dst, ulong off_dst,
long ne00, long ne01, long ne02, long ne03,
ulong nb00, ulong nb01, ulong nb02, ulong nb03,
ulong nb10, ulong nb11, ulong nb12, ulong nb13, // Strides for src1
long d_ne0, long d_ne1, long d_ne2, long d_ne3,
ulong d_nb0, ulong d_nb1, ulong d_nb2, ulong d_nb3,
int dim
) {
global const char * src0_base = p_src0 + off_src0;
global const char * src1_base = p_src1 + off_src1;
global char * dst_base = p_dst + off_dst;
long current_i1 = get_global_id(0); // Index for dst_dim_1
long current_i2 = get_global_id(1); // Index for dst_dim_2
long current_i3 = get_global_id(2); // Index for dst_dim_3
if (current_i1 >= d_ne1 || current_i2 >= d_ne2 || current_i3 >= d_ne3) {
return;
}
global const float * x_val_ptr;
global float * y_val_ptr;
for (long current_i0 = 0; current_i0 < d_ne0; ++current_i0) {
bool use_src0;
long s_i0 = current_i0, s_i1 = current_i1, s_i2 = current_i2, s_i3 = current_i3;
if (dim == 0) {
use_src0 = (current_i0 < ne00);
if (!use_src0) { s_i0 = current_i0 - ne00; }
} else if (dim == 1) {
use_src0 = (current_i1 < ne01);
if (!use_src0) { s_i1 = current_i1 - ne01; }
} else if (dim == 2) {
use_src0 = (current_i2 < ne02);
if (!use_src0) { s_i2 = current_i2 - ne02; }
} else { // dim == 3
use_src0 = (current_i3 < ne03);
if (!use_src0) { s_i3 = current_i3 - ne03; }
}
if (use_src0) {
x_val_ptr = (global const float *)(src0_base + (ulong)s_i3*nb03 + (ulong)s_i2*nb02 + (ulong)s_i1*nb01 + (ulong)s_i0*nb00);
} else {
x_val_ptr = (global const float *)(src1_base + (ulong)s_i3*nb13 + (ulong)s_i2*nb12 + (ulong)s_i1*nb11 + (ulong)s_i0*nb10);
}
y_val_ptr = (global float *)(dst_base + (ulong)current_i3*d_nb3 + (ulong)current_i2*d_nb2 + (ulong)current_i1*d_nb1 + (ulong)current_i0*d_nb0);
*y_val_ptr = *x_val_ptr;
}
}

View File

@@ -0,0 +1,283 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#ifdef cl_intel_subgroups
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
#else
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
#endif
#ifdef cl_intel_required_subgroup_size
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
#define INTEL_GPU 1
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
#elif defined(cl_qcom_reqd_sub_group_size)
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#define ADRENO_GPU 1
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
#endif
#define QK4_0 32
typedef char int8_t;
typedef uchar uint8_t;
typedef short int16_t;
typedef ushort uint16_t;
typedef int int32_t;
typedef uint uint32_t;
//------------------------------------------------------------------------------
// block_q4_0
//------------------------------------------------------------------------------
struct block_q4_0
{
half d;
uint8_t qs[QK4_0 / 2];
};
// This function requires the original shuffled weights.
// As a reminder, the original weights are shuffled so that (q[0], q[16]) are
// packed together in a byte, so are (q[1], q[17]) and so on.
inline float block_q_4_0_dot_y_flat(
global uchar * x,
global half * dh,
float sumy,
float16 yl,
int il
) {
float d = *dh;
global ushort * qs = ((global ushort *)x + il/2);
float acc = 0.f;
acc += yl.s0 * (qs[0] & 0x000F);
acc += yl.s1 * (qs[0] & 0x0F00);
acc += yl.s8 * (qs[0] & 0x00F0);
acc += yl.s9 * (qs[0] & 0xF000);
acc += yl.s2 * (qs[1] & 0x000F);
acc += yl.s3 * (qs[1] & 0x0F00);
acc += yl.sa * (qs[1] & 0x00F0);
acc += yl.sb * (qs[1] & 0xF000);
acc += yl.s4 * (qs[2] & 0x000F);
acc += yl.s5 * (qs[2] & 0x0F00);
acc += yl.sc * (qs[2] & 0x00F0);
acc += yl.sd * (qs[2] & 0xF000);
acc += yl.s6 * (qs[3] & 0x000F);
acc += yl.s7 * (qs[3] & 0x0F00);
acc += yl.se * (qs[3] & 0x00F0);
acc += yl.sf * (qs[3] & 0xF000);
return d * (sumy * -8.f + acc);
}
//
// This variant outputs 8 values.
//
#undef N_DST
#undef N_SIMDGROUP
#undef N_SIMDWIDTH
#ifdef INTEL_GPU
#define N_DST 8 // each SIMD group works on 8 rows
#define N_SIMDGROUP 1 // number of SIMD groups in a thread group
#define N_SIMDWIDTH 16 // subgroup size
#elif defined (ADRENO_GPU)
#define N_DST 8
#define N_SIMDGROUP 1
#define N_SIMDWIDTH 64
#endif
inline void mul_vec_q_n_f32_8x_flat(
global char * src0_q,
global half * src0_d,
global float * src1,
global float * dst,
int ne00,
int ne01,
int ne02,
int ne10,
int ne12,
int ne0,
int ne1,
int r2,
int r3
) {
const ulong nb = ne00/QK4_0;
int r0 = get_group_id(0);
int r1 = get_group_id(1);
int im = 0;
int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST;
int i12 = im%ne12;
int i13 = im/ne12;
// The number of scales is the same as the number of blocks.
ulong offset0_d = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
// Each block contains QK4_0/2 uchars, hence offset for qs is as follows.
ulong offset0_q = (first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02)) * QK4_0/2;
global uchar * x = (global uchar *) src0_q + offset0_q;
global half * d = (global half *) src0_d + offset0_d;
global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1;
float16 yl;
float8 sumf = 0.f;
int ix = get_sub_group_local_id()/2;
int il = 8*(get_sub_group_local_id()%2);
global float * yb = y + ix*QK4_0 + il;
for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) {
float sumy = 0.f;
sumy += yb[0];
sumy += yb[1];
sumy += yb[2];
sumy += yb[3];
sumy += yb[4];
sumy += yb[5];
sumy += yb[6];
sumy += yb[7];
sumy += yb[16];
sumy += yb[17];
sumy += yb[18];
sumy += yb[19];
sumy += yb[20];
sumy += yb[21];
sumy += yb[22];
sumy += yb[23];
yl.s0 = yb[0];
yl.s1 = yb[1]/256.f;
yl.s2 = yb[2];
yl.s3 = yb[3]/256.f;
yl.s4 = yb[4];
yl.s5 = yb[5]/256.f;
yl.s6 = yb[6];
yl.s7 = yb[7]/256.f;
yl.s8 = yb[16]/16.f;
yl.s9 = yb[17]/4096.f;
yl.sa = yb[18]/16.f;
yl.sb = yb[19]/4096.f;
yl.sc = yb[20]/16.f;
yl.sd = yb[21]/4096.f;
yl.se = yb[22]/16.f;
yl.sf = yb[23]/4096.f;
sumf.s0 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 0*nb*QK4_0/2, d + ib + 0*nb, sumy, yl, il);
sumf.s1 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 1*nb*QK4_0/2, d + ib + 1*nb, sumy, yl, il);
sumf.s2 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 2*nb*QK4_0/2, d + ib + 2*nb, sumy, yl, il);
sumf.s3 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 3*nb*QK4_0/2, d + ib + 3*nb, sumy, yl, il);
sumf.s4 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 4*nb*QK4_0/2, d + ib + 4*nb, sumy, yl, il);
sumf.s5 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 5*nb*QK4_0/2, d + ib + 5*nb, sumy, yl, il);
sumf.s6 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 6*nb*QK4_0/2, d + ib + 6*nb, sumy, yl, il);
sumf.s7 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 7*nb*QK4_0/2, d + ib + 7*nb, sumy, yl, il);
yb += QK4_0 * (N_SIMDWIDTH/2);
}
float8 tot = (float8)(
sub_group_reduce_add(sumf.s0), sub_group_reduce_add(sumf.s1),
sub_group_reduce_add(sumf.s2), sub_group_reduce_add(sumf.s3),
sub_group_reduce_add(sumf.s4), sub_group_reduce_add(sumf.s5),
sub_group_reduce_add(sumf.s6), sub_group_reduce_add(sumf.s7)
);
if (get_sub_group_local_id() == 0) {
if (first_row + 0 < ne01) {
dst[r1*ne0 + im*ne0*ne1 + first_row + 0] = tot.s0;
}
if (first_row + 1 < ne01) {
dst[r1*ne0 + im*ne0*ne1 + first_row + 1] = tot.s1;
}
if (first_row + 2 < ne01) {
dst[r1*ne0 + im*ne0*ne1 + first_row + 2] = tot.s2;
}
if (first_row + 3 < ne01) {
dst[r1*ne0 + im*ne0*ne1 + first_row + 3] = tot.s3;
}
if (first_row + 4 < ne01) {
dst[r1*ne0 + im*ne0*ne1 + first_row + 4] = tot.s4;
}
if (first_row + 5 < ne01) {
dst[r1*ne0 + im*ne0*ne1 + first_row + 5] = tot.s5;
}
if (first_row + 6 < ne01) {
dst[r1*ne0 + im*ne0*ne1 + first_row + 6] = tot.s6;
}
if (first_row + 7 < ne01) {
dst[r1*ne0 + im*ne0*ne1 + first_row + 7] = tot.s7;
}
}
}
#ifdef INTEL_GPU
REQD_SUBGROUP_SIZE_16
#elif defined (ADRENO_GPU)
REQD_SUBGROUP_SIZE_64
#endif
kernel void kernel_mul_mv_id_q4_0_f32_8x_flat(
global char * src0_q,
global half * src0_d,
global float * src1,
ulong offset1,
global char * src2,
ulong offset2,
global float * dst,
ulong offsetd,
int ne00,
int ne01,
int ne02,
ulong nb00,
ulong nb02,
int ne10,
int ne11,
int ne12,
ulong nb11,
ulong nb12,
int ne20,
int ne21,
ulong nb21,
int ne0,
int ne1,
int r2,
int r3
) {
src1 = (global float *)((global char *)src1 + offset1);
src2 = (global char *)((global char *)src2 + offset2);
dst = (global float *)((global char *)dst + offsetd);
const int iid1 = get_group_id(2)/ne20;
const int idx = get_group_id(2)%ne20;
const int i02 = ((global int *)(src2 + iid1*nb21))[idx];
const int i11 = idx%ne11;
const int i12 = iid1;
const int i1 = idx;
const int i2 = i12;
global char * src0_q_cur = src0_q + (i02*nb02/nb00)*(QK4_0/2);
global half * src0_d_cur = src0_d + (i02*nb02/nb00);
global float * src1_cur = (global float *)((global char *) src1 + i11*nb11 + i12*nb12);
global float * dst_cur = dst + i1*ne0 + i2*ne1*ne0;
mul_vec_q_n_f32_8x_flat(src0_q_cur, src0_d_cur, src1_cur, dst_cur, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3);
}

View File

@@ -0,0 +1,30 @@
kernel void kernel_pad(
global const void * src0_ptr,
ulong src0_offset,
global void * dst_ptr,
ulong dst_offset,
int s_ne0, int s_ne1, int s_ne2,
int d_ne0, int d_ne1, int d_ne2
) {
global const float * src0 = (global const float *)((global const char *)src0_ptr + src0_offset);
global float * dst = (global float *)((global char *)dst_ptr + dst_offset);
int nidx = get_global_id(0);
int idx_d1 = get_group_id(1);
int idx_d2 = get_group_id(2);
if (nidx >= d_ne0) {
return;
}
int dst_el_offset = nidx + idx_d1 * d_ne0 + idx_d2 * d_ne0 * d_ne1;
bool in_src_bounds = (nidx < s_ne0) && (idx_d1 < s_ne1) && (idx_d2 < s_ne2);
if (in_src_bounds) {
int src_el_offset = nidx + idx_d1 * s_ne0 + idx_d2 * s_ne0 * s_ne1;
dst[dst_el_offset] = src0[src_el_offset];
} else {
dst[dst_el_offset] = 0.0f;
}
}

View File

@@ -0,0 +1,39 @@
kernel void kernel_repeat(
global const char * src0_data_in,
global char * dst_data_in,
ulong src0_offset,
ulong dst_offset,
int src0_ne0, int src0_ne1, int src0_ne2, int src0_ne3,
ulong src0_nb0, ulong src0_nb1, ulong src0_nb2, ulong src0_nb3,
int dst_ne0, int dst_ne1, int dst_ne2, int dst_ne3,
ulong dst_nb0, ulong dst_nb1, ulong dst_nb2, ulong dst_nb3
) {
global const char * src0_data = src0_data_in + src0_offset;
global char * dst_data = dst_data_in + dst_offset;
const int d3 = get_global_id(2);
const int d2 = get_global_id(1);
const int d1 = get_global_id(0);
if (d3 >= dst_ne3 || d2 >= dst_ne2 || d1 >= dst_ne1) {
return;
}
const int s3 = d3 % src0_ne3;
const int s2 = d2 % src0_ne2;
const int s1 = d1 % src0_ne1;
const global char * p_src0_slice = src0_data + (ulong)s3*src0_nb3 + (ulong)s2*src0_nb2 + (ulong)s1*src0_nb1;
global char * p_dst_slice = dst_data + (ulong)d3*dst_nb3 + (ulong)d2*dst_nb2 + (ulong)d1*dst_nb1;
for (int d0 = 0; d0 < dst_ne0; ++d0) {
// Determine source index for dimension 0 based on tiling/broadcasting.
const int s0 = d0 % src0_ne0;
const global char * restrict current_src_el_ptr = p_src0_slice + (ulong)s0*src0_nb0;
global char * restrict current_dst_el_ptr = p_dst_slice + (ulong)d0*dst_nb0;
for (int k = 0; k < src0_nb0; ++k) {
current_dst_el_ptr[k] = current_src_el_ptr[k];
}
}
}

View File

@@ -0,0 +1,63 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#ifdef cl_intel_required_subgroup_size
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
#define INTEL_GPU 1
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
#elif defined(cl_qcom_reqd_sub_group_size)
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#define ADRENO_GPU 1
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
#endif
kernel void kernel_tanh_f32_nd(
global void * p_src0_base, ulong off_src0_abs,
global void * p_dst_base, ulong off_dst_abs,
int ne00, int ne01, int ne02, int ne03,
ulong nb00, ulong nb01, ulong nb02, ulong nb03,
int ne10, int ne11, int ne12, int ne13,
ulong nb10, ulong nb11, ulong nb12, ulong nb13
) {
int i0 = get_global_id(0);
int i1 = get_global_id(1);
int i2 = get_global_id(2);
if (i0 < ne10 && i1 < ne11 && i2 < ne12) {
for (int i3 = 0; i3 < ne13; ++i3) {
ulong src_offset_in_tensor = (ulong)i0*nb00 + (ulong)i1*nb01 + (ulong)i2*nb02 + (ulong)i3*nb03;
global const float *src_val_ptr = (global const float *)((global char *)p_src0_base + off_src0_abs + src_offset_in_tensor);
ulong dst_offset_in_tensor = (ulong)i0*nb10 + (ulong)i1*nb11 + (ulong)i2*nb12 + (ulong)i3*nb13;
global float *dst_val_ptr = (global float *)((global char *)p_dst_base + off_dst_abs + dst_offset_in_tensor);
*dst_val_ptr = tanh(*src_val_ptr);
}
}
}
kernel void kernel_tanh_f16_nd(
global void * p_src0_base, ulong off_src0_abs,
global void * p_dst_base, ulong off_dst_abs,
int ne00, int ne01, int ne02, int ne03,
ulong nb00, ulong nb01, ulong nb02, ulong nb03,
int ne10, int ne11, int ne12, int ne13,
ulong nb10, ulong nb11, ulong nb12, ulong nb13
) {
int i0 = get_global_id(0);
int i1 = get_global_id(1);
int i2 = get_global_id(2);
if (i0 < ne10 && i1 < ne11 && i2 < ne12) {
for (int i3 = 0; i3 < ne13; ++i3) {
ulong src_offset_in_tensor = (ulong)i0*nb00 + (ulong)i1*nb01 + (ulong)i2*nb02 + (ulong)i3*nb03;
global const half *src_val_ptr = (global const half *)((global char *)p_src0_base + off_src0_abs + src_offset_in_tensor);
ulong dst_offset_in_tensor = (ulong)i0*nb10 + (ulong)i1*nb11 + (ulong)i2*nb12 + (ulong)i3*nb13;
global half *dst_val_ptr = (global half *)((global char *)p_dst_base + off_dst_abs + dst_offset_in_tensor);
*dst_val_ptr = tanh(*src_val_ptr);
}
}
}

View File

@@ -0,0 +1,48 @@
kernel void kernel_timestep_embedding(
global const void * p_timesteps,
ulong off_timesteps,
global void * p_dst,
ulong off_dst,
int dst_nb1_bytes,
int logical_dim,
int max_period
) {
int local_i;
int local_j;
int local_half_dim;
float local_timestep_val;
float local_freq;
float local_arg;
global float * local_embed_data_ptr;
global const float * local_timesteps_input_ptr;
global float * local_dst_output_base_ptr;
local_timesteps_input_ptr = (global const float *)((global char *)p_timesteps + off_timesteps);
local_dst_output_base_ptr = (global float *)((global char *)p_dst + off_dst);
local_i = get_global_id(1);
local_j = get_global_id(0);
local_half_dim = logical_dim / 2;
local_embed_data_ptr = (global float *)((global char *)local_dst_output_base_ptr + local_i * dst_nb1_bytes);
if (logical_dim % 2 != 0 && local_j == ((logical_dim + 1) / 2)) {
local_embed_data_ptr[logical_dim] = 0.0f;
}
if (local_j >= local_half_dim) {
return;
}
local_timestep_val = local_timesteps_input_ptr[local_i];
if (local_half_dim == 0) {
local_freq = 1.0f;
} else {
local_freq = exp(-log((float)max_period) * (float)local_j / (float)local_half_dim);
}
local_arg = local_timestep_val * local_freq;
local_embed_data_ptr[local_j] = cos(local_arg);
local_embed_data_ptr[local_j + local_half_dim] = sin(local_arg);
}

Some files were not shown because too many files have changed in this diff Show More