mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-12 14:03:20 +02:00
Compare commits
187 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
c839a2da1a | ||
|
|
e9b6350e61 | ||
|
|
caf5681fcb | ||
|
|
83790b0e7e | ||
|
|
f47c1d7106 | ||
|
|
a5d1fb6212 | ||
|
|
a0535ffa0d | ||
|
|
bd9c981d72 | ||
|
|
27208bf657 | ||
|
|
63a7bb3c7e | ||
|
|
00d5282c7f | ||
|
|
566c16fcce | ||
|
|
b25e92774e | ||
|
|
6609507a91 | ||
|
|
ceb1bf5a34 | ||
|
|
72babea5de | ||
|
|
43678060c1 | ||
|
|
8d94219a4a | ||
|
|
f667f1e624 | ||
|
|
8846aace49 | ||
|
|
a01047b041 | ||
|
|
b25346221d | ||
|
|
e8215dbb96 | ||
|
|
5783ae4359 | ||
|
|
bf5bcd0b85 | ||
|
|
716301d1b0 | ||
|
|
60ef23d6c1 | ||
|
|
b193d53069 | ||
|
|
2bf9d539dd | ||
|
|
73e53dc834 | ||
|
|
62af464227 | ||
|
|
c148cf1946 | ||
|
|
1b809cee22 | ||
|
|
abf241045d | ||
|
|
901e20bbe5 | ||
|
|
0142961a2e | ||
|
|
ce82bd0117 | ||
|
|
bf2a99e3cb | ||
|
|
72c6bc3f3d | ||
|
|
defe2158dd | ||
|
|
7b50d589a8 | ||
|
|
3a9457df96 | ||
|
|
fa4a9f2a1c | ||
|
|
238005c2dc | ||
|
|
66aba7aca9 | ||
|
|
f1f5e82df6 | ||
|
|
af3373f1ad | ||
|
|
5d5c066de8 | ||
|
|
40bfa04c95 | ||
|
|
aa064b2eb7 | ||
|
|
aa0ef5c578 | ||
|
|
bb16041cae | ||
|
|
58cba76a9a | ||
|
|
67ae5312e2 | ||
|
|
692e3cdd0a | ||
|
|
b23fa0b3f4 | ||
|
|
06cbedfca1 | ||
|
|
b7147673f2 | ||
|
|
d860dd99a4 | ||
|
|
c959f462a0 | ||
|
|
22015b2092 | ||
|
|
dd6e6d0b6a | ||
|
|
8308f98c7f | ||
|
|
6369be0735 | ||
|
|
88fc854b4b | ||
|
|
e28c1b93fd | ||
|
|
d27b3ca175 | ||
|
|
9230dbe2c7 | ||
|
|
812939a9e9 | ||
|
|
4c9fdfbe15 | ||
|
|
9eaa51e7f0 | ||
|
|
8f71d0f3e8 | ||
|
|
381174bbda | ||
|
|
d67341dc18 | ||
|
|
456af35eb7 | ||
|
|
600e3e9b50 | ||
|
|
fffcce535e | ||
|
|
5fc7856815 | ||
|
|
faed5a5f5d | ||
|
|
10bb545c5b | ||
|
|
edc4a29eff | ||
|
|
ed3290ab34 | ||
|
|
8d94713654 | ||
|
|
50d2227953 | ||
|
|
6231c5cd6d | ||
|
|
ef035803eb | ||
|
|
413977de32 | ||
|
|
95402553a5 | ||
|
|
3865cff4f5 | ||
|
|
d03172cc79 | ||
|
|
dd8e59f443 | ||
|
|
bbe98d2784 | ||
|
|
c2056ed6d4 | ||
|
|
c46503014d | ||
|
|
860a9e4eef | ||
|
|
fe9d60e74a | ||
|
|
e434e69183 | ||
|
|
89fea80d29 | ||
|
|
6adc3c3ebc | ||
|
|
0dbcabde8c | ||
|
|
ad590be98c | ||
|
|
7d6d91babf | ||
|
|
d3e64b9f49 | ||
|
|
3ba0d843c6 | ||
|
|
0bf49eb668 | ||
|
|
4ad243677b | ||
|
|
c89c2d1ab9 | ||
|
|
3555b3004b | ||
|
|
d7da8dc83a | ||
|
|
cd355eda7d | ||
|
|
30e5b01de2 | ||
|
|
e54b394082 | ||
|
|
2c2caa4443 | ||
|
|
5fce5f948d | ||
|
|
9ae4143bc6 | ||
|
|
c311ac664d | ||
|
|
b9912ac570 | ||
|
|
00ba772610 | ||
|
|
3cb203c89f | ||
|
|
2e42be42bd | ||
|
|
fb85a288d7 | ||
|
|
40643edb86 | ||
|
|
3cfbbdb44e | ||
|
|
80709b70a2 | ||
|
|
26ff3685bf | ||
|
|
60c666347b | ||
|
|
b7cc7745e3 | ||
|
|
cc8d081879 | ||
|
|
d714dadb57 | ||
|
|
ffad043973 | ||
|
|
0889eba570 | ||
|
|
c61285e739 | ||
|
|
09cf2c7c65 | ||
|
|
c33fe8b8c4 | ||
|
|
ed52f3668e | ||
|
|
a681b4ba83 | ||
|
|
7d516443dd | ||
|
|
f6e1a7aa87 | ||
|
|
c3ee46fab4 | ||
|
|
e2c0b6e46a | ||
|
|
9596506965 | ||
|
|
a20b2b05bc | ||
|
|
2e89f76b7a | ||
|
|
532802f938 | ||
|
|
d4e0d95cf5 | ||
|
|
cc66a7f78f | ||
|
|
bd248d4dc7 | ||
|
|
7781e5fe99 | ||
|
|
89a184fa71 | ||
|
|
2baf07727f | ||
|
|
7ae2932116 | ||
|
|
1f7d50b293 | ||
|
|
4c763c8d1b | ||
|
|
dad5c44398 | ||
|
|
55f6b9fa65 | ||
|
|
3678b838bb | ||
|
|
652b70e667 | ||
|
|
3a12db23b6 | ||
|
|
ae92c1855b | ||
|
|
b7ce1ad1e3 | ||
|
|
97340b4c99 | ||
|
|
2bb0467043 | ||
|
|
b8e2194efc | ||
|
|
1a3b5e80f7 | ||
|
|
1f63e75f3b | ||
|
|
40cbf571c9 | ||
|
|
7f4fbe5183 | ||
|
|
f470bc36be | ||
|
|
8f47e25f56 | ||
|
|
201b31dc2e | ||
|
|
e21d2d4ae2 | ||
|
|
dc0623fddb | ||
|
|
87d34b381d | ||
|
|
b460d16ae8 | ||
|
|
91a8ee6a6f | ||
|
|
056eb74534 | ||
|
|
247e5c6e44 | ||
|
|
5787b5da57 | ||
|
|
228f34c9ce | ||
|
|
0974ad7a7c | ||
|
|
745aa5319b | ||
|
|
487a5e0401 | ||
|
|
d17a809ef0 | ||
|
|
1caae7fc6c | ||
|
|
669c13e0f6 | ||
|
|
146b88e8b3 | ||
|
|
7f37b6cf1e |
@@ -49,19 +49,23 @@ COPY --from=build /app/full /app
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y \
|
||||
git \
|
||||
python3 \
|
||||
python3-pip \
|
||||
&& pip install --upgrade pip setuptools wheel \
|
||||
&& pip install -r requirements.txt \
|
||||
&& apt autoremove -y \
|
||||
&& apt clean -y \
|
||||
&& rm -rf /tmp/* /var/tmp/* \
|
||||
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
|
||||
&& find /var/cache -type f -delete
|
||||
RUN apt-get update && \
|
||||
apt-get install -y \
|
||||
git \
|
||||
python3 \
|
||||
python3-pip \
|
||||
python3-venv && \
|
||||
python3 -m venv /opt/venv && \
|
||||
. /opt/venv/bin/activate && \
|
||||
pip install --upgrade pip setuptools wheel && \
|
||||
pip install -r requirements.txt && \
|
||||
apt autoremove -y && \
|
||||
apt clean -y && \
|
||||
rm -rf /tmp/* /var/tmp/* && \
|
||||
find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete && \
|
||||
find /var/cache -type f -delete
|
||||
|
||||
ENV PATH="/opt/venv/bin:$PATH"
|
||||
|
||||
ENTRYPOINT ["/app/tools.sh"]
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
set -e
|
||||
|
||||
# Read the first argument into a variable
|
||||
|
||||
7
.github/labeler.yml
vendored
7
.github/labeler.yml
vendored
@@ -86,3 +86,10 @@ nix:
|
||||
embedding:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file: examples/embedding/
|
||||
|
||||
Ascend NPU:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ggml/include/ggml-cann.h
|
||||
- ggml/src/ggml-cann/**
|
||||
- docs/backend/CANN.md
|
||||
|
||||
51
.github/workflows/build-cmake-pkg.yml
vendored
Normal file
51
.github/workflows/build-cmake-pkg.yml
vendored
Normal file
@@ -0,0 +1,51 @@
|
||||
name: Build relocatable cmake package
|
||||
on:
|
||||
workflow_dispatch:
|
||||
workflow_call:
|
||||
|
||||
jobs:
|
||||
linux:
|
||||
runs-on: ubuntu-24.04
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install -y build-essential tcl
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
PREFIX="$(pwd)"/inst
|
||||
cmake -S . -B build -DCMAKE_PREFIX_PATH="$PREFIX" \
|
||||
-DLLAMA_CURL=OFF -DLLAMA_BUILD_TESTS=OFF -DLLAMA_BUILD_TOOLS=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF -DCMAKE_BUILD_TYPE=Release
|
||||
cmake --build build --config Release
|
||||
cmake --install build --prefix "$PREFIX" --config Release
|
||||
|
||||
export LLAMA_CONFIG="$PREFIX"/lib/cmake/llama/llama-config.cmake
|
||||
tclsh <<'EOF'
|
||||
set build(commit) [string trim [exec git rev-parse --short HEAD]]
|
||||
set build(number) [string trim [exec git rev-list --count HEAD]]
|
||||
set build(version) "0.0.$build(number)"
|
||||
|
||||
set llamaconfig [read [open "$env(LLAMA_CONFIG)" r]]
|
||||
set checks [list "set\\(LLAMA_VERSION \\s+$build(version)\\)" \
|
||||
"set\\(LLAMA_BUILD_COMMIT\\s+$build(commit)\\)" \
|
||||
"set\\(LLAMA_BUILD_NUMBER\\s+$build(number)\\)"]
|
||||
|
||||
puts -nonewline "Checking llama-config.cmake version... "
|
||||
foreach check $checks {
|
||||
if {![regexp -expanded -- $check $llamaconfig]} {
|
||||
puts "\"$check\" failed!"
|
||||
exit 1
|
||||
}
|
||||
}
|
||||
puts "success."
|
||||
EOF
|
||||
|
||||
cd examples/simple-cmake-pkg
|
||||
cmake -S . -B build -DCMAKE_PREFIX_PATH="$PREFIX"/lib/cmake
|
||||
cmake --build build
|
||||
113
.github/workflows/build-linux-cross.yml
vendored
113
.github/workflows/build-linux-cross.yml
vendored
@@ -231,3 +231,116 @@ jobs:
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
debian-13-loongarch64-cpu-cross:
|
||||
runs-on: ubuntu-24.04
|
||||
container: debian@sha256:653dfb9f86c3782e8369d5f7d29bb8faba1f4bff9025db46e807fa4c22903671
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Setup LoongArch
|
||||
run: |
|
||||
rm -f /etc/apt/sources.list.d/*
|
||||
cat << EOF | tee /etc/apt/sources.list.d/debian-ports.list
|
||||
deb http://snapshot.debian.org/archive/debian/20250515T202920Z/ trixie main
|
||||
EOF
|
||||
( echo 'quiet "true";'; \
|
||||
echo 'APT::Get::Assume-Yes "true";'; \
|
||||
echo 'APT::Install-Recommends "false";'; \
|
||||
echo 'Acquire::Check-Valid-Until "false";'; \
|
||||
echo 'Acquire::Retries "5";'; \
|
||||
) > /etc/apt/apt.conf.d/99snapshot-repos
|
||||
|
||||
apt-get update
|
||||
apt-get install -y ca-certificates debian-ports-archive-keyring cmake git zip
|
||||
dpkg --add-architecture loong64
|
||||
|
||||
# Add arch-specific repositories for non-amd64 architectures
|
||||
cat << EOF | tee /etc/apt/sources.list.d/loong64-ports.list
|
||||
deb [arch=loong64] http://snapshot.debian.org/archive/debian-ports/20250515T194251Z/ sid main
|
||||
EOF
|
||||
|
||||
apt-get update || true ;# Prevent failure due to missing URLs.
|
||||
|
||||
apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
gcc-14-loongarch64-linux-gnu \
|
||||
g++-14-loongarch64-linux-gnu
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=loongarch64 \
|
||||
-DCMAKE_C_COMPILER=loongarch64-linux-gnu-gcc-14 \
|
||||
-DCMAKE_CXX_COMPILER=loongarch64-linux-gnu-g++-14 \
|
||||
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
-DCMAKE_FIND_ROOT_PATH=/usr/lib/loongarch64-linux-gnu \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
debian-13-loongarch64-vulkan-cross:
|
||||
runs-on: ubuntu-24.04
|
||||
container: debian@sha256:653dfb9f86c3782e8369d5f7d29bb8faba1f4bff9025db46e807fa4c22903671
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Setup LoongArch
|
||||
run: |
|
||||
rm -f /etc/apt/sources.list.d/*
|
||||
cat << EOF | tee /etc/apt/sources.list.d/debian-ports.list
|
||||
deb http://snapshot.debian.org/archive/debian/20250515T202920Z/ trixie main
|
||||
EOF
|
||||
( echo 'quiet "true";'; \
|
||||
echo 'APT::Get::Assume-Yes "true";'; \
|
||||
echo 'APT::Install-Recommends "false";'; \
|
||||
echo 'Acquire::Check-Valid-Until "false";'; \
|
||||
echo 'Acquire::Retries "5";'; \
|
||||
) > /etc/apt/apt.conf.d/99snapshot-repos
|
||||
|
||||
apt-get update
|
||||
apt-get install -y ca-certificates debian-ports-archive-keyring cmake git zip
|
||||
dpkg --add-architecture loong64
|
||||
|
||||
# Add arch-specific repositories for non-amd64 architectures
|
||||
cat << EOF | tee /etc/apt/sources.list.d/loong64-ports.list
|
||||
deb [arch=loong64] http://snapshot.debian.org/archive/debian-ports/20250515T194251Z/ sid main
|
||||
EOF
|
||||
|
||||
apt-get update || true ;# Prevent failure due to missing URLs.
|
||||
|
||||
apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
glslc \
|
||||
gcc-14-loongarch64-linux-gnu \
|
||||
g++-14-loongarch64-linux-gnu \
|
||||
libvulkan-dev:loong64
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=loongarch64 \
|
||||
-DCMAKE_C_COMPILER=loongarch64-linux-gnu-gcc-14 \
|
||||
-DCMAKE_CXX_COMPILER=loongarch64-linux-gnu-g++-14 \
|
||||
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
-DCMAKE_FIND_ROOT_PATH=/usr/lib/loongarch64-linux-gnu \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
70
.github/workflows/build.yml
vendored
70
.github/workflows/build.yml
vendored
@@ -5,10 +5,43 @@ on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['.github/workflows/build.yml', '.github/workflows/build-linux-cross.yml', '**/CMakeLists.txt', '**/.cmake', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal', '**/*.comp']
|
||||
paths: [
|
||||
'.github/workflows/build.yml',
|
||||
'.github/workflows/build-linux-cross.yml',
|
||||
'.github/workflows/build-cmake-pkg.yml',
|
||||
'**/CMakeLists.txt',
|
||||
'**/.cmake',
|
||||
'**/*.h',
|
||||
'**/*.hpp',
|
||||
'**/*.c',
|
||||
'**/*.cpp',
|
||||
'**/*.cu',
|
||||
'**/*.cuh',
|
||||
'**/*.swift',
|
||||
'**/*.m',
|
||||
'**/*.metal',
|
||||
'**/*.comp'
|
||||
]
|
||||
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['.github/workflows/build.yml', '.github/workflows/build-linux-cross.yml', '**/CMakeLists.txt', '**/.cmake', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal', '**/*.comp']
|
||||
paths: [
|
||||
'.github/workflows/build.yml',
|
||||
'.github/workflows/build-linux-cross.yml',
|
||||
'.github/workflows/build-cmake-pkg.yml',
|
||||
'**/CMakeLists.txt',
|
||||
'**/.cmake',
|
||||
'**/*.h',
|
||||
'**/*.hpp',
|
||||
'**/*.c',
|
||||
'**/*.cpp',
|
||||
'**/*.cu',
|
||||
'**/*.cuh',
|
||||
'**/*.swift',
|
||||
'**/*.m',
|
||||
'**/*.metal',
|
||||
'**/*.comp'
|
||||
]
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
@@ -306,6 +339,7 @@ jobs:
|
||||
id: cmake_test
|
||||
run: |
|
||||
cd build
|
||||
export GGML_VK_VISIBLE_DEVICES=0
|
||||
# This is using llvmpipe and runs slower than other backends
|
||||
ctest -L main --verbose --timeout 3600
|
||||
|
||||
@@ -477,6 +511,9 @@ jobs:
|
||||
build-linux-cross:
|
||||
uses: ./.github/workflows/build-linux-cross.yml
|
||||
|
||||
build-cmake-pkg:
|
||||
uses: ./.github/workflows/build-cmake-pkg.yml
|
||||
|
||||
macOS-latest-cmake-ios:
|
||||
runs-on: macos-latest
|
||||
|
||||
@@ -627,7 +664,7 @@ jobs:
|
||||
./build-xcframework.sh
|
||||
|
||||
windows-msys2:
|
||||
runs-on: windows-latest
|
||||
runs-on: windows-2025
|
||||
|
||||
strategy:
|
||||
fail-fast: false
|
||||
@@ -677,27 +714,33 @@ jobs:
|
||||
cmake --build build --config ${{ matrix.build }} -j $(nproc)
|
||||
|
||||
windows-latest-cmake:
|
||||
runs-on: windows-latest
|
||||
runs-on: windows-2025
|
||||
|
||||
env:
|
||||
OPENBLAS_VERSION: 0.3.23
|
||||
SDE_VERSION: 9.33.0-2024-01-07
|
||||
VULKAN_VERSION: 1.4.309.0
|
||||
VULKAN_VERSION: 1.4.313.2
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build: 'cpu-x64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF'
|
||||
- build: 'cpu-x64 (static)'
|
||||
arch: 'x64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF'
|
||||
- build: 'openblas-x64'
|
||||
arch: 'x64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
|
||||
- build: 'vulkan-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON'
|
||||
arch: 'x64'
|
||||
defines: '-DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON'
|
||||
- build: 'llvm-arm64'
|
||||
arch: 'arm64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON'
|
||||
- build: 'llvm-arm64-opencl-adreno'
|
||||
arch: 'arm64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON'
|
||||
# - build: 'kompute-x64'
|
||||
# arch: 'x64'
|
||||
# defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON'
|
||||
|
||||
steps:
|
||||
@@ -735,7 +778,7 @@ jobs:
|
||||
id: get_vulkan
|
||||
if: ${{ matrix.build == 'kompute-x64' || matrix.build == 'vulkan-x64' }}
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/VulkanSDK-Installer.exe -L "https://sdk.lunarg.com/sdk/download/${env:VULKAN_VERSION}/windows/VulkanSDK-${env:VULKAN_VERSION}-Installer.exe"
|
||||
curl.exe -o $env:RUNNER_TEMP/VulkanSDK-Installer.exe -L "https://sdk.lunarg.com/sdk/download/${env:VULKAN_VERSION}/windows/vulkansdk-windows-X64-${env:VULKAN_VERSION}.exe"
|
||||
& "$env:RUNNER_TEMP\VulkanSDK-Installer.exe" --accept-licenses --default-answer --confirm-command install
|
||||
Add-Content $env:GITHUB_ENV "VULKAN_SDK=C:\VulkanSDK\${env:VULKAN_VERSION}"
|
||||
Add-Content $env:GITHUB_PATH "C:\VulkanSDK\${env:VULKAN_VERSION}\bin"
|
||||
@@ -768,6 +811,8 @@ jobs:
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
with:
|
||||
architecture: ${{ matrix.arch == 'x64' && 'win64' || 'win64a' }}
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@@ -777,6 +822,7 @@ jobs:
|
||||
cmake -S . -B build ${{ matrix.defines }} `
|
||||
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
|
||||
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS}
|
||||
cp $env:CURL_PATH/bin/libcurl-*.dll build/bin/Release
|
||||
|
||||
- name: Add libopenblas.dll
|
||||
id: add_libopenblas_dll
|
||||
@@ -787,7 +833,7 @@ jobs:
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
if: ${{ matrix.build != 'llvm-arm64' && matrix.build != 'llvm-arm64-opencl-adreno' }}
|
||||
if: ${{ matrix.arch == 'x64' }}
|
||||
run: |
|
||||
cd build
|
||||
ctest -L main -C Release --verbose --timeout 900
|
||||
@@ -892,7 +938,7 @@ jobs:
|
||||
cmake --build build --config Release
|
||||
|
||||
windows-latest-cmake-sycl:
|
||||
runs-on: windows-latest
|
||||
runs-on: windows-2022
|
||||
|
||||
defaults:
|
||||
run:
|
||||
@@ -926,7 +972,7 @@ jobs:
|
||||
|
||||
windows-latest-cmake-hip:
|
||||
if: ${{ github.event.inputs.create_release != 'true' }}
|
||||
runs-on: windows-latest
|
||||
runs-on: windows-2022
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
|
||||
16
.github/workflows/release.yml
vendored
16
.github/workflows/release.yml
vendored
@@ -235,7 +235,7 @@ jobs:
|
||||
name: llama-bin-ubuntu-vulkan-x64.zip
|
||||
|
||||
windows-cpu:
|
||||
runs-on: windows-latest
|
||||
runs-on: windows-2025
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
@@ -271,7 +271,7 @@ jobs:
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" ${{ matrix.arch }}
|
||||
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" ${{ matrix.arch == 'x64' && 'x64' || 'amd64_arm64' }}
|
||||
cmake -S . -B build -G "Ninja Multi-Config" ^
|
||||
-D CMAKE_TOOLCHAIN_FILE=cmake/${{ matrix.arch }}-windows-llvm.cmake ^
|
||||
-DGGML_NATIVE=OFF ^
|
||||
@@ -288,7 +288,7 @@ jobs:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
Copy-Item $env:CURL_PATH\bin\libcurl-${{ matrix.arch }}.dll .\build\bin\Release\
|
||||
Copy-Item "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Redist\MSVC\14.42.34433\debug_nonredist\${{ matrix.arch }}\Microsoft.VC143.OpenMP.LLVM\libomp140.${{ matrix.arch == 'x64' && 'x86_64' || 'aarch64' }}.dll" .\build\bin\Release\
|
||||
Copy-Item "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Redist\MSVC\14.44.35112\debug_nonredist\${{ matrix.arch }}\Microsoft.VC143.OpenMP.LLVM\libomp140.${{ matrix.arch == 'x64' && 'x86_64' || 'aarch64' }}.dll" .\build\bin\Release\
|
||||
7z a llama-bin-win-cpu-${{ matrix.arch }}.zip .\build\bin\Release\*
|
||||
|
||||
- name: Upload artifacts
|
||||
@@ -298,11 +298,11 @@ jobs:
|
||||
name: llama-bin-win-cpu-${{ matrix.arch }}.zip
|
||||
|
||||
windows:
|
||||
runs-on: windows-latest
|
||||
runs-on: windows-2025
|
||||
|
||||
env:
|
||||
OPENBLAS_VERSION: 0.3.23
|
||||
VULKAN_VERSION: 1.4.309.0
|
||||
VULKAN_VERSION: 1.4.313.2
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
@@ -332,7 +332,7 @@ jobs:
|
||||
id: get_vulkan
|
||||
if: ${{ matrix.backend == 'vulkan' }}
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/VulkanSDK-Installer.exe -L "https://sdk.lunarg.com/sdk/download/${env:VULKAN_VERSION}/windows/VulkanSDK-${env:VULKAN_VERSION}-Installer.exe"
|
||||
curl.exe -o $env:RUNNER_TEMP/VulkanSDK-Installer.exe -L "https://sdk.lunarg.com/sdk/download/${env:VULKAN_VERSION}/windows/vulkansdk-windows-X64-${env:VULKAN_VERSION}.exe"
|
||||
& "$env:RUNNER_TEMP\VulkanSDK-Installer.exe" --accept-licenses --default-answer --confirm-command install
|
||||
Add-Content $env:GITHUB_ENV "VULKAN_SDK=C:\VulkanSDK\${env:VULKAN_VERSION}"
|
||||
Add-Content $env:GITHUB_PATH "C:\VulkanSDK\${env:VULKAN_VERSION}\bin"
|
||||
@@ -448,7 +448,7 @@ jobs:
|
||||
name: cudart-llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip
|
||||
|
||||
windows-sycl:
|
||||
runs-on: windows-latest
|
||||
runs-on: windows-2022
|
||||
|
||||
defaults:
|
||||
run:
|
||||
@@ -520,7 +520,7 @@ jobs:
|
||||
name: llama-bin-win-sycl-x64.zip
|
||||
|
||||
windows-hip:
|
||||
runs-on: windows-latest
|
||||
runs-on: windows-2022
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
|
||||
@@ -89,6 +89,14 @@ option(LLAMA_LLGUIDANCE "llama-common: include LLGuidance library for structured
|
||||
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake)
|
||||
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/common.cmake)
|
||||
|
||||
if (NOT DEFINED LLAMA_BUILD_NUMBER)
|
||||
set(LLAMA_BUILD_NUMBER ${BUILD_NUMBER})
|
||||
endif()
|
||||
if (NOT DEFINED LLAMA_BUILD_COMMIT)
|
||||
set(LLAMA_BUILD_COMMIT ${BUILD_COMMIT})
|
||||
endif()
|
||||
set(LLAMA_INSTALL_VERSION 0.0.${LLAMA_BUILD_NUMBER})
|
||||
|
||||
# override ggml options
|
||||
set(GGML_ALL_WARNINGS ${LLAMA_ALL_WARNINGS})
|
||||
set(GGML_FATAL_WARNINGS ${LLAMA_FATAL_WARNINGS})
|
||||
@@ -155,6 +163,8 @@ if (LLAMA_USE_SYSTEM_GGML)
|
||||
endif()
|
||||
|
||||
if (NOT TARGET ggml AND NOT LLAMA_USE_SYSTEM_GGML)
|
||||
set(GGML_BUILD_NUMBER ${LLAMA_BUILD_NUMBER})
|
||||
set(GGML_BUILD_COMMIT ${LLAMA_BUILD_COMMIT})
|
||||
add_subdirectory(ggml)
|
||||
# ... otherwise assume ggml is added by a parent CMakeLists.txt
|
||||
endif()
|
||||
@@ -204,10 +214,6 @@ endif()
|
||||
include(GNUInstallDirs)
|
||||
include(CMakePackageConfigHelpers)
|
||||
|
||||
set(LLAMA_BUILD_NUMBER ${BUILD_NUMBER})
|
||||
set(LLAMA_BUILD_COMMIT ${BUILD_COMMIT})
|
||||
set(LLAMA_INSTALL_VERSION 0.0.${BUILD_NUMBER})
|
||||
|
||||
set(LLAMA_INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR} CACHE PATH "Location of header files")
|
||||
set(LLAMA_LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR} CACHE PATH "Location of library files")
|
||||
set(LLAMA_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR} CACHE PATH "Location of binary files")
|
||||
|
||||
4
Makefile
4
Makefile
@@ -367,7 +367,7 @@ ifdef LLAMA_SERVER_SSL
|
||||
endif
|
||||
|
||||
ifndef GGML_NO_CPU_AARCH64
|
||||
MK_CPPFLAGS += -DGGML_USE_CPU_AARCH64
|
||||
MK_CPPFLAGS += -DGGML_USE_CPU_REPACK
|
||||
endif
|
||||
|
||||
# warnings
|
||||
@@ -970,7 +970,7 @@ OBJ_GGML = \
|
||||
$(DIR_GGML)/src/ggml-threading.o \
|
||||
$(DIR_GGML)/src/ggml-cpu/ggml-cpu.o \
|
||||
$(DIR_GGML)/src/ggml-cpu/ggml-cpu_cpp.o \
|
||||
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-aarch64.o \
|
||||
$(DIR_GGML)/src/ggml-cpu/repack.o \
|
||||
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-hbm.o \
|
||||
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-quants.o \
|
||||
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-traits.o \
|
||||
|
||||
@@ -6,7 +6,7 @@
|
||||
[](https://github.com/ggml-org/llama.cpp/releases)
|
||||
[](https://github.com/ggml-org/llama.cpp/actions/workflows/server.yml)
|
||||
|
||||
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggml-org/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggml-org/llama.cpp/discussions/205) / [ggml](https://github.com/ggml-org/ggml)
|
||||
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Manifesto](https://github.com/ggml-org/llama.cpp/discussions/205) / [ggml](https://github.com/ggml-org/ggml)
|
||||
|
||||
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
|
||||
|
||||
@@ -18,7 +18,6 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
|
||||
## Hot topics
|
||||
|
||||
- 🔥 Multimodal support arrived in `llama-server`: [#12898](https://github.com/ggml-org/llama.cpp/pull/12898) | [documentation](./docs/multimodal.md)
|
||||
- **GGML developer experience survey (organized and reviewed by NVIDIA):** [link](https://forms.gle/Gasw3cRgyhNEnrwK9)
|
||||
- A new binary `llama-mtmd-cli` is introduced to replace `llava-cli`, `minicpmv-cli`, `gemma3-cli` ([#13012](https://github.com/ggml-org/llama.cpp/pull/13012)) and `qwen2vl-cli` ([#13141](https://github.com/ggml-org/llama.cpp/pull/13141)), `libllava` will be deprecated
|
||||
- VS Code extension for FIM completions: https://github.com/ggml-org/llama.vscode
|
||||
- Universal [tool call support](./docs/function-calling.md) in `llama-server` https://github.com/ggml-org/llama.cpp/pull/9639
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
#
|
||||
# Options
|
||||
IOS_MIN_OS_VERSION=16.4
|
||||
|
||||
21
ci/run.sh
21
ci/run.sh
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
#
|
||||
# sample usage:
|
||||
#
|
||||
@@ -39,14 +39,27 @@ sd=`dirname $0`
|
||||
cd $sd/../
|
||||
SRC=`pwd`
|
||||
|
||||
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=OFF"
|
||||
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON"
|
||||
|
||||
if [ ! -z ${GG_BUILD_METAL} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON -DGGML_METAL_USE_BF16=ON"
|
||||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_CUDA} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES=native"
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=ON"
|
||||
|
||||
if command -v nvidia-smi >/dev/null 2>&1; then
|
||||
CUDA_ARCH=$(nvidia-smi --query-gpu=compute_cap --format=csv,noheader,nounits 2>/dev/null | head -1 | tr -d '.')
|
||||
if [[ -n "$CUDA_ARCH" && "$CUDA_ARCH" =~ ^[0-9]+$ ]]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DCMAKE_CUDA_ARCHITECTURES=${CUDA_ARCH}"
|
||||
else
|
||||
echo "Warning: Using fallback CUDA architectures"
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DCMAKE_CUDA_ARCHITECTURES=61;70;75;80;86;89"
|
||||
fi
|
||||
else
|
||||
echo "Error: nvidia-smi not found, cannot build with CUDA"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_SYCL} ]; then
|
||||
@@ -766,7 +779,7 @@ function gg_run_rerank_tiny {
|
||||
model_f16="${path_models}/ggml-model-f16.gguf"
|
||||
|
||||
# for this model, the SEP token is "</s>"
|
||||
(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?</s></s>hi\nwhat is panda?</s></s>it's a bear\nwhat is panda?</s></s>The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." -ngl 99 -c 0 --pooling rank --embd-normalize -1 --verbose-prompt) 2>&1 | tee -a $OUT/${ci}-rk-f16.log
|
||||
(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?\thi\nwhat is panda?\tit's a bear\nwhat is panda?\tThe giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." -ngl 99 -c 0 --pooling rank --embd-normalize -1 --verbose-prompt) 2>&1 | tee -a $OUT/${ci}-rk-f16.log
|
||||
|
||||
# sample output
|
||||
# rerank score 0: 0.029
|
||||
|
||||
@@ -7,8 +7,8 @@ llama_add_compile_flags()
|
||||
# Build info header
|
||||
#
|
||||
|
||||
if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/../.git")
|
||||
set(GIT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../.git")
|
||||
if(EXISTS "${PROJECT_SOURCE_DIR}/.git")
|
||||
set(GIT_DIR "${PROJECT_SOURCE_DIR}/.git")
|
||||
|
||||
# Is git submodule
|
||||
if(NOT IS_DIRECTORY "${GIT_DIR}")
|
||||
@@ -18,36 +18,26 @@ if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/../.git")
|
||||
if (SLASH_POS EQUAL 0)
|
||||
set(GIT_DIR "${REAL_GIT_DIR}")
|
||||
else()
|
||||
set(GIT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../${REAL_GIT_DIR}")
|
||||
set(GIT_DIR "${PROJECT_SOURCE_DIR}/${REAL_GIT_DIR}")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if(EXISTS "${GIT_DIR}/index")
|
||||
set(GIT_INDEX "${GIT_DIR}/index")
|
||||
# For build-info.cpp below
|
||||
set_property(DIRECTORY APPEND PROPERTY CMAKE_CONFIGURE_DEPENDS "${GIT_DIR}/index")
|
||||
else()
|
||||
message(WARNING "Git index not found in git repository.")
|
||||
set(GIT_INDEX "")
|
||||
endif()
|
||||
else()
|
||||
message(WARNING "Git repository not found; to enable automatic generation of build info, make sure Git is installed and the project is a Git repository.")
|
||||
set(GIT_INDEX "")
|
||||
endif()
|
||||
|
||||
# Add a custom command to rebuild build-info.cpp when .git/index changes
|
||||
add_custom_command(
|
||||
OUTPUT "${CMAKE_CURRENT_SOURCE_DIR}/build-info.cpp"
|
||||
COMMENT "Generating build details from Git"
|
||||
COMMAND ${CMAKE_COMMAND} -DMSVC=${MSVC} -DCMAKE_C_COMPILER_VERSION=${CMAKE_C_COMPILER_VERSION}
|
||||
-DCMAKE_C_COMPILER_ID=${CMAKE_C_COMPILER_ID} -DCMAKE_VS_PLATFORM_NAME=${CMAKE_VS_PLATFORM_NAME}
|
||||
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
|
||||
-DCMAKE_SYSTEM_NAME=${CMAKE_SYSTEM_NAME} -DCMAKE_SYSTEM_PROCESSOR=${CMAKE_SYSTEM_PROCESSOR}
|
||||
-P "${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info-gen-cpp.cmake"
|
||||
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}/.."
|
||||
DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/build-info.cpp.in" ${GIT_INDEX}
|
||||
VERBATIM
|
||||
)
|
||||
set(TEMPLATE_FILE "${CMAKE_CURRENT_SOURCE_DIR}/build-info.cpp.in")
|
||||
set(OUTPUT_FILE "${CMAKE_CURRENT_BINARY_DIR}/build-info.cpp")
|
||||
configure_file(${TEMPLATE_FILE} ${OUTPUT_FILE})
|
||||
|
||||
set(TARGET build_info)
|
||||
add_library(${TARGET} OBJECT build-info.cpp)
|
||||
add_library(${TARGET} OBJECT ${OUTPUT_FILE})
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
endif()
|
||||
|
||||
@@ -988,10 +988,6 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
|
||||
params.tensor_buft_overrides.push_back({nullptr, nullptr});
|
||||
}
|
||||
|
||||
if (params.reranking && params.embedding) {
|
||||
throw std::invalid_argument("error: either --embedding or --reranking can be specified, but not both");
|
||||
}
|
||||
|
||||
if (!params.chat_template.empty() && !common_chat_verify_template(params.chat_template, params.use_jinja)) {
|
||||
throw std::runtime_error(string_format(
|
||||
"error: the supplied chat template is not supported: %s%s\n",
|
||||
@@ -2710,6 +2706,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.embd_sep = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
|
||||
add_opt(common_arg(
|
||||
{"--cls-separator"}, "STRING",
|
||||
"separator of classification sequences (default \\t) for example \"<#seq#>\"",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.cls_sep = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
|
||||
add_opt(common_arg(
|
||||
{"--host"}, "HOST",
|
||||
string_format("ip address to listen, or bind to an UNIX socket if the address ends with .sock (default: %s)", params.hostname.c_str()),
|
||||
@@ -2747,9 +2750,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_EMBEDDINGS"));
|
||||
add_opt(common_arg(
|
||||
{"--reranking", "--rerank"},
|
||||
string_format("enable reranking endpoint on server (default: %s)", params.reranking ? "enabled" : "disabled"),
|
||||
string_format("enable reranking endpoint on server (default: %s)", "disabled"),
|
||||
[](common_params & params) {
|
||||
params.reranking = true;
|
||||
params.embedding = true;
|
||||
params.pooling_type = LLAMA_POOLING_TYPE_RANK;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_RERANKING"));
|
||||
add_opt(common_arg(
|
||||
@@ -2790,6 +2794,16 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.ssl_file_cert = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_CERT_FILE"));
|
||||
add_opt(common_arg(
|
||||
{"--chat-template-kwargs"}, "STRING",
|
||||
string_format("sets additional params for the json template parser"),
|
||||
[](common_params & params, const std::string & value) {
|
||||
auto parsed = json::parse(value);
|
||||
for (const auto & item : parsed.items()) {
|
||||
params.default_template_kwargs[item.key()] = item.value().dump();
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_CHAT_TEMPLATE_KWARGS"));
|
||||
add_opt(common_arg(
|
||||
{"-to", "--timeout"}, "N",
|
||||
string_format("server read/write timeout in seconds (default: %d)", params.timeout_read),
|
||||
@@ -3213,6 +3227,32 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.speculative.model.path = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL_DRAFT"));
|
||||
add_opt(common_arg(
|
||||
{"-ctkd", "--cache-type-k-draft"}, "TYPE",
|
||||
string_format(
|
||||
"KV cache data type for K for the draft model\n"
|
||||
"allowed values: %s\n"
|
||||
"(default: %s)",
|
||||
get_all_kv_cache_types().c_str(),
|
||||
ggml_type_name(params.speculative.cache_type_k)
|
||||
),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.speculative.cache_type_k = kv_cache_type_from_str(value);
|
||||
}
|
||||
).set_env("LLAMA_ARG_CACHE_TYPE_K_DRAFT"));
|
||||
add_opt(common_arg(
|
||||
{"-ctvd", "--cache-type-v-draft"}, "TYPE",
|
||||
string_format(
|
||||
"KV cache data type for V for the draft model\n"
|
||||
"allowed values: %s\n"
|
||||
"(default: %s)",
|
||||
get_all_kv_cache_types().c_str(),
|
||||
ggml_type_name(params.speculative.cache_type_v)
|
||||
),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.speculative.cache_type_v = kv_cache_type_from_str(value);
|
||||
}
|
||||
).set_env("LLAMA_ARG_CACHE_TYPE_V_DRAFT"));
|
||||
|
||||
add_opt(common_arg(
|
||||
{"-mv", "--model-vocoder"}, "FNAME",
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
int LLAMA_BUILD_NUMBER = @BUILD_NUMBER@;
|
||||
char const *LLAMA_COMMIT = "@BUILD_COMMIT@";
|
||||
int LLAMA_BUILD_NUMBER = @LLAMA_BUILD_NUMBER@;
|
||||
char const *LLAMA_COMMIT = "@LLAMA_BUILD_COMMIT@";
|
||||
char const *LLAMA_COMPILER = "@BUILD_COMPILER@";
|
||||
char const *LLAMA_BUILD_TARGET = "@BUILD_TARGET@";
|
||||
|
||||
@@ -49,6 +49,7 @@ bool common_chat_msg_parser::add_tool_call(const std::string & name, const std::
|
||||
|
||||
// LOG_DBG("Tool call arguments:\n\traw: %s\n\tresult: %s\n", arguments.c_str(), tool_call.arguments.c_str());
|
||||
result_.tool_calls.emplace_back(tool_call);
|
||||
|
||||
return true;
|
||||
}
|
||||
bool common_chat_msg_parser::add_tool_call(const json & tool_call) {
|
||||
@@ -378,3 +379,7 @@ std::optional<common_chat_msg_parser::consume_json_result> common_chat_msg_parse
|
||||
/* .is_partial = */ found_healing_marker,
|
||||
};
|
||||
}
|
||||
|
||||
void common_chat_msg_parser::clear_tools() {
|
||||
result_.tool_calls.clear();
|
||||
}
|
||||
|
||||
@@ -115,4 +115,6 @@ class common_chat_msg_parser {
|
||||
const std::vector<std::vector<std::string>> & args_paths = {},
|
||||
const std::vector<std::vector<std::string>> & content_paths = {}
|
||||
);
|
||||
|
||||
void clear_tools();
|
||||
};
|
||||
|
||||
@@ -17,6 +17,8 @@
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
static std::string format_time(const std::chrono::system_clock::time_point & now, const std::string & format) {
|
||||
auto time = std::chrono::system_clock::to_time_t(now);
|
||||
auto local_time = *std::localtime(&time);
|
||||
@@ -140,6 +142,7 @@ struct templates_params {
|
||||
bool add_generation_prompt = true;
|
||||
bool enable_thinking = true;
|
||||
std::chrono::system_clock::time_point now = std::chrono::system_clock::now();
|
||||
json extra_context;
|
||||
};
|
||||
|
||||
common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::string & tool_choice) {
|
||||
@@ -720,16 +723,23 @@ static void foreach_function(const json & tools, const std::function<void(const
|
||||
|
||||
static std::string apply(
|
||||
const common_chat_template & tmpl,
|
||||
const nlohmann::ordered_json & messages,
|
||||
const nlohmann::ordered_json & tools,
|
||||
bool add_generation_prompt,
|
||||
const nlohmann::ordered_json & extra_context = nlohmann::ordered_json())
|
||||
const struct templates_params & inputs,
|
||||
const std::optional<json> & messages_override = std::nullopt,
|
||||
const std::optional<json> & tools_override = std::nullopt,
|
||||
const std::optional<json> & additional_context = std::nullopt)
|
||||
{
|
||||
minja::chat_template_inputs tmpl_inputs;
|
||||
tmpl_inputs.messages = messages;
|
||||
tmpl_inputs.tools = tools;
|
||||
tmpl_inputs.add_generation_prompt = add_generation_prompt;
|
||||
tmpl_inputs.extra_context = extra_context;
|
||||
tmpl_inputs.messages = messages_override ? *messages_override : inputs.messages;
|
||||
if (tools_override) {
|
||||
tmpl_inputs.tools = *tools_override;
|
||||
} else {
|
||||
tmpl_inputs.tools = inputs.tools.empty() ? json() : inputs.tools;
|
||||
}
|
||||
tmpl_inputs.add_generation_prompt = inputs.add_generation_prompt;
|
||||
tmpl_inputs.extra_context = inputs.extra_context;
|
||||
if (additional_context) {
|
||||
tmpl_inputs.extra_context.merge_patch(*additional_context);
|
||||
}
|
||||
// TODO: add flag to control date/time, if only for testing purposes.
|
||||
// tmpl_inputs.now = std::chrono::system_clock::now();
|
||||
|
||||
@@ -828,7 +838,7 @@ static common_chat_params common_chat_params_init_generic(const common_chat_temp
|
||||
inputs.messages,
|
||||
"Respond in JSON format, either with `tool_call` (a request to call tools) or with `response` reply to the user's request");
|
||||
|
||||
data.prompt = apply(tmpl, tweaked_messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.prompt = apply(tmpl, inputs, /* messages_override= */ tweaked_messages);
|
||||
data.format = COMMON_CHAT_FORMAT_GENERIC;
|
||||
return data;
|
||||
}
|
||||
@@ -904,7 +914,7 @@ static common_chat_params common_chat_params_init_mistral_nemo(const common_chat
|
||||
data.preserved_tokens = {
|
||||
"[TOOL_CALLS]",
|
||||
};
|
||||
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.prompt = apply(tmpl, inputs);
|
||||
data.format = COMMON_CHAT_FORMAT_MISTRAL_NEMO;
|
||||
return data;
|
||||
}
|
||||
@@ -934,7 +944,7 @@ static common_chat_params common_chat_params_init_command_r7b(const common_chat_
|
||||
adjusted_messages.push_back(msg);
|
||||
}
|
||||
}
|
||||
data.prompt = apply(tmpl, adjusted_messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt, {});
|
||||
data.prompt = apply(tmpl, inputs, /* messages_override= */ adjusted_messages);
|
||||
data.format = COMMON_CHAT_FORMAT_COMMAND_R7B;
|
||||
if (string_ends_with(data.prompt, "<|START_THINKING|>")) {
|
||||
if (!inputs.enable_thinking) {
|
||||
@@ -1122,7 +1132,7 @@ static common_chat_params common_chat_params_init_llama_3_x(const common_chat_te
|
||||
} else {
|
||||
data.format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
|
||||
}
|
||||
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt, {
|
||||
data.prompt = apply(tmpl, inputs, /* messages_override =*/ std::nullopt, /* tools_override= */ std::nullopt, json {
|
||||
{"date_string", format_time(inputs.now, "%d %b %Y")},
|
||||
{"tools_in_user_message", false},
|
||||
{"builtin_tools", builtin_tools.empty() ? json() : builtin_tools},
|
||||
@@ -1187,7 +1197,7 @@ static void common_chat_parse_llama_3_1(common_chat_msg_parser & builder, bool w
|
||||
|
||||
static common_chat_params common_chat_params_init_deepseek_r1(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
common_chat_params data;
|
||||
auto prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
auto prompt = apply(tmpl, inputs);
|
||||
|
||||
// Hacks to fix the official (broken) prompt.
|
||||
// It is advisable to use --chat-template-file models/templates/llama-cpp-deepseek-r1.jinja instead,
|
||||
@@ -1282,7 +1292,7 @@ static void common_chat_parse_deepseek_r1(common_chat_msg_parser & builder) {
|
||||
static common_chat_params common_chat_params_init_firefunction_v2(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
LOG_DBG("%s\n", __func__);
|
||||
common_chat_params data;
|
||||
data.prompt = apply(tmpl, inputs.messages, /* tools= */ nullptr, inputs.add_generation_prompt, {
|
||||
data.prompt = apply(tmpl, inputs, /* messages_override =*/ std::nullopt, /* tools_override= */ json(), json {
|
||||
{"datetime", format_time(inputs.now, "%b %d %Y %H:%M:%S GMT")},
|
||||
{"functions", json(inputs.tools.empty() ? "" : inputs.tools.dump(2))},
|
||||
});
|
||||
@@ -1338,7 +1348,7 @@ static common_chat_params common_chat_params_init_functionary_v3_2(const common_
|
||||
// Using ">>>f1\n", ">>>f2\n"... as trigger words for the grammar
|
||||
// If the function is python, we also allow raw python code (if the line after `python\n` doesn't start w/ opening `{`), which the model seems to prefer for multiline code.
|
||||
common_chat_params data;
|
||||
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.prompt = apply(tmpl, inputs);
|
||||
data.format = COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2;
|
||||
if (inputs.tools.is_array() && !inputs.tools.empty()) {
|
||||
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
|
||||
@@ -1465,7 +1475,7 @@ static common_chat_params common_chat_params_init_functionary_v3_1_llama_3_1(con
|
||||
data.format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
|
||||
}
|
||||
|
||||
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.prompt = apply(tmpl, inputs);
|
||||
// TODO: if (has_raw_python)
|
||||
return data;
|
||||
}
|
||||
@@ -1498,14 +1508,15 @@ static void common_chat_parse_functionary_v3_1_llama_3_1(common_chat_msg_parser
|
||||
static common_chat_params common_chat_params_init_hermes_2_pro(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
common_chat_params data;
|
||||
|
||||
json additional_context = {
|
||||
json extra_context = json {
|
||||
{"enable_thinking", inputs.enable_thinking},
|
||||
};
|
||||
extra_context.update(inputs.extra_context);
|
||||
|
||||
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt, additional_context);
|
||||
data.prompt = apply(tmpl, inputs, /* messages_override =*/ std::nullopt, /* tools_override= */ std::nullopt, extra_context);
|
||||
data.format = COMMON_CHAT_FORMAT_HERMES_2_PRO;
|
||||
if (string_ends_with(data.prompt, "<think>\n")) {
|
||||
if (!inputs.enable_thinking) {
|
||||
if (!extra_context["enable_thinking"]) {
|
||||
data.prompt += "</think>";
|
||||
} else {
|
||||
data.thinking_forced_open = true;
|
||||
@@ -1691,7 +1702,7 @@ static void common_chat_parse_hermes_2_pro(common_chat_msg_parser & builder) {
|
||||
|
||||
static common_chat_params common_chat_params_init_without_tools(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
common_chat_params data;
|
||||
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.prompt = apply(tmpl, inputs);
|
||||
data.format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
|
||||
data.grammar_lazy = false;
|
||||
if (!inputs.json_schema.is_null()) {
|
||||
@@ -1722,6 +1733,12 @@ static common_chat_params common_chat_templates_apply_jinja(
|
||||
params.enable_thinking = inputs.enable_thinking;
|
||||
params.grammar = inputs.grammar;
|
||||
params.now = inputs.now;
|
||||
|
||||
params.extra_context = json::object();
|
||||
for (auto el : inputs.chat_template_kwargs) {
|
||||
params.extra_context[el.first] = json::parse(el.second);
|
||||
}
|
||||
|
||||
if (!inputs.json_schema.empty()) {
|
||||
params.json_schema = json::parse(inputs.json_schema);
|
||||
}
|
||||
@@ -1838,7 +1855,7 @@ static common_chat_params common_chat_templates_apply_legacy(
|
||||
if (res < 0) {
|
||||
// if the custom "tmpl" is not supported, we throw an error
|
||||
// this is a bit redundant (for good), since we're not sure if user validated the custom template with llama_chat_verify_template()
|
||||
throw std::runtime_error("this custom template is not supported");
|
||||
throw std::runtime_error("this custom template is not supported, try using --jinja");
|
||||
}
|
||||
|
||||
// if it turns out that our buffer is too small, we resize it
|
||||
@@ -1921,7 +1938,9 @@ common_chat_msg common_chat_parse(const std::string & input, bool is_partial, co
|
||||
} catch (const common_chat_msg_partial_exception & ex) {
|
||||
LOG_DBG("Partial parse: %s\n", ex.what());
|
||||
if (!is_partial) {
|
||||
throw std::runtime_error(ex.what());
|
||||
builder.clear_tools();
|
||||
builder.move_to(0);
|
||||
common_chat_parse_content_only(builder);
|
||||
}
|
||||
}
|
||||
auto msg = builder.result();
|
||||
|
||||
@@ -7,6 +7,7 @@
|
||||
#include <chrono>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
|
||||
struct common_chat_templates;
|
||||
|
||||
@@ -125,6 +126,7 @@ struct common_chat_templates_inputs {
|
||||
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_NONE;
|
||||
bool enable_thinking = true;
|
||||
std::chrono::system_clock::time_point now = std::chrono::system_clock::now();
|
||||
std::map<std::string, std::string> chat_template_kwargs;
|
||||
};
|
||||
|
||||
struct common_chat_params {
|
||||
|
||||
@@ -1,24 +0,0 @@
|
||||
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake)
|
||||
|
||||
set(TEMPLATE_FILE "${CMAKE_CURRENT_SOURCE_DIR}/common/build-info.cpp.in")
|
||||
set(OUTPUT_FILE "${CMAKE_CURRENT_SOURCE_DIR}/common/build-info.cpp")
|
||||
|
||||
# Only write the build info if it changed
|
||||
if(EXISTS ${OUTPUT_FILE})
|
||||
file(READ ${OUTPUT_FILE} CONTENTS)
|
||||
string(REGEX MATCH "LLAMA_COMMIT = \"([^\"]*)\";" _ ${CONTENTS})
|
||||
set(OLD_COMMIT ${CMAKE_MATCH_1})
|
||||
string(REGEX MATCH "LLAMA_COMPILER = \"([^\"]*)\";" _ ${CONTENTS})
|
||||
set(OLD_COMPILER ${CMAKE_MATCH_1})
|
||||
string(REGEX MATCH "LLAMA_BUILD_TARGET = \"([^\"]*)\";" _ ${CONTENTS})
|
||||
set(OLD_TARGET ${CMAKE_MATCH_1})
|
||||
if (
|
||||
NOT OLD_COMMIT STREQUAL BUILD_COMMIT OR
|
||||
NOT OLD_COMPILER STREQUAL BUILD_COMPILER OR
|
||||
NOT OLD_TARGET STREQUAL BUILD_TARGET
|
||||
)
|
||||
configure_file(${TEMPLATE_FILE} ${OUTPUT_FILE})
|
||||
endif()
|
||||
else()
|
||||
configure_file(${TEMPLATE_FILE} ${OUTPUT_FILE})
|
||||
endif()
|
||||
@@ -466,7 +466,7 @@ size_t string_find_partial_stop(const std::string_view & str, const std::string_
|
||||
|
||||
std::string regex_escape(const std::string & s) {
|
||||
static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]");
|
||||
return std::regex_replace(s, special_chars, "\\$0");
|
||||
return std::regex_replace(s, special_chars, "\\$&");
|
||||
}
|
||||
|
||||
std::string string_join(const std::vector<std::string> & values, const std::string & separator) {
|
||||
@@ -706,11 +706,17 @@ bool fs_validate_filename(const std::string & filename) {
|
||||
// disable C++17 deprecation warning for std::codecvt_utf8
|
||||
# pragma clang diagnostic push
|
||||
# pragma clang diagnostic ignored "-Wdeprecated-declarations"
|
||||
#elif defined(__GNUC__)
|
||||
# pragma GCC diagnostic push
|
||||
# pragma GCC diagnostic ignored "-Wdeprecated-declarations"
|
||||
#endif
|
||||
|
||||
std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
|
||||
|
||||
#if defined(__clang__)
|
||||
# pragma clang diagnostic pop
|
||||
#elif defined(__GNUC__)
|
||||
# pragma GCC diagnostic pop
|
||||
#endif
|
||||
|
||||
filename_utf32 = converter.from_bytes(filename);
|
||||
@@ -767,6 +773,9 @@ bool fs_validate_filename(const std::string & filename) {
|
||||
return true;
|
||||
}
|
||||
|
||||
#include <iostream>
|
||||
|
||||
|
||||
// returns true if successful, false otherwise
|
||||
bool fs_create_directory_with_parents(const std::string & path) {
|
||||
#ifdef _WIN32
|
||||
@@ -784,9 +793,16 @@ bool fs_create_directory_with_parents(const std::string & path) {
|
||||
// process path from front to back, procedurally creating directories
|
||||
while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
|
||||
const std::wstring subpath = wpath.substr(0, pos_slash);
|
||||
const wchar_t * test = subpath.c_str();
|
||||
|
||||
const bool success = CreateDirectoryW(test, NULL);
|
||||
pos_slash += 1;
|
||||
|
||||
// skip the drive letter, in some systems it can return an access denied error
|
||||
if (subpath.length() == 2 && subpath[1] == ':') {
|
||||
continue;
|
||||
}
|
||||
|
||||
const bool success = CreateDirectoryW(subpath.c_str(), NULL);
|
||||
|
||||
if (!success) {
|
||||
const DWORD error = GetLastError();
|
||||
|
||||
@@ -800,8 +816,6 @@ bool fs_create_directory_with_parents(const std::string & path) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
pos_slash += 1;
|
||||
}
|
||||
|
||||
return true;
|
||||
@@ -897,34 +911,6 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
if (params.reranking) {
|
||||
bool ok = true;
|
||||
|
||||
if (llama_vocab_bos(vocab) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: vocab does not have a BOS token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
}
|
||||
|
||||
bool has_eos = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
|
||||
bool has_sep = llama_vocab_sep(vocab) != LLAMA_TOKEN_NULL;
|
||||
|
||||
if (!has_eos && !has_sep) {
|
||||
LOG_WRN("%s: warning: vocab does not have an EOS token or SEP token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
} else if (!has_eos) {
|
||||
LOG_WRN("%s: warning: vocab does not have an EOS token, using SEP token as fallback\n", __func__);
|
||||
} else if (!has_sep) {
|
||||
LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
}
|
||||
|
||||
if (!ok) {
|
||||
llama_model_free(model);
|
||||
|
||||
return iparams;
|
||||
}
|
||||
}
|
||||
|
||||
auto cparams = common_context_params_to_llama(params);
|
||||
|
||||
llama_context * lctx = llama_init_from_model(model, cparams);
|
||||
@@ -934,7 +920,7 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
return iparams;
|
||||
}
|
||||
|
||||
if (params.ctx_shift && !llama_kv_self_can_shift(lctx)) {
|
||||
if (params.ctx_shift && !llama_memory_can_shift(llama_get_memory(lctx))) {
|
||||
LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__);
|
||||
params.ctx_shift = false;
|
||||
}
|
||||
@@ -966,6 +952,35 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
}
|
||||
}
|
||||
|
||||
if (llama_pooling_type(lctx) == LLAMA_POOLING_TYPE_RANK) {
|
||||
bool ok = true;
|
||||
|
||||
if (llama_vocab_bos(vocab) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: vocab does not have a BOS token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
}
|
||||
|
||||
bool has_eos = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
|
||||
bool has_sep = llama_vocab_sep(vocab) != LLAMA_TOKEN_NULL;
|
||||
|
||||
if (!has_eos && !has_sep) {
|
||||
LOG_WRN("%s: warning: vocab does not have an EOS token or SEP token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
} else if (!has_eos) {
|
||||
LOG_WRN("%s: warning: vocab does not have an EOS token, using SEP token as fallback\n", __func__);
|
||||
} else if (!has_sep) {
|
||||
LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
}
|
||||
|
||||
if (!ok) {
|
||||
llama_free(lctx);
|
||||
llama_model_free(model);
|
||||
|
||||
return iparams;
|
||||
}
|
||||
}
|
||||
|
||||
// load and optionally apply lora adapters
|
||||
for (auto & la : params.lora_adapters) {
|
||||
llama_adapter_lora_ptr lora;
|
||||
@@ -1041,7 +1056,7 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
if (llama_model_has_decoder(model)) {
|
||||
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch)));
|
||||
}
|
||||
llama_kv_self_clear(lctx);
|
||||
llama_memory_clear(llama_get_memory(lctx), true);
|
||||
llama_synchronize(lctx);
|
||||
llama_perf_context_reset(lctx);
|
||||
llama_set_warmup(lctx, false);
|
||||
@@ -1143,11 +1158,6 @@ struct llama_context_params common_context_params_to_llama(const common_params &
|
||||
cparams.op_offload = !params.no_op_offload;
|
||||
cparams.swa_full = params.swa_full;
|
||||
|
||||
if (params.reranking) {
|
||||
cparams.embeddings = true;
|
||||
cparams.pooling_type = LLAMA_POOLING_TYPE_RANK;
|
||||
}
|
||||
|
||||
cparams.type_k = params.cache_type_k;
|
||||
cparams.type_v = params.cache_type_v;
|
||||
|
||||
@@ -1280,6 +1290,9 @@ std::vector<llama_token> common_tokenize(
|
||||
int n_tokens = text.length() + 2 * add_special;
|
||||
std::vector<llama_token> result(n_tokens);
|
||||
n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
|
||||
if (n_tokens == std::numeric_limits<int32_t>::min()) {
|
||||
throw std::runtime_error("Tokenization failed: input text too large, tokenization result exceeds int32_t limit");
|
||||
}
|
||||
if (n_tokens < 0) {
|
||||
result.resize(-n_tokens);
|
||||
int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
|
||||
|
||||
@@ -8,6 +8,7 @@
|
||||
#include <string>
|
||||
#include <string_view>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <sstream>
|
||||
|
||||
#ifdef _WIN32
|
||||
@@ -199,6 +200,9 @@ struct common_params_speculative {
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
float p_min = 0.75f; // minimum speculative decoding probability (greedy)
|
||||
|
||||
ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
|
||||
ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
|
||||
|
||||
struct cpu_params cpuparams;
|
||||
struct cpu_params cpuparams_batch;
|
||||
|
||||
@@ -355,7 +359,7 @@ struct common_params {
|
||||
int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
|
||||
std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
|
||||
std::string embd_sep = "\n"; // separator of embeddings
|
||||
bool reranking = false; // enable reranking support on server
|
||||
std::string cls_sep = "\t"; // separator of classification sequences
|
||||
|
||||
// server params
|
||||
int32_t port = 8080; // server listens on this network port
|
||||
@@ -378,6 +382,8 @@ struct common_params {
|
||||
std::string ssl_file_key = ""; // NOLINT
|
||||
std::string ssl_file_cert = ""; // NOLINT
|
||||
|
||||
std::map<std::string, std::string> default_template_kwargs;
|
||||
|
||||
// "advanced" endpoints are disabled by default for better security
|
||||
bool webui = true;
|
||||
bool endpoint_slots = false;
|
||||
|
||||
@@ -41,49 +41,6 @@ static std::string build_repetition(const std::string & item_rule, int min_items
|
||||
return result;
|
||||
}
|
||||
|
||||
/* Minimalistic replacement for std::string_view, which is only available from C++17 onwards */
|
||||
class string_view {
|
||||
const std::string & _str;
|
||||
const size_t _start;
|
||||
const size_t _end;
|
||||
public:
|
||||
string_view(const std::string & str, size_t start = 0, size_t end = std::string::npos) : _str(str), _start(start), _end(end == std::string::npos ? str.length() : end) {}
|
||||
|
||||
size_t size() const {
|
||||
return _end - _start;
|
||||
}
|
||||
|
||||
size_t length() const {
|
||||
return size();
|
||||
}
|
||||
|
||||
operator std::string() const {
|
||||
return str();
|
||||
}
|
||||
|
||||
std::string str() const {
|
||||
return _str.substr(_start, _end - _start);
|
||||
}
|
||||
|
||||
string_view substr(size_t pos, size_t len = std::string::npos) const {
|
||||
return string_view(_str, _start + pos, len == std::string::npos ? _end : _start + pos + len);
|
||||
}
|
||||
|
||||
char operator[](size_t pos) const {
|
||||
auto index = _start + pos;
|
||||
if (index >= _end) {
|
||||
throw std::out_of_range("string_view index out of range");
|
||||
}
|
||||
return _str[_start + pos];
|
||||
}
|
||||
|
||||
bool operator==(const string_view & other) const {
|
||||
std::string this_str = *this;
|
||||
std::string other_str = other;
|
||||
return this_str == other_str;
|
||||
}
|
||||
};
|
||||
|
||||
static void _build_min_max_int(int min_value, int max_value, std::stringstream & out, int decimals_left = 16, bool top_level = true) {
|
||||
auto has_min = min_value != std::numeric_limits<int>::min();
|
||||
auto has_max = max_value != std::numeric_limits<int>::max();
|
||||
@@ -112,14 +69,14 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
|
||||
}
|
||||
out << "}";
|
||||
};
|
||||
std::function<void(const string_view &, const string_view &)> uniform_range =
|
||||
[&](const string_view & from, const string_view & to) {
|
||||
std::function<void(const std::string_view &, const std::string_view &)> uniform_range =
|
||||
[&](const std::string_view & from, const std::string_view & to) {
|
||||
size_t i = 0;
|
||||
while (i < from.length() && i < to.length() && from[i] == to[i]) {
|
||||
i++;
|
||||
}
|
||||
if (i > 0) {
|
||||
out << "\"" << from.substr(0, i).str() << "\"";
|
||||
out << "\"" << from.substr(0, i) << "\"";
|
||||
}
|
||||
if (i < from.length() && i < to.length()) {
|
||||
if (i > 0) {
|
||||
|
||||
@@ -144,6 +144,8 @@ llama_tokens common_speculative_gen_draft(
|
||||
auto & smpl = spec->smpl;
|
||||
auto & prompt = spec->prompt;
|
||||
|
||||
auto * mem = llama_get_memory(ctx);
|
||||
|
||||
int reuse_i = 0;
|
||||
int reuse_n = 0;
|
||||
|
||||
@@ -173,7 +175,7 @@ llama_tokens common_speculative_gen_draft(
|
||||
result.reserve(params.n_draft);
|
||||
|
||||
if (reuse_n == 0) {
|
||||
llama_kv_self_clear(ctx);
|
||||
llama_memory_clear(mem, false);
|
||||
|
||||
prompt.clear();
|
||||
} else {
|
||||
@@ -192,14 +194,14 @@ llama_tokens common_speculative_gen_draft(
|
||||
}
|
||||
|
||||
if (reuse_i > 0) {
|
||||
llama_kv_self_seq_rm (ctx, 0, 0, reuse_i);
|
||||
llama_kv_self_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
|
||||
llama_memory_seq_rm (mem, 0, 0, reuse_i);
|
||||
llama_memory_seq_add(mem, 0, reuse_i, -1, -reuse_i);
|
||||
|
||||
prompt.erase(prompt.begin(), prompt.begin() + reuse_i);
|
||||
}
|
||||
|
||||
if (reuse_n < (int) prompt.size()) {
|
||||
llama_kv_self_seq_rm (ctx, 0, reuse_n, -1);
|
||||
llama_memory_seq_rm (mem, 0, reuse_n, -1);
|
||||
|
||||
prompt.erase(prompt.begin() + reuse_n, prompt.end());
|
||||
}
|
||||
|
||||
@@ -310,6 +310,8 @@ class ModelBase:
|
||||
gguf.MODEL_TENSOR.POSNET_NORM2,
|
||||
gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
|
||||
gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
|
||||
gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
|
||||
gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
|
||||
)
|
||||
)
|
||||
or not new_name.endswith(".weight")
|
||||
@@ -320,7 +322,11 @@ class ModelBase:
|
||||
self.match_model_tensor_name(new_name, key, bid)
|
||||
for key in (
|
||||
gguf.MODEL_TENSOR.TOKEN_EMBD,
|
||||
gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
|
||||
gguf.MODEL_TENSOR.OUTPUT,
|
||||
gguf.MODEL_TENSOR.ALTUP_ROUTER,
|
||||
gguf.MODEL_TENSOR.LAUREL_L,
|
||||
gguf.MODEL_TENSOR.LAUREL_R,
|
||||
)
|
||||
):
|
||||
if self.ftype in (
|
||||
@@ -519,7 +525,7 @@ class TextModel(ModelBase):
|
||||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
|
||||
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions"], optional=True)) is not None:
|
||||
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
|
||||
self.gguf_writer.add_context_length(n_ctx)
|
||||
logger.info(f"gguf: context length = {n_ctx}")
|
||||
|
||||
@@ -921,13 +927,20 @@ class TextModel(ModelBase):
|
||||
tokenizer = SentencePieceProcessor()
|
||||
tokenizer.LoadFromFile(str(tokenizer_path))
|
||||
|
||||
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||||
vocab_size = self.find_hparam([
|
||||
"vocab_size_per_layer_input", # gemma3n
|
||||
"vocab_size",
|
||||
], optional=True) or tokenizer.vocab_size()
|
||||
|
||||
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
||||
scores: list[float] = [-10000.0] * vocab_size
|
||||
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
|
||||
|
||||
for token_id in range(tokenizer.vocab_size()):
|
||||
if token_id >= vocab_size:
|
||||
logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
|
||||
break
|
||||
|
||||
piece = tokenizer.IdToPiece(token_id)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.GetScore(token_id)
|
||||
@@ -1898,9 +1911,7 @@ class LlamaModel(TextModel):
|
||||
hparams = self.hparams
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
|
||||
if "head_dim" in hparams:
|
||||
rope_dim = hparams["head_dim"]
|
||||
else:
|
||||
if (rope_dim := hparams.get("head_dim")) is None:
|
||||
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
|
||||
@@ -1982,7 +1993,8 @@ class LlamaModel(TextModel):
|
||||
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
|
||||
if rope_scaling.get("rope_type", '').lower() == "llama3":
|
||||
base = self.hparams.get("rope_theta", 10000.0)
|
||||
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||
if (dim := self.hparams.get("head_dim")) is None:
|
||||
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
|
||||
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
||||
|
||||
factor = rope_scaling.get("factor", 8.0)
|
||||
@@ -2017,6 +2029,20 @@ class LlamaModel(TextModel):
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@ModelBase.register("ArceeForCausalLM")
|
||||
class ArceeModel(LlamaModel):
|
||||
model_arch = gguf.MODEL_ARCH.ARCEE
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self._try_set_pooling_type()
|
||||
rope_scaling = self.hparams.get("rope_scaling") or {}
|
||||
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
||||
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
|
||||
|
||||
|
||||
@ModelBase.register(
|
||||
"LlavaForConditionalGeneration", # pixtral
|
||||
"Mistral3ForConditionalGeneration", # mistral small 3.1
|
||||
@@ -2132,7 +2158,6 @@ class Llama4Model(LlamaModel):
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_gpt2()
|
||||
self.gguf_writer.add_add_bos_token(True)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
@@ -2181,7 +2206,7 @@ class Llama4VisionModel(MmprojModel):
|
||||
name += ".weight"
|
||||
if "multi_modal_projector.linear_1" in name:
|
||||
# despite the name with number postfix, this is a single fully connected layer
|
||||
return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC], data_torch)]
|
||||
return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
return []
|
||||
|
||||
@@ -2304,9 +2329,7 @@ class DeciModel(TextModel):
|
||||
hparams = self.hparams
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
|
||||
if "head_dim" in hparams:
|
||||
rope_dim = hparams["head_dim"]
|
||||
else:
|
||||
if (rope_dim := hparams.get("head_dim")) is None:
|
||||
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
|
||||
@@ -2346,7 +2369,8 @@ class DeciModel(TextModel):
|
||||
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
|
||||
if rope_scaling.get("rope_type", '').lower() == "llama3":
|
||||
base = self.hparams.get("rope_theta", 10000.0)
|
||||
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||
if (dim := self.hparams.get("head_dim")) is None:
|
||||
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
|
||||
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
||||
|
||||
factor = rope_scaling.get("factor", 8.0)
|
||||
@@ -2719,6 +2743,52 @@ class Qwen2Model(TextModel):
|
||||
yield from super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("Ernie4_5_ForCausalLM")
|
||||
class Ernie4_5Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.ERNIE4_5
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
num_heads = self.hparams["num_attention_heads"]
|
||||
num_kv_heads = self.hparams["num_key_value_heads"]
|
||||
head_dim = self.hparams["head_dim"]
|
||||
|
||||
if "ernie." in name:
|
||||
name = name.replace("ernie.", "model.")
|
||||
# split the qkv weights
|
||||
# qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
|
||||
if "qkv_proj" in name:
|
||||
name_q = name.replace("qkv_proj.weight", "q_proj.weight")
|
||||
name_k = name.replace("qkv_proj.weight", "k_proj.weight")
|
||||
name_v = name.replace("qkv_proj.weight", "v_proj.weight")
|
||||
total_q_dim = num_heads * head_dim
|
||||
total_k_dim = num_kv_heads * head_dim
|
||||
total_v_dim = num_kv_heads * head_dim
|
||||
q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
|
||||
return [
|
||||
(self.map_tensor_name(name_q), q_proj_weight),
|
||||
(self.map_tensor_name(name_k), k_proj_weight),
|
||||
(self.map_tensor_name(name_v), v_proj_weight)
|
||||
]
|
||||
# split the up_gate_proj into gate and up
|
||||
# up_gate_proj shape: [2 * intermediate_size, hidden_size]
|
||||
if "up_gate_proj" in name:
|
||||
name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
|
||||
name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
|
||||
dim_half = data_torch.shape[0] // 2
|
||||
gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
|
||||
return [
|
||||
(self.map_tensor_name(name_gate), gate_proj_weight),
|
||||
(self.map_tensor_name(name_up), up_proj_weight)
|
||||
]
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@ModelBase.register(
|
||||
"Qwen2VLModel",
|
||||
"Qwen2VLForConditionalGeneration",
|
||||
@@ -3664,9 +3734,7 @@ class InternLM3Model(TextModel):
|
||||
hparams = self.hparams
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
|
||||
if "head_dim" in hparams:
|
||||
rope_dim = hparams["head_dim"]
|
||||
else:
|
||||
if (rope_dim := hparams.get("head_dim")) is None:
|
||||
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
|
||||
@@ -3709,8 +3777,7 @@ class BertModel(TextModel):
|
||||
self._try_set_pooling_type()
|
||||
|
||||
if self.cls_out_labels:
|
||||
key_name = gguf.Keys.Classifier.OUTPUT_LABELS.format(arch = gguf.MODEL_ARCH_NAMES[self.model_arch])
|
||||
self.gguf_writer.add_array(key_name, [v for k, v in sorted(self.cls_out_labels.items())])
|
||||
self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
|
||||
|
||||
def set_vocab(self):
|
||||
tokens, toktypes, tokpre = self.get_vocab_base()
|
||||
@@ -3909,9 +3976,6 @@ class BertModel(TextModel):
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
self.gguf_writer.add_add_bos_token(True)
|
||||
self.gguf_writer.add_add_eos_token(True)
|
||||
|
||||
|
||||
@ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
|
||||
class DistilBertModel(BertModel):
|
||||
@@ -3953,8 +4017,6 @@ class RobertaModel(BertModel):
|
||||
bpe_tok_path = self.dir_model / "tokenizer.json"
|
||||
if bpe_tok_path.exists():
|
||||
self._set_vocab_gpt2()
|
||||
self.gguf_writer.add_add_bos_token(True)
|
||||
self.gguf_writer.add_add_eos_token(True)
|
||||
|
||||
# we need this to validate the size of the token_type embeddings
|
||||
# though currently we are passing all zeros to the token_type embeddings
|
||||
@@ -4060,6 +4122,34 @@ class NomicBertModel(BertModel):
|
||||
raise ValueError(f"unknown tokenizer: {toktyp}")
|
||||
|
||||
|
||||
@ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
|
||||
class NeoBert(BertModel):
|
||||
model_arch = gguf.MODEL_ARCH.NEO_BERT
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
|
||||
# NeoBERT uses 2/3 of the intermediate size as feed forward length
|
||||
self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
|
||||
self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
|
||||
|
||||
f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
|
||||
self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
|
||||
logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
|
||||
|
||||
self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
|
||||
|
||||
def modify_tensors(self, data_torch, name, bid):
|
||||
if name.startswith("decoder."):
|
||||
return []
|
||||
|
||||
if name.startswith("model."):
|
||||
name = name[6:]
|
||||
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
|
||||
class XLMRobertaModel(BertModel):
|
||||
model_arch = gguf.MODEL_ARCH.BERT
|
||||
@@ -4186,6 +4276,7 @@ class Gemma2Model(TextModel):
|
||||
@ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
|
||||
class Gemma3Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.GEMMA3
|
||||
norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
@@ -4207,9 +4298,8 @@ class Gemma3Model(TextModel):
|
||||
self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
|
||||
# both attn_logit_softcapping and final_logit_softcapping are removed in Gemma3
|
||||
# attn_logit_softcapping is removed in Gemma3
|
||||
assert hparams.get("attn_logit_softcapping") is None
|
||||
assert hparams.get("final_logit_softcapping") is None
|
||||
self.gguf_writer.add_sliding_window(hparams["sliding_window"])
|
||||
self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
|
||||
if hparams.get("rope_scaling") is not None:
|
||||
@@ -4221,7 +4311,7 @@ class Gemma3Model(TextModel):
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
|
||||
if name.startswith("language_model."):
|
||||
if "language_model." in name:
|
||||
name = name.replace("language_model.", "")
|
||||
|
||||
elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
|
||||
@@ -4236,8 +4326,9 @@ class Gemma3Model(TextModel):
|
||||
|
||||
# ref code in Gemma3RMSNorm
|
||||
# output = output * (1.0 + self.weight.float())
|
||||
# note: this is not the case on gemma3n
|
||||
if name.endswith("norm.weight"):
|
||||
data_torch = data_torch + 1
|
||||
data_torch = data_torch + self.norm_shift
|
||||
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
@@ -4294,6 +4385,104 @@ class Gemma3VisionModel(MmprojModel):
|
||||
return [] # skip other tensors
|
||||
|
||||
|
||||
@ModelBase.register("Gemma3nForConditionalGeneration")
|
||||
class Gemma3NModel(Gemma3Model):
|
||||
model_arch = gguf.MODEL_ARCH.GEMMA3N
|
||||
norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
|
||||
|
||||
_altup_proj: list[Tensor] = []
|
||||
_altup_unembd: list[Tensor] = []
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
|
||||
self._altup_proj = [
|
||||
torch.Tensor(), # to be replaced
|
||||
torch.Tensor(), # to be replaced
|
||||
torch.Tensor(), # to be replaced
|
||||
]
|
||||
self._altup_unembd = [
|
||||
torch.Tensor(), # to be replaced
|
||||
torch.Tensor(), # to be replaced
|
||||
torch.Tensor(), # to be replaced
|
||||
]
|
||||
|
||||
def set_vocab(self):
|
||||
with open(self.dir_model / "chat_template.jinja") as f:
|
||||
# quick hack to make sure chat template is added
|
||||
self.gguf_writer.add_chat_template(f.read())
|
||||
super().set_vocab()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
|
||||
self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
|
||||
self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
|
||||
self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
|
||||
|
||||
activation_sparsity_scale = []
|
||||
for s in self.hparams["activation_sparsity_pattern"]:
|
||||
normal_dist = torch.distributions.normal.Normal(0, 1)
|
||||
std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
|
||||
activation_sparsity_scale.append(std_multiplier.item())
|
||||
self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
|
||||
|
||||
sliding_window_pattern = []
|
||||
for t in self.hparams["layer_types"]:
|
||||
sliding_window_pattern.append(t == "sliding_attention")
|
||||
self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
|
||||
|
||||
def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
|
||||
has_all = all(m.numel() > 0 for m in matrices)
|
||||
if not has_all:
|
||||
return None
|
||||
else:
|
||||
return torch.stack(matrices, dim=0)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
if name.endswith("_scale"):
|
||||
name = name + ".weight"
|
||||
|
||||
# TODO: implement self.prediction_coefs.weight.clamp_(...)
|
||||
|
||||
if "language_model." not in name:
|
||||
return [] # skip non-language model tensors
|
||||
|
||||
if "altup_unembed_projections" in name:
|
||||
data_torch = data_torch.to(device="cpu")
|
||||
if ".0." in name:
|
||||
self._altup_unembd[0] = data_torch
|
||||
elif ".1." in name:
|
||||
self._altup_unembd[1] = data_torch
|
||||
elif ".2." in name:
|
||||
self._altup_unembd[2] = data_torch
|
||||
else:
|
||||
raise ValueError(f"Unknown name: {name}")
|
||||
out = self._stack_matrices(self._altup_unembd)
|
||||
if out is not None:
|
||||
return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
|
||||
else:
|
||||
return []
|
||||
|
||||
if "altup_projections" in name:
|
||||
data_torch = data_torch.to(device="cpu")
|
||||
if ".0." in name:
|
||||
self._altup_proj[0] = data_torch
|
||||
elif ".1." in name:
|
||||
self._altup_proj[1] = data_torch
|
||||
elif ".2." in name:
|
||||
self._altup_proj[2] = data_torch
|
||||
else:
|
||||
raise ValueError(f"Unknown name: {name}")
|
||||
out = self._stack_matrices(self._altup_proj)
|
||||
if out is not None:
|
||||
return [(self.map_tensor_name("model.altup_projections.weight"), out)]
|
||||
else:
|
||||
return []
|
||||
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("Starcoder2ForCausalLM")
|
||||
class StarCoder2Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.STARCODER2
|
||||
@@ -4799,25 +4988,6 @@ class OlmoeModel(TextModel):
|
||||
class JinaBertV2Model(BertModel):
|
||||
model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.intermediate_size = self.hparams["intermediate_size"]
|
||||
|
||||
def get_tensors(self):
|
||||
for name, data in super().get_tensors():
|
||||
if 'gated_layer' in name:
|
||||
d1 = data[:self.intermediate_size, :]
|
||||
name1 = name.replace('gated_layers', 'gated_layers_w')
|
||||
name1 = name1.replace('up_gated_layer', 'gated_layers_v')
|
||||
d2 = data[self.intermediate_size:, :]
|
||||
name2 = name.replace('gated_layers', 'gated_layers_v')
|
||||
name2 = name2.replace('up_gated_layer', 'gated_layers_w')
|
||||
yield name1, d1
|
||||
yield name2, d2
|
||||
continue
|
||||
|
||||
yield name, data
|
||||
|
||||
def set_vocab(self):
|
||||
tokenizer_class = 'BertTokenizer'
|
||||
with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
|
||||
@@ -4830,16 +5000,6 @@ class JinaBertV2Model(BertModel):
|
||||
self.gguf_writer.add_token_type_count(2)
|
||||
else:
|
||||
raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
|
||||
self.gguf_writer.add_add_bos_token(True)
|
||||
self.gguf_writer.add_add_eos_token(True)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
# if name starts with "bert.", remove the prefix
|
||||
# e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
|
||||
if name.startswith("bert."):
|
||||
name = name[5:]
|
||||
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("OpenELMForCausalLM")
|
||||
@@ -5081,9 +5241,7 @@ class DeepseekModel(TextModel):
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
if "head_dim" in hparams:
|
||||
rope_dim = hparams["head_dim"]
|
||||
else:
|
||||
if (rope_dim := hparams.get("head_dim")) is None:
|
||||
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
@@ -5287,6 +5445,34 @@ class DeepseekV2Model(TextModel):
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@ModelBase.register("Dots1ForCausalLM")
|
||||
class Dots1Model(Qwen2MoeModel):
|
||||
model_arch = gguf.MODEL_ARCH.DOTS1
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.hparams["num_experts"] = self.hparams["n_routed_experts"]
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
|
||||
self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
|
||||
self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
|
||||
self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
|
||||
|
||||
if self.hparams["scoring_func"] == "noaux_tc":
|
||||
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
|
||||
else:
|
||||
raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
|
||||
if name.endswith("e_score_correction_bias"):
|
||||
name = name.replace("e_score_correction_bias", "e_score_correction.bias")
|
||||
if "shared_experts" in name:
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("PLMForCausalLM")
|
||||
class PLMModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.PLM
|
||||
@@ -5415,9 +5601,6 @@ class T5Model(TextModel):
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
self.gguf_writer.add_add_bos_token(False)
|
||||
self.gguf_writer.add_add_eos_token(True)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
|
||||
logger.warning("Couldn't find context length in config.json, assuming default value of 512")
|
||||
@@ -5555,9 +5738,6 @@ class T5EncoderModel(TextModel):
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
self.gguf_writer.add_add_bos_token(False)
|
||||
self.gguf_writer.add_add_eos_token(True)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
|
||||
logger.warning("Couldn't find context length in config.json, assuming default value of 512")
|
||||
@@ -5945,7 +6125,8 @@ class ExaoneModel(TextModel):
|
||||
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
|
||||
if rope_scaling.get("rope_type", '').lower() == "llama3":
|
||||
base = self.hparams.get("rope_theta", 10000.0)
|
||||
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||
if (dim := self.hparams.get("head_dim")) is None:
|
||||
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
|
||||
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
||||
|
||||
factor = rope_scaling.get("factor", 8.0)
|
||||
@@ -6057,7 +6238,8 @@ class BailingMoeModel(TextModel):
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
if (rope_dim := hparams.get("head_dim")) is None:
|
||||
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
rope_scaling = self.hparams.get("rope_scaling") or {}
|
||||
@@ -6089,7 +6271,8 @@ class BailingMoeModel(TextModel):
|
||||
n_head = self.hparams["num_attention_heads"]
|
||||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||
n_embd = self.hparams["hidden_size"]
|
||||
head_dim = self.hparams.get("head_dim") or n_embd // n_head
|
||||
if (head_dim := self.hparams.get("head_dim")) is None:
|
||||
head_dim = n_embd // n_head
|
||||
|
||||
output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
|
||||
|
||||
@@ -6350,8 +6533,8 @@ def parse_args() -> argparse.Namespace:
|
||||
help="model is executed on big endian machine",
|
||||
)
|
||||
parser.add_argument(
|
||||
"model", type=Path,
|
||||
help="directory containing model file",
|
||||
"model", type=str,
|
||||
help="directory containing model file or huggingface repository ID (if --remote)",
|
||||
nargs="?",
|
||||
)
|
||||
parser.add_argument(
|
||||
@@ -6454,18 +6637,20 @@ def main() -> None:
|
||||
else:
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
dir_model = args.model
|
||||
|
||||
if args.remote:
|
||||
hf_repo_id = args.model
|
||||
from huggingface_hub import snapshot_download
|
||||
local_dir = snapshot_download(
|
||||
repo_id=str(dir_model),
|
||||
repo_id=hf_repo_id,
|
||||
allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
|
||||
dir_model = Path(local_dir)
|
||||
logger.info(f"Downloaded config and tokenizer to {local_dir}")
|
||||
else:
|
||||
hf_repo_id = None
|
||||
dir_model = Path(args.model)
|
||||
|
||||
if not dir_model.is_dir():
|
||||
logger.error(f'Error: {args.model} is not a directory')
|
||||
logger.error(f'Error: {dir_model} is not a directory')
|
||||
sys.exit(1)
|
||||
|
||||
ftype_map: dict[str, gguf.LlamaFileType] = {
|
||||
@@ -6485,9 +6670,9 @@ def main() -> None:
|
||||
|
||||
if args.outfile is not None:
|
||||
fname_out = args.outfile
|
||||
elif args.remote:
|
||||
elif hf_repo_id:
|
||||
# if remote, use the model ID as the output file name
|
||||
fname_out = Path("./" + str(args.model).replace("/", "-") + "-{ftype}.gguf")
|
||||
fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
|
||||
else:
|
||||
fname_out = dir_model
|
||||
|
||||
@@ -6516,7 +6701,7 @@ def main() -> None:
|
||||
split_max_tensors=args.split_max_tensors,
|
||||
split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
|
||||
small_first_shard=args.no_tensor_first_split,
|
||||
remote_hf_model_id=str(args.model) if args.remote else None)
|
||||
remote_hf_model_id=hf_repo_id)
|
||||
|
||||
if args.vocab_only:
|
||||
logger.info("Exporting model vocab...")
|
||||
|
||||
@@ -8,6 +8,7 @@
|
||||
- [DataType Supports](#datatype-supports)
|
||||
- [Docker](#docker)
|
||||
- [Linux](#linux)
|
||||
- [Environment variable setup](#environment-variable-setup)
|
||||
- [TODO](#todo)
|
||||
|
||||
|
||||
@@ -290,5 +291,24 @@ Authors from Peking University: Bizhao Shi (bshi@pku.edu.cn), Yuxin Yang (yxyang
|
||||
|
||||
We would like to thank Tuo Dai, Shanni Li, and all of the project maintainers from Huawei Technologies Co., Ltd for their help during the code development and pull request.
|
||||
|
||||
## Environment variable setup
|
||||
|
||||
### GGML_CANN_ASYNC_MODE
|
||||
|
||||
Enables asynchronous operator submission. Disabled by default.
|
||||
|
||||
### GGML_CANN_MEM_POOL
|
||||
|
||||
Specifies the memory pool management strategy:
|
||||
|
||||
- vmm: Utilizes a virtual memory manager pool. If hardware support for VMM is unavailable, falls back to the legacy (leg) memory pool.
|
||||
|
||||
- prio: Employs a priority queue-based memory pool management.
|
||||
- leg: Uses a fixed-size buffer pool.
|
||||
|
||||
### GGML_CANN_DISABLE_BUF_POOL_CLEAN
|
||||
|
||||
Controls automatic cleanup of the memory pool. This option is only effective when using the prio or leg memory pool strategies.
|
||||
|
||||
## TODO
|
||||
- Support more models and data types.
|
||||
|
||||
@@ -757,7 +757,7 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
| Name | Value | Function |
|
||||
|-------------------|------------------|---------------------------------------------------------------------------------------------------------------------------|
|
||||
| GGML_SYCL_DEBUG | 0 (default) or 1 | Enable log function by macro: GGML_SYCL_DEBUG |
|
||||
| GGML_SYCL_DISABLE_OPT | 0 (default) or 1 | Disable optimize features based on Intel GPU type, to compare the performance increase |
|
||||
| GGML_SYCL_DISABLE_OPT | 0 (default) or 1 | Disable optimize features for Intel GPUs. (Recommended to 1 for intel devices older than Gen 10) |
|
||||
| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because graph performance isn't yet better than non-graph performance. |
|
||||
| GGML_SYCL_DISABLE_DNN | 0 (default) or 1 | Disable running computations through oneDNN and always use oneMKL. |
|
||||
| ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer |
|
||||
|
||||
246
docs/build-s390x.md
Normal file
246
docs/build-s390x.md
Normal file
@@ -0,0 +1,246 @@
|
||||
> [!IMPORTANT]
|
||||
> This build documentation is specific only to IBM Z & LinuxONE mainframes (s390x). You can find the build documentation for other architectures: [build.md](build.md).
|
||||
|
||||
# Build llama.cpp locally (for s390x)
|
||||
|
||||
The main product of this project is the `llama` library. Its C-style interface can be found in [include/llama.h](../include/llama.h).
|
||||
|
||||
The project also includes many example programs and tools using the `llama` library. The examples range from simple, minimal code snippets to sophisticated sub-projects such as an OpenAI-compatible HTTP server.
|
||||
|
||||
**To get the code:**
|
||||
|
||||
```bash
|
||||
git clone https://github.com/ggml-org/llama.cpp
|
||||
cd llama.cpp
|
||||
```
|
||||
|
||||
## CPU Build with BLAS
|
||||
|
||||
Building llama.cpp with BLAS support is highly recommended as it has shown to provide performance improvements. Make sure to have OpenBLAS installed in your environment.
|
||||
|
||||
```bash
|
||||
cmake -S . -B build \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_BLAS=ON \
|
||||
-DGGML_BLAS_VENDOR=OpenBLAS
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
```
|
||||
|
||||
**Notes**:
|
||||
|
||||
- For faster repeated compilation, install [ccache](https://ccache.dev/)
|
||||
- By default, VXE/VXE2 is enabled. To disable it (not recommended):
|
||||
|
||||
```bash
|
||||
cmake -S . -B build \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_BLAS=ON \
|
||||
-DGGML_BLAS_VENDOR=OpenBLAS \
|
||||
-DGGML_VXE=OFF
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
```
|
||||
|
||||
- By default, NNPA is enabled when available. To disable it (not recommended):
|
||||
|
||||
```bash
|
||||
cmake -S . -B build \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_BLAS=ON \
|
||||
-DGGML_BLAS_VENDOR=OpenBLAS \
|
||||
-DGGML_NNPA=OFF
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
```
|
||||
|
||||
- For debug builds:
|
||||
|
||||
```bash
|
||||
cmake -S . -B build \
|
||||
-DCMAKE_BUILD_TYPE=Debug \
|
||||
-DGGML_BLAS=ON \
|
||||
-DGGML_BLAS_VENDOR=OpenBLAS
|
||||
cmake --build build --config Debug -j $(nproc)
|
||||
```
|
||||
|
||||
- For static builds, add `-DBUILD_SHARED_LIBS=OFF`:
|
||||
|
||||
```bash
|
||||
cmake -S . -B build \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_BLAS=ON \
|
||||
-DGGML_BLAS_VENDOR=OpenBLAS \
|
||||
-DBUILD_SHARED_LIBS=OFF
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
```
|
||||
|
||||
## Getting GGUF Models
|
||||
|
||||
All models need to be converted to Big-Endian. You can achieve this in three cases:
|
||||
|
||||
1. **Use pre-converted models verified for use on IBM Z & LinuxONE (easiest)**
|
||||
|
||||

|
||||
|
||||
You can find popular models pre-converted and verified at [s390x Ready Models](https://huggingface.co/collections/taronaeo/s390x-ready-models-672765393af438d0ccb72a08).
|
||||
|
||||
These models have already been converted from `safetensors` to `GGUF Big-Endian` and their respective tokenizers verified to run correctly on IBM z15 and later system.
|
||||
|
||||
2. **Convert safetensors model to GGUF Big-Endian directly (recommended)**
|
||||
|
||||

|
||||
|
||||
The model you are trying to convert must be in `safetensors` file format (for example [IBM Granite 3.3 2B](https://huggingface.co/ibm-granite/granite-3.3-2b-instruct)). Make sure you have downloaded the model repository for this case.
|
||||
|
||||
```bash
|
||||
python3 convert_hf_to_gguf.py \
|
||||
--outfile model-name-be.f16.gguf \
|
||||
--outtype f16 \
|
||||
--bigendian \
|
||||
model-directory/
|
||||
```
|
||||
|
||||
For example,
|
||||
|
||||
```bash
|
||||
python3 convert_hf_to_gguf.py \
|
||||
--outfile granite-3.3-2b-instruct-be.f16.gguf \
|
||||
--outtype f16 \
|
||||
--bigendian \
|
||||
granite-3.3-2b-instruct/
|
||||
```
|
||||
|
||||
3. **Convert existing GGUF Little-Endian model to Big-Endian**
|
||||
|
||||

|
||||
|
||||
The model you are trying to convert must be in `gguf` file format (for example [IBM Granite 3.3 2B](https://huggingface.co/ibm-granite/granite-3.3-2b-instruct-GGUF)). Make sure you have downloaded the model file for this case.
|
||||
|
||||
```bash
|
||||
python3 gguf-py/gguf/scripts/gguf_convert_endian.py model-name.f16.gguf BIG
|
||||
```
|
||||
|
||||
For example,
|
||||
|
||||
```bash
|
||||
python3 gguf-py/gguf/scripts/gguf_convert_endian.py granite-3.3-2b-instruct-le.f16.gguf BIG
|
||||
mv granite-3.3-2b-instruct-le.f16.gguf granite-3.3-2b-instruct-be.f16.gguf
|
||||
```
|
||||
|
||||
**Notes:**
|
||||
|
||||
- The GGUF endian conversion script may not support all data types at the moment and may fail for some models/quantizations. When that happens, please try manually converting the safetensors model to GGUF Big-Endian via Step 2.
|
||||
|
||||
## IBM Accelerators
|
||||
|
||||
### 1. SIMD Acceleration
|
||||
|
||||
Only available in IBM z15 or later system with the `-DGGML_VXE=ON` (turned on by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z14/arch12. In such systems, the APIs can still run but will use a scalar implementation.
|
||||
|
||||
### 2. NNPA Vector Intrinsics Acceleration
|
||||
|
||||
Only available in IBM z16 or later system with the `-DGGML_NNPA=ON` (turned on when available) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z15/arch13. In such systems, the APIs can still run but will use a scalar implementation.
|
||||
|
||||
### 3. zDNN Accelerator
|
||||
|
||||
_Only available in IBM z16 or later system. No direction at the moment._
|
||||
|
||||
### 4. Spyre Accelerator
|
||||
|
||||
_No direction at the moment._
|
||||
|
||||
## Performance Tuning
|
||||
|
||||
### 1. Virtualization Setup
|
||||
|
||||
It is strongly recommended to use only LPAR (Type-1) virtualization to get the most performance.
|
||||
|
||||
Note: Type-2 virtualization is not supported at the moment, while you can get it running, the performance will not be the best.
|
||||
|
||||
### 2. IFL (Core) Count
|
||||
|
||||
It is recommended to allocate a minimum of 8 shared IFLs assigned to the LPAR. Increasing the IFL count past 8 shared IFLs will only improve Prompt Processing performance but not Token Generation.
|
||||
|
||||
Note: IFL count does not equate to vCPU count.
|
||||
|
||||
### 3. SMT vs NOSMT (Simultaneous Multithreading)
|
||||
|
||||
It is strongly recommended to disable SMT via the kernel boot parameters as it negatively affects performance. Please refer to your Linux distribution's guide on disabling SMT via kernel boot parameters.
|
||||
|
||||
### 4. BLAS vs NOBLAS
|
||||
|
||||
IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongly recommended to use BLAS.
|
||||
|
||||
## Frequently Asked Questions (FAQ)
|
||||
|
||||
1. I'm getting the following error message while trying to load a model: `gguf_init_from_file_impl: failed to load model: this GGUF file version 50331648 is extremely large, is there a mismatch between the host and model endianness?`
|
||||
|
||||
Answer: Please ensure that the model you have downloaded/converted is GGUFv3 Big-Endian. These models are usually denoted with the `-be` suffix, i.e., `granite-3.3-2b-instruct-be.F16.gguf`.
|
||||
|
||||
You may refer to the [Getting GGUF Models](#getting-gguf-models) section to manually convert a `safetensors` model to `GGUF` Big Endian.
|
||||
|
||||
2. I'm getting extremely poor performance when running inference on a model
|
||||
|
||||
Answer: Please refer to the [Appendix B: SIMD Support Matrix](#appendix-b-simd-support-matrix) to check if your model quantization is supported by SIMD acceleration.
|
||||
|
||||
3. I'm building on IBM z17 and getting the following error messages: `invalid switch -march=z17`
|
||||
|
||||
Answer: Please ensure that your GCC compiler is of minimum GCC 15.1.0 version, and have `binutils` updated to the latest version. If this does not fix the problem, kindly open an issue.
|
||||
|
||||
## Getting Help on IBM Z & LinuxONE
|
||||
|
||||
1. **Bugs, Feature Requests**
|
||||
|
||||
Please file an issue in llama.cpp and ensure that the title contains "s390x".
|
||||
|
||||
2. **Other Questions**
|
||||
|
||||
Please reach out directly to [aionz@us.ibm.com](mailto:aionz@us.ibm.com).
|
||||
|
||||
## Appendix A: Hardware Support Matrix
|
||||
|
||||
| | Support | Minimum Compiler Version |
|
||||
| ------- | ------- | ------------------------ |
|
||||
| IBM z15 | ✅ | |
|
||||
| IBM z16 | ✅ | |
|
||||
| IBM z17 | ✅ | GCC 15.1.0 |
|
||||
|
||||
- ✅ - supported and verified to run as intended
|
||||
- 🚫 - unsupported, we are unlikely able to provide support
|
||||
|
||||
## Appendix B: SIMD Support Matrix
|
||||
|
||||
| | VX/VXE/VXE2 | NNPA | zDNN | Spyre |
|
||||
| ---------- | ----------- | ---- | ---- | ----- |
|
||||
| FP32 | ✅ | ✅ | ❓ | ❓ |
|
||||
| FP16 | ✅ | ✅ | ❓ | ❓ |
|
||||
| BF16 | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| Q4_0 | ✅ | ✅ | ❓ | ❓ |
|
||||
| Q4_1 | ✅ | ✅ | ❓ | ❓ |
|
||||
| Q5_0 | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| Q5_1 | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| Q8_0 | ✅ | ✅ | ❓ | ❓ |
|
||||
| Q2_K | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| Q3_K | ✅ | ✅ | ❓ | ❓ |
|
||||
| Q4_K | ✅ | ✅ | ❓ | ❓ |
|
||||
| Q5_K | ✅ | ✅ | ❓ | ❓ |
|
||||
| Q6_K | ✅ | ✅ | ❓ | ❓ |
|
||||
| TQ1_0 | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| TQ2_0 | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| IQ2_XXS | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| IQ2_XS | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| IQ2_S | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| IQ3_XXS | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| IQ3_S | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| IQ1_S | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| IQ1_M | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| IQ4_NL | ✅ | ✅ | ❓ | ❓ |
|
||||
| IQ4_XS | ✅ | ✅ | ❓ | ❓ |
|
||||
| FP32->FP16 | 🚫 | ✅ | ❓ | ❓ |
|
||||
| FP16->FP32 | 🚫 | ✅ | ❓ | ❓ |
|
||||
|
||||
- ✅ - acceleration available
|
||||
- 🚫 - acceleration unavailable, will still run using scalar implementation
|
||||
- ❓ - acceleration unknown, please contribute if you can test it yourself
|
||||
@@ -1,6 +1,6 @@
|
||||
# Build llama.cpp locally
|
||||
|
||||
The main product of this project is the `llama` library. Its C-style interface can be found in [include/llama.h](include/llama.h).
|
||||
The main product of this project is the `llama` library. Its C-style interface can be found in [include/llama.h](../include/llama.h).
|
||||
|
||||
The project also includes many example programs and tools using the `llama` library. The examples range from simple, minimal code snippets to sophisticated sub-projects such as an OpenAI-compatible HTTP server.
|
||||
|
||||
@@ -557,6 +557,10 @@ ninja
|
||||
|
||||
To read documentation for how to build on Android, [click here](./android.md)
|
||||
|
||||
## IBM Z & LinuxONE
|
||||
|
||||
To read documentation for how to build on IBM Z & LinuxONE, [click here](./build-s390x.md)
|
||||
|
||||
## Notes about GPU-accelerated backends
|
||||
|
||||
The GPU may still be used to accelerate some parts of the computation even when using the `-ngl 0` option. You can fully disable GPU acceleration by using `--device none`.
|
||||
|
||||
@@ -11,7 +11,7 @@ Function calling is supported for all models (see https://github.com/ggml-org/ll
|
||||
- Llama 3.1 / 3.3 (including builtin tools support - tool names for `wolfram_alpha`, `web_search` / `brave_search`, `code_interpreter`), Llama 3.2
|
||||
- Functionary v3.1 / v3.2
|
||||
- Hermes 2/3, Qwen 2.5
|
||||
- Qwen 2.5 Coder (WIP: https://github.com/ggml-org/llama.cpp/pull/12034)
|
||||
- Qwen 2.5 Coder
|
||||
- Mistral Nemo
|
||||
- Firefunction v2
|
||||
- Command R7B
|
||||
|
||||
@@ -107,3 +107,7 @@ NOTE: some models may require large context window, for example: `-c 8192`
|
||||
(tool_name) -hf ggml-org/Qwen2.5-Omni-3B-GGUF
|
||||
(tool_name) -hf ggml-org/Qwen2.5-Omni-7B-GGUF
|
||||
```
|
||||
|
||||
## Finding more models:
|
||||
|
||||
GGUF models on Huggingface with vision capabilities can be found here: https://huggingface.co/models?pipeline_tag=image-text-to-text&sort=trending&search=gguf
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
set -e
|
||||
|
||||
AI_NAME="${AI_NAME:-Miku}"
|
||||
|
||||
@@ -116,7 +116,7 @@ if llama_decode(context, batch) != 0 {
|
||||
}
|
||||
|
||||
for i in 1 ..< n_parallel {
|
||||
llama_kv_self_seq_cp(context, 0, Int32(i), 0, batch.n_tokens)
|
||||
llama_memory_seq_cp(llama_get_memory(context), 0, Int32(i), 0, batch.n_tokens)
|
||||
}
|
||||
|
||||
if n_parallel > 1 {
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -euo pipefail
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
#
|
||||
# Temporary script - will be removed in the future
|
||||
|
||||
@@ -37,7 +37,7 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
|
||||
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
|
||||
|
||||
// clear previous kv_cache values (irrelevant for embeddings)
|
||||
llama_kv_self_clear(ctx);
|
||||
llama_memory_clear(llama_get_memory(ctx), true);
|
||||
|
||||
// run model
|
||||
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
|
||||
@@ -133,10 +133,36 @@ int main(int argc, char ** argv) {
|
||||
// max batch size
|
||||
const uint64_t n_batch = params.n_batch;
|
||||
|
||||
// get added sep and eos token, if any
|
||||
const std::string added_sep_token = llama_vocab_get_add_sep(vocab) ? llama_vocab_get_text(vocab, llama_vocab_sep(vocab)) : "";
|
||||
const std::string added_eos_token = llama_vocab_get_add_eos(vocab) ? llama_vocab_get_text(vocab, llama_vocab_eos(vocab)) : "";
|
||||
|
||||
// tokenize the prompts and trim
|
||||
std::vector<std::vector<int32_t>> inputs;
|
||||
for (const auto & prompt : prompts) {
|
||||
auto inp = common_tokenize(ctx, prompt, true, true);
|
||||
std::vector<llama_token> inp;
|
||||
|
||||
// split classification pairs and insert expected separator tokens
|
||||
if (pooling_type == LLAMA_POOLING_TYPE_RANK && prompt.find(params.cls_sep) != std::string::npos) {
|
||||
std::vector<std::string> pairs = split_lines(prompt, params.cls_sep);
|
||||
std::string final_prompt;
|
||||
|
||||
for (size_t i = 0; i < pairs.size(); i++) {
|
||||
final_prompt += pairs[i];
|
||||
if (i != pairs.size() - 1) {
|
||||
if (!added_eos_token.empty()) {
|
||||
final_prompt += added_eos_token;
|
||||
}
|
||||
if (!added_sep_token.empty()) {
|
||||
final_prompt += added_sep_token;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
inp = common_tokenize(ctx, final_prompt, true, true);
|
||||
} else {
|
||||
inp = common_tokenize(ctx, prompt, true, true);
|
||||
}
|
||||
if (inp.size() > n_batch) {
|
||||
LOG_ERR("%s: number of tokens in input line (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
|
||||
__func__, (long long int) inp.size(), (long long int) n_batch);
|
||||
@@ -145,11 +171,11 @@ int main(int argc, char ** argv) {
|
||||
inputs.push_back(inp);
|
||||
}
|
||||
|
||||
// check if the last token is SEP
|
||||
// check if the last token is SEP/EOS
|
||||
// it should be automatically added by the tokenizer when 'tokenizer.ggml.add_eos_token' is set to 'true'
|
||||
for (auto & inp : inputs) {
|
||||
if (inp.empty() || inp.back() != llama_vocab_sep(vocab)) {
|
||||
LOG_WRN("%s: last token in the prompt is not SEP\n", __func__);
|
||||
if (inp.empty() || (inp.back() != llama_vocab_sep(vocab) && inp.back() != llama_vocab_eos(vocab))) {
|
||||
LOG_WRN("%s: last token in the prompt is not SEP or EOS\n", __func__);
|
||||
LOG_WRN("%s: 'tokenizer.ggml.add_eos_token' should be set to 'true' in the GGUF header\n", __func__);
|
||||
}
|
||||
}
|
||||
@@ -236,9 +262,24 @@ int main(int argc, char ** argv) {
|
||||
LOG("\n");
|
||||
}
|
||||
} else if (pooling_type == LLAMA_POOLING_TYPE_RANK) {
|
||||
const uint32_t n_cls_out = llama_model_n_cls_out(model);
|
||||
std::vector<std::string> cls_out_labels;
|
||||
|
||||
for (uint32_t i = 0; i < n_cls_out; i++) {
|
||||
const char * label = llama_model_cls_label(model, i);
|
||||
const std::string label_i(label == nullptr ? "" : label);
|
||||
cls_out_labels.emplace_back(label_i.empty() ? std::to_string(i) : label_i);
|
||||
}
|
||||
|
||||
for (int j = 0; j < n_embd_count; j++) {
|
||||
// NOTE: if you change this log - update the tests in ci/run.sh
|
||||
LOG("rerank score %d: %8.3f\n", j, emb[j * n_embd]);
|
||||
for (uint32_t i = 0; i < n_cls_out; i++) {
|
||||
// NOTE: if you change this log - update the tests in ci/run.sh
|
||||
if (n_cls_out == 1) {
|
||||
LOG("rerank score %d: %8.3f\n", j, emb[j * n_embd]);
|
||||
} else {
|
||||
LOG("rerank score %d: %8.3f [%s]\n", j, emb[j * n_embd + i], cls_out_labels[i].c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// print the first part of the embeddings or for a single prompt, the full embedding
|
||||
|
||||
@@ -55,6 +55,8 @@ static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne
|
||||
v = ggml_fp16_to_fp32(*(ggml_fp16_t *) &data[i]);
|
||||
} else if (type == GGML_TYPE_F32) {
|
||||
v = *(float *) &data[i];
|
||||
} else if (type == GGML_TYPE_I64) {
|
||||
v = (float) *(int64_t *) &data[i];
|
||||
} else if (type == GGML_TYPE_I32) {
|
||||
v = (float) *(int32_t *) &data[i];
|
||||
} else if (type == GGML_TYPE_I16) {
|
||||
|
||||
@@ -41,12 +41,11 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
|
||||
|
||||
// add input to batch (this increments n_tokens)
|
||||
for (int32_t j = 0; j < n_toks; j++) {
|
||||
common_batch_add(batch, inputs[j], j, { 0 }, j >= n_inst);
|
||||
common_batch_add(batch, inputs[j], j, { 0 }, true);
|
||||
}
|
||||
|
||||
// clear previous kv_cache values (irrelevant for embeddings)
|
||||
llama_kv_self_clear(ctx);
|
||||
llama_set_embeddings(ctx, true);
|
||||
llama_memory_clear(llama_get_memory(ctx), true);
|
||||
llama_set_causal_attn(ctx, false);
|
||||
|
||||
// run model
|
||||
@@ -102,8 +101,7 @@ static std::string generate(llama_context * ctx, llama_sampler * smpl, const std
|
||||
|
||||
llama_token eos_token = llama_vocab_eos(vocab);
|
||||
|
||||
llama_kv_self_clear(ctx);
|
||||
llama_set_embeddings(ctx, false);
|
||||
llama_memory_clear(llama_get_memory(ctx), true);
|
||||
llama_set_causal_attn(ctx, true);
|
||||
|
||||
llama_batch bat = llama_batch_init(llama_n_batch(ctx), 0, 1);
|
||||
@@ -166,6 +164,8 @@ int main(int argc, char * argv[]) {
|
||||
llama_model_params mparams = common_model_params_to_llama(params);
|
||||
llama_context_params cparams = common_context_params_to_llama(params);
|
||||
|
||||
cparams.embeddings = true;
|
||||
|
||||
llama_backend_init();
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
|
||||
@@ -213,6 +213,8 @@ int main(int argc, char * argv[]) {
|
||||
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[1].c_str(), documents[1].c_str(), cosine_sim_q1_d1);
|
||||
}
|
||||
|
||||
llama_set_embeddings(ctx, false);
|
||||
|
||||
// ### Generation ###
|
||||
// GritLM models are not finetuned with system prompts, as you can just include system-like instructions together with your user instruction
|
||||
{
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
set -e
|
||||
|
||||
MODEL=./models/ggml-vicuna-13b-1.1-q4_0.bin
|
||||
|
||||
@@ -194,7 +194,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
|
||||
}
|
||||
|
||||
batch->logits[batch->n_tokens - 1] = true;
|
||||
llama_kv_self_clear(context);
|
||||
llama_memory_clear(llama_get_memory(context), false);
|
||||
|
||||
const auto t_pp_start = ggml_time_us();
|
||||
if (llama_decode(context, *batch) != 0) {
|
||||
@@ -206,7 +206,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
|
||||
|
||||
LOGi("Benchmark text generation (tg)");
|
||||
|
||||
llama_kv_self_clear(context);
|
||||
llama_memory_clear(llama_get_memory(context), false);
|
||||
const auto t_tg_start = ggml_time_us();
|
||||
for (i = 0; i < tg; i++) {
|
||||
|
||||
@@ -223,7 +223,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
|
||||
|
||||
const auto t_tg_end = ggml_time_us();
|
||||
|
||||
llama_kv_self_clear(context);
|
||||
llama_memory_clear(llama_get_memory(context), false);
|
||||
|
||||
const auto t_pp = double(t_pp_end - t_pp_start) / 1000000.0;
|
||||
const auto t_tg = double(t_tg_end - t_tg_start) / 1000000.0;
|
||||
@@ -448,5 +448,5 @@ Java_android_llama_cpp_LLamaAndroid_completion_1loop(
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_android_llama_cpp_LLamaAndroid_kv_1cache_1clear(JNIEnv *, jobject, jlong context) {
|
||||
llama_kv_self_clear(reinterpret_cast<llama_context *>(context));
|
||||
llama_memory_clear(llama_get_memory(reinterpret_cast<llama_context *>(context)), true);
|
||||
}
|
||||
|
||||
@@ -210,7 +210,7 @@ actor LlamaContext {
|
||||
}
|
||||
batch.logits[Int(batch.n_tokens) - 1] = 1 // true
|
||||
|
||||
llama_kv_self_clear(context)
|
||||
llama_memory_clear(llama_get_memory(context), false)
|
||||
|
||||
let t_pp_start = DispatchTime.now().uptimeNanoseconds / 1000;
|
||||
|
||||
@@ -223,7 +223,7 @@ actor LlamaContext {
|
||||
|
||||
// bench text generation
|
||||
|
||||
llama_kv_self_clear(context)
|
||||
llama_memory_clear(llama_get_memory(context), false)
|
||||
|
||||
let t_tg_start = DispatchTime.now().uptimeNanoseconds / 1000;
|
||||
|
||||
@@ -242,7 +242,7 @@ actor LlamaContext {
|
||||
|
||||
let t_tg_end = DispatchTime.now().uptimeNanoseconds / 1000;
|
||||
|
||||
llama_kv_self_clear(context)
|
||||
llama_memory_clear(llama_get_memory(context), false)
|
||||
|
||||
let t_pp = Double(t_pp_end - t_pp_start) / 1000000.0
|
||||
let t_tg = Double(t_tg_end - t_tg_start) / 1000000.0
|
||||
@@ -292,7 +292,7 @@ actor LlamaContext {
|
||||
func clear() {
|
||||
tokens_list.removeAll()
|
||||
temporary_invalid_cchars.removeAll()
|
||||
llama_kv_self_clear(context)
|
||||
llama_memory_clear(llama_get_memory(context), true)
|
||||
}
|
||||
|
||||
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
|
||||
|
||||
@@ -60,6 +60,8 @@ int main(int argc, char ** argv) {
|
||||
llama_model * model = llama_init.model.get();
|
||||
llama_context * ctx = llama_init.context.get();
|
||||
|
||||
auto * mem = llama_get_memory(ctx);
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
// Tokenize the prompt
|
||||
@@ -94,7 +96,7 @@ int main(int argc, char ** argv) {
|
||||
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1));
|
||||
|
||||
for (int s = 1; s < W + G + 1; ++s) {
|
||||
llama_kv_self_seq_cp(ctx, 0, s, -1, -1);
|
||||
llama_memory_seq_cp(mem, 0, s, -1, -1);
|
||||
}
|
||||
|
||||
const auto t_enc_end = ggml_time_us();
|
||||
@@ -427,17 +429,17 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// KV cache management
|
||||
// if no verification token matched, we simply remove all cells from this batch -> no fragmentation
|
||||
llama_kv_self_seq_rm(ctx, -1, n_past, -1);
|
||||
llama_memory_seq_rm(mem, -1, n_past, -1);
|
||||
|
||||
if (seq_id_best != 0) {
|
||||
// if a verification token matched, we keep the best sequence and remove the rest
|
||||
// this leads to some KV cache fragmentation
|
||||
llama_kv_self_seq_keep(ctx, seq_id_best);
|
||||
llama_kv_self_seq_cp (ctx, seq_id_best, 0, -1, -1);
|
||||
llama_kv_self_seq_rm (ctx, seq_id_best, -1, -1);
|
||||
llama_memory_seq_keep(mem, seq_id_best);
|
||||
llama_memory_seq_cp (mem, seq_id_best, 0, -1, -1);
|
||||
llama_memory_seq_rm (mem, seq_id_best, -1, -1);
|
||||
|
||||
for (int s = 1; s < W + G + 1; ++s) {
|
||||
llama_kv_self_seq_cp(ctx, 0, s, -1, -1);
|
||||
llama_memory_seq_cp(mem, 0, s, -1, -1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -181,7 +181,7 @@ int main(int argc, char ** argv){
|
||||
|
||||
// KV cache management
|
||||
// clean the cache of draft tokens that weren't accepted
|
||||
llama_kv_self_seq_rm(ctx, 0, n_past, -1);
|
||||
llama_memory_seq_rm(llama_get_memory(ctx), 0, n_past, -1);
|
||||
|
||||
common_batch_clear(batch_tgt);
|
||||
common_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);
|
||||
|
||||
@@ -194,6 +194,8 @@ int main(int argc, char ** argv) {
|
||||
llama_model * model = llama_init.model.get();
|
||||
llama_context * ctx = llama_init.context.get();
|
||||
|
||||
auto * mem = llama_get_memory(ctx);
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
// load the prompts from an external file if there are any
|
||||
@@ -259,7 +261,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// assign the system KV cache to all parallel sequences
|
||||
for (int32_t i = 1; i <= n_clients; ++i) {
|
||||
llama_kv_self_seq_cp(ctx, 0, i, -1, -1);
|
||||
llama_memory_seq_cp(mem, 0, i, -1, -1);
|
||||
}
|
||||
|
||||
LOG_INF("\n");
|
||||
@@ -286,9 +288,9 @@ int main(int argc, char ** argv) {
|
||||
if (batch.n_tokens == 0) {
|
||||
// all sequences have ended - clear the entire KV cache
|
||||
for (int i = 1; i <= n_clients; ++i) {
|
||||
llama_kv_self_seq_rm(ctx, i, -1, -1);
|
||||
llama_memory_seq_rm(mem, i, -1, -1);
|
||||
// but keep the system prompt
|
||||
llama_kv_self_seq_cp(ctx, 0, i, -1, -1);
|
||||
llama_memory_seq_cp(mem, 0, i, -1, -1);
|
||||
}
|
||||
|
||||
LOG_INF("%s: clearing the KV cache\n", __func__);
|
||||
@@ -447,8 +449,8 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// delete only the generated part of the sequence, i.e. keep the system prompt in the cache
|
||||
llama_kv_self_seq_rm(ctx, client.id + 1, -1, -1);
|
||||
llama_kv_self_seq_cp(ctx, 0, client.id + 1, -1, -1);
|
||||
llama_memory_seq_rm(mem, client.id + 1, -1, -1);
|
||||
llama_memory_seq_cp(mem, 0, client.id + 1, -1, -1);
|
||||
|
||||
const auto t_main_end = ggml_time_us();
|
||||
|
||||
|
||||
@@ -126,6 +126,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
int n_past = 0;
|
||||
|
||||
auto * mem = llama_get_memory(ctx);
|
||||
|
||||
// fill the KV cache
|
||||
for (int i = 0; i < n_ctx; i += n_batch) {
|
||||
if (i > 0 && n_grp > 1) {
|
||||
@@ -133,10 +135,10 @@ int main(int argc, char ** argv) {
|
||||
const int ib = i/n_batch - 1;
|
||||
const int bd = n_batch_grp*(n_grp - 1);
|
||||
|
||||
llama_kv_self_seq_add(ctx, 0, n_past - n_batch, n_past, ib*bd);
|
||||
llama_kv_self_seq_div(ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
|
||||
llama_memory_seq_add(mem, 0, n_past - n_batch, n_past, ib*bd);
|
||||
llama_memory_seq_div(mem, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
|
||||
|
||||
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
|
||||
n_past = llama_memory_seq_pos_max(mem, 0) + 1;
|
||||
}
|
||||
|
||||
common_batch_clear(batch);
|
||||
@@ -166,10 +168,10 @@ int main(int argc, char ** argv) {
|
||||
|
||||
LOG_INF("%s: shifting KV cache with %d\n", __func__, n_discard);
|
||||
|
||||
llama_kv_self_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
|
||||
llama_kv_self_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
|
||||
llama_memory_seq_rm (mem, 0, n_keep , n_keep + n_discard);
|
||||
llama_memory_seq_add(mem, 0, n_keep + n_discard, n_ctx, -n_discard);
|
||||
|
||||
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
|
||||
n_past = llama_memory_seq_pos_max(mem, 0) + 1;
|
||||
|
||||
common_batch_clear(batch);
|
||||
|
||||
@@ -195,10 +197,10 @@ int main(int argc, char ** argv) {
|
||||
if (n_discard > 0) {
|
||||
LOG_INF("%s: shifting KV cache with %d to free space for the answer\n", __func__, n_discard);
|
||||
|
||||
llama_kv_self_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
|
||||
llama_kv_self_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
|
||||
llama_memory_seq_rm (mem, 0, n_keep , n_keep + n_discard);
|
||||
llama_memory_seq_add(mem, 0, n_keep + n_discard, n_ctx, -n_discard);
|
||||
|
||||
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
|
||||
n_past = llama_memory_seq_pos_max(mem, 0) + 1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
cd `dirname $0`
|
||||
cd ..
|
||||
|
||||
@@ -83,7 +83,7 @@ static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & toke
|
||||
|
||||
static void batch_process(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
|
||||
// clear previous kv_cache values (irrelevant for embeddings)
|
||||
llama_kv_self_clear(ctx);
|
||||
llama_memory_clear(llama_get_memory(ctx), false);
|
||||
|
||||
// run model
|
||||
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
|
||||
|
||||
@@ -196,7 +196,7 @@ int main(int argc, char ** argv) {
|
||||
fprintf(stderr, "%s : seq 0 copied, %zd bytes\n", __func__, ncopy);
|
||||
|
||||
// erase whole kv
|
||||
llama_kv_self_clear(ctx3);
|
||||
llama_memory_clear(llama_get_memory(ctx3), true);
|
||||
fprintf(stderr, "%s : kv cache cleared\n", __func__);
|
||||
|
||||
// restore kv into seq 1
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
|
||||
@@ -98,7 +98,7 @@ int main(int argc, char ** argv) {
|
||||
auto generate = [&](const std::string & prompt) {
|
||||
std::string response;
|
||||
|
||||
const bool is_first = llama_kv_self_seq_pos_max(ctx, 0) == 0;
|
||||
const bool is_first = llama_memory_seq_pos_max(llama_get_memory(ctx), 0) == -1;
|
||||
|
||||
// tokenize the prompt
|
||||
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true);
|
||||
@@ -113,7 +113,7 @@ int main(int argc, char ** argv) {
|
||||
while (true) {
|
||||
// check if we have enough space in the context to evaluate this batch
|
||||
int n_ctx = llama_n_ctx(ctx);
|
||||
int n_ctx_used = llama_kv_self_seq_pos_max(ctx, 0);
|
||||
int n_ctx_used = llama_memory_seq_pos_max(llama_get_memory(ctx), 0);
|
||||
if (n_ctx_used + batch.n_tokens > n_ctx) {
|
||||
printf("\033[0m\n");
|
||||
fprintf(stderr, "context size exceeded\n");
|
||||
|
||||
@@ -217,7 +217,7 @@ int main(int argc, char ** argv) {
|
||||
{
|
||||
LOG_DBG("clear kv cache from any extra tokens, n_past = %d\n", n_past);
|
||||
|
||||
llama_kv_self_seq_rm(ctx_tgt, 0, n_past, -1);
|
||||
llama_memory_seq_rm(llama_get_memory(ctx_tgt), 0, n_past, -1);
|
||||
}
|
||||
|
||||
if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {
|
||||
|
||||
@@ -142,6 +142,8 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
auto * mem_tgt = llama_get_memory(ctx_tgt);
|
||||
auto * mem_dft = llama_get_memory(ctx_dft);
|
||||
|
||||
// Tokenize the prompt
|
||||
std::vector<llama_token> inp;
|
||||
@@ -420,14 +422,14 @@ int main(int argc, char ** argv) {
|
||||
{
|
||||
LOG_DBG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft);
|
||||
|
||||
llama_kv_self_seq_keep(ctx_dft, s_keep);
|
||||
llama_kv_self_seq_cp (ctx_dft, s_keep, 0, -1, -1);
|
||||
llama_kv_self_seq_keep(ctx_dft, 0);
|
||||
llama_memory_seq_keep(mem_dft, s_keep);
|
||||
llama_memory_seq_cp (mem_dft, s_keep, 0, -1, -1);
|
||||
llama_memory_seq_keep(mem_dft, 0);
|
||||
|
||||
llama_kv_self_seq_rm (ctx_tgt, s_keep, n_past_tgt, -1);
|
||||
llama_kv_self_seq_keep(ctx_tgt, s_keep);
|
||||
llama_kv_self_seq_cp (ctx_tgt, s_keep, 0, -1, -1);
|
||||
llama_kv_self_seq_keep(ctx_tgt, 0);
|
||||
llama_memory_seq_rm (mem_tgt, s_keep, n_past_tgt, -1);
|
||||
llama_memory_seq_keep(mem_tgt, s_keep);
|
||||
llama_memory_seq_cp (mem_tgt, s_keep, 0, -1, -1);
|
||||
llama_memory_seq_keep(mem_tgt, 0);
|
||||
}
|
||||
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
@@ -444,7 +446,7 @@ int main(int argc, char ** argv) {
|
||||
common_batch_clear(batch_dft);
|
||||
common_batch_add (batch_dft, token_id, n_past_dft, { 0 }, true);
|
||||
|
||||
llama_kv_self_seq_rm(ctx_dft, 0, n_past_dft, -1);
|
||||
llama_memory_seq_rm(mem_dft, 0, n_past_dft, -1);
|
||||
// LOG_DBG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
|
||||
llama_decode(ctx_dft, batch_dft);
|
||||
|
||||
@@ -503,8 +505,8 @@ int main(int argc, char ** argv) {
|
||||
if (n_seq_cur < n_seq_dft && cur_p->data[f].p > p_draft_split) {
|
||||
LOG_DBG("splitting seq %3d into %3d\n", s, n_seq_cur);
|
||||
|
||||
llama_kv_self_seq_rm(ctx_dft, n_seq_cur, -1, -1);
|
||||
llama_kv_self_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);
|
||||
llama_memory_seq_rm(mem_dft, n_seq_cur, -1, -1);
|
||||
llama_memory_seq_cp(mem_dft, s, n_seq_cur, -1, -1);
|
||||
|
||||
// all previous tokens from this branch are now also part of the new branch
|
||||
for (int t = 0; t < batch_tgt.n_tokens; ++t) {
|
||||
@@ -585,9 +587,9 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// evaluate the target model on the drafted tokens
|
||||
{
|
||||
llama_kv_self_seq_keep(ctx_tgt, 0);
|
||||
llama_memory_seq_keep(mem_tgt, 0);
|
||||
for (int s = 1; s < n_seq_dft; ++s) {
|
||||
llama_kv_self_seq_cp(ctx_tgt, 0, s, -1, -1);
|
||||
llama_memory_seq_cp(mem_tgt, 0, s, -1, -1);
|
||||
}
|
||||
|
||||
// LOG_DBG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt).c_str());
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
|
||||
#!/usr/bin/env bash
|
||||
# MIT license
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# MIT license
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# MIT license
|
||||
# Copyright (C) 2025 Intel Corporation
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
#
|
||||
# ./examples/ts-type-to-grammar.sh "{a:string,b:string,c?:string}"
|
||||
# python examples/json_schema_to_grammar.py https://json.schemastore.org/tsconfig.json
|
||||
|
||||
@@ -105,7 +105,7 @@ message(DEBUG "GGML_NATIVE_DEFAULT : ${GGML_NATIVE_DEFAULT}")
|
||||
message(DEBUG "INS_ENB : ${INS_ENB}")
|
||||
|
||||
option(GGML_CPU_HBM "ggml: use memkind for CPU HBM" OFF)
|
||||
option(GGML_CPU_AARCH64 "ggml: use runtime weight conversion of Q4_0 to Q4_X_X" ON)
|
||||
option(GGML_CPU_REPACK "ggml: use runtime weight conversion of Q4_0 to Q4_X_X" ON)
|
||||
option(GGML_CPU_KLEIDIAI "ggml: use KleidiAI optimized kernels if applicable" OFF)
|
||||
option(GGML_SSE42 "ggml: enable SSE 4.2" ${INS_ENB})
|
||||
option(GGML_AVX "ggml: enable AVX" ${INS_ENB})
|
||||
@@ -131,6 +131,7 @@ option(GGML_RVV "ggml: enable rvv" ON)
|
||||
option(GGML_RV_ZFH "ggml: enable riscv zfh" OFF)
|
||||
option(GGML_XTHEADVECTOR "ggml: enable xtheadvector" OFF)
|
||||
option(GGML_VXE "ggml: enable vxe" ON)
|
||||
option(GGML_NNPA "ggml: enable nnpa" ON)
|
||||
|
||||
option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requires GGML_BACKEND_DL)" OFF)
|
||||
set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM")
|
||||
@@ -172,6 +173,7 @@ option(GGML_HIP "ggml: use HIP"
|
||||
option(GGML_HIP_GRAPHS "ggml: use HIP graph, experimental, slow" OFF)
|
||||
option(GGML_HIP_NO_VMM "ggml: do not try to use HIP VMM" ON)
|
||||
option(GGML_HIP_ROCWMMA_FATTN "ggml: enable rocWMMA for FlashAttention" OFF)
|
||||
option(GGML_HIP_FORCE_ROCWMMA_FATTN_GFX12 "ggml: enable rocWMMA FlashAttention on GFX12" OFF)
|
||||
option(GGML_VULKAN "ggml: use Vulkan" OFF)
|
||||
option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF)
|
||||
option(GGML_VULKAN_DEBUG "ggml: enable Vulkan debug output" OFF)
|
||||
@@ -367,6 +369,8 @@ if (MSVC)
|
||||
/wd4005 # Macro redefinition
|
||||
/wd4244 # Conversion from one type to another type, possible loss of data
|
||||
/wd4267 # Conversion from 'size_t' to a smaller type, possible loss of data
|
||||
/wd4305 # Conversion from 'type1' to 'type2', possible loss of data
|
||||
/wd4566 # Conversion from 'char' to 'wchar_t', possible loss of data
|
||||
/wd4996 # Disable POSIX deprecation warnings
|
||||
/wd4702 # Unreachable code warnings
|
||||
)
|
||||
@@ -386,4 +390,46 @@ if (MSVC)
|
||||
disable_msvc_warnings(ggml-cpu-skylakex)
|
||||
disable_msvc_warnings(ggml-cpu-icelake)
|
||||
disable_msvc_warnings(ggml-cpu-alderlake)
|
||||
|
||||
if (GGML_BUILD_EXAMPLES)
|
||||
disable_msvc_warnings(common-ggml)
|
||||
disable_msvc_warnings(common)
|
||||
|
||||
disable_msvc_warnings(mnist-common)
|
||||
disable_msvc_warnings(mnist-eval)
|
||||
disable_msvc_warnings(mnist-train)
|
||||
|
||||
disable_msvc_warnings(gpt-2-ctx)
|
||||
disable_msvc_warnings(gpt-2-alloc)
|
||||
disable_msvc_warnings(gpt-2-backend)
|
||||
disable_msvc_warnings(gpt-2-sched)
|
||||
disable_msvc_warnings(gpt-2-quantize)
|
||||
disable_msvc_warnings(gpt-2-batched)
|
||||
|
||||
disable_msvc_warnings(gpt-j)
|
||||
disable_msvc_warnings(gpt-j-quantize)
|
||||
|
||||
disable_msvc_warnings(magika)
|
||||
disable_msvc_warnings(yolov3-tiny)
|
||||
disable_msvc_warnings(sam)
|
||||
|
||||
disable_msvc_warnings(simple-ctx)
|
||||
disable_msvc_warnings(simple-backend)
|
||||
endif()
|
||||
|
||||
if (GGML_BUILD_TESTS)
|
||||
disable_msvc_warnings(test-mul-mat)
|
||||
disable_msvc_warnings(test-arange)
|
||||
disable_msvc_warnings(test-backend-ops)
|
||||
disable_msvc_warnings(test-cont)
|
||||
disable_msvc_warnings(test-conv-transpose)
|
||||
disable_msvc_warnings(test-conv-transpose-1d)
|
||||
disable_msvc_warnings(test-conv1d)
|
||||
disable_msvc_warnings(test-conv2d)
|
||||
disable_msvc_warnings(test-conv2d-dw)
|
||||
disable_msvc_warnings(test-customop)
|
||||
disable_msvc_warnings(test-dup)
|
||||
disable_msvc_warnings(test-opt)
|
||||
disable_msvc_warnings(test-pool)
|
||||
endif ()
|
||||
endif()
|
||||
|
||||
@@ -36,8 +36,7 @@ function(ggml_get_system_arch)
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64|amd64)$"))
|
||||
set(GGML_SYSTEM_ARCH "x86" PARENT_SCOPE)
|
||||
elseif ("${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "ppc64le " OR
|
||||
"${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "powerpc ")
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc|power")
|
||||
set(GGML_SYSTEM_ARCH "PowerPC" PARENT_SCOPE)
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
|
||||
set(GGML_SYSTEM_ARCH "loongarch64" PARENT_SCOPE)
|
||||
|
||||
@@ -339,7 +339,7 @@ extern "C" {
|
||||
typedef bool (*ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
|
||||
|
||||
// Compare the output of two backends
|
||||
GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);
|
||||
GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data, struct ggml_tensor * test_node);
|
||||
|
||||
// Tensor initialization
|
||||
GGML_API enum ggml_status ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
|
||||
|
||||
@@ -101,6 +101,7 @@ extern "C" {
|
||||
GGML_BACKEND_API int ggml_cpu_has_riscv_v (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_vsx (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_vxe (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_nnpa (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_wasm_simd (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_llamafile (void);
|
||||
|
||||
@@ -133,6 +134,7 @@ extern "C" {
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
|
||||
|
||||
GGML_BACKEND_API void ggml_cpu_fp32_to_fp32(const float *, float *, int64_t);
|
||||
GGML_BACKEND_API void ggml_cpu_fp32_to_fp16(const float *, ggml_fp16_t *, int64_t);
|
||||
GGML_BACKEND_API void ggml_cpu_fp16_to_fp32(const ggml_fp16_t *, float *, int64_t);
|
||||
GGML_BACKEND_API void ggml_cpu_fp32_to_bf16(const float *, ggml_bf16_t *, int64_t);
|
||||
|
||||
@@ -470,6 +470,7 @@ extern "C" {
|
||||
GGML_OP_TRANSPOSE,
|
||||
GGML_OP_GET_ROWS,
|
||||
GGML_OP_GET_ROWS_BACK,
|
||||
GGML_OP_SET_ROWS,
|
||||
GGML_OP_DIAG,
|
||||
GGML_OP_DIAG_MASK_INF,
|
||||
GGML_OP_DIAG_MASK_ZERO,
|
||||
@@ -489,6 +490,7 @@ extern "C" {
|
||||
GGML_OP_UPSCALE, // nearest interpolate
|
||||
GGML_OP_PAD,
|
||||
GGML_OP_PAD_REFLECT_1D,
|
||||
GGML_OP_ROLL,
|
||||
GGML_OP_ARANGE,
|
||||
GGML_OP_TIMESTEP_EMBEDDING,
|
||||
GGML_OP_ARGSORT,
|
||||
@@ -518,6 +520,8 @@ extern "C" {
|
||||
GGML_OP_CROSS_ENTROPY_LOSS_BACK,
|
||||
GGML_OP_OPT_STEP_ADAMW,
|
||||
|
||||
GGML_OP_GLU,
|
||||
|
||||
GGML_OP_COUNT,
|
||||
};
|
||||
|
||||
@@ -541,6 +545,14 @@ extern "C" {
|
||||
GGML_UNARY_OP_COUNT,
|
||||
};
|
||||
|
||||
enum ggml_glu_op {
|
||||
GGML_GLU_OP_REGLU,
|
||||
GGML_GLU_OP_GEGLU,
|
||||
GGML_GLU_OP_SWIGLU,
|
||||
|
||||
GGML_GLU_OP_COUNT,
|
||||
};
|
||||
|
||||
enum ggml_object_type {
|
||||
GGML_OBJECT_TYPE_TENSOR,
|
||||
GGML_OBJECT_TYPE_GRAPH,
|
||||
@@ -656,6 +668,7 @@ extern "C" {
|
||||
GGML_API const char * ggml_op_symbol(enum ggml_op op);
|
||||
|
||||
GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
|
||||
GGML_API const char * ggml_glu_op_name(enum ggml_glu_op op);
|
||||
GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
|
||||
|
||||
GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
|
||||
@@ -686,6 +699,9 @@ extern "C" {
|
||||
// true for tensor that is stored in memory as CxWxHxN and has been permuted to WxHxCxN
|
||||
GGML_API bool ggml_is_contiguous_channels(const struct ggml_tensor * tensor);
|
||||
|
||||
// true if the elements in dimension 0 are contiguous, or there is just 1 block of elements
|
||||
GGML_API bool ggml_is_contiguous_rows(const struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
||||
GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
||||
|
||||
@@ -757,6 +773,7 @@ extern "C" {
|
||||
GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
|
||||
|
||||
GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
|
||||
GGML_API enum ggml_glu_op ggml_get_glu_op(const struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
|
||||
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
|
||||
@@ -1085,6 +1102,63 @@ extern "C" {
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// gated linear unit ops
|
||||
// A: n columns, r rows,
|
||||
// result is n / 2 columns, r rows,
|
||||
// expects gate in second half of row, unless swapped is true
|
||||
GGML_API struct ggml_tensor * ggml_glu(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
enum ggml_glu_op op,
|
||||
bool swapped);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_reglu(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_reglu_swapped(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_geglu(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_geglu_swapped(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_swiglu(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_swiglu_swapped(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// A: n columns, r rows,
|
||||
// B: n columns, r rows,
|
||||
GGML_API struct ggml_tensor * ggml_glu_split(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
enum ggml_glu_op op);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_reglu_split(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_geglu_split(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_swiglu_split(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// normalize along rows
|
||||
GGML_API struct ggml_tensor * ggml_norm(
|
||||
struct ggml_context * ctx,
|
||||
@@ -1374,6 +1448,23 @@ extern "C" {
|
||||
struct ggml_tensor * b, // row indices
|
||||
struct ggml_tensor * c); // data for ggml_get_rows, only used for its shape
|
||||
|
||||
// a TD [n_embd, ne1, ne2, ne3]
|
||||
// b TS [n_embd, n_rows, ne02, ne03] | ne02 == ne2, ne03 == ne3
|
||||
// c I64 [n_rows, ne11, ne12, 1] | c[i] in [0, ne1)
|
||||
//
|
||||
// undefined behavior if destination rows overlap
|
||||
//
|
||||
// broadcast:
|
||||
// ne2 % ne11 == 0
|
||||
// ne3 % ne12 == 0
|
||||
//
|
||||
// return view(a)
|
||||
GGML_API struct ggml_tensor * ggml_set_rows(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a, // destination
|
||||
struct ggml_tensor * b, // source
|
||||
struct ggml_tensor * c); // row indices
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_diag(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
@@ -1801,6 +1892,17 @@ extern "C" {
|
||||
int p0,
|
||||
int p1);
|
||||
|
||||
// Move tensor elements by an offset given for each dimension. Elements that
|
||||
// are shifted beyond the last position are wrapped around to the beginning.
|
||||
GGML_API struct ggml_tensor * ggml_roll(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int shift0,
|
||||
int shift1,
|
||||
int shift2,
|
||||
int shift3);
|
||||
|
||||
|
||||
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
|
||||
// timesteps: [N,]
|
||||
// return: [N, dim]
|
||||
|
||||
@@ -212,6 +212,7 @@ endif()
|
||||
|
||||
add_library(ggml
|
||||
ggml-backend-reg.cpp)
|
||||
add_library(ggml::ggml ALIAS ggml)
|
||||
|
||||
target_link_libraries(ggml PUBLIC ggml-base)
|
||||
|
||||
@@ -269,17 +270,27 @@ endfunction()
|
||||
function(ggml_add_cpu_backend_variant tag_name)
|
||||
set(GGML_CPU_TAG_NAME ${tag_name})
|
||||
# other: OPENMP LLAMAFILE CPU_HBM
|
||||
foreach (feat NATIVE
|
||||
SSE42
|
||||
AVX AVX2 BMI2 AVX_VNNI FMA F16C
|
||||
AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16
|
||||
AMX_TILE AMX_INT8 AMX_BF16)
|
||||
set(GGML_${feat} OFF)
|
||||
endforeach()
|
||||
if (GGML_SYSTEM_ARCH STREQUAL "x86")
|
||||
foreach (feat NATIVE
|
||||
SSE42
|
||||
AVX AVX2 BMI2 AVX_VNNI FMA F16C
|
||||
AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16
|
||||
AMX_TILE AMX_INT8 AMX_BF16)
|
||||
set(GGML_${feat} OFF)
|
||||
endforeach()
|
||||
|
||||
foreach (feat ${ARGN})
|
||||
set(GGML_${feat} ON)
|
||||
endforeach()
|
||||
foreach (feat ${ARGN})
|
||||
set(GGML_${feat} ON)
|
||||
endforeach()
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "ARM")
|
||||
foreach (feat ${ARGN})
|
||||
set(GGML_INTERNAL_${feat} ON)
|
||||
endforeach()
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "PowerPC")
|
||||
foreach (feat ${ARGN})
|
||||
set(GGML_INTERNAL_${feat} ON)
|
||||
endforeach()
|
||||
endif()
|
||||
|
||||
ggml_add_cpu_backend_variant_impl(${tag_name})
|
||||
endfunction()
|
||||
@@ -289,6 +300,8 @@ ggml_add_backend(CPU)
|
||||
if (GGML_CPU_ALL_VARIANTS)
|
||||
if (NOT GGML_BACKEND_DL)
|
||||
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS requires GGML_BACKEND_DL")
|
||||
elseif (GGML_CPU_ARM_ARCH)
|
||||
message(FATAL_ERROR "Cannot use both GGML_CPU_ARM_ARCH and GGML_CPU_ALL_VARIANTS")
|
||||
endif()
|
||||
if (GGML_SYSTEM_ARCH STREQUAL "x86")
|
||||
ggml_add_cpu_backend_variant(x64)
|
||||
@@ -302,8 +315,47 @@ if (GGML_CPU_ALL_VARIANTS)
|
||||
# MSVC doesn't support AMX
|
||||
ggml_add_cpu_backend_variant(sapphirerapids SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
|
||||
endif()
|
||||
elseif(GGML_SYSTEM_ARCH STREQUAL "ARM")
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||
# Many of these features are optional so we build versions with popular
|
||||
# combinations and name the backends based on the version they were
|
||||
# first released with
|
||||
ggml_add_cpu_backend_variant(armv8.0_1)
|
||||
ggml_add_cpu_backend_variant(armv8.2_1 DOTPROD)
|
||||
ggml_add_cpu_backend_variant(armv8.2_2 DOTPROD FP16_VECTOR_ARITHMETIC)
|
||||
ggml_add_cpu_backend_variant(armv8.2_3 DOTPROD FP16_VECTOR_ARITHMETIC SVE)
|
||||
ggml_add_cpu_backend_variant(armv8.6_1 DOTPROD FP16_VECTOR_ARITHMETIC SVE MATMUL_INT8)
|
||||
ggml_add_cpu_backend_variant(armv8.6_2 DOTPROD FP16_VECTOR_ARITHMETIC SVE MATMUL_INT8 SVE2)
|
||||
ggml_add_cpu_backend_variant(armv9.2_1 DOTPROD FP16_VECTOR_ARITHMETIC SVE MATMUL_INT8 SME)
|
||||
ggml_add_cpu_backend_variant(armv9.2_2 DOTPROD FP16_VECTOR_ARITHMETIC SVE MATMUL_INT8 SVE2 SME)
|
||||
elseif (CMAKE_SYSTEM_NAME MATCHES "Android")
|
||||
# Android-specific backends with SoC-compatible feature sets
|
||||
ggml_add_cpu_backend_variant(android_armv8.0_1)
|
||||
ggml_add_cpu_backend_variant(android_armv8.2_1 DOTPROD)
|
||||
ggml_add_cpu_backend_variant(android_armv8.2_2 DOTPROD FP16_VECTOR_ARITHMETIC)
|
||||
ggml_add_cpu_backend_variant(android_armv8.6_1 DOTPROD FP16_VECTOR_ARITHMETIC MATMUL_INT8)
|
||||
elseif (APPLE)
|
||||
ggml_add_cpu_backend_variant(apple_m1 DOTPROD)
|
||||
ggml_add_cpu_backend_variant(apple_m2_m3 DOTPROD MATMUL_INT8)
|
||||
ggml_add_cpu_backend_variant(apple_m4 DOTPROD MATMUL_INT8 NOSVE SME)
|
||||
else()
|
||||
message(FATAL_ERROR "Unsupported ARM target OS: ${CMAKE_SYSTEM_NAME}")
|
||||
endif()
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "PowerPC")
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||
ggml_add_cpu_backend_variant(power0)
|
||||
ggml_add_cpu_backend_variant(power7_1 POWER7)
|
||||
ggml_add_cpu_backend_variant(power7_2 POWER7 VSX)
|
||||
ggml_add_cpu_backend_variant(power8_1 POWER8)
|
||||
ggml_add_cpu_backend_variant(power8_2 POWER8 VSX)
|
||||
ggml_add_cpu_backend_variant(power9 POWER9 VSX)
|
||||
ggml_add_cpu_backend_variant(power10 POWER10 VSX)
|
||||
ggml_add_cpu_backend_variant(power11 POWER11 VSX)
|
||||
else()
|
||||
message(FATAL_ERROR "Unsupported PowerPC target OS: ${CMAKE_SYSTEM_NAME}")
|
||||
endif()
|
||||
else()
|
||||
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS not yet supported on ${GGML_SYSTEM_ARCH}")
|
||||
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS not yet supported with ${GGML_SYSTEM_ARCH} on ${CMAKE_SYSTEM_NAME}")
|
||||
endif()
|
||||
elseif (GGML_CPU)
|
||||
ggml_add_cpu_backend_variant_impl("")
|
||||
|
||||
@@ -69,6 +69,9 @@
|
||||
#if defined(__clang__)
|
||||
# pragma clang diagnostic push
|
||||
# pragma clang diagnostic ignored "-Wdeprecated-declarations"
|
||||
#elif defined(__GNUC__)
|
||||
# pragma GCC diagnostic push
|
||||
# pragma GCC diagnostic ignored "-Wdeprecated-declarations"
|
||||
#endif
|
||||
|
||||
namespace fs = std::filesystem;
|
||||
@@ -91,6 +94,8 @@ static std::string path_str(const fs::path & path) {
|
||||
|
||||
#if defined(__clang__)
|
||||
# pragma clang diagnostic pop
|
||||
#elif defined(__GNUC__)
|
||||
# pragma GCC diagnostic pop
|
||||
#endif
|
||||
|
||||
#ifdef _WIN32
|
||||
|
||||
@@ -817,8 +817,9 @@ static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, str
|
||||
}
|
||||
if (sched->debug > 1) {
|
||||
ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
|
||||
GGML_LOG_DEBUG("node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
|
||||
fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
|
||||
GGML_LOG_DEBUG("node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s] use=%d:", i, ggml_op_name(node->op), node->name,
|
||||
fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node),
|
||||
graph->use_counts[ggml_hash_find(&graph->visited_hash_set, node)]);
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
@@ -1826,7 +1827,7 @@ void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
|
||||
ggml_free(copy.ctx_unallocated);
|
||||
}
|
||||
|
||||
bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
|
||||
bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data, struct ggml_tensor * test_node) {
|
||||
struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
|
||||
if (copy.buffer == NULL) {
|
||||
return false;
|
||||
@@ -1837,28 +1838,45 @@ bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t
|
||||
|
||||
assert(g1->n_nodes == g2->n_nodes);
|
||||
|
||||
for (int i = 0; i < g1->n_nodes; i++) {
|
||||
struct ggml_tensor * t1 = g1->nodes[i];
|
||||
struct ggml_tensor * t2 = g2->nodes[i];
|
||||
if (test_node != nullptr) {
|
||||
// Compute the whole graph and only test the output for a specific tensor
|
||||
ggml_backend_graph_compute(backend1, g1);
|
||||
ggml_backend_graph_compute(backend2, g2);
|
||||
|
||||
assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
|
||||
|
||||
struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
|
||||
struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
|
||||
|
||||
ggml_backend_graph_compute(backend1, &g1v);
|
||||
ggml_backend_graph_compute(backend2, &g2v);
|
||||
|
||||
if (ggml_is_view_op(t1->op)) {
|
||||
continue;
|
||||
int test_node_idx = -1;
|
||||
for (int i = 0; i < g1->n_nodes; i++) {
|
||||
struct ggml_tensor * t1 = g1->nodes[i];
|
||||
if (t1 == test_node) {
|
||||
test_node_idx = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
GGML_ASSERT(test_node_idx != -1);
|
||||
|
||||
// compare results, calculate rms etc
|
||||
if (!callback(i, t1, t2, user_data)) {
|
||||
break;
|
||||
callback(test_node_idx, g1->nodes[test_node_idx], g2->nodes[test_node_idx], user_data);
|
||||
} else {
|
||||
for (int i = 0; i < g1->n_nodes; i++) {
|
||||
struct ggml_tensor * t1 = g1->nodes[i];
|
||||
struct ggml_tensor * t2 = g2->nodes[i];
|
||||
|
||||
assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
|
||||
|
||||
struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
|
||||
struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
|
||||
|
||||
ggml_backend_graph_compute(backend1, &g1v);
|
||||
ggml_backend_graph_compute(backend2, &g2v);
|
||||
|
||||
if (ggml_is_view_op(t1->op)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// compare results, calculate rms etc
|
||||
if (!callback(i, t1, t2, user_data)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ggml_backend_graph_copy_free(copy);
|
||||
|
||||
return true;
|
||||
|
||||
@@ -37,6 +37,7 @@
|
||||
#include <thread>
|
||||
#include <unistd.h>
|
||||
#include <functional>
|
||||
#include <optional>
|
||||
|
||||
#include "../include/ggml-cann.h"
|
||||
#include "../include/ggml.h"
|
||||
@@ -103,6 +104,9 @@ const ggml_cann_device_info& ggml_cann_info();
|
||||
void ggml_cann_set_device(int32_t device);
|
||||
int32_t ggml_cann_get_device();
|
||||
|
||||
std::optional<std::string> get_env(const std::string& name);
|
||||
bool parse_bool(const std::string& value);
|
||||
|
||||
/**
|
||||
* @brief Abstract base class for memory pools used by CANN.
|
||||
*/
|
||||
@@ -354,7 +358,8 @@ struct ggml_backend_cann_context {
|
||||
: device(device), name("CANN" + std::to_string(device)), task_queue(1024, device) {
|
||||
ggml_cann_set_device(device);
|
||||
description = aclrtGetSocName();
|
||||
async_mode = (getenv("GGML_CANN_ASYNC_MODE") != nullptr);
|
||||
|
||||
async_mode = parse_bool(get_env("GGML_CANN_ASYNC_MODE").value_or(""));
|
||||
GGML_LOG_INFO("%s: device %d async operator submission is %s\n", __func__,
|
||||
device, async_mode ? "ON" : "OFF");
|
||||
}
|
||||
|
||||
@@ -31,6 +31,8 @@
|
||||
#include <mutex>
|
||||
#include <queue>
|
||||
#include <chrono>
|
||||
#include <unordered_set>
|
||||
#include <optional>
|
||||
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
@@ -93,6 +95,26 @@ int32_t ggml_cann_get_device() {
|
||||
return id;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Get the value of the specified environment variable (name).
|
||||
* if not empty, return a std::string object
|
||||
*/
|
||||
std::optional<std::string> get_env(const std::string& name) {
|
||||
const char* val = std::getenv(name.c_str());
|
||||
if (!val) return std::nullopt;
|
||||
std::string res = std::string(val);
|
||||
std::transform(res.begin(), res.end(), res.begin(), ::tolower);
|
||||
return res;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Verify whether the environment variable is a valid value.
|
||||
*/
|
||||
bool parse_bool(const std::string& value) {
|
||||
std::unordered_set<std::string> valid_values = {"on", "1", "yes", "y", "enable", "true"};
|
||||
return valid_values.find(value) != valid_values.end();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Initialize the CANN device information.
|
||||
*
|
||||
@@ -214,7 +236,7 @@ struct ggml_cann_pool_buf_prio : public ggml_cann_pool {
|
||||
* @param device The device ID to associate with this buffer pool.
|
||||
*/
|
||||
explicit ggml_cann_pool_buf_prio(int device) : device(device) {
|
||||
disable_clean = getenv("GGML_CANN_DISABLE_BUF_POOL_CLEAN") != nullptr;
|
||||
disable_clean = parse_bool(get_env("GGML_CANN_DISABLE_BUF_POOL_CLEAN").value_or(""));
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -410,7 +432,7 @@ struct ggml_cann_pool_buf : public ggml_cann_pool {
|
||||
* @param device The device ID to associate with this buffer pool.
|
||||
*/
|
||||
explicit ggml_cann_pool_buf(int device) : device(device) {
|
||||
disable_clean = getenv("GGML_CANN_DISABLE_BUF_POOL_CLEAN") != nullptr;
|
||||
disable_clean = parse_bool(get_env("GGML_CANN_DISABLE_BUF_POOL_CLEAN").value_or(""));
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -731,16 +753,18 @@ struct ggml_cann_pool_vmm : public ggml_cann_pool {
|
||||
*/
|
||||
std::unique_ptr<ggml_cann_pool> ggml_backend_cann_context::new_pool_for_device(
|
||||
int device) {
|
||||
bool disable_vmm = (getenv("GGML_CANN_DISABLE_VMM_POOL") != nullptr);
|
||||
if (!disable_vmm && ggml_cann_info().devices[device].vmm) {
|
||||
GGML_LOG_INFO("%s: device %d use vmm pool\n", __func__, device);
|
||||
return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_vmm(device));
|
||||
}
|
||||
bool enable_buf_prio = (getenv("GGML_CANN_ENABLE_BUF_PRIO_POOL") != nullptr);
|
||||
if (enable_buf_prio) {
|
||||
std::string mem_pool_type = get_env("GGML_CANN_MEM_POOL").value_or("");
|
||||
|
||||
if (mem_pool_type == "prio") {
|
||||
GGML_LOG_INFO("%s: device %d use buffer pool with priority queue\n", __func__, device);
|
||||
return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_buf_prio(device));
|
||||
}
|
||||
|
||||
if (ggml_cann_info().devices[device].vmm && mem_pool_type != "leg") {
|
||||
GGML_LOG_INFO("%s: device %d use vmm pool\n", __func__, device);
|
||||
return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_vmm(device));
|
||||
}
|
||||
|
||||
GGML_LOG_INFO("%s: device %d use buffer pool\n", __func__, device);
|
||||
return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_buf(device));
|
||||
}
|
||||
|
||||
@@ -1074,6 +1074,10 @@ GGML_TABLE_BEGIN(uint32_t, iq3s_grid, 512)
|
||||
0x0f090307, 0x0f090501, 0x0f090b01, 0x0f0b0505, 0x0f0b0905, 0x0f0d0105, 0x0f0d0703, 0x0f0f0101,
|
||||
GGML_TABLE_END()
|
||||
|
||||
GGML_TABLE_BEGIN(int8_t, kvalues_iq4nl, 16)
|
||||
-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113,
|
||||
GGML_TABLE_END()
|
||||
|
||||
#define NGRID_IQ1S 2048
|
||||
#define IQ1S_DELTA 0.125f
|
||||
#define IQ1M_DELTA 0.125f
|
||||
|
||||
@@ -1,3 +1,17 @@
|
||||
function(ggml_add_cpu_backend_features cpu_name arch)
|
||||
# The feature detection code is compiled as a separate target so that
|
||||
# it can be built without the architecture flags
|
||||
# Since multiple variants of the CPU backend may be included in the same
|
||||
# build, using set_source_files_properties() to set the arch flags is not possible
|
||||
set(GGML_CPU_FEATS_NAME ${cpu_name}-feats)
|
||||
add_library(${GGML_CPU_FEATS_NAME} OBJECT ggml-cpu/arch/${arch}/cpu-feats.cpp)
|
||||
target_include_directories(${GGML_CPU_FEATS_NAME} PRIVATE . ../include)
|
||||
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE ${ARGN})
|
||||
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE GGML_BACKEND_DL GGML_BACKEND_BUILD GGML_BACKEND_SHARED)
|
||||
set_target_properties(${GGML_CPU_FEATS_NAME} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
target_link_libraries(${cpu_name} PRIVATE ${GGML_CPU_FEATS_NAME})
|
||||
endfunction()
|
||||
|
||||
function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
if (tag_name)
|
||||
set(GGML_CPU_NAME ggml-cpu-${tag_name})
|
||||
@@ -10,14 +24,14 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
list (APPEND GGML_CPU_SOURCES
|
||||
ggml-cpu/ggml-cpu.c
|
||||
ggml-cpu/ggml-cpu.cpp
|
||||
ggml-cpu/ggml-cpu-aarch64.cpp
|
||||
ggml-cpu/ggml-cpu-aarch64.h
|
||||
ggml-cpu/ggml-cpu-hbm.cpp
|
||||
ggml-cpu/ggml-cpu-hbm.h
|
||||
ggml-cpu/ggml-cpu-quants.c
|
||||
ggml-cpu/ggml-cpu-quants.h
|
||||
ggml-cpu/ggml-cpu-traits.cpp
|
||||
ggml-cpu/ggml-cpu-traits.h
|
||||
ggml-cpu/repack.cpp
|
||||
ggml-cpu/repack.h
|
||||
ggml-cpu/hbm.cpp
|
||||
ggml-cpu/hbm.h
|
||||
ggml-cpu/quants.c
|
||||
ggml-cpu/quants.h
|
||||
ggml-cpu/traits.cpp
|
||||
ggml-cpu/traits.h
|
||||
ggml-cpu/amx/amx.cpp
|
||||
ggml-cpu/amx/amx.h
|
||||
ggml-cpu/amx/mmq.cpp
|
||||
@@ -84,6 +98,11 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
|
||||
if (GGML_SYSTEM_ARCH STREQUAL "ARM")
|
||||
message(STATUS "ARM detected")
|
||||
list(APPEND GGML_CPU_SOURCES
|
||||
ggml-cpu/arch/arm/quants.c
|
||||
ggml-cpu/arch/arm/repack.cpp
|
||||
)
|
||||
|
||||
if (MSVC AND NOT CMAKE_C_COMPILER_ID STREQUAL "Clang")
|
||||
message(FATAL_ERROR "MSVC is not supported for ARM, use clang")
|
||||
else()
|
||||
@@ -138,6 +157,49 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
else()
|
||||
if (GGML_CPU_ARM_ARCH)
|
||||
list(APPEND ARCH_FLAGS -march=${GGML_CPU_ARM_ARCH})
|
||||
elseif(GGML_CPU_ALL_VARIANTS)
|
||||
# Begin with the lowest baseline
|
||||
set(ARM_MCPU "armv8-a")
|
||||
set(ARCH_TAGS "")
|
||||
set(ARCH_DEFINITIONS "")
|
||||
|
||||
# When a feature is selected, bump the MCPU to the first
|
||||
# version that supported it
|
||||
if (GGML_INTERNAL_DOTPROD)
|
||||
set(ARM_MCPU "armv8.2-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+dotprod")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_DOTPROD)
|
||||
endif()
|
||||
if (GGML_INTERNAL_FP16_VECTOR_ARITHMETIC)
|
||||
set(ARM_MCPU "armv8.2-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+fp16")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_FP16_VECTOR_ARITHMETIC)
|
||||
endif()
|
||||
if (GGML_INTERNAL_SVE)
|
||||
set(ARM_MCPU "armv8.2-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+sve")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_SVE)
|
||||
endif()
|
||||
if (GGML_INTERNAL_MATMUL_INT8)
|
||||
set(ARM_MCPU "armv8.6-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+i8mm")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_MATMUL_INT8)
|
||||
endif()
|
||||
if (GGML_INTERNAL_SVE2)
|
||||
set(ARM_MCPU "armv8.6-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+sve2")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_SVE2)
|
||||
endif()
|
||||
if (GGML_INTERNAL_NOSVE)
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+nosve")
|
||||
endif()
|
||||
if (GGML_INTERNAL_SME)
|
||||
set(ARM_MCPU "armv9.2-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+sme")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_SME)
|
||||
endif()
|
||||
list(APPEND ARCH_FLAGS "-march=${ARM_MCPU}${ARCH_TAGS}")
|
||||
ggml_add_cpu_backend_features(${GGML_CPU_NAME} arm ${ARCH_DEFINITIONS})
|
||||
endif()
|
||||
endif()
|
||||
|
||||
@@ -167,6 +229,11 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
endif()
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "x86")
|
||||
message(STATUS "x86 detected")
|
||||
list(APPEND GGML_CPU_SOURCES
|
||||
ggml-cpu/arch/x86/quants.c
|
||||
ggml-cpu/arch/x86/repack.cpp
|
||||
)
|
||||
|
||||
if (MSVC)
|
||||
# instruction set detection for MSVC only
|
||||
if (GGML_NATIVE)
|
||||
@@ -296,21 +363,11 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
# the feature check relies on ARCH_DEFINITIONS, but it is not set with GGML_NATIVE
|
||||
message(FATAL_ERROR "GGML_NATIVE is not compatible with GGML_BACKEND_DL, consider using GGML_CPU_ALL_VARIANTS")
|
||||
endif()
|
||||
|
||||
# The feature detection code is compiled as a separate target so that
|
||||
# it can be built without the architecture flags
|
||||
# Since multiple variants of the CPU backend may be included in the same
|
||||
# build, using set_source_files_properties() to set the arch flags is not possible
|
||||
set(GGML_CPU_FEATS_NAME ${GGML_CPU_NAME}-feats)
|
||||
add_library(${GGML_CPU_FEATS_NAME} OBJECT ggml-cpu/cpu-feats-x86.cpp)
|
||||
target_include_directories(${GGML_CPU_FEATS_NAME} PRIVATE . .. ../include)
|
||||
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE ${ARCH_DEFINITIONS})
|
||||
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE GGML_BACKEND_DL GGML_BACKEND_BUILD GGML_BACKEND_SHARED)
|
||||
set_target_properties(${GGML_CPU_FEATS_NAME} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
target_link_libraries(${GGML_CPU_NAME} PRIVATE ${GGML_CPU_FEATS_NAME})
|
||||
ggml_add_cpu_backend_features(${GGML_CPU_NAME} x86 ${ARCH_DEFINITIONS})
|
||||
endif()
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "PowerPC")
|
||||
message(STATUS "PowerPC detected")
|
||||
list(APPEND GGML_CPU_SOURCES ggml-cpu/arch/powerpc/quants.c)
|
||||
if (GGML_NATIVE)
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64")
|
||||
file(READ "/proc/cpuinfo" POWER10_M)
|
||||
@@ -331,6 +388,27 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
else()
|
||||
list(APPEND ARCH_FLAGS -mcpu=native -mtune=native -mpowerpc64)
|
||||
endif()
|
||||
elseif(GGML_CPU_ALL_VARIANTS)
|
||||
# Begin with the lowest baseline
|
||||
set(ARCH_DEFINITIONS "")
|
||||
|
||||
# When a feature is selected, bump the MCPU to the first
|
||||
# version that supported it
|
||||
foreach(PVER RANGE 7 11)
|
||||
if(DEFINED GGML_INTERNAL_POWER${PVER})
|
||||
set(POWERPC_MCPU "power${PVER}")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_POWER${PVER})
|
||||
endif()
|
||||
endforeach()
|
||||
if (GGML_INTERNAL_VSX)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_VSX)
|
||||
list(APPEND ARCH_FLAGS -mvsx)
|
||||
endif()
|
||||
|
||||
if (DEFINED POWERPC_MCPU)
|
||||
list(APPEND ARCH_FLAGS -mcpu=${POWERPC_MCPU})
|
||||
endif()
|
||||
ggml_add_cpu_backend_features(${GGML_CPU_NAME} powerpc ${ARCH_DEFINITIONS})
|
||||
else()
|
||||
if (GGML_CPU_POWERPC_CPUTYPE)
|
||||
list(APPEND ARCH_FLAGS -mcpu=${GGML_CPU_POWERPC_CPUTYPE})
|
||||
@@ -338,6 +416,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
endif()
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "loongarch64")
|
||||
message(STATUS "loongarch64 detected")
|
||||
list(APPEND GGML_CPU_SOURCES ggml-cpu/arch/loongarch/quants.c)
|
||||
|
||||
list(APPEND ARCH_FLAGS -march=loongarch64)
|
||||
if (GGML_LASX)
|
||||
list(APPEND ARCH_FLAGS -mlasx)
|
||||
@@ -347,6 +427,10 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
endif()
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "riscv64")
|
||||
message(STATUS "riscv64 detected")
|
||||
list(APPEND GGML_CPU_SOURCES
|
||||
ggml-cpu/arch/riscv/quants.c
|
||||
ggml-cpu/arch/riscv/repack.cpp
|
||||
)
|
||||
if (GGML_RVV)
|
||||
if (GGML_XTHEADVECTOR)
|
||||
list(APPEND ARCH_FLAGS -march=rv64gc_xtheadvector -mabi=lp64d)
|
||||
@@ -358,11 +442,13 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
endif()
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "s390x")
|
||||
message(STATUS "s390x detected")
|
||||
list(APPEND GGML_CPU_SOURCES ggml-cpu/arch/s390/quants.c)
|
||||
file(READ "/proc/cpuinfo" CPUINFO_CONTENTS)
|
||||
string(REGEX REPLACE "machine[ \t\r\n]*=[ \t\r\n]*([0-9]+)" "\\1" S390X_M ${CPUINFO_CONTENTS})
|
||||
|
||||
# TODO: Separation to determine activation of VX/VXE/VXE2
|
||||
if (${S390X_M} MATCHES "8561|8562")
|
||||
set(GGML_NNPA OFF)
|
||||
message(STATUS "z15 target")
|
||||
list(APPEND ARCH_FLAGS -march=z15)
|
||||
elseif (${S390X_M} MATCHES "3931")
|
||||
@@ -379,14 +465,25 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
endif()
|
||||
|
||||
if (GGML_VXE)
|
||||
message(STATUS "VX/VXE/VXE2 enabled")
|
||||
list(APPEND ARCH_FLAGS -mvx -mzvector)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_VXE)
|
||||
endif()
|
||||
|
||||
if (GGML_NNPA)
|
||||
message(STATUS "NNPA enabled")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_NNPA)
|
||||
endif()
|
||||
elseif (CMAKE_SYSTEM_PROCESSOR MATCHES "wasm")
|
||||
message(STATUS "Wasm detected")
|
||||
list (APPEND GGML_CPU_SOURCES ggml-cpu/arch/wasm/quants.c)
|
||||
else()
|
||||
message(STATUS "Unknown architecture")
|
||||
message(WARNING "Unknown CPU architecture. Falling back to generic implementations.")
|
||||
list(APPEND ARCH_FLAGS -DGGML_CPU_GENERIC)
|
||||
endif()
|
||||
|
||||
if (GGML_CPU_AARCH64)
|
||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE GGML_USE_CPU_AARCH64)
|
||||
if (GGML_CPU_REPACK)
|
||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE GGML_USE_CPU_REPACK)
|
||||
endif()
|
||||
|
||||
if (GGML_CPU_KLEIDIAI)
|
||||
@@ -397,9 +494,9 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
|
||||
# Fetch KleidiAI sources:
|
||||
include(FetchContent)
|
||||
set(KLEIDIAI_COMMIT_TAG "v1.6.0")
|
||||
set(KLEIDIAI_COMMIT_TAG "v1.9.0")
|
||||
set(KLEIDIAI_DOWNLOAD_URL "https://github.com/ARM-software/kleidiai/archive/refs/tags/${KLEIDIAI_COMMIT_TAG}.tar.gz")
|
||||
set(KLEIDIAI_ARCHIVE_MD5 "75b4ad68f25ab673dcc01065e5a0b05f")
|
||||
set(KLEIDIAI_ARCHIVE_MD5 "2a8e1bb55d201557553545536489a017")
|
||||
|
||||
if (POLICY CMP0135)
|
||||
cmake_policy(SET CMP0135 NEW)
|
||||
|
||||
@@ -5,7 +5,7 @@
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-cpu-traits.h"
|
||||
#include "traits.h"
|
||||
|
||||
#if defined(__gnu_linux__)
|
||||
#include <sys/syscall.h>
|
||||
|
||||
@@ -8,7 +8,8 @@
|
||||
#include "mmq.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "ggml-cpu-quants.h"
|
||||
#include "simd-mappings.h"
|
||||
#include "quants.h"
|
||||
#include "ggml-quants.h"
|
||||
#include <algorithm>
|
||||
#include <type_traits>
|
||||
@@ -453,7 +454,7 @@ void quantize_row_q8_K_vnni(const float * RESTRICT x, void * RESTRICT vy, int64_
|
||||
|
||||
// Quantize these floats
|
||||
const float iscale = 127.f / amax;
|
||||
y[i].d = GGML_FP32_TO_FP16(1 / iscale);
|
||||
y[i].d = GGML_CPU_FP32_TO_FP16(1 / iscale);
|
||||
const float id = ( amax != 0.0f ) ? iscale : 0.f;
|
||||
const __m512 vscale = _mm512_set1_ps(id);
|
||||
|
||||
@@ -1090,7 +1091,7 @@ struct acc_C<block_q8_0, block_q4_0, is_acc> {
|
||||
const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)((const char *)packed_B + offset)));
|
||||
|
||||
for (int m = 0; m < nr; ++m) {
|
||||
const __m512 vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].d));
|
||||
const __m512 vd1 = _mm512_set1_ps(GGML_CPU_FP16_TO_FP32(A[m * lda].d));
|
||||
const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N));
|
||||
|
||||
__m512 vsum;
|
||||
@@ -1113,8 +1114,8 @@ struct acc_C<block_q8_1, block_q4_1, is_acc> {
|
||||
const __m512 vm0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)((const char *)packed_B + offset + TILE_N * sizeof(ggml_half))));
|
||||
|
||||
for (int m = 0; m < nr; ++m) {
|
||||
const __m512 vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].d));
|
||||
const __m512 vs1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].s));
|
||||
const __m512 vd1 = _mm512_set1_ps(GGML_CPU_FP16_TO_FP32(A[m * lda].d));
|
||||
const __m512 vs1 = _mm512_set1_ps(GGML_CPU_FP16_TO_FP32(A[m * lda].s));
|
||||
const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N));
|
||||
|
||||
__m512 vsum;
|
||||
@@ -1137,7 +1138,7 @@ struct acc_C<block_q8_0, block_q8_0, is_acc> {
|
||||
const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)((const char *)packed_B + offset)));
|
||||
|
||||
for (int m = 0; m < nr; ++m) {
|
||||
const __m512 vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].d));
|
||||
const __m512 vd1 = _mm512_set1_ps(GGML_CPU_FP16_TO_FP32(A[m * lda].d));
|
||||
const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N));
|
||||
|
||||
__m512 vsum;
|
||||
@@ -1437,7 +1438,7 @@ struct tinygemm_kernel_vnni<block_q8_0, block_q4_0, float, BLOCK_M, BLOCK_N, BLO
|
||||
va[k] = _mm512_set1_epi32(a_ptr[k]);
|
||||
vcomp = _mm512_dpbusd_epi32(vcomp, off, va[k]);
|
||||
}
|
||||
vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].d));
|
||||
vd1 = _mm512_set1_ps(GGML_CPU_FP16_TO_FP32(A[0 * KB + i].d));
|
||||
}
|
||||
|
||||
// load b
|
||||
@@ -1498,8 +1499,8 @@ struct tinygemm_kernel_vnni<block_q8_1, block_q4_1, float, 1, BLOCK_N, BLOCK_K>
|
||||
for (int k = 0; k < 8; ++k) {
|
||||
va[k] = _mm512_set1_epi32(a_ptr[k]);
|
||||
}
|
||||
vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].d));
|
||||
vs1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].s));
|
||||
vd1 = _mm512_set1_ps(GGML_CPU_FP16_TO_FP32(A[0 * KB + i].d));
|
||||
vs1 = _mm512_set1_ps(GGML_CPU_FP16_TO_FP32(A[0 * KB + i].s));
|
||||
}
|
||||
|
||||
// load b
|
||||
@@ -1571,7 +1572,7 @@ struct tinygemm_kernel_vnni<block_q8_0, block_q8_0, float, BLOCK_M, BLOCK_N, BLO
|
||||
va[k] = _mm512_set1_epi32(a_ptr[k]);
|
||||
va[k] = _mm512_add_epi8(va[k], off);
|
||||
}
|
||||
vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].d));
|
||||
vd1 = _mm512_set1_ps(GGML_CPU_FP16_TO_FP32(A[0 * KB + i].d));
|
||||
}
|
||||
|
||||
// load b
|
||||
|
||||
184
ggml/src/ggml-cpu/arch-fallback.h
Normal file
184
ggml/src/ggml-cpu/arch-fallback.h
Normal file
@@ -0,0 +1,184 @@
|
||||
#pragma once
|
||||
|
||||
// Rename `_generic` functions if no native implementation is available.
|
||||
// This effectively selects the generic implementation.
|
||||
|
||||
#if defined(GGML_CPU_GENERIC)
|
||||
// quants.c
|
||||
#define quantize_row_q8_0_generic quantize_row_q8_0
|
||||
#define quantize_row_q8_1_generic quantize_row_q8_1
|
||||
#define quantize_row_q8_K_generic quantize_row_q8_K
|
||||
#define ggml_vec_dot_q4_0_q8_0_generic ggml_vec_dot_q4_0_q8_0
|
||||
#define ggml_vec_dot_q4_1_q8_1_generic ggml_vec_dot_q4_1_q8_1
|
||||
#define ggml_vec_dot_q5_0_q8_0_generic ggml_vec_dot_q5_0_q8_0
|
||||
#define ggml_vec_dot_q5_1_q8_1_generic ggml_vec_dot_q5_1_q8_1
|
||||
#define ggml_vec_dot_q8_0_q8_0_generic ggml_vec_dot_q8_0_q8_0
|
||||
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
|
||||
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
|
||||
#define ggml_vec_dot_q2_K_q8_K_generic ggml_vec_dot_q2_K_q8_K
|
||||
#define ggml_vec_dot_q3_K_q8_K_generic ggml_vec_dot_q3_K_q8_K
|
||||
#define ggml_vec_dot_q4_K_q8_K_generic ggml_vec_dot_q4_K_q8_K
|
||||
#define ggml_vec_dot_q5_K_q8_K_generic ggml_vec_dot_q5_K_q8_K
|
||||
#define ggml_vec_dot_q6_K_q8_K_generic ggml_vec_dot_q6_K_q8_K
|
||||
#define ggml_vec_dot_iq2_xxs_q8_K_generic ggml_vec_dot_iq2_xxs_q8_K
|
||||
#define ggml_vec_dot_iq2_xs_q8_K_generic ggml_vec_dot_iq2_xs_q8_K
|
||||
#define ggml_vec_dot_iq2_s_q8_K_generic ggml_vec_dot_iq2_s_q8_K
|
||||
#define ggml_vec_dot_iq3_xxs_q8_K_generic ggml_vec_dot_iq3_xxs_q8_K
|
||||
#define ggml_vec_dot_iq3_s_q8_K_generic ggml_vec_dot_iq3_s_q8_K
|
||||
#define ggml_vec_dot_iq1_s_q8_K_generic ggml_vec_dot_iq1_s_q8_K
|
||||
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
||||
#define ggml_vec_dot_iq4_nl_q8_0_generic ggml_vec_dot_iq4_nl_q8_0
|
||||
#define ggml_vec_dot_iq4_xs_q8_K_generic ggml_vec_dot_iq4_xs_q8_K
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#elif defined(__aarch64__) || defined(__arm__) || defined(_M_ARM) || defined(_M_ARM64)
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#elif defined(__x86_64__) || defined(__i386__) || defined(_M_IX86) || defined(_M_X64)
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#elif defined(__POWERPC__) || defined(__powerpc__)
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/14146#issuecomment-2972561679
|
||||
// quants.c
|
||||
#define quantize_row_q8_K_generic quantize_row_q8_K
|
||||
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
|
||||
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
|
||||
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#elif defined(__loongarch64)
|
||||
// quants.c
|
||||
#define quantize_row_q8_K_generic quantize_row_q8_K
|
||||
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
|
||||
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
|
||||
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#elif defined(__riscv)
|
||||
// quants.c
|
||||
#define quantize_row_q8_K_generic quantize_row_q8_K
|
||||
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
|
||||
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
|
||||
#define ggml_vec_dot_iq2_xxs_q8_K_generic ggml_vec_dot_iq2_xxs_q8_K
|
||||
#define ggml_vec_dot_iq2_xs_q8_K_generic ggml_vec_dot_iq2_xs_q8_K
|
||||
#define ggml_vec_dot_iq2_s_q8_K_generic ggml_vec_dot_iq2_s_q8_K
|
||||
#define ggml_vec_dot_iq3_xxs_q8_K_generic ggml_vec_dot_iq3_xxs_q8_K
|
||||
#define ggml_vec_dot_iq3_s_q8_K_generic ggml_vec_dot_iq3_s_q8_K
|
||||
#define ggml_vec_dot_iq1_s_q8_K_generic ggml_vec_dot_iq1_s_q8_K
|
||||
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
||||
#define ggml_vec_dot_iq4_nl_q8_0_generic ggml_vec_dot_iq4_nl_q8_0
|
||||
#define ggml_vec_dot_iq4_xs_q8_K_generic ggml_vec_dot_iq4_xs_q8_K
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#elif defined(__s390x__)
|
||||
// quants.c
|
||||
#define quantize_row_q8_K_generic quantize_row_q8_K
|
||||
#define ggml_vec_dot_q5_0_q8_0_generic ggml_vec_dot_q5_0_q8_0
|
||||
#define ggml_vec_dot_q5_1_q8_1_generic ggml_vec_dot_q5_1_q8_1
|
||||
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
|
||||
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
|
||||
#define ggml_vec_dot_q2_K_q8_K_generic ggml_vec_dot_q2_K_q8_K
|
||||
#define ggml_vec_dot_iq2_xxs_q8_K_generic ggml_vec_dot_iq2_xxs_q8_K
|
||||
#define ggml_vec_dot_iq2_xs_q8_K_generic ggml_vec_dot_iq2_xs_q8_K
|
||||
#define ggml_vec_dot_iq2_s_q8_K_generic ggml_vec_dot_iq2_s_q8_K
|
||||
#define ggml_vec_dot_iq3_xxs_q8_K_generic ggml_vec_dot_iq3_xxs_q8_K
|
||||
#define ggml_vec_dot_iq3_s_q8_K_generic ggml_vec_dot_iq3_s_q8_K
|
||||
#define ggml_vec_dot_iq1_s_q8_K_generic ggml_vec_dot_iq1_s_q8_K
|
||||
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#elif defined(__wasm__)
|
||||
// quants.c
|
||||
#define ggml_vec_dot_q4_1_q8_1_generic ggml_vec_dot_q4_1_q8_1
|
||||
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
|
||||
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
|
||||
#define ggml_vec_dot_iq2_xxs_q8_K_generic ggml_vec_dot_iq2_xxs_q8_K
|
||||
#define ggml_vec_dot_iq2_xs_q8_K_generic ggml_vec_dot_iq2_xs_q8_K
|
||||
#define ggml_vec_dot_iq2_s_q8_K_generic ggml_vec_dot_iq2_s_q8_K
|
||||
#define ggml_vec_dot_iq3_xxs_q8_K_generic ggml_vec_dot_iq3_xxs_q8_K
|
||||
#define ggml_vec_dot_iq3_s_q8_K_generic ggml_vec_dot_iq3_s_q8_K
|
||||
#define ggml_vec_dot_iq1_s_q8_K_generic ggml_vec_dot_iq1_s_q8_K
|
||||
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
||||
#define ggml_vec_dot_iq4_nl_q8_0_generic ggml_vec_dot_iq4_nl_q8_0
|
||||
#define ggml_vec_dot_iq4_xs_q8_K_generic ggml_vec_dot_iq4_xs_q8_K
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#endif
|
||||
94
ggml/src/ggml-cpu/arch/arm/cpu-feats.cpp
Normal file
94
ggml/src/ggml-cpu/arch/arm/cpu-feats.cpp
Normal file
@@ -0,0 +1,94 @@
|
||||
#include "ggml-backend-impl.h"
|
||||
|
||||
#if defined(__aarch64__)
|
||||
|
||||
#if defined(__linux__)
|
||||
#include <sys/auxv.h>
|
||||
#elif defined(__APPLE__)
|
||||
#include <sys/sysctl.h>
|
||||
#endif
|
||||
|
||||
#if !defined(HWCAP2_I8MM)
|
||||
#define HWCAP2_I8MM (1 << 13)
|
||||
#endif
|
||||
|
||||
#if !defined(HWCAP2_SME)
|
||||
#define HWCAP2_SME (1 << 23)
|
||||
#endif
|
||||
|
||||
struct aarch64_features {
|
||||
// has_neon not needed, aarch64 has NEON guaranteed
|
||||
bool has_dotprod = false;
|
||||
bool has_fp16_va = false;
|
||||
bool has_sve = false;
|
||||
bool has_sve2 = false;
|
||||
bool has_i8mm = false;
|
||||
bool has_sme = false;
|
||||
|
||||
aarch64_features() {
|
||||
#if defined(__linux__)
|
||||
uint32_t hwcap = getauxval(AT_HWCAP);
|
||||
uint32_t hwcap2 = getauxval(AT_HWCAP2);
|
||||
|
||||
has_dotprod = !!(hwcap & HWCAP_ASIMDDP);
|
||||
has_fp16_va = !!(hwcap & HWCAP_FPHP);
|
||||
has_sve = !!(hwcap & HWCAP_SVE);
|
||||
has_sve2 = !!(hwcap2 & HWCAP2_SVE2);
|
||||
has_i8mm = !!(hwcap2 & HWCAP2_I8MM);
|
||||
has_sme = !!(hwcap2 & HWCAP2_SME);
|
||||
#elif defined(__APPLE__)
|
||||
int oldp = 0;
|
||||
size_t size = sizeof(oldp);
|
||||
|
||||
if (sysctlbyname("hw.optional.arm.FEAT_DotProd", &oldp, &size, NULL, 0) == 0) {
|
||||
has_dotprod = static_cast<bool>(oldp);
|
||||
}
|
||||
|
||||
if (sysctlbyname("hw.optional.arm.FEAT_I8MM", &oldp, &size, NULL, 0) == 0) {
|
||||
has_i8mm = static_cast<bool>(oldp);
|
||||
}
|
||||
|
||||
if (sysctlbyname("hw.optional.arm.FEAT_SME", &oldp, &size, NULL, 0) == 0) {
|
||||
has_sme = static_cast<bool>(oldp);
|
||||
}
|
||||
|
||||
// Apple apparently does not implement SVE yet
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
static int ggml_backend_cpu_aarch64_score() {
|
||||
int score = 1;
|
||||
aarch64_features af;
|
||||
|
||||
#ifdef GGML_USE_DOTPROD
|
||||
if (!af.has_dotprod) { return 0; }
|
||||
score += 1<<1;
|
||||
#endif
|
||||
#ifdef GGML_USE_FP16_VECTOR_ARITHMETIC
|
||||
if (!af.has_fp16_va) { return 0; }
|
||||
score += 1<<2;
|
||||
#endif
|
||||
#ifdef GGML_USE_SVE
|
||||
if (!af.has_sve) { return 0; }
|
||||
score += 1<<3;
|
||||
#endif
|
||||
#ifdef GGML_USE_MATMUL_INT8
|
||||
if (!af.has_i8mm) { return 0; }
|
||||
score += 1<<4;
|
||||
#endif
|
||||
#ifdef GGML_USE_SVE2
|
||||
if (!af.has_sve2) { return 0; }
|
||||
score += 1<<5;
|
||||
#endif
|
||||
#ifdef GGML_USE_SME
|
||||
if (!af.has_sme) { return 0; }
|
||||
score += 1<<6;
|
||||
#endif
|
||||
|
||||
return score;
|
||||
}
|
||||
|
||||
GGML_BACKEND_DL_SCORE_IMPL(ggml_backend_cpu_aarch64_score)
|
||||
|
||||
# endif // defined(__aarch64__)
|
||||
4114
ggml/src/ggml-cpu/arch/arm/quants.c
Normal file
4114
ggml/src/ggml-cpu/arch/arm/quants.c
Normal file
File diff suppressed because it is too large
Load Diff
2163
ggml/src/ggml-cpu/arch/arm/repack.cpp
Normal file
2163
ggml/src/ggml-cpu/arch/arm/repack.cpp
Normal file
File diff suppressed because it is too large
Load Diff
2639
ggml/src/ggml-cpu/arch/loongarch/quants.c
Normal file
2639
ggml/src/ggml-cpu/arch/loongarch/quants.c
Normal file
File diff suppressed because it is too large
Load Diff
82
ggml/src/ggml-cpu/arch/powerpc/cpu-feats.cpp
Normal file
82
ggml/src/ggml-cpu/arch/powerpc/cpu-feats.cpp
Normal file
@@ -0,0 +1,82 @@
|
||||
# include "ggml-backend-impl.h"
|
||||
|
||||
#if defined(__powerpc64__) || defined(__ppc64__) || defined(__PPC64__)
|
||||
|
||||
#if defined(__linux__)
|
||||
#include <sys/auxv.h>
|
||||
#endif
|
||||
|
||||
#include <string>
|
||||
|
||||
struct powerpc_features {
|
||||
std::string platform = "";
|
||||
int power_version = -1;
|
||||
|
||||
bool has_vsx = false;
|
||||
|
||||
powerpc_features() {
|
||||
#if defined(__linux__)
|
||||
unsigned long auxval = getauxval(AT_PLATFORM);
|
||||
if (auxval) {
|
||||
platform = std::string(reinterpret_cast<const char*>(auxval));
|
||||
// TBD: Do systems exist that return this in uppercase?
|
||||
if (platform.substr(0, 5) == "power") {
|
||||
// Extractt a numeric suffix, if one exists
|
||||
int vpos = -1;
|
||||
for (int i = platform.length() - 1; i >= 0; i--) {
|
||||
if (std::isdigit(platform[i])) {
|
||||
vpos = i;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (vpos > -1) {
|
||||
power_version = std::stoi(platform.substr(vpos));
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
if (power_version >= 9) {
|
||||
has_vsx = true;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
static int ggml_backend_cpu_powerpc_score() {
|
||||
int score = 1;
|
||||
powerpc_features pf;
|
||||
|
||||
// Platform scores
|
||||
#if defined(GGML_USE_POWER7)
|
||||
if (pf.power_version < 7) { return 0; }
|
||||
score += 1<<1;
|
||||
#endif
|
||||
#if defined(GGML_USE_POWER8)
|
||||
if (pf.power_version < 8) { return 0; }
|
||||
score += 1<<2;
|
||||
#endif
|
||||
#if defined(GGML_USE_POWER9)
|
||||
if (pf.power_version < 9) { return 0; }
|
||||
score += 1<<3;
|
||||
#endif
|
||||
#if defined(GGML_USE_POWER10)
|
||||
if (pf.power_version < 10) { return 0; }
|
||||
score += 1<<4;
|
||||
#endif
|
||||
#if defined(GGML_USE_POWER11)
|
||||
if (pf.power_version < 11) { return 0; }
|
||||
score += 1<<5;
|
||||
#endif
|
||||
|
||||
// Feature scores
|
||||
#if defined(GGML_USE_VSX)
|
||||
if (!pf.has_vsx) { return 0; }
|
||||
score += 1<<6;
|
||||
#endif
|
||||
|
||||
return score;
|
||||
}
|
||||
|
||||
GGML_BACKEND_DL_SCORE_IMPL(ggml_backend_cpu_powerpc_score)
|
||||
|
||||
#endif // defined(__powerpc64__) || defined(__ppc64__) || defined(__PPC64__)
|
||||
2732
ggml/src/ggml-cpu/arch/powerpc/quants.c
Normal file
2732
ggml/src/ggml-cpu/arch/powerpc/quants.c
Normal file
File diff suppressed because it is too large
Load Diff
2069
ggml/src/ggml-cpu/arch/riscv/quants.c
Normal file
2069
ggml/src/ggml-cpu/arch/riscv/quants.c
Normal file
File diff suppressed because it is too large
Load Diff
397
ggml/src/ggml-cpu/arch/riscv/repack.cpp
Normal file
397
ggml/src/ggml-cpu/arch/riscv/repack.cpp
Normal file
@@ -0,0 +1,397 @@
|
||||
#define GGML_COMMON_IMPL_CPP
|
||||
#define GGML_COMMON_DECL_CPP
|
||||
#include "ggml-common.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "simd-mappings.h"
|
||||
#include "traits.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstring>
|
||||
#include <cassert>
|
||||
#include <cstdlib> // for qsort
|
||||
#include <cstdio> // for GGML_ASSERT
|
||||
|
||||
#define GGML_CPU_CLANG_WORKAROUND
|
||||
#include "../../repack.h"
|
||||
|
||||
#if defined(__GNUC__)
|
||||
#pragma GCC diagnostic ignored "-Woverlength-strings"
|
||||
#endif
|
||||
|
||||
#define UNUSED GGML_UNUSED
|
||||
|
||||
void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
const int qk = QK8_0;
|
||||
const int nb = n / qk;
|
||||
const int ncols_interleaved = 8;
|
||||
const int blocklen = 8;
|
||||
|
||||
assert (n % qk == 0);
|
||||
assert (nc % ncols_interleaved == 0);
|
||||
|
||||
UNUSED(s);
|
||||
UNUSED(bs);
|
||||
UNUSED(vx);
|
||||
UNUSED(vy);
|
||||
UNUSED(nr);
|
||||
UNUSED(nc);
|
||||
UNUSED(nb);
|
||||
UNUSED(ncols_interleaved);
|
||||
UNUSED(blocklen);
|
||||
|
||||
#if defined __riscv_v
|
||||
if (__riscv_vlenb() >= QK4_0) {
|
||||
const size_t vl = QK4_0;
|
||||
|
||||
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
|
||||
|
||||
vfloat32m1_t sumf = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
|
||||
for (int l = 0; l < nb; l++) {
|
||||
const int64_t a0 = *(const int64_t *)&a_ptr[l].qs[0];
|
||||
const int64_t a1 = *(const int64_t *)&a_ptr[l].qs[8];
|
||||
const int64_t a2 = *(const int64_t *)&a_ptr[l].qs[16];
|
||||
const int64_t a3 = *(const int64_t *)&a_ptr[l].qs[24];
|
||||
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment constraints
|
||||
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(a0, vl / 4));
|
||||
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(a1, vl / 4));
|
||||
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(a2, vl / 4));
|
||||
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(a3, vl / 4));
|
||||
|
||||
const vint8m4_t rhs_raw_vec = __riscv_vle8_v_i8m4((const int8_t *)b_ptr[l].qs, vl * 4);
|
||||
const vint8m4_t rhs_vec_lo = __riscv_vsra_vx_i8m4(__riscv_vsll_vx_i8m4(rhs_raw_vec, 4, vl * 4), 4, vl * 4);
|
||||
const vint8m4_t rhs_vec_hi = __riscv_vsra_vx_i8m4(rhs_raw_vec, 4, vl * 4);
|
||||
const vint8m2_t rhs_vec_lo_0 = __riscv_vget_v_i8m4_i8m2(rhs_vec_lo, 0);
|
||||
const vint8m2_t rhs_vec_lo_1 = __riscv_vget_v_i8m4_i8m2(rhs_vec_lo, 1);
|
||||
const vint8m2_t rhs_vec_hi_0 = __riscv_vget_v_i8m4_i8m2(rhs_vec_hi, 0);
|
||||
const vint8m2_t rhs_vec_hi_1 = __riscv_vget_v_i8m4_i8m2(rhs_vec_hi, 1);
|
||||
|
||||
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
|
||||
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
|
||||
|
||||
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_hi_m));
|
||||
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
|
||||
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
|
||||
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
|
||||
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
|
||||
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
|
||||
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
|
||||
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
|
||||
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
|
||||
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
|
||||
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
|
||||
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
|
||||
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
|
||||
|
||||
// vector version needs Zvfhmin extension
|
||||
const float a_scale = GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
|
||||
const float b_scales[8] = {
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[0]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[1]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[2]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[3]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[4]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[5]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[6]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[7])
|
||||
};
|
||||
const vfloat32m1_t b_scales_vec = __riscv_vle32_v_f32m1(b_scales, vl / 4);
|
||||
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scale, vl / 4);
|
||||
sumf = __riscv_vfmacc_vv_f32m1(sumf, tmp1, b_scales_vec, vl / 4);
|
||||
}
|
||||
__riscv_vse32_v_f32m1(s + x * ncols_interleaved, sumf, vl / 4);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
#endif
|
||||
{
|
||||
float sumf[8];
|
||||
int sumi;
|
||||
|
||||
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
|
||||
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
|
||||
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
|
||||
}
|
||||
sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
const int qk = QK8_0;
|
||||
const int nb = n / qk;
|
||||
const int ncols_interleaved = 8;
|
||||
const int blocklen = 8;
|
||||
|
||||
assert (n % qk == 0);
|
||||
assert (nr % 4 == 0);
|
||||
assert (nc % ncols_interleaved == 0);
|
||||
|
||||
UNUSED(s);
|
||||
UNUSED(bs);
|
||||
UNUSED(vx);
|
||||
UNUSED(vy);
|
||||
UNUSED(nr);
|
||||
UNUSED(nc);
|
||||
UNUSED(nb);
|
||||
UNUSED(ncols_interleaved);
|
||||
UNUSED(blocklen);
|
||||
|
||||
#if defined __riscv_v
|
||||
if (__riscv_vlenb() >= QK4_0) {
|
||||
const size_t vl = QK4_0;
|
||||
|
||||
for (int y = 0; y < nr / 4; y++) {
|
||||
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
|
||||
vfloat32m1_t sumf0 = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
|
||||
vfloat32m1_t sumf1 = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
|
||||
vfloat32m1_t sumf2 = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
|
||||
vfloat32m1_t sumf3 = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
|
||||
for (int l = 0; l < nb; l++) {
|
||||
const vint8m4_t rhs_raw_vec = __riscv_vle8_v_i8m4((const int8_t *)b_ptr[l].qs, vl * 4);
|
||||
const vint8m4_t rhs_vec_lo = __riscv_vsra_vx_i8m4(__riscv_vsll_vx_i8m4(rhs_raw_vec, 4, vl * 4), 4, vl * 4);
|
||||
const vint8m4_t rhs_vec_hi = __riscv_vsra_vx_i8m4(rhs_raw_vec, 4, vl * 4);
|
||||
const vint8m2_t rhs_vec_lo_0 = __riscv_vget_v_i8m4_i8m2(rhs_vec_lo, 0);
|
||||
const vint8m2_t rhs_vec_lo_1 = __riscv_vget_v_i8m4_i8m2(rhs_vec_lo, 1);
|
||||
const vint8m2_t rhs_vec_hi_0 = __riscv_vget_v_i8m4_i8m2(rhs_vec_hi, 0);
|
||||
const vint8m2_t rhs_vec_hi_1 = __riscv_vget_v_i8m4_i8m2(rhs_vec_hi, 1);
|
||||
|
||||
// vector version needs Zvfhmin extension
|
||||
const float a_scales[4] = {
|
||||
GGML_CPU_FP16_TO_FP32(a_ptr[l].d[0]),
|
||||
GGML_CPU_FP16_TO_FP32(a_ptr[l].d[1]),
|
||||
GGML_CPU_FP16_TO_FP32(a_ptr[l].d[2]),
|
||||
GGML_CPU_FP16_TO_FP32(a_ptr[l].d[3])
|
||||
};
|
||||
const float b_scales[8] = {
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[0]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[1]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[2]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[3]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[4]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[5]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[6]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[7])
|
||||
};
|
||||
const vfloat32m1_t b_scales_vec = __riscv_vle32_v_f32m1(b_scales, vl / 4);
|
||||
|
||||
const int64_t A0 = *(const int64_t *)&a_ptr[l].qs[0];
|
||||
const int64_t A4 = *(const int64_t *)&a_ptr[l].qs[32];
|
||||
const int64_t A8 = *(const int64_t *)&a_ptr[l].qs[64];
|
||||
const int64_t Ac = *(const int64_t *)&a_ptr[l].qs[96];
|
||||
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment
|
||||
vint16m4_t sumi_l0;
|
||||
{
|
||||
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A0, vl / 4));
|
||||
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A4, vl / 4));
|
||||
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A8, vl / 4));
|
||||
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Ac, vl / 4));
|
||||
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
|
||||
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
|
||||
|
||||
sumi_l0 = sumi_hi_m;
|
||||
}
|
||||
|
||||
{
|
||||
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_l0));
|
||||
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
|
||||
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
|
||||
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
|
||||
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
|
||||
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
|
||||
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
|
||||
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
|
||||
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
|
||||
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
|
||||
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
|
||||
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
|
||||
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
|
||||
|
||||
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scales[0], vl / 4);
|
||||
sumf0 = __riscv_vfmacc_vv_f32m1(sumf0, tmp1, b_scales_vec, vl / 4);
|
||||
}
|
||||
|
||||
const int64_t A1 = *(const int64_t *)&a_ptr[l].qs[8];
|
||||
const int64_t A5 = *(const int64_t *)&a_ptr[l].qs[40];
|
||||
const int64_t A9 = *(const int64_t *)&a_ptr[l].qs[72];
|
||||
const int64_t Ad = *(const int64_t *)&a_ptr[l].qs[104];
|
||||
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment
|
||||
vint16m4_t sumi_l1;
|
||||
{
|
||||
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A1, vl / 4));
|
||||
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A5, vl / 4));
|
||||
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A9, vl / 4));
|
||||
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Ad, vl / 4));
|
||||
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
|
||||
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
|
||||
|
||||
sumi_l1 = sumi_hi_m;
|
||||
}
|
||||
|
||||
{
|
||||
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_l1));
|
||||
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
|
||||
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
|
||||
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
|
||||
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
|
||||
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
|
||||
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
|
||||
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
|
||||
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
|
||||
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
|
||||
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
|
||||
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
|
||||
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
|
||||
|
||||
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scales[1], vl / 4);
|
||||
sumf1 = __riscv_vfmacc_vv_f32m1(sumf1, tmp1, b_scales_vec, vl / 4);
|
||||
}
|
||||
|
||||
const int64_t A2 = *(const int64_t *)&a_ptr[l].qs[16];
|
||||
const int64_t A6 = *(const int64_t *)&a_ptr[l].qs[48];
|
||||
const int64_t Aa = *(const int64_t *)&a_ptr[l].qs[80];
|
||||
const int64_t Ae = *(const int64_t *)&a_ptr[l].qs[112];
|
||||
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment
|
||||
vint16m4_t sumi_l2;
|
||||
{
|
||||
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A2, vl / 4));
|
||||
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A6, vl / 4));
|
||||
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Aa, vl / 4));
|
||||
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Ae, vl / 4));
|
||||
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
|
||||
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
|
||||
|
||||
sumi_l2 = sumi_hi_m;
|
||||
}
|
||||
|
||||
{
|
||||
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_l2));
|
||||
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
|
||||
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
|
||||
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
|
||||
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
|
||||
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
|
||||
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
|
||||
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
|
||||
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
|
||||
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
|
||||
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
|
||||
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
|
||||
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
|
||||
|
||||
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scales[2], vl / 4);
|
||||
sumf2 = __riscv_vfmacc_vv_f32m1(sumf2, tmp1, b_scales_vec, vl / 4);
|
||||
}
|
||||
|
||||
const int64_t A3 = *(const int64_t *)&a_ptr[l].qs[24];
|
||||
const int64_t A7 = *(const int64_t *)&a_ptr[l].qs[56];
|
||||
const int64_t Ab = *(const int64_t *)&a_ptr[l].qs[88];
|
||||
const int64_t Af = *(const int64_t *)&a_ptr[l].qs[120];
|
||||
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment
|
||||
vint16m4_t sumi_l3;
|
||||
{
|
||||
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A3, vl / 4));
|
||||
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A7, vl / 4));
|
||||
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Ab, vl / 4));
|
||||
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Af, vl / 4));
|
||||
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
|
||||
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
|
||||
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
|
||||
|
||||
sumi_l3 = sumi_hi_m;
|
||||
}
|
||||
|
||||
{
|
||||
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_l3));
|
||||
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
|
||||
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
|
||||
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
|
||||
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
|
||||
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
|
||||
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
|
||||
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
|
||||
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
|
||||
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
|
||||
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
|
||||
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
|
||||
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
|
||||
|
||||
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scales[3], vl / 4);
|
||||
sumf3 = __riscv_vfmacc_vv_f32m1(sumf3, tmp1, b_scales_vec, vl / 4);
|
||||
}
|
||||
}
|
||||
__riscv_vse32_v_f32m1(&s[(y * 4 + 0) * bs + x * ncols_interleaved], sumf0, vl / 4);
|
||||
__riscv_vse32_v_f32m1(&s[(y * 4 + 1) * bs + x * ncols_interleaved], sumf1, vl / 4);
|
||||
__riscv_vse32_v_f32m1(&s[(y * 4 + 2) * bs + x * ncols_interleaved], sumf2, vl / 4);
|
||||
__riscv_vse32_v_f32m1(&s[(y * 4 + 3) * bs + x * ncols_interleaved], sumf3, vl / 4);
|
||||
}
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__)
|
||||
float sumf[4][8];
|
||||
int sumi;
|
||||
|
||||
for (int y = 0; y < nr / 4; y++) {
|
||||
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
|
||||
}
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
|
||||
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
|
||||
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
|
||||
}
|
||||
sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++)
|
||||
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
1300
ggml/src/ggml-cpu/arch/s390/quants.c
Normal file
1300
ggml/src/ggml-cpu/arch/s390/quants.c
Normal file
File diff suppressed because it is too large
Load Diff
1481
ggml/src/ggml-cpu/arch/wasm/quants.c
Normal file
1481
ggml/src/ggml-cpu/arch/wasm/quants.c
Normal file
File diff suppressed because it is too large
Load Diff
4311
ggml/src/ggml-cpu/arch/x86/quants.c
Normal file
4311
ggml/src/ggml-cpu/arch/x86/quants.c
Normal file
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -1,9 +1,10 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-cpu-traits.h"
|
||||
#include "traits.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "simd-mappings.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
||||
@@ -12,11 +13,11 @@
|
||||
// convenience functions/macros for use in template calls
|
||||
// note: these won't be required after the 'traits' lookup table is used.
|
||||
static inline ggml_fp16_t f32_to_f16(float x) {
|
||||
return GGML_FP32_TO_FP16(x);
|
||||
return GGML_CPU_FP32_TO_FP16(x);
|
||||
}
|
||||
|
||||
static inline float f16_to_f32(ggml_fp16_t x) {
|
||||
return GGML_FP16_TO_FP32(x);
|
||||
return GGML_CPU_FP16_TO_FP32(x);
|
||||
}
|
||||
|
||||
static inline ggml_bf16_t f32_to_bf16(float x) {
|
||||
|
||||
@@ -1,8 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml-cpu-traits.h"
|
||||
#include "ggml.h"
|
||||
|
||||
// GGML internal header
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_cpu_aarch64_buffer_type(void);
|
||||
@@ -62,11 +62,17 @@ struct ggml_compute_params {
|
||||
#if defined(__s390x__) && defined(__VEC__)
|
||||
#ifndef __VXE__
|
||||
#define __VXE__
|
||||
#endif
|
||||
#endif // __VXE__
|
||||
#ifndef __VXE2__
|
||||
#define __VXE2__
|
||||
#endif
|
||||
#endif
|
||||
#endif // __VXE2__
|
||||
#endif // __s390x__ && __VEC__
|
||||
|
||||
#if defined(__s390x__) && defined(GGML_NNPA)
|
||||
#ifndef __NNPA__
|
||||
#define __NNPA__
|
||||
#endif // __NNPA__
|
||||
#endif // __s390x__ && GGML_NNPA
|
||||
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
#include <sys/prctl.h>
|
||||
@@ -371,7 +377,7 @@ inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b)
|
||||
#define vec_xor(a, b) ((a) ^ (b)) // Vector XOR
|
||||
#endif
|
||||
|
||||
typedef signed char char8x16_t __attribute__((vector_size(16)));
|
||||
typedef signed char char8x16_t __attribute__((vector_size(16)));
|
||||
typedef unsigned char uchar8x16_t __attribute__((vector_size(16)));
|
||||
|
||||
typedef int8_t int8x16_t __attribute__((vector_size(16)));
|
||||
@@ -382,10 +388,10 @@ typedef uint8_t uint8x16_t __attribute__((vector_size(16)));
|
||||
typedef uint16_t uint16x8_t __attribute__((vector_size(16)));
|
||||
typedef uint32_t uint32x4_t __attribute__((vector_size(16)));
|
||||
|
||||
typedef float float32x4_t __attribute__((vector_size(16)));
|
||||
typedef double double64x2_t __attribute((vector_size(16)));
|
||||
typedef float float32x4_t __attribute__((vector_size(16)));
|
||||
typedef double double64x2_t __attribute__((vector_size(16)));
|
||||
|
||||
typedef signed long long long64x2_t __attribute((vector_size(16)));
|
||||
typedef signed long long long64x2_t __attribute__((vector_size(16)));
|
||||
typedef unsigned long long ulong64x2_t __attribute__((vector_size(16)));
|
||||
|
||||
typedef struct ggml_uint8x16x2_t {
|
||||
@@ -503,6 +509,9 @@ static __m256 __lasx_xvreplfr2vr_s(const float val) {
|
||||
// TODO: move to ggml-threading
|
||||
void ggml_barrier(struct ggml_threadpool * tp);
|
||||
|
||||
void ggml_threadpool_chunk_set(struct ggml_threadpool * tp, int value);
|
||||
int ggml_threadpool_chunk_add(struct ggml_threadpool * tp, int value);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -3,11 +3,11 @@
|
||||
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-cpu-traits.h"
|
||||
#include "traits.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-cpu-quants.h"
|
||||
#include "quants.h"
|
||||
#include "ggml-threading.h"
|
||||
#include "unary-ops.h"
|
||||
#include "binary-ops.h"
|
||||
@@ -72,15 +72,13 @@
|
||||
#define UNUSED GGML_UNUSED
|
||||
#define SWAP(x, y, T) do { T SWAP = x; (x) = y; (y) = SWAP; } while (0)
|
||||
|
||||
// precomputed f32 table for f16 (256 KB) (simd-mappings.h)
|
||||
float ggml_table_f32_f16[1 << 16];
|
||||
|
||||
#if defined(__ARM_ARCH)
|
||||
struct ggml_arm_arch_features_type {
|
||||
int has_neon;
|
||||
int has_dotprod;
|
||||
int has_i8mm;
|
||||
int has_sve;
|
||||
int sve_cnt;
|
||||
int has_sme;
|
||||
} ggml_arm_arch_features = {-1, -1, -1, -1, 0, -1};
|
||||
} ggml_arm_arch_features = { 0 };
|
||||
#endif
|
||||
|
||||
|
||||
@@ -197,6 +195,7 @@ typedef pthread_t ggml_thread_t;
|
||||
|
||||
static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
|
||||
[GGML_TYPE_F32] = {
|
||||
.from_float = (ggml_from_float_t) ggml_cpu_fp32_to_fp32,
|
||||
.vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
|
||||
.vec_dot_type = GGML_TYPE_F32,
|
||||
.nrows = 1,
|
||||
@@ -559,6 +558,14 @@ void ggml_barrier(struct ggml_threadpool * tp) {
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_threadpool_chunk_set(struct ggml_threadpool * tp, int value) {
|
||||
atomic_store_explicit(&tp->current_chunk, value, memory_order_relaxed);
|
||||
}
|
||||
|
||||
int ggml_threadpool_chunk_add(struct ggml_threadpool * tp, int value) {
|
||||
return atomic_fetch_add_explicit(&tp->current_chunk, value, memory_order_relaxed);
|
||||
}
|
||||
|
||||
#if defined(__gnu_linux__)
|
||||
static cpu_set_t ggml_get_numa_affinity(void) {
|
||||
cpu_set_t cpuset;
|
||||
@@ -670,87 +677,15 @@ bool ggml_is_numa(void) {
|
||||
|
||||
#if defined(__linux__) && defined(__aarch64__)
|
||||
#include <sys/auxv.h>
|
||||
#elif defined(__APPLE__)
|
||||
#include <sys/sysctl.h>
|
||||
#endif
|
||||
|
||||
#if !defined(HWCAP2_I8MM)
|
||||
#define HWCAP2_I8MM (1 << 13)
|
||||
#endif
|
||||
|
||||
#if !defined(HWCAP2_SME)
|
||||
#define HWCAP2_SME (1 << 23)
|
||||
#endif
|
||||
|
||||
static void ggml_init_arm_arch_features(void) {
|
||||
#if defined(__linux__) && defined(__aarch64__)
|
||||
uint32_t hwcap = getauxval(AT_HWCAP);
|
||||
uint32_t hwcap2 = getauxval(AT_HWCAP2);
|
||||
|
||||
ggml_arm_arch_features.has_neon = !!(hwcap & HWCAP_ASIMD);
|
||||
ggml_arm_arch_features.has_dotprod = !!(hwcap & HWCAP_ASIMDDP);
|
||||
ggml_arm_arch_features.has_i8mm = !!(hwcap2 & HWCAP2_I8MM);
|
||||
ggml_arm_arch_features.has_sve = !!(hwcap & HWCAP_SVE);
|
||||
ggml_arm_arch_features.has_sme = !!(hwcap2 & HWCAP2_SME);
|
||||
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
#if defined(__linux__) && defined(__aarch64__) && defined(__ARM_FEATURE_SVE)
|
||||
ggml_arm_arch_features.sve_cnt = PR_SVE_VL_LEN_MASK & prctl(PR_SVE_GET_VL);
|
||||
#endif
|
||||
#elif defined(__APPLE__)
|
||||
int oldp = 0;
|
||||
size_t size = sizeof(oldp);
|
||||
if (sysctlbyname("hw.optional.AdvSIMD", &oldp, &size, NULL, 0) != 0) {
|
||||
oldp = 0;
|
||||
}
|
||||
ggml_arm_arch_features.has_neon = oldp;
|
||||
|
||||
if (sysctlbyname("hw.optional.arm.FEAT_DotProd", &oldp, &size, NULL, 0) != 0) {
|
||||
oldp = 0;
|
||||
}
|
||||
ggml_arm_arch_features.has_dotprod = oldp;
|
||||
|
||||
if (sysctlbyname("hw.optional.arm.FEAT_I8MM", &oldp, &size, NULL, 0) != 0) {
|
||||
oldp = 0;
|
||||
}
|
||||
ggml_arm_arch_features.has_i8mm = oldp;
|
||||
|
||||
if (sysctlbyname("hw.optional.arm.FEAT_SME", &oldp, &size, NULL, 0) != 0) {
|
||||
oldp = 0;
|
||||
}
|
||||
ggml_arm_arch_features.has_sme = oldp;
|
||||
|
||||
ggml_arm_arch_features.has_sve = 0;
|
||||
ggml_arm_arch_features.sve_cnt = 0;
|
||||
#else
|
||||
// Run-time CPU feature detection not implemented for this platform, fallback to compile time
|
||||
#if defined(__ARM_NEON)
|
||||
ggml_arm_arch_features.has_neon = 1;
|
||||
#else
|
||||
ggml_arm_arch_features.has_neon = 0;
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
ggml_arm_arch_features.has_i8mm = 1;
|
||||
#else
|
||||
ggml_arm_arch_features.has_i8mm = 0;
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
ggml_arm_arch_features.has_sve = 1;
|
||||
ggml_arm_arch_features.sve_cnt = 16;
|
||||
#else
|
||||
ggml_arm_arch_features.has_sve = 0;
|
||||
ggml_arm_arch_features.sve_cnt = 0;
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_FEATURE_SME) || defined(__ARM_FEATURE_SME2)
|
||||
ggml_arm_arch_features.has_sme = 1;
|
||||
#else
|
||||
ggml_arm_arch_features.has_sme = 0;
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // __ARM_ARCH
|
||||
|
||||
struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
|
||||
GGML_ASSERT(!ggml_get_no_alloc(ctx));
|
||||
@@ -805,7 +740,7 @@ struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
|
||||
{
|
||||
assert(tensor->nb[0] == sizeof(ggml_fp16_t));
|
||||
for (int i = 0; i < n; i++) {
|
||||
ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
|
||||
ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_CPU_FP32_TO_FP16(value));
|
||||
}
|
||||
} break;
|
||||
case GGML_TYPE_BF16:
|
||||
@@ -864,7 +799,7 @@ struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
|
||||
{
|
||||
assert(tensor->nb[0] == sizeof(ggml_fp16_t));
|
||||
for (int i = 0; i < n; i++) {
|
||||
ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
|
||||
ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_CPU_FP32_TO_FP16(value));
|
||||
}
|
||||
} break;
|
||||
case GGML_TYPE_BF16:
|
||||
@@ -915,7 +850,7 @@ int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
|
||||
return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
|
||||
return GGML_CPU_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
|
||||
}
|
||||
case GGML_TYPE_BF16:
|
||||
{
|
||||
@@ -960,7 +895,7 @@ void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
|
||||
((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
|
||||
((ggml_fp16_t *)(tensor->data))[i] = GGML_CPU_FP32_TO_FP16(value);
|
||||
} break;
|
||||
case GGML_TYPE_BF16:
|
||||
{
|
||||
@@ -989,7 +924,7 @@ int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i
|
||||
case GGML_TYPE_I32:
|
||||
return ((int32_t *) data)[0];
|
||||
case GGML_TYPE_F16:
|
||||
return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
|
||||
return GGML_CPU_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
|
||||
case GGML_TYPE_BF16:
|
||||
return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
|
||||
case GGML_TYPE_F32:
|
||||
@@ -1016,7 +951,7 @@ void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2,
|
||||
} break;
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
|
||||
((ggml_fp16_t *)(data))[0] = GGML_CPU_FP32_TO_FP16(value);
|
||||
} break;
|
||||
case GGML_TYPE_BF16:
|
||||
{
|
||||
@@ -1054,7 +989,7 @@ float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
|
||||
}
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
|
||||
return GGML_CPU_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
|
||||
}
|
||||
case GGML_TYPE_BF16:
|
||||
{
|
||||
@@ -1093,7 +1028,7 @@ void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
|
||||
} break;
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
|
||||
((ggml_fp16_t *)(tensor->data))[i] = GGML_CPU_FP32_TO_FP16(value);
|
||||
} break;
|
||||
case GGML_TYPE_BF16:
|
||||
{
|
||||
@@ -1120,7 +1055,7 @@ float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2,
|
||||
case GGML_TYPE_I32:
|
||||
return ((int32_t *) data)[0];
|
||||
case GGML_TYPE_F16:
|
||||
return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
|
||||
return GGML_CPU_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
|
||||
case GGML_TYPE_BF16:
|
||||
return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
|
||||
case GGML_TYPE_F32:
|
||||
@@ -1147,7 +1082,7 @@ void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2,
|
||||
} break;
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
|
||||
((ggml_fp16_t *)(data))[0] = GGML_CPU_FP32_TO_FP16(value);
|
||||
} break;
|
||||
case GGML_TYPE_BF16:
|
||||
{
|
||||
@@ -1883,6 +1818,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
{
|
||||
ggml_compute_forward_get_rows_back(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_SET_ROWS:
|
||||
{
|
||||
ggml_compute_forward_set_rows(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_DIAG:
|
||||
{
|
||||
ggml_compute_forward_diag(params, tensor);
|
||||
@@ -1959,6 +1898,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
{
|
||||
ggml_compute_forward_pad_reflect_1d(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_ROLL:
|
||||
{
|
||||
ggml_compute_forward_roll(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_ARANGE:
|
||||
{
|
||||
ggml_compute_forward_arange(params, tensor);
|
||||
@@ -2006,6 +1949,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
{
|
||||
ggml_compute_forward_unary(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_GLU:
|
||||
{
|
||||
ggml_compute_forward_glu(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_GET_REL_POS:
|
||||
{
|
||||
ggml_compute_forward_get_rel_pos(params, tensor);
|
||||
@@ -2216,6 +2163,18 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
break;
|
||||
case GGML_OP_GLU:
|
||||
switch (ggml_get_glu_op(node)) {
|
||||
case GGML_GLU_OP_REGLU:
|
||||
case GGML_GLU_OP_GEGLU:
|
||||
case GGML_GLU_OP_SWIGLU:
|
||||
{
|
||||
n_tasks = n_threads;
|
||||
} break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
break;
|
||||
case GGML_OP_SILU_BACK:
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
@@ -2232,6 +2191,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
n_tasks = n_threads;
|
||||
} break;
|
||||
case GGML_OP_GET_ROWS:
|
||||
case GGML_OP_SET_ROWS:
|
||||
{
|
||||
// FIXME: get_rows can use additional threads, but the cost of launching additional threads
|
||||
// decreases performance with GPU offloading
|
||||
@@ -2283,6 +2243,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_PAD:
|
||||
case GGML_OP_PAD_REFLECT_1D:
|
||||
case GGML_OP_ROLL:
|
||||
case GGML_OP_ARANGE:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_ARGSORT:
|
||||
@@ -3185,6 +3146,10 @@ enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct g
|
||||
return ggml_graph_compute(cgraph, &cplan);
|
||||
}
|
||||
|
||||
void ggml_cpu_fp32_to_fp32(const float * x, float * y, int64_t n) {
|
||||
memcpy(y, x, n * sizeof(float));
|
||||
}
|
||||
|
||||
void ggml_cpu_fp32_to_fp16(const float * x, ggml_fp16_t * y, int64_t n) {
|
||||
int64_t i = 0;
|
||||
#if defined(__F16C__)
|
||||
@@ -3205,9 +3170,24 @@ void ggml_cpu_fp32_to_fp16(const float * x, ggml_fp16_t * y, int64_t n) {
|
||||
__m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
|
||||
_mm_storel_epi64((__m128i *)(y + i), y_vec);
|
||||
}
|
||||
#elif defined(__NNPA__)
|
||||
for (; i + 7 < n; i += 8) {
|
||||
float32x4_t v_xh = vec_xl(0, (const float *)(x + i + 0));
|
||||
float32x4_t v_xl = vec_xl(0, (const float *)(x + i + 4));
|
||||
uint16x8_t v_yd = vec_round_from_fp32(v_xh, v_xl, 0);
|
||||
uint16x8_t v_y = vec_convert_to_fp16(v_yd, 0);
|
||||
vec_xst(v_y, 0, (ggml_fp16_t *)(y + i));
|
||||
}
|
||||
for (; i + 3 < n; i += 4) {
|
||||
float32x4_t v_x = vec_xl(0, (const float *)(x + i));
|
||||
float32x4_t v_zero = vec_splats(0.0f);
|
||||
uint16x8_t v_yd = vec_round_from_fp32(v_x, v_zero, 0);
|
||||
uint16x8_t v_y = vec_convert_to_fp16(v_yd, 0);
|
||||
vec_xst(v_y, 0, (ggml_fp16_t *)(y + i));
|
||||
}
|
||||
#endif
|
||||
for (; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(x[i]);
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(x[i]);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -3231,9 +3211,25 @@ void ggml_cpu_fp16_to_fp32(const ggml_fp16_t * x, float * y, int64_t n) {
|
||||
__m128 y_vec = _mm_cvtph_ps(x_vec);
|
||||
_mm_storeu_ps(y + i, y_vec);
|
||||
}
|
||||
#elif defined(__NNPA__)
|
||||
for (; i + 7 < n; i += 8) {
|
||||
uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)(x + i));
|
||||
uint16x8_t v_yd = vec_convert_from_fp16(v_x, 0);
|
||||
float32x4_t v_yh = vec_extend_to_fp32_hi(v_yd, 0);
|
||||
float32x4_t v_yl = vec_extend_to_fp32_lo(v_yd, 0);
|
||||
vec_xst(v_yh, 0, (float *)(y + i + 0));
|
||||
vec_xst(v_yl, 0, (float *)(y + i + 4));
|
||||
}
|
||||
for (; i + 3 < n; i += 4) {
|
||||
uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)(x + i));
|
||||
uint16x8_t v_yd = vec_convert_from_fp16(v_x, 0);
|
||||
float32x4_t v_yh = vec_extend_to_fp32_hi(v_yd, 0);
|
||||
vec_xst(v_yh, 0, (float *)(y + i));
|
||||
}
|
||||
#endif
|
||||
|
||||
for (; i < n; ++i) {
|
||||
y[i] = GGML_FP16_TO_FP32(x[i]);
|
||||
y[i] = GGML_CPU_FP16_TO_FP32(x[i]);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -3433,9 +3429,17 @@ int ggml_cpu_has_vxe(void) {
|
||||
#endif
|
||||
}
|
||||
|
||||
int ggml_cpu_has_nnpa(void) {
|
||||
#if defined(GGML_NNPA)
|
||||
return 1;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
int ggml_cpu_has_neon(void) {
|
||||
#if defined(__ARM_ARCH) && defined(__ARM_NEON)
|
||||
return ggml_arm_arch_features.has_neon;
|
||||
return 1;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
@@ -3443,7 +3447,7 @@ int ggml_cpu_has_neon(void) {
|
||||
|
||||
int ggml_cpu_has_dotprod(void) {
|
||||
#if defined(__ARM_ARCH) && defined(__ARM_FEATURE_DOTPROD)
|
||||
return ggml_arm_arch_features.has_dotprod;
|
||||
return 1;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
@@ -3451,7 +3455,7 @@ int ggml_cpu_has_dotprod(void) {
|
||||
|
||||
int ggml_cpu_has_sve(void) {
|
||||
#if defined(__ARM_ARCH) && defined(__ARM_FEATURE_SVE)
|
||||
return ggml_arm_arch_features.has_sve;
|
||||
return 1;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
@@ -3459,7 +3463,7 @@ int ggml_cpu_has_sve(void) {
|
||||
|
||||
int ggml_cpu_has_matmul_int8(void) {
|
||||
#if defined(__ARM_ARCH) && defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
return ggml_arm_arch_features.has_i8mm;
|
||||
return 1;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
@@ -3475,14 +3479,14 @@ int ggml_cpu_get_sve_cnt(void) {
|
||||
|
||||
int ggml_cpu_has_sme(void) {
|
||||
#if defined(__ARM_ARCH) && defined(__ARM_FEATURE_SME)
|
||||
return ggml_arm_arch_features.has_sme;
|
||||
return 1;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_cpu_init(void) {
|
||||
// needed to initialize f16 tables
|
||||
// needed to initialize ggml_time
|
||||
{
|
||||
struct ggml_init_params params = { 0, NULL, false };
|
||||
struct ggml_context * ctx = ggml_init(params);
|
||||
@@ -3503,9 +3507,10 @@ void ggml_cpu_init(void) {
|
||||
uint16_t u16;
|
||||
ggml_fp16_t fp16;
|
||||
} u = {i};
|
||||
float f = GGML_FP16_TO_FP32(u.fp16);
|
||||
ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
|
||||
ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
|
||||
float f = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
|
||||
ggml_table_f32_f16[i] = f;
|
||||
ggml_table_gelu_f16[i] = GGML_CPU_FP32_TO_FP16(ggml_gelu_f32(f));
|
||||
ggml_table_gelu_quick_f16[i] = GGML_CPU_FP32_TO_FP16(ggml_gelu_quick_f32(f));
|
||||
}
|
||||
|
||||
const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-cpu-aarch64.h"
|
||||
#include "ggml-cpu-traits.h"
|
||||
#include "repack.h"
|
||||
#include "traits.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "amx/amx.h"
|
||||
|
||||
@@ -11,7 +11,7 @@
|
||||
#include <vector>
|
||||
|
||||
#ifdef GGML_USE_CPU_HBM
|
||||
# include "ggml-cpu-hbm.h"
|
||||
# include "hbm.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CPU_KLEIDIAI
|
||||
@@ -51,9 +51,9 @@ std::vector<ggml_backend_buffer_type_t>& ggml_backend_cpu_get_extra_buffers_type
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CPU_AARCH64
|
||||
if (ggml_backend_cpu_aarch64_buffer_type()) {
|
||||
bufts.push_back(ggml_backend_cpu_aarch64_buffer_type());
|
||||
#ifdef GGML_USE_CPU_REPACK
|
||||
if (ggml_backend_cpu_repack_buffer_type()) {
|
||||
bufts.push_back(ggml_backend_cpu_repack_buffer_type());
|
||||
}
|
||||
#endif
|
||||
|
||||
@@ -416,6 +416,7 @@ static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const st
|
||||
|
||||
switch (op->op) {
|
||||
case GGML_OP_CPY:
|
||||
case GGML_OP_SET_ROWS:
|
||||
return
|
||||
op->type != GGML_TYPE_IQ3_XXS &&
|
||||
op->type != GGML_TYPE_IQ3_S &&
|
||||
@@ -578,6 +579,9 @@ static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t r
|
||||
if (ggml_cpu_has_vxe()) {
|
||||
features.push_back({ "VXE", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_nnpa()) {
|
||||
features.push_back({ "NNPA", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_wasm_simd()) {
|
||||
features.push_back({ "WASM_SIMD", "1" });
|
||||
}
|
||||
@@ -596,8 +600,8 @@ static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t r
|
||||
#ifdef GGML_USE_CPU_KLEIDIAI
|
||||
features.push_back({ "KLEIDIAI", "1" });
|
||||
#endif
|
||||
#ifdef GGML_USE_CPU_AARCH64
|
||||
features.push_back({ "AARCH64_REPACK", "1" });
|
||||
#ifdef GGML_USE_CPU_REPACK
|
||||
features.push_back({ "REPACK", "1" });
|
||||
#endif
|
||||
|
||||
features.push_back({ nullptr, nullptr });
|
||||
|
||||
@@ -5,7 +5,7 @@
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-impl.h"
|
||||
|
||||
#include "ggml-cpu-hbm.h"
|
||||
#include "hbm.h"
|
||||
|
||||
// buffer type HBM
|
||||
|
||||
@@ -26,7 +26,7 @@
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-threading.h"
|
||||
#include "ggml-cpu-traits.h"
|
||||
#include "traits.h"
|
||||
|
||||
#include "kernels.h"
|
||||
|
||||
|
||||
@@ -52,8 +52,8 @@
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "ggml-quants.h"
|
||||
#include "simd-mappings.h"
|
||||
|
||||
#include <atomic>
|
||||
#include <array>
|
||||
#include <type_traits>
|
||||
|
||||
@@ -63,7 +63,7 @@
|
||||
#define NOINLINE __attribute__((__noinline__))
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_NEON) || defined(__AVX512F__)
|
||||
#if defined(__ARM_NEON) || defined(__AVX512F__) || defined(__VXE__) || defined(__VXE2__)
|
||||
#define VECTOR_REGISTERS 32
|
||||
#else
|
||||
#define VECTOR_REGISTERS 16
|
||||
@@ -74,7 +74,7 @@
|
||||
namespace {
|
||||
|
||||
inline float unhalf(ggml_fp16_t d) {
|
||||
return GGML_FP16_TO_FP32(d);
|
||||
return GGML_CPU_FP16_TO_FP32(d);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@@ -110,6 +110,12 @@ inline float16x8_t sub(float16x8_t x, float16x8_t y) { return vsubq_f16(x, y); }
|
||||
inline float16x8_t mul(float16x8_t x, float16x8_t y) { return vmulq_f16(x, y); }
|
||||
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
|
||||
#if defined(__VXE__) || defined(__VXE2__)
|
||||
inline float32x4_t add(float32x4_t x, float32x4_t y) { return vec_add(x, y); }
|
||||
inline float32x4_t sub(float32x4_t x, float32x4_t y) { return vec_sub(x, y); }
|
||||
inline float32x4_t mul(float32x4_t x, float32x4_t y) { return vec_mul(x, y); }
|
||||
#endif
|
||||
|
||||
#if defined(__MMA__)
|
||||
typedef vector unsigned char vec_t;
|
||||
typedef __vector_quad acc_t;
|
||||
@@ -163,6 +169,13 @@ inline float16x8_t madd(float16x8_t a, float16x8_t b, float16x8_t c) {
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(__VXE__) || defined(__VXE2__)
|
||||
template <>
|
||||
inline float32x4_t madd(float32x4_t a, float32x4_t b, float32x4_t c) {
|
||||
return vec_madd(a, b, c);
|
||||
}
|
||||
#endif
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// VECTORIZED HORIZONTAL SUM
|
||||
|
||||
@@ -179,6 +192,13 @@ inline float hsum(float16x8_t x) {
|
||||
}
|
||||
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
|
||||
#if defined(__VXE__) || defined(__VXE2__)
|
||||
inline float hsum(float32x4_t x) {
|
||||
float32x4_t tmp = x + vec_reve(x);
|
||||
return tmp[0] + tmp[1];
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
||||
inline float hsum(__m128 x) {
|
||||
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
||||
@@ -228,6 +248,21 @@ template <> inline float32x4_t load(const ggml_fp16_t *p) {
|
||||
#endif // _MSC_VER
|
||||
#endif // __ARM_NEON
|
||||
|
||||
#if defined(__VXE__) || defined(__VXE2__)
|
||||
template <> inline float32x4_t load(const ggml_fp16_t * p) {
|
||||
float tmp[4];
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
tmp[i] = GGML_CPU_FP16_TO_FP32(p[i]);
|
||||
}
|
||||
|
||||
return vec_xl(0, (const float *)(tmp));
|
||||
}
|
||||
template <> inline float32x4_t load(const float * p) {
|
||||
return vec_xl(0, p);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
||||
template <> inline __m128 load(const float *p) {
|
||||
return _mm_loadu_ps(p);
|
||||
@@ -394,8 +429,6 @@ class tinyBLAS {
|
||||
|
||||
template <int RM, int RN, int BM>
|
||||
NOINLINE void gemm(int64_t m, int64_t n, int64_t BN) {
|
||||
static std::atomic<int64_t> current_chunk;
|
||||
|
||||
GGML_ASSERT(m % (RM * BM) == 0);
|
||||
const int64_t ytiles = m / (RM * BM);
|
||||
const int64_t xtiles = (n + RN -1) / RN;
|
||||
@@ -410,7 +443,7 @@ class tinyBLAS {
|
||||
if (params->ith == 0) {
|
||||
GGML_ASSERT( jj_BN * SIZE_BN + (NB_BN - jj_BN) * (SIZE_BN - 1) == xtiles);
|
||||
// Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
|
||||
std::atomic_store_explicit(¤t_chunk, (int64_t)params->nth, std::memory_order_relaxed);
|
||||
ggml_threadpool_chunk_set(params->threadpool, params->nth);
|
||||
}
|
||||
|
||||
ggml_barrier(params->threadpool);
|
||||
@@ -439,8 +472,7 @@ class tinyBLAS {
|
||||
GGML_ASSERT(jj == jj2);
|
||||
}
|
||||
|
||||
// next step.
|
||||
job = std::atomic_fetch_add_explicit(¤t_chunk, (int64_t)1, std::memory_order_relaxed);
|
||||
job = ggml_threadpool_chunk_add(params->threadpool, 1);
|
||||
}
|
||||
|
||||
ggml_barrier(params->threadpool);
|
||||
@@ -3323,6 +3355,14 @@ bool llamafile_sgemm(const struct ggml_compute_params * params, int64_t m, int64
|
||||
(const float *)B, ldb,
|
||||
(float *)C, ldc};
|
||||
return tb.matmul(m, n);
|
||||
#elif defined(__VXE__) || defined(__VXE2__)
|
||||
if (n < 4)
|
||||
return false;
|
||||
tinyBLAS<4, float32x4_t, float32x4_t, float, float, float> tb{ params,
|
||||
k, (const float *)A, lda,
|
||||
(const float *)B, ldb,
|
||||
(float *)C, ldc};
|
||||
return tb.matmul(m, n);
|
||||
#elif defined(__MMA__)
|
||||
if (k % 8)
|
||||
return false;
|
||||
@@ -3414,6 +3454,16 @@ bool llamafile_sgemm(const struct ggml_compute_params * params, int64_t m, int64
|
||||
(float *)C, ldc};
|
||||
return tb.matmul(m, n);
|
||||
}
|
||||
#elif defined(__VXE__) || defined(__VXE2__)
|
||||
if (n < 4)
|
||||
return false;
|
||||
if (Btype == GGML_TYPE_F16) {
|
||||
tinyBLAS<4, float32x4_t, float32x4_t, ggml_fp16_t, ggml_fp16_t, float> tb{ params,
|
||||
k, (const ggml_fp16_t *)A, lda,
|
||||
(const ggml_fp16_t *)B, ldb,
|
||||
(float *)C, ldc};
|
||||
return tb.matmul(m, n);
|
||||
}
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -1,6 +1,11 @@
|
||||
#pragma once
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
#if defined(__VXE__) || defined(__VXE2__)
|
||||
#include <vecintrin.h>
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
@@ -108,7 +108,7 @@ static void ggml_compute_forward_dup_f16(
|
||||
for (int i01 = ir0; i01 < ir1; i01++) {
|
||||
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
for (int i00 = 0; i00 < ne00; i00++) {
|
||||
dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
|
||||
dst_ptr[id] = GGML_CPU_FP16_TO_FP32(src0_ptr[i00]);
|
||||
id++;
|
||||
}
|
||||
}
|
||||
@@ -130,7 +130,7 @@ static void ggml_compute_forward_dup_f16(
|
||||
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
|
||||
for (int i00 = 0; i00 < ne00; i00++) {
|
||||
src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
|
||||
src0_f32[i00] = GGML_CPU_FP16_TO_FP32(src0_ptr[i00]);
|
||||
}
|
||||
|
||||
quantize_row_q(src0_f32, dst_ptr + id, ne00);
|
||||
@@ -156,7 +156,7 @@ static void ggml_compute_forward_dup_f16(
|
||||
for (int i00 = 0; i00 < ne00; i00++) {
|
||||
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
|
||||
dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
|
||||
dst_ptr[id] = GGML_CPU_FP16_TO_FP32(*src0_ptr);
|
||||
id++;
|
||||
}
|
||||
}
|
||||
@@ -267,7 +267,7 @@ static void ggml_compute_forward_dup_f16(
|
||||
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
||||
|
||||
*(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
|
||||
*(float *) dst_ptr = GGML_CPU_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
|
||||
|
||||
if (++i10 == ne0) {
|
||||
i10 = 0;
|
||||
@@ -372,7 +372,7 @@ static void ggml_compute_forward_dup_bf16(
|
||||
for (int i01 = ir0; i01 < ir1; i01++) {
|
||||
const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
for (int i00 = 0; i00 < ne00; i00++) {
|
||||
dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
|
||||
dst_ptr[id] = GGML_CPU_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
|
||||
id++;
|
||||
}
|
||||
}
|
||||
@@ -473,7 +473,7 @@ static void ggml_compute_forward_dup_bf16(
|
||||
for (int i00 = 0; i00 < ne00; i00++) {
|
||||
const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
|
||||
dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
|
||||
dst_ptr[id] = GGML_CPU_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
|
||||
id++;
|
||||
}
|
||||
}
|
||||
@@ -566,7 +566,7 @@ static void ggml_compute_forward_dup_bf16(
|
||||
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
||||
|
||||
*(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
|
||||
*(ggml_fp16_t *) dst_ptr = GGML_CPU_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
|
||||
|
||||
if (++i10 == ne0) {
|
||||
i10 = 0;
|
||||
@@ -696,24 +696,8 @@ static void ggml_compute_forward_dup_f32(
|
||||
if (ggml_is_contiguous(dst)) {
|
||||
// TODO: simplify
|
||||
if (nb00 == sizeof(float)) {
|
||||
if (dst->type == GGML_TYPE_F32) {
|
||||
size_t id = 0;
|
||||
const size_t rs = ne00 * nb00;
|
||||
char * dst_ptr = (char *) dst->data;
|
||||
|
||||
for (int i03 = 0; i03 < ne03; i03++) {
|
||||
for (int i02 = 0; i02 < ne02; i02++) {
|
||||
id += rs * ir0;
|
||||
for (int i01 = ir0; i01 < ir1; i01++) {
|
||||
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
|
||||
memcpy(dst_ptr + id, src0_ptr, rs);
|
||||
id += rs;
|
||||
}
|
||||
id += rs * (ne01 - ir1);
|
||||
}
|
||||
}
|
||||
} else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
|
||||
ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
|
||||
if (ggml_get_type_traits_cpu(dst->type)->from_float) {
|
||||
ggml_from_float_t const from_float = ggml_get_type_traits_cpu(dst->type)->from_float;
|
||||
|
||||
size_t id = 0;
|
||||
size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
|
||||
@@ -724,7 +708,7 @@ static void ggml_compute_forward_dup_f32(
|
||||
id += rs * ir0;
|
||||
for (int i01 = ir0; i01 < ir1; i01++) {
|
||||
const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
quantize_row_q(src0_ptr, dst_ptr + id, ne00);
|
||||
from_float(src0_ptr, dst_ptr + id, ne00);
|
||||
id += rs;
|
||||
}
|
||||
id += rs * (ne01 - ir1);
|
||||
@@ -765,7 +749,7 @@ static void ggml_compute_forward_dup_f32(
|
||||
for (int i00 = 0; i00 < ne00; i00++) {
|
||||
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
|
||||
dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
|
||||
dst_ptr[id] = GGML_CPU_FP32_TO_FP16(*src0_ptr);
|
||||
id++;
|
||||
}
|
||||
}
|
||||
@@ -878,7 +862,7 @@ static void ggml_compute_forward_dup_f32(
|
||||
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
||||
|
||||
*(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
|
||||
*(ggml_fp16_t *) dst_ptr = GGML_CPU_FP32_TO_FP16(*(const float *) src0_ptr);
|
||||
|
||||
if (++i10 == ne0) {
|
||||
i10 = 0;
|
||||
@@ -1419,7 +1403,7 @@ static void ggml_compute_forward_add1_f16_f32(
|
||||
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
|
||||
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
|
||||
for (int i = 0; i < ne0; i++) {
|
||||
dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
|
||||
dst_ptr[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(src0_ptr[i]) + v);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1435,7 +1419,7 @@ static void ggml_compute_forward_add1_f16_f16(
|
||||
GGML_ASSERT(ggml_is_scalar(src1));
|
||||
|
||||
// scalar to add
|
||||
const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
|
||||
const float v = GGML_CPU_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
@@ -1467,7 +1451,7 @@ static void ggml_compute_forward_add1_f16_f16(
|
||||
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
|
||||
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
|
||||
for (int i = 0; i < ne0; i++) {
|
||||
dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
|
||||
dst_ptr[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(src0_ptr[i]) + v);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1889,7 +1873,7 @@ static void ggml_compute_forward_sum_f16(
|
||||
}
|
||||
}
|
||||
}
|
||||
((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
|
||||
((ggml_fp16_t *) dst->data)[0] = GGML_CPU_FP32_TO_FP16(sum);
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_sum_bf16(
|
||||
@@ -2300,6 +2284,12 @@ void ggml_compute_forward_repeat(
|
||||
{
|
||||
ggml_compute_forward_repeat_f32(params, dst);
|
||||
} break;
|
||||
// TODO: templateify the implemenation and support for I64
|
||||
// ref https://github.com/ggml-org/llama.cpp/pull/14274#discussion_r2169492225
|
||||
//case GGML_TYPE_I64:
|
||||
// {
|
||||
// ggml_compute_forward_repeat_i64(params, dst);
|
||||
// } break;
|
||||
default:
|
||||
{
|
||||
GGML_ABORT("fatal error");
|
||||
@@ -2660,7 +2650,7 @@ static void ggml_compute_forward_gelu_f16(
|
||||
#ifndef NDEBUG
|
||||
for (int k = 0; k < nc; k++) {
|
||||
const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
|
||||
const float v = GGML_FP16_TO_FP32(x);
|
||||
const float v = GGML_CPU_FP16_TO_FP32(x);
|
||||
GGML_UNUSED(v);
|
||||
assert(!isnan(v));
|
||||
assert(!isinf(v));
|
||||
@@ -2763,7 +2753,7 @@ static void ggml_compute_forward_gelu_erf_f16(
|
||||
#ifndef NDEBUG
|
||||
for (int k = 0; k < nc; k++) {
|
||||
const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
|
||||
const float v = GGML_FP16_TO_FP32(x);
|
||||
const float v = GGML_CPU_FP16_TO_FP32(x);
|
||||
GGML_UNUSED(v);
|
||||
assert(!isnan(v));
|
||||
assert(!isinf(v));
|
||||
@@ -2866,7 +2856,7 @@ static void ggml_compute_forward_gelu_quick_f16(
|
||||
#ifndef NDEBUG
|
||||
for (int k = 0; k < nc; k++) {
|
||||
const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
|
||||
const float v = GGML_FP16_TO_FP32(x);
|
||||
const float v = GGML_CPU_FP16_TO_FP32(x);
|
||||
GGML_UNUSED(v);
|
||||
assert(!isnan(v));
|
||||
assert(!isinf(v));
|
||||
@@ -2969,7 +2959,7 @@ static void ggml_compute_forward_silu_f16(
|
||||
#ifndef NDEBUG
|
||||
for (int k = 0; k < nc; k++) {
|
||||
const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])))[k];
|
||||
const float v = GGML_FP16_TO_FP32(x);
|
||||
const float v = GGML_CPU_FP16_TO_FP32(x);
|
||||
GGML_UNUSED(v);
|
||||
assert(!isnan(v));
|
||||
assert(!isinf(v));
|
||||
@@ -3163,7 +3153,7 @@ static void ggml_compute_forward_silu_back_f16(
|
||||
#ifndef NDEBUG
|
||||
for (int k = 0; k < nc; k++) {
|
||||
const float x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
|
||||
const float v = GGML_FP16_TO_FP32(x);
|
||||
const float v = GGML_CPU_FP16_TO_FP32(x);
|
||||
GGML_UNUSED(v);
|
||||
assert(!isnan(v));
|
||||
assert(!isinf(v));
|
||||
@@ -3194,6 +3184,435 @@ void ggml_compute_forward_silu_back(
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_reglu
|
||||
|
||||
static void ggml_compute_forward_reglu_f32(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
char * src0_d = (char *) src0->data;
|
||||
char * src1_d = (char *) (src1 ? src1->data : src0->data);
|
||||
const size_t src0_o = src0->nb[1];
|
||||
const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous_1(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous_1(dst));
|
||||
|
||||
if (src1) {
|
||||
GGML_ASSERT(ggml_is_contiguous_1(src1));
|
||||
GGML_ASSERT(src0->type == src1->type);
|
||||
}
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
|
||||
const int nr = ggml_nrows(src0);
|
||||
|
||||
GGML_ASSERT(dst->ne[0] == nc);
|
||||
GGML_ASSERT(ggml_nrows(dst) == nr);
|
||||
|
||||
const int32_t swapped = ggml_get_op_params_i32(dst, 1);
|
||||
|
||||
// rows per thread
|
||||
const int dr = (nr + nth - 1)/nth;
|
||||
|
||||
// row range for this thread
|
||||
const int ir0 = dr*ith;
|
||||
const int ir1 = MIN(ir0 + dr, nr);
|
||||
|
||||
for (int i1 = ir0; i1 < ir1; i1++) {
|
||||
float * src0_p = (float *) (src0_d + i1*src0_o);
|
||||
float * src1_p = (float *) (src1_d + i1*src1_o);
|
||||
|
||||
if (!src1) {
|
||||
src0_p += swapped ? nc : 0;
|
||||
src1_p += swapped ? 0 : nc;
|
||||
}
|
||||
|
||||
ggml_vec_reglu_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
|
||||
|
||||
#ifndef NDEBUG
|
||||
for (int k = 0; k < nc; k++) {
|
||||
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
|
||||
GGML_UNUSED(x);
|
||||
assert(!isnan(x));
|
||||
assert(!isinf(x));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_reglu_f16(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
char * src0_d = (char *) src0->data;
|
||||
char * src1_d = (char *) (src1 ? src1->data : src0->data);
|
||||
const size_t src0_o = src0->nb[1];
|
||||
const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous_1(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous_1(dst));
|
||||
|
||||
if (src1) {
|
||||
GGML_ASSERT(ggml_is_contiguous_1(src1));
|
||||
GGML_ASSERT(src0->type == src1->type);
|
||||
}
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
|
||||
const int nr = ggml_nrows(src0);
|
||||
|
||||
GGML_ASSERT(dst->ne[0] == nc);
|
||||
GGML_ASSERT(ggml_nrows(dst) == nr);
|
||||
|
||||
const int32_t swapped = ggml_get_op_params_i32(dst, 1);
|
||||
|
||||
// rows per thread
|
||||
const int dr = (nr + nth - 1)/nth;
|
||||
|
||||
// row range for this thread
|
||||
const int ir0 = dr*ith;
|
||||
const int ir1 = MIN(ir0 + dr, nr);
|
||||
|
||||
for (int i1 = ir0; i1 < ir1; i1++) {
|
||||
ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
|
||||
ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
|
||||
|
||||
if (!src1) {
|
||||
src0_p += swapped ? nc : 0;
|
||||
src1_p += swapped ? 0 : nc;
|
||||
}
|
||||
|
||||
ggml_vec_reglu_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
|
||||
|
||||
#ifndef NDEBUG
|
||||
for (int k = 0; k < nc; k++) {
|
||||
const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
|
||||
const float v = GGML_FP16_TO_FP32(x);
|
||||
GGML_UNUSED(v);
|
||||
assert(!isnan(v));
|
||||
assert(!isinf(v));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_reglu(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
ggml_compute_forward_reglu_f32(params, dst);
|
||||
} break;
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
ggml_compute_forward_reglu_f16(params, dst);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_geglu
|
||||
|
||||
static void ggml_compute_forward_geglu_f32(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
char * src0_d = (char *) src0->data;
|
||||
char * src1_d = (char *) (src1 ? src1->data : src0->data);
|
||||
const size_t src0_o = src0->nb[1];
|
||||
const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous_1(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous_1(dst));
|
||||
|
||||
if (src1) {
|
||||
GGML_ASSERT(ggml_is_contiguous_1(src1));
|
||||
GGML_ASSERT(src0->type == src1->type);
|
||||
}
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
|
||||
const int nr = ggml_nrows(src0);
|
||||
|
||||
GGML_ASSERT(dst->ne[0] == nc);
|
||||
GGML_ASSERT(ggml_nrows(dst) == nr);
|
||||
|
||||
const int32_t swapped = ggml_get_op_params_i32(dst, 1);
|
||||
|
||||
// rows per thread
|
||||
const int dr = (nr + nth - 1)/nth;
|
||||
|
||||
// row range for this thread
|
||||
const int ir0 = dr*ith;
|
||||
const int ir1 = MIN(ir0 + dr, nr);
|
||||
|
||||
for (int i1 = ir0; i1 < ir1; i1++) {
|
||||
float * src0_p = (float *) (src0_d + i1*src0_o);
|
||||
float * src1_p = (float *) (src1_d + i1*src1_o);
|
||||
|
||||
if (!src1) {
|
||||
src0_p += swapped ? nc : 0;
|
||||
src1_p += swapped ? 0 : nc;
|
||||
}
|
||||
|
||||
ggml_vec_geglu_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
|
||||
|
||||
#ifndef NDEBUG
|
||||
for (int k = 0; k < nc; k++) {
|
||||
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
|
||||
GGML_UNUSED(x);
|
||||
assert(!isnan(x));
|
||||
assert(!isinf(x));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_geglu_f16(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
char * src0_d = (char *) src0->data;
|
||||
char * src1_d = (char *) (src1 ? src1->data : src0->data);
|
||||
const size_t src0_o = src0->nb[1];
|
||||
const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous_1(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous_1(dst));
|
||||
|
||||
if (src1) {
|
||||
GGML_ASSERT(ggml_is_contiguous_1(src1));
|
||||
GGML_ASSERT(src0->type == src1->type);
|
||||
}
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
|
||||
const int nr = ggml_nrows(src0);
|
||||
|
||||
GGML_ASSERT(dst->ne[0] == nc);
|
||||
GGML_ASSERT(ggml_nrows(dst) == nr);
|
||||
|
||||
const int32_t swapped = ggml_get_op_params_i32(dst, 1);
|
||||
|
||||
// rows per thread
|
||||
const int dr = (nr + nth - 1)/nth;
|
||||
|
||||
// row range for this thread
|
||||
const int ir0 = dr*ith;
|
||||
const int ir1 = MIN(ir0 + dr, nr);
|
||||
|
||||
for (int i1 = ir0; i1 < ir1; i1++) {
|
||||
ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
|
||||
ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
|
||||
|
||||
if (!src1) {
|
||||
src0_p += swapped ? nc : 0;
|
||||
src1_p += swapped ? 0 : nc;
|
||||
}
|
||||
|
||||
ggml_vec_geglu_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
|
||||
|
||||
#ifndef NDEBUG
|
||||
for (int k = 0; k < nc; k++) {
|
||||
const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
|
||||
const float v = GGML_FP16_TO_FP32(x);
|
||||
GGML_UNUSED(v);
|
||||
assert(!isnan(v));
|
||||
assert(!isinf(v));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_geglu(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
ggml_compute_forward_geglu_f32(params, dst);
|
||||
} break;
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
ggml_compute_forward_geglu_f16(params, dst);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_swiglu
|
||||
|
||||
static void ggml_compute_forward_swiglu_f32(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
char * src0_d = (char *) src0->data;
|
||||
char * src1_d = (char *) (src1 ? src1->data : src0->data);
|
||||
const size_t src0_o = src0->nb[1];
|
||||
const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous_1(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous_1(dst));
|
||||
|
||||
if (src1) {
|
||||
GGML_ASSERT(ggml_is_contiguous_1(src1));
|
||||
GGML_ASSERT(src0->type == src1->type);
|
||||
}
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
|
||||
const int nr = ggml_nrows(src0);
|
||||
|
||||
GGML_ASSERT(dst->ne[0] == nc);
|
||||
GGML_ASSERT(ggml_nrows(dst) == nr);
|
||||
|
||||
const int32_t swapped = ggml_get_op_params_i32(dst, 1);
|
||||
|
||||
// rows per thread
|
||||
const int dr = (nr + nth - 1)/nth;
|
||||
|
||||
// row range for this thread
|
||||
const int ir0 = dr*ith;
|
||||
const int ir1 = MIN(ir0 + dr, nr);
|
||||
|
||||
for (int i1 = ir0; i1 < ir1; i1++) {
|
||||
float * src0_p = (float *) (src0_d + i1*src0_o);
|
||||
float * src1_p = (float *) (src1_d + i1*src1_o);
|
||||
|
||||
if (!src1) {
|
||||
src0_p += swapped ? nc : 0;
|
||||
src1_p += swapped ? 0 : nc;
|
||||
}
|
||||
|
||||
ggml_vec_swiglu_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
|
||||
|
||||
#ifndef NDEBUG
|
||||
for (int k = 0; k < nc; k++) {
|
||||
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
|
||||
GGML_UNUSED(x);
|
||||
assert(!isnan(x));
|
||||
assert(!isinf(x));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_swiglu_f16(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
char * src0_d = (char *) src0->data;
|
||||
char * src1_d = (char *) (src1 ? src1->data : src0->data);
|
||||
const size_t src0_o = src0->nb[1];
|
||||
const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous_1(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous_1(dst));
|
||||
|
||||
if (src1) {
|
||||
GGML_ASSERT(ggml_is_contiguous_1(src1));
|
||||
GGML_ASSERT(src0->type == src1->type);
|
||||
}
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
|
||||
const int nr = ggml_nrows(src0);
|
||||
|
||||
GGML_ASSERT(dst->ne[0] == nc);
|
||||
GGML_ASSERT(ggml_nrows(dst) == nr);
|
||||
|
||||
const int32_t swapped = ggml_get_op_params_i32(dst, 1);
|
||||
|
||||
// rows per thread
|
||||
const int dr = (nr + nth - 1)/nth;
|
||||
|
||||
// row range for this thread
|
||||
const int ir0 = dr*ith;
|
||||
const int ir1 = MIN(ir0 + dr, nr);
|
||||
|
||||
for (int i1 = ir0; i1 < ir1; i1++) {
|
||||
ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
|
||||
ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
|
||||
|
||||
if (!src1) {
|
||||
src0_p += swapped ? nc : 0;
|
||||
src1_p += swapped ? 0 : nc;
|
||||
}
|
||||
|
||||
ggml_vec_swiglu_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
|
||||
|
||||
#ifndef NDEBUG
|
||||
for (int k = 0; k < nc; k++) {
|
||||
const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
|
||||
const float v = GGML_FP16_TO_FP32(x);
|
||||
GGML_UNUSED(v);
|
||||
assert(!isnan(v));
|
||||
assert(!isinf(v));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_swiglu(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
ggml_compute_forward_swiglu_f32(params, dst);
|
||||
} break;
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
ggml_compute_forward_swiglu_f16(params, dst);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_norm
|
||||
|
||||
static void ggml_compute_forward_norm_f32(
|
||||
@@ -4470,6 +4889,74 @@ void ggml_compute_forward_get_rows(
|
||||
//}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_set_rows_f32(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const int64_t nc = ne00;
|
||||
const int64_t nr = ne01;
|
||||
|
||||
assert(ne0 == nc);
|
||||
assert(ne2 == ne02);
|
||||
assert(ne3 == ne03);
|
||||
assert(src0->type == GGML_TYPE_F32);
|
||||
assert(ne02 % ne11 == 0);
|
||||
assert(ne03 % ne12 == 0);
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
// rows per thread
|
||||
const int64_t dr = (nr + nth - 1)/nth;
|
||||
|
||||
// row range for this thread
|
||||
const int64_t ir0 = dr*ith;
|
||||
const int64_t ir1 = std::min(ir0 + dr, nr);
|
||||
|
||||
ggml_from_float_t const from_float = ggml_get_type_traits_cpu(dst->type)->from_float;
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; ++i03) {
|
||||
for (int64_t i02 = 0; i02 < ne02; ++i02) {
|
||||
for (int64_t i = ir0; i < ir1; ++i) {
|
||||
const int64_t i12 = i03%ne12;
|
||||
const int64_t i11 = i02%ne11;
|
||||
const int64_t i10 = i;
|
||||
|
||||
const int64_t i1 = *(int64_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
|
||||
|
||||
GGML_ASSERT(i1 >= 0 && i1 < ne1);
|
||||
|
||||
from_float(
|
||||
(const float *) ((char *) src0->data + i*nb01 + i02*nb02 + i03*nb03),
|
||||
((char *) dst->data + i1*nb1 + i02*nb2 + i03*nb3), nc);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_compute_forward_set_rows(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
ggml_compute_forward_set_rows_f32(params, dst);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_ABORT("src0->type = %d (%s) not supported", src0->type, ggml_type_name(src0->type));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_get_rows_back
|
||||
|
||||
static void ggml_compute_forward_get_rows_back_f32_f16(
|
||||
@@ -4500,7 +4987,7 @@ static void ggml_compute_forward_get_rows_back_f32_f16(
|
||||
|
||||
for (int j = 0; j < nc; ++j) {
|
||||
ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
|
||||
((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
|
||||
((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_CPU_FP16_TO_FP32(v);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -4792,7 +5279,7 @@ static void ggml_compute_forward_soft_max_f32(
|
||||
if (mp_f32) {
|
||||
if (use_f16) {
|
||||
for (int i = 0; i < nc; ++i) {
|
||||
wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
|
||||
wp[i] += slope*GGML_CPU_FP16_TO_FP32(mp_f16[i]);
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < nc; ++i) {
|
||||
@@ -5018,8 +5505,8 @@ static void ggml_compute_forward_clamp_f16(
|
||||
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
|
||||
|
||||
for (int i = 0; i < nc; i++) {
|
||||
float v = GGML_FP16_TO_FP32(src0_ptr[i]);
|
||||
dst_ptr[i] = GGML_FP32_TO_FP16(MAX(MIN(v, max), min));
|
||||
float v = GGML_CPU_FP16_TO_FP32(src0_ptr[i]);
|
||||
dst_ptr[i] = GGML_CPU_FP32_TO_FP16(MAX(MIN(v, max), min));
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -5476,11 +5963,11 @@ static void ggml_compute_forward_rope_f16(
|
||||
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
|
||||
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
|
||||
|
||||
const float x0 = GGML_FP16_TO_FP32(src[0]);
|
||||
const float x1 = GGML_FP16_TO_FP32(src[n_dims]);
|
||||
const float x0 = GGML_CPU_FP16_TO_FP32(src[0]);
|
||||
const float x1 = GGML_CPU_FP16_TO_FP32(src[n_dims]);
|
||||
|
||||
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
||||
dst_data[n_dims] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
|
||||
dst_data[0] = GGML_CPU_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
||||
dst_data[n_dims] = GGML_CPU_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
|
||||
}
|
||||
} else {
|
||||
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
|
||||
@@ -5492,11 +5979,11 @@ static void ggml_compute_forward_rope_f16(
|
||||
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
|
||||
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
|
||||
|
||||
const float x0 = GGML_FP16_TO_FP32(src[0]);
|
||||
const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
|
||||
const float x0 = GGML_CPU_FP16_TO_FP32(src[0]);
|
||||
const float x1 = GGML_CPU_FP16_TO_FP32(src[n_dims/2]);
|
||||
|
||||
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
||||
dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
|
||||
dst_data[0] = GGML_CPU_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
||||
dst_data[n_dims/2] = GGML_CPU_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@@ -5507,11 +5994,11 @@ static void ggml_compute_forward_rope_f16(
|
||||
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||||
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
const float x0 = GGML_FP16_TO_FP32(src[0]);
|
||||
const float x1 = GGML_FP16_TO_FP32(src[1]);
|
||||
const float x0 = GGML_CPU_FP16_TO_FP32(src[0]);
|
||||
const float x1 = GGML_CPU_FP16_TO_FP32(src[1]);
|
||||
|
||||
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
||||
dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
|
||||
dst_data[0] = GGML_CPU_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
||||
dst_data[1] = GGML_CPU_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -5525,11 +6012,11 @@ static void ggml_compute_forward_rope_f16(
|
||||
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
|
||||
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
|
||||
|
||||
const float x0 = GGML_FP16_TO_FP32(src[0]);
|
||||
const float x1 = GGML_FP16_TO_FP32(src[n_dims]);
|
||||
const float x0 = GGML_CPU_FP16_TO_FP32(src[0]);
|
||||
const float x1 = GGML_CPU_FP16_TO_FP32(src[n_dims]);
|
||||
|
||||
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
||||
dst_data[n_dims] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
|
||||
dst_data[0] = GGML_CPU_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
||||
dst_data[n_dims] = GGML_CPU_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
|
||||
}
|
||||
} else {
|
||||
for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
|
||||
@@ -5640,7 +6127,7 @@ static void ggml_compute_forward_conv_transpose_1d_f16_f32(
|
||||
for (int64_t i11 = 0; i11 < ne11; i11++) {
|
||||
const float * const src = (float *)((char *) src1->data + i11*nb11);
|
||||
for (int64_t i10 = 0; i10 < ne10; i10++) {
|
||||
dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
|
||||
dst_data[i10*ne11 + i11] = GGML_CPU_FP32_TO_FP16(src[i10]);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -5933,7 +6420,7 @@ static void ggml_compute_forward_im2col_f16(
|
||||
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
||||
dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
|
||||
} else {
|
||||
dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
|
||||
dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_CPU_FP32_TO_FP16(src_data[iih*IW + iiw]);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -6109,7 +6596,7 @@ void ggml_compute_forward_conv_transpose_2d(
|
||||
const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
|
||||
ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
|
||||
for (int i10 = 0; i10 < ne10; i10++) {
|
||||
dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
|
||||
dst_data[i10*ne12 + i12] = GGML_CPU_FP32_TO_FP16(src[i10]);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -6358,7 +6845,7 @@ static void ggml_compute_forward_pool_1d_sk_p0(
|
||||
case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
|
||||
}
|
||||
for (int ki = 0; ki < k; ++ki) {
|
||||
const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
|
||||
const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
|
||||
switch (op) {
|
||||
case GGML_OP_POOL_AVG: drow[i] += srow_j; break;
|
||||
case GGML_OP_POOL_MAX: if (srow_j > drow[i]) drow[i] = srow_j; break;
|
||||
@@ -6450,7 +6937,7 @@ void ggml_compute_forward_pool_2d(
|
||||
for (int kx = 0; kx < k0; ++kx) {
|
||||
int j = ix + kx;
|
||||
if (j < 0 || j >= src->ne[0]) continue;
|
||||
const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
|
||||
const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
|
||||
switch (op) {
|
||||
case GGML_OP_POOL_AVG: *out += srow_j; break;
|
||||
case GGML_OP_POOL_MAX: if (srow_j > *out) *out = srow_j; break;
|
||||
@@ -6538,7 +7025,7 @@ void ggml_compute_forward_pool_2d_back(
|
||||
}
|
||||
|
||||
const float val = dst->type == GGML_TYPE_F32 ?
|
||||
((const float *) drowf)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t *) drowf)[j]);
|
||||
((const float *) drowf)[j] : GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t *) drowf)[j]);
|
||||
if (val <= maxval) {
|
||||
continue;
|
||||
}
|
||||
@@ -6558,7 +7045,7 @@ void ggml_compute_forward_pool_2d_back(
|
||||
if (dst->type == GGML_TYPE_F32) {
|
||||
((float *) drow)[j] += grad0;
|
||||
} else {
|
||||
((ggml_fp16_t *) drow)[j] = GGML_FP32_TO_FP16(grad0 + GGML_FP16_TO_FP32(((const ggml_fp16_t *) drow)[j]));
|
||||
((ggml_fp16_t *) drow)[j] = GGML_CPU_FP32_TO_FP16(grad0 + GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t *) drow)[j]));
|
||||
}
|
||||
} else if (op == GGML_OP_POOL_AVG) {
|
||||
const float grad = grad0 / ka;
|
||||
@@ -6577,7 +7064,7 @@ void ggml_compute_forward_pool_2d_back(
|
||||
if (dst->type == GGML_TYPE_F32) {
|
||||
((float *) drow)[j] += grad;
|
||||
} else {
|
||||
((ggml_fp16_t *) drow)[j] += GGML_FP32_TO_FP16(grad);
|
||||
((ggml_fp16_t *) drow)[j] += GGML_CPU_FP32_TO_FP16(grad);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -6793,6 +7280,73 @@ void ggml_compute_forward_pad_reflect_1d(
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_roll
|
||||
|
||||
static int64_t ggml_wrap_index(int64_t i, int64_t ne) {
|
||||
if (i < 0) {
|
||||
return i + ne;
|
||||
} else if (i >= ne) {
|
||||
return i - ne;
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_roll_f32(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src_data = (const float *) src0->data;
|
||||
float * dst_data = (float *) dst->data;
|
||||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS
|
||||
|
||||
const int s0 = ggml_get_op_params_i32(dst, 0);
|
||||
const int s1 = ggml_get_op_params_i32(dst, 1);
|
||||
const int s2 = ggml_get_op_params_i32(dst, 2);
|
||||
const int s3 = ggml_get_op_params_i32(dst, 3);
|
||||
|
||||
const int64_t total = ne1 * ne2 * ne3;
|
||||
const int64_t per_thread = (total + params->nth) / params->nth;
|
||||
const int64_t start = params->ith * per_thread;
|
||||
const int64_t end = std::min(start + per_thread, total);
|
||||
|
||||
for (int64_t i = start; i < end; ++i) {
|
||||
const int64_t i1 = i % ne1;
|
||||
const int64_t i2 = (i / ne1) % ne2;
|
||||
const int64_t i3 = i / (ne2 * ne1);
|
||||
float * dst_row = dst_data + (i3*nb3 + i2*nb2 + i1*nb1) / sizeof(float);
|
||||
|
||||
const int64_t i01 = ggml_wrap_index(i1 - s1, ne01);
|
||||
const int64_t i02 = ggml_wrap_index(i2 - s2, ne02);
|
||||
const int64_t i03 = ggml_wrap_index(i3 - s3, ne03);
|
||||
const float * src_row = src_data + (i03*nb03 + i02*nb02 + i01*nb01) / sizeof(float);
|
||||
|
||||
const int64_t s = ggml_wrap_index(-s0, ne00);
|
||||
const int64_t n = ne00 - s;
|
||||
ggml_vec_cpy_f32(n, dst_row, src_row + s);
|
||||
ggml_vec_cpy_f32(s, dst_row + n, src_row);
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_compute_forward_roll(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
ggml_compute_forward_roll_f32(params, dst);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_arange
|
||||
|
||||
static void ggml_compute_forward_arange_f32(
|
||||
@@ -7075,7 +7629,7 @@ static void ggml_compute_forward_flash_attn_ext_f16(
|
||||
// loop over n_kv and n_head_kv
|
||||
// ref: https://arxiv.org/pdf/2112.05682.pdf
|
||||
for (int64_t ic = 0; ic < nek1; ++ic) {
|
||||
const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
|
||||
const float mv = mp ? slope*GGML_CPU_FP16_TO_FP32(mp[ic]) : 0.0f;
|
||||
if (mv == -INFINITY) {
|
||||
continue;
|
||||
}
|
||||
@@ -7143,7 +7697,7 @@ static void ggml_compute_forward_flash_attn_ext_f16(
|
||||
|
||||
if (v->type == GGML_TYPE_F16) {
|
||||
for (int64_t d = 0; d < DV; ++d) {
|
||||
VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
|
||||
VKQ32[d] = GGML_CPU_FP16_TO_FP32(VKQ16[d]);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -7927,6 +8481,34 @@ void ggml_compute_forward_unary(
|
||||
}
|
||||
}
|
||||
|
||||
//ggml_compute_forward_glu
|
||||
|
||||
void ggml_compute_forward_glu(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_glu_op op = ggml_get_glu_op(dst);
|
||||
|
||||
switch (op) {
|
||||
case GGML_GLU_OP_REGLU:
|
||||
{
|
||||
ggml_compute_forward_reglu(params, dst);
|
||||
} break;
|
||||
case GGML_GLU_OP_GEGLU:
|
||||
{
|
||||
ggml_compute_forward_geglu(params, dst);
|
||||
} break;
|
||||
case GGML_GLU_OP_SWIGLU:
|
||||
{
|
||||
ggml_compute_forward_swiglu(params, dst);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_get_rel_pos
|
||||
|
||||
static void ggml_compute_forward_get_rel_pos_f16(
|
||||
|
||||
@@ -53,6 +53,7 @@ void ggml_compute_forward_permute(const struct ggml_compute_params * params, str
|
||||
void ggml_compute_forward_transpose(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_get_rows(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_get_rows_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_set_rows(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_diag(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_diag_mask_inf(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_diag_mask_zero(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
@@ -72,6 +73,7 @@ void ggml_compute_forward_pool_2d_back(const struct ggml_compute_params * params
|
||||
void ggml_compute_forward_upscale(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_pad(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_pad_reflect_1d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_roll(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_arange(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_timestep_embedding(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_argsort(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
@@ -92,6 +94,7 @@ void ggml_compute_forward_ssm_scan(const struct ggml_compute_params * params, st
|
||||
void ggml_compute_forward_win_part(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_win_unpart(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_unary(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_glu(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_get_rel_pos(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_add_rel_pos(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_rwkv_wkv6(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
|
||||
1158
ggml/src/ggml-cpu/quants.c
Normal file
1158
ggml/src/ggml-cpu/quants.c
Normal file
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user