mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-05 13:53:23 +02:00
Compare commits
27 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
6231c5cd6d | ||
|
|
ef035803eb | ||
|
|
413977de32 | ||
|
|
95402553a5 | ||
|
|
3865cff4f5 | ||
|
|
d03172cc79 | ||
|
|
dd8e59f443 | ||
|
|
bbe98d2784 | ||
|
|
c2056ed6d4 | ||
|
|
c46503014d | ||
|
|
860a9e4eef | ||
|
|
fe9d60e74a | ||
|
|
e434e69183 | ||
|
|
89fea80d29 | ||
|
|
6adc3c3ebc | ||
|
|
0dbcabde8c | ||
|
|
ad590be98c | ||
|
|
7d6d91babf | ||
|
|
d3e64b9f49 | ||
|
|
3ba0d843c6 | ||
|
|
0bf49eb668 | ||
|
|
4ad243677b | ||
|
|
c89c2d1ab9 | ||
|
|
3555b3004b | ||
|
|
d7da8dc83a | ||
|
|
cd355eda7d | ||
|
|
30e5b01de2 |
3
.github/workflows/build.yml
vendored
3
.github/workflows/build.yml
vendored
@@ -693,7 +693,7 @@ jobs:
|
||||
- build: 'openblas-x64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
|
||||
- build: 'vulkan-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON'
|
||||
defines: '-DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON'
|
||||
- build: 'llvm-arm64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON'
|
||||
- build: 'llvm-arm64-opencl-adreno'
|
||||
@@ -778,6 +778,7 @@ jobs:
|
||||
cmake -S . -B build ${{ matrix.defines }} `
|
||||
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
|
||||
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS}
|
||||
cp $env:CURL_PATH/bin/libcurl-*.dll build/bin/Release
|
||||
|
||||
- name: Add libopenblas.dll
|
||||
id: add_libopenblas_dll
|
||||
|
||||
@@ -39,7 +39,7 @@ sd=`dirname $0`
|
||||
cd $sd/../
|
||||
SRC=`pwd`
|
||||
|
||||
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=OFF"
|
||||
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON"
|
||||
|
||||
if [ ! -z ${GG_BUILD_METAL} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON -DGGML_METAL_USE_BF16=ON"
|
||||
|
||||
@@ -988,10 +988,6 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
|
||||
params.tensor_buft_overrides.push_back({nullptr, nullptr});
|
||||
}
|
||||
|
||||
if (params.reranking && params.embedding) {
|
||||
throw std::invalid_argument("error: either --embedding or --reranking can be specified, but not both");
|
||||
}
|
||||
|
||||
if (!params.chat_template.empty() && !common_chat_verify_template(params.chat_template, params.use_jinja)) {
|
||||
throw std::runtime_error(string_format(
|
||||
"error: the supplied chat template is not supported: %s%s\n",
|
||||
@@ -2747,9 +2743,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_EMBEDDINGS"));
|
||||
add_opt(common_arg(
|
||||
{"--reranking", "--rerank"},
|
||||
string_format("enable reranking endpoint on server (default: %s)", params.reranking ? "enabled" : "disabled"),
|
||||
string_format("enable reranking endpoint on server (default: %s)", "disabled"),
|
||||
[](common_params & params) {
|
||||
params.reranking = true;
|
||||
params.embedding = true;
|
||||
params.pooling_type = LLAMA_POOLING_TYPE_RANK;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_RERANKING"));
|
||||
add_opt(common_arg(
|
||||
|
||||
@@ -1838,7 +1838,7 @@ static common_chat_params common_chat_templates_apply_legacy(
|
||||
if (res < 0) {
|
||||
// if the custom "tmpl" is not supported, we throw an error
|
||||
// this is a bit redundant (for good), since we're not sure if user validated the custom template with llama_chat_verify_template()
|
||||
throw std::runtime_error("this custom template is not supported");
|
||||
throw std::runtime_error("this custom template is not supported, try using --jinja");
|
||||
}
|
||||
|
||||
// if it turns out that our buffer is too small, we resize it
|
||||
|
||||
@@ -767,6 +767,9 @@ bool fs_validate_filename(const std::string & filename) {
|
||||
return true;
|
||||
}
|
||||
|
||||
#include <iostream>
|
||||
|
||||
|
||||
// returns true if successful, false otherwise
|
||||
bool fs_create_directory_with_parents(const std::string & path) {
|
||||
#ifdef _WIN32
|
||||
@@ -784,9 +787,16 @@ bool fs_create_directory_with_parents(const std::string & path) {
|
||||
// process path from front to back, procedurally creating directories
|
||||
while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
|
||||
const std::wstring subpath = wpath.substr(0, pos_slash);
|
||||
const wchar_t * test = subpath.c_str();
|
||||
|
||||
const bool success = CreateDirectoryW(test, NULL);
|
||||
pos_slash += 1;
|
||||
|
||||
// skip the drive letter, in some systems it can return an access denied error
|
||||
if (subpath.length() == 2 && subpath[1] == ':') {
|
||||
continue;
|
||||
}
|
||||
|
||||
const bool success = CreateDirectoryW(subpath.c_str(), NULL);
|
||||
|
||||
if (!success) {
|
||||
const DWORD error = GetLastError();
|
||||
|
||||
@@ -800,8 +810,6 @@ bool fs_create_directory_with_parents(const std::string & path) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
pos_slash += 1;
|
||||
}
|
||||
|
||||
return true;
|
||||
@@ -897,34 +905,6 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
if (params.reranking) {
|
||||
bool ok = true;
|
||||
|
||||
if (llama_vocab_bos(vocab) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: vocab does not have a BOS token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
}
|
||||
|
||||
bool has_eos = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
|
||||
bool has_sep = llama_vocab_sep(vocab) != LLAMA_TOKEN_NULL;
|
||||
|
||||
if (!has_eos && !has_sep) {
|
||||
LOG_WRN("%s: warning: vocab does not have an EOS token or SEP token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
} else if (!has_eos) {
|
||||
LOG_WRN("%s: warning: vocab does not have an EOS token, using SEP token as fallback\n", __func__);
|
||||
} else if (!has_sep) {
|
||||
LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
}
|
||||
|
||||
if (!ok) {
|
||||
llama_model_free(model);
|
||||
|
||||
return iparams;
|
||||
}
|
||||
}
|
||||
|
||||
auto cparams = common_context_params_to_llama(params);
|
||||
|
||||
llama_context * lctx = llama_init_from_model(model, cparams);
|
||||
@@ -966,6 +946,35 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
}
|
||||
}
|
||||
|
||||
if (llama_pooling_type(lctx) == LLAMA_POOLING_TYPE_RANK) {
|
||||
bool ok = true;
|
||||
|
||||
if (llama_vocab_bos(vocab) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: vocab does not have a BOS token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
}
|
||||
|
||||
bool has_eos = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
|
||||
bool has_sep = llama_vocab_sep(vocab) != LLAMA_TOKEN_NULL;
|
||||
|
||||
if (!has_eos && !has_sep) {
|
||||
LOG_WRN("%s: warning: vocab does not have an EOS token or SEP token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
} else if (!has_eos) {
|
||||
LOG_WRN("%s: warning: vocab does not have an EOS token, using SEP token as fallback\n", __func__);
|
||||
} else if (!has_sep) {
|
||||
LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
|
||||
ok = false;
|
||||
}
|
||||
|
||||
if (!ok) {
|
||||
llama_free(lctx);
|
||||
llama_model_free(model);
|
||||
|
||||
return iparams;
|
||||
}
|
||||
}
|
||||
|
||||
// load and optionally apply lora adapters
|
||||
for (auto & la : params.lora_adapters) {
|
||||
llama_adapter_lora_ptr lora;
|
||||
@@ -1143,11 +1152,6 @@ struct llama_context_params common_context_params_to_llama(const common_params &
|
||||
cparams.op_offload = !params.no_op_offload;
|
||||
cparams.swa_full = params.swa_full;
|
||||
|
||||
if (params.reranking) {
|
||||
cparams.embeddings = true;
|
||||
cparams.pooling_type = LLAMA_POOLING_TYPE_RANK;
|
||||
}
|
||||
|
||||
cparams.type_k = params.cache_type_k;
|
||||
cparams.type_v = params.cache_type_v;
|
||||
|
||||
|
||||
@@ -355,7 +355,6 @@ struct common_params {
|
||||
int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
|
||||
std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
|
||||
std::string embd_sep = "\n"; // separator of embeddings
|
||||
bool reranking = false; // enable reranking support on server
|
||||
|
||||
// server params
|
||||
int32_t port = 8080; // server listens on this network port
|
||||
|
||||
@@ -519,7 +519,7 @@ class TextModel(ModelBase):
|
||||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
|
||||
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions"], optional=True)) is not None:
|
||||
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
|
||||
self.gguf_writer.add_context_length(n_ctx)
|
||||
logger.info(f"gguf: context length = {n_ctx}")
|
||||
|
||||
@@ -556,11 +556,8 @@ class TextModel(ModelBase):
|
||||
logger.info(f"gguf: experts used count = {n_experts_used}")
|
||||
|
||||
if (head_dim := self.hparams.get("head_dim")) is not None:
|
||||
# Workaround for incorrect AutoConfig value for DeepSeekV3 (is set correctly in DeepSeekV2Model class)
|
||||
# https://github.com/huggingface/transformers/blob/19224c3642705c5b6988c9f5f4251f83323d05ae/src/transformers/models/deepseek_v3/configuration_deepseek_v3.py#L210
|
||||
if self.hparams.get("model_type") != "deepseek_v3":
|
||||
self.gguf_writer.add_key_length(head_dim)
|
||||
self.gguf_writer.add_value_length(head_dim)
|
||||
self.gguf_writer.add_key_length(head_dim)
|
||||
self.gguf_writer.add_value_length(head_dim)
|
||||
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
logger.info(f"gguf: file type = {self.ftype}")
|
||||
@@ -1901,9 +1898,7 @@ class LlamaModel(TextModel):
|
||||
hparams = self.hparams
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
|
||||
if "head_dim" in hparams:
|
||||
rope_dim = hparams["head_dim"]
|
||||
else:
|
||||
if (rope_dim := hparams.get("head_dim")) is None:
|
||||
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
|
||||
@@ -1985,7 +1980,8 @@ class LlamaModel(TextModel):
|
||||
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
|
||||
if rope_scaling.get("rope_type", '').lower() == "llama3":
|
||||
base = self.hparams.get("rope_theta", 10000.0)
|
||||
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||
if (dim := self.hparams.get("head_dim")) is None:
|
||||
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
|
||||
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
||||
|
||||
factor = rope_scaling.get("factor", 8.0)
|
||||
@@ -2020,6 +2016,20 @@ class LlamaModel(TextModel):
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@ModelBase.register("ArceeForCausalLM")
|
||||
class ArceeModel(LlamaModel):
|
||||
model_arch = gguf.MODEL_ARCH.ARCEE
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self._try_set_pooling_type()
|
||||
rope_scaling = self.hparams.get("rope_scaling") or {}
|
||||
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
||||
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
|
||||
|
||||
|
||||
@ModelBase.register(
|
||||
"LlavaForConditionalGeneration", # pixtral
|
||||
"Mistral3ForConditionalGeneration", # mistral small 3.1
|
||||
@@ -2307,9 +2317,7 @@ class DeciModel(TextModel):
|
||||
hparams = self.hparams
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
|
||||
if "head_dim" in hparams:
|
||||
rope_dim = hparams["head_dim"]
|
||||
else:
|
||||
if (rope_dim := hparams.get("head_dim")) is None:
|
||||
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
|
||||
@@ -2349,7 +2357,8 @@ class DeciModel(TextModel):
|
||||
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
|
||||
if rope_scaling.get("rope_type", '').lower() == "llama3":
|
||||
base = self.hparams.get("rope_theta", 10000.0)
|
||||
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||
if (dim := self.hparams.get("head_dim")) is None:
|
||||
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
|
||||
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
||||
|
||||
factor = rope_scaling.get("factor", 8.0)
|
||||
@@ -3667,9 +3676,7 @@ class InternLM3Model(TextModel):
|
||||
hparams = self.hparams
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
|
||||
if "head_dim" in hparams:
|
||||
rope_dim = hparams["head_dim"]
|
||||
else:
|
||||
if (rope_dim := hparams.get("head_dim")) is None:
|
||||
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
|
||||
@@ -4062,6 +4069,34 @@ class NomicBertModel(BertModel):
|
||||
raise ValueError(f"unknown tokenizer: {toktyp}")
|
||||
|
||||
|
||||
@ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
|
||||
class NeoBert(BertModel):
|
||||
model_arch = gguf.MODEL_ARCH.NEO_BERT
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
|
||||
# NeoBERT uses 2/3 of the intermediate size as feed forward length
|
||||
self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
|
||||
self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
|
||||
|
||||
f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
|
||||
self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
|
||||
logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
|
||||
|
||||
self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
|
||||
|
||||
def modify_tensors(self, data_torch, name, bid):
|
||||
if name.startswith("decoder."):
|
||||
return []
|
||||
|
||||
if name.startswith("model."):
|
||||
name = name[6:]
|
||||
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
|
||||
class XLMRobertaModel(BertModel):
|
||||
model_arch = gguf.MODEL_ARCH.BERT
|
||||
@@ -5056,9 +5091,7 @@ class DeepseekModel(TextModel):
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
if "head_dim" in hparams:
|
||||
rope_dim = hparams["head_dim"]
|
||||
else:
|
||||
if (rope_dim := hparams.get("head_dim")) is None:
|
||||
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
@@ -5948,7 +5981,8 @@ class ExaoneModel(TextModel):
|
||||
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
|
||||
if rope_scaling.get("rope_type", '').lower() == "llama3":
|
||||
base = self.hparams.get("rope_theta", 10000.0)
|
||||
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||
if (dim := self.hparams.get("head_dim")) is None:
|
||||
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
|
||||
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
||||
|
||||
factor = rope_scaling.get("factor", 8.0)
|
||||
@@ -6060,7 +6094,8 @@ class BailingMoeModel(TextModel):
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
if (rope_dim := hparams.get("head_dim")) is None:
|
||||
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
rope_scaling = self.hparams.get("rope_scaling") or {}
|
||||
@@ -6092,7 +6127,8 @@ class BailingMoeModel(TextModel):
|
||||
n_head = self.hparams["num_attention_heads"]
|
||||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||
n_embd = self.hparams["hidden_size"]
|
||||
head_dim = self.hparams.get("head_dim") or n_embd // n_head
|
||||
if (head_dim := self.hparams.get("head_dim")) is None:
|
||||
head_dim = n_embd // n_head
|
||||
|
||||
output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
|
||||
|
||||
|
||||
@@ -41,12 +41,11 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
|
||||
|
||||
// add input to batch (this increments n_tokens)
|
||||
for (int32_t j = 0; j < n_toks; j++) {
|
||||
common_batch_add(batch, inputs[j], j, { 0 }, j >= n_inst);
|
||||
common_batch_add(batch, inputs[j], j, { 0 }, true);
|
||||
}
|
||||
|
||||
// clear previous kv_cache values (irrelevant for embeddings)
|
||||
llama_memory_clear(llama_get_memory(ctx), true);
|
||||
llama_set_embeddings(ctx, true);
|
||||
llama_set_causal_attn(ctx, false);
|
||||
|
||||
// run model
|
||||
@@ -103,7 +102,6 @@ static std::string generate(llama_context * ctx, llama_sampler * smpl, const std
|
||||
llama_token eos_token = llama_vocab_eos(vocab);
|
||||
|
||||
llama_memory_clear(llama_get_memory(ctx), true);
|
||||
llama_set_embeddings(ctx, false);
|
||||
llama_set_causal_attn(ctx, true);
|
||||
|
||||
llama_batch bat = llama_batch_init(llama_n_batch(ctx), 0, 1);
|
||||
@@ -166,6 +164,8 @@ int main(int argc, char * argv[]) {
|
||||
llama_model_params mparams = common_model_params_to_llama(params);
|
||||
llama_context_params cparams = common_context_params_to_llama(params);
|
||||
|
||||
cparams.embeddings = true;
|
||||
|
||||
llama_backend_init();
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
|
||||
@@ -213,6 +213,8 @@ int main(int argc, char * argv[]) {
|
||||
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[1].c_str(), documents[1].c_str(), cosine_sim_q1_d1);
|
||||
}
|
||||
|
||||
llama_set_embeddings(ctx, false);
|
||||
|
||||
// ### Generation ###
|
||||
// GritLM models are not finetuned with system prompts, as you can just include system-like instructions together with your user instruction
|
||||
{
|
||||
|
||||
@@ -172,6 +172,7 @@ option(GGML_HIP "ggml: use HIP"
|
||||
option(GGML_HIP_GRAPHS "ggml: use HIP graph, experimental, slow" OFF)
|
||||
option(GGML_HIP_NO_VMM "ggml: do not try to use HIP VMM" ON)
|
||||
option(GGML_HIP_ROCWMMA_FATTN "ggml: enable rocWMMA for FlashAttention" OFF)
|
||||
option(GGML_HIP_FORCE_ROCWMMA_FATTN_GFX12 "ggml: enable rocWMMA FlashAttention on GFX12" OFF)
|
||||
option(GGML_VULKAN "ggml: use Vulkan" OFF)
|
||||
option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF)
|
||||
option(GGML_VULKAN_DEBUG "ggml: enable Vulkan debug output" OFF)
|
||||
@@ -367,6 +368,8 @@ if (MSVC)
|
||||
/wd4005 # Macro redefinition
|
||||
/wd4244 # Conversion from one type to another type, possible loss of data
|
||||
/wd4267 # Conversion from 'size_t' to a smaller type, possible loss of data
|
||||
/wd4305 # Conversion from 'type1' to 'type2', possible loss of data
|
||||
/wd4566 # Conversion from 'char' to 'wchar_t', possible loss of data
|
||||
/wd4996 # Disable POSIX deprecation warnings
|
||||
/wd4702 # Unreachable code warnings
|
||||
)
|
||||
@@ -386,4 +389,46 @@ if (MSVC)
|
||||
disable_msvc_warnings(ggml-cpu-skylakex)
|
||||
disable_msvc_warnings(ggml-cpu-icelake)
|
||||
disable_msvc_warnings(ggml-cpu-alderlake)
|
||||
|
||||
if (GGML_BUILD_EXAMPLES)
|
||||
disable_msvc_warnings(common-ggml)
|
||||
disable_msvc_warnings(common)
|
||||
|
||||
disable_msvc_warnings(mnist-common)
|
||||
disable_msvc_warnings(mnist-eval)
|
||||
disable_msvc_warnings(mnist-train)
|
||||
|
||||
disable_msvc_warnings(gpt-2-ctx)
|
||||
disable_msvc_warnings(gpt-2-alloc)
|
||||
disable_msvc_warnings(gpt-2-backend)
|
||||
disable_msvc_warnings(gpt-2-sched)
|
||||
disable_msvc_warnings(gpt-2-quantize)
|
||||
disable_msvc_warnings(gpt-2-batched)
|
||||
|
||||
disable_msvc_warnings(gpt-j)
|
||||
disable_msvc_warnings(gpt-j-quantize)
|
||||
|
||||
disable_msvc_warnings(magika)
|
||||
disable_msvc_warnings(yolov3-tiny)
|
||||
disable_msvc_warnings(sam)
|
||||
|
||||
disable_msvc_warnings(simple-ctx)
|
||||
disable_msvc_warnings(simple-backend)
|
||||
endif()
|
||||
|
||||
if (GGML_BUILD_TESTS)
|
||||
disable_msvc_warnings(test-mul-mat)
|
||||
disable_msvc_warnings(test-arange)
|
||||
disable_msvc_warnings(test-backend-ops)
|
||||
disable_msvc_warnings(test-cont)
|
||||
disable_msvc_warnings(test-conv-transpose)
|
||||
disable_msvc_warnings(test-conv-transpose-1d)
|
||||
disable_msvc_warnings(test-conv1d)
|
||||
disable_msvc_warnings(test-conv2d)
|
||||
disable_msvc_warnings(test-conv2d-dw)
|
||||
disable_msvc_warnings(test-customop)
|
||||
disable_msvc_warnings(test-dup)
|
||||
disable_msvc_warnings(test-opt)
|
||||
disable_msvc_warnings(test-pool)
|
||||
endif ()
|
||||
endif()
|
||||
|
||||
@@ -36,8 +36,7 @@ function(ggml_get_system_arch)
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64|amd64)$"))
|
||||
set(GGML_SYSTEM_ARCH "x86" PARENT_SCOPE)
|
||||
elseif ("${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "ppc64le " OR
|
||||
"${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "powerpc ")
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc|power")
|
||||
set(GGML_SYSTEM_ARCH "PowerPC" PARENT_SCOPE)
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
|
||||
set(GGML_SYSTEM_ARCH "loongarch64" PARENT_SCOPE)
|
||||
|
||||
@@ -311,18 +311,32 @@ if (GGML_CPU_ALL_VARIANTS)
|
||||
# MSVC doesn't support AMX
|
||||
ggml_add_cpu_backend_variant(sapphirerapids SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
|
||||
endif()
|
||||
elseif(GGML_SYSTEM_ARCH STREQUAL "ARM" AND CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||
# Many of these features are optional so we build versions with popular
|
||||
# combinations and name the backends based on the version they were
|
||||
# first released with
|
||||
ggml_add_cpu_backend_variant(armv8.0_1)
|
||||
ggml_add_cpu_backend_variant(armv8.2_1 DOTPROD)
|
||||
ggml_add_cpu_backend_variant(armv8.2_2 DOTPROD FP16_VECTOR_ARITHMETIC)
|
||||
ggml_add_cpu_backend_variant(armv8.2_3 DOTPROD FP16_VECTOR_ARITHMETIC SVE)
|
||||
ggml_add_cpu_backend_variant(armv8.6_1 DOTPROD FP16_VECTOR_ARITHMETIC SVE MATMUL_INT8)
|
||||
ggml_add_cpu_backend_variant(armv8.6_2 DOTPROD FP16_VECTOR_ARITHMETIC SVE MATMUL_INT8 SVE2)
|
||||
ggml_add_cpu_backend_variant(armv9.2_1 DOTPROD FP16_VECTOR_ARITHMETIC SVE MATMUL_INT8 SME)
|
||||
ggml_add_cpu_backend_variant(armv9.2_2 DOTPROD FP16_VECTOR_ARITHMETIC SVE MATMUL_INT8 SVE2 SME)
|
||||
elseif(GGML_SYSTEM_ARCH STREQUAL "ARM")
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||
# Many of these features are optional so we build versions with popular
|
||||
# combinations and name the backends based on the version they were
|
||||
# first released with
|
||||
ggml_add_cpu_backend_variant(armv8.0_1)
|
||||
ggml_add_cpu_backend_variant(armv8.2_1 DOTPROD)
|
||||
ggml_add_cpu_backend_variant(armv8.2_2 DOTPROD FP16_VECTOR_ARITHMETIC)
|
||||
ggml_add_cpu_backend_variant(armv8.2_3 DOTPROD FP16_VECTOR_ARITHMETIC SVE)
|
||||
ggml_add_cpu_backend_variant(armv8.6_1 DOTPROD FP16_VECTOR_ARITHMETIC SVE MATMUL_INT8)
|
||||
ggml_add_cpu_backend_variant(armv8.6_2 DOTPROD FP16_VECTOR_ARITHMETIC SVE MATMUL_INT8 SVE2)
|
||||
ggml_add_cpu_backend_variant(armv9.2_1 DOTPROD FP16_VECTOR_ARITHMETIC SVE MATMUL_INT8 SME)
|
||||
ggml_add_cpu_backend_variant(armv9.2_2 DOTPROD FP16_VECTOR_ARITHMETIC SVE MATMUL_INT8 SVE2 SME)
|
||||
elseif (CMAKE_SYSTEM_NAME MATCHES "Android")
|
||||
# Android-specific backends with SoC-compatible feature sets
|
||||
ggml_add_cpu_backend_variant(android_armv8.0_1)
|
||||
ggml_add_cpu_backend_variant(android_armv8.2_1 DOTPROD)
|
||||
ggml_add_cpu_backend_variant(android_armv8.2_2 DOTPROD FP16_VECTOR_ARITHMETIC)
|
||||
ggml_add_cpu_backend_variant(android_armv8.6_1 DOTPROD FP16_VECTOR_ARITHMETIC MATMUL_INT8)
|
||||
elseif (APPLE)
|
||||
ggml_add_cpu_backend_variant(apple_m1 DOTPROD)
|
||||
ggml_add_cpu_backend_variant(apple_m2_m3 DOTPROD MATMUL_INT8)
|
||||
ggml_add_cpu_backend_variant(apple_m4 DOTPROD MATMUL_INT8 NOSVE SME)
|
||||
else()
|
||||
message(FATAL_ERROR "Unsupported ARM target OS: ${CMAKE_SYSTEM_NAME}")
|
||||
endif()
|
||||
else()
|
||||
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS not yet supported with ${GGML_SYSTEM_ARCH} on ${CMAKE_SYSTEM_NAME}")
|
||||
endif()
|
||||
|
||||
@@ -158,48 +158,48 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
if (GGML_CPU_ARM_ARCH)
|
||||
list(APPEND ARCH_FLAGS -march=${GGML_CPU_ARM_ARCH})
|
||||
elseif(GGML_CPU_ALL_VARIANTS)
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||
# Begin with the lowest baseline
|
||||
set(ARM_MCPU "armv8-a")
|
||||
set(ARCH_TAGS "")
|
||||
set(ARCH_DEFINITIONS "")
|
||||
# Begin with the lowest baseline
|
||||
set(ARM_MCPU "armv8-a")
|
||||
set(ARCH_TAGS "")
|
||||
set(ARCH_DEFINITIONS "")
|
||||
|
||||
# When a feature is selected, bump the MCPU to the first
|
||||
# version that supported it
|
||||
if (GGML_INTERNAL_DOTPROD)
|
||||
set(ARM_MCPU "armv8.2-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+dotprod")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_DOTPROD)
|
||||
endif()
|
||||
if (GGML_INTERNAL_FP16_VECTOR_ARITHMETIC)
|
||||
set(ARM_MCPU "armv8.2-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+fp16")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_FP16_VECTOR_ARITHMETIC)
|
||||
endif()
|
||||
if (GGML_INTERNAL_SVE)
|
||||
set(ARM_MCPU "armv8.2-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+sve")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_SVE)
|
||||
endif()
|
||||
if (GGML_INTERNAL_MATMUL_INT8)
|
||||
set(ARM_MCPU "armv8.6-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+i8mm")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_MATMUL_INT8)
|
||||
endif()
|
||||
if (GGML_INTERNAL_SVE2)
|
||||
set(ARM_MCPU "armv8.6-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+sve2")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_SVE2)
|
||||
endif()
|
||||
if (GGML_INTERNAL_SME)
|
||||
set(ARM_MCPU "armv9.2-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+sme")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_SME)
|
||||
endif()
|
||||
|
||||
list(APPEND ARCH_FLAGS "-march=${ARM_MCPU}${ARCH_TAGS}")
|
||||
ggml_add_cpu_backend_features(${GGML_CPU_NAME} arm ${ARCH_DEFINITIONS})
|
||||
# When a feature is selected, bump the MCPU to the first
|
||||
# version that supported it
|
||||
if (GGML_INTERNAL_DOTPROD)
|
||||
set(ARM_MCPU "armv8.2-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+dotprod")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_DOTPROD)
|
||||
endif()
|
||||
if (GGML_INTERNAL_FP16_VECTOR_ARITHMETIC)
|
||||
set(ARM_MCPU "armv8.2-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+fp16")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_FP16_VECTOR_ARITHMETIC)
|
||||
endif()
|
||||
if (GGML_INTERNAL_SVE)
|
||||
set(ARM_MCPU "armv8.2-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+sve")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_SVE)
|
||||
endif()
|
||||
if (GGML_INTERNAL_MATMUL_INT8)
|
||||
set(ARM_MCPU "armv8.6-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+i8mm")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_MATMUL_INT8)
|
||||
endif()
|
||||
if (GGML_INTERNAL_SVE2)
|
||||
set(ARM_MCPU "armv8.6-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+sve2")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_SVE2)
|
||||
endif()
|
||||
if (GGML_INTERNAL_NOSVE)
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+nosve")
|
||||
endif()
|
||||
if (GGML_INTERNAL_SME)
|
||||
set(ARM_MCPU "armv9.2-a")
|
||||
set(ARCH_TAGS "${ARCH_TAGS}+sme")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_SME)
|
||||
endif()
|
||||
list(APPEND ARCH_FLAGS "-march=${ARM_MCPU}${ARCH_TAGS}")
|
||||
ggml_add_cpu_backend_features(${GGML_CPU_NAME} arm ${ARCH_DEFINITIONS})
|
||||
endif()
|
||||
endif()
|
||||
|
||||
|
||||
184
ggml/src/ggml-cpu/arch-fallback.h
Normal file
184
ggml/src/ggml-cpu/arch-fallback.h
Normal file
@@ -0,0 +1,184 @@
|
||||
#pragma once
|
||||
|
||||
// Rename `_generic` functions if no native implementation is available.
|
||||
// This effectively selects the generic implementation.
|
||||
|
||||
#if defined(GGML_CPU_GENERIC)
|
||||
// quants.c
|
||||
#define quantize_row_q8_0_generic quantize_row_q8_0
|
||||
#define quantize_row_q8_1_generic quantize_row_q8_1
|
||||
#define quantize_row_q8_K_generic quantize_row_q8_K
|
||||
#define ggml_vec_dot_q4_0_q8_0_generic ggml_vec_dot_q4_0_q8_0
|
||||
#define ggml_vec_dot_q4_1_q8_1_generic ggml_vec_dot_q4_1_q8_1
|
||||
#define ggml_vec_dot_q5_0_q8_0_generic ggml_vec_dot_q5_0_q8_0
|
||||
#define ggml_vec_dot_q5_1_q8_1_generic ggml_vec_dot_q5_1_q8_1
|
||||
#define ggml_vec_dot_q8_0_q8_0_generic ggml_vec_dot_q8_0_q8_0
|
||||
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
|
||||
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
|
||||
#define ggml_vec_dot_q2_K_q8_K_generic ggml_vec_dot_q2_K_q8_K
|
||||
#define ggml_vec_dot_q3_K_q8_K_generic ggml_vec_dot_q3_K_q8_K
|
||||
#define ggml_vec_dot_q4_K_q8_K_generic ggml_vec_dot_q4_K_q8_K
|
||||
#define ggml_vec_dot_q5_K_q8_K_generic ggml_vec_dot_q5_K_q8_K
|
||||
#define ggml_vec_dot_q6_K_q8_K_generic ggml_vec_dot_q6_K_q8_K
|
||||
#define ggml_vec_dot_iq2_xxs_q8_K_generic ggml_vec_dot_iq2_xxs_q8_K
|
||||
#define ggml_vec_dot_iq2_xs_q8_K_generic ggml_vec_dot_iq2_xs_q8_K
|
||||
#define ggml_vec_dot_iq2_s_q8_K_generic ggml_vec_dot_iq2_s_q8_K
|
||||
#define ggml_vec_dot_iq3_xxs_q8_K_generic ggml_vec_dot_iq3_xxs_q8_K
|
||||
#define ggml_vec_dot_iq3_s_q8_K_generic ggml_vec_dot_iq3_s_q8_K
|
||||
#define ggml_vec_dot_iq1_s_q8_K_generic ggml_vec_dot_iq1_s_q8_K
|
||||
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
||||
#define ggml_vec_dot_iq4_nl_q8_0_generic ggml_vec_dot_iq4_nl_q8_0
|
||||
#define ggml_vec_dot_iq4_xs_q8_K_generic ggml_vec_dot_iq4_xs_q8_K
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#elif defined(__aarch64__) || defined(__arm__) || defined(_M_ARM) || defined(_M_ARM64)
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#elif defined(__x86_64__) || defined(__i386__) || defined(_M_IX86) || defined(_M_X64)
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#elif defined(__POWERPC__) || defined(__powerpc__)
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/14146#issuecomment-2972561679
|
||||
// quants.c
|
||||
#define quantize_row_q8_K_generic quantize_row_q8_K
|
||||
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
|
||||
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
|
||||
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#elif defined(__loongarch64)
|
||||
// quants.c
|
||||
#define quantize_row_q8_K_generic quantize_row_q8_K
|
||||
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
|
||||
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
|
||||
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#elif defined(__riscv)
|
||||
// quants.c
|
||||
#define quantize_row_q8_K_generic quantize_row_q8_K
|
||||
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
|
||||
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
|
||||
#define ggml_vec_dot_iq2_xxs_q8_K_generic ggml_vec_dot_iq2_xxs_q8_K
|
||||
#define ggml_vec_dot_iq2_xs_q8_K_generic ggml_vec_dot_iq2_xs_q8_K
|
||||
#define ggml_vec_dot_iq2_s_q8_K_generic ggml_vec_dot_iq2_s_q8_K
|
||||
#define ggml_vec_dot_iq3_xxs_q8_K_generic ggml_vec_dot_iq3_xxs_q8_K
|
||||
#define ggml_vec_dot_iq3_s_q8_K_generic ggml_vec_dot_iq3_s_q8_K
|
||||
#define ggml_vec_dot_iq1_s_q8_K_generic ggml_vec_dot_iq1_s_q8_K
|
||||
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
||||
#define ggml_vec_dot_iq4_nl_q8_0_generic ggml_vec_dot_iq4_nl_q8_0
|
||||
#define ggml_vec_dot_iq4_xs_q8_K_generic ggml_vec_dot_iq4_xs_q8_K
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#elif defined(__s390x__)
|
||||
// quants.c
|
||||
#define quantize_row_q8_K_generic quantize_row_q8_K
|
||||
#define ggml_vec_dot_q5_0_q8_0_generic ggml_vec_dot_q5_0_q8_0
|
||||
#define ggml_vec_dot_q5_1_q8_1_generic ggml_vec_dot_q5_1_q8_1
|
||||
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
|
||||
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
|
||||
#define ggml_vec_dot_q2_K_q8_K_generic ggml_vec_dot_q2_K_q8_K
|
||||
#define ggml_vec_dot_iq2_xxs_q8_K_generic ggml_vec_dot_iq2_xxs_q8_K
|
||||
#define ggml_vec_dot_iq2_xs_q8_K_generic ggml_vec_dot_iq2_xs_q8_K
|
||||
#define ggml_vec_dot_iq2_s_q8_K_generic ggml_vec_dot_iq2_s_q8_K
|
||||
#define ggml_vec_dot_iq3_xxs_q8_K_generic ggml_vec_dot_iq3_xxs_q8_K
|
||||
#define ggml_vec_dot_iq3_s_q8_K_generic ggml_vec_dot_iq3_s_q8_K
|
||||
#define ggml_vec_dot_iq1_s_q8_K_generic ggml_vec_dot_iq1_s_q8_K
|
||||
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#elif defined(__wasm__)
|
||||
// quants.c
|
||||
#define ggml_vec_dot_q4_1_q8_1_generic ggml_vec_dot_q4_1_q8_1
|
||||
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
|
||||
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
|
||||
#define ggml_vec_dot_iq2_xxs_q8_K_generic ggml_vec_dot_iq2_xxs_q8_K
|
||||
#define ggml_vec_dot_iq2_xs_q8_K_generic ggml_vec_dot_iq2_xs_q8_K
|
||||
#define ggml_vec_dot_iq2_s_q8_K_generic ggml_vec_dot_iq2_s_q8_K
|
||||
#define ggml_vec_dot_iq3_xxs_q8_K_generic ggml_vec_dot_iq3_xxs_q8_K
|
||||
#define ggml_vec_dot_iq3_s_q8_K_generic ggml_vec_dot_iq3_s_q8_K
|
||||
#define ggml_vec_dot_iq1_s_q8_K_generic ggml_vec_dot_iq1_s_q8_K
|
||||
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
||||
#define ggml_vec_dot_iq4_nl_q8_0_generic ggml_vec_dot_iq4_nl_q8_0
|
||||
#define ggml_vec_dot_iq4_xs_q8_K_generic ggml_vec_dot_iq4_xs_q8_K
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#endif
|
||||
@@ -371,7 +371,7 @@ inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b)
|
||||
#define vec_xor(a, b) ((a) ^ (b)) // Vector XOR
|
||||
#endif
|
||||
|
||||
typedef signed char char8x16_t __attribute__((vector_size(16)));
|
||||
typedef signed char char8x16_t __attribute__((vector_size(16)));
|
||||
typedef unsigned char uchar8x16_t __attribute__((vector_size(16)));
|
||||
|
||||
typedef int8_t int8x16_t __attribute__((vector_size(16)));
|
||||
@@ -382,10 +382,10 @@ typedef uint8_t uint8x16_t __attribute__((vector_size(16)));
|
||||
typedef uint16_t uint16x8_t __attribute__((vector_size(16)));
|
||||
typedef uint32_t uint32x4_t __attribute__((vector_size(16)));
|
||||
|
||||
typedef float float32x4_t __attribute__((vector_size(16)));
|
||||
typedef double double64x2_t __attribute((vector_size(16)));
|
||||
typedef float float32x4_t __attribute__((vector_size(16)));
|
||||
typedef double double64x2_t __attribute__((vector_size(16)));
|
||||
|
||||
typedef signed long long long64x2_t __attribute((vector_size(16)));
|
||||
typedef signed long long long64x2_t __attribute__((vector_size(16)));
|
||||
typedef unsigned long long ulong64x2_t __attribute__((vector_size(16)));
|
||||
|
||||
typedef struct ggml_uint8x16x2_t {
|
||||
@@ -503,31 +503,9 @@ static __m256 __lasx_xvreplfr2vr_s(const float val) {
|
||||
// TODO: move to ggml-threading
|
||||
void ggml_barrier(struct ggml_threadpool * tp);
|
||||
|
||||
void ggml_threadpool_chunk_set(struct ggml_threadpool * tp, int value);
|
||||
int ggml_threadpool_chunk_add(struct ggml_threadpool * tp, int value);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#define GGML_DO_PRAGMA_(x) _Pragma (#x)
|
||||
#define GGML_DO_PRAGMA(x) GGML_DO_PRAGMA_(x)
|
||||
#if defined(GGML_CPU_GENERIC) || defined(__HIPCC__)
|
||||
// Note for Apple targets:
|
||||
// - clang: aliases are not supported on darwin
|
||||
// - all native kernels need to be implemented in both x86 and arm files
|
||||
// - on iOS, tvOS, and visionOS, if cmake cannot determine the target architecture, all `_generic` names are replaced by defines
|
||||
# define GGML_WEAK_ALIAS(name, alias)
|
||||
#elif defined(__GNUC__)
|
||||
// GCC/Clang on *nix
|
||||
# define GGML_WEAK_ALIAS(name, alias) GGML_DO_PRAGMA(weak name = alias) // NOLINT
|
||||
#elif defined(_MSC_VER) && defined(_WIN64)
|
||||
// MSVC
|
||||
// Note: C name mangling varies across different calling conventions
|
||||
// see https://learn.microsoft.com/en-us/cpp/build/reference/decorated-names?view=msvc-170
|
||||
# define GGML_WEAK_ALIAS(name, alias) GGML_DO_PRAGMA(comment(linker, "/alternatename:" #name "=" #alias))
|
||||
#elif defined(_MSC_VER) && defined(WIN32)
|
||||
// ref: https://github.com/ggml-org/whisper.cpp/pull/3239#issuecomment-2958224591
|
||||
# define GGML_WEAK_ALIAS(name, alias) GGML_DO_PRAGMA(comment(linker, "/alternatename:_" #name "=_" #alias))
|
||||
#else
|
||||
# error "Unsupported compiler for GGML_WEAK_ALIAS"
|
||||
#endif
|
||||
|
||||
#define GGML_CPU_NATIVE_IMPL(name) GGML_WEAK_ALIAS(name, name ## _generic)
|
||||
|
||||
@@ -559,6 +559,14 @@ void ggml_barrier(struct ggml_threadpool * tp) {
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_threadpool_chunk_set(struct ggml_threadpool * tp, int value) {
|
||||
atomic_store_explicit(&tp->current_chunk, value, memory_order_relaxed);
|
||||
}
|
||||
|
||||
int ggml_threadpool_chunk_add(struct ggml_threadpool * tp, int value) {
|
||||
return atomic_fetch_add_explicit(&tp->current_chunk, value, memory_order_relaxed);
|
||||
}
|
||||
|
||||
#if defined(__gnu_linux__)
|
||||
static cpu_set_t ggml_get_numa_affinity(void) {
|
||||
cpu_set_t cpuset;
|
||||
|
||||
@@ -53,7 +53,6 @@
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "ggml-quants.h"
|
||||
|
||||
#include <atomic>
|
||||
#include <array>
|
||||
#include <type_traits>
|
||||
|
||||
@@ -394,8 +393,6 @@ class tinyBLAS {
|
||||
|
||||
template <int RM, int RN, int BM>
|
||||
NOINLINE void gemm(int64_t m, int64_t n, int64_t BN) {
|
||||
static std::atomic<int64_t> current_chunk;
|
||||
|
||||
GGML_ASSERT(m % (RM * BM) == 0);
|
||||
const int64_t ytiles = m / (RM * BM);
|
||||
const int64_t xtiles = (n + RN -1) / RN;
|
||||
@@ -410,7 +407,7 @@ class tinyBLAS {
|
||||
if (params->ith == 0) {
|
||||
GGML_ASSERT( jj_BN * SIZE_BN + (NB_BN - jj_BN) * (SIZE_BN - 1) == xtiles);
|
||||
// Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
|
||||
std::atomic_store_explicit(¤t_chunk, (int64_t)params->nth, std::memory_order_relaxed);
|
||||
ggml_threadpool_chunk_set(params->threadpool, params->nth);
|
||||
}
|
||||
|
||||
ggml_barrier(params->threadpool);
|
||||
@@ -439,8 +436,7 @@ class tinyBLAS {
|
||||
GGML_ASSERT(jj == jj2);
|
||||
}
|
||||
|
||||
// next step.
|
||||
job = std::atomic_fetch_add_explicit(¤t_chunk, (int64_t)1, std::memory_order_relaxed);
|
||||
job = ggml_threadpool_chunk_add(params->threadpool, 1);
|
||||
}
|
||||
|
||||
ggml_barrier(params->threadpool);
|
||||
|
||||
@@ -5,6 +5,8 @@
|
||||
#include "ggml-quants.h"
|
||||
#include "quants.h"
|
||||
|
||||
#include "arch-fallback.h"
|
||||
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
#include <float.h>
|
||||
@@ -38,12 +40,10 @@ void quantize_row_q5_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, in
|
||||
void quantize_row_q8_0_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k) {
|
||||
quantize_row_q8_0_ref(x, y, k);
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(quantize_row_q8_0)
|
||||
|
||||
void quantize_row_q8_1_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k) {
|
||||
quantize_row_q8_1_ref(x, y, k);
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(quantize_row_q8_1)
|
||||
|
||||
//
|
||||
// 2-6 bit quantization in super-blocks
|
||||
@@ -104,7 +104,6 @@ void quantize_row_tq2_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy,
|
||||
void quantize_row_q8_K_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k) {
|
||||
quantize_row_q8_K_ref(x, y, k);
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(quantize_row_q8_K)
|
||||
|
||||
//===================================== Dot products =================================
|
||||
|
||||
@@ -143,7 +142,6 @@ void ggml_vec_dot_q4_0_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, c
|
||||
|
||||
*s = sumf;
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_vec_dot_q4_0_q8_0)
|
||||
|
||||
// TODO: add WASM SIMD
|
||||
void ggml_vec_dot_q4_1_q8_1_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -181,7 +179,6 @@ void ggml_vec_dot_q4_1_q8_1_generic(int n, float * GGML_RESTRICT s, size_t bs, c
|
||||
|
||||
*s = sumf;
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_vec_dot_q4_1_q8_1)
|
||||
|
||||
void ggml_vec_dot_q5_0_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
const int qk = QK8_0;
|
||||
@@ -225,7 +222,6 @@ void ggml_vec_dot_q5_0_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, c
|
||||
|
||||
*s = sumf;
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_vec_dot_q5_0_q8_0)
|
||||
|
||||
void ggml_vec_dot_q5_1_q8_1_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
const int qk = QK8_1;
|
||||
@@ -269,7 +265,6 @@ void ggml_vec_dot_q5_1_q8_1_generic(int n, float * GGML_RESTRICT s, size_t bs, c
|
||||
|
||||
*s = sumf;
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_vec_dot_q5_1_q8_1)
|
||||
|
||||
void ggml_vec_dot_q8_0_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
const int qk = QK8_0;
|
||||
@@ -300,7 +295,6 @@ void ggml_vec_dot_q8_0_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, c
|
||||
|
||||
*s = sumf;
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_vec_dot_q8_0_q8_0)
|
||||
|
||||
void ggml_vec_dot_tq1_0_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
assert(nrc == 1);
|
||||
@@ -353,7 +347,6 @@ void ggml_vec_dot_tq1_0_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs,
|
||||
|
||||
*s = sumf;
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_vec_dot_tq1_0_q8_K)
|
||||
|
||||
void ggml_vec_dot_tq2_0_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
assert(nrc == 1);
|
||||
@@ -386,7 +379,6 @@ void ggml_vec_dot_tq2_0_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs,
|
||||
|
||||
*s = sumf;
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_vec_dot_tq2_0_q8_K)
|
||||
|
||||
void ggml_vec_dot_q2_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
assert(nrc == 1);
|
||||
@@ -439,7 +431,6 @@ void ggml_vec_dot_q2_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, c
|
||||
}
|
||||
*s = sumf;
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_vec_dot_q2_K_q8_K)
|
||||
|
||||
void ggml_vec_dot_q3_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
assert(n % QK_K == 0);
|
||||
@@ -519,7 +510,6 @@ void ggml_vec_dot_q3_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, c
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_vec_dot_q3_K_q8_K)
|
||||
|
||||
void ggml_vec_dot_q4_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
assert(n % QK_K == 0);
|
||||
@@ -595,7 +585,6 @@ void ggml_vec_dot_q4_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, c
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_vec_dot_q4_K_q8_K)
|
||||
|
||||
void ggml_vec_dot_q5_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
assert(n % QK_K == 0);
|
||||
@@ -676,7 +665,6 @@ void ggml_vec_dot_q5_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, c
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_vec_dot_q5_K_q8_K)
|
||||
|
||||
void ggml_vec_dot_q6_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
assert(n % QK_K == 0);
|
||||
@@ -732,7 +720,6 @@ void ggml_vec_dot_q6_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, c
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_vec_dot_q6_K_q8_K)
|
||||
|
||||
void ggml_vec_dot_iq2_xxs_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
assert(n % QK_K == 0);
|
||||
@@ -775,7 +762,6 @@ void ggml_vec_dot_iq2_xxs_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs
|
||||
}
|
||||
*s = 0.125f * sumf;
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_vec_dot_iq2_xxs_q8_K)
|
||||
|
||||
void ggml_vec_dot_iq2_xs_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
assert(n % QK_K == 0);
|
||||
@@ -826,7 +812,6 @@ void ggml_vec_dot_iq2_xs_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs,
|
||||
}
|
||||
*s = 0.125f * sumf;
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_vec_dot_iq2_xs_q8_K)
|
||||
|
||||
void ggml_vec_dot_iq2_s_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
assert(n % QK_K == 0);
|
||||
@@ -879,7 +864,6 @@ void ggml_vec_dot_iq2_s_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs,
|
||||
|
||||
*s = 0.125f * sumf;
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_vec_dot_iq2_s_q8_K)
|
||||
|
||||
void ggml_vec_dot_iq3_xxs_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
assert(n % QK_K == 0);
|
||||
@@ -924,7 +908,6 @@ void ggml_vec_dot_iq3_xxs_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs
|
||||
}
|
||||
*s = 0.25f * sumf;
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_vec_dot_iq3_xxs_q8_K)
|
||||
|
||||
void ggml_vec_dot_iq3_s_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
assert(n % QK_K == 0);
|
||||
@@ -981,7 +964,6 @@ void ggml_vec_dot_iq3_s_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs,
|
||||
}
|
||||
*s = sumf;
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_vec_dot_iq3_s_q8_K)
|
||||
|
||||
void ggml_vec_dot_iq1_s_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
assert(n % QK_K == 0);
|
||||
@@ -1025,7 +1007,6 @@ void ggml_vec_dot_iq1_s_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs,
|
||||
|
||||
*s = sumf;
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_vec_dot_iq1_s_q8_K)
|
||||
|
||||
void ggml_vec_dot_iq1_m_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
assert(n % QK_K == 0);
|
||||
@@ -1087,7 +1068,6 @@ void ggml_vec_dot_iq1_m_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs,
|
||||
|
||||
*s = sumf;
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_vec_dot_iq1_m_q8_K)
|
||||
|
||||
void ggml_vec_dot_iq4_nl_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
assert(nrc == 1);
|
||||
@@ -1117,7 +1097,6 @@ void ggml_vec_dot_iq4_nl_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs,
|
||||
}
|
||||
*s = sumf;
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_vec_dot_iq4_nl_q8_0)
|
||||
|
||||
void ggml_vec_dot_iq4_xs_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
assert(nrc == 1);
|
||||
@@ -1164,7 +1143,6 @@ void ggml_vec_dot_iq4_xs_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs,
|
||||
}
|
||||
*s = sumf;
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_vec_dot_iq4_xs_q8_K)
|
||||
|
||||
// ============================ 4-bit non-linear quants
|
||||
|
||||
|
||||
@@ -84,33 +84,6 @@ void ggml_vec_dot_iq1_m_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs,
|
||||
void ggml_vec_dot_iq4_nl_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_xs_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
#if defined(GGML_CPU_GENERIC)
|
||||
#define quantize_row_q8_0_generic quantize_row_q8_0
|
||||
#define quantize_row_q8_1_generic quantize_row_q8_1
|
||||
#define quantize_row_q8_K_generic quantize_row_q8_K
|
||||
#define ggml_vec_dot_q4_0_q8_0_generic ggml_vec_dot_q4_0_q8_0
|
||||
#define ggml_vec_dot_q4_1_q8_1_generic ggml_vec_dot_q4_1_q8_1
|
||||
#define ggml_vec_dot_q5_0_q8_0_generic ggml_vec_dot_q5_0_q8_0
|
||||
#define ggml_vec_dot_q5_1_q8_1_generic ggml_vec_dot_q5_1_q8_1
|
||||
#define ggml_vec_dot_q8_0_q8_0_generic ggml_vec_dot_q8_0_q8_0
|
||||
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
|
||||
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
|
||||
#define ggml_vec_dot_q2_K_q8_K_generic ggml_vec_dot_q2_K_q8_K
|
||||
#define ggml_vec_dot_q3_K_q8_K_generic ggml_vec_dot_q3_K_q8_K
|
||||
#define ggml_vec_dot_q4_K_q8_K_generic ggml_vec_dot_q4_K_q8_K
|
||||
#define ggml_vec_dot_q5_K_q8_K_generic ggml_vec_dot_q5_K_q8_K
|
||||
#define ggml_vec_dot_q6_K_q8_K_generic ggml_vec_dot_q6_K_q8_K
|
||||
#define ggml_vec_dot_iq2_xxs_q8_K_generic ggml_vec_dot_iq2_xxs_q8_K
|
||||
#define ggml_vec_dot_iq2_xs_q8_K_generic ggml_vec_dot_iq2_xs_q8_K
|
||||
#define ggml_vec_dot_iq2_s_q8_K_generic ggml_vec_dot_iq2_s_q8_K
|
||||
#define ggml_vec_dot_iq3_xxs_q8_K_generic ggml_vec_dot_iq3_xxs_q8_K
|
||||
#define ggml_vec_dot_iq3_s_q8_K_generic ggml_vec_dot_iq3_s_q8_K
|
||||
#define ggml_vec_dot_iq1_s_q8_K_generic ggml_vec_dot_iq1_s_q8_K
|
||||
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
||||
#define ggml_vec_dot_iq4_nl_q8_0_generic ggml_vec_dot_iq4_nl_q8_0
|
||||
#define ggml_vec_dot_iq4_xs_q8_K_generic ggml_vec_dot_iq4_xs_q8_K
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
@@ -8,6 +8,8 @@
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "traits.h"
|
||||
|
||||
#include "arch-fallback.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstring>
|
||||
#include <cassert>
|
||||
@@ -83,7 +85,6 @@ void ggml_quantize_mat_q8_0_4x4_generic(const float * GGML_RESTRICT x, void * GG
|
||||
}
|
||||
}
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_quantize_mat_q8_0_4x4)
|
||||
|
||||
void ggml_quantize_mat_q8_0_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
|
||||
assert(QK8_0 == 32);
|
||||
@@ -122,7 +123,6 @@ void ggml_quantize_mat_q8_0_4x8_generic(const float * GGML_RESTRICT x, void * GG
|
||||
}
|
||||
}
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_quantize_mat_q8_0_4x8)
|
||||
|
||||
void ggml_quantize_mat_q8_K_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
|
||||
assert(QK_K == 256);
|
||||
@@ -174,7 +174,6 @@ void ggml_quantize_mat_q8_K_4x8_generic(const float * GGML_RESTRICT x, void * GG
|
||||
}
|
||||
}
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_quantize_mat_q8_K_4x8)
|
||||
|
||||
} // extern "C"
|
||||
|
||||
@@ -244,7 +243,6 @@ void ggml_gemv_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs,
|
||||
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
|
||||
}
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_gemv_q4_0_4x4_q8_0)
|
||||
|
||||
void ggml_gemv_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
const int qk = QK8_0;
|
||||
@@ -289,7 +287,6 @@ void ggml_gemv_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs,
|
||||
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
|
||||
}
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_gemv_q4_0_4x8_q8_0)
|
||||
|
||||
void ggml_gemv_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
const int qk = QK8_0;
|
||||
@@ -336,7 +333,6 @@ void ggml_gemv_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs,
|
||||
}
|
||||
}
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_gemv_q4_0_8x8_q8_0)
|
||||
|
||||
void ggml_gemv_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
const int qk = QK_K;
|
||||
@@ -415,7 +411,6 @@ void ggml_gemv_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs,
|
||||
}
|
||||
}
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_gemv_q4_K_8x8_q8_K)
|
||||
|
||||
void ggml_gemv_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
const int qk = QK8_0;
|
||||
@@ -462,7 +457,6 @@ void ggml_gemv_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs
|
||||
}
|
||||
}
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_gemv_iq4_nl_4x4_q8_0)
|
||||
|
||||
void ggml_gemm_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
const int qk = QK8_0;
|
||||
@@ -519,7 +513,6 @@ void ggml_gemm_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs,
|
||||
}
|
||||
}
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_gemm_q4_0_4x4_q8_0)
|
||||
|
||||
void ggml_gemm_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
const int qk = QK8_0;
|
||||
@@ -574,7 +567,6 @@ void ggml_gemm_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs,
|
||||
}
|
||||
}
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_gemm_q4_0_4x8_q8_0)
|
||||
|
||||
void ggml_gemm_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
const int qk = QK8_0;
|
||||
@@ -629,7 +621,6 @@ void ggml_gemm_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs,
|
||||
}
|
||||
}
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_gemm_q4_0_8x8_q8_0)
|
||||
|
||||
void ggml_gemm_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
const int qk = QK_K;
|
||||
@@ -719,7 +710,6 @@ void ggml_gemm_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs,
|
||||
}
|
||||
}
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_gemm_q4_K_8x8_q8_K)
|
||||
|
||||
void ggml_gemm_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
const int qk = QK8_0;
|
||||
@@ -776,7 +766,6 @@ void ggml_gemm_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs
|
||||
}
|
||||
}
|
||||
}
|
||||
GGML_CPU_NATIVE_IMPL(ggml_gemm_iq4_nl_4x4_q8_0)
|
||||
|
||||
} // extern "C"
|
||||
|
||||
|
||||
@@ -64,10 +64,6 @@ static_assert(sizeof(block_iq4_nlx4) == 4 * sizeof(ggml_half) + QK4_NL * 2, "wro
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Workaround for clang:
|
||||
// clang++ complains: ``error: call to 'ggml_gemm_q4_0_4x4_q8_0' is ambiguous''
|
||||
// repro: https://godbolt.org/z/oKdeWKonM (ICE), https://godbolt.org/z/1szq6P36v (ambiguous call)
|
||||
#if defined(GGML_CPU_CLANG_WORKAROUND) || !(defined(__GNUC__) && defined(__clang__)) || defined(__HIPCC__)
|
||||
void ggml_quantize_mat_q8_0_4x4(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
void ggml_quantize_mat_q8_0_4x8(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
void ggml_quantize_mat_q8_K_4x8(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
@@ -81,7 +77,6 @@ void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
#endif // !defined(__clang__)
|
||||
|
||||
// Native implementations
|
||||
void ggml_quantize_mat_q8_0_4x4_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
@@ -98,22 +93,6 @@ void ggml_gemm_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs,
|
||||
void ggml_gemm_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
|
||||
#if defined(GGML_CPU_GENERIC)
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
@@ -207,9 +207,9 @@ typedef float2 dfloat2;
|
||||
#define FP16_MMA_AVAILABLE
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
|
||||
|
||||
#if defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || defined(RDNA4))
|
||||
#if defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || (defined(GGML_HIP_ROCWMMA_FATTN_GFX12) && defined(RDNA4)))
|
||||
#define FP16_MMA_AVAILABLE
|
||||
#endif // defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || defined(RDNA4))
|
||||
#endif // defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || (defined(GGML_HIP_ROCWMMA_FATTN_GFX12) && defined(RDNA4)))
|
||||
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
|
||||
#define NEW_MMA_AVAILABLE
|
||||
|
||||
@@ -2664,7 +2664,9 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
||||
ggml_backend_buft_is_cuda_split(node->src[j]->buffer->buft) || (integrated && ggml_backend_buft_is_cuda_host(node->src[j]->buffer->buft)));
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
GGML_UNUSED(integrated);
|
||||
#endif // NDEBUG
|
||||
|
||||
bool ok = ggml_cuda_compute_forward(*cuda_ctx, node);
|
||||
if (!ok) {
|
||||
|
||||
@@ -113,6 +113,10 @@ if (GGML_HIP_ROCWMMA_FATTN)
|
||||
add_compile_definitions(GGML_HIP_ROCWMMA_FATTN)
|
||||
endif()
|
||||
|
||||
if (GGML_HIP_FORCE_ROCWMMA_FATTN_GFX12 OR ${hip_VERSION} VERSION_GREATER_EQUAL 7.0)
|
||||
add_compile_definitions(GGML_HIP_ROCWMMA_FATTN_GFX12)
|
||||
endif()
|
||||
|
||||
if (NOT GGML_CUDA_FA)
|
||||
add_compile_definitions(GGML_CUDA_NO_FA)
|
||||
endif()
|
||||
|
||||
@@ -49,15 +49,7 @@ if (Vulkan_FOUND)
|
||||
../../include/ggml-vulkan.h
|
||||
)
|
||||
|
||||
set(VULKAN_SHADER_GEN_CMAKE_ARGS
|
||||
-DCMAKE_INSTALL_PREFIX=${CMAKE_BINARY_DIR}
|
||||
-DCMAKE_RUNTIME_OUTPUT_DIRECTORY=${CMAKE_RUNTIME_OUTPUT_DIRECTORY}
|
||||
)
|
||||
|
||||
set(VULKAN_SHADER_GEN_CMAKE_BUILD_ARGS "")
|
||||
if (CMAKE_BUILD_TYPE AND CMAKE_BUILD_TYPE MATCHES "Debug|Release|MinSizeRel|RelWithDebInfo")
|
||||
list(APPEND VULKAN_SHADER_GEN_CMAKE_BUILD_ARGS --config=${CMAKE_BUILD_TYPE})
|
||||
endif()
|
||||
set(VULKAN_SHADER_GEN_CMAKE_ARGS "")
|
||||
|
||||
# Test all shader extensions
|
||||
test_shader_extension_support(
|
||||
@@ -136,42 +128,45 @@ if (Vulkan_FOUND)
|
||||
set(HOST_CMAKE_TOOLCHAIN_FILE "")
|
||||
endif()
|
||||
|
||||
# Always use ExternalProject_Add approach
|
||||
include(ExternalProject)
|
||||
|
||||
# Add toolchain file if cross-compiling
|
||||
if (CMAKE_CROSSCOMPILING)
|
||||
list(APPEND VULKAN_SHADER_GEN_CMAKE_ARGS -DCMAKE_TOOLCHAIN_FILE=${HOST_CMAKE_TOOLCHAIN_FILE})
|
||||
message(STATUS "vulkan-shaders-gen toolchain file: ${HOST_CMAKE_TOOLCHAIN_FILE}")
|
||||
endif()
|
||||
|
||||
# Native build through ExternalProject_Add
|
||||
ExternalProject_Add(
|
||||
vulkan-shaders-gen
|
||||
SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders
|
||||
CMAKE_ARGS ${VULKAN_SHADER_GEN_CMAKE_ARGS}
|
||||
BUILD_COMMAND ${CMAKE_COMMAND} --build . ${VULKAN_SHADER_GEN_CMAKE_BUILD_ARGS}
|
||||
INSTALL_COMMAND ${CMAKE_COMMAND} --install .
|
||||
INSTALL_DIR ${CMAKE_BINARY_DIR}
|
||||
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${CMAKE_BINARY_DIR}/$<CONFIG>
|
||||
-DCMAKE_INSTALL_BINDIR=.
|
||||
-DCMAKE_BUILD_TYPE=$<CONFIG>
|
||||
${VULKAN_SHADER_GEN_CMAKE_ARGS}
|
||||
|
||||
BUILD_COMMAND ${CMAKE_COMMAND} --build . --config $<CONFIG>
|
||||
|
||||
# NOTE: When DESTDIR is set using Makefile generators and
|
||||
# "make install" triggers the build step, vulkan-shaders-gen
|
||||
# would be installed into the DESTDIR prefix, so it is unset
|
||||
# to ensure that does not happen.
|
||||
|
||||
INSTALL_COMMAND ${CMAKE_COMMAND} -E env --unset=DESTDIR
|
||||
${CMAKE_COMMAND} --install . --config $<CONFIG>
|
||||
)
|
||||
ExternalProject_Add_StepTargets(vulkan-shaders-gen build install)
|
||||
|
||||
set (_ggml_vk_host_suffix $<IF:$<STREQUAL:${CMAKE_HOST_SYSTEM_NAME},Windows>,.exe,>)
|
||||
set (_ggml_vk_genshaders_cmd ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/vulkan-shaders-gen${_ggml_vk_host_suffix})
|
||||
set (_ggml_vk_header ${CMAKE_CURRENT_BINARY_DIR}/ggml-vulkan-shaders.hpp)
|
||||
set (_ggml_vk_source ${CMAKE_CURRENT_BINARY_DIR}/ggml-vulkan-shaders.cpp)
|
||||
set (_ggml_vk_input_dir ${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders)
|
||||
set (_ggml_vk_output_dir ${CMAKE_CURRENT_BINARY_DIR}/vulkan-shaders.spv)
|
||||
set (_ggml_vk_genshaders_dir "${CMAKE_BINARY_DIR}/$<CONFIG>")
|
||||
set (_ggml_vk_genshaders_cmd "${_ggml_vk_genshaders_dir}/vulkan-shaders-gen${_ggml_vk_host_suffix}")
|
||||
set (_ggml_vk_header "${CMAKE_CURRENT_BINARY_DIR}/ggml-vulkan-shaders.hpp")
|
||||
set (_ggml_vk_source "${CMAKE_CURRENT_BINARY_DIR}/ggml-vulkan-shaders.cpp")
|
||||
set (_ggml_vk_input_dir "${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders")
|
||||
set (_ggml_vk_output_dir "${CMAKE_CURRENT_BINARY_DIR}/vulkan-shaders.spv")
|
||||
|
||||
file(GLOB _ggml_vk_shader_deps "${_ggml_vk_input_dir}/*.comp")
|
||||
set (_ggml_vk_shader_deps ${_ggml_vk_shader_deps} vulkan-shaders-gen)
|
||||
|
||||
# Add build and install dependencies for all builds
|
||||
set(_ggml_vk_shader_deps ${_ggml_vk_shader_deps} vulkan-shaders-gen-build vulkan-shaders-gen-install)
|
||||
file(GLOB _ggml_vk_shader_files CONFIGURE_DEPENDS "${_ggml_vk_input_dir}/*.comp")
|
||||
|
||||
add_custom_command(
|
||||
OUTPUT ${_ggml_vk_header}
|
||||
${_ggml_vk_source}
|
||||
${_ggml_vk_source}
|
||||
|
||||
COMMAND ${_ggml_vk_genshaders_cmd}
|
||||
--glslc ${Vulkan_GLSLC_EXECUTABLE}
|
||||
@@ -181,7 +176,9 @@ if (Vulkan_FOUND)
|
||||
--target-cpp ${_ggml_vk_source}
|
||||
--no-clean
|
||||
|
||||
DEPENDS ${_ggml_vk_shader_deps}
|
||||
DEPENDS ${_ggml_vk_shader_files}
|
||||
vulkan-shaders-gen
|
||||
|
||||
COMMENT "Generate vulkan shaders"
|
||||
)
|
||||
|
||||
|
||||
@@ -168,6 +168,11 @@ struct vk_command_pool {
|
||||
vk_queue *q;
|
||||
};
|
||||
|
||||
// Prevent simultaneous submissions to the same queue.
|
||||
// This could be per vk_queue if we stopped having two vk_queue structures
|
||||
// sharing the same vk::Queue.
|
||||
static std::mutex queue_mutex;
|
||||
|
||||
struct vk_queue {
|
||||
uint32_t queue_family_index;
|
||||
vk::Queue queue;
|
||||
@@ -1266,6 +1271,7 @@ static vk::CommandBuffer ggml_vk_create_cmd_buffer(vk_device& device, vk_command
|
||||
static void ggml_vk_submit(vk_context& ctx, vk::Fence fence) {
|
||||
if (ctx->seqs.empty()) {
|
||||
if (fence) {
|
||||
std::lock_guard<std::mutex> guard(queue_mutex);
|
||||
ctx->p->q->queue.submit({}, fence);
|
||||
}
|
||||
return;
|
||||
@@ -1335,6 +1341,7 @@ static void ggml_vk_submit(vk_context& ctx, vk::Fence fence) {
|
||||
}
|
||||
}
|
||||
|
||||
std::lock_guard<std::mutex> guard(queue_mutex);
|
||||
ctx->p->q->queue.submit(submit_infos, fence);
|
||||
|
||||
ctx->seqs.clear();
|
||||
|
||||
@@ -25,15 +25,3 @@ add_executable(${TARGET} vulkan-shaders-gen.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_17)
|
||||
target_link_libraries(vulkan-shaders-gen PUBLIC Threads::Threads)
|
||||
|
||||
# Configure output directories for MSVC builds
|
||||
if(MSVC)
|
||||
# Get the main project's runtime output directory if possible
|
||||
if(DEFINED CMAKE_RUNTIME_OUTPUT_DIRECTORY)
|
||||
foreach(CONFIG ${CMAKE_CONFIGURATION_TYPES})
|
||||
string(TOUPPER ${CONFIG} CONFIG)
|
||||
set_target_properties(${TARGET} PROPERTIES
|
||||
RUNTIME_OUTPUT_DIRECTORY_${CONFIG} ${CMAKE_RUNTIME_OUTPUT_DIRECTORY})
|
||||
endforeach()
|
||||
endif()
|
||||
endif()
|
||||
|
||||
@@ -888,12 +888,6 @@ struct ggml_context {
|
||||
struct ggml_object * objects_end;
|
||||
};
|
||||
|
||||
struct ggml_context_container {
|
||||
bool used;
|
||||
|
||||
struct ggml_context context;
|
||||
};
|
||||
|
||||
//
|
||||
// data types
|
||||
//
|
||||
|
||||
@@ -291,6 +291,7 @@ class MODEL_ARCH(IntEnum):
|
||||
BERT = auto()
|
||||
NOMIC_BERT = auto()
|
||||
NOMIC_BERT_MOE = auto()
|
||||
NEO_BERT = auto()
|
||||
JINA_BERT_V2 = auto()
|
||||
BLOOM = auto()
|
||||
STABLELM = auto()
|
||||
@@ -344,6 +345,7 @@ class MODEL_ARCH(IntEnum):
|
||||
PLM = auto()
|
||||
BAILINGMOE = auto()
|
||||
DOTS1 = auto()
|
||||
ARCEE = auto()
|
||||
|
||||
|
||||
class VISION_PROJECTOR_TYPE(IntEnum):
|
||||
@@ -572,6 +574,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.BERT: "bert",
|
||||
MODEL_ARCH.NOMIC_BERT: "nomic-bert",
|
||||
MODEL_ARCH.NOMIC_BERT_MOE: "nomic-bert-moe",
|
||||
MODEL_ARCH.NEO_BERT: "neo-bert",
|
||||
MODEL_ARCH.JINA_BERT_V2: "jina-bert-v2",
|
||||
MODEL_ARCH.BLOOM: "bloom",
|
||||
MODEL_ARCH.STABLELM: "stablelm",
|
||||
@@ -624,7 +627,8 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.WAVTOKENIZER_DEC: "wavtokenizer-dec",
|
||||
MODEL_ARCH.PLM: "plm",
|
||||
MODEL_ARCH.BAILINGMOE: "bailingmoe",
|
||||
MODEL_ARCH.DOTS1: "dots1"
|
||||
MODEL_ARCH.DOTS1: "dots1",
|
||||
MODEL_ARCH.ARCEE: "arcee",
|
||||
}
|
||||
|
||||
VISION_PROJECTOR_TYPE_NAMES: dict[VISION_PROJECTOR_TYPE, str] = {
|
||||
@@ -1079,6 +1083,18 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
MODEL_TENSOR.LAYER_OUT_NORM,
|
||||
],
|
||||
MODEL_ARCH.NEO_BERT: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_QKV,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.ENC_OUTPUT_NORM,
|
||||
MODEL_TENSOR.CLS,
|
||||
MODEL_TENSOR.CLS_OUT,
|
||||
],
|
||||
MODEL_ARCH.JINA_BERT_V2: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.TOKEN_EMBD_NORM,
|
||||
@@ -2070,6 +2086,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
MODEL_TENSOR.FFN_UP_SHEXP,
|
||||
],
|
||||
MODEL_ARCH.ARCEE: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
# TODO
|
||||
}
|
||||
|
||||
|
||||
@@ -271,7 +271,7 @@ class GGUFWriter:
|
||||
|
||||
def add_key_value(self, key: str, val: Any, vtype: GGUFValueType, sub_type: GGUFValueType | None = None) -> None:
|
||||
if any(key in kv_data for kv_data in self.kv_data):
|
||||
raise ValueError(f'Duplicated key name {key!r}')
|
||||
logger.warning(f'Duplicated key name {key!r}, overwriting it with new value {val!r} of type {vtype.name}')
|
||||
|
||||
self.kv_data[0][key] = GGUFValue(value=val, type=vtype, sub_type=sub_type)
|
||||
|
||||
|
||||
@@ -31,6 +31,7 @@ class TensorNameMap:
|
||||
"model.embeddings", # rwkv7
|
||||
"model.word_embeddings", # bailingmoe
|
||||
"language_model.model.embed_tokens", # llama4
|
||||
"encoder", # neobert
|
||||
),
|
||||
|
||||
# Token type embeddings
|
||||
@@ -134,6 +135,7 @@ class TensorNameMap:
|
||||
"rwkv.blocks.{bid}.ln1", # rwkv6
|
||||
"model.layers.{bid}.ln1", # rwkv7
|
||||
"model.layers.{bid}.input_layernorm", # llama4
|
||||
"transformer_encoder.{bid}.attention_norm", # neobert
|
||||
),
|
||||
|
||||
# Attention norm 2
|
||||
@@ -161,6 +163,7 @@ class TensorNameMap:
|
||||
"model.layers.{bid}.self_attn.qkv_proj", # phi3
|
||||
"encoder.layers.{bid}.self_attention.query_key_value", # chatglm
|
||||
"transformer.layers.{bid}.attn.qkv_proj", # openelm
|
||||
"transformer_encoder.{bid}.qkv", # neobert
|
||||
),
|
||||
|
||||
# Attention query
|
||||
@@ -236,6 +239,7 @@ class TensorNameMap:
|
||||
"transformer.layers.{bid}.attn.out_proj", # openelm
|
||||
"transformer.h.{bid}.attn.attention.out_proj", # exaone
|
||||
"model.layers.{bid}.self_attn.o_proj", # llama4
|
||||
"transformer_encoder.{bid}.wo", # neobert
|
||||
),
|
||||
|
||||
# Attention output norm
|
||||
@@ -276,6 +280,7 @@ class TensorNameMap:
|
||||
"encoder.layers.{bid}.post_attention_layernorm", # chatglm
|
||||
"transformer.layers.{bid}.ffn_norm", # openelm
|
||||
"model.layers.{bid}.post_attention_layernorm", # llama4
|
||||
"transformer_encoder.{bid}.ffn_norm", # neobert
|
||||
),
|
||||
|
||||
# Post feed-forward norm
|
||||
@@ -340,6 +345,7 @@ class TensorNameMap:
|
||||
"encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
|
||||
"transformer.h.{bid}.mlp.c_fc_1", # exaone
|
||||
"model.layers.{bid}.feed_forward.up_proj", # llama4
|
||||
"transformer_encoder.{bid}.ffn.w12", # neobert
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_UP_EXP: (
|
||||
@@ -422,6 +428,7 @@ class TensorNameMap:
|
||||
"encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
|
||||
"model.layers.h.{bid}.mlp.c_proj", # exaone
|
||||
"model.layers.{bid}.feed_forward.down_proj", # llama4
|
||||
"transformer_encoder.{bid}.ffn.w3", # neobert
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_DOWN_EXP: (
|
||||
@@ -832,12 +839,14 @@ class TensorNameMap:
|
||||
# TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
|
||||
MODEL_TENSOR.ENC_OUTPUT_NORM: (
|
||||
"encoder.final_layer_norm", # t5
|
||||
"layer_norm", # neobert
|
||||
),
|
||||
|
||||
MODEL_TENSOR.CLS: (
|
||||
"classifier", # jina
|
||||
"classifier.dense", # roberta
|
||||
"pre_classifier", # distillbert
|
||||
"dense", # neobert
|
||||
),
|
||||
|
||||
MODEL_TENSOR.CLS_OUT: (
|
||||
|
||||
@@ -254,7 +254,10 @@ extern "C" {
|
||||
// - seq_id : the sequence to which the respective token belongs
|
||||
// (if set to NULL, the sequence ID will be assumed to be 0)
|
||||
// - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
|
||||
// (if set to NULL, only the logits for last token will be returned)
|
||||
// (if set to NULL:
|
||||
// - if embeddings: all tokens are output
|
||||
// - if not: only the last token is output
|
||||
// )
|
||||
//
|
||||
typedef struct llama_batch {
|
||||
int32_t n_tokens;
|
||||
@@ -262,8 +265,8 @@ extern "C" {
|
||||
llama_token * token;
|
||||
float * embd;
|
||||
llama_pos * pos;
|
||||
int32_t * n_seq_id; // TODO: remove, should belong to only 1 sequence
|
||||
llama_seq_id ** seq_id; // TODO: become llama_seq_id * seq_id;
|
||||
int32_t * n_seq_id;
|
||||
llama_seq_id ** seq_id;
|
||||
int8_t * logits; // TODO: rename this to "output"
|
||||
} llama_batch;
|
||||
|
||||
@@ -961,8 +964,8 @@ extern "C" {
|
||||
// Get the number of threads used for prompt and batch processing (multiple token).
|
||||
LLAMA_API int32_t llama_n_threads_batch(struct llama_context * ctx);
|
||||
|
||||
// Set whether the model is in embeddings mode or not
|
||||
// If true, embeddings will be returned but logits will not
|
||||
// Set whether the context outputs embeddings or not
|
||||
// TODO: rename to avoid confusion with llama_get_embeddings()
|
||||
LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);
|
||||
|
||||
// Set whether to use causal attention or not
|
||||
|
||||
@@ -1 +1 @@
|
||||
6a7d170c04789f6ebcf320ed03c1b16973f93bd7
|
||||
8cda0a3c19f2c7dc493887353c42f6956bc268b1
|
||||
|
||||
@@ -20,6 +20,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_BERT, "bert" },
|
||||
{ LLM_ARCH_NOMIC_BERT, "nomic-bert" },
|
||||
{ LLM_ARCH_NOMIC_BERT_MOE, "nomic-bert-moe" },
|
||||
{ LLM_ARCH_NEO_BERT, "neo-bert" },
|
||||
{ LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" },
|
||||
{ LLM_ARCH_BLOOM, "bloom" },
|
||||
{ LLM_ARCH_STABLELM, "stablelm" },
|
||||
@@ -73,6 +74,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_PLM, "plm" },
|
||||
{ LLM_ARCH_BAILINGMOE, "bailingmoe" },
|
||||
{ LLM_ARCH_DOTS1, "dots1" },
|
||||
{ LLM_ARCH_ARCEE, "arcee" },
|
||||
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
||||
};
|
||||
|
||||
@@ -244,6 +246,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_ARCEE,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_LLAMA4,
|
||||
{
|
||||
@@ -495,6 +515,21 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_NEO_BERT,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
{ LLM_TENSOR_ENC_OUTPUT_NORM, "enc.output_norm" },
|
||||
{ LLM_TENSOR_CLS, "cls" },
|
||||
{ LLM_TENSOR_CLS_OUT, "cls.output" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_JINA_BERT_V2,
|
||||
{
|
||||
|
||||
@@ -24,6 +24,7 @@ enum llm_arch {
|
||||
LLM_ARCH_BERT,
|
||||
LLM_ARCH_NOMIC_BERT,
|
||||
LLM_ARCH_NOMIC_BERT_MOE,
|
||||
LLM_ARCH_NEO_BERT,
|
||||
LLM_ARCH_JINA_BERT_V2,
|
||||
LLM_ARCH_BLOOM,
|
||||
LLM_ARCH_STABLELM,
|
||||
@@ -77,6 +78,7 @@ enum llm_arch {
|
||||
LLM_ARCH_PLM,
|
||||
LLM_ARCH_BAILINGMOE,
|
||||
LLM_ARCH_DOTS1,
|
||||
LLM_ARCH_ARCEE,
|
||||
LLM_ARCH_UNKNOWN,
|
||||
};
|
||||
|
||||
|
||||
@@ -299,7 +299,8 @@ llama_batch_allocr::llama_batch_allocr() {
|
||||
bool llama_batch_allocr::init(
|
||||
const llama_batch & batch_inp,
|
||||
const llama_vocab & vocab,
|
||||
const llama_memory_i * memory) {
|
||||
const llama_memory_i * memory,
|
||||
bool embd_all) {
|
||||
clear();
|
||||
|
||||
batch = batch_inp;
|
||||
@@ -378,10 +379,31 @@ bool llama_batch_allocr::init(
|
||||
}
|
||||
|
||||
if (!batch.logits) {
|
||||
// by default return the output only for the last token
|
||||
output.resize(batch.n_tokens);
|
||||
output[output.size() - 1] = true;
|
||||
if (embd_all) {
|
||||
// return the output for all tokens
|
||||
output.resize(batch.n_tokens, true);
|
||||
} else {
|
||||
// return the output only for the last token
|
||||
output.resize(batch.n_tokens, false);
|
||||
output[output.size() - 1] = true;
|
||||
}
|
||||
|
||||
batch.logits = output.data();
|
||||
} else if (embd_all) {
|
||||
bool warn = false;
|
||||
|
||||
for (int32_t i = 0; i < batch.n_tokens; ++i) {
|
||||
if (batch.logits[i] == 0) {
|
||||
warn = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (warn) {
|
||||
LLAMA_LOG_WARN("%s: embeddings required but some input tokens were not marked as outputs -> overriding\n", __func__);
|
||||
|
||||
output.resize(batch.n_tokens, true);
|
||||
batch.logits = output.data();
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
|
||||
@@ -88,7 +88,8 @@ public:
|
||||
bool init(
|
||||
const llama_batch & batch_inp,
|
||||
const llama_vocab & vocab,
|
||||
const llama_memory_i * memory);
|
||||
const llama_memory_i * memory,
|
||||
bool embd_all);
|
||||
|
||||
const llama_batch & get_batch() const;
|
||||
|
||||
|
||||
@@ -333,7 +333,7 @@ int32_t llm_chat_apply_template(
|
||||
std::string role(message->role);
|
||||
if (role == "system") {
|
||||
// there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
|
||||
system_prompt = trim(message->content);
|
||||
system_prompt += trim(message->content);
|
||||
continue;
|
||||
}
|
||||
// in gemma, "assistant" is "model"
|
||||
@@ -355,7 +355,7 @@ int32_t llm_chat_apply_template(
|
||||
std::string role(message->role);
|
||||
if (role == "system") {
|
||||
// there is no system message support, we will merge it with user prompt
|
||||
system_prompt = message->content;
|
||||
system_prompt += message->content;
|
||||
continue;
|
||||
} else if (role == "user") {
|
||||
ss << "Human: ";
|
||||
|
||||
@@ -728,7 +728,7 @@ int llama_context::encode(const llama_batch & batch_inp) {
|
||||
}
|
||||
|
||||
// note: during encode, we always pass the full sequence starting from pos = 0
|
||||
if (!batch_allocr->init(batch_inp, model.vocab, nullptr)) {
|
||||
if (!batch_allocr->init(batch_inp, model.vocab, nullptr, true)) {
|
||||
LLAMA_LOG_ERROR("%s: failed to initialize batch\n", __func__);
|
||||
return -1;
|
||||
}
|
||||
@@ -894,7 +894,10 @@ int llama_context::decode(const llama_batch & batch_inp) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (!batch_allocr->init(batch_inp, model.vocab, memory.get())) {
|
||||
// when computing embeddings, all tokens are output
|
||||
const bool embd_all = cparams.embeddings;
|
||||
|
||||
if (!batch_allocr->init(batch_inp, model.vocab, memory.get(), embd_all)) {
|
||||
LLAMA_LOG_ERROR("%s: failed to initialize batch\n", __func__);
|
||||
return -1;
|
||||
}
|
||||
@@ -911,12 +914,9 @@ int llama_context::decode(const llama_batch & batch_inp) {
|
||||
|
||||
GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
|
||||
|
||||
// this indicates we are doing pooled embedding
|
||||
const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE;
|
||||
|
||||
const uint32_t n_outputs_all = batch_allocr->get_n_outputs();
|
||||
|
||||
if (embd_pooled) {
|
||||
if (embd_all) {
|
||||
// require that all tokens are output
|
||||
if (n_outputs_all != n_tokens_all) {
|
||||
LLAMA_LOG_ERROR("%s: pooled embedding requires that all tokens are output (n_outputs_all = %d, n_tokens_all = %d)\n",
|
||||
@@ -945,7 +945,7 @@ int llama_context::decode(const llama_batch & batch_inp) {
|
||||
llama_memory_state_ptr mstate;
|
||||
|
||||
while (true) {
|
||||
mstate = memory->init_batch(batch, cparams.n_ubatch, embd_pooled);
|
||||
mstate = memory->init_batch(batch, cparams.n_ubatch, embd_all);
|
||||
if (!mstate) {
|
||||
return -2;
|
||||
}
|
||||
@@ -1058,7 +1058,7 @@ int llama_context::decode(const llama_batch & batch_inp) {
|
||||
// ggml_graph_dump_dot(gf, NULL, "llama.dot");
|
||||
//}
|
||||
|
||||
auto * t_logits = cparams.embeddings ? nullptr : res->get_logits();
|
||||
auto * t_logits = res->get_logits();
|
||||
auto * t_embd = cparams.embeddings ? res->get_embd() : nullptr;
|
||||
|
||||
if (t_embd && res->get_embd_pooled()) {
|
||||
@@ -1222,9 +1222,8 @@ uint32_t llama_context::output_reserve(int32_t n_outputs) {
|
||||
const auto n_vocab = vocab.n_tokens();
|
||||
const auto n_embd = hparams.n_embd;
|
||||
|
||||
// TODO: use a per-batch flag for logits presence instead
|
||||
bool has_logits = !cparams.embeddings;
|
||||
bool has_embd = cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
|
||||
bool has_logits = true;
|
||||
bool has_embd = cparams.embeddings;
|
||||
|
||||
// TODO: hacky enc-dec support
|
||||
if (model.arch == LLM_ARCH_T5) {
|
||||
@@ -2044,14 +2043,11 @@ void llama_context::opt_epoch_iter(
|
||||
|
||||
n_queued_tokens += n_tokens_all;
|
||||
|
||||
// this indicates we are doing pooled embedding
|
||||
const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE;
|
||||
|
||||
embd_seq.clear();
|
||||
|
||||
uint32_t n_outputs_all = n_tokens_all;
|
||||
|
||||
auto mstate = memory->init_batch(batch, cparams.n_ubatch, embd_pooled);
|
||||
auto mstate = memory->init_batch(batch, cparams.n_ubatch, true);
|
||||
if (!mstate || mstate->get_status() != LLAMA_MEMORY_STATUS_SUCCESS) {
|
||||
LLAMA_LOG_ERROR("%s: could not initialize batch\n", __func__);
|
||||
break;
|
||||
|
||||
@@ -359,9 +359,7 @@ llama_pos llama_kv_cache_recurrent::seq_pos_max(llama_seq_id seq_id) const {
|
||||
return result;
|
||||
}
|
||||
|
||||
llama_memory_state_ptr llama_kv_cache_recurrent::init_batch(const llama_batch & batch, uint32_t n_ubatch, bool embd_pooled) {
|
||||
GGML_UNUSED(embd_pooled);
|
||||
|
||||
llama_memory_state_ptr llama_kv_cache_recurrent::init_batch(const llama_batch & batch, uint32_t n_ubatch, bool embd_all) {
|
||||
auto sbatch = llama_sbatch(batch, hparams.n_embd, false);
|
||||
|
||||
std::vector<llama_ubatch> ubatches;
|
||||
@@ -369,8 +367,8 @@ llama_memory_state_ptr llama_kv_cache_recurrent::init_batch(const llama_batch &
|
||||
while (sbatch.n_tokens > 0) {
|
||||
llama_ubatch ubatch;
|
||||
|
||||
if (embd_pooled) {
|
||||
// Pooled embeddings cannot be split across ubatches (yet)
|
||||
if (embd_all) {
|
||||
// if all tokens are output, split by sequence
|
||||
ubatch = sbatch.split_seq(n_ubatch);
|
||||
} else {
|
||||
ubatch = sbatch.split_equal(n_ubatch);
|
||||
|
||||
@@ -32,7 +32,7 @@ public:
|
||||
llama_memory_state_ptr init_batch(
|
||||
const llama_batch & batch,
|
||||
uint32_t n_ubatch,
|
||||
bool embd_pooled) override;
|
||||
bool embd_all) override;
|
||||
|
||||
llama_memory_state_ptr init_full() override;
|
||||
|
||||
|
||||
@@ -95,8 +95,8 @@ llama_pos llama_kv_cache_unified_iswa::seq_pos_max(llama_seq_id seq_id) const {
|
||||
return kv_swa->seq_pos_max(seq_id);
|
||||
}
|
||||
|
||||
llama_memory_state_ptr llama_kv_cache_unified_iswa::init_batch(const llama_batch & batch, uint32_t n_ubatch, bool embd_pooled) {
|
||||
GGML_UNUSED(embd_pooled);
|
||||
llama_memory_state_ptr llama_kv_cache_unified_iswa::init_batch(const llama_batch & batch, uint32_t n_ubatch, bool embd_all) {
|
||||
GGML_UNUSED(embd_all);
|
||||
|
||||
// first try simple split
|
||||
do {
|
||||
|
||||
@@ -34,7 +34,7 @@ public:
|
||||
llama_memory_state_ptr init_batch(
|
||||
const llama_batch & batch,
|
||||
uint32_t n_ubatch,
|
||||
bool embd_pooled) override;
|
||||
bool embd_all) override;
|
||||
|
||||
llama_memory_state_ptr init_full() override;
|
||||
|
||||
|
||||
@@ -310,8 +310,8 @@ llama_pos llama_kv_cache_unified::seq_pos_max(llama_seq_id seq_id) const {
|
||||
llama_memory_state_ptr llama_kv_cache_unified::init_batch(
|
||||
const llama_batch & batch,
|
||||
uint32_t n_ubatch,
|
||||
bool embd_pooled) {
|
||||
GGML_UNUSED(embd_pooled);
|
||||
bool embd_all) {
|
||||
GGML_UNUSED(embd_all);
|
||||
|
||||
do {
|
||||
auto sbatch = llama_sbatch(batch, hparams.n_embd, true);
|
||||
|
||||
@@ -59,7 +59,7 @@ public:
|
||||
llama_memory_state_ptr init_batch(
|
||||
const llama_batch & batch,
|
||||
uint32_t n_ubatch,
|
||||
bool embd_pooled) override;
|
||||
bool embd_all) override;
|
||||
|
||||
llama_memory_state_ptr init_full() override;
|
||||
|
||||
|
||||
@@ -73,7 +73,7 @@ struct llama_memory_i {
|
||||
virtual llama_memory_state_ptr init_batch(
|
||||
const llama_batch & batch,
|
||||
uint32_t n_ubatch,
|
||||
bool embd_pooled) = 0;
|
||||
bool embd_all) = 0;
|
||||
|
||||
// simulate full cache, used for allocating worst-case compute buffers
|
||||
virtual llama_memory_state_ptr init_full() = 0;
|
||||
|
||||
@@ -599,6 +599,16 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
hparams.use_kq_norm = false;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_ARCEE:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
||||
// Arcee uses the same structure as Llama
|
||||
switch (hparams.n_layer) {
|
||||
case 36: type = LLM_TYPE_4B; break;
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_DECI:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
@@ -739,6 +749,16 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_NEO_BERT:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
|
||||
ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
|
||||
|
||||
if (hparams.n_layer == 28) {
|
||||
type = LLM_TYPE_250M;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_BLOOM:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||||
@@ -2202,6 +2222,32 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_NEO_BERT:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
|
||||
cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
|
||||
cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
|
||||
|
||||
cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
|
||||
cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
|
||||
|
||||
output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
|
||||
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
|
||||
|
||||
layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
|
||||
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
|
||||
|
||||
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
||||
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff*2}, 0);
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_JINA_BERT_V2:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // word_embeddings
|
||||
@@ -4190,6 +4236,37 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_ARCEE:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
|
||||
// output
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
||||
|
||||
// if output is NULL, init from the input tok embed
|
||||
if (output == NULL) {
|
||||
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
|
||||
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
|
||||
|
||||
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
|
||||
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
|
||||
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
|
||||
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
|
||||
|
||||
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
||||
|
||||
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
||||
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
||||
}
|
||||
} break;
|
||||
default:
|
||||
throw std::runtime_error("unknown architecture");
|
||||
}
|
||||
@@ -6141,6 +6218,117 @@ struct llm_build_bert : public llm_graph_context {
|
||||
}
|
||||
};
|
||||
|
||||
struct llm_build_neo_bert : public llm_graph_context {
|
||||
llm_build_neo_bert(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
||||
ggml_tensor * cur;
|
||||
ggml_tensor * inpL;
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
// construct input embeddings (token, type, position)
|
||||
inpL = build_inp_embd(model.tok_embd);
|
||||
cb(inpL, "inp_embd", -1);
|
||||
|
||||
auto * inp_attn = build_attn_inp_no_cache();
|
||||
|
||||
// iterate layers
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_tensor * cur = inpL;
|
||||
|
||||
ggml_tensor * Qcur;
|
||||
ggml_tensor * Kcur;
|
||||
ggml_tensor * Vcur;
|
||||
|
||||
// pre-norm
|
||||
cur = build_norm(inpL,
|
||||
model.layers[il].attn_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
|
||||
// self-attention
|
||||
cur = build_lora_mm(model.layers[il].wqkv, cur);
|
||||
cb(cur, "wqkv", il);
|
||||
|
||||
Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
|
||||
Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
|
||||
Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
|
||||
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
||||
|
||||
// RoPE
|
||||
Qcur = ggml_rope_ext(
|
||||
ctx0, Qcur, inp_pos, nullptr,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
||||
Kcur = ggml_rope_ext(
|
||||
ctx0, Kcur, inp_pos, nullptr,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
||||
cb(Qcur, "Qcur", il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
cur = build_attn(inp_attn, gf,
|
||||
model.layers[il].wo, nullptr,
|
||||
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
|
||||
cb(cur, "kqv_out", il);
|
||||
|
||||
if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
|
||||
// skip computing output for unused tokens
|
||||
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||||
}
|
||||
|
||||
// re-add the layer input
|
||||
cur = ggml_add(ctx0, cur, inpL);
|
||||
|
||||
ggml_tensor * ffn_inp = cur;
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// pre-norm
|
||||
cur = build_norm(ffn_inp,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
// feed-forward network
|
||||
cur = build_ffn(cur,
|
||||
model.layers[il].ffn_up,
|
||||
NULL, NULL, NULL, NULL, NULL,
|
||||
model.layers[il].ffn_down,
|
||||
NULL, NULL, NULL,
|
||||
LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
|
||||
|
||||
// attentions bypass the intermediate layer
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
cur = inpL;
|
||||
|
||||
cur = build_norm(cur,
|
||||
model.output_norm_enc, NULL,
|
||||
LLM_NORM_RMS, -1);
|
||||
|
||||
cb(cur, "result_embd", -1);
|
||||
res->t_embd = cur;
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
};
|
||||
|
||||
struct llm_build_bloom : public llm_graph_context {
|
||||
llm_build_bloom(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
@@ -13411,6 +13599,141 @@ struct llm_build_dots1 : public llm_graph_context {
|
||||
}
|
||||
};
|
||||
|
||||
struct llm_build_arcee : public llm_graph_context {
|
||||
llm_build_arcee(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
ggml_tensor * cur;
|
||||
ggml_tensor * inpL;
|
||||
|
||||
inpL = build_inp_embd(model.tok_embd);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
auto * inp_attn = build_attn_inp_kv_unified();
|
||||
|
||||
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_tensor * inpSA = inpL;
|
||||
|
||||
// norm
|
||||
cur = build_norm(inpL,
|
||||
model.layers[il].attn_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
// self-attention
|
||||
{
|
||||
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
|
||||
|
||||
// compute Q and K and RoPE them
|
||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
cb(Qcur, "Qcur", il);
|
||||
if (model.layers[il].bq) {
|
||||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||||
cb(Qcur, "Qcur", il);
|
||||
}
|
||||
|
||||
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
||||
cb(Kcur, "Kcur", il);
|
||||
if (model.layers[il].bk) {
|
||||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||||
cb(Kcur, "Kcur", il);
|
||||
}
|
||||
|
||||
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
||||
cb(Vcur, "Vcur", il);
|
||||
if (model.layers[il].bv) {
|
||||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||||
cb(Vcur, "Vcur", il);
|
||||
}
|
||||
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
||||
|
||||
Qcur = ggml_rope_ext(
|
||||
ctx0, Qcur, inp_pos, rope_factors,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
||||
Kcur = ggml_rope_ext(
|
||||
ctx0, Kcur, inp_pos, rope_factors,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
||||
cb(Qcur, "Qcur", il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
cur = build_attn(inp_attn, gf,
|
||||
model.layers[il].wo, model.layers[il].bo,
|
||||
Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
|
||||
cb(cur, "attn_out", il);
|
||||
}
|
||||
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
|
||||
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// feed-forward network
|
||||
// ARCEE uses relu^2 instead of silu
|
||||
cur = build_norm(ffn_inp,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = build_ffn(cur,
|
||||
model.layers[il].ffn_up, NULL, NULL,
|
||||
NULL, NULL, NULL,
|
||||
model.layers[il].ffn_down, NULL, NULL,
|
||||
NULL,
|
||||
LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
cur = build_cvec(cur, il);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
cur = inpL;
|
||||
|
||||
cur = build_norm(cur,
|
||||
model.output_norm, NULL,
|
||||
LLM_NORM_RMS, -1);
|
||||
|
||||
cb(cur, "result_norm", -1);
|
||||
res->t_embd = cur;
|
||||
|
||||
// lm_head
|
||||
cur = build_lora_mm(model.output, cur);
|
||||
|
||||
cb(cur, "result_output", -1);
|
||||
res->t_logits = cur;
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
};
|
||||
|
||||
llama_memory_i * llama_model::create_memory(const llama_memory_params & params, llama_cparams & cparams) const {
|
||||
llama_memory_i * res;
|
||||
|
||||
@@ -13419,6 +13742,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
|
||||
case LLM_ARCH_JINA_BERT_V2:
|
||||
case LLM_ARCH_NOMIC_BERT:
|
||||
case LLM_ARCH_NOMIC_BERT_MOE:
|
||||
case LLM_ARCH_NEO_BERT:
|
||||
case LLM_ARCH_WAVTOKENIZER_DEC:
|
||||
{
|
||||
res = nullptr;
|
||||
@@ -13527,6 +13851,10 @@ llm_graph_result_ptr llama_model::build_graph(
|
||||
{
|
||||
llm = std::make_unique<llm_build_bert>(*this, params, gf);
|
||||
} break;
|
||||
case LLM_ARCH_NEO_BERT:
|
||||
{
|
||||
llm = std::make_unique<llm_build_neo_bert>(*this, params, gf);
|
||||
} break;
|
||||
case LLM_ARCH_BLOOM:
|
||||
{
|
||||
llm = std::make_unique<llm_build_bloom>(*this, params, gf);
|
||||
@@ -13753,6 +14081,10 @@ llm_graph_result_ptr llama_model::build_graph(
|
||||
{
|
||||
llm = std::make_unique<llm_build_dots1>(*this, params, gf);
|
||||
} break;
|
||||
case LLM_ARCH_ARCEE:
|
||||
{
|
||||
llm = std::make_unique<llm_build_arcee>(*this, params, gf);
|
||||
} break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
@@ -13902,6 +14234,8 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
||||
case LLM_ARCH_GRANITE_MOE:
|
||||
case LLM_ARCH_CHAMELEON:
|
||||
case LLM_ARCH_BAILINGMOE:
|
||||
case LLM_ARCH_NEO_BERT:
|
||||
case LLM_ARCH_ARCEE:
|
||||
return LLAMA_ROPE_TYPE_NORM;
|
||||
|
||||
// the pairs of head values are offset by n_rot/2
|
||||
|
||||
@@ -585,7 +585,8 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
||||
if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
|
||||
gguf_set_val_f32(ctx_out.get(), o.key, o.val_f64);
|
||||
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
|
||||
gguf_set_val_i32(ctx_out.get(), o.key, o.val_i64);
|
||||
// Setting type to UINT32. See https://github.com/ggml-org/llama.cpp/pull/14182 for context
|
||||
gguf_set_val_u32(ctx_out.get(), o.key, (uint32_t)abs(o.val_i64));
|
||||
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
|
||||
gguf_set_val_bool(ctx_out.get(), o.key, o.val_bool);
|
||||
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
|
||||
|
||||
@@ -1987,6 +1987,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
|| t.first == "<|eom_id|>"
|
||||
|| t.first == "<EOT>"
|
||||
|| t.first == "_<EOT>"
|
||||
|| t.first == "<|end_of_text|>"
|
||||
) {
|
||||
special_eog_ids.insert(t.second);
|
||||
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
|
||||
@@ -198,14 +198,18 @@ static struct llama_model * llama_model_load_from_file_impl(
|
||||
|
||||
// if using single GPU mode, remove all except the main GPU
|
||||
if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
|
||||
if (params.main_gpu < 0 || params.main_gpu >= (int)model->devices.size()) {
|
||||
LLAMA_LOG_ERROR("%s: invalid value for main_gpu: %d (available devices: %d)\n", __func__, params.main_gpu, (int)model->devices.size());
|
||||
llama_model_free(model);
|
||||
return nullptr;
|
||||
if (params.main_gpu < 0) {
|
||||
model->devices.clear();
|
||||
} else {
|
||||
if (params.main_gpu >= (int)model->devices.size()) {
|
||||
LLAMA_LOG_ERROR("%s: invalid value for main_gpu: %d (available devices: %zu)\n", __func__, params.main_gpu, model->devices.size());
|
||||
llama_model_free(model);
|
||||
return nullptr;
|
||||
}
|
||||
ggml_backend_dev_t main_gpu = model->devices[params.main_gpu];
|
||||
model->devices.clear();
|
||||
model->devices.push_back(main_gpu);
|
||||
}
|
||||
ggml_backend_dev_t main_gpu = model->devices[params.main_gpu];
|
||||
model->devices.clear();
|
||||
model->devices.push_back(main_gpu);
|
||||
}
|
||||
|
||||
for (auto * dev : model->devices) {
|
||||
|
||||
@@ -185,6 +185,8 @@ llama_build_and_test(test-json-partial.cpp)
|
||||
llama_build_and_test(test-log.cpp)
|
||||
llama_build_and_test(test-regex-partial.cpp)
|
||||
|
||||
llama_build_and_test(test-thread-safety.cpp ARGS -hf ggml-org/models -hff tinyllamas/stories15M-q4_0.gguf -ngl 99 -p "The meaning of life is" -n 128 -c 256 -ub 32 -np 4)
|
||||
|
||||
# this fails on windows (github hosted runner) due to curl DLL not found (exit code 0xc0000135)
|
||||
if (NOT WIN32)
|
||||
llama_build_and_test(test-arg-parser.cpp)
|
||||
|
||||
152
tests/test-thread-safety.cpp
Normal file
152
tests/test-thread-safety.cpp
Normal file
@@ -0,0 +1,152 @@
|
||||
// thread safety test
|
||||
// - Loads a copy of the same model on each GPU, plus a copy on the CPU
|
||||
// - Creates n_parallel (--parallel) contexts per model
|
||||
// - Runs inference in parallel on each context
|
||||
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <atomic>
|
||||
#include "llama.h"
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "sampling.h"
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
common_init();
|
||||
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||
|
||||
//llama_log_set([](ggml_log_level level, const char * text, void * /*user_data*/) {
|
||||
// if (level == GGML_LOG_LEVEL_ERROR) {
|
||||
// common_log_add(common_log_main(), level, "%s", text);
|
||||
// }
|
||||
//}, NULL);
|
||||
|
||||
auto cparams = common_context_params_to_llama(params);
|
||||
|
||||
int dev_count = ggml_backend_dev_count();
|
||||
int gpu_dev_count = 0;
|
||||
for (int i = 0; i < dev_count; ++i) {
|
||||
auto * dev = ggml_backend_dev_get(i);
|
||||
if (dev && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_GPU) {
|
||||
gpu_dev_count++;
|
||||
}
|
||||
}
|
||||
const int num_models = gpu_dev_count + 1 + 1; // GPUs + 1 CPU model + 1 layer split
|
||||
//const int num_models = std::max(1, gpu_dev_count);
|
||||
const int num_contexts = std::max(1, params.n_parallel);
|
||||
|
||||
std::vector<llama_model_ptr> models;
|
||||
std::vector<std::thread> threads;
|
||||
std::atomic<bool> failed = false;
|
||||
|
||||
for (int m = 0; m < num_models; ++m) {
|
||||
auto mparams = common_model_params_to_llama(params);
|
||||
|
||||
if (m < gpu_dev_count) {
|
||||
mparams.split_mode = LLAMA_SPLIT_MODE_NONE;
|
||||
mparams.main_gpu = m;
|
||||
} else if (m == gpu_dev_count) {
|
||||
mparams.split_mode = LLAMA_SPLIT_MODE_NONE;
|
||||
mparams.main_gpu = -1; // CPU model
|
||||
} else {
|
||||
mparams.split_mode = LLAMA_SPLIT_MODE_LAYER;;
|
||||
}
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.path.c_str());
|
||||
return 1;
|
||||
}
|
||||
|
||||
models.emplace_back(model);
|
||||
}
|
||||
|
||||
for (int m = 0; m < num_models; ++m) {
|
||||
auto * model = models[m].get();
|
||||
for (int c = 0; c < num_contexts; ++c) {
|
||||
threads.emplace_back([&, m, c, model]() {
|
||||
LOG_INF("Creating context %d/%d for model %d/%d\n", c + 1, num_contexts, m + 1, num_models);
|
||||
|
||||
llama_context_ptr ctx { llama_init_from_model(model, cparams) };
|
||||
if (ctx == NULL) {
|
||||
LOG_ERR("failed to create context\n");
|
||||
failed.store(true);
|
||||
return;
|
||||
}
|
||||
|
||||
std::unique_ptr<common_sampler, decltype(&common_sampler_free)> sampler { common_sampler_init(model, params.sampling), common_sampler_free };
|
||||
if (sampler == NULL) {
|
||||
LOG_ERR("failed to create sampler\n");
|
||||
failed.store(true);
|
||||
return;
|
||||
}
|
||||
|
||||
llama_batch batch = {};
|
||||
{
|
||||
auto prompt = common_tokenize(ctx.get(), params.prompt, true);
|
||||
if (prompt.empty()) {
|
||||
LOG_ERR("failed to tokenize prompt\n");
|
||||
failed.store(true);
|
||||
return;
|
||||
}
|
||||
batch = llama_batch_get_one(prompt.data(), prompt.size());
|
||||
if (llama_decode(ctx.get(), batch)) {
|
||||
LOG_ERR("failed to decode prompt\n");
|
||||
failed.store(true);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
const auto * vocab = llama_model_get_vocab(model);
|
||||
std::string result = params.prompt;
|
||||
|
||||
for (int i = 0; i < params.n_predict; i++) {
|
||||
llama_token token;
|
||||
if (batch.n_tokens > 0) {
|
||||
token = common_sampler_sample(sampler.get(), ctx.get(), batch.n_tokens - 1);
|
||||
} else {
|
||||
token = llama_vocab_bos(vocab);
|
||||
}
|
||||
|
||||
result += common_token_to_piece(ctx.get(), token);
|
||||
|
||||
if (llama_vocab_is_eog(vocab, token)) {
|
||||
break;
|
||||
}
|
||||
|
||||
batch = llama_batch_get_one(&token, 1);
|
||||
if (llama_decode(ctx.get(), batch)) {
|
||||
LOG_ERR("Model %d/%d, Context %d/%d: failed to decode\n", m + 1, num_models, c + 1, num_contexts);
|
||||
failed.store(true);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
LOG_INF("Model %d/%d, Context %d/%d: %s\n\n", m + 1, num_models, c + 1, num_contexts, result.c_str());
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
for (auto & thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
|
||||
if (failed) {
|
||||
LOG_ERR("One or more threads failed.\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
LOG_INF("All threads finished without errors.\n");
|
||||
return 0;
|
||||
}
|
||||
@@ -187,7 +187,7 @@ struct clip_hparams {
|
||||
float eps = 1e-6;
|
||||
float rope_theta = 0.0;
|
||||
|
||||
std::vector<int32_t> image_grid_pinpoints;
|
||||
std::vector<clip_image_size> image_res_candidates; // for llava-uhd style models
|
||||
int32_t image_crop_resolution;
|
||||
std::unordered_set<int32_t> vision_feature_layer;
|
||||
int32_t attn_window_size = 0;
|
||||
@@ -2109,8 +2109,7 @@ struct clip_model_loader {
|
||||
if (is_vision) {
|
||||
get_u32(KEY_IMAGE_SIZE, hparams.image_size);
|
||||
get_u32(KEY_PATCH_SIZE, hparams.patch_size);
|
||||
get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
|
||||
get_arr_int(KEY_IMAGE_GRID_PINPOINTS, hparams.image_grid_pinpoints, false);
|
||||
get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
|
||||
get_i32(KEY_MINICPMV_VERSION, hparams.minicpmv_version, false); // legacy
|
||||
|
||||
} else if (is_audio) {
|
||||
@@ -2120,6 +2119,20 @@ struct clip_model_loader {
|
||||
GGML_ASSERT(false && "unknown modality");
|
||||
}
|
||||
|
||||
// for pinpoints, we need to convert it into a list of resolution candidates
|
||||
{
|
||||
std::vector<int> pinpoints;
|
||||
get_arr_int(KEY_IMAGE_GRID_PINPOINTS, pinpoints, false);
|
||||
if (!pinpoints.empty()) {
|
||||
for (size_t i = 0; i < pinpoints.size(); i += 2) {
|
||||
hparams.image_res_candidates.push_back({
|
||||
pinpoints[i],
|
||||
pinpoints[i+1],
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// default warmup value
|
||||
hparams.warmup_image_size = hparams.image_size;
|
||||
|
||||
@@ -2231,16 +2244,7 @@ struct clip_model_loader {
|
||||
{
|
||||
hparams.rope_theta = 10000.0f;
|
||||
get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor);
|
||||
|
||||
// borrowed from llava-1.6
|
||||
const int isize = hparams.image_size;
|
||||
hparams.image_grid_pinpoints = {
|
||||
isize, isize*2, // 336, 672
|
||||
isize*2, isize, // 672, 336
|
||||
isize*2, isize*2, // 672, 672
|
||||
isize*3, isize, // 1008, 336
|
||||
isize, isize*3, // 336, 1008
|
||||
};
|
||||
set_llava_uhd_res_candidates(model, 3);
|
||||
} break;
|
||||
case PROJECTOR_TYPE_ULTRAVOX:
|
||||
case PROJECTOR_TYPE_QWEN2A:
|
||||
@@ -2674,6 +2678,21 @@ struct clip_model_loader {
|
||||
output[i] = values[i];
|
||||
}
|
||||
}
|
||||
|
||||
void set_llava_uhd_res_candidates(clip_model & model, const int max_patches_per_side) {
|
||||
auto & hparams = model.hparams;
|
||||
for (int x = 1; x <= max_patches_per_side; x++) {
|
||||
for (int y = 1; y <= max_patches_per_side; y++) {
|
||||
if (x == 1 && y == 1) {
|
||||
continue; // skip the first point
|
||||
}
|
||||
hparams.image_res_candidates.push_back(clip_image_size{
|
||||
x*hparams.image_size,
|
||||
y*hparams.image_size,
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
struct clip_init_result clip_init(const char * fname, struct clip_context_params ctx_params) {
|
||||
@@ -3028,36 +3047,41 @@ struct llava_uhd {
|
||||
bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
|
||||
};
|
||||
|
||||
static int get_max_slices(struct clip_ctx * ctx) {
|
||||
if (clip_is_minicpmv(ctx)) {
|
||||
return 9;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
|
||||
slice_instructions res;
|
||||
const int patch_size = clip_get_patch_size(ctx);
|
||||
const int slice_size = clip_get_image_size(ctx);
|
||||
const int max_slice_nums = get_max_slices(ctx);
|
||||
const int original_width = original_size.width;
|
||||
const int original_height = original_size.height;
|
||||
const float log_ratio = log((float)original_width / original_height);
|
||||
const float ratio = (float)original_width * original_height / (slice_size * slice_size);
|
||||
const int multiple = fmin(ceil(ratio), max_slice_nums);
|
||||
const bool has_slices = (multiple > 1);
|
||||
const bool has_pinpoints = !ctx->model.hparams.image_grid_pinpoints.empty();
|
||||
|
||||
const bool has_slices = original_size.width > slice_size || original_size.height > slice_size;
|
||||
const bool has_pinpoints = !ctx->model.hparams.image_res_candidates.empty();
|
||||
|
||||
if (!has_slices) {
|
||||
// skip slicing logic
|
||||
res.overview_size = clip_image_size{slice_size, slice_size};
|
||||
res.refined_size = clip_image_size{0, 0};
|
||||
res.grid_size = clip_image_size{0, 0};
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
if (has_pinpoints) {
|
||||
// has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
|
||||
auto refine_size = llava_uhd::select_best_resolution(
|
||||
ctx->model.hparams.image_grid_pinpoints,
|
||||
original_size);
|
||||
original_size,
|
||||
ctx->model.hparams.image_res_candidates);
|
||||
res.overview_size = clip_image_size{slice_size, slice_size};
|
||||
res.refined_size = refine_size;
|
||||
res.grid_size = clip_image_size{0, 0};
|
||||
res.padding_refined = true;
|
||||
|
||||
LOG_DBG("%s: using pinpoints for slicing\n", __func__);
|
||||
LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d\n",
|
||||
__func__, original_width, original_height,
|
||||
res.overview_size.width, res.overview_size.height,
|
||||
res.refined_size.width, res.refined_size.height);
|
||||
|
||||
for (int y = 0; y < refine_size.height; y += slice_size) {
|
||||
for (int x = 0; x < refine_size.width; x += slice_size) {
|
||||
slice_coordinates slice;
|
||||
@@ -3066,13 +3090,16 @@ struct llava_uhd {
|
||||
slice.size.width = std::min(slice_size, refine_size.width - x);
|
||||
slice.size.height = std::min(slice_size, refine_size.height - y);
|
||||
res.slices.push_back(slice);
|
||||
if (x == 0) {
|
||||
res.grid_size.width++;
|
||||
}
|
||||
LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
|
||||
__func__, (int)res.slices.size() - 1,
|
||||
slice.x, slice.y, slice.size.width, slice.size.height);
|
||||
}
|
||||
res.grid_size.height++;
|
||||
}
|
||||
|
||||
res.grid_size.height = refine_size.height / slice_size;
|
||||
res.grid_size.width = refine_size.width / slice_size;
|
||||
LOG_DBG("%s: grid size: %d x %d\n", __func__, res.grid_size.width, res.grid_size.height);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
@@ -3081,17 +3108,23 @@ struct llava_uhd {
|
||||
auto best_size = get_best_resize(original_size, slice_size, patch_size, !has_slices);
|
||||
res.overview_size = best_size;
|
||||
|
||||
if (!has_slices) {
|
||||
// skip slicing logic
|
||||
res.refined_size = clip_image_size{0, 0};
|
||||
res.grid_size = clip_image_size{0, 0};
|
||||
{
|
||||
const int max_slice_nums = 9; // TODO: this is only used by minicpmv, maybe remove it
|
||||
const float log_ratio = log((float)original_width / original_height);
|
||||
const float ratio = (float)original_width * original_height / (slice_size * slice_size);
|
||||
const int multiple = fmin(ceil(ratio), max_slice_nums);
|
||||
|
||||
} else {
|
||||
auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio);
|
||||
auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
|
||||
res.grid_size = best_grid;
|
||||
res.refined_size = refine_size;
|
||||
|
||||
LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d, grid size: %d x %d\n",
|
||||
__func__, original_width, original_height,
|
||||
res.overview_size.width, res.overview_size.height,
|
||||
res.refined_size.width, res.refined_size.height,
|
||||
res.grid_size.width, res.grid_size.height);
|
||||
|
||||
int width = refine_size.width;
|
||||
int height = refine_size.height;
|
||||
int grid_x = int(width / best_grid.width);
|
||||
@@ -3108,7 +3141,9 @@ struct llava_uhd {
|
||||
slice.size.width = grid_x;
|
||||
slice.size.height = grid_y;
|
||||
res.slices.push_back(slice);
|
||||
// LOG_INF("slice %d: %d %d %d %d\n", ic, patches_i, patches_j, grid_x, grid_y);
|
||||
LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
|
||||
__func__, (int)res.slices.size() - 1,
|
||||
slice.x, slice.y, slice.size.width, slice.size.height);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -3166,48 +3201,55 @@ private:
|
||||
return res;
|
||||
}
|
||||
|
||||
static clip_image_size resize_maintain_aspect_ratio(const clip_image_size & orig, const clip_image_size & target_max) {
|
||||
float scale_width = static_cast<float>(target_max.width) / orig.width;
|
||||
float scale_height = static_cast<float>(target_max.height) / orig.height;
|
||||
float scale = std::min(scale_width, scale_height);
|
||||
return clip_image_size{
|
||||
static_cast<int>(orig.width * scale),
|
||||
static_cast<int>(orig.height * scale),
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Selects the best resolution from a list of possible resolutions based on the original size.
|
||||
*
|
||||
* For example, when given a list of resolutions:
|
||||
* - 100x100
|
||||
* - 200x100
|
||||
* - 100x200
|
||||
* - 200x200
|
||||
*
|
||||
* And an input image of size 111x200, then 100x200 is the best fit (least wasted resolution).
|
||||
*
|
||||
* @param original_size The original size of the image
|
||||
* @param possible_resolutions A list of possible resolutions
|
||||
* @return The best fit resolution
|
||||
*/
|
||||
static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
|
||||
int original_width = original_size.width;
|
||||
int original_height = original_size.height;
|
||||
clip_image_size best_fit;
|
||||
int min_wasted_area = std::numeric_limits<int>::max();
|
||||
int max_effective_resolution = 0;
|
||||
int min_wasted_resolution = std::numeric_limits<int>::max();
|
||||
|
||||
for (const auto & resolution : possible_resolutions) {
|
||||
int width = resolution.width;
|
||||
int height = resolution.height;
|
||||
float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
|
||||
int downscaled_width = static_cast<int>(original_width * scale);
|
||||
int downscaled_height = static_cast<int>(original_height * scale);
|
||||
int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
|
||||
int wasted_resolution = (width * height) - effective_resolution;
|
||||
// LOG_INF("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
|
||||
if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
|
||||
for (const clip_image_size & candidate : possible_resolutions) {
|
||||
auto target_size = resize_maintain_aspect_ratio(original_size, candidate);
|
||||
int effective_resolution = std::min(
|
||||
target_size.width * target_size.height,
|
||||
original_size.width * original_size.height);
|
||||
int wasted_area = (candidate.width * candidate.height) - effective_resolution;
|
||||
|
||||
if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_area < min_wasted_area)) {
|
||||
max_effective_resolution = effective_resolution;
|
||||
min_wasted_resolution = wasted_resolution;
|
||||
best_fit = resolution;
|
||||
min_wasted_area = wasted_area;
|
||||
best_fit = candidate;
|
||||
}
|
||||
|
||||
LOG_DBG("%s: candidate: %d x %d, target: %d x %d, wasted: %d, effective: %d\n", __func__, candidate.width, candidate.height, target_size.width, target_size.height, wasted_area, effective_resolution);
|
||||
}
|
||||
|
||||
return best_fit;
|
||||
}
|
||||
|
||||
// used by llava 1.6 with custom list of pinpoints
|
||||
static clip_image_size select_best_resolution(const std::vector<int32_t> & pinpoints, const clip_image_size & original_size) {
|
||||
std::vector<clip_image_size> possible_resolutions; // TODO @ngxson : construct this inside hparams, not here
|
||||
for (size_t i = 0; i < pinpoints.size(); i += 2) {
|
||||
possible_resolutions.push_back(clip_image_size{pinpoints[i], pinpoints[i+1]});
|
||||
}
|
||||
return select_best_resolution(original_size, possible_resolutions);
|
||||
}
|
||||
|
||||
static int ensure_divide(int length, int patch_size) {
|
||||
return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
|
||||
}
|
||||
@@ -3331,7 +3373,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
|
||||
return true;
|
||||
|
||||
} else if (ctx->proj_type() == PROJECTOR_TYPE_LLAMA4) {
|
||||
GGML_ASSERT(!params.image_grid_pinpoints.empty());
|
||||
GGML_ASSERT(!params.image_res_candidates.empty());
|
||||
auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
|
||||
std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
|
||||
|
||||
@@ -3371,7 +3413,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
|
||||
res_imgs->entries.push_back(std::move(res));
|
||||
return true;
|
||||
|
||||
} else if (!params.image_grid_pinpoints.empty()) {
|
||||
} else if (!params.image_res_candidates.empty()) {
|
||||
// "spatial_unpad" with "anyres" processing for llava-1.6
|
||||
auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
|
||||
std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
|
||||
@@ -3431,17 +3473,6 @@ const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
|
||||
return ctx->model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
|
||||
}
|
||||
|
||||
const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
|
||||
if (ctx->model.hparams.image_grid_pinpoints.size()) {
|
||||
return &ctx->model.hparams.image_grid_pinpoints.front();
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
size_t get_clip_image_grid_size(const struct clip_ctx * ctx) {
|
||||
return ctx->model.hparams.image_grid_pinpoints.size();
|
||||
}
|
||||
|
||||
int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
|
||||
const auto & params = ctx->model.hparams;
|
||||
const int n_total = clip_n_output_tokens(ctx, img);
|
||||
|
||||
@@ -46,9 +46,6 @@ int32_t clip_get_hidden_size(const struct clip_ctx * ctx);
|
||||
// TODO: should be enum, not string
|
||||
const char * clip_patch_merge_type(const struct clip_ctx * ctx);
|
||||
|
||||
const int32_t * clip_image_grid(const struct clip_ctx * ctx);
|
||||
size_t get_clip_image_grid_size(const struct clip_ctx * ctx);
|
||||
|
||||
int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img);
|
||||
|
||||
// for M-RoPE, this will be the number of token positions in X and Y directions
|
||||
|
||||
@@ -501,7 +501,10 @@ struct mtmd_tokenizer {
|
||||
|| ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_6
|
||||
|| ctx->slice_tmpl == MTMD_SLICE_TMPL_LLAMA4
|
||||
) {
|
||||
const int n_col = batch_f32.grid_x;
|
||||
const int n_row = batch_f32.grid_y;
|
||||
// split batch into chunks of single images
|
||||
// NOTE: batch_f32 will be invalidated after this call
|
||||
auto chunks = split_batch_to_chunk(std::move(batch_f32), bitmap->id);
|
||||
GGML_ASSERT(chunks.size() > 0);
|
||||
|
||||
@@ -521,8 +524,7 @@ struct mtmd_tokenizer {
|
||||
|
||||
// add slices (or tiles)
|
||||
if (!chunks.empty()) {
|
||||
const int n_col = batch_f32.grid_x;
|
||||
const int n_row = batch_f32.grid_y;
|
||||
GGML_ASSERT((int)chunks.size() == n_row * n_col);
|
||||
if (ctx->tok_slices_start != LLAMA_TOKEN_NULL) {
|
||||
add_text({ctx->tok_slices_start});
|
||||
}
|
||||
|
||||
@@ -88,6 +88,26 @@ enum error_type {
|
||||
ERROR_TYPE_NOT_SUPPORTED, // custom error
|
||||
};
|
||||
|
||||
static bool server_task_type_need_embd(server_task_type task_type) {
|
||||
switch (task_type) {
|
||||
case SERVER_TASK_TYPE_EMBEDDING:
|
||||
case SERVER_TASK_TYPE_RERANK:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
static bool server_task_type_need_logits(server_task_type task_type) {
|
||||
switch (task_type) {
|
||||
case SERVER_TASK_TYPE_COMPLETION:
|
||||
case SERVER_TASK_TYPE_INFILL:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
struct slot_params {
|
||||
bool stream = true;
|
||||
bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
|
||||
@@ -1330,13 +1350,24 @@ struct server_slot {
|
||||
n_draft_accepted = 0;
|
||||
}
|
||||
|
||||
bool is_non_causal() const {
|
||||
return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
|
||||
bool need_embd() const {
|
||||
return server_task_type_need_embd(task_type);
|
||||
}
|
||||
|
||||
bool need_logits() const {
|
||||
return server_task_type_need_logits(task_type);
|
||||
}
|
||||
|
||||
// if the context does not have a memory module then all embeddings have to be computed within a single ubatch
|
||||
// also we cannot split if the pooling would require any past tokens
|
||||
bool can_split() const {
|
||||
return
|
||||
!need_embd() ||
|
||||
(llama_get_memory(ctx) && llama_pooling_type(ctx) == LLAMA_POOLING_TYPE_LAST);
|
||||
}
|
||||
|
||||
bool can_batch_with(server_slot & other_slot) const {
|
||||
return is_non_causal() == other_slot.is_non_causal()
|
||||
&& are_lora_equal(lora, other_slot.lora);
|
||||
return task_type == other_slot.task_type && are_lora_equal(lora, other_slot.lora);
|
||||
}
|
||||
|
||||
bool has_budget(const common_params & global_params) {
|
||||
@@ -1480,7 +1511,6 @@ struct server_slot {
|
||||
{"n_ctx", n_ctx},
|
||||
{"speculative", can_speculate()},
|
||||
{"is_processing", is_processing()},
|
||||
{"non_causal", is_non_causal()},
|
||||
{"params", params.to_json()},
|
||||
{"prompt", prompt_tokens.detokenize(ctx, true)},
|
||||
{"next_token",
|
||||
@@ -2730,6 +2760,7 @@ struct server_context {
|
||||
queue_tasks.defer(std::move(task));
|
||||
break;
|
||||
}
|
||||
|
||||
if (slot->is_processing()) {
|
||||
// if requested slot is unavailable, we defer this task for processing later
|
||||
SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
|
||||
@@ -3092,7 +3123,14 @@ struct server_context {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (slot.is_non_causal()) {
|
||||
// TODO: support memory-less logits computation
|
||||
if (slot.need_logits() && !llama_get_memory(ctx)) {
|
||||
slot.release();
|
||||
send_error(slot, "the current context does not logits computation. skipping", ERROR_TYPE_SERVER);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!slot.can_split()) {
|
||||
if (slot.n_prompt_tokens > n_ubatch) {
|
||||
slot.release();
|
||||
send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
|
||||
@@ -3227,8 +3265,7 @@ struct server_context {
|
||||
}
|
||||
|
||||
if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
|
||||
// we have to evaluate at least 1 token to generate logits.
|
||||
SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
|
||||
SLT_WRN(slot, "need to evaluate at least 1 token for each active slot, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
|
||||
|
||||
slot.n_past--;
|
||||
}
|
||||
@@ -3236,8 +3273,7 @@ struct server_context {
|
||||
slot.n_prompt_tokens_processed = 0;
|
||||
}
|
||||
|
||||
// non-causal tasks require to fit the entire prompt in the physical batch
|
||||
if (slot.is_non_causal()) {
|
||||
if (!slot.can_split()) {
|
||||
// cannot fit the prompt in the current batch - will try next iter
|
||||
if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
|
||||
continue;
|
||||
@@ -3259,8 +3295,7 @@ struct server_context {
|
||||
slot.cache_tokens.keep_first(slot.n_past);
|
||||
|
||||
// check if we should process the image
|
||||
if (slot.n_past < slot.n_prompt_tokens
|
||||
&& slot.prompt_tokens[slot.n_past] == LLAMA_TOKEN_NULL) {
|
||||
if (slot.n_past < slot.n_prompt_tokens && slot.prompt_tokens[slot.n_past] == LLAMA_TOKEN_NULL) {
|
||||
// process the image
|
||||
int32_t new_n_past;
|
||||
int32_t res = slot.prompt_tokens.process_chunk(ctx, mctx, slot.n_past, slot.id, new_n_past);
|
||||
@@ -3291,8 +3326,8 @@ struct server_context {
|
||||
break; // end of text chunk
|
||||
}
|
||||
|
||||
// without pooling, we want to output the embeddings for all the tokens in the batch
|
||||
const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE;
|
||||
// embedding requires all tokens in the batch to be output
|
||||
const bool need_embd = server_task_type_need_embd(slot.task_type);
|
||||
|
||||
common_batch_add(batch, cur_tok, slot.n_past, { slot.id }, need_embd);
|
||||
slot.cache_tokens.push_back(cur_tok);
|
||||
@@ -3346,17 +3381,15 @@ struct server_context {
|
||||
SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
|
||||
|
||||
if (slot_batched) {
|
||||
// make sure we're in the right embedding mode
|
||||
llama_set_embeddings(ctx, slot_batched->is_non_causal());
|
||||
// apply lora, only need to do it once per batch
|
||||
common_set_adapter_lora(ctx, slot_batched->lora);
|
||||
}
|
||||
|
||||
const bool do_encode = (params_base.embedding || params_base.reranking);
|
||||
llama_set_embeddings(ctx, slot_batched->need_embd());
|
||||
}
|
||||
|
||||
// pad the batch so that batch.n_tokens >= n_slots
|
||||
// TODO: temporary workaround for https://github.com/ggml-org/llama.cpp/issues/13689
|
||||
if (do_encode) {
|
||||
if (slot_batched->need_embd()) {
|
||||
const int n_slots = slots.size();
|
||||
|
||||
if (batch.n_tokens < n_slots) {
|
||||
@@ -3378,8 +3411,11 @@ struct server_context {
|
||||
SRV_WRN("adding %d dummy tokens to the batch, seq_id = %d\n", n_add, seq_id);
|
||||
|
||||
for (int j = 0; j < n_add; ++j) {
|
||||
common_batch_add(batch, 0, j, { seq_id }, false);
|
||||
common_batch_add(batch, 0, j, { seq_id }, true);
|
||||
}
|
||||
|
||||
slots[seq_id].cache_tokens.clear();
|
||||
llama_memory_seq_rm(llama_get_memory(ctx), seq_id, -1, -1);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -4174,11 +4210,6 @@ int main(int argc, char ** argv) {
|
||||
oaicompat_type oaicompat) -> void {
|
||||
GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
|
||||
|
||||
if (ctx_server.params_base.embedding) {
|
||||
res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
|
||||
return;
|
||||
}
|
||||
|
||||
auto completion_id = gen_chatcmplid();
|
||||
std::unordered_set<int> task_ids;
|
||||
try {
|
||||
@@ -4433,12 +4464,8 @@ int main(int argc, char ** argv) {
|
||||
OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
|
||||
};
|
||||
|
||||
const auto handle_chat_completions = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
|
||||
const auto handle_chat_completions = [&ctx_server, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
|
||||
LOG_DBG("request: %s\n", req.body.c_str());
|
||||
if (ctx_server.params_base.embedding) {
|
||||
res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
|
||||
return;
|
||||
}
|
||||
|
||||
auto body = json::parse(req.body);
|
||||
std::vector<raw_buffer> files;
|
||||
@@ -4566,13 +4593,18 @@ int main(int argc, char ** argv) {
|
||||
};
|
||||
|
||||
const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, oaicompat_type oaicompat) {
|
||||
const json body = json::parse(req.body);
|
||||
if (!ctx_server.params_base.embedding) {
|
||||
res_error(res, format_error_response("This server does not support embeddings. Start it with `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
|
||||
return;
|
||||
}
|
||||
|
||||
if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
|
||||
res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
|
||||
return;
|
||||
}
|
||||
|
||||
const json body = json::parse(req.body);
|
||||
|
||||
// for the shape of input/content, see tokenize_input_prompts()
|
||||
json prompt;
|
||||
if (body.count("input") != 0) {
|
||||
@@ -4662,8 +4694,8 @@ int main(int argc, char ** argv) {
|
||||
};
|
||||
|
||||
const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
|
||||
if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
|
||||
res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
|
||||
if (!ctx_server.params_base.embedding || ctx_server.params_base.pooling_type != LLAMA_POOLING_TYPE_RANK) {
|
||||
res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking`", ERROR_TYPE_NOT_SUPPORTED));
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -4878,7 +4910,9 @@ int main(int argc, char ** argv) {
|
||||
};
|
||||
|
||||
bool was_bound = false;
|
||||
bool is_sock = false;
|
||||
if (string_ends_with(std::string(params.hostname), ".sock")) {
|
||||
is_sock = true;
|
||||
LOG_INF("%s: setting address family to AF_UNIX\n", __func__);
|
||||
svr->set_address_family(AF_UNIX);
|
||||
// bind_to_port requires a second arg, any value other than 0 should
|
||||
@@ -4956,7 +4990,9 @@ int main(int argc, char ** argv) {
|
||||
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
|
||||
#endif
|
||||
|
||||
LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
|
||||
LOG_INF("%s: server is listening on %s - starting the main loop\n", __func__,
|
||||
is_sock ? string_format("unix://%s", params.hostname.c_str()).c_str() :
|
||||
string_format("http://%s:%d", params.hostname.c_str(), params.port).c_str());
|
||||
|
||||
// this call blocks the main thread until queue_tasks.terminate() is called
|
||||
ctx_server.queue_tasks.start_loop();
|
||||
|
||||
Reference in New Issue
Block a user