Compare commits

...

74 Commits
b5854 ... b5928

Author SHA1 Message Date
Nexes the Elder
09651d09ff graph : Pass the graph placeholder message in debug mode (#14748)
Without that condition, this debug log clutters the screen every batch treated in the prompt processing, or every token generated in Kobold.cpp.
2025-07-18 07:25:54 +03:00
Neo Zhang Jianyu
349ea79fce use max work group size for device to replace the magic number (#14732) 2025-07-18 10:23:14 +08:00
Piotr Wilkin (ilintar)
670e1360cd convert : fix Ernie4.5 MoE without shared experts (#14746) 2025-07-18 01:17:16 +02:00
Wroclaw
760b4484e3 nix : use optionalAttrs for env mkDerivation attrset argument (#14726) 2025-07-17 15:18:16 -07:00
Piotr Wilkin (ilintar)
cb887f1bc1 model: add Ernie 4.5 MoE support (#14658)
* Add Ernie4.5 MoE

* Fix Flake errors.

* Properly encode/decode MoE layer step

* Correct tensor mappings (.weight)

* Pass and read n_ff_exp

* n_ff_shexp calculation and further minor changes

* Rope fixes.

* .gitignore fix

* Add unit32 cast for Linux builds

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Further fixes from code review

* Fix trailing whitespace

* Reenable missing experts error

* Code style from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Fix non-MoE regression

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-17 23:15:32 +02:00
Georgi Gerganov
d6fb3f6b49 kv-cache : fix k-shift for multiple streams (#14742)
ggml-ci
2025-07-17 20:52:33 +03:00
Georgi Gerganov
01612b7409 llama : reuse compute graphs (#14482)
* llama : reuse compute graphs

ggml-ci

* llama-bench : add graph reuse parameter

ggml-ci

* cont : remove the parameter and the sched resets

ggml-ci

* graph : rename update() to can_reuse()

ggml-ci

* params : remove is_same()

ggml-ci

* graph : set res->params in llm_graph_context constructor

ggml-ci

* graph : avoid set_max_nodes in llm_graph_result

ggml-ci

* kv-cache : reuse llama_context's graph result instance

ggml-ci

* context : reset the previous graph result upon memory updates

ggml-ci

* batch : llama_ubatch now carries its data instead of pointing to balloc

ggml-ci

* merge : fix build

ggml-ci

* graph : fix can_reuse() checks when flash-attention is disabled

* graph : move llm_graph_result impl in source file + debug env

ggml-ci
2025-07-17 19:08:33 +03:00
Tarek Dakhran
086cf81e88 llama : fix parallel processing for lfm2 (#14705) 2025-07-17 09:22:11 +02:00
Georgi Gerganov
d9b691081c kv-cache : opt mask set input (#14600)
ggml-ci
2025-07-17 09:49:15 +03:00
Georgi Gerganov
ad57d3edd2 batch : fix uninitialized has_cpl flag (#14733)
ggml-ci
2025-07-17 09:45:54 +03:00
Sigbjørn Skjæret
1ba45d4982 ci : disable failing vulkan crossbuilds (#14723) 2025-07-16 20:52:08 -03:00
Sigbjørn Skjæret
19e5943d9e convert : make hf token optional (#14717)
* make hf token optional

* fail if we can't get necessary tokenizer config
2025-07-16 23:17:43 +02:00
Diner Burger
496957e1cb llama : fix parameter order for hybrid memory initialization (#14725) 2025-07-16 21:17:25 +02:00
Reese Levine
21c021745d ggml: Add initial WebGPU backend (#14521)
* Minimal setup of webgpu backend with dawn. Just prints out the adapter and segfaults

* Initialize webgpu device

* Making progress on setting up the backend

* Finish more boilerplate/utility functions

* Organize file and work on alloc buffer

* Add webgpu_context to prepare for actually running some shaders

* Work on memset and add shader loading

* Work on memset polyfill

* Implement set_tensor as webgpu WriteBuffer, remove host_buffer stubs since webgpu doesn't support it

* Implement get_tensor and buffer_clear

* Finish rest of setup

* Start work on compute graph

* Basic mat mul working

* Work on emscripten build

* Basic WebGPU backend instructions

* Use EMSCRIPTEN flag

* Work on passing ci, implement 4d tensor multiplication

* Pass thread safety test

* Implement permuting for mul_mat and cpy

* minor cleanups

* Address feedback

* Remove division by type size in cpy op

* Fix formatting and add github action workflows for vulkan and metal (m-series) webgpu backends

* Fix name

* Fix macos dawn prefix path
2025-07-16 18:18:51 +03:00
tempstudio
b0f0ecc3dc model : support output bias for qwen2 (#14711)
Co-authored-by: qwaqrm <qwaqrm@126.com>
2025-07-16 18:02:06 +03:00
Georgi Gerganov
225e7a1438 llama : add high-throughput mode (#14363)
* kv-cache : prepare K/V buffers for separation

ggml-ci

* batched-bench : fix oob write

ggml-ci

* llama : add "virtual sequences"

ggml-ci

* llama : use "stream" vs "virtual sequence"

ggml-ci

* graph : fix stream splitting when KV cache is not used

ggml-ci

* kv-cache : add multi-stream save/load support

ggml-ci

* llama : add "--attn-streams" flag

ggml-ci

* kv-cache : fix handling when find_slot fails

ggml-ci

* kv-cache : restore find_slot impl

ggml-ci

* kv-cache : add comments

* kv-cache : add bounds checks for sequence id

ggml-ci

* cont : add n_seq_max to batch allocr

ggml-ci

* kv-cache : perform stream copies lazily after llama_synchronize

ggml-ci

* kv-cache : avoid throwing exceptions across the C boundary

ggml-ci

* CUDA: 4D FlashAttention support (#14628)

* CUDA: 4D FlashAttention support

* CUDA: fix WMMA FA kernel

* llama : rename attn_streams -> kv_unified

ggml-ci

* common : rename kv_split -> kv_unified

ggml-ci

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-07-16 16:35:42 +03:00
Aman Gupta
ab14019821 Support diffusion models: Add Dream 7B (#14644)
* Support diffusion models: Add Dream 7B

* Move diffusion to examples

* Move stuff to examples. Add patch to not use kv-cache

* Address review comments

* Make sampling fast

* llama: remove diffusion functions

* Add basic timings + cleanup

* More cleanup

* Review comments: better formating, use LOG instead std::cerr, re-use batch, use ubatch instead of max_length

* fixup!

* Review: move everything to diffusion-cli for now
2025-07-16 20:03:51 +08:00
Georgi Gerganov
64978340b0 ggml : add asserts (#14720)
* ggml : add asserts

ggml-ci

* cont : fix constant type

Co-authored-by: Diego Devesa <slarengh@gmail.com>

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-07-16 14:43:32 +03:00
Georgi Gerganov
6ffd4e9c44 server : pre-calculate EOG logit biases (#14721)
ggml-ci
2025-07-16 14:04:12 +03:00
Shunta Saito
e4841d24d3 llama : fix parallel processing for plamo2 (#14716) 2025-07-16 12:12:22 +02:00
Georgi Gerganov
538cc77f7f server : fix handling of the ignore_eos flag (#14710)
ggml-ci
2025-07-16 12:13:57 +03:00
Johannes Gäßler
5cae766541 scripts: synthetic prompt mode for server-bench.py (#14695) 2025-07-16 09:33:28 +02:00
Sigbjørn Skjæret
4b91d6f71f convert : only check for tokenizer folder if we need it (#14704) 2025-07-16 08:52:04 +02:00
Sigbjørn Skjæret
cf91f217f1 convert : add pre-computed hashes first to prevent order mishaps (#14701) 2025-07-16 08:51:12 +02:00
Min-Hua
79e0b68c17 llama: add LLAMA_API to deprecated llama_kv_self_seq_div (#14708)
Add LLAMA_API to fix the run-time error with llama-cpp-python in Windows env:
attributeError: function 'llama_kv_self_seq_div' not found.
Did you mean: 'llama_kv_self_seq_add'?

Although llama_kv_self_seq_div() has been marked deprecated but
it is necessary to export it to make llama-cpp-python happy.

Observed software version:
OS: windows
compiler: MSVC
llama-cpp-python: tag: v0.3.12-cu124
llama.cpp: tag: b5833

Signed-off-by: Min-Hua Chen <minhuadotchen@gmail.com>
Co-authored-by: Min-Hua Chen <minhua.chen@neuchips.ai>
2025-07-16 07:00:42 +03:00
Ed Addario
c81f4192f9 gguf-py : dump bpw per layer and model in markdown mode (#14703) 2025-07-16 00:04:42 +02:00
Gabriel Larson
4a4f426944 model : add Kimi-K2 support (#14654)
* Kimi-K2 conversion

* add Kimi_K2  pre type

* Kimi-K2

* Kimi-K2 unicode

* Kimi-K2

* LLAMA_MAX_EXPERTS 384

* fix vocab iteration

* regex space fix

* add kimi-k2 to pre_computed_hashes

* Updated with kimi-k2 get_vocab_base_pre hash

* fix whitespaces

* fix flake errors

* remove more unicode.cpp whitespaces

* change set_vocab() flow

* add moonshotai-Kimi-K2.jinja to /models/templates/

* update moonshotai-Kimi-K2.jinja

* add kimi-k2 chat template

* add kimi-k2

* update NotImplementedError

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* except Exception

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* LLM_CHAT_TEMPLATE_KIMI_K2 if(add_ass){}

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-15 21:54:22 +02:00
Jeff Bolz
ba1ceb3456 vulkan: fix noncontig check for mat_mul_id splitting (#14683)
* vulkan: fix noncontig check for mat_mul_id splitting

Remove supports_op check for > 4096 (splitting fixes this)

* vulkan: fix batched matmul dequant for Q*_K
2025-07-15 21:51:09 +02:00
Jeff Bolz
10a0351a97 vulkan: add RTE variants for glu/add/sub/mul/div (#14653) 2025-07-15 21:32:11 +02:00
Shunta Saito
68e37a61a7 model : add PLaMo-2 support (#14560)
* Add PLaMo-2 model using hybrid memory module

* Fix z shape

* Add cmath to include from llama-vocab.h

* Explicitly dequantize normalization weights before RoPE apply

* Revert unnecessary cast because the problem can be solved by excluding attn_k, attn_q when quantizing

* Use ATTN_K/Q_NORM for k,q weights to prevent quantization

* Remove SSM_BCDT that is not used from anywhere

* Do not duplicate embedding weights for output.weight

* Fix tokenizer encoding problem for multibyte strings

* Apply suggestion from @CISC

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Use LLM_FFN_SWIGLU instead of splitting ffn_gate and ffn_up

* Remove unnecessary part for Grouped Query Attention

* Fix how to load special token id to gguf

* Remove unused tensor mapping

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Remove llama_vocab_plamo2 class and replace it with llm_tokenizer_plamo2_session to follow the other tokenizer implementations

* Update src/llama-vocab.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Fix plamo2 tokenizer session to prevent multiple calls of build()

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-07-15 18:11:42 +02:00
R0CKSTAR
cbc68be51d cuda: fix build warnings in set-rows.cu (unused variable) (#14687)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-07-15 15:28:53 +08:00
Anton Mitkov
bdca38376f sycl: Hotfix for non dnnl codepath (#14677) 2025-07-14 18:12:42 +01:00
shalinib-ibm
55c509daf5 ggml : refactor llamafile_sgemm PPC code (#14673)
Remove un-necessary templates from class definition and packing functions
Reduce deeply nested conditionals, if-else switching in mnapck function
Replace repetitive code with inline functions in Packing functions

2 ~ 7% improvement in Q8 Model
15 ~ 50% improvement in Q4 Model

Signed-off-by: Shalini Salomi Bodapati <Shalini.Salomi.Bodapati@ibm.com>
2025-07-14 16:16:42 +03:00
Aman Gupta
9c9e4fc635 llama-context: add ability to get logits (#14672) 2025-07-14 21:01:41 +08:00
Johannes Gäßler
494c5899cb scripts: benchmark for HTTP server throughput (#14668)
* scripts: benchmark for HTTP server throughput

* fix server connection reset
2025-07-14 13:14:30 +02:00
Akarshan Biswas
0f4c6ec0f1 SYCL: use 1D kernel for set_rows (#14618)
* SYCL: Use 1D kernel for set_rows

* Remove dangling comment

* Refactor and use ceil_div
2025-07-14 10:37:55 +01:00
Anton Mitkov
65a3ebb0aa sycl: Batched mulmat rework for oneDNN dispatch (#14617) 2025-07-14 10:37:35 +01:00
Molly Sophia
0d9226763c llama : add jinja template for rwkv-world (#14665)
* llama : add jinja template for rwkv-world

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-14 07:43:43 +08:00
Ed Addario
982e347255 quantize : fix minor logic flaw in --tensor-type (#14572) 2025-07-13 18:02:17 +02:00
Sigbjørn Skjæret
923e3ea2e3 cuda : add set rows for bf16 (#14664) 2025-07-13 15:01:24 +02:00
Yavor Ivanov
e743cddb60 cuda : add ELU support (#14657) 2025-07-13 11:33:16 +02:00
Georgi Gerganov
05fec5bd29 ggml : add build-time message to remind about ggml_set_rows (#14661)
ggml-ci
2025-07-13 10:36:33 +03:00
Yavor Ivanov
dcf7f2ea3c metal : Add missing unary ops Metal support (#14660) 2025-07-13 08:38:13 +03:00
Yavor Ivanov
84b396e051 cmake : Add CMake presets for Linux and GCC (#14656) 2025-07-13 08:12:36 +03:00
Tarek Dakhran
c31e60647d tests : cover lfm2 cases in test_ssm_conv (#14651) 2025-07-12 19:10:14 +02:00
Tarek Dakhran
67eade1bf9 docs : add LFM2 to models section (#14650)
* readme : add LFM2 to models section

* fix copy paste...
2025-07-12 19:07:08 +02:00
Aman Gupta
7de5c7cab6 CUDA: add set rows for f32 and f16 (#14551)
* CUDA: add set rows for f32 and f16

* Review: change kernel params, use strides from host

* Use 1-d kernel

* Review: use int64_t for blockDim.x, rename nb->s for clarity
2025-07-12 16:31:38 +03:00
Georgi Gerganov
8eff95544e sync : ggml 2025-07-12 16:13:27 +03:00
Georgi Gerganov
3120413ccd vulkan : remove unused vars (#0)
ggml-ci
2025-07-12 14:25:44 +03:00
Georgi Gerganov
215535701d sync : ggml
ggml-ci
2025-07-12 14:25:44 +03:00
Acly
74bb294591 vulkan : implement bilinear interpolation (ggml/1291)
ggml-ci
2025-07-12 14:25:44 +03:00
Acly
3e303b1107 vulkan : implement ggml_roll (ggml/1290)
ggml-ci
2025-07-12 14:25:44 +03:00
Douglas Hanley
0c1df14b5f server : fix pooled embedding output (#14645) 2025-07-12 13:21:02 +03:00
Jeff Bolz
b3ad3a0191 vulkan: support SET_ROWS (#14587)
* vulkan: support SET_ROWS

Add variants of the copy_to_quant shader that do the SET_ROWS operation.
Change these shaders to spread the work across the workgroup.
The memory access pattern is probably not great (one thread per quant block),
but should be fine for now.

* vulkan: optimize set_rows

Larger workgroups for non-quant types.
Set "norepeat" (there is manual repeat logic).
Use fastmod.
2025-07-12 12:12:26 +02:00
Jeff Bolz
98197e5c98 vulkan: optimizations for deepseek prompt processing (#14555)
* vulkan: allow unclamped loads in coopmat2 mul_mat_id shader

* vulkan: increase coopmat2 mul_mat_id tile size

* vulkan: optimize mat_mul_id row_ids search to batch loads, and port to coopmat1 path

* vulkan: use smaller FA row size when head size is large. applies to both scalar and CM2 paths (CM1 isn't used due to shared memory limits)
2025-07-12 11:51:58 +02:00
Tarek Dakhran
f5e96b368f model : support LiquidAI LFM2 hybrid family (#14620)
**Important**
LFM2 was [merged ](https://github.com/huggingface/transformers/pull/39340)into transformers, but has not yet been released.
To convert into gguf, install transformers from source
```shell
pip install "transformers @ git+https://github.com/huggingface/transformers.git@main"
```
2025-07-11 20:27:01 +02:00
Slobodan Josic
756aa1020a HIP : Add HIP 7.0+ compatibility for hipBLAS compute types (#14634) 2025-07-11 18:55:00 +02:00
Georgi Gerganov
aaa088d87f readme : add hot PRs (#14636)
* readme : add hot PRs

* cont

* readme : update title

* readme : hot PRs links

* cont
2025-07-11 16:07:55 +03:00
Georgi Gerganov
0d5375d54b llama : move enum llama_vocab_pre_type to implementation (#14631)
ggml-ci
2025-07-11 13:46:07 +03:00
Dowon
576c82eda2 vocab : add midm-2.0 model pre-tokenizer (#14626) 2025-07-11 09:36:04 +02:00
Gabe Goodhart
0aedae00e6 model : Granite Four (#13550)
* wip: llama : separate recurrent states from the KV cache

This will be necessary to support Jamba
(and other recurrent models mixed with Attention).

Doesn't compile yet, and finding a slot isn't yet done correctly for recurrent states.

* llama : use std::find for seq_nodes in llama_rs_cache

* llama : state checkpoints for recurrent models

* llama : correctly handle more edge cases for the rs cache

* llama : rename many llama_kv_cache_* functions

* llama : remove useless return value for some llama_cache_* functions

* llama : rethink recurrent state cell counts

* llama : begin work on support for variable GQA

This will also be useful for Jamba if we consider the Mamba layers
to have 0 KV heads.

* llama : gracefully fail when not finding hybrid slot

* llama : support Jamba

* llama : fix BERT inference without KV cache

* convert-hf : check for unprocessed Jamba experts

* convert-hf : support Mini-Jamba conversion

* llama : fix Jamba quantization sanity checks

* llama : sequence-length-aware batch splitting

* llama : use equal-sequence-length sub-batches for recurrent models

* ggml : simplify SSM-related operators

* llama : make recurrent state slot allocation contiguous

* llama : adapt internal uses of batches to llama_ubatch

* llama : fix batch split output count for embeddings

* llama : minimize swaps when reordering logits

This reduces overhead when running hellaswag
on thousands of sequences with very small 100k params Mamba models.

* llama : fix edge case finding batch seq_id of split recurrent cell

This otherwise was a problem when running the HellaSwag benchmark
with small batch sizes, making it crash.

* llama : avoid copies for simple batch splits

* llama : use im2col and mul_mat to perform convolution for Mamba

This removes the need for ggml_ssm_conv!!!
But performance seems slighly worse on my system,
especially for prompt processing.
Maybe ggml_mul_mat isn't optimized for small row sizes?
More performance testing is necessary until GGML_OP_SSM_CONV is removed.

* ggml : make ggml_ssm_scan not modify its source tensors

* llama : fix shared recurrent tail cell count for small ubatch sizes

Otherwise it was impossible to run the 'parallel' example with '-ub 1'
with a Mamba or Jamba model.

* llama : fix .base() compilation error on Windows

* llama : allow doing the equivalent of SSM_CONV with SUM_ROWS and MUL

* ggml : allow GGML_OP_CONCAT to work on non-contiguous tensors

The implementation already supported it,
and this makes Mamba's conv step slightly faster.

* llama : rename llama_cache to llama_past

This can be changed back later if the name change is wrong.
I was renaming the functions anyway to generalize kv-cache-related
functions to hybrid and recurrent model architectures.
I think llama_past is a better name than llama_cache for a combined
kv cache and recurrent state cache, because the states it contains
pretty much always come before the newly-added ones for any particular
sequence. Also 'llama_past_clear' sounds more obvious in what it does
than 'llama_kv_cache_clear'. The future is what the models generate.
(For embeddings, the kv cache isn't really used anyway)

Still, I'm open to better suggestions.

* examples : replace llama_kv_cache_seq_* with llama_past_seq_*

* mamba : fix non-contiguous usage of ggml_silu

* llama : initial Mamba-2 support

* ggml : SIMD ggml_ssm_scan for Mamba-2

* ggml : improve ggml_mul speed when masking recurrent states

* llama : support running Mamba-Codestral-7B-v0.1

* llama : fix Mamba-2 conv state saving

* ggml : make the ggml_mul fast broadcast path more consistently formatted

* llama : remove unused variable

* llama : add missing break

* convert_hf : prefer SentencePiece tokenizer for Mamba-2 when present

The tokenzier.json of Mamba-Codestral-7B-v0.1 otherwise requires
workarounds to work correctly.

* llama : session saving and reloading for hybrid models

* convert_hf : fix Jamba conversion

* llama : fix mixed signedness comparison

* llama : use unused n_embd_k_gqa in k_shift

This also slightly reduces the diff from the master branch

* llama : begin renaming llama_past back to llama_kv_cache

* llama : avoid redundant state copy for Mamba 1 and 2

* metal : attempt to adapt SSM_SCAN for Mamba-2

* metal : fix SSM_SCAN pipeline scope

* metal : use log and exp instead of log1pf and expf in SSM_SCAN

* metal : remove unused arguments for SSM_SCAN

The max index is 31, so trimming the arguments is necessary.

* metal : add back n_seqs to SSM_SCAN args

Whoops, this is needed for the offset in the concatenated output.

* metal : fix SSM_SCAN state head offset

* metal : fix wrong number of tokens per sequence in SSM_SCAN

* ggml : remove unused fast broadcast path in GGML_MUL

This was initially added because states were masked with ggml_mul,
but this is no longer done and so this "optimisation" is no longer
necessary, or at least not worth the additional code complexity.

* ggml : avoid multiply by D in GGML_OP_SSM_SCAN

This makes the weight buft detection in src/llama.cpp simpler.

* convert : transpose Mamba-2 A, D and reshape SSM_NORM

This breaks existing conversions of Mamba-2 models
to avoid some reshapes.

Not sure if it's a good idea,
but it makes the graph slightly cleaner.

* llama : more appropriate SSM_SCAN and SSM_CONV buft support checks

* convert : fix flake8 lint

* llama : remove implicit recurrent state rollbacks

* llama : partially apply clang-format style

* metal : fix confusion between ; and ,

* metal : add missing args for nb references in ssm_scan_f32_group

* metal : single-user mamba2 inference works

* kv-cache : remove const_cast when setting inputs for s_copy

And also fix multi-user inference for recurrent models
by using cell_id instead of i as the kv cell index
when populating s_copy.

* convert : avoid AutoConfig for Mamba and Mamba2 hparams

* kv-cache : allow context shift for recurrent models

* graph : fix recurrent state copies when avoiding copies

Works, but using lambda functions might not be that clean.

* ggml : fix mamba2 ssm scan when compiled with SVE

* ggml-cpu : reorder SVE FMA for consistency with other SIMD arches

* cuda : implement ssm scan for Mamba2

There is still room for improvement, but it works!

* cuda : adapt Mamba1 ssm scan to shape changes from Mamba2

* feat: Add conversion for Bamba models

This is borrowed and adapted from the original implementation
https://github.com/ggml-org/llama.cpp/pull/10810

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add Granite 4 conversion

This is a manual copy from my draft branch
https://github.com/gabe-l-hart/llama.cpp/blob/GraniteFourDraft/convert_hf_to_gguf.py#L5076

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Plumb bamba through llama-arch

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add bamba to llama_arch_is_hybrid_recurrent

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add optional mamba ssm_in bias tensor

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add template specialization for get_arr to load a vector<uint32_t> for layer index arr in hparams

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Use an explicit bool to determine mamaba vs mamba2

This allows other architectures like bamba and granitemoehybrid to use
mamab2 without a growing architecture `if` statement inside the mamba
implementation.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Isolate mamba(2) and granite attention layer building in static methods

This will allow these layer-builder methods to be used from other build
structs without complex inheritance.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use per-layer sizes in granite build_attention_layer

Also no need to pass in kv cache since it's already in the inp_attn

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: First (broken) pass at end-to-end Bamba implementation

It generates (garbage) tokens! Still lots of debugging to do.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Only do Granite multipliers if set

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Pull granite ffn portion into a static function and reuse in hybrid

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(py): Allow gguf duplicate keys if they match by value and type

This is helpful for hybrid models that want to do gguf param setting by
calling multiple parent classes without needing to make those parent
classes try/except on every attempt to set a gguf value.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor(py): Simplify granitemoehybrid conversion to use parents better

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add GRANITE_MOE_HYBRID through llama-arch

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Support GRANITE_MOE_HYBRID in llama-model

This re-uses the Bamba code paths heavily and simply adds the missing parts
for loading MoE and the shared expert.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* style: Fix flake8 errors

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix recurrent cache get after rebase

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix hybrid granite implementation for signature changes in build_mamba*_layer

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Refactor relationship between non-hybrid classes and hybrid impl to use mixins

The challenge here is to give both the non-hybrid classes (llm_build_mamba
and llm_build_granite) AND the hybrid class (llm_build_hybrid_mamba) access
to the same intermediate "base class" functionality (build_mamba*_layer,
build_granite_attention_layer) without running into trouble with diamond
inheritance of llm_graph_context. Due to the non-trivial initialization
that happens in llm_graph_context, diamond inheritance results in multiple
initializations of the common base which cause problems around the unique
ptrs. I wanted to get away from `self->` everywhere, but this is still a
bit cleaner than making those methods static I think.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Implement the full copy-paste version to duplicate the layer builders

This follows the pattern where the type of input is pinned to the type of
memory and that is used to dispatch to the correct version of `build_rs` /
`build_attn`. There's a lot of code duplication that can hopefully be
pulled into common functions in the graph later.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Rename llm_build_hybrid_mamba -> llm_build_granite_hybrid

I've got back-and-forth a lot about how/if to try to implement reuse of the
"child model" layer types for hybrid models. At the end of the day, I think
hybrid models are their own beast and even if their layers are inspired by
other models, they should maintain control of their own layer building (in
other words, the copy-paste method). Given that, the name should reflect
that this is not a generic hybrid model builder, but rather a granite-
specific hybrid model builder that can do MoE (granite 4) or dense (bamba).

As part if this, I also cleaned up dangling comments from previous attempts
at using static methods for reusability.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* mamba : fix mismatched new and delete size for llm_build_mamba

Subclasses of llm_graph_context cannot have extra fields,
because the called destructor is not the one from the subclass.
This otherwise would cause problems when runnning Mamba-(1|2) inference
when compiled -DGGML_SANITIZE_ADDRESS=ON

* memory : correctly handle failure in apply()

ggml-ci

* style: Remove TODO for adding first hybrid models to the switch

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix bad merge in tensor_mapping.py w/ SSM_NORM

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix bad merge resolution with variable renames/moves in llm_build_mamba

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* docs: Fix comment about duplicate key check

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Conform to standard way of initializing inp_out_ids

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* convert : fix jamba conv1d shape squeezing

* fix: Fix input initialization in granite_hybrid after removal of hybrid inputs

Branch: GraniteFourWithJamba

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use llm_graph_context_mamba in llm_build_granite_hybrid

Branch: GraniteFourWithJamba

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Refactor mamba2/granite/jamba/granite_hybrid relationships as mixins

The key is for the mixin classes (llm_graph_context_mamba,
llm_graph_context_granite) to use virtual inheritance from
llm_graph_context. This allows the common members to exist only once in the
class hierarchy. The downside is that llm_graph_context will be
re-initialized once for each parent (ie 2x for single mixin, 3x for two
mixins, etc...).

Branch: GraniteFourWithJamba

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* graph : add back hybrid memory graph input

But this time it contains the sub-cache graph inputs.
This *should* make it easier to handle updating the inputs
when caching the graph (eventually).

* model : add Jamba to Mamba-specific hparams printing

* fix: Fix input setup after upstream merge

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* jamba : remove redundant nullptr initializations

* model : remove unnecessary prefix for tensor loading constants

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model : use ggml_swiglu_split for Mamba

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* feat: Add support for dense FFN in GraniteMoeHybrid

This was already partially supported via reusing the granite ffn builder,
and there may be models that leverage this architecture going forward. The
naming is a bit odd, but in the transformers version, it reuses the same
model class and simply has zero regular experts and a single shared expert
(which is the same as a single dense FFN).

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add support for dense FFN tensor names on c++ side

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use child inputs for Falcon H1 after merge resolution

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove unnecessary prefix on tensor constants

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model : make falcon-h1 use shared mamba2 layer builder

* memory : avoid referring to KV in recurrent cache logs

* fix: Revert order changes for Falcon H1 to stay consistent with upstream

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* gguf-py : avoid adding duplicate tensor mappings for Jamba

Some of the tensor names are common with Llama4

* refactor: Collapse Bamba and GraniteMoeHybrid into GraniteHybrid

The only key difference is the use of rope which is now set via
rope_finetuned in the hparams

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Remove use of diamond inheritance

Per PR discussion, it's simpler to keep this with basic inheritance and not
introduce the complexity of virtual inheritance and multiple inheritance

https://github.com/ggml-org/llama.cpp/pull/13550#issuecomment-3053787556

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Log mamba params for Granite Hybrid

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove unused ssm_in_b

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Remove ATTENTION_LAYER_INDICES hparam in favor of n_head_kv

This matches how recurrent vs attention heads are identified for Jamba

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove unused template expansion for get_arr

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Review cleanup in convert_hf_to_gguf

The gist is to be explicit about which base class is being used with the
multiple inheritance setup

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Undo hidden warnings about duplicate identical keys in add_key_value

After further discussion, this encourages sloppy overwriting in the model
converters

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: If not using ROPE, context is "infinite"

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* doc: Add a comment outlining expected duplicate key warnings

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove unnecessary duplicate keys in converter

Co-authored-by: Francis Couture-Harpin <git@compilade.net>

(thanks for the sharp eyes and patience!)

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-11 02:20:13 +02:00
rmatif
6bdda13981 opencl: add tiled mul_mat_f16_f32 (#14535)
* add tiled mul_mat_f16_f32

* fix trailing whitespace

* add insightful comments
2025-07-10 14:58:12 -07:00
lhez
0b8855775c opencl: add set_rows for f16 and f32 (#14547)
* opencl: add `set_rows` for `f16` and `f32`

* opencl: better choose workgroup size for `set_rows`
2025-07-10 11:48:52 -07:00
Ryan Mangeno
4bb625b713 Smoldocling support (#14597)
* support for smoldocling

* fixed merge conflicts

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Gabe Goodhart <gabe.l.hart@gmail.com>

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Gabe Goodhart <gabe.l.hart@gmail.com>

* merge conflicts

* pre tokenizer merge fix

* convert : fix smollm3 jinja template (#14586)

Signed-off-by: ryan-mangeno <ryanmangeno@gmail.com>

* support for smoldocling

Signed-off-by: ryan-mangeno <ryanmangeno@gmail.com>

* fixed merge conflicts

Signed-off-by: ryan-mangeno <ryanmangeno@gmail.com>

* Update src/llama-vocab.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* safetensors tensor mapping

Signed-off-by: ryan-mangeno <ryanmangeno@gmail.com>

* added back accidental removal of clean spaces for hunyuan

* Update src/llama-vocab.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* updated hash and reordererd model list

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-vocab.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update include/llama.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update convert_hf_to_gguf_update.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-vocab.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* removed old tensor name

* removed tensor mappings -> handled by smolvlm

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Signed-off-by: ryan-mangeno <ryanmangeno@gmail.com>
Co-authored-by: Gabe Goodhart <gabe.l.hart@gmail.com>
Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: compilade <git@compilade.net>
2025-07-10 19:41:00 +02:00
Aman Gupta
11ee0fea2a Docs: script to auto-generate ggml operations docs (#14598)
* Docs: script to auto-generate ggml operations docs

* Review: formatting changes + change github action

* Use built-in types instead of typing

* docs : add BLAS and Metal ops

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-07-10 23:29:01 +08:00
Eric Zhang
a457551332 cmake : do not search for curl libraries by ourselves (#14613)
* cmake : do not search for curl libraries by ourselves

* run : do not search for curl libraries by ourselves
2025-07-10 15:29:05 +03:00
Akarshan Biswas
704bb7a71c SYCL: Initial set_rows kernel implementation (#14562)
* SYCL: Initial set_rows kernel implementation

* Revert max_threads to 256

* Refactor set_rows and address review comments

* Deduplicate conversion function

* Remove guard before kernel launch and refactor

* Fix and add back SFINAE
2025-07-10 09:29:38 +01:00
Xuan-Son Nguyen
435a6d10d6 llama : minor coding style fix for smollm3 (#14605) 2025-07-10 10:00:20 +03:00
Eric Zhang
f9a867f592 cmake : bump llguidance version to v1.0.1 (#14609) 2025-07-10 08:19:37 +03:00
Eric Zhang
ac44eb6c80 cmake : llguidance build parser library only (#14608) 2025-07-10 08:19:13 +03:00
compilade
a57d1bcb3c cuda : support Falcon-H1 state size for SSM_SCAN (#14602) 2025-07-09 23:54:38 -04:00
Xuan-Son Nguyen
cb9178f885 llama : remove llm_graph_input_one (#14603) 2025-07-09 23:09:28 +02:00
compilade
4a5686da22 llama : support Jamba hybrid Transformer-Mamba models (#7531)
* wip: llama : separate recurrent states from the KV cache

This will be necessary to support Jamba
(and other recurrent models mixed with Attention).

Doesn't compile yet, and finding a slot isn't yet done correctly for recurrent states.

* llama : use std::find for seq_nodes in llama_rs_cache

* llama : state checkpoints for recurrent models

* llama : correctly handle more edge cases for the rs cache

* llama : rename many llama_kv_cache_* functions

* llama : remove useless return value for some llama_cache_* functions

* llama : rethink recurrent state cell counts

* llama : begin work on support for variable GQA

This will also be useful for Jamba if we consider the Mamba layers
to have 0 KV heads.

* llama : gracefully fail when not finding hybrid slot

* llama : support Jamba

* llama : fix BERT inference without KV cache

* convert-hf : check for unprocessed Jamba experts

* convert-hf : support Mini-Jamba conversion

* llama : fix Jamba quantization sanity checks

* llama : sequence-length-aware batch splitting

* llama : use equal-sequence-length sub-batches for recurrent models

* ggml : simplify SSM-related operators

* llama : make recurrent state slot allocation contiguous

* llama : adapt internal uses of batches to llama_ubatch

* llama : fix batch split output count for embeddings

* llama : minimize swaps when reordering logits

This reduces overhead when running hellaswag
on thousands of sequences with very small 100k params Mamba models.

* llama : fix edge case finding batch seq_id of split recurrent cell

This otherwise was a problem when running the HellaSwag benchmark
with small batch sizes, making it crash.

* llama : avoid copies for simple batch splits

* ggml : make ggml_ssm_scan not modify its source tensors

* llama : fix shared recurrent tail cell count for small ubatch sizes

Otherwise it was impossible to run the 'parallel' example with '-ub 1'
with a Mamba or Jamba model.

* llama : fix .base() compilation error on Windows

* llama : allow doing the equivalent of SSM_CONV with SUM_ROWS and MUL

* ggml : allow GGML_OP_CONCAT to work on non-contiguous tensors

The implementation already supported it,
and this makes Mamba's conv step slightly faster.

* mamba : fix non-contiguous usage of ggml_silu

* llama : session saving and reloading for hybrid models

* convert_hf : fix Jamba conversion

* llama : fix mixed signedness comparison

* llama : use unused n_embd_k_gqa in k_shift

This also slightly reduces the diff from the master branch

* llama : begin renaming llama_past back to llama_kv_cache

* llama : remove implicit recurrent state rollbacks

* llama : partially apply clang-format style

* convert : fix jamba conv1d shape squeezing

* graph : add back hybrid memory graph input

But this time it contains the sub-cache graph inputs.
This *should* make it easier to handle updating the inputs
when caching the graph (eventually).

* model : add Jamba to Mamba-specific hparams printing

* jamba : remove redundant nullptr initializations

* model : remove unnecessary prefix for tensor loading constants

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model : use ggml_swiglu_split for Mamba

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model : make falcon-h1 use shared mamba2 layer builder

* memory : avoid referring to KV in recurrent cache logs

* gguf-py : avoid adding duplicate tensor mappings for Jamba

Some of the tensor names are common with Llama4

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-09 14:59:57 -04:00
Xuan-Son Nguyen
98bab638fb ggml : add ggml_scale_bias (#14417)
* ggml : add ggml_scale_bias

* ggml_vec_mad1_f32

* add more simd

* add CUDA

* sycl

* vulkan

* cann (placeholder)

* opencl

* will this fix cpu?

* fix cuda

* suggestions from coderabbit

* fix cann compile error

* vDSP_vsmsa

* rm __ARM_FEATURE_SVE

* use memcpy for op params

* make code looks more consistent

* use scalar for __ARM_FEATURE_SVE

* add x param to ggml_vec_mad1_f32
2025-07-09 18:16:12 +02:00
131 changed files with 36584 additions and 2998 deletions

View File

@@ -47,6 +47,7 @@ let
inherit (lib)
cmakeBool
cmakeFeature
optionalAttrs
optionals
strings
;
@@ -197,7 +198,7 @@ effectiveStdenv.mkDerivation (finalAttrs: {
];
# Environment variables needed for ROCm
env = optionals useRocm {
env = optionalAttrs useRocm {
ROCM_PATH = "${rocmPackages.clr}";
HIP_DEVICE_LIB_PATH = "${rocmPackages.rocm-device-libs}/amdgcn/bitcode";
};

View File

@@ -48,98 +48,98 @@ jobs:
cmake --build build --config Release -j $(nproc)
ubuntu-24-riscv64-vulkan-cross:
runs-on: ubuntu-24.04
# ubuntu-24-riscv64-vulkan-cross:
# runs-on: ubuntu-24.04
steps:
- uses: actions/checkout@v4
- name: Setup Riscv
run: |
sudo dpkg --add-architecture riscv64
# steps:
# - uses: actions/checkout@v4
# - name: Setup Riscv
# run: |
# sudo dpkg --add-architecture riscv64
# Add arch-specific repositories for non-amd64 architectures
cat << EOF | sudo tee /etc/apt/sources.list.d/riscv64-ports.list
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
EOF
# # Add arch-specific repositories for non-amd64 architectures
# cat << EOF | sudo tee /etc/apt/sources.list.d/riscv64-ports.list
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
# EOF
sudo apt-get update || true ;# Prevent failure due to missing URLs.
# sudo apt-get update || true ;# Prevent failure due to missing URLs.
sudo apt-get install -y --no-install-recommends \
build-essential \
glslc \
gcc-14-riscv64-linux-gnu \
g++-14-riscv64-linux-gnu \
libvulkan-dev:riscv64
# sudo apt-get install -y --no-install-recommends \
# build-essential \
# glslc \
# gcc-14-riscv64-linux-gnu \
# g++-14-riscv64-linux-gnu \
# libvulkan-dev:riscv64
- name: Build
run: |
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_VULKAN=ON \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
# - name: Build
# run: |
# cmake -B build -DLLAMA_CURL=OFF \
# -DCMAKE_BUILD_TYPE=Release \
# -DGGML_VULKAN=ON \
# -DGGML_OPENMP=OFF \
# -DLLAMA_BUILD_EXAMPLES=ON \
# -DLLAMA_BUILD_TOOLS=ON \
# -DLLAMA_BUILD_TESTS=OFF \
# -DCMAKE_SYSTEM_NAME=Linux \
# -DCMAKE_SYSTEM_PROCESSOR=riscv64 \
# -DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
# -DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
# -DCMAKE_POSITION_INDEPENDENT_CODE=ON \
# -DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
# -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
# -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
# -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
# cmake --build build --config Release -j $(nproc)
ubuntu-24-arm64-vulkan-cross:
runs-on: ubuntu-24.04
# ubuntu-24-arm64-vulkan-cross:
# runs-on: ubuntu-24.04
steps:
- uses: actions/checkout@v4
- name: Setup Arm64
run: |
sudo dpkg --add-architecture arm64
# steps:
# - uses: actions/checkout@v4
# - name: Setup Arm64
# run: |
# sudo dpkg --add-architecture arm64
# Add arch-specific repositories for non-amd64 architectures
cat << EOF | sudo tee /etc/apt/sources.list.d/arm64-ports.list
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
EOF
# # Add arch-specific repositories for non-amd64 architectures
# cat << EOF | sudo tee /etc/apt/sources.list.d/arm64-ports.list
# deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
# deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
# deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
# deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
# EOF
sudo apt-get update || true ;# Prevent failure due to missing URLs.
# sudo apt-get update || true ;# Prevent failure due to missing URLs.
sudo apt-get install -y --no-install-recommends \
build-essential \
glslc \
crossbuild-essential-arm64 \
libvulkan-dev:arm64
# sudo apt-get install -y --no-install-recommends \
# build-essential \
# glslc \
# crossbuild-essential-arm64 \
# libvulkan-dev:arm64
- name: Build
run: |
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_VULKAN=ON \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=aarch64 \
-DCMAKE_C_COMPILER=aarch64-linux-gnu-gcc \
-DCMAKE_CXX_COMPILER=aarch64-linux-gnu-g++ \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/aarch64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
# - name: Build
# run: |
# cmake -B build -DLLAMA_CURL=OFF \
# -DCMAKE_BUILD_TYPE=Release \
# -DGGML_VULKAN=ON \
# -DGGML_OPENMP=OFF \
# -DLLAMA_BUILD_EXAMPLES=ON \
# -DLLAMA_BUILD_TOOLS=ON \
# -DLLAMA_BUILD_TESTS=OFF \
# -DCMAKE_SYSTEM_NAME=Linux \
# -DCMAKE_SYSTEM_PROCESSOR=aarch64 \
# -DCMAKE_C_COMPILER=aarch64-linux-gnu-gcc \
# -DCMAKE_CXX_COMPILER=aarch64-linux-gnu-g++ \
# -DCMAKE_POSITION_INDEPENDENT_CODE=ON \
# -DCMAKE_FIND_ROOT_PATH=/usr/lib/aarch64-linux-gnu \
# -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
# -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
# -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
# cmake --build build --config Release -j $(nproc)
ubuntu-24-ppc64el-cpu-cross:
runs-on: ubuntu-24.04
@@ -185,52 +185,52 @@ jobs:
cmake --build build --config Release -j $(nproc)
ubuntu-24-ppc64el-vulkan-cross:
runs-on: ubuntu-24.04
# ubuntu-24-ppc64el-vulkan-cross:
# runs-on: ubuntu-24.04
steps:
- uses: actions/checkout@v4
- name: Setup PowerPC64le
run: |
sudo dpkg --add-architecture ppc64el
# steps:
# - uses: actions/checkout@v4
# - name: Setup PowerPC64le
# run: |
# sudo dpkg --add-architecture ppc64el
# Add arch-specific repositories for non-amd64 architectures
cat << EOF | sudo tee /etc/apt/sources.list.d/ppc64el-ports.list
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
EOF
# # Add arch-specific repositories for non-amd64 architectures
# cat << EOF | sudo tee /etc/apt/sources.list.d/ppc64el-ports.list
# deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
# deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
# deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
# deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
# EOF
sudo apt-get update || true ;# Prevent failure due to missing URLs.
# sudo apt-get update || true ;# Prevent failure due to missing URLs.
sudo apt-get install -y --no-install-recommends \
build-essential \
glslc \
gcc-14-powerpc64le-linux-gnu \
g++-14-powerpc64le-linux-gnu \
libvulkan-dev:ppc64el
# sudo apt-get install -y --no-install-recommends \
# build-essential \
# glslc \
# gcc-14-powerpc64le-linux-gnu \
# g++-14-powerpc64le-linux-gnu \
# libvulkan-dev:ppc64el
- name: Build
run: |
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_VULKAN=ON \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=ppc64 \
-DCMAKE_C_COMPILER=powerpc64le-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=powerpc64le-linux-gnu-g++-14 \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/powerpc64le-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
# - name: Build
# run: |
# cmake -B build -DLLAMA_CURL=OFF \
# -DCMAKE_BUILD_TYPE=Release \
# -DGGML_VULKAN=ON \
# -DGGML_OPENMP=OFF \
# -DLLAMA_BUILD_EXAMPLES=ON \
# -DLLAMA_BUILD_TOOLS=ON \
# -DLLAMA_BUILD_TESTS=OFF \
# -DCMAKE_SYSTEM_NAME=Linux \
# -DCMAKE_SYSTEM_PROCESSOR=ppc64 \
# -DCMAKE_C_COMPILER=powerpc64le-linux-gnu-gcc-14 \
# -DCMAKE_CXX_COMPILER=powerpc64le-linux-gnu-g++-14 \
# -DCMAKE_POSITION_INDEPENDENT_CODE=ON \
# -DCMAKE_FIND_ROOT_PATH=/usr/lib/powerpc64le-linux-gnu \
# -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
# -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
# -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
# cmake --build build --config Release -j $(nproc)
debian-13-loongarch64-cpu-cross:
runs-on: ubuntu-24.04

View File

@@ -135,6 +135,69 @@ jobs:
cd build
ctest -L main --verbose --timeout 900
macOS-latest-cmake-arm64-webgpu:
runs-on: macos-14
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: macOS-latest-cmake-arm64-webgpu
evict-old-files: 1d
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
brew install curl
- name: Dawn Dependency
id: dawn-depends
run: |
ARTIFACTS_JSON=$(curl -s -L \
-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer ${{ secrets.GITHUB_TOKEN }}" \
-H "X-GitHub-Api-Version: 2022-11-28" \
"https://api.github.com/repos/google/dawn/actions/artifacts")
echo "Finding latest macos-latest-Release artifact..."
DOWNLOAD_URL=$(echo "$ARTIFACTS_JSON" | jq -r '.artifacts
| sort_by(.created_at)
| reverse
| map(select(.name | test("macos-latest-Release$")))
| .[0].archive_download_url')
if [ "$DOWNLOAD_URL" = "null" ] || [ -z "$DOWNLOAD_URL" ]; then
echo "No suitable Dawn artifact found!"
exit 1
fi
echo "Downloading from: $DOWNLOAD_URL"
curl -L \
-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer ${{ secrets.GITHUB_TOKEN }}" \
-o artifact.zip "$DOWNLOAD_URL"
unzip artifact.zip
mkdir dawn
tar_file=$(find . -name '*.tar.gz' | head -n 1)
echo "Extracting: $tar_file"
tar -xvf "$tar_file" -C dawn --strip-components=1
- name: Build
id: cmake_build
run: |
export CMAKE_PREFIX_PATH=dawn
cmake -B build -DGGML_WEBGPU=ON -DGGML_METAL=OFF -DGGML_BLAS=OFF
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
- name: Test
id: cmake_test
run: |
cd build
ctest -L main --verbose --timeout 900
ubuntu-cpu-cmake:
strategy:
matrix:
@@ -344,6 +407,72 @@ jobs:
# This is using llvmpipe and runs slower than other backends
ctest -L main --verbose --timeout 4200
ubuntu-22-cmake-webgpu:
runs-on: ubuntu-22.04
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: ubuntu-22-cmake-webgpu
evict-old-files: 1d
- name: Vulkan SDK Dependencies
id: vulkan-depends
run: |
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | sudo apt-key add -
sudo wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
sudo apt-get update -y
sudo apt-get install -y build-essential mesa-vulkan-drivers vulkan-sdk libcurl4-openssl-dev
- name: Dawn Dependency
id: dawn-depends
run: |
sudo apt-get install -y libxrandr-dev libxinerama-dev libxcursor-dev mesa-common-dev libx11-xcb-dev libxi-dev
ARTIFACTS_JSON=$(curl -s -L \
-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer ${{ secrets.GITHUB_TOKEN }}" \
-H "X-GitHub-Api-Version: 2022-11-28" \
"https://api.github.com/repos/google/dawn/actions/artifacts")
echo "Finding latest ubuntu-latest-Release artifact..."
DOWNLOAD_URL=$(echo "$ARTIFACTS_JSON" | jq -r '.artifacts
| sort_by(.created_at)
| reverse
| map(select(.name | test("ubuntu-latest-Release$")))
| .[0].archive_download_url')
if [ "$DOWNLOAD_URL" = "null" ] || [ -z "$DOWNLOAD_URL" ]; then
echo "No suitable Dawn artifact found!"
exit 1
fi
echo "Downloading from: $DOWNLOAD_URL"
curl -L \
-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer ${{ secrets.GITHUB_TOKEN }}" \
-o artifact.zip "$DOWNLOAD_URL"
unzip artifact.zip
mkdir dawn
tar_file=$(find . -name '*.tar.gz' | head -n 1)
echo "Extracting: $tar_file"
tar -xvf "$tar_file" -C dawn --strip-components=1
- name: Build
id: cmake_build
run: |
export Dawn_DIR=dawn/lib64/cmake/Dawn
cmake -B build -DGGML_WEBGPU=ON
cmake --build build --config Release -j $(nproc)
- name: Test
id: cmake_test
run: |
cd build
# This is using llvmpipe and runs slower than other backends
ctest -L main --verbose --timeout 3600
ubuntu-22-cmake-hip:
runs-on: ubuntu-22.04
container: rocm/dev-ubuntu-22.04:6.0.2

40
.github/workflows/update-ops-docs.yml vendored Normal file
View File

@@ -0,0 +1,40 @@
name: Update Operations Documentation
on:
push:
paths:
- 'docs/ops/**'
- 'scripts/create_ops_docs.py'
pull_request:
paths:
- 'docs/ops/**'
- 'scripts/create_ops_docs.py'
jobs:
update-ops-docs:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: '3.x'
- name: Generate operations documentation to temporary file
run: |
mkdir -p /tmp/ops_check
./scripts/create_ops_docs.py /tmp/ops_check/ops.md
- name: Check if docs/ops.md matches generated version
run: |
if ! diff -q docs/ops.md /tmp/ops_check/ops.md; then
echo "Operations documentation (docs/ops.md) is not up to date with the backend CSV files."
echo "To fix: run ./scripts/create_ops_docs.py and commit the updated docs/ops.md along with your changes"
echo "Differences found:"
diff docs/ops.md /tmp/ops_check/ops.md || true
exit 1
fi
echo "Operations documentation is up to date."

View File

@@ -55,6 +55,17 @@
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-apple-clang.cmake"
}
},
{
"name": "x64-linux-gcc", "hidden": true,
"cacheVariables": {
"CMAKE_C_COMPILER": "gcc",
"CMAKE_CXX_COMPILER": "g++"
}
},
{ "name": "x64-linux-gcc-debug", "inherits": [ "base", "x64-linux-gcc", "debug" ] },
{ "name": "x64-linux-gcc-release", "inherits": [ "base", "x64-linux-gcc", "release" ] },
{ "name": "x64-linux-gcc-reldbg", "inherits": [ "base", "x64-linux-gcc", "reldbg" ] },
{ "name": "x64-linux-gcc+static-release", "inherits": [ "base", "x64-linux-gcc", "release", "static" ] },
{ "name": "arm64-windows-llvm-debug", "inherits": [ "base", "arm64-windows-llvm", "debug" ] },
{ "name": "arm64-windows-llvm-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg" ] },

View File

@@ -6,9 +6,9 @@
[![Release](https://img.shields.io/github/v/release/ggml-org/llama.cpp)](https://github.com/ggml-org/llama.cpp/releases)
[![Server](https://github.com/ggml-org/llama.cpp/actions/workflows/server.yml/badge.svg)](https://github.com/ggml-org/llama.cpp/actions/workflows/server.yml)
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Manifesto](https://github.com/ggml-org/llama.cpp/discussions/205) / [ggml](https://github.com/ggml-org/ggml)
[Manifesto](https://github.com/ggml-org/llama.cpp/discussions/205) / [ggml](https://github.com/ggml-org/ggml) / [ops](https://github.com/ggml-org/llama.cpp/blob/master/docs/ops.md)
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
LLM inference in C/C++
## Recent API changes
@@ -17,10 +17,9 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
## Hot topics
- 🔥 Multimodal support arrived in `llama-server`: [#12898](https://github.com/ggml-org/llama.cpp/pull/12898) | [documentation](./docs/multimodal.md)
- A new binary `llama-mtmd-cli` is introduced to replace `llava-cli`, `minicpmv-cli`, `gemma3-cli` ([#13012](https://github.com/ggml-org/llama.cpp/pull/13012)) and `qwen2vl-cli` ([#13141](https://github.com/ggml-org/llama.cpp/pull/13141)), `libllava` will be deprecated
- Hot PRs: [All](https://github.com/ggml-org/llama.cpp/pulls?q=is%3Apr+label%3Ahot+) | [Open](https://github.com/ggml-org/llama.cpp/pulls?q=is%3Apr+label%3Ahot+is%3Aopen)
- Multimodal support arrived in `llama-server`: [#12898](https://github.com/ggml-org/llama.cpp/pull/12898) | [documentation](./docs/multimodal.md)
- VS Code extension for FIM completions: https://github.com/ggml-org/llama.vscode
- Universal [tool call support](./docs/function-calling.md) in `llama-server` https://github.com/ggml-org/llama.cpp/pull/9639
- Vim/Neovim plugin for FIM completions: https://github.com/ggml-org/llama.vim
- Introducing GGUF-my-LoRA https://github.com/ggml-org/llama.cpp/discussions/10123
- Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggml-org/llama.cpp/discussions/9669
@@ -134,6 +133,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [x] [GigaChat-20B-A3B](https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct)
- [X] [Trillion-7B-preview](https://huggingface.co/trillionlabs/Trillion-7B-preview)
- [x] [Ling models](https://huggingface.co/collections/inclusionAI/ling-67c51c85b34a7ea0aba94c32)
- [x] [LFM2 models](https://huggingface.co/collections/LiquidAI/lfm2-686d721927015b2ad73eaa38)
#### Multimodal
@@ -269,6 +269,8 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
| [Vulkan](docs/build.md#vulkan) | GPU |
| [CANN](docs/build.md#cann) | Ascend NPU |
| [OpenCL](docs/backend/OPENCL.md) | Adreno GPU |
| [WebGPU [In Progress]](docs/build.md#webgpu) | All |
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) | All |
## Obtaining and quantizing models

View File

@@ -16,6 +16,9 @@
# # with VULKAN support
# GG_BUILD_VULKAN=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
# # with WebGPU support
# GG_BUILD_WEBGPU=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
# # with MUSA support
# GG_BUILD_MUSA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
@@ -81,6 +84,10 @@ if [ ! -z ${GG_BUILD_VULKAN} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_VULKAN=1"
fi
if [ ! -z ${GG_BUILD_WEBGPU} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_WEBGPU=1"
fi
if [ ! -z ${GG_BUILD_MUSA} ]; then
# Use qy1 by default (MTT S80)
MUSA_ARCH=${MUSA_ARCH:-21}

View File

@@ -86,8 +86,7 @@ if (LLAMA_CURL)
endif()
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_CURL)
include_directories(${CURL_INCLUDE_DIRS})
find_library(CURL_LIBRARY curl REQUIRED)
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} ${CURL_LIBRARY})
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} ${CURL_LIBRARIES})
endif ()
if (LLAMA_LLGUIDANCE)
@@ -112,13 +111,13 @@ if (LLAMA_LLGUIDANCE)
ExternalProject_Add(llguidance_ext
GIT_REPOSITORY https://github.com/guidance-ai/llguidance
# v0.7.20 (+ fix to build on GCC 15):
GIT_TAG b5b8b64dba11c4e4ee6b1d1450d3a3ae279891e8
# v1.0.1:
GIT_TAG d795912fedc7d393de740177ea9ea761e7905774
PREFIX ${CMAKE_BINARY_DIR}/llguidance
SOURCE_DIR ${LLGUIDANCE_SRC}
BUILD_IN_SOURCE TRUE
CONFIGURE_COMMAND ""
BUILD_COMMAND cargo build --release
BUILD_COMMAND cargo build --release --package llguidance
INSTALL_COMMAND ""
BUILD_BYPRODUCTS ${LLGUIDANCE_PATH}/${LLGUIDANCE_LIB_NAME} ${LLGUIDANCE_PATH}/llguidance.h
UPDATE_COMMAND ""

View File

@@ -1464,6 +1464,14 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.swa_full = true;
}
).set_env("LLAMA_ARG_SWA_FULL"));
add_opt(common_arg(
{"--kv-unified", "-kvu"},
string_format("use single unified KV buffer for the KV cache of all sequences (default: %s)\n"
"[(more info)](https://github.com/ggml-org/llama.cpp/pull/14363)", params.kv_unified ? "true" : "false"),
[](common_params & params) {
params.kv_unified = true;
}
).set_env("LLAMA_ARG_KV_SPLIT"));
add_opt(common_arg(
{"--no-context-shift"},
string_format("disables context shift on infinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"),
@@ -3423,5 +3431,34 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
// diffusion parameters
add_opt(common_arg(
{ "--diffusion-steps" }, "N",
string_format("number of diffusion steps (default: %d)", params.diffusion.steps),
[](common_params & params, int value) { params.diffusion.steps = value; }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-eps" }, "F",
string_format("epsilon for timesteps (default: %.6f)", (double) params.diffusion.eps),
[](common_params & params, const std::string & value) { params.diffusion.eps = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-algorithm" }, "N",
string_format("diffusion algorithm: 0=ORIGIN, 1=MASKGIT_PLUS, 2=TOPK_MARGIN, 3=ENTROPY (default: %d)",
params.diffusion.algorithm),
[](common_params & params, int value) { params.diffusion.algorithm = value; }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-alg-temp" }, "F",
string_format("algorithm temperature (default: %.3f)", (double) params.diffusion.alg_temp),
[](common_params & params, const std::string & value) { params.diffusion.alg_temp = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-visual" },
string_format("enable visual diffusion mode (show progressive generation) (default: %s)",
params.diffusion.visual_mode ? "true" : "false"),
[](common_params & params) { params.diffusion.visual_mode = true; }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
return ctx_arg;
}

View File

@@ -1005,15 +1005,21 @@ struct common_init_result common_init_from_params(common_params & params) {
params.sampling.ignore_eos = false;
}
if (params.sampling.ignore_eos) {
for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
if (llama_vocab_is_eog(vocab, i)) {
LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(lctx, i).c_str(), -INFINITY);
params.sampling.logit_bias.push_back({i, -INFINITY});
}
// initialize once
for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
if (llama_vocab_is_eog(vocab, i)) {
LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(lctx, i).c_str(), -INFINITY);
params.sampling.logit_bias_eog.push_back({i, -INFINITY});
}
}
if (params.sampling.ignore_eos) {
// add EOG biases to the active set of logit biases
params.sampling.logit_bias.insert(
params.sampling.logit_bias.end(),
params.sampling.logit_bias_eog.begin(), params.sampling.logit_bias_eog.end());
}
if (params.sampling.penalty_last_n == -1) {
LOG_INF("%s: setting penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
params.sampling.penalty_last_n = llama_n_ctx(lctx);
@@ -1157,6 +1163,7 @@ struct llama_context_params common_context_params_to_llama(const common_params &
cparams.no_perf = params.no_perf;
cparams.op_offload = !params.no_op_offload;
cparams.swa_full = params.swa_full;
cparams.kv_unified = params.kv_unified;
cparams.type_k = params.cache_type_k;
cparams.type_v = params.cache_type_v;

View File

@@ -81,6 +81,7 @@ enum llama_example {
LLAMA_EXAMPLE_LOOKUP,
LLAMA_EXAMPLE_PARALLEL,
LLAMA_EXAMPLE_TTS,
LLAMA_EXAMPLE_DIFFUSION,
LLAMA_EXAMPLE_COUNT,
};
@@ -177,7 +178,8 @@ struct common_params_sampling {
std::vector<common_grammar_trigger> grammar_triggers; // optional triggers (for lazy grammars)
std::set<llama_token> preserved_tokens;
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
std::vector<llama_logit_bias> logit_bias_eog; // pre-calculated logit biases for EOG tokens
// print the parameters into a string
std::string print() const;
@@ -217,6 +219,14 @@ struct common_params_vocoder {
bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy // NOLINT
};
struct common_params_diffusion {
int32_t steps = 64; // number of diffusion steps
float eps = 1e-3f; // epsilon for timesteps
int32_t algorithm = 0; // diffusion algorithm (0=ORIGIN, 1=MASKGIT_PLUS, 2=TOPK_MARGIN, 3=ENTROPY)
float alg_temp = 0.0f; // algorithm temperature
bool visual_mode = false; // show progressive diffusion on screen
};
enum common_reasoning_format {
COMMON_REASONING_FORMAT_NONE,
COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY, // Extract thinking tag contents and return as `message.reasoning_content`, or leave inline in <think> tags in stream mode
@@ -268,6 +278,7 @@ struct common_params {
struct common_params_sampling sampling;
struct common_params_speculative speculative;
struct common_params_vocoder vocoder;
struct common_params_diffusion diffusion;
struct common_params_model model;
@@ -330,6 +341,7 @@ struct common_params {
bool no_perf = false; // disable performance metrics
bool ctx_shift = true; // context shift on inifinite text generation
bool swa_full = false; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
bool kv_unified = false; // enable unified KV cache
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool use_mmap = true; // use mmap for faster loads

View File

@@ -300,6 +300,7 @@ class ModelBase:
gguf.MODEL_TENSOR.POS_EMBD,
gguf.MODEL_TENSOR.TOKEN_TYPES,
gguf.MODEL_TENSOR.SSM_CONV1D,
gguf.MODEL_TENSOR.SHORTCONV_CONV,
gguf.MODEL_TENSOR.TIME_MIX_FIRST,
gguf.MODEL_TENSOR.TIME_MIX_W1,
gguf.MODEL_TENSOR.TIME_MIX_W2,
@@ -668,6 +669,36 @@ class TextModel(ModelBase):
# NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
# or pull the latest version of the model from Huggingface
# don't edit the hashes manually!
if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
# ref: https://huggingface.co/THUDM/glm-4-9b-chat
res = "chatglm-bpe"
if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
# ref: https://huggingface.co/THUDM/glm-4-9b-chat
res = "chatglm-bpe"
if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
# ref: https://huggingface.co/THUDM/glm-4-9b-hf
res = "glm4"
if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
# ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
res = "minerva-7b"
if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
# ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
res = "hunyuan"
if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
# ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
res = "falcon-h1"
if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
# ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
res = "falcon-h1"
if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
# ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
res = "falcon-h1"
if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
# ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
res = "falcon-h1"
if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
# ref: https://huggingface.co/moonshotai/Kimi-K2-Base
res = "kimi-k2"
if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
# ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
res = "llama-bpe"
@@ -803,36 +834,15 @@ class TextModel(ModelBase):
if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
# ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
res = "seed-coder"
if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
# ref: https://huggingface.co/THUDM/glm-4-9b-chat
res = "chatglm-bpe"
if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
# ref: https://huggingface.co/THUDM/glm-4-9b-chat
res = "chatglm-bpe"
if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
# ref: https://huggingface.co/THUDM/glm-4-9b-hf
res = "glm4"
if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
# ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
res = "minerva-7b"
if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
# ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
res = "hunyuan"
if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
# ref: https://huggingface.co/skt/A.X-4.0
res = "a.x-4.0"
if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
# ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
res = "falcon-h1"
if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
# ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
res = "falcon-h1"
if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
# ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
res = "falcon-h1"
if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
# ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
res = "falcon-h1"
if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
# ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
res = "midm-2.0"
if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
# ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
res = "lfm2"
if res is None:
logger.warning("\n")
@@ -1075,7 +1085,14 @@ class TextModel(ModelBase):
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
special_vocab.chat_template = "rwkv-world"
if special_vocab.chat_template is None:
template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
if template_path.is_file():
with open(template_path, "r", encoding="utf-8") as f:
template = f.read()
else:
template = "rwkv-world"
special_vocab.chat_template = template
# hack: Add '\n\n' as the EOT token to make it chat normally
special_vocab._set_special_token("eot", 261)
# hack: Override these as they have already been set (incorrectly)
@@ -2761,6 +2778,76 @@ class Qwen2Model(TextModel):
yield from super().modify_tensors(data_torch, name, bid)
@ModelBase.register("DreamModel")
class DreamModel(TextModel):
model_arch = gguf.MODEL_ARCH.DREAM
def get_vocab_base(self) -> tuple[list[str], list[int], str]:
tokens: list[str] = []
toktypes: list[int] = []
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
vocab_dict = tokenizer.get_vocab()
vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
assert max(vocab_dict.values()) < vocab_size
tokpre = self.get_vocab_base_pre(tokenizer)
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
added_vocab = tokenizer.get_added_vocab()
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.UNUSED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
# Check if it's a special token - treat special tokens as CONTROL tokens
if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
if tokenizer.added_tokens_decoder[i].special:
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
# Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
toktypes.append(gguf.TokenType.CONTROL)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
return tokens, toktypes, tokpre
def set_vocab(self):
try:
self._set_vocab_sentencepiece()
except FileNotFoundError:
self._set_vocab_gpt2()
def set_gguf_parameters(self):
super().set_gguf_parameters()
self._try_set_pooling_type()
# Dream models use non-causal attention for diffusion
self.gguf_writer.add_causal_attention(False)
# Handle RoPE scaling similar to Qwen2
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
# Add Dream-specific parameters
mask_token_id = self.hparams.get("mask_token_id")
if mask_token_id is not None:
self.gguf_writer.add_mask_token_id(mask_token_id)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# Dream model tensors should be mapped directly since it's the base model
yield from super().modify_tensors(data_torch, name, bid)
@ModelBase.register("Ernie4_5_ForCausalLM")
class Ernie4_5Model(TextModel):
model_arch = gguf.MODEL_ARCH.ERNIE4_5
@@ -2774,7 +2861,8 @@ class Ernie4_5Model(TextModel):
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
num_heads = self.hparams["num_attention_heads"]
num_kv_heads = self.hparams["num_key_value_heads"]
head_dim = self.hparams["head_dim"]
if (head_dim := self.hparams.get("head_dim")) is None:
head_dim = self.hparams["hidden_size"] // num_heads
if "ernie." in name:
name = name.replace("ernie.", "model.")
@@ -2807,6 +2895,93 @@ class Ernie4_5Model(TextModel):
return [(self.map_tensor_name(name), data_torch)]
@ModelBase.register("Ernie4_5_MoeForCausalLM")
class Ernie4_5MoeModel(Ernie4_5Model):
model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
_experts: list[dict[str, Tensor]] | None = None
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._experts = [{} for _ in range(self.block_count)]
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
self.gguf_writer.add_expert_shared_count(shared_expert_count)
if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# Modify correction bias name as in DeepseekV2
if name.endswith("e_score_correction_bias"):
name = name.replace("e_score_correction_bias", "e_score_correction.bias")
# skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
match = re.match(r"model.mtp_block.(\d+)", name)
if match:
return []
# skip all other MTP tensors for now
match = re.match(r"model.mtp_emb_norm.(\d+)", name)
if match:
return []
match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
if match:
return []
match = re.match(r"model.mtp_linear_proj.(\d+)", name)
if match:
return []
# process the experts separately
if name.find("mlp.experts") != -1:
n_experts = self.hparams["moe_num_experts"]
assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
tensors: list[tuple[str, Tensor]] = []
# merge the experts into a single 3d tensor
for w_name in ["gate_proj", "up_proj", "down_proj"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
datas.append(self._experts[bid][ename_to_retrieve])
del self._experts[bid][ename_to_retrieve]
data_torch = torch.stack(datas, dim=0)
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
return tensors
else:
return []
return [(self.map_tensor_name(name), data_torch)]
def prepare_tensors(self):
super().prepare_tensors()
if self._experts is not None:
# flatten `list[dict[str, Tensor]]` into `list[str]`
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts}")
@ModelBase.register(
"Qwen2VLModel",
"Qwen2VLForConditionalGeneration",
@@ -3494,6 +3669,175 @@ class PlamoModel(TextModel):
return [(new_name, data_torch)]
@ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
class Plamo2Model(TextModel):
model_arch = gguf.MODEL_ARCH.PLAMO2
def set_vocab(self):
# PLaMo 2 uses a custom tokenizer with a .jsonl file
# We need to handle this specially
tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
tokenizer_config_path = self.dir_model / "tokenizer_config.json"
if not tokenizer_jsonl_path.is_file():
raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
# Load tokenizer config
with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
tokenizer_config = json.load(f)
# Load tokens from JSONL file (actually a list format)
tokens = []
scores = []
toktypes = []
with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
for line_num, line in enumerate(f):
if line.strip():
token_data = json.loads(line)
# Format: [token, score, type, ?, ?, ?, ?]
token = token_data[0].encode("utf-8")
score = float(token_data[1])
token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
tokens.append(token)
scores.append(score)
# Map token type strings to GGUF token types
if token_type_str == "UNKNOWN":
toktypes.append(gguf.TokenType.UNKNOWN)
elif token_type_str == "CONTROL":
toktypes.append(gguf.TokenType.CONTROL)
elif token_type_str == "BYTE":
toktypes.append(gguf.TokenType.BYTE)
else:
# Check for PLaMo-2 special tokens
token_str = token_data[0]
if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.NORMAL)
vocab_size = self.hparams["vocab_size"]
if vocab_size > len(tokens):
pad_count = vocab_size - len(tokens)
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
for i in range(1, pad_count + 1):
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
scores.append(-1000.0)
toktypes.append(gguf.TokenType.UNUSED)
# Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
self.gguf_writer.add_tokenizer_model("plamo2")
self.gguf_writer.add_tokenizer_pre("default")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
# Add special tokens from config
if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
self.gguf_writer.add_bos_token_id(token_id)
if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
self.gguf_writer.add_eos_token_id(token_id)
if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
self.gguf_writer.add_pad_token_id(token_id)
if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
self.gguf_writer.add_sep_token_id(token_id)
if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
self.gguf_writer.add_unk_token_id(token_id)
# Add <|plamo:op|> as EOT to ensure appropriate end of generation
self.gguf_writer.add_eot_token_id(4)
self.gguf_writer.add_add_space_prefix(False)
def set_gguf_parameters(self):
hparams = self.hparams
block_count = hparams["num_hidden_layers"]
self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
# Which layers are Mamba layers
# PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
# This logic matches modeling_plamo.py's is_mamba function
mamba_step = hparams.get("mamba_step", 2)
mamba_enabled = hparams.get("mamba_enabled", True)
mamba_layers = []
if mamba_enabled:
for i in range(block_count):
if block_count <= (mamba_step // 2):
# use attention in last layer
is_mamba = (i != block_count - 1)
else:
is_mamba = (i % mamba_step) != (mamba_step // 2)
if is_mamba:
mamba_layers.append(0)
else:
mamba_layers.append(hparams.get("num_key_value_heads", 4))
if mamba_layers:
self.gguf_writer.add_head_count_kv(mamba_layers)
self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 32))
self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1000000.0))
# Mamba parameters
self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
self.gguf_writer.add_ssm_inner_size(intermediate_size)
self.gguf_writer.add_ssm_group_count(0)
# MLP feed forward parameters (for attention layers)
self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 16384))
self.gguf_writer.add_file_type(self.ftype)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
if name.endswith(".A_log"):
data_torch = -torch.exp(data_torch)
elif name.endswith(".dt_bias"):
name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
elif name.endswith(".dt_norm_weight"):
name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
elif name.endswith(".B_norm_weight"):
name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
elif name.endswith(".C_norm_weight"):
name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
elif name.endswith(".k_weight"):
name = name.rpartition(".k_weight")[0] + ".k.weight"
elif name.endswith(".q_weight"):
name = name.rpartition(".q_weight")[0] + ".q.weight"
elif name.endswith(".conv1d.weight"):
data_torch = torch.squeeze(data_torch) # remove (, 1, )
assert data_torch.ndim == 2
elif name.endswith(".pre_mixer_norm.weight"):
data_torch += 1.0
elif name.endswith(".post_mixer_norm.weight"):
data_torch += 1.0 / 5
elif name.endswith(".pre_mlp_norm.weight"):
data_torch += 1.0
elif name.endswith(".post_mlp_norm.weight"):
data_torch += 1.0 / (5**1.5)
elif name.endswith(".norm.weight"):
data_torch += 1.0
new_name = self.map_tensor_name(name)
return [(new_name, data_torch)]
@ModelBase.register("CodeShellForCausalLM")
class CodeShellModel(TextModel):
model_arch = gguf.MODEL_ARCH.CODESHELL
@@ -4890,6 +5234,9 @@ class Mamba2Model(TextModel):
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
super().__init__(dir_model, *args, hparams=hparams, **kwargs)
self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
def set_vocab(self):
vocab_size = self.hparams["vocab_size"]
@@ -4912,12 +5259,9 @@ class Mamba2Model(TextModel):
self._set_vocab_builtin("gpt-neox", vocab_size)
def set_gguf_parameters(self):
d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * d_model
d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
n_group = self.find_hparam(["n_groups"], optional=True) or 1
d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
@@ -4925,19 +5269,19 @@ class Mamba2Model(TextModel):
# TODO: does this really matter?
# skip the assertion for FalconH1 Model
if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
assert d_inner == 2 * d_model
assert d_inner % head_dim == 0
assert self.d_inner == 2 * self.d_model
assert self.d_inner % head_dim == 0
self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
self.gguf_writer.add_embedding_length(d_model)
self.gguf_writer.add_embedding_length(self.d_model)
self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
self.gguf_writer.add_block_count(self.block_count)
self.gguf_writer.add_ssm_conv_kernel(d_conv)
self.gguf_writer.add_ssm_inner_size(d_inner)
self.gguf_writer.add_ssm_inner_size(self.d_inner)
self.gguf_writer.add_ssm_state_size(d_state)
self.gguf_writer.add_ssm_time_step_rank(d_inner // head_dim)
self.gguf_writer.add_ssm_group_count(n_group)
self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
self.gguf_writer.add_ssm_group_count(self.n_group)
self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
self.gguf_writer.add_file_type(self.ftype)
@@ -4962,10 +5306,7 @@ class Mamba2Model(TextModel):
# (D is also unsqueezed, but for more straightforward broadcast internally)
data_torch = data_torch.reshape((*data_torch.shape, 1))
elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * d_model
n_group = self.hparams.get("n_groups", 1)
data_torch = data_torch.reshape((n_group, d_inner // n_group))
data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
if name.endswith(".A_log"):
logger.debug("A_log --> A ==> " + new_name)
@@ -4974,6 +5315,123 @@ class Mamba2Model(TextModel):
yield (new_name, data_torch)
@ModelBase.register("JambaForCausalLM")
class JambaModel(TextModel):
model_arch = gguf.MODEL_ARCH.JAMBA
def get_vocab_base_pre(self, tokenizer) -> str:
del tokenizer # unused
return "gpt-2"
def set_vocab(self):
if (self.dir_model / "tokenizer.model").is_file():
# Using Jamba's tokenizer.json causes errors on model load
# (something about "byte not found in vocab"),
# but there's a working tokenizer.model
self._set_vocab_sentencepiece()
else:
# Some Jamba models only have a tokenizer.json, which works.
self._set_vocab_gpt2()
def set_gguf_parameters(self):
d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
d_inner = self.hparams["mamba_expand"] * d_model
d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
# ceiling division
# ref: https://stackoverflow.com/a/17511341/22827863
# ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
n_kv_head = self.hparams["num_key_value_heads"]
attn_offset = self.hparams["attn_layer_offset"]
attn_period = self.hparams["attn_layer_period"]
n_kv_vec = [0 for _ in range(attn_offset)] + [
n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
]
self.gguf_writer.add_block_count(self.block_count)
self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
self.gguf_writer.add_embedding_length(d_model)
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
self.gguf_writer.add_head_count_kv(n_kv_vec)
self.gguf_writer.add_ssm_conv_kernel(d_conv)
self.gguf_writer.add_ssm_inner_size(d_inner)
self.gguf_writer.add_ssm_state_size(d_state)
self.gguf_writer.add_ssm_time_step_rank(dt_rank)
self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
self.gguf_writer.add_expert_count(self.hparams["num_experts"])
self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
self.gguf_writer.add_file_type(self.ftype)
_experts: list[dict[str, Tensor]] | None = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# Mini-Jamba
name = name.replace(".moe.", ".feed_forward.")
if bid is not None:
moe_offset = self.hparams["expert_layer_offset"]
moe_period = self.hparams["expert_layer_period"]
if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
name = name.replace(".experts.0.", ".")
# process the experts separately
if ".feed_forward.experts." in name:
n_experts = self.hparams["num_experts"]
assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
# merge the experts into a single 3d tensor
for wid in ["down_proj", "gate_proj", "up_proj"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
# using the same merged name as qwen2moe
merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
new_name = self.map_tensor_name(merged_name)
yield new_name, data_torch
return
new_name = self.map_tensor_name(name)
if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
data_torch = data_torch.squeeze()
if name.endswith(".A_log"):
logger.debug("A_log --> A ==> " + new_name)
data_torch = -torch.exp(data_torch)
yield (new_name, data_torch)
def prepare_tensors(self):
super().prepare_tensors()
if self._experts is not None:
# flatten `list[dict[str, Tensor]]` into `list[str]`
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts}")
@ModelBase.register("CohereForCausalLM")
class CommandR2Model(TextModel):
model_arch = gguf.MODEL_ARCH.COMMAND_R
@@ -5442,7 +5900,58 @@ class DeepseekV2Model(TextModel):
model_arch = gguf.MODEL_ARCH.DEEPSEEK2
def set_vocab(self):
self._set_vocab_gpt2()
try:
self._set_vocab_gpt2()
return
except Exception:
pass
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
tokpre = self.get_vocab_base_pre(tokenizer)
if tokpre == "kimi-k2":
# Build merges list using the approach similar to HunYuanMoE
merges = []
vocab = {}
mergeable_ranks = tokenizer.model._mergeable_ranks
for token, rank in mergeable_ranks.items():
vocab[QwenModel.token_bytes_to_string(token)] = rank
if len(token) == 1:
continue
merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
if len(merged) == 2:
merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
# Build token list
vocab_size = self.hparams["vocab_size"]
special_tokens = tokenizer.special_tokens
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
tokens: list[str] = []
toktypes: list[int] = []
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.UNUSED)
else:
token = reverse_vocab[i]
tokens.append(token)
if i in special_tokens.values():
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.NORMAL)
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
self.gguf_writer.add_token_merges(merges)
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
special_vocab.add_to_gguf(self.gguf_writer)
else:
raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
def set_gguf_parameters(self):
@@ -6335,18 +6844,148 @@ class GraniteMoeModel(GraniteModel):
(self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
]
has_experts = bool(self.hparams.get('num_local_experts'))
if name.endswith("shared_mlp.input_linear.weight"):
ffn_dim = self.hparams["shared_intermediate_size"]
assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
gate, up = data_torch.split(ffn_dim, dim=-2)
if has_experts:
return [
(self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
(self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
]
return [
(self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
(self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
(self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
(self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
]
if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
return [
(self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
]
return super().modify_tensors(data_torch, name, bid)
@ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
"""GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
layers and optionally uses MoE w/ a shared expert"""
model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
undo_permute = True
def __init__(self, *args, **kwargs):
# Hybrid mamba models use a prefix for the mamba-specific params.
# TODO: Extend this if the prefix(es) need to be configurable
self.hparam_prefixes = ["mamba"]
super().__init__(*args, **kwargs)
# Lists of which layers use ssm vs attention
self._attn_layers = self.get_attn_layers()
self._ssm_layers = [
i for i in range(self.block_count)
if i not in self._attn_layers
]
# n_group and d_inner are used during reshape_tensors for mamba2
self.d_model = self.find_hparam(["hidden_size", "d_model"])
self.n_group = self.find_hparam(["n_groups"])
self.d_inner = self.find_hparam(["expand"]) * self.d_model
def get_attn_layers(self):
# Explicit list of layer type names
if layer_types := self.hparams.get("layer_types"):
return [
i for i, typ in enumerate(layer_types)
if typ == "attention"
]
# Layer types indicated by index or period
attn_layers = self.hparams.get("attn_layer_indices", [])
if not attn_layers:
attn_period = self.hparams.get("attn_layer_period")
assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
attn_offset = self.hparams.get("attn_layer_offset")
assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
attn_layers = [
i for i in range(self.block_count)
if i % attn_period == attn_offset
]
return attn_layers
def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
prefixed = []
for pfx in self.hparam_prefixes:
prefixed.extend(
"_".join([pfx, k])
for k in keys
)
keys = list(keys) + prefixed
return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
def modify_tensors(
self, data_torch: Tensor, name: str, bid: int | None
) -> Iterable[tuple[str, Tensor]]:
if (
name.endswith("block_sparse_moe.input_linear.weight")
or "shared_mlp" in name
):
return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
# Determine whether this is a mamba layer or an attention layer
if bid in self._ssm_layers:
return Mamba2Model.modify_tensors(self, data_torch, name, bid)
elif bid in self._attn_layers:
return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
return [(self.map_tensor_name(name), data_torch)]
def set_gguf_parameters(self):
"""This method merges params from both parents and some that are
specific to this model. The result is some duplication of how the params
get set. The following warnings are expected during conversion:
WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
WARNING:Duplicated key name 'granitehybrid.context_length'
"""
GraniteMoeModel.set_gguf_parameters(self)
## Mamba mixer params ##
self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state"]))
self.gguf_writer.add_ssm_group_count(self.n_group)
self.gguf_writer.add_ssm_inner_size(self.d_inner)
# NOTE: The mamba_dt_rank is _not_ the right field for how this is used
# in llama.cpp
self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads"]))
## Attention params ##
head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
head_count_kv_vec = [
head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
]
if rope_dim := self.hparams.get("attn_rotary_emb"):
self.gguf_writer.add_rope_dimension_count(rope_dim)
self.gguf_writer.add_head_count_kv(head_count_kv_vec)
## If Bamba, use rope, otherwise don't
use_rope = "BambaForCausalLM" in self.hparams["architectures"]
self.gguf_writer.add_rope_scaling_finetuned(use_rope)
if not use_rope:
self.gguf_writer.add_context_length(2**20)
## Validation ##
d_head = self.find_hparam(["d_head"], optional=True) or 64
assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
def set_vocab(self):
self.hparams["pad_vocab_size_multiple"] = 8
Mamba2Model.set_vocab(self)
@ModelBase.register("BailingMoeForCausalLM")
class BailingMoeModel(TextModel):
model_arch = gguf.MODEL_ARCH.BAILINGMOE
@@ -6570,7 +7209,7 @@ class FalconH1Model(Mamba2Model):
# Use Llama conversion for attention
self._transformer_model_class = LlamaModel
# n_group and d_inner are used during reshape_tensors for mamaba2
# n_group and d_inner are used during reshape_tensors for mamba2
self.n_group = self.find_hparam(["n_groups"])
self.d_inner = self.find_hparam(["mamba_d_ssm"])
self.d_head = self.find_hparam(["d_head"])
@@ -6826,6 +7465,50 @@ class SmolLM3Model(LlamaModel):
chat_template = tokenizer.chat_template.replace("[:]", "")
self.gguf_writer.add_chat_template(chat_template)
@ModelBase.register("Lfm2ForCausalLM")
@ModelBase.register("LFM2ForCausalLM")
class LFM2Model(TextModel):
model_arch = gguf.MODEL_ARCH.LFM2
def _add_feed_forward_length(self):
ff_dim = self.hparams["block_ff_dim"]
auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
ff_dim = self.hparams["block_ff_dim"]
ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
multiple_of = self.hparams["block_multiple_of"]
if auto_adjust_ff_dim:
ff_dim = int(2 * ff_dim / 3)
# custom dim factor multiplier
if ffn_dim_multiplier is not None:
ff_dim = int(ffn_dim_multiplier * ff_dim)
ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
self.gguf_writer.add_feed_forward_length(ff_dim)
def set_gguf_parameters(self):
# set num_key_value_heads only for attention layers
self.hparams["num_key_value_heads"] = [
self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
for layer_type in self.hparams["layer_types"]
]
super().set_gguf_parameters()
self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
self._add_feed_forward_length()
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# conv op requires 2d tensor
if 'conv.conv' in name:
data_torch = data_torch.squeeze(1)
return [(self.map_tensor_name(name), data_torch)]
###### CONVERSION LOGIC ######

View File

@@ -7,7 +7,6 @@ import pathlib
import re
import requests
import sys
import json
import shutil
import argparse
@@ -69,8 +68,7 @@ args = parser.parse_args()
hf_token = args.hf_token if args.hf_token is not None else hf_token
if hf_token is None:
logger.error("HF token is required. Please provide it as an argument or set it in ~/.cache/huggingface/token")
sys.exit(1)
logger.warning("HF token not found. You can provide it as an argument or set it in ~/.cache/huggingface/token")
# TODO: this string has to exercise as much pre-tokenizer functionality as possible
# will be updated with time - contributions welcome
@@ -129,6 +127,8 @@ models = [
{"name": "pixtral", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistral-community/pixtral-12b", },
{"name": "seed-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base", },
{"name": "a.x-4.0", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/skt/A.X-4.0", },
{"name": "midm-2.0", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct", },
{"name": "lfm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LiquidAI/LFM2-Tokenizer"},
]
# some models are known to be broken upstream, so we will skip them as exceptions
@@ -144,11 +144,12 @@ pre_computed_hashes = [
{"name": "falcon-h1", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon-H1-1B-Base", "chkhsh": "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86"},
{"name": "falcon-h1", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon-H1-7B-Base", "chkhsh": "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896"},
{"name": "falcon-h1", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon-H1-34B-Base", "chkhsh": "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b"},
{"name": "kimi-k2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/moonshotai/Kimi-K2-Base", "chkhsh": "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890"},
]
def download_file_with_auth(url, token, save_path):
headers = {"Authorization": f"Bearer {token}"}
headers = {"Authorization": f"Bearer {token}"} if token else None
response = sess.get(url, headers=headers)
response.raise_for_status()
os.makedirs(os.path.dirname(save_path), exist_ok=True)
@@ -229,7 +230,7 @@ for model in models:
# generate the source code for the convert_hf_to_gguf.py:get_vocab_base_pre() function:
src_ifs = ""
for model in [*all_models, *pre_computed_hashes]:
for model in [*pre_computed_hashes, *all_models]:
name = model["name"]
tokt = model["tokt"]
chkhsh = model.get("chkhsh")
@@ -237,11 +238,6 @@ for model in [*all_models, *pre_computed_hashes]:
if tokt == TOKENIZER_TYPE.SPM or tokt == TOKENIZER_TYPE.UGM:
continue
# Skip if the tokenizer folder does not exist or there are other download issues previously
if not os.path.exists(f"models/tokenizers/{name}"):
logger.warning(f"Directory for tokenizer {name} not found. Skipping...")
continue
# create the tokenizer
if chkhsh is not None:
# if the model has a pre-computed hash, use it
@@ -251,15 +247,19 @@ for model in [*all_models, *pre_computed_hashes]:
chkhsh = existing_models[name]
else:
# otherwise, compute the hash of the tokenizer
# Fail if the tokenizer folder with config does not exist or there are other download issues previously
if not os.path.isfile(f"models/tokenizers/{name}/tokenizer_config.json"):
raise OSError(f"Config for tokenizer {name} not found. The model may not exist or is not accessible with the provided token.")
try:
logger.info(f"Loading tokenizer from {f'models/tokenizers/{name}'}...")
if name == "t5":
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False)
else:
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
except OSError as e:
logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}")
continue # Skip to the next model if the tokenizer can't be loaded
except Exception as e:
raise OSError(f"Error loading tokenizer for model {name}.") from e
chktok = tokenizer.encode(CHK_TXT)
chkhsh = sha256(str(chktok).encode()).hexdigest()

View File

@@ -557,6 +557,23 @@ ninja
To read documentation for how to build on Android, [click here](./android.md)
## WebGPU [In Progress]
The WebGPU backend relies on [Dawn](https://dawn.googlesource.com/dawn). Follow the instructions [here](https://dawn.googlesource.com/dawn/+/refs/heads/main/docs/quickstart-cmake.md) to install Dawn locally so that llama.cpp can find it using CMake. The currrent implementation is up-to-date with Dawn commit `bed1a61`.
In the llama.cpp directory, build with CMake:
```
cmake -B build -DGGML_WEBGPU=ON
cmake --build build --config Release
```
### Browser Support
WebGPU allows cross-platform access to the GPU from supported browsers. We utilize [Emscripten](https://emscripten.org/) to compile ggml's WebGPU backend to WebAssembly. Emscripten does not officially support WebGPU bindings yet, but Dawn currently maintains its own WebGPU bindings called emdawnwebgpu.
Follow the instructions [here](https://dawn.googlesource.com/dawn/+/refs/heads/main/src/emdawnwebgpu/) to download or build the emdawnwebgpu package (Note that it might be safer to build the emdawbwebgpu package locally, so that it stays in sync with the version of Dawn you have installed above). When building using CMake, the path to the emdawnwebgpu port file needs to be set with the flag `EMDAWNWEBGPU_DIR`.
## IBM Z & LinuxONE
To read documentation for how to build on IBM Z & LinuxONE, [click here](./build-s390x.md)

95
docs/ops.md Normal file
View File

@@ -0,0 +1,95 @@
# GGML Operations
List of GGML operations and backend support status.
Legend:
- ✅ Fully supported by this backend
- 🟡 Partially supported by this backend
- ❌ Not supported by this backend
| Operation | BLAS | CPU | CUDA | Metal |
|-----------|------|------|------|------|
| ABS | ❌ | ✅ | 🟡 | ❌ |
| ACC | ❌ | ✅ | ✅ | ✅ |
| ADD | ❌ | ✅ | ✅ | 🟡 |
| ADD1 | ❌ | ✅ | ✅ | ❌ |
| ARANGE | ❌ | ✅ | ✅ | ✅ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ |
| CLAMP | ❌ | ✅ | ✅ | 🟡 |
| CONCAT | ❌ | ✅ | 🟡 | ✅ |
| CONT | ❌ | ✅ | 🟡 | ✅ |
| CONV_2D_DW | ❌ | ✅ | ✅ | ❌ |
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ |
| CONV_TRANSPOSE_2D | ❌ | ✅ | ✅ | ❌ |
| COS | ❌ | ✅ | ✅ | 🟡 |
| COUNT_EQUAL | ❌ | ✅ | ✅ | ❌ |
| CPY | ❌ | 🟡 | 🟡 | 🟡 |
| CROSS_ENTROPY_LOSS | ❌ | ✅ | ✅ | ❌ |
| CROSS_ENTROPY_LOSS_BACK | ❌ | ✅ | ✅ | ❌ |
| DIAG_MASK_INF | ❌ | ✅ | ✅ | 🟡 |
| DIV | ❌ | ✅ | ✅ | 🟡 |
| DUP | ❌ | ✅ | 🟡 | 🟡 |
| ELU | ❌ | ✅ | ❌ | 🟡 |
| EXP | ❌ | ✅ | 🟡 | ❌ |
| FLASH_ATTN_EXT | ❌ | ✅ | 🟡 | 🟡 |
| GATED_LINEAR_ATTN | ❌ | ✅ | ✅ | ❌ |
| GEGLU | ❌ | ✅ | ✅ | 🟡 |
| GEGLU_ERF | ❌ | ✅ | ✅ | 🟡 |
| GEGLU_QUICK | ❌ | ✅ | ✅ | 🟡 |
| GELU | ❌ | ✅ | 🟡 | 🟡 |
| GELU_ERF | ❌ | ✅ | 🟡 | 🟡 |
| GELU_QUICK | ❌ | ✅ | 🟡 | 🟡 |
| GET_ROWS | ❌ | ✅ | 🟡 | ✅ |
| GET_ROWS_BACK | ❌ | 🟡 | 🟡 | ❌ |
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ |
| HARDSIGMOID | ❌ | ✅ | 🟡 | ❌ |
| HARDSWISH | ❌ | ✅ | 🟡 | ❌ |
| IM2COL | ❌ | ✅ | ✅ | 🟡 |
| L2_NORM | ❌ | ✅ | ✅ | ✅ |
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ |
| LOG | ❌ | ✅ | ✅ | ❌ |
| MEAN | ❌ | ✅ | ✅ | ✅ |
| MUL | ❌ | ✅ | ✅ | 🟡 |
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 |
| MUL_MAT_ID | ❌ | ✅ | ✅ | ✅ |
| NEG | ❌ | ✅ | 🟡 | 🟡 |
| NORM | ❌ | ✅ | ✅ | 🟡 |
| OPT_STEP_ADAMW | ❌ | ✅ | ✅ | ❌ |
| OUT_PROD | 🟡 | 🟡 | 🟡 | ❌ |
| PAD | ❌ | ✅ | ✅ | ✅ |
| PAD_REFLECT_1D | ❌ | ✅ | ❌ | ✅ |
| POOL_2D | ❌ | ✅ | ✅ | ✅ |
| REGLU | ❌ | ✅ | ✅ | 🟡 |
| RELU | ❌ | ✅ | 🟡 | 🟡 |
| REPEAT | ❌ | ✅ | 🟡 | ✅ |
| REPEAT_BACK | ❌ | ✅ | ✅ | ❌ |
| RMS_NORM | ❌ | ✅ | ✅ | 🟡 |
| RMS_NORM_BACK | ❌ | ✅ | ✅ | ❌ |
| RMS_NORM_MUL | ❌ | ✅ | ✅ | ✅ |
| ROPE | ❌ | ✅ | ✅ | ✅ |
| ROPE_BACK | ❌ | ✅ | ✅ | ❌ |
| RWKV_WKV6 | ❌ | ✅ | ✅ | ✅ |
| RWKV_WKV7 | ❌ | ✅ | ✅ | ✅ |
| SCALE | ❌ | ✅ | ✅ | ✅ |
| SET | ❌ | ✅ | ❌ | ✅ |
| SET_ROWS | ❌ | 🟡 | ❌ | 🟡 |
| SGN | ❌ | ✅ | 🟡 | ❌ |
| SIGMOID | ❌ | ✅ | 🟡 | 🟡 |
| SILU | ❌ | ✅ | 🟡 | 🟡 |
| SILU_BACK | ❌ | ✅ | ✅ | ❌ |
| SIN | ❌ | ✅ | ✅ | 🟡 |
| SOFT_MAX | ❌ | ✅ | ✅ | ✅ |
| SOFT_MAX_BACK | ❌ | 🟡 | 🟡 | ❌ |
| SQR | ❌ | ✅ | ✅ | 🟡 |
| SQRT | ❌ | ✅ | ✅ | 🟡 |
| SSM_CONV | ❌ | ✅ | ✅ | ✅ |
| SSM_SCAN | ❌ | ✅ | ✅ | ✅ |
| STEP | ❌ | ✅ | 🟡 | ❌ |
| SUB | ❌ | ✅ | ✅ | 🟡 |
| SUM | ❌ | ✅ | ✅ | ❌ |
| SUM_ROWS | ❌ | ✅ | ✅ | ✅ |
| SWIGLU | ❌ | ✅ | ✅ | 🟡 |
| TANH | ❌ | ✅ | 🟡 | 🟡 |
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ |
| UPSCALE | ❌ | ✅ | ✅ | 🟡 |

6534
docs/ops/BLAS.csv Normal file

File diff suppressed because it is too large Load Diff

6534
docs/ops/CPU.csv Normal file

File diff suppressed because it is too large Load Diff

6534
docs/ops/CUDA.csv Normal file

File diff suppressed because it is too large Load Diff

6534
docs/ops/Metal.csv Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -33,6 +33,7 @@ else()
add_subdirectory(speculative-simple)
add_subdirectory(gen-docs)
add_subdirectory(training)
add_subdirectory(diffusion)
if (NOT GGML_BACKEND_DL)
add_subdirectory(convert-llama2c-to-ggml)
# these examples use the backends directly and cannot be built with dynamic loading

View File

@@ -0,0 +1,5 @@
set(TARGET llama-diffusion-cli)
add_executable(${TARGET} diffusion-cli.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE llama common ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -0,0 +1,507 @@
#include "arg.h"
#include "chat.h"
#include "common.h"
#include "llama.h"
#include "log.h"
#include <limits.h>
#include <string>
#include <vector>
#include <algorithm>
#include <cmath>
#include <limits>
#include <random>
typedef bool (*diffusion_step_callback_t)(int32_t step,
int32_t total_steps,
const llama_token * tokens,
int32_t n_tokens,
void * user_data);
enum diffusion_alg {
DIFFUSION_ALG_ORIGIN = 0,
DIFFUSION_ALG_MASKGIT_PLUS = 1,
DIFFUSION_ALG_TOPK_MARGIN = 2,
DIFFUSION_ALG_ENTROPY = 3,
};
struct diffusion_params {
int32_t steps;
float eps;
float temperature;
float top_p;
int32_t top_k;
llama_token mask_token_id;
enum diffusion_alg algorithm;
float alg_temp;
diffusion_step_callback_t step_callback;
void * step_callback_user_data;
int32_t seed;
};
static diffusion_params diffusion_default_params() {
diffusion_params params = {};
params.steps = 64;
params.eps = 1e-3f;
params.temperature = 0.2f;
params.top_p = 0.95f;
params.top_k = 0;
params.mask_token_id = LLAMA_TOKEN_NULL;
params.algorithm = DIFFUSION_ALG_ORIGIN;
params.alg_temp = 0.0f;
params.step_callback = nullptr;
params.step_callback_user_data = nullptr;
params.seed = 0;
return params;
}
static void diffusion_generate(llama_context * ctx,
const llama_token * input_tokens,
llama_token * output_tokens,
int32_t n_input,
int32_t max_length,
struct diffusion_params params,
int32_t & n_generated) {
n_generated = 0;
if (!ctx || !input_tokens || !output_tokens || n_input <= 0 || max_length <= n_input) {
return;
}
const llama_model * model = llama_get_model(ctx);
// Initialize with input and pad with mask tokens
std::copy(input_tokens, input_tokens + n_input, output_tokens);
std::fill(output_tokens + n_input, output_tokens + max_length, params.mask_token_id);
std::mt19937 rng(params.seed);
std::vector<float> timesteps(params.steps + 1);
for (int32_t i = 0; i <= params.steps; i++) {
timesteps[i] = 1.0f - (float) i / params.steps * (1.0f - params.eps);
}
llama_set_causal_attn(ctx, false);
int32_t n_vocab = llama_vocab_n_tokens(llama_model_get_vocab(model));
std::vector<llama_token_data> candidates(n_vocab);
std::vector<llama_token_data> conf_candidates;
conf_candidates.reserve(max_length);
std::vector<int32_t> mask_positions;
mask_positions.reserve(max_length);
struct llama_sampler * sampler = llama_sampler_chain_init(llama_sampler_chain_default_params());
if (params.top_k > 0) {
llama_sampler_chain_add(sampler, llama_sampler_init_top_k(params.top_k));
}
if (params.top_p < 1.0f) {
llama_sampler_chain_add(sampler, llama_sampler_init_top_p(params.top_p, 1));
}
if (params.temperature > 0.0f) {
llama_sampler_chain_add(sampler, llama_sampler_init_temp(params.temperature));
}
llama_sampler_chain_add(sampler, llama_sampler_init_dist(params.seed));
struct llama_sampler * dist_sampler = llama_sampler_init_dist(params.seed);
llama_batch batch = llama_batch_init(max_length, 0, 1);
batch.n_tokens = max_length;
int64_t total_sampling_time = 0;
int64_t total_time = 0;
int64_t time_start = ggml_time_us();
for (int32_t step = 0; step < params.steps; step++) {
if (params.step_callback) {
if (!params.step_callback(step, params.steps, output_tokens, max_length, params.step_callback_user_data)) {
break;
}
}
for (int32_t i = 0; i < max_length; i++) {
batch.token[i] = output_tokens[i];
batch.pos[i] = i;
batch.n_seq_id[i] = 1;
batch.seq_id[i][0] = 0;
batch.logits[i] = 1;
}
int ret = llama_decode(ctx, batch);
if (ret != 0) {
LOG_ERR("%s: failed to decode at step %d, ret = %d\n", __func__, step, ret);
break;
}
float * raw_logits = llama_get_logits(ctx);
if (!raw_logits) {
LOG_ERR("%s: failed to get logits at step %d\n", __func__, step);
break;
}
auto get_logits_for_pos = [&](int32_t pos) -> const float * {
return pos == 0 ? raw_logits : raw_logits + (pos - 1) * n_vocab;
};
int64_t time_start_sampling = ggml_time_us();
mask_positions.clear();
for (int32_t i = 0; i < max_length; i++) {
if (output_tokens[i] == params.mask_token_id) {
mask_positions.push_back(i);
}
}
if (mask_positions.empty()) {
break;
}
float t = timesteps[step];
float s = timesteps[step + 1];
if (params.algorithm == DIFFUSION_ALG_ORIGIN) {
float p_transfer = (step < params.steps - 1) ? (1.0f - s / t) : 1.0f;
for (int32_t pos : mask_positions) {
if (std::uniform_real_distribution<float>(0.0f, 1.0f)(rng) < p_transfer) {
const float * pos_logits = get_logits_for_pos(pos);
for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
candidates[token_id].id = token_id;
candidates[token_id].logit = pos_logits[token_id];
candidates[token_id].p = 0.0f;
}
llama_token_data_array cur_p = {
/* .data = */ candidates.data(),
/* .size = */ (size_t) n_vocab, // Reset size to full vocab
/* .selected = */ -1,
/* .sorted = */ false,
};
llama_sampler_apply(sampler, &cur_p);
output_tokens[pos] = cur_p.data[cur_p.selected].id;
}
}
} else {
std::vector<std::pair<float, int32_t>> confidences;
std::vector<llama_token> sampled_tokens(mask_positions.size());
for (size_t i = 0; i < mask_positions.size(); i++) {
int32_t pos = mask_positions[i];
const float * pos_logits = get_logits_for_pos(pos);
for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
candidates[token_id].logit = pos_logits[token_id];
candidates[token_id].p = 0.0f;
candidates[token_id].id = token_id;
}
llama_token_data_array cur_p = {
/* .data = */ candidates.data(),
/* .size = */ candidates.size(),
/* .selected = */ -1,
/* .sorted = */ false,
};
llama_sampler_apply(sampler, &cur_p);
llama_token sampled_token = cur_p.data[cur_p.selected].id;
float confidence = 0.0f;
if (params.algorithm == DIFFUSION_ALG_ENTROPY) {
const float epsilon = 1e-10f;
for (size_t j = 0; j < cur_p.size; j++) {
float prob = cur_p.data[j].p;
confidence += prob * logf(prob + epsilon);
}
} else if (params.algorithm == DIFFUSION_ALG_TOPK_MARGIN) {
confidence = cur_p.data[0].p - cur_p.data[1].p;
} else {
confidence = cur_p.data[cur_p.selected].p;
}
sampled_tokens[i] = sampled_token;
confidences.emplace_back(confidence, i);
}
int32_t num_transfer =
(step < params.steps - 1) ? (int32_t) (mask_positions.size() * (1.0f - s / t)) : mask_positions.size();
if (num_transfer > 0) {
if (params.alg_temp == 0.0f) {
std::partial_sort(confidences.begin(), confidences.begin() + num_transfer, confidences.end(),
[](const std::pair<float, int32_t> & a, const std::pair<float, int32_t> & b) {
if (a.first != b.first) {
return a.first > b.first;
}
return a.second < b.second;
});
} else {
conf_candidates.clear();
for (int32_t pos = 0; pos < max_length; pos++) {
float conf_logit = -std::numeric_limits<float>::infinity();
auto it = std::find(mask_positions.begin(), mask_positions.end(), pos);
if (it != mask_positions.end()) {
size_t mask_idx = std::distance(mask_positions.begin(), it);
conf_logit = confidences[mask_idx].first / params.alg_temp; // Apply temperature scaling
}
conf_candidates.emplace_back(llama_token_data{ pos, conf_logit, 0.0f });
}
llama_token_data_array conf_array = {
/* .data = */ conf_candidates.data(),
/* .size = */ conf_candidates.size(),
/* .selected = */ -1,
/* .sorted = */ false,
};
for (int32_t i = 0; i < num_transfer; i++) {
// Apply distribution sampler to get selected index
llama_sampler_apply(dist_sampler, &conf_array);
int selected_idx = conf_array.selected;
confidences[i].second = conf_candidates[selected_idx].id;
conf_candidates[selected_idx].p = 0.0f;
conf_array.selected = -1;
}
}
if (params.alg_temp == 0.0f) {
// Deterministic - use confidence order
for (int32_t i = 0; i < num_transfer; i++) {
int32_t mask_idx = confidences[i].second;
int32_t pos = mask_positions[mask_idx];
llama_token token = sampled_tokens[mask_idx];
output_tokens[pos] = token;
}
} else {
for (int32_t i = 0; i < num_transfer; i++) {
int32_t pos = confidences[i].second;
auto it = std::find(mask_positions.begin(), mask_positions.end(), pos);
if (it != mask_positions.end()) {
int32_t mask_idx = std::distance(mask_positions.begin(), it);
output_tokens[pos] = sampled_tokens[mask_idx];
}
}
}
}
}
int64_t time_end_sampling = ggml_time_us();
total_sampling_time += time_end_sampling - time_start_sampling;
}
int64_t time_end = ggml_time_us();
total_time += time_end - time_start;
LOG_INF("\ntotal time: %0.2fms, time per step: %0.2fms, sampling time per step: %0.2fms\n",
total_time / 1000.0, total_time / 1000.0 / params.steps, total_sampling_time / 1000.0 / params.steps);
llama_batch_free(batch);
llama_sampler_free(sampler);
llama_sampler_free(dist_sampler);
n_generated = max_length;
}
static std::string format_input_text(const std::string & prompt, bool use_chat_template, llama_model * model) {
if (!use_chat_template) {
return prompt;
}
auto chat_templates = common_chat_templates_init(model, "");
common_chat_templates_inputs inputs;
common_chat_msg user_msg;
user_msg.role = "user";
user_msg.content = prompt;
inputs.add_generation_prompt = true;
inputs.messages.push_back(user_msg);
auto result = common_chat_templates_apply(chat_templates.get(), inputs);
return result.prompt;
}
struct callback_data {
const common_params_diffusion * diff_params;
const llama_vocab * vocab;
int32_t n_input;
};
static bool diffusion_step_callback(int32_t step,
int32_t total_steps,
const llama_token * tokens,
int32_t n_tokens,
void * user_data) {
(void)user_data;
callback_data * data = static_cast<callback_data *>(user_data);
auto print_progress_bar = [](int32_t step, int32_t total_steps) {
int progress_percent = (step * 100) / total_steps;
int progress_bars = (step * 50) / total_steps;
LOG_INF("\rdiffusion step: %d/%d [%s%s] %d%%",
step,
total_steps,
std::string(progress_bars, '=').c_str(),
std::string(50 - progress_bars, ' ').c_str(),
progress_percent);
};
if (data->diff_params->visual_mode) {
// Visual mode: clear
LOG_INF("\033[2J\033[H"); // Clear screen and move cursor to top-left
print_progress_bar(step, total_steps);
LOG_INF("\n");
std::string current_text = " ";
for (int32_t i = data->n_input; i < n_tokens; i++) {
std::string token_str;
if (tokens[i] != llama_vocab_mask(data->vocab)) {
char piece[256];
int n_chars = llama_token_to_piece(data->vocab, tokens[i], piece, sizeof(piece), 0, false);
if (n_chars > 0) {
piece[n_chars] = '\0';
token_str = piece;
}
} else {
token_str = " ";
}
current_text += token_str;
}
LOG_INF("%s\n", current_text.c_str());
} else {
print_progress_bar(step, total_steps);
}
return true;
}
int main(int argc, char ** argv) {
ggml_time_init();
common_params params;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_DIFFUSION)) {
return 1;
}
const char * alg_names[] = { "ORIGIN", "MASKGIT_PLUS", "TOPK_MARGIN", "ENTROPY" };
const char * alg_name = (params.diffusion.algorithm >= 0 && params.diffusion.algorithm <= 3) ?
alg_names[params.diffusion.algorithm] :
"UNKNOWN";
common_init();
llama_backend_init();
llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = params.n_gpu_layers;
model_params.devices = params.devices.data();
model_params.use_mmap = params.use_mmap;
model_params.use_mlock = params.use_mlock;
model_params.check_tensors = params.check_tensors;
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
if (!model) {
LOG_ERR("error: failed to load model '%s'\n", params.model.path.c_str());
return 1;
}
llama_context_params ctx_params = llama_context_default_params();
ctx_params.n_ctx = params.n_ctx;
ctx_params.n_batch = params.n_batch;
ctx_params.n_ubatch = params.n_ubatch;
ctx_params.flash_attn = params.flash_attn;
ctx_params.no_perf = params.no_perf;
ctx_params.type_k = params.cache_type_k;
ctx_params.type_v = params.cache_type_v;
llama_context * ctx = llama_init_from_model(model, ctx_params);
if (!ctx) {
LOG_ERR("error: failed to create context\n");
llama_model_free(model);
return 1;
}
llama_set_n_threads(ctx, params.cpuparams.n_threads, params.cpuparams_batch.n_threads);
const llama_vocab * vocab = llama_model_get_vocab(model);
std::string formatted_prompt = format_input_text(params.prompt, params.enable_chat_template, model);
std::vector<llama_token> input_tokens = common_tokenize(vocab, formatted_prompt,
/*add special tokens*/ true,
/*parse special*/ true);
int n_input = input_tokens.size();
if (n_input >= params.n_ctx) {
LOG_ERR("error: input too long (%d tokens), max context is %d\n", n_input, params.n_ctx);
llama_free(ctx);
llama_model_free(model);
return 1;
}
struct diffusion_params ldiff_params = diffusion_default_params();
ldiff_params.steps = params.diffusion.steps;
ldiff_params.eps = params.diffusion.eps;
ldiff_params.temperature = params.sampling.temp;
ldiff_params.top_p = params.sampling.top_p;
ldiff_params.top_k = params.sampling.top_k;
ldiff_params.algorithm = static_cast<enum diffusion_alg>(params.diffusion.algorithm);
ldiff_params.alg_temp = params.diffusion.alg_temp;
ldiff_params.seed = params.sampling.seed;
llama_token mask_token_id = llama_vocab_mask(vocab);
GGML_ASSERT(mask_token_id != LLAMA_TOKEN_NULL);
LOG_INF("diffusion_params: - %-25s llama_token = %d\n", "mask_token_id", mask_token_id);
LOG_INF("diffusion_params: - %-25s u32 = %d\n", "steps", params.diffusion.steps);
LOG_INF("diffusion_params: - %-25s f32 = %.6f\n", "eps", params.diffusion.eps);
LOG_INF("diffusion_params: - %-25s u32 = %d (%s)\n", "algorithm", params.diffusion.algorithm,
alg_name);
LOG_INF("diffusion_params: - %-25s f32 = %.3f\n", "alg_temp", params.diffusion.alg_temp);
ldiff_params.mask_token_id = mask_token_id;
callback_data cb_data = { &params.diffusion, vocab, n_input };
ldiff_params.step_callback = diffusion_step_callback;
ldiff_params.step_callback_user_data = &cb_data;
int32_t n_generated = 0;
std::vector<llama_token> output_tokens(params.n_ubatch);
diffusion_generate(ctx, input_tokens.data(), output_tokens.data(), n_input, params.n_ubatch,
ldiff_params, n_generated);
if (n_generated > 0) {
if (params.diffusion.visual_mode) {
//clear screen and move cursor to top-left
LOG_INF("\033[2J\033[H");
}
output_tokens.erase(output_tokens.begin(), output_tokens.begin() + n_input);
std::string output_data = common_detokenize(vocab, output_tokens, false);
LOG_INF("\n%s\n", output_data.c_str());
} else {
LOG_INF("Error: diffusion generation failed\n");
}
llama_free(ctx);
llama_model_free(model);
llama_backend_free();
return 0;
}

View File

@@ -107,7 +107,7 @@ int main(int argc, char ** argv) {
const llama_vocab * vocab = llama_model_get_vocab(model);
const int n_ctx_train = llama_model_n_ctx_train(model);
const int n_ctx = llama_n_ctx(ctx);
const int n_ctx = llama_n_ctx(ctx);
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);

View File

@@ -224,6 +224,7 @@ int main(int argc, char ** argv) {
auto & client = clients[i];
client.id = i;
client.smpl = common_sampler_init(model, params.sampling);
//params.sampling.seed++;
}
std::vector<llama_token> tokens_system;
@@ -345,7 +346,7 @@ int main(int argc, char ** argv) {
client.n_decoded = 0;
client.i_batch = batch.n_tokens - 1;
LOG_INF("\033[31mClient %3d, seq %4d, junk = %4d, started decoding ...\033[0m\n", client.id, client.seq_id, n_junk_cur);
LOG_INF("\033[31mClient %3d, seq %4d, junk = %4d, prompt = %d, started decoding ...\033[0m\n", client.id, client.seq_id, n_junk_cur, client.n_prompt);
g_seq_id += 1;

View File

@@ -181,6 +181,8 @@ option(GGML_VULKAN_MEMORY_DEBUG "ggml: enable Vulkan memory debug ou
option(GGML_VULKAN_SHADER_DEBUG_INFO "ggml: enable Vulkan shader debug info" OFF)
option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation" OFF)
option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF)
option(GGML_WEBGPU "ggml: use WebGPU" OFF)
option(GGML_WEBGPU_DEBUG "ggml: enable WebGPU debug output" OFF)
option(GGML_METAL "ggml: use Metal" ${GGML_METAL_DEFAULT})
option(GGML_METAL_USE_BF16 "ggml: use bfloat if available" OFF)
option(GGML_METAL_NDEBUG "ggml: disable Metal debugging" OFF)
@@ -270,6 +272,7 @@ set(GGML_PUBLIC_HEADERS
include/ggml-rpc.h
include/ggml-sycl.h
include/ggml-vulkan.h
include/ggml-webgpu.h
include/gguf.h)
set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")

View File

@@ -0,0 +1,19 @@
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
#define GGML_WEBGPU_NAME "WebGPU"
// Needed for examples in ggml
GGML_BACKEND_API ggml_backend_t ggml_backend_webgpu_init(void);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_webgpu_reg(void);
#ifdef __cplusplus
}
#endif

View File

@@ -1297,6 +1297,19 @@ extern "C" {
struct ggml_tensor * a,
float s);
// x = s * a + b
GGML_API struct ggml_tensor * ggml_scale_bias(
struct ggml_context * ctx,
struct ggml_tensor * a,
float s,
float b);
GGML_API struct ggml_tensor * ggml_scale_bias_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
float s,
float b);
// b -> view(a,offset,nb1,nb2,3), return modified a
GGML_API struct ggml_tensor * ggml_set(
struct ggml_context * ctx,

View File

@@ -370,6 +370,7 @@ ggml_add_backend(MUSA)
ggml_add_backend(RPC)
ggml_add_backend(SYCL)
ggml_add_backend(Vulkan)
ggml_add_backend(WebGPU)
ggml_add_backend(OpenCL)
foreach (target ggml-base ggml)

View File

@@ -45,6 +45,10 @@
#include "ggml-vulkan.h"
#endif
#ifdef GGML_USE_WEBGPU
#include "ggml-webgpu.h"
#endif
#ifdef GGML_USE_OPENCL
#include "ggml-opencl.h"
#endif
@@ -173,6 +177,9 @@ struct ggml_backend_registry {
#ifdef GGML_USE_VULKAN
register_backend(ggml_backend_vk_reg());
#endif
#ifdef GGML_USE_WEBGPU
register_backend(ggml_backend_webgpu_reg());
#endif
#ifdef GGML_USE_OPENCL
register_backend(ggml_backend_opencl_reg());
#endif

View File

@@ -2090,6 +2090,7 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
{
// TODO: add support
// ref: https://github.com/ggml-org/llama.cpp/pull/14274
#pragma message("TODO: implement F32, F16, BF16, Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, IQ4_NL support (https://github.com/ggml-org/llama.cpp/pull/14661)")
return false;
} break;
case GGML_OP_CPY: {
@@ -2188,7 +2189,6 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_RMS_NORM:
case GGML_OP_SCALE:
case GGML_OP_SQR:
case GGML_OP_SQRT:
case GGML_OP_CLAMP:
@@ -2210,6 +2210,10 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
case GGML_OP_PAD_REFLECT_1D:
case GGML_OP_COUNT_EQUAL:
return true;
case GGML_OP_SCALE:
float bias;
memcpy(&bias, (float*)op->op_params + 1, sizeof(float));
return bias == 0.0f; // TODO: support bias != 0.0f
case GGML_OP_SOFT_MAX:
// TODO: support broadcast
// ref: https://github.com/ggml-org/llama.cpp/pull/14435

File diff suppressed because it is too large Load Diff

View File

@@ -4015,6 +4015,9 @@ static void ggml_compute_forward_rms_norm_f32(
const float scale = 1.0f/sqrtf(mean + eps);
// if you hit this, likely you got an inf somewhere earlier
assert(scale > 0.0f);
ggml_vec_scale_f32(ne00, y, scale);
}
}
@@ -4643,9 +4646,11 @@ static void ggml_compute_forward_scale_f32(
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
// scale factor
float v;
memcpy(&v, dst->op_params, sizeof(float));
float s; // scale factor
float b; // bias
memcpy(&s, (float *) dst->op_params + 0, sizeof(float));
memcpy(&b, (float *) dst->op_params + 1, sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
@@ -4664,12 +4669,22 @@ static void ggml_compute_forward_scale_f32(
const size_t nb1 = dst->nb[1];
for (int i1 = ir0; i1 < ir1; i1++) {
if (dst->data != src0->data) {
// src0 is same shape as dst => same indices
memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
if (b == 0.0f) {
for (int i1 = ir0; i1 < ir1; i1++) {
if (dst->data != src0->data) {
// src0 is same shape as dst => same indices
// TODO: add x parameter to ggml_vec_scale_f32 and remove this memcpy
memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
}
ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), s);
}
} else {
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_vec_mad1_f32(nc,
(float *) ((char *) dst->data + i1*nb1),
(float *) ((char *) src0->data + i1*nb1),
s, b);
}
ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
}
}

View File

@@ -221,6 +221,9 @@ void ggml_vec_dot_f16(int n, float * GGML_RESTRICT s, size_t bs, ggml_fp16_t * G
for (int i = np; i < n; ++i) {
sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i]));
}
// if you hit this, you are likely running outside the FP range
assert(!isnan(sumf) && !isinf(sumf));
#else
for (int i = 0; i < n; ++i) {
sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i]));

View File

@@ -351,6 +351,45 @@ inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int
#endif
}
inline static void ggml_vec_mad1_f32(const int n, float * y, const float * x, const float s, const float b) {
#if defined(GGML_USE_ACCELERATE)
vDSP_vsmsa(x, 1, &s, &b, y, 1, n);
#elif defined(GGML_SIMD)
#if defined(__ARM_FEATURE_SVE)
// scalar ; TODO: Write SVE code
for (int i = 0; i < n; ++i) {
y[i] = x[i]*s + b;
}
#else
const int np = (n & ~(GGML_F32_STEP - 1));
GGML_F32_VEC vs = GGML_F32_VEC_SET1(s);
GGML_F32_VEC vb = GGML_F32_VEC_SET1(b);
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ay[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_FMA(ay[j], vs, vb);
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] = x[i]*s + b;
}
#endif
#else
// scalar
for (int i = 0; i < n; ++i) {
y[i] = x[i]*s + b;
}
#endif
}
//inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
#if defined(GGML_USE_ACCELERATE)

View File

@@ -33,8 +33,10 @@ typedef void (* fattn_kernel_t)(
const int ne13,
const int ne31,
const int ne32,
const int ne33,
const int nb31,
const int nb32,
const int nb33,
const int nb01,
const int nb02,
const int nb03,
@@ -521,7 +523,7 @@ constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) {
template<int D, int ncols1, int ncols2> // D == head size
__launch_bounds__(D, 1)
static __global__ void flash_attn_stream_k_fixup(
float * __restrict__ dst, const float2 * __restrict__ dst_fixup, const int ne01, const int ne02, const int ne11) {
float * __restrict__ dst, const float2 * __restrict__ dst_fixup, const int ne01, const int ne02, const int ne03, const int ne11) {
constexpr int ncols = ncols1*ncols2;
const int bidx0 = blockIdx.x;
@@ -535,8 +537,8 @@ static __global__ void flash_attn_stream_k_fixup(
const int iter_k = ne11 / FATTN_KQ_STRIDE;
const int iter_j = (ne01 + (ncols1 - 1)) / ncols1;
const int kbc0 = (bidx0 + 0)*iter_k*iter_j*(ne02/ncols2) / gridDim.x;
const int kbc0_stop = (bidx0 + 1)*iter_k*iter_j*(ne02/ncols2) / gridDim.x;
const int kbc0 = (bidx0 + 0)*(iter_k*iter_j*(ne02/ncols2)*ne03) / gridDim.x;
const int kbc0_stop = (bidx0 + 1)*(iter_k*iter_j*(ne02/ncols2)*ne03) / gridDim.x;
const bool did_not_have_any_data = kbc0 == kbc0_stop;
const bool wrote_beginning_of_tile = kbc0 % iter_k == 0;
@@ -545,14 +547,15 @@ static __global__ void flash_attn_stream_k_fixup(
return;
}
const int channel = kbc0 / (iter_k*iter_j);
const int jt = (kbc0 - channel*iter_k*iter_j) / iter_k;
const int sequence = kbc0 / (iter_k*iter_j*(ne02/ncols2));
const int head = (kbc0 - iter_k*iter_j*(ne02/ncols2)*sequence) / (iter_k*iter_j);
const int jt = (kbc0 - iter_k*iter_j*(ne02/ncols2)*sequence - iter_k*iter_j*head) / iter_k; // j index of current tile.
if (jt*ncols1 + j >= ne01) {
return;
}
dst += jt*ne02*(ncols1*D) + channel*(ncols2*D) + (j*ne02 + c)*D + tid;
dst += sequence*ne02*ne01*D + jt*ne02*(ncols1*D) + head*(ncols2*D) + (j*ne02 + c)*D + tid;
// Load the partial result that needs a fixup:
float dst_val = 0.0f;
@@ -571,7 +574,7 @@ static __global__ void flash_attn_stream_k_fixup(
int bidx = bidx0 - 1;
int kbc_stop = kbc0;
while(true) {
const int kbc = bidx*iter_k*iter_j*(ne02/ncols2) / gridDim.x;
const int kbc = bidx*(iter_k*iter_j*(ne02/ncols2)*ne03) / gridDim.x;
if (kbc == kbc_stop) { // Did not have any data.
bidx--;
kbc_stop = kbc;
@@ -617,16 +620,31 @@ static __global__ void flash_attn_combine_results(
const float2 * __restrict__ VKQ_meta,
float * __restrict__ dst,
const int parallel_blocks) {
VKQ_parts += parallel_blocks*D * gridDim.z*blockIdx.x;
VKQ_meta += parallel_blocks * gridDim.z*blockIdx.x;
dst += D * gridDim.z*blockIdx.x;
// Dimension 0: threadIdx.x
// Dimension 1: blockIdx.x
// Dimension 2: blockIdx.y
// Dimension 3: blockIdx.z
// Memory layout is permuted with [0, 2, 1, 3]
const int ne01 = gridDim.x;
const int ne02 = gridDim.y;
const int col = blockIdx.x;
const int head = blockIdx.y;
const int sequence = blockIdx.z;
const int j_dst_unrolled = (sequence*ne01 + col)*ne02 + head;
VKQ_parts += j_dst_unrolled * parallel_blocks*D;
VKQ_meta += j_dst_unrolled * parallel_blocks;
dst += j_dst_unrolled * D;
const int tid = threadIdx.x;
__builtin_assume(tid < D);
extern __shared__ float2 meta[];
for (int i = tid; i < 2*parallel_blocks; i += D) {
((float *) meta)[i] = ((const float *)VKQ_meta) [blockIdx.z*(2*parallel_blocks) + i];
((float *) meta)[i] = ((const float *)VKQ_meta) [i];
}
__syncthreads();
@@ -644,11 +662,11 @@ static __global__ void flash_attn_combine_results(
const uint32_t ftz_mask = 0xFFFFFFFF * (diff > SOFTMAX_FTZ_THRESHOLD);
*((uint32_t *) &KQ_max_scale) &= ftz_mask;
VKQ_numerator += KQ_max_scale * VKQ_parts[l*gridDim.z*D + blockIdx.z*D + tid];
VKQ_numerator += KQ_max_scale * VKQ_parts[l*D + tid];
VKQ_denominator += KQ_max_scale * meta[l].y;
}
dst[blockIdx.z*D + tid] = VKQ_numerator / VKQ_denominator;
dst[tid] = VKQ_numerator / VKQ_denominator;
}
[[noreturn]]
@@ -705,8 +723,6 @@ void launch_fattn(
GGML_ASSERT(K->ne[1] % FATTN_KQ_STRIDE == 0 && "Incorrect KV cache padding.");
GGML_ASSERT(Q->ne[3] == 1);
ggml_cuda_pool & pool = ctx.pool();
cudaStream_t main_stream = ctx.stream();
const int id = ggml_cuda_get_device();
@@ -853,8 +869,8 @@ void launch_fattn(
scale, max_bias, m0, m1, n_head_log2, logit_softcap,
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
mask ? mask->ne[1] : 0, mask ? mask->ne[2] : 0,
mask ? mask->nb[1] : 0, mask ? mask->nb[2] : 0,
mask ? mask->ne[1] : 0, mask ? mask->ne[2] : 0, mask ? mask->ne[3] : 0,
mask ? mask->nb[1] : 0, mask ? mask->nb[2] : 0, mask ? mask->nb[3] : 0,
Q->nb[1], Q->nb[2], Q->nb[3],
nb11, nb12, nb13,
nb21, nb22, nb23,
@@ -869,11 +885,11 @@ void launch_fattn(
flash_attn_stream_k_fixup<DV, ncols1, ncols2>
<<<blocks_num_combine, block_dim_combine, 0, main_stream>>>
((float *) KQV->data, dst_tmp_meta.ptr, Q->ne[1], Q->ne[2], K->ne[1]);
((float *) KQV->data, dst_tmp_meta.ptr, Q->ne[1], Q->ne[2], Q->ne[3], K->ne[1]);
}
} else if (parallel_blocks > 1) {
const dim3 block_dim_combine(DV, 1, 1);
const dim3 blocks_num_combine(Q->ne[1], 1, blocks_num.z);
const dim3 blocks_num_combine(Q->ne[1], Q->ne[2], Q->ne[3]);
const size_t nbytes_shared_combine = parallel_blocks*sizeof(float2);
flash_attn_combine_results<DV>

View File

@@ -1224,8 +1224,10 @@ static __global__ void flash_attn_ext_f16(
const int ne13,
const int ne31,
const int ne32,
const int ne33,
const int nb31,
const int nb32,
const int nb33,
const int nb01,
const int nb02,
const int nb03,
@@ -1274,8 +1276,8 @@ static __global__ void flash_attn_ext_f16(
constexpr int kb_niter = FATTN_KQ_STRIDE / c::nbatch_fa; // Number of kernel iterations per assigned KQ slice.
// kbc == k block continuous, current index in continuous ijk space.
int kbc = (blockIdx.x + 0)*iter_k*iter_j*(ne02/ncols2) / gridDim.x;
const int kbc_stop = (blockIdx.x + 1)*iter_k*iter_j*(ne02/ncols2) / gridDim.x;
int kbc = (blockIdx.x + 0)*(iter_k*iter_j*(ne02/ncols2)*ne03) / gridDim.x;
const int kbc_stop = (blockIdx.x + 1)*(iter_k*iter_j*(ne02/ncols2)*ne03) / gridDim.x;
// If the seams of 2 CUDA blocks fall within an output tile their results need to be combined.
// For this we need to track both the block that starts the tile (needs_fixup) and the block that finishes the tile (is_fixup).
@@ -1285,18 +1287,19 @@ static __global__ void flash_attn_ext_f16(
int kb0_start = kbc % iter_k;
int kb0_stop = min(iter_k, kb0_start + kbc_stop - kbc);
while (kbc < kbc_stop && kb0_stop == iter_k) {
const int channel = kbc / (iter_k*iter_j);
const int jt = (kbc - channel*iter_k*iter_j) / iter_k; // j index of current tile.
const int sequence = kbc / (iter_k*iter_j*(ne02/ncols2));
const int head = (kbc - iter_k*iter_j*(ne02/ncols2)*sequence) / (iter_k*iter_j);
const int jt = (kbc - iter_k*iter_j*(ne02/ncols2)*sequence - iter_k*iter_j*head) / iter_k; // j index of current tile.
const float2 * Q_f2 = (const float2 *) (Q + nb02* channel*ncols2);
const half2 * K_h2 = (const half2 *) (K + nb12*(channel*ncols2 / gqa_ratio));
const float2 * Q_f2 = (const float2 *) (Q + nb03*sequence + nb02*(head*ncols2));
const half2 * K_h2 = (const half2 *) (K + nb13*sequence + nb12*(head*ncols2 / gqa_ratio));
const half2 * mask_h2 = ncols2 == 1 && !mask ? nullptr :
(const half2 *) (mask + nb32*(channel % ne32) + nb31*jt*ncols1);
float2 * dstk = ((float2 *) dst) + channel*(ncols2 * DV/2);
(const half2 *) (mask + nb33*(sequence % ne33) + nb31*jt*ncols1);
float2 * dstk = ((float2 *) dst) + (sequence*ne01*ne02 + head*ncols2) * (DV/2);
const half2 * V_h2 = mla ? K_h2 + (DKQ/2 - DV/2) : (const half2 *) (V + nb22*(channel*ncols2 / gqa_ratio));
const half2 * V_h2 = mla ? K_h2 + (DKQ/2 - DV/2) : (const half2 *) (V + nb23*sequence + nb22*(head*ncols2 / gqa_ratio));
const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, channel, n_head_log2, m0, m1) : 1.0f;
const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, head, n_head_log2, m0, m1) : 1.0f;
const int kb0_start_kernel = kb0_start * kb_niter;
const int kb0_stop_kernel = kb0_stop * kb_niter;
@@ -1325,18 +1328,19 @@ static __global__ void flash_attn_ext_f16(
return;
}
const int channel = kbc / (iter_k*iter_j);
const int jt = (kbc - channel*iter_k*iter_j) / iter_k; // j index of current tile.
const int sequence = kbc / (iter_k*iter_j*(ne02/ncols2));
const int head = (kbc - iter_k*iter_j*(ne02/ncols2)*sequence) / (iter_k*iter_j);
const int jt = (kbc - iter_k*iter_j*(ne02/ncols2)*sequence - iter_k*iter_j*head) / iter_k; // j index of current tile.
const float2 * Q_f2 = (const float2 *) (Q + nb02* channel*ncols2);
const half2 * K_h2 = (const half2 *) (K + nb12*(channel*ncols2 / gqa_ratio));
const float2 * Q_f2 = (const float2 *) (Q + nb03*sequence + nb02*(head*ncols2));
const half2 * K_h2 = (const half2 *) (K + nb13*sequence + nb12*(head*ncols2 / gqa_ratio));
const half2 * mask_h2 = ncols2 == 1 && !mask ? nullptr :
(const half2 *) (mask + nb32*(channel % ne32) + nb31*jt*ncols1);
float2 * dstk = ((float2 *) dst) + channel*(ncols2 * DV/2);
(const half2 *) (mask + nb33*(sequence % ne33) + nb31*jt*ncols1);
float2 * dstk = ((float2 *) dst) + (sequence*ne01*ne02 + head*ncols2) * (DV/2);
const half2 * V_h2 = mla ? K_h2 + (DKQ/2 - DV/2) : (const half2 *) (V + nb22*(channel*ncols2 / gqa_ratio));
const half2 * V_h2 = mla ? K_h2 + (DKQ/2 - DV/2) : (const half2 *) (V + nb23*sequence + nb22*(head*ncols2 / gqa_ratio));
const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, channel, n_head_log2, m0, m1) : 1.0f;
const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, head, n_head_log2, m0, m1) : 1.0f;
const int kb0_start_kernel = kb0_start * kb_niter;
const int kb0_stop_kernel = kb0_stop * kb_niter;

View File

@@ -31,8 +31,10 @@ static __global__ void flash_attn_tile_ext_f16(
const int ne13,
const int ne31,
const int ne32,
const int ne33,
const int nb31,
const int nb32,
const int nb33,
const int nb01,
const int nb02,
const int nb03,
@@ -62,15 +64,17 @@ static __global__ void flash_attn_tile_ext_f16(
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
const int sequence = blockIdx.z / ne02;
const int head = blockIdx.z - sequence*ne02;
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.z + nb01*ic0);
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.z / gqa_ratio));
const half2 * V_h2 = (const half2 *) (V + nb12*(blockIdx.z / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) (mask + nb32*(blockIdx.z % ne32) + nb31*ic0);
const float2 * Q_f2 = (const float2 *) (Q + nb03* sequence + nb02* head + nb01*ic0);
const half2 * K_h2 = (const half2 *) (K + nb13* sequence + nb12*(head / gqa_ratio));
const half2 * V_h2 = (const half2 *) (V + nb13* sequence + nb12*(head / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
const int stride_KV2 = nb11 / sizeof(half2);
const float slopef = get_alibi_slope(max_bias, blockIdx.z, n_head_log2, m0, m1);
const float slopef = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
const half slopeh = __float2half(slopef);
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
@@ -255,6 +259,8 @@ static __global__ void flash_attn_tile_ext_f16(
__syncthreads();
}
float2 * dst2 = (float2 *) dst;
#pragma unroll
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
const int j_VKQ = j_VKQ_0 + threadIdx.y;
@@ -266,21 +272,21 @@ static __global__ void flash_attn_tile_ext_f16(
half kqsum_j = __low2half(kqsum[j_VKQ_0/nwarps]) + __high2half(kqsum[j_VKQ_0/nwarps]);
kqsum_j = warp_reduce_sum((float)kqsum_j);
#pragma unroll
for (int i00 = 0; i00 < D; i00 += 2*WARP_SIZE) {
const int i0 = i00 + 2*threadIdx.x;
const int j_dst_unrolled = ((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y;
half2 dst_val = VKQ[j_VKQ_0/nwarps][i0/(2*WARP_SIZE)];
#pragma unroll
for (int i00 = 0; i00 < D/2; i00 += WARP_SIZE) {
const int i0 = i00 + threadIdx.x;
half2 dst_val = VKQ[j_VKQ_0/nwarps][i0/WARP_SIZE];
if (gridDim.y == 1) {
dst_val /= __half2half2(kqsum_j);
}
const int j_dst = (ic0 + j_VKQ)*gridDim.y + blockIdx.y;
dst[j_dst*D*gridDim.z + D*blockIdx.z + i0 + 0] = __low2float(dst_val);
dst[j_dst*D*gridDim.z + D*blockIdx.z + i0 + 1] = __high2float(dst_val);
dst2[j_dst_unrolled*(D/2) + i0] = __half22float2(dst_val);
}
if (gridDim.y != 1 && threadIdx.x == 0) {
dst_meta[((ic0 + j_VKQ)*gridDim.z + blockIdx.z) * gridDim.y + blockIdx.y] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
dst_meta[j_dst_unrolled] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
}
}
#else
@@ -290,8 +296,8 @@ static __global__ void flash_attn_tile_ext_f16(
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02);
GGML_UNUSED(ne03); GGML_UNUSED(ne10); GGML_UNUSED(ne11);
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31); GGML_UNUSED(ne32);
GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31); GGML_UNUSED(ne32); GGML_UNUSED(ne33);
GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb33); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12);
GGML_UNUSED(nb13); GGML_UNUSED(nb21); GGML_UNUSED(nb22);
GGML_UNUSED(nb23); GGML_UNUSED(ne0); GGML_UNUSED(ne1);

View File

@@ -31,8 +31,10 @@ static __global__ void flash_attn_tile_ext_f32(
const int ne13,
const int ne31,
const int ne32,
const int ne33,
const int nb31,
const int nb32,
const int nb33,
const int nb01,
const int nb02,
const int nb03,
@@ -74,15 +76,17 @@ static __global__ void flash_attn_tile_ext_f32(
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
const int sequence = blockIdx.z / ne02;
const int head = blockIdx.z - sequence*ne02;
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.z + nb01*ic0);
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.z / gqa_ratio));
const half2 * V_h2 = (const half2 *) (V + nb12*(blockIdx.z / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) (mask + nb32*(blockIdx.z % ne32) + nb31*ic0);
const float2 * Q_f2 = (const float2 *) (Q + nb03* sequence + nb02* head + nb01*ic0);
const half2 * K_h2 = (const half2 *) (K + nb13* sequence + nb12*(head / gqa_ratio));
const half2 * V_h2 = (const half2 *) (V + nb13* sequence + nb12*(head / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
const int stride_KV2 = nb11 / sizeof(half2);
const float slope = get_alibi_slope(max_bias, blockIdx.z, n_head_log2, m0, m1);
const float slope = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
@@ -265,6 +269,8 @@ static __global__ void flash_attn_tile_ext_f32(
__syncthreads();
}
float2 * dst2 = (float2 *) dst;
#pragma unroll
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
const int j_VKQ = j_VKQ_0 + threadIdx.y;
@@ -276,22 +282,22 @@ static __global__ void flash_attn_tile_ext_f32(
float kqsum_j = kqsum[j_VKQ_0/nwarps];
kqsum_j = warp_reduce_sum(kqsum_j);
#pragma unroll
for (int i00 = 0; i00 < D; i00 += 2*WARP_SIZE) {
const int i0 = i00 + 2*threadIdx.x;
const int j_dst_unrolled = ((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y;
float2 dst_val = VKQ[j_VKQ_0/nwarps][i0/(2*WARP_SIZE)];
#pragma unroll
for (int i00 = 0; i00 < D/2; i00 += WARP_SIZE) {
const int i0 = i00 + threadIdx.x;
float2 dst_val = VKQ[j_VKQ_0/nwarps][i0/WARP_SIZE];
if (gridDim.y == 1) {
dst_val.x /= kqsum_j;
dst_val.y /= kqsum_j;
}
const int j_dst = (ic0 + j_VKQ)*gridDim.y + blockIdx.y;
dst[j_dst*D*gridDim.z + D*blockIdx.z + i0 + 0] = dst_val.x;
dst[j_dst*D*gridDim.z + D*blockIdx.z + i0 + 1] = dst_val.y;
dst2[j_dst_unrolled*(D/2) + i0] = dst_val;
}
if (gridDim.y != 1 && threadIdx.x == 0) {
dst_meta[((ic0 + j_VKQ)*gridDim.z + blockIdx.z) * gridDim.y + blockIdx.y] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
dst_meta[j_dst_unrolled] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
}
}
#else

View File

@@ -28,8 +28,10 @@ static __global__ void flash_attn_vec_ext_f16(
const int ne13,
const int ne31,
const int ne32,
const int ne33,
const int nb31,
const int nb32,
const int nb33,
const int nb01,
const int nb02,
const int nb03,
@@ -65,14 +67,16 @@ static __global__ void flash_attn_vec_ext_f16(
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
const int sequence = blockIdx.z / ne02;
const int head = blockIdx.z - sequence*ne02;
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
Q += nb02* blockIdx.z + nb01*ic0;
K += nb12*(blockIdx.z / gqa_ratio);
V += nb22*(blockIdx.z / gqa_ratio);
Q += nb03*sequence + nb02* head + nb01*ic0;
K += nb13*sequence + nb12*(head / gqa_ratio);
V += nb23*sequence + nb22*(head / gqa_ratio);
const half * maskh = (const half *) (mask + nb32*(blockIdx.z % ne32) + nb31*ic0);
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
const float slopef = get_alibi_slope(max_bias, blockIdx.z, n_head_log2, m0, m1);
const float slopef = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
const half slopeh = __float2half(slopef);
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
@@ -330,12 +334,11 @@ static __global__ void flash_attn_vec_ext_f16(
if (gridDim.y == 1) {
dst_val /= kqsum[j_VKQ];
}
const int j_dst = (ic0 + j_VKQ)*gridDim.y + blockIdx.y;
dst[j_dst*D*gridDim.z + D*blockIdx.z + tid] = dst_val;
dst[(((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y)*D + tid] = dst_val;
}
if (gridDim.y != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
dst_meta[((ic0 + tid)*gridDim.z + blockIdx.z) * gridDim.y + blockIdx.y] = make_float2(kqmax[tid], kqsum[tid]);
dst_meta[((sequence*ne01 + ic0 + tid)*ne02 + head)*gridDim.y + blockIdx.y] = make_float2(kqmax[tid], kqsum[tid]);
}
#else
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
@@ -344,8 +347,8 @@ static __global__ void flash_attn_vec_ext_f16(
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02);
GGML_UNUSED(ne03); GGML_UNUSED(ne10); GGML_UNUSED(ne11);
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31); GGML_UNUSED(ne32);
GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31); GGML_UNUSED(ne32); GGML_UNUSED(ne32);
GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb33); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12);
GGML_UNUSED(nb13); GGML_UNUSED(nb21); GGML_UNUSED(nb22);
GGML_UNUSED(nb23); GGML_UNUSED(ne0); GGML_UNUSED(ne1);

View File

@@ -28,8 +28,10 @@ static __global__ void flash_attn_vec_ext_f32(
const int ne13,
const int ne31,
const int ne32,
const int ne33,
const int nb31,
const int nb32,
const int nb33,
const int nb01,
const int nb02,
const int nb03,
@@ -53,8 +55,8 @@ static __global__ void flash_attn_vec_ext_f32(
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02);
GGML_UNUSED(ne03); GGML_UNUSED(ne10); GGML_UNUSED(ne11);
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31); GGML_UNUSED(ne32);
GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31); GGML_UNUSED(ne32); GGML_UNUSED(ne33);
GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb33); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12);
GGML_UNUSED(nb13); GGML_UNUSED(nb21); GGML_UNUSED(nb22);
GGML_UNUSED(nb23); GGML_UNUSED(ne0); GGML_UNUSED(ne1);
@@ -77,14 +79,16 @@ static __global__ void flash_attn_vec_ext_f32(
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
const int sequence = blockIdx.z / ne02;
const int head = blockIdx.z - sequence*ne02;
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
Q += nb02* blockIdx.z + nb01*ic0;
K += nb12*(blockIdx.z / gqa_ratio);
V += nb22*(blockIdx.z / gqa_ratio); // K and V have same shape
Q += nb03*sequence + nb02* head + nb01*ic0;
K += nb13*sequence + nb12*(head / gqa_ratio);
V += nb23*sequence + nb22*(head / gqa_ratio);
const half * maskh = (const half *) (mask + nb32*(blockIdx.z % ne32) + nb31*ic0);
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
const float slope = get_alibi_slope(max_bias, blockIdx.z, n_head_log2, m0, m1);
const float slope = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
constexpr int nwarps = D / WARP_SIZE;
@@ -326,12 +330,11 @@ static __global__ void flash_attn_vec_ext_f32(
if (gridDim.y == 1) {
dst_val /= kqsum[j_VKQ];
}
const int j_dst = (ic0 + j_VKQ)*gridDim.y + blockIdx.y;
dst[j_dst*D*gridDim.z + D*blockIdx.z + tid] = dst_val;
dst[(((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y)*D + tid] = dst_val;
}
if (gridDim.y != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
dst_meta[((ic0 + tid)*gridDim.z + blockIdx.z) * gridDim.y + blockIdx.y] = make_float2(kqmax[tid], kqsum[tid]);
dst_meta[((sequence*ne01 + ic0 + tid)*ne02 + head)*gridDim.y + blockIdx.y] = make_float2(kqmax[tid], kqsum[tid]);
}
#else
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
@@ -340,8 +343,8 @@ static __global__ void flash_attn_vec_ext_f32(
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02); GGML_UNUSED(ne03);
GGML_UNUSED(ne10); GGML_UNUSED(ne11); GGML_UNUSED(ne12); GGML_UNUSED(ne13);
GGML_UNUSED(ne31); GGML_UNUSED(ne32);
GGML_UNUSED(nb31); GGML_UNUSED(nb32);
GGML_UNUSED(ne31); GGML_UNUSED(ne32); GGML_UNUSED(ne33);
GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb33);
GGML_UNUSED(nb01); GGML_UNUSED(nb02); GGML_UNUSED(nb03);
GGML_UNUSED(nb11); GGML_UNUSED(nb12); GGML_UNUSED(nb13);
GGML_UNUSED(nb21); GGML_UNUSED(nb22); GGML_UNUSED(nb23);

View File

@@ -47,8 +47,10 @@ static __global__ void flash_attn_ext_f16(
const int ne13,
const int ne31,
const int ne32,
const int ne33,
const int nb31,
const int nb32,
const int nb33,
const int nb01,
const int nb02,
const int nb03,
@@ -95,17 +97,19 @@ static __global__ void flash_attn_ext_f16(
constexpr int kqs_padded = FATTN_KQ_STRIDE + 8;
constexpr int kqar = sizeof(KQ_acc_t)/sizeof(half);
const int sequence = blockIdx.z / ne02;
const int head = blockIdx.z - sequence*ne02;
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
const float * Q_f = (const float *) (Q + nb02* blockIdx.z + nb01*ic0);
const half * K_h = (const half *) (K + nb12*(blockIdx.z / gqa_ratio));
const half * V_h = (const half *) (V + nb12*(blockIdx.z / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) (mask + nb32*(blockIdx.z % ne32) + nb31*ic0);
const float * Q_f = (const float *) (Q + nb03* sequence + nb02* head + nb01*ic0);
const half * K_h = (const half *) (K + nb13* sequence + nb12*(head / gqa_ratio));
const half * V_h = (const half *) (V + nb13* sequence + nb12*(head / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
const half2 * mask2 = (const half2 *) maskh;
const int stride_Q = nb01 / sizeof(float);
const int stride_KV = nb11 / sizeof(half);
const float slopef = get_alibi_slope(max_bias, blockIdx.z, n_head_log2, m0, m1);
const float slopef = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
const half slopeh = __float2half(slopef);
const half2 slope2 = make_half2(slopef, slopef);
@@ -400,7 +404,6 @@ static __global__ void flash_attn_ext_f16(
if (ic0 + j_VKQ >= ne01) {
return;
}
const int j_dst = (ic0 + j_VKQ)*gridDim.y + blockIdx.y;
float KQ_rowsum_j;
if (std::is_same<KQ_acc_t, float>::value) {
@@ -409,6 +412,8 @@ static __global__ void flash_attn_ext_f16(
KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]);
}
const int j_dst_unrolled = ((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D; i0 += warp_size) {
const int i = i0 + threadIdx.x;
@@ -419,7 +424,7 @@ static __global__ void flash_attn_ext_f16(
if (gridDim.y == 1) {
dst_val /= KQ_rowsum_j;
}
dst[j_dst*gridDim.z*D + blockIdx.z*D + i] = dst_val;
dst[j_dst_unrolled*D + i] = dst_val;
}
if (gridDim.y == 1 || threadIdx.x != 0) {
@@ -433,7 +438,7 @@ static __global__ void flash_attn_ext_f16(
dst_meta_val.x = __low2float(KQ_max_h2[j0/nwarps]);
}
dst_meta_val.y = KQ_rowsum_j;
dst_meta[((ic0 + j_VKQ)*gridDim.z + blockIdx.z) * gridDim.y + blockIdx.y] = dst_meta_val;
dst_meta[j_dst_unrolled] = dst_meta_val;
}
#else
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
@@ -442,7 +447,8 @@ static __global__ void flash_attn_ext_f16(
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02); GGML_UNUSED(ne03);
GGML_UNUSED(ne10); GGML_UNUSED(ne11); GGML_UNUSED(ne12); GGML_UNUSED(ne13);
GGML_UNUSED(ne31); GGML_UNUSED(ne32); GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
GGML_UNUSED(ne31); GGML_UNUSED(ne32); GGML_UNUSED(ne33); GGML_UNUSED(nb31);
GGML_UNUSED(nb32); GGML_UNUSED(nb33); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12); GGML_UNUSED(nb13);
GGML_UNUSED(nb21); GGML_UNUSED(nb22); GGML_UNUSED(nb23);
GGML_UNUSED(ne0); GGML_UNUSED(ne1); GGML_UNUSED(ne2); GGML_UNUSED(ne3);

View File

@@ -43,6 +43,7 @@
#include "ggml-cuda/upscale.cuh"
#include "ggml-cuda/wkv.cuh"
#include "ggml-cuda/gla.cuh"
#include "ggml-cuda/set-rows.cuh"
#include "ggml.h"
#include <algorithm>
@@ -2230,6 +2231,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_GET_ROWS_BACK:
ggml_cuda_op_get_rows_back(ctx, dst);
break;
case GGML_OP_SET_ROWS:
ggml_cuda_op_set_rows(ctx, dst);
break;
case GGML_OP_DUP:
ggml_cuda_dup(ctx, dst);
break;
@@ -2299,6 +2303,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_UNARY_OP_EXP:
ggml_cuda_op_exp(ctx, dst);
break;
case GGML_UNARY_OP_ELU:
ggml_cuda_op_elu(ctx, dst);
break;
default:
return false;
}
@@ -3112,6 +3119,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_EXP:
case GGML_UNARY_OP_ELU:
return ggml_is_contiguous(op->src[0]);
default:
return false;
@@ -3216,6 +3224,13 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
{
return op->type == GGML_TYPE_F32 && op->src[0]->type == GGML_TYPE_F32 && op->ne[2] == 1 && op->ne[3] == 1;
} break;
case GGML_OP_SET_ROWS:
{
#pragma message("TODO: implement Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, IQ4_NL support (https://github.com/ggml-org/llama.cpp/pull/14661)")
return (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16 || op->type == GGML_TYPE_BF16) &&
op->src[0]->type == GGML_TYPE_F32 &&
op->src[1]->type == GGML_TYPE_I64;
} break;
case GGML_OP_CPY:
{
ggml_type src0_type = op->src[0]->type;
@@ -3335,8 +3350,8 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_SSM_SCAN: {
if (op->src[3]->ne[0] == 1) {
// Mamba2
// (kernel only supports d_state == 128 && d_head % 16 == 0)
return op->src[0]->ne[0] == 128 && op->src[0]->ne[1] % 16 == 0;
// (kernel only supports (d_state == 128 || d_state == 256) && d_head % 16 == 0)
return (op->src[0]->ne[0] == 128 || op->src[0]->ne[0] == 256) && op->src[0]->ne[1] % 16 == 0;
} else {
// Mamba
// (kernel only supports d_state == 16, d_head == 1, n_head % 128 == 0, n_group == 1)
@@ -3398,12 +3413,6 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
if (op->src[0]->ne[0] == 192) {
return false;
}
// TODO: support broadcast
// note: this was initially implemented in https://github.com/ggml-org/llama.cpp/pull/14500, but
// the interface of ggml_flash_attn_ext() changed in https://github.com/ggml-org/llama.cpp/pull/14505
if (op->src[0]->ne[3] != 1) {
return false;
}
if (op->src[1]->type == GGML_TYPE_BF16 || op->src[2]->type == GGML_TYPE_BF16) {
return false;
}
@@ -3416,6 +3425,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
if (op->src[0]->ne[0] == 256 && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16) {
return true;
}
if (op->src[3] && op->src[3]->ne[2] != 1) {
return false;
}
return fp16_mma_available(ggml_cuda_info().devices[dev_ctx->device].cc) &&
op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
}

View File

@@ -1,18 +1,18 @@
#include "scale.cuh"
static __global__ void scale_f32(const float * x, float * dst, const float scale, const int k) {
static __global__ void scale_f32(const float * x, float * dst, const float scale, const float bias, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = scale * x[i];
dst[i] = scale * x[i] + bias;
}
static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) {
static void scale_f32_cuda(const float * x, float * dst, const float scale, const float bias, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, bias, k);
}
void ggml_cuda_op_scale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
@@ -25,7 +25,9 @@ void ggml_cuda_op_scale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
GGML_ASSERT( dst->type == GGML_TYPE_F32);
float scale;
memcpy(&scale, dst->op_params, sizeof(float));
float bias;
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
memcpy(&bias, (float *) dst->op_params + 1, sizeof(float));
scale_f32_cuda(src0_d, dst_d, scale, ggml_nelements(src0), stream);
scale_f32_cuda(src0_d, dst_d, scale, bias, ggml_nelements(src0), stream);
}

View File

@@ -0,0 +1,151 @@
#include "set-rows.cuh"
typedef void (*set_rows_kernel_t)(const char * src, char * dst);
template<typename src_t, typename dst_t>
__device__ void set_rows_1(const src_t * src_f, dst_t * dst_f) {
GGML_UNUSED(src_f);
GGML_UNUSED(dst_f);
}
template<>
__device__ __forceinline__ void set_rows_1<float, half>(const float * src_f, half * dst_h) {
*dst_h = __float2half(*src_f);
}
template<>
__device__ __forceinline__ void set_rows_1<float, nv_bfloat16>(const float * src_f, nv_bfloat16 * dst_b) {
*dst_b = *src_f;
}
template<>
__device__ __forceinline__ void set_rows_1<float, float>(const float * src_f, float * dst_f) {
*dst_f = *src_f;
}
template<typename src_t, typename dst_t>
static __global__ void k_set_rows(
const src_t * __restrict__ src0, const int64_t * __restrict__ src1, dst_t * __restrict__ dst,
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13,
const int64_t s01, const int64_t s02, const int64_t s03,
const int64_t s10, const int64_t s11, const int64_t s12,
const int64_t s1, const int64_t s2, const int64_t s3) {
const int64_t i = int64_t(blockDim.x) * blockIdx.x + threadIdx.x;
const int64_t ne_total = ne00 * ne01 * ne02 * ne03;
if (i >= ne_total) {
return;
}
const int64_t i03 = i / (ne00 * ne01 * ne02);
const int64_t i02 = (i - i03 * ne00 * ne01 * ne02) / (ne00 * ne01);
const int64_t i01 = (i - i03 * ne00 * ne01 * ne02 - i02 * ne00 * ne01) / ne00;
const int64_t i00 = i - i03 * ne00 * ne01 * ne02 - i02 * ne00 * ne01 - i01 * ne00;
const int64_t i12 = i03 % ne12;
const int64_t i11 = i02 % ne11;
const int64_t i10 = i01;
const int64_t dst_row = *(src1 + i10*s10 + i11*s11 + i12*s12);
const src_t * src0_row = src0 + i01*s01 + i02*s02 + i03*s03;
dst_t * dst_row_ptr = dst + dst_row*s1 + i02*s2 + i03*s3;
const src_t* src_elem = src0_row + i00;
dst_t* dst_elem = dst_row_ptr + i00;
set_rows_1(src_elem, dst_elem);
GGML_UNUSED(ne10);
GGML_UNUSED(ne13);
}
template<typename src_t, typename dst_t>
static void set_rows_cuda(
const src_t * src0_d, const int64_t * src1_d, dst_t * dst_d,
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13,
const size_t nb01, const size_t nb02, const size_t nb03,
const size_t nb10, const size_t nb11, const size_t nb12,
const size_t nb1, const size_t nb2, const size_t nb3,
cudaStream_t stream) {
const int64_t ne_total = ne00 * ne01 * ne02 * ne03;
const int num_blocks = (ne_total + CUDA_SET_ROWS_BLOCK_SIZE - 1) / CUDA_SET_ROWS_BLOCK_SIZE;
const dim3 block_size(CUDA_SET_ROWS_BLOCK_SIZE);
const dim3 grid_size(num_blocks);
const int64_t s01 = nb01/sizeof(src_t);
const int64_t s02 = nb02/sizeof(src_t);
const int64_t s03 = nb03/sizeof(src_t);
const int64_t s10 = nb10/sizeof(int64_t);
const int64_t s11 = nb11/sizeof(int64_t);
const int64_t s12 = nb12/sizeof(int64_t);
const int64_t s1 = nb1/sizeof(dst_t);
const int64_t s2 = nb2/sizeof(dst_t);
const int64_t s3 = nb3/sizeof(dst_t);
if (ne_total > 0) {
k_set_rows<<<grid_size, block_size, 0, stream>>>(
src0_d, src1_d, dst_d,
ne00, ne01, ne02, ne03,
ne10, ne11, ne12, ne13,
s01, s02, s03,
s10, s11, s12,
s1, s2, s3);
}
}
void ggml_cuda_op_set_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_I64);
GGML_TENSOR_BINARY_OP_LOCALS
const float * src0_d = (const float *)src0->data;
const int64_t * src1_d = (const int64_t *)src1->data;
cudaStream_t stream = ctx.stream();
if (dst->type == GGML_TYPE_F32) {
set_rows_cuda(
src0_d, src1_d, (float*)dst->data,
ne00, ne01, ne02, ne03,
ne10, ne11, ne12, ne13,
nb01, nb02, nb03,
nb10, nb11, nb12,
nb1, nb2, nb3,
stream
);
} else if (dst->type == GGML_TYPE_F16) {
set_rows_cuda(
src0_d, src1_d, (half*)dst->data,
ne00, ne01, ne02, ne03,
ne10, ne11, ne12, ne13,
nb01, nb02, nb03,
nb10, nb11, nb12,
nb1, nb2, nb3,
stream
);
} else if (dst->type == GGML_TYPE_BF16) {
set_rows_cuda(
src0_d, src1_d, (nv_bfloat16*)dst->data,
ne00, ne01, ne02, ne03,
ne10, ne11, ne12, ne13,
nb01, nb02, nb03,
nb10, nb11, nb12,
nb1, nb2, nb3,
stream
);
} else {
GGML_ABORT("unsupported type");
}
}

View File

@@ -0,0 +1,7 @@
#pragma once
#include "common.cuh"
#define CUDA_SET_ROWS_BLOCK_SIZE 256
void ggml_cuda_op_set_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -107,8 +107,11 @@ static void ssm_conv_f32_cuda(const float * src0, const float * src1, const int
if (nc == 4) {
ssm_conv_f32<threads, 4><<<blocks, threads, 0, stream>>>(src0, src1, src0_nb0, src0_nb1, src0_nb2, src1_nb1,
dst, dst_nb0, dst_nb1, dst_nb2, n_t);
} else if (nc == 3) {
ssm_conv_f32<threads, 3><<<blocks, threads, 0, stream>>>(src0, src1, src0_nb0, src0_nb1, src0_nb2, src1_nb1,
dst, dst_nb0, dst_nb1, dst_nb2, n_t);
} else {
GGML_ABORT("Only support kernel size = 4 now.");
GGML_ABORT("Only support kernel size = 3 or size = 4 right now.");
}
} else {
if (nc == 4) {
@@ -116,8 +119,13 @@ static void ssm_conv_f32_cuda(const float * src0, const float * src1, const int
dim3 blocks(n_s, (nr + threads - 1) / threads, (n_t + split_n_t - 1) / split_n_t);
ssm_conv_long_token_f32<threads, 4, split_n_t><<<blocks, threads, 0, stream>>>(
src0, src1, src0_nb0, src0_nb1, src0_nb2, src1_nb1, dst, dst_nb0, dst_nb1, dst_nb2, n_t);
} else if (nc == 3) {
const int64_t split_n_t = 32;
dim3 blocks(n_s, (nr + threads - 1) / threads, (n_t + split_n_t - 1) / split_n_t);
ssm_conv_long_token_f32<threads, 3, split_n_t><<<blocks, threads, 0, stream>>>(
src0, src1, src0_nb0, src0_nb1, src0_nb2, src1_nb1, dst, dst_nb0, dst_nb1, dst_nb2, n_t);
} else {
GGML_ABORT("Only support kernel size = 4 right now.");
GGML_ABORT("Only support kernel size = 3 or size = 4 right now.");
}
}
}

View File

@@ -201,11 +201,11 @@ static void ssm_scan_f32_cuda(const float * src0, const float * src1, const floa
const int src5_nb3, const int64_t s_off, const int64_t d_state, const int64_t head_dim,
const int64_t n_head, const int64_t n_group, const int64_t n_tok, const int64_t n_seq,
cudaStream_t stream) {
const int threads = 128;
// NOTE: if you change conditions here, be sure to update the corresponding supports_op condition!
if (src3_nb1 == sizeof(float)) {
// Mamba-2
if (d_state == 128) {
const int threads = 128;
GGML_ASSERT(d_state % threads == 0);
// NOTE: can be any power of two between 4 and 64
const int splitH = 16;
@@ -215,10 +215,21 @@ static void ssm_scan_f32_cuda(const float * src0, const float * src1, const floa
src0, src1, src2, src3, src4, src5, src6, dst,
src0_nb2, src0_nb3, src1_nb2, src1_nb3, src2_nb1, src2_nb2, src3_nb1,
src4_nb2, src4_nb3, src5_nb2, src5_nb3, s_off, n_head, head_dim, n_group, n_tok);
} else if (d_state == 256) { // Falcon-H1
const int threads = 256;
// NOTE: can be any power of two between 8 and 64
const int splitH = 16;
GGML_ASSERT(head_dim % splitH == 0);
const dim3 blocks((n_head * head_dim + (splitH - 1)) / splitH, n_seq, 1);
ssm_scan_f32_group<16, 256><<<blocks, threads, 0, stream>>>(
src0, src1, src2, src3, src4, src5, src6, dst,
src0_nb2, src0_nb3, src1_nb2, src1_nb3, src2_nb1, src2_nb2, src3_nb1,
src4_nb2, src4_nb3, src5_nb2, src5_nb3, s_off, n_head, head_dim, n_group, n_tok);
} else {
GGML_ABORT("doesn't support d_state!=128.");
GGML_ABORT("doesn't support d_state!=(128 or 256).");
}
} else {
const int threads = 128;
// Mamba-1
GGML_ASSERT(n_head % threads == 0);
GGML_ASSERT(head_dim == 1);

View File

@@ -83,6 +83,10 @@ static __device__ __forceinline__ float op_log(float x) {
return logf(x);
}
static __device__ __forceinline__ float op_elu(float x) {
return (x > 0.f) ? x : expm1f(x);
}
template <float (*op)(float), typename T>
static __global__ void unary_op_kernel(const T * x, T * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
@@ -196,6 +200,9 @@ void ggml_cuda_op_log(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary<op_log>(ctx, dst);
}
void ggml_cuda_op_elu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary<op_elu>(ctx, dst);
}
/* gated ops */
template <float (*op)(float), typename T>

View File

@@ -59,6 +59,8 @@ void ggml_cuda_op_cos(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_log(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_elu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_reglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_geglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -10,9 +10,6 @@
#include "rocblas/rocblas.h"
#endif // __HIP_PLATFORM_AMD__
#define CUBLAS_COMPUTE_16F HIPBLAS_R_16F
#define CUBLAS_COMPUTE_32F HIPBLAS_R_32F
#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
#define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
#define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT
#define CUBLAS_OP_N HIPBLAS_OP_N
@@ -30,7 +27,6 @@
#define CU_CHECK(fn) {hipError_t err = fn; if(err != hipSuccess) { GGML_ABORT("HipVMM Failure: %s\n", hipGetErrorString(err)); }}
#define __shfl_sync(mask, var, laneMask, width) __shfl(var, laneMask, width)
#define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
#define cublasComputeType_t hipblasDatatype_t //deprecated, new hipblasComputeType_t not in 5.6
#define cublasCreate hipblasCreate
#define cublasDestroy hipblasDestroy
#define cublasGemmEx hipblasGemmEx
@@ -42,7 +38,6 @@
#define cublasSgemm hipblasSgemm
#define cublasStatus_t hipblasStatus_t
#define cublasOperation_t hipblasOperation_t
#define cudaDataType_t hipblasDatatype_t //deprecated, new hipblasDatatype not in 5.6
#define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer
#define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
#define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
@@ -144,6 +139,20 @@
#define CUBLAS_STATUS_INTERNAL_ERROR HIPBLAS_STATUS_INTERNAL_ERROR
#define CUBLAS_STATUS_NOT_SUPPORTED HIPBLAS_STATUS_NOT_SUPPORTED
#if defined(__HIP_PLATFORM_AMD__) && HIP_VERSION >= 70000000
#define CUBLAS_COMPUTE_16F HIPBLAS_COMPUTE_16F
#define CUBLAS_COMPUTE_32F HIPBLAS_COMPUTE_32F
#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_COMPUTE_32F_FAST_16F
#define cublasComputeType_t hipblasComputeType_t
#define cudaDataType_t hipDataType
#else
#define CUBLAS_COMPUTE_16F HIPBLAS_R_16F
#define CUBLAS_COMPUTE_32F HIPBLAS_R_32F
#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
#define cublasComputeType_t hipblasDatatype_t
#define cudaDataType_t hipblasDatatype_t
#endif
#define __CUDA_ARCH__ 1300
#if defined(__gfx803__) || defined(__gfx900__) || defined(__gfx906__)

View File

@@ -173,6 +173,12 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_SILU,
GGML_METAL_KERNEL_TYPE_SILU_4,
GGML_METAL_KERNEL_TYPE_ELU,
GGML_METAL_KERNEL_TYPE_ABS,
GGML_METAL_KERNEL_TYPE_SGN,
GGML_METAL_KERNEL_TYPE_STEP,
GGML_METAL_KERNEL_TYPE_HARDSWISH,
GGML_METAL_KERNEL_TYPE_HARDSIGMOID,
GGML_METAL_KERNEL_TYPE_EXP,
GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16,
GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16_4,
GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32,
@@ -1155,6 +1161,12 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU, silu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU_4, silu_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ELU, elu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ABS, abs, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SGN, sgn, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_STEP, step, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_HARDSWISH, hardswish, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_HARDSIGMOID, hardsigmoid, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_EXP, exp, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16, soft_max_f16, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16_4, soft_max_f16_4, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32, soft_max_f32, has_simdgroup_reduction);
@@ -1688,6 +1700,12 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_ELU:
case GGML_UNARY_OP_NEG:
case GGML_UNARY_OP_ABS:
case GGML_UNARY_OP_SGN:
case GGML_UNARY_OP_STEP:
case GGML_UNARY_OP_HARDSWISH:
case GGML_UNARY_OP_HARDSIGMOID:
case GGML_UNARY_OP_EXP:
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
default:
return false;
@@ -2256,7 +2274,9 @@ static bool ggml_metal_encode_node(
GGML_ASSERT(ggml_is_contiguous(src0));
float scale;
memcpy(&scale, dst->op_params, sizeof(scale));
float bias;
memcpy(&scale, ((const int32_t *) dst->op_params) + 0, sizeof(float));
memcpy(&bias, ((const int32_t *) dst->op_params) + 1, sizeof(float));
int64_t n = ggml_nelements(dst);
@@ -2273,6 +2293,7 @@ static bool ggml_metal_encode_node(
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&scale length:sizeof(scale) atIndex:2];
[encoder setBytes:&bias length:sizeof(bias) atIndex:3];
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
@@ -2436,6 +2457,78 @@ static bool ggml_metal_encode_node(
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_ABS:
{
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ABS].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_SGN:
{
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SGN].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_STEP:
{
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_STEP].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_HARDSWISH:
{
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_HARDSWISH].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_HARDSIGMOID:
{
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_HARDSIGMOID].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_EXP:
{
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_EXP].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
default:
{
GGML_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, idx, ggml_op_name(dst->op));

View File

@@ -1014,16 +1014,18 @@ kernel void kernel_scale(
device const float * src0,
device float * dst,
constant float & scale,
constant float & bias,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] * scale;
dst[tpig] = src0[tpig] * scale + bias;
}
kernel void kernel_scale_4(
device const float4 * src0,
device float4 * dst,
constant float & scale,
constant float & bias,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] * scale;
dst[tpig] = src0[tpig] * scale + bias;
}
kernel void kernel_clamp(
@@ -1197,6 +1199,51 @@ kernel void kernel_neg(
dst[tpig] = -src0[tpig];
}
kernel void kernel_abs(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = fabs(src0[tpig]);
}
kernel void kernel_sgn(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
device const float & x = src0[tpig];
dst[tpig] = (x > 0.0f) ? 1.0f : ((x < 0.0f) ? -1.0f : 0.0f);
}
kernel void kernel_step(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] > 0.0f ? 1.0f : 0.0f;
}
kernel void kernel_hardswish(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
device const float & x = src0[tpig];
dst[tpig] = x * fmin(1.0f, fmax(0.0f, (x + 3.0f) / 6.0f));
}
kernel void kernel_hardsigmoid(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
device const float & x = src0[tpig];
dst[tpig] = fmin(1.0f, fmax(0.0f, (x + 3.0f) / 6.0f));
}
kernel void kernel_exp(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = exp(src0[tpig]);
}
kernel void kernel_reglu(
device const char * src0,
device const char * src1,

View File

@@ -88,6 +88,7 @@ set(GGML_OPENCL_KERNELS
rms_norm
rope
scale
set_rows
sigmoid
silu
softmax_4_f32
@@ -103,6 +104,7 @@ set(GGML_OPENCL_KERNELS
tanh
pad
repeat
mul_mat_f16_f32
)
foreach (K ${GGML_OPENCL_KERNELS})

View File

@@ -351,6 +351,7 @@ struct ggml_backend_opencl_context {
cl_program program_gemv_noshuffle_general;
cl_program program_gemv_noshuffle;
cl_program program_get_rows;
cl_program program_set_rows;
cl_program program_glu;
cl_program program_im2col_f16;
cl_program program_im2col_f32;
@@ -367,6 +368,7 @@ struct ggml_backend_opencl_context {
cl_program program_mul_mv_f16_f32;
cl_program program_mul_mv_f32_f32;
cl_program program_mul;
cl_program program_mul_mat_f16_f32_tiled;
cl_program program_div;
cl_program program_sub;
cl_program program_norm;
@@ -412,6 +414,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_soft_max, kernel_soft_max_4;
cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16;
cl_kernel kernel_get_rows_f32, kernel_get_rows_f16, kernel_get_rows_q4_0;
cl_kernel kernel_set_rows_f32, kernel_set_rows_f16;
cl_kernel kernel_rope_norm_f32, kernel_rope_norm_f16, kernel_rope_neox_f32, kernel_rope_neox_f16;
cl_kernel kernel_rope_multi_f32, kernel_rope_multi_f16, kernel_rope_vision_f32, kernel_rope_vision_f16;
cl_kernel kernel_cpy_f16_f16, kernel_cpy_f16_f32, kernel_cpy_f32_f16, kernel_cpy_f32_f32;
@@ -420,6 +423,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_mul_mat_f16_f32_1row;
cl_kernel kernel_mul_mat_f16_f32;
cl_kernel kernel_mul_mat_f16_f32_l4;
cl_kernel kernel_mul_mat_f16_f32_tiled;
cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0;
cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
@@ -529,6 +533,16 @@ struct ggml_backend_opencl_context {
fclose(ftrace);
}
size_t get_kernel_workgroup_size(cl_kernel kernel) const {
size_t workgroup_size = 0;
size_t ret_size = 0;
CL_CHECK(
clGetKernelWorkGroupInfo(kernel, device, CL_KERNEL_WORK_GROUP_SIZE,
sizeof(size_t), &workgroup_size, &ret_size));
GGML_ASSERT(sizeof(size_t) == ret_size);
return workgroup_size;
}
void enqueue_ndrange_kernel(cl_kernel kernel, cl_uint work_dim, size_t *global_work_size, size_t *local_work_size, const ggml_tensor * tensor) {
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
@@ -1003,6 +1017,22 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
GGML_LOG_CONT(".");
}
// mul_mat_f16_f32_tiled
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "mul_mat_f16_f32.cl.h"
};
#else
const std::string kernel_src = read_file("mul_mat_f16_f32.cl");
#endif
backend_ctx->program_mul_mat_f16_f32_tiled =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_tiled = clCreateKernel(backend_ctx->program_mul_mat_f16_f32_tiled, "mul_mat_f16_f32", &err), err));
GGML_LOG_CONT(".");
}
// mul
{
#ifdef GGML_OPENCL_EMBED_KERNELS
@@ -1431,6 +1461,23 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
}
}
// set_rows
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "set_rows.cl.h"
};
#else
const std::string kernel_src = read_file("set_rows.cl");
#endif
backend_ctx->program_set_rows =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_set_rows_f32 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f32", &err), err));
CL_CHECK((backend_ctx->kernel_set_rows_f16 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f16", &err), err));
GGML_LOG_CONT(".");
}
// mul_mv_id_q4_0_f32_8x_flat
{
#ifdef GGML_OPENCL_EMBED_KERNELS
@@ -2233,8 +2280,18 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
{
// TODO: add support
// ref: https://github.com/ggml-org/llama.cpp/pull/14274
return false;
} break;
#pragma message("TODO: implement BF16, Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, IQ4_NL support (https://github.com/ggml-org/llama.cpp/pull/14661)")
if (op->src[0]->type != GGML_TYPE_F32) {
return false;
}
switch (op->type) {
case GGML_TYPE_F16:
case GGML_TYPE_F32:
return true;
default:
return false;
}
}
case GGML_OP_CPY:
case GGML_OP_DUP:
case GGML_OP_CONT:
@@ -3374,6 +3431,111 @@ static void ggml_cl_get_rows(ggml_backend_t backend, const ggml_tensor * src0, c
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
}
static void ggml_cl_set_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(src1);
GGML_ASSERT(src1->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
// ne0 = ne00
// ne2 = ne02
// ne3 = ne03
const int ne01 = src0->ne[1];
const int ne02 = src0->ne[2];
const int ne03 = src0->ne[3];
const cl_ulong nb01 = src0->nb[1];
const cl_ulong nb02 = src0->nb[2];
const cl_ulong nb03 = src0->nb[3];
const int ne11 = src1->ne[1];
const int ne12 = src1->ne[2];
const cl_ulong nb10 = src1->nb[0];
const cl_ulong nb11 = src1->nb[1];
const cl_ulong nb12 = src1->nb[2];
const int ne0 = dst->ne[0];
const cl_ulong nb1 = dst->nb[1];
const cl_ulong nb2 = dst->nb[2];
const cl_ulong nb3 = dst->nb[3];
const int nblk0 = ne0/ggml_blck_size(dst->type);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offset1 = extra1->offset + src1->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
cl_kernel kernel;
switch (dst->type) {
case GGML_TYPE_F32:
kernel = backend_ctx->kernel_set_rows_f32;
break;
case GGML_TYPE_F16:
kernel = backend_ctx->kernel_set_rows_f16;
break;
default:
GGML_ABORT("not implemented");
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne11));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb10));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb11));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb12));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &nblk0));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb1));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb2));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb3));
int nth0 = 64;
if (backend_ctx->gpu_family == INTEL) {
nth0 = 32;
} else if (backend_ctx->gpu_family == ADRENO) {
nth0 = 64;
}
int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
while (nth0 < nblk0 && nth0 < max_workgroup_size) {
nth0 *= 2;
}
int rows_per_workgroup = 1;
if (nth0 > nblk0) {
rows_per_workgroup = nth0 / nblk0;
nth0 = nblk0;
}
size_t global_work_size[] = {
(size_t)(ne01 + rows_per_workgroup - 1)/rows_per_workgroup*nth0,
(size_t)ne02*rows_per_workgroup,
(size_t)ne03};
size_t local_work_size[] = {(size_t)nth0, (size_t)rows_per_workgroup, 1};
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
}
static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
@@ -4784,6 +4946,58 @@ static void ggml_cl_timestep_embedding(ggml_backend_t backend, const ggml_tensor
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
}
static void ggml_cl_mul_mat_f16_f32_tiled(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offset1 = extra1->offset + src1->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
const int M = src0->ne[1];
const int N = src1->ne[1];
const int K = src0->ne[0];
cl_kernel kernel = backend_ctx->kernel_mul_mat_f16_f32_tiled;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(int), &M));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(int), &N));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &K));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &offsetd));
// Tiling parameters. These need to be tuned for optimal performance.
// They must match the #defines in the kernel mul_mat_f16_f32.cl.
//
// OPWM / OPWN: Output tile size per Work-Group. A work-group computes a tile of size OPWM x OPWN.
// TPWM / TPWN: Threads per Work-group. This is the work-group size.
// OPTM / OPTN: Output elements per Thread. Each thread computes OPTM x OPTN elements.
//
// The following relationships must hold:
// OPWM = TPWM * OPTM
// OPWN = TPWN * OPTN
//
const int OPWM = 64;
const int OPWN = 64;
const int TPWM = 16;
const int TPWN = 8;
size_t local_work_size[2] = { TPWM, TPWN };
size_t global_work_size[2] = {
(size_t) ((M + OPWM - 1) / OPWM) * TPWM,
(size_t) ((N + OPWN - 1) / OPWN) * TPWN,
};
backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
}
static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
@@ -4797,6 +5011,18 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
if (src0t == GGML_TYPE_F16 && src1t == GGML_TYPE_F32 &&
src0->ne[1] > 32 && // M > 32
src1->ne[1] > 32 && // N > 32
src0->ne[0] > 32 && // K > 32
src0->ne[2] == 1 && src0->ne[3] == 1 &&
src1->ne[2] == 1 && src1->ne[3] == 1 &&
ggml_is_contiguous(src0) && ggml_is_contiguous(src1) &&
backend_ctx->kernel_mul_mat_f16_f32_tiled != NULL) {
ggml_cl_mul_mat_f16_f32_tiled(backend, src0, src1, dst);
return;
}
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
@@ -5587,7 +5813,9 @@ static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, cons
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
float scale;
memcpy(&scale, dst->op_params, sizeof(scale));
float bias;
memcpy(&scale, ((int32_t *) dst->op_params) + 0, sizeof(float));
memcpy(&bias, ((int32_t *) dst->op_params) + 1, sizeof(float));
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
@@ -5602,6 +5830,7 @@ static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, cons
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &scale));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &bias));
int n = ggml_nelements(dst)/4;
@@ -6385,6 +6614,12 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
}
func = ggml_cl_get_rows;
break;
case GGML_OP_SET_ROWS:
if (!any_on_device) {
return false;
}
func = ggml_cl_set_rows;
break;
case GGML_OP_CPY:
if (!any_on_device) {
return false;

View File

@@ -0,0 +1,130 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#if defined(cl_qcom_reqd_sub_group_size)
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
#else
#define REQD_SUBGROUP_SIZE_128
#endif
#define OPWM 64
#define OPWN 64
#define CPWK 8
#define OPTM 4
#define OPTN 8
#define WG_M (OPWM / OPTM)
#define WG_N (OPWN / OPTN)
#define VEC_K (CPWK / 4)
REQD_SUBGROUP_SIZE_128
__kernel void mul_mat_f16_f32(
const int M, const int N, const int K,
__global const void* A_void, ulong A_offset,
__global const void* B_void, ulong B_offset,
__global void* C_void, ulong C_offset) {
__global const half* A = (__global const half* )((__global const char*)A_void + A_offset);
__global const float* B = (__global const float*)((__global const char*)B_void + B_offset);
__global float* C = (__global float*)((__global char*)C_void + C_offset);
const int lidm = get_local_id(0);
const int lidn = get_local_id(1);
const int lid = lidn * WG_M + lidm;
const int offsetM = get_group_id(0) * OPWM;
const int offsetN = get_group_id(1) * OPWN;
__local half4 Alocal[OPWM][VEC_K];
__local float4 Blocal[OPWN][VEC_K];
float sum[OPTM][OPTN];
for (int wm = 0; wm < OPTM; wm++) {
for (int wn = 0; wn < OPTN; wn++) {
sum[wm][wn] = 0.0f;
}
}
const int numTiles = (K + CPWK - 1) / CPWK;
const int load_row_a = lid % OPWM;
const int load_vec_k_a = lid / OPWM;
const int global_row_a = offsetM + load_row_a;
const int load_row_b = lid % OPWN;
const int load_vec_k_b = lid / OPWN;
const int global_row_b = offsetN + load_row_b;
for (int t = 0; t < numTiles; t++) {
const int k_start = t * CPWK;
const int k_vec_start_a = k_start + load_vec_k_a * 4;
const int k_vec_start_b = k_start + load_vec_k_b * 4;
if (global_row_a < M && k_vec_start_a < K) {
if (k_vec_start_a + 3 < K) {
Alocal[load_row_a][load_vec_k_a] = vload4(0, A + global_row_a * K + k_vec_start_a);
} else {
half4 tempA = (half4)(0.0h);
if (k_vec_start_a < K) tempA.s0 = A[global_row_a * K + k_vec_start_a];
if (k_vec_start_a + 1 < K) tempA.s1 = A[global_row_a * K + k_vec_start_a + 1];
if (k_vec_start_a + 2 < K) tempA.s2 = A[global_row_a * K + k_vec_start_a + 2];
Alocal[load_row_a][load_vec_k_a] = tempA;
}
} else {
Alocal[load_row_a][load_vec_k_a] = (half4)(0.0h);
}
if (global_row_b < N && k_vec_start_b < K) {
if (k_vec_start_b + 3 < K) {
Blocal[load_row_b][load_vec_k_b] = vload4(0, B + global_row_b * K + k_vec_start_b);
} else {
float4 tempB = (float4)(0.0f);
if (k_vec_start_b < K) tempB.s0 = B[global_row_b * K + k_vec_start_b];
if (k_vec_start_b + 1 < K) tempB.s1 = B[global_row_b * K + k_vec_start_b + 1];
if (k_vec_start_b + 2 < K) tempB.s2 = B[global_row_b * K + k_vec_start_b + 2];
Blocal[load_row_b][load_vec_k_b] = tempB;
}
} else {
Blocal[load_row_b][load_vec_k_b] = (float4)(0.0f);
}
barrier(CLK_LOCAL_MEM_FENCE);
#pragma unroll
for (int k_vec = 0; k_vec < VEC_K; k_vec++) {
float4 a_fvecs[OPTM];
int current_row_a = lidm;
for (int wm = 0; wm < OPTM; wm++) {
a_fvecs[wm] = convert_float4(Alocal[current_row_a][k_vec]);
current_row_a += WG_M;
}
float4 b_fvecs[OPTN];
int current_row_b = lidn;
for (int wn = 0; wn < OPTN; wn++) {
b_fvecs[wn] = Blocal[current_row_b][k_vec];
current_row_b += WG_N;
}
for (int wm = 0; wm < OPTM; wm++) {
for (int wn = 0; wn < OPTN; wn++) {
sum[wm][wn] += dot(a_fvecs[wm], b_fvecs[wn]);
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
}
for (int wm = 0; wm < OPTM; wm++) {
int globalRow = offsetM + lidm + wm * WG_M;
if (globalRow < M) {
for (int wn = 0; wn < OPTN; wn++) {
int globalCol = offsetN + lidn + wn * WG_N;
if (globalCol < N) {
C[globalCol * M + globalRow] = sum[wm][wn];
}
}
}
}
}

View File

@@ -8,9 +8,10 @@ kernel void kernel_scale(
ulong offset0,
global float4 * dst,
ulong offsetd,
float scale
float scale,
float bias
) {
src0 = (global float4*)((global char*)src0 + offset0);
dst = (global float4*)((global char*)dst + offsetd);
dst[get_global_id(0)] = src0[get_global_id(0)] * scale;
dst[get_global_id(0)] = src0[get_global_id(0)] * scale + bias;
}

View File

@@ -0,0 +1,95 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
kernel void kernel_set_rows_f32(
global char * src0,
ulong offset0,
global char * src1,
ulong offset1,
global char * dst,
ulong offsetd,
int ne01,
ulong nb01,
ulong nb02,
ulong nb03,
int ne11,
int ne12,
ulong nb10,
ulong nb11,
ulong nb12,
int nblk0,
ulong nb1,
ulong nb2,
ulong nb3
) {
src0 = src0 + offset0;
src1 = src1 + offset1;
dst = dst + offsetd;
int i03 = get_group_id(2);
int i02 = get_group_id(1);
int i01 = get_group_id(0)*get_local_size(1) + get_local_id(1);
if (i01 >= ne01) {
return;
}
int i12 = i03%ne12;
int i11 = i02%ne11;
int i10 = i01;
long i1 = ((global long *)(src1 + i10*nb10 + i11*nb11 + i12*nb12))[0];
global float * dst_row = (global float *) (dst + i1*nb1 + i02*nb2 + i03*nb3);
global float * src_row = (global float *) (src0 + i01*nb01 + i02*nb02 + i03*nb03);
for (int ind = get_local_id(0); ind < nblk0; ind += get_local_size(0)) {
dst_row[ind] = (float)src_row[ind];
}
}
kernel void kernel_set_rows_f16(
global char * src0,
ulong offset0,
global char * src1,
ulong offset1,
global char * dst,
ulong offsetd,
int ne01,
ulong nb01,
ulong nb02,
ulong nb03,
int ne11,
int ne12,
ulong nb10,
ulong nb11,
ulong nb12,
int nblk0,
ulong nb1,
ulong nb2,
ulong nb3
) {
src0 = src0 + offset0;
src1 = src1 + offset1;
dst = dst + offsetd;
int i03 = get_group_id(2);
int i02 = get_group_id(1);
int i01 = get_group_id(0)*get_local_size(1) + get_local_id(1);
if (i01 >= ne01) {
return;
}
int i12 = i03%ne12;
int i11 = i02%ne11;
int i10 = i01;
long i1 = ((global long *)(src1 + i10*nb10 + i11*nb11 + i12*nb12))[0];
global half * dst_row = (global half *) (dst + i1*nb1 + i02*nb2 + i03*nb3);
global float * src_row = (global float *) (src0 + i01*nb01 + i02*nb02 + i03*nb03);
for (int ind = get_local_id(0); ind < nblk0; ind += get_local_size(0)) {
dst_row[ind] = src_row[ind];
}
}

View File

@@ -30,6 +30,7 @@
#include "outprod.hpp"
#include "quants.hpp"
#include "rope.hpp"
#include "set_rows.hpp"
#include "softmax.hpp"
#include "tsembd.hpp"
#include "wkv.hpp"

View File

@@ -32,39 +32,28 @@ public:
else static_assert(0);
}
// matrix A has m rows, k columns
// matrix B has k rows, n columns
// nra - number of elements to skip when moving into next row in A
// nrb - number of elements to skip when moving into next row in B
// nca - number of elements to skip when moving into next column in A
// ncb - number of elements to skip when moving into next column in B
// stride_a - number of elements to skip when moving to next A matrix
// stride_b - number of elements to skip when moving to next B matrix
// batches_a - number of A matrices
// batches_b - number of B matrices
static void gemm(ggml_backend_sycl_context & ctx, int m, int n, int k,
const void * a, dt at, dnnl_dim_t nra, dnnl_dim_t nca, dnnl_dim_t stride_a,
const void * b, dt bt, dnnl_dim_t nrb, dnnl_dim_t ncb, dnnl_dim_t stride_b,
const void * a, dt at, dnnl_dim_t stra0, dnnl_dim_t stra1, dnnl_dim_t stra2,
const void * b, dt bt, dnnl_dim_t strb0, dnnl_dim_t strb1, dnnl_dim_t strb2,
void * c, dt ct, const queue_ptr & q, dnnl_dim_t batches_a, dnnl_dim_t batches_b) {
auto stream = ctx.stream_dnnl(q);
auto eng = ctx.engine_dnnl(q);
// { # strides, # rows, # columns }
dnnl::memory::dims a_dims = { batches_a, m, k };
dnnl::memory::dims b_dims = { batches_b, k, n };
dnnl::memory::dims c_dims = { std::max(batches_a, batches_b), m, n };
// { # elements to skip to next stride, # elements to skip to next row, # elements to skip to next column }
dnnl::memory::dims a_strides = { stride_a, nra, nca };
dnnl::memory::dims b_strides = { stride_b, nrb, ncb };
dnnl::memory::dims a_dims = {batches_a, m, k };
dnnl::memory::dims a_strides = {stra2, stra1, stra0};
const auto a_in_md = dnnl::memory::desc(a_dims, at, a_strides);
const auto b_in_md = dnnl::memory::desc(b_dims, bt, b_strides);
const auto c_md = dnnl::memory::desc(c_dims, ct, tag::abc);
dnnl::memory::dims b_dims = {batches_b, k, n };
dnnl::memory::dims b_strides = {strb2, strb0, strb1};
const auto b_in_md = dnnl::memory::desc(b_dims, bt, b_strides);
dnnl::memory::dims c_dims = { std::max(batches_a, batches_b), m, n};
dnnl::memory::dims c_strides = {m*n, 1, m };
const auto c_md = dnnl::memory::desc(c_dims, ct, c_strides);
dnnl::primitive_attr primitive_attr;
primitive_attr.set_scratchpad_mode(dnnl::scratchpad_mode::user);
#ifdef GGML_SYCL_F16
primitive_attr.set_fpmath_mode(dnnl::fpmath_mode::f16);
#endif
@@ -76,24 +65,23 @@ public:
auto scratchpad_md = matmul_pd.scratchpad_desc();
auto scratchpad_mem = ctx.get_scratchpad_mem(scratchpad_md, eng, q);
auto matmul_prim = dnnl::matmul(matmul_pd);
std::unordered_map<int, dnnl::memory> matmul_args;
matmul_args.insert({ DNNL_ARG_SRC, a_mem });
matmul_args.insert({ DNNL_ARG_WEIGHTS, b_mem });
matmul_args.insert({ DNNL_ARG_DST, c_mem });
matmul_args.insert({ DNNL_ARG_SCRATCHPAD, scratchpad_mem });
matmul_prim.execute(stream, matmul_args);
}
// matrices A and B are column major, both having k rows
// matrix A has m column, matrix B has n columns
// output: column major matrix C = A transposed * B
static void row_gemm(ggml_backend_sycl_context & ctx, int m, int n, int k,
const void * a, dt at, const void * b, dt bt, void * c, dt ct, const queue_ptr & q) {
gemm(ctx, m, n, k, a, at, k, 1, k * m, b, bt, 1, k, n * k, c, ct, q, 1, 1);
gemm(ctx, m, n, k, a, at, 1, k, k * m, b, bt, 1, k, n * k, c, ct, q, 1, 1);
}
};

View File

@@ -41,6 +41,7 @@
#include "ggml-sycl/element_wise.hpp"
#include "ggml-sycl/presets.hpp"
#include "ggml-sycl/gemm.hpp"
#include "ggml-sycl/set_rows.hpp"
#include "ggml-sycl/sycl_hw.hpp"
#include "ggml-sycl/getrows.hpp"
#include "ggml.h"
@@ -1545,7 +1546,7 @@ static void mul_mat_p021_f16_f32(
static void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
const int row_stride_x, const int channel_stride_x, const int channel_x_divisor,
const int row_stride_x, const int channel_stride_x,const int channel_stride_y, const int channel_x_divisor,
const sycl::nd_item<3> &item_ct1) {
const sycl::half *x = (const sycl::half *)vx;
@@ -1556,7 +1557,6 @@ static void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
item_ct1.get_local_id(0);
const int channel_x = channel / channel_x_divisor;
const int nrows_y = ncols_x;
const int nrows_dst = nrows_x;
const int row_dst = row_x;
@@ -1575,7 +1575,7 @@ static void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
const int row_y = col_x;
const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
const int iy = channel*nrows_y + row_y;
const int iy = channel * channel_stride_y + row_y;
const float xi =
sycl::vec<sycl::half, 1>(x[ix])
@@ -1695,7 +1695,7 @@ static void diag_mask_inf_f32(const float * x, float * dst, const int ncols, con
dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
}
static void scale_f32(const float * x, float * dst, const float scale, const int k,
static void scale_f32(const float * x, float * dst, const float scale, const float bias, const int k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
@@ -1704,7 +1704,7 @@ static void scale_f32(const float * x, float * dst, const float scale, const int
return;
}
dst[i] = scale * x[i];
dst[i] = scale * x[i] + bias;
}
@@ -1822,7 +1822,7 @@ static void ggml_mul_mat_p021_f16_f32_sycl(const void *vx, const float *y,
static void ggml_mul_mat_vec_nc_f16_f32_sycl(
const void *vx, const float *y, float *dst, const int ncols_x,
const int nrows_x, const int row_stride_x, const int nchannels_x,
const int nchannels_y, const int channel_stride_x, queue_ptr stream) {
const int nchannels_y, const int channel_stride_x, const int channel_stride_y, queue_ptr stream) {
const sycl::range<3> block_nums(nchannels_y, nrows_x, 1);
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
@@ -1834,7 +1834,7 @@ static void ggml_mul_mat_vec_nc_f16_f32_sycl(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_nc_f16_f32(vx, y, dst, ncols_x, nrows_x,
row_stride_x, channel_stride_x,
row_stride_x, channel_stride_x, channel_stride_y,
nchannels_y / nchannels_x, item_ct1);
});
}
@@ -1842,7 +1842,7 @@ static void ggml_mul_mat_vec_nc_f16_f32_sycl(
static void scale_f32_sycl(const float *x, float *dst, const float scale,
static void scale_f32_sycl(const float *x, float *dst, const float scale, const float bias,
const int k, queue_ptr stream) {
const int num_blocks = (k + SYCL_SCALE_BLOCK_SIZE - 1) / SYCL_SCALE_BLOCK_SIZE;
stream->parallel_for(
@@ -1850,7 +1850,7 @@ static void scale_f32_sycl(const float *x, float *dst, const float scale,
sycl::range<3>(1, 1, SYCL_SCALE_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_SCALE_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
scale_f32(x, dst, scale, k, item_ct1);
scale_f32(x, dst, scale, bias, k, item_ct1);
});
}
@@ -2123,8 +2123,8 @@ inline void ggml_sycl_op_mul_mat_sycl(
#if GGML_SYCL_DNNL
if (!g_ggml_sycl_disable_dnn) {
DnnlGemmWrapper::row_gemm(ctx, src1_ncols, row_diff, ne10, src1_ptr,
DnnlGemmWrapper::to_dt<sycl::half>(), src0_ptr, DnnlGemmWrapper::to_dt<sycl::half>(),
DnnlGemmWrapper::row_gemm(ctx,row_diff, src1_ncols , ne10, src0_ptr,
DnnlGemmWrapper::to_dt<sycl::half>(), src1_ptr, DnnlGemmWrapper::to_dt<sycl::half>(),
dst_dd_i, DnnlGemmWrapper::to_dt<float>(), stream);
}
else
@@ -2170,8 +2170,8 @@ inline void ggml_sycl_op_mul_mat_sycl(
#if GGML_SYCL_DNNL
if (!g_ggml_sycl_disable_dnn) {
DnnlGemmWrapper::row_gemm(ctx, src1_ncols, row_diff, ne10, src1_ddf1_i,
DnnlGemmWrapper::to_dt<float>(), src0_ddf_i, DnnlGemmWrapper::to_dt<float>(),
DnnlGemmWrapper::row_gemm(ctx, row_diff, src1_ncols, ne10, src0_ddf_i,
DnnlGemmWrapper::to_dt<float>(), src1_ddf1_i, DnnlGemmWrapper::to_dt<float>(),
dst_dd_i, DnnlGemmWrapper::to_dt<float>(), stream);
}
else
@@ -2319,9 +2319,11 @@ inline void ggml_sycl_op_scale(ggml_backend_sycl_context & ctx, ggml_tensor * ds
float * dst_dd = static_cast<float *>(dst->data);
float scale;
memcpy(&scale, dst->op_params, sizeof(float));
float bias;
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
memcpy(&bias, (float *) dst->op_params + 1, sizeof(float));
scale_f32_sycl(src0_dd, dst_dd, scale, ggml_nelements(dst->src[0]), main_stream);
scale_f32_sycl(src0_dd, dst_dd, scale, bias, ggml_nelements(dst->src[0]), main_stream);
/*
DPCT1010:87: SYCL uses exceptions to report errors and does not use the
error codes. The call was replaced with 0. You need to rewrite this code.
@@ -2773,6 +2775,7 @@ static void ggml_sycl_mul_mat_vec_nc(ggml_backend_sycl_context & ctx, const ggml
const int64_t nb02 = src0->nb[2];
const int64_t ne12 = src1->ne[2];
const int64_t nb11 = src1->nb[1];
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
queue_ptr main_stream = ctx.stream();
@@ -2783,8 +2786,9 @@ static void ggml_sycl_mul_mat_vec_nc(ggml_backend_sycl_context & ctx, const ggml
const int64_t row_stride_x = nb01 / sizeof(sycl::half);
const int64_t channel_stride_x = nb02 / sizeof(sycl::half);
const int64_t channel_stride_y = nb11 / sizeof(float);
ggml_mul_mat_vec_nc_f16_f32_sycl(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
ggml_mul_mat_vec_nc_f16_f32_sycl(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x,channel_stride_y, main_stream);
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
@@ -2838,8 +2842,8 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx, cons
float * dst_ddf = static_cast<float *>(dst->data);
const sycl::half * src1_f16 = static_cast<const sycl::half *>(src1->data);
const size_t type_size_src0 = ggml_type_size(src0->type);
const size_t type_size_src1 = ggml_type_size(src1->type);
GGML_ASSERT(nb10 == type_size_src1);
// SRC1 strides
int64_t s11 = nb11 / type_size_src1;
@@ -2851,11 +2855,40 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx, cons
if (src1->type != GGML_TYPE_F16) {
scope_op_debug_print scope_dbg_print(__func__, "/to_fp16_nc_sycl", dst, /*num_src=*/2,
" : converting src1 to fp16");
const to_fp16_nc_sycl_t to_fp16_nc_sycl = get_to_fp16_nc_sycl(src1->type);
GGML_ASSERT(to_fp16_nc_sycl != nullptr);
// iterate tensor dims and find the slowest moving dim and stride
int64_t last_dim=0;
int64_t last_str=0;
int64_t largest_str=0;
for(int i = 0; i< 4; i++){
// last stride is always the largest
if(src1->nb[i] == largest_str){
if(src1->ne[last_dim] == 1){
last_str = i;
last_dim = i;
}
}
if(src1->nb[i] > largest_str){
largest_str = src1->nb[i];
last_str = i;
last_dim = i;
}
}
#if GGML_SYCL_DNNL
// oneDNN handles strided data and does not need overhead of get_to_fp16_nc_sycl
const int64_t ne_src1 = src1->nb[last_str] * src1->ne[last_dim] / type_size_src1;
src1_f16_alloc.alloc(ne_src1);
const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type, dst);
GGML_ASSERT(to_fp16_sycl != nullptr);
to_fp16_sycl(src1_f16, src1_f16_alloc.get(), ne_src1, queue);
# else
const int64_t ne_src1 = ggml_nelements(src1);
src1_f16_alloc.alloc(ne_src1);
const to_fp16_nc_sycl_t to_fp16_nc_sycl = get_to_fp16_nc_sycl(src1->type);
GGML_ASSERT(to_fp16_nc_sycl != nullptr);
to_fp16_nc_sycl(src1_f16, src1_f16_alloc.get(), ne10, ne11, ne12, ne13, s11, s12, s13, queue);
#endif
src1_f16 = src1_f16_alloc.get();
s11 = ne10;
@@ -2889,38 +2922,89 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx, cons
#if GGML_SYCL_DNNL
if (!g_ggml_sycl_disable_dnn) {
auto dnn_gemm = [&ctx, queue, ne11, ne01, ne10, nb00, nb01, nb02, s11, s12]
(const sycl::half* src1, const sycl::half* src0, float* dst, const dnnl_dim_t batches_a, const dnnl_dim_t batches_b) {
int64_t str_a0 = nb00 / type_size_src0;
int64_t str_a1 = nb01 / type_size_src0;
int64_t str_a2 = nb02 / type_size_src0;
DnnlGemmWrapper::gemm(ctx, ne11,ne01, ne10,
src1, DnnlGemmWrapper::to_dt<sycl::half>(), s11, 1, s12,
src0, DnnlGemmWrapper::to_dt<sycl::half>(), 1, nb01/nb00, nb02/nb00,
dst, DnnlGemmWrapper::to_dt<float>(), queue, batches_a, batches_b);
};
int64_t str_b0 = nb10 / type_size_src1;
int64_t str_b1 = nb11 / type_size_src1;
int64_t str_b2 = nb12 / type_size_src1;
if (r2 == 1 && r3 == 1) {
if (ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) {
dnn_gemm(src1_f16, src0_f16, dst_ddf, ne12*ne13, ne02 * ne03);
}
else {
for (int64_t ie03 = 0; ie03 < ne03; ++ie03) {
const sycl::half* src0_f16_shifted = src0_f16 + ((ie03*nb03)/sizeof(sycl::half)); // nb is in bytes
const sycl::half* src1_f16_shifted = src1_f16 + ie03*s13;
float* dst_shifted = dst_ddf + ((ie03*nb3)/sizeof(float));
dnn_gemm(src1_f16_shifted, src0_f16_shifted, dst_shifted, ne12, ne02);
auto launch_gemm_for_batches = [&ctx, queue](const sycl::half *src0,
const sycl::half *src1, float *dst,
int64_t a0, int64_t a1, int64_t batcha,
int64_t b0, int64_t b1, int64_t batchb,
int64_t sa0, int64_t sa1, int64_t sa2,
int64_t sb0, int64_t sb1, int64_t sb2,
int64_t sd2) {
bool supported_broadcast = batchb == batcha ? true
: batchb == 1 || batcha == 1 ? true
: false;
if (supported_broadcast) {
DnnlGemmWrapper::gemm(ctx, a1, b1, a0, src0,
DnnlGemmWrapper::to_dt<sycl::half>(), sa0, sa1, sa2, src1,
DnnlGemmWrapper::to_dt<sycl::half>(), sb0, sb1, sb2, dst,
DnnlGemmWrapper::to_dt<float>(), queue, batcha, batchb);
} else {
// iterate over batches from smaller set of matrices (matrix 0)
int64_t batches0 = batcha;
int64_t batches1 = batchb;
if (batches0 > batches1) {
int64_t num_mul_mats = batches1;
int64_t sub_batch = batches0 / num_mul_mats;
// src0 is batched and bigger, shift and multiply with src1
for (int64_t i0 = 0; i0 < num_mul_mats; i0++) {
const sycl::half *src0_shifted = src0 + (sa2 * i0 * sub_batch);
const sycl::half *src1_shifted = src1 + (sb2 * i0);
float *dst_shifted = dst + (sd2 * i0 * sub_batch);
DnnlGemmWrapper::gemm(ctx, a1, b1, a0, src0_shifted,
DnnlGemmWrapper::to_dt<sycl::half>(), sa0, sa1, sa2,
src1_shifted, DnnlGemmWrapper::to_dt<sycl::half>(), sb0,
sb1, sb2, dst_shifted, DnnlGemmWrapper::to_dt<float>(),
queue, sub_batch, 1);
}
} else {
int64_t num_mul_mats = batches0;
int64_t sub_batch = batches1 / num_mul_mats;
// src1 is batched and bigger, shift and multiply with src0
for (int64_t i1 = 0; i1 < num_mul_mats; i1++) {
const sycl::half *src0_shifted = src0 + (sa2 * i1);
const sycl::half *src1_shifted = src1 + (sb2 * i1 * sub_batch);
float *dst_shifted = dst + (sd2 * i1 * sub_batch);
DnnlGemmWrapper::gemm(ctx, a1, b1, a0, src0_shifted,
DnnlGemmWrapper::to_dt<sycl::half>(), sa0, sa1, sa2,
src1_shifted, DnnlGemmWrapper::to_dt<sycl::half>(), sb0,
sb1, sb2, dst_shifted, DnnlGemmWrapper::to_dt<float>(),
queue, 1, sub_batch);
}
}
}
};
bool cont_batches_a = nb02 * ne02 == nb03;
bool cont_batches_b = nb12 * ne12 == nb13;
if (cont_batches_a && cont_batches_b) {
int64_t batches0 = ne02 * ne03;
int64_t batches1 = ne12 * ne13;
launch_gemm_for_batches(src0_f16, src1_f16, dst_ddf, ne00, ne01, batches0,
ne10, ne11, batches1, str_a0, str_a1, str_a2, str_b0, str_b1,
str_b2, nb2 / sizeof(float));
} else {
for (int64_t b_a = 0; b_a < ne03; b_a++) {
const sycl::half *src0_f16_shifted
= src0_f16 + (nb03 * b_a / type_size_src0);
const sycl::half *src1_f16_shifted
= src1_f16 + (nb13 * b_a / type_size_src1);
float *dst_shifted = dst_ddf + (nb3 * b_a / sizeof(float));
int64_t batches0 = ne02;
int64_t batches1 = ne12;
launch_gemm_for_batches(src0_f16_shifted, src1_f16_shifted, dst_shifted,
ne00, ne01, batches0, ne10, ne11, batches1, str_a0, str_a1,
str_a2, str_b0, str_b1, str_b2, nb2 / sizeof(float));
}
}
} else {
// iterate over batches from smaller set of matrices (matrix 0)
for (int64_t ie02 = 0; ie02 < ne02; ++ie02) {
for (int64_t ie03 = 0; ie03 < ne03; ++ie03) {
const sycl::half* src0_f16_shifted = src0_f16 + ((ie02*nb02 + ie03*nb03)/sizeof(sycl::half));
const sycl::half* src1_f16_shifted = src1_f16 + ie02*s12*r2 + ie03*s13*r3;
float* dst_shifted = dst_ddf + ((ie02*nb2*r2 + ie03*nb3*r3)/sizeof(float));
dnn_gemm(src1_f16_shifted, src0_f16_shifted, dst_shifted, r2*r3, 1);
}
}
}
}
else
#endif
@@ -3260,10 +3344,10 @@ static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor
// The kernel from the if path is faster for that specific case, but does not support all mul mats.
ggml_sycl_mul_mat_batched_sycl(ctx, src0, src1, dst);
}
} else if (!split && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
} else if (!split && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
// KQV single-batch
ggml_sycl_mul_mat_vec_nc(ctx, src0, src1, dst);
} else if (!split && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
} else if (!split && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2] * src1->ne[3] > 1) {
// KQ + KQV multi-batch
ggml_sycl_mul_mat_batched_sycl(ctx, src0, src1, dst);
} else if (use_dequantize_mul_mat_vec) {
@@ -3446,8 +3530,11 @@ static void ggml_sycl_mul_mat_id(ggml_backend_sycl_context & ctx,
SYCL_CHECK(CHECK_TRY_ERROR(
stream->memset(dev_cur_src1_row.get(), 0, sizeof(int))));
const unsigned int max_work_group_size = ggml_sycl_info().max_work_group_sizes[ctx.device];
assert(work_group_size % (WARP_SIZE * WARP_SIZE) == 0);
{
sycl::range<3> block_dims(1, 1, std::min((unsigned int)ne10, 768u));
sycl::range<3> block_dims(1, 1, std::min((unsigned int)ne10, max_work_group_size));
sycl::range<3> grid_dims(1, n_ids, ids->ne[1]);
sycl_launch(stream, [&](sycl::handler & cgh) {
sycl::local_accessor<int, 0> src1_row_acc(cgh);
@@ -3491,7 +3578,7 @@ static void ggml_sycl_mul_mat_id(ggml_backend_sycl_context & ctx,
ggml_sycl_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
{
sycl::range<3> block_dims(1, 1, std::min((unsigned int)ne0, 768u));
sycl::range<3> block_dims(1, 1, std::min((unsigned int)ne0, max_work_group_size));
sycl::range<3> grid_dims(1, 1, num_src1_rows);
sycl_launch(stream, [&](sycl::handler & cgh) {
const char *__restrict dst_contiguous_get =
@@ -3603,6 +3690,9 @@ static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct gg
case GGML_OP_GET_ROWS:
ggml_sycl_get_rows(ctx, dst);
break;
case GGML_OP_SET_ROWS:
ggml_sycl_op_set_rows(ctx, dst);
break;
case GGML_OP_DUP:
ggml_sycl_dup(ctx, dst);
break;
@@ -4297,7 +4387,8 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
{
// TODO: add support
// ref: https://github.com/ggml-org/llama.cpp/pull/14274
return false;
#pragma message("TODO: implement BF16, Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, IQ4_NL support (https://github.com/ggml-org/llama.cpp/pull/14661)")
return (op->type == GGML_TYPE_F32 || (op->type == GGML_TYPE_F16 && op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_I64));
} break;
case GGML_OP_CPY:
{

View File

@@ -0,0 +1,131 @@
#include "set_rows.hpp"
namespace utils {
template<typename T>
static constexpr bool is_arithmetic_v() {
return std::is_arithmetic_v<T> || std::is_same_v<T, sycl::half> || std::is_same_v<T, sycl::ext::oneapi::bfloat16>;
}
}
template<typename TIn, typename TOut>
static inline std::enable_if_t<utils::is_arithmetic_v<TIn>() && utils::is_arithmetic_v<TOut>(), void>
convert (const char* src, char* dst) {
auto src_val = *reinterpret_cast<const TIn*>(src);
auto dst_val = sycl::vec<TIn, 1>(src_val).template convert<TOut, sycl::rounding_mode::automatic>()[0];
*reinterpret_cast<TOut*>(dst) = dst_val;
}
template<typename TIn, typename TOut>
static void k_set_rows(
const char * __restrict__ src0, const int64_t * __restrict__ src1, char * __restrict__ dst,
const int64_t ne00, const int64_t ne01, const int64_t ne02,
const int64_t ne11, const int64_t ne12,
const size_t nb01, const size_t nb02, const size_t nb03,
const size_t nb10, const size_t nb11, const size_t nb12,
const size_t nb1, const size_t nb2, const size_t nb3,
const size_t src_type_size, const size_t dst_type_size,
const int64_t total_elements,
const sycl::nd_item<1> & item_ct1) {
const int64_t i = item_ct1.get_global_linear_id();
if (i >= total_elements) {
return;
}
const int64_t i03 = i / (ne00 * ne01 * ne02);
const int64_t i02 = (i - i03 * ne00 * ne01 * ne02) / (ne00 * ne01);
const int64_t i01 = (i - i03 * ne00 * ne01 * ne02 - i02 * ne00 * ne01) / ne00;
const int64_t i00 = i - i03 * ne00 * ne01 * ne02 - i02 * ne00 * ne01 - i01 * ne00;
const int64_t i12 = i03 % ne12;
const int64_t i11 = i02 % ne11;
const int64_t i10 = i01;
const int64_t dst_row = *(const int64_t *)((const char *)src1 + calculate_offset<3>({nb10, nb11, nb12}, {i10, i11, i12}));
const char * src0_row = src0 + calculate_offset<3>({nb01, nb02, nb03}, {i01, i02, i03});
const char * src_elem = src0_row + i00 * src_type_size;
char * dst_row_ptr = dst + dst_row*nb1 + i02*nb2 + i03*nb3;
char * dst_elem = dst_row_ptr + i00 * dst_type_size;
convert<TIn, TOut>(src_elem, dst_elem);
}
template<typename TIn, typename TOut>
static void set_rows_sycl(
const char * src0_d, const int64_t * src1_d, char * dst_d,
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
const int64_t ne11, const int64_t ne12, const size_t nb01, const size_t nb02, const size_t nb03,
const size_t nb10, const size_t nb11, const size_t nb12,
const size_t nb1, const size_t nb2, const size_t nb3,
const size_t src_type_size, const size_t dst_type_size,
queue_ptr stream) {
const int64_t total_elements = ne00 * ne01 * ne02 * ne03;
constexpr int block_size = 64;
const int64_t grid_size = ceil_div(total_elements, block_size);
sycl_parallel_for(
stream,
sycl::nd_range<1>(grid_size * block_size, block_size),
[=](sycl::nd_item<1> item_ct1) {
k_set_rows<TIn, TOut>(
src0_d, src1_d, dst_d,
ne00, ne01, ne02,
ne11, ne12,
nb01, nb02, nb03,
nb10, nb11, nb12,
nb1, nb2, nb3,
src_type_size, dst_type_size,
total_elements,
item_ct1
);
}
);
}
void ggml_sycl_op_set_rows(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/2);
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[1]->type == GGML_TYPE_I64);
GGML_TENSOR_BINARY_OP_LOCALS
const int64_t * src1_dd = static_cast<const int64_t *>(src1->data);
dpct::queue_ptr stream = ctx.stream();
switch (dst->type) {
case GGML_TYPE_F32:
set_rows_sycl<float, float>(
(const char *)src0->data, src1_dd, (char *)dst->data,
ne00, ne01, ne02, ne03,
ne11, ne12,
nb01, nb02, nb03,
nb10, nb11, nb12,
nb1, nb2, nb3,
sizeof(float), sizeof(float),
stream
);
break;
case GGML_TYPE_F16:
dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
set_rows_sycl<float, sycl::half>(
(const char *)src0->data, src1_dd, (char *)dst->data,
ne00, ne01, ne02, ne03,
ne11, ne12,
nb01, nb02, nb03,
nb10, nb11, nb12,
nb1, nb2, nb3,
sizeof(float), sizeof(sycl::half),
stream
);
break;
default:
GGML_ABORT("Unsupported tensor type!");
break;
}
}

View File

@@ -0,0 +1,8 @@
#ifndef GGML_SYCL_SET_ROWS_HPP
#define GGML_SYCL_SET_ROWS_HPP
#include "common.hpp"
void ggml_sycl_op_set_rows(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
#endif // GGML_SYCL_SET_ROWS_HPP

View File

@@ -425,18 +425,20 @@ struct vk_device_struct {
vk_pipeline pipeline_div_norepeat[2][2][2];
vk_pipeline pipeline_concat_f32, pipeline_concat_f16, pipeline_concat_i32;
vk_pipeline pipeline_upscale_f32;
vk_pipeline pipeline_upscale_nearest_f32, pipeline_upscale_bilinear_f32, pipeline_upscale_bilinear_ac_f32;
vk_pipeline pipeline_scale_f32;
vk_pipeline pipeline_sqr_f32;
vk_pipeline pipeline_sin_f32;
vk_pipeline pipeline_cos_f32;
vk_pipeline pipeline_clamp_f32;
vk_pipeline pipeline_pad_f32;
vk_pipeline pipeline_roll_f32;
vk_pipeline pipeline_repeat_f32, pipeline_repeat_back_f32;
vk_pipeline pipeline_cpy_f32_f32, pipeline_cpy_f32_f16, pipeline_cpy_f16_f16, pipeline_cpy_f16_f32, pipeline_cpy_f32_bf16;
vk_pipeline pipeline_contig_cpy_f32_f32, pipeline_contig_cpy_f32_f16, pipeline_contig_cpy_f16_f16, pipeline_contig_cpy_f16_f32, pipeline_contig_cpy_f32_bf16;
vk_pipeline pipeline_cpy_f32_quant[GGML_TYPE_COUNT];
vk_pipeline pipeline_cpy_quant_f32[GGML_TYPE_COUNT];
vk_pipeline pipeline_set_rows[GGML_TYPE_COUNT];
vk_pipeline pipeline_norm_f32;
vk_pipeline pipeline_group_norm_f32;
vk_pipeline pipeline_rms_norm_f32;
@@ -693,6 +695,37 @@ struct vk_op_unary_push_constants {
};
static_assert(sizeof(vk_op_unary_push_constants) <= 128, "sizeof(vk_op_unary_push_constants) must be <= 128");
static vk_op_unary_push_constants vk_op_unary_push_constants_init(const ggml_tensor * src0, const ggml_tensor * dst, int64_t ne = 0) {
GGML_ASSERT(ne != 0 || (ggml_nelements(src0) == ggml_nelements(dst)));
ne = ne != 0 ? ne : ggml_nelements(dst);
GGML_ASSERT(ne <= (int64_t)std::numeric_limits<uint32_t>::max());
vk_op_unary_push_constants p{};
p.ne = (uint32_t)ne;
size_t src0_tsize = ggml_type_size(src0->type);
p.ne00 = (uint32_t)src0->ne[0];
p.ne01 = (uint32_t)src0->ne[1];
p.ne02 = (uint32_t)src0->ne[2];
p.ne03 = (uint32_t)src0->ne[3];
p.nb00 = (uint32_t)(src0->nb[0] / src0_tsize);
p.nb01 = (uint32_t)(src0->nb[1] / src0_tsize);
p.nb02 = (uint32_t)(src0->nb[2] / src0_tsize);
p.nb03 = (uint32_t)(src0->nb[3] / src0_tsize);
size_t dst_tsize = ggml_type_size(dst->type);
p.ne10 = (uint32_t)dst->ne[0];
p.ne11 = (uint32_t)dst->ne[1];
p.ne12 = (uint32_t)dst->ne[2];
p.ne13 = (uint32_t)dst->ne[3];
p.nb10 = (uint32_t)(dst->nb[0] / dst_tsize);
p.nb11 = (uint32_t)(dst->nb[1] / dst_tsize);
p.nb12 = (uint32_t)(dst->nb[2] / dst_tsize);
p.nb13 = (uint32_t)(dst->nb[3] / dst_tsize);
return p; // fastdiv values and offsets are initialized later in ggml_vk_op
}
// See https://gmplib.org/~tege/divcnst-pldi94.pdf figure 4.1.
// Precompute mp (m' in the paper) and L such that division
// can be computed using a multiply (high 32b of 64b result)
@@ -862,6 +895,7 @@ struct vk_op_conv2d_dw_push_constants {
struct vk_op_upscale_push_constants {
uint32_t ne; uint32_t a_offset; uint32_t d_offset;
uint32_t ne00; uint32_t ne01;
uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13;
float sf0; float sf1; float sf2; float sf3;
@@ -1735,7 +1769,14 @@ static FaHeadSizes fa_get_head_sizes(uint32_t hsk, uint32_t hsv) {
// number of rows/cols for flash attention shader
static constexpr uint32_t flash_attention_num_small_rows = 32;
static constexpr uint32_t scalar_flash_attention_num_small_rows = 1;
static constexpr uint32_t scalar_flash_attention_num_large_rows = 8;
static uint32_t get_fa_scalar_num_large_rows(uint32_t hsv) {
if (hsv >= 512) {
return 2;
} else {
return 8;
}
}
// The FA coopmat1 shader assumes 16x16x16 matrix multiply support.
// 128 threads split into four subgroups, each subgroup does 1/4
@@ -1760,7 +1801,7 @@ static std::array<uint32_t, 2> fa_rows_cols(FaCodePath path, uint32_t hsk, uint3
if (small_rows) {
return {scalar_flash_attention_num_small_rows, 64};
} else {
return {scalar_flash_attention_num_large_rows, 32};
return {get_fa_scalar_num_large_rows(hsv), 32};
}
}
@@ -1779,7 +1820,11 @@ static std::array<uint32_t, 2> fa_rows_cols(FaCodePath path, uint32_t hsk, uint3
// small cols to reduce register count
if (ggml_is_quantized(type) || hsk >= 256) {
return {64, 32};
if (hsk >= 512) {
return {32, 32};
} else {
return {64, 32};
}
}
return {64, 64};
}
@@ -1821,7 +1866,7 @@ static bool ggml_vk_matmul_shmem_support(const vk_device& device, const std::vec
const uint32_t warps = warptile[0] / warptile[10];
const uint32_t load_bufs = (warptile[1] + warptile[2]) * (warptile[3] + bank_conflict_offset) * type_size;
const uint32_t mmid_row_ids = mul_mat_id ? 4096 * sizeof(uint32_t) : 0;
const uint32_t mmid_row_ids = mul_mat_id ? (4096 * sizeof(uint32_t) + 4/*_ne1*/) : 0;
const uint32_t coopmat_stage = device->coopmat_support ? warptile[7] * warptile[8] / warps * sizeof(float) : 0;
const uint32_t total_size = load_bufs + mmid_row_ids + coopmat_stage + lut_size;
@@ -1946,10 +1991,10 @@ static void ggml_vk_load_shaders(vk_device& device) {
s_mmq_wg_denoms_k = { 32, 32, 1 };
// spec constants and tile sizes for quant matmul_id
l_warptile_mmqid = { 256, 128, 64, 16, 0 };
l_warptile_mmqid = { 256, 128, 128, 16, 0 };
m_warptile_mmqid = { 256, 128, 64, 16, 0 };
s_warptile_mmqid = { 256, 128, 64, 16, 0 };
l_mmqid_wg_denoms = { 128, 64, 1 };
l_mmqid_wg_denoms = { 128, 128, 1 };
m_mmqid_wg_denoms = { 128, 64, 1 };
s_mmqid_wg_denoms = { 128, 64, 1 };
@@ -2738,19 +2783,41 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_bf16,"contig_cpy_f32_bf16",contig_cpy_f32_bf16_len,contig_cpy_f32_bf16_data,"main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
if (device->float_controls_rte_fp16) {
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_0], "cpy_f32_q4_0", cpy_f32_q4_0_rte_len, cpy_f32_q4_0_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_1], "cpy_f32_q4_1", cpy_f32_q4_1_rte_len, cpy_f32_q4_1_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_1), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q5_0], "cpy_f32_q5_0", cpy_f32_q5_0_rte_len, cpy_f32_q5_0_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q5_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q5_1], "cpy_f32_q5_1", cpy_f32_q5_1_rte_len, cpy_f32_q5_1_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q5_1), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q8_0], "cpy_f32_q8_0", cpy_f32_q8_0_rte_len, cpy_f32_q8_0_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q8_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_IQ4_NL], "cpy_f32_iq4_nl", cpy_f32_iq4_nl_rte_len, cpy_f32_iq4_nl_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_IQ4_NL), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_0], "cpy_f32_q4_0", cpy_f32_q4_0_rte_len, cpy_f32_q4_0_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {32, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_1], "cpy_f32_q4_1", cpy_f32_q4_1_rte_len, cpy_f32_q4_1_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {32, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q5_0], "cpy_f32_q5_0", cpy_f32_q5_0_rte_len, cpy_f32_q5_0_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {32, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q5_1], "cpy_f32_q5_1", cpy_f32_q5_1_rte_len, cpy_f32_q5_1_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {32, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q8_0], "cpy_f32_q8_0", cpy_f32_q8_0_rte_len, cpy_f32_q8_0_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {32, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_IQ4_NL], "cpy_f32_iq4_nl", cpy_f32_iq4_nl_rte_len, cpy_f32_iq4_nl_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {32, 1, 1}, {}, 1);
} else {
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_0], "cpy_f32_q4_0", cpy_f32_q4_0_len, cpy_f32_q4_0_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_1], "cpy_f32_q4_1", cpy_f32_q4_1_len, cpy_f32_q4_1_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_1), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q5_0], "cpy_f32_q5_0", cpy_f32_q5_0_len, cpy_f32_q5_0_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q5_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q5_1], "cpy_f32_q5_1", cpy_f32_q5_1_len, cpy_f32_q5_1_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q5_1), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q8_0], "cpy_f32_q8_0", cpy_f32_q8_0_len, cpy_f32_q8_0_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q8_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_IQ4_NL], "cpy_f32_iq4_nl", cpy_f32_iq4_nl_len, cpy_f32_iq4_nl_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_IQ4_NL), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_0], "cpy_f32_q4_0", cpy_f32_q4_0_len, cpy_f32_q4_0_data, "main", 2, sizeof(vk_op_unary_push_constants), {32, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_1], "cpy_f32_q4_1", cpy_f32_q4_1_len, cpy_f32_q4_1_data, "main", 2, sizeof(vk_op_unary_push_constants), {32, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q5_0], "cpy_f32_q5_0", cpy_f32_q5_0_len, cpy_f32_q5_0_data, "main", 2, sizeof(vk_op_unary_push_constants), {32, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q5_1], "cpy_f32_q5_1", cpy_f32_q5_1_len, cpy_f32_q5_1_data, "main", 2, sizeof(vk_op_unary_push_constants), {32, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q8_0], "cpy_f32_q8_0", cpy_f32_q8_0_len, cpy_f32_q8_0_data, "main", 2, sizeof(vk_op_unary_push_constants), {32, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_IQ4_NL], "cpy_f32_iq4_nl", cpy_f32_iq4_nl_len, cpy_f32_iq4_nl_data, "main", 2, sizeof(vk_op_unary_push_constants), {32, 1, 1}, {}, 1);
}
if (device->float_controls_rte_fp16) {
ggml_vk_create_pipeline(device, device->pipeline_set_rows[GGML_TYPE_F32], "set_rows_f32", set_rows_f32_rte_len, set_rows_f32_rte_data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_set_rows[GGML_TYPE_F16], "set_rows_f16", set_rows_f16_rte_len, set_rows_f16_rte_data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_set_rows[GGML_TYPE_BF16], "set_rows_bf16", set_rows_bf16_rte_len, set_rows_bf16_rte_data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_set_rows[GGML_TYPE_Q4_0], "set_rows_q4_0", set_rows_q4_0_rte_len, set_rows_q4_0_rte_data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_set_rows[GGML_TYPE_Q4_1], "set_rows_q4_1", set_rows_q4_1_rte_len, set_rows_q4_1_rte_data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_set_rows[GGML_TYPE_Q5_0], "set_rows_q5_0", set_rows_q5_0_rte_len, set_rows_q5_0_rte_data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_set_rows[GGML_TYPE_Q5_1], "set_rows_q5_1", set_rows_q5_1_rte_len, set_rows_q5_1_rte_data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_set_rows[GGML_TYPE_Q8_0], "set_rows_q8_0", set_rows_q8_0_rte_len, set_rows_q8_0_rte_data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_set_rows[GGML_TYPE_IQ4_NL], "set_rows_iq4_nl", set_rows_iq4_nl_rte_len, set_rows_iq4_nl_rte_data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {1}, 1, true);
} else {
ggml_vk_create_pipeline(device, device->pipeline_set_rows[GGML_TYPE_F32], "set_rows_f32", set_rows_f32_len, set_rows_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_set_rows[GGML_TYPE_F16], "set_rows_f16", set_rows_f16_len, set_rows_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_set_rows[GGML_TYPE_BF16], "set_rows_bf16", set_rows_bf16_len, set_rows_bf16_data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_set_rows[GGML_TYPE_Q4_0], "set_rows_q4_0", set_rows_q4_0_len, set_rows_q4_0_data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_set_rows[GGML_TYPE_Q4_1], "set_rows_q4_1", set_rows_q4_1_len, set_rows_q4_1_data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_set_rows[GGML_TYPE_Q5_0], "set_rows_q5_0", set_rows_q5_0_len, set_rows_q5_0_data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_set_rows[GGML_TYPE_Q5_1], "set_rows_q5_1", set_rows_q5_1_len, set_rows_q5_1_data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_set_rows[GGML_TYPE_Q8_0], "set_rows_q8_0", set_rows_q8_0_len, set_rows_q8_0_data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_set_rows[GGML_TYPE_IQ4_NL], "set_rows_iq4_nl", set_rows_iq4_nl_len, set_rows_iq4_nl_data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {1}, 1, true);
}
ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_Q4_0], "cpy_q4_0_f32", cpy_q4_0_f32_len, cpy_q4_0_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_0), 1, 1}, {}, 1);
@@ -2768,10 +2835,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
return s;
};
bool rte = device->float_controls_rte_fp16;
#define CREATE_BINARY(name, namemod, spec) \
for (int s0 : {0,1}) for (int s1 : {0,1}) for (int d : {0,1}) \
ggml_vk_create_pipeline(device, device->pipeline_ ## name ## namemod[s0][s1][d], \
#name + get_suffix(s0, s1, d) + #namemod, name ## _len[s0][s1][d], name ## _data[s0][s1][d], \
#name + get_suffix(s0, s1, d) + #namemod, name ## _len[s0][s1][d][rte], name ## _data[s0][s1][d][rte], \
"main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, spec, 1);
CREATE_BINARY(add, , {0})
@@ -2790,7 +2858,9 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_concat_f16, "concat_f16", concat_f16_len, concat_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_concat_i32, "concat_i32", concat_i32_len, concat_i32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_upscale_f32, "upscale_f32", upscale_f32_len, upscale_f32_data, "main", 2, sizeof(vk_op_upscale_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_upscale_nearest_f32, "upscale_f32", upscale_f32_len, upscale_f32_data, "main", 2, sizeof(vk_op_upscale_push_constants), {512, 1, 1}, {GGML_SCALE_MODE_NEAREST}, 1);
ggml_vk_create_pipeline(device, device->pipeline_upscale_bilinear_f32, "upscale_f32", upscale_f32_len, upscale_f32_data, "main", 2, sizeof(vk_op_upscale_push_constants), {512, 1, 1}, {GGML_SCALE_MODE_BILINEAR}, 1);
ggml_vk_create_pipeline(device, device->pipeline_upscale_bilinear_ac_f32, "upscale_f32", upscale_f32_len, upscale_f32_data, "main", 2, sizeof(vk_op_upscale_push_constants), {512, 1, 1}, {GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS}, 1);
ggml_vk_create_pipeline(device, device->pipeline_scale_f32, "scale_f32", scale_f32_len, scale_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
@@ -2802,6 +2872,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_pad_f32, "pad_f32", pad_f32_len, pad_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_roll_f32, "roll_f32", roll_f32_len, roll_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_repeat_f32, "repeat_f32", repeat_f32_len, repeat_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_repeat_back_f32, "repeat_back_f32", repeat_back_f32_len, repeat_back_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
@@ -2819,8 +2891,13 @@ static void ggml_vk_load_shaders(vk_device& device) {
#undef CREATE_UNARY
#define CREATE_GLU(name) \
ggml_vk_create_pipeline(device, device->pipeline_ ## name [0], #name "_f32", name ## _f32_len, name ## _f32_data, "main", 3, sizeof(vk_op_glu_push_constants), {512, 1, 1}, {}, 1, true); \
ggml_vk_create_pipeline(device, device->pipeline_ ## name [1], #name "_f16", name ## _f16_len, name ## _f16_data, "main", 3, sizeof(vk_op_glu_push_constants), {512, 1, 1}, {}, 1, true);
if (device->float_controls_rte_fp16) { \
ggml_vk_create_pipeline(device, device->pipeline_ ## name [0], #name "_f32_rte", name ## _f32_rte_len, name ## _f32_rte_data, "main", 3, sizeof(vk_op_glu_push_constants), {512, 1, 1}, {}, 1, true); \
ggml_vk_create_pipeline(device, device->pipeline_ ## name [1], #name "_f16_rte", name ## _f16_rte_len, name ## _f16_rte_data, "main", 3, sizeof(vk_op_glu_push_constants), {512, 1, 1}, {}, 1, true); \
} else { \
ggml_vk_create_pipeline(device, device->pipeline_ ## name [0], #name "_f32", name ## _f32_len, name ## _f32_data, "main", 3, sizeof(vk_op_glu_push_constants), {512, 1, 1}, {}, 1, true); \
ggml_vk_create_pipeline(device, device->pipeline_ ## name [1], #name "_f16", name ## _f16_len, name ## _f16_data, "main", 3, sizeof(vk_op_glu_push_constants), {512, 1, 1}, {}, 1, true); \
}
CREATE_GLU(geglu)
CREATE_GLU(reglu)
@@ -4845,7 +4922,7 @@ static bool ggml_vk_dim01_contiguous(const ggml_tensor * tensor) {
return
tensor->nb[0] == ggml_type_size(tensor->type) &&
tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
(tensor->ne[3] == 1 || tensor->nb[3] == tensor->nb[2]*tensor->ne[2]);
}
static vk_pipeline ggml_vk_get_cpy_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src, const ggml_tensor * dst, ggml_type to) {
@@ -6048,7 +6125,7 @@ static bool ggml_vk_flash_attn_scalar_shmem_support(const vk_device& device, con
// Needs to be kept up to date on shader changes
GGML_UNUSED(hsv);
const uint32_t wg_size = scalar_flash_attention_workgroup_size;
const uint32_t Br = scalar_flash_attention_num_large_rows;
const uint32_t Br = get_fa_scalar_num_large_rows(hsv);
const uint32_t Bc = scalar_flash_attention_Bc;
const uint32_t tmpsh = wg_size * sizeof(float);
@@ -6173,7 +6250,7 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
case FA_SCALAR:
case FA_COOPMAT1:
// We may switch from coopmat1 to scalar, so use the scalar limit for both
max_gqa = scalar_flash_attention_num_large_rows;
max_gqa = get_fa_scalar_num_large_rows(HSV);
break;
case FA_COOPMAT2:
max_gqa = get_fa_num_small_rows(FA_COOPMAT2);
@@ -6468,8 +6545,16 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
}
return nullptr;
case GGML_OP_UPSCALE:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 && dst->op_params[0] == GGML_SCALE_MODE_NEAREST) {
return ctx->device->pipeline_upscale_f32;
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
int mode = ggml_get_op_params_i32(dst, 0);
switch (mode) {
case GGML_SCALE_MODE_NEAREST:
return ctx->device->pipeline_upscale_nearest_f32;
case GGML_SCALE_MODE_BILINEAR:
return ctx->device->pipeline_upscale_bilinear_f32;
case GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS:
return ctx->device->pipeline_upscale_bilinear_ac_f32;
}
}
return nullptr;
case GGML_OP_SCALE:
@@ -6502,6 +6587,11 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
return ctx->device->pipeline_pad_f32;
}
return nullptr;
case GGML_OP_ROLL:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_roll_f32;
}
return nullptr;
case GGML_OP_REPEAT:
if (ggml_type_size(src0->type) == sizeof(float) && ggml_type_size(dst->type) == sizeof(float)) {
return ctx->device->pipeline_repeat_f32;
@@ -6516,6 +6606,8 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
case GGML_OP_CONT:
case GGML_OP_DUP:
return ggml_vk_get_cpy_pipeline(ctx, src0, dst, dst->type);
case GGML_OP_SET_ROWS:
return ctx->device->pipeline_set_rows[dst->type];
case GGML_OP_SILU_BACK:
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_silu_back_f32;
@@ -6754,6 +6846,7 @@ static bool ggml_vk_op_supports_incontiguous(ggml_op op) {
case GGML_OP_RMS_NORM:
case GGML_OP_CONV_2D_DW:
case GGML_OP_IM2COL:
case GGML_OP_SET_ROWS:
return true;
default:
return false;
@@ -7048,6 +7141,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
case GGML_OP_COS:
case GGML_OP_CLAMP:
case GGML_OP_PAD:
case GGML_OP_ROLL:
case GGML_OP_REPEAT:
case GGML_OP_REPEAT_BACK:
case GGML_OP_CPY:
@@ -7067,6 +7161,12 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
ne *= ggml_type_size(src0->type) / 2;
}
}
// copy_to_quant has block size of 32, and each thread does QUANT_K elements.
// Splitting into 512x512xZ wouldn't work well since each workgroup does 1024 elements.
// So divide by block size here before splitting into 512x512 groups.
if (op == GGML_OP_CPY && !ggml_is_quantized(src0->type) && ggml_is_quantized(dst->type)) {
ne = CEIL_DIV(ne, ggml_blck_size(dst->type));
}
if (ne > 262144) {
elements = { 512, 512, CEIL_DIV(ne, 262144) };
} else if (ne > 512) {
@@ -7075,6 +7175,25 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
elements = { ne, 1, 1 };
}
} break;
case GGML_OP_SET_ROWS:
{
uint32_t ne = ggml_nelements(src0);
if (ggml_is_quantized(dst->type)) {
// quants run 32 threads each doing QUANT_K elements
ne = CEIL_DIV(ne, 32 * ggml_blck_size(dst->type));
} else {
// scalar types do one element per thread, running 512 threads
ne = CEIL_DIV(ne, 512);
}
if (ne > 262144) {
elements = { 512, 512, CEIL_DIV(ne, 262144) };
} else if (ne > 512) {
elements = { 512, CEIL_DIV(ne, 512), 1 };
} else {
elements = { ne, 1, 1 };
}
}
break;
default:
elements = { (uint32_t)ggml_nelements(src0), 1, 1 };
break;
@@ -7484,14 +7603,21 @@ static void ggml_vk_concat(ggml_backend_vk_context * ctx, vk_context& subctx, co
static void ggml_vk_upscale(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t mode = (uint32_t)ggml_get_op_params_i32(dst, 0);
const float sf0 = (float)dst->ne[0] / src0->ne[0];
const float sf1 = (float)dst->ne[1] / src0->ne[1];
const float sf2 = (float)dst->ne[2] / src0->ne[2];
const float sf3 = (float)dst->ne[3] / src0->ne[3];
float sf0 = (float)dst->ne[0] / src0->ne[0];
float sf1 = (float)dst->ne[1] / src0->ne[1];
float sf2 = (float)dst->ne[2] / src0->ne[2];
float sf3 = (float)dst->ne[3] / src0->ne[3];
if (mode & GGML_SCALE_FLAG_ALIGN_CORNERS) {
sf0 = (float)(dst->ne[0] - 1) / (src0->ne[0] - 1);
sf1 = (float)(dst->ne[1] - 1) / (src0->ne[1] - 1);
}
ggml_vk_op_f32<vk_op_upscale_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UPSCALE, {
(uint32_t)ggml_nelements(dst), 0, 0,
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1],
(uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)dst->ne[0], (uint32_t)dst->ne[1], (uint32_t)dst->ne[2],(uint32_t)dst->ne[3],
sf0, sf1, sf2, sf3,
@@ -7499,123 +7625,64 @@ static void ggml_vk_upscale(ggml_backend_vk_context * ctx, vk_context& subctx, c
}
static void ggml_vk_scale(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
float * op_params = (float *)dst->op_params;
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
vk_op_unary_push_constants p = vk_op_unary_push_constants_init(src0, dst);
p.param1 = ggml_get_op_params_f32(dst, 0);
p.param2 = ggml_get_op_params_f32(dst, 1);
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SCALE, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
0,
op_params[0], 0.0f,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
}, dryrun);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SCALE, std::move(p), dryrun);
}
static void ggml_vk_sqr(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SQR, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
0,
0.0f, 0.0f,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
}, dryrun);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SQR, vk_op_unary_push_constants_init(src0, dst), dryrun);
}
static void ggml_vk_sin(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SIN, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
0,
0.0f, 0.0f,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
}, dryrun);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SIN, vk_op_unary_push_constants_init(src0, dst), dryrun);
}
static void ggml_vk_cos(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_COS, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
0,
0.0f, 0.0f,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
}, dryrun);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_COS, vk_op_unary_push_constants_init(src0, dst), dryrun);
}
static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
float * op_params = (float *)dst->op_params;
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
vk_op_unary_push_constants p = vk_op_unary_push_constants_init(src0, dst);
p.param1 = ggml_get_op_params_f32(dst, 0);
p.param2 = ggml_get_op_params_f32(dst, 1);
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CLAMP, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
0,
op_params[0], op_params[1],
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
}, dryrun);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CLAMP, std::move(p), dryrun);
}
static void ggml_vk_pad(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
vk_op_unary_push_constants p = vk_op_unary_push_constants_init(src0, dst, ggml_nelements(dst));
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_PAD, std::move(p), dryrun);
}
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_PAD, {
(uint32_t)ggml_nelements(dst),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
0,
0.0f, 0.0f,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
}, dryrun);
static void ggml_vk_roll(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
const int32_t s0 = ggml_get_op_params_i32(dst, 0);
const int32_t s1 = ggml_get_op_params_i32(dst, 1);
const int32_t s2 = ggml_get_op_params_i32(dst, 2);
const int32_t s3 = ggml_get_op_params_i32(dst, 3);
const uint32_t s01_packed = ((s0 + 0x8000) << 16) | (s1 + 0x8000);
const uint32_t s23_packed = ((s2 + 0x8000) << 16) | (s3 + 0x8000);
vk_op_unary_push_constants p = vk_op_unary_push_constants_init(src0, dst);
memcpy(&p.param1, &s01_packed, sizeof(float));
memcpy(&p.param2, &s23_packed, sizeof(float));
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_ROLL, std::move(p), dryrun);
}
static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_REPEAT, {
(uint32_t)ggml_nelements(dst),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
0,
0.0f, 0.0f,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
}, dryrun);
vk_op_unary_push_constants p = vk_op_unary_push_constants_init(src0, dst, ggml_nelements(dst));
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_REPEAT, std::move(p), dryrun);
}
static void ggml_vk_repeat_back(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_REPEAT_BACK, {
(uint32_t)ggml_nelements(dst),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
0,
0.0f, 0.0f,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
}, dryrun);
vk_op_unary_push_constants p = vk_op_unary_push_constants_init(src0, dst, ggml_nelements(dst));
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_REPEAT_BACK, std::move(p), dryrun);
}
static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
uint32_t ne = (uint32_t)ggml_nelements(src0);
if (ggml_is_quantized(src0->type) && ggml_is_quantized(dst->type)) {
// Convert from number of logical elements to 2- or 4-byte units.
@@ -7627,13 +7694,22 @@ static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context& subctx, const
}
}
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CPY, {
ne,
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
vk_op_unary_push_constants p = vk_op_unary_push_constants_init(src0, dst, ne);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CPY, std::move(p), dryrun);
}
static void ggml_vk_set_rows(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t src1_type_size = ggml_type_size(src1->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_SET_ROWS, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
0,
0.0f, 0.0f,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0.0f, 0.0f, 0,
}, dryrun);
}
@@ -8956,7 +9032,9 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
case GGML_OP_COS:
case GGML_OP_CLAMP:
case GGML_OP_PAD:
case GGML_OP_ROLL:
case GGML_OP_CPY:
case GGML_OP_SET_ROWS:
case GGML_OP_CONT:
case GGML_OP_DUP:
case GGML_OP_SILU_BACK:
@@ -9023,6 +9101,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
case GGML_OP_CLAMP:
case GGML_OP_PAD:
case GGML_OP_CPY:
case GGML_OP_SET_ROWS:
case GGML_OP_CONT:
case GGML_OP_DUP:
case GGML_OP_SILU_BACK:
@@ -9125,12 +9204,20 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
case GGML_OP_PAD:
ggml_vk_pad(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_ROLL:
ggml_vk_roll(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_CPY:
case GGML_OP_CONT:
case GGML_OP_DUP:
ggml_vk_cpy(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_SET_ROWS:
ggml_vk_set_rows(ctx, compute_ctx, src0, src1, node, dryrun);
break;
case GGML_OP_SILU_BACK:
ggml_vk_silu_back(ctx, compute_ctx, src0, src1, node, dryrun);
@@ -9345,7 +9432,9 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_cgraph *
case GGML_OP_COS:
case GGML_OP_CLAMP:
case GGML_OP_PAD:
case GGML_OP_ROLL:
case GGML_OP_CPY:
case GGML_OP_SET_ROWS:
case GGML_OP_CONT:
case GGML_OP_DUP:
case GGML_OP_SILU_BACK:
@@ -10267,10 +10356,6 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
// If there's not enough shared memory for row_ids and the result tile, fallback to CPU
return false;
}
// Check against size of shared memory variable
if (op->src[2]->ne[0] > 4096) {
return false;
}
}
switch (src0_type) {
case GGML_TYPE_F32:
@@ -10411,9 +10496,20 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
} break;
case GGML_OP_SET_ROWS:
{
// TODO: add support
// ref: https://github.com/ggml-org/llama.cpp/pull/14274
return false;
switch (op->type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_BF16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_IQ4_NL:
return true;
default:
return false;
}
} break;
case GGML_OP_CONT:
case GGML_OP_CPY:
@@ -10499,13 +10595,12 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_OP_CLAMP:
return op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_UPSCALE:
return op->op_params[0] == GGML_SCALE_MODE_NEAREST;
case GGML_OP_ACC:
case GGML_OP_CONCAT:
case GGML_OP_SCALE:
case GGML_OP_PAD:
case GGML_OP_ROLL:
case GGML_OP_DIAG_MASK_INF:
return true;
case GGML_OP_SOFT_MAX:
case GGML_OP_SOFT_MAX_BACK:
case GGML_OP_ARGSORT:
@@ -11028,6 +11123,8 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph *
} else {
tensor_clone = ggml_cpy(ggml_ctx, src_clone[0], src_clone[1]);
}
} else if (tensor->op == GGML_OP_SET_ROWS) {
tensor_clone = ggml_set_rows(ggml_ctx, src_clone[0], src_clone[1]);
} else if (tensor->op == GGML_OP_CONT) {
tensor_clone = ggml_cont_4d(ggml_ctx, src_clone[0], tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
} else if (tensor->op == GGML_OP_RESHAPE) {

View File

@@ -1,22 +1,26 @@
#version 450
#if RTE16
#extension GL_EXT_spirv_intrinsics : enable
spirv_execution_mode(capabilities = [4467], 4462, 16); // RoundingModeRTE, 16 bits
#endif // RTE16
#include "rte.comp"
#include "types.comp"
#include "generic_unary_head.comp"
#if defined(DATA_A_IQ4_NL)
// 16 invocations needed for init_iq4nl_shmem
layout(local_size_x = 16, local_size_y = 1, local_size_z = 1) in;
#if defined(SET_ROWS) && QUANT_K == 1
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
const uint BLOCK_SIZE = 512;
#else
layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
const uint BLOCK_SIZE = 32;
#endif
layout (binding = 0) readonly buffer S {float data_s[];};
#if defined(SET_ROWS)
#include "generic_binary_head.comp"
layout (binding = 1) readonly buffer C {uvec2 data_i[];};
layout (binding = 2) writeonly buffer Q {A_TYPE data_q[];};
#else
#include "generic_unary_head.comp"
layout (binding = 1) writeonly buffer Q {A_TYPE data_q[];};
#endif
#if defined(DATA_A_Q4_0)
void quantize(uint dst_idx, uint src_idx)
@@ -221,15 +225,56 @@ void quantize(uint dst_idx, uint src_idx)
}
#endif
#if defined(DATA_A_F32) || defined(DATA_A_F16)
void quantize(uint dst_idx, uint src_idx)
{
data_q[dst_idx] = A_TYPE(data_s[src_idx]);
}
#endif
#if defined(DATA_A_BF16)
void quantize(uint dst_idx, uint src_idx)
{
data_q[dst_idx] = A_TYPE(fp32_to_bf16(data_s[src_idx]));
}
#endif
#if defined(SET_ROWS)
void main() {
#ifdef NEEDS_INIT_IQ_SHMEM
init_iq_shmem(gl_WorkGroupSize);
if (gl_LocalInvocationIndex.x != 0) {
return;
}
#endif
const uint idx = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x * QUANT_K;
const uint idx = ((gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x) * BLOCK_SIZE + gl_LocalInvocationID.x) * QUANT_K;
if (idx >= p.ne) {
return;
}
uint i00, i01, i02, i03;
get_indices(idx, i00, i01, i02, i03);
uint i12 = fastmod(i03, p.ne12);
uint i11 = fastmod(i02, p.ne11);
uint i10 = i01;
uint i1 = data_i[src1_idx(i10, i11, i12, 0) + get_boffset()].x;
uint src0_idx = src0_idx(i00, i01, i02, i03) + get_aoffset();
uint dst_idx = dst_idx(i00 / QUANT_K, i1, i02, i03) + get_doffset();
quantize(dst_idx, src0_idx);
}
#else
void main() {
#ifdef NEEDS_INIT_IQ_SHMEM
init_iq_shmem(gl_WorkGroupSize);
#endif
const uint idx = (gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x * 32 + gl_LocalInvocationID.x) * QUANT_K;
if (idx >= p.ne) {
return;
@@ -240,3 +285,5 @@ void main() {
quantize(dst_idx, src_idx);
}
#endif

View File

@@ -10,7 +10,7 @@ layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
void main() {
[[unroll]] for (uint wgy = 0; wgy < 256; wgy++) {
const uint i = gl_WorkGroupID.x * 256 + wgy;
if (i >= p.M * p.K / QUANT_K) {
if (i >= p.nel / QUANT_K) {
return;
}

View File

@@ -10,7 +10,7 @@ layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
void main() {
[[unroll]] for (uint wgy = 0; wgy < 256; wgy++) {
const uint i = uint(gl_WorkGroupID.x * 256 + wgy);
if (i >= p.M * p.K / QUANT_K) {
if (i >= p.nel / QUANT_K) {
return;
}

View File

@@ -10,7 +10,7 @@ layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
void main() {
[[unroll]] for (uint wgy = 0; wgy < 256; wgy++) {
const uint ib = gl_WorkGroupID.x * 256 + wgy;
if (ib >= p.M * p.K / QUANT_K) {
if (ib >= p.nel / QUANT_K) {
return;
}

View File

@@ -10,7 +10,7 @@ layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
void main() {
[[unroll]] for (uint wgy = 0; wgy < 256; wgy++) {
const uint ib = gl_WorkGroupID.x * 256 + wgy;
if (ib >= p.M * p.K / QUANT_K) {
if (ib >= p.nel / QUANT_K) {
return;
}

View File

@@ -10,7 +10,7 @@ layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
void main() {
[[unroll]] for (uint wgy = 0; wgy < 256; wgy++) {
const uint i = gl_WorkGroupID.x * 256 + wgy;
if (i >= p.M * p.K / QUANT_K) {
if (i >= p.nel / QUANT_K) {
return;
}
const uint tid = gl_LocalInvocationID.x;

View File

@@ -1,6 +1,8 @@
#extension GL_EXT_shader_16bit_storage : require
#extension GL_EXT_control_flow_attributes : require
#include "rte.comp"
layout (push_constant) uniform parameter
{
uint ne;

View File

@@ -1,5 +1,7 @@
#extension GL_EXT_shader_16bit_storage : require
#include "rte.comp"
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};

View File

@@ -1,12 +1,9 @@
#version 450
#extension GL_EXT_shader_16bit_storage : require
#extension GL_EXT_spirv_intrinsics: enable
#extension GL_EXT_control_flow_attributes : require
#if RTE16
spirv_execution_mode(capabilities = [4467], 4462, 16); // RoundingModeRTE, 16 bits
#endif
#include "rte.comp"
layout (push_constant) uniform parameter
{

View File

@@ -18,6 +18,7 @@
#extension GL_KHR_cooperative_matrix : enable
#extension GL_KHR_memory_scope_semantics : enable
#extension GL_KHR_shader_subgroup_basic : enable
#extension GL_KHR_shader_subgroup_ballot : enable
#endif
#ifdef MUL_MAT_ID
@@ -104,6 +105,10 @@ shared FLOAT_TYPE buf_b[BN * SHMEM_STRIDE];
#ifdef MUL_MAT_ID
shared u16vec2 row_ids[4096];
uint _ne1;
#ifdef COOPMAT
shared uint _ne1_sh;
#endif
#endif // MUL_MAT_ID
#define NUM_WARPS (BLOCK_SIZE / WARP)
@@ -172,7 +177,47 @@ void main() {
const uint loadstride_b = gl_WorkGroupSize.x * LOAD_VEC_B / BK;
#ifdef MUL_MAT_ID
uint _ne1 = 0;
#ifdef COOPMAT
// Spread the search across all elements in the first subgroup
if (gl_SubgroupID == 0) {
_ne1 = 0;
uint num_elements = p.nei1 * p.nei0;
uint ids[16];
uint iter = 0;
for (uint j = 0; j < num_elements; j += gl_SubgroupSize) {
// prefetch up to 16 elements
if (iter == 0) {
[[unroll]] for (uint k = 0; k < 16; ++k) {
uint i = j + gl_SubgroupInvocationID + k*gl_SubgroupSize;
bool in_range = i < num_elements;
uint ii1 = i / p.nei0;
uint ii0 = i % p.nei0;
ids[k] = in_range ? data_ids[ii1*p.nbi1 + ii0] : 0;
}
}
uint i = j + gl_SubgroupInvocationID;
bool in_range = i < num_elements;
uint ii1 = i / p.nei0;
uint ii0 = i % p.nei0;
uint id = ids[iter++];
uvec4 ballot = subgroupBallot(in_range && id == expert_idx);
uint idx = subgroupBallotExclusiveBitCount(ballot);
if (in_range && id == expert_idx) {
row_ids[_ne1 + idx] = u16vec2(ii0, ii1);
}
_ne1 += subgroupBallotBitCount(ballot);
iter &= 15;
}
_ne1_sh = _ne1;
}
barrier();
_ne1 = _ne1_sh;
#else
_ne1 = 0;
for (uint ii1 = 0; ii1 < p.nei1; ii1++) {
for (uint ii0 = 0; ii0 < p.nei0; ii0++) {
if (data_ids[ii1*p.nbi1 + ii0] == expert_idx) {
@@ -183,6 +228,7 @@ void main() {
}
barrier();
#endif
// Workgroup has no work
if (ic * BN >= _ne1) return;

View File

@@ -162,17 +162,32 @@ void main() {
_ne1 = 0;
uint num_elements = p.nei1 * p.nei0;
for (uint i = gl_SubgroupInvocationID; subgroupAny(i < num_elements); i += gl_SubgroupSize) {
uint ids[16];
uint iter = 0;
for (uint j = 0; j < num_elements; j += gl_SubgroupSize) {
// prefetch up to 16 elements
if (iter == 0) {
[[unroll]] for (uint k = 0; k < 16; ++k) {
uint i = j + gl_SubgroupInvocationID + k*gl_SubgroupSize;
bool in_range = i < num_elements;
uint ii1 = i / p.nei0;
uint ii0 = i % p.nei0;
ids[k] = in_range ? data_ids[ii1*p.nbi1 + ii0] : 0;
}
}
uint i = j + gl_SubgroupInvocationID;
bool in_range = i < num_elements;
uint ii0 = i % p.nei0;
uint ii1 = i / p.nei0;
uint id = in_range ? data_ids[ii1*p.nbi1 + ii0] : 0;
uint ii0 = i % p.nei0;
uint id = ids[iter++];
uvec4 ballot = subgroupBallot(in_range && id == expert_idx);
uint idx = subgroupBallotExclusiveBitCount(ballot);
if (in_range && id == expert_idx) {
row_ids[_ne1 + idx] = u16vec4(ii0 % p.ne11, ii1, ii0, 0);
}
_ne1 += subgroupBallotBitCount(ballot);
iter &= 15;
}
_ne1_sh = _ne1;
}
@@ -414,17 +429,31 @@ void main() {
fetch_scales(ir * BM, pos_a, stride_a, block_k + BK, tid, false);
}
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
if ((ir + 1) * BM <= p.M && block_k + BK <= end_k) {
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutAClamp, ir * BM, BM, block_k, BK) DECODEFUNCA);
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA);
#ifdef MUL_MAT_ID
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BN, block_k, BK), tensorViewTranspose, decodeFuncB);
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BN, block_k, BK), tensorViewTranspose, decodeFuncB);
#else
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutBClamp, ic * BN, BN, block_k, BK), tensorViewTranspose);
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutBClamp, ic * BN, BN, block_k, BK), tensorViewTranspose);
#endif
sum = coopMatMulAdd(mat_a, mat_b, sum);
sum = coopMatMulAdd(mat_a, mat_b, sum);
} else {
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutAClamp, ir * BM, BM, block_k, BK) DECODEFUNCA);
#ifdef MUL_MAT_ID
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BN, block_k, BK), tensorViewTranspose, decodeFuncB);
#else
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutBClamp, ic * BN, BN, block_k, BK), tensorViewTranspose);
#endif
sum = coopMatMulAdd(mat_a, mat_b, sum);
}
}
// Convert from ACC_TYPE to D_TYPE

View File

@@ -0,0 +1,46 @@
#version 450
#include "types.comp"
#include "generic_unary_head.comp"
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
uint wrap_idx(int i, uint ne) {
if (i < 0) {
return i + ne;
} else if (i >= ne) {
return i - ne;
}
return i;
}
void main() {
const uint idx = get_idx();
if (idx >= p.ne) {
return;
}
const uint i3 = fastdiv(idx, p.ne1_012mp, p.ne1_012L);
const uint i3_offset = i3 * p.ne12*p.ne11*p.ne10;
const uint i2 = fastdiv(idx - i3_offset, p.ne1_01mp, p.ne1_01L);
const uint i2_offset = i2*p.ne11*p.ne10;
const uint i1 = fastdiv(idx - i3_offset - i2_offset, p.ne1_0mp, p.ne1_0L);
const uint i0 = idx - i3_offset - i2_offset - i1*p.ne10;
const uint p1 = floatBitsToUint(p.param1);
const uint p2 = floatBitsToUint(p.param2);
const int s0 = int(p1 >> 16) - 0x8000;
const int s1 = int(p1 & 0xFFFF) - 0x8000;
const int s2 = int(p2 >> 16) - 0x8000;
const int s3 = int(p2 & 0xFFFF) - 0x8000;
const uint i00 = wrap_idx(int(i0) - s0, p.ne10);
const uint i01 = wrap_idx(int(i1) - s1, p.ne11);
const uint i02 = wrap_idx(int(i2) - s2, p.ne12);
const uint i03 = wrap_idx(int(i3) - s3, p.ne13);
const uint a_idx = i03*p.nb03 + i02*p.nb02 + i01*p.nb01 + i00*p.nb00;
const uint d_idx = i3 *p.nb13 + i2 *p.nb12 + i1 *p.nb11 + i0 *p.nb10;
data_d[get_doffset() + d_idx] = D_TYPE(data_a[get_aoffset() + a_idx]);
}

View File

@@ -1,11 +1,8 @@
#include "types.comp"
#extension GL_EXT_shader_16bit_storage : require
#extension GL_EXT_spirv_intrinsics: enable
#if RTE16
spirv_execution_mode(capabilities = [4467], 4462, 16); // RoundingModeRTE, 16 bits
#endif
#include "rte.comp"
layout(local_size_x = 1, local_size_y = 256, local_size_z = 1) in;

View File

@@ -0,0 +1,5 @@
#if RTE16
#extension GL_EXT_spirv_intrinsics : enable
spirv_execution_mode(capabilities = [4467], 4462, 16); // RoundingModeRTE, 16 bits
#endif // RTE16

View File

@@ -18,7 +18,7 @@ void main() {
continue;
}
data_d[get_doffset() + idx] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + idx]) * FLOAT_TYPE(p.param1));
data_d[get_doffset() + idx] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + idx]) * FLOAT_TYPE(p.param1) + FLOAT_TYPE(p.param2));
idx += num_threads;
}
}

View File

@@ -3,6 +3,7 @@
layout (push_constant) uniform parameter
{
uint ne; uint a_offset; uint d_offset;
uint ne00; uint ne01;
uint nb00; uint nb01; uint nb02; uint nb03;
uint ne10; uint ne11; uint ne12; uint ne13;
float sf0; float sf1; float sf2; float sf3;
@@ -15,6 +16,61 @@ layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
// from ggml.h: enum ggml_scale_mode, enum ggml_scale_flag
#define NEAREST 0
#define BILINEAR 1
#define ALIGN_CORNERS (1 << 8)
layout (constant_id = 0) const uint scale_mode = 0;
float fetch_nearest(uint i10, uint i11, uint i12, uint i13) {
const uint i00 = uint(i10 / p.sf0);
const uint i01 = uint(i11 / p.sf1);
const uint i02 = uint(i12 / p.sf2);
const uint i03 = uint(i13 / p.sf3);
return data_a[p.a_offset + i03 * p.nb03 + i02 * p.nb02 + i01 * p.nb01 + i00 * p.nb00];
}
float fetch_bilinear(ivec2 c0, ivec2 c1, vec2 d, uint i12, uint i13) {
const uint i02 = uint(i12 / p.sf2);
const uint i03 = uint(i13 / p.sf3);
const uint base = p.a_offset + i03 * p.nb03 + i02 * p.nb02;
const float v00 = data_a[base + c0.y * p.nb01 + c0.x * p.nb00];
const float v01 = data_a[base + c0.y * p.nb01 + c1.x * p.nb00];
const float v10 = data_a[base + c1.y * p.nb01 + c0.x * p.nb00];
const float v11 = data_a[base + c1.y * p.nb01 + c1.x * p.nb00];
return
v00 * (1.0-d.x) * (1.0-d.y) +
v01 * d.x * (1.0-d.y) +
v10 * (1.0-d.x) * d.y +
v11 * d.x * d.y;
}
float interpolate_bilinear(uint i10, uint i11, uint i12, uint i13) {
const ivec2 ne0 = ivec2(p.ne00, p.ne01);
const vec2 c = (vec2(i10, i11) + 0.5) / vec2(p.sf0, p.sf1) - 0.5;
const vec2 c0f = floor(c);
const vec2 d = c - c0f;
const ivec2 c0 = max(ivec2(c0f), 0);
const ivec2 c1 = min(ivec2(c0f + 1), ne0 - 1);
return fetch_bilinear(c0, c1, d, i12, i13);
}
float interpolate_bilinear_align_corners(uint i10, uint i11, uint i12, uint i13) {
const vec2 c = vec2(i10, i11) / vec2(p.sf0, p.sf1);
const vec2 c0f = floor(c);
const vec2 d = c - c0f;
const ivec2 c0 = ivec2(c0f);
const ivec2 c1 = c0 + 1;
return fetch_bilinear(c0, c1, d, i12, i13);
}
void main() {
const uint idx = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x;
@@ -27,10 +83,18 @@ void main() {
const uint i12 = (idx / (p.ne10 * p.ne11)) % p.ne12;
const uint i13 = (idx / (p.ne10 * p.ne11 * p.ne12)) % p.ne13;
const uint i00 = uint(i10 / p.sf0);
const uint i01 = uint(i11 / p.sf1);
const uint i02 = uint(i12 / p.sf2);
const uint i03 = uint(i13 / p.sf3);
float result;
switch (scale_mode) {
case NEAREST:
result = fetch_nearest(i10, i11, i12, i13);
break;
case BILINEAR:
result = interpolate_bilinear(i10, i11, i12, i13);
break;
case BILINEAR | ALIGN_CORNERS:
result = interpolate_bilinear_align_corners(i10, i11, i12, i13);
break;
}
data_d[p.d_offset + idx] = D_TYPE(data_a[p.a_offset + i03 * p.nb03 + i02 * p.nb02 + i01 * p.nb01 + i00 * p.nb00]);
data_d[p.d_offset + idx] = D_TYPE(result);
}

View File

@@ -518,6 +518,11 @@ void process_shaders() {
string_to_spv("cpy_" + t + "_f32", "copy_from_quant.comp", {{"DATA_A_" + to_uppercase(t), "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
}
for (std::string t : {"f32", "f16", "bf16", "q4_0", "q4_1", "q5_0", "q5_1", "q8_0", "iq4_nl"}) {
string_to_spv("set_rows_" + t, "copy_to_quant.comp", {{"SET_ROWS", "1"}, {"DATA_A_" + to_uppercase(t), "1"}, {"B_TYPE", "uvec2"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
string_to_spv("set_rows_" + t + "_rte", "copy_to_quant.comp", {{"SET_ROWS", "1"}, {"DATA_A_" + to_uppercase(t), "1"}, {"B_TYPE", "uvec2"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"RTE16", "1"}});
}
auto get_type_str = [](bool f16) {
return f16 ? "float16_t" : "float";
};
@@ -532,8 +537,10 @@ void process_shaders() {
for (auto src0_f16 : {false, true}) {
for (auto src1_f16 : {false, true}) {
for (auto dst_f16 : {false, true}) {
auto name = op + get_suffix(src0_f16, src1_f16, dst_f16);
string_to_spv(name.c_str(), op + ".comp", {{"A_TYPE", get_type_str(src0_f16)}, {"B_TYPE", get_type_str(src1_f16)}, {"D_TYPE", get_type_str(dst_f16)}, {"FLOAT_TYPE", "float"}});
for (auto rte : {false, true}) {
auto name = op + get_suffix(src0_f16, src1_f16, dst_f16) + (rte ? "_rte" : "");
string_to_spv(name.c_str(), op + ".comp", {{"A_TYPE", get_type_str(src0_f16)}, {"B_TYPE", get_type_str(src1_f16)}, {"D_TYPE", get_type_str(dst_f16)}, {"FLOAT_TYPE", "float"}, {"RTE16", rte ? "1" : "0"}});
}
}
}
}
@@ -587,16 +594,19 @@ void process_shaders() {
string_to_spv("sigmoid_f16", "sigmoid.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("sigmoid_f32", "sigmoid.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("geglu_f16", "geglu.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("geglu_f32", "geglu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("reglu_f16", "reglu.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("reglu_f32", "reglu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("swiglu_f16", "swiglu.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("swiglu_f32", "swiglu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("geglu_erf_f16", "geglu_erf.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("geglu_erf_f32", "geglu_erf.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("geglu_quick_f16","geglu_quick.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("geglu_quick_f32","geglu_quick.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
for (auto rte : {false, true}) {
std::string suffix = rte ? "_rte" : "";
string_to_spv("geglu_f16" + suffix, "geglu.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"RTE16", rte ? "1" : "0"}});
string_to_spv("geglu_f32" + suffix, "geglu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}, {"RTE16", rte ? "1" : "0"}});
string_to_spv("reglu_f16" + suffix, "reglu.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"RTE16", rte ? "1" : "0"}});
string_to_spv("reglu_f32" + suffix, "reglu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}, {"RTE16", rte ? "1" : "0"}});
string_to_spv("swiglu_f16" + suffix, "swiglu.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"RTE16", rte ? "1" : "0"}});
string_to_spv("swiglu_f32" + suffix, "swiglu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}, {"RTE16", rte ? "1" : "0"}});
string_to_spv("geglu_erf_f16" + suffix, "geglu_erf.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"RTE16", rte ? "1" : "0"}});
string_to_spv("geglu_erf_f32" + suffix, "geglu_erf.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}, {"RTE16", rte ? "1" : "0"}});
string_to_spv("geglu_quick_f16" + suffix,"geglu_quick.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"RTE16", rte ? "1" : "0"}});
string_to_spv("geglu_quick_f32" + suffix,"geglu_quick.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}, {"RTE16", rte ? "1" : "0"}});
}
string_to_spv("leaky_relu_f32", "leaky_relu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("silu_back_f32", "silu_back.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}});
@@ -648,6 +658,8 @@ void process_shaders() {
string_to_spv("conv2d_dw_whcn_f32", "conv2d_dw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"WHCN", "1"}}));
string_to_spv("conv2d_dw_cwhn_f32", "conv2d_dw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"CWHN", "1"}}));
string_to_spv("roll_f32", "roll.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}}));
for (auto &c : compiles) {
c.wait();
}
@@ -702,11 +714,59 @@ void write_output_files() {
std::remove(path.c_str());
}
}
std::string suffixes[2] = {"_f32", "_f16"};
for (const char *op : {"add", "sub", "mul", "div"}) {
fprintf(hdr, "extern unsigned char *%s_data[2][2][2];\n", op);
fprintf(hdr, "extern uint64_t %s_len[2][2][2];\n", op);
fprintf(src, "unsigned char *%s_data[2][2][2] = {{{%s_f32_f32_f32_data, %s_f32_f32_f16_data}, {%s_f32_f16_f32_data, %s_f32_f16_f16_data}}, {{%s_f16_f32_f32_data, %s_f16_f32_f16_data}, {%s_f16_f16_f32_data, %s_f16_f16_f16_data}}};\n", op, op, op, op, op, op, op, op, op);
fprintf(src, "uint64_t %s_len[2][2][2] = {{{%s_f32_f32_f32_len, %s_f32_f32_f16_len}, {%s_f32_f16_f32_len, %s_f32_f16_f16_len}}, {{%s_f16_f32_f32_len, %s_f16_f32_f16_len}, {%s_f16_f16_f32_len, %s_f16_f16_f16_len}}};\n", op, op, op, op, op, op, op, op, op);
fprintf(hdr, "extern unsigned char *%s_data[2][2][2][2];\n", op);
fprintf(hdr, "extern uint64_t %s_len[2][2][2][2];\n", op);
std::string data = "unsigned char *" + std::string(op) + "_data[2][2][2][2] = ";
std::string len = "uint64_t " + std::string(op) + "_len[2][2][2][2] = ";
for (uint32_t t0 = 0; t0 < 2; ++t0) {
if (t0 == 0) {
data += "{";
len += "{";
}
for (uint32_t t1 = 0; t1 < 2; ++t1) {
if (t1 == 0) {
data += "{";
len += "{";
}
for (uint32_t t2 = 0; t2 < 2; ++t2) {
if (t2 == 0) {
data += "{";
len += "{";
}
for (uint32_t rte = 0; rte < 2; ++rte) {
if (rte == 0) {
data += "{";
len += "{";
}
data += op + suffixes[t0] + suffixes[t1] + suffixes[t2] + ((rte != 0) ? "_rte" : "");
len += op + suffixes[t0] + suffixes[t1] + suffixes[t2] + ((rte != 0) ? "_rte" : "");
data += "_data,";
len += "_len,";
if (rte == 1) {
data += "}, ";
len += "}, ";
}
}
if (t2 == 1) {
data += "}, ";
len += "}, ";
}
}
if (t1 == 1) {
data += "}, ";
len += "}, ";
}
}
if (t0 == 1) {
data += "};\n";
len += "};\n";
}
}
fprintf(src, data.c_str());
fprintf(src, len.c_str());
}
fclose(hdr);
fclose(src);

View File

@@ -0,0 +1,54 @@
cmake_minimum_required(VERSION 3.13)
find_package(Python3 REQUIRED)
# Shader locations
set(SHADER_DIR "${CMAKE_CURRENT_SOURCE_DIR}/wgsl-shaders")
set(SHADER_OUTPUT_DIR "${CMAKE_CURRENT_BINARY_DIR}/generated")
set(SHADER_HEADER "${SHADER_OUTPUT_DIR}/ggml-wgsl-shaders.hpp")
file(MAKE_DIRECTORY ${SHADER_OUTPUT_DIR})
message(STATUS "Shader output dir: ${SHADER_OUTPUT_DIR}")
# Find all WGSL files
file(GLOB WGSL_SHADER_FILES "${SHADER_DIR}/*.wgsl")
# Generate the header using a Python script
add_custom_command(
OUTPUT ${SHADER_HEADER}
COMMAND ${CMAKE_COMMAND} -E echo "Embedding WGSL shaders to ggml-wgsl-shaders.hpp"
COMMAND ${CMAKE_COMMAND} -E make_directory ${SHADER_OUTPUT_DIR}
COMMAND ${CMAKE_COMMAND} -E env PYTHONIOENCODING=utf-8
${Python3_EXECUTABLE} ${CMAKE_CURRENT_SOURCE_DIR}/wgsl-shaders/embed_wgsl.py
--input "${SHADER_DIR}"
--output "${SHADER_HEADER}"
DEPENDS ${WGSL_SHADER_FILES} ${CMAKE_CURRENT_SOURCE_DIR}/wgsl-shaders/embed_wgsl.py
VERBATIM
)
add_custom_target(generate_shaders DEPENDS ${SHADER_HEADER})
ggml_add_backend_library(ggml-webgpu
ggml-webgpu.cpp
${SHADER_HEADER}
../../include/ggml-webgpu.h
)
add_dependencies(ggml-webgpu generate_shaders)
if(EMSCRIPTEN)
set(EMDAWNWEBGPU_DIR "" CACHE PATH "Path to emdawnwebgpu_pkg")
target_compile_options(ggml-webgpu PRIVATE "--use-port=${EMDAWNWEBGPU_DIR}/emdawnwebgpu.port.py")
target_link_options(ggml-webgpu PRIVATE "--use-port=${EMDAWNWEBGPU_DIR}/emdawnwebgpu.port.py")
else()
find_package(Dawn REQUIRED)
set(DawnWebGPU_TARGET dawn::webgpu_dawn)
endif()
if (GGML_WEBGPU_DEBUG)
target_compile_definitions(ggml-webgpu PRIVATE GGML_WEBGPU_DEBUG=1)
endif()
target_include_directories(ggml-webgpu PRIVATE ${SHADER_OUTPUT_DIR})
target_link_libraries(ggml-webgpu PRIVATE ${DawnWebGPU_TARGET})

View File

@@ -0,0 +1,907 @@
#include "ggml-webgpu.h"
#include <webgpu/webgpu_cpp.h>
#include "ggml-impl.h"
#include "ggml-backend-impl.h"
#include "ggml-wgsl-shaders.hpp"
#include <cstring>
#include <iostream>
#include <mutex>
#include <vector>
#ifdef GGML_WEBGPU_DEBUG
#define WEBGPU_LOG_DEBUG(msg) std::cout << msg << std::endl
#else
#define WEBGPU_LOG_DEBUG(msg) ((void) 0)
#endif // GGML_WEBGPU_DEBUG
/* Constants */
#define WEBGPU_MUL_MAT_WG_SIZE 64
#define WEBGPU_MUL_MAT_PARAMS_SIZE (13 * sizeof(uint32_t)) // M, N, K, batch sizes, broadcasts
#define WEBGPU_CPY_PARAMS_SIZE (15 * sizeof(uint32_t)) // strides and offsets
#define WEBGPU_STORAGE_BUF_BINDING_MULT 4 // a storage buffer binding size must be a multiple of 4
/* End Constants */
// This is a "fake" base pointer, since WebGPU buffers do not have pointers to their locations.
static void * const webgpu_ptr_base = (void *)(uintptr_t) 0x1000; // NOLINT
// Always returns the base offset of a tensor, regardless of views.
static uint64_t webgpu_tensor_offset(const ggml_tensor * tensor) {
if (tensor->view_src) {
return (uint8_t *) tensor->view_src->data - (uint8_t *) webgpu_ptr_base;
}
return (uint8_t *) tensor->data - (uint8_t *) webgpu_ptr_base;
}
/* Struct definitions */
// All the base objects needed to run operations on a WebGPU device
struct webgpu_context_struct {
wgpu::Instance instance;
wgpu::Adapter adapter;
wgpu::Device device;
wgpu::Queue queue;
wgpu::Limits limits;
wgpu::SupportedFeatures features;
std::mutex mutex;
bool device_initialized = false;
// pipelines and parameter buffers
// TODO: reuse params buffers for different pipelines when possible
wgpu::ComputePipeline memset_pipeline;
wgpu::Buffer memset_params_dev_buf;
wgpu::Buffer memset_params_host_buf;
wgpu::ComputePipeline mul_mat_pipeline;
wgpu::Buffer mul_mat_params_dev_buf;
wgpu::Buffer mul_mat_params_host_buf;
wgpu::ComputePipeline cpy_pipeline;
wgpu::Buffer cpy_params_dev_buf;
wgpu::Buffer cpy_params_host_buf;
size_t memset_bytes_per_thread;
// Staging buffer for reading data from the GPU
wgpu::Buffer get_tensor_staging_buf;
};
typedef std::shared_ptr<webgpu_context_struct> webgpu_context;
struct ggml_backend_webgpu_reg_context {
webgpu_context webgpu_ctx;
size_t device_count;
const char * name;
};
struct ggml_backend_webgpu_device_context {
webgpu_context webgpu_ctx;
std::string device_name;
std::string device_desc;
};
struct ggml_backend_webgpu_context {
webgpu_context webgpu_ctx;
std::string name;
};
struct ggml_backend_webgpu_buffer_context {
webgpu_context webgpu_ctx;
wgpu::Buffer buffer;
ggml_backend_webgpu_buffer_context(webgpu_context ctx, wgpu::Buffer buf) :
webgpu_ctx(ctx), buffer(buf) {
}
};
/* End struct definitions */
/* WebGPU object initializations */
static void ggml_webgpu_create_pipeline(wgpu::Device &device, wgpu::ComputePipeline &pipeline, const char * shader_code, const char * label, const std::vector<wgpu::ConstantEntry> &constants = {}) {
WEBGPU_LOG_DEBUG("ggml_webgpu_create_pipeline()");
wgpu::ShaderSourceWGSL shader_source;
shader_source.code = shader_code;
wgpu::ShaderModuleDescriptor shader_desc;
shader_desc.nextInChain = &shader_source;
wgpu::ShaderModule shader_module = device.CreateShaderModule(&shader_desc);
wgpu::ComputePipelineDescriptor pipeline_desc;
pipeline_desc.label = label;
pipeline_desc.compute.module = shader_module;
pipeline_desc.compute.entryPoint = "main"; // Entry point in the WGSL code
pipeline_desc.layout = nullptr; // nullptr means auto layout
if (constants.size() > 0) {
pipeline_desc.compute.constants = constants.data();
pipeline_desc.compute.constantCount = constants.size();
}
pipeline = device.CreateComputePipeline(&pipeline_desc);
}
static void ggml_webgpu_create_buffer(wgpu::Device &device, wgpu::Buffer &buffer, size_t size, wgpu::BufferUsage usage, const char* label) {
WEBGPU_LOG_DEBUG("ggml_webgpu_create_buffer()");
wgpu::BufferDescriptor buffer_desc;
buffer_desc.size = size;
buffer_desc.usage = usage;
buffer_desc.label = label;
buffer_desc.mappedAtCreation = false;
// TODO: error handling
buffer = device.CreateBuffer(&buffer_desc);
}
/** End WebGPU object initializations */
/** WebGPU Actions */
static void ggml_backend_webgpu_map_buffer(webgpu_context ctx, wgpu::Buffer buffer, wgpu::MapMode mode, size_t offset, size_t size) {
ctx->instance.WaitAny(buffer.MapAsync(
mode, offset, size, wgpu::CallbackMode::WaitAnyOnly,
[](wgpu::MapAsyncStatus status, wgpu::StringView message) {
if (status != wgpu::MapAsyncStatus::Success) {
GGML_LOG_ERROR("ggml_webgpu: Failed to map buffer: %s\n", message.data);
}
}),
UINT64_MAX
);
}
static void ggml_backend_webgpu_buffer_memset(webgpu_context ctx, wgpu::Buffer buf, uint32_t value, size_t offset, size_t size) {
std::lock_guard<std::mutex> lock(ctx->mutex);
wgpu::Device device = ctx->device;
// map the host parameters buffer
ggml_backend_webgpu_map_buffer(ctx, ctx->memset_params_host_buf, wgpu::MapMode::Write, 0, ctx->memset_params_host_buf.GetSize());
uint32_t * params = (uint32_t *) ctx->memset_params_host_buf.GetMappedRange();
params[0] = (uint32_t)offset;
params[1] = (uint32_t)size;
params[2] = value;
ctx->memset_params_host_buf.Unmap();
wgpu::BindGroupEntry entries[2];
entries[0].binding = 0; // binding for the buffer to memset
entries[0].buffer = buf;
entries[0].offset = 0;
entries[0].size = buf.GetSize();
entries[1].binding = 1; // binding for the parameters
entries[1].buffer = ctx->memset_params_dev_buf;
entries[1].offset = 0;
entries[1].size = ctx->memset_params_dev_buf.GetSize();
wgpu::BindGroupDescriptor bind_group_desc;
bind_group_desc.layout = ctx->memset_pipeline.GetBindGroupLayout(0);
bind_group_desc.entryCount = 2;
bind_group_desc.label = "ggml_memset";
bind_group_desc.entries = entries;
wgpu::BindGroup bind_group = device.CreateBindGroup(&bind_group_desc);
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyBufferToBuffer(
ctx->memset_params_host_buf, 0,
ctx->memset_params_dev_buf, 0,
ctx->memset_params_dev_buf.GetSize()
);
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(ctx->memset_pipeline);
pass.SetBindGroup(0, bind_group);
size_t bytes_per_wg = ctx->limits.maxComputeWorkgroupSizeX * ctx->memset_bytes_per_thread;
pass.DispatchWorkgroups(((size + 3) + bytes_per_wg - 1) / bytes_per_wg, 1, 1);
pass.End();
wgpu::CommandBuffer commands = encoder.Finish();
ctx->queue.Submit(1, &commands);
}
static void ggml_backend_webgpu_wait_on_submission(webgpu_context ctx) {
// Wait for the queue to finish processing all commands
ctx->instance.WaitAny(ctx->queue.OnSubmittedWorkDone(wgpu::CallbackMode::WaitAnyOnly,
[](wgpu::QueueWorkDoneStatus status, wgpu::StringView message) {
if (status != wgpu::QueueWorkDoneStatus::Success) {
GGML_LOG_ERROR("ggml_webgpu: Failed to wait on queue: %s\n", message.data);
}
}),
UINT64_MAX
);
}
/** End WebGPU Actions */
/** GGML Backend Interface */
static const char * ggml_backend_webgpu_name(ggml_backend_t backend) {
ggml_backend_webgpu_context * ctx = (ggml_backend_webgpu_context *)backend->context;
return ctx->name.c_str();
}
static void ggml_backend_webgpu_free(ggml_backend_t backend) {
ggml_backend_webgpu_context * ctx = (ggml_backend_webgpu_context *)backend->context;
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_free(" << ctx->name << ")");
// TODO: cleanup
GGML_UNUSED(ctx);
}
// Returns true if node has enqueued work into the queue, false otherwise
static bool ggml_webgpu_encode_node(webgpu_context ctx, ggml_tensor * node){
if (ggml_is_empty(node)) {
return false;
}
WEBGPU_LOG_DEBUG("ggml_webgpu_encode_node(" << node << ", " << ggml_op_name(node->op) << ")");
switch (node->op) {
// no-ops
case GGML_OP_NONE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
return false;
case GGML_OP_CPY: {
std::lock_guard<std::mutex> lock(ctx->mutex);
const ggml_tensor * src = node->src[0];
ggml_backend_webgpu_buffer_context * src_ctx = (ggml_backend_webgpu_buffer_context *) src->buffer->context;
size_t src_offset = webgpu_tensor_offset(src) + src->view_offs;
// assumes power of 2 offset alignment
size_t src_misalignment = src_offset & (ctx->limits.minStorageBufferOffsetAlignment - 1);
// align to minimum offset alignment
src_offset &= ~(ctx->limits.minStorageBufferOffsetAlignment - 1);
ggml_backend_webgpu_buffer_context * dst_ctx = (ggml_backend_webgpu_buffer_context *) node->buffer->context;
size_t dst_offset = webgpu_tensor_offset(node) + node->view_offs;
size_t dst_misalignment = dst_offset & (ctx->limits.minStorageBufferOffsetAlignment - 1);
dst_offset &= ~(ctx->limits.minStorageBufferOffsetAlignment - 1);
wgpu::Device device = ctx->device;
ggml_backend_webgpu_map_buffer(ctx, ctx->cpy_params_host_buf,
wgpu::MapMode::Write, 0, ctx->cpy_params_host_buf.GetSize());
uint32_t * params = (uint32_t *) ctx->cpy_params_host_buf.GetMappedRange();
uint32_t ne = (uint32_t)ggml_nelements(node);
params[0] = ne;
params[1] = src_misalignment/ggml_type_size(src->type);
params[2] = dst_misalignment/ggml_type_size(node->type);
// Convert byte-strides to element-strides
params[3] = (uint32_t)src->nb[0]/ggml_type_size(src->type);
params[4] = (uint32_t)src->nb[1]/ggml_type_size(src->type);
params[5] = (uint32_t)src->nb[2]/ggml_type_size(src->type);
params[6] = (uint32_t)src->nb[3]/ggml_type_size(src->type);
params[7] = (uint32_t)node->nb[0]/ggml_type_size(node->type);
params[8] = (uint32_t)node->nb[1]/ggml_type_size(node->type);
params[9] = (uint32_t)node->nb[2]/ggml_type_size(node->type);
params[10] = (uint32_t)node->nb[3]/ggml_type_size(node->type);
// Logical shape — same for both tensors even if permuted
params[11] = (uint32_t)(src->ne[0]);
params[12] = (uint32_t)(src->ne[1]);
params[13] = (uint32_t)(src->ne[2]);
params[14] = (uint32_t)(src->ne[3]);
ctx->cpy_params_host_buf.Unmap();
wgpu::BindGroupEntry entries[3];
entries[0].binding = 0;
entries[0].buffer = src_ctx->buffer;
entries[0].offset = src_offset;
entries[0].size = (ggml_nbytes(src) + src_misalignment + WEBGPU_STORAGE_BUF_BINDING_MULT - 1) & ~(WEBGPU_STORAGE_BUF_BINDING_MULT - 1);
entries[1].binding = 1;
entries[1].buffer = dst_ctx->buffer;
entries[1].offset = dst_offset;
entries[1].size = (ggml_nbytes(node) + dst_misalignment + WEBGPU_STORAGE_BUF_BINDING_MULT - 1) & ~(WEBGPU_STORAGE_BUF_BINDING_MULT - 1);
entries[2].binding = 2;
entries[2].buffer = ctx->cpy_params_dev_buf;
entries[2].offset = 0;
entries[2].size = ctx->cpy_params_dev_buf.GetSize();
wgpu::BindGroupDescriptor bind_group_desc;
bind_group_desc.layout = ctx->cpy_pipeline.GetBindGroupLayout(0);
bind_group_desc.label = "ggml_op_cpy";
bind_group_desc.entryCount = 3;
bind_group_desc.entries = entries;
wgpu::BindGroup bind_group = device.CreateBindGroup(&bind_group_desc);
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyBufferToBuffer(
ctx->cpy_params_host_buf, 0,
ctx->cpy_params_dev_buf, 0,
ctx->cpy_params_dev_buf.GetSize()
);
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(ctx->cpy_pipeline);
pass.SetBindGroup(0, bind_group);
size_t max_wg_size = ctx->limits.maxComputeWorkgroupSizeX;
pass.DispatchWorkgroups((ne + max_wg_size - 1) / max_wg_size);
pass.End();
wgpu::CommandBuffer commands = encoder.Finish();
// TODO, don't submit here, batch submissions
ctx->queue.Submit(1, &commands);
// TODO, don't wait on submission here
ggml_backend_webgpu_wait_on_submission(ctx);
return true;
}
case GGML_OP_MUL_MAT:
{
const ggml_tensor * src0 = node->src[0];
ggml_backend_webgpu_buffer_context * src0_ctx = (ggml_backend_webgpu_buffer_context *) src0->buffer->context;
size_t src0_offset = webgpu_tensor_offset(src0) + src0->view_offs;
const ggml_tensor * src1 = node->src[1];
ggml_backend_webgpu_buffer_context * src1_ctx = (ggml_backend_webgpu_buffer_context *) src1->buffer->context;
size_t src1_offset = webgpu_tensor_offset(src1) + src1->view_offs;
ggml_backend_webgpu_buffer_context * dst_ctx = (ggml_backend_webgpu_buffer_context *) node->buffer->context;
size_t dst_offset = webgpu_tensor_offset(node) + node->view_offs;
wgpu::Device device = ctx->device;
// map the host parameters buffer
ggml_backend_webgpu_map_buffer(ctx, ctx->mul_mat_params_host_buf,
wgpu::MapMode::Write, 0, ctx->mul_mat_params_host_buf.GetSize());
uint32_t * params = (uint32_t *) ctx->mul_mat_params_host_buf.GetMappedRange();
params[0] = (uint32_t)node->ne[1]; // number of rows in result (M)
params[1] = (uint32_t)node->ne[0]; // number of columns in result (N)
params[2] = (uint32_t)src0->ne[0]; // number of columns in src0/src1 (K)
params[3] = (uint32_t)src0->nb[1]/ggml_type_size(src0->type); // stride (elements) of src0 in dimension 1
params[4] = (uint32_t)src1->nb[1]/ggml_type_size(src1->type); // stride (elements) of src1 in dimension 1
params[5] = (uint32_t)src0->nb[2]/ggml_type_size(src0->type); // stride (elements) of src0 in dimension 2
params[6] = (uint32_t)src1->nb[2]/ggml_type_size(src1->type); // stride (elements) of src1 in dimension 2
params[7] = (uint32_t)src0->nb[3]/ggml_type_size(src0->type); // stride (elements) of src0 in dimension 3
params[8] = (uint32_t)src1->nb[3]/ggml_type_size(src1->type); // stride (elements) of src1 in dimension 3
params[9] = (uint32_t)src0->ne[2]; // batch size in dimension 2
params[10] = (uint32_t)src0->ne[3]; // batch size in dimension 3
params[11] = (uint32_t)(src1->ne[2]/src0->ne[2]); // broadcast in dimension 2
params[12] = (uint32_t)(src1->ne[3]/src0->ne[3]); // broadcast in dimension 3
ctx->mul_mat_params_host_buf.Unmap();
wgpu::BindGroupEntry entries[4];
entries[0].binding = 0;
entries[0].buffer = src0_ctx->buffer;
entries[0].offset = src0_offset;
entries[0].size = ggml_nbytes(src0);
entries[1].binding = 1;
entries[1].buffer = src1_ctx->buffer;
entries[1].offset = src1_offset;
entries[1].size = ggml_nbytes(src1);
entries[2].binding = 2;
entries[2].buffer = dst_ctx->buffer;
entries[2].offset = dst_offset;
entries[2].size = ggml_nbytes(node);
entries[3].binding = 3;
entries[3].buffer = ctx->mul_mat_params_dev_buf;
entries[3].offset = 0;
entries[3].size = ctx->mul_mat_params_dev_buf.GetSize();
wgpu::BindGroupDescriptor bind_group_desc;
bind_group_desc.layout = ctx->mul_mat_pipeline.GetBindGroupLayout(0);
bind_group_desc.entryCount = 4;
bind_group_desc.label = "ggml_op_mul_mat";
bind_group_desc.entries = entries;
wgpu::BindGroup bind_group = device.CreateBindGroup(&bind_group_desc);
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyBufferToBuffer(
ctx->mul_mat_params_host_buf, 0,
ctx->mul_mat_params_dev_buf, 0,
ctx->mul_mat_params_dev_buf.GetSize()
);
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(ctx->mul_mat_pipeline);
pass.SetBindGroup(0, bind_group);
pass.DispatchWorkgroups((node->ne[0] * node->ne[1] * node->ne[2] * node->ne[3] + WEBGPU_MUL_MAT_WG_SIZE - 1) / WEBGPU_MUL_MAT_WG_SIZE);
pass.End();
wgpu::CommandBuffer commands = encoder.Finish();
// TODO, don't submit here, batch submissions
ctx->queue.Submit(1, &commands);
// TODO, don't wait on submission here
ggml_backend_webgpu_wait_on_submission(ctx);
return true;
}
default:
return false;
}
}
static ggml_status ggml_backend_webgpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_graph_compute(" << cgraph->n_nodes << " nodes)");
ggml_backend_webgpu_context * backend_ctx = static_cast<ggml_backend_webgpu_context *>(backend->context);
webgpu_context ctx = backend_ctx->webgpu_ctx;
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_webgpu_encode_node(ctx, cgraph->nodes[i]);
}
return GGML_STATUS_SUCCESS;
}
static ggml_backend_i ggml_backend_webgpu_i = {
/* .get_name = */ ggml_backend_webgpu_name,
/* .free = */ ggml_backend_webgpu_free,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ NULL,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_webgpu_graph_compute,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
};
/* End GGML Backend Interface */
/* GGML Backend Buffer Interface */
static void ggml_backend_webgpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_free_buffer()");
ggml_backend_webgpu_buffer_context * ctx = static_cast<ggml_backend_webgpu_buffer_context *>(buffer->context);
ctx->buffer.Destroy();
}
// Returns the "fake" base pointer.
static void * ggml_backend_webgpu_buffer_get_base(ggml_backend_buffer_t buffer) {
GGML_UNUSED(buffer);
return webgpu_ptr_base;
}
static void ggml_backend_webgpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
if (size == 0) {
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_memset_tensor: size is zero, nothing to do.");
return;
}
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_memset_tensor(" << buffer << ", " << tensor << ", " << value << ", " << offset << ", " << size << ")");
ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context;
size_t total_offset = webgpu_tensor_offset(tensor) + tensor->view_offs + offset;
// This is a trick to set all bytes of a u32 to the same 1 byte value.
uint32_t val32 = (uint32_t)value * 0x01010101;
ggml_backend_webgpu_buffer_memset(buf_ctx->webgpu_ctx, buf_ctx->buffer, val32, total_offset, size);
}
static void ggml_backend_webgpu_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_set_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")");
ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context;
webgpu_context webgpu_ctx = buf_ctx->webgpu_ctx;
size_t total_offset = webgpu_tensor_offset(tensor) + tensor->view_offs + offset;
webgpu_ctx->queue.WriteBuffer(buf_ctx->buffer, total_offset, data, (size/4)*4);
if (size % 4 != 0) {
// If size is not a multiple of 4, we need to memset the remaining bytes
size_t remaining_size = size % 4;
// pack the remaining bytes into a uint32_t
uint32_t val32 = 0;
for (size_t i = 0; i < remaining_size; i++) {
((uint8_t *)&val32)[i] = ((const uint8_t *)data)[size - remaining_size + i];
}
// memset the remaining bytes
ggml_backend_webgpu_buffer_memset(webgpu_ctx, buf_ctx->buffer, val32, total_offset + (size - remaining_size), remaining_size);
}
}
static void ggml_backend_webgpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_get_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")");
ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context;
webgpu_context webgpu_ctx = buf_ctx->webgpu_ctx;
wgpu::Device device = webgpu_ctx->device;
size_t total_offset = webgpu_tensor_offset(tensor) + tensor->view_offs + offset;
size_t final_size = size;
if (size % 4 != 0) {
// If size is not a multiple of 4, we need to round it up to the next multiple of 4
final_size = size + (4 - (size % 4));
}
std::lock_guard<std::mutex> lock(webgpu_ctx->mutex);
if (webgpu_ctx->get_tensor_staging_buf == nullptr ||
webgpu_ctx->get_tensor_staging_buf.GetSize() < final_size) {
// Create a new staging buffer if it doesn't exist or is too small
if (webgpu_ctx->get_tensor_staging_buf) {
webgpu_ctx->get_tensor_staging_buf.Destroy();
}
ggml_webgpu_create_buffer(device, webgpu_ctx->get_tensor_staging_buf, final_size,
wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::MapRead, "get_tensor_staging_buf");
}
// Copy the data from the buffer to the staging buffer
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyBufferToBuffer(buf_ctx->buffer, total_offset, webgpu_ctx->get_tensor_staging_buf, 0, final_size);
wgpu::CommandBuffer commands = encoder.Finish();
// Submit the command buffer to the queue
webgpu_ctx->queue.Submit(1, &commands);
// Map the staging buffer to read the data
ggml_backend_webgpu_map_buffer(webgpu_ctx, webgpu_ctx->get_tensor_staging_buf, wgpu::MapMode::Read, 0, final_size);
// Must specify size here since the staging buffer might be larger than the tensor size
const void * mapped_range = webgpu_ctx->get_tensor_staging_buf.GetConstMappedRange(0, final_size);
// Copy the data from the mapped range to the output buffer
std::memcpy(data, mapped_range, size);
webgpu_ctx->get_tensor_staging_buf.Unmap();
}
static void ggml_backend_webgpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_clear(" << buffer << ", " << (uint32_t) value << ")");
ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context;
ggml_backend_webgpu_buffer_memset(buf_ctx->webgpu_ctx, buf_ctx->buffer, value, 0, buffer->size);
}
static ggml_backend_buffer_i ggml_backend_webgpu_buffer_interface = {
/* .free_buffer = */ ggml_backend_webgpu_buffer_free_buffer,
/* .get_base = */ ggml_backend_webgpu_buffer_get_base,
/* .init_tensor = */ NULL, // TODO: optional, needed?
/* .memset_tensor = */ ggml_backend_webgpu_buffer_memset_tensor,
/* .set_tensor = */ ggml_backend_webgpu_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_webgpu_buffer_get_tensor,
/* .cpy_tensor = */ NULL, // TODO: optional, implement this
/* .clear = */ ggml_backend_webgpu_buffer_clear,
/* .reset = */ NULL, // TODO: optional, think it coordinates with .init_tensor
};
/* End GGML Backend Buffer Interface */
/* GGML Backend Buffer Type Interface */
static const char * ggml_backend_webgpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(buft->device->context);
return ctx->device_name.c_str();
}
static ggml_backend_buffer_t ggml_backend_webgpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_type_alloc_buffer(" << size << ")");
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(buft->device->context);
wgpu::Buffer buf;
ggml_webgpu_create_buffer(ctx->webgpu_ctx->device, buf, size,
wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst, "allocated_buffer");
ggml_backend_webgpu_buffer_context * buf_ctx = new ggml_backend_webgpu_buffer_context(ctx->webgpu_ctx, buf);
return ggml_backend_buffer_init(buft, ggml_backend_webgpu_buffer_interface, buf_ctx, size);
}
static size_t ggml_backend_webgpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(buft->device->context);
return ctx->webgpu_ctx->limits.minStorageBufferOffsetAlignment;
}
// maxBufferSize might be larger, but you can't bind more than maxStorageBufferBindingSize to a single binding.
static size_t ggml_backend_webgpu_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(buft->device->context);
return ctx->webgpu_ctx->limits.maxStorageBufferBindingSize;
}
/* End GGML Backend Buffer Type Interface */
/* GGML Backend Device Interface */
static const char * ggml_backend_webgpu_device_get_name(ggml_backend_dev_t dev) {
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(dev->context);
return ctx->device_name.c_str();
}
static const char * ggml_backend_webgpu_device_get_description(ggml_backend_dev_t dev) {
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(dev->context);
return ctx->device_desc.c_str();
}
static void ggml_backend_webgpu_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(dev->context);
// TODO: what do we actually want to return here? maxBufferSize might not be the full available memory.
*free = ctx->webgpu_ctx->limits.maxBufferSize;
*total = ctx->webgpu_ctx->limits.maxBufferSize;
}
static enum ggml_backend_dev_type ggml_backend_webgpu_device_get_type(ggml_backend_dev_t dev) {
GGML_UNUSED(dev);
return GGML_BACKEND_DEVICE_TYPE_GPU;
}
static void ggml_backend_webgpu_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
props->name = ggml_backend_webgpu_device_get_name(dev);
props->description = ggml_backend_webgpu_device_get_description(dev);
props->type = ggml_backend_webgpu_device_get_type(dev);
ggml_backend_webgpu_device_get_memory(dev, &props->memory_free, &props->memory_total);
props->caps = {
/* .async = */ false,
/* .host_buffer = */ false,
/* .buffer_from_host_ptr = */ false,
/* .events = */ false,
};
}
static ggml_guid_t ggml_backend_webgpu_guid(void) {
static const char * guid_str = "__ggml_webgpu :)";
return reinterpret_cast<ggml_guid_t>((void *)guid_str);
}
static void ggml_webgpu_init_memset_pipeline(webgpu_context webgpu_ctx) {
// we use the maximum workgroup size for the memset pipeline
size_t max_wg_size = webgpu_ctx->limits.maxComputeWorkgroupSizeX;
size_t max_threads = max_wg_size * webgpu_ctx->limits.maxComputeWorkgroupsPerDimension;
// Size the bytes_per_thread so that the largest buffer size can be handled
webgpu_ctx->memset_bytes_per_thread = (webgpu_ctx->limits.maxStorageBufferBindingSize + max_threads - 1) / max_threads;
std::vector<wgpu::ConstantEntry> constants(2);
constants[0].key = "wg_size";
constants[0].value = max_wg_size;
constants[1].key = "bytes_per_thread";
constants[1].value = webgpu_ctx->memset_bytes_per_thread;
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->memset_pipeline, wgsl_memset, "memset", constants);
ggml_webgpu_create_buffer(webgpu_ctx->device, webgpu_ctx->memset_params_dev_buf,
3 * sizeof(uint32_t), // 3 parameters: buffer size, offset, value
wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopyDst, "memset_params_dev_buf");
ggml_webgpu_create_buffer(webgpu_ctx->device, webgpu_ctx->memset_params_host_buf,
3 * sizeof(uint32_t), wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc, "memset_params_host_buf");
}
static void ggml_webgpu_init_mul_mat_pipeline(webgpu_context webgpu_ctx) {
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_mat_pipeline, wgsl_mul_mat, "mul_mat");
ggml_webgpu_create_buffer(webgpu_ctx->device, webgpu_ctx->mul_mat_params_dev_buf, WEBGPU_MUL_MAT_PARAMS_SIZE,
wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopyDst, "mul_mat_params_dev_buf");
ggml_webgpu_create_buffer(webgpu_ctx->device, webgpu_ctx->mul_mat_params_host_buf, WEBGPU_MUL_MAT_PARAMS_SIZE,
wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc, "mul_mat_params_host_buf");
}
static void ggml_webgpu_init_cpy_pipeline(webgpu_context webgpu_ctx) {
std::vector<wgpu::ConstantEntry> constants(1);
constants[0].key = "wg_size";
constants[0].value = webgpu_ctx->limits.maxComputeWorkgroupSizeX;
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->cpy_pipeline, wgsl_cpy, "cpy", constants);
ggml_webgpu_create_buffer(webgpu_ctx->device, webgpu_ctx->cpy_params_dev_buf, WEBGPU_CPY_PARAMS_SIZE,
wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopyDst, "cpy_params_dev_buf");
ggml_webgpu_create_buffer(webgpu_ctx->device, webgpu_ctx->cpy_params_host_buf, WEBGPU_CPY_PARAMS_SIZE,
wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc, "cpy_params_host_buf");
}
// TODO: Make thread safe if multiple devices are used
static ggml_backend_t ggml_backend_webgpu_device_init(ggml_backend_dev_t dev, const char * params) {
GGML_UNUSED(params);
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_device_init()");
ggml_backend_webgpu_device_context * dev_ctx = static_cast<ggml_backend_webgpu_device_context *>(dev->context);
webgpu_context webgpu_ctx = dev_ctx->webgpu_ctx;
std::lock_guard<std::mutex> lock(webgpu_ctx->mutex);
if (!webgpu_ctx->device_initialized) {
// Initialize device
wgpu::DeviceDescriptor dev_desc;
dev_desc.requiredLimits = &webgpu_ctx->limits;
dev_desc.requiredFeatures = webgpu_ctx->features.features;
dev_desc.requiredFeatureCount = webgpu_ctx->features.featureCount;
dev_desc.SetDeviceLostCallback(wgpu::CallbackMode::AllowSpontaneous,
[](const wgpu::Device& device, wgpu::DeviceLostReason reason, wgpu::StringView message) {
GGML_UNUSED(device);
GGML_LOG_ERROR("ggml_webgpu: Device lost! Reason: %d, Message: %s\n", static_cast<int>(reason), message.data);
});
dev_desc.SetUncapturedErrorCallback(
[](const wgpu::Device& device, wgpu::ErrorType reason, wgpu::StringView message) {
GGML_UNUSED(device);
GGML_LOG_ERROR("ggml_webgpu: Device error! Reason: %d, Message: %s\n", static_cast<int>(reason), message.data);
});
webgpu_ctx->instance.WaitAny(webgpu_ctx->adapter.RequestDevice(&dev_desc, wgpu::CallbackMode::WaitAnyOnly,
[webgpu_ctx](wgpu::RequestDeviceStatus status, wgpu::Device device, wgpu::StringView message) {
if (status != wgpu::RequestDeviceStatus::Success) {
GGML_LOG_ERROR("ggml_webgpu: Failed to get a device: %s\n", message.data);
return;
}
webgpu_ctx->device = device;
}),
UINT64_MAX
);
GGML_ASSERT(webgpu_ctx->device != nullptr);
// Initialize (compute) queue
webgpu_ctx->queue = webgpu_ctx->device.GetQueue();
ggml_webgpu_init_memset_pipeline(webgpu_ctx);
ggml_webgpu_init_mul_mat_pipeline(webgpu_ctx);
ggml_webgpu_init_cpy_pipeline(webgpu_ctx);
webgpu_ctx->device_initialized = true;
}
static ggml_backend_webgpu_context backend_ctx;
backend_ctx.name = GGML_WEBGPU_NAME + std::string(": ") + dev_ctx->device_name;
backend_ctx.webgpu_ctx = webgpu_ctx;
// See GGML Backend Interface section
static ggml_backend backend = {
/* .guid = */ ggml_backend_webgpu_guid(),
/* .interface = */ ggml_backend_webgpu_i,
/* .device = */ dev,
/* .context = */ &backend_ctx,
};
return &backend;
}
static ggml_backend_buffer_type_t ggml_backend_webgpu_device_get_buffer_type(ggml_backend_dev_t dev) {
// See GGML Backend Buffer Type Interface section
static struct ggml_backend_buffer_type ggml_backend_webgpu_buffer_type = {
/* .iface = */ {
/* .get_name = */ ggml_backend_webgpu_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_webgpu_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_webgpu_buffer_type_get_alignment,
/* .get_max_size = */ ggml_backend_webgpu_buffer_type_get_max_size,
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .is_host = */ NULL, // defaults to false
},
/* .device = */ dev,
/* .context = */ NULL,
};
return &ggml_backend_webgpu_buffer_type;
}
static bool ggml_backend_webgpu_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
GGML_UNUSED(dev);
return buft->iface.get_name == ggml_backend_webgpu_buffer_type_get_name;
}
static bool ggml_backend_webgpu_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
GGML_UNUSED(dev);
switch (op->op) {
case GGML_OP_NONE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
return true;
case GGML_OP_CPY:
return op->type == GGML_TYPE_F16 && op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_MUL_MAT:
return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
default:
return false;
}
}
static struct ggml_backend_device_i ggml_backend_webgpu_device_i = {
/* .get_name = */ ggml_backend_webgpu_device_get_name,
/* .get_description = */ ggml_backend_webgpu_device_get_description,
/* .get_memory = */ ggml_backend_webgpu_device_get_memory,
/* .get_type = */ ggml_backend_webgpu_device_get_type,
/* .get_props = */ ggml_backend_webgpu_device_get_props,
/* .init_backend = */ ggml_backend_webgpu_device_init,
/* .get_buffer_type = */ ggml_backend_webgpu_device_get_buffer_type,
/* .get_host_buffer_type = */ NULL,
/* .buffer_from_host_ptr = */ NULL,
/* .supports_op = */ ggml_backend_webgpu_device_supports_op,
/* .supports_buft = */ ggml_backend_webgpu_device_supports_buft,
/* .offload_op = */ NULL,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_synchronize = */ NULL,
};
/* End GGML Backend Device Interface */
/* GGML Backend Registration Interface */
static const char * ggml_backend_webgpu_reg_get_name(ggml_backend_reg_t reg) {
ggml_backend_webgpu_reg_context * ctx = static_cast<ggml_backend_webgpu_reg_context *>(reg->context);
return ctx->name;
}
static size_t ggml_backend_webgpu_reg_get_device_count(ggml_backend_reg_t reg) {
ggml_backend_webgpu_reg_context * ctx = static_cast<ggml_backend_webgpu_reg_context *>(reg->context);
return ctx->device_count;
}
// TODO: Does this need to be thread safe? Is it only called once?
// Only one device is supported for now
static ggml_backend_dev_t ggml_backend_webgpu_reg_get_device(ggml_backend_reg_t reg, size_t index) {
GGML_ASSERT(index == 0);
WEBGPU_LOG_DEBUG("ggml_backend_reg_get_device()");
ggml_backend_webgpu_reg_context * reg_ctx = static_cast<ggml_backend_webgpu_reg_context *>(reg->context);
webgpu_context ctx = reg_ctx->webgpu_ctx;
wgpu::RequestAdapterOptions options = {};
auto callback = [](wgpu::RequestAdapterStatus status, wgpu::Adapter adapter, const char *message, void *userdata) {
if (status != wgpu::RequestAdapterStatus::Success) {
GGML_LOG_ERROR("ggml_webgpu: Failed to get an adapter: %s\n", message);
return;
}
*static_cast<wgpu::Adapter *>(userdata) = adapter;
};
void *userdata = &ctx->adapter;
ctx->instance.WaitAny(ctx->instance.RequestAdapter(&options, wgpu::CallbackMode::WaitAnyOnly, callback, userdata), UINT64_MAX);
GGML_ASSERT(ctx->adapter != nullptr);
ctx->adapter.GetLimits(&ctx->limits);
ctx->adapter.GetFeatures(&ctx->features);
wgpu::AdapterInfo info{};
ctx->adapter.GetInfo(&info);
static ggml_backend_webgpu_device_context device_ctx;
device_ctx.webgpu_ctx = ctx;
device_ctx.device_name = GGML_WEBGPU_NAME;
device_ctx.device_desc = std::string(info.description.data);
GGML_LOG_INFO("ggml_webgpu: adapter_info: vendor_id: %u | vendor: %s | architecture: %s | device_id: %u | name: %s | device_desc: %s\n",
info.vendorID, info.vendor.data, info.architecture.data, info.deviceID, info.device.data, info.description.data);
// See GGML Backend Device Interface section
static ggml_backend_device device = {
/* .iface = */ ggml_backend_webgpu_device_i,
/* .reg = */ reg,
/* .context = */ &device_ctx,
};
return &device;
}
static const struct ggml_backend_reg_i ggml_backend_webgpu_reg_i = {
/* .get_name = */ ggml_backend_webgpu_reg_get_name,
/* .get_device_count = */ ggml_backend_webgpu_reg_get_device_count,
/* .get_device = */ ggml_backend_webgpu_reg_get_device,
/* .get_proc_address = */ NULL,
};
/* End GGML Backend Registration Interface */
// TODO: Does this need to be thread safe? Is it only called once?
ggml_backend_reg_t ggml_backend_webgpu_reg() {
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_reg()");
webgpu_context webgpu_ctx = std::make_shared<webgpu_context_struct>();
webgpu_ctx->device_initialized = false;
static ggml_backend_webgpu_reg_context ctx;
ctx.webgpu_ctx = webgpu_ctx;
ctx.name = GGML_WEBGPU_NAME;
ctx.device_count = 1;
wgpu::InstanceDescriptor instance_descriptor{};
std::vector<wgpu::InstanceFeatureName> instance_features = {wgpu::InstanceFeatureName::TimedWaitAny};
instance_descriptor.requiredFeatures = instance_features.data();
instance_descriptor.requiredFeatureCount = instance_features.size();
webgpu_ctx->instance = wgpu::CreateInstance(&instance_descriptor);
GGML_ASSERT(webgpu_ctx->instance != nullptr);
static ggml_backend_reg reg = {
/* .api_version = */ GGML_BACKEND_API_VERSION,
/* .iface = */ ggml_backend_webgpu_reg_i,
/* .context = */ &ctx,
};
return &reg;
}
ggml_backend_t ggml_backend_webgpu_init(void) {
ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_webgpu_reg(), 0);
return ggml_backend_webgpu_device_init(dev, nullptr);
}
GGML_BACKEND_DL_IMPL(ggml_backend_webgpu_reg)

View File

@@ -0,0 +1,60 @@
enable f16;
@group(0) @binding(0)
var<storage, read_write> src: array<f32>;
@group(0) @binding(1)
var<storage, read_write> dst: array<f16>;
struct Params {
ne: u32, // total number of elements
offset_src: u32, // in elements
offset_dst: u32, // in elements
// Strides (in elements) — may be permuted
stride_src0: u32,
stride_src1: u32,
stride_src2: u32,
stride_src3: u32,
stride_dst0: u32,
stride_dst1: u32,
stride_dst2: u32,
stride_dst3: u32,
// Logical shape (same for both tensors)
ne0: u32,
ne1: u32,
ne2: u32,
ne3: u32,
};
@group(0) @binding(2)
var<uniform> params: Params;
override wg_size: u32;
@compute @workgroup_size(wg_size)
fn main(@builtin(global_invocation_id) gid: vec3<u32>) {
if (gid.x >= params.ne) {
return;
}
var i = gid.x;
let i3 = i / (params.ne2 * params.ne1 * params.ne0);
i = i % (params.ne2 * params.ne1 * params.ne0);
let i2 = i / (params.ne1 * params.ne0);
i = i % (params.ne1 * params.ne0);
let i1 = i / params.ne0;
let i0 = i % params.ne0;
let src_idx = i0 * params.stride_src0 + i1 * params.stride_src1 +
i2 * params.stride_src2 + i3 * params.stride_src3;
let dst_idx = i0 * params.stride_dst0 + i1 * params.stride_dst1 +
i2 * params.stride_dst2 + i3 * params.stride_dst3;
dst[params.offset_dst + dst_idx] = f16(src[params.offset_src + src_idx]);
}

View File

@@ -0,0 +1,35 @@
import os
import argparse
def escape_triple_quotes(wgsl):
# Simple defense in case of embedded """
return wgsl.replace('"""', '\\"""')
def to_cpp_string_literal(varname, content):
return f'const char* wgsl_{varname} = R"({content})";\n'
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--input', required=True)
parser.add_argument('--output', required=True)
args = parser.parse_args()
with open(args.output, 'w', encoding='utf-8') as out:
out.write("// Auto-generated shader embedding \n\n")
for fname in sorted(os.listdir(args.input)):
if not fname.endswith('.wgsl'):
continue
shader_path = os.path.join(args.input, fname)
varname = os.path.splitext(fname)[0]
with open(shader_path, 'r', encoding='utf-8') as f:
content = f.read()
content = escape_triple_quotes(content)
out.write(to_cpp_string_literal(varname, content))
out.write('\n')
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,40 @@
@group(0) @binding(0)
var<storage, read_write> output_buffer: array<u32>;
struct Params {
offset: u32, // in bytes
size: u32, // in bytes
value: u32, // 4 8-bit values, which are either repeating (memset_tensor) or may be separate (cleaning up unaligned set_tensor operations)
};
@group(0) @binding(1)
var<uniform> params: Params;
override wg_size: u32;
override bytes_per_thread: u32;
@compute @workgroup_size(wg_size)
fn main(@builtin(global_invocation_id) gid: vec3<u32>) {
let i = gid.x * bytes_per_thread;
let start = params.offset;
let end = params.offset + params.size;
for (var j: u32 = 0u; j < bytes_per_thread; j = j + 1u) {
let byte_index = start + i + j;
if (byte_index + 4u <= end) {
output_buffer[(byte_index >> 2u)] = params.value;
} else {
// Handle tail (unaligned)
for (var k: u32 = 0u; k < 4u; k = k + 1u) {
let idx = byte_index + k;
if (idx < end) {
let word_idx = idx >> 2u;
let byte_offset = (idx & 3u) * 8u;
let mask = ~(0xffu << byte_offset);
let existing = output_buffer[word_idx];
output_buffer[word_idx] = (existing & mask) | ((params.value & 0xffu) << byte_offset);
}
}
}
}
}

View File

@@ -0,0 +1,56 @@
struct MulMatParams {
m: u32,
n: u32,
k: u32,
// all strides are in elements
stride_01: u32,
stride_11: u32,
stride_02: u32,
stride_12: u32,
stride_03: u32,
stride_13: u32,
bs02: u32,
bs03: u32,
broadcast2: u32,
broadcast3: u32
};
@group(0) @binding(0) var<storage, read_write> src0: array<f32>; // N rows, K columns
@group(0) @binding(1) var<storage, read_write> src1: array<f32>; // M rows, K columns (transposed)
@group(0) @binding(2) var<storage, read_write> dst: array<f32>; // M rows, N columns
@group(0) @binding(3) var<uniform> params: MulMatParams;
@compute @workgroup_size(64)
fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
let total = params.m * params.n * params.bs02 * params.broadcast2 * params.bs03 * params.broadcast3;
if (global_id.x >= total) {
return;
}
let dst2_stride = params.m * params.n;
let dst3_stride = dst2_stride * params.bs02 * params.broadcast2;
let dst3_idx = global_id.x / dst3_stride;
let src03_idx = dst3_idx / params.broadcast3; // src0 may be broadcast along the third dimension
let src13_idx = dst3_idx; // src1 is not broadcast
let dst3_rem = global_id.x % dst3_stride;
let dst2_idx = dst3_rem / dst2_stride;
let src02_idx = dst2_idx / params.broadcast2; // src0 may also be broadcast along the second dimension
let src12_idx = dst2_idx; // src1 is not broadcast
let dst2_rem = dst3_rem % dst2_stride;
let row = dst2_rem / params.n; // output row
let col = dst2_rem % params.n; // output column
var sum = 0.0;
for (var i: u32 = 0u; i < params.k; i = i + 1u) {
let src0_idx = src03_idx * params.stride_03 + src02_idx * params.stride_02 + col * params.stride_01 + i;
let src1_idx = src13_idx * params.stride_13 + src12_idx * params.stride_12 + row * params.stride_11 + i;
sum = sum + src0[src0_idx] * src1[src1_idx];
}
dst[dst3_idx * dst3_stride + dst2_idx * dst2_stride + row * params.n + col] = sum;
}

View File

@@ -3069,12 +3069,14 @@ static struct ggml_tensor * ggml_scale_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
float s,
float b,
bool inplace) {
GGML_ASSERT(ggml_is_padded_1d(a));
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, &s, sizeof(s));
float params[2] = { s, b };
ggml_set_op_params(result, &params, sizeof(params));
result->op = GGML_OP_SCALE;
result->src[0] = a;
@@ -3086,14 +3088,30 @@ struct ggml_tensor * ggml_scale(
struct ggml_context * ctx,
struct ggml_tensor * a,
float s) {
return ggml_scale_impl(ctx, a, s, false);
return ggml_scale_impl(ctx, a, s, 0.0, false);
}
struct ggml_tensor * ggml_scale_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
float s) {
return ggml_scale_impl(ctx, a, s, true);
return ggml_scale_impl(ctx, a, s, 0.0, true);
}
struct ggml_tensor * ggml_scale_bias(
struct ggml_context * ctx,
struct ggml_tensor * a,
float s,
float b) {
return ggml_scale_impl(ctx, a, s, b, false);
}
struct ggml_tensor * ggml_scale_bias_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
float s,
float b) {
return ggml_scale_impl(ctx, a, s, b, true);
}
// ggml_set
@@ -5777,7 +5795,7 @@ static void ggml_compute_backward(
} break;
case GGML_OP_MEAN: {
if (src0_needs_grads) {
ggml_add1_or_set(ctx, cgraph, isrc0, ggml_scale_impl(ctx, grad, 1.0f/src0->ne[0], false));
ggml_add1_or_set(ctx, cgraph, isrc0, ggml_scale_impl(ctx, grad, 1.0f/src0->ne[0], 0.0, false));
}
} break;
case GGML_OP_REPEAT: {
@@ -5854,7 +5872,7 @@ static void ggml_compute_backward(
if (src0_needs_grads) {
float s;
memcpy(&s, tensor->op_params, sizeof(float));
ggml_add_or_set(ctx, cgraph, isrc0, ggml_scale_impl(ctx, grad, s, false));
ggml_add_or_set(ctx, cgraph, isrc0, ggml_scale_impl(ctx, grad, s, 0.0, false));
}
} break;
case GGML_OP_SET: {

View File

@@ -187,6 +187,9 @@ class Keys:
class Classifier:
OUTPUT_LABELS = "{arch}.classifier.output_labels"
class ShortConv:
L_CACHE = "{arch}.shortconv.l_cache"
class Tokenizer:
MODEL = "tokenizer.ggml.model"
PRE = "tokenizer.ggml.pre"
@@ -314,6 +317,7 @@ class MODEL_ARCH(IntEnum):
PHI3 = auto()
PHIMOE = auto()
PLAMO = auto()
PLAMO2 = auto()
CODESHELL = auto()
ORION = auto()
INTERNLM2 = auto()
@@ -330,6 +334,7 @@ class MODEL_ARCH(IntEnum):
ARWKV7 = auto()
MAMBA = auto()
MAMBA2 = auto()
JAMBA = auto()
XVERSE = auto()
COMMAND_R = auto()
COHERE2 = auto()
@@ -351,6 +356,7 @@ class MODEL_ARCH(IntEnum):
EXAONE = auto()
GRANITE = auto()
GRANITE_MOE = auto()
GRANITE_HYBRID = auto()
CHAMELEON = auto()
WAVTOKENIZER_DEC = auto()
PLM = auto()
@@ -358,8 +364,11 @@ class MODEL_ARCH(IntEnum):
DOTS1 = auto()
ARCEE = auto()
ERNIE4_5 = auto()
ERNIE4_5_MOE = auto()
HUNYUAN_MOE = auto()
SMOLLM3 = auto()
LFM2 = auto()
DREAM = auto()
class VISION_PROJECTOR_TYPE(IntEnum):
@@ -432,7 +441,10 @@ class MODEL_TENSOR(IntEnum):
SSM_CONV1D = auto()
SSM_X = auto()
SSM_DT = auto()
SSM_DT_NORM = auto()
SSM_A = auto()
SSM_B_NORM = auto()
SSM_C_NORM = auto()
SSM_D = auto()
SSM_NORM = auto()
SSM_OUT = auto()
@@ -528,6 +540,9 @@ class MODEL_TENSOR(IntEnum):
POSNET_ATTN_K = auto()
POSNET_ATTN_V = auto()
POSNET_ATTN_OUT = auto()
SHORTCONV_CONV = auto()
SHORTCONV_INPROJ = auto()
SHORTCONV_OUTPROJ = auto()
# vision
V_MMPROJ = auto()
V_MMPROJ_FC = auto()
@@ -619,6 +634,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.PHI3: "phi3",
MODEL_ARCH.PHIMOE: "phimoe",
MODEL_ARCH.PLAMO: "plamo",
MODEL_ARCH.PLAMO2: "plamo2",
MODEL_ARCH.CODESHELL: "codeshell",
MODEL_ARCH.ORION: "orion",
MODEL_ARCH.INTERNLM2: "internlm2",
@@ -635,6 +651,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.ARWKV7: "arwkv7",
MODEL_ARCH.MAMBA: "mamba",
MODEL_ARCH.MAMBA2: "mamba2",
MODEL_ARCH.JAMBA: "jamba",
MODEL_ARCH.XVERSE: "xverse",
MODEL_ARCH.COMMAND_R: "command-r",
MODEL_ARCH.COHERE2: "cohere2",
@@ -656,6 +673,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.EXAONE: "exaone",
MODEL_ARCH.GRANITE: "granite",
MODEL_ARCH.GRANITE_MOE: "granitemoe",
MODEL_ARCH.GRANITE_HYBRID: "granitehybrid",
MODEL_ARCH.CHAMELEON: "chameleon",
MODEL_ARCH.WAVTOKENIZER_DEC: "wavtokenizer-dec",
MODEL_ARCH.PLM: "plm",
@@ -663,9 +681,12 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.DOTS1: "dots1",
MODEL_ARCH.ARCEE: "arcee",
MODEL_ARCH.ERNIE4_5: "ernie4_5",
MODEL_ARCH.ERNIE4_5_MOE: "ernie4_5-moe",
MODEL_ARCH.FALCON_H1: "falcon-h1",
MODEL_ARCH.HUNYUAN_MOE: "hunyuan-moe",
MODEL_ARCH.SMOLLM3: "smollm3",
MODEL_ARCH.LFM2: "lfm2",
MODEL_ARCH.DREAM: "dream",
}
VISION_PROJECTOR_TYPE_NAMES: dict[VISION_PROJECTOR_TYPE, str] = {
@@ -738,7 +759,10 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
MODEL_TENSOR.SSM_DT_NORM: "blk.{bid}.ssm_dt_norm",
MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
MODEL_TENSOR.SSM_B_NORM: "blk.{bid}.ssm_b_norm",
MODEL_TENSOR.SSM_C_NORM: "blk.{bid}.ssm_c_norm",
MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
MODEL_TENSOR.SSM_NORM: "blk.{bid}.ssm_norm",
MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
@@ -834,6 +858,9 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.POSNET_ATTN_K: "posnet.{bid}.attn_k",
MODEL_TENSOR.POSNET_ATTN_V: "posnet.{bid}.attn_v",
MODEL_TENSOR.POSNET_ATTN_OUT: "posnet.{bid}.attn_output",
MODEL_TENSOR.SHORTCONV_CONV: "blk.{bid}.shortconv.conv",
MODEL_TENSOR.SHORTCONV_INPROJ: "blk.{bid}.shortconv.in_proj",
MODEL_TENSOR.SHORTCONV_OUTPROJ: "blk.{bid}.shortconv.out_proj",
# vision
MODEL_TENSOR.V_MMPROJ: "mm.{bid}",
MODEL_TENSOR.V_MMPROJ_FC: "mm.model.fc",
@@ -1266,6 +1293,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.DREAM: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.QWEN2VL: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
@@ -1348,6 +1390,36 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.PLAMO2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.ATTN_POST_NORM,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_POST_NORM,
MODEL_TENSOR.SSM_IN,
MODEL_TENSOR.SSM_CONV1D,
MODEL_TENSOR.SSM_X,
MODEL_TENSOR.SSM_DT,
MODEL_TENSOR.SSM_A,
MODEL_TENSOR.SSM_D,
MODEL_TENSOR.SSM_OUT,
MODEL_TENSOR.SSM_DT_NORM,
MODEL_TENSOR.SSM_B_NORM,
MODEL_TENSOR.SSM_C_NORM,
],
MODEL_ARCH.GPT2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.POS_EMBD,
@@ -1738,6 +1810,34 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.SSM_NORM,
MODEL_TENSOR.SSM_OUT,
],
MODEL_ARCH.JAMBA: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.SSM_IN,
MODEL_TENSOR.SSM_CONV1D,
MODEL_TENSOR.SSM_X,
MODEL_TENSOR.SSM_DT,
MODEL_TENSOR.SSM_DT_NORM,
MODEL_TENSOR.SSM_A,
MODEL_TENSOR.SSM_B_NORM,
MODEL_TENSOR.SSM_C_NORM,
MODEL_TENSOR.SSM_D,
MODEL_TENSOR.SSM_OUT,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
MODEL_ARCH.XVERSE: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
@@ -1924,6 +2024,28 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_UP_SHEXP,
MODEL_TENSOR.FFN_EXP_PROBS_B,
],
MODEL_ARCH.ERNIE4_5_MOE: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.FFN_GATE_SHEXP,
MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP,
MODEL_TENSOR.FFN_EXP_PROBS_B,
],
MODEL_ARCH.PLM: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT,
@@ -2107,6 +2229,36 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_UP_SHEXP,
MODEL_TENSOR.FFN_DOWN_SHEXP,
],
MODEL_ARCH.GRANITE_HYBRID: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.SSM_IN,
MODEL_TENSOR.SSM_CONV1D,
MODEL_TENSOR.SSM_DT,
MODEL_TENSOR.SSM_A,
MODEL_TENSOR.SSM_D,
MODEL_TENSOR.SSM_NORM,
MODEL_TENSOR.SSM_OUT,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
# MoE
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.FFN_GATE_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP,
MODEL_TENSOR.FFN_DOWN_SHEXP,
# Dense
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.CHAMELEON: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
@@ -2288,6 +2440,24 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.LFM2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.TOKEN_EMBD_NORM,
MODEL_TENSOR.SHORTCONV_CONV,
MODEL_TENSOR.SHORTCONV_INPROJ,
MODEL_TENSOR.SHORTCONV_OUTPROJ,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.ATTN_NORM, # operator_norm
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
],
# TODO
}

View File

@@ -648,6 +648,9 @@ class GGUFWriter:
def add_convnext_block_count(self, length: int) -> None:
self.add_uint32(Keys.ConvNext.BLOCK_COUNT.format(arch=self.arch), length)
def add_shortconv_l_cache(self, length: int) -> None:
self.add_uint32(Keys.ShortConv.L_CACHE.format(arch=self.arch), length)
def add_block_count(self, length: int) -> None:
self.add_uint32(Keys.LLM.BLOCK_COUNT.format(arch=self.arch), length)

View File

@@ -234,6 +234,8 @@ def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None
markdown_content += '## Key Value Metadata Store\n\n'
markdown_content += f'There are {len(reader.fields)} key-value pairs in this file\n'
markdown_content += '\n'
total_model_bytes = 0
total_model_elements = 0
kv_dump_table: list[dict[str, str | int]] = []
for n, field in enumerate(reader.fields.values(), 1):
@@ -377,6 +379,8 @@ def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None
tensors = tensor_groups[group]
group_elements = sum(tensor.n_elements for tensor in tensors)
group_percentage = group_elements / total_elements * 100
total_group_bytes = 0
total_group_elements = 0
markdown_content += f"### <a name=\"{group.replace('.', '_')}\">{translate_tensor_name(group)} Tensor Group : {element_count_rounded_notation(group_elements)} Elements</a>\n\n"
# Precalculate column sizing for visual consistency
@@ -397,7 +401,13 @@ def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None
element_count_est = f"({element_count_rounded_notation(tensor.n_elements):>{prettify_element_est_count_size}})"
element_count_string = f"{element_count_est} {tensor.n_elements:>{prettify_element_count_size}}"
type_name_string = f"{tensor.tensor_type.name}"
tensor_dump_table.append({"t_id":tensor_name_to_key[tensor.name], "layer_name":tensor.name, "human_layer_name":human_friendly_name, "element_count":element_count_string, "pretty_dimension":pretty_dimension, "tensor_type":type_name_string})
if tensor.n_elements > 0:
bpw = (tensor.n_bytes * 8) / tensor.n_elements
else:
bpw = float('nan')
tensor_dump_table.append({"t_id":tensor_name_to_key[tensor.name], "layer_name":tensor.name, "human_layer_name":human_friendly_name, "element_count":element_count_string, "pretty_dimension":pretty_dimension, "tensor_type":type_name_string, "bpw": f"{bpw:.4f}"})
total_group_bytes += tensor.n_bytes
total_group_elements += tensor.n_elements
tensor_dump_table_header_map = [
{'key_name':'t_id', 'header_name':'T_ID', 'align':'right'},
@@ -406,6 +416,7 @@ def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None
{'key_name':'element_count', 'header_name':'Elements', 'align':'left'},
{'key_name':'pretty_dimension', 'header_name':'Shape', 'align':'left'},
{'key_name':'tensor_type', 'header_name':'Type', 'align':'left'},
{'key_name':'bpw', 'header_name':'BPW', 'align':'right'},
]
markdown_content += markdown_table_with_alignment_support(tensor_dump_table_header_map, tensor_dump_table)
@@ -413,8 +424,20 @@ def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None
markdown_content += "\n"
markdown_content += f"- Total elements in {group}: ({element_count_rounded_notation(group_elements):>4}) {group_elements}\n"
markdown_content += f"- Percentage of total elements: {group_percentage:.2f}%\n"
if total_group_elements > 0:
total_group_bpw = (total_group_bytes * 8) / total_group_elements
markdown_content += f"- Bits per Weight (BPW) for {group}: {total_group_bpw:.4f} bits\n"
else:
markdown_content += f"- Bits per Weight (BPW) for {group}: undefined (no elements)\n"
markdown_content += "\n\n"
total_model_bytes += total_group_bytes
total_model_elements += total_group_elements
if total_model_elements > 0:
total_model_bpw = (total_model_bytes * 8) / total_model_elements
markdown_content += f"Total BPW for {os.path.basename(args.model)}: {total_model_bpw:.4f} bits"
else:
markdown_content += f"Total BPW for {os.path.basename(args.model)}: undefined (no elements)"
print(markdown_content) # noqa: NP100

View File

@@ -13,7 +13,7 @@ class TensorNameMap:
"transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
"transformer.word_embeddings", # falcon
"word_embeddings", # bloom
"model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414
"model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414 plamo2 granite-hybrid
"tok_embeddings", # llama-pth
"embeddings.word_embeddings", # bert nomic-bert
"language_model.embedding.word_embeddings", # persimmon
@@ -50,6 +50,7 @@ class TensorNameMap:
"model.pre_ln", # rwkv7
"model.layers.0.pre_norm", # rwkv7
"backbone.norm", # wavtokenizer
"model.embedding_norm", # lfm2
),
# Position embeddings
@@ -62,7 +63,7 @@ class TensorNameMap:
# Output
MODEL_TENSOR.OUTPUT: (
"embed_out", # gptneox
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe plamo2
"output", # llama-pth bloom internlm2
"word_embeddings_for_head", # persimmon
"lm_head.linear", # phi2
@@ -76,7 +77,7 @@ class TensorNameMap:
MODEL_TENSOR.OUTPUT_NORM: (
"gpt_neox.final_layer_norm", # gptneox
"transformer.ln_f", # gpt2 gpt-j falcon jais exaone
"model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe
"model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe plamo2
"norm", # llama-pth
"transformer.norm_f", # mpt dbrx
"ln_f", # refact bloom qwen gpt2
@@ -118,13 +119,14 @@ class TensorNameMap:
"transformer.h.{bid}.input_layernorm", # falcon7b
"h.{bid}.input_layernorm", # bloom
"transformer.h.{bid}.ln_mlp", # falcon40b
"model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe
"model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe granite-hybrid
"layers.{bid}.attention_norm", # llama-pth
"language_model.encoder.layers.{bid}.input_layernorm", # persimmon
"model.layers.{bid}.ln1", # yi
"h.{bid}.ln_1", # gpt2
"transformer.h.{bid}.ln", # phi2
"model.layers.layers.{bid}.norm", # plamo
"model.layers.layers.{bid}.pre_mixer_norm", # plamo2
"model.layers.{bid}.attention_norm", # internlm2
"model.layers.{bid}.norm", # mamba-qbert
"backbone.layers.{bid}.norm", # mamba
@@ -136,6 +138,7 @@ class TensorNameMap:
"model.layers.{bid}.ln1", # rwkv7
"model.layers.{bid}.input_layernorm", # llama4
"transformer_encoder.{bid}.attention_norm", # neobert
"model.layers.{bid}.operator_norm", # lfm2
),
# Attention norm 2
@@ -161,6 +164,7 @@ class TensorNameMap:
"encoder.layers.{bid}.attn.Wqkv", # nomic-bert
"encoder.layers.{bid}.mixer.Wqkv", # jina
"model.layers.{bid}.self_attn.qkv_proj", # phi3
"model.layers.layers.{bid}.mixer.qkv_proj", # plamo2
"encoder.layers.{bid}.self_attention.query_key_value", # chatglm
"transformer.layers.{bid}.attn.qkv_proj", # openelm
"transformer_encoder.{bid}.qkv", # neobert
@@ -220,6 +224,7 @@ class TensorNameMap:
"transformer.h.{bid}.self_attention.dense", # falcon
"h.{bid}.self_attention.dense", # bloom
"model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
"model.layers.{bid}.self_attn.out_proj", # lfm2
"model.layers.{bid}.self_attn.linear_attn", # deci
"layers.{bid}.attention.wo", # llama-pth
"encoder.layer.{bid}.attention.output.dense", # bert
@@ -230,6 +235,7 @@ class TensorNameMap:
"h.{bid}.attn.c_proj", # gpt2
"transformer.h.{bid}.mixer.out_proj", # phi2
"model.layers.layers.{bid}.self_attn.o_proj", # plamo
"model.layers.layers.{bid}.mixer.o_proj", # plamo2
"model.layers.{bid}.attention.wo", # internlm2
"encoder.layers.{bid}.attn.out_proj", # nomic-bert
"encoder.layers.{bid}.mixer.out_proj", # jina
@@ -252,8 +258,9 @@ class TensorNameMap:
),
MODEL_TENSOR.ATTN_POST_NORM: (
"model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
"model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
"model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
"model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
"model.layers.layers.{bid}.post_mixer_norm.weight", # plamo2
),
# Rotary embeddings
@@ -279,8 +286,11 @@ class TensorNameMap:
"transformer.decoder_layer.{bid}.rms_norm_2", # Grok
"encoder.layers.{bid}.post_attention_layernorm", # chatglm
"transformer.layers.{bid}.ffn_norm", # openelm
"model.layers.{bid}.pre_ff_layernorm", # jamba granite-hybrid
"model.layers.{bid}.pre_moe_layernorm", # mini-jamba
"model.layers.{bid}.post_attention_layernorm", # llama4
"transformer_encoder.{bid}.ffn_norm", # neobert
"model.layers.layers.{bid}.pre_mlp_norm", # plamo2
),
# Post feed-forward norm
@@ -293,6 +303,7 @@ class TensorNameMap:
MODEL_TENSOR.FFN_POST_NORM: (
"model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
"model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
"model.layers.layers.{bid}.post_mlp_norm.weight", # plamo2
"model.layers.{bid}.feed_forward.up_proj",
),
@@ -303,7 +314,7 @@ class TensorNameMap:
"transformer.decoder_layer.{bid}.router", # Grok
"transformer.blocks.{bid}.ffn.router.layer", # dbrx
"model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
"model.layers.{bid}.feed_forward.router", # llama4
"model.layers.{bid}.feed_forward.router", # llama4 jamba
"encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
"model.layers.{bid}.mlp.gate.wg", # hunyuan
),
@@ -313,7 +324,8 @@ class TensorNameMap:
),
MODEL_TENSOR.FFN_EXP_PROBS_B: (
"model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
"model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
"model.layers.{bid}.mlp.moe_statics.e_score_correction", # ernie4.5-moe
),
# Feed-forward up
@@ -337,6 +349,7 @@ class TensorNameMap:
"model.layers.{bid}.mlp.fc1", # phi2
"model.layers.{bid}.mlp.gate_up_proj", # phi3 glm-4-0414
"model.layers.layers.{bid}.mlp.up_proj", # plamo
"model.layers.layers.{bid}.mlp.gate_up_proj", # plamo2
"model.layers.{bid}.feed_forward.w3", # internlm2
"encoder.layers.{bid}.mlp.fc11", # nomic-bert
"encoder.layers.{bid}.mlp.fc1", # nomic-bert-moe
@@ -347,18 +360,18 @@ class TensorNameMap:
"model.layers.{bid}.residual_mlp.w3", # arctic
"encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
"transformer.h.{bid}.mlp.c_fc_1", # exaone
"model.layers.{bid}.feed_forward.up_proj", # llama4
"model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid
"transformer_encoder.{bid}.ffn.w12", # neobert
),
MODEL_TENSOR.FFN_UP_EXP: (
"layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
"transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
"transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
"model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged)
"model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
"model.layers.{bid}.feed_forward.experts.up_proj", # llama4
"encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
"layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
"transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
"transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
"model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) ernie4.5-moe
"model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
"model.layers.{bid}.feed_forward.experts.up_proj", # llama4
"encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
),
MODEL_TENSOR.FFN_UP_SHEXP: (
@@ -387,16 +400,16 @@ class TensorNameMap:
"transformer.h.{bid}.mlp.linear_1", # refact
"model.layers.{bid}.residual_mlp.w1", # arctic
"transformer.h.{bid}.mlp.c_fc_0", # exaone
"model.layers.{bid}.feed_forward.gate_proj", # llama4
"model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
),
MODEL_TENSOR.FFN_GATE_EXP: (
"layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
"transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
"transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
"model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged)
"model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
"model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
"layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
"transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
"transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
"model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged) ernie4.5-moe
"model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
"model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
),
MODEL_TENSOR.FFN_GATE_SHEXP: (
@@ -433,19 +446,19 @@ class TensorNameMap:
"encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
"encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
"model.layers.h.{bid}.mlp.c_proj", # exaone
"model.layers.{bid}.feed_forward.down_proj", # llama4
"model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid
"transformer_encoder.{bid}.ffn.w3", # neobert
),
MODEL_TENSOR.FFN_DOWN_EXP: (
"layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
"transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
"transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
"model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged)
"model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
"model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
"model.layers.{bid}.feed_forward.experts.down_proj", # llama4
"encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
"layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
"transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
"transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
"model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) ernie4.5-moe
"model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
"model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
"model.layers.{bid}.feed_forward.experts.down_proj", # llama4
"encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
),
MODEL_TENSOR.FFN_DOWN_SHEXP: (
@@ -464,6 +477,7 @@ class TensorNameMap:
"transformer.blocks.{bid}.attn.q_ln", # sea-lion
"encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
"transformer.layers.{bid}.attn.q_norm", # openelm
"model.layers.layers.{bid}.mixer.q", # plamo2
),
MODEL_TENSOR.ATTN_K_NORM: (
@@ -474,6 +488,7 @@ class TensorNameMap:
"transformer.blocks.{bid}.attn.k_ln", # sea-lion
"encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
"transformer.layers.{bid}.attn.k_norm", # openelm
"model.layers.layers.{bid}.mixer.k", # plamo2
),
MODEL_TENSOR.ROPE_FREQS: (
@@ -554,49 +569,77 @@ class TensorNameMap:
),
MODEL_TENSOR.SSM_IN: (
"model.layers.{bid}.in_proj",
"backbone.layers.{bid}.mixer.in_proj",
"model.layers.{bid}.mamba.in_proj",
"model.layers.{bid}.in_proj", # mamba-hf
"backbone.layers.{bid}.mixer.in_proj", # mamba
"model.layers.{bid}.mamba.in_proj", # jamba falcon-h1 granite-hybrid
"model.layers.layers.{bid}.mixer.in_proj", # plamo2
),
MODEL_TENSOR.SSM_CONV1D: (
"model.layers.{bid}.conv1d",
"backbone.layers.{bid}.mixer.conv1d",
"model.layers.{bid}.mamba.conv1d",
"model.layers.{bid}.conv1d", # mamba-hf
"backbone.layers.{bid}.mixer.conv1d", # mamba
"model.layers.{bid}.mamba.conv1d", # jamba falcon-h1 granite-hybrid
"model.layers.layers.{bid}.mixer.conv1d", # plamo2
),
MODEL_TENSOR.SSM_X: (
"model.layers.{bid}.x_proj",
"backbone.layers.{bid}.mixer.x_proj",
"model.layers.{bid}.x_proj", # mamba-hf
"backbone.layers.{bid}.mixer.x_proj", # mamba
"model.layers.{bid}.mamba.x_proj", # jamba
"model.layers.layers.{bid}.mixer.bcdt_proj", # plamo2
),
MODEL_TENSOR.SSM_DT: (
"model.layers.{bid}.dt_proj",
"backbone.layers.{bid}.mixer.dt_proj",
"model.layers.{bid}.mamba.dt_proj",
"model.layers.{bid}.dt_proj", # mamba-hf
"backbone.layers.{bid}.mixer.dt_proj", # mamba
"model.layers.{bid}.mamba.dt_proj", # jamba falcon-h1 granite-hybrid
"model.layers.layers.{bid}.mixer.dt_proj", # plamo2
),
MODEL_TENSOR.SSM_DT_NORM: (
"model.layers.{bid}.mamba.dt_layernorm", # jamba
),
MODEL_TENSOR.SSM_A: (
"model.layers.{bid}.A_log",
"backbone.layers.{bid}.mixer.A_log",
"model.layers.{bid}.mamba.A_log",
"model.layers.{bid}.A_log", # mamba-hf
"backbone.layers.{bid}.mixer.A_log", # mamba
"model.layers.{bid}.mamba.A_log", # jamba falcon-h1 granite-hybrid
"model.layers.layers.{bid}.mixer.A_log", # plamo2
),
MODEL_TENSOR.SSM_B_NORM: (
"model.layers.{bid}.mamba.b_layernorm", # jamba
"model.layers.{bid}.mamba.B_layernorm", # mini-jamba
"model.layers.layers.{bid}.mixer.B_norm.weight", # plamo2
),
MODEL_TENSOR.SSM_C_NORM: (
"model.layers.{bid}.mamba.c_layernorm", # jamba
"model.layers.{bid}.mamba.C_layernorm", # mini-jamba
"model.layers.layers.{bid}.mixer.C_norm.weight", # plamo2
),
MODEL_TENSOR.SSM_D: (
"model.layers.{bid}.D",
"backbone.layers.{bid}.mixer.D",
"model.layers.{bid}.mamba.D",
"model.layers.{bid}.D", # mamba-hf
"backbone.layers.{bid}.mixer.D", # mamba
"model.layers.{bid}.mamba.D", # jamba falcon-h1 granite-hybrid
"model.layers.layers.{bid}.mixer.D", # plamo2
),
MODEL_TENSOR.SSM_DT_NORM: (
"model.layers.layers.{bid}.mixer.dt_norm.weight", # plamo2
),
MODEL_TENSOR.SSM_NORM: (
"model.layers.{bid}.mamba.norm", # falcon-h1
"model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid
"backbone.layers.{bid}.mixer.norm", # mamba2
),
MODEL_TENSOR.SSM_OUT: (
"model.layers.{bid}.out_proj",
"backbone.layers.{bid}.mixer.out_proj",
"model.layers.{bid}.mamba.out_proj", # falcon-h1
"model.layers.{bid}.out_proj", # mamba-hf
"backbone.layers.{bid}.mixer.out_proj", # mamba
"model.layers.{bid}.mamba.out_proj", # jamba falcon-h1 granite-hybrid
"model.layers.layers.{bid}.mixer.out_proj", # plamo2
),
MODEL_TENSOR.TIME_MIX_W0: (
@@ -998,6 +1041,18 @@ class TensorNameMap:
"backbone.posnet.{bid}.proj_out", # wavtokenizer
),
MODEL_TENSOR.SHORTCONV_CONV: (
"model.layers.{bid}.conv.conv",
),
MODEL_TENSOR.SHORTCONV_INPROJ: (
"model.layers.{bid}.conv.in_proj",
),
MODEL_TENSOR.SHORTCONV_OUTPROJ: (
"model.layers.{bid}.conv.out_proj",
),
#############################################################################
## Vision encoder

View File

@@ -71,53 +71,13 @@ extern "C" {
typedef int32_t llama_seq_id;
enum llama_vocab_type {
LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
LLAMA_VOCAB_TYPE_UGM = 4, // T5 tokenizer based on Unigram
LLAMA_VOCAB_TYPE_RWKV = 5, // RWKV tokenizer based on greedy tokenization
};
// pre-tokenization types
enum llama_vocab_pre_type {
LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
LLAMA_VOCAB_PRE_TYPE_MPT = 5,
LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
LLAMA_VOCAB_PRE_TYPE_STABLELM2 = 10,
LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11,
LLAMA_VOCAB_PRE_TYPE_OLMO = 12,
LLAMA_VOCAB_PRE_TYPE_DBRX = 13,
LLAMA_VOCAB_PRE_TYPE_SMAUG = 14,
LLAMA_VOCAB_PRE_TYPE_PORO = 15,
LLAMA_VOCAB_PRE_TYPE_CHATGLM3 = 16,
LLAMA_VOCAB_PRE_TYPE_CHATGLM4 = 17,
LLAMA_VOCAB_PRE_TYPE_VIKING = 18,
LLAMA_VOCAB_PRE_TYPE_JAIS = 19,
LLAMA_VOCAB_PRE_TYPE_TEKKEN = 20,
LLAMA_VOCAB_PRE_TYPE_SMOLLM = 21,
LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22,
LLAMA_VOCAB_PRE_TYPE_BLOOM = 23,
LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH = 24,
LLAMA_VOCAB_PRE_TYPE_EXAONE = 25,
LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26,
LLAMA_VOCAB_PRE_TYPE_MINERVA = 27,
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM = 28,
LLAMA_VOCAB_PRE_TYPE_GPT4O = 29,
LLAMA_VOCAB_PRE_TYPE_SUPERBPE = 30,
LLAMA_VOCAB_PRE_TYPE_TRILLION = 31,
LLAMA_VOCAB_PRE_TYPE_BAILINGMOE = 32,
LLAMA_VOCAB_PRE_TYPE_LLAMA4 = 33,
LLAMA_VOCAB_PRE_TYPE_PIXTRAL = 34,
LLAMA_VOCAB_PRE_TYPE_SEED_CODER = 35,
LLAMA_VOCAB_PRE_TYPE_HUNYUAN = 36,
LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
LLAMA_VOCAB_TYPE_UGM = 4, // T5 tokenizer based on Unigram
LLAMA_VOCAB_TYPE_RWKV = 5, // RWKV tokenizer based on greedy tokenization
LLAMA_VOCAB_TYPE_PLAMO2 = 6, // PLaMo-2 tokenizer based on Aho-Corasick with dynamic programming
};
enum llama_rope_type {
@@ -375,6 +335,9 @@ extern "C" {
bool swa_full; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
// NOTE: setting to false when n_seq_max > 1 can cause bad performance in some cases
// ref: https://github.com/ggml-org/llama.cpp/pull/13845#issuecomment-2924800573
bool kv_unified; // use a unified buffer across the input sequences when computing the attention
// try to disable when n_seq_max > 1 for improved performance when the sequences do not share a large prefix
// ref: https://github.com/ggml-org/llama.cpp/pull/14363
};
// model quantization parameters
@@ -765,7 +728,7 @@ extern "C" {
// - lazily on next llama_decode()
// p0 < 0 : [0, p1]
// p1 < 0 : [p0, inf)
DEPRECATED(void llama_kv_self_seq_div(
DEPRECATED(LLAMA_API void llama_kv_self_seq_div(
struct llama_context * ctx,
llama_seq_id seq_id,
llama_pos p0,
@@ -1045,6 +1008,7 @@ extern "C" {
LLAMA_API llama_token llama_vocab_sep(const struct llama_vocab * vocab); // sentence separator
LLAMA_API llama_token llama_vocab_nl (const struct llama_vocab * vocab); // next-line
LLAMA_API llama_token llama_vocab_pad(const struct llama_vocab * vocab); // padding
LLAMA_API llama_token llama_vocab_mask(const struct llama_vocab * vocab); // mask
LLAMA_API bool llama_vocab_get_add_bos(const struct llama_vocab * vocab);
LLAMA_API bool llama_vocab_get_add_eos(const struct llama_vocab * vocab);
@@ -1430,6 +1394,7 @@ extern "C" {
int32_t n_p_eval;
int32_t n_eval;
int32_t n_reused; // number of times a ggml compute graph had been reused
};
struct llama_perf_sampler_data {

View File

@@ -0,0 +1,34 @@
{%- if not add_generation_prompt is defined -%}
{%- set add_generation_prompt = true -%}
{%- endif -%}
{%- set ns = namespace(system_prompt='') -%}
{%- for message in messages -%}
{%- if message['role'] == 'system' -%}
{%- set ns.system_prompt = message['content'] -%}
{%- endif -%}
{%- endfor -%}
{{bos_token}}
{%- if ns.system_prompt != '' -%}
{{- 'System: ' + ns.system_prompt + '\n\n' -}}
{%- endif -%}
{%- for message in messages -%}
{%- if message['role'] == 'user' -%}
{{- 'User: ' + message['content']|trim + '\n\n' -}}
{%- endif -%}
{%- if message['role'] == 'assistant' and message['content'] is not none -%}
{%- set content = message['content'] -%}
{%- if '</think>' in content -%}
{%- set content = content.split('</think>')[-1] -%}
{%- endif -%}
{{- 'Assistant: ' + content|trim + '\n\n' -}}
{%- endif -%}
{%- endfor -%}
{%- if add_generation_prompt -%}
{{- 'Assistant:' -}}
{%- if enable_thinking is defined and enable_thinking is false %}
{{- ' <think>\n</think>' }}
{%- endif %}
{%- if enable_thinking is defined and enable_thinking is true %}
{{- ' <think>' }}
{%- endif %}
{%- endif -%}

View File

@@ -0,0 +1,43 @@
{%- if tools -%}
<|im_system|>tool_declare<|im_middle|>{{ tools | tojson }}<|im_end|>
{%- endif -%}
{%- for message in messages -%}
{%- if loop.first and messages[0]['role'] != 'system' -%}
<|im_system|>system<|im_middle|>You are a helpful assistant<|im_end|>
{%- endif -%}
{%- if message['role'] == 'system' -%}
<|im_system|>system<|im_middle|>
{%- elif message['role'] == 'user' -%}
<|im_user|>user<|im_middle|>
{%- elif message['role'] == 'assistant' -%}
<|im_assistant|>assistant<|im_middle|>
{%- elif message['role'] == 'tool' -%}
<|im_system|>tool<|im_middle|>
{%- endif -%}
{%- if message['role'] == 'assistant' and message.get('tool_calls') -%}
{%- if message['content'] -%}{{ message['content'] }}{%- endif -%}
<|tool_calls_section_begin|>
{%- for tool_call in message['tool_calls'] -%}
{%- set func_name = tool_call['function']['name'] -%}
{%- set formatted_id = 'functions.' + func_name + ':' + loop.index0|string -%}
<|tool_call_begin|>{{ formatted_id }}<|tool_call_argument_begin|>{{ tool_call['function']['arguments'] | tojson}}<|tool_call_end|>
{%- endfor -%}
<|tool_calls_section_end|>
{%- elif message['role'] == 'tool' -%}
## Return of {{ message.tool_call_id }}\n{{ message['content'] }}
{%- elif message['content'] is string -%}
{{ message['content'] }}
{%- elif message['content'] is not none -%}
{% for content in message['content'] -%}
{% if content['type'] == 'image' or 'image' in content or 'image_url' in content -%}
<|media_start|>image<|media_content|><|media_pad|><|media_end|>
{% else -%}
{{ content['text'] }}
{%- endif -%}
{%- endfor -%}
{%- endif -%}
<|im_end|>
{%- endfor -%}
{%- if add_generation_prompt -%}
<|im_assistant|>assistant<|im_middle|>
{%- endif -%}

View File

@@ -3,6 +3,7 @@
-r ../tools/server/tests/requirements.txt
-r ./requirements-compare-llama-bench.txt
-r ./requirements-server-bench.txt
-r ./requirements-pydantic.txt
-r ./requirements-test-tokenizer-random.txt

View File

@@ -0,0 +1,5 @@
datasets~=3.2.0
matplotlib~=3.10.0
numpy~=1.26.4
requests~=2.32.3
tqdm~=4.67.1

196
scripts/create_ops_docs.py Executable file
View File

@@ -0,0 +1,196 @@
#!/usr/bin/env python3
"""
This script parses docs/ops/*.csv and creates the ops.md, which is a table documenting supported operations on various ggml backends.
"""
import csv
import logging
import sys
from pathlib import Path
from collections import defaultdict
class DocsGenerator:
def __init__(self, ggml_root: str, output_filename: str = "ops.md"):
self.ggml_root = Path(ggml_root)
self.ops_dir = self.ggml_root / "docs" / "ops"
self.output_filename = output_filename
self.backend_support: dict[str, dict[str, list[bool]]] = defaultdict(
lambda: defaultdict(list)
)
self.all_operations: set[str] = set()
self.all_backends: set[str] = set()
self.logger = logging.getLogger(__name__)
def parse_support_files(self) -> None:
if not self.ops_dir.exists():
self.logger.warning(f"ops directory not found: {self.ops_dir}")
return
self.logger.info(f"Parsing support files from {self.ops_dir}...")
for support_file in self.ops_dir.glob("*.csv"):
self.logger.info(f" Reading: {support_file.name}")
self._parse_support_file(support_file)
def _parse_support_file(self, file_path: Path) -> None:
try:
with open(file_path, "r", newline='') as f:
reader = csv.DictReader(f)
for row in reader:
# Skip rows that don't have support mode
if row.get('test_mode') != 'support':
continue
backend_name = row.get('backend_name', '').strip()
operation = row.get('op_name', '').strip()
supported_str = row.get('error_message', '').strip() # "yes" or "no"
backend_reg_name = row.get('backend_reg_name', '').strip()
# Skip invalid or error operations
if not operation or not backend_name or operation in [
"CONTEXT_ERROR",
"BUILD_ERROR",
]:
continue
is_supported = supported_str.lower() == "yes"
# Use backend_reg_name for grouping, fallback to backend_name
backend_key = backend_reg_name if backend_reg_name else backend_name
self.all_backends.add(backend_key)
self.backend_support[backend_key][operation].append(is_supported)
self.all_operations.add(operation)
except Exception as e:
self.logger.error(f" Error parsing {file_path}: {e}")
def get_backend_support_status(self, backend: str, operation: str) -> str:
support_list = self.backend_support[backend].get(operation, [])
if not support_list:
return "unsupported"
all_supported = all(support_list)
any_supported = any(support_list)
if all_supported:
return "supported"
elif any_supported:
return "partially supported"
else:
return "unsupported"
def get_support_status(self, operation: str) -> str:
if operation not in self.all_operations:
return "unsupported"
support_count = 0
total_backends = len(self.all_backends)
for backend in self.all_backends:
if self.backend_support[backend].get(operation, False):
support_count += 1
if support_count == 0:
return "unsupported"
elif support_count == total_backends:
return "supported"
else:
return "partially supported"
def get_support_symbol(self, status: str) -> str:
symbols = {"supported": "", "partially supported": "🟡", "unsupported": ""}
return symbols.get(status, "")
def generate_markdown(self) -> str:
lines = []
lines.append("# GGML Operations")
lines.append("")
lines.append("List of GGML operations and backend support status.")
lines.append("")
lines.append("Legend:")
lines.append("- ✅ Fully supported by this backend")
lines.append("- 🟡 Partially supported by this backend")
lines.append("- ❌ Not supported by this backend")
lines.append("")
backends = sorted(self.all_backends)
header = "| Operation |"
for backend in backends:
header += f" {backend} |"
separator = "|-----------|"
for _ in backends:
separator += "------|"
lines.append(header)
lines.append(separator)
sorted_operations = sorted(self.all_operations)
for operation in sorted_operations:
row = f"| {operation:>32} |"
for backend in backends:
status = self.get_backend_support_status(backend, operation)
if status == "supported":
symbol = ""
elif status == "partially supported":
symbol = "🟡"
else:
symbol = ""
row += f" {symbol} |"
lines.append(row)
lines.append("")
return "\n".join(lines)
def run(self) -> None:
self.logger.info("Parsing GGML operation support files...")
self.parse_support_files()
if not self.all_operations:
self.logger.error(
"No operations found. Make sure to run test-backend-ops support --output csv > docs/ops/file.csv first."
)
return
self.logger.info(
f"Found {len(self.all_operations)} operations across {len(self.all_backends)} backends"
)
self.logger.info("Generating markdown...")
markdown_content = self.generate_markdown()
docs_dir = self.ggml_root / "docs"
docs_dir.mkdir(exist_ok=True)
ops_file = docs_dir / self.output_filename
with open(ops_file, "w") as f:
f.write(markdown_content)
self.logger.info(f"Generated: {ops_file}")
self.logger.info(f"Operations: {len(self.all_operations)}")
self.logger.info(f"Backends: {len(self.all_backends)}")
def main():
logging.basicConfig(level=logging.INFO)
if len(sys.argv) > 1:
output_filename = sys.argv[1]
else:
output_filename = "ops.md"
generator = DocsGenerator(".", output_filename)
generator.run()
if __name__ == "__main__":
main()

265
scripts/server-bench.py Executable file
View File

@@ -0,0 +1,265 @@
#!/usr/bin/env python3
import argparse
import json
import os
import random
import subprocess
from time import sleep, time
from typing import Optional, Union
import datasets
import logging
import matplotlib.pyplot as plt
import numpy as np
import requests
from tqdm.contrib.concurrent import thread_map
logging.basicConfig(level=logging.INFO, format='%(message)s')
logger = logging.getLogger("server-bench")
def get_prompts_text(dataset_name: str, n_prompts: int) -> Optional[list[str]]:
ret = []
if dataset_name.lower() == "mmlu":
logger.info("Loading MMLU dataset...")
ret = datasets.load_dataset("cais/mmlu", "all")["test"]["question"] # type: ignore
else:
return None
if n_prompts >= 0:
ret = ret[:n_prompts]
return ret
def get_prompt_lengths_rng(n_prompts: int, prompt_length_min: int, prompt_length_max: int) -> list[int]:
assert n_prompts >= 0
ret: list[int] = []
for i in range(n_prompts):
random.seed(13 * i + 0)
ret.append(random.randint(prompt_length_min, prompt_length_max))
return ret
def get_prompts_rng(prompt_lengths: list[int]) -> list[list[int]]:
return [[random.randint(100, 10000) for _ in range(pl)] for pl in prompt_lengths]
def get_server(path_server: str, path_log: Optional[str]) -> dict:
logger.info("Starting the llama.cpp server...")
hostname: str = os.environ.get("LLAMA_ARG_HOST", "127.0.0.1")
port: str = os.environ.get("LLAMA_ARG_PORT", "8080")
address: str = f"http://{hostname}:{port}"
fout = open(path_log, "w") if path_log is not None else subprocess.DEVNULL
process = subprocess.Popen([path_server], stdout=fout, stderr=subprocess.STDOUT)
n_failures: int = 0
while True:
try:
sleep(1.0)
exit_code = process.poll()
if exit_code is not None:
raise RuntimeError(f"llama.cpp server exited unexpectedly with exit code {exit_code}, see {path_log}")
response = requests.get(f"{address}/health")
if response.status_code == 200:
break
except requests.ConnectionError:
n_failures += 1
if n_failures >= 10:
raise RuntimeError("llama.cpp server is not healthy after 10 seconds")
return {"process": process, "address": address, "fout": fout}
def get_prompt_length(data: dict) -> int:
session = data["session"]
server_address: str = data["server_address"]
response = session.post(
f"{server_address}/apply-template",
json={"messages": [{"role": "user", "content": data["prompt"], "stream": True}]}
)
if response.status_code != 200:
raise RuntimeError(f"Server returned status code {response.status_code}: {response.text}")
prompt: str = json.loads(response.text)["prompt"]
response = session.post(
f"{server_address}/tokenize",
json={"content": prompt, "add_special": True}
)
if response.status_code != 200:
raise RuntimeError(f"Server returned status code {response.status_code}: {response.text}")
tokens: list[str] = json.loads(response.text)["tokens"]
return len(tokens)
def send_prompt(data: dict) -> tuple[float, list[float]]:
session = data["session"]
server_address: str = data["server_address"]
t_submit = time()
if data["synthetic_prompt"]:
json_data: dict = {
"prompt": data["prompt"], "ignore_eos": True, "cache_prompt": False,
"seed": data["seed"], "n_predict": data["n_predict"], "stream": True}
response = session.post(f"{server_address}/completion", json=json_data, stream=True)
else:
response = session.post(
f"{server_address}/apply-template",
json={"messages": [{"role": "user", "content": data["prompt"], "stream": True}]}
)
if response.status_code != 200:
raise RuntimeError(f"Server returned status code {response.status_code}: {response.text}")
prompt: str = json.loads(response.text)["prompt"]
json_data: dict = {"prompt": prompt, "seed": data["seed"], "n_predict": data["n_predict"], "stream": True}
response = session.post(f"{server_address}/completion", json=json_data, stream=True)
token_arrival_times: list[float] = []
for line in response.iter_lines(decode_unicode=False):
if not line.startswith(b"data: "):
continue
token_arrival_times.append(time())
token_arrival_times = token_arrival_times[:-1]
if response.status_code != 200:
raise RuntimeError(f"Server returned status code {response.status_code}: {response.text}")
return (t_submit, token_arrival_times)
def benchmark(path_server: str, path_log: Optional[str], prompt_source: str, n_prompts: int, n_predict: int, n_predict_min: int):
if os.environ.get("LLAMA_ARG_N_PARALLEL") is None:
logger.info("LLAMA_ARG_N_PARALLEL not explicitly set, using 32")
os.environ["LLAMA_ARG_N_PARALLEL"] = "32"
if os.environ.get("LLAMA_ARG_N_GPU_LAYERS") is None:
logger.info("LLAMA_ARG_N_GPU_LAYERS not explicitly set, using 999")
os.environ["LLAMA_ARG_N_GPU_LAYERS"] = "999"
if os.environ.get("LLAMA_ARG_FLASH_ATTN") is None:
logger.info("LLAMA_ARG_FLASH_ATTN not explicitly set, using 'true'")
os.environ["LLAMA_ARG_FLASH_ATTN"] = "true"
parallel: int = int(os.environ.get("LLAMA_ARG_N_PARALLEL", 1))
prompts: Union[None, list[str], list[list[int]]] = get_prompts_text(prompt_source, n_prompts)
synthetic_prompts: bool = prompts is None
prompt_n = []
if synthetic_prompts:
prompt_source_split: list[str] = prompt_source.split("-")
assert len(prompt_source_split) == 3
assert prompt_source_split[0].lower() == "rng"
prompt_length_min: int = int(prompt_source_split[1])
prompt_length_max: int = int(prompt_source_split[2])
logger.info("Generating random prompts...")
prompt_n = get_prompt_lengths_rng(n_prompts, prompt_length_min, prompt_length_max)
prompts = get_prompts_rng(prompt_n)
else:
n_predict_min = n_predict
if os.environ.get("LLAMA_ARG_CTX_SIZE") is None:
context_per_slot: int = int(1.05 * (n_predict + (np.max(prompt_n) if synthetic_prompts else 2048)))
context_total: int = context_per_slot * parallel
os.environ["LLAMA_ARG_CTX_SIZE"] = str(context_total)
logger.info(f"LLAMA_ARG_CTX_SIZE not explicitly set, using {context_total} ({context_per_slot} per slot).")
server: Optional[dict] = None
session = None
try:
server = get_server(path_server, path_log)
server_address: str = server["address"]
adapter = requests.adapters.HTTPAdapter(pool_connections=parallel, pool_maxsize=parallel) # type: ignore
session = requests.Session()
session.mount("http://", adapter)
session.mount("https://", adapter)
data: list[dict] = []
for i, p in enumerate(prompts):
random.seed(13 * i + 1)
data.append({
"session": session, "server_address": server_address, "prompt": p, "synthetic_prompt": synthetic_prompts,
"n_predict": random.randint(n_predict_min, n_predict), "seed": 13 * i + 2})
if not synthetic_prompts:
logger.info("Getting the prompt lengths...")
prompt_n = [get_prompt_length(d) for d in data]
logger.info("Starting the benchmark...\n")
t0 = time()
results: list[tuple[float, list[float]]] = thread_map(send_prompt, data, max_workers=parallel, chunksize=1)
finally:
if server is not None:
server["process"].terminate()
server["process"].wait()
if session is not None:
session.close()
prompt_t = []
token_t = []
depth_sum: int = 0
for pn, (t_submit, tat) in zip(prompt_n, results):
prompt_t.append(tat[0] - t_submit)
token_t += tat
n_tokens: int = len(tat)
depth_sum += n_tokens * pn
depth_sum += n_tokens * (n_tokens + 1) // 2
assert len(token_t) > 0
prompt_n = np.array(prompt_n, dtype=np.int64)
prompt_t = np.array(prompt_t, dtype=np.float64)
token_t = np.array(token_t, dtype=np.float64)
token_t -= t0
token_t_last = np.max(token_t)
logger.info("")
logger.info(f"Benchmark duration: {token_t_last:.2f} s")
logger.info(f"Request throughput: {n_prompts / token_t_last:.2f} requests/s = {n_prompts / (token_t_last/60):.2f} requests/min")
logger.info(f"Total prompt length: {np.sum(prompt_n)} tokens")
logger.info(f"Average prompt length: {np.mean(prompt_n):.2f} tokens")
logger.info(f"Average prompt latency: {1e3 * np.mean(prompt_t):.2f} ms")
logger.info(f"Average prompt speed: {np.sum(prompt_n) / np.sum(prompt_t):.2f} tokens/s")
logger.info(f"Total generated tokens: {token_t.shape[0]}")
logger.info(f"Average generation depth: {depth_sum / token_t.shape[0]:.2f} tokens")
logger.info(f"Average total generation speed: {token_t.shape[0] / token_t_last:.2f} tokens/s")
logger.info(f"Average generation speed per slot: {token_t.shape[0] / (parallel * token_t_last):.2f} tokens/s / slot")
logger.info("")
logger.info(
"The above numbers are the speeds as observed by the Python script and may differ from the performance reported by the server, "
"particularly when the server is fast vs. the network or Python script (e.g. when serving a very small model).")
plt.figure()
plt.scatter(prompt_n, 1e3 * prompt_t, s=10.0, marker=".", alpha=0.25)
plt.xlim(0, 1.05e0 * np.max(prompt_n))
plt.ylim(0, 1.05e3 * np.max(prompt_t))
plt.xlabel("Prompt length [tokens]")
plt.ylabel("Time to first token [ms]")
plt.savefig("prompt_time.png", dpi=240)
bin_max = np.ceil(token_t_last) + 1
plt.figure()
plt.hist(token_t, np.arange(0, bin_max))
plt.xlim(0, bin_max + 1)
plt.xlabel("Time [s]")
plt.ylabel("Num. tokens generated per second")
plt.savefig("gen_rate.png", dpi=240)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Tool for benchmarking the throughput of the llama.cpp HTTP server. "
"Results are printed to console and visualized as plots (saved to current working directory). "
"To pass arguments such as the model path to the server, set the corresponding environment variables (see llama-server --help).")
parser.add_argument("--path_server", type=str, default="llama-server", help="Path to the llama.cpp server binary")
parser.add_argument("--path_log", type=str, default="server-bench.log", help="Path to the model to use for the benchmark")
parser.add_argument(
"--prompt_source", type=str, default="rng-1024-2048",
help="How to get the prompts for the benchmark, either 'mmlu' for MMLU questions or "
"rng-MIN-MAX for synthetic prompts with random lengths in the interval [MIN, MAX]")
parser.add_argument("--n_prompts", type=int, default=100, help="Number of prompts to evaluate")
parser.add_argument("--n_predict", type=int, default=2048, help="Max. number of tokens to predict per prompt")
parser.add_argument(
"--n_predict_min", type=int, default=1024,
help="Min. number of tokens to predict per prompt (supported for synthetic prompts only)")
args = parser.parse_args()
benchmark(**vars(args))

View File

@@ -1 +1 @@
0405219965324e11a29b6aadfe22a6d66131978f
d62df60a07ba3deeb85e5cfc9b1ee07645ff35e2

View File

@@ -34,6 +34,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_PHI3, "phi3" },
{ LLM_ARCH_PHIMOE, "phimoe" },
{ LLM_ARCH_PLAMO, "plamo" },
{ LLM_ARCH_PLAMO2, "plamo2" },
{ LLM_ARCH_CODESHELL, "codeshell" },
{ LLM_ARCH_ORION, "orion" },
{ LLM_ARCH_INTERNLM2, "internlm2" },
@@ -46,6 +47,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_STARCODER2, "starcoder2" },
{ LLM_ARCH_MAMBA, "mamba" },
{ LLM_ARCH_MAMBA2, "mamba2" },
{ LLM_ARCH_JAMBA, "jamba" },
{ LLM_ARCH_FALCON_H1, "falcon-h1" },
{ LLM_ARCH_XVERSE, "xverse" },
{ LLM_ARCH_COMMAND_R, "command-r" },
@@ -72,6 +74,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_ARWKV7, "arwkv7" },
{ LLM_ARCH_GRANITE, "granite" },
{ LLM_ARCH_GRANITE_MOE, "granitemoe" },
{ LLM_ARCH_GRANITE_HYBRID, "granitehybrid" },
{ LLM_ARCH_CHAMELEON, "chameleon" },
{ LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
{ LLM_ARCH_PLM, "plm" },
@@ -79,8 +82,11 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_DOTS1, "dots1" },
{ LLM_ARCH_ARCEE, "arcee" },
{ LLM_ARCH_ERNIE4_5, "ernie4_5" },
{ LLM_ARCH_ERNIE4_5_MOE, "ernie4_5-moe" },
{ LLM_ARCH_HUNYUAN_MOE, "hunyuan-moe" },
{ LLM_ARCH_SMOLLM3, "smollm3" },
{ LLM_ARCH_LFM2, "lfm2" },
{ LLM_ARCH_DREAM, "dream" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
@@ -153,7 +159,6 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
{ LLM_KV_ATTENTION_LAYER_INDICES, "%s.attention.layer_indices" },
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
{ LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" },
@@ -187,6 +192,8 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_CLASSIFIER_OUTPUT_LABELS, "%s.classifier.output_labels" },
{ LLM_KV_SHORTCONV_L_CACHE, "%s.shortconv.l_cache" },
{ LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
{ LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" },
{ LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
@@ -780,6 +787,36 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_PLAMO2,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
{ LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
{ LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
{ LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
{ LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
{ LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
{ LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
{ LLM_TENSOR_SSM_DT_NORM, "blk.%d.ssm_dt_norm" },
{ LLM_TENSOR_SSM_B_NORM, "blk.%d.ssm_b_norm" },
{ LLM_TENSOR_SSM_C_NORM, "blk.%d.ssm_c_norm" },
{ LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
},
},
{
LLM_ARCH_CODESHELL,
{
@@ -1025,6 +1062,37 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
},
},
{
LLM_ARCH_JAMBA,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
{ LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
{ LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
{ LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
{ LLM_TENSOR_SSM_DT_NORM, "blk.%d.ssm_dt_norm" },
{ LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
{ LLM_TENSOR_SSM_B_NORM, "blk.%d.ssm_b_norm" },
{ LLM_TENSOR_SSM_C_NORM, "blk.%d.ssm_c_norm" },
{ LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
{ LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{
LLM_ARCH_FALCON_H1,
{
@@ -1609,6 +1677,43 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
},
},
{
LLM_ARCH_GRANITE_HYBRID,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
// mamba(2) ssm layers
{ LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
{ LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
{ LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
{ LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
{ LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
{ LLM_TENSOR_SSM_NORM, "blk.%d.ssm_norm" },
{ LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
// attention layers
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
// dense FFN
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
// moe FFN
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
// shared expert
{ LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
{ LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
},
},
{
LLM_ARCH_CHAMELEON,
{
@@ -1721,6 +1826,31 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_ERNIE4_5_MOE,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
{ LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
{ LLM_TENSOR_FFN_EXP_PROBS_B, "blk.%d.exp_probs_b" },
},
},
{
LLM_ARCH_HUNYUAN_MOE,
{
@@ -1744,6 +1874,44 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{
LLM_ARCH_SMOLLM3,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_LFM2,
{
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_SHORTCONV_CONV, "blk.%d.shortconv.conv" },
{ LLM_TENSOR_SHORTCONV_INPROJ, "blk.%d.shortconv.in_proj" },
{ LLM_TENSOR_SHORTCONV_OUTPROJ, "blk.%d.shortconv.out_proj" },
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
}
},
{
LLM_ARCH_UNKNOWN,
{
@@ -1751,20 +1919,20 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
},
},
{
LLM_ARCH_SMOLLM3,
LLM_ARCH_DREAM,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
};
@@ -1845,6 +2013,9 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_FFN_ACT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_DIV}},
{LLM_TENSOR_SSM_CONV1D, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_SSM_CONV}},
{LLM_TENSOR_SSM_A, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_SSM_SCAN}},
{LLM_TENSOR_SSM_DT_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_SSM_B_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_SSM_C_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_SSM_D, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_SSM_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_TIME_MIX_LERP_X, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
@@ -1925,6 +2096,9 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_CONVNEXT_PW1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_CONVNEXT_PW2, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_CONVNEXT_GAMMA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_SHORTCONV_CONV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_SSM_CONV}},
{LLM_TENSOR_SHORTCONV_INPROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_SHORTCONV_OUTPROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
};
LLM_KV::LLM_KV(llm_arch arch, const char * suffix) : arch(arch), suffix(suffix) {}
@@ -1992,9 +2166,21 @@ bool llm_arch_is_recurrent(const llm_arch & arch) {
}
bool llm_arch_is_hybrid(const llm_arch & arch) {
// List all mamba-attention hybrid models here
switch (arch) {
case LLM_ARCH_JAMBA:
case LLM_ARCH_FALCON_H1:
case LLM_ARCH_PLAMO2:
case LLM_ARCH_GRANITE_HYBRID:
case LLM_ARCH_LFM2:
return true;
default:
return false;
}
}
bool llm_arch_is_diffusion(const llm_arch & arch) {
switch (arch) {
case LLM_ARCH_DREAM:
return true;
default:
return false;

Some files were not shown because too many files have changed in this diff Show More