mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-05 13:53:23 +02:00
Compare commits
60 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
9c35706b98 | ||
|
|
c76b420e4c | ||
|
|
0f5ccd6fd1 | ||
|
|
1c872f71fb | ||
|
|
baad94885d | ||
|
|
ba42794c9e | ||
|
|
2860d479b4 | ||
|
|
484b2091ce | ||
|
|
daf2dd7880 | ||
|
|
a06ed5feae | ||
|
|
784524053d | ||
|
|
d6818d06a6 | ||
|
|
e08a98826b | ||
|
|
952a47f455 | ||
|
|
36e5fe7bcd | ||
|
|
94933c8c2e | ||
|
|
c1dacaa99b | ||
|
|
a9f77a8be3 | ||
|
|
8a4a856277 | ||
|
|
11490b3672 | ||
|
|
66625a59a5 | ||
|
|
6e6725459a | ||
|
|
e9192bec56 | ||
|
|
41e78c567e | ||
|
|
ad4a700117 | ||
|
|
e32a4ec60e | ||
|
|
e228de9449 | ||
|
|
73a8e5ca03 | ||
|
|
92b8810ec7 | ||
|
|
00131d6eaf | ||
|
|
1e15bfd42c | ||
|
|
a118d80233 | ||
|
|
61550f8231 | ||
|
|
aa79524c51 | ||
|
|
b77d11179d | ||
|
|
c7aa1364fd | ||
|
|
1a67fcc306 | ||
|
|
204f2cf168 | ||
|
|
138b288b59 | ||
|
|
bbd0f91779 | ||
|
|
0a5036bee9 | ||
|
|
8ad7b3e65b | ||
|
|
bda62193b2 | ||
|
|
c556418b60 | ||
|
|
db16e2831c | ||
|
|
cd1fce6d4f | ||
|
|
00fa15fedc | ||
|
|
946b1f6859 | ||
|
|
6c6e397aff | ||
|
|
afc0e89698 | ||
|
|
a5771c9eea | ||
|
|
c35f9eaf09 | ||
|
|
1f45f2890e | ||
|
|
613c5095c3 | ||
|
|
7f97599581 | ||
|
|
bf78f5439e | ||
|
|
bbfc849274 | ||
|
|
ca0ef2dddb | ||
|
|
89d1029559 | ||
|
|
f1a4e72de5 |
130
.devops/cann.Dockerfile
Normal file
130
.devops/cann.Dockerfile
Normal file
@@ -0,0 +1,130 @@
|
||||
# ==============================================================================
|
||||
# ARGUMENTS
|
||||
# ==============================================================================
|
||||
|
||||
# Define the CANN base image for easier version updates later
|
||||
ARG CANN_BASE_IMAGE=quay.io/ascend/cann:8.1.rc1-910b-openeuler22.03-py3.10
|
||||
|
||||
# ==============================================================================
|
||||
# BUILD STAGE
|
||||
# Compile all binary files and libraries
|
||||
# ==============================================================================
|
||||
FROM ${CANN_BASE_IMAGE} AS build
|
||||
|
||||
# Define the Ascend chip model for compilation. Default is Ascend910B3
|
||||
ARG ASCEND_SOC_TYPE=Ascend910B3
|
||||
|
||||
# -- Install build dependencies --
|
||||
RUN yum install -y gcc g++ cmake make git libcurl-devel python3 python3-pip && \
|
||||
yum clean all && \
|
||||
rm -rf /var/cache/yum
|
||||
|
||||
# -- Set the working directory --
|
||||
WORKDIR /app
|
||||
|
||||
# -- Copy project files --
|
||||
COPY . .
|
||||
|
||||
# -- Set CANN environment variables (required for compilation) --
|
||||
# Using ENV instead of `source` allows environment variables to persist across the entire image layer
|
||||
ENV ASCEND_TOOLKIT_HOME=/usr/local/Ascend/ascend-toolkit/latest
|
||||
ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${LD_LIBRARY_PATH}
|
||||
ENV PATH=${ASCEND_TOOLKIT_HOME}/bin:${PATH}
|
||||
ENV ASCEND_OPP_PATH=${ASCEND_TOOLKIT_HOME}/opp
|
||||
ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/runtime/lib64/stub:$LD_LIBRARY_PATH
|
||||
# ... You can add other environment variables from the original file as needed ...
|
||||
# For brevity, only core variables are listed here. You can paste the original ENV list here.
|
||||
|
||||
# -- Build llama.cpp --
|
||||
# Use the passed ASCEND_SOC_TYPE argument and add general build options
|
||||
RUN source /usr/local/Ascend/ascend-toolkit/set_env.sh --force \
|
||||
&& \
|
||||
cmake -B build \
|
||||
-DGGML_CANN=ON \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DSOC_TYPE=${ASCEND_SOC_TYPE} \
|
||||
. && \
|
||||
cmake --build build --config Release -j$(nproc)
|
||||
|
||||
# -- Organize build artifacts for copying in later stages --
|
||||
# Create a lib directory to store all .so files
|
||||
RUN mkdir -p /app/lib && \
|
||||
find build -name "*.so" -exec cp {} /app/lib \;
|
||||
|
||||
# Create a full directory to store all executables and Python scripts
|
||||
RUN mkdir -p /app/full && \
|
||||
cp build/bin/* /app/full/ && \
|
||||
cp *.py /app/full/ && \
|
||||
cp -r gguf-py /app/full/ && \
|
||||
cp -r requirements /app/full/ && \
|
||||
cp requirements.txt /app/full/
|
||||
# If you have a tools.sh script, make sure it is copied here
|
||||
# cp .devops/tools.sh /app/full/tools.sh
|
||||
|
||||
# ==============================================================================
|
||||
# BASE STAGE
|
||||
# Create a minimal base image with CANN runtime and common libraries
|
||||
# ==============================================================================
|
||||
FROM ${CANN_BASE_IMAGE} AS base
|
||||
|
||||
# -- Install runtime dependencies --
|
||||
RUN yum install -y libgomp curl && \
|
||||
yum clean all && \
|
||||
rm -rf /var/cache/yum
|
||||
|
||||
# -- Set CANN environment variables (required for runtime) --
|
||||
ENV ASCEND_TOOLKIT_HOME=/usr/local/Ascend/ascend-toolkit/latest
|
||||
ENV LD_LIBRARY_PATH=/app:${ASCEND_TOOLKIT_HOME}/lib64:${LD_LIBRARY_PATH}
|
||||
ENV PATH=${ASCEND_TOOLKIT_HOME}/bin:${PATH}
|
||||
ENV ASCEND_OPP_PATH=${ASCEND_TOOLKIT_HOME}/opp
|
||||
# ... You can add other environment variables from the original file as needed ...
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
# Copy compiled .so files from the build stage
|
||||
COPY --from=build /app/lib/ /app
|
||||
|
||||
# ==============================================================================
|
||||
# FINAL STAGES (TARGETS)
|
||||
# ==============================================================================
|
||||
|
||||
### Target: full
|
||||
# Complete image with all tools, Python bindings, and dependencies
|
||||
# ==============================================================================
|
||||
FROM base AS full
|
||||
|
||||
COPY --from=build /app/full /app
|
||||
|
||||
# Install Python dependencies
|
||||
RUN yum install -y git python3 python3-pip && \
|
||||
pip3 install --no-cache-dir --upgrade pip setuptools wheel && \
|
||||
pip3 install --no-cache-dir -r requirements.txt && \
|
||||
yum clean all && \
|
||||
rm -rf /var/cache/yum
|
||||
|
||||
# You need to provide a tools.sh script as the entrypoint
|
||||
ENTRYPOINT ["/app/tools.sh"]
|
||||
# If there is no tools.sh, you can set the default to start the server
|
||||
# ENTRYPOINT ["/app/llama-server"]
|
||||
|
||||
### Target: light
|
||||
# Lightweight image containing only llama-cli
|
||||
# ==============================================================================
|
||||
FROM base AS light
|
||||
|
||||
COPY --from=build /app/full/llama-cli /app
|
||||
|
||||
ENTRYPOINT [ "/app/llama-cli" ]
|
||||
|
||||
### Target: server
|
||||
# Dedicated server image containing only llama-server
|
||||
# ==============================================================================
|
||||
FROM base AS server
|
||||
|
||||
ENV LLAMA_ARG_HOST=0.0.0.0
|
||||
|
||||
COPY --from=build /app/full/llama-server /app
|
||||
|
||||
HEALTHCHECK --interval=5m CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
||||
|
||||
ENTRYPOINT [ "/app/llama-server" ]
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@@ -82,6 +82,7 @@ models/*
|
||||
models-mnt
|
||||
!models/.editorconfig
|
||||
!models/ggml-vocab-*.gguf*
|
||||
!models/templates
|
||||
|
||||
# Zig
|
||||
zig-out/
|
||||
|
||||
@@ -977,6 +977,10 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
|
||||
for (auto & seq_breaker : params.sampling.dry_sequence_breakers) {
|
||||
string_process_escapes(seq_breaker);
|
||||
}
|
||||
for (auto & pair : params.speculative.replacements) {
|
||||
string_process_escapes(pair.first);
|
||||
string_process_escapes(pair.second);
|
||||
}
|
||||
}
|
||||
|
||||
if (!params.kv_overrides.empty()) {
|
||||
@@ -2091,6 +2095,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.no_kv_offload = true;
|
||||
}
|
||||
).set_env("LLAMA_ARG_NO_KV_OFFLOAD"));
|
||||
add_opt(common_arg(
|
||||
{"-nr", "--no-repack"},
|
||||
"disable weight repacking",
|
||||
[](common_params & params) {
|
||||
params.no_extra_bufts = true;
|
||||
}
|
||||
).set_env("LLAMA_ARG_NO_REPACK"));
|
||||
add_opt(common_arg(
|
||||
{"-ctk", "--cache-type-k"}, "TYPE",
|
||||
string_format(
|
||||
@@ -2369,6 +2380,15 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
}
|
||||
}
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"--cpu-moe"},
|
||||
"use CPU for Mixture of Experts (MoE) weights",
|
||||
[](common_params & params) {
|
||||
params.tensor_buft_overrides.push_back({"\\.ffn_up_exps\\.weight$", ggml_backend_cpu_buffer_type()});
|
||||
params.tensor_buft_overrides.push_back({"\\.ffn_down_exps\\.weight$", ggml_backend_cpu_buffer_type()});
|
||||
params.tensor_buft_overrides.push_back({"\\.ffn_gate_exps\\.weight$", ggml_backend_cpu_buffer_type()});
|
||||
}
|
||||
).set_env("LLAMA_ARG_CPU_MOE"));
|
||||
add_opt(common_arg(
|
||||
{"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
|
||||
"number of layers to store in VRAM",
|
||||
@@ -3249,6 +3269,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.speculative.model.path = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL_DRAFT"));
|
||||
add_opt(common_arg(
|
||||
{"--spec-replace"}, "TARGET", "DRAFT",
|
||||
"translate the string in TARGET into DRAFT if the draft model and main model are not compatible",
|
||||
[](common_params & params, const std::string & tgt, const std::string & dft) {
|
||||
params.speculative.replacements.push_back({ tgt, dft });
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"-ctkd", "--cache-type-k-draft"}, "TYPE",
|
||||
string_format(
|
||||
@@ -3438,28 +3465,11 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||
|
||||
// diffusion parameters
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-steps" }, "N",
|
||||
string_format("number of diffusion steps (default: %d)", params.diffusion.steps),
|
||||
[](common_params & params, int value) { params.diffusion.steps = value; }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-eps" }, "F",
|
||||
string_format("epsilon for timesteps (default: %.6f)", (double) params.diffusion.eps),
|
||||
[](common_params & params, const std::string & value) { params.diffusion.eps = std::stof(value); }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-algorithm" }, "N",
|
||||
string_format("diffusion algorithm: 0=ORIGIN, 1=MASKGIT_PLUS, 2=TOPK_MARGIN, 3=ENTROPY (default: %d)",
|
||||
params.diffusion.algorithm),
|
||||
[](common_params & params, int value) { params.diffusion.algorithm = value; }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-alg-temp" }, "F",
|
||||
string_format("algorithm temperature (default: %.3f)", (double) params.diffusion.alg_temp),
|
||||
[](common_params & params, const std::string & value) { params.diffusion.alg_temp = std::stof(value); }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-visual" },
|
||||
string_format("enable visual diffusion mode (show progressive generation) (default: %s)",
|
||||
@@ -3467,5 +3477,39 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params) { params.diffusion.visual_mode = true; }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-eps" }, "F",
|
||||
string_format("epsilon for timesteps (default: %.6f)", (double) params.diffusion.eps),
|
||||
[](common_params & params, const std::string & value) { params.diffusion.eps = std::stof(value); }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-algorithm" }, "N",
|
||||
string_format("diffusion algorithm: 0=ORIGIN, 1=ENTROPY_BASED, 2=MARGIN_BASED, 3=RANDOM, 4=LOW_CONFIDENCE (default: %d)",
|
||||
params.diffusion.algorithm),
|
||||
[](common_params & params, int value) { params.diffusion.algorithm = value; }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-alg-temp" }, "F",
|
||||
string_format("dream algorithm temperature (default: %.3f)", (double) params.diffusion.alg_temp),
|
||||
[](common_params & params, const std::string & value) { params.diffusion.alg_temp = std::stof(value); }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-block-length" }, "N",
|
||||
string_format("llada block length for generation (default: %d)", params.diffusion.block_length),
|
||||
[](common_params & params, int value) { params.diffusion.block_length = value; }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-cfg-scale" }, "F",
|
||||
string_format("llada classifier-free guidance scale (default: %.3f)", (double) params.diffusion.cfg_scale),
|
||||
[](common_params & params, const std::string & value) { params.diffusion.cfg_scale = std::stof(value); }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-add-gumbel-noise" }, "F",
|
||||
string_format("add gumbel noise to the logits if temp > 0.0 (default: %s)", params.diffusion.add_gumbel_noise ? "true" : "false"),
|
||||
[](common_params & params, const std::string & value) { params.diffusion.add_gumbel_noise = std::stof(value); }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
|
||||
|
||||
return ctx_arg;
|
||||
}
|
||||
|
||||
@@ -1944,6 +1944,8 @@ common_chat_msg common_chat_parse(const std::string & input, bool is_partial, co
|
||||
}
|
||||
}
|
||||
auto msg = builder.result();
|
||||
LOG_DBG("Parsed message: %s\n", common_chat_msgs_to_json_oaicompat<json>({msg}).at(0).dump().c_str());
|
||||
if (!is_partial) {
|
||||
LOG_DBG("Parsed message: %s\n", common_chat_msgs_to_json_oaicompat<json>({msg}).at(0).dump().c_str());
|
||||
}
|
||||
return msg;
|
||||
}
|
||||
|
||||
@@ -1122,6 +1122,7 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
|
||||
mparams.use_mmap = params.use_mmap;
|
||||
mparams.use_mlock = params.use_mlock;
|
||||
mparams.check_tensors = params.check_tensors;
|
||||
mparams.use_extra_bufts = !params.no_extra_bufts;
|
||||
|
||||
if (params.kv_overrides.empty()) {
|
||||
mparams.kv_overrides = NULL;
|
||||
|
||||
@@ -201,6 +201,7 @@ struct common_params_speculative {
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
float p_min = 0.75f; // minimum speculative decoding probability (greedy)
|
||||
std::vector<std::pair<std::string, std::string>> replacements; // main to speculative model replacements
|
||||
|
||||
ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
|
||||
ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
|
||||
@@ -220,11 +221,17 @@ struct common_params_vocoder {
|
||||
};
|
||||
|
||||
struct common_params_diffusion {
|
||||
int32_t steps = 64; // number of diffusion steps
|
||||
float eps = 1e-3f; // epsilon for timesteps
|
||||
int32_t algorithm = 0; // diffusion algorithm (0=ORIGIN, 1=MASKGIT_PLUS, 2=TOPK_MARGIN, 3=ENTROPY)
|
||||
float alg_temp = 0.0f; // algorithm temperature
|
||||
bool visual_mode = false; // show progressive diffusion on screen
|
||||
int32_t steps = 128;
|
||||
bool visual_mode = false;
|
||||
|
||||
float eps = 0; // epsilon for timesteps
|
||||
int32_t block_length = 0; // block length for generation
|
||||
|
||||
int32_t algorithm = 4; // default algorithm: low-confidence
|
||||
float alg_temp = 0.0f; // algorithm temperature
|
||||
|
||||
float cfg_scale = 0; // classifier-free guidance scale
|
||||
bool add_gumbel_noise = false; // add gumbel noise to the logits if temp > 0.0
|
||||
};
|
||||
|
||||
enum common_reasoning_format {
|
||||
@@ -352,6 +359,7 @@ struct common_params {
|
||||
bool warmup = true; // warmup run
|
||||
bool check_tensors = false; // validate tensor data
|
||||
bool no_op_offload = false; // globally disable offload host tensor operations to device
|
||||
bool no_extra_bufts = false; // disable extra buffer types (used for weight repacking)
|
||||
|
||||
bool single_turn = false; // single turn chat conversation
|
||||
|
||||
|
||||
@@ -1,30 +1,39 @@
|
||||
#include "speculative.h"
|
||||
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "log.h"
|
||||
#include "common.h"
|
||||
#include "sampling.h"
|
||||
|
||||
#include <cstring>
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
|
||||
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128
|
||||
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
|
||||
|
||||
struct common_speculative {
|
||||
struct llama_context * ctx;
|
||||
struct llama_context * ctx_tgt; // only used for retokenizing from ctx_dft
|
||||
struct llama_context * ctx_dft;
|
||||
struct common_sampler * smpl;
|
||||
|
||||
llama_batch batch;
|
||||
llama_tokens prompt;
|
||||
llama_tokens prompt_dft;
|
||||
bool vocab_dft_compatible = true; // whether retokenization is needed
|
||||
std::map<std::string, std::string> tgt_dft_replacements = {};
|
||||
};
|
||||
|
||||
struct common_speculative * common_speculative_init(
|
||||
struct llama_context * ctx_tgt,
|
||||
struct llama_context * ctx_dft) {
|
||||
auto * result = new common_speculative {
|
||||
/* .ctx = */ ctx_dft,
|
||||
/* .smpl = */ nullptr,
|
||||
/* .batch = */ llama_batch_init(llama_n_batch(ctx_dft), 0, 1),
|
||||
/* .prompt = */ {},
|
||||
/* .ctx_tgt = */ ctx_tgt,
|
||||
/* .ctx_dft = */ ctx_dft,
|
||||
/* .smpl = */ nullptr,
|
||||
/* .batch = */ llama_batch_init(llama_n_batch(ctx_dft), 0, 1),
|
||||
/* .prompt_dft = */ {},
|
||||
/* .vocab_dft_compatible = */ false,
|
||||
};
|
||||
|
||||
// TODO: optimize or pass from outside?
|
||||
@@ -59,6 +68,9 @@ struct common_speculative * common_speculative_init(
|
||||
}
|
||||
#endif
|
||||
|
||||
result->vocab_dft_compatible = common_speculative_are_compatible(ctx_tgt, ctx_dft);
|
||||
LOG_DBG("vocab_dft_compatible = %d\n", result->vocab_dft_compatible);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
@@ -75,8 +87,8 @@ void common_speculative_free(struct common_speculative * spec) {
|
||||
}
|
||||
|
||||
bool common_speculative_are_compatible(
|
||||
const struct llama_context * ctx_tgt,
|
||||
const struct llama_context * ctx_dft) {
|
||||
const struct llama_context * ctx_tgt,
|
||||
const struct llama_context * ctx_dft) {
|
||||
const struct llama_model * model_tgt = llama_get_model(ctx_tgt);
|
||||
const struct llama_model * model_dft = llama_get_model(ctx_dft);
|
||||
|
||||
@@ -90,31 +102,32 @@ bool common_speculative_are_compatible(
|
||||
LOG_DBG("%s: vocab_type dft: %d\n", __func__, vocab_type_dft);
|
||||
|
||||
if (vocab_type_tgt != vocab_type_dft) {
|
||||
LOG_ERR("%s: draft model vocab type must match target model to use speculation but "
|
||||
"vocab_type_dft = %d while vocab_type_tgt = %d\n", __func__, vocab_type_dft, vocab_type_tgt);
|
||||
LOG_DBG("%s: draft model vocab type must match target model to use speculation but ", __func__);
|
||||
LOG_DBG("vocab_type_dft = %d while vocab_type_tgt = %d\n", vocab_type_dft, vocab_type_tgt);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (llama_vocab_get_add_bos(vocab_tgt) != llama_vocab_get_add_bos(vocab_dft) ||
|
||||
if (
|
||||
llama_vocab_get_add_bos(vocab_tgt) != llama_vocab_get_add_bos(vocab_dft) ||
|
||||
llama_vocab_get_add_eos(vocab_tgt) != llama_vocab_get_add_eos(vocab_dft) ||
|
||||
llama_vocab_bos(vocab_tgt) != llama_vocab_bos(vocab_dft) ||
|
||||
llama_vocab_eos(vocab_tgt) != llama_vocab_eos(vocab_dft)) {
|
||||
LOG_ERR("%s: draft vocab special tokens must match target vocab to use speculation\n", __func__);
|
||||
LOG_ERR("%s: tgt: bos = %d (%d), eos = %d (%d)\n", __func__, llama_vocab_bos(vocab_tgt), llama_vocab_get_add_bos(vocab_tgt), llama_vocab_eos(vocab_tgt), llama_vocab_get_add_eos(vocab_tgt));
|
||||
LOG_ERR("%s: dft: bos = %d (%d), eos = %d (%d)\n", __func__, llama_vocab_bos(vocab_dft), llama_vocab_get_add_bos(vocab_dft), llama_vocab_eos(vocab_dft), llama_vocab_get_add_eos(vocab_dft));
|
||||
llama_vocab_eos(vocab_tgt) != llama_vocab_eos(vocab_dft)
|
||||
) {
|
||||
LOG_DBG("%s: draft model special tokens must match target model to use speculation\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
{
|
||||
const int n_vocab_tgt = llama_vocab_n_tokens(vocab_tgt);
|
||||
const int n_vocab_dft = llama_vocab_n_tokens(vocab_dft);
|
||||
|
||||
const int vocab_diff = std::abs(n_vocab_tgt - n_vocab_dft);
|
||||
const int vocab_diff = n_vocab_tgt > n_vocab_dft
|
||||
? n_vocab_tgt - n_vocab_dft
|
||||
: n_vocab_dft - n_vocab_tgt;
|
||||
|
||||
if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
|
||||
LOG_ERR("%s: draft model vocab must closely match target model to use speculation but "
|
||||
"target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
|
||||
__func__, n_vocab_tgt, llama_vocab_n_tokens(vocab_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
|
||||
LOG_DBG("%s: draft model vocab must closely match target model to use speculation but ", __func__);
|
||||
LOG_DBG("target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
|
||||
n_vocab_tgt, llama_vocab_n_tokens(vocab_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -122,8 +135,8 @@ bool common_speculative_are_compatible(
|
||||
const char * token_text_tgt = llama_vocab_get_text(vocab_tgt, i);
|
||||
const char * token_text_dft = llama_vocab_get_text(vocab_dft, i);
|
||||
if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
|
||||
LOG_ERR("%s: draft vocab vocab must match target vocab to use speculation but "
|
||||
"token %d content differs - target '%s', draft '%s'\n", __func__, i,
|
||||
LOG_DBG("%s: draft model vocab must match target model to use speculation but ", __func__);
|
||||
LOG_DBG("token %d content differs - target '%s', draft '%s'\n", i,
|
||||
common_token_to_piece(ctx_tgt, i).c_str(),
|
||||
common_token_to_piece(ctx_dft, i).c_str());
|
||||
return false;
|
||||
@@ -134,32 +147,93 @@ bool common_speculative_are_compatible(
|
||||
return true;
|
||||
}
|
||||
|
||||
void common_speculative_add_replacement_tgt_dft(
|
||||
struct common_speculative * spec,
|
||||
const char *source, const char *dest) {
|
||||
spec->tgt_dft_replacements[source] = dest;
|
||||
}
|
||||
|
||||
static std::string replace_to_dft(
|
||||
struct common_speculative * spec,
|
||||
const std::string& input) {
|
||||
std::string result = input;
|
||||
for (const auto & pair : spec->tgt_dft_replacements) {
|
||||
size_t pos = result.find(pair.first);
|
||||
while (pos != std::string::npos) {
|
||||
result.replace(pos, pair.first.length(), pair.second);
|
||||
pos = result.find(pair.first, pos + pair.second.length());
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
static std::string replace_to_tgt(
|
||||
struct common_speculative * spec,
|
||||
const std::string& input) {
|
||||
std::string result = input;
|
||||
for (const auto& pair : spec->tgt_dft_replacements) {
|
||||
size_t pos = result.find(pair.second);
|
||||
while (pos != std::string::npos) {
|
||||
result.replace(pos, pair.second.length(), pair.first);
|
||||
pos = result.find(pair.second, pos + pair.first.length());
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
llama_tokens common_speculative_gen_draft(
|
||||
struct common_speculative * spec,
|
||||
struct common_speculative_params params,
|
||||
const llama_tokens & prompt_tgt,
|
||||
const llama_tokens & prompt_tgt_main_model, // specified in target model vocab
|
||||
llama_token id_last) {
|
||||
auto & batch = spec->batch;
|
||||
auto & ctx = spec->ctx;
|
||||
auto & ctx_tgt = spec->ctx_tgt;
|
||||
auto & ctx_dft = spec->ctx_dft;
|
||||
auto & smpl = spec->smpl;
|
||||
auto & prompt = spec->prompt;
|
||||
auto & prompt_dft = spec->prompt_dft;
|
||||
|
||||
auto * mem = llama_get_memory(ctx);
|
||||
auto * mem_dft = llama_get_memory(ctx_dft);
|
||||
|
||||
int reuse_i = 0;
|
||||
int reuse_n = 0;
|
||||
|
||||
const int n_ctx = llama_n_ctx(ctx) - params.n_draft;
|
||||
const int n_ctx = llama_n_ctx(ctx_dft) - params.n_draft;
|
||||
|
||||
llama_tokens prompt_tgt_draft_model;
|
||||
if (!spec->vocab_dft_compatible) {
|
||||
std::string text;
|
||||
text = common_detokenize(ctx_tgt, prompt_tgt_main_model, true);
|
||||
text = replace_to_dft(spec, text);
|
||||
LOG_DBG("%s: main->draft detokenized string: '%s'\n", __func__, text.c_str());
|
||||
prompt_tgt_draft_model = common_tokenize(ctx_dft, text, false, true);
|
||||
|
||||
// convert id_last to draft vocab. llama_detokenize is called directly to avoid an allocation
|
||||
const auto * model_tgt = llama_get_model(ctx_tgt);
|
||||
const auto * vocab_tgt = llama_model_get_vocab(model_tgt);
|
||||
|
||||
int32_t n_chars = llama_detokenize(vocab_tgt, &id_last, 1, nullptr, 0, false, false);
|
||||
GGML_ASSERT(n_chars < 0 && "failed to detokenize id_last");
|
||||
text.resize(-n_chars);
|
||||
llama_detokenize(vocab_tgt, &id_last, 1, text.data(), text.size(), false, false);
|
||||
text = replace_to_dft(spec, text);
|
||||
|
||||
LOG_DBG("main->draft detokenized id_last(%d): '%s'\n", id_last, text.c_str());
|
||||
id_last = common_tokenize(ctx_dft, text, false, true)[0];
|
||||
}
|
||||
// prompt_tgt's tokens will always be compatible with ctx_dft
|
||||
const llama_tokens &prompt_tgt =
|
||||
spec->vocab_dft_compatible ? prompt_tgt_main_model : prompt_tgt_draft_model;
|
||||
|
||||
const int i_start = std::max<int>(0, (int) prompt_tgt.size() - n_ctx);
|
||||
|
||||
// reuse as much as possible from the old draft context
|
||||
// ideally, the draft context should be as big as the target context and we will always reuse the entire prompt
|
||||
for (int i = 0; i < (int) prompt.size(); ++i) {
|
||||
for (int i = 0; i < (int) prompt_dft.size(); ++i) {
|
||||
int cur = 0;
|
||||
while (i_start + cur < (int) prompt_tgt.size() &&
|
||||
i + cur < (int) prompt.size() &&
|
||||
prompt_tgt[i_start + cur] == prompt[i + cur]) {
|
||||
i + cur < (int) prompt_dft.size() &&
|
||||
prompt_tgt[i_start + cur] == prompt_dft[i + cur]) {
|
||||
cur++;
|
||||
}
|
||||
|
||||
@@ -169,21 +243,20 @@ llama_tokens common_speculative_gen_draft(
|
||||
}
|
||||
}
|
||||
|
||||
LOG_DBG("%s: reuse_i = %d, reuse_n = %d, prompt = %d\n", __func__, reuse_i, reuse_n, (int) prompt.size());
|
||||
LOG_DBG("%s: reuse_i = %d, reuse_n = %d, prompt = %d\n", __func__, reuse_i, reuse_n, (int) prompt_dft.size());
|
||||
|
||||
llama_tokens result;
|
||||
result.reserve(params.n_draft);
|
||||
|
||||
if (reuse_n == 0) {
|
||||
llama_memory_clear(mem, false);
|
||||
|
||||
prompt.clear();
|
||||
llama_memory_clear(mem_dft, false);
|
||||
prompt_dft.clear();
|
||||
} else {
|
||||
// this happens when a previous draft has been discarded (for example, due to being too small), but the
|
||||
// target model agreed with it. in this case, we simply pass back the previous results to save compute
|
||||
if (reuse_i + reuse_n < (int) prompt.size() && prompt[reuse_i + reuse_n] == id_last) {
|
||||
for (int i = reuse_i + reuse_n + 1; i < (int) prompt.size(); ++i) {
|
||||
result.push_back(prompt[i]);
|
||||
if (reuse_i + reuse_n < (int) prompt_dft.size() && prompt_dft[reuse_i + reuse_n] == id_last) {
|
||||
for (int i = reuse_i + reuse_n + 1; i < (int) prompt_dft.size(); ++i) {
|
||||
result.push_back(prompt_dft[i]);
|
||||
|
||||
if (params.n_draft <= (int) result.size()) {
|
||||
break;
|
||||
@@ -194,16 +267,15 @@ llama_tokens common_speculative_gen_draft(
|
||||
}
|
||||
|
||||
if (reuse_i > 0) {
|
||||
llama_memory_seq_rm (mem, 0, 0, reuse_i);
|
||||
llama_memory_seq_add(mem, 0, reuse_i, -1, -reuse_i);
|
||||
llama_memory_seq_rm (mem_dft, 0, 0, reuse_i);
|
||||
llama_memory_seq_add(mem_dft, 0, reuse_i, -1, -reuse_i);
|
||||
|
||||
prompt.erase(prompt.begin(), prompt.begin() + reuse_i);
|
||||
prompt_dft.erase(prompt_dft.begin(), prompt_dft.begin() + reuse_i);
|
||||
}
|
||||
|
||||
if (reuse_n < (int) prompt.size()) {
|
||||
llama_memory_seq_rm (mem, 0, reuse_n, -1);
|
||||
|
||||
prompt.erase(prompt.begin() + reuse_n, prompt.end());
|
||||
if (reuse_n < (int) prompt_dft.size()) {
|
||||
llama_memory_seq_rm (mem_dft, 0, reuse_n, -1);
|
||||
prompt_dft.erase(prompt_dft.begin() + reuse_n, prompt_dft.end());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -214,28 +286,28 @@ llama_tokens common_speculative_gen_draft(
|
||||
//LOG_DBG("i = %d, i_start = %d, reuse_n = %d, i - i_start = %d, id = %6d\n", i, i_start, reuse_n, i - i_start, prompt_tgt[i]);
|
||||
common_batch_add(batch, prompt_tgt[i], i - i_start, { 0 }, false);
|
||||
|
||||
prompt.push_back(prompt_tgt[i]);
|
||||
prompt_dft.push_back(prompt_tgt[i]);
|
||||
}
|
||||
|
||||
// we should rarely end-up here during normal decoding
|
||||
if (batch.n_tokens > 0) {
|
||||
//LOG_DBG("%s: draft prompt batch: %s\n", __func__, string_from(ctx, batch).c_str());
|
||||
|
||||
llama_decode(ctx, batch);
|
||||
llama_decode(ctx_dft, batch);
|
||||
}
|
||||
|
||||
const llama_pos n_past = prompt.size();
|
||||
const llama_pos n_past = prompt_dft.size();
|
||||
|
||||
LOG_DBG("%s: n_past = %d\n", __func__, n_past);
|
||||
|
||||
common_batch_clear(batch);
|
||||
common_batch_add (batch, id_last, n_past, { 0 }, true);
|
||||
|
||||
prompt.push_back(id_last);
|
||||
prompt_dft.push_back(id_last);
|
||||
|
||||
//LOG_DBG("%s: draft prompt: %s\n", __func__, string_from(ctx, prompt).c_str());
|
||||
LOG_DBG("%s: draft prompt: %s\n", __func__, string_from(ctx_dft, prompt_dft).c_str());
|
||||
|
||||
llama_decode(ctx, batch);
|
||||
llama_decode(ctx_dft, batch);
|
||||
|
||||
common_sampler_reset(smpl);
|
||||
|
||||
@@ -243,13 +315,13 @@ llama_tokens common_speculative_gen_draft(
|
||||
for (int i = 0; i < params.n_draft; ++i) {
|
||||
common_batch_clear(batch);
|
||||
|
||||
common_sampler_sample(smpl, ctx, 0, true);
|
||||
common_sampler_sample(smpl, ctx_dft, 0, true);
|
||||
|
||||
const auto * cur_p = common_sampler_get_candidates(smpl);
|
||||
|
||||
for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) {
|
||||
LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n",
|
||||
k, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx, cur_p->data[k].id).c_str());
|
||||
k, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx_dft, cur_p->data[k].id).c_str());
|
||||
}
|
||||
|
||||
// add drafted token for each sequence
|
||||
@@ -271,10 +343,19 @@ llama_tokens common_speculative_gen_draft(
|
||||
common_batch_add(batch, id, n_past + i + 1, { 0 }, true);
|
||||
|
||||
// evaluate the drafted tokens on the draft model
|
||||
llama_decode(ctx, batch);
|
||||
llama_decode(ctx_dft, batch);
|
||||
|
||||
prompt.push_back(id);
|
||||
prompt_dft.push_back(id);
|
||||
}
|
||||
|
||||
if (!spec->vocab_dft_compatible) {
|
||||
std::string detokenized = common_detokenize(ctx_dft, result, true);
|
||||
detokenized = replace_to_tgt(spec, detokenized);
|
||||
LOG_DBG("draft->main detokenized string: '%s'\n", detokenized.c_str());
|
||||
result = common_tokenize(ctx_tgt, detokenized, false, true);
|
||||
if (result.size() > (size_t)params.n_draft) {
|
||||
result.resize(params.n_draft);
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
@@ -12,7 +12,10 @@ struct common_speculative_params {
|
||||
float p_min = 0.75f; // min probability required to accept a token in the draft
|
||||
};
|
||||
|
||||
struct common_speculative * common_speculative_init(struct llama_context * ctx_dft);
|
||||
struct common_speculative * common_speculative_init(
|
||||
struct llama_context * ctx_tgt,
|
||||
struct llama_context * ctx_dft
|
||||
);
|
||||
|
||||
void common_speculative_free(struct common_speculative * spec);
|
||||
|
||||
@@ -20,6 +23,10 @@ bool common_speculative_are_compatible(
|
||||
const struct llama_context * ctx_tgt,
|
||||
const struct llama_context * ctx_dft);
|
||||
|
||||
void common_speculative_add_replacement_tgt_dft(
|
||||
struct common_speculative * spec,
|
||||
const char *source, const char *dest);
|
||||
|
||||
// sample up to n_draft tokens and add them to the batch using the draft model
|
||||
llama_tokens common_speculative_gen_draft(
|
||||
struct common_speculative * spec,
|
||||
|
||||
@@ -684,6 +684,9 @@ class TextModel(ModelBase):
|
||||
if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
|
||||
# ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
|
||||
res = "hunyuan"
|
||||
if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
|
||||
# ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
|
||||
res = "hunyuan-dense"
|
||||
if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
|
||||
# ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
|
||||
res = "falcon-h1"
|
||||
@@ -1900,6 +1903,7 @@ class StableLMModel(TextModel):
|
||||
"MixtralForCausalLM",
|
||||
"VLlama3ForCausalLM",
|
||||
"LlavaForConditionalGeneration",
|
||||
"VoxtralForConditionalGeneration",
|
||||
"LlamaModel")
|
||||
class LlamaModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
@@ -1912,6 +1916,11 @@ class LlamaModel(TextModel):
|
||||
self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
|
||||
|
||||
def set_vocab(self):
|
||||
path_tekken_json = self.dir_model / "tekken.json"
|
||||
path_tokenizer_json = self.dir_model / "tokenizer.json"
|
||||
if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
|
||||
return self.set_vocab_tekken()
|
||||
|
||||
try:
|
||||
self._set_vocab_sentencepiece()
|
||||
except FileNotFoundError:
|
||||
@@ -1944,6 +1953,52 @@ class LlamaModel(TextModel):
|
||||
if self.hparams.get("vocab_size", 32000) == 49152:
|
||||
self.gguf_writer.add_add_bos_token(False)
|
||||
|
||||
def set_vocab_tekken(self):
|
||||
vocab = gguf.vocab.MistralVocab(self.dir_model)
|
||||
self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
|
||||
|
||||
tokens = []
|
||||
scores = []
|
||||
toktypes = []
|
||||
|
||||
for text, score, toktype in vocab.all_tokens():
|
||||
tokens.append(text)
|
||||
scores.append(score)
|
||||
toktypes.append(toktype)
|
||||
|
||||
assert len(tokens) == vocab.vocab_size, (
|
||||
f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
|
||||
)
|
||||
|
||||
if vocab.tokenizer_type == gguf.vocab.MistralTokenizerType.tekken:
|
||||
self.gguf_writer.add_tokenizer_pre("tekken")
|
||||
self.gguf_writer.add_token_merges(
|
||||
vocab.extract_vocab_merges_from_model()
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
|
||||
)
|
||||
|
||||
self.gguf_writer.add_bos_token_id(vocab.bos_id)
|
||||
self.gguf_writer.add_eos_token_id(vocab.eos_id)
|
||||
self.gguf_writer.add_unk_token_id(vocab.unk_id)
|
||||
self.gguf_writer.add_pad_token_id(vocab.pad_id)
|
||||
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_scores(scores)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
self.gguf_writer.add_vocab_size(vocab.vocab_size)
|
||||
|
||||
self.gguf_writer.add_add_bos_token(True)
|
||||
self.gguf_writer.add_add_eos_token(False)
|
||||
|
||||
script_dir = Path(__file__).parent
|
||||
template_path = script_dir / "models/templates/unsloth-mistral-Devstral-Small-2507.jinja"
|
||||
with open(template_path, "r", encoding="utf-8") as f:
|
||||
template = f.read()
|
||||
self.gguf_writer.add_chat_template(template)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
@@ -1971,12 +2026,13 @@ class LlamaModel(TextModel):
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
n_head = self.hparams["num_attention_heads"]
|
||||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||
is_vision_tensor = "vision_tower" in name \
|
||||
is_multimodal_tensor = "vision_tower" in name \
|
||||
or "vision_model" in name \
|
||||
or "audio_tower" in name \
|
||||
or "model.connector" in name \
|
||||
or "multi_modal_projector" in name
|
||||
|
||||
if is_vision_tensor:
|
||||
if is_multimodal_tensor:
|
||||
return [] # skip vision tensors
|
||||
elif self.hf_arch == "LlamaModel":
|
||||
name = "model." + name
|
||||
@@ -2851,6 +2907,107 @@ class DreamModel(TextModel):
|
||||
yield from super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("LLaDAModelLM")
|
||||
class LLaDAModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.LLADA
|
||||
undo_permute = True
|
||||
|
||||
def get_vocab_base(self) -> tuple[list[str], list[int], str]:
|
||||
tokens: list[str] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
|
||||
|
||||
vocab_dict = tokenizer.get_vocab()
|
||||
vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
|
||||
assert max(vocab_dict.values()) < vocab_size
|
||||
|
||||
tokpre = self.get_vocab_base_pre(tokenizer)
|
||||
|
||||
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
|
||||
added_vocab = tokenizer.get_added_vocab()
|
||||
|
||||
for i in range(vocab_size):
|
||||
if i not in reverse_vocab:
|
||||
tokens.append(f"[PAD{i}]")
|
||||
toktypes.append(gguf.TokenType.UNUSED)
|
||||
elif reverse_vocab[i] in added_vocab:
|
||||
tokens.append(reverse_vocab[i])
|
||||
# Check if it's a special token - treat special tokens as CONTROL tokens
|
||||
if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
|
||||
if tokenizer.added_tokens_decoder[i].special:
|
||||
toktypes.append(gguf.TokenType.CONTROL)
|
||||
else:
|
||||
toktypes.append(gguf.TokenType.USER_DEFINED)
|
||||
else:
|
||||
# Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
|
||||
toktypes.append(gguf.TokenType.CONTROL)
|
||||
else:
|
||||
tokens.append(reverse_vocab[i])
|
||||
toktypes.append(gguf.TokenType.NORMAL)
|
||||
|
||||
return tokens, toktypes, tokpre
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_gpt2()
|
||||
|
||||
# LLaDA specific parameters
|
||||
self.gguf_writer.add_add_bos_token(True)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self._try_set_pooling_type()
|
||||
|
||||
# Add parameters similar to LlamaModel
|
||||
hparams = self.hparams
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
|
||||
if (rope_dim := hparams.get("head_dim")) is None:
|
||||
n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
|
||||
rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
|
||||
# Set context length for LLaDA
|
||||
context_length = self.hparams.get("max_sequence_length", 4096)
|
||||
self.gguf_writer.add_context_length(context_length)
|
||||
|
||||
# Set embedding length (dimension size)
|
||||
embedding_length = self.hparams.get("d_model", 4096)
|
||||
self.gguf_writer.add_embedding_length(embedding_length)
|
||||
|
||||
# Set feed forward length (MLP hidden size)
|
||||
feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
|
||||
self.gguf_writer.add_feed_forward_length(feed_forward_length)
|
||||
|
||||
# LLaDA models use non-causal attention for diffusion, similar to Dream
|
||||
self.gguf_writer.add_causal_attention(False)
|
||||
|
||||
# LLaDA models don't shift their logits
|
||||
self.gguf_writer.add_diffusion_shift_logits(False)
|
||||
|
||||
@staticmethod
|
||||
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
|
||||
if n_head_kv is not None and n_head != n_head_kv:
|
||||
n_head = n_head_kv
|
||||
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||
.swapaxes(1, 2)
|
||||
.reshape(weights.shape))
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
|
||||
n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
|
||||
|
||||
if self.undo_permute:
|
||||
if name.endswith(("q_proj.weight", "q_proj.bias")):
|
||||
data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
|
||||
if name.endswith(("k_proj.weight", "k_proj.bias")):
|
||||
data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
|
||||
|
||||
# LLaDA model tensors should be mapped directly since it's the base model
|
||||
yield from super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("Ernie4_5_ForCausalLM")
|
||||
class Ernie4_5Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.ERNIE4_5
|
||||
@@ -7231,9 +7388,10 @@ class WhisperEncoderModel(MmprojModel):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.hparams["hidden_size"] = self.hparams["d_model"]
|
||||
self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
|
||||
self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
|
||||
if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
|
||||
self.hparams["hidden_size"] = self.hparams["d_model"]
|
||||
self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
|
||||
self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
@@ -7272,9 +7430,21 @@ class UltravoxWhisperEncoderModel(WhisperEncoderModel):
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
|
||||
self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
|
||||
|
||||
|
||||
@ModelBase.register("VoxtralForConditionalGeneration")
|
||||
class VoxtralWhisperEncoderModel(WhisperEncoderModel):
|
||||
has_vision_encoder = False # no vision encoder
|
||||
has_audio_encoder = True
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
|
||||
self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
|
||||
|
||||
|
||||
@ModelBase.register("FalconH1ForCausalLM")
|
||||
class FalconH1Model(Mamba2Model):
|
||||
model_arch = gguf.MODEL_ARCH.FALCON_H1
|
||||
@@ -7386,11 +7556,6 @@ class FalconH1Model(Mamba2Model):
|
||||
class HunYuanMoEModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
# For handling tied embeddings
|
||||
self._tok_embd = None
|
||||
|
||||
def set_vocab(self):
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
|
||||
@@ -7484,9 +7649,6 @@ class HunYuanMoEModel(TextModel):
|
||||
_experts: list[dict[str, Tensor]] | None = None
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
if name == "model.embed_tokens.weight":
|
||||
self._tok_embd = data_torch.clone()
|
||||
|
||||
if name == "lm_head.weight":
|
||||
if self.hparams.get("tie_word_embeddings", False):
|
||||
logger.info("Skipping tied output layer 'lm_head.weight'")
|
||||
@@ -7531,6 +7693,98 @@ class HunYuanMoEModel(TextModel):
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@ModelBase.register("HunYuanDenseV1ForCausalLM")
|
||||
class HunYuanModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
|
||||
|
||||
def set_vocab(self):
|
||||
if (self.dir_model / "tokenizer.json").is_file():
|
||||
self._set_vocab_gpt2()
|
||||
else:
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
|
||||
|
||||
# 1. Get the pre-tokenizer identifier hash
|
||||
tokpre = self.get_vocab_base_pre(tokenizer)
|
||||
|
||||
# 2. Reverse-engineer the merges list from mergeable_ranks
|
||||
merges = []
|
||||
vocab = {}
|
||||
mergeable_ranks = tokenizer.mergeable_ranks
|
||||
for token, rank in mergeable_ranks.items():
|
||||
vocab[QwenModel.token_bytes_to_string(token)] = rank
|
||||
if len(token) == 1:
|
||||
continue
|
||||
merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
|
||||
if len(merged) == 2:
|
||||
merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
|
||||
|
||||
# 3. Generate the tokens and toktypes lists
|
||||
vocab_size = self.hparams["vocab_size"]
|
||||
assert tokenizer.vocab_size == vocab_size
|
||||
special_tokens = tokenizer.special_tokens
|
||||
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
|
||||
tokens: list[str] = []
|
||||
toktypes: list[int] = []
|
||||
for i in range(vocab_size):
|
||||
if i not in reverse_vocab:
|
||||
tokens.append(f"[PAD{i}]")
|
||||
toktypes.append(gguf.TokenType.UNUSED)
|
||||
else:
|
||||
token = reverse_vocab[i]
|
||||
tokens.append(token)
|
||||
if i in special_tokens.values():
|
||||
toktypes.append(gguf.TokenType.CONTROL)
|
||||
else:
|
||||
toktypes.append(gguf.TokenType.NORMAL)
|
||||
|
||||
# 4. Write all vocab-related fields to the GGUF writer
|
||||
self.gguf_writer.add_tokenizer_model("gpt2")
|
||||
self.gguf_writer.add_tokenizer_pre(tokpre)
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
self.gguf_writer.add_token_merges(merges)
|
||||
|
||||
# 5. Add special tokens and chat templates
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
# FIX for BOS token: Overwrite incorrect id read from config.json
|
||||
if self.hparams['hidden_size'] == 4096:
|
||||
self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
|
||||
# Rope
|
||||
rope_scaling = hparams.get("rope_scaling", {})
|
||||
if rope_scaling.get("type") == "dynamic":
|
||||
# HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
||||
# 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
|
||||
alpha = rope_scaling.get("alpha", 50)
|
||||
base = hparams.get("rope_theta", 10000.0)
|
||||
dim = hparams["head_dim"]
|
||||
scaled_base = base * (alpha ** (dim / (dim - 2)))
|
||||
self.gguf_writer.add_rope_freq_base(scaled_base)
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
|
||||
self.gguf_writer.add_rope_scaling_factor(1)
|
||||
# There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
|
||||
self.gguf_writer.add_context_length(256 * 1024) # 256k context length
|
||||
|
||||
# if any of our assumptions about the values are wrong, something has changed and this may need to be updated
|
||||
assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
|
||||
"HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
if name == "lm_head.weight":
|
||||
if self.hparams.get("tie_word_embeddings", False):
|
||||
logger.info("Skipping tied output layer 'lm_head.weight'")
|
||||
return []
|
||||
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@ModelBase.register("SmolLM3ForCausalLM")
|
||||
class SmolLM3Model(LlamaModel):
|
||||
model_arch = gguf.MODEL_ARCH.SMOLLM3
|
||||
@@ -7589,6 +7843,88 @@ class LFM2Model(TextModel):
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@ModelBase.register("SmallThinkerForCausalLM")
|
||||
class SmallThinkerModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.SMALLTHINKER
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
|
||||
self.gguf_writer.add_expert_count(n_experts)
|
||||
if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
|
||||
self.gguf_writer.add_expert_used_count(n_experts_used)
|
||||
if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
|
||||
self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
|
||||
self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
|
||||
logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
|
||||
if (self.hparams.get('moe_primary_router_apply_softmax')):
|
||||
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
|
||||
else:
|
||||
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
|
||||
# YaRN is not enabled by default
|
||||
# To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
|
||||
rope_scaling = self.hparams.get("rope_scaling") or {}
|
||||
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
||||
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
|
||||
|
||||
sliding_window_layout = self.hparams.get("sliding_window_layout")
|
||||
if sliding_window_layout:
|
||||
for i in sliding_window_layout:
|
||||
if i != 0:
|
||||
sliding_window = self.hparams.get("sliding_window_size")
|
||||
if sliding_window:
|
||||
self.gguf_writer.add_sliding_window(sliding_window)
|
||||
break
|
||||
|
||||
_experts: list[dict[str, Tensor]] | None = None
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
# process the experts separately
|
||||
if name.find("experts") != -1:
|
||||
n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
|
||||
assert bid is not None
|
||||
|
||||
if self._experts is None:
|
||||
self._experts = [{} for _ in range(self.block_count)]
|
||||
|
||||
self._experts[bid][name] = data_torch
|
||||
|
||||
if len(self._experts[bid]) >= n_experts * 3:
|
||||
tensors: list[tuple[str, Tensor]] = []
|
||||
|
||||
# merge the experts into a single 3d tensor
|
||||
for w_name in ["down", "gate", "up"]:
|
||||
datas: list[Tensor] = []
|
||||
|
||||
for xid in range(n_experts):
|
||||
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
|
||||
datas.append(self._experts[bid][ename])
|
||||
del self._experts[bid][ename]
|
||||
|
||||
data_torch = torch.stack(datas, dim=0)
|
||||
|
||||
merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
|
||||
|
||||
new_name = self.map_tensor_name(merged_name)
|
||||
|
||||
tensors.append((new_name, data_torch))
|
||||
return tensors
|
||||
else:
|
||||
return []
|
||||
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
def prepare_tensors(self):
|
||||
super().prepare_tensors()
|
||||
|
||||
if self._experts is not None:
|
||||
# flatten `list[dict[str, Tensor]]` into `list[str]`
|
||||
experts = [k for d in self._experts for k in d.keys()]
|
||||
if len(experts) > 0:
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
###### CONVERSION LOGIC ######
|
||||
|
||||
|
||||
|
||||
@@ -140,6 +140,7 @@ pre_computed_hashes = [
|
||||
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", "chkhsh": "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2"},
|
||||
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", "chkhsh": "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35"},
|
||||
{"name": "hunyuan", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tencent/Hunyuan-A13B-Instruct", "chkhsh": "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664"},
|
||||
{"name": "hunyuan-dense", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tencent/Hunyuan-4B-Instruct", "chkhsh": "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6"},
|
||||
# falcon-h1 series uses 4 different tokenizers across model sizes (0.5b - 34b), hence we need to define 4 different hashes
|
||||
{"name": "falcon-h1", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base", "chkhsh": "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6"},
|
||||
{"name": "falcon-h1", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon-H1-1B-Base", "chkhsh": "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86"},
|
||||
|
||||
@@ -310,5 +310,7 @@ Specifies the memory pool management strategy:
|
||||
|
||||
Controls automatic cleanup of the memory pool. This option is only effective when using the prio or leg memory pool strategies.
|
||||
|
||||
## TODO
|
||||
- Support more models and data types.
|
||||
### GGML_CANN_WEIGHT_NZ
|
||||
|
||||
Converting the matmul weight format from ND to NZ can significantly improve performance on the 310I DUO NPU.
|
||||
|
||||
|
||||
@@ -97,6 +97,9 @@ NOTE: some models may require large context window, for example: `-c 8192`
|
||||
# Qwen2-Audio and SeaLLM-Audio
|
||||
# note: no pre-quantized GGUF this model, as they have very poor result
|
||||
# ref: https://github.com/ggml-org/llama.cpp/pull/13760
|
||||
|
||||
# Mistral's Voxtral
|
||||
(tool_name) -hf ggml-org/Voxtral-Mini-3B-2507-GGUF
|
||||
```
|
||||
|
||||
**Mixed modalities**:
|
||||
|
||||
@@ -29,8 +29,8 @@ cmake --build build --config Release
|
||||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-o-2_6-gguf) by us)
|
||||
|
||||
```bash
|
||||
python ./tools/mtmd/minicpmv-surgery.py -m ../MiniCPM-o-2_6
|
||||
python ./tools/mtmd/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-o-2_6 --minicpmv-projector ../MiniCPM-o-2_6/minicpmv.projector --output-dir ../MiniCPM-o-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 4
|
||||
python ./tools/mtmd/legacy-models/minicpmv-surgery.py -m ../MiniCPM-o-2_6
|
||||
python ./tools/mtmd/legacy-models/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-o-2_6 --minicpmv-projector ../MiniCPM-o-2_6/minicpmv.projector --output-dir ../MiniCPM-o-2_6/ --minicpmv_version 4
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-o-2_6/model
|
||||
|
||||
# quantize int4 version
|
||||
|
||||
47
docs/multimodal/minicpmo4.0.md
Normal file
47
docs/multimodal/minicpmo4.0.md
Normal file
@@ -0,0 +1,47 @@
|
||||
## MiniCPM-o 4
|
||||
|
||||
### Prepare models and code
|
||||
|
||||
Download [MiniCPM-o-4](https://huggingface.co/openbmb/MiniCPM-o-4) PyTorch model from huggingface to "MiniCPM-o-4" folder.
|
||||
|
||||
|
||||
### Build llama.cpp
|
||||
Readme modification time: 20250206
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
cd llama.cpp
|
||||
```
|
||||
|
||||
Build llama.cpp using `CMake`:
|
||||
```bash
|
||||
cmake -B build
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
|
||||
### Usage of MiniCPM-o 4
|
||||
|
||||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-o-4-gguf) by us)
|
||||
|
||||
```bash
|
||||
python ./tools/mtmd/legacy-models/minicpmv-surgery.py -m ../MiniCPM-o-4
|
||||
python ./tools/mtmd/legacy-models/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-o-4 --minicpmv-projector ../MiniCPM-o-4/minicpmv.projector --output-dir ../MiniCPM-o-4/ --minicpmv_version 6
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-o-4/model
|
||||
|
||||
# quantize int4 version
|
||||
./build/bin/llama-quantize ../MiniCPM-o-4/model/ggml-model-f16.gguf ../MiniCPM-o-4/model/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||
```
|
||||
|
||||
|
||||
Inference on Linux or Mac
|
||||
```bash
|
||||
# run in single-turn mode
|
||||
./build/bin/llama-mtmd-cli -m ../MiniCPM-o-4/model/ggml-model-f16.gguf --mmproj ../MiniCPM-o-4/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
|
||||
# run in conversation mode
|
||||
./build/bin/llama-mtmd-cli -m ../MiniCPM-o-4/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-o-4/mmproj-model-f16.gguf
|
||||
```
|
||||
@@ -28,8 +28,8 @@ cmake --build build --config Release
|
||||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) by us)
|
||||
|
||||
```bash
|
||||
python ./tools/mtmd/minicpmv-surgery.py -m ../MiniCPM-Llama3-V-2_5
|
||||
python ./tools/mtmd/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-Llama3-V-2_5 --minicpmv-projector ../MiniCPM-Llama3-V-2_5/minicpmv.projector --output-dir ../MiniCPM-Llama3-V-2_5/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 2
|
||||
python ./tools/mtmd/legacy-models/minicpmv-surgery.py -m ../MiniCPM-Llama3-V-2_5
|
||||
python ./tools/mtmd/legacy-models/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-Llama3-V-2_5 --minicpmv-projector ../MiniCPM-Llama3-V-2_5/minicpmv.projector --output-dir ../MiniCPM-Llama3-V-2_5/ --minicpmv_version 2
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-Llama3-V-2_5/model
|
||||
|
||||
# quantize int4 version
|
||||
|
||||
@@ -28,8 +28,8 @@ cmake --build build --config Release
|
||||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf) by us)
|
||||
|
||||
```bash
|
||||
python ./tools/mtmd/minicpmv-surgery.py -m ../MiniCPM-V-2_6
|
||||
python ./tools/mtmd/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-V-2_6 --minicpmv-projector ../MiniCPM-V-2_6/minicpmv.projector --output-dir ../MiniCPM-V-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 3
|
||||
python ./tools/mtmd/legacy-models/minicpmv-surgery.py -m ../MiniCPM-V-2_6
|
||||
python ./tools/mtmd/legacy-models/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-V-2_6 --minicpmv-projector ../MiniCPM-V-2_6/minicpmv.projector --output-dir ../MiniCPM-V-2_6/ --minicpmv_version 3
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-V-2_6/model
|
||||
|
||||
# quantize int4 version
|
||||
|
||||
47
docs/multimodal/minicpmv4.0.md
Normal file
47
docs/multimodal/minicpmv4.0.md
Normal file
@@ -0,0 +1,47 @@
|
||||
## MiniCPM-V 4
|
||||
|
||||
### Prepare models and code
|
||||
|
||||
Download [MiniCPM-V-4](https://huggingface.co/openbmb/MiniCPM-V-4) PyTorch model from huggingface to "MiniCPM-V-4" folder.
|
||||
|
||||
|
||||
### Build llama.cpp
|
||||
Readme modification time: 20250206
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
cd llama.cpp
|
||||
```
|
||||
|
||||
Build llama.cpp using `CMake`:
|
||||
```bash
|
||||
cmake -B build
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
|
||||
### Usage of MiniCPM-V 4
|
||||
|
||||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-V-4-gguf) by us)
|
||||
|
||||
```bash
|
||||
python ./tools/mtmd/legacy-models/minicpmv-surgery.py -m ../MiniCPM-V-4
|
||||
python ./tools/mtmd/legacy-models/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-V-4 --minicpmv-projector ../MiniCPM-V-4/minicpmv.projector --output-dir ../MiniCPM-V-4/ --minicpmv_version 5
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-V-4/model
|
||||
|
||||
# quantize int4 version
|
||||
./build/bin/llama-quantize ../MiniCPM-V-4/model/ggml-model-f16.gguf ../MiniCPM-V-4/model/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||
```
|
||||
|
||||
|
||||
Inference on Linux or Mac
|
||||
```bash
|
||||
# run in single-turn mode
|
||||
./build/bin/llama-mtmd-cli -m ../MiniCPM-V-4/model/ggml-model-f16.gguf --mmproj ../MiniCPM-V-4/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
|
||||
# run in conversation mode
|
||||
./build/bin/llama-mtmd-cli -m ../MiniCPM-V-4/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-4/mmproj-model-f16.gguf
|
||||
```
|
||||
177
docs/ops.md
177
docs/ops.md
@@ -12,92 +12,91 @@ Legend:
|
||||
- 🟡 Partially supported by this backend
|
||||
- ❌ Not supported by this backend
|
||||
|
||||
| Operation | BLAS | CPU | CUDA | Metal |
|
||||
|-----------|------|------|------|------|
|
||||
| ABS | ❌ | ✅ | 🟡 | ❌ |
|
||||
| ACC | ❌ | ✅ | ✅ | ✅ |
|
||||
| ADD | ❌ | ✅ | ✅ | 🟡 |
|
||||
| ADD1 | ❌ | ✅ | ✅ | ❌ |
|
||||
| ARANGE | ❌ | ✅ | ✅ | ✅ |
|
||||
| ARGMAX | ❌ | ✅ | ✅ | ✅ |
|
||||
| ARGSORT | ❌ | ✅ | ✅ | ✅ |
|
||||
| CLAMP | ❌ | ✅ | ✅ | 🟡 |
|
||||
| CONCAT | ❌ | ✅ | 🟡 | ✅ |
|
||||
| CONT | ❌ | ✅ | ✅ | ✅ |
|
||||
| CONV_2D | ❌ | ✅ | ❌ | ❌ |
|
||||
| CONV_2D_DW | ❌ | ✅ | ✅ | ❌ |
|
||||
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ |
|
||||
| CONV_TRANSPOSE_2D | ❌ | ✅ | ✅ | ❌ |
|
||||
| COS | ❌ | ✅ | ✅ | 🟡 |
|
||||
| COUNT_EQUAL | ❌ | ✅ | ✅ | ❌ |
|
||||
| CPY | ❌ | 🟡 | 🟡 | 🟡 |
|
||||
| CROSS_ENTROPY_LOSS | ❌ | ✅ | ✅ | ❌ |
|
||||
| CROSS_ENTROPY_LOSS_BACK | ❌ | ✅ | ✅ | ❌ |
|
||||
| DIAG_MASK_INF | ❌ | ✅ | ✅ | 🟡 |
|
||||
| DIV | ❌ | ✅ | ✅ | 🟡 |
|
||||
| DUP | ❌ | ✅ | 🟡 | 🟡 |
|
||||
| ELU | ❌ | ✅ | 🟡 | 🟡 |
|
||||
| EXP | ❌ | ✅ | 🟡 | ❌ |
|
||||
| FLASH_ATTN_EXT | ❌ | ✅ | 🟡 | 🟡 |
|
||||
| GATED_LINEAR_ATTN | ❌ | ✅ | ✅ | ❌ |
|
||||
| GEGLU | ❌ | ✅ | ✅ | 🟡 |
|
||||
| GEGLU_ERF | ❌ | ✅ | ✅ | 🟡 |
|
||||
| GEGLU_QUICK | ❌ | ✅ | ✅ | 🟡 |
|
||||
| GELU | ❌ | ✅ | 🟡 | 🟡 |
|
||||
| GELU_ERF | ❌ | ✅ | 🟡 | 🟡 |
|
||||
| GELU_QUICK | ❌ | ✅ | 🟡 | 🟡 |
|
||||
| GET_ROWS | ❌ | ✅ | 🟡 | ✅ |
|
||||
| GET_ROWS_BACK | ❌ | 🟡 | 🟡 | ❌ |
|
||||
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ |
|
||||
| HARDSIGMOID | ❌ | ✅ | 🟡 | ❌ |
|
||||
| HARDSWISH | ❌ | ✅ | 🟡 | ❌ |
|
||||
| IM2COL | ❌ | ✅ | ✅ | 🟡 |
|
||||
| L2_NORM | ❌ | ✅ | ✅ | ✅ |
|
||||
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ |
|
||||
| LOG | ❌ | ✅ | ✅ | ❌ |
|
||||
| MEAN | ❌ | ✅ | ✅ | ✅ |
|
||||
| MUL | ❌ | ✅ | ✅ | 🟡 |
|
||||
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| MUL_MAT_ID | ❌ | ✅ | ✅ | ✅ |
|
||||
| NEG | ❌ | ✅ | 🟡 | 🟡 |
|
||||
| NORM | ❌ | ✅ | ✅ | 🟡 |
|
||||
| OPT_STEP_ADAMW | ❌ | ✅ | ✅ | ❌ |
|
||||
| OUT_PROD | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| PAD | ❌ | ✅ | ✅ | ✅ |
|
||||
| PAD_REFLECT_1D | ❌ | ✅ | ❌ | ✅ |
|
||||
| POOL_2D | ❌ | ✅ | ✅ | ✅ |
|
||||
| REGLU | ❌ | ✅ | ✅ | 🟡 |
|
||||
| RELU | ❌ | ✅ | 🟡 | 🟡 |
|
||||
| REPEAT | ❌ | ✅ | 🟡 | ✅ |
|
||||
| REPEAT_BACK | ❌ | ✅ | ✅ | ❌ |
|
||||
| RMS_NORM | ❌ | ✅ | ✅ | 🟡 |
|
||||
| RMS_NORM_BACK | ❌ | ✅ | ✅ | ❌ |
|
||||
| RMS_NORM_MUL | ❌ | ❌ | ❌ | ✅ |
|
||||
| RMS_NORM_MUL_ADD | ❌ | ✅ | ✅ | ❌ |
|
||||
| ROLL | ❌ | ✅ | ❌ | ❌ |
|
||||
| ROPE | ❌ | ✅ | ✅ | ✅ |
|
||||
| ROPE_BACK | ❌ | ✅ | ✅ | ❌ |
|
||||
| RWKV_WKV6 | ❌ | ✅ | ✅ | ✅ |
|
||||
| RWKV_WKV7 | ❌ | ✅ | ✅ | ✅ |
|
||||
| SCALE | ❌ | ✅ | ✅ | ✅ |
|
||||
| SET | ❌ | ✅ | ❌ | ✅ |
|
||||
| SET_ROWS | ❌ | 🟡 | 🟡 | 🟡 |
|
||||
| SGN | ❌ | ✅ | 🟡 | ❌ |
|
||||
| SIGMOID | ❌ | ✅ | 🟡 | 🟡 |
|
||||
| SILU | ❌ | ✅ | 🟡 | 🟡 |
|
||||
| SILU_BACK | ❌ | ✅ | ✅ | ❌ |
|
||||
| SIN | ❌ | ✅ | ✅ | 🟡 |
|
||||
| SOFT_MAX | ❌ | ✅ | ✅ | ✅ |
|
||||
| SOFT_MAX_BACK | ❌ | 🟡 | 🟡 | ❌ |
|
||||
| SQR | ❌ | ✅ | ✅ | 🟡 |
|
||||
| SQRT | ❌ | ✅ | ✅ | 🟡 |
|
||||
| SSM_CONV | ❌ | ✅ | ✅ | ✅ |
|
||||
| SSM_SCAN | ❌ | ✅ | ✅ | ✅ |
|
||||
| STEP | ❌ | ✅ | 🟡 | ❌ |
|
||||
| SUB | ❌ | ✅ | ✅ | 🟡 |
|
||||
| SUM | ❌ | ✅ | ✅ | ❌ |
|
||||
| SUM_ROWS | ❌ | ✅ | ✅ | ✅ |
|
||||
| SWIGLU | ❌ | ✅ | ✅ | 🟡 |
|
||||
| TANH | ❌ | ✅ | 🟡 | 🟡 |
|
||||
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ |
|
||||
| UPSCALE | ❌ | ✅ | ✅ | 🟡 |
|
||||
| Operation | BLAS | CANN | CPU | CUDA | Metal | OpenCL | SYCL | Vulkan |
|
||||
|-----------|------|------|------|------|------|------|------|------|
|
||||
| ABS | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| ACC | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| ADD | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
|
||||
| ADD1 | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
|
||||
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 |
|
||||
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ✅ |
|
||||
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 |
|
||||
| CONV_2D | ❌ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ✅ |
|
||||
| CONV_2D_DW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| CONV_TRANSPOSE_2D | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 |
|
||||
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| CROSS_ENTROPY_LOSS | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| CROSS_ENTROPY_LOSS_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| DIAG_MASK_INF | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
|
||||
| DIV | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
|
||||
| DUP | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 |
|
||||
| ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 |
|
||||
| GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
|
||||
| GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
|
||||
| GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
|
||||
| GEGLU_QUICK | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
|
||||
| GELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| GELU_ERF | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| GELU_QUICK | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| GET_ROWS | ❌ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 |
|
||||
| GET_ROWS_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ |
|
||||
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| HARDSIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| HARDSWISH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| IM2COL | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ |
|
||||
| L2_NORM | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| LOG | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
|
||||
| MEAN | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| MUL | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
|
||||
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| MUL_MAT_ID | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ |
|
||||
| NEG | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
|
||||
| OPT_STEP_ADAMW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ |
|
||||
| PAD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| POOL_2D | ❌ | 🟡 | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| REGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
|
||||
| RELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| REPEAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | 🟡 |
|
||||
| REPEAT_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| RMS_NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ |
|
||||
| RMS_NORM_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| RMS_NORM_MUL_ADD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| ROLL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ |
|
||||
| ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| RWKV_WKV6 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| RWKV_WKV7 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| SET | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| SET_ROWS | ❌ | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| SGN | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| SIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| SIN | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 |
|
||||
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ |
|
||||
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ✅ |
|
||||
| SQR | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 |
|
||||
| SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | ❌ |
|
||||
| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| SSM_SCAN | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| STEP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
|
||||
| SUM | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ |
|
||||
| SUM_ROWS | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| SWIGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
|
||||
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | 🟡 |
|
||||
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ |
|
||||
|
||||
14667
docs/ops/BLAS.csv
14667
docs/ops/BLAS.csv
File diff suppressed because it is too large
Load Diff
8133
docs/ops/CANN.csv
Normal file
8133
docs/ops/CANN.csv
Normal file
File diff suppressed because it is too large
Load Diff
14667
docs/ops/Metal.csv
14667
docs/ops/Metal.csv
File diff suppressed because it is too large
Load Diff
8133
docs/ops/OpenCL.csv
Normal file
8133
docs/ops/OpenCL.csv
Normal file
File diff suppressed because it is too large
Load Diff
8133
docs/ops/SYCL.csv
Normal file
8133
docs/ops/SYCL.csv
Normal file
File diff suppressed because it is too large
Load Diff
8133
docs/ops/Vulkan.csv
Normal file
8133
docs/ops/Vulkan.csv
Normal file
File diff suppressed because it is too large
Load Diff
13
examples/diffusion/README.md
Normal file
13
examples/diffusion/README.md
Normal file
@@ -0,0 +1,13 @@
|
||||
# Diffusion Text Generation
|
||||
|
||||
This directory contains implementations for Diffusion LLMs (DLLMs)
|
||||
|
||||
More Info:
|
||||
- https://github.com/ggml-org/llama.cpp/pull/14644
|
||||
- https://github.com/ggml-org/llama.cpp/pull/14771
|
||||
|
||||
|
||||
Example of using Dream architechture: `llama-diffusion-cli -m dream7b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-eps 0.001 --diffusion-algorithm 3 --diffusion-steps 256 --diffusion-visual`
|
||||
|
||||
Example of using LLaDA architechture: `llama-diffusion-cli -m llada-8b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-block-length 32 --diffusion-steps 256 --diffusion-visual`
|
||||
|
||||
@@ -5,344 +5,128 @@
|
||||
#include "log.h"
|
||||
|
||||
#include <limits.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstring>
|
||||
#include <limits>
|
||||
#include <random>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
typedef bool (*diffusion_step_callback_t)(int32_t step,
|
||||
int32_t total_steps,
|
||||
const llama_token * tokens,
|
||||
int32_t n_tokens,
|
||||
void * user_data);
|
||||
enum diffusion_algorithm { ORIGIN = 0, ENTROPY_BASED = 1, MARGIN_BASED = 2, RANDOM = 3, CONFIDENCE_BASED = 4 };
|
||||
|
||||
enum diffusion_alg {
|
||||
DIFFUSION_ALG_ORIGIN = 0,
|
||||
DIFFUSION_ALG_MASKGIT_PLUS = 1,
|
||||
DIFFUSION_ALG_TOPK_MARGIN = 2,
|
||||
DIFFUSION_ALG_ENTROPY = 3,
|
||||
// Unified transfer scheduling methods
|
||||
enum transfer_schedule {
|
||||
TIMESTEP_BASED = 0, // Dream-style: (1.0 - s/t) * remaining
|
||||
BLOCK_BASED = 1, // LLaDA-style: process in blocks with get_num_transfer_tokens
|
||||
};
|
||||
|
||||
typedef bool (*diffusion_step_callback_t)(int32_t step,
|
||||
int32_t total_steps,
|
||||
const llama_token * tokens,
|
||||
int32_t n_tokens,
|
||||
void * user_data);
|
||||
|
||||
struct diffusion_params {
|
||||
int32_t steps;
|
||||
float eps;
|
||||
float temperature;
|
||||
float top_p;
|
||||
int32_t top_k;
|
||||
llama_token mask_token_id;
|
||||
enum diffusion_alg algorithm;
|
||||
float alg_temp;
|
||||
diffusion_step_callback_t step_callback;
|
||||
void * step_callback_user_data;
|
||||
int32_t seed;
|
||||
int32_t steps = 0;
|
||||
float temperature = 0;
|
||||
llama_token mask_token_id = LLAMA_TOKEN_NULL;
|
||||
diffusion_step_callback_t step_callback = nullptr;
|
||||
void * step_callback_user_data = nullptr;
|
||||
int32_t seed = 0;
|
||||
bool visual_mode = false;
|
||||
bool shift_logits = false; // Shift logits by -1 after decode
|
||||
|
||||
float top_p = 0.;
|
||||
int32_t top_k = 0.;
|
||||
|
||||
diffusion_algorithm algorithm = CONFIDENCE_BASED;
|
||||
transfer_schedule schedule = TIMESTEP_BASED;
|
||||
|
||||
float cfg_scale = 0.; // Config scale for classifier-free guidance
|
||||
float eps = 0.; // Timestep scheduling
|
||||
int32_t block_length = 0; // Block size (for block scheduling)
|
||||
float alg_temp = 0; // algorithm temperature (0.0 = deterministic)
|
||||
bool add_gumbel_noise = false; // Add gumbel noise to the logits if temp > 0.0
|
||||
|
||||
int32_t max_length = 0; // Maximum sequence length
|
||||
};
|
||||
|
||||
|
||||
static diffusion_params diffusion_default_params() {
|
||||
diffusion_params params = {};
|
||||
params.steps = 64;
|
||||
params.eps = 1e-3f;
|
||||
params.temperature = 0.2f;
|
||||
params.top_p = 0.95f;
|
||||
params.top_k = 0;
|
||||
params.mask_token_id = LLAMA_TOKEN_NULL;
|
||||
params.algorithm = DIFFUSION_ALG_ORIGIN;
|
||||
params.alg_temp = 0.0f;
|
||||
params.step_callback = nullptr;
|
||||
params.step_callback_user_data = nullptr;
|
||||
params.seed = 0;
|
||||
return params;
|
||||
}
|
||||
|
||||
static void diffusion_generate(llama_context * ctx,
|
||||
const llama_token * input_tokens,
|
||||
llama_token * output_tokens,
|
||||
int32_t n_input,
|
||||
int32_t max_length,
|
||||
struct diffusion_params params,
|
||||
int32_t & n_generated) {
|
||||
|
||||
n_generated = 0;
|
||||
if (!ctx || !input_tokens || !output_tokens || n_input <= 0 || max_length <= n_input) {
|
||||
return;
|
||||
}
|
||||
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
|
||||
// Initialize with input and pad with mask tokens
|
||||
std::copy(input_tokens, input_tokens + n_input, output_tokens);
|
||||
std::fill(output_tokens + n_input, output_tokens + max_length, params.mask_token_id);
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
|
||||
std::vector<float> timesteps(params.steps + 1);
|
||||
for (int32_t i = 0; i <= params.steps; i++) {
|
||||
timesteps[i] = 1.0f - (float) i / params.steps * (1.0f - params.eps);
|
||||
}
|
||||
|
||||
llama_set_causal_attn(ctx, false);
|
||||
|
||||
int32_t n_vocab = llama_vocab_n_tokens(llama_model_get_vocab(model));
|
||||
|
||||
std::vector<llama_token_data> candidates(n_vocab);
|
||||
|
||||
std::vector<llama_token_data> conf_candidates;
|
||||
conf_candidates.reserve(max_length);
|
||||
|
||||
std::vector<int32_t> mask_positions;
|
||||
mask_positions.reserve(max_length);
|
||||
|
||||
struct llama_sampler * sampler = llama_sampler_chain_init(llama_sampler_chain_default_params());
|
||||
if (params.top_k > 0) {
|
||||
llama_sampler_chain_add(sampler, llama_sampler_init_top_k(params.top_k));
|
||||
}
|
||||
if (params.top_p < 1.0f) {
|
||||
llama_sampler_chain_add(sampler, llama_sampler_init_top_p(params.top_p, 1));
|
||||
}
|
||||
if (params.temperature > 0.0f) {
|
||||
llama_sampler_chain_add(sampler, llama_sampler_init_temp(params.temperature));
|
||||
}
|
||||
llama_sampler_chain_add(sampler, llama_sampler_init_dist(params.seed));
|
||||
|
||||
struct llama_sampler * dist_sampler = llama_sampler_init_dist(params.seed);
|
||||
|
||||
llama_batch batch = llama_batch_init(max_length, 0, 1);
|
||||
batch.n_tokens = max_length;
|
||||
|
||||
int64_t total_sampling_time = 0;
|
||||
int64_t total_time = 0;
|
||||
|
||||
int64_t time_start = ggml_time_us();
|
||||
for (int32_t step = 0; step < params.steps; step++) {
|
||||
if (params.step_callback) {
|
||||
if (!params.step_callback(step, params.steps, output_tokens, max_length, params.step_callback_user_data)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for (int32_t i = 0; i < max_length; i++) {
|
||||
batch.token[i] = output_tokens[i];
|
||||
batch.pos[i] = i;
|
||||
batch.n_seq_id[i] = 1;
|
||||
batch.seq_id[i][0] = 0;
|
||||
batch.logits[i] = 1;
|
||||
}
|
||||
|
||||
int ret = llama_decode(ctx, batch);
|
||||
if (ret != 0) {
|
||||
LOG_ERR("%s: failed to decode at step %d, ret = %d\n", __func__, step, ret);
|
||||
break;
|
||||
}
|
||||
|
||||
float * raw_logits = llama_get_logits(ctx);
|
||||
if (!raw_logits) {
|
||||
LOG_ERR("%s: failed to get logits at step %d\n", __func__, step);
|
||||
break;
|
||||
}
|
||||
|
||||
auto get_logits_for_pos = [&](int32_t pos) -> const float * {
|
||||
return pos == 0 ? raw_logits : raw_logits + (pos - 1) * n_vocab;
|
||||
};
|
||||
|
||||
int64_t time_start_sampling = ggml_time_us();
|
||||
|
||||
mask_positions.clear();
|
||||
for (int32_t i = 0; i < max_length; i++) {
|
||||
if (output_tokens[i] == params.mask_token_id) {
|
||||
mask_positions.push_back(i);
|
||||
}
|
||||
}
|
||||
|
||||
if (mask_positions.empty()) {
|
||||
break;
|
||||
}
|
||||
|
||||
float t = timesteps[step];
|
||||
float s = timesteps[step + 1];
|
||||
|
||||
if (params.algorithm == DIFFUSION_ALG_ORIGIN) {
|
||||
float p_transfer = (step < params.steps - 1) ? (1.0f - s / t) : 1.0f;
|
||||
|
||||
for (int32_t pos : mask_positions) {
|
||||
if (std::uniform_real_distribution<float>(0.0f, 1.0f)(rng) < p_transfer) {
|
||||
const float * pos_logits = get_logits_for_pos(pos);
|
||||
for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates[token_id].id = token_id;
|
||||
candidates[token_id].logit = pos_logits[token_id];
|
||||
candidates[token_id].p = 0.0f;
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = {
|
||||
/* .data = */ candidates.data(),
|
||||
/* .size = */ (size_t) n_vocab, // Reset size to full vocab
|
||||
/* .selected = */ -1,
|
||||
/* .sorted = */ false,
|
||||
};
|
||||
|
||||
llama_sampler_apply(sampler, &cur_p);
|
||||
output_tokens[pos] = cur_p.data[cur_p.selected].id;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
std::vector<std::pair<float, int32_t>> confidences;
|
||||
std::vector<llama_token> sampled_tokens(mask_positions.size());
|
||||
|
||||
for (size_t i = 0; i < mask_positions.size(); i++) {
|
||||
int32_t pos = mask_positions[i];
|
||||
const float * pos_logits = get_logits_for_pos(pos);
|
||||
|
||||
for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates[token_id].logit = pos_logits[token_id];
|
||||
candidates[token_id].p = 0.0f;
|
||||
candidates[token_id].id = token_id;
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = {
|
||||
/* .data = */ candidates.data(),
|
||||
/* .size = */ candidates.size(),
|
||||
/* .selected = */ -1,
|
||||
/* .sorted = */ false,
|
||||
};
|
||||
|
||||
llama_sampler_apply(sampler, &cur_p);
|
||||
|
||||
llama_token sampled_token = cur_p.data[cur_p.selected].id;
|
||||
|
||||
float confidence = 0.0f;
|
||||
if (params.algorithm == DIFFUSION_ALG_ENTROPY) {
|
||||
const float epsilon = 1e-10f;
|
||||
for (size_t j = 0; j < cur_p.size; j++) {
|
||||
float prob = cur_p.data[j].p;
|
||||
confidence += prob * logf(prob + epsilon);
|
||||
}
|
||||
} else if (params.algorithm == DIFFUSION_ALG_TOPK_MARGIN) {
|
||||
confidence = cur_p.data[0].p - cur_p.data[1].p;
|
||||
} else {
|
||||
confidence = cur_p.data[cur_p.selected].p;
|
||||
}
|
||||
|
||||
sampled_tokens[i] = sampled_token;
|
||||
confidences.emplace_back(confidence, i);
|
||||
}
|
||||
|
||||
int32_t num_transfer =
|
||||
(step < params.steps - 1) ? (int32_t) (mask_positions.size() * (1.0f - s / t)) : mask_positions.size();
|
||||
|
||||
if (num_transfer > 0) {
|
||||
if (params.alg_temp == 0.0f) {
|
||||
std::partial_sort(confidences.begin(), confidences.begin() + num_transfer, confidences.end(),
|
||||
[](const std::pair<float, int32_t> & a, const std::pair<float, int32_t> & b) {
|
||||
if (a.first != b.first) {
|
||||
return a.first > b.first;
|
||||
}
|
||||
return a.second < b.second;
|
||||
});
|
||||
} else {
|
||||
conf_candidates.clear();
|
||||
|
||||
for (int32_t pos = 0; pos < max_length; pos++) {
|
||||
float conf_logit = -std::numeric_limits<float>::infinity();
|
||||
|
||||
auto it = std::find(mask_positions.begin(), mask_positions.end(), pos);
|
||||
if (it != mask_positions.end()) {
|
||||
size_t mask_idx = std::distance(mask_positions.begin(), it);
|
||||
conf_logit = confidences[mask_idx].first / params.alg_temp; // Apply temperature scaling
|
||||
}
|
||||
|
||||
conf_candidates.emplace_back(llama_token_data{ pos, conf_logit, 0.0f });
|
||||
}
|
||||
|
||||
llama_token_data_array conf_array = {
|
||||
/* .data = */ conf_candidates.data(),
|
||||
/* .size = */ conf_candidates.size(),
|
||||
/* .selected = */ -1,
|
||||
/* .sorted = */ false,
|
||||
};
|
||||
|
||||
for (int32_t i = 0; i < num_transfer; i++) {
|
||||
// Apply distribution sampler to get selected index
|
||||
llama_sampler_apply(dist_sampler, &conf_array);
|
||||
int selected_idx = conf_array.selected;
|
||||
confidences[i].second = conf_candidates[selected_idx].id;
|
||||
|
||||
conf_candidates[selected_idx].p = 0.0f;
|
||||
conf_array.selected = -1;
|
||||
}
|
||||
}
|
||||
|
||||
if (params.alg_temp == 0.0f) {
|
||||
// Deterministic - use confidence order
|
||||
for (int32_t i = 0; i < num_transfer; i++) {
|
||||
int32_t mask_idx = confidences[i].second;
|
||||
int32_t pos = mask_positions[mask_idx];
|
||||
llama_token token = sampled_tokens[mask_idx];
|
||||
output_tokens[pos] = token;
|
||||
}
|
||||
} else {
|
||||
for (int32_t i = 0; i < num_transfer; i++) {
|
||||
int32_t pos = confidences[i].second;
|
||||
auto it = std::find(mask_positions.begin(), mask_positions.end(), pos);
|
||||
if (it != mask_positions.end()) {
|
||||
int32_t mask_idx = std::distance(mask_positions.begin(), it);
|
||||
output_tokens[pos] = sampled_tokens[mask_idx];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
int64_t time_end_sampling = ggml_time_us();
|
||||
total_sampling_time += time_end_sampling - time_start_sampling;
|
||||
}
|
||||
int64_t time_end = ggml_time_us();
|
||||
total_time += time_end - time_start;
|
||||
|
||||
LOG_INF("\ntotal time: %0.2fms, time per step: %0.2fms, sampling time per step: %0.2fms\n",
|
||||
total_time / 1000.0, total_time / 1000.0 / params.steps, total_sampling_time / 1000.0 / params.steps);
|
||||
|
||||
|
||||
llama_batch_free(batch);
|
||||
llama_sampler_free(sampler);
|
||||
llama_sampler_free(dist_sampler);
|
||||
|
||||
n_generated = max_length;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
static std::string format_input_text(const std::string & prompt, bool use_chat_template, llama_model * model) {
|
||||
if (!use_chat_template) {
|
||||
return prompt;
|
||||
}
|
||||
|
||||
auto chat_templates = common_chat_templates_init(model, "");
|
||||
|
||||
common_chat_templates_inputs inputs;
|
||||
common_chat_msg user_msg;
|
||||
user_msg.role = "user";
|
||||
user_msg.content = prompt;
|
||||
inputs.add_generation_prompt = true;
|
||||
inputs.messages.push_back(user_msg);
|
||||
|
||||
auto result = common_chat_templates_apply(chat_templates.get(), inputs);
|
||||
|
||||
return result.prompt;
|
||||
}
|
||||
|
||||
struct callback_data {
|
||||
const common_params_diffusion * diff_params;
|
||||
const llama_vocab * vocab;
|
||||
int32_t n_input;
|
||||
diffusion_params * diff_params;
|
||||
const llama_vocab * vocab;
|
||||
int32_t n_input;
|
||||
};
|
||||
|
||||
static bool diffusion_step_callback(int32_t step,
|
||||
int32_t total_steps,
|
||||
static float calculate_confidence(const llama_token_data_array & cur_p,
|
||||
diffusion_algorithm algorithm,
|
||||
std::mt19937 & rng) {
|
||||
switch (algorithm) {
|
||||
case CONFIDENCE_BASED:
|
||||
return cur_p.data[cur_p.selected].p; // Selected token probability
|
||||
|
||||
case ENTROPY_BASED:
|
||||
{
|
||||
float entropy = 0.0f;
|
||||
const float epsilon = 1e-10f;
|
||||
for (size_t i = 0; i < cur_p.size; i++) {
|
||||
float prob = cur_p.data[i].p;
|
||||
entropy += prob * logf(prob + epsilon);
|
||||
}
|
||||
return -entropy; // Higher entropy = lower confidence
|
||||
}
|
||||
|
||||
case MARGIN_BASED:
|
||||
return (cur_p.size > 1) ? cur_p.data[0].p - cur_p.data[1].p : cur_p.data[0].p;
|
||||
|
||||
case RANDOM:
|
||||
{
|
||||
std::uniform_real_distribution<float> uniform(0.0f, 1.0f);
|
||||
return uniform(rng); // Random confidence
|
||||
}
|
||||
|
||||
case ORIGIN:
|
||||
return cur_p.data[cur_p.selected].p;
|
||||
|
||||
default:
|
||||
return 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
// Unified transfer count calculation function
|
||||
static int32_t calculate_transfer_count(int32_t step,
|
||||
int32_t total_steps,
|
||||
int32_t remaining_masked,
|
||||
transfer_schedule schedule,
|
||||
float eps,
|
||||
const std::vector<int32_t> & num_transfer_tokens = {}) {
|
||||
switch (schedule) {
|
||||
case TIMESTEP_BASED:
|
||||
{
|
||||
float t = 1.0f - (float) step / total_steps * (1.0f - eps);
|
||||
float s = 1.0f - (float) (step + 1) / total_steps * (1.0f - eps);
|
||||
float p_transfer = (step < total_steps - 1) ? (1.0f - s / t) : 1.0f;
|
||||
return (int32_t) (remaining_masked * p_transfer);
|
||||
}
|
||||
|
||||
case BLOCK_BASED:
|
||||
if (!num_transfer_tokens.empty() && step < (int32_t) num_transfer_tokens.size()) {
|
||||
return num_transfer_tokens[step];
|
||||
}
|
||||
return remaining_masked / (total_steps - step); // Fallback
|
||||
|
||||
default:
|
||||
return remaining_masked / (total_steps - step);
|
||||
}
|
||||
}
|
||||
|
||||
static bool diffusion_step_callback(int32_t step,
|
||||
int32_t total_steps,
|
||||
const llama_token * tokens,
|
||||
int32_t n_tokens,
|
||||
void * user_data) {
|
||||
(void)user_data;
|
||||
int32_t n_tokens,
|
||||
void * user_data) {
|
||||
(void) user_data;
|
||||
|
||||
callback_data * data = static_cast<callback_data *>(user_data);
|
||||
|
||||
@@ -350,11 +134,11 @@ static bool diffusion_step_callback(int32_t step,
|
||||
int progress_percent = (step * 100) / total_steps;
|
||||
int progress_bars = (step * 50) / total_steps;
|
||||
LOG_INF("\rdiffusion step: %d/%d [%s%s] %d%%",
|
||||
step,
|
||||
total_steps,
|
||||
std::string(progress_bars, '=').c_str(),
|
||||
std::string(50 - progress_bars, ' ').c_str(),
|
||||
progress_percent);
|
||||
step,
|
||||
total_steps,
|
||||
std::string(progress_bars, '=').c_str(),
|
||||
std::string(50 - progress_bars, ' ').c_str(),
|
||||
progress_percent);
|
||||
};
|
||||
|
||||
if (data->diff_params->visual_mode) {
|
||||
@@ -391,6 +175,360 @@ static bool diffusion_step_callback(int32_t step,
|
||||
return true;
|
||||
}
|
||||
|
||||
static void add_gumbel_noise(float * logits, int32_t n_vocab, float temperature, std::mt19937 & rng) {
|
||||
if (temperature == 0.0f) {
|
||||
return;
|
||||
}
|
||||
|
||||
std::uniform_real_distribution<double> uniform(0.0, 1.0);
|
||||
for (int32_t i = 0; i < n_vocab; i++) {
|
||||
double noise = uniform(rng);
|
||||
// Prevent log(0)
|
||||
noise = std::max(noise, 1e-20);
|
||||
double gumbel_noise = std::pow(-std::log(noise), temperature);
|
||||
logits[i] = std::exp(logits[i]) / gumbel_noise;
|
||||
}
|
||||
}
|
||||
|
||||
static std::vector<int32_t> get_num_transfer_tokens(int32_t mask_count, int32_t steps) {
|
||||
std::vector<int32_t> num_transfer_tokens(steps);
|
||||
|
||||
int32_t base = mask_count / steps;
|
||||
int32_t remainder = mask_count % steps;
|
||||
|
||||
for (int32_t i = 0; i < steps; i++) {
|
||||
num_transfer_tokens[i] = base + (i < remainder ? 1 : 0);
|
||||
}
|
||||
|
||||
return num_transfer_tokens;
|
||||
}
|
||||
|
||||
static void diffusion_generate(llama_context * ctx,
|
||||
const llama_token * input_tokens,
|
||||
llama_token * output_tokens,
|
||||
int32_t n_input,
|
||||
const diffusion_params & params,
|
||||
int32_t & n_generated) {
|
||||
n_generated = 0;
|
||||
if (!ctx || !input_tokens || !output_tokens || n_input <= 0 || params.max_length <= n_input) {
|
||||
return;
|
||||
}
|
||||
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
|
||||
// Initialize with input and pad with mask tokens
|
||||
std::copy(input_tokens, input_tokens + n_input, output_tokens);
|
||||
std::fill(output_tokens + n_input, output_tokens + params.max_length, params.mask_token_id);
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
|
||||
llama_set_causal_attn(ctx, false);
|
||||
|
||||
int32_t n_vocab = llama_vocab_n_tokens(llama_model_get_vocab(model));
|
||||
|
||||
std::vector<llama_token_data> candidates(n_vocab);
|
||||
std::vector<llama_token_data> conf_candidates;
|
||||
conf_candidates.reserve(params.max_length);
|
||||
std::vector<int32_t> mask_positions;
|
||||
mask_positions.reserve(params.max_length);
|
||||
|
||||
// Setup sampler chain
|
||||
struct llama_sampler * sampler = llama_sampler_chain_init(llama_sampler_chain_default_params());
|
||||
if (params.top_k > 0) {
|
||||
llama_sampler_chain_add(sampler, llama_sampler_init_top_k(params.top_k));
|
||||
}
|
||||
if (params.top_p < 1.0f) {
|
||||
llama_sampler_chain_add(sampler, llama_sampler_init_top_p(params.top_p, 1));
|
||||
}
|
||||
if (params.temperature > 0.0f) {
|
||||
llama_sampler_chain_add(sampler, llama_sampler_init_temp(params.temperature));
|
||||
}
|
||||
llama_sampler_chain_add(sampler, llama_sampler_init_dist(params.seed));
|
||||
|
||||
struct llama_sampler * dist_sampler = llama_sampler_init_dist(params.seed);
|
||||
|
||||
llama_batch batch = llama_batch_init(params.max_length, 0, 1);
|
||||
batch.n_tokens = params.max_length;
|
||||
|
||||
// Pre-allocate buffers for CFG if needed
|
||||
int32_t logits_size = n_vocab * params.max_length;
|
||||
std::vector<float> cond_logits_buffer;
|
||||
std::vector<llama_token> un_x_buffer;
|
||||
if (params.cfg_scale > 0.0f) {
|
||||
cond_logits_buffer.resize(logits_size);
|
||||
un_x_buffer.resize(params.max_length);
|
||||
}
|
||||
|
||||
// For block-based processing
|
||||
std::vector<int32_t> num_transfer_tokens;
|
||||
int32_t num_blocks = 1;
|
||||
int32_t steps_per_block = params.steps;
|
||||
|
||||
if (params.schedule == BLOCK_BASED) {
|
||||
GGML_ASSERT(params.max_length % params.block_length == 0);
|
||||
num_blocks = params.max_length / params.block_length;
|
||||
GGML_ASSERT(params.steps % num_blocks == 0);
|
||||
steps_per_block = params.steps / num_blocks;
|
||||
}
|
||||
|
||||
std::vector<float> confidence(params.max_length);
|
||||
|
||||
int64_t total_sampling_time = 0;
|
||||
int64_t total_time = 0;
|
||||
int64_t time_start = ggml_time_us();
|
||||
|
||||
for (int block_num = 0; block_num < num_blocks; block_num++) {
|
||||
int32_t block_start = (params.schedule == BLOCK_BASED) ? n_input + block_num * params.block_length : 0;
|
||||
int32_t block_end = (params.schedule == BLOCK_BASED) ?
|
||||
std::min(n_input + (block_num + 1) * params.block_length, params.max_length) :
|
||||
params.max_length;
|
||||
|
||||
// Count masked tokens in current block for block-based processing
|
||||
if (params.schedule == BLOCK_BASED) {
|
||||
int32_t block_mask_count = 0;
|
||||
for (int i = block_start; i < block_end; i++) {
|
||||
if (output_tokens[i] == params.mask_token_id) {
|
||||
block_mask_count++;
|
||||
}
|
||||
}
|
||||
num_transfer_tokens = get_num_transfer_tokens(block_mask_count, steps_per_block);
|
||||
}
|
||||
|
||||
for (int32_t step = 0; step < steps_per_block; step++) {
|
||||
int32_t global_step = block_num * steps_per_block + step;
|
||||
|
||||
if (params.step_callback) {
|
||||
if (!params.step_callback(
|
||||
global_step, params.steps, output_tokens, params.max_length, params.step_callback_user_data)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Setup batch
|
||||
for (int32_t i = 0; i < params.max_length; i++) {
|
||||
batch.token[i] = output_tokens[i];
|
||||
batch.pos[i] = i;
|
||||
batch.n_seq_id[i] = 1;
|
||||
batch.seq_id[i][0] = 0;
|
||||
batch.logits[i] = 1;
|
||||
}
|
||||
|
||||
float * logits = nullptr;
|
||||
|
||||
if (params.cfg_scale > 0.0f) {
|
||||
int ret = llama_decode(ctx, batch);
|
||||
if (ret != 0) {
|
||||
LOG_ERR("Failed to generate conditional");
|
||||
break;
|
||||
}
|
||||
float * cond_logits_ptr = llama_get_logits(ctx);
|
||||
std::memcpy(cond_logits_buffer.data(), cond_logits_ptr, logits_size * sizeof(float));
|
||||
|
||||
// Unconditional generation (mask input)
|
||||
std::copy(output_tokens, output_tokens + params.max_length, un_x_buffer.begin());
|
||||
for (int32_t i = 0; i < n_input; i++) {
|
||||
un_x_buffer[i] = params.mask_token_id;
|
||||
}
|
||||
|
||||
for (int32_t i = 0; i < params.max_length; i++) {
|
||||
batch.token[i] = un_x_buffer[i];
|
||||
}
|
||||
ret = llama_decode(ctx, batch);
|
||||
if (ret != 0) {
|
||||
LOG_ERR("Failed to generate unconditional");
|
||||
break;
|
||||
}
|
||||
float * uncond_logits = llama_get_logits(ctx);
|
||||
|
||||
// Apply CFG
|
||||
for (int32_t i = 0; i < logits_size; i++) {
|
||||
cond_logits_buffer[i] =
|
||||
uncond_logits[i] + (params.cfg_scale + 1.0f) * (cond_logits_buffer[i] - uncond_logits[i]);
|
||||
}
|
||||
logits = cond_logits_buffer.data();
|
||||
} else {
|
||||
int ret = llama_decode(ctx, batch);
|
||||
if (ret != 0) {
|
||||
LOG_ERR("%s: failed to decode at step %d, ret = %d\n", __func__, global_step, ret);
|
||||
break;
|
||||
}
|
||||
logits = llama_get_logits(ctx);
|
||||
}
|
||||
|
||||
if (!logits) {
|
||||
LOG_ERR("%s: failed to get logits at step %d\n", __func__, global_step);
|
||||
break;
|
||||
}
|
||||
|
||||
auto get_logits_for_pos = [&](int32_t pos) -> const float * {
|
||||
if (params.shift_logits) {
|
||||
return pos == 0 ? logits : logits + (pos - 1) * n_vocab;
|
||||
}
|
||||
return logits + (pos) *n_vocab;
|
||||
};
|
||||
|
||||
int64_t time_start_sampling = ggml_time_us();
|
||||
|
||||
mask_positions.clear();
|
||||
for (int32_t i = 0; i < params.max_length; i++) {
|
||||
if (output_tokens[i] == params.mask_token_id) {
|
||||
// For block-based, only consider current block
|
||||
if (params.schedule != BLOCK_BASED || (i >= block_start && i < block_end)) {
|
||||
mask_positions.push_back(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (mask_positions.empty()) {
|
||||
break;
|
||||
}
|
||||
|
||||
if (params.add_gumbel_noise && params.temperature > 0.0f) {
|
||||
add_gumbel_noise(logits, n_vocab, params.temperature, rng);
|
||||
}
|
||||
|
||||
if (params.algorithm == ORIGIN) {
|
||||
int32_t transfer_count = calculate_transfer_count(
|
||||
step, steps_per_block, mask_positions.size(), params.schedule, params.eps, num_transfer_tokens);
|
||||
float p_transfer = (float) transfer_count / mask_positions.size();
|
||||
|
||||
for (int32_t pos : mask_positions) {
|
||||
if (std::uniform_real_distribution<float>(0.0f, 1.0f)(rng) < p_transfer) {
|
||||
const float * pos_logits = get_logits_for_pos(pos);
|
||||
for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates[token_id].id = token_id;
|
||||
candidates[token_id].logit = pos_logits[token_id];
|
||||
candidates[token_id].p = 0.0f;
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = {
|
||||
candidates.data(),
|
||||
(size_t) n_vocab,
|
||||
-1,
|
||||
false,
|
||||
};
|
||||
|
||||
llama_sampler_apply(sampler, &cur_p);
|
||||
output_tokens[pos] = cur_p.data[cur_p.selected].id;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
std::vector<std::pair<float, int32_t>> confidences;
|
||||
std::vector<llama_token> sampled_tokens(mask_positions.size());
|
||||
|
||||
for (size_t i = 0; i < mask_positions.size(); i++) {
|
||||
int32_t pos = mask_positions[i];
|
||||
const float * pos_logits = get_logits_for_pos(pos);
|
||||
|
||||
for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates[token_id].logit = pos_logits[token_id];
|
||||
candidates[token_id].p = 0.0f;
|
||||
candidates[token_id].id = token_id;
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = {
|
||||
candidates.data(),
|
||||
candidates.size(),
|
||||
-1,
|
||||
false,
|
||||
};
|
||||
|
||||
llama_sampler_apply(sampler, &cur_p);
|
||||
llama_token sampled_token = cur_p.data[cur_p.selected].id;
|
||||
|
||||
float conf = calculate_confidence(cur_p, params.algorithm, rng);
|
||||
|
||||
sampled_tokens[i] = sampled_token;
|
||||
confidences.emplace_back(conf, i);
|
||||
}
|
||||
|
||||
int32_t transfer_count = calculate_transfer_count(
|
||||
step, steps_per_block, mask_positions.size(), params.schedule, params.eps, num_transfer_tokens);
|
||||
|
||||
if (transfer_count > 0) {
|
||||
if (params.alg_temp == 0.0f) {
|
||||
std::partial_sort(confidences.begin(),
|
||||
confidences.begin() + std::min(transfer_count, (int32_t) confidences.size()),
|
||||
confidences.end(),
|
||||
[](const std::pair<float, int32_t> & a, const std::pair<float, int32_t> & b) {
|
||||
if (a.first != b.first) {
|
||||
return a.first > b.first;
|
||||
}
|
||||
return a.second < b.second;
|
||||
});
|
||||
|
||||
for (int32_t i = 0; i < std::min(transfer_count, (int32_t) confidences.size()); i++) {
|
||||
int32_t mask_idx = confidences[i].second;
|
||||
int32_t pos = mask_positions[mask_idx];
|
||||
output_tokens[pos] = sampled_tokens[mask_idx];
|
||||
}
|
||||
} else {
|
||||
conf_candidates.clear();
|
||||
for (size_t i = 0; i < confidences.size(); i++) {
|
||||
float conf_logit = confidences[i].first / params.alg_temp;
|
||||
conf_candidates.emplace_back(llama_token_data{ (int32_t) i, conf_logit, 0.0f });
|
||||
}
|
||||
|
||||
llama_token_data_array conf_array = {
|
||||
conf_candidates.data(),
|
||||
conf_candidates.size(),
|
||||
-1,
|
||||
false,
|
||||
};
|
||||
|
||||
for (int32_t i = 0; i < std::min(transfer_count, (int32_t) confidences.size()); i++) {
|
||||
llama_sampler_apply(dist_sampler, &conf_array);
|
||||
int32_t selected_idx = conf_array.selected;
|
||||
int32_t mask_idx = selected_idx;
|
||||
int32_t pos = mask_positions[mask_idx];
|
||||
output_tokens[pos] = sampled_tokens[mask_idx];
|
||||
|
||||
conf_candidates[selected_idx].p = 0.0f;
|
||||
conf_array.selected = -1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int64_t time_end_sampling = ggml_time_us();
|
||||
total_sampling_time += time_end_sampling - time_start_sampling;
|
||||
}
|
||||
}
|
||||
|
||||
int64_t time_end = ggml_time_us();
|
||||
total_time += time_end - time_start;
|
||||
|
||||
LOG_INF("\ntotal time: %0.2fms, time per step: %0.2fms, sampling time per step: %0.2fms\n",
|
||||
total_time / 1000.0,
|
||||
total_time / 1000.0 / params.steps,
|
||||
total_sampling_time / 1000.0 / params.steps);
|
||||
|
||||
llama_batch_free(batch);
|
||||
llama_sampler_free(sampler);
|
||||
llama_sampler_free(dist_sampler);
|
||||
|
||||
n_generated = params.max_length;
|
||||
}
|
||||
|
||||
static std::string format_input_text(const std::string & prompt, bool use_chat_template, llama_model * model) {
|
||||
if (!use_chat_template) {
|
||||
return prompt;
|
||||
}
|
||||
|
||||
auto chat_templates = common_chat_templates_init(model, "");
|
||||
|
||||
common_chat_templates_inputs inputs;
|
||||
common_chat_msg user_msg;
|
||||
user_msg.role = "user";
|
||||
user_msg.content = prompt;
|
||||
inputs.add_generation_prompt = true;
|
||||
inputs.messages.push_back(user_msg);
|
||||
|
||||
auto result = common_chat_templates_apply(chat_templates.get(), inputs);
|
||||
|
||||
return result.prompt;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
ggml_time_init();
|
||||
|
||||
@@ -400,11 +538,6 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
const char * alg_names[] = { "ORIGIN", "MASKGIT_PLUS", "TOPK_MARGIN", "ENTROPY" };
|
||||
const char * alg_name = (params.diffusion.algorithm >= 0 && params.diffusion.algorithm <= 3) ?
|
||||
alg_names[params.diffusion.algorithm] :
|
||||
"UNKNOWN";
|
||||
|
||||
common_init();
|
||||
llama_backend_init();
|
||||
|
||||
@@ -421,6 +554,12 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (!llama_model_is_diffusion(model)) {
|
||||
LOG_ERR("error: unsupported model for diffusion");
|
||||
llama_model_free(model);
|
||||
return 1;
|
||||
}
|
||||
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
ctx_params.n_ctx = params.n_ctx;
|
||||
ctx_params.n_batch = params.n_batch;
|
||||
@@ -442,10 +581,12 @@ int main(int argc, char ** argv) {
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
std::string formatted_prompt = format_input_text(params.prompt, params.enable_chat_template, model);
|
||||
|
||||
std::vector<llama_token> input_tokens = common_tokenize(vocab, formatted_prompt,
|
||||
std::vector<llama_token> input_tokens = common_tokenize(vocab,
|
||||
formatted_prompt,
|
||||
/*add special tokens*/ true,
|
||||
/*parse special*/ true);
|
||||
int n_input = input_tokens.size();
|
||||
|
||||
int n_input = input_tokens.size();
|
||||
|
||||
if (n_input >= params.n_ctx) {
|
||||
LOG_ERR("error: input too long (%d tokens), max context is %d\n", n_input, params.n_ctx);
|
||||
@@ -454,44 +595,79 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
struct diffusion_params ldiff_params = diffusion_default_params();
|
||||
ldiff_params.steps = params.diffusion.steps;
|
||||
ldiff_params.eps = params.diffusion.eps;
|
||||
ldiff_params.temperature = params.sampling.temp;
|
||||
ldiff_params.top_p = params.sampling.top_p;
|
||||
ldiff_params.top_k = params.sampling.top_k;
|
||||
ldiff_params.algorithm = static_cast<enum diffusion_alg>(params.diffusion.algorithm);
|
||||
ldiff_params.alg_temp = params.diffusion.alg_temp;
|
||||
ldiff_params.seed = params.sampling.seed;
|
||||
|
||||
llama_token mask_token_id = llama_vocab_mask(vocab);
|
||||
GGML_ASSERT(mask_token_id != LLAMA_TOKEN_NULL);
|
||||
|
||||
LOG_INF("diffusion_params: - %-25s llama_token = %d\n", "mask_token_id", mask_token_id);
|
||||
LOG_INF("diffusion_params: - %-25s u32 = %d\n", "steps", params.diffusion.steps);
|
||||
LOG_INF("diffusion_params: - %-25s f32 = %.6f\n", "eps", params.diffusion.eps);
|
||||
LOG_INF("diffusion_params: - %-25s u32 = %d (%s)\n", "algorithm", params.diffusion.algorithm,
|
||||
alg_name);
|
||||
LOG_INF("diffusion_params: - %-25s f32 = %.3f\n", "alg_temp", params.diffusion.alg_temp);
|
||||
|
||||
ldiff_params.mask_token_id = mask_token_id;
|
||||
|
||||
callback_data cb_data = { ¶ms.diffusion, vocab, n_input };
|
||||
|
||||
ldiff_params.step_callback = diffusion_step_callback;
|
||||
ldiff_params.step_callback_user_data = &cb_data;
|
||||
|
||||
int32_t n_generated = 0;
|
||||
bool visual_mode = params.diffusion.visual_mode;
|
||||
|
||||
int32_t n_generated = 0;
|
||||
std::vector<llama_token> output_tokens(params.n_ubatch);
|
||||
diffusion_generate(ctx, input_tokens.data(), output_tokens.data(), n_input, params.n_ubatch,
|
||||
ldiff_params, n_generated);
|
||||
|
||||
struct diffusion_params diff_params;
|
||||
|
||||
char shift_logits_str[8];
|
||||
if (llama_model_meta_val_str(model, "diffusion.shift_logits", shift_logits_str, sizeof(shift_logits_str)) >= 0) {
|
||||
diff_params.shift_logits = (strcmp(shift_logits_str, "true") == 0);
|
||||
} else {
|
||||
diff_params.shift_logits = true;
|
||||
}
|
||||
|
||||
//Use either eps or block length, but not both
|
||||
GGML_ASSERT((params.diffusion.eps == 0) ^ (params.diffusion.block_length == 0));
|
||||
|
||||
if (params.diffusion.eps) {
|
||||
diff_params.schedule = TIMESTEP_BASED;
|
||||
diff_params.eps = params.diffusion.eps;
|
||||
} else if (params.diffusion.block_length) {
|
||||
diff_params.schedule = BLOCK_BASED;
|
||||
diff_params.block_length = params.diffusion.block_length;
|
||||
}
|
||||
|
||||
diff_params.mask_token_id = mask_token_id;
|
||||
diff_params.seed = params.sampling.seed;
|
||||
diff_params.temperature = params.sampling.temp;
|
||||
diff_params.steps = params.diffusion.steps;
|
||||
diff_params.algorithm = static_cast<diffusion_algorithm>(params.diffusion.algorithm);
|
||||
diff_params.max_length = params.n_ubatch;
|
||||
diff_params.top_p = params.sampling.top_p;
|
||||
diff_params.top_k = params.sampling.top_k;
|
||||
diff_params.visual_mode = params.diffusion.visual_mode;
|
||||
diff_params.add_gumbel_noise = params.diffusion.add_gumbel_noise;
|
||||
|
||||
diff_params.step_callback = diffusion_step_callback;
|
||||
callback_data cb_data = { &diff_params, vocab, n_input };
|
||||
diff_params.step_callback_user_data = &cb_data;
|
||||
|
||||
const char * alg_names[] = { "ORIGIN", "ENTROPY_BASED", "MARGIN_BASED", "RANDOM", "CONFIDENCE_BASED" };
|
||||
const char * sched_names[] = { "TIMESTEP_BASED", "BLOCK_BASED" };
|
||||
const char * alg_name =
|
||||
(diff_params.algorithm >= 0 && diff_params.algorithm <= 4) ? alg_names[diff_params.algorithm] : "UNKNOWN";
|
||||
const char * sched_name =
|
||||
(diff_params.schedule >= 0 && diff_params.schedule <= 1) ? sched_names[diff_params.schedule] : "UNKNOWN";
|
||||
|
||||
LOG_INF("diffusion_params: - %-25s llama_token = %d\n", "mask_token_id", mask_token_id);
|
||||
LOG_INF("diffusion_params: - %-25s u32 = %d\n", "steps", diff_params.steps);
|
||||
LOG_INF("diffusion_params: - %-25s u32 = %d\n", "max_length", diff_params.max_length);
|
||||
LOG_INF("diffusion_params: - %-25s enum = %d (%s)\n", "algorithm", diff_params.algorithm, alg_name);
|
||||
LOG_INF("diffusion_params: - %-25s enum = %d (%s)\n", "schedule", diff_params.schedule, sched_name);
|
||||
LOG_INF("diffusion_params: - %-25s f32 = %.3f\n", "temperature", diff_params.temperature);
|
||||
if (diff_params.schedule == TIMESTEP_BASED) {
|
||||
LOG_INF("diffusion_params: - %-25s f32 = %.6f\n", "eps", diff_params.eps);
|
||||
LOG_INF("diffusion_params: - %-25s f32 = %.3f\n", "alg_temp", diff_params.alg_temp);
|
||||
}
|
||||
if (diff_params.schedule == BLOCK_BASED) {
|
||||
LOG_INF("diffusion_params: - %-25s u32 = %d\n", "block_length", diff_params.block_length);
|
||||
LOG_INF("diffusion_params: - %-25s f32 = %.3f\n", "cfg_scale", diff_params.cfg_scale);
|
||||
}
|
||||
|
||||
diffusion_generate(ctx, input_tokens.data(), output_tokens.data(), n_input, diff_params, n_generated);
|
||||
|
||||
if (n_generated > 0) {
|
||||
if (params.diffusion.visual_mode) {
|
||||
if (visual_mode) {
|
||||
//clear screen and move cursor to top-left
|
||||
LOG_INF("\033[2J\033[H");
|
||||
}
|
||||
|
||||
output_tokens.erase(output_tokens.begin(), output_tokens.begin() + n_input);
|
||||
std::string output_data = common_detokenize(vocab, output_tokens, false);
|
||||
LOG_INF("\n%s\n", output_data.c_str());
|
||||
|
||||
@@ -81,6 +81,14 @@ int main(int argc, char ** argv) {
|
||||
|
||||
params.embedding = true;
|
||||
|
||||
// if the number of prompts that would be encoded is known in advance, it's more efficient to specify the
|
||||
// --parallel argument accordingly. for convenience, if not specified, we fallback to unified KV cache
|
||||
// in order to support any number of prompts
|
||||
if (params.n_parallel == 1) {
|
||||
LOG_INF("%s: n_parallel == 1 -> unified KV cache is enabled\n", __func__);
|
||||
params.kv_unified = true;
|
||||
}
|
||||
|
||||
// utilize the full context
|
||||
if (params.n_batch < params.n_ctx) {
|
||||
LOG_WRN("%s: setting batch size to %d\n", __func__, params.n_ctx);
|
||||
|
||||
@@ -15,6 +15,12 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (params.n_parallel == 1) {
|
||||
// the example uses 2 sequences, so when n_parallel == 1, we need to enable unified kv cache
|
||||
printf("%s: n_parallel == 1, enabling unified kv cache\n", __func__);
|
||||
params.kv_unified = true;
|
||||
}
|
||||
|
||||
common_init();
|
||||
|
||||
if (params.n_predict < 0) {
|
||||
|
||||
@@ -65,7 +65,7 @@ int main(int argc, char ** argv) {
|
||||
ctx_dft = llama_init_dft.context.get();
|
||||
|
||||
if (!common_speculative_are_compatible(ctx_tgt, ctx_dft)) {
|
||||
return 1;
|
||||
LOG_INF("the draft model '%s' is not compatible with the target model '%s'. tokens will be translated between the draft and target models.\n", params.speculative.model.path.c_str(), params.model.path.c_str());
|
||||
}
|
||||
|
||||
// Tokenize the prompt
|
||||
@@ -130,7 +130,10 @@ int main(int argc, char ** argv) {
|
||||
params_spec.n_reuse = llama_n_ctx(ctx_dft) - n_draft;
|
||||
params_spec.p_min = p_min;
|
||||
|
||||
struct common_speculative * spec = common_speculative_init(ctx_dft);
|
||||
struct common_speculative * spec = common_speculative_init(ctx_tgt, ctx_dft);
|
||||
for (auto &pair : params.speculative.replacements) {
|
||||
common_speculative_add_replacement_tgt_dft(spec, pair.first.c_str(), pair.second.c_str());
|
||||
}
|
||||
|
||||
llama_batch batch_tgt = llama_batch_init(llama_n_batch(ctx_tgt), 0, 1);
|
||||
|
||||
|
||||
@@ -174,6 +174,7 @@ option(GGML_HIP_GRAPHS "ggml: use HIP graph, experimental,
|
||||
option(GGML_HIP_NO_VMM "ggml: do not try to use HIP VMM" ON)
|
||||
option(GGML_HIP_ROCWMMA_FATTN "ggml: enable rocWMMA for FlashAttention" OFF)
|
||||
option(GGML_HIP_FORCE_ROCWMMA_FATTN_GFX12 "ggml: enable rocWMMA FlashAttention on GFX12" OFF)
|
||||
option(GGML_HIP_MMQ_MFMA "ggml: enable MFMA MMA for CDNA in MMQ" ON)
|
||||
option(GGML_MUSA_GRAPHS "ggml: use MUSA graph, experimental, unstable" OFF)
|
||||
option(GGML_MUSA_MUDNN_COPY "ggml: enable muDNN for accelerated copy" OFF)
|
||||
option(GGML_VULKAN "ggml: use Vulkan" OFF)
|
||||
|
||||
@@ -34,8 +34,8 @@ if (NOT GGML_SHARED_LIB)
|
||||
|
||||
if (GGML_BLAS)
|
||||
find_dependency(BLAS)
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES ${BLAS_LIBRARIES})
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_OPTIONS ${BLAS_LINKER_FLAGS})
|
||||
list(APPEND GGML_BLAS_INTERFACE_LINK_LIBRARIES ${BLAS_LIBRARIES})
|
||||
list(APPEND GGML_BLAS_INTERFACE_LINK_OPTIONS ${BLAS_LINKER_FLAGS})
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA)
|
||||
@@ -102,89 +102,88 @@ set_and_check(GGML_LIB_DIR "@PACKAGE_GGML_LIB_INSTALL_DIR@")
|
||||
#set_and_check(GGML_BIN_DIR "@PACKAGE_GGML_BIN_INSTALL_DIR@")
|
||||
|
||||
if(NOT TARGET ggml::ggml)
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
find_library(GGML_LIBRARY ggml
|
||||
REQUIRED
|
||||
HINTS ${GGML_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH)
|
||||
|
||||
add_library(ggml::ggml UNKNOWN IMPORTED)
|
||||
set_target_properties(ggml::ggml
|
||||
PROPERTIES
|
||||
IMPORTED_LOCATION "${GGML_LIBRARY}")
|
||||
|
||||
find_library(GGML_BASE_LIBRARY ggml-base
|
||||
REQUIRED
|
||||
HINTS ${GGML_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH)
|
||||
|
||||
add_library(ggml::ggml-base UNKNOWN IMPORTED)
|
||||
set_target_properties(ggml::ggml-base
|
||||
PROPERTIES
|
||||
IMPORTED_LOCATION "${GGML_BASE_LIBRARY}")
|
||||
|
||||
set(_ggml_all_targets "")
|
||||
foreach(_ggml_backend ${GGML_AVAILABLE_BACKENDS})
|
||||
string(REPLACE "-" "_" _ggml_backend_pfx "${_ggml_backend}")
|
||||
string(TOUPPER "${_ggml_backend_pfx}" _ggml_backend_pfx)
|
||||
|
||||
find_library(${_ggml_backend_pfx}_LIBRARY ${_ggml_backend}
|
||||
find_library(GGML_LIBRARY ggml
|
||||
REQUIRED
|
||||
HINTS ${GGML_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH)
|
||||
|
||||
message(STATUS "Found ${${_ggml_backend_pfx}_LIBRARY}")
|
||||
|
||||
add_library(ggml::${_ggml_backend} UNKNOWN IMPORTED)
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
add_library(ggml::ggml UNKNOWN IMPORTED)
|
||||
set_target_properties(ggml::ggml
|
||||
PROPERTIES
|
||||
INTERFACE_INCLUDE_DIRECTORIES "${GGML_INCLUDE_DIR}"
|
||||
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
|
||||
IMPORTED_LOCATION "${${_ggml_backend_pfx}_LIBRARY}"
|
||||
INTERFACE_COMPILE_FEATURES c_std_90
|
||||
POSITION_INDEPENDENT_CODE ON)
|
||||
IMPORTED_LOCATION "${GGML_LIBRARY}")
|
||||
|
||||
string(REGEX MATCH "^ggml-cpu" is_cpu_variant "${_ggml_backend}")
|
||||
if(is_cpu_variant)
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES "ggml::ggml-base")
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_LIBRARIES "${GGML_CPU_INTERFACE_LINK_LIBRARIES}")
|
||||
find_library(GGML_BASE_LIBRARY ggml-base
|
||||
REQUIRED
|
||||
HINTS ${GGML_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH)
|
||||
|
||||
if(GGML_CPU_INTERFACE_LINK_OPTIONS)
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_OPTIONS "${GGML_CPU_INTERFACE_LINK_OPTIONS}")
|
||||
endif()
|
||||
add_library(ggml::ggml-base UNKNOWN IMPORTED)
|
||||
set_target_properties(ggml::ggml-base
|
||||
PROPERTIES
|
||||
IMPORTED_LOCATION "${GGML_BASE_LIBRARY}")
|
||||
|
||||
else()
|
||||
list(APPEND ${_ggml_backend_pfx}_INTERFACE_LINK_LIBRARIES "ggml::ggml-base")
|
||||
set(_ggml_all_targets "")
|
||||
foreach(_ggml_backend ${GGML_AVAILABLE_BACKENDS})
|
||||
string(REPLACE "-" "_" _ggml_backend_pfx "${_ggml_backend}")
|
||||
string(TOUPPER "${_ggml_backend_pfx}" _ggml_backend_pfx)
|
||||
|
||||
find_library(${_ggml_backend_pfx}_LIBRARY ${_ggml_backend}
|
||||
REQUIRED
|
||||
HINTS ${GGML_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH)
|
||||
|
||||
message(STATUS "Found ${${_ggml_backend_pfx}_LIBRARY}")
|
||||
|
||||
add_library(ggml::${_ggml_backend} UNKNOWN IMPORTED)
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_LIBRARIES "${${_ggml_backend_pfx}_INTERFACE_LINK_LIBRARIES}")
|
||||
INTERFACE_INCLUDE_DIRECTORIES "${GGML_INCLUDE_DIR}"
|
||||
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
|
||||
IMPORTED_LOCATION "${${_ggml_backend_pfx}_LIBRARY}"
|
||||
INTERFACE_COMPILE_FEATURES c_std_90
|
||||
POSITION_INDEPENDENT_CODE ON)
|
||||
|
||||
if(${_ggml_backend_pfx}_INTERFACE_LINK_OPTIONS)
|
||||
string(REGEX MATCH "^ggml-cpu" is_cpu_variant "${_ggml_backend}")
|
||||
if(is_cpu_variant)
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES "ggml::ggml-base")
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_LIBRARIES "${GGML_CPU_INTERFACE_LINK_LIBRARIES}")
|
||||
|
||||
if(GGML_CPU_INTERFACE_LINK_OPTIONS)
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_OPTIONS "${GGML_CPU_INTERFACE_LINK_OPTIONS}")
|
||||
endif()
|
||||
|
||||
else()
|
||||
list(APPEND ${_ggml_backend_pfx}_INTERFACE_LINK_LIBRARIES "ggml::ggml-base")
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_OPTIONS "${${_ggml_backend_pfx}_INTERFACE_LINK_OPTIONS}")
|
||||
INTERFACE_LINK_LIBRARIES "${${_ggml_backend_pfx}_INTERFACE_LINK_LIBRARIES}")
|
||||
|
||||
if(${_ggml_backend_pfx}_INTERFACE_LINK_OPTIONS)
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_OPTIONS "${${_ggml_backend_pfx}_INTERFACE_LINK_OPTIONS}")
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
|
||||
list(APPEND _ggml_all_targets ggml::${_ggml_backend})
|
||||
endforeach()
|
||||
list(APPEND _ggml_all_targets ggml::${_ggml_backend})
|
||||
endforeach()
|
||||
|
||||
list(APPEND GGML_INTERFACE_LINK_LIBRARIES ggml::ggml-base "${_ggml_all_targets}")
|
||||
set_target_properties(ggml::ggml
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_LIBRARIES "${GGML_INTERFACE_LINK_LIBRARIES}")
|
||||
list(APPEND GGML_INTERFACE_LINK_LIBRARIES ggml::ggml-base "${_ggml_all_targets}")
|
||||
set_target_properties(ggml::ggml
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_LIBRARIES "${GGML_INTERFACE_LINK_LIBRARIES}")
|
||||
|
||||
add_library(ggml::all INTERFACE IMPORTED)
|
||||
set_target_properties(ggml::all
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_LIBRARIES "${_ggml_all_targets}")
|
||||
add_library(ggml::all INTERFACE IMPORTED)
|
||||
set_target_properties(ggml::all
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_LIBRARIES "${_ggml_all_targets}")
|
||||
|
||||
endif() # TARGET ggml::ggml
|
||||
endif()
|
||||
|
||||
check_required_components(ggml)
|
||||
|
||||
@@ -68,6 +68,8 @@
|
||||
#include <aclnnop/aclnn_grouped_matmul_v3.h>
|
||||
#include <aclnnop/aclnn_fused_infer_attention_score_v2.h>
|
||||
#include <aclnnop/aclnn_zero.h>
|
||||
#include <aclnnop/aclnn_index_copy.h>
|
||||
#include <aclnnop/aclnn_index_select.h>
|
||||
#include <float.h>
|
||||
|
||||
#include <cmath>
|
||||
@@ -1614,50 +1616,97 @@ void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Performs embedding operation on a 4D tensor using the CANN backend.
|
||||
* @brief Performs index select operation on a 4D tensor using the CANN backend.
|
||||
*
|
||||
* This function extracts slices from the source tensor (`src_buffer`),
|
||||
* index tensor (`index`), and destination tensor (`dst`), and performs an
|
||||
* embedding operation on them. The embedding operation is applied by iterating
|
||||
* over the last two dimensions of the source tensor, creating the necessary
|
||||
* tensors for the source, index, and output, and executing the embedding operation.
|
||||
* This function applies the `IndexSelect` operation along a specific dimension
|
||||
* of the source tensor (`src_buffer`) using the indices from the index tensor (`index`).
|
||||
* It iterates over the last two dimensions of the source tensor, creates the corresponding
|
||||
* CANN tensors for the source, index, and output slices, and executes the `IndexSelect`
|
||||
* operation for each slice.
|
||||
*
|
||||
* @param ctx The context for CANN backend operations.
|
||||
* @param src_buffer The source buffer holding the data for the source tensor.
|
||||
* @param src_buffer The source buffer containing the 4D input tensor data.
|
||||
* @param src_ne The dimensions of the source tensor.
|
||||
* @param src_nb The strides (byte offsets) of the source tensor.
|
||||
* @param index The index tensor used in the embedding operation.
|
||||
* @param dst The destination tensor where the result will be stored.
|
||||
* @param dst_buffer The destination buffer where the output tensor data will be written.
|
||||
* @param dst_ne The dimensions of the destination tensor.
|
||||
* @param dst_nb The strides (byte offsets) of the destination tensor.
|
||||
* @param index The index tensor specifying the indices to select from the source tensor.
|
||||
* @param type The data type of the source and destination tensors.
|
||||
*/
|
||||
static void aclnn_embedding_4d(ggml_backend_cann_context& ctx, void* src_buffer,
|
||||
int64_t* src_ne, size_t* src_nb, ggml_tensor* index,
|
||||
ggml_tensor* dst) {
|
||||
static void aclnn_index_select_4d(ggml_backend_cann_context& ctx,
|
||||
void* src_buffer,int64_t* src_ne, size_t* src_nb,
|
||||
void* dst_buffer, int64_t* dst_ne, size_t* dst_nb,
|
||||
ggml_tensor* index, ggml_type type) {
|
||||
for (int64_t i = 0; i < src_ne[3]; i++) {
|
||||
for (int64_t j = 0; j < src_ne[2]; j++) {
|
||||
// src
|
||||
int64_t acl_src_ne[2] = {src_ne[0], src_ne[1]};
|
||||
size_t acl_src_nb[2] = {src_nb[0], src_nb[1]};
|
||||
aclTensor* acl_src_tensor = ggml_cann_create_tensor(
|
||||
(char*)src_buffer + i * src_nb[3] + j * src_nb[2],
|
||||
ggml_cann_type_mapping(dst->type), ggml_element_size(dst),
|
||||
acl_src_ne, acl_src_nb, 2);
|
||||
ggml_cann_type_mapping(type), ggml_type_size(type),
|
||||
src_ne, src_nb, 2);
|
||||
|
||||
// index
|
||||
int64_t acl_index_ne[1] = {index->ne[0]};
|
||||
size_t acl_index_nb[1] = {index->nb[0]};
|
||||
aclTensor* acl_index = ggml_cann_create_tensor(
|
||||
(char*)index->data + i * index->nb[2] + j * index->nb[1],
|
||||
(char*)index->data + (i % index->ne[2]) * index->nb[2] + (j % index->ne[1]) * index->nb[1],
|
||||
ggml_cann_type_mapping(index->type), ggml_element_size(index),
|
||||
acl_index_ne, acl_index_nb, 1);
|
||||
index->ne, index->nb, 1);
|
||||
|
||||
// out
|
||||
int64_t acl_out_ne[2] = {dst->ne[0], dst->ne[1]};
|
||||
size_t acl_out_nb[2] = {dst->nb[0], dst->nb[1]};
|
||||
aclTensor* acl_out = ggml_cann_create_tensor(
|
||||
(char*)dst->data + i * dst->nb[3] + j * dst->nb[2],
|
||||
ggml_cann_type_mapping(dst->type), ggml_element_size(dst),
|
||||
acl_out_ne, acl_out_nb, 2);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, Embedding, acl_src_tensor, acl_index, acl_out);
|
||||
(char*)dst_buffer + i * dst_nb[3] + j * dst_nb[2],
|
||||
ggml_cann_type_mapping(type), ggml_type_size(type),
|
||||
dst_ne, dst_nb, 2);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, IndexSelect, acl_src_tensor, 0, acl_index, acl_out);
|
||||
ggml_cann_release_resources(ctx, acl_src_tensor, acl_index, acl_out);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Performs inplace index copy operation on a 4D tensor using the CANN backend.
|
||||
*
|
||||
* This function applies the `IndexCopy` operation along a specific dimension of the
|
||||
* destination tensor (`dst_buffer`) by copying elements from the source tensor (`src_buffer`)
|
||||
* to positions specified by the index tensor (`index`).
|
||||
* It iterates over the last two dimensions of the tensors, creates the corresponding
|
||||
* CANN tensors for source, index, and destination slices, and performs the index copy
|
||||
* operation for each slice.
|
||||
*
|
||||
* @param ctx The context for CANN backend operations.
|
||||
* @param src_buffer The source buffer containing the 4D input tensor data to be copied.
|
||||
* @param src_ne The dimensions of the source tensor.
|
||||
* @param src_nb The strides (byte offsets) of the source tensor.
|
||||
* @param dst_buffer The destination buffer where values will be copied to.
|
||||
* @param dst_ne The dimensions of the destination tensor.
|
||||
* @param dst_nb The strides (byte offsets) of the destination tensor.
|
||||
* @param index The index tensor specifying target positions in the destination tensor.
|
||||
* @param type The data type of the source and destination tensors.
|
||||
*/
|
||||
static void aclnn_index_copy_4d(ggml_backend_cann_context& ctx,
|
||||
void* src_buffer,int64_t* src_ne, size_t* src_nb,
|
||||
void* dst_buffer, int64_t* dst_ne, size_t* dst_nb,
|
||||
ggml_tensor* index, ggml_type type) {
|
||||
for (int64_t i = 0; i < src_ne[3]; i++) {
|
||||
for (int64_t j = 0; j < src_ne[2]; j++) {
|
||||
// src
|
||||
aclTensor* acl_src_tensor = ggml_cann_create_tensor(
|
||||
(char*)src_buffer + i * src_nb[3] + j * src_nb[2],
|
||||
ggml_cann_type_mapping(type), ggml_type_size(type),
|
||||
src_ne, src_nb, 2);
|
||||
|
||||
// index
|
||||
aclTensor* acl_index = ggml_cann_create_tensor(
|
||||
(char*)index->data + (i % index->ne[2]) * index->nb[2] + (j % index->ne[1]) * index->nb[1],
|
||||
ggml_cann_type_mapping(index->type), ggml_element_size(index),
|
||||
index->ne, index->nb, 1);
|
||||
|
||||
// out
|
||||
aclTensor* acl_out = ggml_cann_create_tensor(
|
||||
(char*)dst_buffer + i * dst_nb[3] + j * dst_nb[2],
|
||||
ggml_cann_type_mapping(type), ggml_type_size(type),
|
||||
dst_ne, dst_nb, 2);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceIndexCopy, acl_out, 0, acl_index, acl_src_tensor);
|
||||
ggml_cann_release_resources(ctx, acl_src_tensor, acl_index, acl_out);
|
||||
}
|
||||
}
|
||||
@@ -1669,8 +1718,9 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32: {
|
||||
aclnn_embedding_4d(ctx, src0->data, src0->ne, src0->nb, src1,
|
||||
dst);
|
||||
aclnn_index_select_4d(ctx, src0->data, src0->ne, src0->nb,
|
||||
dst->data, dst->ne, dst->nb,
|
||||
src1, dst->type);
|
||||
break;
|
||||
}
|
||||
case GGML_TYPE_F16: {
|
||||
@@ -1687,8 +1737,9 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
src_trans_buffer, ACL_FLOAT, ggml_type_size(dst->type),
|
||||
src0->ne, src_trans_nb, GGML_MAX_DIMS);
|
||||
aclnn_cast(ctx, acl_src0, src_trans_tensor, ggml_cann_type_mapping(dst->type));
|
||||
aclnn_embedding_4d(ctx, src_trans_buffer, src0->ne,
|
||||
src_trans_nb, src1, dst);
|
||||
aclnn_index_select_4d(ctx, src_trans_buffer, src0->ne, src_trans_nb,
|
||||
dst->data, dst->ne, dst->nb,
|
||||
src1, dst->type);
|
||||
ggml_cann_release_resources(ctx, acl_src0, src_trans_tensor);
|
||||
break;
|
||||
}
|
||||
@@ -1748,8 +1799,10 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
dequant_nb[i] = dequant_nb[i - 1] * src0->ne[i - 1];
|
||||
}
|
||||
|
||||
aclnn_embedding_4d(ctx, dequant_buffer_allocator.get(),
|
||||
dequant_ne, dequant_nb, src1, dst);
|
||||
aclnn_index_select_4d(ctx, dequant_buffer_allocator.get(),
|
||||
dequant_ne, dequant_nb,
|
||||
dst->data, dst->ne, dst->nb,
|
||||
src1, dst->type);
|
||||
|
||||
ggml_cann_release_resources(ctx, dequant_tensor);
|
||||
break;
|
||||
@@ -1760,6 +1813,43 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cann_set_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ggml_tensor* src0 = dst->src[0]; // src
|
||||
ggml_tensor* src1 = dst->src[1]; // index
|
||||
|
||||
switch (dst->type) {
|
||||
case GGML_TYPE_F32: {
|
||||
aclnn_index_copy_4d(ctx, src0->data, src0->ne, src0->nb,
|
||||
dst->data, dst->ne, dst->nb,
|
||||
src1, dst->type);
|
||||
break;
|
||||
}
|
||||
case GGML_TYPE_F16: {
|
||||
aclTensor* acl_src0 = ggml_cann_create_tensor(src0);
|
||||
ggml_cann_pool_alloc src_buffer_allocator(
|
||||
ctx.pool(), ggml_nelements(src0) * sizeof(uint16_t));
|
||||
void* src_trans_buffer = src_buffer_allocator.get();
|
||||
size_t src_trans_nb[GGML_MAX_DIMS];
|
||||
src_trans_nb[0] = sizeof(uint16_t);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
|
||||
}
|
||||
aclTensor* src_trans_tensor = ggml_cann_create_tensor(
|
||||
src_trans_buffer, ACL_FLOAT16, ggml_type_size(dst->type),
|
||||
src0->ne, src_trans_nb, GGML_MAX_DIMS);
|
||||
aclnn_cast(ctx, acl_src0, src_trans_tensor, ggml_cann_type_mapping(dst->type));
|
||||
aclnn_index_copy_4d(ctx, src_trans_buffer, src0->ne, src_trans_nb,
|
||||
dst->data, dst->ne, dst->nb,
|
||||
src1, dst->type);
|
||||
ggml_cann_release_resources(ctx, acl_src0, src_trans_tensor);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
GGML_ABORT("Unsupported tensor type for GGML_OP_SET_ROWS");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Repeats elements of a tensor along a specified dimension.
|
||||
*
|
||||
@@ -1823,11 +1913,9 @@ static void ggml_cann_mat_mul_fp(ggml_backend_cann_context& ctx,
|
||||
bcast_weight_nb[4], bcast_weight_nb[5]};
|
||||
aclTensor* acl_weight_tensor;
|
||||
|
||||
bool weightToNZ = false;
|
||||
#ifdef ASCEND_310P
|
||||
weightToNZ = (getenv("GGML_CANN_WEIGHT_NZ") != nullptr);
|
||||
#endif
|
||||
if (weightToNZ && is_matmul_weight(weight)) {
|
||||
// Only check env once.
|
||||
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or(""));
|
||||
if (weight_to_nz && is_matmul_weight(weight)) {
|
||||
int64_t acl_stride[2] = {1, transpose_ne[1]};
|
||||
|
||||
// Reverse ne.
|
||||
|
||||
@@ -424,15 +424,25 @@ void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
*
|
||||
* @details This function retrieves rows from a source tensor src0 according to
|
||||
* the indices provided in another tensor src1 and stores the result in
|
||||
* a destination tensor (\p dst). It supports different data types
|
||||
* including F32, F16, Q4_0, and Q8_0.
|
||||
* a destination tensor (\p dst).
|
||||
*
|
||||
* @param ctx The backend CANN context for executing operations.
|
||||
* @param dst The destination tensor where the extracted rows will be stored.
|
||||
* dst->op is `GGML_OP_GET_ROWS`.
|
||||
*/
|
||||
void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Writes specific rows into a tensor at positions specified by indices.
|
||||
*
|
||||
* @details This function copies rows from a source tensor into a destination
|
||||
* tensor (\p dst) at the positions indicated by the indices in another
|
||||
* tensor.
|
||||
*
|
||||
* @param ctx The backend CANN context for executing operations.
|
||||
* @param dst The destination tensor where the specified rows will be updated.
|
||||
*/
|
||||
void ggml_cann_set_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Executes matrix multiplication for the given tensor.
|
||||
*
|
||||
|
||||
@@ -1116,61 +1116,59 @@ static enum ggml_status ggml_backend_cann_buffer_init_tensor(
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
static int CreateAclTensorWeight(const void *hostData, const std::vector<int64_t> &shape, void **deviceAddr,
|
||||
aclDataType dataType, aclTensor **tensor)
|
||||
{
|
||||
uint64_t size = 1;
|
||||
for (auto i : shape) {
|
||||
size *= i;
|
||||
// ND to NZ Workspace Cache Management. Thread-safety: Not guaranteed
|
||||
namespace {
|
||||
void* g_nz_workspace = nullptr;
|
||||
size_t g_nz_workspace_allocated = 0;
|
||||
|
||||
void release_nz_workspace() {
|
||||
if (g_nz_workspace) {
|
||||
aclrtFree(g_nz_workspace);
|
||||
g_nz_workspace = nullptr;
|
||||
g_nz_workspace_allocated = 0;
|
||||
}
|
||||
}
|
||||
|
||||
const aclIntArray *mat2Size = aclCreateIntArray(shape.data(), shape.size());
|
||||
ACL_CHECK(aclnnCalculateMatmulWeightSizeV2(mat2Size, dataType, &size));
|
||||
|
||||
size *= sizeof(int16_t);
|
||||
|
||||
ACL_CHECK(aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
aclrtMemcpy(*deviceAddr, size, hostData, size, ACL_MEMCPY_HOST_TO_DEVICE);
|
||||
|
||||
std::vector<int64_t> strides(shape.size(), 1);
|
||||
for (int64_t i = shape.size() - 2; i >= 0; i--) {
|
||||
strides[i] = shape[i + 1] * strides[i + 1];
|
||||
void relloc_nz_workspace(size_t new_size) {
|
||||
if (new_size > g_nz_workspace_allocated) {
|
||||
if (g_nz_workspace) {
|
||||
aclrtFree(g_nz_workspace);
|
||||
g_nz_workspace = nullptr;
|
||||
}
|
||||
ACL_CHECK(aclrtMalloc(&g_nz_workspace, new_size, ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
g_nz_workspace_allocated = new_size;
|
||||
}
|
||||
}
|
||||
|
||||
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
|
||||
shape.data(), shape.size(), *deviceAddr);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Convert tensor weights to NZ format using Ascend CANN API.
|
||||
*
|
||||
* This function creates a transposed tensor descriptor and performs the
|
||||
* TransMatmulWeight operation. Converting tensor formats can significantly
|
||||
* improve performance on certain hardware.
|
||||
*
|
||||
* @param tensor Pointer to the input ggml_tensor containing the weights.
|
||||
* @param data Pointer to the raw data buffer for the tensor weights.
|
||||
* @param offset Byte offset within the tensor data buffer where weights start.
|
||||
*
|
||||
* @note The workspace buffer used in this function is managed globally and reused
|
||||
* across calls. This reduces overhead from repeated memory allocation and deallocation.
|
||||
*/
|
||||
static void weight_format_to_nz(ggml_tensor *tensor, const void *data, size_t offset) {
|
||||
aclrtStream stream;
|
||||
ACL_CHECK(aclrtCreateStream(&stream));
|
||||
|
||||
std::vector<int64_t> weightTransposedShape = {tensor->ne[1], tensor->ne[0]};
|
||||
void *weightTransposedDeviceAddr = nullptr;
|
||||
aclTensor *weightTransposed = nullptr;
|
||||
CreateAclTensorWeight(data, weightTransposedShape, &weightTransposedDeviceAddr,
|
||||
ggml_cann_type_mapping(tensor->type), &weightTransposed);
|
||||
|
||||
aclTensor* weightTransposed = ggml_cann_create_tensor(tensor, tensor->ne,
|
||||
tensor->nb, 2, ACL_FORMAT_ND, offset);
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
void *workspaceAddr = nullptr;
|
||||
|
||||
// TransMatmulWeight
|
||||
ACL_CHECK(aclnnTransMatmulWeightGetWorkspaceSize(weightTransposed, &workspaceSize, &executor));
|
||||
std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrTrans(nullptr, aclrtFree);
|
||||
if (workspaceSize > 0) {
|
||||
ACL_CHECK(aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
workspaceAddrPtrTrans.reset(workspaceAddr);
|
||||
}
|
||||
ACL_CHECK(aclnnTransMatmulWeight(workspaceAddr, workspaceSize, executor, stream));
|
||||
ACL_CHECK(aclnnTransMatmulWeightGetWorkspaceSize(weightTransposed,
|
||||
&workspaceSize, &executor));
|
||||
// Avoid frequent malloc/free of the workspace.
|
||||
relloc_nz_workspace(workspaceSize);
|
||||
|
||||
size_t size = ggml_nelements(tensor) * ggml_element_size(tensor);
|
||||
|
||||
aclrtMemcpy((char *)tensor->data + offset, size,
|
||||
weightTransposedDeviceAddr, size, ACL_MEMCPY_HOST_TO_DEVICE);
|
||||
ACL_CHECK(aclnnTransMatmulWeight(g_nz_workspace, workspaceSize, executor, nullptr));
|
||||
ACL_CHECK(aclDestroyTensor(weightTransposed));
|
||||
aclrtFree(weightTransposedDeviceAddr);
|
||||
}
|
||||
|
||||
// TODO: need handle tensor which has paddings.
|
||||
@@ -1197,14 +1195,14 @@ static void ggml_backend_cann_buffer_set_tensor(
|
||||
// For acl, synchronous functions use this default stream.
|
||||
// Why aclrtSynchronizeDevice?
|
||||
|
||||
bool weightToNZ = false;
|
||||
#ifdef ASCEND_310P
|
||||
weightToNZ = (getenv("GGML_CANN_WEIGHT_NZ") != nullptr);
|
||||
#endif
|
||||
// Only check env once.
|
||||
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or(""));
|
||||
if (!need_transform(tensor->type)) {
|
||||
ACL_CHECK(aclrtMemcpy((char *)tensor->data + offset, size, data, size,
|
||||
ACL_MEMCPY_HOST_TO_DEVICE));
|
||||
if (weightToNZ && is_matmul_weight((const ggml_tensor*)tensor)) {
|
||||
if (weight_to_nz && is_matmul_weight((const ggml_tensor*)tensor)) {
|
||||
GGML_ASSERT(tensor->ne[2] == 1);
|
||||
GGML_ASSERT(tensor->ne[3] == 1);
|
||||
weight_format_to_nz(tensor, data, offset);
|
||||
}
|
||||
} else {
|
||||
@@ -1440,20 +1438,32 @@ static size_t ggml_backend_cann_buffer_type_get_alloc_size(
|
||||
size_t size = ggml_nbytes(tensor);
|
||||
int64_t ne0 = tensor->ne[0];
|
||||
|
||||
// Only check env once.
|
||||
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or(""));
|
||||
|
||||
// last line must bigger than 32, because every single op deal at
|
||||
// least 32 bytes.
|
||||
// TODO: quantized type?
|
||||
// int64_t line_size = ne0 * ggml_element_size(tensor);
|
||||
// int64_t line_size_align_32 = (line_size + 31) & ~31;
|
||||
// size += (line_size_align_32 - line_size);
|
||||
|
||||
// TODO: not support quantized yet.
|
||||
// TODO: consider un-continue tensor.
|
||||
if (ggml_is_quantized(tensor->type)) {
|
||||
if (ne0 % MATRIX_ROW_PADDING != 0) {
|
||||
size += ggml_row_size(
|
||||
tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
|
||||
}
|
||||
} else if (weight_to_nz && is_matmul_weight((const ggml_tensor*)tensor)) {
|
||||
// NZ format weight are not support quantized yet.
|
||||
// If ND tensor transform to NZ, size may changed.
|
||||
int64_t shape[] = {tensor->ne[1], tensor->ne[0]};
|
||||
GGML_ASSERT(tensor->ne[2] == 1);
|
||||
GGML_ASSERT(tensor->ne[3] == 1);
|
||||
const aclIntArray *acl_shape = aclCreateIntArray(shape, 2);
|
||||
size_t new_size;
|
||||
ACL_CHECK(aclnnCalculateMatmulWeightSizeV2(acl_shape,
|
||||
ggml_cann_type_mapping(tensor->type), &new_size));
|
||||
ACL_CHECK(aclDestroyIntArray(acl_shape));
|
||||
size = std::max(size, new_size);
|
||||
}
|
||||
|
||||
return size;
|
||||
@@ -1659,6 +1669,9 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
|
||||
case GGML_OP_GET_ROWS:
|
||||
ggml_cann_get_rows(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SET_ROWS:
|
||||
ggml_cann_set_rows(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_DUP:
|
||||
ggml_cann_dup(ctx, dst);
|
||||
break;
|
||||
@@ -2003,6 +2016,9 @@ static bool ggml_backend_cann_cpy_tensor_async(
|
||||
(ggml_backend_cann_context*)backend_dst->context;
|
||||
|
||||
size_t copy_size = ggml_nbytes(dst);
|
||||
if (copy_size == 0) {
|
||||
return true;
|
||||
}
|
||||
if (backend_src != backend_dst) {
|
||||
ggml_backend_cann_buffer_context* buf_ctx_src =
|
||||
(ggml_backend_cann_buffer_context*)buf_src->context;
|
||||
@@ -2077,6 +2093,8 @@ static enum ggml_status ggml_backend_cann_graph_compute(
|
||||
(ggml_backend_cann_context*)backend->context;
|
||||
|
||||
ggml_cann_set_device(cann_ctx->device);
|
||||
//release temp buffer create by set tensor.
|
||||
release_nz_workspace();
|
||||
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
ggml_tensor* node = cgraph->nodes[i];
|
||||
@@ -2191,13 +2209,15 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
return false;
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_SET_ROWS:
|
||||
{
|
||||
// TODO: add support
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/14274
|
||||
#pragma message("TODO: implement F32, F16, BF16, Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, IQ4_NL support (https://github.com/ggml-org/llama.cpp/pull/14661)")
|
||||
return false;
|
||||
} break;
|
||||
case GGML_OP_SET_ROWS: {
|
||||
switch (op->type) {
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_F16:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_CPY: {
|
||||
ggml_tensor *src = op->src[0];
|
||||
if ((op->type != GGML_TYPE_F32 && op->type != GGML_TYPE_F16) ||
|
||||
|
||||
@@ -37,17 +37,21 @@
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#elif defined(__aarch64__) || defined(__arm__) || defined(_M_ARM) || defined(_M_ARM64)
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#elif defined(__x86_64__) || defined(__i386__) || defined(_M_IX86) || defined(_M_X64)
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
@@ -72,11 +76,13 @@
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#elif defined(__loongarch64)
|
||||
// quants.c
|
||||
@@ -92,11 +98,13 @@
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#elif defined(__riscv)
|
||||
// quants.c
|
||||
@@ -119,10 +127,12 @@
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#elif defined(__s390x__)
|
||||
// quants.c
|
||||
@@ -147,11 +157,13 @@
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#elif defined(__wasm__)
|
||||
// quants.c
|
||||
@@ -175,10 +187,12 @@
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#endif
|
||||
|
||||
@@ -1236,44 +1236,10 @@ void ggml_vec_dot_tq1_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
*s = sumf;
|
||||
|
||||
#else
|
||||
const uint8_t pow3[6] = {1, 3, 9, 27, 81, 243};
|
||||
|
||||
float sumf = 0.0f;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
int sum = 0;
|
||||
|
||||
for (size_t j = 0; j < sizeof(x->qs) - sizeof(x->qs) % 32; j += 32) {
|
||||
for (size_t l = 0; l < 5; ++l) {
|
||||
for (size_t m = 0; m < 32; ++m) {
|
||||
uint8_t q = x[i].qs[j + m] * pow3[l];
|
||||
uint16_t xi = ((uint16_t) q * 3) >> 8;
|
||||
sum += (xi - 1) * y[i].qs[j*5 + l*32 + m];
|
||||
}
|
||||
}
|
||||
}
|
||||
for (size_t j = sizeof(x->qs) - sizeof(x->qs) % 32; j < sizeof(x->qs); j += 16) {
|
||||
for (size_t l = 0; l < 5; ++l) {
|
||||
for (size_t m = 0; m < 16; ++m) {
|
||||
uint8_t q = x[i].qs[j + m] * pow3[l];
|
||||
uint16_t xi = ((uint16_t) q * 3) >> 8;
|
||||
sum += (xi - 1) * y[i].qs[j*5 + l*16 + m];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (size_t l = 0; l < 4; ++l) {
|
||||
for (size_t j = 0; j < sizeof(x->qh); ++j) {
|
||||
uint8_t q = x[i].qh[j] * pow3[l];
|
||||
uint16_t xi = ((uint16_t) q * 3) >> 8;
|
||||
sum += (xi - 1) * y[i].qs[sizeof(x->qs)*5 + l*sizeof(x->qh) + j];
|
||||
}
|
||||
}
|
||||
|
||||
sumf += (float) sum * (GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_tq1_0_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1381,25 +1347,10 @@ void ggml_vec_dot_tq2_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
*s = sumf;
|
||||
|
||||
#else
|
||||
float sumf = 0.0f;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
int32_t sumi = 0;
|
||||
|
||||
for (size_t j = 0; j < sizeof(x->qs); j += 32) {
|
||||
for (size_t l = 0; l < 4; ++l) {
|
||||
for (size_t k = 0; k < 32; ++k) {
|
||||
sumi += y[i].qs[j*4 + l*32 + k] * (((x[i].qs[j + k] >> (l*2)) & 3) - 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
|
||||
|
||||
sumf += (float) sumi * d;
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_tq2_0_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1729,45 +1680,10 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = sum;
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
const uint8_t * q2 = x[i].qs;
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * sc = x[i].scales;
|
||||
|
||||
int summs = 0;
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
summs += y[i].bsums[j] * (sc[j] >> 4);
|
||||
}
|
||||
|
||||
const float dall = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
|
||||
|
||||
int isum = 0;
|
||||
int is = 0;
|
||||
int d;
|
||||
for (int k = 0; k < QK_K/128; ++k) {
|
||||
int shift = 0;
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
d = sc[is++] & 0xF;
|
||||
int isuml = 0;
|
||||
for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
|
||||
isum += d * isuml;
|
||||
d = sc[is++] & 0xF;
|
||||
isuml = 0;
|
||||
for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
|
||||
isum += d * isuml;
|
||||
shift += 2;
|
||||
q8 += 32;
|
||||
}
|
||||
q2 += 32;
|
||||
}
|
||||
sumf += dall * isum - dmin * summs;
|
||||
}
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_q2_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -2057,68 +1973,12 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = sum;
|
||||
|
||||
#else
|
||||
// scalar version
|
||||
// This function is written like this so the compiler can manage to vectorize most of it
|
||||
// Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
|
||||
// manually vectorized version above. Every other version I tried would run at least 4 times slower.
|
||||
// The ideal situation would be if we could just write the code once, and the compiler would
|
||||
// automatically produce the best possible set of machine instructions, instead of us having to manually
|
||||
// write vectorized versions for AVX, ARM_NEON, etc.
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
uint32_t auxs[4];
|
||||
const int8_t * scales = (const int8_t*)auxs;
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT hm = x[i].hmask;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
uint8_t m = 1;
|
||||
for (int j = 0; j < QK_K; j += 128) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
q3 += 32;
|
||||
}
|
||||
a = aux8;
|
||||
|
||||
memcpy(auxs, x[i].scales, 12);
|
||||
uint32_t tmp = auxs[2];
|
||||
auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
|
||||
auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
|
||||
auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
|
||||
auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_q3_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
|
||||
}
|
||||
@@ -2431,61 +2291,14 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = sumf;
|
||||
|
||||
#else
|
||||
|
||||
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
|
||||
a += 32;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
|
||||
a += 32; q4 += 32;
|
||||
}
|
||||
memcpy(utmp, x[i].scales, 12);
|
||||
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
||||
const uint32_t uaux = utmp[1] & kmask1;
|
||||
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
||||
utmp[2] = uaux;
|
||||
utmp[0] &= kmask1;
|
||||
|
||||
int sumi = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/32; ++j) {
|
||||
int32_t scale = scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
||||
sumf -= dmin * sumi;
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(kmask3);
|
||||
UNUSED(utmp);
|
||||
ggml_vec_dot_q4_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -2578,66 +2391,14 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = sumf;
|
||||
|
||||
#else
|
||||
|
||||
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT hm = x[i].qh;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
uint8_t m = 1;
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
|
||||
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
|
||||
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
|
||||
a += 32; m <<= 1;
|
||||
q4 += 32;
|
||||
}
|
||||
memcpy(utmp, x[i].scales, 12);
|
||||
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
||||
const uint32_t uaux = utmp[1] & kmask1;
|
||||
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
||||
utmp[2] = uaux;
|
||||
utmp[0] &= kmask1;
|
||||
|
||||
int sumi = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/32; ++j) {
|
||||
int32_t scale = scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
||||
sumf -= dmin * sumi;
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(kmask3);
|
||||
UNUSED(utmp);
|
||||
ggml_vec_dot_q5_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -3093,47 +2854,10 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
}
|
||||
*s = sum;
|
||||
#else
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].ql;
|
||||
const uint8_t * GGML_RESTRICT qh = x[i].qh;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
for (int j = 0; j < QK_K; j += 128) {
|
||||
for (int l = 0; l < 32; ++l) {
|
||||
a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
|
||||
a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
|
||||
a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
|
||||
a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
|
||||
}
|
||||
a += 128;
|
||||
q4 += 64;
|
||||
qh += 32;
|
||||
}
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
int scale = x[i].scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_q6_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -3229,34 +2953,10 @@ void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const
|
||||
*s = 0.25f * sumf;
|
||||
|
||||
#else
|
||||
|
||||
uint32_t aux32[2];
|
||||
const uint8_t * aux8 = (const uint8_t *)aux32;
|
||||
|
||||
float sumf = 0.f;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint16_t * GGML_RESTRICT q2 = x[i].qs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
int32_t bsum = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
|
||||
memcpy(aux32, q2, 2*sizeof(uint32_t));
|
||||
q2 += 4;
|
||||
const uint32_t ls = 2*(aux32[1] >> 28) + 1;
|
||||
int32_t sumi = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
|
||||
const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
bsum += sumi * ls;
|
||||
}
|
||||
sumf += d * bsum;
|
||||
}
|
||||
*s = 0.125f * sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq2_xxs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -3327,42 +3027,10 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
|
||||
*s = 0.125f * sumf;
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0.f;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint16_t * GGML_RESTRICT q2 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT sc = x[i].scales;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
int32_t bsum = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
|
||||
const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1;
|
||||
const uint16_t ls2 = 2*(sc[ib32] >> 4) + 1;
|
||||
int32_t sumi = 0;
|
||||
for (int l = 0; l < 2; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
|
||||
const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
bsum += sumi * ls1;
|
||||
sumi = 0;
|
||||
for (int l = 2; l < 4; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
|
||||
const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
bsum += sumi * ls2;
|
||||
q2 += 4;
|
||||
}
|
||||
sumf += d * bsum;
|
||||
}
|
||||
*s = 0.125f * sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq2_xs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -3455,45 +3123,10 @@ void ggml_vec_dot_iq2_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
*s = 0.125f * sumf;
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; i++) {
|
||||
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * qs = x[i].qs;
|
||||
const uint8_t * qh = x[i].qh;
|
||||
const uint8_t * signs = qs + QK_K/8;
|
||||
|
||||
int bsum = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
|
||||
int ls1 = 1 + 2*(x[i].scales[ib32] & 0xf);
|
||||
int ls2 = 1 + 2*(x[i].scales[ib32] >> 4);
|
||||
int sumi1 = 0, sumi2 = 0;
|
||||
for (int l = 0; l < 2; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi1 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
for (int l = 2; l < 4; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi2 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
bsum += ls1 * sumi1 + ls2 * sumi2;
|
||||
qs += 4;
|
||||
signs += 4;
|
||||
}
|
||||
|
||||
sumf += d * bsum;
|
||||
}
|
||||
|
||||
*s = 0.125f * sumf;
|
||||
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq2_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
|
||||
}
|
||||
@@ -3553,36 +3186,10 @@ void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const
|
||||
*s = 0.5f * sumf;
|
||||
|
||||
#else
|
||||
|
||||
uint32_t aux32;
|
||||
|
||||
float sumf = 0.f;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT gas = x[i].qs + QK_K/4;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
int32_t bsum = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
|
||||
memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
|
||||
const uint32_t ls = 2*(aux32 >> 28) + 1;
|
||||
int32_t sumi = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
|
||||
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
|
||||
sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
q3 += 8;
|
||||
bsum += sumi * ls;
|
||||
}
|
||||
sumf += d * bsum;
|
||||
}
|
||||
*s = 0.25f * sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq3_xxs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -3689,48 +3296,10 @@ void ggml_vec_dot_iq3_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
*s = sumf;
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0.f;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint8_t * GGML_RESTRICT qs = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT qh = x[i].qh;
|
||||
const uint8_t * GGML_RESTRICT signs = x[i].signs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
int32_t bsum = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
|
||||
const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1;
|
||||
const uint32_t ls2 = 2*(x[i].scales[ib32/2] >> 4) + 1;
|
||||
int32_t sumi = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
|
||||
sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
qs += 8;
|
||||
signs += 4;
|
||||
bsum += sumi * ls1;
|
||||
sumi = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
|
||||
sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
qs += 8;
|
||||
signs += 4;
|
||||
bsum += sumi * ls2;
|
||||
}
|
||||
sumf += d * bsum;
|
||||
}
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq3_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -3793,36 +3362,10 @@ void ggml_vec_dot_iq1_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
*s = sumf;
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; i++) {
|
||||
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * qs = x[i].qs;
|
||||
const uint16_t * qh = x[i].qh;
|
||||
|
||||
int sumi = 0, sumi1 = 0;
|
||||
for (int ib = 0; ib < QK_K/32; ++ib) {
|
||||
const int ls = 2*((qh[ib] >> 12) & 7) + 1;
|
||||
const int delta = qh[ib] & 0x8000 ? -1 : 1;
|
||||
int lsum = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
lsum += q8[j] * grid[j];
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
sumi += ls * lsum;
|
||||
sumi1 += ls * delta * (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]);
|
||||
qs += 4;
|
||||
}
|
||||
|
||||
sumf += GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d * (sumi + IQ1S_DELTA * sumi1);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq1_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -3912,52 +3455,11 @@ void ggml_vec_dot_iq1_m_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
*s = sumf;
|
||||
|
||||
#else
|
||||
|
||||
int sum1[2], sum2[2], delta[4];
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; i++) {
|
||||
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * qs = x[i].qs;
|
||||
const uint8_t * qh = x[i].qh;
|
||||
const uint16_t * sc = (const uint16_t *)x[i].scales;
|
||||
|
||||
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
||||
|
||||
int sumi1 = 0, sumi2 = 0;
|
||||
for (int ib = 0; ib < QK_K/32; ++ib) {
|
||||
delta[0] = qh[0] & 0x08 ? -1 : 1;
|
||||
delta[1] = qh[0] & 0x80 ? -1 : 1;
|
||||
delta[2] = qh[1] & 0x08 ? -1 : 1;
|
||||
delta[3] = qh[1] & 0x80 ? -1 : 1;
|
||||
sum1[0] = sum1[1] = sum2[0] = sum2[1] = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((uint16_t)qh[l/2] << (8 - 4*(l%2))) & 0x700)));
|
||||
int lsum1 = 0, lsum2 = 0;
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
lsum1 += q8[j] * grid[j];
|
||||
lsum2 += q8[j];
|
||||
}
|
||||
q8 += 8;
|
||||
sum1[l/2] += lsum1;
|
||||
sum2[l/2] += lsum2*delta[l];
|
||||
}
|
||||
|
||||
const int ls1 = 2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1;
|
||||
const int ls2 = 2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1;
|
||||
|
||||
sumi1 += sum1[0] * ls1 + sum1[1] * ls2;
|
||||
sumi2 += sum2[0] * ls1 + sum2[1] * ls2;
|
||||
qs += 4;
|
||||
qh += 2;
|
||||
}
|
||||
|
||||
sumf += GGML_CPU_FP16_TO_FP32(scale.f16) * y[i].d * (sumi1 + IQ1M_DELTA * sumi2);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
UNUSED(scale);
|
||||
ggml_vec_dot_iq1_m_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -4078,37 +3580,10 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
|
||||
*s = sumf;
|
||||
|
||||
#else
|
||||
float sumf = 0;
|
||||
for (int ibl = 0; ibl < nb; ++ibl) {
|
||||
const float d4d8 = GGML_CPU_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
|
||||
uint16_t h = x[ibl].scales_h;
|
||||
const uint8_t * qs = x[ibl].qs;
|
||||
const int8_t * q8 = y[ibl].qs;
|
||||
for (int ib = 0; ib < QK_K/32; ib += 2) {
|
||||
const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30);
|
||||
const uint8_t ls2 = (x[ibl].scales_l[ib/2] >> 4) | ((h << 2) & 0x30);
|
||||
h >>= 4;
|
||||
const float d1 = d4d8*(ls1 - 32);
|
||||
const float d2 = d4d8*(ls2 - 32);
|
||||
int sumi1 = 0, sumi2 = 0;
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
|
||||
sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
|
||||
}
|
||||
sumf += d1 * (sumi1 + sumi2);
|
||||
qs += 16;
|
||||
q8 += 32;
|
||||
sumi1 = sumi2 = 0;
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
|
||||
sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
|
||||
}
|
||||
sumf += d2 * (sumi1 + sumi2);
|
||||
qs += 16;
|
||||
q8 += 32;
|
||||
}
|
||||
}
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq4_xs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
@@ -86,35 +86,9 @@ void ggml_quantize_mat_q8_0_4x4(const float * GGML_RESTRICT x, void * GGML_RESTR
|
||||
}
|
||||
}
|
||||
#else
|
||||
// scalar
|
||||
const int blck_size_interleave = 4;
|
||||
float srcv[4][QK8_0];
|
||||
float id[4];
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
for (int row_iter = 0; row_iter < 4; row_iter++) {
|
||||
float amax = 0.0f; // absolute max
|
||||
|
||||
for (int j = 0; j < QK8_0; j++) {
|
||||
srcv[row_iter][j] = x[row_iter * k + i * QK8_0 + j];
|
||||
amax = MAX(amax, fabsf(srcv[row_iter][j]));
|
||||
}
|
||||
|
||||
const float d = amax / ((1 << 7) - 1);
|
||||
id[row_iter] = d ? 1.0f / d : 0.0f;
|
||||
|
||||
y[i].d[row_iter] = GGML_CPU_FP32_TO_FP16(d);
|
||||
}
|
||||
|
||||
for (int j = 0; j < QK8_0 * 4; j++) {
|
||||
int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave;
|
||||
int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave;
|
||||
src_offset += (j % blck_size_interleave);
|
||||
|
||||
float x0 = srcv[src_id][src_offset] * id[src_id];
|
||||
y[i].qs[j] = roundf(x0);
|
||||
}
|
||||
}
|
||||
UNUSED(nb);
|
||||
UNUSED(y);
|
||||
ggml_quantize_mat_q8_0_4x4_generic(x, vy, k);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -205,35 +179,9 @@ void ggml_quantize_mat_q8_0_4x8(const float * GGML_RESTRICT x, void * GGML_RESTR
|
||||
}
|
||||
|
||||
#else
|
||||
// scalar
|
||||
const int blck_size_interleave = 8;
|
||||
float srcv[4][QK8_0];
|
||||
float id[4];
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
for (int row_iter = 0; row_iter < 4; row_iter++) {
|
||||
float amax = 0.0f; // absolute max
|
||||
|
||||
for (int j = 0; j < QK8_0; j++) {
|
||||
srcv[row_iter][j] = x[row_iter * k + i * QK8_0 + j];
|
||||
amax = MAX(amax, fabsf(srcv[row_iter][j]));
|
||||
}
|
||||
|
||||
const float d = amax / ((1 << 7) - 1);
|
||||
id[row_iter] = d ? 1.0f / d : 0.0f;
|
||||
|
||||
y[i].d[row_iter] = GGML_CPU_FP32_TO_FP16(d);
|
||||
}
|
||||
|
||||
for (int j = 0; j < QK8_0 * 4; j++) {
|
||||
int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave;
|
||||
int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave;
|
||||
src_offset += (j % blck_size_interleave);
|
||||
|
||||
float x0 = srcv[src_id][src_offset] * id[src_id];
|
||||
y[i].qs[j] = roundf(x0);
|
||||
}
|
||||
}
|
||||
UNUSED(nb);
|
||||
UNUSED(y);
|
||||
ggml_quantize_mat_q8_0_4x8_generic(x, vy, k);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -295,29 +243,7 @@ void ggml_gemv_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
}
|
||||
return;
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
|
||||
float sumf[4];
|
||||
int sumi;
|
||||
|
||||
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb);
|
||||
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
|
||||
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
|
||||
}
|
||||
sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
|
||||
}
|
||||
ggml_gemv_q4_0_4x4_q8_0_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
void ggml_gemv_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
@@ -383,29 +309,7 @@ void ggml_gemv_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
}
|
||||
return;
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
|
||||
float sumf[4];
|
||||
int sumi;
|
||||
|
||||
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb);
|
||||
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
|
||||
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
|
||||
}
|
||||
sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
|
||||
}
|
||||
ggml_gemv_q4_0_4x8_q8_0_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
@@ -497,31 +401,7 @@ void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
#endif // #if defined(__ARM_FEATURE_SVE)
|
||||
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__)
|
||||
{
|
||||
float sumf[8];
|
||||
int sumi;
|
||||
|
||||
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
|
||||
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
|
||||
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
|
||||
}
|
||||
sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
|
||||
}
|
||||
}
|
||||
ggml_gemv_q4_0_8x8_q8_0_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
void ggml_gemv_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
@@ -591,31 +471,7 @@ void ggml_gemv_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const
|
||||
}
|
||||
return;
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON)
|
||||
{
|
||||
float sumf[4];
|
||||
int sumi;
|
||||
|
||||
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb);
|
||||
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F];
|
||||
const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4];
|
||||
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2]));
|
||||
}
|
||||
sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
|
||||
}
|
||||
}
|
||||
ggml_gemv_iq4_nl_4x4_q8_0_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
@@ -1096,40 +952,7 @@ void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
);
|
||||
return;
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON)
|
||||
{
|
||||
float sumf[4][4];
|
||||
int sumi;
|
||||
|
||||
for (int y = 0; y < nr / 4; y++) {
|
||||
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb);
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
|
||||
}
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
|
||||
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
|
||||
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
|
||||
}
|
||||
sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++)
|
||||
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
ggml_gemm_q4_0_4x4_q8_0_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
@@ -1550,38 +1373,7 @@ void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
);
|
||||
return;
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
float sumf[4][4];
|
||||
int sumi;
|
||||
|
||||
for (int y = 0; y < nr / 4; y++) {
|
||||
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb);
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
|
||||
}
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
|
||||
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
|
||||
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
|
||||
}
|
||||
sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++)
|
||||
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
ggml_gemm_q4_0_4x8_q8_0_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
@@ -2019,38 +1811,7 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
#endif // #if defined(__ARM_FEATURE_SVE) && defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__)
|
||||
float sumf[4][8];
|
||||
int sumi;
|
||||
|
||||
for (int y = 0; y < nr / 4; y++) {
|
||||
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
|
||||
}
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
|
||||
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
|
||||
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
|
||||
}
|
||||
sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++)
|
||||
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
ggml_gemm_q4_0_8x8_q8_0_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
@@ -2126,38 +1887,5 @@ void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const
|
||||
}
|
||||
return;
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON)
|
||||
{
|
||||
float sumf[4][4];
|
||||
int sumi;
|
||||
|
||||
for (int y = 0; y < nr / 4; y++) {
|
||||
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb);
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
|
||||
}
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F];
|
||||
const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4];
|
||||
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
|
||||
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4]));
|
||||
}
|
||||
sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++)
|
||||
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
ggml_gemm_iq4_nl_4x4_q8_0_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
@@ -821,24 +821,15 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
sumf = hsum_float_8(acc) + summs;
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const int v0 = (x[ib].qs[j] & 0x0F);
|
||||
const int v1 = (x[ib].qs[j] >> 4);
|
||||
|
||||
sumi0 += (v0 * y[ib].qs[j]);
|
||||
sumi1 += (v1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
ggml_vec_dot_q4_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -883,30 +874,15 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
sumf = hsum_float_8(acc);
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
|
||||
const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
|
||||
|
||||
const int32_t x0 = (int8_t)(((x[ib].qs[j] & 0x0F) | xh_0) - 16);
|
||||
const int32_t x1 = (int8_t)(((x[ib].qs[j] >> 4) | xh_1) - 16);
|
||||
|
||||
sumi0 += (x0 * y[ib].qs[j]);
|
||||
sumi1 += (x1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d)) * sumi;
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
ggml_vec_dot_q5_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -954,30 +930,15 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
sumf = hsum_float_8(acc) + summs;
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
|
||||
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
|
||||
|
||||
const int32_t x0 = (x[ib].qs[j] & 0xF) | xh_0;
|
||||
const int32_t x1 = (x[ib].qs[j] >> 4) | xh_1;
|
||||
|
||||
sumi0 += (x0 * y[ib].qs[j]);
|
||||
sumi1 += (x1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
ggml_vec_dot_q5_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -1016,18 +977,15 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
sumf = hsum_float_8(acc);
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
int sumi = 0;
|
||||
|
||||
for (int j = 0; j < qk; j++) {
|
||||
sumi += x[ib].qs[j]*y[ib].qs[j];
|
||||
}
|
||||
|
||||
sumf += sumi*(GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d));
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
ggml_vec_dot_q8_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -1103,45 +1061,10 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = hsum_float_8(acc);
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
const uint8_t * q2 = x[i].qs;
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * sc = x[i].scales;
|
||||
|
||||
int summs = 0;
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
summs += y[i].bsums[j] * (sc[j] >> 4);
|
||||
}
|
||||
|
||||
const float dall = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
|
||||
|
||||
int isum = 0;
|
||||
int is = 0;
|
||||
int d;
|
||||
for (int k = 0; k < QK_K/128; ++k) {
|
||||
int shift = 0;
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
d = sc[is++] & 0xF;
|
||||
int isuml = 0;
|
||||
for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
|
||||
isum += d * isuml;
|
||||
d = sc[is++] & 0xF;
|
||||
isuml = 0;
|
||||
for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
|
||||
isum += d * isuml;
|
||||
shift += 2;
|
||||
q8 += 32;
|
||||
}
|
||||
q2 += 32;
|
||||
}
|
||||
sumf += dall * isum - dmin * summs;
|
||||
}
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_q2_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1239,70 +1162,13 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = hsum_float_8(acc);
|
||||
|
||||
#else
|
||||
// scalar version
|
||||
// This function is written like this so the compiler can manage to vectorize most of it
|
||||
// Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
|
||||
// manually vectorized version above. Every other version I tried would run at least 4 times slower.
|
||||
// The ideal situation would be if we could just write the code once, and the compiler would
|
||||
// automatically produce the best possible set of machine instructions, instead of us having to manually
|
||||
// write vectorized versions for AVX, ARM_NEON, etc.
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
uint32_t auxs[4];
|
||||
const int8_t * scales = (const int8_t*)auxs;
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT hm = x[i].hmask;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
uint8_t m = 1;
|
||||
for (int j = 0; j < QK_K; j += 128) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
q3 += 32;
|
||||
}
|
||||
a = aux8;
|
||||
|
||||
memcpy(auxs, x[i].scales, 12);
|
||||
uint32_t tmp = auxs[2];
|
||||
auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
|
||||
auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
|
||||
auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
|
||||
auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_q3_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -1391,61 +1257,14 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = hsum_float_8(acc) + ((v4f32)acc_m)[0];
|
||||
|
||||
#else
|
||||
|
||||
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
|
||||
a += 32;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
|
||||
a += 32; q4 += 32;
|
||||
}
|
||||
memcpy(utmp, x[i].scales, 12);
|
||||
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
||||
const uint32_t uaux = utmp[1] & kmask1;
|
||||
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
||||
utmp[2] = uaux;
|
||||
utmp[0] &= kmask1;
|
||||
|
||||
int sumi = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/32; ++j) {
|
||||
int32_t scale = scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
||||
sumf -= dmin * sumi;
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(kmask3);
|
||||
UNUSED(utmp);
|
||||
ggml_vec_dot_q4_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1541,66 +1360,14 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = hsum_float_8(acc) + ((v4f32)acc_m)[0];
|
||||
|
||||
#else
|
||||
|
||||
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT hm = x[i].qh;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
uint8_t m = 1;
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
|
||||
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
|
||||
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
|
||||
a += 32; m <<= 1;
|
||||
q4 += 32;
|
||||
}
|
||||
memcpy(utmp, x[i].scales, 12);
|
||||
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
||||
const uint32_t uaux = utmp[1] & kmask1;
|
||||
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
||||
utmp[2] = uaux;
|
||||
utmp[0] &= kmask1;
|
||||
|
||||
int sumi = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/32; ++j) {
|
||||
int32_t scale = scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
||||
sumf -= dmin * sumi;
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(kmask3);
|
||||
UNUSED(utmp);
|
||||
ggml_vec_dot_q5_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1678,47 +1445,10 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = hsum_float_8(acc);
|
||||
|
||||
#else
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].ql;
|
||||
const uint8_t * GGML_RESTRICT qh = x[i].qh;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
for (int j = 0; j < QK_K; j += 128) {
|
||||
for (int l = 0; l < 32; ++l) {
|
||||
a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
|
||||
a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
|
||||
a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
|
||||
a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
|
||||
}
|
||||
a += 128;
|
||||
q4 += 64;
|
||||
qh += 32;
|
||||
}
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
int scale = x[i].scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_q6_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1815,34 +1545,10 @@ void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const
|
||||
*s = 0.125f * hsum_float_8(accumf);
|
||||
|
||||
#else
|
||||
|
||||
uint32_t aux32[2];
|
||||
const uint8_t * aux8 = (const uint8_t *)aux32;
|
||||
|
||||
float sumf = 0.f;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint16_t * GGML_RESTRICT q2 = x[i].qs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
int32_t bsum = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
|
||||
memcpy(aux32, q2, 2*sizeof(uint32_t));
|
||||
q2 += 4;
|
||||
const uint32_t ls = 2*(aux32[1] >> 28) + 1;
|
||||
int32_t sumi = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
|
||||
const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
bsum += sumi * ls;
|
||||
}
|
||||
sumf += d * bsum;
|
||||
}
|
||||
*s = 0.125f * sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq2_xxs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1978,42 +1684,10 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
|
||||
*s = 0.125f * hsum_float_8(accumf);
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0.f;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint16_t * GGML_RESTRICT q2 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT sc = x[i].scales;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
int32_t bsum = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
|
||||
const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1;
|
||||
const uint16_t ls2 = 2*(sc[ib32] >> 4) + 1;
|
||||
int32_t sumi = 0;
|
||||
for (int l = 0; l < 2; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
|
||||
const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
bsum += sumi * ls1;
|
||||
sumi = 0;
|
||||
for (int l = 2; l < 4; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
|
||||
const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
bsum += sumi * ls2;
|
||||
q2 += 4;
|
||||
}
|
||||
sumf += d * bsum;
|
||||
}
|
||||
*s = 0.125f * sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq2_xs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -2105,47 +1779,11 @@ void ggml_vec_dot_iq2_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
*s = 0.125f * hsum_float_8(accumf);
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; i++) {
|
||||
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * qs = x[i].qs;
|
||||
const uint8_t * qh = x[i].qh;
|
||||
const uint8_t * signs = qs + QK_K/8;
|
||||
|
||||
int bsum = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
|
||||
int ls1 = 1 + 2*(x[i].scales[ib32] & 0xf);
|
||||
int ls2 = 1 + 2*(x[i].scales[ib32] >> 4);
|
||||
int sumi1 = 0, sumi2 = 0;
|
||||
for (int l = 0; l < 2; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi1 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
for (int l = 2; l < 4; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi2 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
bsum += ls1 * sumi1 + ls2 * sumi2;
|
||||
qs += 4;
|
||||
signs += 4;
|
||||
}
|
||||
|
||||
sumf += d * bsum;
|
||||
}
|
||||
|
||||
*s = 0.125f * sumf;
|
||||
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq2_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -2209,36 +1847,10 @@ void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const
|
||||
*s = 0.25f * hsum_float_8(accumf);
|
||||
|
||||
#else
|
||||
|
||||
uint32_t aux32;
|
||||
|
||||
float sumf = 0.f;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT gas = x[i].qs + QK_K/4;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
int32_t bsum = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
|
||||
memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
|
||||
const uint32_t ls = 2*(aux32 >> 28) + 1;
|
||||
int32_t sumi = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
|
||||
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
|
||||
sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
q3 += 8;
|
||||
bsum += sumi * ls;
|
||||
}
|
||||
sumf += d * bsum;
|
||||
}
|
||||
*s = 0.25f * sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq3_xxs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -2338,48 +1950,10 @@ void ggml_vec_dot_iq3_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
*s = hsum_float_8(accumf);
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0.f;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint8_t * GGML_RESTRICT qs = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT qh = x[i].qh;
|
||||
const uint8_t * GGML_RESTRICT signs = x[i].signs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
int32_t bsum = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
|
||||
const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1;
|
||||
const uint32_t ls2 = 2*(x[i].scales[ib32/2] >> 4) + 1;
|
||||
int32_t sumi = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
|
||||
sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
qs += 8;
|
||||
signs += 4;
|
||||
bsum += sumi * ls1;
|
||||
sumi = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
|
||||
sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
qs += 8;
|
||||
signs += 4;
|
||||
bsum += sumi * ls2;
|
||||
}
|
||||
sumf += d * bsum;
|
||||
}
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq3_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -2460,36 +2034,10 @@ void ggml_vec_dot_iq1_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
*s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; i++) {
|
||||
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * qs = x[i].qs;
|
||||
const uint16_t * qh = x[i].qh;
|
||||
|
||||
int sumi = 0, sumi1 = 0;
|
||||
for (int ib = 0; ib < QK_K/32; ++ib) {
|
||||
const int ls = 2*((qh[ib] >> 12) & 7) + 1;
|
||||
const int delta = qh[ib] & 0x8000 ? -1 : 1;
|
||||
int lsum = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
lsum += q8[j] * grid[j];
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
sumi += ls * lsum;
|
||||
sumi1 += ls * delta * (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]);
|
||||
qs += 4;
|
||||
}
|
||||
|
||||
sumf += GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d * (sumi + IQ1S_DELTA * sumi1);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq1_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -2603,37 +2151,10 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
|
||||
*s = hsum_float_8(accum);
|
||||
|
||||
#else
|
||||
float sumf = 0;
|
||||
for (int ibl = 0; ibl < nb; ++ibl) {
|
||||
const float d4d8 = GGML_CPU_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
|
||||
uint16_t h = x[ibl].scales_h;
|
||||
const uint8_t * qs = x[ibl].qs;
|
||||
const int8_t * q8 = y[ibl].qs;
|
||||
for (int ib = 0; ib < QK_K/32; ib += 2) {
|
||||
const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30);
|
||||
const uint8_t ls2 = (x[ibl].scales_l[ib/2] >> 4) | ((h << 2) & 0x30);
|
||||
h >>= 4;
|
||||
const float d1 = d4d8*(ls1 - 32);
|
||||
const float d2 = d4d8*(ls2 - 32);
|
||||
int sumi1 = 0, sumi2 = 0;
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
|
||||
sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
|
||||
}
|
||||
sumf += d1 * (sumi1 + sumi2);
|
||||
qs += 16;
|
||||
q8 += 32;
|
||||
sumi1 = sumi2 = 0;
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
|
||||
sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
|
||||
}
|
||||
sumf += d2 * (sumi1 + sumi2);
|
||||
qs += 16;
|
||||
q8 += 32;
|
||||
}
|
||||
}
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq4_xs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
@@ -201,24 +201,14 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
sumf = vec_extract(vsumf0, 0);
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const int v0 = (x[ib].qs[j] & 0x0F) - 8;
|
||||
const int v1 = (x[ib].qs[j] >> 4) - 8;
|
||||
|
||||
sumi0 += (v0 * y[ib].qs[j]);
|
||||
sumi1 += (v1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += sumi*GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
ggml_vec_dot_q4_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -278,24 +268,14 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
sumf = vec_extract(vsumf0, 0);
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const int v0 = (x[ib].qs[j] & 0x0F);
|
||||
const int v1 = (x[ib].qs[j] >> 4);
|
||||
|
||||
sumi0 += (v0 * y[ib].qs[j]);
|
||||
sumi1 += (v1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
ggml_vec_dot_q4_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -360,30 +340,14 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
sumf = vec_extract(vsumf0, 0);
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
|
||||
const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
|
||||
|
||||
const int32_t x0 = (int8_t)(((x[ib].qs[j] & 0x0F) | xh_0) - 16);
|
||||
const int32_t x1 = (int8_t)(((x[ib].qs[j] >> 4) | xh_1) - 16);
|
||||
|
||||
sumi0 += (x0 * y[ib].qs[j]);
|
||||
sumi1 += (x1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d)) * sumi;
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
ggml_vec_dot_q5_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -451,30 +415,15 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
sumf = vec_extract(vsumf0, 0);
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
|
||||
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
|
||||
|
||||
const int32_t x0 = (x[ib].qs[j] & 0xF) | xh_0;
|
||||
const int32_t x1 = (x[ib].qs[j] >> 4) | xh_1;
|
||||
|
||||
sumi0 += (x0 * y[ib].qs[j]);
|
||||
sumi1 += (x1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
ggml_vec_dot_q5_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -535,18 +484,15 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
sumf = vec_extract(vsumf0, 0);
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
int sumi = 0;
|
||||
|
||||
for (int j = 0; j < qk; j++) {
|
||||
sumi += x[ib].qs[j]*y[ib].qs[j];
|
||||
}
|
||||
|
||||
sumf += sumi*(GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d));
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
ggml_vec_dot_q8_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -695,45 +641,10 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = vec_extract(vsumf0, 0);
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
const uint8_t * q2 = x[i].qs;
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * sc = x[i].scales;
|
||||
|
||||
int summs = 0;
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
summs += y[i].bsums[j] * (sc[j] >> 4);
|
||||
}
|
||||
|
||||
const float dall = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
|
||||
|
||||
int isum = 0;
|
||||
int is = 0;
|
||||
int d;
|
||||
for (int k = 0; k < QK_K/128; ++k) {
|
||||
int shift = 0;
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
d = sc[is++] & 0xF;
|
||||
int isuml = 0;
|
||||
for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
|
||||
isum += d * isuml;
|
||||
d = sc[is++] & 0xF;
|
||||
isuml = 0;
|
||||
for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
|
||||
isum += d * isuml;
|
||||
shift += 2;
|
||||
q8 += 32;
|
||||
}
|
||||
q2 += 32;
|
||||
}
|
||||
sumf += dall * isum - dmin * summs;
|
||||
}
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_q2_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -907,70 +818,13 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = vec_extract(vsumf0, 0);
|
||||
|
||||
#else
|
||||
// scalar version
|
||||
// This function is written like this so the compiler can manage to vectorize most of it
|
||||
// Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
|
||||
// manually vectorized version above. Every other version I tried would run at least 4 times slower.
|
||||
// The ideal situation would be if we could just write the code once, and the compiler would
|
||||
// automatically produce the best possible set of machine instructions, instead of us having to manually
|
||||
// write vectorized versions for AVX, ARM_NEON, etc.
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
uint32_t auxs[4];
|
||||
const int8_t * scales = (const int8_t*)auxs;
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT hm = x[i].hmask;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
uint8_t m = 1;
|
||||
for (int j = 0; j < QK_K; j += 128) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
q3 += 32;
|
||||
}
|
||||
a = aux8;
|
||||
|
||||
memcpy(auxs, x[i].scales, 12);
|
||||
uint32_t tmp = auxs[2];
|
||||
auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
|
||||
auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
|
||||
auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
|
||||
auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_q3_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -1130,61 +984,14 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = vec_extract(vsumf0, 0);
|
||||
|
||||
#else
|
||||
|
||||
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
|
||||
a += 32;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
|
||||
a += 32; q4 += 32;
|
||||
}
|
||||
memcpy(utmp, x[i].scales, 12);
|
||||
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
||||
const uint32_t uaux = utmp[1] & kmask1;
|
||||
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
||||
utmp[2] = uaux;
|
||||
utmp[0] &= kmask1;
|
||||
|
||||
int sumi = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/32; ++j) {
|
||||
int32_t scale = scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
||||
sumf -= dmin * sumi;
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(kmask3);
|
||||
UNUSED(utmp);
|
||||
ggml_vec_dot_q4_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1342,66 +1149,14 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = vec_extract(vsumf0, 0);
|
||||
|
||||
#else
|
||||
|
||||
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT hm = x[i].qh;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
uint8_t m = 1;
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
|
||||
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
|
||||
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
|
||||
a += 32; m <<= 1;
|
||||
q4 += 32;
|
||||
}
|
||||
memcpy(utmp, x[i].scales, 12);
|
||||
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
||||
const uint32_t uaux = utmp[1] & kmask1;
|
||||
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
||||
utmp[2] = uaux;
|
||||
utmp[0] &= kmask1;
|
||||
|
||||
int sumi = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/32; ++j) {
|
||||
int32_t scale = scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
||||
sumf -= dmin * sumi;
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(kmask3);
|
||||
UNUSED(utmp);
|
||||
ggml_vec_dot_q5_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1556,47 +1311,10 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = vec_extract(vsumf0, 0);
|
||||
|
||||
#else
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].ql;
|
||||
const uint8_t * GGML_RESTRICT qh = x[i].qh;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
for (int j = 0; j < QK_K; j += 128) {
|
||||
for (int l = 0; l < 32; ++l) {
|
||||
a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
|
||||
a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
|
||||
a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
|
||||
a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
|
||||
}
|
||||
a += 128;
|
||||
q4 += 64;
|
||||
qh += 32;
|
||||
}
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
int scale = x[i].scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_q6_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1737,34 +1455,10 @@ void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const
|
||||
*s = 0.125f * vec_extract(vsumf0, 0);
|
||||
|
||||
#else
|
||||
|
||||
uint32_t aux32[2];
|
||||
const uint8_t * aux8 = (const uint8_t *)aux32;
|
||||
|
||||
float sumf = 0.f;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint16_t * GGML_RESTRICT q2 = x[i].qs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
int32_t bsum = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
|
||||
memcpy(aux32, q2, 2*sizeof(uint32_t));
|
||||
q2 += 4;
|
||||
const uint32_t ls = 2*(aux32[1] >> 28) + 1;
|
||||
int32_t sumi = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
|
||||
const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
bsum += sumi * ls;
|
||||
}
|
||||
sumf += d * bsum;
|
||||
}
|
||||
*s = 0.125f * sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq2_xxs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1869,42 +1563,10 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
|
||||
*s = 0.125f * vec_extract(vsumf0, 0);
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0.f;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint16_t * GGML_RESTRICT q2 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT sc = x[i].scales;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
int32_t bsum = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
|
||||
const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1;
|
||||
const uint16_t ls2 = 2*(sc[ib32] >> 4) + 1;
|
||||
int32_t sumi = 0;
|
||||
for (int l = 0; l < 2; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
|
||||
const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
bsum += sumi * ls1;
|
||||
sumi = 0;
|
||||
for (int l = 2; l < 4; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
|
||||
const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
bsum += sumi * ls2;
|
||||
q2 += 4;
|
||||
}
|
||||
sumf += d * bsum;
|
||||
}
|
||||
*s = 0.125f * sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq2_xs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -2030,47 +1692,11 @@ void ggml_vec_dot_iq2_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
*s = 0.125f * vec_extract(vsumf0, 0);
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; i++) {
|
||||
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * qs = x[i].qs;
|
||||
const uint8_t * qh = x[i].qh;
|
||||
const uint8_t * signs = qs + QK_K/8;
|
||||
|
||||
int bsum = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
|
||||
int ls1 = 1 + 2*(x[i].scales[ib32] & 0xf);
|
||||
int ls2 = 1 + 2*(x[i].scales[ib32] >> 4);
|
||||
int sumi1 = 0, sumi2 = 0;
|
||||
for (int l = 0; l < 2; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi1 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
for (int l = 2; l < 4; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi2 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
bsum += ls1 * sumi1 + ls2 * sumi2;
|
||||
qs += 4;
|
||||
signs += 4;
|
||||
}
|
||||
|
||||
sumf += d * bsum;
|
||||
}
|
||||
|
||||
*s = 0.125f * sumf;
|
||||
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq2_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -2172,36 +1798,10 @@ void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const
|
||||
*s = 0.25f * vec_extract(vsumf0, 0);
|
||||
|
||||
#else
|
||||
|
||||
uint32_t aux32;
|
||||
|
||||
float sumf = 0.f;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT gas = x[i].qs + QK_K/4;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
int32_t bsum = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
|
||||
memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
|
||||
const uint32_t ls = 2*(aux32 >> 28) + 1;
|
||||
int32_t sumi = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
|
||||
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
|
||||
sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
q3 += 8;
|
||||
bsum += sumi * ls;
|
||||
}
|
||||
sumf += d * bsum;
|
||||
}
|
||||
*s = 0.25f * sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq3_xxs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -2327,48 +1927,10 @@ void ggml_vec_dot_iq3_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
*s = vec_extract(vsumf0, 0);
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0.f;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint8_t * GGML_RESTRICT qs = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT qh = x[i].qh;
|
||||
const uint8_t * GGML_RESTRICT signs = x[i].signs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
int32_t bsum = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
|
||||
const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1;
|
||||
const uint32_t ls2 = 2*(x[i].scales[ib32/2] >> 4) + 1;
|
||||
int32_t sumi = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
|
||||
sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
qs += 8;
|
||||
signs += 4;
|
||||
bsum += sumi * ls1;
|
||||
sumi = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
|
||||
sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
qs += 8;
|
||||
signs += 4;
|
||||
bsum += sumi * ls2;
|
||||
}
|
||||
sumf += d * bsum;
|
||||
}
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq3_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -2481,36 +2043,10 @@ void ggml_vec_dot_iq1_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
*s = vec_extract(vsumf0, 0);
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; i++) {
|
||||
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * qs = x[i].qs;
|
||||
const uint16_t * qh = x[i].qh;
|
||||
|
||||
int sumi = 0, sumi1 = 0;
|
||||
for (int ib = 0; ib < QK_K/32; ++ib) {
|
||||
const int ls = 2*((qh[ib] >> 12) & 7) + 1;
|
||||
const int delta = qh[ib] & 0x8000 ? -1 : 1;
|
||||
int lsum = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
lsum += q8[j] * grid[j];
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
sumi += ls * lsum;
|
||||
sumi1 += ls * delta * (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]);
|
||||
qs += 4;
|
||||
}
|
||||
|
||||
sumf += GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d * (sumi + IQ1S_DELTA * sumi1);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq1_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -2581,17 +2117,15 @@ void ggml_vec_dot_iq4_nl_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const v
|
||||
|
||||
sumf = vec_extract(vsumf0, 0);
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
const float d = GGML_CPU_FP16_TO_FP32(y[ib].d)*GGML_CPU_FP16_TO_FP32(x[ib].d);
|
||||
int sumi1 = 0, sumi2 = 0;
|
||||
for (int j = 0; j < QK4_NL/2; ++j) {
|
||||
sumi1 += y[ib].qs[j+ 0] * kvalues_iq4nl[x[ib].qs[j] & 0xf];
|
||||
sumi2 += y[ib].qs[j+QK4_NL/2] * kvalues_iq4nl[x[ib].qs[j] >> 4];
|
||||
}
|
||||
sumf += d * (sumi1 + sumi2);
|
||||
}
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
ggml_vec_dot_iq4_nl_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -2696,37 +2230,10 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
|
||||
*s = vec_extract(vsumf0, 0);
|
||||
|
||||
#else
|
||||
float sumf = 0;
|
||||
for (int ibl = 0; ibl < nb; ++ibl) {
|
||||
const float d4d8 = GGML_CPU_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
|
||||
uint16_t h = x[ibl].scales_h;
|
||||
const uint8_t * qs = x[ibl].qs;
|
||||
const int8_t * q8 = y[ibl].qs;
|
||||
for (int ib = 0; ib < QK_K/32; ib += 2) {
|
||||
const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30);
|
||||
const uint8_t ls2 = (x[ibl].scales_l[ib/2] >> 4) | ((h << 2) & 0x30);
|
||||
h >>= 4;
|
||||
const float d1 = d4d8*(ls1 - 32);
|
||||
const float d2 = d4d8*(ls2 - 32);
|
||||
int sumi1 = 0, sumi2 = 0;
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
|
||||
sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
|
||||
}
|
||||
sumf += d1 * (sumi1 + sumi2);
|
||||
qs += 16;
|
||||
q8 += 32;
|
||||
sumi1 = sumi2 = 0;
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
|
||||
sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
|
||||
}
|
||||
sumf += d2 * (sumi1 + sumi2);
|
||||
qs += 16;
|
||||
q8 += 32;
|
||||
}
|
||||
}
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq4_xs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
@@ -116,6 +116,7 @@ void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
|
||||
//===================================== Dot products =================================
|
||||
|
||||
void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
#if defined(__riscv_v)
|
||||
const int qk = QK8_0;
|
||||
const int nb = n / qk;
|
||||
|
||||
@@ -132,7 +133,6 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
int ib = 0;
|
||||
float sumf = 0;
|
||||
|
||||
#if defined(__riscv_v)
|
||||
size_t vl = qk / 2;
|
||||
|
||||
for (; ib < nb; ++ib) {
|
||||
@@ -164,27 +164,14 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
sumf += sumi*GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d);
|
||||
}
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const int v0 = (x[ib].qs[j] & 0x0F) - 8;
|
||||
const int v1 = (x[ib].qs[j] >> 4) - 8;
|
||||
|
||||
sumi0 += (v0 * y[ib].qs[j]);
|
||||
sumi1 += (v1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += sumi*GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
ggml_vec_dot_q4_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
#if defined(__riscv_v)
|
||||
const int qk = QK8_1;
|
||||
const int nb = n / qk;
|
||||
|
||||
@@ -201,7 +188,6 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
int ib = 0;
|
||||
float sumf = 0;
|
||||
|
||||
#if defined(__riscv_v)
|
||||
size_t vl = qk / 2;
|
||||
|
||||
for (; ib < nb; ++ib) {
|
||||
@@ -229,27 +215,14 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
|
||||
}
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const int v0 = (x[ib].qs[j] & 0x0F);
|
||||
const int v1 = (x[ib].qs[j] >> 4);
|
||||
|
||||
sumi0 += (v0 * y[ib].qs[j]);
|
||||
sumi1 += (v1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
ggml_vec_dot_q4_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
#if defined(__riscv_v)
|
||||
const int qk = QK8_0;
|
||||
const int nb = n / qk;
|
||||
|
||||
@@ -267,7 +240,6 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
const block_q5_0 * GGML_RESTRICT x = vx;
|
||||
const block_q8_0 * GGML_RESTRICT y = vy;
|
||||
|
||||
#if defined(__riscv_v)
|
||||
size_t vl;
|
||||
size_t vlenb = __riscv_vlenb();
|
||||
|
||||
@@ -297,33 +269,14 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d) * GGML_CPU_FP16_TO_FP32(y[ib].d)) * sumi;
|
||||
}
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
|
||||
const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
|
||||
|
||||
const int32_t x0 = (int8_t)(((x[ib].qs[j] & 0x0F) | xh_0) - 16);
|
||||
const int32_t x1 = (int8_t)(((x[ib].qs[j] >> 4) | xh_1) - 16);
|
||||
|
||||
sumi0 += (x0 * y[ib].qs[j]);
|
||||
sumi1 += (x1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d)) * sumi;
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
ggml_vec_dot_q5_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
#if defined(__riscv_v)
|
||||
const int qk = QK8_1;
|
||||
const int nb = n / qk;
|
||||
|
||||
@@ -341,7 +294,6 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
const block_q5_1 * GGML_RESTRICT x = vx;
|
||||
const block_q8_1 * GGML_RESTRICT y = vy;
|
||||
|
||||
#if defined(__riscv_v)
|
||||
size_t vl;
|
||||
size_t vlenb = __riscv_vlenb();
|
||||
|
||||
@@ -370,30 +322,10 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
|
||||
}
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
|
||||
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
|
||||
|
||||
const int32_t x0 = (x[ib].qs[j] & 0xF) | xh_0;
|
||||
const int32_t x1 = (x[ib].qs[j] >> 4) | xh_1;
|
||||
|
||||
sumi0 += (x0 * y[ib].qs[j]);
|
||||
sumi1 += (x1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
ggml_vec_dot_q5_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -431,18 +363,17 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
sumf += sumi*(GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d));
|
||||
}
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
int sumi = 0;
|
||||
|
||||
for (int j = 0; j < qk; j++) {
|
||||
sumi += x[ib].qs[j]*y[ib].qs[j];
|
||||
}
|
||||
|
||||
sumf += sumi*(GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d));
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
|
||||
UNUSED(nb);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
|
||||
ggml_vec_dot_q8_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -738,44 +669,11 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
const uint8_t * q2 = x[i].qs;
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * sc = x[i].scales;
|
||||
|
||||
int summs = 0;
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
summs += y[i].bsums[j] * (sc[j] >> 4);
|
||||
}
|
||||
|
||||
const float dall = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
|
||||
|
||||
int isum = 0;
|
||||
int is = 0;
|
||||
int d;
|
||||
for (int k = 0; k < QK_K/128; ++k) {
|
||||
int shift = 0;
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
d = sc[is++] & 0xF;
|
||||
int isuml = 0;
|
||||
for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
|
||||
isum += d * isuml;
|
||||
d = sc[is++] & 0xF;
|
||||
isuml = 0;
|
||||
for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
|
||||
isum += d * isuml;
|
||||
shift += 2;
|
||||
q8 += 32;
|
||||
}
|
||||
q2 += 32;
|
||||
}
|
||||
sumf += dall * isum - dmin * summs;
|
||||
}
|
||||
*s = sumf;
|
||||
ggml_vec_dot_q2_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1147,68 +1045,14 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = sumf;
|
||||
|
||||
#else
|
||||
// scalar version
|
||||
// This function is written like this so the compiler can manage to vectorize most of it
|
||||
// Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
|
||||
// manually vectorized version above. Every other version I tried would run at least 4 times slower.
|
||||
// The ideal situation would be if we could just write the code once, and the compiler would
|
||||
// automatically produce the best possible set of machine instructions, instead of us having to manually
|
||||
// write vectorized versions for AVX, ARM_NEON, etc.
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
uint32_t auxs[4];
|
||||
const int8_t * scales = (const int8_t*)auxs;
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT hm = x[i].hmask;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
uint8_t m = 1;
|
||||
for (int j = 0; j < QK_K; j += 128) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
q3 += 32;
|
||||
}
|
||||
a = aux8;
|
||||
|
||||
memcpy(auxs, x[i].scales, 12);
|
||||
uint32_t tmp = auxs[2];
|
||||
auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
|
||||
auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
|
||||
auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
|
||||
auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
|
||||
ggml_vec_dot_q3_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
|
||||
}
|
||||
@@ -1534,60 +1378,15 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
#else
|
||||
|
||||
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(kmask3);
|
||||
UNUSED(nb);
|
||||
UNUSED(utmp);
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
|
||||
a += 32;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
|
||||
a += 32; q4 += 32;
|
||||
}
|
||||
memcpy(utmp, x[i].scales, 12);
|
||||
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
||||
const uint32_t uaux = utmp[1] & kmask1;
|
||||
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
||||
utmp[2] = uaux;
|
||||
utmp[0] &= kmask1;
|
||||
|
||||
int sumi = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/32; ++j) {
|
||||
int32_t scale = scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
||||
sumf -= dmin * sumi;
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
ggml_vec_dot_q4_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1698,65 +1497,15 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
#else
|
||||
|
||||
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(kmask3);
|
||||
UNUSED(nb);
|
||||
UNUSED(utmp);
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT hm = x[i].qh;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
uint8_t m = 1;
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
|
||||
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
|
||||
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
|
||||
a += 32; m <<= 1;
|
||||
q4 += 32;
|
||||
}
|
||||
memcpy(utmp, x[i].scales, 12);
|
||||
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
||||
const uint32_t uaux = utmp[1] & kmask1;
|
||||
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
||||
utmp[2] = uaux;
|
||||
utmp[0] &= kmask1;
|
||||
|
||||
int sumi = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/32; ++j) {
|
||||
int32_t scale = scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
||||
sumf -= dmin * sumi;
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
ggml_vec_dot_q5_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -2024,46 +1773,11 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
#else
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].ql;
|
||||
const uint8_t * GGML_RESTRICT qh = x[i].qh;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
for (int j = 0; j < QK_K; j += 128) {
|
||||
for (int l = 0; l < 32; ++l) {
|
||||
a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
|
||||
a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
|
||||
a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
|
||||
a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
|
||||
}
|
||||
a += 128;
|
||||
q4 += 64;
|
||||
qh += 32;
|
||||
}
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
int scale = x[i].scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
ggml_vec_dot_q6_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
@@ -112,31 +112,7 @@ void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
}
|
||||
|
||||
#endif
|
||||
{
|
||||
float sumf[8];
|
||||
int sumi;
|
||||
|
||||
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
|
||||
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
|
||||
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
|
||||
}
|
||||
sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
|
||||
}
|
||||
}
|
||||
ggml_gemv_q4_0_8x8_q8_0_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
@@ -361,37 +337,6 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
return;
|
||||
}
|
||||
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__)
|
||||
float sumf[4][8];
|
||||
int sumi;
|
||||
|
||||
for (int y = 0; y < nr / 4; y++) {
|
||||
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
|
||||
}
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
|
||||
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
|
||||
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
|
||||
}
|
||||
sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++)
|
||||
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
ggml_gemm_q4_0_8x8_q8_0_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
@@ -172,24 +172,15 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
sumf = acc[0] + acc[1] + acc[2] + acc[3];
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const int v0 = (x[ib].qs[j] & 0x0F) - 8;
|
||||
const int v1 = (x[ib].qs[j] >> 4) - 8;
|
||||
|
||||
sumi0 += (v0 * y[ib].qs[j]);
|
||||
sumi1 += (v1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += sumi*GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
ggml_vec_dot_q4_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -239,24 +230,15 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
sumf = acc[0] + acc[1] + acc[2] + acc[3] + summs;
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const int v0 = (x[ib].qs[j] & 0x0F);
|
||||
const int v1 = (x[ib].qs[j] >> 4);
|
||||
|
||||
sumi0 += (v0 * y[ib].qs[j]);
|
||||
sumi1 += (v1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
ggml_vec_dot_q4_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -298,18 +280,15 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
sumf = acc[0] + acc[1] + acc[2] + acc[3];
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
int sumi = 0;
|
||||
|
||||
for (int j = 0; j < qk; j++) {
|
||||
sumi += x[ib].qs[j]*y[ib].qs[j];
|
||||
}
|
||||
|
||||
sumf += sumi*(GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d));
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
ggml_vec_dot_q8_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -442,70 +421,13 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = sum;
|
||||
|
||||
#else
|
||||
// scalar version
|
||||
// This function is written like this so the compiler can manage to vectorize most of it
|
||||
// Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
|
||||
// manually vectorized version above. Every other version I tried would run at least 4 times slower.
|
||||
// The ideal situation would be if we could just write the code once, and the compiler would
|
||||
// automatically produce the best possible set of machine instructions, instead of us having to manually
|
||||
// write vectorized versions for AVX, ARM_NEON, etc.
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
uint32_t auxs[4];
|
||||
const int8_t * scales = (const int8_t*)auxs;
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT hm = x[i].hmask;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
uint8_t m = 1;
|
||||
for (int j = 0; j < QK_K; j += 128) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
q3 += 32;
|
||||
}
|
||||
a = aux8;
|
||||
|
||||
memcpy(auxs, x[i].scales, 12);
|
||||
uint32_t tmp = auxs[2];
|
||||
auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
|
||||
auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
|
||||
auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
|
||||
auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_q3_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -600,61 +522,14 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = sumf;
|
||||
|
||||
#else
|
||||
|
||||
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
|
||||
a += 32;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
|
||||
a += 32; q4 += 32;
|
||||
}
|
||||
memcpy(utmp, x[i].scales, 12);
|
||||
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
||||
const uint32_t uaux = utmp[1] & kmask1;
|
||||
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
||||
utmp[2] = uaux;
|
||||
utmp[0] &= kmask1;
|
||||
|
||||
int sumi = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/32; ++j) {
|
||||
int32_t scale = scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
||||
sumf -= dmin * sumi;
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(kmask3);
|
||||
UNUSED(utmp);
|
||||
ggml_vec_dot_q4_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -767,66 +642,14 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = sumf;
|
||||
|
||||
#else
|
||||
|
||||
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT hm = x[i].qh;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
uint8_t m = 1;
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
|
||||
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
|
||||
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
|
||||
a += 32; m <<= 1;
|
||||
q4 += 32;
|
||||
}
|
||||
memcpy(utmp, x[i].scales, 12);
|
||||
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
||||
const uint32_t uaux = utmp[1] & kmask1;
|
||||
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
||||
utmp[2] = uaux;
|
||||
utmp[0] &= kmask1;
|
||||
|
||||
int sumi = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/32; ++j) {
|
||||
int32_t scale = scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
||||
sumf -= dmin * sumi;
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(kmask3);
|
||||
UNUSED(utmp);
|
||||
ggml_vec_dot_q5_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -969,47 +792,10 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = sum;
|
||||
|
||||
#else
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].ql;
|
||||
const uint8_t * GGML_RESTRICT qh = x[i].qh;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
for (int j = 0; j < QK_K; j += 128) {
|
||||
for (int l = 0; l < 32; ++l) {
|
||||
a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
|
||||
a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
|
||||
a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
|
||||
a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
|
||||
}
|
||||
a += 128;
|
||||
q4 += 64;
|
||||
qh += 32;
|
||||
}
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
int scale = x[i].scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_q6_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1186,17 +972,15 @@ void ggml_vec_dot_iq4_nl_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const v
|
||||
sumf += GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d) * (v_xy[0] + v_xy[1] + v_xy[2] + v_xy[3]);
|
||||
}
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
const float d = GGML_CPU_FP16_TO_FP32(y[ib].d)*GGML_CPU_FP16_TO_FP32(x[ib].d);
|
||||
int sumi1 = 0, sumi2 = 0;
|
||||
for (int j = 0; j < QK4_NL/2; ++j) {
|
||||
sumi1 += y[ib].qs[j+ 0] * kvalues_iq4nl[x[ib].qs[j] & 0xf];
|
||||
sumi2 += y[ib].qs[j+QK4_NL/2] * kvalues_iq4nl[x[ib].qs[j] >> 4];
|
||||
}
|
||||
sumf += d * (sumi1 + sumi2);
|
||||
}
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
ggml_vec_dot_iq4_nl_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -1264,37 +1048,10 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
|
||||
*s = sumf;
|
||||
|
||||
#else
|
||||
float sumf = 0;
|
||||
for (int ibl = 0; ibl < nb; ++ibl) {
|
||||
const float d4d8 = GGML_CPU_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
|
||||
uint16_t h = x[ibl].scales_h;
|
||||
const uint8_t * qs = x[ibl].qs;
|
||||
const int8_t * q8 = y[ibl].qs;
|
||||
for (int ib = 0; ib < QK_K/32; ib += 2) {
|
||||
const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30);
|
||||
const uint8_t ls2 = (x[ibl].scales_l[ib/2] >> 4) | ((h << 2) & 0x30);
|
||||
h >>= 4;
|
||||
const float d1 = d4d8*(ls1 - 32);
|
||||
const float d2 = d4d8*(ls2 - 32);
|
||||
int sumi1 = 0, sumi2 = 0;
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
|
||||
sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
|
||||
}
|
||||
sumf += d1 * (sumi1 + sumi2);
|
||||
qs += 16;
|
||||
q8 += 32;
|
||||
sumi1 = sumi2 = 0;
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
|
||||
sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
|
||||
}
|
||||
sumf += d2 * (sumi1 + sumi2);
|
||||
qs += 16;
|
||||
q8 += 32;
|
||||
}
|
||||
}
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq4_xs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
@@ -435,30 +435,15 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
|
||||
wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
|
||||
const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
|
||||
|
||||
const int32_t x0 = (int8_t)(((x[ib].qs[j] & 0x0F) | xh_0) - 16);
|
||||
const int32_t x1 = (int8_t)(((x[ib].qs[j] >> 4) | xh_1) - 16);
|
||||
|
||||
sumi0 += (x0 * y[ib].qs[j]);
|
||||
sumi1 += (x1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d)) * sumi;
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
ggml_vec_dot_q5_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -545,30 +530,15 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
|
||||
wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
|
||||
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
|
||||
|
||||
const int32_t x0 = (x[ib].qs[j] & 0xF) | xh_0;
|
||||
const int32_t x1 = (x[ib].qs[j] >> 4) | xh_1;
|
||||
|
||||
sumi0 += (x0 * y[ib].qs[j]);
|
||||
sumi1 += (x1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
ggml_vec_dot_q5_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -628,18 +598,15 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
|
||||
wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
int sumi = 0;
|
||||
|
||||
for (int j = 0; j < qk; j++) {
|
||||
sumi += x[ib].qs[j]*y[ib].qs[j];
|
||||
}
|
||||
|
||||
sumf += sumi*(GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d));
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
ggml_vec_dot_q8_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -755,45 +722,10 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = sumf;
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
const uint8_t * q2 = x[i].qs;
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * sc = x[i].scales;
|
||||
|
||||
int summs = 0;
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
summs += y[i].bsums[j] * (sc[j] >> 4);
|
||||
}
|
||||
|
||||
const float dall = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
|
||||
|
||||
int isum = 0;
|
||||
int is = 0;
|
||||
int d;
|
||||
for (int k = 0; k < QK_K/128; ++k) {
|
||||
int shift = 0;
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
d = sc[is++] & 0xF;
|
||||
int isuml = 0;
|
||||
for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
|
||||
isum += d * isuml;
|
||||
d = sc[is++] & 0xF;
|
||||
isuml = 0;
|
||||
for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
|
||||
isum += d * isuml;
|
||||
shift += 2;
|
||||
q8 += 32;
|
||||
}
|
||||
q2 += 32;
|
||||
}
|
||||
sumf += dall * isum - dmin * summs;
|
||||
}
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_q2_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -902,68 +834,12 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = sumf;
|
||||
|
||||
#else
|
||||
// scalar version
|
||||
// This function is written like this so the compiler can manage to vectorize most of it
|
||||
// Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
|
||||
// manually vectorized version above. Every other version I tried would run at least 4 times slower.
|
||||
// The ideal situation would be if we could just write the code once, and the compiler would
|
||||
// automatically produce the best possible set of machine instructions, instead of us having to manually
|
||||
// write vectorized versions for AVX, ARM_NEON, etc.
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
uint32_t auxs[4];
|
||||
const int8_t * scales = (const int8_t*)auxs;
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT hm = x[i].hmask;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
uint8_t m = 1;
|
||||
for (int j = 0; j < QK_K; j += 128) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
q3 += 32;
|
||||
}
|
||||
a = aux8;
|
||||
|
||||
memcpy(auxs, x[i].scales, 12);
|
||||
uint32_t tmp = auxs[2];
|
||||
auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
|
||||
auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
|
||||
auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
|
||||
auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_q3_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
|
||||
}
|
||||
@@ -1089,61 +965,14 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = sumf;
|
||||
|
||||
#else
|
||||
|
||||
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
|
||||
a += 32;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
|
||||
a += 32; q4 += 32;
|
||||
}
|
||||
memcpy(utmp, x[i].scales, 12);
|
||||
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
||||
const uint32_t uaux = utmp[1] & kmask1;
|
||||
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
||||
utmp[2] = uaux;
|
||||
utmp[0] &= kmask1;
|
||||
|
||||
int sumi = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/32; ++j) {
|
||||
int32_t scale = scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
||||
sumf -= dmin * sumi;
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(kmask3);
|
||||
UNUSED(utmp);
|
||||
ggml_vec_dot_q4_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1279,66 +1108,14 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = sumf;
|
||||
|
||||
#else
|
||||
|
||||
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT hm = x[i].qh;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
uint8_t m = 1;
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
|
||||
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
|
||||
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
|
||||
a += 32; m <<= 1;
|
||||
q4 += 32;
|
||||
}
|
||||
memcpy(utmp, x[i].scales, 12);
|
||||
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
||||
const uint32_t uaux = utmp[1] & kmask1;
|
||||
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
||||
utmp[2] = uaux;
|
||||
utmp[0] &= kmask1;
|
||||
|
||||
int sumi = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/32; ++j) {
|
||||
int32_t scale = scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
||||
sumf -= dmin * sumi;
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(kmask3);
|
||||
UNUSED(utmp);
|
||||
ggml_vec_dot_q5_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1435,47 +1212,10 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = sumf;
|
||||
|
||||
#else
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].ql;
|
||||
const uint8_t * GGML_RESTRICT qh = x[i].qh;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
for (int j = 0; j < QK_K; j += 128) {
|
||||
for (int l = 0; l < 32; ++l) {
|
||||
a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
|
||||
a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
|
||||
a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
|
||||
a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
|
||||
}
|
||||
a += 128;
|
||||
q4 += 64;
|
||||
qh += 32;
|
||||
}
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
int scale = x[i].scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_q6_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
@@ -702,7 +702,6 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
const block_q8_1 * GGML_RESTRICT y = vy;
|
||||
|
||||
int ib = 0;
|
||||
float sumf = 0;
|
||||
|
||||
#if defined(__AVX2__) || defined(__AVX__)
|
||||
// Initialize accumulator with zeros
|
||||
@@ -737,26 +736,14 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
#endif
|
||||
}
|
||||
|
||||
sumf = hsum_float_8(acc) + summs;
|
||||
|
||||
*s = hsum_float_8(acc) + summs;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(ib);
|
||||
ggml_vec_dot_q4_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const int v0 = (x[ib].qs[j] & 0x0F);
|
||||
const int v1 = (x[ib].qs[j] >> 4);
|
||||
|
||||
sumi0 += (v0 * y[ib].qs[j]);
|
||||
sumi1 += (v1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -764,7 +751,6 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
const int nb = n / qk;
|
||||
|
||||
int ib = 0;
|
||||
float sumf = 0;
|
||||
|
||||
assert(n % qk == 0);
|
||||
assert(qk == QK5_0);
|
||||
@@ -799,7 +785,7 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
acc = _mm256_fmadd_ps(d, q, acc);
|
||||
}
|
||||
|
||||
sumf = hsum_float_8(acc);
|
||||
*s = hsum_float_8(acc);
|
||||
#elif defined(__AVX__)
|
||||
// Initialize accumulator with zeros
|
||||
__m256 acc = _mm256_setzero_ps();
|
||||
@@ -830,32 +816,14 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
|
||||
}
|
||||
|
||||
sumf = hsum_float_8(acc);
|
||||
|
||||
*s = hsum_float_8(acc);
|
||||
#else
|
||||
UNUSED(nb);
|
||||
UNUSED(ib);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
ggml_vec_dot_q5_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
|
||||
const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
|
||||
|
||||
const int32_t x0 = (int8_t)(((x[ib].qs[j] & 0x0F) | xh_0) - 16);
|
||||
const int32_t x1 = (int8_t)(((x[ib].qs[j] >> 4) | xh_1) - 16);
|
||||
|
||||
sumi0 += (x0 * y[ib].qs[j]);
|
||||
sumi1 += (x1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d)) * sumi;
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -863,7 +831,6 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
const int nb = n / qk;
|
||||
|
||||
int ib = 0;
|
||||
float sumf = 0;
|
||||
|
||||
assert(n % qk == 0);
|
||||
assert(qk == QK5_1);
|
||||
@@ -901,7 +868,7 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
|
||||
}
|
||||
|
||||
sumf = hsum_float_8(acc) + summs;
|
||||
*s = hsum_float_8(acc) + summs;
|
||||
#elif defined(__AVX__)
|
||||
// Initialize accumulator with zeros
|
||||
__m256 acc = _mm256_setzero_ps();
|
||||
@@ -935,32 +902,14 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
|
||||
}
|
||||
|
||||
sumf = hsum_float_8(acc) + summs;
|
||||
|
||||
*s = hsum_float_8(acc) + summs;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
UNUSED(ib);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
ggml_vec_dot_q5_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
|
||||
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
|
||||
|
||||
const int32_t x0 = (x[ib].qs[j] & 0xF) | xh_0;
|
||||
const int32_t x1 = (x[ib].qs[j] >> 4) | xh_1;
|
||||
|
||||
sumi0 += (x0 * y[ib].qs[j]);
|
||||
sumi1 += (x1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -1017,7 +966,6 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
}
|
||||
|
||||
sumf = hsum_float_8(accum);
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
int sumi = 0;
|
||||
@@ -1157,44 +1105,10 @@ void ggml_vec_dot_tq1_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
*s = hsum_float_8(sumf);
|
||||
|
||||
#else
|
||||
const uint8_t pow3[6] = {1, 3, 9, 27, 81, 243};
|
||||
|
||||
float sumf = 0.0f;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
int sum = 0;
|
||||
|
||||
for (size_t j = 0; j < sizeof(x->qs) - sizeof(x->qs) % 32; j += 32) {
|
||||
for (size_t l = 0; l < 5; ++l) {
|
||||
for (size_t m = 0; m < 32; ++m) {
|
||||
uint8_t q = x[i].qs[j + m] * pow3[l];
|
||||
uint16_t xi = ((uint16_t) q * 3) >> 8;
|
||||
sum += (xi - 1) * y[i].qs[j*5 + l*32 + m];
|
||||
}
|
||||
}
|
||||
}
|
||||
for (size_t j = sizeof(x->qs) - sizeof(x->qs) % 32; j < sizeof(x->qs); j += 16) {
|
||||
for (size_t l = 0; l < 5; ++l) {
|
||||
for (size_t m = 0; m < 16; ++m) {
|
||||
uint8_t q = x[i].qs[j + m] * pow3[l];
|
||||
uint16_t xi = ((uint16_t) q * 3) >> 8;
|
||||
sum += (xi - 1) * y[i].qs[j*5 + l*16 + m];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (size_t l = 0; l < 4; ++l) {
|
||||
for (size_t j = 0; j < sizeof(x->qh); ++j) {
|
||||
uint8_t q = x[i].qh[j] * pow3[l];
|
||||
uint16_t xi = ((uint16_t) q * 3) >> 8;
|
||||
sum += (xi - 1) * y[i].qs[sizeof(x->qs)*5 + l*sizeof(x->qh) + j];
|
||||
}
|
||||
}
|
||||
|
||||
sumf += (float) sum * (GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_tq1_0_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1257,25 +1171,10 @@ void ggml_vec_dot_tq2_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
*s = hsum_float_8(sumf);
|
||||
|
||||
#else
|
||||
float sumf = 0.0f;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
int32_t sumi = 0;
|
||||
|
||||
for (size_t j = 0; j < sizeof(x->qs); j += 32) {
|
||||
for (size_t l = 0; l < 4; ++l) {
|
||||
for (size_t k = 0; k < 32; ++k) {
|
||||
sumi += y[i].qs[j*4 + l*32 + k] * (((x[i].qs[j + k] >> (l*2)) & 3) - 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
|
||||
|
||||
sumf += (float) sumi * d;
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_tq2_0_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1464,45 +1363,10 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = hsum_float_8(acc);
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
const uint8_t * q2 = x[i].qs;
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * sc = x[i].scales;
|
||||
|
||||
int summs = 0;
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
summs += y[i].bsums[j] * (sc[j] >> 4);
|
||||
}
|
||||
|
||||
const float dall = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
|
||||
|
||||
int isum = 0;
|
||||
int is = 0;
|
||||
int d;
|
||||
for (int k = 0; k < QK_K/128; ++k) {
|
||||
int shift = 0;
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
d = sc[is++] & 0xF;
|
||||
int isuml = 0;
|
||||
for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
|
||||
isum += d * isuml;
|
||||
d = sc[is++] & 0xF;
|
||||
isuml = 0;
|
||||
for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
|
||||
isum += d * isuml;
|
||||
shift += 2;
|
||||
q8 += 32;
|
||||
}
|
||||
q2 += 32;
|
||||
}
|
||||
sumf += dall * isum - dmin * summs;
|
||||
}
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_q2_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1769,70 +1633,13 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = hsum_float_8(acc);
|
||||
|
||||
#else
|
||||
// scalar version
|
||||
// This function is written like this so the compiler can manage to vectorize most of it
|
||||
// Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
|
||||
// manually vectorized version above. Every other version I tried would run at least 4 times slower.
|
||||
// The ideal situation would be if we could just write the code once, and the compiler would
|
||||
// automatically produce the best possible set of machine instructions, instead of us having to manually
|
||||
// write vectorized versions for AVX, ARM_NEON, etc.
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
uint32_t auxs[4];
|
||||
const int8_t * scales = (const int8_t*)auxs;
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT hm = x[i].hmask;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
uint8_t m = 1;
|
||||
for (int j = 0; j < QK_K; j += 128) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
q3 += 32;
|
||||
}
|
||||
a = aux8;
|
||||
|
||||
memcpy(auxs, x[i].scales, 12);
|
||||
uint32_t tmp = auxs[2];
|
||||
auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
|
||||
auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
|
||||
auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
|
||||
auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_q3_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -2002,61 +1809,14 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
|
||||
|
||||
#else
|
||||
|
||||
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
|
||||
a += 32;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
|
||||
a += 32; q4 += 32;
|
||||
}
|
||||
memcpy(utmp, x[i].scales, 12);
|
||||
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
||||
const uint32_t uaux = utmp[1] & kmask1;
|
||||
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
||||
utmp[2] = uaux;
|
||||
utmp[0] &= kmask1;
|
||||
|
||||
int sumi = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/32; ++j) {
|
||||
int32_t scale = scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
||||
sumf -= dmin * sumi;
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(kmask3);
|
||||
UNUSED(utmp);
|
||||
ggml_vec_dot_q4_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -2259,66 +2019,14 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = hsum_float_8(acc) + summs;
|
||||
|
||||
#else
|
||||
|
||||
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT hm = x[i].qh;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
uint8_t m = 1;
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
|
||||
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
|
||||
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
|
||||
a += 32; m <<= 1;
|
||||
q4 += 32;
|
||||
}
|
||||
memcpy(utmp, x[i].scales, 12);
|
||||
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
||||
const uint32_t uaux = utmp[1] & kmask1;
|
||||
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
||||
utmp[2] = uaux;
|
||||
utmp[0] &= kmask1;
|
||||
|
||||
int sumi = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/32; ++j) {
|
||||
int32_t scale = scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
||||
sumf -= dmin * sumi;
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(kmask3);
|
||||
UNUSED(utmp);
|
||||
ggml_vec_dot_q5_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -2520,47 +2228,10 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = hsum_float_8(acc);
|
||||
|
||||
#else
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].ql;
|
||||
const uint8_t * GGML_RESTRICT qh = x[i].qh;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
for (int j = 0; j < QK_K; j += 128) {
|
||||
for (int l = 0; l < 32; ++l) {
|
||||
a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
|
||||
a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
|
||||
a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
|
||||
a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
|
||||
}
|
||||
a += 128;
|
||||
q4 += 64;
|
||||
qh += 32;
|
||||
}
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
int scale = x[i].scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_q6_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -2712,34 +2383,10 @@ void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const
|
||||
*s = 0.125f * hsum_float_8(accumf);
|
||||
|
||||
#else
|
||||
|
||||
uint32_t aux32[2];
|
||||
const uint8_t * aux8 = (const uint8_t *)aux32;
|
||||
|
||||
float sumf = 0.f;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint16_t * GGML_RESTRICT q2 = x[i].qs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
int32_t bsum = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
|
||||
memcpy(aux32, q2, 2*sizeof(uint32_t));
|
||||
q2 += 4;
|
||||
const uint32_t ls = 2*(aux32[1] >> 28) + 1;
|
||||
int32_t sumi = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
|
||||
const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
bsum += sumi * ls;
|
||||
}
|
||||
sumf += d * bsum;
|
||||
}
|
||||
*s = 0.125f * sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq2_xxs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -3033,42 +2680,10 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
|
||||
*s = 0.125f * hsum_float_8(accumf);
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0.f;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint16_t * GGML_RESTRICT q2 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT sc = x[i].scales;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
int32_t bsum = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
|
||||
const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1;
|
||||
const uint16_t ls2 = 2*(sc[ib32] >> 4) + 1;
|
||||
int32_t sumi = 0;
|
||||
for (int l = 0; l < 2; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
|
||||
const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
bsum += sumi * ls1;
|
||||
sumi = 0;
|
||||
for (int l = 2; l < 4; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
|
||||
const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
bsum += sumi * ls2;
|
||||
q2 += 4;
|
||||
}
|
||||
sumf += d * bsum;
|
||||
}
|
||||
*s = 0.125f * sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq2_xs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -3250,47 +2865,11 @@ void ggml_vec_dot_iq2_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
*s = 0.125f * hsum_float_8(accumf);
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; i++) {
|
||||
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * qs = x[i].qs;
|
||||
const uint8_t * qh = x[i].qh;
|
||||
const uint8_t * signs = qs + QK_K/8;
|
||||
|
||||
int bsum = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
|
||||
int ls1 = 1 + 2*(x[i].scales[ib32] & 0xf);
|
||||
int ls2 = 1 + 2*(x[i].scales[ib32] >> 4);
|
||||
int sumi1 = 0, sumi2 = 0;
|
||||
for (int l = 0; l < 2; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi1 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
for (int l = 2; l < 4; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi2 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
bsum += ls1 * sumi1 + ls2 * sumi2;
|
||||
qs += 4;
|
||||
signs += 4;
|
||||
}
|
||||
|
||||
sumf += d * bsum;
|
||||
}
|
||||
|
||||
*s = 0.125f * sumf;
|
||||
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq2_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -3410,36 +2989,10 @@ void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const
|
||||
*s = 0.25f * hsum_float_8(accumf);
|
||||
|
||||
#else
|
||||
|
||||
uint32_t aux32;
|
||||
|
||||
float sumf = 0.f;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT gas = x[i].qs + QK_K/4;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
int32_t bsum = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
|
||||
memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
|
||||
const uint32_t ls = 2*(aux32 >> 28) + 1;
|
||||
int32_t sumi = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
|
||||
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
|
||||
sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
q3 += 8;
|
||||
bsum += sumi * ls;
|
||||
}
|
||||
sumf += d * bsum;
|
||||
}
|
||||
*s = 0.25f * sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq3_xxs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -3646,48 +3199,10 @@ void ggml_vec_dot_iq3_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
*s = hsum_float_8(accumf);
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0.f;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint8_t * GGML_RESTRICT qs = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT qh = x[i].qh;
|
||||
const uint8_t * GGML_RESTRICT signs = x[i].signs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
int32_t bsum = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
|
||||
const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1;
|
||||
const uint32_t ls2 = 2*(x[i].scales[ib32/2] >> 4) + 1;
|
||||
int32_t sumi = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
|
||||
sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
qs += 8;
|
||||
signs += 4;
|
||||
bsum += sumi * ls1;
|
||||
sumi = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
|
||||
sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
qs += 8;
|
||||
signs += 4;
|
||||
bsum += sumi * ls2;
|
||||
}
|
||||
sumf += d * bsum;
|
||||
}
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq3_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -3811,36 +3326,10 @@ void ggml_vec_dot_iq1_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
*s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; i++) {
|
||||
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * qs = x[i].qs;
|
||||
const uint16_t * qh = x[i].qh;
|
||||
|
||||
int sumi = 0, sumi1 = 0;
|
||||
for (int ib = 0; ib < QK_K/32; ++ib) {
|
||||
const int ls = 2*((qh[ib] >> 12) & 7) + 1;
|
||||
const int delta = qh[ib] & 0x8000 ? -1 : 1;
|
||||
int lsum = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
lsum += q8[j] * grid[j];
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
sumi += ls * lsum;
|
||||
sumi1 += ls * delta * (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]);
|
||||
qs += 4;
|
||||
}
|
||||
|
||||
sumf += GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d * (sumi + IQ1S_DELTA * sumi1);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq1_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -4043,52 +3532,11 @@ void ggml_vec_dot_iq1_m_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
*s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2);
|
||||
|
||||
#else
|
||||
|
||||
int sum1[2], sum2[2], delta[4];
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; i++) {
|
||||
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * qs = x[i].qs;
|
||||
const uint8_t * qh = x[i].qh;
|
||||
const uint16_t * sc = (const uint16_t *)x[i].scales;
|
||||
|
||||
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
||||
|
||||
int sumi1 = 0, sumi2 = 0;
|
||||
for (int ib = 0; ib < QK_K/32; ++ib) {
|
||||
delta[0] = qh[0] & 0x08 ? -1 : 1;
|
||||
delta[1] = qh[0] & 0x80 ? -1 : 1;
|
||||
delta[2] = qh[1] & 0x08 ? -1 : 1;
|
||||
delta[3] = qh[1] & 0x80 ? -1 : 1;
|
||||
sum1[0] = sum1[1] = sum2[0] = sum2[1] = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((uint16_t)qh[l/2] << (8 - 4*(l%2))) & 0x700)));
|
||||
int lsum1 = 0, lsum2 = 0;
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
lsum1 += q8[j] * grid[j];
|
||||
lsum2 += q8[j];
|
||||
}
|
||||
q8 += 8;
|
||||
sum1[l/2] += lsum1;
|
||||
sum2[l/2] += lsum2*delta[l];
|
||||
}
|
||||
|
||||
const int ls1 = 2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1;
|
||||
const int ls2 = 2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1;
|
||||
|
||||
sumi1 += sum1[0] * ls1 + sum1[1] * ls2;
|
||||
sumi2 += sum2[0] * ls1 + sum2[1] * ls2;
|
||||
qs += 4;
|
||||
qh += 2;
|
||||
}
|
||||
|
||||
sumf += GGML_CPU_FP16_TO_FP32(scale.f16) * y[i].d * (sumi1 + IQ1M_DELTA * sumi2);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
UNUSED(scale);
|
||||
ggml_vec_dot_iq1_m_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -4275,37 +3723,10 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
|
||||
*s = hsum_float_8(accum);
|
||||
|
||||
#else
|
||||
float sumf = 0;
|
||||
for (int ibl = 0; ibl < nb; ++ibl) {
|
||||
const float d4d8 = GGML_CPU_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
|
||||
uint16_t h = x[ibl].scales_h;
|
||||
const uint8_t * qs = x[ibl].qs;
|
||||
const int8_t * q8 = y[ibl].qs;
|
||||
for (int ib = 0; ib < QK_K/32; ib += 2) {
|
||||
const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30);
|
||||
const uint8_t ls2 = (x[ibl].scales_l[ib/2] >> 4) | ((h << 2) & 0x30);
|
||||
h >>= 4;
|
||||
const float d1 = d4d8*(ls1 - 32);
|
||||
const float d2 = d4d8*(ls2 - 32);
|
||||
int sumi1 = 0, sumi2 = 0;
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
|
||||
sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
|
||||
}
|
||||
sumf += d1 * (sumi1 + sumi2);
|
||||
qs += 16;
|
||||
q8 += 32;
|
||||
sumi1 = sumi2 = 0;
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
|
||||
sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
|
||||
}
|
||||
sumf += d2 * (sumi1 + sumi2);
|
||||
qs += 16;
|
||||
q8 += 32;
|
||||
}
|
||||
}
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq4_xs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -412,6 +412,82 @@ void ggml_gemv_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs,
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_gemv_q2_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
const int qk = QK_K;
|
||||
const int nb = n / qk;
|
||||
const int ncols_interleaved = 8;
|
||||
const int blocklen = 8;
|
||||
|
||||
assert (n % qk == 0);
|
||||
assert (nc % ncols_interleaved == 0);
|
||||
|
||||
UNUSED(s);
|
||||
UNUSED(bs);
|
||||
UNUSED(vx);
|
||||
UNUSED(vy);
|
||||
UNUSED(nr);
|
||||
UNUSED(nc);
|
||||
UNUSED(nb);
|
||||
UNUSED(ncols_interleaved);
|
||||
UNUSED(blocklen);
|
||||
|
||||
float sumf[8];
|
||||
float sum_minf[8];
|
||||
int sumi1,sumi2,sumi3,sumi4;
|
||||
int sumi;
|
||||
|
||||
const block_q8_K * a_ptr = (const block_q8_K *)vy;
|
||||
for(int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q2_Kx8 * b_ptr = (const block_q2_Kx8 *) vx + (x * nb);
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumf[j] = 0.0;
|
||||
sum_minf[j] = 0.0;
|
||||
}
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (4 * blocklen)); k++) {
|
||||
const uint8_t *scales_0 = b_ptr[l].scales + (k / 4) * 64 ;
|
||||
const uint8_t *scales_1 = b_ptr[l].scales + (k / 4) * 64 + 16;
|
||||
const uint8_t *scales_2 = b_ptr[l].scales + (k / 4) * 64 + 32;
|
||||
const uint8_t *scales_3 = b_ptr[l].scales + (k / 4) * 64 + 48;
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi1 = 0;
|
||||
sumi2 = 0;
|
||||
sumi3 = 0;
|
||||
sumi4 = 0;
|
||||
sumi = 0;
|
||||
int offset = ((k / 2) % 2) + j * 2;
|
||||
for (int i = 0; i < blocklen; ++i){
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 3);
|
||||
const int v1 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 2 ) & 3);
|
||||
const int v2 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4 ) & 3);
|
||||
const int v3 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 6 ) & 3);
|
||||
sumi1 = (v0 * a_ptr[l].qs[(k >> 2) * 128 + (k % 4) * blocklen + i]);
|
||||
sumi2 = (v1 * a_ptr[l].qs[(k >> 2) * 128 + (k % 4) * blocklen + i + 32]);
|
||||
sumi3 = (v2 * a_ptr[l].qs[(k >> 2) * 128 + (k % 4) * blocklen + i + 64]);
|
||||
sumi4 = (v3 * a_ptr[l].qs[(k >> 2) * 128 + (k % 4) * blocklen + i + 96]);
|
||||
|
||||
sumi1 = sumi1 * (scales_0[offset] & 0xF);
|
||||
sumi2 = sumi2 * (scales_1[offset] & 0xF);
|
||||
sumi3 = sumi3 * (scales_2[offset] & 0xF);
|
||||
sumi4 = sumi4 * (scales_3[offset] & 0xF);
|
||||
sumi += sumi1 + sumi2 + sumi3 + sumi4;
|
||||
}
|
||||
sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d;
|
||||
}
|
||||
}
|
||||
for(int sb = 0; sb < 8; sb++) {
|
||||
const uint8_t *mins = b_ptr[l].scales + sb * 16;
|
||||
for(int j = 0; j < ncols_interleaved; j++){
|
||||
sum_minf[j] += ((mins[j * 2] >> 4) * a_ptr[l].bsums[sb * 2] + (mins[(j * 2)+ 1] >> 4) * a_ptr[l].bsums[sb * 2 + 1]) * GGML_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d;
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
s[x * ncols_interleaved + j] = sumf[j] - sum_minf[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_gemv_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
const int qk = QK8_0;
|
||||
const int nb = n / qk;
|
||||
@@ -711,6 +787,97 @@ void ggml_gemm_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs,
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_gemm_q2_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
const int qk = QK_K;
|
||||
const int nb = n / qk;
|
||||
const int ncols_interleaved = 8;
|
||||
const int blocklen = 8;
|
||||
|
||||
assert (n % qk == 0);
|
||||
assert (nr % 4 == 0);
|
||||
assert (nc % ncols_interleaved == 0);
|
||||
|
||||
UNUSED(s);
|
||||
UNUSED(bs);
|
||||
UNUSED(vx);
|
||||
UNUSED(vy);
|
||||
UNUSED(nr);
|
||||
UNUSED(nc);
|
||||
UNUSED(nb);
|
||||
UNUSED(ncols_interleaved);
|
||||
UNUSED(blocklen);
|
||||
|
||||
float sumf[4][8];
|
||||
float sum_minf[4][8];
|
||||
int sumi1, sumi2, sumi3, sumi4;
|
||||
int sumi;
|
||||
|
||||
for (int y = 0; y < nr / 4; y++) {
|
||||
const block_q8_Kx4 * a_ptr = (const block_q8_Kx4 *) vy + (y * nb);
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q2_Kx8 * b_ptr = (const block_q2_Kx8 *) vx + (x * nb);
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumf[m][j] = 0.0;
|
||||
sum_minf[m][j] = 0.0;
|
||||
}
|
||||
}
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (4 * blocklen)); k++) {
|
||||
|
||||
const uint8_t *scales_0 = b_ptr[l].scales + (k / 4) * 64 ;
|
||||
const uint8_t *scales_1 = b_ptr[l].scales + (k / 4) * 64 + 16;
|
||||
const uint8_t *scales_2 = b_ptr[l].scales + (k / 4) * 64 + 32;
|
||||
const uint8_t *scales_3 = b_ptr[l].scales + (k / 4) * 64 + 48;
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi1 = 0;
|
||||
sumi2 = 0;
|
||||
sumi3 = 0;
|
||||
sumi4 = 0;
|
||||
sumi = 0;
|
||||
int offset = ((k / 2) % 2) + j * 2;
|
||||
for (int i = 0; i < blocklen; ++i){
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 3);
|
||||
const int v1 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 2 ) & 3);
|
||||
const int v2 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4 ) & 3);
|
||||
const int v3 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 6 ) & 3);
|
||||
sumi1 = (v0 * a_ptr[l].qs[(k >> 2) * 512 + (k % 4) * 4 * blocklen + m * blocklen + i]);
|
||||
sumi2 = (v1 * a_ptr[l].qs[(k >> 2) * 512 + (k % 4) * 4 * blocklen + m * blocklen + i + 128]);
|
||||
sumi3 = (v2 * a_ptr[l].qs[(k >> 2) * 512 + (k % 4) * 4 * blocklen + m * blocklen + i + 256]);
|
||||
sumi4 = (v3 * a_ptr[l].qs[(k >> 2) * 512 + (k % 4) * 4 * blocklen + m * blocklen + i + 384]);
|
||||
sumi1 = sumi1 * (scales_0[offset] & 0xF);
|
||||
sumi2 = sumi2 * (scales_1[offset] & 0xF);
|
||||
sumi3 = sumi3 * (scales_2[offset] & 0xF);
|
||||
sumi4 = sumi4 * (scales_3[offset] & 0xF);
|
||||
sumi += sumi1 + sumi2 + sumi3 + sumi4;
|
||||
}
|
||||
sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d[m];
|
||||
}
|
||||
}
|
||||
}
|
||||
for(int sb = 0; sb < 8; sb++) {
|
||||
const uint8_t *mins = b_ptr[l].scales + sb * 16;
|
||||
for(int m = 0; m < 4; m++) {
|
||||
const int16_t *bsums = a_ptr[l].bsums + (sb * 8) + (m * 4) - ((sb % 2) * 6);
|
||||
for(int j = 0; j < ncols_interleaved; j++) {
|
||||
int mins_prod = ((mins[j * 2] >> 4) * bsums[0] + (mins[(j * 2)+ 1] >> 4) * bsums[1]);
|
||||
sum_minf[m][j] += (mins_prod) * GGML_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d[m];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j] - sum_minf[m][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void ggml_gemm_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
const int qk = QK8_0;
|
||||
const int nb = n / qk;
|
||||
@@ -914,6 +1081,50 @@ static block_q4_Kx8 make_block_q4_Kx8(block_q4_K * in, unsigned int blck_size_in
|
||||
return out;
|
||||
}
|
||||
|
||||
static block_q2_Kx8 make_block_q2_Kx8(block_q2_K * in, unsigned int blck_size_interleave) {
|
||||
block_q2_Kx8 out;
|
||||
|
||||
// Delta(scale) and dmin values of the eight Q2_K structures are copied onto the output interleaved structure
|
||||
for (int i = 0; i < 8; i++) {
|
||||
out.d[i] = in[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.d;
|
||||
}
|
||||
|
||||
for (int i = 0; i < 8; i++) {
|
||||
out.dmin[i] = in[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.dmin;
|
||||
}
|
||||
|
||||
const int end = QK_K * 2 / blck_size_interleave;
|
||||
|
||||
// Interleave Q2_K quants by taking 8 bytes at a time
|
||||
for (int i = 0; i < end; ++i) {
|
||||
int src_id = i % 8;
|
||||
int src_offset = (i / 8) * blck_size_interleave;
|
||||
int dst_offset = i * blck_size_interleave;
|
||||
|
||||
uint64_t elems;
|
||||
memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint64_t));
|
||||
memcpy(&out.qs[dst_offset], &elems, sizeof(uint64_t));
|
||||
}
|
||||
|
||||
// The below logic is designed so as to unpack and rearrange scales and mins values in Q2_K
|
||||
// Currently the Q2_K structure has 16 scales and 16 mins packed in 16 bytes ( 4 bits for each value)
|
||||
// The output Q2_Kx8 structure has 128 bytes for storing scales and mins
|
||||
// Every 16 byte is packed such that it contains scales and mins for corresponding sub blocks from Q2_K structure
|
||||
// For eg - First 16 bytes contains 16 scales and 16 mins - each of first and second sub blocks from different Q2_K structures
|
||||
|
||||
for(int i = 0; i < 128; i++){
|
||||
|
||||
// Index for selecting which q2k super block
|
||||
int src1 = (i % 16) / 2;
|
||||
// Index for selecting scale
|
||||
int src2 = ((i / 16) * 2) + (i % 2);
|
||||
|
||||
out.scales[i] = in[src1].scales[src2];
|
||||
}
|
||||
return out;
|
||||
|
||||
}
|
||||
|
||||
static int repack_q4_0_to_q4_0_4_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) {
|
||||
GGML_ASSERT(t->type == GGML_TYPE_Q4_0);
|
||||
GGML_ASSERT(interleave_block == 4 || interleave_block == 8);
|
||||
@@ -975,6 +1186,37 @@ static int repack_q4_K_to_q4_K_8_bl(struct ggml_tensor * t, int interleave_block
|
||||
GGML_UNUSED(data_size);
|
||||
}
|
||||
|
||||
static int repack_q2_K_to_q2_K_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) {
|
||||
GGML_ASSERT(t->type == GGML_TYPE_Q2_K);
|
||||
GGML_ASSERT(interleave_block == 8);
|
||||
constexpr int nrows_interleaved = 8;
|
||||
|
||||
block_q2_Kx8 * dst = (block_q2_Kx8*)t->data;
|
||||
const block_q2_K * src = (const block_q2_K*) data;
|
||||
block_q2_K dst_tmp[8];
|
||||
int nrow = ggml_nrows(t);
|
||||
int nblocks = t->ne[0] / QK_K;
|
||||
|
||||
GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_q2_K));
|
||||
|
||||
if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
for (int b = 0; b < nrow; b += nrows_interleaved) {
|
||||
for (int64_t x = 0; x < nblocks; x++) {
|
||||
for (int i = 0; i < nrows_interleaved; i++ ) {
|
||||
dst_tmp[i] = src[x + i * nblocks];
|
||||
}
|
||||
*dst++ = make_block_q2_Kx8(dst_tmp, interleave_block);
|
||||
}
|
||||
src += nrows_interleaved * nblocks;
|
||||
}
|
||||
return 0;
|
||||
|
||||
GGML_UNUSED(data_size);
|
||||
}
|
||||
|
||||
static int repack_q4_0_to_q4_0_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) {
|
||||
GGML_ASSERT(t->type == GGML_TYPE_Q4_0);
|
||||
GGML_ASSERT(interleave_block == 8);
|
||||
@@ -1095,6 +1337,10 @@ template <> int repack<block_q4_K, 8, 8>(struct ggml_tensor * t, const void * da
|
||||
return repack_q4_K_to_q4_K_8_bl(t, 8, data, data_size);
|
||||
}
|
||||
|
||||
template <> int repack<block_q2_K, 8, 8>(struct ggml_tensor * t, const void * data, size_t data_size) {
|
||||
return repack_q2_K_to_q2_K_8_bl(t, 8, data, data_size);
|
||||
}
|
||||
|
||||
template <> int repack<block_iq4_nl, 4, 4>(struct ggml_tensor * t, const void * data, size_t data_size) {
|
||||
return repack_iq4_nl_to_iq4_nl_4_bl(t, 4, data, data_size);
|
||||
}
|
||||
@@ -1124,6 +1370,10 @@ template <> void gemv<block_q4_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t
|
||||
ggml_gemv_q4_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
template <> void gemv<block_q2_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
|
||||
ggml_gemv_q2_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
template <> void gemv<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
|
||||
ggml_gemv_iq4_nl_4x4_q8_0(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
@@ -1148,6 +1398,10 @@ template <> void gemm<block_q4_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t
|
||||
ggml_gemm_q4_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
template <> void gemm<block_q2_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
|
||||
ggml_gemm_q2_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
template <> void gemm<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
|
||||
ggml_gemm_iq4_nl_4x4_q8_0(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
@@ -1421,6 +1675,9 @@ static const ggml::cpu::tensor_traits * ggml_repack_get_optimal_repack_type(cons
|
||||
static const ggml::cpu::repack::tensor_traits<block_q4_0, 8, 8, GGML_TYPE_Q8_0> q4_0_8x8_q8_0;
|
||||
static const ggml::cpu::repack::tensor_traits<block_q4_K, 8, 8, GGML_TYPE_Q8_K> q4_K_8x8_q8_K;
|
||||
|
||||
// instance for Q2
|
||||
static const ggml::cpu::repack::tensor_traits<block_q2_K, 8, 8, GGML_TYPE_Q8_K> q2_K_8x8_q8_K;
|
||||
|
||||
// instance for IQ4
|
||||
static const ggml::cpu::repack::tensor_traits<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0> iq4_nl_4x4_q8_0;
|
||||
|
||||
@@ -1446,6 +1703,12 @@ static const ggml::cpu::tensor_traits * ggml_repack_get_optimal_repack_type(cons
|
||||
return &q4_K_8x8_q8_K;
|
||||
}
|
||||
}
|
||||
} else if (cur->type == GGML_TYPE_Q2_K) {
|
||||
if (ggml_cpu_has_avx512()) {
|
||||
if (cur->ne[1] % 8 == 0) {
|
||||
return &q2_K_8x8_q8_K;
|
||||
}
|
||||
}
|
||||
} else if (cur->type == GGML_TYPE_IQ4_NL) {
|
||||
if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
|
||||
if (cur->ne[1] % 4 == 0) {
|
||||
|
||||
@@ -44,7 +44,14 @@ struct block_q4_Kx8 {
|
||||
};
|
||||
|
||||
static_assert(sizeof(block_q4_Kx8) == sizeof(ggml_half) * 16 + K_SCALE_SIZE * 8 + QK_K * 4, "wrong q4_K block size/padding");
|
||||
struct block_q2_Kx8 {
|
||||
ggml_half d[8]; // super-block scale for quantized scales
|
||||
ggml_half dmin[8]; // super-block scale for quantized mins
|
||||
uint8_t scales[128]; // scales and mins, quantized with 4 bits
|
||||
uint8_t qs[512]; // 2--bit quants
|
||||
};
|
||||
|
||||
static_assert(sizeof(block_q2_Kx8) == sizeof(ggml_half) * 16 + QK_K/2 + QK_K * 2, "wrong q2_K block size/padding");
|
||||
struct block_q8_Kx4 {
|
||||
float d[4]; // delta
|
||||
int8_t qs[QK_K * 4]; // quants
|
||||
@@ -71,11 +78,13 @@ void ggml_gemv_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
void ggml_gemv_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q2_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q2_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
|
||||
// Native implementations
|
||||
@@ -86,11 +95,13 @@ void ggml_gemv_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs,
|
||||
void ggml_gemv_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q2_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q2_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
|
||||
#if defined(__cplusplus)
|
||||
|
||||
@@ -176,7 +176,7 @@ static const char * cu_get_error_str(CUresult err) {
|
||||
#define CU_CHECK(err) CUDA_CHECK_GEN(err, CUDA_SUCCESS, cu_get_error_str)
|
||||
#endif
|
||||
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
# define CUDA_SET_SHARED_MEMORY_LIMIT(kernel, nbytes) \
|
||||
do { \
|
||||
static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = { false }; \
|
||||
@@ -191,7 +191,7 @@ static const char * cu_get_error_str(CUresult err) {
|
||||
do { \
|
||||
GGML_UNUSED(nbytes); \
|
||||
} while (0)
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
|
||||
#endif // !(defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
|
||||
#if CUDART_VERSION >= 11010 || defined(GGML_USE_MUSA)
|
||||
#define GGML_CUDA_ASSUME(x) __builtin_assume(x)
|
||||
@@ -211,9 +211,9 @@ typedef float2 dfloat2;
|
||||
#define GGML_USE_VMM
|
||||
#endif // (!defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)) || (defined(GGML_USE_HIP) && !defined(GGML_HIP_NO_VMM))
|
||||
|
||||
#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
|
||||
#if defined(GGML_USE_HIP) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
|
||||
#define FP16_AVAILABLE
|
||||
#endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
|
||||
#endif // defined(GGML_USE_HIP) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
|
||||
|
||||
#if defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
|
||||
#define FAST_FP16_AVAILABLE
|
||||
@@ -227,17 +227,17 @@ typedef float2 dfloat2;
|
||||
#define FP16_MMA_AVAILABLE
|
||||
#endif // defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || (defined(GGML_HIP_ROCWMMA_FATTN_GFX12) && defined(RDNA4)))
|
||||
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && defined(CDNA3)
|
||||
#if defined(GGML_USE_HIP) && defined(CDNA) && !defined(GGML_HIP_NO_MMQ_MFMA)
|
||||
#define AMD_MFMA_AVAILABLE
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && defined(CDNA3)
|
||||
#endif // defined(GGML_USE_HIP) && defined(CDNA) && !defined(GGML_HIP_NO_MMQ_MFMA)
|
||||
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
|
||||
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
|
||||
#define NEW_MMA_AVAILABLE
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
|
||||
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
|
||||
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
#define CP_ASYNC_AVAILABLE
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
|
||||
#if !defined(GGML_CUDA_NO_FA) && !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ < 220)
|
||||
#define FLASH_ATTN_AVAILABLE
|
||||
@@ -259,7 +259,7 @@ static bool fast_fp16_hardware_available(const int cc) {
|
||||
|
||||
// Any FP16 tensor core instructions are available for ggml code.
|
||||
static bool fp16_mma_available(const int cc) {
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(GGML_HIP_ROCWMMA_FATTN)
|
||||
#if defined(GGML_USE_HIP) && !defined(GGML_HIP_ROCWMMA_FATTN)
|
||||
return false;
|
||||
#else
|
||||
if ((GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA) ||
|
||||
@@ -275,7 +275,7 @@ static bool fp16_mma_available(const int cc) {
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(GGML_HIP_ROCWMMA_FATTN)
|
||||
#endif // defined(GGML_USE_HIP) && !defined(GGML_HIP_ROCWMMA_FATTN)
|
||||
}
|
||||
|
||||
// To be used for feature selection of external libraries, e.g. cuBLAS.
|
||||
@@ -293,9 +293,12 @@ static bool fp32_mma_hardware_available(const int cc) {
|
||||
return GGML_CUDA_CC_IS_CDNA(cc);
|
||||
}
|
||||
|
||||
// AMD CDNA3 matrix cores.. Will add support for other CDNA generations later.
|
||||
static bool amd_mfma_available(const int cc) {
|
||||
return cc >= GGML_CUDA_CC_OFFSET_AMD && GGML_CUDA_CC_IS_CDNA3(cc);
|
||||
#if !defined(GGML_HIP_NO_MMQ_MFMA)
|
||||
return GGML_CUDA_CC_IS_CDNA(cc);
|
||||
#else
|
||||
return false;
|
||||
#endif //!defined(GGML_HIP_NO_MMQ_MFMA)
|
||||
}
|
||||
|
||||
// Volta technically had FP16 tensor cores but they work very differently compared to Turing and later.
|
||||
@@ -308,25 +311,25 @@ static bool cp_async_available(const int cc) {
|
||||
}
|
||||
|
||||
static constexpr __device__ int ggml_cuda_get_physical_warp_size() {
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(__GFX9__) || defined(__GFX8__))
|
||||
#if defined(GGML_USE_HIP) && (defined(__GFX9__) || defined(__GFX8__))
|
||||
return 64;
|
||||
#else
|
||||
return 32;
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(__GFX9__) || defined(__GFX8__))
|
||||
#endif // defined(GGML_USE_HIP) && (defined(__GFX9__) || defined(__GFX8__))
|
||||
}
|
||||
|
||||
[[noreturn]]
|
||||
static __device__ void no_device_code(
|
||||
const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {
|
||||
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(GGML_USE_HIP)
|
||||
printf("%s:%d: ERROR: HIP kernel %s has no device code compatible with HIP arch %d.\n",
|
||||
file_name, line, function_name, arch);
|
||||
GGML_UNUSED(arch_list);
|
||||
#else
|
||||
printf("%s:%d: ERROR: CUDA kernel %s has no device code compatible with CUDA arch %d. ggml-cuda.cu was compiled for: %s\n",
|
||||
file_name, line, function_name, arch, arch_list);
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#endif // defined(GGML_USE_HIP)
|
||||
__trap();
|
||||
|
||||
GGML_UNUSED(no_device_code); // suppress unused function warning
|
||||
@@ -363,7 +366,7 @@ struct ggml_cuda_unroll<1> {
|
||||
|
||||
template<int width = WARP_SIZE>
|
||||
static __device__ __forceinline__ int warp_reduce_sum(int x) {
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
return __reduce_add_sync(0xffffffff, x);
|
||||
#else
|
||||
#pragma unroll
|
||||
@@ -371,7 +374,7 @@ static __device__ __forceinline__ int warp_reduce_sum(int x) {
|
||||
x += __shfl_xor_sync(0xffffffff, x, offset, width);
|
||||
}
|
||||
return x;
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
}
|
||||
|
||||
template<int width = WARP_SIZE>
|
||||
@@ -428,6 +431,20 @@ static __global__ void reduce_rows_f32(const float * x, float * dst, const int n
|
||||
dst[row] = norm ? sum / ncols : sum;
|
||||
}
|
||||
|
||||
template<int width = WARP_SIZE>
|
||||
static __device__ __forceinline__ int warp_reduce_all(int x) {
|
||||
#ifdef GGML_USE_HIP
|
||||
#pragma unroll
|
||||
for (int offset = width/2; offset > 0; offset >>= 1) {
|
||||
x = x && __shfl_xor_sync(0xffffffff, x, offset, width);
|
||||
}
|
||||
return x;
|
||||
#else
|
||||
static_assert(width == WARP_SIZE, "width != WARP_SIZE not implemented");
|
||||
return __all_sync(0xffffffff, x);
|
||||
#endif // GGML_USE_HIP
|
||||
}
|
||||
|
||||
template<int width = WARP_SIZE>
|
||||
static __device__ __forceinline__ float warp_reduce_max(float x) {
|
||||
#pragma unroll
|
||||
@@ -440,11 +457,11 @@ static __device__ __forceinline__ float warp_reduce_max(float x) {
|
||||
static __device__ __forceinline__ half ggml_cuda_hmax(const half a, const half b) {
|
||||
#ifdef FP16_AVAILABLE
|
||||
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
|
||||
#if !defined(GGML_USE_HIP) && CUDART_VERSION < CUDART_HMAX
|
||||
return __float2half(fmaxf(__half2float(a), __half2float(b)));
|
||||
#else
|
||||
return __hmax(a, b);
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
|
||||
#endif // !defined(GGML_USE_HIP) && CUDART_VERSION < CUDART_HMAX
|
||||
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
@@ -472,7 +489,7 @@ static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const hal
|
||||
|
||||
template<int width = WARP_SIZE>
|
||||
static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL || (defined(GGML_USE_HIP) && HIP_VERSION >= 50700000)
|
||||
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL || (defined(GGML_USE_HIP) && HIP_VERSION >= 50700000)
|
||||
#pragma unroll
|
||||
for (int offset = width/2; offset > 0; offset >>= 1) {
|
||||
x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, offset, width));
|
||||
@@ -481,7 +498,7 @@ static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
|
||||
#else
|
||||
GGML_UNUSED(x);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL || (defined(GGML_USE_HIP) && HIP_VERSION >= 50700000)
|
||||
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL || (defined(GGML_USE_HIP) && HIP_VERSION >= 50700000)
|
||||
}
|
||||
|
||||
#if CUDART_VERSION < CUDART_HMASK
|
||||
@@ -493,7 +510,7 @@ static __device__ __forceinline__ uint32_t __hgt2_mask(const half2 a, const half
|
||||
#endif // CUDART_VERSION < CUDART_HMASK
|
||||
|
||||
static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, int c) {
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(GGML_USE_HIP)
|
||||
#if defined(CDNA) || defined(RDNA2) || defined(__gfx906__)
|
||||
c = __builtin_amdgcn_sdot4(a, b, c, false);
|
||||
#elif defined(RDNA3) || defined(RDNA4)
|
||||
@@ -519,7 +536,7 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
|
||||
#endif
|
||||
return c;
|
||||
|
||||
#else // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#else // defined(GGML_USE_HIP)
|
||||
|
||||
#if __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A || defined(GGML_USE_MUSA)
|
||||
return __dp4a(a, b, c);
|
||||
@@ -529,7 +546,7 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
|
||||
return c + a8[0]*b8[0] + a8[1]*b8[1] + a8[2]*b8[2] + a8[3]*b8[3];
|
||||
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A || defined(GGML_USE_MUSA)
|
||||
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#endif // defined(GGML_USE_HIP)
|
||||
}
|
||||
|
||||
typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, dfloat2 & v);
|
||||
|
||||
@@ -15,6 +15,7 @@ typedef void (* fattn_kernel_t)(
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
const int * __restrict__ KV_max,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
@@ -500,6 +501,55 @@ constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) {
|
||||
nullptr;
|
||||
}
|
||||
|
||||
template <int ncols1>
|
||||
__launch_bounds__(FATTN_KQ_STRIDE/2, 1)
|
||||
static __global__ void flash_attn_mask_to_KV_max(
|
||||
const half2 * __restrict__ mask, int * __restrict__ KV_max, const int ne30, const int s31, const int s33) {
|
||||
const int ne31 = gridDim.x;
|
||||
const int tid = threadIdx.x;
|
||||
const int sequence = blockIdx.y;
|
||||
const int jt = blockIdx.x;
|
||||
|
||||
mask += sequence*s33 + jt*ncols1*s31;
|
||||
|
||||
__shared__ int buf_iw[WARP_SIZE];
|
||||
if (tid < WARP_SIZE) {
|
||||
buf_iw[tid] = 1;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
int KV_max_sj = (ne30 - 1) * FATTN_KQ_STRIDE;
|
||||
for (; KV_max_sj >= 0; KV_max_sj -= FATTN_KQ_STRIDE) {
|
||||
int all_inf = 1;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols1; ++j) {
|
||||
const float2 tmp = __half22float2(mask[j*s31 + KV_max_sj/2 + tid]);
|
||||
all_inf = all_inf && int(isinf(tmp.x)) && int(isinf(tmp.y));
|
||||
}
|
||||
|
||||
all_inf = warp_reduce_all(all_inf);
|
||||
if (tid % WARP_SIZE == 0) {
|
||||
buf_iw[tid / WARP_SIZE] = all_inf;
|
||||
}
|
||||
__syncthreads();
|
||||
all_inf = buf_iw[tid % WARP_SIZE];
|
||||
__syncthreads();
|
||||
all_inf = warp_reduce_all(all_inf);
|
||||
|
||||
if (!all_inf) {
|
||||
KV_max_sj += FATTN_KQ_STRIDE;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (threadIdx.x != 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
KV_max[sequence*ne31 + jt] = KV_max_sj;
|
||||
}
|
||||
|
||||
template<int D, int ncols1, int ncols2> // D == head size
|
||||
__launch_bounds__(D, 1)
|
||||
static __global__ void flash_attn_stream_k_fixup(
|
||||
@@ -592,9 +642,9 @@ static __global__ void flash_attn_stream_k_fixup(
|
||||
}
|
||||
|
||||
template<int D> // D == head size
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
#if !defined(GGML_USE_HIP)
|
||||
__launch_bounds__(D, 1)
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
#endif // !(defined(GGML_USE_HIP)
|
||||
static __global__ void flash_attn_combine_results(
|
||||
const float * __restrict__ VKQ_parts,
|
||||
const float2 * __restrict__ VKQ_meta,
|
||||
@@ -711,6 +761,7 @@ void launch_fattn(
|
||||
|
||||
ggml_cuda_pool_alloc<half> K_f16(pool);
|
||||
ggml_cuda_pool_alloc<half> V_f16(pool);
|
||||
ggml_cuda_pool_alloc<int> KV_max(pool);
|
||||
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
||||
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
||||
|
||||
@@ -779,11 +830,30 @@ void launch_fattn(
|
||||
V_data = (char *) V_f16.ptr;
|
||||
}
|
||||
|
||||
int parallel_blocks = 1;
|
||||
|
||||
const int ntiles_x = ((Q->ne[1] + ncols1 - 1) / ncols1);
|
||||
const int ntiles_total = ntiles_x * (Q->ne[2] / ncols2) * Q->ne[3];
|
||||
|
||||
// Optional optimization where the mask is scanned to determine whether part of the calculation can be skipped.
|
||||
// Only worth the overhead if there is at lease one FATTN_KQ_STRIDE x FATTN_KQ_STRIDE square to be skipped or
|
||||
// multiple sequences of possibly different lengths.
|
||||
if (mask && (Q->ne[1] >= 1024 || Q->ne[3] > 1)) {
|
||||
const int s31 = mask->nb[1] / sizeof(half2);
|
||||
const int s33 = mask->nb[3] / sizeof(half2);
|
||||
|
||||
const dim3 blocks_num_KV_max(ntiles_x, Q->ne[3], 1);
|
||||
const dim3 block_dim_KV_max(FATTN_KQ_STRIDE/2, 1, 1);
|
||||
|
||||
const int ne_KV_max = blocks_num_KV_max.x*blocks_num_KV_max.y;
|
||||
const int iter_k = K->ne[1] / FATTN_KQ_STRIDE;
|
||||
|
||||
KV_max.alloc(ne_KV_max);
|
||||
flash_attn_mask_to_KV_max<ncols1><<<blocks_num_KV_max, block_dim_KV_max, 0, main_stream>>>
|
||||
((const half2 *) mask->data, KV_max.ptr, iter_k, s31, s33);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
int parallel_blocks = 1;
|
||||
|
||||
const dim3 block_dim(warp_size, nwarps, 1);
|
||||
int max_blocks_per_sm = 1; // Max. number of active blocks limited by occupancy.
|
||||
CUDA_CHECK(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&max_blocks_per_sm, fattn_kernel, block_dim.x * block_dim.y * block_dim.z, nbytes_shared));
|
||||
@@ -870,6 +940,7 @@ void launch_fattn(
|
||||
K_data,
|
||||
V_data,
|
||||
mask ? ((const char *) mask->data) : nullptr,
|
||||
KV_max.ptr,
|
||||
!stream_k && parallel_blocks > 1 ? dst_tmp.ptr : (float *) KQV->data, dst_tmp_meta.ptr,
|
||||
scale, max_bias, m0, m1, n_head_log2, logit_softcap,
|
||||
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3], Q->nb[1], Q->nb[2], Q->nb[3],
|
||||
|
||||
@@ -392,7 +392,8 @@ static __device__ __forceinline__ void flash_attn_ext_f16_load_mask(
|
||||
}
|
||||
}
|
||||
|
||||
template<int DKQ, int DV, int ncols1, int ncols2, int nwarps, int ntiles, bool use_logit_softcap, bool mla, bool needs_fixup, bool is_fixup, bool last_iter>
|
||||
template<int DKQ, int DV, int ncols1, int ncols2, int nwarps, int ntiles,
|
||||
bool use_logit_softcap, bool mla, bool needs_fixup, bool is_fixup, bool last_iter>
|
||||
static __device__ __forceinline__ void flash_attn_ext_f16_iter(
|
||||
const float2 * const __restrict__ Q_f2,
|
||||
const half2 * const __restrict__ K_h2,
|
||||
@@ -922,7 +923,8 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
|
||||
}
|
||||
|
||||
// Iterate over ne11 == previous tokens:
|
||||
for (int kb0 = kb0_start; kb0 < kb0_stop-1; ++kb0) {
|
||||
int kb0 = kb0_start;
|
||||
for (; kb0 < kb0_stop-1; ++kb0) {
|
||||
constexpr bool last_iter = false;
|
||||
flash_attn_ext_f16_iter<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla, needs_fixup, is_fixup, last_iter>
|
||||
(Q_f2, K_h2, V_h2, mask_h2, dstk, dstk_fixup, scale, slope, logit_softcap,
|
||||
@@ -932,7 +934,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
|
||||
constexpr bool last_iter = true;
|
||||
flash_attn_ext_f16_iter<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla, needs_fixup, is_fixup, last_iter>
|
||||
(Q_f2, K_h2, V_h2, mask_h2, dstk, dstk_fixup, scale, slope, logit_softcap,
|
||||
ne01, ne02, stride_K, stride_V, stride_mask, tile_Q, tile_K, tile_V, tile_mask, Q_B, VKQ_C, KQ_max, KQ_rowsum, kb0_stop-1);
|
||||
ne01, ne02, stride_K, stride_V, stride_mask, tile_Q, tile_K, tile_V, tile_mask, Q_B, VKQ_C, KQ_max, KQ_rowsum, kb0);
|
||||
}
|
||||
|
||||
// With multi-stage loading there is no __syncthreads at the end of the iter,
|
||||
@@ -1204,6 +1206,7 @@ static __global__ void flash_attn_ext_f16(
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
const int * __restrict__ KV_max,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
@@ -1280,7 +1283,11 @@ static __global__ void flash_attn_ext_f16(
|
||||
const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, head, n_head_log2, m0, m1) : 1.0f;
|
||||
|
||||
const int kb0_start_kernel = kb0_start * kb_niter;
|
||||
const int kb0_stop_kernel = kb0_stop * kb_niter;
|
||||
int kb0_stop_kernel = kb0_stop * kb_niter;
|
||||
|
||||
if (KV_max) {
|
||||
kb0_stop_kernel = min(kb0_stop_kernel, KV_max[sequence*iter_j + jt] / c::nbatch_fa);
|
||||
}
|
||||
|
||||
constexpr bool is_fixup = false; // All but (potentially) the last iterations write their data to dst rather than the fixup buffer.
|
||||
if (kb0_start == 0) {
|
||||
@@ -1321,7 +1328,11 @@ static __global__ void flash_attn_ext_f16(
|
||||
const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, head, n_head_log2, m0, m1) : 1.0f;
|
||||
|
||||
const int kb0_start_kernel = kb0_start * kb_niter;
|
||||
const int kb0_stop_kernel = kb0_stop * kb_niter;
|
||||
int kb0_stop_kernel = kb0_stop * kb_niter;
|
||||
|
||||
if (KV_max) {
|
||||
kb0_stop_kernel = min(kb0_stop_kernel, KV_max[sequence*iter_j + jt] / c::nbatch_fa);
|
||||
}
|
||||
|
||||
constexpr bool is_fixup = true; // Last index writes its data to fixup buffer to avoid data races with other blocks.
|
||||
constexpr bool needs_fixup = false;
|
||||
@@ -1391,24 +1402,24 @@ void ggml_cuda_flash_attn_ext_mma_f16_case(ggml_backend_cuda_context & ctx, ggml
|
||||
constexpr bool use_logit_softcap = false;
|
||||
fattn_kernel = flash_attn_ext_f16<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla>;
|
||||
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
|
||||
if (!shared_memory_limit_raised[id]) {
|
||||
CUDA_CHECK(cudaFuncSetAttribute(fattn_kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, nbytes_shared_total));
|
||||
shared_memory_limit_raised[id] = true;
|
||||
}
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
|
||||
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
fattn_kernel = flash_attn_ext_f16<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla>;
|
||||
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
|
||||
if (!shared_memory_limit_raised[id]) {
|
||||
CUDA_CHECK(cudaFuncSetAttribute(fattn_kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, nbytes_shared_total));
|
||||
shared_memory_limit_raised[id] = true;
|
||||
}
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
|
||||
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
}
|
||||
|
||||
launch_fattn<DV, ncols1, ncols2>
|
||||
|
||||
@@ -5,14 +5,15 @@
|
||||
#define FATTN_KQ_STRIDE_TILE_F16 64
|
||||
|
||||
template<int D, int ncols, int nwarps, bool use_logit_softcap> // D == head size
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
#if !defined(GGML_USE_HIP)
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 2)
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
#endif // !defined(GGML_USE_HIP)
|
||||
static __global__ void flash_attn_tile_ext_f16(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
const int * __restrict__ KV_max,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
@@ -90,7 +91,8 @@ static __global__ void flash_attn_tile_ext_f16(
|
||||
|
||||
__syncthreads();
|
||||
|
||||
for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE_TILE_F16; k_VKQ_0 < ne11; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE_TILE_F16) {
|
||||
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
|
||||
for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE_TILE_F16; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE_TILE_F16) {
|
||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||
|
||||
half kqmax_new[ncols/nwarps];
|
||||
|
||||
@@ -5,14 +5,15 @@
|
||||
#define FATTN_KQ_STRIDE_TILE_F32 32
|
||||
|
||||
template<int D, int ncols, int nwarps, bool use_logit_softcap> // D == head size
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
#if !defined(GGML_USE_HIP)
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 2)
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
#endif // !defined(GGML_USE_HIP)
|
||||
static __global__ void flash_attn_tile_ext_f32(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
const int * __restrict__ KV_max,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
@@ -99,7 +100,8 @@ static __global__ void flash_attn_tile_ext_f32(
|
||||
|
||||
__syncthreads();
|
||||
|
||||
for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE_TILE_F32; k_VKQ_0 < ne11; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE_TILE_F32) {
|
||||
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
|
||||
for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE_TILE_F32; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE_TILE_F32) {
|
||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||
|
||||
float kqmax_new[ncols/nwarps];
|
||||
|
||||
@@ -1,6 +1,12 @@
|
||||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
|
||||
// Currenlty llvm with the amdgcn target dose not support unrolling loops
|
||||
// that contain a break that can not be resolved at compile time.
|
||||
#ifdef __clang__
|
||||
#pragma clang diagnostic push
|
||||
#pragma clang diagnostic ignored "-Wpass-failed"
|
||||
#endif // __clang__
|
||||
template<int D, int ncols, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
|
||||
#ifndef GGML_USE_HIP
|
||||
__launch_bounds__(D, 1)
|
||||
@@ -10,6 +16,7 @@ static __global__ void flash_attn_vec_ext_f16(
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
const int * __restrict__ KV_max,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
@@ -171,10 +178,14 @@ static __global__ void flash_attn_vec_ext_f16(
|
||||
|
||||
half2 VKQ[ncols] = {{0.0f, 0.0f}};
|
||||
|
||||
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
|
||||
K += blockIdx.y*D * nb11;
|
||||
V += blockIdx.y*D * nb21;
|
||||
maskh += blockIdx.y*D;
|
||||
for (int k_VKQ_0 = blockIdx.y*D; k_VKQ_0 < ne11; k_VKQ_0 += gridDim.y*D) {
|
||||
for (int k_VKQ_0 = blockIdx.y*D; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*D,
|
||||
// Increment pointers after each loop:
|
||||
K += gridDim.y*D*nb11, V += gridDim.y*D*nb21, maskh += gridDim.y*D) {
|
||||
|
||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||
|
||||
if (mask) {
|
||||
@@ -182,29 +193,7 @@ static __global__ void flash_attn_vec_ext_f16(
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
maskh_shared[j*D + tid] = slopeh*maskh[j*ne11 + tid];
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// When using multiple parallel sequences in llama.cpp, some KV slices can be fully masked out.
|
||||
// In such cases, skip the KV slice.
|
||||
// On AMD __all_sync would not work correctly because it assumes a warp size of 64.
|
||||
#ifndef GGML_USE_HIP
|
||||
bool skip = true;
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
const float2 tmp = __half22float2(((const half2 *) maskh_shared)[j*(D/2) + i]);
|
||||
skip = skip && isinf(tmp.x) && isinf(tmp.y);
|
||||
}
|
||||
}
|
||||
if (__all_sync(0xFFFFFFFF, skip)) {
|
||||
__syncthreads();
|
||||
continue;
|
||||
}
|
||||
#endif // GGML_USE_HIP
|
||||
}
|
||||
|
||||
// For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression,
|
||||
@@ -291,10 +280,6 @@ static __global__ void flash_attn_vec_ext_f16(
|
||||
}
|
||||
}
|
||||
|
||||
K += gridDim.y*D * nb11;
|
||||
V += gridDim.y*D * nb21;
|
||||
maskh += gridDim.y*D;
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
@@ -342,6 +327,9 @@ static __global__ void flash_attn_vec_ext_f16(
|
||||
NO_DEVICE_CODE;
|
||||
#endif // defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE)
|
||||
}
|
||||
#ifdef __clang__
|
||||
#pragma clang diagnostic pop
|
||||
#endif // __clang__
|
||||
|
||||
template <int D, int cols_per_block, ggml_type type_K, ggml_type type_V, bool use_logit_softcap>
|
||||
void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
||||
@@ -1,6 +1,12 @@
|
||||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
|
||||
// Currenlty llvm with the amdgcn target dose not support unrolling loops
|
||||
// that contain a break that can not be resolved at compile time.
|
||||
#ifdef __clang__
|
||||
#pragma clang diagnostic push
|
||||
#pragma clang diagnostic ignored "-Wpass-failed"
|
||||
#endif // __clang__
|
||||
template<int D, int ncols, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
|
||||
#ifndef GGML_USE_HIP
|
||||
__launch_bounds__(D, 1)
|
||||
@@ -10,6 +16,7 @@ static __global__ void flash_attn_vec_ext_f32(
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
const int * __restrict__ KV_max,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
@@ -177,10 +184,14 @@ static __global__ void flash_attn_vec_ext_f32(
|
||||
|
||||
float VKQ[ncols] = {0.0f};
|
||||
|
||||
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
|
||||
K += blockIdx.y*D * nb11;
|
||||
V += blockIdx.y*D * nb21;
|
||||
maskh += blockIdx.y*D;
|
||||
for (int k_VKQ_0 = blockIdx.y*D; k_VKQ_0 < ne11; k_VKQ_0 += gridDim.y*D) {
|
||||
for (int k_VKQ_0 = blockIdx.y*D; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*D,
|
||||
// Increment pointers after each loop:
|
||||
K += gridDim.y*D*nb11, V += gridDim.y*D*nb21, maskh += gridDim.y*D) {
|
||||
|
||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||
|
||||
if (mask) {
|
||||
@@ -188,28 +199,7 @@ static __global__ void flash_attn_vec_ext_f32(
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
maskf_shared[j*D + tid] = slope*__half2float(maskh[j*ne11 + tid]);
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// When using multiple parallel sequences in llama.cpp, some KV slices can be fully masked out.
|
||||
// In such cases, skip the KV slice.
|
||||
// On AMD __all_sync would not work correctly because it assumes a warp size of 64.
|
||||
#ifndef GGML_USE_HIP
|
||||
bool skip = true;
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
skip = skip && isinf(maskf_shared[j*D + i]);
|
||||
}
|
||||
}
|
||||
if (__all_sync(0xFFFFFFFF, skip)) {
|
||||
__syncthreads();
|
||||
continue;
|
||||
}
|
||||
#endif // GGML_USE_HIP
|
||||
}
|
||||
|
||||
float kqmax_new_arr[ncols];
|
||||
@@ -286,10 +276,6 @@ static __global__ void flash_attn_vec_ext_f32(
|
||||
}
|
||||
}
|
||||
|
||||
K += gridDim.y*D * nb11;
|
||||
V += gridDim.y*D * nb21;
|
||||
maskh += gridDim.y*D;
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
@@ -337,6 +323,9 @@ static __global__ void flash_attn_vec_ext_f32(
|
||||
NO_DEVICE_CODE;
|
||||
#endif // FLASH_ATTN_AVAILABLE
|
||||
}
|
||||
#ifdef __clang__
|
||||
#pragma clang diagnostic pop
|
||||
#endif // __clang__
|
||||
|
||||
template <int D, int cols_per_block, ggml_type type_K, ggml_type type_V, bool use_logit_softcap>
|
||||
void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
||||
@@ -7,7 +7,7 @@
|
||||
#include "fattn-wmma-f16.cuh"
|
||||
|
||||
#ifdef FP16_MMA_AVAILABLE
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
#if !defined(GGML_USE_HIP)
|
||||
#include <mma.h>
|
||||
#ifdef GGML_USE_MUSA
|
||||
namespace wmma = mtmusa::wmma;
|
||||
@@ -18,7 +18,7 @@ namespace wmma = nvcuda::wmma;
|
||||
#undef HIP_ENABLE_WARP_SYNC_BUILTINS // conflicts with rocWMMA headers
|
||||
#include <rocwmma/rocwmma.hpp>
|
||||
namespace wmma = rocwmma;
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
#endif // !defined(GGML_USE_HIP)
|
||||
#endif // FP16_MMA_AVAILABLE
|
||||
|
||||
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
|
||||
@@ -29,6 +29,7 @@ static __global__ void flash_attn_ext_f16(
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
const int * __restrict__ KV_max,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
@@ -165,7 +166,8 @@ static __global__ void flash_attn_ext_f16(
|
||||
__syncthreads();
|
||||
|
||||
// Iterate over ne11 == previous tokens:
|
||||
for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE; k_VKQ_0 < ne11; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE) {
|
||||
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
|
||||
for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE) {
|
||||
// Calculate tile of KQ:
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) {
|
||||
@@ -546,7 +548,7 @@ void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_ten
|
||||
return;
|
||||
}
|
||||
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
#if !defined(GGML_USE_HIP)
|
||||
if (Q->ne[1] <= 8 && Q->ne[0] % warp_size == 0) {
|
||||
constexpr int cols_per_block = 8;
|
||||
switch (Q->ne[0]) {
|
||||
@@ -568,7 +570,7 @@ void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_ten
|
||||
}
|
||||
return;
|
||||
}
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
#endif // !defined(GGML_USE_HIP)
|
||||
|
||||
if (Q->ne[1] <= 32) {
|
||||
constexpr int cols_per_block = 16;
|
||||
|
||||
@@ -315,7 +315,8 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
||||
|
||||
const bool gqa_opt_applies = ((Q->ne[2] / K->ne[2]) % 2 == 0) && mask; // The mma-based kernels have GQA-specific optimizations
|
||||
const bool mma_needs_data_conversion = K->type != GGML_TYPE_F16 || V->type != GGML_TYPE_F16;
|
||||
const bool mma_faster_for_bs1 = new_mma_available(cc) && gqa_opt_applies && cc < GGML_CUDA_CC_ADA_LOVELACE && !mma_needs_data_conversion;
|
||||
const bool mma_faster_for_bs1 = new_mma_available(cc) && gqa_opt_applies &&
|
||||
(Q->ne[3] > 1 || cc < GGML_CUDA_CC_ADA_LOVELACE) && !mma_needs_data_conversion;
|
||||
const bool can_use_vector_kernel = Q->ne[0] <= 256 && Q->ne[0] % (2*warp_size) == 0;
|
||||
if (Q->ne[1] == 1 && can_use_vector_kernel && !mma_faster_for_bs1) {
|
||||
if (prec == GGML_PREC_DEFAULT) {
|
||||
|
||||
@@ -31,7 +31,9 @@
|
||||
#include "ggml-cuda/pool2d.cuh"
|
||||
#include "ggml-cuda/quantize.cuh"
|
||||
#include "ggml-cuda/rope.cuh"
|
||||
#include "ggml-cuda/roll.cuh"
|
||||
#include "ggml-cuda/scale.cuh"
|
||||
#include "ggml-cuda/softcap.cuh"
|
||||
#include "ggml-cuda/softmax.cuh"
|
||||
#include "ggml-cuda/ssm-conv.cuh"
|
||||
#include "ggml-cuda/ssm-scan.cuh"
|
||||
@@ -126,7 +128,7 @@ static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device)
|
||||
return err;
|
||||
}
|
||||
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(GGML_USE_HIP)
|
||||
static int ggml_cuda_parse_id(char devName[]) {
|
||||
// A list of possible Target IDs can be found under the rocclr/clr repo in device.cpp
|
||||
// these values are not stable so this is susceptible to breakage
|
||||
@@ -173,10 +175,10 @@ static int ggml_cuda_parse_id(char devName[]) {
|
||||
archNum += archMinor;
|
||||
return archNum;
|
||||
}
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#endif // defined(GGML_USE_HIP)
|
||||
|
||||
static ggml_cuda_device_info ggml_cuda_init() {
|
||||
#ifdef __HIP_PLATFORM_AMD__
|
||||
#if defined(GGML_USE_HIP)
|
||||
// Workaround for a rocBLAS bug when using multiple graphics cards:
|
||||
// https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
|
||||
{
|
||||
@@ -249,7 +251,7 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
||||
info.devices[id].nsm = prop.multiProcessorCount;
|
||||
info.devices[id].smpb = prop.sharedMemPerBlock;
|
||||
info.devices[id].warp_size = prop.warpSize;
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(GGML_USE_HIP)
|
||||
info.devices[id].smpbo = prop.sharedMemPerBlock;
|
||||
|
||||
info.devices[id].cc = ggml_cuda_parse_id(prop.gcnArchName);
|
||||
@@ -279,7 +281,7 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
||||
info.devices[id].cc = 100*prop.major + 10*prop.minor;
|
||||
GGML_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s\n",
|
||||
id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#endif // defined(GGML_USE_HIP)
|
||||
}
|
||||
|
||||
for (int id = 0; id < info.device_count; ++id) {
|
||||
@@ -2419,6 +2421,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_OP_ROPE_BACK:
|
||||
ggml_cuda_op_rope_back(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_ROLL:
|
||||
ggml_cuda_op_roll(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_IM2COL:
|
||||
ggml_cuda_op_im2col(ctx, dst);
|
||||
break;
|
||||
@@ -2766,7 +2771,12 @@ static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) {
|
||||
}
|
||||
#endif
|
||||
|
||||
static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, std::initializer_list<enum ggml_op> ops) {
|
||||
static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, std::initializer_list<enum ggml_op> ops, std::initializer_list<enum ggml_unary_op> unary_ops) {
|
||||
#ifndef NDEBUG
|
||||
const size_t num_unary = std::count(ops.begin(), ops.end(), GGML_OP_UNARY);
|
||||
GGML_ASSERT(unary_ops.size() == num_unary);
|
||||
#endif
|
||||
|
||||
if (!ggml_can_fuse(cgraph, node_idx, ops)) {
|
||||
return false;
|
||||
}
|
||||
@@ -2794,9 +2804,32 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
|
||||
if (!ggml_is_contiguous_rows(mul->src[0]) || !ggml_is_contiguous_rows(mul->src[1])) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
return true;
|
||||
if (ops.size() == 3 && ops.begin()[0] == GGML_OP_SCALE && ops.begin()[1] == GGML_OP_UNARY && ops.begin()[2] == GGML_OP_SCALE
|
||||
&& unary_ops.size() == 1 && unary_ops.begin()[0] == GGML_UNARY_OP_TANH) {
|
||||
const ggml_tensor *scale = cgraph->nodes[node_idx];
|
||||
const ggml_tensor *tanh = cgraph->nodes[node_idx+1];
|
||||
const ggml_tensor *scale2 = cgraph->nodes[node_idx+2];
|
||||
|
||||
GGML_ASSERT(scale->src[0]->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(scale->type == GGML_TYPE_F32);
|
||||
|
||||
if (ggml_get_unary_op(tanh) != GGML_UNARY_OP_TANH) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Check for bias
|
||||
if (ggml_get_op_params_f32(scale, 1) != 0.0f || ggml_get_op_params_f32(scale2, 1) != 0.0f) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
|
||||
@@ -2817,10 +2850,18 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
||||
}
|
||||
|
||||
static bool disable_fusion = (getenv("GGML_CUDA_DISABLE_FUSION") != nullptr);
|
||||
if (!disable_fusion && ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
|
||||
ggml_cuda_op_rms_norm_fused(*cuda_ctx, node, cgraph->nodes[i+1]);
|
||||
i++;
|
||||
continue;
|
||||
if (!disable_fusion) {
|
||||
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL }, {})) {
|
||||
ggml_cuda_op_rms_norm_fused(*cuda_ctx, node, cgraph->nodes[i+1]);
|
||||
i++;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_SCALE, GGML_OP_UNARY, GGML_OP_SCALE }, { GGML_UNARY_OP_TANH })) {
|
||||
i += 2;
|
||||
ggml_cuda_op_softcap(*cuda_ctx, cgraph->nodes[i], node);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
#ifndef NDEBUG
|
||||
assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
|
||||
@@ -3411,6 +3452,11 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
memcpy(&max_bias, (const float *) op->op_params + 1, sizeof(float));
|
||||
return max_bias == 0.0f;
|
||||
}
|
||||
case GGML_OP_ROLL:
|
||||
if(op->src[0]->type == GGML_TYPE_F32) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
case GGML_OP_ROPE:
|
||||
case GGML_OP_ROPE_BACK: {
|
||||
return op->src[0]->nb[0] == ggml_type_size(op->src[0]->type) && ggml_is_contiguous_2(op->src[0]);
|
||||
|
||||
@@ -68,7 +68,7 @@ namespace ggml_cuda_mma {
|
||||
static constexpr int I = I_;
|
||||
static constexpr int J = J_;
|
||||
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(GGML_USE_HIP)
|
||||
static constexpr int ne = I * J / 64;
|
||||
T x[ne] = {0};
|
||||
|
||||
@@ -132,7 +132,7 @@ namespace ggml_cuda_mma {
|
||||
static_assert(I == -1 && J == -1, "template specialization not implemented");
|
||||
}
|
||||
}
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#endif // defined(GGML_USE_HIP)
|
||||
};
|
||||
|
||||
template <int I_, int J_>
|
||||
|
||||
@@ -109,8 +109,8 @@ void ggml_cuda_mul_mat_q(
|
||||
const int64_t s03 = src0->nb[3] / ts_src0;
|
||||
const int64_t s3 = dst->nb[3] / ts_dst;
|
||||
|
||||
const bool use_stream_k = ((GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA)
|
||||
|| (GGML_CUDA_CC_IS_AMD(cc) && GGML_CUDA_CC_IS_CDNA3(cc)));
|
||||
const bool use_stream_k = (GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA)
|
||||
|| GGML_CUDA_CC_IS_CDNA(cc);
|
||||
|
||||
if (!ids) {
|
||||
const size_t nbytes_src1_q8_1 = ne13*ne12 * ne11*ne10_padded * sizeof(block_q8_1)/QK8_1 +
|
||||
@@ -252,7 +252,7 @@ void ggml_cuda_op_mul_mat_q(
|
||||
// Also its fixup needs to allocate a temporary buffer in the memory pool.
|
||||
// There are multiple parallel CUDA streams for src1_ncols != ne11 which would introduce a race condition for this buffer.
|
||||
const bool use_stream_k = ((GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA)
|
||||
|| (GGML_CUDA_CC_IS_AMD(cc) && GGML_CUDA_CC_IS_CDNA3(cc)))
|
||||
|| GGML_CUDA_CC_IS_CDNA(cc))
|
||||
&& src1_ncols == ne11;
|
||||
const mmq_args args = {
|
||||
src0_dd_i, src0->type, (const int *) src1_ddq_i, nullptr, nullptr, dst_dd_i,
|
||||
@@ -306,7 +306,7 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (new_mma_available(cc) || amd_mfma_available(cc)) {
|
||||
if (new_mma_available(cc)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -322,5 +322,21 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
|
||||
return !fp16_mma_hardware_available(cc) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
}
|
||||
|
||||
if (amd_mfma_available(cc)) {
|
||||
// As of ROCM 7.0 rocblas/tensile performs very poorly on CDNA3 and hipblaslt (via ROCBLAS_USE_HIPBLASLT)
|
||||
// performs better but is currently suffering from a crash on this architecture.
|
||||
// TODO: Revisit when hipblaslt is fixed on CDNA3
|
||||
if (GGML_CUDA_CC_IS_CDNA3(cc)) {
|
||||
return true;
|
||||
}
|
||||
if (ne11 <= 128 || type == GGML_TYPE_Q4_0 || type == GGML_TYPE_Q4_1 || type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1) {
|
||||
return true;
|
||||
}
|
||||
if (ne11 <= 256 && (type == GGML_TYPE_Q4_K || type == GGML_TYPE_Q5_K)) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
return (!GGML_CUDA_CC_IS_RDNA4(cc) && !GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
}
|
||||
|
||||
@@ -104,9 +104,9 @@ static constexpr __device__ int get_mmq_x_max_device() {
|
||||
return 128;
|
||||
#else // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
|
||||
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(GGML_USE_HIP)
|
||||
return 64;
|
||||
#else // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#else // defined(GGML_USE_HIP)
|
||||
|
||||
#if __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
|
||||
#ifdef GGML_CUDA_FORCE_MMQ
|
||||
@@ -118,7 +118,7 @@ static constexpr __device__ int get_mmq_x_max_device() {
|
||||
return 64;
|
||||
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
|
||||
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#endif // defined(GGML_USE_HIP)
|
||||
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
|
||||
}
|
||||
|
||||
@@ -128,7 +128,7 @@ static int get_mmq_y_host(const int cc) {
|
||||
}
|
||||
|
||||
static constexpr __device__ int get_mmq_y_device() {
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(GGML_USE_HIP)
|
||||
#if defined(RDNA1)
|
||||
return 64;
|
||||
#else
|
||||
@@ -140,7 +140,7 @@ static constexpr __device__ int get_mmq_y_device() {
|
||||
#else
|
||||
return 64;
|
||||
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#endif // defined(GGML_USE_HIP)
|
||||
}
|
||||
|
||||
// Decouple shared memory tile sizes from WARP_SIZE to allow for different warp sizes.
|
||||
@@ -250,26 +250,22 @@ static constexpr __device__ int mmq_get_granularity_device(const int /*mmq_x*/)
|
||||
}
|
||||
#endif // AMD_MFMA_AVAILABLE
|
||||
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
static int mmq_get_nwarps_host(const int cc) {
|
||||
return amd_mfma_available(cc) ? 8 : 4;
|
||||
#if defined(GGML_USE_HIP)
|
||||
static int mmq_get_nwarps_host(const int cc, const int warp_size) {
|
||||
return amd_mfma_available(cc) ? 8 : 256/warp_size;
|
||||
}
|
||||
#else
|
||||
static int mmq_get_nwarps_host(const int /*cc*/) {
|
||||
return 8;
|
||||
static int mmq_get_nwarps_host(const int /*cc*/, const int warp_size) {
|
||||
return 256/warp_size;
|
||||
}
|
||||
#endif // (GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#endif // (GGML_USE_HIP)
|
||||
|
||||
static constexpr __device__ int mmq_get_nwarps_device() {
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(AMD_MFMA_AVAILABLE)
|
||||
return 8;
|
||||
#else
|
||||
return 4;
|
||||
return 256/ggml_cuda_get_physical_warp_size();
|
||||
#endif // AMD_MFMA_AVAILABLE
|
||||
#else
|
||||
return 8;
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------
|
||||
@@ -3047,7 +3043,7 @@ static __device__ __forceinline__ void mul_mat_q_process_tile(
|
||||
// The mul_mat_q kernel implements "stream-k" work partitioning as described in https://arxiv.org/abs/2301.03598
|
||||
|
||||
template <ggml_type type, int mmq_x, bool need_check>
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(GGML_USE_HIP)
|
||||
#if defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
|
||||
__launch_bounds__(ggml_cuda_get_physical_warp_size()*mmq_get_nwarps_device(), 2)
|
||||
#endif // defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
|
||||
@@ -3057,7 +3053,7 @@ template <ggml_type type, int mmq_x, bool need_check>
|
||||
#else
|
||||
__launch_bounds__(ggml_cuda_get_physical_warp_size()*mmq_get_nwarps_device(), 2)
|
||||
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#endif // defined(GGML_USE_HIP)
|
||||
static __global__ void mul_mat_q(
|
||||
const char * __restrict__ x, const int * __restrict__ y, const int32_t * __restrict__ ids_dst,
|
||||
const int32_t * __restrict__ expert_bounds, float * __restrict__ dst, float * __restrict__ tmp_fixup,
|
||||
@@ -3096,8 +3092,8 @@ static __global__ void mul_mat_q(
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
// On AMD or old CUDA the performance with stream-k was worse, use conventional tiling instead:
|
||||
#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(CDNA3)) || __CUDA_ARCH__ < GGML_CUDA_CC_VOLTA
|
||||
// On non-CDNA AMD or old CUDA the performance with stream-k was worse, use conventional tiling instead:
|
||||
#if (defined(GGML_USE_HIP) && !defined(CDNA)) || __CUDA_ARCH__ < GGML_CUDA_CC_VOLTA
|
||||
{
|
||||
const int wt = blockIdx.z / nchannels_y;
|
||||
const int zt = blockIdx.z - wt*nchannels_y;
|
||||
@@ -3151,7 +3147,7 @@ static __global__ void mul_mat_q(
|
||||
tile_x_max_i, tile_y_max_j, 0, ncols_x/qk);
|
||||
return;
|
||||
}
|
||||
#endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(CDNA3)) || __CUDA_ARCH__ < GGML_CUDA_CC_VOLTA
|
||||
#endif // (defined(GGML_USE_HIP) && !defined(CDNA3)) || __CUDA_ARCH__ < GGML_CUDA_CC_VOLTA
|
||||
|
||||
const int64_t blocks_per_ne00 = ncols_x / qk;
|
||||
constexpr int blocks_per_iter = MMQ_ITER_K / qk;
|
||||
@@ -3472,7 +3468,7 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
|
||||
const int cc = ggml_cuda_info().devices[id].cc;
|
||||
const int nsm = ggml_cuda_info().devices[id].nsm;
|
||||
const int warp_size = ggml_cuda_info().devices[id].warp_size;
|
||||
const int nwarps = mmq_get_nwarps_host(cc);
|
||||
const int nwarps = mmq_get_nwarps_host(cc, warp_size);
|
||||
const int mmq_y = get_mmq_y_host(cc);
|
||||
|
||||
const dim3 block_dims(warp_size, nwarps, 1);
|
||||
@@ -3559,7 +3555,7 @@ void mul_mat_q_case(ggml_backend_cuda_context & ctx, const mmq_args & args, cuda
|
||||
const int cc = ggml_cuda_info().devices[id].cc;
|
||||
const size_t smpbo = ggml_cuda_info().devices[id].smpbo;
|
||||
const int warp_size = ggml_cuda_info().devices[id].warp_size;
|
||||
const int nwarps = mmq_get_nwarps_host(cc);
|
||||
const int nwarps = mmq_get_nwarps_host(cc, warp_size);
|
||||
|
||||
const int mmq_x_max = get_mmq_x_max_host(cc);
|
||||
const int mmq_y = get_mmq_y_host(cc);
|
||||
|
||||
67
ggml/src/ggml-cuda/roll.cu
Normal file
67
ggml/src/ggml-cuda/roll.cu
Normal file
@@ -0,0 +1,67 @@
|
||||
#include "ggml-cuda/common.cuh"
|
||||
#include "roll.cuh"
|
||||
|
||||
static __forceinline__ __device__ int64_t wrap_index(const int64_t idx, const int64_t ne) {
|
||||
if (idx < 0) {
|
||||
return idx + ne;
|
||||
}
|
||||
if (idx >= ne) {
|
||||
return idx - ne;
|
||||
}
|
||||
return idx;
|
||||
}
|
||||
|
||||
static __global__ void roll_f32_cuda(const float * __restrict__ src,
|
||||
float * __restrict__ dst,
|
||||
const int64_t ne00,
|
||||
const int64_t ne01,
|
||||
const int64_t ne02,
|
||||
const int64_t ne03,
|
||||
const int s0,
|
||||
const int s1,
|
||||
const int s2,
|
||||
const int s3) {
|
||||
const int64_t idx = int64_t(blockDim.x) * blockIdx.x + threadIdx.x;
|
||||
const int64_t n_elements = ne00 * ne01 * ne02 * ne03;
|
||||
|
||||
if (idx >= n_elements) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int64_t i0 = idx % ne00;
|
||||
const int64_t i1 = (idx / ne00) % ne01;
|
||||
const int64_t i2 = (idx / (ne00 * ne01)) % ne02;
|
||||
const int64_t i3 = (idx / (ne00 * ne01 * ne02)) % ne03;
|
||||
|
||||
const int64_t d0 = wrap_index(i0 - s0, ne00);
|
||||
const int64_t d1 = wrap_index(i1 - s1, ne01);
|
||||
const int64_t d2 = wrap_index(i2 - s2, ne02);
|
||||
const int64_t d3 = wrap_index(i3 - s3, ne03);
|
||||
|
||||
dst[i3 * (ne00 * ne01 * ne02) + i2 * (ne01 * ne00) + i1 * ne00 + i0] =
|
||||
src[d3 * (ne00 * ne01 * ne02) + d2 * (ne01 * ne00) + d1 * ne00 + d0];
|
||||
}
|
||||
|
||||
void ggml_cuda_op_roll(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
int s0 = dst->op_params[0];
|
||||
int s1 = dst->op_params[1];
|
||||
int s2 = dst->op_params[2];
|
||||
int s3 = dst->op_params[3];
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *) dst->src[0]->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS;
|
||||
|
||||
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(ggml_are_same_shape(dst->src[0], dst));
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
int64_t sz = (ne00 * ne01 * ne02 * ne03);
|
||||
int64_t num_blocks = (sz + CUDA_ROLL_BLOCK_SIZE - 1) / CUDA_ROLL_BLOCK_SIZE;
|
||||
|
||||
roll_f32_cuda<<<num_blocks, CUDA_ROLL_BLOCK_SIZE, 0, stream>>>(
|
||||
src0_d, dst_d, ne00, ne01, ne02, ne03, s0, s1, s2, s3);
|
||||
}
|
||||
5
ggml/src/ggml-cuda/roll.cuh
Normal file
5
ggml/src/ggml-cuda/roll.cuh
Normal file
@@ -0,0 +1,5 @@
|
||||
#include "common.cuh"
|
||||
|
||||
#define CUDA_ROLL_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_roll(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
34
ggml/src/ggml-cuda/softcap.cu
Normal file
34
ggml/src/ggml-cuda/softcap.cu
Normal file
@@ -0,0 +1,34 @@
|
||||
#include "softcap.cuh"
|
||||
|
||||
static __global__ void softcap_f32(const float * x, float * dst, const float scale, const float softcap, const int k) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
|
||||
dst[i] = tanhf(scale * x[i]) * softcap;
|
||||
}
|
||||
|
||||
static void softcap_f32_cuda(const float * x, float * dst, const float scale, const float softcap, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_SOFTCAP_BLOCK_SIZE - 1) / CUDA_SOFTCAP_BLOCK_SIZE;
|
||||
softcap_f32<<<num_blocks, CUDA_SOFTCAP_BLOCK_SIZE, 0, stream>>>(x, dst, scale, softcap, k);
|
||||
}
|
||||
|
||||
// fused GGML_OP_SCALE + GGML_UNARY_OP_TANH + GGML_OP_SCALE
|
||||
void ggml_cuda_op_softcap(ggml_backend_cuda_context & ctx, ggml_tensor * dst, ggml_tensor * src) {
|
||||
const ggml_tensor * src0 = src->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
float scale;
|
||||
float softcap;
|
||||
memcpy(&scale, (float *) src->op_params + 0, sizeof(float));
|
||||
memcpy(&softcap, (float *) dst->op_params + 0, sizeof(float));
|
||||
|
||||
softcap_f32_cuda(src0_d, dst_d, scale, softcap, ggml_nelements(src0), stream);
|
||||
}
|
||||
5
ggml/src/ggml-cuda/softcap.cuh
Normal file
5
ggml/src/ggml-cuda/softcap.cuh
Normal file
@@ -0,0 +1,5 @@
|
||||
#include "common.cuh"
|
||||
|
||||
#define CUDA_SOFTCAP_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_softcap(ggml_backend_cuda_context & ctx, ggml_tensor * dst, ggml_tensor * src);
|
||||
14
ggml/src/ggml-cuda/vendors/hip.h
vendored
14
ggml/src/ggml-cuda/vendors/hip.h
vendored
@@ -5,10 +5,8 @@
|
||||
#include <hipblas/hipblas.h>
|
||||
#include <hip/hip_fp16.h>
|
||||
#include <hip/hip_bfloat16.h>
|
||||
#ifdef __HIP_PLATFORM_AMD__
|
||||
// for rocblas_initialize()
|
||||
#include "rocblas/rocblas.h"
|
||||
#endif // __HIP_PLATFORM_AMD__
|
||||
|
||||
#define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
|
||||
#define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT
|
||||
@@ -139,7 +137,7 @@
|
||||
#define CUBLAS_STATUS_INTERNAL_ERROR HIPBLAS_STATUS_INTERNAL_ERROR
|
||||
#define CUBLAS_STATUS_NOT_SUPPORTED HIPBLAS_STATUS_NOT_SUPPORTED
|
||||
|
||||
#if defined(__HIP_PLATFORM_AMD__) && HIP_VERSION >= 70000000
|
||||
#if HIP_VERSION >= 70000000
|
||||
#define CUBLAS_COMPUTE_16F HIPBLAS_COMPUTE_16F
|
||||
#define CUBLAS_COMPUTE_32F HIPBLAS_COMPUTE_32F
|
||||
#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_COMPUTE_32F_FAST_16F
|
||||
@@ -151,7 +149,11 @@
|
||||
#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
|
||||
#define cublasComputeType_t hipblasDatatype_t
|
||||
#define cudaDataType_t hipblasDatatype_t
|
||||
#endif
|
||||
#endif // HIP_VERSION >= 7000000
|
||||
|
||||
#if !defined(__HIP_PLATFORM_AMD__)
|
||||
#error "The HIP backend supports only AMD targets"
|
||||
#endif // !defined(__HIP_PLATFORM_AMD__)
|
||||
|
||||
#define __CUDA_ARCH__ 1300
|
||||
|
||||
@@ -249,7 +251,7 @@ static __device__ __forceinline__ unsigned int __vcmpne4(unsigned int a, unsigne
|
||||
return c;
|
||||
}
|
||||
|
||||
#if defined(__HIP_PLATFORM_AMD__) && HIP_VERSION < 50600000
|
||||
#if HIP_VERSION < 50600000
|
||||
// __shfl_xor() for half2 was added in ROCm 5.6
|
||||
static __device__ __forceinline__ half2 __shfl_xor(half2 var, int laneMask, int width) {
|
||||
typedef union half2_b32 {
|
||||
@@ -261,4 +263,4 @@ static __device__ __forceinline__ half2 __shfl_xor(half2 var, int laneMask, int
|
||||
tmp.b32 = __shfl_xor(tmp.b32, laneMask, width);
|
||||
return tmp.val;
|
||||
}
|
||||
#endif // defined(__HIP_PLATFORM_AMD__) && HIP_VERSION < 50600000
|
||||
#endif // HIP_VERSION < 50600000
|
||||
|
||||
@@ -113,6 +113,10 @@ if (GGML_HIP_ROCWMMA_FATTN)
|
||||
add_compile_definitions(GGML_HIP_ROCWMMA_FATTN)
|
||||
endif()
|
||||
|
||||
if (NOT GGML_HIP_MMQ_MFMA)
|
||||
add_compile_definitions(GGML_HIP_NO_MMQ_MFMA)
|
||||
endif()
|
||||
|
||||
if (GGML_HIP_FORCE_ROCWMMA_FATTN_GFX12 OR ${hip_VERSION} VERSION_GREATER_EQUAL 7.0)
|
||||
add_compile_definitions(GGML_HIP_ROCWMMA_FATTN_GFX12)
|
||||
endif()
|
||||
|
||||
@@ -82,6 +82,8 @@ set(GGML_OPENCL_KERNELS
|
||||
mul_mv_q4_0_f32_1d_16x_flat
|
||||
mul_mv_q6_k
|
||||
mul_mv_id_q4_0_f32_8x_flat
|
||||
mul_mm_f32_f32_l4_lm
|
||||
mul_mm_f16_f32_l4_lm
|
||||
mul
|
||||
norm
|
||||
relu
|
||||
|
||||
@@ -33,6 +33,7 @@
|
||||
#undef MAX
|
||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
#define CEIL_DIV(M, N) (((M) + (N)-1) / (N))
|
||||
|
||||
#define UNUSED(x) (void)(x)
|
||||
|
||||
@@ -396,11 +397,13 @@ struct ggml_backend_opencl_context {
|
||||
cl_program program_conv_2d_f16_f32;
|
||||
cl_program program_tsembd;
|
||||
cl_program program_mul_mv_id_q4_0_f32_8x_flat;
|
||||
cl_program program_mul_mm_f32_f32_l4_lm;
|
||||
cl_program program_mul_mm_f16_f32_l4_lm;
|
||||
|
||||
cl_kernel kernel_add, kernel_add_row;
|
||||
cl_kernel kernel_mul, kernel_mul_row;
|
||||
cl_kernel kernel_div, kernel_div_row;
|
||||
cl_kernel kernel_sub, kernel_sub_row;
|
||||
cl_kernel kernel_add, kernel_add_row, kernel_add_f16, kernel_add_row_f16;
|
||||
cl_kernel kernel_mul, kernel_mul_row, kernel_mul_f16, kernel_mul_row_f16;
|
||||
cl_kernel kernel_div, kernel_div_row, kernel_div_f16, kernel_div_row_f16;
|
||||
cl_kernel kernel_sub, kernel_sub_row, kernel_sub_f16, kernel_sub_row_f16;
|
||||
cl_kernel kernel_scale;
|
||||
cl_kernel kernel_silu, kernel_silu_4;
|
||||
cl_kernel kernel_gelu, kernel_gelu_4;
|
||||
@@ -450,6 +453,8 @@ struct ggml_backend_opencl_context {
|
||||
cl_kernel kernel_conv_2d_f16_f32;
|
||||
cl_kernel kernel_timestep_embedding;
|
||||
cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
|
||||
cl_kernel kernel_mul_mm_f32_f32_l4_lm;
|
||||
cl_kernel kernel_mul_mm_f16_f32_l4_lm;
|
||||
|
||||
std::vector<ProfilingInfo> profiling_info;
|
||||
|
||||
@@ -669,8 +674,10 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
|
||||
backend_ctx->program_add =
|
||||
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||
|
||||
CL_CHECK((backend_ctx->kernel_add = clCreateKernel(backend_ctx->program_add, "kernel_add", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_add_row = clCreateKernel(backend_ctx->program_add, "kernel_add_row", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_add = clCreateKernel(backend_ctx->program_add, "kernel_add", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_add_row = clCreateKernel(backend_ctx->program_add, "kernel_add_row", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_add_f16 = clCreateKernel(backend_ctx->program_add, "kernel_add_f16", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_add_row_f16 = clCreateKernel(backend_ctx->program_add, "kernel_add_row_f16", &err), err));
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
@@ -1040,6 +1047,38 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
// mul_mm_f32_f32_l4_lm
|
||||
{
|
||||
#ifdef GGML_OPENCL_EMBED_KERNELS
|
||||
const std::string kernel_src {
|
||||
#include "mul_mm_f32_f32_l4_lm.cl.h"
|
||||
};
|
||||
#else
|
||||
const std::string kernel_src = read_file("mul_mm_f32_f32_l4_lm.cl");
|
||||
#endif
|
||||
backend_ctx->program_mul_mm_f32_f32_l4_lm =
|
||||
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||
|
||||
CL_CHECK((backend_ctx->kernel_mul_mm_f32_f32_l4_lm = clCreateKernel(backend_ctx->program_mul_mm_f32_f32_l4_lm, "kernel_mul_mm_f32_f32_l4_lm", &err), err));
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
// mul_mm_f16_f32_l4_lm
|
||||
{
|
||||
#ifdef GGML_OPENCL_EMBED_KERNELS
|
||||
const std::string kernel_src {
|
||||
#include "mul_mm_f16_f32_l4_lm.cl.h"
|
||||
};
|
||||
#else
|
||||
const std::string kernel_src = read_file("mul_mm_f16_f32_l4_lm.cl");
|
||||
#endif
|
||||
backend_ctx->program_mul_mm_f16_f32_l4_lm =
|
||||
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||
|
||||
CL_CHECK((backend_ctx->kernel_mul_mm_f16_f32_l4_lm = clCreateKernel(backend_ctx->program_mul_mm_f16_f32_l4_lm, "kernel_mul_mm_f16_f32_l4_lm", &err), err));
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
// mul
|
||||
{
|
||||
#ifdef GGML_OPENCL_EMBED_KERNELS
|
||||
@@ -1052,8 +1091,10 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
|
||||
backend_ctx->program_mul =
|
||||
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||
|
||||
CL_CHECK((backend_ctx->kernel_mul = clCreateKernel(backend_ctx->program_mul, "kernel_mul", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_mul_row = clCreateKernel(backend_ctx->program_mul, "kernel_mul_row", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_mul = clCreateKernel(backend_ctx->program_mul, "kernel_mul", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_mul_row = clCreateKernel(backend_ctx->program_mul, "kernel_mul_row", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_mul_f16 = clCreateKernel(backend_ctx->program_mul, "kernel_mul_f16", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_mul_row_f16 = clCreateKernel(backend_ctx->program_mul, "kernel_mul_row_f16", &err), err));
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
@@ -1251,11 +1292,16 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
|
||||
#else
|
||||
const std::string kernel_src = read_file("div.cl");
|
||||
#endif
|
||||
std::string compile_opts = std::string("-cl-std=") + opencl_c_std +
|
||||
" -cl-mad-enable -cl-finite-math-only ";
|
||||
|
||||
backend_ctx->program_div =
|
||||
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||
|
||||
CL_CHECK((backend_ctx->kernel_div = clCreateKernel(backend_ctx->program_div, "kernel_div", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_div_row = clCreateKernel(backend_ctx->program_div, "kernel_div_row", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_div = clCreateKernel(backend_ctx->program_div, "kernel_div", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_div_row = clCreateKernel(backend_ctx->program_div, "kernel_div_row", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_div_f16 = clCreateKernel(backend_ctx->program_div, "kernel_div_f16", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_div_row_f16 = clCreateKernel(backend_ctx->program_div, "kernel_div_row_f16", &err), err));
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
@@ -1271,8 +1317,10 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
|
||||
backend_ctx->program_sub =
|
||||
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||
|
||||
CL_CHECK((backend_ctx->kernel_sub = clCreateKernel(backend_ctx->program_sub, "kernel_sub", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_sub_row = clCreateKernel(backend_ctx->program_sub, "kernel_sub_row", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_sub = clCreateKernel(backend_ctx->program_sub, "kernel_sub", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_sub_row = clCreateKernel(backend_ctx->program_sub, "kernel_sub_row", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_sub_f16 = clCreateKernel(backend_ctx->program_sub, "kernel_sub_f16", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_sub_row_f16 = clCreateKernel(backend_ctx->program_sub, "kernel_sub_row_f16", &err), err));
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
@@ -2410,12 +2458,15 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
case GGML_OP_ADD:
|
||||
case GGML_OP_SCALE:
|
||||
return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
|
||||
case GGML_OP_ADD:
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
case GGML_OP_SUB:
|
||||
return op->src[0]->type == GGML_TYPE_F32;
|
||||
return (op->src[0]->type == op->src[1]->type) &&
|
||||
(op->src[0]->type == op->type) &&
|
||||
(op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16);
|
||||
case GGML_OP_UNARY:
|
||||
switch (ggml_get_unary_op(op)) {
|
||||
case GGML_UNARY_OP_GELU:
|
||||
@@ -3643,35 +3694,39 @@ static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const
|
||||
GGML_ASSERT(dst);
|
||||
GGML_ASSERT(dst->extra);
|
||||
|
||||
const int ne00 = src0 ? src0->ne[0] : 0;
|
||||
const int ne01 = src0 ? src0->ne[1] : 0;
|
||||
const int ne02 = src0 ? src0->ne[2] : 0;
|
||||
const int ne03 = src0 ? src0->ne[3] : 0;
|
||||
GGML_ASSERT(src0->type == src1->type);
|
||||
GGML_ASSERT(src0->type == dst->type);
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
|
||||
|
||||
const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
|
||||
const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
|
||||
const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
|
||||
const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
|
||||
const int ne00 = src0->ne[0];
|
||||
const int ne01 = src0->ne[1];
|
||||
const int ne02 = src0->ne[2];
|
||||
const int ne03 = src0->ne[3];
|
||||
|
||||
const int ne10 = src1 ? src1->ne[0] : 0;
|
||||
const int ne11 = src1 ? src1->ne[1] : 0;
|
||||
const int ne12 = src1 ? src1->ne[2] : 0;
|
||||
const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
|
||||
const cl_ulong nb00 = src0->nb[0];
|
||||
const cl_ulong nb01 = src0->nb[1];
|
||||
const cl_ulong nb02 = src0->nb[2];
|
||||
const cl_ulong nb03 = src0->nb[3];
|
||||
|
||||
const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
|
||||
const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
|
||||
const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
|
||||
const cl_ulong nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
|
||||
const int ne10 = src1->ne[0];
|
||||
const int ne11 = src1->ne[1];
|
||||
const int ne12 = src1->ne[2];
|
||||
const int ne13 = src1->ne[3]; UNUSED(ne13);
|
||||
|
||||
const int ne0 = dst ? dst->ne[0] : 0;
|
||||
const int ne1 = dst ? dst->ne[1] : 0;
|
||||
const int ne2 = dst ? dst->ne[2] : 0;
|
||||
const int ne3 = dst ? dst->ne[3] : 0;
|
||||
const cl_ulong nb10 = src1->nb[0];
|
||||
const cl_ulong nb11 = src1->nb[1];
|
||||
const cl_ulong nb12 = src1->nb[2];
|
||||
const cl_ulong nb13 = src1->nb[3]; UNUSED(nb13);
|
||||
|
||||
const cl_ulong nb0 = dst ? dst->nb[0] : 0;
|
||||
const cl_ulong nb1 = dst ? dst->nb[1] : 0;
|
||||
const cl_ulong nb2 = dst ? dst->nb[2] : 0;
|
||||
const cl_ulong nb3 = dst ? dst->nb[3] : 0;
|
||||
const int ne0 = dst->ne[0];
|
||||
const int ne1 = dst->ne[1];
|
||||
const int ne2 = dst->ne[2];
|
||||
const int ne3 = dst->ne[3];
|
||||
|
||||
const cl_ulong nb0 = dst->nb[0];
|
||||
const cl_ulong nb1 = dst->nb[1];
|
||||
const cl_ulong nb2 = dst->nb[2];
|
||||
const cl_ulong nb3 = dst->nb[3];
|
||||
|
||||
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
||||
|
||||
@@ -3694,7 +3749,12 @@ static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const
|
||||
|
||||
bcast_row = true;
|
||||
int ne = ne00 / 4;
|
||||
kernel = backend_ctx->kernel_add_row;
|
||||
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
kernel = backend_ctx->kernel_add_row;
|
||||
} else {
|
||||
kernel = backend_ctx->kernel_add_row_f16;
|
||||
}
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
@@ -3704,7 +3764,11 @@ static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
|
||||
} else {
|
||||
kernel = backend_ctx->kernel_add;
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
kernel = backend_ctx->kernel_add;
|
||||
} else {
|
||||
kernel = backend_ctx->kernel_add_f16;
|
||||
}
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
@@ -3766,35 +3830,39 @@ static void ggml_cl_mul(ggml_backend_t backend, const ggml_tensor * src0, const
|
||||
GGML_ASSERT(dst);
|
||||
GGML_ASSERT(dst->extra);
|
||||
|
||||
const int ne00 = src0 ? src0->ne[0] : 0;
|
||||
const int ne01 = src0 ? src0->ne[1] : 0;
|
||||
const int ne02 = src0 ? src0->ne[2] : 0;
|
||||
const int ne03 = src0 ? src0->ne[3] : 0;
|
||||
GGML_ASSERT(src0->type == src1->type);
|
||||
GGML_ASSERT(src0->type == dst->type);
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
|
||||
|
||||
const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
|
||||
const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
|
||||
const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
|
||||
const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
|
||||
const int ne00 = src0->ne[0];
|
||||
const int ne01 = src0->ne[1];
|
||||
const int ne02 = src0->ne[2];
|
||||
const int ne03 = src0->ne[3];
|
||||
|
||||
const int ne10 = src1 ? src1->ne[0] : 0;
|
||||
const int ne11 = src1 ? src1->ne[1] : 0;
|
||||
const int ne12 = src1 ? src1->ne[2] : 0;
|
||||
const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
|
||||
const cl_ulong nb00 = src0->nb[0];
|
||||
const cl_ulong nb01 = src0->nb[1];
|
||||
const cl_ulong nb02 = src0->nb[2];
|
||||
const cl_ulong nb03 = src0->nb[3];
|
||||
|
||||
const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
|
||||
const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
|
||||
const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
|
||||
const cl_ulong nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
|
||||
const int ne10 = src1->ne[0];
|
||||
const int ne11 = src1->ne[1];
|
||||
const int ne12 = src1->ne[2];
|
||||
const int ne13 = src1->ne[3]; UNUSED(ne13);
|
||||
|
||||
const int ne0 = dst ? dst->ne[0] : 0;
|
||||
const int ne1 = dst ? dst->ne[1] : 0;
|
||||
const int ne2 = dst ? dst->ne[2] : 0;
|
||||
const int ne3 = dst ? dst->ne[3] : 0;
|
||||
const cl_ulong nb10 = src1->nb[0];
|
||||
const cl_ulong nb11 = src1->nb[1];
|
||||
const cl_ulong nb12 = src1->nb[2];
|
||||
const cl_ulong nb13 = src1->nb[3]; UNUSED(nb13);
|
||||
|
||||
const cl_ulong nb0 = dst ? dst->nb[0] : 0;
|
||||
const cl_ulong nb1 = dst ? dst->nb[1] : 0;
|
||||
const cl_ulong nb2 = dst ? dst->nb[2] : 0;
|
||||
const cl_ulong nb3 = dst ? dst->nb[3] : 0;
|
||||
const int ne0 = dst->ne[0];
|
||||
const int ne1 = dst->ne[1];
|
||||
const int ne2 = dst->ne[2];
|
||||
const int ne3 = dst->ne[3];
|
||||
|
||||
const cl_ulong nb0 = dst->nb[0];
|
||||
const cl_ulong nb1 = dst->nb[1];
|
||||
const cl_ulong nb2 = dst->nb[2];
|
||||
const cl_ulong nb3 = dst->nb[3];
|
||||
|
||||
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
||||
|
||||
@@ -3817,7 +3885,12 @@ static void ggml_cl_mul(ggml_backend_t backend, const ggml_tensor * src0, const
|
||||
|
||||
bcast_row = true;
|
||||
int ne = ne00 / 4;
|
||||
kernel = backend_ctx->kernel_mul_row;
|
||||
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
kernel = backend_ctx->kernel_mul_row;
|
||||
} else {
|
||||
kernel = backend_ctx->kernel_mul_row_f16;
|
||||
}
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
@@ -3827,7 +3900,11 @@ static void ggml_cl_mul(ggml_backend_t backend, const ggml_tensor * src0, const
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
|
||||
} else {
|
||||
kernel = backend_ctx->kernel_mul;
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
kernel = backend_ctx->kernel_mul;
|
||||
} else {
|
||||
kernel = backend_ctx->kernel_mul_f16;
|
||||
}
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
@@ -3889,6 +3966,10 @@ static void ggml_cl_div(ggml_backend_t backend, const ggml_tensor * src0, const
|
||||
GGML_ASSERT(dst);
|
||||
GGML_ASSERT(dst->extra);
|
||||
|
||||
GGML_ASSERT(src0->type == src1->type);
|
||||
GGML_ASSERT(src0->type == dst->type);
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
|
||||
|
||||
const int ne00 = src0->ne[0];
|
||||
const int ne01 = src0->ne[1];
|
||||
const int ne02 = src0->ne[2];
|
||||
@@ -3937,7 +4018,12 @@ static void ggml_cl_div(ggml_backend_t backend, const ggml_tensor * src0, const
|
||||
|
||||
bcast_row = true;
|
||||
int ne = ne00 / 4;
|
||||
kernel = backend_ctx->kernel_div_row;
|
||||
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
kernel = backend_ctx->kernel_div_row;
|
||||
} else {
|
||||
kernel = backend_ctx->kernel_div_row_f16;
|
||||
}
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
@@ -3947,7 +4033,11 @@ static void ggml_cl_div(ggml_backend_t backend, const ggml_tensor * src0, const
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
|
||||
} else {
|
||||
kernel = backend_ctx->kernel_div;
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
kernel = backend_ctx->kernel_div;
|
||||
} else {
|
||||
kernel = backend_ctx->kernel_div_f16;
|
||||
}
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
@@ -3997,6 +4087,10 @@ static void ggml_cl_sub(ggml_backend_t backend, const ggml_tensor * src0, const
|
||||
GGML_ASSERT(dst);
|
||||
GGML_ASSERT(dst->extra);
|
||||
|
||||
GGML_ASSERT(src0->type == src1->type);
|
||||
GGML_ASSERT(src0->type == dst->type);
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
|
||||
|
||||
const int ne00 = src0->ne[0];
|
||||
const int ne01 = src0->ne[1];
|
||||
const int ne02 = src0->ne[2];
|
||||
@@ -4045,7 +4139,12 @@ static void ggml_cl_sub(ggml_backend_t backend, const ggml_tensor * src0, const
|
||||
|
||||
bcast_row = true;
|
||||
int ne = ne00 / 4;
|
||||
kernel = backend_ctx->kernel_sub_row;
|
||||
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
kernel = backend_ctx->kernel_sub_row;
|
||||
} else {
|
||||
kernel = backend_ctx->kernel_sub_row_f16;
|
||||
}
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
@@ -4055,7 +4154,11 @@ static void ggml_cl_sub(ggml_backend_t backend, const ggml_tensor * src0, const
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
|
||||
} else {
|
||||
kernel = backend_ctx->kernel_sub;
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
kernel = backend_ctx->kernel_sub;
|
||||
} else {
|
||||
kernel = backend_ctx->kernel_sub_f16;
|
||||
}
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
@@ -5297,18 +5400,6 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
|
||||
|
||||
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
||||
|
||||
if (src0t == GGML_TYPE_F16 && src1t == GGML_TYPE_F32 &&
|
||||
src0->ne[1] > 32 && // M > 32
|
||||
src1->ne[1] > 32 && // N > 32
|
||||
src0->ne[0] > 32 && // K > 32
|
||||
src0->ne[2] == 1 && src0->ne[3] == 1 &&
|
||||
src1->ne[2] == 1 && src1->ne[3] == 1 &&
|
||||
ggml_is_contiguous(src0) && ggml_is_contiguous(src1) &&
|
||||
backend_ctx->kernel_mul_mat_f16_f32_tiled != NULL) {
|
||||
ggml_cl_mul_mat_f16_f32_tiled(backend, src0, src1, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
||||
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
|
||||
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
||||
@@ -5655,6 +5746,101 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
|
||||
} // if (ne01 && ne1)
|
||||
#endif // GGML_OPENCL_USE_ADRENO_KERNELS
|
||||
|
||||
// GEMM using local memory
|
||||
// Current BK = 16, so ne00 % 16 == 0
|
||||
if (ggml_is_contiguous(src0) &&
|
||||
ggml_is_contiguous(src1) &&
|
||||
src1t == GGML_TYPE_F32 &&
|
||||
ne00 % 16 == 0 &&
|
||||
ne11 > 1) {
|
||||
switch(src0t) {
|
||||
case GGML_TYPE_F32: {
|
||||
kernel = backend_ctx->kernel_mul_mm_f32_f32_l4_lm;
|
||||
nth0 = 128; // calculated as (BM*BN)/(TM*TN)
|
||||
|
||||
int batch_stride_a = ne00*ne01;
|
||||
int batch_stride_b = ne10*ne11;
|
||||
int batch_stride_d = ne0*ne1;
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
|
||||
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
|
||||
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
|
||||
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
|
||||
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
|
||||
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
|
||||
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
|
||||
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
|
||||
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
|
||||
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
|
||||
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
|
||||
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
|
||||
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
|
||||
|
||||
// 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
|
||||
size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
|
||||
size_t local_work_size[] = {(size_t)nth0, 1, 1};
|
||||
|
||||
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
|
||||
return;
|
||||
}
|
||||
case GGML_TYPE_F16: {
|
||||
kernel = backend_ctx->kernel_mul_mm_f16_f32_l4_lm;
|
||||
nth0 = 128; // calculated as (BM*BN)/(TM*TN)
|
||||
|
||||
int batch_stride_a = ne00*ne01;
|
||||
int batch_stride_b = ne10*ne11;
|
||||
int batch_stride_d = ne0*ne1;
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
|
||||
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
|
||||
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
|
||||
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
|
||||
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
|
||||
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
|
||||
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
|
||||
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
|
||||
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
|
||||
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
|
||||
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
|
||||
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
|
||||
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
|
||||
|
||||
// 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
|
||||
size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
|
||||
size_t local_work_size[] = {(size_t)nth0, 1, 1};
|
||||
|
||||
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
|
||||
return;
|
||||
}
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (src0t == GGML_TYPE_F16 && src1t == GGML_TYPE_F32 &&
|
||||
src0->ne[1] > 32 && // M > 32
|
||||
src1->ne[1] > 32 && // N > 32
|
||||
src0->ne[0] > 32 && // K > 32
|
||||
src0->ne[2] == 1 && src0->ne[3] == 1 &&
|
||||
src1->ne[2] == 1 && src1->ne[3] == 1 &&
|
||||
ggml_is_contiguous(src0) && ggml_is_contiguous(src1) &&
|
||||
backend_ctx->kernel_mul_mat_f16_f32_tiled != NULL) {
|
||||
ggml_cl_mul_mat_f16_f32_tiled(backend, src0, src1, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
if (!ggml_is_transposed(src0) &&
|
||||
!ggml_is_transposed(src1) &&
|
||||
src1t == GGML_TYPE_F32 &&
|
||||
|
||||
@@ -81,3 +81,76 @@ kernel void kernel_add_row(
|
||||
uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne
|
||||
dst[gid] = src0[gid] + src1[idx1];
|
||||
}
|
||||
|
||||
kernel void kernel_add_f16(
|
||||
global char * src0,
|
||||
ulong offset0,
|
||||
global char * src1,
|
||||
ulong offset1,
|
||||
global char * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne03,
|
||||
ulong nb00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
int ne10,
|
||||
int ne11,
|
||||
int ne12,
|
||||
int ne13,
|
||||
ulong nb10,
|
||||
ulong nb11,
|
||||
ulong nb12,
|
||||
ulong nb13,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2,
|
||||
int ne3,
|
||||
ulong nb0,
|
||||
ulong nb1,
|
||||
ulong nb2,
|
||||
ulong nb3
|
||||
) {
|
||||
src0 = src0 + offset0;
|
||||
src1 = src1 + offset1;
|
||||
dst = dst + offsetd;
|
||||
|
||||
int i03 = get_group_id(2);
|
||||
int i02 = get_group_id(1);
|
||||
int i01 = get_group_id(0);
|
||||
|
||||
int i13 = i03 % ne13;
|
||||
int i12 = i02 % ne12;
|
||||
int i11 = i01 % ne11;
|
||||
|
||||
global char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
|
||||
global char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
|
||||
global char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
|
||||
|
||||
for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
|
||||
const int i10 = i0 % ne10;
|
||||
*((global half *)(dst_ptr + i0*nb0)) = *((global half *)(src0_ptr + i0*nb00)) + *((global half *)(src1_ptr + i10*nb10));
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_add_row_f16(
|
||||
global half4 * src0,
|
||||
ulong offset0,
|
||||
global half4 * src1,
|
||||
ulong offset1,
|
||||
global half4 * dst,
|
||||
ulong offsetd,
|
||||
int ne
|
||||
) {
|
||||
src0 = (global half4*)((global char*)src0 + offset0);
|
||||
src1 = (global half4*)((global char*)src1 + offset1);
|
||||
dst = (global half4*)((global char*)dst + offsetd);
|
||||
|
||||
// This performs better than using %.
|
||||
uint gid = get_global_id(0);
|
||||
uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne
|
||||
dst[gid] = src0[gid] + src1[idx1];
|
||||
}
|
||||
|
||||
@@ -70,3 +70,69 @@ kernel void kernel_div_row(
|
||||
uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne
|
||||
dst[gid] = src0[gid] / src1[idx1];
|
||||
}
|
||||
|
||||
kernel void kernel_div_f16(
|
||||
global char * src0,
|
||||
ulong offset0,
|
||||
global char * src1,
|
||||
ulong offset1,
|
||||
global char * dst,
|
||||
ulong offsetd,
|
||||
ulong nb00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
int ne10,
|
||||
int ne11,
|
||||
int ne12,
|
||||
int ne13,
|
||||
ulong nb10,
|
||||
ulong nb11,
|
||||
ulong nb12,
|
||||
ulong nb13,
|
||||
int ne0,
|
||||
ulong nb0,
|
||||
ulong nb1,
|
||||
ulong nb2,
|
||||
ulong nb3
|
||||
) {
|
||||
src0 = src0 + offset0;
|
||||
src1 = src1 + offset1;
|
||||
dst = dst + offsetd;
|
||||
|
||||
int i03 = get_group_id(2);
|
||||
int i02 = get_group_id(1);
|
||||
int i01 = get_group_id(0);
|
||||
|
||||
int i13 = i03 % ne13;
|
||||
int i12 = i02 % ne12;
|
||||
int i11 = i01 % ne11;
|
||||
|
||||
global char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
|
||||
global char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
|
||||
global char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
|
||||
|
||||
for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
|
||||
const int i10 = i0 % ne10;
|
||||
*((global half *)(dst_ptr + i0*nb0)) = *((global half *)(src0_ptr + i0*nb00)) / *((global half *)(src1_ptr + i10*nb10));
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_div_row_f16(
|
||||
global half4 * src0,
|
||||
ulong offset0,
|
||||
global half4 * src1,
|
||||
ulong offset1,
|
||||
global half4 * dst,
|
||||
ulong offsetd,
|
||||
int ne
|
||||
) {
|
||||
src0 = (global half4*)((global char*)src0 + offset0);
|
||||
src1 = (global half4*)((global char*)src1 + offset1);
|
||||
dst = (global half4*)((global char*)dst + offsetd);
|
||||
|
||||
// This performs better than using %.
|
||||
uint gid = get_global_id(0);
|
||||
uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne
|
||||
dst[gid] = src0[gid] / src1[idx1];
|
||||
}
|
||||
|
||||
@@ -77,3 +77,76 @@ kernel void kernel_mul_row(
|
||||
uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne
|
||||
dst[gid] = src0[gid] * src1[idx1];
|
||||
}
|
||||
|
||||
kernel void kernel_mul_f16(
|
||||
global char * src0,
|
||||
ulong offset0,
|
||||
global char * src1,
|
||||
ulong offset1,
|
||||
global char * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne03,
|
||||
ulong nb00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
int ne10,
|
||||
int ne11,
|
||||
int ne12,
|
||||
int ne13,
|
||||
ulong nb10,
|
||||
ulong nb11,
|
||||
ulong nb12,
|
||||
ulong nb13,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2,
|
||||
int ne3,
|
||||
ulong nb0,
|
||||
ulong nb1,
|
||||
ulong nb2,
|
||||
ulong nb3
|
||||
) {
|
||||
src0 = src0 + offset0;
|
||||
src1 = src1 + offset1;
|
||||
dst = dst + offsetd;
|
||||
|
||||
int i03 = get_group_id(2);
|
||||
int i02 = get_group_id(1);
|
||||
int i01 = get_group_id(0);
|
||||
|
||||
int i13 = i03 % ne13;
|
||||
int i12 = i02 % ne12;
|
||||
int i11 = i01 % ne11;
|
||||
|
||||
global char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
|
||||
global char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
|
||||
global char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
|
||||
|
||||
for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
|
||||
const int i10 = i0 % ne10;
|
||||
*((global half *)(dst_ptr + i0*nb0)) = *((global half *)(src0_ptr + i0*nb00)) * *((global half *)(src1_ptr + i10*nb10));
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_mul_row_f16(
|
||||
global half4 * src0,
|
||||
ulong offset0,
|
||||
global half4 * src1,
|
||||
ulong offset1,
|
||||
global half4 * dst,
|
||||
ulong offsetd,
|
||||
int ne
|
||||
) {
|
||||
src0 = (global half4*)((global char*)src0 + offset0);
|
||||
src1 = (global half4*)((global char*)src1 + offset1);
|
||||
dst = (global half4*)((global char*)dst + offsetd);
|
||||
|
||||
// This performs better than using %.
|
||||
uint gid = get_global_id(0);
|
||||
uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne
|
||||
dst[gid] = src0[gid] * src1[idx1];
|
||||
}
|
||||
|
||||
132
ggml/src/ggml-opencl/kernels/mul_mm_f16_f32_l4_lm.cl
Normal file
132
ggml/src/ggml-opencl/kernels/mul_mm_f16_f32_l4_lm.cl
Normal file
@@ -0,0 +1,132 @@
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
#define LOAD_VEC_A 4
|
||||
#define LOAD_VEC_B 4
|
||||
|
||||
#define BM 64
|
||||
#define BN 64
|
||||
#define BK 16
|
||||
#define TM 4
|
||||
#define TN 8
|
||||
|
||||
kernel void kernel_mul_mm_f16_f32_l4_lm(
|
||||
global half4 * src0,
|
||||
ulong offset0,
|
||||
global float4 * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne11,
|
||||
int ne12,
|
||||
|
||||
int stride_a,
|
||||
int stride_b,
|
||||
int stride_d,
|
||||
|
||||
int batch_stride_a,
|
||||
int batch_stride_b,
|
||||
int batch_stride_d,
|
||||
|
||||
int r2,
|
||||
int r3
|
||||
) {
|
||||
src0 = (global half4*)((global char*)src0 + offset0);
|
||||
src1 = (global float4*)((global char*)src1 + offset1);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
local half buf_a[BM * BK];
|
||||
local float buf_b[BN * BK];
|
||||
|
||||
const int batch_idx = get_global_id(2);
|
||||
|
||||
const int i13 = batch_idx / ne12;
|
||||
const int i12 = batch_idx % ne12;
|
||||
|
||||
const int i03 = i13 / r3;
|
||||
const int i02 = i12 / r2;
|
||||
|
||||
const int batch_idx_a = i03 * ne02 + i02;
|
||||
|
||||
const int ir = get_group_id(0);
|
||||
const int ic = get_group_id(1);
|
||||
|
||||
const int tid = get_local_id(0);
|
||||
const int th_r = tid % (BM / TM);
|
||||
const int th_c = tid / (BM / TM);
|
||||
|
||||
const int loadr_a = get_local_id(0) % (BK / LOAD_VEC_A);
|
||||
const int loadc_a = get_local_id(0) / (BK / LOAD_VEC_A);
|
||||
const int loadr_b = get_local_id(0) % (BK / LOAD_VEC_B);
|
||||
const int loadc_b = get_local_id(0) / (BK / LOAD_VEC_B);
|
||||
|
||||
const int loadstride_a = get_local_size(0) * LOAD_VEC_A / BK;
|
||||
const int loadstride_b = get_local_size(0) * LOAD_VEC_B / BK;
|
||||
|
||||
int pos_a = (batch_idx_a * batch_stride_a + ir * BM * stride_a) / LOAD_VEC_A;
|
||||
int pos_b = (batch_idx * batch_stride_b + ic * BN * stride_b) / LOAD_VEC_B;
|
||||
|
||||
float sums[TM * TN];
|
||||
half cache_a[TM];
|
||||
float cache_b[TN];
|
||||
|
||||
for (int i = 0; i < TM * TN; i++) {
|
||||
sums[i] = 0.0f;
|
||||
}
|
||||
|
||||
for (int block = 0; block < ne00; block += BK) {
|
||||
for (int l = 0; l < BM; l += loadstride_a) {
|
||||
const int idx = pos_a + (loadc_a + l) * stride_a / LOAD_VEC_A + loadr_a;
|
||||
buf_a[(loadr_a * LOAD_VEC_A + 0) * BM + loadc_a + l] = src0[idx].s0;
|
||||
buf_a[(loadr_a * LOAD_VEC_A + 1) * BM + loadc_a + l] = src0[idx].s1;
|
||||
buf_a[(loadr_a * LOAD_VEC_A + 2) * BM + loadc_a + l] = src0[idx].s2;
|
||||
buf_a[(loadr_a * LOAD_VEC_A + 3) * BM + loadc_a + l] = src0[idx].s3;
|
||||
}
|
||||
|
||||
for (int l = 0; l < BN; l += loadstride_b) {
|
||||
const int idx = pos_b + (loadc_b + l) * stride_b / LOAD_VEC_B + loadr_b;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 0) * BN + loadc_b + l] = src1[idx].s0;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 1) * BN + loadc_b + l] = src1[idx].s1;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 2) * BN + loadc_b + l] = src1[idx].s2;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 3) * BN + loadc_b + l] = src1[idx].s3;
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
pos_a += BK / LOAD_VEC_A;
|
||||
pos_b += BK / LOAD_VEC_B;
|
||||
|
||||
for (int i = 0; i < BK; i++) {
|
||||
for (int j = 0; j < TM; j++) {
|
||||
cache_a[j] = buf_a[(i) * BM + th_r * TM + j];
|
||||
}
|
||||
for (int j = 0; j < TN; j++) {
|
||||
cache_b[j] = buf_b[(i) * BN + th_c * TN + j];
|
||||
}
|
||||
|
||||
for (int cc = 0; cc < TN; cc++) {
|
||||
for (int cr = 0; cr < TM; cr++) {
|
||||
const int sums_idx = cc*TM + cr;
|
||||
sums[sums_idx] = mad(convert_float(cache_a[cr]), cache_b[cc], sums[sums_idx]);
|
||||
}
|
||||
}
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
const int dr = ir * BM + th_r * TM;
|
||||
const int dc = ic * BN + th_c * TN;
|
||||
|
||||
const int offsets = batch_idx * batch_stride_d;
|
||||
|
||||
for (int cc = 0; cc < TN; cc++) {
|
||||
for (int cr = 0; cr < TM; cr++) {
|
||||
if (dr + cr < ne01 && dc + cc < ne11) {
|
||||
dst[offsets + (dc + cc) * stride_d + dr + cr] = sums[cc * TM + cr];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
133
ggml/src/ggml-opencl/kernels/mul_mm_f32_f32_l4_lm.cl
Normal file
133
ggml/src/ggml-opencl/kernels/mul_mm_f32_f32_l4_lm.cl
Normal file
@@ -0,0 +1,133 @@
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
#define LOAD_VEC_A 4
|
||||
#define LOAD_VEC_B 4
|
||||
|
||||
#define BM 64
|
||||
#define BN 64
|
||||
#define BK 16
|
||||
#define TM 4
|
||||
#define TN 8
|
||||
|
||||
kernel void kernel_mul_mm_f32_f32_l4_lm(
|
||||
global float4 * src0,
|
||||
ulong offset0,
|
||||
global float4 * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne11,
|
||||
int ne12,
|
||||
|
||||
int stride_a,
|
||||
int stride_b,
|
||||
int stride_d,
|
||||
|
||||
int batch_stride_a,
|
||||
int batch_stride_b,
|
||||
int batch_stride_d,
|
||||
|
||||
int r2,
|
||||
int r3
|
||||
) {
|
||||
src0 = (global float4*)((global char*)src0 + offset0);
|
||||
src1 = (global float4*)((global char*)src1 + offset1);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
local float buf_a[BM * BK];
|
||||
local float buf_b[BN * BK];
|
||||
|
||||
const int batch_idx = get_global_id(2);
|
||||
|
||||
const int i13 = batch_idx / ne12;
|
||||
const int i12 = batch_idx % ne12;
|
||||
|
||||
const int i03 = i13 / r3;
|
||||
const int i02 = i12 / r2;
|
||||
|
||||
const int batch_idx_a = i03 * ne02 + i02;
|
||||
|
||||
const int ir = get_group_id(0);
|
||||
const int ic = get_group_id(1);
|
||||
|
||||
const int tid = get_local_id(0);
|
||||
const int th_r = tid % (BM / TM);
|
||||
const int th_c = tid / (BM / TM);
|
||||
|
||||
const int loadr_a = get_local_id(0) % (BK / LOAD_VEC_A);
|
||||
const int loadc_a = get_local_id(0) / (BK / LOAD_VEC_A);
|
||||
const int loadr_b = get_local_id(0) % (BK / LOAD_VEC_B);
|
||||
const int loadc_b = get_local_id(0) / (BK / LOAD_VEC_B);
|
||||
|
||||
const int loadstride_a = get_local_size(0) * LOAD_VEC_A / BK;
|
||||
const int loadstride_b = get_local_size(0) * LOAD_VEC_B / BK;
|
||||
|
||||
int pos_a = (batch_idx_a * batch_stride_a + ir * BM * stride_a) / LOAD_VEC_A;
|
||||
int pos_b = (batch_idx * batch_stride_b + ic * BN * stride_b) / LOAD_VEC_B;
|
||||
|
||||
float sums[TM * TN];
|
||||
float cache_a[TM];
|
||||
float cache_b[TN];
|
||||
|
||||
for (int i = 0; i < TM * TN; i++) {
|
||||
sums[i] = 0.0f;
|
||||
}
|
||||
|
||||
for (int block = 0; block < ne00; block += BK) {
|
||||
for (int l = 0; l < BM; l += loadstride_a) {
|
||||
const int idx = pos_a + (loadc_a + l) * stride_a / LOAD_VEC_A + loadr_a;
|
||||
buf_a[(loadr_a * LOAD_VEC_A + 0) * BM + loadc_a + l] = src0[idx].s0;
|
||||
buf_a[(loadr_a * LOAD_VEC_A + 1) * BM + loadc_a + l] = src0[idx].s1;
|
||||
buf_a[(loadr_a * LOAD_VEC_A + 2) * BM + loadc_a + l] = src0[idx].s2;
|
||||
buf_a[(loadr_a * LOAD_VEC_A + 3) * BM + loadc_a + l] = src0[idx].s3;
|
||||
}
|
||||
|
||||
for (int l = 0; l < BN; l += loadstride_b) {
|
||||
const int idx = pos_b + (loadc_b + l) * stride_b / LOAD_VEC_B + loadr_b;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 0) * BN + loadc_b + l] = src1[idx].s0;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 1) * BN + loadc_b + l] = src1[idx].s1;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 2) * BN + loadc_b + l] = src1[idx].s2;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 3) * BN + loadc_b + l] = src1[idx].s3;
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
pos_a += BK / LOAD_VEC_A;
|
||||
pos_b += BK / LOAD_VEC_B;
|
||||
|
||||
for (int i = 0; i < BK; i++) {
|
||||
for (int j = 0; j < TM; j++) {
|
||||
cache_a[j] = buf_a[(i) * BM + th_r * TM + j];
|
||||
}
|
||||
|
||||
for (int j = 0; j < TN; j++) {
|
||||
cache_b[j] = buf_b[(i) * BN + th_c * TN + j];
|
||||
}
|
||||
|
||||
for (int cc = 0; cc < TN; cc++) {
|
||||
for (int cr = 0; cr < TM; cr++) {
|
||||
const int sums_idx = cc*TM + cr;
|
||||
sums[sums_idx] = mad(cache_a[cr], cache_b[cc], sums[sums_idx]);
|
||||
}
|
||||
}
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
const int dr = ir * BM + th_r * TM;
|
||||
const int dc = ic * BN + th_c * TN;
|
||||
|
||||
const int offsets = batch_idx * batch_stride_d;
|
||||
|
||||
for (int cc = 0; cc < TN; cc++) {
|
||||
for (int cr = 0; cr < TM; cr++) {
|
||||
if (dr + cr < ne01 && dc + cc < ne11) {
|
||||
dst[offsets + (dc + cc) * stride_d + dr + cr] = sums[cc * TM + cr];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -70,3 +70,69 @@ kernel void kernel_sub_row(
|
||||
uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne
|
||||
dst[gid] = src0[gid] - src1[idx1];
|
||||
}
|
||||
|
||||
kernel void kernel_sub_f16(
|
||||
global char * src0,
|
||||
ulong offset0,
|
||||
global char * src1,
|
||||
ulong offset1,
|
||||
global char * dst,
|
||||
ulong offsetd,
|
||||
ulong nb00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
int ne10,
|
||||
int ne11,
|
||||
int ne12,
|
||||
int ne13,
|
||||
ulong nb10,
|
||||
ulong nb11,
|
||||
ulong nb12,
|
||||
ulong nb13,
|
||||
int ne0,
|
||||
ulong nb0,
|
||||
ulong nb1,
|
||||
ulong nb2,
|
||||
ulong nb3
|
||||
) {
|
||||
src0 = src0 + offset0;
|
||||
src1 = src1 + offset1;
|
||||
dst = dst + offsetd;
|
||||
|
||||
int i03 = get_group_id(2);
|
||||
int i02 = get_group_id(1);
|
||||
int i01 = get_group_id(0);
|
||||
|
||||
int i13 = i03 % ne13;
|
||||
int i12 = i02 % ne12;
|
||||
int i11 = i01 % ne11;
|
||||
|
||||
global char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
|
||||
global char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
|
||||
global char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
|
||||
|
||||
for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
|
||||
const int i10 = i0 % ne10;
|
||||
*((global half *)(dst_ptr + i0*nb0)) = *((global half *)(src0_ptr + i0*nb00)) - *((global half *)(src1_ptr + i10*nb10));
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_sub_row_f16(
|
||||
global half4 * src0,
|
||||
ulong offset0,
|
||||
global half4 * src1,
|
||||
ulong offset1,
|
||||
global half4 * dst,
|
||||
ulong offsetd,
|
||||
int ne
|
||||
) {
|
||||
src0 = (global half4*)((global char*)src0 + offset0);
|
||||
src1 = (global half4*)((global char*)src1 + offset1);
|
||||
dst = (global half4*)((global char*)dst + offsetd);
|
||||
|
||||
// This performs better than using %.
|
||||
uint gid = get_global_id(0);
|
||||
uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne
|
||||
dst[gid] = src0[gid] - src1[idx1];
|
||||
}
|
||||
|
||||
@@ -28,6 +28,7 @@
|
||||
#include "mmvq.hpp"
|
||||
#include "norm.hpp"
|
||||
#include "outprod.hpp"
|
||||
#include "quantize.hpp"
|
||||
#include "quants.hpp"
|
||||
#include "rope.hpp"
|
||||
#include "set_rows.hpp"
|
||||
|
||||
@@ -1,31 +1,12 @@
|
||||
#include "cpy.hpp"
|
||||
|
||||
#include <float.h>
|
||||
#include <string>
|
||||
|
||||
#include "dequantize.hpp"
|
||||
#include "ggml-sycl/common.hpp"
|
||||
#include "ggml-sycl/presets.hpp"
|
||||
#include "ggml.h"
|
||||
|
||||
static __dpct_inline__ int best_index_int8(int n, const int8_t * val, float x) {
|
||||
if (x <= val[0]) {
|
||||
return 0;
|
||||
}
|
||||
if (x >= val[n - 1]) {
|
||||
return n - 1;
|
||||
}
|
||||
int ml = 0, mu = n - 1;
|
||||
while (mu - ml > 1) {
|
||||
int mav = (ml + mu) / 2;
|
||||
if (x < val[mav]) {
|
||||
mu = mav;
|
||||
} else {
|
||||
ml = mav;
|
||||
}
|
||||
}
|
||||
return x - val[mu - 1] < val[mu] - x ? mu - 1 : mu;
|
||||
}
|
||||
|
||||
static void cpy_1_f32_f32(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
@@ -97,28 +78,6 @@ static void cpy_f32_f16(const char * cx, char * cdst, const int ne, const int ne
|
||||
cpy_1(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
|
||||
static void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
block_q8_0 * dsti = (block_q8_0 *) cdsti;
|
||||
|
||||
float amax = 0.0f; // absolute max
|
||||
|
||||
for (int j = 0; j < QK8_0; j++) {
|
||||
const float v = xi[j];
|
||||
amax = sycl::fmax(amax, sycl::fabs((float) v));
|
||||
}
|
||||
|
||||
const float d = amax / ((1 << 7) - 1);
|
||||
const float id = d ? 1.0f / d : 0.0f;
|
||||
|
||||
dsti->d = d;
|
||||
|
||||
for (int j = 0; j < QK8_0; ++j) {
|
||||
const float x0 = xi[j] * id;
|
||||
|
||||
dsti->qs[j] = sycl::round((float) x0);
|
||||
}
|
||||
}
|
||||
|
||||
/* quantized type same copy */
|
||||
template<typename T>
|
||||
@@ -140,178 +99,7 @@ static void cpy_blck_q8_0_f32(const char * cxi, char * cdsti) {
|
||||
}
|
||||
}
|
||||
|
||||
static void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
block_q4_0 * dsti = (block_q4_0 *) cdsti;
|
||||
|
||||
float amax = 0.0f;
|
||||
float vmax = 0.0f;
|
||||
|
||||
for (int j = 0; j < QK4_0; ++j) {
|
||||
const float v = xi[j];
|
||||
if (amax < sycl::fabs((float) v)) {
|
||||
amax = sycl::fabs((float) v);
|
||||
vmax = v;
|
||||
}
|
||||
}
|
||||
|
||||
const float d = vmax / -8;
|
||||
const float id = d ? 1.0f / d : 0.0f;
|
||||
|
||||
dsti->d = d;
|
||||
|
||||
for (int j = 0; j < QK4_0 / 2; ++j) {
|
||||
const float x0 = xi[0 + j] * id;
|
||||
const float x1 = xi[QK4_0 / 2 + j] * id;
|
||||
|
||||
const uint8_t xi0 = dpct::min(15, (int8_t) (x0 + 8.5f));
|
||||
const uint8_t xi1 = dpct::min(15, (int8_t) (x1 + 8.5f));
|
||||
|
||||
dsti->qs[j] = xi0;
|
||||
dsti->qs[j] |= xi1 << 4;
|
||||
}
|
||||
}
|
||||
|
||||
static void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
block_q4_1 * dsti = (block_q4_1 *) cdsti;
|
||||
|
||||
float vmin = FLT_MAX;
|
||||
float vmax = -FLT_MAX;
|
||||
|
||||
for (int j = 0; j < QK4_1; ++j) {
|
||||
const float v = xi[j];
|
||||
|
||||
if (v < vmin) {
|
||||
vmin = v;
|
||||
}
|
||||
if (v > vmax) {
|
||||
vmax = v;
|
||||
}
|
||||
}
|
||||
|
||||
const float d = (vmax - vmin) / ((1 << 4) - 1);
|
||||
const float id = d ? 1.0f / d : 0.0f;
|
||||
|
||||
dsti->dm.x() = d;
|
||||
dsti->dm.y() = vmin;
|
||||
|
||||
for (int j = 0; j < QK4_1 / 2; ++j) {
|
||||
const float x0 = (xi[0 + j] - vmin) * id;
|
||||
const float x1 = (xi[QK4_1 / 2 + j] - vmin) * id;
|
||||
|
||||
const uint8_t xi0 = dpct::min(15, (int8_t) (x0 + 0.5f));
|
||||
const uint8_t xi1 = dpct::min(15, (int8_t) (x1 + 0.5f));
|
||||
|
||||
dsti->qs[j] = xi0;
|
||||
dsti->qs[j] |= xi1 << 4;
|
||||
}
|
||||
}
|
||||
|
||||
static void cpy_blck_f32_q5_0(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
block_q5_0 * dsti = (block_q5_0 *) cdsti;
|
||||
|
||||
float amax = 0.0f;
|
||||
float vmax = 0.0f;
|
||||
|
||||
for (int j = 0; j < QK5_0; ++j) {
|
||||
const float v = xi[j];
|
||||
if (amax < sycl::fabs((float) v)) {
|
||||
amax = sycl::fabs((float) v);
|
||||
vmax = v;
|
||||
}
|
||||
}
|
||||
|
||||
const float d = vmax / -16;
|
||||
const float id = d ? 1.0f / d : 0.0f;
|
||||
|
||||
dsti->d = d;
|
||||
|
||||
uint32_t qh = 0;
|
||||
for (int j = 0; j < QK5_0 / 2; ++j) {
|
||||
const float x0 = xi[0 + j] * id;
|
||||
const float x1 = xi[QK5_0 / 2 + j] * id;
|
||||
|
||||
const uint8_t xi0 = dpct::min(31, (int8_t) (x0 + 16.5f));
|
||||
const uint8_t xi1 = dpct::min(31, (int8_t) (x1 + 16.5f));
|
||||
|
||||
dsti->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
|
||||
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
|
||||
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0 / 2);
|
||||
}
|
||||
memcpy(dsti->qh, &qh, sizeof(qh));
|
||||
}
|
||||
|
||||
static void cpy_blck_f32_q5_1(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
block_q5_1 * dsti = (block_q5_1 *) cdsti;
|
||||
|
||||
float min = xi[0];
|
||||
float max = xi[0];
|
||||
|
||||
for (int j = 1; j < QK5_1; ++j) {
|
||||
const float v = xi[j];
|
||||
min = v < min ? v : min;
|
||||
max = v > max ? v : max;
|
||||
}
|
||||
|
||||
const float d = (max - min) / 31;
|
||||
const float id = d ? 1.0f / d : 0.0f;
|
||||
|
||||
dsti->dm.x() = d;
|
||||
dsti->dm.y() = min;
|
||||
|
||||
uint32_t qh = 0;
|
||||
for (int j = 0; j < QK5_1 / 2; ++j) {
|
||||
const float x0 = (xi[0 + j] - min) * id;
|
||||
const float x1 = (xi[QK5_1 / 2 + j] - min) * id;
|
||||
|
||||
const uint8_t xi0 = (uint8_t) (x0 + 0.5f);
|
||||
const uint8_t xi1 = (uint8_t) (x1 + 0.5f);
|
||||
|
||||
dsti->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
|
||||
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
|
||||
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_1 / 2);
|
||||
}
|
||||
memcpy(dsti->qh, &qh, sizeof(qh));
|
||||
}
|
||||
|
||||
static void cpy_blck_f32_iq4_nl(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
block_iq4_nl * dsti = (block_iq4_nl *) cdsti;
|
||||
|
||||
float amax = 0.0f;
|
||||
float vmax = 0.0f;
|
||||
|
||||
for (int j = 0; j < QK4_NL; ++j) {
|
||||
const float v = xi[j];
|
||||
if (amax < sycl::fabs((float) v)) {
|
||||
amax = sycl::fabs((float) v);
|
||||
vmax = v;
|
||||
}
|
||||
}
|
||||
|
||||
float d = vmax / kvalues_iq4nl[0];
|
||||
const float id = d ? 1.0f / d : 0.0f;
|
||||
|
||||
float sumqx = 0, sumq2 = 0;
|
||||
for (int j = 0; j < QK4_NL / 2; ++j) {
|
||||
const float x0 = xi[0 + j] * id;
|
||||
const float x1 = xi[QK4_NL / 2 + j] * id;
|
||||
const uint8_t xi0 = best_index_int8(16, kvalues_iq4nl, x0);
|
||||
const uint8_t xi1 = best_index_int8(16, kvalues_iq4nl, x1);
|
||||
dsti->qs[j] = xi0 | (xi1 << 4);
|
||||
const float v0 = kvalues_iq4nl[xi0];
|
||||
const float v1 = kvalues_iq4nl[xi1];
|
||||
const float w0 = xi[0 + j] * xi[0 + j];
|
||||
const float w1 = xi[QK4_NL / 2 + j] * xi[QK4_NL / 2 + j];
|
||||
sumqx += w0 * v0 * xi[j] + w1 * v1 * xi[QK4_NL / 2 + j];
|
||||
sumq2 += w0 * v0 * v0 + w1 * v1 * v1;
|
||||
}
|
||||
|
||||
dsti->d = sumq2 > 0 ? sumqx / sumq2 : d;
|
||||
}
|
||||
|
||||
template <dequantize_kernel_t dequant, int qk> static void cpy_blck_q_f32(const char * cxi, char * cdsti) {
|
||||
float * cdstf = (float *) (cdsti);
|
||||
|
||||
@@ -2,10 +2,222 @@
|
||||
#define GGML_SYCL_CPY_HPP
|
||||
|
||||
#include "common.hpp"
|
||||
#include <float.h>
|
||||
|
||||
typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
|
||||
|
||||
__dpct_inline__ int best_index_int8(int n, const int8_t * val, float x) {
|
||||
if (x <= val[0]) {
|
||||
return 0;
|
||||
}
|
||||
if (x >= val[n - 1]) {
|
||||
return n - 1;
|
||||
}
|
||||
int ml = 0, mu = n - 1;
|
||||
while (mu - ml > 1) {
|
||||
int mav = (ml + mu) / 2;
|
||||
if (x < val[mav]) {
|
||||
mu = mav;
|
||||
} else {
|
||||
ml = mav;
|
||||
}
|
||||
}
|
||||
return x - val[mu - 1] < val[mu] - x ? mu - 1 : mu;
|
||||
}
|
||||
|
||||
inline void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
block_q8_0 * dsti = (block_q8_0 *) cdsti;
|
||||
|
||||
float amax = 0.0f; // absolute max
|
||||
|
||||
for (int j = 0; j < QK8_0; j++) {
|
||||
const float v = xi[j];
|
||||
amax = sycl::fmax(amax, sycl::fabs((float) v));
|
||||
}
|
||||
|
||||
const float d = amax / ((1 << 7) - 1);
|
||||
const float id = d ? 1.0f / d : 0.0f;
|
||||
|
||||
dsti->d = d;
|
||||
|
||||
for (int j = 0; j < QK8_0; ++j) {
|
||||
const float x0 = xi[j] * id;
|
||||
|
||||
dsti->qs[j] = sycl::round((float) x0);
|
||||
}
|
||||
}
|
||||
|
||||
inline void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
block_q4_0 * dsti = (block_q4_0 *) cdsti;
|
||||
|
||||
float amax = 0.0f;
|
||||
float vmax = 0.0f;
|
||||
|
||||
for (int j = 0; j < QK4_0; ++j) {
|
||||
const float v = xi[j];
|
||||
if (amax < sycl::fabs((float) v)) {
|
||||
amax = sycl::fabs((float) v);
|
||||
vmax = v;
|
||||
}
|
||||
}
|
||||
|
||||
const float d = vmax / -8;
|
||||
const float id = d ? 1.0f / d : 0.0f;
|
||||
|
||||
dsti->d = d;
|
||||
|
||||
for (int j = 0; j < QK4_0 / 2; ++j) {
|
||||
const float x0 = xi[0 + j] * id;
|
||||
const float x1 = xi[QK4_0 / 2 + j] * id;
|
||||
|
||||
const uint8_t xi0 = dpct::min(15, (int8_t) (x0 + 8.5f));
|
||||
const uint8_t xi1 = dpct::min(15, (int8_t) (x1 + 8.5f));
|
||||
|
||||
dsti->qs[j] = xi0;
|
||||
dsti->qs[j] |= xi1 << 4;
|
||||
}
|
||||
}
|
||||
|
||||
inline void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
block_q4_1 * dsti = (block_q4_1 *) cdsti;
|
||||
|
||||
float vmin = FLT_MAX;
|
||||
float vmax = -FLT_MAX;
|
||||
|
||||
for (int j = 0; j < QK4_1; ++j) {
|
||||
const float v = xi[j];
|
||||
|
||||
vmin = sycl::min(v, vmin);
|
||||
vmax = sycl::max(v, vmax);
|
||||
}
|
||||
|
||||
const float d = (vmax - vmin) / ((1 << 4) - 1);
|
||||
const float id = d ? 1.0f / d : 0.0f;
|
||||
|
||||
dsti->dm.x() = d;
|
||||
dsti->dm.y() = vmin;
|
||||
|
||||
for (int j = 0; j < QK4_1 / 2; ++j) {
|
||||
const float x0 = (xi[0 + j] - vmin) * id;
|
||||
const float x1 = (xi[QK4_1 / 2 + j] - vmin) * id;
|
||||
|
||||
const uint8_t xi0 = dpct::min(15, (int8_t) (x0 + 0.5f));
|
||||
const uint8_t xi1 = dpct::min(15, (int8_t) (x1 + 0.5f));
|
||||
|
||||
dsti->qs[j] = xi0;
|
||||
dsti->qs[j] |= xi1 << 4;
|
||||
}
|
||||
}
|
||||
|
||||
inline void cpy_blck_f32_q5_0(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
block_q5_0 * dsti = (block_q5_0 *) cdsti;
|
||||
|
||||
float amax = 0.0f;
|
||||
float vmax = 0.0f;
|
||||
|
||||
for (int j = 0; j < QK5_0; ++j) {
|
||||
const float v = xi[j];
|
||||
if (amax < sycl::fabs((float) v)) {
|
||||
amax = sycl::fabs((float) v);
|
||||
vmax = v;
|
||||
}
|
||||
}
|
||||
|
||||
const float d = vmax / -16;
|
||||
const float id = d ? 1.0f / d : 0.0f;
|
||||
|
||||
dsti->d = d;
|
||||
|
||||
uint32_t qh = 0;
|
||||
for (int j = 0; j < QK5_0 / 2; ++j) {
|
||||
const float x0 = xi[0 + j] * id;
|
||||
const float x1 = xi[QK5_0 / 2 + j] * id;
|
||||
|
||||
const uint8_t xi0 = dpct::min(31, (int8_t) (x0 + 16.5f));
|
||||
const uint8_t xi1 = dpct::min(31, (int8_t) (x1 + 16.5f));
|
||||
|
||||
dsti->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
|
||||
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
|
||||
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0 / 2);
|
||||
}
|
||||
memcpy(dsti->qh, &qh, sizeof(qh));
|
||||
}
|
||||
|
||||
inline void cpy_blck_f32_q5_1(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
block_q5_1 * dsti = (block_q5_1 *) cdsti;
|
||||
|
||||
float min = xi[0];
|
||||
float max = xi[0];
|
||||
|
||||
for (int j = 1; j < QK5_1; ++j) {
|
||||
const float v = xi[j];
|
||||
min = v < min ? v : min;
|
||||
max = v > max ? v : max;
|
||||
}
|
||||
|
||||
const float d = (max - min) / 31;
|
||||
const float id = d ? 1.0f / d : 0.0f;
|
||||
|
||||
dsti->dm.x() = d;
|
||||
dsti->dm.y() = min;
|
||||
|
||||
uint32_t qh = 0;
|
||||
for (int j = 0; j < QK5_1 / 2; ++j) {
|
||||
const float x0 = (xi[0 + j] - min) * id;
|
||||
const float x1 = (xi[QK5_1 / 2 + j] - min) * id;
|
||||
|
||||
const uint8_t xi0 = (uint8_t) (x0 + 0.5f);
|
||||
const uint8_t xi1 = (uint8_t) (x1 + 0.5f);
|
||||
|
||||
dsti->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
|
||||
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
|
||||
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_1 / 2);
|
||||
}
|
||||
memcpy(dsti->qh, &qh, sizeof(qh));
|
||||
}
|
||||
|
||||
inline void cpy_blck_f32_iq4_nl(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
block_iq4_nl * dsti = (block_iq4_nl *) cdsti;
|
||||
|
||||
float amax = 0.0f;
|
||||
float vmax = 0.0f;
|
||||
|
||||
for (int j = 0; j < QK4_NL; ++j) {
|
||||
const float v = xi[j];
|
||||
if (amax < sycl::fabs((float) v)) {
|
||||
amax = sycl::fabs((float) v);
|
||||
vmax = v;
|
||||
}
|
||||
}
|
||||
|
||||
float d = vmax / kvalues_iq4nl[0];
|
||||
const float id = d ? 1.0f / d : 0.0f;
|
||||
|
||||
float sumqx = 0, sumq2 = 0;
|
||||
for (int j = 0; j < QK4_NL / 2; ++j) {
|
||||
const float x0 = xi[0 + j] * id;
|
||||
const float x1 = xi[QK4_NL / 2 + j] * id;
|
||||
const uint8_t xi0 = best_index_int8(16, kvalues_iq4nl, x0);
|
||||
const uint8_t xi1 = best_index_int8(16, kvalues_iq4nl, x1);
|
||||
dsti->qs[j] = xi0 | (xi1 << 4);
|
||||
const float v0 = kvalues_iq4nl[xi0];
|
||||
const float v1 = kvalues_iq4nl[xi1];
|
||||
const float w0 = xi[0 + j] * xi[0 + j];
|
||||
const float w1 = xi[QK4_NL / 2 + j] * xi[QK4_NL / 2 + j];
|
||||
sumqx += w0 * v0 * xi[j] + w1 * v1 * xi[QK4_NL / 2 + j];
|
||||
sumq2 += w0 * v0 * v0 + w1 * v1 * v1;
|
||||
}
|
||||
|
||||
dsti->d = sumq2 > 0 ? sumqx / sumq2 : d;
|
||||
}
|
||||
|
||||
void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1);
|
||||
void ggml_sycl_dup(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
|
||||
|
||||
#endif // GGML_SYCL_CPY_HPP
|
||||
#endif // GGML_SYCL_CPY_HPP
|
||||
|
||||
@@ -44,6 +44,7 @@
|
||||
#include "ggml-sycl/set_rows.hpp"
|
||||
#include "ggml-sycl/sycl_hw.hpp"
|
||||
#include "ggml-sycl/getrows.hpp"
|
||||
#include "ggml-sycl/quantize.hpp"
|
||||
#include "ggml.h"
|
||||
|
||||
static bool g_sycl_loaded = false;
|
||||
@@ -1373,120 +1374,6 @@ typedef void (*ggml_sycl_op_mul_mat_t)(
|
||||
|
||||
|
||||
|
||||
template<int QUANT_BLOCK_TILE>
|
||||
static void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
const int ix = (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||||
item_ct1.get_local_id(2)) * QUANT_BLOCK_TILE;
|
||||
|
||||
if (ix >= kx_padded) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int iy = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
||||
item_ct1.get_local_id(1);
|
||||
|
||||
const int i_padded = iy*kx_padded + ix;
|
||||
|
||||
block_q8_1 * y = (block_q8_1 *) vy;
|
||||
|
||||
const int ib = i_padded / QK8_1; // block index
|
||||
const int iqs = i_padded % QK8_1; // quant index
|
||||
typedef sycl::vec<float, QUANT_BLOCK_TILE> TC;
|
||||
typedef sycl::vec<int8_t, QUANT_BLOCK_TILE> TQ;
|
||||
TC zeros;
|
||||
TQ qzeros;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < QUANT_BLOCK_TILE; i++)
|
||||
{
|
||||
zeros[i] = 0.f;
|
||||
qzeros[i] = 0;
|
||||
}
|
||||
const TC xi = ix < kx ? *(const TC *)&x[iy * kx + ix] : zeros;
|
||||
float sum = xi[0];
|
||||
float amax = sycl::fabs(xi[0]);
|
||||
#pragma unroll
|
||||
for (int i = 1; i < QUANT_BLOCK_TILE; i++)
|
||||
{
|
||||
sum += xi[i];
|
||||
amax = sycl::fmax(sycl::fabs(xi[i]), amax);
|
||||
}
|
||||
sum = warp_reduce_sum(sum, item_ct1);
|
||||
amax = warp_reduce_max(amax, item_ct1);
|
||||
|
||||
const float d = amax / 127;
|
||||
TQ q = qzeros;
|
||||
if (amax != 0.0f)
|
||||
{
|
||||
#pragma unroll
|
||||
for (int i = 0; i < QUANT_BLOCK_TILE; i++) {
|
||||
q[i] = sycl::round(xi[i] / d);
|
||||
}
|
||||
}
|
||||
|
||||
*(TQ *)&y[ib].qs[iqs] = q;
|
||||
|
||||
if (iqs > 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
reinterpret_cast<sycl::half &>(y[ib].ds.x()) = d;
|
||||
reinterpret_cast<sycl::half &>(y[ib].ds.y()) = sum;
|
||||
}
|
||||
|
||||
template <int ElementsPerWI>
|
||||
static __dpct_inline__ void quantize_and_reorder_q8_1(const float * __restrict__ x, void * reordered_q8_tensor,
|
||||
const int kx, const int kx_padded, const sycl::nd_item<1> & it) {
|
||||
/*
|
||||
Quantizes and reorders the resultant q8 tensor in a per row fashion
|
||||
Each sub-group calculates one quant block. i.e. QK8_1 quant values and the d and sum values
|
||||
*/
|
||||
|
||||
auto subgroup_id = it.get_group(0);
|
||||
auto wi_id = it.get_local_id(0);
|
||||
|
||||
const int num_blocks_per_row = kx / QK8_1;
|
||||
auto row = subgroup_id / num_blocks_per_row;
|
||||
auto col = subgroup_id % num_blocks_per_row;
|
||||
|
||||
auto row_offset = row * (kx_padded / QK8_1) * sizeof(block_q8_1);
|
||||
auto col_offset = QK8_1 * col + wi_id * ElementsPerWI;
|
||||
|
||||
auto quant_ptr = (int8_t *) ((char *) reordered_q8_tensor + row_offset + col_offset);
|
||||
auto ds_ptr = (sycl::half2 *) ((char *) reordered_q8_tensor + row_offset + kx + col * sizeof(sycl::half2));
|
||||
|
||||
sycl::vec<float, ElementsPerWI> wi_f32_vals;
|
||||
sycl::vec<int8_t, ElementsPerWI> quantized_values;
|
||||
|
||||
auto float_ptr_offset = subgroup_id * QK8_1 + ElementsPerWI * wi_id;
|
||||
wi_f32_vals = *reinterpret_cast<const sycl::vec<float, ElementsPerWI> *>(x + float_ptr_offset);
|
||||
|
||||
float sum = 0.0f;
|
||||
float amax = 0.0f;
|
||||
|
||||
#pragma unroll(ElementsPerWI)
|
||||
for (int i = 0; i < ElementsPerWI; i++) {
|
||||
sum += wi_f32_vals[i];
|
||||
amax = sycl::fmax(amax, sycl::fabs(wi_f32_vals[i]));
|
||||
quantized_values[i] = 0;
|
||||
}
|
||||
sum = sycl::reduce_over_group(it.get_group(), sum, sycl::plus<float>());
|
||||
amax = sycl::reduce_over_group(it.get_group(), amax, sycl::maximum<float>());
|
||||
float d = amax == 0 ? 1 : amax / 127;
|
||||
|
||||
#pragma unroll(ElementsPerWI)
|
||||
for (int i = 0; i < ElementsPerWI; i++) {
|
||||
quantized_values[i] = sycl::round(wi_f32_vals[i] / d);
|
||||
}
|
||||
|
||||
d = amax == 0 ? 0 : d;
|
||||
|
||||
*reinterpret_cast<sycl::vec<int8_t, ElementsPerWI> *>(quant_ptr) = quantized_values;
|
||||
if (wi_id == 0) {
|
||||
*ds_ptr = sycl::half2(sycl::half(d), sycl::half(sum));
|
||||
}
|
||||
}
|
||||
|
||||
static void mul_mat_p021_f16_f32(
|
||||
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
|
||||
const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y,
|
||||
@@ -1770,32 +1657,6 @@ static void pool2d_nchw_kernel(
|
||||
o_ptr[cur_oh * ow + cur_ow] = res;
|
||||
}
|
||||
|
||||
static void quantize_row_q8_1_sycl(const float * x, void * vy, const int kx, const int ky, const int kx_padded,
|
||||
bool reorder_q8_tensor, queue_ptr stream) {
|
||||
if (reorder_q8_tensor) {
|
||||
auto local_range = std::size_t(WARP_SIZE);
|
||||
auto num_quant_blocks = ky * (kx / QK8_1);
|
||||
auto global_range = num_quant_blocks * local_range;
|
||||
stream->parallel_for(sycl::nd_range<1>({ global_range }, { local_range }),
|
||||
[=](sycl::nd_item<1> it) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
quantize_and_reorder_q8_1<QK8_1 / WARP_SIZE>(x, vy, kx, kx_padded, it);
|
||||
});
|
||||
} else {
|
||||
const int block_num_x = (kx_padded + SYCL_QUANTIZE_BLOCK_SIZE - 1) / SYCL_QUANTIZE_BLOCK_SIZE;
|
||||
const sycl::range<3> num_blocks(1, ky, block_num_x);
|
||||
int constexpr QUANT_BLOCK_TILE = QK8_1 / WARP_SIZE;
|
||||
static_assert(QK8_1 % WARP_SIZE == 0);
|
||||
const sycl::range<3> block_size(1, 1, SYCL_QUANTIZE_BLOCK_SIZE / QUANT_BLOCK_TILE);
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
|
||||
|
||||
stream->parallel_for(sycl::nd_range<3>(num_blocks * block_size, block_size),
|
||||
[=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
quantize_q8_1<QUANT_BLOCK_TILE>(x, vy, kx, kx_padded, item_ct1);
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_mul_mat_p021_f16_f32_sycl(const void *vx, const float *y,
|
||||
float *dst, const int ncols_x,
|
||||
@@ -2372,10 +2233,10 @@ static void ggml_sycl_set_peer_access(const int n_tokens, int main_device) {
|
||||
peer_access_enabled = enable_peer_access;
|
||||
}
|
||||
|
||||
template <template <int> typename quantize_f>
|
||||
static void ggml_sycl_op_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||||
const ggml_tensor *src1, ggml_tensor *dst,
|
||||
ggml_sycl_op_mul_mat_t op,
|
||||
const bool convert_src1_to_q8_1) try {
|
||||
ggml_sycl_op_mul_mat_t op) try {
|
||||
|
||||
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
|
||||
|
||||
@@ -2470,6 +2331,8 @@ static void ggml_sycl_op_mul_mat(ggml_backend_sycl_context & ctx, const ggml_ten
|
||||
}
|
||||
}
|
||||
|
||||
constexpr bool quantize_enabled = !std::is_same_v<quantize_f<QK8_1 / WARP_SIZE>,
|
||||
no_quantize_q8_1<QK8_1 / WARP_SIZE>>;
|
||||
for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
|
||||
if ((!split && i != ctx.device) || dev[i].row_low == dev[i].row_high) {
|
||||
continue;
|
||||
@@ -2495,20 +2358,19 @@ static void ggml_sycl_op_mul_mat(ggml_backend_sycl_context & ctx, const ggml_ten
|
||||
dev[i].src1_ddf = dev[i].src1_ddf_alloc.alloc(ctx.pool(i), ggml_nelements(src1));
|
||||
}
|
||||
|
||||
if (convert_src1_to_q8_1) {
|
||||
if constexpr(quantize_enabled) {
|
||||
dev[i].src1_ddq = dev[i].src1_ddq_alloc.alloc(ctx.pool(i), nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs);
|
||||
|
||||
if (src1_on_device && src1_is_contiguous) {
|
||||
bool reorder_q8_tensor = src0->extra && ((ggml_tensor_extra_gpu *)src0->extra)->optimized_feature.reorder;
|
||||
scope_op_debug_print scope_dbg_print(__func__, "/quantize_row_q8_1_sycl", dst,
|
||||
/*num_src=*/2, " : converting src1 to Q8_1");
|
||||
quantize_row_q8_1_sycl(dev[i].src1_ddf, dev[i].src1_ddq, ne10, nrows1, src1_padded_col_size, reorder_q8_tensor, stream);
|
||||
/*
|
||||
DPCT1010:90: SYCL uses exceptions to report errors and does not
|
||||
use the error codes. The call was replaced with 0. You need to
|
||||
rewrite this code.
|
||||
*/
|
||||
SYCL_CHECK(0);
|
||||
try {
|
||||
quantize_row_q8_1_sycl<quantize_f>(dev[i].src1_ddf, dev[i].src1_ddq, ne10, nrows1, src1_padded_col_size, stream);
|
||||
} catch (sycl::exception const &exc) {
|
||||
std::cerr << "Quantize_row_q8_1_sycl error" << exc.what() << "Exception caught at file:" << __FILE__
|
||||
<< ", line:" << __LINE__ << std::endl;
|
||||
std::exit(1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -2524,11 +2386,6 @@ static void ggml_sycl_op_mul_mat(ggml_backend_sycl_context & ctx, const ggml_ten
|
||||
// here an event is recorded that signals that the main device has finished calculating the input data
|
||||
if (split && used_devices > 1) {
|
||||
ggml_sycl_set_device(ctx.device);
|
||||
/*
|
||||
DPCT1024:91: The original code returned the error code that was further
|
||||
consumed by the program logic. This original code was replaced with 0.
|
||||
You may need to rewrite the program logic consuming the error code.
|
||||
*/
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(
|
||||
*src0_extra->events[ctx.device][0] =
|
||||
ctx.stream()->ext_oneapi_submit_barrier()));
|
||||
@@ -2552,11 +2409,6 @@ static void ggml_sycl_op_mul_mat(ggml_backend_sycl_context & ctx, const ggml_ten
|
||||
|
||||
// wait for main GPU data if necessary
|
||||
if (split && (i != ctx.device || is != 0)) {
|
||||
/*
|
||||
DPCT1009:163: SYCL uses exceptions to report errors and does not
|
||||
use the error codes. The original code was commented out and a
|
||||
warning string was inserted. You need to rewrite this code.
|
||||
*/
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(stream->ext_oneapi_submit_barrier(
|
||||
{*src0_extra->events[ctx.device][0]})));
|
||||
}
|
||||
@@ -2582,39 +2434,42 @@ static void ggml_sycl_op_mul_mat(ggml_backend_sycl_context & ctx, const ggml_ten
|
||||
// copy src0, src1 to device if necessary
|
||||
if (src1_is_contiguous) {
|
||||
if (i != ctx.device) {
|
||||
if (convert_src1_to_q8_1) {
|
||||
if constexpr (quantize_enabled) {
|
||||
char * src1_ddq_i_source = dev[ctx.device].src1_ddq + src1_ddq_i_offset;
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy(
|
||||
src1_ddq_i, src1_ddq_i_source,
|
||||
src1_ncols * src1_padded_col_size * q8_1_ts /
|
||||
q8_1_bs).wait()));
|
||||
SYCL_CHECK(
|
||||
CHECK_TRY_ERROR(stream
|
||||
->memcpy(src1_ddq_i, src1_ddq_i_source,
|
||||
src1_ncols * src1_padded_col_size * q8_1_ts / q8_1_bs)
|
||||
.wait()));
|
||||
} else {
|
||||
|
||||
float * src1_ddf_i_source = (float *) src1_extra->data_device[ctx.device];
|
||||
src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
|
||||
src1_ddf_i_source += (i0 * ne11 + src1_col_0) * ne10;
|
||||
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(dev2dev_memcpy(*stream, *main_stream,
|
||||
src1_ddf_i, src1_ddf_i_source,
|
||||
src1_ncols * ne10 * sizeof(float))));
|
||||
SYCL_CHECK(
|
||||
CHECK_TRY_ERROR(dev2dev_memcpy(*stream, *main_stream, src1_ddf_i, src1_ddf_i_source,
|
||||
src1_ncols * ne10 * sizeof(float))));
|
||||
}
|
||||
}
|
||||
} else if (src1_on_device && !src1_is_contiguous) {
|
||||
SYCL_CHECK(ggml_sycl_cpy_tensor_2d(
|
||||
src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
|
||||
} else {
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
if (src1_on_device) {
|
||||
SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src1_ddf_i, src1, i03, i02, src1_col_0,
|
||||
src1_col_0 + src1_ncols, stream));
|
||||
} else {
|
||||
GGML_ABORT("src1 is non-contiguous and not on device");
|
||||
}
|
||||
|
||||
if (convert_src1_to_q8_1 && !src1_is_contiguous) {
|
||||
scope_op_debug_print scope_dbg_print(__func__, "/quantize_row_q8_1_sycl", dst,
|
||||
/*num_src=*/2, " : converting src1 to Q8_1");
|
||||
quantize_row_q8_1_sycl(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, false, stream);
|
||||
/*
|
||||
DPCT1010:92: SYCL uses exceptions to report errors and does
|
||||
not use the error codes. The call was replaced with 0. You
|
||||
need to rewrite this code.
|
||||
*/
|
||||
SYCL_CHECK(0);
|
||||
if constexpr (quantize_enabled) {
|
||||
scope_op_debug_print scope_dbg_print(__func__, "/quantize_row_q8_1_sycl", dst,
|
||||
/*num_src=*/2, " : converting src1 to Q8_1");
|
||||
try {
|
||||
quantize_row_q8_1_sycl<quantize_q8_1>(src1_ddf_i, src1_ddq_i, ne10, src1_ncols,
|
||||
src1_padded_col_size, stream);
|
||||
} catch (const sycl::exception & exc) {
|
||||
std::cerr << "Quantize_row_q8_1_sycl error" << exc.what()
|
||||
<< "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl;
|
||||
std::exit(1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (src1_col_0 == 0 && !src0_is_contiguous && i02 % i02_divisor == 0) {
|
||||
@@ -2626,12 +2481,6 @@ static void ggml_sycl_op_mul_mat(ggml_backend_sycl_context & ctx, const ggml_ten
|
||||
// do the computation
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(op(ctx, src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
|
||||
dev[i].row_low, dev[i].row_high, src1_ncols, src1_padded_col_size, stream)));
|
||||
/*
|
||||
DPCT1010:93: SYCL uses exceptions to report errors and does not
|
||||
use the error codes. The call was replaced with 0. You need to
|
||||
rewrite this code.
|
||||
*/
|
||||
SYCL_CHECK(0);
|
||||
|
||||
// copy dst to host or other device if necessary
|
||||
if (!dst_on_device) {
|
||||
@@ -2662,12 +2511,6 @@ static void ggml_sycl_op_mul_mat(ggml_backend_sycl_context & ctx, const ggml_ten
|
||||
|
||||
// add event for the main device to wait on until other device is done
|
||||
if (split && (i != ctx.device || is != 0)) {
|
||||
/*
|
||||
DPCT1024:94: The original code returned the error code that
|
||||
was further consumed by the program logic. This original
|
||||
code was replaced with 0. You may need to rewrite the
|
||||
program logic consuming the error code.
|
||||
*/
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(
|
||||
*src0_extra->events[i][is] =
|
||||
stream->ext_oneapi_submit_barrier()));
|
||||
@@ -3351,19 +3194,20 @@ static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor
|
||||
// KQ + KQV multi-batch
|
||||
ggml_sycl_mul_mat_batched_sycl(ctx, src0, src1, dst);
|
||||
} else if (use_dequantize_mul_mat_vec) {
|
||||
constexpr bool convert_src1_to_q8_1 = false;
|
||||
opt_for_reorder(&ctx, src0, src1, dst, mul_mat_algo::DMMV);
|
||||
ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_dequantize_mul_mat_vec, convert_src1_to_q8_1);
|
||||
ggml_sycl_op_mul_mat<no_quantize_q8_1>(ctx, src0, src1, dst, ggml_sycl_op_dequantize_mul_mat_vec);
|
||||
} else if (use_mul_mat_vec_q) {
|
||||
constexpr bool convert_src1_to_q8_1 = true;
|
||||
opt_for_reorder(&ctx, src0, src1, dst, mul_mat_algo::MMVQ);
|
||||
ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_vec_q, convert_src1_to_q8_1);
|
||||
ggml_tensor_extra_gpu * extra = static_cast<ggml_tensor_extra_gpu *>(src0->extra);
|
||||
if (extra && extra->optimized_feature.reorder) {
|
||||
ggml_sycl_op_mul_mat<quantize_and_reorder_q8_1_soa>(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_vec_q);
|
||||
} else {
|
||||
ggml_sycl_op_mul_mat<quantize_q8_1>(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_vec_q);
|
||||
}
|
||||
} else if (use_mul_mat_q) {
|
||||
constexpr bool convert_src1_to_q8_1 = true;
|
||||
ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_q, convert_src1_to_q8_1);
|
||||
ggml_sycl_op_mul_mat<quantize_q8_1>(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_q);
|
||||
} else {
|
||||
constexpr bool convert_src1_to_q8_1 = false;
|
||||
ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_sycl, convert_src1_to_q8_1);
|
||||
ggml_sycl_op_mul_mat<no_quantize_q8_1>(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_sycl);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -4385,11 +4229,12 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
}
|
||||
case GGML_OP_SET_ROWS:
|
||||
{
|
||||
// TODO: add support
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/14274
|
||||
#pragma message("TODO: implement BF16, Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, IQ4_NL support (https://github.com/ggml-org/llama.cpp/pull/14661)")
|
||||
return (op->type == GGML_TYPE_F32 || (op->type == GGML_TYPE_F16 && op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_I64));
|
||||
} break;
|
||||
return ((op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16 || op->type == GGML_TYPE_BF16 ||
|
||||
op->type == GGML_TYPE_Q8_0 || op->type == GGML_TYPE_Q5_1 || op->type == GGML_TYPE_Q5_0 ||
|
||||
op->type == GGML_TYPE_Q4_1 || op->type == GGML_TYPE_Q4_0 || op->type == GGML_TYPE_IQ4_NL) &&
|
||||
(op->src[1]->type == GGML_TYPE_I64));
|
||||
}
|
||||
break;
|
||||
case GGML_OP_CPY:
|
||||
{
|
||||
ggml_type src0_type = op->src[0]->type;
|
||||
|
||||
133
ggml/src/ggml-sycl/quantize.hpp
Normal file
133
ggml/src/ggml-sycl/quantize.hpp
Normal file
@@ -0,0 +1,133 @@
|
||||
/***************************************************************************
|
||||
*
|
||||
* Copyright (C) 2025 Codeplay Software Ltd.
|
||||
* Copyright (C) 2025 Intel Corporation
|
||||
*
|
||||
* MIT License
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*
|
||||
* quantize.hpp
|
||||
*
|
||||
* Description:
|
||||
* Sycl backend specific quantization functions
|
||||
**************************************************************************/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <sycl/nd_item.hpp>
|
||||
|
||||
#include "ggml-sycl/dpct/helper.hpp"
|
||||
|
||||
template <int ElementsPerWI>
|
||||
__dpct_inline__ static void quantize_q8_1_impl(const float * __restrict__ x,
|
||||
sycl::vec<int8_t, ElementsPerWI> & quantized_values, float & d,
|
||||
float & sum, const sycl::nd_item<1> & it) {
|
||||
auto subgroup_id = it.get_group(0);
|
||||
auto wi_id = it.get_local_id(0);
|
||||
|
||||
sycl::vec<float, ElementsPerWI> wi_f32_vals;
|
||||
|
||||
auto float_ptr_offset = subgroup_id * QK8_1 + ElementsPerWI * wi_id;
|
||||
wi_f32_vals = *reinterpret_cast<const sycl::vec<float, ElementsPerWI> *>(x + float_ptr_offset);
|
||||
|
||||
float amax = 0.0f;
|
||||
|
||||
#pragma unroll(ElementsPerWI)
|
||||
for (int i = 0; i < ElementsPerWI; i++) {
|
||||
sum += wi_f32_vals[i];
|
||||
amax = sycl::fmax(amax, sycl::fabs(wi_f32_vals[i]));
|
||||
quantized_values[i] = 0;
|
||||
}
|
||||
sum = sycl::reduce_over_group(it.get_sub_group(), sum, sycl::plus<float>());
|
||||
amax = sycl::reduce_over_group(it.get_sub_group(), amax, sycl::maximum<float>());
|
||||
d = amax == 0 ? 1 : amax / 127;
|
||||
|
||||
#pragma unroll(ElementsPerWI)
|
||||
for (int i = 0; i < ElementsPerWI; i++) {
|
||||
quantized_values[i] = sycl::round(wi_f32_vals[i] / d);
|
||||
}
|
||||
|
||||
d = amax == 0 ? 0 : d;
|
||||
}
|
||||
|
||||
// No op to control codepath in ggml_sycl_op_mul_mat
|
||||
template <int ElementsPerWI> struct no_quantize_q8_1 {
|
||||
void operator()(const float *, void *, int, int, const sycl::nd_item<1> &) const {}
|
||||
};
|
||||
|
||||
template <int ElementsPerWI> struct quantize_and_reorder_q8_1_soa {
|
||||
__dpct_inline__ void operator()(const float * __restrict__ x, void * reordered_q8_tensor, const int kx,
|
||||
const int kx_padded, const sycl::nd_item<1> & it) const {
|
||||
/*
|
||||
Quantizes and reorders the resultant q8 tensor in a per row fashion
|
||||
Each sub-group calculates one quant block. i.e. QK8_1 quant values and the d and sum values
|
||||
*/
|
||||
auto subgroup_id = it.get_group(0);
|
||||
auto wi_id = it.get_local_id(0);
|
||||
|
||||
sycl::vec<int8_t, ElementsPerWI> quantized_values;
|
||||
float d = 0.0f;
|
||||
float sum = 0.0f;
|
||||
quantize_q8_1_impl<ElementsPerWI>(x, quantized_values, d, sum, it);
|
||||
|
||||
const int num_blocks_per_row = kx / QK8_1;
|
||||
auto row = subgroup_id / num_blocks_per_row;
|
||||
auto col = subgroup_id % num_blocks_per_row;
|
||||
auto row_offset = row * (kx_padded / QK8_1) * sizeof(block_q8_1);
|
||||
auto col_offset = QK8_1 * col + wi_id * ElementsPerWI;
|
||||
|
||||
auto quant_ptr = (int8_t *) ((char *) reordered_q8_tensor + row_offset + col_offset);
|
||||
*reinterpret_cast<sycl::vec<int8_t, ElementsPerWI> *>(quant_ptr) = quantized_values;
|
||||
|
||||
auto ds_ptr = (sycl::half2 *) ((char *) reordered_q8_tensor + row_offset + kx + col * sizeof(sycl::half2));
|
||||
if (wi_id == 0) {
|
||||
*ds_ptr = sycl::half2(sycl::half(d), sycl::half(sum));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <int ElementsPerWI> struct quantize_q8_1 {
|
||||
__dpct_inline__ void operator()(const float * __restrict__ x, void * q8_tensor, const int kx, const int kx_padded,
|
||||
const sycl::nd_item<1> & it) const {
|
||||
auto subgroup_id = it.get_group(0);
|
||||
auto wi_id = it.get_local_id(0);
|
||||
|
||||
const int num_blocks_per_row = kx / QK8_1;
|
||||
auto row = subgroup_id / num_blocks_per_row;
|
||||
const int pitch = kx_padded / QK8_1;
|
||||
|
||||
sycl::vec<int8_t, ElementsPerWI> quantized_values;
|
||||
float d = 0.0f;
|
||||
float sum = 0.0f;
|
||||
quantize_q8_1_impl<ElementsPerWI>(x, quantized_values, d, sum, it);
|
||||
|
||||
block_q8_1 * quant_ptr = (block_q8_1 *) q8_tensor;
|
||||
auto block_id = subgroup_id % num_blocks_per_row + row * pitch;
|
||||
|
||||
int8_t * qs = &(quant_ptr[block_id].qs[wi_id * ElementsPerWI]);
|
||||
*reinterpret_cast<sycl::vec<int8_t, ElementsPerWI> *>(qs) = quantized_values;
|
||||
if (wi_id == 0) {
|
||||
quant_ptr[block_id].ds = sycl::half2(sycl::half(d), sycl::half(sum));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <template <int> typename quantize_f>
|
||||
void quantize_row_q8_1_sycl(const float * x, void * vy, const int kx, const int ky, const int kx_padded,
|
||||
dpct::queue_ptr stream) {
|
||||
static_assert(QK8_1 % WARP_SIZE == 0);
|
||||
auto local_range = std::size_t(WARP_SIZE);
|
||||
auto num_quant_blocks = ky * (kx / QK8_1);
|
||||
auto global_range = num_quant_blocks * local_range;
|
||||
dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
|
||||
|
||||
stream->parallel_for(sycl::nd_range<1>({ global_range }, { local_range }),
|
||||
[=](sycl::nd_item<1> it) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
quantize_f<QK8_1 / WARP_SIZE>()(x, vy, kx, kx_padded, it);
|
||||
});
|
||||
}
|
||||
@@ -1,4 +1,5 @@
|
||||
#include "set_rows.hpp"
|
||||
#include "cpy.hpp"
|
||||
|
||||
namespace utils {
|
||||
template<typename T>
|
||||
@@ -15,6 +16,68 @@ convert (const char* src, char* dst) {
|
||||
*reinterpret_cast<TOut*>(dst) = dst_val;
|
||||
}
|
||||
|
||||
template <typename blockType, int qk, cpy_kernel_t cpyblck>
|
||||
static void set_rows_sycl_q(const char * __restrict__ src0_d,
|
||||
const int64_t * __restrict__ src1_d,
|
||||
blockType * __restrict__ dst_d,
|
||||
// tensor dimensions src0 and src1
|
||||
const int64_t ne00,
|
||||
const int64_t ne01,
|
||||
const int64_t ne02,
|
||||
const int64_t ne03,
|
||||
const int64_t ne10,
|
||||
const int64_t ne11,
|
||||
const int64_t ne12,
|
||||
const int64_t ne13,
|
||||
// strides for src0
|
||||
const size_t nb00,
|
||||
const size_t nb01,
|
||||
const size_t nb02,
|
||||
const size_t nb03,
|
||||
// strides for src1
|
||||
const size_t nb10,
|
||||
const size_t nb11,
|
||||
const size_t nb12,
|
||||
const size_t nb13,
|
||||
// strides for dst
|
||||
const size_t nb1,
|
||||
const size_t nb2,
|
||||
const size_t nb3,
|
||||
queue_ptr stream) {
|
||||
const int64_t total_blocks = (ne00 * ne01 * ne02 * ne03) / qk;
|
||||
constexpr int block_size = 256;
|
||||
const int64_t grid_size = ceil_div(total_blocks, block_size);
|
||||
|
||||
sycl_parallel_for(stream, sycl::nd_range<1>(grid_size * block_size, block_size), [=](sycl::nd_item<1> item_ct1) {
|
||||
const int64_t i = item_ct1.get_global_linear_id();
|
||||
if (i >= total_blocks) {
|
||||
return;
|
||||
}
|
||||
const int64_t i_base = i * qk;
|
||||
const int64_t i03 = i_base / (ne00 * ne01 * ne02);
|
||||
const int64_t rem1 = i_base - i03 * (ne00 * ne01 * ne02);
|
||||
const int64_t i02 = rem1 / (ne00 * ne01);
|
||||
const int64_t rem2 = rem1 - i02 * ne00 * ne01;
|
||||
const int64_t i01 = rem2 / ne00;
|
||||
const int64_t i00 = rem2 - i01 * ne00;
|
||||
const int64_t i12 = i03 % ne12;
|
||||
const int64_t i11 = i02 % ne11;
|
||||
const int64_t i10 = i01;
|
||||
const size_t src_offset = calculate_offset<3>({ nb01, nb02, nb03 }, { i01, i02, i03 });
|
||||
const char * src_block = src0_d + src_offset + i00 * sizeof(float);
|
||||
const size_t src1_offset = calculate_offset<3>({ nb10, nb11, nb12 }, { i10, i11, i12 });
|
||||
const int64_t dst_row = src1_d[src1_offset / sizeof(int64_t)];
|
||||
const size_t dst_offset =
|
||||
calculate_offset<3>({ nb1, nb2, nb3 }, { dst_row, i02, i03 }) + (i00 / qk) * sizeof(blockType);
|
||||
char * dst_block = reinterpret_cast<char *>(reinterpret_cast<char *>(dst_d) + dst_offset);
|
||||
cpyblck(src_block, dst_block);
|
||||
});
|
||||
GGML_UNUSED(ne10);
|
||||
GGML_UNUSED(ne13);
|
||||
GGML_UNUSED(nb00);
|
||||
GGML_UNUSED(nb13);
|
||||
}
|
||||
|
||||
template<typename TIn, typename TOut>
|
||||
static void k_set_rows(
|
||||
const char * __restrict__ src0, const int64_t * __restrict__ src1, char * __restrict__ dst,
|
||||
@@ -124,6 +187,37 @@ void ggml_sycl_op_set_rows(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
stream
|
||||
);
|
||||
break;
|
||||
case GGML_TYPE_BF16:
|
||||
set_rows_sycl<float, sycl::ext::oneapi::bfloat16>(
|
||||
(const char *)src0->data, src1_dd, (char *)dst->data,
|
||||
ne00, ne01, ne02, ne03,
|
||||
ne11, ne12,
|
||||
nb01, nb02, nb03,
|
||||
nb10, nb11, nb12,
|
||||
nb1, nb2, nb3,
|
||||
sizeof(float), sizeof(sycl::ext::oneapi::bfloat16),
|
||||
stream
|
||||
);
|
||||
break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
set_rows_sycl_q<block_q8_0, QK8_0, cpy_blck_f32_q8_0>((const char *)src0->data, src1_dd, (block_q8_0 *)dst->data, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nb00, nb01, nb02, nb03, nb10, nb11, nb12, nb13, nb1, nb2, nb3, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
set_rows_sycl_q<block_q5_1, QK5_1, cpy_blck_f32_q5_1>((const char *)src0->data, src1_dd, (block_q5_1 *)dst->data, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nb00, nb01, nb02, nb03, nb10, nb11, nb12, nb13, nb1, nb2, nb3, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
set_rows_sycl_q<block_q5_0, QK5_0, cpy_blck_f32_q5_0>((const char *)src0->data, src1_dd, (block_q5_0 *)dst->data, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nb00, nb01, nb02, nb03, nb10, nb11, nb12, nb13, nb1, nb2, nb3, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
set_rows_sycl_q<block_q4_1, QK4_1, cpy_blck_f32_q4_1>((const char *)src0->data, src1_dd, (block_q4_1 *)dst->data, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nb00, nb01, nb02, nb03, nb10, nb11, nb12, nb13, nb1, nb2, nb3, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_0:
|
||||
set_rows_sycl_q<block_q4_0, QK4_0, cpy_blck_f32_q4_0>((const char *)src0->data, src1_dd, (block_q4_0 *)dst->data, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nb00, nb01, nb02, nb03, nb10, nb11, nb12, nb13, nb1, nb2, nb3, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
set_rows_sycl_q<block_iq4_nl, QK4_NL, cpy_blck_f32_iq4_nl>((const char *)src0->data, src1_dd, (block_iq4_nl *)dst->data, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nb00, nb01, nb02, nb03, nb10, nb11, nb12, nb13, nb1, nb2, nb3, stream);
|
||||
break;
|
||||
|
||||
default:
|
||||
GGML_ABORT("Unsupported tensor type!");
|
||||
break;
|
||||
|
||||
@@ -484,6 +484,7 @@ struct vk_device_struct {
|
||||
vk_pipeline pipeline_rwkv_wkv7_f32;
|
||||
vk_pipeline pipeline_opt_step_adamw_f32;
|
||||
vk_pipeline pipeline_conv2d_f32;
|
||||
vk_pipeline pipeline_conv2d_f16_f32;
|
||||
vk_pipeline pipeline_conv2d_dw_whcn_f32;
|
||||
vk_pipeline pipeline_conv2d_dw_cwhn_f32;
|
||||
|
||||
@@ -1340,7 +1341,7 @@ static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipelin
|
||||
vk::DebugUtilsObjectNameInfoEXT duoni;
|
||||
duoni.objectType = vk::ObjectType::ePipeline;
|
||||
duoni.pObjectName = pipeline->name.c_str();
|
||||
duoni.objectHandle = reinterpret_cast<uint64_t>(static_cast<VkPipeline_T*>(pipeline->pipeline));
|
||||
duoni.objectHandle = /*reinterpret_cast*/(uint64_t)(static_cast<VkPipeline>(pipeline->pipeline));
|
||||
vk_instance.pfn_vkSetDebugUtilsObjectNameEXT(device->device, &static_cast<VkDebugUtilsObjectNameInfoEXT &>(duoni));
|
||||
}
|
||||
|
||||
@@ -3074,12 +3075,21 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
device, device->pipeline_conv2d_f32, "conv2d_f32", conv2d_f32_len, conv2d_f32_data, "main", 3,
|
||||
sizeof(vk_op_conv2d_push_constants), { conv2d_BS_K, conv2d_BS_NPQ, 1 },
|
||||
{ conv2d_WG_SIZE, conv2d_BS_K, conv2d_BS_CRS, conv2d_BS_NPQ, conv2d_TS_K, use_collectives }, 1, true, true);
|
||||
ggml_vk_create_pipeline(
|
||||
device, device->pipeline_conv2d_f16_f32, "conv2d_f16_f32", conv2d_f16_f32_len, conv2d_f16_f32_data, "main", 3,
|
||||
sizeof(vk_op_conv2d_push_constants), { conv2d_BS_K, conv2d_BS_NPQ, 1 },
|
||||
{ conv2d_WG_SIZE, conv2d_BS_K, conv2d_BS_CRS, conv2d_BS_NPQ, conv2d_TS_K, use_collectives }, 1, true, true);
|
||||
} else {
|
||||
ggml_vk_create_pipeline(
|
||||
device, device->pipeline_conv2d_f32, "conv2d_f32", conv2d_f32_len, conv2d_f32_data, "main", 3,
|
||||
sizeof(vk_op_conv2d_push_constants), { conv2d_BS_K, conv2d_BS_NPQ, 1 },
|
||||
{ conv2d_WG_SIZE, conv2d_BS_K, conv2d_BS_CRS, conv2d_BS_NPQ, conv2d_TS_K, use_collectives }, 1, true,
|
||||
false);
|
||||
ggml_vk_create_pipeline(
|
||||
device, device->pipeline_conv2d_f16_f32, "conv2d_f16_f32", conv2d_f16_f32_len, conv2d_f16_f32_data, "main", 3,
|
||||
sizeof(vk_op_conv2d_push_constants), { conv2d_BS_K, conv2d_BS_NPQ, 1 },
|
||||
{ conv2d_WG_SIZE, conv2d_BS_K, conv2d_BS_CRS, conv2d_BS_NPQ, conv2d_TS_K, use_collectives }, 1, true,
|
||||
false);
|
||||
}
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_whcn_f32, "conv2d_dw_whcn_f32", conv2d_dw_whcn_f32_len, conv2d_dw_whcn_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
|
||||
@@ -5215,9 +5225,9 @@ static void ggml_vk_quantize_q8_1(ggml_backend_vk_context * ctx, vk_context& sub
|
||||
}
|
||||
|
||||
static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
|
||||
VK_LOG_DEBUG("ggml_vk_mul_mat_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
|
||||
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
|
||||
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
|
||||
VK_LOG_DEBUG("ggml_vk_mul_mat_q_f16((" << src0 << ", name=" << src0->name << ", type=" << ggml_type_name(src0->type) << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
|
||||
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << ggml_type_name(src1->type) << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
|
||||
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << ggml_type_name(dst->type) << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
|
||||
std::cerr << "), " << (dryrun ? "dryrun" : "") << ")");
|
||||
GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16); // NOLINT
|
||||
GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT
|
||||
@@ -6958,9 +6968,13 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
|
||||
}
|
||||
return nullptr;
|
||||
case GGML_OP_CONV_2D:
|
||||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 &&
|
||||
if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 &&
|
||||
ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
|
||||
return ctx->device->pipeline_conv2d_f32;
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
return ctx->device->pipeline_conv2d_f32;
|
||||
} else if (src0->type == GGML_TYPE_F16) {
|
||||
return ctx->device->pipeline_conv2d_f16_f32;
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
@@ -7882,6 +7896,13 @@ static void ggml_vk_set_rows(ggml_backend_vk_context * ctx, vk_context& subctx,
|
||||
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||
|
||||
// Skip empty skip_rows operations. For most ops the empty check at the start
|
||||
// of ggml_vk_build_graph is sufficient, but set_rows can have a nonempty dst
|
||||
// with empty srcs.
|
||||
if (ggml_is_empty(src0) || ggml_is_empty(src1)) {
|
||||
return;
|
||||
}
|
||||
|
||||
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_SET_ROWS, {
|
||||
(uint32_t)ggml_nelements(src0),
|
||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||
@@ -8178,13 +8199,13 @@ static void ggml_vk_pool_2d(ggml_backend_vk_context * ctx, vk_context& subctx, c
|
||||
|
||||
static void ggml_vk_conv_2d(ggml_backend_vk_context * ctx, vk_context & subctx, const ggml_tensor * src0,
|
||||
const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT(nb00 == sizeof(float));
|
||||
GGML_ASSERT(nb00 == sizeof(float) || nb00 == sizeof(ggml_fp16_t));
|
||||
GGML_ASSERT(nb10 == sizeof(float));
|
||||
GGML_ASSERT(nb0 == sizeof(float));
|
||||
|
||||
@@ -10867,7 +10888,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
||||
const vk_device& device = ggml_vk_get_device(ctx->device);
|
||||
bool is_Apple = ggml_vk_get_device(ctx->device)->vendor_id == VK_VENDOR_ID_APPLE;
|
||||
// Channel-contiguous format is not supported yet.
|
||||
return (op->src[0]->type == GGML_TYPE_F32 &&
|
||||
return ((op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
|
||||
op->src[1]->type == GGML_TYPE_F32 &&
|
||||
op->type == GGML_TYPE_F32 &&
|
||||
ggml_is_contiguous(op->src[0]) &&
|
||||
@@ -11147,7 +11168,7 @@ size_t comp_nb[GGML_MAX_DIMS];
|
||||
size_t check_counter = 0;
|
||||
static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph * cgraph, int tensor_idx) {
|
||||
ggml_tensor * tensor = cgraph->nodes[tensor_idx];
|
||||
if (tensor->op == GGML_OP_TRANSPOSE) {
|
||||
if (tensor->op == GGML_OP_TRANSPOSE || tensor->op == GGML_OP_SET_ROWS) {
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -11267,7 +11288,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph *
|
||||
tensor_clone = ggml_upscale_ext(ggml_ctx, src_clone[0], tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], (ggml_scale_mode) tensor->op_params[0]);
|
||||
} else if (tensor->op == GGML_OP_SCALE) {
|
||||
const float * params = (const float *)tensor->op_params;
|
||||
tensor_clone = ggml_scale(ggml_ctx, src_clone[0], params[0]);
|
||||
tensor_clone = ggml_scale_bias(ggml_ctx, src_clone[0], params[0], params[1]);
|
||||
} else if (tensor->op == GGML_OP_SQR) {
|
||||
tensor_clone = ggml_sqr(ggml_ctx, src_clone[0]);
|
||||
} else if (tensor->op == GGML_OP_SIN) {
|
||||
@@ -11378,8 +11399,6 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph *
|
||||
} else {
|
||||
tensor_clone = ggml_cpy(ggml_ctx, src_clone[0], src_clone[1]);
|
||||
}
|
||||
} else if (tensor->op == GGML_OP_SET_ROWS) {
|
||||
tensor_clone = ggml_set_rows(ggml_ctx, src_clone[0], src_clone[1]);
|
||||
} else if (tensor->op == GGML_OP_CONT) {
|
||||
tensor_clone = ggml_cont_4d(ggml_ctx, src_clone[0], tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
|
||||
} else if (tensor->op == GGML_OP_RESHAPE) {
|
||||
@@ -11487,7 +11506,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph *
|
||||
|
||||
static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_cgraph * cgraph, int tensor_idx) {
|
||||
ggml_tensor * tensor = cgraph->nodes[tensor_idx];
|
||||
if (tensor->op == GGML_OP_TRANSPOSE) {
|
||||
if (tensor->op == GGML_OP_TRANSPOSE || tensor->op == GGML_OP_SET_ROWS) {
|
||||
return;
|
||||
}
|
||||
bool fused_rms_norm_mul = false;
|
||||
@@ -11547,6 +11566,9 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_cgraph *
|
||||
} else if (tensor->type == GGML_TYPE_F16) {
|
||||
correct = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]));
|
||||
result = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]));
|
||||
} else if (tensor->type == GGML_TYPE_BF16) {
|
||||
correct = ggml_bf16_to_fp32(*(ggml_bf16_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]));
|
||||
result = ggml_bf16_to_fp32(*(ggml_bf16_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]));
|
||||
} else if (tensor->type == GGML_TYPE_I32) {
|
||||
correct = *(int32_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]);
|
||||
result = *(int32_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]);
|
||||
|
||||
@@ -656,6 +656,7 @@ void process_shaders() {
|
||||
string_to_spv("opt_step_adamw_f32", "opt_step_adamw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}}));
|
||||
|
||||
string_to_spv("conv2d_f32", "conv2d_mm.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"USE_COLLECTIVES", "1"}});
|
||||
string_to_spv("conv2d_f16_f32", "conv2d_mm.comp", {{"A_TYPE", "float16_t"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"USE_COLLECTIVES", "1"}});
|
||||
|
||||
string_to_spv("conv2d_dw_whcn_f32", "conv2d_dw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"WHCN", "1"}}));
|
||||
string_to_spv("conv2d_dw_cwhn_f32", "conv2d_dw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"CWHN", "1"}}));
|
||||
|
||||
@@ -279,6 +279,9 @@ class Keys:
|
||||
class Projector:
|
||||
STACK_FACTOR = "clip.audio.projector.stack_factor"
|
||||
|
||||
class Diffusion:
|
||||
SHIFT_LOGITS = "diffusion.shift_logits"
|
||||
|
||||
#
|
||||
# recommended mapping of model tensor names for storage in gguf
|
||||
#
|
||||
@@ -373,9 +376,12 @@ class MODEL_ARCH(IntEnum):
|
||||
ERNIE4_5 = auto()
|
||||
ERNIE4_5_MOE = auto()
|
||||
HUNYUAN_MOE = auto()
|
||||
HUNYUAN_DENSE = auto()
|
||||
SMOLLM3 = auto()
|
||||
LFM2 = auto()
|
||||
DREAM = auto()
|
||||
SMALLTHINKER = auto()
|
||||
LLADA = auto()
|
||||
|
||||
|
||||
class VISION_PROJECTOR_TYPE(IntEnum):
|
||||
@@ -692,9 +698,12 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.ERNIE4_5_MOE: "ernie4_5-moe",
|
||||
MODEL_ARCH.FALCON_H1: "falcon-h1",
|
||||
MODEL_ARCH.HUNYUAN_MOE: "hunyuan-moe",
|
||||
MODEL_ARCH.HUNYUAN_DENSE: "hunyuan-dense",
|
||||
MODEL_ARCH.SMOLLM3: "smollm3",
|
||||
MODEL_ARCH.LFM2: "lfm2",
|
||||
MODEL_ARCH.DREAM: "dream",
|
||||
MODEL_ARCH.SMALLTHINKER: "smallthinker",
|
||||
MODEL_ARCH.LLADA: "llada",
|
||||
}
|
||||
|
||||
VISION_PROJECTOR_TYPE_NAMES: dict[VISION_PROJECTOR_TYPE, str] = {
|
||||
@@ -1316,6 +1325,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.LLADA: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.QWEN2VL: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
@@ -2449,6 +2473,22 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_DOWN_SHEXP,
|
||||
MODEL_TENSOR.FFN_UP_SHEXP,
|
||||
],
|
||||
MODEL_ARCH.HUNYUAN_DENSE: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_Q_NORM,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_K_NORM,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.SMOLLM3: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
@@ -2483,6 +2523,24 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
],
|
||||
MODEL_ARCH.SMALLTHINKER: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
],
|
||||
# TODO
|
||||
}
|
||||
|
||||
@@ -2704,6 +2762,7 @@ class VisionProjectorType:
|
||||
INTERNVL = "internvl"
|
||||
QWEN2A = "qwen2a" # audio
|
||||
QWEN25O = "qwen2.5o" # omni
|
||||
VOXTRAL = "voxtral"
|
||||
|
||||
|
||||
# Items here are (block size, type size)
|
||||
|
||||
@@ -1047,6 +1047,11 @@ class GGUFWriter:
|
||||
def add_audio_stack_factor(self, value: int) -> None:
|
||||
self.add_uint32(Keys.ClipAudio.Projector.STACK_FACTOR, value)
|
||||
|
||||
# diffusion models
|
||||
|
||||
def add_diffusion_shift_logits(self, value: bool) -> None:
|
||||
self.add_bool(Keys.Diffusion.SHIFT_LOGITS, value)
|
||||
|
||||
def _pack(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> bytes:
|
||||
pack_prefix = ''
|
||||
if not skip_pack_prefix:
|
||||
|
||||
@@ -32,6 +32,7 @@ class TensorNameMap:
|
||||
"model.word_embeddings", # bailingmoe
|
||||
"language_model.model.embed_tokens", # llama4
|
||||
"encoder", # neobert
|
||||
"model.transformer.wte", # llada
|
||||
),
|
||||
|
||||
# Token type embeddings
|
||||
@@ -71,6 +72,7 @@ class TensorNameMap:
|
||||
"head", # rwkv
|
||||
"head.out", # wavtokenizer
|
||||
"lm_head", # llama4
|
||||
"model.transformer.ff_out", # llada
|
||||
),
|
||||
|
||||
# Output norm
|
||||
@@ -94,6 +96,7 @@ class TensorNameMap:
|
||||
"model.ln_out", # rwkv7
|
||||
"backbone.final_layer_norm", # wavtokenizer
|
||||
"model.norm", # llama4
|
||||
"model.transformer.ln_f", # llada
|
||||
),
|
||||
|
||||
# Rope frequencies
|
||||
@@ -139,6 +142,7 @@ class TensorNameMap:
|
||||
"model.layers.{bid}.input_layernorm", # llama4
|
||||
"transformer_encoder.{bid}.attention_norm", # neobert
|
||||
"model.layers.{bid}.operator_norm", # lfm2
|
||||
"model.transformer.blocks.{bid}.attn_norm", # llada
|
||||
),
|
||||
|
||||
# Attention norm 2
|
||||
@@ -183,6 +187,7 @@ class TensorNameMap:
|
||||
"transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
|
||||
"transformer.h.{bid}.attn.attention.q_proj", # exaone
|
||||
"model.layers.{bid}.self_attn.q_proj", # llama4
|
||||
"model.transformer.blocks.{bid}.q_proj", # llada
|
||||
),
|
||||
|
||||
# Attention key
|
||||
@@ -199,6 +204,7 @@ class TensorNameMap:
|
||||
"transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
|
||||
"transformer.h.{bid}.attn.attention.k_proj", # exaone
|
||||
"model.layers.{bid}.self_attn.k_proj", # llama4
|
||||
"model.transformer.blocks.{bid}.k_proj", # llada
|
||||
),
|
||||
|
||||
# Attention value
|
||||
@@ -214,6 +220,7 @@ class TensorNameMap:
|
||||
"transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
|
||||
"transformer.h.{bid}.attn.attention.v_proj", # exaone
|
||||
"model.layers.{bid}.self_attn.v_proj", # llama4
|
||||
"model.transformer.blocks.{bid}.v_proj", # llada
|
||||
),
|
||||
|
||||
# Attention output
|
||||
@@ -246,6 +253,7 @@ class TensorNameMap:
|
||||
"transformer.h.{bid}.attn.attention.out_proj", # exaone
|
||||
"model.layers.{bid}.self_attn.o_proj", # llama4
|
||||
"transformer_encoder.{bid}.wo", # neobert
|
||||
"model.transformer.blocks.{bid}.attn_out", # llada
|
||||
),
|
||||
|
||||
# Attention output norm
|
||||
@@ -291,6 +299,7 @@ class TensorNameMap:
|
||||
"model.layers.{bid}.post_attention_layernorm", # llama4
|
||||
"transformer_encoder.{bid}.ffn_norm", # neobert
|
||||
"model.layers.layers.{bid}.pre_mlp_norm", # plamo2
|
||||
"model.transformer.blocks.{bid}.ff_norm", # llada
|
||||
),
|
||||
|
||||
# Post feed-forward norm
|
||||
@@ -317,6 +326,7 @@ class TensorNameMap:
|
||||
"model.layers.{bid}.feed_forward.router", # llama4 jamba
|
||||
"encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
|
||||
"model.layers.{bid}.mlp.gate.wg", # hunyuan
|
||||
"model.layers.{bid}.block_sparse_moe.primary_router", # smallthinker
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
|
||||
@@ -362,6 +372,8 @@ class TensorNameMap:
|
||||
"transformer.h.{bid}.mlp.c_fc_1", # exaone
|
||||
"model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid
|
||||
"transformer_encoder.{bid}.ffn.w12", # neobert
|
||||
"model.layers.{bid}.block_sparse_moe.up", # smallthinker
|
||||
"model.transformer.blocks.{bid}.up_proj", # llada
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_UP_EXP: (
|
||||
@@ -372,6 +384,7 @@ class TensorNameMap:
|
||||
"model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
|
||||
"model.layers.{bid}.feed_forward.experts.up_proj", # llama4
|
||||
"encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
|
||||
"model.layers.{bid}.block_sparse_moe.experts.up", # smallthinker
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_UP_SHEXP: (
|
||||
@@ -401,6 +414,8 @@ class TensorNameMap:
|
||||
"model.layers.{bid}.residual_mlp.w1", # arctic
|
||||
"transformer.h.{bid}.mlp.c_fc_0", # exaone
|
||||
"model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
|
||||
"model.layers.{bid}.block_sparse_moe.gate", # smallthinker
|
||||
"model.transformer.blocks.{bid}.ff_proj", # llada
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_EXP: (
|
||||
@@ -410,6 +425,7 @@ class TensorNameMap:
|
||||
"model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged) ernie4.5-moe
|
||||
"model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
|
||||
"model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
|
||||
"model.layers.{bid}.block_sparse_moe.experts.gate", # smallthinker
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_SHEXP: (
|
||||
@@ -448,6 +464,8 @@ class TensorNameMap:
|
||||
"model.layers.h.{bid}.mlp.c_proj", # exaone
|
||||
"model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid
|
||||
"transformer_encoder.{bid}.ffn.w3", # neobert
|
||||
"model.layers.{bid}.block_sparse_moe.down", # smallthinker
|
||||
"model.transformer.blocks.{bid}.ff_out", # llada
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_DOWN_EXP: (
|
||||
@@ -459,6 +477,7 @@ class TensorNameMap:
|
||||
"model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
|
||||
"model.layers.{bid}.feed_forward.experts.down_proj", # llama4
|
||||
"encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
|
||||
"model.layers.{bid}.block_sparse_moe.experts.down", # smallthinker
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_DOWN_SHEXP: (
|
||||
@@ -597,6 +616,7 @@ class TensorNameMap:
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_DT_NORM: (
|
||||
"model.layers.layers.{bid}.mixer.dt_norm.weight", # plamo2
|
||||
"model.layers.{bid}.mamba.dt_layernorm", # jamba
|
||||
),
|
||||
|
||||
@@ -626,10 +646,6 @@ class TensorNameMap:
|
||||
"model.layers.layers.{bid}.mixer.D", # plamo2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_DT_NORM: (
|
||||
"model.layers.layers.{bid}.mixer.dt_norm.weight", # plamo2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_NORM: (
|
||||
"model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid
|
||||
"backbone.layers.{bid}.mixer.norm", # mamba2
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from enum import Enum
|
||||
import re
|
||||
import logging
|
||||
import json
|
||||
@@ -12,6 +13,25 @@ try:
|
||||
except ImportError:
|
||||
SentencePieceProcessor = None
|
||||
|
||||
try:
|
||||
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
|
||||
from mistral_common.tokens.tokenizers.tekken import Tekkenizer
|
||||
from mistral_common.tokens.tokenizers.utils import (
|
||||
_filter_valid_tokenizer_files,
|
||||
)
|
||||
from mistral_common.tokens.tokenizers.sentencepiece import (
|
||||
SentencePieceTokenizer,
|
||||
)
|
||||
except ImportError:
|
||||
_mistral_common_installed = False
|
||||
MistralTokenizer = None
|
||||
Tekkenizer = None
|
||||
SentencePieceTokenizer = None
|
||||
_filter_valid_tokenizer_files = None
|
||||
else:
|
||||
_mistral_common_installed = True
|
||||
|
||||
|
||||
import gguf
|
||||
|
||||
from .gguf_writer import GGUFWriter
|
||||
@@ -592,3 +612,262 @@ class LlamaHfVocab(Vocab):
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"<LlamaHfVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
||||
|
||||
|
||||
class MistralTokenizerType(str, Enum):
|
||||
spm = "spm"
|
||||
tekken = "tekken"
|
||||
|
||||
|
||||
# Copied from Transformers (Apache 2.0)
|
||||
# https://github.com/huggingface/transformers/blob/main/src/transformers/convert_slow_tokenizer.py#L1544
|
||||
|
||||
def bytes_to_unicode() -> dict[int, str]:
|
||||
"""
|
||||
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
|
||||
characters the bpe code barfs on.
|
||||
|
||||
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
|
||||
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
|
||||
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
|
||||
tables between utf-8 bytes and unicode strings.
|
||||
"""
|
||||
bs = (
|
||||
list(range(ord("!"), ord("~") + 1))
|
||||
+ list(range(ord("¡"), ord("¬") + 1))
|
||||
+ list(range(ord("®"), ord("ÿ") + 1))
|
||||
)
|
||||
cs = bs[:]
|
||||
n = 0
|
||||
for b in range(2**8):
|
||||
if b not in bs:
|
||||
bs.append(b)
|
||||
cs.append(2**8 + n)
|
||||
n += 1
|
||||
cs_str = [chr(n) for n in cs]
|
||||
return dict(zip(bs, cs_str))
|
||||
|
||||
|
||||
class MistralVocab(Vocab):
|
||||
tokenizer_model = "mistral"
|
||||
name = "mistral"
|
||||
|
||||
added_tokens_dict: dict[str, int] = {}
|
||||
added_tokens_list: list[str] = []
|
||||
|
||||
def __init__(self, base_path: Path):
|
||||
if not _mistral_common_installed:
|
||||
raise ImportError(
|
||||
"To use MistralVocab, please install the `mistral-common` package. "
|
||||
"You can install it with `pip install mistral-common`."
|
||||
)
|
||||
assert _filter_valid_tokenizer_files is not None, "mistral_common is not installed"
|
||||
assert MistralTokenizer is not None, "mistral_common is not installed"
|
||||
assert Tekkenizer is not None, "mistral_common is not installed"
|
||||
|
||||
logger.info(f"Loading Mistral tokenizer from {base_path}")
|
||||
|
||||
# Find the tokenizer files
|
||||
all_files = [f.as_posix() for f in base_path.glob("**/*") if f.is_file()]
|
||||
valid_tokenizer_files = _filter_valid_tokenizer_files(all_files)
|
||||
|
||||
if len(valid_tokenizer_files) == 0:
|
||||
raise ValueError(f"No tokenizer file found in the directory: {base_path}")
|
||||
# If there are multiple tokenizer files, we use tekken.json if it exists, otherwise the versioned one.
|
||||
if len(valid_tokenizer_files) > 1:
|
||||
if "tekken.json" in valid_tokenizer_files:
|
||||
tokenizer_file = "tekken.json"
|
||||
else:
|
||||
tokenizer_file = sorted(valid_tokenizer_files)[-1]
|
||||
logger.warning(
|
||||
f"Multiple tokenizer files found in {base_path}. Using {tokenizer_file}"
|
||||
)
|
||||
else:
|
||||
tokenizer_file = valid_tokenizer_files[0]
|
||||
|
||||
self.tokenizer = MistralTokenizer.from_file(
|
||||
base_path / tokenizer_file
|
||||
).instruct_tokenizer.tokenizer
|
||||
self.tokenizer_type = (
|
||||
MistralTokenizerType.tekken
|
||||
if isinstance(self.tokenizer, Tekkenizer)
|
||||
else MistralTokenizerType.spm
|
||||
)
|
||||
self.vocab_size = self.tokenizer.n_words
|
||||
self.fname_tokenizer = base_path / tokenizer_file
|
||||
self._name = (
|
||||
"mistral-" + self.tokenizer_type.value + "-" + self.tokenizer.version
|
||||
)
|
||||
|
||||
@property
|
||||
def tokenizer_name(self) -> str:
|
||||
return self._name
|
||||
|
||||
@property
|
||||
def gguf_tokenizer_model(self) -> str:
|
||||
return "llama" if self.tokenizer_type == MistralTokenizerType.spm else "gpt2"
|
||||
|
||||
def _sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
assert SentencePieceTokenizer is not None, "mistral_common is not installed"
|
||||
assert isinstance(self.tokenizer, SentencePieceTokenizer), (
|
||||
f"Expected SentencePieceTokenizer, got {type(self.tokenizer)}"
|
||||
)
|
||||
|
||||
for i in range(self.tokenizer._model.vocab_size()):
|
||||
piece = self.tokenizer._model.IdToPiece(i)
|
||||
text = piece.encode("utf-8")
|
||||
score: float = self.tokenizer._model.GetScore(i)
|
||||
|
||||
toktype = gguf.TokenType.NORMAL
|
||||
if self.tokenizer._model.IsUnknown(i):
|
||||
toktype = gguf.TokenType.UNKNOWN
|
||||
if self.tokenizer._model.IsControl(i):
|
||||
toktype = gguf.TokenType.CONTROL
|
||||
|
||||
if self.tokenizer._model.IsUnused(i):
|
||||
toktype = gguf.TokenType.UNUSED
|
||||
if self.tokenizer._model.IsByte(i):
|
||||
toktype = gguf.TokenType.BYTE
|
||||
|
||||
yield text, score, toktype
|
||||
|
||||
def _tekken_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
assert Tekkenizer is not None, "mistral_common is not installed"
|
||||
assert isinstance(self.tokenizer, Tekkenizer), (
|
||||
f"Expected Tekkenizer, got {type(self.tokenizer)}"
|
||||
)
|
||||
|
||||
byte_encoder = bytes_to_unicode()
|
||||
for token_id in range(self.tokenizer.num_special_tokens):
|
||||
yield (
|
||||
self.tokenizer.id_to_piece(token_id).encode("utf-8"),
|
||||
0,
|
||||
gguf.TokenType.CONTROL
|
||||
)
|
||||
for token in self.tokenizer._tekken_token2id_nospecial:
|
||||
yield (
|
||||
self.token_bytes_to_string(token, byte_encoder).encode("utf-8"),
|
||||
0,
|
||||
gguf.TokenType.NORMAL,
|
||||
)
|
||||
|
||||
def get_token_id(self, token: str) -> int:
|
||||
assert SentencePieceTokenizer is not None and Tekkenizer is not None, "mistral_common is not installed"
|
||||
if self.tokenizer_type == MistralTokenizerType.spm:
|
||||
assert isinstance(self.tokenizer, SentencePieceTokenizer)
|
||||
return self.tokenizer._vocab.index(token)
|
||||
elif self.tokenizer_type == MistralTokenizerType.tekken:
|
||||
assert isinstance(self.tokenizer, Tekkenizer)
|
||||
return (
|
||||
self.tokenizer._vocab.index(token) + self.tokenizer.num_special_tokens
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unknown tokenizer type: {self.tokenizer_type}")
|
||||
|
||||
@property
|
||||
def bos_id(self) -> int:
|
||||
return self.tokenizer.bos_id
|
||||
|
||||
@property
|
||||
def eos_id(self) -> int:
|
||||
return self.tokenizer.eos_id
|
||||
|
||||
@property
|
||||
def pad_id(self) -> int:
|
||||
if self.tokenizer.pad_id == -1:
|
||||
return self.eos_id
|
||||
return self.tokenizer.pad_id
|
||||
|
||||
@property
|
||||
def unk_id(self) -> int:
|
||||
return self.tokenizer.unk_id
|
||||
|
||||
@property
|
||||
def bos_token(self) -> str:
|
||||
return self.tokenizer.id_to_piece(self.tokenizer.bos_id)
|
||||
|
||||
@property
|
||||
def eos_token(self) -> str:
|
||||
return self.tokenizer.id_to_piece(self.tokenizer.eos_id)
|
||||
|
||||
@property
|
||||
def pad_token(self) -> str:
|
||||
return self.tokenizer.id_to_piece(self.tokenizer.pad_id)
|
||||
|
||||
@property
|
||||
def unk_token(self) -> str:
|
||||
return self.tokenizer.id_to_piece(self.tokenizer.unk_id)
|
||||
|
||||
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
if self.tokenizer_type == MistralTokenizerType.spm:
|
||||
yield from self._sentencepiece_tokens()
|
||||
|
||||
elif self.tokenizer_type == MistralTokenizerType.tekken:
|
||||
yield from self._tekken_tokens()
|
||||
|
||||
else:
|
||||
raise ValueError(f"Unknown tokenizer type: {self.tokenizer_type}")
|
||||
|
||||
@staticmethod
|
||||
def token_bytes_to_string(b, byte_encoder):
|
||||
return "".join([byte_encoder[ord(char)] for char in b.decode("latin-1")])
|
||||
|
||||
def extract_vocab_merges_from_model(self):
|
||||
# Adapted from Transformers (Apache 2.0)
|
||||
# https://github.com/huggingface/transformers/blob/main/src/transformers/convert_slow_tokenizer.py
|
||||
assert Tekkenizer is not None and isinstance(self.tokenizer, Tekkenizer), (
|
||||
f"Expected Tekkenizer, got {type(self.tokenizer)}"
|
||||
)
|
||||
mergeable_ranks = self.tokenizer._model._mergeable_ranks
|
||||
token_bytes_map = {
|
||||
rank: token_bytes for token_bytes, rank in mergeable_ranks.items()
|
||||
}
|
||||
merge_pairs = []
|
||||
|
||||
# Sort vocab by rank to ensure correct merge order
|
||||
for i in range(256, self.vocab_size - self.tokenizer.num_special_tokens):
|
||||
merged_token = token_bytes_map[i]
|
||||
local = []
|
||||
for j in range(1, len(merged_token)):
|
||||
left = merged_token[:j]
|
||||
right = merged_token[j:]
|
||||
if (
|
||||
left in mergeable_ranks
|
||||
and right in mergeable_ranks
|
||||
and (left + right) in mergeable_ranks
|
||||
):
|
||||
local.append((left, right, i))
|
||||
if not local:
|
||||
raise ValueError(
|
||||
f"Could not find valid merge for token at rank {i}: {merged_token.decode('latin-1')}"
|
||||
)
|
||||
local = sorted(
|
||||
local,
|
||||
key=lambda x: (mergeable_ranks[x[0]], mergeable_ranks[x[1]]),
|
||||
reverse=False,
|
||||
)
|
||||
merge_pairs.extend(local)
|
||||
merge_pairs = sorted(merge_pairs, key=lambda val: val[2], reverse=False)
|
||||
|
||||
byte_encoder = bytes_to_unicode()
|
||||
|
||||
decoded_merge_pairs = [
|
||||
[
|
||||
self.token_bytes_to_string(val[0], byte_encoder),
|
||||
self.token_bytes_to_string(val[1], byte_encoder),
|
||||
]
|
||||
for val in merge_pairs
|
||||
]
|
||||
|
||||
merges = [
|
||||
" ".join(
|
||||
[
|
||||
# ensure the spaces are properly encoded
|
||||
"".join(chr(ord(c) + 256) if c == " " else c for c in part)
|
||||
for part in pair
|
||||
]
|
||||
)
|
||||
for pair in decoded_merge_pairs
|
||||
]
|
||||
|
||||
return merges
|
||||
|
||||
@@ -284,10 +284,11 @@ extern "C" {
|
||||
const struct llama_model_kv_override * kv_overrides;
|
||||
|
||||
// Keep the booleans together to avoid misalignment during copy-by-value.
|
||||
bool vocab_only; // only load the vocabulary, no weights
|
||||
bool use_mmap; // use mmap if possible
|
||||
bool use_mlock; // force system to keep model in RAM
|
||||
bool check_tensors; // validate model tensor data
|
||||
bool vocab_only; // only load the vocabulary, no weights
|
||||
bool use_mmap; // use mmap if possible
|
||||
bool use_mlock; // force system to keep model in RAM
|
||||
bool check_tensors; // validate model tensor data
|
||||
bool use_extra_bufts; // use extra buffer types (used for weight repacking)
|
||||
};
|
||||
|
||||
// NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
|
||||
@@ -537,6 +538,9 @@ extern "C" {
|
||||
// Returns true if the model is recurrent (like Mamba, RWKV, etc.)
|
||||
LLAMA_API bool llama_model_is_recurrent(const struct llama_model * model);
|
||||
|
||||
// Returns true if the model is diffusion-based (like LLaDA, Dream, etc.)
|
||||
LLAMA_API bool llama_model_is_diffusion(const struct llama_model * model);
|
||||
|
||||
// Returns 0 on success
|
||||
LLAMA_API uint32_t llama_model_quantize(
|
||||
const char * fname_inp,
|
||||
|
||||
105
models/templates/unsloth-mistral-Devstral-Small-2507.jinja
Normal file
105
models/templates/unsloth-mistral-Devstral-Small-2507.jinja
Normal file
File diff suppressed because one or more lines are too long
@@ -1,3 +1,5 @@
|
||||
mistral-common>=1.8.3
|
||||
|
||||
-r ./requirements-convert_legacy_llama.txt
|
||||
--extra-index-url https://download.pytorch.org/whl/cpu
|
||||
torch~=2.2.1; platform_machine != "s390x"
|
||||
|
||||
@@ -1,3 +1,3 @@
|
||||
docstring_parser~=0.15
|
||||
pydantic~=2.6.3
|
||||
pydantic~=2.11.7
|
||||
requests
|
||||
|
||||
@@ -1,19 +1,41 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
if [ $# -lt 2 ]; then
|
||||
echo "usage: ./scripts/compare-commits.sh <commit1> <commit2> [additional llama-bench arguments]"
|
||||
echo "usage: ./scripts/compare-commits.sh <commit1> <commit2> [tool] [additional arguments]"
|
||||
echo " tool: 'llama-bench' (default) or 'test-backend-ops'"
|
||||
echo " additional arguments: passed to the selected tool"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
set -e
|
||||
set -x
|
||||
|
||||
# Parse arguments
|
||||
commit1=$1
|
||||
commit2=$2
|
||||
tool=${3:-llama-bench}
|
||||
additional_args="${@:4}"
|
||||
|
||||
# Validate tool argument
|
||||
if [ "$tool" != "llama-bench" ] && [ "$tool" != "test-backend-ops" ]; then
|
||||
echo "Error: tool must be 'llama-bench' or 'test-backend-ops'"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# verify at the start that the compare script has all the necessary dependencies installed
|
||||
./scripts/compare-llama-bench.py --check
|
||||
|
||||
bench_args="${@:3}"
|
||||
if [ "$tool" = "llama-bench" ]; then
|
||||
db_file="llama-bench.sqlite"
|
||||
target="llama-bench"
|
||||
run_args="-o sql -oe md $additional_args"
|
||||
else # test-backend-ops
|
||||
db_file="test-backend-ops.sqlite"
|
||||
target="test-backend-ops"
|
||||
run_args="perf --output sql $additional_args"
|
||||
fi
|
||||
|
||||
rm -f llama-bench.sqlite > /dev/null
|
||||
rm -f "$db_file" > /dev/null
|
||||
|
||||
# to test a backend, call the script with the corresponding environment variable (e.g. GGML_CUDA=1 ./scripts/compare-commits.sh ...)
|
||||
if [ -n "$GGML_CUDA" ]; then
|
||||
@@ -25,14 +47,14 @@ dir="build-bench"
|
||||
function run {
|
||||
rm -fr ${dir} > /dev/null
|
||||
cmake -B ${dir} -S . ${CMAKE_OPTS} > /dev/null
|
||||
cmake --build ${dir} -t llama-bench > /dev/null
|
||||
${dir}/bin/llama-bench -o sql -oe md $bench_args | sqlite3 llama-bench.sqlite
|
||||
cmake --build ${dir} -t $target -j $(nproc) > /dev/null
|
||||
${dir}/bin/$target $run_args | sqlite3 "$db_file"
|
||||
}
|
||||
|
||||
git checkout $1 > /dev/null
|
||||
git checkout $commit1 > /dev/null
|
||||
run
|
||||
|
||||
git checkout $2 > /dev/null
|
||||
git checkout $commit2 > /dev/null
|
||||
run
|
||||
|
||||
./scripts/compare-llama-bench.py -b $1 -c $2
|
||||
./scripts/compare-llama-bench.py -b $commit1 -c $commit2 --tool $tool -i "$db_file"
|
||||
|
||||
@@ -1,16 +1,16 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import logging
|
||||
import argparse
|
||||
import heapq
|
||||
import sys
|
||||
import os
|
||||
from glob import glob
|
||||
import sqlite3
|
||||
import json
|
||||
import csv
|
||||
from typing import Optional, Union
|
||||
import heapq
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import sqlite3
|
||||
import sys
|
||||
from collections.abc import Iterator, Sequence
|
||||
from glob import glob
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
try:
|
||||
import git
|
||||
@@ -23,7 +23,7 @@ except ImportError as e:
|
||||
logger = logging.getLogger("compare-llama-bench")
|
||||
|
||||
# All llama-bench SQL fields
|
||||
DB_FIELDS = [
|
||||
LLAMA_BENCH_DB_FIELDS = [
|
||||
"build_commit", "build_number", "cpu_info", "gpu_info", "backends", "model_filename",
|
||||
"model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "n_threads",
|
||||
"cpu_mask", "cpu_strict", "poll", "type_k", "type_v", "n_gpu_layers",
|
||||
@@ -33,7 +33,7 @@ DB_FIELDS = [
|
||||
"test_time", "avg_ns", "stddev_ns", "avg_ts", "stddev_ts",
|
||||
]
|
||||
|
||||
DB_TYPES = [
|
||||
LLAMA_BENCH_DB_TYPES = [
|
||||
"TEXT", "INTEGER", "TEXT", "TEXT", "TEXT", "TEXT",
|
||||
"TEXT", "INTEGER", "INTEGER", "INTEGER", "INTEGER", "INTEGER",
|
||||
"TEXT", "INTEGER", "INTEGER", "TEXT", "TEXT", "INTEGER",
|
||||
@@ -42,20 +42,41 @@ DB_TYPES = [
|
||||
"INTEGER", "INTEGER", "INTEGER", "INTEGER", "INTEGER", "INTEGER",
|
||||
"TEXT", "INTEGER", "INTEGER", "REAL", "REAL",
|
||||
]
|
||||
assert len(DB_FIELDS) == len(DB_TYPES)
|
||||
|
||||
# Properties by which to differentiate results per commit:
|
||||
KEY_PROPERTIES = [
|
||||
# All test-backend-ops SQL fields
|
||||
TEST_BACKEND_OPS_DB_FIELDS = [
|
||||
"test_time", "build_commit", "backend_name", "op_name", "op_params", "test_mode",
|
||||
"supported", "passed", "error_message", "time_us", "flops", "bandwidth_gb_s",
|
||||
"memory_kb", "n_runs"
|
||||
]
|
||||
|
||||
TEST_BACKEND_OPS_DB_TYPES = [
|
||||
"TEXT", "TEXT", "TEXT", "TEXT", "TEXT", "TEXT",
|
||||
"INTEGER", "INTEGER", "TEXT", "REAL", "REAL", "REAL",
|
||||
"INTEGER", "INTEGER"
|
||||
]
|
||||
|
||||
assert len(LLAMA_BENCH_DB_FIELDS) == len(LLAMA_BENCH_DB_TYPES)
|
||||
assert len(TEST_BACKEND_OPS_DB_FIELDS) == len(TEST_BACKEND_OPS_DB_TYPES)
|
||||
|
||||
# Properties by which to differentiate results per commit for llama-bench:
|
||||
LLAMA_BENCH_KEY_PROPERTIES = [
|
||||
"cpu_info", "gpu_info", "backends", "n_gpu_layers", "tensor_buft_overrides", "model_filename", "model_type",
|
||||
"n_batch", "n_ubatch", "embeddings", "cpu_mask", "cpu_strict", "poll", "n_threads", "type_k", "type_v",
|
||||
"use_mmap", "no_kv_offload", "split_mode", "main_gpu", "tensor_split", "flash_attn", "n_prompt", "n_gen", "n_depth"
|
||||
]
|
||||
|
||||
# Properties that are boolean and are converted to Yes/No for the table:
|
||||
BOOL_PROPERTIES = ["embeddings", "cpu_strict", "use_mmap", "no_kv_offload", "flash_attn"]
|
||||
# Properties by which to differentiate results per commit for test-backend-ops:
|
||||
TEST_BACKEND_OPS_KEY_PROPERTIES = [
|
||||
"backend_name", "op_name", "op_params", "test_mode"
|
||||
]
|
||||
|
||||
# Header names for the table:
|
||||
PRETTY_NAMES = {
|
||||
# Properties that are boolean and are converted to Yes/No for the table:
|
||||
LLAMA_BENCH_BOOL_PROPERTIES = ["embeddings", "cpu_strict", "use_mmap", "no_kv_offload", "flash_attn"]
|
||||
TEST_BACKEND_OPS_BOOL_PROPERTIES = ["supported", "passed"]
|
||||
|
||||
# Header names for the table (llama-bench):
|
||||
LLAMA_BENCH_PRETTY_NAMES = {
|
||||
"cpu_info": "CPU", "gpu_info": "GPU", "backends": "Backends", "n_gpu_layers": "GPU layers",
|
||||
"tensor_buft_overrides": "Tensor overrides", "model_filename": "File", "model_type": "Model", "model_size": "Model size [GiB]",
|
||||
"model_n_params": "Num. of par.", "n_batch": "Batch size", "n_ubatch": "Microbatch size", "embeddings": "Embeddings",
|
||||
@@ -64,21 +85,42 @@ PRETTY_NAMES = {
|
||||
"flash_attn": "FlashAttention",
|
||||
}
|
||||
|
||||
DEFAULT_SHOW = ["model_type"] # Always show these properties by default.
|
||||
DEFAULT_HIDE = ["model_filename"] # Always hide these properties by default.
|
||||
# Header names for the table (test-backend-ops):
|
||||
TEST_BACKEND_OPS_PRETTY_NAMES = {
|
||||
"backend_name": "Backend", "op_name": "GGML op", "op_params": "Op parameters", "test_mode": "Mode",
|
||||
"supported": "Supported", "passed": "Passed", "error_message": "Error",
|
||||
"flops": "FLOPS", "bandwidth_gb_s": "Bandwidth (GB/s)", "memory_kb": "Memory (KB)", "n_runs": "Runs"
|
||||
}
|
||||
|
||||
DEFAULT_SHOW_LLAMA_BENCH = ["model_type"] # Always show these properties by default.
|
||||
DEFAULT_HIDE_LLAMA_BENCH = ["model_filename"] # Always hide these properties by default.
|
||||
|
||||
DEFAULT_SHOW_TEST_BACKEND_OPS = ["backend_name", "op_name"] # Always show these properties by default.
|
||||
DEFAULT_HIDE_TEST_BACKEND_OPS = ["error_message"] # Always hide these properties by default.
|
||||
|
||||
GPU_NAME_STRIP = ["NVIDIA GeForce ", "Tesla ", "AMD Radeon "] # Strip prefixes for smaller tables.
|
||||
MODEL_SUFFIX_REPLACE = {" - Small": "_S", " - Medium": "_M", " - Large": "_L"}
|
||||
|
||||
DESCRIPTION = """Creates tables from llama-bench data written to multiple JSON/CSV files, a single JSONL file or SQLite database. Example usage (Linux):
|
||||
DESCRIPTION = """Creates tables from llama-bench or test-backend-ops data written to multiple JSON/CSV files, a single JSONL file or SQLite database. Example usage (Linux):
|
||||
|
||||
For llama-bench:
|
||||
$ git checkout master
|
||||
$ make clean && make llama-bench
|
||||
$ cmake -B ${BUILD_DIR} ${CMAKE_OPTS} && cmake --build ${BUILD_DIR} -t llama-bench -j $(nproc)
|
||||
$ ./llama-bench -o sql | sqlite3 llama-bench.sqlite
|
||||
$ git checkout some_branch
|
||||
$ make clean && make llama-bench
|
||||
$ cmake -B ${BUILD_DIR} ${CMAKE_OPTS} && cmake --build ${BUILD_DIR} -t llama-bench -j $(nproc)
|
||||
$ ./llama-bench -o sql | sqlite3 llama-bench.sqlite
|
||||
$ ./scripts/compare-llama-bench.py
|
||||
|
||||
For test-backend-ops:
|
||||
$ git checkout master
|
||||
$ cmake -B ${BUILD_DIR} ${CMAKE_OPTS} && cmake --build ${BUILD_DIR} -t test-backend-ops -j $(nproc)
|
||||
$ ./test-backend-ops perf --output sql | sqlite3 test-backend-ops.sqlite
|
||||
$ git checkout some_branch
|
||||
$ cmake -B ${BUILD_DIR} ${CMAKE_OPTS} && cmake --build ${BUILD_DIR} -t test-backend-ops -j $(nproc)
|
||||
$ ./test-backend-ops perf --output sql | sqlite3 test-backend-ops.sqlite
|
||||
$ ./scripts/compare-llama-bench.py --tool test-backend-ops -i test-backend-ops.sqlite
|
||||
|
||||
Performance numbers from multiple runs per commit are averaged WITHOUT being weighted by the --repetitions parameter of llama-bench.
|
||||
"""
|
||||
|
||||
@@ -96,6 +138,13 @@ help_c = (
|
||||
"Defaults to the non-master commit for which llama-bench was run most recently."
|
||||
)
|
||||
parser.add_argument("-c", "--compare", help=help_c)
|
||||
help_t = (
|
||||
"The tool whose data is being compared. "
|
||||
"Either 'llama-bench' or 'test-backend-ops'. "
|
||||
"This determines the database schema and comparison logic used. "
|
||||
"If left unspecified, try to determine from the input file."
|
||||
)
|
||||
parser.add_argument("-t", "--tool", help=help_t, default=None, choices=[None, "llama-bench", "test-backend-ops"])
|
||||
help_i = (
|
||||
"JSON/JSONL/SQLite/CSV files for comparing commits. "
|
||||
"Specify multiple times to use multiple input files (JSON/CSV only). "
|
||||
@@ -114,7 +163,8 @@ parser.add_argument("-o", "--output", help=help_o, default="pipe")
|
||||
help_s = (
|
||||
"Columns to add to the table. "
|
||||
"Accepts a comma-separated list of values. "
|
||||
f"Legal values: {', '.join(KEY_PROPERTIES[:-3])}. "
|
||||
f"Legal values for test-backend-ops: {', '.join(TEST_BACKEND_OPS_KEY_PROPERTIES)}. "
|
||||
f"Legal values for llama-bench: {', '.join(LLAMA_BENCH_KEY_PROPERTIES[:-3])}. "
|
||||
"Defaults to model name (model_type) and CPU and/or GPU name (cpu_info, gpu_info) "
|
||||
"plus any column where not all data points are the same. "
|
||||
"If the columns are manually specified, then the results for each unique combination of the "
|
||||
@@ -142,8 +192,14 @@ if unknown_args:
|
||||
sys.exit(1)
|
||||
|
||||
input_file = known_args.input
|
||||
if not input_file and os.path.exists("./llama-bench.sqlite"):
|
||||
input_file = ["llama-bench.sqlite"]
|
||||
tool = known_args.tool
|
||||
|
||||
if not input_file:
|
||||
if tool == "llama-bench" and os.path.exists("./llama-bench.sqlite"):
|
||||
input_file = ["llama-bench.sqlite"]
|
||||
elif tool == "test-backend-ops" and os.path.exists("./test-backend-ops.sqlite"):
|
||||
input_file = ["test-backend-ops.sqlite"]
|
||||
|
||||
if not input_file:
|
||||
sqlite_files = glob("*.sqlite")
|
||||
if len(sqlite_files) == 1:
|
||||
@@ -161,14 +217,23 @@ class LlamaBenchData:
|
||||
build_len_max: int
|
||||
build_len: int = 8
|
||||
builds: list[str] = []
|
||||
check_keys = set(KEY_PROPERTIES + ["build_commit", "test_time", "avg_ts"])
|
||||
tool: str = "llama-bench" # Tool type: "llama-bench" or "test-backend-ops"
|
||||
|
||||
def __init__(self):
|
||||
def __init__(self, tool: str = "llama-bench"):
|
||||
self.tool = tool
|
||||
try:
|
||||
self.repo = git.Repo(".", search_parent_directories=True)
|
||||
except git.InvalidGitRepositoryError:
|
||||
self.repo = None
|
||||
|
||||
# Set schema-specific properties based on tool
|
||||
if self.tool == "llama-bench":
|
||||
self.check_keys = set(LLAMA_BENCH_KEY_PROPERTIES + ["build_commit", "test_time", "avg_ts"])
|
||||
elif self.tool == "test-backend-ops":
|
||||
self.check_keys = set(TEST_BACKEND_OPS_KEY_PROPERTIES + ["build_commit", "test_time"])
|
||||
else:
|
||||
assert False
|
||||
|
||||
def _builds_init(self):
|
||||
self.build_len = self.build_len_min
|
||||
|
||||
@@ -252,52 +317,121 @@ class LlamaBenchData:
|
||||
class LlamaBenchDataSQLite3(LlamaBenchData):
|
||||
connection: sqlite3.Connection
|
||||
cursor: sqlite3.Cursor
|
||||
table_name: str
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
def __init__(self, tool: str = "llama-bench"):
|
||||
super().__init__(tool)
|
||||
self.connection = sqlite3.connect(":memory:")
|
||||
self.cursor = self.connection.cursor()
|
||||
self.cursor.execute(f"CREATE TABLE test({', '.join(' '.join(x) for x in zip(DB_FIELDS, DB_TYPES))});")
|
||||
|
||||
# Set table name and schema based on tool
|
||||
if self.tool == "llama-bench":
|
||||
self.table_name = "test"
|
||||
db_fields = LLAMA_BENCH_DB_FIELDS
|
||||
db_types = LLAMA_BENCH_DB_TYPES
|
||||
elif self.tool == "test-backend-ops":
|
||||
self.table_name = "test_backend_ops"
|
||||
db_fields = TEST_BACKEND_OPS_DB_FIELDS
|
||||
db_types = TEST_BACKEND_OPS_DB_TYPES
|
||||
else:
|
||||
assert False
|
||||
|
||||
self.cursor.execute(f"CREATE TABLE {self.table_name}({', '.join(' '.join(x) for x in zip(db_fields, db_types))});")
|
||||
|
||||
def _builds_init(self):
|
||||
if self.connection:
|
||||
self.build_len_min = self.cursor.execute("SELECT MIN(LENGTH(build_commit)) from test;").fetchone()[0]
|
||||
self.build_len_max = self.cursor.execute("SELECT MAX(LENGTH(build_commit)) from test;").fetchone()[0]
|
||||
self.build_len_min = self.cursor.execute(f"SELECT MIN(LENGTH(build_commit)) from {self.table_name};").fetchone()[0]
|
||||
self.build_len_max = self.cursor.execute(f"SELECT MAX(LENGTH(build_commit)) from {self.table_name};").fetchone()[0]
|
||||
|
||||
if self.build_len_min != self.build_len_max:
|
||||
logger.warning("Data contains commit hashes of differing lengths. It's possible that the wrong commits will be compared. "
|
||||
"Try purging the the database of old commits.")
|
||||
self.cursor.execute(f"UPDATE test SET build_commit = SUBSTRING(build_commit, 1, {self.build_len_min});")
|
||||
self.cursor.execute(f"UPDATE {self.table_name} SET build_commit = SUBSTRING(build_commit, 1, {self.build_len_min});")
|
||||
|
||||
builds = self.cursor.execute("SELECT DISTINCT build_commit FROM test;").fetchall()
|
||||
builds = self.cursor.execute(f"SELECT DISTINCT build_commit FROM {self.table_name};").fetchall()
|
||||
self.builds = list(map(lambda b: b[0], builds)) # list[tuple[str]] -> list[str]
|
||||
super()._builds_init()
|
||||
|
||||
def builds_timestamp(self, reverse: bool = False) -> Union[Iterator[tuple], Sequence[tuple]]:
|
||||
data = self.cursor.execute(
|
||||
"SELECT build_commit, test_time FROM test ORDER BY test_time;").fetchall()
|
||||
f"SELECT build_commit, test_time FROM {self.table_name} ORDER BY test_time;").fetchall()
|
||||
return reversed(data) if reverse else data
|
||||
|
||||
def get_rows(self, properties: list[str], hexsha8_baseline: str, hexsha8_compare: str) -> Sequence[tuple]:
|
||||
if self.tool == "llama-bench":
|
||||
return self._get_rows_llama_bench(properties, hexsha8_baseline, hexsha8_compare)
|
||||
elif self.tool == "test-backend-ops":
|
||||
return self._get_rows_test_backend_ops(properties, hexsha8_baseline, hexsha8_compare)
|
||||
else:
|
||||
assert False
|
||||
|
||||
def _get_rows_llama_bench(self, properties: list[str], hexsha8_baseline: str, hexsha8_compare: str) -> Sequence[tuple]:
|
||||
select_string = ", ".join(
|
||||
[f"tb.{p}" for p in properties] + ["tb.n_prompt", "tb.n_gen", "tb.n_depth", "AVG(tb.avg_ts)", "AVG(tc.avg_ts)"])
|
||||
equal_string = " AND ".join(
|
||||
[f"tb.{p} = tc.{p}" for p in KEY_PROPERTIES] + [
|
||||
[f"tb.{p} = tc.{p}" for p in LLAMA_BENCH_KEY_PROPERTIES] + [
|
||||
f"tb.build_commit = '{hexsha8_baseline}'", f"tc.build_commit = '{hexsha8_compare}'"]
|
||||
)
|
||||
group_order_string = ", ".join([f"tb.{p}" for p in properties] + ["tb.n_gen", "tb.n_prompt", "tb.n_depth"])
|
||||
query = (f"SELECT {select_string} FROM test tb JOIN test tc ON {equal_string} "
|
||||
query = (f"SELECT {select_string} FROM {self.table_name} tb JOIN {self.table_name} tc ON {equal_string} "
|
||||
f"GROUP BY {group_order_string} ORDER BY {group_order_string};")
|
||||
return self.cursor.execute(query).fetchall()
|
||||
|
||||
def _get_rows_test_backend_ops(self, properties: list[str], hexsha8_baseline: str, hexsha8_compare: str) -> Sequence[tuple]:
|
||||
# For test-backend-ops, we compare FLOPS and bandwidth metrics (prioritizing FLOPS over bandwidth)
|
||||
select_string = ", ".join(
|
||||
[f"tb.{p}" for p in properties] + [
|
||||
"AVG(tb.flops)", "AVG(tc.flops)",
|
||||
"AVG(tb.bandwidth_gb_s)", "AVG(tc.bandwidth_gb_s)"
|
||||
])
|
||||
equal_string = " AND ".join(
|
||||
[f"tb.{p} = tc.{p}" for p in TEST_BACKEND_OPS_KEY_PROPERTIES] + [
|
||||
f"tb.build_commit = '{hexsha8_baseline}'", f"tc.build_commit = '{hexsha8_compare}'",
|
||||
"tb.supported = 1", "tc.supported = 1", "tb.passed = 1", "tc.passed = 1"] # Only compare successful tests
|
||||
)
|
||||
group_order_string = ", ".join([f"tb.{p}" for p in properties])
|
||||
query = (f"SELECT {select_string} FROM {self.table_name} tb JOIN {self.table_name} tc ON {equal_string} "
|
||||
f"GROUP BY {group_order_string} ORDER BY {group_order_string};")
|
||||
return self.cursor.execute(query).fetchall()
|
||||
|
||||
|
||||
class LlamaBenchDataSQLite3File(LlamaBenchDataSQLite3):
|
||||
def __init__(self, data_file: str):
|
||||
super().__init__()
|
||||
def __init__(self, data_file: str, tool: Any):
|
||||
super().__init__(tool)
|
||||
|
||||
self.connection.close()
|
||||
self.connection = sqlite3.connect(data_file)
|
||||
self.cursor = self.connection.cursor()
|
||||
|
||||
# Check which table exists in the database
|
||||
tables = self.cursor.execute("SELECT name FROM sqlite_master WHERE type='table';").fetchall()
|
||||
table_names = [table[0] for table in tables]
|
||||
|
||||
# Tool selection logic
|
||||
if tool is None:
|
||||
if "test" in table_names:
|
||||
self.table_name = "test"
|
||||
self.tool = "llama-bench"
|
||||
elif "test_backend_ops" in table_names:
|
||||
self.table_name = "test_backend_ops"
|
||||
self.tool = "test-backend-ops"
|
||||
else:
|
||||
raise RuntimeError(f"No suitable table found in database. Available tables: {table_names}")
|
||||
elif tool == "llama-bench":
|
||||
if "test" in table_names:
|
||||
self.table_name = "test"
|
||||
self.tool = "llama-bench"
|
||||
else:
|
||||
raise RuntimeError(f"Table 'test' not found for tool 'llama-bench'. Available tables: {table_names}")
|
||||
elif tool == "test-backend-ops":
|
||||
if "test_backend_ops" in table_names:
|
||||
self.table_name = "test_backend_ops"
|
||||
self.tool = "test-backend-ops"
|
||||
else:
|
||||
raise RuntimeError(f"Table 'test_backend_ops' not found for tool 'test-backend-ops'. Available tables: {table_names}")
|
||||
else:
|
||||
raise RuntimeError(f"Unknown tool: {tool}")
|
||||
|
||||
self._builds_init()
|
||||
|
||||
@staticmethod
|
||||
@@ -317,20 +451,23 @@ class LlamaBenchDataSQLite3File(LlamaBenchDataSQLite3):
|
||||
|
||||
|
||||
class LlamaBenchDataJSONL(LlamaBenchDataSQLite3):
|
||||
def __init__(self, data_file: str):
|
||||
super().__init__()
|
||||
def __init__(self, data_file: str, tool: str = "llama-bench"):
|
||||
super().__init__(tool)
|
||||
|
||||
# Get the appropriate field list based on tool
|
||||
db_fields = LLAMA_BENCH_DB_FIELDS if tool == "llama-bench" else TEST_BACKEND_OPS_DB_FIELDS
|
||||
|
||||
with open(data_file, "r", encoding="utf-8") as fp:
|
||||
for i, line in enumerate(fp):
|
||||
parsed = json.loads(line)
|
||||
|
||||
for k in parsed.keys() - set(DB_FIELDS):
|
||||
for k in parsed.keys() - set(db_fields):
|
||||
del parsed[k]
|
||||
|
||||
if (missing_keys := self._check_keys(parsed.keys())):
|
||||
raise RuntimeError(f"Missing required data key(s) at line {i + 1}: {', '.join(missing_keys)}")
|
||||
|
||||
self.cursor.execute(f"INSERT INTO test({', '.join(parsed.keys())}) VALUES({', '.join('?' * len(parsed))});", tuple(parsed.values()))
|
||||
self.cursor.execute(f"INSERT INTO {self.table_name}({', '.join(parsed.keys())}) VALUES({', '.join('?' * len(parsed))});", tuple(parsed.values()))
|
||||
|
||||
self._builds_init()
|
||||
|
||||
@@ -349,21 +486,24 @@ class LlamaBenchDataJSONL(LlamaBenchDataSQLite3):
|
||||
|
||||
|
||||
class LlamaBenchDataJSON(LlamaBenchDataSQLite3):
|
||||
def __init__(self, data_files: list[str]):
|
||||
super().__init__()
|
||||
def __init__(self, data_files: list[str], tool: str = "llama-bench"):
|
||||
super().__init__(tool)
|
||||
|
||||
# Get the appropriate field list based on tool
|
||||
db_fields = LLAMA_BENCH_DB_FIELDS if tool == "llama-bench" else TEST_BACKEND_OPS_DB_FIELDS
|
||||
|
||||
for data_file in data_files:
|
||||
with open(data_file, "r", encoding="utf-8") as fp:
|
||||
parsed = json.load(fp)
|
||||
|
||||
for i, entry in enumerate(parsed):
|
||||
for k in entry.keys() - set(DB_FIELDS):
|
||||
for k in entry.keys() - set(db_fields):
|
||||
del entry[k]
|
||||
|
||||
if (missing_keys := self._check_keys(entry.keys())):
|
||||
raise RuntimeError(f"Missing required data key(s) at entry {i + 1}: {', '.join(missing_keys)}")
|
||||
|
||||
self.cursor.execute(f"INSERT INTO test({', '.join(entry.keys())}) VALUES({', '.join('?' * len(entry))});", tuple(entry.values()))
|
||||
self.cursor.execute(f"INSERT INTO {self.table_name}({', '.join(entry.keys())}) VALUES({', '.join('?' * len(entry))});", tuple(entry.values()))
|
||||
|
||||
self._builds_init()
|
||||
|
||||
@@ -384,21 +524,24 @@ class LlamaBenchDataJSON(LlamaBenchDataSQLite3):
|
||||
|
||||
|
||||
class LlamaBenchDataCSV(LlamaBenchDataSQLite3):
|
||||
def __init__(self, data_files: list[str]):
|
||||
super().__init__()
|
||||
def __init__(self, data_files: list[str], tool: str = "llama-bench"):
|
||||
super().__init__(tool)
|
||||
|
||||
# Get the appropriate field list based on tool
|
||||
db_fields = LLAMA_BENCH_DB_FIELDS if tool == "llama-bench" else TEST_BACKEND_OPS_DB_FIELDS
|
||||
|
||||
for data_file in data_files:
|
||||
with open(data_file, "r", encoding="utf-8") as fp:
|
||||
for i, parsed in enumerate(csv.DictReader(fp)):
|
||||
keys = set(parsed.keys())
|
||||
|
||||
for k in keys - set(DB_FIELDS):
|
||||
for k in keys - set(db_fields):
|
||||
del parsed[k]
|
||||
|
||||
if (missing_keys := self._check_keys(keys)):
|
||||
raise RuntimeError(f"Missing required data key(s) at line {i + 1}: {', '.join(missing_keys)}")
|
||||
|
||||
self.cursor.execute(f"INSERT INTO test({', '.join(parsed.keys())}) VALUES({', '.join('?' * len(parsed))});", tuple(parsed.values()))
|
||||
self.cursor.execute(f"INSERT INTO {self.table_name}({', '.join(parsed.keys())}) VALUES({', '.join('?' * len(parsed))});", tuple(parsed.values()))
|
||||
|
||||
self._builds_init()
|
||||
|
||||
@@ -419,21 +562,90 @@ class LlamaBenchDataCSV(LlamaBenchDataSQLite3):
|
||||
return True
|
||||
|
||||
|
||||
def format_flops(flops_value: float) -> str:
|
||||
"""Format FLOPS values with appropriate units for better readability."""
|
||||
if flops_value == 0:
|
||||
return "0.00"
|
||||
|
||||
# Define unit thresholds and names
|
||||
units = [
|
||||
(1e12, "T"), # TeraFLOPS
|
||||
(1e9, "G"), # GigaFLOPS
|
||||
(1e6, "M"), # MegaFLOPS
|
||||
(1e3, "k"), # kiloFLOPS
|
||||
(1, "") # FLOPS
|
||||
]
|
||||
|
||||
for threshold, unit in units:
|
||||
if abs(flops_value) >= threshold:
|
||||
formatted_value = flops_value / threshold
|
||||
if formatted_value >= 100:
|
||||
return f"{formatted_value:.1f}{unit}"
|
||||
else:
|
||||
return f"{formatted_value:.2f}{unit}"
|
||||
|
||||
# Fallback for very small values
|
||||
return f"{flops_value:.2f}"
|
||||
|
||||
|
||||
def format_flops_for_table(flops_value: float, target_unit: str) -> str:
|
||||
"""Format FLOPS values for table display without unit suffix (since unit is in header)."""
|
||||
if flops_value == 0:
|
||||
return "0.00"
|
||||
|
||||
# Define unit thresholds based on target unit
|
||||
unit_divisors = {
|
||||
"TFLOPS": 1e12,
|
||||
"GFLOPS": 1e9,
|
||||
"MFLOPS": 1e6,
|
||||
"kFLOPS": 1e3,
|
||||
"FLOPS": 1
|
||||
}
|
||||
|
||||
divisor = unit_divisors.get(target_unit, 1)
|
||||
formatted_value = flops_value / divisor
|
||||
|
||||
if formatted_value >= 100:
|
||||
return f"{formatted_value:.1f}"
|
||||
else:
|
||||
return f"{formatted_value:.2f}"
|
||||
|
||||
|
||||
def get_flops_unit_name(flops_values: list) -> str:
|
||||
"""Determine the best FLOPS unit name based on the magnitude of values."""
|
||||
if not flops_values or all(v == 0 for v in flops_values):
|
||||
return "FLOPS"
|
||||
|
||||
# Find the maximum absolute value to determine appropriate unit
|
||||
max_flops = max(abs(v) for v in flops_values if v != 0)
|
||||
|
||||
if max_flops >= 1e12:
|
||||
return "TFLOPS"
|
||||
elif max_flops >= 1e9:
|
||||
return "GFLOPS"
|
||||
elif max_flops >= 1e6:
|
||||
return "MFLOPS"
|
||||
elif max_flops >= 1e3:
|
||||
return "kFLOPS"
|
||||
else:
|
||||
return "FLOPS"
|
||||
|
||||
|
||||
bench_data = None
|
||||
if len(input_file) == 1:
|
||||
if LlamaBenchDataSQLite3File.valid_format(input_file[0]):
|
||||
bench_data = LlamaBenchDataSQLite3File(input_file[0])
|
||||
bench_data = LlamaBenchDataSQLite3File(input_file[0], tool)
|
||||
elif LlamaBenchDataJSON.valid_format(input_file):
|
||||
bench_data = LlamaBenchDataJSON(input_file)
|
||||
bench_data = LlamaBenchDataJSON(input_file, tool)
|
||||
elif LlamaBenchDataJSONL.valid_format(input_file[0]):
|
||||
bench_data = LlamaBenchDataJSONL(input_file[0])
|
||||
bench_data = LlamaBenchDataJSONL(input_file[0], tool)
|
||||
elif LlamaBenchDataCSV.valid_format(input_file):
|
||||
bench_data = LlamaBenchDataCSV(input_file)
|
||||
bench_data = LlamaBenchDataCSV(input_file, tool)
|
||||
else:
|
||||
if LlamaBenchDataJSON.valid_format(input_file):
|
||||
bench_data = LlamaBenchDataJSON(input_file)
|
||||
bench_data = LlamaBenchDataJSON(input_file, tool)
|
||||
elif LlamaBenchDataCSV.valid_format(input_file):
|
||||
bench_data = LlamaBenchDataCSV(input_file)
|
||||
bench_data = LlamaBenchDataCSV(input_file, tool)
|
||||
|
||||
if not bench_data:
|
||||
raise RuntimeError("No valid (or some invalid) input files found.")
|
||||
@@ -504,12 +716,29 @@ else:
|
||||
|
||||
name_compare = bench_data.get_commit_name(hexsha8_compare)
|
||||
|
||||
# Get tool-specific configuration
|
||||
if tool == "llama-bench":
|
||||
key_properties = LLAMA_BENCH_KEY_PROPERTIES
|
||||
bool_properties = LLAMA_BENCH_BOOL_PROPERTIES
|
||||
pretty_names = LLAMA_BENCH_PRETTY_NAMES
|
||||
default_show = DEFAULT_SHOW_LLAMA_BENCH
|
||||
default_hide = DEFAULT_HIDE_LLAMA_BENCH
|
||||
elif tool == "test-backend-ops":
|
||||
key_properties = TEST_BACKEND_OPS_KEY_PROPERTIES
|
||||
bool_properties = TEST_BACKEND_OPS_BOOL_PROPERTIES
|
||||
pretty_names = TEST_BACKEND_OPS_PRETTY_NAMES
|
||||
default_show = DEFAULT_SHOW_TEST_BACKEND_OPS
|
||||
default_hide = DEFAULT_HIDE_TEST_BACKEND_OPS
|
||||
else:
|
||||
assert False
|
||||
|
||||
# If the user provided columns to group the results by, use them:
|
||||
if known_args.show is not None:
|
||||
show = known_args.show.split(",")
|
||||
unknown_cols = []
|
||||
for prop in show:
|
||||
if prop not in KEY_PROPERTIES[:-3]: # Last three values are n_prompt, n_gen, n_depth.
|
||||
valid_props = key_properties if tool == "test-backend-ops" else key_properties[:-3] # Exclude n_prompt, n_gen, n_depth for llama-bench
|
||||
if prop not in valid_props:
|
||||
unknown_cols.append(prop)
|
||||
if unknown_cols:
|
||||
logger.error(f"Unknown values for --show: {', '.join(unknown_cols)}")
|
||||
@@ -518,32 +747,54 @@ if known_args.show is not None:
|
||||
rows_show = bench_data.get_rows(show, hexsha8_baseline, hexsha8_compare)
|
||||
# Otherwise, select those columns where the values are not all the same:
|
||||
else:
|
||||
rows_full = bench_data.get_rows(KEY_PROPERTIES, hexsha8_baseline, hexsha8_compare)
|
||||
rows_full = bench_data.get_rows(key_properties, hexsha8_baseline, hexsha8_compare)
|
||||
properties_different = []
|
||||
for i, kp_i in enumerate(KEY_PROPERTIES):
|
||||
if kp_i in DEFAULT_SHOW or kp_i in ["n_prompt", "n_gen", "n_depth"]:
|
||||
continue
|
||||
for row_full in rows_full:
|
||||
if row_full[i] != rows_full[0][i]:
|
||||
properties_different.append(kp_i)
|
||||
break
|
||||
|
||||
if tool == "llama-bench":
|
||||
# For llama-bench, skip n_prompt, n_gen, n_depth from differentiation logic
|
||||
check_properties = [kp for kp in key_properties if kp not in ["n_prompt", "n_gen", "n_depth"]]
|
||||
for i, kp_i in enumerate(key_properties):
|
||||
if kp_i in default_show or kp_i in ["n_prompt", "n_gen", "n_depth"]:
|
||||
continue
|
||||
for row_full in rows_full:
|
||||
if row_full[i] != rows_full[0][i]:
|
||||
properties_different.append(kp_i)
|
||||
break
|
||||
elif tool == "test-backend-ops":
|
||||
# For test-backend-ops, check all key properties
|
||||
for i, kp_i in enumerate(key_properties):
|
||||
if kp_i in default_show:
|
||||
continue
|
||||
for row_full in rows_full:
|
||||
if row_full[i] != rows_full[0][i]:
|
||||
properties_different.append(kp_i)
|
||||
break
|
||||
else:
|
||||
assert False
|
||||
|
||||
show = []
|
||||
# Show CPU and/or GPU by default even if the hardware for all results is the same:
|
||||
if rows_full and "n_gpu_layers" not in properties_different:
|
||||
ngl = int(rows_full[0][KEY_PROPERTIES.index("n_gpu_layers")])
|
||||
|
||||
if ngl != 99 and "cpu_info" not in properties_different:
|
||||
show.append("cpu_info")
|
||||
if tool == "llama-bench":
|
||||
# Show CPU and/or GPU by default even if the hardware for all results is the same:
|
||||
if rows_full and "n_gpu_layers" not in properties_different:
|
||||
ngl = int(rows_full[0][key_properties.index("n_gpu_layers")])
|
||||
|
||||
show += properties_different
|
||||
if ngl != 99 and "cpu_info" not in properties_different:
|
||||
show.append("cpu_info")
|
||||
|
||||
index_default = 0
|
||||
for prop in ["cpu_info", "gpu_info", "n_gpu_layers", "main_gpu"]:
|
||||
if prop in show:
|
||||
index_default += 1
|
||||
show = show[:index_default] + DEFAULT_SHOW + show[index_default:]
|
||||
for prop in DEFAULT_HIDE:
|
||||
show += properties_different
|
||||
|
||||
index_default = 0
|
||||
for prop in ["cpu_info", "gpu_info", "n_gpu_layers", "main_gpu"]:
|
||||
if prop in show:
|
||||
index_default += 1
|
||||
show = show[:index_default] + default_show + show[index_default:]
|
||||
elif tool == "test-backend-ops":
|
||||
show = default_show + properties_different
|
||||
else:
|
||||
assert False
|
||||
|
||||
for prop in default_hide:
|
||||
try:
|
||||
show.remove(prop)
|
||||
except ValueError:
|
||||
@@ -551,7 +802,7 @@ else:
|
||||
|
||||
# Add plot_x parameter to parameters to show if it's not already present:
|
||||
if known_args.plot:
|
||||
for k, v in PRETTY_NAMES.items():
|
||||
for k, v in pretty_names.items():
|
||||
if v == known_args.plot_x and k not in show:
|
||||
show.append(k)
|
||||
break
|
||||
@@ -563,60 +814,120 @@ if not rows_show:
|
||||
sys.exit(1)
|
||||
|
||||
table = []
|
||||
for row in rows_show:
|
||||
n_prompt = int(row[-5])
|
||||
n_gen = int(row[-4])
|
||||
n_depth = int(row[-3])
|
||||
if n_prompt != 0 and n_gen == 0:
|
||||
test_name = f"pp{n_prompt}"
|
||||
elif n_prompt == 0 and n_gen != 0:
|
||||
test_name = f"tg{n_gen}"
|
||||
else:
|
||||
test_name = f"pp{n_prompt}+tg{n_gen}"
|
||||
if n_depth != 0:
|
||||
test_name = f"{test_name}@d{n_depth}"
|
||||
# Regular columns test name avg t/s values Speedup
|
||||
# VVVVVVVVVVVVV VVVVVVVVV VVVVVVVVVVVVVV VVVVVVV
|
||||
table.append(list(row[:-5]) + [test_name] + list(row[-2:]) + [float(row[-1]) / float(row[-2])])
|
||||
primary_metric = "FLOPS" # Default to FLOPS for test-backend-ops
|
||||
|
||||
if tool == "llama-bench":
|
||||
# For llama-bench, create test names and compare avg_ts values
|
||||
for row in rows_show:
|
||||
n_prompt = int(row[-5])
|
||||
n_gen = int(row[-4])
|
||||
n_depth = int(row[-3])
|
||||
if n_prompt != 0 and n_gen == 0:
|
||||
test_name = f"pp{n_prompt}"
|
||||
elif n_prompt == 0 and n_gen != 0:
|
||||
test_name = f"tg{n_gen}"
|
||||
else:
|
||||
test_name = f"pp{n_prompt}+tg{n_gen}"
|
||||
if n_depth != 0:
|
||||
test_name = f"{test_name}@d{n_depth}"
|
||||
# Regular columns test name avg t/s values Speedup
|
||||
# VVVVVVVVVVVVV VVVVVVVVV VVVVVVVVVVVVVV VVVVVVV
|
||||
table.append(list(row[:-5]) + [test_name] + list(row[-2:]) + [float(row[-1]) / float(row[-2])])
|
||||
elif tool == "test-backend-ops":
|
||||
# Determine the primary metric by checking rows until we find one with valid data
|
||||
if rows_show:
|
||||
primary_metric = "FLOPS" # Default to FLOPS
|
||||
flops_values = []
|
||||
|
||||
# Collect all FLOPS values to determine the best unit
|
||||
for sample_row in rows_show:
|
||||
baseline_flops = float(sample_row[-4])
|
||||
compare_flops = float(sample_row[-3])
|
||||
baseline_bandwidth = float(sample_row[-2])
|
||||
|
||||
if baseline_flops > 0:
|
||||
flops_values.extend([baseline_flops, compare_flops])
|
||||
elif baseline_bandwidth > 0 and not flops_values:
|
||||
primary_metric = "Bandwidth (GB/s)"
|
||||
|
||||
# If we have FLOPS data, determine the appropriate unit
|
||||
if flops_values:
|
||||
primary_metric = get_flops_unit_name(flops_values)
|
||||
|
||||
# For test-backend-ops, prioritize FLOPS > bandwidth for comparison
|
||||
for row in rows_show:
|
||||
# Extract metrics: flops, bandwidth_gb_s (baseline and compare)
|
||||
baseline_flops = float(row[-4])
|
||||
compare_flops = float(row[-3])
|
||||
baseline_bandwidth = float(row[-2])
|
||||
compare_bandwidth = float(row[-1])
|
||||
|
||||
# Determine which metric to use for comparison (prioritize FLOPS > bandwidth)
|
||||
if baseline_flops > 0 and compare_flops > 0:
|
||||
# Use FLOPS comparison (higher is better)
|
||||
speedup = compare_flops / baseline_flops
|
||||
baseline_str = format_flops_for_table(baseline_flops, primary_metric)
|
||||
compare_str = format_flops_for_table(compare_flops, primary_metric)
|
||||
elif baseline_bandwidth > 0 and compare_bandwidth > 0:
|
||||
# Use bandwidth comparison (higher is better)
|
||||
speedup = compare_bandwidth / baseline_bandwidth
|
||||
baseline_str = f"{baseline_bandwidth:.2f}"
|
||||
compare_str = f"{compare_bandwidth:.2f}"
|
||||
else:
|
||||
# Fallback if no valid data is available
|
||||
baseline_str = "N/A"
|
||||
compare_str = "N/A"
|
||||
from math import nan
|
||||
speedup = nan
|
||||
|
||||
table.append(list(row[:-4]) + [baseline_str, compare_str, speedup])
|
||||
else:
|
||||
assert False
|
||||
|
||||
# Some a-posteriori fixes to make the table contents prettier:
|
||||
for bool_property in BOOL_PROPERTIES:
|
||||
for bool_property in bool_properties:
|
||||
if bool_property in show:
|
||||
ip = show.index(bool_property)
|
||||
for row_table in table:
|
||||
row_table[ip] = "Yes" if int(row_table[ip]) == 1 else "No"
|
||||
|
||||
if "model_type" in show:
|
||||
ip = show.index("model_type")
|
||||
for (old, new) in MODEL_SUFFIX_REPLACE.items():
|
||||
if tool == "llama-bench":
|
||||
if "model_type" in show:
|
||||
ip = show.index("model_type")
|
||||
for (old, new) in MODEL_SUFFIX_REPLACE.items():
|
||||
for row_table in table:
|
||||
row_table[ip] = row_table[ip].replace(old, new)
|
||||
|
||||
if "model_size" in show:
|
||||
ip = show.index("model_size")
|
||||
for row_table in table:
|
||||
row_table[ip] = row_table[ip].replace(old, new)
|
||||
row_table[ip] = float(row_table[ip]) / 1024 ** 3
|
||||
|
||||
if "model_size" in show:
|
||||
ip = show.index("model_size")
|
||||
for row_table in table:
|
||||
row_table[ip] = float(row_table[ip]) / 1024 ** 3
|
||||
if "gpu_info" in show:
|
||||
ip = show.index("gpu_info")
|
||||
for row_table in table:
|
||||
for gns in GPU_NAME_STRIP:
|
||||
row_table[ip] = row_table[ip].replace(gns, "")
|
||||
|
||||
if "gpu_info" in show:
|
||||
ip = show.index("gpu_info")
|
||||
for row_table in table:
|
||||
for gns in GPU_NAME_STRIP:
|
||||
row_table[ip] = row_table[ip].replace(gns, "")
|
||||
gpu_names = row_table[ip].split(", ")
|
||||
num_gpus = len(gpu_names)
|
||||
all_names_the_same = len(set(gpu_names)) == 1
|
||||
if len(gpu_names) >= 2 and all_names_the_same:
|
||||
row_table[ip] = f"{num_gpus}x {gpu_names[0]}"
|
||||
|
||||
gpu_names = row_table[ip].split(", ")
|
||||
num_gpus = len(gpu_names)
|
||||
all_names_the_same = len(set(gpu_names)) == 1
|
||||
if len(gpu_names) >= 2 and all_names_the_same:
|
||||
row_table[ip] = f"{num_gpus}x {gpu_names[0]}"
|
||||
|
||||
headers = [PRETTY_NAMES[p] for p in show]
|
||||
headers += ["Test", f"t/s {name_baseline}", f"t/s {name_compare}", "Speedup"]
|
||||
headers = [pretty_names.get(p, p) for p in show]
|
||||
if tool == "llama-bench":
|
||||
headers += ["Test", f"t/s {name_baseline}", f"t/s {name_compare}", "Speedup"]
|
||||
elif tool == "test-backend-ops":
|
||||
headers += [f"{primary_metric} {name_baseline}", f"{primary_metric} {name_compare}", "Speedup"]
|
||||
else:
|
||||
assert False
|
||||
|
||||
if known_args.plot:
|
||||
def create_performance_plot(table_data: list[list[str]], headers: list[str], baseline_name: str, compare_name: str, output_file: str, plot_x_param: str, log_scale: bool = False):
|
||||
def create_performance_plot(table_data: list[list[str]], headers: list[str], baseline_name: str, compare_name: str, output_file: str, plot_x_param: str, log_scale: bool = False, tool_type: str = "llama-bench", metric_name: str = "t/s"):
|
||||
try:
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib
|
||||
import matplotlib.pyplot as plt
|
||||
matplotlib.use('Agg')
|
||||
except ImportError as e:
|
||||
logger.error("matplotlib is required for --plot.")
|
||||
@@ -627,7 +938,7 @@ if known_args.plot:
|
||||
plot_x_label = plot_x_param
|
||||
|
||||
if plot_x_param not in ["n_prompt", "n_gen", "n_depth"]:
|
||||
pretty_name = PRETTY_NAMES.get(plot_x_param, plot_x_param)
|
||||
pretty_name = LLAMA_BENCH_PRETTY_NAMES.get(plot_x_param, plot_x_param)
|
||||
if pretty_name in data_headers:
|
||||
plot_x_index = data_headers.index(pretty_name)
|
||||
plot_x_label = pretty_name
|
||||
@@ -746,8 +1057,16 @@ if known_args.plot:
|
||||
|
||||
title = ', '.join(title_parts) if title_parts else "Performance comparison"
|
||||
|
||||
# Determine y-axis label based on tool type
|
||||
if tool_type == "llama-bench":
|
||||
y_label = "Tokens per second (t/s)"
|
||||
elif tool_type == "test-backend-ops":
|
||||
y_label = metric_name
|
||||
else:
|
||||
assert False
|
||||
|
||||
ax.set_xlabel(plot_x_label, fontsize=12, fontweight='bold')
|
||||
ax.set_ylabel('Tokens per second (t/s)', fontsize=12, fontweight='bold')
|
||||
ax.set_ylabel(y_label, fontsize=12, fontweight='bold')
|
||||
ax.set_title(title, fontsize=12, fontweight='bold')
|
||||
ax.legend(loc='best', fontsize=10)
|
||||
ax.grid(True, alpha=0.3)
|
||||
@@ -765,7 +1084,7 @@ if known_args.plot:
|
||||
plt.savefig(output_file, dpi=300, bbox_inches='tight')
|
||||
plt.close()
|
||||
|
||||
create_performance_plot(table, headers, name_baseline, name_compare, known_args.plot, known_args.plot_x, known_args.plot_log_scale)
|
||||
create_performance_plot(table, headers, name_baseline, name_compare, known_args.plot, known_args.plot_x, known_args.plot_log_scale, tool, primary_metric)
|
||||
|
||||
print(tabulate( # noqa: NP100
|
||||
table,
|
||||
|
||||
@@ -32,11 +32,12 @@ def get_prompts_text(dataset_name: str, n_prompts: int) -> Optional[list[str]]:
|
||||
return ret
|
||||
|
||||
|
||||
def get_prompt_lengths_rng(n_prompts: int, prompt_length_min: int, prompt_length_max: int) -> list[int]:
|
||||
def get_prompt_lengths_rng(n_prompts: int, prompt_length_min: int, prompt_length_max: int, seed_offset: int) -> list[int]:
|
||||
assert n_prompts >= 0
|
||||
ret: list[int] = []
|
||||
for i in range(n_prompts):
|
||||
random.seed(13 * i + 0)
|
||||
if seed_offset >= 0:
|
||||
random.seed(3 * (seed_offset + 1000 * i) + 0)
|
||||
ret.append(random.randint(prompt_length_min, prompt_length_max))
|
||||
return ret
|
||||
|
||||
@@ -46,12 +47,20 @@ def get_prompts_rng(prompt_lengths: list[int]) -> list[list[int]]:
|
||||
|
||||
|
||||
def get_server(path_server: str, path_log: Optional[str]) -> dict:
|
||||
logger.info("Starting the llama.cpp server...")
|
||||
hostname: str = os.environ.get("LLAMA_ARG_HOST", "127.0.0.1")
|
||||
port: str = os.environ.get("LLAMA_ARG_PORT", "8080")
|
||||
if os.environ.get("LLAMA_ARG_HOST") is None:
|
||||
logger.info("LLAMA_ARG_HOST not explicitly set, using 127.0.0.1")
|
||||
os.environ["LLAMA_ARG_HOST"] = "127.0.0.1"
|
||||
if os.environ.get("LLAMA_ARG_PORT") is None:
|
||||
logger.info("LLAMA_ARG_PORT not explicitly set, using 8080")
|
||||
os.environ["LLAMA_ARG_PORT"] = "8080"
|
||||
hostname: Optional[str] = os.environ.get("LLAMA_ARG_HOST")
|
||||
port: Optional[str] = os.environ.get("LLAMA_ARG_PORT")
|
||||
assert hostname is not None
|
||||
assert port is not None
|
||||
address: str = f"http://{hostname}:{port}"
|
||||
logger.info(f"Starting the llama.cpp server under {address}...")
|
||||
|
||||
fout = open(path_log, "w") if path_log is not None else subprocess.DEVNULL
|
||||
fout = open(path_log.format(port=port), "w") if path_log is not None else subprocess.DEVNULL
|
||||
process = subprocess.Popen([path_server], stdout=fout, stderr=subprocess.STDOUT)
|
||||
|
||||
n_failures: int = 0
|
||||
@@ -60,7 +69,7 @@ def get_server(path_server: str, path_log: Optional[str]) -> dict:
|
||||
sleep(1.0)
|
||||
exit_code = process.poll()
|
||||
if exit_code is not None:
|
||||
raise RuntimeError(f"llama.cpp server exited unexpectedly with exit code {exit_code}, see {path_log}")
|
||||
raise RuntimeError(f"llama.cpp server exited unexpectedly with exit code {exit_code}{path_log and f', see {path_log.format(port=port)}' or ''}")
|
||||
response = requests.get(f"{address}/health")
|
||||
if response.status_code == 200:
|
||||
break
|
||||
@@ -128,7 +137,7 @@ def send_prompt(data: dict) -> tuple[float, list[float]]:
|
||||
return (t_submit, token_arrival_times)
|
||||
|
||||
|
||||
def benchmark(path_server: str, path_log: Optional[str], prompt_source: str, n_prompts: int, n_predict: int, n_predict_min: int):
|
||||
def benchmark(path_server: str, path_log: Optional[str], prompt_source: str, n_prompts: int, n_predict: int, n_predict_min: int, seed_offset: int):
|
||||
if os.environ.get("LLAMA_ARG_N_PARALLEL") is None:
|
||||
logger.info("LLAMA_ARG_N_PARALLEL not explicitly set, using 32")
|
||||
os.environ["LLAMA_ARG_N_PARALLEL"] = "32"
|
||||
@@ -139,7 +148,7 @@ def benchmark(path_server: str, path_log: Optional[str], prompt_source: str, n_p
|
||||
logger.info("LLAMA_ARG_FLASH_ATTN not explicitly set, using 'true'")
|
||||
os.environ["LLAMA_ARG_FLASH_ATTN"] = "true"
|
||||
|
||||
parallel: int = int(os.environ.get("LLAMA_ARG_N_PARALLEL", 1))
|
||||
parallel: int = int(os.environ.get("LLAMA_ARG_N_PARALLEL")) # type: ignore
|
||||
prompts: Union[None, list[str], list[list[int]]] = get_prompts_text(prompt_source, n_prompts)
|
||||
synthetic_prompts: bool = prompts is None
|
||||
prompt_n = []
|
||||
@@ -151,7 +160,7 @@ def benchmark(path_server: str, path_log: Optional[str], prompt_source: str, n_p
|
||||
prompt_length_min: int = int(prompt_source_split[1])
|
||||
prompt_length_max: int = int(prompt_source_split[2])
|
||||
logger.info("Generating random prompts...")
|
||||
prompt_n = get_prompt_lengths_rng(n_prompts, prompt_length_min, prompt_length_max)
|
||||
prompt_n = get_prompt_lengths_rng(n_prompts, prompt_length_min, prompt_length_max, seed_offset)
|
||||
prompts = get_prompts_rng(prompt_n)
|
||||
else:
|
||||
n_predict_min = n_predict
|
||||
@@ -176,10 +185,11 @@ def benchmark(path_server: str, path_log: Optional[str], prompt_source: str, n_p
|
||||
data: list[dict] = []
|
||||
|
||||
for i, p in enumerate(prompts):
|
||||
random.seed(13 * i + 1)
|
||||
if seed_offset >= 0:
|
||||
random.seed(3 * (seed_offset + 1000 * i) + 1)
|
||||
data.append({
|
||||
"session": session, "server_address": server_address, "prompt": p, "synthetic_prompt": synthetic_prompts,
|
||||
"n_predict": random.randint(n_predict_min, n_predict), "seed": 13 * i + 2})
|
||||
"n_predict": random.randint(n_predict_min, n_predict), "seed": (3 * (seed_offset + 1000 * i) + 2) if seed_offset >= 0 else -1})
|
||||
|
||||
if not synthetic_prompts:
|
||||
logger.info("Getting the prompt lengths...")
|
||||
@@ -251,7 +261,7 @@ if __name__ == "__main__":
|
||||
"Results are printed to console and visualized as plots (saved to current working directory). "
|
||||
"To pass arguments such as the model path to the server, set the corresponding environment variables (see llama-server --help).")
|
||||
parser.add_argument("--path_server", type=str, default="llama-server", help="Path to the llama.cpp server binary")
|
||||
parser.add_argument("--path_log", type=str, default="server-bench.log", help="Path to the model to use for the benchmark")
|
||||
parser.add_argument("--path_log", type=str, default="server-bench-{port}.log", help="Path to the model to use for the benchmark")
|
||||
parser.add_argument(
|
||||
"--prompt_source", type=str, default="rng-1024-2048",
|
||||
help="How to get the prompts for the benchmark, either 'mmlu' for MMLU questions or "
|
||||
@@ -261,5 +271,7 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--n_predict_min", type=int, default=1024,
|
||||
help="Min. number of tokens to predict per prompt (supported for synthetic prompts only)")
|
||||
parser.add_argument("--seed_offset", type=int, default=0, help="Offset for determining the seeds for pseudorandom prompt/generation lengths. "
|
||||
"Corelations between seeds can occur when set >= 1000. Negative values mean no seed.")
|
||||
args = parser.parse_args()
|
||||
benchmark(**vars(args))
|
||||
|
||||
@@ -1 +1 @@
|
||||
56938c4a3b2d923f42040f9ad32d229c76c466cd
|
||||
daf7906728036a82f20c69fcbd74b6f536c74d3f
|
||||
|
||||
@@ -85,9 +85,12 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_ERNIE4_5, "ernie4_5" },
|
||||
{ LLM_ARCH_ERNIE4_5_MOE, "ernie4_5-moe" },
|
||||
{ LLM_ARCH_HUNYUAN_MOE, "hunyuan-moe" },
|
||||
{ LLM_ARCH_HUNYUAN_DENSE, "hunyuan-dense" },
|
||||
{ LLM_ARCH_SMOLLM3, "smollm3" },
|
||||
{ LLM_ARCH_LFM2, "lfm2" },
|
||||
{ LLM_ARCH_DREAM, "dream" },
|
||||
{ LLM_ARCH_SMALLTHINKER, "smallthinker" },
|
||||
{ LLM_ARCH_LLADA, "llada" },
|
||||
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
||||
};
|
||||
|
||||
@@ -1895,6 +1898,26 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_HUNYUAN_DENSE,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_SMOLLM3,
|
||||
{
|
||||
@@ -1933,6 +1956,27 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
|
||||
}
|
||||
},
|
||||
{
|
||||
LLM_ARCH_SMALLTHINKER,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_DREAM,
|
||||
{
|
||||
@@ -1950,6 +1994,23 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_LLADA,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_UNKNOWN,
|
||||
{
|
||||
@@ -2202,6 +2263,7 @@ bool llm_arch_is_hybrid(const llm_arch & arch) {
|
||||
bool llm_arch_is_diffusion(const llm_arch & arch) {
|
||||
switch (arch) {
|
||||
case LLM_ARCH_DREAM:
|
||||
case LLM_ARCH_LLADA:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
|
||||
@@ -89,9 +89,12 @@ enum llm_arch {
|
||||
LLM_ARCH_ERNIE4_5,
|
||||
LLM_ARCH_ERNIE4_5_MOE,
|
||||
LLM_ARCH_HUNYUAN_MOE,
|
||||
LLM_ARCH_HUNYUAN_DENSE,
|
||||
LLM_ARCH_SMOLLM3,
|
||||
LLM_ARCH_LFM2,
|
||||
LLM_ARCH_DREAM,
|
||||
LLM_ARCH_SMALLTHINKER,
|
||||
LLM_ARCH_LLADA,
|
||||
LLM_ARCH_UNKNOWN,
|
||||
};
|
||||
|
||||
|
||||
@@ -59,7 +59,7 @@ bool llama_batch_allocr::init(
|
||||
for (int32_t i = 0; i < batch.n_tokens; ++i) {
|
||||
for (int32_t s = 0; s < batch.n_seq_id[i]; ++s) {
|
||||
if (batch.seq_id && (batch.seq_id[i][s] < 0 || batch.seq_id[i][s] >= (llama_seq_id) n_seq_max)) {
|
||||
LLAMA_LOG_ERROR("%s: invalid seq_id[%d][%d] = %d > %d\n", __func__, i, s, batch.seq_id[i][s], (llama_seq_id) n_seq_max);
|
||||
LLAMA_LOG_ERROR("%s: invalid seq_id[%d][%d] = %d >= %d\n", __func__, i, s, batch.seq_id[i][s], (llama_seq_id) n_seq_max);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -66,6 +66,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
|
||||
{ "llama4", LLM_CHAT_TEMPLATE_LLAMA4 },
|
||||
{ "smolvlm", LLM_CHAT_TEMPLATE_SMOLVLM },
|
||||
{ "hunyuan-moe", LLM_CHAT_TEMPLATE_HUNYUAN_MOE },
|
||||
{ "hunyuan-dense", LLM_CHAT_TEMPLATE_HUNYUAN_DENSE },
|
||||
{ "kimi-k2", LLM_CHAT_TEMPLATE_KIMI_K2 },
|
||||
};
|
||||
|
||||
@@ -193,6 +194,8 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
|
||||
return LLM_CHAT_TEMPLATE_DOTS1;
|
||||
} else if (tmpl_contains("<|startoftext|>") && tmpl_contains("<|extra_4|>")) {
|
||||
return LLM_CHAT_TEMPLATE_HUNYUAN_MOE;
|
||||
} else if (tmpl_contains("<|hy_place▁holder▁no▁2|>") && tmpl_contains("<|hy_place▁holder▁no▁3|>")) {
|
||||
return LLM_CHAT_TEMPLATE_HUNYUAN_DENSE;
|
||||
} else if (tmpl_contains("<|im_assistant|>assistant<|im_middle|>")) {
|
||||
return LLM_CHAT_TEMPLATE_KIMI_K2;
|
||||
}
|
||||
@@ -698,11 +701,27 @@ int32_t llm_chat_apply_template(
|
||||
if (role == "system") {
|
||||
ss << "<|startoftext|>" << message->content << "<|extra_4|>";
|
||||
} else if (role == "assistant") {
|
||||
ss << "<|startoftext|>" << message->content << "<|eos|>";
|
||||
ss << message->content << "<|eos|>";
|
||||
} else {
|
||||
ss << "<|startoftext|>" << message->content << "<|extra_0|>";
|
||||
}
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_HUNYUAN_DENSE) {
|
||||
// tencent/Hunyuan-4B-Instruct
|
||||
for (size_t i = 0; i < chat.size(); i++) {
|
||||
std::string role(chat[i]->role);
|
||||
if (i == 0) {
|
||||
if (role == "system") {
|
||||
ss << chat[i]->content << "<|hy_place▁holder▁no▁3|>";
|
||||
}
|
||||
}
|
||||
|
||||
if (role == "assistant") {
|
||||
ss << "<|hy_Assistant|>" << chat[i]->content << "<|hy_place▁holder▁no▁2|>";
|
||||
} else if (role == "user") {
|
||||
ss << "<|hy_User|>" << chat[i]->content << "<|hy_Assistant|>";
|
||||
}
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_KIMI_K2) {
|
||||
// moonshotai/Kimi-K2-Instruct
|
||||
for (auto message : chat) {
|
||||
|
||||
@@ -46,6 +46,7 @@ enum llm_chat_template {
|
||||
LLM_CHAT_TEMPLATE_SMOLVLM,
|
||||
LLM_CHAT_TEMPLATE_DOTS1,
|
||||
LLM_CHAT_TEMPLATE_HUNYUAN_MOE,
|
||||
LLM_CHAT_TEMPLATE_HUNYUAN_DENSE,
|
||||
LLM_CHAT_TEMPLATE_KIMI_K2,
|
||||
LLM_CHAT_TEMPLATE_UNKNOWN,
|
||||
};
|
||||
|
||||
@@ -113,6 +113,15 @@ llama_context::llama_context(
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
const char * LLAMA_GRAPH_REUSE_DISABLE = getenv("LLAMA_GRAPH_REUSE_DISABLE");
|
||||
graph_reuse_disable = LLAMA_GRAPH_REUSE_DISABLE ? (atoi(LLAMA_GRAPH_REUSE_DISABLE) != 0) : graph_reuse_disable;
|
||||
|
||||
if (graph_reuse_disable) {
|
||||
LLAMA_LOG_WARN("%s: graph reuse disabled\n", __func__);
|
||||
}
|
||||
}
|
||||
|
||||
const uint32_t n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max;
|
||||
|
||||
LLAMA_LOG_INFO("%s: n_seq_max = %u\n", __func__, cparams.n_seq_max);
|
||||
@@ -298,7 +307,7 @@ llama_context::llama_context(
|
||||
|
||||
cross.v_embd.clear();
|
||||
|
||||
// reserve pp graph first so that buffers are only allocated once
|
||||
// reserve pp (prompt processing) graph first so that buffers are only allocated once
|
||||
{
|
||||
auto * gf = graph_reserve(n_tokens, n_seqs, n_tokens, mctx.get());
|
||||
if (!gf) {
|
||||
@@ -309,7 +318,7 @@ llama_context::llama_context(
|
||||
n_nodes_pp = ggml_graph_n_nodes(gf);
|
||||
}
|
||||
|
||||
// reserve with tg graph to get the number of splits and nodes
|
||||
// reserve with tg (token generation) graph to get the number of splits and nodes
|
||||
{
|
||||
auto * gf = graph_reserve(n_seqs, n_seqs, n_seqs, mctx.get());
|
||||
if (!gf) {
|
||||
@@ -716,7 +725,7 @@ llm_graph_result * llama_context::process_ubatch(const llama_ubatch & ubatch, ll
|
||||
// in order to correctly reuse a graph, it's full topology has to be uniquely determined by these parameters
|
||||
const auto gparams = graph_params(res, ubatch, mctx, gtype);
|
||||
|
||||
if (res->can_reuse(gparams)) {
|
||||
if (!graph_reuse_disable && res->can_reuse(gparams)) {
|
||||
//LLAMA_LOG_DEBUG("%s: reusing previous graph\n", __func__);
|
||||
|
||||
n_reused++;
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user