Compare commits

...

26 Commits
b6012 ... b6038

Author SHA1 Message Date
Ed Addario
e9192bec56 quantize : fix using combined imatrix GGUFs (multiple datasets) (#14973) 2025-07-30 21:11:56 +02:00
Daniel Bevenius
41e78c567e server : add support for embd_normalize parameter (#14964)
Some checks are pending
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-22-cmake-vulkan (push) Waiting to run
CI / ubuntu-22-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=macOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=tvOS) (push) Waiting to run
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
This commit adds support for the `embd_normalize` parameter in the
server code.

The motivation for this is that currently if the server is started with
a pooling type that is not `none`, then Euclidean/L2 normalization will
be the normalization method used for embeddings. However, this is not
always the desired behavior, and users may want to use other
normalization (or none) and this commit allows that.

Example usage:
```console
curl --request POST \
    --url http://localhost:8080/embedding \
    --header "Content-Type: application/json" \
    --data '{"input": "Hello world today", "embd_normalize": -1}
```
2025-07-30 18:07:11 +02:00
uvos
ad4a700117 HIP: enable mfma mmq on gfx908 and gfx90a for select datatypes and shapes (#14949) 2025-07-30 17:38:06 +02:00
Georgi Gerganov
e32a4ec60e sync : ggml
ggml-ci
2025-07-30 17:33:11 +03:00
Kai Pastor
e228de9449 cmake : Fix BLAS link interface (ggml/1316) 2025-07-30 17:33:11 +03:00
Kai Pastor
73a8e5ca03 vulkan : fix 32-bit builds (ggml/1313)
The pipeline member can be cast to VkPipeline.
This is a VkPipeline_T* on 64 bit but a uint64_t on 32 bit.
Cf. VK_DEFINE_NON_DISPATCHABLE_HANDLE documentation.
2025-07-30 17:33:11 +03:00
Johannes Gäßler
92b8810ec7 CUDA: skip masked KV slices for all FA kernels (#14924) 2025-07-30 15:46:13 +02:00
Georgi Gerganov
00131d6eaf tests : update for LLAMA_SET_ROWS=1 (#14961)
* test-thread-safety : each context uses a single sequence

* embedding : handle --parallel argument

ggml-ci

* save-load : handle -np 1

ggml-ci

* thread-safety : avoid overriding threads, reduce test case arg

ggml-ci
2025-07-30 15:12:02 +03:00
Georgi Gerganov
1e15bfd42c graph : fix stack-use-after-return (#14960)
Some checks are pending
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-22-cmake-vulkan (push) Waiting to run
CI / ubuntu-22-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=macOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=tvOS) (push) Waiting to run
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
ggml-ci
2025-07-30 13:52:11 +03:00
Douglas Hanley
a118d80233 embeddings: fix extraction of CLS pooling results (#14927)
* embeddings: fix extraction of CLS pooling results

* merge RANK pooling into CLS case for inputs
2025-07-30 08:25:05 +03:00
Xinpeng Dou
61550f8231 CANN: update ops docs (#14935)
Some checks failed
Update Operations Documentation / update-ops-docs (push) Has been cancelled
* CANN:add ops docs

* CANN: update ops docs
2025-07-30 08:39:24 +08:00
uvos
aa79524c51 HIP: remove the use of __HIP_PLATFORM_AMD__, explicitly support only AMD targets (#14945)
Some checks are pending
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-22-cmake-vulkan (push) Waiting to run
CI / ubuntu-22-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=macOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=tvOS) (push) Waiting to run
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
2025-07-29 20:23:04 +02:00
uvos
b77d11179d HIP: add GGML_HIP_MMQ_MFMA option to allow disableing the MFMA path. (#14930)
This is useful for testing for regressions on GCN with CDNA hardware.

With GGML_HIP_MMQ_MFMA=Off and GGML_CUDA_FORCE_MMQ=On we can conveniently test the GCN code path on CDNA. As CDNA is just GCN renamed with MFMA added and limited use ACC registers, this provides a good alternative for regression testing when GCN hardware is not available.
2025-07-29 17:44:30 +02:00
uvos
c7aa1364fd HIP: Ignore unsupported unroll transformation in fattn-vec (#14931)
llvm with the amdgcn target dose not support unrolling loops with conditional break statements, when those statements can not be resolved at compile time. Similar to other places in GGML lets simply ignore this warning.
2025-07-29 17:43:43 +02:00
kallewoof
1a67fcc306 common : avoid logging partial messages (which can contain broken UTF-8 sequences) (#14937)
* bug-fix: don't attempt to log partial parsed messages to avoid crash due to unfinished UTF-8 sequences
2025-07-29 17:05:38 +02:00
hipudding
204f2cf168 CANN: Add ggml_set_rows (#14943) 2025-07-29 22:36:43 +08:00
Sigbjørn Skjæret
138b288b59 cuda : add softcap fusion (#14907) 2025-07-29 14:22:03 +02:00
Johannes Gäßler
bbd0f91779 server-bench: make seed choice configurable (#14929)
Some checks failed
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-22-cmake-vulkan (push) Waiting to run
CI / ubuntu-22-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=macOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=tvOS) (push) Waiting to run
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* server-bench: make seed choice configurable

* Update scripts/server-bench.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update scripts/server-bench.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* fix error formatting

* Update scripts/server-bench.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-29 10:40:50 +02:00
Aman Gupta
0a5036bee9 CUDA: add roll (#14919)
* CUDA: add roll

* Make everything const, use __restrict__
2025-07-29 14:45:18 +08:00
lhez
8ad7b3e65b opencl : add ops docs (#14910)
Some checks failed
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-22-cmake-vulkan (push) Waiting to run
CI / ubuntu-22-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=macOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=tvOS) (push) Waiting to run
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
Update Operations Documentation / update-ops-docs (push) Has been cancelled
2025-07-28 18:50:17 +02:00
Leonard Mosescu
bda62193b2 test-backend-ops : extend test case filtering (#14865)
* Extend test case filtering

1. Allow passing multiple (comma-separated?) ops to test-backend-ops. This can be convenient when working on a set of ops, when you'd want to test them together (but without having to run every single op). For example:

`test-backend-ops.exe test -o "ADD,RMS_NORM,ROPE,SILU,SOFT_MAX"`

2. Support full test-case variation string in addition to basic op names. This would make it easy to select a single variation, either for testing or for benchmarking. It can be particularly useful for profiling a particular variation (ex. a CUDA kernel), for example:

`test-backend-ops.exe perf -b CUDA0 -o "MUL_MAT(type_a=f16,type_b=f32,m=4096,n=512,k=14336,bs=[1,1],nr=[1,1],per=[0,1,2,3],v=2)"`

These two can be combined. As the current `-o`, this change doesn't try to detect/report an error if an filter doesn't name existing ops (ex. misspelled)

* Updating the usage help text

* Update tests/test-backend-ops.cpp
2025-07-28 18:04:27 +02:00
Radoslav Gerganov
c556418b60 llama-bench : use local GPUs along with RPC servers (#14917)
Currently if RPC servers are specified with '--rpc' and there is a local
GPU available (e.g. CUDA), the benchmark will be performed only on the
RPC device(s) but the backend result column will say "CUDA,RPC" which is
incorrect. This patch is adding all local GPU devices and makes
llama-bench consistent with llama-cli.
2025-07-28 18:59:04 +03:00
xctan
db16e2831c ggml-cpu : deduplicate scalar implementations (#14897)
* remove redundant code in riscv

* remove redundant code in arm

* remove redundant code in loongarch

* remove redundant code in ppc

* remove redundant code in s390

* remove redundant code in wasm

* remove redundant code in x86

* remove fallback headers

* fix x86 ggml_vec_dot_q8_0_q8_0
2025-07-28 17:40:24 +02:00
Akarshan Biswas
cd1fce6d4f SYCL: Add set_rows support for quantized types (#14883)
* SYCL: Add set_rows support for quantized types

This commit adds support for GGML_OP_SET_ROWS operation for various
quantized tensor types (Q8_0, Q5_1, Q5_0, Q4_1, Q4_0, IQ4_NL) and BF16
type in the SYCL backend.

The quantization/dequantization copy kernels were moved from cpy.cpp
to cpy.hpp to make them available for set_rows.cpp.

This addresses part of the TODOs mentioned in the code.

* Use get_global_linear_id() instead

ggml-ci

* Fix formatting

ggml-ci

* Use const for ne11 and size_t variables in set_rows_sycl_q

ggml-ci

* Increase block size for q kernel to 256

ggml-ci

* Cleanup imports

* Add float.h to cpy.hpp
2025-07-28 20:32:15 +05:30
Xuan-Son Nguyen
00fa15fedc mtmd : add support for Voxtral (#14862)
* mtmd : add support for Voxtral

* clean up

* fix python requirements

* add [BEGIN_AUDIO] token

* also support Devstral conversion

* add docs and tests

* fix regression for ultravox

* minor coding style improvement

* correct project activation fn

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-28 15:01:48 +02:00
Johannes Gäßler
946b1f6859 CUDA: fix pointer incrementation in FA (#14916) 2025-07-28 14:30:22 +02:00
70 changed files with 18534 additions and 4603 deletions

1
.gitignore vendored
View File

@@ -82,6 +82,7 @@ models/*
models-mnt
!models/.editorconfig
!models/ggml-vocab-*.gguf*
!models/templates
# Zig
zig-out/

View File

@@ -1944,6 +1944,8 @@ common_chat_msg common_chat_parse(const std::string & input, bool is_partial, co
}
}
auto msg = builder.result();
LOG_DBG("Parsed message: %s\n", common_chat_msgs_to_json_oaicompat<json>({msg}).at(0).dump().c_str());
if (!is_partial) {
LOG_DBG("Parsed message: %s\n", common_chat_msgs_to_json_oaicompat<json>({msg}).at(0).dump().c_str());
}
return msg;
}

View File

@@ -1900,6 +1900,7 @@ class StableLMModel(TextModel):
"MixtralForCausalLM",
"VLlama3ForCausalLM",
"LlavaForConditionalGeneration",
"VoxtralForConditionalGeneration",
"LlamaModel")
class LlamaModel(TextModel):
model_arch = gguf.MODEL_ARCH.LLAMA
@@ -1912,6 +1913,11 @@ class LlamaModel(TextModel):
self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
def set_vocab(self):
path_tekken_json = self.dir_model / "tekken.json"
path_tokenizer_json = self.dir_model / "tokenizer.json"
if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
return self.set_vocab_tekken()
try:
self._set_vocab_sentencepiece()
except FileNotFoundError:
@@ -1944,6 +1950,52 @@ class LlamaModel(TextModel):
if self.hparams.get("vocab_size", 32000) == 49152:
self.gguf_writer.add_add_bos_token(False)
def set_vocab_tekken(self):
vocab = gguf.vocab.MistralVocab(self.dir_model)
self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
tokens = []
scores = []
toktypes = []
for text, score, toktype in vocab.all_tokens():
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
assert len(tokens) == vocab.vocab_size, (
f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
)
if vocab.tokenizer_type == gguf.vocab.MistralTokenizerType.tekken:
self.gguf_writer.add_tokenizer_pre("tekken")
self.gguf_writer.add_token_merges(
vocab.extract_vocab_merges_from_model()
)
logger.info(
f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
)
self.gguf_writer.add_bos_token_id(vocab.bos_id)
self.gguf_writer.add_eos_token_id(vocab.eos_id)
self.gguf_writer.add_unk_token_id(vocab.unk_id)
self.gguf_writer.add_pad_token_id(vocab.pad_id)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
self.gguf_writer.add_vocab_size(vocab.vocab_size)
self.gguf_writer.add_add_bos_token(True)
self.gguf_writer.add_add_eos_token(False)
script_dir = Path(__file__).parent
template_path = script_dir / "models/templates/unsloth-mistral-Devstral-Small-2507.jinja"
with open(template_path, "r", encoding="utf-8") as f:
template = f.read()
self.gguf_writer.add_chat_template(template)
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
@@ -1971,12 +2023,13 @@ class LlamaModel(TextModel):
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams.get("num_key_value_heads")
is_vision_tensor = "vision_tower" in name \
is_multimodal_tensor = "vision_tower" in name \
or "vision_model" in name \
or "audio_tower" in name \
or "model.connector" in name \
or "multi_modal_projector" in name
if is_vision_tensor:
if is_multimodal_tensor:
return [] # skip vision tensors
elif self.hf_arch == "LlamaModel":
name = "model." + name
@@ -7231,9 +7284,10 @@ class WhisperEncoderModel(MmprojModel):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.hparams["hidden_size"] = self.hparams["d_model"]
self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
self.hparams["hidden_size"] = self.hparams["d_model"]
self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
def set_gguf_parameters(self):
super().set_gguf_parameters()
@@ -7272,9 +7326,21 @@ class UltravoxWhisperEncoderModel(WhisperEncoderModel):
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
@ModelBase.register("VoxtralForConditionalGeneration")
class VoxtralWhisperEncoderModel(WhisperEncoderModel):
has_vision_encoder = False # no vision encoder
has_audio_encoder = True
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
@ModelBase.register("FalconH1ForCausalLM")
class FalconH1Model(Mamba2Model):
model_arch = gguf.MODEL_ARCH.FALCON_H1

View File

@@ -97,6 +97,9 @@ NOTE: some models may require large context window, for example: `-c 8192`
# Qwen2-Audio and SeaLLM-Audio
# note: no pre-quantized GGUF this model, as they have very poor result
# ref: https://github.com/ggml-org/llama.cpp/pull/13760
# Mistral's Voxtral
(tool_name) -hf ggml-org/Voxtral-Mini-3B-2507-GGUF
```
**Mixed modalities**:

View File

@@ -12,91 +12,91 @@ Legend:
- 🟡 Partially supported by this backend
- ❌ Not supported by this backend
| Operation | BLAS | CPU | CUDA | Metal | SYCL | Vulkan |
|-----------|------|------|------|------|------|------|
| ABS | ❌ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| ACC | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| ADD | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ |
| ADD1 | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ |
| ARANGE | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| CLAMP | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 |
| CONCAT | ❌ | ✅ | 🟡 | ✅ | 🟡 | ✅ |
| CONT | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 |
| CONV_2D | ❌ | ✅ | ❌ | ❌ | ❌ | ✅ |
| CONV_2D_DW | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ |
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| CONV_TRANSPOSE_2D | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| COS | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 |
| COUNT_EQUAL | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ |
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| CROSS_ENTROPY_LOSS | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| CROSS_ENTROPY_LOSS_BACK | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| DIAG_MASK_INF | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ |
| DIV | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ |
| DUP | ❌ | ✅ | 🟡 | 🟡 | ✅ | 🟡 |
| ELU | ❌ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| EXP | ❌ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| FLASH_ATTN_EXT | ❌ | ✅ | 🟡 | 🟡 | ❌ | 🟡 |
| GATED_LINEAR_ATTN | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ |
| GEGLU | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 |
| GEGLU_ERF | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 |
| GEGLU_QUICK | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 |
| GELU | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 |
| GELU_ERF | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 |
| GELU_QUICK | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 |
| GET_ROWS | ❌ | ✅ | 🟡 | ✅ | 🟡 | 🟡 |
| GET_ROWS_BACK | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ |
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| HARDSIGMOID | ❌ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| HARDSWISH | ❌ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| IM2COL | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ |
| L2_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| LOG | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ |
| MEAN | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ |
| MUL | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ |
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| MUL_MAT_ID | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ |
| NEG | ❌ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| NORM | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 |
| OPT_STEP_ADAMW | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ |
| OUT_PROD | 🟡 | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| PAD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| PAD_REFLECT_1D | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ |
| POOL_2D | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| REGLU | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 |
| RELU | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 |
| REPEAT | ❌ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| REPEAT_BACK | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ |
| RMS_NORM | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ |
| RMS_NORM_BACK | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ |
| RMS_NORM_MUL_ADD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| ROLL | ❌ | | ❌ | ❌ | ❌ | ✅ |
| ROPE | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| ROPE_BACK | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ |
| RWKV_WKV6 | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| RWKV_WKV7 | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| SCALE | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| SET | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ |
| SET_ROWS | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| SGN | ❌ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| SIGMOID | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 |
| SILU | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 |
| SILU_BACK | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ |
| SIN | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 |
| SOFT_MAX | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ |
| SOFT_MAX_BACK | ❌ | 🟡 | 🟡 | ❌ | ❌ | ✅ |
| SQR | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 |
| SQRT | ❌ | ✅ | ✅ | 🟡 | ✅ | ❌ |
| SSM_CONV | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ |
| SSM_SCAN | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ |
| STEP | ❌ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| SUB | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ |
| SUM | ❌ | ✅ | ✅ | ❌ | ✅ | ✅ |
| SUM_ROWS | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| SWIGLU | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 |
| TANH | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 |
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| UPSCALE | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ |
| Operation | BLAS | CANN | CPU | CUDA | Metal | OpenCL | SYCL | Vulkan |
|-----------|------|------|------|------|------|------|------|------|
| ABS | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| ACC | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| ADD | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
| ADD1 | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 |
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ✅ |
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 |
| CONV_2D | ❌ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ✅ |
| CONV_2D_DW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| CONV_TRANSPOSE_2D | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 |
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| CROSS_ENTROPY_LOSS | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| CROSS_ENTROPY_LOSS_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| DIAG_MASK_INF | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
| DIV | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
| DUP | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 |
| ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 |
| GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
| GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| GEGLU_QUICK | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| GELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| GELU_ERF | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| GELU_QUICK | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| GET_ROWS | ❌ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 |
| GET_ROWS_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ |
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| HARDSIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| HARDSWISH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| IM2COL | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ |
| L2_NORM | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| LOG | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
| MEAN | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| MUL | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| MUL_MAT_ID | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ |
| NEG | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| OPT_STEP_ADAMW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ |
| PAD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ |
| POOL_2D | ❌ | 🟡 | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| REGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| RELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| REPEAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | 🟡 |
| REPEAT_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| RMS_NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ |
| RMS_NORM_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| RMS_NORM_MUL_ADD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| ROLL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ |
| ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| RWKV_WKV6 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| RWKV_WKV7 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| SET | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ |
| SET_ROWS | ❌ | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| SGN | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| SIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| SIN | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 |
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ |
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ✅ |
| SQR | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 |
| SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | ❌ |
| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| SSM_SCAN | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| STEP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
| SUM | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ |
| SUM_ROWS | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| SWIGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | 🟡 |
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ |

8133
docs/ops/CANN.csv Normal file

File diff suppressed because it is too large Load Diff

8133
docs/ops/OpenCL.csv Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -81,6 +81,14 @@ int main(int argc, char ** argv) {
params.embedding = true;
// if the number of prompts that would be encoded is known in advance, it's more efficient to specify the
// --parallel argument accordingly. for convenience, if not specified, we fallback to unified KV cache
// in order to support any number of prompts
if (params.n_parallel == 1) {
LOG_INF("%s: n_parallel == 1 -> unified KV cache is enabled\n", __func__);
params.kv_unified = true;
}
// utilize the full context
if (params.n_batch < params.n_ctx) {
LOG_WRN("%s: setting batch size to %d\n", __func__, params.n_ctx);

View File

@@ -15,6 +15,12 @@ int main(int argc, char ** argv) {
return 1;
}
if (params.n_parallel == 1) {
// the example uses 2 sequences, so when n_parallel == 1, we need to enable unified kv cache
printf("%s: n_parallel == 1, enabling unified kv cache\n", __func__);
params.kv_unified = true;
}
common_init();
if (params.n_predict < 0) {

View File

@@ -174,6 +174,7 @@ option(GGML_HIP_GRAPHS "ggml: use HIP graph, experimental,
option(GGML_HIP_NO_VMM "ggml: do not try to use HIP VMM" ON)
option(GGML_HIP_ROCWMMA_FATTN "ggml: enable rocWMMA for FlashAttention" OFF)
option(GGML_HIP_FORCE_ROCWMMA_FATTN_GFX12 "ggml: enable rocWMMA FlashAttention on GFX12" OFF)
option(GGML_HIP_MMQ_MFMA "ggml: enable MFMA MMA for CDNA in MMQ" ON)
option(GGML_MUSA_GRAPHS "ggml: use MUSA graph, experimental, unstable" OFF)
option(GGML_MUSA_MUDNN_COPY "ggml: enable muDNN for accelerated copy" OFF)
option(GGML_VULKAN "ggml: use Vulkan" OFF)

View File

@@ -34,8 +34,8 @@ if (NOT GGML_SHARED_LIB)
if (GGML_BLAS)
find_dependency(BLAS)
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES ${BLAS_LIBRARIES})
list(APPEND GGML_CPU_INTERFACE_LINK_OPTIONS ${BLAS_LINKER_FLAGS})
list(APPEND GGML_BLAS_INTERFACE_LINK_LIBRARIES ${BLAS_LIBRARIES})
list(APPEND GGML_BLAS_INTERFACE_LINK_OPTIONS ${BLAS_LINKER_FLAGS})
endif()
if (GGML_CUDA)

View File

@@ -68,6 +68,8 @@
#include <aclnnop/aclnn_grouped_matmul_v3.h>
#include <aclnnop/aclnn_fused_infer_attention_score_v2.h>
#include <aclnnop/aclnn_zero.h>
#include <aclnnop/aclnn_index_copy.h>
#include <aclnnop/aclnn_index_select.h>
#include <float.h>
#include <cmath>
@@ -1614,50 +1616,97 @@ void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
}
/**
* @brief Performs embedding operation on a 4D tensor using the CANN backend.
* @brief Performs index select operation on a 4D tensor using the CANN backend.
*
* This function extracts slices from the source tensor (`src_buffer`),
* index tensor (`index`), and destination tensor (`dst`), and performs an
* embedding operation on them. The embedding operation is applied by iterating
* over the last two dimensions of the source tensor, creating the necessary
* tensors for the source, index, and output, and executing the embedding operation.
* This function applies the `IndexSelect` operation along a specific dimension
* of the source tensor (`src_buffer`) using the indices from the index tensor (`index`).
* It iterates over the last two dimensions of the source tensor, creates the corresponding
* CANN tensors for the source, index, and output slices, and executes the `IndexSelect`
* operation for each slice.
*
* @param ctx The context for CANN backend operations.
* @param src_buffer The source buffer holding the data for the source tensor.
* @param src_buffer The source buffer containing the 4D input tensor data.
* @param src_ne The dimensions of the source tensor.
* @param src_nb The strides (byte offsets) of the source tensor.
* @param index The index tensor used in the embedding operation.
* @param dst The destination tensor where the result will be stored.
* @param dst_buffer The destination buffer where the output tensor data will be written.
* @param dst_ne The dimensions of the destination tensor.
* @param dst_nb The strides (byte offsets) of the destination tensor.
* @param index The index tensor specifying the indices to select from the source tensor.
* @param type The data type of the source and destination tensors.
*/
static void aclnn_embedding_4d(ggml_backend_cann_context& ctx, void* src_buffer,
int64_t* src_ne, size_t* src_nb, ggml_tensor* index,
ggml_tensor* dst) {
static void aclnn_index_select_4d(ggml_backend_cann_context& ctx,
void* src_buffer,int64_t* src_ne, size_t* src_nb,
void* dst_buffer, int64_t* dst_ne, size_t* dst_nb,
ggml_tensor* index, ggml_type type) {
for (int64_t i = 0; i < src_ne[3]; i++) {
for (int64_t j = 0; j < src_ne[2]; j++) {
// src
int64_t acl_src_ne[2] = {src_ne[0], src_ne[1]};
size_t acl_src_nb[2] = {src_nb[0], src_nb[1]};
aclTensor* acl_src_tensor = ggml_cann_create_tensor(
(char*)src_buffer + i * src_nb[3] + j * src_nb[2],
ggml_cann_type_mapping(dst->type), ggml_element_size(dst),
acl_src_ne, acl_src_nb, 2);
ggml_cann_type_mapping(type), ggml_type_size(type),
src_ne, src_nb, 2);
// index
int64_t acl_index_ne[1] = {index->ne[0]};
size_t acl_index_nb[1] = {index->nb[0]};
aclTensor* acl_index = ggml_cann_create_tensor(
(char*)index->data + i * index->nb[2] + j * index->nb[1],
(char*)index->data + (i % index->ne[2]) * index->nb[2] + (j % index->ne[1]) * index->nb[1],
ggml_cann_type_mapping(index->type), ggml_element_size(index),
acl_index_ne, acl_index_nb, 1);
index->ne, index->nb, 1);
// out
int64_t acl_out_ne[2] = {dst->ne[0], dst->ne[1]};
size_t acl_out_nb[2] = {dst->nb[0], dst->nb[1]};
aclTensor* acl_out = ggml_cann_create_tensor(
(char*)dst->data + i * dst->nb[3] + j * dst->nb[2],
ggml_cann_type_mapping(dst->type), ggml_element_size(dst),
acl_out_ne, acl_out_nb, 2);
GGML_CANN_CALL_ACLNN_OP(ctx, Embedding, acl_src_tensor, acl_index, acl_out);
(char*)dst_buffer + i * dst_nb[3] + j * dst_nb[2],
ggml_cann_type_mapping(type), ggml_type_size(type),
dst_ne, dst_nb, 2);
GGML_CANN_CALL_ACLNN_OP(ctx, IndexSelect, acl_src_tensor, 0, acl_index, acl_out);
ggml_cann_release_resources(ctx, acl_src_tensor, acl_index, acl_out);
}
}
}
/**
* @brief Performs inplace index copy operation on a 4D tensor using the CANN backend.
*
* This function applies the `IndexCopy` operation along a specific dimension of the
* destination tensor (`dst_buffer`) by copying elements from the source tensor (`src_buffer`)
* to positions specified by the index tensor (`index`).
* It iterates over the last two dimensions of the tensors, creates the corresponding
* CANN tensors for source, index, and destination slices, and performs the index copy
* operation for each slice.
*
* @param ctx The context for CANN backend operations.
* @param src_buffer The source buffer containing the 4D input tensor data to be copied.
* @param src_ne The dimensions of the source tensor.
* @param src_nb The strides (byte offsets) of the source tensor.
* @param dst_buffer The destination buffer where values will be copied to.
* @param dst_ne The dimensions of the destination tensor.
* @param dst_nb The strides (byte offsets) of the destination tensor.
* @param index The index tensor specifying target positions in the destination tensor.
* @param type The data type of the source and destination tensors.
*/
static void aclnn_index_copy_4d(ggml_backend_cann_context& ctx,
void* src_buffer,int64_t* src_ne, size_t* src_nb,
void* dst_buffer, int64_t* dst_ne, size_t* dst_nb,
ggml_tensor* index, ggml_type type) {
for (int64_t i = 0; i < src_ne[3]; i++) {
for (int64_t j = 0; j < src_ne[2]; j++) {
// src
aclTensor* acl_src_tensor = ggml_cann_create_tensor(
(char*)src_buffer + i * src_nb[3] + j * src_nb[2],
ggml_cann_type_mapping(type), ggml_type_size(type),
src_ne, src_nb, 2);
// index
aclTensor* acl_index = ggml_cann_create_tensor(
(char*)index->data + (i % index->ne[2]) * index->nb[2] + (j % index->ne[1]) * index->nb[1],
ggml_cann_type_mapping(index->type), ggml_element_size(index),
index->ne, index->nb, 1);
// out
aclTensor* acl_out = ggml_cann_create_tensor(
(char*)dst_buffer + i * dst_nb[3] + j * dst_nb[2],
ggml_cann_type_mapping(type), ggml_type_size(type),
dst_ne, dst_nb, 2);
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceIndexCopy, acl_out, 0, acl_index, acl_src_tensor);
ggml_cann_release_resources(ctx, acl_src_tensor, acl_index, acl_out);
}
}
@@ -1669,8 +1718,9 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
switch (src0->type) {
case GGML_TYPE_F32: {
aclnn_embedding_4d(ctx, src0->data, src0->ne, src0->nb, src1,
dst);
aclnn_index_select_4d(ctx, src0->data, src0->ne, src0->nb,
dst->data, dst->ne, dst->nb,
src1, dst->type);
break;
}
case GGML_TYPE_F16: {
@@ -1687,8 +1737,9 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
src_trans_buffer, ACL_FLOAT, ggml_type_size(dst->type),
src0->ne, src_trans_nb, GGML_MAX_DIMS);
aclnn_cast(ctx, acl_src0, src_trans_tensor, ggml_cann_type_mapping(dst->type));
aclnn_embedding_4d(ctx, src_trans_buffer, src0->ne,
src_trans_nb, src1, dst);
aclnn_index_select_4d(ctx, src_trans_buffer, src0->ne, src_trans_nb,
dst->data, dst->ne, dst->nb,
src1, dst->type);
ggml_cann_release_resources(ctx, acl_src0, src_trans_tensor);
break;
}
@@ -1748,8 +1799,10 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
dequant_nb[i] = dequant_nb[i - 1] * src0->ne[i - 1];
}
aclnn_embedding_4d(ctx, dequant_buffer_allocator.get(),
dequant_ne, dequant_nb, src1, dst);
aclnn_index_select_4d(ctx, dequant_buffer_allocator.get(),
dequant_ne, dequant_nb,
dst->data, dst->ne, dst->nb,
src1, dst->type);
ggml_cann_release_resources(ctx, dequant_tensor);
break;
@@ -1760,6 +1813,43 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
}
}
void ggml_cann_set_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0]; // src
ggml_tensor* src1 = dst->src[1]; // index
switch (dst->type) {
case GGML_TYPE_F32: {
aclnn_index_copy_4d(ctx, src0->data, src0->ne, src0->nb,
dst->data, dst->ne, dst->nb,
src1, dst->type);
break;
}
case GGML_TYPE_F16: {
aclTensor* acl_src0 = ggml_cann_create_tensor(src0);
ggml_cann_pool_alloc src_buffer_allocator(
ctx.pool(), ggml_nelements(src0) * sizeof(uint16_t));
void* src_trans_buffer = src_buffer_allocator.get();
size_t src_trans_nb[GGML_MAX_DIMS];
src_trans_nb[0] = sizeof(uint16_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
}
aclTensor* src_trans_tensor = ggml_cann_create_tensor(
src_trans_buffer, ACL_FLOAT16, ggml_type_size(dst->type),
src0->ne, src_trans_nb, GGML_MAX_DIMS);
aclnn_cast(ctx, acl_src0, src_trans_tensor, ggml_cann_type_mapping(dst->type));
aclnn_index_copy_4d(ctx, src_trans_buffer, src0->ne, src_trans_nb,
dst->data, dst->ne, dst->nb,
src1, dst->type);
ggml_cann_release_resources(ctx, acl_src0, src_trans_tensor);
break;
}
default:
GGML_ABORT("Unsupported tensor type for GGML_OP_SET_ROWS");
break;
}
}
/**
* @brief Repeats elements of a tensor along a specified dimension.
*

View File

@@ -424,15 +424,25 @@ void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
*
* @details This function retrieves rows from a source tensor src0 according to
* the indices provided in another tensor src1 and stores the result in
* a destination tensor (\p dst). It supports different data types
* including F32, F16, Q4_0, and Q8_0.
* a destination tensor (\p dst).
*
* @param ctx The backend CANN context for executing operations.
* @param dst The destination tensor where the extracted rows will be stored.
* dst->op is `GGML_OP_GET_ROWS`.
*/
void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Writes specific rows into a tensor at positions specified by indices.
*
* @details This function copies rows from a source tensor into a destination
* tensor (\p dst) at the positions indicated by the indices in another
* tensor.
*
* @param ctx The backend CANN context for executing operations.
* @param dst The destination tensor where the specified rows will be updated.
*/
void ggml_cann_set_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Executes matrix multiplication for the given tensor.
*

View File

@@ -1659,6 +1659,9 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
case GGML_OP_GET_ROWS:
ggml_cann_get_rows(ctx, dst);
break;
case GGML_OP_SET_ROWS:
ggml_cann_set_rows(ctx, dst);
break;
case GGML_OP_DUP:
ggml_cann_dup(ctx, dst);
break;
@@ -2191,13 +2194,15 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
return false;
}
} break;
case GGML_OP_SET_ROWS:
{
// TODO: add support
// ref: https://github.com/ggml-org/llama.cpp/pull/14274
#pragma message("TODO: implement F32, F16, BF16, Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, IQ4_NL support (https://github.com/ggml-org/llama.cpp/pull/14661)")
return false;
} break;
case GGML_OP_SET_ROWS: {
switch (op->type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
return true;
default:
return false;
}
} break;
case GGML_OP_CPY: {
ggml_tensor *src = op->src[0];
if ((op->type != GGML_TYPE_F32 && op->type != GGML_TYPE_F16) ||

View File

@@ -1236,44 +1236,10 @@ void ggml_vec_dot_tq1_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
*s = sumf;
#else
const uint8_t pow3[6] = {1, 3, 9, 27, 81, 243};
float sumf = 0.0f;
for (int i = 0; i < nb; ++i) {
int sum = 0;
for (size_t j = 0; j < sizeof(x->qs) - sizeof(x->qs) % 32; j += 32) {
for (size_t l = 0; l < 5; ++l) {
for (size_t m = 0; m < 32; ++m) {
uint8_t q = x[i].qs[j + m] * pow3[l];
uint16_t xi = ((uint16_t) q * 3) >> 8;
sum += (xi - 1) * y[i].qs[j*5 + l*32 + m];
}
}
}
for (size_t j = sizeof(x->qs) - sizeof(x->qs) % 32; j < sizeof(x->qs); j += 16) {
for (size_t l = 0; l < 5; ++l) {
for (size_t m = 0; m < 16; ++m) {
uint8_t q = x[i].qs[j + m] * pow3[l];
uint16_t xi = ((uint16_t) q * 3) >> 8;
sum += (xi - 1) * y[i].qs[j*5 + l*16 + m];
}
}
}
for (size_t l = 0; l < 4; ++l) {
for (size_t j = 0; j < sizeof(x->qh); ++j) {
uint8_t q = x[i].qh[j] * pow3[l];
uint16_t xi = ((uint16_t) q * 3) >> 8;
sum += (xi - 1) * y[i].qs[sizeof(x->qs)*5 + l*sizeof(x->qh) + j];
}
}
sumf += (float) sum * (GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d);
}
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_tq1_0_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -1381,25 +1347,10 @@ void ggml_vec_dot_tq2_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
*s = sumf;
#else
float sumf = 0.0f;
for (int i = 0; i < nb; ++i) {
int32_t sumi = 0;
for (size_t j = 0; j < sizeof(x->qs); j += 32) {
for (size_t l = 0; l < 4; ++l) {
for (size_t k = 0; k < 32; ++k) {
sumi += y[i].qs[j*4 + l*32 + k] * (((x[i].qs[j + k] >> (l*2)) & 3) - 1);
}
}
}
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
sumf += (float) sumi * d;
}
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_tq2_0_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -1729,45 +1680,10 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = sum;
#else
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * q2 = x[i].qs;
const int8_t * q8 = y[i].qs;
const uint8_t * sc = x[i].scales;
int summs = 0;
for (int j = 0; j < 16; ++j) {
summs += y[i].bsums[j] * (sc[j] >> 4);
}
const float dall = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
int isum = 0;
int is = 0;
int d;
for (int k = 0; k < QK_K/128; ++k) {
int shift = 0;
for (int j = 0; j < 4; ++j) {
d = sc[is++] & 0xF;
int isuml = 0;
for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
isum += d * isuml;
d = sc[is++] & 0xF;
isuml = 0;
for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
isum += d * isuml;
shift += 2;
q8 += 32;
}
q2 += 32;
}
sumf += dall * isum - dmin * summs;
}
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_q2_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -2057,68 +1973,12 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = sum;
#else
// scalar version
// This function is written like this so the compiler can manage to vectorize most of it
// Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
// manually vectorized version above. Every other version I tried would run at least 4 times slower.
// The ideal situation would be if we could just write the code once, and the compiler would
// automatically produce the best possible set of machine instructions, instead of us having to manually
// write vectorized versions for AVX, ARM_NEON, etc.
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
uint32_t auxs[4];
const int8_t * scales = (const int8_t*)auxs;
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
const uint8_t * GGML_RESTRICT hm = x[i].hmask;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
uint8_t m = 1;
for (int j = 0; j < QK_K; j += 128) {
for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
q3 += 32;
}
a = aux8;
memcpy(auxs, x[i].scales, 12);
uint32_t tmp = auxs[2];
auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
for (int j = 0; j < QK_K/16; ++j) {
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
UNUSED(kmask1);
UNUSED(kmask2);
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_q3_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -2431,61 +2291,14 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = sumf;
#else
const uint8_t * scales = (const uint8_t*)&utmp[0];
const uint8_t * mins = (const uint8_t*)&utmp[2];
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
for (int j = 0; j < QK_K/64; ++j) {
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
a += 32;
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
a += 32; q4 += 32;
}
memcpy(utmp, x[i].scales, 12);
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
const uint32_t uaux = utmp[1] & kmask1;
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
utmp[2] = uaux;
utmp[0] &= kmask1;
int sumi = 0;
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
a = aux8;
int is = 0;
for (int j = 0; j < QK_K/32; ++j) {
int32_t scale = scales[is++];
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
sumf -= dmin * sumi;
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
UNUSED(kmask1);
UNUSED(kmask2);
UNUSED(kmask3);
UNUSED(utmp);
ggml_vec_dot_q4_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -2578,66 +2391,14 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = sumf;
#else
const uint8_t * scales = (const uint8_t*)&utmp[0];
const uint8_t * mins = (const uint8_t*)&utmp[2];
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
const uint8_t * GGML_RESTRICT hm = x[i].qh;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
uint8_t m = 1;
for (int j = 0; j < QK_K/64; ++j) {
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
a += 32; m <<= 1;
q4 += 32;
}
memcpy(utmp, x[i].scales, 12);
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
const uint32_t uaux = utmp[1] & kmask1;
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
utmp[2] = uaux;
utmp[0] &= kmask1;
int sumi = 0;
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
a = aux8;
int is = 0;
for (int j = 0; j < QK_K/32; ++j) {
int32_t scale = scales[is++];
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
sumf -= dmin * sumi;
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
UNUSED(kmask1);
UNUSED(kmask2);
UNUSED(kmask3);
UNUSED(utmp);
ggml_vec_dot_q5_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -3093,47 +2854,10 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
}
*s = sum;
#else
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q4 = x[i].ql;
const uint8_t * GGML_RESTRICT qh = x[i].qh;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
for (int j = 0; j < QK_K; j += 128) {
for (int l = 0; l < 32; ++l) {
a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
}
a += 128;
q4 += 64;
qh += 32;
}
a = aux8;
int is = 0;
for (int j = 0; j < QK_K/16; ++j) {
int scale = x[i].scales[is++];
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_q6_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -3229,34 +2953,10 @@ void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const
*s = 0.25f * sumf;
#else
uint32_t aux32[2];
const uint8_t * aux8 = (const uint8_t *)aux32;
float sumf = 0.f;
for (int i = 0; i < nb; ++i) {
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint16_t * GGML_RESTRICT q2 = x[i].qs;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
int32_t bsum = 0;
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
memcpy(aux32, q2, 2*sizeof(uint32_t));
q2 += 4;
const uint32_t ls = 2*(aux32[1] >> 28) + 1;
int32_t sumi = 0;
for (int l = 0; l < 4; ++l) {
const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
for (int j = 0; j < 8; ++j) {
sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
}
q8 += 8;
}
bsum += sumi * ls;
}
sumf += d * bsum;
}
*s = 0.125f * sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq2_xxs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -3327,42 +3027,10 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
*s = 0.125f * sumf;
#else
float sumf = 0.f;
for (int i = 0; i < nb; ++i) {
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint16_t * GGML_RESTRICT q2 = x[i].qs;
const uint8_t * GGML_RESTRICT sc = x[i].scales;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
int32_t bsum = 0;
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1;
const uint16_t ls2 = 2*(sc[ib32] >> 4) + 1;
int32_t sumi = 0;
for (int l = 0; l < 2; ++l) {
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
for (int j = 0; j < 8; ++j) {
sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
}
q8 += 8;
}
bsum += sumi * ls1;
sumi = 0;
for (int l = 2; l < 4; ++l) {
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
for (int j = 0; j < 8; ++j) {
sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
}
q8 += 8;
}
bsum += sumi * ls2;
q2 += 4;
}
sumf += d * bsum;
}
*s = 0.125f * sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq2_xs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -3455,45 +3123,10 @@ void ggml_vec_dot_iq2_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
*s = 0.125f * sumf;
#else
float sumf = 0;
for (int i = 0; i < nb; i++) {
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const int8_t * q8 = y[i].qs;
const uint8_t * qs = x[i].qs;
const uint8_t * qh = x[i].qh;
const uint8_t * signs = qs + QK_K/8;
int bsum = 0;
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
int ls1 = 1 + 2*(x[i].scales[ib32] & 0xf);
int ls2 = 1 + 2*(x[i].scales[ib32] >> 4);
int sumi1 = 0, sumi2 = 0;
for (int l = 0; l < 2; ++l) {
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
for (int j = 0; j < 8; ++j) {
sumi1 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
}
q8 += 8;
}
for (int l = 2; l < 4; ++l) {
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
for (int j = 0; j < 8; ++j) {
sumi2 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
}
q8 += 8;
}
bsum += ls1 * sumi1 + ls2 * sumi2;
qs += 4;
signs += 4;
}
sumf += d * bsum;
}
*s = 0.125f * sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq2_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -3553,36 +3186,10 @@ void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const
*s = 0.5f * sumf;
#else
uint32_t aux32;
float sumf = 0.f;
for (int i = 0; i < nb; ++i) {
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
const uint8_t * GGML_RESTRICT gas = x[i].qs + QK_K/4;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
int32_t bsum = 0;
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
const uint32_t ls = 2*(aux32 >> 28) + 1;
int32_t sumi = 0;
for (int l = 0; l < 4; ++l) {
const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
for (int j = 0; j < 4; ++j) {
sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
}
q8 += 8;
}
q3 += 8;
bsum += sumi * ls;
}
sumf += d * bsum;
}
*s = 0.25f * sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq3_xxs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -3689,48 +3296,10 @@ void ggml_vec_dot_iq3_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
*s = sumf;
#else
float sumf = 0.f;
for (int i = 0; i < nb; ++i) {
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint8_t * GGML_RESTRICT qs = x[i].qs;
const uint8_t * GGML_RESTRICT qh = x[i].qh;
const uint8_t * GGML_RESTRICT signs = x[i].signs;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
int32_t bsum = 0;
for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1;
const uint32_t ls2 = 2*(x[i].scales[ib32/2] >> 4) + 1;
int32_t sumi = 0;
for (int l = 0; l < 4; ++l) {
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
for (int j = 0; j < 4; ++j) {
sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
}
q8 += 8;
}
qs += 8;
signs += 4;
bsum += sumi * ls1;
sumi = 0;
for (int l = 0; l < 4; ++l) {
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
for (int j = 0; j < 4; ++j) {
sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
}
q8 += 8;
}
qs += 8;
signs += 4;
bsum += sumi * ls2;
}
sumf += d * bsum;
}
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq3_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -3793,36 +3362,10 @@ void ggml_vec_dot_iq1_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
*s = sumf;
#else
float sumf = 0;
for (int i = 0; i < nb; i++) {
const int8_t * q8 = y[i].qs;
const uint8_t * qs = x[i].qs;
const uint16_t * qh = x[i].qh;
int sumi = 0, sumi1 = 0;
for (int ib = 0; ib < QK_K/32; ++ib) {
const int ls = 2*((qh[ib] >> 12) & 7) + 1;
const int delta = qh[ib] & 0x8000 ? -1 : 1;
int lsum = 0;
for (int l = 0; l < 4; ++l) {
const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
for (int j = 0; j < 8; ++j) {
lsum += q8[j] * grid[j];
}
q8 += 8;
}
sumi += ls * lsum;
sumi1 += ls * delta * (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]);
qs += 4;
}
sumf += GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d * (sumi + IQ1S_DELTA * sumi1);
}
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq1_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -3912,52 +3455,11 @@ void ggml_vec_dot_iq1_m_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
*s = sumf;
#else
int sum1[2], sum2[2], delta[4];
float sumf = 0;
for (int i = 0; i < nb; i++) {
const int8_t * q8 = y[i].qs;
const uint8_t * qs = x[i].qs;
const uint8_t * qh = x[i].qh;
const uint16_t * sc = (const uint16_t *)x[i].scales;
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
int sumi1 = 0, sumi2 = 0;
for (int ib = 0; ib < QK_K/32; ++ib) {
delta[0] = qh[0] & 0x08 ? -1 : 1;
delta[1] = qh[0] & 0x80 ? -1 : 1;
delta[2] = qh[1] & 0x08 ? -1 : 1;
delta[3] = qh[1] & 0x80 ? -1 : 1;
sum1[0] = sum1[1] = sum2[0] = sum2[1] = 0;
for (int l = 0; l < 4; ++l) {
const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((uint16_t)qh[l/2] << (8 - 4*(l%2))) & 0x700)));
int lsum1 = 0, lsum2 = 0;
for (int j = 0; j < 8; ++j) {
lsum1 += q8[j] * grid[j];
lsum2 += q8[j];
}
q8 += 8;
sum1[l/2] += lsum1;
sum2[l/2] += lsum2*delta[l];
}
const int ls1 = 2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1;
const int ls2 = 2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1;
sumi1 += sum1[0] * ls1 + sum1[1] * ls2;
sumi2 += sum2[0] * ls1 + sum2[1] * ls2;
qs += 4;
qh += 2;
}
sumf += GGML_CPU_FP16_TO_FP32(scale.f16) * y[i].d * (sumi1 + IQ1M_DELTA * sumi2);
}
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
UNUSED(scale);
ggml_vec_dot_iq1_m_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -4078,37 +3580,10 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
*s = sumf;
#else
float sumf = 0;
for (int ibl = 0; ibl < nb; ++ibl) {
const float d4d8 = GGML_CPU_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
uint16_t h = x[ibl].scales_h;
const uint8_t * qs = x[ibl].qs;
const int8_t * q8 = y[ibl].qs;
for (int ib = 0; ib < QK_K/32; ib += 2) {
const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30);
const uint8_t ls2 = (x[ibl].scales_l[ib/2] >> 4) | ((h << 2) & 0x30);
h >>= 4;
const float d1 = d4d8*(ls1 - 32);
const float d2 = d4d8*(ls2 - 32);
int sumi1 = 0, sumi2 = 0;
for (int j = 0; j < 16; ++j) {
sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
}
sumf += d1 * (sumi1 + sumi2);
qs += 16;
q8 += 32;
sumi1 = sumi2 = 0;
for (int j = 0; j < 16; ++j) {
sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
}
sumf += d2 * (sumi1 + sumi2);
qs += 16;
q8 += 32;
}
}
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq4_xs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}

View File

@@ -86,35 +86,9 @@ void ggml_quantize_mat_q8_0_4x4(const float * GGML_RESTRICT x, void * GGML_RESTR
}
}
#else
// scalar
const int blck_size_interleave = 4;
float srcv[4][QK8_0];
float id[4];
for (int i = 0; i < nb; i++) {
for (int row_iter = 0; row_iter < 4; row_iter++) {
float amax = 0.0f; // absolute max
for (int j = 0; j < QK8_0; j++) {
srcv[row_iter][j] = x[row_iter * k + i * QK8_0 + j];
amax = MAX(amax, fabsf(srcv[row_iter][j]));
}
const float d = amax / ((1 << 7) - 1);
id[row_iter] = d ? 1.0f / d : 0.0f;
y[i].d[row_iter] = GGML_CPU_FP32_TO_FP16(d);
}
for (int j = 0; j < QK8_0 * 4; j++) {
int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave;
int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave;
src_offset += (j % blck_size_interleave);
float x0 = srcv[src_id][src_offset] * id[src_id];
y[i].qs[j] = roundf(x0);
}
}
UNUSED(nb);
UNUSED(y);
ggml_quantize_mat_q8_0_4x4_generic(x, vy, k);
#endif
}
@@ -205,35 +179,9 @@ void ggml_quantize_mat_q8_0_4x8(const float * GGML_RESTRICT x, void * GGML_RESTR
}
#else
// scalar
const int blck_size_interleave = 8;
float srcv[4][QK8_0];
float id[4];
for (int i = 0; i < nb; i++) {
for (int row_iter = 0; row_iter < 4; row_iter++) {
float amax = 0.0f; // absolute max
for (int j = 0; j < QK8_0; j++) {
srcv[row_iter][j] = x[row_iter * k + i * QK8_0 + j];
amax = MAX(amax, fabsf(srcv[row_iter][j]));
}
const float d = amax / ((1 << 7) - 1);
id[row_iter] = d ? 1.0f / d : 0.0f;
y[i].d[row_iter] = GGML_CPU_FP32_TO_FP16(d);
}
for (int j = 0; j < QK8_0 * 4; j++) {
int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave;
int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave;
src_offset += (j % blck_size_interleave);
float x0 = srcv[src_id][src_offset] * id[src_id];
y[i].qs[j] = roundf(x0);
}
}
UNUSED(nb);
UNUSED(y);
ggml_quantize_mat_q8_0_4x8_generic(x, vy, k);
#endif
}
@@ -295,29 +243,7 @@ void ggml_gemv_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
}
return;
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
float sumf[4];
int sumi;
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb);
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
}
sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
}
}
}
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
}
ggml_gemv_q4_0_4x4_q8_0_generic(n, s, bs, vx, vy, nr, nc);
}
void ggml_gemv_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
@@ -383,29 +309,7 @@ void ggml_gemv_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
}
return;
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
float sumf[4];
int sumi;
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb);
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
}
sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
}
}
}
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
}
ggml_gemv_q4_0_4x8_q8_0_generic(n, s, bs, vx, vy, nr, nc);
}
void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
@@ -497,31 +401,7 @@ void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
#endif // #if defined(__ARM_FEATURE_SVE)
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__)
{
float sumf[8];
int sumi;
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
}
sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
}
}
}
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
}
}
ggml_gemv_q4_0_8x8_q8_0_generic(n, s, bs, vx, vy, nr, nc);
}
void ggml_gemv_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
@@ -591,31 +471,7 @@ void ggml_gemv_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const
}
return;
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON)
{
float sumf[4];
int sumi;
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb);
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F];
const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4];
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2]));
}
sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
}
}
}
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
}
}
ggml_gemv_iq4_nl_4x4_q8_0_generic(n, s, bs, vx, vy, nr, nc);
}
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
@@ -1096,40 +952,7 @@ void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
);
return;
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON)
{
float sumf[4][4];
int sumi;
for (int y = 0; y < nr / 4; y++) {
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb);
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
}
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
}
sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]);
}
}
}
}
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++)
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
}
}
}
}
ggml_gemm_q4_0_4x4_q8_0_generic(n, s, bs, vx, vy, nr, nc);
}
void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
@@ -1550,38 +1373,7 @@ void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
);
return;
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8)
float sumf[4][4];
int sumi;
for (int y = 0; y < nr / 4; y++) {
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb);
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
}
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
}
sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]);
}
}
}
}
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++)
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
}
}
}
ggml_gemm_q4_0_4x8_q8_0_generic(n, s, bs, vx, vy, nr, nc);
}
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
@@ -2019,38 +1811,7 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
#endif // #if defined(__ARM_FEATURE_SVE) && defined(__ARM_FEATURE_MATMUL_INT8)
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__)
float sumf[4][8];
int sumi;
for (int y = 0; y < nr / 4; y++) {
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
}
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
}
sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]);
}
}
}
}
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++)
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
}
}
}
ggml_gemm_q4_0_8x8_q8_0_generic(n, s, bs, vx, vy, nr, nc);
}
void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
@@ -2126,38 +1887,5 @@ void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const
}
return;
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON)
{
float sumf[4][4];
int sumi;
for (int y = 0; y < nr / 4; y++) {
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb);
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
}
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F];
const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4];
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4]));
}
sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]);
}
}
}
}
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++)
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
}
}
}
}
ggml_gemm_iq4_nl_4x4_q8_0_generic(n, s, bs, vx, vy, nr, nc);
}

View File

@@ -821,24 +821,15 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
sumf = hsum_float_8(acc) + summs;
#endif
for (; ib < nb; ++ib) {
int sumi0 = 0;
int sumi1 = 0;
for (int j = 0; j < qk/2; ++j) {
const int v0 = (x[ib].qs[j] & 0x0F);
const int v1 = (x[ib].qs[j] >> 4);
sumi0 += (v0 * y[ib].qs[j]);
sumi1 += (v1 * y[ib].qs[j + qk/2]);
}
int sumi = sumi0 + sumi1;
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
}
*s = sumf;
#else
UNUSED(nb);
UNUSED(x);
UNUSED(y);
UNUSED(ib);
UNUSED(sumf);
ggml_vec_dot_q4_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -883,30 +874,15 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
sumf = hsum_float_8(acc);
#endif
for (; ib < nb; ++ib) {
uint32_t qh;
memcpy(&qh, x[ib].qh, sizeof(qh));
int sumi0 = 0;
int sumi1 = 0;
for (int j = 0; j < qk/2; ++j) {
const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
const int32_t x0 = (int8_t)(((x[ib].qs[j] & 0x0F) | xh_0) - 16);
const int32_t x1 = (int8_t)(((x[ib].qs[j] >> 4) | xh_1) - 16);
sumi0 += (x0 * y[ib].qs[j]);
sumi1 += (x1 * y[ib].qs[j + qk/2]);
}
int sumi = sumi0 + sumi1;
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d)) * sumi;
}
*s = sumf;
#else
UNUSED(nb);
UNUSED(ib);
UNUSED(sumf);
UNUSED(x);
UNUSED(y);
ggml_vec_dot_q5_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -954,30 +930,15 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
sumf = hsum_float_8(acc) + summs;
#endif
for (; ib < nb; ++ib) {
uint32_t qh;
memcpy(&qh, x[ib].qh, sizeof(qh));
int sumi0 = 0;
int sumi1 = 0;
for (int j = 0; j < qk/2; ++j) {
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
const int32_t x0 = (x[ib].qs[j] & 0xF) | xh_0;
const int32_t x1 = (x[ib].qs[j] >> 4) | xh_1;
sumi0 += (x0 * y[ib].qs[j]);
sumi1 += (x1 * y[ib].qs[j + qk/2]);
}
int sumi = sumi0 + sumi1;
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
}
*s = sumf;
#else
UNUSED(nb);
UNUSED(ib);
UNUSED(sumf);
UNUSED(x);
UNUSED(y);
ggml_vec_dot_q5_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -1016,18 +977,15 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
sumf = hsum_float_8(acc);
#endif
for (; ib < nb; ++ib) {
int sumi = 0;
for (int j = 0; j < qk; j++) {
sumi += x[ib].qs[j]*y[ib].qs[j];
}
sumf += sumi*(GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d));
}
*s = sumf;
#else
UNUSED(nb);
UNUSED(ib);
UNUSED(sumf);
UNUSED(x);
UNUSED(y);
ggml_vec_dot_q8_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -1103,45 +1061,10 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = hsum_float_8(acc);
#else
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * q2 = x[i].qs;
const int8_t * q8 = y[i].qs;
const uint8_t * sc = x[i].scales;
int summs = 0;
for (int j = 0; j < 16; ++j) {
summs += y[i].bsums[j] * (sc[j] >> 4);
}
const float dall = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
int isum = 0;
int is = 0;
int d;
for (int k = 0; k < QK_K/128; ++k) {
int shift = 0;
for (int j = 0; j < 4; ++j) {
d = sc[is++] & 0xF;
int isuml = 0;
for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
isum += d * isuml;
d = sc[is++] & 0xF;
isuml = 0;
for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
isum += d * isuml;
shift += 2;
q8 += 32;
}
q2 += 32;
}
sumf += dall * isum - dmin * summs;
}
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_q2_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -1239,70 +1162,13 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = hsum_float_8(acc);
#else
// scalar version
// This function is written like this so the compiler can manage to vectorize most of it
// Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
// manually vectorized version above. Every other version I tried would run at least 4 times slower.
// The ideal situation would be if we could just write the code once, and the compiler would
// automatically produce the best possible set of machine instructions, instead of us having to manually
// write vectorized versions for AVX, ARM_NEON, etc.
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
uint32_t auxs[4];
const int8_t * scales = (const int8_t*)auxs;
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
const uint8_t * GGML_RESTRICT hm = x[i].hmask;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
uint8_t m = 1;
for (int j = 0; j < QK_K; j += 128) {
for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
q3 += 32;
}
a = aux8;
memcpy(auxs, x[i].scales, 12);
uint32_t tmp = auxs[2];
auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
for (int j = 0; j < QK_K/16; ++j) {
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
UNUSED(kmask1);
UNUSED(kmask2);
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_q3_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -1391,61 +1257,14 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = hsum_float_8(acc) + ((v4f32)acc_m)[0];
#else
const uint8_t * scales = (const uint8_t*)&utmp[0];
const uint8_t * mins = (const uint8_t*)&utmp[2];
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
for (int j = 0; j < QK_K/64; ++j) {
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
a += 32;
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
a += 32; q4 += 32;
}
memcpy(utmp, x[i].scales, 12);
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
const uint32_t uaux = utmp[1] & kmask1;
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
utmp[2] = uaux;
utmp[0] &= kmask1;
int sumi = 0;
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
a = aux8;
int is = 0;
for (int j = 0; j < QK_K/32; ++j) {
int32_t scale = scales[is++];
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
sumf -= dmin * sumi;
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
UNUSED(kmask1);
UNUSED(kmask2);
UNUSED(kmask3);
UNUSED(utmp);
ggml_vec_dot_q4_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -1541,66 +1360,14 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = hsum_float_8(acc) + ((v4f32)acc_m)[0];
#else
const uint8_t * scales = (const uint8_t*)&utmp[0];
const uint8_t * mins = (const uint8_t*)&utmp[2];
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
const uint8_t * GGML_RESTRICT hm = x[i].qh;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
uint8_t m = 1;
for (int j = 0; j < QK_K/64; ++j) {
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
a += 32; m <<= 1;
q4 += 32;
}
memcpy(utmp, x[i].scales, 12);
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
const uint32_t uaux = utmp[1] & kmask1;
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
utmp[2] = uaux;
utmp[0] &= kmask1;
int sumi = 0;
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
a = aux8;
int is = 0;
for (int j = 0; j < QK_K/32; ++j) {
int32_t scale = scales[is++];
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
sumf -= dmin * sumi;
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
UNUSED(kmask1);
UNUSED(kmask2);
UNUSED(kmask3);
UNUSED(utmp);
ggml_vec_dot_q5_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -1678,47 +1445,10 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = hsum_float_8(acc);
#else
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q4 = x[i].ql;
const uint8_t * GGML_RESTRICT qh = x[i].qh;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
for (int j = 0; j < QK_K; j += 128) {
for (int l = 0; l < 32; ++l) {
a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
}
a += 128;
q4 += 64;
qh += 32;
}
a = aux8;
int is = 0;
for (int j = 0; j < QK_K/16; ++j) {
int scale = x[i].scales[is++];
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_q6_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -1815,34 +1545,10 @@ void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const
*s = 0.125f * hsum_float_8(accumf);
#else
uint32_t aux32[2];
const uint8_t * aux8 = (const uint8_t *)aux32;
float sumf = 0.f;
for (int i = 0; i < nb; ++i) {
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint16_t * GGML_RESTRICT q2 = x[i].qs;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
int32_t bsum = 0;
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
memcpy(aux32, q2, 2*sizeof(uint32_t));
q2 += 4;
const uint32_t ls = 2*(aux32[1] >> 28) + 1;
int32_t sumi = 0;
for (int l = 0; l < 4; ++l) {
const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
for (int j = 0; j < 8; ++j) {
sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
}
q8 += 8;
}
bsum += sumi * ls;
}
sumf += d * bsum;
}
*s = 0.125f * sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq2_xxs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -1978,42 +1684,10 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
*s = 0.125f * hsum_float_8(accumf);
#else
float sumf = 0.f;
for (int i = 0; i < nb; ++i) {
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint16_t * GGML_RESTRICT q2 = x[i].qs;
const uint8_t * GGML_RESTRICT sc = x[i].scales;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
int32_t bsum = 0;
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1;
const uint16_t ls2 = 2*(sc[ib32] >> 4) + 1;
int32_t sumi = 0;
for (int l = 0; l < 2; ++l) {
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
for (int j = 0; j < 8; ++j) {
sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
}
q8 += 8;
}
bsum += sumi * ls1;
sumi = 0;
for (int l = 2; l < 4; ++l) {
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
for (int j = 0; j < 8; ++j) {
sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
}
q8 += 8;
}
bsum += sumi * ls2;
q2 += 4;
}
sumf += d * bsum;
}
*s = 0.125f * sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq2_xs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -2105,47 +1779,11 @@ void ggml_vec_dot_iq2_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
*s = 0.125f * hsum_float_8(accumf);
#else
float sumf = 0;
for (int i = 0; i < nb; i++) {
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const int8_t * q8 = y[i].qs;
const uint8_t * qs = x[i].qs;
const uint8_t * qh = x[i].qh;
const uint8_t * signs = qs + QK_K/8;
int bsum = 0;
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
int ls1 = 1 + 2*(x[i].scales[ib32] & 0xf);
int ls2 = 1 + 2*(x[i].scales[ib32] >> 4);
int sumi1 = 0, sumi2 = 0;
for (int l = 0; l < 2; ++l) {
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
for (int j = 0; j < 8; ++j) {
sumi1 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
}
q8 += 8;
}
for (int l = 2; l < 4; ++l) {
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
for (int j = 0; j < 8; ++j) {
sumi2 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
}
q8 += 8;
}
bsum += ls1 * sumi1 + ls2 * sumi2;
qs += 4;
signs += 4;
}
sumf += d * bsum;
}
*s = 0.125f * sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq2_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -2209,36 +1847,10 @@ void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const
*s = 0.25f * hsum_float_8(accumf);
#else
uint32_t aux32;
float sumf = 0.f;
for (int i = 0; i < nb; ++i) {
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
const uint8_t * GGML_RESTRICT gas = x[i].qs + QK_K/4;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
int32_t bsum = 0;
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
const uint32_t ls = 2*(aux32 >> 28) + 1;
int32_t sumi = 0;
for (int l = 0; l < 4; ++l) {
const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
for (int j = 0; j < 4; ++j) {
sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
}
q8 += 8;
}
q3 += 8;
bsum += sumi * ls;
}
sumf += d * bsum;
}
*s = 0.25f * sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq3_xxs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -2338,48 +1950,10 @@ void ggml_vec_dot_iq3_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
*s = hsum_float_8(accumf);
#else
float sumf = 0.f;
for (int i = 0; i < nb; ++i) {
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint8_t * GGML_RESTRICT qs = x[i].qs;
const uint8_t * GGML_RESTRICT qh = x[i].qh;
const uint8_t * GGML_RESTRICT signs = x[i].signs;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
int32_t bsum = 0;
for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1;
const uint32_t ls2 = 2*(x[i].scales[ib32/2] >> 4) + 1;
int32_t sumi = 0;
for (int l = 0; l < 4; ++l) {
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
for (int j = 0; j < 4; ++j) {
sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
}
q8 += 8;
}
qs += 8;
signs += 4;
bsum += sumi * ls1;
sumi = 0;
for (int l = 0; l < 4; ++l) {
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
for (int j = 0; j < 4; ++j) {
sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
}
q8 += 8;
}
qs += 8;
signs += 4;
bsum += sumi * ls2;
}
sumf += d * bsum;
}
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq3_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -2460,36 +2034,10 @@ void ggml_vec_dot_iq1_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
*s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
#else
float sumf = 0;
for (int i = 0; i < nb; i++) {
const int8_t * q8 = y[i].qs;
const uint8_t * qs = x[i].qs;
const uint16_t * qh = x[i].qh;
int sumi = 0, sumi1 = 0;
for (int ib = 0; ib < QK_K/32; ++ib) {
const int ls = 2*((qh[ib] >> 12) & 7) + 1;
const int delta = qh[ib] & 0x8000 ? -1 : 1;
int lsum = 0;
for (int l = 0; l < 4; ++l) {
const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
for (int j = 0; j < 8; ++j) {
lsum += q8[j] * grid[j];
}
q8 += 8;
}
sumi += ls * lsum;
sumi1 += ls * delta * (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]);
qs += 4;
}
sumf += GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d * (sumi + IQ1S_DELTA * sumi1);
}
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq1_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -2603,37 +2151,10 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
*s = hsum_float_8(accum);
#else
float sumf = 0;
for (int ibl = 0; ibl < nb; ++ibl) {
const float d4d8 = GGML_CPU_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
uint16_t h = x[ibl].scales_h;
const uint8_t * qs = x[ibl].qs;
const int8_t * q8 = y[ibl].qs;
for (int ib = 0; ib < QK_K/32; ib += 2) {
const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30);
const uint8_t ls2 = (x[ibl].scales_l[ib/2] >> 4) | ((h << 2) & 0x30);
h >>= 4;
const float d1 = d4d8*(ls1 - 32);
const float d2 = d4d8*(ls2 - 32);
int sumi1 = 0, sumi2 = 0;
for (int j = 0; j < 16; ++j) {
sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
}
sumf += d1 * (sumi1 + sumi2);
qs += 16;
q8 += 32;
sumi1 = sumi2 = 0;
for (int j = 0; j < 16; ++j) {
sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
}
sumf += d2 * (sumi1 + sumi2);
qs += 16;
q8 += 32;
}
}
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq4_xs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}

View File

@@ -201,24 +201,14 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
sumf = vec_extract(vsumf0, 0);
#endif
for (; ib < nb; ++ib) {
int sumi0 = 0;
int sumi1 = 0;
for (int j = 0; j < qk/2; ++j) {
const int v0 = (x[ib].qs[j] & 0x0F) - 8;
const int v1 = (x[ib].qs[j] >> 4) - 8;
sumi0 += (v0 * y[ib].qs[j]);
sumi1 += (v1 * y[ib].qs[j + qk/2]);
}
int sumi = sumi0 + sumi1;
sumf += sumi*GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d);
}
*s = sumf;
#else
UNUSED(x);
UNUSED(y);
UNUSED(ib);
UNUSED(sumf);
ggml_vec_dot_q4_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -278,24 +268,14 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
sumf = vec_extract(vsumf0, 0);
#endif
for (; ib < nb; ++ib) {
int sumi0 = 0;
int sumi1 = 0;
for (int j = 0; j < qk/2; ++j) {
const int v0 = (x[ib].qs[j] & 0x0F);
const int v1 = (x[ib].qs[j] >> 4);
sumi0 += (v0 * y[ib].qs[j]);
sumi1 += (v1 * y[ib].qs[j + qk/2]);
}
int sumi = sumi0 + sumi1;
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
}
*s = sumf;
#else
UNUSED(x);
UNUSED(y);
UNUSED(ib);
UNUSED(sumf);
ggml_vec_dot_q4_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -360,30 +340,14 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
sumf = vec_extract(vsumf0, 0);
#endif
for (; ib < nb; ++ib) {
uint32_t qh;
memcpy(&qh, x[ib].qh, sizeof(qh));
int sumi0 = 0;
int sumi1 = 0;
for (int j = 0; j < qk/2; ++j) {
const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
const int32_t x0 = (int8_t)(((x[ib].qs[j] & 0x0F) | xh_0) - 16);
const int32_t x1 = (int8_t)(((x[ib].qs[j] >> 4) | xh_1) - 16);
sumi0 += (x0 * y[ib].qs[j]);
sumi1 += (x1 * y[ib].qs[j + qk/2]);
}
int sumi = sumi0 + sumi1;
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d)) * sumi;
}
*s = sumf;
#else
UNUSED(ib);
UNUSED(sumf);
UNUSED(x);
UNUSED(y);
ggml_vec_dot_q5_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -451,30 +415,15 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
sumf = vec_extract(vsumf0, 0);
#endif
for (; ib < nb; ++ib) {
uint32_t qh;
memcpy(&qh, x[ib].qh, sizeof(qh));
int sumi0 = 0;
int sumi1 = 0;
for (int j = 0; j < qk/2; ++j) {
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
const int32_t x0 = (x[ib].qs[j] & 0xF) | xh_0;
const int32_t x1 = (x[ib].qs[j] >> 4) | xh_1;
sumi0 += (x0 * y[ib].qs[j]);
sumi1 += (x1 * y[ib].qs[j + qk/2]);
}
int sumi = sumi0 + sumi1;
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
}
*s = sumf;
#else
UNUSED(nb);
UNUSED(ib);
UNUSED(sumf);
UNUSED(x);
UNUSED(y);
ggml_vec_dot_q5_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -535,18 +484,15 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
sumf = vec_extract(vsumf0, 0);
#endif
for (; ib < nb; ++ib) {
int sumi = 0;
for (int j = 0; j < qk; j++) {
sumi += x[ib].qs[j]*y[ib].qs[j];
}
sumf += sumi*(GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d));
}
*s = sumf;
#else
UNUSED(nb);
UNUSED(x);
UNUSED(y);
UNUSED(ib);
UNUSED(sumf);
ggml_vec_dot_q8_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -695,45 +641,10 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = vec_extract(vsumf0, 0);
#else
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * q2 = x[i].qs;
const int8_t * q8 = y[i].qs;
const uint8_t * sc = x[i].scales;
int summs = 0;
for (int j = 0; j < 16; ++j) {
summs += y[i].bsums[j] * (sc[j] >> 4);
}
const float dall = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
int isum = 0;
int is = 0;
int d;
for (int k = 0; k < QK_K/128; ++k) {
int shift = 0;
for (int j = 0; j < 4; ++j) {
d = sc[is++] & 0xF;
int isuml = 0;
for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
isum += d * isuml;
d = sc[is++] & 0xF;
isuml = 0;
for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
isum += d * isuml;
shift += 2;
q8 += 32;
}
q2 += 32;
}
sumf += dall * isum - dmin * summs;
}
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_q2_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -907,70 +818,13 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = vec_extract(vsumf0, 0);
#else
// scalar version
// This function is written like this so the compiler can manage to vectorize most of it
// Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
// manually vectorized version above. Every other version I tried would run at least 4 times slower.
// The ideal situation would be if we could just write the code once, and the compiler would
// automatically produce the best possible set of machine instructions, instead of us having to manually
// write vectorized versions for AVX, ARM_NEON, etc.
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
uint32_t auxs[4];
const int8_t * scales = (const int8_t*)auxs;
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
const uint8_t * GGML_RESTRICT hm = x[i].hmask;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
uint8_t m = 1;
for (int j = 0; j < QK_K; j += 128) {
for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
q3 += 32;
}
a = aux8;
memcpy(auxs, x[i].scales, 12);
uint32_t tmp = auxs[2];
auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
for (int j = 0; j < QK_K/16; ++j) {
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
UNUSED(kmask1);
UNUSED(kmask2);
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_q3_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -1130,61 +984,14 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = vec_extract(vsumf0, 0);
#else
const uint8_t * scales = (const uint8_t*)&utmp[0];
const uint8_t * mins = (const uint8_t*)&utmp[2];
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
for (int j = 0; j < QK_K/64; ++j) {
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
a += 32;
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
a += 32; q4 += 32;
}
memcpy(utmp, x[i].scales, 12);
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
const uint32_t uaux = utmp[1] & kmask1;
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
utmp[2] = uaux;
utmp[0] &= kmask1;
int sumi = 0;
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
a = aux8;
int is = 0;
for (int j = 0; j < QK_K/32; ++j) {
int32_t scale = scales[is++];
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
sumf -= dmin * sumi;
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
UNUSED(kmask1);
UNUSED(kmask2);
UNUSED(kmask3);
UNUSED(utmp);
ggml_vec_dot_q4_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -1342,66 +1149,14 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = vec_extract(vsumf0, 0);
#else
const uint8_t * scales = (const uint8_t*)&utmp[0];
const uint8_t * mins = (const uint8_t*)&utmp[2];
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
const uint8_t * GGML_RESTRICT hm = x[i].qh;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
uint8_t m = 1;
for (int j = 0; j < QK_K/64; ++j) {
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
a += 32; m <<= 1;
q4 += 32;
}
memcpy(utmp, x[i].scales, 12);
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
const uint32_t uaux = utmp[1] & kmask1;
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
utmp[2] = uaux;
utmp[0] &= kmask1;
int sumi = 0;
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
a = aux8;
int is = 0;
for (int j = 0; j < QK_K/32; ++j) {
int32_t scale = scales[is++];
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
sumf -= dmin * sumi;
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
UNUSED(kmask1);
UNUSED(kmask2);
UNUSED(kmask3);
UNUSED(utmp);
ggml_vec_dot_q5_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -1556,47 +1311,10 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = vec_extract(vsumf0, 0);
#else
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q4 = x[i].ql;
const uint8_t * GGML_RESTRICT qh = x[i].qh;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
for (int j = 0; j < QK_K; j += 128) {
for (int l = 0; l < 32; ++l) {
a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
}
a += 128;
q4 += 64;
qh += 32;
}
a = aux8;
int is = 0;
for (int j = 0; j < QK_K/16; ++j) {
int scale = x[i].scales[is++];
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_q6_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -1737,34 +1455,10 @@ void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const
*s = 0.125f * vec_extract(vsumf0, 0);
#else
uint32_t aux32[2];
const uint8_t * aux8 = (const uint8_t *)aux32;
float sumf = 0.f;
for (int i = 0; i < nb; ++i) {
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint16_t * GGML_RESTRICT q2 = x[i].qs;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
int32_t bsum = 0;
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
memcpy(aux32, q2, 2*sizeof(uint32_t));
q2 += 4;
const uint32_t ls = 2*(aux32[1] >> 28) + 1;
int32_t sumi = 0;
for (int l = 0; l < 4; ++l) {
const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
for (int j = 0; j < 8; ++j) {
sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
}
q8 += 8;
}
bsum += sumi * ls;
}
sumf += d * bsum;
}
*s = 0.125f * sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq2_xxs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -1869,42 +1563,10 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
*s = 0.125f * vec_extract(vsumf0, 0);
#else
float sumf = 0.f;
for (int i = 0; i < nb; ++i) {
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint16_t * GGML_RESTRICT q2 = x[i].qs;
const uint8_t * GGML_RESTRICT sc = x[i].scales;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
int32_t bsum = 0;
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1;
const uint16_t ls2 = 2*(sc[ib32] >> 4) + 1;
int32_t sumi = 0;
for (int l = 0; l < 2; ++l) {
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
for (int j = 0; j < 8; ++j) {
sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
}
q8 += 8;
}
bsum += sumi * ls1;
sumi = 0;
for (int l = 2; l < 4; ++l) {
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
for (int j = 0; j < 8; ++j) {
sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
}
q8 += 8;
}
bsum += sumi * ls2;
q2 += 4;
}
sumf += d * bsum;
}
*s = 0.125f * sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq2_xs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -2030,47 +1692,11 @@ void ggml_vec_dot_iq2_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
*s = 0.125f * vec_extract(vsumf0, 0);
#else
float sumf = 0;
for (int i = 0; i < nb; i++) {
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const int8_t * q8 = y[i].qs;
const uint8_t * qs = x[i].qs;
const uint8_t * qh = x[i].qh;
const uint8_t * signs = qs + QK_K/8;
int bsum = 0;
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
int ls1 = 1 + 2*(x[i].scales[ib32] & 0xf);
int ls2 = 1 + 2*(x[i].scales[ib32] >> 4);
int sumi1 = 0, sumi2 = 0;
for (int l = 0; l < 2; ++l) {
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
for (int j = 0; j < 8; ++j) {
sumi1 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
}
q8 += 8;
}
for (int l = 2; l < 4; ++l) {
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
for (int j = 0; j < 8; ++j) {
sumi2 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
}
q8 += 8;
}
bsum += ls1 * sumi1 + ls2 * sumi2;
qs += 4;
signs += 4;
}
sumf += d * bsum;
}
*s = 0.125f * sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq2_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -2172,36 +1798,10 @@ void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const
*s = 0.25f * vec_extract(vsumf0, 0);
#else
uint32_t aux32;
float sumf = 0.f;
for (int i = 0; i < nb; ++i) {
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
const uint8_t * GGML_RESTRICT gas = x[i].qs + QK_K/4;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
int32_t bsum = 0;
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
const uint32_t ls = 2*(aux32 >> 28) + 1;
int32_t sumi = 0;
for (int l = 0; l < 4; ++l) {
const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
for (int j = 0; j < 4; ++j) {
sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
}
q8 += 8;
}
q3 += 8;
bsum += sumi * ls;
}
sumf += d * bsum;
}
*s = 0.25f * sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq3_xxs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -2327,48 +1927,10 @@ void ggml_vec_dot_iq3_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
*s = vec_extract(vsumf0, 0);
#else
float sumf = 0.f;
for (int i = 0; i < nb; ++i) {
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint8_t * GGML_RESTRICT qs = x[i].qs;
const uint8_t * GGML_RESTRICT qh = x[i].qh;
const uint8_t * GGML_RESTRICT signs = x[i].signs;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
int32_t bsum = 0;
for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1;
const uint32_t ls2 = 2*(x[i].scales[ib32/2] >> 4) + 1;
int32_t sumi = 0;
for (int l = 0; l < 4; ++l) {
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
for (int j = 0; j < 4; ++j) {
sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
}
q8 += 8;
}
qs += 8;
signs += 4;
bsum += sumi * ls1;
sumi = 0;
for (int l = 0; l < 4; ++l) {
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
for (int j = 0; j < 4; ++j) {
sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
}
q8 += 8;
}
qs += 8;
signs += 4;
bsum += sumi * ls2;
}
sumf += d * bsum;
}
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq3_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -2481,36 +2043,10 @@ void ggml_vec_dot_iq1_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
*s = vec_extract(vsumf0, 0);
#else
float sumf = 0;
for (int i = 0; i < nb; i++) {
const int8_t * q8 = y[i].qs;
const uint8_t * qs = x[i].qs;
const uint16_t * qh = x[i].qh;
int sumi = 0, sumi1 = 0;
for (int ib = 0; ib < QK_K/32; ++ib) {
const int ls = 2*((qh[ib] >> 12) & 7) + 1;
const int delta = qh[ib] & 0x8000 ? -1 : 1;
int lsum = 0;
for (int l = 0; l < 4; ++l) {
const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
for (int j = 0; j < 8; ++j) {
lsum += q8[j] * grid[j];
}
q8 += 8;
}
sumi += ls * lsum;
sumi1 += ls * delta * (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]);
qs += 4;
}
sumf += GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d * (sumi + IQ1S_DELTA * sumi1);
}
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq1_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -2581,17 +2117,15 @@ void ggml_vec_dot_iq4_nl_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const v
sumf = vec_extract(vsumf0, 0);
#endif
for (; ib < nb; ++ib) {
const float d = GGML_CPU_FP16_TO_FP32(y[ib].d)*GGML_CPU_FP16_TO_FP32(x[ib].d);
int sumi1 = 0, sumi2 = 0;
for (int j = 0; j < QK4_NL/2; ++j) {
sumi1 += y[ib].qs[j+ 0] * kvalues_iq4nl[x[ib].qs[j] & 0xf];
sumi2 += y[ib].qs[j+QK4_NL/2] * kvalues_iq4nl[x[ib].qs[j] >> 4];
}
sumf += d * (sumi1 + sumi2);
}
*s = sumf;
#else
UNUSED(x);
UNUSED(y);
UNUSED(nb);
UNUSED(ib);
UNUSED(sumf);
ggml_vec_dot_iq4_nl_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -2696,37 +2230,10 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
*s = vec_extract(vsumf0, 0);
#else
float sumf = 0;
for (int ibl = 0; ibl < nb; ++ibl) {
const float d4d8 = GGML_CPU_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
uint16_t h = x[ibl].scales_h;
const uint8_t * qs = x[ibl].qs;
const int8_t * q8 = y[ibl].qs;
for (int ib = 0; ib < QK_K/32; ib += 2) {
const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30);
const uint8_t ls2 = (x[ibl].scales_l[ib/2] >> 4) | ((h << 2) & 0x30);
h >>= 4;
const float d1 = d4d8*(ls1 - 32);
const float d2 = d4d8*(ls2 - 32);
int sumi1 = 0, sumi2 = 0;
for (int j = 0; j < 16; ++j) {
sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
}
sumf += d1 * (sumi1 + sumi2);
qs += 16;
q8 += 32;
sumi1 = sumi2 = 0;
for (int j = 0; j < 16; ++j) {
sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
}
sumf += d2 * (sumi1 + sumi2);
qs += 16;
q8 += 32;
}
}
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq4_xs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}

View File

@@ -116,6 +116,7 @@ void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
//===================================== Dot products =================================
void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
#if defined(__riscv_v)
const int qk = QK8_0;
const int nb = n / qk;
@@ -132,7 +133,6 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
int ib = 0;
float sumf = 0;
#if defined(__riscv_v)
size_t vl = qk / 2;
for (; ib < nb; ++ib) {
@@ -164,27 +164,14 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
sumf += sumi*GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d);
}
#endif
for (; ib < nb; ++ib) {
int sumi0 = 0;
int sumi1 = 0;
for (int j = 0; j < qk/2; ++j) {
const int v0 = (x[ib].qs[j] & 0x0F) - 8;
const int v1 = (x[ib].qs[j] >> 4) - 8;
sumi0 += (v0 * y[ib].qs[j]);
sumi1 += (v1 * y[ib].qs[j + qk/2]);
}
int sumi = sumi0 + sumi1;
sumf += sumi*GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d);
}
*s = sumf;
#else
ggml_vec_dot_q4_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
#if defined(__riscv_v)
const int qk = QK8_1;
const int nb = n / qk;
@@ -201,7 +188,6 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
int ib = 0;
float sumf = 0;
#if defined(__riscv_v)
size_t vl = qk / 2;
for (; ib < nb; ++ib) {
@@ -229,27 +215,14 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
}
#endif
for (; ib < nb; ++ib) {
int sumi0 = 0;
int sumi1 = 0;
for (int j = 0; j < qk/2; ++j) {
const int v0 = (x[ib].qs[j] & 0x0F);
const int v1 = (x[ib].qs[j] >> 4);
sumi0 += (v0 * y[ib].qs[j]);
sumi1 += (v1 * y[ib].qs[j + qk/2]);
}
int sumi = sumi0 + sumi1;
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
}
*s = sumf;
#else
ggml_vec_dot_q4_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
#if defined(__riscv_v)
const int qk = QK8_0;
const int nb = n / qk;
@@ -267,7 +240,6 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
const block_q5_0 * GGML_RESTRICT x = vx;
const block_q8_0 * GGML_RESTRICT y = vy;
#if defined(__riscv_v)
size_t vl;
size_t vlenb = __riscv_vlenb();
@@ -297,33 +269,14 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d) * GGML_CPU_FP16_TO_FP32(y[ib].d)) * sumi;
}
#endif
for (; ib < nb; ++ib) {
uint32_t qh;
memcpy(&qh, x[ib].qh, sizeof(qh));
int sumi0 = 0;
int sumi1 = 0;
for (int j = 0; j < qk/2; ++j) {
const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
const int32_t x0 = (int8_t)(((x[ib].qs[j] & 0x0F) | xh_0) - 16);
const int32_t x1 = (int8_t)(((x[ib].qs[j] >> 4) | xh_1) - 16);
sumi0 += (x0 * y[ib].qs[j]);
sumi1 += (x1 * y[ib].qs[j + qk/2]);
}
int sumi = sumi0 + sumi1;
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d)) * sumi;
}
*s = sumf;
#else
ggml_vec_dot_q5_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
#if defined(__riscv_v)
const int qk = QK8_1;
const int nb = n / qk;
@@ -341,7 +294,6 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
const block_q5_1 * GGML_RESTRICT x = vx;
const block_q8_1 * GGML_RESTRICT y = vy;
#if defined(__riscv_v)
size_t vl;
size_t vlenb = __riscv_vlenb();
@@ -370,30 +322,10 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
}
#endif
for (; ib < nb; ++ib) {
uint32_t qh;
memcpy(&qh, x[ib].qh, sizeof(qh));
int sumi0 = 0;
int sumi1 = 0;
for (int j = 0; j < qk/2; ++j) {
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
const int32_t x0 = (x[ib].qs[j] & 0xF) | xh_0;
const int32_t x1 = (x[ib].qs[j] >> 4) | xh_1;
sumi0 += (x0 * y[ib].qs[j]);
sumi1 += (x1 * y[ib].qs[j + qk/2]);
}
int sumi = sumi0 + sumi1;
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
}
*s = sumf;
#else
ggml_vec_dot_q5_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -431,18 +363,17 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
sumf += sumi*(GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d));
}
#endif
for (; ib < nb; ++ib) {
int sumi = 0;
for (int j = 0; j < qk; j++) {
sumi += x[ib].qs[j]*y[ib].qs[j];
}
sumf += sumi*(GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d));
}
*s = sumf;
#else
UNUSED(nb);
UNUSED(x);
UNUSED(y);
UNUSED(ib);
UNUSED(sumf);
ggml_vec_dot_q8_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -738,44 +669,11 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
#else
float sumf = 0;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
for (int i = 0; i < nb; ++i) {
const uint8_t * q2 = x[i].qs;
const int8_t * q8 = y[i].qs;
const uint8_t * sc = x[i].scales;
int summs = 0;
for (int j = 0; j < 16; ++j) {
summs += y[i].bsums[j] * (sc[j] >> 4);
}
const float dall = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
int isum = 0;
int is = 0;
int d;
for (int k = 0; k < QK_K/128; ++k) {
int shift = 0;
for (int j = 0; j < 4; ++j) {
d = sc[is++] & 0xF;
int isuml = 0;
for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
isum += d * isuml;
d = sc[is++] & 0xF;
isuml = 0;
for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
isum += d * isuml;
shift += 2;
q8 += 32;
}
q2 += 32;
}
sumf += dall * isum - dmin * summs;
}
*s = sumf;
ggml_vec_dot_q2_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -1147,68 +1045,14 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = sumf;
#else
// scalar version
// This function is written like this so the compiler can manage to vectorize most of it
// Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
// manually vectorized version above. Every other version I tried would run at least 4 times slower.
// The ideal situation would be if we could just write the code once, and the compiler would
// automatically produce the best possible set of machine instructions, instead of us having to manually
// write vectorized versions for AVX, ARM_NEON, etc.
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
uint32_t auxs[4];
const int8_t * scales = (const int8_t*)auxs;
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
const uint8_t * GGML_RESTRICT hm = x[i].hmask;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
uint8_t m = 1;
for (int j = 0; j < QK_K; j += 128) {
for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
q3 += 32;
}
a = aux8;
memcpy(auxs, x[i].scales, 12);
uint32_t tmp = auxs[2];
auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
for (int j = 0; j < QK_K/16; ++j) {
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
UNUSED(kmask1);
UNUSED(kmask2);
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_q3_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -1534,60 +1378,15 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
#else
const uint8_t * scales = (const uint8_t*)&utmp[0];
const uint8_t * mins = (const uint8_t*)&utmp[2];
UNUSED(x);
UNUSED(y);
UNUSED(kmask1);
UNUSED(kmask2);
UNUSED(kmask3);
UNUSED(nb);
UNUSED(utmp);
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
for (int j = 0; j < QK_K/64; ++j) {
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
a += 32;
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
a += 32; q4 += 32;
}
memcpy(utmp, x[i].scales, 12);
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
const uint32_t uaux = utmp[1] & kmask1;
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
utmp[2] = uaux;
utmp[0] &= kmask1;
int sumi = 0;
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
a = aux8;
int is = 0;
for (int j = 0; j < QK_K/32; ++j) {
int32_t scale = scales[is++];
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
sumf -= dmin * sumi;
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
ggml_vec_dot_q4_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -1698,65 +1497,15 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
#else
const uint8_t * scales = (const uint8_t*)&utmp[0];
const uint8_t * mins = (const uint8_t*)&utmp[2];
UNUSED(x);
UNUSED(y);
UNUSED(kmask1);
UNUSED(kmask2);
UNUSED(kmask3);
UNUSED(nb);
UNUSED(utmp);
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
const uint8_t * GGML_RESTRICT hm = x[i].qh;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
uint8_t m = 1;
for (int j = 0; j < QK_K/64; ++j) {
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
a += 32; m <<= 1;
q4 += 32;
}
memcpy(utmp, x[i].scales, 12);
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
const uint32_t uaux = utmp[1] & kmask1;
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
utmp[2] = uaux;
utmp[0] &= kmask1;
int sumi = 0;
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
a = aux8;
int is = 0;
for (int j = 0; j < QK_K/32; ++j) {
int32_t scale = scales[is++];
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
sumf -= dmin * sumi;
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
ggml_vec_dot_q5_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -2024,46 +1773,11 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
#else
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
UNUSED(x);
UNUSED(y);
UNUSED(nb);
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q4 = x[i].ql;
const uint8_t * GGML_RESTRICT qh = x[i].qh;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
for (int j = 0; j < QK_K; j += 128) {
for (int l = 0; l < 32; ++l) {
a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
}
a += 128;
q4 += 64;
qh += 32;
}
a = aux8;
int is = 0;
for (int j = 0; j < QK_K/16; ++j) {
int scale = x[i].scales[is++];
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
ggml_vec_dot_q6_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}

View File

@@ -112,31 +112,7 @@ void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
}
#endif
{
float sumf[8];
int sumi;
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
}
sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
}
}
}
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
}
}
ggml_gemv_q4_0_8x8_q8_0_generic(n, s, bs, vx, vy, nr, nc);
}
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
@@ -361,37 +337,6 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
return;
}
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__)
float sumf[4][8];
int sumi;
for (int y = 0; y < nr / 4; y++) {
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
}
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
}
sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]);
}
}
}
}
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++)
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
}
}
}
#endif
ggml_gemm_q4_0_8x8_q8_0_generic(n, s, bs, vx, vy, nr, nc);
}

View File

@@ -172,24 +172,15 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
sumf = acc[0] + acc[1] + acc[2] + acc[3];
#endif
for (; ib < nb; ++ib) {
int sumi0 = 0;
int sumi1 = 0;
for (int j = 0; j < qk/2; ++j) {
const int v0 = (x[ib].qs[j] & 0x0F) - 8;
const int v1 = (x[ib].qs[j] >> 4) - 8;
sumi0 += (v0 * y[ib].qs[j]);
sumi1 += (v1 * y[ib].qs[j + qk/2]);
}
int sumi = sumi0 + sumi1;
sumf += sumi*GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d);
}
*s = sumf;
#else
UNUSED(nb);
UNUSED(x);
UNUSED(y);
UNUSED(ib);
UNUSED(sumf);
ggml_vec_dot_q4_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -239,24 +230,15 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
sumf = acc[0] + acc[1] + acc[2] + acc[3] + summs;
#endif
for (; ib < nb; ++ib) {
int sumi0 = 0;
int sumi1 = 0;
for (int j = 0; j < qk/2; ++j) {
const int v0 = (x[ib].qs[j] & 0x0F);
const int v1 = (x[ib].qs[j] >> 4);
sumi0 += (v0 * y[ib].qs[j]);
sumi1 += (v1 * y[ib].qs[j + qk/2]);
}
int sumi = sumi0 + sumi1;
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
}
*s = sumf;
#else
UNUSED(nb);
UNUSED(x);
UNUSED(y);
UNUSED(ib);
UNUSED(sumf);
ggml_vec_dot_q4_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -298,18 +280,15 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
sumf = acc[0] + acc[1] + acc[2] + acc[3];
#endif
for (; ib < nb; ++ib) {
int sumi = 0;
for (int j = 0; j < qk; j++) {
sumi += x[ib].qs[j]*y[ib].qs[j];
}
sumf += sumi*(GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d));
}
*s = sumf;
#else
UNUSED(nb);
UNUSED(x);
UNUSED(y);
UNUSED(ib);
UNUSED(sumf);
ggml_vec_dot_q8_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -442,70 +421,13 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = sum;
#else
// scalar version
// This function is written like this so the compiler can manage to vectorize most of it
// Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
// manually vectorized version above. Every other version I tried would run at least 4 times slower.
// The ideal situation would be if we could just write the code once, and the compiler would
// automatically produce the best possible set of machine instructions, instead of us having to manually
// write vectorized versions for AVX, ARM_NEON, etc.
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
uint32_t auxs[4];
const int8_t * scales = (const int8_t*)auxs;
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
const uint8_t * GGML_RESTRICT hm = x[i].hmask;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
uint8_t m = 1;
for (int j = 0; j < QK_K; j += 128) {
for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
q3 += 32;
}
a = aux8;
memcpy(auxs, x[i].scales, 12);
uint32_t tmp = auxs[2];
auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
for (int j = 0; j < QK_K/16; ++j) {
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
UNUSED(kmask1);
UNUSED(kmask2);
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_q3_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -600,61 +522,14 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = sumf;
#else
const uint8_t * scales = (const uint8_t*)&utmp[0];
const uint8_t * mins = (const uint8_t*)&utmp[2];
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
for (int j = 0; j < QK_K/64; ++j) {
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
a += 32;
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
a += 32; q4 += 32;
}
memcpy(utmp, x[i].scales, 12);
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
const uint32_t uaux = utmp[1] & kmask1;
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
utmp[2] = uaux;
utmp[0] &= kmask1;
int sumi = 0;
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
a = aux8;
int is = 0;
for (int j = 0; j < QK_K/32; ++j) {
int32_t scale = scales[is++];
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
sumf -= dmin * sumi;
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
UNUSED(kmask1);
UNUSED(kmask2);
UNUSED(kmask3);
UNUSED(utmp);
ggml_vec_dot_q4_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -767,66 +642,14 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = sumf;
#else
const uint8_t * scales = (const uint8_t*)&utmp[0];
const uint8_t * mins = (const uint8_t*)&utmp[2];
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
const uint8_t * GGML_RESTRICT hm = x[i].qh;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
uint8_t m = 1;
for (int j = 0; j < QK_K/64; ++j) {
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
a += 32; m <<= 1;
q4 += 32;
}
memcpy(utmp, x[i].scales, 12);
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
const uint32_t uaux = utmp[1] & kmask1;
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
utmp[2] = uaux;
utmp[0] &= kmask1;
int sumi = 0;
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
a = aux8;
int is = 0;
for (int j = 0; j < QK_K/32; ++j) {
int32_t scale = scales[is++];
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
sumf -= dmin * sumi;
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
UNUSED(kmask1);
UNUSED(kmask2);
UNUSED(kmask3);
UNUSED(utmp);
ggml_vec_dot_q5_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -969,47 +792,10 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = sum;
#else
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q4 = x[i].ql;
const uint8_t * GGML_RESTRICT qh = x[i].qh;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
for (int j = 0; j < QK_K; j += 128) {
for (int l = 0; l < 32; ++l) {
a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
}
a += 128;
q4 += 64;
qh += 32;
}
a = aux8;
int is = 0;
for (int j = 0; j < QK_K/16; ++j) {
int scale = x[i].scales[is++];
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_q6_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -1186,17 +972,15 @@ void ggml_vec_dot_iq4_nl_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const v
sumf += GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d) * (v_xy[0] + v_xy[1] + v_xy[2] + v_xy[3]);
}
#endif
for (; ib < nb; ++ib) {
const float d = GGML_CPU_FP16_TO_FP32(y[ib].d)*GGML_CPU_FP16_TO_FP32(x[ib].d);
int sumi1 = 0, sumi2 = 0;
for (int j = 0; j < QK4_NL/2; ++j) {
sumi1 += y[ib].qs[j+ 0] * kvalues_iq4nl[x[ib].qs[j] & 0xf];
sumi2 += y[ib].qs[j+QK4_NL/2] * kvalues_iq4nl[x[ib].qs[j] >> 4];
}
sumf += d * (sumi1 + sumi2);
}
*s = sumf;
#else
UNUSED(x);
UNUSED(y);
UNUSED(nb);
UNUSED(ib);
UNUSED(sumf);
ggml_vec_dot_iq4_nl_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -1264,37 +1048,10 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
*s = sumf;
#else
float sumf = 0;
for (int ibl = 0; ibl < nb; ++ibl) {
const float d4d8 = GGML_CPU_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
uint16_t h = x[ibl].scales_h;
const uint8_t * qs = x[ibl].qs;
const int8_t * q8 = y[ibl].qs;
for (int ib = 0; ib < QK_K/32; ib += 2) {
const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30);
const uint8_t ls2 = (x[ibl].scales_l[ib/2] >> 4) | ((h << 2) & 0x30);
h >>= 4;
const float d1 = d4d8*(ls1 - 32);
const float d2 = d4d8*(ls2 - 32);
int sumi1 = 0, sumi2 = 0;
for (int j = 0; j < 16; ++j) {
sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
}
sumf += d1 * (sumi1 + sumi2);
qs += 16;
q8 += 32;
sumi1 = sumi2 = 0;
for (int j = 0; j < 16; ++j) {
sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
}
sumf += d2 * (sumi1 + sumi2);
qs += 16;
q8 += 32;
}
}
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq4_xs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}

View File

@@ -435,30 +435,15 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
#endif
for (; ib < nb; ++ib) {
uint32_t qh;
memcpy(&qh, x[ib].qh, sizeof(qh));
int sumi0 = 0;
int sumi1 = 0;
for (int j = 0; j < qk/2; ++j) {
const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
const int32_t x0 = (int8_t)(((x[ib].qs[j] & 0x0F) | xh_0) - 16);
const int32_t x1 = (int8_t)(((x[ib].qs[j] >> 4) | xh_1) - 16);
sumi0 += (x0 * y[ib].qs[j]);
sumi1 += (x1 * y[ib].qs[j + qk/2]);
}
int sumi = sumi0 + sumi1;
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d)) * sumi;
}
*s = sumf;
#else
UNUSED(nb);
UNUSED(ib);
UNUSED(sumf);
UNUSED(x);
UNUSED(y);
ggml_vec_dot_q5_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -545,30 +530,15 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
#endif
for (; ib < nb; ++ib) {
uint32_t qh;
memcpy(&qh, x[ib].qh, sizeof(qh));
int sumi0 = 0;
int sumi1 = 0;
for (int j = 0; j < qk/2; ++j) {
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
const int32_t x0 = (x[ib].qs[j] & 0xF) | xh_0;
const int32_t x1 = (x[ib].qs[j] >> 4) | xh_1;
sumi0 += (x0 * y[ib].qs[j]);
sumi1 += (x1 * y[ib].qs[j + qk/2]);
}
int sumi = sumi0 + sumi1;
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
}
*s = sumf;
#else
UNUSED(nb);
UNUSED(ib);
UNUSED(sumf);
UNUSED(x);
UNUSED(y);
ggml_vec_dot_q5_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -628,18 +598,15 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
#endif
for (; ib < nb; ++ib) {
int sumi = 0;
for (int j = 0; j < qk; j++) {
sumi += x[ib].qs[j]*y[ib].qs[j];
}
sumf += sumi*(GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d));
}
*s = sumf;
#else
UNUSED(nb);
UNUSED(x);
UNUSED(y);
UNUSED(ib);
UNUSED(sumf);
ggml_vec_dot_q8_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -755,45 +722,10 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = sumf;
#else
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * q2 = x[i].qs;
const int8_t * q8 = y[i].qs;
const uint8_t * sc = x[i].scales;
int summs = 0;
for (int j = 0; j < 16; ++j) {
summs += y[i].bsums[j] * (sc[j] >> 4);
}
const float dall = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
int isum = 0;
int is = 0;
int d;
for (int k = 0; k < QK_K/128; ++k) {
int shift = 0;
for (int j = 0; j < 4; ++j) {
d = sc[is++] & 0xF;
int isuml = 0;
for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
isum += d * isuml;
d = sc[is++] & 0xF;
isuml = 0;
for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
isum += d * isuml;
shift += 2;
q8 += 32;
}
q2 += 32;
}
sumf += dall * isum - dmin * summs;
}
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_q2_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -902,68 +834,12 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = sumf;
#else
// scalar version
// This function is written like this so the compiler can manage to vectorize most of it
// Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
// manually vectorized version above. Every other version I tried would run at least 4 times slower.
// The ideal situation would be if we could just write the code once, and the compiler would
// automatically produce the best possible set of machine instructions, instead of us having to manually
// write vectorized versions for AVX, ARM_NEON, etc.
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
uint32_t auxs[4];
const int8_t * scales = (const int8_t*)auxs;
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
const uint8_t * GGML_RESTRICT hm = x[i].hmask;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
uint8_t m = 1;
for (int j = 0; j < QK_K; j += 128) {
for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
q3 += 32;
}
a = aux8;
memcpy(auxs, x[i].scales, 12);
uint32_t tmp = auxs[2];
auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
for (int j = 0; j < QK_K/16; ++j) {
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
UNUSED(kmask1);
UNUSED(kmask2);
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_q3_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -1089,61 +965,14 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = sumf;
#else
const uint8_t * scales = (const uint8_t*)&utmp[0];
const uint8_t * mins = (const uint8_t*)&utmp[2];
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
for (int j = 0; j < QK_K/64; ++j) {
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
a += 32;
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
a += 32; q4 += 32;
}
memcpy(utmp, x[i].scales, 12);
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
const uint32_t uaux = utmp[1] & kmask1;
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
utmp[2] = uaux;
utmp[0] &= kmask1;
int sumi = 0;
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
a = aux8;
int is = 0;
for (int j = 0; j < QK_K/32; ++j) {
int32_t scale = scales[is++];
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
sumf -= dmin * sumi;
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
UNUSED(kmask1);
UNUSED(kmask2);
UNUSED(kmask3);
UNUSED(utmp);
ggml_vec_dot_q4_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -1279,66 +1108,14 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = sumf;
#else
const uint8_t * scales = (const uint8_t*)&utmp[0];
const uint8_t * mins = (const uint8_t*)&utmp[2];
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
const uint8_t * GGML_RESTRICT hm = x[i].qh;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
uint8_t m = 1;
for (int j = 0; j < QK_K/64; ++j) {
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
a += 32; m <<= 1;
q4 += 32;
}
memcpy(utmp, x[i].scales, 12);
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
const uint32_t uaux = utmp[1] & kmask1;
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
utmp[2] = uaux;
utmp[0] &= kmask1;
int sumi = 0;
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
a = aux8;
int is = 0;
for (int j = 0; j < QK_K/32; ++j) {
int32_t scale = scales[is++];
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
sumf -= dmin * sumi;
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
UNUSED(kmask1);
UNUSED(kmask2);
UNUSED(kmask3);
UNUSED(utmp);
ggml_vec_dot_q5_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -1435,47 +1212,10 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = sumf;
#else
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q4 = x[i].ql;
const uint8_t * GGML_RESTRICT qh = x[i].qh;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
for (int j = 0; j < QK_K; j += 128) {
for (int l = 0; l < 32; ++l) {
a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
}
a += 128;
q4 += 64;
qh += 32;
}
a = aux8;
int is = 0;
for (int j = 0; j < QK_K/16; ++j) {
int scale = x[i].scales[is++];
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_q6_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}

View File

@@ -702,7 +702,6 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
const block_q8_1 * GGML_RESTRICT y = vy;
int ib = 0;
float sumf = 0;
#if defined(__AVX2__) || defined(__AVX__)
// Initialize accumulator with zeros
@@ -737,26 +736,14 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
#endif
}
sumf = hsum_float_8(acc) + summs;
*s = hsum_float_8(acc) + summs;
#else
UNUSED(nb);
UNUSED(x);
UNUSED(y);
UNUSED(ib);
ggml_vec_dot_q4_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
for (; ib < nb; ++ib) {
int sumi0 = 0;
int sumi1 = 0;
for (int j = 0; j < qk/2; ++j) {
const int v0 = (x[ib].qs[j] & 0x0F);
const int v1 = (x[ib].qs[j] >> 4);
sumi0 += (v0 * y[ib].qs[j]);
sumi1 += (v1 * y[ib].qs[j + qk/2]);
}
int sumi = sumi0 + sumi1;
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
}
*s = sumf;
}
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -764,7 +751,6 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
const int nb = n / qk;
int ib = 0;
float sumf = 0;
assert(n % qk == 0);
assert(qk == QK5_0);
@@ -799,7 +785,7 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
acc = _mm256_fmadd_ps(d, q, acc);
}
sumf = hsum_float_8(acc);
*s = hsum_float_8(acc);
#elif defined(__AVX__)
// Initialize accumulator with zeros
__m256 acc = _mm256_setzero_ps();
@@ -830,32 +816,14 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
}
sumf = hsum_float_8(acc);
*s = hsum_float_8(acc);
#else
UNUSED(nb);
UNUSED(ib);
UNUSED(x);
UNUSED(y);
ggml_vec_dot_q5_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
for (; ib < nb; ++ib) {
uint32_t qh;
memcpy(&qh, x[ib].qh, sizeof(qh));
int sumi0 = 0;
int sumi1 = 0;
for (int j = 0; j < qk/2; ++j) {
const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
const int32_t x0 = (int8_t)(((x[ib].qs[j] & 0x0F) | xh_0) - 16);
const int32_t x1 = (int8_t)(((x[ib].qs[j] >> 4) | xh_1) - 16);
sumi0 += (x0 * y[ib].qs[j]);
sumi1 += (x1 * y[ib].qs[j + qk/2]);
}
int sumi = sumi0 + sumi1;
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d)) * sumi;
}
*s = sumf;
}
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -863,7 +831,6 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
const int nb = n / qk;
int ib = 0;
float sumf = 0;
assert(n % qk == 0);
assert(qk == QK5_1);
@@ -901,7 +868,7 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
}
sumf = hsum_float_8(acc) + summs;
*s = hsum_float_8(acc) + summs;
#elif defined(__AVX__)
// Initialize accumulator with zeros
__m256 acc = _mm256_setzero_ps();
@@ -935,32 +902,14 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
}
sumf = hsum_float_8(acc) + summs;
*s = hsum_float_8(acc) + summs;
#else
UNUSED(nb);
UNUSED(ib);
UNUSED(x);
UNUSED(y);
ggml_vec_dot_q5_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
for (; ib < nb; ++ib) {
uint32_t qh;
memcpy(&qh, x[ib].qh, sizeof(qh));
int sumi0 = 0;
int sumi1 = 0;
for (int j = 0; j < qk/2; ++j) {
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
const int32_t x0 = (x[ib].qs[j] & 0xF) | xh_0;
const int32_t x1 = (x[ib].qs[j] >> 4) | xh_1;
sumi0 += (x0 * y[ib].qs[j]);
sumi1 += (x1 * y[ib].qs[j + qk/2]);
}
int sumi = sumi0 + sumi1;
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
}
*s = sumf;
}
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -1017,7 +966,6 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
}
sumf = hsum_float_8(accum);
#endif
for (; ib < nb; ++ib) {
int sumi = 0;
@@ -1157,44 +1105,10 @@ void ggml_vec_dot_tq1_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
*s = hsum_float_8(sumf);
#else
const uint8_t pow3[6] = {1, 3, 9, 27, 81, 243};
float sumf = 0.0f;
for (int i = 0; i < nb; ++i) {
int sum = 0;
for (size_t j = 0; j < sizeof(x->qs) - sizeof(x->qs) % 32; j += 32) {
for (size_t l = 0; l < 5; ++l) {
for (size_t m = 0; m < 32; ++m) {
uint8_t q = x[i].qs[j + m] * pow3[l];
uint16_t xi = ((uint16_t) q * 3) >> 8;
sum += (xi - 1) * y[i].qs[j*5 + l*32 + m];
}
}
}
for (size_t j = sizeof(x->qs) - sizeof(x->qs) % 32; j < sizeof(x->qs); j += 16) {
for (size_t l = 0; l < 5; ++l) {
for (size_t m = 0; m < 16; ++m) {
uint8_t q = x[i].qs[j + m] * pow3[l];
uint16_t xi = ((uint16_t) q * 3) >> 8;
sum += (xi - 1) * y[i].qs[j*5 + l*16 + m];
}
}
}
for (size_t l = 0; l < 4; ++l) {
for (size_t j = 0; j < sizeof(x->qh); ++j) {
uint8_t q = x[i].qh[j] * pow3[l];
uint16_t xi = ((uint16_t) q * 3) >> 8;
sum += (xi - 1) * y[i].qs[sizeof(x->qs)*5 + l*sizeof(x->qh) + j];
}
}
sumf += (float) sum * (GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d);
}
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_tq1_0_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -1257,25 +1171,10 @@ void ggml_vec_dot_tq2_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
*s = hsum_float_8(sumf);
#else
float sumf = 0.0f;
for (int i = 0; i < nb; ++i) {
int32_t sumi = 0;
for (size_t j = 0; j < sizeof(x->qs); j += 32) {
for (size_t l = 0; l < 4; ++l) {
for (size_t k = 0; k < 32; ++k) {
sumi += y[i].qs[j*4 + l*32 + k] * (((x[i].qs[j + k] >> (l*2)) & 3) - 1);
}
}
}
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
sumf += (float) sumi * d;
}
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_tq2_0_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -1464,45 +1363,10 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = hsum_float_8(acc);
#else
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * q2 = x[i].qs;
const int8_t * q8 = y[i].qs;
const uint8_t * sc = x[i].scales;
int summs = 0;
for (int j = 0; j < 16; ++j) {
summs += y[i].bsums[j] * (sc[j] >> 4);
}
const float dall = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
int isum = 0;
int is = 0;
int d;
for (int k = 0; k < QK_K/128; ++k) {
int shift = 0;
for (int j = 0; j < 4; ++j) {
d = sc[is++] & 0xF;
int isuml = 0;
for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
isum += d * isuml;
d = sc[is++] & 0xF;
isuml = 0;
for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
isum += d * isuml;
shift += 2;
q8 += 32;
}
q2 += 32;
}
sumf += dall * isum - dmin * summs;
}
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_q2_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -1769,70 +1633,13 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = hsum_float_8(acc);
#else
// scalar version
// This function is written like this so the compiler can manage to vectorize most of it
// Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
// manually vectorized version above. Every other version I tried would run at least 4 times slower.
// The ideal situation would be if we could just write the code once, and the compiler would
// automatically produce the best possible set of machine instructions, instead of us having to manually
// write vectorized versions for AVX, ARM_NEON, etc.
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
uint32_t auxs[4];
const int8_t * scales = (const int8_t*)auxs;
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
const uint8_t * GGML_RESTRICT hm = x[i].hmask;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
uint8_t m = 1;
for (int j = 0; j < QK_K; j += 128) {
for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
a += 32; m <<= 1;
q3 += 32;
}
a = aux8;
memcpy(auxs, x[i].scales, 12);
uint32_t tmp = auxs[2];
auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
for (int j = 0; j < QK_K/16; ++j) {
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
UNUSED(kmask1);
UNUSED(kmask2);
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_q3_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -2002,61 +1809,14 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
#else
const uint8_t * scales = (const uint8_t*)&utmp[0];
const uint8_t * mins = (const uint8_t*)&utmp[2];
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
for (int j = 0; j < QK_K/64; ++j) {
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
a += 32;
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
a += 32; q4 += 32;
}
memcpy(utmp, x[i].scales, 12);
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
const uint32_t uaux = utmp[1] & kmask1;
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
utmp[2] = uaux;
utmp[0] &= kmask1;
int sumi = 0;
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
a = aux8;
int is = 0;
for (int j = 0; j < QK_K/32; ++j) {
int32_t scale = scales[is++];
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
sumf -= dmin * sumi;
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
UNUSED(kmask1);
UNUSED(kmask2);
UNUSED(kmask3);
UNUSED(utmp);
ggml_vec_dot_q4_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -2259,66 +2019,14 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = hsum_float_8(acc) + summs;
#else
const uint8_t * scales = (const uint8_t*)&utmp[0];
const uint8_t * mins = (const uint8_t*)&utmp[2];
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
const uint8_t * GGML_RESTRICT hm = x[i].qh;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
uint8_t m = 1;
for (int j = 0; j < QK_K/64; ++j) {
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
a += 32; m <<= 1;
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
a += 32; m <<= 1;
q4 += 32;
}
memcpy(utmp, x[i].scales, 12);
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
const uint32_t uaux = utmp[1] & kmask1;
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
utmp[2] = uaux;
utmp[0] &= kmask1;
int sumi = 0;
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
a = aux8;
int is = 0;
for (int j = 0; j < QK_K/32; ++j) {
int32_t scale = scales[is++];
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
sumf -= dmin * sumi;
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
UNUSED(kmask1);
UNUSED(kmask2);
UNUSED(kmask3);
UNUSED(utmp);
ggml_vec_dot_q5_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -2520,47 +2228,10 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = hsum_float_8(acc);
#else
int8_t aux8[QK_K];
int16_t aux16[8];
float sums [8];
int32_t aux32[8];
memset(sums, 0, 8*sizeof(float));
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * GGML_RESTRICT q4 = x[i].ql;
const uint8_t * GGML_RESTRICT qh = x[i].qh;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
memset(aux32, 0, 8*sizeof(int32_t));
int8_t * GGML_RESTRICT a = aux8;
for (int j = 0; j < QK_K; j += 128) {
for (int l = 0; l < 32; ++l) {
a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
}
a += 128;
q4 += 64;
qh += 32;
}
a = aux8;
int is = 0;
for (int j = 0; j < QK_K/16; ++j) {
int scale = x[i].scales[is++];
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_q6_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -2712,34 +2383,10 @@ void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const
*s = 0.125f * hsum_float_8(accumf);
#else
uint32_t aux32[2];
const uint8_t * aux8 = (const uint8_t *)aux32;
float sumf = 0.f;
for (int i = 0; i < nb; ++i) {
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint16_t * GGML_RESTRICT q2 = x[i].qs;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
int32_t bsum = 0;
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
memcpy(aux32, q2, 2*sizeof(uint32_t));
q2 += 4;
const uint32_t ls = 2*(aux32[1] >> 28) + 1;
int32_t sumi = 0;
for (int l = 0; l < 4; ++l) {
const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
for (int j = 0; j < 8; ++j) {
sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
}
q8 += 8;
}
bsum += sumi * ls;
}
sumf += d * bsum;
}
*s = 0.125f * sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq2_xxs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -3033,42 +2680,10 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
*s = 0.125f * hsum_float_8(accumf);
#else
float sumf = 0.f;
for (int i = 0; i < nb; ++i) {
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint16_t * GGML_RESTRICT q2 = x[i].qs;
const uint8_t * GGML_RESTRICT sc = x[i].scales;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
int32_t bsum = 0;
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1;
const uint16_t ls2 = 2*(sc[ib32] >> 4) + 1;
int32_t sumi = 0;
for (int l = 0; l < 2; ++l) {
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
for (int j = 0; j < 8; ++j) {
sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
}
q8 += 8;
}
bsum += sumi * ls1;
sumi = 0;
for (int l = 2; l < 4; ++l) {
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
for (int j = 0; j < 8; ++j) {
sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
}
q8 += 8;
}
bsum += sumi * ls2;
q2 += 4;
}
sumf += d * bsum;
}
*s = 0.125f * sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq2_xs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -3250,47 +2865,11 @@ void ggml_vec_dot_iq2_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
*s = 0.125f * hsum_float_8(accumf);
#else
float sumf = 0;
for (int i = 0; i < nb; i++) {
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const int8_t * q8 = y[i].qs;
const uint8_t * qs = x[i].qs;
const uint8_t * qh = x[i].qh;
const uint8_t * signs = qs + QK_K/8;
int bsum = 0;
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
int ls1 = 1 + 2*(x[i].scales[ib32] & 0xf);
int ls2 = 1 + 2*(x[i].scales[ib32] >> 4);
int sumi1 = 0, sumi2 = 0;
for (int l = 0; l < 2; ++l) {
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
for (int j = 0; j < 8; ++j) {
sumi1 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
}
q8 += 8;
}
for (int l = 2; l < 4; ++l) {
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
for (int j = 0; j < 8; ++j) {
sumi2 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
}
q8 += 8;
}
bsum += ls1 * sumi1 + ls2 * sumi2;
qs += 4;
signs += 4;
}
sumf += d * bsum;
}
*s = 0.125f * sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq2_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
@@ -3410,36 +2989,10 @@ void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const
*s = 0.25f * hsum_float_8(accumf);
#else
uint32_t aux32;
float sumf = 0.f;
for (int i = 0; i < nb; ++i) {
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
const uint8_t * GGML_RESTRICT gas = x[i].qs + QK_K/4;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
int32_t bsum = 0;
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
const uint32_t ls = 2*(aux32 >> 28) + 1;
int32_t sumi = 0;
for (int l = 0; l < 4; ++l) {
const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
for (int j = 0; j < 4; ++j) {
sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
}
q8 += 8;
}
q3 += 8;
bsum += sumi * ls;
}
sumf += d * bsum;
}
*s = 0.25f * sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq3_xxs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -3646,48 +3199,10 @@ void ggml_vec_dot_iq3_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
*s = hsum_float_8(accumf);
#else
float sumf = 0.f;
for (int i = 0; i < nb; ++i) {
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint8_t * GGML_RESTRICT qs = x[i].qs;
const uint8_t * GGML_RESTRICT qh = x[i].qh;
const uint8_t * GGML_RESTRICT signs = x[i].signs;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
int32_t bsum = 0;
for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1;
const uint32_t ls2 = 2*(x[i].scales[ib32/2] >> 4) + 1;
int32_t sumi = 0;
for (int l = 0; l < 4; ++l) {
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
for (int j = 0; j < 4; ++j) {
sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
}
q8 += 8;
}
qs += 8;
signs += 4;
bsum += sumi * ls1;
sumi = 0;
for (int l = 0; l < 4; ++l) {
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
for (int j = 0; j < 4; ++j) {
sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
}
q8 += 8;
}
qs += 8;
signs += 4;
bsum += sumi * ls2;
}
sumf += d * bsum;
}
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq3_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -3811,36 +3326,10 @@ void ggml_vec_dot_iq1_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
*s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
#else
float sumf = 0;
for (int i = 0; i < nb; i++) {
const int8_t * q8 = y[i].qs;
const uint8_t * qs = x[i].qs;
const uint16_t * qh = x[i].qh;
int sumi = 0, sumi1 = 0;
for (int ib = 0; ib < QK_K/32; ++ib) {
const int ls = 2*((qh[ib] >> 12) & 7) + 1;
const int delta = qh[ib] & 0x8000 ? -1 : 1;
int lsum = 0;
for (int l = 0; l < 4; ++l) {
const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
for (int j = 0; j < 8; ++j) {
lsum += q8[j] * grid[j];
}
q8 += 8;
}
sumi += ls * lsum;
sumi1 += ls * delta * (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]);
qs += 4;
}
sumf += GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d * (sumi + IQ1S_DELTA * sumi1);
}
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq1_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -4043,52 +3532,11 @@ void ggml_vec_dot_iq1_m_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
*s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2);
#else
int sum1[2], sum2[2], delta[4];
float sumf = 0;
for (int i = 0; i < nb; i++) {
const int8_t * q8 = y[i].qs;
const uint8_t * qs = x[i].qs;
const uint8_t * qh = x[i].qh;
const uint16_t * sc = (const uint16_t *)x[i].scales;
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
int sumi1 = 0, sumi2 = 0;
for (int ib = 0; ib < QK_K/32; ++ib) {
delta[0] = qh[0] & 0x08 ? -1 : 1;
delta[1] = qh[0] & 0x80 ? -1 : 1;
delta[2] = qh[1] & 0x08 ? -1 : 1;
delta[3] = qh[1] & 0x80 ? -1 : 1;
sum1[0] = sum1[1] = sum2[0] = sum2[1] = 0;
for (int l = 0; l < 4; ++l) {
const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((uint16_t)qh[l/2] << (8 - 4*(l%2))) & 0x700)));
int lsum1 = 0, lsum2 = 0;
for (int j = 0; j < 8; ++j) {
lsum1 += q8[j] * grid[j];
lsum2 += q8[j];
}
q8 += 8;
sum1[l/2] += lsum1;
sum2[l/2] += lsum2*delta[l];
}
const int ls1 = 2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1;
const int ls2 = 2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1;
sumi1 += sum1[0] * ls1 + sum1[1] * ls2;
sumi2 += sum2[0] * ls1 + sum2[1] * ls2;
qs += 4;
qh += 2;
}
sumf += GGML_CPU_FP16_TO_FP32(scale.f16) * y[i].d * (sumi1 + IQ1M_DELTA * sumi2);
}
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
UNUSED(scale);
ggml_vec_dot_iq1_m_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
@@ -4275,37 +3723,10 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
*s = hsum_float_8(accum);
#else
float sumf = 0;
for (int ibl = 0; ibl < nb; ++ibl) {
const float d4d8 = GGML_CPU_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
uint16_t h = x[ibl].scales_h;
const uint8_t * qs = x[ibl].qs;
const int8_t * q8 = y[ibl].qs;
for (int ib = 0; ib < QK_K/32; ib += 2) {
const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30);
const uint8_t ls2 = (x[ibl].scales_l[ib/2] >> 4) | ((h << 2) & 0x30);
h >>= 4;
const float d1 = d4d8*(ls1 - 32);
const float d2 = d4d8*(ls2 - 32);
int sumi1 = 0, sumi2 = 0;
for (int j = 0; j < 16; ++j) {
sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
}
sumf += d1 * (sumi1 + sumi2);
qs += 16;
q8 += 32;
sumi1 = sumi2 = 0;
for (int j = 0; j < 16; ++j) {
sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
}
sumf += d2 * (sumi1 + sumi2);
qs += 16;
q8 += 32;
}
}
*s = sumf;
UNUSED(x);
UNUSED(y);
UNUSED(nb);
ggml_vec_dot_iq4_xs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}

View File

@@ -281,35 +281,9 @@ void ggml_quantize_mat_q8_0_4x8(const float * GGML_RESTRICT x, void * GGML_RESTR
}
#else
// scalar
const int blck_size_interleave = 8;
float srcv[4][QK8_0];
float id[4];
for (int i = 0; i < nb; i++) {
for (int row_iter = 0; row_iter < 4; row_iter++) {
float amax = 0.0f; // absolute max
for (int j = 0; j < QK8_0; j++) {
srcv[row_iter][j] = x[row_iter * k + i * QK8_0 + j];
amax = MAX(amax, fabsf(srcv[row_iter][j]));
}
const float d = amax / ((1 << 7) - 1);
id[row_iter] = d ? 1.0f / d : 0.0f;
y[i].d[row_iter] = GGML_CPU_FP32_TO_FP16(d);
}
for (int j = 0; j < QK8_0 * 4; j++) {
int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave;
int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave;
src_offset += (j % blck_size_interleave);
float x0 = srcv[src_id][src_offset] * id[src_id];
y[i].qs[j] = roundf(x0);
}
}
UNUSED(nb);
UNUSED(y);
ggml_quantize_mat_q8_0_4x8_generic(x, vy, k);
#endif
}
@@ -531,49 +505,9 @@ void ggml_quantize_mat_q8_K_4x8(const float * GGML_RESTRICT x, void * GGML_RESTR
}
#else
// scalar
const int blck_size_interleave = 8;
float srcv[4][QK_K];
float iscale[4];
for (int i = 0; i < nb; i++) {
for (int row_iter = 0; row_iter < 4; row_iter++) {
float amax = 0.0f; // absolute max
float max = 0;
for (int j = 0; j < QK_K; j++) {
srcv[row_iter][j] = x[row_iter * k + i * QK_K + j];
// Update the maximum value of the corresponding super block
if(amax < fabsf(srcv[row_iter][j])) {
amax = fabsf(srcv[row_iter][j]);
max = srcv[row_iter][j];
}
}
iscale[row_iter] = amax ? -127.f/max : 0;
y[i].d[row_iter] = amax ? 1/iscale[row_iter] : 0;
}
for (int j = 0; j < QK_K / 4; j++) {
y[i].bsums[j] = 0;
}
// Quants values are interleaved in sequence of eight bytes from corresponding super blocks
// Bsums values are interleaved in sequence of four bsums from each super block taken for interleaving
// i.e first four bsums from the first super block, followed by first four bsums from second super block and so on
for (int j = 0; j < QK_K * 4; j++) {
int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave;
int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave;
src_offset += (j % blck_size_interleave);
int index = (((j & 31) >> 3) << 2) + ((j >> 8) << 4) + ((j >> 6) & 3);
float x0 = srcv[src_id][src_offset] * iscale[src_id];
y[i].qs[j] = nearest_int(x0);
y[i].bsums[index] += y[i].qs[j];
}
}
UNUSED(nb);
UNUSED(y);
ggml_quantize_mat_q8_K_4x8_generic(x, vy, k);
#endif
}
@@ -689,31 +623,7 @@ void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
return;
#endif
{
float sumf[8];
int sumi;
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
}
sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
}
}
}
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
}
}
ggml_gemv_q4_0_8x8_q8_0_generic(n, s, bs, vx, vy, nr, nc);
}
void ggml_gemv_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
@@ -932,61 +842,10 @@ void ggml_gemv_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
}
#else
float sumf[8];
float sum_minf[8];
uint32_t utmp[32];
int sumi1;
int sumi2;
int sumi;
const block_q8_K * a_ptr = (const block_q8_K *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_Kx8 * b_ptr = (const block_q4_Kx8 *) vx + (x * nb);
for (int j = 0; j < ncols_interleaved; j++) {
sumf[j] = 0.0;
sum_minf[j] = 0.0;
}
for (int l = 0; l < nb; l++) {
for (int sb = 0; sb < 8; sb++) {
memcpy(utmp + sb * 4, b_ptr[l].scales + sb * 12, 12);
utmp[sb * 4 + 3] = ((utmp[sb * 4 + 2] >> 4) & kmask2) | (((utmp[sb * 4 + 1] >> 6) & kmask3) << 4);
const uint32_t uaux_0 = utmp[sb * 4 + 1] & kmask1;
utmp[sb * 4 + 1] = (utmp[sb * 4 + 2] & kmask2) | (((utmp[sb * 4 + 0] >> 6) & kmask3) << 4);
utmp[sb * 4 + 2] = uaux_0;
utmp[sb * 4 + 0] &= kmask1;
}
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
uint8_t *scales_0 = (uint8_t*) utmp + (k / 4) * 32;
uint8_t *scales_1 = (uint8_t*) utmp + (k / 4) * 32 + 16;
for (int j = 0; j < ncols_interleaved; j++) {
sumi1 = 0;
sumi2 = 0;
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4);
sumi1 = (v0 * a_ptr[l].qs[(k >> 2) * 64 + (k % 4) * blocklen + i]);
sumi2 = (v1 * a_ptr[l].qs[(k >> 2) * 64 + (k % 4) * blocklen + i + 32]);
sumi1 = sumi1 * scales_0[j];
sumi2 = sumi2 * scales_1[j];
sumi += sumi1 + sumi2;
}
sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d;
}
}
for (int sb = 0; sb < 8; sb++) {
uint8_t *mins = (uint8_t*) utmp + 8 + sb * 16;
for (int j = 0; j < ncols_interleaved; j++) {
sum_minf[j] += mins[j] * (a_ptr[l].bsums[sb * 2] + a_ptr[l].bsums[sb * 2 + 1]) * GGML_CPU_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d;
}
}
}
for (int j = 0; j < ncols_interleaved; j++) {
s[x * ncols_interleaved + j] = sumf[j] - sum_minf[j];
}
}
UNUSED(kmask1);
UNUSED(kmask2);
UNUSED(kmask3);
ggml_gemv_q4_K_8x8_q8_K_generic(n, s, bs, vx, vy, nr, nc);
#endif
}
@@ -1735,38 +1594,7 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
}
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__)
float sumf[4][8];
int sumi;
for (int y = 0; y < nr / 4; y++) {
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
}
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
}
sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]);
}
}
}
}
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++)
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
}
}
}
ggml_gemm_q4_0_8x8_q8_0_generic(n, s, bs, vx, vy, nr, nc);
}
void ggml_gemm_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
@@ -3216,70 +3044,9 @@ void ggml_gemm_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
}
#else
float sumf[4][8];
float sum_minf[4][8];
uint32_t utmp[32];
int sumi1;
int sumi2;
int sumi;
for (int y = 0; y < nr / 4; y++) {
const block_q8_Kx4 * a_ptr = (const block_q8_Kx4 *) vy + (y * nb);
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_Kx8 * b_ptr = (const block_q4_Kx8 *) vx + (x * nb);
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumf[m][j] = 0.0;
sum_minf[m][j] = 0.0;
}
}
for (int l = 0; l < nb; l++) {
for (int sb = 0; sb < 8; sb++) {
memcpy(utmp + sb * 4, b_ptr[l].scales + sb * 12, 12);
utmp[sb * 4 + 3] = ((utmp[sb * 4 + 2] >> 4) & kmask2) | (((utmp[sb * 4 + 1] >> 6) & kmask3) << 4);
const uint32_t uaux_0 = utmp[sb * 4 + 1] & kmask1;
utmp[sb * 4 + 1] = (utmp[sb * 4 + 2] & kmask2) | (((utmp[sb * 4 + 0] >> 6) & kmask3) << 4);
utmp[sb * 4 + 2] = uaux_0;
utmp[sb * 4 + 0] &= kmask1;
}
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
uint8_t *scales_0 = (uint8_t*) utmp + (k / 4) * 32;
uint8_t *scales_1 = (uint8_t*) utmp + (k / 4) * 32 + 16;
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi1 = 0;
sumi2 = 0;
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4);
sumi1 = (v0 * a_ptr[l].qs[(k >> 2) * 256 + (k % 4) * 4 * blocklen + m * blocklen + i]);
sumi2 = (v1 * a_ptr[l].qs[(k >> 2) * 256 + (k % 4) * 4 * blocklen + m * blocklen + i + 128]);
sumi1 = sumi1 * scales_0[j];
sumi2 = sumi2 * scales_1[j];
sumi += sumi1 + sumi2;
}
sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d[m];
}
}
}
for (int sb = 0; sb < 8; sb++) {
uint8_t *mins = (uint8_t*) utmp + 8 + sb * 16;
for(int m = 0; m < 4; m++) {
const int16_t *bsums = a_ptr[l].bsums + (sb * 8) + (m * 4) - ((sb % 2) * 6);
for(int j = 0; j < ncols_interleaved; j++) {
sum_minf[m][j] += mins[j] * (bsums[0] + bsums[1]) * GGML_CPU_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d[m];
}
}
}
}
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j] - sum_minf[m][j];
}
}
}
}
UNUSED(kmask1);
UNUSED(kmask2);
UNUSED(kmask3);
ggml_gemm_q4_K_8x8_q8_K_generic(n, s, bs, vx, vy, nr, nc);
#endif
}

View File

@@ -176,7 +176,7 @@ static const char * cu_get_error_str(CUresult err) {
#define CU_CHECK(err) CUDA_CHECK_GEN(err, CUDA_SUCCESS, cu_get_error_str)
#endif
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
# define CUDA_SET_SHARED_MEMORY_LIMIT(kernel, nbytes) \
do { \
static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = { false }; \
@@ -191,7 +191,7 @@ static const char * cu_get_error_str(CUresult err) {
do { \
GGML_UNUSED(nbytes); \
} while (0)
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
#endif // !(defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
#if CUDART_VERSION >= 11010 || defined(GGML_USE_MUSA)
#define GGML_CUDA_ASSUME(x) __builtin_assume(x)
@@ -211,9 +211,9 @@ typedef float2 dfloat2;
#define GGML_USE_VMM
#endif // (!defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)) || (defined(GGML_USE_HIP) && !defined(GGML_HIP_NO_VMM))
#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
#if defined(GGML_USE_HIP) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
#define FP16_AVAILABLE
#endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
#endif // defined(GGML_USE_HIP) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
#if defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
#define FAST_FP16_AVAILABLE
@@ -227,17 +227,17 @@ typedef float2 dfloat2;
#define FP16_MMA_AVAILABLE
#endif // defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || (defined(GGML_HIP_ROCWMMA_FATTN_GFX12) && defined(RDNA4)))
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && defined(CDNA3)
#if defined(GGML_USE_HIP) && defined(CDNA) && !defined(GGML_HIP_NO_MMQ_MFMA)
#define AMD_MFMA_AVAILABLE
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && defined(CDNA3)
#endif // defined(GGML_USE_HIP) && defined(CDNA) && !defined(GGML_HIP_NO_MMQ_MFMA)
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
#define NEW_MMA_AVAILABLE
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#define CP_ASYNC_AVAILABLE
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#if !defined(GGML_CUDA_NO_FA) && !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ < 220)
#define FLASH_ATTN_AVAILABLE
@@ -259,7 +259,7 @@ static bool fast_fp16_hardware_available(const int cc) {
// Any FP16 tensor core instructions are available for ggml code.
static bool fp16_mma_available(const int cc) {
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(GGML_HIP_ROCWMMA_FATTN)
#if defined(GGML_USE_HIP) && !defined(GGML_HIP_ROCWMMA_FATTN)
return false;
#else
if ((GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA) ||
@@ -275,7 +275,7 @@ static bool fp16_mma_available(const int cc) {
} else {
return false;
}
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(GGML_HIP_ROCWMMA_FATTN)
#endif // defined(GGML_USE_HIP) && !defined(GGML_HIP_ROCWMMA_FATTN)
}
// To be used for feature selection of external libraries, e.g. cuBLAS.
@@ -293,9 +293,12 @@ static bool fp32_mma_hardware_available(const int cc) {
return GGML_CUDA_CC_IS_CDNA(cc);
}
// AMD CDNA3 matrix cores.. Will add support for other CDNA generations later.
static bool amd_mfma_available(const int cc) {
return cc >= GGML_CUDA_CC_OFFSET_AMD && GGML_CUDA_CC_IS_CDNA3(cc);
#if !defined(GGML_HIP_NO_MMQ_MFMA)
return GGML_CUDA_CC_IS_CDNA(cc);
#else
return false;
#endif //!defined(GGML_HIP_NO_MMQ_MFMA)
}
// Volta technically had FP16 tensor cores but they work very differently compared to Turing and later.
@@ -308,25 +311,25 @@ static bool cp_async_available(const int cc) {
}
static constexpr __device__ int ggml_cuda_get_physical_warp_size() {
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(__GFX9__) || defined(__GFX8__))
#if defined(GGML_USE_HIP) && (defined(__GFX9__) || defined(__GFX8__))
return 64;
#else
return 32;
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(__GFX9__) || defined(__GFX8__))
#endif // defined(GGML_USE_HIP) && (defined(__GFX9__) || defined(__GFX8__))
}
[[noreturn]]
static __device__ void no_device_code(
const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(GGML_USE_HIP)
printf("%s:%d: ERROR: HIP kernel %s has no device code compatible with HIP arch %d.\n",
file_name, line, function_name, arch);
GGML_UNUSED(arch_list);
#else
printf("%s:%d: ERROR: CUDA kernel %s has no device code compatible with CUDA arch %d. ggml-cuda.cu was compiled for: %s\n",
file_name, line, function_name, arch, arch_list);
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#endif // defined(GGML_USE_HIP)
__trap();
GGML_UNUSED(no_device_code); // suppress unused function warning
@@ -363,7 +366,7 @@ struct ggml_cuda_unroll<1> {
template<int width = WARP_SIZE>
static __device__ __forceinline__ int warp_reduce_sum(int x) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
return __reduce_add_sync(0xffffffff, x);
#else
#pragma unroll
@@ -371,7 +374,7 @@ static __device__ __forceinline__ int warp_reduce_sum(int x) {
x += __shfl_xor_sync(0xffffffff, x, offset, width);
}
return x;
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
}
template<int width = WARP_SIZE>
@@ -428,6 +431,20 @@ static __global__ void reduce_rows_f32(const float * x, float * dst, const int n
dst[row] = norm ? sum / ncols : sum;
}
template<int width = WARP_SIZE>
static __device__ __forceinline__ int warp_reduce_all(int x) {
#ifdef GGML_USE_HIP
#pragma unroll
for (int offset = width/2; offset > 0; offset >>= 1) {
x = x && __shfl_xor_sync(0xffffffff, x, offset, width);
}
return x;
#else
static_assert(width == WARP_SIZE, "width != WARP_SIZE not implemented");
return __all_sync(0xffffffff, x);
#endif // GGML_USE_HIP
}
template<int width = WARP_SIZE>
static __device__ __forceinline__ float warp_reduce_max(float x) {
#pragma unroll
@@ -440,11 +457,11 @@ static __device__ __forceinline__ float warp_reduce_max(float x) {
static __device__ __forceinline__ half ggml_cuda_hmax(const half a, const half b) {
#ifdef FP16_AVAILABLE
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
#if !defined(GGML_USE_HIP) && CUDART_VERSION < CUDART_HMAX
return __float2half(fmaxf(__half2float(a), __half2float(b)));
#else
return __hmax(a, b);
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
#endif // !defined(GGML_USE_HIP) && CUDART_VERSION < CUDART_HMAX
#else
NO_DEVICE_CODE;
@@ -472,7 +489,7 @@ static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const hal
template<int width = WARP_SIZE>
static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL || (defined(GGML_USE_HIP) && HIP_VERSION >= 50700000)
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL || (defined(GGML_USE_HIP) && HIP_VERSION >= 50700000)
#pragma unroll
for (int offset = width/2; offset > 0; offset >>= 1) {
x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, offset, width));
@@ -481,7 +498,7 @@ static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
#else
GGML_UNUSED(x);
NO_DEVICE_CODE;
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL || (defined(GGML_USE_HIP) && HIP_VERSION >= 50700000)
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL || (defined(GGML_USE_HIP) && HIP_VERSION >= 50700000)
}
#if CUDART_VERSION < CUDART_HMASK
@@ -493,7 +510,7 @@ static __device__ __forceinline__ uint32_t __hgt2_mask(const half2 a, const half
#endif // CUDART_VERSION < CUDART_HMASK
static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, int c) {
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(GGML_USE_HIP)
#if defined(CDNA) || defined(RDNA2) || defined(__gfx906__)
c = __builtin_amdgcn_sdot4(a, b, c, false);
#elif defined(RDNA3) || defined(RDNA4)
@@ -519,7 +536,7 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
#endif
return c;
#else // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#else // defined(GGML_USE_HIP)
#if __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A || defined(GGML_USE_MUSA)
return __dp4a(a, b, c);
@@ -529,7 +546,7 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
return c + a8[0]*b8[0] + a8[1]*b8[1] + a8[2]*b8[2] + a8[3]*b8[3];
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A || defined(GGML_USE_MUSA)
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#endif // defined(GGML_USE_HIP)
}
typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, dfloat2 & v);

View File

@@ -15,6 +15,7 @@ typedef void (* fattn_kernel_t)(
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
const float scale,
@@ -500,6 +501,55 @@ constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) {
nullptr;
}
template <int ncols1>
__launch_bounds__(FATTN_KQ_STRIDE/2, 1)
static __global__ void flash_attn_mask_to_KV_max(
const half2 * __restrict__ mask, int * __restrict__ KV_max, const int ne30, const int s31, const int s33) {
const int ne31 = gridDim.x;
const int tid = threadIdx.x;
const int sequence = blockIdx.y;
const int jt = blockIdx.x;
mask += sequence*s33 + jt*ncols1*s31;
__shared__ int buf_iw[WARP_SIZE];
if (tid < WARP_SIZE) {
buf_iw[tid] = 1;
}
__syncthreads();
int KV_max_sj = (ne30 - 1) * FATTN_KQ_STRIDE;
for (; KV_max_sj >= 0; KV_max_sj -= FATTN_KQ_STRIDE) {
int all_inf = 1;
#pragma unroll
for (int j = 0; j < ncols1; ++j) {
const float2 tmp = __half22float2(mask[j*s31 + KV_max_sj/2 + tid]);
all_inf = all_inf && int(isinf(tmp.x)) && int(isinf(tmp.y));
}
all_inf = warp_reduce_all(all_inf);
if (tid % WARP_SIZE == 0) {
buf_iw[tid / WARP_SIZE] = all_inf;
}
__syncthreads();
all_inf = buf_iw[tid % WARP_SIZE];
__syncthreads();
all_inf = warp_reduce_all(all_inf);
if (!all_inf) {
KV_max_sj += FATTN_KQ_STRIDE;
break;
}
}
if (threadIdx.x != 0) {
return;
}
KV_max[sequence*ne31 + jt] = KV_max_sj;
}
template<int D, int ncols1, int ncols2> // D == head size
__launch_bounds__(D, 1)
static __global__ void flash_attn_stream_k_fixup(
@@ -592,9 +642,9 @@ static __global__ void flash_attn_stream_k_fixup(
}
template<int D> // D == head size
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#if !defined(GGML_USE_HIP)
__launch_bounds__(D, 1)
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#endif // !(defined(GGML_USE_HIP)
static __global__ void flash_attn_combine_results(
const float * __restrict__ VKQ_parts,
const float2 * __restrict__ VKQ_meta,
@@ -711,6 +761,7 @@ void launch_fattn(
ggml_cuda_pool_alloc<half> K_f16(pool);
ggml_cuda_pool_alloc<half> V_f16(pool);
ggml_cuda_pool_alloc<int> KV_max(pool);
ggml_cuda_pool_alloc<float> dst_tmp(pool);
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
@@ -779,11 +830,30 @@ void launch_fattn(
V_data = (char *) V_f16.ptr;
}
int parallel_blocks = 1;
const int ntiles_x = ((Q->ne[1] + ncols1 - 1) / ncols1);
const int ntiles_total = ntiles_x * (Q->ne[2] / ncols2) * Q->ne[3];
// Optional optimization where the mask is scanned to determine whether part of the calculation can be skipped.
// Only worth the overhead if there is at lease one FATTN_KQ_STRIDE x FATTN_KQ_STRIDE square to be skipped or
// multiple sequences of possibly different lengths.
if (mask && (Q->ne[1] >= 1024 || Q->ne[3] > 1)) {
const int s31 = mask->nb[1] / sizeof(half2);
const int s33 = mask->nb[3] / sizeof(half2);
const dim3 blocks_num_KV_max(ntiles_x, Q->ne[3], 1);
const dim3 block_dim_KV_max(FATTN_KQ_STRIDE/2, 1, 1);
const int ne_KV_max = blocks_num_KV_max.x*blocks_num_KV_max.y;
const int iter_k = K->ne[1] / FATTN_KQ_STRIDE;
KV_max.alloc(ne_KV_max);
flash_attn_mask_to_KV_max<ncols1><<<blocks_num_KV_max, block_dim_KV_max, 0, main_stream>>>
((const half2 *) mask->data, KV_max.ptr, iter_k, s31, s33);
CUDA_CHECK(cudaGetLastError());
}
int parallel_blocks = 1;
const dim3 block_dim(warp_size, nwarps, 1);
int max_blocks_per_sm = 1; // Max. number of active blocks limited by occupancy.
CUDA_CHECK(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&max_blocks_per_sm, fattn_kernel, block_dim.x * block_dim.y * block_dim.z, nbytes_shared));
@@ -870,6 +940,7 @@ void launch_fattn(
K_data,
V_data,
mask ? ((const char *) mask->data) : nullptr,
KV_max.ptr,
!stream_k && parallel_blocks > 1 ? dst_tmp.ptr : (float *) KQV->data, dst_tmp_meta.ptr,
scale, max_bias, m0, m1, n_head_log2, logit_softcap,
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3], Q->nb[1], Q->nb[2], Q->nb[3],

View File

@@ -392,7 +392,8 @@ static __device__ __forceinline__ void flash_attn_ext_f16_load_mask(
}
}
template<int DKQ, int DV, int ncols1, int ncols2, int nwarps, int ntiles, bool use_logit_softcap, bool mla, bool needs_fixup, bool is_fixup, bool last_iter>
template<int DKQ, int DV, int ncols1, int ncols2, int nwarps, int ntiles,
bool use_logit_softcap, bool mla, bool needs_fixup, bool is_fixup, bool last_iter>
static __device__ __forceinline__ void flash_attn_ext_f16_iter(
const float2 * const __restrict__ Q_f2,
const half2 * const __restrict__ K_h2,
@@ -922,7 +923,8 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
}
// Iterate over ne11 == previous tokens:
for (int kb0 = kb0_start; kb0 < kb0_stop-1; ++kb0) {
int kb0 = kb0_start;
for (; kb0 < kb0_stop-1; ++kb0) {
constexpr bool last_iter = false;
flash_attn_ext_f16_iter<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla, needs_fixup, is_fixup, last_iter>
(Q_f2, K_h2, V_h2, mask_h2, dstk, dstk_fixup, scale, slope, logit_softcap,
@@ -932,7 +934,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
constexpr bool last_iter = true;
flash_attn_ext_f16_iter<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla, needs_fixup, is_fixup, last_iter>
(Q_f2, K_h2, V_h2, mask_h2, dstk, dstk_fixup, scale, slope, logit_softcap,
ne01, ne02, stride_K, stride_V, stride_mask, tile_Q, tile_K, tile_V, tile_mask, Q_B, VKQ_C, KQ_max, KQ_rowsum, kb0_stop-1);
ne01, ne02, stride_K, stride_V, stride_mask, tile_Q, tile_K, tile_V, tile_mask, Q_B, VKQ_C, KQ_max, KQ_rowsum, kb0);
}
// With multi-stage loading there is no __syncthreads at the end of the iter,
@@ -1204,6 +1206,7 @@ static __global__ void flash_attn_ext_f16(
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
const float scale,
@@ -1280,7 +1283,11 @@ static __global__ void flash_attn_ext_f16(
const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, head, n_head_log2, m0, m1) : 1.0f;
const int kb0_start_kernel = kb0_start * kb_niter;
const int kb0_stop_kernel = kb0_stop * kb_niter;
int kb0_stop_kernel = kb0_stop * kb_niter;
if (KV_max) {
kb0_stop_kernel = min(kb0_stop_kernel, KV_max[sequence*iter_j + jt] / c::nbatch_fa);
}
constexpr bool is_fixup = false; // All but (potentially) the last iterations write their data to dst rather than the fixup buffer.
if (kb0_start == 0) {
@@ -1321,7 +1328,11 @@ static __global__ void flash_attn_ext_f16(
const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, head, n_head_log2, m0, m1) : 1.0f;
const int kb0_start_kernel = kb0_start * kb_niter;
const int kb0_stop_kernel = kb0_stop * kb_niter;
int kb0_stop_kernel = kb0_stop * kb_niter;
if (KV_max) {
kb0_stop_kernel = min(kb0_stop_kernel, KV_max[sequence*iter_j + jt] / c::nbatch_fa);
}
constexpr bool is_fixup = true; // Last index writes its data to fixup buffer to avoid data races with other blocks.
constexpr bool needs_fixup = false;
@@ -1391,24 +1402,24 @@ void ggml_cuda_flash_attn_ext_mma_f16_case(ggml_backend_cuda_context & ctx, ggml
constexpr bool use_logit_softcap = false;
fattn_kernel = flash_attn_ext_f16<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla>;
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
if (!shared_memory_limit_raised[id]) {
CUDA_CHECK(cudaFuncSetAttribute(fattn_kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, nbytes_shared_total));
shared_memory_limit_raised[id] = true;
}
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
} else {
constexpr bool use_logit_softcap = true;
fattn_kernel = flash_attn_ext_f16<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla>;
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
if (!shared_memory_limit_raised[id]) {
CUDA_CHECK(cudaFuncSetAttribute(fattn_kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, nbytes_shared_total));
shared_memory_limit_raised[id] = true;
}
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
}
launch_fattn<DV, ncols1, ncols2>

View File

@@ -5,14 +5,15 @@
#define FATTN_KQ_STRIDE_TILE_F16 64
template<int D, int ncols, int nwarps, bool use_logit_softcap> // D == head size
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#if !defined(GGML_USE_HIP)
__launch_bounds__(nwarps*WARP_SIZE, 2)
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#endif // !defined(GGML_USE_HIP)
static __global__ void flash_attn_tile_ext_f16(
const char * __restrict__ Q,
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
const float scale,
@@ -90,7 +91,8 @@ static __global__ void flash_attn_tile_ext_f16(
__syncthreads();
for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE_TILE_F16; k_VKQ_0 < ne11; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE_TILE_F16) {
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE_TILE_F16; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE_TILE_F16) {
// Calculate KQ tile and keep track of new maximum KQ values:
half kqmax_new[ncols/nwarps];

View File

@@ -5,14 +5,15 @@
#define FATTN_KQ_STRIDE_TILE_F32 32
template<int D, int ncols, int nwarps, bool use_logit_softcap> // D == head size
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#if !defined(GGML_USE_HIP)
__launch_bounds__(nwarps*WARP_SIZE, 2)
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#endif // !defined(GGML_USE_HIP)
static __global__ void flash_attn_tile_ext_f32(
const char * __restrict__ Q,
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
const float scale,
@@ -99,7 +100,8 @@ static __global__ void flash_attn_tile_ext_f32(
__syncthreads();
for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE_TILE_F32; k_VKQ_0 < ne11; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE_TILE_F32) {
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE_TILE_F32; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE_TILE_F32) {
// Calculate KQ tile and keep track of new maximum KQ values:
float kqmax_new[ncols/nwarps];

View File

@@ -1,6 +1,12 @@
#include "common.cuh"
#include "fattn-common.cuh"
// Currenlty llvm with the amdgcn target dose not support unrolling loops
// that contain a break that can not be resolved at compile time.
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpass-failed"
#endif // __clang__
template<int D, int ncols, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
#ifndef GGML_USE_HIP
__launch_bounds__(D, 1)
@@ -10,6 +16,7 @@ static __global__ void flash_attn_vec_ext_f16(
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
const float scale,
@@ -171,10 +178,14 @@ static __global__ void flash_attn_vec_ext_f16(
half2 VKQ[ncols] = {{0.0f, 0.0f}};
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
K += blockIdx.y*D * nb11;
V += blockIdx.y*D * nb21;
maskh += blockIdx.y*D;
for (int k_VKQ_0 = blockIdx.y*D; k_VKQ_0 < ne11; k_VKQ_0 += gridDim.y*D) {
for (int k_VKQ_0 = blockIdx.y*D; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*D,
// Increment pointers after each loop:
K += gridDim.y*D*nb11, V += gridDim.y*D*nb21, maskh += gridDim.y*D) {
// Calculate KQ tile and keep track of new maximum KQ values:
if (mask) {
@@ -182,29 +193,7 @@ static __global__ void flash_attn_vec_ext_f16(
for (int j = 0; j < ncols; ++j) {
maskh_shared[j*D + tid] = slopeh*maskh[j*ne11 + tid];
}
__syncthreads();
// When using multiple parallel sequences in llama.cpp, some KV slices can be fully masked out.
// In such cases, skip the KV slice.
// On AMD __all_sync would not work correctly because it assumes a warp size of 64.
#ifndef GGML_USE_HIP
bool skip = true;
#pragma unroll
for (int j = 0; j < ncols; ++j) {
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
const float2 tmp = __half22float2(((const half2 *) maskh_shared)[j*(D/2) + i]);
skip = skip && isinf(tmp.x) && isinf(tmp.y);
}
}
if (__all_sync(0xFFFFFFFF, skip)) {
__syncthreads();
continue;
}
#endif // GGML_USE_HIP
}
// For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression,
@@ -291,10 +280,6 @@ static __global__ void flash_attn_vec_ext_f16(
}
}
K += gridDim.y*D * nb11;
V += gridDim.y*D * nb21;
maskh += gridDim.y*D;
__syncthreads();
}
@@ -342,6 +327,9 @@ static __global__ void flash_attn_vec_ext_f16(
NO_DEVICE_CODE;
#endif // defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE)
}
#ifdef __clang__
#pragma clang diagnostic pop
#endif // __clang__
template <int D, int cols_per_block, ggml_type type_K, ggml_type type_V, bool use_logit_softcap>
void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {

View File

@@ -1,6 +1,12 @@
#include "common.cuh"
#include "fattn-common.cuh"
// Currenlty llvm with the amdgcn target dose not support unrolling loops
// that contain a break that can not be resolved at compile time.
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpass-failed"
#endif // __clang__
template<int D, int ncols, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
#ifndef GGML_USE_HIP
__launch_bounds__(D, 1)
@@ -10,6 +16,7 @@ static __global__ void flash_attn_vec_ext_f32(
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
const float scale,
@@ -177,10 +184,14 @@ static __global__ void flash_attn_vec_ext_f32(
float VKQ[ncols] = {0.0f};
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
K += blockIdx.y*D * nb11;
V += blockIdx.y*D * nb21;
maskh += blockIdx.y*D;
for (int k_VKQ_0 = blockIdx.y*D; k_VKQ_0 < ne11; k_VKQ_0 += gridDim.y*D) {
for (int k_VKQ_0 = blockIdx.y*D; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*D,
// Increment pointers after each loop:
K += gridDim.y*D*nb11, V += gridDim.y*D*nb21, maskh += gridDim.y*D) {
// Calculate KQ tile and keep track of new maximum KQ values:
if (mask) {
@@ -188,28 +199,7 @@ static __global__ void flash_attn_vec_ext_f32(
for (int j = 0; j < ncols; ++j) {
maskf_shared[j*D + tid] = slope*__half2float(maskh[j*ne11 + tid]);
}
__syncthreads();
// When using multiple parallel sequences in llama.cpp, some KV slices can be fully masked out.
// In such cases, skip the KV slice.
// On AMD __all_sync would not work correctly because it assumes a warp size of 64.
#ifndef GGML_USE_HIP
bool skip = true;
#pragma unroll
for (int j = 0; j < ncols; ++j) {
#pragma unroll
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
skip = skip && isinf(maskf_shared[j*D + i]);
}
}
if (__all_sync(0xFFFFFFFF, skip)) {
__syncthreads();
continue;
}
#endif // GGML_USE_HIP
}
float kqmax_new_arr[ncols];
@@ -286,10 +276,6 @@ static __global__ void flash_attn_vec_ext_f32(
}
}
K += gridDim.y*D * nb11;
V += gridDim.y*D * nb21;
maskh += gridDim.y*D;
__syncthreads();
}
@@ -337,6 +323,9 @@ static __global__ void flash_attn_vec_ext_f32(
NO_DEVICE_CODE;
#endif // FLASH_ATTN_AVAILABLE
}
#ifdef __clang__
#pragma clang diagnostic pop
#endif // __clang__
template <int D, int cols_per_block, ggml_type type_K, ggml_type type_V, bool use_logit_softcap>
void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {

View File

@@ -7,7 +7,7 @@
#include "fattn-wmma-f16.cuh"
#ifdef FP16_MMA_AVAILABLE
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#if !defined(GGML_USE_HIP)
#include <mma.h>
#ifdef GGML_USE_MUSA
namespace wmma = mtmusa::wmma;
@@ -18,7 +18,7 @@ namespace wmma = nvcuda::wmma;
#undef HIP_ENABLE_WARP_SYNC_BUILTINS // conflicts with rocWMMA headers
#include <rocwmma/rocwmma.hpp>
namespace wmma = rocwmma;
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#endif // !defined(GGML_USE_HIP)
#endif // FP16_MMA_AVAILABLE
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
@@ -29,6 +29,7 @@ static __global__ void flash_attn_ext_f16(
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
const float scale,
@@ -165,7 +166,8 @@ static __global__ void flash_attn_ext_f16(
__syncthreads();
// Iterate over ne11 == previous tokens:
for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE; k_VKQ_0 < ne11; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE) {
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE) {
// Calculate tile of KQ:
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) {
@@ -546,7 +548,7 @@ void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_ten
return;
}
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#if !defined(GGML_USE_HIP)
if (Q->ne[1] <= 8 && Q->ne[0] % warp_size == 0) {
constexpr int cols_per_block = 8;
switch (Q->ne[0]) {
@@ -568,7 +570,7 @@ void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_ten
}
return;
}
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#endif // !defined(GGML_USE_HIP)
if (Q->ne[1] <= 32) {
constexpr int cols_per_block = 16;

View File

@@ -315,7 +315,8 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
const bool gqa_opt_applies = ((Q->ne[2] / K->ne[2]) % 2 == 0) && mask; // The mma-based kernels have GQA-specific optimizations
const bool mma_needs_data_conversion = K->type != GGML_TYPE_F16 || V->type != GGML_TYPE_F16;
const bool mma_faster_for_bs1 = new_mma_available(cc) && gqa_opt_applies && cc < GGML_CUDA_CC_ADA_LOVELACE && !mma_needs_data_conversion;
const bool mma_faster_for_bs1 = new_mma_available(cc) && gqa_opt_applies &&
(Q->ne[3] > 1 || cc < GGML_CUDA_CC_ADA_LOVELACE) && !mma_needs_data_conversion;
const bool can_use_vector_kernel = Q->ne[0] <= 256 && Q->ne[0] % (2*warp_size) == 0;
if (Q->ne[1] == 1 && can_use_vector_kernel && !mma_faster_for_bs1) {
if (prec == GGML_PREC_DEFAULT) {

View File

@@ -31,7 +31,9 @@
#include "ggml-cuda/pool2d.cuh"
#include "ggml-cuda/quantize.cuh"
#include "ggml-cuda/rope.cuh"
#include "ggml-cuda/roll.cuh"
#include "ggml-cuda/scale.cuh"
#include "ggml-cuda/softcap.cuh"
#include "ggml-cuda/softmax.cuh"
#include "ggml-cuda/ssm-conv.cuh"
#include "ggml-cuda/ssm-scan.cuh"
@@ -126,7 +128,7 @@ static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device)
return err;
}
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(GGML_USE_HIP)
static int ggml_cuda_parse_id(char devName[]) {
// A list of possible Target IDs can be found under the rocclr/clr repo in device.cpp
// these values are not stable so this is susceptible to breakage
@@ -173,10 +175,10 @@ static int ggml_cuda_parse_id(char devName[]) {
archNum += archMinor;
return archNum;
}
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#endif // defined(GGML_USE_HIP)
static ggml_cuda_device_info ggml_cuda_init() {
#ifdef __HIP_PLATFORM_AMD__
#if defined(GGML_USE_HIP)
// Workaround for a rocBLAS bug when using multiple graphics cards:
// https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
{
@@ -249,7 +251,7 @@ static ggml_cuda_device_info ggml_cuda_init() {
info.devices[id].nsm = prop.multiProcessorCount;
info.devices[id].smpb = prop.sharedMemPerBlock;
info.devices[id].warp_size = prop.warpSize;
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(GGML_USE_HIP)
info.devices[id].smpbo = prop.sharedMemPerBlock;
info.devices[id].cc = ggml_cuda_parse_id(prop.gcnArchName);
@@ -279,7 +281,7 @@ static ggml_cuda_device_info ggml_cuda_init() {
info.devices[id].cc = 100*prop.major + 10*prop.minor;
GGML_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s\n",
id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#endif // defined(GGML_USE_HIP)
}
for (int id = 0; id < info.device_count; ++id) {
@@ -2419,6 +2421,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_ROPE_BACK:
ggml_cuda_op_rope_back(ctx, dst);
break;
case GGML_OP_ROLL:
ggml_cuda_op_roll(ctx, dst);
break;
case GGML_OP_IM2COL:
ggml_cuda_op_im2col(ctx, dst);
break;
@@ -2766,7 +2771,12 @@ static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) {
}
#endif
static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, std::initializer_list<enum ggml_op> ops) {
static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, std::initializer_list<enum ggml_op> ops, std::initializer_list<enum ggml_unary_op> unary_ops) {
#ifndef NDEBUG
const size_t num_unary = std::count(ops.begin(), ops.end(), GGML_OP_UNARY);
GGML_ASSERT(unary_ops.size() == num_unary);
#endif
if (!ggml_can_fuse(cgraph, node_idx, ops)) {
return false;
}
@@ -2794,9 +2804,32 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
if (!ggml_is_contiguous_rows(mul->src[0]) || !ggml_is_contiguous_rows(mul->src[1])) {
return false;
}
return true;
}
return true;
if (ops.size() == 3 && ops.begin()[0] == GGML_OP_SCALE && ops.begin()[1] == GGML_OP_UNARY && ops.begin()[2] == GGML_OP_SCALE
&& unary_ops.size() == 1 && unary_ops.begin()[0] == GGML_UNARY_OP_TANH) {
const ggml_tensor *scale = cgraph->nodes[node_idx];
const ggml_tensor *tanh = cgraph->nodes[node_idx+1];
const ggml_tensor *scale2 = cgraph->nodes[node_idx+2];
GGML_ASSERT(scale->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(scale->type == GGML_TYPE_F32);
if (ggml_get_unary_op(tanh) != GGML_UNARY_OP_TANH) {
return false;
}
// Check for bias
if (ggml_get_op_params_f32(scale, 1) != 0.0f || ggml_get_op_params_f32(scale2, 1) != 0.0f) {
return false;
}
return true;
}
return false;
}
static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
@@ -2817,10 +2850,18 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
}
static bool disable_fusion = (getenv("GGML_CUDA_DISABLE_FUSION") != nullptr);
if (!disable_fusion && ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
ggml_cuda_op_rms_norm_fused(*cuda_ctx, node, cgraph->nodes[i+1]);
i++;
continue;
if (!disable_fusion) {
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL }, {})) {
ggml_cuda_op_rms_norm_fused(*cuda_ctx, node, cgraph->nodes[i+1]);
i++;
continue;
}
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_SCALE, GGML_OP_UNARY, GGML_OP_SCALE }, { GGML_UNARY_OP_TANH })) {
i += 2;
ggml_cuda_op_softcap(*cuda_ctx, cgraph->nodes[i], node);
continue;
}
}
#ifndef NDEBUG
assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
@@ -3411,6 +3452,11 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
memcpy(&max_bias, (const float *) op->op_params + 1, sizeof(float));
return max_bias == 0.0f;
}
case GGML_OP_ROLL:
if(op->src[0]->type == GGML_TYPE_F32) {
return true;
}
return false;
case GGML_OP_ROPE:
case GGML_OP_ROPE_BACK: {
return op->src[0]->nb[0] == ggml_type_size(op->src[0]->type) && ggml_is_contiguous_2(op->src[0]);

View File

@@ -68,7 +68,7 @@ namespace ggml_cuda_mma {
static constexpr int I = I_;
static constexpr int J = J_;
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(GGML_USE_HIP)
static constexpr int ne = I * J / 64;
T x[ne] = {0};
@@ -132,7 +132,7 @@ namespace ggml_cuda_mma {
static_assert(I == -1 && J == -1, "template specialization not implemented");
}
}
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#endif // defined(GGML_USE_HIP)
};
template <int I_, int J_>

View File

@@ -109,8 +109,8 @@ void ggml_cuda_mul_mat_q(
const int64_t s03 = src0->nb[3] / ts_src0;
const int64_t s3 = dst->nb[3] / ts_dst;
const bool use_stream_k = ((GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA)
|| (GGML_CUDA_CC_IS_AMD(cc) && GGML_CUDA_CC_IS_CDNA3(cc)));
const bool use_stream_k = (GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA)
|| GGML_CUDA_CC_IS_CDNA(cc);
if (!ids) {
const size_t nbytes_src1_q8_1 = ne13*ne12 * ne11*ne10_padded * sizeof(block_q8_1)/QK8_1 +
@@ -252,7 +252,7 @@ void ggml_cuda_op_mul_mat_q(
// Also its fixup needs to allocate a temporary buffer in the memory pool.
// There are multiple parallel CUDA streams for src1_ncols != ne11 which would introduce a race condition for this buffer.
const bool use_stream_k = ((GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA)
|| (GGML_CUDA_CC_IS_AMD(cc) && GGML_CUDA_CC_IS_CDNA3(cc)))
|| GGML_CUDA_CC_IS_CDNA(cc))
&& src1_ncols == ne11;
const mmq_args args = {
src0_dd_i, src0->type, (const int *) src1_ddq_i, nullptr, nullptr, dst_dd_i,
@@ -306,7 +306,7 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
return false;
}
if (new_mma_available(cc) || amd_mfma_available(cc)) {
if (new_mma_available(cc)) {
return true;
}
@@ -322,5 +322,21 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
return !fp16_mma_hardware_available(cc) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}
if (amd_mfma_available(cc)) {
// As of ROCM 7.0 rocblas/tensile performs very poorly on CDNA3 and hipblaslt (via ROCBLAS_USE_HIPBLASLT)
// performs better but is currently suffering from a crash on this architecture.
// TODO: Revisit when hipblaslt is fixed on CDNA3
if (GGML_CUDA_CC_IS_CDNA3(cc)) {
return true;
}
if (ne11 <= 128 || type == GGML_TYPE_Q4_0 || type == GGML_TYPE_Q4_1 || type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1) {
return true;
}
if (ne11 <= 256 && (type == GGML_TYPE_Q4_K || type == GGML_TYPE_Q5_K)) {
return true;
}
return false;
}
return (!GGML_CUDA_CC_IS_RDNA4(cc) && !GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}

View File

@@ -104,9 +104,9 @@ static constexpr __device__ int get_mmq_x_max_device() {
return 128;
#else // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(GGML_USE_HIP)
return 64;
#else // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#else // defined(GGML_USE_HIP)
#if __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
#ifdef GGML_CUDA_FORCE_MMQ
@@ -118,7 +118,7 @@ static constexpr __device__ int get_mmq_x_max_device() {
return 64;
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#endif // defined(GGML_USE_HIP)
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
@@ -128,7 +128,7 @@ static int get_mmq_y_host(const int cc) {
}
static constexpr __device__ int get_mmq_y_device() {
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(GGML_USE_HIP)
#if defined(RDNA1)
return 64;
#else
@@ -140,7 +140,7 @@ static constexpr __device__ int get_mmq_y_device() {
#else
return 64;
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#endif // defined(GGML_USE_HIP)
}
// Decouple shared memory tile sizes from WARP_SIZE to allow for different warp sizes.
@@ -250,7 +250,7 @@ static constexpr __device__ int mmq_get_granularity_device(const int /*mmq_x*/)
}
#endif // AMD_MFMA_AVAILABLE
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(GGML_USE_HIP)
static int mmq_get_nwarps_host(const int cc) {
return amd_mfma_available(cc) ? 8 : 4;
}
@@ -258,10 +258,10 @@ static int mmq_get_nwarps_host(const int cc) {
static int mmq_get_nwarps_host(const int /*cc*/) {
return 8;
}
#endif // (GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#endif // (GGML_USE_HIP)
static constexpr __device__ int mmq_get_nwarps_device() {
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(GGML_USE_HIP)
#if defined(AMD_MFMA_AVAILABLE)
return 8;
#else
@@ -269,7 +269,7 @@ static constexpr __device__ int mmq_get_nwarps_device() {
#endif // AMD_MFMA_AVAILABLE
#else
return 8;
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#endif // defined(GGML_USE_HIP)
}
// ------------------------------------------------------------
@@ -3047,7 +3047,7 @@ static __device__ __forceinline__ void mul_mat_q_process_tile(
// The mul_mat_q kernel implements "stream-k" work partitioning as described in https://arxiv.org/abs/2301.03598
template <ggml_type type, int mmq_x, bool need_check>
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(GGML_USE_HIP)
#if defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
__launch_bounds__(ggml_cuda_get_physical_warp_size()*mmq_get_nwarps_device(), 2)
#endif // defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
@@ -3057,7 +3057,7 @@ template <ggml_type type, int mmq_x, bool need_check>
#else
__launch_bounds__(ggml_cuda_get_physical_warp_size()*mmq_get_nwarps_device(), 2)
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#endif // defined(GGML_USE_HIP)
static __global__ void mul_mat_q(
const char * __restrict__ x, const int * __restrict__ y, const int32_t * __restrict__ ids_dst,
const int32_t * __restrict__ expert_bounds, float * __restrict__ dst, float * __restrict__ tmp_fixup,
@@ -3096,8 +3096,8 @@ static __global__ void mul_mat_q(
}
__syncthreads();
// On AMD or old CUDA the performance with stream-k was worse, use conventional tiling instead:
#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(CDNA3)) || __CUDA_ARCH__ < GGML_CUDA_CC_VOLTA
// On non-CDNA AMD or old CUDA the performance with stream-k was worse, use conventional tiling instead:
#if (defined(GGML_USE_HIP) && !defined(CDNA)) || __CUDA_ARCH__ < GGML_CUDA_CC_VOLTA
{
const int wt = blockIdx.z / nchannels_y;
const int zt = blockIdx.z - wt*nchannels_y;
@@ -3151,7 +3151,7 @@ static __global__ void mul_mat_q(
tile_x_max_i, tile_y_max_j, 0, ncols_x/qk);
return;
}
#endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(CDNA3)) || __CUDA_ARCH__ < GGML_CUDA_CC_VOLTA
#endif // (defined(GGML_USE_HIP) && !defined(CDNA3)) || __CUDA_ARCH__ < GGML_CUDA_CC_VOLTA
const int64_t blocks_per_ne00 = ncols_x / qk;
constexpr int blocks_per_iter = MMQ_ITER_K / qk;

View File

@@ -0,0 +1,67 @@
#include "ggml-cuda/common.cuh"
#include "roll.cuh"
static __forceinline__ __device__ int64_t wrap_index(const int64_t idx, const int64_t ne) {
if (idx < 0) {
return idx + ne;
}
if (idx >= ne) {
return idx - ne;
}
return idx;
}
static __global__ void roll_f32_cuda(const float * __restrict__ src,
float * __restrict__ dst,
const int64_t ne00,
const int64_t ne01,
const int64_t ne02,
const int64_t ne03,
const int s0,
const int s1,
const int s2,
const int s3) {
const int64_t idx = int64_t(blockDim.x) * blockIdx.x + threadIdx.x;
const int64_t n_elements = ne00 * ne01 * ne02 * ne03;
if (idx >= n_elements) {
return;
}
const int64_t i0 = idx % ne00;
const int64_t i1 = (idx / ne00) % ne01;
const int64_t i2 = (idx / (ne00 * ne01)) % ne02;
const int64_t i3 = (idx / (ne00 * ne01 * ne02)) % ne03;
const int64_t d0 = wrap_index(i0 - s0, ne00);
const int64_t d1 = wrap_index(i1 - s1, ne01);
const int64_t d2 = wrap_index(i2 - s2, ne02);
const int64_t d3 = wrap_index(i3 - s3, ne03);
dst[i3 * (ne00 * ne01 * ne02) + i2 * (ne01 * ne00) + i1 * ne00 + i0] =
src[d3 * (ne00 * ne01 * ne02) + d2 * (ne01 * ne00) + d1 * ne00 + d0];
}
void ggml_cuda_op_roll(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
int s0 = dst->op_params[0];
int s1 = dst->op_params[1];
int s2 = dst->op_params[2];
int s3 = dst->op_params[3];
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *) dst->src[0]->data;
float * dst_d = (float *) dst->data;
GGML_TENSOR_UNARY_OP_LOCALS;
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_are_same_shape(dst->src[0], dst));
cudaStream_t stream = ctx.stream();
int64_t sz = (ne00 * ne01 * ne02 * ne03);
int64_t num_blocks = (sz + CUDA_ROLL_BLOCK_SIZE - 1) / CUDA_ROLL_BLOCK_SIZE;
roll_f32_cuda<<<num_blocks, CUDA_ROLL_BLOCK_SIZE, 0, stream>>>(
src0_d, dst_d, ne00, ne01, ne02, ne03, s0, s1, s2, s3);
}

View File

@@ -0,0 +1,5 @@
#include "common.cuh"
#define CUDA_ROLL_BLOCK_SIZE 256
void ggml_cuda_op_roll(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -0,0 +1,34 @@
#include "softcap.cuh"
static __global__ void softcap_f32(const float * x, float * dst, const float scale, const float softcap, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = tanhf(scale * x[i]) * softcap;
}
static void softcap_f32_cuda(const float * x, float * dst, const float scale, const float softcap, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_SOFTCAP_BLOCK_SIZE - 1) / CUDA_SOFTCAP_BLOCK_SIZE;
softcap_f32<<<num_blocks, CUDA_SOFTCAP_BLOCK_SIZE, 0, stream>>>(x, dst, scale, softcap, k);
}
// fused GGML_OP_SCALE + GGML_UNARY_OP_TANH + GGML_OP_SCALE
void ggml_cuda_op_softcap(ggml_backend_cuda_context & ctx, ggml_tensor * dst, ggml_tensor * src) {
const ggml_tensor * src0 = src->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
float scale;
float softcap;
memcpy(&scale, (float *) src->op_params + 0, sizeof(float));
memcpy(&softcap, (float *) dst->op_params + 0, sizeof(float));
softcap_f32_cuda(src0_d, dst_d, scale, softcap, ggml_nelements(src0), stream);
}

View File

@@ -0,0 +1,5 @@
#include "common.cuh"
#define CUDA_SOFTCAP_BLOCK_SIZE 256
void ggml_cuda_op_softcap(ggml_backend_cuda_context & ctx, ggml_tensor * dst, ggml_tensor * src);

View File

@@ -5,10 +5,8 @@
#include <hipblas/hipblas.h>
#include <hip/hip_fp16.h>
#include <hip/hip_bfloat16.h>
#ifdef __HIP_PLATFORM_AMD__
// for rocblas_initialize()
#include "rocblas/rocblas.h"
#endif // __HIP_PLATFORM_AMD__
#define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
#define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT
@@ -139,7 +137,7 @@
#define CUBLAS_STATUS_INTERNAL_ERROR HIPBLAS_STATUS_INTERNAL_ERROR
#define CUBLAS_STATUS_NOT_SUPPORTED HIPBLAS_STATUS_NOT_SUPPORTED
#if defined(__HIP_PLATFORM_AMD__) && HIP_VERSION >= 70000000
#if HIP_VERSION >= 70000000
#define CUBLAS_COMPUTE_16F HIPBLAS_COMPUTE_16F
#define CUBLAS_COMPUTE_32F HIPBLAS_COMPUTE_32F
#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_COMPUTE_32F_FAST_16F
@@ -151,7 +149,11 @@
#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
#define cublasComputeType_t hipblasDatatype_t
#define cudaDataType_t hipblasDatatype_t
#endif
#endif // HIP_VERSION >= 7000000
#if !defined(__HIP_PLATFORM_AMD__)
#error "The HIP backend supports only AMD targets"
#endif // !defined(__HIP_PLATFORM_AMD__)
#define __CUDA_ARCH__ 1300
@@ -249,7 +251,7 @@ static __device__ __forceinline__ unsigned int __vcmpne4(unsigned int a, unsigne
return c;
}
#if defined(__HIP_PLATFORM_AMD__) && HIP_VERSION < 50600000
#if HIP_VERSION < 50600000
// __shfl_xor() for half2 was added in ROCm 5.6
static __device__ __forceinline__ half2 __shfl_xor(half2 var, int laneMask, int width) {
typedef union half2_b32 {
@@ -261,4 +263,4 @@ static __device__ __forceinline__ half2 __shfl_xor(half2 var, int laneMask, int
tmp.b32 = __shfl_xor(tmp.b32, laneMask, width);
return tmp.val;
}
#endif // defined(__HIP_PLATFORM_AMD__) && HIP_VERSION < 50600000
#endif // HIP_VERSION < 50600000

View File

@@ -113,6 +113,10 @@ if (GGML_HIP_ROCWMMA_FATTN)
add_compile_definitions(GGML_HIP_ROCWMMA_FATTN)
endif()
if (NOT GGML_HIP_MMQ_MFMA)
add_compile_definitions(GGML_HIP_NO_MMQ_MFMA)
endif()
if (GGML_HIP_FORCE_ROCWMMA_FATTN_GFX12 OR ${hip_VERSION} VERSION_GREATER_EQUAL 7.0)
add_compile_definitions(GGML_HIP_ROCWMMA_FATTN_GFX12)
endif()

View File

@@ -1,31 +1,12 @@
#include "cpy.hpp"
#include <float.h>
#include <string>
#include "dequantize.hpp"
#include "ggml-sycl/common.hpp"
#include "ggml-sycl/presets.hpp"
#include "ggml.h"
static __dpct_inline__ int best_index_int8(int n, const int8_t * val, float x) {
if (x <= val[0]) {
return 0;
}
if (x >= val[n - 1]) {
return n - 1;
}
int ml = 0, mu = n - 1;
while (mu - ml > 1) {
int mav = (ml + mu) / 2;
if (x < val[mav]) {
mu = mav;
} else {
ml = mav;
}
}
return x - val[mu - 1] < val[mu] - x ? mu - 1 : mu;
}
static void cpy_1_f32_f32(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
@@ -97,28 +78,6 @@ static void cpy_f32_f16(const char * cx, char * cdst, const int ne, const int ne
cpy_1(cx + x_offset, cdst + dst_offset);
}
static void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q8_0 * dsti = (block_q8_0 *) cdsti;
float amax = 0.0f; // absolute max
for (int j = 0; j < QK8_0; j++) {
const float v = xi[j];
amax = sycl::fmax(amax, sycl::fabs((float) v));
}
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f / d : 0.0f;
dsti->d = d;
for (int j = 0; j < QK8_0; ++j) {
const float x0 = xi[j] * id;
dsti->qs[j] = sycl::round((float) x0);
}
}
/* quantized type same copy */
template<typename T>
@@ -140,178 +99,7 @@ static void cpy_blck_q8_0_f32(const char * cxi, char * cdsti) {
}
}
static void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q4_0 * dsti = (block_q4_0 *) cdsti;
float amax = 0.0f;
float vmax = 0.0f;
for (int j = 0; j < QK4_0; ++j) {
const float v = xi[j];
if (amax < sycl::fabs((float) v)) {
amax = sycl::fabs((float) v);
vmax = v;
}
}
const float d = vmax / -8;
const float id = d ? 1.0f / d : 0.0f;
dsti->d = d;
for (int j = 0; j < QK4_0 / 2; ++j) {
const float x0 = xi[0 + j] * id;
const float x1 = xi[QK4_0 / 2 + j] * id;
const uint8_t xi0 = dpct::min(15, (int8_t) (x0 + 8.5f));
const uint8_t xi1 = dpct::min(15, (int8_t) (x1 + 8.5f));
dsti->qs[j] = xi0;
dsti->qs[j] |= xi1 << 4;
}
}
static void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q4_1 * dsti = (block_q4_1 *) cdsti;
float vmin = FLT_MAX;
float vmax = -FLT_MAX;
for (int j = 0; j < QK4_1; ++j) {
const float v = xi[j];
if (v < vmin) {
vmin = v;
}
if (v > vmax) {
vmax = v;
}
}
const float d = (vmax - vmin) / ((1 << 4) - 1);
const float id = d ? 1.0f / d : 0.0f;
dsti->dm.x() = d;
dsti->dm.y() = vmin;
for (int j = 0; j < QK4_1 / 2; ++j) {
const float x0 = (xi[0 + j] - vmin) * id;
const float x1 = (xi[QK4_1 / 2 + j] - vmin) * id;
const uint8_t xi0 = dpct::min(15, (int8_t) (x0 + 0.5f));
const uint8_t xi1 = dpct::min(15, (int8_t) (x1 + 0.5f));
dsti->qs[j] = xi0;
dsti->qs[j] |= xi1 << 4;
}
}
static void cpy_blck_f32_q5_0(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q5_0 * dsti = (block_q5_0 *) cdsti;
float amax = 0.0f;
float vmax = 0.0f;
for (int j = 0; j < QK5_0; ++j) {
const float v = xi[j];
if (amax < sycl::fabs((float) v)) {
amax = sycl::fabs((float) v);
vmax = v;
}
}
const float d = vmax / -16;
const float id = d ? 1.0f / d : 0.0f;
dsti->d = d;
uint32_t qh = 0;
for (int j = 0; j < QK5_0 / 2; ++j) {
const float x0 = xi[0 + j] * id;
const float x1 = xi[QK5_0 / 2 + j] * id;
const uint8_t xi0 = dpct::min(31, (int8_t) (x0 + 16.5f));
const uint8_t xi1 = dpct::min(31, (int8_t) (x1 + 16.5f));
dsti->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0 / 2);
}
memcpy(dsti->qh, &qh, sizeof(qh));
}
static void cpy_blck_f32_q5_1(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q5_1 * dsti = (block_q5_1 *) cdsti;
float min = xi[0];
float max = xi[0];
for (int j = 1; j < QK5_1; ++j) {
const float v = xi[j];
min = v < min ? v : min;
max = v > max ? v : max;
}
const float d = (max - min) / 31;
const float id = d ? 1.0f / d : 0.0f;
dsti->dm.x() = d;
dsti->dm.y() = min;
uint32_t qh = 0;
for (int j = 0; j < QK5_1 / 2; ++j) {
const float x0 = (xi[0 + j] - min) * id;
const float x1 = (xi[QK5_1 / 2 + j] - min) * id;
const uint8_t xi0 = (uint8_t) (x0 + 0.5f);
const uint8_t xi1 = (uint8_t) (x1 + 0.5f);
dsti->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_1 / 2);
}
memcpy(dsti->qh, &qh, sizeof(qh));
}
static void cpy_blck_f32_iq4_nl(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_iq4_nl * dsti = (block_iq4_nl *) cdsti;
float amax = 0.0f;
float vmax = 0.0f;
for (int j = 0; j < QK4_NL; ++j) {
const float v = xi[j];
if (amax < sycl::fabs((float) v)) {
amax = sycl::fabs((float) v);
vmax = v;
}
}
float d = vmax / kvalues_iq4nl[0];
const float id = d ? 1.0f / d : 0.0f;
float sumqx = 0, sumq2 = 0;
for (int j = 0; j < QK4_NL / 2; ++j) {
const float x0 = xi[0 + j] * id;
const float x1 = xi[QK4_NL / 2 + j] * id;
const uint8_t xi0 = best_index_int8(16, kvalues_iq4nl, x0);
const uint8_t xi1 = best_index_int8(16, kvalues_iq4nl, x1);
dsti->qs[j] = xi0 | (xi1 << 4);
const float v0 = kvalues_iq4nl[xi0];
const float v1 = kvalues_iq4nl[xi1];
const float w0 = xi[0 + j] * xi[0 + j];
const float w1 = xi[QK4_NL / 2 + j] * xi[QK4_NL / 2 + j];
sumqx += w0 * v0 * xi[j] + w1 * v1 * xi[QK4_NL / 2 + j];
sumq2 += w0 * v0 * v0 + w1 * v1 * v1;
}
dsti->d = sumq2 > 0 ? sumqx / sumq2 : d;
}
template <dequantize_kernel_t dequant, int qk> static void cpy_blck_q_f32(const char * cxi, char * cdsti) {
float * cdstf = (float *) (cdsti);

View File

@@ -2,10 +2,222 @@
#define GGML_SYCL_CPY_HPP
#include "common.hpp"
#include <float.h>
typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
__dpct_inline__ int best_index_int8(int n, const int8_t * val, float x) {
if (x <= val[0]) {
return 0;
}
if (x >= val[n - 1]) {
return n - 1;
}
int ml = 0, mu = n - 1;
while (mu - ml > 1) {
int mav = (ml + mu) / 2;
if (x < val[mav]) {
mu = mav;
} else {
ml = mav;
}
}
return x - val[mu - 1] < val[mu] - x ? mu - 1 : mu;
}
inline void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q8_0 * dsti = (block_q8_0 *) cdsti;
float amax = 0.0f; // absolute max
for (int j = 0; j < QK8_0; j++) {
const float v = xi[j];
amax = sycl::fmax(amax, sycl::fabs((float) v));
}
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f / d : 0.0f;
dsti->d = d;
for (int j = 0; j < QK8_0; ++j) {
const float x0 = xi[j] * id;
dsti->qs[j] = sycl::round((float) x0);
}
}
inline void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q4_0 * dsti = (block_q4_0 *) cdsti;
float amax = 0.0f;
float vmax = 0.0f;
for (int j = 0; j < QK4_0; ++j) {
const float v = xi[j];
if (amax < sycl::fabs((float) v)) {
amax = sycl::fabs((float) v);
vmax = v;
}
}
const float d = vmax / -8;
const float id = d ? 1.0f / d : 0.0f;
dsti->d = d;
for (int j = 0; j < QK4_0 / 2; ++j) {
const float x0 = xi[0 + j] * id;
const float x1 = xi[QK4_0 / 2 + j] * id;
const uint8_t xi0 = dpct::min(15, (int8_t) (x0 + 8.5f));
const uint8_t xi1 = dpct::min(15, (int8_t) (x1 + 8.5f));
dsti->qs[j] = xi0;
dsti->qs[j] |= xi1 << 4;
}
}
inline void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q4_1 * dsti = (block_q4_1 *) cdsti;
float vmin = FLT_MAX;
float vmax = -FLT_MAX;
for (int j = 0; j < QK4_1; ++j) {
const float v = xi[j];
vmin = sycl::min(v, vmin);
vmax = sycl::max(v, vmax);
}
const float d = (vmax - vmin) / ((1 << 4) - 1);
const float id = d ? 1.0f / d : 0.0f;
dsti->dm.x() = d;
dsti->dm.y() = vmin;
for (int j = 0; j < QK4_1 / 2; ++j) {
const float x0 = (xi[0 + j] - vmin) * id;
const float x1 = (xi[QK4_1 / 2 + j] - vmin) * id;
const uint8_t xi0 = dpct::min(15, (int8_t) (x0 + 0.5f));
const uint8_t xi1 = dpct::min(15, (int8_t) (x1 + 0.5f));
dsti->qs[j] = xi0;
dsti->qs[j] |= xi1 << 4;
}
}
inline void cpy_blck_f32_q5_0(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q5_0 * dsti = (block_q5_0 *) cdsti;
float amax = 0.0f;
float vmax = 0.0f;
for (int j = 0; j < QK5_0; ++j) {
const float v = xi[j];
if (amax < sycl::fabs((float) v)) {
amax = sycl::fabs((float) v);
vmax = v;
}
}
const float d = vmax / -16;
const float id = d ? 1.0f / d : 0.0f;
dsti->d = d;
uint32_t qh = 0;
for (int j = 0; j < QK5_0 / 2; ++j) {
const float x0 = xi[0 + j] * id;
const float x1 = xi[QK5_0 / 2 + j] * id;
const uint8_t xi0 = dpct::min(31, (int8_t) (x0 + 16.5f));
const uint8_t xi1 = dpct::min(31, (int8_t) (x1 + 16.5f));
dsti->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0 / 2);
}
memcpy(dsti->qh, &qh, sizeof(qh));
}
inline void cpy_blck_f32_q5_1(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q5_1 * dsti = (block_q5_1 *) cdsti;
float min = xi[0];
float max = xi[0];
for (int j = 1; j < QK5_1; ++j) {
const float v = xi[j];
min = v < min ? v : min;
max = v > max ? v : max;
}
const float d = (max - min) / 31;
const float id = d ? 1.0f / d : 0.0f;
dsti->dm.x() = d;
dsti->dm.y() = min;
uint32_t qh = 0;
for (int j = 0; j < QK5_1 / 2; ++j) {
const float x0 = (xi[0 + j] - min) * id;
const float x1 = (xi[QK5_1 / 2 + j] - min) * id;
const uint8_t xi0 = (uint8_t) (x0 + 0.5f);
const uint8_t xi1 = (uint8_t) (x1 + 0.5f);
dsti->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_1 / 2);
}
memcpy(dsti->qh, &qh, sizeof(qh));
}
inline void cpy_blck_f32_iq4_nl(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_iq4_nl * dsti = (block_iq4_nl *) cdsti;
float amax = 0.0f;
float vmax = 0.0f;
for (int j = 0; j < QK4_NL; ++j) {
const float v = xi[j];
if (amax < sycl::fabs((float) v)) {
amax = sycl::fabs((float) v);
vmax = v;
}
}
float d = vmax / kvalues_iq4nl[0];
const float id = d ? 1.0f / d : 0.0f;
float sumqx = 0, sumq2 = 0;
for (int j = 0; j < QK4_NL / 2; ++j) {
const float x0 = xi[0 + j] * id;
const float x1 = xi[QK4_NL / 2 + j] * id;
const uint8_t xi0 = best_index_int8(16, kvalues_iq4nl, x0);
const uint8_t xi1 = best_index_int8(16, kvalues_iq4nl, x1);
dsti->qs[j] = xi0 | (xi1 << 4);
const float v0 = kvalues_iq4nl[xi0];
const float v1 = kvalues_iq4nl[xi1];
const float w0 = xi[0 + j] * xi[0 + j];
const float w1 = xi[QK4_NL / 2 + j] * xi[QK4_NL / 2 + j];
sumqx += w0 * v0 * xi[j] + w1 * v1 * xi[QK4_NL / 2 + j];
sumq2 += w0 * v0 * v0 + w1 * v1 * v1;
}
dsti->d = sumq2 > 0 ? sumqx / sumq2 : d;
}
void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1);
void ggml_sycl_dup(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
#endif // GGML_SYCL_CPY_HPP
#endif // GGML_SYCL_CPY_HPP

View File

@@ -4229,11 +4229,12 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
}
case GGML_OP_SET_ROWS:
{
// TODO: add support
// ref: https://github.com/ggml-org/llama.cpp/pull/14274
#pragma message("TODO: implement BF16, Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, IQ4_NL support (https://github.com/ggml-org/llama.cpp/pull/14661)")
return (op->type == GGML_TYPE_F32 || (op->type == GGML_TYPE_F16 && op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_I64));
} break;
return ((op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16 || op->type == GGML_TYPE_BF16 ||
op->type == GGML_TYPE_Q8_0 || op->type == GGML_TYPE_Q5_1 || op->type == GGML_TYPE_Q5_0 ||
op->type == GGML_TYPE_Q4_1 || op->type == GGML_TYPE_Q4_0 || op->type == GGML_TYPE_IQ4_NL) &&
(op->src[1]->type == GGML_TYPE_I64));
}
break;
case GGML_OP_CPY:
{
ggml_type src0_type = op->src[0]->type;

View File

@@ -1,4 +1,5 @@
#include "set_rows.hpp"
#include "cpy.hpp"
namespace utils {
template<typename T>
@@ -15,6 +16,68 @@ convert (const char* src, char* dst) {
*reinterpret_cast<TOut*>(dst) = dst_val;
}
template <typename blockType, int qk, cpy_kernel_t cpyblck>
static void set_rows_sycl_q(const char * __restrict__ src0_d,
const int64_t * __restrict__ src1_d,
blockType * __restrict__ dst_d,
// tensor dimensions src0 and src1
const int64_t ne00,
const int64_t ne01,
const int64_t ne02,
const int64_t ne03,
const int64_t ne10,
const int64_t ne11,
const int64_t ne12,
const int64_t ne13,
// strides for src0
const size_t nb00,
const size_t nb01,
const size_t nb02,
const size_t nb03,
// strides for src1
const size_t nb10,
const size_t nb11,
const size_t nb12,
const size_t nb13,
// strides for dst
const size_t nb1,
const size_t nb2,
const size_t nb3,
queue_ptr stream) {
const int64_t total_blocks = (ne00 * ne01 * ne02 * ne03) / qk;
constexpr int block_size = 256;
const int64_t grid_size = ceil_div(total_blocks, block_size);
sycl_parallel_for(stream, sycl::nd_range<1>(grid_size * block_size, block_size), [=](sycl::nd_item<1> item_ct1) {
const int64_t i = item_ct1.get_global_linear_id();
if (i >= total_blocks) {
return;
}
const int64_t i_base = i * qk;
const int64_t i03 = i_base / (ne00 * ne01 * ne02);
const int64_t rem1 = i_base - i03 * (ne00 * ne01 * ne02);
const int64_t i02 = rem1 / (ne00 * ne01);
const int64_t rem2 = rem1 - i02 * ne00 * ne01;
const int64_t i01 = rem2 / ne00;
const int64_t i00 = rem2 - i01 * ne00;
const int64_t i12 = i03 % ne12;
const int64_t i11 = i02 % ne11;
const int64_t i10 = i01;
const size_t src_offset = calculate_offset<3>({ nb01, nb02, nb03 }, { i01, i02, i03 });
const char * src_block = src0_d + src_offset + i00 * sizeof(float);
const size_t src1_offset = calculate_offset<3>({ nb10, nb11, nb12 }, { i10, i11, i12 });
const int64_t dst_row = src1_d[src1_offset / sizeof(int64_t)];
const size_t dst_offset =
calculate_offset<3>({ nb1, nb2, nb3 }, { dst_row, i02, i03 }) + (i00 / qk) * sizeof(blockType);
char * dst_block = reinterpret_cast<char *>(reinterpret_cast<char *>(dst_d) + dst_offset);
cpyblck(src_block, dst_block);
});
GGML_UNUSED(ne10);
GGML_UNUSED(ne13);
GGML_UNUSED(nb00);
GGML_UNUSED(nb13);
}
template<typename TIn, typename TOut>
static void k_set_rows(
const char * __restrict__ src0, const int64_t * __restrict__ src1, char * __restrict__ dst,
@@ -124,6 +187,37 @@ void ggml_sycl_op_set_rows(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
stream
);
break;
case GGML_TYPE_BF16:
set_rows_sycl<float, sycl::ext::oneapi::bfloat16>(
(const char *)src0->data, src1_dd, (char *)dst->data,
ne00, ne01, ne02, ne03,
ne11, ne12,
nb01, nb02, nb03,
nb10, nb11, nb12,
nb1, nb2, nb3,
sizeof(float), sizeof(sycl::ext::oneapi::bfloat16),
stream
);
break;
case GGML_TYPE_Q8_0:
set_rows_sycl_q<block_q8_0, QK8_0, cpy_blck_f32_q8_0>((const char *)src0->data, src1_dd, (block_q8_0 *)dst->data, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nb00, nb01, nb02, nb03, nb10, nb11, nb12, nb13, nb1, nb2, nb3, stream);
break;
case GGML_TYPE_Q5_1:
set_rows_sycl_q<block_q5_1, QK5_1, cpy_blck_f32_q5_1>((const char *)src0->data, src1_dd, (block_q5_1 *)dst->data, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nb00, nb01, nb02, nb03, nb10, nb11, nb12, nb13, nb1, nb2, nb3, stream);
break;
case GGML_TYPE_Q5_0:
set_rows_sycl_q<block_q5_0, QK5_0, cpy_blck_f32_q5_0>((const char *)src0->data, src1_dd, (block_q5_0 *)dst->data, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nb00, nb01, nb02, nb03, nb10, nb11, nb12, nb13, nb1, nb2, nb3, stream);
break;
case GGML_TYPE_Q4_1:
set_rows_sycl_q<block_q4_1, QK4_1, cpy_blck_f32_q4_1>((const char *)src0->data, src1_dd, (block_q4_1 *)dst->data, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nb00, nb01, nb02, nb03, nb10, nb11, nb12, nb13, nb1, nb2, nb3, stream);
break;
case GGML_TYPE_Q4_0:
set_rows_sycl_q<block_q4_0, QK4_0, cpy_blck_f32_q4_0>((const char *)src0->data, src1_dd, (block_q4_0 *)dst->data, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nb00, nb01, nb02, nb03, nb10, nb11, nb12, nb13, nb1, nb2, nb3, stream);
break;
case GGML_TYPE_IQ4_NL:
set_rows_sycl_q<block_iq4_nl, QK4_NL, cpy_blck_f32_iq4_nl>((const char *)src0->data, src1_dd, (block_iq4_nl *)dst->data, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nb00, nb01, nb02, nb03, nb10, nb11, nb12, nb13, nb1, nb2, nb3, stream);
break;
default:
GGML_ABORT("Unsupported tensor type!");
break;

View File

@@ -1341,7 +1341,7 @@ static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipelin
vk::DebugUtilsObjectNameInfoEXT duoni;
duoni.objectType = vk::ObjectType::ePipeline;
duoni.pObjectName = pipeline->name.c_str();
duoni.objectHandle = reinterpret_cast<uint64_t>(static_cast<VkPipeline_T*>(pipeline->pipeline));
duoni.objectHandle = /*reinterpret_cast*/(uint64_t)(static_cast<VkPipeline>(pipeline->pipeline));
vk_instance.pfn_vkSetDebugUtilsObjectNameEXT(device->device, &static_cast<VkDebugUtilsObjectNameInfoEXT &>(duoni));
}

View File

@@ -2724,6 +2724,7 @@ class VisionProjectorType:
INTERNVL = "internvl"
QWEN2A = "qwen2a" # audio
QWEN25O = "qwen2.5o" # omni
VOXTRAL = "voxtral"
# Items here are (block size, type size)

View File

@@ -1,5 +1,6 @@
from __future__ import annotations
from enum import Enum
import re
import logging
import json
@@ -12,6 +13,25 @@ try:
except ImportError:
SentencePieceProcessor = None
try:
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.tokens.tokenizers.tekken import Tekkenizer
from mistral_common.tokens.tokenizers.utils import (
_filter_valid_tokenizer_files,
)
from mistral_common.tokens.tokenizers.sentencepiece import (
SentencePieceTokenizer,
)
except ImportError:
_mistral_common_installed = False
MistralTokenizer = None
Tekkenizer = None
SentencePieceTokenizer = None
_filter_valid_tokenizer_files = None
else:
_mistral_common_installed = True
import gguf
from .gguf_writer import GGUFWriter
@@ -592,3 +612,262 @@ class LlamaHfVocab(Vocab):
def __repr__(self) -> str:
return f"<LlamaHfVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
class MistralTokenizerType(str, Enum):
spm = "spm"
tekken = "tekken"
# Copied from Transformers (Apache 2.0)
# https://github.com/huggingface/transformers/blob/main/src/transformers/convert_slow_tokenizer.py#L1544
def bytes_to_unicode() -> dict[int, str]:
"""
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
characters the bpe code barfs on.
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
tables between utf-8 bytes and unicode strings.
"""
bs = (
list(range(ord("!"), ord("~") + 1))
+ list(range(ord("¡"), ord("¬") + 1))
+ list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs_str = [chr(n) for n in cs]
return dict(zip(bs, cs_str))
class MistralVocab(Vocab):
tokenizer_model = "mistral"
name = "mistral"
added_tokens_dict: dict[str, int] = {}
added_tokens_list: list[str] = []
def __init__(self, base_path: Path):
if not _mistral_common_installed:
raise ImportError(
"To use MistralVocab, please install the `mistral-common` package. "
"You can install it with `pip install mistral-common`."
)
assert _filter_valid_tokenizer_files is not None, "mistral_common is not installed"
assert MistralTokenizer is not None, "mistral_common is not installed"
assert Tekkenizer is not None, "mistral_common is not installed"
logger.info(f"Loading Mistral tokenizer from {base_path}")
# Find the tokenizer files
all_files = [f.as_posix() for f in base_path.glob("**/*") if f.is_file()]
valid_tokenizer_files = _filter_valid_tokenizer_files(all_files)
if len(valid_tokenizer_files) == 0:
raise ValueError(f"No tokenizer file found in the directory: {base_path}")
# If there are multiple tokenizer files, we use tekken.json if it exists, otherwise the versioned one.
if len(valid_tokenizer_files) > 1:
if "tekken.json" in valid_tokenizer_files:
tokenizer_file = "tekken.json"
else:
tokenizer_file = sorted(valid_tokenizer_files)[-1]
logger.warning(
f"Multiple tokenizer files found in {base_path}. Using {tokenizer_file}"
)
else:
tokenizer_file = valid_tokenizer_files[0]
self.tokenizer = MistralTokenizer.from_file(
base_path / tokenizer_file
).instruct_tokenizer.tokenizer
self.tokenizer_type = (
MistralTokenizerType.tekken
if isinstance(self.tokenizer, Tekkenizer)
else MistralTokenizerType.spm
)
self.vocab_size = self.tokenizer.n_words
self.fname_tokenizer = base_path / tokenizer_file
self._name = (
"mistral-" + self.tokenizer_type.value + "-" + self.tokenizer.version
)
@property
def tokenizer_name(self) -> str:
return self._name
@property
def gguf_tokenizer_model(self) -> str:
return "llama" if self.tokenizer_type == MistralTokenizerType.spm else "gpt2"
def _sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
assert SentencePieceTokenizer is not None, "mistral_common is not installed"
assert isinstance(self.tokenizer, SentencePieceTokenizer), (
f"Expected SentencePieceTokenizer, got {type(self.tokenizer)}"
)
for i in range(self.tokenizer._model.vocab_size()):
piece = self.tokenizer._model.IdToPiece(i)
text = piece.encode("utf-8")
score: float = self.tokenizer._model.GetScore(i)
toktype = gguf.TokenType.NORMAL
if self.tokenizer._model.IsUnknown(i):
toktype = gguf.TokenType.UNKNOWN
if self.tokenizer._model.IsControl(i):
toktype = gguf.TokenType.CONTROL
if self.tokenizer._model.IsUnused(i):
toktype = gguf.TokenType.UNUSED
if self.tokenizer._model.IsByte(i):
toktype = gguf.TokenType.BYTE
yield text, score, toktype
def _tekken_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
assert Tekkenizer is not None, "mistral_common is not installed"
assert isinstance(self.tokenizer, Tekkenizer), (
f"Expected Tekkenizer, got {type(self.tokenizer)}"
)
byte_encoder = bytes_to_unicode()
for token_id in range(self.tokenizer.num_special_tokens):
yield (
self.tokenizer.id_to_piece(token_id).encode("utf-8"),
0,
gguf.TokenType.CONTROL
)
for token in self.tokenizer._tekken_token2id_nospecial:
yield (
self.token_bytes_to_string(token, byte_encoder).encode("utf-8"),
0,
gguf.TokenType.NORMAL,
)
def get_token_id(self, token: str) -> int:
assert SentencePieceTokenizer is not None and Tekkenizer is not None, "mistral_common is not installed"
if self.tokenizer_type == MistralTokenizerType.spm:
assert isinstance(self.tokenizer, SentencePieceTokenizer)
return self.tokenizer._vocab.index(token)
elif self.tokenizer_type == MistralTokenizerType.tekken:
assert isinstance(self.tokenizer, Tekkenizer)
return (
self.tokenizer._vocab.index(token) + self.tokenizer.num_special_tokens
)
else:
raise ValueError(f"Unknown tokenizer type: {self.tokenizer_type}")
@property
def bos_id(self) -> int:
return self.tokenizer.bos_id
@property
def eos_id(self) -> int:
return self.tokenizer.eos_id
@property
def pad_id(self) -> int:
if self.tokenizer.pad_id == -1:
return self.eos_id
return self.tokenizer.pad_id
@property
def unk_id(self) -> int:
return self.tokenizer.unk_id
@property
def bos_token(self) -> str:
return self.tokenizer.id_to_piece(self.tokenizer.bos_id)
@property
def eos_token(self) -> str:
return self.tokenizer.id_to_piece(self.tokenizer.eos_id)
@property
def pad_token(self) -> str:
return self.tokenizer.id_to_piece(self.tokenizer.pad_id)
@property
def unk_token(self) -> str:
return self.tokenizer.id_to_piece(self.tokenizer.unk_id)
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
if self.tokenizer_type == MistralTokenizerType.spm:
yield from self._sentencepiece_tokens()
elif self.tokenizer_type == MistralTokenizerType.tekken:
yield from self._tekken_tokens()
else:
raise ValueError(f"Unknown tokenizer type: {self.tokenizer_type}")
@staticmethod
def token_bytes_to_string(b, byte_encoder):
return "".join([byte_encoder[ord(char)] for char in b.decode("latin-1")])
def extract_vocab_merges_from_model(self):
# Adapted from Transformers (Apache 2.0)
# https://github.com/huggingface/transformers/blob/main/src/transformers/convert_slow_tokenizer.py
assert Tekkenizer is not None and isinstance(self.tokenizer, Tekkenizer), (
f"Expected Tekkenizer, got {type(self.tokenizer)}"
)
mergeable_ranks = self.tokenizer._model._mergeable_ranks
token_bytes_map = {
rank: token_bytes for token_bytes, rank in mergeable_ranks.items()
}
merge_pairs = []
# Sort vocab by rank to ensure correct merge order
for i in range(256, self.vocab_size - self.tokenizer.num_special_tokens):
merged_token = token_bytes_map[i]
local = []
for j in range(1, len(merged_token)):
left = merged_token[:j]
right = merged_token[j:]
if (
left in mergeable_ranks
and right in mergeable_ranks
and (left + right) in mergeable_ranks
):
local.append((left, right, i))
if not local:
raise ValueError(
f"Could not find valid merge for token at rank {i}: {merged_token.decode('latin-1')}"
)
local = sorted(
local,
key=lambda x: (mergeable_ranks[x[0]], mergeable_ranks[x[1]]),
reverse=False,
)
merge_pairs.extend(local)
merge_pairs = sorted(merge_pairs, key=lambda val: val[2], reverse=False)
byte_encoder = bytes_to_unicode()
decoded_merge_pairs = [
[
self.token_bytes_to_string(val[0], byte_encoder),
self.token_bytes_to_string(val[1], byte_encoder),
]
for val in merge_pairs
]
merges = [
" ".join(
[
# ensure the spaces are properly encoded
"".join(chr(ord(c) + 256) if c == " " else c for c in part)
for part in pair
]
)
for pair in decoded_merge_pairs
]
return merges

File diff suppressed because one or more lines are too long

View File

@@ -1,3 +1,5 @@
mistral-common>=1.8.3
-r ./requirements-convert_legacy_llama.txt
--extra-index-url https://download.pytorch.org/whl/cpu
torch~=2.2.1; platform_machine != "s390x"

View File

@@ -1,3 +1,3 @@
docstring_parser~=0.15
pydantic~=2.6.3
pydantic~=2.11.7
requests

View File

@@ -32,11 +32,12 @@ def get_prompts_text(dataset_name: str, n_prompts: int) -> Optional[list[str]]:
return ret
def get_prompt_lengths_rng(n_prompts: int, prompt_length_min: int, prompt_length_max: int) -> list[int]:
def get_prompt_lengths_rng(n_prompts: int, prompt_length_min: int, prompt_length_max: int, seed_offset: int) -> list[int]:
assert n_prompts >= 0
ret: list[int] = []
for i in range(n_prompts):
random.seed(13 * i + 0)
if seed_offset >= 0:
random.seed(3 * (seed_offset + 1000 * i) + 0)
ret.append(random.randint(prompt_length_min, prompt_length_max))
return ret
@@ -46,12 +47,20 @@ def get_prompts_rng(prompt_lengths: list[int]) -> list[list[int]]:
def get_server(path_server: str, path_log: Optional[str]) -> dict:
logger.info("Starting the llama.cpp server...")
hostname: str = os.environ.get("LLAMA_ARG_HOST", "127.0.0.1")
port: str = os.environ.get("LLAMA_ARG_PORT", "8080")
if os.environ.get("LLAMA_ARG_HOST") is None:
logger.info("LLAMA_ARG_HOST not explicitly set, using 127.0.0.1")
os.environ["LLAMA_ARG_HOST"] = "127.0.0.1"
if os.environ.get("LLAMA_ARG_PORT") is None:
logger.info("LLAMA_ARG_PORT not explicitly set, using 8080")
os.environ["LLAMA_ARG_PORT"] = "8080"
hostname: Optional[str] = os.environ.get("LLAMA_ARG_HOST")
port: Optional[str] = os.environ.get("LLAMA_ARG_PORT")
assert hostname is not None
assert port is not None
address: str = f"http://{hostname}:{port}"
logger.info(f"Starting the llama.cpp server under {address}...")
fout = open(path_log, "w") if path_log is not None else subprocess.DEVNULL
fout = open(path_log.format(port=port), "w") if path_log is not None else subprocess.DEVNULL
process = subprocess.Popen([path_server], stdout=fout, stderr=subprocess.STDOUT)
n_failures: int = 0
@@ -60,7 +69,7 @@ def get_server(path_server: str, path_log: Optional[str]) -> dict:
sleep(1.0)
exit_code = process.poll()
if exit_code is not None:
raise RuntimeError(f"llama.cpp server exited unexpectedly with exit code {exit_code}, see {path_log}")
raise RuntimeError(f"llama.cpp server exited unexpectedly with exit code {exit_code}{path_log and f', see {path_log.format(port=port)}' or ''}")
response = requests.get(f"{address}/health")
if response.status_code == 200:
break
@@ -128,7 +137,7 @@ def send_prompt(data: dict) -> tuple[float, list[float]]:
return (t_submit, token_arrival_times)
def benchmark(path_server: str, path_log: Optional[str], prompt_source: str, n_prompts: int, n_predict: int, n_predict_min: int):
def benchmark(path_server: str, path_log: Optional[str], prompt_source: str, n_prompts: int, n_predict: int, n_predict_min: int, seed_offset: int):
if os.environ.get("LLAMA_ARG_N_PARALLEL") is None:
logger.info("LLAMA_ARG_N_PARALLEL not explicitly set, using 32")
os.environ["LLAMA_ARG_N_PARALLEL"] = "32"
@@ -139,7 +148,7 @@ def benchmark(path_server: str, path_log: Optional[str], prompt_source: str, n_p
logger.info("LLAMA_ARG_FLASH_ATTN not explicitly set, using 'true'")
os.environ["LLAMA_ARG_FLASH_ATTN"] = "true"
parallel: int = int(os.environ.get("LLAMA_ARG_N_PARALLEL", 1))
parallel: int = int(os.environ.get("LLAMA_ARG_N_PARALLEL")) # type: ignore
prompts: Union[None, list[str], list[list[int]]] = get_prompts_text(prompt_source, n_prompts)
synthetic_prompts: bool = prompts is None
prompt_n = []
@@ -151,7 +160,7 @@ def benchmark(path_server: str, path_log: Optional[str], prompt_source: str, n_p
prompt_length_min: int = int(prompt_source_split[1])
prompt_length_max: int = int(prompt_source_split[2])
logger.info("Generating random prompts...")
prompt_n = get_prompt_lengths_rng(n_prompts, prompt_length_min, prompt_length_max)
prompt_n = get_prompt_lengths_rng(n_prompts, prompt_length_min, prompt_length_max, seed_offset)
prompts = get_prompts_rng(prompt_n)
else:
n_predict_min = n_predict
@@ -176,10 +185,11 @@ def benchmark(path_server: str, path_log: Optional[str], prompt_source: str, n_p
data: list[dict] = []
for i, p in enumerate(prompts):
random.seed(13 * i + 1)
if seed_offset >= 0:
random.seed(3 * (seed_offset + 1000 * i) + 1)
data.append({
"session": session, "server_address": server_address, "prompt": p, "synthetic_prompt": synthetic_prompts,
"n_predict": random.randint(n_predict_min, n_predict), "seed": 13 * i + 2})
"n_predict": random.randint(n_predict_min, n_predict), "seed": (3 * (seed_offset + 1000 * i) + 2) if seed_offset >= 0 else -1})
if not synthetic_prompts:
logger.info("Getting the prompt lengths...")
@@ -251,7 +261,7 @@ if __name__ == "__main__":
"Results are printed to console and visualized as plots (saved to current working directory). "
"To pass arguments such as the model path to the server, set the corresponding environment variables (see llama-server --help).")
parser.add_argument("--path_server", type=str, default="llama-server", help="Path to the llama.cpp server binary")
parser.add_argument("--path_log", type=str, default="server-bench.log", help="Path to the model to use for the benchmark")
parser.add_argument("--path_log", type=str, default="server-bench-{port}.log", help="Path to the model to use for the benchmark")
parser.add_argument(
"--prompt_source", type=str, default="rng-1024-2048",
help="How to get the prompts for the benchmark, either 'mmlu' for MMLU questions or "
@@ -261,5 +271,7 @@ if __name__ == "__main__":
parser.add_argument(
"--n_predict_min", type=int, default=1024,
help="Min. number of tokens to predict per prompt (supported for synthetic prompts only)")
parser.add_argument("--seed_offset", type=int, default=0, help="Offset for determining the seeds for pseudorandom prompt/generation lengths. "
"Corelations between seeds can occur when set >= 1000. Negative values mean no seed.")
args = parser.parse_args()
benchmark(**vars(args))

View File

@@ -1 +1 @@
b7bfde9c88aa4b063ce68dab6cc4f5c6caae37fd
daf7906728036a82f20c69fcbd74b6f536c74d3f

View File

@@ -59,7 +59,7 @@ bool llama_batch_allocr::init(
for (int32_t i = 0; i < batch.n_tokens; ++i) {
for (int32_t s = 0; s < batch.n_seq_id[i]; ++s) {
if (batch.seq_id && (batch.seq_id[i][s] < 0 || batch.seq_id[i][s] >= (llama_seq_id) n_seq_max)) {
LLAMA_LOG_ERROR("%s: invalid seq_id[%d][%d] = %d > %d\n", __func__, i, s, batch.seq_id[i][s], (llama_seq_id) n_seq_max);
LLAMA_LOG_ERROR("%s: invalid seq_id[%d][%d] = %d >= %d\n", __func__, i, s, batch.seq_id[i][s], (llama_seq_id) n_seq_max);
return false;
}
}

View File

@@ -188,38 +188,23 @@ void llm_graph_input_mean::set_input(const llama_ubatch * ubatch) {
void llm_graph_input_cls::set_input(const llama_ubatch * ubatch) {
const int64_t n_tokens = ubatch->n_tokens;
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
const int64_t n_seqs_unq = ubatch->n_seqs_unq;
if (cparams.embeddings && (
cparams.pooling_type == LLAMA_POOLING_TYPE_CLS ||
cparams.pooling_type == LLAMA_POOLING_TYPE_RANK
)) {
cparams.pooling_type == LLAMA_POOLING_TYPE_CLS ||
cparams.pooling_type == LLAMA_POOLING_TYPE_RANK ||
cparams.pooling_type == LLAMA_POOLING_TYPE_LAST
)) {
GGML_ASSERT(cls);
GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));
uint32_t * data = (uint32_t *) cls->data;
memset(cls->data, 0, n_seqs_unq*ggml_element_size(cls));
for (int i = 0; i < n_tokens; i += n_seq_tokens) {
for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[i][s];
const int32_t seq_idx = ubatch->seq_idx[seq_id];
std::vector<int> target_pos(n_seqs_unq, -1);
std::vector<int> target_row(n_seqs_unq, -1);
data[seq_idx] = i;
}
}
}
if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) {
GGML_ASSERT(cls);
GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));
uint32_t * data = (uint32_t *) cls->data;
memset(cls->data, 0, n_seqs_unq*ggml_element_size(cls));
std::vector<int> last_pos(n_seqs_unq, -1);
std::vector<int> last_row(n_seqs_unq, -1);
bool last = cparams.pooling_type == LLAMA_POOLING_TYPE_LAST;
for (int i = 0; i < n_tokens; ++i) {
const llama_pos pos = ubatch->pos[i];
@@ -228,16 +213,20 @@ void llm_graph_input_cls::set_input(const llama_ubatch * ubatch) {
const llama_seq_id seq_id = ubatch->seq_id[i][s];
const int32_t seq_idx = ubatch->seq_idx[seq_id];
if (pos >= last_pos[seq_idx]) {
last_pos[seq_idx] = pos;
last_row[seq_idx] = i;
if (
(target_pos[seq_idx] == -1) ||
( last && pos >= target_pos[seq_idx]) ||
(!last && pos < target_pos[seq_idx])
) {
target_pos[seq_idx] = pos;
target_row[seq_idx] = i;
}
}
}
for (int s = 0; s < n_seqs_unq; ++s) {
if (last_row[s] >= 0) {
data[s] = last_row[s];
if (target_row[s] >= 0) {
data[s] = target_row[s];
}
}
}

View File

@@ -144,7 +144,7 @@ public:
ggml_tensor * pos_bucket = nullptr; // I32 [n_batch, n_batch]
const llama_hparams & hparams;
const llama_hparams hparams;
};
class llm_graph_input_pos_bucket_kv : public llm_graph_input_i {
@@ -158,7 +158,7 @@ public:
ggml_tensor * pos_bucket = nullptr; // I32 [n_kv, n_batch]
const llama_hparams & hparams;
const llama_hparams hparams;
const llama_kv_cache_unified_context * mctx;
};
@@ -177,8 +177,8 @@ public:
ggml_tensor * out_ids; // I32 [n_outputs]
const llama_hparams & hparams;
const llama_cparams & cparams;
const llama_hparams hparams;
const llama_cparams cparams;
const uint32_t n_outputs;
};
@@ -192,7 +192,7 @@ public:
ggml_tensor * mean; // F32 [n_batch, n_batch]
const llama_cparams & cparams;
const llama_cparams cparams;
};
class llm_graph_input_cls : public llm_graph_input_i {
@@ -204,7 +204,7 @@ public:
ggml_tensor * cls; // I32 [n_batch]
const llama_cparams & cparams;
const llama_cparams cparams;
};
class llm_graph_input_rs : public llm_graph_input_i {
@@ -247,8 +247,8 @@ public:
ggml_tensor * kq_mask = nullptr; // F32 [n_tokens, n_batch, 1, 1]
ggml_tensor * kq_mask_cnv = nullptr; // [n_tokens, n_batch, 1, 1]
const llama_hparams & hparams;
const llama_cparams & cparams;
const llama_hparams hparams;
const llama_cparams cparams;
};
class llm_graph_input_attn_kv_unified : public llm_graph_input_i {
@@ -278,8 +278,11 @@ public:
ggml_tensor * self_kq_mask = nullptr; // F32 [n_kv, n_batch/n_stream, 1, n_stream]
ggml_tensor * self_kq_mask_cnv = nullptr; // [n_kv, n_batch/n_stream, 1, n_stream]
const llama_hparams & hparams;
const llama_cparams & cparams;
// note: these have to be copies because in order to be able to reuse a graph, its inputs
// need to carry these parameters with them. otherwise, they can point to freed
// llm_graph_params from a previous batch, causing stack-use-after-return
const llama_hparams hparams;
const llama_cparams cparams;
const llama_kv_cache_unified_context * mctx;
};
@@ -318,8 +321,8 @@ public:
ggml_tensor * self_kq_mask_swa = nullptr; // F32 [n_kv, n_batch/n_stream, 1, n_stream]
ggml_tensor * self_kq_mask_swa_cnv = nullptr; // [n_kv, n_batch/n_stream, 1, n_stream]
const llama_hparams & hparams;
const llama_cparams & cparams;
const llama_hparams hparams;
const llama_cparams cparams;
const llama_kv_cache_unified_iswa_context * mctx;
};

View File

@@ -185,7 +185,7 @@ llama_build_and_test(test-json-partial.cpp)
llama_build_and_test(test-log.cpp)
llama_build_and_test(test-regex-partial.cpp)
llama_build_and_test(test-thread-safety.cpp ARGS -hf ggml-org/models -hff tinyllamas/stories15M-q4_0.gguf -ngl 99 -p "The meaning of life is" -n 128 -c 256 -ub 32 -np 4)
llama_build_and_test(test-thread-safety.cpp ARGS -hf ggml-org/models -hff tinyllamas/stories15M-q4_0.gguf -ngl 99 -p "The meaning of life is" -n 128 -c 256 -ub 32 -np 4 -t 2)
# this fails on windows (github hosted runner) due to curl DLL not found (exit code 0xc0000135)
if (NOT WIN32)

View File

@@ -35,6 +35,7 @@
#include <random>
#include <regex>
#include <string>
#include <string_view>
#include <thread>
#include <vector>
@@ -1047,7 +1048,37 @@ struct test_case {
return t;
}
bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name, printer * output_printer) {
// Checks an op against the test filter, which is a comma separated list of OP names or specific variations
bool matches_filter(ggml_tensor * op, const char * op_names_filter) {
if (op_names_filter) {
const auto op_name = op_desc(op);
const auto op_full_name = op_name + "(" + vars() + ")";
std::string_view filter(op_names_filter);
while (!filter.empty()) {
auto comma_pos = filter.find_first_of(',');
const auto lparen_pos = filter.find_first_of('(');
if (lparen_pos < comma_pos) {
auto rparen_pos = filter.find_first_of(')');
comma_pos = filter.find_first_of(',', rparen_pos);
const auto op_filter = filter.substr(0, comma_pos);
if (op_filter == op_full_name) {
return true;
}
} else {
const auto op_filter = filter.substr(0, comma_pos);
if (op_filter == op_name) {
return true;
}
}
filter = comma_pos != std::string_view::npos ? filter.substr(comma_pos + 1) : "";
}
return false;
} else {
return true;
}
}
bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_names_filter, printer * output_printer) {
mode = MODE_TEST;
ggml_init_params params = {
@@ -1065,7 +1096,7 @@ struct test_case {
ggml_tensor * out = build_graph(ctx);
std::string current_op_name = op_desc(out);
if (op_name != nullptr && current_op_name != op_name) {
if (!matches_filter(out, op_names_filter)) {
//printf(" %s: skipping\n", op_desc(out).c_str());
ggml_free(ctx);
return true;
@@ -1212,7 +1243,7 @@ struct test_case {
return test_passed;
}
bool eval_perf(ggml_backend_t backend, const char * op_name, printer * output_printer) {
bool eval_perf(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
mode = MODE_PERF;
static const size_t graph_nodes = 8192;
@@ -1227,7 +1258,7 @@ struct test_case {
ggml_tensor * out = build_graph(ctx.get());
std::string current_op_name = op_desc(out);
if (op_name != nullptr && current_op_name != op_name) {
if (!matches_filter(out, op_names_filter)) {
//printf(" %s: skipping\n", op_desc(out).c_str());
return true;
}
@@ -1342,7 +1373,7 @@ struct test_case {
return true;
}
bool eval_support(ggml_backend_t backend, const char * op_name, printer * output_printer) {
bool eval_support(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
mode = MODE_SUPPORT;
static const size_t graph_nodes = 8192;
@@ -1357,7 +1388,7 @@ struct test_case {
ggml_tensor * out = build_graph(ctx.get());
std::string current_op_name = op_desc(out);
if (op_name != nullptr && current_op_name != op_name) {
if (!matches_filter(out, op_names_filter)) {
return true;
}
@@ -1374,7 +1405,7 @@ struct test_case {
return true;
}
bool eval_grad(ggml_backend_t backend, const char * op_name, printer * output_printer) {
bool eval_grad(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
mode = MODE_GRAD;
const std::vector<float> expect = grad_expect();
@@ -1391,7 +1422,7 @@ struct test_case {
ggml_tensor * out = build_graph(ctx.get());
if ((op_name != nullptr && op_desc(out) != op_name) || out->op == GGML_OP_OPT_STEP_ADAMW) {
if (!matches_filter(out, op_names_filter) || out->op == GGML_OP_OPT_STEP_ADAMW) {
return true;
}
@@ -2514,6 +2545,41 @@ struct test_scale : public test_case {
}
};
// GGML_OP_SCALE + GGML_UNARY_OP_TANH + GGML_OP_SCALE
struct test_softcap : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
float softcap;
std::string op_desc(ggml_tensor * t) override {
GGML_UNUSED(t);
return "SOFTCAP";
}
bool run_whole_graph() override { return true; }
std::string vars() override {
return VARS_TO_STR3(type, ne, softcap);
}
test_softcap(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 10, 10, 10},
float softcap = 30.0f)
: type(type), ne(ne), softcap(softcap) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(a);
ggml_set_name(a, "a");
ggml_tensor * out = ggml_scale(ctx, ggml_tanh(ctx, ggml_scale(ctx, a, 1.0f / softcap)), softcap);
ggml_set_name(out, "out");
return out;
}
};
// GGML_OP_SILU_BACK
struct test_silu_back : public test_case {
const ggml_type type;
@@ -5390,6 +5456,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_add1());
test_cases.emplace_back(new test_scale());
test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f));
test_cases.emplace_back(new test_softcap(GGML_TYPE_F32, {10, 10, 10, 10}, 50.0f));
test_cases.emplace_back(new test_silu_back());
for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
@@ -5922,7 +5989,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
return test_cases;
}
static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name, const char * params_filter,
static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_names_filter, const char * params_filter,
printer * output_printer) {
auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
if (params_filter == nullptr) {
@@ -5954,7 +6021,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
size_t n_ok = 0;
for (auto & test : test_cases) {
if (test->eval(backend, backend_cpu, op_name, output_printer)) {
if (test->eval(backend, backend_cpu, op_names_filter, output_printer)) {
n_ok++;
}
}
@@ -5970,7 +6037,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
filter_test_cases(test_cases, params_filter);
size_t n_ok = 0;
for (auto & test : test_cases) {
if (test->eval_grad(backend, op_name, output_printer)) {
if (test->eval_grad(backend, op_names_filter, output_printer)) {
n_ok++;
}
}
@@ -5983,7 +6050,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
auto test_cases = make_test_cases_perf();
filter_test_cases(test_cases, params_filter);
for (auto & test : test_cases) {
test->eval_perf(backend, op_name, output_printer);
test->eval_perf(backend, op_names_filter, output_printer);
}
return true;
}
@@ -5992,7 +6059,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
auto test_cases = make_test_cases_eval();
filter_test_cases(test_cases, params_filter);
for (auto & test : test_cases) {
test->eval_support(backend, op_name, output_printer);
test->eval_support(backend, op_names_filter, output_printer);
}
return true;
}
@@ -6001,20 +6068,21 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
}
static void usage(char ** argv) {
printf("Usage: %s [mode] [-o <op>] [-b <backend>] [-p <params regex>] [--output <console|sql|csv>]\n", argv[0]);
printf("Usage: %s [mode] [-o <op,..>] [-b <backend>] [-p <params regex>] [--output <console|sql|csv>]\n", argv[0]);
printf(" valid modes:\n");
printf(" - test (default, compare with CPU backend for correctness)\n");
printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
printf(" - perf (performance evaluation)\n");
printf(" - support (probe backend operation support)\n");
printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc)\n");
printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc),\n");
printf(" optionally including the full test case string (e.g. \"ADD(type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1)\")\n");
printf(" --output specifies output format (default: console, options: console, sql, csv)\n");
}
int main(int argc, char ** argv) {
test_mode mode = MODE_TEST;
output_formats output_format = CONSOLE;
const char * op_name_filter = nullptr;
const char * op_names_filter = nullptr;
const char * backend_filter = nullptr;
const char * params_filter = nullptr;
@@ -6029,7 +6097,7 @@ int main(int argc, char ** argv) {
mode = MODE_SUPPORT;
} else if (strcmp(argv[i], "-o") == 0) {
if (i + 1 < argc) {
op_name_filter = argv[++i];
op_names_filter = argv[++i];
} else {
usage(argv);
return 1;
@@ -6110,7 +6178,7 @@ int main(int argc, char ** argv) {
false, "", ggml_backend_dev_description(dev),
total / 1024 / 1024, free / 1024 / 1024, true));
bool ok = test_backend(backend, mode, op_name_filter, params_filter, output_printer.get());
bool ok = test_backend(backend, mode, op_names_filter, params_filter, output_printer.get());
if (ok) {
n_ok++;

View File

@@ -34,6 +34,9 @@ int main(int argc, char ** argv) {
auto cparams = common_context_params_to_llama(params);
// each context has a single sequence
cparams.n_seq_max = 1;
int dev_count = ggml_backend_dev_count();
int gpu_dev_count = 0;
for (int i = 0; i < dev_count; ++i) {

View File

@@ -950,6 +950,7 @@ struct cmd_params_instance {
}
static std::vector<ggml_backend_dev_t> devices;
devices.clear();
// RPC devices should always come first for performance reasons
for (const std::string & server : rpc_servers) {
ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
if (dev) {
@@ -959,6 +960,20 @@ struct cmd_params_instance {
exit(1);
}
}
// add local GPU devices if any
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
switch (ggml_backend_dev_type(dev)) {
case GGML_BACKEND_DEVICE_TYPE_CPU:
case GGML_BACKEND_DEVICE_TYPE_ACCEL:
// skip CPU backends since they are handled separately
break;
case GGML_BACKEND_DEVICE_TYPE_GPU:
devices.push_back(dev);
break;
}
}
devices.push_back(nullptr);
mparams.devices = devices.data();
}

View File

@@ -131,6 +131,7 @@ enum projector_type {
PROJECTOR_TYPE_LLAMA4,
PROJECTOR_TYPE_QWEN2A,
PROJECTOR_TYPE_QWEN25O, // will be replaced by QWEN2A or QWEN25VL depending on clip_ctx
PROJECTOR_TYPE_VOXTRAL,
PROJECTOR_TYPE_UNKNOWN,
};
@@ -150,6 +151,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_LLAMA4, "llama4"},
{ PROJECTOR_TYPE_QWEN2A, "qwen2a"},
{ PROJECTOR_TYPE_QWEN25O, "qwen2.5o"},
{ PROJECTOR_TYPE_VOXTRAL, "voxtral"},
};
static projector_type clip_projector_type_from_string(const std::string & str) {

View File

@@ -354,6 +354,16 @@ struct clip_model {
ggml_tensor * conv1d_2_b = nullptr;
ggml_tensor * mm_norm_pre_w = nullptr;
ggml_tensor * mm_norm_mid_w = nullptr;
bool audio_has_avgpool() const {
return proj_type == PROJECTOR_TYPE_QWEN2A
|| proj_type == PROJECTOR_TYPE_VOXTRAL;
}
bool audio_has_stack_frames() const {
return proj_type == PROJECTOR_TYPE_ULTRAVOX
|| proj_type == PROJECTOR_TYPE_VOXTRAL;
}
};
struct clip_ctx {
@@ -1483,49 +1493,52 @@ struct clip_graph {
cb(cur, "after_transformer", -1);
if (ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX) {
if (model.audio_has_stack_frames()) {
// StackAudioFrames
// https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py
{
int64_t stride = n_embd * hparams.proj_stack_factor;
int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
int64_t pad = padded_len - ggml_nelements(cur);
if (pad > 0) {
cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
}
cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
ggml_row_size(cur->type, stride), 0);
int64_t stride = n_embd * hparams.proj_stack_factor;
int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
int64_t pad = padded_len - ggml_nelements(cur);
if (pad > 0) {
cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
}
cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
ggml_row_size(cur->type, stride), 0);
cb(cur, "after_stacked", -1);
}
if (ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX) {
// UltravoxProjector
{
// pre-norm
cur = ggml_rms_norm(ctx0, cur, 1e-6);
cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);
// pre-norm
cur = ggml_rms_norm(ctx0, cur, 1e-6);
cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);
// ffn in
cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
// ffn in
cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
// swiglu
// see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
cur = ggml_swiglu_swapped(ctx0, cur);
// swiglu
// see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
cur = ggml_swiglu_swapped(ctx0, cur);
// mid-norm
cur = ggml_rms_norm(ctx0, cur, 1e-6);
cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);
// mid-norm
cur = ggml_rms_norm(ctx0, cur, 1e-6);
cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);
// ffn out
cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
}
// ffn out
cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
} else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) {
// projector
cur = ggml_mul_mat(ctx0, model.mm_fc_w, cur);
cur = ggml_add(ctx0, cur, model.mm_fc_b);
} else if (ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL) {
// projector
cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
cur = ggml_gelu_erf(ctx0, cur);
cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
} else {
GGML_ABORT("%s: unknown projector type", __func__);
}
@@ -1670,8 +1683,7 @@ private:
inpL = cur;
}
// TODO @ngxson : find a way to move this outside
if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) {
if (ctx->model.audio_has_avgpool()) {
ggml_tensor * cur = inpL;
cur = ggml_transpose(ctx0, cur);
cur = ggml_cont(ctx0, cur);
@@ -1985,6 +1997,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
res = graph.build_llama4();
} break;
case PROJECTOR_TYPE_ULTRAVOX:
case PROJECTOR_TYPE_VOXTRAL:
case PROJECTOR_TYPE_QWEN2A:
{
res = graph.build_whisper_enc();
@@ -2259,8 +2272,10 @@ struct clip_model_loader {
} break;
case PROJECTOR_TYPE_ULTRAVOX:
case PROJECTOR_TYPE_QWEN2A:
case PROJECTOR_TYPE_VOXTRAL:
{
bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX;
bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX ||
model.proj_type == PROJECTOR_TYPE_VOXTRAL;
get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack);
if (hparams.n_mel_bins != 128) {
throw std::runtime_error(string_format("%s: only 128 mel bins are supported for ultravox\n", __func__));
@@ -2544,6 +2559,15 @@ struct clip_model_loader {
model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight"));
model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias"));
} break;
case PROJECTOR_TYPE_VOXTRAL:
{
model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
} break;
case PROJECTOR_TYPE_INTERNVL:
{
model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
@@ -3570,17 +3594,26 @@ int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * im
int scale_factor = ctx->model.hparams.proj_scale_factor;
n_patches_sq /= (scale_factor * scale_factor);
} break;
case PROJECTOR_TYPE_VOXTRAL:
case PROJECTOR_TYPE_ULTRAVOX:
{
const int proj_stack_factor = ctx->model.hparams.proj_stack_factor;
const int n_len = CLIP_ALIGN(img->nx, proj_stack_factor);
n_patches_sq = n_len / proj_stack_factor / 2;
} break;
case PROJECTOR_TYPE_QWEN2A:
{
// divide by 2 because of whisper
// another divide by 2 because of nn.AvgPool1d(2, stride=2)
n_patches_sq = img->nx / 4;
n_patches_sq = img->nx;
const int proj_stack_factor = ctx->model.hparams.proj_stack_factor;
if (ctx->model.audio_has_stack_frames()) {
GGML_ASSERT(proj_stack_factor > 0);
const int n_len = CLIP_ALIGN(n_patches_sq, proj_stack_factor);
n_patches_sq = n_len / proj_stack_factor;
}
// whisper downscales input token by half after conv1d
n_patches_sq /= 2;
if (ctx->model.audio_has_avgpool()) {
// divide by 2 because of nn.AvgPool1d(2, stride=2)
n_patches_sq /= 2;
}
} break;
default:
GGML_ABORT("unsupported projector type");
@@ -3986,6 +4019,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
case PROJECTOR_TYPE_INTERNVL:
case PROJECTOR_TYPE_QWEN2A:
case PROJECTOR_TYPE_ULTRAVOX:
case PROJECTOR_TYPE_VOXTRAL:
{
// do nothing
} break;
@@ -4086,6 +4120,7 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
case PROJECTOR_TYPE_IDEFICS3:
return ctx->model.projection->ne[1];
case PROJECTOR_TYPE_ULTRAVOX:
case PROJECTOR_TYPE_VOXTRAL:
return ctx->model.mm_2_w->ne[1];
case PROJECTOR_TYPE_INTERNVL:
return ctx->model.mm_3_w->ne[1];
@@ -4132,7 +4167,8 @@ bool clip_has_audio_encoder(const struct clip_ctx * ctx) {
bool clip_has_whisper_encoder(const struct clip_ctx * ctx) {
return ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX
|| ctx->proj_type() == PROJECTOR_TYPE_QWEN2A;
|| ctx->proj_type() == PROJECTOR_TYPE_QWEN2A
|| ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL;
}
bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {

View File

@@ -289,6 +289,10 @@ struct mtmd_context {
aud_beg = "<|audio_bos|>";
aud_end = "<|audio_eos|>";
} else if (proj == PROJECTOR_TYPE_ULTRAVOX) {
// [BEGIN_AUDIO] ... (embeddings) ...
aud_beg = "[BEGIN_AUDIO]";
}
}

View File

@@ -1,5 +1,5 @@
-r ../../requirements/requirements-convert_legacy_llama.txt
--extra-index-url https://download.pytorch.org/whl/cpu
pillow~=10.2.0
pillow~=11.3.0
torch~=2.2.1
torchvision~=0.17.1

View File

@@ -71,6 +71,7 @@ add_test_vision "ggml-org/Qwen2.5-Omni-3B-GGUF:Q4_K_M"
add_test_audio "ggml-org/ultravox-v0_5-llama-3_2-1b-GGUF:Q8_0"
add_test_audio "ggml-org/Qwen2.5-Omni-3B-GGUF:Q4_K_M"
add_test_audio "ggml-org/Voxtral-Mini-3B-2507-GGUF:Q4_K_M"
# to test the big models, run: ./tests.sh big
if [ "$RUN_BIG_TESTS" = true ]; then

View File

@@ -311,7 +311,7 @@ static int load_imatrix(const std::string & imatrix_file, std::vector<std::strin
int64_t n_datasets = gguf_get_arr_n(ctx_gguf, dataset_idx);
imatrix_datasets.reserve(n_datasets);
for (int64_t i = 0; i < n_datasets; ++i) {
imatrix_datasets.push_back(gguf_get_val_str(ctx_gguf, dataset_idx));
imatrix_datasets.push_back(gguf_get_arr_str(ctx_gguf, dataset_idx, i));
}
printf("%s: imatrix datasets=['%s'", __func__, imatrix_datasets[0].c_str());
for (size_t i = 1; i < imatrix_datasets.size(); ++i) {

View File

@@ -644,6 +644,15 @@ The same as [the embedding example](../embedding) does.
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `content`. You can determine the place of the image in the content as in the following: `Image: [img-21].\nCaption: This is a picture of a house`. In this case, `[img-21]` will be replaced by the embeddings of the image with id `21` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 21}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
`embd_normalize`: Normalization for pooled embeddings. Can be one of the following values:
```
-1: No normalization
0: Max absolute
1: Taxicab
2: Euclidean/L2
>2: P-Norm
```
### POST `/reranking`: Rerank documents according to a given query
Similar to https://jina.ai/reranker/ but might change in the future.

View File

@@ -138,6 +138,9 @@ struct slot_params {
std::string oaicompat_cmpl_id;
common_chat_syntax oaicompat_chat_syntax;
// Embeddings
int32_t embd_normalize = 2; // (-1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm)
json to_json() const {
std::vector<std::string> samplers;
samplers.reserve(sampling.samplers.size());
@@ -2601,7 +2604,7 @@ struct server_context {
// normalize only when there is pooling
if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
common_embd_normalize(embd, embd_res.data(), n_embd, 2);
common_embd_normalize(embd, embd_res.data(), n_embd, slot.params.embd_normalize);
res->embedding.push_back(embd_res);
break;
} else {
@@ -4614,6 +4617,14 @@ int main(int argc, char ** argv) {
}
}
int embd_normalize = 2; // default to Euclidean/L2 norm
if (body.count("embd_normalize") != 0) {
embd_normalize = body.at("embd_normalize");
if (llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
SRV_DBG("embd_normalize is not supported by pooling type %d, ignoring it\n", llama_pooling_type(ctx_server.ctx));
}
}
// create and queue the task
json responses = json::array();
bool error = false;
@@ -4629,6 +4640,7 @@ int main(int argc, char ** argv) {
// OAI-compat
task.params.oaicompat = oaicompat;
task.params.embd_normalize = embd_normalize;
tasks.push_back(std::move(task));
}