Compare commits

..

9 Commits
b6022 ... b6031

Author SHA1 Message Date
Georgi Gerganov
00131d6eaf tests : update for LLAMA_SET_ROWS=1 (#14961)
* test-thread-safety : each context uses a single sequence

* embedding : handle --parallel argument

ggml-ci

* save-load : handle -np 1

ggml-ci

* thread-safety : avoid overriding threads, reduce test case arg

ggml-ci
2025-07-30 15:12:02 +03:00
Georgi Gerganov
1e15bfd42c graph : fix stack-use-after-return (#14960)
Some checks are pending
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-22-cmake-vulkan (push) Waiting to run
CI / ubuntu-22-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=macOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=tvOS) (push) Waiting to run
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
ggml-ci
2025-07-30 13:52:11 +03:00
Douglas Hanley
a118d80233 embeddings: fix extraction of CLS pooling results (#14927)
* embeddings: fix extraction of CLS pooling results

* merge RANK pooling into CLS case for inputs
2025-07-30 08:25:05 +03:00
Xinpeng Dou
61550f8231 CANN: update ops docs (#14935)
Some checks failed
Update Operations Documentation / update-ops-docs (push) Has been cancelled
* CANN:add ops docs

* CANN: update ops docs
2025-07-30 08:39:24 +08:00
uvos
aa79524c51 HIP: remove the use of __HIP_PLATFORM_AMD__, explicitly support only AMD targets (#14945)
Some checks are pending
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-22-cmake-vulkan (push) Waiting to run
CI / ubuntu-22-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=macOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=tvOS) (push) Waiting to run
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
2025-07-29 20:23:04 +02:00
uvos
b77d11179d HIP: add GGML_HIP_MMQ_MFMA option to allow disableing the MFMA path. (#14930)
This is useful for testing for regressions on GCN with CDNA hardware.

With GGML_HIP_MMQ_MFMA=Off and GGML_CUDA_FORCE_MMQ=On we can conveniently test the GCN code path on CDNA. As CDNA is just GCN renamed with MFMA added and limited use ACC registers, this provides a good alternative for regression testing when GCN hardware is not available.
2025-07-29 17:44:30 +02:00
uvos
c7aa1364fd HIP: Ignore unsupported unroll transformation in fattn-vec (#14931)
llvm with the amdgcn target dose not support unrolling loops with conditional break statements, when those statements can not be resolved at compile time. Similar to other places in GGML lets simply ignore this warning.
2025-07-29 17:43:43 +02:00
kallewoof
1a67fcc306 common : avoid logging partial messages (which can contain broken UTF-8 sequences) (#14937)
* bug-fix: don't attempt to log partial parsed messages to avoid crash due to unfinished UTF-8 sequences
2025-07-29 17:05:38 +02:00
hipudding
204f2cf168 CANN: Add ggml_set_rows (#14943) 2025-07-29 22:36:43 +08:00
27 changed files with 8516 additions and 238 deletions

View File

@@ -1944,6 +1944,8 @@ common_chat_msg common_chat_parse(const std::string & input, bool is_partial, co
}
}
auto msg = builder.result();
LOG_DBG("Parsed message: %s\n", common_chat_msgs_to_json_oaicompat<json>({msg}).at(0).dump().c_str());
if (!is_partial) {
LOG_DBG("Parsed message: %s\n", common_chat_msgs_to_json_oaicompat<json>({msg}).at(0).dump().c_str());
}
return msg;
}

View File

@@ -12,91 +12,91 @@ Legend:
- 🟡 Partially supported by this backend
- ❌ Not supported by this backend
| Operation | BLAS | CPU | CUDA | Metal | OpenCL | SYCL | Vulkan |
|-----------|------|------|------|------|------|------|------|
| ABS | ❌ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| ACC | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| ADD | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
| ADD1 | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
| ARANGE | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| CLAMP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 |
| CONCAT | ❌ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ✅ |
| CONT | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 |
| CONV_2D | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ✅ |
| CONV_2D_DW | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| CONV_TRANSPOSE_2D | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| COS | ❌ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 |
| COUNT_EQUAL | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| CROSS_ENTROPY_LOSS | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| CROSS_ENTROPY_LOSS_BACK | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| DIAG_MASK_INF | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
| DIV | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
| DUP | ❌ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 |
| ELU | ❌ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| EXP | ❌ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| FLASH_ATTN_EXT | ❌ | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 |
| GATED_LINEAR_ATTN | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
| GEGLU | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| GEGLU_ERF | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| GEGLU_QUICK | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| GELU | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| GELU_ERF | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| GELU_QUICK | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| GET_ROWS | ❌ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 |
| GET_ROWS_BACK | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ |
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| HARDSIGMOID | ❌ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| HARDSWISH | ❌ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| IM2COL | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ |
| L2_NORM | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| LOG | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
| MEAN | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| MUL | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| MUL_MAT_ID | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ |
| NEG | ❌ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| NORM | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| OPT_STEP_ADAMW | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| OUT_PROD | 🟡 | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ |
| PAD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| PAD_REFLECT_1D | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ |
| POOL_2D | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| REGLU | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| RELU | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| REPEAT | ❌ | ✅ | 🟡 | ✅ | 🟡 | ✅ | 🟡 |
| REPEAT_BACK | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| RMS_NORM | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ |
| RMS_NORM_BACK | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| RMS_NORM_MUL_ADD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| ROLL | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ |
| ROPE | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| ROPE_BACK | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| RWKV_WKV6 | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| RWKV_WKV7 | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| SCALE | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| SET | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ |
| SET_ROWS | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| SGN | ❌ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| SIGMOID | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| SILU | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| SILU_BACK | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| SIN | ❌ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 |
| SOFT_MAX | ❌ | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ |
| SOFT_MAX_BACK | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ✅ |
| SQR | ❌ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 |
| SQRT | ❌ | ✅ | ✅ | 🟡 | ❌ | ✅ | ❌ |
| SSM_CONV | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| SSM_SCAN | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| STEP | ❌ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| SUB | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
| SUM | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ |
| SUM_ROWS | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| SWIGLU | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| TANH | ❌ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | 🟡 |
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| UPSCALE | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ |
| Operation | BLAS | CANN | CPU | CUDA | Metal | OpenCL | SYCL | Vulkan |
|-----------|------|------|------|------|------|------|------|------|
| ABS | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| ACC | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| ADD | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
| ADD1 | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 |
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ✅ |
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 |
| CONV_2D | ❌ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ✅ |
| CONV_2D_DW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| CONV_TRANSPOSE_2D | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 |
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| CROSS_ENTROPY_LOSS | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| CROSS_ENTROPY_LOSS_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| DIAG_MASK_INF | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
| DIV | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
| DUP | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 |
| ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 |
| GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
| GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| GEGLU_QUICK | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| GELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| GELU_ERF | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| GELU_QUICK | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| GET_ROWS | ❌ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 |
| GET_ROWS_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ |
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| HARDSIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| HARDSWISH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| IM2COL | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ |
| L2_NORM | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| LOG | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
| MEAN | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| MUL | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| MUL_MAT_ID | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ |
| NEG | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| OPT_STEP_ADAMW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ |
| PAD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ |
| POOL_2D | ❌ | 🟡 | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| REGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| RELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| REPEAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | 🟡 |
| REPEAT_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| RMS_NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ |
| RMS_NORM_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| RMS_NORM_MUL_ADD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| ROLL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ |
| ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| RWKV_WKV6 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| RWKV_WKV7 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| SET | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ |
| SET_ROWS | ❌ | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| SGN | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| SIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| SIN | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 |
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ |
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ✅ |
| SQR | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 |
| SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | ❌ |
| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| SSM_SCAN | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| STEP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
| SUM | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ |
| SUM_ROWS | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| SWIGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | 🟡 |
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ |

8133
docs/ops/CANN.csv Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -81,6 +81,14 @@ int main(int argc, char ** argv) {
params.embedding = true;
// if the number of prompts that would be encoded is known in advance, it's more efficient to specify the
// --parallel argument accordingly. for convenience, if not specified, we fallback to unified KV cache
// in order to support any number of prompts
if (params.n_parallel == 1) {
LOG_INF("%s: n_parallel == 1 -> unified KV cache is enabled\n", __func__);
params.kv_unified = true;
}
// utilize the full context
if (params.n_batch < params.n_ctx) {
LOG_WRN("%s: setting batch size to %d\n", __func__, params.n_ctx);

View File

@@ -15,6 +15,12 @@ int main(int argc, char ** argv) {
return 1;
}
if (params.n_parallel == 1) {
// the example uses 2 sequences, so when n_parallel == 1, we need to enable unified kv cache
printf("%s: n_parallel == 1, enabling unified kv cache\n", __func__);
params.kv_unified = true;
}
common_init();
if (params.n_predict < 0) {

View File

@@ -174,6 +174,7 @@ option(GGML_HIP_GRAPHS "ggml: use HIP graph, experimental,
option(GGML_HIP_NO_VMM "ggml: do not try to use HIP VMM" ON)
option(GGML_HIP_ROCWMMA_FATTN "ggml: enable rocWMMA for FlashAttention" OFF)
option(GGML_HIP_FORCE_ROCWMMA_FATTN_GFX12 "ggml: enable rocWMMA FlashAttention on GFX12" OFF)
option(GGML_HIP_MMQ_MFMA "ggml: enable MFMA MMA for CDNA in MMQ" ON)
option(GGML_MUSA_GRAPHS "ggml: use MUSA graph, experimental, unstable" OFF)
option(GGML_MUSA_MUDNN_COPY "ggml: enable muDNN for accelerated copy" OFF)
option(GGML_VULKAN "ggml: use Vulkan" OFF)

View File

@@ -68,6 +68,8 @@
#include <aclnnop/aclnn_grouped_matmul_v3.h>
#include <aclnnop/aclnn_fused_infer_attention_score_v2.h>
#include <aclnnop/aclnn_zero.h>
#include <aclnnop/aclnn_index_copy.h>
#include <aclnnop/aclnn_index_select.h>
#include <float.h>
#include <cmath>
@@ -1614,50 +1616,97 @@ void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
}
/**
* @brief Performs embedding operation on a 4D tensor using the CANN backend.
* @brief Performs index select operation on a 4D tensor using the CANN backend.
*
* This function extracts slices from the source tensor (`src_buffer`),
* index tensor (`index`), and destination tensor (`dst`), and performs an
* embedding operation on them. The embedding operation is applied by iterating
* over the last two dimensions of the source tensor, creating the necessary
* tensors for the source, index, and output, and executing the embedding operation.
* This function applies the `IndexSelect` operation along a specific dimension
* of the source tensor (`src_buffer`) using the indices from the index tensor (`index`).
* It iterates over the last two dimensions of the source tensor, creates the corresponding
* CANN tensors for the source, index, and output slices, and executes the `IndexSelect`
* operation for each slice.
*
* @param ctx The context for CANN backend operations.
* @param src_buffer The source buffer holding the data for the source tensor.
* @param src_buffer The source buffer containing the 4D input tensor data.
* @param src_ne The dimensions of the source tensor.
* @param src_nb The strides (byte offsets) of the source tensor.
* @param index The index tensor used in the embedding operation.
* @param dst The destination tensor where the result will be stored.
* @param dst_buffer The destination buffer where the output tensor data will be written.
* @param dst_ne The dimensions of the destination tensor.
* @param dst_nb The strides (byte offsets) of the destination tensor.
* @param index The index tensor specifying the indices to select from the source tensor.
* @param type The data type of the source and destination tensors.
*/
static void aclnn_embedding_4d(ggml_backend_cann_context& ctx, void* src_buffer,
int64_t* src_ne, size_t* src_nb, ggml_tensor* index,
ggml_tensor* dst) {
static void aclnn_index_select_4d(ggml_backend_cann_context& ctx,
void* src_buffer,int64_t* src_ne, size_t* src_nb,
void* dst_buffer, int64_t* dst_ne, size_t* dst_nb,
ggml_tensor* index, ggml_type type) {
for (int64_t i = 0; i < src_ne[3]; i++) {
for (int64_t j = 0; j < src_ne[2]; j++) {
// src
int64_t acl_src_ne[2] = {src_ne[0], src_ne[1]};
size_t acl_src_nb[2] = {src_nb[0], src_nb[1]};
aclTensor* acl_src_tensor = ggml_cann_create_tensor(
(char*)src_buffer + i * src_nb[3] + j * src_nb[2],
ggml_cann_type_mapping(dst->type), ggml_element_size(dst),
acl_src_ne, acl_src_nb, 2);
ggml_cann_type_mapping(type), ggml_type_size(type),
src_ne, src_nb, 2);
// index
int64_t acl_index_ne[1] = {index->ne[0]};
size_t acl_index_nb[1] = {index->nb[0]};
aclTensor* acl_index = ggml_cann_create_tensor(
(char*)index->data + i * index->nb[2] + j * index->nb[1],
(char*)index->data + (i % index->ne[2]) * index->nb[2] + (j % index->ne[1]) * index->nb[1],
ggml_cann_type_mapping(index->type), ggml_element_size(index),
acl_index_ne, acl_index_nb, 1);
index->ne, index->nb, 1);
// out
int64_t acl_out_ne[2] = {dst->ne[0], dst->ne[1]};
size_t acl_out_nb[2] = {dst->nb[0], dst->nb[1]};
aclTensor* acl_out = ggml_cann_create_tensor(
(char*)dst->data + i * dst->nb[3] + j * dst->nb[2],
ggml_cann_type_mapping(dst->type), ggml_element_size(dst),
acl_out_ne, acl_out_nb, 2);
GGML_CANN_CALL_ACLNN_OP(ctx, Embedding, acl_src_tensor, acl_index, acl_out);
(char*)dst_buffer + i * dst_nb[3] + j * dst_nb[2],
ggml_cann_type_mapping(type), ggml_type_size(type),
dst_ne, dst_nb, 2);
GGML_CANN_CALL_ACLNN_OP(ctx, IndexSelect, acl_src_tensor, 0, acl_index, acl_out);
ggml_cann_release_resources(ctx, acl_src_tensor, acl_index, acl_out);
}
}
}
/**
* @brief Performs inplace index copy operation on a 4D tensor using the CANN backend.
*
* This function applies the `IndexCopy` operation along a specific dimension of the
* destination tensor (`dst_buffer`) by copying elements from the source tensor (`src_buffer`)
* to positions specified by the index tensor (`index`).
* It iterates over the last two dimensions of the tensors, creates the corresponding
* CANN tensors for source, index, and destination slices, and performs the index copy
* operation for each slice.
*
* @param ctx The context for CANN backend operations.
* @param src_buffer The source buffer containing the 4D input tensor data to be copied.
* @param src_ne The dimensions of the source tensor.
* @param src_nb The strides (byte offsets) of the source tensor.
* @param dst_buffer The destination buffer where values will be copied to.
* @param dst_ne The dimensions of the destination tensor.
* @param dst_nb The strides (byte offsets) of the destination tensor.
* @param index The index tensor specifying target positions in the destination tensor.
* @param type The data type of the source and destination tensors.
*/
static void aclnn_index_copy_4d(ggml_backend_cann_context& ctx,
void* src_buffer,int64_t* src_ne, size_t* src_nb,
void* dst_buffer, int64_t* dst_ne, size_t* dst_nb,
ggml_tensor* index, ggml_type type) {
for (int64_t i = 0; i < src_ne[3]; i++) {
for (int64_t j = 0; j < src_ne[2]; j++) {
// src
aclTensor* acl_src_tensor = ggml_cann_create_tensor(
(char*)src_buffer + i * src_nb[3] + j * src_nb[2],
ggml_cann_type_mapping(type), ggml_type_size(type),
src_ne, src_nb, 2);
// index
aclTensor* acl_index = ggml_cann_create_tensor(
(char*)index->data + (i % index->ne[2]) * index->nb[2] + (j % index->ne[1]) * index->nb[1],
ggml_cann_type_mapping(index->type), ggml_element_size(index),
index->ne, index->nb, 1);
// out
aclTensor* acl_out = ggml_cann_create_tensor(
(char*)dst_buffer + i * dst_nb[3] + j * dst_nb[2],
ggml_cann_type_mapping(type), ggml_type_size(type),
dst_ne, dst_nb, 2);
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceIndexCopy, acl_out, 0, acl_index, acl_src_tensor);
ggml_cann_release_resources(ctx, acl_src_tensor, acl_index, acl_out);
}
}
@@ -1669,8 +1718,9 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
switch (src0->type) {
case GGML_TYPE_F32: {
aclnn_embedding_4d(ctx, src0->data, src0->ne, src0->nb, src1,
dst);
aclnn_index_select_4d(ctx, src0->data, src0->ne, src0->nb,
dst->data, dst->ne, dst->nb,
src1, dst->type);
break;
}
case GGML_TYPE_F16: {
@@ -1687,8 +1737,9 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
src_trans_buffer, ACL_FLOAT, ggml_type_size(dst->type),
src0->ne, src_trans_nb, GGML_MAX_DIMS);
aclnn_cast(ctx, acl_src0, src_trans_tensor, ggml_cann_type_mapping(dst->type));
aclnn_embedding_4d(ctx, src_trans_buffer, src0->ne,
src_trans_nb, src1, dst);
aclnn_index_select_4d(ctx, src_trans_buffer, src0->ne, src_trans_nb,
dst->data, dst->ne, dst->nb,
src1, dst->type);
ggml_cann_release_resources(ctx, acl_src0, src_trans_tensor);
break;
}
@@ -1748,8 +1799,10 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
dequant_nb[i] = dequant_nb[i - 1] * src0->ne[i - 1];
}
aclnn_embedding_4d(ctx, dequant_buffer_allocator.get(),
dequant_ne, dequant_nb, src1, dst);
aclnn_index_select_4d(ctx, dequant_buffer_allocator.get(),
dequant_ne, dequant_nb,
dst->data, dst->ne, dst->nb,
src1, dst->type);
ggml_cann_release_resources(ctx, dequant_tensor);
break;
@@ -1760,6 +1813,43 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
}
}
void ggml_cann_set_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0]; // src
ggml_tensor* src1 = dst->src[1]; // index
switch (dst->type) {
case GGML_TYPE_F32: {
aclnn_index_copy_4d(ctx, src0->data, src0->ne, src0->nb,
dst->data, dst->ne, dst->nb,
src1, dst->type);
break;
}
case GGML_TYPE_F16: {
aclTensor* acl_src0 = ggml_cann_create_tensor(src0);
ggml_cann_pool_alloc src_buffer_allocator(
ctx.pool(), ggml_nelements(src0) * sizeof(uint16_t));
void* src_trans_buffer = src_buffer_allocator.get();
size_t src_trans_nb[GGML_MAX_DIMS];
src_trans_nb[0] = sizeof(uint16_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
}
aclTensor* src_trans_tensor = ggml_cann_create_tensor(
src_trans_buffer, ACL_FLOAT16, ggml_type_size(dst->type),
src0->ne, src_trans_nb, GGML_MAX_DIMS);
aclnn_cast(ctx, acl_src0, src_trans_tensor, ggml_cann_type_mapping(dst->type));
aclnn_index_copy_4d(ctx, src_trans_buffer, src0->ne, src_trans_nb,
dst->data, dst->ne, dst->nb,
src1, dst->type);
ggml_cann_release_resources(ctx, acl_src0, src_trans_tensor);
break;
}
default:
GGML_ABORT("Unsupported tensor type for GGML_OP_SET_ROWS");
break;
}
}
/**
* @brief Repeats elements of a tensor along a specified dimension.
*

View File

@@ -424,15 +424,25 @@ void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
*
* @details This function retrieves rows from a source tensor src0 according to
* the indices provided in another tensor src1 and stores the result in
* a destination tensor (\p dst). It supports different data types
* including F32, F16, Q4_0, and Q8_0.
* a destination tensor (\p dst).
*
* @param ctx The backend CANN context for executing operations.
* @param dst The destination tensor where the extracted rows will be stored.
* dst->op is `GGML_OP_GET_ROWS`.
*/
void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Writes specific rows into a tensor at positions specified by indices.
*
* @details This function copies rows from a source tensor into a destination
* tensor (\p dst) at the positions indicated by the indices in another
* tensor.
*
* @param ctx The backend CANN context for executing operations.
* @param dst The destination tensor where the specified rows will be updated.
*/
void ggml_cann_set_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Executes matrix multiplication for the given tensor.
*

View File

@@ -1659,6 +1659,9 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
case GGML_OP_GET_ROWS:
ggml_cann_get_rows(ctx, dst);
break;
case GGML_OP_SET_ROWS:
ggml_cann_set_rows(ctx, dst);
break;
case GGML_OP_DUP:
ggml_cann_dup(ctx, dst);
break;
@@ -2191,13 +2194,15 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
return false;
}
} break;
case GGML_OP_SET_ROWS:
{
// TODO: add support
// ref: https://github.com/ggml-org/llama.cpp/pull/14274
#pragma message("TODO: implement F32, F16, BF16, Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, IQ4_NL support (https://github.com/ggml-org/llama.cpp/pull/14661)")
return false;
} break;
case GGML_OP_SET_ROWS: {
switch (op->type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
return true;
default:
return false;
}
} break;
case GGML_OP_CPY: {
ggml_tensor *src = op->src[0];
if ((op->type != GGML_TYPE_F32 && op->type != GGML_TYPE_F16) ||

View File

@@ -176,7 +176,7 @@ static const char * cu_get_error_str(CUresult err) {
#define CU_CHECK(err) CUDA_CHECK_GEN(err, CUDA_SUCCESS, cu_get_error_str)
#endif
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
# define CUDA_SET_SHARED_MEMORY_LIMIT(kernel, nbytes) \
do { \
static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = { false }; \
@@ -191,7 +191,7 @@ static const char * cu_get_error_str(CUresult err) {
do { \
GGML_UNUSED(nbytes); \
} while (0)
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
#endif // !(defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
#if CUDART_VERSION >= 11010 || defined(GGML_USE_MUSA)
#define GGML_CUDA_ASSUME(x) __builtin_assume(x)
@@ -211,9 +211,9 @@ typedef float2 dfloat2;
#define GGML_USE_VMM
#endif // (!defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)) || (defined(GGML_USE_HIP) && !defined(GGML_HIP_NO_VMM))
#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
#if defined(GGML_USE_HIP) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
#define FP16_AVAILABLE
#endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
#endif // defined(GGML_USE_HIP) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
#if defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
#define FAST_FP16_AVAILABLE
@@ -227,17 +227,17 @@ typedef float2 dfloat2;
#define FP16_MMA_AVAILABLE
#endif // defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || (defined(GGML_HIP_ROCWMMA_FATTN_GFX12) && defined(RDNA4)))
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && defined(CDNA3)
#if defined(GGML_USE_HIP) && defined(CDNA3) && !defined(GGML_HIP_NO_MMQ_MFMA)
#define AMD_MFMA_AVAILABLE
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && defined(CDNA3)
#endif // defined(GGML_USE_HIP) && defined(CDNA3) && !defined(GGML_HIP_NO_MMQ_MFMA)
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
#define NEW_MMA_AVAILABLE
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#define CP_ASYNC_AVAILABLE
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#if !defined(GGML_CUDA_NO_FA) && !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ < 220)
#define FLASH_ATTN_AVAILABLE
@@ -259,7 +259,7 @@ static bool fast_fp16_hardware_available(const int cc) {
// Any FP16 tensor core instructions are available for ggml code.
static bool fp16_mma_available(const int cc) {
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(GGML_HIP_ROCWMMA_FATTN)
#if defined(GGML_USE_HIP) && !defined(GGML_HIP_ROCWMMA_FATTN)
return false;
#else
if ((GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA) ||
@@ -275,7 +275,7 @@ static bool fp16_mma_available(const int cc) {
} else {
return false;
}
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(GGML_HIP_ROCWMMA_FATTN)
#endif // defined(GGML_USE_HIP) && !defined(GGML_HIP_ROCWMMA_FATTN)
}
// To be used for feature selection of external libraries, e.g. cuBLAS.
@@ -295,7 +295,11 @@ static bool fp32_mma_hardware_available(const int cc) {
// AMD CDNA3 matrix cores.. Will add support for other CDNA generations later.
static bool amd_mfma_available(const int cc) {
return cc >= GGML_CUDA_CC_OFFSET_AMD && GGML_CUDA_CC_IS_CDNA3(cc);
#if !defined(GGML_HIP_NO_MMQ_MFMA)
return GGML_CUDA_CC_IS_CDNA3(cc);
#else
return false;
#endif //!defined(GGML_HIP_NO_MMQ_MFMA)
}
// Volta technically had FP16 tensor cores but they work very differently compared to Turing and later.
@@ -308,25 +312,25 @@ static bool cp_async_available(const int cc) {
}
static constexpr __device__ int ggml_cuda_get_physical_warp_size() {
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(__GFX9__) || defined(__GFX8__))
#if defined(GGML_USE_HIP) && (defined(__GFX9__) || defined(__GFX8__))
return 64;
#else
return 32;
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(__GFX9__) || defined(__GFX8__))
#endif // defined(GGML_USE_HIP) && (defined(__GFX9__) || defined(__GFX8__))
}
[[noreturn]]
static __device__ void no_device_code(
const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(GGML_USE_HIP)
printf("%s:%d: ERROR: HIP kernel %s has no device code compatible with HIP arch %d.\n",
file_name, line, function_name, arch);
GGML_UNUSED(arch_list);
#else
printf("%s:%d: ERROR: CUDA kernel %s has no device code compatible with CUDA arch %d. ggml-cuda.cu was compiled for: %s\n",
file_name, line, function_name, arch, arch_list);
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#endif // defined(GGML_USE_HIP)
__trap();
GGML_UNUSED(no_device_code); // suppress unused function warning
@@ -363,7 +367,7 @@ struct ggml_cuda_unroll<1> {
template<int width = WARP_SIZE>
static __device__ __forceinline__ int warp_reduce_sum(int x) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
return __reduce_add_sync(0xffffffff, x);
#else
#pragma unroll
@@ -371,7 +375,7 @@ static __device__ __forceinline__ int warp_reduce_sum(int x) {
x += __shfl_xor_sync(0xffffffff, x, offset, width);
}
return x;
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
}
template<int width = WARP_SIZE>
@@ -440,11 +444,11 @@ static __device__ __forceinline__ float warp_reduce_max(float x) {
static __device__ __forceinline__ half ggml_cuda_hmax(const half a, const half b) {
#ifdef FP16_AVAILABLE
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
#if !defined(GGML_USE_HIP) && CUDART_VERSION < CUDART_HMAX
return __float2half(fmaxf(__half2float(a), __half2float(b)));
#else
return __hmax(a, b);
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
#endif // !defined(GGML_USE_HIP) && CUDART_VERSION < CUDART_HMAX
#else
NO_DEVICE_CODE;
@@ -472,7 +476,7 @@ static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const hal
template<int width = WARP_SIZE>
static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL || (defined(GGML_USE_HIP) && HIP_VERSION >= 50700000)
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL || (defined(GGML_USE_HIP) && HIP_VERSION >= 50700000)
#pragma unroll
for (int offset = width/2; offset > 0; offset >>= 1) {
x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, offset, width));
@@ -481,7 +485,7 @@ static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
#else
GGML_UNUSED(x);
NO_DEVICE_CODE;
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL || (defined(GGML_USE_HIP) && HIP_VERSION >= 50700000)
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL || (defined(GGML_USE_HIP) && HIP_VERSION >= 50700000)
}
#if CUDART_VERSION < CUDART_HMASK
@@ -493,7 +497,7 @@ static __device__ __forceinline__ uint32_t __hgt2_mask(const half2 a, const half
#endif // CUDART_VERSION < CUDART_HMASK
static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, int c) {
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(GGML_USE_HIP)
#if defined(CDNA) || defined(RDNA2) || defined(__gfx906__)
c = __builtin_amdgcn_sdot4(a, b, c, false);
#elif defined(RDNA3) || defined(RDNA4)
@@ -519,7 +523,7 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
#endif
return c;
#else // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#else // defined(GGML_USE_HIP)
#if __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A || defined(GGML_USE_MUSA)
return __dp4a(a, b, c);
@@ -529,7 +533,7 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
return c + a8[0]*b8[0] + a8[1]*b8[1] + a8[2]*b8[2] + a8[3]*b8[3];
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A || defined(GGML_USE_MUSA)
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#endif // defined(GGML_USE_HIP)
}
typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, dfloat2 & v);

View File

@@ -592,9 +592,9 @@ static __global__ void flash_attn_stream_k_fixup(
}
template<int D> // D == head size
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#if !defined(GGML_USE_HIP)
__launch_bounds__(D, 1)
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#endif // !(defined(GGML_USE_HIP)
static __global__ void flash_attn_combine_results(
const float * __restrict__ VKQ_parts,
const float2 * __restrict__ VKQ_meta,

View File

@@ -1391,24 +1391,24 @@ void ggml_cuda_flash_attn_ext_mma_f16_case(ggml_backend_cuda_context & ctx, ggml
constexpr bool use_logit_softcap = false;
fattn_kernel = flash_attn_ext_f16<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla>;
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
if (!shared_memory_limit_raised[id]) {
CUDA_CHECK(cudaFuncSetAttribute(fattn_kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, nbytes_shared_total));
shared_memory_limit_raised[id] = true;
}
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
} else {
constexpr bool use_logit_softcap = true;
fattn_kernel = flash_attn_ext_f16<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla>;
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
if (!shared_memory_limit_raised[id]) {
CUDA_CHECK(cudaFuncSetAttribute(fattn_kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, nbytes_shared_total));
shared_memory_limit_raised[id] = true;
}
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
}
launch_fattn<DV, ncols1, ncols2>

View File

@@ -5,9 +5,9 @@
#define FATTN_KQ_STRIDE_TILE_F16 64
template<int D, int ncols, int nwarps, bool use_logit_softcap> // D == head size
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#if !defined(GGML_USE_HIP)
__launch_bounds__(nwarps*WARP_SIZE, 2)
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#endif // !defined(GGML_USE_HIP)
static __global__ void flash_attn_tile_ext_f16(
const char * __restrict__ Q,
const char * __restrict__ K,

View File

@@ -5,9 +5,9 @@
#define FATTN_KQ_STRIDE_TILE_F32 32
template<int D, int ncols, int nwarps, bool use_logit_softcap> // D == head size
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#if !defined(GGML_USE_HIP)
__launch_bounds__(nwarps*WARP_SIZE, 2)
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#endif // !defined(GGML_USE_HIP)
static __global__ void flash_attn_tile_ext_f32(
const char * __restrict__ Q,
const char * __restrict__ K,

View File

@@ -1,6 +1,12 @@
#include "common.cuh"
#include "fattn-common.cuh"
// Currenlty llvm with the amdgcn target dose not support unrolling loops
// that contain a break that can not be resolved at compile time.
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpass-failed"
#endif // __clang__
template<int D, int ncols, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
#ifndef GGML_USE_HIP
__launch_bounds__(D, 1)
@@ -341,6 +347,9 @@ static __global__ void flash_attn_vec_ext_f16(
NO_DEVICE_CODE;
#endif // defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE)
}
#ifdef __clang__
#pragma clang diagnostic pop
#endif // __clang__
template <int D, int cols_per_block, ggml_type type_K, ggml_type type_V, bool use_logit_softcap>
void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {

View File

@@ -1,6 +1,12 @@
#include "common.cuh"
#include "fattn-common.cuh"
// Currenlty llvm with the amdgcn target dose not support unrolling loops
// that contain a break that can not be resolved at compile time.
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpass-failed"
#endif // __clang__
template<int D, int ncols, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
#ifndef GGML_USE_HIP
__launch_bounds__(D, 1)
@@ -336,6 +342,9 @@ static __global__ void flash_attn_vec_ext_f32(
NO_DEVICE_CODE;
#endif // FLASH_ATTN_AVAILABLE
}
#ifdef __clang__
#pragma clang diagnostic pop
#endif // __clang__
template <int D, int cols_per_block, ggml_type type_K, ggml_type type_V, bool use_logit_softcap>
void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {

View File

@@ -7,7 +7,7 @@
#include "fattn-wmma-f16.cuh"
#ifdef FP16_MMA_AVAILABLE
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#if !defined(GGML_USE_HIP)
#include <mma.h>
#ifdef GGML_USE_MUSA
namespace wmma = mtmusa::wmma;
@@ -18,7 +18,7 @@ namespace wmma = nvcuda::wmma;
#undef HIP_ENABLE_WARP_SYNC_BUILTINS // conflicts with rocWMMA headers
#include <rocwmma/rocwmma.hpp>
namespace wmma = rocwmma;
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#endif // !defined(GGML_USE_HIP)
#endif // FP16_MMA_AVAILABLE
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
@@ -546,7 +546,7 @@ void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_ten
return;
}
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#if !defined(GGML_USE_HIP)
if (Q->ne[1] <= 8 && Q->ne[0] % warp_size == 0) {
constexpr int cols_per_block = 8;
switch (Q->ne[0]) {
@@ -568,7 +568,7 @@ void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_ten
}
return;
}
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#endif // !defined(GGML_USE_HIP)
if (Q->ne[1] <= 32) {
constexpr int cols_per_block = 16;

View File

@@ -128,7 +128,7 @@ static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device)
return err;
}
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(GGML_USE_HIP)
static int ggml_cuda_parse_id(char devName[]) {
// A list of possible Target IDs can be found under the rocclr/clr repo in device.cpp
// these values are not stable so this is susceptible to breakage
@@ -175,10 +175,10 @@ static int ggml_cuda_parse_id(char devName[]) {
archNum += archMinor;
return archNum;
}
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#endif // defined(GGML_USE_HIP)
static ggml_cuda_device_info ggml_cuda_init() {
#ifdef __HIP_PLATFORM_AMD__
#if defined(GGML_USE_HIP)
// Workaround for a rocBLAS bug when using multiple graphics cards:
// https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
{
@@ -251,7 +251,7 @@ static ggml_cuda_device_info ggml_cuda_init() {
info.devices[id].nsm = prop.multiProcessorCount;
info.devices[id].smpb = prop.sharedMemPerBlock;
info.devices[id].warp_size = prop.warpSize;
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(GGML_USE_HIP)
info.devices[id].smpbo = prop.sharedMemPerBlock;
info.devices[id].cc = ggml_cuda_parse_id(prop.gcnArchName);
@@ -281,7 +281,7 @@ static ggml_cuda_device_info ggml_cuda_init() {
info.devices[id].cc = 100*prop.major + 10*prop.minor;
GGML_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s\n",
id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#endif // defined(GGML_USE_HIP)
}
for (int id = 0; id < info.device_count; ++id) {

View File

@@ -68,7 +68,7 @@ namespace ggml_cuda_mma {
static constexpr int I = I_;
static constexpr int J = J_;
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(GGML_USE_HIP)
static constexpr int ne = I * J / 64;
T x[ne] = {0};
@@ -132,7 +132,7 @@ namespace ggml_cuda_mma {
static_assert(I == -1 && J == -1, "template specialization not implemented");
}
}
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#endif // defined(GGML_USE_HIP)
};
template <int I_, int J_>

View File

@@ -104,9 +104,9 @@ static constexpr __device__ int get_mmq_x_max_device() {
return 128;
#else // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(GGML_USE_HIP)
return 64;
#else // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#else // defined(GGML_USE_HIP)
#if __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
#ifdef GGML_CUDA_FORCE_MMQ
@@ -118,7 +118,7 @@ static constexpr __device__ int get_mmq_x_max_device() {
return 64;
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#endif // defined(GGML_USE_HIP)
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
@@ -128,7 +128,7 @@ static int get_mmq_y_host(const int cc) {
}
static constexpr __device__ int get_mmq_y_device() {
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(GGML_USE_HIP)
#if defined(RDNA1)
return 64;
#else
@@ -140,7 +140,7 @@ static constexpr __device__ int get_mmq_y_device() {
#else
return 64;
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#endif // defined(GGML_USE_HIP)
}
// Decouple shared memory tile sizes from WARP_SIZE to allow for different warp sizes.
@@ -250,7 +250,7 @@ static constexpr __device__ int mmq_get_granularity_device(const int /*mmq_x*/)
}
#endif // AMD_MFMA_AVAILABLE
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(GGML_USE_HIP)
static int mmq_get_nwarps_host(const int cc) {
return amd_mfma_available(cc) ? 8 : 4;
}
@@ -258,10 +258,10 @@ static int mmq_get_nwarps_host(const int cc) {
static int mmq_get_nwarps_host(const int /*cc*/) {
return 8;
}
#endif // (GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#endif // (GGML_USE_HIP)
static constexpr __device__ int mmq_get_nwarps_device() {
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(GGML_USE_HIP)
#if defined(AMD_MFMA_AVAILABLE)
return 8;
#else
@@ -269,7 +269,7 @@ static constexpr __device__ int mmq_get_nwarps_device() {
#endif // AMD_MFMA_AVAILABLE
#else
return 8;
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#endif // defined(GGML_USE_HIP)
}
// ------------------------------------------------------------
@@ -3047,7 +3047,7 @@ static __device__ __forceinline__ void mul_mat_q_process_tile(
// The mul_mat_q kernel implements "stream-k" work partitioning as described in https://arxiv.org/abs/2301.03598
template <ggml_type type, int mmq_x, bool need_check>
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(GGML_USE_HIP)
#if defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
__launch_bounds__(ggml_cuda_get_physical_warp_size()*mmq_get_nwarps_device(), 2)
#endif // defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
@@ -3057,7 +3057,7 @@ template <ggml_type type, int mmq_x, bool need_check>
#else
__launch_bounds__(ggml_cuda_get_physical_warp_size()*mmq_get_nwarps_device(), 2)
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#endif // defined(GGML_USE_HIP)
static __global__ void mul_mat_q(
const char * __restrict__ x, const int * __restrict__ y, const int32_t * __restrict__ ids_dst,
const int32_t * __restrict__ expert_bounds, float * __restrict__ dst, float * __restrict__ tmp_fixup,
@@ -3097,7 +3097,7 @@ static __global__ void mul_mat_q(
__syncthreads();
// On AMD or old CUDA the performance with stream-k was worse, use conventional tiling instead:
#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(CDNA3)) || __CUDA_ARCH__ < GGML_CUDA_CC_VOLTA
#if (defined(GGML_USE_HIP) && !defined(CDNA3)) || __CUDA_ARCH__ < GGML_CUDA_CC_VOLTA
{
const int wt = blockIdx.z / nchannels_y;
const int zt = blockIdx.z - wt*nchannels_y;
@@ -3151,7 +3151,7 @@ static __global__ void mul_mat_q(
tile_x_max_i, tile_y_max_j, 0, ncols_x/qk);
return;
}
#endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(CDNA3)) || __CUDA_ARCH__ < GGML_CUDA_CC_VOLTA
#endif // (defined(GGML_USE_HIP) && !defined(CDNA3)) || __CUDA_ARCH__ < GGML_CUDA_CC_VOLTA
const int64_t blocks_per_ne00 = ncols_x / qk;
constexpr int blocks_per_iter = MMQ_ITER_K / qk;

View File

@@ -5,10 +5,8 @@
#include <hipblas/hipblas.h>
#include <hip/hip_fp16.h>
#include <hip/hip_bfloat16.h>
#ifdef __HIP_PLATFORM_AMD__
// for rocblas_initialize()
#include "rocblas/rocblas.h"
#endif // __HIP_PLATFORM_AMD__
#define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
#define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT
@@ -139,7 +137,7 @@
#define CUBLAS_STATUS_INTERNAL_ERROR HIPBLAS_STATUS_INTERNAL_ERROR
#define CUBLAS_STATUS_NOT_SUPPORTED HIPBLAS_STATUS_NOT_SUPPORTED
#if defined(__HIP_PLATFORM_AMD__) && HIP_VERSION >= 70000000
#if HIP_VERSION >= 70000000
#define CUBLAS_COMPUTE_16F HIPBLAS_COMPUTE_16F
#define CUBLAS_COMPUTE_32F HIPBLAS_COMPUTE_32F
#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_COMPUTE_32F_FAST_16F
@@ -151,7 +149,11 @@
#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
#define cublasComputeType_t hipblasDatatype_t
#define cudaDataType_t hipblasDatatype_t
#endif
#endif // HIP_VERSION >= 7000000
#if !defined(__HIP_PLATFORM_AMD__)
#error "The HIP backend supports only AMD targets"
#endif // !defined(__HIP_PLATFORM_AMD__)
#define __CUDA_ARCH__ 1300
@@ -249,7 +251,7 @@ static __device__ __forceinline__ unsigned int __vcmpne4(unsigned int a, unsigne
return c;
}
#if defined(__HIP_PLATFORM_AMD__) && HIP_VERSION < 50600000
#if HIP_VERSION < 50600000
// __shfl_xor() for half2 was added in ROCm 5.6
static __device__ __forceinline__ half2 __shfl_xor(half2 var, int laneMask, int width) {
typedef union half2_b32 {
@@ -261,4 +263,4 @@ static __device__ __forceinline__ half2 __shfl_xor(half2 var, int laneMask, int
tmp.b32 = __shfl_xor(tmp.b32, laneMask, width);
return tmp.val;
}
#endif // defined(__HIP_PLATFORM_AMD__) && HIP_VERSION < 50600000
#endif // HIP_VERSION < 50600000

View File

@@ -113,6 +113,10 @@ if (GGML_HIP_ROCWMMA_FATTN)
add_compile_definitions(GGML_HIP_ROCWMMA_FATTN)
endif()
if (NOT GGML_HIP_MMQ_MFMA)
add_compile_definitions(GGML_HIP_NO_MMQ_MFMA)
endif()
if (GGML_HIP_FORCE_ROCWMMA_FATTN_GFX12 OR ${hip_VERSION} VERSION_GREATER_EQUAL 7.0)
add_compile_definitions(GGML_HIP_ROCWMMA_FATTN_GFX12)
endif()

View File

@@ -59,7 +59,7 @@ bool llama_batch_allocr::init(
for (int32_t i = 0; i < batch.n_tokens; ++i) {
for (int32_t s = 0; s < batch.n_seq_id[i]; ++s) {
if (batch.seq_id && (batch.seq_id[i][s] < 0 || batch.seq_id[i][s] >= (llama_seq_id) n_seq_max)) {
LLAMA_LOG_ERROR("%s: invalid seq_id[%d][%d] = %d > %d\n", __func__, i, s, batch.seq_id[i][s], (llama_seq_id) n_seq_max);
LLAMA_LOG_ERROR("%s: invalid seq_id[%d][%d] = %d >= %d\n", __func__, i, s, batch.seq_id[i][s], (llama_seq_id) n_seq_max);
return false;
}
}

View File

@@ -188,38 +188,23 @@ void llm_graph_input_mean::set_input(const llama_ubatch * ubatch) {
void llm_graph_input_cls::set_input(const llama_ubatch * ubatch) {
const int64_t n_tokens = ubatch->n_tokens;
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
const int64_t n_seqs_unq = ubatch->n_seqs_unq;
if (cparams.embeddings && (
cparams.pooling_type == LLAMA_POOLING_TYPE_CLS ||
cparams.pooling_type == LLAMA_POOLING_TYPE_RANK
)) {
cparams.pooling_type == LLAMA_POOLING_TYPE_CLS ||
cparams.pooling_type == LLAMA_POOLING_TYPE_RANK ||
cparams.pooling_type == LLAMA_POOLING_TYPE_LAST
)) {
GGML_ASSERT(cls);
GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));
uint32_t * data = (uint32_t *) cls->data;
memset(cls->data, 0, n_seqs_unq*ggml_element_size(cls));
for (int i = 0; i < n_tokens; i += n_seq_tokens) {
for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[i][s];
const int32_t seq_idx = ubatch->seq_idx[seq_id];
std::vector<int> target_pos(n_seqs_unq, -1);
std::vector<int> target_row(n_seqs_unq, -1);
data[seq_idx] = i;
}
}
}
if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) {
GGML_ASSERT(cls);
GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));
uint32_t * data = (uint32_t *) cls->data;
memset(cls->data, 0, n_seqs_unq*ggml_element_size(cls));
std::vector<int> last_pos(n_seqs_unq, -1);
std::vector<int> last_row(n_seqs_unq, -1);
bool last = cparams.pooling_type == LLAMA_POOLING_TYPE_LAST;
for (int i = 0; i < n_tokens; ++i) {
const llama_pos pos = ubatch->pos[i];
@@ -228,16 +213,20 @@ void llm_graph_input_cls::set_input(const llama_ubatch * ubatch) {
const llama_seq_id seq_id = ubatch->seq_id[i][s];
const int32_t seq_idx = ubatch->seq_idx[seq_id];
if (pos >= last_pos[seq_idx]) {
last_pos[seq_idx] = pos;
last_row[seq_idx] = i;
if (
(target_pos[seq_idx] == -1) ||
( last && pos >= target_pos[seq_idx]) ||
(!last && pos < target_pos[seq_idx])
) {
target_pos[seq_idx] = pos;
target_row[seq_idx] = i;
}
}
}
for (int s = 0; s < n_seqs_unq; ++s) {
if (last_row[s] >= 0) {
data[s] = last_row[s];
if (target_row[s] >= 0) {
data[s] = target_row[s];
}
}
}

View File

@@ -144,7 +144,7 @@ public:
ggml_tensor * pos_bucket = nullptr; // I32 [n_batch, n_batch]
const llama_hparams & hparams;
const llama_hparams hparams;
};
class llm_graph_input_pos_bucket_kv : public llm_graph_input_i {
@@ -158,7 +158,7 @@ public:
ggml_tensor * pos_bucket = nullptr; // I32 [n_kv, n_batch]
const llama_hparams & hparams;
const llama_hparams hparams;
const llama_kv_cache_unified_context * mctx;
};
@@ -177,8 +177,8 @@ public:
ggml_tensor * out_ids; // I32 [n_outputs]
const llama_hparams & hparams;
const llama_cparams & cparams;
const llama_hparams hparams;
const llama_cparams cparams;
const uint32_t n_outputs;
};
@@ -192,7 +192,7 @@ public:
ggml_tensor * mean; // F32 [n_batch, n_batch]
const llama_cparams & cparams;
const llama_cparams cparams;
};
class llm_graph_input_cls : public llm_graph_input_i {
@@ -204,7 +204,7 @@ public:
ggml_tensor * cls; // I32 [n_batch]
const llama_cparams & cparams;
const llama_cparams cparams;
};
class llm_graph_input_rs : public llm_graph_input_i {
@@ -247,8 +247,8 @@ public:
ggml_tensor * kq_mask = nullptr; // F32 [n_tokens, n_batch, 1, 1]
ggml_tensor * kq_mask_cnv = nullptr; // [n_tokens, n_batch, 1, 1]
const llama_hparams & hparams;
const llama_cparams & cparams;
const llama_hparams hparams;
const llama_cparams cparams;
};
class llm_graph_input_attn_kv_unified : public llm_graph_input_i {
@@ -278,8 +278,11 @@ public:
ggml_tensor * self_kq_mask = nullptr; // F32 [n_kv, n_batch/n_stream, 1, n_stream]
ggml_tensor * self_kq_mask_cnv = nullptr; // [n_kv, n_batch/n_stream, 1, n_stream]
const llama_hparams & hparams;
const llama_cparams & cparams;
// note: these have to be copies because in order to be able to reuse a graph, its inputs
// need to carry these parameters with them. otherwise, they can point to freed
// llm_graph_params from a previous batch, causing stack-use-after-return
const llama_hparams hparams;
const llama_cparams cparams;
const llama_kv_cache_unified_context * mctx;
};
@@ -318,8 +321,8 @@ public:
ggml_tensor * self_kq_mask_swa = nullptr; // F32 [n_kv, n_batch/n_stream, 1, n_stream]
ggml_tensor * self_kq_mask_swa_cnv = nullptr; // [n_kv, n_batch/n_stream, 1, n_stream]
const llama_hparams & hparams;
const llama_cparams & cparams;
const llama_hparams hparams;
const llama_cparams cparams;
const llama_kv_cache_unified_iswa_context * mctx;
};

View File

@@ -185,7 +185,7 @@ llama_build_and_test(test-json-partial.cpp)
llama_build_and_test(test-log.cpp)
llama_build_and_test(test-regex-partial.cpp)
llama_build_and_test(test-thread-safety.cpp ARGS -hf ggml-org/models -hff tinyllamas/stories15M-q4_0.gguf -ngl 99 -p "The meaning of life is" -n 128 -c 256 -ub 32 -np 4)
llama_build_and_test(test-thread-safety.cpp ARGS -hf ggml-org/models -hff tinyllamas/stories15M-q4_0.gguf -ngl 99 -p "The meaning of life is" -n 128 -c 256 -ub 32 -np 4 -t 2)
# this fails on windows (github hosted runner) due to curl DLL not found (exit code 0xc0000135)
if (NOT WIN32)

View File

@@ -34,6 +34,9 @@ int main(int argc, char ** argv) {
auto cparams = common_context_params_to_llama(params);
// each context has a single sequence
cparams.n_seq_max = 1;
int dev_count = ggml_backend_dev_count();
int gpu_dev_count = 0;
for (int i = 0; i < dev_count; ++i) {