mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-05 13:53:23 +02:00
Compare commits
12 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e08a98826b | ||
|
|
952a47f455 | ||
|
|
36e5fe7bcd | ||
|
|
94933c8c2e | ||
|
|
c1dacaa99b | ||
|
|
a9f77a8be3 | ||
|
|
8a4a856277 | ||
|
|
11490b3672 | ||
|
|
66625a59a5 | ||
|
|
6e6725459a | ||
|
|
e9192bec56 | ||
|
|
41e78c567e |
@@ -977,6 +977,10 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
|
||||
for (auto & seq_breaker : params.sampling.dry_sequence_breakers) {
|
||||
string_process_escapes(seq_breaker);
|
||||
}
|
||||
for (auto & pair : params.speculative.replacements) {
|
||||
string_process_escapes(pair.first);
|
||||
string_process_escapes(pair.second);
|
||||
}
|
||||
}
|
||||
|
||||
if (!params.kv_overrides.empty()) {
|
||||
@@ -3249,6 +3253,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.speculative.model.path = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL_DRAFT"));
|
||||
add_opt(common_arg(
|
||||
{"--spec-replace"}, "TARGET", "DRAFT",
|
||||
"translate the string in TARGET into DRAFT if the draft model and main model are not compatible",
|
||||
[](common_params & params, const std::string & tgt, const std::string & dft) {
|
||||
params.speculative.replacements.push_back({ tgt, dft });
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"-ctkd", "--cache-type-k-draft"}, "TYPE",
|
||||
string_format(
|
||||
@@ -3438,28 +3449,11 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||
|
||||
// diffusion parameters
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-steps" }, "N",
|
||||
string_format("number of diffusion steps (default: %d)", params.diffusion.steps),
|
||||
[](common_params & params, int value) { params.diffusion.steps = value; }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-eps" }, "F",
|
||||
string_format("epsilon for timesteps (default: %.6f)", (double) params.diffusion.eps),
|
||||
[](common_params & params, const std::string & value) { params.diffusion.eps = std::stof(value); }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-algorithm" }, "N",
|
||||
string_format("diffusion algorithm: 0=ORIGIN, 1=MASKGIT_PLUS, 2=TOPK_MARGIN, 3=ENTROPY (default: %d)",
|
||||
params.diffusion.algorithm),
|
||||
[](common_params & params, int value) { params.diffusion.algorithm = value; }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-alg-temp" }, "F",
|
||||
string_format("algorithm temperature (default: %.3f)", (double) params.diffusion.alg_temp),
|
||||
[](common_params & params, const std::string & value) { params.diffusion.alg_temp = std::stof(value); }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-visual" },
|
||||
string_format("enable visual diffusion mode (show progressive generation) (default: %s)",
|
||||
@@ -3467,5 +3461,39 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params) { params.diffusion.visual_mode = true; }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-eps" }, "F",
|
||||
string_format("epsilon for timesteps (default: %.6f)", (double) params.diffusion.eps),
|
||||
[](common_params & params, const std::string & value) { params.diffusion.eps = std::stof(value); }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-algorithm" }, "N",
|
||||
string_format("diffusion algorithm: 0=ORIGIN, 1=ENTROPY_BASED, 2=MARGIN_BASED, 3=RANDOM, 4=LOW_CONFIDENCE (default: %d)",
|
||||
params.diffusion.algorithm),
|
||||
[](common_params & params, int value) { params.diffusion.algorithm = value; }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-alg-temp" }, "F",
|
||||
string_format("dream algorithm temperature (default: %.3f)", (double) params.diffusion.alg_temp),
|
||||
[](common_params & params, const std::string & value) { params.diffusion.alg_temp = std::stof(value); }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-block-length" }, "N",
|
||||
string_format("llada block length for generation (default: %d)", params.diffusion.block_length),
|
||||
[](common_params & params, int value) { params.diffusion.block_length = value; }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-cfg-scale" }, "F",
|
||||
string_format("llada classifier-free guidance scale (default: %.3f)", (double) params.diffusion.cfg_scale),
|
||||
[](common_params & params, const std::string & value) { params.diffusion.cfg_scale = std::stof(value); }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-add-gumbel-noise" }, "F",
|
||||
string_format("add gumbel noise to the logits if temp > 0.0 (default: %s)", params.diffusion.add_gumbel_noise ? "true" : "false"),
|
||||
[](common_params & params, const std::string & value) { params.diffusion.add_gumbel_noise = std::stof(value); }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
|
||||
|
||||
return ctx_arg;
|
||||
}
|
||||
|
||||
@@ -201,6 +201,7 @@ struct common_params_speculative {
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
float p_min = 0.75f; // minimum speculative decoding probability (greedy)
|
||||
std::vector<std::pair<std::string, std::string>> replacements; // main to speculative model replacements
|
||||
|
||||
ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
|
||||
ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
|
||||
@@ -220,11 +221,17 @@ struct common_params_vocoder {
|
||||
};
|
||||
|
||||
struct common_params_diffusion {
|
||||
int32_t steps = 64; // number of diffusion steps
|
||||
float eps = 1e-3f; // epsilon for timesteps
|
||||
int32_t algorithm = 0; // diffusion algorithm (0=ORIGIN, 1=MASKGIT_PLUS, 2=TOPK_MARGIN, 3=ENTROPY)
|
||||
float alg_temp = 0.0f; // algorithm temperature
|
||||
bool visual_mode = false; // show progressive diffusion on screen
|
||||
int32_t steps = 128;
|
||||
bool visual_mode = false;
|
||||
|
||||
float eps = 0; // epsilon for timesteps
|
||||
int32_t block_length = 32; // block length for generation
|
||||
|
||||
int32_t algorithm = 4; // default algorithm: low-confidence
|
||||
float alg_temp = 0.0f; // algorithm temperature
|
||||
|
||||
float cfg_scale = 0; // classifier-free guidance scale
|
||||
bool add_gumbel_noise = false; // add gumbel noise to the logits if temp > 0.0
|
||||
};
|
||||
|
||||
enum common_reasoning_format {
|
||||
|
||||
@@ -1,30 +1,39 @@
|
||||
#include "speculative.h"
|
||||
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "log.h"
|
||||
#include "common.h"
|
||||
#include "sampling.h"
|
||||
|
||||
#include <cstring>
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
|
||||
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128
|
||||
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
|
||||
|
||||
struct common_speculative {
|
||||
struct llama_context * ctx;
|
||||
struct llama_context * ctx_tgt; // only used for retokenizing from ctx_dft
|
||||
struct llama_context * ctx_dft;
|
||||
struct common_sampler * smpl;
|
||||
|
||||
llama_batch batch;
|
||||
llama_tokens prompt;
|
||||
llama_tokens prompt_dft;
|
||||
bool vocab_dft_compatible = true; // whether retokenization is needed
|
||||
std::map<std::string, std::string> tgt_dft_replacements = {};
|
||||
};
|
||||
|
||||
struct common_speculative * common_speculative_init(
|
||||
struct llama_context * ctx_tgt,
|
||||
struct llama_context * ctx_dft) {
|
||||
auto * result = new common_speculative {
|
||||
/* .ctx = */ ctx_dft,
|
||||
/* .smpl = */ nullptr,
|
||||
/* .batch = */ llama_batch_init(llama_n_batch(ctx_dft), 0, 1),
|
||||
/* .prompt = */ {},
|
||||
/* .ctx_tgt = */ ctx_tgt,
|
||||
/* .ctx_dft = */ ctx_dft,
|
||||
/* .smpl = */ nullptr,
|
||||
/* .batch = */ llama_batch_init(llama_n_batch(ctx_dft), 0, 1),
|
||||
/* .prompt_dft = */ {},
|
||||
/* .vocab_dft_compatible = */ false,
|
||||
};
|
||||
|
||||
// TODO: optimize or pass from outside?
|
||||
@@ -59,6 +68,9 @@ struct common_speculative * common_speculative_init(
|
||||
}
|
||||
#endif
|
||||
|
||||
result->vocab_dft_compatible = common_speculative_are_compatible(ctx_tgt, ctx_dft);
|
||||
LOG_DBG("vocab_dft_compatible = %d\n", result->vocab_dft_compatible);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
@@ -75,8 +87,8 @@ void common_speculative_free(struct common_speculative * spec) {
|
||||
}
|
||||
|
||||
bool common_speculative_are_compatible(
|
||||
const struct llama_context * ctx_tgt,
|
||||
const struct llama_context * ctx_dft) {
|
||||
const struct llama_context * ctx_tgt,
|
||||
const struct llama_context * ctx_dft) {
|
||||
const struct llama_model * model_tgt = llama_get_model(ctx_tgt);
|
||||
const struct llama_model * model_dft = llama_get_model(ctx_dft);
|
||||
|
||||
@@ -90,31 +102,32 @@ bool common_speculative_are_compatible(
|
||||
LOG_DBG("%s: vocab_type dft: %d\n", __func__, vocab_type_dft);
|
||||
|
||||
if (vocab_type_tgt != vocab_type_dft) {
|
||||
LOG_ERR("%s: draft model vocab type must match target model to use speculation but "
|
||||
"vocab_type_dft = %d while vocab_type_tgt = %d\n", __func__, vocab_type_dft, vocab_type_tgt);
|
||||
LOG_DBG("%s: draft model vocab type must match target model to use speculation but ", __func__);
|
||||
LOG_DBG("vocab_type_dft = %d while vocab_type_tgt = %d\n", vocab_type_dft, vocab_type_tgt);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (llama_vocab_get_add_bos(vocab_tgt) != llama_vocab_get_add_bos(vocab_dft) ||
|
||||
if (
|
||||
llama_vocab_get_add_bos(vocab_tgt) != llama_vocab_get_add_bos(vocab_dft) ||
|
||||
llama_vocab_get_add_eos(vocab_tgt) != llama_vocab_get_add_eos(vocab_dft) ||
|
||||
llama_vocab_bos(vocab_tgt) != llama_vocab_bos(vocab_dft) ||
|
||||
llama_vocab_eos(vocab_tgt) != llama_vocab_eos(vocab_dft)) {
|
||||
LOG_ERR("%s: draft vocab special tokens must match target vocab to use speculation\n", __func__);
|
||||
LOG_ERR("%s: tgt: bos = %d (%d), eos = %d (%d)\n", __func__, llama_vocab_bos(vocab_tgt), llama_vocab_get_add_bos(vocab_tgt), llama_vocab_eos(vocab_tgt), llama_vocab_get_add_eos(vocab_tgt));
|
||||
LOG_ERR("%s: dft: bos = %d (%d), eos = %d (%d)\n", __func__, llama_vocab_bos(vocab_dft), llama_vocab_get_add_bos(vocab_dft), llama_vocab_eos(vocab_dft), llama_vocab_get_add_eos(vocab_dft));
|
||||
llama_vocab_eos(vocab_tgt) != llama_vocab_eos(vocab_dft)
|
||||
) {
|
||||
LOG_DBG("%s: draft model special tokens must match target model to use speculation\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
{
|
||||
const int n_vocab_tgt = llama_vocab_n_tokens(vocab_tgt);
|
||||
const int n_vocab_dft = llama_vocab_n_tokens(vocab_dft);
|
||||
|
||||
const int vocab_diff = std::abs(n_vocab_tgt - n_vocab_dft);
|
||||
const int vocab_diff = n_vocab_tgt > n_vocab_dft
|
||||
? n_vocab_tgt - n_vocab_dft
|
||||
: n_vocab_dft - n_vocab_tgt;
|
||||
|
||||
if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
|
||||
LOG_ERR("%s: draft model vocab must closely match target model to use speculation but "
|
||||
"target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
|
||||
__func__, n_vocab_tgt, llama_vocab_n_tokens(vocab_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
|
||||
LOG_DBG("%s: draft model vocab must closely match target model to use speculation but ", __func__);
|
||||
LOG_DBG("target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
|
||||
n_vocab_tgt, llama_vocab_n_tokens(vocab_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -122,8 +135,8 @@ bool common_speculative_are_compatible(
|
||||
const char * token_text_tgt = llama_vocab_get_text(vocab_tgt, i);
|
||||
const char * token_text_dft = llama_vocab_get_text(vocab_dft, i);
|
||||
if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
|
||||
LOG_ERR("%s: draft vocab vocab must match target vocab to use speculation but "
|
||||
"token %d content differs - target '%s', draft '%s'\n", __func__, i,
|
||||
LOG_DBG("%s: draft model vocab must match target model to use speculation but ", __func__);
|
||||
LOG_DBG("token %d content differs - target '%s', draft '%s'\n", i,
|
||||
common_token_to_piece(ctx_tgt, i).c_str(),
|
||||
common_token_to_piece(ctx_dft, i).c_str());
|
||||
return false;
|
||||
@@ -134,32 +147,93 @@ bool common_speculative_are_compatible(
|
||||
return true;
|
||||
}
|
||||
|
||||
void common_speculative_add_replacement_tgt_dft(
|
||||
struct common_speculative * spec,
|
||||
const char *source, const char *dest) {
|
||||
spec->tgt_dft_replacements[source] = dest;
|
||||
}
|
||||
|
||||
static std::string replace_to_dft(
|
||||
struct common_speculative * spec,
|
||||
const std::string& input) {
|
||||
std::string result = input;
|
||||
for (const auto & pair : spec->tgt_dft_replacements) {
|
||||
size_t pos = result.find(pair.first);
|
||||
while (pos != std::string::npos) {
|
||||
result.replace(pos, pair.first.length(), pair.second);
|
||||
pos = result.find(pair.first, pos + pair.second.length());
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
static std::string replace_to_tgt(
|
||||
struct common_speculative * spec,
|
||||
const std::string& input) {
|
||||
std::string result = input;
|
||||
for (const auto& pair : spec->tgt_dft_replacements) {
|
||||
size_t pos = result.find(pair.second);
|
||||
while (pos != std::string::npos) {
|
||||
result.replace(pos, pair.second.length(), pair.first);
|
||||
pos = result.find(pair.second, pos + pair.first.length());
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
llama_tokens common_speculative_gen_draft(
|
||||
struct common_speculative * spec,
|
||||
struct common_speculative_params params,
|
||||
const llama_tokens & prompt_tgt,
|
||||
const llama_tokens & prompt_tgt_main_model, // specified in target model vocab
|
||||
llama_token id_last) {
|
||||
auto & batch = spec->batch;
|
||||
auto & ctx = spec->ctx;
|
||||
auto & ctx_tgt = spec->ctx_tgt;
|
||||
auto & ctx_dft = spec->ctx_dft;
|
||||
auto & smpl = spec->smpl;
|
||||
auto & prompt = spec->prompt;
|
||||
auto & prompt_dft = spec->prompt_dft;
|
||||
|
||||
auto * mem = llama_get_memory(ctx);
|
||||
auto * mem_dft = llama_get_memory(ctx_dft);
|
||||
|
||||
int reuse_i = 0;
|
||||
int reuse_n = 0;
|
||||
|
||||
const int n_ctx = llama_n_ctx(ctx) - params.n_draft;
|
||||
const int n_ctx = llama_n_ctx(ctx_dft) - params.n_draft;
|
||||
|
||||
llama_tokens prompt_tgt_draft_model;
|
||||
if (!spec->vocab_dft_compatible) {
|
||||
std::string text;
|
||||
text = common_detokenize(ctx_tgt, prompt_tgt_main_model, true);
|
||||
text = replace_to_dft(spec, text);
|
||||
LOG_DBG("%s: main->draft detokenized string: '%s'\n", __func__, text.c_str());
|
||||
prompt_tgt_draft_model = common_tokenize(ctx_dft, text, false, true);
|
||||
|
||||
// convert id_last to draft vocab. llama_detokenize is called directly to avoid an allocation
|
||||
const auto * model_tgt = llama_get_model(ctx_tgt);
|
||||
const auto * vocab_tgt = llama_model_get_vocab(model_tgt);
|
||||
|
||||
int32_t n_chars = llama_detokenize(vocab_tgt, &id_last, 1, nullptr, 0, false, false);
|
||||
GGML_ASSERT(n_chars < 0 && "failed to detokenize id_last");
|
||||
text.resize(-n_chars);
|
||||
llama_detokenize(vocab_tgt, &id_last, 1, text.data(), text.size(), false, false);
|
||||
text = replace_to_dft(spec, text);
|
||||
|
||||
LOG_DBG("main->draft detokenized id_last(%d): '%s'\n", id_last, text.c_str());
|
||||
id_last = common_tokenize(ctx_dft, text, false, true)[0];
|
||||
}
|
||||
// prompt_tgt's tokens will always be compatible with ctx_dft
|
||||
const llama_tokens &prompt_tgt =
|
||||
spec->vocab_dft_compatible ? prompt_tgt_main_model : prompt_tgt_draft_model;
|
||||
|
||||
const int i_start = std::max<int>(0, (int) prompt_tgt.size() - n_ctx);
|
||||
|
||||
// reuse as much as possible from the old draft context
|
||||
// ideally, the draft context should be as big as the target context and we will always reuse the entire prompt
|
||||
for (int i = 0; i < (int) prompt.size(); ++i) {
|
||||
for (int i = 0; i < (int) prompt_dft.size(); ++i) {
|
||||
int cur = 0;
|
||||
while (i_start + cur < (int) prompt_tgt.size() &&
|
||||
i + cur < (int) prompt.size() &&
|
||||
prompt_tgt[i_start + cur] == prompt[i + cur]) {
|
||||
i + cur < (int) prompt_dft.size() &&
|
||||
prompt_tgt[i_start + cur] == prompt_dft[i + cur]) {
|
||||
cur++;
|
||||
}
|
||||
|
||||
@@ -169,21 +243,20 @@ llama_tokens common_speculative_gen_draft(
|
||||
}
|
||||
}
|
||||
|
||||
LOG_DBG("%s: reuse_i = %d, reuse_n = %d, prompt = %d\n", __func__, reuse_i, reuse_n, (int) prompt.size());
|
||||
LOG_DBG("%s: reuse_i = %d, reuse_n = %d, prompt = %d\n", __func__, reuse_i, reuse_n, (int) prompt_dft.size());
|
||||
|
||||
llama_tokens result;
|
||||
result.reserve(params.n_draft);
|
||||
|
||||
if (reuse_n == 0) {
|
||||
llama_memory_clear(mem, false);
|
||||
|
||||
prompt.clear();
|
||||
llama_memory_clear(mem_dft, false);
|
||||
prompt_dft.clear();
|
||||
} else {
|
||||
// this happens when a previous draft has been discarded (for example, due to being too small), but the
|
||||
// target model agreed with it. in this case, we simply pass back the previous results to save compute
|
||||
if (reuse_i + reuse_n < (int) prompt.size() && prompt[reuse_i + reuse_n] == id_last) {
|
||||
for (int i = reuse_i + reuse_n + 1; i < (int) prompt.size(); ++i) {
|
||||
result.push_back(prompt[i]);
|
||||
if (reuse_i + reuse_n < (int) prompt_dft.size() && prompt_dft[reuse_i + reuse_n] == id_last) {
|
||||
for (int i = reuse_i + reuse_n + 1; i < (int) prompt_dft.size(); ++i) {
|
||||
result.push_back(prompt_dft[i]);
|
||||
|
||||
if (params.n_draft <= (int) result.size()) {
|
||||
break;
|
||||
@@ -194,16 +267,15 @@ llama_tokens common_speculative_gen_draft(
|
||||
}
|
||||
|
||||
if (reuse_i > 0) {
|
||||
llama_memory_seq_rm (mem, 0, 0, reuse_i);
|
||||
llama_memory_seq_add(mem, 0, reuse_i, -1, -reuse_i);
|
||||
llama_memory_seq_rm (mem_dft, 0, 0, reuse_i);
|
||||
llama_memory_seq_add(mem_dft, 0, reuse_i, -1, -reuse_i);
|
||||
|
||||
prompt.erase(prompt.begin(), prompt.begin() + reuse_i);
|
||||
prompt_dft.erase(prompt_dft.begin(), prompt_dft.begin() + reuse_i);
|
||||
}
|
||||
|
||||
if (reuse_n < (int) prompt.size()) {
|
||||
llama_memory_seq_rm (mem, 0, reuse_n, -1);
|
||||
|
||||
prompt.erase(prompt.begin() + reuse_n, prompt.end());
|
||||
if (reuse_n < (int) prompt_dft.size()) {
|
||||
llama_memory_seq_rm (mem_dft, 0, reuse_n, -1);
|
||||
prompt_dft.erase(prompt_dft.begin() + reuse_n, prompt_dft.end());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -214,28 +286,28 @@ llama_tokens common_speculative_gen_draft(
|
||||
//LOG_DBG("i = %d, i_start = %d, reuse_n = %d, i - i_start = %d, id = %6d\n", i, i_start, reuse_n, i - i_start, prompt_tgt[i]);
|
||||
common_batch_add(batch, prompt_tgt[i], i - i_start, { 0 }, false);
|
||||
|
||||
prompt.push_back(prompt_tgt[i]);
|
||||
prompt_dft.push_back(prompt_tgt[i]);
|
||||
}
|
||||
|
||||
// we should rarely end-up here during normal decoding
|
||||
if (batch.n_tokens > 0) {
|
||||
//LOG_DBG("%s: draft prompt batch: %s\n", __func__, string_from(ctx, batch).c_str());
|
||||
|
||||
llama_decode(ctx, batch);
|
||||
llama_decode(ctx_dft, batch);
|
||||
}
|
||||
|
||||
const llama_pos n_past = prompt.size();
|
||||
const llama_pos n_past = prompt_dft.size();
|
||||
|
||||
LOG_DBG("%s: n_past = %d\n", __func__, n_past);
|
||||
|
||||
common_batch_clear(batch);
|
||||
common_batch_add (batch, id_last, n_past, { 0 }, true);
|
||||
|
||||
prompt.push_back(id_last);
|
||||
prompt_dft.push_back(id_last);
|
||||
|
||||
//LOG_DBG("%s: draft prompt: %s\n", __func__, string_from(ctx, prompt).c_str());
|
||||
LOG_DBG("%s: draft prompt: %s\n", __func__, string_from(ctx_dft, prompt_dft).c_str());
|
||||
|
||||
llama_decode(ctx, batch);
|
||||
llama_decode(ctx_dft, batch);
|
||||
|
||||
common_sampler_reset(smpl);
|
||||
|
||||
@@ -243,13 +315,13 @@ llama_tokens common_speculative_gen_draft(
|
||||
for (int i = 0; i < params.n_draft; ++i) {
|
||||
common_batch_clear(batch);
|
||||
|
||||
common_sampler_sample(smpl, ctx, 0, true);
|
||||
common_sampler_sample(smpl, ctx_dft, 0, true);
|
||||
|
||||
const auto * cur_p = common_sampler_get_candidates(smpl);
|
||||
|
||||
for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) {
|
||||
LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n",
|
||||
k, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx, cur_p->data[k].id).c_str());
|
||||
k, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx_dft, cur_p->data[k].id).c_str());
|
||||
}
|
||||
|
||||
// add drafted token for each sequence
|
||||
@@ -271,10 +343,19 @@ llama_tokens common_speculative_gen_draft(
|
||||
common_batch_add(batch, id, n_past + i + 1, { 0 }, true);
|
||||
|
||||
// evaluate the drafted tokens on the draft model
|
||||
llama_decode(ctx, batch);
|
||||
llama_decode(ctx_dft, batch);
|
||||
|
||||
prompt.push_back(id);
|
||||
prompt_dft.push_back(id);
|
||||
}
|
||||
|
||||
if (!spec->vocab_dft_compatible) {
|
||||
std::string detokenized = common_detokenize(ctx_dft, result, true);
|
||||
detokenized = replace_to_tgt(spec, detokenized);
|
||||
LOG_DBG("draft->main detokenized string: '%s'\n", detokenized.c_str());
|
||||
result = common_tokenize(ctx_tgt, detokenized, false, true);
|
||||
if (result.size() > (size_t)params.n_draft) {
|
||||
result.resize(params.n_draft);
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
@@ -12,7 +12,10 @@ struct common_speculative_params {
|
||||
float p_min = 0.75f; // min probability required to accept a token in the draft
|
||||
};
|
||||
|
||||
struct common_speculative * common_speculative_init(struct llama_context * ctx_dft);
|
||||
struct common_speculative * common_speculative_init(
|
||||
struct llama_context * ctx_tgt,
|
||||
struct llama_context * ctx_dft
|
||||
);
|
||||
|
||||
void common_speculative_free(struct common_speculative * spec);
|
||||
|
||||
@@ -20,6 +23,10 @@ bool common_speculative_are_compatible(
|
||||
const struct llama_context * ctx_tgt,
|
||||
const struct llama_context * ctx_dft);
|
||||
|
||||
void common_speculative_add_replacement_tgt_dft(
|
||||
struct common_speculative * spec,
|
||||
const char *source, const char *dest);
|
||||
|
||||
// sample up to n_draft tokens and add them to the batch using the draft model
|
||||
llama_tokens common_speculative_gen_draft(
|
||||
struct common_speculative * spec,
|
||||
|
||||
@@ -2904,6 +2904,107 @@ class DreamModel(TextModel):
|
||||
yield from super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("LLaDAModelLM")
|
||||
class LLaDAModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.LLADA
|
||||
undo_permute = True
|
||||
|
||||
def get_vocab_base(self) -> tuple[list[str], list[int], str]:
|
||||
tokens: list[str] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
|
||||
|
||||
vocab_dict = tokenizer.get_vocab()
|
||||
vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
|
||||
assert max(vocab_dict.values()) < vocab_size
|
||||
|
||||
tokpre = self.get_vocab_base_pre(tokenizer)
|
||||
|
||||
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
|
||||
added_vocab = tokenizer.get_added_vocab()
|
||||
|
||||
for i in range(vocab_size):
|
||||
if i not in reverse_vocab:
|
||||
tokens.append(f"[PAD{i}]")
|
||||
toktypes.append(gguf.TokenType.UNUSED)
|
||||
elif reverse_vocab[i] in added_vocab:
|
||||
tokens.append(reverse_vocab[i])
|
||||
# Check if it's a special token - treat special tokens as CONTROL tokens
|
||||
if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
|
||||
if tokenizer.added_tokens_decoder[i].special:
|
||||
toktypes.append(gguf.TokenType.CONTROL)
|
||||
else:
|
||||
toktypes.append(gguf.TokenType.USER_DEFINED)
|
||||
else:
|
||||
# Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
|
||||
toktypes.append(gguf.TokenType.CONTROL)
|
||||
else:
|
||||
tokens.append(reverse_vocab[i])
|
||||
toktypes.append(gguf.TokenType.NORMAL)
|
||||
|
||||
return tokens, toktypes, tokpre
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_gpt2()
|
||||
|
||||
# LLaDA specific parameters
|
||||
self.gguf_writer.add_add_bos_token(True)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self._try_set_pooling_type()
|
||||
|
||||
# Add parameters similar to LlamaModel
|
||||
hparams = self.hparams
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
|
||||
if (rope_dim := hparams.get("head_dim")) is None:
|
||||
n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
|
||||
rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
|
||||
# Set context length for LLaDA
|
||||
context_length = self.hparams.get("max_sequence_length", 4096)
|
||||
self.gguf_writer.add_context_length(context_length)
|
||||
|
||||
# Set embedding length (dimension size)
|
||||
embedding_length = self.hparams.get("d_model", 4096)
|
||||
self.gguf_writer.add_embedding_length(embedding_length)
|
||||
|
||||
# Set feed forward length (MLP hidden size)
|
||||
feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
|
||||
self.gguf_writer.add_feed_forward_length(feed_forward_length)
|
||||
|
||||
# LLaDA models use non-causal attention for diffusion, similar to Dream
|
||||
self.gguf_writer.add_causal_attention(False)
|
||||
|
||||
# LLaDA models don't shift their logits
|
||||
self.gguf_writer.add_diffusion_shift_logits(False)
|
||||
|
||||
@staticmethod
|
||||
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
|
||||
if n_head_kv is not None and n_head != n_head_kv:
|
||||
n_head = n_head_kv
|
||||
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||
.swapaxes(1, 2)
|
||||
.reshape(weights.shape))
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
|
||||
n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
|
||||
|
||||
if self.undo_permute:
|
||||
if name.endswith(("q_proj.weight", "q_proj.bias")):
|
||||
data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
|
||||
if name.endswith(("k_proj.weight", "k_proj.bias")):
|
||||
data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
|
||||
|
||||
# LLaDA model tensors should be mapped directly since it's the base model
|
||||
yield from super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("Ernie4_5_ForCausalLM")
|
||||
class Ernie4_5Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.ERNIE4_5
|
||||
|
||||
@@ -310,5 +310,7 @@ Specifies the memory pool management strategy:
|
||||
|
||||
Controls automatic cleanup of the memory pool. This option is only effective when using the prio or leg memory pool strategies.
|
||||
|
||||
## TODO
|
||||
- Support more models and data types.
|
||||
### GGML_CANN_WEIGHT_NZ
|
||||
|
||||
Converting the matmul weight format from ND to NZ can significantly improve performance on the 310I DUO NPU.
|
||||
|
||||
|
||||
@@ -29,8 +29,8 @@ cmake --build build --config Release
|
||||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-o-2_6-gguf) by us)
|
||||
|
||||
```bash
|
||||
python ./tools/mtmd/minicpmv-surgery.py -m ../MiniCPM-o-2_6
|
||||
python ./tools/mtmd/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-o-2_6 --minicpmv-projector ../MiniCPM-o-2_6/minicpmv.projector --output-dir ../MiniCPM-o-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 4
|
||||
python ./tools/mtmd/legacy-models/minicpmv-surgery.py -m ../MiniCPM-o-2_6
|
||||
python ./tools/mtmd/legacy-models/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-o-2_6 --minicpmv-projector ../MiniCPM-o-2_6/minicpmv.projector --output-dir ../MiniCPM-o-2_6/ --minicpmv_version 4
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-o-2_6/model
|
||||
|
||||
# quantize int4 version
|
||||
|
||||
47
docs/multimodal/minicpmo4.0.md
Normal file
47
docs/multimodal/minicpmo4.0.md
Normal file
@@ -0,0 +1,47 @@
|
||||
## MiniCPM-o 4
|
||||
|
||||
### Prepare models and code
|
||||
|
||||
Download [MiniCPM-o-4](https://huggingface.co/openbmb/MiniCPM-o-4) PyTorch model from huggingface to "MiniCPM-o-4" folder.
|
||||
|
||||
|
||||
### Build llama.cpp
|
||||
Readme modification time: 20250206
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
cd llama.cpp
|
||||
```
|
||||
|
||||
Build llama.cpp using `CMake`:
|
||||
```bash
|
||||
cmake -B build
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
|
||||
### Usage of MiniCPM-o 4
|
||||
|
||||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-o-4-gguf) by us)
|
||||
|
||||
```bash
|
||||
python ./tools/mtmd/legacy-models/minicpmv-surgery.py -m ../MiniCPM-o-4
|
||||
python ./tools/mtmd/legacy-models/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-o-4 --minicpmv-projector ../MiniCPM-o-4/minicpmv.projector --output-dir ../MiniCPM-o-4/ --minicpmv_version 6
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-o-4/model
|
||||
|
||||
# quantize int4 version
|
||||
./build/bin/llama-quantize ../MiniCPM-o-4/model/ggml-model-f16.gguf ../MiniCPM-o-4/model/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||
```
|
||||
|
||||
|
||||
Inference on Linux or Mac
|
||||
```bash
|
||||
# run in single-turn mode
|
||||
./build/bin/llama-mtmd-cli -m ../MiniCPM-o-4/model/ggml-model-f16.gguf --mmproj ../MiniCPM-o-4/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
|
||||
# run in conversation mode
|
||||
./build/bin/llama-mtmd-cli -m ../MiniCPM-o-4/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-o-4/mmproj-model-f16.gguf
|
||||
```
|
||||
@@ -28,8 +28,8 @@ cmake --build build --config Release
|
||||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) by us)
|
||||
|
||||
```bash
|
||||
python ./tools/mtmd/minicpmv-surgery.py -m ../MiniCPM-Llama3-V-2_5
|
||||
python ./tools/mtmd/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-Llama3-V-2_5 --minicpmv-projector ../MiniCPM-Llama3-V-2_5/minicpmv.projector --output-dir ../MiniCPM-Llama3-V-2_5/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 2
|
||||
python ./tools/mtmd/legacy-models/minicpmv-surgery.py -m ../MiniCPM-Llama3-V-2_5
|
||||
python ./tools/mtmd/legacy-models/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-Llama3-V-2_5 --minicpmv-projector ../MiniCPM-Llama3-V-2_5/minicpmv.projector --output-dir ../MiniCPM-Llama3-V-2_5/ --minicpmv_version 2
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-Llama3-V-2_5/model
|
||||
|
||||
# quantize int4 version
|
||||
|
||||
@@ -28,8 +28,8 @@ cmake --build build --config Release
|
||||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf) by us)
|
||||
|
||||
```bash
|
||||
python ./tools/mtmd/minicpmv-surgery.py -m ../MiniCPM-V-2_6
|
||||
python ./tools/mtmd/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-V-2_6 --minicpmv-projector ../MiniCPM-V-2_6/minicpmv.projector --output-dir ../MiniCPM-V-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 3
|
||||
python ./tools/mtmd/legacy-models/minicpmv-surgery.py -m ../MiniCPM-V-2_6
|
||||
python ./tools/mtmd/legacy-models/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-V-2_6 --minicpmv-projector ../MiniCPM-V-2_6/minicpmv.projector --output-dir ../MiniCPM-V-2_6/ --minicpmv_version 3
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-V-2_6/model
|
||||
|
||||
# quantize int4 version
|
||||
|
||||
47
docs/multimodal/minicpmv4.0.md
Normal file
47
docs/multimodal/minicpmv4.0.md
Normal file
@@ -0,0 +1,47 @@
|
||||
## MiniCPM-V 4
|
||||
|
||||
### Prepare models and code
|
||||
|
||||
Download [MiniCPM-V-4](https://huggingface.co/openbmb/MiniCPM-V-4) PyTorch model from huggingface to "MiniCPM-V-4" folder.
|
||||
|
||||
|
||||
### Build llama.cpp
|
||||
Readme modification time: 20250206
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
cd llama.cpp
|
||||
```
|
||||
|
||||
Build llama.cpp using `CMake`:
|
||||
```bash
|
||||
cmake -B build
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
|
||||
### Usage of MiniCPM-V 4
|
||||
|
||||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-V-4-gguf) by us)
|
||||
|
||||
```bash
|
||||
python ./tools/mtmd/legacy-models/minicpmv-surgery.py -m ../MiniCPM-V-4
|
||||
python ./tools/mtmd/legacy-models/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-V-4 --minicpmv-projector ../MiniCPM-V-4/minicpmv.projector --output-dir ../MiniCPM-V-4/ --minicpmv_version 5
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-V-4/model
|
||||
|
||||
# quantize int4 version
|
||||
./build/bin/llama-quantize ../MiniCPM-V-4/model/ggml-model-f16.gguf ../MiniCPM-V-4/model/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||
```
|
||||
|
||||
|
||||
Inference on Linux or Mac
|
||||
```bash
|
||||
# run in single-turn mode
|
||||
./build/bin/llama-mtmd-cli -m ../MiniCPM-V-4/model/ggml-model-f16.gguf --mmproj ../MiniCPM-V-4/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
|
||||
# run in conversation mode
|
||||
./build/bin/llama-mtmd-cli -m ../MiniCPM-V-4/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-4/mmproj-model-f16.gguf
|
||||
```
|
||||
13
examples/diffusion/README.md
Normal file
13
examples/diffusion/README.md
Normal file
@@ -0,0 +1,13 @@
|
||||
# Diffusion Text Generation
|
||||
|
||||
This directory contains implementations for Diffusion LLMs (DLLMs)
|
||||
|
||||
More Info:
|
||||
- https://github.com/ggml-org/llama.cpp/pull/14644
|
||||
- https://github.com/ggml-org/llama.cpp/pull/14771
|
||||
|
||||
|
||||
Example of using Dream architechture: `llama-diffusion-cli -m dream7b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-eps 0.001 --diffusion-algorithm 3 --diffusion-steps 256 --diffusion-visual`
|
||||
|
||||
Example of using LLaDA architechture: `llama-diffusion-cli -m llada-8b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-block-length 32 --diffusion-steps 256 --diffusion-visual`
|
||||
|
||||
@@ -5,344 +5,128 @@
|
||||
#include "log.h"
|
||||
|
||||
#include <limits.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstring>
|
||||
#include <limits>
|
||||
#include <random>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
typedef bool (*diffusion_step_callback_t)(int32_t step,
|
||||
int32_t total_steps,
|
||||
const llama_token * tokens,
|
||||
int32_t n_tokens,
|
||||
void * user_data);
|
||||
enum diffusion_algorithm { ORIGIN = 0, ENTROPY_BASED = 1, MARGIN_BASED = 2, RANDOM = 3, CONFIDENCE_BASED = 4 };
|
||||
|
||||
enum diffusion_alg {
|
||||
DIFFUSION_ALG_ORIGIN = 0,
|
||||
DIFFUSION_ALG_MASKGIT_PLUS = 1,
|
||||
DIFFUSION_ALG_TOPK_MARGIN = 2,
|
||||
DIFFUSION_ALG_ENTROPY = 3,
|
||||
// Unified transfer scheduling methods
|
||||
enum transfer_schedule {
|
||||
TIMESTEP_BASED = 0, // Dream-style: (1.0 - s/t) * remaining
|
||||
BLOCK_BASED = 1, // LLaDA-style: process in blocks with get_num_transfer_tokens
|
||||
};
|
||||
|
||||
typedef bool (*diffusion_step_callback_t)(int32_t step,
|
||||
int32_t total_steps,
|
||||
const llama_token * tokens,
|
||||
int32_t n_tokens,
|
||||
void * user_data);
|
||||
|
||||
struct diffusion_params {
|
||||
int32_t steps;
|
||||
float eps;
|
||||
float temperature;
|
||||
float top_p;
|
||||
int32_t top_k;
|
||||
llama_token mask_token_id;
|
||||
enum diffusion_alg algorithm;
|
||||
float alg_temp;
|
||||
diffusion_step_callback_t step_callback;
|
||||
void * step_callback_user_data;
|
||||
int32_t seed;
|
||||
int32_t steps = 0;
|
||||
float temperature = 0;
|
||||
llama_token mask_token_id = LLAMA_TOKEN_NULL;
|
||||
diffusion_step_callback_t step_callback = nullptr;
|
||||
void * step_callback_user_data = nullptr;
|
||||
int32_t seed = 0;
|
||||
bool visual_mode = false;
|
||||
bool shift_logits = false; // Shift logits by -1 after decode
|
||||
|
||||
float top_p = 0.;
|
||||
int32_t top_k = 0.;
|
||||
|
||||
diffusion_algorithm algorithm = CONFIDENCE_BASED;
|
||||
transfer_schedule schedule = TIMESTEP_BASED;
|
||||
|
||||
float cfg_scale = 0.; // Config scale for classifier-free guidance
|
||||
float eps = 0.; // Timestep scheduling
|
||||
int32_t block_length = 0; // Block size (for block scheduling)
|
||||
float alg_temp = 0; // algorithm temperature (0.0 = deterministic)
|
||||
bool add_gumbel_noise = false; // Add gumbel noise to the logits if temp > 0.0
|
||||
|
||||
int32_t max_length = 0; // Maximum sequence length
|
||||
};
|
||||
|
||||
|
||||
static diffusion_params diffusion_default_params() {
|
||||
diffusion_params params = {};
|
||||
params.steps = 64;
|
||||
params.eps = 1e-3f;
|
||||
params.temperature = 0.2f;
|
||||
params.top_p = 0.95f;
|
||||
params.top_k = 0;
|
||||
params.mask_token_id = LLAMA_TOKEN_NULL;
|
||||
params.algorithm = DIFFUSION_ALG_ORIGIN;
|
||||
params.alg_temp = 0.0f;
|
||||
params.step_callback = nullptr;
|
||||
params.step_callback_user_data = nullptr;
|
||||
params.seed = 0;
|
||||
return params;
|
||||
}
|
||||
|
||||
static void diffusion_generate(llama_context * ctx,
|
||||
const llama_token * input_tokens,
|
||||
llama_token * output_tokens,
|
||||
int32_t n_input,
|
||||
int32_t max_length,
|
||||
struct diffusion_params params,
|
||||
int32_t & n_generated) {
|
||||
|
||||
n_generated = 0;
|
||||
if (!ctx || !input_tokens || !output_tokens || n_input <= 0 || max_length <= n_input) {
|
||||
return;
|
||||
}
|
||||
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
|
||||
// Initialize with input and pad with mask tokens
|
||||
std::copy(input_tokens, input_tokens + n_input, output_tokens);
|
||||
std::fill(output_tokens + n_input, output_tokens + max_length, params.mask_token_id);
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
|
||||
std::vector<float> timesteps(params.steps + 1);
|
||||
for (int32_t i = 0; i <= params.steps; i++) {
|
||||
timesteps[i] = 1.0f - (float) i / params.steps * (1.0f - params.eps);
|
||||
}
|
||||
|
||||
llama_set_causal_attn(ctx, false);
|
||||
|
||||
int32_t n_vocab = llama_vocab_n_tokens(llama_model_get_vocab(model));
|
||||
|
||||
std::vector<llama_token_data> candidates(n_vocab);
|
||||
|
||||
std::vector<llama_token_data> conf_candidates;
|
||||
conf_candidates.reserve(max_length);
|
||||
|
||||
std::vector<int32_t> mask_positions;
|
||||
mask_positions.reserve(max_length);
|
||||
|
||||
struct llama_sampler * sampler = llama_sampler_chain_init(llama_sampler_chain_default_params());
|
||||
if (params.top_k > 0) {
|
||||
llama_sampler_chain_add(sampler, llama_sampler_init_top_k(params.top_k));
|
||||
}
|
||||
if (params.top_p < 1.0f) {
|
||||
llama_sampler_chain_add(sampler, llama_sampler_init_top_p(params.top_p, 1));
|
||||
}
|
||||
if (params.temperature > 0.0f) {
|
||||
llama_sampler_chain_add(sampler, llama_sampler_init_temp(params.temperature));
|
||||
}
|
||||
llama_sampler_chain_add(sampler, llama_sampler_init_dist(params.seed));
|
||||
|
||||
struct llama_sampler * dist_sampler = llama_sampler_init_dist(params.seed);
|
||||
|
||||
llama_batch batch = llama_batch_init(max_length, 0, 1);
|
||||
batch.n_tokens = max_length;
|
||||
|
||||
int64_t total_sampling_time = 0;
|
||||
int64_t total_time = 0;
|
||||
|
||||
int64_t time_start = ggml_time_us();
|
||||
for (int32_t step = 0; step < params.steps; step++) {
|
||||
if (params.step_callback) {
|
||||
if (!params.step_callback(step, params.steps, output_tokens, max_length, params.step_callback_user_data)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for (int32_t i = 0; i < max_length; i++) {
|
||||
batch.token[i] = output_tokens[i];
|
||||
batch.pos[i] = i;
|
||||
batch.n_seq_id[i] = 1;
|
||||
batch.seq_id[i][0] = 0;
|
||||
batch.logits[i] = 1;
|
||||
}
|
||||
|
||||
int ret = llama_decode(ctx, batch);
|
||||
if (ret != 0) {
|
||||
LOG_ERR("%s: failed to decode at step %d, ret = %d\n", __func__, step, ret);
|
||||
break;
|
||||
}
|
||||
|
||||
float * raw_logits = llama_get_logits(ctx);
|
||||
if (!raw_logits) {
|
||||
LOG_ERR("%s: failed to get logits at step %d\n", __func__, step);
|
||||
break;
|
||||
}
|
||||
|
||||
auto get_logits_for_pos = [&](int32_t pos) -> const float * {
|
||||
return pos == 0 ? raw_logits : raw_logits + (pos - 1) * n_vocab;
|
||||
};
|
||||
|
||||
int64_t time_start_sampling = ggml_time_us();
|
||||
|
||||
mask_positions.clear();
|
||||
for (int32_t i = 0; i < max_length; i++) {
|
||||
if (output_tokens[i] == params.mask_token_id) {
|
||||
mask_positions.push_back(i);
|
||||
}
|
||||
}
|
||||
|
||||
if (mask_positions.empty()) {
|
||||
break;
|
||||
}
|
||||
|
||||
float t = timesteps[step];
|
||||
float s = timesteps[step + 1];
|
||||
|
||||
if (params.algorithm == DIFFUSION_ALG_ORIGIN) {
|
||||
float p_transfer = (step < params.steps - 1) ? (1.0f - s / t) : 1.0f;
|
||||
|
||||
for (int32_t pos : mask_positions) {
|
||||
if (std::uniform_real_distribution<float>(0.0f, 1.0f)(rng) < p_transfer) {
|
||||
const float * pos_logits = get_logits_for_pos(pos);
|
||||
for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates[token_id].id = token_id;
|
||||
candidates[token_id].logit = pos_logits[token_id];
|
||||
candidates[token_id].p = 0.0f;
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = {
|
||||
/* .data = */ candidates.data(),
|
||||
/* .size = */ (size_t) n_vocab, // Reset size to full vocab
|
||||
/* .selected = */ -1,
|
||||
/* .sorted = */ false,
|
||||
};
|
||||
|
||||
llama_sampler_apply(sampler, &cur_p);
|
||||
output_tokens[pos] = cur_p.data[cur_p.selected].id;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
std::vector<std::pair<float, int32_t>> confidences;
|
||||
std::vector<llama_token> sampled_tokens(mask_positions.size());
|
||||
|
||||
for (size_t i = 0; i < mask_positions.size(); i++) {
|
||||
int32_t pos = mask_positions[i];
|
||||
const float * pos_logits = get_logits_for_pos(pos);
|
||||
|
||||
for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates[token_id].logit = pos_logits[token_id];
|
||||
candidates[token_id].p = 0.0f;
|
||||
candidates[token_id].id = token_id;
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = {
|
||||
/* .data = */ candidates.data(),
|
||||
/* .size = */ candidates.size(),
|
||||
/* .selected = */ -1,
|
||||
/* .sorted = */ false,
|
||||
};
|
||||
|
||||
llama_sampler_apply(sampler, &cur_p);
|
||||
|
||||
llama_token sampled_token = cur_p.data[cur_p.selected].id;
|
||||
|
||||
float confidence = 0.0f;
|
||||
if (params.algorithm == DIFFUSION_ALG_ENTROPY) {
|
||||
const float epsilon = 1e-10f;
|
||||
for (size_t j = 0; j < cur_p.size; j++) {
|
||||
float prob = cur_p.data[j].p;
|
||||
confidence += prob * logf(prob + epsilon);
|
||||
}
|
||||
} else if (params.algorithm == DIFFUSION_ALG_TOPK_MARGIN) {
|
||||
confidence = cur_p.data[0].p - cur_p.data[1].p;
|
||||
} else {
|
||||
confidence = cur_p.data[cur_p.selected].p;
|
||||
}
|
||||
|
||||
sampled_tokens[i] = sampled_token;
|
||||
confidences.emplace_back(confidence, i);
|
||||
}
|
||||
|
||||
int32_t num_transfer =
|
||||
(step < params.steps - 1) ? (int32_t) (mask_positions.size() * (1.0f - s / t)) : mask_positions.size();
|
||||
|
||||
if (num_transfer > 0) {
|
||||
if (params.alg_temp == 0.0f) {
|
||||
std::partial_sort(confidences.begin(), confidences.begin() + num_transfer, confidences.end(),
|
||||
[](const std::pair<float, int32_t> & a, const std::pair<float, int32_t> & b) {
|
||||
if (a.first != b.first) {
|
||||
return a.first > b.first;
|
||||
}
|
||||
return a.second < b.second;
|
||||
});
|
||||
} else {
|
||||
conf_candidates.clear();
|
||||
|
||||
for (int32_t pos = 0; pos < max_length; pos++) {
|
||||
float conf_logit = -std::numeric_limits<float>::infinity();
|
||||
|
||||
auto it = std::find(mask_positions.begin(), mask_positions.end(), pos);
|
||||
if (it != mask_positions.end()) {
|
||||
size_t mask_idx = std::distance(mask_positions.begin(), it);
|
||||
conf_logit = confidences[mask_idx].first / params.alg_temp; // Apply temperature scaling
|
||||
}
|
||||
|
||||
conf_candidates.emplace_back(llama_token_data{ pos, conf_logit, 0.0f });
|
||||
}
|
||||
|
||||
llama_token_data_array conf_array = {
|
||||
/* .data = */ conf_candidates.data(),
|
||||
/* .size = */ conf_candidates.size(),
|
||||
/* .selected = */ -1,
|
||||
/* .sorted = */ false,
|
||||
};
|
||||
|
||||
for (int32_t i = 0; i < num_transfer; i++) {
|
||||
// Apply distribution sampler to get selected index
|
||||
llama_sampler_apply(dist_sampler, &conf_array);
|
||||
int selected_idx = conf_array.selected;
|
||||
confidences[i].second = conf_candidates[selected_idx].id;
|
||||
|
||||
conf_candidates[selected_idx].p = 0.0f;
|
||||
conf_array.selected = -1;
|
||||
}
|
||||
}
|
||||
|
||||
if (params.alg_temp == 0.0f) {
|
||||
// Deterministic - use confidence order
|
||||
for (int32_t i = 0; i < num_transfer; i++) {
|
||||
int32_t mask_idx = confidences[i].second;
|
||||
int32_t pos = mask_positions[mask_idx];
|
||||
llama_token token = sampled_tokens[mask_idx];
|
||||
output_tokens[pos] = token;
|
||||
}
|
||||
} else {
|
||||
for (int32_t i = 0; i < num_transfer; i++) {
|
||||
int32_t pos = confidences[i].second;
|
||||
auto it = std::find(mask_positions.begin(), mask_positions.end(), pos);
|
||||
if (it != mask_positions.end()) {
|
||||
int32_t mask_idx = std::distance(mask_positions.begin(), it);
|
||||
output_tokens[pos] = sampled_tokens[mask_idx];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
int64_t time_end_sampling = ggml_time_us();
|
||||
total_sampling_time += time_end_sampling - time_start_sampling;
|
||||
}
|
||||
int64_t time_end = ggml_time_us();
|
||||
total_time += time_end - time_start;
|
||||
|
||||
LOG_INF("\ntotal time: %0.2fms, time per step: %0.2fms, sampling time per step: %0.2fms\n",
|
||||
total_time / 1000.0, total_time / 1000.0 / params.steps, total_sampling_time / 1000.0 / params.steps);
|
||||
|
||||
|
||||
llama_batch_free(batch);
|
||||
llama_sampler_free(sampler);
|
||||
llama_sampler_free(dist_sampler);
|
||||
|
||||
n_generated = max_length;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
static std::string format_input_text(const std::string & prompt, bool use_chat_template, llama_model * model) {
|
||||
if (!use_chat_template) {
|
||||
return prompt;
|
||||
}
|
||||
|
||||
auto chat_templates = common_chat_templates_init(model, "");
|
||||
|
||||
common_chat_templates_inputs inputs;
|
||||
common_chat_msg user_msg;
|
||||
user_msg.role = "user";
|
||||
user_msg.content = prompt;
|
||||
inputs.add_generation_prompt = true;
|
||||
inputs.messages.push_back(user_msg);
|
||||
|
||||
auto result = common_chat_templates_apply(chat_templates.get(), inputs);
|
||||
|
||||
return result.prompt;
|
||||
}
|
||||
|
||||
struct callback_data {
|
||||
const common_params_diffusion * diff_params;
|
||||
const llama_vocab * vocab;
|
||||
int32_t n_input;
|
||||
diffusion_params * diff_params;
|
||||
const llama_vocab * vocab;
|
||||
int32_t n_input;
|
||||
};
|
||||
|
||||
static bool diffusion_step_callback(int32_t step,
|
||||
int32_t total_steps,
|
||||
static float calculate_confidence(const llama_token_data_array & cur_p,
|
||||
diffusion_algorithm algorithm,
|
||||
std::mt19937 & rng) {
|
||||
switch (algorithm) {
|
||||
case CONFIDENCE_BASED:
|
||||
return cur_p.data[cur_p.selected].p; // Selected token probability
|
||||
|
||||
case ENTROPY_BASED:
|
||||
{
|
||||
float entropy = 0.0f;
|
||||
const float epsilon = 1e-10f;
|
||||
for (size_t i = 0; i < cur_p.size; i++) {
|
||||
float prob = cur_p.data[i].p;
|
||||
entropy += prob * logf(prob + epsilon);
|
||||
}
|
||||
return -entropy; // Higher entropy = lower confidence
|
||||
}
|
||||
|
||||
case MARGIN_BASED:
|
||||
return (cur_p.size > 1) ? cur_p.data[0].p - cur_p.data[1].p : cur_p.data[0].p;
|
||||
|
||||
case RANDOM:
|
||||
{
|
||||
std::uniform_real_distribution<float> uniform(0.0f, 1.0f);
|
||||
return uniform(rng); // Random confidence
|
||||
}
|
||||
|
||||
case ORIGIN:
|
||||
return cur_p.data[cur_p.selected].p;
|
||||
|
||||
default:
|
||||
return 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
// Unified transfer count calculation function
|
||||
static int32_t calculate_transfer_count(int32_t step,
|
||||
int32_t total_steps,
|
||||
int32_t remaining_masked,
|
||||
transfer_schedule schedule,
|
||||
float eps,
|
||||
const std::vector<int32_t> & num_transfer_tokens = {}) {
|
||||
switch (schedule) {
|
||||
case TIMESTEP_BASED:
|
||||
{
|
||||
float t = 1.0f - (float) step / total_steps * (1.0f - eps);
|
||||
float s = 1.0f - (float) (step + 1) / total_steps * (1.0f - eps);
|
||||
float p_transfer = (step < total_steps - 1) ? (1.0f - s / t) : 1.0f;
|
||||
return (int32_t) (remaining_masked * p_transfer);
|
||||
}
|
||||
|
||||
case BLOCK_BASED:
|
||||
if (!num_transfer_tokens.empty() && step < (int32_t) num_transfer_tokens.size()) {
|
||||
return num_transfer_tokens[step];
|
||||
}
|
||||
return remaining_masked / (total_steps - step); // Fallback
|
||||
|
||||
default:
|
||||
return remaining_masked / (total_steps - step);
|
||||
}
|
||||
}
|
||||
|
||||
static bool diffusion_step_callback(int32_t step,
|
||||
int32_t total_steps,
|
||||
const llama_token * tokens,
|
||||
int32_t n_tokens,
|
||||
void * user_data) {
|
||||
(void)user_data;
|
||||
int32_t n_tokens,
|
||||
void * user_data) {
|
||||
(void) user_data;
|
||||
|
||||
callback_data * data = static_cast<callback_data *>(user_data);
|
||||
|
||||
@@ -350,11 +134,11 @@ static bool diffusion_step_callback(int32_t step,
|
||||
int progress_percent = (step * 100) / total_steps;
|
||||
int progress_bars = (step * 50) / total_steps;
|
||||
LOG_INF("\rdiffusion step: %d/%d [%s%s] %d%%",
|
||||
step,
|
||||
total_steps,
|
||||
std::string(progress_bars, '=').c_str(),
|
||||
std::string(50 - progress_bars, ' ').c_str(),
|
||||
progress_percent);
|
||||
step,
|
||||
total_steps,
|
||||
std::string(progress_bars, '=').c_str(),
|
||||
std::string(50 - progress_bars, ' ').c_str(),
|
||||
progress_percent);
|
||||
};
|
||||
|
||||
if (data->diff_params->visual_mode) {
|
||||
@@ -391,6 +175,360 @@ static bool diffusion_step_callback(int32_t step,
|
||||
return true;
|
||||
}
|
||||
|
||||
static void add_gumbel_noise(float * logits, int32_t n_vocab, float temperature, std::mt19937 & rng) {
|
||||
if (temperature == 0.0f) {
|
||||
return;
|
||||
}
|
||||
|
||||
std::uniform_real_distribution<double> uniform(0.0, 1.0);
|
||||
for (int32_t i = 0; i < n_vocab; i++) {
|
||||
double noise = uniform(rng);
|
||||
// Prevent log(0)
|
||||
noise = std::max(noise, 1e-20);
|
||||
double gumbel_noise = std::pow(-std::log(noise), temperature);
|
||||
logits[i] = std::exp(logits[i]) / gumbel_noise;
|
||||
}
|
||||
}
|
||||
|
||||
static std::vector<int32_t> get_num_transfer_tokens(int32_t mask_count, int32_t steps) {
|
||||
std::vector<int32_t> num_transfer_tokens(steps);
|
||||
|
||||
int32_t base = mask_count / steps;
|
||||
int32_t remainder = mask_count % steps;
|
||||
|
||||
for (int32_t i = 0; i < steps; i++) {
|
||||
num_transfer_tokens[i] = base + (i < remainder ? 1 : 0);
|
||||
}
|
||||
|
||||
return num_transfer_tokens;
|
||||
}
|
||||
|
||||
static void diffusion_generate(llama_context * ctx,
|
||||
const llama_token * input_tokens,
|
||||
llama_token * output_tokens,
|
||||
int32_t n_input,
|
||||
const diffusion_params & params,
|
||||
int32_t & n_generated) {
|
||||
n_generated = 0;
|
||||
if (!ctx || !input_tokens || !output_tokens || n_input <= 0 || params.max_length <= n_input) {
|
||||
return;
|
||||
}
|
||||
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
|
||||
// Initialize with input and pad with mask tokens
|
||||
std::copy(input_tokens, input_tokens + n_input, output_tokens);
|
||||
std::fill(output_tokens + n_input, output_tokens + params.max_length, params.mask_token_id);
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
|
||||
llama_set_causal_attn(ctx, false);
|
||||
|
||||
int32_t n_vocab = llama_vocab_n_tokens(llama_model_get_vocab(model));
|
||||
|
||||
std::vector<llama_token_data> candidates(n_vocab);
|
||||
std::vector<llama_token_data> conf_candidates;
|
||||
conf_candidates.reserve(params.max_length);
|
||||
std::vector<int32_t> mask_positions;
|
||||
mask_positions.reserve(params.max_length);
|
||||
|
||||
// Setup sampler chain
|
||||
struct llama_sampler * sampler = llama_sampler_chain_init(llama_sampler_chain_default_params());
|
||||
if (params.top_k > 0) {
|
||||
llama_sampler_chain_add(sampler, llama_sampler_init_top_k(params.top_k));
|
||||
}
|
||||
if (params.top_p < 1.0f) {
|
||||
llama_sampler_chain_add(sampler, llama_sampler_init_top_p(params.top_p, 1));
|
||||
}
|
||||
if (params.temperature > 0.0f) {
|
||||
llama_sampler_chain_add(sampler, llama_sampler_init_temp(params.temperature));
|
||||
}
|
||||
llama_sampler_chain_add(sampler, llama_sampler_init_dist(params.seed));
|
||||
|
||||
struct llama_sampler * dist_sampler = llama_sampler_init_dist(params.seed);
|
||||
|
||||
llama_batch batch = llama_batch_init(params.max_length, 0, 1);
|
||||
batch.n_tokens = params.max_length;
|
||||
|
||||
// Pre-allocate buffers for CFG if needed
|
||||
int32_t logits_size = n_vocab * params.max_length;
|
||||
std::vector<float> cond_logits_buffer;
|
||||
std::vector<llama_token> un_x_buffer;
|
||||
if (params.cfg_scale > 0.0f) {
|
||||
cond_logits_buffer.resize(logits_size);
|
||||
un_x_buffer.resize(params.max_length);
|
||||
}
|
||||
|
||||
// For block-based processing
|
||||
std::vector<int32_t> num_transfer_tokens;
|
||||
int32_t num_blocks = 1;
|
||||
int32_t steps_per_block = params.steps;
|
||||
|
||||
if (params.schedule == BLOCK_BASED) {
|
||||
GGML_ASSERT(params.max_length % params.block_length == 0);
|
||||
num_blocks = params.max_length / params.block_length;
|
||||
GGML_ASSERT(params.steps % num_blocks == 0);
|
||||
steps_per_block = params.steps / num_blocks;
|
||||
}
|
||||
|
||||
std::vector<float> confidence(params.max_length);
|
||||
|
||||
int64_t total_sampling_time = 0;
|
||||
int64_t total_time = 0;
|
||||
int64_t time_start = ggml_time_us();
|
||||
|
||||
for (int block_num = 0; block_num < num_blocks; block_num++) {
|
||||
int32_t block_start = (params.schedule == BLOCK_BASED) ? n_input + block_num * params.block_length : 0;
|
||||
int32_t block_end = (params.schedule == BLOCK_BASED) ?
|
||||
std::min(n_input + (block_num + 1) * params.block_length, params.max_length) :
|
||||
params.max_length;
|
||||
|
||||
// Count masked tokens in current block for block-based processing
|
||||
if (params.schedule == BLOCK_BASED) {
|
||||
int32_t block_mask_count = 0;
|
||||
for (int i = block_start; i < block_end; i++) {
|
||||
if (output_tokens[i] == params.mask_token_id) {
|
||||
block_mask_count++;
|
||||
}
|
||||
}
|
||||
num_transfer_tokens = get_num_transfer_tokens(block_mask_count, steps_per_block);
|
||||
}
|
||||
|
||||
for (int32_t step = 0; step < steps_per_block; step++) {
|
||||
int32_t global_step = block_num * steps_per_block + step;
|
||||
|
||||
if (params.step_callback) {
|
||||
if (!params.step_callback(
|
||||
global_step, params.steps, output_tokens, params.max_length, params.step_callback_user_data)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Setup batch
|
||||
for (int32_t i = 0; i < params.max_length; i++) {
|
||||
batch.token[i] = output_tokens[i];
|
||||
batch.pos[i] = i;
|
||||
batch.n_seq_id[i] = 1;
|
||||
batch.seq_id[i][0] = 0;
|
||||
batch.logits[i] = 1;
|
||||
}
|
||||
|
||||
float * logits = nullptr;
|
||||
|
||||
if (params.cfg_scale > 0.0f) {
|
||||
int ret = llama_decode(ctx, batch);
|
||||
if (ret != 0) {
|
||||
LOG_ERR("Failed to generate conditional");
|
||||
break;
|
||||
}
|
||||
float * cond_logits_ptr = llama_get_logits(ctx);
|
||||
std::memcpy(cond_logits_buffer.data(), cond_logits_ptr, logits_size * sizeof(float));
|
||||
|
||||
// Unconditional generation (mask input)
|
||||
std::copy(output_tokens, output_tokens + params.max_length, un_x_buffer.begin());
|
||||
for (int32_t i = 0; i < n_input; i++) {
|
||||
un_x_buffer[i] = params.mask_token_id;
|
||||
}
|
||||
|
||||
for (int32_t i = 0; i < params.max_length; i++) {
|
||||
batch.token[i] = un_x_buffer[i];
|
||||
}
|
||||
ret = llama_decode(ctx, batch);
|
||||
if (ret != 0) {
|
||||
LOG_ERR("Failed to generate unconditional");
|
||||
break;
|
||||
}
|
||||
float * uncond_logits = llama_get_logits(ctx);
|
||||
|
||||
// Apply CFG
|
||||
for (int32_t i = 0; i < logits_size; i++) {
|
||||
cond_logits_buffer[i] =
|
||||
uncond_logits[i] + (params.cfg_scale + 1.0f) * (cond_logits_buffer[i] - uncond_logits[i]);
|
||||
}
|
||||
logits = cond_logits_buffer.data();
|
||||
} else {
|
||||
int ret = llama_decode(ctx, batch);
|
||||
if (ret != 0) {
|
||||
LOG_ERR("%s: failed to decode at step %d, ret = %d\n", __func__, global_step, ret);
|
||||
break;
|
||||
}
|
||||
logits = llama_get_logits(ctx);
|
||||
}
|
||||
|
||||
if (!logits) {
|
||||
LOG_ERR("%s: failed to get logits at step %d\n", __func__, global_step);
|
||||
break;
|
||||
}
|
||||
|
||||
auto get_logits_for_pos = [&](int32_t pos) -> const float * {
|
||||
if (params.shift_logits) {
|
||||
return pos == 0 ? logits : logits + (pos - 1) * n_vocab;
|
||||
}
|
||||
return logits + (pos) *n_vocab;
|
||||
};
|
||||
|
||||
int64_t time_start_sampling = ggml_time_us();
|
||||
|
||||
mask_positions.clear();
|
||||
for (int32_t i = 0; i < params.max_length; i++) {
|
||||
if (output_tokens[i] == params.mask_token_id) {
|
||||
// For block-based, only consider current block
|
||||
if (params.schedule != BLOCK_BASED || (i >= block_start && i < block_end)) {
|
||||
mask_positions.push_back(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (mask_positions.empty()) {
|
||||
break;
|
||||
}
|
||||
|
||||
if (params.add_gumbel_noise && params.temperature > 0.0f) {
|
||||
add_gumbel_noise(logits, n_vocab, params.temperature, rng);
|
||||
}
|
||||
|
||||
if (params.algorithm == ORIGIN) {
|
||||
int32_t transfer_count = calculate_transfer_count(
|
||||
step, steps_per_block, mask_positions.size(), params.schedule, params.eps, num_transfer_tokens);
|
||||
float p_transfer = (float) transfer_count / mask_positions.size();
|
||||
|
||||
for (int32_t pos : mask_positions) {
|
||||
if (std::uniform_real_distribution<float>(0.0f, 1.0f)(rng) < p_transfer) {
|
||||
const float * pos_logits = get_logits_for_pos(pos);
|
||||
for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates[token_id].id = token_id;
|
||||
candidates[token_id].logit = pos_logits[token_id];
|
||||
candidates[token_id].p = 0.0f;
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = {
|
||||
candidates.data(),
|
||||
(size_t) n_vocab,
|
||||
-1,
|
||||
false,
|
||||
};
|
||||
|
||||
llama_sampler_apply(sampler, &cur_p);
|
||||
output_tokens[pos] = cur_p.data[cur_p.selected].id;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
std::vector<std::pair<float, int32_t>> confidences;
|
||||
std::vector<llama_token> sampled_tokens(mask_positions.size());
|
||||
|
||||
for (size_t i = 0; i < mask_positions.size(); i++) {
|
||||
int32_t pos = mask_positions[i];
|
||||
const float * pos_logits = get_logits_for_pos(pos);
|
||||
|
||||
for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates[token_id].logit = pos_logits[token_id];
|
||||
candidates[token_id].p = 0.0f;
|
||||
candidates[token_id].id = token_id;
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = {
|
||||
candidates.data(),
|
||||
candidates.size(),
|
||||
-1,
|
||||
false,
|
||||
};
|
||||
|
||||
llama_sampler_apply(sampler, &cur_p);
|
||||
llama_token sampled_token = cur_p.data[cur_p.selected].id;
|
||||
|
||||
float conf = calculate_confidence(cur_p, params.algorithm, rng);
|
||||
|
||||
sampled_tokens[i] = sampled_token;
|
||||
confidences.emplace_back(conf, i);
|
||||
}
|
||||
|
||||
int32_t transfer_count = calculate_transfer_count(
|
||||
step, steps_per_block, mask_positions.size(), params.schedule, params.eps, num_transfer_tokens);
|
||||
|
||||
if (transfer_count > 0) {
|
||||
if (params.alg_temp == 0.0f) {
|
||||
std::partial_sort(confidences.begin(),
|
||||
confidences.begin() + std::min(transfer_count, (int32_t) confidences.size()),
|
||||
confidences.end(),
|
||||
[](const std::pair<float, int32_t> & a, const std::pair<float, int32_t> & b) {
|
||||
if (a.first != b.first) {
|
||||
return a.first > b.first;
|
||||
}
|
||||
return a.second < b.second;
|
||||
});
|
||||
|
||||
for (int32_t i = 0; i < std::min(transfer_count, (int32_t) confidences.size()); i++) {
|
||||
int32_t mask_idx = confidences[i].second;
|
||||
int32_t pos = mask_positions[mask_idx];
|
||||
output_tokens[pos] = sampled_tokens[mask_idx];
|
||||
}
|
||||
} else {
|
||||
conf_candidates.clear();
|
||||
for (size_t i = 0; i < confidences.size(); i++) {
|
||||
float conf_logit = confidences[i].first / params.alg_temp;
|
||||
conf_candidates.emplace_back(llama_token_data{ (int32_t) i, conf_logit, 0.0f });
|
||||
}
|
||||
|
||||
llama_token_data_array conf_array = {
|
||||
conf_candidates.data(),
|
||||
conf_candidates.size(),
|
||||
-1,
|
||||
false,
|
||||
};
|
||||
|
||||
for (int32_t i = 0; i < std::min(transfer_count, (int32_t) confidences.size()); i++) {
|
||||
llama_sampler_apply(dist_sampler, &conf_array);
|
||||
int32_t selected_idx = conf_array.selected;
|
||||
int32_t mask_idx = selected_idx;
|
||||
int32_t pos = mask_positions[mask_idx];
|
||||
output_tokens[pos] = sampled_tokens[mask_idx];
|
||||
|
||||
conf_candidates[selected_idx].p = 0.0f;
|
||||
conf_array.selected = -1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int64_t time_end_sampling = ggml_time_us();
|
||||
total_sampling_time += time_end_sampling - time_start_sampling;
|
||||
}
|
||||
}
|
||||
|
||||
int64_t time_end = ggml_time_us();
|
||||
total_time += time_end - time_start;
|
||||
|
||||
LOG_INF("\ntotal time: %0.2fms, time per step: %0.2fms, sampling time per step: %0.2fms\n",
|
||||
total_time / 1000.0,
|
||||
total_time / 1000.0 / params.steps,
|
||||
total_sampling_time / 1000.0 / params.steps);
|
||||
|
||||
llama_batch_free(batch);
|
||||
llama_sampler_free(sampler);
|
||||
llama_sampler_free(dist_sampler);
|
||||
|
||||
n_generated = params.max_length;
|
||||
}
|
||||
|
||||
static std::string format_input_text(const std::string & prompt, bool use_chat_template, llama_model * model) {
|
||||
if (!use_chat_template) {
|
||||
return prompt;
|
||||
}
|
||||
|
||||
auto chat_templates = common_chat_templates_init(model, "");
|
||||
|
||||
common_chat_templates_inputs inputs;
|
||||
common_chat_msg user_msg;
|
||||
user_msg.role = "user";
|
||||
user_msg.content = prompt;
|
||||
inputs.add_generation_prompt = true;
|
||||
inputs.messages.push_back(user_msg);
|
||||
|
||||
auto result = common_chat_templates_apply(chat_templates.get(), inputs);
|
||||
|
||||
return result.prompt;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
ggml_time_init();
|
||||
|
||||
@@ -400,11 +538,6 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
const char * alg_names[] = { "ORIGIN", "MASKGIT_PLUS", "TOPK_MARGIN", "ENTROPY" };
|
||||
const char * alg_name = (params.diffusion.algorithm >= 0 && params.diffusion.algorithm <= 3) ?
|
||||
alg_names[params.diffusion.algorithm] :
|
||||
"UNKNOWN";
|
||||
|
||||
common_init();
|
||||
llama_backend_init();
|
||||
|
||||
@@ -421,6 +554,12 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (!llama_model_is_diffusion(model)) {
|
||||
LOG_ERR("error: unsupported model for diffusion");
|
||||
llama_model_free(model);
|
||||
return 1;
|
||||
}
|
||||
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
ctx_params.n_ctx = params.n_ctx;
|
||||
ctx_params.n_batch = params.n_batch;
|
||||
@@ -442,10 +581,12 @@ int main(int argc, char ** argv) {
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
std::string formatted_prompt = format_input_text(params.prompt, params.enable_chat_template, model);
|
||||
|
||||
std::vector<llama_token> input_tokens = common_tokenize(vocab, formatted_prompt,
|
||||
std::vector<llama_token> input_tokens = common_tokenize(vocab,
|
||||
formatted_prompt,
|
||||
/*add special tokens*/ true,
|
||||
/*parse special*/ true);
|
||||
int n_input = input_tokens.size();
|
||||
|
||||
int n_input = input_tokens.size();
|
||||
|
||||
if (n_input >= params.n_ctx) {
|
||||
LOG_ERR("error: input too long (%d tokens), max context is %d\n", n_input, params.n_ctx);
|
||||
@@ -454,44 +595,79 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
struct diffusion_params ldiff_params = diffusion_default_params();
|
||||
ldiff_params.steps = params.diffusion.steps;
|
||||
ldiff_params.eps = params.diffusion.eps;
|
||||
ldiff_params.temperature = params.sampling.temp;
|
||||
ldiff_params.top_p = params.sampling.top_p;
|
||||
ldiff_params.top_k = params.sampling.top_k;
|
||||
ldiff_params.algorithm = static_cast<enum diffusion_alg>(params.diffusion.algorithm);
|
||||
ldiff_params.alg_temp = params.diffusion.alg_temp;
|
||||
ldiff_params.seed = params.sampling.seed;
|
||||
|
||||
llama_token mask_token_id = llama_vocab_mask(vocab);
|
||||
GGML_ASSERT(mask_token_id != LLAMA_TOKEN_NULL);
|
||||
|
||||
LOG_INF("diffusion_params: - %-25s llama_token = %d\n", "mask_token_id", mask_token_id);
|
||||
LOG_INF("diffusion_params: - %-25s u32 = %d\n", "steps", params.diffusion.steps);
|
||||
LOG_INF("diffusion_params: - %-25s f32 = %.6f\n", "eps", params.diffusion.eps);
|
||||
LOG_INF("diffusion_params: - %-25s u32 = %d (%s)\n", "algorithm", params.diffusion.algorithm,
|
||||
alg_name);
|
||||
LOG_INF("diffusion_params: - %-25s f32 = %.3f\n", "alg_temp", params.diffusion.alg_temp);
|
||||
|
||||
ldiff_params.mask_token_id = mask_token_id;
|
||||
|
||||
callback_data cb_data = { ¶ms.diffusion, vocab, n_input };
|
||||
|
||||
ldiff_params.step_callback = diffusion_step_callback;
|
||||
ldiff_params.step_callback_user_data = &cb_data;
|
||||
|
||||
int32_t n_generated = 0;
|
||||
bool visual_mode = params.diffusion.visual_mode;
|
||||
|
||||
int32_t n_generated = 0;
|
||||
std::vector<llama_token> output_tokens(params.n_ubatch);
|
||||
diffusion_generate(ctx, input_tokens.data(), output_tokens.data(), n_input, params.n_ubatch,
|
||||
ldiff_params, n_generated);
|
||||
|
||||
struct diffusion_params diff_params;
|
||||
|
||||
char shift_logits_str[8];
|
||||
if (llama_model_meta_val_str(model, "diffusion.shift_logits", shift_logits_str, sizeof(shift_logits_str)) >= 0) {
|
||||
diff_params.shift_logits = (strcmp(shift_logits_str, "true") == 0);
|
||||
} else {
|
||||
diff_params.shift_logits = true;
|
||||
}
|
||||
|
||||
//Use either eps or block length, but not both
|
||||
GGML_ASSERT((params.diffusion.eps == 0) ^ (params.diffusion.block_length == 0));
|
||||
|
||||
if (params.diffusion.eps) {
|
||||
diff_params.schedule = TIMESTEP_BASED;
|
||||
diff_params.eps = params.diffusion.eps;
|
||||
} else if (params.diffusion.block_length) {
|
||||
diff_params.schedule = BLOCK_BASED;
|
||||
diff_params.block_length = params.diffusion.block_length;
|
||||
}
|
||||
|
||||
diff_params.mask_token_id = mask_token_id;
|
||||
diff_params.seed = params.sampling.seed;
|
||||
diff_params.temperature = params.sampling.temp;
|
||||
diff_params.steps = params.diffusion.steps;
|
||||
diff_params.algorithm = static_cast<diffusion_algorithm>(params.diffusion.algorithm);
|
||||
diff_params.max_length = params.n_ubatch;
|
||||
diff_params.top_p = params.sampling.top_p;
|
||||
diff_params.top_k = params.sampling.top_k;
|
||||
diff_params.visual_mode = params.diffusion.visual_mode;
|
||||
diff_params.add_gumbel_noise = params.diffusion.add_gumbel_noise;
|
||||
|
||||
diff_params.step_callback = diffusion_step_callback;
|
||||
callback_data cb_data = { &diff_params, vocab, n_input };
|
||||
diff_params.step_callback_user_data = &cb_data;
|
||||
|
||||
const char * alg_names[] = { "ORIGIN", "ENTROPY_BASED", "MARGIN_BASED", "RANDOM", "CONFIDENCE_BASED" };
|
||||
const char * sched_names[] = { "TIMESTEP_BASED", "BLOCK_BASED" };
|
||||
const char * alg_name =
|
||||
(diff_params.algorithm >= 0 && diff_params.algorithm <= 4) ? alg_names[diff_params.algorithm] : "UNKNOWN";
|
||||
const char * sched_name =
|
||||
(diff_params.schedule >= 0 && diff_params.schedule <= 1) ? sched_names[diff_params.schedule] : "UNKNOWN";
|
||||
|
||||
LOG_INF("diffusion_params: - %-25s llama_token = %d\n", "mask_token_id", mask_token_id);
|
||||
LOG_INF("diffusion_params: - %-25s u32 = %d\n", "steps", diff_params.steps);
|
||||
LOG_INF("diffusion_params: - %-25s u32 = %d\n", "max_length", diff_params.max_length);
|
||||
LOG_INF("diffusion_params: - %-25s enum = %d (%s)\n", "algorithm", diff_params.algorithm, alg_name);
|
||||
LOG_INF("diffusion_params: - %-25s enum = %d (%s)\n", "schedule", diff_params.schedule, sched_name);
|
||||
LOG_INF("diffusion_params: - %-25s f32 = %.3f\n", "temperature", diff_params.temperature);
|
||||
if (diff_params.schedule == TIMESTEP_BASED) {
|
||||
LOG_INF("diffusion_params: - %-25s f32 = %.6f\n", "eps", diff_params.eps);
|
||||
LOG_INF("diffusion_params: - %-25s f32 = %.3f\n", "alg_temp", diff_params.alg_temp);
|
||||
}
|
||||
if (diff_params.schedule == BLOCK_BASED) {
|
||||
LOG_INF("diffusion_params: - %-25s u32 = %d\n", "block_length", diff_params.block_length);
|
||||
LOG_INF("diffusion_params: - %-25s f32 = %.3f\n", "cfg_scale", diff_params.cfg_scale);
|
||||
}
|
||||
|
||||
diffusion_generate(ctx, input_tokens.data(), output_tokens.data(), n_input, diff_params, n_generated);
|
||||
|
||||
if (n_generated > 0) {
|
||||
if (params.diffusion.visual_mode) {
|
||||
if (visual_mode) {
|
||||
//clear screen and move cursor to top-left
|
||||
LOG_INF("\033[2J\033[H");
|
||||
}
|
||||
|
||||
output_tokens.erase(output_tokens.begin(), output_tokens.begin() + n_input);
|
||||
std::string output_data = common_detokenize(vocab, output_tokens, false);
|
||||
LOG_INF("\n%s\n", output_data.c_str());
|
||||
|
||||
@@ -65,7 +65,7 @@ int main(int argc, char ** argv) {
|
||||
ctx_dft = llama_init_dft.context.get();
|
||||
|
||||
if (!common_speculative_are_compatible(ctx_tgt, ctx_dft)) {
|
||||
return 1;
|
||||
LOG_INF("the draft model '%s' is not compatible with the target model '%s'. tokens will be translated between the draft and target models.\n", params.speculative.model.path.c_str(), params.model.path.c_str());
|
||||
}
|
||||
|
||||
// Tokenize the prompt
|
||||
@@ -130,7 +130,10 @@ int main(int argc, char ** argv) {
|
||||
params_spec.n_reuse = llama_n_ctx(ctx_dft) - n_draft;
|
||||
params_spec.p_min = p_min;
|
||||
|
||||
struct common_speculative * spec = common_speculative_init(ctx_dft);
|
||||
struct common_speculative * spec = common_speculative_init(ctx_tgt, ctx_dft);
|
||||
for (auto &pair : params.speculative.replacements) {
|
||||
common_speculative_add_replacement_tgt_dft(spec, pair.first.c_str(), pair.second.c_str());
|
||||
}
|
||||
|
||||
llama_batch batch_tgt = llama_batch_init(llama_n_batch(ctx_tgt), 0, 1);
|
||||
|
||||
|
||||
@@ -1913,11 +1913,9 @@ static void ggml_cann_mat_mul_fp(ggml_backend_cann_context& ctx,
|
||||
bcast_weight_nb[4], bcast_weight_nb[5]};
|
||||
aclTensor* acl_weight_tensor;
|
||||
|
||||
bool weightToNZ = false;
|
||||
#ifdef ASCEND_310P
|
||||
weightToNZ = (getenv("GGML_CANN_WEIGHT_NZ") != nullptr);
|
||||
#endif
|
||||
if (weightToNZ && is_matmul_weight(weight)) {
|
||||
// Only check env once.
|
||||
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or(""));
|
||||
if (weight_to_nz && is_matmul_weight(weight)) {
|
||||
int64_t acl_stride[2] = {1, transpose_ne[1]};
|
||||
|
||||
// Reverse ne.
|
||||
|
||||
@@ -1116,61 +1116,59 @@ static enum ggml_status ggml_backend_cann_buffer_init_tensor(
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
static int CreateAclTensorWeight(const void *hostData, const std::vector<int64_t> &shape, void **deviceAddr,
|
||||
aclDataType dataType, aclTensor **tensor)
|
||||
{
|
||||
uint64_t size = 1;
|
||||
for (auto i : shape) {
|
||||
size *= i;
|
||||
// ND to NZ Workspace Cache Management. Thread-safety: Not guaranteed
|
||||
namespace {
|
||||
void* g_nz_workspace = nullptr;
|
||||
size_t g_nz_workspace_allocated = 0;
|
||||
|
||||
void release_nz_workspace() {
|
||||
if (g_nz_workspace) {
|
||||
aclrtFree(g_nz_workspace);
|
||||
g_nz_workspace = nullptr;
|
||||
g_nz_workspace_allocated = 0;
|
||||
}
|
||||
}
|
||||
|
||||
const aclIntArray *mat2Size = aclCreateIntArray(shape.data(), shape.size());
|
||||
ACL_CHECK(aclnnCalculateMatmulWeightSizeV2(mat2Size, dataType, &size));
|
||||
|
||||
size *= sizeof(int16_t);
|
||||
|
||||
ACL_CHECK(aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
aclrtMemcpy(*deviceAddr, size, hostData, size, ACL_MEMCPY_HOST_TO_DEVICE);
|
||||
|
||||
std::vector<int64_t> strides(shape.size(), 1);
|
||||
for (int64_t i = shape.size() - 2; i >= 0; i--) {
|
||||
strides[i] = shape[i + 1] * strides[i + 1];
|
||||
void relloc_nz_workspace(size_t new_size) {
|
||||
if (new_size > g_nz_workspace_allocated) {
|
||||
if (g_nz_workspace) {
|
||||
aclrtFree(g_nz_workspace);
|
||||
g_nz_workspace = nullptr;
|
||||
}
|
||||
ACL_CHECK(aclrtMalloc(&g_nz_workspace, new_size, ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
g_nz_workspace_allocated = new_size;
|
||||
}
|
||||
}
|
||||
|
||||
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
|
||||
shape.data(), shape.size(), *deviceAddr);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Convert tensor weights to NZ format using Ascend CANN API.
|
||||
*
|
||||
* This function creates a transposed tensor descriptor and performs the
|
||||
* TransMatmulWeight operation. Converting tensor formats can significantly
|
||||
* improve performance on certain hardware.
|
||||
*
|
||||
* @param tensor Pointer to the input ggml_tensor containing the weights.
|
||||
* @param data Pointer to the raw data buffer for the tensor weights.
|
||||
* @param offset Byte offset within the tensor data buffer where weights start.
|
||||
*
|
||||
* @note The workspace buffer used in this function is managed globally and reused
|
||||
* across calls. This reduces overhead from repeated memory allocation and deallocation.
|
||||
*/
|
||||
static void weight_format_to_nz(ggml_tensor *tensor, const void *data, size_t offset) {
|
||||
aclrtStream stream;
|
||||
ACL_CHECK(aclrtCreateStream(&stream));
|
||||
|
||||
std::vector<int64_t> weightTransposedShape = {tensor->ne[1], tensor->ne[0]};
|
||||
void *weightTransposedDeviceAddr = nullptr;
|
||||
aclTensor *weightTransposed = nullptr;
|
||||
CreateAclTensorWeight(data, weightTransposedShape, &weightTransposedDeviceAddr,
|
||||
ggml_cann_type_mapping(tensor->type), &weightTransposed);
|
||||
|
||||
aclTensor* weightTransposed = ggml_cann_create_tensor(tensor, tensor->ne,
|
||||
tensor->nb, 2, ACL_FORMAT_ND, offset);
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
void *workspaceAddr = nullptr;
|
||||
|
||||
// TransMatmulWeight
|
||||
ACL_CHECK(aclnnTransMatmulWeightGetWorkspaceSize(weightTransposed, &workspaceSize, &executor));
|
||||
std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrTrans(nullptr, aclrtFree);
|
||||
if (workspaceSize > 0) {
|
||||
ACL_CHECK(aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
workspaceAddrPtrTrans.reset(workspaceAddr);
|
||||
}
|
||||
ACL_CHECK(aclnnTransMatmulWeight(workspaceAddr, workspaceSize, executor, stream));
|
||||
ACL_CHECK(aclnnTransMatmulWeightGetWorkspaceSize(weightTransposed,
|
||||
&workspaceSize, &executor));
|
||||
// Avoid frequent malloc/free of the workspace.
|
||||
relloc_nz_workspace(workspaceSize);
|
||||
|
||||
size_t size = ggml_nelements(tensor) * ggml_element_size(tensor);
|
||||
|
||||
aclrtMemcpy((char *)tensor->data + offset, size,
|
||||
weightTransposedDeviceAddr, size, ACL_MEMCPY_HOST_TO_DEVICE);
|
||||
ACL_CHECK(aclnnTransMatmulWeight(g_nz_workspace, workspaceSize, executor, nullptr));
|
||||
ACL_CHECK(aclDestroyTensor(weightTransposed));
|
||||
aclrtFree(weightTransposedDeviceAddr);
|
||||
}
|
||||
|
||||
// TODO: need handle tensor which has paddings.
|
||||
@@ -1197,14 +1195,14 @@ static void ggml_backend_cann_buffer_set_tensor(
|
||||
// For acl, synchronous functions use this default stream.
|
||||
// Why aclrtSynchronizeDevice?
|
||||
|
||||
bool weightToNZ = false;
|
||||
#ifdef ASCEND_310P
|
||||
weightToNZ = (getenv("GGML_CANN_WEIGHT_NZ") != nullptr);
|
||||
#endif
|
||||
// Only check env once.
|
||||
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or(""));
|
||||
if (!need_transform(tensor->type)) {
|
||||
ACL_CHECK(aclrtMemcpy((char *)tensor->data + offset, size, data, size,
|
||||
ACL_MEMCPY_HOST_TO_DEVICE));
|
||||
if (weightToNZ && is_matmul_weight((const ggml_tensor*)tensor)) {
|
||||
if (weight_to_nz && is_matmul_weight((const ggml_tensor*)tensor)) {
|
||||
GGML_ASSERT(tensor->ne[2] == 1);
|
||||
GGML_ASSERT(tensor->ne[3] == 1);
|
||||
weight_format_to_nz(tensor, data, offset);
|
||||
}
|
||||
} else {
|
||||
@@ -1440,20 +1438,32 @@ static size_t ggml_backend_cann_buffer_type_get_alloc_size(
|
||||
size_t size = ggml_nbytes(tensor);
|
||||
int64_t ne0 = tensor->ne[0];
|
||||
|
||||
// Only check env once.
|
||||
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or(""));
|
||||
|
||||
// last line must bigger than 32, because every single op deal at
|
||||
// least 32 bytes.
|
||||
// TODO: quantized type?
|
||||
// int64_t line_size = ne0 * ggml_element_size(tensor);
|
||||
// int64_t line_size_align_32 = (line_size + 31) & ~31;
|
||||
// size += (line_size_align_32 - line_size);
|
||||
|
||||
// TODO: not support quantized yet.
|
||||
// TODO: consider un-continue tensor.
|
||||
if (ggml_is_quantized(tensor->type)) {
|
||||
if (ne0 % MATRIX_ROW_PADDING != 0) {
|
||||
size += ggml_row_size(
|
||||
tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
|
||||
}
|
||||
} else if (weight_to_nz && is_matmul_weight((const ggml_tensor*)tensor)) {
|
||||
// NZ format weight are not support quantized yet.
|
||||
// If ND tensor transform to NZ, size may changed.
|
||||
int64_t shape[] = {tensor->ne[1], tensor->ne[0]};
|
||||
GGML_ASSERT(tensor->ne[2] == 1);
|
||||
GGML_ASSERT(tensor->ne[3] == 1);
|
||||
const aclIntArray *acl_shape = aclCreateIntArray(shape, 2);
|
||||
size_t new_size;
|
||||
ACL_CHECK(aclnnCalculateMatmulWeightSizeV2(acl_shape,
|
||||
ggml_cann_type_mapping(tensor->type), &new_size));
|
||||
ACL_CHECK(aclDestroyIntArray(acl_shape));
|
||||
size = std::max(size, new_size);
|
||||
}
|
||||
|
||||
return size;
|
||||
@@ -2080,6 +2090,8 @@ static enum ggml_status ggml_backend_cann_graph_compute(
|
||||
(ggml_backend_cann_context*)backend->context;
|
||||
|
||||
ggml_cann_set_device(cann_ctx->device);
|
||||
//release temp buffer create by set tensor.
|
||||
release_nz_workspace();
|
||||
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
ggml_tensor* node = cgraph->nodes[i];
|
||||
|
||||
@@ -82,6 +82,8 @@ set(GGML_OPENCL_KERNELS
|
||||
mul_mv_q4_0_f32_1d_16x_flat
|
||||
mul_mv_q6_k
|
||||
mul_mv_id_q4_0_f32_8x_flat
|
||||
mul_mm_f32_f32_l4_lm
|
||||
mul_mm_f16_f32_l4_lm
|
||||
mul
|
||||
norm
|
||||
relu
|
||||
|
||||
@@ -33,6 +33,7 @@
|
||||
#undef MAX
|
||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
#define CEIL_DIV(M, N) (((M) + (N)-1) / (N))
|
||||
|
||||
#define UNUSED(x) (void)(x)
|
||||
|
||||
@@ -396,6 +397,8 @@ struct ggml_backend_opencl_context {
|
||||
cl_program program_conv_2d_f16_f32;
|
||||
cl_program program_tsembd;
|
||||
cl_program program_mul_mv_id_q4_0_f32_8x_flat;
|
||||
cl_program program_mul_mm_f32_f32_l4_lm;
|
||||
cl_program program_mul_mm_f16_f32_l4_lm;
|
||||
|
||||
cl_kernel kernel_add, kernel_add_row;
|
||||
cl_kernel kernel_mul, kernel_mul_row;
|
||||
@@ -450,6 +453,8 @@ struct ggml_backend_opencl_context {
|
||||
cl_kernel kernel_conv_2d_f16_f32;
|
||||
cl_kernel kernel_timestep_embedding;
|
||||
cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
|
||||
cl_kernel kernel_mul_mm_f32_f32_l4_lm;
|
||||
cl_kernel kernel_mul_mm_f16_f32_l4_lm;
|
||||
|
||||
std::vector<ProfilingInfo> profiling_info;
|
||||
|
||||
@@ -1040,6 +1045,38 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
// mul_mm_f32_f32_l4_lm
|
||||
{
|
||||
#ifdef GGML_OPENCL_EMBED_KERNELS
|
||||
const std::string kernel_src {
|
||||
#include "mul_mm_f32_f32_l4_lm.cl.h"
|
||||
};
|
||||
#else
|
||||
const std::string kernel_src = read_file("mul_mm_f32_f32_l4_lm.cl");
|
||||
#endif
|
||||
backend_ctx->program_mul_mm_f32_f32_l4_lm =
|
||||
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||
|
||||
CL_CHECK((backend_ctx->kernel_mul_mm_f32_f32_l4_lm = clCreateKernel(backend_ctx->program_mul_mm_f32_f32_l4_lm, "kernel_mul_mm_f32_f32_l4_lm", &err), err));
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
// mul_mm_f16_f32_l4_lm
|
||||
{
|
||||
#ifdef GGML_OPENCL_EMBED_KERNELS
|
||||
const std::string kernel_src {
|
||||
#include "mul_mm_f16_f32_l4_lm.cl.h"
|
||||
};
|
||||
#else
|
||||
const std::string kernel_src = read_file("mul_mm_f16_f32_l4_lm.cl");
|
||||
#endif
|
||||
backend_ctx->program_mul_mm_f16_f32_l4_lm =
|
||||
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||
|
||||
CL_CHECK((backend_ctx->kernel_mul_mm_f16_f32_l4_lm = clCreateKernel(backend_ctx->program_mul_mm_f16_f32_l4_lm, "kernel_mul_mm_f16_f32_l4_lm", &err), err));
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
// mul
|
||||
{
|
||||
#ifdef GGML_OPENCL_EMBED_KERNELS
|
||||
@@ -5297,18 +5334,6 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
|
||||
|
||||
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
||||
|
||||
if (src0t == GGML_TYPE_F16 && src1t == GGML_TYPE_F32 &&
|
||||
src0->ne[1] > 32 && // M > 32
|
||||
src1->ne[1] > 32 && // N > 32
|
||||
src0->ne[0] > 32 && // K > 32
|
||||
src0->ne[2] == 1 && src0->ne[3] == 1 &&
|
||||
src1->ne[2] == 1 && src1->ne[3] == 1 &&
|
||||
ggml_is_contiguous(src0) && ggml_is_contiguous(src1) &&
|
||||
backend_ctx->kernel_mul_mat_f16_f32_tiled != NULL) {
|
||||
ggml_cl_mul_mat_f16_f32_tiled(backend, src0, src1, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
||||
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
|
||||
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
||||
@@ -5655,6 +5680,101 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
|
||||
} // if (ne01 && ne1)
|
||||
#endif // GGML_OPENCL_USE_ADRENO_KERNELS
|
||||
|
||||
// GEMM using local memory
|
||||
// Current BK = 16, so ne00 % 16 == 0
|
||||
if (ggml_is_contiguous(src0) &&
|
||||
ggml_is_contiguous(src1) &&
|
||||
src1t == GGML_TYPE_F32 &&
|
||||
ne00 % 16 == 0 &&
|
||||
ne11 > 1) {
|
||||
switch(src0t) {
|
||||
case GGML_TYPE_F32: {
|
||||
kernel = backend_ctx->kernel_mul_mm_f32_f32_l4_lm;
|
||||
nth0 = 128; // calculated as (BM*BN)/(TM*TN)
|
||||
|
||||
int batch_stride_a = ne00*ne01;
|
||||
int batch_stride_b = ne10*ne11;
|
||||
int batch_stride_d = ne0*ne1;
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
|
||||
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
|
||||
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
|
||||
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
|
||||
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
|
||||
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
|
||||
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
|
||||
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
|
||||
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
|
||||
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
|
||||
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
|
||||
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
|
||||
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
|
||||
|
||||
// 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
|
||||
size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
|
||||
size_t local_work_size[] = {(size_t)nth0, 1, 1};
|
||||
|
||||
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
|
||||
return;
|
||||
}
|
||||
case GGML_TYPE_F16: {
|
||||
kernel = backend_ctx->kernel_mul_mm_f16_f32_l4_lm;
|
||||
nth0 = 128; // calculated as (BM*BN)/(TM*TN)
|
||||
|
||||
int batch_stride_a = ne00*ne01;
|
||||
int batch_stride_b = ne10*ne11;
|
||||
int batch_stride_d = ne0*ne1;
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
|
||||
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
|
||||
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
|
||||
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
|
||||
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
|
||||
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
|
||||
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
|
||||
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
|
||||
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
|
||||
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
|
||||
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
|
||||
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
|
||||
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
|
||||
|
||||
// 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
|
||||
size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
|
||||
size_t local_work_size[] = {(size_t)nth0, 1, 1};
|
||||
|
||||
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
|
||||
return;
|
||||
}
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (src0t == GGML_TYPE_F16 && src1t == GGML_TYPE_F32 &&
|
||||
src0->ne[1] > 32 && // M > 32
|
||||
src1->ne[1] > 32 && // N > 32
|
||||
src0->ne[0] > 32 && // K > 32
|
||||
src0->ne[2] == 1 && src0->ne[3] == 1 &&
|
||||
src1->ne[2] == 1 && src1->ne[3] == 1 &&
|
||||
ggml_is_contiguous(src0) && ggml_is_contiguous(src1) &&
|
||||
backend_ctx->kernel_mul_mat_f16_f32_tiled != NULL) {
|
||||
ggml_cl_mul_mat_f16_f32_tiled(backend, src0, src1, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
if (!ggml_is_transposed(src0) &&
|
||||
!ggml_is_transposed(src1) &&
|
||||
src1t == GGML_TYPE_F32 &&
|
||||
|
||||
132
ggml/src/ggml-opencl/kernels/mul_mm_f16_f32_l4_lm.cl
Normal file
132
ggml/src/ggml-opencl/kernels/mul_mm_f16_f32_l4_lm.cl
Normal file
@@ -0,0 +1,132 @@
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
#define LOAD_VEC_A 4
|
||||
#define LOAD_VEC_B 4
|
||||
|
||||
#define BM 64
|
||||
#define BN 64
|
||||
#define BK 16
|
||||
#define TM 4
|
||||
#define TN 8
|
||||
|
||||
kernel void kernel_mul_mm_f16_f32_l4_lm(
|
||||
global half4 * src0,
|
||||
ulong offset0,
|
||||
global float4 * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne11,
|
||||
int ne12,
|
||||
|
||||
int stride_a,
|
||||
int stride_b,
|
||||
int stride_d,
|
||||
|
||||
int batch_stride_a,
|
||||
int batch_stride_b,
|
||||
int batch_stride_d,
|
||||
|
||||
int r2,
|
||||
int r3
|
||||
) {
|
||||
src0 = (global half4*)((global char*)src0 + offset0);
|
||||
src1 = (global float4*)((global char*)src1 + offset1);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
local half buf_a[BM * BK];
|
||||
local float buf_b[BN * BK];
|
||||
|
||||
const int batch_idx = get_global_id(2);
|
||||
|
||||
const int i13 = batch_idx / ne12;
|
||||
const int i12 = batch_idx % ne12;
|
||||
|
||||
const int i03 = i13 / r3;
|
||||
const int i02 = i12 / r2;
|
||||
|
||||
const int batch_idx_a = i03 * ne02 + i02;
|
||||
|
||||
const int ir = get_group_id(0);
|
||||
const int ic = get_group_id(1);
|
||||
|
||||
const int tid = get_local_id(0);
|
||||
const int th_r = tid % (BM / TM);
|
||||
const int th_c = tid / (BM / TM);
|
||||
|
||||
const int loadr_a = get_local_id(0) % (BK / LOAD_VEC_A);
|
||||
const int loadc_a = get_local_id(0) / (BK / LOAD_VEC_A);
|
||||
const int loadr_b = get_local_id(0) % (BK / LOAD_VEC_B);
|
||||
const int loadc_b = get_local_id(0) / (BK / LOAD_VEC_B);
|
||||
|
||||
const int loadstride_a = get_local_size(0) * LOAD_VEC_A / BK;
|
||||
const int loadstride_b = get_local_size(0) * LOAD_VEC_B / BK;
|
||||
|
||||
int pos_a = (batch_idx_a * batch_stride_a + ir * BM * stride_a) / LOAD_VEC_A;
|
||||
int pos_b = (batch_idx * batch_stride_b + ic * BN * stride_b) / LOAD_VEC_B;
|
||||
|
||||
float sums[TM * TN];
|
||||
half cache_a[TM];
|
||||
float cache_b[TN];
|
||||
|
||||
for (int i = 0; i < TM * TN; i++) {
|
||||
sums[i] = 0.0f;
|
||||
}
|
||||
|
||||
for (int block = 0; block < ne00; block += BK) {
|
||||
for (int l = 0; l < BM; l += loadstride_a) {
|
||||
const int idx = pos_a + (loadc_a + l) * stride_a / LOAD_VEC_A + loadr_a;
|
||||
buf_a[(loadr_a * LOAD_VEC_A + 0) * BM + loadc_a + l] = src0[idx].s0;
|
||||
buf_a[(loadr_a * LOAD_VEC_A + 1) * BM + loadc_a + l] = src0[idx].s1;
|
||||
buf_a[(loadr_a * LOAD_VEC_A + 2) * BM + loadc_a + l] = src0[idx].s2;
|
||||
buf_a[(loadr_a * LOAD_VEC_A + 3) * BM + loadc_a + l] = src0[idx].s3;
|
||||
}
|
||||
|
||||
for (int l = 0; l < BN; l += loadstride_b) {
|
||||
const int idx = pos_b + (loadc_b + l) * stride_b / LOAD_VEC_B + loadr_b;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 0) * BN + loadc_b + l] = src1[idx].s0;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 1) * BN + loadc_b + l] = src1[idx].s1;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 2) * BN + loadc_b + l] = src1[idx].s2;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 3) * BN + loadc_b + l] = src1[idx].s3;
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
pos_a += BK / LOAD_VEC_A;
|
||||
pos_b += BK / LOAD_VEC_B;
|
||||
|
||||
for (int i = 0; i < BK; i++) {
|
||||
for (int j = 0; j < TM; j++) {
|
||||
cache_a[j] = buf_a[(i) * BM + th_r * TM + j];
|
||||
}
|
||||
for (int j = 0; j < TN; j++) {
|
||||
cache_b[j] = buf_b[(i) * BN + th_c * TN + j];
|
||||
}
|
||||
|
||||
for (int cc = 0; cc < TN; cc++) {
|
||||
for (int cr = 0; cr < TM; cr++) {
|
||||
const int sums_idx = cc*TM + cr;
|
||||
sums[sums_idx] = mad(convert_float(cache_a[cr]), cache_b[cc], sums[sums_idx]);
|
||||
}
|
||||
}
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
const int dr = ir * BM + th_r * TM;
|
||||
const int dc = ic * BN + th_c * TN;
|
||||
|
||||
const int offsets = batch_idx * batch_stride_d;
|
||||
|
||||
for (int cc = 0; cc < TN; cc++) {
|
||||
for (int cr = 0; cr < TM; cr++) {
|
||||
if (dr + cr < ne01 && dc + cc < ne11) {
|
||||
dst[offsets + (dc + cc) * stride_d + dr + cr] = sums[cc * TM + cr];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
133
ggml/src/ggml-opencl/kernels/mul_mm_f32_f32_l4_lm.cl
Normal file
133
ggml/src/ggml-opencl/kernels/mul_mm_f32_f32_l4_lm.cl
Normal file
@@ -0,0 +1,133 @@
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
#define LOAD_VEC_A 4
|
||||
#define LOAD_VEC_B 4
|
||||
|
||||
#define BM 64
|
||||
#define BN 64
|
||||
#define BK 16
|
||||
#define TM 4
|
||||
#define TN 8
|
||||
|
||||
kernel void kernel_mul_mm_f32_f32_l4_lm(
|
||||
global float4 * src0,
|
||||
ulong offset0,
|
||||
global float4 * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne11,
|
||||
int ne12,
|
||||
|
||||
int stride_a,
|
||||
int stride_b,
|
||||
int stride_d,
|
||||
|
||||
int batch_stride_a,
|
||||
int batch_stride_b,
|
||||
int batch_stride_d,
|
||||
|
||||
int r2,
|
||||
int r3
|
||||
) {
|
||||
src0 = (global float4*)((global char*)src0 + offset0);
|
||||
src1 = (global float4*)((global char*)src1 + offset1);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
local float buf_a[BM * BK];
|
||||
local float buf_b[BN * BK];
|
||||
|
||||
const int batch_idx = get_global_id(2);
|
||||
|
||||
const int i13 = batch_idx / ne12;
|
||||
const int i12 = batch_idx % ne12;
|
||||
|
||||
const int i03 = i13 / r3;
|
||||
const int i02 = i12 / r2;
|
||||
|
||||
const int batch_idx_a = i03 * ne02 + i02;
|
||||
|
||||
const int ir = get_group_id(0);
|
||||
const int ic = get_group_id(1);
|
||||
|
||||
const int tid = get_local_id(0);
|
||||
const int th_r = tid % (BM / TM);
|
||||
const int th_c = tid / (BM / TM);
|
||||
|
||||
const int loadr_a = get_local_id(0) % (BK / LOAD_VEC_A);
|
||||
const int loadc_a = get_local_id(0) / (BK / LOAD_VEC_A);
|
||||
const int loadr_b = get_local_id(0) % (BK / LOAD_VEC_B);
|
||||
const int loadc_b = get_local_id(0) / (BK / LOAD_VEC_B);
|
||||
|
||||
const int loadstride_a = get_local_size(0) * LOAD_VEC_A / BK;
|
||||
const int loadstride_b = get_local_size(0) * LOAD_VEC_B / BK;
|
||||
|
||||
int pos_a = (batch_idx_a * batch_stride_a + ir * BM * stride_a) / LOAD_VEC_A;
|
||||
int pos_b = (batch_idx * batch_stride_b + ic * BN * stride_b) / LOAD_VEC_B;
|
||||
|
||||
float sums[TM * TN];
|
||||
float cache_a[TM];
|
||||
float cache_b[TN];
|
||||
|
||||
for (int i = 0; i < TM * TN; i++) {
|
||||
sums[i] = 0.0f;
|
||||
}
|
||||
|
||||
for (int block = 0; block < ne00; block += BK) {
|
||||
for (int l = 0; l < BM; l += loadstride_a) {
|
||||
const int idx = pos_a + (loadc_a + l) * stride_a / LOAD_VEC_A + loadr_a;
|
||||
buf_a[(loadr_a * LOAD_VEC_A + 0) * BM + loadc_a + l] = src0[idx].s0;
|
||||
buf_a[(loadr_a * LOAD_VEC_A + 1) * BM + loadc_a + l] = src0[idx].s1;
|
||||
buf_a[(loadr_a * LOAD_VEC_A + 2) * BM + loadc_a + l] = src0[idx].s2;
|
||||
buf_a[(loadr_a * LOAD_VEC_A + 3) * BM + loadc_a + l] = src0[idx].s3;
|
||||
}
|
||||
|
||||
for (int l = 0; l < BN; l += loadstride_b) {
|
||||
const int idx = pos_b + (loadc_b + l) * stride_b / LOAD_VEC_B + loadr_b;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 0) * BN + loadc_b + l] = src1[idx].s0;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 1) * BN + loadc_b + l] = src1[idx].s1;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 2) * BN + loadc_b + l] = src1[idx].s2;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 3) * BN + loadc_b + l] = src1[idx].s3;
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
pos_a += BK / LOAD_VEC_A;
|
||||
pos_b += BK / LOAD_VEC_B;
|
||||
|
||||
for (int i = 0; i < BK; i++) {
|
||||
for (int j = 0; j < TM; j++) {
|
||||
cache_a[j] = buf_a[(i) * BM + th_r * TM + j];
|
||||
}
|
||||
|
||||
for (int j = 0; j < TN; j++) {
|
||||
cache_b[j] = buf_b[(i) * BN + th_c * TN + j];
|
||||
}
|
||||
|
||||
for (int cc = 0; cc < TN; cc++) {
|
||||
for (int cr = 0; cr < TM; cr++) {
|
||||
const int sums_idx = cc*TM + cr;
|
||||
sums[sums_idx] = mad(cache_a[cr], cache_b[cc], sums[sums_idx]);
|
||||
}
|
||||
}
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
const int dr = ir * BM + th_r * TM;
|
||||
const int dc = ic * BN + th_c * TN;
|
||||
|
||||
const int offsets = batch_idx * batch_stride_d;
|
||||
|
||||
for (int cc = 0; cc < TN; cc++) {
|
||||
for (int cr = 0; cr < TM; cr++) {
|
||||
if (dr + cr < ne01 && dc + cc < ne11) {
|
||||
dst[offsets + (dc + cc) * stride_d + dr + cr] = sums[cc * TM + cr];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -5225,9 +5225,9 @@ static void ggml_vk_quantize_q8_1(ggml_backend_vk_context * ctx, vk_context& sub
|
||||
}
|
||||
|
||||
static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
|
||||
VK_LOG_DEBUG("ggml_vk_mul_mat_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
|
||||
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
|
||||
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
|
||||
VK_LOG_DEBUG("ggml_vk_mul_mat_q_f16((" << src0 << ", name=" << src0->name << ", type=" << ggml_type_name(src0->type) << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
|
||||
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << ggml_type_name(src1->type) << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
|
||||
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << ggml_type_name(dst->type) << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
|
||||
std::cerr << "), " << (dryrun ? "dryrun" : "") << ")");
|
||||
GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16); // NOLINT
|
||||
GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT
|
||||
@@ -11168,7 +11168,7 @@ size_t comp_nb[GGML_MAX_DIMS];
|
||||
size_t check_counter = 0;
|
||||
static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph * cgraph, int tensor_idx) {
|
||||
ggml_tensor * tensor = cgraph->nodes[tensor_idx];
|
||||
if (tensor->op == GGML_OP_TRANSPOSE) {
|
||||
if (tensor->op == GGML_OP_TRANSPOSE || tensor->op == GGML_OP_SET_ROWS) {
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -11288,7 +11288,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph *
|
||||
tensor_clone = ggml_upscale_ext(ggml_ctx, src_clone[0], tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], (ggml_scale_mode) tensor->op_params[0]);
|
||||
} else if (tensor->op == GGML_OP_SCALE) {
|
||||
const float * params = (const float *)tensor->op_params;
|
||||
tensor_clone = ggml_scale(ggml_ctx, src_clone[0], params[0]);
|
||||
tensor_clone = ggml_scale_bias(ggml_ctx, src_clone[0], params[0], params[1]);
|
||||
} else if (tensor->op == GGML_OP_SQR) {
|
||||
tensor_clone = ggml_sqr(ggml_ctx, src_clone[0]);
|
||||
} else if (tensor->op == GGML_OP_SIN) {
|
||||
@@ -11399,8 +11399,6 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph *
|
||||
} else {
|
||||
tensor_clone = ggml_cpy(ggml_ctx, src_clone[0], src_clone[1]);
|
||||
}
|
||||
} else if (tensor->op == GGML_OP_SET_ROWS) {
|
||||
tensor_clone = ggml_set_rows(ggml_ctx, src_clone[0], src_clone[1]);
|
||||
} else if (tensor->op == GGML_OP_CONT) {
|
||||
tensor_clone = ggml_cont_4d(ggml_ctx, src_clone[0], tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
|
||||
} else if (tensor->op == GGML_OP_RESHAPE) {
|
||||
@@ -11508,7 +11506,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph *
|
||||
|
||||
static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_cgraph * cgraph, int tensor_idx) {
|
||||
ggml_tensor * tensor = cgraph->nodes[tensor_idx];
|
||||
if (tensor->op == GGML_OP_TRANSPOSE) {
|
||||
if (tensor->op == GGML_OP_TRANSPOSE || tensor->op == GGML_OP_SET_ROWS) {
|
||||
return;
|
||||
}
|
||||
bool fused_rms_norm_mul = false;
|
||||
@@ -11568,6 +11566,9 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_cgraph *
|
||||
} else if (tensor->type == GGML_TYPE_F16) {
|
||||
correct = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]));
|
||||
result = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]));
|
||||
} else if (tensor->type == GGML_TYPE_BF16) {
|
||||
correct = ggml_bf16_to_fp32(*(ggml_bf16_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]));
|
||||
result = ggml_bf16_to_fp32(*(ggml_bf16_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]));
|
||||
} else if (tensor->type == GGML_TYPE_I32) {
|
||||
correct = *(int32_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]);
|
||||
result = *(int32_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]);
|
||||
|
||||
@@ -279,6 +279,9 @@ class Keys:
|
||||
class Projector:
|
||||
STACK_FACTOR = "clip.audio.projector.stack_factor"
|
||||
|
||||
class Diffusion:
|
||||
SHIFT_LOGITS = "diffusion.shift_logits"
|
||||
|
||||
#
|
||||
# recommended mapping of model tensor names for storage in gguf
|
||||
#
|
||||
@@ -377,6 +380,7 @@ class MODEL_ARCH(IntEnum):
|
||||
LFM2 = auto()
|
||||
DREAM = auto()
|
||||
SMALLTHINKER = auto()
|
||||
LLADA = auto()
|
||||
|
||||
|
||||
class VISION_PROJECTOR_TYPE(IntEnum):
|
||||
@@ -697,6 +701,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.LFM2: "lfm2",
|
||||
MODEL_ARCH.DREAM: "dream",
|
||||
MODEL_ARCH.SMALLTHINKER: "smallthinker",
|
||||
MODEL_ARCH.LLADA: "llada",
|
||||
}
|
||||
|
||||
VISION_PROJECTOR_TYPE_NAMES: dict[VISION_PROJECTOR_TYPE, str] = {
|
||||
@@ -1318,6 +1323,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.LLADA: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.QWEN2VL: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
|
||||
@@ -1047,6 +1047,11 @@ class GGUFWriter:
|
||||
def add_audio_stack_factor(self, value: int) -> None:
|
||||
self.add_uint32(Keys.ClipAudio.Projector.STACK_FACTOR, value)
|
||||
|
||||
# diffusion models
|
||||
|
||||
def add_diffusion_shift_logits(self, value: bool) -> None:
|
||||
self.add_bool(Keys.Diffusion.SHIFT_LOGITS, value)
|
||||
|
||||
def _pack(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> bytes:
|
||||
pack_prefix = ''
|
||||
if not skip_pack_prefix:
|
||||
|
||||
@@ -32,6 +32,7 @@ class TensorNameMap:
|
||||
"model.word_embeddings", # bailingmoe
|
||||
"language_model.model.embed_tokens", # llama4
|
||||
"encoder", # neobert
|
||||
"model.transformer.wte", # llada
|
||||
),
|
||||
|
||||
# Token type embeddings
|
||||
@@ -71,6 +72,7 @@ class TensorNameMap:
|
||||
"head", # rwkv
|
||||
"head.out", # wavtokenizer
|
||||
"lm_head", # llama4
|
||||
"model.transformer.ff_out", # llada
|
||||
),
|
||||
|
||||
# Output norm
|
||||
@@ -94,6 +96,7 @@ class TensorNameMap:
|
||||
"model.ln_out", # rwkv7
|
||||
"backbone.final_layer_norm", # wavtokenizer
|
||||
"model.norm", # llama4
|
||||
"model.transformer.ln_f", # llada
|
||||
),
|
||||
|
||||
# Rope frequencies
|
||||
@@ -139,6 +142,7 @@ class TensorNameMap:
|
||||
"model.layers.{bid}.input_layernorm", # llama4
|
||||
"transformer_encoder.{bid}.attention_norm", # neobert
|
||||
"model.layers.{bid}.operator_norm", # lfm2
|
||||
"model.transformer.blocks.{bid}.attn_norm", # llada
|
||||
),
|
||||
|
||||
# Attention norm 2
|
||||
@@ -183,6 +187,7 @@ class TensorNameMap:
|
||||
"transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
|
||||
"transformer.h.{bid}.attn.attention.q_proj", # exaone
|
||||
"model.layers.{bid}.self_attn.q_proj", # llama4
|
||||
"model.transformer.blocks.{bid}.q_proj", # llada
|
||||
),
|
||||
|
||||
# Attention key
|
||||
@@ -199,6 +204,7 @@ class TensorNameMap:
|
||||
"transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
|
||||
"transformer.h.{bid}.attn.attention.k_proj", # exaone
|
||||
"model.layers.{bid}.self_attn.k_proj", # llama4
|
||||
"model.transformer.blocks.{bid}.k_proj", # llada
|
||||
),
|
||||
|
||||
# Attention value
|
||||
@@ -214,6 +220,7 @@ class TensorNameMap:
|
||||
"transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
|
||||
"transformer.h.{bid}.attn.attention.v_proj", # exaone
|
||||
"model.layers.{bid}.self_attn.v_proj", # llama4
|
||||
"model.transformer.blocks.{bid}.v_proj", # llada
|
||||
),
|
||||
|
||||
# Attention output
|
||||
@@ -246,6 +253,7 @@ class TensorNameMap:
|
||||
"transformer.h.{bid}.attn.attention.out_proj", # exaone
|
||||
"model.layers.{bid}.self_attn.o_proj", # llama4
|
||||
"transformer_encoder.{bid}.wo", # neobert
|
||||
"model.transformer.blocks.{bid}.attn_out", # llada
|
||||
),
|
||||
|
||||
# Attention output norm
|
||||
@@ -291,6 +299,7 @@ class TensorNameMap:
|
||||
"model.layers.{bid}.post_attention_layernorm", # llama4
|
||||
"transformer_encoder.{bid}.ffn_norm", # neobert
|
||||
"model.layers.layers.{bid}.pre_mlp_norm", # plamo2
|
||||
"model.transformer.blocks.{bid}.ff_norm", # llada
|
||||
),
|
||||
|
||||
# Post feed-forward norm
|
||||
@@ -364,6 +373,7 @@ class TensorNameMap:
|
||||
"model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid
|
||||
"transformer_encoder.{bid}.ffn.w12", # neobert
|
||||
"model.layers.{bid}.block_sparse_moe.up", # smallthinker
|
||||
"model.transformer.blocks.{bid}.up_proj", # llada
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_UP_EXP: (
|
||||
@@ -405,6 +415,7 @@ class TensorNameMap:
|
||||
"transformer.h.{bid}.mlp.c_fc_0", # exaone
|
||||
"model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
|
||||
"model.layers.{bid}.block_sparse_moe.gate", # smallthinker
|
||||
"model.transformer.blocks.{bid}.ff_proj", # llada
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_EXP: (
|
||||
@@ -454,6 +465,7 @@ class TensorNameMap:
|
||||
"model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid
|
||||
"transformer_encoder.{bid}.ffn.w3", # neobert
|
||||
"model.layers.{bid}.block_sparse_moe.down", # smallthinker
|
||||
"model.transformer.blocks.{bid}.ff_out", # llada
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_DOWN_EXP: (
|
||||
@@ -604,6 +616,7 @@ class TensorNameMap:
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_DT_NORM: (
|
||||
"model.layers.layers.{bid}.mixer.dt_norm.weight", # plamo2
|
||||
"model.layers.{bid}.mamba.dt_layernorm", # jamba
|
||||
),
|
||||
|
||||
@@ -633,10 +646,6 @@ class TensorNameMap:
|
||||
"model.layers.layers.{bid}.mixer.D", # plamo2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_DT_NORM: (
|
||||
"model.layers.layers.{bid}.mixer.dt_norm.weight", # plamo2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_NORM: (
|
||||
"model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid
|
||||
"backbone.layers.{bid}.mixer.norm", # mamba2
|
||||
|
||||
@@ -537,6 +537,9 @@ extern "C" {
|
||||
// Returns true if the model is recurrent (like Mamba, RWKV, etc.)
|
||||
LLAMA_API bool llama_model_is_recurrent(const struct llama_model * model);
|
||||
|
||||
// Returns true if the model is diffusion-based (like LLaDA, Dream, etc.)
|
||||
LLAMA_API bool llama_model_is_diffusion(const struct llama_model * model);
|
||||
|
||||
// Returns 0 on success
|
||||
LLAMA_API uint32_t llama_model_quantize(
|
||||
const char * fname_inp,
|
||||
|
||||
@@ -89,6 +89,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_LFM2, "lfm2" },
|
||||
{ LLM_ARCH_DREAM, "dream" },
|
||||
{ LLM_ARCH_SMALLTHINKER, "smallthinker" },
|
||||
{ LLM_ARCH_LLADA, "llada" },
|
||||
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
||||
};
|
||||
|
||||
@@ -1972,6 +1973,23 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_LLADA,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_UNKNOWN,
|
||||
{
|
||||
@@ -2224,6 +2242,7 @@ bool llm_arch_is_hybrid(const llm_arch & arch) {
|
||||
bool llm_arch_is_diffusion(const llm_arch & arch) {
|
||||
switch (arch) {
|
||||
case LLM_ARCH_DREAM:
|
||||
case LLM_ARCH_LLADA:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
|
||||
@@ -93,6 +93,7 @@ enum llm_arch {
|
||||
LLM_ARCH_LFM2,
|
||||
LLM_ARCH_DREAM,
|
||||
LLM_ARCH_SMALLTHINKER,
|
||||
LLM_ARCH_LLADA,
|
||||
LLM_ARCH_UNKNOWN,
|
||||
};
|
||||
|
||||
|
||||
@@ -785,13 +785,20 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
|
||||
bool scale_w,
|
||||
float w_scale,
|
||||
llama_expert_gating_func_type gating_op,
|
||||
int il) const {
|
||||
int il,
|
||||
ggml_tensor * probs_in) const {
|
||||
const int64_t n_embd = cur->ne[0];
|
||||
const int64_t n_tokens = cur->ne[1];
|
||||
const bool weight_before_ffn = arch == LLM_ARCH_LLAMA4; // for llama4, we apply the sigmoid-ed weights before the FFN
|
||||
|
||||
ggml_tensor * logits = build_lora_mm(gate_inp, cur); // [n_expert, n_tokens]
|
||||
cb(logits, "ffn_moe_logits", il);
|
||||
ggml_tensor * logits = nullptr;
|
||||
|
||||
if (probs_in == nullptr) {
|
||||
logits = build_lora_mm(gate_inp, cur); // [n_expert, n_tokens]
|
||||
cb(logits, "ffn_moe_logits", il);
|
||||
} else {
|
||||
logits = probs_in;
|
||||
}
|
||||
|
||||
ggml_tensor * probs = nullptr;
|
||||
switch (gating_op) {
|
||||
@@ -884,6 +891,14 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
|
||||
cur = ggml_gelu(ctx0, cur);
|
||||
cb(cur, "ffn_moe_gelu", il);
|
||||
} break;
|
||||
case LLM_FFN_RELU:
|
||||
if (gate_exps) {
|
||||
cur = ggml_reglu_split(ctx0, cur, up);
|
||||
cb(cur, "ffn_moe_reglu", il);
|
||||
} else {
|
||||
cur = ggml_relu(ctx0, cur);
|
||||
cb(cur, "ffn_moe_relu", il);
|
||||
} break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
@@ -927,100 +942,6 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
|
||||
return moe_out;
|
||||
}
|
||||
|
||||
ggml_tensor * llm_graph_context::build_moe_ffn_from_probs(
|
||||
ggml_tensor * cur,
|
||||
ggml_tensor * probs,
|
||||
ggml_tensor * up_exps,
|
||||
ggml_tensor * gate_exps,
|
||||
ggml_tensor * down_exps,
|
||||
ggml_tensor * exp_probs_b,
|
||||
int64_t n_expert,
|
||||
int64_t n_expert_used,
|
||||
llama_expert_gating_func_type gating_op,
|
||||
int il) const {
|
||||
const int64_t n_embd = cur->ne[0];
|
||||
const int64_t n_tokens = cur->ne[1];
|
||||
|
||||
// add experts selection bias - introduced in DeepSeek V3
|
||||
// leave probs unbiased as it's later used to get expert weights
|
||||
ggml_tensor * selection_probs = probs;
|
||||
if (exp_probs_b != nullptr) {
|
||||
selection_probs = ggml_add(ctx0, probs, exp_probs_b);
|
||||
cb(selection_probs, "ffn_moe_probs_biased", il);
|
||||
}
|
||||
|
||||
// select experts
|
||||
ggml_tensor * selected_experts = ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
|
||||
cb(selected_experts->src[0], "ffn_moe_argsort", il);
|
||||
cb(selected_experts, "ffn_moe_topk", il);
|
||||
|
||||
ggml_tensor * weights = ggml_get_rows(ctx0,
|
||||
ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
|
||||
cb(weights, "ffn_moe_weights", il);
|
||||
|
||||
weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens);
|
||||
if (gating_op == LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX) {
|
||||
weights = ggml_soft_max(ctx0, weights);
|
||||
} else {
|
||||
weights = ggml_sigmoid(ctx0, weights);
|
||||
ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens]
|
||||
cb(weights_sum, "ffn_moe_weights_sum", il);
|
||||
|
||||
weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens]
|
||||
cb(weights, "ffn_moe_weights_norm", il);
|
||||
}
|
||||
|
||||
weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens);
|
||||
|
||||
cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
|
||||
|
||||
ggml_tensor * up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
|
||||
cb(up, "ffn_moe_up", il);
|
||||
|
||||
ggml_tensor * experts = nullptr;
|
||||
cur = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
|
||||
cb(cur, "ffn_moe_gate", il);
|
||||
|
||||
cur = ggml_reglu_split(ctx0, cur, up);
|
||||
cb(cur, "ffn_moe_reglu", il);
|
||||
|
||||
experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens]
|
||||
cb(experts, "ffn_moe_down", il);
|
||||
|
||||
experts = ggml_mul(ctx0, experts, weights);
|
||||
cb(cur, "ffn_moe_weighted", il);
|
||||
|
||||
ggml_tensor * cur_experts[LLAMA_MAX_EXPERTS] = { nullptr };
|
||||
|
||||
assert(n_expert_used > 0);
|
||||
|
||||
// order the views before the adds
|
||||
for (uint32_t i = 0; i < hparams.n_expert_used; ++i) {
|
||||
cur_experts[i] = ggml_view_2d(ctx0, experts, n_embd, n_tokens, experts->nb[2], i*experts->nb[1]);
|
||||
|
||||
ggml_build_forward_expand(gf, cur_experts[i]);
|
||||
}
|
||||
|
||||
// aggregate experts
|
||||
// note: here we explicitly use hparams.n_expert_used instead of n_expert_used
|
||||
// to avoid potentially a large number of add nodes during warmup
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/14753
|
||||
ggml_tensor * moe_out = cur_experts[0];
|
||||
|
||||
for (uint32_t i = 1; i < hparams.n_expert_used; ++i) {
|
||||
moe_out = ggml_add(ctx0, moe_out, cur_experts[i]);
|
||||
}
|
||||
|
||||
if (n_expert_used == 1) {
|
||||
// avoid returning a non-contiguous tensor
|
||||
moe_out = ggml_cont(ctx0, moe_out);
|
||||
}
|
||||
|
||||
cb(moe_out, "ffn_moe_out", il);
|
||||
|
||||
return moe_out;
|
||||
}
|
||||
|
||||
// input embeddings with optional lora
|
||||
ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
@@ -1644,16 +1565,17 @@ llm_graph_input_attn_kv_unified_iswa * llm_graph_context::build_attn_inp_kv_unif
|
||||
|
||||
ggml_tensor * llm_graph_context::build_rs(
|
||||
ggml_tensor * s,
|
||||
ggml_tensor * state_copy,
|
||||
ggml_tensor * state_copy_main,
|
||||
ggml_tensor * state_copy_extra,
|
||||
int32_t state_size,
|
||||
int32_t n_seqs,
|
||||
uint32_t n_kv,
|
||||
uint32_t kv_head,
|
||||
uint32_t kv_size,
|
||||
uint32_t n_rs,
|
||||
uint32_t rs_head,
|
||||
uint32_t rs_size,
|
||||
int32_t rs_zero,
|
||||
const llm_graph_get_rows_fn & get_state_rows) const {
|
||||
|
||||
ggml_tensor * states = ggml_reshape_2d(ctx0, s, state_size, kv_size);
|
||||
ggml_tensor * states = ggml_reshape_2d(ctx0, s, state_size, rs_size);
|
||||
|
||||
// Clear a single state which will then be copied to the other cleared states.
|
||||
// Note that this is a no-op when the view is zero-sized.
|
||||
@@ -1661,39 +1583,44 @@ ggml_tensor * llm_graph_context::build_rs(
|
||||
ggml_build_forward_expand(gf, ggml_scale_inplace(ctx0, state_zero, 0));
|
||||
|
||||
// copy states
|
||||
// NOTE: assuming the copy destinations are ALL contained between kv_head and kv_head + n_kv
|
||||
// {state_size, kv_size} -> {state_size, n_seqs}
|
||||
ggml_tensor * output_states = get_state_rows(ctx0, states, ggml_view_1d(ctx0, state_copy, n_seqs, 0));
|
||||
// NOTE: assuming the copy destinations are ALL contained between rs_head and rs_head + n_rs
|
||||
// {state_size, rs_size} -> {state_size, n_seqs}
|
||||
ggml_tensor * output_states = get_state_rows(ctx0, states, state_copy_main);
|
||||
ggml_build_forward_expand(gf, output_states);
|
||||
|
||||
// copy extra states which won't be changed further (between n_seqs and n_kv)
|
||||
ggml_tensor * states_extra = ggml_get_rows(ctx0, states, ggml_view_1d(ctx0, state_copy, n_kv - n_seqs, n_seqs*state_copy->nb[0]));
|
||||
// copy extra states which won't be changed further (between n_seqs and n_rs)
|
||||
ggml_tensor * states_extra = ggml_get_rows(ctx0, states, state_copy_extra);
|
||||
ggml_build_forward_expand(gf,
|
||||
ggml_cpy(ctx0,
|
||||
states_extra,
|
||||
ggml_view_1d(ctx0, s, state_size*(n_kv - n_seqs), (kv_head + n_seqs)*state_size*ggml_element_size(s))));
|
||||
ggml_view_1d(ctx0, s, state_size*(n_rs - n_seqs), (rs_head + n_seqs)*state_size*ggml_element_size(s))));
|
||||
|
||||
return output_states;
|
||||
}
|
||||
|
||||
static std::unique_ptr<llm_graph_input_rs> build_rs_inp_impl(
|
||||
ggml_context * ctx0,
|
||||
const llama_ubatch & ubatch,
|
||||
const llama_memory_recurrent_context * mctx_cur) {
|
||||
|
||||
auto inp = std::make_unique<llm_graph_input_rs>(mctx_cur);
|
||||
|
||||
const auto n_rs = mctx_cur->get_n_rs();
|
||||
const int64_t n_rs = mctx_cur->get_n_rs();
|
||||
const int64_t n_seqs = ubatch.n_seqs;
|
||||
|
||||
inp->s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_rs);
|
||||
ggml_set_input(inp->s_copy);
|
||||
|
||||
inp->s_copy_main = ggml_view_1d(ctx0, inp->s_copy, n_seqs, 0);
|
||||
inp->s_copy_extra = ggml_view_1d(ctx0, inp->s_copy, n_rs - n_seqs, n_seqs * inp->s_copy->nb[0]);
|
||||
|
||||
return inp;
|
||||
}
|
||||
|
||||
llm_graph_input_rs * llm_graph_context::build_rs_inp() const {
|
||||
const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
|
||||
|
||||
auto inp = build_rs_inp_impl(ctx0, mctx_cur);
|
||||
auto inp = build_rs_inp_impl(ctx0, ubatch, mctx_cur);
|
||||
|
||||
return (llm_graph_input_rs *) res->add_input(std::move(inp));
|
||||
}
|
||||
@@ -1706,7 +1633,9 @@ ggml_tensor * llm_graph_context::build_rs(
|
||||
const llm_graph_get_rows_fn & get_state_rows) const {
|
||||
const auto * kv_state = inp->mctx;
|
||||
|
||||
return build_rs(s, inp->s_copy, state_size, n_seqs, kv_state->get_n_rs(), kv_state->get_head(), kv_state->get_size(), kv_state->get_rs_z(), get_state_rows);
|
||||
return build_rs(s, inp->s_copy_main, inp->s_copy_extra, state_size, n_seqs,
|
||||
kv_state->get_n_rs(), kv_state->get_head(), kv_state->get_size(), kv_state->get_rs_z(),
|
||||
get_state_rows);
|
||||
}
|
||||
|
||||
ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
|
||||
@@ -1753,7 +1682,7 @@ ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
|
||||
llm_graph_input_mem_hybrid * llm_graph_context::build_inp_mem_hybrid() const {
|
||||
const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx);
|
||||
|
||||
auto inp_rs = build_rs_inp_impl(ctx0, mctx_cur->get_recr());
|
||||
auto inp_rs = build_rs_inp_impl(ctx0, ubatch, mctx_cur->get_recr());
|
||||
auto inp_attn = build_attn_inp_kv_unified_impl(ctx0, ubatch, hparams, cparams, mctx_cur->get_attn());
|
||||
|
||||
auto inp = std::make_unique<llm_graph_input_mem_hybrid>(std::move(inp_attn), std::move(inp_rs), mctx_cur);
|
||||
|
||||
@@ -214,7 +214,12 @@ public:
|
||||
|
||||
void set_input(const llama_ubatch * ubatch) override;
|
||||
|
||||
ggml_tensor * s_copy; // I32 [kv_size]
|
||||
ggml_tensor * s_copy; // I32 [n_rs]
|
||||
|
||||
// views of s_copy, computed once per graph
|
||||
// and shared across layers which use build_rs
|
||||
ggml_tensor * s_copy_main; // I32 [n_seqs]
|
||||
ggml_tensor * s_copy_extra; // I32 [n_rs - n_seqs]
|
||||
|
||||
const llama_memory_recurrent_context * mctx;
|
||||
};
|
||||
@@ -626,19 +631,8 @@ struct llm_graph_context {
|
||||
bool scale_w,
|
||||
float w_scale,
|
||||
llama_expert_gating_func_type gating_op,
|
||||
int il) const;
|
||||
|
||||
ggml_tensor * build_moe_ffn_from_probs(
|
||||
ggml_tensor * cur,
|
||||
ggml_tensor * probs,
|
||||
ggml_tensor * up_exps,
|
||||
ggml_tensor * gate_exps,
|
||||
ggml_tensor * down_exps,
|
||||
ggml_tensor * exp_probs_b,
|
||||
int64_t n_expert,
|
||||
int64_t n_expert_used,
|
||||
llama_expert_gating_func_type gating_op,
|
||||
int il) const;
|
||||
int il,
|
||||
ggml_tensor * probs_in = nullptr) const;
|
||||
|
||||
//
|
||||
// inputs
|
||||
@@ -730,7 +724,6 @@ struct llm_graph_context {
|
||||
// recurrent
|
||||
//
|
||||
|
||||
// TODO: avoid notion of "kv"
|
||||
// TODO: move this implementation to llama_memory_recurrent.
|
||||
// this is analogous to llama_kv_cache_unified::cpy_k / cpy_v
|
||||
// when moving, avoid passing `ggml_cgraph` - only pass `ggml_context`. would likely need to split the
|
||||
@@ -738,12 +731,13 @@ struct llm_graph_context {
|
||||
// `llama_memory_recurrent`
|
||||
ggml_tensor * build_rs(
|
||||
ggml_tensor * s,
|
||||
ggml_tensor * state_copy,
|
||||
ggml_tensor * state_copy_main,
|
||||
ggml_tensor * state_copy_extra,
|
||||
int32_t state_size,
|
||||
int32_t n_seqs,
|
||||
uint32_t n_kv,
|
||||
uint32_t kv_head,
|
||||
uint32_t kv_size,
|
||||
uint32_t n_rs,
|
||||
uint32_t rs_head,
|
||||
uint32_t rs_size,
|
||||
int32_t rs_zero,
|
||||
const llm_graph_get_rows_fn & get_state_rows = ggml_get_rows) const;
|
||||
|
||||
|
||||
@@ -869,6 +869,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
hparams.causal_attn = false;
|
||||
}
|
||||
break;
|
||||
case LLM_ARCH_LLADA:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
// LLaDA-8B has 32 layers, similar to LLaMA but for diffusion
|
||||
switch (hparams.n_layer) {
|
||||
case 32:
|
||||
type = LLM_TYPE_8B;
|
||||
break;
|
||||
default:
|
||||
type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
// Set non-causal attention for diffusion models
|
||||
hparams.causal_attn = false;
|
||||
}
|
||||
break;
|
||||
case LLM_ARCH_QWEN2MOE:
|
||||
{
|
||||
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
|
||||
@@ -2149,6 +2164,53 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_LLADA:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
|
||||
|
||||
// output
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);
|
||||
|
||||
// if output is NULL, init from the input tok embed
|
||||
if (output == NULL) {
|
||||
output =
|
||||
create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
|
||||
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
|
||||
|
||||
// Use separate Q, K, V projections without bias, matching LLaDALlamaBlock
|
||||
layer.wq =
|
||||
create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
|
||||
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, 0);
|
||||
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, 0);
|
||||
// No bias for QKV projections as per config: include_bias=false, include_qkv_bias=false
|
||||
layer.wo =
|
||||
create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
|
||||
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
|
||||
|
||||
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
|
||||
|
||||
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), { n_rot / 2 },
|
||||
TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
||||
|
||||
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
|
||||
|
||||
// optional MLP bias
|
||||
layer.ffn_gate_b =
|
||||
create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED);
|
||||
layer.ffn_down_b =
|
||||
create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
|
||||
layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case LLM_ARCH_LLAMA4:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
@@ -8042,6 +8104,106 @@ struct llm_build_dream : public llm_graph_context {
|
||||
}
|
||||
};
|
||||
|
||||
struct llm_build_llada : public llm_graph_context {
|
||||
llm_build_llada(const llama_model & model, const llm_graph_params & params) :
|
||||
llm_graph_context(params) {
|
||||
// LLaDA is similar to LLaMA but uses non-causal attention for diffusion
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
ggml_tensor * cur;
|
||||
ggml_tensor * inpL;
|
||||
|
||||
inpL = build_inp_embd(model.tok_embd);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
// Non-causal attention for diffusion
|
||||
auto * inp_attn = build_attn_inp_no_cache();
|
||||
|
||||
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_tensor * inpSA = inpL;
|
||||
|
||||
// norm
|
||||
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
// self-attention
|
||||
{
|
||||
// compute separate Q, K, V projections without bias, matching LLaDALlamaBlock
|
||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
||||
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
||||
|
||||
cb(Qcur, "Qcur", il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
||||
|
||||
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
|
||||
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
|
||||
cb(Qcur, "Qcur", il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr,
|
||||
1.0f / sqrtf(float(n_embd_head)), il);
|
||||
}
|
||||
|
||||
if (il == n_layer - 1 && inp_out_ids) {
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
|
||||
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// feed-forward network
|
||||
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL,
|
||||
model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
|
||||
cur = build_cvec(cur, il);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
cur = inpL;
|
||||
|
||||
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
|
||||
|
||||
cb(cur, "result_norm", -1);
|
||||
res->t_embd = cur;
|
||||
|
||||
// lm_head
|
||||
cur = build_lora_mm(model.output, cur);
|
||||
|
||||
cb(cur, "result_output", -1);
|
||||
res->t_logits = cur;
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
};
|
||||
|
||||
struct llm_build_qwen2vl : public llm_graph_context {
|
||||
llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
@@ -17158,10 +17320,18 @@ struct llm_build_smallthinker : public llm_graph_context{
|
||||
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
ggml_tensor * ffn_out = build_moe_ffn_from_probs(cur, probs, model.layers[il].ffn_up_exps,
|
||||
model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps,
|
||||
nullptr, n_expert, n_expert_used,
|
||||
static_cast<llama_expert_gating_func_type>(hparams.expert_gating_func), il);
|
||||
ggml_tensor * ffn_out =
|
||||
build_moe_ffn(cur,
|
||||
nullptr,
|
||||
model.layers[il].ffn_up_exps,
|
||||
model.layers[il].ffn_gate_exps,
|
||||
model.layers[il].ffn_down_exps,
|
||||
nullptr,
|
||||
n_expert, n_expert_used,
|
||||
LLM_FFN_RELU, true,
|
||||
false, 0.0,
|
||||
static_cast<llama_expert_gating_func_type>(hparams.expert_gating_func),
|
||||
il, probs);
|
||||
|
||||
cb(ffn_out, "ffn_out", il);
|
||||
cur = ffn_out;
|
||||
@@ -17201,6 +17371,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
|
||||
case LLM_ARCH_NEO_BERT:
|
||||
case LLM_ARCH_WAVTOKENIZER_DEC:
|
||||
case LLM_ARCH_DREAM:
|
||||
case LLM_ARCH_LLADA:
|
||||
{
|
||||
res = nullptr;
|
||||
} break;
|
||||
@@ -17367,6 +17538,11 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
||||
llm = std::make_unique<llm_build_dream>(*this, params);
|
||||
}
|
||||
break;
|
||||
case LLM_ARCH_LLADA:
|
||||
{
|
||||
llm = std::make_unique<llm_build_llada>(*this, params);
|
||||
}
|
||||
break;
|
||||
case LLM_ARCH_QWEN2VL:
|
||||
{
|
||||
llm = std::make_unique<llm_build_qwen2vl>(*this, params);
|
||||
@@ -17765,6 +17941,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
||||
|
||||
// use what we call a normal RoPE, operating on pairs of consecutive head values
|
||||
case LLM_ARCH_LLAMA:
|
||||
case LLM_ARCH_LLADA:
|
||||
case LLM_ARCH_LLAMA4:
|
||||
case LLM_ARCH_DECI:
|
||||
case LLM_ARCH_BAICHUAN:
|
||||
@@ -17943,6 +18120,10 @@ bool llama_model_is_recurrent(const llama_model * model) {
|
||||
return llm_arch_is_recurrent(model->arch);
|
||||
}
|
||||
|
||||
bool llama_model_is_diffusion(const llama_model * model) {
|
||||
return llm_arch_is_diffusion(model->arch);
|
||||
}
|
||||
|
||||
const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model) {
|
||||
return model->tensors_by_name;
|
||||
}
|
||||
|
||||
@@ -868,10 +868,16 @@ struct clip_graph {
|
||||
int n_head = n_embd/d_head;
|
||||
int num_query = 96;
|
||||
if (ctx->model.hparams.minicpmv_version == 2) {
|
||||
// MiniCPM-V 2.5
|
||||
num_query = 96;
|
||||
} else if (ctx->model.hparams.minicpmv_version == 3) {
|
||||
// MiniCPM-V 2.6
|
||||
num_query = 64;
|
||||
} else if (ctx->model.hparams.minicpmv_version == 4) {
|
||||
// MiniCPM-o 2.6
|
||||
num_query = 64;
|
||||
} else if (ctx->model.hparams.minicpmv_version == 5) {
|
||||
// MiniCPM-V 4.0
|
||||
num_query = 64;
|
||||
}
|
||||
|
||||
@@ -3551,10 +3557,16 @@ int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * im
|
||||
case PROJECTOR_TYPE_MINICPMV:
|
||||
{
|
||||
if (params.minicpmv_version == 2) {
|
||||
// MiniCPM-V 2.5
|
||||
n_patches_sq = 96;
|
||||
} else if (params.minicpmv_version == 3) {
|
||||
// MiniCPM-V 2.6
|
||||
n_patches_sq = 64;
|
||||
} else if (params.minicpmv_version == 4) {
|
||||
// MiniCPM-o 2.6
|
||||
n_patches_sq = 64;
|
||||
} else if (params.minicpmv_version == 5) {
|
||||
// MiniCPM-V 4.0
|
||||
n_patches_sq = 64;
|
||||
} else {
|
||||
GGML_ABORT("Unknown minicpmv version");
|
||||
@@ -4103,11 +4115,17 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
|
||||
return ctx->model.mm_3_b->ne[0];
|
||||
case PROJECTOR_TYPE_MINICPMV:
|
||||
if (hparams.minicpmv_version == 2) {
|
||||
// MiniCPM-V 2.5
|
||||
return 4096;
|
||||
} else if (hparams.minicpmv_version == 3) {
|
||||
// MiniCPM-V 2.6
|
||||
return 3584;
|
||||
} else if (hparams.minicpmv_version == 4) {
|
||||
// MiniCPM-o 2.6
|
||||
return 3584;
|
||||
} else if (hparams.minicpmv_version == 5) {
|
||||
// MiniCPM-V 4.0
|
||||
return 2560;
|
||||
}
|
||||
GGML_ABORT("Unknown minicpmv version");
|
||||
case PROJECTOR_TYPE_GLM_EDGE:
|
||||
|
||||
@@ -497,11 +497,11 @@ ap.add_argument("--projector-type", help="Type of projector. Possible values: ml
|
||||
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
|
||||
# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
|
||||
# Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5
|
||||
default_image_mean = [0.48145466, 0.4578275, 0.40821073]
|
||||
default_image_std = [0.26862954, 0.26130258, 0.27577711]
|
||||
default_image_mean = [0.5, 0.5, 0.5]
|
||||
default_image_std = [0.5, 0.5, 0.5]
|
||||
ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
|
||||
ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
|
||||
ap.add_argument('--minicpmv_version', type=int, help='minicpmv_version: MiniCPM-V-2 use 1; MiniCPM-V-2.5 use 2; MiniCPM-V-2.6 use 3; MiniCPM-o-2.6 use 4', default=2)
|
||||
ap.add_argument('--minicpmv_version', type=int, help='minicpmv_version: MiniCPM-V-2 use 1; MiniCPM-V-2.5 use 2; MiniCPM-V-2.6 use 3; MiniCPM-o-2.6 use 4; MiniCPM-V 4.0 use 5; MiniCPM-o-4.0 use 6', default=2)
|
||||
|
||||
# with proper
|
||||
args = ap.parse_args()
|
||||
@@ -517,6 +517,17 @@ if args.use_f32:
|
||||
# output in the same directory as the model if output_dir is None
|
||||
dir_model = args.model_dir
|
||||
|
||||
# If minicpmv_projector is not specified but the default path exists, use the default path
|
||||
if args.minicpmv_projector is None:
|
||||
default_projector_path = os.path.join(dir_model, "minicpmv.projector")
|
||||
if os.path.isfile(default_projector_path):
|
||||
args.minicpmv_projector = default_projector_path
|
||||
print(f"Found default projector file: {default_projector_path}")
|
||||
|
||||
# If output_dir is not specified, use model_dir as the default value
|
||||
if args.output_dir is None:
|
||||
args.output_dir = dir_model
|
||||
|
||||
if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip:
|
||||
vocab = None
|
||||
tokens = None
|
||||
@@ -546,18 +557,21 @@ if args.use_f32:
|
||||
minicpmv_version = args.minicpmv_version
|
||||
emb_dim = 4096
|
||||
block_count = 26
|
||||
if minicpmv_version == 1:
|
||||
if minicpmv_version == 1: # MiniCPM-V 2.0
|
||||
emb_dim = 2304
|
||||
block_count = 26
|
||||
elif minicpmv_version == 2:
|
||||
elif minicpmv_version == 2: # MiniCPM-V 2.5
|
||||
emb_dim = 4096
|
||||
block_count = 27
|
||||
elif minicpmv_version == 3:
|
||||
elif minicpmv_version == 3: # MiniCPM-V 2.6
|
||||
emb_dim = 3584
|
||||
block_count = 27
|
||||
elif minicpmv_version == 4:
|
||||
elif minicpmv_version == 4: # MiniCPM-o 2.6
|
||||
emb_dim = 3584
|
||||
block_count = 27
|
||||
elif minicpmv_version == 5: # MiniCPM-V 4.0
|
||||
emb_dim = 2560
|
||||
block_count = 27
|
||||
|
||||
default_vision_config = {
|
||||
"hidden_size": 1152,
|
||||
@@ -577,6 +591,10 @@ if minicpmv_version == 3:
|
||||
elif minicpmv_version == 4:
|
||||
vision_config = SiglipVisionConfig(**default_vision_config)
|
||||
model = SiglipVisionTransformer(vision_config)
|
||||
elif minicpmv_version == 5:
|
||||
default_vision_config["model_type"] = "siglip_vision_model"
|
||||
vision_config = SiglipVisionConfig(**default_vision_config)
|
||||
model = SiglipVisionTransformer(vision_config)
|
||||
|
||||
processor = None
|
||||
# if model.attn_pool is not None:
|
||||
@@ -603,7 +621,7 @@ elif args.vision_only:
|
||||
else:
|
||||
fname_middle = ""
|
||||
|
||||
output_dir = args.output_dir if args.output_dir is not None else dir_model
|
||||
output_dir = args.output_dir
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
output_prefix = os.path.basename(output_dir).replace("ggml_", "")
|
||||
fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")
|
||||
|
||||
@@ -207,7 +207,7 @@ struct mtmd_context {
|
||||
tok_row_end_trail = false; // no trailing end-of-row token
|
||||
ov_img_first = true;
|
||||
|
||||
} else if (minicpmv_version == 3 || minicpmv_version == 4) {
|
||||
} else if (minicpmv_version == 3 || minicpmv_version == 4 || minicpmv_version == 5) {
|
||||
// minicpmv 2.6 format:
|
||||
// <image> (overview) </image><slice> (slice) </slice><slice> (slice) </slice>\n ...
|
||||
slice_tmpl = MTMD_SLICE_TMPL_MINICPMV_2_6;
|
||||
|
||||
@@ -311,7 +311,7 @@ static int load_imatrix(const std::string & imatrix_file, std::vector<std::strin
|
||||
int64_t n_datasets = gguf_get_arr_n(ctx_gguf, dataset_idx);
|
||||
imatrix_datasets.reserve(n_datasets);
|
||||
for (int64_t i = 0; i < n_datasets; ++i) {
|
||||
imatrix_datasets.push_back(gguf_get_val_str(ctx_gguf, dataset_idx));
|
||||
imatrix_datasets.push_back(gguf_get_arr_str(ctx_gguf, dataset_idx, i));
|
||||
}
|
||||
printf("%s: imatrix datasets=['%s'", __func__, imatrix_datasets[0].c_str());
|
||||
for (size_t i = 1; i < imatrix_datasets.size(); ++i) {
|
||||
|
||||
@@ -469,7 +469,7 @@ These words will not be included in the completion, so make sure to add them to
|
||||
|
||||
`ignore_eos`: Ignore end of stream token and continue generating. Default: `false`
|
||||
|
||||
`logit_bias`: Modify the likelihood of a token appearing in the generated text completion. For example, use `"logit_bias": [[15043,1.0]]` to increase the likelihood of the token 'Hello', or `"logit_bias": [[15043,-1.0]]` to decrease its likelihood. Setting the value to false, `"logit_bias": [[15043,false]]` ensures that the token `Hello` is never produced. The tokens can also be represented as strings, e.g. `[["Hello, World!",-0.5]]` will reduce the likelihood of all the individual tokens that represent the string `Hello, World!`, just like the `presence_penalty` does. Default: `[]`
|
||||
`logit_bias`: Modify the likelihood of a token appearing in the generated text completion. For example, use `"logit_bias": [[15043,1.0]]` to increase the likelihood of the token 'Hello', or `"logit_bias": [[15043,-1.0]]` to decrease its likelihood. Setting the value to false, `"logit_bias": [[15043,false]]` ensures that the token `Hello` is never produced. The tokens can also be represented as strings, e.g. `[["Hello, World!",-0.5]]` will reduce the likelihood of all the individual tokens that represent the string `Hello, World!`, just like the `presence_penalty` does. For compatibility with the OpenAI API, a JSON object {"<string or token id>": bias, ...} can also be passed. Default: `[]`
|
||||
|
||||
`n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token given the sampling settings. Note that for temperature < 0 the tokens are sampled greedily but token probabilities are still being calculated via a simple softmax of the logits without considering any other sampler settings. Default: `0`
|
||||
|
||||
@@ -644,6 +644,15 @@ The same as [the embedding example](../embedding) does.
|
||||
|
||||
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `content`. You can determine the place of the image in the content as in the following: `Image: [img-21].\nCaption: This is a picture of a house`. In this case, `[img-21]` will be replaced by the embeddings of the image with id `21` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 21}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
|
||||
|
||||
`embd_normalize`: Normalization for pooled embeddings. Can be one of the following values:
|
||||
```
|
||||
-1: No normalization
|
||||
0: Max absolute
|
||||
1: Taxicab
|
||||
2: Euclidean/L2
|
||||
>2: P-Norm
|
||||
```
|
||||
|
||||
### POST `/reranking`: Rerank documents according to a given query
|
||||
|
||||
Similar to https://jina.ai/reranker/ but might change in the future.
|
||||
|
||||
@@ -138,6 +138,9 @@ struct slot_params {
|
||||
std::string oaicompat_cmpl_id;
|
||||
common_chat_syntax oaicompat_chat_syntax;
|
||||
|
||||
// Embeddings
|
||||
int32_t embd_normalize = 2; // (-1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm)
|
||||
|
||||
json to_json() const {
|
||||
std::vector<std::string> samplers;
|
||||
samplers.reserve(sampling.samplers.size());
|
||||
@@ -470,6 +473,33 @@ struct server_task {
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (logit_bias != data.end() && logit_bias->is_object()) {
|
||||
const int n_vocab = llama_vocab_n_tokens(vocab);
|
||||
for (const auto & el : logit_bias->items()) {
|
||||
float bias;
|
||||
const auto & key = el.key();
|
||||
const auto & value = el.value();
|
||||
if (value.is_number()) {
|
||||
bias = value.get<float>();
|
||||
} else if (value.is_boolean() && !value.get<bool>()) {
|
||||
bias = -INFINITY;
|
||||
} else {
|
||||
continue;
|
||||
}
|
||||
|
||||
char *end;
|
||||
llama_token tok = strtol(key.c_str(), &end, 10);
|
||||
if (*end == 0) {
|
||||
if (tok >= 0 && tok < n_vocab) {
|
||||
params.sampling.logit_bias.push_back({tok, bias});
|
||||
}
|
||||
} else {
|
||||
auto toks = common_tokenize(vocab, key, false);
|
||||
for (auto tok : toks) {
|
||||
params.sampling.logit_bias.push_back({tok, bias});
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
params.sampling.ignore_eos = json_value(data, "ignore_eos", params_base.sampling.ignore_eos);
|
||||
@@ -1899,6 +1929,7 @@ struct server_context {
|
||||
mtmd_context * mctx = nullptr;
|
||||
|
||||
const llama_vocab * vocab = nullptr;
|
||||
bool vocab_dft_compatible = true;
|
||||
|
||||
llama_model * model_dft = nullptr;
|
||||
|
||||
@@ -1989,10 +2020,9 @@ struct server_context {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) {
|
||||
SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
|
||||
|
||||
return false;
|
||||
vocab_dft_compatible = common_speculative_are_compatible(ctx, llama_init_dft.context.get());
|
||||
if (!vocab_dft_compatible) {
|
||||
SRV_INF("the draft model '%s' is not compatible with the target model '%s'. tokens will be translated between the draft and target models.\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
|
||||
}
|
||||
|
||||
const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
|
||||
@@ -2082,11 +2112,14 @@ struct server_context {
|
||||
return;
|
||||
}
|
||||
|
||||
slot.spec = common_speculative_init(slot.ctx_dft);
|
||||
slot.spec = common_speculative_init(slot.ctx, slot.ctx_dft);
|
||||
if (slot.spec == nullptr) {
|
||||
SRV_ERR("%s", "failed to create speculator\n");
|
||||
return;
|
||||
}
|
||||
for (auto &pair : params_base.speculative.replacements) {
|
||||
common_speculative_add_replacement_tgt_dft(slot.spec, pair.first.c_str(), pair.second.c_str());
|
||||
}
|
||||
}
|
||||
|
||||
SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
|
||||
@@ -2601,7 +2634,7 @@ struct server_context {
|
||||
|
||||
// normalize only when there is pooling
|
||||
if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
|
||||
common_embd_normalize(embd, embd_res.data(), n_embd, 2);
|
||||
common_embd_normalize(embd, embd_res.data(), n_embd, slot.params.embd_normalize);
|
||||
res->embedding.push_back(embd_res);
|
||||
break;
|
||||
} else {
|
||||
@@ -4614,6 +4647,14 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
int embd_normalize = 2; // default to Euclidean/L2 norm
|
||||
if (body.count("embd_normalize") != 0) {
|
||||
embd_normalize = body.at("embd_normalize");
|
||||
if (llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
|
||||
SRV_DBG("embd_normalize is not supported by pooling type %d, ignoring it\n", llama_pooling_type(ctx_server.ctx));
|
||||
}
|
||||
}
|
||||
|
||||
// create and queue the task
|
||||
json responses = json::array();
|
||||
bool error = false;
|
||||
@@ -4629,6 +4670,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// OAI-compat
|
||||
task.params.oaicompat = oaicompat;
|
||||
task.params.embd_normalize = embd_normalize;
|
||||
|
||||
tasks.push_back(std::move(task));
|
||||
}
|
||||
|
||||
@@ -351,3 +351,32 @@ def test_logprobs_stream():
|
||||
assert token.top_logprobs is not None
|
||||
assert len(token.top_logprobs) > 0
|
||||
assert aggregated_text == output_text
|
||||
|
||||
|
||||
def test_logit_bias():
|
||||
global server
|
||||
server.start()
|
||||
|
||||
exclude = ["i", "I", "the", "The", "to", "a", "an", "be", "is", "was", "but", "But", "and", "And", "so", "So", "you", "You", "he", "He", "she", "She", "we", "We", "they", "They", "it", "It", "his", "His", "her", "Her", "book", "Book"]
|
||||
|
||||
res = server.make_request("POST", "/tokenize", data={
|
||||
"content": " " + " ".join(exclude) + " ",
|
||||
})
|
||||
assert res.status_code == 200
|
||||
tokens = res.body["tokens"]
|
||||
logit_bias = {tok: -100 for tok in tokens}
|
||||
|
||||
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
|
||||
res = client.chat.completions.create(
|
||||
model="gpt-3.5-turbo-instruct",
|
||||
temperature=0.0,
|
||||
messages=[
|
||||
{"role": "system", "content": "Book"},
|
||||
{"role": "user", "content": "What is the best book"},
|
||||
],
|
||||
max_tokens=64,
|
||||
logit_bias=logit_bias
|
||||
)
|
||||
output_text = res.choices[0].message.content
|
||||
assert output_text
|
||||
assert all(output_text.find(" " + tok + " ") == -1 for tok in exclude)
|
||||
|
||||
@@ -444,6 +444,39 @@ def test_n_probs_post_sampling():
|
||||
assert any(prob["prob"] == 1.0 for prob in tok["top_probs"])
|
||||
|
||||
|
||||
@pytest.mark.parametrize("tokenize,openai_style", [(False, False), (False, True), (True, False), (True, True)])
|
||||
def test_logit_bias(tokenize, openai_style):
|
||||
global server
|
||||
server.start()
|
||||
|
||||
exclude = ["i", "I", "the", "The", "to", "a", "an", "be", "is", "was", "but", "But", "and", "And", "so", "So", "you", "You", "he", "He", "she", "She", "we", "We", "they", "They", "it", "It", "his", "His", "her", "Her", "book", "Book"]
|
||||
|
||||
logit_bias = []
|
||||
if tokenize:
|
||||
res = server.make_request("POST", "/tokenize", data={
|
||||
"content": " " + " ".join(exclude) + " ",
|
||||
})
|
||||
assert res.status_code == 200
|
||||
tokens = res.body["tokens"]
|
||||
logit_bias = [[tok, -100] for tok in tokens]
|
||||
|
||||
else:
|
||||
logit_bias = [[" " + tok + " ", -100] for tok in exclude]
|
||||
|
||||
if openai_style:
|
||||
logit_bias = {el[0]: -100 for el in logit_bias}
|
||||
|
||||
res = server.make_request("POST", "/completion", data={
|
||||
"n_predict": 64,
|
||||
"prompt": "What is the best book",
|
||||
"logit_bias": logit_bias,
|
||||
"temperature": 0.0
|
||||
})
|
||||
assert res.status_code == 200
|
||||
output_text = res.body["content"]
|
||||
assert all(output_text.find(" " + tok + " ") == -1 for tok in exclude)
|
||||
|
||||
|
||||
def test_cancel_request():
|
||||
global server
|
||||
server.n_ctx = 4096
|
||||
|
||||
Reference in New Issue
Block a user