mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-05 13:53:23 +02:00
Compare commits
169 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
1d8d83deaa | ||
|
|
c4e9239064 | ||
|
|
39842a7f73 | ||
|
|
0fd90db585 | ||
|
|
4c37636b3e | ||
|
|
34bdbbd7c2 | ||
|
|
74f52f77f2 | ||
|
|
f7207b0415 | ||
|
|
4d917cd4f6 | ||
|
|
886b97a5d6 | ||
|
|
111f8d06f0 | ||
|
|
5eff6ec9b1 | ||
|
|
dfd9b5f6c7 | ||
|
|
5a6bc6b1a6 | ||
|
|
6b64f74b55 | ||
|
|
0d5a470223 | ||
|
|
b0ba31f525 | ||
|
|
7da9fed0d6 | ||
|
|
c247d06f38 | ||
|
|
043fb27d38 | ||
|
|
b730706a49 | ||
|
|
c9a24fb932 | ||
|
|
a9c6ffcbfa | ||
|
|
e78cf0d4b1 | ||
|
|
710dfc465a | ||
|
|
611f419cff | ||
|
|
b1afcab804 | ||
|
|
9ef536907d | ||
|
|
21dc4ddaf2 | ||
|
|
289bf4113e | ||
|
|
b55f06e1aa | ||
|
|
0a9b43e507 | ||
|
|
330c3d2d21 | ||
|
|
e92734d51b | ||
|
|
45363632cb | ||
|
|
32732f2459 | ||
|
|
92f7f0a53c | ||
|
|
b1ab91821f | ||
|
|
9ebebef62f | ||
|
|
ad5c975c2d | ||
|
|
4afb0a746f | ||
|
|
e288693669 | ||
|
|
a0f98dd604 | ||
|
|
54a241f505 | ||
|
|
cd36b5e5c7 | ||
|
|
3f196be84b | ||
|
|
97ae5961a4 | ||
|
|
20c2dac8c6 | ||
|
|
96452a3fa4 | ||
|
|
9ad5e60dba | ||
|
|
715a6db02c | ||
|
|
ad294df03f | ||
|
|
029bb39eb1 | ||
|
|
30649cab65 | ||
|
|
2758fa10da | ||
|
|
b108e42904 | ||
|
|
245be739df | ||
|
|
b2caf67db1 | ||
|
|
2f3dbffb17 | ||
|
|
945e1f12a6 | ||
|
|
1b0db8f6e0 | ||
|
|
29f538ac63 | ||
|
|
8ad038c0fd | ||
|
|
5682a3745f | ||
|
|
1bc664a26a | ||
|
|
13aeb7aef2 | ||
|
|
7a6e91ad26 | ||
|
|
fec9519802 | ||
|
|
657b8a77bd | ||
|
|
ec5ab1a36c | ||
|
|
1a99c2d948 | ||
|
|
37f10f955f | ||
|
|
2f37014073 | ||
|
|
a094f38143 | ||
|
|
fb22dd07a6 | ||
|
|
9ef6b0b835 | ||
|
|
1e19f5d462 | ||
|
|
d2fcd91cf9 | ||
|
|
a6d3cfe7fa | ||
|
|
67f09a3a27 | ||
|
|
6424594c56 | ||
|
|
e9288e8869 | ||
|
|
9d262f4bad | ||
|
|
f0d3c7405c | ||
|
|
f08c4c0d8d | ||
|
|
6d7f1117e3 | ||
|
|
60212f1ead | ||
|
|
f0c541d315 | ||
|
|
baa9255a45 | ||
|
|
3007baf201 | ||
|
|
d1d8241600 | ||
|
|
618575c582 | ||
|
|
f44f793172 | ||
|
|
ae532eac2c | ||
|
|
e5155e6986 | ||
|
|
21c17b5bef | ||
|
|
19f4decae0 | ||
|
|
4d196981d4 | ||
|
|
b143fbc87a | ||
|
|
de5627910d | ||
|
|
65349f26f2 | ||
|
|
1fe00296f5 | ||
|
|
de2192794f | ||
|
|
2e2b22ba66 | ||
|
|
912ff8c119 | ||
|
|
5e6229a840 | ||
|
|
e2c1bfff53 | ||
|
|
5edf1592fd | ||
|
|
db3010bd23 | ||
|
|
ff27f80a74 | ||
|
|
d3248d9b65 | ||
|
|
7aeee88cfe | ||
|
|
b07791aa1d | ||
|
|
4227c9be42 | ||
|
|
df36bce667 | ||
|
|
f75b830647 | ||
|
|
7a0de96045 | ||
|
|
e4e915912c | ||
|
|
5ba36f6103 | ||
|
|
b204a5a234 | ||
|
|
646944cfa8 | ||
|
|
1a01899b61 | ||
|
|
863d341eeb | ||
|
|
d32e03f449 | ||
|
|
3973163bff | ||
|
|
5ade3000bd | ||
|
|
8b2483730f | ||
|
|
810b9fc8b9 | ||
|
|
4ebd0c125b | ||
|
|
5cdb27e091 | ||
|
|
3ea913f1ce | ||
|
|
29c8fbe4e0 | ||
|
|
1adc9812bd | ||
|
|
b3e16665e1 | ||
|
|
c24f4e2688 | ||
|
|
d8914fc47e | ||
|
|
e885445bc1 | ||
|
|
648ebcdb73 | ||
|
|
07aa869a91 | ||
|
|
00f35d509e | ||
|
|
6028bf7435 | ||
|
|
bc5182272c | ||
|
|
e71d48e326 | ||
|
|
b0493156fa | ||
|
|
f4586ee598 | ||
|
|
60a7658810 | ||
|
|
efe3a90996 | ||
|
|
bbd57b7eaf | ||
|
|
25ff6f7659 | ||
|
|
be48528b06 | ||
|
|
cf9e5648a7 | ||
|
|
fba5c0d680 | ||
|
|
53d0a12658 | ||
|
|
27093afe78 | ||
|
|
228f724d9c | ||
|
|
cd3069dfcb | ||
|
|
50e81bdf5d | ||
|
|
1ebbaddff2 | ||
|
|
a3a7874272 | ||
|
|
002cb1bb33 | ||
|
|
79c1160b07 | ||
|
|
34c9d765bf | ||
|
|
e54d41befc | ||
|
|
4850b52aed | ||
|
|
cd6983d56d | ||
|
|
6c7e9a5440 | ||
|
|
1425f587a8 | ||
|
|
aaa3d07ae7 | ||
|
|
50aa938901 |
@@ -1,22 +0,0 @@
|
||||
node('x86_runner1'){ // Running on x86 runner containing latest vector qemu, latest vector gcc and all the necessary libraries
|
||||
stage('Cleanup'){
|
||||
cleanWs() // Cleaning previous CI build in workspace
|
||||
}
|
||||
stage('checkout repo'){
|
||||
retry(5){ // Retry if the cloning fails due to some reason
|
||||
checkout scm // Clone the repo on Runner
|
||||
}
|
||||
}
|
||||
stage('Compiling llama.cpp'){
|
||||
sh'''#!/bin/bash
|
||||
make RISCV=1 RISCV_CROSS_COMPILE=1 # Compiling llama for RISC-V
|
||||
'''
|
||||
}
|
||||
stage('Running llama.cpp'){
|
||||
sh'''#!/bin/bash
|
||||
module load gnu-bin2/0.1 # loading latest versions of vector qemu and vector gcc
|
||||
qemu-riscv64 -L /softwares/gnu-bin2/sysroot -cpu rv64,v=true,vlen=256,elen=64,vext_spec=v1.0 ./llama-cli -m /home/alitariq/codellama-7b.Q4_K_M.gguf -p "Anything" -n 9 > llama_log.txt # Running llama.cpp on vector qemu-riscv64
|
||||
cat llama_log.txt # Printing results
|
||||
'''
|
||||
}
|
||||
}
|
||||
@@ -4,8 +4,6 @@ FROM ubuntu:$UBUNTU_VERSION AS build
|
||||
|
||||
ARG TARGETARCH
|
||||
|
||||
ARG GGML_CPU_ARM_ARCH=armv8-a
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential git cmake libcurl4-openssl-dev
|
||||
|
||||
@@ -13,10 +11,8 @@ WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN if [ "$TARGETARCH" = "amd64" ]; then \
|
||||
RUN if [ "$TARGETARCH" = "amd64" ] || [ "$TARGETARCH" = "arm64" ]; then \
|
||||
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_TESTS=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON; \
|
||||
elif [ "$TARGETARCH" = "arm64" ]; then \
|
||||
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_TESTS=OFF -DGGML_CPU_ARM_ARCH=${GGML_CPU_ARM_ARCH}; \
|
||||
else \
|
||||
echo "Unsupported architecture"; \
|
||||
exit 1; \
|
||||
|
||||
@@ -61,7 +61,7 @@ RUN apt-get update \
|
||||
python3 \
|
||||
python3-pip \
|
||||
&& pip install --upgrade pip setuptools wheel \
|
||||
&& pip install -r requirements.txt \
|
||||
&& pip install --break-system-packages -r requirements.txt \
|
||||
&& apt autoremove -y \
|
||||
&& apt clean -y \
|
||||
&& rm -rf /tmp/* /var/tmp/* \
|
||||
|
||||
@@ -2,14 +2,30 @@ ARG UBUNTU_VERSION=24.04
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
||||
|
||||
# Install build tools
|
||||
RUN apt update && apt install -y git build-essential cmake wget
|
||||
# Ref: https://vulkan.lunarg.com/doc/sdk/latest/linux/getting_started.html
|
||||
|
||||
# Install Vulkan SDK and cURL
|
||||
RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
|
||||
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-noble.list https://packages.lunarg.com/vulkan/lunarg-vulkan-noble.list && \
|
||||
apt update -y && \
|
||||
apt-get install -y vulkan-sdk libcurl4-openssl-dev curl
|
||||
# Install build tools
|
||||
RUN apt update && apt install -y git build-essential cmake wget xz-utils
|
||||
|
||||
# Install Vulkan SDK
|
||||
ARG VULKAN_VERSION=1.4.321.1
|
||||
RUN ARCH=$(uname -m) && \
|
||||
wget -qO /tmp/vulkan-sdk.tar.xz https://sdk.lunarg.com/sdk/download/${VULKAN_VERSION}/linux/vulkan-sdk-linux-${ARCH}-${VULKAN_VERSION}.tar.xz && \
|
||||
mkdir -p /opt/vulkan && \
|
||||
tar -xf /tmp/vulkan-sdk.tar.xz -C /tmp --strip-components=1 && \
|
||||
mv /tmp/${ARCH}/* /opt/vulkan/ && \
|
||||
rm -rf /tmp/*
|
||||
|
||||
# Install cURL and Vulkan SDK dependencies
|
||||
RUN apt install -y libcurl4-openssl-dev curl \
|
||||
libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev
|
||||
|
||||
# Set environment variables
|
||||
ENV VULKAN_SDK=/opt/vulkan
|
||||
ENV PATH=$VULKAN_SDK/bin:$PATH
|
||||
ENV LD_LIBRARY_PATH=$VULKAN_SDK/lib:$LD_LIBRARY_PATH
|
||||
ENV CMAKE_PREFIX_PATH=$VULKAN_SDK:$CMAKE_PREFIX_PATH
|
||||
ENV PKG_CONFIG_PATH=$VULKAN_SDK/lib/pkgconfig:$PKG_CONFIG_PATH
|
||||
|
||||
# Build it
|
||||
WORKDIR /app
|
||||
|
||||
@@ -40,7 +40,7 @@ body:
|
||||
attributes:
|
||||
label: GGML backends
|
||||
description: Which GGML backends do you know to be affected?
|
||||
options: [AMX, BLAS, CPU, CUDA, HIP, Metal, Musa, RPC, SYCL, Vulkan, OpenCL]
|
||||
options: [AMX, BLAS, CPU, CUDA, HIP, Metal, Musa, RPC, SYCL, Vulkan, OpenCL, zDNN]
|
||||
multiple: true
|
||||
validations:
|
||||
required: true
|
||||
|
||||
2
.github/ISSUE_TEMPLATE/011-bug-results.yml
vendored
2
.github/ISSUE_TEMPLATE/011-bug-results.yml
vendored
@@ -42,7 +42,7 @@ body:
|
||||
attributes:
|
||||
label: GGML backends
|
||||
description: Which GGML backends do you know to be affected?
|
||||
options: [AMX, BLAS, CPU, CUDA, HIP, Metal, Musa, RPC, SYCL, Vulkan, OpenCL]
|
||||
options: [AMX, BLAS, CPU, CUDA, HIP, Metal, Musa, RPC, SYCL, Vulkan, OpenCL, zDNN]
|
||||
multiple: true
|
||||
validations:
|
||||
required: true
|
||||
|
||||
262
.github/copilot-instructions.md
vendored
Normal file
262
.github/copilot-instructions.md
vendored
Normal file
@@ -0,0 +1,262 @@
|
||||
# Copilot Instructions for llama.cpp
|
||||
|
||||
## Repository Overview
|
||||
|
||||
llama.cpp is a large-scale C/C++ project for efficient LLM (Large Language Model) inference with minimal setup and dependencies. The project enables running language models on diverse hardware with state-of-the-art performance.
|
||||
|
||||
**Key Facts:**
|
||||
- **Primary language**: C/C++ with Python utility scripts
|
||||
- **Size**: ~200k+ lines of code across 1000+ files
|
||||
- **Architecture**: Modular design with main library (`libllama`) and 40+ executable tools/examples
|
||||
- **Core dependency**: ggml tensor library (vendored in `ggml/` directory)
|
||||
- **Backends supported**: CPU (AVX/NEON optimized), CUDA, Metal, Vulkan, SYCL, ROCm, MUSA
|
||||
- **License**: MIT
|
||||
|
||||
## Build Instructions
|
||||
|
||||
### Prerequisites
|
||||
- CMake 3.14+ (primary build system)
|
||||
- C++17 compatible compiler (GCC 13.3+, Clang, MSVC)
|
||||
- Optional: ccache for faster compilation
|
||||
|
||||
### Basic Build (CPU-only)
|
||||
**ALWAYS run these commands in sequence:**
|
||||
```bash
|
||||
cmake -B build
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
```
|
||||
|
||||
**Build time**: ~10 minutes on 4-core system with ccache enabled, ~25 minutes without ccache.
|
||||
|
||||
**Important Notes:**
|
||||
- The Makefile is deprecated - always use CMake
|
||||
- ccache is automatically detected and used if available
|
||||
- Built binaries are placed in `build/bin/`
|
||||
- Parallel builds (`-j`) significantly reduce build time
|
||||
|
||||
### Backend-Specific Builds
|
||||
For CUDA support:
|
||||
```bash
|
||||
cmake -B build -DGGML_CUDA=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
```
|
||||
|
||||
For Metal (macOS):
|
||||
```bash
|
||||
cmake -B build -DGGML_METAL=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
```
|
||||
|
||||
**Important Note**: While all backends can be built as long as the correct requirements for that backend are installed, you will not be able to run them without the correct hardware. The only backend that can be run for testing and validation is the CPU backend.
|
||||
|
||||
### Debug Builds
|
||||
Single-config generators:
|
||||
```bash
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Debug
|
||||
cmake --build build
|
||||
```
|
||||
|
||||
Multi-config generators:
|
||||
```bash
|
||||
cmake -B build -G "Xcode"
|
||||
cmake --build build --config Debug
|
||||
```
|
||||
|
||||
### Common Build Issues
|
||||
- **Issue**: Network tests fail in isolated environments
|
||||
**Solution**: Expected behavior - core functionality tests will still pass
|
||||
|
||||
## Testing
|
||||
|
||||
### Running Tests
|
||||
```bash
|
||||
ctest --test-dir build --output-on-failure -j $(nproc)
|
||||
```
|
||||
|
||||
**Test suite**: 38 tests covering tokenizers, grammar parsing, sampling, backends, and integration
|
||||
**Expected failures**: 2-3 tests may fail if network access is unavailable (they download models)
|
||||
**Test time**: ~30 seconds for passing tests
|
||||
|
||||
### Server Unit Tests
|
||||
Run server-specific unit tests after building the server:
|
||||
```bash
|
||||
# Build the server first
|
||||
cmake --build build --target llama-server
|
||||
|
||||
# Navigate to server tests and run
|
||||
cd tools/server/tests
|
||||
source ../../../.venv/bin/activate
|
||||
./tests.sh
|
||||
```
|
||||
**Server test dependencies**: The `.venv` environment includes the required dependencies for server unit tests (pytest, aiohttp, etc.). Tests can be run individually or with various options as documented in `tools/server/tests/README.md`.
|
||||
|
||||
### Test Categories
|
||||
- Tokenizer tests: Various model tokenizers (BERT, GPT-2, LLaMA, etc.)
|
||||
- Grammar tests: GBNF parsing and validation
|
||||
- Backend tests: Core ggml operations across different backends
|
||||
- Integration tests: End-to-end workflows
|
||||
|
||||
### Manual Testing Commands
|
||||
```bash
|
||||
# Test basic inference
|
||||
./build/bin/llama-cli --version
|
||||
|
||||
# Test model loading (requires model file)
|
||||
./build/bin/llama-cli -m path/to/model.gguf -p "Hello" -n 10
|
||||
```
|
||||
|
||||
## Code Quality and Linting
|
||||
|
||||
### C++ Code Formatting
|
||||
**ALWAYS format C++ code before committing:**
|
||||
```bash
|
||||
git clang-format
|
||||
```
|
||||
|
||||
Configuration is in `.clang-format` with these key rules:
|
||||
- 4-space indentation
|
||||
- 120 column limit
|
||||
- Braces on same line for functions
|
||||
- Pointer alignment: `void * ptr` (middle)
|
||||
- Reference alignment: `int & ref` (middle)
|
||||
|
||||
### Python Code
|
||||
**ALWAYS activate the Python environment in `.venv` and use tools from that environment:**
|
||||
```bash
|
||||
# Activate virtual environment
|
||||
source .venv/bin/activate
|
||||
```
|
||||
|
||||
Configuration files:
|
||||
- `.flake8`: flake8 settings (max-line-length=125, excludes examples/tools)
|
||||
- `pyrightconfig.json`: pyright type checking configuration
|
||||
|
||||
### Pre-commit Hooks
|
||||
Run before committing:
|
||||
```bash
|
||||
pre-commit run --all-files
|
||||
```
|
||||
|
||||
## Continuous Integration
|
||||
|
||||
### GitHub Actions Workflows
|
||||
Key workflows that run on every PR:
|
||||
- `.github/workflows/build.yml`: Multi-platform builds
|
||||
- `.github/workflows/server.yml`: Server functionality tests
|
||||
- `.github/workflows/python-lint.yml`: Python code quality
|
||||
- `.github/workflows/python-type-check.yml`: Python type checking
|
||||
|
||||
### Local CI Validation
|
||||
**Run full CI locally before submitting PRs:**
|
||||
```bash
|
||||
mkdir tmp
|
||||
|
||||
# CPU-only build
|
||||
bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
```
|
||||
|
||||
**CI Runtime**: 30-60 minutes depending on backend configuration
|
||||
|
||||
### Triggering CI
|
||||
Add `ggml-ci` to commit message to trigger heavy CI workloads on the custom CI infrastructure.
|
||||
|
||||
## Project Layout and Architecture
|
||||
|
||||
### Core Directories
|
||||
- **`src/`**: Main llama library implementation (`llama.cpp`, `llama-*.cpp`)
|
||||
- **`include/`**: Public API headers, primarily `include/llama.h`
|
||||
- **`ggml/`**: Core tensor library (submodule with custom GGML framework)
|
||||
- **`examples/`**: 30+ example applications and tools
|
||||
- **`tools/`**: Additional development and utility tools (server benchmarks, tests)
|
||||
- **`tests/`**: Comprehensive test suite with CTest integration
|
||||
- **`docs/`**: Detailed documentation (build guides, API docs, etc.)
|
||||
- **`scripts/`**: Utility scripts for CI, data processing, and automation
|
||||
- **`common/`**: Shared utility code used across examples
|
||||
|
||||
### Key Files
|
||||
- **`CMakeLists.txt`**: Primary build configuration
|
||||
- **`include/llama.h`**: Main C API header (~2000 lines)
|
||||
- **`src/llama.cpp`**: Core library implementation (~8000 lines)
|
||||
- **`CONTRIBUTING.md`**: Coding guidelines and PR requirements
|
||||
- **`.clang-format`**: C++ formatting rules
|
||||
- **`.pre-commit-config.yaml`**: Git hook configuration
|
||||
|
||||
### Built Executables (in `build/bin/`)
|
||||
Primary tools:
|
||||
- **`llama-cli`**: Main inference tool
|
||||
- **`llama-server`**: OpenAI-compatible HTTP server
|
||||
- **`llama-quantize`**: Model quantization utility
|
||||
- **`llama-perplexity`**: Model evaluation tool
|
||||
- **`llama-bench`**: Performance benchmarking
|
||||
- **`llama-convert-llama2c-to-ggml`**: Model conversion utilities
|
||||
|
||||
### Configuration Files
|
||||
- **CMake**: `CMakeLists.txt`, `cmake/` directory
|
||||
- **Linting**: `.clang-format`, `.clang-tidy`, `.flake8`
|
||||
- **CI**: `.github/workflows/`, `ci/run.sh`
|
||||
- **Git**: `.gitignore` (includes build artifacts, models, cache)
|
||||
|
||||
### Dependencies
|
||||
- **System**: OpenMP, libcurl (for model downloading)
|
||||
- **Optional**: CUDA SDK, Metal framework, Vulkan SDK, Intel oneAPI
|
||||
- **Bundled**: httplib, json (header-only libraries in vendored form)
|
||||
|
||||
## Common Validation Steps
|
||||
|
||||
### After Making Changes
|
||||
1. **Format code**: `git clang-format`
|
||||
2. **Build**: `cmake --build build --config Release`
|
||||
3. **Test**: `ctest --test-dir build --output-on-failure`
|
||||
4. **Server tests** (if modifying server): `cd tools/server/tests && source ../../../.venv/bin/activate && ./tests.sh`
|
||||
5. **Manual validation**: Test relevant tools in `build/bin/`
|
||||
|
||||
### Performance Validation
|
||||
```bash
|
||||
# Benchmark inference performance
|
||||
./build/bin/llama-bench -m model.gguf
|
||||
|
||||
# Evaluate model perplexity
|
||||
./build/bin/llama-perplexity -m model.gguf -f dataset.txt
|
||||
```
|
||||
|
||||
### Backend Validation
|
||||
```bash
|
||||
# Test backend operations
|
||||
./build/bin/test-backend-ops
|
||||
```
|
||||
|
||||
## Environment Setup
|
||||
|
||||
### Required Tools
|
||||
- CMake 3.14+ (install via system package manager)
|
||||
- Modern C++ compiler with C++17 support
|
||||
- Git (for submodule management)
|
||||
- Python 3.9+ with virtual environment (`.venv` is provided)
|
||||
|
||||
### Optional but Recommended
|
||||
- ccache: `apt install ccache` or `brew install ccache`
|
||||
- clang-format 15+: Usually included with LLVM/Clang installation
|
||||
- pre-commit: `pip install pre-commit`
|
||||
|
||||
### Backend-Specific Requirements
|
||||
- **CUDA**: NVIDIA CUDA Toolkit 11.2+
|
||||
- **Metal**: Xcode command line tools (macOS only)
|
||||
- **Vulkan**: Vulkan SDK
|
||||
- **SYCL**: Intel oneAPI toolkit
|
||||
|
||||
## Important Guidelines
|
||||
|
||||
### Code Changes
|
||||
- **Minimal dependencies**: Avoid adding new external dependencies
|
||||
- **Cross-platform compatibility**: Test on Linux, macOS, Windows when possible
|
||||
- **Performance focus**: This is a performance-critical inference library
|
||||
- **API stability**: Changes to `include/llama.h` require careful consideration
|
||||
|
||||
### Git Workflow
|
||||
- Always create feature branches from `master`
|
||||
- **Never** commit build artifacts (`build/`, `.ccache/`, `*.o`, `*.gguf`)
|
||||
- Use descriptive commit messages following project conventions
|
||||
|
||||
### Trust These Instructions
|
||||
Only search for additional information if these instructions are incomplete or found to be incorrect. This document contains validated build and test procedures that work reliably across different environments.
|
||||
|
||||
5
.github/labeler.yml
vendored
5
.github/labeler.yml
vendored
@@ -22,6 +22,11 @@ Vulkan:
|
||||
- any-glob-to-any-file:
|
||||
- ggml/include/ggml-vulkan.h
|
||||
- ggml/src/ggml-vulkan/**
|
||||
IBM zDNN:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ggml/include/ggml-zdnn.h
|
||||
- ggml/src/ggml-zdnn/**
|
||||
documentation:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
|
||||
60
.github/workflows/build-riscv-native.yml
vendored
Normal file
60
.github/workflows/build-riscv-native.yml
vendored
Normal file
@@ -0,0 +1,60 @@
|
||||
name: Build on RISCV Linux Machine by Cloud-V
|
||||
on:
|
||||
pull_request:
|
||||
workflow_dispatch:
|
||||
workflow_call:
|
||||
|
||||
jobs:
|
||||
debian-13-riscv64-native: # Bianbu 2.2
|
||||
runs-on: self-hosted
|
||||
|
||||
steps:
|
||||
- name: Install prerequisites
|
||||
run: |
|
||||
sudo apt-get update || true
|
||||
sudo apt-get install -y libatomic1
|
||||
- uses: actions/checkout@v4
|
||||
- name: Setup Riscv
|
||||
run: |
|
||||
sudo apt-get update || true
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
gcc-14-riscv64-linux-gnu \
|
||||
g++-14-riscv64-linux-gnu \
|
||||
ccache \
|
||||
cmake
|
||||
|
||||
- name: Setup ccache
|
||||
run: |
|
||||
mkdir -p $HOME/.ccache
|
||||
ccache -M 5G -d $HOME/.ccache
|
||||
export CCACHE_LOGFILE=/home/runneruser/ccache_debug/ccache.log
|
||||
export CCACHE_DEBUGDIR="/home/runneruser/ccache_debug"
|
||||
echo "$GITHUB_WORKSPACE"
|
||||
echo "CCACHE_LOGFILE=$CCACHE_LOGFILE" >> $GITHUB_ENV
|
||||
echo "CCACHE_DEBUGDIR=$CCACHE_DEBUGDIR" >> $GITHUB_ENV
|
||||
echo "CCACHE_BASEDIR=$GITHUB_WORKSPACE" >> $GITHUB_ENV
|
||||
echo "CCACHE_DIR=$HOME/.ccache" >> $GITHUB_ENV
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
|
||||
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
|
||||
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
|
||||
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
|
||||
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
|
||||
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
64
.github/workflows/build.yml
vendored
64
.github/workflows/build.yml
vendored
@@ -64,7 +64,7 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: macOS-latest-cmake-arm64
|
||||
evict-old-files: 1d
|
||||
@@ -104,7 +104,7 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: macOS-latest-cmake-x64
|
||||
evict-old-files: 1d
|
||||
@@ -144,7 +144,7 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: macOS-latest-cmake-arm64-webgpu
|
||||
evict-old-files: 1d
|
||||
@@ -199,7 +199,7 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: ubuntu-cpu-cmake
|
||||
evict-old-files: 1d
|
||||
@@ -251,7 +251,7 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: ubuntu-latest-cmake-sanitizer-${{ matrix.sanitizer }}
|
||||
evict-old-files: 1d
|
||||
@@ -330,7 +330,7 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: ubuntu-latest-cmake-rpc
|
||||
evict-old-files: 1d
|
||||
@@ -363,7 +363,7 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: ubuntu-22-cmake-vulkan
|
||||
evict-old-files: 1d
|
||||
@@ -400,7 +400,7 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: ubuntu-22-cmake-webgpu
|
||||
evict-old-files: 1d
|
||||
@@ -443,7 +443,7 @@ jobs:
|
||||
|
||||
ubuntu-22-cmake-hip:
|
||||
runs-on: ubuntu-22.04
|
||||
container: rocm/dev-ubuntu-22.04:6.0.2
|
||||
container: rocm/dev-ubuntu-22.04:6.1.2
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@@ -457,7 +457,7 @@ jobs:
|
||||
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev libcurl4-openssl-dev
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: ubuntu-22-cmake-hip
|
||||
evict-old-files: 1d
|
||||
@@ -471,16 +471,6 @@ jobs:
|
||||
-DGGML_HIP=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
- name: Build with legacy HIP support
|
||||
id: cmake_build_legacy_hip
|
||||
run: |
|
||||
cmake -B build2 -S . \
|
||||
-DCMAKE_C_COMPILER=hipcc \
|
||||
-DCMAKE_CXX_COMPILER=hipcc \
|
||||
-DGGML_HIP_ROCWMMA_FATTN=ON \
|
||||
-DGGML_HIP=ON
|
||||
cmake --build build2 --config Release -j $(nproc)
|
||||
|
||||
ubuntu-22-cmake-musa:
|
||||
runs-on: ubuntu-22.04
|
||||
container: mthreads/musa:rc4.2.0-devel-ubuntu22.04-amd64
|
||||
@@ -497,7 +487,7 @@ jobs:
|
||||
apt-get install -y build-essential git cmake libcurl4-openssl-dev
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: ubuntu-22-cmake-musa
|
||||
evict-old-files: 1d
|
||||
@@ -542,7 +532,7 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: ubuntu-22-cmake-sycl
|
||||
evict-old-files: 1d
|
||||
@@ -590,7 +580,7 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: ubuntu-22-cmake-sycl-fp16
|
||||
evict-old-files: 1d
|
||||
@@ -621,7 +611,7 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: macOS-latest-cmake-ios
|
||||
evict-old-files: 1d
|
||||
@@ -658,7 +648,7 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: macOS-latest-cmake-tvos
|
||||
evict-old-files: 1d
|
||||
@@ -730,7 +720,7 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: macOS-latest-swift
|
||||
evict-old-files: 1d
|
||||
@@ -776,7 +766,7 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: windows-msys2
|
||||
variant: ccache
|
||||
@@ -844,7 +834,7 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: windows-latest-cmake-${{ matrix.build }}
|
||||
variant: ccache
|
||||
@@ -958,7 +948,7 @@ jobs:
|
||||
apt install -y cmake build-essential ninja-build libgomp1 git libcurl4-openssl-dev
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: ubuntu-latest-cmake-cuda
|
||||
evict-old-files: 1d
|
||||
@@ -987,7 +977,7 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Install ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: windows-cuda-${{ matrix.cuda }}
|
||||
variant: ccache
|
||||
@@ -1043,7 +1033,7 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: windows-latest-cmake-sycl
|
||||
variant: ccache
|
||||
@@ -1080,7 +1070,8 @@ jobs:
|
||||
write-host "Downloading AMD HIP SDK Installer"
|
||||
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
|
||||
write-host "Installing AMD HIP SDK"
|
||||
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
|
||||
$proc = Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -PassThru
|
||||
$proc.WaitForExit(600000)
|
||||
write-host "Completed AMD HIP SDK installation"
|
||||
|
||||
- name: Verify ROCm
|
||||
@@ -1089,7 +1080,7 @@ jobs:
|
||||
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
|
||||
|
||||
- name: Install ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: ${{ github.job }}
|
||||
evict-old-files: 1d
|
||||
@@ -1123,6 +1114,11 @@ jobs:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Setup Xcode
|
||||
uses: maxim-lobanov/setup-xcode@v1
|
||||
with:
|
||||
xcode-version: latest-stable
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
@@ -1156,7 +1152,7 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: android-build
|
||||
evict-old-files: 1d
|
||||
|
||||
57
.github/workflows/copilot-setup-steps.yml
vendored
Normal file
57
.github/workflows/copilot-setup-steps.yml
vendored
Normal file
@@ -0,0 +1,57 @@
|
||||
name: "Copilot Setup Steps"
|
||||
|
||||
# Automatically run the setup steps when they are changed to allow for easy validation, and
|
||||
# allow manual testing through the repository's "Actions" tab
|
||||
on:
|
||||
workflow_dispatch:
|
||||
push:
|
||||
paths:
|
||||
- .github/workflows/copilot-setup-steps.yml
|
||||
pull_request:
|
||||
paths:
|
||||
- .github/workflows/copilot-setup-steps.yml
|
||||
|
||||
jobs:
|
||||
# The job MUST be called `copilot-setup-steps` or it will not be picked up by Copilot.
|
||||
copilot-setup-steps:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
# Set the permissions to the lowest permissions possible needed for your steps.
|
||||
# Copilot will be given its own token for its operations.
|
||||
permissions:
|
||||
# If you want to clone the repository as part of your setup steps, for example to install dependencies, you'll need the `contents: read` permission. If you don't clone the repository in your setup steps, Copilot will do this for you automatically after the steps complete.
|
||||
contents: read
|
||||
|
||||
# You can define any steps you want, and they will run before the agent starts.
|
||||
# If you do not check out your code, Copilot will do this for you.
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: ccache
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: copilot-setup-steps
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential libcurl4-openssl-dev
|
||||
# Install git-clang-format script for formatting only changed code
|
||||
wget -O /tmp/git-clang-format https://raw.githubusercontent.com/llvm/llvm-project/release/18.x/clang/tools/clang-format/git-clang-format
|
||||
sudo cp /tmp/git-clang-format /usr/local/bin/git-clang-format
|
||||
sudo chmod +x /usr/local/bin/git-clang-format
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.11'
|
||||
|
||||
- name: Install Python dependencies
|
||||
run: |
|
||||
python3 -m venv .venv
|
||||
.venv/bin/activate
|
||||
pip install -r requirements/requirements-all.txt -r tools/server/tests/requirements.txt
|
||||
pip install flake8 pyright pre-commit
|
||||
27
.github/workflows/release.yml
vendored
27
.github/workflows/release.yml
vendored
@@ -32,7 +32,7 @@ jobs:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: macOS-latest-cmake-arm64
|
||||
evict-old-files: 1d
|
||||
@@ -85,7 +85,7 @@ jobs:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: macOS-latest-cmake-x64
|
||||
evict-old-files: 1d
|
||||
@@ -147,7 +147,7 @@ jobs:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: ubuntu-cpu-cmake
|
||||
evict-old-files: 1d
|
||||
@@ -198,7 +198,7 @@ jobs:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: ubuntu-22-cmake-vulkan
|
||||
evict-old-files: 1d
|
||||
@@ -256,7 +256,7 @@ jobs:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: windows-latest-cmake-cpu-${{ matrix.arch }}
|
||||
variant: ccache
|
||||
@@ -328,7 +328,7 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: windows-latest-cmake-${{ matrix.backend }}-${{ matrix.arch }}
|
||||
variant: ccache
|
||||
@@ -398,7 +398,7 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Install ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: windows-cuda-${{ matrix.cuda }}
|
||||
variant: ccache
|
||||
@@ -471,7 +471,7 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: windows-latest-cmake-sycl
|
||||
variant: ccache
|
||||
@@ -545,7 +545,7 @@ jobs:
|
||||
git clone https://github.com/rocm/rocwmma --branch rocm-6.2.4 --depth 1
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: windows-latest-cmake-hip-${{ matrix.name }}-x64
|
||||
evict-old-files: 1d
|
||||
@@ -557,7 +557,8 @@ jobs:
|
||||
write-host "Downloading AMD HIP SDK Installer"
|
||||
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
|
||||
write-host "Installing AMD HIP SDK"
|
||||
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
|
||||
$proc = Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -PassThru
|
||||
$proc.WaitForExit(600000)
|
||||
write-host "Completed AMD HIP SDK installation"
|
||||
|
||||
- name: Verify ROCm
|
||||
@@ -600,7 +601,7 @@ jobs:
|
||||
name: llama-bin-win-hip-${{ matrix.name }}-x64.zip
|
||||
|
||||
ios-xcode-build:
|
||||
runs-on: macos-latest
|
||||
runs-on: macos-15
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
@@ -608,6 +609,10 @@ jobs:
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Setup Xcode
|
||||
run: |
|
||||
sudo xcode-select -s /Applications/Xcode_16.4.app
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@@ -147,3 +147,4 @@ poetry.toml
|
||||
# Local scripts
|
||||
/run-vim.sh
|
||||
/run-chat.sh
|
||||
.ccache/
|
||||
|
||||
@@ -12,6 +12,8 @@ if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
|
||||
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo")
|
||||
endif()
|
||||
|
||||
message("CMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE}")
|
||||
|
||||
# Add path to modules
|
||||
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
|
||||
|
||||
|
||||
@@ -5,8 +5,8 @@
|
||||
/tools/server/ @ngxson
|
||||
/ggml/src/ggml-cuda/fattn* @JohannesGaessler
|
||||
/ggml/src/ggml-cuda/mmq.* @JohannesGaessler
|
||||
/ggml/src/ggml-cuda/mmv.* @JohannesGaessler
|
||||
/ggml/src/ggml-cuda/mmvq.* @JohannesGaessler
|
||||
/ggml/src/ggml-opt.cpp @JohannesGaessler
|
||||
/ggml/src/gguf.cpp @JohannesGaessler
|
||||
/ggml/src/ggml-vulkan/ @0cc4m
|
||||
/ggml/src/ggml-zdnn/ @taronaeo
|
||||
|
||||
@@ -17,6 +17,8 @@ LLM inference in C/C++
|
||||
|
||||
## Hot topics
|
||||
|
||||
- **[guide : running gpt-oss with llama.cpp](https://github.com/ggml-org/llama.cpp/discussions/15396)**
|
||||
- **[[FEEDBACK] Better packaging for llama.cpp to support downstream consumers 🤗](https://github.com/ggml-org/llama.cpp/discussions/15313)**
|
||||
- Support for the `gpt-oss` model with native MXFP4 format has been added | [PR](https://github.com/ggml-org/llama.cpp/pull/15091) | [Collaboration with NVIDIA](https://blogs.nvidia.com/blog/rtx-ai-garage-openai-oss) | [Comment](https://github.com/ggml-org/llama.cpp/discussions/15095)
|
||||
- Hot PRs: [All](https://github.com/ggml-org/llama.cpp/pulls?q=is%3Apr+label%3Ahot+) | [Open](https://github.com/ggml-org/llama.cpp/pulls?q=is%3Apr+label%3Ahot+is%3Aopen)
|
||||
- Multimodal support arrived in `llama-server`: [#12898](https://github.com/ggml-org/llama.cpp/pull/12898) | [documentation](./docs/multimodal.md)
|
||||
@@ -149,6 +151,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- [x] [Bunny](https://github.com/BAAI-DCAI/Bunny)
|
||||
- [x] [GLM-EDGE](https://huggingface.co/models?search=glm-edge)
|
||||
- [x] [Qwen2-VL](https://huggingface.co/collections/Qwen/qwen2-vl-66cee7455501d7126940800d)
|
||||
- [x] [LFM2-VL](https://huggingface.co/collections/LiquidAI/lfm2-vl-68963bbc84a610f7638d5ffa)
|
||||
|
||||
</details>
|
||||
|
||||
@@ -240,7 +243,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
<details>
|
||||
<summary>Infrastructure</summary>
|
||||
|
||||
- [Paddler](https://github.com/distantmagic/paddler) - Stateful load balancer custom-tailored for llama.cpp
|
||||
- [Paddler](https://github.com/intentee/paddler) - Open-source LLMOps platform for hosting and scaling AI in your own infrastructure
|
||||
- [GPUStack](https://github.com/gpustack/gpustack) - Manage GPU clusters for running LLMs
|
||||
- [llama_cpp_canister](https://github.com/onicai/llama_cpp_canister) - llama.cpp as a smart contract on the Internet Computer, using WebAssembly
|
||||
- [llama-swap](https://github.com/mostlygeek/llama-swap) - transparent proxy that adds automatic model switching with llama-server
|
||||
|
||||
@@ -106,7 +106,7 @@ function gg_wget {
|
||||
cd $out
|
||||
|
||||
# should not re-download if file is the same
|
||||
wget -nv -N $url
|
||||
wget -nv -c -N $url
|
||||
|
||||
cd $cwd
|
||||
}
|
||||
|
||||
181
common/arg.cpp
181
common/arg.cpp
@@ -749,6 +749,39 @@ std::pair<long, std::vector<char>> common_remote_get_content(const std::string &
|
||||
// utils
|
||||
//
|
||||
|
||||
// Helper function to parse tensor buffer override strings
|
||||
static void parse_tensor_buffer_overrides(const std::string & value, std::vector<llama_model_tensor_buft_override> & overrides) {
|
||||
std::map<std::string, ggml_backend_buffer_type_t> buft_list;
|
||||
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
|
||||
auto * dev = ggml_backend_dev_get(i);
|
||||
auto * buft = ggml_backend_dev_buffer_type(dev);
|
||||
if (buft) {
|
||||
buft_list[ggml_backend_buft_name(buft)] = buft;
|
||||
}
|
||||
}
|
||||
|
||||
for (const auto & override : string_split<std::string>(value, ',')) {
|
||||
std::string::size_type pos = override.find('=');
|
||||
if (pos == std::string::npos) {
|
||||
throw std::invalid_argument("invalid value");
|
||||
}
|
||||
std::string tensor_name = override.substr(0, pos);
|
||||
std::string buffer_type = override.substr(pos + 1);
|
||||
|
||||
if (buft_list.find(buffer_type) == buft_list.end()) {
|
||||
printf("Available buffer types:\n");
|
||||
for (const auto & it : buft_list) {
|
||||
printf(" %s\n", ggml_backend_buft_name(it.second));
|
||||
}
|
||||
throw std::invalid_argument("unknown buffer type");
|
||||
}
|
||||
// keep strings alive and avoid leaking memory by storing them in a static vector
|
||||
static std::list<std::string> buft_overrides;
|
||||
buft_overrides.push_back(tensor_name);
|
||||
overrides.push_back({buft_overrides.back().c_str(), buft_list.at(buffer_type)});
|
||||
}
|
||||
}
|
||||
|
||||
struct handle_model_result {
|
||||
bool found_mmproj = false;
|
||||
common_params_model mmproj;
|
||||
@@ -993,6 +1026,10 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
|
||||
params.tensor_buft_overrides.push_back({nullptr, nullptr});
|
||||
}
|
||||
|
||||
if (!params.speculative.tensor_buft_overrides.empty()) {
|
||||
params.speculative.tensor_buft_overrides.push_back({nullptr, nullptr});
|
||||
}
|
||||
|
||||
if (!params.chat_template.empty() && !common_chat_verify_template(params.chat_template, params.use_jinja)) {
|
||||
throw std::runtime_error(string_format(
|
||||
"error: the supplied chat template is not supported: %s%s\n",
|
||||
@@ -1201,6 +1238,7 @@ bool common_params_parse(int argc, char ** argv, common_params & params, llama_e
|
||||
common_params_print_completion(ctx_arg);
|
||||
exit(0);
|
||||
}
|
||||
params.lr.init();
|
||||
} catch (const std::invalid_argument & ex) {
|
||||
fprintf(stderr, "%s\n", ex.what());
|
||||
ctx_arg.params = params_org;
|
||||
@@ -1469,6 +1507,14 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.swa_full = true;
|
||||
}
|
||||
).set_env("LLAMA_ARG_SWA_FULL"));
|
||||
add_opt(common_arg(
|
||||
{"--swa-checkpoints"}, "N",
|
||||
string_format("max number of SWA checkpoints per slot to create (default: %d)\n"
|
||||
"[(more info)](https://github.com/ggml-org/llama.cpp/pull/15293)", params.n_swa_checkpoints),
|
||||
[](common_params & params, int value) {
|
||||
params.n_swa_checkpoints = value;
|
||||
}
|
||||
).set_env("LLAMA_ARG_SWA_CHECKPOINTS").set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"--kv-unified", "-kvu"},
|
||||
string_format("use single unified KV buffer for the KV cache of all sequences (default: %s)\n"
|
||||
@@ -1484,6 +1530,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.ctx_shift = false;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY}).set_env("LLAMA_ARG_NO_CONTEXT_SHIFT"));
|
||||
add_opt(common_arg(
|
||||
{"--context-shift"},
|
||||
string_format("enables context shift on infinite text generation (default: %s)", params.ctx_shift ? "enabled" : "disabled"),
|
||||
[](common_params & params) {
|
||||
params.ctx_shift = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY}).set_env("LLAMA_ARG_CONTEXT_SHIFT"));
|
||||
add_opt(common_arg(
|
||||
{"--chunks"}, "N",
|
||||
string_format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks),
|
||||
@@ -1702,7 +1755,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params) {
|
||||
params.warmup = false;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL}));
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_PERPLEXITY}));
|
||||
add_opt(common_arg(
|
||||
{"--spm-infill"},
|
||||
string_format(
|
||||
@@ -1777,7 +1830,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.top_n_sigma = std::stof(value);
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN}).set_sparam());
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--xtc-probability"}, "N",
|
||||
string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sampling.xtc_probability),
|
||||
@@ -2201,9 +2254,11 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
|
||||
add_opt(common_arg(
|
||||
{"-dt", "--defrag-thold"}, "N",
|
||||
string_format("KV cache defragmentation threshold (default: %.1f, < 0 - disabled)", (double)params.defrag_thold),
|
||||
string_format("KV cache defragmentation threshold (DEPRECATED)"),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.defrag_thold = std::stof(value);
|
||||
GGML_UNUSED(params);
|
||||
GGML_UNUSED(value);
|
||||
LOG_WRN("DEPRECATED: --defrag-thold is deprecated and no longer necessary to specify\n");
|
||||
}
|
||||
).set_env("LLAMA_ARG_DEFRAG_THOLD"));
|
||||
add_opt(common_arg(
|
||||
@@ -2349,40 +2404,15 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
add_opt(common_arg(
|
||||
{"--override-tensor", "-ot"}, "<tensor name pattern>=<buffer type>,...",
|
||||
"override tensor buffer type", [](common_params & params, const std::string & value) {
|
||||
/* static */ std::map<std::string, ggml_backend_buffer_type_t> buft_list;
|
||||
if (buft_list.empty()) {
|
||||
// enumerate all the devices and add their buffer types to the list
|
||||
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
|
||||
auto * dev = ggml_backend_dev_get(i);
|
||||
auto * buft = ggml_backend_dev_buffer_type(dev);
|
||||
if (buft) {
|
||||
buft_list[ggml_backend_buft_name(buft)] = buft;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (const auto & override : string_split<std::string>(value, ',')) {
|
||||
std::string::size_type pos = override.find('=');
|
||||
if (pos == std::string::npos) {
|
||||
throw std::invalid_argument("invalid value");
|
||||
}
|
||||
std::string tensor_name = override.substr(0, pos);
|
||||
std::string buffer_type = override.substr(pos + 1);
|
||||
|
||||
if (buft_list.find(buffer_type) == buft_list.end()) {
|
||||
printf("Available buffer types:\n");
|
||||
for (const auto & it : buft_list) {
|
||||
printf(" %s\n", ggml_backend_buft_name(it.second));
|
||||
}
|
||||
throw std::invalid_argument("unknown buffer type");
|
||||
}
|
||||
// keep strings alive and avoid leaking memory by storing them in a static vector
|
||||
static std::list<std::string> buft_overrides;
|
||||
buft_overrides.push_back(tensor_name);
|
||||
params.tensor_buft_overrides.push_back({buft_overrides.back().c_str(), buft_list.at(buffer_type)});
|
||||
}
|
||||
parse_tensor_buffer_overrides(value, params.tensor_buft_overrides);
|
||||
}
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"--override-tensor-draft", "-otd"}, "<tensor name pattern>=<buffer type>,...",
|
||||
"override tensor buffer type for draft model", [](common_params & params, const std::string & value) {
|
||||
parse_tensor_buffer_overrides(value, params.speculative.tensor_buft_overrides);
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"--cpu-moe", "-cmoe"},
|
||||
"keep all Mixture of Experts (MoE) weights in the CPU",
|
||||
@@ -2405,6 +2435,27 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
}
|
||||
}
|
||||
).set_env("LLAMA_ARG_N_CPU_MOE"));
|
||||
add_opt(common_arg(
|
||||
{"--cpu-moe-draft", "-cmoed"},
|
||||
"keep all Mixture of Experts (MoE) weights in the CPU for the draft model",
|
||||
[](common_params & params) {
|
||||
params.speculative.tensor_buft_overrides.push_back({"\\.ffn_(up|down|gate)_exps", ggml_backend_cpu_buffer_type()});
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CPU_MOE_DRAFT"));
|
||||
add_opt(common_arg(
|
||||
{"--n-cpu-moe-draft", "-ncmoed"}, "N",
|
||||
"keep the Mixture of Experts (MoE) weights of the first N layers in the CPU for the draft model",
|
||||
[](common_params & params, int value) {
|
||||
if (value < 0) {
|
||||
throw std::invalid_argument("invalid value");
|
||||
}
|
||||
for (int i = 0; i < value; ++i) {
|
||||
static std::list<std::string> buft_overrides_draft;
|
||||
buft_overrides_draft.push_back(string_format("blk\\.%d\\.ffn_(up|down|gate)_exps", i));
|
||||
params.speculative.tensor_buft_overrides.push_back({buft_overrides_draft.back().c_str(), ggml_backend_cpu_buffer_type()});
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_N_CPU_MOE_DRAFT"));
|
||||
add_opt(common_arg(
|
||||
{"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
|
||||
"number of layers to store in VRAM",
|
||||
@@ -2655,7 +2706,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.out_file = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA, LLAMA_EXAMPLE_TTS}));
|
||||
).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA, LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_FINETUNE}));
|
||||
add_opt(common_arg(
|
||||
{"-ofreq", "--output-frequency"}, "N",
|
||||
string_format("output the imatrix every N iterations (default: %d)", params.n_out_freq),
|
||||
@@ -2949,11 +3000,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
"- deepseek: puts thoughts in `message.reasoning_content` (except in streaming mode, which behaves as `none`)\n"
|
||||
"(default: auto)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
/**/ if (value == "deepseek") { params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK; }
|
||||
else if (value == "deepseek-legacy") { params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY; }
|
||||
else if (value == "none") { params.reasoning_format = COMMON_REASONING_FORMAT_NONE; }
|
||||
else if (value == "auto") { params.reasoning_format = COMMON_REASONING_FORMAT_AUTO; }
|
||||
else { throw std::invalid_argument("invalid value"); }
|
||||
params.reasoning_format = common_reasoning_format_from_name(value);
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_THINK"));
|
||||
add_opt(common_arg(
|
||||
@@ -3134,7 +3181,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.speculative.cpuparams.n_threads = std::thread::hardware_concurrency();
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"-tbd", "--threads-batch-draft"}, "N",
|
||||
"number of threads to use during batch and prompt processing (default: same as --threads-draft)",
|
||||
@@ -3144,7 +3191,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.speculative.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"-Cd", "--cpu-mask-draft"}, "M",
|
||||
"Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
|
||||
@@ -3537,5 +3584,51 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
|
||||
|
||||
add_opt(
|
||||
common_arg({ "-lr", "--learning-rate" }, "ALPHA",
|
||||
string_format(
|
||||
"adamw or sgd optimizer alpha (default: %.2g); note: sgd alpha recommended ~10x (no momentum)",
|
||||
(double) params.lr.lr0),
|
||||
[](common_params & params, const std::string & value) { params.lr.lr0 = std::stof(value); })
|
||||
.set_examples({ LLAMA_EXAMPLE_FINETUNE }));
|
||||
add_opt(
|
||||
common_arg({ "-lr-min", "--learning-rate-min" }, "ALPHA",
|
||||
string_format(
|
||||
"(if >0) final learning rate after decay (if -decay-epochs is set, default=%.2g)",
|
||||
(double) params.lr.lr_min),
|
||||
[](common_params & params, const std::string & value) { params.lr.lr_min = std::stof(value); })
|
||||
.set_examples({ LLAMA_EXAMPLE_FINETUNE }));
|
||||
add_opt(
|
||||
common_arg({ "-decay-epochs", "--learning-rate-decay-epochs" }, "ALPHA",
|
||||
string_format(
|
||||
"(if >0) decay learning rate to -lr-min after this many epochs (exponential decay, default=%.2g)",
|
||||
(double) params.lr.decay_epochs),
|
||||
[](common_params & params, const std::string & value) { params.lr.decay_epochs = std::stof(value); })
|
||||
.set_examples({ LLAMA_EXAMPLE_FINETUNE }));
|
||||
add_opt(common_arg(
|
||||
{ "-wd", "--weight-decay" }, "WD",
|
||||
string_format(
|
||||
"adamw or sgd optimizer weight decay (0 is off; recommend very small e.g. 1e-9) (default: %.2g).",
|
||||
(double) params.lr.wd),
|
||||
[](common_params & params, const std::string & value) { params.lr.wd = std::stof(value); })
|
||||
.set_examples({ LLAMA_EXAMPLE_FINETUNE }));
|
||||
add_opt(common_arg({ "-val-split", "--val-split" }, "FRACTION",
|
||||
string_format("fraction of data to use as validation set for training (default: %.2g).",
|
||||
(double) params.val_split),
|
||||
[](common_params & params, const std::string & value) { params.val_split = std::stof(value); })
|
||||
.set_examples({ LLAMA_EXAMPLE_FINETUNE }));
|
||||
add_opt(common_arg({ "-epochs", "--epochs" }, "N",
|
||||
string_format("optimizer max # of epochs (default: %d)", params.lr.epochs),
|
||||
[](common_params & params, int epochs) { params.lr.epochs = epochs; })
|
||||
.set_examples({ LLAMA_EXAMPLE_FINETUNE }));
|
||||
add_opt(common_arg({ "-opt", "--optimizer" }, "sgd|adamw", "adamw or sgd",
|
||||
[](common_params & params, const std::string & name) {
|
||||
params.optimizer = common_opt_get_optimizer(name.c_str());
|
||||
if (params.optimizer == GGML_OPT_OPTIMIZER_TYPE_COUNT) {
|
||||
throw std::invalid_argument("invalid --optimizer, valid options: adamw, sgd");
|
||||
}
|
||||
})
|
||||
.set_examples({ LLAMA_EXAMPLE_FINETUNE }));
|
||||
|
||||
return ctx_arg;
|
||||
}
|
||||
|
||||
227
common/chat.cpp
227
common/chat.cpp
@@ -147,6 +147,7 @@ struct templates_params {
|
||||
json extra_context;
|
||||
bool add_bos;
|
||||
bool add_eos;
|
||||
bool is_inference = true;
|
||||
};
|
||||
|
||||
common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::string & tool_choice) {
|
||||
@@ -296,6 +297,7 @@ json common_chat_msgs_to_json_oaicompat(const std::vector<common_chat_msg> & msg
|
||||
}
|
||||
if (!msg.reasoning_content.empty()) {
|
||||
jmsg["reasoning_content"] = msg.reasoning_content;
|
||||
jmsg["thinking"] = msg.reasoning_content; // gpt-oss
|
||||
}
|
||||
if (!msg.tool_name.empty()) {
|
||||
jmsg["name"] = msg.tool_name;
|
||||
@@ -472,11 +474,12 @@ std::string common_chat_format_single(
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
std::string common_chat_format_example(const struct common_chat_templates * tmpls, bool use_jinja) {
|
||||
std::string common_chat_format_example(const struct common_chat_templates * tmpls, bool use_jinja, const std::map<std::string, std::string> & chat_template_kwargs) {
|
||||
common_chat_templates_inputs inputs;
|
||||
inputs.use_jinja = use_jinja;
|
||||
inputs.add_bos = tmpls->add_bos;
|
||||
inputs.add_eos = tmpls->add_eos;
|
||||
inputs.chat_template_kwargs = chat_template_kwargs;
|
||||
auto add_simple_msg = [&](auto role, auto content) {
|
||||
common_chat_msg msg;
|
||||
msg.role = role;
|
||||
@@ -552,6 +555,17 @@ common_chat_templates_ptr common_chat_templates_init(
|
||||
default_template_src = CHATML_TEMPLATE_SRC;
|
||||
}
|
||||
}
|
||||
|
||||
// TODO @ngxson : this is a temporary hack to prevent chat template from throwing an error
|
||||
// Ref: https://github.com/ggml-org/llama.cpp/pull/15230#issuecomment-3173959633
|
||||
if (default_template_src.find("<|channel|>") != std::string::npos
|
||||
// search for the error message and patch it
|
||||
&& default_template_src.find("in message.content or") != std::string::npos) {
|
||||
string_replace_all(default_template_src,
|
||||
"{%- if \"<|channel|>analysis<|message|>\" in message.content or \"<|channel|>final<|message|>\" in message.content %}",
|
||||
"{%- if false %}");
|
||||
}
|
||||
|
||||
std::string token_bos = bos_token_override;
|
||||
std::string token_eos = eos_token_override;
|
||||
bool add_bos = false;
|
||||
@@ -619,12 +633,24 @@ const char * common_reasoning_format_name(common_reasoning_format format) {
|
||||
case COMMON_REASONING_FORMAT_AUTO: return "auto";
|
||||
case COMMON_REASONING_FORMAT_DEEPSEEK: return "deepseek";
|
||||
case COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY: return "deepseek-legacy";
|
||||
case COMMON_REASONING_FORMAT_GRANITE: return "granite";
|
||||
default:
|
||||
throw std::runtime_error("Unknown reasoning format");
|
||||
}
|
||||
}
|
||||
|
||||
common_reasoning_format common_reasoning_format_from_name(const std::string & format) {
|
||||
if (format == "none") {
|
||||
return COMMON_REASONING_FORMAT_NONE;
|
||||
} else if (format == "auto") {
|
||||
return COMMON_REASONING_FORMAT_AUTO;
|
||||
} else if (format == "deepseek") {
|
||||
return COMMON_REASONING_FORMAT_DEEPSEEK;
|
||||
} else if (format == "deepseek-legacy") {
|
||||
return COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY;
|
||||
}
|
||||
throw std::runtime_error("Unknown reasoning format: " + format);
|
||||
}
|
||||
|
||||
static std::string wrap_code_as_arguments(common_chat_msg_parser & builder, const std::string & code) {
|
||||
std::string arguments;
|
||||
if (builder.is_partial()) {
|
||||
@@ -1311,19 +1337,198 @@ static common_chat_params common_chat_params_init_gpt_oss(const common_chat_temp
|
||||
common_chat_params data;
|
||||
auto prompt = apply(tmpl, inputs);
|
||||
|
||||
// Check if we need to replace the return token with end token during
|
||||
// inference and without generation prompt. For more details see:
|
||||
// https://github.com/ggml-org/llama.cpp/issues/15417
|
||||
if (inputs.is_inference && !inputs.add_generation_prompt) {
|
||||
static constexpr std::string_view return_token = "<|return|>";
|
||||
static constexpr std::string_view end_token = "<|end|>";
|
||||
if (size_t pos = prompt.rfind(return_token); pos != std::string::npos) {
|
||||
prompt.replace(pos, return_token.length(), end_token);
|
||||
}
|
||||
}
|
||||
|
||||
data.prompt = prompt;
|
||||
data.format = COMMON_CHAT_FORMAT_GPT_OSS;
|
||||
|
||||
// TODO: support tool calls in GPT-OSS?
|
||||
// These special tokens are required to parse properly, so we include them
|
||||
// even if parse_tool_calls is false.
|
||||
data.preserved_tokens = {
|
||||
"<|channel|>",
|
||||
"<|constrain|>",
|
||||
"<|message|>",
|
||||
"<|start|>",
|
||||
"<|end|>",
|
||||
};
|
||||
|
||||
if (!inputs.json_schema.is_null()) {
|
||||
data.grammar_lazy = false;
|
||||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||||
auto schema = inputs.json_schema;
|
||||
builder.resolve_refs(schema);
|
||||
|
||||
auto not_end = builder.add_rule("not-end",
|
||||
"[^<] | \"<\" [^|] | \"<|\" [^e] | \"<|e\" [^n] | \"<|en\" [^d] | \"<|end\" [^|] | \"<|end|\" [^>]");
|
||||
auto analysis = builder.add_rule("analysis",
|
||||
"\"<|channel|>analysis<|message|>\" ( " + not_end + " )* \"<|end|>\"");
|
||||
auto constraint = builder.add_rule("constraint", "\"<|constrain|>\"? [a-zA-Z0-9_-]+");
|
||||
auto final = builder.add_rule("final",
|
||||
"\"<|channel|>final\" ( \" \" " + constraint + " )? \"<|message|>\" " +
|
||||
builder.add_schema("response", schema)
|
||||
);
|
||||
|
||||
builder.add_rule("root", "( " + analysis + " \"<|start|>assistant\" )? " + final);
|
||||
});
|
||||
}
|
||||
|
||||
if (inputs.tools.is_array() && !inputs.tools.empty()) {
|
||||
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
|
||||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||||
// tool calls can appear in commentary or analysis channels
|
||||
auto channel = builder.add_rule("channel", "\"<|channel|>\" ( \"commentary\" | \"analysis\" )");
|
||||
|
||||
std::vector<std::string> tool_rules_recipient_in_role;
|
||||
std::vector<std::string> tool_rules_recipient_in_channel;
|
||||
foreach_function(inputs.tools, [&](const json & tool) {
|
||||
const auto & function = tool.at("function");
|
||||
std::string name = function.at("name");
|
||||
auto parameters = function.at("parameters");
|
||||
builder.resolve_refs(parameters);
|
||||
|
||||
tool_rules_recipient_in_role.push_back(
|
||||
builder.add_rule(name + "-call",
|
||||
"\"" + name + "\"" + channel + " \" <|constrain|>json\"? \"<|message|>\" " +
|
||||
builder.add_schema(name + "-args", parameters)
|
||||
)
|
||||
);
|
||||
|
||||
tool_rules_recipient_in_channel.push_back(
|
||||
builder.add_rule(name + "-call",
|
||||
"\"" + name + "\"" + " \" <|constrain|>json\"? \"<|message|>\" " +
|
||||
builder.add_schema(name + "-args", parameters)
|
||||
)
|
||||
);
|
||||
});
|
||||
|
||||
auto recipient_in_role = builder.add_rule("recipient_in_role",
|
||||
"\"<|start|>assistant\"? \" to=functions.\" ( " +
|
||||
string_join(tool_rules_recipient_in_role, " | ") + " )"
|
||||
);
|
||||
|
||||
auto recipient_in_channel = builder.add_rule("recipient_in_channel",
|
||||
channel + " \" to=functions.\" ( " +
|
||||
string_join(tool_rules_recipient_in_channel, " | ") + " )"
|
||||
);
|
||||
|
||||
builder.add_rule("root", recipient_in_role + " | " + recipient_in_channel);
|
||||
|
||||
// Trigger on tool calls that appear in the commentary channel
|
||||
data.grammar_triggers.push_back({
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN,
|
||||
"<\\|channel\\|>(commentary|analysis) to"
|
||||
});
|
||||
|
||||
// Trigger tool calls that appear in the role section, either at the
|
||||
// start or in the middle.
|
||||
data.grammar_triggers.push_back({
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
|
||||
"^ to"
|
||||
});
|
||||
|
||||
data.grammar_triggers.push_back({
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN,
|
||||
"<\\|start\\|>assistant to"
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
return data;
|
||||
}
|
||||
static void common_chat_parse_gpt_oss(common_chat_msg_parser & builder) {
|
||||
// TODO @ngxson : this won't work with --special enabled, we should fix that
|
||||
builder.try_parse_reasoning("<|channel|>analysis<|message|>", "<|start|>assistant<|channel|>final<|message|>");
|
||||
if (!builder.syntax().parse_tool_calls) {
|
||||
builder.add_content(builder.consume_rest());
|
||||
return;
|
||||
static const std::string constraint = "(?: (<\\|constrain\\|>)?([a-zA-Z0-9_-]+))";
|
||||
static const std::string recipient("(?: to=functions\\.([^<\\s]+))");
|
||||
|
||||
static const common_regex start_regex("<\\|start\\|>assistant");
|
||||
static const common_regex analysis_regex("<\\|channel\\|>analysis");
|
||||
static const common_regex final_regex("<\\|channel\\|>final" + constraint + "?");
|
||||
static const common_regex preamble_regex("<\\|channel\\|>commentary");
|
||||
static const common_regex tool_call1_regex(recipient + "<\\|channel\\|>(analysis|commentary)" + constraint + "?");
|
||||
static const common_regex tool_call2_regex("<\\|channel\\|>(analysis|commentary)" + recipient + constraint + "?");
|
||||
|
||||
auto consume_end = [&](bool include_end = false) {
|
||||
if (auto res = builder.try_find_literal("<|end|>")) {
|
||||
return res->prelude + (include_end ? builder.str(res->groups[0]) : "");
|
||||
}
|
||||
return builder.consume_rest();
|
||||
};
|
||||
|
||||
auto handle_tool_call = [&](const std::string & name) {
|
||||
if (auto args = builder.try_consume_json_with_dumped_args({{}})) {
|
||||
if (builder.syntax().parse_tool_calls) {
|
||||
if (!builder.add_tool_call(name, "", args->value) || args->is_partial) {
|
||||
throw common_chat_msg_partial_exception("incomplete tool call");
|
||||
}
|
||||
} else if (args->is_partial) {
|
||||
throw common_chat_msg_partial_exception("incomplete tool call");
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
auto regex_match = [](const common_regex & regex, const std::string & input) -> std::optional<common_regex_match> {
|
||||
auto match = regex.search(input, 0, true);
|
||||
if (match.type == COMMON_REGEX_MATCH_TYPE_FULL) {
|
||||
return match;
|
||||
}
|
||||
return std::nullopt;
|
||||
};
|
||||
|
||||
do {
|
||||
auto header_start_pos = builder.pos();
|
||||
auto content_start = builder.try_find_literal("<|message|>");
|
||||
if (!content_start) {
|
||||
throw common_chat_msg_partial_exception("incomplete header");
|
||||
}
|
||||
|
||||
auto header = content_start->prelude;
|
||||
|
||||
if (auto match = regex_match(tool_call1_regex, header)) {
|
||||
auto group = match->groups[1];
|
||||
auto name = header.substr(group.begin, group.end - group.begin);
|
||||
handle_tool_call(name);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (auto match = regex_match(tool_call2_regex, header)) {
|
||||
auto group = match->groups[2];
|
||||
auto name = header.substr(group.begin, group.end - group.begin);
|
||||
handle_tool_call(name);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (regex_match(analysis_regex, header)) {
|
||||
builder.move_to(header_start_pos);
|
||||
if (builder.syntax().reasoning_format == COMMON_REASONING_FORMAT_NONE || builder.syntax().reasoning_in_content) {
|
||||
builder.add_content(consume_end(true));
|
||||
} else {
|
||||
builder.try_parse_reasoning("<|channel|>analysis<|message|>", "<|end|>");
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
if(regex_match(final_regex, header) || regex_match(preamble_regex, header)) {
|
||||
builder.add_content(consume_end());
|
||||
continue;
|
||||
}
|
||||
|
||||
// Possibly a malformed message, attempt to recover by rolling
|
||||
// back to pick up the next <|start|>
|
||||
LOG_DBG("%s: unknown header from message: %s\n", __func__, header.c_str());
|
||||
builder.move_to(header_start_pos);
|
||||
} while (builder.try_find_regex(start_regex, std::string::npos, false));
|
||||
|
||||
auto remaining = builder.consume_rest();
|
||||
if (!remaining.empty()) {
|
||||
LOG_DBG("%s: content after last message: %s\n", __func__, remaining.c_str());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1887,8 +2092,8 @@ static common_chat_params common_chat_templates_apply_jinja(
|
||||
params.enable_thinking = inputs.enable_thinking;
|
||||
params.grammar = inputs.grammar;
|
||||
params.now = inputs.now;
|
||||
params.add_bos = inputs.add_bos;
|
||||
params.add_eos = inputs.add_eos;
|
||||
params.add_bos = tmpls->add_bos;
|
||||
params.add_eos = tmpls->add_eos;
|
||||
|
||||
params.extra_context = json::object();
|
||||
for (auto el : inputs.chat_template_kwargs) {
|
||||
@@ -1936,7 +2141,7 @@ static common_chat_params common_chat_templates_apply_jinja(
|
||||
}
|
||||
|
||||
// GPT-OSS
|
||||
if (src.find("<|channel|>") != std::string::npos && params.json_schema.is_null()) {
|
||||
if (src.find("<|channel|>") != std::string::npos) {
|
||||
return common_chat_params_init_gpt_oss(tmpl, params);
|
||||
}
|
||||
|
||||
|
||||
@@ -187,10 +187,12 @@ std::string common_chat_format_single(
|
||||
// Returns an example of formatted chat
|
||||
std::string common_chat_format_example(
|
||||
const struct common_chat_templates * tmpls,
|
||||
bool use_jinja);
|
||||
bool use_jinja,
|
||||
const std::map<std::string, std::string> & chat_template_kwargs);
|
||||
|
||||
const char* common_chat_format_name(common_chat_format format);
|
||||
const char* common_reasoning_format_name(common_reasoning_format format);
|
||||
common_reasoning_format common_reasoning_format_from_name(const std::string & format);
|
||||
common_chat_msg common_chat_parse(const std::string & input, bool is_partial, const common_chat_syntax & syntax);
|
||||
|
||||
common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::string & tool_choice);
|
||||
|
||||
@@ -41,6 +41,7 @@
|
||||
#endif
|
||||
#include <locale>
|
||||
#include <windows.h>
|
||||
#include <string.h>
|
||||
#include <fcntl.h>
|
||||
#include <io.h>
|
||||
#else
|
||||
@@ -557,13 +558,6 @@ std::string string_from(const struct llama_context * ctx, const std::vector<llam
|
||||
|
||||
auto detokenized = common_token_to_piece(ctx, token);
|
||||
|
||||
detokenized.erase(
|
||||
std::remove_if(
|
||||
detokenized.begin(),
|
||||
detokenized.end(),
|
||||
[](const unsigned char c) { return !std::isprint(c); }),
|
||||
detokenized.end());
|
||||
|
||||
buf << "'" << detokenized << "'"
|
||||
<< ":" << std::to_string(token);
|
||||
}
|
||||
@@ -588,13 +582,6 @@ std::string string_from(const struct llama_context * ctx, const struct llama_bat
|
||||
|
||||
auto detokenized = common_token_to_piece(ctx, batch.token[i]);
|
||||
|
||||
detokenized.erase(
|
||||
std::remove_if(
|
||||
detokenized.begin(),
|
||||
detokenized.end(),
|
||||
[](const unsigned char c) { return !std::isprint(c); }),
|
||||
detokenized.end());
|
||||
|
||||
buf << "\n" << std::to_string(i)
|
||||
<< ", token '" << detokenized << "'"
|
||||
<< ", pos " << std::to_string(batch.pos[i])
|
||||
@@ -1165,7 +1152,6 @@ struct llama_context_params common_context_params_to_llama(const common_params &
|
||||
cparams.yarn_orig_ctx = params.yarn_orig_ctx;
|
||||
cparams.pooling_type = params.pooling_type;
|
||||
cparams.attention_type = params.attention_type;
|
||||
cparams.defrag_thold = params.defrag_thold;
|
||||
cparams.cb_eval = params.cb_eval;
|
||||
cparams.cb_eval_user_data = params.cb_eval_user_data;
|
||||
cparams.offload_kqv = !params.no_kv_offload;
|
||||
@@ -1565,3 +1551,56 @@ ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
ggml_opt_optimizer_params common_opt_lr_pars(void * userdata) {
|
||||
ggml_opt_optimizer_params result = ggml_opt_get_default_optimizer_params(nullptr);
|
||||
const lr_opt & d = *(lr_opt *) userdata;
|
||||
result.adamw.alpha = result.sgd.alpha = d.get_lr(d.epoch);
|
||||
result.sgd.wd = result.adamw.wd = d.wd;
|
||||
return result;
|
||||
}
|
||||
|
||||
// TODO make all command line args case-insensitive
|
||||
static inline bool eq_case_insensitive(char const* a, char const* b) {
|
||||
return !
|
||||
#if defined(_MSC_VER)
|
||||
_stricmp
|
||||
#else
|
||||
strcasecmp
|
||||
#endif // defined(_MSC_VER)
|
||||
(a, b);
|
||||
}
|
||||
|
||||
enum ggml_opt_optimizer_type common_opt_get_optimizer(const char * n) {
|
||||
if (eq_case_insensitive("adamw", n)) {
|
||||
return GGML_OPT_OPTIMIZER_TYPE_ADAMW;
|
||||
}
|
||||
if (eq_case_insensitive("sgd", n)) {
|
||||
return GGML_OPT_OPTIMIZER_TYPE_SGD;
|
||||
}
|
||||
return GGML_OPT_OPTIMIZER_TYPE_COUNT;
|
||||
}
|
||||
|
||||
// TODO simplify to use just log and exp
|
||||
static float const k_log_2 = std::log(2.f);
|
||||
|
||||
void lr_opt::init() {
|
||||
if (lr_min > 0 && lr_min < lr0) {
|
||||
float nhalf = std::log(lr0 / lr_min) / k_log_2;
|
||||
float e = epochs;
|
||||
if (decay_epochs > 0 && decay_epochs < e) {
|
||||
e = decay_epochs;
|
||||
} else {
|
||||
decay_epochs = e;
|
||||
}
|
||||
scale_epoch = nhalf / e;
|
||||
}
|
||||
}
|
||||
|
||||
float lr_opt::get_lr(float epoch) const {
|
||||
float r = lr_min <= 0 ? lr0 :
|
||||
epoch >= decay_epochs ? lr_min :
|
||||
lr0 * std::pow(0.5f, epoch * scale_epoch);
|
||||
LOG_INF("epoch %.2g lr=%.2g\n", epoch, r);
|
||||
return r;
|
||||
}
|
||||
|
||||
@@ -2,14 +2,17 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "llama-cpp.h"
|
||||
|
||||
#include <set>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <string_view>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <sstream>
|
||||
#include <cmath>
|
||||
|
||||
#include "ggml-opt.h"
|
||||
#include "llama-cpp.h"
|
||||
|
||||
#ifdef _WIN32
|
||||
#define DIRECTORY_SEPARATOR '\\'
|
||||
@@ -82,6 +85,7 @@ enum llama_example {
|
||||
LLAMA_EXAMPLE_PARALLEL,
|
||||
LLAMA_EXAMPLE_TTS,
|
||||
LLAMA_EXAMPLE_DIFFUSION,
|
||||
LLAMA_EXAMPLE_FINETUNE,
|
||||
|
||||
LLAMA_EXAMPLE_COUNT,
|
||||
};
|
||||
@@ -202,6 +206,7 @@ struct common_params_speculative {
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
float p_min = 0.75f; // minimum speculative decoding probability (greedy)
|
||||
std::vector<std::pair<std::string, std::string>> replacements; // main to speculative model replacements
|
||||
std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
|
||||
|
||||
ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
|
||||
ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
|
||||
@@ -234,14 +239,36 @@ struct common_params_diffusion {
|
||||
bool add_gumbel_noise = false; // add gumbel noise to the logits if temp > 0.0
|
||||
};
|
||||
|
||||
// reasoning API response format (not to be confused as chat template's reasoning format)
|
||||
enum common_reasoning_format {
|
||||
COMMON_REASONING_FORMAT_NONE,
|
||||
COMMON_REASONING_FORMAT_AUTO,
|
||||
COMMON_REASONING_FORMAT_AUTO, // Same as deepseek, using `message.reasoning_content`
|
||||
COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY, // Extract thinking tag contents and return as `message.reasoning_content`, or leave inline in <think> tags in stream mode
|
||||
COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`, including in streaming deltas.
|
||||
COMMON_REASONING_FORMAT_GRANITE, // Extract thinking tag contents and return as `message.reasoning_content`, including in streaming deltas.
|
||||
// do not extend this enum unless you absolutely have to
|
||||
// in most cases, use COMMON_REASONING_FORMAT_AUTO
|
||||
// see: https://github.com/ggml-org/llama.cpp/pull/15408
|
||||
};
|
||||
|
||||
|
||||
struct lr_opt {
|
||||
float lr0 = 1e-5; // learning rate at first epoch
|
||||
float lr_min = -1;
|
||||
float decay_epochs = -1; // if >0, the learning rate starts at lr0 and decays to lr_min after this many epochs
|
||||
float scale_epoch = 0;
|
||||
float wd = 0;
|
||||
unsigned epochs = 2;
|
||||
|
||||
unsigned epoch; // set by optimizer outer (epochs) loop
|
||||
// learning rate decay - constant LR per epoch only for now
|
||||
float get_lr(float e) const;
|
||||
float get_lr() const { return get_lr(epoch); }
|
||||
// must call after arg parse, before get_lr
|
||||
void init();
|
||||
};
|
||||
|
||||
struct ggml_opt_optimizer_params common_opt_lr_pars(void * userdata);
|
||||
|
||||
struct common_params {
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 4096; // context size
|
||||
@@ -261,7 +288,6 @@ struct common_params {
|
||||
float yarn_beta_fast = 32.0f; // YaRN low correction dim
|
||||
float yarn_beta_slow = 1.0f; // YaRN high correction dim
|
||||
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
||||
float defrag_thold = 0.1f; // KV cache defragmentation threshold
|
||||
|
||||
// offload params
|
||||
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
|
||||
@@ -348,7 +374,7 @@ struct common_params {
|
||||
bool cont_batching = true; // insert new sequences for decoding on-the-fly
|
||||
bool flash_attn = false; // flash attention
|
||||
bool no_perf = false; // disable performance metrics
|
||||
bool ctx_shift = true; // context shift on inifinite text generation
|
||||
bool ctx_shift = false; // context shift on infinite text generation
|
||||
bool swa_full = false; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
|
||||
bool kv_unified = false; // enable unified KV cache
|
||||
|
||||
@@ -376,6 +402,11 @@ struct common_params {
|
||||
bool no_mmproj = false; // explicitly disable multimodal model
|
||||
std::vector<std::string> image; // path to image file(s)
|
||||
|
||||
// finetune
|
||||
struct lr_opt lr;
|
||||
enum ggml_opt_optimizer_type optimizer = GGML_OPT_OPTIMIZER_TYPE_ADAMW;
|
||||
float val_split = 0.05f; // fraction of the data used for the validation set
|
||||
|
||||
// embedding
|
||||
bool embedding = false; // get only sentence embedding
|
||||
int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
|
||||
@@ -384,11 +415,12 @@ struct common_params {
|
||||
std::string cls_sep = "\t"; // separator of classification sequences
|
||||
|
||||
// server params
|
||||
int32_t port = 8080; // server listens on this network port
|
||||
int32_t timeout_read = 600; // http read timeout in seconds
|
||||
int32_t timeout_write = timeout_read; // http write timeout in seconds
|
||||
int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
|
||||
int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
|
||||
int32_t port = 8080; // server listens on this network port
|
||||
int32_t timeout_read = 600; // http read timeout in seconds
|
||||
int32_t timeout_write = timeout_read; // http write timeout in seconds
|
||||
int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
|
||||
int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
|
||||
int32_t n_swa_checkpoints = 3; // max number of SWA checkpoints per slot
|
||||
|
||||
std::string hostname = "127.0.0.1";
|
||||
std::string public_path = ""; // NOLINT
|
||||
@@ -703,3 +735,6 @@ const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
|
||||
//
|
||||
|
||||
ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride);
|
||||
|
||||
// "adamw" or "sgd" (case insensitive)
|
||||
enum ggml_opt_optimizer_type common_opt_get_optimizer(const char *);
|
||||
|
||||
@@ -28,6 +28,14 @@ if TYPE_CHECKING:
|
||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
||||
import gguf
|
||||
from gguf.vocab import MistralTokenizerType, MistralVocab
|
||||
from mistral_common.tokens.tokenizers.base import TokenizerVersion
|
||||
from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN, DATASET_STD
|
||||
from mistral_common.tokens.tokenizers.tekken import Tekkenizer
|
||||
from mistral_common.tokens.tokenizers.sentencepiece import (
|
||||
SentencePieceTokenizer,
|
||||
)
|
||||
|
||||
|
||||
logger = logging.getLogger("hf-to-gguf")
|
||||
|
||||
@@ -81,11 +89,16 @@ class ModelBase:
|
||||
block_count: int
|
||||
tensor_map: gguf.TensorNameMap
|
||||
|
||||
# Mistral format specifics
|
||||
is_mistral_format: bool = False
|
||||
disable_mistral_community_chat_template: bool = False
|
||||
|
||||
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
|
||||
use_temp_file: bool = False, eager: bool = False,
|
||||
metadata_override: Path | None = None, model_name: str | None = None,
|
||||
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
|
||||
small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
|
||||
small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
|
||||
disable_mistral_community_chat_template: bool = False):
|
||||
if type(self) is ModelBase or \
|
||||
type(self) is TextModel or \
|
||||
type(self) is MmprojModel:
|
||||
@@ -106,16 +119,17 @@ class ModelBase:
|
||||
logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
|
||||
remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
|
||||
self.tensor_names = set(name for name in remote_tensors.keys())
|
||||
for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
|
||||
for name, remote_tensor in remote_tensors.items():
|
||||
yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
|
||||
|
||||
self.get_tensors = get_remote_tensors
|
||||
else:
|
||||
self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
|
||||
prefix = "model" if not self.is_mistral_format else "consolidated"
|
||||
self.part_names = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
|
||||
self.is_safetensors = len(self.part_names) > 0
|
||||
if not self.is_safetensors:
|
||||
self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
|
||||
self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
|
||||
self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
|
||||
self.tensor_names = None
|
||||
self.metadata_override = metadata_override
|
||||
self.model_name = model_name
|
||||
@@ -136,6 +150,9 @@ class ModelBase:
|
||||
self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
|
||||
split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
|
||||
|
||||
# Mistral specific
|
||||
self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
|
||||
|
||||
@classmethod
|
||||
def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
|
||||
stem, suffix = path.stem, path.suffix
|
||||
@@ -153,19 +170,23 @@ class ModelBase:
|
||||
def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
|
||||
tensor_names_from_parts: set[str] = set()
|
||||
|
||||
index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
|
||||
index_name += ".index.json"
|
||||
index_file = self.dir_model / index_name
|
||||
if not self.is_mistral_format:
|
||||
index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
|
||||
index_name += ".index.json"
|
||||
index_file = self.dir_model / index_name
|
||||
|
||||
if index_file.is_file():
|
||||
self.tensor_names = set()
|
||||
logger.info(f"gguf: loading model weight map from '{index_name}'")
|
||||
with open(index_file, "r", encoding="utf-8") as f:
|
||||
index: dict[str, Any] = json.load(f)
|
||||
weight_map = index.get("weight_map")
|
||||
if weight_map is None or not isinstance(weight_map, dict):
|
||||
raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
|
||||
self.tensor_names.update(weight_map.keys())
|
||||
if index_file.is_file():
|
||||
self.tensor_names = set()
|
||||
logger.info(f"gguf: loading model weight map from '{index_name}'")
|
||||
with open(index_file, "r", encoding="utf-8") as f:
|
||||
index: dict[str, Any] = json.load(f)
|
||||
weight_map = index.get("weight_map")
|
||||
if weight_map is None or not isinstance(weight_map, dict):
|
||||
raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
|
||||
self.tensor_names.update(weight_map.keys())
|
||||
else:
|
||||
self.tensor_names = tensor_names_from_parts
|
||||
weight_map = {}
|
||||
else:
|
||||
self.tensor_names = tensor_names_from_parts
|
||||
weight_map = {}
|
||||
@@ -426,7 +447,12 @@ class ModelBase:
|
||||
return part_names
|
||||
|
||||
@staticmethod
|
||||
def load_hparams(dir_model: Path):
|
||||
def load_hparams(dir_model: Path, is_mistral_format: bool):
|
||||
if is_mistral_format:
|
||||
with open(dir_model / "params.json", "r", encoding="utf-8") as f:
|
||||
config = json.load(f)
|
||||
return config
|
||||
|
||||
try:
|
||||
# for security reason, we don't allow loading remote code by default
|
||||
# if a model need remote code, we will fallback to config.json
|
||||
@@ -476,7 +502,10 @@ class TextModel(ModelBase):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.hf_arch = get_model_architecture(self.hparams, self.model_type)
|
||||
if not self.is_mistral_format:
|
||||
self.hf_arch = get_model_architecture(self.hparams, self.model_type)
|
||||
else:
|
||||
self.hf_arch = ""
|
||||
|
||||
if "text_config" in self.hparams:
|
||||
# move the text_config to the root level
|
||||
@@ -542,14 +571,14 @@ class TextModel(ModelBase):
|
||||
self.gguf_writer.add_head_count(n_head)
|
||||
logger.info(f"gguf: head count = {n_head}")
|
||||
|
||||
if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
|
||||
if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
|
||||
self.gguf_writer.add_head_count_kv(n_head_kv)
|
||||
logger.info(f"gguf: key-value head count = {n_head_kv}")
|
||||
|
||||
if (rope_theta := self.hparams.get("rope_theta")) is not None:
|
||||
self.gguf_writer.add_rope_freq_base(rope_theta)
|
||||
logger.info(f"gguf: rope theta = {rope_theta}")
|
||||
if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
|
||||
if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
|
||||
self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
|
||||
logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
|
||||
if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
|
||||
@@ -1187,6 +1216,55 @@ class TextModel(ModelBase):
|
||||
raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
|
||||
self.gguf_writer.add_pooling_type(pooling_type)
|
||||
|
||||
def _set_vocab_interns1(self):
|
||||
tokens: list[str] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
|
||||
vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
|
||||
vocab_size = self.hparams.get("vocab_size", len(vocab))
|
||||
assert max(vocab.values()) < vocab_size
|
||||
|
||||
tokpre = self.get_vocab_base_pre(tokenizer)
|
||||
|
||||
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
|
||||
added_vocab = tokenizer.get_added_vocab()
|
||||
|
||||
added_tokens_decoder = tokenizer.added_tokens_decoder
|
||||
|
||||
for i in range(vocab_size):
|
||||
if i not in reverse_vocab:
|
||||
tokens.append(f"[PAD{i}]")
|
||||
toktypes.append(gguf.TokenType.UNUSED)
|
||||
else:
|
||||
token: str = reverse_vocab[i]
|
||||
if token in added_vocab:
|
||||
# The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
|
||||
# To avoid unexpected issues - we make sure to normalize non-normalized tokens
|
||||
if not added_tokens_decoder[i].normalized:
|
||||
previous_token = token
|
||||
token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
|
||||
if previous_token != token:
|
||||
logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
|
||||
|
||||
if added_tokens_decoder[i].special or self.does_token_look_special(token):
|
||||
toktypes.append(gguf.TokenType.CONTROL)
|
||||
else:
|
||||
toktypes.append(gguf.TokenType.USER_DEFINED)
|
||||
else:
|
||||
toktypes.append(gguf.TokenType.NORMAL)
|
||||
tokens.append(token)
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("gpt2")
|
||||
self.gguf_writer.add_tokenizer_pre(tokpre)
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
|
||||
special_vocab._set_special_token("bos", 151643)
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
|
||||
class MmprojModel(ModelBase):
|
||||
model_type = ModelType.MMPROJ
|
||||
@@ -1210,12 +1288,19 @@ class MmprojModel(ModelBase):
|
||||
raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
|
||||
|
||||
# get n_embd of the text model
|
||||
if "text_config" not in self.hparams:
|
||||
self.hparams["text_config"] = {}
|
||||
if "audio_config" not in self.hparams:
|
||||
self.hparams["audio_config"] = {}
|
||||
text_config = {**self.hparams, **self.hparams["text_config"]}
|
||||
self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
|
||||
if not self.is_mistral_format:
|
||||
if "text_config" not in self.hparams:
|
||||
self.hparams["text_config"] = {}
|
||||
if "audio_config" not in self.hparams:
|
||||
self.hparams["audio_config"] = {}
|
||||
text_config = {**self.hparams, **self.hparams["text_config"]}
|
||||
self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
|
||||
else:
|
||||
text_config = {
|
||||
k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
|
||||
}
|
||||
self.n_embd_text = text_config.get("hidden_dim", 0)
|
||||
|
||||
assert self.n_embd_text > 0, "n_embd not found in hparams"
|
||||
|
||||
# move vision config to the top level, while preserving the original hparams in global_config
|
||||
@@ -1236,11 +1321,13 @@ class MmprojModel(ModelBase):
|
||||
self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
|
||||
|
||||
# load preprocessor config
|
||||
with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
|
||||
self.preprocessor_config = json.load(f)
|
||||
if not self.is_mistral_format:
|
||||
with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
|
||||
self.preprocessor_config = json.load(f)
|
||||
|
||||
def get_vision_config(self) -> dict[str, Any] | None:
|
||||
return self.global_config.get("vision_config")
|
||||
config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
|
||||
return self.global_config.get(config_name)
|
||||
|
||||
def get_audio_config(self) -> dict[str, Any] | None:
|
||||
return self.global_config.get("audio_config")
|
||||
@@ -1264,8 +1351,11 @@ class MmprojModel(ModelBase):
|
||||
self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
|
||||
|
||||
# preprocessor config
|
||||
self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
|
||||
self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
|
||||
image_mean = DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
|
||||
image_std = DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
|
||||
|
||||
self.gguf_writer.add_vision_image_mean(image_mean)
|
||||
self.gguf_writer.add_vision_image_std(image_std)
|
||||
|
||||
if self.has_audio_encoder:
|
||||
self.gguf_writer.add_clip_has_audio_encoder(True)
|
||||
@@ -1299,6 +1389,12 @@ class MmprojModel(ModelBase):
|
||||
return None
|
||||
raise KeyError(f"could not find any of: {keys}")
|
||||
|
||||
def tensor_force_quant(self, name, new_name, bid, n_dims):
|
||||
del bid, name, n_dims # unused
|
||||
if ".patch_embd.weight" in new_name:
|
||||
return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
|
||||
return False
|
||||
|
||||
|
||||
@ModelBase.register("GPTNeoXForCausalLM")
|
||||
class GPTNeoXModel(TextModel):
|
||||
@@ -1924,11 +2020,72 @@ class LlamaModel(TextModel):
|
||||
if self.hf_arch == "VLlama3ForCausalLM":
|
||||
self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
|
||||
|
||||
def _set_vocab_mistral(self):
|
||||
vocab = MistralVocab(self.dir_model)
|
||||
logger.info(
|
||||
f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
|
||||
)
|
||||
|
||||
self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
|
||||
|
||||
tokens = []
|
||||
scores = []
|
||||
toktypes = []
|
||||
|
||||
for text, score, toktype in vocab.all_tokens():
|
||||
tokens.append(text)
|
||||
scores.append(score)
|
||||
toktypes.append(toktype)
|
||||
|
||||
assert len(tokens) == vocab.vocab_size, (
|
||||
f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
|
||||
)
|
||||
|
||||
if vocab.tokenizer_type == MistralTokenizerType.tekken:
|
||||
self.gguf_writer.add_tokenizer_pre("tekken")
|
||||
self.gguf_writer.add_token_merges(
|
||||
vocab.extract_vocab_merges_from_model()
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
|
||||
)
|
||||
|
||||
self.gguf_writer.add_bos_token_id(vocab.bos_id)
|
||||
self.gguf_writer.add_eos_token_id(vocab.eos_id)
|
||||
self.gguf_writer.add_unk_token_id(vocab.unk_id)
|
||||
self.gguf_writer.add_pad_token_id(vocab.pad_id)
|
||||
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_scores(scores)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
self.gguf_writer.add_vocab_size(vocab.vocab_size)
|
||||
|
||||
self.gguf_writer.add_add_bos_token(True)
|
||||
self.gguf_writer.add_add_eos_token(False)
|
||||
|
||||
template_dir = Path(__file__).parent / "models/templates/"
|
||||
|
||||
if not self.is_mistral_format or not self.disable_mistral_community_chat_template:
|
||||
# Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
|
||||
if self.is_mistral_format:
|
||||
logger.info(
|
||||
"Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
|
||||
"Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
|
||||
)
|
||||
template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
|
||||
self.gguf_writer.add_chat_template(template)
|
||||
else:
|
||||
logger.info("Not using a Mistral community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
|
||||
|
||||
def set_vocab(self):
|
||||
if self.is_mistral_format:
|
||||
return self._set_vocab_mistral()
|
||||
|
||||
path_tekken_json = self.dir_model / "tekken.json"
|
||||
path_tokenizer_json = self.dir_model / "tokenizer.json"
|
||||
if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
|
||||
return self.set_vocab_tekken()
|
||||
self._set_vocab_mistral()
|
||||
|
||||
try:
|
||||
self._set_vocab_sentencepiece()
|
||||
@@ -1962,56 +2119,12 @@ class LlamaModel(TextModel):
|
||||
if self.hparams.get("vocab_size", 32000) == 49152:
|
||||
self.gguf_writer.add_add_bos_token(False)
|
||||
|
||||
def set_vocab_tekken(self):
|
||||
vocab = gguf.vocab.MistralVocab(self.dir_model)
|
||||
self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
|
||||
|
||||
tokens = []
|
||||
scores = []
|
||||
toktypes = []
|
||||
|
||||
for text, score, toktype in vocab.all_tokens():
|
||||
tokens.append(text)
|
||||
scores.append(score)
|
||||
toktypes.append(toktype)
|
||||
|
||||
assert len(tokens) == vocab.vocab_size, (
|
||||
f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
|
||||
)
|
||||
|
||||
if vocab.tokenizer_type == gguf.vocab.MistralTokenizerType.tekken:
|
||||
self.gguf_writer.add_tokenizer_pre("tekken")
|
||||
self.gguf_writer.add_token_merges(
|
||||
vocab.extract_vocab_merges_from_model()
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
|
||||
)
|
||||
|
||||
self.gguf_writer.add_bos_token_id(vocab.bos_id)
|
||||
self.gguf_writer.add_eos_token_id(vocab.eos_id)
|
||||
self.gguf_writer.add_unk_token_id(vocab.unk_id)
|
||||
self.gguf_writer.add_pad_token_id(vocab.pad_id)
|
||||
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_scores(scores)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
self.gguf_writer.add_vocab_size(vocab.vocab_size)
|
||||
|
||||
self.gguf_writer.add_add_bos_token(True)
|
||||
self.gguf_writer.add_add_eos_token(False)
|
||||
|
||||
script_dir = Path(__file__).parent
|
||||
template_path = script_dir / "models/templates/unsloth-mistral-Devstral-Small-2507.jinja"
|
||||
with open(template_path, "r", encoding="utf-8") as f:
|
||||
template = f.read()
|
||||
self.gguf_writer.add_chat_template(template)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
|
||||
if not self.is_mistral_format:
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
|
||||
if (rope_dim := hparams.get("head_dim")) is None:
|
||||
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
@@ -2033,13 +2146,25 @@ class LlamaModel(TextModel):
|
||||
_experts: list[dict[str, Tensor]] | None = None
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
n_head = self.hparams["num_attention_heads"]
|
||||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||
n_head = self.find_hparam(["n_heads", "num_attention_heads"])
|
||||
n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
|
||||
|
||||
vision_prefixes = [
|
||||
"vision_encoder.",
|
||||
"vision_language_adapter.",
|
||||
"patch_merger.",
|
||||
"pre_mm_projector_norm",
|
||||
]
|
||||
|
||||
is_multimodal_tensor = "vision_tower" in name \
|
||||
or "vision_model" in name \
|
||||
or "audio_tower" in name \
|
||||
or "model.connector" in name \
|
||||
or "multi_modal_projector" in name
|
||||
or "multi_modal_projector" in name \
|
||||
or any(
|
||||
name.startswith(prefix)
|
||||
for prefix in vision_prefixes
|
||||
)
|
||||
|
||||
if is_multimodal_tensor:
|
||||
return [] # skip vision tensors
|
||||
@@ -2155,13 +2280,18 @@ class LlavaVisionModel(MmprojModel):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
if self.hparams["model_type"] == "pixtral":
|
||||
if self.hparams.get("model_type") == "pixtral":
|
||||
# layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
|
||||
self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
|
||||
self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
|
||||
logger.info(f"Image break token id: {self.img_break_tok_id}")
|
||||
elif self.is_mistral_format:
|
||||
# hparams is already vision config here so norm_eps is only defined in global_config.
|
||||
self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
|
||||
assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
|
||||
self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
|
||||
else:
|
||||
raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
|
||||
logger.info(f"Image break token id: {self.img_break_tok_id}")
|
||||
|
||||
def get_token_id(self, token: str) -> int:
|
||||
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
|
||||
@@ -2175,7 +2305,7 @@ class LlavaVisionModel(MmprojModel):
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
if hparams["model_type"] == "pixtral":
|
||||
if hparams.get("model_type") == "pixtral":
|
||||
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
|
||||
self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
|
||||
|
||||
@@ -2193,18 +2323,30 @@ class LlavaVisionModel(MmprojModel):
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
n_head = self.hparams["num_attention_heads"]
|
||||
n_head = (
|
||||
self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
|
||||
)
|
||||
n_kv_head = n_head
|
||||
|
||||
if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
|
||||
valid_prefixes = (
|
||||
"multi_modal_projector.",
|
||||
"vision_tower.",
|
||||
"vision_encoder.",
|
||||
"vision_language_adapter.",
|
||||
"patch_merger.",
|
||||
"pre_mm_projector_norm",
|
||||
)
|
||||
|
||||
if any(name.startswith(prefix) for prefix in valid_prefixes):
|
||||
# process vision tensors
|
||||
if name.endswith(("q_proj.weight", "q_proj.bias")):
|
||||
if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
|
||||
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
|
||||
if name.endswith(("k_proj.weight", "k_proj.bias")):
|
||||
if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
|
||||
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
|
||||
embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
|
||||
if self.img_break_tok_id > 0 and embed_key in name:
|
||||
logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
|
||||
# for pixtral model, we need to extract the [IMG_BREAK] token embedding
|
||||
img_break_embd = data_torch[self.img_break_tok_id]
|
||||
@@ -2233,10 +2375,9 @@ class SmolVLMModel(MmprojModel):
|
||||
self.gguf_writer.add_vision_use_gelu(True)
|
||||
|
||||
def tensor_force_quant(self, name, new_name, bid, n_dims):
|
||||
del bid, new_name, n_dims # unused
|
||||
if ".embeddings." in name:
|
||||
return gguf.GGMLQuantizationType.F32
|
||||
return False
|
||||
return super().tensor_force_quant(name, new_name, bid, n_dims)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
@@ -2840,7 +2981,8 @@ class Qwen2Model(TextModel):
|
||||
if "language_model." in name:
|
||||
name = name.replace("language_model.", "") # for InternVL
|
||||
if name.startswith("mlp") or name.startswith("multi_modal_projector") \
|
||||
or name.startswith("vision_model") or name.startswith("audio_tower"):
|
||||
or name.startswith("vision_model") or name.startswith("audio_tower") \
|
||||
or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
|
||||
# skip vision and audio tensors
|
||||
return []
|
||||
yield from super().modify_tensors(data_torch, name, bid)
|
||||
@@ -3017,7 +3159,7 @@ class LLaDAModel(TextModel):
|
||||
yield from super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("Ernie4_5_ForCausalLM")
|
||||
@ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
|
||||
class Ernie4_5Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.ERNIE4_5
|
||||
|
||||
@@ -3224,12 +3366,9 @@ class Qwen2VLVisionModel(MmprojModel):
|
||||
self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
|
||||
|
||||
def tensor_force_quant(self, name, new_name, bid, n_dims):
|
||||
del bid, name, n_dims # unused
|
||||
if ".patch_embd." in new_name:
|
||||
return gguf.GGMLQuantizationType.F16
|
||||
if ".position_embd." in new_name:
|
||||
return gguf.GGMLQuantizationType.F32
|
||||
return False
|
||||
return super().tensor_force_quant(name, new_name, bid, n_dims)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
@@ -3302,10 +3441,9 @@ class Qwen25OmniModel(Qwen2VLVisionModel):
|
||||
yield ("audio_tower.embed_positions.weight", pos_embd)
|
||||
|
||||
def tensor_force_quant(self, name, new_name, bid, n_dims):
|
||||
del bid, new_name, n_dims # unused
|
||||
if ".conv" in name and ".weight" in name:
|
||||
return gguf.GGMLQuantizationType.F16
|
||||
return False
|
||||
return super().tensor_force_quant(name, new_name, bid, n_dims)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
if name.startswith("thinker."):
|
||||
@@ -3351,12 +3489,9 @@ class InternVisionModel(MmprojModel):
|
||||
self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
|
||||
|
||||
def tensor_force_quant(self, name, new_name, bid, n_dims):
|
||||
del bid, name, n_dims # unused
|
||||
if ".patch_embd." in new_name:
|
||||
return gguf.GGMLQuantizationType.F16
|
||||
if ".position_embd." in new_name:
|
||||
return gguf.GGMLQuantizationType.F32
|
||||
return False
|
||||
return super().tensor_force_quant(name, new_name, bid, n_dims)
|
||||
|
||||
def _mapping_interns1_name(self, name):
|
||||
names_map = {
|
||||
@@ -3519,6 +3654,19 @@ class Qwen2MoeModel(TextModel):
|
||||
class Qwen3Model(Qwen2Model):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN3
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
|
||||
self.origin_hf_arch = hparams.get('architectures', [None])[0]
|
||||
|
||||
def set_vocab(self):
|
||||
# deal with intern-s1-mini
|
||||
if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
|
||||
self._set_vocab_interns1()
|
||||
return
|
||||
|
||||
super().set_vocab()
|
||||
|
||||
|
||||
@ModelBase.register("Qwen3MoeForCausalLM")
|
||||
class Qwen3MoeModel(Qwen2MoeModel):
|
||||
@@ -3526,7 +3674,7 @@ class Qwen3MoeModel(Qwen2MoeModel):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
hparams = ModelBase.load_hparams(self.dir_model)
|
||||
hparams = ModelBase.load_hparams(self.dir_model, False)
|
||||
self.origin_hf_arch = hparams.get('architectures', [None])[0]
|
||||
|
||||
def set_vocab(self):
|
||||
@@ -3535,73 +3683,7 @@ class Qwen3MoeModel(Qwen2MoeModel):
|
||||
self._set_vocab_interns1()
|
||||
return
|
||||
|
||||
try:
|
||||
self._set_vocab_sentencepiece()
|
||||
except FileNotFoundError:
|
||||
self._set_vocab_gpt2()
|
||||
|
||||
def _set_vocab_interns1(self):
|
||||
tokens: list[str] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
|
||||
vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
|
||||
vocab_size = self.hparams.get("vocab_size", len(vocab))
|
||||
assert max(vocab.values()) < vocab_size
|
||||
|
||||
tokpre = self.get_vocab_base_pre(tokenizer)
|
||||
|
||||
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
|
||||
added_vocab = tokenizer.get_added_vocab()
|
||||
|
||||
added_tokens_decoder = tokenizer.added_tokens_decoder
|
||||
|
||||
for i in range(vocab_size):
|
||||
if i not in reverse_vocab:
|
||||
tokens.append(f"[PAD{i}]")
|
||||
toktypes.append(gguf.TokenType.UNUSED)
|
||||
else:
|
||||
token: str = reverse_vocab[i]
|
||||
if token in added_vocab:
|
||||
# The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
|
||||
# To avoid unexpected issues - we make sure to normalize non-normalized tokens
|
||||
if not added_tokens_decoder[i].normalized:
|
||||
previous_token = token
|
||||
token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
|
||||
if previous_token != token:
|
||||
logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
|
||||
|
||||
if added_tokens_decoder[i].special or self.does_token_look_special(token):
|
||||
toktypes.append(gguf.TokenType.CONTROL)
|
||||
else:
|
||||
toktypes.append(gguf.TokenType.USER_DEFINED)
|
||||
else:
|
||||
toktypes.append(gguf.TokenType.NORMAL)
|
||||
tokens.append(token)
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("gpt2")
|
||||
self.gguf_writer.add_tokenizer_pre(tokpre)
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
|
||||
special_tokens_map_file = self.dir_model / 'special_tokens_map.json'
|
||||
additional_special_tokens = []
|
||||
if special_tokens_map_file.is_file():
|
||||
with open(special_tokens_map_file, encoding = 'utf-8') as f:
|
||||
additional_special_tokens = json.load(f).get('additional_special_tokens', [])
|
||||
tokenizer_cfg_file = self.dir_model / 'special_tokens_map.json'
|
||||
if tokenizer_cfg_file.is_file():
|
||||
with open(tokenizer_cfg_file, encoding = 'utf-8') as f:
|
||||
added_tokens_decoder = json.load(f).get('added_tokens_decoder', {})
|
||||
token2ids_map = {data['content'] : int(token) for token, data in added_tokens_decoder.items() if data['special']}
|
||||
for token in additional_special_tokens:
|
||||
if token in token2ids_map:
|
||||
special_vocab._set_special_token(token, token2ids_map[token])
|
||||
special_vocab._set_special_token('eos', 151645)
|
||||
special_vocab._set_special_token("bos", 151643)
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
super().set_vocab()
|
||||
|
||||
|
||||
@ModelBase.register("GPT2LMHeadModel")
|
||||
@@ -4683,7 +4765,7 @@ class NomicBertModel(BertModel):
|
||||
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
|
||||
hparams = kwargs.pop("hparams", None)
|
||||
if hparams is None:
|
||||
hparams = ModelBase.load_hparams(dir_model)
|
||||
hparams = ModelBase.load_hparams(dir_model, False)
|
||||
|
||||
self.is_moe = bool(hparams.get("moe_every_n_layers"))
|
||||
self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
|
||||
@@ -4990,13 +5072,12 @@ class Gemma3VisionModel(MmprojModel):
|
||||
self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
|
||||
|
||||
def tensor_force_quant(self, name, new_name, bid, n_dims):
|
||||
del bid, new_name, n_dims # unused
|
||||
# related to https://github.com/ggml-org/llama.cpp/issues/13025
|
||||
if "input_projection" in name:
|
||||
return gguf.GGMLQuantizationType.F16
|
||||
if ".embeddings." in name:
|
||||
return gguf.GGMLQuantizationType.F32
|
||||
return False
|
||||
return super().tensor_force_quant(name, new_name, bid, n_dims)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
@@ -5770,6 +5851,11 @@ class OlmoModel(TextModel):
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@ModelBase.register("SeedOssForCausalLM")
|
||||
class SeedOssModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.SEED_OSS
|
||||
|
||||
|
||||
@ModelBase.register("Olmo2ForCausalLM")
|
||||
class Olmo2Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.OLMO2
|
||||
@@ -7655,10 +7741,9 @@ class WhisperEncoderModel(MmprojModel):
|
||||
self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
|
||||
|
||||
def tensor_force_quant(self, name, new_name, bid, n_dims):
|
||||
del bid, new_name, n_dims # unused
|
||||
if ".conv" in name and ".weight" in name:
|
||||
return gguf.GGMLQuantizationType.F16
|
||||
return False
|
||||
return super().tensor_force_quant(name, new_name, bid, n_dims)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
@@ -8102,7 +8187,6 @@ class GptOssModel(TextModel):
|
||||
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
|
||||
blocks0: Tensor = torch.zeros(1)
|
||||
blocks1: Tensor = torch.zeros(1)
|
||||
found_mxfp4_tensors = False
|
||||
# we assume that tensors are loaded in the correct order
|
||||
for name, data_torch in self.get_tensors():
|
||||
if "mlp.experts.down_proj_blocks" in name:
|
||||
@@ -8110,7 +8194,6 @@ class GptOssModel(TextModel):
|
||||
elif "mlp.experts.down_proj_scales" in name:
|
||||
new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
|
||||
self.repack_mxfp4(new_name, blocks0, data_torch)
|
||||
found_mxfp4_tensors = True
|
||||
elif "mlp.experts.gate_up_proj_blocks" in name:
|
||||
blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
|
||||
elif "mlp.experts.gate_up_proj_scales" in name:
|
||||
@@ -8119,9 +8202,6 @@ class GptOssModel(TextModel):
|
||||
new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
|
||||
self.repack_mxfp4(new_name_gate, blocks0, scales0)
|
||||
self.repack_mxfp4(new_name_up, blocks1, scales1)
|
||||
found_mxfp4_tensors = True
|
||||
if not found_mxfp4_tensors:
|
||||
raise ValueError("No MXFP4 tensors found in the model. Please make sure you are using MXFP4 model.")
|
||||
return []
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
@@ -8134,7 +8214,12 @@ class GptOssModel(TextModel):
|
||||
if "down_proj" in name:
|
||||
if name.endswith("_bias"):
|
||||
name = name.replace("down_proj_bias", "down_proj.bias")
|
||||
elif "_blocks" not in name and "_scales" not in name:
|
||||
logger.warning(f"{name} is not in MXFP4, performance may be degraded")
|
||||
name = name.replace("down_proj", "down_proj.weight")
|
||||
data_torch = data_torch.transpose(-1, -2)
|
||||
else:
|
||||
# otherwise, it should already be repacked to ggml MXFP4 format
|
||||
return []
|
||||
|
||||
# split the gate_up into gate and up
|
||||
@@ -8147,7 +8232,18 @@ class GptOssModel(TextModel):
|
||||
(self.map_tensor_name(name_gate), gate_proj_bias),
|
||||
(self.map_tensor_name(name_up), up_proj_bias)
|
||||
]
|
||||
elif "_blocks" not in name and "_scales" not in name:
|
||||
logger.warning(f"{name} is not in MXFP4, performance may be degraded")
|
||||
name_up = name.replace("gate_up_proj", "up_proj.weight")
|
||||
name_gate = name.replace("gate_up_proj", "gate_proj.weight")
|
||||
data_torch = data_torch.transpose(-1, -2)
|
||||
gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
|
||||
return [
|
||||
(self.map_tensor_name(name_gate), gate_proj_weight),
|
||||
(self.map_tensor_name(name_up), up_proj_weight)
|
||||
]
|
||||
else:
|
||||
# otherwise, it should already be repacked to ggml MXFP4 format
|
||||
return []
|
||||
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
@@ -8168,8 +8264,7 @@ class GptOssModel(TextModel):
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling.get("original_max_position_embeddings", 4096))
|
||||
|
||||
|
||||
@ModelBase.register("Lfm2ForCausalLM")
|
||||
@ModelBase.register("LFM2ForCausalLM")
|
||||
@ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
|
||||
class LFM2Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.LFM2
|
||||
|
||||
@@ -8204,6 +8299,13 @@ class LFM2Model(TextModel):
|
||||
self._add_feed_forward_length()
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
|
||||
if is_vision_tensor:
|
||||
# skip vision tensors
|
||||
return []
|
||||
|
||||
name = name.replace("language_model.", "")
|
||||
|
||||
# conv op requires 2d tensor
|
||||
if 'conv.conv' in name:
|
||||
data_torch = data_torch.squeeze(1)
|
||||
@@ -8211,6 +8313,41 @@ class LFM2Model(TextModel):
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@ModelBase.register("Lfm2VlForConditionalGeneration")
|
||||
class LFM2VLModel(MmprojModel):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
assert self.hparams_vision is not None
|
||||
# TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
|
||||
self.hparams_vision["image_size"] = 256
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
|
||||
self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
|
||||
self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
|
||||
self.gguf_writer.add_vision_use_gelu(True)
|
||||
# python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
|
||||
vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
|
||||
self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
|
||||
|
||||
if is_vision_tensor:
|
||||
# remove "model." prefix
|
||||
name = name.replace("model.vision_tower.", "vision_tower.")
|
||||
name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
|
||||
|
||||
if "patch_embedding.weight" in name:
|
||||
data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
|
||||
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
return [] # skip other tensors
|
||||
|
||||
|
||||
@ModelBase.register("SmallThinkerForCausalLM")
|
||||
class SmallThinkerModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.SMALLTHINKER
|
||||
@@ -8293,6 +8430,83 @@ class SmallThinkerModel(TextModel):
|
||||
if len(experts) > 0:
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
class MistralModel(LlamaModel):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
model_name = "Mistral"
|
||||
hf_arch = ""
|
||||
is_mistral_format = True
|
||||
undo_permute = False
|
||||
|
||||
@staticmethod
|
||||
def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
|
||||
assert TokenizerVersion is not None, "mistral_common is not installed"
|
||||
assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
|
||||
f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
|
||||
)
|
||||
|
||||
if vocab.tokenizer.version == TokenizerVersion.v1:
|
||||
return "mistral-v1"
|
||||
elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
|
||||
return "mistral-v3"
|
||||
elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
|
||||
return "mistral-v3-tekken"
|
||||
elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
|
||||
return "mistral-v7"
|
||||
elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
|
||||
return "mistral-v7-tekken"
|
||||
elif vocab.tokenizer.version == TokenizerVersion.v11:
|
||||
template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
|
||||
elif vocab.tokenizer.version == TokenizerVersion.v13:
|
||||
template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
|
||||
else:
|
||||
err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
|
||||
if is_mistral_format:
|
||||
err_message += (
|
||||
" . Please pass --disable-mistral-community-chat-template argument to the CLI "
|
||||
"if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
|
||||
)
|
||||
raise ValueError(err_message)
|
||||
|
||||
template_path = templates_dir / template_file
|
||||
if not template_path.exists():
|
||||
raise FileNotFoundError(f"Template file not found: {template_path}")
|
||||
|
||||
with open(template_path, "r", encoding="utf-8") as f:
|
||||
template = f.read()
|
||||
|
||||
return template
|
||||
|
||||
|
||||
class PixtralModel(LlavaVisionModel):
|
||||
model_name = "Pixtral"
|
||||
hf_arch = ""
|
||||
is_mistral_format = True
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
|
||||
|
||||
self.gguf_writer.add_vision_attention_layernorm_eps(
|
||||
self.find_hparam(["norm_eps"])
|
||||
)
|
||||
self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
|
||||
|
||||
self.gguf_writer.add_vision_use_silu(True)
|
||||
|
||||
# spatial_merge_size
|
||||
if self.find_vparam(["mm_projector_id"]) == "patch_merge":
|
||||
self.gguf_writer.add_vision_spatial_merge_size(
|
||||
self.find_vparam(["spatial_merge_size"])
|
||||
)
|
||||
|
||||
def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
|
||||
if name == "vision_language_adapter.w_in.weight":
|
||||
return "mm.1.weight"
|
||||
elif name == "vision_language_adapter.w_out.weight":
|
||||
return "mm.2.weight"
|
||||
return super().map_tensor_name(name, try_suffixes)
|
||||
|
||||
###### CONVERSION LOGIC ######
|
||||
|
||||
|
||||
@@ -8443,6 +8657,17 @@ def parse_args() -> argparse.Namespace:
|
||||
"--mmproj", action="store_true",
|
||||
help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mistral-format", action="store_true",
|
||||
help="Whether the model is stored following the Mistral format.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--disable-mistral-community-chat-template", action="store_true",
|
||||
help=(
|
||||
"Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
|
||||
"Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
|
||||
)
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
if not args.print_supported_models and args.model is None:
|
||||
@@ -8548,17 +8773,26 @@ def main() -> None:
|
||||
if "mmproj" not in fname_out.name:
|
||||
fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
|
||||
|
||||
is_mistral_format = args.mistral_format
|
||||
disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
|
||||
|
||||
with torch.inference_mode():
|
||||
output_type = ftype_map[args.outtype]
|
||||
model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
|
||||
hparams = ModelBase.load_hparams(dir_model)
|
||||
model_architecture = get_model_architecture(hparams, model_type)
|
||||
logger.info(f"Model architecture: {model_architecture}")
|
||||
try:
|
||||
model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
|
||||
except NotImplementedError:
|
||||
logger.error(f"Model {model_architecture} is not supported")
|
||||
sys.exit(1)
|
||||
hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
|
||||
if not is_mistral_format:
|
||||
model_architecture = get_model_architecture(hparams, model_type)
|
||||
logger.info(f"Model architecture: {model_architecture}")
|
||||
try:
|
||||
model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
|
||||
except NotImplementedError:
|
||||
logger.error(f"Model {model_architecture} is not supported")
|
||||
sys.exit(1)
|
||||
elif args.mmproj:
|
||||
assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
|
||||
model_class = PixtralModel
|
||||
else:
|
||||
model_class = MistralModel
|
||||
|
||||
model_instance = model_class(dir_model, output_type, fname_out,
|
||||
is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
|
||||
@@ -8567,7 +8801,8 @@ def main() -> None:
|
||||
split_max_tensors=args.split_max_tensors,
|
||||
split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
|
||||
small_first_shard=args.no_tensor_first_split,
|
||||
remote_hf_model_id=hf_repo_id)
|
||||
remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template
|
||||
)
|
||||
|
||||
if args.vocab_only:
|
||||
logger.info("Exporting model vocab...")
|
||||
|
||||
@@ -340,7 +340,7 @@ if __name__ == '__main__':
|
||||
sys.exit(1)
|
||||
else:
|
||||
logger.info(f"Loading base model: {dir_base_model.name}")
|
||||
hparams = ModelBase.load_hparams(dir_base_model)
|
||||
hparams = ModelBase.load_hparams(dir_base_model, False)
|
||||
|
||||
with torch.inference_mode():
|
||||
try:
|
||||
|
||||
@@ -76,6 +76,23 @@ cmake --build build --config Release -j $(nproc)
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
```
|
||||
|
||||
## IBM zDNN Accelerator
|
||||
|
||||
This provides acceleration using the IBM zAIU co-processor located in the Telum I and Telum II processors. Make sure to have the [IBM zDNN library](https://github.com/IBM/zDNN) installed.
|
||||
|
||||
#### Compile from source from IBM
|
||||
|
||||
You may find the official build instructions here: [Building and Installing zDNN](https://github.com/IBM/zDNN?tab=readme-ov-file#building-and-installing-zdnn)
|
||||
|
||||
### Compilation
|
||||
|
||||
```bash
|
||||
cmake -S . -B build \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_ZDNN=ON
|
||||
cmake --build build --config Release -j$(nproc)
|
||||
```
|
||||
|
||||
## Getting GGUF Models
|
||||
|
||||
All models need to be converted to Big-Endian. You can achieve this in three cases:
|
||||
@@ -145,15 +162,15 @@ All models need to be converted to Big-Endian. You can achieve this in three cas
|
||||
|
||||
### 1. SIMD Acceleration
|
||||
|
||||
Only available in IBM z15 or later system with the `-DGGML_VXE=ON` (turned on by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z14/arch12. In such systems, the APIs can still run but will use a scalar implementation.
|
||||
Only available in IBM z15/LinuxONE 3 or later system with the `-DGGML_VXE=ON` (turned on by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z14/arch12. In such systems, the APIs can still run but will use a scalar implementation.
|
||||
|
||||
### 2. NNPA Vector Intrinsics Acceleration
|
||||
|
||||
Only available in IBM z16 or later system with the `-DGGML_NNPA=ON` (turned off by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z15/arch13. In such systems, the APIs can still run but will use a scalar implementation.
|
||||
Only available in IBM z16/LinuxONE 4 or later system with the `-DGGML_NNPA=ON` (turned off by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z15/arch13. In such systems, the APIs can still run but will use a scalar implementation.
|
||||
|
||||
### 3. zDNN Accelerator
|
||||
### 3. zDNN Accelerator (WIP)
|
||||
|
||||
_Only available in IBM z16 / LinuxONE 4 or later system. No support currently available._
|
||||
Only available in IBM z17/LinuxONE 5 or later system with the `-DGGML_ZDNN=ON` compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z15/arch13. In such systems, the APIs will default back to CPU routines.
|
||||
|
||||
### 4. Spyre Accelerator
|
||||
|
||||
@@ -229,11 +246,12 @@ IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongl
|
||||
|
||||
## Appendix A: Hardware Support Matrix
|
||||
|
||||
| | Support | Minimum Compiler Version |
|
||||
| ------- | ------- | ------------------------ |
|
||||
| IBM z15 | ✅ | |
|
||||
| IBM z16 | ✅ | |
|
||||
| IBM z17 | ✅ | GCC 15.1.0 |
|
||||
| | Support | Minimum Compiler Version |
|
||||
| -------- | ------- | ------------------------ |
|
||||
| IBM z15 | ✅ | |
|
||||
| IBM z16 | ✅ | |
|
||||
| IBM z17 | ✅ | GCC 15.1.0 |
|
||||
| IBM zDNN | ✅ | |
|
||||
|
||||
- ✅ - supported and verified to run as intended
|
||||
- 🚫 - unsupported, we are unlikely able to provide support
|
||||
@@ -242,13 +260,14 @@ IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongl
|
||||
|
||||
| | VX/VXE/VXE2 | NNPA | zDNN | Spyre |
|
||||
| ---------- | ----------- | ---- | ---- | ----- |
|
||||
| FP32 | ✅ | ✅ | ❓ | ❓ |
|
||||
| FP32 | ✅ | ✅ | ✅ | ❓ |
|
||||
| FP16 | ✅ | ✅ | ❓ | ❓ |
|
||||
| BF16 | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| Q4_0 | ✅ | ✅ | ❓ | ❓ |
|
||||
| Q4_1 | ✅ | ✅ | ❓ | ❓ |
|
||||
| Q5_0 | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| Q5_1 | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| MXFP4 | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| Q5_0 | ✅ | ✅ | ❓ | ❓ |
|
||||
| Q5_1 | ✅ | ✅ | ❓ | ❓ |
|
||||
| Q8_0 | ✅ | ✅ | ❓ | ❓ |
|
||||
| Q2_K | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| Q3_K | ✅ | ✅ | ❓ | ❓ |
|
||||
@@ -273,4 +292,4 @@ IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongl
|
||||
- 🚫 - acceleration unavailable, will still run using scalar implementation
|
||||
- ❓ - acceleration unknown, please contribute if you can test it yourself
|
||||
|
||||
Last Updated by **Aaron Teo (aaron.teo1@ibm.com)** on July 25, 2025.
|
||||
Last Updated by **Aaron Teo (aaron.teo1@ibm.com)** on Aug 22, 2025.
|
||||
|
||||
@@ -197,13 +197,12 @@ The environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY=1` can be used to enab
|
||||
|
||||
The following compilation options are also available to tweak performance:
|
||||
|
||||
| Option | Legal values | Default | Description |
|
||||
|-------------------------------|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| GGML_CUDA_FORCE_MMQ | Boolean | false | Force the use of custom matrix multiplication kernels for quantized models instead of FP16 cuBLAS even if there is no int8 tensor core implementation available (affects V100, CDNA and RDNA3+). MMQ kernels are enabled by default on GPUs with int8 tensor core support. With MMQ force enabled, speed for large batch sizes will be worse but VRAM consumption will be lower. |
|
||||
| GGML_CUDA_FORCE_CUBLAS | Boolean | false | Force the use of FP16 cuBLAS instead of custom matrix multiplication kernels for quantized models |
|
||||
| GGML_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
|
||||
| GGML_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
|
||||
| GGML_CUDA_FA_ALL_QUANTS | Boolean | false | Compile support for all KV cache quantization type (combinations) for the FlashAttention CUDA kernels. More fine-grained control over KV cache size but compilation takes much longer. |
|
||||
| Option | Legal values | Default | Description |
|
||||
|-------------------------------|------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| GGML_CUDA_FORCE_MMQ | Boolean | false | Force the use of custom matrix multiplication kernels for quantized models instead of FP16 cuBLAS even if there is no int8 tensor core implementation available (affects V100, CDNA and RDNA3+). MMQ kernels are enabled by default on GPUs with int8 tensor core support. With MMQ force enabled, speed for large batch sizes will be worse but VRAM consumption will be lower. |
|
||||
| GGML_CUDA_FORCE_CUBLAS | Boolean | false | Force the use of FP16 cuBLAS instead of custom matrix multiplication kernels for quantized models. There may be issues with numerical overflows (except for CDNA and RDNA4) and memory use will be higher. Prompt processing may become faster on recent datacenter GPUs (the custom kernels were tuned primarily for RTX 3000/4000). |
|
||||
| GGML_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
|
||||
| GGML_CUDA_FA_ALL_QUANTS | Boolean | false | Compile support for all KV cache quantization type (combinations) for the FlashAttention CUDA kernels. More fine-grained control over KV cache size but compilation takes much longer. |
|
||||
|
||||
## MUSA
|
||||
|
||||
|
||||
@@ -194,7 +194,7 @@ llama_print_timings: total time = 44411.01 ms / 377 tokens
|
||||
## Orin compile and run
|
||||
### compile
|
||||
```sh
|
||||
make GGML_CUDA=1 CUDA_DOCKER_ARCH=sm_87 GGML_CUDA_F16=1 -j 32
|
||||
make GGML_CUDA=1 CUDA_DOCKER_ARCH=sm_87 -j 32
|
||||
```
|
||||
### run on Orin
|
||||
### case 1
|
||||
|
||||
@@ -13,7 +13,7 @@ If there are differences in usage, please refer to the official build [documenta
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
git clone https://github.com/ggml-org/llama.cpp
|
||||
cd llama.cpp
|
||||
```
|
||||
|
||||
|
||||
@@ -12,7 +12,7 @@ If there are differences in usage, please refer to the official build [documenta
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
git clone https://github.com/ggml-org/llama.cpp
|
||||
cd llama.cpp
|
||||
```
|
||||
|
||||
|
||||
@@ -6,7 +6,7 @@ Download [MiniCPM-V-4](https://huggingface.co/openbmb/MiniCPM-V-4) PyTorch model
|
||||
|
||||
|
||||
### Build llama.cpp
|
||||
Readme modification time: 20250206
|
||||
Readme modification time: 20250731
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
|
||||
47
docs/multimodal/minicpmv4.5.md
Normal file
47
docs/multimodal/minicpmv4.5.md
Normal file
@@ -0,0 +1,47 @@
|
||||
## MiniCPM-V 4.5
|
||||
|
||||
### Prepare models and code
|
||||
|
||||
Download [MiniCPM-V-4_5](https://huggingface.co/openbmb/MiniCPM-V-4_5) PyTorch model from huggingface to "MiniCPM-V-4_5" folder.
|
||||
|
||||
|
||||
### Build llama.cpp
|
||||
Readme modification time: 20250826
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
cd llama.cpp
|
||||
```
|
||||
|
||||
Build llama.cpp using `CMake`:
|
||||
```bash
|
||||
cmake -B build
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
|
||||
### Usage of MiniCPM-V 4
|
||||
|
||||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-V-4_5-gguf) by us)
|
||||
|
||||
```bash
|
||||
python ./tools/mtmd/legacy-models/minicpmv-surgery.py -m ../MiniCPM-V-4_5
|
||||
python ./tools/mtmd/legacy-models/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-V-4_5 --minicpmv-projector ../MiniCPM-V-4_5/minicpmv.projector --output-dir ../MiniCPM-V-4_5/ --minicpmv_version 6
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-V-4_5/model
|
||||
|
||||
# quantize int4 version
|
||||
./build/bin/llama-quantize ../MiniCPM-V-4_5/model/ggml-model-f16.gguf ../MiniCPM-V-4_5/model/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||
```
|
||||
|
||||
|
||||
Inference on Linux or Mac
|
||||
```bash
|
||||
# run in single-turn mode
|
||||
./build/bin/llama-mtmd-cli -m ../MiniCPM-V-4_5/model/ggml-model-f16.gguf --mmproj ../MiniCPM-V-4_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
|
||||
# run in conversation mode
|
||||
./build/bin/llama-mtmd-cli -m ../MiniCPM-V-4_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-4_5/mmproj-model-f16.gguf
|
||||
```
|
||||
177
docs/ops.md
177
docs/ops.md
@@ -12,91 +12,92 @@ Legend:
|
||||
- 🟡 Partially supported by this backend
|
||||
- ❌ Not supported by this backend
|
||||
|
||||
| Operation | BLAS | CANN | CPU | CUDA | Metal | OpenCL | SYCL | Vulkan |
|
||||
|-----------|------|------|------|------|------|------|------|------|
|
||||
| ABS | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| ACC | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| ADD | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
|
||||
| ADD1 | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
|
||||
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 |
|
||||
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ✅ |
|
||||
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 |
|
||||
| CONV_2D | ❌ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ✅ |
|
||||
| CONV_2D_DW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| CONV_TRANSPOSE_2D | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 |
|
||||
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| CROSS_ENTROPY_LOSS | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| CROSS_ENTROPY_LOSS_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| DIAG_MASK_INF | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
|
||||
| DIV | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
|
||||
| DUP | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 |
|
||||
| ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 |
|
||||
| GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
|
||||
| GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
|
||||
| GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
|
||||
| GEGLU_QUICK | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
|
||||
| GELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| GELU_ERF | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| GELU_QUICK | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| GET_ROWS | ❌ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 |
|
||||
| GET_ROWS_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ |
|
||||
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| HARDSIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| HARDSWISH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| IM2COL | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ |
|
||||
| L2_NORM | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| LOG | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
|
||||
| MEAN | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| MUL | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
|
||||
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| MUL_MAT_ID | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ |
|
||||
| NEG | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
|
||||
| OPT_STEP_ADAMW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ |
|
||||
| PAD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| POOL_2D | ❌ | 🟡 | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| REGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
|
||||
| RELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| REPEAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | 🟡 |
|
||||
| REPEAT_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| RMS_NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ |
|
||||
| RMS_NORM_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| RMS_NORM_MUL_ADD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| ROLL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ |
|
||||
| ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| RWKV_WKV6 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| RWKV_WKV7 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| SET | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| SET_ROWS | ❌ | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| SGN | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| SIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| SIN | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 |
|
||||
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ |
|
||||
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ✅ |
|
||||
| SQR | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 |
|
||||
| SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | ❌ |
|
||||
| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| SSM_SCAN | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| STEP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
|
||||
| SUM | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ |
|
||||
| SUM_ROWS | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| SWIGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
|
||||
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | 🟡 |
|
||||
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ |
|
||||
| Operation | BLAS | CANN | CPU | CUDA | Metal | OpenCL | SYCL | Vulkan | zDNN |
|
||||
|-----------|------|------|------|------|------|------|------|------|------|
|
||||
| ABS | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
|
||||
| ACC | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| ADD | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
|
||||
| ADD1 | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
|
||||
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ✅ | ❌ |
|
||||
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| CONV_2D | ❌ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ |
|
||||
| CONV_2D_DW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| CONV_TRANSPOSE_2D | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ |
|
||||
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| CROSS_ENTROPY_LOSS | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| CROSS_ENTROPY_LOSS_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| DIAG_MASK_INF | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
|
||||
| DIV | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
|
||||
| DUP | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
|
||||
| ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
|
||||
| EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
|
||||
| FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ |
|
||||
| GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
|
||||
| GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
|
||||
| GEGLU_QUICK | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
|
||||
| GELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| GELU_ERF | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| GELU_QUICK | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| GET_ROWS | ❌ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| GET_ROWS_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| HARDSIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
|
||||
| HARDSWISH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
|
||||
| IM2COL | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ | ❌ |
|
||||
| L2_NORM | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| LOG | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| MEAN | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| MUL | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
|
||||
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| MUL_MAT_ID | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ❌ |
|
||||
| NEG | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
|
||||
| NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
|
||||
| OPT_STEP_ADAMW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
|
||||
| PAD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| POOL_2D | ❌ | 🟡 | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| REGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
|
||||
| RELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| REPEAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | ❌ |
|
||||
| REPEAT_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| RMS_NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ | ❌ |
|
||||
| RMS_NORM_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| RMS_NORM_MUL_ADD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| ROLL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| RWKV_WKV6 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| RWKV_WKV7 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| SET | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| SET_ROWS | ❌ | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| SGN | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
|
||||
| SIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| SIN | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ |
|
||||
| SOFTCAP | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ | ❌ |
|
||||
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| SQR | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ |
|
||||
| SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | ❌ | ❌ |
|
||||
| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| SSM_SCAN | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| STEP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
|
||||
| SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
|
||||
| SUM | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
|
||||
| SUM_ROWS | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| SWIGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
|
||||
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | 🟡 | ❌ |
|
||||
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ❌ |
|
||||
|
||||
8134
docs/ops/zDNN.csv
Normal file
8134
docs/ops/zDNN.csv
Normal file
File diff suppressed because it is too large
Load Diff
@@ -34,6 +34,7 @@ else()
|
||||
add_subdirectory(gen-docs)
|
||||
add_subdirectory(training)
|
||||
add_subdirectory(diffusion)
|
||||
add_subdirectory(model-conversion)
|
||||
if (NOT GGML_BACKEND_DL)
|
||||
add_subdirectory(convert-llama2c-to-ggml)
|
||||
# these examples use the backends directly and cannot be built with dynamic loading
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
This is a swift clone of `examples/batched`.
|
||||
|
||||
$ `make`
|
||||
$ `./llama-batched-swift MODEL_PATH [PROMPT] [PARALLEL]`
|
||||
```bash
|
||||
$ ./llama-batched-swift MODEL_PATH [PROMPT] [PARALLEL]
|
||||
```
|
||||
|
||||
@@ -7,6 +7,7 @@
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <numeric>
|
||||
|
||||
/**
|
||||
* This the arbitrary data which will be passed to each callback.
|
||||
@@ -77,6 +78,12 @@ static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne
|
||||
LOG(" ]\n");
|
||||
LOG(" sum = %f\n", sum);
|
||||
}
|
||||
|
||||
// TODO: make this abort configurable/optional?
|
||||
if (std::isnan(sum)) {
|
||||
LOG_ERR("encountered NaN - aborting\n");
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
|
||||
@@ -17,7 +17,7 @@
|
||||
"
|
||||
" start the llama.cpp server with a FIM-compatible model. for example:
|
||||
"
|
||||
" $ llama-server -m {model.gguf} --port 8012 -ngl 99 -fa -dt 0.1 --ubatch-size 512 --batch-size 1024 --cache-reuse 256
|
||||
" $ llama-server -m {model.gguf} --port 8012 -ngl 99 -fa --ubatch-size 512 --batch-size 1024 --cache-reuse 256
|
||||
"
|
||||
" --batch-size [512, model max context]
|
||||
"
|
||||
|
||||
@@ -5,3 +5,9 @@ Demonstration of lookahead decoding technique:
|
||||
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
|
||||
|
||||
More info: https://github.com/ggml-org/llama.cpp/pull/4207
|
||||
|
||||
Sample command:
|
||||
|
||||
```bash
|
||||
llama-lookahead -hf ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF -p "// network server implemented in C\n// author: Peter Hacker\n\n#include" -e -ngl 99 -t 4 -n 512 -c 4096 -kvu
|
||||
```
|
||||
|
||||
3
examples/model-conversion/.gitignore
vendored
Normal file
3
examples/model-conversion/.gitignore
vendored
Normal file
@@ -0,0 +1,3 @@
|
||||
.model_name
|
||||
data
|
||||
ppl
|
||||
5
examples/model-conversion/CMakeLists.txt
Normal file
5
examples/model-conversion/CMakeLists.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
set(TARGET llama-logits)
|
||||
add_executable(${TARGET} logits.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_17)
|
||||
172
examples/model-conversion/Makefile
Normal file
172
examples/model-conversion/Makefile
Normal file
@@ -0,0 +1,172 @@
|
||||
# Validation functions
|
||||
define validate_model_path
|
||||
@if [ -z "$(MODEL_PATH)" ]; then \
|
||||
echo "Error: MODEL_PATH must be provided either as:"; \
|
||||
echo " 1. Environment variable: export MODEL_PATH=/path/to/model"; \
|
||||
echo " 2. Command line argument: make $(1) MODEL_PATH=/path/to/model"; \
|
||||
exit 1; \
|
||||
fi
|
||||
endef
|
||||
|
||||
define validate_embedding_model_path
|
||||
@if [ -z "$(EMBEDDING_MODEL_PATH)" ]; then \
|
||||
echo "Error: EMBEDDING_MODEL_PATH must be provided either as:"; \
|
||||
echo " 1. Environment variable: export EMBEDDING_MODEL_PATH=/path/to/model"; \
|
||||
echo " 2. Command line argument: make $(1) EMBEDDING_MODEL_PATH=/path/to/model"; \
|
||||
exit 1; \
|
||||
fi
|
||||
endef
|
||||
|
||||
###
|
||||
### Casual Model targets/recipes
|
||||
###
|
||||
causal-convert-model-bf16: OUTTYPE=bf16
|
||||
causal-convert-model-bf16: causal-convert-model
|
||||
|
||||
causal-convert-model:
|
||||
$(call validate_model_path,causal-convert-model)
|
||||
@MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(OUTTYPE)" MODEL_PATH="$(MODEL_PATH)" \
|
||||
METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
|
||||
./scripts/causal/convert-model.sh
|
||||
|
||||
causal-run-original-model:
|
||||
$(call validate_model_path,causal-run-original-model)
|
||||
@MODEL_PATH="$(MODEL_PATH)" ./scripts/causal/run-org-model.py
|
||||
|
||||
causal-run-converted-model:
|
||||
@CONVERTED_MODEL="$(CONVERTED_MODEL)" ./scripts/causal/run-converted-model.sh
|
||||
|
||||
causal-verify-logits: causal-run-original-model causal-run-converted-model
|
||||
@./scripts/causal/compare-logits.py
|
||||
@MODEL_PATH="$(MODEL_PATH)" ./scripts/utils/check-nmse.py -m ${MODEL_PATH}
|
||||
|
||||
causal-run-original-embeddings:
|
||||
@./scripts/causal/run-casual-gen-embeddings-org.sh
|
||||
|
||||
causal-run-converted-embeddings:
|
||||
@./scripts/causal/run-converted-model-embeddings-logits.sh
|
||||
|
||||
causal-verify-embeddings: causal-run-original-embeddings causal-run-converted-embeddings
|
||||
@./scripts/causal/compare-embeddings-logits.sh
|
||||
|
||||
causal-inspect-original-model:
|
||||
@./scripts/utils/inspect-org-model.py
|
||||
|
||||
causal-inspect-converted-model:
|
||||
@./scripts/utils/inspect-converted-model.sh
|
||||
|
||||
causal-start-embedding-server:
|
||||
@./scripts/utils/run-embedding-server.sh ${CONVERTED_MODEL}
|
||||
|
||||
causal-curl-embedding-endpoint: causal-run-original-embeddings
|
||||
@./scripts/utils/curl-embedding-server.sh | ./scripts/causal/compare-embeddings-logits.sh
|
||||
|
||||
causal-quantize-Q8_0: QUANTIZED_TYPE = Q8_0
|
||||
causal-quantize-Q8_0: causal-quantize-model
|
||||
|
||||
causal-quantize-Q4_0: QUANTIZED_TYPE = Q4_0
|
||||
causal-quantize-Q4_0: causal-quantize-model
|
||||
|
||||
causal-quantize-model:
|
||||
@CONVERTED_MODEL="$(CONVERTED_MODEL)" QUANTIZED_TYPE="$(QUANTIZED_TYPE)" ./scripts/utils/quantize.sh ${CONVERTED_MODEL} ${QUANTIZED_TYPE}
|
||||
@echo "Export the quantized model path to QUANTIZED_MODEL variable in your environment"
|
||||
|
||||
causal-run-quantized-model:
|
||||
@QUANTIZED_MODEL="$(QUANTIZED_MODEL)" ./scripts/causal/run-converted-model.sh ${QUANTIZED_MODEL}
|
||||
|
||||
|
||||
###
|
||||
### Embedding Model targets/recipes
|
||||
###
|
||||
|
||||
embedding-convert-model-bf16: OUTTYPE=bf16
|
||||
embedding-convert-model-bf16: embedding-convert-model
|
||||
|
||||
embedding-convert-model:
|
||||
$(call validate_embedding_model_path,embedding-convert-model)
|
||||
@MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(OUTTYPE)" MODEL_PATH="$(EMBEDDING_MODEL_PATH)" \
|
||||
METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
|
||||
./scripts/embedding/convert-model.sh
|
||||
|
||||
embedding-run-original-model:
|
||||
$(call validate_embedding_model_path,embedding-run-original-model)
|
||||
@EMBEDDING_MODEL_PATH="$(EMBEDDING_MODEL_PATH)" ./scripts/embedding/run-original-model.py
|
||||
|
||||
embedding-run-converted-model:
|
||||
@CONVERTED_EMBEDDING_MODEL="$(CONVERTED_EMBEDDING_MODEL)" ./scripts/embedding/run-converted-model.sh ${CONVERTED_EMBEDDING_MODEL}
|
||||
|
||||
embedding-verify-logits: embedding-run-original-model embedding-run-converted-model
|
||||
@./scripts/embedding/compare-embeddings-logits.sh
|
||||
|
||||
embedding-inspect-original-model:
|
||||
$(call validate_embedding_model_path,embedding-inspect-original-model)
|
||||
@EMBEDDING_MODEL_PATH="$(EMBEDDING_MODEL_PATH)" ./scripts/utils/inspect-org-model.py -m ${EMBEDDING_MODEL_PATH}
|
||||
|
||||
embedding-inspect-converted-model:
|
||||
@CONVERTED_EMBEDDING_MODEL="$(CONVERTED_EMBEDDING_MODEL)" ./scripts/utils/inspect-converted-model.sh ${CONVERTED_EMBEDDING_MODEL}
|
||||
|
||||
embedding-start-embedding-server:
|
||||
@./scripts/utils/run-embedding-server.sh ${CONVERTED_EMBEDDING_MODEL}
|
||||
|
||||
embedding-curl-embedding-endpoint:
|
||||
@./scripts/utils/curl-embedding-server.sh | ./scripts/embedding/compare-embeddings-logits.sh
|
||||
|
||||
embedding-quantize-Q8_0: QUANTIZED_TYPE = Q8_0
|
||||
embedding-quantize-Q8_0: embedding-quantize-model
|
||||
|
||||
embedding-quantize-Q4_0: QUANTIZED_TYPE = Q4_0
|
||||
embedding-quantize-Q4_0: embedding-quantize-model
|
||||
|
||||
embedding-quantize-model:
|
||||
@./scripts/utils/quantize.sh ${CONVERTED_EMBEDDING_MODEL} ${QUANTIZED_TYPE}
|
||||
@echo "Export the quantized model path to QUANTIZED_EMBEDDING_MODEL variable in your environment"
|
||||
|
||||
embedding-run-quantized-model:
|
||||
@./scripts/embedding/run-converted-model.sh ${QUANTIZED_EMBEDDING_MODEL}
|
||||
|
||||
###
|
||||
### Perplexity targets/recipes
|
||||
###
|
||||
perplexity-data-gen:
|
||||
CONVERTED_MODEL="$(CONVERTED_MODEL)" ./scripts/utils/perplexity-gen.sh
|
||||
|
||||
perplexity-run-full:
|
||||
QUANTIZED_MODEL="$(QUANTIZED_MODEL)" LOOGITS_FILE="$(LOGITS_FILE)" \
|
||||
./scripts/utils/perplexity-run.sh
|
||||
|
||||
perplexity-run:
|
||||
QUANTIZED_MODEL="$(QUANTIZED_MODEL)" ./scripts/utils/perplexity-run-simple.sh
|
||||
|
||||
###
|
||||
### HuggingFace targets/recipes
|
||||
###
|
||||
|
||||
hf-create-model:
|
||||
@./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}"
|
||||
|
||||
hf-create-model-dry-run:
|
||||
@./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -d
|
||||
|
||||
hf-create-model-embedding:
|
||||
@./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -e
|
||||
|
||||
hf-create-model-embedding-dry-run:
|
||||
@./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -e -d
|
||||
|
||||
hf-create-model-private:
|
||||
@./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -p
|
||||
|
||||
hf-upload-gguf-to-model:
|
||||
@./scripts/utils/hf-upload-gguf-model.py -m "${MODEL_PATH}" -r "${REPO_ID}" -o "${NAME_IN_REPO}"
|
||||
|
||||
hf-create-collection:
|
||||
@./scripts/utils/hf-create-collection.py -n "${NAME}" -d "${DESCRIPTION}" -ns "${NAMESPACE}"
|
||||
|
||||
hf-add-model-to-collection:
|
||||
@./scripts/utils/hf-add-model-to-collection.py -c "${COLLECTION}" -m "${MODEL}"
|
||||
|
||||
|
||||
.PHONY: clean
|
||||
clean:
|
||||
@${RM} -rf data .converted_embedding_model.txt .converted_model.txt .embedding_model_name.txt .model_name.txt
|
||||
|
||||
343
examples/model-conversion/README.md
Normal file
343
examples/model-conversion/README.md
Normal file
@@ -0,0 +1,343 @@
|
||||
# Model Conversion Example
|
||||
This directory contains scripts and code to help in the process of converting
|
||||
HuggingFace PyTorch models to GGUF format.
|
||||
|
||||
The motivation for having this is that the conversion process can often be an
|
||||
iterative process, where the original model is inspected, converted, updates
|
||||
made to llama.cpp, converted again, etc. Once the model has been converted it
|
||||
needs to be verified against the original model, and then optionally quantified,
|
||||
and in some cases perplexity checked of the quantized model. And finally the
|
||||
model/models need to the ggml-org on Hugging Face. This tool/example tries to
|
||||
help with this process.
|
||||
|
||||
### Overview
|
||||
The idea is that the makefile targets and scripts here can be used in the
|
||||
development/conversion process assisting with things like:
|
||||
|
||||
* inspect/run the original model to figure out how it works
|
||||
* convert the original model to GGUF format
|
||||
* inspect/run the converted model
|
||||
* verify the logits produced by the original model and the converted model
|
||||
* quantize the model to GGUF format
|
||||
* run perplexity evaluation to verify that the quantized model is performing
|
||||
as expected
|
||||
* upload the model to HuggingFace to make it available for others
|
||||
|
||||
## Setup
|
||||
Create virtual python environment
|
||||
```console
|
||||
$ python3.11 -m venv venv
|
||||
$ source venv/bin/activate
|
||||
(venv) $ pip install -r requirements.txt
|
||||
```
|
||||
|
||||
## Causal Language Model Conversion
|
||||
This section describes the steps to convert a causal language model to GGUF and
|
||||
to verify that the conversion was successful.
|
||||
|
||||
### Download the original model
|
||||
First, clone the original model to some local directory:
|
||||
```console
|
||||
$ mkdir models && cd models
|
||||
$ git clone https://huggingface.co/user/model_name
|
||||
$ cd model_name
|
||||
$ git lfs install
|
||||
$ git lfs pull
|
||||
```
|
||||
|
||||
### Set the MODEL_PATH
|
||||
The path to the downloaded model can be provided in two ways:
|
||||
|
||||
**Option 1: Environment variable (recommended for iterative development)**
|
||||
```console
|
||||
export MODEL_PATH=~/work/ai/models/some_model
|
||||
```
|
||||
|
||||
**Option 2: Command line argument (for one-off tasks)**
|
||||
```console
|
||||
make causal-convert-model MODEL_PATH=~/work/ai/models/some_model
|
||||
```
|
||||
|
||||
Command line arguments take precedence over environment variables when both are provided.
|
||||
|
||||
In cases where the transformer implementation for the model has not been released
|
||||
yet it is possible to set the environment variable `UNRELEASED_MODEL_NAME` which
|
||||
will then cause the transformer implementation to be loaded explicitely and not
|
||||
use AutoModelForCausalLM:
|
||||
```
|
||||
export UNRELEASED_MODEL_NAME=SomeNewModel
|
||||
```
|
||||
|
||||
### Inspecting the original tensors
|
||||
```console
|
||||
# Using environment variable
|
||||
(venv) $ make causal-inspect-original-model
|
||||
|
||||
# Or using command line argument
|
||||
(venv) $ make causal-inspect-original-model MODEL_PATH=~/work/ai/models/some_model
|
||||
```
|
||||
|
||||
### Running the original model
|
||||
This is mainly to verify that the original model works, and to compare the output
|
||||
from the converted model.
|
||||
```console
|
||||
# Using environment variable
|
||||
(venv) $ make causal-run-original-model
|
||||
|
||||
# Or using command line argument
|
||||
(venv) $ make causal-run-original-model MODEL_PATH=~/work/ai/models/some_model
|
||||
```
|
||||
This command will save two files to the `data` directory, one is a binary file
|
||||
containing logits which will be used for comparison with the converted model
|
||||
later, and the other is a text file which allows for manual visual inspection.
|
||||
|
||||
### Model conversion
|
||||
After updates have been made to [gguf-py](../../gguf-py) to add support for the
|
||||
new model, the model can be converted to GGUF format using the following command:
|
||||
```console
|
||||
# Using environment variable
|
||||
(venv) $ make causal-convert-model
|
||||
|
||||
# Or using command line argument
|
||||
(venv) $ make causal-convert-model MODEL_PATH=~/work/ai/models/some_model
|
||||
```
|
||||
|
||||
### Inspecting the converted model
|
||||
The converted model can be inspected using the following command:
|
||||
```console
|
||||
(venv) $ make inspect-converted-model
|
||||
```
|
||||
|
||||
### Running the converted model
|
||||
```console
|
||||
(venv) $ make run-converted-model
|
||||
```
|
||||
|
||||
### Model logits verfication
|
||||
The following target will run the original model and the converted model and
|
||||
compare the logits:
|
||||
```console
|
||||
(venv) $ make causal-verify-logits
|
||||
```
|
||||
|
||||
### Quantizing the model
|
||||
The causal model can be quantized to GGUF format using the following command:
|
||||
```console
|
||||
(venv) $ make causal-quantize-Q8_0
|
||||
Quantized model saved to: /path/to/quantized/model-Q8_0.gguf
|
||||
Export the quantized model path to QUANTIZED_MODEL variable in your environment
|
||||
```
|
||||
This will show the path to the quantized model in the terminal, which can then
|
||||
be used to set the `QUANTIZED_MODEL` environment variable:
|
||||
```console
|
||||
export QUANTIZED_MODEL=/path/to/quantized/model-Q8_0.gguf
|
||||
```
|
||||
Then the quantized model can be run using the following command:
|
||||
```console
|
||||
(venv) $ make causal-run-quantized-model
|
||||
```
|
||||
|
||||
|
||||
## Embedding Language Model Conversion
|
||||
|
||||
### Download the original model
|
||||
```console
|
||||
$ mkdir models && cd models
|
||||
$ git clone https://huggingface.co/user/model_name
|
||||
$ cd model_name
|
||||
$ git lfs install
|
||||
$ git lfs pull
|
||||
```
|
||||
|
||||
The path to the embedding model can be provided in two ways:
|
||||
|
||||
**Option 1: Environment variable (recommended for iterative development)**
|
||||
```console
|
||||
export EMBEDDING_MODEL_PATH=~/path/to/embedding_model
|
||||
```
|
||||
|
||||
**Option 2: Command line argument (for one-off tasks)**
|
||||
```console
|
||||
make embedding-convert-model EMBEDDING_MODEL_PATH=~/path/to/embedding_model
|
||||
```
|
||||
|
||||
Command line arguments take precedence over environment variables when both are provided.
|
||||
|
||||
### Running the original model
|
||||
This is mainly to verify that the original model works and to compare the output
|
||||
with the output from the converted model.
|
||||
```console
|
||||
# Using environment variable
|
||||
(venv) $ make embedding-run-original-model
|
||||
|
||||
# Or using command line argument
|
||||
(venv) $ make embedding-run-original-model EMBEDDING_MODEL_PATH=~/path/to/embedding_model
|
||||
```
|
||||
This command will save two files to the `data` directory, one is a binary
|
||||
file containing logits which will be used for comparison with the converted
|
||||
model, and the other is a text file which allows for manual visual inspection.
|
||||
|
||||
### Model conversion
|
||||
After updates have been made to [gguf-py](../../gguf-py) to add support for the
|
||||
new model the model can be converted to GGUF format using the following command:
|
||||
```console
|
||||
(venv) $ make embedding-convert-model
|
||||
```
|
||||
|
||||
### Run the converted model
|
||||
```console
|
||||
(venv) $ make embedding-run-converted-model
|
||||
```
|
||||
|
||||
### Model logits verfication
|
||||
The following target will run the original model and the converted model (which
|
||||
was done manually in the previous steps) and compare the logits:
|
||||
```console
|
||||
(venv) $ make embedding-verify-logits
|
||||
```
|
||||
|
||||
### llama-server verification
|
||||
To verify that the converted model works with llama-server, the following
|
||||
command can be used:
|
||||
```console
|
||||
(venv) $ make embedding-start-embedding-server
|
||||
```
|
||||
Then open another terminal and set the `EMBEDDINGS_MODEL_PATH` environment
|
||||
variable as this will not be inherited by the new terminal:
|
||||
```console
|
||||
(venv) $ make embedding-curl-embedding-endpoint
|
||||
```
|
||||
This will call the `embedding` endpoing and the output will be piped into
|
||||
the same verification script as used by the target `embedding-verify-logits`.
|
||||
|
||||
The causal model can also be used to produce embeddings and this can be verified
|
||||
using the following commands:
|
||||
```console
|
||||
(venv) $ make causal-start-embedding-server
|
||||
```
|
||||
Then open another terminal and set the `MODEL_PATH` environment
|
||||
variable as this will not be inherited by the new terminal:
|
||||
```console
|
||||
(venv) $ make casual-curl-embedding-endpoint
|
||||
```
|
||||
|
||||
### Quantizing the model
|
||||
The embedding model can be quantized to GGUF format using the following command:
|
||||
```console
|
||||
(venv) $ make embedding-quantize-Q8_0
|
||||
Quantized model saved to: /path/to/quantized/model-Q8_0.gguf
|
||||
Export the quantized model path to QUANTIZED_EMBEDDING_MODEL variable in your environment
|
||||
```
|
||||
This will show the path to the quantized model in the terminal, which can then
|
||||
be used to set the `QUANTIZED_EMBEDDING_MODEL` environment variable:
|
||||
```console
|
||||
export QUANTIZED_EMBEDDING_MODEL=/path/to/quantized/model-Q8_0.gguf
|
||||
```
|
||||
Then the quantized model can be run using the following command:
|
||||
```console
|
||||
(venv) $ make embedding-run-quantized-model
|
||||
```
|
||||
|
||||
## Perplexity Evaluation
|
||||
|
||||
### Simple perplexity evaluation
|
||||
This allows to run the perplexity evaluation without having to generate a
|
||||
token/logits file:
|
||||
```console
|
||||
(venv) $ make perplexity-run QUANTIZED_MODEL=~/path/to/quantized/model.gguf
|
||||
```
|
||||
This will use the wikitext dataset to run the perplexity evaluation and
|
||||
output the perplexity score to the terminal. This value can then be compared
|
||||
with the perplexity score of the unquantized model.
|
||||
|
||||
### Full perplexity evaluation
|
||||
First use the converted, non-quantized, model to generate the perplexity evaluation
|
||||
dataset using the following command:
|
||||
```console
|
||||
$ make perplexity-data-gen CONVERTED_MODEL=~/path/to/converted/model.gguf
|
||||
```
|
||||
This will generate a file in the `data` directory named after the model and with
|
||||
a `.kld` suffix which contains the tokens and the logits for the wikitext dataset.
|
||||
|
||||
After the dataset has been generated, the perplexity evaluation can be run using
|
||||
the quantized model:
|
||||
```console
|
||||
$ make perplexity-run-full QUANTIZED_MODEL=~/path/to/quantized/model-Qxx.gguf LOGITS_FILE=data/model.gguf.ppl
|
||||
```
|
||||
|
||||
> 📝 **Note:** The `LOGITS_FILE` is the file generated by the previous command
|
||||
> can be very large, so make sure you have enough disk space available.
|
||||
|
||||
## HuggingFace utilities
|
||||
The following targets are useful for creating collections and model repositories
|
||||
on Hugging Face in the the ggml-org. These can be used when preparing a relase
|
||||
to script the process for new model releases.
|
||||
|
||||
For the following targets a `HF_TOKEN` environment variable is required.
|
||||
|
||||
> 📝 **Note:** Don't forget to logout from Hugging Face after running these
|
||||
> commands, otherwise you might have issues pulling/cloning repositories as
|
||||
> the token will still be in use:
|
||||
> $ huggingface-cli logout
|
||||
> $ unset HF_TOKEN
|
||||
|
||||
### Create a new Hugging Face Model (model repository)
|
||||
This will create a new model repsository on Hugging Face with the specified
|
||||
model name.
|
||||
```console
|
||||
(venv) $ make hf-create-model MODEL_NAME='TestModel' NAMESPACE="danbev" ORIGINAL_BASE_MODEL="some-base-model"
|
||||
Repository ID: danbev/TestModel-GGUF
|
||||
Repository created: https://huggingface.co/danbev/TestModel-GGUF
|
||||
```
|
||||
Note that we append a `-GGUF` suffix to the model name to ensure a consistent
|
||||
naming convention for GGUF models.
|
||||
|
||||
An embedding model can be created using the following command:
|
||||
```console
|
||||
(venv) $ make hf-create-model-embedding MODEL_NAME='TestEmbeddingModel' NAMESPACE="danbev" ORIGINAL_BASE_MODEL="some-base-model"
|
||||
```
|
||||
The only difference is that the model card for an embedding model will be different
|
||||
with regards to the llama-server command and also how to access/call the embedding
|
||||
endpoint.
|
||||
|
||||
### Upload a GGUF model to model repository
|
||||
The following target uploads a model to an existing Hugging Face model repository.
|
||||
```console
|
||||
(venv) $ make hf-upload-gguf-to-model MODEL_PATH=dummy-model1.gguf REPO_ID=danbev/TestModel-GGUF
|
||||
📤 Uploading dummy-model1.gguf to danbev/TestModel-GGUF/dummy-model1.gguf
|
||||
✅ Upload successful!
|
||||
🔗 File available at: https://huggingface.co/danbev/TestModel-GGUF/blob/main/dummy-model1.gguf
|
||||
```
|
||||
This command can also be used to update an existing model file in a repository.
|
||||
|
||||
### Create a new Collection
|
||||
```console
|
||||
(venv) $ make hf-new-collection NAME=TestCollection DESCRIPTION="Collection for testing scripts" NAMESPACE=danbev
|
||||
🚀 Creating Hugging Face Collection
|
||||
Title: TestCollection
|
||||
Description: Collection for testing scripts
|
||||
Namespace: danbev
|
||||
Private: False
|
||||
✅ Authenticated as: danbev
|
||||
📚 Creating collection: 'TestCollection'...
|
||||
✅ Collection created successfully!
|
||||
📋 Collection slug: danbev/testcollection-68930fcf73eb3fc200b9956d
|
||||
🔗 Collection URL: https://huggingface.co/collections/danbev/testcollection-68930fcf73eb3fc200b9956d
|
||||
|
||||
🎉 Collection created successfully!
|
||||
Use this slug to add models: danbev/testcollection-68930fcf73eb3fc200b9956d
|
||||
```
|
||||
|
||||
### Add model to a Collection
|
||||
```console
|
||||
(venv) $ make hf-add-model-to-collection COLLECTION=danbev/testcollection-68930fcf73eb3fc200b9956d MODEL=danbev/TestModel-GGUF
|
||||
✅ Authenticated as: danbev
|
||||
🔍 Checking if model exists: danbev/TestModel-GGUF
|
||||
✅ Model found: danbev/TestModel-GGUF
|
||||
📚 Adding model to collection...
|
||||
✅ Model added to collection successfully!
|
||||
🔗 Collection URL: https://huggingface.co/collections/danbev/testcollection-68930fcf73eb3fc200b9956d
|
||||
|
||||
🎉 Model added successfully!
|
||||
|
||||
```
|
||||
210
examples/model-conversion/logits.cpp
Normal file
210
examples/model-conversion/logits.cpp
Normal file
@@ -0,0 +1,210 @@
|
||||
#include "llama.h"
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <ctype.h>
|
||||
#include <filesystem>
|
||||
|
||||
static void print_usage(int, char ** argv) {
|
||||
printf("\nexample usage:\n");
|
||||
printf("\n %s -m model.gguf [-ngl n_gpu_layers] -embd-mode [prompt]\n", argv[0]);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
std::string model_path;
|
||||
std::string prompt = "Hello, my name is";
|
||||
int ngl = 0;
|
||||
bool embedding_mode = false;
|
||||
|
||||
{
|
||||
int i = 1;
|
||||
for (; i < argc; i++) {
|
||||
if (strcmp(argv[i], "-m") == 0) {
|
||||
if (i + 1 < argc) {
|
||||
model_path = argv[++i];
|
||||
} else {
|
||||
print_usage(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
} else if (strcmp(argv[i], "-ngl") == 0) {
|
||||
if (i + 1 < argc) {
|
||||
try {
|
||||
ngl = std::stoi(argv[++i]);
|
||||
} catch (...) {
|
||||
print_usage(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
} else {
|
||||
print_usage(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
} else if (strcmp(argv[i], "-embd-mode") == 0) {
|
||||
if (i + 1 < argc) {
|
||||
try {
|
||||
embedding_mode = true;
|
||||
} catch (...) {
|
||||
print_usage(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
} else {
|
||||
print_usage(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
} else {
|
||||
// prompt starts here
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (model_path.empty()) {
|
||||
print_usage(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (i < argc) {
|
||||
prompt = argv[i++];
|
||||
for (; i < argc; i++) {
|
||||
prompt += " ";
|
||||
prompt += argv[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ggml_backend_load_all();
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
model_params.n_gpu_layers = ngl;
|
||||
|
||||
llama_model * model = llama_model_load_from_file(model_path.c_str(), model_params);
|
||||
|
||||
if (model == NULL) {
|
||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Extract basename from model_path
|
||||
const char * basename = strrchr(model_path.c_str(), '/');
|
||||
basename = (basename == NULL) ? model_path.c_str() : basename + 1;
|
||||
|
||||
char model_name[256];
|
||||
strncpy(model_name, basename, 255);
|
||||
model_name[255] = '\0';
|
||||
|
||||
char * dot = strrchr(model_name, '.');
|
||||
if (dot != NULL && strcmp(dot, ".gguf") == 0) {
|
||||
*dot = '\0';
|
||||
}
|
||||
printf("Model name: %s\n", model_name);
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
const int n_prompt = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, true, true);
|
||||
|
||||
std::vector<llama_token> prompt_tokens(n_prompt);
|
||||
if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) {
|
||||
fprintf(stderr, "%s: error: failed to tokenize the prompt\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
ctx_params.n_ctx = n_prompt;
|
||||
ctx_params.n_batch = n_prompt;
|
||||
ctx_params.no_perf = false;
|
||||
if (embedding_mode) {
|
||||
ctx_params.embeddings = true;
|
||||
ctx_params.pooling_type = LLAMA_POOLING_TYPE_NONE;
|
||||
ctx_params.n_ubatch = ctx_params.n_batch;
|
||||
}
|
||||
|
||||
llama_context * ctx = llama_init_from_model(model, ctx_params);
|
||||
if (ctx == NULL) {
|
||||
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
printf("Input prompt: \"%s\"\n", prompt.c_str());
|
||||
printf("Tokenized prompt (%d tokens): ", n_prompt);
|
||||
for (auto id : prompt_tokens) {
|
||||
char buf[128];
|
||||
int n = llama_token_to_piece(vocab, id, buf, sizeof(buf), 0, true);
|
||||
if (n < 0) {
|
||||
fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
std::string s(buf, n);
|
||||
printf("%s", s.c_str());
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
|
||||
|
||||
if (llama_decode(ctx, batch)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
float * logits;
|
||||
int n_logits;
|
||||
const char * type;
|
||||
|
||||
if (embedding_mode) {
|
||||
logits = llama_get_embeddings(ctx);
|
||||
n_logits = llama_model_n_embd(model) * batch.n_tokens;
|
||||
type = "-embeddings";
|
||||
printf("Embeddings size: %d\n", n_logits);
|
||||
} else {
|
||||
logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
|
||||
n_logits = llama_vocab_n_tokens(vocab);
|
||||
type = "";
|
||||
printf("Vocab size: %d\n", n_logits);
|
||||
}
|
||||
|
||||
std::filesystem::create_directory("data");
|
||||
|
||||
// Save logits to binary file
|
||||
char bin_filename[512];
|
||||
snprintf(bin_filename, sizeof(bin_filename), "data/llamacpp-%s%s.bin", model_name, type);
|
||||
printf("Saving logits to %s\n", bin_filename);
|
||||
|
||||
FILE * f = fopen(bin_filename, "wb");
|
||||
if (f == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to open binary output file\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
fwrite(logits, sizeof(float), n_logits, f);
|
||||
fclose(f);
|
||||
|
||||
// Also save as text for debugging
|
||||
char txt_filename[512];
|
||||
snprintf(txt_filename, sizeof(txt_filename), "data/llamacpp-%s%s.txt", model_name, type);
|
||||
f = fopen(txt_filename, "w");
|
||||
if (f == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to open text output file\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
for (int i = 0; i < n_logits; i++) {
|
||||
fprintf(f, "%d: %.6f\n", i, logits[i]); // Added index and changed format
|
||||
}
|
||||
fclose(f);
|
||||
|
||||
// Print first and last 10 logits for quick verification
|
||||
printf("First 10 logits: ");
|
||||
for (int i = 0; i < 10 && i < n_logits; i++) {
|
||||
printf("%.6f ", logits[i]);
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
printf("Last 10 logits: ");
|
||||
for (int i = n_logits - 10; i < n_logits; i++) {
|
||||
if (i >= 0) printf("%.6f ", logits[i]);
|
||||
}
|
||||
printf("\n\n");
|
||||
|
||||
printf("Logits saved to %s\n", bin_filename);
|
||||
printf("Logits saved to %s\n", txt_filename);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_model_free(model);
|
||||
|
||||
return 0;
|
||||
}
|
||||
5
examples/model-conversion/requirements.txt
Normal file
5
examples/model-conversion/requirements.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
--extra-index-url https://download.pytorch.org/whl/cpu
|
||||
torch~=2.6.0
|
||||
torchvision~=0.21.0
|
||||
transformers~=4.55.0
|
||||
huggingface-hub~=0.34.0
|
||||
43
examples/model-conversion/scripts/causal/compare-embeddings-logits.sh
Executable file
43
examples/model-conversion/scripts/causal/compare-embeddings-logits.sh
Executable file
@@ -0,0 +1,43 @@
|
||||
#/bin/bash
|
||||
|
||||
set -e
|
||||
|
||||
MODEL_PATH="${1:-"$MODEL_PATH"}"
|
||||
MODEL_NAME="${2:-$(basename "$MODEL_PATH")}"
|
||||
|
||||
if [ -t 0 ]; then
|
||||
CPP_EMBEDDINGS="data/llamacpp-${MODEL_NAME}-embeddings.bin"
|
||||
else
|
||||
# Process piped JSON data and convert to binary (matching logits.cpp format)
|
||||
TEMP_FILE=$(mktemp /tmp/tmp.XXXXXX.binn)
|
||||
python3 -c "
|
||||
import json
|
||||
import sys
|
||||
import struct
|
||||
|
||||
data = json.load(sys.stdin)
|
||||
|
||||
# Flatten all embeddings completely
|
||||
flattened = []
|
||||
for item in data:
|
||||
embedding = item['embedding']
|
||||
for token_embedding in embedding:
|
||||
flattened.extend(token_embedding)
|
||||
|
||||
print(f'Total embedding values: {len(flattened)}', file=sys.stderr)
|
||||
|
||||
# Write as binary floats - matches logitc.cpp fwrite format
|
||||
with open('$TEMP_FILE', 'wb') as f:
|
||||
for value in flattened:
|
||||
f.write(struct.pack('f', value))
|
||||
"
|
||||
CPP_EMBEDDINGS="$TEMP_FILE"
|
||||
trap "rm -f $TEMP_FILE" EXIT
|
||||
fi
|
||||
|
||||
python scripts/utils/semantic_check.py --model-path $MODEL_PATH \
|
||||
--python-embeddings data/pytorch-${MODEL_NAME}-embeddings.bin \
|
||||
--cpp-embeddings $CPP_EMBEDDINGS \
|
||||
--prompt "Hello world today" \
|
||||
--causal
|
||||
|
||||
88
examples/model-conversion/scripts/causal/compare-logits.py
Executable file
88
examples/model-conversion/scripts/causal/compare-logits.py
Executable file
@@ -0,0 +1,88 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import numpy as np
|
||||
import sys
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
def quick_logits_check(pytorch_file, llamacpp_file):
|
||||
"""Lightweight sanity check before NMSE"""
|
||||
|
||||
try:
|
||||
pytorch_logits = np.fromfile(pytorch_file, dtype=np.float32)
|
||||
llamacpp_logits = np.fromfile(llamacpp_file, dtype=np.float32)
|
||||
except Exception as e:
|
||||
print(f"❌ NOK: Failed to load files - {e}")
|
||||
return False
|
||||
|
||||
# Check shapes match
|
||||
if pytorch_logits.shape != llamacpp_logits.shape:
|
||||
print(f"❌ NOK: Shape mismatch - PyTorch: {pytorch_logits.shape}, llama.cpp: {llamacpp_logits.shape}")
|
||||
return False
|
||||
|
||||
# Calculate key metrics
|
||||
diff = pytorch_logits - llamacpp_logits
|
||||
abs_diff = np.abs(diff)
|
||||
max_diff = np.max(abs_diff)
|
||||
|
||||
# Get top 10 predictions from both models
|
||||
pytorch_top10 = np.argsort(pytorch_logits)[-10:][::-1]
|
||||
llamacpp_top10 = np.argsort(llamacpp_logits)[-10:][::-1]
|
||||
print(f"Top 10 PyTorch logits: {pytorch_logits[pytorch_top10]}")
|
||||
print(f"Top 10 llama.cpp logits: {llamacpp_logits[llamacpp_top10]}")
|
||||
print(f"Max absolute difference: {max_diff:.4f}")
|
||||
|
||||
if max_diff > 1.0:
|
||||
print(f"❌ NOK: Large differences detected - max diff: {max_diff:.4f}")
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def main():
|
||||
model_path = os.getenv('MODEL_PATH')
|
||||
if not model_path:
|
||||
print("Error: MODEL_PATH environment variable not set")
|
||||
sys.exit(1)
|
||||
|
||||
if not os.path.exists(model_path):
|
||||
print(f"Error: Model file not found: {model_path}")
|
||||
sys.exit(1)
|
||||
|
||||
model_name = os.path.splitext(os.path.basename(model_path))[0]
|
||||
data_dir = Path("data")
|
||||
|
||||
pytorch_file = data_dir / f"pytorch-{model_name}.bin"
|
||||
llamacpp_file = data_dir / f"llamacpp-{model_name}.bin"
|
||||
|
||||
if not pytorch_file.exists():
|
||||
print(f"Error: PyTorch logits file not found: {pytorch_file}")
|
||||
print("Please run scripts/run-org-model.sh first to generate this file.")
|
||||
sys.exit(1)
|
||||
|
||||
if not llamacpp_file.exists():
|
||||
print(f"Error: llama.cpp logits file not found: {llamacpp_file}")
|
||||
print("Please run scripts/run-converted-model.sh first to generate this file.")
|
||||
sys.exit(1)
|
||||
|
||||
print("Checked all required files were found. Proceeding...\n")
|
||||
|
||||
|
||||
print("🔍 GGML Model Validation for model ", model_name)
|
||||
print("=" * 40)
|
||||
print(f"PyTorch logits : {pytorch_file}")
|
||||
print(f"llama.cpp logits: {llamacpp_file}")
|
||||
print()
|
||||
|
||||
success = quick_logits_check(pytorch_file, llamacpp_file)
|
||||
|
||||
# Exit with appropriate code
|
||||
if success:
|
||||
print("✅ OK: Lightweight model check successful!")
|
||||
print(" Ok to proceed with NMSE check...")
|
||||
sys.exit(0)
|
||||
else:
|
||||
print(f"❌ NOK: Top 10 predictions don't match - generation will differ")
|
||||
sys.exit(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
22
examples/model-conversion/scripts/causal/convert-model.sh
Executable file
22
examples/model-conversion/scripts/causal/convert-model.sh
Executable file
@@ -0,0 +1,22 @@
|
||||
#!/bin/bash
|
||||
|
||||
MODEL_NAME="${MODEL_NAME:-$(basename "$MODEL_PATH")}"
|
||||
OUTPUT_DIR="${OUTPUT_DIR:-../../models}"
|
||||
TYPE="${OUTTYPE:-f16}"
|
||||
METADATA_OVERRIDE="${METADATA_OVERRIDE:-}"
|
||||
CONVERTED_MODEL="${OUTPUT_DIR}/${MODEL_NAME}.gguf"
|
||||
|
||||
echo "Model path: ${MODEL_PATH}"
|
||||
echo "Model name: ${MODEL_NAME}"
|
||||
echo "Data type: ${TYPE}"
|
||||
echo "Converted model path:: ${CONVERTED_MODEL}"
|
||||
echo "Metadata override: ${METADATA_OVERRIDE}"
|
||||
python ../../convert_hf_to_gguf.py --verbose \
|
||||
${MODEL_PATH} \
|
||||
--outfile ${CONVERTED_MODEL} \
|
||||
--outtype ${TYPE} \
|
||||
--metadata "${METADATA_OVERRIDE}"
|
||||
|
||||
echo ""
|
||||
echo "The environment variable CONVERTED_MODEL can be set to this path using:"
|
||||
echo "export CONVERTED_MODEL=$(realpath ${CONVERTED_MODEL})"
|
||||
13
examples/model-conversion/scripts/causal/modelcard.template
Normal file
13
examples/model-conversion/scripts/causal/modelcard.template
Normal file
@@ -0,0 +1,13 @@
|
||||
---
|
||||
base_model:
|
||||
- {base_model}
|
||||
---
|
||||
# {model_name} GGUF
|
||||
|
||||
Recommended way to run this model:
|
||||
|
||||
```sh
|
||||
llama-server -hf {namespace}/{model_name}-GGUF -c 0 -fa
|
||||
```
|
||||
|
||||
Then, access http://localhost:8080
|
||||
113
examples/model-conversion/scripts/causal/run-casual-gen-embeddings-org.sh
Executable file
113
examples/model-conversion/scripts/causal/run-casual-gen-embeddings-org.sh
Executable file
@@ -0,0 +1,113 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import importlib
|
||||
import sys
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForCausalLM
|
||||
from pathlib import Path
|
||||
|
||||
unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
|
||||
|
||||
parser = argparse.ArgumentParser(description='Process model with specified path')
|
||||
parser.add_argument('--model-path', '-m', help='Path to the model')
|
||||
args = parser.parse_args()
|
||||
|
||||
model_path = os.environ.get('MODEL_PATH', args.model_path)
|
||||
if model_path is None:
|
||||
parser.error("Model path must be specified either via --model-path argument or MODEL_PATH environment variable")
|
||||
|
||||
config = AutoConfig.from_pretrained(model_path)
|
||||
|
||||
print("Model type: ", config.model_type)
|
||||
print("Vocab size: ", config.vocab_size)
|
||||
print("Hidden size: ", config.hidden_size)
|
||||
print("Number of layers: ", config.num_hidden_layers)
|
||||
print("BOS token id: ", config.bos_token_id)
|
||||
print("EOS token id: ", config.eos_token_id)
|
||||
|
||||
print("Loading model and tokenizer using AutoTokenizer:", model_path)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||
|
||||
if unreleased_model_name:
|
||||
model_name_lower = unreleased_model_name.lower()
|
||||
unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
|
||||
class_name = f"{unreleased_model_name}ForCausalLM"
|
||||
print(f"Importing unreleased model module: {unreleased_module_path}")
|
||||
|
||||
try:
|
||||
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
|
||||
model = model_class.from_pretrained(model_path)
|
||||
except (ImportError, AttributeError) as e:
|
||||
print(f"Failed to import or load model: {e}")
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path)
|
||||
print(f"Model class: {type(model)}")
|
||||
#print(f"Model file: {type(model).__module__}")
|
||||
|
||||
model_name = os.path.basename(model_path)
|
||||
print(f"Model name: {model_name}")
|
||||
|
||||
prompt = "Hello world today"
|
||||
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
||||
print(f"Input tokens: {input_ids}")
|
||||
print(f"Input text: {repr(prompt)}")
|
||||
print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}")
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model(input_ids, output_hidden_states=True)
|
||||
|
||||
# Extract hidden states from the last layer
|
||||
# outputs.hidden_states is a tuple of (num_layers + 1) tensors
|
||||
# Index -1 gets the last layer, shape: [batch_size, seq_len, hidden_size]
|
||||
last_hidden_states = outputs.hidden_states[-1]
|
||||
|
||||
# Get embeddings for all tokens
|
||||
token_embeddings = last_hidden_states[0].cpu().numpy() # Remove batch dimension
|
||||
|
||||
print(f"Hidden states shape: {last_hidden_states.shape}")
|
||||
print(f"Token embeddings shape: {token_embeddings.shape}")
|
||||
print(f"Hidden dimension: {token_embeddings.shape[-1]}")
|
||||
print(f"Number of tokens: {token_embeddings.shape[0]}")
|
||||
|
||||
# Save raw token embeddings
|
||||
data_dir = Path("data")
|
||||
data_dir.mkdir(exist_ok=True)
|
||||
bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin"
|
||||
txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt"
|
||||
|
||||
# Save all token embeddings as binary
|
||||
print(token_embeddings)
|
||||
token_embeddings.astype(np.float32).tofile(bin_filename)
|
||||
|
||||
# Save as text for inspection
|
||||
with open(txt_filename, "w") as f:
|
||||
for i, embedding in enumerate(token_embeddings):
|
||||
for j, val in enumerate(embedding):
|
||||
f.write(f"{i} {j} {val:.6f}\n")
|
||||
|
||||
# Print embeddings per token in the requested format
|
||||
print("\nToken embeddings:")
|
||||
tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
|
||||
for i, embedding in enumerate(token_embeddings):
|
||||
# Format: show first few values, ..., then last few values
|
||||
if len(embedding) > 10:
|
||||
# Show first 3 and last 3 values with ... in between
|
||||
first_vals = " ".join(f"{val:8.6f}" for val in embedding[:3])
|
||||
last_vals = " ".join(f"{val:8.6f}" for val in embedding[-3:])
|
||||
print(f"embedding {i}: {first_vals} ... {last_vals}")
|
||||
else:
|
||||
# If embedding is short, show all values
|
||||
vals = " ".join(f"{val:8.6f}" for val in embedding)
|
||||
print(f"embedding {i}: {vals}")
|
||||
|
||||
# Also show token info for reference
|
||||
print(f"\nToken reference:")
|
||||
for i, token in enumerate(tokens):
|
||||
print(f" Token {i}: {repr(token)}")
|
||||
|
||||
print(f"Saved bin logits to: {bin_filename}")
|
||||
print(f"Saved txt logist to: {txt_filename}")
|
||||
@@ -0,0 +1,18 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -e
|
||||
|
||||
# First try command line argument, then environment variable, then file
|
||||
CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}"
|
||||
|
||||
# Final check if we have a model path
|
||||
if [ -z "$CONVERTED_MODEL" ]; then
|
||||
echo "Error: Model path must be provided either as:" >&2
|
||||
echo " 1. Command line argument" >&2
|
||||
echo " 2. CONVERTED_MODEL environment variable" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
cmake --build ../../build --target llama-logits -j8
|
||||
|
||||
../../build/bin/llama-logits -m $CONVERTED_MODEL -embd-mode "Hello world today"
|
||||
20
examples/model-conversion/scripts/causal/run-converted-model.sh
Executable file
20
examples/model-conversion/scripts/causal/run-converted-model.sh
Executable file
@@ -0,0 +1,20 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -e
|
||||
|
||||
# First try command line argument, then environment variable, then file
|
||||
CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}"
|
||||
|
||||
# Final check if we have a model path
|
||||
if [ -z "$CONVERTED_MODEL" ]; then
|
||||
echo "Error: Model path must be provided either as:" >&2
|
||||
echo " 1. Command line argument" >&2
|
||||
echo " 2. CONVERTED_MODEL environment variable" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo $CONVERTED_MODEL
|
||||
|
||||
cmake --build ../../build --target llama-logits -j8
|
||||
|
||||
../../build/bin/llama-logits -m "$CONVERTED_MODEL" "Hello, my name is"
|
||||
100
examples/model-conversion/scripts/causal/run-org-model.py
Executable file
100
examples/model-conversion/scripts/causal/run-org-model.py
Executable file
@@ -0,0 +1,100 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import importlib
|
||||
from pathlib import Path
|
||||
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
|
||||
|
||||
parser = argparse.ArgumentParser(description='Process model with specified path')
|
||||
parser.add_argument('--model-path', '-m', help='Path to the model')
|
||||
args = parser.parse_args()
|
||||
|
||||
model_path = os.environ.get('MODEL_PATH', args.model_path)
|
||||
if model_path is None:
|
||||
parser.error("Model path must be specified either via --model-path argument or MODEL_PATH environment variable")
|
||||
|
||||
config = AutoConfig.from_pretrained(model_path)
|
||||
|
||||
print("Model type: ", config.model_type)
|
||||
print("Vocab size: ", config.vocab_size)
|
||||
print("Hidden size: ", config.hidden_size)
|
||||
print("Number of layers: ", config.num_hidden_layers)
|
||||
print("BOS token id: ", config.bos_token_id)
|
||||
print("EOS token id: ", config.eos_token_id)
|
||||
|
||||
print("Loading model and tokenizer using AutoTokenizer:", model_path)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||
config = AutoConfig.from_pretrained(model_path)
|
||||
|
||||
if unreleased_model_name:
|
||||
model_name_lower = unreleased_model_name.lower()
|
||||
unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
|
||||
class_name = f"{unreleased_model_name}ForCausalLM"
|
||||
print(f"Importing unreleased model module: {unreleased_module_path}")
|
||||
|
||||
try:
|
||||
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
|
||||
model = model_class.from_pretrained(model_path) # Note: from_pretrained, not fromPretrained
|
||||
except (ImportError, AttributeError) as e:
|
||||
print(f"Failed to import or load model: {e}")
|
||||
exit(1)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path)
|
||||
|
||||
model_name = os.path.basename(model_path)
|
||||
# Printing the Model class to allow for easier debugging. This can be useful
|
||||
# when working with models that have not been publicly released yet and this
|
||||
# migth require that the concrete class is imported and used directly instead
|
||||
# of using AutoModelForCausalLM.
|
||||
print(f"Model class: {model.__class__.__name__}")
|
||||
|
||||
prompt = "Hello, my name is"
|
||||
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
||||
|
||||
print(f"Input tokens: {input_ids}")
|
||||
print(f"Input text: {repr(prompt)}")
|
||||
print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}")
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model(input_ids)
|
||||
logits = outputs.logits
|
||||
|
||||
# Extract logits for the last token (next token prediction)
|
||||
last_logits = logits[0, -1, :].cpu().numpy()
|
||||
|
||||
print(f"Logits shape: {logits.shape}")
|
||||
print(f"Last token logits shape: {last_logits.shape}")
|
||||
print(f"Vocab size: {len(last_logits)}")
|
||||
|
||||
data_dir = Path("data")
|
||||
data_dir.mkdir(exist_ok=True)
|
||||
bin_filename = data_dir / f"pytorch-{model_name}.bin"
|
||||
txt_filename = data_dir / f"pytorch-{model_name}.txt"
|
||||
|
||||
# Save to file for comparison
|
||||
last_logits.astype(np.float32).tofile(bin_filename)
|
||||
|
||||
# Also save as text file for easy inspection
|
||||
with open(txt_filename, "w") as f:
|
||||
for i, logit in enumerate(last_logits):
|
||||
f.write(f"{i}: {logit:.6f}\n")
|
||||
|
||||
# Print some sample logits for quick verification
|
||||
print(f"First 10 logits: {last_logits[:10]}")
|
||||
print(f"Last 10 logits: {last_logits[-10:]}")
|
||||
|
||||
# Show top 5 predicted tokens
|
||||
top_indices = np.argsort(last_logits)[-5:][::-1]
|
||||
print("Top 5 predictions:")
|
||||
for idx in top_indices:
|
||||
token = tokenizer.decode([idx])
|
||||
print(f" Token {idx} ({repr(token)}): {last_logits[idx]:.6f}")
|
||||
|
||||
print(f"Saved bin logits to: {bin_filename}")
|
||||
print(f"Saved txt logist to: {txt_filename}")
|
||||
42
examples/model-conversion/scripts/embedding/compare-embeddings-logits.sh
Executable file
42
examples/model-conversion/scripts/embedding/compare-embeddings-logits.sh
Executable file
@@ -0,0 +1,42 @@
|
||||
#/bin/bash
|
||||
|
||||
set -e
|
||||
|
||||
MODEL_PATH="${1:-"$EMBEDDING_MODEL_PATH"}"
|
||||
MODEL_NAME="${2:-$(basename "$MODEL_PATH")}"
|
||||
|
||||
if [ -t 0 ]; then
|
||||
CPP_EMBEDDINGS="data/llamacpp-${MODEL_NAME}-embeddings.bin"
|
||||
else
|
||||
# Process piped JSON data and convert to binary (matching logits.cpp format)
|
||||
TEMP_FILE=$(mktemp /tmp/tmp.XXXXXX.binn)
|
||||
python3 -c "
|
||||
import json
|
||||
import sys
|
||||
import struct
|
||||
|
||||
data = json.load(sys.stdin)
|
||||
|
||||
# Flatten all embeddings completely
|
||||
flattened = []
|
||||
for item in data:
|
||||
embedding = item['embedding']
|
||||
for token_embedding in embedding:
|
||||
flattened.extend(token_embedding)
|
||||
|
||||
print(f'Total embedding values: {len(flattened)}', file=sys.stderr)
|
||||
|
||||
# Write as binary floats - matches logitc.cpp fwrite format
|
||||
with open('$TEMP_FILE', 'wb') as f:
|
||||
for value in flattened:
|
||||
f.write(struct.pack('f', value))
|
||||
"
|
||||
CPP_EMBEDDINGS="$TEMP_FILE"
|
||||
trap "rm -f $TEMP_FILE" EXIT
|
||||
fi
|
||||
|
||||
python scripts/utils/semantic_check.py --model-path $MODEL_PATH \
|
||||
--python-embeddings data/pytorch-${MODEL_NAME}-embeddings.bin \
|
||||
--cpp-embeddings $CPP_EMBEDDINGS \
|
||||
--prompt "Hello world today"
|
||||
|
||||
22
examples/model-conversion/scripts/embedding/convert-model.sh
Executable file
22
examples/model-conversion/scripts/embedding/convert-model.sh
Executable file
@@ -0,0 +1,22 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -e
|
||||
|
||||
MODEL_NAME="${MODEL_NAME:-$(basename "$EMBEDDING_MODEL_PATH")}"
|
||||
OUTPUT_DIR="${OUTPUT_DIR:-../../models}"
|
||||
TYPE="${OUTTYPE:-f16}"
|
||||
METADATA_OVERRIDE="${METADATA_OVERRIDE:-}"
|
||||
CONVERTED_MODEL="${OUTPUT_DIR}/${MODEL_NAME}.gguf"
|
||||
|
||||
echo "Model path: ${EMBEDDING_MODEL_PATH}"
|
||||
echo "Model name: ${MODEL_NAME}"
|
||||
echo "Data type: ${TYPE}"
|
||||
echo "Converted model path:: ${CONVERTED_MODEL}"
|
||||
python ../../convert_hf_to_gguf.py --verbose \
|
||||
${EMBEDDING_MODEL_PATH} \
|
||||
--outfile ${CONVERTED_MODEL} \
|
||||
--outtype ${TYPE}
|
||||
|
||||
echo ""
|
||||
echo "The environment variable CONVERTED_EMBEDDING MODEL can be set to this path using:"
|
||||
echo "export CONVERTED_EMBEDDING_MODEL=$(realpath ${CONVERTED_MODEL})"
|
||||
@@ -0,0 +1,48 @@
|
||||
---
|
||||
base_model:
|
||||
- {base_model}
|
||||
---
|
||||
# {model_name} GGUF
|
||||
|
||||
Recommended way to run this model:
|
||||
|
||||
```sh
|
||||
llama-server -hf {namespace}/{model_name}-GGUF
|
||||
```
|
||||
|
||||
Then the endpoint can be accessed at http://localhost:8080/embedding, for
|
||||
example using `curl`:
|
||||
```console
|
||||
curl --request POST \
|
||||
--url http://localhost:8080/embedding \
|
||||
--header "Content-Type: application/json" \
|
||||
--data '{{"input": "Hello embeddings"}}' \
|
||||
--silent
|
||||
```
|
||||
|
||||
Alternatively, the `llama-embedding` command line tool can be used:
|
||||
```sh
|
||||
llama-embedding -hf {namespace}/{model_name}-GGUF --verbose-prompt -p "Hello embeddings"
|
||||
```
|
||||
|
||||
#### embd_normalize
|
||||
When a model uses pooling, or the pooling method is specified using `--pooling`,
|
||||
the normalization can be controlled by the `embd_normalize` parameter.
|
||||
|
||||
The default value is `2` which means that the embeddings are normalized using
|
||||
the Euclidean norm (L2). Other options are:
|
||||
* -1 No normalization
|
||||
* 0 Max absolute
|
||||
* 1 Taxicab
|
||||
* 2 Euclidean/L2
|
||||
* \>2 P-Norm
|
||||
|
||||
This can be passed in the request body to `llama-server`, for example:
|
||||
```sh
|
||||
--data '{{"input": "Hello embeddings", "embd_normalize": -1}}' \
|
||||
```
|
||||
|
||||
And for `llama-embedding`, by passing `--embd-normalize <value>`, for example:
|
||||
```sh
|
||||
llama-embedding -hf {namespace}/{model_name}-GGUF --embd-normalize -1 -p "Hello embeddings"
|
||||
```
|
||||
20
examples/model-conversion/scripts/embedding/run-converted-model.sh
Executable file
20
examples/model-conversion/scripts/embedding/run-converted-model.sh
Executable file
@@ -0,0 +1,20 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -e
|
||||
|
||||
# First try command line argument, then environment variable, then file
|
||||
CONVERTED_MODEL="${1:-"$CONVERTED_EMBEDDING_MODEL"}"
|
||||
|
||||
# Final check if we have a model path
|
||||
if [ -z "$CONVERTED_MODEL" ]; then
|
||||
echo "Error: Model path must be provided either as:" >&2
|
||||
echo " 1. Command line argument" >&2
|
||||
echo " 2. CONVERTED_EMBEDDING_MODEL environment variable" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo $CONVERTED_MODEL
|
||||
|
||||
cmake --build ../../build --target llama-logits -j8
|
||||
|
||||
../../build/bin/llama-logits -m "$CONVERTED_MODEL" -embd-mode "Hello world today"
|
||||
116
examples/model-conversion/scripts/embedding/run-original-model.py
Executable file
116
examples/model-conversion/scripts/embedding/run-original-model.py
Executable file
@@ -0,0 +1,116 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import numpy as np
|
||||
import importlib
|
||||
from pathlib import Path
|
||||
|
||||
from transformers import AutoTokenizer, AutoConfig, AutoModel
|
||||
import torch
|
||||
|
||||
unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
|
||||
|
||||
parser = argparse.ArgumentParser(description='Process model with specified path')
|
||||
parser.add_argument('--model-path', '-m', help='Path to the model')
|
||||
args = parser.parse_args()
|
||||
|
||||
model_path = os.environ.get('EMBEDDING_MODEL_PATH', args.model_path)
|
||||
if model_path is None:
|
||||
parser.error("Model path must be specified either via --model-path argument or EMBEDDING_MODEL_PATH environment variable")
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||
|
||||
if unreleased_model_name:
|
||||
model_name_lower = unreleased_model_name.lower()
|
||||
unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
|
||||
class_name = f"{unreleased_model_name}Model"
|
||||
print(f"Importing unreleased model module: {unreleased_module_path}")
|
||||
|
||||
try:
|
||||
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
|
||||
model = model_class.from_pretrained(model_path) # Note: from_pretrained, not fromPretrained
|
||||
except (ImportError, AttributeError) as e:
|
||||
print(f"Failed to import or load model: {e}")
|
||||
exit(1)
|
||||
else:
|
||||
model = AutoModel.from_pretrained(model_path)
|
||||
print(f"Model class: {type(model)}")
|
||||
#print(f"Model file: {type(model).__module__}")
|
||||
config = AutoConfig.from_pretrained(model_path)
|
||||
|
||||
model_name = os.path.basename(model_path)
|
||||
|
||||
texts = [ "Hello world today" ]
|
||||
|
||||
encoded = tokenizer(
|
||||
texts,
|
||||
padding=True,
|
||||
truncation=True,
|
||||
return_tensors="pt"
|
||||
)
|
||||
|
||||
tokens = encoded['input_ids'][0]
|
||||
token_strings = tokenizer.convert_ids_to_tokens(tokens)
|
||||
for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
|
||||
print(f"{token_id:6d} -> '{token_str}'")
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model(**encoded)
|
||||
hidden_states = outputs.last_hidden_state # Shape: [batch_size, seq_len, hidden_size]
|
||||
|
||||
# Extract embeddings for each token (matching LLAMA_POOLING_TYPE_NONE behavior)
|
||||
all_embeddings = hidden_states[0].cpu().numpy() # Shape: [seq_len, hidden_size]
|
||||
|
||||
print(f"Hidden states shape: {hidden_states.shape}")
|
||||
print(f"All embeddings shape: {all_embeddings.shape}")
|
||||
print(f"Embedding dimension: {all_embeddings.shape[1]}")
|
||||
|
||||
# Print embeddings exactly like embedding.cpp does for LLAMA_POOLING_TYPE_NONE
|
||||
n_embd = all_embeddings.shape[1]
|
||||
n_embd_count = all_embeddings.shape[0]
|
||||
|
||||
print() # Empty line to match C++ output
|
||||
|
||||
for j in range(n_embd_count):
|
||||
embedding = all_embeddings[j]
|
||||
print(f"embedding {j}: ", end="")
|
||||
|
||||
# Print first 3 values
|
||||
for i in range(min(3, n_embd)):
|
||||
print(f"{embedding[i]:9.6f} ", end="")
|
||||
|
||||
print(" ... ", end="")
|
||||
|
||||
# Print last 3 values
|
||||
for i in range(n_embd - 3, n_embd):
|
||||
print(f"{embedding[i]:9.6f} ", end="")
|
||||
|
||||
print() # New line
|
||||
|
||||
print() # Final empty line to match C++ output
|
||||
|
||||
data_dir = Path("data")
|
||||
data_dir.mkdir(exist_ok=True)
|
||||
bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin"
|
||||
txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt"
|
||||
|
||||
# Save all embeddings flattened (matching what embedding.cpp would save if it did)
|
||||
flattened_embeddings = all_embeddings.flatten()
|
||||
flattened_embeddings.astype(np.float32).tofile(bin_filename)
|
||||
|
||||
with open(txt_filename, "w") as f:
|
||||
f.write(f"# Model class: {model_name}\n")
|
||||
f.write(f"# Tokens: {token_strings}\n")
|
||||
f.write(f"# Shape: {all_embeddings.shape}\n")
|
||||
f.write(f"# n_embd_count: {n_embd_count}, n_embd: {n_embd}\n\n")
|
||||
|
||||
for j in range(n_embd_count):
|
||||
f.write(f"# Token {j} ({token_strings[j]}):\n")
|
||||
for i, value in enumerate(all_embeddings[j]):
|
||||
f.write(f"{j}_{i}: {value:.6f}\n")
|
||||
f.write("\n")
|
||||
print(f"Total values: {len(flattened_embeddings)} ({n_embd_count} tokens × {n_embd} dimensions)")
|
||||
print("")
|
||||
print(f"Saved bin embeddings to: {bin_filename}")
|
||||
print(f"Saved txt embeddings to: {txt_filename}")
|
||||
174
examples/model-conversion/scripts/utils/check-nmse.py
Executable file
174
examples/model-conversion/scripts/utils/check-nmse.py
Executable file
@@ -0,0 +1,174 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import numpy as np
|
||||
import sys
|
||||
import os
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
|
||||
def calculate_nmse(reference, test):
|
||||
mse = np.mean((test - reference) ** 2)
|
||||
ref_var = np.var(reference)
|
||||
if ref_var == 0:
|
||||
nmse = float('inf') if mse > 0 else 0.0
|
||||
return mse, mse, ref_var
|
||||
|
||||
nmse = mse / ref_var
|
||||
|
||||
return nmse, mse, ref_var
|
||||
|
||||
def load_logits(file_path):
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
if file_path.suffix == '.npy':
|
||||
return np.load(file_path)
|
||||
elif file_path.suffix == '.bin':
|
||||
return np.fromfile(file_path, dtype=np.float32)
|
||||
else:
|
||||
# Try to load as text file
|
||||
try:
|
||||
# If it has index format "0: value", extract just values
|
||||
data = []
|
||||
with open(file_path, 'r') as f:
|
||||
for line in f:
|
||||
if ':' in line:
|
||||
# Format: "index: value"
|
||||
value = float(line.split(':')[1].strip())
|
||||
else:
|
||||
# Just the value
|
||||
value = float(line.strip())
|
||||
data.append(value)
|
||||
return np.array(data, dtype=np.float32)
|
||||
except:
|
||||
return np.loadtxt(file_path, dtype=np.float32)
|
||||
|
||||
def interpret_nmse(nmse):
|
||||
"""Provide interpretation of NMSE value"""
|
||||
if nmse == 0:
|
||||
return "Perfect match", "🎉"
|
||||
elif nmse < 1e-6:
|
||||
return "Essentially identical", "✅"
|
||||
elif nmse < 1e-4:
|
||||
return "Excellent match", "✅"
|
||||
elif nmse < 1e-3:
|
||||
return "Very good match", "👍"
|
||||
elif nmse < 1e-2:
|
||||
return "Good match", "👍"
|
||||
elif nmse < 0.1:
|
||||
return "Acceptable match", "⚠️"
|
||||
elif nmse < 1.0:
|
||||
return "Poor match", "❌"
|
||||
else:
|
||||
return "Very poor match (worse than noise)", "❌"
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description='Validate model logits')
|
||||
parser.add_argument('-m', '--model-path', required=True, help='Path to the model directory')
|
||||
args = parser.parse_args()
|
||||
|
||||
model_name = os.path.splitext(os.path.basename(args.model_path))[0]
|
||||
data_dir = Path("data")
|
||||
|
||||
pytorch_file = data_dir / f"pytorch-{model_name}.bin"
|
||||
llamacpp_file = data_dir / f"llamacpp-{model_name}.bin"
|
||||
|
||||
print(f"Model name: {model_name}")
|
||||
print(f"PyTorch logits file: {pytorch_file}")
|
||||
print(f"llama.cpp logits file: {llamacpp_file}")
|
||||
|
||||
reference_file = pytorch_file
|
||||
test_file = llamacpp_file
|
||||
|
||||
print("📊 NMSE Check for Model Comparison")
|
||||
print("=" * 50)
|
||||
print(f"Reference (ground truth): {reference_file}")
|
||||
print(f"Test (to evaluate): {test_file}")
|
||||
print()
|
||||
|
||||
try:
|
||||
print("Loading reference logits...")
|
||||
reference = load_logits(reference_file)
|
||||
print(f" Shape: {reference.shape}, Type: {reference.dtype}")
|
||||
|
||||
print("Loading test logits...")
|
||||
test = load_logits(test_file)
|
||||
print(f" Shape: {test.shape}, Type: {test.dtype}")
|
||||
|
||||
# Check shapes match
|
||||
if reference.shape != test.shape:
|
||||
print(f"\n❌ Error: Shape mismatch!")
|
||||
print(f" Reference: {reference.shape}")
|
||||
print(f" Test: {test.shape}")
|
||||
sys.exit(1)
|
||||
|
||||
print(f"\n✅ Shapes match: {reference.shape}")
|
||||
|
||||
nmse, mse, ref_var = calculate_nmse(reference, test)
|
||||
|
||||
# Additional metrics
|
||||
max_abs_error = np.max(np.abs(test - reference))
|
||||
mean_abs_error = np.mean(np.abs(test - reference))
|
||||
|
||||
# Results
|
||||
print(f"\n📈 METRICS")
|
||||
print("=" * 30)
|
||||
print(f"MSE (Mean Squared Error): {mse:.6e}")
|
||||
print(f"Reference Variance: {ref_var:.6e}")
|
||||
print(f"NMSE: {nmse:.6e}")
|
||||
print(f"Max Absolute Error: {max_abs_error:.6f}")
|
||||
print(f"Mean Absolute Error: {mean_abs_error:.6f}")
|
||||
|
||||
# NMSE in dB (common in signal processing)
|
||||
if nmse > 0:
|
||||
nmse_db = 10 * np.log10(nmse)
|
||||
print(f"NMSE (dB): {nmse_db:.2f} dB")
|
||||
|
||||
# Interpretation
|
||||
interpretation, emoji = interpret_nmse(nmse)
|
||||
print(f"\n🎯 INTERPRETATION")
|
||||
print("=" * 30)
|
||||
print(f"{emoji} {interpretation}")
|
||||
|
||||
# Detailed guidance
|
||||
print(f"\n📋 GUIDANCE")
|
||||
print("=" * 30)
|
||||
if nmse < 1e-3:
|
||||
print("✅ EXCELLENT: Your GGML conversion is working very well!")
|
||||
print(" The differences are negligible for practical use.")
|
||||
elif nmse < 1e-2:
|
||||
print("👍 GOOD: Your GGML conversion is working well.")
|
||||
print(" Small differences are likely due to precision/quantization.")
|
||||
elif nmse < 0.1:
|
||||
print("⚠️ ACCEPTABLE: Conversion is working but with some differences.")
|
||||
print(" Check if you're using quantization (Q4, Q8, etc.)")
|
||||
print(" Test generation quality to see if it's acceptable.")
|
||||
else:
|
||||
print("❌ PROBLEMATIC: Large differences detected.")
|
||||
print(" Check your conversion process for potential issues.")
|
||||
print(" Verify you're using the same model weights.")
|
||||
|
||||
# NMSE benchmarks
|
||||
print(f"\n📚 NMSE BENCHMARKS")
|
||||
print("=" * 30)
|
||||
print("< 1e-6: Essentially identical")
|
||||
print("< 1e-4: Excellent (typical for good conversions)")
|
||||
print("< 1e-3: Very good")
|
||||
print("< 1e-2: Good (acceptable for most use cases)")
|
||||
print("< 0.1: Acceptable (may need verification)")
|
||||
print("> 1.0: Poor (worse than random)")
|
||||
|
||||
# Exit code based on NMSE
|
||||
if nmse < 1e-2:
|
||||
print(f"\n✅ RESULT: PASS (NMSE = {nmse:.2e})")
|
||||
sys.exit(0)
|
||||
else:
|
||||
print(f"\n❌ RESULT: NEEDS REVIEW (NMSE = {nmse:.2e})")
|
||||
sys.exit(1)
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Error: {e}")
|
||||
sys.exit(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -0,0 +1,6 @@
|
||||
|
||||
COLLECTION_SLUG=$(python ./create_collection.py --return-slug)
|
||||
echo "Created collection: $COLLECTION_SLUG"
|
||||
|
||||
# Use it in the next command
|
||||
python add_model_to_collection.py "$COLLECTION_SLUG" "username/my-model"
|
||||
80
examples/model-conversion/scripts/utils/hf-add-model-to-collection.py
Executable file
80
examples/model-conversion/scripts/utils/hf-add-model-to-collection.py
Executable file
@@ -0,0 +1,80 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
from huggingface_hub import HfApi
|
||||
import argparse
|
||||
import sys
|
||||
|
||||
def add_model_to_collection(collection_slug, model_id, note=""):
|
||||
"""
|
||||
Add a model to an existing collection
|
||||
|
||||
Args:
|
||||
collection_slug: The slug of the collection (e.g., "username/collection-name-12345")
|
||||
model_id: The model repository ID (e.g., "username/model-name")
|
||||
note: Optional note about the model
|
||||
|
||||
Returns:
|
||||
True if successful, False if failed
|
||||
"""
|
||||
|
||||
# Initialize API
|
||||
api = HfApi()
|
||||
|
||||
try:
|
||||
user_info = api.whoami()
|
||||
print(f"✅ Authenticated as: {user_info['name']}")
|
||||
|
||||
# Verify the model exists
|
||||
print(f"🔍 Checking if model exists: {model_id}")
|
||||
try:
|
||||
model_info = api.model_info(model_id)
|
||||
except Exception as e:
|
||||
print(f"❌ Model not found or not accessible: {model_id}")
|
||||
print(f"Error: {e}")
|
||||
return False
|
||||
|
||||
print(f"📚 Adding model to collection...")
|
||||
api.add_collection_item(
|
||||
collection_slug=collection_slug,
|
||||
item_id=model_id,
|
||||
item_type="model",
|
||||
note=note
|
||||
)
|
||||
|
||||
print(f"✅ Model added to collection successfully!")
|
||||
print(f"🔗 Collection URL: https://huggingface.co/collections/{collection_slug}")
|
||||
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Error adding model to collection: {e}")
|
||||
return False
|
||||
|
||||
def main():
|
||||
# This script requires that the environment variable HF_TOKEN is set with your
|
||||
# Hugging Face API token.
|
||||
api = HfApi()
|
||||
|
||||
parser = argparse.ArgumentParser(description='Add model to a Huggingface Collection')
|
||||
parser.add_argument('--collection', '-c', help='The collection slug username/collection-hash', required=True)
|
||||
parser.add_argument('--model', '-m', help='The model to add to the Collection', required=True)
|
||||
parser.add_argument('--note', '-n', help='An optional note/description', required=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
collection = args.collection
|
||||
model = args.model
|
||||
note = args.note
|
||||
|
||||
success = add_model_to_collection(
|
||||
collection_slug=collection,
|
||||
model_id=model,
|
||||
note=note
|
||||
)
|
||||
|
||||
if success:
|
||||
print("\n🎉 Model added successfully!")
|
||||
else:
|
||||
print("\n❌ Failed to add model to collection")
|
||||
sys.exit(1)
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
106
examples/model-conversion/scripts/utils/hf-create-collection.py
Executable file
106
examples/model-conversion/scripts/utils/hf-create-collection.py
Executable file
@@ -0,0 +1,106 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
from huggingface_hub import HfApi
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
|
||||
|
||||
def create_collection(title, description, private=False, namespace=None, return_slug=False):
|
||||
"""
|
||||
Create a new collection on Hugging Face
|
||||
|
||||
Args:
|
||||
title: Collection title
|
||||
description: Collection description
|
||||
private: Whether the collection should be private (default: False)
|
||||
namespace: Optional namespace (defaults to your username)
|
||||
|
||||
Returns:
|
||||
Collection object if successful, None if failed
|
||||
"""
|
||||
|
||||
# Check if HF_TOKEN is available
|
||||
token = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_HUB_TOKEN")
|
||||
if not token:
|
||||
print("❌ No HF_TOKEN or HUGGINGFACE_HUB_TOKEN found in environment variables")
|
||||
print("Please set your Hugging Face token as an environment variable")
|
||||
return None
|
||||
|
||||
# Initialize API
|
||||
api = HfApi()
|
||||
|
||||
try:
|
||||
# Test authentication first
|
||||
user_info = api.whoami()
|
||||
if not return_slug:
|
||||
print(f"✅ Authenticated as: {user_info['name']}")
|
||||
|
||||
# Create the collection
|
||||
if not return_slug:
|
||||
print(f"📚 Creating collection: '{title}'...")
|
||||
collection = api.create_collection(
|
||||
title=title,
|
||||
description=description,
|
||||
private=private,
|
||||
namespace=namespace
|
||||
)
|
||||
|
||||
if not return_slug:
|
||||
print(f"✅ Collection created successfully!")
|
||||
print(f"📋 Collection slug: {collection.slug}")
|
||||
print(f"🔗 Collection URL: https://huggingface.co/collections/{collection.slug}")
|
||||
|
||||
return collection
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Error creating collection: {e}")
|
||||
return None
|
||||
|
||||
def main():
|
||||
# This script requires that the environment variable HF_TOKEN is set with your
|
||||
# Hugging Face API token.
|
||||
api = HfApi()
|
||||
|
||||
parser = argparse.ArgumentParser(description='Create a Huggingface Collection')
|
||||
parser.add_argument('--name', '-n', help='The name/title of the Collection', required=True)
|
||||
parser.add_argument('--description', '-d', help='The description for the Collection', required=True)
|
||||
parser.add_argument('--namespace', '-ns', help='The namespace to add the Collection to', required=True)
|
||||
parser.add_argument('--private', '-p', help='Create a private Collection', action='store_true') # Fixed
|
||||
parser.add_argument('--return-slug', '-s', help='Only output the collection slug', action='store_true') # Fixed
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
name = args.name
|
||||
description = args.description
|
||||
private = args.private
|
||||
namespace = args.namespace
|
||||
return_slug = args.return_slug
|
||||
|
||||
if not return_slug:
|
||||
print("🚀 Creating Hugging Face Collection")
|
||||
print(f"Title: {name}")
|
||||
print(f"Description: {description}")
|
||||
print(f"Namespace: {namespace}")
|
||||
print(f"Private: {private}")
|
||||
|
||||
collection = create_collection(
|
||||
title=name,
|
||||
description=description,
|
||||
private=private,
|
||||
namespace=namespace,
|
||||
return_slug=return_slug
|
||||
)
|
||||
|
||||
if collection:
|
||||
if return_slug:
|
||||
print(collection.slug)
|
||||
else:
|
||||
print("\n🎉 Collection created successfully!")
|
||||
print(f"Use this slug to add models: {collection.slug}")
|
||||
else:
|
||||
print("\n❌ Failed to create collection")
|
||||
sys.exit(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
78
examples/model-conversion/scripts/utils/hf-create-model.py
Executable file
78
examples/model-conversion/scripts/utils/hf-create-model.py
Executable file
@@ -0,0 +1,78 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
from huggingface_hub import HfApi
|
||||
import argparse
|
||||
|
||||
# This script requires that the environment variable HF_TOKEN is set with your
|
||||
# Hugging Face API token.
|
||||
api = HfApi()
|
||||
|
||||
def load_template_and_substitute(template_path, **kwargs):
|
||||
try:
|
||||
with open(template_path, 'r', encoding='utf-8') as f:
|
||||
template_content = f.read()
|
||||
|
||||
return template_content.format(**kwargs)
|
||||
except FileNotFoundError:
|
||||
print(f"Template file '{template_path}' not found!")
|
||||
return None
|
||||
except KeyError as e:
|
||||
print(f"Missing template variable: {e}")
|
||||
return None
|
||||
|
||||
parser = argparse.ArgumentParser(description='Create a new Hugging Face model repository')
|
||||
parser.add_argument('--model-name', '-m', help='Name for the model', required=True)
|
||||
parser.add_argument('--namespace', '-ns', help='Namespace to add the model to', required=True)
|
||||
parser.add_argument('--org-base-model', '-b', help='Original Base model name', default="")
|
||||
parser.add_argument('--no-card', action='store_true', help='Skip creating model card')
|
||||
parser.add_argument('--private', '-p', action='store_true', help='Create private model')
|
||||
parser.add_argument('--embedding', '-e', action='store_true', help='Use embedding model card template')
|
||||
parser.add_argument('--dry-run', '-d', action='store_true', help='Print repository info and template without creating repository')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
repo_id = f"{args.namespace}/{args.model_name}-GGUF"
|
||||
print("Repository ID: ", repo_id)
|
||||
|
||||
repo_url = None
|
||||
if not args.dry_run:
|
||||
repo_url = api.create_repo(
|
||||
repo_id=repo_id,
|
||||
repo_type="model",
|
||||
private=args.private,
|
||||
exist_ok=False
|
||||
)
|
||||
|
||||
if not args.no_card:
|
||||
if args.embedding:
|
||||
template_path = "scripts/embedding/modelcard.template"
|
||||
else:
|
||||
template_path = "scripts/causal/modelcard.template"
|
||||
|
||||
print("Template path: ", template_path)
|
||||
|
||||
model_card_content = load_template_and_substitute(
|
||||
template_path,
|
||||
model_name=args.model_name,
|
||||
namespace=args.namespace,
|
||||
base_model=args.org_base_model,
|
||||
)
|
||||
|
||||
if args.dry_run:
|
||||
print("\nTemplate Content:\n")
|
||||
print(model_card_content)
|
||||
else:
|
||||
if model_card_content:
|
||||
api.upload_file(
|
||||
path_or_fileobj=model_card_content.encode('utf-8'),
|
||||
path_in_repo="README.md",
|
||||
repo_id=repo_id
|
||||
)
|
||||
print("Model card created successfully.")
|
||||
else:
|
||||
print("Failed to create model card.")
|
||||
|
||||
if not args.dry_run and repo_url:
|
||||
print(f"Repository created: {repo_url}")
|
||||
|
||||
|
||||
58
examples/model-conversion/scripts/utils/hf-upload-gguf-model.py
Executable file
58
examples/model-conversion/scripts/utils/hf-upload-gguf-model.py
Executable file
@@ -0,0 +1,58 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
from huggingface_hub import HfApi
|
||||
import argparse
|
||||
import os
|
||||
|
||||
def upload_gguf_file(local_file_path, repo_id, filename_in_repo=None):
|
||||
"""
|
||||
Upload a GGUF file to a Hugging Face model repository
|
||||
|
||||
Args:
|
||||
local_file_path: Path to your local GGUF file
|
||||
repo_id: Your repository ID (e.g., "username/model-name")
|
||||
filename_in_repo: Optional custom name for the file in the repo
|
||||
"""
|
||||
|
||||
if not os.path.exists(local_file_path):
|
||||
print(f"❌ File not found: {local_file_path}")
|
||||
return False
|
||||
|
||||
if filename_in_repo is None:
|
||||
filename_in_repo = os.path.basename(local_file_path)
|
||||
|
||||
if filename_in_repo is None or filename_in_repo == "":
|
||||
filename_in_repo = os.path.basename(local_file_path)
|
||||
|
||||
print(f"📤 Uploading {local_file_path} to {repo_id}/{filename_in_repo}")
|
||||
|
||||
api = HfApi()
|
||||
|
||||
try:
|
||||
api.upload_file(
|
||||
path_or_fileobj=local_file_path,
|
||||
path_in_repo=filename_in_repo,
|
||||
repo_id=repo_id,
|
||||
repo_type="model",
|
||||
commit_message=f"Upload {filename_in_repo}"
|
||||
)
|
||||
|
||||
print("✅ Upload successful!")
|
||||
print(f"🔗 File available at: https://huggingface.co/{repo_id}/blob/main/{filename_in_repo}")
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Upload failed: {e}")
|
||||
return False
|
||||
|
||||
# This script requires that the environment variable HF_TOKEN is set with your
|
||||
# Hugging Face API token.
|
||||
api = HfApi()
|
||||
|
||||
parser = argparse.ArgumentParser(description='Upload a GGUF model to a Huggingface model repository')
|
||||
parser.add_argument('--gguf-model-path', '-m', help='The GGUF model file to upload', required=True)
|
||||
parser.add_argument('--repo-id', '-r', help='The repository to upload to', required=True)
|
||||
parser.add_argument('--name', '-o', help='The name in the model repository', required=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
upload_gguf_file(args.gguf_model_path, args.repo_id, args.name)
|
||||
14
examples/model-conversion/scripts/utils/inspect-converted-model.sh
Executable file
14
examples/model-conversion/scripts/utils/inspect-converted-model.sh
Executable file
@@ -0,0 +1,14 @@
|
||||
#!/bin/bash
|
||||
|
||||
# First try command line argument, then environment variable, then file
|
||||
CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}"
|
||||
|
||||
# Final check if we have a model path
|
||||
if [ -z "$CONVERTED_MODEL" ]; then
|
||||
echo "Error: Model path must be provided either as:" >&2
|
||||
echo " 1. Command line argument" >&2
|
||||
echo " 2. CONVERTED_MODEL environment variable" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
../../gguf-py/gguf/scripts/gguf_dump.py $CONVERTED_MODEL
|
||||
67
examples/model-conversion/scripts/utils/inspect-org-model.py
Executable file
67
examples/model-conversion/scripts/utils/inspect-org-model.py
Executable file
@@ -0,0 +1,67 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import json
|
||||
from safetensors import safe_open
|
||||
from collections import defaultdict
|
||||
|
||||
parser = argparse.ArgumentParser(description='Process model with specified path')
|
||||
parser.add_argument('--model-path', '-m', help='Path to the model')
|
||||
args = parser.parse_args()
|
||||
|
||||
model_path = os.environ.get('MODEL_PATH', args.model_path)
|
||||
if model_path is None:
|
||||
parser.error("Model path must be specified either via --model-path argument or MODEL_PATH environment variable")
|
||||
|
||||
# Check if there's an index file (multi-file model)
|
||||
index_path = os.path.join(model_path, "model.safetensors.index.json")
|
||||
single_file_path = os.path.join(model_path, "model.safetensors")
|
||||
|
||||
if os.path.exists(index_path):
|
||||
# Multi-file model
|
||||
print("Multi-file model detected")
|
||||
|
||||
with open(index_path, 'r') as f:
|
||||
index_data = json.load(f)
|
||||
|
||||
# Get the weight map (tensor_name -> file_name)
|
||||
weight_map = index_data.get("weight_map", {})
|
||||
|
||||
# Group tensors by file for efficient processing
|
||||
file_tensors = defaultdict(list)
|
||||
for tensor_name, file_name in weight_map.items():
|
||||
file_tensors[file_name].append(tensor_name)
|
||||
|
||||
print("Tensors in model:")
|
||||
|
||||
# Process each shard file
|
||||
for file_name, tensor_names in file_tensors.items():
|
||||
file_path = os.path.join(model_path, file_name)
|
||||
print(f"\n--- From {file_name} ---")
|
||||
|
||||
with safe_open(file_path, framework="pt") as f:
|
||||
for tensor_name in sorted(tensor_names):
|
||||
tensor = f.get_tensor(tensor_name)
|
||||
print(f"- {tensor_name} : shape = {tensor.shape}, dtype = {tensor.dtype}")
|
||||
|
||||
elif os.path.exists(single_file_path):
|
||||
# Single file model (original behavior)
|
||||
print("Single-file model detected")
|
||||
|
||||
with safe_open(single_file_path, framework="pt") as f:
|
||||
keys = f.keys()
|
||||
print("Tensors in model:")
|
||||
for key in sorted(keys):
|
||||
tensor = f.get_tensor(key)
|
||||
print(f"- {key} : shape = {tensor.shape}, dtype = {tensor.dtype}")
|
||||
|
||||
else:
|
||||
print(f"Error: Neither 'model.safetensors.index.json' nor 'model.safetensors' found in {model_path}")
|
||||
print("Available files:")
|
||||
if os.path.exists(model_path):
|
||||
for item in sorted(os.listdir(model_path)):
|
||||
print(f" {item}")
|
||||
else:
|
||||
print(f" Directory {model_path} does not exist")
|
||||
exit(1)
|
||||
35
examples/model-conversion/scripts/utils/perplexity-gen.sh
Executable file
35
examples/model-conversion/scripts/utils/perplexity-gen.sh
Executable file
@@ -0,0 +1,35 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -e
|
||||
|
||||
CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}"
|
||||
|
||||
# Final check if we have a model path
|
||||
if [ -z "$CONVERTED_MODEL" ]; then
|
||||
echo "Error: Model path must be provided either as:" >&2
|
||||
echo " 1. Command line argument" >&2
|
||||
echo " 2. CONVERTED_MODEL environment variable" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Check if data/wikitext-2-raw directory exists
|
||||
if [ ! -d "ppl/wikitext-2-raw" ]; then
|
||||
echo "ppl/wikitext-2-raw directory does not exist. Downloading..." >&2
|
||||
mkdir -p ppl
|
||||
pushd ppl
|
||||
./../../../scripts/get-wikitext-2.sh
|
||||
popd
|
||||
fi
|
||||
|
||||
mkdir -p ppl
|
||||
OUTPUTFILE="ppl/$(basename $CONVERTED_MODEL).kld"
|
||||
echo "Model: $CONVERTED_MODEL"
|
||||
|
||||
cmake --build ../../build --target llama-perplexity -j8
|
||||
|
||||
../.././build/bin/llama-perplexity -m $CONVERTED_MODEL \
|
||||
-f ppl/wikitext-2-raw/wiki.test.raw \
|
||||
--kl-divergence-base $OUTPUTFILE
|
||||
|
||||
echo "Generated logits in $OUTPUTFILE"
|
||||
|
||||
27
examples/model-conversion/scripts/utils/perplexity-run-simple.sh
Executable file
27
examples/model-conversion/scripts/utils/perplexity-run-simple.sh
Executable file
@@ -0,0 +1,27 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -e
|
||||
|
||||
QUANTIZED_MODEL="${1:-"$QUANTIZED_MODEL"}"
|
||||
|
||||
if [ -z "$QUANTIZED_MODEL" ]; then
|
||||
echo "Error: Model path must be provided either as:" >&2
|
||||
echo " 1. Command line argument" >&2
|
||||
echo " 2. QUANTIZED_MODEL environment variable" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Check if data/wikitext-2-raw directory exists
|
||||
if [ ! -d "ppl/wikitext-2-raw" ]; then
|
||||
echo "ppl/wikitext-2-raw directory does not exist. Downloading..." >&2
|
||||
mkdir -p ppl
|
||||
pushd ppl
|
||||
./../../../scripts/get-wikitext-2.sh
|
||||
popd
|
||||
fi
|
||||
|
||||
cmake --build ../../build --target llama-perplexity -j8
|
||||
|
||||
../.././build/bin/llama-perplexity -m $QUANTIZED_MODEL -f ppl/wikitext-2-raw/wiki.test.raw
|
||||
|
||||
|
||||
28
examples/model-conversion/scripts/utils/perplexity-run.sh
Executable file
28
examples/model-conversion/scripts/utils/perplexity-run.sh
Executable file
@@ -0,0 +1,28 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -e
|
||||
|
||||
QUANTIZED_MODEL="${1:-"$QUANTIZED_MODEL"}"
|
||||
LOGITS_FILE="${1:-"$LOGITS_FILE"}"
|
||||
|
||||
if [ -z "$QUANTIZED_MODEL" ]; then
|
||||
echo "Error: Model path must be provided either as:" >&2
|
||||
echo " 1. Command line argument" >&2
|
||||
echo " 2. QUANTIZED_MODEL environment variable" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ ! -f ${LOGITS_FILE} ]; then
|
||||
echo "Error: logits file '${LOGITS_FILE} was not found"
|
||||
echo "Did you run the perplexity-gen.sh script?"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "Model: $QUANTIZED_MODEL"
|
||||
echo "Data file: $LOGITS_FILE"
|
||||
|
||||
cmake --build ../../build --target llama-perplexity -j8
|
||||
|
||||
../.././build/bin/llama-perplexity -m $QUANTIZED_MODEL \
|
||||
--kl-divergence-base $LOGITS_FILE \
|
||||
--kl-divergence
|
||||
34
examples/model-conversion/scripts/utils/quantize.sh
Executable file
34
examples/model-conversion/scripts/utils/quantize.sh
Executable file
@@ -0,0 +1,34 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -e
|
||||
|
||||
CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}"
|
||||
QUANTIZED_TYPE="${2:-"$QUANTIZED_TYPE"}"
|
||||
QUANTIZED_MODEL=$CONVERTED_MODEL
|
||||
|
||||
# Final check if we have a model path
|
||||
if [ -z "$CONVERTED_MODEL" ]; then
|
||||
echo "Error: Model path must be provided either as:" >&2
|
||||
echo " 1. Command line argument" >&2
|
||||
echo " 2. CONVERTED_MODEL environment variable" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo $CONVERTED_MODEL
|
||||
|
||||
# Process the quantized model filename
|
||||
if [[ "$QUANTIZED_MODEL" == *.gguf ]]; then
|
||||
# Remove .gguf suffix, add quantized type, then add .gguf back
|
||||
BASE_NAME="${QUANTIZED_MODEL%.gguf}"
|
||||
QUANTIZED_MODEL="${BASE_NAME}-${QUANTIZED_TYPE}.gguf"
|
||||
else
|
||||
echo "Error: QUANTIZED_MODEL must end with .gguf extension" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
||||
cmake --build ../../build --target llama-quantize -j8
|
||||
|
||||
../../build/bin/llama-quantize $CONVERTED_MODEL $QUANTIZED_MODEL $QUANTIZED_TYPE
|
||||
|
||||
echo "Quantized model saved to: $QUANTIZED_MODEL"
|
||||
22
examples/model-conversion/scripts/utils/run-embedding-server.sh
Executable file
22
examples/model-conversion/scripts/utils/run-embedding-server.sh
Executable file
@@ -0,0 +1,22 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -e
|
||||
#
|
||||
# First try command line argument, then environment variable, then file
|
||||
CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}"
|
||||
|
||||
# Final check if we have a model path
|
||||
if [ -z "$CONVERTED_MODEL" ]; then
|
||||
echo "Error: Model path must be provided either as:" >&2
|
||||
echo " 1. Command line argument" >&2
|
||||
echo " 2. CONVERTED_MODEL environment variable" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo $CONVERTED_MODEL
|
||||
|
||||
cmake --build ../../build --target llama-server
|
||||
|
||||
../../build/bin/llama-server -m $CONVERTED_MODEL \
|
||||
--embedding \
|
||||
--pooling none
|
||||
179
examples/model-conversion/scripts/utils/semantic_check.py
Normal file
179
examples/model-conversion/scripts/utils/semantic_check.py
Normal file
@@ -0,0 +1,179 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import numpy as np
|
||||
import argparse
|
||||
import os
|
||||
import importlib
|
||||
|
||||
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM, AutoModel
|
||||
|
||||
unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
|
||||
|
||||
def cosine_similarity(a, b=None):
|
||||
a = np.asarray(a)
|
||||
if b is None:
|
||||
b = a
|
||||
else:
|
||||
b = np.asarray(b)
|
||||
|
||||
if a.ndim == 1:
|
||||
a = a.reshape(1, -1)
|
||||
if b.ndim == 1:
|
||||
b = b.reshape(1, -1)
|
||||
|
||||
a_norms = np.linalg.norm(a, axis=1, keepdims=True)
|
||||
b_norms = np.linalg.norm(b, axis=1, keepdims=True)
|
||||
|
||||
a_norms = np.where(a_norms == 0, 1e-8, a_norms)
|
||||
b_norms = np.where(b_norms == 0, 1e-8, b_norms)
|
||||
|
||||
a_normalized = a / a_norms
|
||||
b_normalized = b / b_norms
|
||||
|
||||
# Compute cosine similarity
|
||||
return np.dot(a_normalized, b_normalized.T)
|
||||
|
||||
def load_embeddings_from_file(filename, n_tokens, n_embd):
|
||||
embeddings = np.fromfile(filename, dtype=np.float32)
|
||||
return embeddings.reshape(n_tokens, n_embd)
|
||||
|
||||
def test_single_prompt_similarity(python_emb, cpp_emb, tokens, prompt):
|
||||
np.set_printoptions(suppress=True, precision=6)
|
||||
print("pytorch embeddings:");
|
||||
print(python_emb)
|
||||
print("llama.cpp embeddings:");
|
||||
print(cpp_emb)
|
||||
print(f"\n=== Prompt: '{prompt}' ===")
|
||||
print(f"Tokens: {tokens}")
|
||||
print(f"Embeddings shape: Python {python_emb.shape}, llama.cpp {cpp_emb.shape}")
|
||||
|
||||
n_tokens = len(tokens)
|
||||
|
||||
# 1. Direct embedding comparison
|
||||
print(f"\n1. Raw Embedding Magnitude Comparison:")
|
||||
# Check if the distance of each token embedding from the origin and compare
|
||||
# if the vectors are on the same "sphere". This does not tell us about
|
||||
# direction (meaning of the token embedding), just magnitude.
|
||||
for i in range(n_tokens):
|
||||
py_mag = np.linalg.norm(python_emb[i]) # calculate standard euclidean norm for Python embeddings
|
||||
cpp_mag = np.linalg.norm(cpp_emb[i]) # calculate standard euclidean norm for llama.cpp embeddings
|
||||
ratio = py_mag / cpp_mag if cpp_mag > 0 else float('inf')
|
||||
print(f" Token {i} ({tokens[i]}): Python={py_mag:.3f}, llama.cpp={cpp_mag:.3f}, ratio={ratio:.3f}")
|
||||
|
||||
# 2. Cosine similarity between tokens within each model
|
||||
# Here we check the direction of token embeddings to see if the have the
|
||||
# same meaning (similarity). This is done by calculating cosine similarity
|
||||
# of a pair of token embeddings within each model.
|
||||
print(f"\n2. Within-Model Token Similarities:")
|
||||
print(" Python model:")
|
||||
for i in range(n_tokens):
|
||||
for j in range(i+1, n_tokens):
|
||||
sim = cosine_similarity([python_emb[i]], [python_emb[j]])[0][0]
|
||||
print(f" {tokens[i]} ↔ {tokens[j]}: {sim:.4f}")
|
||||
|
||||
print(" llama.cpp model:")
|
||||
for i in range(n_tokens):
|
||||
for j in range(i+1, n_tokens):
|
||||
sim = cosine_similarity([cpp_emb[i]], [cpp_emb[j]])[0][0]
|
||||
print(f" {tokens[i]} ↔ {tokens[j]}: {sim:.4f}")
|
||||
|
||||
# 3. Cross-model similarity (same token position)
|
||||
print(f"\n3. Cross-Model Same-Token Similarities:")
|
||||
for i in range(n_tokens):
|
||||
sim = cosine_similarity([python_emb[i]], [cpp_emb[i]])[0][0]
|
||||
print(f" Token {i} ({tokens[i]}): {sim:.4f}")
|
||||
|
||||
# 4. Similarity matrix comparison
|
||||
print(f"\n4. Similarity Matrix Differences:")
|
||||
py_sim_matrix = cosine_similarity(python_emb)
|
||||
cpp_sim_matrix = cosine_similarity(cpp_emb)
|
||||
diff_matrix = np.abs(py_sim_matrix - cpp_sim_matrix)
|
||||
|
||||
print(f" Max difference: {np.max(diff_matrix):.4f}")
|
||||
print(f" Mean difference: {np.mean(diff_matrix):.4f}")
|
||||
print(f" RMS difference: {np.sqrt(np.mean(diff_matrix**2)):.4f}")
|
||||
|
||||
return {
|
||||
'cross_model_similarities': [cosine_similarity([python_emb[i]], [cpp_emb[i]])[0][0] for i in range(n_tokens)],
|
||||
'similarity_matrix_diff': diff_matrix,
|
||||
'max_diff': np.max(diff_matrix),
|
||||
'mean_diff': np.mean(diff_matrix),
|
||||
'rms_diff': np.sqrt(np.mean(diff_matrix**2))
|
||||
}
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description='Test semantic similarity between Python and llama.cpp embeddings')
|
||||
parser.add_argument('--model-path', '-m', required=True, help='Path to the original Python model')
|
||||
parser.add_argument('--python-embeddings', '-pe', help='Path to pytorch embeddings "logits" binary file')
|
||||
parser.add_argument('--cpp-embeddings', '-ce', help='Path to llama.cpp embeddings "logits" binary file')
|
||||
parser.add_argument('--causal', '-c', default=False, help='if the model is causal (default: false)', action='store_true')
|
||||
parser.add_argument('--prompt', '-p', default='Hello world today', help='Test prompt')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
print("Semantic Similarity Test Between Python and llama.cpp Embedding Models")
|
||||
print("=" * 70)
|
||||
|
||||
# Single prompt detailed comparison
|
||||
print(f"\nTesting with prompt: '{args.prompt}'")
|
||||
|
||||
# Load the python model to get configuration information and also to load the tokenizer.
|
||||
print("Loading model and tokenizer using AutoTokenizer:", args.model_path)
|
||||
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
|
||||
config = AutoConfig.from_pretrained(args.model_path)
|
||||
|
||||
if unreleased_model_name:
|
||||
model_name_lower = unreleased_model_name.lower()
|
||||
unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
|
||||
if args.causal:
|
||||
class_name = f"{unreleased_model_name}ForCausalLM"
|
||||
else:
|
||||
class_name = f"{unreleased_model_name}Model"
|
||||
print(f"Model class: {class_name}")
|
||||
print(f"Importing unreleased model module: {unreleased_module_path}")
|
||||
|
||||
try:
|
||||
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
|
||||
model = model_class.from_pretrained(args.model_path)
|
||||
except (ImportError, AttributeError) as e:
|
||||
print(f"Failed to import or load model: {e}")
|
||||
exit(1)
|
||||
else:
|
||||
if args.causal:
|
||||
model = AutoModelForCausalLM.from_pretrained(args.model_path)
|
||||
else:
|
||||
model = AutoModel.from_pretrained(args.model_path)
|
||||
|
||||
encoded = tokenizer(args.prompt, return_tensors="pt")
|
||||
tokens = tokenizer.convert_ids_to_tokens(encoded['input_ids'][0])
|
||||
n_tokens = len(tokens)
|
||||
print(f"n_tokens: {n_tokens}");
|
||||
print(f"hidden_size: {model.config.hidden_size}")
|
||||
|
||||
# Load binary embeddings from data directory.
|
||||
llamacpp_embeddings = load_embeddings_from_file(args.cpp_embeddings, n_tokens, model.config.hidden_size)
|
||||
python_embeddings = load_embeddings_from_file(args.python_embeddings, n_tokens, model.config.hidden_size)
|
||||
|
||||
# Run comparison
|
||||
results = test_single_prompt_similarity(python_embeddings, llamacpp_embeddings, tokens, args.prompt)
|
||||
|
||||
# Summary
|
||||
print(f"\n=== SUMMARY ===")
|
||||
avg_cross_sim = np.mean(results['cross_model_similarities'])
|
||||
print(f"Average cross-model similarity: {avg_cross_sim:.4f}")
|
||||
print(f"Similarity matrix RMS difference: {results['rms_diff']:.4f}")
|
||||
|
||||
# Quality assessment
|
||||
if avg_cross_sim > 0.95:
|
||||
print("✅ EXCELLENT: Models are highly similar")
|
||||
elif avg_cross_sim > 0.90:
|
||||
print("✅ VERY GOOD: Models are very similar")
|
||||
elif avg_cross_sim > 0.80:
|
||||
print("⚠️ GOOD: Models are reasonably similar")
|
||||
elif avg_cross_sim > 0.70:
|
||||
print("⚠️ FAIR: Models have some differences")
|
||||
else:
|
||||
print("❌ POOR: Models are significantly different")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -11,5 +11,5 @@ See the following PRs for more info:
|
||||
### Usage
|
||||
|
||||
```bash
|
||||
make -j && ./llama-passkey -m ./models/llama-7b-v2/ggml-model-f16.gguf --junk 250
|
||||
llama-passkey -m ./models/llama-7b-v2/ggml-model-f16.gguf --junk 250
|
||||
```
|
||||
|
||||
@@ -15,7 +15,7 @@ https://github.com/ggml-org/llama.cpp/pull/6193
|
||||
`retrieval` example can be tested as follows:
|
||||
|
||||
```bash
|
||||
make -j && ./llama-retrieval --model ./models/bge-base-en-v1.5-f16.gguf --top-k 3 --context-file README.md --context-file License --chunk-size 100 --chunk-separator .
|
||||
llama-retrieval --model ./models/bge-base-en-v1.5-f16.gguf --top-k 3 --context-file README.md --context-file License --chunk-size 100 --chunk-separator .
|
||||
```
|
||||
|
||||
This chunks and embeds all given files and starts a loop requesting query inputs:
|
||||
|
||||
@@ -59,6 +59,8 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads;
|
||||
params.tensor_buft_overrides = params.speculative.tensor_buft_overrides;
|
||||
|
||||
common_init_result llama_init_dft = common_init_from_params(params);
|
||||
|
||||
//model_dft = llama_init_dft.model.get();
|
||||
|
||||
@@ -85,6 +85,8 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads;
|
||||
params.tensor_buft_overrides = params.speculative.tensor_buft_overrides;
|
||||
|
||||
common_init_result llama_init_dft = common_init_from_params(params);
|
||||
|
||||
model_dft = llama_init_dft.model.get();
|
||||
|
||||
@@ -18,8 +18,6 @@ if %errorlevel% neq 0 goto ERROR
|
||||
:: for FP32
|
||||
cmake -G "Ninja" .. -DLLAMA_CURL=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release
|
||||
if %errorlevel% neq 0 goto ERROR
|
||||
:: build example/main only
|
||||
:: make main
|
||||
|
||||
:: build all binary
|
||||
cmake --build . -j
|
||||
|
||||
@@ -10,20 +10,20 @@
|
||||
#include <vector>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
|
||||
params.escape = false;
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PERPLEXITY)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_FINETUNE)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (params.use_mmap) {
|
||||
LOG_INF("%s: force disabling memory mapping because it would result in-read-only pointers to the weights\n", __func__);
|
||||
LOG_INF("%s: force disabling memory mapping because it would result in-read-only pointers to the weights\n",
|
||||
__func__);
|
||||
params.use_mmap = false;
|
||||
}
|
||||
if (params.cache_type_k != GGML_TYPE_F32) {
|
||||
@@ -38,11 +38,10 @@ int main(int argc, char ** argv) {
|
||||
common_init();
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// load the model and apply lora adapter, if any
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
llama_model_ptr & model = llama_init.model;
|
||||
llama_context_ptr & ctx = llama_init.context;
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
llama_model_ptr & model = llama_init.model;
|
||||
llama_context_ptr & ctx = llama_init.context;
|
||||
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: unable to load model\n", __func__);
|
||||
@@ -55,31 +54,32 @@ int main(int argc, char ** argv) {
|
||||
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
constexpr float val_split = 0.05f;
|
||||
std::vector<llama_token> tokens = common_tokenize(ctx.get(), params.prompt, true);
|
||||
ggml_opt_dataset_t dataset = common_opt_dataset_init(ctx.get(), tokens, llama_n_ctx(ctx.get()) / 2);
|
||||
|
||||
std::vector<llama_token> tokens = common_tokenize(ctx.get(), params.prompt, true);
|
||||
ggml_opt_dataset_t dataset = common_opt_dataset_init(ctx.get(), tokens, llama_n_ctx(ctx.get())/2);
|
||||
struct lr_opt & lr = params.lr;
|
||||
LOG_INF("-optimizer %s -lr0 %.2g -wd %.2g -lr-min %.2g -min-epochs %.2g -epochs %d -period %.2g -val %.2g\n",
|
||||
ggml_opt_optimizer_name(params.optimizer), (double) lr.lr0, (double) lr.wd, (double) lr.lr_min, (double) lr.decay_epochs,
|
||||
(unsigned) lr.epochs, (double) params.n_batch / params.n_ubatch, (double) params.val_split);
|
||||
|
||||
struct ggml_opt_optimizer_params optimizer_params = ggml_opt_get_default_optimizer_params(nullptr);
|
||||
optimizer_params.adamw.alpha = 1e-7f; // learning rate
|
||||
|
||||
struct llama_opt_params lopt_params {
|
||||
/*n_ctx_train =*/ 0,
|
||||
/*param_filter =*/ llama_opt_param_filter_all,
|
||||
/*param_filter_ud =*/ nullptr,
|
||||
/*get_opt_pars =*/ ggml_opt_get_constant_optimizer_params,
|
||||
/*get_opt_pars_ud =*/ &optimizer_params,
|
||||
struct llama_opt_params lopt_params{
|
||||
/*n_ctx_train =*/0,
|
||||
/*param_filter =*/llama_opt_param_filter_all,
|
||||
/*param_filter_ud =*/nullptr,
|
||||
/*get_opt_pars =*/common_opt_lr_pars,
|
||||
/*get_opt_pars_ud =*/¶ms.lr,
|
||||
/*optimizer_type =*/params.optimizer,
|
||||
};
|
||||
llama_opt_init(ctx.get(), model.get(), lopt_params);
|
||||
|
||||
const int64_t idata_split = ggml_opt_dataset_ndata(dataset) * (1.0f - val_split);
|
||||
const int64_t idata_split = ggml_opt_dataset_ndata(dataset) * (1.0f - params.val_split);
|
||||
|
||||
ggml_opt_result_t result_train = ggml_opt_result_init();
|
||||
ggml_opt_result_t result_eval = ggml_opt_result_init();
|
||||
|
||||
for (int epoch = 0; epoch < 2; ++epoch) {
|
||||
for (lr.epoch = 0; lr.epoch < lr.epochs; ++lr.epoch) {
|
||||
llama_opt_epoch(ctx.get(), dataset, result_train, result_eval, idata_split,
|
||||
ggml_opt_epoch_callback_progress_bar, ggml_opt_epoch_callback_progress_bar);
|
||||
ggml_opt_epoch_callback_progress_bar, ggml_opt_epoch_callback_progress_bar);
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
ggml_opt_result_reset(result_train);
|
||||
@@ -88,7 +88,7 @@ int main(int argc, char ** argv) {
|
||||
ggml_opt_result_free(result_train);
|
||||
ggml_opt_result_free(result_eval);
|
||||
|
||||
llama_model_save_to_file(model.get(), "finetuned-model.gguf");
|
||||
llama_model_save_to_file(model.get(), params.out_file.c_str());
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
|
||||
@@ -36,9 +36,6 @@
|
||||
# ```
|
||||
# nixConfig = {
|
||||
# extra-substituters = [
|
||||
# # Populated by the CI in ggml-org/llama.cpp
|
||||
# "https://llama-cpp.cachix.org"
|
||||
#
|
||||
# # A development cache for nixpkgs imported with `config.cudaSupport = true`.
|
||||
# # Populated by https://hercules-ci.com/github/SomeoneSerge/nixpkgs-cuda-ci.
|
||||
# # This lets one skip building e.g. the CUDA-enabled openmpi.
|
||||
@@ -47,10 +44,8 @@
|
||||
# ];
|
||||
#
|
||||
# # Verify these are the same keys as published on
|
||||
# # - https://app.cachix.org/cache/llama-cpp
|
||||
# # - https://app.cachix.org/cache/cuda-maintainers
|
||||
# extra-trusted-public-keys = [
|
||||
# "llama-cpp.cachix.org-1:H75X+w83wUKTIPSO1KWy9ADUrzThyGs8P5tmAbkWhQc="
|
||||
# "cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E="
|
||||
# ];
|
||||
# };
|
||||
|
||||
@@ -158,7 +158,6 @@ option(GGML_CUDA "ggml: use CUDA"
|
||||
option(GGML_MUSA "ggml: use MUSA" OFF)
|
||||
option(GGML_CUDA_FORCE_MMQ "ggml: use mmq kernels instead of cuBLAS" OFF)
|
||||
option(GGML_CUDA_FORCE_CUBLAS "ggml: always use cuBLAS instead of mmq kernels" OFF)
|
||||
option(GGML_CUDA_F16 "ggml: use 16 bit floats for some calculations" OFF)
|
||||
set (GGML_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
|
||||
"ggml: max. batch size for using peer access")
|
||||
option(GGML_CUDA_NO_PEER_COPY "ggml: do not use peer to peer copies" OFF)
|
||||
@@ -188,6 +187,7 @@ option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation"
|
||||
option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF)
|
||||
option(GGML_WEBGPU "ggml: use WebGPU" OFF)
|
||||
option(GGML_WEBGPU_DEBUG "ggml: enable WebGPU debug output" OFF)
|
||||
option(GGML_ZDNN "ggml: use zDNN" OFF)
|
||||
option(GGML_METAL "ggml: use Metal" ${GGML_METAL_DEFAULT})
|
||||
option(GGML_METAL_USE_BF16 "ggml: use bfloat if available" OFF)
|
||||
option(GGML_METAL_NDEBUG "ggml: disable Metal debugging" OFF)
|
||||
|
||||
@@ -74,16 +74,26 @@ extern "C" {
|
||||
GGML_OPT_BUILD_TYPE_OPT = 30,
|
||||
};
|
||||
|
||||
enum ggml_opt_optimizer_type {
|
||||
GGML_OPT_OPTIMIZER_TYPE_ADAMW,
|
||||
GGML_OPT_OPTIMIZER_TYPE_SGD,
|
||||
|
||||
GGML_OPT_OPTIMIZER_TYPE_COUNT
|
||||
};
|
||||
|
||||
// parameters that control which optimizer is used and how said optimizer tries to find the minimal loss
|
||||
struct ggml_opt_optimizer_params {
|
||||
// AdamW optimizer parameters
|
||||
struct {
|
||||
float alpha; // learning rate
|
||||
float beta1;
|
||||
float beta2;
|
||||
float beta1; // first AdamW momentum
|
||||
float beta2; // second AdamW momentum
|
||||
float eps; // epsilon for numerical stability
|
||||
float wd; // weight decay for AdamW, use 0.0f to disable
|
||||
float wd; // weight decay - 0.0f to disable
|
||||
} adamw;
|
||||
struct {
|
||||
float alpha; // learning rate
|
||||
float wd; // weight decay
|
||||
} sgd;
|
||||
};
|
||||
|
||||
// callback to calculate optimizer parameters prior to a backward pass
|
||||
@@ -112,8 +122,11 @@ extern "C" {
|
||||
|
||||
int32_t opt_period; // after how many gradient accumulation steps an optimizer step should be done
|
||||
|
||||
ggml_opt_get_optimizer_params get_opt_pars; // callback for calculating optimizer parameters
|
||||
void * get_opt_pars_ud; // userdata for calculating optimizer parameters
|
||||
ggml_opt_get_optimizer_params get_opt_pars; // callback for calculating optimizer parameters
|
||||
void * get_opt_pars_ud; // userdata for calculating optimizer parameters
|
||||
|
||||
// only GGML_OPT_OPTIMIZER_TYPE_ADAMW needs m, v momenta per parameter tensor
|
||||
enum ggml_opt_optimizer_type optimizer;
|
||||
};
|
||||
|
||||
// get parameters for an optimization context with defaults set where possible
|
||||
@@ -142,6 +155,10 @@ extern "C" {
|
||||
// get the gradient accumulator for a node from the forward graph
|
||||
GGML_API struct ggml_tensor * ggml_opt_grad_acc(ggml_opt_context_t opt_ctx, struct ggml_tensor * node);
|
||||
|
||||
GGML_API enum ggml_opt_optimizer_type ggml_opt_context_optimizer_type(ggml_opt_context_t); //TODO consistent naming scheme
|
||||
|
||||
GGML_API const char * ggml_opt_optimizer_name(enum ggml_opt_optimizer_type);
|
||||
|
||||
// ====== Optimization Result ======
|
||||
|
||||
GGML_API ggml_opt_result_t ggml_opt_result_init(void);
|
||||
@@ -226,12 +243,14 @@ extern "C" {
|
||||
struct ggml_tensor * outputs, // output tensor, must have shape [ne_label, ndata_batch] if labels are used
|
||||
ggml_opt_dataset_t dataset, // dataset with data and optionally also labels
|
||||
enum ggml_opt_loss_type loss_type, // loss to minimize
|
||||
enum ggml_opt_optimizer_type optimizer, // sgd or adamw
|
||||
ggml_opt_get_optimizer_params get_opt_pars, // callback to get optimizer params, userdata is pointer to epoch (of type int64_t)
|
||||
int64_t nepoch, // how many times the dataset should be iterated over
|
||||
int64_t nbatch_logical, // datapoints optimizer step, must be a multiple of ndata_batch in inputs/outputs
|
||||
float val_split, // fraction of the dataset to use for validation, must be in [0.0f, 1.0f)
|
||||
bool silent); // whether or not info prints to stderr should be suppressed
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
16
ggml/include/ggml-zdnn.h
Normal file
16
ggml/include/ggml-zdnn.h
Normal file
@@ -0,0 +1,16 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_zdnn_init(void);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_zdnn_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
@@ -241,7 +241,16 @@
|
||||
#define GGML_ROPE_TYPE_MROPE 8
|
||||
#define GGML_ROPE_TYPE_VISION 24
|
||||
|
||||
#define GGML_MROPE_SECTIONS 4
|
||||
|
||||
#define GGML_UNUSED(x) (void)(x)
|
||||
#ifdef __CUDACC__
|
||||
template<typename... Args>
|
||||
__host__ __device__ constexpr inline void ggml_unused_vars_impl(Args&&...) noexcept {}
|
||||
#define GGML_UNUSED_VARS(...) ggml_unused_vars_impl(__VA_ARGS__)
|
||||
#else
|
||||
#define GGML_UNUSED_VARS(...) do { (void)sizeof((__VA_ARGS__, 0)); } while(0)
|
||||
#endif // __CUDACC__
|
||||
|
||||
#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
|
||||
|
||||
@@ -503,6 +512,7 @@ extern "C" {
|
||||
GGML_OP_IM2COL,
|
||||
GGML_OP_IM2COL_BACK,
|
||||
GGML_OP_CONV_2D,
|
||||
GGML_OP_CONV_3D,
|
||||
GGML_OP_CONV_2D_DW,
|
||||
GGML_OP_CONV_TRANSPOSE_2D,
|
||||
GGML_OP_POOL_1D,
|
||||
@@ -540,6 +550,7 @@ extern "C" {
|
||||
GGML_OP_CROSS_ENTROPY_LOSS,
|
||||
GGML_OP_CROSS_ENTROPY_LOSS_BACK,
|
||||
GGML_OP_OPT_STEP_ADAMW,
|
||||
GGML_OP_OPT_STEP_SGD,
|
||||
|
||||
GGML_OP_GLU,
|
||||
|
||||
@@ -1660,7 +1671,7 @@ extern "C" {
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c,
|
||||
int n_dims,
|
||||
int sections[4],
|
||||
int sections[GGML_MROPE_SECTIONS],
|
||||
int mode,
|
||||
int n_ctx_orig,
|
||||
float freq_base,
|
||||
@@ -1686,6 +1697,22 @@ extern "C" {
|
||||
float beta_fast,
|
||||
float beta_slow);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_rope_multi_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c,
|
||||
int n_dims,
|
||||
int sections[GGML_MROPE_SECTIONS],
|
||||
int mode,
|
||||
int n_ctx_orig,
|
||||
float freq_base,
|
||||
float freq_scale,
|
||||
float ext_factor,
|
||||
float attn_factor,
|
||||
float beta_fast,
|
||||
float beta_slow);
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
@@ -1914,6 +1941,23 @@ extern "C" {
|
||||
int d0, // dilation dimension 0
|
||||
int d1); // dilation dimension 1
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_conv_3d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a, // kernel [KW, KH, KD, IC * OC]
|
||||
struct ggml_tensor * b, // input [W, H, D, C * N]
|
||||
int s0, // stride
|
||||
int s1,
|
||||
int s2,
|
||||
int p0, // padding
|
||||
int p1,
|
||||
int p2,
|
||||
int d0, // dilation
|
||||
int d1,
|
||||
int d2,
|
||||
int n_channels,
|
||||
int n_batch,
|
||||
int n_channels_out);
|
||||
|
||||
enum ggml_op_pool {
|
||||
GGML_OP_POOL_MAX,
|
||||
GGML_OP_POOL_AVG,
|
||||
@@ -2293,7 +2337,14 @@ extern "C" {
|
||||
struct ggml_tensor * grad,
|
||||
struct ggml_tensor * m,
|
||||
struct ggml_tensor * v,
|
||||
struct ggml_tensor * adamw_params); // parameters such a the learning rate
|
||||
struct ggml_tensor * adamw_params); // parameters such as the learning rate
|
||||
|
||||
// stochastic gradient descent step (with weight decay)
|
||||
GGML_API struct ggml_tensor * ggml_opt_step_sgd(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * grad,
|
||||
struct ggml_tensor * sgd_params); // alpha, weight decay
|
||||
|
||||
//
|
||||
// automatic differentiation
|
||||
|
||||
@@ -382,6 +382,7 @@ ggml_add_backend(RPC)
|
||||
ggml_add_backend(SYCL)
|
||||
ggml_add_backend(Vulkan)
|
||||
ggml_add_backend(WebGPU)
|
||||
ggml_add_backend(zDNN)
|
||||
ggml_add_backend(OpenCL)
|
||||
|
||||
foreach (target ggml-base ggml)
|
||||
|
||||
@@ -49,6 +49,10 @@
|
||||
#include "ggml-webgpu.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_ZDNN
|
||||
#include "ggml-zdnn.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_OPENCL
|
||||
#include "ggml-opencl.h"
|
||||
#endif
|
||||
@@ -180,6 +184,9 @@ struct ggml_backend_registry {
|
||||
#ifdef GGML_USE_WEBGPU
|
||||
register_backend(ggml_backend_webgpu_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_ZDNN
|
||||
register_backend(ggml_backend_zdnn_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_OPENCL
|
||||
register_backend(ggml_backend_opencl_reg());
|
||||
#endif
|
||||
|
||||
@@ -19,9 +19,8 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <vector>
|
||||
|
||||
#ifdef __APPLE__
|
||||
#include <sys/types.h>
|
||||
@@ -1352,15 +1351,19 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
|
||||
static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
|
||||
struct ggml_backend_sched_split * splits = sched->splits;
|
||||
|
||||
for (int i = 0; i < sched->n_splits; i++) {
|
||||
struct ggml_backend_sched_split * split = &splits[i];
|
||||
ggml_tensor * prev_ids_tensor = nullptr;
|
||||
std::vector<int32_t> ids;
|
||||
std::vector<ggml_bitset_t> used_ids;
|
||||
|
||||
for (int split_id = 0; split_id < sched->n_splits; split_id++) {
|
||||
struct ggml_backend_sched_split * split = &splits[split_id];
|
||||
int split_backend_id = split->backend_id;
|
||||
ggml_backend_t split_backend = sched->backends[split_backend_id];
|
||||
|
||||
// copy the input tensors to the split backend
|
||||
for (int j = 0; j < split->n_inputs; j++) {
|
||||
ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
|
||||
struct ggml_tensor * input = split->inputs[j];
|
||||
for (int input_id = 0; input_id < split->n_inputs; input_id++) {
|
||||
ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[input_id]);
|
||||
struct ggml_tensor * input = split->inputs[input_id];
|
||||
struct ggml_tensor * input_cpy = tensor_copy(input, split_backend_id, sched->cur_copy);
|
||||
|
||||
if (input->flags & GGML_TENSOR_FLAG_INPUT) {
|
||||
@@ -1378,16 +1381,104 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
|
||||
} else {
|
||||
ggml_backend_synchronize(split_backend);
|
||||
}
|
||||
// try async copy, but if not possible, we can still use a sync copy without synchronizing the dst backend, since we handle the synchronization here with multiple copies and events
|
||||
// TODO: add public function to facilitate this, since applications do not have direct access to the backend interface
|
||||
if (!split_backend->iface.cpy_tensor_async || !split_backend->iface.cpy_tensor_async(input_backend, split_backend, input, input_cpy)) {
|
||||
|
||||
// when offloading MoE weights, we can reduce the amount of data copied by copying only the experts that are used
|
||||
ggml_tensor * node = split->graph.nodes[0];
|
||||
if (split->graph.n_nodes > 0 &&
|
||||
ggml_backend_buffer_get_usage(input->buffer) == GGML_BACKEND_BUFFER_USAGE_WEIGHTS &&
|
||||
ggml_backend_buffer_is_host(input->buffer) && (
|
||||
(node->src[0] == input_cpy && node->op == GGML_OP_MUL_MAT_ID)
|
||||
//|| (node->src[1] == input_cpy && node->op == GGML_OP_ADD_ID) /* GGML_OP_ADD_ID weights are small and not worth splitting */
|
||||
)) {
|
||||
|
||||
const int64_t n_expert = node->op == GGML_OP_MUL_MAT_ID ? input->ne[2] : input->ne[1];
|
||||
const size_t expert_size = node->op == GGML_OP_MUL_MAT_ID ? input->nb[2] : input->nb[1];
|
||||
|
||||
ggml_backend_synchronize(input_backend);
|
||||
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
|
||||
ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
|
||||
} else {
|
||||
ggml_backend_synchronize(split_backend);
|
||||
|
||||
// get the ids
|
||||
ggml_tensor * ids_tensor = node->src[2];
|
||||
ggml_backend_t ids_backend = split_backend;
|
||||
|
||||
// if the ids tensor is also an input of the split, it may not have been copied yet to the split backend
|
||||
// in that case, we use the original ids tensor
|
||||
for (int i = input_id + 1; i < split->n_inputs; i++) {
|
||||
if (ids_tensor == tensor_copy(split->inputs[i], split_backend_id, sched->cur_copy)) {
|
||||
ids_tensor = split->inputs[i];
|
||||
ids_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[i]);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (ids_tensor != prev_ids_tensor) {
|
||||
ids.resize(ggml_nbytes(ids_tensor) / sizeof(int32_t));
|
||||
ggml_backend_tensor_get_async(ids_backend, ids_tensor, ids.data(), 0, ggml_nbytes(ids_tensor));
|
||||
ggml_backend_synchronize(ids_backend);
|
||||
|
||||
// find the used experts
|
||||
used_ids.clear();
|
||||
used_ids.resize(ggml_bitset_size(n_expert));
|
||||
for (int64_t i1 = 0; i1 < ids_tensor->ne[1]; i1++) {
|
||||
for (int64_t i0 = 0; i0 < ids_tensor->ne[0]; i0++) {
|
||||
int32_t id = ids[i1 * ids_tensor->nb[1]/sizeof(int32_t) + i0 * ids_tensor->nb[0]/sizeof(int32_t)];
|
||||
GGML_ASSERT(id >= 0 && id < n_expert);
|
||||
ggml_bitset_set(used_ids.data(), id);
|
||||
}
|
||||
}
|
||||
|
||||
prev_ids_tensor = ids_tensor;
|
||||
}
|
||||
|
||||
// group consecutive experts and copy them together
|
||||
auto copy_experts = [&](int32_t first_id, int32_t last_id) {
|
||||
const size_t expert_offset = first_id * expert_size;
|
||||
const size_t expert_size_copy = (last_id - first_id + 1) * expert_size;
|
||||
const size_t padding = std::min<size_t>(expert_size, 512);
|
||||
const size_t padding_end = last_id < n_expert - 1 ? padding : 0;
|
||||
|
||||
ggml_backend_tensor_set_async(split_backend,
|
||||
input_cpy,
|
||||
(const uint8_t *)input->data + expert_offset, expert_offset,
|
||||
// copy a bit extra at the to ensure there are no NaNs in the padding of the last expert
|
||||
// this is necessary for MMQ in the CUDA backend
|
||||
expert_size_copy + padding_end);
|
||||
};
|
||||
|
||||
int id = 0;
|
||||
while (!ggml_bitset_get(used_ids.data(), id)) {
|
||||
id++;
|
||||
}
|
||||
int32_t first_id = id;
|
||||
int32_t last_id = first_id;
|
||||
|
||||
for (++id; id < n_expert; ++id) {
|
||||
if (!ggml_bitset_get(used_ids.data(), id)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (id == last_id + 1) {
|
||||
last_id = id;
|
||||
continue;
|
||||
}
|
||||
|
||||
copy_experts(first_id, last_id);
|
||||
|
||||
first_id = id;
|
||||
last_id = id;
|
||||
}
|
||||
copy_experts(first_id, last_id);
|
||||
} else {
|
||||
// try async copy, but if not possible, we can still use a sync copy without synchronizing the dst backend, since we handle the synchronization here with multiple copies and events
|
||||
// TODO: add public function to facilitate this, since applications do not have direct access to the backend interface
|
||||
if (!split_backend->iface.cpy_tensor_async || !split_backend->iface.cpy_tensor_async(input_backend, split_backend, input, input_cpy)) {
|
||||
ggml_backend_synchronize(input_backend);
|
||||
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
|
||||
ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
|
||||
} else {
|
||||
ggml_backend_synchronize(split_backend);
|
||||
}
|
||||
ggml_backend_tensor_copy(input, input_cpy);
|
||||
}
|
||||
ggml_backend_tensor_copy(input, input_cpy);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -281,10 +281,10 @@ ggml_backend_t ggml_backend_blas_init(void) {
|
||||
ggml_backend_blas_context * ctx = new ggml_backend_blas_context;
|
||||
|
||||
ggml_backend_t backend = new ggml_backend {
|
||||
/* .guid = */ ggml_backend_blas_guid(),
|
||||
/* .interface = */ blas_backend_i,
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_blas_reg(), 0),
|
||||
/* .context = */ ctx,
|
||||
/* .guid = */ ggml_backend_blas_guid(),
|
||||
/* .iface = */ blas_backend_i,
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_blas_reg(), 0),
|
||||
/* .context = */ ctx,
|
||||
};
|
||||
|
||||
#if defined(OPENBLAS_VERSION) && defined(GGML_USE_OPENMP)
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -375,6 +375,16 @@ struct ggml_backend_cann_context {
|
||||
cann_task_queue task_queue;
|
||||
bool async_mode;
|
||||
bool support_set_rows;
|
||||
// Rope Cache
|
||||
void* rope_init_ptr = nullptr;
|
||||
void* rope_sin_ptr = nullptr;
|
||||
void* rope_cos_ptr = nullptr;
|
||||
int64_t max_prompt_length = 0;
|
||||
// Constant Pool
|
||||
void* f32_zero_cache = nullptr;
|
||||
void* f32_one_cache = nullptr;
|
||||
int64_t f32_zero_cache_element = 0;
|
||||
int64_t f32_one_cache_element = 0;
|
||||
|
||||
aclrtStream streams[GGML_CANN_MAX_STREAMS] = {nullptr}; /**< Array of streams for the device. */
|
||||
|
||||
@@ -414,6 +424,21 @@ struct ggml_backend_cann_context {
|
||||
ACL_CHECK(aclrtDestroyStream(streams[i]));
|
||||
}
|
||||
}
|
||||
if(rope_init_ptr != nullptr) {
|
||||
ACL_CHECK(aclrtFree(rope_init_ptr));
|
||||
}
|
||||
if(rope_sin_ptr != nullptr) {
|
||||
ACL_CHECK(aclrtFree(rope_sin_ptr));
|
||||
}
|
||||
if(rope_cos_ptr != nullptr) {
|
||||
ACL_CHECK(aclrtFree(rope_cos_ptr));
|
||||
}
|
||||
if(f32_zero_cache != nullptr) {
|
||||
ACL_CHECK(aclrtFree(f32_zero_cache));
|
||||
}
|
||||
if(f32_one_cache != nullptr) {
|
||||
ACL_CHECK(aclrtFree(f32_one_cache));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
|
||||
@@ -2456,8 +2456,8 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
// value of paddingW should be at most half of kernelW
|
||||
return (p0 <= (k0 / 2)) && (p1 <= (k1 / 2));
|
||||
}
|
||||
case GGML_OP_SUM:
|
||||
case GGML_OP_DUP:
|
||||
case GGML_OP_SUM:
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_CONCAT:
|
||||
case GGML_OP_REPEAT:
|
||||
@@ -2503,9 +2503,7 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
if (op->src[2]) {
|
||||
return false;
|
||||
}
|
||||
// TODO: support broadcast
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/14435
|
||||
return !op->src[1] || (op->src[1]->ne[2] == 1 && op->src[1]->ne[3] == 1);
|
||||
return true;
|
||||
case GGML_OP_FLASH_ATTN_EXT:{
|
||||
// derived from [ggml-cuda.cu]
|
||||
if(op->src[1]->type != GGML_TYPE_F16 || op->src[2]->type != GGML_TYPE_F16){
|
||||
@@ -2532,11 +2530,6 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
// DeepSeek MLA
|
||||
return false;
|
||||
}
|
||||
// TODO: support broadcast
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/14435
|
||||
if (op->src[0]->ne[3] != 1) {
|
||||
return false;
|
||||
}
|
||||
float logitSoftcap = 0.0f;
|
||||
memcpy(&logitSoftcap, (float*)op->op_params + 2, sizeof(float));
|
||||
if(logitSoftcap != 0.0f) {
|
||||
|
||||
@@ -460,7 +460,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
# NOTE: Only available from GCC 15.1.0 onwards. Any z17 machine with compile issues must first verify their GCC version.
|
||||
# binutils must also be updated to the latest for the -march=z17 flag to work. Otherwise, use -march=arch15.
|
||||
message(STATUS "z17 target")
|
||||
list(APPEND ARCH_FLAGS -march=z17)
|
||||
list(APPEND ARCH_FLAGS -march=arch15)
|
||||
else()
|
||||
message(STATUS "Unknown target")
|
||||
message(WARNING "Unknown target. If you are compiling for z14 and earlier, you might have to add -DGGML_VXE=OFF.")
|
||||
|
||||
@@ -40,18 +40,22 @@
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
|
||||
#elif defined(__aarch64__) || defined(__arm__) || defined(_M_ARM) || defined(_M_ARM64)
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#elif defined(__x86_64__) || defined(__i386__) || defined(_M_IX86) || defined(_M_X64)
|
||||
// repack.cpp
|
||||
@@ -69,7 +73,6 @@
|
||||
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
|
||||
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
|
||||
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
||||
#define ggml_vec_dot_mxfp4_q8_0_generic ggml_vec_dot_mxfp4_q8_0
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
@@ -80,12 +83,14 @@
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
|
||||
#elif defined(__loongarch64)
|
||||
// quants.c
|
||||
#define quantize_row_q8_K_generic quantize_row_q8_K
|
||||
@@ -103,12 +108,14 @@
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
|
||||
#elif defined(__riscv)
|
||||
// quants.c
|
||||
#define quantize_row_q8_K_generic quantize_row_q8_K
|
||||
@@ -133,16 +140,16 @@
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
|
||||
#elif defined(__s390x__)
|
||||
// quants.c
|
||||
#define quantize_row_q8_K_generic quantize_row_q8_K
|
||||
#define ggml_vec_dot_q5_0_q8_0_generic ggml_vec_dot_q5_0_q8_0
|
||||
#define ggml_vec_dot_q5_1_q8_1_generic ggml_vec_dot_q5_1_q8_1
|
||||
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
|
||||
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
|
||||
#define ggml_vec_dot_q2_K_q8_K_generic ggml_vec_dot_q2_K_q8_K
|
||||
@@ -164,12 +171,14 @@
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
|
||||
#elif defined(__wasm__)
|
||||
// quants.c
|
||||
#define ggml_vec_dot_q4_1_q8_1_generic ggml_vec_dot_q4_1_q8_1
|
||||
@@ -195,10 +204,12 @@
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
|
||||
#endif
|
||||
|
||||
@@ -278,6 +278,72 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_mxfp4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
assert(nrc == 1);
|
||||
UNUSED(nrc);
|
||||
UNUSED(bx);
|
||||
UNUSED(by);
|
||||
UNUSED(bs);
|
||||
assert(n % QK_MXFP4 == 0);
|
||||
static_assert(QK_MXFP4 == QK8_0, "QK_MXFP4 and QK8_0 must be the same");
|
||||
|
||||
const block_mxfp4 * GGML_RESTRICT x = vx;
|
||||
const block_q8_0 * GGML_RESTRICT y = vy;
|
||||
|
||||
const int nb = n / QK_MXFP4;
|
||||
|
||||
int ib = 0;
|
||||
float sumf = 0;
|
||||
|
||||
#if defined(__POWER9_VECTOR__)
|
||||
const vector signed char lowMask = vec_splats((signed char)0xF);
|
||||
const vector unsigned char vshift4 = vec_splats((unsigned char)4);
|
||||
vector float vsumf0 = vec_splats(0.0f);
|
||||
|
||||
vector signed char kv = vec_xl(0, (const signed char *)kvalues_mxfp4);
|
||||
|
||||
#pragma GCC unroll 8
|
||||
for (; ib < nb; ++ib) {
|
||||
__builtin_prefetch(x[ib].qs, 0, 1);
|
||||
__builtin_prefetch(y[ib].qs, 0, 1);
|
||||
|
||||
vector float vyd = vec_splats(GGML_CPU_FP16_TO_FP32(y[ib].d) *
|
||||
GGML_E8M0_TO_FP32_HALF(x[ib].e));
|
||||
|
||||
vector signed char q8y0 = vec_xl( 0, y[ib].qs);
|
||||
vector signed char q8y1 = vec_xl(16, y[ib].qs);
|
||||
|
||||
vector signed char qxs = (vector signed char)vec_xl(0, x[ib].qs);
|
||||
|
||||
vector unsigned char lo_nibbles = (vector unsigned char)vec_and(qxs, lowMask);
|
||||
vector unsigned char hi_nibbles = (vector unsigned char)vec_sr(qxs, vshift4);
|
||||
|
||||
vector signed char q4x0 = vec_perm(kv, kv, lo_nibbles);
|
||||
vector signed char q4x1 = vec_perm(kv, kv, hi_nibbles);
|
||||
|
||||
vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
|
||||
vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
|
||||
|
||||
vector signed int vsumi0 = vec_splats((int32_t)0);
|
||||
vsumi0 = vec_sum4s(qv0, vsumi0);
|
||||
vsumi0 = vec_sum4s(qv1, vsumi0);
|
||||
|
||||
vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vyd, vsumf0);
|
||||
}
|
||||
|
||||
vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
|
||||
vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
|
||||
sumf = vec_extract(vsumf0, 0);
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
ggml_vec_dot_mxfp4_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
const int qk = QK8_0;
|
||||
const int nb = n / qk;
|
||||
|
||||
@@ -23,6 +23,27 @@
|
||||
|
||||
#define UNUSED GGML_UNUSED
|
||||
|
||||
#if defined(__VXE__) || defined(__VXE2__)
|
||||
#define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
|
||||
#define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
|
||||
#define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
|
||||
#define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
|
||||
#define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
|
||||
#define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
|
||||
#define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
|
||||
#define B8(c,s ) B7(c,s, c), B7(c,s, s)
|
||||
|
||||
// precomputed tables for expanding 8bits to 8 bytes:
|
||||
static const __attribute__((aligned(16))) uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b ) << 4
|
||||
static const __attribute__((aligned(16))) uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
|
||||
|
||||
// permute mask for byteswapping
|
||||
static const uint8x16_t v_kperm = (const uint8x16_t){
|
||||
7, 6, 5, 4, 3, 2, 1, 0,
|
||||
15, 14, 13, 12, 11, 10, 9, 8
|
||||
};
|
||||
#endif
|
||||
|
||||
void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
|
||||
assert(QK8_0 == 32);
|
||||
assert(k % QK8_0 == 0);
|
||||
@@ -241,6 +262,301 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
const int qk = QK8_0;
|
||||
const int nb = n / qk;
|
||||
|
||||
assert(n % qk == 0);
|
||||
assert(qk == QK5_0);
|
||||
assert(nrc == 1);
|
||||
UNUSED(nrc);
|
||||
UNUSED(bx);
|
||||
UNUSED(by);
|
||||
UNUSED(bs);
|
||||
|
||||
const block_q5_0 * GGML_RESTRICT x = vx;
|
||||
const block_q8_0 * GGML_RESTRICT y = vy;
|
||||
|
||||
int ib = 0;
|
||||
float sumf = 0.0f;
|
||||
|
||||
#if defined(__VXE__) || defined(__VXE2__)
|
||||
float32x4_t v_sum0 = vec_splats(0.0f);
|
||||
float32x4_t v_sum1 = vec_splats(0.0f);
|
||||
|
||||
uint32_t qh0, qh1;
|
||||
uint64_t tmp0[4], tmp1[4];
|
||||
|
||||
const uint8x16_t v_m = vec_splats((uint8_t)0x0F);
|
||||
|
||||
#pragma GCC unroll 4
|
||||
for (; ib + 1 < nb; ib += 2) {
|
||||
const block_q5_0 * GGML_RESTRICT x0 = &x[ib + 0];
|
||||
const block_q5_0 * GGML_RESTRICT x1 = &x[ib + 1];
|
||||
const block_q8_0 * GGML_RESTRICT y0 = &y[ib + 0];
|
||||
const block_q8_0 * GGML_RESTRICT y1 = &y[ib + 1];
|
||||
|
||||
memcpy(&qh0, x0->qh, sizeof(qh0));
|
||||
memcpy(&qh1, x1->qh, sizeof(qh1));
|
||||
|
||||
tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
|
||||
tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
|
||||
tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
|
||||
tmp0[3] = table_b2b_1[(qh0 >> 24) ];
|
||||
|
||||
tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
|
||||
tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
|
||||
tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
|
||||
tmp1[3] = table_b2b_1[(qh1 >> 24) ];
|
||||
|
||||
int8x16_t v_qh0l = vec_xl(0, (const int8_t *)(tmp0 + 0));
|
||||
int8x16_t v_qh0h = vec_xl(0, (const int8_t *)(tmp0 + 2));
|
||||
int8x16_t v_qh1l = vec_xl(0, (const int8_t *)(tmp1 + 0));
|
||||
int8x16_t v_qh1h = vec_xl(0, (const int8_t *)(tmp1 + 2));
|
||||
|
||||
// required for fixing the byteorder
|
||||
v_qh0l = vec_perm(v_qh0l, v_qh0l, v_kperm);
|
||||
v_qh0h = vec_perm(v_qh0h, v_qh0h, v_kperm);
|
||||
v_qh1l = vec_perm(v_qh1l, v_qh1l, v_kperm);
|
||||
v_qh1h = vec_perm(v_qh1h, v_qh1h, v_kperm);
|
||||
|
||||
const uint8x16_t v_x0 = vec_xl(0, (const uint8_t *)x0->qs);
|
||||
const uint8x16_t v_x1 = vec_xl(0, (const uint8_t *)x1->qs);
|
||||
|
||||
int8x16_t v_x0l = (int8x16_t)vec_and(v_x0, v_m);
|
||||
int8x16_t v_x0h = (int8x16_t)vec_sr(v_x0, 4);
|
||||
int8x16_t v_x1l = (int8x16_t)vec_and(v_x1, v_m);
|
||||
int8x16_t v_x1h = (int8x16_t)vec_sr(v_x1, 4);
|
||||
|
||||
const int8x16_t v_x0lf = vec_sub(v_x0l, v_qh0l);
|
||||
const int8x16_t v_x0hf = vec_sub(v_x0h, v_qh0h);
|
||||
const int8x16_t v_x1lf = vec_sub(v_x1l, v_qh1l);
|
||||
const int8x16_t v_x1hf = vec_sub(v_x1h, v_qh1h);
|
||||
|
||||
const int8x16_t v_y0l = vec_xl(0, (const int8_t *)y0->qs);
|
||||
const int8x16_t v_y0h = vec_xl(QK8_0/2, (const int8_t *)y0->qs);
|
||||
const int8x16_t v_y1l = vec_xl(0, (const int8_t *)y1->qs);
|
||||
const int8x16_t v_y1h = vec_xl(QK8_0/2, (const int8_t *)y1->qs);
|
||||
|
||||
const int32x4_t v_xy0 = ggml_vec_dot(ggml_vec_dot(vec_splats(0), v_x0lf, v_y0l), v_x0hf, v_y0h);
|
||||
const int32x4_t v_xy1 = ggml_vec_dot(ggml_vec_dot(vec_splats(0), v_x1lf, v_y1l), v_x1hf, v_y1h);
|
||||
|
||||
const float32x4_t v_xy0f = vec_float(v_xy0);
|
||||
const float32x4_t v_xy1f = vec_float(v_xy1);
|
||||
|
||||
const float32x4_t v_d0 = vec_splats(GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d));
|
||||
const float32x4_t v_d1 = vec_splats(GGML_CPU_FP16_TO_FP32(x1->d) * GGML_CPU_FP16_TO_FP32(y1->d));
|
||||
|
||||
v_sum0 = vec_madd(v_xy0f, v_d0, v_sum0);
|
||||
v_sum1 = vec_madd(v_xy1f, v_d1, v_sum1);
|
||||
}
|
||||
|
||||
sumf += vec_hsum(v_sum0) + vec_hsum(v_sum1);
|
||||
|
||||
#pragma GCC unroll 4
|
||||
for (; ib < nb; ++ib) {
|
||||
const block_q5_0 * GGML_RESTRICT x0 = &x[ib];
|
||||
const block_q8_0 * GGML_RESTRICT y0 = &y[ib];
|
||||
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x0->qh, sizeof(qh));
|
||||
|
||||
uint64_t tmp[4];
|
||||
tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
|
||||
tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
|
||||
tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
|
||||
tmp[3] = table_b2b_1[(qh >> 24) ];
|
||||
|
||||
int8x16_t v_qhl = vec_xl(0, (const int8_t *)(tmp + 0));
|
||||
int8x16_t v_qhh = vec_xl(0, (const int8_t *)(tmp + 2));
|
||||
|
||||
// required for fixing the byteorder
|
||||
v_qhl = vec_perm(v_qhl, v_qhl, v_kperm);
|
||||
v_qhh = vec_perm(v_qhh, v_qhh, v_kperm);
|
||||
|
||||
const uint8x16_t v_x = vec_xl(0, (const uint8_t *)x0->qs);
|
||||
int8x16_t v_xl = (int8x16_t)vec_and(v_x, v_m);
|
||||
int8x16_t v_xh = (int8x16_t)vec_sr(v_x, 4);
|
||||
|
||||
const int8x16_t v_xlf = vec_sub(v_xl, v_qhl);
|
||||
const int8x16_t v_xhf = vec_sub(v_xh, v_qhh);
|
||||
|
||||
const int8x16_t v_yl = vec_xl(0, (const int8_t *)y0->qs);
|
||||
const int8x16_t v_yh = vec_xl(QK8_0/2, (const int8_t *)y0->qs);
|
||||
|
||||
const int32x4_t v_xy = ggml_vec_dot(ggml_vec_dot(vec_splats(0), v_xlf, v_yl), v_xhf, v_yh);
|
||||
const float32x4_t v_xyf = vec_float(v_xy);
|
||||
|
||||
const float32x4_t v_d = vec_splats(GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d));
|
||||
const float32x4_t v_acc = vec_madd(v_xyf, v_d, vec_splats(0.0f));
|
||||
|
||||
sumf += vec_hsum(v_acc);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
ggml_vec_dot_q5_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
const int qk = QK8_1;
|
||||
const int nb = n / qk;
|
||||
|
||||
assert(n % qk == 0);
|
||||
assert(qk == QK5_1);
|
||||
assert(nrc == 1);
|
||||
UNUSED(nrc);
|
||||
UNUSED(bx);
|
||||
UNUSED(by);
|
||||
UNUSED(bs);
|
||||
|
||||
const block_q5_1 * GGML_RESTRICT x = vx;
|
||||
const block_q8_1 * GGML_RESTRICT y = vy;
|
||||
|
||||
int ib = 0;
|
||||
float sumf = 0.0f;
|
||||
|
||||
#if defined(__VXE__) || defined(__VXE2__)
|
||||
float32x4_t v_sum0 = vec_splats(0.0f);
|
||||
float32x4_t v_sum1 = vec_splats(0.0f);
|
||||
|
||||
float summs0 = 0.0f;
|
||||
float summs1 = 0.0f;
|
||||
|
||||
uint32_t qh0;
|
||||
uint32_t qh1;
|
||||
|
||||
uint64_t tmp0[4];
|
||||
uint64_t tmp1[4];
|
||||
|
||||
const uint8x16_t v_m = vec_splats((uint8_t)0x0F);
|
||||
|
||||
#pragma GCC unroll 4
|
||||
for (; ib + 1 < nb; ib += 2) {
|
||||
const block_q5_1 * GGML_RESTRICT x0 = &x[ib + 0];
|
||||
const block_q5_1 * GGML_RESTRICT x1 = &x[ib + 1];
|
||||
const block_q8_1 * GGML_RESTRICT y0 = &y[ib + 0];
|
||||
const block_q8_1 * GGML_RESTRICT y1 = &y[ib + 1];
|
||||
|
||||
summs0 += GGML_CPU_FP16_TO_FP32(x0->m) * GGML_CPU_FP16_TO_FP32(y0->s);
|
||||
summs1 += GGML_CPU_FP16_TO_FP32(x1->m) * GGML_CPU_FP16_TO_FP32(y1->s);
|
||||
|
||||
memcpy(&qh0, x0->qh, sizeof(qh0));
|
||||
memcpy(&qh1, x1->qh, sizeof(qh1));
|
||||
|
||||
tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
|
||||
tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
|
||||
tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
|
||||
tmp0[3] = table_b2b_0[(qh0 >> 24) ];
|
||||
|
||||
tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
|
||||
tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
|
||||
tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
|
||||
tmp1[3] = table_b2b_0[(qh1 >> 24) ];
|
||||
|
||||
int8x16_t v_qh0l = vec_xl(0, (const int8_t *)(tmp0 + 0));
|
||||
int8x16_t v_qh0h = vec_xl(0, (const int8_t *)(tmp0 + 2));
|
||||
int8x16_t v_qh1l = vec_xl(0, (const int8_t *)(tmp1 + 0));
|
||||
int8x16_t v_qh1h = vec_xl(0, (const int8_t *)(tmp1 + 2));
|
||||
|
||||
// required for fixing the byteorder
|
||||
v_qh0l = vec_perm(v_qh0l, v_qh0l, v_kperm);
|
||||
v_qh0h = vec_perm(v_qh0h, v_qh0h, v_kperm);
|
||||
v_qh1l = vec_perm(v_qh1l, v_qh1l, v_kperm);
|
||||
v_qh1h = vec_perm(v_qh1h, v_qh1h, v_kperm);
|
||||
|
||||
const uint8x16_t v_x0 = vec_xl(0, x0->qs);
|
||||
const uint8x16_t v_x1 = vec_xl(0, x1->qs);
|
||||
|
||||
const int8x16_t v_x0l = (int8x16_t)vec_and(v_x0, v_m);
|
||||
const int8x16_t v_x0h = (int8x16_t)vec_sr(v_x0, 4);
|
||||
const int8x16_t v_x1l = (int8x16_t)vec_and(v_x1, v_m);
|
||||
const int8x16_t v_x1h = (int8x16_t)vec_sr(v_x1, 4);
|
||||
|
||||
const int8x16_t v_x0lf = vec_or(v_x0l, v_qh0l);
|
||||
const int8x16_t v_x0hf = vec_or(v_x0h, v_qh0h);
|
||||
const int8x16_t v_x1lf = vec_or(v_x1l, v_qh1l);
|
||||
const int8x16_t v_x1hf = vec_or(v_x1h, v_qh1h);
|
||||
|
||||
const int8x16_t v_y0l = vec_xl(0 , y0->qs);
|
||||
const int8x16_t v_y0h = vec_xl(QK8_1/2, y0->qs);
|
||||
const int8x16_t v_y1l = vec_xl(0 , y1->qs);
|
||||
const int8x16_t v_y1h = vec_xl(QK8_1/2, y1->qs);
|
||||
|
||||
const int32x4_t v_xy0 = ggml_vec_dot(ggml_vec_dot(vec_splats(0), v_x0lf, v_y0l), v_x0hf, v_y0h);
|
||||
const int32x4_t v_xy1 = ggml_vec_dot(ggml_vec_dot(vec_splats(0), v_x1lf, v_y1l), v_x1hf, v_y1h);
|
||||
|
||||
const float32x4_t v_xy0f = vec_float(v_xy0);
|
||||
const float32x4_t v_xy1f = vec_float(v_xy1);
|
||||
|
||||
const float32x4_t v_d0 = vec_splats(GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d));
|
||||
const float32x4_t v_d1 = vec_splats(GGML_CPU_FP16_TO_FP32(x1->d) * GGML_CPU_FP16_TO_FP32(y1->d));
|
||||
|
||||
v_sum0 = vec_madd(v_xy0f, v_d0, v_sum0);
|
||||
v_sum1 = vec_madd(v_xy1f, v_d1, v_sum1);
|
||||
}
|
||||
|
||||
sumf += vec_hsum(v_sum0) + vec_hsum(v_sum1) + summs0 + summs1;
|
||||
|
||||
#pragma GCC unroll 4
|
||||
for (; ib < nb; ++ib) {
|
||||
const block_q5_1 * GGML_RESTRICT x0 = &x[ib];
|
||||
const block_q8_1 * GGML_RESTRICT y0 = &y[ib];
|
||||
|
||||
float summs = GGML_CPU_FP16_TO_FP32(x0->m) * GGML_CPU_FP16_TO_FP32(y0->s);
|
||||
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x0->qh, sizeof(qh));
|
||||
|
||||
uint64_t tmp[4];
|
||||
tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
|
||||
tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
|
||||
tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
|
||||
tmp[3] = table_b2b_0[(qh >> 24) ];
|
||||
|
||||
int8x16_t v_qhl = vec_xl(0, (const int8_t *)(tmp + 0));
|
||||
int8x16_t v_qhh = vec_xl(0, (const int8_t *)(tmp + 2));
|
||||
|
||||
// required for fixing the byteorder
|
||||
v_qhl = vec_perm(v_qhl, v_qhl, v_kperm);
|
||||
v_qhh = vec_perm(v_qhh, v_qhh, v_kperm);
|
||||
|
||||
const uint8x16_t v_x = vec_xl(0, x0->qs);
|
||||
const int8x16_t v_xl = (int8x16_t)vec_and(v_x, v_m);
|
||||
const int8x16_t v_xh = (int8x16_t)vec_sr(v_x, 4);
|
||||
|
||||
const int8x16_t v_xlf = vec_or(v_xl, v_qhl);
|
||||
const int8x16_t v_xhf = vec_or(v_xh, v_qhh);
|
||||
|
||||
const int8x16_t v_yl = vec_xl(0 , y0->qs);
|
||||
const int8x16_t v_yh = vec_xl(QK8_1/2, y0->qs);
|
||||
|
||||
const int32x4_t v_xy = ggml_vec_dot(ggml_vec_dot(vec_splats(0), v_xlf, v_yl), v_xhf, v_yh);
|
||||
const float32x4_t v_xyf = vec_float(v_xy);
|
||||
|
||||
const float32x4_t v_d = vec_splats(GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d));
|
||||
const float32x4_t v_acc = vec_madd(v_xyf, v_d, v_acc);
|
||||
|
||||
sumf += vec_hsum(v_acc) + summs;
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
ggml_vec_dot_q5_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
const int qk = QK8_0;
|
||||
const int nb = n / qk;
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -486,6 +486,14 @@ inline static int16x8_t vec_padd_s16(int16x8_t a, int16x8_t b) {
|
||||
return v_abo + v_abe;
|
||||
}
|
||||
|
||||
/**
|
||||
* @see https://github.com/ggml-org/llama.cpp/pull/14037
|
||||
*/
|
||||
inline float vec_hsum(float32x4_t v) {
|
||||
float32x4_t v_temp = v + vec_reve(v);
|
||||
return v_temp[0] + v_temp[1];
|
||||
}
|
||||
|
||||
inline static int32x4_t ggml_vec_dot(int32x4_t acc, int8x16_t a, int8x16_t b) {
|
||||
const int16x8_t p = vec_mule(a, b) + vec_mulo(a, b);
|
||||
return acc + (vec_unpackh(p) + vec_unpackl(p));
|
||||
|
||||
@@ -1880,6 +1880,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
{
|
||||
ggml_compute_forward_conv_2d(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_CONV_3D:
|
||||
{
|
||||
ggml_compute_forward_conv_3d(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
{
|
||||
ggml_compute_forward_conv_2d_dw(params, tensor);
|
||||
@@ -2022,6 +2026,11 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
ggml_compute_forward_opt_step_adamw(params, tensor);
|
||||
}
|
||||
break;
|
||||
case GGML_OP_OPT_STEP_SGD:
|
||||
{
|
||||
ggml_compute_forward_opt_step_sgd(params, tensor);
|
||||
}
|
||||
break;
|
||||
case GGML_OP_NONE:
|
||||
{
|
||||
// nop
|
||||
@@ -2247,6 +2256,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_IM2COL_BACK:
|
||||
case GGML_OP_CONV_2D:
|
||||
case GGML_OP_CONV_3D:
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
case GGML_OP_CONV_TRANSPOSE_1D:
|
||||
case GGML_OP_CONV_TRANSPOSE_2D:
|
||||
@@ -2325,6 +2335,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS:
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
|
||||
case GGML_OP_OPT_STEP_ADAMW:
|
||||
case GGML_OP_OPT_STEP_SGD:
|
||||
{
|
||||
n_tasks = n_threads;
|
||||
} break;
|
||||
@@ -2767,6 +2778,7 @@ struct ggml_cplan ggml_graph_plan(
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_CONV_2D:
|
||||
case GGML_OP_CONV_3D:
|
||||
{
|
||||
cur = GGML_IM2COL_WORK_SIZE;
|
||||
} break;
|
||||
|
||||
@@ -214,10 +214,10 @@ ggml_backend_t ggml_backend_cpu_init(void) {
|
||||
ctx->abort_callback_data = NULL;
|
||||
|
||||
ggml_backend_t cpu_backend = new ggml_backend {
|
||||
/* .guid = */ ggml_backend_cpu_guid(),
|
||||
/* .interface = */ ggml_backend_cpu_i,
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
|
||||
/* .context = */ ctx,
|
||||
/* .guid = */ ggml_backend_cpu_guid(),
|
||||
/* .iface = */ ggml_backend_cpu_i,
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
|
||||
/* .context = */ ctx,
|
||||
};
|
||||
|
||||
if (cpu_backend == NULL) {
|
||||
|
||||
@@ -259,7 +259,10 @@ class tensor_traits : public ggml::cpu::tensor_traits {
|
||||
const int64_t m_start = 0;
|
||||
|
||||
const int64_t n_step = static_cast<int64_t>(kernel->get_n_step());
|
||||
const int64_t num_threads = KAI_MIN(n / n_step, nth);
|
||||
int64_t num_threads = KAI_MIN(n / n_step, nth);
|
||||
if (num_threads <= 0) {
|
||||
num_threads = 1;
|
||||
}
|
||||
|
||||
if (ith < num_threads) {
|
||||
const int64_t num_n_per_thread0 = round_down(n / num_threads, n_step);
|
||||
@@ -309,7 +312,8 @@ class tensor_traits : public ggml::cpu::tensor_traits {
|
||||
GGML_ASSERT(kernel);
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
const int nth_raw = params->nth;
|
||||
const int nth = nth_raw > 0 ? nth_raw : 1;
|
||||
|
||||
const size_t k = ne00;
|
||||
const size_t m = ne11;
|
||||
@@ -327,9 +331,12 @@ class tensor_traits : public ggml::cpu::tensor_traits {
|
||||
const size_t num_n_per_thread = kai_roundup(kai_roundup(n, nth) / nth, n_step);
|
||||
const size_t n_start = ith * num_n_per_thread;
|
||||
|
||||
size_t n_to_process = num_n_per_thread;
|
||||
if ((n_start + n_to_process) > n) {
|
||||
n_to_process = n - n_start;
|
||||
size_t n_to_process = 0;
|
||||
if (n_start < n) {
|
||||
n_to_process = num_n_per_thread;
|
||||
if ((n_start + n_to_process) > n) {
|
||||
n_to_process = n - n_start;
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate number of columns to be processed per thread
|
||||
@@ -361,8 +368,10 @@ class tensor_traits : public ggml::cpu::tensor_traits {
|
||||
const void* lhs_ptr = (const void*)((const char *)lhs_packed + lhs_packed_offset);
|
||||
float *dst_ptr = reinterpret_cast<float *>(static_cast<uint8_t *>(dst->data) + dst_offset);
|
||||
|
||||
variant_call<void>(kernel->run_kernel, m, n_to_process, k, QK4_0, lhs_ptr, rhs_ptr, dst_ptr, dst_stride,
|
||||
sizeof(float), -FLT_MAX, FLT_MAX);
|
||||
if (n_to_process > 0) {
|
||||
variant_call<void>(kernel->run_kernel, m, n_to_process, k, QK4_0, lhs_ptr, rhs_ptr, dst_ptr, dst_stride,
|
||||
sizeof(float), -FLT_MAX, FLT_MAX);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -7207,6 +7207,148 @@ void ggml_compute_forward_conv_2d(
|
||||
ggml_compute_forward_conv_2d_impl(params, src0, src1, dst, src0->type);
|
||||
}
|
||||
|
||||
// ggml_compute_forward_conv_3d
|
||||
|
||||
static void ggml_compute_forward_conv_3d_impl(const ggml_compute_params * params,
|
||||
const ggml_tensor * kernel,
|
||||
const ggml_tensor * src,
|
||||
ggml_tensor * dst,
|
||||
ggml_type kernel_type) {
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(kernel));
|
||||
GGML_ASSERT(kernel_type == GGML_TYPE_F16 || kernel_type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(kernel->type == kernel_type);
|
||||
|
||||
const ggml_type_traits * traits = ggml_get_type_traits(kernel_type);
|
||||
|
||||
const int32_t s0 = dst->op_params[0];
|
||||
const int32_t s1 = dst->op_params[1];
|
||||
const int32_t s2 = dst->op_params[2];
|
||||
const int32_t p0 = dst->op_params[3];
|
||||
const int32_t p1 = dst->op_params[4];
|
||||
const int32_t p2 = dst->op_params[5];
|
||||
const int32_t d0 = dst->op_params[6];
|
||||
const int32_t d1 = dst->op_params[7];
|
||||
const int32_t d2 = dst->op_params[8];
|
||||
const int32_t c = dst->op_params[9];
|
||||
const int32_t n = dst->op_params[10];
|
||||
const int32_t oc = dst->op_params[11];
|
||||
|
||||
const int64_t src_w = src->ne[0];
|
||||
const int64_t src_h = src->ne[1];
|
||||
const int64_t src_d = src->ne[2];
|
||||
const int64_t knl_w = kernel->ne[0];
|
||||
const int64_t knl_h = kernel->ne[1];
|
||||
const int64_t knl_d = kernel->ne[2];
|
||||
const int64_t dst_w = dst->ne[0];
|
||||
const int64_t dst_h = dst->ne[1];
|
||||
const int64_t dst_d = dst->ne[2];
|
||||
|
||||
const float * src_data = (float *) src->data;
|
||||
void * knl_data = kernel->data;
|
||||
float * dst_data = (float *) dst->data;
|
||||
|
||||
const int64_t knl_n_per_channel = knl_w * knl_h * knl_d;
|
||||
const int64_t knl_n_total = knl_n_per_channel * c;
|
||||
const int64_t patch_total = n * dst_w * dst_h * dst_d;
|
||||
|
||||
const int64_t space_per_patch = knl_n_total * traits->type_size + oc * sizeof(float);
|
||||
const int64_t batch_size = params->wsize / space_per_patch;
|
||||
const int64_t patches_per_batch = batch_size > 8 ? (batch_size / 8) * 8 : batch_size;
|
||||
const int64_t batch_n = (patch_total + patches_per_batch - 1) / patches_per_batch;
|
||||
|
||||
GGML_ASSERT(patches_per_batch > 0 && batch_size >= 1);
|
||||
|
||||
void * tmp = params->wdata;
|
||||
|
||||
for (int64_t batch_i = 0; batch_i < batch_n; ++batch_i) {
|
||||
const int64_t patch_start_batch = batch_i * patches_per_batch;
|
||||
const int64_t patch_end_batch = std::min(patch_start_batch + patches_per_batch, patch_total);
|
||||
const int64_t patch_n_in_batch = patch_end_batch - patch_start_batch;
|
||||
|
||||
const int64_t patch_per_thread = (patch_n_in_batch + params->nth - 1) / params->nth;
|
||||
const int64_t patch_start = patch_start_batch + params->ith * patch_per_thread;
|
||||
const int64_t patch_end = std::min(patch_start + patch_per_thread, patch_end_batch);
|
||||
|
||||
for (int64_t p = patch_start; p < patch_end; ++p) {
|
||||
const int64_t p_in_batch = p % (dst_w * dst_h * dst_d);
|
||||
const int64_t p_in_depth = p_in_batch % (dst_w * dst_h);
|
||||
const int64_t batch_idx = p / (dst_w * dst_h * dst_d);
|
||||
const int64_t dst_z = p_in_batch / (dst_w * dst_h);
|
||||
const int64_t dst_y = p_in_depth / dst_w;
|
||||
const int64_t dst_x = p_in_depth % dst_w;
|
||||
|
||||
char * dst_row = (char *) tmp + (p % patches_per_batch) * knl_n_total * traits->type_size;
|
||||
|
||||
for (int64_t ic = 0; ic < c; ++ic) {
|
||||
for (int64_t kz = 0; kz < knl_d; ++kz) {
|
||||
for (int64_t ky = 0; ky < knl_h; ++ky) {
|
||||
for (int64_t kx = 0; kx < knl_w; ++kx) {
|
||||
const int64_t sz = dst_z * s2 + kz * d2 - p2;
|
||||
const int64_t sy = dst_y * s1 + ky * d1 - p1;
|
||||
const int64_t sx = dst_x * s0 + kx * d0 - p0;
|
||||
|
||||
int64_t dst_idx = ic * knl_n_per_channel + kz * (knl_h * knl_w) + ky * knl_w + kx;
|
||||
|
||||
float src_val;
|
||||
if (sz < 0 || sz >= src_d || sy < 0 || sy >= src_h || sx < 0 || sx >= src_w) {
|
||||
src_val = 0.0f;
|
||||
} else {
|
||||
const int64_t cn_idx = batch_idx * c + ic;
|
||||
const float * src_ptr = (const float *)((const char *)src_data + sx*src->nb[0] + sy*src->nb[1] + sz*src->nb[2] + cn_idx*src->nb[3]);
|
||||
src_val = *src_ptr;
|
||||
}
|
||||
|
||||
char * element_ptr = dst_row + dst_idx * traits->type_size;
|
||||
if (kernel_type == GGML_TYPE_F32) {
|
||||
*(float *)element_ptr = src_val;
|
||||
} else if (kernel_type == GGML_TYPE_F16) {
|
||||
*(ggml_fp16_t *)element_ptr = GGML_CPU_FP32_TO_FP16(src_val);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ggml_barrier(params->threadpool);
|
||||
|
||||
float * gemm_output = (float *) ((char *) tmp + patches_per_batch * knl_n_total * traits->type_size);
|
||||
ggml_call_mul_mat(kernel_type, params, patch_n_in_batch, oc, knl_n_total, tmp, knl_data, gemm_output);
|
||||
|
||||
ggml_barrier(params->threadpool);
|
||||
|
||||
const int64_t permute_per_thread = (patch_n_in_batch + params->nth - 1) / params->nth;
|
||||
const int64_t permute_start = params->ith * permute_per_thread;
|
||||
const int64_t permute_end = std::min(permute_start + permute_per_thread, patch_n_in_batch);
|
||||
|
||||
for (int64_t i = permute_start; i < permute_end; ++i) {
|
||||
const int64_t p = patch_start_batch + i;
|
||||
const int64_t p_in_batch = p % (dst_w * dst_h * dst_d);
|
||||
const int64_t p_in_depth = p_in_batch % (dst_w * dst_h);
|
||||
const int64_t batch_idx = p / (dst_w * dst_h * dst_d);
|
||||
const int64_t dst_z = p_in_batch / (dst_w * dst_h);
|
||||
const int64_t dst_y = p_in_depth / dst_w;
|
||||
const int64_t dst_x = p_in_depth % dst_w;
|
||||
|
||||
for (int64_t ioc = 0; ioc < oc; ++ioc) {
|
||||
const float value = gemm_output[i * oc + ioc];
|
||||
const int64_t ocn_idx = batch_idx * oc + ioc;
|
||||
float * dst_ptr = (float *)((char *)dst_data + dst_x*dst->nb[0] + dst_y*dst->nb[1] + dst_z*dst->nb[2] + ocn_idx*dst->nb[3]);
|
||||
*dst_ptr = value;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_compute_forward_conv_3d(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
ggml_compute_forward_conv_3d_impl(params, src0, src1, dst, src0->type);
|
||||
}
|
||||
|
||||
// ggml_compute_forward_conv_transpose_2d
|
||||
|
||||
void ggml_compute_forward_conv_transpose_2d(
|
||||
@@ -10330,6 +10472,7 @@ static void ggml_compute_forward_opt_step_adamw_f32(
|
||||
const int ir1 = MIN(ir0 + dr, nr);
|
||||
|
||||
const float * adamw_params_ptr = ggml_get_data_f32(adamw_params);
|
||||
|
||||
const float alpha = adamw_params_ptr[0];
|
||||
const float beta1 = adamw_params_ptr[1];
|
||||
const float beta2 = adamw_params_ptr[2];
|
||||
@@ -10337,7 +10480,7 @@ static void ggml_compute_forward_opt_step_adamw_f32(
|
||||
const float wd = adamw_params_ptr[4];
|
||||
const float beta1h = adamw_params_ptr[5];
|
||||
const float beta2h = adamw_params_ptr[6];
|
||||
|
||||
const float keep = 1.f - alpha * wd;
|
||||
for (int ir = ir0; ir < ir1; ++ir) {
|
||||
const int64_t i03 = ir/(ne02*ne01);
|
||||
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
|
||||
@@ -10360,7 +10503,7 @@ static void ggml_compute_forward_opt_step_adamw_f32(
|
||||
// The weight decay is applied independently of the Adam momenta m and v.
|
||||
// This is NOT equivalent to l2 regularization that adds w[i00]*w[i00] to the loss.
|
||||
// See: https://arxiv.org/pdf/1711.05101v3.pdf
|
||||
w[i00] = w[i00]*(1.0f - alpha*wd) - alpha*mh/vh;
|
||||
w[i00] = w[i00] * keep - alpha * mh / vh;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -10382,3 +10525,63 @@ void ggml_compute_forward_opt_step_adamw(
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_opt_step_sgd_f32(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src0_grad = dst->src[1];
|
||||
const ggml_tensor * sgd_params = dst->src[2];
|
||||
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
|
||||
GGML_ASSERT(ggml_nelements(sgd_params) == 2);
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int nr = ggml_nrows(src0);
|
||||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS
|
||||
GGML_ASSERT(nb00 == sizeof(float));
|
||||
|
||||
// rows per thread
|
||||
const int dr = (nr + nth - 1) / nth;
|
||||
|
||||
// row range for this thread
|
||||
const int ir0 = dr * ith;
|
||||
const int ir1 = MIN(ir0 + dr, nr);
|
||||
|
||||
// using adamw param subset we care about - alpha, wd - could have a separate struct
|
||||
const float * sgd_params_ptr = ggml_get_data_f32(sgd_params);
|
||||
const float alpha = sgd_params_ptr[0];
|
||||
const float keep = 1.f - alpha * sgd_params_ptr[1];
|
||||
|
||||
for (int ir = ir0; ir < ir1; ++ir) {
|
||||
const int64_t i03 = ir / (ne02 * ne01);
|
||||
const int64_t i02 = (ir - i03 * ne02 * ne01) / ne01;
|
||||
const int64_t i01 = (ir - i03 * ne02 * ne01 - i02 * ne01);
|
||||
|
||||
const size_t offset = i03 * nb03 + i02 * nb02 + i01 * nb01;
|
||||
|
||||
float * w = (float *) ((char *) src0->data + offset); // weight
|
||||
const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad
|
||||
|
||||
for (int i00 = 0; i00 < ne00; ++i00) {
|
||||
w[i00] = w[i00] * keep - alpha * g[i00];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_compute_forward_opt_step_sgd(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
ggml_compute_forward_opt_step_sgd_f32(params, dst);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
{
|
||||
GGML_ABORT("fatal error - sgd is F32 only");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user