Compare commits

...

269 Commits
b6228 ... b6497

Author SHA1 Message Date
David Ribeiro Alves
cd08fc3ecc common : Fix corrupted memory error on json grammar initialization (#16038)
Initalizing RESERVED_NAME in is_reserved_name() is not thread
safe and leads to corrupted memory when used from multiple threads
as can be seen in the asan trace below. This fixes the initialization
to make it thread-safe.

    #0 0x000100abd018 in std::__1::pair<std::__1::__hash_iterator<std::__1::__hash_node<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, void*>*>, bool> std::__1::__hash_table<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, std::__1::hash<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>>, std::__1::equal_to<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>>, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>>>::__emplace_unique_key_args<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&) __hash_table:1565
    #1 0x000100ab0320 in SchemaConverter::visit(nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&) json-schema-to-grammar.cpp:802
    #2 0x000100aafc48 in std::__1::__function::__func<build_grammar(std::__1::function<void (common_grammar_builder const&)> const&, common_grammar_options const&)::$_2, std::__1::allocator<build_grammar(std::__1::function<void (common_grammar_builder const&)> const&, common_grammar_options const&)::$_2>, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> (std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&, nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&)>::operator()(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&, nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&) function.h:319
    #3 0x000100a2c938 in std::__1::__function::__func<common_chat_params_init_llama_3_x(minja::chat_template const&, templates_params const&, bool)::$_0::operator()(common_grammar_builder const&) const::'lambda'(nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&), std::__1::allocator<common_chat_params_init_llama_3_x(minja::chat_template const&, templates_params const&, bool)::$_0::operator()(common_grammar_builder const&) const::'lambda'(nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&)>, void (nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&)>::operator()(nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&) function.h:319
    #4 0x000100a139f8 in foreach_function(nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&, std::__1::function<void (nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&)> const&) chat.cpp:762
    #5 0x000100a2a7f4 in std::__1::__function::__func<common_chat_params_init_llama_3_x(minja::chat_template const&, templates_params const&, bool)::$_0, std::__1::allocator<common_chat_params_init_llama_3_x(minja::chat_template const&, templates_params const&, bool)::$_0>, void (common_grammar_builder const&)>::operator()(common_grammar_builder const&) function.h:319
    #6 0x000100aa98f4 in build_grammar(std::__1::function<void (common_grammar_builder const&)> const&, common_grammar_options const&) json-schema-to-grammar.cpp:982
    #7 0x0001009c9314 in common_chat_params_init_llama_3_x(minja::chat_template const&, templates_params const&, bool) chat.cpp:1110
    #8 0x0001009b8afc in common_chat_templates_apply_jinja(common_chat_templates const*, common_chat_templates_inputs const&) chat.cpp:1992
    #9 0x0001009b533c in common_chat_templates_apply(common_chat_templates const*, common_chat_templates_inputs const&) chat.cpp:2074
    #10 0x000100810120 in llamacpp_apply_chat_template+0x724 (predict_oai-98384e17fb94e863:arm64+0x100090120)
    ...

==45482==Register values:
 x[0] = 0x00006020004147f8   x[1] = 0x00006080000013c8   x[2] = 0x0000000000000000   x[3] = 0x0000604006289738
 x[4] = 0x0000000000000002   x[5] = 0x0000000000000001   x[6] = 0x04034000004b4000   x[7] = 0x0000000000000001
 x[8] = 0xbebebebebebebebe   x[9] = 0x17d7d7d7d7d7d7d7  x[10] = 0x00000c04000828ff  x[11] = 0x0000000000000001
x[12] = 0x000000002018d383  x[13] = 0x0000000000000000  x[14] = 0xfa0000000000fafa  x[15] = 0x000010700001ffff
x[16] = 0x000000019dc012c0  x[17] = 0x00000001021284f8  x[18] = 0x0000000000000000  x[19] = 0x00000001700acdc0
x[20] = 0x0000000000000002  x[21] = 0x000000002018d384  x[22] = 0x16dd16fd2e731151  x[23] = 0x0000007000020000
x[24] = 0x0000000100c69c08  x[25] = 0x0000000100c69c20  x[26] = 0x00006080000013c7  x[27] = 0x0000000100c69c00
x[28] = 0x00000001700acd60     fp = 0x00000001700aceb0     lr = 0x0000000100abce30     sp = 0x00000001700acd60
AddressSanitizer can not provide additional info.
SUMMARY: AddressSanitizer: SEGV __hash_table:1565 in std::__1::pair<std::__1::__hash_iterator<std::__1::__hash_node<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, void*>*>, bool> std::__1::__hash_table<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, std::__1::hash<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>>, std::__1::equal_to<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>>, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>>>::__emplace_unique_key_args<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&)
Thread T5 created by T0 here:
    #0 0x0001020b99d4 in pthread_create+0x5c (libclang_rt.asan_osx_dynamic.dylib:arm64e+0x359d4)
    #1 0x000100873910 in std::sys::pal::unix::thread::Thread::new::h77254fdd87a28e05+0x118 (predict_oai-98384e17fb94e863:arm64+0x1000f3910)
    #2 0x0001007c7a1c in test::run_test::haeb3c2bcd5ed6cf6+0x76c (predict_oai-98384e17fb94e863:arm64+0x100047a1c)
    #3 0x0001007aedb0 in test::console::run_tests_console::he9d142d704f3a986+0x149c (predict_oai-98384e17fb94e863:arm64+0x10002edb0)
    #4 0x0001007c5758 in test::test_main::hf86a5e20735245b9+0x118 (predict_oai-98384e17fb94e863:arm64+0x100045758)
    #5 0x0001007c5da0 in test::test_main_static::h61ee9c8fd30abca0+0x54 (predict_oai-98384e17fb94e863:arm64+0x100045da0)
    ...

==45482==ABORTING
2025-09-17 11:08:02 +03:00
Eve
cb5bb6cc05 vulkan: automatically remove unsupported devices (#15976)
* remove unsupported vulkan devices

* make this happen during selection instead

* pass by reference
2025-09-17 09:35:37 +02:00
Daniel Bevenius
a91d035b90 ci : revert back to macos-13 for macOS-latest-cmake-x64 (#16040)
This commit reverts the change of the runs-on parameter for the
macOS-latest-cmake-x64 job back to macos-13 that was make in
Commit 51abc96bdc ("ci : update
macos-latest* jobs to use macos-latest (#15938)").

The motivation for this is that using macos-latest will cause an ARM
based runner to be used, and not an x64 based runner.

Refs: https://github.com/ggml-org/llama.cpp/pull/15938#issuecomment-3300805127
2025-09-17 09:34:09 +02:00
Jie Fu (傅杰)
745cbcf2fe llama-quant : fix the verification of attention layers for encoder-decoder models (#16023)
Signed-off-by: Jie Fu <jiefu@tencent.com>
2025-09-17 09:30:55 +02:00
Jie Fu (傅杰)
1cbd80f8cf examples : support encoder-decoder models in the simple example (#16002)
Signed-off-by: Jie Fu <jiefu@tencent.com>
2025-09-17 10:29:00 +03:00
Shane A
85286f3548 model : add OLMo3 support (#16015)
* Add HF to gguf conversion logic for Olmo3

* Add Olmo3 implementation

* Update rope comment

* Fix indentation

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Apply suggestion from @CISC

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-17 09:01:58 +02:00
Chenguang Li
d5fabe3682 CANN: Optimize ggml_cann_set_device (#15935)
* CANN: Fix ggml_cann_set_device to avoid redundant device switches

- Added a check to skip aclrtSetDevice if the current device is already set.
- Prevents unnecessary context switches while keeping thread/device consistency.

* CANN: add device default id
2025-09-17 14:33:08 +08:00
jacekpoplawski
8ff206097c llama-bench: add --n-cpu-moe support (#15952)
* llama-bench: add --n-cpu-moe support

Support --n-cpu-moe in llama-bench the same way it is supported by
llama-server.
2025-09-16 16:17:08 +02:00
Daniel Bevenius
77475530b8 ci : use macos-latest for arm64 webgpu build (#16029)
This commit updates the runs-on field for the macOS arm64 webgpu build
job to use macos-latest instead of just latest.

The motivation for this is that this job can wait for a runner to pick
up the job for a very long time, sometimes over 7 hours. This is an
attempt to see if this change can help reduce the wait time.

Refs: https://github.com/ggml-org/llama.cpp/actions/runs/17754163447/job/50454257570?pr=16004
2025-09-16 15:27:52 +02:00
Daniel Bevenius
3913f8730e ggml : fix padding in timestep embedding kernels (#15932)
* ggml : remove adding extra dim timestep embedding

This commit updates the ggml_timestep_embedding function to no longer
add an extra dimension when the specified dimension is odd.

The motivation for this change is that this introduces an unnecessary
dimension when the dimension is odd, which caused an issue in the
kernels which were not expecting this extra dimension and it resulted in
uninitialized memory for the second to last dimension.

* ggml-cuda : fix padding in timestep embedding kernel

This commit removes the zeroing out of the last dimension now that we
are not adding the extra padding dimension.

* ggml-metal : fix padding in timestep embedding kernel

This commit fixes the zero padding for odd dimensions in
the timestep embedding kernel

* ggml-opencl : fix padding in timestep embedding kernel

This commit fixes the zero padding for odd dimensions in
the timestep embedding kernel.

* ggml-sycl : fix padding in timestep embedding kernel

This commit fixes the zero padding for odd dimensions in
the timestep embedding kernel.

* ggml-vulkan : fix padding in timestep embedding kernel

This commit fixes the zero padding for odd dimensions in
the timestep embedding kernel.

* ggml-cpu : fix padding in timestep embedding function

This commit removes the zeroing out of the last dimension now that we
are not adding the extra padding dimension.
2025-09-16 15:25:57 +02:00
Daniel Bevenius
76888d202e ci : upload xcframework artifact from ios-xcode-build job (#16010)
This commit updates the github workflows build.yml file to include steps
for uploading and downloading the xcframework artifact. The
macos-latest-swift job now depends on the ios-xcode-build job and
downloads the xcframework artifact produced by it.

The motivation for this changes is that it takes a long time to build
the xcframework and we are currently doing this twice in the workflow.
With this change, we only build it once and reuse the artifact.
2025-09-16 13:41:38 +02:00
Bowen Han
f1fbffb5c0 fix: apply clang-format to CUDA macros (#16017)
clang-format previously broke long CUDA macros (e.g. __launch_bounds__) into
unreadable line breaks inside template declarations, such as:

  template<int D, int ncols, int nwarps, int VKQ_stride,
           typename KQ_acc_t, bool use_logit_softcap>
      __launch_bounds__(nwarps*ggml_cuda_get_physical_warp_size(), 1)

This change adjusts formatting rules so that CUDA macros remain consistent
and aligned with the surrounding template syntax.
2025-09-16 08:59:19 +02:00
Daniel Bevenius
51abc96bdc ci : update macos-latest* jobs to use macos-latest (#15938)
* ci : update macos-latest* jobs to use macos-latest

This commit updates the jobs that are named macos-latest* to use the
macos-latest label instead explicit versions.

The motivation for this is that there is currently a mixuture of
versions in this workflow and there are jobs that are failing because
they require a newer version.

Refs: https://github.com/ggml-org/llama.cpp/actions/runs/17644792595/job/50140010907#step:5:1759

* ci : add xcodebuild -downloadPlatform iOS command
2025-09-16 05:57:16 +02:00
Yuri Khrustalev
07808ebb07 cmake : Do not install tools on iOS targets (#15903) 2025-09-16 09:54:44 +07:00
Aman Gupta
6d758839ff Add LLaDA-7b-MoE diffusion model (#16003) 2025-09-16 10:38:28 +08:00
Jake Karnes
3d4053f77f CUDA: fix im2col_3d to respect non-contiguous inputs (views) (#15956)
* fix im2col_3d to respect non-contiguous inputs (views)

The CUDA 3D im2col kernel computed source addresses assuming compact layout (products of dims), ignoring nb[] strides. 

This patch switches im2col_3d source indexing to use true strides derived from src1->nb[] (in elements), mirroring the approach used in the 2D CUDA im2col path. Destination indexing is unchanged.

* use ggml_element_size() for src strides

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-09-16 00:28:31 +02:00
Diego Devesa
dc381aa9a6 docker : enable rocWMMA in ROCm images, add gfx1151 (#15997) 2025-09-15 23:38:52 +02:00
Diego Devesa
10d197409b releases : switch to rocWMMA develop branch, add gfx1151 (#15992)
* releases : switch to rocWMMA develop branch, add gfx1151

* remove unused variable ROCM_VERSION
2025-09-15 23:38:42 +02:00
yael-works
b907255f4b SYCL: Add COUNT_EQUAL operator support (#15991)
* SYCL: Add COUNT_EQUAL operator support (rebased on master)

* SYCL: remove duplicate op_count_equal definition

* tests: remove test_count_equal_typed and use test_count_equal for all cases

* tests: keep only I32 case for COUNT_EQUAL as suggested

* tests: keep only I32 case for COUNT_EQUAL as requested
2025-09-15 18:51:35 +02:00
Nikolay Popov
28c39da7c6 llama-run: Fix model download on Windows (#15988)
* llama-run: Fix model download on Windows
 * fix SSL error (SSL peer certificate or SSH remote key was not OK)
 * fix program crash on std::filesystem::rename

* llama-run: create a separate method to utilize RAII

* llama-run: handle rename exception
2025-09-15 11:08:30 +01:00
Aman Gupta
106220562a CUDA: some micro-optimizations in mmf.cuh for mul_mat_id (#15926) 2025-09-15 17:35:11 +08:00
ddh0
a68f31edd7 fix KLD percentile output (#15999)
In `llama-perplexity`, when using `--kl-divergence`, the KL divergence statistics output mistakenly displays the 99th percentile twice. This change fixes that and correctly displays the 90th percentile as originally intended (presumably).
2025-09-15 09:54:57 +02:00
Sigbjørn Skjæret
b8e09f08b9 model : add grok-2 support (#15539)
* add grok-2 support

* type fix

* type fix

* type fix

* "fix" vocab for invalid sequences

* fix expert tensor mapping and spaces in vocab

* add chat template

* fix norm tensor mapping

* rename layer_out_norm to ffn_post_norm

* ensure ffn_post_norm is mapped

* fix experts merging

* remove erroneous FFN_GATE entry

* concatenate split tensors and add more metadata

* process all expert layers and try cat instead of hstack

* add support for community BPE vocab

* fix expert feed forward length and ffn_down concat

* commit this too

* add ffn_up/gate/down, unsure if sequence is right

* add ffn_gate/down/up to tensor names

* correct residual moe (still not working)

* mess--

* fix embedding scale being applied twice

* add built in chat template

* change beta fast for grok if default value

* remove spm vocab in favor of community bpe vocab

* change attention temp length metadata type to integer

* update attention temp length metadata

* remove comment

* replace M_SQRT2 with std::sqrt(2)

* add yarn metadata, move defaults to hparams
2025-09-14 23:00:59 +02:00
Sigbjørn Skjæret
6c019cb04e server : only attempt to enable thinking if using jinja (#15967) 2025-09-14 21:17:04 +02:00
Georgi Gerganov
9dcd200d57 metal : remove memory pools (#15966)
* metal : remove mem pool usage

ggml-ci

* metal : remove mem pool implementation

ggml-ci

* metal : take into account the actual allocated memory of the tensor

ggml-ci

* cont : use ggml_backend_buft_get_alloc_size

ggml-ci

* cont : improve, comments

ggml-ci

* cont : add functions for the extra tensor sizes

* metal : add comments

ggml-ci

* metal : implement .get_alloc_size for the rest of the buffer types

ggml-ci

* metal : remove ggml_metal_heap

ggml-ci
2025-09-14 22:02:32 +03:00
Adam
0fa154e350 rocm.Dockerfile: added gfx1200,gfx1201 architectures to support AMD Radeon RX 9000 series (#15994)
* rocm.Dockerfile: added gfx1200,gfx1201 architectures to support  AMD Radeon RX 9000 series

https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.4.1/reference/system-requirements.html#rdna-os
states the Radeon RX 9000 series is supported support from Ubuntu 24.04.2, and the dockerfile is using 24.04 which is ROCm 6.4.

This fixed the `ROCm error: invalid device function` I was getting when trying to use the rocm container.
2025-09-14 20:43:54 +02:00
Ruben Ortlam
261e6a20ff Vulkan: Clean up mul_mm shader (#15987)
* vulkan: move mul_mm dequantization steps into a separate file and functions

* improve mul_mm vector load code

* fix debug mode issues and warnings
2025-09-14 16:56:28 +02:00
lcy
a0e13dcbe5 build: fix the build failures of Windows HIP release job (#15984)
* build: fix the cache keys for Windows HIP release job

Update the cache keys to include the HIP SDK version, preventing the
use of outdated ROCm installation caches.

* build: sync changes from release.yml to build.yml

- Update HIP SDK version to 25.Q3 and ROCm version to 6.4.2
- Update the cache keys to reflect the new versions

* build: remove Windows HIP release for gfx1151
since the current stable rocWMMA does not support gfx1151.
2025-09-14 07:20:35 -07:00
Georgi Gerganov
a14bd35014 metal : fix kernel requirements (#15983)
* metal : fix kernel requirements

ggml-ci

* cont : fix supports_op

* cont : fix supports_op for ARGMAX
2025-09-14 15:33:22 +03:00
Radoslav Gerganov
918b26f197 rpc : fix regression when --device is used (#15981)
Fix regression introduced with commit 50f4281a6
2025-09-14 12:28:18 +03:00
Diego Devesa
9ecb884346 releases : update ROCM, add gfx1200, gfx1201, gfx1151 (#15972)
* releases : update ROCM, add gfx1200, gfx1201, gfx1151

* releases : set target to 13.3 for macos-x64

* add hipblaslt.dll to release

* add hipblaslt/library to release
2025-09-14 02:21:59 -07:00
Radoslav Gerganov
d1c6f11f47 doc : update documentation for --tensor-split (#15980)
* doc : update documentation for --tensor-split

* Update tools/main/README.md

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update tools/main/README.md

Co-authored-by: Diego Devesa <slarengh@gmail.com>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-09-14 12:10:07 +03:00
Aaron Teo
6380d6a3e7 ggml-zdnn: rm user mapped buffers (#15965)
* ggml-zdnn: rm user mapped buffers

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: rm dead code

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: attempt to fix missing extra data buffer free

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-09-14 13:37:03 +08:00
Jeff Bolz
aa0c461efe vulkan: fix failing dequant shaders (#15862)
* vulkan: fix failing dequant shaders

* add missing const
2025-09-13 17:29:43 +02:00
Jeff Bolz
b9c9c9f789 vulkan: initialize vulkan-hpp to allow using extension function pointers (#15705)
Use this to query register count for shader compiles on NVIDIA. Currently
this is only for performance debug, but it could eventually be used in some
heuristics like split_k.
2025-09-13 17:23:30 +02:00
Diego Devesa
50f4281a6f llama : allow using iGPUs with --device (#15951)
* llama : allow using iGPUs with --device

* mtmd : allow iGPU

* rpc-server : allow iGPU
2025-09-13 16:49:49 +02:00
Georgi Gerganov
55758b00ca metal : refactor kernel loading (#15964)
* metal : refactor bin kernels loading

ggml-ci

* metal : refactor rms kernel loading

ggml-ci

* ci : try to add memory leaks check

ggml-ci

* ci : try to enable memory leak detection for Mac

* cont : seems to be working
2025-09-13 16:24:22 +03:00
Georgi Gerganov
f161463a54 metal : allow ops to run concurrently (#15929)
* metal : run graphs ops concurrently

ggml-ci

* cont : add flags for debugging and disabling concurrency

ggml-ci

* cont : refactor and handle fusing

ggml-ci

* cont : simplify - no need to use GPU address

ggml-ci

* cont : prepare mem ranges for reuse + add ggml-metal-common.cpp

ggml-ci

* cont : avoid redundant keywords in cpp [no ci]

* metal : reorder graph for better concurrency

ggml-ci

* metal : fix race on mem pool buffers

ggml-ci

* cont : add env GGML_METAL_GRAPH_OPTIMIZE_DISABLE

ggml-ci

* cont : refactor, optimize, add comments

ggml-ci

* cont : refactor ggml-metal.m

ggml-ci

* minor : update logs [no ci]
2025-09-13 13:54:28 +03:00
Georgi Gerganov
84d7b2fca1 metal : fix memory leaks (#15962)
ggml-ci
2025-09-13 12:45:04 +03:00
Aaron Teo
40be51152d ggml-zdnn: fix #15414, activate FP16 and BF16 acceleration and incorrect zTensor free (#15839) 2025-09-13 02:39:52 +08:00
Eric Curtin
4bf5549269 Add docker protocol support for llama-server model loading (#15790)
To pull and run models via: llama-server -dr gemma3
Add some validators and sanitizers for Docker Model urls and metadata

Signed-off-by: Eric Curtin <eric.curtin@docker.com>
2025-09-12 16:31:50 +01:00
Haiyue Wang
f4e664f838 context : remove redundant explicit casting to the same type (#15948)
The function 'output_reserve' return type is 'uint32_t', so need to add
explicit casting.
2025-09-12 18:16:32 +03:00
Georgi Gerganov
f088b6a84f server : adjust prompt similarity thold + add logs (#15913)
ggml-ci
2025-09-12 17:02:55 +03:00
Ruben Ortlam
304ac5693d Vulkan iGPU device selection overhaul and PCI ID API support (#15947)
* vulkan: implement ggml igpu device type, implement pci id support

* fix compiler warning

* prevent printf overflow warning
2025-09-12 13:24:21 +02:00
Mathieu Baudier
6c88ad8fa7 vulkan: Make device memory check more portable (#15939) 2025-09-12 09:06:20 +02:00
Neo Zhang Jianyu
704d90c987 Revert "sycl: add usage of enqueue_functions extension (#14244)" (#15910)
* Revert "sycl: add usage of enqueue_functions extension (#14244)"

This reverts commit 8308f98c7f.

* fix missed revert code, format the code
2025-09-12 09:15:12 +08:00
Diego Devesa
360d6533db ggml-backend : add GGML_BACKEND_DEVICE_TYPE_IGPU device type (#15797)
* ggml-backend : add GGML_BACKEND_DEVICE_TYPE_IGPU device type

ggml-backend : add device id to device props

llama : only use iGPU devices if there are no GPU devices

llama : do not use multiple devices from different backends with the same device id
2025-09-11 22:47:38 +02:00
Johannes Gäßler
0e6ff0046f CUDA: larger SRAM reads for tile FA, AMD FP16 dot (#15927)
* CUDA: larger SRAM reads for tile FA, AMD FP16 dot

* fix logic for availability of v_dot2_f32_f16
2025-09-11 21:19:58 +02:00
ddh0
df082f5630 nitpick : correct MB to MiB (#15934)
MB was incorrectly used for 1024 x 1024 bytes instead of MiB
2025-09-11 19:12:34 +02:00
Daniel Bevenius
24a6734daf ggml-cpu : add check for ARM MATMUL_INT8/i8mm support (#15922)
This commit adds a check for GGML_MACHINE_SUPPORTS_i8mm when enabling
MATMUL_INT8 features, ensuring that i8mm intrinsics are only used when
the target hardware actually supports them.

The motivation for this is to fix ggml CI build failures where the
feature detection correctly identifies that i8mm is not supported,
adding the +noi8mm flag, but MATMUL_INT8 preprocessor definitions are
still enabled, causing the compiler to attempt to use vmmlaq_s32
intrinsics without i8mm support.

Refs: https://github.com/ggml-org/ggml/actions/runs/17525174120/job/49909199499
2025-09-11 14:39:12 +01:00
Charles Xu
2b3efea9a4 kleidiai: fix GGML_ASSERT(*cur_backend_id != -1) failed (#15614)
* kleidiai: fix GGML_ASSERT(*cur_backend_id != -1) failed

* removes the Whisper-specific check for GET_ROWS support
2025-09-11 12:45:40 +02:00
hipudding
c0389dba43 CANN: Disable acl_graph for prefill stage (#15933)
Since the prefill length is not fixed, graphs constructed for the
prefill stage cannot be reused. For this reason, ACL graph
execution is disabled by default during prefill.
2025-09-11 15:59:37 +08:00
Oliver Simons
00681dfc16 CUDA: Add fastdiv to k_bin_bcast*, giving 1-3% E2E performance (#15872)
* Add fastdiv and fastmodulo to k_bin_bcast kernel

* Address review comments

* `prod_` instead of `prod` suffix

* Add test case for `k_bin_bcast_unravel` in CUDA backend
2025-09-10 22:04:03 +02:00
Jie Fu (傅杰)
4f658855fa llama : support T5 models with unequal number of encoder-decoder layers (#15909)
* Extend the support of T5 models with different encoder-decoder layers

Signed-off-by: Jie Fu <jiefu@tencent.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/constants.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-arch.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-arch.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-hparams.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Rename n_dec_layer --> dec_n_layer

Signed-off-by: Jie Fu <jiefu@tencent.com>

* Adapt to cases when dec_n_layer > n_layer

Signed-off-by: Jie Fu <jiefu@tencent.com>

---------

Signed-off-by: Jie Fu <jiefu@tencent.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-10 20:51:51 +02:00
Sigbjørn Skjæret
6ab397e12b graph : support non-contiguous Q in build_attn_mha (#15908)
* support non-contiguous Q in build_attn_mha

* Update src/llama-graph.cpp

ggml-ci

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-09-10 19:08:59 +02:00
Daniel Bevenius
9de447d94e ggml-cpu : fix padding in ggml_timestep_embedding (#15917)
This commit fixes the zero padding for odd dimensions in
ggml_compute_forward_timestep_embedding_f32.
The motivation for this is that currently if an odd dimension is used,
the padding check incorrectly uses the dimension value for indexing.
For example, with dim=15:

Elements 0-6 are set to cosine values
Elements 7-13 are set to sine values
Element 14 is left uninitialized (contains garbage)
Element 15 is correctly set to zero

This fix changes embed_data[dim] to embed_data[2 * half] so that
element 14 (the first unused element) is properly set to zero as well
as the last element.

Resolves: https://github.com/ggml-org/ggml/issues/1324
2025-09-10 17:31:40 +02:00
Georgi Gerganov
0f0a3c2851 metal : make the backend async (#15906)
* metal : make the backend async

ggml-ci

* cont : add comments, extend op offload, clean up

ggml-ci

* metal : fix batch size for MUL_MAT_ID

* metal : remove deprecated ggml_backend_metal_buffer_from_ptr

* metal : create only metal buffers, no wrapping of host memory

ggml-ci

* metal : restore .alloc_buffer for buffer_from_ptr_type

ggml-ci

* metal : remove broken implementation of GGML_OP_SET

ggml-ci

* metal : clean-up loose ends, ready for tests

ggml-ci

* metal : support both private and shared buffers

ggml-ci

* metal : enable private buffers + add global device queue

* metal : disable host buffer to prevent races

ggml-ci

* metal : avoid extra copy during set_tensor

ggml-ci

* metal : use separate buffer types for shread and private Metal buffers

ggml-ci

* metal : simplify synchronization logic

ggml-ci

* metal : fix build

ggml-ci

* metal : do not implement cpy_tensor

ggml-ci

* metal : separate implementations for shared and private buffers

ggml-ci
2025-09-10 17:52:35 +03:00
Daniel Bevenius
33daece86b ci : add caching for ROCm installation in release workflow (#15924)
This commit applies the same caching to the release workflow which
currently exists for the main CI workflow that was introduced in Commit
ff02caf9ee ("ci : cache ROCm installation
in windows-latest-cmake-hip (#15887)").
2025-09-10 15:39:57 +02:00
Daniel Bevenius
e7b6d83b52 tests : filter out no-ops from coverage report (#15900)
* tests : filter out no-ops from coverage report

This commit is a follow-up commit for #15745 to address the feedback on
how no-op operations should be filtered out from the coverage report.

The feedback regarding the UNARY and GLU sub-operations not being
handled I not exactly sure what should be done. They are included in the
coverage, for example ABS, ELU, EXP, GELU, GEGLU, GEGLU_ERF etc are in
the list of covered operations:
```console
$ ./build/bin/test-backend-ops --show-coverage
Operations covered by tests (89):
  ✓ ABS
  ✓ ACC
  ✓ ADD
  ✓ ADD1
  ✓ ADD_ID
  ✓ ARANGE
  ✓ ARGMAX
  ✓ ARGSORT
  ✓ CLAMP
  ✓ CONCAT
  ✓ CONV_2D
  ✓ CONV_2D_DW
  ✓ CONV_3D
  ✓ CONV_TRANSPOSE_1D
  ✓ CONV_TRANSPOSE_2D
  ✓ COS
  ✓ COUNT_EQUAL
  ✓ CPY
  ✓ CROSS_ENTROPY_LOSS
  ✓ CROSS_ENTROPY_LOSS_BACK
  ✓ DIAG_MASK_INF
  ✓ DIV
  ✓ DUP
  ✓ ELU
  ✓ EXP
  ✓ FLASH_ATTN_EXT
  ✓ GATED_LINEAR_ATTN
  ✓ GEGLU
  ✓ GEGLU_ERF
  ✓ GEGLU_QUICK
  ✓ GELU
  ✓ GELU_ERF
  ✓ GELU_QUICK
  ✓ GET_ROWS
  ✓ GET_ROWS_BACK
  ✓ GROUP_NORM
  ✓ HARDSIGMOID
  ✓ HARDSWISH
  ✓ IM2COL
  ✓ IM2COL_3D
  ✓ L2_NORM
  ✓ LEAKY_RELU
  ✓ LOG
  ✓ MEAN
  ✓ MUL
  ✓ MUL_MAT
  ✓ MUL_MAT_ID
  ✓ NEG
  ✓ NORM
  ✓ OPT_STEP_ADAMW
  ✓ OPT_STEP_SGD
  ✓ OUT_PROD
  ✓ PAD
  ✓ PAD_REFLECT_1D
  ✓ POOL_2D
  ✓ REGLU
  ✓ RELU
  ✓ REPEAT
  ✓ REPEAT_BACK
  ✓ RMS_NORM
  ✓ RMS_NORM_BACK
  ✓ ROLL
  ✓ ROPE
  ✓ ROPE_BACK
  ✓ RWKV_WKV6
  ✓ RWKV_WKV7
  ✓ SCALE
  ✓ SET
  ✓ SET_ROWS
  ✓ SGN
  ✓ SIGMOID
  ✓ SILU
  ✓ SILU_BACK
  ✓ SIN
  ✓ SOFT_MAX
  ✓ SOFT_MAX_BACK
  ✓ SQR
  ✓ SQRT
  ✓ SSM_CONV
  ✓ SSM_SCAN
  ✓ STEP
  ✓ SUB
  ✓ SUM
  ✓ SUM_ROWS
  ✓ SWIGLU
  ✓ SWIGLU_OAI
  ✓ TANH
  ✓ TIMESTEP_EMBEDDING
  ✓ UPSCALE

Operations without tests (14):
  ✗ ADD_REL_POS
  ✗ CUSTOM
  ✗ DIAG
  ✗ DIAG_MASK_ZERO
  ✗ FLASH_ATTN_BACK
  ✗ GET_REL_POS
  ✗ IM2COL_BACK
  ✗ MAP_CUSTOM1
  ✗ MAP_CUSTOM2
  ✗ MAP_CUSTOM3
  ✗ POOL_1D
  ✗ POOL_2D_BACK
  ✗ WIN_PART
  ✗ WIN_UNPART

Coverage Summary:
  Total operations: 103
  Tested operations: 89
  Untested operations: 14
  Coverage: 86.4%
```

Refs: https://github.com/ggml-org/llama.cpp/pull/15745

* use of ggml_op enum values instead of strcmp
2025-09-10 14:17:09 +02:00
j-k
2cfef4d117 media : add transparent icon svg and png [no ci] (#15891) 2025-09-10 14:51:28 +03:00
Jesse
09e72a037c gitignore : Ignore vim swap files in tests (#15901) 2025-09-10 14:28:47 +03:00
Chenguang Li
10d8b2b6b0 CANN: Add ROPE sin/cos cache for reuse (#15912)
* CANN: Add ROPE sin/cos cache for reuse

Introduce sin/cos caching mechanism in ROPE to avoid redundant
computation across layers. The cache is built on the first layer
per device and reused by subsequent layers if parameters match.

- Added sin_cache / cos_cache pointers and position_length tracking
- Introduced cache validity flags and properties:
  (ext_factor, theta_scale, freq_scale, attn_factor, is_neox)
- Accelerates ROPE by eliminating repeated sin/cos generation

This change reduces overhead in multi-layer scenarios while
preserving correctness by verifying parameter consistency.

Co-authored-by: hipudding <huafengchun@gmail.com>

* fix typo

Signed-off-by: noemotiovon <757486878@qq.com>

---------

Signed-off-by: noemotiovon <757486878@qq.com>
Co-authored-by: hipudding <huafengchun@gmail.com>
2025-09-10 18:42:00 +08:00
Chenguang Li
28b5f190ef CANN: implement LRU cache for ACL graphs (#15814)
* CANN: implement LRU cache for ACL graphs in CANN backend

- Introduce ggml_cann_graph_lru_cache to store multiple ggml_cann_graph objects.
- Graphs are loaded on demand and evicted using LRU policy when capacity is exceeded.
- Updated push, move_to_front, and clear methods to manage cached graphs efficiently.
- Ensures reuse of graphs, reducing graph reconstruction overhead in CANN backend.

* fix typo

* The LRU cache capacity can be configured via an env variable

Signed-off-by: noemotiovon <757486878@qq.com>

* refactory acl graph

* refactory && fix review comments

Signed-off-by: noemotiovon <757486878@qq.com>

---------

Signed-off-by: noemotiovon <757486878@qq.com>
2025-09-10 15:29:12 +08:00
Daniel Bevenius
86587da03b llama : check returned fn ptrs from ggml_backend_reg_get_proc_address (#15893)
This commit adds check for two function pointers returned from
ggml_backend_reg_get_proc_address.

The motivation for this is that the function pointer could be nullptr if
the get proc address function changes in the future. This is also
consistent with all the other calls to ggml_backend_reg_get_proc_address
in the code base.
2025-09-10 05:33:58 +02:00
Daniel Bevenius
ff02caf9ee ci : cache ROCm installation in windows-latest-cmake-hip (#15887)
This commit adds caching of the ROCm installation for the windows-latest-cmake-hip job. 

The motivation for this is that the installation can sometimes hang and/or not complete properly leaving an invalid installation which later fails the build. By caching the installation hopefully we can keep a good installation available in the cache and avoid the installation step.

Refs: https://github.com/ggml-org/llama.cpp/pull/15365
2025-09-10 05:23:19 +02:00
Ruben Ortlam
ae355f6f71 vulkan: throw the oom error instead of no memory type found (#15905) 2025-09-09 22:26:03 +02:00
Jeff Bolz
4f63cd705c vulkan: Fix OOB accesses in soft_max_back (#15861) 2025-09-09 14:41:15 +02:00
Johannes Gäßler
17bc5a815f HIP: use v_dot2_f32_f16 instruction for FA (#15884) 2025-09-09 14:04:43 +02:00
lksj92hs
ed54e32558 Workaround for subgroup arithmetic failing on MoltenVK with AMD GPUs (issue 15846) (#15886) 2025-09-09 14:01:15 +02:00
Aman Gupta
a972faebed CUDA: Add mul_mat_id support for the mmf kernel (#15767)
* CUDA: Add mul_mat_id support the mmf

Add support for mul_mat_id for bs < 16

* Review: use warp_size, fix should_use_mmf condition

* Launch one block per expert, stride along n_expert_used

* templatize mul_mat_id

* Pad shmem to 16 bytes, add helper function mul_mat_f_switch_ids

* Reduce compile times by dividing mmf into f16, bf16 and f32 variants

* Divide mmf by ncols_dst

* Add missing files

* Fix MUSA/HIP builds
2025-09-09 14:38:02 +08:00
Johannes Gäßler
550cf726e1 CUDA: fix GET_ROWS for large tensors (#15882) 2025-09-09 08:11:01 +02:00
Georgi Gerganov
c252ce67c4 contrib : add notes about merging PRs (#15881)
* contrib : add notes about merging PRs

* Update CONTRIBUTING.md

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* Update CONTRIBUTING.md

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-09-09 08:42:10 +03:00
Daniel Bevenius
70cd37dbbe requirements : update transformers/torch for Embedding Gemma (#15828)
* requirements : update transformers/torch for Embedding Gemma

This commit updates the requirements to support converting
Embedding Gemma 300m models.

The motivation for this change is that during development I had a local
copy of the transformers package which is what I used for converting
the models. This was a mistake on my part and I should have also updated
my transformers version to the official release.

I had checked the requirements/requirements-convert_legacy_llama.txt
file and noted that the version was >=4.45.1,<5.0.0 and came to the
conculusion that no updated would be needed, this assumed that
Embedding Gemma would be in a transformers release at the time
Commit fb15d649ed ("llama : add support
for EmbeddingGemma 300m (#15798)) was merged. So anyone wanting to
convert themselves would be able to do so. However, Embedding Gemma is
a preview release and this commit updates the requirements to use this
preview release.

* resolve additional python dependencies

* fix pyright errors in tokenizer test and remove unused import
2025-09-09 06:06:52 +02:00
Piotr Wilkin (ilintar)
acc1b008cf model-conversion : add extra debugging support for model conversion (#15877)
* feat: Extra debugging support for model conversion - added BF16 support for llama-callback-eval and support for dumping intermediate steps in run-org-model.py
2025-09-09 06:05:55 +02:00
Aldehir Rojas
7057faf64b json : support enum values within allOf (#15830) 2025-09-08 16:14:32 -05:00
j-k
fe1c92cd7b media : add llama1 icon (#15878)
Add svg and png based off llama1-icon.svg
2025-09-08 21:57:01 +03:00
Jeff Bolz
e68aa10d8f vulkan: sort graph to allow more parallel execution (#15850)
* vulkan: sort graph to allow more parallel execution

Add a backend proc to allow the backend to modify the graph. The
vulkan implementation looks at which nodes depend on each other
and greedily reorders them to group together nodes that don't
depend on each other. It only reorders the nodes, doesn't change
the contents of any of them.

With #15489, this reduces the number of synchronizations needed.

* call optimize_graph per-split
2025-09-09 02:10:07 +08:00
Aman Gupta
0a16bf52e6 CUDA: generate_cu_files.py - add missing mxfp4 (#15880) 2025-09-09 01:23:46 +08:00
Jesse
88021565f0 chat : Deepseek V3.1 reasoning and tool calling support (OpenAI Style) (#15533)
* Add DeepSeek V3.1 thinking mode support

- Added COMMON_CHAT_FORMAT_DEEPSEEK_V3_1 enum value
- Created common_chat_params_init_deepseek_v3_1() function (currently uses R1 implementation)
- Created common_chat_parse_deepseek_v3_1() function that handles V3.1 thinking format:
  - Extracts reasoning content before '</think>' tag into reasoning_content
  - Extracts regular content after '</think>' tag into content
  - No opening '<think>' tag in V3.1 format
- Added detection logic for V3.1 templates based on pattern: 'message['prefix'] is defined and message['prefix'] and thinking'
- Added V3.1 case to parsing switch statement

This addresses the issue where V3.1 outputs reasoning content followed by '</think>' and then regular content without the opening '<think>' tag.

* Another attempt by V3.1 non-thinking

* Fix test, but it's not asserting anything.

* Ignore vim swap files in tests dir

* Update the test

* Try using try_find_literal instead of regex

* passing test

* Revert "Try using try_find_literal instead of regex"

This reverts commit c50d887ec2.

* Remove unnecessary change

* Remove comment

* Add code to handle non-thinking mode.

* Try to set message['prefix'] when thinking is enabled.

* This fixes reasoning, but breaks normal content. We need state in the
chat parser.

* DeepSeek V3.1 thinking is now the default. Disable with `--reasoning-budget 0`.

* Simplify (DeepSeek V3.1 reasoning)

* Fix sign inversion bug

* Add some tool calling code (not working).

* Tool calls working in non-reasoning mode.

* Attempt a unit test for tool call parsing.

* Passing test

* Add tests for both happy path and broken fenced DeepSeek V3.1 tool call variants.

* Passing DeepSeek V3.1 tool call tests, but model is not working.

* Revert assistance response prefill change. Not my monkeys.

* Add fenced_thinking unit test variant. Passes, but thinking tool calling
still isn't working for some reason.

* Tests pass in reasoning mode. Also e2e tool test passes.

* Make a copy of the parse_json_tool_calls function for deepseek-v3.1 so
as to not accidentally introduce regressions.

* Fix thinking_forced_open logic. tool calling broken. Need to add another
test case.

* That's what I get for cargo culting a newline.

* Add multi tool call test for deepseek v3.1 non-reasoning

* Move test, remove .gitignore change

* Place deepseek-v3.1 reasoning test directly into existing reasoning
function per CISC's request.

* Address whitespace CI failure.

* Merge two assert_equals per CISC's request.

* Add DeepSeek-V3.1 tests to tests/test-chat.cpp per CISC's request.

* Merge deepseek V3.1 and regular parse_json_tool_calls() function
behaviors by adding optional update_cursor argument.

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* DeepSeek V3.1 fix reasoning_format none

* Strip grammar down to strictly what we expect based on model card. Throw
out parts we cargo culted from R1 that don't make sense.

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* DeepSeek V3.1 - Add edge case where thinking is forced open, there is
tool calling in the reasoning content, but then the model just stops the
output without closing the </think> tag, so it's not a partial. In this
case, use the tool call in the reasoning content.

* DeepSeek V3.1 - simplify update_cursor

* Update common/chat.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update common/chat.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update common/chat.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Fix indent

---------

Co-authored-by: openhands <openhands@all-hands.dev>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-08 16:59:48 +02:00
Xuan-Son Nguyen
56920f5665 server : bring back timings_per_token (#15879) 2025-09-08 16:50:05 +02:00
Georgi Gerganov
b0d52998b9 cuda : fix supports_op condition for get_rows when number of blocks is too large (#15868)
* cuda : fix supports_op condition for get_rows when src1->ne2 > 1

ggml-ci

* ggml : add comment about ggml_get_rows

ggml-ci

* cuda : add FIXME [no ci]

* cuda : update support condition

ggml-ci
2025-09-08 13:56:51 +03:00
Georgi Gerganov
f28d4f4ac9 metal : refactor + optimize (#15857)
* metal : refactor

ggml-ci

* cont : refactor FA-vec kernel

* cont : print metal library load time

* minor : warn to debug + bettern kernel names

ggml-ci

* metal : optimize mul_mv q8_0

ggml-ci

* metal : simplify FA pipeline creation functions

ggml-ci

* metal : improve naming consistency

* metal : safer function constants offsets

ggml-ci

* metal : comments

ggml-ci
2025-09-08 13:34:56 +03:00
Xuan-Son Nguyen
9fcb29f22f ggml: allow casting between f32 and i32 (#15783)
* ggml: allow casting between f32 and i32

* fix cuda

* add vulkan

* fix CPU non-cont

* add non-cont test case

* add note

* extend test number range

* correct note

* add cont version for vulkan
2025-09-08 12:33:01 +02:00
Sigbjørn Skjæret
5ef22d281d CUDA: non-contiguous src0 not supported for PAD (#15869) 2025-09-08 12:55:44 +03:00
Daniel Bevenius
233d773d02 convert : force setting sliding_window from original config (#15867)
* convert : force setting sliding_window from original config

This commit modifies the set_gguf_parameters method for EmbeddingGemma
so that it reads the sliding_window parameter from the original model
config.json and uses that value.

The motivation for this change is that the Gemma3TextConfig
constructor adjusts the sliding_window value, which can lead to
inconsistencies when converting models as we expects this value to
match the original model's configuration.

Refs: bb45d3631e/src/transformers/models/gemma3/configuration_gemma3.py (L230)

* fix flake8 error

* add link to huggingface PR
2025-09-08 09:44:34 +02:00
Georgi Gerganov
a885dcff11 batched-bench : fix llama_synchronize usage during prompt processing (#15835)
ggml-ci
2025-09-08 10:27:07 +03:00
Georgi Gerganov
663027fd54 context : fix n_outputs during reserve (#15858)
ggml-ci
2025-09-08 10:26:36 +03:00
Georgi Gerganov
cf0e3ba150 model : avoid ggml_cont_3d for fused QKV weights (#15662)
* model : avoid ggml_cont_3d for fused QKV weights

ggml-ci

* kv-cache : make cpy_k and cpy_v implementation more readable

ggml-ci

* cont : add comments

ggml-ci

* cont : minor fix [no ci]

* cont : one more fix

* cont : clarity

ggml-ci

* kv-cache : require contiguous heads of k_cur and v_cur

ggml-ci
2025-09-08 10:25:33 +03:00
Jeff Bolz
d413dca003 tests: large sizes for get_rows (#15687) 2025-09-07 23:23:41 -05:00
Chenguang Li
85ca66a746 CANN: Stream sync between devices for acl_graph (#15809)
* CANN: Switch to stream synchronization

Switch to stream synchronization because events are not effective.

Co-authored-by: hipudding <huafengchun@gmail.com>

* CANN: add Comments

---------

Co-authored-by: hipudding <huafengchun@gmail.com>
2025-09-08 10:03:29 +08:00
Jeff Bolz
3976dfbe00 vulkan: support im2col_3d (#15795) 2025-09-07 13:50:26 -05:00
Aaron Teo
d36e61c580 ggml-cpu: clean up s390x SIMD (#15855)
* ggml-cpu: clean up s390x simd

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 0da4b6aa07)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix hsum data types

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-09-08 02:18:28 +08:00
Jeff Bolz
c97b5e5854 vulkan: Support pad_ext (#15794) 2025-09-07 19:00:49 +02:00
Jeff Bolz
267e99867f vulkan: Use larger loads in scalar/coopmat1 matmul (#15729)
I think glslang will translate an access like x[i][1].z to
OpAccessChain ... x, i, 1, 2
OpLoad float16_t ...

rather than loading all of x[i] in a single OpLoad. Change the
code to explicitly load the vector/matrix.
2025-09-07 18:53:07 +02:00
Daniel Bevenius
3b15924d71 ggml WebGPU: remove userdata from request adapter callback (#15527)
* ggml WebGPU: remove userdata from request adapter callback

This commit removes the `userdata` parameter from the WebGPU request
adapter callback in `ggml-webgpu.cpp`. Instead, the lambda function
captures the `webgpu_context` directly.

The motivation for this change is to simplify the code and improve
readability.

* inline the callback lambda into the RequestAdapter call

This commit removes the callback lambda variable and inlines it directly
into the RequestAdapter call.
2025-09-07 11:19:45 +03:00
Johannes Gäßler
79bc429262 CUDA: faster tile FA (Pascal/AMD), headsize 256 (#15769) 2025-09-07 00:26:28 +02:00
Charles Xu
c4df49a42d kleidiai: generalize compute_forward_kv_cache to compute_forward_fp16 (#15817) 2025-09-06 22:08:43 +08:00
Xuan-Son Nguyen
3c3635d2f2 server : speed up tests (#15836)
* server : speed up tests

* clean up

* restore timeout_seconds in some places

* flake8

* explicit offline
2025-09-06 14:45:24 +02:00
Xuan-Son Nguyen
61bdfd5298 server : implement prompt processing progress report in stream mode (#15827)
* server : implement `return_progress`

* add timings.cache_n

* add progress.time_ms

* add test

* fix test for chat/completions

* readme: add docs on timings

* use ggml_time_us

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-09-06 13:35:04 +02:00
Johannes Gäßler
01806e7771 ggml-cpu: document use of "free" memory [no ci] (#15834) 2025-09-06 13:28:44 +02:00
Aaron Teo
186415d595 ggml-cpu: drop support for nnpa intrinsics (#15821) 2025-09-06 11:27:28 +08:00
Gabe Goodhart
fd621880f3 aLoRA Support (#15327)
* feat: Add python-side constants and conversion for adapter.lora.invocation_string

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add c++ side constants for adapter.lora.invocation_string

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Parse invocation string for adapters from GGUF

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(python): Update conversion to alora_invocation_tokens

This is the preferred method in PEFT which is the source of ground truth

https://github.com/huggingface/peft/pull/2609/files#diff-13380145401d203d5935c5189dd09879f990b81aa63e8e3aaff8ce9110333f0e

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(cpp): Update to alora_invocation_tokens on c++ side

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add C APIs to get alora invocation token array from lora

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Initial implementation of alora cache logic in server

This does not yet do the part to identify the invocation tokens and only
apply the lora adapter afterwards, but it does seem to produce correct
results if the invocation tokens are the beginning of the uncached input.

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Identify alora invocation sequences

This currently limits to a single enabled alora per slot. Multiple aloras
with different invocation sequences would be possible, but it would require
a more complex integration of the adapter toggling and is not really a well
studied case for alora since it's unclear if one alora can reuse cache from
previous prefill computed with a different alora.

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Only reuse cache for tokens before the alora invocation start

This is a bit of an edge case, but theoretically a user could try the same
query with the alora disabled (just using the base model), then retry with
the alora. The cached tokens from the first pass should be invalid.

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Handle un-cached tokens that come before the alora activation

The solution is to only fill up to the token before the invocation start in
the batch if there are any tokens to be prefilled between those pulled from
cache and the invocation start. When this is detected, the alora is
temporarily disabled with a scale of 0.0, then immediately re-enabled after
it has been initialized for the internal graph. Since the batch does not
complete the prompt tokens, the remaining prompt tokens are handled in the
next task, pulling all of the non-alora tokens from cache and proceeding
with prefill for the alora tokens.

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use || instead of 'or'

Too much python 🤦

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix off-by-one for limiting cached tokens to before alora start

This was the cause of the inconsistent results from the dummy test script
with and without the turn that runs the prompt without the adapter before
running it with the adapter.

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Support backwards-compatibility for "invocation_string" in adapter_config.json

While this has been replaced in the PEFT PR in favor of
alora_invocation_tokens, the existing adapters in the ibm-granite org on HF
use "invocation_string," so this will enable backwards compatibility and
enable testing now (before PEFT PR changes have percolated everywhere).

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove duplicate logging

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* feat: Report alora_invocation_string and alora_invocation_tokens from /lora-adapters

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-05 17:32:39 -06:00
Sigbjørn Skjæret
4281c7b315 ci : exempt correct research label (#15825) 2025-09-06 01:21:15 +02:00
Gabe Goodhart
5fac79cbc7 Thinking model disabled assistant prefill (#15404)
* feat: Set enable_thinking IFF not disabled and supported

Branch: gabe-l-hart/thinking-model-disabled-agent-prefill

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix inverted logic condition for prefill error

Branch: gabe-l-hart/thinking-model-disabled-agent-prefill

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Always parse the enable_thinking kwarg to overwrite the default value

From what I can tell, this started as a Qwen3-specific keyword, but from
the use in `chat.cpp` translates this inputs.enable_thinking to the right
thinking kwarg for the given model, this is now more of a standardized
kwarg, so it should always override the default value when sent as part of
the chat_template_kwargs field in the API.

Branch: gabe-l-hart/thinking-model-disabled-agent-prefill

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Don't limit tempalte expansion check to jinja

With the use_jinja check, non-jinja models would enable thinking and always
fail assistant prefill

Branch: gabe-l-hart/thinking-model-disabled-agent-prefill

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add the error text to json type errors in json_value

Branch: gabe-l-hart/thinking-model-disabled-agent-prefill

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Explicitly reject string values for "enable_thinking"

There are too many possible "truthy" / "falsy" strings and too many
ambiguous strings that don't have a clear truthy/falsy value, so the
simplest thing to do here is to reject the request. Ideally, this would be
a 422 (Unprocessable Entity), but right now it's coming back as a 500.

Branch: gabe-l-hart/thinking-model-disabled-agent-prefill

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Move logic for detecting template enable_thinking support to common

Branch: gabe-l-hart/thinking-model-disabled-agent-prefill

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use raw pointer for common chat template function

Branch: gabe-l-hart/thinking-model-disabled-agent-prefill

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-09-05 14:31:24 -06:00
Eric Curtin
408ff524b4 Implement --log-colors with always/never/auto (#15792)
With auto by default

Signed-off-by: Eric Curtin <ericcurtin17@gmail.com>
2025-09-05 19:43:59 +01:00
Johannes Gäßler
5143fa895e CUDA: fastdiv, launch bounds for mmvq + q8_1 quant (#15802)
* CUDA: fastdiv, launch bounds for mmvq + q8_1 quant
2025-09-05 16:07:02 +02:00
Daniel Bevenius
3a550b5ca4 tests : add --list-ops and --show-coverage options (#15745)
This commit adds two new command-line options to the
test-backend-ops.cpp that allow users to list all available GGML
operations and to show test coverage of these operations.

The motivation for this is that it can be useful to quickly see which
operations are currently covered by tests and which are not. Also it
migth be useful when using the `support` mode.
2025-09-05 13:49:21 +01:00
Erik Scholz
a81283820a gguf: gguf_writer refactor (#15691)
* gguf: split gguf writer into base and buf impl
* gguf: templated gguf write out
* gguf: file based writer (avoid writing everything to memory first!)
* examples(llama2c): fix log not being the same level and compiler nits
2025-09-05 11:34:28 +02:00
Georgi Gerganov
c610b6c11b kv-cache : fix SWA checks + disable cacheless iSWA (#15811)
ggml-ci
2025-09-05 10:39:22 +03:00
Daniel Bevenius
5d6688de08 model-conversion : add --embeddings flag to modelcard.template [no ci] (#15801)
This commit updates the modelcard.template file used in the model
conversion scripts for embedding models to include the llama-server
--embeddings flag in the recommended command to run the model.

The motivation for this change was that when using the model-conversion
"tool" to upload the EmbeddingGemma models to Hugging Face this flag was
missing and the embedding endpoint was there for not available when
copy&pasting the command.
2025-09-05 04:36:23 +02:00
ExtReMLapin
4fd1242bef chat : fixed crash when Hermes 2 <tool_call> had a newline before it (#15639)
Co-authored-by: CNE Pierre FICHEPOIL <pierre-1.fichepoil@gendarmerie.interieur.gouv.fr>
2025-09-05 01:24:08 +02:00
Piotr Wilkin (ilintar)
b2426e469e chat : nemotron thinking & toolcalling support (#15676)
* feat: nemotron thinking & toolcalling support

* Trailing whitespaces

* Corrected template for Nemotron

* Template and parser fixes

* Final template and grammar changes

* Whitespace

* Always do lazy grammar processing since </think> tag will always be there.

* Allow extra content after toolcall

* Whitespace

* New tests: thinking + tools, tools + content, thinking + tools + content (new!)

* Whitespace

* Remove cURL test script
2025-09-05 01:22:22 +02:00
Piotr Wilkin (ilintar)
9e2b1e83c6 scripts : add Jinja tester PySide6 simple app (#15756)
* feat: add Jinja tester PySide6 simple app

* Linter fixes

* Pylint fixes

* Whitespace

* Add commandline support; add formatter; add extensions

* Remove testing actions

* Silence flake8 warnings for commandline mode

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Fix trailing whitespace/newline logic

* Update scripts/jinja/jinja-tester.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update scripts/jinja/jinja-tester.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-05 01:05:12 +02:00
Daniel Bevenius
fb15d649ed llama : add support for EmbeddingGemma 300m (#15798)
This commit add support for the EmbeddingGemma 300m. This model supports
sliding window attention (SWA) and a new swq_type is introduced to
support symmetric SWA masking.

This commit also extracts the code from the function
llama_is_masked_swa in llama-impl.h, so that the logic can be shared
by both llm_graph_input_attn_no_cache::set_input and
llama_kv_cache::set_input_kq_mask.

With this commit the EmbeddingGemma 300m model can be converted to
to GGUF and used with llama.cpp.

Once the model has been uploaded to HuggingFace it can be used like
this:
```console
./build/bin/llama-cli -hf ggml-org/embeddinggemma-300m-GGUF:Q8_0
```
2025-09-04 18:10:29 +02:00
Gabe Goodhart
856ed0947f metal : Add template specialization for mul_mm_id w/ ne20 == 10 (#15799)
Branch: GGMLMetalNE20

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-09-04 18:53:22 +03:00
Daniel Bevenius
d1e2adba65 llama : set n_outputs to 1 to avoid 0 outputs mean-pooling (#15791)
* llama : set n_outputs to 1 to avoid 0 outputs mean-pooling

This commit modifies the llama_context constructor to set n_outputs to
1.

The motivation for this is that when using pooling, and specifically
mean pooling, for embeddings having n_outputs set to 0 can lead to the
following error:
```console
$ build/bin/llama-embedding -m models/nomic-embed-text-1.5-Q4_K_M.gguf \
   --pooling mean -p "Hello, how are you?"
...
llama_context:        CPU  output buffer size =     0.12 MiB
/home/danbev/work/ai/llama.cpp/ggml/src/ggml.c:3023: GGML_ASSERT(ggml_can_mul_mat(a, b)) failed
0x0000743c96d107e3 in __GI___wait4 (pid=292978, stat_loc=0x0, options=0, usage=0x0) at ../sysdeps/unix/sysv/linux/wait4.c:30
warning: 30	../sysdeps/unix/sysv/linux/wait4.c: No such file or directory
30	in ../sysdeps/unix/sysv/linux/wait4.c
196	        waitpid(child_pid, NULL, 0);
230	        ggml_print_backtrace();
3023	    GGML_ASSERT(ggml_can_mul_mat(a, b));
1823	                cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
18983	    llm->build_pooling(cls, cls_b, cls_out, cls_out_b);
1399	    auto * gf = model.build_graph(gparams);
292	            auto * gf = graph_reserve(1, n_seqs, n_outputs, mctx.get(), true);
2329	        auto * ctx = new llama_context(*model, params);
913	    llama_context * lctx = llama_init_from_model(model, cparams);
105	    common_init_result llama_init = common_init_from_params(params);
[Inferior 1 (process 292976) detached]
Aborted (core dumped)
```

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* add comment about not reserving graphs with zero outputs

* add assert in graph_reserve to ensure n_outputs >= 1

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-09-04 15:40:44 +02:00
Chenguang Li
c1c354e44c CANN: Refactor ND to NZ workspace to be per-device (#15763)
* CANN:Refactor ND to NZ workspace to be per-device in Ascend backend

- Replaced the previous single global ND→NZ workspace with a per-device
  cache using unordered_map keyed by device ID.
- Functions `release_nz_workspace`, `relloc_nz_workspace`, and
  `get_nz_workspace` now manage workspace independently for each device,
  preventing memory conflicts in multi-device / pipeline parallel scenarios.
- This change fixes potential precision issues caused by workspace
  overwrites when multiple devices perform ND→NZ conversions concurrently.

Co-authored-by: hipudding <huafengchun@gmail.com>

* refactor

Signed-off-by: noemotiovon <757486878@qq.com>

* rename

Signed-off-by: noemotiovon <757486878@qq.com>

* fix review comments

Signed-off-by: noemotiovon <757486878@qq.com>

---------

Signed-off-by: noemotiovon <757486878@qq.com>
Co-authored-by: hipudding <huafengchun@gmail.com>
2025-09-04 20:20:14 +08:00
Xuan-Son Nguyen
a68d914426 server: add exceed_context_size_error type (#15780)
* server: add exceed_context_size_error type

* change error code to 400
2025-09-04 11:50:23 +02:00
Eric Curtin
badb80cadb Document the new max GPU layers default in help (#15771)
This is a key change, just letting users know.

Signed-off-by: Eric Curtin <ericcurtin17@gmail.com>
2025-09-04 10:49:44 +01:00
leejet
0a1b3982cd ggml: add ops for WAN video model (cuda && cpu) (#15669)
* add conv3d support

* add ggml_pad_ext for cpu & cuda backend

* cuda/cpu: add im2col_3d support

* cuda: make im2col a little faster

* fix cuda pad/scale/im2col3d

* make im2col_3d faster

* gguf: support loading tensors which n_dims > GGML_MAX_DIMS

* fix cuda get_rows

* avoid ggml_conv_3d conflict

* correct GGML_OP_COUNT assertion

* avoid build failure

* avoid build failure on MacOS

* cuda: remove unnecessary MIN define

* fix cpu im2col_3d

* adjust the code style

* cuda: use simpler loop in get_rows

* add test_im2col_3d to test-backend-ops

* test-backend-ops.cpp: remove trailing whitespace

* cpu: im2col_3d support non continuous src

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>

* fix test_im2col_3d

* remove unused variables

* cuda: get_rows: dfloat2 -> float2

* add test_pad_ext to test-backend-ops.cpp

* add gguf_init_from_file_ext impl

* Revert "gguf: support loading tensors which n_dims > GGML_MAX_DIMS"

This reverts commit d8377a0a37.

* Revert "add gguf_init_from_file_ext impl"

This reverts commit d9f1d13208.

* update ggml_backend_vk_device_supports_op

* fix ggml_backend_vk_device_supports_op

* update other backend supports op for ggml_pad_ext

* metal/opencl/sycl/vulkan: fix GGML_OP_PAD check in supports_op

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-09-04 10:38:49 +02:00
hipudding
5421f63ab0 CANN: Fix precision issue on 310I DUO multi-devices (#15784) 2025-09-04 15:12:30 +08:00
rmatif
820bc98531 opencl: add hs=40 to FA (#15758) 2025-09-03 23:30:28 -07:00
Chenguang Li
239b60e898 CANN: fix acl_rstd allocation size in ggml_cann_rms_norm (#15760)
Fixes #15330

Adjust the allocation size of acl_rstd. The parameter `dims` is set to 3 according to the CANN documentation.

Co-authored-by: Yuchuan <yuchuan-cao@users.noreply.github.com>
2025-09-04 11:03:02 +08:00
Ruben Ortlam
dff7551bfd vulkan: fix mmv subgroup16 selection (#15775) 2025-09-03 21:55:10 +01:00
Jeff Bolz
0fce7a1248 vulkan: don't use std::string in load_shaders, to improve compile time (#15724)
* vulkan: don't use std::string in load_shaders, to improve compile time

* keep the string version for those calls that use it
2025-09-03 20:33:15 +02:00
Daniel Bevenius
8227695d7a vulkan : update ggml_vk_instance_validation_ext_available (#15666)
* vulkan : update ggml_vk_instance_validation_ext_available

This commit updates ggml_vk_instance_validation_ext_available() to
check for VK_EXT_validation_features instead of
VK_KHR_portability_enumeration.

Based on how the returned boolean is used later in the code (to enable
both the validation layer and the VK_EXT_validation_features extension),
it appears the function may have been intended to check for the
validation layer features extension.

* remove try/catch

This was a left over from a previous iteration where I was explicitly
quering for a specific validation layer first, which would throw.

* update warning message about validation layers
2025-09-03 20:24:50 +02:00
Shin-myoung-serp
0014fb4add ggml vulkan: add hardsigmoid and hardswish operations (#15762) 2025-09-03 20:22:55 +02:00
Oliver Simons
661ae31c9c CUDA: Optimize rms_norm_f32 kernel and its fused variants, giving 1-6% perf E2E (#15715)
* Add fastdiv, use it in modulo and use modulo in rms_norm_f32

Fastdiv is much faster way to do integer division, which was identified
as bottleneck in rms_norm_f32

* Support more `block_size` values in `rms_norm_f32`

This makes us more flexible in selecting the optimal threads w.r.t
paralellizing across a col vs. launch-overheads of threads and mio
throttles

* Update ggml/src/ggml-cuda/common.cuh

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Replace modulo with fastmodulo in `rms_norm_f32`

* Use `BinPackArguments=true` for formating function calls

Will file a separate PR to adjust .clang-format file

* Update ggml/src/ggml-cuda/common.cuh

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Use uint3 for both `fastdiv` and `fastmodulo`

The compiler seems to reliably optimize away the unused .z component in
the fastdiv use-case, see https://godbolt.org/z/rx8KPrKr3

* More constrained type declarations

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Rename fastdiv and fastmodulo variables to shared variable name

As suggest by JohannesGaessler, this increases clarity of the intended
use

* Pack fastdiv/fastmodulo constants into uint2/uint3 objects

By packing constants to be used together into a struct, we are less
likely to make errors.

* Rename function parameter of fastmodulo

`modulo_consts` is more fitting/descriptive

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-09-03 19:59:16 +02:00
Daniel Bevenius
407c23786d model-conversion : fix pyright errors (#15770)
This commit addresses type errors reported by pyright in the model
conversion scripts.
2025-09-03 18:28:36 +02:00
Georgi Gerganov
cdedb70a99 sampling : optimize dist sampler (#15704)
ggml-ci
2025-09-03 18:16:26 +03:00
Daniel Bevenius
2c8dac72eb llama : fix incorrect model type for Gemma 270M (#15764)
This commit fixes the model type for the Gemma 270M model in
llama_model.cpp which should be LLM_TYPE_270M. I incorrectly added this
previously as LLM_TYPE_537M which was wrong.

The motivation for this is that it causes the model to not be identified
properly when using tools like llama-bench. For example:
```console
$ ./build/bin/llama-bench -m models/gemma-3-270m-Q8_0.gguf
| model                          |       size | ...
| ------------------------------ | ---------: | ...
| gemma3 ?B Q8_0                 | 271.81 MiB | ...
| gemma3 ?B Q8_0                 | 271.81 MiB | ...
```

With the changes in this commit the output will be:
```console
$ ./build/bin/llama-bench -m models/gemma-3-270m-Q8_0.gguf
| model                          |       size | ...
| ------------------------------ | ---------: | ...
| gemma3 270M Q8_0               | 271.81 MiB | ...
| gemma3 270M Q8_0               | 271.81 MiB | ...
```
2025-09-03 13:35:49 +02:00
Daniel Bevenius
40a751ea9a model-conversion : remove hardcoded /bin/bash shebangs [no ci] (#15765)
* model-conversion : remove hardcoded /bin/bash shebangs [no ci]

This commit updates the bash scripts to use env instead of using
hardcoded /bin/bash in the shebang line.

The motivation for this is that some systems may have bash installed
in a different location, and using /usr/bin/env bash ensures that
the script will use the first bash interpreter found in the user's
PATH, making the scripts more portable across different environments.

* model-conversion : rename script to .py [no ci]

This commit renames run-casual-gen-embeddings-org.sh to
run-casual-gen-embeddings-org.py to reflect its Python nature.
2025-09-03 12:50:47 +02:00
hipudding
5eae934883 CANN: Add RoPE contiguous check for 310I DUP device (#15735) 2025-09-03 16:46:01 +08:00
xctan
05c0380f2a ggml-cpu : optimize RVV kernels (#15720)
* ggml-cpu : optimize rvv ggml_vec_dot_f32

* ggml-cpu : optimize 128-bit rvv ggml_vec_dot_q4_K_q8_K

* ggml-cpu : fix riscv arch flags

* ggml-cpu : add more rvv ops

* ggml-cpu : optimize rvv ggml_vec_dot_q4_K_q8_K

* ggml-cpu : optimize rvv ggml_vec_dot_q6_K_q8_K

* ggml-cpu : minor rvv adjustments

* ggml-cpu : fix riscv include
2025-09-03 16:16:21 +08:00
Daniel Bevenius
8c3fdf44ec model-conversion : add missing curl script [no ci] (#15761)
This commit adds a curl script to the model-conversion examples
which is currently missing. This script is required for the running the
embedding server targets to test llama-server embeddings functionality.
2025-09-03 09:48:35 +02:00
hipudding
f6da8cb86a CANN: Mask unsupported TRANSPOSE_1D operator (#15733)
CANN currently does not support kernels larger than 255.
This change disables such cases.
2025-09-03 14:08:22 +08:00
Chenguang Li
8a2234ea0c CANN: Fix type float_t to float (#15736)
Signed-off-by: noemotiovon <757486878@qq.com>
2025-09-03 10:43:53 +08:00
SnA1lGo
3de008208b fix: resolve unsigned int initialization warning for n_dims/size in gguf.cpp (#15754) 2025-09-02 21:27:30 +02:00
Oliver Simons
69db8a52e6 chore: Update .clang-format to use BinPackArguments=true (#15744)
This seems to correspond with what we want to do, see
[here](https://github.com/ggml-org/llama.cpp/pull/15715#discussion_r2315613796)
and [clang-format docs](https://clang.llvm.org/docs/ClangFormatStyleOptions.html#binpackarguments)
2025-09-03 01:40:37 +08:00
Johannes Gäßler
c466abe158 llama: -fa 1/0/-1 aliases for -fa on/off/auto (#15746) 2025-09-02 18:17:26 +02:00
Ruben Ortlam
0a2a3841e8 vulkan: fix shaders gen when no integer dot is available (#15740) 2025-09-02 16:02:26 +02:00
hipudding
9961d244f2 CANN: Resolve soft_max precision issue (#15730)
Previously, the slope tensor was set to fp16 to improve efficiency.
While this worked correctly in FA, it caused precision issues in soft_max.
This change applies different data types for different operators
to balance both accuracy and performance.
2025-09-02 17:12:37 +08:00
Jeff Bolz
25f1045f07 vulkan: Fix macro parameter order for f32 matmul shaders (#15716) 2025-09-02 14:37:01 +08:00
rmatif
97669e4073 opencl: add attn sinks support for FA kernels (#15706) 2025-09-01 23:26:53 -07:00
Chenguang Li
2f853687b3 CANN: Support eager execution mode under ACL graph compilation (#15712)
* [CANN] Support eager execution mode under ACL graph compilation

Add support for running operators in eager mode while ACL graph
compilation is enabled. This allows bypassing graph execution
and directly submitting ops, which is useful for debugging and
reducing graph build overhead in certain scenarios.

Signed-off-by: noemotiovon <757486878@qq.com>

* fix typo

Signed-off-by: noemotiovon <757486878@qq.com>

* rename to acl_graph_mode

Signed-off-by: noemotiovon <757486878@qq.com>

---------

Signed-off-by: noemotiovon <757486878@qq.com>
2025-09-02 14:07:48 +08:00
hipudding
ef2af57ddf CANN: Support ext_factor in rope (#15710) 2025-09-02 14:05:23 +08:00
Johannes Gäßler
5d804a4938 ggml-backend: raise GGML_MAX_SPLIT_INPUTS (#15722) 2025-09-01 16:14:55 -07:00
Gilad S.
d4d8dbe383 vulkan: use memory budget extension to read memory usage (#15545)
* vulkan: use memory budget extension to read memory usage

* fix: formatting and names

* formatting

* fix: detect and cache memory budget extension availability on init

* fix: read `budgetprops.heapBudget` instead of `heap.size` when memory budget extension is available

* style: lints
2025-09-01 21:17:42 +02:00
Jeff Bolz
35a42edac8 vulkan: add missing clamps in new mul_mat_id paths (#15702)
This is a missing interaction between #15546 and #15652
2025-09-01 21:01:10 +02:00
Ruben Ortlam
fec7911f8f vulkan: disable large mmv subgroups on older Nvidia GPUs (#15717) 2025-09-01 20:58:35 +02:00
s-goto-11
078ce23ea7 ggml: SVE support for exponential functions (#15145)
* SVE support for exponential functions

Add const notation to variable pg

* Update ggml/src/ggml-cpu/vec.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Add const

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-09-01 20:13:49 +02:00
Prashant Vithule
a0c2b207c5 ggml: aarch64: Implement SVE F16 kernels for vector functions (#15115)
* Added sve implementation for vec_dot_fp16 Kernel

* removed white spaces

* Added comment

* removed white spaces

* changed GGML_F16x_VEC_FMA for code consistency

* Update vec.h

---------

Co-authored-by: vithulep <p.m.vithule1517@gmail.com>
2025-09-01 20:13:16 +02:00
Jie Fu (傅杰)
4b20d8b7e3 convert : remove redundant code (#15708)
Signed-off-by: Jie Fu <jiefu@tencent.com>
2025-09-01 23:53:31 +08:00
Ruben Ortlam
02c1813517 Vulkan: Add Integer Dot Product mul_mat_vec shader for legacy quants (#14903)
* vulkan: Add Integer Dot Product mul_mat_vec shader for legacy quants

* vulkan: use subgroup operations for quantize_q8_1 shader

* vulkan: add q8_1_x4 type with 128-bit alignment, use in mul_mat_vecq shader

* vulkan: use q8_1_x4 blocks in mul_mmq shader

* vulkan: do 8 calculations per invocation instead of 32 in mul_mat_vecq, similar to mul_mat_vec

* vulkan: tune mul_mat_vecq performance for Intel

* vulkan: fix quantizing issue when tensor is not divisible by 128

* vulkan: adapt integer dot mmv to mmv small m optimization (#15355)

* vulkan: allow all subgroup modes for mmv and mmvq

* vulkan: use prealloc intermediate reuse for mmvq path

* vulkan: tune mmvq for Intel, AMD GCN and Nvidia RTX 3090

* vulkan: adapt mmv quantize_y path to conditional sync logic

* vulkan: disable q8_0 mmvq on Nvidia

* vulkan: enable q8_0 on Nvidia pre-turing

* fix prealloc sync condition

* fix llvmpipe subgroup 8 issue
2025-09-01 16:19:07 +02:00
Daniel Bevenius
77dee9de97 ggml : WebGPU add TRANSPOSE and RESHAPE to supported ops (#15695)
* ggml : WebGPU add TRANSPOSE and RESHAPE to supported ops

This commit adds support for the TRANSPOSE and RESHAPE operations in the
ggml webgpu backend.

Co-authored-by: Diego Devesa <slarengh@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-01 14:28:49 +02:00
Jie Fu (傅杰)
4795c91c32 docs : add Hunyuan to models section (#15707)
Signed-off-by: Jie Fu <jiefu@tencent.com>
2025-09-01 10:34:59 +03:00
Akarshan Biswas
b66df9d9c9 CUDA: fix build error from ambiguous __half conversions in conv2d (#15690)
* CUDA: fix build error from ambiguous __half conversions in conv2d

Building conv2d with half precision failed because `__half` defines
multiple implicit conversion operators (to float, int, short, etc.),
causing ambiguous overload resolution when multiplying with float.

Introduce a templated `to_float` helper that explicitly converts
`__half` via `__half2float`, while passing through float unchanged.
Use this helper in conv2d accumulation to ensure unambiguous and
correct promotion to float.

Fixes some build errors with half-precision kernels on CUDA.

ggml-ci

* CUDA: Replace custom to_float helper with unified ggml_cuda_cast and add half‑>float conversion

* CUDA: Add missing convert.cuh header

* CUDA: remove unnecessary extension in ggml_cuda_cast

* CUDA: Address review comment, remove second type template argument
2025-09-01 06:55:06 +05:30
hipudding
b9382c3877 CANN: Optimize MUL_MAT_ID (#15658) 2025-09-01 08:57:23 +08:00
hipudding
3dc7397a27 CANN: fix RoPE cache issue on multi-device (#15629)
* CANN: fix RoPE cache issue on multi-device

RoPE cache only needs to be computed once per token.
However, in multi-device scenarios, not every device starts
computation from layer 0, which may lead to unallocated memory
issues and precision errors.

This commit records the first layer of each device to avoid
the above issues.

* CANN: Optimize first-layer detection method

* CANN: Remove trailing whitespace

* CANN: Only cache the data that can be determined as unchanged through the parameters.

* CANN: Update function comment
2025-09-01 08:57:00 +08:00
Georgi Gerganov
e92d53b29e sampling : optimize samplers by reusing bucket sort (#15665)
* sampling : optimize sorting using bucket sort in more places

ggml-ci

* sampling : do not sort in dist sampler

ggml-ci

* sampling : avoid heap allocations for sort buffers

ggml-ci

* common : add option to sort sampling candidates by probability

ggml-ci

* sampling : revert the change for preserving sort buffers

* sampling : use std::copy instead of memcpy

* sampling : clarify purpose of partial sort helpers

ggml-ci

* cont : remove wrong comment [no ci]

* common : update comment

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-08-31 20:41:02 +03:00
Georgi Gerganov
0d161f021a server : enable /slots by default and make it secure (#15630)
* server : enable /slots by default and make it secure

ggml-ci

* server : fix tests to pass `--no-slots` when necessary

* server : extend /props with info about enabled endpoints
2025-08-31 20:11:58 +03:00
Georgi Gerganov
4efd5a8316 metal : fix checks for available FA kernels (#15700)
* metal : fix checks for available FA kernels

ggml-ci

* cont : fix comment [no ci]
2025-08-31 19:43:30 +03:00
Diego Devesa
274966226f llama : fix fattn reserve call n_seqs parameter (#15699)
ggml-ci
2025-08-31 18:47:05 +03:00
Diego Devesa
9777032dcc llama : separate compute buffer reserve from fattn check (#15696)
Exposes ggml_backend_sched_split_graph() to allow splitting the graph without allocating compute buffers and uses it to split the graph for the automatic Flash Attention check.
2025-08-31 15:49:03 +02:00
Sigbjørn Skjæret
7d3c9f2b21 ci : explicitly set fa off or on (#15692) 2025-08-31 15:30:20 +02:00
Jeff Bolz
bbbf5ecccb vulkan: handle large sizes for get_rows (#15686) 2025-08-31 10:13:27 +02:00
Jeff Bolz
c37052ab4d vulkan: mul_mat_id coopmat2 optimizations (#15546)
* vulkan: mul_mat_id coopmat2 optimizations

Add a path for when the tile fits in BN/2, similar to what we have for mul_mat.

Only call fetch_scales/store_scales once per QUANT_K block, and once at the
beginning in case start_k is not aligned.

* Also add a path for BN/4 - worth a couple more percent
2025-08-31 09:06:43 +02:00
Daniel Bevenius
5c16b9c87d vulkan : remove unused portability_enumeration_ext variable (#15679)
This commit removes the portability_enumeration_ext variable from the
ggml_vk_instance_portability_enumeration_ext_available function as it
is initialized to false but never modified, making it redundant.
2025-08-31 08:46:42 +02:00
Jeff Bolz
b97c9edc59 vulkan: Allow fallback to sysmem memory when vidmem is full (#15649)
* vulkan: Allow fallback to sysmem memory when vidmem is full

* vulkan: Add env var GGML_VK_ALLOW_SYSMEM_FALLBACK
2025-08-31 08:30:54 +02:00
Jeff Bolz
94e82c7ead vulkan: clamp matmul and FA results to the max finite value (#15652)
* vulkan: clamp matmul and FA results to the max finite value

* only clamp for fp16
2025-08-31 08:27:57 +02:00
Charles Xu
4d74393bcc ggml: update kleidiai to v1.13.0 (#15663) 2025-08-31 00:03:42 +08:00
Diego Devesa
dd892555b0 Update build.md to remove MSVC arm64 notes (#15684)
Removed information about MSVC compiler limitations for arm64 builds.
2025-08-30 23:51:28 +08:00
Johannes Gäßler
e81b8e4b7f llama: use FA + max. GPU layers by default (#15434)
* llama: use max. GPU layers by default, auto -fa

* ggml-backend: abort instead of segfault
2025-08-30 16:32:10 +02:00
Johannes Gäßler
38ad381f9f CUDA: use FP32 arithmetic for conv2d (#15683) 2025-08-30 16:20:32 +02:00
Jeff Bolz
696fccf354 vulkan: Skip syncing for prealloc_y when it is reused (#15544) 2025-08-30 11:11:22 +02:00
Chenguang Li
ef476916bb CANN: FIx compiler warnings (#15661)
Signed-off-by: noemotiovon <757486878@qq.com>
2025-08-30 10:18:35 +08:00
Sergey Alirzaev
d82f6aa34a server : removed obsolete doc (#15670)
completing a4090d1174
2025-08-30 00:12:53 +02:00
Johannes Gäßler
3d16b29c3b scripts: strip "AMD Instinct" from GPU name (#15668) 2025-08-29 22:04:08 +02:00
ExtReMLapin
792b44f2ed server : add documentation for parallel_tool_calls param (#15647)
Co-authored-by: Pierre F <no@p.e>
2025-08-29 20:25:40 +03:00
Aman Gupta
81017865ee CUDA: fix bug in rms_norm fusion (#15660)
* CUDA: fix bug in rms_norm fusion

* Fix bug for OP_REPEAT

* Fix index for add
2025-08-29 21:30:06 +08:00
Piotr Wilkin (ilintar)
60e5eee31f chat : Seed OSS thinking + tool call support (#15552)
* Reasoning and tool-calling support for Seed OSS

* Fix grammar and partial parsing

* Whitespace

* New chat template

* Update common/chat.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update common/chat.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Remove unused 'purge_healing_marker' helper

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-08-29 14:53:41 +02:00
Aman Gupta
009b709d6e CUDA: fuse adds, fuse add with rms norm (#15631)
* CUDA: fused add with rms_norm_mul

* Non-broadcast fuse works

* Add fused adds

* format

* Remove n_fuse from template params

* Address review comments

* Move template inside binbcast
2025-08-29 11:35:58 +08:00
Gabe Goodhart
e8d99dd0b6 nvidia nemotron nano v2 (nemotronh) (#15507)
* feat: Add NEMOTRONH to python arch enum

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add NEMOTRONH to c++ arch enum

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add NEMOTRONH to llama-arch layer map

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: First pass at conversion for nemotronh

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add a verbose log for each tensor loaded

This is really helpful for diagnosing mismatches between the expected and
received tensors

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: First (broken) pass at nemotronh model architecture

It generates tokens, just not valid ones!

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Explicitly enable add_bos_token during conversion

The `tokenizer.json`/`tokenizer_config.json` in the model are a bit
contradictory. In the config, add_bos_token is set to False, but the
tokenizer model itself has a post_processor that adds the BOS token via
type: TemplateProcessing

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use relu2 (LLM_FFN_RELU_SQR) for activation in FFN layers

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Only allocate attention cache for attention layers (not non-recurrent)

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Move residual add to after every block

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use the correct norm tensor for the MLP blocks

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* Nemotron-H: MLP gate cleanup (pass NULL for unused gate)

This model does not use a gate in MLP blocks; pass NULLs for gate tensors to make intent clear and avoid unused-pointer noise.

* SSM: respect ssm_dt_rank for dt_dim when provided

Use GGUF-provided time_step_rank (ssm_dt_rank) to set dt_dim when > 0; fallback to max(64, n_embd/16).

* fix: plamo2 - revert dt_dim to default (remove ssm_dt_rank usage)

* Rename nemotronh to nemotron_h for consistency

- Update architecture name from NEMOTRONH to NEMOTRON_H in constants.py
- Change architecture string from 'nemotronh' to 'nemotron_h' in all files
- Update enum LLM_ARCH_NEMOTRONH to LLM_ARCH_NEMOTRON_H
- Update class name llm_build_nemotronh to llm_build_nemotron_h
- Consistent naming with underscore convention (nemotron_h vs nemotronh)

* feat: Support conversion for older NemotronH models

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Maicon Domingues <dominguesm@outlook.com>
Co-authored-by: weatherman <fxdstudios@gmail.com>
2025-08-28 18:39:31 -06:00
Gabe Goodhart
a8bca68f72 fix: Compute the full sum in llama-eval-callback, not just the sum of printed values (#15637)
This makes it much easier to compare between llama.cpp and transformers!

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-08-28 15:27:36 -05:00
mnehete32
c97dc09391 CUDA: add conv2d (#15635)
* CUDA: add conv2d

* CUDA: conv2d - correct formatting and added const
2025-08-28 20:33:03 +02:00
Aaron Teo
6c442f42ff ggml-cpu: fix invalid hsum build in debug s390x (#15634)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-08-28 22:39:27 +08:00
compilade
73804145ab ggml : fix SSM_SCAN for n_groups > 1 (#15625) 2025-08-28 10:11:36 -04:00
Georgi Gerganov
c8d0d14e77 kv-cache : fix find_slot to not search for continuous slot (#15638)
ggml-ci
2025-08-28 17:09:05 +03:00
Sigbjørn Skjæret
84ab83cc0b model : jina-embeddings-v3 support (#13693)
* initial jina-embeddings-v3 support

* initial jina-embeddings-v3 support

* initial jina-embeddings-v3 support

* fix vocab parsing with only tokenizer.json

* set mask token lstrip attribute

* additional unk_token_id fallback just in case [no ci]

* revert vocab_size() change [no ci]

* merge tensor loading into general bert

* rope

* add lora embedding and loading (non-functional)

* export separate lora ggufs instead

* add adapter metadata api

* use std::string

* convert_hf_to_lora compatibility

* fix assert

* apply suggestions from review

* apply suggestion from review
2025-08-28 15:49:50 +02:00
Aman Gupta
55042b3692 scripts: add sqlite3 check for compare-commits.sh (#15633) 2025-08-28 19:23:22 +08:00
Georgi Gerganov
8a4280ce43 kv-cache : remove LLAMA_SET_ROWS checks (#15505)
ggml-ci
2025-08-28 12:27:02 +03:00
Aleksei Nikiforov
64387f6e95 gguf-py: byteswapping improvements (#12851)
* gguf-py: implement byteswapping for Q4_0

This is needed to byteswap Mistral model.

Also restore original shapes after byteswapping tensors.
It is not needed at the moment, but do it in case
they'd be used in future.

* Rework byteswapping code in gguf-py

Move out details from byteswapping tensor blocks code
2025-08-28 16:56:41 +08:00
Joshua Cogliati
d35a1e8c41 cli : change log to warning to explain reason for stopping (#15604)
* Change to warn instead of debug, to explain reason for stopping.

* Update tools/main/main.cpp

Fix printing --2

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-08-28 10:48:20 +03:00
Daniel Bevenius
46d9caa27a model-conversion : add mmproj conversion target (#15628)
This commit adds a new target to the Makefile for converting models that
are multimodal. This target will convert the original model and in
addition also create the mmproj GGUF model.

The motivation for this change is that for models that are multimodal,
for example those that contain a vision encoders, we will often want to
upload both the quantized model and the vision encoder model to
HuggingFace.

Example usage:
```console
$ make causal-convert-mm-model MODEL_PATH=~/work/ai/models/gemma-3-4b-it-qat-q4_0-unquantized/
...
The environment variable CONVERTED_MODEL can be set to this path using:
export CONVERTED_MODEL=/home/danbev/work/ai/llama.cpp/models/gemma-3-4b-it-qat-q4_0-unquantized.gguf
The mmproj model was created in /home/danbev/work/ai/llama.cpp/models/mmproj-gemma-3-4b-it-qat-q4_0-unquantized.gguf
```
The converted original model can then be quantized, and after that both
the quantized model and the mmproj file can then be uploaded to
HuggingFace.

Refs: https://huggingface.co/ggml-org/gemma-3-4b-it-qat-GGUF/tree/main
2025-08-28 09:26:48 +02:00
matiaslin
5a0e3ef6f0 cuda: Add cublasLt_static linking when GGML_STATIC is enabled (#15622)
Prior to this change, we faced undefined cublasLt references when
attempting to compile 'llama-cli' with GGML_STATIC=ON on Linux.

We add linking with CUDA::cublasLt_static when CUDA version is greater
than 10.1.
2025-08-28 02:32:36 +02:00
Johannes Gäßler
fbef0fad7a server: higher timeout for tests (#15621) 2025-08-27 20:58:09 +02:00
Georgi Gerganov
da54f9f1a2 presets : add qwen3-30B-a3b FIM (#15616) 2025-08-27 15:48:07 +03:00
uvos
47373271f9 HIP: Enable support for ggml_backend_cuda_register_host_buffer (#15615) 2025-08-27 13:58:54 +02:00
Georgi Gerganov
1bded5a3b3 kv-cache : better estimate of n_kv for multi-sequence batches (#15610)
ggml-ci
2025-08-27 13:55:12 +03:00
Chenguang Li
1e7489745a CANN: refactor mask handling and improve performance in FA (#15561)
* CANN(flash-attn): refactor mask handling and improve performance

1. Refactored the mask computation in Flash Attention, unified the logic without separating prefill and decode.
2. Optimized performance in non-alibi scenarios by reducing one repeat operation.
3. Updated operator management to explicitly mark unsupported cases on 310P devices and when dim is not divisible by 16.

Signed-off-by: noemotiovon <757486878@qq.com>

* [CANN]: fix review

Signed-off-by: noemotiovon <757486878@qq.com>

* [CANN]: Optimization FA BNSD to BSND

Signed-off-by: noemotiovon <757486878@qq.com>

---------

Signed-off-by: noemotiovon <757486878@qq.com>
2025-08-27 17:21:41 +08:00
xctan
1cf123a343 ggml-cpu : add basic RVV support for vector f32 ops (#15057)
* ggml-cpu : add basic RVV support for vector f32 ops

* ggml-cpu : add RVV support for f32 softmax
2025-08-27 16:44:22 +08:00
Daniel Bevenius
fcca2182a1 common : add -m to bash completion for --model [no ci] (#15591)
This commit updates the bash completion script to include the -m
short option for the --model argument.

The motivation for this is that currently tab completion only works the
full --model option, and it is nice to have it work for the short option
as well.
2025-08-27 10:28:53 +02:00
rmatif
86076f92de OpenCL: add fused group_norm/norm, mul, add (#15314)
* add fused group_norm/norm, mul, add

* fix spacing

* revert rms_norm logic

* fix trailing whitespace
2025-08-26 23:36:05 -07:00
Diego Devesa
bcbddcd54f tests : fix test-opt with GGML_BACKEND_DL (#15599) 2025-08-26 22:14:38 +02:00
Akarshan Biswas
8b69686136 SYCL: fix rms_norm_mul_add for tensor dim not a multiple of sg_size (#15592)
The original implementation unconditionally returned true for this operation, leading to a failure when the tensor's first dimension (ne[0]) was not a multiple of WARP_SIZE. This caused an GGML_ASSERT(ncols % WARP_SIZE == 0) failure in ggml-sycl/norm.cpp.

This change updates the ggml_backend_sycl_device_supports_op check to correctly return true for GGML_OP_RMS_NORM only when the first dimension of the tensor is a multiple of WARP_SIZE, ensuring the operation can be performed without error.
2025-08-27 00:27:49 +05:30
fidoriel
8ce3ff1d91 mtmd : fix mtmd ios build (#15579) 2025-08-26 20:05:50 +02:00
Eve
44b1efa41a tests: add performance test for mul mat id (#15543) 2025-08-26 15:42:49 +00:00
shalinib-ibm
a6a58d6478 llamafile: PowerPC Sgemm Optimization (#15558)
This patch improves GEMM for FP32 Data Type on PowerPC

Implements GEMM on large blocks with configurable block size mc, nc, kc
(default: 256, 256, 256).
Packing Function optimized to access blocks as per memory layout.
GEMM Optimized to work on larger blocks.
Isolated Packing from GEMM Operations for better MMA utilization.

Verified functionality and correctness uing llama-cli and stand alone
test case (performs matmul and compares final mattrix C result with base).

Minor code refactoring changes:
Replace macro with inline function
Code Indent made consistent with 4 spaces

Performance Testing:

Observed 50% ~ 70% improvement in Prompt Processing Speed mesured using
llama-bench with Meta-Llama3-8B FP32 Model.  Similar gains observed with
Mistral-7b-Instruct-v0.3 Model.

model                   Size                Params     Backend       Threads   Test    Patch   Base
llama 8B all F32        29.92 GiB           8.03 B      CPU           20       pp512   98.58   60.3
llama 8B all F32        29.92 GiB           8.03 B      CPU           20       pp1024  95.88   57.36
llama 8B all F32        29.92 GiB           8.03 B      CPU           20       pp2048  85.46   53.26
llama 8B all F32        29.92 GiB           8.03 B      CPU           20       pp4096  68.66   45.78
llama 8B all F32        29.92 GiB           8.03 B      CPU           20       pp6144  57.35   40.44

25 ~ 30% improvement in llama-batched-bench with Metla-Llama3-8B in
Prompt Processing Speed for large prompts (256, 512, 1024, 2048, 4096)tokens with various batch
sizes ( 1, 2, 4, 8, 16)

Signed-off-by: Shalini Salomi Bodapati <Shalini.Salomi.Bodapati@ibm.com>
2025-08-26 23:35:25 +08:00
Georgi Gerganov
0373486dbc graph : fix assert in memory-less build_attn (#15590)
ggml-ci
2025-08-26 17:45:17 +03:00
Daniel Bevenius
62cef26ac5 model-conversion : add qat-q4 quantization targets (#15588)
This commit adds two targets to the Makefile for quantizing of
Quantization Aware Trained (QAT) models to Q4_0 format.

The motivation for this is that this sets the token embedding and the
output tensors data types to Q8_0 instead of the default Q6_K. This is
someting that we wish to enforce for QAT Q4_0 models that are to be
uploaded to ggml-org on Huggingface to guarantee the best quality.
2025-08-26 16:12:29 +02:00
Johannes Gäßler
8f5afa94c4 CUDA: return -1 for nonexistent compiled arch (#15587) 2025-08-26 16:01:20 +02:00
Georgi Gerganov
b3964c1e89 metal : optimize FA vec for large sequences and BS <= 8 (#15566)
* metal : optmize FA vec for large heads and sequences

* metal : adjust small-batch mul mv kernels

ggml-ci

* batched-bench : fix total speed computation

ggml-ci

* cont : add comments

ggml-ci
2025-08-26 14:22:14 +03:00
Xuan-Son Nguyen
79a546220c mtmd : support Kimi VL model (#15458)
* convert : fix tensor naming conflict for llama 4 vision

* convert ok

* support kimi vision model

* clean up

* fix style

* fix calc number of output tokens

* refactor resize_position_embeddings

* add test case

* rename build fn

* correct a small bug
2025-08-26 12:54:19 +02:00
Georgi Gerganov
85cc1ae998 context : print graph stats for memory-less contexts (#15586)
ggml-ci
2025-08-26 12:47:00 +03:00
Georgi Gerganov
1d8d83deaa metal : improve MUL_MAT_ID (#15541)
* metal : mul_mm_id remove hdst

* metal : remove mul_mm_id hsrc1

* metal : mul_mm_id simplify + add test

* metal : opt mul_mm_id map0

* metal : optimize mul_mm_id id gathering

* metal : mul/div opt

* metal : optimize mul_mm_id_map0

ggml-ci
2025-08-26 12:46:15 +03:00
tc-mb
c4e9239064 model : support MiniCPM-V 4.5 (#15575) 2025-08-26 10:05:55 +02:00
Sigbjørn Skjæret
39842a7f73 gguf-py : remove erroneous FFN_GATE entry (#15583) 2025-08-26 09:08:08 +02:00
Sigbjørn Skjæret
0fd90db585 metal : remove contiguous assertion for src0 in IM2COL (#15577)
* remove contiguous assertion for src0 in IM2COL

* add contiguous check in supports_op
2025-08-26 09:51:43 +03:00
Yoshi_likes_e4
4c37636b3e Add a warning for special devices (#15563)
* Add warning

* Print the devices names

* Add newlines

* Apply suggestions from code review

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Fix vector names

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-08-26 08:15:33 +02:00
Jeff Bolz
34bdbbd7c2 vulkan: Remove splitting for mul_mat_id (#15568)
row_ids only needs to hold the BN rows for the current tile.
2025-08-26 06:42:44 +02:00
Qeeweew
74f52f77f2 CUDA: Accelerate MXFP4 table lookup using __byte_perm (#15451)
* CUDA: optimize get_int_from_table_16

* CUDA: use v_perm_b32 to replace byte_perm on AMD GPUs

* revise documentation

---------

Co-authored-by: xix <xiapc@outlook.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-08-25 23:21:22 +02:00
lhez
f7207b0415 opencl: fix support ops condition for rms_norm (#15560) 2025-08-25 14:18:09 -07:00
Ruben Ortlam
4d917cd4f6 vulkan: fix min subgroup 16 condition for mmid subgroup optimization (#15565) 2025-08-25 17:56:59 +02:00
Jeff Bolz
886b97a5d6 tests: Generate unique input values for count_equal (#15487)
This avoids backend-dependent behavior for argmax that leads to intermittent failures.
2025-08-25 10:47:16 -05:00
Ihar Hrachyshka
111f8d06f0 metal: fix regression when no metal devices are present (#15531) 2025-08-25 18:27:34 +03:00
Johannes Gäßler
5eff6ec9b1 CUDA: MoE helper in device code, better tile sizes (#15525)
* CUDA: MoE helper in device code, better tile sizes

* reduce superfluous CUDA blocks
2025-08-25 17:23:40 +02:00
Daniel Bevenius
dfd9b5f6c7 model-conversion : set pooling type to none in logits.cpp (#15564)
This commit explicitly sets the pooling type to 'none' in the logits.cpp
to support models that have a pooling type specified.

The motivation for this is that some models may have a pooling type set
in the model file (.gguf file) and for this specific case where we only
want to extract logits, we need to ensure that no pooling is used to
so that we are comparing raw logits and not pooled embeddings.
2025-08-25 15:00:43 +02:00
Daniel Bevenius
5a6bc6b1a6 model-conversion : add model card template for embeddings [no ci] (#15557)
* model-conversion: add model card template for embeddings [no ci]

This commit adds a separate model card template (model repository
README.md template) for embedding models.

The motivation for this is that there server command for the embedding
model is a little different and some addition information can be useful
in the model card for embedding models which might not be directly
relevant for causal models.

* squash! model-conversion: add model card template for embeddings [no ci]

Fix pyright lint error.

* remove --pooling override and clarify embd_normalize usage
2025-08-25 14:25:25 +02:00
Georgi Gerganov
6b64f74b55 batched-bench : fix unified KV cache handling + pp timing (#15562)
* batched-bench : fix unified KV cache handling + pp timing

* cont : run dummy token only with split KV cache
2025-08-25 13:56:43 +03:00
Weizhao Ouyang
0d5a470223 convert : update Ernie 4.5 dense architecture name (#15555)
Signed-off-by: Weizhao Ouyang <o451686892@gmail.com>
2025-08-25 11:15:06 +02:00
Georgi Gerganov
b0ba31f525 metal : add FA kernels for HS=40 (#15559)
ggml-ci
2025-08-25 10:14:48 +03:00
RunningLeon
7da9fed0d6 convert : support interns1-mini (#15412)
* support interns1-mini

* fix comment

* update
2025-08-25 08:32:16 +02:00
Chenguang Li
c247d06f38 CANN: ROPE cache sin/cos repeat (#15501)
Signed-off-by: noemotiovon <757486878@qq.com>
2025-08-25 10:32:21 +08:00
Ruben Ortlam
043fb27d38 vulkan: apply MUL_MAT_ID subgroup optimization to non-coopmat devices (#15524)
* vulkan: use subgroup function for mul_mat_id shader even without coopmat

* vulkan: fix compile warnings

* vulkan: properly check for subgroup size control and require full subgroups for subgroup mul_mat_id

* vulkan: disable subgroup mul_mat_id on devices with subgroups < 16
2025-08-24 19:36:36 +02:00
Georgi Gerganov
b730706a49 kv-cache : support layer reuse (#15504)
* kv-cache : support layer reuse

ggml-ci

* cont : update comments [no ci]
2025-08-24 13:07:07 +03:00
Jeff Bolz
c9a24fb932 vulkan: Support FA with any multiple of 8 head sizes (#15537)
The scalar FA shader already handled multiples of 8. The coopmat1 FA
shader assumed 16x16x16 and the shared memory allocations need the HSK
dimensions padded to a multiple of 16. NVIDIA's coopmat2 implementation
requires multiples of 16 for N and K, and needs the matrix dimensions
padded and loads clamped.

Store the FA pipelines in a map, indexed by the pipeline state.
2025-08-24 11:24:25 +02:00
Ruben Ortlam
a9c6ffcbfa vulkan: enable Conv2D for Apple after MoltenVK fixed the bug (#15526) 2025-08-24 10:48:53 +02:00
Jeff Bolz
e78cf0d4b1 vulkan: workaround MoltenVK compile failure in multi_add (#15506)
* vulkan: workaround MoltenVK compile failure in multi_add

* Update ggml/src/ggml-vulkan/vulkan-shaders/multi_add.comp

Co-authored-by: 0cc4m <picard12@live.de>
2025-08-24 10:48:21 +02:00
Johannes Gäßler
710dfc465a CUDA: fix half2 -> half conversion for HIP (#15529) 2025-08-23 21:37:06 +02:00
Jeff Bolz
611f419cff vulkan: optimize rms_norm, and allow the work to spread across multiple SMs (#15281)
* vulkan: optimize rms_norm, and allow the work to spread across multiple SMs

There are really two parts to this change:
(1) Some optimizations similar to what we have in soft_max, to unroll with
different numbers of iterations.
(2) A fusion optimization where we detect add followed by rms_norm, and make
the add shader atomically accumulate the values^2 into memory. Then the
rms_norm shader can just load that sum. This allows the rms_norm to be
parallelized across multiple workgroups, it just becomes a simple per-element
multiply.

The fusion optimization is currently only applied when the rms_norm is on a
single vector. This previously always ran on a single SM. It could apply more
broadly, but when there are other dimensions the work can already spread across
SMs, and there would be some complexity to tracking multiple atomic sums.

* Change add+rms_norm optimization to write out an array of partial sums
rather than using atomic add, to make it deterministic. The rms_norm
shader fetches a subgroup's worth in parallel and uses subgroupAdd to
add them up.

* complete rebase against fused adds - multi_add shader can also compute partial sums

* fix validation errors

* disable add_rms_fusion for Intel due to possible driver bug

* resolve against #15489, sync after clearing partial sums
2025-08-23 13:16:17 -05:00
Piotr Wilkin (ilintar)
b1afcab804 model : add support for Seed-OSS (#15490)
* First draft

* Fix linter errors

* Added missing sinks nullptr

* Don't forget the llama-arch!

* We're through to the generation stage.

* Fix post-attention norm

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Fix RoPE type

* Fix tensor name and reorder llm_types

* Update gguf-py/gguf/constants.py

Remove nonexistent FFN_POST_NORM tensor

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Add basic chat template

* Add chat template tests

* Remake chat template test

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-chat.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Reorder llm type descriptions

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-08-23 15:21:52 +02:00
Johannes Gäßler
9ef536907d scripts: fix compare-llama-bench.py (#15521) 2025-08-23 13:58:58 +03:00
LaffeyNyaa
21dc4ddaf2 chat : fix debug build assertion in trim function (#15520) 2025-08-23 10:38:30 +02:00
Jeff Bolz
289bf4113e vulkan: Rewrite synchronization to allow some overlap between nodes (#15489)
Track a list of nodes that need synchronization, and only sync if the new node
depends on them (or overwrites them). This allows some overlap which can
improve performance, and centralizes a big chunk of the synchronization logic.

The remaining synchronization logic involves writes to memory other than the
nodes, e.g. for dequantization or split_k. Each of these allocations has a bool
indicating whether they were in use and need to be synced. This should be
checked before they are written to, and set to true after they are done being
consumed.
2025-08-23 09:33:36 +02:00
R0CKSTAR
b55f06e1aa vulkan.Dockerfile: install vulkan SDK using tarball (#15282)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-08-23 08:58:57 +02:00
Acly
0a9b43e507 vulkan : support ggml_mean (#15393)
* vulkan : support ggml_mean

* vulkan : support sum, sum_rows and mean with non-contiguous tensors

* vulkan : fix subbuffer size not accounting for misalign offset

* tests : add backend-op tests for non-contiguous sum_rows

* cuda : require contiguous src for SUM_ROWS, MEAN support
* sycl : require contiguous src for SUM, SUM_ROWS, ARGSORT support

* require ggml_contiguous_rows in supports_op and expect nb00=1 in the shader
2025-08-23 08:35:21 +02:00
Jeff Bolz
330c3d2d21 vulkan: optimize mul_mat_id loading row ids into shared memory (#15427)
- Spread the work across the whole workgroup. Using more threads seems to
far outweigh the synchronization overhead.
- Specialize the code for when the division is by a power of two.
2025-08-23 08:31:54 +02:00
Johannes Gäßler
e92734d51b test-opt: allow slight inprecision (#15503) 2025-08-22 23:47:01 +02:00
Reese Levine
45363632cb ggml WebGPU: add support for quantization types (#15440)
* Begin work on set_rows

* Work on set rows

* Add error buffers for reporting unsupported SET_ROWS indices

* Remove extra comments

* Work on templating for different types in shaders

* Work on shader type generation

* Working q4_0 mul_mat and some templating for different types

* Add q4_0_f16 matmul and fix device init

* Add matmul support for basic quantization types

* Add q2_k and q3_k quantization

* Add rest of k-quants

* Get firt i-quant working

* Closer to supporting all i-quants

* Support rest of i-quants

* Cleanup code

* Fix python formatting

* debug

* Bugfix for memset

* Add padding to end of buffers on creation

* Simplify bit-shifting

* Update usage of StringView
2025-08-22 11:28:03 -07:00
Aldehir Rojas
32732f2459 model : gpt-oss add response_format support (#15494) 2025-08-22 11:04:08 -05:00
rmatif
92f7f0a53c ggml: add conv3d op (#15182)
* add conv3d

* bump GGML_OP_COUNT
2025-08-22 15:33:15 +02:00
Yavor Ivanov
b1ab91821f cuda : add Pad Reflect 1D support (#14659)
* Add Pad Reflect 1D CUDA support

* Update ggml/src/ggml-cuda/pad_reflect_1d.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-08-22 13:06:29 +02:00
Georgi Gerganov
9ebebef62f llama : remove KV cache defragmentation logic (#15473)
ggml-ci
2025-08-22 12:22:13 +03:00
Aaron Teo
ad5c975c2d ggml-cpu: Support Q5_0 and Q5_1 on s390x (#15486)
* ggml-cpu: initial q5_0 impl for s390x

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: updated q5_0 code for better performance

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: use optimised hsum for better performance

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: introduce q5_1 simd + refactor q5_0

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix incorrect return type vec_hsum

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: q5_0 incomplete refactor + table_b2b_0 activation

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: refactor q5_1

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: q5_1 update loop unroll to 4

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: update q5_0 unroll to 4

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: update build-s390x docs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: update unused variables q5_0

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* docs: update the last update date

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-08-22 16:11:04 +08:00
65a
4afb0a746f server : Support multimodal completion and embeddings prompts in JSON format (#15108)
- Use server_tokens in more places in server and util.cpp
- Convert most functions that used llama_tokens to server_tokens
- Modify input tokenizer to handle JSON objects as subprompts
- Break out MTMD prompt parsing into utility function
- Support JSON objects with multimodal_data arrays for MTMD prompts along with other existing types
- Add capability to model endpoint to indicate if client can send multimodal data
- Add tests.
2025-08-22 10:10:14 +02:00
Tarek Dakhran
e288693669 readme : model : mtdm : lfm2 improvements (#15476)
* Support untied embeddings

* Increase number of image tokens to 1024

* Add LFM2-VL to readme

* Actually use untied embeddings
2025-08-22 09:29:08 +02:00
Chenguang Li
a0f98dd604 CANN: Optimize RMS_NORM using cache (#15419)
* [CANN] Optimize RMS_NORM using cache

Signed-off-by: noemotiovon <757486878@qq.com>

* fix typo

Signed-off-by: noemotiovon <757486878@qq.com>

* fix review comment

Signed-off-by: noemotiovon <757486878@qq.com>

* codestyle adjustment

Signed-off-by: noemotiovon <757486878@qq.com>

---------

Signed-off-by: noemotiovon <757486878@qq.com>
2025-08-22 14:12:07 +08:00
Diego Devesa
54a241f505 sched : fix possible use of wrong ids tensor when offloading moe prompt processing (#15488) 2025-08-21 23:09:32 +02:00
Georgi Gerganov
cd36b5e5c7 llama : remove deprecated llama_kv_self API (#15472)
ggml-ci
2025-08-21 19:13:45 +03:00
Georgi Gerganov
3f196be84b graph : remove build_attn_with_sinks overload (#15469)
ggml-ci
2025-08-21 18:44:45 +03:00
Acly
97ae5961a4 vulkan : support conv_2d_dw with f16 weights (#15392) 2025-08-21 17:01:51 +02:00
Dong Won Kim
20c2dac8c6 vulkan: add exp operation (#15456)
Co-authored-by: aeseulgi <kim2h7903@gmail.com>
2025-08-21 17:00:16 +02:00
Jeff Bolz
96452a3fa4 vulkan: Reuse conversion results in prealloc_y (#15410)
* vulkan: Reuse conversion results in prealloc_y

Cache the pipeline and tensor that were most recently used to fill prealloc_y,
and skip the conversion if the current pipeline/tensor match.

* don't use shared pointer for prealloc_y_last_pipeline_used
2025-08-21 16:55:00 +02:00
Jie Fu (傅杰)
9ad5e60dba examples : fix some typos in examples/model-conversion/README.md (#15477)
Signed-off-by: Jie Fu <jiefu@tencent.com>
2025-08-21 16:53:13 +02:00
Georgi Gerganov
715a6db02c kv-cache : drop the "unified" prefix (#15467)
* kv-cache : drop the "unified" prefix

ggml-ci

* cont : fix comment [no ci]
2025-08-21 17:00:33 +03:00
Jie Fu (傅杰)
ad294df03f examples : install torch-cpu for model conversion tool/example (#15475)
Signed-off-by: Jie Fu <jiefu@tencent.com>
2025-08-21 15:42:34 +02:00
Ali Tariq
029bb39eb1 ci : enable RVV1.0 native build (#15386)
* Changed the CI file to hw

* Changed the CI file to hw

* Added to sudoers for apt

* Removed the clone command and used checkout

* Added libcurl

* Added gcc-14

* Checking gcc --version

* added gcc-14 symlink

* added CC and C++ variables

* Added the gguf weight

* Changed the weights path

* Added system specification

* Removed white spaces

* ci: Replace Jenkins riscv native build Cloud-V pipeline with GitHub Actions workflow

Removed the legacy .devops/cloud-v-pipeline Jenkins CI configuration and introduced .github/workflows/build-riscv-native.yml for native RISC-V builds using GitHub Actions.

* removed trailing whitespaces

* Added the trigger at PR creation

* Corrected OS name

* Added ccache as setup package

* Added ccache for self-hosted runner

* Added directory for ccache size storage

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Changed the build command and added ccache debug log

* Added the base dir for the ccache

* Re-trigger CI

* Cleanup and refactored ccache steps

* Cleanup and refactored ccache steps

---------

Co-authored-by: Akif Ejaz <akifejaz40@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-08-21 14:52:16 +02:00
Georgi Gerganov
30649cab65 ci : continue file download with wget (#15471)
ggml-ci
2025-08-21 13:42:55 +03:00
Daniel Bevenius
2758fa10da examples : add model conversion tool/example (#15455)
* examples : add model conversion tool/example

This commit adds an "example/tool" that is intended to help in the
process of converting models to GGUF. Currently it supports normal
causal models and embedding models. The readme contains instructions and
command to guide through the process.

The motivation for this to have a structured and repeatable process for
model conversions and hopefully with time improve upon it to make the
process easier and more reliable. We have started to use this for new
model conversions internally and will continue doing so and improve it
as we go along. Perhaps with time this should be placed in a different
directory than the examples directory, but for now it seems like a good
place to keep it while we are still developing it.

* squash! examples : add model conversion tool/example

Remove dependency on scikit-learn in model conversion example.

* squash! examples : add model conversion tool/example

Update transformer dep to use non-dev version. And also import
`AutoModelForCausalLM` instead of `AutoModel` to ensure compatibility
with the latest version.

* squash! examples : add model conversion tool/example

Remove the logits requirements file from the all requirements file.
2025-08-21 12:16:54 +02:00
343 changed files with 35250 additions and 13815 deletions

View File

@@ -22,7 +22,14 @@ AllowShortIfStatementsOnASingleLine: Never
AllowShortLambdasOnASingleLine: Inline
AllowShortLoopsOnASingleLine: false
AlwaysBreakBeforeMultilineStrings: true
BinPackArguments: false
# Treat CUDA keywords/attributes as "attribute macros" and avoid breaking lines inside them
AttributeMacros:
- __host__
- __device__
- __global__
- __forceinline__
- __launch_bounds__
BinPackArguments: true
BinPackParameters: false # OnePerLine
BitFieldColonSpacing: Both
BreakBeforeBraces: Custom # Attach

View File

@@ -4,7 +4,7 @@ ARG UBUNTU_VERSION=24.04
ARG ROCM_VERSION=6.4
ARG AMDGPU_VERSION=6.4
# Target the CUDA build image
# Target the ROCm build image
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
### Build image
@@ -15,16 +15,13 @@ FROM ${BASE_ROCM_DEV_CONTAINER} AS build
# This is mostly tied to rocBLAS supported archs.
# gfx803, gfx900, gfx1032, gfx1101, gfx1102,not officialy supported
# gfx906 is deprecated
#check https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.2.4/reference/system-requirements.html
#check https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.4.1/reference/system-requirements.html
ARG ROCM_DOCKER_ARCH='gfx803,gfx900,gfx906,gfx908,gfx90a,gfx942,gfx1010,gfx1030,gfx1032,gfx1100,gfx1101,gfx1102'
#ARG ROCM_DOCKER_ARCH=gfx1100
ARG ROCM_DOCKER_ARCH='gfx803;gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1010;gfx1030;gfx1032;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201;gfx1151'
#ARG ROCM_DOCKER_ARCH='gfx1151'
# Set nvcc architectured
# Set ROCm architectures
ENV AMDGPU_TARGETS=${ROCM_DOCKER_ARCH}
# Enable ROCm
# ENV CC=/opt/rocm/llvm/bin/clang
# ENV CXX=/opt/rocm/llvm/bin/clang++
RUN apt-get update \
&& apt-get install -y \
@@ -39,8 +36,16 @@ WORKDIR /app
COPY . .
RUN git clone https://github.com/rocm/rocwmma --branch develop --depth 1
RUN HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$ROCM_DOCKER_ARCH -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DCMAKE_BUILD_TYPE=Release -DLLAMA_BUILD_TESTS=OFF \
cmake -S . -B build \
-DGGML_HIP=ON \
-DGGML_HIP_ROCWMMA_FATTN=ON \
-DCMAKE_HIP_FLAGS="-I$(pwd)/rocwmma/library/include/" \
-DAMDGPU_TARGETS="$ROCM_DOCKER_ARCH" \
-DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON \
-DCMAKE_BUILD_TYPE=Release -DLLAMA_BUILD_TESTS=OFF \
&& cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib \

View File

@@ -2,14 +2,30 @@ ARG UBUNTU_VERSION=24.04
FROM ubuntu:$UBUNTU_VERSION AS build
# Install build tools
RUN apt update && apt install -y git build-essential cmake wget
# Ref: https://vulkan.lunarg.com/doc/sdk/latest/linux/getting_started.html
# Install Vulkan SDK and cURL
RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-noble.list https://packages.lunarg.com/vulkan/lunarg-vulkan-noble.list && \
apt update -y && \
apt-get install -y vulkan-sdk libcurl4-openssl-dev curl
# Install build tools
RUN apt update && apt install -y git build-essential cmake wget xz-utils
# Install Vulkan SDK
ARG VULKAN_VERSION=1.4.321.1
RUN ARCH=$(uname -m) && \
wget -qO /tmp/vulkan-sdk.tar.xz https://sdk.lunarg.com/sdk/download/${VULKAN_VERSION}/linux/vulkan-sdk-linux-${ARCH}-${VULKAN_VERSION}.tar.xz && \
mkdir -p /opt/vulkan && \
tar -xf /tmp/vulkan-sdk.tar.xz -C /tmp --strip-components=1 && \
mv /tmp/${ARCH}/* /opt/vulkan/ && \
rm -rf /tmp/*
# Install cURL and Vulkan SDK dependencies
RUN apt install -y libcurl4-openssl-dev curl \
libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev
# Set environment variables
ENV VULKAN_SDK=/opt/vulkan
ENV PATH=$VULKAN_SDK/bin:$PATH
ENV LD_LIBRARY_PATH=$VULKAN_SDK/lib:$LD_LIBRARY_PATH
ENV CMAKE_PREFIX_PATH=$VULKAN_SDK:$CMAKE_PREFIX_PATH
ENV PKG_CONFIG_PATH=$VULKAN_SDK/lib/pkgconfig:$PKG_CONFIG_PATH
# Build it
WORKDIR /app

View File

@@ -1,10 +1,11 @@
name: Build on RISCV Linux Machine by Cloud-V
on:
pull_request:
workflow_dispatch:
workflow_call:
jobs:
bianbu-riscv64-native: # Bianbu 2.2
debian-13-riscv64-native: # Bianbu 2.2
runs-on: self-hosted
steps:
@@ -20,24 +21,40 @@ jobs:
build-essential \
gcc-14-riscv64-linux-gnu \
g++-14-riscv64-linux-gnu \
ccache \
cmake
- name: Setup ccache
run: |
mkdir -p $HOME/.ccache
ccache -M 5G -d $HOME/.ccache
export CCACHE_LOGFILE=/home/runneruser/ccache_debug/ccache.log
export CCACHE_DEBUGDIR="/home/runneruser/ccache_debug"
echo "$GITHUB_WORKSPACE"
echo "CCACHE_LOGFILE=$CCACHE_LOGFILE" >> $GITHUB_ENV
echo "CCACHE_DEBUGDIR=$CCACHE_DEBUGDIR" >> $GITHUB_ENV
echo "CCACHE_BASEDIR=$GITHUB_WORKSPACE" >> $GITHUB_ENV
echo "CCACHE_DIR=$HOME/.ccache" >> $GITHUB_ENV
- name: Build
run: |
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake -B build \
-DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)

View File

@@ -56,7 +56,7 @@ env:
jobs:
macOS-latest-cmake-arm64:
runs-on: macos-14
runs-on: macos-latest
steps:
- name: Clone
@@ -88,6 +88,7 @@ jobs:
-DGGML_METAL_SHADER_DEBUG=ON \
-DGGML_RPC=ON
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
leaks -atExit -- ./build/bin/test-thread-safety -hf ggml-org/gemma-3-270m-qat-GGUF -ngl 99 -p "$(printf 'hello %.0s' {1..128})" -n 16 -c 512 -ub 32 -np 2 -t 2 -lv 1
- name: Test
id: cmake_test
@@ -126,7 +127,8 @@ jobs:
-DCMAKE_BUILD_RPATH="@loader_path" \
-DLLAMA_FATAL_WARNINGS=ON \
-DGGML_METAL=OFF \
-DGGML_RPC=ON
-DGGML_RPC=ON \
-DCMAKE_OSX_DEPLOYMENT_TARGET=13.3
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
- name: Test
@@ -136,7 +138,7 @@ jobs:
ctest -L main --verbose --timeout 900
macOS-latest-cmake-arm64-webgpu:
runs-on: macos-14
runs-on: macos-latest
steps:
- name: Clone
@@ -709,6 +711,7 @@ jobs:
macOS-latest-swift:
runs-on: macos-latest
needs: ios-xcode-build
strategy:
matrix:
@@ -725,6 +728,12 @@ jobs:
key: macOS-latest-swift
evict-old-files: 1d
- name: Download xcframework artifact
uses: actions/download-artifact@v4
with:
name: llama-xcframework
path: build-apple/llama.xcframework/
- name: Dependencies
id: depends
continue-on-error: true
@@ -746,11 +755,6 @@ jobs:
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64"
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
- name: xcodebuild for swift package
id: xcodebuild
run: |
./build-xcframework.sh
windows-msys2:
runs-on: windows-2025
@@ -1050,9 +1054,13 @@ jobs:
run: examples/sycl/win-build-sycl.bat
windows-latest-cmake-hip:
if: ${{ github.event.inputs.create_release != 'true' }}
runs-on: windows-2022
env:
# The ROCm version must correspond to the version used in the HIP SDK.
ROCM_VERSION: "6.4.2"
HIPSDK_INSTALLER_VERSION: "25.Q3"
steps:
- name: Clone
id: checkout
@@ -1061,23 +1069,46 @@ jobs:
- name: Clone rocWMMA repository
id: clone_rocwmma
run: |
git clone https://github.com/rocm/rocwmma --branch rocm-6.2.4 --depth 1
git clone https://github.com/rocm/rocwmma --branch rocm-${{ env.ROCM_VERSION }} --depth 1
- name: Install
- name: Cache ROCm Installation
id: cache-rocm
uses: actions/cache@v4
with:
path: C:\Program Files\AMD\ROCm
key: rocm-${{ env.HIPSDK_INSTALLER_VERSION }}-${{ runner.os }}
- name: Install ROCm
if: steps.cache-rocm.outputs.cache-hit != 'true'
id: depends
run: |
$ErrorActionPreference = "Stop"
write-host "Downloading AMD HIP SDK Installer"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-${{ env.HIPSDK_INSTALLER_VERSION }}-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
write-host "Installing AMD HIP SDK"
$proc = Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -PassThru
$proc.WaitForExit(600000)
$completed = $proc.WaitForExit(600000)
if (-not $completed) {
Write-Error "ROCm installation timed out after 10 minutes. Killing the process"
$proc.Kill()
exit 1
}
if ($proc.ExitCode -ne 0) {
Write-Error "ROCm installation failed with exit code $($proc.ExitCode)"
exit 1
}
write-host "Completed AMD HIP SDK installation"
- name: Verify ROCm
id: verify
run: |
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
# Find and test ROCm installation
$clangPath = Get-ChildItem 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | Select-Object -First 1
if (-not $clangPath) {
Write-Error "ROCm installation not found"
exit 1
}
& $clangPath.FullName --version
- name: Install ccache
uses: ggml-org/ccache-action@v1.2.16
@@ -1141,8 +1172,17 @@ jobs:
run: |
./build-xcframework.sh
- name: Upload xcframework artifact
uses: actions/upload-artifact@v4
with:
name: llama-xcframework
path: build-apple/llama.xcframework/
retention-days: 1
- name: Build Xcode project
run: xcodebuild -project examples/llama.swiftui/llama.swiftui.xcodeproj -scheme llama.swiftui -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' FRAMEWORK_FOLDER_PATH=./build-ios build
run: |
xcodebuild -downloadPlatform iOS
xcodebuild -project examples/llama.swiftui/llama.swiftui.xcodeproj -scheme llama.swiftui -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' FRAMEWORK_FOLDER_PATH=./build-ios build
android-build:
runs-on: ubuntu-latest

View File

@@ -17,7 +17,7 @@ jobs:
steps:
- uses: actions/stale@v5
with:
exempt-issue-labels: "refactoring,help wanted,good first issue,research,bug,roadmap"
exempt-issue-labels: "refactoring,help wanted,good first issue,research 🔬,bug,roadmap"
days-before-issue-stale: 30
days-before-issue-close: 14
stale-issue-label: "stale"

View File

@@ -108,7 +108,8 @@ jobs:
-DCMAKE_BUILD_WITH_INSTALL_RPATH=ON \
-DLLAMA_FATAL_WARNINGS=ON \
-DGGML_METAL=OFF \
-DGGML_RPC=ON
-DGGML_RPC=ON \
-DCMAKE_OSX_DEPLOYMENT_TARGET=13.3
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
- name: Determine tag name
@@ -528,11 +529,14 @@ jobs:
windows-hip:
runs-on: windows-2022
env:
HIPSDK_INSTALLER_VERSION: "25.Q3"
strategy:
matrix:
include:
- name: "radeon"
gpu_targets: "gfx1100;gfx1101;gfx1102;gfx1030;gfx1031;gfx1032"
gpu_targets: "gfx1151;gfx1200;gfx1201;gfx1100;gfx1101;gfx1102;gfx1030;gfx1031;gfx1032"
steps:
- name: Clone
@@ -542,29 +546,52 @@ jobs:
- name: Clone rocWMMA repository
id: clone_rocwmma
run: |
git clone https://github.com/rocm/rocwmma --branch rocm-6.2.4 --depth 1
git clone https://github.com/rocm/rocwmma --branch develop --depth 1
- name: Cache ROCm Installation
id: cache-rocm
uses: actions/cache@v4
with:
path: C:\Program Files\AMD\ROCm
key: rocm-${{ env.HIPSDK_INSTALLER_VERSION }}-${{ runner.os }}
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: windows-latest-cmake-hip-${{ matrix.name }}-x64
key: windows-latest-cmake-hip-${{ env.HIPSDK_INSTALLER_VERSION }}-${{ matrix.name }}-x64
evict-old-files: 1d
- name: Install
- name: Install ROCm
if: steps.cache-rocm.outputs.cache-hit != 'true'
id: depends
run: |
$ErrorActionPreference = "Stop"
write-host "Downloading AMD HIP SDK Installer"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-${{ env.HIPSDK_INSTALLER_VERSION }}-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
write-host "Installing AMD HIP SDK"
$proc = Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -PassThru
$proc.WaitForExit(600000)
$completed = $proc.WaitForExit(600000)
if (-not $completed) {
Write-Error "ROCm installation timed out after 10 minutes. Killing the process"
$proc.Kill()
exit 1
}
if ($proc.ExitCode -ne 0) {
Write-Error "ROCm installation failed with exit code $($proc.ExitCode)"
exit 1
}
write-host "Completed AMD HIP SDK installation"
- name: Verify ROCm
id: verify
run: |
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
# Find and test ROCm installation
$clangPath = Get-ChildItem 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | Select-Object -First 1
if (-not $clangPath) {
Write-Error "ROCm installation not found"
exit 1
}
& $clangPath.FullName --version
- name: Build
id: cmake_build
@@ -585,9 +612,12 @@ jobs:
-DLLAMA_CURL=OFF
cmake --build build --target ggml-hip -j ${env:NUMBER_OF_PROCESSORS}
md "build\bin\rocblas\library\"
md "build\bin\hipblaslt\library"
cp "${env:HIP_PATH}\bin\hipblas.dll" "build\bin\"
cp "${env:HIP_PATH}\bin\hipblaslt.dll" "build\bin\"
cp "${env:HIP_PATH}\bin\rocblas.dll" "build\bin\"
cp "${env:HIP_PATH}\bin\rocblas\library\*" "build\bin\rocblas\library\"
cp "${env:HIP_PATH}\bin\hipblaslt\library\*" "build\bin\hipblaslt\library\"
- name: Pack artifacts
id: pack_artifacts

View File

@@ -58,6 +58,12 @@ if (MSVC)
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/bigobj>")
endif()
if (CMAKE_SYSTEM_NAME STREQUAL "iOS")
set(LLAMA_TOOLS_INSTALL_DEFAULT OFF)
else()
set(LLAMA_TOOLS_INSTALL_DEFAULT ${LLAMA_STANDALONE})
endif()
#
# option list
#
@@ -82,6 +88,7 @@ option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_TOOLS "llama: build tools" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_SERVER "llama: build server example" ${LLAMA_STANDALONE})
option(LLAMA_TOOLS_INSTALL "llama: install tools" ${LLAMA_TOOLS_INSTALL_DEFAULT})
# 3rd party libs
option(LLAMA_CURL "llama: use libcurl to download model from an URL" ON)

View File

@@ -16,6 +16,9 @@
- Use the following format for the squashed commit title: `<module> : <commit title> (#<issue_number>)`. For example: `utils : fix typo in utils.py (#1234)`
- Optionally pick a `<module>` from here: https://github.com/ggml-org/llama.cpp/wiki/Modules
- Consider adding yourself to [CODEOWNERS](CODEOWNERS)
- Let authors, who are also collaborators, merge their own PRs
- When merging a PR by a contributor, make sure you have a good understanding of the changes
- Be mindful of maintenance: most of the work going into a feature happens after the PR is merged. If the PR author is not committed to contribute long-term, someone else needs to take responsibility (you)
# Coding guidelines

View File

@@ -137,6 +137,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [X] [Trillion-7B-preview](https://huggingface.co/trillionlabs/Trillion-7B-preview)
- [x] [Ling models](https://huggingface.co/collections/inclusionAI/ling-67c51c85b34a7ea0aba94c32)
- [x] [LFM2 models](https://huggingface.co/collections/LiquidAI/lfm2-686d721927015b2ad73eaa38)
- [x] [Hunyuan models](https://huggingface.co/collections/tencent/hunyuan-dense-model-6890632cda26b19119c9c5e7)
#### Multimodal
@@ -151,6 +152,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [x] [Bunny](https://github.com/BAAI-DCAI/Bunny)
- [x] [GLM-EDGE](https://huggingface.co/models?search=glm-edge)
- [x] [Qwen2-VL](https://huggingface.co/collections/Qwen/qwen2-vl-66cee7455501d7126940800d)
- [x] [LFM2-VL](https://huggingface.co/collections/LiquidAI/lfm2-vl-68963bbc84a610f7638d5ffa)
</details>

View File

@@ -106,7 +106,7 @@ function gg_wget {
cd $out
# should not re-download if file is the same
wget -nv -N $url
wget -nv -c -N $url
cd $cwd
}
@@ -270,7 +270,9 @@ function gg_run_ctest_with_model_debug {
local model; model=$(gg_get_model)
cd build-ci-debug
set -e
(LLAMACPP_TEST_MODELFILE="$model" time ctest --output-on-failure -L model) 2>&1 | tee -a $OUT/${ci}-ctest.log
set +e
cd ..
}
@@ -281,7 +283,15 @@ function gg_run_ctest_with_model_release {
local model; model=$(gg_get_model)
cd build-ci-release
set -e
(LLAMACPP_TEST_MODELFILE="$model" time ctest --output-on-failure -L model) 2>&1 | tee -a $OUT/${ci}-ctest.log
# test memory leaks
#if [[ ! -z ${GG_BUILD_METAL} ]]; then
# # TODO: this hangs for some reason ...
# (time leaks -quiet -atExit -- ./bin/test-thread-safety -m $model --parallel 2 -t 2 -p "hello") 2>&1 | tee -a $OUT/${ci}-leaks.log
#fi
set +e
cd ..
}
@@ -386,10 +396,10 @@ function gg_run_open_llama_7b_v2 {
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@@ -520,8 +530,8 @@ function gg_run_pythia_1_4b {
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@@ -651,10 +661,10 @@ function gg_run_pythia_2_8b {
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@@ -860,10 +870,7 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
fi
ret=0
if [ -z ${GG_BUILD_SYCL} ]; then
# SYCL build breaks with debug build flags
test $ret -eq 0 && gg_run ctest_debug
fi
test $ret -eq 0 && gg_run ctest_debug
test $ret -eq 0 && gg_run ctest_release
if [ -z ${GG_BUILD_LOW_PERF} ]; then
@@ -871,9 +878,7 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
test $ret -eq 0 && gg_run rerank_tiny
if [ -z ${GG_BUILD_CLOUD} ] || [ ${GG_BUILD_EXTRA_TESTS_0} ]; then
if [ -z ${GG_BUILD_SYCL} ]; then
test $ret -eq 0 && gg_run test_scripts_debug
fi
test $ret -eq 0 && gg_run test_scripts_debug
test $ret -eq 0 && gg_run test_scripts_release
fi
@@ -884,9 +889,7 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
test $ret -eq 0 && gg_run pythia_2_8b
#test $ret -eq 0 && gg_run open_llama_7b_v2
fi
if [ -z ${GG_BUILD_SYCL} ]; then
test $ret -eq 0 && gg_run ctest_with_model_debug
fi
test $ret -eq 0 && gg_run ctest_with_model_debug
test $ret -eq 0 && gg_run ctest_with_model_release
fi
fi

View File

@@ -745,6 +745,124 @@ std::pair<long, std::vector<char>> common_remote_get_content(const std::string &
#endif // LLAMA_USE_CURL
//
// Docker registry functions
//
static std::string common_docker_get_token(const std::string & repo) {
std::string url = "https://auth.docker.io/token?service=registry.docker.io&scope=repository:" + repo + ":pull";
common_remote_params params;
auto res = common_remote_get_content(url, params);
if (res.first != 200) {
throw std::runtime_error("Failed to get Docker registry token, HTTP code: " + std::to_string(res.first));
}
std::string response_str(res.second.begin(), res.second.end());
nlohmann::ordered_json response = nlohmann::ordered_json::parse(response_str);
if (!response.contains("token")) {
throw std::runtime_error("Docker registry token response missing 'token' field");
}
return response["token"].get<std::string>();
}
static std::string common_docker_resolve_model(const std::string & docker) {
// Parse ai/smollm2:135M-Q4_K_M
size_t colon_pos = docker.find(':');
std::string repo, tag;
if (colon_pos != std::string::npos) {
repo = docker.substr(0, colon_pos);
tag = docker.substr(colon_pos + 1);
} else {
repo = docker;
tag = "latest";
}
// ai/ is the default
size_t slash_pos = docker.find('/');
if (slash_pos == std::string::npos) {
repo.insert(0, "ai/");
}
LOG_INF("%s: Downloading Docker Model: %s:%s\n", __func__, repo.c_str(), tag.c_str());
try {
// --- helper: digest validation ---
auto validate_oci_digest = [](const std::string & digest) -> std::string {
// Expected: algo:hex ; start with sha256 (64 hex chars)
// You can extend this map if supporting other algorithms in future.
static const std::regex re("^sha256:([a-fA-F0-9]{64})$");
std::smatch m;
if (!std::regex_match(digest, m, re)) {
throw std::runtime_error("Invalid OCI digest format received in manifest: " + digest);
}
// normalize hex to lowercase
std::string normalized = digest;
std::transform(normalized.begin()+7, normalized.end(), normalized.begin()+7, [](unsigned char c){
return std::tolower(c);
});
return normalized;
};
std::string token = common_docker_get_token(repo); // Get authentication token
// Get manifest
const std::string url_prefix = "https://registry-1.docker.io/v2/" + repo;
std::string manifest_url = url_prefix + "/manifests/" + tag;
common_remote_params manifest_params;
manifest_params.headers.push_back("Authorization: Bearer " + token);
manifest_params.headers.push_back(
"Accept: application/vnd.docker.distribution.manifest.v2+json,application/vnd.oci.image.manifest.v1+json");
auto manifest_res = common_remote_get_content(manifest_url, manifest_params);
if (manifest_res.first != 200) {
throw std::runtime_error("Failed to get Docker manifest, HTTP code: " + std::to_string(manifest_res.first));
}
std::string manifest_str(manifest_res.second.begin(), manifest_res.second.end());
nlohmann::ordered_json manifest = nlohmann::ordered_json::parse(manifest_str);
std::string gguf_digest; // Find the GGUF layer
if (manifest.contains("layers")) {
for (const auto & layer : manifest["layers"]) {
if (layer.contains("mediaType")) {
std::string media_type = layer["mediaType"].get<std::string>();
if (media_type == "application/vnd.docker.ai.gguf.v3" ||
media_type.find("gguf") != std::string::npos) {
gguf_digest = layer["digest"].get<std::string>();
break;
}
}
}
}
if (gguf_digest.empty()) {
throw std::runtime_error("No GGUF layer found in Docker manifest");
}
// Validate & normalize digest
gguf_digest = validate_oci_digest(gguf_digest);
LOG_DBG("%s: Using validated digest: %s\n", __func__, gguf_digest.c_str());
// Prepare local filename
std::string model_filename = repo;
std::replace(model_filename.begin(), model_filename.end(), '/', '_');
model_filename += "_" + tag + ".gguf";
std::string local_path = fs_get_cache_file(model_filename);
const std::string blob_url = url_prefix + "/blobs/" + gguf_digest;
if (!common_download_file_single(blob_url, local_path, token, false)) {
throw std::runtime_error("Failed to download Docker Model");
}
LOG_INF("%s: Downloaded Docker Model to: %s\n", __func__, local_path.c_str());
return local_path;
} catch (const std::exception & e) {
LOG_ERR("%s: Docker Model download failed: %s\n", __func__, e.what());
throw;
}
}
//
// utils
//
@@ -795,7 +913,9 @@ static handle_model_result common_params_handle_model(
handle_model_result result;
// handle pre-fill default model path and url based on hf_repo and hf_file
{
if (!model.hf_repo.empty()) {
if (!model.docker_repo.empty()) { // Handle Docker URLs by resolving them to local paths
model.path = common_docker_resolve_model(model.docker_repo);
} else if (!model.hf_repo.empty()) {
// short-hand to avoid specifying --hf-file -> default it to --model
if (model.hf_file.empty()) {
if (model.path.empty()) {
@@ -1106,7 +1226,7 @@ static void common_params_print_completion(common_params_context & ctx_arg) {
printf("\"\n\n");
printf(" case \"$prev\" in\n");
printf(" --model)\n");
printf(" --model|-m)\n");
printf(" COMPREPLY=( $(compgen -f -X '!*.gguf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
printf(" return 0\n");
printf(" ;;\n");
@@ -1184,7 +1304,7 @@ static std::vector<ggml_backend_dev_t> parse_device_list(const std::string & val
} else {
for (const auto & device : dev_names) {
auto * dev = ggml_backend_dev_by_name(device.c_str());
if (!dev || ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_GPU) {
if (!dev || ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
throw std::invalid_argument(string_format("invalid device: %s", device.c_str()));
}
devices.push_back(dev);
@@ -1194,7 +1314,7 @@ static std::vector<ggml_backend_dev_t> parse_device_list(const std::string & val
return devices;
}
static void add_rpc_devices(std::string servers) {
static void add_rpc_devices(const std::string & servers) {
auto rpc_servers = string_split<std::string>(servers, ',');
if (rpc_servers.empty()) {
throw std::invalid_argument("no RPC servers specified");
@@ -1263,6 +1383,18 @@ static std::string list_builtin_chat_templates() {
return msg.str();
}
static bool is_truthy(const std::string & value) {
return value == "on" || value == "enabled" || value == "1";
}
static bool is_falsey(const std::string & value) {
return value == "off" || value == "disabled" || value == "0";
}
static bool is_autoy(const std::string & value) {
return value == "auto" || value == "-1";
}
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
// load dynamic backends
ggml_backend_load_all();
@@ -1544,13 +1676,21 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.n_chunks = value;
}
).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_RETRIEVAL}));
add_opt(common_arg(
{"-fa", "--flash-attn"},
string_format("enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled"),
[](common_params & params) {
params.flash_attn = true;
}
).set_env("LLAMA_ARG_FLASH_ATTN"));
add_opt(common_arg({ "-fa", "--flash-attn" }, "[on|off|auto]",
string_format("set Flash Attention use ('on', 'off', or 'auto', default: '%s')",
llama_flash_attn_type_name(params.flash_attn_type)),
[](common_params & params, const std::string & value) {
if (is_truthy(value)) {
params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_ENABLED;
} else if (is_falsey(value)) {
params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_DISABLED;
} else if (is_autoy(value)) {
params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_AUTO;
} else {
throw std::runtime_error(
string_format("error: unkown value for --flash-attn: '%s'\n", value.c_str()));
}
}).set_env("LLAMA_ARG_FLASH_ATTN"));
add_opt(common_arg(
{"-p", "--prompt"}, "PROMPT",
"prompt to start generation with; for system message, use -sys",
@@ -1564,7 +1704,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params, const std::string & value) {
params.system_prompt = value;
}
).set_examples({LLAMA_EXAMPLE_MAIN}));
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_DIFFUSION}));
add_opt(common_arg(
{"--no-perf"},
string_format("disable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"),
@@ -1755,7 +1895,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params) {
params.warmup = false;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL}));
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_PERPLEXITY}));
add_opt(common_arg(
{"--spm-infill"},
string_format(
@@ -2254,9 +2394,11 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
add_opt(common_arg(
{"-dt", "--defrag-thold"}, "N",
string_format("KV cache defragmentation threshold (default: %.1f, < 0 - disabled)", (double)params.defrag_thold),
string_format("KV cache defragmentation threshold (DEPRECATED)"),
[](common_params & params, const std::string & value) {
params.defrag_thold = std::stof(value);
GGML_UNUSED(params);
GGML_UNUSED(value);
LOG_WRN("DEPRECATED: --defrag-thold is deprecated and no longer necessary to specify\n");
}
).set_env("LLAMA_ARG_DEFRAG_THOLD"));
add_opt(common_arg(
@@ -2374,24 +2516,15 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--list-devices"},
"print list of available devices and exit",
[](common_params &) {
std::vector<ggml_backend_dev_t> rpc_devices;
std::vector<ggml_backend_dev_t> all_devices;
std::vector<ggml_backend_dev_t> devices;
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
auto * dev = ggml_backend_dev_get(i);
if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_GPU) {
ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
if (ggml_backend_reg_name(reg) == std::string("RPC")) {
rpc_devices.push_back(dev);
} else {
all_devices.push_back(dev);
}
if (ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_CPU) {
devices.push_back(dev);
}
}
// insert RPC devices in front
all_devices.insert(all_devices.begin(), rpc_devices.begin(), rpc_devices.end());
printf("Available devices:\n");
for (size_t i = 0; i < all_devices.size(); ++i) {
auto * dev = all_devices[i];
for (auto * dev : devices) {
size_t free, total;
ggml_backend_dev_memory(dev, &free, &total);
printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), total / 1024 / 1024, free / 1024 / 1024);
@@ -2415,7 +2548,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--cpu-moe", "-cmoe"},
"keep all Mixture of Experts (MoE) weights in the CPU",
[](common_params & params) {
params.tensor_buft_overrides.push_back({"\\.ffn_(up|down|gate)_exps", ggml_backend_cpu_buffer_type()});
params.tensor_buft_overrides.push_back(llm_ffn_exps_cpu_override());
}
).set_env("LLAMA_ARG_CPU_MOE"));
add_opt(common_arg(
@@ -2428,7 +2561,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
for (int i = 0; i < value; ++i) {
// keep strings alive and avoid leaking memory by storing them in a static vector
static std::list<std::string> buft_overrides;
buft_overrides.push_back(string_format("blk\\.%d\\.ffn_(up|down|gate)_exps", i));
buft_overrides.push_back(llm_ffn_exps_block_regex(i));
params.tensor_buft_overrides.push_back({buft_overrides.back().c_str(), ggml_backend_cpu_buffer_type()});
}
}
@@ -2437,7 +2570,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--cpu-moe-draft", "-cmoed"},
"keep all Mixture of Experts (MoE) weights in the CPU for the draft model",
[](common_params & params) {
params.speculative.tensor_buft_overrides.push_back({"\\.ffn_(up|down|gate)_exps", ggml_backend_cpu_buffer_type()});
params.speculative.tensor_buft_overrides.push_back(llm_ffn_exps_cpu_override());
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CPU_MOE_DRAFT"));
add_opt(common_arg(
@@ -2449,14 +2582,14 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
for (int i = 0; i < value; ++i) {
static std::list<std::string> buft_overrides_draft;
buft_overrides_draft.push_back(string_format("blk\\.%d\\.ffn_(up|down|gate)_exps", i));
buft_overrides_draft.push_back(llm_ffn_exps_block_regex(i));
params.speculative.tensor_buft_overrides.push_back({buft_overrides_draft.back().c_str(), ggml_backend_cpu_buffer_type()});
}
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_N_CPU_MOE_DRAFT"));
add_opt(common_arg(
{"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
"number of layers to store in VRAM",
string_format("max. number of layers to store in VRAM (default: %d)", params.n_gpu_layers),
[](common_params & params, int value) {
params.n_gpu_layers = value;
if (!llama_supports_gpu_offload()) {
@@ -2553,7 +2686,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--lora"}, "FNAME",
"path to LoRA adapter (can be repeated to use multiple adapters)",
[](common_params & params, const std::string & value) {
params.lora_adapters.push_back({ std::string(value), 1.0, nullptr });
params.lora_adapters.push_back({ std::string(value), 1.0, "", "", nullptr });
}
// we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
@@ -2561,7 +2694,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--lora-scaled"}, "FNAME", "SCALE",
"path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters)",
[](common_params & params, const std::string & fname, const std::string & scale) {
params.lora_adapters.push_back({ fname, std::stof(scale), nullptr });
params.lora_adapters.push_back({ fname, std::stof(scale), "", "", nullptr });
}
// we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
@@ -2614,6 +2747,15 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.model.url = value;
}
).set_env("LLAMA_ARG_MODEL_URL"));
add_opt(common_arg(
{ "-dr", "--docker-repo" }, "[<repo>/]<model>[:quant]",
"Docker Hub model repository. repo is optional, default to ai/. quant is optional, default to :latest.\n"
"example: gemma3\n"
"(default: unused)",
[](common_params & params, const std::string & value) {
params.model.docker_repo = value;
}
).set_env("LLAMA_ARG_DOCKER_REPO"));
add_opt(common_arg(
{"-hf", "-hfr", "--hf-repo"}, "<user>/<model>[:quant]",
"Hugging Face model repository; quant is optional, case-insensitive, default to Q4_K_M, or falls back to the first file in the repo if Q4_K_M doesn't exist.\n"
@@ -2952,13 +3094,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.endpoint_metrics = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_METRICS"));
add_opt(common_arg(
{"--slots"},
string_format("enable slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"),
[](common_params & params) {
params.endpoint_slots = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS"));
add_opt(common_arg(
{"--props"},
string_format("enable changing global properties via POST /props (default: %s)", params.endpoint_props ? "enabled" : "disabled"),
@@ -2966,6 +3101,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.endpoint_props = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_PROPS"));
add_opt(common_arg(
{"--slots"},
string_format("enable slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"),
[](common_params & params) {
params.endpoint_slots = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS"));
add_opt(common_arg(
{"--no-slots"},
"disables slots monitoring endpoint",
@@ -3124,13 +3266,21 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
common_log_set_file(common_log_main(), value.c_str());
}
));
add_opt(common_arg(
{"--log-colors"},
"Enable colored logging",
[](common_params &) {
common_log_set_colors(common_log_main(), true);
}
).set_env("LLAMA_LOG_COLORS"));
add_opt(common_arg({ "--log-colors" }, "[on|off|auto]",
"Set colored logging ('on', 'off', or 'auto', default: 'auto')\n"
"'auto' enables colors when output is to a terminal",
[](common_params &, const std::string & value) {
if (is_truthy(value)) {
common_log_set_colors(common_log_main(), LOG_COLORS_ENABLED);
} else if (is_falsey(value)) {
common_log_set_colors(common_log_main(), LOG_COLORS_DISABLED);
} else if (is_autoy(value)) {
common_log_set_colors(common_log_main(), LOG_COLORS_AUTO);
} else {
throw std::invalid_argument(
string_format("error: unkown value for --log-colors: '%s'\n", value.c_str()));
}
}).set_env("LLAMA_LOG_COLORS"));
add_opt(common_arg(
{"-v", "--verbose", "--log-verbose"},
"Set verbosity level to infinity (i.e. log all messages, useful for debugging)",
@@ -3457,8 +3607,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF";
params.model.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf";
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
params.n_ubatch = 1024;
params.n_batch = 1024;
params.n_ctx = 0;
@@ -3473,8 +3621,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF";
params.model.hf_file = "qwen2.5-coder-3b-q8_0.gguf";
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
params.n_ubatch = 1024;
params.n_batch = 1024;
params.n_ctx = 0;
@@ -3489,8 +3635,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
params.n_ubatch = 1024;
params.n_batch = 1024;
params.n_ctx = 0;
@@ -3506,10 +3650,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.speculative.n_gpu_layers = 99;
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
params.n_ubatch = 1024;
params.n_batch = 1024;
params.n_ctx = 0;
@@ -3525,10 +3666,21 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.model.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.speculative.n_gpu_layers = 99;
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
params.n_ubatch = 1024;
params.n_batch = 1024;
params.n_ctx = 0;
params.n_cache_reuse = 256;
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--fim-qwen-30b-default"},
string_format("use default Qwen 3 Coder 30B A3B Instruct (note: can download weights from the internet)"),
[](common_params & params) {
params.model.hf_repo = "ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF";
params.model.hf_file = "qwen3-coder-30b-a3b-instruct-q8_0.gguf";
params.port = 8012;
params.n_ubatch = 1024;
params.n_batch = 1024;
params.n_ctx = 0;

View File

@@ -163,6 +163,19 @@ common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::strin
throw std::runtime_error("Invalid tool_choice: " + tool_choice);
}
bool common_chat_templates_support_enable_thinking(const common_chat_templates * chat_templates) {
common_chat_templates_inputs dummy_inputs;
common_chat_msg msg;
msg.role = "user";
msg.content = "test";
dummy_inputs.messages = {msg};
dummy_inputs.enable_thinking = false;
const auto rendered_no_thinking = common_chat_templates_apply(chat_templates, dummy_inputs);
dummy_inputs.enable_thinking = true;
const auto rendered_with_thinking = common_chat_templates_apply(chat_templates, dummy_inputs);
return rendered_no_thinking.prompt != rendered_with_thinking.prompt;
}
template <>
std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const json & messages) {
std::vector<common_chat_msg> msgs;
@@ -618,10 +631,13 @@ const char * common_chat_format_name(common_chat_format format) {
case COMMON_CHAT_FORMAT_FIREFUNCTION_V2: return "FireFunction v2";
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2: return "Functionary v3.2";
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1: return "Functionary v3.1 Llama 3.1";
case COMMON_CHAT_FORMAT_DEEPSEEK_V3_1: return "DeepSeek V3.1";
case COMMON_CHAT_FORMAT_HERMES_2_PRO: return "Hermes 2 Pro";
case COMMON_CHAT_FORMAT_COMMAND_R7B: return "Command R7B";
case COMMON_CHAT_FORMAT_GRANITE: return "Granite";
case COMMON_CHAT_FORMAT_GPT_OSS: return "GPT-OSS";
case COMMON_CHAT_FORMAT_SEED_OSS: return "Seed-OSS";
case COMMON_CHAT_FORMAT_NEMOTRON_V2: return "Nemotron V2";
default:
throw std::runtime_error("Unknown chat format");
}
@@ -683,11 +699,13 @@ static void parse_json_tool_calls(
size_t from = std::string::npos;
auto first = true;
while (true) {
auto start_pos = builder.pos();
auto res = function_regex_start_only && first
? builder.try_consume_regex(*function_regex_start_only)
: function_regex
? builder.try_find_regex(*function_regex, from)
: std::nullopt;
if (res) {
std::string name;
if (get_function_name) {
@@ -722,6 +740,8 @@ static void parse_json_tool_calls(
return;
}
throw common_chat_msg_partial_exception("incomplete tool call");
} else {
builder.move_to(start_pos);
}
break;
}
@@ -1183,6 +1203,67 @@ static common_chat_params common_chat_params_init_llama_3_x(const common_chat_te
});
return data;
}
static common_chat_params common_chat_params_init_nemotron_v2(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
// Generate the prompt using the apply() function with the template
data.prompt = apply(tmpl, inputs);
data.format = COMMON_CHAT_FORMAT_NEMOTRON_V2;
// Handle thinking tags appropriately based on inputs.enable_thinking
if (string_ends_with(data.prompt, "<think>\n")) {
if (!inputs.enable_thinking) {
data.prompt += "</think>";
} else {
data.thinking_forced_open = true;
}
}
// When tools are present, build grammar for the <TOOLCALL> format, similar to CommandR, but without tool call ID
if (!inputs.tools.is_null() && inputs.tools.is_array() && !inputs.tools.empty()) {
data.grammar_lazy = true;
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
auto schemas = json::array();
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool.at("function");
schemas.push_back({
{ "type", "object" },
{ "properties",
{
{ "name",
{
{ "type", "string" },
{ "const", function.at("name") },
} },
{ "arguments", function.at("parameters") },
} },
{ "required", json::array({ "name", "arguments" }) },
});
});
auto schema = json{
{ "type", "array" },
{ "items", schemas.size() == 1 ? schemas[0] : json{ { "anyOf", schemas } } },
{ "minItems", 1 },
};
if (!inputs.parallel_tool_calls) {
schema["maxItems"] = 1;
}
builder.add_rule("root",
std::string(data.thinking_forced_open ? "( \"</think>\" space )? " : "") +
"\"<TOOLCALL>\" " + builder.add_schema("tool_calls", schema) +
" \"</TOOLCALL>\"");
});
data.grammar_triggers.push_back({ COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
// If thinking_forced_open, then we capture the </think> tag in the grammar,
// (important for required tool choice) and in the trigger's first capture (decides what is sent to the grammar)
std::string(data.thinking_forced_open ?
"[\\s\\S]*?(</think>\\s*)" :
"(?:<think>[\\s\\S]*?</think>\\s*)?") +
"(<TOOLCALL>)[\\s\\S]*" });
}
return data;
}
static void common_chat_parse_llama_3_1(common_chat_msg_parser & builder, bool with_builtin_tools = false) {
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
@@ -1312,6 +1393,71 @@ static common_chat_params common_chat_params_init_deepseek_r1(const common_chat_
}
return data;
}
static common_chat_params common_chat_params_init_deepseek_v3_1(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
// Pass thinking context for DeepSeek V3.1 template
json additional_context = {
{"thinking", inputs.enable_thinking},
};
auto prompt = apply(tmpl, inputs,
/* messages_override= */ inputs.messages,
/* tools_override= */ std::nullopt,
additional_context);
data.prompt = prompt;
data.format = COMMON_CHAT_FORMAT_DEEPSEEK_V3_1;
if (string_ends_with(data.prompt, "<think>")) {
if (!inputs.enable_thinking) {
data.prompt += "</think>";
} else {
data.thinking_forced_open = true;
}
}
if (inputs.tools.is_array() && !inputs.tools.empty()) {
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED && inputs.json_schema.is_null();
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
std::vector<std::string> tool_rules;
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool.at("function");
std::string name = function.at("name");
auto parameters = function.at("parameters");
builder.resolve_refs(parameters);
tool_rules.push_back(builder.add_rule(name + "-call",
"( \"<tool▁call▁begin>\" )? \"" + name + "<tool▁sep>"
"\" " + builder.add_schema(name + "-args", parameters) + " "
"\"<tool▁call▁end>\""));
});
// Distill Qwen 7B & 32B models seem confused re/ syntax of their tool call opening tag,
// so we accept common variants (then it's all constrained)
builder.add_rule("root",
std::string(data.thinking_forced_open ? "( \"</think>\" space )? " : "") +
"( \"<tool▁calls▁begin>\" | \"<tool_calls_begin>\" | \"<tool calls begin>\" | \"<tool\\\\_calls\\\\_begin>\" | \"<tool▁calls>\" ) "
"(" + string_join(tool_rules, " | ") + ")" + (inputs.parallel_tool_calls ? "*" : "") + " "
"\"<tool▁calls▁end>\""
" space");
data.grammar_triggers.push_back({
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
// If thinking_forced_open, then we capture the </think> tag in the grammar,
// (important for required tool choice) and in the trigger's first capture (decides what is sent to the grammar)
std::string(data.thinking_forced_open ? "[\\s\\S]*?(</think>\\s*)" : "(?:<think>[\\s\\S]*?</think>\\s*)?") +
"(<tool▁calls▁begin>|<tool_calls_begin>|<tool calls begin>|<tool\\\\_calls\\\\_begin>|<tool▁calls>)[\\s\\S]*"
});
data.preserved_tokens = {
"<think>",
"</think>",
"<tool▁calls▁begin>",
"<tool▁call▁begin>",
"<tool▁sep>",
"<tool▁call▁end>",
"<tool▁calls▁end>",
};
});
}
return data;
}
static void common_chat_parse_deepseek_r1(common_chat_msg_parser & builder) {
builder.try_parse_reasoning("<think>", "</think>");
if (!builder.syntax().parse_tool_calls) {
@@ -1333,6 +1479,66 @@ static void common_chat_parse_deepseek_r1(common_chat_msg_parser & builder) {
tool_calls_end);
}
static void common_chat_parse_deepseek_v3_1_content(common_chat_msg_parser & builder) {
static const common_regex function_regex("(?:<tool▁call▁begin>)?([^\\n<]+)(?:<tool▁sep>)");
static const common_regex close_regex("(?:[\\s]*)?<tool▁call▁end>");
static const common_regex tool_calls_begin("(?:<tool▁calls▁begin>|<tool_calls_begin>|<tool calls begin>|<tool\\\\_calls\\\\_begin>|<tool▁calls>)");
static const common_regex tool_calls_end("<tool▁calls▁end>");
if (!builder.syntax().parse_tool_calls) {
LOG_DBG("%s: not parse_tool_calls\n", __func__);
builder.add_content(builder.consume_rest());
return;
}
LOG_DBG("%s: parse_tool_calls\n", __func__);
parse_json_tool_calls(
builder,
/* block_open= */ tool_calls_begin,
/* function_regex_start_only= */ std::nullopt,
function_regex,
close_regex,
tool_calls_end);
}
static void common_chat_parse_deepseek_v3_1(common_chat_msg_parser & builder) {
// DeepSeek V3.1 outputs reasoning content between "<think>" and "</think>" tags, followed by regular content
// First try to parse using the standard reasoning parsing method
LOG_DBG("%s: thinking_forced_open: %s\n", __func__, std::to_string(builder.syntax().thinking_forced_open).c_str());
auto start_pos = builder.pos();
auto found_end_think = builder.try_find_literal("</think>");
builder.move_to(start_pos);
if (builder.syntax().thinking_forced_open && !builder.is_partial() && !found_end_think) {
LOG_DBG("%s: no end_think, not partial, adding content\n", __func__);
common_chat_parse_deepseek_v3_1_content(builder);
} else if (builder.try_parse_reasoning("<think>", "</think>")) {
// If reasoning was parsed successfully, the remaining content is regular content
LOG_DBG("%s: parsed reasoning, adding content\n", __func__);
// </think><tool▁calls▁begin><tool▁call▁begin>function<tool▁sep>NAME\n```json\nJSON\n```<tool▁call▁end><tool▁calls▁end>
common_chat_parse_deepseek_v3_1_content(builder);
} else {
if (builder.syntax().reasoning_format == COMMON_REASONING_FORMAT_NONE) {
LOG_DBG("%s: reasoning_format none, adding content\n", __func__);
common_chat_parse_deepseek_v3_1_content(builder);
return;
}
// If no reasoning tags found, check if we should treat everything as reasoning
if (builder.syntax().thinking_forced_open) {
// If thinking is forced open but no tags found, treat everything as reasoning
LOG_DBG("%s: thinking_forced_open, adding reasoning content\n", __func__);
builder.add_reasoning_content(builder.consume_rest());
} else {
LOG_DBG("%s: no thinking_forced_open, adding content\n", __func__);
// <tool▁call▁begin>NAME<tool▁sep>JSON<tool▁call▁end>
common_chat_parse_deepseek_v3_1_content(builder);
}
}
}
static common_chat_params common_chat_params_init_gpt_oss(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
auto prompt = apply(tmpl, inputs);
@@ -1361,6 +1567,26 @@ static common_chat_params common_chat_params_init_gpt_oss(const common_chat_temp
"<|end|>",
};
if (!inputs.json_schema.is_null()) {
data.grammar_lazy = false;
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
auto schema = inputs.json_schema;
builder.resolve_refs(schema);
auto not_end = builder.add_rule("not-end",
"[^<] | \"<\" [^|] | \"<|\" [^e] | \"<|e\" [^n] | \"<|en\" [^d] | \"<|end\" [^|] | \"<|end|\" [^>]");
auto analysis = builder.add_rule("analysis",
"\"<|channel|>analysis<|message|>\" ( " + not_end + " )* \"<|end|>\"");
auto constraint = builder.add_rule("constraint", "\"<|constrain|>\"? [a-zA-Z0-9_-]+");
auto final = builder.add_rule("final",
"\"<|channel|>final\" ( \" \" " + constraint + " )? \"<|message|>\" " +
builder.add_schema("response", schema)
);
builder.add_rule("root", "( " + analysis + " \"<|start|>assistant\" )? " + final);
});
}
if (inputs.tools.is_array() && !inputs.tools.empty()) {
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
@@ -1809,7 +2035,7 @@ static common_chat_params common_chat_params_init_hermes_2_pro(const common_chat
// If thinking_forced_open, then we capture the </think> tag in the grammar,
// (important for required tool choice) and in the trigger's first capture (decides what is sent to the grammar)
std::string(data.thinking_forced_open ? "[\\s\\S]*?(</think>\\s*)" : "(?:<think>[\\s\\S]*?</think>\\s*)?") + (
"(\\s*"
"\\s*("
"(?:<tool_call>"
"|<function"
"|(?:```(?:json|xml)?\n\\s*)?(?:<function_call>|<tools>|<xml><json>|<response>)?"
@@ -2039,6 +2265,121 @@ static void common_chat_parse_granite(common_chat_msg_parser & builder) {
}
}
static void common_chat_parse_nemotron_v2(common_chat_msg_parser & builder) {
// Parse thinking tags
builder.try_parse_reasoning("<think>", "</think>");
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
// Look for tool calls
static const common_regex tool_call_regex(regex_escape("<TOOLCALL>"));
if (auto res = builder.try_find_regex(tool_call_regex)) {
builder.move_to(res->groups[0].end);
// Expect JSON array of tool calls
auto tool_calls_data = builder.consume_json();
if (tool_calls_data.json.is_array()) {
if (!builder.try_consume_literal("</TOOLCALL>")) {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
builder.add_tool_calls(tool_calls_data.json);
} else {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
}
builder.add_content(builder.consume_rest());
}
static void common_chat_parse_seed_oss(common_chat_msg_parser & builder) {
// Parse thinking tags first - this handles the main reasoning content
builder.try_parse_reasoning("<seed:think>", "</seed:think>");
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
// Parse tool calls - Seed-OSS uses <seed:tool_call> format
static const common_regex tool_call_begin_regex("<seed:tool_call>");
static const common_regex tool_call_end_regex("</seed:tool_call>");
static const common_regex function_regex("<function=([^>]+)>");
static const common_regex param_regex("<parameter=([^>]+)>");
while (auto tool_res = builder.try_find_regex(tool_call_begin_regex)) {
builder.consume_spaces(); // Consume whitespace after <seed:tool_call>
// Look for function call inside tool call, ignore any content before it
if (auto func_res = builder.try_find_regex(function_regex, std::string::npos, false)) {
auto function_name = builder.str(func_res->groups[1]);
// Parse Seed-OSS parameters <parameter=name>value</parameter>
json args = json::object();
// Parse all parameters
while (auto param_res = builder.try_find_regex(param_regex, std::string::npos, false)) {
// again, ignore noise around parameters
auto param_name = builder.str(param_res->groups[1]);
builder.move_to(param_res->groups[0].end);
builder.consume_spaces(); // Consume whitespace after parameter
auto savedPos = builder.pos();
if (auto param_parse = builder.try_find_literal("</parameter>")) {
auto param = param_parse->prelude;
builder.move_to(savedPos);
try {
if (auto param_res = builder.try_consume_json()) {
args[param_name] = param_res->json;
} else {
args[param_name] = param;
}
} catch (json::exception &) {
args[param_name] = param;
}
} else {
throw common_chat_msg_partial_exception("Incomplete tool parameter");
}
}
// Look for closing function tag
auto end_func = builder.try_find_literal("</function>");
if (end_func) {
builder.move_to(end_func->groups[0].end);
builder.consume_spaces(); // Consume whitespace after </function>
// Add the tool call with parsed arguments, but only if we REALLY got the literal
auto eaten_fragment = builder.input().substr(end_func->groups[0].begin, end_func->groups[0].end);
auto funlen = std::string("</function>").length();
if (eaten_fragment.length() >= funlen && eaten_fragment.substr(0, funlen) == std::string("</function>")) {
if (!builder.add_tool_call(function_name, "", args.dump())) {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
} else {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
} else {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
// Look for closing tool call tag
if (auto end_tool = builder.try_find_regex(tool_call_end_regex, std::string::npos, false)) {
builder.move_to(end_tool->groups[0].end);
builder.consume_spaces(); // Consume trailing whitespace after tool call
} else {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
} else {
// No function found - don't consume content here, let it be handled at the end
break;
}
}
// Consume any remaining whitespace after all tool call processing
builder.consume_spaces();
auto remaining = builder.consume_rest();
// If there's any non-whitespace content remaining, add it as content
if (!string_strip(remaining).empty()) {
builder.add_content(remaining);
}
}
static common_chat_params common_chat_params_init_without_tools(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
data.prompt = apply(tmpl, inputs);
@@ -2055,8 +2396,62 @@ static common_chat_params common_chat_params_init_without_tools(const common_cha
return data;
}
static common_chat_params common_chat_params_init_seed_oss(
const common_chat_template & tmpl,
templates_params & params,
const common_chat_templates_inputs & inputs)
{
common_chat_params data;
data.prompt = apply(tmpl, params);
data.format = COMMON_CHAT_FORMAT_SEED_OSS;
if (string_ends_with(data.prompt, "<seed:think>")) {
if (!inputs.enable_thinking) {
data.prompt += "</seed:think>";
} else {
data.thinking_forced_open = true;
}
}
if (params.tools.is_array() && !params.tools.empty()) {
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
std::vector<std::string> tool_rules;
foreach_function(params.tools, [&](const json & tool) {
const auto & function = tool.at("function");
std::string name = function.at("name");
auto parameters = function.at("parameters");
builder.resolve_refs(parameters);
// Create rule for Seed-OSS function call format
std::string param_rules;
if (parameters.contains("properties")) {
for (const auto & [key, value] : parameters.at("properties").items()) {
param_rules += "\"<parameter=" + key + ">\"" + builder.add_schema(name + "-arg-" + key, value) +
"\"</parameter>\"";
}
}
tool_rules.push_back(builder.add_rule(name + "-call",
"\"<seed:tool_call>\" space \"<function=" + name + ">\" space " +
param_rules +
" \"</function>\" space \"</seed:tool_call>\""));
});
data.grammar_triggers.push_back({ COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<seed:tool_call>" });
data.preserved_tokens = {
"<seed:think>", "</seed:think>", "<seed:tool_call>", "</seed:tool_call>",
"<function=", "</function>", "<parameter=", "</parameter>",
};
builder.add_rule("root", string_join(tool_rules, " | "));
});
}
return data;
}
static common_chat_params common_chat_templates_apply_jinja(
const struct common_chat_templates * tmpls,
const struct common_chat_templates * tmpls,
const struct common_chat_templates_inputs & inputs)
{
templates_params params;
@@ -2100,6 +2495,12 @@ static common_chat_params common_chat_templates_apply_jinja(
}
}
// DeepSeek V3.1: detect based on specific patterns in the template
if (src.find("message['prefix'] is defined and message['prefix'] and thinking") != std::string::npos &&
params.json_schema.is_null()) {
return common_chat_params_init_deepseek_v3_1(tmpl, params);
}
// DeepSeek R1: use handler in all cases except json schema (thinking / tools).
if (src.find("<tool▁calls▁begin>") != std::string::npos && params.json_schema.is_null()) {
return common_chat_params_init_deepseek_r1(tmpl, params);
@@ -2121,10 +2522,20 @@ static common_chat_params common_chat_templates_apply_jinja(
}
// GPT-OSS
if (src.find("<|channel|>") != std::string::npos && params.json_schema.is_null()) {
if (src.find("<|channel|>") != std::string::npos) {
return common_chat_params_init_gpt_oss(tmpl, params);
}
// Seed-OSS
if (src.find("<seed:think>") != std::string::npos) {
return common_chat_params_init_seed_oss(tmpl, params, inputs);
}
// Nemotron v2
if (src.find("<SPECIAL_10>") != std::string::npos) {
return common_chat_params_init_nemotron_v2(tmpl, params);
}
// Use generic handler when mixing tools + JSON schema.
// TODO: support that mix in handlers below.
if ((params.tools.is_array() && params.json_schema.is_object())) {
@@ -2262,6 +2673,9 @@ static void common_chat_parse(common_chat_msg_parser & builder) {
case COMMON_CHAT_FORMAT_DEEPSEEK_R1:
common_chat_parse_deepseek_r1(builder);
break;
case COMMON_CHAT_FORMAT_DEEPSEEK_V3_1:
common_chat_parse_deepseek_v3_1(builder);
break;
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2:
common_chat_parse_functionary_v3_2(builder);
break;
@@ -2283,6 +2697,12 @@ static void common_chat_parse(common_chat_msg_parser & builder) {
case COMMON_CHAT_FORMAT_GPT_OSS:
common_chat_parse_gpt_oss(builder);
break;
case COMMON_CHAT_FORMAT_SEED_OSS:
common_chat_parse_seed_oss(builder);
break;
case COMMON_CHAT_FORMAT_NEMOTRON_V2:
common_chat_parse_nemotron_v2(builder);
break;
default:
throw std::runtime_error(std::string("Unsupported format: ") + common_chat_format_name(builder.syntax().format));
}

View File

@@ -107,10 +107,13 @@ enum common_chat_format {
COMMON_CHAT_FORMAT_FIREFUNCTION_V2,
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2,
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1,
COMMON_CHAT_FORMAT_DEEPSEEK_V3_1,
COMMON_CHAT_FORMAT_HERMES_2_PRO,
COMMON_CHAT_FORMAT_COMMAND_R7B,
COMMON_CHAT_FORMAT_GRANITE,
COMMON_CHAT_FORMAT_GPT_OSS,
COMMON_CHAT_FORMAT_SEED_OSS,
COMMON_CHAT_FORMAT_NEMOTRON_V2,
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
};
@@ -197,6 +200,8 @@ common_chat_msg common_chat_parse(const std::string & input, bool is_p
common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::string & tool_choice);
bool common_chat_templates_support_enable_thinking(const common_chat_templates * chat_templates);
// Parses a JSON array of messages in OpenAI's chat completion API format.
// T can be std::string containing JSON or nlohmann::ordered_json
template <class T> std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const T & messages);

View File

@@ -901,7 +901,8 @@ struct common_init_result common_init_from_params(common_params & params) {
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
if (model == NULL) {
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.path.c_str());
LOG_ERR("%s: failed to load model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n",
__func__, params.model.path.c_str());
return iparams;
}
@@ -911,7 +912,8 @@ struct common_init_result common_init_from_params(common_params & params) {
llama_context * lctx = llama_init_from_model(model, cparams);
if (lctx == NULL) {
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str());
LOG_ERR("%s: failed to create context with model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n",
__func__, params.model.path.c_str());
llama_model_free(model);
return iparams;
}
@@ -988,7 +990,12 @@ struct common_init_result common_init_from_params(common_params & params) {
return iparams;
}
char buf[1024];
la.ptr = lora.get();
llama_adapter_meta_val_str(la.ptr, "adapter.lora.task_name", buf, sizeof(buf));
la.task_name = buf;
llama_adapter_meta_val_str(la.ptr, "adapter.lora.prompt_prefix", buf, sizeof(buf));
la.prompt_prefix = buf;
iparams.lora.emplace_back(std::move(lora)); // copy to list of loaded adapters
}
@@ -1152,11 +1159,10 @@ struct llama_context_params common_context_params_to_llama(const common_params &
cparams.yarn_orig_ctx = params.yarn_orig_ctx;
cparams.pooling_type = params.pooling_type;
cparams.attention_type = params.attention_type;
cparams.defrag_thold = params.defrag_thold;
cparams.flash_attn_type = params.flash_attn_type;
cparams.cb_eval = params.cb_eval;
cparams.cb_eval_user_data = params.cb_eval_user_data;
cparams.offload_kqv = !params.no_kv_offload;
cparams.flash_attn = params.flash_attn;
cparams.no_perf = params.no_perf;
cparams.op_offload = !params.no_op_offload;
cparams.swa_full = params.swa_full;

View File

@@ -34,6 +34,9 @@ struct common_adapter_lora_info {
std::string path;
float scale;
std::string task_name;
std::string prompt_prefix;
struct llama_adapter_lora * ptr;
};
@@ -190,10 +193,11 @@ struct common_params_sampling {
};
struct common_params_model {
std::string path = ""; // model local path // NOLINT
std::string url = ""; // model url to download // NOLINT
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string path = ""; // model local path // NOLINT
std::string url = ""; // model url to download // NOLINT
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string docker_repo = ""; // Docker repo // NOLINT
};
struct common_params_speculative {
@@ -284,11 +288,10 @@ struct common_params {
float rope_freq_base = 0.0f; // RoPE base frequency
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
float yarn_beta_fast = 32.0f; // YaRN low correction dim
float yarn_beta_slow = 1.0f; // YaRN high correction dim
float yarn_attn_factor = -1.0f; // YaRN magnitude scaling factor
float yarn_beta_fast = -1.0f; // YaRN low correction dim
float yarn_beta_slow = -1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length
float defrag_thold = 0.1f; // KV cache defragmentation threshold
// offload params
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
@@ -310,6 +313,7 @@ struct common_params {
enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
enum llama_flash_attn_type flash_attn_type = LLAMA_FLASH_ATTN_TYPE_AUTO; // whether to use Flash Attention
struct common_params_sampling sampling;
struct common_params_speculative speculative;
@@ -373,7 +377,6 @@ struct common_params {
bool multiline_input = false; // reverse the usage of `\`
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
bool cont_batching = true; // insert new sequences for decoding on-the-fly
bool flash_attn = false; // flash attention
bool no_perf = false; // disable performance metrics
bool ctx_shift = false; // context shift on infinite text generation
bool swa_full = false; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
@@ -442,7 +445,7 @@ struct common_params {
// "advanced" endpoints are disabled by default for better security
bool webui = true;
bool endpoint_slots = false;
bool endpoint_slots = true;
bool endpoint_props = false; // only control POST requests, not GET
bool endpoint_metrics = false;
@@ -450,7 +453,7 @@ struct common_params {
std::string slot_save_path;
float slot_prompt_similarity = 0.5f;
float slot_prompt_similarity = 0.1f;
// batched-bench params
bool is_pp_shared = false;
@@ -731,6 +734,20 @@ const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
}
//
// MoE utils
//
const char * const LLM_FFN_EXPS_REGEX = "\\.ffn_(up|down|gate)_exps";
static std::string llm_ffn_exps_block_regex(int idx) {
return string_format("blk\\.%d%s", idx, LLM_FFN_EXPS_REGEX);
}
static llama_model_tensor_buft_override llm_ffn_exps_cpu_override() {
return { LLM_FFN_EXPS_REGEX, ggml_backend_cpu_buffer_type() };
}
//
// training utils
//

View File

@@ -257,12 +257,13 @@ std::unordered_map<std::string, BuiltinRule> STRING_FORMAT_RULES = {
};
static bool is_reserved_name(const std::string & name) {
static std::unordered_set<std::string> RESERVED_NAMES;
if (RESERVED_NAMES.empty()) {
RESERVED_NAMES.insert("root");
for (const auto &p : PRIMITIVE_RULES) RESERVED_NAMES.insert(p.first);
for (const auto &p : STRING_FORMAT_RULES) RESERVED_NAMES.insert(p.first);
}
static const std::unordered_set<std::string> RESERVED_NAMES = [] {
std::unordered_set<std::string> s;
s.insert("root");
for (const auto & p : PRIMITIVE_RULES) s.insert(p.first);
for (const auto & p : STRING_FORMAT_RULES) s.insert(p.first);
return s;
}();
return RESERVED_NAMES.find(name) != RESERVED_NAMES.end();
}
@@ -843,9 +844,10 @@ public:
_build_object_rule(
properties, required, name,
schema.contains("additionalProperties") ? schema["additionalProperties"] : json()));
} else if ((schema_type.is_null() || schema_type == "object") && schema.contains("allOf")) {
} else if ((schema_type.is_null() || schema_type == "object" || schema_type == "string") && schema.contains("allOf")) {
std::unordered_set<std::string> required;
std::vector<std::pair<std::string, json>> properties;
std::map<std::string, size_t> enum_values;
std::string hybrid_name = name;
std::function<void(const json &, bool)> add_component = [&](const json & comp_schema, bool is_required) {
if (comp_schema.contains("$ref")) {
@@ -857,6 +859,14 @@ public:
required.insert(prop.key());
}
}
} else if (comp_schema.contains("enum")) {
for (const auto & v : comp_schema["enum"]) {
const auto rule = _generate_constant_rule(v);
if (enum_values.find(rule) == enum_values.end()) {
enum_values[rule] = 0;
}
enum_values[rule] += 1;
}
} else {
// todo warning
}
@@ -870,6 +880,17 @@ public:
add_component(t, true);
}
}
if (!enum_values.empty()) {
std::vector<std::string> enum_intersection;
for (const auto & p : enum_values) {
if (p.second == schema["allOf"].size()) {
enum_intersection.push_back(p.first);
}
}
if (!enum_intersection.empty()) {
return _add_rule(rule_name, "(" + string_join(enum_intersection, " | ") + ") space");
}
}
return _add_rule(rule_name, _build_object_rule(properties, required, hybrid_name, json()));
} else if ((schema_type.is_null() || schema_type == "array") && (schema.contains("items") || schema.contains("prefixItems"))) {
json items = schema.contains("items") ? schema["items"] : schema["prefixItems"];

View File

@@ -4,17 +4,52 @@
#include <condition_variable>
#include <cstdarg>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <mutex>
#include <sstream>
#include <thread>
#include <vector>
#if defined(_WIN32)
# include <io.h>
# include <windows.h>
# define isatty _isatty
# define fileno _fileno
#else
# include <unistd.h>
#endif // defined(_WIN32)
int common_log_verbosity_thold = LOG_DEFAULT_LLAMA;
void common_log_set_verbosity_thold(int verbosity) {
common_log_verbosity_thold = verbosity;
}
// Auto-detect if colors should be enabled based on terminal and environment
static bool common_log_should_use_colors_auto() {
// Check NO_COLOR environment variable (https://no-color.org/)
if (const char * no_color = std::getenv("NO_COLOR")) {
if (no_color[0] != '\0') {
return false;
}
}
// Check TERM environment variable
if (const char * term = std::getenv("TERM")) {
if (std::strcmp(term, "dumb") == 0) {
return false;
}
}
// Check if stdout and stderr are connected to a terminal
// We check both because log messages can go to either
bool stdout_is_tty = isatty(fileno(stdout));
bool stderr_is_tty = isatty(fileno(stderr));
return stdout_is_tty || stderr_is_tty;
}
static int64_t t_us() {
return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::system_clock::now().time_since_epoch()).count();
}
@@ -353,6 +388,11 @@ struct common_log * common_log_init() {
struct common_log * common_log_main() {
static struct common_log log;
static std::once_flag init_flag;
std::call_once(init_flag, [&]() {
// Set default to auto-detect colors
log.set_colors(common_log_should_use_colors_auto());
});
return &log;
}
@@ -380,8 +420,19 @@ void common_log_set_file(struct common_log * log, const char * file) {
log->set_file(file);
}
void common_log_set_colors(struct common_log * log, bool colors) {
log->set_colors(colors);
void common_log_set_colors(struct common_log * log, log_colors colors) {
if (colors == LOG_COLORS_AUTO) {
log->set_colors(common_log_should_use_colors_auto());
return;
}
if (colors == LOG_COLORS_DISABLED) {
log->set_colors(false);
return;
}
GGML_ASSERT(colors == LOG_COLORS_ENABLED);
log->set_colors(true);
}
void common_log_set_prefix(struct common_log * log, bool prefix) {

View File

@@ -24,6 +24,12 @@
#define LOG_DEFAULT_DEBUG 1
#define LOG_DEFAULT_LLAMA 0
enum log_colors {
LOG_COLORS_AUTO = -1,
LOG_COLORS_DISABLED = 0,
LOG_COLORS_ENABLED = 1,
};
// needed by the LOG_TMPL macro to avoid computing log arguments if the verbosity lower
// set via common_log_set_verbosity()
extern int common_log_verbosity_thold;
@@ -65,10 +71,10 @@ void common_log_add(struct common_log * log, enum ggml_log_level level, const ch
// D - debug (stderr, V = LOG_DEFAULT_DEBUG)
//
void common_log_set_file (struct common_log * log, const char * file); // not thread-safe
void common_log_set_colors (struct common_log * log, bool colors); // not thread-safe
void common_log_set_prefix (struct common_log * log, bool prefix); // whether to output prefix to each log
void common_log_set_timestamps(struct common_log * log, bool timestamps); // whether to output timestamps in the prefix
void common_log_set_file (struct common_log * log, const char * file); // not thread-safe
void common_log_set_colors (struct common_log * log, log_colors colors); // not thread-safe
void common_log_set_prefix (struct common_log * log, bool prefix); // whether to output prefix to each log
void common_log_set_timestamps(struct common_log * log, bool timestamps); // whether to output timestamps in the prefix
// helper macros for logging
// use these to avoid computing log arguments if the verbosity of the log is higher than the threshold

View File

@@ -426,8 +426,29 @@ uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
// helpers
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl) {
return &gsmpl->cur_p;
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl, bool do_sort) {
auto * res = &gsmpl->cur_p;
if (do_sort && !res->sorted) {
// remember the selected token before sorting
const llama_token id = res->data[res->selected].id;
std::sort(res->data, res->data + res->size, [](const llama_token_data & a, const llama_token_data & b) {
return a.p > b.p;
});
// restore the selected token after sorting
for (size_t i = 0; i < res->size; ++i) {
if (res->data[i].id == id) {
res->selected = i;
break;
}
}
res->sorted = true;
}
return res;
}
llama_token common_sampler_last(const struct common_sampler * gsmpl) {

View File

@@ -86,7 +86,9 @@ uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl);
// helpers
// access the internal list of current candidate tokens
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl);
// if do_sort == true, the candidates are guaranteed to be sorted afterwards (in descending order of probability)
// the .sorted flag of the result indicates whether the returned candidates are sorted
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl, bool do_sort);
// get the last accepted token
llama_token common_sampler_last(const struct common_sampler * gsmpl);

View File

@@ -317,7 +317,7 @@ llama_tokens common_speculative_gen_draft(
common_sampler_sample(smpl, ctx_dft, 0, true);
const auto * cur_p = common_sampler_get_candidates(smpl);
const auto * cur_p = common_sampler_get_candidates(smpl, true);
for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) {
LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n",

View File

@@ -72,6 +72,7 @@ class ModelBase:
endianess: gguf.GGUFEndian
use_temp_file: bool
lazy: bool
dry_run: bool
part_names: list[str]
is_safetensors: bool
hparams: dict[str, Any]
@@ -111,6 +112,7 @@ class ModelBase:
self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
self.use_temp_file = use_temp_file
self.lazy = not eager or (remote_hf_model_id is not None)
self.dry_run = dry_run
self.remote_hf_model_id = remote_hf_model_id
if remote_hf_model_id is not None:
self.is_safetensors = True
@@ -300,10 +302,6 @@ class ModelBase:
# data = data_torch.squeeze().numpy()
data = data_torch.numpy()
# if data ends up empty, it means data_torch was a scalar tensor -> restore
if len(data.shape) == 0:
data = data_torch.numpy()
n_dims = len(data.shape)
data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
@@ -737,6 +735,9 @@ class TextModel(ModelBase):
if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
# ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
res = "qwen2"
if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
# ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
res = "grok-2"
if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
# ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
res = "llama-bpe"
@@ -887,6 +888,9 @@ class TextModel(ModelBase):
if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
# ref: https://huggingface.co/JetBrains/Mellum-4b-base
res = "mellum"
if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
# ref: https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base
res = "llada-moe"
if res is None:
logger.warning("\n")
@@ -1216,6 +1220,55 @@ class TextModel(ModelBase):
raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
self.gguf_writer.add_pooling_type(pooling_type)
def _set_vocab_interns1(self):
tokens: list[str] = []
toktypes: list[int] = []
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
vocab_size = self.hparams.get("vocab_size", len(vocab))
assert max(vocab.values()) < vocab_size
tokpre = self.get_vocab_base_pre(tokenizer)
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
added_vocab = tokenizer.get_added_vocab()
added_tokens_decoder = tokenizer.added_tokens_decoder
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.UNUSED)
else:
token: str = reverse_vocab[i]
if token in added_vocab:
# The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
# To avoid unexpected issues - we make sure to normalize non-normalized tokens
if not added_tokens_decoder[i].normalized:
previous_token = token
token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
if previous_token != token:
logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
if added_tokens_decoder[i].special or self.does_token_look_special(token):
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
toktypes.append(gguf.TokenType.NORMAL)
tokens.append(token)
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
special_vocab._set_special_token("bos", 151643)
special_vocab.add_to_gguf(self.gguf_writer)
class MmprojModel(ModelBase):
model_type = ModelType.MMPROJ
@@ -2635,12 +2688,20 @@ class BitnetModel(TextModel):
yield (new_name, data_torch)
@ModelBase.register("GrokForCausalLM")
@ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
class GrokModel(TextModel):
model_arch = gguf.MODEL_ARCH.GROK
def set_vocab(self):
self._set_vocab_sentencepiece()
if (self.dir_model / 'tokenizer.model').is_file():
self._set_vocab_sentencepiece()
return
if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
sys.exit(1)
self._set_vocab_gpt2()
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
@@ -2648,11 +2709,46 @@ class GrokModel(TextModel):
def set_gguf_parameters(self):
super().set_gguf_parameters()
_experts: list[dict[str, Tensor]] | None = None
self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
if (rope_dim := self.hparams.get("head_dim")) is None:
rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
# Treat "original" as "yarn", seems to have been a mistake
if self.hparams.get("rope_type") in ("yarn", "original"):
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
if temp_len := self.hparams.get("attn_temperature_len"):
self.gguf_writer.add_attn_temperature_length(temp_len)
self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
_experts: list[dict[str, list[Tensor]]] | None = None
_cur_expert = ""
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
tensors: list[tuple[str, Tensor]] = []
is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
if not is_expert:
tensors.append((self.map_tensor_name(name), data_torch))
# process the experts separately
if name.find(".moe.") != -1:
if is_expert or self._cur_expert:
n_experts = self.hparams["num_local_experts"]
assert bid is not None
@@ -2660,32 +2756,41 @@ class GrokModel(TextModel):
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
tensors: list[tuple[str, Tensor]] = []
# merge the experts into a single 3d tensor
for wid in ["linear", "linear_1", "linear_v"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
return tensors
else:
# concatenate split tensors
if name in self._experts[bid]:
self._cur_expert = name
self._experts[bid][name].append(data_torch)
return []
elif is_expert:
self._cur_expert = name
self._experts[bid][name] = [data_torch]
return []
else:
self._cur_expert = ""
return [(self.map_tensor_name(name), data_torch)]
for bid in range(self.block_count):
if len(self._experts[bid]) >= n_experts * 3:
# merge the experts into a single 3d tensor
for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
if ename not in self._experts[bid]:
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
tensor_list = self._experts[bid][ename]
datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
new_name = self.map_tensor_name(merged_name)
yield (new_name, data_torch)
yield from tensors
@ModelBase.register("DbrxForCausalLM")
@@ -2932,7 +3037,8 @@ class Qwen2Model(TextModel):
if "language_model." in name:
name = name.replace("language_model.", "") # for InternVL
if name.startswith("mlp") or name.startswith("multi_modal_projector") \
or name.startswith("vision_model") or name.startswith("audio_tower"):
or name.startswith("vision_model") or name.startswith("audio_tower") \
or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
# skip vision and audio tensors
return []
yield from super().modify_tensors(data_torch, name, bid)
@@ -3109,7 +3215,7 @@ class LLaDAModel(TextModel):
yield from super().modify_tensors(data_torch, name, bid)
@ModelBase.register("Ernie4_5_ForCausalLM")
@ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
class Ernie4_5Model(TextModel):
model_arch = gguf.MODEL_ARCH.ERNIE4_5
@@ -3604,6 +3710,19 @@ class Qwen2MoeModel(TextModel):
class Qwen3Model(Qwen2Model):
model_arch = gguf.MODEL_ARCH.QWEN3
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
self.origin_hf_arch = hparams.get('architectures', [None])[0]
def set_vocab(self):
# deal with intern-s1-mini
if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
self._set_vocab_interns1()
return
super().set_vocab()
@ModelBase.register("Qwen3MoeForCausalLM")
class Qwen3MoeModel(Qwen2MoeModel):
@@ -3620,73 +3739,7 @@ class Qwen3MoeModel(Qwen2MoeModel):
self._set_vocab_interns1()
return
try:
self._set_vocab_sentencepiece()
except FileNotFoundError:
self._set_vocab_gpt2()
def _set_vocab_interns1(self):
tokens: list[str] = []
toktypes: list[int] = []
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
vocab_size = self.hparams.get("vocab_size", len(vocab))
assert max(vocab.values()) < vocab_size
tokpre = self.get_vocab_base_pre(tokenizer)
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
added_vocab = tokenizer.get_added_vocab()
added_tokens_decoder = tokenizer.added_tokens_decoder
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.UNUSED)
else:
token: str = reverse_vocab[i]
if token in added_vocab:
# The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
# To avoid unexpected issues - we make sure to normalize non-normalized tokens
if not added_tokens_decoder[i].normalized:
previous_token = token
token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
if previous_token != token:
logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
if added_tokens_decoder[i].special or self.does_token_look_special(token):
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
toktypes.append(gguf.TokenType.NORMAL)
tokens.append(token)
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
special_tokens_map_file = self.dir_model / 'special_tokens_map.json'
additional_special_tokens = []
if special_tokens_map_file.is_file():
with open(special_tokens_map_file, encoding = 'utf-8') as f:
additional_special_tokens = json.load(f).get('additional_special_tokens', [])
tokenizer_cfg_file = self.dir_model / 'special_tokens_map.json'
if tokenizer_cfg_file.is_file():
with open(tokenizer_cfg_file, encoding = 'utf-8') as f:
added_tokens_decoder = json.load(f).get('added_tokens_decoder', {})
token2ids_map = {data['content'] : int(token) for token, data in added_tokens_decoder.items() if data['special']}
for token in additional_special_tokens:
if token in token2ids_map:
special_vocab._set_special_token(token, token2ids_map[token])
special_vocab._set_special_token('eos', 151645)
special_vocab._set_special_token("bos", 151643)
special_vocab.add_to_gguf(self.gguf_writer)
super().set_vocab()
@ModelBase.register("GPT2LMHeadModel")
@@ -4874,11 +4927,35 @@ class NeoBert(BertModel):
@ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
class XLMRobertaModel(BertModel):
model_arch = gguf.MODEL_ARCH.BERT
_lora_files = {}
_lora_names = []
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
hparams = kwargs.pop("hparams", None)
if hparams is None:
hparams = ModelBase.load_hparams(dir_model, False)
if lora_names := hparams.get("lora_adaptations"):
self._lora_names = lora_names
self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
self._xlmroberta_tokenizer_init()
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
if self._lora_names:
for name in self._lora_names:
fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
return super().generate_extra_tensors()
def set_type(self):
for lora_writer in self._lora_files.values():
lora_writer.add_type(gguf.GGUFType.ADAPTER)
lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
super().set_type()
def set_vocab(self):
self._xlmroberta_set_vocab()
@@ -4888,13 +4965,62 @@ class XLMRobertaModel(BertModel):
if name.startswith("roberta."):
name = name[8:]
# jina-embeddings-v3
if ".parametrizations." in name:
name = name.replace(".parametrizations.", ".")
if name.endswith(".original"):
name = name[:-9]
# position embeddings start at pad_token_id + 1, so just chop down the weight tensor
if name == "embeddings.position_embeddings.weight":
if self._position_offset is not None:
data_torch = data_torch[self._position_offset:,:]
if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
if name.startswith("pooler.dense"):
return []
num_loras = data_torch.size(0)
assert num_loras == len(self._lora_names)
# Split out each LoRA in their own GGUF
for i, lora_writer in enumerate(self._lora_files.values()):
new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
data = data_torch[i, :, :]
# Transpose/flip token_embd/types into correct shape
if new_name == "token_embd.weight.lora_b":
data = data.T
elif new_name.startswith("token_types.weight."):
new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
return []
return super().modify_tensors(data_torch, name, bid)
def set_gguf_parameters(self):
super().set_gguf_parameters()
# jina-embeddings-v3
if rotary_emb_base := self.hparams.get("rotary_emb_base"):
self.gguf_writer.add_rope_freq_base(rotary_emb_base)
lora_alpha = self.hparams.get("lora_alpha")
if lora_prompt_prefixes := self.hparams.get("task_instructions"):
assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
for lora_name, lora_writer in self._lora_files.items():
lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
if lora_prompt_prefixes:
lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
def write(self):
super().write()
for lora_writer in self._lora_files.values():
lora_writer.write_header_to_file()
lora_writer.write_kv_data_to_file()
lora_writer.write_tensors_to_file(progress=True)
lora_writer.close()
@ModelBase.register("GemmaForCausalLM")
class GemmaModel(TextModel):
@@ -5054,6 +5180,29 @@ class Gemma3Model(TextModel):
return [(self.map_tensor_name(name), data_torch)]
@ModelBase.register("Gemma3TextModel")
class EmbeddingGemma(Gemma3Model):
model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
def set_gguf_parameters(self):
super().set_gguf_parameters()
# Override the sliding window size as it gets adjusted by the Gemma3TextConfig
# constructor. We want to use the value from the original model's config.json.
# ref: https://github.com/huggingface/transformers/pull/40700
with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
config = json.load(f)
orig_sliding_window = config.get("sliding_window")
if orig_sliding_window is None:
raise ValueError("sliding_window not found in model config - this is required for the model")
logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
f"instead of {self.hparams['sliding_window']}")
self.gguf_writer.add_sliding_window(orig_sliding_window)
self._try_set_pooling_type()
@ModelBase.register("Gemma3ForConditionalGeneration")
class Gemma3VisionModel(MmprojModel):
def set_gguf_parameters(self):
@@ -5854,10 +6003,40 @@ class OlmoModel(TextModel):
return [(self.map_tensor_name(name), data_torch)]
@ModelBase.register("SeedOssForCausalLM")
class SeedOssModel(TextModel):
model_arch = gguf.MODEL_ARCH.SEED_OSS
@ModelBase.register("Olmo2ForCausalLM")
@ModelBase.register("Olmo3ForCausalLM")
class Olmo2Model(TextModel):
model_arch = gguf.MODEL_ARCH.OLMO2
def set_gguf_parameters(self):
super().set_gguf_parameters()
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
self.gguf_writer.add_rope_scaling_attn_factors(rope_scaling["attention_factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
if "sliding_window" in self.hparams:
self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
sliding_window_pattern = []
if "layer_types" in self.hparams:
sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
else:
# Olmo2 does not use sliding window attention.
# Olmo3 defaults to using sliding window for all layers except every 4th.
for i in range(self.hparams["num_hidden_layers"]):
sliding_window_pattern.append((i + 1) % 4 != 0)
self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
@ModelBase.register("OlmoeForCausalLM")
class OlmoeModel(TextModel):
@@ -6252,9 +6431,11 @@ class DeepseekModel(TextModel):
raise ValueError(f"Unprocessed experts: {experts}")
@ModelBase.register("DeepseekV2ForCausalLM")
@ModelBase.register("DeepseekV3ForCausalLM")
@ModelBase.register("KimiVLForConditionalGeneration")
@ModelBase.register(
"DeepseekV2ForCausalLM",
"DeepseekV3ForCausalLM",
"KimiVLForConditionalGeneration",
)
class DeepseekV2Model(TextModel):
model_arch = gguf.MODEL_ARCH.DEEPSEEK2
@@ -6603,6 +6784,8 @@ class T5Model(TextModel):
self.gguf_writer.add_embedding_length(self.hparams["d_model"])
self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
self.gguf_writer.add_block_count(self.hparams["num_layers"])
if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
self.gguf_writer.add_decoder_block_count(dec_n_layer)
self.gguf_writer.add_head_count(self.hparams["num_heads"])
self.gguf_writer.add_key_length(self.hparams["d_kv"])
self.gguf_writer.add_value_length(self.hparams["d_kv"])
@@ -7467,9 +7650,13 @@ class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
]
# n_group and d_inner are used during reshape_tensors for mamba2
self.d_model = self.find_hparam(["hidden_size", "d_model"])
self.n_group = self.find_hparam(["n_groups"])
self.d_inner = self.find_hparam(["expand"]) * self.d_model
# NOTE: Explicitly include hparam prefix prefix for d_model to
# disambiguate with top-level head_dim
# NOTE 2: If needed for future models, this can be isolated in a method
# to separate the prefix setting and teh keys used
self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
self.n_group = self.find_hparam(["n_groups", "num_groups"])
self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
def get_attn_layers(self):
# Explicit list of layer type names
@@ -7530,12 +7717,12 @@ class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
## Mamba mixer params ##
self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state"]))
self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
self.gguf_writer.add_ssm_group_count(self.n_group)
self.gguf_writer.add_ssm_inner_size(self.d_inner)
# NOTE: The mamba_dt_rank is _not_ the right field for how this is used
# in llama.cpp
self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads"]))
self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
## Attention params ##
head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
@@ -7562,6 +7749,55 @@ class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
Mamba2Model.set_vocab(self)
@ModelBase.register("NemotronHForCausalLM")
class NemotronHModel(GraniteHybridModel):
"""Hybrid mamba2/attention model from NVIDIA"""
model_arch = gguf.MODEL_ARCH.NEMOTRON_H
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# Save the top-level head_dim for later
self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
assert self.head_dim is not None, "Could not find the attention head dim in config"
# Don't use expand to calculate d_inner
self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
# Update the ssm / attn / mlp layers
# M: Mamba2, *: Attention, -: MLP
hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "-"]
def get_attn_layers(self):
hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_key_length(self.head_dim)
self.gguf_writer.add_value_length(self.head_dim)
# Set feed_forward_length
# NOTE: This will trigger an override warning. This is preferrable to
# duplicating all the parent logic
n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
self.gguf_writer.add_feed_forward_length([
n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
])
def set_vocab(self):
super().set_vocab()
# The tokenizer _does_ add a BOS token (via post_processor type
# TemplateProcessing) but does not set add_bos_token to true in the
# config, so we need to explicitly override it here.
self.gguf_writer.add_add_bos_token(True)
@ModelBase.register("BailingMoeForCausalLM")
class BailingMoeModel(TextModel):
model_arch = gguf.MODEL_ARCH.BAILINGMOE
@@ -8031,6 +8267,76 @@ class HunYuanMoEModel(TextModel):
raise ValueError(f"Unprocessed experts: {experts}")
@ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
class LLaDAMoEModel(TextModel):
model_arch = gguf.MODEL_ARCH.LLADA_MOE
def set_gguf_parameters(self):
super().set_gguf_parameters()
if (n_experts := self.hparams.get("num_experts")) is not None:
self.gguf_writer.add_expert_count(n_experts)
if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
# number of experts used per token (top-k)
if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
self.gguf_writer.add_expert_used_count(n_experts_used)
self.gguf_writer.add_mask_token_id(156895)
self.gguf_writer.add_causal_attention(False)
self.gguf_writer.add_diffusion_shift_logits(False)
_experts: list[dict[str, Tensor]] | None = None
# Copied from: Qwen2MoeModel
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# process the experts separately
if name.find("experts") != -1:
n_experts = self.hparams["num_experts"]
assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
tensors: list[tuple[str, Tensor]] = []
# merge the experts into a single 3d tensor
for w_name in ["down_proj", "gate_proj", "up_proj"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
return tensors
else:
return []
return [(self.map_tensor_name(name), data_torch)]
# Copied from: Qwen2MoeModel
def prepare_tensors(self):
super().prepare_tensors()
if self._experts is not None:
# flatten `list[dict[str, Tensor]]` into `list[str]`
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts}")
@ModelBase.register("HunYuanDenseV1ForCausalLM")
class HunYuanModel(TextModel):
model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
@@ -8505,6 +8811,43 @@ class PixtralModel(LlavaVisionModel):
return "mm.2.weight"
return super().map_tensor_name(name, try_suffixes)
@ModelBase.register("KimiVLForConditionalGeneration")
class KimiVLModel(MmprojModel):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
assert self.hparams_vision is not None
self.hparams_vision["image_size"] = 64 * 14 # for compatibility
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
self.gguf_writer.add_vision_use_gelu(True)
self.gguf_writer.add_vision_projector_scale_factor(2)
# eps is the same as pytorch's default value
assert self.hparams_vision is not None
self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
if is_vision_tensor:
if "pos_emb.weight" in name:
data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
elif "wqkv" in name:
split_dim = 0 if "weight" in name else -1
wq, wk, wv = data_torch.chunk(3, dim=split_dim)
return [
(self.map_tensor_name(name.replace("wqkv", "wq")), wq),
(self.map_tensor_name(name.replace("wqkv", "wk")), wk),
(self.map_tensor_name(name.replace("wqkv", "wv")), wv)
]
return [(self.map_tensor_name(name), data_torch)]
return [] # skip other tensors
###### CONVERSION LOGIC ######

View File

@@ -139,6 +139,7 @@ models = [
{"name": "lfm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LiquidAI/LFM2-Tokenizer"},
{"name": "exaone4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B", },
{"name": "mellum", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/JetBrains/Mellum-4b-base", },
{"name": "llada-moe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base", },
]
# some models are known to be broken upstream, so we will skip them as exceptions
@@ -158,6 +159,7 @@ pre_computed_hashes = [
{"name": "falcon-h1", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon-H1-34B-Base", "chkhsh": "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b"},
{"name": "kimi-k2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/moonshotai/Kimi-K2-Base", "chkhsh": "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890"},
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen3-Embedding-0.6B", "chkhsh": "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c"},
{"name": "grok-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/alvarobartt/grok-2-tokenizer", "chkhsh": "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273"},
]

View File

@@ -12,7 +12,7 @@ import json
from math import prod
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Iterable, Iterator, Sequence, SupportsIndex, cast
from transformers import AutoConfig
from transformers import AutoConfig, AutoTokenizer
import torch
@@ -26,6 +26,8 @@ import gguf
# reuse model definitions from convert_hf_to_gguf.py
from convert_hf_to_gguf import LazyTorchTensor, ModelBase
from gguf.constants import GGUFValueType
logger = logging.getLogger("lora-to-gguf")
@@ -369,7 +371,31 @@ if __name__ == '__main__':
self.gguf_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
def set_gguf_parameters(self):
logger.debug("GGUF KV: %s = %d", gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha)
self.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha)
alora_invocation_tokens = lparams.get("alora_invocation_tokens")
invocation_string = lparams.get("invocation_string")
if invocation_string and not alora_invocation_tokens:
logger.debug("Tokenizing invocation_string -> alora_invocation_tokens")
base_model_path_or_id = hparams.get("_name_or_path")
try:
tokenizer = AutoTokenizer.from_pretrained(base_model_path_or_id)
except ValueError:
logger.error("Unable to load tokenizer from %s", base_model_path_or_id)
raise
# NOTE: There's an off-by-one with the older aLoRAs where
# the invocation string includes the "<|start_of_turn|>"
# token, but the adapters themselves were trained to
# activate _after_ that first token, so we drop it here.
alora_invocation_tokens = tokenizer(invocation_string)["input_ids"][1:]
if alora_invocation_tokens:
logger.debug("GGUF KV: %s = %s", gguf.Keys.Adapter.ALORA_INVOCATION_TOKENS, alora_invocation_tokens)
self.gguf_writer.add_key_value(
gguf.Keys.Adapter.ALORA_INVOCATION_TOKENS,
alora_invocation_tokens,
GGUFValueType.ARRAY,
GGUFValueType.UINT32,
)
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
# Never add extra tensors (e.g. rope_freqs) for LoRA adapters

View File

@@ -293,17 +293,14 @@ We would like to thank Tuo Dai, Shanni Li, and all of the project maintainers fr
## Environment variable setup
### GGML_CANN_ASYNC_MODE
Enables asynchronous operator submission. Disabled by default.
### GGML_CANN_MEM_POOL
Specifies the memory pool management strategy:
Specifies the memory pool management strategy, Default is vmm.
- vmm: Utilizes a virtual memory manager pool. If hardware support for VMM is unavailable, falls back to the legacy (leg) memory pool.
- prio: Employs a priority queue-based memory pool management.
- leg: Uses a fixed-size buffer pool.
### GGML_CANN_DISABLE_BUF_POOL_CLEAN
@@ -312,5 +309,16 @@ Controls automatic cleanup of the memory pool. This option is only effective whe
### GGML_CANN_WEIGHT_NZ
Converting the matmul weight format from ND to NZ can significantly improve performance on the 310I DUO NPU.
Converting the matmul weight format from ND to NZ to improve performance. Enabled by default.
### GGML_CANN_ACL_GRAPH
Operators are executed using ACL graph execution, rather than in op-by-op (eager) mode. Enabled by default.
### GGML_CANN_GRAPH_CACHE_CAPACITY
Maximum number of compiled CANN graphs kept in the LRU cache, default is 12. When the number of cached graphs exceeds this capacity, the least recently used graph will be evicted.
### GGML_CANN_PREFILL_USE_GRAPH
Enable ACL graph execution during the prefill stage, default is false. This option is only effective when FA is enabled.

View File

@@ -42,18 +42,6 @@ cmake --build build --config Release -j $(nproc)
cmake --build build --config Release -j $(nproc)
```
- By default, NNPA is disabled by default. To enable it:
```bash
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_BLAS=ON \
-DGGML_BLAS_VENDOR=OpenBLAS \
-DGGML_NNPA=ON
cmake --build build --config Release -j $(nproc)
```
- For debug builds:
```bash
@@ -164,15 +152,11 @@ All models need to be converted to Big-Endian. You can achieve this in three cas
Only available in IBM z15/LinuxONE 3 or later system with the `-DGGML_VXE=ON` (turned on by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z14/arch12. In such systems, the APIs can still run but will use a scalar implementation.
### 2. NNPA Vector Intrinsics Acceleration
Only available in IBM z16/LinuxONE 4 or later system with the `-DGGML_NNPA=ON` (turned off by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z15/arch13. In such systems, the APIs can still run but will use a scalar implementation.
### 3. zDNN Accelerator (WIP)
### 2. zDNN Accelerator (WIP)
Only available in IBM z17/LinuxONE 5 or later system with the `-DGGML_ZDNN=ON` compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z15/arch13. In such systems, the APIs will default back to CPU routines.
### 4. Spyre Accelerator
### 3. Spyre Accelerator
_Only available with IBM z17 / LinuxONE 5 or later system. No support currently available._
@@ -230,10 +214,6 @@ IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongl
CXXFLAGS="-include cstdint" pip3 install -r requirements.txt
```
5. `-DGGML_NNPA=ON` generates gibberish output
Answer: We are aware of this as detailed in [this issue](https://github.com/ggml-org/llama.cpp/issues/14877). Please either try reducing the number of threads, or disable the compile option using `-DGGML_NNPA=OFF`.
## Getting Help on IBM Z & LinuxONE
1. **Bugs, Feature Requests**
@@ -258,37 +238,38 @@ IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongl
## Appendix B: SIMD Support Matrix
| | VX/VXE/VXE2 | NNPA | zDNN | Spyre |
| ---------- | ----------- | ---- | ---- | ----- |
| FP32 | ✅ | ✅ | ✅ | ❓ |
| FP16 | ✅ | ✅ | ❓ | ❓ |
| BF16 | 🚫 | 🚫 | ❓ | ❓ |
| Q4_0 | ✅ | ✅ | ❓ | ❓ |
| Q4_1 | ✅ | ✅ | ❓ | ❓ |
| Q5_0 | 🚫 | 🚫 | ❓ | ❓ |
| Q5_1 | 🚫 | 🚫 | ❓ | ❓ |
| Q8_0 | ✅ | ✅ | ❓ | ❓ |
| Q2_K | 🚫 | 🚫 | ❓ | ❓ |
| Q3_K | | ✅ | ❓ | ❓ |
| Q4_K | ✅ | ✅ | ❓ | ❓ |
| Q5_K | ✅ | ✅ | ❓ | ❓ |
| Q6_K | ✅ | ✅ | ❓ | ❓ |
| TQ1_0 | 🚫 | 🚫 | ❓ | ❓ |
| TQ2_0 | 🚫 | 🚫 | ❓ | ❓ |
| IQ2_XXS | 🚫 | 🚫 | ❓ | ❓ |
| IQ2_XS | 🚫 | 🚫 | ❓ | ❓ |
| IQ2_S | 🚫 | 🚫 | ❓ | ❓ |
| IQ3_XXS | 🚫 | 🚫 | ❓ | ❓ |
| IQ3_S | 🚫 | 🚫 | ❓ | ❓ |
| IQ1_S | 🚫 | 🚫 | ❓ | ❓ |
| IQ1_M | 🚫 | 🚫 | ❓ | ❓ |
| IQ4_NL | | ✅ | ❓ | ❓ |
| IQ4_XS | ✅ | ✅ | ❓ | ❓ |
| FP32->FP16 | 🚫 | ✅ | ❓ | ❓ |
| FP16->FP32 | 🚫 | ✅ | ❓ | ❓ |
| | VX/VXE/VXE2 | zDNN | Spyre |
|------------|-------------|------|-------|
| FP32 | ✅ | ✅ | ❓ |
| FP16 | ✅ | ✅ | ❓ |
| BF16 | 🚫 | | ❓ |
| Q4_0 | ✅ | ❓ | ❓ |
| Q4_1 | ✅ | ❓ | ❓ |
| MXFP4 | 🚫 | ❓ | ❓ |
| Q5_0 | | ❓ | ❓ |
| Q5_1 | ✅ | ❓ | ❓ |
| Q8_0 | | ❓ | ❓ |
| Q2_K | 🚫 | ❓ | ❓ |
| Q3_K | ✅ | ❓ | ❓ |
| Q4_K | ✅ | ❓ | ❓ |
| Q5_K | ✅ | ❓ | ❓ |
| Q6_K | | ❓ | ❓ |
| TQ1_0 | 🚫 | ❓ | ❓ |
| TQ2_0 | 🚫 | ❓ | ❓ |
| IQ2_XXS | 🚫 | ❓ | ❓ |
| IQ2_XS | 🚫 | ❓ | ❓ |
| IQ2_S | 🚫 | ❓ | ❓ |
| IQ3_XXS | 🚫 | ❓ | ❓ |
| IQ3_S | 🚫 | ❓ | ❓ |
| IQ1_S | 🚫 | ❓ | ❓ |
| IQ1_M | 🚫 | ❓ | ❓ |
| IQ4_NL | ✅ | ❓ | ❓ |
| IQ4_XS | ✅ | ❓ | ❓ |
| FP32->FP16 | 🚫 | ❓ | ❓ |
| FP16->FP32 | 🚫 | ❓ | ❓ |
- ✅ - acceleration available
- 🚫 - acceleration unavailable, will still run using scalar implementation
- ❓ - acceleration unknown, please contribute if you can test it yourself
Last Updated by **Aaron Teo (aaron.teo1@ibm.com)** on July 31, 2025.
Last Updated by **Aaron Teo (aaron.teo1@ibm.com)** on Sep 7, 2025.

View File

@@ -59,8 +59,6 @@ cmake --build build --config Release
cmake --preset arm64-windows-llvm-release -D GGML_OPENMP=OFF
cmake --build build-arm64-windows-llvm-release
```
Building for arm64 can also be done with the MSVC compiler with the build-arm64-windows-MSVC preset, or the standard CMake build instructions. However, note that the MSVC compiler does not support inline ARM assembly code, used e.g. for the accelerated Q4_0_N_M CPU kernels.
For building with ninja generator and clang compiler as default:
-set path:set LIB=C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.41.34120\lib\x64\uwp;C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\x64
```bash

View File

@@ -21,6 +21,8 @@ Function calling is supported for all models (see https://github.com/ggml-org/ll
- Use `--chat-template-file` to override the template when appropriate (see examples below)
- Generic support may consume more tokens and be less efficient than a model's native format.
- Multiple/parallel tool calling is supported on some models but disabled by default, enable it by passing `"parallel_tool_calls": true` in the completion endpoint payload.
<details>
<summary>Show some common templates and which format handler they use</summary>

View File

@@ -6,7 +6,7 @@ Download [MiniCPM-V-4](https://huggingface.co/openbmb/MiniCPM-V-4) PyTorch model
### Build llama.cpp
Readme modification time: 20250206
Readme modification time: 20250731
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)

View File

@@ -0,0 +1,47 @@
## MiniCPM-V 4.5
### Prepare models and code
Download [MiniCPM-V-4_5](https://huggingface.co/openbmb/MiniCPM-V-4_5) PyTorch model from huggingface to "MiniCPM-V-4_5" folder.
### Build llama.cpp
Readme modification time: 20250826
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
Clone llama.cpp:
```bash
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
```
Build llama.cpp using `CMake`:
```bash
cmake -B build
cmake --build build --config Release
```
### Usage of MiniCPM-V 4
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-V-4_5-gguf) by us)
```bash
python ./tools/mtmd/legacy-models/minicpmv-surgery.py -m ../MiniCPM-V-4_5
python ./tools/mtmd/legacy-models/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-V-4_5 --minicpmv-projector ../MiniCPM-V-4_5/minicpmv.projector --output-dir ../MiniCPM-V-4_5/ --minicpmv_version 6
python ./convert_hf_to_gguf.py ../MiniCPM-V-4_5/model
# quantize int4 version
./build/bin/llama-quantize ../MiniCPM-V-4_5/model/ggml-model-f16.gguf ../MiniCPM-V-4_5/model/ggml-model-Q4_K_M.gguf Q4_K_M
```
Inference on Linux or Mac
```bash
# run in single-turn mode
./build/bin/llama-mtmd-cli -m ../MiniCPM-V-4_5/model/ggml-model-f16.gguf --mmproj ../MiniCPM-V-4_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# run in conversation mode
./build/bin/llama-mtmd-cli -m ../MiniCPM-V-4_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-4_5/mmproj-model-f16.gguf
```

View File

@@ -18,6 +18,7 @@ Legend:
| ACC | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| ADD | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| ADD1 | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
| ADD_ID | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
@@ -26,6 +27,7 @@ Legend:
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| CONV_2D | ❌ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ |
| CONV_2D_DW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| CONV_3D | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| CONV_TRANSPOSE_2D | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ |
@@ -49,9 +51,11 @@ Legend:
| GET_ROWS | ❌ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| GET_ROWS_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ |
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| GROUP_NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| HARDSIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| HARDSWISH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| IM2COL | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ | ❌ |
| IM2COL_3D | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| L2_NORM | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| LOG | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
@@ -61,7 +65,9 @@ Legend:
| MUL_MAT_ID | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ❌ |
| NEG | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| OPT_STEP_ADAMW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| OPT_STEP_SGD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
| PAD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ |
@@ -98,6 +104,7 @@ Legend:
| SUM | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
| SUM_ROWS | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| SWIGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| SWIGLU_OAI | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | 🟡 | ❌ |
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ❌ |

File diff suppressed because it is too large Load Diff

View File

@@ -34,6 +34,7 @@ else()
add_subdirectory(gen-docs)
add_subdirectory(training)
add_subdirectory(diffusion)
add_subdirectory(model-conversion)
if (NOT GGML_BACKEND_DL)
add_subdirectory(convert-llama2c-to-ggml)
# these examples use the backends directly and cannot be built with dynamic loading

View File

@@ -333,17 +333,17 @@ static void print_params(struct my_llama_hparams * params) {
}
static void print_tensor_info(const struct ggml_context * ctx) {
for (auto t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
for (auto * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
LOG_INF("%s: Allocating ", __func__);
int64_t total = 1;
int i = 0;
for (; i < ggml_n_dims(t); ++i) {
if (i > 0) LOG("x ");
LOG("[%" PRId64 "] ", t->ne[i]);
if (i > 0) { LOG_INF("x "); }
LOG_INF("[%" PRId64 "] ", t->ne[i]);
total *= t->ne[i];
}
if (i > 1) LOG("= [%" PRId64 "] ", total);
LOG("float space for %s\n", ggml_get_name(t));
if (i > 1) { LOG_INF("= [%" PRId64 "] ", total); }
LOG_INF("float space for %s\n", ggml_get_name(t));
}
}

View File

@@ -510,19 +510,27 @@ static void diffusion_generate(llama_context * ctx,
n_generated = params.max_length;
}
static std::string format_input_text(const std::string & prompt, bool use_chat_template, llama_model * model) {
static std::string format_input_text(const std::string & prompt, const std::string & system_prompt, bool use_chat_template, llama_model * model) {
if (!use_chat_template) {
return prompt;
}
auto chat_templates = common_chat_templates_init(model, "");
common_chat_templates_inputs inputs;
common_chat_msg user_msg;
user_msg.role = "user";
user_msg.content = prompt;
inputs.add_generation_prompt = true;
common_chat_msg system_msg;
if (!system_prompt.empty()) {
system_msg.role = "system";
system_msg.content = system_prompt;
inputs.messages.push_back(system_msg);
}
common_chat_msg user_msg;
user_msg.role = "user";
user_msg.content = prompt;
inputs.messages.push_back(user_msg);
inputs.add_generation_prompt = true;
auto result = common_chat_templates_apply(chat_templates.get(), inputs);
@@ -564,7 +572,7 @@ int main(int argc, char ** argv) {
ctx_params.n_ctx = params.n_ctx;
ctx_params.n_batch = params.n_batch;
ctx_params.n_ubatch = params.n_ubatch;
ctx_params.flash_attn = params.flash_attn;
ctx_params.flash_attn_type = params.flash_attn_type;
ctx_params.no_perf = params.no_perf;
ctx_params.type_k = params.cache_type_k;
ctx_params.type_v = params.cache_type_v;
@@ -579,7 +587,8 @@ int main(int argc, char ** argv) {
llama_set_n_threads(ctx, params.cpuparams.n_threads, params.cpuparams_batch.n_threads);
const llama_vocab * vocab = llama_model_get_vocab(model);
std::string formatted_prompt = format_input_text(params.prompt, params.enable_chat_template, model);
std::string formatted_prompt = format_input_text(params.prompt, params.system_prompt, params.enable_chat_template, model);
std::vector<llama_token> input_tokens = common_tokenize(vocab,
formatted_prompt,
@@ -596,6 +605,7 @@ int main(int argc, char ** argv) {
}
llama_token mask_token_id = llama_vocab_mask(vocab);
GGML_ASSERT(mask_token_id != LLAMA_TOKEN_NULL);
bool visual_mode = params.diffusion.visual_mode;

View File

@@ -28,9 +28,51 @@ static std::string ggml_ne_string(const ggml_tensor * t) {
return str;
}
static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) {
union {
float f;
uint32_t i;
} u;
u.i = (uint32_t)h.bits << 16;
return u.f;
}
static float ggml_get_float_value(uint8_t * data, ggml_type type, const size_t * nb, size_t i0, size_t i1, size_t i2, size_t i3) {
size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
float v;
if (type == GGML_TYPE_F16) {
v = ggml_fp16_to_fp32(*(ggml_fp16_t *) &data[i]);
} else if (type == GGML_TYPE_F32) {
v = *(float *) &data[i];
} else if (type == GGML_TYPE_I64) {
v = (float) *(int64_t *) &data[i];
} else if (type == GGML_TYPE_I32) {
v = (float) *(int32_t *) &data[i];
} else if (type == GGML_TYPE_I16) {
v = (float) *(int16_t *) &data[i];
} else if (type == GGML_TYPE_I8) {
v = (float) *(int8_t *) &data[i];
} else if (type == GGML_TYPE_BF16) {
v = ggml_compute_bf16_to_fp32(*(ggml_bf16_t *) &data[i]);
} else {
GGML_ABORT("fatal error");
}
return v;
}
static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) {
GGML_ASSERT(n > 0);
float sum = 0;
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
for (int64_t i2 = 0; i2 < ne[2]; i2++) {
for (int64_t i1 = 0; i1 < ne[1]; i1++) {
for (int64_t i0 = 0; i0 < ne[0]; i0++) {
const float v = ggml_get_float_value(data, type, nb, i0, i1, i2, i3);
sum += v;
}
}
}
}
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
LOG(" [\n");
for (int64_t i2 = 0; i2 < ne[2]; i2++) {
@@ -50,25 +92,8 @@ static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne
LOG("..., ");
i0 = ne[0] - n;
}
size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
float v;
if (type == GGML_TYPE_F16) {
v = ggml_fp16_to_fp32(*(ggml_fp16_t *) &data[i]);
} else if (type == GGML_TYPE_F32) {
v = *(float *) &data[i];
} else if (type == GGML_TYPE_I64) {
v = (float) *(int64_t *) &data[i];
} else if (type == GGML_TYPE_I32) {
v = (float) *(int32_t *) &data[i];
} else if (type == GGML_TYPE_I16) {
v = (float) *(int16_t *) &data[i];
} else if (type == GGML_TYPE_I8) {
v = (float) *(int8_t *) &data[i];
} else {
GGML_ABORT("fatal error");
}
const float v = ggml_get_float_value(data, type, nb, i0, i1, i2, i3);
LOG("%12.4f", v);
sum += v;
if (i0 < ne[0] - 1) LOG(", ");
}
LOG("],\n");

View File

@@ -586,9 +586,10 @@ class SchemaConverter:
properties = list(schema.get('properties', {}).items())
return self._add_rule(rule_name, self._build_object_rule(properties, required, name, schema.get('additionalProperties')))
elif schema_type in (None, 'object') and 'allOf' in schema:
elif schema_type in (None, 'object', 'string') and 'allOf' in schema:
required = set()
properties = []
enum_sets = []
hybrid_name = name
def add_component(comp_schema, is_required):
if (ref := comp_schema.get('$ref')) is not None:
@@ -600,6 +601,9 @@ class SchemaConverter:
if is_required:
required.add(prop_name)
if 'enum' in comp_schema:
enum_sets.append(set(comp_schema['enum']))
for t in schema['allOf']:
if 'anyOf' in t:
for tt in t['anyOf']:
@@ -607,6 +611,15 @@ class SchemaConverter:
else:
add_component(t, is_required=True)
if enum_sets:
enum_intersection = enum_sets[0]
for s in enum_sets[1:]:
enum_intersection &= s
if enum_intersection:
rule = '(' + ' | '.join((self._generate_constant_rule(v) for v in sorted(enum_intersection))) + ') space'
return self._add_rule(rule_name, rule)
return self._add_rule(rule_name, self._build_object_rule(properties, required, hybrid_name, additional_properties=None))
elif schema_type in (None, 'array') and ('items' in schema or 'prefixItems' in schema):

View File

@@ -17,7 +17,7 @@
"
" start the llama.cpp server with a FIM-compatible model. for example:
"
" $ llama-server -m {model.gguf} --port 8012 -ngl 99 -fa -dt 0.1 --ubatch-size 512 --batch-size 1024 --cache-reuse 256
" $ llama-server -m {model.gguf} --port 8012 -ngl 99 -fa --ubatch-size 512 --batch-size 1024 --cache-reuse 256
"
" --batch-size [512, model max context]
"

3
examples/model-conversion/.gitignore vendored Normal file
View File

@@ -0,0 +1,3 @@
.model_name
data
ppl

View File

@@ -0,0 +1,5 @@
set(TARGET llama-logits)
add_executable(${TARGET} logits.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -0,0 +1,206 @@
MAKEFLAGS += --no-print-directory
define validate_model_path
@if [ -z "$(MODEL_PATH)" ]; then \
echo "Error: MODEL_PATH must be provided either as:"; \
echo " 1. Environment variable: export MODEL_PATH=/path/to/model"; \
echo " 2. Command line argument: make $(1) MODEL_PATH=/path/to/model"; \
exit 1; \
fi
endef
define validate_embedding_model_path
@if [ -z "$(EMBEDDING_MODEL_PATH)" ]; then \
echo "Error: EMBEDDING_MODEL_PATH must be provided either as:"; \
echo " 1. Environment variable: export EMBEDDING_MODEL_PATH=/path/to/model"; \
echo " 2. Command line argument: make $(1) EMBEDDING_MODEL_PATH=/path/to/model"; \
exit 1; \
fi
endef
define quantize_model
@CONVERTED_MODEL="$(1)" QUANTIZED_TYPE="$(QUANTIZED_TYPE)" \
TOKEN_EMBD_TYPE="$(TOKEN_EMBD_TYPE)" OUTPUT_TYPE="$(OUTPUT_TYPE)" \
./scripts/utils/quantize.sh "$(1)" "$(QUANTIZED_TYPE)" "$(TOKEN_EMBD_TYPE)" "$(OUTPUT_TYPE)"
@echo "Export the quantized model path to $(2) variable in your environment"
endef
###
### Casual Model targets/recipes
###
causal-convert-model-bf16: OUTTYPE=bf16
causal-convert-model-bf16: causal-convert-model
causal-convert-model:
$(call validate_model_path,causal-convert-model)
@MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(OUTTYPE)" MODEL_PATH="$(MODEL_PATH)" \
METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
./scripts/causal/convert-model.sh
causal-convert-mm-model-bf16: OUTTYPE=bf16
causal-convert-mm-model-bf16: MM_OUTTYPE=f16
causal-convert-mm-model-bf16: causal-convert-mm-model
causal-convert-mm-model:
$(call validate_model_path,causal-convert-mm-model)
@MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(OUTTYPE)" MODEL_PATH="$(MODEL_PATH)" \
METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
./scripts/causal/convert-model.sh
@MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(MM_OUTTYPE)" MODEL_PATH="$(MODEL_PATH)" \
METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
./scripts/causal/convert-model.sh --mmproj
causal-run-original-model:
$(call validate_model_path,causal-run-original-model)
@MODEL_PATH="$(MODEL_PATH)" ./scripts/causal/run-org-model.py
causal-run-converted-model:
@CONVERTED_MODEL="$(CONVERTED_MODEL)" ./scripts/causal/run-converted-model.sh
causal-verify-logits: causal-run-original-model causal-run-converted-model
@./scripts/causal/compare-logits.py
@MODEL_PATH="$(MODEL_PATH)" ./scripts/utils/check-nmse.py -m ${MODEL_PATH}
causal-run-original-embeddings:
@./scripts/causal/run-casual-gen-embeddings-org.py
causal-run-converted-embeddings:
@./scripts/causal/run-converted-model-embeddings-logits.sh
causal-verify-embeddings: causal-run-original-embeddings causal-run-converted-embeddings
@./scripts/causal/compare-embeddings-logits.sh
causal-inspect-original-model:
@./scripts/utils/inspect-org-model.py
causal-inspect-converted-model:
@./scripts/utils/inspect-converted-model.sh
causal-start-embedding-server:
@./scripts/utils/run-embedding-server.sh ${CONVERTED_MODEL}
causal-curl-embedding-endpoint: causal-run-original-embeddings
@./scripts/utils/curl-embedding-server.sh | ./scripts/causal/compare-embeddings-logits.sh
causal-quantize-Q8_0: QUANTIZED_TYPE = Q8_0
causal-quantize-Q8_0: causal-quantize-model
causal-quantize-Q4_0: QUANTIZED_TYPE = Q4_0
causal-quantize-Q4_0: causal-quantize-model
# For Quantization Aware Trained (QAT) models in Q4_0 we explicitly set the
# token embedding and output types to Q8_0 instead of the default Q6_K.
causal-quantize-qat-Q4_0: QUANTIZED_TYPE = Q4_0
causal-quantize-qat-Q4_0: TOKEN_EMBD_TYPE = Q8_0
causal-quantize-qat-Q4_0: OUTPUT_TYPE = Q8_0
causal-quantize-qat-Q4_0: causal-quantize-model
causal-quantize-model:
$(call quantize_model,$(CONVERTED_MODEL),QUANTIZED_MODEL)
causal-run-quantized-model:
@QUANTIZED_MODEL="$(QUANTIZED_MODEL)" ./scripts/causal/run-converted-model.sh ${QUANTIZED_MODEL}
###
### Embedding Model targets/recipes
###
embedding-convert-model-bf16: OUTTYPE=bf16
embedding-convert-model-bf16: embedding-convert-model
embedding-convert-model:
$(call validate_embedding_model_path,embedding-convert-model)
@MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(OUTTYPE)" MODEL_PATH="$(EMBEDDING_MODEL_PATH)" \
METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
./scripts/embedding/convert-model.sh
embedding-run-original-model:
$(call validate_embedding_model_path,embedding-run-original-model)
@EMBEDDING_MODEL_PATH="$(EMBEDDING_MODEL_PATH)" ./scripts/embedding/run-original-model.py
embedding-run-converted-model:
@CONVERTED_EMBEDDING_MODEL="$(CONVERTED_EMBEDDING_MODEL)" ./scripts/embedding/run-converted-model.sh ${CONVERTED_EMBEDDING_MODEL}
embedding-verify-logits: embedding-run-original-model embedding-run-converted-model
@./scripts/embedding/compare-embeddings-logits.sh
embedding-inspect-original-model:
$(call validate_embedding_model_path,embedding-inspect-original-model)
@EMBEDDING_MODEL_PATH="$(EMBEDDING_MODEL_PATH)" ./scripts/utils/inspect-org-model.py -m ${EMBEDDING_MODEL_PATH}
embedding-inspect-converted-model:
@CONVERTED_EMBEDDING_MODEL="$(CONVERTED_EMBEDDING_MODEL)" ./scripts/utils/inspect-converted-model.sh ${CONVERTED_EMBEDDING_MODEL}
embedding-start-embedding-server:
@./scripts/utils/run-embedding-server.sh ${CONVERTED_EMBEDDING_MODEL}
embedding-curl-embedding-endpoint:
@./scripts/utils/curl-embedding-server.sh | ./scripts/embedding/compare-embeddings-logits.sh
embedding-quantize-Q8_0: QUANTIZED_TYPE = Q8_0
embedding-quantize-Q8_0: embedding-quantize-model
embedding-quantize-Q4_0: QUANTIZED_TYPE = Q4_0
embedding-quantize-Q4_0: embedding-quantize-model
# For Quantization Aware Trained (QAT) models in Q4_0 we explicitly set the
# token embedding and output types to Q8_0 instead of the default Q6_K.
embedding-quantize-qat-Q4_0: QUANTIZED_TYPE = Q4_0
embedding-quantize-qat-Q4_0: TOKEN_EMBD_TYPE = Q8_0
embedding-quantize-qat-Q4_0: OUTPUT_TYPE = Q8_0
embedding-quantize-qat-Q4_0: embedding-quantize-model
embedding-quantize-model:
$(call quantize_model,$(CONVERTED_EMBEDDING_MODEL),QUANTIZED_EMBEDDING_MODEL)
embedding-run-quantized-model:
@./scripts/embedding/run-converted-model.sh ${QUANTIZED_EMBEDDING_MODEL}
###
### Perplexity targets/recipes
###
perplexity-data-gen:
CONVERTED_MODEL="$(CONVERTED_MODEL)" ./scripts/utils/perplexity-gen.sh
perplexity-run-full:
QUANTIZED_MODEL="$(QUANTIZED_MODEL)" LOOGITS_FILE="$(LOGITS_FILE)" \
./scripts/utils/perplexity-run.sh
perplexity-run:
QUANTIZED_MODEL="$(QUANTIZED_MODEL)" ./scripts/utils/perplexity-run-simple.sh
###
### HuggingFace targets/recipes
###
hf-create-model:
@./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}"
hf-create-model-dry-run:
@./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -d
hf-create-model-embedding:
@./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -e
hf-create-model-embedding-dry-run:
@./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -e -d
hf-create-model-private:
@./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -p
hf-upload-gguf-to-model:
@./scripts/utils/hf-upload-gguf-model.py -m "${MODEL_PATH}" -r "${REPO_ID}" -o "${NAME_IN_REPO}"
hf-create-collection:
@./scripts/utils/hf-create-collection.py -n "${NAME}" -d "${DESCRIPTION}" -ns "${NAMESPACE}"
hf-add-model-to-collection:
@./scripts/utils/hf-add-model-to-collection.py -c "${COLLECTION}" -m "${MODEL}"
.PHONY: clean
clean:
@${RM} -rf data .converted_embedding_model.txt .converted_model.txt .embedding_model_name.txt .model_name.txt

View File

@@ -0,0 +1,367 @@
# Model Conversion Example
This directory contains scripts and code to help in the process of converting
HuggingFace PyTorch models to GGUF format.
The motivation for having this is that the conversion process can often be an
iterative process, where the original model is inspected, converted, updates
made to llama.cpp, converted again, etc. Once the model has been converted it
needs to be verified against the original model, and then optionally quantified,
and in some cases perplexity checked of the quantized model. And finally the
model/models need to the ggml-org on Hugging Face. This tool/example tries to
help with this process.
### Overview
The idea is that the makefile targets and scripts here can be used in the
development/conversion process assisting with things like:
* inspect/run the original model to figure out how it works
* convert the original model to GGUF format
* inspect/run the converted model
* verify the logits produced by the original model and the converted model
* quantize the model to GGUF format
* run perplexity evaluation to verify that the quantized model is performing
as expected
* upload the model to HuggingFace to make it available for others
## Setup
Create virtual python environment
```console
$ python3.11 -m venv venv
$ source venv/bin/activate
(venv) $ pip install -r requirements.txt
```
## Causal Language Model Conversion
This section describes the steps to convert a causal language model to GGUF and
to verify that the conversion was successful.
### Download the original model
First, clone the original model to some local directory:
```console
$ mkdir models && cd models
$ git clone https://huggingface.co/user/model_name
$ cd model_name
$ git lfs install
$ git lfs pull
```
### Set the MODEL_PATH
The path to the downloaded model can be provided in two ways:
**Option 1: Environment variable (recommended for iterative development)**
```console
export MODEL_PATH=~/work/ai/models/some_model
```
**Option 2: Command line argument (for one-off tasks)**
```console
make causal-convert-model MODEL_PATH=~/work/ai/models/some_model
```
Command line arguments take precedence over environment variables when both are provided.
In cases where the transformer implementation for the model has not been released
yet it is possible to set the environment variable `UNRELEASED_MODEL_NAME` which
will then cause the transformer implementation to be loaded explicitely and not
use AutoModelForCausalLM:
```
export UNRELEASED_MODEL_NAME=SomeNewModel
```
### Inspecting the original tensors
```console
# Using environment variable
(venv) $ make causal-inspect-original-model
# Or using command line argument
(venv) $ make causal-inspect-original-model MODEL_PATH=~/work/ai/models/some_model
```
### Running the original model
This is mainly to verify that the original model works, and to compare the output
from the converted model.
```console
# Using environment variable
(venv) $ make causal-run-original-model
# Or using command line argument
(venv) $ make causal-run-original-model MODEL_PATH=~/work/ai/models/some_model
```
This command will save two files to the `data` directory, one is a binary file
containing logits which will be used for comparison with the converted model
later, and the other is a text file which allows for manual visual inspection.
### Model conversion
After updates have been made to [gguf-py](../../gguf-py) to add support for the
new model, the model can be converted to GGUF format using the following command:
```console
# Using environment variable
(venv) $ make causal-convert-model
# Or using command line argument
(venv) $ make causal-convert-model MODEL_PATH=~/work/ai/models/some_model
```
### Inspecting the converted model
The converted model can be inspected using the following command:
```console
(venv) $ make inspect-converted-model
```
### Running the converted model
```console
(venv) $ make run-converted-model
```
### Model logits verfication
The following target will run the original model and the converted model and
compare the logits:
```console
(venv) $ make causal-verify-logits
```
### Quantizing the model
The causal model can be quantized to GGUF format using the following command:
```console
(venv) $ make causal-quantize-Q8_0
Quantized model saved to: /path/to/quantized/model-Q8_0.gguf
Export the quantized model path to QUANTIZED_MODEL variable in your environment
```
This will show the path to the quantized model in the terminal, which can then
be used to set the `QUANTIZED_MODEL` environment variable:
```console
export QUANTIZED_MODEL=/path/to/quantized/model-Q8_0.gguf
```
Then the quantized model can be run using the following command:
```console
(venv) $ make causal-run-quantized-model
```
### Quantizing QAT (Quantization Aware Training) models
When quantizing to `Q4_0`, the default data type for the token embedding weights
will be `Q6_K`. For models that are going to be uploaded to ggml-org it is
recommended to use `Q8_0` instead for the embeddings and output tensors.
The reason is that although `Q6_K` is smaller in size, it requires more compute
to unpack, which can hurt performance during output generation when the entire
embedding matrix must be dequantized to compute vocabulary logits. `Q8_0`
provides practically full quality with better computational efficiency.
```console
(venv) $ make causal-quantize-qat-Q4_0
```
## Embedding Language Model Conversion
### Download the original model
```console
$ mkdir models && cd models
$ git clone https://huggingface.co/user/model_name
$ cd model_name
$ git lfs install
$ git lfs pull
```
The path to the embedding model can be provided in two ways:
**Option 1: Environment variable (recommended for iterative development)**
```console
export EMBEDDING_MODEL_PATH=~/path/to/embedding_model
```
**Option 2: Command line argument (for one-off tasks)**
```console
make embedding-convert-model EMBEDDING_MODEL_PATH=~/path/to/embedding_model
```
Command line arguments take precedence over environment variables when both are provided.
### Running the original model
This is mainly to verify that the original model works and to compare the output
with the output from the converted model.
```console
# Using environment variable
(venv) $ make embedding-run-original-model
# Or using command line argument
(venv) $ make embedding-run-original-model EMBEDDING_MODEL_PATH=~/path/to/embedding_model
```
This command will save two files to the `data` directory, one is a binary
file containing logits which will be used for comparison with the converted
model, and the other is a text file which allows for manual visual inspection.
### Model conversion
After updates have been made to [gguf-py](../../gguf-py) to add support for the
new model the model can be converted to GGUF format using the following command:
```console
(venv) $ make embedding-convert-model
```
### Run the converted model
```console
(venv) $ make embedding-run-converted-model
```
### Model logits verfication
The following target will run the original model and the converted model (which
was done manually in the previous steps) and compare the logits:
```console
(venv) $ make embedding-verify-logits
```
### llama-server verification
To verify that the converted model works with llama-server, the following
command can be used:
```console
(venv) $ make embedding-start-embedding-server
```
Then open another terminal and set the `EMBEDDINGS_MODEL_PATH` environment
variable as this will not be inherited by the new terminal:
```console
(venv) $ make embedding-curl-embedding-endpoint
```
This will call the `embedding` endpoing and the output will be piped into
the same verification script as used by the target `embedding-verify-logits`.
The causal model can also be used to produce embeddings and this can be verified
using the following commands:
```console
(venv) $ make causal-start-embedding-server
```
Then open another terminal and set the `MODEL_PATH` environment
variable as this will not be inherited by the new terminal:
```console
(venv) $ make casual-curl-embedding-endpoint
```
### Quantizing the model
The embedding model can be quantized to GGUF format using the following command:
```console
(venv) $ make embedding-quantize-Q8_0
Quantized model saved to: /path/to/quantized/model-Q8_0.gguf
Export the quantized model path to QUANTIZED_EMBEDDING_MODEL variable in your environment
```
This will show the path to the quantized model in the terminal, which can then
be used to set the `QUANTIZED_EMBEDDING_MODEL` environment variable:
```console
export QUANTIZED_EMBEDDING_MODEL=/path/to/quantized/model-Q8_0.gguf
```
Then the quantized model can be run using the following command:
```console
(venv) $ make embedding-run-quantized-model
```
### Quantizing QAT (Quantization Aware Training) models
When quantizing to `Q4_0`, the default data type for the token embedding weights
will be `Q6_K`. For models that are going to be uploaded to ggml-org it is
recommended to use `Q8_0` instead for the embeddings and output tensors.
The reason is that although `Q6_K` is smaller in size, it requires more compute
to unpack, which can hurt performance during output generation when the entire
embedding matrix must be dequantized to compute vocabulary logits. `Q8_0`
provides practically full quality with better computational efficiency.
```console
(venv) $ make embedding-quantize-qat-Q4_0
```
## Perplexity Evaluation
### Simple perplexity evaluation
This allows to run the perplexity evaluation without having to generate a
token/logits file:
```console
(venv) $ make perplexity-run QUANTIZED_MODEL=~/path/to/quantized/model.gguf
```
This will use the wikitext dataset to run the perplexity evaluation and
output the perplexity score to the terminal. This value can then be compared
with the perplexity score of the unquantized model.
### Full perplexity evaluation
First use the converted, non-quantized, model to generate the perplexity evaluation
dataset using the following command:
```console
$ make perplexity-data-gen CONVERTED_MODEL=~/path/to/converted/model.gguf
```
This will generate a file in the `data` directory named after the model and with
a `.kld` suffix which contains the tokens and the logits for the wikitext dataset.
After the dataset has been generated, the perplexity evaluation can be run using
the quantized model:
```console
$ make perplexity-run-full QUANTIZED_MODEL=~/path/to/quantized/model-Qxx.gguf LOGITS_FILE=data/model.gguf.ppl
```
> 📝 **Note:** The `LOGITS_FILE` is the file generated by the previous command
> can be very large, so make sure you have enough disk space available.
## HuggingFace utilities
The following targets are useful for creating collections and model repositories
on Hugging Face in the the ggml-org. These can be used when preparing a relase
to script the process for new model releases.
For the following targets a `HF_TOKEN` environment variable is required.
> 📝 **Note:** Don't forget to logout from Hugging Face after running these
> commands, otherwise you might have issues pulling/cloning repositories as
> the token will still be in use:
> $ huggingface-cli logout
> $ unset HF_TOKEN
### Create a new Hugging Face Model (model repository)
This will create a new model repsository on Hugging Face with the specified
model name.
```console
(venv) $ make hf-create-model MODEL_NAME='TestModel' NAMESPACE="danbev" ORIGINAL_BASE_MODEL="some-base-model"
Repository ID: danbev/TestModel-GGUF
Repository created: https://huggingface.co/danbev/TestModel-GGUF
```
Note that we append a `-GGUF` suffix to the model name to ensure a consistent
naming convention for GGUF models.
An embedding model can be created using the following command:
```console
(venv) $ make hf-create-model-embedding MODEL_NAME='TestEmbeddingModel' NAMESPACE="danbev" ORIGINAL_BASE_MODEL="some-base-model"
```
The only difference is that the model card for an embedding model will be different
with regards to the llama-server command and also how to access/call the embedding
endpoint.
### Upload a GGUF model to model repository
The following target uploads a model to an existing Hugging Face model repository.
```console
(venv) $ make hf-upload-gguf-to-model MODEL_PATH=dummy-model1.gguf REPO_ID=danbev/TestModel-GGUF
📤 Uploading dummy-model1.gguf to danbev/TestModel-GGUF/dummy-model1.gguf
✅ Upload successful!
🔗 File available at: https://huggingface.co/danbev/TestModel-GGUF/blob/main/dummy-model1.gguf
```
This command can also be used to update an existing model file in a repository.
### Create a new Collection
```console
(venv) $ make hf-new-collection NAME=TestCollection DESCRIPTION="Collection for testing scripts" NAMESPACE=danbev
🚀 Creating Hugging Face Collection
Title: TestCollection
Description: Collection for testing scripts
Namespace: danbev
Private: False
✅ Authenticated as: danbev
📚 Creating collection: 'TestCollection'...
✅ Collection created successfully!
📋 Collection slug: danbev/testcollection-68930fcf73eb3fc200b9956d
🔗 Collection URL: https://huggingface.co/collections/danbev/testcollection-68930fcf73eb3fc200b9956d
🎉 Collection created successfully!
Use this slug to add models: danbev/testcollection-68930fcf73eb3fc200b9956d
```
### Add model to a Collection
```console
(venv) $ make hf-add-model-to-collection COLLECTION=danbev/testcollection-68930fcf73eb3fc200b9956d MODEL=danbev/TestModel-GGUF
✅ Authenticated as: danbev
🔍 Checking if model exists: danbev/TestModel-GGUF
✅ Model found: danbev/TestModel-GGUF
📚 Adding model to collection...
✅ Model added to collection successfully!
🔗 Collection URL: https://huggingface.co/collections/danbev/testcollection-68930fcf73eb3fc200b9956d
🎉 Model added successfully!
```

View File

@@ -0,0 +1,210 @@
#include "llama.h"
#include <cstdio>
#include <cstring>
#include <string>
#include <vector>
#include <ctype.h>
#include <filesystem>
static void print_usage(int, char ** argv) {
printf("\nexample usage:\n");
printf("\n %s -m model.gguf [-ngl n_gpu_layers] -embd-mode [prompt]\n", argv[0]);
printf("\n");
}
int main(int argc, char ** argv) {
std::string model_path;
std::string prompt = "Hello, my name is";
int ngl = 0;
bool embedding_mode = false;
{
int i = 1;
for (; i < argc; i++) {
if (strcmp(argv[i], "-m") == 0) {
if (i + 1 < argc) {
model_path = argv[++i];
} else {
print_usage(argc, argv);
return 1;
}
} else if (strcmp(argv[i], "-ngl") == 0) {
if (i + 1 < argc) {
try {
ngl = std::stoi(argv[++i]);
} catch (...) {
print_usage(argc, argv);
return 1;
}
} else {
print_usage(argc, argv);
return 1;
}
} else if (strcmp(argv[i], "-embd-mode") == 0) {
if (i + 1 < argc) {
try {
embedding_mode = true;
} catch (...) {
print_usage(argc, argv);
return 1;
}
} else {
print_usage(argc, argv);
return 1;
}
} else {
// prompt starts here
break;
}
}
if (model_path.empty()) {
print_usage(argc, argv);
return 1;
}
if (i < argc) {
prompt = argv[i++];
for (; i < argc; i++) {
prompt += " ";
prompt += argv[i];
}
}
}
ggml_backend_load_all();
llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = ngl;
llama_model * model = llama_model_load_from_file(model_path.c_str(), model_params);
if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
return 1;
}
// Extract basename from model_path
const char * basename = strrchr(model_path.c_str(), '/');
basename = (basename == NULL) ? model_path.c_str() : basename + 1;
char model_name[256];
strncpy(model_name, basename, 255);
model_name[255] = '\0';
char * dot = strrchr(model_name, '.');
if (dot != NULL && strcmp(dot, ".gguf") == 0) {
*dot = '\0';
}
printf("Model name: %s\n", model_name);
const llama_vocab * vocab = llama_model_get_vocab(model);
const int n_prompt = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, true, true);
std::vector<llama_token> prompt_tokens(n_prompt);
if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) {
fprintf(stderr, "%s: error: failed to tokenize the prompt\n", __func__);
return 1;
}
llama_context_params ctx_params = llama_context_default_params();
ctx_params.n_ctx = n_prompt;
ctx_params.n_batch = n_prompt;
ctx_params.no_perf = false;
if (embedding_mode) {
ctx_params.embeddings = true;
ctx_params.pooling_type = LLAMA_POOLING_TYPE_NONE;
ctx_params.n_ubatch = ctx_params.n_batch;
}
llama_context * ctx = llama_init_from_model(model, ctx_params);
if (ctx == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
}
printf("Input prompt: \"%s\"\n", prompt.c_str());
printf("Tokenized prompt (%d tokens): ", n_prompt);
for (auto id : prompt_tokens) {
char buf[128];
int n = llama_token_to_piece(vocab, id, buf, sizeof(buf), 0, true);
if (n < 0) {
fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__);
return 1;
}
std::string s(buf, n);
printf("%s", s.c_str());
}
printf("\n");
llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
if (llama_decode(ctx, batch)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
float * logits;
int n_logits;
const char * type;
if (embedding_mode) {
logits = llama_get_embeddings(ctx);
n_logits = llama_model_n_embd(model) * batch.n_tokens;
type = "-embeddings";
printf("Embeddings size: %d\n", n_logits);
} else {
logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
n_logits = llama_vocab_n_tokens(vocab);
type = "";
printf("Vocab size: %d\n", n_logits);
}
std::filesystem::create_directory("data");
// Save logits to binary file
char bin_filename[512];
snprintf(bin_filename, sizeof(bin_filename), "data/llamacpp-%s%s.bin", model_name, type);
printf("Saving logits to %s\n", bin_filename);
FILE * f = fopen(bin_filename, "wb");
if (f == NULL) {
fprintf(stderr, "%s: error: failed to open binary output file\n", __func__);
return 1;
}
fwrite(logits, sizeof(float), n_logits, f);
fclose(f);
// Also save as text for debugging
char txt_filename[512];
snprintf(txt_filename, sizeof(txt_filename), "data/llamacpp-%s%s.txt", model_name, type);
f = fopen(txt_filename, "w");
if (f == NULL) {
fprintf(stderr, "%s: error: failed to open text output file\n", __func__);
return 1;
}
for (int i = 0; i < n_logits; i++) {
fprintf(f, "%d: %.6f\n", i, logits[i]); // Added index and changed format
}
fclose(f);
// Print first and last 10 logits for quick verification
printf("First 10 logits: ");
for (int i = 0; i < 10 && i < n_logits; i++) {
printf("%.6f ", logits[i]);
}
printf("\n");
printf("Last 10 logits: ");
for (int i = n_logits - 10; i < n_logits; i++) {
if (i >= 0) printf("%.6f ", logits[i]);
}
printf("\n\n");
printf("Logits saved to %s\n", bin_filename);
printf("Logits saved to %s\n", txt_filename);
llama_free(ctx);
llama_model_free(model);
return 0;
}

View File

@@ -0,0 +1,6 @@
--extra-index-url https://download.pytorch.org/whl/cpu
torch
torchvision
transformers
huggingface-hub
accelerate

View File

@@ -0,0 +1,43 @@
#!/usr/bin/env bash
set -e
MODEL_PATH="${1:-"$MODEL_PATH"}"
MODEL_NAME="${2:-$(basename "$MODEL_PATH")}"
if [ -t 0 ]; then
CPP_EMBEDDINGS="data/llamacpp-${MODEL_NAME}-embeddings.bin"
else
# Process piped JSON data and convert to binary (matching logits.cpp format)
TEMP_FILE=$(mktemp /tmp/tmp.XXXXXX.binn)
python3 -c "
import json
import sys
import struct
data = json.load(sys.stdin)
# Flatten all embeddings completely
flattened = []
for item in data:
embedding = item['embedding']
for token_embedding in embedding:
flattened.extend(token_embedding)
print(f'Total embedding values: {len(flattened)}', file=sys.stderr)
# Write as binary floats - matches logitc.cpp fwrite format
with open('$TEMP_FILE', 'wb') as f:
for value in flattened:
f.write(struct.pack('f', value))
"
CPP_EMBEDDINGS="$TEMP_FILE"
trap "rm -f $TEMP_FILE" EXIT
fi
python scripts/utils/semantic_check.py --model-path $MODEL_PATH \
--python-embeddings data/pytorch-${MODEL_NAME}-embeddings.bin \
--cpp-embeddings $CPP_EMBEDDINGS \
--prompt "Hello world today" \
--causal

View File

@@ -0,0 +1,88 @@
#!/usr/bin/env python3
import numpy as np
import sys
import os
from pathlib import Path
def quick_logits_check(pytorch_file, llamacpp_file):
"""Lightweight sanity check before NMSE"""
try:
pytorch_logits = np.fromfile(pytorch_file, dtype=np.float32)
llamacpp_logits = np.fromfile(llamacpp_file, dtype=np.float32)
except Exception as e:
print(f"❌ NOK: Failed to load files - {e}")
return False
# Check shapes match
if pytorch_logits.shape != llamacpp_logits.shape:
print(f"❌ NOK: Shape mismatch - PyTorch: {pytorch_logits.shape}, llama.cpp: {llamacpp_logits.shape}")
return False
# Calculate key metrics
diff = pytorch_logits - llamacpp_logits
abs_diff = np.abs(diff)
max_diff = np.max(abs_diff)
# Get top 10 predictions from both models
pytorch_top10 = np.argsort(pytorch_logits)[-10:][::-1]
llamacpp_top10 = np.argsort(llamacpp_logits)[-10:][::-1]
print(f"Top 10 PyTorch logits: {pytorch_logits[pytorch_top10]}")
print(f"Top 10 llama.cpp logits: {llamacpp_logits[llamacpp_top10]}")
print(f"Max absolute difference: {max_diff:.4f}")
if max_diff > 1.0:
print(f"❌ NOK: Large differences detected - max diff: {max_diff:.4f}")
return False
return True
def main():
model_path = os.getenv('MODEL_PATH')
if not model_path:
print("Error: MODEL_PATH environment variable not set")
sys.exit(1)
if not os.path.exists(model_path):
print(f"Error: Model file not found: {model_path}")
sys.exit(1)
model_name = os.path.splitext(os.path.basename(model_path))[0]
data_dir = Path("data")
pytorch_file = data_dir / f"pytorch-{model_name}.bin"
llamacpp_file = data_dir / f"llamacpp-{model_name}.bin"
if not pytorch_file.exists():
print(f"Error: PyTorch logits file not found: {pytorch_file}")
print("Please run scripts/run-org-model.sh first to generate this file.")
sys.exit(1)
if not llamacpp_file.exists():
print(f"Error: llama.cpp logits file not found: {llamacpp_file}")
print("Please run scripts/run-converted-model.sh first to generate this file.")
sys.exit(1)
print("Checked all required files were found. Proceeding...\n")
print("🔍 GGML Model Validation for model ", model_name)
print("=" * 40)
print(f"PyTorch logits : {pytorch_file}")
print(f"llama.cpp logits: {llamacpp_file}")
print()
success = quick_logits_check(pytorch_file, llamacpp_file)
# Exit with appropriate code
if success:
print("✅ OK: Lightweight model check successful!")
print(" Ok to proceed with NMSE check...")
sys.exit(0)
else:
print(f"❌ NOK: Top 10 predictions don't match - generation will differ")
sys.exit(1)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,46 @@
#!/usr/bin/env bash
set -e
# Parse command line arguments
MMPROJ=""
while [[ $# -gt 0 ]]; do
case $1 in
--mmproj)
MMPROJ="--mmproj"
shift
;;
*)
shift
;;
esac
done
MODEL_NAME="${MODEL_NAME:-$(basename "$MODEL_PATH")}"
OUTPUT_DIR="${OUTPUT_DIR:-../../models}"
TYPE="${OUTTYPE:-f16}"
METADATA_OVERRIDE="${METADATA_OVERRIDE:-}"
CONVERTED_MODEL="${OUTPUT_DIR}/${MODEL_NAME}.gguf"
echo "Model path: ${MODEL_PATH}"
echo "Model name: ${MODEL_NAME}"
echo "Data type: ${TYPE}"
echo "Converted model path:: ${CONVERTED_MODEL}"
echo "Metadata override: ${METADATA_OVERRIDE}"
CMD_ARGS=("python" "../../convert_hf_to_gguf.py" "--verbose")
CMD_ARGS+=("${MODEL_PATH}")
CMD_ARGS+=("--outfile" "${CONVERTED_MODEL}")
CMD_ARGS+=("--outtype" "${TYPE}")
[[ -n "$METADATA_OVERRIDE" ]] && CMD_ARGS+=("--metadata" "${METADATA_OVERRIDE}")
[[ -n "$MMPROJ" ]] && CMD_ARGS+=("${MMPROJ}")
"${CMD_ARGS[@]}"
echo ""
echo "The environment variable CONVERTED_MODEL can be set to this path using:"
echo "export CONVERTED_MODEL=$(realpath ${CONVERTED_MODEL})"
if [[ -n "$MMPROJ" ]]; then
mmproj_file="${OUTPUT_DIR}/mmproj-$(basename "${CONVERTED_MODEL}")"
echo "The mmproj model was created in $(realpath "$mmproj_file")"
fi

View File

@@ -0,0 +1,13 @@
---
base_model:
- {base_model}
---
# {model_name} GGUF
Recommended way to run this model:
```sh
llama-server -hf {namespace}/{model_name}-GGUF -c 0 -fa
```
Then, access http://localhost:8080

View File

@@ -0,0 +1,114 @@
#!/usr/bin/env python3
import argparse
import os
import importlib
import torch
import numpy as np
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM
from pathlib import Path
unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
parser = argparse.ArgumentParser(description='Process model with specified path')
parser.add_argument('--model-path', '-m', help='Path to the model')
args = parser.parse_args()
model_path = os.environ.get('MODEL_PATH', args.model_path)
if model_path is None:
parser.error("Model path must be specified either via --model-path argument or MODEL_PATH environment variable")
config = AutoConfig.from_pretrained(model_path)
print("Model type: ", config.model_type)
print("Vocab size: ", config.vocab_size)
print("Hidden size: ", config.hidden_size)
print("Number of layers: ", config.num_hidden_layers)
print("BOS token id: ", config.bos_token_id)
print("EOS token id: ", config.eos_token_id)
print("Loading model and tokenizer using AutoTokenizer:", model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
if unreleased_model_name:
model_name_lower = unreleased_model_name.lower()
unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
class_name = f"{unreleased_model_name}ForCausalLM"
print(f"Importing unreleased model module: {unreleased_module_path}")
try:
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
model = model_class.from_pretrained(model_path)
except (ImportError, AttributeError) as e:
print(f"Failed to import or load model: {e}")
print("Falling back to AutoModelForCausalLM")
model = AutoModelForCausalLM.from_pretrained(model_path)
else:
model = AutoModelForCausalLM.from_pretrained(model_path)
print(f"Model class: {type(model)}")
#print(f"Model file: {type(model).__module__}")
model_name = os.path.basename(model_path)
print(f"Model name: {model_name}")
prompt = "Hello world today"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
print(f"Input tokens: {input_ids}")
print(f"Input text: {repr(prompt)}")
print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}")
with torch.no_grad():
outputs = model(input_ids, output_hidden_states=True)
# Extract hidden states from the last layer
# outputs.hidden_states is a tuple of (num_layers + 1) tensors
# Index -1 gets the last layer, shape: [batch_size, seq_len, hidden_size]
last_hidden_states = outputs.hidden_states[-1]
# Get embeddings for all tokens
token_embeddings = last_hidden_states[0].cpu().numpy() # Remove batch dimension
print(f"Hidden states shape: {last_hidden_states.shape}")
print(f"Token embeddings shape: {token_embeddings.shape}")
print(f"Hidden dimension: {token_embeddings.shape[-1]}")
print(f"Number of tokens: {token_embeddings.shape[0]}")
# Save raw token embeddings
data_dir = Path("data")
data_dir.mkdir(exist_ok=True)
bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin"
txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt"
# Save all token embeddings as binary
print(token_embeddings)
token_embeddings.astype(np.float32).tofile(bin_filename)
# Save as text for inspection
with open(txt_filename, "w") as f:
for i, embedding in enumerate(token_embeddings):
for j, val in enumerate(embedding):
f.write(f"{i} {j} {val:.6f}\n")
# Print embeddings per token in the requested format
print("\nToken embeddings:")
tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
for i, embedding in enumerate(token_embeddings):
# Format: show first few values, ..., then last few values
if len(embedding) > 10:
# Show first 3 and last 3 values with ... in between
first_vals = " ".join(f"{val:8.6f}" for val in embedding[:3])
last_vals = " ".join(f"{val:8.6f}" for val in embedding[-3:])
print(f"embedding {i}: {first_vals} ... {last_vals}")
else:
# If embedding is short, show all values
vals = " ".join(f"{val:8.6f}" for val in embedding)
print(f"embedding {i}: {vals}")
# Also show token info for reference
print(f"\nToken reference:")
for i, token in enumerate(tokens):
print(f" Token {i}: {repr(token)}")
print(f"Saved bin logits to: {bin_filename}")
print(f"Saved txt logist to: {txt_filename}")

View File

@@ -0,0 +1,18 @@
#!/usr/bin/env bash
set -e
# First try command line argument, then environment variable, then file
CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}"
# Final check if we have a model path
if [ -z "$CONVERTED_MODEL" ]; then
echo "Error: Model path must be provided either as:" >&2
echo " 1. Command line argument" >&2
echo " 2. CONVERTED_MODEL environment variable" >&2
exit 1
fi
cmake --build ../../build --target llama-logits -j8
../../build/bin/llama-logits -m $CONVERTED_MODEL -embd-mode "Hello world today"

View File

@@ -0,0 +1,20 @@
#!/usr/bin/env bash
set -e
# First try command line argument, then environment variable, then file
CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}"
# Final check if we have a model path
if [ -z "$CONVERTED_MODEL" ]; then
echo "Error: Model path must be provided either as:" >&2
echo " 1. Command line argument" >&2
echo " 2. CONVERTED_MODEL environment variable" >&2
exit 1
fi
echo $CONVERTED_MODEL
cmake --build ../../build --target llama-logits -j8
../../build/bin/llama-logits -m "$CONVERTED_MODEL" "Hello, my name is"

View File

@@ -0,0 +1,231 @@
#!/usr/bin/env python3
import argparse
import os
import importlib
from pathlib import Path
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
import torch
import numpy as np
### If you want to dump RoPE activations, apply this monkey patch to the model
### class from Transformers that you are running (replace apertus.modeling_apertus
### with the proper package and class for your model
### === START ROPE DEBUG ===
# from transformers.models.apertus.modeling_apertus import apply_rotary_pos_emb
# orig_rope = apply_rotary_pos_emb
# torch.set_printoptions(threshold=float('inf'))
# torch.set_printoptions(precision=6, sci_mode=False)
# def debug_rope(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
# # log inputs
# summarize(q, "RoPE.q_in")
# summarize(k, "RoPE.k_in")
# # call original
# q_out, k_out = orig_rope(q, k, cos, sin, position_ids, unsqueeze_dim)
# # log outputs
# summarize(q_out, "RoPE.q_out")
# summarize(k_out, "RoPE.k_out")
# return q_out, k_out
# # Patch it
# import transformers.models.apertus.modeling_apertus as apertus_mod # noqa: E402
# apertus_mod.apply_rotary_pos_emb = debug_rope
### == END ROPE DEBUG ===
def summarize(tensor: torch.Tensor, name: str, max_seq: int = 3, max_vals: int = 3):
"""
Print a tensor in llama.cpp debug style.
Supports:
- 2D tensors (seq, hidden)
- 3D tensors (batch, seq, hidden)
- 4D tensors (batch, seq, heads, dim_per_head) via flattening heads × dim_per_head
Shows first and last max_vals of each vector per sequence position.
"""
t = tensor.detach().to(torch.float32).cpu()
# Determine dimensions
if t.ndim == 3:
_, s, _ = t.shape
elif t.ndim == 2:
_, s = 1, t.shape[0]
t = t.unsqueeze(0)
elif t.ndim == 4:
_, s, _, _ = t.shape
else:
print(f"Skipping tensor due to unsupported dimensions: {t.ndim}")
return
ten_shape = t.shape
print(f"ggml_debug: {name} = (f32) ... = {{{ten_shape}}}")
print(" [")
print(" [")
# Determine indices for first and last sequences
first_indices = list(range(min(s, max_seq)))
last_indices = list(range(max(0, s - max_seq), s))
# Check if there's an overlap between first and last indices or if we're at the edge case of s = 2 * max_seq
has_overlap = bool(set(first_indices) & set(last_indices)) or (max_seq * 2 == s)
# Combine indices
if has_overlap:
# If there's overlap, just use the combined unique indices
indices = sorted(list(set(first_indices + last_indices)))
separator_index = None
else:
# If no overlap, we'll add a separator between first and last sequences
indices = first_indices + last_indices
separator_index = len(first_indices)
for i, si in enumerate(indices):
# Add separator if needed
if separator_index is not None and i == separator_index:
print(" ...")
# Extract appropriate slice
vec = t[0, si]
if vec.ndim == 2: # 4D case: flatten heads × dim_per_head
flat = vec.flatten().tolist()
else: # 2D or 3D case
flat = vec.tolist()
# First and last slices
first = flat[:max_vals]
last = flat[-max_vals:] if len(flat) >= max_vals else flat
first_str = ", ".join(f"{v:12.4f}" for v in first)
last_str = ", ".join(f"{v:12.4f}" for v in last)
print(f" [{first_str}, ..., {last_str}]")
print(" ],")
print(" ]")
print(f" sum = {t.sum().item():.6f}\n")
def debug_hook(name):
def fn(_m, input, output):
if isinstance(input, torch.Tensor):
summarize(input, name + "_in")
elif isinstance(input, (tuple, list)) and isinstance(input[0], torch.Tensor):
summarize(input[0], name + "_in")
if isinstance(output, torch.Tensor):
summarize(output, name + "_out")
elif isinstance(output, (tuple, list)) and isinstance(output[0], torch.Tensor):
summarize(output[0], name + "_out")
return fn
unreleased_model_name = os.getenv("UNRELEASED_MODEL_NAME")
parser = argparse.ArgumentParser(description="Process model with specified path")
parser.add_argument("--model-path", "-m", help="Path to the model")
args = parser.parse_args()
model_path = os.environ.get("MODEL_PATH", args.model_path)
if model_path is None:
parser.error(
"Model path must be specified either via --model-path argument or MODEL_PATH environment variable"
)
config = AutoConfig.from_pretrained(model_path)
print("Model type: ", config.model_type)
print("Vocab size: ", config.vocab_size)
print("Hidden size: ", config.hidden_size)
print("Number of layers: ", config.num_hidden_layers)
print("BOS token id: ", config.bos_token_id)
print("EOS token id: ", config.eos_token_id)
print("Loading model and tokenizer using AutoTokenizer:", model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
config = AutoConfig.from_pretrained(model_path)
if unreleased_model_name:
model_name_lower = unreleased_model_name.lower()
unreleased_module_path = (
f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
)
class_name = f"{unreleased_model_name}ForCausalLM"
print(f"Importing unreleased model module: {unreleased_module_path}")
try:
model_class = getattr(
importlib.import_module(unreleased_module_path), class_name
)
model = model_class.from_pretrained(
model_path
) # Note: from_pretrained, not fromPretrained
except (ImportError, AttributeError) as e:
print(f"Failed to import or load model: {e}")
exit(1)
else:
model = AutoModelForCausalLM.from_pretrained(
model_path, device_map="auto", offload_folder="offload"
)
for name, module in model.named_modules():
if len(list(module.children())) == 0: # only leaf modules
module.register_forward_hook(debug_hook(name))
model_name = os.path.basename(model_path)
# Printing the Model class to allow for easier debugging. This can be useful
# when working with models that have not been publicly released yet and this
# migth require that the concrete class is imported and used directly instead
# of using AutoModelForCausalLM.
print(f"Model class: {model.__class__.__name__}")
prompt = "Hello, my name is"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
print(f"Input tokens: {input_ids}")
print(f"Input text: {repr(prompt)}")
print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}")
with torch.no_grad():
outputs = model(input_ids)
logits = outputs.logits
# Extract logits for the last token (next token prediction)
last_logits = logits[0, -1, :].cpu().numpy()
print(f"Logits shape: {logits.shape}")
print(f"Last token logits shape: {last_logits.shape}")
print(f"Vocab size: {len(last_logits)}")
data_dir = Path("data")
data_dir.mkdir(exist_ok=True)
bin_filename = data_dir / f"pytorch-{model_name}.bin"
txt_filename = data_dir / f"pytorch-{model_name}.txt"
# Save to file for comparison
last_logits.astype(np.float32).tofile(bin_filename)
# Also save as text file for easy inspection
with open(txt_filename, "w") as f:
for i, logit in enumerate(last_logits):
f.write(f"{i}: {logit:.6f}\n")
# Print some sample logits for quick verification
print(f"First 10 logits: {last_logits[:10]}")
print(f"Last 10 logits: {last_logits[-10:]}")
# Show top 5 predicted tokens
top_indices = np.argsort(last_logits)[-5:][::-1]
print("Top 5 predictions:")
for idx in top_indices:
token = tokenizer.decode([idx])
print(f" Token {idx} ({repr(token)}): {last_logits[idx]:.6f}")
print(f"Saved bin logits to: {bin_filename}")
print(f"Saved txt logist to: {txt_filename}")

View File

@@ -0,0 +1,42 @@
#!/usr/bin/env bash
set -e
MODEL_PATH="${1:-"$EMBEDDING_MODEL_PATH"}"
MODEL_NAME="${2:-$(basename "$MODEL_PATH")}"
if [ -t 0 ]; then
CPP_EMBEDDINGS="data/llamacpp-${MODEL_NAME}-embeddings.bin"
else
# Process piped JSON data and convert to binary (matching logits.cpp format)
TEMP_FILE=$(mktemp /tmp/tmp.XXXXXX.binn)
python3 -c "
import json
import sys
import struct
data = json.load(sys.stdin)
# Flatten all embeddings completely
flattened = []
for item in data:
embedding = item['embedding']
for token_embedding in embedding:
flattened.extend(token_embedding)
print(f'Total embedding values: {len(flattened)}', file=sys.stderr)
# Write as binary floats - matches logitc.cpp fwrite format
with open('$TEMP_FILE', 'wb') as f:
for value in flattened:
f.write(struct.pack('f', value))
"
CPP_EMBEDDINGS="$TEMP_FILE"
trap "rm -f $TEMP_FILE" EXIT
fi
python scripts/utils/semantic_check.py --model-path $MODEL_PATH \
--python-embeddings data/pytorch-${MODEL_NAME}-embeddings.bin \
--cpp-embeddings $CPP_EMBEDDINGS \
--prompt "Hello world today"

View File

@@ -0,0 +1,22 @@
#!/usr/bin/env bash
set -e
MODEL_NAME="${MODEL_NAME:-$(basename "$EMBEDDING_MODEL_PATH")}"
OUTPUT_DIR="${OUTPUT_DIR:-../../models}"
TYPE="${OUTTYPE:-f16}"
METADATA_OVERRIDE="${METADATA_OVERRIDE:-}"
CONVERTED_MODEL="${OUTPUT_DIR}/${MODEL_NAME}.gguf"
echo "Model path: ${EMBEDDING_MODEL_PATH}"
echo "Model name: ${MODEL_NAME}"
echo "Data type: ${TYPE}"
echo "Converted model path:: ${CONVERTED_MODEL}"
python ../../convert_hf_to_gguf.py --verbose \
${EMBEDDING_MODEL_PATH} \
--outfile ${CONVERTED_MODEL} \
--outtype ${TYPE}
echo ""
echo "The environment variable CONVERTED_EMBEDDING MODEL can be set to this path using:"
echo "export CONVERTED_EMBEDDING_MODEL=$(realpath ${CONVERTED_MODEL})"

View File

@@ -0,0 +1,48 @@
---
base_model:
- {base_model}
---
# {model_name} GGUF
Recommended way to run this model:
```sh
llama-server -hf {namespace}/{model_name}-GGUF --embeddings
```
Then the endpoint can be accessed at http://localhost:8080/embedding, for
example using `curl`:
```console
curl --request POST \
--url http://localhost:8080/embedding \
--header "Content-Type: application/json" \
--data '{{"input": "Hello embeddings"}}' \
--silent
```
Alternatively, the `llama-embedding` command line tool can be used:
```sh
llama-embedding -hf {namespace}/{model_name}-GGUF --verbose-prompt -p "Hello embeddings"
```
#### embd_normalize
When a model uses pooling, or the pooling method is specified using `--pooling`,
the normalization can be controlled by the `embd_normalize` parameter.
The default value is `2` which means that the embeddings are normalized using
the Euclidean norm (L2). Other options are:
* -1 No normalization
* 0 Max absolute
* 1 Taxicab
* 2 Euclidean/L2
* \>2 P-Norm
This can be passed in the request body to `llama-server`, for example:
```sh
--data '{{"input": "Hello embeddings", "embd_normalize": -1}}' \
```
And for `llama-embedding`, by passing `--embd-normalize <value>`, for example:
```sh
llama-embedding -hf {namespace}/{model_name}-GGUF --embd-normalize -1 -p "Hello embeddings"
```

View File

@@ -0,0 +1,20 @@
#!/usr/bin/env bash
set -e
# First try command line argument, then environment variable, then file
CONVERTED_MODEL="${1:-"$CONVERTED_EMBEDDING_MODEL"}"
# Final check if we have a model path
if [ -z "$CONVERTED_MODEL" ]; then
echo "Error: Model path must be provided either as:" >&2
echo " 1. Command line argument" >&2
echo " 2. CONVERTED_EMBEDDING_MODEL environment variable" >&2
exit 1
fi
echo $CONVERTED_MODEL
cmake --build ../../build --target llama-logits -j8
../../build/bin/llama-logits -m "$CONVERTED_MODEL" -embd-mode "Hello world today"

View File

@@ -0,0 +1,116 @@
#!/usr/bin/env python3
import argparse
import os
import numpy as np
import importlib
from pathlib import Path
from transformers import AutoTokenizer, AutoConfig, AutoModel
import torch
unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
parser = argparse.ArgumentParser(description='Process model with specified path')
parser.add_argument('--model-path', '-m', help='Path to the model')
args = parser.parse_args()
model_path = os.environ.get('EMBEDDING_MODEL_PATH', args.model_path)
if model_path is None:
parser.error("Model path must be specified either via --model-path argument or EMBEDDING_MODEL_PATH environment variable")
tokenizer = AutoTokenizer.from_pretrained(model_path)
if unreleased_model_name:
model_name_lower = unreleased_model_name.lower()
unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
class_name = f"{unreleased_model_name}Model"
print(f"Importing unreleased model module: {unreleased_module_path}")
try:
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
model = model_class.from_pretrained(model_path) # Note: from_pretrained, not fromPretrained
except (ImportError, AttributeError) as e:
print(f"Failed to import or load model: {e}")
exit(1)
else:
model = AutoModel.from_pretrained(model_path)
print(f"Model class: {type(model)}")
#print(f"Model file: {type(model).__module__}")
config = AutoConfig.from_pretrained(model_path)
model_name = os.path.basename(model_path)
texts = [ "Hello world today" ]
encoded = tokenizer(
texts,
padding=True,
truncation=True,
return_tensors="pt"
)
tokens = encoded['input_ids'][0]
token_strings = tokenizer.convert_ids_to_tokens(tokens)
for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
print(f"{token_id:6d} -> '{token_str}'")
with torch.no_grad():
outputs = model(**encoded)
hidden_states = outputs.last_hidden_state # Shape: [batch_size, seq_len, hidden_size]
# Extract embeddings for each token (matching LLAMA_POOLING_TYPE_NONE behavior)
all_embeddings = hidden_states[0].cpu().numpy() # Shape: [seq_len, hidden_size]
print(f"Hidden states shape: {hidden_states.shape}")
print(f"All embeddings shape: {all_embeddings.shape}")
print(f"Embedding dimension: {all_embeddings.shape[1]}")
# Print embeddings exactly like embedding.cpp does for LLAMA_POOLING_TYPE_NONE
n_embd = all_embeddings.shape[1]
n_embd_count = all_embeddings.shape[0]
print() # Empty line to match C++ output
for j in range(n_embd_count):
embedding = all_embeddings[j]
print(f"embedding {j}: ", end="")
# Print first 3 values
for i in range(min(3, n_embd)):
print(f"{embedding[i]:9.6f} ", end="")
print(" ... ", end="")
# Print last 3 values
for i in range(n_embd - 3, n_embd):
print(f"{embedding[i]:9.6f} ", end="")
print() # New line
print() # Final empty line to match C++ output
data_dir = Path("data")
data_dir.mkdir(exist_ok=True)
bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin"
txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt"
# Save all embeddings flattened (matching what embedding.cpp would save if it did)
flattened_embeddings = all_embeddings.flatten()
flattened_embeddings.astype(np.float32).tofile(bin_filename)
with open(txt_filename, "w") as f:
f.write(f"# Model class: {model_name}\n")
f.write(f"# Tokens: {token_strings}\n")
f.write(f"# Shape: {all_embeddings.shape}\n")
f.write(f"# n_embd_count: {n_embd_count}, n_embd: {n_embd}\n\n")
for j in range(n_embd_count):
f.write(f"# Token {j} ({token_strings[j]}):\n")
for i, value in enumerate(all_embeddings[j]):
f.write(f"{j}_{i}: {value:.6f}\n")
f.write("\n")
print(f"Total values: {len(flattened_embeddings)} ({n_embd_count} tokens × {n_embd} dimensions)")
print("")
print(f"Saved bin embeddings to: {bin_filename}")
print(f"Saved txt embeddings to: {txt_filename}")

View File

@@ -0,0 +1,174 @@
#!/usr/bin/env python3
import numpy as np
import sys
import os
import argparse
from pathlib import Path
def calculate_nmse(reference, test):
mse = np.mean((test - reference) ** 2)
ref_var = np.var(reference)
if ref_var == 0:
nmse = float('inf') if mse > 0 else 0.0
return mse, mse, ref_var
nmse = mse / ref_var
return nmse, mse, ref_var
def load_logits(file_path):
if not os.path.exists(file_path):
raise FileNotFoundError(f"File not found: {file_path}")
if file_path.suffix == '.npy':
return np.load(file_path)
elif file_path.suffix == '.bin':
return np.fromfile(file_path, dtype=np.float32)
else:
# Try to load as text file
try:
# If it has index format "0: value", extract just values
data = []
with open(file_path, 'r') as f:
for line in f:
if ':' in line:
# Format: "index: value"
value = float(line.split(':')[1].strip())
else:
# Just the value
value = float(line.strip())
data.append(value)
return np.array(data, dtype=np.float32)
except:
return np.loadtxt(file_path, dtype=np.float32)
def interpret_nmse(nmse):
"""Provide interpretation of NMSE value"""
if nmse == 0:
return "Perfect match", "🎉"
elif nmse < 1e-6:
return "Essentially identical", ""
elif nmse < 1e-4:
return "Excellent match", ""
elif nmse < 1e-3:
return "Very good match", "👍"
elif nmse < 1e-2:
return "Good match", "👍"
elif nmse < 0.1:
return "Acceptable match", "⚠️"
elif nmse < 1.0:
return "Poor match", ""
else:
return "Very poor match (worse than noise)", ""
def main():
parser = argparse.ArgumentParser(description='Validate model logits')
parser.add_argument('-m', '--model-path', required=True, help='Path to the model directory')
args = parser.parse_args()
model_name = os.path.splitext(os.path.basename(args.model_path))[0]
data_dir = Path("data")
pytorch_file = data_dir / f"pytorch-{model_name}.bin"
llamacpp_file = data_dir / f"llamacpp-{model_name}.bin"
print(f"Model name: {model_name}")
print(f"PyTorch logits file: {pytorch_file}")
print(f"llama.cpp logits file: {llamacpp_file}")
reference_file = pytorch_file
test_file = llamacpp_file
print("📊 NMSE Check for Model Comparison")
print("=" * 50)
print(f"Reference (ground truth): {reference_file}")
print(f"Test (to evaluate): {test_file}")
print()
try:
print("Loading reference logits...")
reference = load_logits(reference_file)
print(f" Shape: {reference.shape}, Type: {reference.dtype}")
print("Loading test logits...")
test = load_logits(test_file)
print(f" Shape: {test.shape}, Type: {test.dtype}")
# Check shapes match
if reference.shape != test.shape:
print(f"\n❌ Error: Shape mismatch!")
print(f" Reference: {reference.shape}")
print(f" Test: {test.shape}")
sys.exit(1)
print(f"\n✅ Shapes match: {reference.shape}")
nmse, mse, ref_var = calculate_nmse(reference, test)
# Additional metrics
max_abs_error = np.max(np.abs(test - reference))
mean_abs_error = np.mean(np.abs(test - reference))
# Results
print(f"\n📈 METRICS")
print("=" * 30)
print(f"MSE (Mean Squared Error): {mse:.6e}")
print(f"Reference Variance: {ref_var:.6e}")
print(f"NMSE: {nmse:.6e}")
print(f"Max Absolute Error: {max_abs_error:.6f}")
print(f"Mean Absolute Error: {mean_abs_error:.6f}")
# NMSE in dB (common in signal processing)
if nmse > 0:
nmse_db = 10 * np.log10(nmse)
print(f"NMSE (dB): {nmse_db:.2f} dB")
# Interpretation
interpretation, emoji = interpret_nmse(nmse)
print(f"\n🎯 INTERPRETATION")
print("=" * 30)
print(f"{emoji} {interpretation}")
# Detailed guidance
print(f"\n📋 GUIDANCE")
print("=" * 30)
if nmse < 1e-3:
print("✅ EXCELLENT: Your GGML conversion is working very well!")
print(" The differences are negligible for practical use.")
elif nmse < 1e-2:
print("👍 GOOD: Your GGML conversion is working well.")
print(" Small differences are likely due to precision/quantization.")
elif nmse < 0.1:
print("⚠️ ACCEPTABLE: Conversion is working but with some differences.")
print(" Check if you're using quantization (Q4, Q8, etc.)")
print(" Test generation quality to see if it's acceptable.")
else:
print("❌ PROBLEMATIC: Large differences detected.")
print(" Check your conversion process for potential issues.")
print(" Verify you're using the same model weights.")
# NMSE benchmarks
print(f"\n📚 NMSE BENCHMARKS")
print("=" * 30)
print("< 1e-6: Essentially identical")
print("< 1e-4: Excellent (typical for good conversions)")
print("< 1e-3: Very good")
print("< 1e-2: Good (acceptable for most use cases)")
print("< 0.1: Acceptable (may need verification)")
print("> 1.0: Poor (worse than random)")
# Exit code based on NMSE
if nmse < 1e-2:
print(f"\n✅ RESULT: PASS (NMSE = {nmse:.2e})")
sys.exit(0)
else:
print(f"\n❌ RESULT: NEEDS REVIEW (NMSE = {nmse:.2e})")
sys.exit(1)
except Exception as e:
print(f"❌ Error: {e}")
sys.exit(1)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,8 @@
#!/usr/bin/env bash
COLLECTION_SLUG=$(python ./create_collection.py --return-slug)
echo "Created collection: $COLLECTION_SLUG"
# Use it in the next command
python add_model_to_collection.py "$COLLECTION_SLUG" "username/my-model"

View File

@@ -0,0 +1,6 @@
#!/usr/bin/env bash
curl --request POST \
--url http://localhost:8080/embedding \
--header "Content-Type: application/json" \
--data '{"input": "Hello world today"}' \
--silent

View File

@@ -0,0 +1,80 @@
#!/usr/bin/env python3
from huggingface_hub import HfApi
import argparse
import sys
def add_model_to_collection(collection_slug, model_id, note=""):
"""
Add a model to an existing collection
Args:
collection_slug: The slug of the collection (e.g., "username/collection-name-12345")
model_id: The model repository ID (e.g., "username/model-name")
note: Optional note about the model
Returns:
True if successful, False if failed
"""
# Initialize API
api = HfApi()
try:
user_info = api.whoami()
print(f"✅ Authenticated as: {user_info['name']}")
# Verify the model exists
print(f"🔍 Checking if model exists: {model_id}")
try:
model_info = api.model_info(model_id)
except Exception as e:
print(f"❌ Model not found or not accessible: {model_id}")
print(f"Error: {e}")
return False
print(f"📚 Adding model to collection...")
api.add_collection_item(
collection_slug=collection_slug,
item_id=model_id,
item_type="model",
note=note
)
print(f"✅ Model added to collection successfully!")
print(f"🔗 Collection URL: https://huggingface.co/collections/{collection_slug}")
return True
except Exception as e:
print(f"❌ Error adding model to collection: {e}")
return False
def main():
# This script requires that the environment variable HF_TOKEN is set with your
# Hugging Face API token.
api = HfApi()
parser = argparse.ArgumentParser(description='Add model to a Huggingface Collection')
parser.add_argument('--collection', '-c', help='The collection slug username/collection-hash', required=True)
parser.add_argument('--model', '-m', help='The model to add to the Collection', required=True)
parser.add_argument('--note', '-n', help='An optional note/description', required=False)
args = parser.parse_args()
collection = args.collection
model = args.model
note = args.note
success = add_model_to_collection(
collection_slug=collection,
model_id=model,
note=note
)
if success:
print("\n🎉 Model added successfully!")
else:
print("\n❌ Failed to add model to collection")
sys.exit(1)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,106 @@
#!/usr/bin/env python3
from huggingface_hub import HfApi
import argparse
import os
import sys
def create_collection(title, description, private=False, namespace=None, return_slug=False):
"""
Create a new collection on Hugging Face
Args:
title: Collection title
description: Collection description
private: Whether the collection should be private (default: False)
namespace: Optional namespace (defaults to your username)
Returns:
Collection object if successful, None if failed
"""
# Check if HF_TOKEN is available
token = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_HUB_TOKEN")
if not token:
print("❌ No HF_TOKEN or HUGGINGFACE_HUB_TOKEN found in environment variables")
print("Please set your Hugging Face token as an environment variable")
return None
# Initialize API
api = HfApi()
try:
# Test authentication first
user_info = api.whoami()
if not return_slug:
print(f"✅ Authenticated as: {user_info['name']}")
# Create the collection
if not return_slug:
print(f"📚 Creating collection: '{title}'...")
collection = api.create_collection(
title=title,
description=description,
private=private,
namespace=namespace
)
if not return_slug:
print(f"✅ Collection created successfully!")
print(f"📋 Collection slug: {collection.slug}")
print(f"🔗 Collection URL: https://huggingface.co/collections/{collection.slug}")
return collection
except Exception as e:
print(f"❌ Error creating collection: {e}")
return None
def main():
# This script requires that the environment variable HF_TOKEN is set with your
# Hugging Face API token.
api = HfApi()
parser = argparse.ArgumentParser(description='Create a Huggingface Collection')
parser.add_argument('--name', '-n', help='The name/title of the Collection', required=True)
parser.add_argument('--description', '-d', help='The description for the Collection', required=True)
parser.add_argument('--namespace', '-ns', help='The namespace to add the Collection to', required=True)
parser.add_argument('--private', '-p', help='Create a private Collection', action='store_true') # Fixed
parser.add_argument('--return-slug', '-s', help='Only output the collection slug', action='store_true') # Fixed
args = parser.parse_args()
name = args.name
description = args.description
private = args.private
namespace = args.namespace
return_slug = args.return_slug
if not return_slug:
print("🚀 Creating Hugging Face Collection")
print(f"Title: {name}")
print(f"Description: {description}")
print(f"Namespace: {namespace}")
print(f"Private: {private}")
collection = create_collection(
title=name,
description=description,
private=private,
namespace=namespace,
return_slug=return_slug
)
if collection:
if return_slug:
print(collection.slug)
else:
print("\n🎉 Collection created successfully!")
print(f"Use this slug to add models: {collection.slug}")
else:
print("\n❌ Failed to create collection")
sys.exit(1)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,78 @@
#!/usr/bin/env python3
from huggingface_hub import HfApi
import argparse
# This script requires that the environment variable HF_TOKEN is set with your
# Hugging Face API token.
api = HfApi()
def load_template_and_substitute(template_path, **kwargs):
try:
with open(template_path, 'r', encoding='utf-8') as f:
template_content = f.read()
return template_content.format(**kwargs)
except FileNotFoundError:
print(f"Template file '{template_path}' not found!")
return None
except KeyError as e:
print(f"Missing template variable: {e}")
return None
parser = argparse.ArgumentParser(description='Create a new Hugging Face model repository')
parser.add_argument('--model-name', '-m', help='Name for the model', required=True)
parser.add_argument('--namespace', '-ns', help='Namespace to add the model to', required=True)
parser.add_argument('--org-base-model', '-b', help='Original Base model name', default="")
parser.add_argument('--no-card', action='store_true', help='Skip creating model card')
parser.add_argument('--private', '-p', action='store_true', help='Create private model')
parser.add_argument('--embedding', '-e', action='store_true', help='Use embedding model card template')
parser.add_argument('--dry-run', '-d', action='store_true', help='Print repository info and template without creating repository')
args = parser.parse_args()
repo_id = f"{args.namespace}/{args.model_name}-GGUF"
print("Repository ID: ", repo_id)
repo_url = None
if not args.dry_run:
repo_url = api.create_repo(
repo_id=repo_id,
repo_type="model",
private=args.private,
exist_ok=False
)
if not args.no_card:
if args.embedding:
template_path = "scripts/embedding/modelcard.template"
else:
template_path = "scripts/causal/modelcard.template"
print("Template path: ", template_path)
model_card_content = load_template_and_substitute(
template_path,
model_name=args.model_name,
namespace=args.namespace,
base_model=args.org_base_model,
)
if args.dry_run:
print("\nTemplate Content:\n")
print(model_card_content)
else:
if model_card_content:
api.upload_file(
path_or_fileobj=model_card_content.encode('utf-8'),
path_in_repo="README.md",
repo_id=repo_id
)
print("Model card created successfully.")
else:
print("Failed to create model card.")
if not args.dry_run and repo_url:
print(f"Repository created: {repo_url}")

View File

@@ -0,0 +1,58 @@
#!/usr/bin/env python3
from huggingface_hub import HfApi
import argparse
import os
def upload_gguf_file(local_file_path, repo_id, filename_in_repo=None):
"""
Upload a GGUF file to a Hugging Face model repository
Args:
local_file_path: Path to your local GGUF file
repo_id: Your repository ID (e.g., "username/model-name")
filename_in_repo: Optional custom name for the file in the repo
"""
if not os.path.exists(local_file_path):
print(f"❌ File not found: {local_file_path}")
return False
if filename_in_repo is None:
filename_in_repo = os.path.basename(local_file_path)
if filename_in_repo is None or filename_in_repo == "":
filename_in_repo = os.path.basename(local_file_path)
print(f"📤 Uploading {local_file_path} to {repo_id}/{filename_in_repo}")
api = HfApi()
try:
api.upload_file(
path_or_fileobj=local_file_path,
path_in_repo=filename_in_repo,
repo_id=repo_id,
repo_type="model",
commit_message=f"Upload {filename_in_repo}"
)
print("✅ Upload successful!")
print(f"🔗 File available at: https://huggingface.co/{repo_id}/blob/main/{filename_in_repo}")
return True
except Exception as e:
print(f"❌ Upload failed: {e}")
return False
# This script requires that the environment variable HF_TOKEN is set with your
# Hugging Face API token.
api = HfApi()
parser = argparse.ArgumentParser(description='Upload a GGUF model to a Huggingface model repository')
parser.add_argument('--gguf-model-path', '-m', help='The GGUF model file to upload', required=True)
parser.add_argument('--repo-id', '-r', help='The repository to upload to', required=True)
parser.add_argument('--name', '-o', help='The name in the model repository', required=False)
args = parser.parse_args()
upload_gguf_file(args.gguf_model_path, args.repo_id, args.name)

View File

@@ -0,0 +1,14 @@
#!/usr/bin/env bash
# First try command line argument, then environment variable, then file
CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}"
# Final check if we have a model path
if [ -z "$CONVERTED_MODEL" ]; then
echo "Error: Model path must be provided either as:" >&2
echo " 1. Command line argument" >&2
echo " 2. CONVERTED_MODEL environment variable" >&2
exit 1
fi
../../gguf-py/gguf/scripts/gguf_dump.py $CONVERTED_MODEL

View File

@@ -0,0 +1,67 @@
#!/usr/bin/env python3
import argparse
import os
import json
from safetensors import safe_open
from collections import defaultdict
parser = argparse.ArgumentParser(description='Process model with specified path')
parser.add_argument('--model-path', '-m', help='Path to the model')
args = parser.parse_args()
model_path = os.environ.get('MODEL_PATH', args.model_path)
if model_path is None:
parser.error("Model path must be specified either via --model-path argument or MODEL_PATH environment variable")
# Check if there's an index file (multi-file model)
index_path = os.path.join(model_path, "model.safetensors.index.json")
single_file_path = os.path.join(model_path, "model.safetensors")
if os.path.exists(index_path):
# Multi-file model
print("Multi-file model detected")
with open(index_path, 'r') as f:
index_data = json.load(f)
# Get the weight map (tensor_name -> file_name)
weight_map = index_data.get("weight_map", {})
# Group tensors by file for efficient processing
file_tensors = defaultdict(list)
for tensor_name, file_name in weight_map.items():
file_tensors[file_name].append(tensor_name)
print("Tensors in model:")
# Process each shard file
for file_name, tensor_names in file_tensors.items():
file_path = os.path.join(model_path, file_name)
print(f"\n--- From {file_name} ---")
with safe_open(file_path, framework="pt") as f: # type: ignore
for tensor_name in sorted(tensor_names):
tensor = f.get_tensor(tensor_name)
print(f"- {tensor_name} : shape = {tensor.shape}, dtype = {tensor.dtype}")
elif os.path.exists(single_file_path):
# Single file model (original behavior)
print("Single-file model detected")
with safe_open(single_file_path, framework="pt") as f: # type: ignore
keys = f.keys()
print("Tensors in model:")
for key in sorted(keys):
tensor = f.get_tensor(key)
print(f"- {key} : shape = {tensor.shape}, dtype = {tensor.dtype}")
else:
print(f"Error: Neither 'model.safetensors.index.json' nor 'model.safetensors' found in {model_path}")
print("Available files:")
if os.path.exists(model_path):
for item in sorted(os.listdir(model_path)):
print(f" {item}")
else:
print(f" Directory {model_path} does not exist")
exit(1)

View File

@@ -0,0 +1,35 @@
#!/usr/bin/env bash
set -e
CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}"
# Final check if we have a model path
if [ -z "$CONVERTED_MODEL" ]; then
echo "Error: Model path must be provided either as:" >&2
echo " 1. Command line argument" >&2
echo " 2. CONVERTED_MODEL environment variable" >&2
exit 1
fi
# Check if data/wikitext-2-raw directory exists
if [ ! -d "ppl/wikitext-2-raw" ]; then
echo "ppl/wikitext-2-raw directory does not exist. Downloading..." >&2
mkdir -p ppl
pushd ppl
./../../../scripts/get-wikitext-2.sh
popd
fi
mkdir -p ppl
OUTPUTFILE="ppl/$(basename $CONVERTED_MODEL).kld"
echo "Model: $CONVERTED_MODEL"
cmake --build ../../build --target llama-perplexity -j8
../.././build/bin/llama-perplexity -m $CONVERTED_MODEL \
-f ppl/wikitext-2-raw/wiki.test.raw \
--kl-divergence-base $OUTPUTFILE
echo "Generated logits in $OUTPUTFILE"

View File

@@ -0,0 +1,27 @@
#!/usr/bin/env bash
set -e
QUANTIZED_MODEL="${1:-"$QUANTIZED_MODEL"}"
if [ -z "$QUANTIZED_MODEL" ]; then
echo "Error: Model path must be provided either as:" >&2
echo " 1. Command line argument" >&2
echo " 2. QUANTIZED_MODEL environment variable" >&2
exit 1
fi
# Check if data/wikitext-2-raw directory exists
if [ ! -d "ppl/wikitext-2-raw" ]; then
echo "ppl/wikitext-2-raw directory does not exist. Downloading..." >&2
mkdir -p ppl
pushd ppl
./../../../scripts/get-wikitext-2.sh
popd
fi
cmake --build ../../build --target llama-perplexity -j8
../.././build/bin/llama-perplexity -m $QUANTIZED_MODEL -f ppl/wikitext-2-raw/wiki.test.raw

View File

@@ -0,0 +1,28 @@
#!/usr/bin/env bash
set -e
QUANTIZED_MODEL="${1:-"$QUANTIZED_MODEL"}"
LOGITS_FILE="${1:-"$LOGITS_FILE"}"
if [ -z "$QUANTIZED_MODEL" ]; then
echo "Error: Model path must be provided either as:" >&2
echo " 1. Command line argument" >&2
echo " 2. QUANTIZED_MODEL environment variable" >&2
exit 1
fi
if [ ! -f ${LOGITS_FILE} ]; then
echo "Error: logits file '${LOGITS_FILE} was not found"
echo "Did you run the perplexity-gen.sh script?"
exit 1
fi
echo "Model: $QUANTIZED_MODEL"
echo "Data file: $LOGITS_FILE"
cmake --build ../../build --target llama-perplexity -j8
../.././build/bin/llama-perplexity -m $QUANTIZED_MODEL \
--kl-divergence-base $LOGITS_FILE \
--kl-divergence

View File

@@ -0,0 +1,48 @@
#!/usr/bin/env bash
set -e
CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}"
QUANTIZED_TYPE="${2:-"$QUANTIZED_TYPE"}"
TOKEN_EMBD_TYPE="${3:-"${TOKEN_EMBD_TYPE}"}"
OUTPUT_TYPE="${4:-"${OUTPUT_TYPE}"}"
QUANTIZED_MODEL=$CONVERTED_MODEL
# Final check if we have a model path
if [ -z "$CONVERTED_MODEL" ]; then
echo "Error: Model path must be provided either as:" >&2
echo " 1. Command line argument" >&2
echo " 2. CONVERTED_MODEL environment variable" >&2
exit 1
fi
if [ -z "$QUANTIZED_TYPE" ]; then
echo "Error: QUANTIZED_TYPE is required" >&2
exit 1
fi
echo $CONVERTED_MODEL
# Process the quantized model filename
if [[ "$QUANTIZED_MODEL" == *.gguf ]]; then
# Remove .gguf suffix, add quantized type, then add .gguf back
BASE_NAME="${QUANTIZED_MODEL%.gguf}"
QUANTIZED_MODEL="${BASE_NAME}-${QUANTIZED_TYPE}.gguf"
else
echo "Error: QUANTIZED_MODEL must end with .gguf extension" >&2
exit 1
fi
cmake --build ../../build --target llama-quantize -j8
echo $TOKEN_EMBD_TYPE
echo $OUTPUT_TYPE
CMD_ARGS=("../../build/bin/llama-quantize")
[[ -n "$TOKEN_EMBD_TYPE" ]] && CMD_ARGS+=("--token-embedding-type" "$TOKEN_EMBD_TYPE")
[[ -n "$OUTPUT_TYPE" ]] && CMD_ARGS+=("--output-tensor-type" "$OUTPUT_TYPE")
CMD_ARGS+=("$CONVERTED_MODEL" "$QUANTIZED_MODEL" "$QUANTIZED_TYPE")
"${CMD_ARGS[@]}"
echo "Quantized model saved to: $QUANTIZED_MODEL"

View File

@@ -0,0 +1,22 @@
#!/usr/bin/env bash
set -e
#
# First try command line argument, then environment variable, then file
CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}"
# Final check if we have a model path
if [ -z "$CONVERTED_MODEL" ]; then
echo "Error: Model path must be provided either as:" >&2
echo " 1. Command line argument" >&2
echo " 2. CONVERTED_MODEL environment variable" >&2
exit 1
fi
echo $CONVERTED_MODEL
cmake --build ../../build --target llama-server
../../build/bin/llama-server -m $CONVERTED_MODEL \
--embedding \
--pooling none

View File

@@ -0,0 +1,179 @@
#!/usr/bin/env python3
import numpy as np
import argparse
import os
import importlib
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM, AutoModel
unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
def cosine_similarity(a, b=None):
a = np.asarray(a)
if b is None:
b = a
else:
b = np.asarray(b)
if a.ndim == 1:
a = a.reshape(1, -1)
if b.ndim == 1:
b = b.reshape(1, -1)
a_norms = np.linalg.norm(a, axis=1, keepdims=True)
b_norms = np.linalg.norm(b, axis=1, keepdims=True)
a_norms = np.where(a_norms == 0, 1e-8, a_norms)
b_norms = np.where(b_norms == 0, 1e-8, b_norms)
a_normalized = a / a_norms
b_normalized = b / b_norms
# Compute cosine similarity
return np.dot(a_normalized, b_normalized.T)
def load_embeddings_from_file(filename, n_tokens, n_embd):
embeddings = np.fromfile(filename, dtype=np.float32)
return embeddings.reshape(n_tokens, n_embd)
def test_single_prompt_similarity(python_emb, cpp_emb, tokens, prompt):
np.set_printoptions(suppress=True, precision=6)
print("pytorch embeddings:");
print(python_emb)
print("llama.cpp embeddings:");
print(cpp_emb)
print(f"\n=== Prompt: '{prompt}' ===")
print(f"Tokens: {tokens}")
print(f"Embeddings shape: Python {python_emb.shape}, llama.cpp {cpp_emb.shape}")
n_tokens = len(tokens)
# 1. Direct embedding comparison
print(f"\n1. Raw Embedding Magnitude Comparison:")
# Check if the distance of each token embedding from the origin and compare
# if the vectors are on the same "sphere". This does not tell us about
# direction (meaning of the token embedding), just magnitude.
for i in range(n_tokens):
py_mag = np.linalg.norm(python_emb[i]) # calculate standard euclidean norm for Python embeddings
cpp_mag = np.linalg.norm(cpp_emb[i]) # calculate standard euclidean norm for llama.cpp embeddings
ratio = py_mag / cpp_mag if cpp_mag > 0 else float('inf')
print(f" Token {i} ({tokens[i]}): Python={py_mag:.3f}, llama.cpp={cpp_mag:.3f}, ratio={ratio:.3f}")
# 2. Cosine similarity between tokens within each model
# Here we check the direction of token embeddings to see if the have the
# same meaning (similarity). This is done by calculating cosine similarity
# of a pair of token embeddings within each model.
print(f"\n2. Within-Model Token Similarities:")
print(" Python model:")
for i in range(n_tokens):
for j in range(i+1, n_tokens):
sim = cosine_similarity([python_emb[i]], [python_emb[j]])[0][0]
print(f" {tokens[i]}{tokens[j]}: {sim:.4f}")
print(" llama.cpp model:")
for i in range(n_tokens):
for j in range(i+1, n_tokens):
sim = cosine_similarity([cpp_emb[i]], [cpp_emb[j]])[0][0]
print(f" {tokens[i]}{tokens[j]}: {sim:.4f}")
# 3. Cross-model similarity (same token position)
print(f"\n3. Cross-Model Same-Token Similarities:")
for i in range(n_tokens):
sim = cosine_similarity([python_emb[i]], [cpp_emb[i]])[0][0]
print(f" Token {i} ({tokens[i]}): {sim:.4f}")
# 4. Similarity matrix comparison
print(f"\n4. Similarity Matrix Differences:")
py_sim_matrix = cosine_similarity(python_emb)
cpp_sim_matrix = cosine_similarity(cpp_emb)
diff_matrix = np.abs(py_sim_matrix - cpp_sim_matrix)
print(f" Max difference: {np.max(diff_matrix):.4f}")
print(f" Mean difference: {np.mean(diff_matrix):.4f}")
print(f" RMS difference: {np.sqrt(np.mean(diff_matrix**2)):.4f}")
return {
'cross_model_similarities': [cosine_similarity([python_emb[i]], [cpp_emb[i]])[0][0] for i in range(n_tokens)],
'similarity_matrix_diff': diff_matrix,
'max_diff': np.max(diff_matrix),
'mean_diff': np.mean(diff_matrix),
'rms_diff': np.sqrt(np.mean(diff_matrix**2))
}
def main():
parser = argparse.ArgumentParser(description='Test semantic similarity between Python and llama.cpp embeddings')
parser.add_argument('--model-path', '-m', required=True, help='Path to the original Python model')
parser.add_argument('--python-embeddings', '-pe', help='Path to pytorch embeddings "logits" binary file')
parser.add_argument('--cpp-embeddings', '-ce', help='Path to llama.cpp embeddings "logits" binary file')
parser.add_argument('--causal', '-c', default=False, help='if the model is causal (default: false)', action='store_true')
parser.add_argument('--prompt', '-p', default='Hello world today', help='Test prompt')
args = parser.parse_args()
print("Semantic Similarity Test Between Python and llama.cpp Embedding Models")
print("=" * 70)
# Single prompt detailed comparison
print(f"\nTesting with prompt: '{args.prompt}'")
# Load the python model to get configuration information and also to load the tokenizer.
print("Loading model and tokenizer using AutoTokenizer:", args.model_path)
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
config = AutoConfig.from_pretrained(args.model_path)
if unreleased_model_name:
model_name_lower = unreleased_model_name.lower()
unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
if args.causal:
class_name = f"{unreleased_model_name}ForCausalLM"
else:
class_name = f"{unreleased_model_name}Model"
print(f"Model class: {class_name}")
print(f"Importing unreleased model module: {unreleased_module_path}")
try:
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
model = model_class.from_pretrained(args.model_path)
except (ImportError, AttributeError) as e:
print(f"Failed to import or load model: {e}")
exit(1)
else:
if args.causal:
model = AutoModelForCausalLM.from_pretrained(args.model_path)
else:
model = AutoModel.from_pretrained(args.model_path)
encoded = tokenizer(args.prompt, return_tensors="pt")
tokens = tokenizer.convert_ids_to_tokens(encoded['input_ids'][0])
n_tokens = len(tokens)
print(f"n_tokens: {n_tokens}");
print(f"hidden_size: {model.config.hidden_size}")
# Load binary embeddings from data directory.
llamacpp_embeddings = load_embeddings_from_file(args.cpp_embeddings, n_tokens, model.config.hidden_size)
python_embeddings = load_embeddings_from_file(args.python_embeddings, n_tokens, model.config.hidden_size)
# Run comparison
results = test_single_prompt_similarity(python_embeddings, llamacpp_embeddings, tokens, args.prompt)
# Summary
print(f"\n=== SUMMARY ===")
avg_cross_sim = np.mean(results['cross_model_similarities'])
print(f"Average cross-model similarity: {avg_cross_sim:.4f}")
print(f"Similarity matrix RMS difference: {results['rms_diff']:.4f}")
# Quality assessment
if avg_cross_sim > 0.95:
print("✅ EXCELLENT: Models are highly similar")
elif avg_cross_sim > 0.90:
print("✅ VERY GOOD: Models are very similar")
elif avg_cross_sim > 0.80:
print("⚠️ GOOD: Models are reasonably similar")
elif avg_cross_sim > 0.70:
print("⚠️ FAIR: Models have some differences")
else:
print("❌ POOR: Models are significantly different")
if __name__ == "__main__":
main()

View File

@@ -145,6 +145,20 @@ int main(int argc, char ** argv) {
llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
if (llama_model_has_encoder(model)) {
if (llama_encode(ctx, batch)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
if (decoder_start_token_id == LLAMA_TOKEN_NULL) {
decoder_start_token_id = llama_vocab_bos(vocab);
}
batch = llama_batch_get_one(&decoder_start_token_id, 1);
}
// main loop
const auto t_main_start = ggml_time_us();

View File

@@ -244,7 +244,7 @@ int main(int argc, char ** argv) {
// stochastic verification
common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true);
auto & dist_tgt = *common_sampler_get_candidates(smpl);
auto & dist_tgt = *common_sampler_get_candidates(smpl, true);
float p_tgt = 0.0f;
float p_dft = 0.0f;
@@ -493,7 +493,7 @@ int main(int argc, char ** argv) {
common_sampler_sample(drafts[s].smpl, ctx_dft, drafts[s].i_batch_dft, true);
const auto * cur_p = common_sampler_get_candidates(drafts[s].smpl);
const auto * cur_p = common_sampler_get_candidates(drafts[s].smpl, true);
for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p->size); ++k) {
LOG_DBG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",

View File

@@ -1,5 +1,5 @@
cmake_minimum_required(VERSION 3.14) # for add_link_options and implicit target directories.
project("ggml" C CXX)
project("ggml" C CXX ASM)
include(CheckIncludeFileCXX)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
@@ -129,10 +129,11 @@ endif()
option(GGML_LASX "ggml: enable lasx" ON)
option(GGML_LSX "ggml: enable lsx" ON)
option(GGML_RVV "ggml: enable rvv" ON)
option(GGML_RV_ZFH "ggml: enable riscv zfh" OFF)
option(GGML_RV_ZFH "ggml: enable riscv zfh" ON)
option(GGML_RV_ZVFH "ggml: enable riscv zvfh" ON)
option(GGML_RV_ZICBOP "ggml: enable riscv zicbop" ON)
option(GGML_XTHEADVECTOR "ggml: enable xtheadvector" OFF)
option(GGML_VXE "ggml: enable vxe" ON)
option(GGML_NNPA "ggml: enable nnpa" OFF) # temp disabled by default, see: https://github.com/ggml-org/llama.cpp/issues/14877
option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requires GGML_BACKEND_DL)" OFF)
set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM")

View File

@@ -132,6 +132,8 @@ extern "C" {
GGML_BACKEND_DEVICE_TYPE_CPU,
// GPU device using dedicated memory
GGML_BACKEND_DEVICE_TYPE_GPU,
// integrated GPU device using host memory
GGML_BACKEND_DEVICE_TYPE_IGPU,
// accelerator devices intended to be used together with the CPU backend (e.g. BLAS or AMX)
GGML_BACKEND_DEVICE_TYPE_ACCEL
};
@@ -150,11 +152,21 @@ extern "C" {
// all the device properties
struct ggml_backend_dev_props {
// device name
const char * name;
// device description
const char * description;
// device free memory in bytes
size_t memory_free;
// device total memory in bytes
size_t memory_total;
// device type
enum ggml_backend_dev_type type;
// device id
// for PCI devices, this should be the PCI bus id formatted as "domain:bus:device.function" (e.g. "0000:01:00.0")
// if the id is unknown, this should be NULL
const char * device_id;
// device capabilities
struct ggml_backend_dev_caps caps;
};
@@ -307,6 +319,9 @@ extern "C" {
GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);
// Split graph without allocating it
GGML_API void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
// Allocate and compute graph on the backend scheduler
GGML_API bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph); // returns success
GGML_API enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph);

View File

@@ -101,7 +101,6 @@ extern "C" {
GGML_BACKEND_API int ggml_cpu_has_riscv_v (void);
GGML_BACKEND_API int ggml_cpu_has_vsx (void);
GGML_BACKEND_API int ggml_cpu_has_vxe (void);
GGML_BACKEND_API int ggml_cpu_has_nnpa (void);
GGML_BACKEND_API int ggml_cpu_has_wasm_simd (void);
GGML_BACKEND_API int ggml_cpu_has_llamafile (void);
@@ -135,6 +134,7 @@ extern "C" {
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
GGML_BACKEND_API void ggml_cpu_fp32_to_fp32(const float *, float *, int64_t);
GGML_BACKEND_API void ggml_cpu_fp32_to_i32 (const float *, int32_t *, int64_t);
GGML_BACKEND_API void ggml_cpu_fp32_to_fp16(const float *, ggml_fp16_t *, int64_t);
GGML_BACKEND_API void ggml_cpu_fp16_to_fp32(const ggml_fp16_t *, float *, int64_t);
GGML_BACKEND_API void ggml_cpu_fp32_to_bf16(const float *, ggml_bf16_t *, int64_t);

View File

@@ -43,14 +43,8 @@ GGML_BACKEND_API ggml_backend_t ggml_backend_metal_init(void);
GGML_BACKEND_API bool ggml_backend_is_metal(ggml_backend_t backend);
GGML_DEPRECATED(
GGML_BACKEND_API ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size),
"obsoleted by the new device interface - https://github.com/ggml-org/llama.cpp/pull/9713");
GGML_BACKEND_API void ggml_backend_metal_set_abort_callback(ggml_backend_t backend, ggml_abort_callback abort_callback, void * user_data);
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
// helper to check if the device supports a specific family
// ideally, the user code should be doing these checks
// ref: https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf

View File

@@ -7,8 +7,6 @@
extern "C" {
#endif
GGML_BACKEND_API ggml_backend_t ggml_backend_zdnn_init(void);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_zdnn_reg(void);
#ifdef __cplusplus

View File

@@ -511,7 +511,9 @@ extern "C" {
GGML_OP_CONV_TRANSPOSE_1D,
GGML_OP_IM2COL,
GGML_OP_IM2COL_BACK,
GGML_OP_IM2COL_3D,
GGML_OP_CONV_2D,
GGML_OP_CONV_3D,
GGML_OP_CONV_2D_DW,
GGML_OP_CONV_TRANSPOSE_2D,
GGML_OP_POOL_1D,
@@ -1402,6 +1404,7 @@ extern "C" {
struct ggml_tensor * a,
struct ggml_tensor * b);
// note: casting from f32 to i32 will discard the fractional part
GGML_API struct ggml_tensor * ggml_cast(
struct ggml_context * ctx,
struct ggml_tensor * a,
@@ -1526,7 +1529,11 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a);
// supports 3D: a->ne[2] == b->ne[1]
// supports 4D a:
// a [n_embd, ne1, ne2, ne3]
// b I32 [n_rows, ne2, ne3, 1]
//
// return [n_embd, n_rows, ne2, ne3]
GGML_API struct ggml_tensor * ggml_get_rows(
struct ggml_context * ctx,
struct ggml_tensor * a, // data
@@ -1869,6 +1876,41 @@ extern "C" {
int d0, // dilation dimension 0
int d1); // dilation dimension 1
GGML_API struct ggml_tensor * ggml_im2col_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int64_t IC,
int s0, // stride width
int s1, // stride height
int s2, // stride depth
int p0, // padding width
int p1, // padding height
int p2, // padding depth
int d0, // dilation width
int d1, // dilation height
int d2, // dilation depth
enum ggml_type dst_type);
// a: [OC*IC, KD, KH, KW]
// b: [N*IC, ID, IH, IW]
// result: [N*OC, OD, OH, OW]
GGML_API struct ggml_tensor * ggml_conv_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int64_t IC,
int s0, // stride width
int s1, // stride height
int s2, // stride depth
int p0, // padding width
int p1, // padding height
int p2, // padding depth
int d0, // dilation width
int d1, // dilation height
int d2 // dilation depth
);
// kernel size is a->ne[0] x a->ne[1]
// stride is equal to kernel size
// padding is zero
@@ -1940,6 +1982,23 @@ extern "C" {
int d0, // dilation dimension 0
int d1); // dilation dimension 1
GGML_API struct ggml_tensor * ggml_conv_3d_direct(
struct ggml_context * ctx,
struct ggml_tensor * a, // kernel [KW, KH, KD, IC * OC]
struct ggml_tensor * b, // input [W, H, D, C * N]
int s0, // stride
int s1,
int s2,
int p0, // padding
int p1,
int p2,
int d0, // dilation
int d1,
int d2,
int n_channels,
int n_batch,
int n_channels_out);
enum ggml_op_pool {
GGML_OP_POOL_MAX,
GGML_OP_POOL_AVG,
@@ -2030,6 +2089,19 @@ extern "C" {
int p2,
int p3);
GGML_API struct ggml_tensor * ggml_pad_ext(
struct ggml_context * ctx,
struct ggml_tensor * a,
int lp0,
int rp0,
int lp1,
int rp1,
int lp2,
int rp2,
int lp3,
int rp3
);
// pad each dimension with reflection: [a, b, c, d] -> [b, a, b, c, d, c]
GGML_API struct ggml_tensor * ggml_pad_reflect_1d(
struct ggml_context * ctx,

View File

@@ -8,7 +8,7 @@
extern "C" {
#endif
#define GGML_BACKEND_API_VERSION 1
#define GGML_BACKEND_API_VERSION 2
//
// Backend buffer type
@@ -114,6 +114,9 @@ extern "C" {
void (*event_record)(ggml_backend_t backend, ggml_backend_event_t event);
// wait for an event on on a different stream
void (*event_wait) (ggml_backend_t backend, ggml_backend_event_t event);
// (optional) sort/optimize the nodes in the graph
void (*optimize_graph) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
};
struct ggml_backend {

View File

@@ -400,9 +400,8 @@ ggml_backend_t ggml_backend_init_by_type(enum ggml_backend_dev_type type, const
ggml_backend_t ggml_backend_init_best(void) {
ggml_backend_dev_t dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU);
if (!dev) {
dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
}
dev = dev ? dev : ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_IGPU);
dev = dev ? dev : ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
if (!dev) {
return nullptr;
}

View File

@@ -31,6 +31,7 @@
// backend buffer type
const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
GGML_ASSERT(buft);
return buft->iface.get_name(buft);
}
@@ -40,14 +41,17 @@ ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t
return ggml_backend_buffer_init(buft, {}, NULL, 0);
}
GGML_ASSERT(buft);
return buft->iface.alloc_buffer(buft, size);
}
size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
GGML_ASSERT(buft);
return buft->iface.get_alignment(buft);
}
size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
GGML_ASSERT(buft);
// get_max_size is optional, defaults to SIZE_MAX
if (buft->iface.get_max_size) {
return buft->iface.get_max_size(buft);
@@ -56,6 +60,7 @@ size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
}
size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor) {
GGML_ASSERT(buft);
// get_alloc_size is optional, defaults to ggml_nbytes
if (buft->iface.get_alloc_size) {
size_t size = buft->iface.get_alloc_size(buft, tensor);
@@ -66,6 +71,7 @@ size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const s
}
bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
GGML_ASSERT(buft);
if (buft->iface.is_host) {
return buft->iface.is_host(buft);
}
@@ -73,6 +79,7 @@ bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
}
ggml_backend_dev_t ggml_backend_buft_get_device(ggml_backend_buffer_type_t buft) {
GGML_ASSERT(buft);
return buft->device;
}
@@ -110,10 +117,12 @@ void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
}
size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
return buffer->size;
}
void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
// get_base is optional if the buffer is zero-sized
if (buffer->size == 0) {
return NULL;
@@ -127,6 +136,7 @@ void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
}
enum ggml_status ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
GGML_ASSERT(buffer);
// init_tensor is optional
if (buffer->iface.init_tensor) {
return buffer->iface.init_tensor(buffer, tensor);
@@ -135,6 +145,7 @@ enum ggml_status ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, s
}
void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
GGML_ASSERT(buffer);
// clear is optional if the buffer is zero-sized
if (buffer->size == 0) {
return;
@@ -160,6 +171,7 @@ bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
}
void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
GGML_ASSERT(buffer);
buffer->usage = usage;
// FIXME: add a generic callback to the buffer interface
@@ -169,14 +181,17 @@ void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backe
}
enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
return buffer->usage;
}
ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
return buffer->buft;
}
void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
if (buffer->iface.reset) {
buffer->iface.reset(buffer);
}
@@ -215,6 +230,7 @@ void ggml_backend_free(ggml_backend_t backend) {
}
ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
GGML_ASSERT(backend);
return ggml_backend_dev_buffer_type(backend->device);
}
@@ -231,6 +247,8 @@ size_t ggml_backend_get_max_size(ggml_backend_t backend) {
}
void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
GGML_ASSERT(backend);
GGML_ASSERT(tensor);
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
@@ -242,6 +260,8 @@ void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor *
}
void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
GGML_ASSERT(backend);
GGML_ASSERT(tensor);
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
@@ -283,6 +303,7 @@ void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, siz
}
void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
GGML_ASSERT(tensor);
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
if (size == 0) {
@@ -298,6 +319,7 @@ void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size
}
void ggml_backend_synchronize(ggml_backend_t backend) {
GGML_ASSERT(backend);
if (backend->iface.synchronize == NULL) {
return;
}
@@ -306,18 +328,21 @@ void ggml_backend_synchronize(ggml_backend_t backend) {
}
ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
GGML_ASSERT(backend);
GGML_ASSERT(backend->iface.graph_plan_create != NULL);
return backend->iface.graph_plan_create(backend, cgraph);
}
void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
GGML_ASSERT(backend);
GGML_ASSERT(backend->iface.graph_plan_free != NULL);
backend->iface.graph_plan_free(backend, plan);
}
enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
GGML_ASSERT(backend);
GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
return backend->iface.graph_plan_compute(backend, plan);
@@ -330,22 +355,27 @@ enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_
}
enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
GGML_ASSERT(backend);
return backend->iface.graph_compute(backend, cgraph);
}
bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
GGML_ASSERT(backend);
return ggml_backend_dev_supports_op(backend->device, op);
}
bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
GGML_ASSERT(backend);
return ggml_backend_dev_supports_buft(backend->device, buft);
}
bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
GGML_ASSERT(backend);
return ggml_backend_dev_offload_op(backend->device, op);
}
ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend) {
GGML_ASSERT(backend);
return backend->device;
}
@@ -381,6 +411,7 @@ void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t b
return;
}
GGML_ASSERT(backend_dst);
if (backend_dst->iface.cpy_tensor_async != NULL) {
if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
return;
@@ -412,38 +443,52 @@ void ggml_backend_event_free(ggml_backend_event_t event) {
}
void ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend) {
GGML_ASSERT(backend);
GGML_ASSERT(backend->iface.event_record != NULL);
backend->iface.event_record(backend, event);
}
void ggml_backend_event_synchronize(ggml_backend_event_t event) {
GGML_ASSERT(event);
GGML_ASSERT(event->device->iface.event_synchronize);
event->device->iface.event_synchronize(event->device, event);
}
void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
GGML_ASSERT(backend);
GGML_ASSERT(backend->iface.event_wait != NULL);
backend->iface.event_wait(backend, event);
}
static void ggml_backend_optimize_graph(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
GGML_ASSERT(backend);
if (backend->iface.optimize_graph != NULL) {
backend->iface.optimize_graph(backend, cgraph);
}
}
// Backend device
const char * ggml_backend_dev_name(ggml_backend_dev_t device) {
GGML_ASSERT(device);
return device->iface.get_name(device);
}
const char * ggml_backend_dev_description(ggml_backend_dev_t device) {
GGML_ASSERT(device);
return device->iface.get_description(device);
}
void ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total) {
GGML_ASSERT(device);
device->iface.get_memory(device, free, total);
}
enum ggml_backend_dev_type ggml_backend_dev_type(ggml_backend_dev_t device) {
GGML_ASSERT(device);
return device->iface.get_type(device);
}
@@ -453,18 +498,22 @@ void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_d
}
ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device) {
GGML_ASSERT(device);
return device->reg;
}
ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params) {
GGML_ASSERT(device);
return device->iface.init_backend(device, params);
}
ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device) {
GGML_ASSERT(device);
return device->iface.get_buffer_type(device);
}
ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device) {
GGML_ASSERT(device);
if (device->iface.get_host_buffer_type == NULL) {
return NULL;
}
@@ -473,18 +522,22 @@ ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t
}
ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size) {
GGML_ASSERT(device);
return device->iface.buffer_from_host_ptr(device, ptr, size, max_tensor_size);
}
bool ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
GGML_ASSERT(device);
return device->iface.supports_op(device, op);
}
bool ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft) {
GGML_ASSERT(device);
return device->iface.supports_buft(device, buft);
}
bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
GGML_ASSERT(device);
if (device->iface.offload_op != NULL) {
return device->iface.offload_op(device, op);
}
@@ -495,18 +548,22 @@ bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_te
// Backend (reg)
const char * ggml_backend_reg_name(ggml_backend_reg_t reg) {
GGML_ASSERT(reg);
return reg->iface.get_name(reg);
}
size_t ggml_backend_reg_dev_count(ggml_backend_reg_t reg) {
GGML_ASSERT(reg);
return reg->iface.get_device_count(reg);
}
ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index) {
GGML_ASSERT(reg);
return reg->iface.get_device(reg, index);
}
void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) {
GGML_ASSERT(reg);
if (!reg->iface.get_proc_address) {
return NULL;
}
@@ -521,6 +578,7 @@ struct ggml_backend_multi_buffer_context {
};
static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
for (size_t i = 0; i < ctx->n_buffers; i++) {
ggml_backend_buffer_free(ctx->buffers[i]);
@@ -531,6 +589,7 @@ static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer)
}
static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
GGML_ASSERT(buffer);
ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
for (size_t i = 0; i < ctx->n_buffers; i++) {
ggml_backend_buffer_clear(ctx->buffers[i], value);
@@ -566,10 +625,12 @@ ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer
}
bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
return buffer->iface.free_buffer == ggml_backend_multi_buffer_free_buffer;
}
void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
GGML_ASSERT(buffer);
GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
for (size_t i = 0; i < ctx->n_buffers; i++) {
@@ -597,7 +658,7 @@ static bool ggml_is_view_op(enum ggml_op op) {
#endif
#ifndef GGML_SCHED_MAX_SPLIT_INPUTS
#define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
#define GGML_SCHED_MAX_SPLIT_INPUTS 30
#endif
#ifndef GGML_SCHED_MAX_COPIES
@@ -848,7 +909,7 @@ static void ggml_backend_sched_set_if_supported(ggml_backend_sched_t sched, stru
}
// assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
// reset splits
sched->n_splits = 0;
sched->n_graph_inputs = 0;
@@ -1244,6 +1305,10 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
struct ggml_backend_sched_split * split = &sched->splits[i];
split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
// Optimize this split of the graph. This needs to happen before we make graph_copy,
// so they are in sync.
ggml_backend_optimize_graph(sched->backends[split->backend_id], &split->graph);
// add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
for (int j = 0; j < split->n_inputs; j++) {
assert(graph_copy->size > (graph_copy->n_nodes + 1));
@@ -1349,21 +1414,22 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
}
static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
GGML_ASSERT(sched);
struct ggml_backend_sched_split * splits = sched->splits;
ggml_tensor * prev_ids_tensor = nullptr;
std::vector<int32_t> ids;
std::vector<ggml_bitset_t> used_ids;
for (int i = 0; i < sched->n_splits; i++) {
struct ggml_backend_sched_split * split = &splits[i];
for (int split_id = 0; split_id < sched->n_splits; split_id++) {
struct ggml_backend_sched_split * split = &splits[split_id];
int split_backend_id = split->backend_id;
ggml_backend_t split_backend = sched->backends[split_backend_id];
// copy the input tensors to the split backend
for (int j = 0; j < split->n_inputs; j++) {
ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
struct ggml_tensor * input = split->inputs[j];
for (int input_id = 0; input_id < split->n_inputs; input_id++) {
ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[input_id]);
struct ggml_tensor * input = split->inputs[input_id];
struct ggml_tensor * input_cpy = tensor_copy(input, split_backend_id, sched->cur_copy);
if (input->flags & GGML_TENSOR_FLAG_INPUT) {
@@ -1398,10 +1464,22 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
// get the ids
ggml_tensor * ids_tensor = node->src[2];
ggml_backend_t ids_backend = split_backend;
// if the ids tensor is also an input of the split, it may not have been copied yet to the split backend
// in that case, we use the original ids tensor
for (int i = input_id + 1; i < split->n_inputs; i++) {
if (ids_tensor == tensor_copy(split->inputs[i], split_backend_id, sched->cur_copy)) {
ids_tensor = split->inputs[i];
ids_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[i]);
break;
}
}
if (ids_tensor != prev_ids_tensor) {
ids.resize(ggml_nbytes(ids_tensor) / sizeof(int32_t));
ggml_backend_tensor_get_async(split_backend, ids_tensor, ids.data(), 0, ggml_nbytes(ids_tensor));
ggml_backend_synchronize(split_backend);
ggml_backend_tensor_get_async(ids_backend, ids_tensor, ids.data(), 0, ggml_nbytes(ids_tensor));
ggml_backend_synchronize(ids_backend);
// find the used experts
used_ids.clear();
@@ -1409,6 +1487,7 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
for (int64_t i1 = 0; i1 < ids_tensor->ne[1]; i1++) {
for (int64_t i0 = 0; i0 < ids_tensor->ne[0]; i0++) {
int32_t id = ids[i1 * ids_tensor->nb[1]/sizeof(int32_t) + i0 * ids_tensor->nb[0]/sizeof(int32_t)];
GGML_ASSERT(id >= 0 && id < n_expert);
ggml_bitset_set(used_ids.data(), id);
}
}
@@ -1604,6 +1683,7 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
}
void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
GGML_ASSERT(sched);
// reset state for the next run
if (!sched->is_reset) {
ggml_hash_set_reset(&sched->hash_set);
@@ -1615,8 +1695,11 @@ void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
}
bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
GGML_ASSERT(sched);
GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes + measure_graph->n_leafs);
ggml_backend_sched_reset(sched);
ggml_backend_sched_synchronize(sched);
ggml_backend_sched_split_graph(sched, measure_graph);
@@ -1631,6 +1714,7 @@ bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph *
}
bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
GGML_ASSERT(sched);
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs);
GGML_ASSERT(!sched->is_alloc);
@@ -1655,6 +1739,7 @@ enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, st
}
enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
GGML_ASSERT(sched);
if (!sched->is_reset && !sched->is_alloc) {
ggml_backend_sched_reset(sched);
}
@@ -1669,6 +1754,7 @@ enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sch
}
void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
GGML_ASSERT(sched);
for (int i = 0; i < sched->n_backends; i++) {
ggml_backend_synchronize(sched->backends[i]);
}
@@ -1681,28 +1767,34 @@ void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
}
void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
GGML_ASSERT(sched);
sched->callback_eval = callback;
sched->callback_eval_user_data = user_data;
}
int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
GGML_ASSERT(sched);
return sched->n_splits;
}
int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
GGML_ASSERT(sched);
return sched->n_copies;
}
int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched) {
GGML_ASSERT(sched);
return sched->n_backends;
}
ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i) {
GGML_ASSERT(sched);
GGML_ASSERT(i >= 0 && i < sched->n_backends);
return sched->backends[i];
}
size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
GGML_ASSERT(sched);
int backend_index = ggml_backend_sched_backend_id(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
@@ -1710,6 +1802,7 @@ size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backe
}
void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
GGML_ASSERT(sched);
int backend_index = ggml_backend_sched_backend_id(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
tensor_backend_id(node) = backend_index;
@@ -1718,6 +1811,7 @@ void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct gg
}
ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
GGML_ASSERT(sched);
int backend_index = tensor_backend_id(node);
if (backend_index == -1) {
return NULL;
@@ -1728,6 +1822,7 @@ ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched,
// utils
enum ggml_status ggml_backend_view_init(struct ggml_tensor * tensor) {
GGML_ASSERT(tensor);
GGML_ASSERT(tensor->buffer == NULL);
GGML_ASSERT(tensor->view_src != NULL);
GGML_ASSERT(tensor->view_src->buffer != NULL);
@@ -1739,6 +1834,7 @@ enum ggml_status ggml_backend_view_init(struct ggml_tensor * tensor) {
}
enum ggml_status ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
GGML_ASSERT(tensor);
GGML_ASSERT(tensor->buffer == NULL);
GGML_ASSERT(tensor->data == NULL);
GGML_ASSERT(tensor->view_src == NULL);
@@ -1812,6 +1908,7 @@ static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_
}
struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
GGML_ASSERT(graph);
struct ggml_hash_set hash_set = ggml_hash_set_new(graph->visited_hash_set.size);
struct ggml_tensor ** node_copies = (ggml_tensor **) calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
bool * node_init = (bool *) calloc(hash_set.size, sizeof(node_init[0]));
@@ -1956,6 +2053,7 @@ bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t
// CPU backend - buffer
static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
uintptr_t data = (uintptr_t)buffer->context;
// align the buffer
@@ -1967,28 +2065,33 @@ static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
}
static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
ggml_aligned_free(buffer->context, buffer->size);
}
static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
GGML_ASSERT(tensor);
memset((char *)tensor->data + offset, value, size);
GGML_UNUSED(buffer);
}
static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
GGML_ASSERT(tensor);
memcpy((char *)tensor->data + offset, data, size);
GGML_UNUSED(buffer);
}
static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
GGML_ASSERT(tensor);
memcpy(data, (const char *)tensor->data + offset, size);
GGML_UNUSED(buffer);
}
static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
GGML_ASSERT(src);
if (ggml_backend_buffer_is_host(src->buffer)) {
memcpy(dst->data, src->data, ggml_nbytes(src));
return true;
@@ -1999,6 +2102,7 @@ static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, con
}
static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
GGML_ASSERT(buffer);
memset(buffer->context, value, buffer->size);
}

View File

@@ -270,6 +270,7 @@ static struct ggml_backend_i blas_backend_i = {
/* .graph_compute = */ ggml_backend_blas_graph_compute,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
/* .optimize_graph = */ NULL,
};
static ggml_guid_t ggml_backend_blas_guid(void) {

File diff suppressed because it is too large Load Diff

View File

@@ -38,6 +38,7 @@
#include <unistd.h>
#include <functional>
#include <optional>
#include <list>
#include "../include/ggml-cann.h"
#include "../include/ggml.h"
@@ -106,6 +107,7 @@ int32_t ggml_cann_get_device();
std::optional<std::string> get_env(const std::string& name);
bool parse_bool(const std::string& value);
int parse_integer(const std::string& value);
/**
* @brief Abstract base class for memory pools used by CANN.
@@ -350,7 +352,7 @@ struct ggml_graph_node_properties {
struct ggml_cann_graph {
~ggml_cann_graph() {
if (graph != nullptr) {
aclmdlRIDestroy(graph);
ACL_CHECK(aclmdlRIDestroy(graph));
}
}
@@ -358,8 +360,105 @@ struct ggml_cann_graph {
std::vector<ggml_graph_node_properties> ggml_graph_properties;
};
/**
* @brief LRU cache for managing ggml_cann_graph objects.
*
* This class maintains a list of shared_ptr to ggml_cann_graph objects
* and enforces a maximum capacity. It provides methods to push new graphs,
* move existing graphs to the front (most recently used), and clear the cache.
*/
struct ggml_cann_graph_lru_cache {
size_t capacity; /**< Maximum number of graphs in the cache. */
std::list<ggml_cann_graph*> cache_list; /**< List storing cached graphs as raw pointers. */
ggml_cann_graph_lru_cache() {
capacity = parse_integer(get_env("GGML_CANN_GRAPH_CACHE_CAPACITY").value_or("12"));
}
/**
* @brief Push a new graph to the front of the cache.
* If the cache exceeds capacity, the least recently used graph is deleted.
* @param new_node Pointer to the new ggml_cann_graph to cache.
* Ownership is transferred to the cache (cache will delete it).
*/
void push(ggml_cann_graph* new_node) {
if (cache_list.size() >= capacity) {
ggml_cann_graph* old = cache_list.back();
cache_list.pop_back();
delete old; // free the old graph
}
cache_list.push_front(new_node);
}
/**
* @brief Move an existing graph to the front of the cache.
* @param node Pointer to the ggml_cann_graph to move.
*/
void move_to_front(ggml_cann_graph* node) {
cache_list.remove(node);
cache_list.push_front(node);
}
/**
* @brief Clear all graphs from the cache (also frees memory).
*/
void clear() {
for (auto ptr : cache_list) {
delete ptr;
}
cache_list.clear();
}
/**
* @brief Destructor that clears the cache and frees all cached graphs.
*/
~ggml_cann_graph_lru_cache() {
clear();
}
};
#endif // USE_ACL_GRAPH
struct ggml_cann_rope_cache {
~ggml_cann_rope_cache() {
if(theta_scale_cache != nullptr) {
ACL_CHECK(aclrtFree(theta_scale_cache));
}
if(sin_cache != nullptr) {
ACL_CHECK(aclrtFree(sin_cache));
}
if(cos_cache != nullptr) {
ACL_CHECK(aclrtFree(cos_cache));
}
}
void* theta_scale_cache = nullptr;
int64_t theta_scale_length = 0;
// sin/cos cache, used only to accelerate first layer on each device
void* sin_cache = nullptr;
void* cos_cache = nullptr;
int64_t position_length = 0;
// Properties to check before reusing the sincos cache
bool cached = false;
float ext_factor = 0.0f;
float theta_scale = 0.0f;
float freq_scale = 0.0f;
float attn_factor = 0.0f;
bool is_neox = false;
};
struct ggml_cann_tensor_cache {
~ggml_cann_tensor_cache() {
if(cache != nullptr) {
ACL_CHECK(aclrtFree(cache));
}
}
void* cache = nullptr;
int64_t size = 0;
};
/**
* @brief Context for managing CANN backend operations.
*/
@@ -368,17 +467,18 @@ struct ggml_backend_cann_context {
std::string name; /**< Name of the device. */
std::string description; /**< Description of the device. */
aclrtEvent copy_event = nullptr; /**< Event for managing copy operations. */
void* init_ptr = nullptr;
void* sin_ptr = nullptr;
void* cos_ptr = nullptr;
int64_t max_prompt_length = 65536;
#ifdef USE_ACL_GRAPH
/// Cached CANN ACL graph used for executing the current ggml computation graph.
std::unique_ptr<ggml_cann_graph> cann_graph;
ggml_cann_graph_lru_cache graph_lru_cache;
bool acl_graph_mode = true;
#endif
cann_task_queue task_queue;
bool async_mode;
bool support_set_rows;
// Rope Cache
ggml_cann_rope_cache rope_cache;
// Constant Pool
ggml_cann_tensor_cache rms_norm_one_tensor_cache;
ggml_cann_tensor_cache rms_norm_zero_tensor_cache;
aclrtStream streams[GGML_CANN_MAX_STREAMS] = {nullptr}; /**< Array of streams for the device. */
@@ -394,14 +494,13 @@ struct ggml_backend_cann_context {
async_mode = parse_bool(get_env("GGML_CANN_ASYNC_MODE").value_or(""));
GGML_LOG_INFO("%s: device %d async operator submission is %s\n", __func__,
device, async_mode ? "ON" : "OFF");
support_set_rows = parse_bool(get_env("LLAMA_SET_ROWS").value_or(""));
GGML_LOG_INFO("%s: LLAMA_SET_ROWS is %s\n", __func__, support_set_rows ? "ON" : "OFF");
if (!support_set_rows) {
GGML_LOG_INFO("%s: CANN Graph currently only supports execution when LLAMA_SET_ROWS is ON. "
"Falling back to eager mode.\n", __func__);
}
#ifdef USE_ACL_GRAPH
acl_graph_mode = parse_bool(get_env("GGML_CANN_ACL_GRAPH").value_or("on"));
GGML_LOG_INFO("%s: device %d execution mode is %s (%s)\n",
__func__, device,
acl_graph_mode ? "GRAPH" : "EAGER",
acl_graph_mode ? "acl graph enabled" : "acl graph disabled");
#endif
}
/**
@@ -418,15 +517,6 @@ struct ggml_backend_cann_context {
ACL_CHECK(aclrtDestroyStream(streams[i]));
}
}
if(init_ptr != nullptr) {
ACL_CHECK(aclrtFree(init_ptr));
}
if(sin_ptr != nullptr) {
ACL_CHECK(aclrtFree(sin_ptr));
}
if(cos_ptr != nullptr) {
ACL_CHECK(aclrtFree(cos_ptr));
}
}
/**
@@ -436,7 +526,10 @@ struct ggml_backend_cann_context {
*/
aclrtStream stream(int stream) {
if (streams[stream] == nullptr) {
ggml_cann_set_device(device);
// If the device is not set here, destroying the stream later may cause a mismatch
// between the thread contexts where the stream was created and destroyed.
// However, I printed the device_id, thread_id, and stream, and they are all consistent.
ACL_CHECK(aclrtSetDevice(device));
ACL_CHECK(aclrtCreateStream(&streams[stream]));
}
return streams[stream];

View File

@@ -75,13 +75,12 @@
* @param device The device ID to set.
*/
void ggml_cann_set_device(const int32_t device) {
// TODO: uncomment these lines after empty context has fixed.
// int current_device;
// ACL_CHECK(aclrtGetDevice(&current_device));
int current_device = -1;
aclrtGetDevice(&current_device);
// if (device == current_device) {
// return;
// }
if (device == current_device) {
return;
}
ACL_CHECK(aclrtSetDevice(device));
}
@@ -116,6 +115,24 @@ bool parse_bool(const std::string& value) {
return valid_values.find(value) != valid_values.end();
}
/**
* @brief Parse a string as an integer, returning 0 if invalid.
*
* This function attempts to convert the input string `value` to an `int`.
* If the string is not a valid integer or is out of the `int` range,
* it returns 0.
*
* @param value The string to parse.
* @return The parsed integer, or 0 if conversion fails.
*/
int parse_integer(const std::string& value) {
try {
return std::stoi(value);
} catch (...) {
return 0;
}
}
/**
* @brief Initialize the CANN device information.
*
@@ -1116,30 +1133,65 @@ static enum ggml_status ggml_backend_cann_buffer_init_tensor(
return GGML_STATUS_SUCCESS;
}
// ND to NZ Workspace Cache Management. Thread-safety: Not guaranteed
namespace {
void* g_nz_workspace = nullptr;
size_t g_nz_workspace_allocated = 0;
/**
* @brief Workspace for caching NZ buffers per device.
*
* This struct manages a device buffer used in NZ computations. It supports
* allocation, reallocation, and clearing of cached memory. The struct is
* designed to be used with a global array, one per device.
*/
struct ggml_cann_nz_workspace {
void* ptr; // Pointer to allocated device buffer
size_t allocated; // Size of currently allocated buffer in bytes
void release_nz_workspace() {
if (g_nz_workspace) {
aclrtFree(g_nz_workspace);
g_nz_workspace = nullptr;
g_nz_workspace_allocated = 0;
/**
* @brief Constructor. Initializes the workspace with no allocated memory.
*/
ggml_cann_nz_workspace() : ptr(nullptr), allocated(0) {}
/**
* @brief Free cached memory and reset the workspace.
*
* If a buffer has been allocated, this function releases it using
* aclrtFree and resets internal state.
*/
void clear() {
if (ptr) {
ACL_CHECK(aclrtFree(ptr));
ptr = nullptr;
allocated = 0;
}
}
void relloc_nz_workspace(size_t new_size) {
if (new_size > g_nz_workspace_allocated) {
if (g_nz_workspace) {
aclrtFree(g_nz_workspace);
g_nz_workspace = nullptr;
/**
* @brief Allocate or reallocate the workspace buffer.
*
* If the requested size is larger than the currently allocated size,
* the old buffer will be freed and a new buffer of the requested size
* will be allocated on the device.
*
* @param new_size Size in bytes to allocate for the workspace.
*/
void realloc(size_t new_size) {
if (new_size > allocated) {
clear();
ACL_CHECK(aclrtMalloc(&ptr, new_size, ACL_MEM_MALLOC_HUGE_FIRST));
allocated = new_size;
}
ACL_CHECK(aclrtMalloc(&g_nz_workspace, new_size, ACL_MEM_MALLOC_HUGE_FIRST));
g_nz_workspace_allocated = new_size;
}
}
}
/**
* @brief Get the device buffer pointer.
*
* @return Pointer to the allocated buffer, or nullptr if not allocated.
*/
void* get() const { return ptr; }
};
/**
* @brief Global array of NZ workspaces, one per device.
*/
static ggml_cann_nz_workspace g_nz_workspaces[GGML_CANN_MAX_DEVICES];
/**
* @brief Convert tensor weights to NZ format using Ascend CANN API.
@@ -1149,13 +1201,13 @@ namespace {
* improve performance on certain hardware.
*
* @param tensor Pointer to the input ggml_tensor containing the weights.
* @param data Pointer to the raw data buffer for the tensor weights.
* @param offset Byte offset within the tensor data buffer where weights start.
* @param device device id.
*
* @note The workspace buffer used in this function is managed globally and reused
* across calls. This reduces overhead from repeated memory allocation and deallocation.
*/
static void weight_format_to_nz(ggml_tensor *tensor, const void *data, size_t offset) {
static void weight_format_to_nz(ggml_tensor *tensor, size_t offset, int device) {
aclTensor* weightTransposed = ggml_cann_create_tensor(tensor, tensor->ne,
tensor->nb, 2, ACL_FORMAT_ND, offset);
uint64_t workspaceSize = 0;
@@ -1165,7 +1217,9 @@ static void weight_format_to_nz(ggml_tensor *tensor, const void *data, size_t of
ACL_CHECK(aclnnTransMatmulWeightGetWorkspaceSize(weightTransposed,
&workspaceSize, &executor));
// Avoid frequent malloc/free of the workspace.
relloc_nz_workspace(workspaceSize);
g_nz_workspaces[device].realloc(workspaceSize);
void* g_nz_workspace = g_nz_workspaces[device].get();
ACL_CHECK(aclnnTransMatmulWeight(g_nz_workspace, workspaceSize, executor, nullptr));
ACL_CHECK(aclDestroyTensor(weightTransposed));
@@ -1196,14 +1250,14 @@ static void ggml_backend_cann_buffer_set_tensor(
// Why aclrtSynchronizeDevice?
// Only check env once.
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or(""));
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or("on"));
if (!need_transform(tensor->type)) {
ACL_CHECK(aclrtMemcpy((char *)tensor->data + offset, size, data, size,
ACL_MEMCPY_HOST_TO_DEVICE));
if (weight_to_nz && is_matmul_weight((const ggml_tensor*)tensor)) {
GGML_ASSERT(tensor->ne[2] == 1);
GGML_ASSERT(tensor->ne[3] == 1);
weight_format_to_nz(tensor, data, offset);
weight_format_to_nz(tensor, offset, ctx->device);
}
} else {
void *transform_buffer = malloc(size);
@@ -1279,6 +1333,10 @@ static bool ggml_backend_cann_buffer_cpy_tensor(
ACL_MEMCPY_DEVICE_TO_DEVICE));
return true;
} else {
#ifdef ASCEND_310P
// TODO: Support 310p P2P copy
return false;
#endif
// Different device but can access by peer.
int32_t canAccessPeer = 0;
ACL_CHECK(aclrtDeviceCanAccessPeer(&canAccessPeer, src_ctx->device,
@@ -1439,7 +1497,7 @@ static size_t ggml_backend_cann_buffer_type_get_alloc_size(
int64_t ne0 = tensor->ne[0];
// Only check env once.
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or(""));
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or("on"));
// last line must bigger than 32, because every single op deal at
// least 32 bytes.
@@ -1670,6 +1728,7 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
ggml_cann_get_rows(ctx, dst);
break;
case GGML_OP_SET_ROWS:
std::cout << "lcg GGML_OP_SET_ROWS"<< std::endl;
ggml_cann_set_rows(ctx, dst);
break;
case GGML_OP_DUP:
@@ -2000,6 +2059,8 @@ static bool ggml_backend_cann_cpy_tensor_async(
GGML_ASSERT(ggml_backend_is_cann(backend_src) ||
ggml_backend_is_cann(backend_dst));
GGML_ASSERT(!is_matmul_weight((const ggml_tensor*)src));
if (!ggml_backend_buffer_is_cann(src->buffer) ||
!ggml_backend_buffer_is_cann(dst->buffer)) {
return false;
@@ -2020,6 +2081,10 @@ static bool ggml_backend_cann_cpy_tensor_async(
return true;
}
if (backend_src != backend_dst) {
#ifdef ASCEND_310P
// TODO: Support 310p P2P copy
return false;
#endif
ggml_backend_cann_buffer_context* buf_ctx_src =
(ggml_backend_cann_buffer_context*)buf_src->context;
ggml_backend_cann_buffer_context* buf_ctx_dst =
@@ -2036,7 +2101,6 @@ static bool ggml_backend_cann_cpy_tensor_async(
}
// need open both directions for memcpyasync between devices.
ggml_cann_set_device(cann_ctx_dst->device);
ACL_CHECK(aclrtDeviceEnablePeerAccess(cann_ctx_src->device, 0));
ggml_cann_set_device(cann_ctx_src->device);
ACL_CHECK(aclrtDeviceEnablePeerAccess(cann_ctx_dst->device, 0));
@@ -2046,9 +2110,17 @@ static bool ggml_backend_cann_cpy_tensor_async(
ACL_CHECK(aclrtMemcpyAsync(dst->data, copy_size, src->data, copy_size,
ACL_MEMCPY_DEVICE_TO_DEVICE,
cann_ctx_src->stream()));
// record event on src stream after the copy
// TODO: this event is not effective with acl graph mode, change to use aclrtSynchronizeStream
// if (!cann_ctx_src->copy_event) {
// ACL_CHECK(aclrtCreateEventWithFlag(&cann_ctx_src->copy_event, ACL_EVENT_SYNC));
// }
// ACL_CHECK(aclrtRecordEvent(cann_ctx_src->copy_event, cann_ctx_src->stream()));
//TODO: workaround for Event didn`t work here.
aclrtSynchronizeStream(cann_ctx_src->stream());
// // wait on dst stream for the copy to complete
// ggml_cann_set_device(cann_ctx_dst->device);
// ACL_CHECK(aclrtStreamWaitEvent(cann_ctx_dst->stream(), cann_ctx_src->copy_event));
ACL_CHECK(aclrtSynchronizeStream(cann_ctx_src->stream()));
} else {
// src and dst are on the same backend
ACL_CHECK(aclrtMemcpyAsync(dst->data, copy_size, src->data, copy_size,
@@ -2077,30 +2149,52 @@ static void ggml_backend_cann_synchronize(ggml_backend_t backend) {
#ifdef USE_ACL_GRAPH
/**
* @brief Populate the internal CANN graph node properties from the ggml computation graph.
* @brief Add a new CANN graph to the LRU cache by populating node properties from the ggml graph.
*
* This function copies all node attributes (operation type, dimensions, strides, input sources,
* and operation parameters) into the cached CANN graph structure for later reuse or comparison.
* This function creates a new ggml_cann_graph object and fills its node properties
* (operation type, dimensions, strides, input sources, and operation parameters)
* based on the current ggml computation graph.
*
* @param cann_ctx The CANN backend context.
* @param cgraph The ggml computational graph.
* Each node in the ggml graph is mapped to a property entry in the new CANN graph:
* - node address
* - operation type
* - shape (ne) and strides (nb)
* - source tensor addresses
* - operation parameters
*
* After initialization, the new graph is pushed into the LRU cache owned by the
* CANN backend context. The cache takes ownership of the graph and manages its
* lifetime (including deletion upon eviction).
*
* @param cann_ctx The CANN backend context containing the graph cache.
* @param cgraph The current ggml computation graph.
*/
static void set_ggml_graph_node_properties(ggml_backend_cann_context * cann_ctx, ggml_cgraph * cgraph) {
for (int node_idx = 0; node_idx < cgraph->n_nodes; node_idx++) {
ggml_tensor * node = cgraph->nodes[node_idx];
cann_ctx->cann_graph->ggml_graph_properties[node_idx].node_address = node->data;
cann_ctx->cann_graph->ggml_graph_properties[node_idx].node_op = node->op;
static void add_lru_matched_graph_node_properties(
ggml_backend_cann_context * cann_ctx,
ggml_cgraph * cgraph) {
// Create a new ggml_cann_graph object on the heap (its lifetime is managed by the cache).
ggml_cann_graph * new_graph = new ggml_cann_graph();
new_graph->ggml_graph_properties.resize(cgraph->n_nodes);
for (int dim = 0; dim < GGML_MAX_DIMS; dim++) {
cann_ctx->cann_graph->ggml_graph_properties[node_idx].ne[dim] = node->ne[dim];
cann_ctx->cann_graph->ggml_graph_properties[node_idx].nb[dim] = node->nb[dim];
for (int node_idx = 0; node_idx < cgraph->n_nodes; ++node_idx) {
ggml_tensor * node = cgraph->nodes[node_idx];
auto & prop = new_graph->ggml_graph_properties[node_idx];
prop.node_address = node->data;
prop.node_op = node->op;
std::copy_n(node->ne, GGML_MAX_DIMS, prop.ne);
std::copy_n(node->nb, GGML_MAX_DIMS, prop.nb);
for (int src = 0; src < GGML_MAX_SRC; ++src) {
prop.src_address[src] = node->src[src] ? node->src[src]->data : nullptr;
}
for (int src = 0; src < GGML_MAX_SRC; src++) {
cann_ctx->cann_graph->ggml_graph_properties[node_idx].src_address[src] =
node->src[src] ? node->src[src]->data : nullptr;
}
memcpy(cann_ctx->cann_graph->ggml_graph_properties[node_idx].op_params, node->op_params, GGML_MAX_OP_PARAMS);
memcpy(prop.op_params, node->op_params, GGML_MAX_OP_PARAMS);
}
// Insert into the LRU cache (cache takes ownership and will delete it when evicted).
cann_ctx->graph_lru_cache.push(new_graph);
}
/**
@@ -2145,30 +2239,45 @@ static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_gra
}
/**
* @brief Determine if the CANN graph needs to be rebuilt due to graph changes.
* @brief Check whether there is a cached CANN graph that matches the current ggml graph.
*
* This checks whether the number or properties of ggml graph nodes have changed
* compared to the last captured CANN graph. If so, the CANN graph must be re-captured.
* This function iterates through the cached CANN graphs stored in the LRU cache and
* compares them against the given ggml computation graph. A match requires that the
* number of nodes is the same and that each nodes properties (operation type,
* dimensions, strides, inputs, and operation parameters) are identical.
*
* @param cann_ctx The CANN backend context.
* If a matching graph is found, it is promoted to the front of the LRU cache and the
* function returns true. Otherwise, the function returns false, indicating that a new
* CANN graph needs to be captured.
*
* @param cann_ctx The CANN backend context containing the graph cache.
* @param cgraph The current ggml computation graph.
* @return true if an update is required; false otherwise.
* @return true if a matching cached graph exists; false otherwise.
*/
static bool is_cann_graph_update_required(ggml_backend_cann_context * cann_ctx, ggml_cgraph * cgraph) {
// The number of nodes is different, so the graph needs to be reconstructed.
if (cann_ctx->cann_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) {
cann_ctx->cann_graph->ggml_graph_properties.resize(cgraph->n_nodes);
return true;
}
static bool is_matched_graph(ggml_backend_cann_context * cann_ctx, ggml_cgraph * cgraph) {
ggml_cann_graph_lru_cache &lru_cache = cann_ctx->graph_lru_cache;
for (auto &graph_ptr : lru_cache.cache_list) {
// Skip graphs with a different number of nodes.
if (graph_ptr->ggml_graph_properties.size() != static_cast<size_t>(cgraph->n_nodes)) {
continue;
}
// The number of nodes is the same; iterate over each node to check whether they match.
for (int i = 0; i < cgraph->n_nodes; i++) {
bool has_matching_properties = ggml_graph_node_has_matching_properties(
cgraph->nodes[i], &cann_ctx->cann_graph->ggml_graph_properties[i]);
if(!has_matching_properties) {
// Check if all nodes match.
bool all_match = true;
for (int i = 0; i < cgraph->n_nodes; ++i) {
if (!ggml_graph_node_has_matching_properties(cgraph->nodes[i], &graph_ptr->ggml_graph_properties[i])) {
all_match = false;
break;
}
}
if (all_match) {
// update cache_list && renturn graph_ptr
lru_cache.move_to_front(graph_ptr);
return true;
}
}
return false;
}
#endif // USE_ACL_GRAPH
@@ -2187,17 +2296,13 @@ static bool is_cann_graph_update_required(ggml_backend_cann_context * cann_ctx,
* @param cann_graph_update_required Whether graph capture is needed due to graph changes.
*/
static void evaluate_and_capture_cann_graph(ggml_backend_cann_context * cann_ctx, ggml_cgraph * cgraph,
bool & use_cann_graph, bool & cann_graph_update_required) {
bool & use_cann_graph, bool & cann_graph_update_required) {
#ifdef USE_ACL_GRAPH
ggml_cann_graph* matched_graph = cann_ctx->graph_lru_cache.cache_list.front();
if (use_cann_graph && cann_graph_update_required) {
if (cann_ctx->cann_graph->graph != nullptr) {
ACL_CHECK(aclmdlRIDestroy(cann_ctx->cann_graph->graph));
cann_ctx->cann_graph->graph = nullptr;
}
ACL_CHECK(aclmdlRICaptureBegin(cann_ctx->stream(), ACL_MODEL_RI_CAPTURE_MODE_GLOBAL));
}
#endif // USE_ACL_GRAPH
// Only perform the graph execution if CANN graphs are not enabled, or we are capturing the graph.
// With the use of CANN graphs, the execution will be performed by the graph launch.
if (!use_cann_graph || cann_graph_update_required) {
@@ -2218,12 +2323,12 @@ static void evaluate_and_capture_cann_graph(ggml_backend_cann_context * cann_ctx
#ifdef USE_ACL_GRAPH
if (use_cann_graph && cann_graph_update_required) { // End CANN graph capture
ACL_CHECK(aclmdlRICaptureEnd(cann_ctx->stream(), &cann_ctx->cann_graph->graph));
ACL_CHECK(aclmdlRICaptureEnd(cann_ctx->stream(), &matched_graph->graph));
}
if (use_cann_graph) {
// Execute graph
ACL_CHECK(aclmdlRIExecuteAsync(cann_ctx->cann_graph->graph, cann_ctx->stream()));
ACL_CHECK(aclmdlRIExecuteAsync(matched_graph->graph, cann_ctx->stream()));
}
#endif // USE_ACL_GRAPH
}
@@ -2246,30 +2351,46 @@ static enum ggml_status ggml_backend_cann_graph_compute(
ggml_backend_cann_context* cann_ctx =
(ggml_backend_cann_context*)backend->context;
ggml_cann_set_device(cann_ctx->device);
release_nz_workspace();
g_nz_workspaces[cann_ctx->device].clear();
// calculate rope cache for fist layer in current device.
cann_ctx->rope_cache.cached = false;
#ifdef USE_ACL_GRAPH
bool use_cann_graph = true;
bool cann_graph_update_required = false;
// check environment LLAMA_SET_ROWS
if (!cann_ctx->support_set_rows) {
static bool prefill_use_graph = parse_bool(get_env("GGML_CANN_PREFILL_USE_GRAPH").value_or(""));
if (!prefill_use_graph) {
// Do not use acl_graph for prefill.
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
// TODO: Optimize here. Currently, we can only
// get seq_len by FA's input.
if (node->op == GGML_OP_FLASH_ATTN_EXT) {
// Q -> src[0], shape: [B, S, N, D]
use_cann_graph = (node->src[0]->ne[1] == 1);
break;
}
}
}
if (!cann_ctx->acl_graph_mode) {
use_cann_graph = false;
}
if (use_cann_graph) {
if (cann_ctx->cann_graph == nullptr) {
cann_ctx->cann_graph.reset(new ggml_cann_graph());
cann_graph_update_required = true;
// If no matching graph is found, the graph needs to be recaptured.
cann_graph_update_required = !is_matched_graph(cann_ctx, cgraph);
if (cann_graph_update_required) {
// If no matching graph is found, add a new ACL graph.
add_lru_matched_graph_node_properties(cann_ctx, cgraph);
}
cann_graph_update_required = is_cann_graph_update_required(cann_ctx, cgraph);
set_ggml_graph_node_properties(cann_ctx, cgraph);
}
#else
bool use_cann_graph = false;
bool cann_graph_update_required = false;
#endif // USE_ACL_GRAPH
evaluate_and_capture_cann_graph(
cann_ctx,
cgraph,
@@ -2336,7 +2457,7 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q4_0:
#ifdef ASCEND_310P
// Q4 && Q8 per group is not suppor on 310p device
// Q4 && Q8 per group is not support on 310p device
return false;
#endif
// only support contiguous for quantized types.
@@ -2354,7 +2475,7 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q4_0:
#ifdef ASCEND_310P
// Q4 && Q8 per group is not suppor on 310p device
// Q4 && Q8 per group is not support on 310p device
return false;
#endif
// only support contiguous for quantized types.
@@ -2405,16 +2526,10 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
}
case GGML_OP_ROPE: {
// TODO: with ops-test v == 1
float ext_factor = 0.0f;
memcpy(&ext_factor, (const float *) op->op_params + 7, sizeof(float));
// TODO: n_dims <= ne0
if (op->src[0]->ne[0] != op->op_params[1]) {
return false;
}
// TODO: ext_factor != 0
if (ext_factor != 0) {
return false;
}
const int mode = ((const int32_t *) op->op_params)[2];
if (mode & GGML_ROPE_TYPE_MROPE) {
@@ -2423,10 +2538,11 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
if (mode & GGML_ROPE_TYPE_VISION) {
return false;
}
#ifdef ASCEND_310P
if(!ggml_is_contiguous(op->src[0])){
return false;
}
#endif
return true;
}
case GGML_OP_UPSCALE: {
@@ -2488,15 +2604,17 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
case GGML_OP_ARGMAX:
case GGML_OP_COS:
case GGML_OP_SIN:
case GGML_OP_CONV_TRANSPOSE_1D:
case GGML_OP_LOG:
case GGML_OP_MEAN:
case GGML_OP_PAD_REFLECT_1D:
case GGML_OP_COUNT_EQUAL:
return true;
case GGML_OP_CONV_TRANSPOSE_1D:
// TODO: ((weightL - 1) * dilationW - padLeft)=1336 should not be larger than 255.
return (op->src[0]->ne[0] - 1) <= 255;
case GGML_OP_SCALE:
float bias;
memcpy(&bias, (float*)op->op_params + 1, sizeof(float));
memcpy(&bias, (const float *)(op->op_params) + 1, sizeof(float));
return bias == 0.0f; // TODO: support bias != 0.0f
case GGML_OP_SOFT_MAX:
// TODO: support attention sinks [TAG_ATTN_SINKS]
@@ -2505,6 +2623,10 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
}
return true;
case GGML_OP_FLASH_ATTN_EXT:{
#ifdef ASCEND_310P
// FA not support on 310p device
return false;
#endif
// derived from [ggml-cuda.cu]
if(op->src[1]->type != GGML_TYPE_F16 || op->src[2]->type != GGML_TYPE_F16){
return false;
@@ -2523,15 +2645,12 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
// different head sizes of K and V are not supported yet
return false;
}
if (op->src[0]->ne[0] == 192) {
return false;
}
if (op->src[0]->ne[0] == 576) {
// DeepSeek MLA
if (op->src[0]->ne[0] % 16 != 0) {
// TODO: padding to support
return false;
}
float logitSoftcap = 0.0f;
memcpy(&logitSoftcap, (float*)op->op_params + 2, sizeof(float));
memcpy(&logitSoftcap, (const float *)(op->op_params) + 2, sizeof(float));
if(logitSoftcap != 0.0f) {
return false;
}
@@ -2638,6 +2757,7 @@ static const ggml_backend_i ggml_backend_cann_interface = {
/* .graph_compute = */ ggml_backend_cann_graph_compute,
/* .event_record = */ ggml_backend_cann_event_record,
/* .event_wait = */ ggml_backend_cann_event_wait,
/* .optimize_graph = */ NULL,
};
/**

View File

@@ -224,7 +224,13 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
foreach(feature DOTPROD SVE MATMUL_INT8 FMA FP16_VECTOR_ARITHMETIC SME)
string(FIND "${ARM_FEATURE}" "__ARM_FEATURE_${feature} 1" feature_pos)
if (NOT ${feature_pos} EQUAL -1)
message(STATUS "ARM feature ${feature} enabled")
# Special handling for MATMUL_INT8 when machine doesn't support i8mm
if ("${feature}" STREQUAL "MATMUL_INT8" AND GGML_MACHINE_SUPPORTS_noi8mm)
message(STATUS "ARM feature ${feature} detected but unsetting due to machine not supporting i8mm")
list(APPEND ARCH_FLAGS -U__ARM_FEATURE_MATMUL_INT8)
else()
message(STATUS "ARM feature ${feature} enabled")
endif()
endif()
endforeach()
endif()
@@ -433,15 +439,22 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
ggml-cpu/arch/riscv/quants.c
ggml-cpu/arch/riscv/repack.cpp
)
if (GGML_RVV)
if (GGML_XTHEADVECTOR)
list(APPEND ARCH_FLAGS -march=rv64gc_xtheadvector -mabi=lp64d)
elseif (GGML_RV_ZFH)
list(APPEND ARCH_FLAGS -march=rv64gcv_zfhmin -mabi=lp64d)
else()
list(APPEND ARCH_FLAGS -march=rv64gcv -mabi=lp64d)
set(MARCH_STR "rv64gc")
if (GGML_RV_ZFH)
string(APPEND MARCH_STR "_zfh")
endif()
if (GGML_XTHEADVECTOR)
string(APPEND MARCH_STR "_xtheadvector")
elseif (GGML_RVV)
string(APPEND MARCH_STR "_v")
if (GGML_RV_ZVFH)
string(APPEND MARCH_STR "_zvfh")
endif()
endif()
if (GGML_RV_ZICBOP)
string(APPEND MARCH_STR "_zicbop")
endif()
list(APPEND ARCH_FLAGS "-march=${MARCH_STR}" -mabi=lp64d)
elseif (GGML_SYSTEM_ARCH STREQUAL "s390x")
message(STATUS "s390x detected")
list(APPEND GGML_CPU_SOURCES ggml-cpu/arch/s390/quants.c)
@@ -450,7 +463,6 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
# TODO: Separation to determine activation of VX/VXE/VXE2
if (${S390X_M} MATCHES "8561|8562")
set(GGML_NNPA OFF)
message(STATUS "z15 target")
list(APPEND ARCH_FLAGS -march=z15)
elseif (${S390X_M} MATCHES "3931")
@@ -472,11 +484,6 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
list(APPEND ARCH_FLAGS -mvx -mzvector)
list(APPEND ARCH_DEFINITIONS GGML_VXE)
endif()
if (GGML_NNPA)
message(STATUS "NNPA enabled")
list(APPEND ARCH_DEFINITIONS GGML_NNPA)
endif()
elseif (CMAKE_SYSTEM_PROCESSOR MATCHES "wasm")
message(STATUS "Wasm detected")
list (APPEND GGML_CPU_SOURCES ggml-cpu/arch/wasm/quants.c)
@@ -497,9 +504,9 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
# Fetch KleidiAI sources:
include(FetchContent)
set(KLEIDIAI_COMMIT_TAG "v1.11.0")
set(KLEIDIAI_COMMIT_TAG "v1.13.0")
set(KLEIDIAI_DOWNLOAD_URL "https://github.com/ARM-software/kleidiai/archive/refs/tags/${KLEIDIAI_COMMIT_TAG}.tar.gz")
set(KLEIDIAI_ARCHIVE_MD5 "3fe9e5ab964c375c53839296eb71eaa2")
set(KLEIDIAI_ARCHIVE_MD5 "d82a8de939d9814621a5ba23907bdac1")
if (POLICY CMP0135)
cmake_policy(SET CMP0135 NEW)
@@ -555,6 +562,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
list(APPEND GGML_KLEIDIAI_SOURCES
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p4x8sb_f32_neon.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32_neon.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.c)
@@ -576,7 +584,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_fp32_bf16p_bf16p/kai_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_pack_bf16p2vlx2_f32_sme.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.c)
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.c
${KLEIDIAI_SRC}/kai/kai_common_sme_asm.S)
set(PRIVATE_ARCH_FLAGS "-fno-tree-vectorize;${PRIVATE_ARCH_FLAGS}+sve+sve2")
endif()

View File

@@ -150,8 +150,6 @@
#elif defined(__s390x__)
// quants.c
#define quantize_row_q8_K_generic quantize_row_q8_K
#define ggml_vec_dot_q5_0_q8_0_generic ggml_vec_dot_q5_0_q8_0
#define ggml_vec_dot_q5_1_q8_1_generic ggml_vec_dot_q5_1_q8_1
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
#define ggml_vec_dot_q2_K_q8_K_generic ggml_vec_dot_q2_K_q8_K

View File

@@ -1270,29 +1270,40 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
int tmp, tmp2, sumi;
float ftmp, ft2;
const uint8_t * restrict q40;
const uint8_t * restrict q41;
const uint8_t * restrict q42;
const uint8_t * restrict q43;
const int8_t * restrict q80;
const int8_t * restrict q81;
const int8_t * restrict q82;
const int8_t * restrict q83;
int s0, s1, s2, s3;
__asm__ __volatile__(
"vsetivli zero, 12, e8, m1\n\t"
"vle8.v v1, (%[s6b])\n\t" // {aux[0], aux[1], aux[2]}
"vsetivli zero, 4, e32, m1\n\t"
"li %[s1], 8\n\t"
"vsetivli zero, 4, e32, m1, ta, ma\n\t"
"vle32.v v1, (%[s6b])\n\t"
"vslide1down.vx v1, v1, zero\n\t"
"vmv.v.x v16, zero\n\t"
"vslidedown.vi v2, v1, 2\n\t"
"vmv1r.v v3, v2\n\t"
"vslideup.vi v2, v3, 1\n\t" // {aux[2], aux[2]}
"vsetivli zero, 2, e32, m1\n\t"
"vsetivli zero, 2, e32, m1, ta, ma\n\t"
"vmv.v.i v4, 4\n\t"
"vand.vx v8, v1, %[kmask1]\n\t"
"vslide1up.vx v5, v4, zero\n\t" // {0, 4}
"vsrl.vi v6, v1, 6\n\t"
"vsrl.vv v7, v2, v5\n\t"
"vsse32.v v8, (%[utmp]), %[s1]\n\t"
"vand.vx v0, v6, %[kmask3]\n\t"
"vand.vx v2, v7, %[kmask2]\n\t"
"vsll.vi v6, v0, 4\n\t"
"li %[t2], 8\n\t"
"addi %[t1], %[utmp], 4\n\t"
"addi %[s0], %[utmp], 4\n\t"
"vor.vv v1, v6, v2\n\t"
"vsse32.v v8, (%[utmp]), %[t2]\n\t"
"vsse32.v v1, (%[t1]), %[t2]\n\t"
"vsetivli zero, 8, e16, m1\n\t"
"vsse32.v v1, (%[s0]), %[s1]\n\t"
"vsetivli zero, 8, e16, m1, ta, ma\n\t"
"vle32.v v2, (%[bsums])\n\t"
"vnsrl.wi v0, v2, 0\n\t"
"vnsrl.wi v1, v2, 16\n\t"
@@ -1300,13 +1311,131 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
"vle8.v v3, (%[mins])\n\t"
"vzext.vf2 v4, v3\n\t"
"vwmul.vv v6, v4, v2\n\t"
"vsetivli zero, 4, e32, m1, ta, ma\n\t"
"vredsum.vs v0, v6, v16\n\t"
"vredsum.vs v0, v7, v0\n\t"
"vfcvt.f.x.v v0, v0\n\t"
"vfmv.f.s %[ftmp], v0\n\t"
"vsetivli zero, 16, e8, m1, ta, ma\n\t"
"vle8.v v0, (%[xs])\n\t"
"fnmsub.s %[sumf], %[dmin], %[ftmp], %[sumf]\n\t"
"addi %[q40], %[xs], 64\n\t"
"addi %[q41], %[xs], 16\n\t"
"addi %[q42], %[xs], 32\n\t"
"addi %[q43], %[xs], 48\n\t"
"addi %[q80], %[ys], 64\n\t"
"vle8.v v1, (%[q41])\n\t"
"vle8.v v2, (%[q42])\n\t"
"addi %[q81], %[ys], 16\n\t"
"addi %[q41], %[q41], 64\n\t"
"addi %[q82], %[ys], 32\n\t"
"vle8.v v3, (%[q43])\n\t"
"vle8.v v8, (%[ys])\n\t"
"addi %[q42], %[q42], 64\n\t"
"addi %[q83], %[ys], 48\n\t"
"addi %[q43], %[q43], 64\n\t"
"vsrl.vi v4, v0, 4\n\t"
"vle8.v v9, (%[q81])\n\t"
"vle8.v v10, (%[q82])\n\t"
"vand.vi v0, v0, 0xF\n\t"
"addi %[q81], %[q81], 64\n\t"
"vsrl.vi v5, v1, 4\n\t"
"addi %[q82], %[q82], 64\n\t"
"vle8.v v11, (%[q83])\n\t"
"vle8.v v12, (%[q80])\n\t"
"vand.vi v1, v1, 0xF\n\t"
"addi %[q83], %[q83], 64\n\t"
"vsrl.vi v6, v2, 4\n\t"
"addi %[q80], %[q80], 64\n\t"
"vle8.v v13, (%[q81])\n\t"
"vle8.v v14, (%[q82])\n\t"
"vand.vi v2, v2, 0xF\n\t"
"addi %[q81], %[q81], 64\n\t"
"vsrl.vi v7, v3, 4\n\t"
"addi %[q82], %[q82], 64\n\t"
"vwmul.vv v16, v0, v8\n\t"
"vle8.v v15, (%[q83])\n\t"
"vle8.v v0, (%[q40])\n\t"
"vand.vi v3, v3, 0xF\n\t"
"addi %[q83], %[q83], 64\n\t"
"vwmul.vv v24, v2, v12\n\t"
"vwmul.vv v20, v4, v10\n\t"
"vwmul.vv v28, v6, v14\n\t"
"vwmacc.vv v16, v1, v9\n\t"
"vle8.v v1, (%[q41])\n\t"
"vle8.v v2, (%[q42])\n\t"
"vwmacc.vv v24, v3, v13\n\t"
"vwmacc.vv v20, v5, v11\n\t"
"vwmacc.vv v28, v7, v15\n\t"
"addi %[q40], %[q80], 64\n\t"
"addi %[q41], %[q81], 64\n\t"
"vle8.v v3, (%[q43])\n\t"
"vle8.v v8, (%[q80])\n\t"
"addi %[q42], %[q82], 64\n\t"
"addi %[q43], %[q83], 64\n\t"
"vsrl.vi v4, v0, 4\n\t"
"vle8.v v9, (%[q81])\n\t"
"vle8.v v10, (%[q82])\n\t"
"vand.vi v0, v0, 0xF\n\t"
"vsrl.vi v5, v1, 4\n\t"
"vsrl.vi v7, v3, 4\n\t"
"vand.vi v3, v3, 0xF\n\t"
"vle8.v v11, (%[q83])\n\t"
"vle8.v v12, (%[q40])\n\t"
"vand.vi v1, v1, 0xF\n\t"
"vsrl.vi v6, v2, 4\n\t"
"vand.vi v2, v2, 0xF\n\t"
"vwmul.vv v18, v0, v8\n\t"
"vle8.v v13, (%[q41])\n\t"
"vle8.v v14, (%[q42])\n\t"
"vwmul.vv v26, v2, v12\n\t"
"vwmul.vv v22, v4, v10\n\t"
"vwmul.vv v30, v6, v14\n\t"
"vwmacc.vv v18, v1, v9\n\t"
"vle8.v v15, (%[q43])\n\t"
"vwmacc.vv v26, v3, v13\n\t"
"vwmacc.vv v22, v5, v11\n\t"
"vwmacc.vv v30, v7, v15\n\t"
"vmv.v.x v0, zero\n\t"
"vsetivli zero, 8, e32, m2\n\t"
"vredsum.vs v0, v6, v0\n\t"
"vmv.x.s %[sumi], v0"
: [t1] "=&r" (tmp), [t2] "=&r" (tmp2), [sumi] "=&r" (sumi)
: [bsums] "r" (y[i].bsums), [mins] "r" (mins), [utmp] "r" (utmp)
, [s6b] "r" (x[i].scales), [kmask1] "r" (kmask1)
"vsetivli zero, 16, e16, m2, ta, ma\n\t"
"vwredsum.vs v4, v16, v0\n\t"
"lbu %[s0], 0(%[scale])\n\t"
"vwredsum.vs v5, v20, v0\n\t"
"lbu %[s1], 1(%[scale])\n\t"
"vwredsum.vs v6, v24, v0\n\t"
"lbu %[s2], 2(%[scale])\n\t"
"vwredsum.vs v7, v28, v0\n\t"
"lbu %[s3], 3(%[scale])\n\t"
"vwredsum.vs v8, v18, v0\n\t"
"lbu %[q40], 4(%[scale])\n\t"
"vwredsum.vs v9, v22, v0\n\t"
"lbu %[q41], 5(%[scale])\n\t"
"vwredsum.vs v10, v26, v0\n\t"
"lbu %[q42], 6(%[scale])\n\t"
"vwredsum.vs v11, v30, v0\n\t"
"lbu %[q43], 7(%[scale])\n\t"
"vsetivli zero, 4, e32, m1, ta, ma\n\t"
"vmul.vx v0, v4, %[s0]\n\t"
"vmul.vx v1, v8, %[q40]\n\t"
"vmacc.vx v0, %[s1], v5\n\t"
"vmacc.vx v1, %[q41], v9\n\t"
"vmacc.vx v0, %[s2], v6\n\t"
"vmacc.vx v1, %[q42], v10\n\t"
"vmacc.vx v0, %[s3], v7\n\t"
"vmacc.vx v1, %[q43], v11\n\t"
"vfcvt.f.x.v v0, v0\n\t"
"vfcvt.f.x.v v1, v1\n\t"
"vfmv.f.s %[ft2], v0\n\t"
"vfmv.f.s %[ftmp], v1\n\t"
"fadd.s %[ft2], %[ft2], %[ftmp]\n\t"
"fmadd.s %[sumf], %[d], %[ft2], %[sumf]"
: [ftmp] "=&f" (ftmp), [sumf] "+&f" (sumf), [ft2] "=&f" (ft2)
, [s0] "=&r" (s0), [s1] "=&r" (s1), [s2] "=&r" (s2), [s3] "=&r" (s3)
, [q40] "=&r" (q40), [q41] "=&r" (q41), [q42] "=&r" (q42), [q43] "=&r" (q43)
, [q80] "=&r" (q80), [q81] "=&r" (q81), [q82] "=&r" (q82), [q83] "=&r" (q83)
: [d] "f" (d), [ys] "r" (y[i].qs), [xs] "r" (x[i].qs), [scale] "r" (scales)
, [bsums] "r" (y[i].bsums), [mins] "r" (mins), [utmp] "r" (utmp)
, [s6b] "r" (&x[i]), [kmask1] "r" (kmask1), [dmin] "f" (dmin)
, [kmask2] "r" (kmask2), [kmask3] "r" (kmask3)
: "memory"
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
@@ -1314,59 +1443,6 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
);
sumf -= dmin * sumi;
const uint8_t * restrict q4 = x[i].qs;
const int8_t * restrict q8 = y[i].qs;
sumi = 0;
const uint8_t * scale = scales;
for (int j = 0; j < QK_K/128; ++j) {
int vl128 = 128, vl64 = 64, vl32 = 32;
__asm__ __volatile__(
"vsetvli zero, %[vl128], e8, m8\n\t"
"vle8.v v8, (%[q8])\n\t"
"vsetvli zero, %[vl64], e8, m4\n\t"
"vle8.v v0, (%[q4])\n\t"
"vsrl.vi v4, v0, 4\n\t"
"vand.vi v0, v0, 0xF\n\t"
"vsetvli zero, %[vl32], e8, m2\n\t"
"vwmul.vv v28, v6, v14\n\t"
"vwmul.vv v20, v4, v10\n\t"
"vwmul.vv v24, v2, v12\n\t"
"vwmul.vv v16, v0, v8\n\t"
"vsetivli zero, 4, e32, m1\n\t"
"vle8.v v2, (%[scale])\n\t"
"vmv.v.x v0, zero\n\t"
"vzext.vf4 v1, v2\n\t"
"vsetvli zero, %[vl32], e16, m4\n\t"
"vwredsum.vs v6, v24, v0\n\t"
"vwredsum.vs v7, v28, v0\n\t"
"vwredsum.vs v4, v16, v0\n\t"
"vwredsum.vs v5, v20, v0\n\t"
"vsetivli zero, 4, e32, m1\n\t"
"vslideup.vi v6, v7, 1\n\t"
"vslideup.vi v4, v5, 1\n\t"
"vslideup.vi v4, v6, 2\n\t"
"vmul.vv v8, v4, v1\n\t"
"vredsum.vs v0, v8, v0\n\t"
"vmv.x.s %[tmp], v0\n\t"
"add %[sumi], %[sumi], %[tmp]"
: [tmp] "=&r" (tmp), [sumi] "+&r" (sumi)
: [vl128] "r" (vl128), [vl64] "r" (vl64), [vl32] "r" (vl32)
, [q4] "r" (q4), [q8] "r" (q8), [scale] "r" (scale)
: "memory"
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
);
q4 += 64; q8 += 128; scale += 4;
}
sumf += d * sumi;
}
break;
default:
@@ -1693,6 +1769,8 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
case 128:
for (int i = 0; i < nb; ++i) {
__builtin_prefetch(&x[i + 1].d, 0, 1);
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint8_t * restrict q6 = x[i].ql;
@@ -1701,23 +1779,59 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
const int8_t * restrict scale = x[i].scales;
int sum_t = 0;
int t0;
int q6h;
float ftmp;
for (int j = 0; j < QK_K/128; ++j) {
__asm__ __volatile__(
"addi %[q6h], %[q6], 32\n\t"
"ld t0, 0(%[scale])\n\t"
"addi %[scale], %[scale], 8\n\t"
"slli t6, t0, 1 * 8\n\t"
"lb zero, 0(%[q6])\n\t"
"slli t5, t0, 2 * 8\n\t"
"slli t4, t0, 3 * 8\n\t"
"lb zero, 0(%[q6h])\n\t"
"slli t3, t0, 4 * 8\n\t"
"slli t2, t0, 5 * 8\n\t"
"lb zero, 0(%[qh])\n\t"
"lb zero, 31(%[q6h])\n\t"
"slli t1, t0, 6 * 8\n\t"
"srai a7, t0, 56\n\t"
"vsetvli zero, %[vl32], e8, m2\n\t"
"vle8.v v8, (%[q6])\n\t"
"srai t6, t6, 56\n\t"
"srai t5, t5, 56\n\t"
"srai t4, t4, 56\n\t"
"srai t3, t3, 56\n\t"
"vle8.v v10, (%[q6h])\n\t"
"addi %[q6], %[q6], 64\n\t"
"slli t0, t0, 7 * 8\n\t"
"srai t2, t2, 56\n\t"
"srai t1, t1, 56\n\t"
"srai t0, t0, 56\n\t"
"vle8.v v4, (%[qh])\n\t"
"vsrl.vi v12, v8, 4\n\t"
"vsrl.vi v14, v10, 4\n\t"
"lb zero, 0(%[q8])\n\t"
"vand.vi v8, v8, 0xF\n\t"
"vand.vi v10, v10, 0xF\n\t"
"lb zero, 32(%[q8])\n\t"
"vsll.vi v0, v4, 4\n\t"
"vsll.vi v2, v4, 2\n\t"
"lb zero, 64(%[q8])\n\t"
"vsrl.vi v6, v4, 2\n\t"
"vsetvli zero, %[vl64], e8, m4\n\t"
"vle8.v v8, (%[q6])\n\t"
"vsrl.vi v12, v8, 4\n\t"
"vand.vi v8, v8, 0xF\n\t"
"vsetvli zero, %[vl128], e8, m8\n\t"
"vand.vx v0, v0, %[mask]\n\t"
"lb zero, 96(%[q8])\n\t"
"vand.vx v2, v2, %[mask]\n\t"
"vand.vx v4, v4, %[mask]\n\t"
"vand.vx v6, v6, %[mask]\n\t"
"vor.vv v8, v8, v0\n\t"
"lb zero, 127(%[q8])\n\t"
"vor.vv v10, v10, v2\n\t"
"vor.vv v12, v12, v4\n\t"
"vor.vv v14, v14, v6\n\t"
"vsetvli zero, %[vl128], e8, m8\n\t"
"vle8.v v0, (%[q8])\n\t"
"vsub.vx v8, v8, %[vl32]\n\t"
"vsetvli zero, %[vl64], e8, m4\n\t"
@@ -1734,34 +1848,34 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
"vwredsum.vs v13, v28, v0\n\t"
"vwredsum.vs v14, v30, v0\n\t"
"vsetivli zero, 4, e32, m1\n\t"
"vslideup.vi v10, v9, 1\n\t"
"vslideup.vi v8, v7, 1\n\t"
"vslideup.vi v11, v12, 1\n\t"
"vslideup.vi v13, v14, 1\n\t"
"vslideup.vi v10, v8, 2\n\t"
"vslideup.vi v11, v13, 2\n\t"
"vsetivli zero, 8, e32, m2\n\t"
"vle8.v v2, (%[scale])\n\t"
"vsext.vf4 v4, v2\n\t"
"vmul.vv v2, v4, v10\n\t"
"vredsum.vs v0, v2, v0\n\t"
"vmv.x.s %[t0], v0\n\t"
"add %[sumi], %[sumi], %[t0]"
: [sumi] "+&r" (sum_t), [t0] "=&r" (t0)
: [qh] "r" (qh), [q6] "r" (q6), [q8] "r" (q8), [scale] "r" (scale)
"vmul.vx v0, v10, t0\n\t"
"vmul.vx v1, v9, t1\n\t"
"vmacc.vx v0, t2, v8\n\t"
"vmacc.vx v1, t3, v7\n\t"
"vmacc.vx v0, t4, v11\n\t"
"vmacc.vx v1, t5, v12\n\t"
"vmacc.vx v0, t6, v13\n\t"
"vmacc.vx v1, a7, v14\n\t"
"vadd.vv v0, v0, v1\n\t"
"vfcvt.f.x.v v0, v0\n\t"
"vfmv.f.s %[ftmp], v0\n\t"
"fmadd.s %[sumf], %[d], %[ftmp], %[sumf]"
: [q6] "+&r" (q6), [q6h] "=&r" (q6h)
, [scale] "+&r" (scale)
, [sumf] "+&f" (sumf), [ftmp] "=&f" (ftmp)
: [qh] "r" (qh), [q8] "r" (q8)
, [vl32] "r" (32), [vl64] "r" (64), [vl128] "r" (128)
, [mask] "r" (0x30)
, [mask] "r" (0x30), [d] "f" (d)
: "memory"
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
, "t0", "t1", "t2", "t3", "t4", "t5", "t6", "a7"
, "a6", "a5", "a4", "a3"
);
q6 += 64; qh += 32; q8 += 128; scale += 8;
qh += 32; q8 += 128;
}
sumf += d * sum_t;
}
break;
default:

View File

@@ -23,6 +23,27 @@
#define UNUSED GGML_UNUSED
#if defined(__VXE__) || defined(__VXE2__)
#define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
#define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
#define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
#define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
#define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
#define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
#define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
#define B8(c,s ) B7(c,s, c), B7(c,s, s)
// precomputed tables for expanding 8bits to 8 bytes:
static const __attribute__((aligned(16))) uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b ) << 4
static const __attribute__((aligned(16))) uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
// permute mask for byteswapping
static const uint8x16_t v_kperm = (const uint8x16_t){
7, 6, 5, 4, 3, 2, 1, 0,
15, 14, 13, 12, 11, 10, 9, 8
};
#endif
void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
assert(QK8_0 == 32);
assert(k % QK8_0 == 0);
@@ -32,9 +53,9 @@ void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
#if defined(__VXE__) || defined(__VXE2__)
for (int i = 0; i < nb; i++) {
__vector float srcv [8];
__vector float asrcv[8];
__vector float amaxv[8];
float32x4_t srcv [8];
float32x4_t asrcv[8];
float32x4_t amaxv[8];
for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
@@ -53,8 +74,8 @@ void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
y[i].d = GGML_CPU_FP32_TO_FP16(d);
for (int j = 0; j < 8; j++) {
const __vector float v = vec_mul(srcv[j], vec_splats(id));
const __vector int32_t vi = vec_signed(v);
const float32x4_t v = vec_mul(srcv[j], vec_splats(id));
const int32x4_t vi = vec_signed(v);
y[i].qs[4*j + 0] = vec_extract(vi, 0);
y[i].qs[4*j + 1] = vec_extract(vi, 1);
@@ -77,9 +98,9 @@ void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
#if defined(__VXE__) || defined(__VXE2__)
for (int i = 0; i < nb; i++) {
__vector float srcv [8];
__vector float asrcv[8];
__vector float amaxv[8];
float32x4_t srcv [8];
float32x4_t asrcv[8];
float32x4_t amaxv[8];
for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
@@ -97,11 +118,11 @@ void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
y[i].d = GGML_CPU_FP32_TO_FP16(d);
__vector int32_t acc = vec_splats(0);
int32x4_t acc = vec_splats(0);
for (int j = 0; j < 8; j++) {
const __vector float v = vec_mul(srcv[j], vec_splats(id));
const __vector int32_t vi = vec_signed(v);
const float32x4_t v = vec_mul(srcv[j], vec_splats(id));
const int32x4_t vi = vec_signed(v);
y[i].qs[4*j + 0] = vec_extract(vi, 0);
y[i].qs[4*j + 1] = vec_extract(vi, 1);
@@ -141,37 +162,36 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
float sumf = 0;
#if defined(__VXE__) || defined(__VXE2__)
__vector float acc = vec_splats(0.0f);
float32x4_t acc = vec_splats(0.0f);
const __vector uint8_t v_m = vec_splats((const uint8_t)0x0F);
const __vector int8_t v_s = vec_splats( (const int8_t)0x08);
const uint8x16_t v_m = vec_splats((const uint8_t)0x0F);
const int8x16_t v_s = vec_splats( (const int8_t)0x08);
for (; ib < nb; ++ib) {
const __vector uint8_t v_x = vec_xl(0, x[ib].qs);
const __vector int8_t v_xl = (const __vector int8_t)(v_x & v_m);
const __vector int8_t v_xh = (const __vector int8_t)(v_x >> 4);
const uint8x16_t v_x = vec_xl(0, x[ib].qs);
const int8x16_t v_xl = (const int8x16_t)(v_x & v_m);
const int8x16_t v_xh = (const int8x16_t)(v_x >> 4);
const __vector int8_t v_xls = vec_sub(v_xl, v_s);
const __vector int8_t v_xhs = vec_sub(v_xh, v_s);
const int8x16_t v_xls = vec_sub(v_xl, v_s);
const int8x16_t v_xhs = vec_sub(v_xh, v_s);
const __vector int8_t v_yl = vec_xl(0 , y[ib].qs);
const __vector int8_t v_yh = vec_xl(QK8_0/2, y[ib].qs);
const int8x16_t v_yl = vec_xl(0 , y[ib].qs);
const int8x16_t v_yh = vec_xl(QK8_0/2, y[ib].qs);
const __vector int16_t v_xylso = vec_mulo(v_xls, v_yl);
const __vector int16_t v_xylse = vec_mule(v_xls, v_yl);
const __vector int16_t v_xyhso = vec_mulo(v_xhs, v_yh);
const __vector int16_t v_xyhse = vec_mule(v_xhs, v_yh);
const int16x8_t v_xylso = vec_mulo(v_xls, v_yl);
const int16x8_t v_xylse = vec_mule(v_xls, v_yl);
const int16x8_t v_xyhso = vec_mulo(v_xhs, v_yh);
const int16x8_t v_xyhse = vec_mule(v_xhs, v_yh);
__vector int16_t v_xy_ = v_xylso + v_xylse + v_xyhso + v_xyhse; v_xy_ += vec_reve(v_xy_);
int16x8_t v_xy_ = v_xylso + v_xylse + v_xyhso + v_xyhse; v_xy_ += vec_reve(v_xy_);
const __vector float v_xy = vec_float(vec_unpackh(v_xy_));
const __vector float v_d = vec_splats(GGML_CPU_FP16_TO_FP32(x[ib].d) * GGML_CPU_FP16_TO_FP32(y[ib].d));
const float32x4_t v_xy = vec_float(vec_unpackh(v_xy_));
const float32x4_t v_d = vec_splats(GGML_CPU_FP16_TO_FP32(x[ib].d) * GGML_CPU_FP16_TO_FP32(y[ib].d));
acc = vec_madd(v_xy, v_d, acc);
}
sumf = acc[0] + acc[1] + acc[2] + acc[3];
sumf = vec_hsum_f32x4(acc);
*s = sumf;
#else
UNUSED(nb);
@@ -228,8 +248,7 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
acc = vec_madd(v_xy, v_d, acc);
}
sumf = acc[0] + acc[1] + acc[2] + acc[3] + summs;
sumf = vec_hsum_f32x4(acc) + summs;
*s = sumf;
#else
UNUSED(nb);
@@ -241,6 +260,301 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
#endif
}
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
const int qk = QK8_0;
const int nb = n / qk;
assert(n % qk == 0);
assert(qk == QK5_0);
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
const block_q5_0 * GGML_RESTRICT x = vx;
const block_q8_0 * GGML_RESTRICT y = vy;
int ib = 0;
float sumf = 0.0f;
#if defined(__VXE__) || defined(__VXE2__)
float32x4_t v_sum0 = vec_splats(0.0f);
float32x4_t v_sum1 = vec_splats(0.0f);
uint32_t qh0, qh1;
uint64_t tmp0[4], tmp1[4];
const uint8x16_t v_m = vec_splats((uint8_t)0x0F);
#pragma GCC unroll 4
for (; ib + 1 < nb; ib += 2) {
const block_q5_0 * GGML_RESTRICT x0 = &x[ib + 0];
const block_q5_0 * GGML_RESTRICT x1 = &x[ib + 1];
const block_q8_0 * GGML_RESTRICT y0 = &y[ib + 0];
const block_q8_0 * GGML_RESTRICT y1 = &y[ib + 1];
memcpy(&qh0, x0->qh, sizeof(qh0));
memcpy(&qh1, x1->qh, sizeof(qh1));
tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
tmp0[3] = table_b2b_1[(qh0 >> 24) ];
tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
tmp1[3] = table_b2b_1[(qh1 >> 24) ];
int8x16_t v_qh0l = vec_xl(0, (const int8_t *)(tmp0 + 0));
int8x16_t v_qh0h = vec_xl(0, (const int8_t *)(tmp0 + 2));
int8x16_t v_qh1l = vec_xl(0, (const int8_t *)(tmp1 + 0));
int8x16_t v_qh1h = vec_xl(0, (const int8_t *)(tmp1 + 2));
// required for fixing the byteorder
v_qh0l = vec_perm(v_qh0l, v_qh0l, v_kperm);
v_qh0h = vec_perm(v_qh0h, v_qh0h, v_kperm);
v_qh1l = vec_perm(v_qh1l, v_qh1l, v_kperm);
v_qh1h = vec_perm(v_qh1h, v_qh1h, v_kperm);
const uint8x16_t v_x0 = vec_xl(0, (const uint8_t *)x0->qs);
const uint8x16_t v_x1 = vec_xl(0, (const uint8_t *)x1->qs);
int8x16_t v_x0l = (int8x16_t)vec_and(v_x0, v_m);
int8x16_t v_x0h = (int8x16_t)vec_sr(v_x0, 4);
int8x16_t v_x1l = (int8x16_t)vec_and(v_x1, v_m);
int8x16_t v_x1h = (int8x16_t)vec_sr(v_x1, 4);
const int8x16_t v_x0lf = vec_sub(v_x0l, v_qh0l);
const int8x16_t v_x0hf = vec_sub(v_x0h, v_qh0h);
const int8x16_t v_x1lf = vec_sub(v_x1l, v_qh1l);
const int8x16_t v_x1hf = vec_sub(v_x1h, v_qh1h);
const int8x16_t v_y0l = vec_xl(0, (const int8_t *)y0->qs);
const int8x16_t v_y0h = vec_xl(QK8_0/2, (const int8_t *)y0->qs);
const int8x16_t v_y1l = vec_xl(0, (const int8_t *)y1->qs);
const int8x16_t v_y1h = vec_xl(QK8_0/2, (const int8_t *)y1->qs);
const int32x4_t v_xy0 = ggml_vec_dot(ggml_vec_dot(vec_splats(0), v_x0lf, v_y0l), v_x0hf, v_y0h);
const int32x4_t v_xy1 = ggml_vec_dot(ggml_vec_dot(vec_splats(0), v_x1lf, v_y1l), v_x1hf, v_y1h);
const float32x4_t v_xy0f = vec_float(v_xy0);
const float32x4_t v_xy1f = vec_float(v_xy1);
const float32x4_t v_d0 = vec_splats(GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d));
const float32x4_t v_d1 = vec_splats(GGML_CPU_FP16_TO_FP32(x1->d) * GGML_CPU_FP16_TO_FP32(y1->d));
v_sum0 = vec_madd(v_xy0f, v_d0, v_sum0);
v_sum1 = vec_madd(v_xy1f, v_d1, v_sum1);
}
sumf += vec_hsum_f32x4(v_sum0) + vec_hsum_f32x4(v_sum1);
#pragma GCC unroll 4
for (; ib < nb; ++ib) {
const block_q5_0 * GGML_RESTRICT x0 = &x[ib];
const block_q8_0 * GGML_RESTRICT y0 = &y[ib];
uint32_t qh;
memcpy(&qh, x0->qh, sizeof(qh));
uint64_t tmp[4];
tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
tmp[3] = table_b2b_1[(qh >> 24) ];
int8x16_t v_qhl = vec_xl(0, (const int8_t *)(tmp + 0));
int8x16_t v_qhh = vec_xl(0, (const int8_t *)(tmp + 2));
// required for fixing the byteorder
v_qhl = vec_perm(v_qhl, v_qhl, v_kperm);
v_qhh = vec_perm(v_qhh, v_qhh, v_kperm);
const uint8x16_t v_x = vec_xl(0, (const uint8_t *)x0->qs);
int8x16_t v_xl = (int8x16_t)vec_and(v_x, v_m);
int8x16_t v_xh = (int8x16_t)vec_sr(v_x, 4);
const int8x16_t v_xlf = vec_sub(v_xl, v_qhl);
const int8x16_t v_xhf = vec_sub(v_xh, v_qhh);
const int8x16_t v_yl = vec_xl(0, (const int8_t *)y0->qs);
const int8x16_t v_yh = vec_xl(QK8_0/2, (const int8_t *)y0->qs);
const int32x4_t v_xy = ggml_vec_dot(ggml_vec_dot(vec_splats(0), v_xlf, v_yl), v_xhf, v_yh);
const float32x4_t v_xyf = vec_float(v_xy);
const float32x4_t v_d = vec_splats(GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d));
const float32x4_t v_acc = vec_madd(v_xyf, v_d, vec_splats(0.0f));
sumf += vec_hsum_f32x4(v_acc);
}
*s = sumf;
#else
UNUSED(nb);
UNUSED(x);
UNUSED(y);
UNUSED(ib);
UNUSED(sumf);
ggml_vec_dot_q5_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
const int qk = QK8_1;
const int nb = n / qk;
assert(n % qk == 0);
assert(qk == QK5_1);
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
const block_q5_1 * GGML_RESTRICT x = vx;
const block_q8_1 * GGML_RESTRICT y = vy;
int ib = 0;
float sumf = 0.0f;
#if defined(__VXE__) || defined(__VXE2__)
float32x4_t v_sum0 = vec_splats(0.0f);
float32x4_t v_sum1 = vec_splats(0.0f);
float summs0 = 0.0f;
float summs1 = 0.0f;
uint32_t qh0;
uint32_t qh1;
uint64_t tmp0[4];
uint64_t tmp1[4];
const uint8x16_t v_m = vec_splats((uint8_t)0x0F);
#pragma GCC unroll 4
for (; ib + 1 < nb; ib += 2) {
const block_q5_1 * GGML_RESTRICT x0 = &x[ib + 0];
const block_q5_1 * GGML_RESTRICT x1 = &x[ib + 1];
const block_q8_1 * GGML_RESTRICT y0 = &y[ib + 0];
const block_q8_1 * GGML_RESTRICT y1 = &y[ib + 1];
summs0 += GGML_CPU_FP16_TO_FP32(x0->m) * GGML_CPU_FP16_TO_FP32(y0->s);
summs1 += GGML_CPU_FP16_TO_FP32(x1->m) * GGML_CPU_FP16_TO_FP32(y1->s);
memcpy(&qh0, x0->qh, sizeof(qh0));
memcpy(&qh1, x1->qh, sizeof(qh1));
tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
tmp0[3] = table_b2b_0[(qh0 >> 24) ];
tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
tmp1[3] = table_b2b_0[(qh1 >> 24) ];
int8x16_t v_qh0l = vec_xl(0, (const int8_t *)(tmp0 + 0));
int8x16_t v_qh0h = vec_xl(0, (const int8_t *)(tmp0 + 2));
int8x16_t v_qh1l = vec_xl(0, (const int8_t *)(tmp1 + 0));
int8x16_t v_qh1h = vec_xl(0, (const int8_t *)(tmp1 + 2));
// required for fixing the byteorder
v_qh0l = vec_perm(v_qh0l, v_qh0l, v_kperm);
v_qh0h = vec_perm(v_qh0h, v_qh0h, v_kperm);
v_qh1l = vec_perm(v_qh1l, v_qh1l, v_kperm);
v_qh1h = vec_perm(v_qh1h, v_qh1h, v_kperm);
const uint8x16_t v_x0 = vec_xl(0, x0->qs);
const uint8x16_t v_x1 = vec_xl(0, x1->qs);
const int8x16_t v_x0l = (int8x16_t)vec_and(v_x0, v_m);
const int8x16_t v_x0h = (int8x16_t)vec_sr(v_x0, 4);
const int8x16_t v_x1l = (int8x16_t)vec_and(v_x1, v_m);
const int8x16_t v_x1h = (int8x16_t)vec_sr(v_x1, 4);
const int8x16_t v_x0lf = vec_or(v_x0l, v_qh0l);
const int8x16_t v_x0hf = vec_or(v_x0h, v_qh0h);
const int8x16_t v_x1lf = vec_or(v_x1l, v_qh1l);
const int8x16_t v_x1hf = vec_or(v_x1h, v_qh1h);
const int8x16_t v_y0l = vec_xl(0 , y0->qs);
const int8x16_t v_y0h = vec_xl(QK8_1/2, y0->qs);
const int8x16_t v_y1l = vec_xl(0 , y1->qs);
const int8x16_t v_y1h = vec_xl(QK8_1/2, y1->qs);
const int32x4_t v_xy0 = ggml_vec_dot(ggml_vec_dot(vec_splats(0), v_x0lf, v_y0l), v_x0hf, v_y0h);
const int32x4_t v_xy1 = ggml_vec_dot(ggml_vec_dot(vec_splats(0), v_x1lf, v_y1l), v_x1hf, v_y1h);
const float32x4_t v_xy0f = vec_float(v_xy0);
const float32x4_t v_xy1f = vec_float(v_xy1);
const float32x4_t v_d0 = vec_splats(GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d));
const float32x4_t v_d1 = vec_splats(GGML_CPU_FP16_TO_FP32(x1->d) * GGML_CPU_FP16_TO_FP32(y1->d));
v_sum0 = vec_madd(v_xy0f, v_d0, v_sum0);
v_sum1 = vec_madd(v_xy1f, v_d1, v_sum1);
}
sumf += vec_hsum_f32x4(v_sum0) + vec_hsum_f32x4(v_sum1) + summs0 + summs1;
#pragma GCC unroll 4
for (; ib < nb; ++ib) {
const block_q5_1 * GGML_RESTRICT x0 = &x[ib];
const block_q8_1 * GGML_RESTRICT y0 = &y[ib];
float summs = GGML_CPU_FP16_TO_FP32(x0->m) * GGML_CPU_FP16_TO_FP32(y0->s);
uint32_t qh;
memcpy(&qh, x0->qh, sizeof(qh));
uint64_t tmp[4];
tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
tmp[3] = table_b2b_0[(qh >> 24) ];
int8x16_t v_qhl = vec_xl(0, (const int8_t *)(tmp + 0));
int8x16_t v_qhh = vec_xl(0, (const int8_t *)(tmp + 2));
// required for fixing the byteorder
v_qhl = vec_perm(v_qhl, v_qhl, v_kperm);
v_qhh = vec_perm(v_qhh, v_qhh, v_kperm);
const uint8x16_t v_x = vec_xl(0, x0->qs);
const int8x16_t v_xl = (int8x16_t)vec_and(v_x, v_m);
const int8x16_t v_xh = (int8x16_t)vec_sr(v_x, 4);
const int8x16_t v_xlf = vec_or(v_xl, v_qhl);
const int8x16_t v_xhf = vec_or(v_xh, v_qhh);
const int8x16_t v_yl = vec_xl(0 , y0->qs);
const int8x16_t v_yh = vec_xl(QK8_1/2, y0->qs);
const int32x4_t v_xy = ggml_vec_dot(ggml_vec_dot(vec_splats(0), v_xlf, v_yl), v_xhf, v_yh);
const float32x4_t v_xyf = vec_float(v_xy);
const float32x4_t v_d = vec_splats(GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d));
const float32x4_t v_acc = vec_madd(v_xyf, v_d, v_acc);
sumf += vec_hsum_f32x4(v_acc) + summs;
}
*s = sumf;
#else
UNUSED(nb);
UNUSED(x);
UNUSED(y);
UNUSED(ib);
UNUSED(sumf);
ggml_vec_dot_q5_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
const int qk = QK8_0;
const int nb = n / qk;
@@ -259,7 +573,7 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
float sumf = 0;
#if defined(__VXE__) || defined(__VXE2__)
__vector float acc = vec_splats(0.0f);
float32x4_t acc = vec_splats(0.0f);
#pragma GCC unroll 8
for (; ib < nb; ++ib) {
@@ -278,7 +592,7 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
acc = vec_madd(v_xy, v_d, acc);
}
sumf = acc[0] + acc[1] + acc[2] + acc[3];
sumf = vec_hsum_f32x4(acc);
*s = sumf;
#else
@@ -402,10 +716,10 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
isum2 = ggml_vec_dot(v_z, q3bytes[2], q8bytes[6]);
isum3 = ggml_vec_dot(v_z, q3bytes[3], q8bytes[7]);
isum += (isum0[0] + isum0[1] + isum0[2] + isum0[3]) * scale[0];
isum += (isum1[0] + isum1[1] + isum1[2] + isum1[3]) * scale[1];
isum += (isum2[0] + isum2[1] + isum2[2] + isum2[3]) * scale[2];
isum += (isum3[0] + isum3[1] + isum3[2] + isum3[3]) * scale[3];
isum += vec_hsum_i32x4(isum0) * scale[0];
isum += vec_hsum_i32x4(isum1) * scale[1];
isum += vec_hsum_i32x4(isum2) * scale[2];
isum += vec_hsum_i32x4(isum3) * scale[3];
scale += 4;
@@ -503,7 +817,7 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
v_xl[1] = (int8x16_t)vec_and(v_x[1], v_lm);
const int32x4_t p1 = ggml_vec_dot(ggml_vec_dot(v_z, v_xl[0], v_y[0]), v_xl[1], v_y[1]);
sumi1 += (p1[0] + p1[1] + p1[2] + p1[3]) * scales[2*j+0];
sumi1 += vec_hsum_i32x4(p1) * scales[2*j+0];
v_y[0] = vec_xl(0 , y0);
v_y[1] = vec_xl(16, y0);
@@ -513,7 +827,7 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
v_xl[1] = (int8x16_t)vec_sr(v_x[1], 4);
const int32x4_t p2 = ggml_vec_dot(ggml_vec_dot(v_z, v_xl[0], v_y[0]), v_xl[1], v_y[1]);
sumi2 += (p2[0] + p2[1] + p2[2] + p2[3]) * scales[2*j+1];
sumi2 += vec_hsum_i32x4(p2) * scales[2*j+1];
}
sumf += d * (sumi1 + sumi2);
@@ -595,7 +909,7 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
const int32x4_t v_minsho = vec_mulo(v_ysums, v_minsh);
const int32x4_t v_minshe = vec_mule(v_ysums, v_minsh);
const int32x4_t v_mins = vec_add(v_minsho, v_minshe);
const int32_t mins = v_mins[0] + v_mins[1] + v_mins[2] + v_mins[3];
const int32_t mins = vec_hsum_i32x4(v_mins);
const uint8_t * scales = (const uint8_t *)utmp;
const uint8_t * GGML_RESTRICT x0l = x[i].qs;
@@ -632,8 +946,8 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
int32x4_t sumi0 = ggml_vec_dot(ggml_vec_dot(v_z, q5b[0], v_y[0]), q5b[1], v_y[1]);
int32x4_t sumi1 = ggml_vec_dot(ggml_vec_dot(v_z, q5b[2], v_y[2]), q5b[3], v_y[3]);
sumi += (sumi0[0] + sumi0[1] + sumi0[2] + sumi0[3]) * *scales++;
sumi += (sumi1[0] + sumi1[1] + sumi1[2] + sumi1[3]) * *scales++;
sumi += vec_hsum_i32x4(sumi0) * *scales++;
sumi += vec_hsum_i32x4(sumi1) * *scales++;
}
sumf += d * sumi - dmin * mins;
@@ -704,7 +1018,7 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
const int32x4_t v_minshe = vec_mule(v_ysumsh, v_scaleh);
const int32x4_t v_mins = v_minslo + v_minsle + v_minsho + v_minshe;
const int32_t mins = v_mins[0] + v_mins[1] + v_mins[2] + v_mins[3];
const int32_t mins = vec_hsum_i32x4(v_mins);
int32_t isum = 0;
for (int j = 0; j < QK_K/128; ++j) {
@@ -744,10 +1058,10 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
int32x4_t summs2 = ggml_vec_dot(v_z, q6b[2], v_y[2]);
int32x4_t summs3 = ggml_vec_dot(v_z, q6b[3], v_y[3]);
isum += (summs0[0] + summs0[1] + summs0[2] + summs0[3]) * scale[0] +
(summs1[0] + summs1[1] + summs1[2] + summs1[3]) * scale[1] +
(summs2[0] + summs2[1] + summs2[2] + summs2[3]) * scale[2] +
(summs3[0] + summs3[1] + summs3[2] + summs3[3]) * scale[3];
isum += vec_hsum_i32x4(summs0) * scale[0] +
vec_hsum_i32x4(summs1) * scale[1] +
vec_hsum_i32x4(summs2) * scale[2] +
vec_hsum_i32x4(summs3) * scale[3];
scale += 4;
@@ -778,10 +1092,10 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
summs2 = ggml_vec_dot(v_z, q6b[2], v_y[2]);
summs3 = ggml_vec_dot(v_z, q6b[3], v_y[3]);
isum += (summs0[0] + summs0[1] + summs0[2] + summs0[3]) * scale[0] +
(summs1[0] + summs1[1] + summs1[2] + summs1[3]) * scale[1] +
(summs2[0] + summs2[1] + summs2[2] + summs2[3]) * scale[2] +
(summs3[0] + summs3[1] + summs3[2] + summs3[3]) * scale[3];
isum += vec_hsum_i32x4(summs0) * scale[0] +
vec_hsum_i32x4(summs1) * scale[1] +
vec_hsum_i32x4(summs2) * scale[2] +
vec_hsum_i32x4(summs3) * scale[3];
scale += 4;
}
@@ -969,7 +1283,7 @@ void ggml_vec_dot_iq4_nl_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const v
const int8x16_t v_yh = vec_xl(QK8_0/2, y0->qs);
const int32x4_t v_xy = ggml_vec_dot(ggml_vec_dot(vec_splats(0), v_xl, v_yl), v_xh, v_yh);
sumf += GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d) * (v_xy[0] + v_xy[1] + v_xy[2] + v_xy[3]);
sumf += GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d) * vec_hsum_i32x4(v_xy);
}
*s = sumf;
@@ -1038,8 +1352,8 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
h >>= 4;
sumi1 += (vsumi0[0] + vsumi0[1] + vsumi0[2] + vsumi0[3]) * ls1;
sumi2 += (vsumi1[0] + vsumi1[1] + vsumi1[2] + vsumi1[3]) * ls2;
sumi1 += vec_hsum_i32x4(vsumi0) * ls1;
sumi2 += vec_hsum_i32x4(vsumi1) * ls2;
}
sumf += GGML_CPU_FP16_TO_FP32(x[ibl].d) * y[ibl].d * (sumi1 + sumi2);

View File

@@ -68,12 +68,6 @@ struct ggml_compute_params {
#endif // __VXE2__
#endif // __s390x__ && __VEC__
#if defined(__s390x__) && defined(GGML_NNPA)
#ifndef __NNPA__
#define __NNPA__
#endif // __NNPA__
#endif // __s390x__ && GGML_NNPA
#if defined(__ARM_FEATURE_SVE)
#include <sys/prctl.h>
#endif
@@ -486,6 +480,19 @@ inline static int16x8_t vec_padd_s16(int16x8_t a, int16x8_t b) {
return v_abo + v_abe;
}
/**
* @see https://github.com/ggml-org/llama.cpp/pull/14037
*/
inline static float vec_hsum_f32x4(float32x4_t v) {
float32x4_t v_temp = v + vec_reve(v);
return v_temp[0] + v_temp[1];
}
inline static int32_t vec_hsum_i32x4(int32x4_t v) {
int32x4_t v_temp = v + vec_reve(v);
return v_temp[0] + v_temp[1];
}
inline static int32x4_t ggml_vec_dot(int32x4_t acc, int8x16_t a, int8x16_t b) {
const int16x8_t p = vec_mule(a, b) + vec_mulo(a, b);
return acc + (vec_unpackh(p) + vec_unpackl(p));

View File

@@ -373,6 +373,9 @@ static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
.vec_dot_type = GGML_TYPE_Q8_K,
.nrows = 1,
},
[GGML_TYPE_I32] = {
.from_float = (ggml_from_float_t) ggml_cpu_fp32_to_i32,
},
};
const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type) {
@@ -1876,10 +1879,18 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_im2col_back_f32(params, tensor);
} break;
case GGML_OP_IM2COL_3D:
{
ggml_compute_forward_im2col_3d(params, tensor);
} break;
case GGML_OP_CONV_2D:
{
ggml_compute_forward_conv_2d(params, tensor);
} break;
case GGML_OP_CONV_3D:
{
ggml_compute_forward_conv_3d(params, tensor);
} break;
case GGML_OP_CONV_2D_DW:
{
ggml_compute_forward_conv_2d_dw(params, tensor);
@@ -2251,7 +2262,9 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
} break;
case GGML_OP_IM2COL:
case GGML_OP_IM2COL_BACK:
case GGML_OP_IM2COL_3D:
case GGML_OP_CONV_2D:
case GGML_OP_CONV_3D:
case GGML_OP_CONV_2D_DW:
case GGML_OP_CONV_TRANSPOSE_1D:
case GGML_OP_CONV_TRANSPOSE_2D:
@@ -2686,7 +2699,10 @@ struct ggml_cplan ggml_graph_plan(
if (ggml_is_quantized(node->type) ||
// F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
(node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
(node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
(node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16) ||
// conversion between F32 and I32
(node->src[0]->type == GGML_TYPE_F32 && node->src[1] && node->src[1]->type == GGML_TYPE_I32) ||
(node->src[0]->type == GGML_TYPE_I32 && node->src[1] && node->src[1]->type == GGML_TYPE_F32)) {
cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
}
} break;
@@ -2773,6 +2789,7 @@ struct ggml_cplan ggml_graph_plan(
}
} break;
case GGML_OP_CONV_2D:
case GGML_OP_CONV_3D:
{
cur = GGML_IM2COL_WORK_SIZE;
} break;
@@ -3200,20 +3217,12 @@ void ggml_cpu_fp32_to_fp16(const float * x, ggml_fp16_t * y, int64_t n) {
__m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
_mm_storel_epi64((__m128i *)(y + i), y_vec);
}
#elif defined(__NNPA__)
for (; i + 7 < n; i += 8) {
float32x4_t v_xh = vec_xl(0, (const float *)(x + i + 0));
float32x4_t v_xl = vec_xl(0, (const float *)(x + i + 4));
uint16x8_t v_yd = vec_round_from_fp32(v_xh, v_xl, 0);
uint16x8_t v_y = vec_convert_to_fp16(v_yd, 0);
vec_xst(v_y, 0, (ggml_fp16_t *)(y + i));
}
for (; i + 3 < n; i += 4) {
float32x4_t v_x = vec_xl(0, (const float *)(x + i));
float32x4_t v_zero = vec_splats(0.0f);
uint16x8_t v_yd = vec_round_from_fp32(v_x, v_zero, 0);
uint16x8_t v_y = vec_convert_to_fp16(v_yd, 0);
vec_xst(v_y, 0, (ggml_fp16_t *)(y + i));
#elif defined(__riscv_zvfh)
for (int vl; i < n; i += vl) {
vl = __riscv_vsetvl_e32m2(n - i);
vfloat32m2_t vx = __riscv_vle32_v_f32m2(&x[i], vl);
vfloat16m1_t vy = __riscv_vfncvt_f_f_w_f16m1(vx, vl);
__riscv_vse16_v_f16m1((_Float16 *)&y[i], vy, vl);
}
#endif
for (; i < n; ++i) {
@@ -3241,21 +3250,6 @@ void ggml_cpu_fp16_to_fp32(const ggml_fp16_t * x, float * y, int64_t n) {
__m128 y_vec = _mm_cvtph_ps(x_vec);
_mm_storeu_ps(y + i, y_vec);
}
#elif defined(__NNPA__)
for (; i + 7 < n; i += 8) {
uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)(x + i));
uint16x8_t v_yd = vec_convert_from_fp16(v_x, 0);
float32x4_t v_yh = vec_extend_to_fp32_hi(v_yd, 0);
float32x4_t v_yl = vec_extend_to_fp32_lo(v_yd, 0);
vec_xst(v_yh, 0, (float *)(y + i + 0));
vec_xst(v_yl, 0, (float *)(y + i + 4));
}
for (; i + 3 < n; i += 4) {
uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)(x + i));
uint16x8_t v_yd = vec_convert_from_fp16(v_x, 0);
float32x4_t v_yh = vec_extend_to_fp32_hi(v_yd, 0);
vec_xst(v_yh, 0, (float *)(y + i));
}
#endif
for (; i < n; ++i) {
@@ -3270,6 +3264,13 @@ void ggml_cpu_fp32_to_bf16(const float * x, ggml_bf16_t * y, int64_t n) {
}
}
void ggml_cpu_fp32_to_i32(const float * x, int32_t * y, int64_t n) {
int64_t i = 0;
for (; i < n; ++i) {
y[i] = x[i];
}
}
void ggml_cpu_bf16_to_fp32(const ggml_bf16_t * x, float * y, int64_t n) {
int64_t i = 0;
#if defined(__AVX2__)
@@ -3459,14 +3460,6 @@ int ggml_cpu_has_vxe(void) {
#endif
}
int ggml_cpu_has_nnpa(void) {
#if defined(GGML_NNPA)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_neon(void) {
#if defined(__ARM_ARCH) && defined(__ARM_NEON)
return 1;

View File

@@ -190,6 +190,7 @@ static const struct ggml_backend_i ggml_backend_cpu_i = {
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
/* .optimize_graph = */ NULL,
};
static ggml_guid_t ggml_backend_cpu_guid(void) {
@@ -348,8 +349,10 @@ static void ggml_backend_cpu_device_get_memory(ggml_backend_dev_t dev, size_t *
long pages = sysconf(_SC_PHYS_PAGES);
long page_size = sysconf(_SC_PAGE_SIZE);
*total = pages * page_size;
// "free" system memory is ill-defined, for practical purposes assume that all of it is free:
*free = *total;
#endif
#endif // _WIN32
GGML_UNUSED(dev);
}
@@ -576,9 +579,6 @@ static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t r
if (ggml_cpu_has_vxe()) {
features.push_back({ "VXE", "1" });
}
if (ggml_cpu_has_nnpa()) {
features.push_back({ "NNPA", "1" });
}
if (ggml_cpu_has_wasm_simd()) {
features.push_back({ "WASM_SIMD", "1" });
}

View File

@@ -14,6 +14,7 @@
#include "kai_lhs_pack_bf16p2vlx2_f32_sme.h"
#include "kai_lhs_quant_pack_qsi8d32p_f32.h"
#include "kai_lhs_quant_pack_qsi8d32p4x8sb_f32_neon.h"
#include "kai_lhs_quant_pack_qsi8d32p_f32_neon.h"
#include "kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.h"
@@ -127,6 +128,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32_neon,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32_neon,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32_neon,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32_neon,
},
/* SME GEMV */
/* .kern_info = */ {
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
@@ -141,7 +148,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
},
/* .lhs_info = */ {
/* .gemv_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32_neon,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32_neon,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32_neon,
@@ -173,6 +180,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .run_kernel = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_pack_bf16p2vlx2_f32_sme,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_pack_bf16p2vlx2_f32_sme,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_pack_bf16p2vlx2_f32_sme,
/* .pack_func = */ kai_run_lhs_pack_bf16p2vlx2_f32_sme,
},
/* SME GEMV */
/* .kern_info = */ {
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
@@ -187,7 +200,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .run_kernel = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
},
/* .lhs_info = */ {
/* .gemv_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_pack_bf16p2vlx2_f32_sme,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_pack_bf16p2vlx2_f32_sme,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_pack_bf16p2vlx2_f32_sme,
@@ -222,6 +235,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
},
/* DOTPROD GEMV */
/* .kern_info = */ {
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
@@ -236,7 +255,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
},
/* .lhs_info = */ {
/* .gemv_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
@@ -270,6 +289,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
},
/* i8mm GEMV */
/* .kern_info = */ {
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
@@ -284,7 +309,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
},
/* .lhs_info = */ {
/* .gemv_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
@@ -319,6 +344,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
},
/* i8mm GEMV */
/* .kern_info = */ {
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
@@ -333,7 +364,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
},
/* .lhs_info = */ {
/* .gemv_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
@@ -367,6 +398,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
},
/* DOTPROD GEMV */
/* .kern_info = */ {
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
@@ -381,7 +418,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
},
/* .lhs_info = */ {
/* .gemv_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,

View File

@@ -84,8 +84,11 @@ struct rhs_packing_info {
struct ggml_kleidiai_kernels {
kernel_info gemm;
lhs_packing_info gemm_lhs_info;
kernel_info gemv;
lhs_packing_info lhs_info;
lhs_packing_info gemv_lhs_info;
rhs_packing_info rhs_info;
cpu_feature required_cpu;

View File

@@ -123,7 +123,9 @@ class tensor_traits : public ggml::cpu::tensor_traits {
}
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, op);
GGML_ASSERT(kernels);
kernel_info * kernel = op->src[1]->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
bool is_gemv = op->src[1]->ne[1] == 1;
kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm;
lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info;
size_t k = op->src[0]->ne[0];
size_t n = op->src[0]->ne[1];
@@ -134,9 +136,9 @@ class tensor_traits : public ggml::cpu::tensor_traits {
size_t sr = kernel->get_sr();
if (kernels->rhs_type == GGML_TYPE_Q4_0) {
size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, QK4_0, mr, kr, sr);
size = variant_call<size_t>(lhs_info->packed_size, m, k, QK4_0, mr, kr, sr);
} else if (kernels->rhs_type == GGML_TYPE_F16) {
size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, mr, kr, sr) +
size = variant_call<size_t>(lhs_info->packed_size, m, k, mr, kr, sr) +
variant_call<size_t>(kernels->rhs_info.packed_size, n, k) +
k * n * sizeof(float) + n * sizeof(float);
} else {
@@ -152,7 +154,7 @@ class tensor_traits : public ggml::cpu::tensor_traits {
if (dst->src[0]->type == GGML_TYPE_Q4_0) {
return compute_forward_q4_0(params, dst);
} else if (dst->src[0]->type == GGML_TYPE_F16) {
return compute_forward_kv_cache(params, dst);
return compute_forward_fp16(params, dst);
}
} else if (dst->op == GGML_OP_GET_ROWS) {
if (dst->src[0]->type == GGML_TYPE_Q4_0) {
@@ -162,7 +164,7 @@ class tensor_traits : public ggml::cpu::tensor_traits {
return false;
}
bool compute_forward_kv_cache(ggml_compute_params * params, struct ggml_tensor * dst) {
bool compute_forward_fp16(ggml_compute_params * params, struct ggml_tensor * dst) {
static std::atomic_flag first_to_arrive = ATOMIC_FLAG_INIT;
const ggml_tensor * src0 = dst->src[0];
@@ -173,7 +175,9 @@ class tensor_traits : public ggml::cpu::tensor_traits {
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst);
GGML_ASSERT(kernels);
kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
bool is_gemv = src1->ne[1] == 1;
kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm;
lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info;
GGML_ASSERT(kernel);
const int nth = params->nth;
@@ -198,7 +202,7 @@ class tensor_traits : public ggml::cpu::tensor_traits {
const int64_t kr = static_cast<int64_t>(kernel->get_kr());
const int64_t sr = static_cast<int64_t>(kernel->get_sr());
const size_t lhs_packed_size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, mr, kr, sr);
const size_t lhs_packed_size = variant_call<size_t>(lhs_info->packed_size, m, k, mr, kr, sr);
const size_t rhs_packed_size = variant_call<size_t>(kernels->rhs_info.packed_size, n, k);
const size_t kxn_size = k * n * sizeof(float);
const size_t bias_size = n * sizeof(float);
@@ -229,12 +233,12 @@ class tensor_traits : public ggml::cpu::tensor_traits {
const int64_t num_m_per_thread = (ith == num_threads - 1) ? num_m_per_threadN_1 : num_m_per_thread0;
const size_t lhs_offset = variant_call<size_t>(kernels->gemm.get_lhs_offset, m_start, lhs_stride);
const size_t lhs_packed_offset = variant_call<size_t>(kernels->lhs_info.get_packed_offset, m_start, k, mr, kr, sr);
const size_t lhs_packed_offset = variant_call<size_t>(lhs_info->get_packed_offset, m_start, k, mr, kr, sr);
const void * src_ptr = static_cast<const uint8_t *>(lhs_batch) + lhs_offset;
void * dst_ptr = static_cast<uint8_t *>(lhs_packed) + lhs_packed_offset;
variant_call<void>(kernels->lhs_info.pack_func, num_m_per_thread, k, mr, kr, sr, 0, src_ptr, lhs_stride, dst_ptr);
variant_call<void>(lhs_info->pack_func, num_m_per_thread, k, mr, kr, sr, 0, src_ptr, lhs_stride, dst_ptr);
}
}
@@ -306,8 +310,9 @@ class tensor_traits : public ggml::cpu::tensor_traits {
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst);
GGML_ASSERT(kernels);
kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
lhs_packing_info * lhs_info = &kernels->lhs_info;
bool is_gemv = src1->ne[1] == 1;
kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm;
lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info;
GGML_ASSERT(kernel);
@@ -510,9 +515,6 @@ class extra_buffer_type : ggml::cpu::extra_buffer_type {
op->src[0]->buffer &&
(ggml_n_dims(op->src[0]) == 2) &&
op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type() && ctx.kernels) {
if (op->op == GGML_OP_GET_ROWS && op->src[1]->ne[0] != 8) {
return false;
}
if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) {
return false;
}
@@ -529,13 +531,8 @@ class extra_buffer_type : ggml::cpu::extra_buffer_type {
if (op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type()) {
return (ggml::cpu::tensor_traits *) op->src[0]->extra;
}
else if (ggml_kleidiai_select_kernels(ctx.features, op) &&
op->src[0]->op == GGML_OP_VIEW &&
(op->src[1]->op == GGML_OP_PERMUTE || op->src[1]->op == GGML_OP_SOFT_MAX) &&
op->src[1]->ne[1] > 1) {
if ((op->src[0]->nb[0] != 2) ||
(op->src[1]->nb[0] != 4) ||
(op->src[0]->nb[1] * op->src[0]->ne[1] != op->src[0]->nb[2]) ||
else if (ggml_kleidiai_select_kernels(ctx.features, op) && op->src[1]->ne[1] > 1) {
if ((op->src[0]->nb[1] * op->src[0]->ne[1] != op->src[0]->nb[2]) ||
(op->src[1]->nb[1] * op->src[1]->ne[1] != op->src[1]->nb[2])) {
return nullptr;
}

View File

@@ -2169,94 +2169,117 @@ class tinyBLAS_Q0_PPC {
class tinyBLAS_PPC {
public:
tinyBLAS_PPC(int64_t k,
const float *A, int64_t lda,
const float *B, int64_t ldb,
float *C, int64_t ldc,
const float * A, int64_t lda,
const float * B, int64_t ldb,
float * C, int64_t ldc,
int ith, int nth)
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
}
void matmul(int64_t m, int64_t n) {
mnpack(0, m, 0, n);
int64_t mc = 256; int64_t nc = 256; int64_t kc = 256;
if (m % mc == 0 && n % nc == 0 && k % kc == 0) {
matmul_tiled(m, n, mc, nc, kc);
} else {
mnpack(0, m, 0, n);
}
}
private:
void (tinyBLAS_PPC::*kernel)(int64_t, int64_t);
inline void vector_permute_store_4(vector float *src, float *vecOffset) {
vector float t1, t2, t3, t4, t5, t6, t7, t8;
t1 = vec_mergeh(src[0], src[1]);
t2 = vec_mergeh(src[2], src[3]);
t3 = vec_mergel(src[0], src[1]);
t4 = vec_mergel(src[2], src[3]);
t5 = vec_xxpermdi(t1, t2, 0);
t6 = vec_xxpermdi(t1, t2, 3);
t7 = vec_xxpermdi(t3, t4, 0);
t8 = vec_xxpermdi(t3, t4, 3);
vec_xst(t5, 0, vecOffset);
vec_xst(t6, 0, vecOffset + 4);
vec_xst(t7, 0, vecOffset + 8);
vec_xst(t8, 0, vecOffset + 12);
}
inline void vector_permute_store_8(vector float *src, float *vecOffset) {
vector float t1, t2, t3, t4, t5, t6, t7, t8;
t1 = vec_mergeh(src[0], src[1]);
t2 = vec_mergeh(src[2], src[3]);
t3 = vec_mergeh(src[4], src[5]);
t4 = vec_mergeh(src[6], src[7]);
t5 = vec_xxpermdi(t1, t2, 0);
t6 = vec_xxpermdi(t3, t4, 0);
t7 = vec_xxpermdi(t1, t2, 3);
t8 = vec_xxpermdi(t3, t4, 3);
vec_xst(t5, 0, vecOffset);
vec_xst(t6, 0, vecOffset + 4);
vec_xst(t7, 0, vecOffset + 8);
vec_xst(t8, 0, vecOffset + 12);
t1 = vec_mergel(src[0], src[1]);
t2 = vec_mergel(src[2], src[3]);
t3 = vec_mergel(src[4], src[5]);
t4 = vec_mergel(src[6], src[7]);
t5 = vec_xxpermdi(t1, t2, 0);
t6 = vec_xxpermdi(t3, t4, 0);
t7 = vec_xxpermdi(t1, t2, 3);
t8 = vec_xxpermdi(t3, t4, 3);
vec_xst(t5, 0, vecOffset + 16);
vec_xst(t6, 0, vecOffset + 20);
vec_xst(t7, 0, vecOffset + 24);
vec_xst(t8, 0, vecOffset + 28);
inline void save_acc(acc_t * ACC, int64_t ii, int64_t jj) {
vec_t vec_C[4];
__builtin_mma_disassemble_acc(vec_C, ACC);
for (int I = 0; I < 4; I++) {
for (int J = 0; J < 4; J++) {
*((float *)(C+ii+((jj+J)*ldc)+I)) = *((float *)&vec_C[I]+J);
}
}
}
void packTranspose(const float* a, int64_t lda, int rows, int cols, float* vec) {
inline void add_save_acc(acc_t * ACC, int64_t ii, int64_t jj) {
vec_t vec_C[4];
__builtin_mma_disassemble_acc(vec_C, ACC);
for (int I = 0; I < 4; I++) {
for (int J = 0; J < 4; J++) {
float * c_ptr = (float *)(C+ii+((jj+J)*ldc)+I);
*c_ptr += *((float *)&vec_C[I]+J);
}
}
}
inline void vector_permute_store_4(vector float * src, float * vecOffset) {
vector float t1, t2, t3, t4, t5, t6, t7, t8;
t1 = vec_mergeh(src[0], src[1]);
t2 = vec_mergeh(src[2], src[3]);
t3 = vec_mergel(src[0], src[1]);
t4 = vec_mergel(src[2], src[3]);
t5 = vec_xxpermdi(t1, t2, 0);
t6 = vec_xxpermdi(t1, t2, 3);
t7 = vec_xxpermdi(t3, t4, 0);
t8 = vec_xxpermdi(t3, t4, 3);
vec_xst(t5, 0, vecOffset);
vec_xst(t6, 0, vecOffset + 4);
vec_xst(t7, 0, vecOffset + 8);
vec_xst(t8, 0, vecOffset + 12);
}
inline void vector_permute_store_8(vector float * src, float * vecOffset) {
vector float t1, t2, t3, t4, t5, t6, t7, t8;
t1 = vec_mergeh(src[0], src[1]);
t2 = vec_mergeh(src[2], src[3]);
t3 = vec_mergeh(src[4], src[5]);
t4 = vec_mergeh(src[6], src[7]);
t5 = vec_xxpermdi(t1, t2, 0);
t6 = vec_xxpermdi(t3, t4, 0);
t7 = vec_xxpermdi(t1, t2, 3);
t8 = vec_xxpermdi(t3, t4, 3);
vec_xst(t5, 0, vecOffset);
vec_xst(t6, 0, vecOffset + 4);
vec_xst(t7, 0, vecOffset + 8);
vec_xst(t8, 0, vecOffset + 12);
t1 = vec_mergel(src[0], src[1]);
t2 = vec_mergel(src[2], src[3]);
t3 = vec_mergel(src[4], src[5]);
t4 = vec_mergel(src[6], src[7]);
t5 = vec_xxpermdi(t1, t2, 0);
t6 = vec_xxpermdi(t3, t4, 0);
t7 = vec_xxpermdi(t1, t2, 3);
t8 = vec_xxpermdi(t3, t4, 3);
vec_xst(t5, 0, vecOffset + 16);
vec_xst(t6, 0, vecOffset + 20);
vec_xst(t7, 0, vecOffset + 24);
vec_xst(t8, 0, vecOffset + 28);
}
void packTranspose(const float * a, int64_t lda, int rows, int cols, float * vec) {
int64_t i, j;
float * aoffsets[8];
float *aoffset = NULL, *boffset = NULL;
float * aoffset = NULL, * boffset = NULL;
__vector_pair arr[8];
vector float c[8][2] = {0};
vector float c1[8] = {0};
vector float c2[8] = {0};
aoffset = const_cast<float*>(a);
aoffset = const_cast<float *>(a);
boffset = vec;
j = (rows >> 3);
if (j > 0) {
do {
aoffsets[0] = aoffset;
for (int it = 1; it< 8; it++)
for (int it = 1; it < 8; it++)
aoffsets[it] = aoffsets[it-1] + lda;
aoffset += 8 * lda;
i = (cols >> 3);
if (i > 0) {
do {
for (int it = 0; it< 8; it++) {
for (int it = 0; it < 8; it++) {
arr[it] = __builtin_vsx_lxvp(0, (__vector_pair*)aoffsets[it]);
__builtin_vsx_disassemble_pair(c[it], &arr[it]);
c1[it] = c[it][0];
@@ -2264,11 +2287,14 @@ class tinyBLAS_PPC {
}
vector_permute_store_8(c1, boffset);
vector_permute_store_8(c2, boffset+32);
for (int it = 0; it < 4; it++)
aoffsets[it] = aoffsets[it] + 8*lda;
vector_permute_store_8(c2, boffset + 32);
boffset += 64;
i--;
if (i > 0) {
for (int it = 0; it < 8; it++) {
aoffsets[it] = aoffsets[it] + 8;
}
}
} while(i > 0);
}
if (cols & 4) {
@@ -2295,9 +2321,9 @@ class tinyBLAS_PPC {
c2[it] = c[it][1];
}
vector_permute_store_4(c1, boffset);
vector_permute_store_4(c2, boffset+16);
vector_permute_store_4(c2, boffset + 16);
for (int it = 0; it < 4; it++)
aoffsets[it] += 8*lda;
aoffsets[it] += 8 * lda;
boffset += 32;
i--;
} while(i > 0);
@@ -2325,15 +2351,15 @@ class tinyBLAS_PPC {
vec_t vec_A[4], vec_B[4], vec_C[4];
acc_t acc_0;
__builtin_mma_xxsetaccz(&acc_0);
for (int l = 0; l < k; l+=4) {
packTranspose(A+(ii*lda)+l, lda, 4, 4, (float*)vec_A);
packTranspose(B+(jj*ldb)+l, ldb, 4, 4, (float*)vec_B);
for (int l = 0; l < k; l += 4) {
packTranspose(A + (ii * lda) + l, lda, 4, 4, (float *)vec_A);
packTranspose(B + (jj * ldb) + l, ldb, 4, 4, (float *)vec_B);
__builtin_mma_xvf32gerpp(&acc_0, vec_A[0], vec_B[0]);
__builtin_mma_xvf32gerpp(&acc_0, vec_A[1], vec_B[1]);
__builtin_mma_xvf32gerpp(&acc_0, vec_A[2], vec_B[2]);
__builtin_mma_xvf32gerpp(&acc_0, vec_A[3], vec_B[3]);
}
SAVE_ACC(&acc_0, ii, jj);
save_acc(&acc_0, ii, jj);
}
void KERNEL_4x8(int64_t ii, int64_t jj) {
@@ -2341,9 +2367,9 @@ class tinyBLAS_PPC {
acc_t acc_0, acc_1;
__builtin_mma_xxsetaccz(&acc_0);
__builtin_mma_xxsetaccz(&acc_1);
for (int64_t l = 0; l < k; l+=4) {
packTranspose(A+(ii*lda)+l, lda, 4, 4, (float*)vec_A);
packTranspose(B+(jj*ldb)+l, ldb, 8, 4, (float*)vec_B);
for (int64_t l = 0; l < k; l += 4) {
packTranspose(A + (ii * lda) + l, lda, 4, 4, (float *)vec_A);
packTranspose(B + (jj * ldb) + l, ldb, 8, 4, (float *)vec_B);
__builtin_mma_xvf32gerpp(&acc_0, vec_A[0], (vec_t)vec_B[0]);
__builtin_mma_xvf32gerpp(&acc_1, vec_A[0], (vec_t)vec_B[1]);
__builtin_mma_xvf32gerpp(&acc_0, vec_A[1], (vec_t)vec_B[2]);
@@ -2353,8 +2379,8 @@ class tinyBLAS_PPC {
__builtin_mma_xvf32gerpp(&acc_0, vec_A[3], (vec_t)vec_B[6]);
__builtin_mma_xvf32gerpp(&acc_1, vec_A[3], (vec_t)vec_B[7]);
}
SAVE_ACC(&acc_0, ii, jj);
SAVE_ACC(&acc_1, ii, jj+4);
save_acc(&acc_0, ii, jj);
save_acc(&acc_1, ii, jj + 4);
}
void KERNEL_8x4(int64_t ii, int64_t jj) {
@@ -2362,9 +2388,9 @@ class tinyBLAS_PPC {
acc_t acc_0, acc_1;
__builtin_mma_xxsetaccz(&acc_0);
__builtin_mma_xxsetaccz(&acc_1);
for (int64_t l = 0; l < k; l+=4) {
packTranspose(A+(ii*lda)+l, lda, 8, 4, (float*)vec_A);
packTranspose(B+(jj*ldb)+l, ldb, 4, 4, (float*)vec_B);
for (int64_t l = 0; l < k; l += 4) {
packTranspose(A + (ii * lda) + l, lda, 8, 4, (float *)vec_A);
packTranspose(B + (jj * ldb) + l, ldb, 4, 4, (float *)vec_B);
__builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[0], vec_B[0]);
__builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[1], vec_B[0]);
__builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[2], vec_B[1]);
@@ -2374,8 +2400,8 @@ class tinyBLAS_PPC {
__builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[6], vec_B[3]);
__builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[7], vec_B[3]);
}
SAVE_ACC(&acc_0, ii, jj);
SAVE_ACC(&acc_1, ii+4, jj);
save_acc(&acc_0, ii, jj);
save_acc(&acc_1, ii + 4, jj);
}
void KERNEL_8x8(int64_t ii, int64_t jj) {
@@ -2386,19 +2412,96 @@ class tinyBLAS_PPC {
__builtin_mma_xxsetaccz(&acc_2);
__builtin_mma_xxsetaccz(&acc_3);
for (int l = 0; l < k; l+=8) {
packTranspose(A+(ii*lda)+l, lda, 8, 8, (float*)vec_A);
packTranspose(B+(jj*ldb)+l, ldb, 8, 8, (float*)vec_B);
packTranspose(A + (ii * lda) + l, lda, 8, 8, (float *)vec_A);
packTranspose(B + (jj * ldb) + l, ldb, 8, 8, (float *)vec_B);
for(int x = 0; x < 16; x+=2) {
__builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[x], vec_B[x]);
__builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[x], vec_B[x+1]);
__builtin_mma_xvf32gerpp(&acc_2, (vec_t)vec_A[x+1], vec_B[x]);
__builtin_mma_xvf32gerpp(&acc_3, (vec_t)vec_A[x+1], vec_B[x+1]);
__builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[x], vec_B[x + 1]);
__builtin_mma_xvf32gerpp(&acc_2, (vec_t)vec_A[x + 1], vec_B[x]);
__builtin_mma_xvf32gerpp(&acc_3, (vec_t)vec_A[x + 1], vec_B[x + 1]);
}
}
save_acc(&acc_0, ii, jj);
save_acc(&acc_1, ii, jj + 4);
save_acc(&acc_2, ii + 4, jj);
save_acc(&acc_3, ii + 4, jj + 4);
}
inline void MMA_16x8(vec_t * vec_A0, vec_t * vec_A1, vec_t * vec_B, acc_t * acc) {
for (int x = 0; x < 16; x += 2) {
__builtin_mma_xvf32gerpp(&acc[0], vec_A0[x + 0], vec_B[x]);
__builtin_mma_xvf32gerpp(&acc[1], vec_A0[x + 0], vec_B[x + 1]);
__builtin_mma_xvf32gerpp(&acc[2], vec_A0[x + 1], vec_B[x]);
__builtin_mma_xvf32gerpp(&acc[3], vec_A0[x + 1], vec_B[x + 1]);
__builtin_mma_xvf32gerpp(&acc[4], vec_A1[x + 0], vec_B[x]);
__builtin_mma_xvf32gerpp(&acc[5], vec_A1[x + 0], vec_B[x + 1]);
__builtin_mma_xvf32gerpp(&acc[6], vec_A1[x + 1], vec_B[x]);
__builtin_mma_xvf32gerpp(&acc[7], vec_A1[x + 1], vec_B[x + 1]);
}
}
void KERNEL(int64_t ii, int64_t jj, int64_t mc, int64_t nc, int64_t kc, vec_t * vec_A, vec_t * vec_B, int64_t kk) {
for (int64_t i = 0; i < mc; i += 16) {
int A_base_addr = (mc / 8) * (i / 8) * 16;
for (int64_t j = 0; j < nc; j += 8) {
int B_base_addr = (nc / 8) * (j / 8) * 16;
acc_t acc[8];
vec_t A0_block[16]; vec_t A1_block[16];
for (int x = 0; x < 8; x++)
__builtin_mma_xxsetaccz(&acc[x]);
for (int64_t l = 0; l < kc; l += 8) {
int A0_block_idx = A_base_addr + (l / 8) * 16;
int A1_block_idx = A0_block_idx + (mc / 8) * 16;
int B_block_idx = B_base_addr + (l / 8) * 16;
vec_t* A0_block = &vec_A[A0_block_idx];
vec_t* A1_block = &vec_A[A1_block_idx];
vec_t* B_block = &vec_B[B_block_idx];
MMA_16x8(A0_block, A1_block, B_block, acc);
}
if (kk == 0) {
save_acc(&acc[0], ii + i, jj + j);
save_acc(&acc[1], ii + i, jj + j + 4);
save_acc(&acc[2], ii + i + 4, jj + j);
save_acc(&acc[3], ii + i + 4, jj + j + 4);
save_acc(&acc[4], ii + i + 8, jj + j);
save_acc(&acc[5], ii + i + 8, jj + j + 4);
save_acc(&acc[6], ii + i + 12, jj + j);
save_acc(&acc[7], ii + i + 12, jj + j + 4);
} else {
add_save_acc(&acc[0], ii + i, jj + j);
add_save_acc(&acc[1], ii + i, jj + j + 4);
add_save_acc(&acc[2], ii + i + 4, jj + j);
add_save_acc(&acc[3], ii + i + 4, jj + j + 4);
add_save_acc(&acc[4], ii + i + 8, jj + j);
add_save_acc(&acc[5], ii + i + 8, jj + j + 4);
add_save_acc(&acc[6], ii + i + 12, jj + j);
add_save_acc(&acc[7], ii + i + 12, jj + j + 4);
}
}
}
}
void matmul_tiled(int64_t m , int64_t n, int64_t mc, int64_t nc, int64_t kc) {
int64_t ytiles = m / mc;
int64_t xtiles = n / nc;
int64_t tiles = xtiles * ytiles;
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
if (end > tiles) {
end = tiles;
}
for (int64_t job = start; job < end; ++job) {
int64_t ii = (job / xtiles) * mc;
int64_t jj = (job % xtiles) * nc;
for (int64_t kk = 0; kk < k; kk += kc) {
vec_t A_pack[kc * mc / 4];
vec_t B_pack[kc * nc / 4];
packTranspose(A + (ii * lda) + kk, lda, kc, mc, (float *)A_pack);
packTranspose(B + (jj * ldb) + kk, ldb, kc, nc, (float *)B_pack);
KERNEL(ii, jj, mc, nc, kc, A_pack, B_pack, kk);
}
}
SAVE_ACC(&acc_0, ii, jj);
SAVE_ACC(&acc_1, ii, jj+4);
SAVE_ACC(&acc_2, ii+4, jj);
SAVE_ACC(&acc_3, ii+4, jj+4);
}
void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
@@ -2406,35 +2509,35 @@ class tinyBLAS_PPC {
int n_rem = MIN(n - n0, 8);
int mc = 0, nc = 0;
if (m_rem >= 8 && n_rem >= 8) {
mc = 8;
nc = 8;
gemm<8, 8>(m0, m, n0, n);
mc = 8;
nc = 8;
gemm<8, 8>(m0, m, n0, n);
} else if (m_rem >= 4 && n_rem >= 8) {
mc = 4;
nc = 8;
gemm<4, 8>(m0, m, n0, n);
mc = 4;
nc = 8;
gemm<4, 8>(m0, m, n0, n);
} else if (m_rem >= 8 && n_rem >= 4) {
mc = 8;
nc = 4;
gemm<8, 4>(m0, m, n0, n);
mc = 8;
nc = 4;
gemm<8, 4>(m0, m, n0, n);
} else if (m_rem >= 4 && n_rem >= 4) {
mc = 4;
nc = 4;
gemm<4, 4>(m0, m, n0, n);
mc = 4;
nc = 4;
gemm<4, 4>(m0, m, n0, n);
} else {
mc = (m_rem >= 4) ? 4 : m_rem;
nc = (n_rem >= 4) ? 4 : n_rem;
if (mc == 0 || nc == 0)
return;
return;
gemm_small(m0, m, n0, n, mc, nc);
}
int64_t mp = m0 + ((m - m0) / mc) * mc;
int64_t np = n0 + ((n - n0) / nc) * nc;
mnpack(mp, m, n0, np);
mnpack(m0, m, np, n);
}
}
void gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n, int RM, int RN) {
void gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n, int RM, int RN) {
int64_t ytiles = (m - m0) / RM;
int64_t xtiles = (n - n0) / RN;
int64_t tiles = xtiles * ytiles;
@@ -2449,30 +2552,30 @@ class tinyBLAS_PPC {
vec_t vec_C[4];
acc_t acc_0;
__builtin_mma_xxsetaccz(&acc_0);
vec_t vec_A[4] {0}, vec_B[4] = {0};
for (int l=0; l<k; l+=4) {
vec_t vec_A[4] = {0}, vec_B[4] = {0};
for (int l = 0; l < k; l += 4) {
/* 'GEMV Forwarding' concept is used in first two conditional loops.
* when one of the matrix has a single row/column, the elements are
* broadcasted, instead of using packing routine to prepack the
* matrix elements.
*/
if (RM == 1) {
float* a = const_cast<float*>(A+(ii)*lda+l);
packTranspose(B+(jj*ldb)+l, ldb, RN, 4, (float*)vec_B);
float * a = const_cast<float *>(A + (ii) * lda + l);
packTranspose(B + (jj * ldb) + l, ldb, RN, 4, (float *)vec_B);
vec_A[0] = (vec_t)vec_xl(0,a);
vec_A[1] = (vec_t)vec_splats(*((float*)&vec_A+1));
vec_A[2] = (vec_t)vec_splats(*((float*)&vec_A+2));
vec_A[3] = (vec_t)vec_splats(*((float*)&vec_A+3));
vec_A[1] = (vec_t)vec_splats(*((float *)&vec_A+1));
vec_A[2] = (vec_t)vec_splats(*((float *)&vec_A+2));
vec_A[3] = (vec_t)vec_splats(*((float *)&vec_A+3));
} else if (RN == 1) {
packTranspose(A+(ii*lda)+l, lda, RM, 4, (float*)vec_A);
float* b = const_cast<float*>(B+(jj)*ldb+l);
packTranspose(A + (ii * lda) + l, lda, RM, 4, (float *)vec_A);
float * b = const_cast<float *>(B + (jj) * ldb + l);
vec_B[0] = (vec_t)vec_xl(0,b);
vec_B[1] = (vec_t)vec_splats(*((float*)&vec_B+1));
vec_B[2] = (vec_t)vec_splats(*((float*)&vec_B+2));
vec_B[3] = (vec_t)vec_splats(*((float*)&vec_B+3));
vec_B[1] = (vec_t)vec_splats(*((float *)&vec_B+1));
vec_B[2] = (vec_t)vec_splats(*((float *)&vec_B+2));
vec_B[3] = (vec_t)vec_splats(*((float *)&vec_B+3));
} else {
packTranspose(A+(ii*lda)+l, lda, RM, 4, (float*)vec_A);
packTranspose(B+(jj*ldb)+l, ldb, RN, 4, (float*)vec_B);
packTranspose(A + (ii * lda) + l, lda, RM, 4, (float *)vec_A);
packTranspose(B + (jj * ldb) + l, ldb, RN, 4, (float *)vec_B);
}
__builtin_mma_xvf32gerpp(&acc_0, vec_A[0], vec_B[0]);
__builtin_mma_xvf32gerpp(&acc_0, vec_A[1], vec_B[1]);
@@ -2482,12 +2585,27 @@ class tinyBLAS_PPC {
__builtin_mma_disassemble_acc(vec_C, &acc_0);
for (int I = 0; I < RM; I++) {
for (int J = 0; J < RN; J++) {
*((float*)(C+ii+((jj+J)*ldc)+I)) = *((float*)&vec_C[I]+J);
*((float *)(C+ii+((jj+J)*ldc)+I)) = *((float *)&vec_C[I]+J);
}
}
}
}
template<int RM, int RN>
inline void kernel(int64_t ii, int64_t jj) {
if constexpr(RM == 4 && RN == 4) {
KERNEL_4x4(ii, jj);
} else if constexpr(RM == 4 && RN == 8) {
KERNEL_4x8(ii, jj);
} else if constexpr(RM == 8 && RN == 4) {
KERNEL_8x4(ii, jj);
} else if constexpr(RM == 8 && RN == 8) {
KERNEL_8x8(ii, jj);
} else {
static_assert(false, "RN/RM values not supported");
}
}
template <int RM, int RN>
NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t ytiles = (m - m0) / RM;
@@ -2496,27 +2614,18 @@ class tinyBLAS_PPC {
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
if (RM == 4 && RN == 4) {
kernel = &tinyBLAS_PPC::KERNEL_4x4;
} else if (RM == 4 && RN == 8) {
kernel = &tinyBLAS_PPC::KERNEL_4x8;
} else if (RM == 8 && RN == 4) {
kernel = &tinyBLAS_PPC::KERNEL_8x4;
} else if (RM == 8 && RN == 8) {
kernel = &tinyBLAS_PPC::KERNEL_8x8;
}
if (end > tiles)
end = tiles;
for (int64_t job = start; job < end; ++job) {
int64_t ii = m0 + job / xtiles * RM;
int64_t jj = n0 + job % xtiles * RN;
(this->*kernel)(ii, jj);
kernel<RM, RN>(ii, jj);
}
}
const float *const A;
const float *const B;
float *C;
const float * const A;
const float * const B;
float * C;
const int64_t k;
const int64_t lda;
const int64_t ldb;

View File

@@ -776,6 +776,24 @@ static void ggml_compute_forward_dup_f32(
id += ne00 * (ne01 - ir1);
}
}
} else if (dst->type == GGML_TYPE_I32) {
size_t id = 0;
int32_t * dst_ptr = (int32_t *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = *src0_ptr;
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else {
GGML_ABORT("fatal error"); // TODO: implement
}
@@ -947,6 +965,144 @@ static void ggml_compute_forward_dup_f32(
}
}
}
} else if (dst->type == GGML_TYPE_I32) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
*(int32_t *) dst_ptr = *(const float *) src0_ptr;
if (++i10 == ne0) {
i10 = 0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
} else {
GGML_ABORT("fatal error"); // TODO: implement
}
}
static void ggml_compute_forward_dup_i32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
GGML_TENSOR_UNARY_OP_LOCALS
const int ith = params->ith; // thread index
const int nth = params->nth; // number of threads
// parallelize by rows
const int nr = ne01;
// number of rows per thread
const int dr = (nr + nth - 1) / nth;
// row range for this thread
const int ir0 = dr * ith;
const int ir1 = MIN(ir0 + dr, nr);
// dst counters
int64_t i10 = 0;
int64_t i11 = 0;
int64_t i12 = 0;
int64_t i13 = 0;
// TODO: not optimal, but works
if (dst->type == GGML_TYPE_F32) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
*(float *) dst_ptr = *(const int32_t *) src0_ptr;
if (++i10 == ne0) {
i10 = 0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
} else {
GGML_ABORT("fatal error"); // TODO: implement
}
@@ -1177,6 +1333,10 @@ void ggml_compute_forward_dup(
{
ggml_compute_forward_dup_f32(params, dst);
} break;
case GGML_TYPE_I32:
{
ggml_compute_forward_dup_i32(params, dst);
} break;
default:
{
if (ggml_is_quantized(src0->type) && dst->type == GGML_TYPE_F32) {
@@ -7027,6 +7187,209 @@ void ggml_compute_forward_im2col_back_f32(
}
}
// ggml_compute_forward_im2col_3d_f16
// src0: kernel [OC*IC, KD, KH, KW]
// src1: image [N*IC, ID, IH, IW]
// dst: result [N*OD, OH, OW, IC * KD * KH * KW]
static void ggml_compute_forward_im2col_3d_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F16);
GGML_TENSOR_BINARY_OP_LOCALS;
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
const int32_t s2 = ((const int32_t *)(dst->op_params))[2];
const int32_t p0 = ((const int32_t *)(dst->op_params))[3];
const int32_t p1 = ((const int32_t *)(dst->op_params))[4];
const int32_t p2 = ((const int32_t *)(dst->op_params))[5];
const int32_t d0 = ((const int32_t *)(dst->op_params))[6];
const int32_t d1 = ((const int32_t *)(dst->op_params))[7];
const int32_t d2 = ((const int32_t *)(dst->op_params))[8];
const int32_t IC = ((const int32_t *)(dst->op_params))[9];
const int ith = params->ith;
const int nth = params->nth;
const int64_t N = ne13 / IC;
const int64_t ID = ne12;
const int64_t IH = ne11;
const int64_t IW = ne10;
const int64_t OC = ne03 / IC;
GGML_UNUSED(OC);
const int64_t KD = ne02;
const int64_t KH = ne01;
const int64_t KW = ne00;
const int64_t OD = ne3 / N;
const int64_t OH = ne2;
const int64_t OW = ne1;
const int64_t OH_OW = OH*OW;
const int64_t KD_KH_KW = KD*KH*KW;
const int64_t KH_KW = KH*KW;
const int64_t IC_KD_KH_KW = IC*KD*KH*KW;
GGML_ASSERT(nb10 == sizeof(float));
// im2col: [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW]
{
ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
for (int64_t in = 0; in < N; in++) {
for (int64_t iod = 0; iod < OD; iod++) {
for (int64_t ioh = 0; ioh < OH; ioh++) {
for (int64_t iow = 0; iow < OW; iow++) {
for (int64_t iic = ith; iic < IC; iic += nth) {
// micro kernel
ggml_fp16_t * dst_data = wdata + (in*OD*OH_OW + iod*OH_OW + ioh*OW + iow)*IC_KD_KH_KW; // [IC, KD, KH, KW]
const float * const src_data = (const float *) ((const char *)src1->data + (in*IC + iic)*nb13); // [ID, IH, IW]
for (int64_t ikd = 0; ikd < KD; ikd++) {
for (int64_t ikh = 0; ikh < KH; ikh++) {
for (int64_t ikw = 0; ikw < KW; ikw++) {
const int64_t iiw = iow*s0 + ikw*d0 - p0;
const int64_t iih = ioh*s1 + ikh*d1 - p1;
const int64_t iid = iod*s2 + ikd*d2 - p2;
if (iid < 0 || iid >= ID || iih < 0 || iih >= IH || iiw < 0 || iiw >= IW || iid < 0 || iid >= ID) {
dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = 0;
} else {
const float * const s = (const float *) ((const char *)src_data + iid*nb12 + iih*nb11 + iiw*nb10); // [ID, IH, IW]
dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = GGML_CPU_FP32_TO_FP16(*s);
}
}
}
}
}
}
}
}
}
}
}
// ggml_compute_forward_im2col_3d_f32
// src0: kernel [OC*IC, KD, KH, KW]
// src1: image [N*IC, ID, IH, IW]
// dst: result [N*OD, OH, OW, IC * KD * KH * KW]
static void ggml_compute_forward_im2col_3d_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_TENSOR_BINARY_OP_LOCALS;
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
const int32_t s2 = ((const int32_t *)(dst->op_params))[2];
const int32_t p0 = ((const int32_t *)(dst->op_params))[3];
const int32_t p1 = ((const int32_t *)(dst->op_params))[4];
const int32_t p2 = ((const int32_t *)(dst->op_params))[5];
const int32_t d0 = ((const int32_t *)(dst->op_params))[6];
const int32_t d1 = ((const int32_t *)(dst->op_params))[7];
const int32_t d2 = ((const int32_t *)(dst->op_params))[8];
const int32_t IC = ((const int32_t *)(dst->op_params))[9];
const int ith = params->ith;
const int nth = params->nth;
const int64_t N = ne13 / IC;
const int64_t ID = ne12;
const int64_t IH = ne11;
const int64_t IW = ne10;
const int64_t OC = ne03 / IC;
GGML_UNUSED(OC);
const int64_t KD = ne02;
const int64_t KH = ne01;
const int64_t KW = ne00;
const int64_t OD = ne3 / N;
const int64_t OH = ne2;
const int64_t OW = ne1;
const int64_t OH_OW = OH*OW;
const int64_t KD_KH_KW = KD*KH*KW;
const int64_t KH_KW = KH*KW;
const int64_t IC_KD_KH_KW = IC*KD*KH*KW;
GGML_ASSERT(nb10 == sizeof(float));
// im2col: [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW]
{
float * const wdata = (float *) dst->data;
for (int64_t in = 0; in < N; in++) {
for (int64_t iod = 0; iod < OD; iod++) {
for (int64_t ioh = 0; ioh < OH; ioh++) {
for (int64_t iow = 0; iow < OW; iow++) {
for (int64_t iic = ith; iic < IC; iic += nth) {
// micro kernel
float * dst_data = wdata + (in*OD*OH_OW + iod*OH_OW + ioh*OW + iow)*IC_KD_KH_KW; // [IC, KD, KH, KW]
const float * const src_data = (const float *) ((const char *)src1->data + (in*IC + iic)*nb13); // [ID, IH, IW]
for (int64_t ikd = 0; ikd < KD; ikd++) {
for (int64_t ikh = 0; ikh < KH; ikh++) {
for (int64_t ikw = 0; ikw < KW; ikw++) {
const int64_t iiw = iow*s0 + ikw*d0 - p0;
const int64_t iih = ioh*s1 + ikh*d1 - p1;
const int64_t iid = iod*s2 + ikd*d2 - p2;
if (iid < 0 || iid >= ID || iih < 0 || iih >= IH || iiw < 0 || iiw >= IW || iid < 0 || iid >= ID) {
dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = 0;
} else {
const float * const s = (const float *) ((const char *)src_data + iid*nb12 + iih*nb11 + iiw*nb10); // [ID, IH, IW]
dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = *s;
}
}
}
}
}
}
}
}
}
}
}
void ggml_compute_forward_im2col_3d(
const ggml_compute_params * params,
ggml_tensor * dst) {
switch (dst->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_im2col_3d_f16(params, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_im2col_3d_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
static void ggml_call_mul_mat(ggml_type type, const ggml_compute_params * params, int64_t m, int64_t n, int64_t k,
void * a, void * b, float * c) {
const ggml_type_traits * traits = ggml_get_type_traits(type);
@@ -7207,6 +7570,148 @@ void ggml_compute_forward_conv_2d(
ggml_compute_forward_conv_2d_impl(params, src0, src1, dst, src0->type);
}
// ggml_compute_forward_conv_3d
static void ggml_compute_forward_conv_3d_impl(const ggml_compute_params * params,
const ggml_tensor * kernel,
const ggml_tensor * src,
ggml_tensor * dst,
ggml_type kernel_type) {
GGML_ASSERT(ggml_is_contiguous(kernel));
GGML_ASSERT(kernel_type == GGML_TYPE_F16 || kernel_type == GGML_TYPE_F32);
GGML_ASSERT(kernel->type == kernel_type);
const ggml_type_traits * traits = ggml_get_type_traits(kernel_type);
const int32_t s0 = dst->op_params[0];
const int32_t s1 = dst->op_params[1];
const int32_t s2 = dst->op_params[2];
const int32_t p0 = dst->op_params[3];
const int32_t p1 = dst->op_params[4];
const int32_t p2 = dst->op_params[5];
const int32_t d0 = dst->op_params[6];
const int32_t d1 = dst->op_params[7];
const int32_t d2 = dst->op_params[8];
const int32_t c = dst->op_params[9];
const int32_t n = dst->op_params[10];
const int32_t oc = dst->op_params[11];
const int64_t src_w = src->ne[0];
const int64_t src_h = src->ne[1];
const int64_t src_d = src->ne[2];
const int64_t knl_w = kernel->ne[0];
const int64_t knl_h = kernel->ne[1];
const int64_t knl_d = kernel->ne[2];
const int64_t dst_w = dst->ne[0];
const int64_t dst_h = dst->ne[1];
const int64_t dst_d = dst->ne[2];
const float * src_data = (float *) src->data;
void * knl_data = kernel->data;
float * dst_data = (float *) dst->data;
const int64_t knl_n_per_channel = knl_w * knl_h * knl_d;
const int64_t knl_n_total = knl_n_per_channel * c;
const int64_t patch_total = n * dst_w * dst_h * dst_d;
const int64_t space_per_patch = knl_n_total * traits->type_size + oc * sizeof(float);
const int64_t batch_size = params->wsize / space_per_patch;
const int64_t patches_per_batch = batch_size > 8 ? (batch_size / 8) * 8 : batch_size;
const int64_t batch_n = (patch_total + patches_per_batch - 1) / patches_per_batch;
GGML_ASSERT(patches_per_batch > 0 && batch_size >= 1);
void * tmp = params->wdata;
for (int64_t batch_i = 0; batch_i < batch_n; ++batch_i) {
const int64_t patch_start_batch = batch_i * patches_per_batch;
const int64_t patch_end_batch = std::min(patch_start_batch + patches_per_batch, patch_total);
const int64_t patch_n_in_batch = patch_end_batch - patch_start_batch;
const int64_t patch_per_thread = (patch_n_in_batch + params->nth - 1) / params->nth;
const int64_t patch_start = patch_start_batch + params->ith * patch_per_thread;
const int64_t patch_end = std::min(patch_start + patch_per_thread, patch_end_batch);
for (int64_t p = patch_start; p < patch_end; ++p) {
const int64_t p_in_batch = p % (dst_w * dst_h * dst_d);
const int64_t p_in_depth = p_in_batch % (dst_w * dst_h);
const int64_t batch_idx = p / (dst_w * dst_h * dst_d);
const int64_t dst_z = p_in_batch / (dst_w * dst_h);
const int64_t dst_y = p_in_depth / dst_w;
const int64_t dst_x = p_in_depth % dst_w;
char * dst_row = (char *) tmp + (p % patches_per_batch) * knl_n_total * traits->type_size;
for (int64_t ic = 0; ic < c; ++ic) {
for (int64_t kz = 0; kz < knl_d; ++kz) {
for (int64_t ky = 0; ky < knl_h; ++ky) {
for (int64_t kx = 0; kx < knl_w; ++kx) {
const int64_t sz = dst_z * s2 + kz * d2 - p2;
const int64_t sy = dst_y * s1 + ky * d1 - p1;
const int64_t sx = dst_x * s0 + kx * d0 - p0;
int64_t dst_idx = ic * knl_n_per_channel + kz * (knl_h * knl_w) + ky * knl_w + kx;
float src_val;
if (sz < 0 || sz >= src_d || sy < 0 || sy >= src_h || sx < 0 || sx >= src_w) {
src_val = 0.0f;
} else {
const int64_t cn_idx = batch_idx * c + ic;
const float * src_ptr = (const float *)((const char *)src_data + sx*src->nb[0] + sy*src->nb[1] + sz*src->nb[2] + cn_idx*src->nb[3]);
src_val = *src_ptr;
}
char * element_ptr = dst_row + dst_idx * traits->type_size;
if (kernel_type == GGML_TYPE_F32) {
*(float *)element_ptr = src_val;
} else if (kernel_type == GGML_TYPE_F16) {
*(ggml_fp16_t *)element_ptr = GGML_CPU_FP32_TO_FP16(src_val);
}
}
}
}
}
}
ggml_barrier(params->threadpool);
float * gemm_output = (float *) ((char *) tmp + patches_per_batch * knl_n_total * traits->type_size);
ggml_call_mul_mat(kernel_type, params, patch_n_in_batch, oc, knl_n_total, tmp, knl_data, gemm_output);
ggml_barrier(params->threadpool);
const int64_t permute_per_thread = (patch_n_in_batch + params->nth - 1) / params->nth;
const int64_t permute_start = params->ith * permute_per_thread;
const int64_t permute_end = std::min(permute_start + permute_per_thread, patch_n_in_batch);
for (int64_t i = permute_start; i < permute_end; ++i) {
const int64_t p = patch_start_batch + i;
const int64_t p_in_batch = p % (dst_w * dst_h * dst_d);
const int64_t p_in_depth = p_in_batch % (dst_w * dst_h);
const int64_t batch_idx = p / (dst_w * dst_h * dst_d);
const int64_t dst_z = p_in_batch / (dst_w * dst_h);
const int64_t dst_y = p_in_depth / dst_w;
const int64_t dst_x = p_in_depth % dst_w;
for (int64_t ioc = 0; ioc < oc; ++ioc) {
const float value = gemm_output[i * oc + ioc];
const int64_t ocn_idx = batch_idx * oc + ioc;
float * dst_ptr = (float *)((char *)dst_data + dst_x*dst->nb[0] + dst_y*dst->nb[1] + dst_z*dst->nb[2] + ocn_idx*dst->nb[3]);
*dst_ptr = value;
}
}
}
}
void ggml_compute_forward_conv_3d(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
ggml_compute_forward_conv_3d_impl(params, src0, src1, dst, src0->type);
}
// ggml_compute_forward_conv_transpose_2d
void ggml_compute_forward_conv_transpose_2d(
@@ -7872,6 +8377,15 @@ static void ggml_compute_forward_pad_f32(
GGML_TENSOR_UNARY_OP_LOCALS
float * dst_ptr = (float *) dst->data;
const int32_t lp0 = ggml_get_op_params_i32(dst, 0);
const int32_t rp0 = ggml_get_op_params_i32(dst, 1);
const int32_t lp1 = ggml_get_op_params_i32(dst, 2);
const int32_t rp1 = ggml_get_op_params_i32(dst, 3);
const int32_t lp2 = ggml_get_op_params_i32(dst, 4);
const int32_t rp2 = ggml_get_op_params_i32(dst, 5);
const int32_t lp3 = ggml_get_op_params_i32(dst, 6);
const int32_t rp3 = ggml_get_op_params_i32(dst, 7);
// TODO: optimize
@@ -7880,10 +8394,12 @@ static void ggml_compute_forward_pad_f32(
for (int64_t i0 = 0; i0 < ne0; ++i0) {
for (int64_t i3 = 0; i3 < ne3; ++i3) {
const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
if ((i0 >= lp0 && i0 < ne0 - rp0) \
&& (i1 >= lp1 && i1 < ne1 - rp1) \
&& (i2 >= lp2 && i2 < ne2 - rp2) \
&& (i3 >= lp3 && i3 < ne3 - rp3)) {
const int64_t src_idx = (i3 - lp3)*nb03 + (i2 - lp2)*nb02 + (i1 - lp1)*nb01 + (i0 - lp0)*nb00;
const float * src_ptr = (const float *)((char *) src0->data + src_idx);
dst_ptr[dst_idx] = *src_ptr;
} else {
dst_ptr[dst_idx] = 0;
@@ -8082,7 +8598,7 @@ static void ggml_compute_forward_timestep_embedding_f32(
embed_data[j + half] = sinf(arg);
}
if (dim % 2 != 0 && ith == 0) {
embed_data[dim] = 0.f;
embed_data[2 * half] = 0.f;
}
}
}
@@ -8861,8 +9377,7 @@ static void ggml_compute_forward_ssm_scan_f32(
GGML_ASSERT(src4->nb[0] == sizeof(float));
GGML_ASSERT(src5->nb[0] == sizeof(float));
GGML_ASSERT(src6->nb[0] == sizeof(int32_t));
// allows optimizing the modulo since n_group should be a power of 2
GGML_ASSERT((ng & -ng) == ng);
GGML_ASSERT(nh % ng == 0);
// heads per thread
const int dh = (nh + nth - 1)/nth;
@@ -8893,6 +9408,7 @@ static void ggml_compute_forward_ssm_scan_f32(
// ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
const float dA = expf(dt_soft_plus * A[h]);
const int g = h / (nh / ng); // repeat_interleave
// dim
for (int i1 = 0; i1 < nr; ++i1) {
@@ -8915,8 +9431,8 @@ static void ggml_compute_forward_ssm_scan_f32(
// TODO: maybe unroll more?
for (int j = 0; j < 1; j++) {
GGML_F32_VEC t0 = GGML_F32_VEC_LOAD(s0 + i + j*ggml_f32_epr + ii*nc);
GGML_F32_VEC t1 = GGML_F32_VEC_LOAD(B + i + j*ggml_f32_epr + (h & (ng - 1))*nc);
GGML_F32_VEC t2 = GGML_F32_VEC_LOAD(C + i + j*ggml_f32_epr + (h & (ng - 1))*nc);
GGML_F32_VEC t1 = GGML_F32_VEC_LOAD(B + i + j*ggml_f32_epr + g*nc);
GGML_F32_VEC t2 = GGML_F32_VEC_LOAD(C + i + j*ggml_f32_epr + g*nc);
t0 = GGML_F32_VEC_MUL(t0, adA);
t1 = GGML_F32_VEC_MUL(t1, axdt);
@@ -8930,6 +9446,9 @@ static void ggml_compute_forward_ssm_scan_f32(
}
sumf = GGML_F32xt_REDUCE_ONE(sum);
#elif defined(__riscv_v_intrinsic)
// todo: RVV implementation
const int np = 0;
#else
const int np = (nc & ~(GGML_F32_STEP - 1));
@@ -8945,8 +9464,8 @@ static void ggml_compute_forward_ssm_scan_f32(
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ax[j] = GGML_F32_VEC_LOAD(s0 + i + j*GGML_F32_EPR + ii*nc);
ay[j] = GGML_F32_VEC_LOAD(B + i + j*GGML_F32_EPR + (h & (ng - 1))*nc);
az[j] = GGML_F32_VEC_LOAD(C + i + j*GGML_F32_EPR + (h & (ng - 1))*nc);
ay[j] = GGML_F32_VEC_LOAD(B + i + j*GGML_F32_EPR + g*nc);
az[j] = GGML_F32_VEC_LOAD(C + i + j*GGML_F32_EPR + g*nc);
ax[j] = GGML_F32_VEC_MUL(ax[j], adA);
ay[j] = GGML_F32_VEC_MUL(ay[j], axdt);
@@ -8968,7 +9487,7 @@ static void ggml_compute_forward_ssm_scan_f32(
// d_state
for (int i0 = np; i0 < nc; ++i0) {
const int i = i0 + ii*nc;
const int ig = i0 + (h & (ng - 1))*nc;
const int ig = i0 + g*nc;
// state = prev_state * dA + dB * x
const float state = (s0[i] * dA) + (B[ig] * x_dt);
// y = rowwise_dotprod(state, C)
@@ -8985,6 +9504,7 @@ static void ggml_compute_forward_ssm_scan_f32(
for (int h = ih0; h < ih1; ++h) {
// ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
const int g = h / (nh / ng); // repeat_interleave
// dim
for (int i1 = 0; i1 < nr; ++i1) {
@@ -8999,8 +9519,8 @@ static void ggml_compute_forward_ssm_scan_f32(
// TODO: what happens when (d_state % svcntw()) != 0?
for (int64_t k = 0; k < nc; k += svcntw()) {
svfloat32_t vA = GGML_F32_VEC_LOAD(&A[h*nc + k]);
svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k + (h & (ng - 1))*nc]);
svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k + (h & (ng - 1))*nc]);
svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k + g*nc]);
svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k + g*nc]);
svfloat32_t vs0 = GGML_F32_VEC_LOAD(&s0[ii*nc + k]);
svfloat32_t t1 = GGML_F32_VEC_MUL(vdt_soft_plus, vA);
@@ -9020,7 +9540,7 @@ static void ggml_compute_forward_ssm_scan_f32(
// d_state
for (int i0 = 0; i0 < nc; ++i0) {
const int i = i0 + ii*nc;
const int ig = i0 + (h & (ng - 1))*nc;
const int ig = i0 + g*nc;
// state = prev_state * dA + dB * x
const float state = (s0[i] * expf(dt_soft_plus * A[i0 + h*nc])) + (B[ig] * x_dt);
// y = rowwise_dotprod(state, C)
@@ -9881,8 +10401,8 @@ static void ggml_compute_forward_rwkv_wkv7_f32(
int64_t h_stride_2d = head_size * head_size;
#if defined(GGML_SIMD)
#if defined(__ARM_FEATURE_SVE)
// scalar Route to scalar implementation //TODO: Write SVE code
#if defined(__ARM_FEATURE_SVE) || defined(__riscv_v_intrinsic)
// scalar Route to scalar implementation //TODO: Write SVE code and RVV code
for (int64_t t = 0; t < T; t++) {
int64_t t_offset = t * t_stride;
int64_t state_offset = head_size * C * (t / (T / n_seqs));

Some files were not shown because too many files have changed in this diff Show More