Compare commits

...

184 Commits
b6294 ... b6478

Author SHA1 Message Date
Nikolay Popov
28c39da7c6 llama-run: Fix model download on Windows (#15988)
* llama-run: Fix model download on Windows
 * fix SSL error (SSL peer certificate or SSH remote key was not OK)
 * fix program crash on std::filesystem::rename

* llama-run: create a separate method to utilize RAII

* llama-run: handle rename exception
2025-09-15 11:08:30 +01:00
Aman Gupta
106220562a CUDA: some micro-optimizations in mmf.cuh for mul_mat_id (#15926) 2025-09-15 17:35:11 +08:00
ddh0
a68f31edd7 fix KLD percentile output (#15999)
In `llama-perplexity`, when using `--kl-divergence`, the KL divergence statistics output mistakenly displays the 99th percentile twice. This change fixes that and correctly displays the 90th percentile as originally intended (presumably).
2025-09-15 09:54:57 +02:00
Sigbjørn Skjæret
b8e09f08b9 model : add grok-2 support (#15539)
* add grok-2 support

* type fix

* type fix

* type fix

* "fix" vocab for invalid sequences

* fix expert tensor mapping and spaces in vocab

* add chat template

* fix norm tensor mapping

* rename layer_out_norm to ffn_post_norm

* ensure ffn_post_norm is mapped

* fix experts merging

* remove erroneous FFN_GATE entry

* concatenate split tensors and add more metadata

* process all expert layers and try cat instead of hstack

* add support for community BPE vocab

* fix expert feed forward length and ffn_down concat

* commit this too

* add ffn_up/gate/down, unsure if sequence is right

* add ffn_gate/down/up to tensor names

* correct residual moe (still not working)

* mess--

* fix embedding scale being applied twice

* add built in chat template

* change beta fast for grok if default value

* remove spm vocab in favor of community bpe vocab

* change attention temp length metadata type to integer

* update attention temp length metadata

* remove comment

* replace M_SQRT2 with std::sqrt(2)

* add yarn metadata, move defaults to hparams
2025-09-14 23:00:59 +02:00
Sigbjørn Skjæret
6c019cb04e server : only attempt to enable thinking if using jinja (#15967) 2025-09-14 21:17:04 +02:00
Georgi Gerganov
9dcd200d57 metal : remove memory pools (#15966)
* metal : remove mem pool usage

ggml-ci

* metal : remove mem pool implementation

ggml-ci

* metal : take into account the actual allocated memory of the tensor

ggml-ci

* cont : use ggml_backend_buft_get_alloc_size

ggml-ci

* cont : improve, comments

ggml-ci

* cont : add functions for the extra tensor sizes

* metal : add comments

ggml-ci

* metal : implement .get_alloc_size for the rest of the buffer types

ggml-ci

* metal : remove ggml_metal_heap

ggml-ci
2025-09-14 22:02:32 +03:00
Adam
0fa154e350 rocm.Dockerfile: added gfx1200,gfx1201 architectures to support AMD Radeon RX 9000 series (#15994)
* rocm.Dockerfile: added gfx1200,gfx1201 architectures to support  AMD Radeon RX 9000 series

https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.4.1/reference/system-requirements.html#rdna-os
states the Radeon RX 9000 series is supported support from Ubuntu 24.04.2, and the dockerfile is using 24.04 which is ROCm 6.4.

This fixed the `ROCm error: invalid device function` I was getting when trying to use the rocm container.
2025-09-14 20:43:54 +02:00
Ruben Ortlam
261e6a20ff Vulkan: Clean up mul_mm shader (#15987)
* vulkan: move mul_mm dequantization steps into a separate file and functions

* improve mul_mm vector load code

* fix debug mode issues and warnings
2025-09-14 16:56:28 +02:00
lcy
a0e13dcbe5 build: fix the build failures of Windows HIP release job (#15984)
* build: fix the cache keys for Windows HIP release job

Update the cache keys to include the HIP SDK version, preventing the
use of outdated ROCm installation caches.

* build: sync changes from release.yml to build.yml

- Update HIP SDK version to 25.Q3 and ROCm version to 6.4.2
- Update the cache keys to reflect the new versions

* build: remove Windows HIP release for gfx1151
since the current stable rocWMMA does not support gfx1151.
2025-09-14 07:20:35 -07:00
Georgi Gerganov
a14bd35014 metal : fix kernel requirements (#15983)
* metal : fix kernel requirements

ggml-ci

* cont : fix supports_op

* cont : fix supports_op for ARGMAX
2025-09-14 15:33:22 +03:00
Radoslav Gerganov
918b26f197 rpc : fix regression when --device is used (#15981)
Fix regression introduced with commit 50f4281a6
2025-09-14 12:28:18 +03:00
Diego Devesa
9ecb884346 releases : update ROCM, add gfx1200, gfx1201, gfx1151 (#15972)
* releases : update ROCM, add gfx1200, gfx1201, gfx1151

* releases : set target to 13.3 for macos-x64

* add hipblaslt.dll to release

* add hipblaslt/library to release
2025-09-14 02:21:59 -07:00
Radoslav Gerganov
d1c6f11f47 doc : update documentation for --tensor-split (#15980)
* doc : update documentation for --tensor-split

* Update tools/main/README.md

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update tools/main/README.md

Co-authored-by: Diego Devesa <slarengh@gmail.com>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-09-14 12:10:07 +03:00
Aaron Teo
6380d6a3e7 ggml-zdnn: rm user mapped buffers (#15965)
* ggml-zdnn: rm user mapped buffers

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: rm dead code

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: attempt to fix missing extra data buffer free

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-09-14 13:37:03 +08:00
Jeff Bolz
aa0c461efe vulkan: fix failing dequant shaders (#15862)
* vulkan: fix failing dequant shaders

* add missing const
2025-09-13 17:29:43 +02:00
Jeff Bolz
b9c9c9f789 vulkan: initialize vulkan-hpp to allow using extension function pointers (#15705)
Use this to query register count for shader compiles on NVIDIA. Currently
this is only for performance debug, but it could eventually be used in some
heuristics like split_k.
2025-09-13 17:23:30 +02:00
Diego Devesa
50f4281a6f llama : allow using iGPUs with --device (#15951)
* llama : allow using iGPUs with --device

* mtmd : allow iGPU

* rpc-server : allow iGPU
2025-09-13 16:49:49 +02:00
Georgi Gerganov
55758b00ca metal : refactor kernel loading (#15964)
* metal : refactor bin kernels loading

ggml-ci

* metal : refactor rms kernel loading

ggml-ci

* ci : try to add memory leaks check

ggml-ci

* ci : try to enable memory leak detection for Mac

* cont : seems to be working
2025-09-13 16:24:22 +03:00
Georgi Gerganov
f161463a54 metal : allow ops to run concurrently (#15929)
* metal : run graphs ops concurrently

ggml-ci

* cont : add flags for debugging and disabling concurrency

ggml-ci

* cont : refactor and handle fusing

ggml-ci

* cont : simplify - no need to use GPU address

ggml-ci

* cont : prepare mem ranges for reuse + add ggml-metal-common.cpp

ggml-ci

* cont : avoid redundant keywords in cpp [no ci]

* metal : reorder graph for better concurrency

ggml-ci

* metal : fix race on mem pool buffers

ggml-ci

* cont : add env GGML_METAL_GRAPH_OPTIMIZE_DISABLE

ggml-ci

* cont : refactor, optimize, add comments

ggml-ci

* cont : refactor ggml-metal.m

ggml-ci

* minor : update logs [no ci]
2025-09-13 13:54:28 +03:00
Georgi Gerganov
84d7b2fca1 metal : fix memory leaks (#15962)
ggml-ci
2025-09-13 12:45:04 +03:00
Aaron Teo
40be51152d ggml-zdnn: fix #15414, activate FP16 and BF16 acceleration and incorrect zTensor free (#15839) 2025-09-13 02:39:52 +08:00
Eric Curtin
4bf5549269 Add docker protocol support for llama-server model loading (#15790)
To pull and run models via: llama-server -dr gemma3
Add some validators and sanitizers for Docker Model urls and metadata

Signed-off-by: Eric Curtin <eric.curtin@docker.com>
2025-09-12 16:31:50 +01:00
Haiyue Wang
f4e664f838 context : remove redundant explicit casting to the same type (#15948)
The function 'output_reserve' return type is 'uint32_t', so need to add
explicit casting.
2025-09-12 18:16:32 +03:00
Georgi Gerganov
f088b6a84f server : adjust prompt similarity thold + add logs (#15913)
ggml-ci
2025-09-12 17:02:55 +03:00
Ruben Ortlam
304ac5693d Vulkan iGPU device selection overhaul and PCI ID API support (#15947)
* vulkan: implement ggml igpu device type, implement pci id support

* fix compiler warning

* prevent printf overflow warning
2025-09-12 13:24:21 +02:00
Mathieu Baudier
6c88ad8fa7 vulkan: Make device memory check more portable (#15939) 2025-09-12 09:06:20 +02:00
Neo Zhang Jianyu
704d90c987 Revert "sycl: add usage of enqueue_functions extension (#14244)" (#15910)
* Revert "sycl: add usage of enqueue_functions extension (#14244)"

This reverts commit 8308f98c7f.

* fix missed revert code, format the code
2025-09-12 09:15:12 +08:00
Diego Devesa
360d6533db ggml-backend : add GGML_BACKEND_DEVICE_TYPE_IGPU device type (#15797)
* ggml-backend : add GGML_BACKEND_DEVICE_TYPE_IGPU device type

ggml-backend : add device id to device props

llama : only use iGPU devices if there are no GPU devices

llama : do not use multiple devices from different backends with the same device id
2025-09-11 22:47:38 +02:00
Johannes Gäßler
0e6ff0046f CUDA: larger SRAM reads for tile FA, AMD FP16 dot (#15927)
* CUDA: larger SRAM reads for tile FA, AMD FP16 dot

* fix logic for availability of v_dot2_f32_f16
2025-09-11 21:19:58 +02:00
ddh0
df082f5630 nitpick : correct MB to MiB (#15934)
MB was incorrectly used for 1024 x 1024 bytes instead of MiB
2025-09-11 19:12:34 +02:00
Daniel Bevenius
24a6734daf ggml-cpu : add check for ARM MATMUL_INT8/i8mm support (#15922)
This commit adds a check for GGML_MACHINE_SUPPORTS_i8mm when enabling
MATMUL_INT8 features, ensuring that i8mm intrinsics are only used when
the target hardware actually supports them.

The motivation for this is to fix ggml CI build failures where the
feature detection correctly identifies that i8mm is not supported,
adding the +noi8mm flag, but MATMUL_INT8 preprocessor definitions are
still enabled, causing the compiler to attempt to use vmmlaq_s32
intrinsics without i8mm support.

Refs: https://github.com/ggml-org/ggml/actions/runs/17525174120/job/49909199499
2025-09-11 14:39:12 +01:00
Charles Xu
2b3efea9a4 kleidiai: fix GGML_ASSERT(*cur_backend_id != -1) failed (#15614)
* kleidiai: fix GGML_ASSERT(*cur_backend_id != -1) failed

* removes the Whisper-specific check for GET_ROWS support
2025-09-11 12:45:40 +02:00
hipudding
c0389dba43 CANN: Disable acl_graph for prefill stage (#15933)
Since the prefill length is not fixed, graphs constructed for the
prefill stage cannot be reused. For this reason, ACL graph
execution is disabled by default during prefill.
2025-09-11 15:59:37 +08:00
Oliver Simons
00681dfc16 CUDA: Add fastdiv to k_bin_bcast*, giving 1-3% E2E performance (#15872)
* Add fastdiv and fastmodulo to k_bin_bcast kernel

* Address review comments

* `prod_` instead of `prod` suffix

* Add test case for `k_bin_bcast_unravel` in CUDA backend
2025-09-10 22:04:03 +02:00
Jie Fu (傅杰)
4f658855fa llama : support T5 models with unequal number of encoder-decoder layers (#15909)
* Extend the support of T5 models with different encoder-decoder layers

Signed-off-by: Jie Fu <jiefu@tencent.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/constants.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-arch.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-arch.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-hparams.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Rename n_dec_layer --> dec_n_layer

Signed-off-by: Jie Fu <jiefu@tencent.com>

* Adapt to cases when dec_n_layer > n_layer

Signed-off-by: Jie Fu <jiefu@tencent.com>

---------

Signed-off-by: Jie Fu <jiefu@tencent.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-10 20:51:51 +02:00
Sigbjørn Skjæret
6ab397e12b graph : support non-contiguous Q in build_attn_mha (#15908)
* support non-contiguous Q in build_attn_mha

* Update src/llama-graph.cpp

ggml-ci

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-09-10 19:08:59 +02:00
Daniel Bevenius
9de447d94e ggml-cpu : fix padding in ggml_timestep_embedding (#15917)
This commit fixes the zero padding for odd dimensions in
ggml_compute_forward_timestep_embedding_f32.
The motivation for this is that currently if an odd dimension is used,
the padding check incorrectly uses the dimension value for indexing.
For example, with dim=15:

Elements 0-6 are set to cosine values
Elements 7-13 are set to sine values
Element 14 is left uninitialized (contains garbage)
Element 15 is correctly set to zero

This fix changes embed_data[dim] to embed_data[2 * half] so that
element 14 (the first unused element) is properly set to zero as well
as the last element.

Resolves: https://github.com/ggml-org/ggml/issues/1324
2025-09-10 17:31:40 +02:00
Georgi Gerganov
0f0a3c2851 metal : make the backend async (#15906)
* metal : make the backend async

ggml-ci

* cont : add comments, extend op offload, clean up

ggml-ci

* metal : fix batch size for MUL_MAT_ID

* metal : remove deprecated ggml_backend_metal_buffer_from_ptr

* metal : create only metal buffers, no wrapping of host memory

ggml-ci

* metal : restore .alloc_buffer for buffer_from_ptr_type

ggml-ci

* metal : remove broken implementation of GGML_OP_SET

ggml-ci

* metal : clean-up loose ends, ready for tests

ggml-ci

* metal : support both private and shared buffers

ggml-ci

* metal : enable private buffers + add global device queue

* metal : disable host buffer to prevent races

ggml-ci

* metal : avoid extra copy during set_tensor

ggml-ci

* metal : use separate buffer types for shread and private Metal buffers

ggml-ci

* metal : simplify synchronization logic

ggml-ci

* metal : fix build

ggml-ci

* metal : do not implement cpy_tensor

ggml-ci

* metal : separate implementations for shared and private buffers

ggml-ci
2025-09-10 17:52:35 +03:00
Daniel Bevenius
33daece86b ci : add caching for ROCm installation in release workflow (#15924)
This commit applies the same caching to the release workflow which
currently exists for the main CI workflow that was introduced in Commit
ff02caf9ee ("ci : cache ROCm installation
in windows-latest-cmake-hip (#15887)").
2025-09-10 15:39:57 +02:00
Daniel Bevenius
e7b6d83b52 tests : filter out no-ops from coverage report (#15900)
* tests : filter out no-ops from coverage report

This commit is a follow-up commit for #15745 to address the feedback on
how no-op operations should be filtered out from the coverage report.

The feedback regarding the UNARY and GLU sub-operations not being
handled I not exactly sure what should be done. They are included in the
coverage, for example ABS, ELU, EXP, GELU, GEGLU, GEGLU_ERF etc are in
the list of covered operations:
```console
$ ./build/bin/test-backend-ops --show-coverage
Operations covered by tests (89):
  ✓ ABS
  ✓ ACC
  ✓ ADD
  ✓ ADD1
  ✓ ADD_ID
  ✓ ARANGE
  ✓ ARGMAX
  ✓ ARGSORT
  ✓ CLAMP
  ✓ CONCAT
  ✓ CONV_2D
  ✓ CONV_2D_DW
  ✓ CONV_3D
  ✓ CONV_TRANSPOSE_1D
  ✓ CONV_TRANSPOSE_2D
  ✓ COS
  ✓ COUNT_EQUAL
  ✓ CPY
  ✓ CROSS_ENTROPY_LOSS
  ✓ CROSS_ENTROPY_LOSS_BACK
  ✓ DIAG_MASK_INF
  ✓ DIV
  ✓ DUP
  ✓ ELU
  ✓ EXP
  ✓ FLASH_ATTN_EXT
  ✓ GATED_LINEAR_ATTN
  ✓ GEGLU
  ✓ GEGLU_ERF
  ✓ GEGLU_QUICK
  ✓ GELU
  ✓ GELU_ERF
  ✓ GELU_QUICK
  ✓ GET_ROWS
  ✓ GET_ROWS_BACK
  ✓ GROUP_NORM
  ✓ HARDSIGMOID
  ✓ HARDSWISH
  ✓ IM2COL
  ✓ IM2COL_3D
  ✓ L2_NORM
  ✓ LEAKY_RELU
  ✓ LOG
  ✓ MEAN
  ✓ MUL
  ✓ MUL_MAT
  ✓ MUL_MAT_ID
  ✓ NEG
  ✓ NORM
  ✓ OPT_STEP_ADAMW
  ✓ OPT_STEP_SGD
  ✓ OUT_PROD
  ✓ PAD
  ✓ PAD_REFLECT_1D
  ✓ POOL_2D
  ✓ REGLU
  ✓ RELU
  ✓ REPEAT
  ✓ REPEAT_BACK
  ✓ RMS_NORM
  ✓ RMS_NORM_BACK
  ✓ ROLL
  ✓ ROPE
  ✓ ROPE_BACK
  ✓ RWKV_WKV6
  ✓ RWKV_WKV7
  ✓ SCALE
  ✓ SET
  ✓ SET_ROWS
  ✓ SGN
  ✓ SIGMOID
  ✓ SILU
  ✓ SILU_BACK
  ✓ SIN
  ✓ SOFT_MAX
  ✓ SOFT_MAX_BACK
  ✓ SQR
  ✓ SQRT
  ✓ SSM_CONV
  ✓ SSM_SCAN
  ✓ STEP
  ✓ SUB
  ✓ SUM
  ✓ SUM_ROWS
  ✓ SWIGLU
  ✓ SWIGLU_OAI
  ✓ TANH
  ✓ TIMESTEP_EMBEDDING
  ✓ UPSCALE

Operations without tests (14):
  ✗ ADD_REL_POS
  ✗ CUSTOM
  ✗ DIAG
  ✗ DIAG_MASK_ZERO
  ✗ FLASH_ATTN_BACK
  ✗ GET_REL_POS
  ✗ IM2COL_BACK
  ✗ MAP_CUSTOM1
  ✗ MAP_CUSTOM2
  ✗ MAP_CUSTOM3
  ✗ POOL_1D
  ✗ POOL_2D_BACK
  ✗ WIN_PART
  ✗ WIN_UNPART

Coverage Summary:
  Total operations: 103
  Tested operations: 89
  Untested operations: 14
  Coverage: 86.4%
```

Refs: https://github.com/ggml-org/llama.cpp/pull/15745

* use of ggml_op enum values instead of strcmp
2025-09-10 14:17:09 +02:00
j-k
2cfef4d117 media : add transparent icon svg and png [no ci] (#15891) 2025-09-10 14:51:28 +03:00
Jesse
09e72a037c gitignore : Ignore vim swap files in tests (#15901) 2025-09-10 14:28:47 +03:00
Chenguang Li
10d8b2b6b0 CANN: Add ROPE sin/cos cache for reuse (#15912)
* CANN: Add ROPE sin/cos cache for reuse

Introduce sin/cos caching mechanism in ROPE to avoid redundant
computation across layers. The cache is built on the first layer
per device and reused by subsequent layers if parameters match.

- Added sin_cache / cos_cache pointers and position_length tracking
- Introduced cache validity flags and properties:
  (ext_factor, theta_scale, freq_scale, attn_factor, is_neox)
- Accelerates ROPE by eliminating repeated sin/cos generation

This change reduces overhead in multi-layer scenarios while
preserving correctness by verifying parameter consistency.

Co-authored-by: hipudding <huafengchun@gmail.com>

* fix typo

Signed-off-by: noemotiovon <757486878@qq.com>

---------

Signed-off-by: noemotiovon <757486878@qq.com>
Co-authored-by: hipudding <huafengchun@gmail.com>
2025-09-10 18:42:00 +08:00
Chenguang Li
28b5f190ef CANN: implement LRU cache for ACL graphs (#15814)
* CANN: implement LRU cache for ACL graphs in CANN backend

- Introduce ggml_cann_graph_lru_cache to store multiple ggml_cann_graph objects.
- Graphs are loaded on demand and evicted using LRU policy when capacity is exceeded.
- Updated push, move_to_front, and clear methods to manage cached graphs efficiently.
- Ensures reuse of graphs, reducing graph reconstruction overhead in CANN backend.

* fix typo

* The LRU cache capacity can be configured via an env variable

Signed-off-by: noemotiovon <757486878@qq.com>

* refactory acl graph

* refactory && fix review comments

Signed-off-by: noemotiovon <757486878@qq.com>

---------

Signed-off-by: noemotiovon <757486878@qq.com>
2025-09-10 15:29:12 +08:00
Daniel Bevenius
86587da03b llama : check returned fn ptrs from ggml_backend_reg_get_proc_address (#15893)
This commit adds check for two function pointers returned from
ggml_backend_reg_get_proc_address.

The motivation for this is that the function pointer could be nullptr if
the get proc address function changes in the future. This is also
consistent with all the other calls to ggml_backend_reg_get_proc_address
in the code base.
2025-09-10 05:33:58 +02:00
Daniel Bevenius
ff02caf9ee ci : cache ROCm installation in windows-latest-cmake-hip (#15887)
This commit adds caching of the ROCm installation for the windows-latest-cmake-hip job. 

The motivation for this is that the installation can sometimes hang and/or not complete properly leaving an invalid installation which later fails the build. By caching the installation hopefully we can keep a good installation available in the cache and avoid the installation step.

Refs: https://github.com/ggml-org/llama.cpp/pull/15365
2025-09-10 05:23:19 +02:00
Ruben Ortlam
ae355f6f71 vulkan: throw the oom error instead of no memory type found (#15905) 2025-09-09 22:26:03 +02:00
Jeff Bolz
4f63cd705c vulkan: Fix OOB accesses in soft_max_back (#15861) 2025-09-09 14:41:15 +02:00
Johannes Gäßler
17bc5a815f HIP: use v_dot2_f32_f16 instruction for FA (#15884) 2025-09-09 14:04:43 +02:00
lksj92hs
ed54e32558 Workaround for subgroup arithmetic failing on MoltenVK with AMD GPUs (issue 15846) (#15886) 2025-09-09 14:01:15 +02:00
Aman Gupta
a972faebed CUDA: Add mul_mat_id support for the mmf kernel (#15767)
* CUDA: Add mul_mat_id support the mmf

Add support for mul_mat_id for bs < 16

* Review: use warp_size, fix should_use_mmf condition

* Launch one block per expert, stride along n_expert_used

* templatize mul_mat_id

* Pad shmem to 16 bytes, add helper function mul_mat_f_switch_ids

* Reduce compile times by dividing mmf into f16, bf16 and f32 variants

* Divide mmf by ncols_dst

* Add missing files

* Fix MUSA/HIP builds
2025-09-09 14:38:02 +08:00
Johannes Gäßler
550cf726e1 CUDA: fix GET_ROWS for large tensors (#15882) 2025-09-09 08:11:01 +02:00
Georgi Gerganov
c252ce67c4 contrib : add notes about merging PRs (#15881)
* contrib : add notes about merging PRs

* Update CONTRIBUTING.md

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* Update CONTRIBUTING.md

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-09-09 08:42:10 +03:00
Daniel Bevenius
70cd37dbbe requirements : update transformers/torch for Embedding Gemma (#15828)
* requirements : update transformers/torch for Embedding Gemma

This commit updates the requirements to support converting
Embedding Gemma 300m models.

The motivation for this change is that during development I had a local
copy of the transformers package which is what I used for converting
the models. This was a mistake on my part and I should have also updated
my transformers version to the official release.

I had checked the requirements/requirements-convert_legacy_llama.txt
file and noted that the version was >=4.45.1,<5.0.0 and came to the
conculusion that no updated would be needed, this assumed that
Embedding Gemma would be in a transformers release at the time
Commit fb15d649ed ("llama : add support
for EmbeddingGemma 300m (#15798)) was merged. So anyone wanting to
convert themselves would be able to do so. However, Embedding Gemma is
a preview release and this commit updates the requirements to use this
preview release.

* resolve additional python dependencies

* fix pyright errors in tokenizer test and remove unused import
2025-09-09 06:06:52 +02:00
Piotr Wilkin (ilintar)
acc1b008cf model-conversion : add extra debugging support for model conversion (#15877)
* feat: Extra debugging support for model conversion - added BF16 support for llama-callback-eval and support for dumping intermediate steps in run-org-model.py
2025-09-09 06:05:55 +02:00
Aldehir Rojas
7057faf64b json : support enum values within allOf (#15830) 2025-09-08 16:14:32 -05:00
j-k
fe1c92cd7b media : add llama1 icon (#15878)
Add svg and png based off llama1-icon.svg
2025-09-08 21:57:01 +03:00
Jeff Bolz
e68aa10d8f vulkan: sort graph to allow more parallel execution (#15850)
* vulkan: sort graph to allow more parallel execution

Add a backend proc to allow the backend to modify the graph. The
vulkan implementation looks at which nodes depend on each other
and greedily reorders them to group together nodes that don't
depend on each other. It only reorders the nodes, doesn't change
the contents of any of them.

With #15489, this reduces the number of synchronizations needed.

* call optimize_graph per-split
2025-09-09 02:10:07 +08:00
Aman Gupta
0a16bf52e6 CUDA: generate_cu_files.py - add missing mxfp4 (#15880) 2025-09-09 01:23:46 +08:00
Jesse
88021565f0 chat : Deepseek V3.1 reasoning and tool calling support (OpenAI Style) (#15533)
* Add DeepSeek V3.1 thinking mode support

- Added COMMON_CHAT_FORMAT_DEEPSEEK_V3_1 enum value
- Created common_chat_params_init_deepseek_v3_1() function (currently uses R1 implementation)
- Created common_chat_parse_deepseek_v3_1() function that handles V3.1 thinking format:
  - Extracts reasoning content before '</think>' tag into reasoning_content
  - Extracts regular content after '</think>' tag into content
  - No opening '<think>' tag in V3.1 format
- Added detection logic for V3.1 templates based on pattern: 'message['prefix'] is defined and message['prefix'] and thinking'
- Added V3.1 case to parsing switch statement

This addresses the issue where V3.1 outputs reasoning content followed by '</think>' and then regular content without the opening '<think>' tag.

* Another attempt by V3.1 non-thinking

* Fix test, but it's not asserting anything.

* Ignore vim swap files in tests dir

* Update the test

* Try using try_find_literal instead of regex

* passing test

* Revert "Try using try_find_literal instead of regex"

This reverts commit c50d887ec2.

* Remove unnecessary change

* Remove comment

* Add code to handle non-thinking mode.

* Try to set message['prefix'] when thinking is enabled.

* This fixes reasoning, but breaks normal content. We need state in the
chat parser.

* DeepSeek V3.1 thinking is now the default. Disable with `--reasoning-budget 0`.

* Simplify (DeepSeek V3.1 reasoning)

* Fix sign inversion bug

* Add some tool calling code (not working).

* Tool calls working in non-reasoning mode.

* Attempt a unit test for tool call parsing.

* Passing test

* Add tests for both happy path and broken fenced DeepSeek V3.1 tool call variants.

* Passing DeepSeek V3.1 tool call tests, but model is not working.

* Revert assistance response prefill change. Not my monkeys.

* Add fenced_thinking unit test variant. Passes, but thinking tool calling
still isn't working for some reason.

* Tests pass in reasoning mode. Also e2e tool test passes.

* Make a copy of the parse_json_tool_calls function for deepseek-v3.1 so
as to not accidentally introduce regressions.

* Fix thinking_forced_open logic. tool calling broken. Need to add another
test case.

* That's what I get for cargo culting a newline.

* Add multi tool call test for deepseek v3.1 non-reasoning

* Move test, remove .gitignore change

* Place deepseek-v3.1 reasoning test directly into existing reasoning
function per CISC's request.

* Address whitespace CI failure.

* Merge two assert_equals per CISC's request.

* Add DeepSeek-V3.1 tests to tests/test-chat.cpp per CISC's request.

* Merge deepseek V3.1 and regular parse_json_tool_calls() function
behaviors by adding optional update_cursor argument.

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* DeepSeek V3.1 fix reasoning_format none

* Strip grammar down to strictly what we expect based on model card. Throw
out parts we cargo culted from R1 that don't make sense.

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* DeepSeek V3.1 - Add edge case where thinking is forced open, there is
tool calling in the reasoning content, but then the model just stops the
output without closing the </think> tag, so it's not a partial. In this
case, use the tool call in the reasoning content.

* DeepSeek V3.1 - simplify update_cursor

* Update common/chat.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update common/chat.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update common/chat.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Fix indent

---------

Co-authored-by: openhands <openhands@all-hands.dev>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-08 16:59:48 +02:00
Xuan-Son Nguyen
56920f5665 server : bring back timings_per_token (#15879) 2025-09-08 16:50:05 +02:00
Georgi Gerganov
b0d52998b9 cuda : fix supports_op condition for get_rows when number of blocks is too large (#15868)
* cuda : fix supports_op condition for get_rows when src1->ne2 > 1

ggml-ci

* ggml : add comment about ggml_get_rows

ggml-ci

* cuda : add FIXME [no ci]

* cuda : update support condition

ggml-ci
2025-09-08 13:56:51 +03:00
Georgi Gerganov
f28d4f4ac9 metal : refactor + optimize (#15857)
* metal : refactor

ggml-ci

* cont : refactor FA-vec kernel

* cont : print metal library load time

* minor : warn to debug + bettern kernel names

ggml-ci

* metal : optimize mul_mv q8_0

ggml-ci

* metal : simplify FA pipeline creation functions

ggml-ci

* metal : improve naming consistency

* metal : safer function constants offsets

ggml-ci

* metal : comments

ggml-ci
2025-09-08 13:34:56 +03:00
Xuan-Son Nguyen
9fcb29f22f ggml: allow casting between f32 and i32 (#15783)
* ggml: allow casting between f32 and i32

* fix cuda

* add vulkan

* fix CPU non-cont

* add non-cont test case

* add note

* extend test number range

* correct note

* add cont version for vulkan
2025-09-08 12:33:01 +02:00
Sigbjørn Skjæret
5ef22d281d CUDA: non-contiguous src0 not supported for PAD (#15869) 2025-09-08 12:55:44 +03:00
Daniel Bevenius
233d773d02 convert : force setting sliding_window from original config (#15867)
* convert : force setting sliding_window from original config

This commit modifies the set_gguf_parameters method for EmbeddingGemma
so that it reads the sliding_window parameter from the original model
config.json and uses that value.

The motivation for this change is that the Gemma3TextConfig
constructor adjusts the sliding_window value, which can lead to
inconsistencies when converting models as we expects this value to
match the original model's configuration.

Refs: bb45d3631e/src/transformers/models/gemma3/configuration_gemma3.py (L230)

* fix flake8 error

* add link to huggingface PR
2025-09-08 09:44:34 +02:00
Georgi Gerganov
a885dcff11 batched-bench : fix llama_synchronize usage during prompt processing (#15835)
ggml-ci
2025-09-08 10:27:07 +03:00
Georgi Gerganov
663027fd54 context : fix n_outputs during reserve (#15858)
ggml-ci
2025-09-08 10:26:36 +03:00
Georgi Gerganov
cf0e3ba150 model : avoid ggml_cont_3d for fused QKV weights (#15662)
* model : avoid ggml_cont_3d for fused QKV weights

ggml-ci

* kv-cache : make cpy_k and cpy_v implementation more readable

ggml-ci

* cont : add comments

ggml-ci

* cont : minor fix [no ci]

* cont : one more fix

* cont : clarity

ggml-ci

* kv-cache : require contiguous heads of k_cur and v_cur

ggml-ci
2025-09-08 10:25:33 +03:00
Jeff Bolz
d413dca003 tests: large sizes for get_rows (#15687) 2025-09-07 23:23:41 -05:00
Chenguang Li
85ca66a746 CANN: Stream sync between devices for acl_graph (#15809)
* CANN: Switch to stream synchronization

Switch to stream synchronization because events are not effective.

Co-authored-by: hipudding <huafengchun@gmail.com>

* CANN: add Comments

---------

Co-authored-by: hipudding <huafengchun@gmail.com>
2025-09-08 10:03:29 +08:00
Jeff Bolz
3976dfbe00 vulkan: support im2col_3d (#15795) 2025-09-07 13:50:26 -05:00
Aaron Teo
d36e61c580 ggml-cpu: clean up s390x SIMD (#15855)
* ggml-cpu: clean up s390x simd

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 0da4b6aa07)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix hsum data types

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-09-08 02:18:28 +08:00
Jeff Bolz
c97b5e5854 vulkan: Support pad_ext (#15794) 2025-09-07 19:00:49 +02:00
Jeff Bolz
267e99867f vulkan: Use larger loads in scalar/coopmat1 matmul (#15729)
I think glslang will translate an access like x[i][1].z to
OpAccessChain ... x, i, 1, 2
OpLoad float16_t ...

rather than loading all of x[i] in a single OpLoad. Change the
code to explicitly load the vector/matrix.
2025-09-07 18:53:07 +02:00
Daniel Bevenius
3b15924d71 ggml WebGPU: remove userdata from request adapter callback (#15527)
* ggml WebGPU: remove userdata from request adapter callback

This commit removes the `userdata` parameter from the WebGPU request
adapter callback in `ggml-webgpu.cpp`. Instead, the lambda function
captures the `webgpu_context` directly.

The motivation for this change is to simplify the code and improve
readability.

* inline the callback lambda into the RequestAdapter call

This commit removes the callback lambda variable and inlines it directly
into the RequestAdapter call.
2025-09-07 11:19:45 +03:00
Johannes Gäßler
79bc429262 CUDA: faster tile FA (Pascal/AMD), headsize 256 (#15769) 2025-09-07 00:26:28 +02:00
Charles Xu
c4df49a42d kleidiai: generalize compute_forward_kv_cache to compute_forward_fp16 (#15817) 2025-09-06 22:08:43 +08:00
Xuan-Son Nguyen
3c3635d2f2 server : speed up tests (#15836)
* server : speed up tests

* clean up

* restore timeout_seconds in some places

* flake8

* explicit offline
2025-09-06 14:45:24 +02:00
Xuan-Son Nguyen
61bdfd5298 server : implement prompt processing progress report in stream mode (#15827)
* server : implement `return_progress`

* add timings.cache_n

* add progress.time_ms

* add test

* fix test for chat/completions

* readme: add docs on timings

* use ggml_time_us

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-09-06 13:35:04 +02:00
Johannes Gäßler
01806e7771 ggml-cpu: document use of "free" memory [no ci] (#15834) 2025-09-06 13:28:44 +02:00
Aaron Teo
186415d595 ggml-cpu: drop support for nnpa intrinsics (#15821) 2025-09-06 11:27:28 +08:00
Gabe Goodhart
fd621880f3 aLoRA Support (#15327)
* feat: Add python-side constants and conversion for adapter.lora.invocation_string

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add c++ side constants for adapter.lora.invocation_string

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Parse invocation string for adapters from GGUF

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(python): Update conversion to alora_invocation_tokens

This is the preferred method in PEFT which is the source of ground truth

https://github.com/huggingface/peft/pull/2609/files#diff-13380145401d203d5935c5189dd09879f990b81aa63e8e3aaff8ce9110333f0e

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(cpp): Update to alora_invocation_tokens on c++ side

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add C APIs to get alora invocation token array from lora

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Initial implementation of alora cache logic in server

This does not yet do the part to identify the invocation tokens and only
apply the lora adapter afterwards, but it does seem to produce correct
results if the invocation tokens are the beginning of the uncached input.

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Identify alora invocation sequences

This currently limits to a single enabled alora per slot. Multiple aloras
with different invocation sequences would be possible, but it would require
a more complex integration of the adapter toggling and is not really a well
studied case for alora since it's unclear if one alora can reuse cache from
previous prefill computed with a different alora.

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Only reuse cache for tokens before the alora invocation start

This is a bit of an edge case, but theoretically a user could try the same
query with the alora disabled (just using the base model), then retry with
the alora. The cached tokens from the first pass should be invalid.

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Handle un-cached tokens that come before the alora activation

The solution is to only fill up to the token before the invocation start in
the batch if there are any tokens to be prefilled between those pulled from
cache and the invocation start. When this is detected, the alora is
temporarily disabled with a scale of 0.0, then immediately re-enabled after
it has been initialized for the internal graph. Since the batch does not
complete the prompt tokens, the remaining prompt tokens are handled in the
next task, pulling all of the non-alora tokens from cache and proceeding
with prefill for the alora tokens.

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use || instead of 'or'

Too much python 🤦

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix off-by-one for limiting cached tokens to before alora start

This was the cause of the inconsistent results from the dummy test script
with and without the turn that runs the prompt without the adapter before
running it with the adapter.

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Support backwards-compatibility for "invocation_string" in adapter_config.json

While this has been replaced in the PEFT PR in favor of
alora_invocation_tokens, the existing adapters in the ibm-granite org on HF
use "invocation_string," so this will enable backwards compatibility and
enable testing now (before PEFT PR changes have percolated everywhere).

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove duplicate logging

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* feat: Report alora_invocation_string and alora_invocation_tokens from /lora-adapters

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-05 17:32:39 -06:00
Sigbjørn Skjæret
4281c7b315 ci : exempt correct research label (#15825) 2025-09-06 01:21:15 +02:00
Gabe Goodhart
5fac79cbc7 Thinking model disabled assistant prefill (#15404)
* feat: Set enable_thinking IFF not disabled and supported

Branch: gabe-l-hart/thinking-model-disabled-agent-prefill

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix inverted logic condition for prefill error

Branch: gabe-l-hart/thinking-model-disabled-agent-prefill

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Always parse the enable_thinking kwarg to overwrite the default value

From what I can tell, this started as a Qwen3-specific keyword, but from
the use in `chat.cpp` translates this inputs.enable_thinking to the right
thinking kwarg for the given model, this is now more of a standardized
kwarg, so it should always override the default value when sent as part of
the chat_template_kwargs field in the API.

Branch: gabe-l-hart/thinking-model-disabled-agent-prefill

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Don't limit tempalte expansion check to jinja

With the use_jinja check, non-jinja models would enable thinking and always
fail assistant prefill

Branch: gabe-l-hart/thinking-model-disabled-agent-prefill

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add the error text to json type errors in json_value

Branch: gabe-l-hart/thinking-model-disabled-agent-prefill

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Explicitly reject string values for "enable_thinking"

There are too many possible "truthy" / "falsy" strings and too many
ambiguous strings that don't have a clear truthy/falsy value, so the
simplest thing to do here is to reject the request. Ideally, this would be
a 422 (Unprocessable Entity), but right now it's coming back as a 500.

Branch: gabe-l-hart/thinking-model-disabled-agent-prefill

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Move logic for detecting template enable_thinking support to common

Branch: gabe-l-hart/thinking-model-disabled-agent-prefill

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use raw pointer for common chat template function

Branch: gabe-l-hart/thinking-model-disabled-agent-prefill

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-09-05 14:31:24 -06:00
Eric Curtin
408ff524b4 Implement --log-colors with always/never/auto (#15792)
With auto by default

Signed-off-by: Eric Curtin <ericcurtin17@gmail.com>
2025-09-05 19:43:59 +01:00
Johannes Gäßler
5143fa895e CUDA: fastdiv, launch bounds for mmvq + q8_1 quant (#15802)
* CUDA: fastdiv, launch bounds for mmvq + q8_1 quant
2025-09-05 16:07:02 +02:00
Daniel Bevenius
3a550b5ca4 tests : add --list-ops and --show-coverage options (#15745)
This commit adds two new command-line options to the
test-backend-ops.cpp that allow users to list all available GGML
operations and to show test coverage of these operations.

The motivation for this is that it can be useful to quickly see which
operations are currently covered by tests and which are not. Also it
migth be useful when using the `support` mode.
2025-09-05 13:49:21 +01:00
Erik Scholz
a81283820a gguf: gguf_writer refactor (#15691)
* gguf: split gguf writer into base and buf impl
* gguf: templated gguf write out
* gguf: file based writer (avoid writing everything to memory first!)
* examples(llama2c): fix log not being the same level and compiler nits
2025-09-05 11:34:28 +02:00
Georgi Gerganov
c610b6c11b kv-cache : fix SWA checks + disable cacheless iSWA (#15811)
ggml-ci
2025-09-05 10:39:22 +03:00
Daniel Bevenius
5d6688de08 model-conversion : add --embeddings flag to modelcard.template [no ci] (#15801)
This commit updates the modelcard.template file used in the model
conversion scripts for embedding models to include the llama-server
--embeddings flag in the recommended command to run the model.

The motivation for this change was that when using the model-conversion
"tool" to upload the EmbeddingGemma models to Hugging Face this flag was
missing and the embedding endpoint was there for not available when
copy&pasting the command.
2025-09-05 04:36:23 +02:00
ExtReMLapin
4fd1242bef chat : fixed crash when Hermes 2 <tool_call> had a newline before it (#15639)
Co-authored-by: CNE Pierre FICHEPOIL <pierre-1.fichepoil@gendarmerie.interieur.gouv.fr>
2025-09-05 01:24:08 +02:00
Piotr Wilkin (ilintar)
b2426e469e chat : nemotron thinking & toolcalling support (#15676)
* feat: nemotron thinking & toolcalling support

* Trailing whitespaces

* Corrected template for Nemotron

* Template and parser fixes

* Final template and grammar changes

* Whitespace

* Always do lazy grammar processing since </think> tag will always be there.

* Allow extra content after toolcall

* Whitespace

* New tests: thinking + tools, tools + content, thinking + tools + content (new!)

* Whitespace

* Remove cURL test script
2025-09-05 01:22:22 +02:00
Piotr Wilkin (ilintar)
9e2b1e83c6 scripts : add Jinja tester PySide6 simple app (#15756)
* feat: add Jinja tester PySide6 simple app

* Linter fixes

* Pylint fixes

* Whitespace

* Add commandline support; add formatter; add extensions

* Remove testing actions

* Silence flake8 warnings for commandline mode

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Fix trailing whitespace/newline logic

* Update scripts/jinja/jinja-tester.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update scripts/jinja/jinja-tester.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-05 01:05:12 +02:00
Daniel Bevenius
fb15d649ed llama : add support for EmbeddingGemma 300m (#15798)
This commit add support for the EmbeddingGemma 300m. This model supports
sliding window attention (SWA) and a new swq_type is introduced to
support symmetric SWA masking.

This commit also extracts the code from the function
llama_is_masked_swa in llama-impl.h, so that the logic can be shared
by both llm_graph_input_attn_no_cache::set_input and
llama_kv_cache::set_input_kq_mask.

With this commit the EmbeddingGemma 300m model can be converted to
to GGUF and used with llama.cpp.

Once the model has been uploaded to HuggingFace it can be used like
this:
```console
./build/bin/llama-cli -hf ggml-org/embeddinggemma-300m-GGUF:Q8_0
```
2025-09-04 18:10:29 +02:00
Gabe Goodhart
856ed0947f metal : Add template specialization for mul_mm_id w/ ne20 == 10 (#15799)
Branch: GGMLMetalNE20

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-09-04 18:53:22 +03:00
Daniel Bevenius
d1e2adba65 llama : set n_outputs to 1 to avoid 0 outputs mean-pooling (#15791)
* llama : set n_outputs to 1 to avoid 0 outputs mean-pooling

This commit modifies the llama_context constructor to set n_outputs to
1.

The motivation for this is that when using pooling, and specifically
mean pooling, for embeddings having n_outputs set to 0 can lead to the
following error:
```console
$ build/bin/llama-embedding -m models/nomic-embed-text-1.5-Q4_K_M.gguf \
   --pooling mean -p "Hello, how are you?"
...
llama_context:        CPU  output buffer size =     0.12 MiB
/home/danbev/work/ai/llama.cpp/ggml/src/ggml.c:3023: GGML_ASSERT(ggml_can_mul_mat(a, b)) failed
0x0000743c96d107e3 in __GI___wait4 (pid=292978, stat_loc=0x0, options=0, usage=0x0) at ../sysdeps/unix/sysv/linux/wait4.c:30
warning: 30	../sysdeps/unix/sysv/linux/wait4.c: No such file or directory
30	in ../sysdeps/unix/sysv/linux/wait4.c
196	        waitpid(child_pid, NULL, 0);
230	        ggml_print_backtrace();
3023	    GGML_ASSERT(ggml_can_mul_mat(a, b));
1823	                cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
18983	    llm->build_pooling(cls, cls_b, cls_out, cls_out_b);
1399	    auto * gf = model.build_graph(gparams);
292	            auto * gf = graph_reserve(1, n_seqs, n_outputs, mctx.get(), true);
2329	        auto * ctx = new llama_context(*model, params);
913	    llama_context * lctx = llama_init_from_model(model, cparams);
105	    common_init_result llama_init = common_init_from_params(params);
[Inferior 1 (process 292976) detached]
Aborted (core dumped)
```

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* add comment about not reserving graphs with zero outputs

* add assert in graph_reserve to ensure n_outputs >= 1

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-09-04 15:40:44 +02:00
Chenguang Li
c1c354e44c CANN: Refactor ND to NZ workspace to be per-device (#15763)
* CANN:Refactor ND to NZ workspace to be per-device in Ascend backend

- Replaced the previous single global ND→NZ workspace with a per-device
  cache using unordered_map keyed by device ID.
- Functions `release_nz_workspace`, `relloc_nz_workspace`, and
  `get_nz_workspace` now manage workspace independently for each device,
  preventing memory conflicts in multi-device / pipeline parallel scenarios.
- This change fixes potential precision issues caused by workspace
  overwrites when multiple devices perform ND→NZ conversions concurrently.

Co-authored-by: hipudding <huafengchun@gmail.com>

* refactor

Signed-off-by: noemotiovon <757486878@qq.com>

* rename

Signed-off-by: noemotiovon <757486878@qq.com>

* fix review comments

Signed-off-by: noemotiovon <757486878@qq.com>

---------

Signed-off-by: noemotiovon <757486878@qq.com>
Co-authored-by: hipudding <huafengchun@gmail.com>
2025-09-04 20:20:14 +08:00
Xuan-Son Nguyen
a68d914426 server: add exceed_context_size_error type (#15780)
* server: add exceed_context_size_error type

* change error code to 400
2025-09-04 11:50:23 +02:00
Eric Curtin
badb80cadb Document the new max GPU layers default in help (#15771)
This is a key change, just letting users know.

Signed-off-by: Eric Curtin <ericcurtin17@gmail.com>
2025-09-04 10:49:44 +01:00
leejet
0a1b3982cd ggml: add ops for WAN video model (cuda && cpu) (#15669)
* add conv3d support

* add ggml_pad_ext for cpu & cuda backend

* cuda/cpu: add im2col_3d support

* cuda: make im2col a little faster

* fix cuda pad/scale/im2col3d

* make im2col_3d faster

* gguf: support loading tensors which n_dims > GGML_MAX_DIMS

* fix cuda get_rows

* avoid ggml_conv_3d conflict

* correct GGML_OP_COUNT assertion

* avoid build failure

* avoid build failure on MacOS

* cuda: remove unnecessary MIN define

* fix cpu im2col_3d

* adjust the code style

* cuda: use simpler loop in get_rows

* add test_im2col_3d to test-backend-ops

* test-backend-ops.cpp: remove trailing whitespace

* cpu: im2col_3d support non continuous src

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>

* fix test_im2col_3d

* remove unused variables

* cuda: get_rows: dfloat2 -> float2

* add test_pad_ext to test-backend-ops.cpp

* add gguf_init_from_file_ext impl

* Revert "gguf: support loading tensors which n_dims > GGML_MAX_DIMS"

This reverts commit d8377a0a37.

* Revert "add gguf_init_from_file_ext impl"

This reverts commit d9f1d13208.

* update ggml_backend_vk_device_supports_op

* fix ggml_backend_vk_device_supports_op

* update other backend supports op for ggml_pad_ext

* metal/opencl/sycl/vulkan: fix GGML_OP_PAD check in supports_op

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-09-04 10:38:49 +02:00
hipudding
5421f63ab0 CANN: Fix precision issue on 310I DUO multi-devices (#15784) 2025-09-04 15:12:30 +08:00
rmatif
820bc98531 opencl: add hs=40 to FA (#15758) 2025-09-03 23:30:28 -07:00
Chenguang Li
239b60e898 CANN: fix acl_rstd allocation size in ggml_cann_rms_norm (#15760)
Fixes #15330

Adjust the allocation size of acl_rstd. The parameter `dims` is set to 3 according to the CANN documentation.

Co-authored-by: Yuchuan <yuchuan-cao@users.noreply.github.com>
2025-09-04 11:03:02 +08:00
Ruben Ortlam
dff7551bfd vulkan: fix mmv subgroup16 selection (#15775) 2025-09-03 21:55:10 +01:00
Jeff Bolz
0fce7a1248 vulkan: don't use std::string in load_shaders, to improve compile time (#15724)
* vulkan: don't use std::string in load_shaders, to improve compile time

* keep the string version for those calls that use it
2025-09-03 20:33:15 +02:00
Daniel Bevenius
8227695d7a vulkan : update ggml_vk_instance_validation_ext_available (#15666)
* vulkan : update ggml_vk_instance_validation_ext_available

This commit updates ggml_vk_instance_validation_ext_available() to
check for VK_EXT_validation_features instead of
VK_KHR_portability_enumeration.

Based on how the returned boolean is used later in the code (to enable
both the validation layer and the VK_EXT_validation_features extension),
it appears the function may have been intended to check for the
validation layer features extension.

* remove try/catch

This was a left over from a previous iteration where I was explicitly
quering for a specific validation layer first, which would throw.

* update warning message about validation layers
2025-09-03 20:24:50 +02:00
Shin-myoung-serp
0014fb4add ggml vulkan: add hardsigmoid and hardswish operations (#15762) 2025-09-03 20:22:55 +02:00
Oliver Simons
661ae31c9c CUDA: Optimize rms_norm_f32 kernel and its fused variants, giving 1-6% perf E2E (#15715)
* Add fastdiv, use it in modulo and use modulo in rms_norm_f32

Fastdiv is much faster way to do integer division, which was identified
as bottleneck in rms_norm_f32

* Support more `block_size` values in `rms_norm_f32`

This makes us more flexible in selecting the optimal threads w.r.t
paralellizing across a col vs. launch-overheads of threads and mio
throttles

* Update ggml/src/ggml-cuda/common.cuh

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Replace modulo with fastmodulo in `rms_norm_f32`

* Use `BinPackArguments=true` for formating function calls

Will file a separate PR to adjust .clang-format file

* Update ggml/src/ggml-cuda/common.cuh

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Use uint3 for both `fastdiv` and `fastmodulo`

The compiler seems to reliably optimize away the unused .z component in
the fastdiv use-case, see https://godbolt.org/z/rx8KPrKr3

* More constrained type declarations

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Rename fastdiv and fastmodulo variables to shared variable name

As suggest by JohannesGaessler, this increases clarity of the intended
use

* Pack fastdiv/fastmodulo constants into uint2/uint3 objects

By packing constants to be used together into a struct, we are less
likely to make errors.

* Rename function parameter of fastmodulo

`modulo_consts` is more fitting/descriptive

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-09-03 19:59:16 +02:00
Daniel Bevenius
407c23786d model-conversion : fix pyright errors (#15770)
This commit addresses type errors reported by pyright in the model
conversion scripts.
2025-09-03 18:28:36 +02:00
Georgi Gerganov
cdedb70a99 sampling : optimize dist sampler (#15704)
ggml-ci
2025-09-03 18:16:26 +03:00
Daniel Bevenius
2c8dac72eb llama : fix incorrect model type for Gemma 270M (#15764)
This commit fixes the model type for the Gemma 270M model in
llama_model.cpp which should be LLM_TYPE_270M. I incorrectly added this
previously as LLM_TYPE_537M which was wrong.

The motivation for this is that it causes the model to not be identified
properly when using tools like llama-bench. For example:
```console
$ ./build/bin/llama-bench -m models/gemma-3-270m-Q8_0.gguf
| model                          |       size | ...
| ------------------------------ | ---------: | ...
| gemma3 ?B Q8_0                 | 271.81 MiB | ...
| gemma3 ?B Q8_0                 | 271.81 MiB | ...
```

With the changes in this commit the output will be:
```console
$ ./build/bin/llama-bench -m models/gemma-3-270m-Q8_0.gguf
| model                          |       size | ...
| ------------------------------ | ---------: | ...
| gemma3 270M Q8_0               | 271.81 MiB | ...
| gemma3 270M Q8_0               | 271.81 MiB | ...
```
2025-09-03 13:35:49 +02:00
Daniel Bevenius
40a751ea9a model-conversion : remove hardcoded /bin/bash shebangs [no ci] (#15765)
* model-conversion : remove hardcoded /bin/bash shebangs [no ci]

This commit updates the bash scripts to use env instead of using
hardcoded /bin/bash in the shebang line.

The motivation for this is that some systems may have bash installed
in a different location, and using /usr/bin/env bash ensures that
the script will use the first bash interpreter found in the user's
PATH, making the scripts more portable across different environments.

* model-conversion : rename script to .py [no ci]

This commit renames run-casual-gen-embeddings-org.sh to
run-casual-gen-embeddings-org.py to reflect its Python nature.
2025-09-03 12:50:47 +02:00
hipudding
5eae934883 CANN: Add RoPE contiguous check for 310I DUP device (#15735) 2025-09-03 16:46:01 +08:00
xctan
05c0380f2a ggml-cpu : optimize RVV kernels (#15720)
* ggml-cpu : optimize rvv ggml_vec_dot_f32

* ggml-cpu : optimize 128-bit rvv ggml_vec_dot_q4_K_q8_K

* ggml-cpu : fix riscv arch flags

* ggml-cpu : add more rvv ops

* ggml-cpu : optimize rvv ggml_vec_dot_q4_K_q8_K

* ggml-cpu : optimize rvv ggml_vec_dot_q6_K_q8_K

* ggml-cpu : minor rvv adjustments

* ggml-cpu : fix riscv include
2025-09-03 16:16:21 +08:00
Daniel Bevenius
8c3fdf44ec model-conversion : add missing curl script [no ci] (#15761)
This commit adds a curl script to the model-conversion examples
which is currently missing. This script is required for the running the
embedding server targets to test llama-server embeddings functionality.
2025-09-03 09:48:35 +02:00
hipudding
f6da8cb86a CANN: Mask unsupported TRANSPOSE_1D operator (#15733)
CANN currently does not support kernels larger than 255.
This change disables such cases.
2025-09-03 14:08:22 +08:00
Chenguang Li
8a2234ea0c CANN: Fix type float_t to float (#15736)
Signed-off-by: noemotiovon <757486878@qq.com>
2025-09-03 10:43:53 +08:00
SnA1lGo
3de008208b fix: resolve unsigned int initialization warning for n_dims/size in gguf.cpp (#15754) 2025-09-02 21:27:30 +02:00
Oliver Simons
69db8a52e6 chore: Update .clang-format to use BinPackArguments=true (#15744)
This seems to correspond with what we want to do, see
[here](https://github.com/ggml-org/llama.cpp/pull/15715#discussion_r2315613796)
and [clang-format docs](https://clang.llvm.org/docs/ClangFormatStyleOptions.html#binpackarguments)
2025-09-03 01:40:37 +08:00
Johannes Gäßler
c466abe158 llama: -fa 1/0/-1 aliases for -fa on/off/auto (#15746) 2025-09-02 18:17:26 +02:00
Ruben Ortlam
0a2a3841e8 vulkan: fix shaders gen when no integer dot is available (#15740) 2025-09-02 16:02:26 +02:00
hipudding
9961d244f2 CANN: Resolve soft_max precision issue (#15730)
Previously, the slope tensor was set to fp16 to improve efficiency.
While this worked correctly in FA, it caused precision issues in soft_max.
This change applies different data types for different operators
to balance both accuracy and performance.
2025-09-02 17:12:37 +08:00
Jeff Bolz
25f1045f07 vulkan: Fix macro parameter order for f32 matmul shaders (#15716) 2025-09-02 14:37:01 +08:00
rmatif
97669e4073 opencl: add attn sinks support for FA kernels (#15706) 2025-09-01 23:26:53 -07:00
Chenguang Li
2f853687b3 CANN: Support eager execution mode under ACL graph compilation (#15712)
* [CANN] Support eager execution mode under ACL graph compilation

Add support for running operators in eager mode while ACL graph
compilation is enabled. This allows bypassing graph execution
and directly submitting ops, which is useful for debugging and
reducing graph build overhead in certain scenarios.

Signed-off-by: noemotiovon <757486878@qq.com>

* fix typo

Signed-off-by: noemotiovon <757486878@qq.com>

* rename to acl_graph_mode

Signed-off-by: noemotiovon <757486878@qq.com>

---------

Signed-off-by: noemotiovon <757486878@qq.com>
2025-09-02 14:07:48 +08:00
hipudding
ef2af57ddf CANN: Support ext_factor in rope (#15710) 2025-09-02 14:05:23 +08:00
Johannes Gäßler
5d804a4938 ggml-backend: raise GGML_MAX_SPLIT_INPUTS (#15722) 2025-09-01 16:14:55 -07:00
Gilad S.
d4d8dbe383 vulkan: use memory budget extension to read memory usage (#15545)
* vulkan: use memory budget extension to read memory usage

* fix: formatting and names

* formatting

* fix: detect and cache memory budget extension availability on init

* fix: read `budgetprops.heapBudget` instead of `heap.size` when memory budget extension is available

* style: lints
2025-09-01 21:17:42 +02:00
Jeff Bolz
35a42edac8 vulkan: add missing clamps in new mul_mat_id paths (#15702)
This is a missing interaction between #15546 and #15652
2025-09-01 21:01:10 +02:00
Ruben Ortlam
fec7911f8f vulkan: disable large mmv subgroups on older Nvidia GPUs (#15717) 2025-09-01 20:58:35 +02:00
s-goto-11
078ce23ea7 ggml: SVE support for exponential functions (#15145)
* SVE support for exponential functions

Add const notation to variable pg

* Update ggml/src/ggml-cpu/vec.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Add const

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-09-01 20:13:49 +02:00
Prashant Vithule
a0c2b207c5 ggml: aarch64: Implement SVE F16 kernels for vector functions (#15115)
* Added sve implementation for vec_dot_fp16 Kernel

* removed white spaces

* Added comment

* removed white spaces

* changed GGML_F16x_VEC_FMA for code consistency

* Update vec.h

---------

Co-authored-by: vithulep <p.m.vithule1517@gmail.com>
2025-09-01 20:13:16 +02:00
Jie Fu (傅杰)
4b20d8b7e3 convert : remove redundant code (#15708)
Signed-off-by: Jie Fu <jiefu@tencent.com>
2025-09-01 23:53:31 +08:00
Ruben Ortlam
02c1813517 Vulkan: Add Integer Dot Product mul_mat_vec shader for legacy quants (#14903)
* vulkan: Add Integer Dot Product mul_mat_vec shader for legacy quants

* vulkan: use subgroup operations for quantize_q8_1 shader

* vulkan: add q8_1_x4 type with 128-bit alignment, use in mul_mat_vecq shader

* vulkan: use q8_1_x4 blocks in mul_mmq shader

* vulkan: do 8 calculations per invocation instead of 32 in mul_mat_vecq, similar to mul_mat_vec

* vulkan: tune mul_mat_vecq performance for Intel

* vulkan: fix quantizing issue when tensor is not divisible by 128

* vulkan: adapt integer dot mmv to mmv small m optimization (#15355)

* vulkan: allow all subgroup modes for mmv and mmvq

* vulkan: use prealloc intermediate reuse for mmvq path

* vulkan: tune mmvq for Intel, AMD GCN and Nvidia RTX 3090

* vulkan: adapt mmv quantize_y path to conditional sync logic

* vulkan: disable q8_0 mmvq on Nvidia

* vulkan: enable q8_0 on Nvidia pre-turing

* fix prealloc sync condition

* fix llvmpipe subgroup 8 issue
2025-09-01 16:19:07 +02:00
Daniel Bevenius
77dee9de97 ggml : WebGPU add TRANSPOSE and RESHAPE to supported ops (#15695)
* ggml : WebGPU add TRANSPOSE and RESHAPE to supported ops

This commit adds support for the TRANSPOSE and RESHAPE operations in the
ggml webgpu backend.

Co-authored-by: Diego Devesa <slarengh@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-01 14:28:49 +02:00
Jie Fu (傅杰)
4795c91c32 docs : add Hunyuan to models section (#15707)
Signed-off-by: Jie Fu <jiefu@tencent.com>
2025-09-01 10:34:59 +03:00
Akarshan Biswas
b66df9d9c9 CUDA: fix build error from ambiguous __half conversions in conv2d (#15690)
* CUDA: fix build error from ambiguous __half conversions in conv2d

Building conv2d with half precision failed because `__half` defines
multiple implicit conversion operators (to float, int, short, etc.),
causing ambiguous overload resolution when multiplying with float.

Introduce a templated `to_float` helper that explicitly converts
`__half` via `__half2float`, while passing through float unchanged.
Use this helper in conv2d accumulation to ensure unambiguous and
correct promotion to float.

Fixes some build errors with half-precision kernels on CUDA.

ggml-ci

* CUDA: Replace custom to_float helper with unified ggml_cuda_cast and add half‑>float conversion

* CUDA: Add missing convert.cuh header

* CUDA: remove unnecessary extension in ggml_cuda_cast

* CUDA: Address review comment, remove second type template argument
2025-09-01 06:55:06 +05:30
hipudding
b9382c3877 CANN: Optimize MUL_MAT_ID (#15658) 2025-09-01 08:57:23 +08:00
hipudding
3dc7397a27 CANN: fix RoPE cache issue on multi-device (#15629)
* CANN: fix RoPE cache issue on multi-device

RoPE cache only needs to be computed once per token.
However, in multi-device scenarios, not every device starts
computation from layer 0, which may lead to unallocated memory
issues and precision errors.

This commit records the first layer of each device to avoid
the above issues.

* CANN: Optimize first-layer detection method

* CANN: Remove trailing whitespace

* CANN: Only cache the data that can be determined as unchanged through the parameters.

* CANN: Update function comment
2025-09-01 08:57:00 +08:00
Georgi Gerganov
e92d53b29e sampling : optimize samplers by reusing bucket sort (#15665)
* sampling : optimize sorting using bucket sort in more places

ggml-ci

* sampling : do not sort in dist sampler

ggml-ci

* sampling : avoid heap allocations for sort buffers

ggml-ci

* common : add option to sort sampling candidates by probability

ggml-ci

* sampling : revert the change for preserving sort buffers

* sampling : use std::copy instead of memcpy

* sampling : clarify purpose of partial sort helpers

ggml-ci

* cont : remove wrong comment [no ci]

* common : update comment

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-08-31 20:41:02 +03:00
Georgi Gerganov
0d161f021a server : enable /slots by default and make it secure (#15630)
* server : enable /slots by default and make it secure

ggml-ci

* server : fix tests to pass `--no-slots` when necessary

* server : extend /props with info about enabled endpoints
2025-08-31 20:11:58 +03:00
Georgi Gerganov
4efd5a8316 metal : fix checks for available FA kernels (#15700)
* metal : fix checks for available FA kernels

ggml-ci

* cont : fix comment [no ci]
2025-08-31 19:43:30 +03:00
Diego Devesa
274966226f llama : fix fattn reserve call n_seqs parameter (#15699)
ggml-ci
2025-08-31 18:47:05 +03:00
Diego Devesa
9777032dcc llama : separate compute buffer reserve from fattn check (#15696)
Exposes ggml_backend_sched_split_graph() to allow splitting the graph without allocating compute buffers and uses it to split the graph for the automatic Flash Attention check.
2025-08-31 15:49:03 +02:00
Sigbjørn Skjæret
7d3c9f2b21 ci : explicitly set fa off or on (#15692) 2025-08-31 15:30:20 +02:00
Jeff Bolz
bbbf5ecccb vulkan: handle large sizes for get_rows (#15686) 2025-08-31 10:13:27 +02:00
Jeff Bolz
c37052ab4d vulkan: mul_mat_id coopmat2 optimizations (#15546)
* vulkan: mul_mat_id coopmat2 optimizations

Add a path for when the tile fits in BN/2, similar to what we have for mul_mat.

Only call fetch_scales/store_scales once per QUANT_K block, and once at the
beginning in case start_k is not aligned.

* Also add a path for BN/4 - worth a couple more percent
2025-08-31 09:06:43 +02:00
Daniel Bevenius
5c16b9c87d vulkan : remove unused portability_enumeration_ext variable (#15679)
This commit removes the portability_enumeration_ext variable from the
ggml_vk_instance_portability_enumeration_ext_available function as it
is initialized to false but never modified, making it redundant.
2025-08-31 08:46:42 +02:00
Jeff Bolz
b97c9edc59 vulkan: Allow fallback to sysmem memory when vidmem is full (#15649)
* vulkan: Allow fallback to sysmem memory when vidmem is full

* vulkan: Add env var GGML_VK_ALLOW_SYSMEM_FALLBACK
2025-08-31 08:30:54 +02:00
Jeff Bolz
94e82c7ead vulkan: clamp matmul and FA results to the max finite value (#15652)
* vulkan: clamp matmul and FA results to the max finite value

* only clamp for fp16
2025-08-31 08:27:57 +02:00
Charles Xu
4d74393bcc ggml: update kleidiai to v1.13.0 (#15663) 2025-08-31 00:03:42 +08:00
Diego Devesa
dd892555b0 Update build.md to remove MSVC arm64 notes (#15684)
Removed information about MSVC compiler limitations for arm64 builds.
2025-08-30 23:51:28 +08:00
Johannes Gäßler
e81b8e4b7f llama: use FA + max. GPU layers by default (#15434)
* llama: use max. GPU layers by default, auto -fa

* ggml-backend: abort instead of segfault
2025-08-30 16:32:10 +02:00
Johannes Gäßler
38ad381f9f CUDA: use FP32 arithmetic for conv2d (#15683) 2025-08-30 16:20:32 +02:00
Jeff Bolz
696fccf354 vulkan: Skip syncing for prealloc_y when it is reused (#15544) 2025-08-30 11:11:22 +02:00
Chenguang Li
ef476916bb CANN: FIx compiler warnings (#15661)
Signed-off-by: noemotiovon <757486878@qq.com>
2025-08-30 10:18:35 +08:00
Sergey Alirzaev
d82f6aa34a server : removed obsolete doc (#15670)
completing a4090d1174
2025-08-30 00:12:53 +02:00
Johannes Gäßler
3d16b29c3b scripts: strip "AMD Instinct" from GPU name (#15668) 2025-08-29 22:04:08 +02:00
ExtReMLapin
792b44f2ed server : add documentation for parallel_tool_calls param (#15647)
Co-authored-by: Pierre F <no@p.e>
2025-08-29 20:25:40 +03:00
Aman Gupta
81017865ee CUDA: fix bug in rms_norm fusion (#15660)
* CUDA: fix bug in rms_norm fusion

* Fix bug for OP_REPEAT

* Fix index for add
2025-08-29 21:30:06 +08:00
Piotr Wilkin (ilintar)
60e5eee31f chat : Seed OSS thinking + tool call support (#15552)
* Reasoning and tool-calling support for Seed OSS

* Fix grammar and partial parsing

* Whitespace

* New chat template

* Update common/chat.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update common/chat.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Remove unused 'purge_healing_marker' helper

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-08-29 14:53:41 +02:00
Aman Gupta
009b709d6e CUDA: fuse adds, fuse add with rms norm (#15631)
* CUDA: fused add with rms_norm_mul

* Non-broadcast fuse works

* Add fused adds

* format

* Remove n_fuse from template params

* Address review comments

* Move template inside binbcast
2025-08-29 11:35:58 +08:00
Gabe Goodhart
e8d99dd0b6 nvidia nemotron nano v2 (nemotronh) (#15507)
* feat: Add NEMOTRONH to python arch enum

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add NEMOTRONH to c++ arch enum

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add NEMOTRONH to llama-arch layer map

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: First pass at conversion for nemotronh

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add a verbose log for each tensor loaded

This is really helpful for diagnosing mismatches between the expected and
received tensors

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: First (broken) pass at nemotronh model architecture

It generates tokens, just not valid ones!

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Explicitly enable add_bos_token during conversion

The `tokenizer.json`/`tokenizer_config.json` in the model are a bit
contradictory. In the config, add_bos_token is set to False, but the
tokenizer model itself has a post_processor that adds the BOS token via
type: TemplateProcessing

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use relu2 (LLM_FFN_RELU_SQR) for activation in FFN layers

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Only allocate attention cache for attention layers (not non-recurrent)

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Move residual add to after every block

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use the correct norm tensor for the MLP blocks

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* Nemotron-H: MLP gate cleanup (pass NULL for unused gate)

This model does not use a gate in MLP blocks; pass NULLs for gate tensors to make intent clear and avoid unused-pointer noise.

* SSM: respect ssm_dt_rank for dt_dim when provided

Use GGUF-provided time_step_rank (ssm_dt_rank) to set dt_dim when > 0; fallback to max(64, n_embd/16).

* fix: plamo2 - revert dt_dim to default (remove ssm_dt_rank usage)

* Rename nemotronh to nemotron_h for consistency

- Update architecture name from NEMOTRONH to NEMOTRON_H in constants.py
- Change architecture string from 'nemotronh' to 'nemotron_h' in all files
- Update enum LLM_ARCH_NEMOTRONH to LLM_ARCH_NEMOTRON_H
- Update class name llm_build_nemotronh to llm_build_nemotron_h
- Consistent naming with underscore convention (nemotron_h vs nemotronh)

* feat: Support conversion for older NemotronH models

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Maicon Domingues <dominguesm@outlook.com>
Co-authored-by: weatherman <fxdstudios@gmail.com>
2025-08-28 18:39:31 -06:00
Gabe Goodhart
a8bca68f72 fix: Compute the full sum in llama-eval-callback, not just the sum of printed values (#15637)
This makes it much easier to compare between llama.cpp and transformers!

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-08-28 15:27:36 -05:00
mnehete32
c97dc09391 CUDA: add conv2d (#15635)
* CUDA: add conv2d

* CUDA: conv2d - correct formatting and added const
2025-08-28 20:33:03 +02:00
Aaron Teo
6c442f42ff ggml-cpu: fix invalid hsum build in debug s390x (#15634)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-08-28 22:39:27 +08:00
compilade
73804145ab ggml : fix SSM_SCAN for n_groups > 1 (#15625) 2025-08-28 10:11:36 -04:00
Georgi Gerganov
c8d0d14e77 kv-cache : fix find_slot to not search for continuous slot (#15638)
ggml-ci
2025-08-28 17:09:05 +03:00
Sigbjørn Skjæret
84ab83cc0b model : jina-embeddings-v3 support (#13693)
* initial jina-embeddings-v3 support

* initial jina-embeddings-v3 support

* initial jina-embeddings-v3 support

* fix vocab parsing with only tokenizer.json

* set mask token lstrip attribute

* additional unk_token_id fallback just in case [no ci]

* revert vocab_size() change [no ci]

* merge tensor loading into general bert

* rope

* add lora embedding and loading (non-functional)

* export separate lora ggufs instead

* add adapter metadata api

* use std::string

* convert_hf_to_lora compatibility

* fix assert

* apply suggestions from review

* apply suggestion from review
2025-08-28 15:49:50 +02:00
Aman Gupta
55042b3692 scripts: add sqlite3 check for compare-commits.sh (#15633) 2025-08-28 19:23:22 +08:00
Georgi Gerganov
8a4280ce43 kv-cache : remove LLAMA_SET_ROWS checks (#15505)
ggml-ci
2025-08-28 12:27:02 +03:00
Aleksei Nikiforov
64387f6e95 gguf-py: byteswapping improvements (#12851)
* gguf-py: implement byteswapping for Q4_0

This is needed to byteswap Mistral model.

Also restore original shapes after byteswapping tensors.
It is not needed at the moment, but do it in case
they'd be used in future.

* Rework byteswapping code in gguf-py

Move out details from byteswapping tensor blocks code
2025-08-28 16:56:41 +08:00
Joshua Cogliati
d35a1e8c41 cli : change log to warning to explain reason for stopping (#15604)
* Change to warn instead of debug, to explain reason for stopping.

* Update tools/main/main.cpp

Fix printing --2

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-08-28 10:48:20 +03:00
Daniel Bevenius
46d9caa27a model-conversion : add mmproj conversion target (#15628)
This commit adds a new target to the Makefile for converting models that
are multimodal. This target will convert the original model and in
addition also create the mmproj GGUF model.

The motivation for this change is that for models that are multimodal,
for example those that contain a vision encoders, we will often want to
upload both the quantized model and the vision encoder model to
HuggingFace.

Example usage:
```console
$ make causal-convert-mm-model MODEL_PATH=~/work/ai/models/gemma-3-4b-it-qat-q4_0-unquantized/
...
The environment variable CONVERTED_MODEL can be set to this path using:
export CONVERTED_MODEL=/home/danbev/work/ai/llama.cpp/models/gemma-3-4b-it-qat-q4_0-unquantized.gguf
The mmproj model was created in /home/danbev/work/ai/llama.cpp/models/mmproj-gemma-3-4b-it-qat-q4_0-unquantized.gguf
```
The converted original model can then be quantized, and after that both
the quantized model and the mmproj file can then be uploaded to
HuggingFace.

Refs: https://huggingface.co/ggml-org/gemma-3-4b-it-qat-GGUF/tree/main
2025-08-28 09:26:48 +02:00
matiaslin
5a0e3ef6f0 cuda: Add cublasLt_static linking when GGML_STATIC is enabled (#15622)
Prior to this change, we faced undefined cublasLt references when
attempting to compile 'llama-cli' with GGML_STATIC=ON on Linux.

We add linking with CUDA::cublasLt_static when CUDA version is greater
than 10.1.
2025-08-28 02:32:36 +02:00
Johannes Gäßler
fbef0fad7a server: higher timeout for tests (#15621) 2025-08-27 20:58:09 +02:00
Georgi Gerganov
da54f9f1a2 presets : add qwen3-30B-a3b FIM (#15616) 2025-08-27 15:48:07 +03:00
uvos
47373271f9 HIP: Enable support for ggml_backend_cuda_register_host_buffer (#15615) 2025-08-27 13:58:54 +02:00
Georgi Gerganov
1bded5a3b3 kv-cache : better estimate of n_kv for multi-sequence batches (#15610)
ggml-ci
2025-08-27 13:55:12 +03:00
Chenguang Li
1e7489745a CANN: refactor mask handling and improve performance in FA (#15561)
* CANN(flash-attn): refactor mask handling and improve performance

1. Refactored the mask computation in Flash Attention, unified the logic without separating prefill and decode.
2. Optimized performance in non-alibi scenarios by reducing one repeat operation.
3. Updated operator management to explicitly mark unsupported cases on 310P devices and when dim is not divisible by 16.

Signed-off-by: noemotiovon <757486878@qq.com>

* [CANN]: fix review

Signed-off-by: noemotiovon <757486878@qq.com>

* [CANN]: Optimization FA BNSD to BSND

Signed-off-by: noemotiovon <757486878@qq.com>

---------

Signed-off-by: noemotiovon <757486878@qq.com>
2025-08-27 17:21:41 +08:00
xctan
1cf123a343 ggml-cpu : add basic RVV support for vector f32 ops (#15057)
* ggml-cpu : add basic RVV support for vector f32 ops

* ggml-cpu : add RVV support for f32 softmax
2025-08-27 16:44:22 +08:00
Daniel Bevenius
fcca2182a1 common : add -m to bash completion for --model [no ci] (#15591)
This commit updates the bash completion script to include the -m
short option for the --model argument.

The motivation for this is that currently tab completion only works the
full --model option, and it is nice to have it work for the short option
as well.
2025-08-27 10:28:53 +02:00
rmatif
86076f92de OpenCL: add fused group_norm/norm, mul, add (#15314)
* add fused group_norm/norm, mul, add

* fix spacing

* revert rms_norm logic

* fix trailing whitespace
2025-08-26 23:36:05 -07:00
268 changed files with 25214 additions and 10965 deletions

View File

@@ -22,7 +22,7 @@ AllowShortIfStatementsOnASingleLine: Never
AllowShortLambdasOnASingleLine: Inline
AllowShortLoopsOnASingleLine: false
AlwaysBreakBeforeMultilineStrings: true
BinPackArguments: false
BinPackArguments: true
BinPackParameters: false # OnePerLine
BitFieldColonSpacing: Both
BreakBeforeBraces: Custom # Attach

View File

@@ -4,7 +4,7 @@ ARG UBUNTU_VERSION=24.04
ARG ROCM_VERSION=6.4
ARG AMDGPU_VERSION=6.4
# Target the CUDA build image
# Target the ROCm build image
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
### Build image
@@ -15,12 +15,12 @@ FROM ${BASE_ROCM_DEV_CONTAINER} AS build
# This is mostly tied to rocBLAS supported archs.
# gfx803, gfx900, gfx1032, gfx1101, gfx1102,not officialy supported
# gfx906 is deprecated
#check https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.2.4/reference/system-requirements.html
#check https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.4.1/reference/system-requirements.html
ARG ROCM_DOCKER_ARCH='gfx803,gfx900,gfx906,gfx908,gfx90a,gfx942,gfx1010,gfx1030,gfx1032,gfx1100,gfx1101,gfx1102'
ARG ROCM_DOCKER_ARCH='gfx803,gfx900,gfx906,gfx908,gfx90a,gfx942,gfx1010,gfx1030,gfx1032,gfx1100,gfx1101,gfx1102,gfx1200,gfx1201'
#ARG ROCM_DOCKER_ARCH=gfx1100
# Set nvcc architectured
# Set ROCm architectured
ENV AMDGPU_TARGETS=${ROCM_DOCKER_ARCH}
# Enable ROCm
# ENV CC=/opt/rocm/llvm/bin/clang

View File

@@ -88,6 +88,7 @@ jobs:
-DGGML_METAL_SHADER_DEBUG=ON \
-DGGML_RPC=ON
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
leaks -atExit -- ./build/bin/test-thread-safety -hf ggml-org/gemma-3-270m-qat-GGUF -ngl 99 -p "$(printf 'hello %.0s' {1..128})" -n 16 -c 512 -ub 32 -np 2 -t 2 -lv 1
- name: Test
id: cmake_test
@@ -126,7 +127,8 @@ jobs:
-DCMAKE_BUILD_RPATH="@loader_path" \
-DLLAMA_FATAL_WARNINGS=ON \
-DGGML_METAL=OFF \
-DGGML_RPC=ON
-DGGML_RPC=ON \
-DCMAKE_OSX_DEPLOYMENT_TARGET=13.3
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
- name: Test
@@ -1050,9 +1052,13 @@ jobs:
run: examples/sycl/win-build-sycl.bat
windows-latest-cmake-hip:
if: ${{ github.event.inputs.create_release != 'true' }}
runs-on: windows-2022
env:
# The ROCm version must correspond to the version used in the HIP SDK.
ROCM_VERSION: "6.4.2"
HIPSDK_INSTALLER_VERSION: "25.Q3"
steps:
- name: Clone
id: checkout
@@ -1061,23 +1067,46 @@ jobs:
- name: Clone rocWMMA repository
id: clone_rocwmma
run: |
git clone https://github.com/rocm/rocwmma --branch rocm-6.2.4 --depth 1
git clone https://github.com/rocm/rocwmma --branch rocm-${{ env.ROCM_VERSION }} --depth 1
- name: Install
- name: Cache ROCm Installation
id: cache-rocm
uses: actions/cache@v4
with:
path: C:\Program Files\AMD\ROCm
key: rocm-${{ env.HIPSDK_INSTALLER_VERSION }}-${{ runner.os }}
- name: Install ROCm
if: steps.cache-rocm.outputs.cache-hit != 'true'
id: depends
run: |
$ErrorActionPreference = "Stop"
write-host "Downloading AMD HIP SDK Installer"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-${{ env.HIPSDK_INSTALLER_VERSION }}-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
write-host "Installing AMD HIP SDK"
$proc = Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -PassThru
$proc.WaitForExit(600000)
$completed = $proc.WaitForExit(600000)
if (-not $completed) {
Write-Error "ROCm installation timed out after 10 minutes. Killing the process"
$proc.Kill()
exit 1
}
if ($proc.ExitCode -ne 0) {
Write-Error "ROCm installation failed with exit code $($proc.ExitCode)"
exit 1
}
write-host "Completed AMD HIP SDK installation"
- name: Verify ROCm
id: verify
run: |
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
# Find and test ROCm installation
$clangPath = Get-ChildItem 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | Select-Object -First 1
if (-not $clangPath) {
Write-Error "ROCm installation not found"
exit 1
}
& $clangPath.FullName --version
- name: Install ccache
uses: ggml-org/ccache-action@v1.2.16

View File

@@ -17,7 +17,7 @@ jobs:
steps:
- uses: actions/stale@v5
with:
exempt-issue-labels: "refactoring,help wanted,good first issue,research,bug,roadmap"
exempt-issue-labels: "refactoring,help wanted,good first issue,research 🔬,bug,roadmap"
days-before-issue-stale: 30
days-before-issue-close: 14
stale-issue-label: "stale"

View File

@@ -108,7 +108,8 @@ jobs:
-DCMAKE_BUILD_WITH_INSTALL_RPATH=ON \
-DLLAMA_FATAL_WARNINGS=ON \
-DGGML_METAL=OFF \
-DGGML_RPC=ON
-DGGML_RPC=ON \
-DCMAKE_OSX_DEPLOYMENT_TARGET=13.3
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
- name: Determine tag name
@@ -528,11 +529,16 @@ jobs:
windows-hip:
runs-on: windows-2022
env:
# The ROCm version must correspond to the version used in the HIP SDK.
ROCM_VERSION: "6.4.2"
HIPSDK_INSTALLER_VERSION: "25.Q3"
strategy:
matrix:
include:
- name: "radeon"
gpu_targets: "gfx1100;gfx1101;gfx1102;gfx1030;gfx1031;gfx1032"
gpu_targets: "gfx1200;gfx1201;gfx1100;gfx1101;gfx1102;gfx1030;gfx1031;gfx1032"
steps:
- name: Clone
@@ -542,29 +548,52 @@ jobs:
- name: Clone rocWMMA repository
id: clone_rocwmma
run: |
git clone https://github.com/rocm/rocwmma --branch rocm-6.2.4 --depth 1
git clone https://github.com/rocm/rocwmma --branch rocm-${{ env.ROCM_VERSION }} --depth 1
- name: Cache ROCm Installation
id: cache-rocm
uses: actions/cache@v4
with:
path: C:\Program Files\AMD\ROCm
key: rocm-${{ env.HIPSDK_INSTALLER_VERSION }}-${{ runner.os }}
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: windows-latest-cmake-hip-${{ matrix.name }}-x64
key: windows-latest-cmake-hip-${{ env.HIPSDK_INSTALLER_VERSION }}-${{ matrix.name }}-x64
evict-old-files: 1d
- name: Install
- name: Install ROCm
if: steps.cache-rocm.outputs.cache-hit != 'true'
id: depends
run: |
$ErrorActionPreference = "Stop"
write-host "Downloading AMD HIP SDK Installer"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-${{ env.HIPSDK_INSTALLER_VERSION }}-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
write-host "Installing AMD HIP SDK"
$proc = Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -PassThru
$proc.WaitForExit(600000)
$completed = $proc.WaitForExit(600000)
if (-not $completed) {
Write-Error "ROCm installation timed out after 10 minutes. Killing the process"
$proc.Kill()
exit 1
}
if ($proc.ExitCode -ne 0) {
Write-Error "ROCm installation failed with exit code $($proc.ExitCode)"
exit 1
}
write-host "Completed AMD HIP SDK installation"
- name: Verify ROCm
id: verify
run: |
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
# Find and test ROCm installation
$clangPath = Get-ChildItem 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | Select-Object -First 1
if (-not $clangPath) {
Write-Error "ROCm installation not found"
exit 1
}
& $clangPath.FullName --version
- name: Build
id: cmake_build
@@ -585,9 +614,12 @@ jobs:
-DLLAMA_CURL=OFF
cmake --build build --target ggml-hip -j ${env:NUMBER_OF_PROCESSORS}
md "build\bin\rocblas\library\"
md "build\bin\hipblaslt\library"
cp "${env:HIP_PATH}\bin\hipblas.dll" "build\bin\"
cp "${env:HIP_PATH}\bin\hipblaslt.dll" "build\bin\"
cp "${env:HIP_PATH}\bin\rocblas.dll" "build\bin\"
cp "${env:HIP_PATH}\bin\rocblas\library\*" "build\bin\rocblas\library\"
cp "${env:HIP_PATH}\bin\hipblaslt\library\*" "build\bin\hipblaslt\library\"
- name: Pack artifacts
id: pack_artifacts

View File

@@ -16,6 +16,9 @@
- Use the following format for the squashed commit title: `<module> : <commit title> (#<issue_number>)`. For example: `utils : fix typo in utils.py (#1234)`
- Optionally pick a `<module>` from here: https://github.com/ggml-org/llama.cpp/wiki/Modules
- Consider adding yourself to [CODEOWNERS](CODEOWNERS)
- Let authors, who are also collaborators, merge their own PRs
- When merging a PR by a contributor, make sure you have a good understanding of the changes
- Be mindful of maintenance: most of the work going into a feature happens after the PR is merged. If the PR author is not committed to contribute long-term, someone else needs to take responsibility (you)
# Coding guidelines

View File

@@ -137,6 +137,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [X] [Trillion-7B-preview](https://huggingface.co/trillionlabs/Trillion-7B-preview)
- [x] [Ling models](https://huggingface.co/collections/inclusionAI/ling-67c51c85b34a7ea0aba94c32)
- [x] [LFM2 models](https://huggingface.co/collections/LiquidAI/lfm2-686d721927015b2ad73eaa38)
- [x] [Hunyuan models](https://huggingface.co/collections/tencent/hunyuan-dense-model-6890632cda26b19119c9c5e7)
#### Multimodal

View File

@@ -270,7 +270,9 @@ function gg_run_ctest_with_model_debug {
local model; model=$(gg_get_model)
cd build-ci-debug
set -e
(LLAMACPP_TEST_MODELFILE="$model" time ctest --output-on-failure -L model) 2>&1 | tee -a $OUT/${ci}-ctest.log
set +e
cd ..
}
@@ -281,7 +283,15 @@ function gg_run_ctest_with_model_release {
local model; model=$(gg_get_model)
cd build-ci-release
set -e
(LLAMACPP_TEST_MODELFILE="$model" time ctest --output-on-failure -L model) 2>&1 | tee -a $OUT/${ci}-ctest.log
# test memory leaks
#if [[ ! -z ${GG_BUILD_METAL} ]]; then
# # TODO: this hangs for some reason ...
# (time leaks -quiet -atExit -- ./bin/test-thread-safety -m $model --parallel 2 -t 2 -p "hello") 2>&1 | tee -a $OUT/${ci}-leaks.log
#fi
set +e
cd ..
}
@@ -386,10 +396,10 @@ function gg_run_open_llama_7b_v2 {
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@@ -520,8 +530,8 @@ function gg_run_pythia_1_4b {
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@@ -651,10 +661,10 @@ function gg_run_pythia_2_8b {
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@@ -860,10 +870,7 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
fi
ret=0
if [ -z ${GG_BUILD_SYCL} ]; then
# SYCL build breaks with debug build flags
test $ret -eq 0 && gg_run ctest_debug
fi
test $ret -eq 0 && gg_run ctest_debug
test $ret -eq 0 && gg_run ctest_release
if [ -z ${GG_BUILD_LOW_PERF} ]; then
@@ -871,9 +878,7 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
test $ret -eq 0 && gg_run rerank_tiny
if [ -z ${GG_BUILD_CLOUD} ] || [ ${GG_BUILD_EXTRA_TESTS_0} ]; then
if [ -z ${GG_BUILD_SYCL} ]; then
test $ret -eq 0 && gg_run test_scripts_debug
fi
test $ret -eq 0 && gg_run test_scripts_debug
test $ret -eq 0 && gg_run test_scripts_release
fi
@@ -884,9 +889,7 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
test $ret -eq 0 && gg_run pythia_2_8b
#test $ret -eq 0 && gg_run open_llama_7b_v2
fi
if [ -z ${GG_BUILD_SYCL} ]; then
test $ret -eq 0 && gg_run ctest_with_model_debug
fi
test $ret -eq 0 && gg_run ctest_with_model_debug
test $ret -eq 0 && gg_run ctest_with_model_release
fi
fi

View File

@@ -745,6 +745,124 @@ std::pair<long, std::vector<char>> common_remote_get_content(const std::string &
#endif // LLAMA_USE_CURL
//
// Docker registry functions
//
static std::string common_docker_get_token(const std::string & repo) {
std::string url = "https://auth.docker.io/token?service=registry.docker.io&scope=repository:" + repo + ":pull";
common_remote_params params;
auto res = common_remote_get_content(url, params);
if (res.first != 200) {
throw std::runtime_error("Failed to get Docker registry token, HTTP code: " + std::to_string(res.first));
}
std::string response_str(res.second.begin(), res.second.end());
nlohmann::ordered_json response = nlohmann::ordered_json::parse(response_str);
if (!response.contains("token")) {
throw std::runtime_error("Docker registry token response missing 'token' field");
}
return response["token"].get<std::string>();
}
static std::string common_docker_resolve_model(const std::string & docker) {
// Parse ai/smollm2:135M-Q4_K_M
size_t colon_pos = docker.find(':');
std::string repo, tag;
if (colon_pos != std::string::npos) {
repo = docker.substr(0, colon_pos);
tag = docker.substr(colon_pos + 1);
} else {
repo = docker;
tag = "latest";
}
// ai/ is the default
size_t slash_pos = docker.find('/');
if (slash_pos == std::string::npos) {
repo.insert(0, "ai/");
}
LOG_INF("%s: Downloading Docker Model: %s:%s\n", __func__, repo.c_str(), tag.c_str());
try {
// --- helper: digest validation ---
auto validate_oci_digest = [](const std::string & digest) -> std::string {
// Expected: algo:hex ; start with sha256 (64 hex chars)
// You can extend this map if supporting other algorithms in future.
static const std::regex re("^sha256:([a-fA-F0-9]{64})$");
std::smatch m;
if (!std::regex_match(digest, m, re)) {
throw std::runtime_error("Invalid OCI digest format received in manifest: " + digest);
}
// normalize hex to lowercase
std::string normalized = digest;
std::transform(normalized.begin()+7, normalized.end(), normalized.begin()+7, [](unsigned char c){
return std::tolower(c);
});
return normalized;
};
std::string token = common_docker_get_token(repo); // Get authentication token
// Get manifest
const std::string url_prefix = "https://registry-1.docker.io/v2/" + repo;
std::string manifest_url = url_prefix + "/manifests/" + tag;
common_remote_params manifest_params;
manifest_params.headers.push_back("Authorization: Bearer " + token);
manifest_params.headers.push_back(
"Accept: application/vnd.docker.distribution.manifest.v2+json,application/vnd.oci.image.manifest.v1+json");
auto manifest_res = common_remote_get_content(manifest_url, manifest_params);
if (manifest_res.first != 200) {
throw std::runtime_error("Failed to get Docker manifest, HTTP code: " + std::to_string(manifest_res.first));
}
std::string manifest_str(manifest_res.second.begin(), manifest_res.second.end());
nlohmann::ordered_json manifest = nlohmann::ordered_json::parse(manifest_str);
std::string gguf_digest; // Find the GGUF layer
if (manifest.contains("layers")) {
for (const auto & layer : manifest["layers"]) {
if (layer.contains("mediaType")) {
std::string media_type = layer["mediaType"].get<std::string>();
if (media_type == "application/vnd.docker.ai.gguf.v3" ||
media_type.find("gguf") != std::string::npos) {
gguf_digest = layer["digest"].get<std::string>();
break;
}
}
}
}
if (gguf_digest.empty()) {
throw std::runtime_error("No GGUF layer found in Docker manifest");
}
// Validate & normalize digest
gguf_digest = validate_oci_digest(gguf_digest);
LOG_DBG("%s: Using validated digest: %s\n", __func__, gguf_digest.c_str());
// Prepare local filename
std::string model_filename = repo;
std::replace(model_filename.begin(), model_filename.end(), '/', '_');
model_filename += "_" + tag + ".gguf";
std::string local_path = fs_get_cache_file(model_filename);
const std::string blob_url = url_prefix + "/blobs/" + gguf_digest;
if (!common_download_file_single(blob_url, local_path, token, false)) {
throw std::runtime_error("Failed to download Docker Model");
}
LOG_INF("%s: Downloaded Docker Model to: %s\n", __func__, local_path.c_str());
return local_path;
} catch (const std::exception & e) {
LOG_ERR("%s: Docker Model download failed: %s\n", __func__, e.what());
throw;
}
}
//
// utils
//
@@ -795,7 +913,9 @@ static handle_model_result common_params_handle_model(
handle_model_result result;
// handle pre-fill default model path and url based on hf_repo and hf_file
{
if (!model.hf_repo.empty()) {
if (!model.docker_repo.empty()) { // Handle Docker URLs by resolving them to local paths
model.path = common_docker_resolve_model(model.docker_repo);
} else if (!model.hf_repo.empty()) {
// short-hand to avoid specifying --hf-file -> default it to --model
if (model.hf_file.empty()) {
if (model.path.empty()) {
@@ -1106,7 +1226,7 @@ static void common_params_print_completion(common_params_context & ctx_arg) {
printf("\"\n\n");
printf(" case \"$prev\" in\n");
printf(" --model)\n");
printf(" --model|-m)\n");
printf(" COMPREPLY=( $(compgen -f -X '!*.gguf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
printf(" return 0\n");
printf(" ;;\n");
@@ -1184,7 +1304,7 @@ static std::vector<ggml_backend_dev_t> parse_device_list(const std::string & val
} else {
for (const auto & device : dev_names) {
auto * dev = ggml_backend_dev_by_name(device.c_str());
if (!dev || ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_GPU) {
if (!dev || ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
throw std::invalid_argument(string_format("invalid device: %s", device.c_str()));
}
devices.push_back(dev);
@@ -1194,7 +1314,7 @@ static std::vector<ggml_backend_dev_t> parse_device_list(const std::string & val
return devices;
}
static void add_rpc_devices(std::string servers) {
static void add_rpc_devices(const std::string & servers) {
auto rpc_servers = string_split<std::string>(servers, ',');
if (rpc_servers.empty()) {
throw std::invalid_argument("no RPC servers specified");
@@ -1263,6 +1383,18 @@ static std::string list_builtin_chat_templates() {
return msg.str();
}
static bool is_truthy(const std::string & value) {
return value == "on" || value == "enabled" || value == "1";
}
static bool is_falsey(const std::string & value) {
return value == "off" || value == "disabled" || value == "0";
}
static bool is_autoy(const std::string & value) {
return value == "auto" || value == "-1";
}
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
// load dynamic backends
ggml_backend_load_all();
@@ -1544,13 +1676,21 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.n_chunks = value;
}
).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_RETRIEVAL}));
add_opt(common_arg(
{"-fa", "--flash-attn"},
string_format("enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled"),
[](common_params & params) {
params.flash_attn = true;
}
).set_env("LLAMA_ARG_FLASH_ATTN"));
add_opt(common_arg({ "-fa", "--flash-attn" }, "[on|off|auto]",
string_format("set Flash Attention use ('on', 'off', or 'auto', default: '%s')",
llama_flash_attn_type_name(params.flash_attn_type)),
[](common_params & params, const std::string & value) {
if (is_truthy(value)) {
params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_ENABLED;
} else if (is_falsey(value)) {
params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_DISABLED;
} else if (is_autoy(value)) {
params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_AUTO;
} else {
throw std::runtime_error(
string_format("error: unkown value for --flash-attn: '%s'\n", value.c_str()));
}
}).set_env("LLAMA_ARG_FLASH_ATTN"));
add_opt(common_arg(
{"-p", "--prompt"}, "PROMPT",
"prompt to start generation with; for system message, use -sys",
@@ -2376,24 +2516,15 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--list-devices"},
"print list of available devices and exit",
[](common_params &) {
std::vector<ggml_backend_dev_t> rpc_devices;
std::vector<ggml_backend_dev_t> all_devices;
std::vector<ggml_backend_dev_t> devices;
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
auto * dev = ggml_backend_dev_get(i);
if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_GPU) {
ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
if (ggml_backend_reg_name(reg) == std::string("RPC")) {
rpc_devices.push_back(dev);
} else {
all_devices.push_back(dev);
}
if (ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_CPU) {
devices.push_back(dev);
}
}
// insert RPC devices in front
all_devices.insert(all_devices.begin(), rpc_devices.begin(), rpc_devices.end());
printf("Available devices:\n");
for (size_t i = 0; i < all_devices.size(); ++i) {
auto * dev = all_devices[i];
for (auto * dev : devices) {
size_t free, total;
ggml_backend_dev_memory(dev, &free, &total);
printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), total / 1024 / 1024, free / 1024 / 1024);
@@ -2458,7 +2589,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_N_CPU_MOE_DRAFT"));
add_opt(common_arg(
{"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
"number of layers to store in VRAM",
string_format("max. number of layers to store in VRAM (default: %d)", params.n_gpu_layers),
[](common_params & params, int value) {
params.n_gpu_layers = value;
if (!llama_supports_gpu_offload()) {
@@ -2555,7 +2686,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--lora"}, "FNAME",
"path to LoRA adapter (can be repeated to use multiple adapters)",
[](common_params & params, const std::string & value) {
params.lora_adapters.push_back({ std::string(value), 1.0, nullptr });
params.lora_adapters.push_back({ std::string(value), 1.0, "", "", nullptr });
}
// we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
@@ -2563,7 +2694,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--lora-scaled"}, "FNAME", "SCALE",
"path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters)",
[](common_params & params, const std::string & fname, const std::string & scale) {
params.lora_adapters.push_back({ fname, std::stof(scale), nullptr });
params.lora_adapters.push_back({ fname, std::stof(scale), "", "", nullptr });
}
// we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
@@ -2616,6 +2747,15 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.model.url = value;
}
).set_env("LLAMA_ARG_MODEL_URL"));
add_opt(common_arg(
{ "-dr", "--docker-repo" }, "[<repo>/]<model>[:quant]",
"Docker Hub model repository. repo is optional, default to ai/. quant is optional, default to :latest.\n"
"example: gemma3\n"
"(default: unused)",
[](common_params & params, const std::string & value) {
params.model.docker_repo = value;
}
).set_env("LLAMA_ARG_DOCKER_REPO"));
add_opt(common_arg(
{"-hf", "-hfr", "--hf-repo"}, "<user>/<model>[:quant]",
"Hugging Face model repository; quant is optional, case-insensitive, default to Q4_K_M, or falls back to the first file in the repo if Q4_K_M doesn't exist.\n"
@@ -2954,13 +3094,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.endpoint_metrics = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_METRICS"));
add_opt(common_arg(
{"--slots"},
string_format("enable slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"),
[](common_params & params) {
params.endpoint_slots = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS"));
add_opt(common_arg(
{"--props"},
string_format("enable changing global properties via POST /props (default: %s)", params.endpoint_props ? "enabled" : "disabled"),
@@ -2968,6 +3101,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.endpoint_props = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_PROPS"));
add_opt(common_arg(
{"--slots"},
string_format("enable slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"),
[](common_params & params) {
params.endpoint_slots = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS"));
add_opt(common_arg(
{"--no-slots"},
"disables slots monitoring endpoint",
@@ -3126,13 +3266,21 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
common_log_set_file(common_log_main(), value.c_str());
}
));
add_opt(common_arg(
{"--log-colors"},
"Enable colored logging",
[](common_params &) {
common_log_set_colors(common_log_main(), true);
}
).set_env("LLAMA_LOG_COLORS"));
add_opt(common_arg({ "--log-colors" }, "[on|off|auto]",
"Set colored logging ('on', 'off', or 'auto', default: 'auto')\n"
"'auto' enables colors when output is to a terminal",
[](common_params &, const std::string & value) {
if (is_truthy(value)) {
common_log_set_colors(common_log_main(), LOG_COLORS_ENABLED);
} else if (is_falsey(value)) {
common_log_set_colors(common_log_main(), LOG_COLORS_DISABLED);
} else if (is_autoy(value)) {
common_log_set_colors(common_log_main(), LOG_COLORS_AUTO);
} else {
throw std::invalid_argument(
string_format("error: unkown value for --log-colors: '%s'\n", value.c_str()));
}
}).set_env("LLAMA_LOG_COLORS"));
add_opt(common_arg(
{"-v", "--verbose", "--log-verbose"},
"Set verbosity level to infinity (i.e. log all messages, useful for debugging)",
@@ -3459,8 +3607,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF";
params.model.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf";
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
params.n_ubatch = 1024;
params.n_batch = 1024;
params.n_ctx = 0;
@@ -3475,8 +3621,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF";
params.model.hf_file = "qwen2.5-coder-3b-q8_0.gguf";
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
params.n_ubatch = 1024;
params.n_batch = 1024;
params.n_ctx = 0;
@@ -3491,8 +3635,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
params.n_ubatch = 1024;
params.n_batch = 1024;
params.n_ctx = 0;
@@ -3508,10 +3650,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.speculative.n_gpu_layers = 99;
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
params.n_ubatch = 1024;
params.n_batch = 1024;
params.n_ctx = 0;
@@ -3527,10 +3666,21 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.model.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.speculative.n_gpu_layers = 99;
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
params.n_ubatch = 1024;
params.n_batch = 1024;
params.n_ctx = 0;
params.n_cache_reuse = 256;
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--fim-qwen-30b-default"},
string_format("use default Qwen 3 Coder 30B A3B Instruct (note: can download weights from the internet)"),
[](common_params & params) {
params.model.hf_repo = "ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF";
params.model.hf_file = "qwen3-coder-30b-a3b-instruct-q8_0.gguf";
params.port = 8012;
params.n_ubatch = 1024;
params.n_batch = 1024;
params.n_ctx = 0;

View File

@@ -163,6 +163,19 @@ common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::strin
throw std::runtime_error("Invalid tool_choice: " + tool_choice);
}
bool common_chat_templates_support_enable_thinking(const common_chat_templates * chat_templates) {
common_chat_templates_inputs dummy_inputs;
common_chat_msg msg;
msg.role = "user";
msg.content = "test";
dummy_inputs.messages = {msg};
dummy_inputs.enable_thinking = false;
const auto rendered_no_thinking = common_chat_templates_apply(chat_templates, dummy_inputs);
dummy_inputs.enable_thinking = true;
const auto rendered_with_thinking = common_chat_templates_apply(chat_templates, dummy_inputs);
return rendered_no_thinking.prompt != rendered_with_thinking.prompt;
}
template <>
std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const json & messages) {
std::vector<common_chat_msg> msgs;
@@ -618,10 +631,13 @@ const char * common_chat_format_name(common_chat_format format) {
case COMMON_CHAT_FORMAT_FIREFUNCTION_V2: return "FireFunction v2";
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2: return "Functionary v3.2";
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1: return "Functionary v3.1 Llama 3.1";
case COMMON_CHAT_FORMAT_DEEPSEEK_V3_1: return "DeepSeek V3.1";
case COMMON_CHAT_FORMAT_HERMES_2_PRO: return "Hermes 2 Pro";
case COMMON_CHAT_FORMAT_COMMAND_R7B: return "Command R7B";
case COMMON_CHAT_FORMAT_GRANITE: return "Granite";
case COMMON_CHAT_FORMAT_GPT_OSS: return "GPT-OSS";
case COMMON_CHAT_FORMAT_SEED_OSS: return "Seed-OSS";
case COMMON_CHAT_FORMAT_NEMOTRON_V2: return "Nemotron V2";
default:
throw std::runtime_error("Unknown chat format");
}
@@ -683,11 +699,13 @@ static void parse_json_tool_calls(
size_t from = std::string::npos;
auto first = true;
while (true) {
auto start_pos = builder.pos();
auto res = function_regex_start_only && first
? builder.try_consume_regex(*function_regex_start_only)
: function_regex
? builder.try_find_regex(*function_regex, from)
: std::nullopt;
if (res) {
std::string name;
if (get_function_name) {
@@ -722,6 +740,8 @@ static void parse_json_tool_calls(
return;
}
throw common_chat_msg_partial_exception("incomplete tool call");
} else {
builder.move_to(start_pos);
}
break;
}
@@ -1183,6 +1203,67 @@ static common_chat_params common_chat_params_init_llama_3_x(const common_chat_te
});
return data;
}
static common_chat_params common_chat_params_init_nemotron_v2(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
// Generate the prompt using the apply() function with the template
data.prompt = apply(tmpl, inputs);
data.format = COMMON_CHAT_FORMAT_NEMOTRON_V2;
// Handle thinking tags appropriately based on inputs.enable_thinking
if (string_ends_with(data.prompt, "<think>\n")) {
if (!inputs.enable_thinking) {
data.prompt += "</think>";
} else {
data.thinking_forced_open = true;
}
}
// When tools are present, build grammar for the <TOOLCALL> format, similar to CommandR, but without tool call ID
if (!inputs.tools.is_null() && inputs.tools.is_array() && !inputs.tools.empty()) {
data.grammar_lazy = true;
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
auto schemas = json::array();
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool.at("function");
schemas.push_back({
{ "type", "object" },
{ "properties",
{
{ "name",
{
{ "type", "string" },
{ "const", function.at("name") },
} },
{ "arguments", function.at("parameters") },
} },
{ "required", json::array({ "name", "arguments" }) },
});
});
auto schema = json{
{ "type", "array" },
{ "items", schemas.size() == 1 ? schemas[0] : json{ { "anyOf", schemas } } },
{ "minItems", 1 },
};
if (!inputs.parallel_tool_calls) {
schema["maxItems"] = 1;
}
builder.add_rule("root",
std::string(data.thinking_forced_open ? "( \"</think>\" space )? " : "") +
"\"<TOOLCALL>\" " + builder.add_schema("tool_calls", schema) +
" \"</TOOLCALL>\"");
});
data.grammar_triggers.push_back({ COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
// If thinking_forced_open, then we capture the </think> tag in the grammar,
// (important for required tool choice) and in the trigger's first capture (decides what is sent to the grammar)
std::string(data.thinking_forced_open ?
"[\\s\\S]*?(</think>\\s*)" :
"(?:<think>[\\s\\S]*?</think>\\s*)?") +
"(<TOOLCALL>)[\\s\\S]*" });
}
return data;
}
static void common_chat_parse_llama_3_1(common_chat_msg_parser & builder, bool with_builtin_tools = false) {
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
@@ -1312,6 +1393,71 @@ static common_chat_params common_chat_params_init_deepseek_r1(const common_chat_
}
return data;
}
static common_chat_params common_chat_params_init_deepseek_v3_1(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
// Pass thinking context for DeepSeek V3.1 template
json additional_context = {
{"thinking", inputs.enable_thinking},
};
auto prompt = apply(tmpl, inputs,
/* messages_override= */ inputs.messages,
/* tools_override= */ std::nullopt,
additional_context);
data.prompt = prompt;
data.format = COMMON_CHAT_FORMAT_DEEPSEEK_V3_1;
if (string_ends_with(data.prompt, "<think>")) {
if (!inputs.enable_thinking) {
data.prompt += "</think>";
} else {
data.thinking_forced_open = true;
}
}
if (inputs.tools.is_array() && !inputs.tools.empty()) {
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED && inputs.json_schema.is_null();
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
std::vector<std::string> tool_rules;
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool.at("function");
std::string name = function.at("name");
auto parameters = function.at("parameters");
builder.resolve_refs(parameters);
tool_rules.push_back(builder.add_rule(name + "-call",
"( \"<tool▁call▁begin>\" )? \"" + name + "<tool▁sep>"
"\" " + builder.add_schema(name + "-args", parameters) + " "
"\"<tool▁call▁end>\""));
});
// Distill Qwen 7B & 32B models seem confused re/ syntax of their tool call opening tag,
// so we accept common variants (then it's all constrained)
builder.add_rule("root",
std::string(data.thinking_forced_open ? "( \"</think>\" space )? " : "") +
"( \"<tool▁calls▁begin>\" | \"<tool_calls_begin>\" | \"<tool calls begin>\" | \"<tool\\\\_calls\\\\_begin>\" | \"<tool▁calls>\" ) "
"(" + string_join(tool_rules, " | ") + ")" + (inputs.parallel_tool_calls ? "*" : "") + " "
"\"<tool▁calls▁end>\""
" space");
data.grammar_triggers.push_back({
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
// If thinking_forced_open, then we capture the </think> tag in the grammar,
// (important for required tool choice) and in the trigger's first capture (decides what is sent to the grammar)
std::string(data.thinking_forced_open ? "[\\s\\S]*?(</think>\\s*)" : "(?:<think>[\\s\\S]*?</think>\\s*)?") +
"(<tool▁calls▁begin>|<tool_calls_begin>|<tool calls begin>|<tool\\\\_calls\\\\_begin>|<tool▁calls>)[\\s\\S]*"
});
data.preserved_tokens = {
"<think>",
"</think>",
"<tool▁calls▁begin>",
"<tool▁call▁begin>",
"<tool▁sep>",
"<tool▁call▁end>",
"<tool▁calls▁end>",
};
});
}
return data;
}
static void common_chat_parse_deepseek_r1(common_chat_msg_parser & builder) {
builder.try_parse_reasoning("<think>", "</think>");
if (!builder.syntax().parse_tool_calls) {
@@ -1333,6 +1479,66 @@ static void common_chat_parse_deepseek_r1(common_chat_msg_parser & builder) {
tool_calls_end);
}
static void common_chat_parse_deepseek_v3_1_content(common_chat_msg_parser & builder) {
static const common_regex function_regex("(?:<tool▁call▁begin>)?([^\\n<]+)(?:<tool▁sep>)");
static const common_regex close_regex("(?:[\\s]*)?<tool▁call▁end>");
static const common_regex tool_calls_begin("(?:<tool▁calls▁begin>|<tool_calls_begin>|<tool calls begin>|<tool\\\\_calls\\\\_begin>|<tool▁calls>)");
static const common_regex tool_calls_end("<tool▁calls▁end>");
if (!builder.syntax().parse_tool_calls) {
LOG_DBG("%s: not parse_tool_calls\n", __func__);
builder.add_content(builder.consume_rest());
return;
}
LOG_DBG("%s: parse_tool_calls\n", __func__);
parse_json_tool_calls(
builder,
/* block_open= */ tool_calls_begin,
/* function_regex_start_only= */ std::nullopt,
function_regex,
close_regex,
tool_calls_end);
}
static void common_chat_parse_deepseek_v3_1(common_chat_msg_parser & builder) {
// DeepSeek V3.1 outputs reasoning content between "<think>" and "</think>" tags, followed by regular content
// First try to parse using the standard reasoning parsing method
LOG_DBG("%s: thinking_forced_open: %s\n", __func__, std::to_string(builder.syntax().thinking_forced_open).c_str());
auto start_pos = builder.pos();
auto found_end_think = builder.try_find_literal("</think>");
builder.move_to(start_pos);
if (builder.syntax().thinking_forced_open && !builder.is_partial() && !found_end_think) {
LOG_DBG("%s: no end_think, not partial, adding content\n", __func__);
common_chat_parse_deepseek_v3_1_content(builder);
} else if (builder.try_parse_reasoning("<think>", "</think>")) {
// If reasoning was parsed successfully, the remaining content is regular content
LOG_DBG("%s: parsed reasoning, adding content\n", __func__);
// </think><tool▁calls▁begin><tool▁call▁begin>function<tool▁sep>NAME\n```json\nJSON\n```<tool▁call▁end><tool▁calls▁end>
common_chat_parse_deepseek_v3_1_content(builder);
} else {
if (builder.syntax().reasoning_format == COMMON_REASONING_FORMAT_NONE) {
LOG_DBG("%s: reasoning_format none, adding content\n", __func__);
common_chat_parse_deepseek_v3_1_content(builder);
return;
}
// If no reasoning tags found, check if we should treat everything as reasoning
if (builder.syntax().thinking_forced_open) {
// If thinking is forced open but no tags found, treat everything as reasoning
LOG_DBG("%s: thinking_forced_open, adding reasoning content\n", __func__);
builder.add_reasoning_content(builder.consume_rest());
} else {
LOG_DBG("%s: no thinking_forced_open, adding content\n", __func__);
// <tool▁call▁begin>NAME<tool▁sep>JSON<tool▁call▁end>
common_chat_parse_deepseek_v3_1_content(builder);
}
}
}
static common_chat_params common_chat_params_init_gpt_oss(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
auto prompt = apply(tmpl, inputs);
@@ -1829,7 +2035,7 @@ static common_chat_params common_chat_params_init_hermes_2_pro(const common_chat
// If thinking_forced_open, then we capture the </think> tag in the grammar,
// (important for required tool choice) and in the trigger's first capture (decides what is sent to the grammar)
std::string(data.thinking_forced_open ? "[\\s\\S]*?(</think>\\s*)" : "(?:<think>[\\s\\S]*?</think>\\s*)?") + (
"(\\s*"
"\\s*("
"(?:<tool_call>"
"|<function"
"|(?:```(?:json|xml)?\n\\s*)?(?:<function_call>|<tools>|<xml><json>|<response>)?"
@@ -2059,6 +2265,121 @@ static void common_chat_parse_granite(common_chat_msg_parser & builder) {
}
}
static void common_chat_parse_nemotron_v2(common_chat_msg_parser & builder) {
// Parse thinking tags
builder.try_parse_reasoning("<think>", "</think>");
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
// Look for tool calls
static const common_regex tool_call_regex(regex_escape("<TOOLCALL>"));
if (auto res = builder.try_find_regex(tool_call_regex)) {
builder.move_to(res->groups[0].end);
// Expect JSON array of tool calls
auto tool_calls_data = builder.consume_json();
if (tool_calls_data.json.is_array()) {
if (!builder.try_consume_literal("</TOOLCALL>")) {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
builder.add_tool_calls(tool_calls_data.json);
} else {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
}
builder.add_content(builder.consume_rest());
}
static void common_chat_parse_seed_oss(common_chat_msg_parser & builder) {
// Parse thinking tags first - this handles the main reasoning content
builder.try_parse_reasoning("<seed:think>", "</seed:think>");
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
// Parse tool calls - Seed-OSS uses <seed:tool_call> format
static const common_regex tool_call_begin_regex("<seed:tool_call>");
static const common_regex tool_call_end_regex("</seed:tool_call>");
static const common_regex function_regex("<function=([^>]+)>");
static const common_regex param_regex("<parameter=([^>]+)>");
while (auto tool_res = builder.try_find_regex(tool_call_begin_regex)) {
builder.consume_spaces(); // Consume whitespace after <seed:tool_call>
// Look for function call inside tool call, ignore any content before it
if (auto func_res = builder.try_find_regex(function_regex, std::string::npos, false)) {
auto function_name = builder.str(func_res->groups[1]);
// Parse Seed-OSS parameters <parameter=name>value</parameter>
json args = json::object();
// Parse all parameters
while (auto param_res = builder.try_find_regex(param_regex, std::string::npos, false)) {
// again, ignore noise around parameters
auto param_name = builder.str(param_res->groups[1]);
builder.move_to(param_res->groups[0].end);
builder.consume_spaces(); // Consume whitespace after parameter
auto savedPos = builder.pos();
if (auto param_parse = builder.try_find_literal("</parameter>")) {
auto param = param_parse->prelude;
builder.move_to(savedPos);
try {
if (auto param_res = builder.try_consume_json()) {
args[param_name] = param_res->json;
} else {
args[param_name] = param;
}
} catch (json::exception &) {
args[param_name] = param;
}
} else {
throw common_chat_msg_partial_exception("Incomplete tool parameter");
}
}
// Look for closing function tag
auto end_func = builder.try_find_literal("</function>");
if (end_func) {
builder.move_to(end_func->groups[0].end);
builder.consume_spaces(); // Consume whitespace after </function>
// Add the tool call with parsed arguments, but only if we REALLY got the literal
auto eaten_fragment = builder.input().substr(end_func->groups[0].begin, end_func->groups[0].end);
auto funlen = std::string("</function>").length();
if (eaten_fragment.length() >= funlen && eaten_fragment.substr(0, funlen) == std::string("</function>")) {
if (!builder.add_tool_call(function_name, "", args.dump())) {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
} else {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
} else {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
// Look for closing tool call tag
if (auto end_tool = builder.try_find_regex(tool_call_end_regex, std::string::npos, false)) {
builder.move_to(end_tool->groups[0].end);
builder.consume_spaces(); // Consume trailing whitespace after tool call
} else {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
} else {
// No function found - don't consume content here, let it be handled at the end
break;
}
}
// Consume any remaining whitespace after all tool call processing
builder.consume_spaces();
auto remaining = builder.consume_rest();
// If there's any non-whitespace content remaining, add it as content
if (!string_strip(remaining).empty()) {
builder.add_content(remaining);
}
}
static common_chat_params common_chat_params_init_without_tools(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
data.prompt = apply(tmpl, inputs);
@@ -2075,8 +2396,62 @@ static common_chat_params common_chat_params_init_without_tools(const common_cha
return data;
}
static common_chat_params common_chat_params_init_seed_oss(
const common_chat_template & tmpl,
templates_params & params,
const common_chat_templates_inputs & inputs)
{
common_chat_params data;
data.prompt = apply(tmpl, params);
data.format = COMMON_CHAT_FORMAT_SEED_OSS;
if (string_ends_with(data.prompt, "<seed:think>")) {
if (!inputs.enable_thinking) {
data.prompt += "</seed:think>";
} else {
data.thinking_forced_open = true;
}
}
if (params.tools.is_array() && !params.tools.empty()) {
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
std::vector<std::string> tool_rules;
foreach_function(params.tools, [&](const json & tool) {
const auto & function = tool.at("function");
std::string name = function.at("name");
auto parameters = function.at("parameters");
builder.resolve_refs(parameters);
// Create rule for Seed-OSS function call format
std::string param_rules;
if (parameters.contains("properties")) {
for (const auto & [key, value] : parameters.at("properties").items()) {
param_rules += "\"<parameter=" + key + ">\"" + builder.add_schema(name + "-arg-" + key, value) +
"\"</parameter>\"";
}
}
tool_rules.push_back(builder.add_rule(name + "-call",
"\"<seed:tool_call>\" space \"<function=" + name + ">\" space " +
param_rules +
" \"</function>\" space \"</seed:tool_call>\""));
});
data.grammar_triggers.push_back({ COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<seed:tool_call>" });
data.preserved_tokens = {
"<seed:think>", "</seed:think>", "<seed:tool_call>", "</seed:tool_call>",
"<function=", "</function>", "<parameter=", "</parameter>",
};
builder.add_rule("root", string_join(tool_rules, " | "));
});
}
return data;
}
static common_chat_params common_chat_templates_apply_jinja(
const struct common_chat_templates * tmpls,
const struct common_chat_templates * tmpls,
const struct common_chat_templates_inputs & inputs)
{
templates_params params;
@@ -2120,6 +2495,12 @@ static common_chat_params common_chat_templates_apply_jinja(
}
}
// DeepSeek V3.1: detect based on specific patterns in the template
if (src.find("message['prefix'] is defined and message['prefix'] and thinking") != std::string::npos &&
params.json_schema.is_null()) {
return common_chat_params_init_deepseek_v3_1(tmpl, params);
}
// DeepSeek R1: use handler in all cases except json schema (thinking / tools).
if (src.find("<tool▁calls▁begin>") != std::string::npos && params.json_schema.is_null()) {
return common_chat_params_init_deepseek_r1(tmpl, params);
@@ -2145,6 +2526,16 @@ static common_chat_params common_chat_templates_apply_jinja(
return common_chat_params_init_gpt_oss(tmpl, params);
}
// Seed-OSS
if (src.find("<seed:think>") != std::string::npos) {
return common_chat_params_init_seed_oss(tmpl, params, inputs);
}
// Nemotron v2
if (src.find("<SPECIAL_10>") != std::string::npos) {
return common_chat_params_init_nemotron_v2(tmpl, params);
}
// Use generic handler when mixing tools + JSON schema.
// TODO: support that mix in handlers below.
if ((params.tools.is_array() && params.json_schema.is_object())) {
@@ -2282,6 +2673,9 @@ static void common_chat_parse(common_chat_msg_parser & builder) {
case COMMON_CHAT_FORMAT_DEEPSEEK_R1:
common_chat_parse_deepseek_r1(builder);
break;
case COMMON_CHAT_FORMAT_DEEPSEEK_V3_1:
common_chat_parse_deepseek_v3_1(builder);
break;
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2:
common_chat_parse_functionary_v3_2(builder);
break;
@@ -2303,6 +2697,12 @@ static void common_chat_parse(common_chat_msg_parser & builder) {
case COMMON_CHAT_FORMAT_GPT_OSS:
common_chat_parse_gpt_oss(builder);
break;
case COMMON_CHAT_FORMAT_SEED_OSS:
common_chat_parse_seed_oss(builder);
break;
case COMMON_CHAT_FORMAT_NEMOTRON_V2:
common_chat_parse_nemotron_v2(builder);
break;
default:
throw std::runtime_error(std::string("Unsupported format: ") + common_chat_format_name(builder.syntax().format));
}

View File

@@ -107,10 +107,13 @@ enum common_chat_format {
COMMON_CHAT_FORMAT_FIREFUNCTION_V2,
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2,
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1,
COMMON_CHAT_FORMAT_DEEPSEEK_V3_1,
COMMON_CHAT_FORMAT_HERMES_2_PRO,
COMMON_CHAT_FORMAT_COMMAND_R7B,
COMMON_CHAT_FORMAT_GRANITE,
COMMON_CHAT_FORMAT_GPT_OSS,
COMMON_CHAT_FORMAT_SEED_OSS,
COMMON_CHAT_FORMAT_NEMOTRON_V2,
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
};
@@ -197,6 +200,8 @@ common_chat_msg common_chat_parse(const std::string & input, bool is_p
common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::string & tool_choice);
bool common_chat_templates_support_enable_thinking(const common_chat_templates * chat_templates);
// Parses a JSON array of messages in OpenAI's chat completion API format.
// T can be std::string containing JSON or nlohmann::ordered_json
template <class T> std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const T & messages);

View File

@@ -901,7 +901,8 @@ struct common_init_result common_init_from_params(common_params & params) {
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
if (model == NULL) {
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.path.c_str());
LOG_ERR("%s: failed to load model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n",
__func__, params.model.path.c_str());
return iparams;
}
@@ -911,7 +912,8 @@ struct common_init_result common_init_from_params(common_params & params) {
llama_context * lctx = llama_init_from_model(model, cparams);
if (lctx == NULL) {
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str());
LOG_ERR("%s: failed to create context with model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n",
__func__, params.model.path.c_str());
llama_model_free(model);
return iparams;
}
@@ -988,7 +990,12 @@ struct common_init_result common_init_from_params(common_params & params) {
return iparams;
}
char buf[1024];
la.ptr = lora.get();
llama_adapter_meta_val_str(la.ptr, "adapter.lora.task_name", buf, sizeof(buf));
la.task_name = buf;
llama_adapter_meta_val_str(la.ptr, "adapter.lora.prompt_prefix", buf, sizeof(buf));
la.prompt_prefix = buf;
iparams.lora.emplace_back(std::move(lora)); // copy to list of loaded adapters
}
@@ -1152,10 +1159,10 @@ struct llama_context_params common_context_params_to_llama(const common_params &
cparams.yarn_orig_ctx = params.yarn_orig_ctx;
cparams.pooling_type = params.pooling_type;
cparams.attention_type = params.attention_type;
cparams.flash_attn_type = params.flash_attn_type;
cparams.cb_eval = params.cb_eval;
cparams.cb_eval_user_data = params.cb_eval_user_data;
cparams.offload_kqv = !params.no_kv_offload;
cparams.flash_attn = params.flash_attn;
cparams.no_perf = params.no_perf;
cparams.op_offload = !params.no_op_offload;
cparams.swa_full = params.swa_full;

View File

@@ -34,6 +34,9 @@ struct common_adapter_lora_info {
std::string path;
float scale;
std::string task_name;
std::string prompt_prefix;
struct llama_adapter_lora * ptr;
};
@@ -190,10 +193,11 @@ struct common_params_sampling {
};
struct common_params_model {
std::string path = ""; // model local path // NOLINT
std::string url = ""; // model url to download // NOLINT
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string path = ""; // model local path // NOLINT
std::string url = ""; // model url to download // NOLINT
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string docker_repo = ""; // Docker repo // NOLINT
};
struct common_params_speculative {
@@ -284,9 +288,9 @@ struct common_params {
float rope_freq_base = 0.0f; // RoPE base frequency
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
float yarn_beta_fast = 32.0f; // YaRN low correction dim
float yarn_beta_slow = 1.0f; // YaRN high correction dim
float yarn_attn_factor = -1.0f; // YaRN magnitude scaling factor
float yarn_beta_fast = -1.0f; // YaRN low correction dim
float yarn_beta_slow = -1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length
// offload params
@@ -309,6 +313,7 @@ struct common_params {
enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
enum llama_flash_attn_type flash_attn_type = LLAMA_FLASH_ATTN_TYPE_AUTO; // whether to use Flash Attention
struct common_params_sampling sampling;
struct common_params_speculative speculative;
@@ -372,7 +377,6 @@ struct common_params {
bool multiline_input = false; // reverse the usage of `\`
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
bool cont_batching = true; // insert new sequences for decoding on-the-fly
bool flash_attn = false; // flash attention
bool no_perf = false; // disable performance metrics
bool ctx_shift = false; // context shift on infinite text generation
bool swa_full = false; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
@@ -441,7 +445,7 @@ struct common_params {
// "advanced" endpoints are disabled by default for better security
bool webui = true;
bool endpoint_slots = false;
bool endpoint_slots = true;
bool endpoint_props = false; // only control POST requests, not GET
bool endpoint_metrics = false;
@@ -449,7 +453,7 @@ struct common_params {
std::string slot_save_path;
float slot_prompt_similarity = 0.5f;
float slot_prompt_similarity = 0.1f;
// batched-bench params
bool is_pp_shared = false;

View File

@@ -843,9 +843,10 @@ public:
_build_object_rule(
properties, required, name,
schema.contains("additionalProperties") ? schema["additionalProperties"] : json()));
} else if ((schema_type.is_null() || schema_type == "object") && schema.contains("allOf")) {
} else if ((schema_type.is_null() || schema_type == "object" || schema_type == "string") && schema.contains("allOf")) {
std::unordered_set<std::string> required;
std::vector<std::pair<std::string, json>> properties;
std::map<std::string, size_t> enum_values;
std::string hybrid_name = name;
std::function<void(const json &, bool)> add_component = [&](const json & comp_schema, bool is_required) {
if (comp_schema.contains("$ref")) {
@@ -857,6 +858,14 @@ public:
required.insert(prop.key());
}
}
} else if (comp_schema.contains("enum")) {
for (const auto & v : comp_schema["enum"]) {
const auto rule = _generate_constant_rule(v);
if (enum_values.find(rule) == enum_values.end()) {
enum_values[rule] = 0;
}
enum_values[rule] += 1;
}
} else {
// todo warning
}
@@ -870,6 +879,17 @@ public:
add_component(t, true);
}
}
if (!enum_values.empty()) {
std::vector<std::string> enum_intersection;
for (const auto & p : enum_values) {
if (p.second == schema["allOf"].size()) {
enum_intersection.push_back(p.first);
}
}
if (!enum_intersection.empty()) {
return _add_rule(rule_name, "(" + string_join(enum_intersection, " | ") + ") space");
}
}
return _add_rule(rule_name, _build_object_rule(properties, required, hybrid_name, json()));
} else if ((schema_type.is_null() || schema_type == "array") && (schema.contains("items") || schema.contains("prefixItems"))) {
json items = schema.contains("items") ? schema["items"] : schema["prefixItems"];

View File

@@ -4,17 +4,52 @@
#include <condition_variable>
#include <cstdarg>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <mutex>
#include <sstream>
#include <thread>
#include <vector>
#if defined(_WIN32)
# include <io.h>
# include <windows.h>
# define isatty _isatty
# define fileno _fileno
#else
# include <unistd.h>
#endif // defined(_WIN32)
int common_log_verbosity_thold = LOG_DEFAULT_LLAMA;
void common_log_set_verbosity_thold(int verbosity) {
common_log_verbosity_thold = verbosity;
}
// Auto-detect if colors should be enabled based on terminal and environment
static bool common_log_should_use_colors_auto() {
// Check NO_COLOR environment variable (https://no-color.org/)
if (const char * no_color = std::getenv("NO_COLOR")) {
if (no_color[0] != '\0') {
return false;
}
}
// Check TERM environment variable
if (const char * term = std::getenv("TERM")) {
if (std::strcmp(term, "dumb") == 0) {
return false;
}
}
// Check if stdout and stderr are connected to a terminal
// We check both because log messages can go to either
bool stdout_is_tty = isatty(fileno(stdout));
bool stderr_is_tty = isatty(fileno(stderr));
return stdout_is_tty || stderr_is_tty;
}
static int64_t t_us() {
return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::system_clock::now().time_since_epoch()).count();
}
@@ -353,6 +388,11 @@ struct common_log * common_log_init() {
struct common_log * common_log_main() {
static struct common_log log;
static std::once_flag init_flag;
std::call_once(init_flag, [&]() {
// Set default to auto-detect colors
log.set_colors(common_log_should_use_colors_auto());
});
return &log;
}
@@ -380,8 +420,19 @@ void common_log_set_file(struct common_log * log, const char * file) {
log->set_file(file);
}
void common_log_set_colors(struct common_log * log, bool colors) {
log->set_colors(colors);
void common_log_set_colors(struct common_log * log, log_colors colors) {
if (colors == LOG_COLORS_AUTO) {
log->set_colors(common_log_should_use_colors_auto());
return;
}
if (colors == LOG_COLORS_DISABLED) {
log->set_colors(false);
return;
}
GGML_ASSERT(colors == LOG_COLORS_ENABLED);
log->set_colors(true);
}
void common_log_set_prefix(struct common_log * log, bool prefix) {

View File

@@ -24,6 +24,12 @@
#define LOG_DEFAULT_DEBUG 1
#define LOG_DEFAULT_LLAMA 0
enum log_colors {
LOG_COLORS_AUTO = -1,
LOG_COLORS_DISABLED = 0,
LOG_COLORS_ENABLED = 1,
};
// needed by the LOG_TMPL macro to avoid computing log arguments if the verbosity lower
// set via common_log_set_verbosity()
extern int common_log_verbosity_thold;
@@ -65,10 +71,10 @@ void common_log_add(struct common_log * log, enum ggml_log_level level, const ch
// D - debug (stderr, V = LOG_DEFAULT_DEBUG)
//
void common_log_set_file (struct common_log * log, const char * file); // not thread-safe
void common_log_set_colors (struct common_log * log, bool colors); // not thread-safe
void common_log_set_prefix (struct common_log * log, bool prefix); // whether to output prefix to each log
void common_log_set_timestamps(struct common_log * log, bool timestamps); // whether to output timestamps in the prefix
void common_log_set_file (struct common_log * log, const char * file); // not thread-safe
void common_log_set_colors (struct common_log * log, log_colors colors); // not thread-safe
void common_log_set_prefix (struct common_log * log, bool prefix); // whether to output prefix to each log
void common_log_set_timestamps(struct common_log * log, bool timestamps); // whether to output timestamps in the prefix
// helper macros for logging
// use these to avoid computing log arguments if the verbosity of the log is higher than the threshold

View File

@@ -426,8 +426,29 @@ uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
// helpers
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl) {
return &gsmpl->cur_p;
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl, bool do_sort) {
auto * res = &gsmpl->cur_p;
if (do_sort && !res->sorted) {
// remember the selected token before sorting
const llama_token id = res->data[res->selected].id;
std::sort(res->data, res->data + res->size, [](const llama_token_data & a, const llama_token_data & b) {
return a.p > b.p;
});
// restore the selected token after sorting
for (size_t i = 0; i < res->size; ++i) {
if (res->data[i].id == id) {
res->selected = i;
break;
}
}
res->sorted = true;
}
return res;
}
llama_token common_sampler_last(const struct common_sampler * gsmpl) {

View File

@@ -86,7 +86,9 @@ uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl);
// helpers
// access the internal list of current candidate tokens
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl);
// if do_sort == true, the candidates are guaranteed to be sorted afterwards (in descending order of probability)
// the .sorted flag of the result indicates whether the returned candidates are sorted
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl, bool do_sort);
// get the last accepted token
llama_token common_sampler_last(const struct common_sampler * gsmpl);

View File

@@ -317,7 +317,7 @@ llama_tokens common_speculative_gen_draft(
common_sampler_sample(smpl, ctx_dft, 0, true);
const auto * cur_p = common_sampler_get_candidates(smpl);
const auto * cur_p = common_sampler_get_candidates(smpl, true);
for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) {
LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n",

View File

@@ -72,6 +72,7 @@ class ModelBase:
endianess: gguf.GGUFEndian
use_temp_file: bool
lazy: bool
dry_run: bool
part_names: list[str]
is_safetensors: bool
hparams: dict[str, Any]
@@ -111,6 +112,7 @@ class ModelBase:
self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
self.use_temp_file = use_temp_file
self.lazy = not eager or (remote_hf_model_id is not None)
self.dry_run = dry_run
self.remote_hf_model_id = remote_hf_model_id
if remote_hf_model_id is not None:
self.is_safetensors = True
@@ -300,10 +302,6 @@ class ModelBase:
# data = data_torch.squeeze().numpy()
data = data_torch.numpy()
# if data ends up empty, it means data_torch was a scalar tensor -> restore
if len(data.shape) == 0:
data = data_torch.numpy()
n_dims = len(data.shape)
data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
@@ -737,6 +735,9 @@ class TextModel(ModelBase):
if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
# ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
res = "qwen2"
if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
# ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
res = "grok-2"
if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
# ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
res = "llama-bpe"
@@ -2684,12 +2685,20 @@ class BitnetModel(TextModel):
yield (new_name, data_torch)
@ModelBase.register("GrokForCausalLM")
@ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
class GrokModel(TextModel):
model_arch = gguf.MODEL_ARCH.GROK
def set_vocab(self):
self._set_vocab_sentencepiece()
if (self.dir_model / 'tokenizer.model').is_file():
self._set_vocab_sentencepiece()
return
if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
sys.exit(1)
self._set_vocab_gpt2()
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
@@ -2697,11 +2706,46 @@ class GrokModel(TextModel):
def set_gguf_parameters(self):
super().set_gguf_parameters()
_experts: list[dict[str, Tensor]] | None = None
self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
if (rope_dim := self.hparams.get("head_dim")) is None:
rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
# Treat "original" as "yarn", seems to have been a mistake
if self.hparams.get("rope_type") in ("yarn", "original"):
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
if temp_len := self.hparams.get("attn_temperature_len"):
self.gguf_writer.add_attn_temperature_length(temp_len)
self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
_experts: list[dict[str, list[Tensor]]] | None = None
_cur_expert = ""
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
tensors: list[tuple[str, Tensor]] = []
is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
if not is_expert:
tensors.append((self.map_tensor_name(name), data_torch))
# process the experts separately
if name.find(".moe.") != -1:
if is_expert or self._cur_expert:
n_experts = self.hparams["num_local_experts"]
assert bid is not None
@@ -2709,32 +2753,41 @@ class GrokModel(TextModel):
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
tensors: list[tuple[str, Tensor]] = []
# merge the experts into a single 3d tensor
for wid in ["linear", "linear_1", "linear_v"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
return tensors
else:
# concatenate split tensors
if name in self._experts[bid]:
self._cur_expert = name
self._experts[bid][name].append(data_torch)
return []
elif is_expert:
self._cur_expert = name
self._experts[bid][name] = [data_torch]
return []
else:
self._cur_expert = ""
return [(self.map_tensor_name(name), data_torch)]
for bid in range(self.block_count):
if len(self._experts[bid]) >= n_experts * 3:
# merge the experts into a single 3d tensor
for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
if ename not in self._experts[bid]:
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
tensor_list = self._experts[bid][ename]
datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
new_name = self.map_tensor_name(merged_name)
yield (new_name, data_torch)
yield from tensors
@ModelBase.register("DbrxForCausalLM")
@@ -4871,11 +4924,35 @@ class NeoBert(BertModel):
@ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
class XLMRobertaModel(BertModel):
model_arch = gguf.MODEL_ARCH.BERT
_lora_files = {}
_lora_names = []
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
hparams = kwargs.pop("hparams", None)
if hparams is None:
hparams = ModelBase.load_hparams(dir_model, False)
if lora_names := hparams.get("lora_adaptations"):
self._lora_names = lora_names
self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
self._xlmroberta_tokenizer_init()
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
if self._lora_names:
for name in self._lora_names:
fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
return super().generate_extra_tensors()
def set_type(self):
for lora_writer in self._lora_files.values():
lora_writer.add_type(gguf.GGUFType.ADAPTER)
lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
super().set_type()
def set_vocab(self):
self._xlmroberta_set_vocab()
@@ -4885,13 +4962,62 @@ class XLMRobertaModel(BertModel):
if name.startswith("roberta."):
name = name[8:]
# jina-embeddings-v3
if ".parametrizations." in name:
name = name.replace(".parametrizations.", ".")
if name.endswith(".original"):
name = name[:-9]
# position embeddings start at pad_token_id + 1, so just chop down the weight tensor
if name == "embeddings.position_embeddings.weight":
if self._position_offset is not None:
data_torch = data_torch[self._position_offset:,:]
if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
if name.startswith("pooler.dense"):
return []
num_loras = data_torch.size(0)
assert num_loras == len(self._lora_names)
# Split out each LoRA in their own GGUF
for i, lora_writer in enumerate(self._lora_files.values()):
new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
data = data_torch[i, :, :]
# Transpose/flip token_embd/types into correct shape
if new_name == "token_embd.weight.lora_b":
data = data.T
elif new_name.startswith("token_types.weight."):
new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
return []
return super().modify_tensors(data_torch, name, bid)
def set_gguf_parameters(self):
super().set_gguf_parameters()
# jina-embeddings-v3
if rotary_emb_base := self.hparams.get("rotary_emb_base"):
self.gguf_writer.add_rope_freq_base(rotary_emb_base)
lora_alpha = self.hparams.get("lora_alpha")
if lora_prompt_prefixes := self.hparams.get("task_instructions"):
assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
for lora_name, lora_writer in self._lora_files.items():
lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
if lora_prompt_prefixes:
lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
def write(self):
super().write()
for lora_writer in self._lora_files.values():
lora_writer.write_header_to_file()
lora_writer.write_kv_data_to_file()
lora_writer.write_tensors_to_file(progress=True)
lora_writer.close()
@ModelBase.register("GemmaForCausalLM")
class GemmaModel(TextModel):
@@ -5051,6 +5177,29 @@ class Gemma3Model(TextModel):
return [(self.map_tensor_name(name), data_torch)]
@ModelBase.register("Gemma3TextModel")
class EmbeddingGemma(Gemma3Model):
model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
def set_gguf_parameters(self):
super().set_gguf_parameters()
# Override the sliding window size as it gets adjusted by the Gemma3TextConfig
# constructor. We want to use the value from the original model's config.json.
# ref: https://github.com/huggingface/transformers/pull/40700
with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
config = json.load(f)
orig_sliding_window = config.get("sliding_window")
if orig_sliding_window is None:
raise ValueError("sliding_window not found in model config - this is required for the model")
logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
f"instead of {self.hparams['sliding_window']}")
self.gguf_writer.add_sliding_window(orig_sliding_window)
self._try_set_pooling_type()
@ModelBase.register("Gemma3ForConditionalGeneration")
class Gemma3VisionModel(MmprojModel):
def set_gguf_parameters(self):
@@ -6607,6 +6756,8 @@ class T5Model(TextModel):
self.gguf_writer.add_embedding_length(self.hparams["d_model"])
self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
self.gguf_writer.add_block_count(self.hparams["num_layers"])
if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
self.gguf_writer.add_decoder_block_count(dec_n_layer)
self.gguf_writer.add_head_count(self.hparams["num_heads"])
self.gguf_writer.add_key_length(self.hparams["d_kv"])
self.gguf_writer.add_value_length(self.hparams["d_kv"])
@@ -7471,9 +7622,13 @@ class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
]
# n_group and d_inner are used during reshape_tensors for mamba2
self.d_model = self.find_hparam(["hidden_size", "d_model"])
self.n_group = self.find_hparam(["n_groups"])
self.d_inner = self.find_hparam(["expand"]) * self.d_model
# NOTE: Explicitly include hparam prefix prefix for d_model to
# disambiguate with top-level head_dim
# NOTE 2: If needed for future models, this can be isolated in a method
# to separate the prefix setting and teh keys used
self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
self.n_group = self.find_hparam(["n_groups", "num_groups"])
self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
def get_attn_layers(self):
# Explicit list of layer type names
@@ -7534,12 +7689,12 @@ class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
## Mamba mixer params ##
self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state"]))
self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
self.gguf_writer.add_ssm_group_count(self.n_group)
self.gguf_writer.add_ssm_inner_size(self.d_inner)
# NOTE: The mamba_dt_rank is _not_ the right field for how this is used
# in llama.cpp
self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads"]))
self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
## Attention params ##
head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
@@ -7566,6 +7721,55 @@ class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
Mamba2Model.set_vocab(self)
@ModelBase.register("NemotronHForCausalLM")
class NemotronHModel(GraniteHybridModel):
"""Hybrid mamba2/attention model from NVIDIA"""
model_arch = gguf.MODEL_ARCH.NEMOTRON_H
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# Save the top-level head_dim for later
self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
assert self.head_dim is not None, "Could not find the attention head dim in config"
# Don't use expand to calculate d_inner
self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
# Update the ssm / attn / mlp layers
# M: Mamba2, *: Attention, -: MLP
hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "-"]
def get_attn_layers(self):
hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_key_length(self.head_dim)
self.gguf_writer.add_value_length(self.head_dim)
# Set feed_forward_length
# NOTE: This will trigger an override warning. This is preferrable to
# duplicating all the parent logic
n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
self.gguf_writer.add_feed_forward_length([
n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
])
def set_vocab(self):
super().set_vocab()
# The tokenizer _does_ add a BOS token (via post_processor type
# TemplateProcessing) but does not set add_bos_token to true in the
# config, so we need to explicitly override it here.
self.gguf_writer.add_add_bos_token(True)
@ModelBase.register("BailingMoeForCausalLM")
class BailingMoeModel(TextModel):
model_arch = gguf.MODEL_ARCH.BAILINGMOE

View File

@@ -158,6 +158,7 @@ pre_computed_hashes = [
{"name": "falcon-h1", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon-H1-34B-Base", "chkhsh": "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b"},
{"name": "kimi-k2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/moonshotai/Kimi-K2-Base", "chkhsh": "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890"},
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen3-Embedding-0.6B", "chkhsh": "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c"},
{"name": "grok-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/alvarobartt/grok-2-tokenizer", "chkhsh": "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273"},
]

View File

@@ -12,7 +12,7 @@ import json
from math import prod
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Iterable, Iterator, Sequence, SupportsIndex, cast
from transformers import AutoConfig
from transformers import AutoConfig, AutoTokenizer
import torch
@@ -26,6 +26,8 @@ import gguf
# reuse model definitions from convert_hf_to_gguf.py
from convert_hf_to_gguf import LazyTorchTensor, ModelBase
from gguf.constants import GGUFValueType
logger = logging.getLogger("lora-to-gguf")
@@ -369,7 +371,31 @@ if __name__ == '__main__':
self.gguf_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
def set_gguf_parameters(self):
logger.debug("GGUF KV: %s = %d", gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha)
self.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha)
alora_invocation_tokens = lparams.get("alora_invocation_tokens")
invocation_string = lparams.get("invocation_string")
if invocation_string and not alora_invocation_tokens:
logger.debug("Tokenizing invocation_string -> alora_invocation_tokens")
base_model_path_or_id = hparams.get("_name_or_path")
try:
tokenizer = AutoTokenizer.from_pretrained(base_model_path_or_id)
except ValueError:
logger.error("Unable to load tokenizer from %s", base_model_path_or_id)
raise
# NOTE: There's an off-by-one with the older aLoRAs where
# the invocation string includes the "<|start_of_turn|>"
# token, but the adapters themselves were trained to
# activate _after_ that first token, so we drop it here.
alora_invocation_tokens = tokenizer(invocation_string)["input_ids"][1:]
if alora_invocation_tokens:
logger.debug("GGUF KV: %s = %s", gguf.Keys.Adapter.ALORA_INVOCATION_TOKENS, alora_invocation_tokens)
self.gguf_writer.add_key_value(
gguf.Keys.Adapter.ALORA_INVOCATION_TOKENS,
alora_invocation_tokens,
GGUFValueType.ARRAY,
GGUFValueType.UINT32,
)
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
# Never add extra tensors (e.g. rope_freqs) for LoRA adapters

View File

@@ -293,17 +293,14 @@ We would like to thank Tuo Dai, Shanni Li, and all of the project maintainers fr
## Environment variable setup
### GGML_CANN_ASYNC_MODE
Enables asynchronous operator submission. Disabled by default.
### GGML_CANN_MEM_POOL
Specifies the memory pool management strategy:
Specifies the memory pool management strategy, Default is vmm.
- vmm: Utilizes a virtual memory manager pool. If hardware support for VMM is unavailable, falls back to the legacy (leg) memory pool.
- prio: Employs a priority queue-based memory pool management.
- leg: Uses a fixed-size buffer pool.
### GGML_CANN_DISABLE_BUF_POOL_CLEAN
@@ -312,5 +309,16 @@ Controls automatic cleanup of the memory pool. This option is only effective whe
### GGML_CANN_WEIGHT_NZ
Converting the matmul weight format from ND to NZ can significantly improve performance on the 310I DUO NPU.
Converting the matmul weight format from ND to NZ to improve performance. Enabled by default.
### GGML_CANN_ACL_GRAPH
Operators are executed using ACL graph execution, rather than in op-by-op (eager) mode. Enabled by default.
### GGML_CANN_GRAPH_CACHE_CAPACITY
Maximum number of compiled CANN graphs kept in the LRU cache, default is 12. When the number of cached graphs exceeds this capacity, the least recently used graph will be evicted.
### GGML_CANN_PREFILL_USE_GRAPH
Enable ACL graph execution during the prefill stage, default is false. This option is only effective when FA is enabled.

View File

@@ -42,18 +42,6 @@ cmake --build build --config Release -j $(nproc)
cmake --build build --config Release -j $(nproc)
```
- By default, NNPA is disabled by default. To enable it:
```bash
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_BLAS=ON \
-DGGML_BLAS_VENDOR=OpenBLAS \
-DGGML_NNPA=ON
cmake --build build --config Release -j $(nproc)
```
- For debug builds:
```bash
@@ -164,15 +152,11 @@ All models need to be converted to Big-Endian. You can achieve this in three cas
Only available in IBM z15/LinuxONE 3 or later system with the `-DGGML_VXE=ON` (turned on by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z14/arch12. In such systems, the APIs can still run but will use a scalar implementation.
### 2. NNPA Vector Intrinsics Acceleration
Only available in IBM z16/LinuxONE 4 or later system with the `-DGGML_NNPA=ON` (turned off by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z15/arch13. In such systems, the APIs can still run but will use a scalar implementation.
### 3. zDNN Accelerator (WIP)
### 2. zDNN Accelerator (WIP)
Only available in IBM z17/LinuxONE 5 or later system with the `-DGGML_ZDNN=ON` compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z15/arch13. In such systems, the APIs will default back to CPU routines.
### 4. Spyre Accelerator
### 3. Spyre Accelerator
_Only available with IBM z17 / LinuxONE 5 or later system. No support currently available._
@@ -230,10 +214,6 @@ IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongl
CXXFLAGS="-include cstdint" pip3 install -r requirements.txt
```
5. `-DGGML_NNPA=ON` generates gibberish output
Answer: We are aware of this as detailed in [this issue](https://github.com/ggml-org/llama.cpp/issues/14877). Please either try reducing the number of threads, or disable the compile option using `-DGGML_NNPA=OFF`.
## Getting Help on IBM Z & LinuxONE
1. **Bugs, Feature Requests**
@@ -258,38 +238,38 @@ IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongl
## Appendix B: SIMD Support Matrix
| | VX/VXE/VXE2 | NNPA | zDNN | Spyre |
| ---------- | ----------- | ---- | ---- | ----- |
| FP32 | ✅ | ✅ | ✅ | ❓ |
| FP16 | ✅ | ✅ | ❓ | ❓ |
| BF16 | 🚫 | 🚫 | ❓ | ❓ |
| Q4_0 | ✅ | ✅ | ❓ | ❓ |
| Q4_1 | ✅ | ✅ | ❓ | ❓ |
| MXFP4 | 🚫 | 🚫 | ❓ | ❓ |
| Q5_0 | ✅ | ✅ | ❓ | ❓ |
| Q5_1 | ✅ | ✅ | ❓ | ❓ |
| Q8_0 | ✅ | ✅ | ❓ | ❓ |
| Q2_K | 🚫 | 🚫 | ❓ | ❓ |
| Q3_K | ✅ | ✅ | ❓ | ❓ |
| Q4_K | ✅ | ✅ | ❓ | ❓ |
| Q5_K | ✅ | ✅ | ❓ | ❓ |
| Q6_K | ✅ | ✅ | ❓ | ❓ |
| TQ1_0 | 🚫 | 🚫 | ❓ | ❓ |
| TQ2_0 | 🚫 | 🚫 | ❓ | ❓ |
| IQ2_XXS | 🚫 | 🚫 | ❓ | ❓ |
| IQ2_XS | 🚫 | 🚫 | ❓ | ❓ |
| IQ2_S | 🚫 | 🚫 | ❓ | ❓ |
| IQ3_XXS | 🚫 | 🚫 | ❓ | ❓ |
| IQ3_S | 🚫 | 🚫 | ❓ | ❓ |
| IQ1_S | 🚫 | 🚫 | ❓ | ❓ |
| IQ1_M | 🚫 | 🚫 | ❓ | ❓ |
| IQ4_NL | ✅ | ✅ | ❓ | ❓ |
| IQ4_XS | ✅ | ✅ | ❓ | ❓ |
| FP32->FP16 | 🚫 | ✅ | ❓ | ❓ |
| FP16->FP32 | 🚫 | ✅ | ❓ | ❓ |
| | VX/VXE/VXE2 | zDNN | Spyre |
|------------|-------------|------|-------|
| FP32 | ✅ | ✅ | ❓ |
| FP16 | ✅ | ✅ | ❓ |
| BF16 | 🚫 | | ❓ |
| Q4_0 | ✅ | ❓ | ❓ |
| Q4_1 | ✅ | ❓ | ❓ |
| MXFP4 | 🚫 | ❓ | ❓ |
| Q5_0 | ✅ | ❓ | ❓ |
| Q5_1 | ✅ | ❓ | ❓ |
| Q8_0 | ✅ | ❓ | ❓ |
| Q2_K | 🚫 | ❓ | ❓ |
| Q3_K | ✅ | ❓ | ❓ |
| Q4_K | ✅ | ❓ | ❓ |
| Q5_K | ✅ | ❓ | ❓ |
| Q6_K | ✅ | ❓ | ❓ |
| TQ1_0 | 🚫 | ❓ | ❓ |
| TQ2_0 | 🚫 | ❓ | ❓ |
| IQ2_XXS | 🚫 | ❓ | ❓ |
| IQ2_XS | 🚫 | ❓ | ❓ |
| IQ2_S | 🚫 | ❓ | ❓ |
| IQ3_XXS | 🚫 | ❓ | ❓ |
| IQ3_S | 🚫 | ❓ | ❓ |
| IQ1_S | 🚫 | ❓ | ❓ |
| IQ1_M | 🚫 | ❓ | ❓ |
| IQ4_NL | ✅ | ❓ | ❓ |
| IQ4_XS | ✅ | ❓ | ❓ |
| FP32->FP16 | 🚫 | ❓ | ❓ |
| FP16->FP32 | 🚫 | ❓ | ❓ |
- ✅ - acceleration available
- 🚫 - acceleration unavailable, will still run using scalar implementation
- ❓ - acceleration unknown, please contribute if you can test it yourself
Last Updated by **Aaron Teo (aaron.teo1@ibm.com)** on Aug 22, 2025.
Last Updated by **Aaron Teo (aaron.teo1@ibm.com)** on Sep 7, 2025.

View File

@@ -59,8 +59,6 @@ cmake --build build --config Release
cmake --preset arm64-windows-llvm-release -D GGML_OPENMP=OFF
cmake --build build-arm64-windows-llvm-release
```
Building for arm64 can also be done with the MSVC compiler with the build-arm64-windows-MSVC preset, or the standard CMake build instructions. However, note that the MSVC compiler does not support inline ARM assembly code, used e.g. for the accelerated Q4_0_N_M CPU kernels.
For building with ninja generator and clang compiler as default:
-set path:set LIB=C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.41.34120\lib\x64\uwp;C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\x64
```bash

View File

@@ -21,6 +21,8 @@ Function calling is supported for all models (see https://github.com/ggml-org/ll
- Use `--chat-template-file` to override the template when appropriate (see examples below)
- Generic support may consume more tokens and be less efficient than a model's native format.
- Multiple/parallel tool calling is supported on some models but disabled by default, enable it by passing `"parallel_tool_calls": true` in the completion endpoint payload.
<details>
<summary>Show some common templates and which format handler they use</summary>

View File

@@ -18,6 +18,7 @@ Legend:
| ACC | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| ADD | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| ADD1 | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
| ADD_ID | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
@@ -26,6 +27,7 @@ Legend:
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| CONV_2D | ❌ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ |
| CONV_2D_DW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| CONV_3D | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| CONV_TRANSPOSE_2D | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ |
@@ -49,9 +51,11 @@ Legend:
| GET_ROWS | ❌ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| GET_ROWS_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ |
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| GROUP_NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| HARDSIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| HARDSWISH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| IM2COL | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ | ❌ |
| IM2COL_3D | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| L2_NORM | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| LOG | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
@@ -61,7 +65,9 @@ Legend:
| MUL_MAT_ID | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ❌ |
| NEG | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| OPT_STEP_ADAMW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| OPT_STEP_SGD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
| PAD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ |
@@ -98,6 +104,7 @@ Legend:
| SUM | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
| SUM_ROWS | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| SWIGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| SWIGLU_OAI | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | 🟡 | ❌ |
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ❌ |

File diff suppressed because it is too large Load Diff

View File

@@ -333,17 +333,17 @@ static void print_params(struct my_llama_hparams * params) {
}
static void print_tensor_info(const struct ggml_context * ctx) {
for (auto t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
for (auto * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
LOG_INF("%s: Allocating ", __func__);
int64_t total = 1;
int i = 0;
for (; i < ggml_n_dims(t); ++i) {
if (i > 0) LOG("x ");
LOG("[%" PRId64 "] ", t->ne[i]);
if (i > 0) { LOG_INF("x "); }
LOG_INF("[%" PRId64 "] ", t->ne[i]);
total *= t->ne[i];
}
if (i > 1) LOG("= [%" PRId64 "] ", total);
LOG("float space for %s\n", ggml_get_name(t));
if (i > 1) { LOG_INF("= [%" PRId64 "] ", total); }
LOG_INF("float space for %s\n", ggml_get_name(t));
}
}

View File

@@ -564,7 +564,7 @@ int main(int argc, char ** argv) {
ctx_params.n_ctx = params.n_ctx;
ctx_params.n_batch = params.n_batch;
ctx_params.n_ubatch = params.n_ubatch;
ctx_params.flash_attn = params.flash_attn;
ctx_params.flash_attn_type = params.flash_attn_type;
ctx_params.no_perf = params.no_perf;
ctx_params.type_k = params.cache_type_k;
ctx_params.type_v = params.cache_type_v;

View File

@@ -28,9 +28,51 @@ static std::string ggml_ne_string(const ggml_tensor * t) {
return str;
}
static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) {
union {
float f;
uint32_t i;
} u;
u.i = (uint32_t)h.bits << 16;
return u.f;
}
static float ggml_get_float_value(uint8_t * data, ggml_type type, const size_t * nb, size_t i0, size_t i1, size_t i2, size_t i3) {
size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
float v;
if (type == GGML_TYPE_F16) {
v = ggml_fp16_to_fp32(*(ggml_fp16_t *) &data[i]);
} else if (type == GGML_TYPE_F32) {
v = *(float *) &data[i];
} else if (type == GGML_TYPE_I64) {
v = (float) *(int64_t *) &data[i];
} else if (type == GGML_TYPE_I32) {
v = (float) *(int32_t *) &data[i];
} else if (type == GGML_TYPE_I16) {
v = (float) *(int16_t *) &data[i];
} else if (type == GGML_TYPE_I8) {
v = (float) *(int8_t *) &data[i];
} else if (type == GGML_TYPE_BF16) {
v = ggml_compute_bf16_to_fp32(*(ggml_bf16_t *) &data[i]);
} else {
GGML_ABORT("fatal error");
}
return v;
}
static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) {
GGML_ASSERT(n > 0);
float sum = 0;
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
for (int64_t i2 = 0; i2 < ne[2]; i2++) {
for (int64_t i1 = 0; i1 < ne[1]; i1++) {
for (int64_t i0 = 0; i0 < ne[0]; i0++) {
const float v = ggml_get_float_value(data, type, nb, i0, i1, i2, i3);
sum += v;
}
}
}
}
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
LOG(" [\n");
for (int64_t i2 = 0; i2 < ne[2]; i2++) {
@@ -50,25 +92,8 @@ static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne
LOG("..., ");
i0 = ne[0] - n;
}
size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
float v;
if (type == GGML_TYPE_F16) {
v = ggml_fp16_to_fp32(*(ggml_fp16_t *) &data[i]);
} else if (type == GGML_TYPE_F32) {
v = *(float *) &data[i];
} else if (type == GGML_TYPE_I64) {
v = (float) *(int64_t *) &data[i];
} else if (type == GGML_TYPE_I32) {
v = (float) *(int32_t *) &data[i];
} else if (type == GGML_TYPE_I16) {
v = (float) *(int16_t *) &data[i];
} else if (type == GGML_TYPE_I8) {
v = (float) *(int8_t *) &data[i];
} else {
GGML_ABORT("fatal error");
}
const float v = ggml_get_float_value(data, type, nb, i0, i1, i2, i3);
LOG("%12.4f", v);
sum += v;
if (i0 < ne[0] - 1) LOG(", ");
}
LOG("],\n");

View File

@@ -586,9 +586,10 @@ class SchemaConverter:
properties = list(schema.get('properties', {}).items())
return self._add_rule(rule_name, self._build_object_rule(properties, required, name, schema.get('additionalProperties')))
elif schema_type in (None, 'object') and 'allOf' in schema:
elif schema_type in (None, 'object', 'string') and 'allOf' in schema:
required = set()
properties = []
enum_sets = []
hybrid_name = name
def add_component(comp_schema, is_required):
if (ref := comp_schema.get('$ref')) is not None:
@@ -600,6 +601,9 @@ class SchemaConverter:
if is_required:
required.add(prop_name)
if 'enum' in comp_schema:
enum_sets.append(set(comp_schema['enum']))
for t in schema['allOf']:
if 'anyOf' in t:
for tt in t['anyOf']:
@@ -607,6 +611,15 @@ class SchemaConverter:
else:
add_component(t, is_required=True)
if enum_sets:
enum_intersection = enum_sets[0]
for s in enum_sets[1:]:
enum_intersection &= s
if enum_intersection:
rule = '(' + ' | '.join((self._generate_constant_rule(v) for v in sorted(enum_intersection))) + ') space'
return self._add_rule(rule_name, rule)
return self._add_rule(rule_name, self._build_object_rule(properties, required, hybrid_name, additional_properties=None))
elif schema_type in (None, 'array') and ('items' in schema or 'prefixItems' in schema):

View File

@@ -37,6 +37,20 @@ causal-convert-model:
METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
./scripts/causal/convert-model.sh
causal-convert-mm-model-bf16: OUTTYPE=bf16
causal-convert-mm-model-bf16: MM_OUTTYPE=f16
causal-convert-mm-model-bf16: causal-convert-mm-model
causal-convert-mm-model:
$(call validate_model_path,causal-convert-mm-model)
@MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(OUTTYPE)" MODEL_PATH="$(MODEL_PATH)" \
METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
./scripts/causal/convert-model.sh
@MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(MM_OUTTYPE)" MODEL_PATH="$(MODEL_PATH)" \
METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
./scripts/causal/convert-model.sh --mmproj
causal-run-original-model:
$(call validate_model_path,causal-run-original-model)
@MODEL_PATH="$(MODEL_PATH)" ./scripts/causal/run-org-model.py
@@ -49,7 +63,7 @@ causal-verify-logits: causal-run-original-model causal-run-converted-model
@MODEL_PATH="$(MODEL_PATH)" ./scripts/utils/check-nmse.py -m ${MODEL_PATH}
causal-run-original-embeddings:
@./scripts/causal/run-casual-gen-embeddings-org.sh
@./scripts/causal/run-casual-gen-embeddings-org.py
causal-run-converted-embeddings:
@./scripts/causal/run-converted-model-embeddings-logits.sh

View File

@@ -1,5 +1,6 @@
--extra-index-url https://download.pytorch.org/whl/cpu
torch~=2.6.0
torchvision~=0.21.0
transformers~=4.55.0
huggingface-hub~=0.34.0
torch
torchvision
transformers
huggingface-hub
accelerate

View File

@@ -1,4 +1,4 @@
#/bin/bash
#!/usr/bin/env bash
set -e

View File

@@ -1,4 +1,20 @@
#!/bin/bash
#!/usr/bin/env bash
set -e
# Parse command line arguments
MMPROJ=""
while [[ $# -gt 0 ]]; do
case $1 in
--mmproj)
MMPROJ="--mmproj"
shift
;;
*)
shift
;;
esac
done
MODEL_NAME="${MODEL_NAME:-$(basename "$MODEL_PATH")}"
OUTPUT_DIR="${OUTPUT_DIR:-../../models}"
@@ -11,12 +27,20 @@ echo "Model name: ${MODEL_NAME}"
echo "Data type: ${TYPE}"
echo "Converted model path:: ${CONVERTED_MODEL}"
echo "Metadata override: ${METADATA_OVERRIDE}"
python ../../convert_hf_to_gguf.py --verbose \
${MODEL_PATH} \
--outfile ${CONVERTED_MODEL} \
--outtype ${TYPE} \
--metadata "${METADATA_OVERRIDE}"
CMD_ARGS=("python" "../../convert_hf_to_gguf.py" "--verbose")
CMD_ARGS+=("${MODEL_PATH}")
CMD_ARGS+=("--outfile" "${CONVERTED_MODEL}")
CMD_ARGS+=("--outtype" "${TYPE}")
[[ -n "$METADATA_OVERRIDE" ]] && CMD_ARGS+=("--metadata" "${METADATA_OVERRIDE}")
[[ -n "$MMPROJ" ]] && CMD_ARGS+=("${MMPROJ}")
"${CMD_ARGS[@]}"
echo ""
echo "The environment variable CONVERTED_MODEL can be set to this path using:"
echo "export CONVERTED_MODEL=$(realpath ${CONVERTED_MODEL})"
if [[ -n "$MMPROJ" ]]; then
mmproj_file="${OUTPUT_DIR}/mmproj-$(basename "${CONVERTED_MODEL}")"
echo "The mmproj model was created in $(realpath "$mmproj_file")"
fi

View File

@@ -3,11 +3,10 @@
import argparse
import os
import importlib
import sys
import torch
import numpy as np
from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForCausalLM
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM
from pathlib import Path
unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
@@ -43,6 +42,8 @@ if unreleased_model_name:
model = model_class.from_pretrained(model_path)
except (ImportError, AttributeError) as e:
print(f"Failed to import or load model: {e}")
print("Falling back to AutoModelForCausalLM")
model = AutoModelForCausalLM.from_pretrained(model_path)
else:
model = AutoModelForCausalLM.from_pretrained(model_path)
print(f"Model class: {type(model)}")

View File

@@ -1,4 +1,4 @@
#!/bin/bash
#!/usr/bin/env bash
set -e

View File

@@ -1,4 +1,4 @@
#!/bin/bash
#!/usr/bin/env bash
set -e

View File

@@ -9,15 +9,134 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
import torch
import numpy as np
unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
### If you want to dump RoPE activations, apply this monkey patch to the model
### class from Transformers that you are running (replace apertus.modeling_apertus
### with the proper package and class for your model
### === START ROPE DEBUG ===
# from transformers.models.apertus.modeling_apertus import apply_rotary_pos_emb
parser = argparse.ArgumentParser(description='Process model with specified path')
parser.add_argument('--model-path', '-m', help='Path to the model')
# orig_rope = apply_rotary_pos_emb
# torch.set_printoptions(threshold=float('inf'))
# torch.set_printoptions(precision=6, sci_mode=False)
# def debug_rope(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
# # log inputs
# summarize(q, "RoPE.q_in")
# summarize(k, "RoPE.k_in")
# # call original
# q_out, k_out = orig_rope(q, k, cos, sin, position_ids, unsqueeze_dim)
# # log outputs
# summarize(q_out, "RoPE.q_out")
# summarize(k_out, "RoPE.k_out")
# return q_out, k_out
# # Patch it
# import transformers.models.apertus.modeling_apertus as apertus_mod # noqa: E402
# apertus_mod.apply_rotary_pos_emb = debug_rope
### == END ROPE DEBUG ===
def summarize(tensor: torch.Tensor, name: str, max_seq: int = 3, max_vals: int = 3):
"""
Print a tensor in llama.cpp debug style.
Supports:
- 2D tensors (seq, hidden)
- 3D tensors (batch, seq, hidden)
- 4D tensors (batch, seq, heads, dim_per_head) via flattening heads × dim_per_head
Shows first and last max_vals of each vector per sequence position.
"""
t = tensor.detach().to(torch.float32).cpu()
# Determine dimensions
if t.ndim == 3:
_, s, _ = t.shape
elif t.ndim == 2:
_, s = 1, t.shape[0]
t = t.unsqueeze(0)
elif t.ndim == 4:
_, s, _, _ = t.shape
else:
print(f"Skipping tensor due to unsupported dimensions: {t.ndim}")
return
ten_shape = t.shape
print(f"ggml_debug: {name} = (f32) ... = {{{ten_shape}}}")
print(" [")
print(" [")
# Determine indices for first and last sequences
first_indices = list(range(min(s, max_seq)))
last_indices = list(range(max(0, s - max_seq), s))
# Check if there's an overlap between first and last indices or if we're at the edge case of s = 2 * max_seq
has_overlap = bool(set(first_indices) & set(last_indices)) or (max_seq * 2 == s)
# Combine indices
if has_overlap:
# If there's overlap, just use the combined unique indices
indices = sorted(list(set(first_indices + last_indices)))
separator_index = None
else:
# If no overlap, we'll add a separator between first and last sequences
indices = first_indices + last_indices
separator_index = len(first_indices)
for i, si in enumerate(indices):
# Add separator if needed
if separator_index is not None and i == separator_index:
print(" ...")
# Extract appropriate slice
vec = t[0, si]
if vec.ndim == 2: # 4D case: flatten heads × dim_per_head
flat = vec.flatten().tolist()
else: # 2D or 3D case
flat = vec.tolist()
# First and last slices
first = flat[:max_vals]
last = flat[-max_vals:] if len(flat) >= max_vals else flat
first_str = ", ".join(f"{v:12.4f}" for v in first)
last_str = ", ".join(f"{v:12.4f}" for v in last)
print(f" [{first_str}, ..., {last_str}]")
print(" ],")
print(" ]")
print(f" sum = {t.sum().item():.6f}\n")
def debug_hook(name):
def fn(_m, input, output):
if isinstance(input, torch.Tensor):
summarize(input, name + "_in")
elif isinstance(input, (tuple, list)) and isinstance(input[0], torch.Tensor):
summarize(input[0], name + "_in")
if isinstance(output, torch.Tensor):
summarize(output, name + "_out")
elif isinstance(output, (tuple, list)) and isinstance(output[0], torch.Tensor):
summarize(output[0], name + "_out")
return fn
unreleased_model_name = os.getenv("UNRELEASED_MODEL_NAME")
parser = argparse.ArgumentParser(description="Process model with specified path")
parser.add_argument("--model-path", "-m", help="Path to the model")
args = parser.parse_args()
model_path = os.environ.get('MODEL_PATH', args.model_path)
model_path = os.environ.get("MODEL_PATH", args.model_path)
if model_path is None:
parser.error("Model path must be specified either via --model-path argument or MODEL_PATH environment variable")
parser.error(
"Model path must be specified either via --model-path argument or MODEL_PATH environment variable"
)
config = AutoConfig.from_pretrained(model_path)
@@ -34,18 +153,30 @@ config = AutoConfig.from_pretrained(model_path)
if unreleased_model_name:
model_name_lower = unreleased_model_name.lower()
unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
unreleased_module_path = (
f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
)
class_name = f"{unreleased_model_name}ForCausalLM"
print(f"Importing unreleased model module: {unreleased_module_path}")
try:
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
model = model_class.from_pretrained(model_path) # Note: from_pretrained, not fromPretrained
model_class = getattr(
importlib.import_module(unreleased_module_path), class_name
)
model = model_class.from_pretrained(
model_path
) # Note: from_pretrained, not fromPretrained
except (ImportError, AttributeError) as e:
print(f"Failed to import or load model: {e}")
exit(1)
else:
model = AutoModelForCausalLM.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path, device_map="auto", offload_folder="offload"
)
for name, module in model.named_modules():
if len(list(module.children())) == 0: # only leaf modules
module.register_forward_hook(debug_hook(name))
model_name = os.path.basename(model_path)
# Printing the Model class to allow for easier debugging. This can be useful

View File

@@ -1,4 +1,4 @@
#/bin/bash
#!/usr/bin/env bash
set -e

View File

@@ -1,4 +1,4 @@
#!/bin/bash
#!/usr/bin/env bash
set -e

View File

@@ -7,7 +7,7 @@ base_model:
Recommended way to run this model:
```sh
llama-server -hf {namespace}/{model_name}-GGUF
llama-server -hf {namespace}/{model_name}-GGUF --embeddings
```
Then the endpoint can be accessed at http://localhost:8080/embedding, for

View File

@@ -1,4 +1,4 @@
#!/bin/bash
#!/usr/bin/env bash
set -e

View File

@@ -1,4 +1,6 @@
#!/usr/bin/env bash
COLLECTION_SLUG=$(python ./create_collection.py --return-slug)
echo "Created collection: $COLLECTION_SLUG"

View File

@@ -0,0 +1,6 @@
#!/usr/bin/env bash
curl --request POST \
--url http://localhost:8080/embedding \
--header "Content-Type: application/json" \
--data '{"input": "Hello world today"}' \
--silent

View File

@@ -1,4 +1,4 @@
#!/bin/bash
#!/usr/bin/env bash
# First try command line argument, then environment variable, then file
CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}"

View File

@@ -40,7 +40,7 @@ if os.path.exists(index_path):
file_path = os.path.join(model_path, file_name)
print(f"\n--- From {file_name} ---")
with safe_open(file_path, framework="pt") as f:
with safe_open(file_path, framework="pt") as f: # type: ignore
for tensor_name in sorted(tensor_names):
tensor = f.get_tensor(tensor_name)
print(f"- {tensor_name} : shape = {tensor.shape}, dtype = {tensor.dtype}")
@@ -49,7 +49,7 @@ elif os.path.exists(single_file_path):
# Single file model (original behavior)
print("Single-file model detected")
with safe_open(single_file_path, framework="pt") as f:
with safe_open(single_file_path, framework="pt") as f: # type: ignore
keys = f.keys()
print("Tensors in model:")
for key in sorted(keys):

View File

@@ -1,4 +1,4 @@
#!/bin/bash
#!/usr/bin/env bash
set -e

View File

@@ -1,4 +1,4 @@
#!/bin/bash
#!/usr/bin/env bash
set -e

View File

@@ -1,4 +1,4 @@
#!/bin/bash
#!/usr/bin/env bash
set -e

View File

@@ -1,4 +1,4 @@
#!/bin/bash
#!/usr/bin/env bash
set -e

View File

@@ -1,4 +1,4 @@
#!/bin/bash
#!/usr/bin/env bash
set -e
#

View File

@@ -244,7 +244,7 @@ int main(int argc, char ** argv) {
// stochastic verification
common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true);
auto & dist_tgt = *common_sampler_get_candidates(smpl);
auto & dist_tgt = *common_sampler_get_candidates(smpl, true);
float p_tgt = 0.0f;
float p_dft = 0.0f;
@@ -493,7 +493,7 @@ int main(int argc, char ** argv) {
common_sampler_sample(drafts[s].smpl, ctx_dft, drafts[s].i_batch_dft, true);
const auto * cur_p = common_sampler_get_candidates(drafts[s].smpl);
const auto * cur_p = common_sampler_get_candidates(drafts[s].smpl, true);
for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p->size); ++k) {
LOG_DBG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",

View File

@@ -1,5 +1,5 @@
cmake_minimum_required(VERSION 3.14) # for add_link_options and implicit target directories.
project("ggml" C CXX)
project("ggml" C CXX ASM)
include(CheckIncludeFileCXX)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
@@ -129,10 +129,11 @@ endif()
option(GGML_LASX "ggml: enable lasx" ON)
option(GGML_LSX "ggml: enable lsx" ON)
option(GGML_RVV "ggml: enable rvv" ON)
option(GGML_RV_ZFH "ggml: enable riscv zfh" OFF)
option(GGML_RV_ZFH "ggml: enable riscv zfh" ON)
option(GGML_RV_ZVFH "ggml: enable riscv zvfh" ON)
option(GGML_RV_ZICBOP "ggml: enable riscv zicbop" ON)
option(GGML_XTHEADVECTOR "ggml: enable xtheadvector" OFF)
option(GGML_VXE "ggml: enable vxe" ON)
option(GGML_NNPA "ggml: enable nnpa" OFF) # temp disabled by default, see: https://github.com/ggml-org/llama.cpp/issues/14877
option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requires GGML_BACKEND_DL)" OFF)
set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM")

View File

@@ -132,6 +132,8 @@ extern "C" {
GGML_BACKEND_DEVICE_TYPE_CPU,
// GPU device using dedicated memory
GGML_BACKEND_DEVICE_TYPE_GPU,
// integrated GPU device using host memory
GGML_BACKEND_DEVICE_TYPE_IGPU,
// accelerator devices intended to be used together with the CPU backend (e.g. BLAS or AMX)
GGML_BACKEND_DEVICE_TYPE_ACCEL
};
@@ -150,11 +152,21 @@ extern "C" {
// all the device properties
struct ggml_backend_dev_props {
// device name
const char * name;
// device description
const char * description;
// device free memory in bytes
size_t memory_free;
// device total memory in bytes
size_t memory_total;
// device type
enum ggml_backend_dev_type type;
// device id
// for PCI devices, this should be the PCI bus id formatted as "domain:bus:device.function" (e.g. "0000:01:00.0")
// if the id is unknown, this should be NULL
const char * device_id;
// device capabilities
struct ggml_backend_dev_caps caps;
};
@@ -307,6 +319,9 @@ extern "C" {
GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);
// Split graph without allocating it
GGML_API void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
// Allocate and compute graph on the backend scheduler
GGML_API bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph); // returns success
GGML_API enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph);

View File

@@ -101,7 +101,6 @@ extern "C" {
GGML_BACKEND_API int ggml_cpu_has_riscv_v (void);
GGML_BACKEND_API int ggml_cpu_has_vsx (void);
GGML_BACKEND_API int ggml_cpu_has_vxe (void);
GGML_BACKEND_API int ggml_cpu_has_nnpa (void);
GGML_BACKEND_API int ggml_cpu_has_wasm_simd (void);
GGML_BACKEND_API int ggml_cpu_has_llamafile (void);
@@ -135,6 +134,7 @@ extern "C" {
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
GGML_BACKEND_API void ggml_cpu_fp32_to_fp32(const float *, float *, int64_t);
GGML_BACKEND_API void ggml_cpu_fp32_to_i32 (const float *, int32_t *, int64_t);
GGML_BACKEND_API void ggml_cpu_fp32_to_fp16(const float *, ggml_fp16_t *, int64_t);
GGML_BACKEND_API void ggml_cpu_fp16_to_fp32(const ggml_fp16_t *, float *, int64_t);
GGML_BACKEND_API void ggml_cpu_fp32_to_bf16(const float *, ggml_bf16_t *, int64_t);

View File

@@ -43,14 +43,8 @@ GGML_BACKEND_API ggml_backend_t ggml_backend_metal_init(void);
GGML_BACKEND_API bool ggml_backend_is_metal(ggml_backend_t backend);
GGML_DEPRECATED(
GGML_BACKEND_API ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size),
"obsoleted by the new device interface - https://github.com/ggml-org/llama.cpp/pull/9713");
GGML_BACKEND_API void ggml_backend_metal_set_abort_callback(ggml_backend_t backend, ggml_abort_callback abort_callback, void * user_data);
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
// helper to check if the device supports a specific family
// ideally, the user code should be doing these checks
// ref: https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf

View File

@@ -7,8 +7,6 @@
extern "C" {
#endif
GGML_BACKEND_API ggml_backend_t ggml_backend_zdnn_init(void);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_zdnn_reg(void);
#ifdef __cplusplus

View File

@@ -511,6 +511,7 @@ extern "C" {
GGML_OP_CONV_TRANSPOSE_1D,
GGML_OP_IM2COL,
GGML_OP_IM2COL_BACK,
GGML_OP_IM2COL_3D,
GGML_OP_CONV_2D,
GGML_OP_CONV_3D,
GGML_OP_CONV_2D_DW,
@@ -1403,6 +1404,7 @@ extern "C" {
struct ggml_tensor * a,
struct ggml_tensor * b);
// note: casting from f32 to i32 will discard the fractional part
GGML_API struct ggml_tensor * ggml_cast(
struct ggml_context * ctx,
struct ggml_tensor * a,
@@ -1527,7 +1529,11 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a);
// supports 3D: a->ne[2] == b->ne[1]
// supports 4D a:
// a [n_embd, ne1, ne2, ne3]
// b I32 [n_rows, ne2, ne3, 1]
//
// return [n_embd, n_rows, ne2, ne3]
GGML_API struct ggml_tensor * ggml_get_rows(
struct ggml_context * ctx,
struct ggml_tensor * a, // data
@@ -1870,6 +1876,41 @@ extern "C" {
int d0, // dilation dimension 0
int d1); // dilation dimension 1
GGML_API struct ggml_tensor * ggml_im2col_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int64_t IC,
int s0, // stride width
int s1, // stride height
int s2, // stride depth
int p0, // padding width
int p1, // padding height
int p2, // padding depth
int d0, // dilation width
int d1, // dilation height
int d2, // dilation depth
enum ggml_type dst_type);
// a: [OC*IC, KD, KH, KW]
// b: [N*IC, ID, IH, IW]
// result: [N*OC, OD, OH, OW]
GGML_API struct ggml_tensor * ggml_conv_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int64_t IC,
int s0, // stride width
int s1, // stride height
int s2, // stride depth
int p0, // padding width
int p1, // padding height
int p2, // padding depth
int d0, // dilation width
int d1, // dilation height
int d2 // dilation depth
);
// kernel size is a->ne[0] x a->ne[1]
// stride is equal to kernel size
// padding is zero
@@ -1941,7 +1982,7 @@ extern "C" {
int d0, // dilation dimension 0
int d1); // dilation dimension 1
GGML_API struct ggml_tensor * ggml_conv_3d(
GGML_API struct ggml_tensor * ggml_conv_3d_direct(
struct ggml_context * ctx,
struct ggml_tensor * a, // kernel [KW, KH, KD, IC * OC]
struct ggml_tensor * b, // input [W, H, D, C * N]
@@ -2048,6 +2089,19 @@ extern "C" {
int p2,
int p3);
GGML_API struct ggml_tensor * ggml_pad_ext(
struct ggml_context * ctx,
struct ggml_tensor * a,
int lp0,
int rp0,
int lp1,
int rp1,
int lp2,
int rp2,
int lp3,
int rp3
);
// pad each dimension with reflection: [a, b, c, d] -> [b, a, b, c, d, c]
GGML_API struct ggml_tensor * ggml_pad_reflect_1d(
struct ggml_context * ctx,

View File

@@ -8,7 +8,7 @@
extern "C" {
#endif
#define GGML_BACKEND_API_VERSION 1
#define GGML_BACKEND_API_VERSION 2
//
// Backend buffer type
@@ -114,6 +114,9 @@ extern "C" {
void (*event_record)(ggml_backend_t backend, ggml_backend_event_t event);
// wait for an event on on a different stream
void (*event_wait) (ggml_backend_t backend, ggml_backend_event_t event);
// (optional) sort/optimize the nodes in the graph
void (*optimize_graph) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
};
struct ggml_backend {

View File

@@ -400,9 +400,8 @@ ggml_backend_t ggml_backend_init_by_type(enum ggml_backend_dev_type type, const
ggml_backend_t ggml_backend_init_best(void) {
ggml_backend_dev_t dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU);
if (!dev) {
dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
}
dev = dev ? dev : ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_IGPU);
dev = dev ? dev : ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
if (!dev) {
return nullptr;
}

View File

@@ -31,6 +31,7 @@
// backend buffer type
const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
GGML_ASSERT(buft);
return buft->iface.get_name(buft);
}
@@ -40,14 +41,17 @@ ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t
return ggml_backend_buffer_init(buft, {}, NULL, 0);
}
GGML_ASSERT(buft);
return buft->iface.alloc_buffer(buft, size);
}
size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
GGML_ASSERT(buft);
return buft->iface.get_alignment(buft);
}
size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
GGML_ASSERT(buft);
// get_max_size is optional, defaults to SIZE_MAX
if (buft->iface.get_max_size) {
return buft->iface.get_max_size(buft);
@@ -56,6 +60,7 @@ size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
}
size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor) {
GGML_ASSERT(buft);
// get_alloc_size is optional, defaults to ggml_nbytes
if (buft->iface.get_alloc_size) {
size_t size = buft->iface.get_alloc_size(buft, tensor);
@@ -66,6 +71,7 @@ size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const s
}
bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
GGML_ASSERT(buft);
if (buft->iface.is_host) {
return buft->iface.is_host(buft);
}
@@ -73,6 +79,7 @@ bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
}
ggml_backend_dev_t ggml_backend_buft_get_device(ggml_backend_buffer_type_t buft) {
GGML_ASSERT(buft);
return buft->device;
}
@@ -110,10 +117,12 @@ void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
}
size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
return buffer->size;
}
void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
// get_base is optional if the buffer is zero-sized
if (buffer->size == 0) {
return NULL;
@@ -127,6 +136,7 @@ void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
}
enum ggml_status ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
GGML_ASSERT(buffer);
// init_tensor is optional
if (buffer->iface.init_tensor) {
return buffer->iface.init_tensor(buffer, tensor);
@@ -135,6 +145,7 @@ enum ggml_status ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, s
}
void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
GGML_ASSERT(buffer);
// clear is optional if the buffer is zero-sized
if (buffer->size == 0) {
return;
@@ -160,6 +171,7 @@ bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
}
void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
GGML_ASSERT(buffer);
buffer->usage = usage;
// FIXME: add a generic callback to the buffer interface
@@ -169,14 +181,17 @@ void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backe
}
enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
return buffer->usage;
}
ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
return buffer->buft;
}
void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
if (buffer->iface.reset) {
buffer->iface.reset(buffer);
}
@@ -215,6 +230,7 @@ void ggml_backend_free(ggml_backend_t backend) {
}
ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
GGML_ASSERT(backend);
return ggml_backend_dev_buffer_type(backend->device);
}
@@ -231,6 +247,8 @@ size_t ggml_backend_get_max_size(ggml_backend_t backend) {
}
void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
GGML_ASSERT(backend);
GGML_ASSERT(tensor);
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
@@ -242,6 +260,8 @@ void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor *
}
void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
GGML_ASSERT(backend);
GGML_ASSERT(tensor);
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
@@ -283,6 +303,7 @@ void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, siz
}
void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
GGML_ASSERT(tensor);
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
if (size == 0) {
@@ -298,6 +319,7 @@ void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size
}
void ggml_backend_synchronize(ggml_backend_t backend) {
GGML_ASSERT(backend);
if (backend->iface.synchronize == NULL) {
return;
}
@@ -306,18 +328,21 @@ void ggml_backend_synchronize(ggml_backend_t backend) {
}
ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
GGML_ASSERT(backend);
GGML_ASSERT(backend->iface.graph_plan_create != NULL);
return backend->iface.graph_plan_create(backend, cgraph);
}
void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
GGML_ASSERT(backend);
GGML_ASSERT(backend->iface.graph_plan_free != NULL);
backend->iface.graph_plan_free(backend, plan);
}
enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
GGML_ASSERT(backend);
GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
return backend->iface.graph_plan_compute(backend, plan);
@@ -330,22 +355,27 @@ enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_
}
enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
GGML_ASSERT(backend);
return backend->iface.graph_compute(backend, cgraph);
}
bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
GGML_ASSERT(backend);
return ggml_backend_dev_supports_op(backend->device, op);
}
bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
GGML_ASSERT(backend);
return ggml_backend_dev_supports_buft(backend->device, buft);
}
bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
GGML_ASSERT(backend);
return ggml_backend_dev_offload_op(backend->device, op);
}
ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend) {
GGML_ASSERT(backend);
return backend->device;
}
@@ -381,6 +411,7 @@ void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t b
return;
}
GGML_ASSERT(backend_dst);
if (backend_dst->iface.cpy_tensor_async != NULL) {
if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
return;
@@ -412,38 +443,52 @@ void ggml_backend_event_free(ggml_backend_event_t event) {
}
void ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend) {
GGML_ASSERT(backend);
GGML_ASSERT(backend->iface.event_record != NULL);
backend->iface.event_record(backend, event);
}
void ggml_backend_event_synchronize(ggml_backend_event_t event) {
GGML_ASSERT(event);
GGML_ASSERT(event->device->iface.event_synchronize);
event->device->iface.event_synchronize(event->device, event);
}
void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
GGML_ASSERT(backend);
GGML_ASSERT(backend->iface.event_wait != NULL);
backend->iface.event_wait(backend, event);
}
static void ggml_backend_optimize_graph(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
GGML_ASSERT(backend);
if (backend->iface.optimize_graph != NULL) {
backend->iface.optimize_graph(backend, cgraph);
}
}
// Backend device
const char * ggml_backend_dev_name(ggml_backend_dev_t device) {
GGML_ASSERT(device);
return device->iface.get_name(device);
}
const char * ggml_backend_dev_description(ggml_backend_dev_t device) {
GGML_ASSERT(device);
return device->iface.get_description(device);
}
void ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total) {
GGML_ASSERT(device);
device->iface.get_memory(device, free, total);
}
enum ggml_backend_dev_type ggml_backend_dev_type(ggml_backend_dev_t device) {
GGML_ASSERT(device);
return device->iface.get_type(device);
}
@@ -453,18 +498,22 @@ void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_d
}
ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device) {
GGML_ASSERT(device);
return device->reg;
}
ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params) {
GGML_ASSERT(device);
return device->iface.init_backend(device, params);
}
ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device) {
GGML_ASSERT(device);
return device->iface.get_buffer_type(device);
}
ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device) {
GGML_ASSERT(device);
if (device->iface.get_host_buffer_type == NULL) {
return NULL;
}
@@ -473,18 +522,22 @@ ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t
}
ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size) {
GGML_ASSERT(device);
return device->iface.buffer_from_host_ptr(device, ptr, size, max_tensor_size);
}
bool ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
GGML_ASSERT(device);
return device->iface.supports_op(device, op);
}
bool ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft) {
GGML_ASSERT(device);
return device->iface.supports_buft(device, buft);
}
bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
GGML_ASSERT(device);
if (device->iface.offload_op != NULL) {
return device->iface.offload_op(device, op);
}
@@ -495,18 +548,22 @@ bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_te
// Backend (reg)
const char * ggml_backend_reg_name(ggml_backend_reg_t reg) {
GGML_ASSERT(reg);
return reg->iface.get_name(reg);
}
size_t ggml_backend_reg_dev_count(ggml_backend_reg_t reg) {
GGML_ASSERT(reg);
return reg->iface.get_device_count(reg);
}
ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index) {
GGML_ASSERT(reg);
return reg->iface.get_device(reg, index);
}
void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) {
GGML_ASSERT(reg);
if (!reg->iface.get_proc_address) {
return NULL;
}
@@ -521,6 +578,7 @@ struct ggml_backend_multi_buffer_context {
};
static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
for (size_t i = 0; i < ctx->n_buffers; i++) {
ggml_backend_buffer_free(ctx->buffers[i]);
@@ -531,6 +589,7 @@ static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer)
}
static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
GGML_ASSERT(buffer);
ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
for (size_t i = 0; i < ctx->n_buffers; i++) {
ggml_backend_buffer_clear(ctx->buffers[i], value);
@@ -566,10 +625,12 @@ ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer
}
bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
return buffer->iface.free_buffer == ggml_backend_multi_buffer_free_buffer;
}
void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
GGML_ASSERT(buffer);
GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
for (size_t i = 0; i < ctx->n_buffers; i++) {
@@ -597,7 +658,7 @@ static bool ggml_is_view_op(enum ggml_op op) {
#endif
#ifndef GGML_SCHED_MAX_SPLIT_INPUTS
#define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
#define GGML_SCHED_MAX_SPLIT_INPUTS 30
#endif
#ifndef GGML_SCHED_MAX_COPIES
@@ -848,7 +909,7 @@ static void ggml_backend_sched_set_if_supported(ggml_backend_sched_t sched, stru
}
// assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
// reset splits
sched->n_splits = 0;
sched->n_graph_inputs = 0;
@@ -1244,6 +1305,10 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
struct ggml_backend_sched_split * split = &sched->splits[i];
split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
// Optimize this split of the graph. This needs to happen before we make graph_copy,
// so they are in sync.
ggml_backend_optimize_graph(sched->backends[split->backend_id], &split->graph);
// add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
for (int j = 0; j < split->n_inputs; j++) {
assert(graph_copy->size > (graph_copy->n_nodes + 1));
@@ -1349,6 +1414,7 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
}
static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
GGML_ASSERT(sched);
struct ggml_backend_sched_split * splits = sched->splits;
ggml_tensor * prev_ids_tensor = nullptr;
@@ -1617,6 +1683,7 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
}
void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
GGML_ASSERT(sched);
// reset state for the next run
if (!sched->is_reset) {
ggml_hash_set_reset(&sched->hash_set);
@@ -1628,8 +1695,11 @@ void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
}
bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
GGML_ASSERT(sched);
GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes + measure_graph->n_leafs);
ggml_backend_sched_reset(sched);
ggml_backend_sched_synchronize(sched);
ggml_backend_sched_split_graph(sched, measure_graph);
@@ -1644,6 +1714,7 @@ bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph *
}
bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
GGML_ASSERT(sched);
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs);
GGML_ASSERT(!sched->is_alloc);
@@ -1668,6 +1739,7 @@ enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, st
}
enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
GGML_ASSERT(sched);
if (!sched->is_reset && !sched->is_alloc) {
ggml_backend_sched_reset(sched);
}
@@ -1682,6 +1754,7 @@ enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sch
}
void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
GGML_ASSERT(sched);
for (int i = 0; i < sched->n_backends; i++) {
ggml_backend_synchronize(sched->backends[i]);
}
@@ -1694,28 +1767,34 @@ void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
}
void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
GGML_ASSERT(sched);
sched->callback_eval = callback;
sched->callback_eval_user_data = user_data;
}
int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
GGML_ASSERT(sched);
return sched->n_splits;
}
int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
GGML_ASSERT(sched);
return sched->n_copies;
}
int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched) {
GGML_ASSERT(sched);
return sched->n_backends;
}
ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i) {
GGML_ASSERT(sched);
GGML_ASSERT(i >= 0 && i < sched->n_backends);
return sched->backends[i];
}
size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
GGML_ASSERT(sched);
int backend_index = ggml_backend_sched_backend_id(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
@@ -1723,6 +1802,7 @@ size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backe
}
void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
GGML_ASSERT(sched);
int backend_index = ggml_backend_sched_backend_id(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
tensor_backend_id(node) = backend_index;
@@ -1731,6 +1811,7 @@ void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct gg
}
ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
GGML_ASSERT(sched);
int backend_index = tensor_backend_id(node);
if (backend_index == -1) {
return NULL;
@@ -1741,6 +1822,7 @@ ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched,
// utils
enum ggml_status ggml_backend_view_init(struct ggml_tensor * tensor) {
GGML_ASSERT(tensor);
GGML_ASSERT(tensor->buffer == NULL);
GGML_ASSERT(tensor->view_src != NULL);
GGML_ASSERT(tensor->view_src->buffer != NULL);
@@ -1752,6 +1834,7 @@ enum ggml_status ggml_backend_view_init(struct ggml_tensor * tensor) {
}
enum ggml_status ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
GGML_ASSERT(tensor);
GGML_ASSERT(tensor->buffer == NULL);
GGML_ASSERT(tensor->data == NULL);
GGML_ASSERT(tensor->view_src == NULL);
@@ -1825,6 +1908,7 @@ static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_
}
struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
GGML_ASSERT(graph);
struct ggml_hash_set hash_set = ggml_hash_set_new(graph->visited_hash_set.size);
struct ggml_tensor ** node_copies = (ggml_tensor **) calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
bool * node_init = (bool *) calloc(hash_set.size, sizeof(node_init[0]));
@@ -1969,6 +2053,7 @@ bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t
// CPU backend - buffer
static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
uintptr_t data = (uintptr_t)buffer->context;
// align the buffer
@@ -1980,28 +2065,33 @@ static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
}
static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
ggml_aligned_free(buffer->context, buffer->size);
}
static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
GGML_ASSERT(tensor);
memset((char *)tensor->data + offset, value, size);
GGML_UNUSED(buffer);
}
static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
GGML_ASSERT(tensor);
memcpy((char *)tensor->data + offset, data, size);
GGML_UNUSED(buffer);
}
static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
GGML_ASSERT(tensor);
memcpy(data, (const char *)tensor->data + offset, size);
GGML_UNUSED(buffer);
}
static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
GGML_ASSERT(src);
if (ggml_backend_buffer_is_host(src->buffer)) {
memcpy(dst->data, src->data, ggml_nbytes(src));
return true;
@@ -2012,6 +2102,7 @@ static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, con
}
static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
GGML_ASSERT(buffer);
memset(buffer->context, value, buffer->size);
}

View File

@@ -270,6 +270,7 @@ static struct ggml_backend_i blas_backend_i = {
/* .graph_compute = */ ggml_backend_blas_graph_compute,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
/* .optimize_graph = */ NULL,
};
static ggml_guid_t ggml_backend_blas_guid(void) {

File diff suppressed because it is too large Load Diff

View File

@@ -38,6 +38,7 @@
#include <unistd.h>
#include <functional>
#include <optional>
#include <list>
#include "../include/ggml-cann.h"
#include "../include/ggml.h"
@@ -106,6 +107,7 @@ int32_t ggml_cann_get_device();
std::optional<std::string> get_env(const std::string& name);
bool parse_bool(const std::string& value);
int parse_integer(const std::string& value);
/**
* @brief Abstract base class for memory pools used by CANN.
@@ -350,7 +352,7 @@ struct ggml_graph_node_properties {
struct ggml_cann_graph {
~ggml_cann_graph() {
if (graph != nullptr) {
aclmdlRIDestroy(graph);
ACL_CHECK(aclmdlRIDestroy(graph));
}
}
@@ -358,8 +360,105 @@ struct ggml_cann_graph {
std::vector<ggml_graph_node_properties> ggml_graph_properties;
};
/**
* @brief LRU cache for managing ggml_cann_graph objects.
*
* This class maintains a list of shared_ptr to ggml_cann_graph objects
* and enforces a maximum capacity. It provides methods to push new graphs,
* move existing graphs to the front (most recently used), and clear the cache.
*/
struct ggml_cann_graph_lru_cache {
size_t capacity; /**< Maximum number of graphs in the cache. */
std::list<ggml_cann_graph*> cache_list; /**< List storing cached graphs as raw pointers. */
ggml_cann_graph_lru_cache() {
capacity = parse_integer(get_env("GGML_CANN_GRAPH_CACHE_CAPACITY").value_or("12"));
}
/**
* @brief Push a new graph to the front of the cache.
* If the cache exceeds capacity, the least recently used graph is deleted.
* @param new_node Pointer to the new ggml_cann_graph to cache.
* Ownership is transferred to the cache (cache will delete it).
*/
void push(ggml_cann_graph* new_node) {
if (cache_list.size() >= capacity) {
ggml_cann_graph* old = cache_list.back();
cache_list.pop_back();
delete old; // free the old graph
}
cache_list.push_front(new_node);
}
/**
* @brief Move an existing graph to the front of the cache.
* @param node Pointer to the ggml_cann_graph to move.
*/
void move_to_front(ggml_cann_graph* node) {
cache_list.remove(node);
cache_list.push_front(node);
}
/**
* @brief Clear all graphs from the cache (also frees memory).
*/
void clear() {
for (auto ptr : cache_list) {
delete ptr;
}
cache_list.clear();
}
/**
* @brief Destructor that clears the cache and frees all cached graphs.
*/
~ggml_cann_graph_lru_cache() {
clear();
}
};
#endif // USE_ACL_GRAPH
struct ggml_cann_rope_cache {
~ggml_cann_rope_cache() {
if(theta_scale_cache != nullptr) {
ACL_CHECK(aclrtFree(theta_scale_cache));
}
if(sin_cache != nullptr) {
ACL_CHECK(aclrtFree(sin_cache));
}
if(cos_cache != nullptr) {
ACL_CHECK(aclrtFree(cos_cache));
}
}
void* theta_scale_cache = nullptr;
int64_t theta_scale_length = 0;
// sin/cos cache, used only to accelerate first layer on each device
void* sin_cache = nullptr;
void* cos_cache = nullptr;
int64_t position_length = 0;
// Properties to check before reusing the sincos cache
bool cached = false;
float ext_factor = 0.0f;
float theta_scale = 0.0f;
float freq_scale = 0.0f;
float attn_factor = 0.0f;
bool is_neox = false;
};
struct ggml_cann_tensor_cache {
~ggml_cann_tensor_cache() {
if(cache != nullptr) {
ACL_CHECK(aclrtFree(cache));
}
}
void* cache = nullptr;
int64_t size = 0;
};
/**
* @brief Context for managing CANN backend operations.
*/
@@ -370,21 +469,16 @@ struct ggml_backend_cann_context {
aclrtEvent copy_event = nullptr; /**< Event for managing copy operations. */
#ifdef USE_ACL_GRAPH
/// Cached CANN ACL graph used for executing the current ggml computation graph.
std::unique_ptr<ggml_cann_graph> cann_graph;
ggml_cann_graph_lru_cache graph_lru_cache;
bool acl_graph_mode = true;
#endif
cann_task_queue task_queue;
bool async_mode;
bool support_set_rows;
// Rope Cache
void* rope_init_ptr = nullptr;
void* rope_sin_ptr = nullptr;
void* rope_cos_ptr = nullptr;
int64_t max_prompt_length = 0;
ggml_cann_rope_cache rope_cache;
// Constant Pool
void* f32_zero_cache = nullptr;
void* f32_one_cache = nullptr;
int64_t f32_zero_cache_element = 0;
int64_t f32_one_cache_element = 0;
ggml_cann_tensor_cache rms_norm_one_tensor_cache;
ggml_cann_tensor_cache rms_norm_zero_tensor_cache;
aclrtStream streams[GGML_CANN_MAX_STREAMS] = {nullptr}; /**< Array of streams for the device. */
@@ -400,14 +494,13 @@ struct ggml_backend_cann_context {
async_mode = parse_bool(get_env("GGML_CANN_ASYNC_MODE").value_or(""));
GGML_LOG_INFO("%s: device %d async operator submission is %s\n", __func__,
device, async_mode ? "ON" : "OFF");
support_set_rows = parse_bool(get_env("LLAMA_SET_ROWS").value_or(""));
GGML_LOG_INFO("%s: LLAMA_SET_ROWS is %s\n", __func__, support_set_rows ? "ON" : "OFF");
if (!support_set_rows) {
GGML_LOG_INFO("%s: CANN Graph currently only supports execution when LLAMA_SET_ROWS is ON. "
"Falling back to eager mode.\n", __func__);
}
#ifdef USE_ACL_GRAPH
acl_graph_mode = parse_bool(get_env("GGML_CANN_ACL_GRAPH").value_or("on"));
GGML_LOG_INFO("%s: device %d execution mode is %s (%s)\n",
__func__, device,
acl_graph_mode ? "GRAPH" : "EAGER",
acl_graph_mode ? "acl graph enabled" : "acl graph disabled");
#endif
}
/**
@@ -424,21 +517,6 @@ struct ggml_backend_cann_context {
ACL_CHECK(aclrtDestroyStream(streams[i]));
}
}
if(rope_init_ptr != nullptr) {
ACL_CHECK(aclrtFree(rope_init_ptr));
}
if(rope_sin_ptr != nullptr) {
ACL_CHECK(aclrtFree(rope_sin_ptr));
}
if(rope_cos_ptr != nullptr) {
ACL_CHECK(aclrtFree(rope_cos_ptr));
}
if(f32_zero_cache != nullptr) {
ACL_CHECK(aclrtFree(f32_zero_cache));
}
if(f32_one_cache != nullptr) {
ACL_CHECK(aclrtFree(f32_one_cache));
}
}
/**

View File

@@ -116,6 +116,24 @@ bool parse_bool(const std::string& value) {
return valid_values.find(value) != valid_values.end();
}
/**
* @brief Parse a string as an integer, returning 0 if invalid.
*
* This function attempts to convert the input string `value` to an `int`.
* If the string is not a valid integer or is out of the `int` range,
* it returns 0.
*
* @param value The string to parse.
* @return The parsed integer, or 0 if conversion fails.
*/
int parse_integer(const std::string& value) {
try {
return std::stoi(value);
} catch (...) {
return 0;
}
}
/**
* @brief Initialize the CANN device information.
*
@@ -1116,30 +1134,65 @@ static enum ggml_status ggml_backend_cann_buffer_init_tensor(
return GGML_STATUS_SUCCESS;
}
// ND to NZ Workspace Cache Management. Thread-safety: Not guaranteed
namespace {
void* g_nz_workspace = nullptr;
size_t g_nz_workspace_allocated = 0;
/**
* @brief Workspace for caching NZ buffers per device.
*
* This struct manages a device buffer used in NZ computations. It supports
* allocation, reallocation, and clearing of cached memory. The struct is
* designed to be used with a global array, one per device.
*/
struct ggml_cann_nz_workspace {
void* ptr; // Pointer to allocated device buffer
size_t allocated; // Size of currently allocated buffer in bytes
void release_nz_workspace() {
if (g_nz_workspace) {
aclrtFree(g_nz_workspace);
g_nz_workspace = nullptr;
g_nz_workspace_allocated = 0;
/**
* @brief Constructor. Initializes the workspace with no allocated memory.
*/
ggml_cann_nz_workspace() : ptr(nullptr), allocated(0) {}
/**
* @brief Free cached memory and reset the workspace.
*
* If a buffer has been allocated, this function releases it using
* aclrtFree and resets internal state.
*/
void clear() {
if (ptr) {
ACL_CHECK(aclrtFree(ptr));
ptr = nullptr;
allocated = 0;
}
}
void relloc_nz_workspace(size_t new_size) {
if (new_size > g_nz_workspace_allocated) {
if (g_nz_workspace) {
aclrtFree(g_nz_workspace);
g_nz_workspace = nullptr;
/**
* @brief Allocate or reallocate the workspace buffer.
*
* If the requested size is larger than the currently allocated size,
* the old buffer will be freed and a new buffer of the requested size
* will be allocated on the device.
*
* @param new_size Size in bytes to allocate for the workspace.
*/
void realloc(size_t new_size) {
if (new_size > allocated) {
clear();
ACL_CHECK(aclrtMalloc(&ptr, new_size, ACL_MEM_MALLOC_HUGE_FIRST));
allocated = new_size;
}
ACL_CHECK(aclrtMalloc(&g_nz_workspace, new_size, ACL_MEM_MALLOC_HUGE_FIRST));
g_nz_workspace_allocated = new_size;
}
}
}
/**
* @brief Get the device buffer pointer.
*
* @return Pointer to the allocated buffer, or nullptr if not allocated.
*/
void* get() const { return ptr; }
};
/**
* @brief Global array of NZ workspaces, one per device.
*/
static ggml_cann_nz_workspace g_nz_workspaces[GGML_CANN_MAX_DEVICES];
/**
* @brief Convert tensor weights to NZ format using Ascend CANN API.
@@ -1149,13 +1202,13 @@ namespace {
* improve performance on certain hardware.
*
* @param tensor Pointer to the input ggml_tensor containing the weights.
* @param data Pointer to the raw data buffer for the tensor weights.
* @param offset Byte offset within the tensor data buffer where weights start.
* @param device device id.
*
* @note The workspace buffer used in this function is managed globally and reused
* across calls. This reduces overhead from repeated memory allocation and deallocation.
*/
static void weight_format_to_nz(ggml_tensor *tensor, const void *data, size_t offset) {
static void weight_format_to_nz(ggml_tensor *tensor, size_t offset, int device) {
aclTensor* weightTransposed = ggml_cann_create_tensor(tensor, tensor->ne,
tensor->nb, 2, ACL_FORMAT_ND, offset);
uint64_t workspaceSize = 0;
@@ -1165,7 +1218,9 @@ static void weight_format_to_nz(ggml_tensor *tensor, const void *data, size_t of
ACL_CHECK(aclnnTransMatmulWeightGetWorkspaceSize(weightTransposed,
&workspaceSize, &executor));
// Avoid frequent malloc/free of the workspace.
relloc_nz_workspace(workspaceSize);
g_nz_workspaces[device].realloc(workspaceSize);
void* g_nz_workspace = g_nz_workspaces[device].get();
ACL_CHECK(aclnnTransMatmulWeight(g_nz_workspace, workspaceSize, executor, nullptr));
ACL_CHECK(aclDestroyTensor(weightTransposed));
@@ -1196,14 +1251,14 @@ static void ggml_backend_cann_buffer_set_tensor(
// Why aclrtSynchronizeDevice?
// Only check env once.
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or(""));
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or("on"));
if (!need_transform(tensor->type)) {
ACL_CHECK(aclrtMemcpy((char *)tensor->data + offset, size, data, size,
ACL_MEMCPY_HOST_TO_DEVICE));
if (weight_to_nz && is_matmul_weight((const ggml_tensor*)tensor)) {
GGML_ASSERT(tensor->ne[2] == 1);
GGML_ASSERT(tensor->ne[3] == 1);
weight_format_to_nz(tensor, data, offset);
weight_format_to_nz(tensor, offset, ctx->device);
}
} else {
void *transform_buffer = malloc(size);
@@ -1279,6 +1334,10 @@ static bool ggml_backend_cann_buffer_cpy_tensor(
ACL_MEMCPY_DEVICE_TO_DEVICE));
return true;
} else {
#ifdef ASCEND_310P
// TODO: Support 310p P2P copy
return false;
#endif
// Different device but can access by peer.
int32_t canAccessPeer = 0;
ACL_CHECK(aclrtDeviceCanAccessPeer(&canAccessPeer, src_ctx->device,
@@ -1439,7 +1498,7 @@ static size_t ggml_backend_cann_buffer_type_get_alloc_size(
int64_t ne0 = tensor->ne[0];
// Only check env once.
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or(""));
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or("on"));
// last line must bigger than 32, because every single op deal at
// least 32 bytes.
@@ -2000,6 +2059,8 @@ static bool ggml_backend_cann_cpy_tensor_async(
GGML_ASSERT(ggml_backend_is_cann(backend_src) ||
ggml_backend_is_cann(backend_dst));
GGML_ASSERT(!is_matmul_weight((const ggml_tensor*)src));
if (!ggml_backend_buffer_is_cann(src->buffer) ||
!ggml_backend_buffer_is_cann(dst->buffer)) {
return false;
@@ -2020,6 +2081,10 @@ static bool ggml_backend_cann_cpy_tensor_async(
return true;
}
if (backend_src != backend_dst) {
#ifdef ASCEND_310P
// TODO: Support 310p P2P copy
return false;
#endif
ggml_backend_cann_buffer_context* buf_ctx_src =
(ggml_backend_cann_buffer_context*)buf_src->context;
ggml_backend_cann_buffer_context* buf_ctx_dst =
@@ -2036,7 +2101,6 @@ static bool ggml_backend_cann_cpy_tensor_async(
}
// need open both directions for memcpyasync between devices.
ggml_cann_set_device(cann_ctx_dst->device);
ACL_CHECK(aclrtDeviceEnablePeerAccess(cann_ctx_src->device, 0));
ggml_cann_set_device(cann_ctx_src->device);
ACL_CHECK(aclrtDeviceEnablePeerAccess(cann_ctx_dst->device, 0));
@@ -2046,9 +2110,17 @@ static bool ggml_backend_cann_cpy_tensor_async(
ACL_CHECK(aclrtMemcpyAsync(dst->data, copy_size, src->data, copy_size,
ACL_MEMCPY_DEVICE_TO_DEVICE,
cann_ctx_src->stream()));
// record event on src stream after the copy
// TODO: this event is not effective with acl graph mode, change to use aclrtSynchronizeStream
// if (!cann_ctx_src->copy_event) {
// ACL_CHECK(aclrtCreateEventWithFlag(&cann_ctx_src->copy_event, ACL_EVENT_SYNC));
// }
// ACL_CHECK(aclrtRecordEvent(cann_ctx_src->copy_event, cann_ctx_src->stream()));
//TODO: workaround for Event didn`t work here.
aclrtSynchronizeStream(cann_ctx_src->stream());
// // wait on dst stream for the copy to complete
// ggml_cann_set_device(cann_ctx_dst->device);
// ACL_CHECK(aclrtStreamWaitEvent(cann_ctx_dst->stream(), cann_ctx_src->copy_event));
ACL_CHECK(aclrtSynchronizeStream(cann_ctx_src->stream()));
} else {
// src and dst are on the same backend
ACL_CHECK(aclrtMemcpyAsync(dst->data, copy_size, src->data, copy_size,
@@ -2077,30 +2149,52 @@ static void ggml_backend_cann_synchronize(ggml_backend_t backend) {
#ifdef USE_ACL_GRAPH
/**
* @brief Populate the internal CANN graph node properties from the ggml computation graph.
* @brief Add a new CANN graph to the LRU cache by populating node properties from the ggml graph.
*
* This function copies all node attributes (operation type, dimensions, strides, input sources,
* and operation parameters) into the cached CANN graph structure for later reuse or comparison.
* This function creates a new ggml_cann_graph object and fills its node properties
* (operation type, dimensions, strides, input sources, and operation parameters)
* based on the current ggml computation graph.
*
* @param cann_ctx The CANN backend context.
* @param cgraph The ggml computational graph.
* Each node in the ggml graph is mapped to a property entry in the new CANN graph:
* - node address
* - operation type
* - shape (ne) and strides (nb)
* - source tensor addresses
* - operation parameters
*
* After initialization, the new graph is pushed into the LRU cache owned by the
* CANN backend context. The cache takes ownership of the graph and manages its
* lifetime (including deletion upon eviction).
*
* @param cann_ctx The CANN backend context containing the graph cache.
* @param cgraph The current ggml computation graph.
*/
static void set_ggml_graph_node_properties(ggml_backend_cann_context * cann_ctx, ggml_cgraph * cgraph) {
for (int node_idx = 0; node_idx < cgraph->n_nodes; node_idx++) {
ggml_tensor * node = cgraph->nodes[node_idx];
cann_ctx->cann_graph->ggml_graph_properties[node_idx].node_address = node->data;
cann_ctx->cann_graph->ggml_graph_properties[node_idx].node_op = node->op;
static void add_lru_matched_graph_node_properties(
ggml_backend_cann_context * cann_ctx,
ggml_cgraph * cgraph) {
// Create a new ggml_cann_graph object on the heap (its lifetime is managed by the cache).
ggml_cann_graph * new_graph = new ggml_cann_graph();
new_graph->ggml_graph_properties.resize(cgraph->n_nodes);
for (int dim = 0; dim < GGML_MAX_DIMS; dim++) {
cann_ctx->cann_graph->ggml_graph_properties[node_idx].ne[dim] = node->ne[dim];
cann_ctx->cann_graph->ggml_graph_properties[node_idx].nb[dim] = node->nb[dim];
for (int node_idx = 0; node_idx < cgraph->n_nodes; ++node_idx) {
ggml_tensor * node = cgraph->nodes[node_idx];
auto & prop = new_graph->ggml_graph_properties[node_idx];
prop.node_address = node->data;
prop.node_op = node->op;
std::copy_n(node->ne, GGML_MAX_DIMS, prop.ne);
std::copy_n(node->nb, GGML_MAX_DIMS, prop.nb);
for (int src = 0; src < GGML_MAX_SRC; ++src) {
prop.src_address[src] = node->src[src] ? node->src[src]->data : nullptr;
}
for (int src = 0; src < GGML_MAX_SRC; src++) {
cann_ctx->cann_graph->ggml_graph_properties[node_idx].src_address[src] =
node->src[src] ? node->src[src]->data : nullptr;
}
memcpy(cann_ctx->cann_graph->ggml_graph_properties[node_idx].op_params, node->op_params, GGML_MAX_OP_PARAMS);
memcpy(prop.op_params, node->op_params, GGML_MAX_OP_PARAMS);
}
// Insert into the LRU cache (cache takes ownership and will delete it when evicted).
cann_ctx->graph_lru_cache.push(new_graph);
}
/**
@@ -2145,30 +2239,45 @@ static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_gra
}
/**
* @brief Determine if the CANN graph needs to be rebuilt due to graph changes.
* @brief Check whether there is a cached CANN graph that matches the current ggml graph.
*
* This checks whether the number or properties of ggml graph nodes have changed
* compared to the last captured CANN graph. If so, the CANN graph must be re-captured.
* This function iterates through the cached CANN graphs stored in the LRU cache and
* compares them against the given ggml computation graph. A match requires that the
* number of nodes is the same and that each nodes properties (operation type,
* dimensions, strides, inputs, and operation parameters) are identical.
*
* @param cann_ctx The CANN backend context.
* If a matching graph is found, it is promoted to the front of the LRU cache and the
* function returns true. Otherwise, the function returns false, indicating that a new
* CANN graph needs to be captured.
*
* @param cann_ctx The CANN backend context containing the graph cache.
* @param cgraph The current ggml computation graph.
* @return true if an update is required; false otherwise.
* @return true if a matching cached graph exists; false otherwise.
*/
static bool is_cann_graph_update_required(ggml_backend_cann_context * cann_ctx, ggml_cgraph * cgraph) {
// The number of nodes is different, so the graph needs to be reconstructed.
if (cann_ctx->cann_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) {
cann_ctx->cann_graph->ggml_graph_properties.resize(cgraph->n_nodes);
return true;
}
static bool is_matched_graph(ggml_backend_cann_context * cann_ctx, ggml_cgraph * cgraph) {
ggml_cann_graph_lru_cache &lru_cache = cann_ctx->graph_lru_cache;
for (auto &graph_ptr : lru_cache.cache_list) {
// Skip graphs with a different number of nodes.
if (graph_ptr->ggml_graph_properties.size() != static_cast<size_t>(cgraph->n_nodes)) {
continue;
}
// The number of nodes is the same; iterate over each node to check whether they match.
for (int i = 0; i < cgraph->n_nodes; i++) {
bool has_matching_properties = ggml_graph_node_has_matching_properties(
cgraph->nodes[i], &cann_ctx->cann_graph->ggml_graph_properties[i]);
if(!has_matching_properties) {
// Check if all nodes match.
bool all_match = true;
for (int i = 0; i < cgraph->n_nodes; ++i) {
if (!ggml_graph_node_has_matching_properties(cgraph->nodes[i], &graph_ptr->ggml_graph_properties[i])) {
all_match = false;
break;
}
}
if (all_match) {
// update cache_list && renturn graph_ptr
lru_cache.move_to_front(graph_ptr);
return true;
}
}
return false;
}
#endif // USE_ACL_GRAPH
@@ -2187,17 +2296,13 @@ static bool is_cann_graph_update_required(ggml_backend_cann_context * cann_ctx,
* @param cann_graph_update_required Whether graph capture is needed due to graph changes.
*/
static void evaluate_and_capture_cann_graph(ggml_backend_cann_context * cann_ctx, ggml_cgraph * cgraph,
bool & use_cann_graph, bool & cann_graph_update_required) {
bool & use_cann_graph, bool & cann_graph_update_required) {
#ifdef USE_ACL_GRAPH
ggml_cann_graph* matched_graph = cann_ctx->graph_lru_cache.cache_list.front();
if (use_cann_graph && cann_graph_update_required) {
if (cann_ctx->cann_graph->graph != nullptr) {
ACL_CHECK(aclmdlRIDestroy(cann_ctx->cann_graph->graph));
cann_ctx->cann_graph->graph = nullptr;
}
ACL_CHECK(aclmdlRICaptureBegin(cann_ctx->stream(), ACL_MODEL_RI_CAPTURE_MODE_GLOBAL));
}
#endif // USE_ACL_GRAPH
// Only perform the graph execution if CANN graphs are not enabled, or we are capturing the graph.
// With the use of CANN graphs, the execution will be performed by the graph launch.
if (!use_cann_graph || cann_graph_update_required) {
@@ -2218,12 +2323,12 @@ static void evaluate_and_capture_cann_graph(ggml_backend_cann_context * cann_ctx
#ifdef USE_ACL_GRAPH
if (use_cann_graph && cann_graph_update_required) { // End CANN graph capture
ACL_CHECK(aclmdlRICaptureEnd(cann_ctx->stream(), &cann_ctx->cann_graph->graph));
ACL_CHECK(aclmdlRICaptureEnd(cann_ctx->stream(), &matched_graph->graph));
}
if (use_cann_graph) {
// Execute graph
ACL_CHECK(aclmdlRIExecuteAsync(cann_ctx->cann_graph->graph, cann_ctx->stream()));
ACL_CHECK(aclmdlRIExecuteAsync(matched_graph->graph, cann_ctx->stream()));
}
#endif // USE_ACL_GRAPH
}
@@ -2246,30 +2351,46 @@ static enum ggml_status ggml_backend_cann_graph_compute(
ggml_backend_cann_context* cann_ctx =
(ggml_backend_cann_context*)backend->context;
ggml_cann_set_device(cann_ctx->device);
release_nz_workspace();
g_nz_workspaces[cann_ctx->device].clear();
// calculate rope cache for fist layer in current device.
cann_ctx->rope_cache.cached = false;
#ifdef USE_ACL_GRAPH
bool use_cann_graph = true;
bool cann_graph_update_required = false;
// check environment LLAMA_SET_ROWS
if (!cann_ctx->support_set_rows) {
static bool prefill_use_graph = parse_bool(get_env("GGML_CANN_PREFILL_USE_GRAPH").value_or(""));
if (!prefill_use_graph) {
// Do not use acl_graph for prefill.
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
// TODO: Optimize here. Currently, we can only
// get seq_len by FA's input.
if (node->op == GGML_OP_FLASH_ATTN_EXT) {
// Q -> src[0], shape: [B, S, N, D]
use_cann_graph = (node->src[0]->ne[1] == 1);
break;
}
}
}
if (!cann_ctx->acl_graph_mode) {
use_cann_graph = false;
}
if (use_cann_graph) {
if (cann_ctx->cann_graph == nullptr) {
cann_ctx->cann_graph.reset(new ggml_cann_graph());
cann_graph_update_required = true;
// If no matching graph is found, the graph needs to be recaptured.
cann_graph_update_required = !is_matched_graph(cann_ctx, cgraph);
if (cann_graph_update_required) {
// If no matching graph is found, add a new ACL graph.
add_lru_matched_graph_node_properties(cann_ctx, cgraph);
}
cann_graph_update_required = is_cann_graph_update_required(cann_ctx, cgraph);
set_ggml_graph_node_properties(cann_ctx, cgraph);
}
#else
bool use_cann_graph = false;
bool cann_graph_update_required = false;
#endif // USE_ACL_GRAPH
evaluate_and_capture_cann_graph(
cann_ctx,
cgraph,
@@ -2336,7 +2457,7 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q4_0:
#ifdef ASCEND_310P
// Q4 && Q8 per group is not suppor on 310p device
// Q4 && Q8 per group is not support on 310p device
return false;
#endif
// only support contiguous for quantized types.
@@ -2354,7 +2475,7 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q4_0:
#ifdef ASCEND_310P
// Q4 && Q8 per group is not suppor on 310p device
// Q4 && Q8 per group is not support on 310p device
return false;
#endif
// only support contiguous for quantized types.
@@ -2405,16 +2526,10 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
}
case GGML_OP_ROPE: {
// TODO: with ops-test v == 1
float ext_factor = 0.0f;
memcpy(&ext_factor, (const float *) op->op_params + 7, sizeof(float));
// TODO: n_dims <= ne0
if (op->src[0]->ne[0] != op->op_params[1]) {
return false;
}
// TODO: ext_factor != 0
if (ext_factor != 0) {
return false;
}
const int mode = ((const int32_t *) op->op_params)[2];
if (mode & GGML_ROPE_TYPE_MROPE) {
@@ -2423,10 +2538,11 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
if (mode & GGML_ROPE_TYPE_VISION) {
return false;
}
#ifdef ASCEND_310P
if(!ggml_is_contiguous(op->src[0])){
return false;
}
#endif
return true;
}
case GGML_OP_UPSCALE: {
@@ -2488,15 +2604,17 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
case GGML_OP_ARGMAX:
case GGML_OP_COS:
case GGML_OP_SIN:
case GGML_OP_CONV_TRANSPOSE_1D:
case GGML_OP_LOG:
case GGML_OP_MEAN:
case GGML_OP_PAD_REFLECT_1D:
case GGML_OP_COUNT_EQUAL:
return true;
case GGML_OP_CONV_TRANSPOSE_1D:
// TODO: ((weightL - 1) * dilationW - padLeft)=1336 should not be larger than 255.
return (op->src[0]->ne[0] - 1) <= 255;
case GGML_OP_SCALE:
float bias;
memcpy(&bias, (float*)op->op_params + 1, sizeof(float));
memcpy(&bias, (const float *)(op->op_params) + 1, sizeof(float));
return bias == 0.0f; // TODO: support bias != 0.0f
case GGML_OP_SOFT_MAX:
// TODO: support attention sinks [TAG_ATTN_SINKS]
@@ -2505,6 +2623,10 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
}
return true;
case GGML_OP_FLASH_ATTN_EXT:{
#ifdef ASCEND_310P
// FA not support on 310p device
return false;
#endif
// derived from [ggml-cuda.cu]
if(op->src[1]->type != GGML_TYPE_F16 || op->src[2]->type != GGML_TYPE_F16){
return false;
@@ -2523,15 +2645,12 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
// different head sizes of K and V are not supported yet
return false;
}
if (op->src[0]->ne[0] == 192) {
return false;
}
if (op->src[0]->ne[0] == 576) {
// DeepSeek MLA
if (op->src[0]->ne[0] % 16 != 0) {
// TODO: padding to support
return false;
}
float logitSoftcap = 0.0f;
memcpy(&logitSoftcap, (float*)op->op_params + 2, sizeof(float));
memcpy(&logitSoftcap, (const float *)(op->op_params) + 2, sizeof(float));
if(logitSoftcap != 0.0f) {
return false;
}
@@ -2638,6 +2757,7 @@ static const ggml_backend_i ggml_backend_cann_interface = {
/* .graph_compute = */ ggml_backend_cann_graph_compute,
/* .event_record = */ ggml_backend_cann_event_record,
/* .event_wait = */ ggml_backend_cann_event_wait,
/* .optimize_graph = */ NULL,
};
/**

View File

@@ -224,7 +224,13 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
foreach(feature DOTPROD SVE MATMUL_INT8 FMA FP16_VECTOR_ARITHMETIC SME)
string(FIND "${ARM_FEATURE}" "__ARM_FEATURE_${feature} 1" feature_pos)
if (NOT ${feature_pos} EQUAL -1)
message(STATUS "ARM feature ${feature} enabled")
# Special handling for MATMUL_INT8 when machine doesn't support i8mm
if ("${feature}" STREQUAL "MATMUL_INT8" AND GGML_MACHINE_SUPPORTS_noi8mm)
message(STATUS "ARM feature ${feature} detected but unsetting due to machine not supporting i8mm")
list(APPEND ARCH_FLAGS -U__ARM_FEATURE_MATMUL_INT8)
else()
message(STATUS "ARM feature ${feature} enabled")
endif()
endif()
endforeach()
endif()
@@ -433,15 +439,22 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
ggml-cpu/arch/riscv/quants.c
ggml-cpu/arch/riscv/repack.cpp
)
if (GGML_RVV)
if (GGML_XTHEADVECTOR)
list(APPEND ARCH_FLAGS -march=rv64gc_xtheadvector -mabi=lp64d)
elseif (GGML_RV_ZFH)
list(APPEND ARCH_FLAGS -march=rv64gcv_zfhmin -mabi=lp64d)
else()
list(APPEND ARCH_FLAGS -march=rv64gcv -mabi=lp64d)
set(MARCH_STR "rv64gc")
if (GGML_RV_ZFH)
string(APPEND MARCH_STR "_zfh")
endif()
if (GGML_XTHEADVECTOR)
string(APPEND MARCH_STR "_xtheadvector")
elseif (GGML_RVV)
string(APPEND MARCH_STR "_v")
if (GGML_RV_ZVFH)
string(APPEND MARCH_STR "_zvfh")
endif()
endif()
if (GGML_RV_ZICBOP)
string(APPEND MARCH_STR "_zicbop")
endif()
list(APPEND ARCH_FLAGS "-march=${MARCH_STR}" -mabi=lp64d)
elseif (GGML_SYSTEM_ARCH STREQUAL "s390x")
message(STATUS "s390x detected")
list(APPEND GGML_CPU_SOURCES ggml-cpu/arch/s390/quants.c)
@@ -450,7 +463,6 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
# TODO: Separation to determine activation of VX/VXE/VXE2
if (${S390X_M} MATCHES "8561|8562")
set(GGML_NNPA OFF)
message(STATUS "z15 target")
list(APPEND ARCH_FLAGS -march=z15)
elseif (${S390X_M} MATCHES "3931")
@@ -472,11 +484,6 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
list(APPEND ARCH_FLAGS -mvx -mzvector)
list(APPEND ARCH_DEFINITIONS GGML_VXE)
endif()
if (GGML_NNPA)
message(STATUS "NNPA enabled")
list(APPEND ARCH_DEFINITIONS GGML_NNPA)
endif()
elseif (CMAKE_SYSTEM_PROCESSOR MATCHES "wasm")
message(STATUS "Wasm detected")
list (APPEND GGML_CPU_SOURCES ggml-cpu/arch/wasm/quants.c)
@@ -497,9 +504,9 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
# Fetch KleidiAI sources:
include(FetchContent)
set(KLEIDIAI_COMMIT_TAG "v1.11.0")
set(KLEIDIAI_COMMIT_TAG "v1.13.0")
set(KLEIDIAI_DOWNLOAD_URL "https://github.com/ARM-software/kleidiai/archive/refs/tags/${KLEIDIAI_COMMIT_TAG}.tar.gz")
set(KLEIDIAI_ARCHIVE_MD5 "3fe9e5ab964c375c53839296eb71eaa2")
set(KLEIDIAI_ARCHIVE_MD5 "d82a8de939d9814621a5ba23907bdac1")
if (POLICY CMP0135)
cmake_policy(SET CMP0135 NEW)
@@ -555,6 +562,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
list(APPEND GGML_KLEIDIAI_SOURCES
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p4x8sb_f32_neon.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32_neon.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.c)
@@ -576,7 +584,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_fp32_bf16p_bf16p/kai_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_pack_bf16p2vlx2_f32_sme.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.c)
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.c
${KLEIDIAI_SRC}/kai/kai_common_sme_asm.S)
set(PRIVATE_ARCH_FLAGS "-fno-tree-vectorize;${PRIVATE_ARCH_FLAGS}+sve+sve2")
endif()

View File

@@ -1270,29 +1270,40 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
int tmp, tmp2, sumi;
float ftmp, ft2;
const uint8_t * restrict q40;
const uint8_t * restrict q41;
const uint8_t * restrict q42;
const uint8_t * restrict q43;
const int8_t * restrict q80;
const int8_t * restrict q81;
const int8_t * restrict q82;
const int8_t * restrict q83;
int s0, s1, s2, s3;
__asm__ __volatile__(
"vsetivli zero, 12, e8, m1\n\t"
"vle8.v v1, (%[s6b])\n\t" // {aux[0], aux[1], aux[2]}
"vsetivli zero, 4, e32, m1\n\t"
"li %[s1], 8\n\t"
"vsetivli zero, 4, e32, m1, ta, ma\n\t"
"vle32.v v1, (%[s6b])\n\t"
"vslide1down.vx v1, v1, zero\n\t"
"vmv.v.x v16, zero\n\t"
"vslidedown.vi v2, v1, 2\n\t"
"vmv1r.v v3, v2\n\t"
"vslideup.vi v2, v3, 1\n\t" // {aux[2], aux[2]}
"vsetivli zero, 2, e32, m1\n\t"
"vsetivli zero, 2, e32, m1, ta, ma\n\t"
"vmv.v.i v4, 4\n\t"
"vand.vx v8, v1, %[kmask1]\n\t"
"vslide1up.vx v5, v4, zero\n\t" // {0, 4}
"vsrl.vi v6, v1, 6\n\t"
"vsrl.vv v7, v2, v5\n\t"
"vsse32.v v8, (%[utmp]), %[s1]\n\t"
"vand.vx v0, v6, %[kmask3]\n\t"
"vand.vx v2, v7, %[kmask2]\n\t"
"vsll.vi v6, v0, 4\n\t"
"li %[t2], 8\n\t"
"addi %[t1], %[utmp], 4\n\t"
"addi %[s0], %[utmp], 4\n\t"
"vor.vv v1, v6, v2\n\t"
"vsse32.v v8, (%[utmp]), %[t2]\n\t"
"vsse32.v v1, (%[t1]), %[t2]\n\t"
"vsetivli zero, 8, e16, m1\n\t"
"vsse32.v v1, (%[s0]), %[s1]\n\t"
"vsetivli zero, 8, e16, m1, ta, ma\n\t"
"vle32.v v2, (%[bsums])\n\t"
"vnsrl.wi v0, v2, 0\n\t"
"vnsrl.wi v1, v2, 16\n\t"
@@ -1300,13 +1311,131 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
"vle8.v v3, (%[mins])\n\t"
"vzext.vf2 v4, v3\n\t"
"vwmul.vv v6, v4, v2\n\t"
"vsetivli zero, 4, e32, m1, ta, ma\n\t"
"vredsum.vs v0, v6, v16\n\t"
"vredsum.vs v0, v7, v0\n\t"
"vfcvt.f.x.v v0, v0\n\t"
"vfmv.f.s %[ftmp], v0\n\t"
"vsetivli zero, 16, e8, m1, ta, ma\n\t"
"vle8.v v0, (%[xs])\n\t"
"fnmsub.s %[sumf], %[dmin], %[ftmp], %[sumf]\n\t"
"addi %[q40], %[xs], 64\n\t"
"addi %[q41], %[xs], 16\n\t"
"addi %[q42], %[xs], 32\n\t"
"addi %[q43], %[xs], 48\n\t"
"addi %[q80], %[ys], 64\n\t"
"vle8.v v1, (%[q41])\n\t"
"vle8.v v2, (%[q42])\n\t"
"addi %[q81], %[ys], 16\n\t"
"addi %[q41], %[q41], 64\n\t"
"addi %[q82], %[ys], 32\n\t"
"vle8.v v3, (%[q43])\n\t"
"vle8.v v8, (%[ys])\n\t"
"addi %[q42], %[q42], 64\n\t"
"addi %[q83], %[ys], 48\n\t"
"addi %[q43], %[q43], 64\n\t"
"vsrl.vi v4, v0, 4\n\t"
"vle8.v v9, (%[q81])\n\t"
"vle8.v v10, (%[q82])\n\t"
"vand.vi v0, v0, 0xF\n\t"
"addi %[q81], %[q81], 64\n\t"
"vsrl.vi v5, v1, 4\n\t"
"addi %[q82], %[q82], 64\n\t"
"vle8.v v11, (%[q83])\n\t"
"vle8.v v12, (%[q80])\n\t"
"vand.vi v1, v1, 0xF\n\t"
"addi %[q83], %[q83], 64\n\t"
"vsrl.vi v6, v2, 4\n\t"
"addi %[q80], %[q80], 64\n\t"
"vle8.v v13, (%[q81])\n\t"
"vle8.v v14, (%[q82])\n\t"
"vand.vi v2, v2, 0xF\n\t"
"addi %[q81], %[q81], 64\n\t"
"vsrl.vi v7, v3, 4\n\t"
"addi %[q82], %[q82], 64\n\t"
"vwmul.vv v16, v0, v8\n\t"
"vle8.v v15, (%[q83])\n\t"
"vle8.v v0, (%[q40])\n\t"
"vand.vi v3, v3, 0xF\n\t"
"addi %[q83], %[q83], 64\n\t"
"vwmul.vv v24, v2, v12\n\t"
"vwmul.vv v20, v4, v10\n\t"
"vwmul.vv v28, v6, v14\n\t"
"vwmacc.vv v16, v1, v9\n\t"
"vle8.v v1, (%[q41])\n\t"
"vle8.v v2, (%[q42])\n\t"
"vwmacc.vv v24, v3, v13\n\t"
"vwmacc.vv v20, v5, v11\n\t"
"vwmacc.vv v28, v7, v15\n\t"
"addi %[q40], %[q80], 64\n\t"
"addi %[q41], %[q81], 64\n\t"
"vle8.v v3, (%[q43])\n\t"
"vle8.v v8, (%[q80])\n\t"
"addi %[q42], %[q82], 64\n\t"
"addi %[q43], %[q83], 64\n\t"
"vsrl.vi v4, v0, 4\n\t"
"vle8.v v9, (%[q81])\n\t"
"vle8.v v10, (%[q82])\n\t"
"vand.vi v0, v0, 0xF\n\t"
"vsrl.vi v5, v1, 4\n\t"
"vsrl.vi v7, v3, 4\n\t"
"vand.vi v3, v3, 0xF\n\t"
"vle8.v v11, (%[q83])\n\t"
"vle8.v v12, (%[q40])\n\t"
"vand.vi v1, v1, 0xF\n\t"
"vsrl.vi v6, v2, 4\n\t"
"vand.vi v2, v2, 0xF\n\t"
"vwmul.vv v18, v0, v8\n\t"
"vle8.v v13, (%[q41])\n\t"
"vle8.v v14, (%[q42])\n\t"
"vwmul.vv v26, v2, v12\n\t"
"vwmul.vv v22, v4, v10\n\t"
"vwmul.vv v30, v6, v14\n\t"
"vwmacc.vv v18, v1, v9\n\t"
"vle8.v v15, (%[q43])\n\t"
"vwmacc.vv v26, v3, v13\n\t"
"vwmacc.vv v22, v5, v11\n\t"
"vwmacc.vv v30, v7, v15\n\t"
"vmv.v.x v0, zero\n\t"
"vsetivli zero, 8, e32, m2\n\t"
"vredsum.vs v0, v6, v0\n\t"
"vmv.x.s %[sumi], v0"
: [t1] "=&r" (tmp), [t2] "=&r" (tmp2), [sumi] "=&r" (sumi)
: [bsums] "r" (y[i].bsums), [mins] "r" (mins), [utmp] "r" (utmp)
, [s6b] "r" (x[i].scales), [kmask1] "r" (kmask1)
"vsetivli zero, 16, e16, m2, ta, ma\n\t"
"vwredsum.vs v4, v16, v0\n\t"
"lbu %[s0], 0(%[scale])\n\t"
"vwredsum.vs v5, v20, v0\n\t"
"lbu %[s1], 1(%[scale])\n\t"
"vwredsum.vs v6, v24, v0\n\t"
"lbu %[s2], 2(%[scale])\n\t"
"vwredsum.vs v7, v28, v0\n\t"
"lbu %[s3], 3(%[scale])\n\t"
"vwredsum.vs v8, v18, v0\n\t"
"lbu %[q40], 4(%[scale])\n\t"
"vwredsum.vs v9, v22, v0\n\t"
"lbu %[q41], 5(%[scale])\n\t"
"vwredsum.vs v10, v26, v0\n\t"
"lbu %[q42], 6(%[scale])\n\t"
"vwredsum.vs v11, v30, v0\n\t"
"lbu %[q43], 7(%[scale])\n\t"
"vsetivli zero, 4, e32, m1, ta, ma\n\t"
"vmul.vx v0, v4, %[s0]\n\t"
"vmul.vx v1, v8, %[q40]\n\t"
"vmacc.vx v0, %[s1], v5\n\t"
"vmacc.vx v1, %[q41], v9\n\t"
"vmacc.vx v0, %[s2], v6\n\t"
"vmacc.vx v1, %[q42], v10\n\t"
"vmacc.vx v0, %[s3], v7\n\t"
"vmacc.vx v1, %[q43], v11\n\t"
"vfcvt.f.x.v v0, v0\n\t"
"vfcvt.f.x.v v1, v1\n\t"
"vfmv.f.s %[ft2], v0\n\t"
"vfmv.f.s %[ftmp], v1\n\t"
"fadd.s %[ft2], %[ft2], %[ftmp]\n\t"
"fmadd.s %[sumf], %[d], %[ft2], %[sumf]"
: [ftmp] "=&f" (ftmp), [sumf] "+&f" (sumf), [ft2] "=&f" (ft2)
, [s0] "=&r" (s0), [s1] "=&r" (s1), [s2] "=&r" (s2), [s3] "=&r" (s3)
, [q40] "=&r" (q40), [q41] "=&r" (q41), [q42] "=&r" (q42), [q43] "=&r" (q43)
, [q80] "=&r" (q80), [q81] "=&r" (q81), [q82] "=&r" (q82), [q83] "=&r" (q83)
: [d] "f" (d), [ys] "r" (y[i].qs), [xs] "r" (x[i].qs), [scale] "r" (scales)
, [bsums] "r" (y[i].bsums), [mins] "r" (mins), [utmp] "r" (utmp)
, [s6b] "r" (&x[i]), [kmask1] "r" (kmask1), [dmin] "f" (dmin)
, [kmask2] "r" (kmask2), [kmask3] "r" (kmask3)
: "memory"
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
@@ -1314,59 +1443,6 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
);
sumf -= dmin * sumi;
const uint8_t * restrict q4 = x[i].qs;
const int8_t * restrict q8 = y[i].qs;
sumi = 0;
const uint8_t * scale = scales;
for (int j = 0; j < QK_K/128; ++j) {
int vl128 = 128, vl64 = 64, vl32 = 32;
__asm__ __volatile__(
"vsetvli zero, %[vl128], e8, m8\n\t"
"vle8.v v8, (%[q8])\n\t"
"vsetvli zero, %[vl64], e8, m4\n\t"
"vle8.v v0, (%[q4])\n\t"
"vsrl.vi v4, v0, 4\n\t"
"vand.vi v0, v0, 0xF\n\t"
"vsetvli zero, %[vl32], e8, m2\n\t"
"vwmul.vv v28, v6, v14\n\t"
"vwmul.vv v20, v4, v10\n\t"
"vwmul.vv v24, v2, v12\n\t"
"vwmul.vv v16, v0, v8\n\t"
"vsetivli zero, 4, e32, m1\n\t"
"vle8.v v2, (%[scale])\n\t"
"vmv.v.x v0, zero\n\t"
"vzext.vf4 v1, v2\n\t"
"vsetvli zero, %[vl32], e16, m4\n\t"
"vwredsum.vs v6, v24, v0\n\t"
"vwredsum.vs v7, v28, v0\n\t"
"vwredsum.vs v4, v16, v0\n\t"
"vwredsum.vs v5, v20, v0\n\t"
"vsetivli zero, 4, e32, m1\n\t"
"vslideup.vi v6, v7, 1\n\t"
"vslideup.vi v4, v5, 1\n\t"
"vslideup.vi v4, v6, 2\n\t"
"vmul.vv v8, v4, v1\n\t"
"vredsum.vs v0, v8, v0\n\t"
"vmv.x.s %[tmp], v0\n\t"
"add %[sumi], %[sumi], %[tmp]"
: [tmp] "=&r" (tmp), [sumi] "+&r" (sumi)
: [vl128] "r" (vl128), [vl64] "r" (vl64), [vl32] "r" (vl32)
, [q4] "r" (q4), [q8] "r" (q8), [scale] "r" (scale)
: "memory"
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
);
q4 += 64; q8 += 128; scale += 4;
}
sumf += d * sumi;
}
break;
default:
@@ -1693,6 +1769,8 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
case 128:
for (int i = 0; i < nb; ++i) {
__builtin_prefetch(&x[i + 1].d, 0, 1);
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint8_t * restrict q6 = x[i].ql;
@@ -1701,23 +1779,59 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
const int8_t * restrict scale = x[i].scales;
int sum_t = 0;
int t0;
int q6h;
float ftmp;
for (int j = 0; j < QK_K/128; ++j) {
__asm__ __volatile__(
"addi %[q6h], %[q6], 32\n\t"
"ld t0, 0(%[scale])\n\t"
"addi %[scale], %[scale], 8\n\t"
"slli t6, t0, 1 * 8\n\t"
"lb zero, 0(%[q6])\n\t"
"slli t5, t0, 2 * 8\n\t"
"slli t4, t0, 3 * 8\n\t"
"lb zero, 0(%[q6h])\n\t"
"slli t3, t0, 4 * 8\n\t"
"slli t2, t0, 5 * 8\n\t"
"lb zero, 0(%[qh])\n\t"
"lb zero, 31(%[q6h])\n\t"
"slli t1, t0, 6 * 8\n\t"
"srai a7, t0, 56\n\t"
"vsetvli zero, %[vl32], e8, m2\n\t"
"vle8.v v8, (%[q6])\n\t"
"srai t6, t6, 56\n\t"
"srai t5, t5, 56\n\t"
"srai t4, t4, 56\n\t"
"srai t3, t3, 56\n\t"
"vle8.v v10, (%[q6h])\n\t"
"addi %[q6], %[q6], 64\n\t"
"slli t0, t0, 7 * 8\n\t"
"srai t2, t2, 56\n\t"
"srai t1, t1, 56\n\t"
"srai t0, t0, 56\n\t"
"vle8.v v4, (%[qh])\n\t"
"vsrl.vi v12, v8, 4\n\t"
"vsrl.vi v14, v10, 4\n\t"
"lb zero, 0(%[q8])\n\t"
"vand.vi v8, v8, 0xF\n\t"
"vand.vi v10, v10, 0xF\n\t"
"lb zero, 32(%[q8])\n\t"
"vsll.vi v0, v4, 4\n\t"
"vsll.vi v2, v4, 2\n\t"
"lb zero, 64(%[q8])\n\t"
"vsrl.vi v6, v4, 2\n\t"
"vsetvli zero, %[vl64], e8, m4\n\t"
"vle8.v v8, (%[q6])\n\t"
"vsrl.vi v12, v8, 4\n\t"
"vand.vi v8, v8, 0xF\n\t"
"vsetvli zero, %[vl128], e8, m8\n\t"
"vand.vx v0, v0, %[mask]\n\t"
"lb zero, 96(%[q8])\n\t"
"vand.vx v2, v2, %[mask]\n\t"
"vand.vx v4, v4, %[mask]\n\t"
"vand.vx v6, v6, %[mask]\n\t"
"vor.vv v8, v8, v0\n\t"
"lb zero, 127(%[q8])\n\t"
"vor.vv v10, v10, v2\n\t"
"vor.vv v12, v12, v4\n\t"
"vor.vv v14, v14, v6\n\t"
"vsetvli zero, %[vl128], e8, m8\n\t"
"vle8.v v0, (%[q8])\n\t"
"vsub.vx v8, v8, %[vl32]\n\t"
"vsetvli zero, %[vl64], e8, m4\n\t"
@@ -1734,34 +1848,34 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
"vwredsum.vs v13, v28, v0\n\t"
"vwredsum.vs v14, v30, v0\n\t"
"vsetivli zero, 4, e32, m1\n\t"
"vslideup.vi v10, v9, 1\n\t"
"vslideup.vi v8, v7, 1\n\t"
"vslideup.vi v11, v12, 1\n\t"
"vslideup.vi v13, v14, 1\n\t"
"vslideup.vi v10, v8, 2\n\t"
"vslideup.vi v11, v13, 2\n\t"
"vsetivli zero, 8, e32, m2\n\t"
"vle8.v v2, (%[scale])\n\t"
"vsext.vf4 v4, v2\n\t"
"vmul.vv v2, v4, v10\n\t"
"vredsum.vs v0, v2, v0\n\t"
"vmv.x.s %[t0], v0\n\t"
"add %[sumi], %[sumi], %[t0]"
: [sumi] "+&r" (sum_t), [t0] "=&r" (t0)
: [qh] "r" (qh), [q6] "r" (q6), [q8] "r" (q8), [scale] "r" (scale)
"vmul.vx v0, v10, t0\n\t"
"vmul.vx v1, v9, t1\n\t"
"vmacc.vx v0, t2, v8\n\t"
"vmacc.vx v1, t3, v7\n\t"
"vmacc.vx v0, t4, v11\n\t"
"vmacc.vx v1, t5, v12\n\t"
"vmacc.vx v0, t6, v13\n\t"
"vmacc.vx v1, a7, v14\n\t"
"vadd.vv v0, v0, v1\n\t"
"vfcvt.f.x.v v0, v0\n\t"
"vfmv.f.s %[ftmp], v0\n\t"
"fmadd.s %[sumf], %[d], %[ftmp], %[sumf]"
: [q6] "+&r" (q6), [q6h] "=&r" (q6h)
, [scale] "+&r" (scale)
, [sumf] "+&f" (sumf), [ftmp] "=&f" (ftmp)
: [qh] "r" (qh), [q8] "r" (q8)
, [vl32] "r" (32), [vl64] "r" (64), [vl128] "r" (128)
, [mask] "r" (0x30)
, [mask] "r" (0x30), [d] "f" (d)
: "memory"
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
, "t0", "t1", "t2", "t3", "t4", "t5", "t6", "a7"
, "a6", "a5", "a4", "a3"
);
q6 += 64; qh += 32; q8 += 128; scale += 8;
qh += 32; q8 += 128;
}
sumf += d * sum_t;
}
break;
default:

View File

@@ -53,9 +53,9 @@ void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
#if defined(__VXE__) || defined(__VXE2__)
for (int i = 0; i < nb; i++) {
__vector float srcv [8];
__vector float asrcv[8];
__vector float amaxv[8];
float32x4_t srcv [8];
float32x4_t asrcv[8];
float32x4_t amaxv[8];
for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
@@ -74,8 +74,8 @@ void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
y[i].d = GGML_CPU_FP32_TO_FP16(d);
for (int j = 0; j < 8; j++) {
const __vector float v = vec_mul(srcv[j], vec_splats(id));
const __vector int32_t vi = vec_signed(v);
const float32x4_t v = vec_mul(srcv[j], vec_splats(id));
const int32x4_t vi = vec_signed(v);
y[i].qs[4*j + 0] = vec_extract(vi, 0);
y[i].qs[4*j + 1] = vec_extract(vi, 1);
@@ -98,9 +98,9 @@ void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
#if defined(__VXE__) || defined(__VXE2__)
for (int i = 0; i < nb; i++) {
__vector float srcv [8];
__vector float asrcv[8];
__vector float amaxv[8];
float32x4_t srcv [8];
float32x4_t asrcv[8];
float32x4_t amaxv[8];
for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
@@ -118,11 +118,11 @@ void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
y[i].d = GGML_CPU_FP32_TO_FP16(d);
__vector int32_t acc = vec_splats(0);
int32x4_t acc = vec_splats(0);
for (int j = 0; j < 8; j++) {
const __vector float v = vec_mul(srcv[j], vec_splats(id));
const __vector int32_t vi = vec_signed(v);
const float32x4_t v = vec_mul(srcv[j], vec_splats(id));
const int32x4_t vi = vec_signed(v);
y[i].qs[4*j + 0] = vec_extract(vi, 0);
y[i].qs[4*j + 1] = vec_extract(vi, 1);
@@ -162,37 +162,36 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
float sumf = 0;
#if defined(__VXE__) || defined(__VXE2__)
__vector float acc = vec_splats(0.0f);
float32x4_t acc = vec_splats(0.0f);
const __vector uint8_t v_m = vec_splats((const uint8_t)0x0F);
const __vector int8_t v_s = vec_splats( (const int8_t)0x08);
const uint8x16_t v_m = vec_splats((const uint8_t)0x0F);
const int8x16_t v_s = vec_splats( (const int8_t)0x08);
for (; ib < nb; ++ib) {
const __vector uint8_t v_x = vec_xl(0, x[ib].qs);
const __vector int8_t v_xl = (const __vector int8_t)(v_x & v_m);
const __vector int8_t v_xh = (const __vector int8_t)(v_x >> 4);
const uint8x16_t v_x = vec_xl(0, x[ib].qs);
const int8x16_t v_xl = (const int8x16_t)(v_x & v_m);
const int8x16_t v_xh = (const int8x16_t)(v_x >> 4);
const __vector int8_t v_xls = vec_sub(v_xl, v_s);
const __vector int8_t v_xhs = vec_sub(v_xh, v_s);
const int8x16_t v_xls = vec_sub(v_xl, v_s);
const int8x16_t v_xhs = vec_sub(v_xh, v_s);
const __vector int8_t v_yl = vec_xl(0 , y[ib].qs);
const __vector int8_t v_yh = vec_xl(QK8_0/2, y[ib].qs);
const int8x16_t v_yl = vec_xl(0 , y[ib].qs);
const int8x16_t v_yh = vec_xl(QK8_0/2, y[ib].qs);
const __vector int16_t v_xylso = vec_mulo(v_xls, v_yl);
const __vector int16_t v_xylse = vec_mule(v_xls, v_yl);
const __vector int16_t v_xyhso = vec_mulo(v_xhs, v_yh);
const __vector int16_t v_xyhse = vec_mule(v_xhs, v_yh);
const int16x8_t v_xylso = vec_mulo(v_xls, v_yl);
const int16x8_t v_xylse = vec_mule(v_xls, v_yl);
const int16x8_t v_xyhso = vec_mulo(v_xhs, v_yh);
const int16x8_t v_xyhse = vec_mule(v_xhs, v_yh);
__vector int16_t v_xy_ = v_xylso + v_xylse + v_xyhso + v_xyhse; v_xy_ += vec_reve(v_xy_);
int16x8_t v_xy_ = v_xylso + v_xylse + v_xyhso + v_xyhse; v_xy_ += vec_reve(v_xy_);
const __vector float v_xy = vec_float(vec_unpackh(v_xy_));
const __vector float v_d = vec_splats(GGML_CPU_FP16_TO_FP32(x[ib].d) * GGML_CPU_FP16_TO_FP32(y[ib].d));
const float32x4_t v_xy = vec_float(vec_unpackh(v_xy_));
const float32x4_t v_d = vec_splats(GGML_CPU_FP16_TO_FP32(x[ib].d) * GGML_CPU_FP16_TO_FP32(y[ib].d));
acc = vec_madd(v_xy, v_d, acc);
}
sumf = acc[0] + acc[1] + acc[2] + acc[3];
sumf = vec_hsum_f32x4(acc);
*s = sumf;
#else
UNUSED(nb);
@@ -249,8 +248,7 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
acc = vec_madd(v_xy, v_d, acc);
}
sumf = acc[0] + acc[1] + acc[2] + acc[3] + summs;
sumf = vec_hsum_f32x4(acc) + summs;
*s = sumf;
#else
UNUSED(nb);
@@ -351,7 +349,7 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
v_sum1 = vec_madd(v_xy1f, v_d1, v_sum1);
}
sumf += vec_hsum(v_sum0) + vec_hsum(v_sum1);
sumf += vec_hsum_f32x4(v_sum0) + vec_hsum_f32x4(v_sum1);
#pragma GCC unroll 4
for (; ib < nb; ++ib) {
@@ -390,7 +388,7 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
const float32x4_t v_d = vec_splats(GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d));
const float32x4_t v_acc = vec_madd(v_xyf, v_d, vec_splats(0.0f));
sumf += vec_hsum(v_acc);
sumf += vec_hsum_f32x4(v_acc);
}
*s = sumf;
@@ -502,7 +500,7 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
v_sum1 = vec_madd(v_xy1f, v_d1, v_sum1);
}
sumf += vec_hsum(v_sum0) + vec_hsum(v_sum1) + summs0 + summs1;
sumf += vec_hsum_f32x4(v_sum0) + vec_hsum_f32x4(v_sum1) + summs0 + summs1;
#pragma GCC unroll 4
for (; ib < nb; ++ib) {
@@ -543,7 +541,7 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
const float32x4_t v_d = vec_splats(GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d));
const float32x4_t v_acc = vec_madd(v_xyf, v_d, v_acc);
sumf += vec_hsum(v_acc) + summs;
sumf += vec_hsum_f32x4(v_acc) + summs;
}
*s = sumf;
@@ -575,7 +573,7 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
float sumf = 0;
#if defined(__VXE__) || defined(__VXE2__)
__vector float acc = vec_splats(0.0f);
float32x4_t acc = vec_splats(0.0f);
#pragma GCC unroll 8
for (; ib < nb; ++ib) {
@@ -594,7 +592,7 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
acc = vec_madd(v_xy, v_d, acc);
}
sumf = acc[0] + acc[1] + acc[2] + acc[3];
sumf = vec_hsum_f32x4(acc);
*s = sumf;
#else
@@ -718,10 +716,10 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
isum2 = ggml_vec_dot(v_z, q3bytes[2], q8bytes[6]);
isum3 = ggml_vec_dot(v_z, q3bytes[3], q8bytes[7]);
isum += (isum0[0] + isum0[1] + isum0[2] + isum0[3]) * scale[0];
isum += (isum1[0] + isum1[1] + isum1[2] + isum1[3]) * scale[1];
isum += (isum2[0] + isum2[1] + isum2[2] + isum2[3]) * scale[2];
isum += (isum3[0] + isum3[1] + isum3[2] + isum3[3]) * scale[3];
isum += vec_hsum_i32x4(isum0) * scale[0];
isum += vec_hsum_i32x4(isum1) * scale[1];
isum += vec_hsum_i32x4(isum2) * scale[2];
isum += vec_hsum_i32x4(isum3) * scale[3];
scale += 4;
@@ -819,7 +817,7 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
v_xl[1] = (int8x16_t)vec_and(v_x[1], v_lm);
const int32x4_t p1 = ggml_vec_dot(ggml_vec_dot(v_z, v_xl[0], v_y[0]), v_xl[1], v_y[1]);
sumi1 += (p1[0] + p1[1] + p1[2] + p1[3]) * scales[2*j+0];
sumi1 += vec_hsum_i32x4(p1) * scales[2*j+0];
v_y[0] = vec_xl(0 , y0);
v_y[1] = vec_xl(16, y0);
@@ -829,7 +827,7 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
v_xl[1] = (int8x16_t)vec_sr(v_x[1], 4);
const int32x4_t p2 = ggml_vec_dot(ggml_vec_dot(v_z, v_xl[0], v_y[0]), v_xl[1], v_y[1]);
sumi2 += (p2[0] + p2[1] + p2[2] + p2[3]) * scales[2*j+1];
sumi2 += vec_hsum_i32x4(p2) * scales[2*j+1];
}
sumf += d * (sumi1 + sumi2);
@@ -911,7 +909,7 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
const int32x4_t v_minsho = vec_mulo(v_ysums, v_minsh);
const int32x4_t v_minshe = vec_mule(v_ysums, v_minsh);
const int32x4_t v_mins = vec_add(v_minsho, v_minshe);
const int32_t mins = v_mins[0] + v_mins[1] + v_mins[2] + v_mins[3];
const int32_t mins = vec_hsum_i32x4(v_mins);
const uint8_t * scales = (const uint8_t *)utmp;
const uint8_t * GGML_RESTRICT x0l = x[i].qs;
@@ -948,8 +946,8 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
int32x4_t sumi0 = ggml_vec_dot(ggml_vec_dot(v_z, q5b[0], v_y[0]), q5b[1], v_y[1]);
int32x4_t sumi1 = ggml_vec_dot(ggml_vec_dot(v_z, q5b[2], v_y[2]), q5b[3], v_y[3]);
sumi += (sumi0[0] + sumi0[1] + sumi0[2] + sumi0[3]) * *scales++;
sumi += (sumi1[0] + sumi1[1] + sumi1[2] + sumi1[3]) * *scales++;
sumi += vec_hsum_i32x4(sumi0) * *scales++;
sumi += vec_hsum_i32x4(sumi1) * *scales++;
}
sumf += d * sumi - dmin * mins;
@@ -1020,7 +1018,7 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
const int32x4_t v_minshe = vec_mule(v_ysumsh, v_scaleh);
const int32x4_t v_mins = v_minslo + v_minsle + v_minsho + v_minshe;
const int32_t mins = v_mins[0] + v_mins[1] + v_mins[2] + v_mins[3];
const int32_t mins = vec_hsum_i32x4(v_mins);
int32_t isum = 0;
for (int j = 0; j < QK_K/128; ++j) {
@@ -1060,10 +1058,10 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
int32x4_t summs2 = ggml_vec_dot(v_z, q6b[2], v_y[2]);
int32x4_t summs3 = ggml_vec_dot(v_z, q6b[3], v_y[3]);
isum += (summs0[0] + summs0[1] + summs0[2] + summs0[3]) * scale[0] +
(summs1[0] + summs1[1] + summs1[2] + summs1[3]) * scale[1] +
(summs2[0] + summs2[1] + summs2[2] + summs2[3]) * scale[2] +
(summs3[0] + summs3[1] + summs3[2] + summs3[3]) * scale[3];
isum += vec_hsum_i32x4(summs0) * scale[0] +
vec_hsum_i32x4(summs1) * scale[1] +
vec_hsum_i32x4(summs2) * scale[2] +
vec_hsum_i32x4(summs3) * scale[3];
scale += 4;
@@ -1094,10 +1092,10 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
summs2 = ggml_vec_dot(v_z, q6b[2], v_y[2]);
summs3 = ggml_vec_dot(v_z, q6b[3], v_y[3]);
isum += (summs0[0] + summs0[1] + summs0[2] + summs0[3]) * scale[0] +
(summs1[0] + summs1[1] + summs1[2] + summs1[3]) * scale[1] +
(summs2[0] + summs2[1] + summs2[2] + summs2[3]) * scale[2] +
(summs3[0] + summs3[1] + summs3[2] + summs3[3]) * scale[3];
isum += vec_hsum_i32x4(summs0) * scale[0] +
vec_hsum_i32x4(summs1) * scale[1] +
vec_hsum_i32x4(summs2) * scale[2] +
vec_hsum_i32x4(summs3) * scale[3];
scale += 4;
}
@@ -1285,7 +1283,7 @@ void ggml_vec_dot_iq4_nl_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const v
const int8x16_t v_yh = vec_xl(QK8_0/2, y0->qs);
const int32x4_t v_xy = ggml_vec_dot(ggml_vec_dot(vec_splats(0), v_xl, v_yl), v_xh, v_yh);
sumf += GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d) * (v_xy[0] + v_xy[1] + v_xy[2] + v_xy[3]);
sumf += GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d) * vec_hsum_i32x4(v_xy);
}
*s = sumf;
@@ -1354,8 +1352,8 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
h >>= 4;
sumi1 += (vsumi0[0] + vsumi0[1] + vsumi0[2] + vsumi0[3]) * ls1;
sumi2 += (vsumi1[0] + vsumi1[1] + vsumi1[2] + vsumi1[3]) * ls2;
sumi1 += vec_hsum_i32x4(vsumi0) * ls1;
sumi2 += vec_hsum_i32x4(vsumi1) * ls2;
}
sumf += GGML_CPU_FP16_TO_FP32(x[ibl].d) * y[ibl].d * (sumi1 + sumi2);

View File

@@ -68,12 +68,6 @@ struct ggml_compute_params {
#endif // __VXE2__
#endif // __s390x__ && __VEC__
#if defined(__s390x__) && defined(GGML_NNPA)
#ifndef __NNPA__
#define __NNPA__
#endif // __NNPA__
#endif // __s390x__ && GGML_NNPA
#if defined(__ARM_FEATURE_SVE)
#include <sys/prctl.h>
#endif
@@ -489,11 +483,16 @@ inline static int16x8_t vec_padd_s16(int16x8_t a, int16x8_t b) {
/**
* @see https://github.com/ggml-org/llama.cpp/pull/14037
*/
inline float vec_hsum(float32x4_t v) {
inline static float vec_hsum_f32x4(float32x4_t v) {
float32x4_t v_temp = v + vec_reve(v);
return v_temp[0] + v_temp[1];
}
inline static int32_t vec_hsum_i32x4(int32x4_t v) {
int32x4_t v_temp = v + vec_reve(v);
return v_temp[0] + v_temp[1];
}
inline static int32x4_t ggml_vec_dot(int32x4_t acc, int8x16_t a, int8x16_t b) {
const int16x8_t p = vec_mule(a, b) + vec_mulo(a, b);
return acc + (vec_unpackh(p) + vec_unpackl(p));

View File

@@ -373,6 +373,9 @@ static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
.vec_dot_type = GGML_TYPE_Q8_K,
.nrows = 1,
},
[GGML_TYPE_I32] = {
.from_float = (ggml_from_float_t) ggml_cpu_fp32_to_i32,
},
};
const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type) {
@@ -1876,6 +1879,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_im2col_back_f32(params, tensor);
} break;
case GGML_OP_IM2COL_3D:
{
ggml_compute_forward_im2col_3d(params, tensor);
} break;
case GGML_OP_CONV_2D:
{
ggml_compute_forward_conv_2d(params, tensor);
@@ -2255,6 +2262,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
} break;
case GGML_OP_IM2COL:
case GGML_OP_IM2COL_BACK:
case GGML_OP_IM2COL_3D:
case GGML_OP_CONV_2D:
case GGML_OP_CONV_3D:
case GGML_OP_CONV_2D_DW:
@@ -2691,7 +2699,10 @@ struct ggml_cplan ggml_graph_plan(
if (ggml_is_quantized(node->type) ||
// F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
(node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
(node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
(node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16) ||
// conversion between F32 and I32
(node->src[0]->type == GGML_TYPE_F32 && node->src[1] && node->src[1]->type == GGML_TYPE_I32) ||
(node->src[0]->type == GGML_TYPE_I32 && node->src[1] && node->src[1]->type == GGML_TYPE_F32)) {
cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
}
} break;
@@ -3206,20 +3217,12 @@ void ggml_cpu_fp32_to_fp16(const float * x, ggml_fp16_t * y, int64_t n) {
__m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
_mm_storel_epi64((__m128i *)(y + i), y_vec);
}
#elif defined(__NNPA__)
for (; i + 7 < n; i += 8) {
float32x4_t v_xh = vec_xl(0, (const float *)(x + i + 0));
float32x4_t v_xl = vec_xl(0, (const float *)(x + i + 4));
uint16x8_t v_yd = vec_round_from_fp32(v_xh, v_xl, 0);
uint16x8_t v_y = vec_convert_to_fp16(v_yd, 0);
vec_xst(v_y, 0, (ggml_fp16_t *)(y + i));
}
for (; i + 3 < n; i += 4) {
float32x4_t v_x = vec_xl(0, (const float *)(x + i));
float32x4_t v_zero = vec_splats(0.0f);
uint16x8_t v_yd = vec_round_from_fp32(v_x, v_zero, 0);
uint16x8_t v_y = vec_convert_to_fp16(v_yd, 0);
vec_xst(v_y, 0, (ggml_fp16_t *)(y + i));
#elif defined(__riscv_zvfh)
for (int vl; i < n; i += vl) {
vl = __riscv_vsetvl_e32m2(n - i);
vfloat32m2_t vx = __riscv_vle32_v_f32m2(&x[i], vl);
vfloat16m1_t vy = __riscv_vfncvt_f_f_w_f16m1(vx, vl);
__riscv_vse16_v_f16m1((_Float16 *)&y[i], vy, vl);
}
#endif
for (; i < n; ++i) {
@@ -3247,21 +3250,6 @@ void ggml_cpu_fp16_to_fp32(const ggml_fp16_t * x, float * y, int64_t n) {
__m128 y_vec = _mm_cvtph_ps(x_vec);
_mm_storeu_ps(y + i, y_vec);
}
#elif defined(__NNPA__)
for (; i + 7 < n; i += 8) {
uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)(x + i));
uint16x8_t v_yd = vec_convert_from_fp16(v_x, 0);
float32x4_t v_yh = vec_extend_to_fp32_hi(v_yd, 0);
float32x4_t v_yl = vec_extend_to_fp32_lo(v_yd, 0);
vec_xst(v_yh, 0, (float *)(y + i + 0));
vec_xst(v_yl, 0, (float *)(y + i + 4));
}
for (; i + 3 < n; i += 4) {
uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)(x + i));
uint16x8_t v_yd = vec_convert_from_fp16(v_x, 0);
float32x4_t v_yh = vec_extend_to_fp32_hi(v_yd, 0);
vec_xst(v_yh, 0, (float *)(y + i));
}
#endif
for (; i < n; ++i) {
@@ -3276,6 +3264,13 @@ void ggml_cpu_fp32_to_bf16(const float * x, ggml_bf16_t * y, int64_t n) {
}
}
void ggml_cpu_fp32_to_i32(const float * x, int32_t * y, int64_t n) {
int64_t i = 0;
for (; i < n; ++i) {
y[i] = x[i];
}
}
void ggml_cpu_bf16_to_fp32(const ggml_bf16_t * x, float * y, int64_t n) {
int64_t i = 0;
#if defined(__AVX2__)
@@ -3465,14 +3460,6 @@ int ggml_cpu_has_vxe(void) {
#endif
}
int ggml_cpu_has_nnpa(void) {
#if defined(GGML_NNPA)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_neon(void) {
#if defined(__ARM_ARCH) && defined(__ARM_NEON)
return 1;

View File

@@ -190,6 +190,7 @@ static const struct ggml_backend_i ggml_backend_cpu_i = {
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
/* .optimize_graph = */ NULL,
};
static ggml_guid_t ggml_backend_cpu_guid(void) {
@@ -348,8 +349,10 @@ static void ggml_backend_cpu_device_get_memory(ggml_backend_dev_t dev, size_t *
long pages = sysconf(_SC_PHYS_PAGES);
long page_size = sysconf(_SC_PAGE_SIZE);
*total = pages * page_size;
// "free" system memory is ill-defined, for practical purposes assume that all of it is free:
*free = *total;
#endif
#endif // _WIN32
GGML_UNUSED(dev);
}
@@ -576,9 +579,6 @@ static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t r
if (ggml_cpu_has_vxe()) {
features.push_back({ "VXE", "1" });
}
if (ggml_cpu_has_nnpa()) {
features.push_back({ "NNPA", "1" });
}
if (ggml_cpu_has_wasm_simd()) {
features.push_back({ "WASM_SIMD", "1" });
}

View File

@@ -14,6 +14,7 @@
#include "kai_lhs_pack_bf16p2vlx2_f32_sme.h"
#include "kai_lhs_quant_pack_qsi8d32p_f32.h"
#include "kai_lhs_quant_pack_qsi8d32p4x8sb_f32_neon.h"
#include "kai_lhs_quant_pack_qsi8d32p_f32_neon.h"
#include "kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.h"
@@ -127,6 +128,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32_neon,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32_neon,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32_neon,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32_neon,
},
/* SME GEMV */
/* .kern_info = */ {
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
@@ -141,7 +148,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
},
/* .lhs_info = */ {
/* .gemv_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32_neon,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32_neon,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32_neon,
@@ -173,6 +180,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .run_kernel = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_pack_bf16p2vlx2_f32_sme,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_pack_bf16p2vlx2_f32_sme,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_pack_bf16p2vlx2_f32_sme,
/* .pack_func = */ kai_run_lhs_pack_bf16p2vlx2_f32_sme,
},
/* SME GEMV */
/* .kern_info = */ {
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
@@ -187,7 +200,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .run_kernel = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
},
/* .lhs_info = */ {
/* .gemv_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_pack_bf16p2vlx2_f32_sme,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_pack_bf16p2vlx2_f32_sme,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_pack_bf16p2vlx2_f32_sme,
@@ -222,6 +235,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
},
/* DOTPROD GEMV */
/* .kern_info = */ {
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
@@ -236,7 +255,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
},
/* .lhs_info = */ {
/* .gemv_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
@@ -270,6 +289,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
},
/* i8mm GEMV */
/* .kern_info = */ {
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
@@ -284,7 +309,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
},
/* .lhs_info = */ {
/* .gemv_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
@@ -319,6 +344,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
},
/* i8mm GEMV */
/* .kern_info = */ {
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
@@ -333,7 +364,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
},
/* .lhs_info = */ {
/* .gemv_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
@@ -367,6 +398,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
},
/* DOTPROD GEMV */
/* .kern_info = */ {
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
@@ -381,7 +418,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
},
/* .lhs_info = */ {
/* .gemv_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,

View File

@@ -84,8 +84,11 @@ struct rhs_packing_info {
struct ggml_kleidiai_kernels {
kernel_info gemm;
lhs_packing_info gemm_lhs_info;
kernel_info gemv;
lhs_packing_info lhs_info;
lhs_packing_info gemv_lhs_info;
rhs_packing_info rhs_info;
cpu_feature required_cpu;

View File

@@ -123,7 +123,9 @@ class tensor_traits : public ggml::cpu::tensor_traits {
}
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, op);
GGML_ASSERT(kernels);
kernel_info * kernel = op->src[1]->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
bool is_gemv = op->src[1]->ne[1] == 1;
kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm;
lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info;
size_t k = op->src[0]->ne[0];
size_t n = op->src[0]->ne[1];
@@ -134,9 +136,9 @@ class tensor_traits : public ggml::cpu::tensor_traits {
size_t sr = kernel->get_sr();
if (kernels->rhs_type == GGML_TYPE_Q4_0) {
size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, QK4_0, mr, kr, sr);
size = variant_call<size_t>(lhs_info->packed_size, m, k, QK4_0, mr, kr, sr);
} else if (kernels->rhs_type == GGML_TYPE_F16) {
size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, mr, kr, sr) +
size = variant_call<size_t>(lhs_info->packed_size, m, k, mr, kr, sr) +
variant_call<size_t>(kernels->rhs_info.packed_size, n, k) +
k * n * sizeof(float) + n * sizeof(float);
} else {
@@ -152,7 +154,7 @@ class tensor_traits : public ggml::cpu::tensor_traits {
if (dst->src[0]->type == GGML_TYPE_Q4_0) {
return compute_forward_q4_0(params, dst);
} else if (dst->src[0]->type == GGML_TYPE_F16) {
return compute_forward_kv_cache(params, dst);
return compute_forward_fp16(params, dst);
}
} else if (dst->op == GGML_OP_GET_ROWS) {
if (dst->src[0]->type == GGML_TYPE_Q4_0) {
@@ -162,7 +164,7 @@ class tensor_traits : public ggml::cpu::tensor_traits {
return false;
}
bool compute_forward_kv_cache(ggml_compute_params * params, struct ggml_tensor * dst) {
bool compute_forward_fp16(ggml_compute_params * params, struct ggml_tensor * dst) {
static std::atomic_flag first_to_arrive = ATOMIC_FLAG_INIT;
const ggml_tensor * src0 = dst->src[0];
@@ -173,7 +175,9 @@ class tensor_traits : public ggml::cpu::tensor_traits {
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst);
GGML_ASSERT(kernels);
kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
bool is_gemv = src1->ne[1] == 1;
kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm;
lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info;
GGML_ASSERT(kernel);
const int nth = params->nth;
@@ -198,7 +202,7 @@ class tensor_traits : public ggml::cpu::tensor_traits {
const int64_t kr = static_cast<int64_t>(kernel->get_kr());
const int64_t sr = static_cast<int64_t>(kernel->get_sr());
const size_t lhs_packed_size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, mr, kr, sr);
const size_t lhs_packed_size = variant_call<size_t>(lhs_info->packed_size, m, k, mr, kr, sr);
const size_t rhs_packed_size = variant_call<size_t>(kernels->rhs_info.packed_size, n, k);
const size_t kxn_size = k * n * sizeof(float);
const size_t bias_size = n * sizeof(float);
@@ -229,12 +233,12 @@ class tensor_traits : public ggml::cpu::tensor_traits {
const int64_t num_m_per_thread = (ith == num_threads - 1) ? num_m_per_threadN_1 : num_m_per_thread0;
const size_t lhs_offset = variant_call<size_t>(kernels->gemm.get_lhs_offset, m_start, lhs_stride);
const size_t lhs_packed_offset = variant_call<size_t>(kernels->lhs_info.get_packed_offset, m_start, k, mr, kr, sr);
const size_t lhs_packed_offset = variant_call<size_t>(lhs_info->get_packed_offset, m_start, k, mr, kr, sr);
const void * src_ptr = static_cast<const uint8_t *>(lhs_batch) + lhs_offset;
void * dst_ptr = static_cast<uint8_t *>(lhs_packed) + lhs_packed_offset;
variant_call<void>(kernels->lhs_info.pack_func, num_m_per_thread, k, mr, kr, sr, 0, src_ptr, lhs_stride, dst_ptr);
variant_call<void>(lhs_info->pack_func, num_m_per_thread, k, mr, kr, sr, 0, src_ptr, lhs_stride, dst_ptr);
}
}
@@ -306,8 +310,9 @@ class tensor_traits : public ggml::cpu::tensor_traits {
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst);
GGML_ASSERT(kernels);
kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
lhs_packing_info * lhs_info = &kernels->lhs_info;
bool is_gemv = src1->ne[1] == 1;
kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm;
lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info;
GGML_ASSERT(kernel);
@@ -510,9 +515,6 @@ class extra_buffer_type : ggml::cpu::extra_buffer_type {
op->src[0]->buffer &&
(ggml_n_dims(op->src[0]) == 2) &&
op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type() && ctx.kernels) {
if (op->op == GGML_OP_GET_ROWS && op->src[1]->ne[0] != 8) {
return false;
}
if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) {
return false;
}
@@ -529,13 +531,8 @@ class extra_buffer_type : ggml::cpu::extra_buffer_type {
if (op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type()) {
return (ggml::cpu::tensor_traits *) op->src[0]->extra;
}
else if (ggml_kleidiai_select_kernels(ctx.features, op) &&
op->src[0]->op == GGML_OP_VIEW &&
(op->src[1]->op == GGML_OP_PERMUTE || op->src[1]->op == GGML_OP_SOFT_MAX) &&
op->src[1]->ne[1] > 1) {
if ((op->src[0]->nb[0] != 2) ||
(op->src[1]->nb[0] != 4) ||
(op->src[0]->nb[1] * op->src[0]->ne[1] != op->src[0]->nb[2]) ||
else if (ggml_kleidiai_select_kernels(ctx.features, op) && op->src[1]->ne[1] > 1) {
if ((op->src[0]->nb[1] * op->src[0]->ne[1] != op->src[0]->nb[2]) ||
(op->src[1]->nb[1] * op->src[1]->ne[1] != op->src[1]->nb[2])) {
return nullptr;
}

View File

@@ -776,6 +776,24 @@ static void ggml_compute_forward_dup_f32(
id += ne00 * (ne01 - ir1);
}
}
} else if (dst->type == GGML_TYPE_I32) {
size_t id = 0;
int32_t * dst_ptr = (int32_t *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = *src0_ptr;
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else {
GGML_ABORT("fatal error"); // TODO: implement
}
@@ -947,6 +965,144 @@ static void ggml_compute_forward_dup_f32(
}
}
}
} else if (dst->type == GGML_TYPE_I32) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
*(int32_t *) dst_ptr = *(const float *) src0_ptr;
if (++i10 == ne0) {
i10 = 0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
} else {
GGML_ABORT("fatal error"); // TODO: implement
}
}
static void ggml_compute_forward_dup_i32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
GGML_TENSOR_UNARY_OP_LOCALS
const int ith = params->ith; // thread index
const int nth = params->nth; // number of threads
// parallelize by rows
const int nr = ne01;
// number of rows per thread
const int dr = (nr + nth - 1) / nth;
// row range for this thread
const int ir0 = dr * ith;
const int ir1 = MIN(ir0 + dr, nr);
// dst counters
int64_t i10 = 0;
int64_t i11 = 0;
int64_t i12 = 0;
int64_t i13 = 0;
// TODO: not optimal, but works
if (dst->type == GGML_TYPE_F32) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
*(float *) dst_ptr = *(const int32_t *) src0_ptr;
if (++i10 == ne0) {
i10 = 0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
} else {
GGML_ABORT("fatal error"); // TODO: implement
}
@@ -1177,6 +1333,10 @@ void ggml_compute_forward_dup(
{
ggml_compute_forward_dup_f32(params, dst);
} break;
case GGML_TYPE_I32:
{
ggml_compute_forward_dup_i32(params, dst);
} break;
default:
{
if (ggml_is_quantized(src0->type) && dst->type == GGML_TYPE_F32) {
@@ -7027,6 +7187,209 @@ void ggml_compute_forward_im2col_back_f32(
}
}
// ggml_compute_forward_im2col_3d_f16
// src0: kernel [OC*IC, KD, KH, KW]
// src1: image [N*IC, ID, IH, IW]
// dst: result [N*OD, OH, OW, IC * KD * KH * KW]
static void ggml_compute_forward_im2col_3d_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F16);
GGML_TENSOR_BINARY_OP_LOCALS;
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
const int32_t s2 = ((const int32_t *)(dst->op_params))[2];
const int32_t p0 = ((const int32_t *)(dst->op_params))[3];
const int32_t p1 = ((const int32_t *)(dst->op_params))[4];
const int32_t p2 = ((const int32_t *)(dst->op_params))[5];
const int32_t d0 = ((const int32_t *)(dst->op_params))[6];
const int32_t d1 = ((const int32_t *)(dst->op_params))[7];
const int32_t d2 = ((const int32_t *)(dst->op_params))[8];
const int32_t IC = ((const int32_t *)(dst->op_params))[9];
const int ith = params->ith;
const int nth = params->nth;
const int64_t N = ne13 / IC;
const int64_t ID = ne12;
const int64_t IH = ne11;
const int64_t IW = ne10;
const int64_t OC = ne03 / IC;
GGML_UNUSED(OC);
const int64_t KD = ne02;
const int64_t KH = ne01;
const int64_t KW = ne00;
const int64_t OD = ne3 / N;
const int64_t OH = ne2;
const int64_t OW = ne1;
const int64_t OH_OW = OH*OW;
const int64_t KD_KH_KW = KD*KH*KW;
const int64_t KH_KW = KH*KW;
const int64_t IC_KD_KH_KW = IC*KD*KH*KW;
GGML_ASSERT(nb10 == sizeof(float));
// im2col: [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW]
{
ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
for (int64_t in = 0; in < N; in++) {
for (int64_t iod = 0; iod < OD; iod++) {
for (int64_t ioh = 0; ioh < OH; ioh++) {
for (int64_t iow = 0; iow < OW; iow++) {
for (int64_t iic = ith; iic < IC; iic += nth) {
// micro kernel
ggml_fp16_t * dst_data = wdata + (in*OD*OH_OW + iod*OH_OW + ioh*OW + iow)*IC_KD_KH_KW; // [IC, KD, KH, KW]
const float * const src_data = (const float *) ((const char *)src1->data + (in*IC + iic)*nb13); // [ID, IH, IW]
for (int64_t ikd = 0; ikd < KD; ikd++) {
for (int64_t ikh = 0; ikh < KH; ikh++) {
for (int64_t ikw = 0; ikw < KW; ikw++) {
const int64_t iiw = iow*s0 + ikw*d0 - p0;
const int64_t iih = ioh*s1 + ikh*d1 - p1;
const int64_t iid = iod*s2 + ikd*d2 - p2;
if (iid < 0 || iid >= ID || iih < 0 || iih >= IH || iiw < 0 || iiw >= IW || iid < 0 || iid >= ID) {
dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = 0;
} else {
const float * const s = (const float *) ((const char *)src_data + iid*nb12 + iih*nb11 + iiw*nb10); // [ID, IH, IW]
dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = GGML_CPU_FP32_TO_FP16(*s);
}
}
}
}
}
}
}
}
}
}
}
// ggml_compute_forward_im2col_3d_f32
// src0: kernel [OC*IC, KD, KH, KW]
// src1: image [N*IC, ID, IH, IW]
// dst: result [N*OD, OH, OW, IC * KD * KH * KW]
static void ggml_compute_forward_im2col_3d_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_TENSOR_BINARY_OP_LOCALS;
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
const int32_t s2 = ((const int32_t *)(dst->op_params))[2];
const int32_t p0 = ((const int32_t *)(dst->op_params))[3];
const int32_t p1 = ((const int32_t *)(dst->op_params))[4];
const int32_t p2 = ((const int32_t *)(dst->op_params))[5];
const int32_t d0 = ((const int32_t *)(dst->op_params))[6];
const int32_t d1 = ((const int32_t *)(dst->op_params))[7];
const int32_t d2 = ((const int32_t *)(dst->op_params))[8];
const int32_t IC = ((const int32_t *)(dst->op_params))[9];
const int ith = params->ith;
const int nth = params->nth;
const int64_t N = ne13 / IC;
const int64_t ID = ne12;
const int64_t IH = ne11;
const int64_t IW = ne10;
const int64_t OC = ne03 / IC;
GGML_UNUSED(OC);
const int64_t KD = ne02;
const int64_t KH = ne01;
const int64_t KW = ne00;
const int64_t OD = ne3 / N;
const int64_t OH = ne2;
const int64_t OW = ne1;
const int64_t OH_OW = OH*OW;
const int64_t KD_KH_KW = KD*KH*KW;
const int64_t KH_KW = KH*KW;
const int64_t IC_KD_KH_KW = IC*KD*KH*KW;
GGML_ASSERT(nb10 == sizeof(float));
// im2col: [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW]
{
float * const wdata = (float *) dst->data;
for (int64_t in = 0; in < N; in++) {
for (int64_t iod = 0; iod < OD; iod++) {
for (int64_t ioh = 0; ioh < OH; ioh++) {
for (int64_t iow = 0; iow < OW; iow++) {
for (int64_t iic = ith; iic < IC; iic += nth) {
// micro kernel
float * dst_data = wdata + (in*OD*OH_OW + iod*OH_OW + ioh*OW + iow)*IC_KD_KH_KW; // [IC, KD, KH, KW]
const float * const src_data = (const float *) ((const char *)src1->data + (in*IC + iic)*nb13); // [ID, IH, IW]
for (int64_t ikd = 0; ikd < KD; ikd++) {
for (int64_t ikh = 0; ikh < KH; ikh++) {
for (int64_t ikw = 0; ikw < KW; ikw++) {
const int64_t iiw = iow*s0 + ikw*d0 - p0;
const int64_t iih = ioh*s1 + ikh*d1 - p1;
const int64_t iid = iod*s2 + ikd*d2 - p2;
if (iid < 0 || iid >= ID || iih < 0 || iih >= IH || iiw < 0 || iiw >= IW || iid < 0 || iid >= ID) {
dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = 0;
} else {
const float * const s = (const float *) ((const char *)src_data + iid*nb12 + iih*nb11 + iiw*nb10); // [ID, IH, IW]
dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = *s;
}
}
}
}
}
}
}
}
}
}
}
void ggml_compute_forward_im2col_3d(
const ggml_compute_params * params,
ggml_tensor * dst) {
switch (dst->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_im2col_3d_f16(params, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_im2col_3d_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
static void ggml_call_mul_mat(ggml_type type, const ggml_compute_params * params, int64_t m, int64_t n, int64_t k,
void * a, void * b, float * c) {
const ggml_type_traits * traits = ggml_get_type_traits(type);
@@ -8014,6 +8377,15 @@ static void ggml_compute_forward_pad_f32(
GGML_TENSOR_UNARY_OP_LOCALS
float * dst_ptr = (float *) dst->data;
const int32_t lp0 = ggml_get_op_params_i32(dst, 0);
const int32_t rp0 = ggml_get_op_params_i32(dst, 1);
const int32_t lp1 = ggml_get_op_params_i32(dst, 2);
const int32_t rp1 = ggml_get_op_params_i32(dst, 3);
const int32_t lp2 = ggml_get_op_params_i32(dst, 4);
const int32_t rp2 = ggml_get_op_params_i32(dst, 5);
const int32_t lp3 = ggml_get_op_params_i32(dst, 6);
const int32_t rp3 = ggml_get_op_params_i32(dst, 7);
// TODO: optimize
@@ -8022,10 +8394,12 @@ static void ggml_compute_forward_pad_f32(
for (int64_t i0 = 0; i0 < ne0; ++i0) {
for (int64_t i3 = 0; i3 < ne3; ++i3) {
const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
if ((i0 >= lp0 && i0 < ne0 - rp0) \
&& (i1 >= lp1 && i1 < ne1 - rp1) \
&& (i2 >= lp2 && i2 < ne2 - rp2) \
&& (i3 >= lp3 && i3 < ne3 - rp3)) {
const int64_t src_idx = (i3 - lp3)*nb03 + (i2 - lp2)*nb02 + (i1 - lp1)*nb01 + (i0 - lp0)*nb00;
const float * src_ptr = (const float *)((char *) src0->data + src_idx);
dst_ptr[dst_idx] = *src_ptr;
} else {
dst_ptr[dst_idx] = 0;
@@ -8224,6 +8598,7 @@ static void ggml_compute_forward_timestep_embedding_f32(
embed_data[j + half] = sinf(arg);
}
if (dim % 2 != 0 && ith == 0) {
embed_data[2 * half] = 0.f;
embed_data[dim] = 0.f;
}
}
@@ -9003,8 +9378,7 @@ static void ggml_compute_forward_ssm_scan_f32(
GGML_ASSERT(src4->nb[0] == sizeof(float));
GGML_ASSERT(src5->nb[0] == sizeof(float));
GGML_ASSERT(src6->nb[0] == sizeof(int32_t));
// allows optimizing the modulo since n_group should be a power of 2
GGML_ASSERT((ng & -ng) == ng);
GGML_ASSERT(nh % ng == 0);
// heads per thread
const int dh = (nh + nth - 1)/nth;
@@ -9035,6 +9409,7 @@ static void ggml_compute_forward_ssm_scan_f32(
// ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
const float dA = expf(dt_soft_plus * A[h]);
const int g = h / (nh / ng); // repeat_interleave
// dim
for (int i1 = 0; i1 < nr; ++i1) {
@@ -9057,8 +9432,8 @@ static void ggml_compute_forward_ssm_scan_f32(
// TODO: maybe unroll more?
for (int j = 0; j < 1; j++) {
GGML_F32_VEC t0 = GGML_F32_VEC_LOAD(s0 + i + j*ggml_f32_epr + ii*nc);
GGML_F32_VEC t1 = GGML_F32_VEC_LOAD(B + i + j*ggml_f32_epr + (h & (ng - 1))*nc);
GGML_F32_VEC t2 = GGML_F32_VEC_LOAD(C + i + j*ggml_f32_epr + (h & (ng - 1))*nc);
GGML_F32_VEC t1 = GGML_F32_VEC_LOAD(B + i + j*ggml_f32_epr + g*nc);
GGML_F32_VEC t2 = GGML_F32_VEC_LOAD(C + i + j*ggml_f32_epr + g*nc);
t0 = GGML_F32_VEC_MUL(t0, adA);
t1 = GGML_F32_VEC_MUL(t1, axdt);
@@ -9072,6 +9447,9 @@ static void ggml_compute_forward_ssm_scan_f32(
}
sumf = GGML_F32xt_REDUCE_ONE(sum);
#elif defined(__riscv_v_intrinsic)
// todo: RVV implementation
const int np = 0;
#else
const int np = (nc & ~(GGML_F32_STEP - 1));
@@ -9087,8 +9465,8 @@ static void ggml_compute_forward_ssm_scan_f32(
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ax[j] = GGML_F32_VEC_LOAD(s0 + i + j*GGML_F32_EPR + ii*nc);
ay[j] = GGML_F32_VEC_LOAD(B + i + j*GGML_F32_EPR + (h & (ng - 1))*nc);
az[j] = GGML_F32_VEC_LOAD(C + i + j*GGML_F32_EPR + (h & (ng - 1))*nc);
ay[j] = GGML_F32_VEC_LOAD(B + i + j*GGML_F32_EPR + g*nc);
az[j] = GGML_F32_VEC_LOAD(C + i + j*GGML_F32_EPR + g*nc);
ax[j] = GGML_F32_VEC_MUL(ax[j], adA);
ay[j] = GGML_F32_VEC_MUL(ay[j], axdt);
@@ -9110,7 +9488,7 @@ static void ggml_compute_forward_ssm_scan_f32(
// d_state
for (int i0 = np; i0 < nc; ++i0) {
const int i = i0 + ii*nc;
const int ig = i0 + (h & (ng - 1))*nc;
const int ig = i0 + g*nc;
// state = prev_state * dA + dB * x
const float state = (s0[i] * dA) + (B[ig] * x_dt);
// y = rowwise_dotprod(state, C)
@@ -9127,6 +9505,7 @@ static void ggml_compute_forward_ssm_scan_f32(
for (int h = ih0; h < ih1; ++h) {
// ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
const int g = h / (nh / ng); // repeat_interleave
// dim
for (int i1 = 0; i1 < nr; ++i1) {
@@ -9141,8 +9520,8 @@ static void ggml_compute_forward_ssm_scan_f32(
// TODO: what happens when (d_state % svcntw()) != 0?
for (int64_t k = 0; k < nc; k += svcntw()) {
svfloat32_t vA = GGML_F32_VEC_LOAD(&A[h*nc + k]);
svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k + (h & (ng - 1))*nc]);
svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k + (h & (ng - 1))*nc]);
svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k + g*nc]);
svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k + g*nc]);
svfloat32_t vs0 = GGML_F32_VEC_LOAD(&s0[ii*nc + k]);
svfloat32_t t1 = GGML_F32_VEC_MUL(vdt_soft_plus, vA);
@@ -9162,7 +9541,7 @@ static void ggml_compute_forward_ssm_scan_f32(
// d_state
for (int i0 = 0; i0 < nc; ++i0) {
const int i = i0 + ii*nc;
const int ig = i0 + (h & (ng - 1))*nc;
const int ig = i0 + g*nc;
// state = prev_state * dA + dB * x
const float state = (s0[i] * expf(dt_soft_plus * A[i0 + h*nc])) + (B[ig] * x_dt);
// y = rowwise_dotprod(state, C)
@@ -10023,8 +10402,8 @@ static void ggml_compute_forward_rwkv_wkv7_f32(
int64_t h_stride_2d = head_size * head_size;
#if defined(GGML_SIMD)
#if defined(__ARM_FEATURE_SVE)
// scalar Route to scalar implementation //TODO: Write SVE code
#if defined(__ARM_FEATURE_SVE) || defined(__riscv_v_intrinsic)
// scalar Route to scalar implementation //TODO: Write SVE code and RVV code
for (int64_t t = 0; t < T; t++) {
int64_t t_offset = t * t_stride;
int64_t state_offset = head_size * C * (t / (T / n_seqs));

View File

@@ -69,6 +69,7 @@ void ggml_compute_forward_clamp(const struct ggml_compute_params * params, struc
void ggml_compute_forward_conv_transpose_1d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_im2col(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_im2col_back_f32(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_im2col_3d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_conv_2d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_conv_3d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_conv_transpose_2d(const struct ggml_compute_params * params, struct ggml_tensor * dst);

View File

@@ -18,6 +18,10 @@
#include <immintrin.h>
#endif
#if defined(__riscv_v_intrinsic)
#include <riscv_vector.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
@@ -94,24 +98,15 @@ extern "C" {
}
#elif defined(__riscv) && defined(__riscv_zfhmin)
static inline float riscv_compute_fp16_to_fp32(ggml_fp16_t h) {
float f;
__asm__(
"fmv.h.x %[f], %[h]\n\t"
"fcvt.s.h %[f], %[f]"
: [f] "=&f" (f)
: [h] "r" (h)
);
return f;
_Float16 hf;
memcpy(&hf, &h, sizeof(ggml_fp16_t));
return hf;
}
static inline ggml_fp16_t riscv_compute_fp32_to_fp16(float f) {
ggml_fp16_t res;
__asm__(
"fcvt.h.s %[f], %[f]\n\t"
"fmv.x.h %[h], %[f]"
: [h] "=&r" (res)
: [f] "f" (f)
);
_Float16 hf = (_Float16)f;
memcpy(&res, &hf, sizeof(ggml_fp16_t));
return res;
}
@@ -119,26 +114,6 @@ extern "C" {
#define GGML_CPU_COMPUTE_FP32_TO_FP16(x) riscv_compute_fp32_to_fp16(x)
#define GGML_CPU_FP16_TO_FP32(x) GGML_CPU_COMPUTE_FP16_TO_FP32(x)
#define GGML_CPU_FP32_TO_FP16(x) GGML_CPU_COMPUTE_FP32_TO_FP16(x)
#elif defined(__NNPA__)
#define GGML_CPU_COMPUTE_FP16_TO_FP32(x) nnpa_compute_fp16_to_fp32(x)
#define GGML_CPU_COMPUTE_FP32_TO_FP16(x) nnpa_compute_fp32_to_fp16(x)
#define GGML_CPU_FP16_TO_FP32(x) GGML_CPU_COMPUTE_FP16_TO_FP32(x)
#define GGML_CPU_FP32_TO_FP16(x) GGML_CPU_COMPUTE_FP32_TO_FP16(x)
static inline float nnpa_compute_fp16_to_fp32(ggml_fp16_t h) {
uint16x8_t v_h = vec_splats(h);
uint16x8_t v_hd = vec_convert_from_fp16(v_h, 0);
return vec_extend_to_fp32_hi(v_hd, 0)[0];
}
static inline ggml_fp16_t nnpa_compute_fp32_to_fp16(float f) {
float32x4_t v_f = vec_splats(f);
float32x4_t v_zero = vec_splats(0.0f);
uint16x8_t v_hd = vec_round_from_fp32(v_f, v_zero, 0);
uint16x8_t v_h = vec_convert_to_fp16(v_hd, 0);
return vec_extract(v_h, 0);
}
#endif
// precomputed f32 table for f16 (256 KB)
@@ -220,6 +195,47 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
#define GGML_F32_VEC_MUL GGML_F32xt_MUL
#define GGML_F32_VEC_REDUCE GGML_F32xt_REDUCE
// F16 SVE
#define DEFAULT_PG32 svptrue_b32()
#define DEFAULT_PG16 svptrue_b16()
#define GGML_F32Cxt svfloat16_t
#define GGML_F32Cxt_ZERO svdup_n_f16(0.0f)
#define GGML_F32Cxt_SET1(x) svdup_n_f16(x)
#define GGML_F32Cxt_LOAD(p) svld1_f16(DEFAULT_PG16, (const __fp16 *)(p))
#define GGML_F32Cxt_STORE(dst_ptr, src_vec) svst1_f16(DEFAULT_PG16, (__fp16 *)(dst_ptr), (src_vec))
#define GGML_F32Cxt_FMA_IMPL(pg, a, b, c) svmad_f16_x(pg, b, c, a)
#define GGML_F32Cxt_FMA(...) GGML_F32Cxt_FMA_IMPL(DEFAULT_PG16, __VA_ARGS__)
#define GGML_F32Cxt_ADD_IMPL(pg, a, b) svadd_f16_x(pg, a, b)
#define GGML_F32Cxt_ADD(...) GGML_F32Cxt_ADD_IMPL(DEFAULT_PG16, __VA_ARGS__)
#define GGML_F32Cxt_MUL_IMPL(pg, a, b) svmul_f16_x(pg, a, b)
#define GGML_F32Cxt_MUL(...) GGML_F32Cxt_MUL_IMPL(DEFAULT_PG16, __VA_ARGS__)
#define GGML_F32Cxt_REDUCE GGML_F16xt_REDUCE_MIXED
#define GGML_F16x_VEC GGML_F32Cxt
#define GGML_F16x_VEC_ZERO GGML_F32Cxt_ZERO
#define GGML_F16x_VEC_SET1 GGML_F32Cxt_SET1
#define GGML_F16x_VEC_LOAD(p, i) GGML_F32Cxt_LOAD(p)
#define GGML_F16x_VEC_STORE(p, r, i) GGML_F32Cxt_STORE((__fp16 *)(p), r)
#define GGML_F16x_VEC_FMA GGML_F32Cxt_FMA
#define GGML_F16x_VEC_ADD GGML_F32Cxt_ADD
#define GGML_F16x_VEC_MUL GGML_F32Cxt_MUL
#define GGML_F16x_VEC_REDUCE GGML_F32Cxt_REDUCE
#define GGML_F16xt_REDUCE_ONE_IMPL(pg, a) svaddv_f16(pg, a)
#define GGML_F16xt_REDUCE_ONE(...) GGML_F16xt_REDUCE_ONE_IMPL(DEFAULT_PG16, __VA_ARGS__)
#define GGML_F16xt_REDUCE_MIXED_IMPL(pg16, res, sum1, sum2, sum3, sum4) \
{ \
sum1 = svadd_f16_x(pg16, sum1, sum2); \
sum3 = svadd_f16_x(pg16, sum3, sum4); \
sum1 = svadd_f16_x(pg16, sum1, sum3); \
__fp16 sum_f16 = svaddv_f16(pg16, sum1); \
(res) = (ggml_float) sum_f16; \
}
#define GGML_F16xt_REDUCE_MIXED(...) GGML_F16xt_REDUCE_MIXED_IMPL(DEFAULT_PG16, __VA_ARGS__)
// F16 NEON
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
@@ -1120,11 +1136,6 @@ static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
#define GGML_F16_EPR GGML_F32_EPR
static inline float32x4_t __lzs_f16cx4_load(const ggml_fp16_t * x) {
#if defined(__NNPA__)
uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)x);
uint16x8_t v_xd = vec_convert_from_fp16(v_x, 0);
return vec_extend_to_fp32_hi(v_xd, 0);
#else
float tmp[4];
for (int i = 0; i < 4; i++) {
@@ -1134,20 +1145,9 @@ static inline float32x4_t __lzs_f16cx4_load(const ggml_fp16_t * x) {
// note: keep type-cast here to prevent compiler bugs
// see: https://github.com/ggml-org/llama.cpp/issues/12846
return vec_xl(0, (const float *)(tmp));
#endif
}
static inline void __lzs_f16cx4_store(ggml_fp16_t * x, float32x4_t v_y) {
#if defined(__NNPA__)
float32x4_t v_zero = vec_splats(0.0f);
uint16x8_t v_xd = vec_round_from_fp32(v_y, v_zero, 0);
uint16x8_t v_x = vec_convert_to_fp16(v_xd, 0);
x[0] = vec_extract(v_x, 0);
x[1] = vec_extract(v_x, 1);
x[2] = vec_extract(v_x, 2);
x[3] = vec_extract(v_x, 3);
#else
float arr[4];
// note: keep type-cast here to prevent compiler bugs
@@ -1157,7 +1157,6 @@ static inline void __lzs_f16cx4_store(ggml_fp16_t * x, float32x4_t v_y) {
for (int i = 0; i < 4; i++) {
x[i] = GGML_CPU_FP32_TO_FP16(arr[i]);
}
#endif
}
#define GGML_F16_VEC GGML_F32x4
@@ -1170,6 +1169,36 @@ static inline void __lzs_f16cx4_store(ggml_fp16_t * x, float32x4_t v_y) {
#define GGML_F16_VEC_MUL GGML_F32x4_MUL
#define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
#elif defined(__riscv_v_intrinsic)
// compatible with vlen >= 128
#define GGML_SIMD
// F32
#define GGML_F32_STEP 16
#define GGML_F32_EPR 4
#define GGML_F32x4 vfloat32m1_t
#define GGML_F32x4_ZERO __riscv_vfmv_v_f_f32m1(0.0f, GGML_F32_EPR)
#define GGML_F32x4_SET1(x) __riscv_vfmv_v_f_f32m1(x, GGML_F32_EPR)
#define GGML_F32x4_LOAD(x) __riscv_vle32_v_f32m1(x, GGML_F32_EPR)
#define GGML_F32x4_STORE(b, v) __riscv_vse32_v_f32m1(b, v, GGML_F32_EPR)
#define GGML_F32x4_FMA(a, b, c) __riscv_vfmacc_vv_f32m1(a, b, c, GGML_F32_EPR)
#define GGML_F32x4_ADD(a, b) __riscv_vfadd_vv_f32m1(a, b, GGML_F32_EPR)
#define GGML_F32x4_MUL(a, b) __riscv_vfmul_vv_f32m1(a, b, GGML_F32_EPR)
#define GGML_F32_VEC GGML_F32x4
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
#endif
// GGML_F32_ARR / GGML_F16_ARR

View File

@@ -84,6 +84,22 @@ void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * G
}
// reduce sum1,sum2 to sum1
GGML_F32_VEC_REDUCE(sumf, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8);
#elif defined(__riscv_v_intrinsic)
int vl = __riscv_vsetvlmax_e32m8();
vfloat32m1_t vs = __riscv_vfmv_v_f_f32m1(0.0f, 1);
vfloat32m8_t vsum;
vfloat32m8_t ax;
vfloat32m8_t ay;
vsum = __riscv_vfmv_v_f_f32m8_tu(vsum, 0.0f, vl);
for (int i = 0; i < n; i += vl) {
vl = __riscv_vsetvl_e32m8(n - i);
ax = __riscv_vle32_v_f32m8_tu(ax, &x[i], vl);
ay = __riscv_vle32_v_f32m8_tu(ay, &y[i], vl);
vsum = __riscv_vfmacc_vv_f32m8_tu(vsum, ax, ay, vl);
}
vl = __riscv_vsetvlmax_e32m8();
vs = __riscv_vfredusum_vs_f32m8_f32m1(vsum, vs, vl);
sumf += __riscv_vfmv_f_s_f32m1_f32(vs);
#else
const int np = (n & ~(GGML_F32_STEP - 1));
@@ -197,38 +213,125 @@ void ggml_vec_dot_f16(int n, float * GGML_RESTRICT s, size_t bs, ggml_fp16_t * G
ggml_float sumf = 0.0;
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F16_STEP - 1));
#if defined(__ARM_FEATURE_SVE)
const int sve_register_length = svcntb() * 8; //get vector length
const int ggml_f16_epr = sve_register_length / 16; // running when 16
const int ggml_f16_step = 8 * ggml_f16_epr; // choose 8 SVE registers
GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
const int np= (n & ~(ggml_f16_step - 1));
svfloat16_t sum1 = svdup_n_f16(0.0f);
svfloat16_t sum2 = svdup_n_f16(0.0f);
svfloat16_t sum3 = svdup_n_f16(0.0f);
svfloat16_t sum4 = svdup_n_f16(0.0f);
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
svfloat16_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8;
svfloat16_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8;
for (int i = 0; i < np; i += ggml_f16_step) {
ax1 = GGML_F16x_VEC_LOAD(x + i + 0 * ggml_f16_epr, 0);
ay1 = GGML_F16x_VEC_LOAD(y + i + 0 * ggml_f16_epr, 0);
sum1 = GGML_F16x_VEC_FMA(sum1, ax1, ay1);
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
ax2 = GGML_F16x_VEC_LOAD(x + i + 1 * ggml_f16_epr, 1);
ay2 = GGML_F16x_VEC_LOAD(y + i + 1 * ggml_f16_epr, 1);
sum2 = GGML_F16x_VEC_FMA(sum2, ax2, ay2);
sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
ax3 = GGML_F16x_VEC_LOAD(x + i + 2 * ggml_f16_epr, 2);
ay3 = GGML_F16x_VEC_LOAD(y + i + 2 * ggml_f16_epr, 2);
sum3 = GGML_F16x_VEC_FMA(sum3, ax3, ay3);
ax4 = GGML_F16x_VEC_LOAD(x + i + 3 * ggml_f16_epr, 3);
ay4 = GGML_F16x_VEC_LOAD(y + i + 3 * ggml_f16_epr, 3);
sum4 = GGML_F16x_VEC_FMA(sum4, ax4, ay4);
ax5 = GGML_F16x_VEC_LOAD(x + i + 4 * ggml_f16_epr, 4);
ay5 = GGML_F16x_VEC_LOAD(y + i + 4 * ggml_f16_epr, 4);
sum1 = GGML_F16x_VEC_FMA(sum1, ax5, ay5);
ax6 = GGML_F16x_VEC_LOAD(x + i + 5 * ggml_f16_epr, 5);
ay6 = GGML_F16x_VEC_LOAD(y + i + 5 * ggml_f16_epr, 5);
sum2 = GGML_F16x_VEC_FMA(sum2, ax6, ay6);
ax7 = GGML_F16x_VEC_LOAD(x + i + 6 * ggml_f16_epr, 6);
ay7 = GGML_F16x_VEC_LOAD(y + i + 6 * ggml_f16_epr, 6);
sum3 = GGML_F16x_VEC_FMA(sum3, ax7, ay7);
ax8 = GGML_F16x_VEC_LOAD(x + i + 7 * ggml_f16_epr, 7);
ay8 = GGML_F16x_VEC_LOAD(y + i + 7 * ggml_f16_epr, 7);
sum4 = GGML_F16x_VEC_FMA(sum4, ax8, ay8);
}
}
// reduce sum0..sum3 to sum0
GGML_F16_VEC_REDUCE(sumf, sum);
const int np2 = (n & ~(ggml_f16_epr - 1)); // round down to multiple of 8
for (int k = np; k < np2; k += ggml_f16_epr) {
svfloat16_t rx = GGML_F16x_VEC_LOAD(x + k, 0);
svfloat16_t ry = GGML_F16x_VEC_LOAD(y + k, 0);
sum1 = GGML_F16x_VEC_FMA(sum1, rx, ry);
}
// leftovers
for (int i = np; i < n; ++i) {
sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i]));
}
if (np2 < n) {
svbool_t pg = svwhilelt_b16(np2, n);
svfloat16_t hx = svld1_f16(pg, (const __fp16 *)(x + np2));
svfloat16_t hy = svld1_f16(pg, (const __fp16 *)(y + np2));
// if you hit this, you are likely running outside the FP range
assert(!isnan(sumf) && !isinf(sumf));
sum1 = svmad_f16_x(pg, hx, hy, sum1);
}
GGML_F16x_VEC_REDUCE(sumf, sum1, sum2, sum3, sum4);
#elif defined(__riscv_v_intrinsic)
#if defined(__riscv_zvfh)
int vl = __riscv_vsetvlmax_e32m2();
vfloat32m1_t vs = __riscv_vfmv_v_f_f32m1(0.0f, 1);
vfloat32m2_t vsum;
vfloat16m1_t ax;
vfloat16m1_t ay;
vsum = __riscv_vreinterpret_v_u32m2_f32m2(__riscv_vmv_v_x_u32m2(0, vl));
for (int i = 0; i < n; i += vl) {
vl = __riscv_vsetvl_e16m1(n - i);
ax = __riscv_vle16_v_f16m1_tu(ax, (const _Float16 *)&x[i], vl);
ay = __riscv_vle16_v_f16m1_tu(ay, (const _Float16 *)&y[i], vl);
vsum = __riscv_vfwmacc_vv_f32m2_tu(vsum, ax, ay, vl);
}
vl = __riscv_vsetvlmax_e32m1();
vfloat32m1_t ac0 = __riscv_vfadd_vv_f32m1(__riscv_vget_v_f32m2_f32m1(vsum, 0), __riscv_vget_v_f32m2_f32m1(vsum, 1), vl);
vs = __riscv_vfredusum_vs_f32m1_f32m1(ac0, vs, vl);
sumf += __riscv_vfmv_f_s_f32m1_f32(vs);
#else
for (int i = 0; i < n; ++i) {
sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i]));
}
#endif // __riscv_zvfh
#else
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
}
}
// reduce sum0..sum3 to sum0
GGML_F16_VEC_REDUCE(sumf, sum);
// leftovers
for (int i = np; i < n; ++i) {
sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i]));
}
// if you hit this, you are likely running outside the FP range
assert(!isnan(sumf) && !isinf(sumf));
#endif
#else
for (int i = 0; i < n; ++i) {
sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i]));
}
#endif
#endif // GGML_SIMD
*s = sumf;
}
@@ -247,6 +350,12 @@ void ggml_vec_silu_f32(const int n, float * y, const float * x) {
for (; i + 3 < n; i += 4) {
_mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
}
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
const int vlen = svcntw();
for (; i < n; i += vlen) {
const svbool_t pg = svwhilelt_b32_s32(i, n);
svst1_f32(pg, y + i, ggml_v_silu(pg, svld1_f32(pg, x + i)));
}
#elif defined(__ARM_NEON) && defined(__aarch64__)
for (; i + 3 < n; i += 4) {
vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
@@ -271,10 +380,24 @@ void ggml_vec_swiglu_f32(const int n, float * y, const float * x, const float *
for (; i + 3 < n; i += 4) {
_mm_storeu_ps(y + i, _mm_mul_ps(ggml_v_silu(_mm_loadu_ps(x + i)), _mm_loadu_ps(g + i)));
}
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
const int vlen = svcntw();
for (; i < n; i += vlen) {
const svbool_t pg = svwhilelt_b32_s32(i, n);
svst1_f32(pg, y + i, svmul_f32_x(pg, ggml_v_silu(pg, svld1_f32(pg, x + i)), svld1_f32(pg, g + i)));
}
#elif defined(__ARM_NEON) && defined(__aarch64__)
for (; i + 3 < n; i += 4) {
vst1q_f32(y + i, vmulq_f32(ggml_v_silu(vld1q_f32(x + i)), vld1q_f32(g + i)));
}
#elif defined(__riscv_v_intrinsic)
for (int vl; i < n; i += vl) {
vl = __riscv_vsetvl_e32m2(n - i);
vfloat32m2_t vx = __riscv_vle32_v_f32m2(&x[i], vl);
vfloat32m2_t vg = __riscv_vle32_v_f32m2(&g[i], vl);
vfloat32m2_t vy = __riscv_vfmul_vv_f32m2(ggml_v_silu_m2(vx, vl), vg, vl);
__riscv_vse32_v_f32m2(&y[i], vy, vl);
}
#endif
for (; i < n; ++i) {
y[i] = ggml_silu_f32(x[i]) * g[i];
@@ -318,6 +441,15 @@ ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float
#endif
sum += (ggml_float)_mm_cvtss_f32(val);
}
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
const int vlen = svcntw();
for (; i < n; i += vlen) {
const svbool_t pg = svwhilelt_b32_s32(i, n);
svfloat32_t val = ggml_v_expf(pg, svsub_f32_x(pg, svld1_f32(pg, x + i),
svdup_n_f32_x(pg, max)));
svst1_f32(pg, y + i, val);
sum += (ggml_float)svaddv_f32(pg, val);
}
#elif defined(__ARM_NEON) && defined(__aarch64__)
for (; i + 3 < n; i += 4) {
float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
@@ -325,6 +457,15 @@ ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float
vst1q_f32(y + i, val);
sum += (ggml_float)vaddvq_f32(val);
}
#elif defined(__riscv_v_intrinsic)
vfloat64m1_t vsum = __riscv_vfmv_v_f_f64m1(0, 1);
for (int avl; i < n; i += avl) {
avl = __riscv_vsetvl_e32m2(n - i);
vfloat32m2_t val = ggml_v_expf_m2(__riscv_vfsub_vf_f32m2(__riscv_vle32_v_f32m2(&x[i], avl), max, avl), avl);
__riscv_vse32_v_f32m2(&y[i], val, avl);
vsum = __riscv_vfwredusum_vs_f32m2_f64m1(val, vsum, avl);
}
return (ggml_float)__riscv_vfmv_f_s_f64m1_f64(vsum);
#endif
for (; i < n; ++i) {
float val = expf(x[i] - max);

View File

@@ -119,36 +119,149 @@ inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * GG
}
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F16_STEP - 1));
#if defined(__ARM_FEATURE_SVE)
GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
const int sve_register_length = svcntb() * 8;
const int ggml_f16_epr = sve_register_length / 16; // running when 16
const int ggml_f16_step = 8 * ggml_f16_epr; // choose 8 SVE registers
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
const int np = (n & ~(ggml_f16_step - 1));
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
svfloat16_t sum_00 = svdup_n_f16(0.0f);
svfloat16_t sum_01 = svdup_n_f16(0.0f);
svfloat16_t sum_02 = svdup_n_f16(0.0f);
svfloat16_t sum_03 = svdup_n_f16(0.0f);
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
svfloat16_t sum_10 = svdup_n_f16(0.0f);
svfloat16_t sum_11 = svdup_n_f16(0.0f);
svfloat16_t sum_12 = svdup_n_f16(0.0f);
svfloat16_t sum_13 = svdup_n_f16(0.0f);
sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
svfloat16_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8;
svfloat16_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8;
for (int i = 0; i < np; i += ggml_f16_step) {
ay1 = GGML_F16x_VEC_LOAD(y + i + 0 * ggml_f16_epr, 0); // 8 elements
ax1 = GGML_F16x_VEC_LOAD(x[0] + i + 0*ggml_f16_epr, 0); // 8 elemnst
sum_00 = GGML_F16x_VEC_FMA(sum_00, ax1, ay1); // sum_00 = sum_00+ax1*ay1
ax1 = GGML_F16x_VEC_LOAD(x[1] + i + 0*ggml_f16_epr, 0); // 8 elements
sum_10 = GGML_F16x_VEC_FMA(sum_10, ax1, ay1);
ay2 = GGML_F16x_VEC_LOAD(y + i + 1 * ggml_f16_epr, 1); // next 8 elements
ax2 = GGML_F16x_VEC_LOAD(x[0] + i + 1*ggml_f16_epr, 1); // next 8 ekements
sum_01 = GGML_F16x_VEC_FMA(sum_01, ax2, ay2);
ax2 = GGML_F16x_VEC_LOAD(x[1] + i + 1*ggml_f16_epr, 1);
sum_11 = GGML_F16x_VEC_FMA(sum_11, ax2, ay2);
ay3 = GGML_F16x_VEC_LOAD(y + i + 2 * ggml_f16_epr, 2);
ax3 = GGML_F16x_VEC_LOAD(x[0] + i + 2*ggml_f16_epr, 2);
sum_02 = GGML_F16x_VEC_FMA(sum_02, ax3, ay3);
ax1 = GGML_F16x_VEC_LOAD(x[1] + i + 2*ggml_f16_epr, 2);
sum_12 = GGML_F16x_VEC_FMA(sum_12, ax3, ay3);
ay4 = GGML_F16x_VEC_LOAD(y + i + 3 * ggml_f16_epr, 3);
ax4 = GGML_F16x_VEC_LOAD(x[0] + i + 3*ggml_f16_epr, 3);
sum_03 = GGML_F16x_VEC_FMA(sum_03, ax4, ay4);
ax4 = GGML_F16x_VEC_LOAD(x[1] + i + 3*ggml_f16_epr, 3);
sum_13 = GGML_F16x_VEC_FMA(sum_13, ax4, ay4);
ay5 = GGML_F16x_VEC_LOAD(y + i + 4 * ggml_f16_epr, 4);
ax5 = GGML_F16x_VEC_LOAD(x[0] + i + 4*ggml_f16_epr, 4);
sum_00 = GGML_F16x_VEC_FMA(sum_00, ax5, ay5);
ax5 = GGML_F16x_VEC_LOAD(x[1] + i + 4*ggml_f16_epr, 4);
sum_10 = GGML_F16x_VEC_FMA(sum_10, ax5, ay5);
ay6 = GGML_F16x_VEC_LOAD(y + i + 5 * ggml_f16_epr, 5);
ax6 = GGML_F16x_VEC_LOAD(x[0] + i + 5*ggml_f16_epr, 5);
sum_01 = GGML_F16x_VEC_FMA(sum_01, ax6, ay6);
ax6 = GGML_F16x_VEC_LOAD(x[1] + i + 5*ggml_f16_epr, 5);
sum_11 = GGML_F16x_VEC_FMA(sum_11, ax6, ay6);
ay7 = GGML_F16x_VEC_LOAD(y + i + 6 * ggml_f16_epr, 6);
ax7 = GGML_F16x_VEC_LOAD(x[0] + i + 6*ggml_f16_epr, 6);
sum_02 = GGML_F16x_VEC_FMA(sum_02, ax7, ay7);
ax7 = GGML_F16x_VEC_LOAD(x[1] + i + 6*ggml_f16_epr, 6);
sum_12 = GGML_F16x_VEC_FMA(sum_12, ax7, ay7);
ay8 = GGML_F16x_VEC_LOAD(y + i + 7 * ggml_f16_epr, 7);
ax8 = GGML_F16x_VEC_LOAD(x[0] + i + 7*ggml_f16_epr, 7);
sum_03 = GGML_F16x_VEC_FMA(sum_03, ax8, ay8);
ax8 = GGML_F16x_VEC_LOAD(x[1] + i + 7*ggml_f16_epr, 7);
sum_13 = GGML_F16x_VEC_FMA(sum_13, ax8, ay8);
}
const int np2 = (n & ~(ggml_f16_epr - 1));
for (int k = np; k < np2; k += ggml_f16_epr) {
svfloat16_t ry = GGML_F16x_VEC_LOAD(y + k, 0);
svfloat16_t rx = GGML_F16x_VEC_LOAD(x[0] + k, 0);
sum_00 = GGML_F16x_VEC_FMA(sum_00, rx, ry);
rx = GGML_F16x_VEC_LOAD(x[1] + k, 0);
sum_10 = GGML_F16x_VEC_FMA(sum_10, rx, ry);
}
if (np2 < n) {
svbool_t pg = svwhilelt_b16(np2, n);
svfloat16_t hx_0 = svld1_f16(pg, (const __fp16 *)(x[0] + np2));
svfloat16_t hx_1 = svld1_f16(pg, (const __fp16 *)(x[1] + np2));
svfloat16_t hy = svld1_f16(pg, (const __fp16 *)(y + np2));
sum_00 = svmad_f16_x(pg, hx_0, hy, sum_00);
sum_10 = svmad_f16_x(pg, hx_1, hy, sum_10);
}
GGML_F16x_VEC_REDUCE(sumf[0], sum_00, sum_01, sum_02, sum_03);
GGML_F16x_VEC_REDUCE(sumf[1], sum_10, sum_11, sum_12, sum_13);
#elif defined(__riscv_v_intrinsic)
// todo: RVV impl
for (int i = 0; i < n; ++i) {
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i]));
}
}
#else
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
}
}
}
}
// reduce sum0..sum3 to sum0
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
}
// leftovers
for (int i = np; i < n; ++i) {
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i]));
// reduce sum0..sum3 to sum0
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
}
}
// leftovers
for (int i = np; i < n; ++i) {
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i]));
}
}
#endif
#else
for (int i = 0; i < n; ++i) {
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
@@ -243,6 +356,14 @@ inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const
svst1_f32(pg, y + np2, ay1);
}
#elif defined(__riscv_v_intrinsic)
for (int i = 0, avl; i < n; i += avl) {
avl = __riscv_vsetvl_e32m8(n - i);
vfloat32m8_t ax = __riscv_vle32_v_f32m8(&x[i], avl);
vfloat32m8_t ay = __riscv_vle32_v_f32m8(&y[i], avl);
vfloat32m8_t ny = __riscv_vfmadd_vf_f32m8(ax, v, ay, avl);
__riscv_vse32_v_f32m8(&y[i], ny, avl);
}
#else
const int np = (n & ~(GGML_F32_STEP - 1));
@@ -276,27 +397,112 @@ inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const
inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * GGML_RESTRICT y, const ggml_fp16_t * GGML_RESTRICT x, const float v) {
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F16_STEP - 1));
#if defined(__ARM_FEATURE_SVE)
const int sve_register_length = svcntb() * 8;
const int ggml_f16_epr = sve_register_length / 16;
const int ggml_f16_step = 8 * ggml_f16_epr;
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
GGML_F16x_VEC vx = GGML_F16x_VEC_SET1(v);
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
const int np= (n & ~(ggml_f16_step - 1));
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
svfloat16_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8;
svfloat16_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8;
for (int i = 0; i < np; i += ggml_f16_step) {
ax1 = GGML_F16x_VEC_LOAD(x + i + 0 * ggml_f16_epr, 0);
ay1 = GGML_F16x_VEC_LOAD(y + i + 0 * ggml_f16_epr, 0);
ay1 = GGML_F16x_VEC_FMA(ay1, ax1, vx);
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
GGML_F16x_VEC_STORE(y + i + 0 * ggml_f16_epr, ay1, 0);
ax2 = GGML_F16x_VEC_LOAD(x + i + 1 * ggml_f16_epr, 1);
ay2 = GGML_F16x_VEC_LOAD(y + i + 1 * ggml_f16_epr, 1);
ay2 = GGML_F16x_VEC_FMA(ay2, ax2, vx);
GGML_F16x_VEC_STORE(y + i + 1 * ggml_f16_epr, ay2, 1);
ax3 = GGML_F16x_VEC_LOAD(x + i + 2 * ggml_f16_epr, 2);
ay3 = GGML_F16x_VEC_LOAD(y + i + 2 * ggml_f16_epr, 2);
ay3 = GGML_F16x_VEC_FMA(ay3, ax3, vx);
GGML_F16x_VEC_STORE(y + i + 2 * ggml_f16_epr, ay3, 2);
ax4 = GGML_F16x_VEC_LOAD(x + i + 3 * ggml_f16_epr, 3);
ay4 = GGML_F16x_VEC_LOAD(y + i + 3 * ggml_f16_epr, 3);
ay4 = GGML_F16x_VEC_FMA(ay4, ax4, vx);
GGML_F16x_VEC_STORE(y + i + 3 * ggml_f16_epr, ay4, 3);
ax5 = GGML_F16x_VEC_LOAD(x + i + 4 * ggml_f16_epr, 4);
ay5 = GGML_F16x_VEC_LOAD(y + i + 4 * ggml_f16_epr, 4);
ay5 = GGML_F16x_VEC_FMA(ay5, ax5, vx);
GGML_F16x_VEC_STORE(y + i + 4 * ggml_f16_epr, ay5, 4);
ax6 = GGML_F16x_VEC_LOAD(x + i + 5 * ggml_f16_epr, 5);
ay6 = GGML_F16x_VEC_LOAD(y + i + 5 * ggml_f16_epr, 5);
ay6 = GGML_F16x_VEC_FMA(ay6, ax6, vx);
GGML_F16x_VEC_STORE(y + i + 5 * ggml_f16_epr, ay6, 5);
ax7 = GGML_F16x_VEC_LOAD(x + i + 6 * ggml_f16_epr, 6);
ay7 = GGML_F16x_VEC_LOAD(y + i + 6 * ggml_f16_epr, 6);
ay7 = GGML_F16x_VEC_FMA(ay7, ax7, vx);
GGML_F16x_VEC_STORE(y + i + 6 * ggml_f16_epr, ay7, 6);
ax8 = GGML_F16x_VEC_LOAD(x + i + 7 * ggml_f16_epr, 7);
ay8 = GGML_F16x_VEC_LOAD(y + i + 7 * ggml_f16_epr, 7);
ay8 = GGML_F16x_VEC_FMA(ay8, ax8, vx);
GGML_F16x_VEC_STORE(y + i + 7 * ggml_f16_epr, ay8, 7);
}
}
const int np2 = (n & ~(ggml_f16_epr - 1));
for (int k = np; k < np2; k += ggml_f16_epr) {
svfloat16_t rx = GGML_F16x_VEC_LOAD(x + k, 0);
svfloat16_t ry = GGML_F16x_VEC_LOAD(y + k, 0);
ry = GGML_F16x_VEC_FMA(ry, rx, vx);
// leftovers
for (int i = np; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v);
}
GGML_F16x_VEC_STORE(y + k, ry, 0);
}
if (np2 < n) {
svbool_t pg = svwhilelt_b16(np2, n);
svfloat16_t hx = svld1_f16(pg, (const __fp16 *)(x + np2));
svfloat16_t hy = svld1_f16(pg, (const __fp16 *)(y + np2));
hy = svmad_f16_x(pg, hx, vx, hy);
svst1_f16(pg, (__fp16 *)(y + np2), hy);
}
#elif defined(__riscv_v_intrinsic)
// todo: RVV impl
// scalar
for (int i = 0; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v);
}
#else
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v);
}
#endif
#else
// scalar
for (int i = 0; i < n; ++i) {
@@ -324,6 +530,16 @@ inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int
y[i] += x[k][i]*v[k][0];
}
}
#elif defined(__riscv_v_intrinsic)
for (int i = 0, avl; i < n; i += avl) {
avl = __riscv_vsetvl_e32m8(n - i);
vfloat32m8_t ay = __riscv_vle32_v_f32m8(&y[i], avl);
for (int k = 0; k < GGML_VEC_MAD_UNROLL; k++) {
vfloat32m8_t ax = __riscv_vle32_v_f32m8(&x[k][i], avl);
ay = __riscv_vfmadd_vf_f32m8(ax, v[k][0], ay, avl);
}
__riscv_vse32_v_f32m8(&y[i], ay, avl);
}
#else
const int np = (n & ~(GGML_F32_STEP - 1));
@@ -375,6 +591,14 @@ inline static void ggml_vec_mad1_f32(const int n, float * y, const float * x, co
for (int i = 0; i < n; ++i) {
y[i] = x[i]*s + b;
}
#elif defined(__riscv_v_intrinsic)
for (int i = 0, avl; i < n; i += avl) {
avl = __riscv_vsetvl_e32m8(n - i);
vfloat32m8_t ax = __riscv_vle32_v_f32m8(&x[i], avl);
vfloat32m8_t vb = __riscv_vfmv_v_f_f32m8(b, avl);
vfloat32m8_t ny = __riscv_vfmadd_vf_f32m8(ax, s, vb, avl);
__riscv_vse32_v_f32m8(&y[i], ny, avl);
}
#else
const int np = (n & ~(GGML_F32_STEP - 1));
@@ -436,6 +660,13 @@ inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
ay1 = svmul_f32_m(pg, ay1, vx);
svst1_f32(pg, y + np, ay1);
}
#elif defined(__riscv_v_intrinsic)
for (int i = 0, avl; i < n; i += avl) {
avl = __riscv_vsetvl_e32m8(n - i);
vfloat32m8_t ay = __riscv_vle32_v_f32m8(&y[i], avl);
vfloat32m8_t ny = __riscv_vfmul_vf_f32m8(ay, v, avl);
__riscv_vse32_v_f32m8(&y[i], ny, avl);
}
#else
const int np = (n & ~(GGML_F32_STEP - 1));
@@ -467,25 +698,59 @@ inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F16_STEP - 1));
#if defined(__ARM_FEATURE_SVE)
const int sve_register_length = svcntb() * 8;
const int ggml_f16_epr = sve_register_length / 16;
const int ggml_f16_step = 2 * ggml_f16_epr;
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
GGML_F16x_VEC vx = GGML_F16x_VEC_SET1(v);
const int np = (n & ~(ggml_f16_step - 1));
svfloat16_t ay1, ay2;
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += ggml_f16_step) {
ay1 = GGML_F16x_VEC_LOAD(y + i + 0*ggml_f16_epr, 0);
ay1 = GGML_F16x_VEC_MUL(ay1, vx);
GGML_F16x_VEC_STORE(y + i + 0*ggml_f16_epr, ay1, 0);
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
ay2 = GGML_F16x_VEC_LOAD(y + i + 1*ggml_f16_epr, 1);
ay2 = GGML_F16x_VEC_MUL(ay2, vx);
GGML_F16x_VEC_STORE(y + i + 1*ggml_f16_epr, ay2, 1);
}
}
// leftovers
// maximum number of leftover elements will be less that ggmlF_16x_epr. Apply predicated svmad on available elements only
if (np < n) {
svbool_t pg = svwhilelt_b16(np, n);
svfloat16_t hy = svld1_f16(pg, (__fp16 *)(y + np));
svfloat16_t out = svmul_f16_m(pg, hy, vx);
svst1_f16(pg, (__fp16 *)(y + np), out);
}
#elif defined(__riscv_v_intrinsic)
// todo: RVV impl
// scalar
for (int i = 0; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v);
}
#else
const int np = (n & ~(GGML_F16_STEP - 1));
// leftovers
for (int i = np; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v);
}
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v);
}
#endif
#else
// scalar
for (int i = 0; i < n; ++i) {
@@ -737,7 +1002,39 @@ https://github.com/openvinotoolkit/openvino/blob/master/src/plugins/intel_cpu/sr
}
#endif
#if defined(__ARM_NEON) && defined(__aarch64__)
#if defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
inline static svfloat32_t ggml_v_expf(svbool_t pg, svfloat32_t x) {
const svfloat32_t r = svdup_n_f32_x(pg, 0x1.8p23f);
const svfloat32_t z = svmla_n_f32_x(pg, r, x, 0x1.715476p+0f);
const svfloat32_t n = svsub_f32_x(pg, z, r);
const svfloat32_t b = svmls_n_f32_x(pg, svmls_n_f32_x(pg, x, n, 0x1.62e4p-1f), n, 0x1.7f7d1cp-20f);
const svuint32_t e = svlsl_n_u32_x(pg, svreinterpret_u32_f32(z), 23);
const svfloat32_t k = svreinterpret_f32_u32(svadd_u32_x(pg, e, svreinterpret_u32_f32(svdup_n_f32_x(pg, 1))));
const svbool_t c = svacgt_n_f32(pg, n, 126);
const svfloat32_t u = svmul_f32_x(pg, b, b);
const svfloat32_t j = svmla_f32_x(pg,
svmul_n_f32_x(pg, b, 0x1.ffffecp-1f),
svmla_f32_x(pg, svmla_f32_x(pg, svdup_n_f32_x(pg, 0x1.fffdb6p-2f), svdup_n_f32_x(pg, 0x1.555e66p-3f), b),
svmla_f32_x(pg, svdup_n_f32_x(pg, 0x1.573e2ep-5f), svdup_n_f32_x(pg, 0x1.0e4020p-7f), b), u), u);
const svuint32_t d = svdup_n_u32_z(svcmple_n_f32(pg, n, 0.0), 0x82000000);
const svfloat32_t s1 = svreinterpret_f32_u32(svadd_n_u32_x(pg, d, 0x7f000000));
const svfloat32_t s2 = svreinterpret_f32_u32(svsub_u32_x(pg, e, d));
return svsel_f32(svacgt_f32(pg, n, svdup_n_f32_x(pg, 192)), svmul_f32_x(pg, s1, s1),
svsel_f32(c, svmul_f32_x(pg, svmla_f32_x(pg, s2, s2, j), s1), svmla_f32_x(pg, k, k, j)));
}
// computes silu x/(1+exp(-x)) in single precision vector
inline static svfloat32_t ggml_v_silu(svbool_t pg, svfloat32_t x) {
const svfloat32_t one = svdup_n_f32_x(pg, 1.0f);
const svfloat32_t zero = svdup_n_f32_x(pg, 0.0f);
const svfloat32_t neg_x = svsub_f32_x(pg, zero, x);
const svfloat32_t exp_neg_x = ggml_v_expf(pg, neg_x);
const svfloat32_t one_plus_exp_neg_x = svadd_f32_x(pg, one, exp_neg_x);
return svdiv_f32_x(pg, x, one_plus_exp_neg_x);
}
#elif defined(__ARM_NEON) && defined(__aarch64__)
// adapted from arm limited optimized routine
// the maximum error is 1.45358 plus 0.5 ulps
@@ -928,7 +1225,59 @@ inline static __m128 ggml_v_silu(__m128 x) {
return _mm_div_ps(x, one_plus_exp_neg_x);
}
#endif // __ARM_NEON / __AVX2__ / __SSE2__
#elif defined(__riscv_v_intrinsic)
// adapted from arm limited optimized routine
// the maximum error is 1.45358 plus 0.5 ulps
// numbers above 88.38 will flush to infinity
// numbers beneath -103.97 will flush to zero
inline static vfloat32m2_t ggml_v_expf_m2(vfloat32m2_t x, int vl) {
const vfloat32m2_t r = __riscv_vfmv_v_f_f32m2(0x1.8p23f, vl);
#ifdef __riscv_xtheadvector
// workaround for compiler bug (gcc 14.3.0: Error: unrecognized opcode `th.vmv1r.v v2,v4')
vfloat32m2_t z = __riscv_vfadd_vf_f32m2(r, 0.0f, vl);
z = __riscv_vfmacc_vf_f32m2(z, 0x1.715476p+0f, x, vl);
#else
const vfloat32m2_t z = __riscv_vfmacc_vf_f32m2(r, 0x1.715476p+0f, x, vl);
#endif
const vfloat32m2_t n = __riscv_vfsub_vv_f32m2(z, r, vl);
const vfloat32m2_t b = __riscv_vfnmsac_vf_f32m2(__riscv_vfnmsac_vf_f32m2(x, 0x1.62e4p-1f, n, vl),
0x1.7f7d1cp-20f, n, vl);
const vuint32m2_t e = __riscv_vsll_vx_u32m2(__riscv_vreinterpret_v_f32m2_u32m2(z), 23, vl);
const vfloat32m2_t k = __riscv_vreinterpret_v_u32m2_f32m2(__riscv_vadd_vx_u32m2(e, 0x3f800000, vl)); // 1.0f
const vbool16_t c = __riscv_vmfgt_vf_f32m2_b16(__riscv_vfabs_v_f32m2(n, vl), 126.0f, vl);
const vfloat32m2_t u = __riscv_vfmul_vv_f32m2(b, b, vl);
const vfloat32m2_t j = __riscv_vfmacc_vv_f32m2(
__riscv_vfmul_vf_f32m2(b, 0x1.ffffecp-1f, vl),
__riscv_vfmacc_vv_f32m2(
__riscv_vfmacc_vf_f32m2(__riscv_vfmv_v_f_f32m2(0x1.fffdb6p-2f, vl), 0x1.555e66p-3f, b, vl),
__riscv_vfmacc_vf_f32m2(__riscv_vfmv_v_f_f32m2(0x1.573e2ep-5f, vl), 0x1.0e4020p-7f, b, vl),
u, vl), u, vl);
if (!__riscv_vcpop_m_b16(c, vl))
return __riscv_vfmacc_vv_f32m2(k, j, k, vl);
const vbool16_t dm = __riscv_vmfle_vf_f32m2_b16(n, 0.0f, vl);
const vuint32m2_t d = __riscv_vmerge_vxm_u32m2(__riscv_vmv_v_x_u32m2(0, vl), 0x82000000, dm, vl);
const vfloat32m2_t s1 = __riscv_vreinterpret_v_u32m2_f32m2(__riscv_vadd_vx_u32m2(d, 0x7f000000, vl));
const vfloat32m2_t s2 = __riscv_vreinterpret_v_u32m2_f32m2(__riscv_vsub_vv_u32m2(e, d, vl));
const vfloat32m2_t r1 = __riscv_vmerge_vvm_f32m2(
__riscv_vfmacc_vv_f32m2(k, k, j, vl),
__riscv_vfmul_vv_f32m2(__riscv_vfmacc_vv_f32m2(s2, s2, j, vl), s1, vl),
c, vl);
return __riscv_vmerge_vvm_f32m2(
r1, __riscv_vfmul_vv_f32m2(s1, s1, vl),
__riscv_vmfgt_vf_f32m2_b16(__riscv_vfabs_v_f32m2(n, vl), 192.0f, vl),
vl);
}
// computes silu x/(1+exp(-x)) in single precision vector
inline static vfloat32m2_t ggml_v_silu_m2(vfloat32m2_t x, int vl) {
const vfloat32m2_t neg_x = __riscv_vfneg_v_f32m2(x, vl);
const vfloat32m2_t exp_neg_x = ggml_v_expf_m2(neg_x, vl);
const vfloat32m2_t one_plus_exp_neg_x = __riscv_vfadd_vf_f32m2(exp_neg_x, 1.0f, vl);
return __riscv_vfdiv_vv_f32m2(x, one_plus_exp_neg_x, vl);
}
#endif // __ARM_NEON / __AVX2__ / __SSE2__ / __riscv_v_intrinsic
inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
for (int i = 0; i < n; ++i) {

View File

@@ -44,6 +44,8 @@ if (CUDAToolkit_FOUND)
list(APPEND GGML_SOURCES_CUDA ${SRCS})
file(GLOB SRCS "template-instances/mmq*.cu")
list(APPEND GGML_SOURCES_CUDA ${SRCS})
file(GLOB SRCS "template-instances/mmf*.cu")
list(APPEND GGML_SOURCES_CUDA ${SRCS})
if (GGML_CUDA_FA_ALL_QUANTS)
file(GLOB SRCS "template-instances/fattn-vec*.cu")
@@ -94,7 +96,11 @@ if (CUDAToolkit_FOUND)
# As of 12.3.1 CUDA Toolkit for Windows does not offer a static cublas library
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas)
else ()
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas_static)
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "10.1")
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
else()
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas_static)
endif()
endif()
else()
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart CUDA::cublas)

View File

@@ -1,5 +1,6 @@
#include "binbcast.cuh"
#include <cstdint>
#include <utility>
static __device__ __forceinline__ float op_repeat(const float a, const float b) {
return b;
@@ -22,73 +23,295 @@ static __device__ __forceinline__ float op_div(const float a, const float b) {
return a / b;
}
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
int ne0, int ne1, int ne2, int ne3,
int ne10, int ne11, int ne12, int ne13,
/*int s0, */ int s1, int s2, int s3,
/*int s00,*/ int s01, int s02, int s03,
/*int s10,*/ int s11, int s12, int s13) {
const int i0s = blockDim.x*blockIdx.x + threadIdx.x;
const int i1 = (blockDim.y*blockIdx.y + threadIdx.y);
const int i2 = (blockDim.z*blockIdx.z + threadIdx.z) / ne3;
const int i3 = (blockDim.z*blockIdx.z + threadIdx.z) % ne3;
template <float (*bin_op)(const float, const float),
typename src0_t,
typename src1_t,
typename dst_t,
typename... src1_ptrs>
static __global__ void k_bin_bcast(const src0_t * src0,
const src1_t * src1,
dst_t * dst,
const int ne0,
const int ne1,
const int ne2,
const uint3 ne3,
const uint3 ne10,
const uint3 ne11,
const uint3 ne12,
const uint3 ne13,
/*int s0, */ const int s1,
const int s2,
const int s3,
/*int s00,*/ const int s01,
const int s02,
const int s03,
/*int s10,*/ const int s11,
const int s12,
const int s13,
src1_ptrs... src1s) {
const uint32_t i0s = blockDim.x * blockIdx.x + threadIdx.x;
const uint32_t i1 = (blockDim.y * blockIdx.y + threadIdx.y);
const uint32_t i2 = fastdiv((blockDim.z * blockIdx.z + threadIdx.z), ne3);
const uint32_t i3 = (blockDim.z * blockIdx.z + threadIdx.z) - (i2 * ne3.z);
if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3.z) {
return;
}
const int i11 = i1 % ne11;
const int i12 = i2 % ne12;
const int i13 = i3 % ne13;
const uint32_t i11 = fastmodulo(i1, ne11);
const uint32_t i12 = fastmodulo(i2, ne12);
const uint32_t i13 = fastmodulo(i3, ne13);
const size_t i_src0 = i3*s03 + i2*s02 + i1*s01;
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
const src0_t * src0_row = src0 + i_src0;
const src1_t * src1_row = src1 + i_src1;
const src0_t * src0_row = src0 ? (src0 + i_src0) : nullptr;
dst_t * dst_row = dst + i_dst;
for (int i0 = i0s; i0 < ne0; i0 += blockDim.x*gridDim.x) {
const int i10 = i0 % ne10;
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
for (int i0 = i0s; i0 < ne0; i0 += blockDim.x * gridDim.x) {
const uint32_t i10 = fastmodulo(i0, ne10);
float result = src0_row ? (float) src0_row[i0] : 0.0f;
if constexpr (sizeof...(src1_ptrs) > 0) {
result = (..., (result = bin_op(result, (float)src1s[i_src1 + i10])));
} else {
result = bin_op(result, (float)src1[i_src1 + i10]);
}
dst_row[i0] = (dst_t) result;
}
}
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
int ne0, int ne1, int ne2, int ne3,
int ne10, int ne11, int ne12, int ne13,
/*int s0, */ int s1, int s2, int s3,
/*int s00,*/ int s01, int s02, int s03,
/*int s10,*/ int s11, int s12, int s13) {
template <float (*bin_op)(const float, const float),
typename src0_t,
typename src1_t,
typename dst_t,
typename... src1_ptrs>
static __global__ void k_bin_bcast_unravel(const src0_t * src0,
const src1_t * src1,
dst_t * dst,
const uint3 ne0,
const uint3 ne1,
const uint3 ne2,
const uint32_t ne3,
const uint3 prod_012,
const uint3 prod_01,
const uint3 ne10,
const uint3 ne11,
const uint3 ne12,
const uint3 ne13,
/*int s0, */ const int s1,
const int s2,
const int s3,
/*int s00,*/ const int s01,
const int s02,
const int s03,
/*int s10,*/ const int s11,
const int s12,
const int s13,
src1_ptrs... src1s) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
const int i3 = i/(ne2*ne1*ne0);
const int i2 = (i/(ne1*ne0)) % ne2;
const int i1 = (i/ne0) % ne1;
const int i0 = i % ne0;
const uint32_t i3 = fastdiv(i, prod_012);
const uint32_t i2 = fastdiv(i - i3 * prod_012.z, prod_01);
const uint32_t i1 = fastdiv(i - i3 * prod_012.z - i2 * prod_01.z, ne0);
const uint32_t i0 = i - i3 * prod_012.z - i2 * prod_01.z - i1 * ne0.z;
if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
if (i0 >= ne0.z || i1 >= ne1.z || i2 >= ne2.z || i3 >= ne3) {
return;
}
const int i11 = i1 % ne11;
const int i12 = i2 % ne12;
const int i13 = i3 % ne13;
const int i11 = fastmodulo(i1, ne11);
const int i12 = fastmodulo(i2, ne12);
const int i13 = fastmodulo(i3, ne13);
const size_t i_src0 = i3*s03 + i2*s02 + i1*s01;
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
const src0_t * src0_row = src0 + i_src0;
const src1_t * src1_row = src1 + i_src1;
const src0_t * src0_row = src0 ? (src0 + i_src0) : nullptr;
dst_t * dst_row = dst + i_dst;
const int i10 = i0 % ne10;
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
const int i10 = fastmodulo(i0, ne10);
float result = src0_row ? (float) src0_row[i0] : 0.0f;
if constexpr (sizeof...(src1_ptrs) > 0) {
result = (..., (result = bin_op(result, (float)src1s[i_src1 + i10])));
} else {
result = bin_op(result, (float)src1[i_src1 + i10]);
}
dst_row[i0] = (dst_t) result;
}
template <float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t, size_t... I>
static void launch_bin_bcast_pack(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd,
cudaStream_t stream, std::index_sequence<I...>) {
GGML_TENSOR_BINARY_OP_LOCALS
int nr0 = ne10 / ne0;
int nr1 = ne11 / ne1;
int nr2 = ne12 / ne2;
int nr3 = ne13 / ne3;
int nr[4] = { nr0, nr1, nr2, nr3 };
int64_t cne[] = { ne0, ne1, ne2, ne3 };
int64_t cne0[] = { ne00, ne01, ne02, ne03 };
int64_t cne1[] = { ne10, ne11, ne12, ne13 };
size_t cnb[] = { nb0, nb1, nb2, nb3 };
size_t cnb0[] = { nb00, nb01, nb02, nb03 };
size_t cnb1[] = { nb10, nb11, nb12, nb13 };
auto collapse = [](int64_t cne[]) {
cne[0] *= cne[1];
cne[1] = cne[2];
cne[2] = cne[3];
cne[3] = 1;
};
auto collapse_nb = [](size_t cnb[], const int64_t cne[]) {
cnb[1] *= cne[1];
cnb[2] *= cne[2];
cnb[3] *= cne[3];
};
if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
for (int i = 0; i < 4; i++) {
if (nr[i] != 1) {
break;
}
if (i > 0) {
collapse_nb(cnb, cne);
collapse_nb(cnb0, cne0);
collapse_nb(cnb1, cne1);
collapse(cne);
collapse(cne0);
collapse(cne1);
}
}
}
{
int64_t ne0 = cne[0];
int64_t ne1 = cne[1];
int64_t ne2 = cne[2];
int64_t ne3 = cne[3];
//int64_t ne00 = cne0[0]; GGML_UNUSED(ne00);
//int64_t ne01 = cne0[1]; GGML_UNUSED(ne01);
//int64_t ne02 = cne0[2]; GGML_UNUSED(ne02);
//int64_t ne03 = cne0[3]; GGML_UNUSED(ne03);
size_t nb0 = cnb[0];
size_t nb1 = cnb[1];
size_t nb2 = cnb[2];
size_t nb3 = cnb[3];
size_t nb00 = cnb0[0];
size_t nb01 = cnb0[1];
size_t nb02 = cnb0[2];
size_t nb03 = cnb0[3];
size_t nb10 = cnb1[0];
size_t nb11 = cnb1[1];
size_t nb12 = cnb1[2];
size_t nb13 = cnb1[3];
size_t s0 = nb0 / sizeof(dst_t);
size_t s1 = nb1 / sizeof(dst_t);
size_t s2 = nb2 / sizeof(dst_t);
size_t s3 = nb3 / sizeof(dst_t);
size_t s10 = nb10 / sizeof(src1_t);
size_t s11 = nb11 / sizeof(src1_t);
size_t s12 = nb12 / sizeof(src1_t);
size_t s13 = nb13 / sizeof(src1_t);
size_t s00 = nb00 / sizeof(src0_t);
size_t s01 = nb01 / sizeof(src0_t);
size_t s02 = nb02 / sizeof(src0_t);
size_t s03 = nb03 / sizeof(src0_t);
GGML_ASSERT(nb0 % sizeof(dst_t) == 0);
GGML_ASSERT(nb1 % sizeof(dst_t) == 0);
GGML_ASSERT(nb2 % sizeof(dst_t) == 0);
GGML_ASSERT(nb3 % sizeof(dst_t) == 0);
GGML_ASSERT(nb00 % sizeof(src0_t) == 0);
GGML_ASSERT(nb01 % sizeof(src0_t) == 0);
GGML_ASSERT(nb02 % sizeof(src0_t) == 0);
GGML_ASSERT(nb03 % sizeof(src0_t) == 0);
GGML_ASSERT(nb10 % sizeof(src1_t) == 0);
GGML_ASSERT(nb11 % sizeof(src1_t) == 0);
GGML_ASSERT(nb12 % sizeof(src1_t) == 0);
GGML_ASSERT(nb13 % sizeof(src1_t) == 0);
GGML_ASSERT(s0 == 1);
GGML_ASSERT(s00 == 1);
GGML_ASSERT(s10 == 1);
const int block_size = 128;
int64_t hne0 = std::max(ne0 / 2LL, 1LL);
dim3 block_dims;
block_dims.x = std::min<unsigned int>(hne0, block_size);
block_dims.y = std::min<unsigned int>(ne1, block_size / block_dims.x);
block_dims.z = std::min(std::min<unsigned int>(ne2 * ne3, block_size / block_dims.x / block_dims.y), 64U);
dim3 block_nums((hne0 + block_dims.x - 1) / block_dims.x, (ne1 + block_dims.y - 1) / block_dims.y,
(ne2 * ne3 + block_dims.z - 1) / block_dims.z);
const uint3 ne10 = init_fastdiv_values((uint32_t) cne1[0]);
const uint3 ne11 = init_fastdiv_values((uint32_t) cne1[1]);
const uint3 ne12 = init_fastdiv_values((uint32_t) cne1[2]);
const uint3 ne13 = init_fastdiv_values((uint32_t) cne1[3]);
if (block_nums.z > 65535) {
int block_num = (ne0 * ne1 * ne2 * ne3 + block_size - 1) / block_size;
const uint3 prod_012 = init_fastdiv_values((uint32_t) (ne0 * ne1 * ne2));
const uint3 prod_01 = init_fastdiv_values((uint32_t) (ne0 * ne1));
const uint3 ne0_fastdiv = init_fastdiv_values((uint32_t) ne0);
const uint3 ne1_fastdiv = init_fastdiv_values((uint32_t) ne1);
const uint3 ne2_fastdiv = init_fastdiv_values((uint32_t) ne2);
if constexpr (sizeof...(I) > 0) {
k_bin_bcast_unravel<bin_op, src0_t, src1_t, dst_t><<<block_num, block_size, 0, stream>>>(
src0_dd, src1_dd, dst_dd, ne0_fastdiv, ne1_fastdiv, ne2_fastdiv, ne3, prod_012, prod_01, ne10, ne11,
ne12, ne13,
/* s0, */ s1, s2, s3,
/* s00,*/ s01, s02, s03,
/* s10,*/ s11, s12, s13, (const src1_t *) dst->src[I + 1]->data...);
} else {
k_bin_bcast_unravel<bin_op, src0_t, src1_t, dst_t>
<<<block_num, block_size, 0, stream>>>(src0_dd, src1_dd, dst_dd, ne0_fastdiv, ne1_fastdiv,
ne2_fastdiv, ne3, prod_012, prod_01, ne10, ne11, ne12, ne13,
/* s0, */ s1, s2, s3,
/* s00,*/ s01, s02, s03,
/* s10,*/ s11, s12, s13);
}
} else {
const uint3 ne3_fastdiv = init_fastdiv_values((uint32_t) ne3);
if constexpr (sizeof...(I) > 0) {
k_bin_bcast<bin_op, src0_t, src1_t, dst_t><<<block_nums, block_dims, 0, stream>>>(
src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3_fastdiv, ne10, ne11, ne12, ne13,
/* s0, */ s1, s2, s3,
/* s00,*/ s01, s02, s03,
/* s10,*/ s11, s12, s13, (const src1_t *) dst->src[I + 1]->data...);
} else {
k_bin_bcast<bin_op, src0_t, src1_t, dst_t><<<block_nums, block_dims, 0, stream>>>(
src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3_fastdiv, ne10, ne11, ne12, ne13,
/* s0, */ s1, s2, s3,
/* s00,*/ s01, s02, s03,
/* s10,*/ s11, s12, s13);
}
}
}
}
template <typename T>
@@ -120,160 +343,14 @@ static __global__ void k_repeat_back(
dst[tid3*ne2*ne1*ne0 + tid2*ne1*ne0 + tid1*ne0 + tid0] = sum;
}
template<float (*bin_op)(const float, const float)>
template <float (*bin_op)(const float, const float), int n_fuse = 1>
struct bin_bcast_cuda {
template<typename src0_t, typename src1_t, typename dst_t>
void operator()(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst,
const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd,
cudaStream_t stream) {
GGML_TENSOR_BINARY_OP_LOCALS
int nr0 = ne10/ne0;
int nr1 = ne11/ne1;
int nr2 = ne12/ne2;
int nr3 = ne13/ne3;
int nr[4] = { nr0, nr1, nr2, nr3 };
// collapse dimensions until first broadcast dimension
int64_t cne[] = {ne0, ne1, ne2, ne3};
int64_t cne0[] = {ne00, ne01, ne02, ne03};
int64_t cne1[] = {ne10, ne11, ne12, ne13};
size_t cnb[] = {nb0, nb1, nb2, nb3};
size_t cnb0[] = {nb00, nb01, nb02, nb03};
size_t cnb1[] = {nb10, nb11, nb12, nb13};
auto collapse = [](int64_t cne[]) {
cne[0] *= cne[1];
cne[1] = cne[2];
cne[2] = cne[3];
cne[3] = 1;
};
auto collapse_nb = [](size_t cnb[], const int64_t cne[]) {
cnb[1] *= cne[1];
cnb[2] *= cne[2];
cnb[3] *= cne[3];
};
if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
for (int i = 0; i < 4; i++) {
if (nr[i] != 1) {
break;
}
if (i > 0) {
collapse_nb(cnb, cne);
collapse_nb(cnb0, cne0);
collapse_nb(cnb1, cne1);
collapse(cne);
collapse(cne0);
collapse(cne1);
}
}
}
{
int64_t ne0 = cne[0];
int64_t ne1 = cne[1];
int64_t ne2 = cne[2];
int64_t ne3 = cne[3];
//int64_t ne00 = cne0[0]; GGML_UNUSED(ne00);
//int64_t ne01 = cne0[1]; GGML_UNUSED(ne01);
//int64_t ne02 = cne0[2]; GGML_UNUSED(ne02);
//int64_t ne03 = cne0[3]; GGML_UNUSED(ne03);
int64_t ne10 = cne1[0];
int64_t ne11 = cne1[1];
int64_t ne12 = cne1[2];
int64_t ne13 = cne1[3];
size_t nb0 = cnb[0];
size_t nb1 = cnb[1];
size_t nb2 = cnb[2];
size_t nb3 = cnb[3];
size_t nb00 = cnb0[0];
size_t nb01 = cnb0[1];
size_t nb02 = cnb0[2];
size_t nb03 = cnb0[3];
size_t nb10 = cnb1[0];
size_t nb11 = cnb1[1];
size_t nb12 = cnb1[2];
size_t nb13 = cnb1[3];
size_t s0 = nb0 / sizeof(dst_t);
size_t s1 = nb1 / sizeof(dst_t);
size_t s2 = nb2 / sizeof(dst_t);
size_t s3 = nb3 / sizeof(dst_t);
size_t s10 = nb10 / sizeof(src1_t);
size_t s11 = nb11 / sizeof(src1_t);
size_t s12 = nb12 / sizeof(src1_t);
size_t s13 = nb13 / sizeof(src1_t);
size_t s00 = nb00 / sizeof(src0_t);
size_t s01 = nb01 / sizeof(src0_t);
size_t s02 = nb02 / sizeof(src0_t);
size_t s03 = nb03 / sizeof(src0_t);
GGML_ASSERT(nb0 % sizeof(dst_t) == 0);
GGML_ASSERT(nb1 % sizeof(dst_t) == 0);
GGML_ASSERT(nb2 % sizeof(dst_t) == 0);
GGML_ASSERT(nb3 % sizeof(dst_t) == 0);
GGML_ASSERT(nb00 % sizeof(src0_t) == 0);
GGML_ASSERT(nb01 % sizeof(src0_t) == 0);
GGML_ASSERT(nb02 % sizeof(src0_t) == 0);
GGML_ASSERT(nb03 % sizeof(src0_t) == 0);
GGML_ASSERT(nb10 % sizeof(src1_t) == 0);
GGML_ASSERT(nb11 % sizeof(src1_t) == 0);
GGML_ASSERT(nb12 % sizeof(src1_t) == 0);
GGML_ASSERT(nb13 % sizeof(src1_t) == 0);
GGML_ASSERT(s0 == 1);
GGML_ASSERT(s00 == 1);
GGML_ASSERT(s10 == 1);
const int block_size = 128;
int64_t hne0 = std::max(ne0/2LL, 1LL);
dim3 block_dims;
block_dims.x = std::min<unsigned int>(hne0, block_size);
block_dims.y = std::min<unsigned int>(ne1, block_size / block_dims.x);
block_dims.z = std::min(std::min<unsigned int>(ne2*ne3, block_size / block_dims.x / block_dims.y), 64U);
dim3 block_nums(
(hne0 + block_dims.x - 1) / block_dims.x,
(ne1 + block_dims.y - 1) / block_dims.y,
(ne2*ne3 + block_dims.z - 1) / block_dims.z
);
if (block_nums.z > 65535) {
// this is the maximum number of blocks in z dimension, fallback to 1D grid kernel
int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
k_bin_bcast_unravel<bin_op><<<block_num, block_size, 0, stream>>>(
src0_dd, src1_dd, dst_dd,
ne0, ne1, ne2, ne3,
ne10, ne11, ne12, ne13,
/* s0, */ s1, s2, s3,
/* s00, */ s01, s02, s03,
/* s10, */ s11, s12, s13);
} else {
k_bin_bcast<bin_op><<<block_nums, block_dims, 0, stream>>>(
src0_dd, src1_dd, dst_dd,
ne0, ne1, ne2, ne3,
ne10, ne11, ne12, ne13,
/* s0, */ s1, s2, s3,
/* s00, */ s01, s02, s03,
/* s10, */ s11, s12, s13);
}
}
launch_bin_bcast_pack<bin_op, src0_t, src1_t, dst_t>(
src0, src1, dst, src0_dd, src1_dd, dst_dd, stream, std::make_index_sequence<n_fuse>{});
}
};
@@ -312,7 +389,7 @@ static void ggml_cuda_op_bin_bcast(
}
void ggml_cuda_op_repeat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_repeat>>(dst, dst->src[0], dst, nullptr, dst->src[0]->data, dst->data, ctx.stream());
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_repeat, 0>>(dst, dst->src[0], dst, nullptr, dst->src[0]->data, dst->data, ctx.stream());
}
void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
@@ -331,6 +408,68 @@ void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_div>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
}
template <float (*op)(const float, const float), int n_fuse>
static void ggml_cuda_op_fused_binbcast_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
cudaStream_t stream = ctx.stream();
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
launch_bin_bcast_pack<op, float, float, float>(src0, src1, dst,
(const float *) src0->data, (const float *) src1->data, (float *) dst->data,
stream, std::make_index_sequence<n_fuse>{});
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
launch_bin_bcast_pack<op, half, half, half>(src0, src1, dst,
(const half *) src0->data, (const half *) src1->data, (half *) dst->data,
stream, std::make_index_sequence<n_fuse>{});
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) {
launch_bin_bcast_pack<op, half, float, half>(src0, src1, dst,
(const half *) src0->data, (const float *) src1->data, (half *) dst->data,
stream, std::make_index_sequence<n_fuse>{});
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
launch_bin_bcast_pack<op, half, float, float>(src0, src1, dst,
(const half *) src0->data, (const float *) src1->data, (float *) dst->data,
stream, std::make_index_sequence<n_fuse>{});
} else {
fprintf(stderr,
"%s: unsupported types for fusion: dst: %s, src0: %s, src1: %s\n",
__func__, ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
GGML_ABORT("fatal error");
}
}
void ggml_cuda_op_fused_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst, int n_fuse) {
GGML_ASSERT(2 <= n_fuse && n_fuse <= 8);
switch (n_fuse) {
case 2:
ggml_cuda_op_fused_binbcast_impl<op_add, 2>(ctx, dst);
break;
case 3:
ggml_cuda_op_fused_binbcast_impl<op_add, 3>(ctx, dst);
break;
case 4:
ggml_cuda_op_fused_binbcast_impl<op_add, 4>(ctx, dst);
break;
case 5:
ggml_cuda_op_fused_binbcast_impl<op_add, 5>(ctx, dst);
break;
case 6:
ggml_cuda_op_fused_binbcast_impl<op_add, 6>(ctx, dst);
break;
case 7:
ggml_cuda_op_fused_binbcast_impl<op_add, 7>(ctx, dst);
break;
case 8:
ggml_cuda_op_fused_binbcast_impl<op_add, 8>(ctx, dst);
break;
default:
GGML_ASSERT(false && "Unsupported n_fuse value");
}
}
void ggml_cuda_op_repeat_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];

View File

@@ -7,3 +7,5 @@ void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_repeat_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_fused_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst, int n_fuse);

View File

@@ -545,6 +545,45 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
#endif // defined(GGML_USE_HIP)
}
static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const float v, const float u) {
acc += v*u;
}
static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const float2 v, const float2 u) {
acc += v.x*u.x;
acc += v.y*u.y;
}
static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const half2 v, const half2 u) {
#if defined(GGML_USE_HIP) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4) || defined(__gfx906__) || defined(CDNA))
asm volatile("v_dot2_f32_f16 %0, %1, %2, %0" : "+v"(acc) : "v"(v), "v"(u));
#else
#ifdef FAST_FP16_AVAILABLE
const float2 tmp = __half22float2(v*u);
acc += tmp.x + tmp.y;
#else
const float2 tmpv = __half22float2(v);
const float2 tmpu = __half22float2(u);
acc += tmpv.x * tmpu.x;
acc += tmpv.y * tmpu.y;
#endif // FAST_FP16_AVAILABLE
#endif // defined(GGML_USE_HIP) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4) || defined(GCN5) || defined(CDNA))
}
// Aligned memory transfers of 8/16 bytes can be faster than 2 transfers with 4 bytes, especially on AMD.
template <int nbytes>
static __device__ __forceinline__ void ggml_cuda_memcpy_1(void * __restrict__ dst, const void * __restrict__ src) {
if constexpr (nbytes == 4) {
*(int *) dst = *(const int *) src;
} else if constexpr (nbytes == 8) {
*(int2 *) dst = *(const int2 *) src;
} else if constexpr (nbytes == 16) {
*(int4 *) dst = *(const int4 *) src;
} else {
static_assert(nbytes == 0 && nbytes == -1, "bad nbytes");
}
}
static __device__ __forceinline__ float ggml_cuda_e8m0_to_fp32(uint8_t x) {
#if CUDART_VERSION >= 12080
const nv_bfloat16 e = __nv_cvt_e8m0_to_bf16raw(x);
@@ -563,6 +602,40 @@ static __device__ __forceinline__ float ggml_cuda_e8m0_to_fp32(uint8_t x) {
#endif // CUDART_VERSION >= 12050
}
// See https://gmplib.org/~tege/divcnst-pldi94.pdf figure 4.1.
// Precompute mp (m' in the paper) and L such that division
// can be computed using a multiply (high 32b of 64b result)
// and a shift:
//
// n/d = (mulhi(n, mp) + n) >> L;
static const uint3 init_fastdiv_values(uint32_t d) {
GGML_ASSERT(d != 0);
// compute L = ceil(log2(d));
uint32_t L = 0;
while (L < 32 && (uint32_t{ 1 } << L) < d) {
L++;
}
uint32_t mp = (uint32_t) ((uint64_t{ 1 } << 32) * ((uint64_t{ 1 } << L) - d) / d + 1);
// pack divisor as well to reduce error surface
return make_uint3(mp, L, d);
}
static __device__ __forceinline__ uint32_t fastdiv(uint32_t n, const uint3 fastdiv_values) {
// expects fastdiv_values to contain <mp, L, divisor> in <x, y, z>
// fastdiv_values.z is unused and optimized away by the compiler.
// Compute high 32 bits of n * mp
const uint32_t hi = __umulhi(n, fastdiv_values.x);
// add n, apply bit shift
return (hi + n) >> fastdiv_values.y;
}
static __device__ __forceinline__ uint32_t fastmodulo(uint32_t n, const uint3 fastdiv_values) {
// expects fastdiv_values to contain <mp, L, divisor> in <x, y, z> (see init_fastdiv_values)
return n - fastdiv(n, fastdiv_values) * fastdiv_values.z;
}
typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, float2 & v);
static __device__ __forceinline__ float get_alibi_slope(

View File

@@ -0,0 +1,166 @@
#include "conv2d.cuh"
#include "convert.cuh"
struct conv_params {
const int64_t IW, IH;
const int64_t OW, OH;
const int64_t KW, KH;
const int64_t ST_X, ST_Y;
const int64_t PD_X, PD_Y;
const int64_t DL_X, DL_Y;
const int64_t IC, OC;
const int64_t B;
const int64_t TOTAL;
};
struct kernel_bounds {
int64_t y_min, y_max;
int64_t x_min, x_max;
};
__device__ __forceinline__ int64_t max64(int64_t a, int64_t b) {
return (a > b) ? a : b;
}
__device__ __forceinline__ int64_t min64(int64_t a, int64_t b) {
return (a < b) ? a : b;
}
__device__ __forceinline__ kernel_bounds calculate_kernel_bounds(int64_t out_x, int64_t out_y, const conv_params & P) {
kernel_bounds bounds;
bounds.y_min = max64(0, (P.PD_Y - out_y * P.ST_Y + P.DL_Y - 1) / P.DL_Y);
bounds.y_max = min64(P.KH, (P.IH + P.PD_Y - out_y * P.ST_Y + P.DL_Y - 1) / P.DL_Y);
bounds.x_min = max64(0, (P.PD_X - out_x * P.ST_X + P.DL_X - 1) / P.DL_X);
bounds.x_max = min64(P.KW, (P.IW + P.PD_X - out_x * P.ST_X + P.DL_X - 1) / P.DL_X);
return bounds;
}
__device__ __forceinline__ int calculate_input_coord(int64_t out_coord,
int64_t kern_coord,
int64_t stride,
int64_t dilation,
int64_t padding) {
return out_coord * stride + kern_coord * dilation - padding;
}
struct whcn_layout {
__device__ static int64_t input_index(int64_t n, int64_t c, int64_t y, int64_t x, const conv_params & P) {
return n * (P.IC * P.IW * P.IH) + c * P.IW * P.IH + y * P.IW + x;
}
__device__ static int64_t kernel_index(int64_t c_out, int64_t c_in, int64_t ky, int64_t kx, const conv_params & P) {
return c_out * (P.IC * P.KH * P.KW) + c_in * (P.KH * P.KW) + ky * P.KW + kx;
}
__device__ static int64_t output_index(int64_t n, int64_t c, int64_t y, int64_t x, const conv_params & P) {
return n * (P.OC * P.OW * P.OH) + c * P.OW * P.OH + y * P.OW + x;
}
__device__ static void unpack_indices(int64_t global_idx,
const conv_params & P,
int64_t & n,
int64_t & c,
int64_t & out_y,
int64_t & out_x) {
out_x = global_idx % P.OW;
out_y = (global_idx / P.OW) % P.OH;
c = (global_idx / (P.OW * P.OH)) % P.OC;
n = global_idx / (P.OW * P.OH * P.OC);
}
};
template <typename T, typename Layout>
static __global__ void conv2d_kernel(const float * __restrict__ input,
const T * __restrict__ kernel,
float * __restrict__ output,
const conv_params P) {
const int64_t global_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (global_idx >= P.TOTAL) {
return;
}
int64_t n, c_out, out_y, out_x;
Layout::unpack_indices(global_idx, P, n, c_out, out_y, out_x);
float acc = 0.0f;
for (int64_t c_in = 0; c_in < P.IC; ++c_in) {
kernel_bounds bounds = calculate_kernel_bounds(out_x, out_y, P);
for (int64_t ky = bounds.y_min; ky < bounds.y_max; ++ky) {
const int64_t in_y = calculate_input_coord(out_y, ky, P.ST_Y, P.DL_Y, P.PD_Y);
for (int64_t kx = bounds.x_min; kx < bounds.x_max; ++kx) {
const int64_t in_x = calculate_input_coord(out_x, kx, P.ST_X, P.DL_X, P.PD_X);
const float input_val = input[Layout::input_index(n, c_in, in_y, in_x, P)];
const T kernel_val = kernel[Layout::kernel_index(c_out, c_in, ky, kx, P)];
acc += (input_val * ggml_cuda_cast<float>(kernel_val));
}
}
}
// [N, OC, OH, OW]
output[Layout::output_index(n, c_out, out_y, out_x, P)] = acc;
}
template <typename T>
static void conv2d_cuda(const float * X_D, const T * K_D, float * Y_D, const conv_params P, cudaStream_t st) {
const int blocks = (P.TOTAL + CUDA_CONV2D_BLOCK_SIZE - 1) / CUDA_CONV2D_BLOCK_SIZE;
conv2d_kernel<T, whcn_layout><<<blocks, CUDA_CONV2D_BLOCK_SIZE, 0, st>>>(X_D, K_D, Y_D, P);
}
static void conv2d_cuda_f16(const float * X_D, const half * K_D, float * Y_D, const conv_params P, cudaStream_t st) {
conv2d_cuda<half>(X_D, K_D, Y_D, P, st);
}
static void conv2d_cuda_f32(const float * X_D, const float * K_D, float * Y_D, const conv_params P, cudaStream_t st) {
conv2d_cuda<float>(X_D, K_D, Y_D, P, st);
}
void ggml_cuda_op_conv2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * kernel = dst->src[0];
const ggml_tensor * input = dst->src[1];
float * K_D = (float *) kernel->data;
const float * X_D = (const float *) input->data;
float * Y_D = (float *) dst->data;
GGML_ASSERT(ggml_is_contiguous(kernel));
GGML_ASSERT(kernel->type == GGML_TYPE_F16 || kernel->type == GGML_TYPE_F32);
// same number of input channels
GGML_ASSERT(input->ne[2] == kernel->ne[2]);
cudaStream_t st = ctx.stream();
const int32_t * p = (const int32_t *) dst->op_params;
const int ST_X = p[0]; // stride_x
const int ST_Y = p[1]; // stride_y
const int PD_X = p[2]; // padding_x
const int PD_Y = p[3]; // padding_y
const int DL_X = p[4]; // dilation_x
const int DL_Y = p[5]; // dilation_y
// No cwhn
GGML_ASSERT(p[6] == false);
const int IW = input->ne[0]; // input_w
const int IH = input->ne[1]; // input_h
const int OW = dst->ne[0]; // output_w
const int OH = dst->ne[1]; // output_h
const int KW = kernel->ne[0]; // kernel_w
const int KH = kernel->ne[1]; // kernel_h
const int IC = input->ne[2]; // input_channels
const int OC = kernel->ne[3]; // ouptut_chanles
const int B = input->ne[3]; // n_batches
const int64_t total = B * OC * OH * OW;
conv_params params = { IW, IH, OW, OH, KW, KH, ST_X, ST_Y, PD_X, PD_Y, DL_X, DL_Y, IC, OC, B, total };
if (kernel->type == GGML_TYPE_F16) {
conv2d_cuda_f16(X_D, (half *) K_D, Y_D, params, st);
} else {
conv2d_cuda_f32(X_D, K_D, Y_D, params, st);
}
}

View File

@@ -0,0 +1,5 @@
#pragma once
#include "common.cuh"
#define CUDA_CONV2D_BLOCK_SIZE 256
void ggml_cuda_op_conv2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -38,6 +38,8 @@ template<typename dst_t, typename src_t>
return __float2bfloat16(float(x));
} else if constexpr(std::is_same_v<src_t, nv_bfloat16>) {
return __bfloat162float(x);
} else if constexpr(std::is_same_v<dst_t, int32_t>) {
return int32_t(x);
} else {
return float(x);
}

View File

@@ -374,6 +374,10 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
ggml_cpy_flt_cuda<nv_bfloat16, half> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F32) {
ggml_cpy_flt_cuda<nv_bfloat16, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_I32) {
ggml_cpy_flt_cuda<float, int32_t> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_F32) {
ggml_cpy_flt_cuda<int32_t, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else {
GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,
ggml_type_name(src0->type), ggml_type_name(src1->type));

View File

@@ -1,371 +0,0 @@
#include "common.cuh"
#include "fattn-common.cuh"
#include "fattn-tile-f16.cuh"
#define FATTN_KQ_STRIDE_TILE_F16 64
template<int D, int ncols, int nwarps, bool use_logit_softcap> // D == head size
#if !defined(GGML_USE_HIP)
__launch_bounds__(nwarps*WARP_SIZE, 2)
#endif // !defined(GGML_USE_HIP)
static __global__ void flash_attn_tile_ext_f16(
const char * __restrict__ Q,
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const char * __restrict__ sinks,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
const float scale,
const float max_bias,
const float m0,
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
const int32_t nb01, const int32_t nb02, const int32_t nb03,
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
const int32_t nb11, const int32_t nb12, const int64_t nb13,
const int32_t nb21, const int32_t nb22, const int64_t nb23,
const int32_t ne31, const int32_t ne32, const int32_t ne33,
const int32_t nb31, const int32_t nb32, const int64_t nb33) {
#if defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE)
// Skip unused kernel variants for faster compilation:
#ifdef FP16_MMA_AVAILABLE
NO_DEVICE_CODE;
return;
#endif // FP16_MMA_AVAILABLE
if (use_logit_softcap && !(D == 128 || D == 256)) {
NO_DEVICE_CODE;
return;
}
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
const int sequence = blockIdx.z / ne02;
const int head = blockIdx.z - sequence*ne02;
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
const float2 * Q_f2 = (const float2 *) (Q + nb03* sequence + nb02* head + nb01*ic0);
const half2 * K_h2 = (const half2 *) (K + nb13* sequence + nb12*(head / gqa_ratio));
const half2 * V_h2 = (const half2 *) (V + nb13* sequence + nb12*(head / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
const float * sinksf = (const float *) (sinks);
const int stride_KV2 = nb11 / sizeof(half2);
const float slopef = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
const half slopeh = __float2half(slopef);
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
__shared__ half KQ[ncols*FATTN_KQ_STRIDE_TILE_F16];
half2 * KQ2 = (half2 *) KQ;
__shared__ half2 KV_tmp[FATTN_KQ_STRIDE_TILE_F16][D/2 + 1]; // Pad D to avoid memory bank conflicts.
half kqmax[ncols/nwarps];
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
kqmax[j0/nwarps] = -HALF_MAX_HALF;
}
half2 kqsum[ncols/nwarps] = {{0.0f, 0.0f}};
half2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}};
// Convert Q to half2 and store in registers:
__shared__ half2 Q_h2[ncols][D/2];
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
const float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f);
Q_h2[j][i] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
}
}
__syncthreads();
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE_TILE_F16; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE_TILE_F16) {
// Calculate KQ tile and keep track of new maximum KQ values:
half kqmax_new[ncols/nwarps];
#pragma unroll
for (int j = 0; j < ncols/nwarps; ++j) {
kqmax_new[j] = kqmax[j];
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += nwarps) {
const int i_KQ = i_KQ_0 + threadIdx.y;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
const int k_KQ = k_KQ_0 + threadIdx.x;
KV_tmp[i_KQ][k_KQ] = K_h2[int64_t(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
}
}
__syncthreads();
half2 sum2[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE][ncols/nwarps] = {{{0.0f, 0.0f}}};
#pragma unroll
for (int k_KQ = 0; k_KQ < D/2; ++k_KQ) {
half2 K_k[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE];
half2 Q_k[ncols/nwarps];
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
const int i_KQ = i_KQ_0 + threadIdx.x;
K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ];
}
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
const int j_KQ = j_KQ_0 + threadIdx.y;
Q_k[j_KQ_0/nwarps] = Q_h2[j_KQ][k_KQ];
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE]*Q_k[j_KQ_0/nwarps];
}
}
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
const int i_KQ = i_KQ_0 + threadIdx.x;
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
const int j_KQ = j_KQ_0 + threadIdx.y;
half sum;
if (use_logit_softcap) {
const float2 tmp = __half22float2(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
sum = logit_softcap * tanhf(tmp.x + tmp.y);
} else {
sum = __low2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]) + __high2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
}
sum += mask ? slopeh*maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
kqmax_new[j_KQ_0/nwarps] = ggml_cuda_hmax(kqmax_new[j_KQ_0/nwarps], sum);
KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F16 + i_KQ] = sum;
}
}
__syncthreads();
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]);
const half2 KQ_max_scale = __half2half2(hexp(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]));
kqmax[j0/nwarps] = kqmax_new[j0/nwarps];
#pragma unroll
for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F16/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
const half2 diff = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] - __half2half2(kqmax[j0/nwarps]);
const half2 val = h2exp(diff);
kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + val;
KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] = val;
}
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
VKQ[j0/nwarps][i0/WARP_SIZE] *= KQ_max_scale;
}
}
__syncthreads();
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += nwarps) {
const int k = k0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
KV_tmp[k][i] = V_h2[int64_t(k_VKQ_0 + k)*stride_KV2 + i];
}
}
__syncthreads();
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += 2) {
half2 V_k[(D/2)/WARP_SIZE][2];
half2 KQ_k[ncols/nwarps];
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
V_k[i0/WARP_SIZE][0] = KV_tmp[k0 + 0][i];
V_k[i0/WARP_SIZE][1] = KV_tmp[k0 + 1][i];
}
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
KQ_k[j0/nwarps] = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + k0/2];
}
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][0]* __low2half2(KQ_k[j0/nwarps]);
VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][1]*__high2half2(KQ_k[j0/nwarps]);
}
}
}
__syncthreads();
}
//Attention sink: adjust running max and sum once per head
if (sinksf && blockIdx.y == 0) {
const half sink = __float2half(sinksf[head]);
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
half kqmax_new_j = fmaxf(kqmax[j0/nwarps], sink);
kqmax_new_j = warp_reduce_max(kqmax_new_j);
const half2 KQ_max_scale = __half2half2(hexp(kqmax[j0/nwarps] - kqmax_new_j));
kqmax[j0/nwarps] = kqmax_new_j;
const half val = hexp(sink - kqmax[j0/nwarps]);
kqsum[j0/nwarps] = kqsum[j0/nwarps] * KQ_max_scale;
if (threadIdx.x == 0) {
kqsum[j0/nwarps].x = __hadd(__low2half(kqsum[j0/nwarps]), val);
}
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
VKQ[j0/nwarps][i0/WARP_SIZE] *= KQ_max_scale;
}
}
}
float2 * dst2 = (float2 *) dst;
#pragma unroll
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
const int j_VKQ = j_VKQ_0 + threadIdx.y;
if (ic0 + j_VKQ >= ne01) {
return;
}
half kqsum_j = __low2half(kqsum[j_VKQ_0/nwarps]) + __high2half(kqsum[j_VKQ_0/nwarps]);
kqsum_j = warp_reduce_sum((float)kqsum_j);
const int j_dst_unrolled = ((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y;
#pragma unroll
for (int i00 = 0; i00 < D/2; i00 += WARP_SIZE) {
const int i0 = i00 + threadIdx.x;
half2 dst_val = VKQ[j_VKQ_0/nwarps][i0/WARP_SIZE];
if (gridDim.y == 1) {
dst_val /= __half2half2(kqsum_j);
}
dst2[j_dst_unrolled*(D/2) + i0] = __half22float2(dst_val);
}
if (gridDim.y != 1 && threadIdx.x == 0) {
dst_meta[j_dst_unrolled] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
}
}
#else
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
max_bias, m0, m1, n_head_log2, logit_softcap,
ne00, ne01, ne02, ne03,
nb01, nb02, nb03,
ne10, ne11, ne12, ne13,
nb11, nb12, nb13,
nb21, nb22, nb23,
ne31, ne32, ne33,
nb31, nb32, nb33);
NO_DEVICE_CODE;
#endif // defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE)
}
template <int cols_per_block, bool use_logit_softcap>
void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
switch (Q->ne[0]) {
case 64: {
constexpr int D = 64;
constexpr int nwarps = 8;
constexpr size_t nbytes_shared = 0;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, use_logit_softcap>;
launch_fattn<D, cols_per_block, 1>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F16, true, true, false);
} break;
case 128: {
constexpr int D = 128;
constexpr int nwarps = 8;
constexpr size_t nbytes_shared = 0;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, use_logit_softcap>;
launch_fattn<D, cols_per_block, 1>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F16, true, true, false);
} break;
default: {
GGML_ABORT("FlashAttention without tensor cores only supports head sizes 64 and 128.");
} break;
}
}
void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
const int32_t precision = KQV->op_params[3];
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
if (Q->ne[1] <= 16) {
constexpr int cols_per_block = 16;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_f16_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_f16_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
}
return;
}
constexpr int cols_per_block = 32;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_f16_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_f16_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
}
}

View File

@@ -1,3 +0,0 @@
#include "common.cuh"
void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -1,379 +0,0 @@
#include "common.cuh"
#include "fattn-common.cuh"
#include "fattn-tile-f32.cuh"
#define FATTN_KQ_STRIDE_TILE_F32 32
template<int D, int ncols, int nwarps, bool use_logit_softcap> // D == head size
#if !defined(GGML_USE_HIP)
__launch_bounds__(nwarps*WARP_SIZE, 2)
#endif // !defined(GGML_USE_HIP)
static __global__ void flash_attn_tile_ext_f32(
const char * __restrict__ Q,
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const char * __restrict__ sinks,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
const float scale,
const float max_bias,
const float m0,
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
const int32_t nb01, const int32_t nb02, const int32_t nb03,
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
const int32_t nb11, const int32_t nb12, const int64_t nb13,
const int32_t nb21, const int32_t nb22, const int64_t nb23,
const int32_t ne31, const int32_t ne32, const int32_t ne33,
const int32_t nb31, const int32_t nb32, const int64_t nb33) {
#ifdef FLASH_ATTN_AVAILABLE
// Skip unused kernel variants for faster compilation:
#ifdef FP16_MMA_AVAILABLE
NO_DEVICE_CODE;
return;
#endif // FP16_MMA_AVAILABLE
if (use_logit_softcap && !(D == 128 || D == 256)) {
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
max_bias, m0, m1, n_head_log2, logit_softcap,
ne00, ne01, ne02, ne03,
nb01, nb02, nb03,
ne10, ne11, ne12, ne13,
nb11, nb12, nb13,
nb21, nb22, nb23,
ne31, ne32, ne33,
nb31, nb32, nb33);
NO_DEVICE_CODE;
return;
}
// In this kernel Q, K, V are matrices while i, j, k are matrix indices.
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
const int sequence = blockIdx.z / ne02;
const int head = blockIdx.z - sequence*ne02;
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
const float2 * Q_f2 = (const float2 *) (Q + nb03* sequence + nb02* head + nb01*ic0);
const half2 * K_h2 = (const half2 *) (K + nb13* sequence + nb12*(head / gqa_ratio));
const half2 * V_h2 = (const half2 *) (V + nb13* sequence + nb12*(head / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
const float * sinksf = (const float *) (sinks);
const int stride_KV2 = nb11 / sizeof(half2);
const float slope = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
__shared__ float KQ[ncols*FATTN_KQ_STRIDE_TILE_F32];
__shared__ float KV_tmp[FATTN_KQ_STRIDE_TILE_F32][D + 1]; // Pad D to avoid memory bank conflicts.
float2 * KV_tmp2 = (float2 *) KV_tmp;
float kqmax[ncols/nwarps];
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
kqmax[j0/nwarps] = -FLT_MAX/2.0f;
}
float kqsum[ncols/nwarps] = {0.0f};
float2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}};
// Convert Q to half2 and store in registers:
__shared__ float Q_f[ncols][D];
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D; i0 += 2*WARP_SIZE) {
float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i0/2 + threadIdx.x] : make_float2(0.0f, 0.0f);
Q_f[j][i0 + 0*WARP_SIZE + threadIdx.x] = tmp.x * scale;
Q_f[j][i0 + 1*WARP_SIZE + threadIdx.x] = tmp.y * scale;
}
}
__syncthreads();
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE_TILE_F32; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE_TILE_F32) {
// Calculate KQ tile and keep track of new maximum KQ values:
float kqmax_new[ncols/nwarps];
#pragma unroll
for (int j = 0; j < ncols/nwarps; ++j) {
kqmax_new[j] = kqmax[j];
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += nwarps) {
const int i_KQ = i_KQ_0 + threadIdx.y;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 2*WARP_SIZE) {
const half2 tmp = K_h2[int64_t(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ_0/2 + threadIdx.x];
KV_tmp[i_KQ][k_KQ_0 + 0*WARP_SIZE + threadIdx.x] = __low2float(tmp);
KV_tmp[i_KQ][k_KQ_0 + 1*WARP_SIZE + threadIdx.x] = __high2float(tmp);
}
}
__syncthreads();
float sum[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE][ncols/nwarps] = {{0.0f}};
#pragma unroll
for (int k_KQ = 0; k_KQ < D; ++k_KQ) {
float K_k[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE];
float Q_k[ncols/nwarps];
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
const int i_KQ = i_KQ_0 + threadIdx.x;
K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ];
}
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
const int j_KQ = j_KQ_0 + threadIdx.y;
Q_k[j_KQ_0/nwarps] = Q_f[j_KQ][k_KQ];
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE] * Q_k[j_KQ_0/nwarps];
}
}
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
const int i_KQ = i_KQ_0 + threadIdx.x;
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
const int j_KQ = j_KQ_0 + threadIdx.y;
if (use_logit_softcap) {
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] = logit_softcap * tanhf(sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
}
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += mask ? slope*__half2float(maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
kqmax_new[j_KQ_0/nwarps] = fmaxf(kqmax_new[j_KQ_0/nwarps], sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F32 + i_KQ] = sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps];
}
}
__syncthreads();
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]);
const float KQ_max_scale = expf(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]);
kqmax[j0/nwarps] = kqmax_new[j0/nwarps];
float kqsum_add = 0.0f;
#pragma unroll
for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F32; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
const float diff = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] - kqmax[j0/nwarps];
const float val = expf(diff);
kqsum_add += val;
KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] = val;
}
kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + kqsum_add;
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
VKQ[j0/nwarps][i0/WARP_SIZE].x *= KQ_max_scale;
VKQ[j0/nwarps][i0/WARP_SIZE].y *= KQ_max_scale;
}
}
__syncthreads();
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F32; k0 += nwarps) {
const int k = k0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
const half2 tmp = V_h2[int64_t(k_VKQ_0 + k)*stride_KV2 + i];
KV_tmp2[k*(D/2) + i].x = __low2float(tmp);
KV_tmp2[k*(D/2) + i].y = __high2float(tmp);
}
}
__syncthreads();
#pragma unroll
for (int k = 0; k < FATTN_KQ_STRIDE_TILE_F32; ++k) {
float2 V_k[(D/2)/WARP_SIZE];
float KQ_k[ncols/nwarps];
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
V_k[i0/WARP_SIZE] = KV_tmp2[k*(D/2) + i];
}
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
KQ_k[j0/nwarps] = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + k];
}
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
VKQ[j0/nwarps][i0/WARP_SIZE].x += V_k[i0/WARP_SIZE].x*KQ_k[j0/nwarps];
VKQ[j0/nwarps][i0/WARP_SIZE].y += V_k[i0/WARP_SIZE].y*KQ_k[j0/nwarps];
}
}
}
__syncthreads();
}
//Attention sink: adjust running max and sum once per head
if (sinksf && blockIdx.y == 0) {
const float sink = sinksf[head];
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
float kqmax_new_j = fmaxf(kqmax[j0/nwarps], sink);
kqmax_new_j = warp_reduce_max(kqmax_new_j);
const float KQ_max_scale = expf(kqmax[j0/nwarps] - kqmax_new_j);
kqmax[j0/nwarps] = kqmax_new_j;
const float val = expf(sink - kqmax[j0/nwarps]);
kqsum[j0/nwarps] = kqsum[j0/nwarps] * KQ_max_scale;
if (threadIdx.x == 0) {
kqsum[j0/nwarps] += val;
}
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
VKQ[j0/nwarps][i0/WARP_SIZE].x *= KQ_max_scale;
VKQ[j0/nwarps][i0/WARP_SIZE].y *= KQ_max_scale;
}
}
}
float2 * dst2 = (float2 *) dst;
#pragma unroll
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
const int j_VKQ = j_VKQ_0 + threadIdx.y;
if (ic0 + j_VKQ >= ne01) {
return;
}
float kqsum_j = kqsum[j_VKQ_0/nwarps];
kqsum_j = warp_reduce_sum(kqsum_j);
const int j_dst_unrolled = ((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y;
#pragma unroll
for (int i00 = 0; i00 < D/2; i00 += WARP_SIZE) {
const int i0 = i00 + threadIdx.x;
float2 dst_val = VKQ[j_VKQ_0/nwarps][i0/WARP_SIZE];
if (gridDim.y == 1) {
dst_val.x /= kqsum_j;
dst_val.y /= kqsum_j;
}
dst2[j_dst_unrolled*(D/2) + i0] = dst_val;
}
if (gridDim.y != 1 && threadIdx.x == 0) {
dst_meta[j_dst_unrolled] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
}
}
#else
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
max_bias, m0, m1, n_head_log2, logit_softcap,
ne00, ne01, ne02, ne03,
nb01, nb02, nb03,
ne10, ne11, ne12, ne13,
nb11, nb12, nb13,
nb21, nb22, nb23,
ne31, ne32, ne33,
nb31, nb32, nb33);
NO_DEVICE_CODE;
#endif // FLASH_ATTN_AVAILABLE
}
template <int cols_per_block, bool use_logit_softcap>
void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
switch (Q->ne[0]) {
case 64: {
constexpr int D = 64;
constexpr int nwarps = 8;
constexpr size_t nbytes_shared = 0;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, use_logit_softcap>;
launch_fattn<D, cols_per_block, 1>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F32, true, true, false);
} break;
case 128: {
constexpr int D = 128;
constexpr int nwarps = 8;
constexpr size_t nbytes_shared = 0;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, use_logit_softcap>;
launch_fattn<D, cols_per_block, 1>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F32, true, true, false);
} break;
default: {
GGML_ABORT("FlashAttention without tensor cores only supports head sizes 64 and 128.");
} break;
}
}
void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
if (Q->ne[1] <= 16) {
constexpr int cols_per_block = 16;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_f32_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_f32_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
}
return;
}
constexpr int cols_per_block = 32;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_f32_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_f32_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
}
}

View File

@@ -1,3 +0,0 @@
#include "common.cuh"
void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -0,0 +1,660 @@
#include "common.cuh"
#include "fattn-common.cuh"
#include "fattn-tile.cuh"
#define FATTN_TILE_NTHREADS 256
static int fattn_tile_get_kq_stride_host(const int D, const int ncols, const int cc, const int warp_size) {
if (GGML_CUDA_CC_IS_AMD(cc)) {
switch (D) {
case 64:
return 64;
case 128:
case 256:
if (GGML_CUDA_CC_IS_GCN(cc) || GGML_CUDA_CC_IS_CDNA(cc)) {
return ncols <= 16 ? 64 : 32;
} else {
return 64;
}
default:
GGML_ABORT("fatal error");
return -1;
}
}
if (fast_fp16_available(cc)) {
switch (D) {
case 64:
case 128:
return 128;
case 256:
return ncols <= 16 ? 128 : 64;
default:
GGML_ABORT("fatal error");
return -1;
}
}
switch (D) {
case 64:
return ncols <= 16 ? 128 : 64;
case 128:
return ncols <= 16 ? 64 : 32;
case 256:
return 32;
default:
GGML_ABORT("fatal error");
return -1;
}
GGML_UNUSED(warp_size);
}
static constexpr __device__ int fattn_tile_get_kq_stride_device(int D, int ncols, int warp_size) {
#ifdef GGML_USE_HIP
switch (D) {
case 64:
return 64;
case 128:
#if defined(GCN) || defined(CDNA)
return ncols <= 16 ? 64 : 32;
#else
return 64;
#endif // defined(GCN) || defined(CDNA)
case 256:
#if defined(GCN) || defined(CDNA)
return ncols <= 16 ? 64 : 32;
#else
return 64;
#endif // defined(GCN) || defined(CDNA)
default:
return -1;
}
#else
#ifdef FAST_FP16_AVAILABLE
switch (D) {
case 64:
case 128:
return 128;
case 256:
return ncols <= 16 ? 128 : 64;
default:
return -1;
}
#else
switch (D) {
case 64:
return ncols <= 16 ? 128 : 64;
case 128:
return ncols <= 16 ? 64 : 32;
case 256:
return 32;
default:
return -1;
}
#endif // FAST_FP16_AVAILABLE
#endif // GGML_USE_HIP
GGML_UNUSED_VARS(ncols, warp_size);
}
static constexpr __device__ int fattn_tile_get_kq_nbatch_device(int D, int ncols, int warp_size) {
#ifdef GGML_USE_HIP
switch (D) {
case 64:
return 64;
case 128:
#if defined(GCN) || defined(CDNA)
return ncols <= 16 ? 64 : 128;
#else
return 64;
#endif // defined(GCN) || defined(CDNA)
case 256:
#if defined(GCN) || defined(CDNA)
return ncols <= 16 ? 64 : 128;
#else
return ncols <= 16 ? 64 : 256;
#endif // defined(GCN) || defined(CDNA)
default:
return -1;
}
#else
#ifdef FAST_FP16_AVAILABLE
switch (D) {
case 64:
return 64;
case 128:
return ncols <= 16 ? 128 : 64;
case 256:
return ncols <= 16 ? 64 : 128;
default:
return -1;
}
#else
switch (D) {
case 64:
return 64;
case 128:
return 128;
case 256:
return ncols <= 16 ? 128 : 64;
default:
return -1;
}
#endif // FAST_FP16_AVAILABLE
#endif // GGML_USE_HIP
GGML_UNUSED_VARS(ncols, warp_size);
}
template<int D, int ncols, bool use_logit_softcap> // D == head size
#ifdef GGML_USE_HIP
__launch_bounds__(FATTN_TILE_NTHREADS, 1)
#else
__launch_bounds__(FATTN_TILE_NTHREADS, 2)
#endif // GGML_USE_HIP
static __global__ void flash_attn_tile(
const char * __restrict__ Q,
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const char * __restrict__ sinks,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
const float scale,
const float max_bias,
const float m0,
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
const int32_t nb01, const int32_t nb02, const int32_t nb03,
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
const int32_t nb11, const int32_t nb12, const int64_t nb13,
const int32_t nb21, const int32_t nb22, const int64_t nb23,
const int32_t ne31, const int32_t ne32, const int32_t ne33,
const int32_t nb31, const int32_t nb32, const int64_t nb33) {
#ifdef FLASH_ATTN_AVAILABLE
// Skip unused kernel variants for faster compilation:
#ifdef FP16_MMA_AVAILABLE
NO_DEVICE_CODE;
return;
#endif // FP16_MMA_AVAILABLE
if (use_logit_softcap && !(D == 128 || D == 256)) {
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
max_bias, m0, m1, n_head_log2, logit_softcap,
ne00, ne01, ne02, ne03,
nb01, nb02, nb03,
ne10, ne11, ne12, ne13,
nb11, nb12, nb13,
nb21, nb22, nb23,
ne31, ne32, ne33,
nb31, nb32, nb33);
NO_DEVICE_CODE;
return;
}
constexpr int warp_size = 32;
constexpr int nwarps = FATTN_TILE_NTHREADS / warp_size;
constexpr int kq_stride = fattn_tile_get_kq_stride_device(D, ncols, warp_size);
static_assert(kq_stride % warp_size == 0, "kq_stride not divisable by warp_size.");
constexpr int kq_nbatch = fattn_tile_get_kq_nbatch_device(D, ncols, warp_size);
static_assert(kq_nbatch % (2*warp_size) == 0, "bad kq_nbatch");
// In this kernel Q, K, V are matrices while i, j, k are matrix indices.
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
const int sequence = blockIdx.z / ne02;
const int head = blockIdx.z - sequence*ne02;
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
const float2 * Q_f2 = (const float2 *) (Q + nb03* sequence + nb02* head + nb01*ic0);
const half2 * K_h2 = (const half2 *) (K + nb13* sequence + nb12*(head / gqa_ratio));
const half2 * V_h2 = (const half2 *) (V + nb13* sequence + nb12*(head / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
const float * sinksf = (const float *) (sinks);
const int stride_KV2 = nb11 / sizeof(half2);
const float slope = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
#if defined(GGML_USE_HIP)
constexpr int cpy_nb = 16;
#else
constexpr int cpy_nb = 8;
#endif // defined(GGML_USE_HIP) && defined(GCN)
constexpr int cpy_ne = cpy_nb / 4;
__shared__ float KQ[ncols][kq_stride];
#ifdef FAST_FP16_AVAILABLE
__shared__ half2 Q_tmp[ncols][D/2];
__shared__ half2 KV_tmp_h2[kq_stride * (kq_nbatch/2 + cpy_ne)]; // Padded to avoid memory bank conflicts.
half2 VKQ[ncols/nwarps][D/(2*warp_size)] = {{{0.0f, 0.0f}}};
#else
__shared__ float Q_tmp[ncols][D];
__shared__ float KV_tmp_f[kq_stride * (kq_nbatch + cpy_ne)]; // Padded to avoid memory bank conflicts.
float2 * KV_tmp_f2 = (float2 *) KV_tmp_f;
float2 VKQ[ncols/nwarps][D/(2*warp_size)] = {{{0.0f, 0.0f}}};
#endif // FAST_FP16_AVAILABLE
float kqmax[ncols/nwarps];
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
kqmax[j0/nwarps] = -FLT_MAX/2.0f;
}
float kqsum[ncols/nwarps] = {0.0f};
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
const float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i0 + threadIdx.x] : make_float2(0.0f, 0.0f);
#ifdef FAST_FP16_AVAILABLE
Q_tmp[j][i0 + threadIdx.x] = make_half2(tmp.x * scale, tmp.y * scale);
#else
Q_tmp[j][2*i0 + threadIdx.x] = tmp.x * scale;
Q_tmp[j][2*i0 + warp_size + threadIdx.x] = tmp.y * scale;
#endif // FAST_FP16_AVAILABLE
}
}
__syncthreads();
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
for (int k_VKQ_0 = blockIdx.y*kq_stride; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*kq_stride) {
// Calculate KQ tile and keep track of new maximum KQ values:
float kqmax_new[ncols/nwarps];
#pragma unroll
for (int j = 0; j < ncols/nwarps; ++j) {
kqmax_new[j] = kqmax[j];
}
float sum[kq_stride/warp_size][ncols/nwarps] = {{0.0f}};
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += kq_nbatch) {
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < kq_stride; i_KQ_0 += nwarps) {
const int i_KQ = i_KQ_0 + threadIdx.y;
#pragma unroll
for (int k_KQ_1 = 0; k_KQ_1 < kq_nbatch/2; k_KQ_1 += warp_size) {
const half2 tmp_h2 = K_h2[int64_t(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ_0/2 + k_KQ_1 + threadIdx.x];
#ifdef FAST_FP16_AVAILABLE
KV_tmp_h2[i_KQ*(kq_nbatch/2 + cpy_ne) + k_KQ_1 + threadIdx.x] = tmp_h2;
#else
const float2 tmp_f2 = __half22float2(tmp_h2);
KV_tmp_f[i_KQ*(kq_nbatch + cpy_ne) + 2*k_KQ_1 + threadIdx.x] = tmp_f2.x;
KV_tmp_f[i_KQ*(kq_nbatch + cpy_ne) + 2*k_KQ_1 + warp_size + threadIdx.x] = tmp_f2.y;
#endif // FAST_FP16_AVAILABLE
}
}
__syncthreads();
#ifdef FAST_FP16_AVAILABLE
#pragma unroll
for (int k_KQ_1 = 0; k_KQ_1 < kq_nbatch/2; k_KQ_1 += cpy_ne) {
half2 K_k[kq_stride/warp_size][cpy_ne];
half2 Q_k[ncols/nwarps][cpy_ne];
#else
#pragma unroll
for (int k_KQ_1 = 0; k_KQ_1 < kq_nbatch; k_KQ_1 += cpy_ne) {
float K_k[kq_stride/warp_size][cpy_ne];
float Q_k[ncols/nwarps][cpy_ne];
#endif // FAST_FP16_AVAILABLE
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < kq_stride; i_KQ_0 += warp_size) {
const int i_KQ = i_KQ_0 + threadIdx.x;
#ifdef FAST_FP16_AVAILABLE
ggml_cuda_memcpy_1<cpy_nb>(&K_k[i_KQ_0/warp_size], &KV_tmp_h2[i_KQ*(kq_nbatch/2 + cpy_ne) + k_KQ_1]);
#else
ggml_cuda_memcpy_1<cpy_nb>(&K_k[i_KQ_0/warp_size], &KV_tmp_f [i_KQ*(kq_nbatch + cpy_ne) + k_KQ_1]);
#endif // FAST_FP16_AVAILABLE
}
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
const int j_KQ = j_KQ_0 + threadIdx.y;
#ifdef FAST_FP16_AVAILABLE
ggml_cuda_memcpy_1<cpy_nb>(&Q_k[j_KQ_0/nwarps], &Q_tmp[j_KQ][k_KQ_0/2 + k_KQ_1]);
#else
ggml_cuda_memcpy_1<cpy_nb>(&Q_k[j_KQ_0/nwarps], &Q_tmp[j_KQ][k_KQ_0 + k_KQ_1]);
#endif // FAST_FP16_AVAILABLE
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < kq_stride; i_KQ_0 += warp_size) {
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
#pragma unroll
for (int k = 0; k < cpy_ne; ++k) {
ggml_cuda_mad(sum[i_KQ_0/warp_size][j_KQ_0/nwarps], K_k[i_KQ_0/warp_size][k], Q_k[j_KQ_0/nwarps][k]);
}
}
}
}
if (k_KQ_0 + kq_nbatch < D) {
__syncthreads(); // Sync not needed on last iteration.
}
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < kq_stride; i_KQ_0 += warp_size) {
const int i_KQ = i_KQ_0 + threadIdx.x;
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
const int j_KQ = j_KQ_0 + threadIdx.y;
if (use_logit_softcap) {
sum[i_KQ_0/warp_size][j_KQ_0/nwarps] = logit_softcap * tanhf(sum[i_KQ_0/warp_size][j_KQ_0/nwarps]);
}
sum[i_KQ_0/warp_size][j_KQ_0/nwarps] += mask ? slope*__half2float(maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
kqmax_new[j_KQ_0/nwarps] = fmaxf(kqmax_new[j_KQ_0/nwarps], sum[i_KQ_0/warp_size][j_KQ_0/nwarps]);
KQ[j_KQ][i_KQ] = sum[i_KQ_0/warp_size][j_KQ_0/nwarps];
}
}
__syncthreads();
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
kqmax_new[j0/nwarps] = warp_reduce_max<warp_size>(kqmax_new[j0/nwarps]);
const float KQ_max_scale = expf(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]);
kqmax[j0/nwarps] = kqmax_new[j0/nwarps];
float kqsum_add = 0.0f;
if (kq_stride % (4*warp_size) == 0 && cpy_ne % 4 == 0) {
#pragma unroll
for (int i0 = 0; i0 < kq_stride; i0 += 4*warp_size) {
const int i = i0 + 4*threadIdx.x;
float4 val = *(const float4 *) &KQ[j][i];
val.x = expf(val.x - kqmax[j0/nwarps]);
val.y = expf(val.y - kqmax[j0/nwarps]);
val.z = expf(val.z - kqmax[j0/nwarps]);
val.w = expf(val.w - kqmax[j0/nwarps]);
kqsum_add += val.x + val.y + val.z + val.w;
#ifdef FAST_FP16_AVAILABLE
const half2 tmp[2] = {make_half2(val.x, val.y), make_half2(val.z, val.w)};
ggml_cuda_memcpy_1<sizeof(tmp)>(&KQ[j][i/2], &tmp);
#else
ggml_cuda_memcpy_1<sizeof(val)>(&KQ[j][i], &val);
#endif // FAST_FP16_AVAILABLE
}
} else if (kq_stride % (2*warp_size) == 0 && cpy_ne % 2 == 0) {
#pragma unroll
for (int i0 = 0; i0 < kq_stride; i0 += 2*warp_size) {
const int i = i0 + 2*threadIdx.x;
float2 val = *(const float2 *) &KQ[j][i];
val.x = expf(val.x - kqmax[j0/nwarps]);
val.y = expf(val.y - kqmax[j0/nwarps]);
kqsum_add += val.x + val.y;
#ifdef FAST_FP16_AVAILABLE
const half2 tmp = make_half2(val.x, val.y);
ggml_cuda_memcpy_1<sizeof(tmp)>(&KQ[j][i/2], &tmp);
#else
ggml_cuda_memcpy_1<sizeof(val)>(&KQ[j][i], &val);
#endif // FAST_FP16_AVAILABLE
}
} else {
for (int i0 = 0; i0 < kq_stride; i0 += warp_size) {
const int i = i0 + threadIdx.x;
const float diff = KQ[j][i] - kqmax[j0/nwarps];
const float val = expf(diff);
kqsum_add += val;
#ifdef FAST_FP16_AVAILABLE
((half *) KQ[j])[i] = val;
#else
KQ[j][i] = val;
#endif // FAST_FP16_AVAILABLE
}
}
kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + kqsum_add;
#ifdef FAST_FP16_AVAILABLE
const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale, KQ_max_scale);
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
VKQ[j0/nwarps][i0/warp_size] *= KQ_max_scale_h2;
}
#else
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
VKQ[j0/nwarps][i0/warp_size].x *= KQ_max_scale;
VKQ[j0/nwarps][i0/warp_size].y *= KQ_max_scale;
}
#endif // FAST_FP16_AVAILABLE
}
constexpr int V_cols_per_iter = kq_stride*kq_nbatch / D;
static_assert(kq_stride % V_cols_per_iter == 0, "bad V_cols_per_iter");
#pragma unroll
for (int k0 = 0; k0 < kq_stride; k0 += V_cols_per_iter) {
#pragma unroll
for (int k1 = 0; k1 < V_cols_per_iter; k1 += nwarps) {
const int k_tile = k1 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
const int i = i0 + threadIdx.x;
const half2 tmp = V_h2[int64_t(k_VKQ_0 + k0 + k_tile)*stride_KV2 + i];
#ifdef FAST_FP16_AVAILABLE
KV_tmp_h2[k_tile*(D/2) + i] = tmp;
#else
KV_tmp_f2[k_tile*(D/2) + i] = __half22float2(tmp);
#endif // FAST_FP16_AVAILABLE
}
}
__syncthreads();
#pragma unroll
for (int k1 = 0; k1 < V_cols_per_iter; ++k1) {
#ifdef FAST_FP16_AVAILABLE
half2 V_k[(D/2)/warp_size];
half2 KQ_k[ncols/nwarps];
#else
float2 V_k[(D/2)/warp_size];
float KQ_k[ncols/nwarps];
#endif // FAST_FP16_AVAILABLE
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
const int i = i0 + threadIdx.x;
#ifdef FAST_FP16_AVAILABLE
V_k[i0/warp_size] = KV_tmp_h2[k1*(D/2) + i];
#else
V_k[i0/warp_size] = KV_tmp_f2[k1*(D/2) + i];
#endif // FAST_FP16_AVAILABLE
}
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#ifdef FAST_FP16_AVAILABLE
KQ_k[j0/nwarps] = __half2half2(((const half *)KQ[j])[k0 + k1]);
#else
KQ_k[j0/nwarps] = KQ[j][k0 + k1];
#endif // FAST_FP16_AVAILABLE
}
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
#ifdef FAST_FP16_AVAILABLE
VKQ[j0/nwarps][i0/warp_size] += V_k[i0/warp_size] *KQ_k[j0/nwarps];
#else
VKQ[j0/nwarps][i0/warp_size].x += V_k[i0/warp_size].x*KQ_k[j0/nwarps];
VKQ[j0/nwarps][i0/warp_size].y += V_k[i0/warp_size].y*KQ_k[j0/nwarps];
#endif // FAST_FP16_AVAILABLE
}
}
}
__syncthreads();
}
}
// Attention sink: adjust running max and sum once per head
if (sinksf && blockIdx.y == 0) {
const float sink = sinksf[head];
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
float kqmax_new_j = fmaxf(kqmax[j0/nwarps], sink);
kqmax_new_j = warp_reduce_max<warp_size>(kqmax_new_j);
const float KQ_max_scale = expf(kqmax[j0/nwarps] - kqmax_new_j);
kqmax[j0/nwarps] = kqmax_new_j;
const float val = expf(sink - kqmax[j0/nwarps]);
kqsum[j0/nwarps] = kqsum[j0/nwarps] * KQ_max_scale;
if (threadIdx.x == 0) {
kqsum[j0/nwarps] += val;
}
#ifdef FAST_FP16_AVAILABLE
const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale, KQ_max_scale);
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
VKQ[j0/nwarps][i0/warp_size] *= KQ_max_scale_h2;
}
#else
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
VKQ[j0/nwarps][i0/warp_size].x *= KQ_max_scale;
VKQ[j0/nwarps][i0/warp_size].y *= KQ_max_scale;
}
#endif // FAST_FP16_AVAILABLE
}
}
float2 * dst2 = (float2 *) dst;
#pragma unroll
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
const int j_VKQ = j_VKQ_0 + threadIdx.y;
if (ic0 + j_VKQ >= ne01) {
return;
}
float kqsum_j = kqsum[j_VKQ_0/nwarps];
kqsum_j = warp_reduce_sum<warp_size>(kqsum_j);
const int j_dst_unrolled = ((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y;
#pragma unroll
for (int i00 = 0; i00 < D/2; i00 += warp_size) {
const int i0 = i00 + threadIdx.x;
#ifdef FAST_FP16_AVAILABLE
float2 dst_val = __half22float2(VKQ[j_VKQ_0/nwarps][i0/warp_size]);
#else
float2 dst_val = VKQ[j_VKQ_0/nwarps][i0/warp_size];
#endif // FAST_FP16_AVAILABLE
if (gridDim.y == 1) {
dst_val.x /= kqsum_j;
dst_val.y /= kqsum_j;
}
dst2[j_dst_unrolled*(D/2) + i0] = dst_val;
}
if (gridDim.y != 1 && threadIdx.x == 0) {
dst_meta[j_dst_unrolled] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
}
}
#else
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
max_bias, m0, m1, n_head_log2, logit_softcap,
ne00, ne01, ne02, ne03,
nb01, nb02, nb03,
ne10, ne11, ne12, ne13,
nb11, nb12, nb13,
nb21, nb22, nb23,
ne31, ne32, ne33,
nb31, nb32, nb33);
NO_DEVICE_CODE;
#endif // FLASH_ATTN_AVAILABLE
}
template <int D, bool use_logit_softcap>
static void launch_fattn_tile_switch_ncols(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
const int id = ggml_cuda_get_device();
const int cc = ggml_cuda_info().devices[id].cc;
const int warp_size = 32;
const int nwarps = FATTN_TILE_NTHREADS / warp_size;
constexpr size_t nbytes_shared = 0;
if (Q->ne[1] > 16) {
constexpr int cols_per_block = 32;
fattn_kernel_t fattn_kernel = flash_attn_tile<D, cols_per_block, use_logit_softcap>;
const int kq_stride = fattn_tile_get_kq_stride_host(D, cols_per_block, cc, warp_size);
launch_fattn<D, cols_per_block, 1>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, kq_stride, true, true, false, warp_size);
return;
}
constexpr int cols_per_block = 16;
fattn_kernel_t fattn_kernel = flash_attn_tile<D, cols_per_block, use_logit_softcap>;
const int kq_stride = fattn_tile_get_kq_stride_host(D, cols_per_block, cc, warp_size);
launch_fattn<D, cols_per_block, 1>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, kq_stride, true, true, false, warp_size);
}
template <bool use_logit_softcap>
static void launch_fattn_tile_switch_head_size(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
switch (Q->ne[0]) {
case 64: {
launch_fattn_tile_switch_ncols< 64, use_logit_softcap>(ctx, dst);
} break;
case 128: {
launch_fattn_tile_switch_ncols<128, use_logit_softcap>(ctx, dst);
} break;
case 256: {
launch_fattn_tile_switch_ncols<256, use_logit_softcap>(ctx, dst);
} break;
default: {
GGML_ABORT("Unsupported head size");
} break;
}
}
void ggml_cuda_flash_attn_ext_tile(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_switch_head_size<use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_switch_head_size<use_logit_softcap>(ctx, dst);
}
}

View File

@@ -0,0 +1,3 @@
#include "common.cuh"
void ggml_cuda_flash_attn_ext_tile(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -1,8 +1,7 @@
#include "common.cuh"
#include "fattn-common.cuh"
#include "fattn-mma-f16.cuh"
#include "fattn-tile-f16.cuh"
#include "fattn-tile-f32.cuh"
#include "fattn-tile.cuh"
#include "fattn-vec-f16.cuh"
#include "fattn-vec-f32.cuh"
#include "fattn-wmma-f16.cuh"
@@ -271,8 +270,7 @@ static void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, gg
// Best FlashAttention kernel for a specific GPU:
enum best_fattn_kernel {
BEST_FATTN_KERNEL_NONE = 0,
BEST_FATTN_KERNEL_TILE_F32 = 200,
BEST_FATTN_KERNEL_TILE_F16 = 210,
BEST_FATTN_KERNEL_TILE = 200,
BEST_FATTN_KERNEL_VEC_F32 = 100,
BEST_FATTN_KERNEL_VEC_F16 = 110,
BEST_FATTN_KERNEL_WMMA_F16 = 300,
@@ -411,10 +409,7 @@ static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const
}
// If there is no suitable kernel for tensor cores or small batch sizes, use the generic kernel for large batch sizes:
if (prec == GGML_PREC_DEFAULT && fast_fp16_available(cc)) {
return BEST_FATTN_KERNEL_TILE_F16;
}
return BEST_FATTN_KERNEL_TILE_F32;
return BEST_FATTN_KERNEL_TILE;
}
void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
@@ -422,11 +417,8 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
switch (ggml_cuda_get_best_fattn_kernel(ggml_cuda_get_device(), dst)) {
case BEST_FATTN_KERNEL_NONE:
GGML_ABORT("fatal error");
case BEST_FATTN_KERNEL_TILE_F32:
ggml_cuda_flash_attn_ext_tile_f32(ctx, dst);
break;
case BEST_FATTN_KERNEL_TILE_F16:
ggml_cuda_flash_attn_ext_tile_f16(ctx, dst);
case BEST_FATTN_KERNEL_TILE:
ggml_cuda_flash_attn_ext_tile(ctx, dst);
break;
case BEST_FATTN_KERNEL_VEC_F32:
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);

View File

@@ -6,64 +6,66 @@ template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
static __global__ void k_get_rows(
const void * __restrict__ src0, const int32_t * __restrict__ src1, dst_t * __restrict__ dst,
const int64_t ne00, /*const int64_t ne01, const int64_t ne02, const int64_t ne03,*/
/*const int64_t ne10, const int64_t ne11,*/ const int64_t ne12, /*const int64_t ne13,*/
/*const int64_t ne10,*/ const int64_t ne11, const int64_t ne12, /*const int64_t ne13,*/
/*const size_t s0,*/ const size_t s1, const size_t s2, const size_t s3,
/*const size_t nb00,*/ const size_t nb01, const size_t nb02, const size_t nb03,
const size_t s10, const size_t s11, const size_t s12/*, const size_t s13*/) {
// The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher.
const int i00 = (blockIdx.y * blockDim.x + threadIdx.x)*2;
const int i10 = blockIdx.x;
const int i11 = blockIdx.z / ne12;
const int i12 = blockIdx.z % ne12;
for (int64_t z = blockIdx.z; z < ne11*ne12; z += gridDim.z) {
for (int64_t i00 = 2*(blockIdx.y*blockDim.x + threadIdx.x); i00 < ne00; i00 += gridDim.y*blockDim.x) {
// The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher.
const int i10 = blockIdx.x;
const int i11 = z / ne12; // TODO fastdiv
const int i12 = z % ne12;
if (i00 >= ne00) {
return;
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
const void * src0_row = (const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03;
const int ib = i00/qk; // block index
const int iqs = (i00%qk)/qr; // quant index
const int iybs = i00 - i00%qk; // dst block start index
const int y_offset = qr == 1 ? 1 : qk/2;
// dequantize
float2 v;
dequantize_kernel(src0_row, ib, iqs, v);
dst_row[iybs + iqs + 0] = ggml_cuda_cast<dst_t>(v.x);
dst_row[iybs + iqs + y_offset] = ggml_cuda_cast<dst_t>(v.y);
}
}
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
const void * src0_row = (const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03;
const int ib = i00/qk; // block index
const int iqs = (i00%qk)/qr; // quant index
const int iybs = i00 - i00%qk; // dst block start index
const int y_offset = qr == 1 ? 1 : qk/2;
// dequantize
float2 v;
dequantize_kernel(src0_row, ib, iqs, v);
dst_row[iybs + iqs + 0] = ggml_cuda_cast<dst_t>(v.x);
dst_row[iybs + iqs + y_offset] = ggml_cuda_cast<dst_t>(v.y);
}
template<typename src0_t, typename dst_t>
static __global__ void k_get_rows_float(
const src0_t * __restrict__ src0, const int32_t * __restrict__ src1, dst_t * __restrict__ dst,
const int64_t ne00, /*const int64_t ne01, const int64_t ne02, const int64_t ne03,*/
/*const int64_t ne10, const int64_t ne11,*/ const int64_t ne12, /*const int64_t ne13,*/
/*const int64_t ne10,*/ const int64_t ne11, const int64_t ne12, /*const int64_t ne13,*/
/*const size_t s0,*/ const size_t s1, const size_t s2, const size_t s3,
/*const size_t nb00,*/ const size_t nb01, const size_t nb02, const size_t nb03,
const size_t s10, const size_t s11, const size_t s12/*, const size_t s13*/) {
// The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher.
const int i00 = blockIdx.y * blockDim.x + threadIdx.x;
const int i10 = blockIdx.x;
const int i11 = blockIdx.z / ne12;
const int i12 = blockIdx.z % ne12;
for (int64_t z = blockIdx.z; z < ne11*ne12; z += gridDim.z) {
for (int64_t i00 = blockIdx.y*blockDim.x + threadIdx.x; i00 < ne00; i00 += gridDim.y*blockDim.x) {
// The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher.
const int i10 = blockIdx.x;
const int i11 = z / ne12; // TODO fastdiv
const int i12 = z % ne12;
if (i00 >= ne00) {
return;
if (i00 >= ne00) {
return;
}
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
const src0_t * src0_row = (const src0_t *)((const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03);
dst_row[i00] = ggml_cuda_cast<dst_t>(src0_row[i00]);
}
}
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
const src0_t * src0_row = (const src0_t *)((const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03);
dst_row[i00] = ggml_cuda_cast<dst_t>(src0_row[i00]);
}
template<typename grad_t, typename dst_t>
@@ -98,7 +100,7 @@ static void get_rows_cuda_q(
cudaStream_t stream) {
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
const int block_num_y = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
const dim3 block_nums(ne10, block_num_y, ne11*ne12);
const dim3 block_nums(ne10, MIN(block_num_y, UINT16_MAX), MIN(ne11*ne12, UINT16_MAX));
// strides in elements
// const size_t s0 = nb0 / sizeof(dst_t);
@@ -116,7 +118,7 @@ static void get_rows_cuda_q(
k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
src0_d, src1_d, dst_d,
ne00, /*ne01, ne02, ne03,*/
/*ne10, ne11,*/ ne12, /*ne13,*/
/*ne10,*/ ne11, ne12, /*ne13,*/
/* s0,*/ s1, s2, s3,
/* nb00,*/ nb01, nb02, nb03,
s10, s11, s12/*, s13*/);
@@ -131,7 +133,7 @@ static void get_rows_cuda_float(
cudaStream_t stream) {
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
const int block_num_y = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
const dim3 block_nums(ne10, block_num_y, ne11*ne12);
const dim3 block_nums(ne10, MIN(block_num_y, UINT16_MAX), MIN(ne11*ne12, UINT16_MAX));
// strides in elements
// const size_t s0 = nb0 / sizeof(dst_t);
@@ -147,7 +149,7 @@ static void get_rows_cuda_float(
k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
src0_d, src1_d, dst_d,
ne00, /*ne01, ne02, ne03,*/
/*ne10, ne11,*/ ne12, /*ne13,*/
/*ne10,*/ ne11, ne12, /*ne13,*/
/* s0,*/ s1, s2, s3,
/* nb00,*/ nb01, nb02, nb03,
s10, s11, s12/*, s13*/);

View File

@@ -12,6 +12,7 @@
#include "ggml-cuda/clamp.cuh"
#include "ggml-cuda/concat.cuh"
#include "ggml-cuda/conv-transpose-1d.cuh"
#include "ggml-cuda/conv2d.cuh"
#include "ggml-cuda/conv2d-dw.cuh"
#include "ggml-cuda/conv2d-transpose.cuh"
#include "ggml-cuda/convert.cuh"
@@ -2108,6 +2109,11 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
ggml_cuda_mul_mat_q(ctx, src0, src1, ids, dst);
return;
}
if (ggml_cuda_should_use_mmf(src0->type, cc, WARP_SIZE, src0->ne, src1->ne[2])) {
ggml_cuda_mul_mat_f(ctx, src0, src1, ids, dst);
return;
}
}
cudaStream_t stream = ctx.stream();
@@ -2451,6 +2457,12 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_IM2COL:
ggml_cuda_op_im2col(ctx, dst);
break;
case GGML_OP_IM2COL_3D:
ggml_cuda_op_im2col_3d(ctx, dst);
break;
case GGML_OP_CONV_2D:
ggml_cuda_op_conv2d(ctx, dst);
break;
case GGML_OP_CONV_2D_DW:
ggml_cuda_op_conv2d_dw(ctx, dst);
break;
@@ -2817,9 +2829,14 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
return false;
}
if (ops.size() == 2 && ops.begin()[0] == GGML_OP_RMS_NORM && ops.begin()[1] == GGML_OP_MUL) {
if ((ops.size() == 2 || ops.size() == 3) && ops.begin()[0] == GGML_OP_RMS_NORM && ops.begin()[1] == GGML_OP_MUL) {
const ggml_tensor *rms_norm = cgraph->nodes[node_idx];
const ggml_tensor *mul = cgraph->nodes[node_idx+1];
const ggml_tensor *add = nullptr;
if (ops.size() == 3 && ops.begin()[2] == GGML_OP_ADD) {
add = cgraph->nodes[node_idx+2];
}
GGML_ASSERT(rms_norm->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(rms_norm->type == GGML_TYPE_F32);
@@ -2831,6 +2848,12 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
return false;
}
if (add && (add->src[0]->type != GGML_TYPE_F32 ||
add->src[1]->type != GGML_TYPE_F32 ||
add->type != GGML_TYPE_F32) ) {
return false;
}
//if rms norm is the B operand, then we don't handle broadcast
if (rms_norm == mul->src[1] && !ggml_are_same_shape(mul->src[0], rms_norm->src[1])) {
return false;
@@ -2841,6 +2864,10 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
return false;
}
if (add && (!ggml_is_contiguous(add->src[0]) || !ggml_is_contiguous_rows(add->src[1]))) {
return false;
}
return true;
}
@@ -2887,7 +2914,46 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
static bool disable_fusion = (getenv("GGML_CUDA_DISABLE_FUSION") != nullptr);
if (!disable_fusion) {
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL }, {})) {
if (node->op == GGML_OP_ADD) {
int n_fuse = 0;
ggml_op ops[8];
std::fill(ops, ops + 8, GGML_OP_ADD);
for (; n_fuse <= 6; ++n_fuse){
if (!ggml_can_fuse(cgraph, i + n_fuse, ops + n_fuse, 2)) {
break;
}
if (cgraph->nodes[i + n_fuse] != cgraph->nodes[i + n_fuse + 1]->src[0]) {
break;
}
if (!ggml_are_same_layout(cgraph->nodes[i + n_fuse]->src[1], cgraph->nodes[i + n_fuse + 1]->src[1])) {
break;
}
}
n_fuse++;
if (n_fuse > 1) {
for (int j = 0; j < n_fuse - 1; ++j) {
node->src[j + 2] = cgraph->nodes[i + j + 1]->src[1];
}
cgraph->nodes[i + n_fuse - 1]->data = node->data;
ggml_cuda_op_fused_add(*cuda_ctx, node, n_fuse);
i += n_fuse - 1;
continue;
}
}
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL, GGML_OP_ADD}, {})) {
ggml_cuda_op_rms_norm_fused_add(*cuda_ctx, node, cgraph->nodes[i+1], cgraph->nodes[i+2]);
i += 2;
continue;
}
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL}, {})) {
ggml_cuda_op_rms_norm_fused(*cuda_ctx, node, cgraph->nodes[i+1]);
i++;
continue;
@@ -3074,6 +3140,7 @@ static const ggml_backend_i ggml_backend_cuda_interface = {
/* .graph_compute = */ ggml_backend_cuda_graph_compute,
/* .event_record = */ ggml_backend_cuda_event_record,
/* .event_wait = */ ggml_backend_cuda_event_wait,
/* .optimize_graph = */ NULL,
};
static ggml_guid_t ggml_backend_cuda_guid() {
@@ -3106,7 +3173,7 @@ bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) {
return false;
}
#if CUDART_VERSION >= 11010 || defined(GGML_USE_MUSA)
#if CUDART_VERSION >= 11010 || defined(GGML_USE_MUSA) || defined(GGML_USE_HIP)
cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly);
if (err != cudaSuccess) {
// clear the error
@@ -3143,6 +3210,7 @@ struct ggml_backend_cuda_device_context {
int device;
std::string name;
std::string description;
std::string pci_bus_id;
};
static const char * ggml_backend_cuda_device_get_name(ggml_backend_dev_t dev) {
@@ -3167,9 +3235,12 @@ static enum ggml_backend_dev_type ggml_backend_cuda_device_get_type(ggml_backend
}
static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
props->name = ggml_backend_cuda_device_get_name(dev);
props->description = ggml_backend_cuda_device_get_description(dev);
props->type = ggml_backend_cuda_device_get_type(dev);
props->device_id = ctx->pci_bus_id.empty() ? nullptr : ctx->pci_bus_id.c_str();
ggml_backend_cuda_device_get_memory(dev, &props->memory_free, &props->memory_total);
bool host_buffer = getenv("GGML_CUDA_NO_PINNED") == nullptr;
@@ -3400,6 +3471,12 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_IQ4_NL) {
return true;
}
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_I32) {
return true;
}
if (src0_type == GGML_TYPE_I32 && src1_type == GGML_TYPE_F32) {
return true;
}
if (src0_type == src1_type && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1])) {
return true;
}
@@ -3501,6 +3578,8 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
return op->src[0]->nb[0] == ggml_type_size(op->src[0]->type) && ggml_is_contiguous_2(op->src[0]);
}
case GGML_OP_IM2COL:
case GGML_OP_IM2COL_3D:
case GGML_OP_CONV_2D:
case GGML_OP_CONV_2D_DW:
case GGML_OP_CONV_TRANSPOSE_2D:
case GGML_OP_POOL_2D:
@@ -3511,9 +3590,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
case GGML_OP_GROUP_NORM:
case GGML_OP_PAD:
return ggml_is_contiguous(op->src[0]);
case GGML_OP_UPSCALE:
case GGML_OP_PAD:
case GGML_OP_PAD_REFLECT_1D:
case GGML_OP_ARANGE:
case GGML_OP_TIMESTEP_EMBEDDING:
@@ -3729,6 +3808,10 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
CUDA_CHECK(cudaGetDeviceProperties(&prop, i));
dev_ctx->description = prop.name;
char pci_bus_id[16] = {};
snprintf(pci_bus_id, sizeof(pci_bus_id), "%04x:%02x:%02x.0", prop.pciDomainID, prop.pciBusID, prop.pciDeviceID);
dev_ctx->pci_bus_id = pci_bus_id;
ggml_backend_dev_t dev = new ggml_backend_device {
/* .iface = */ ggml_backend_cuda_device_interface,
/* .reg = */ &reg,

View File

@@ -112,3 +112,132 @@ void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
im2col_cuda_f32(src1_d, (float *) dst_d, IW, IH, OW, OH, KW, KH, IC, N, IC_IH_IW, IH_IW, s0, s1, p0, p1, d0, d1, stream);
}
}
// [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW]
template <typename T>
static __global__ void im2col_3d_kernel(
const float * src, T * dst,
int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW, int64_t OC,
int64_t KD, int64_t KH, int64_t KW, int64_t OD, int64_t OH, int64_t OW,
int64_t OH_OW, int64_t KD_KH_KW, int64_t ID_IH_IW, int64_t KH_KW, int64_t IH_IW, int64_t IC_ID_IH_IW,
int64_t IC_KD_KH_KW, int64_t OW_KD_KH_KW, int64_t OD_OH_OW_IC_KD_KH_KW, int64_t OH_OW_IC_KD_KH_KW,
int64_t OW_IC_KD_KH_KW, int64_t N_OD_OH, int64_t OD_OH,
int s0, int s1, int s2, int p0, int p1, int p2, int d0, int d1, int d2) {
const int64_t i = threadIdx.x + blockIdx.x * blockDim.x;
if (i >= IC_KD_KH_KW) {
return;
}
const int64_t iic = i / KD_KH_KW;
const int64_t ikd = (i - iic * KD_KH_KW) / KH_KW;
const int64_t ikh = (i - iic * KD_KH_KW - ikd * KH_KW) / KW;
const int64_t ikw = i % KW;
const int64_t iow = blockIdx.y;
for (int64_t iz = blockIdx.z; iz < N_OD_OH; iz+=MAX_GRIDDIM_Z) {
const int64_t in = iz / OD_OH;
const int64_t iod = (iz - in*OD_OH) / OH;
const int64_t ioh = iz % OH;
const int64_t iiw = iow * s0 + ikw * d0 - p0;
const int64_t iih = ioh * s1 + ikh * d1 - p1;
const int64_t iid = iod * s2 + ikd * d2 - p2;
const int64_t offset_dst = in*OD_OH_OW_IC_KD_KH_KW + iod*OH_OW_IC_KD_KH_KW + ioh*OW_IC_KD_KH_KW + iow*IC_KD_KH_KW + iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw;
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW || iid < 0 || iid >= ID) {
dst[offset_dst] = 0.0f;
} else {
const int64_t offset_src = in*IC_ID_IH_IW + iic*ID_IH_IW + iid*IH_IW + iih*IW + iiw;
dst[offset_dst] = src[offset_src];
}
}
}
// [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW]
template <typename T>
static void im2col_3d_cuda(const float * src, T* dst,
int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW, int64_t OC,
int64_t KD, int64_t KH, int64_t KW, int64_t OD, int64_t OH, int64_t OW,
int s0, int s1, int s2, int p0, int p1, int p2, int d0, int d1, int d2, cudaStream_t stream) {
const int64_t OH_OW = OH*OW;
const int64_t KD_KH_KW = KD*KH*KW;
const int64_t ID_IH_IW = ID*IH*IW;
const int64_t KH_KW = KH*KW;
const int64_t IH_IW = IH*IW;
const int64_t IC_KD_KH_KW = IC*KD*KH*KW;
const int64_t OW_KD_KH_KW = OW*KD*KH*KW;
const int64_t N_OD_OH = N*OD*OH;
const int64_t OD_OH = OD*OH;
const int64_t IC_ID_IH_IW = IC*ID*IH*IW;
const int64_t OD_OH_OW_IC_KD_KH_KW = OD*OH*OW*IC*KD*KH*KW;
const int64_t OH_OW_IC_KD_KH_KW = OH*OW*IC*KD*KH*KW;
const int64_t OW_IC_KD_KH_KW = OW*IC*KD*KH*KW;
const int64_t num_blocks = (IC_KD_KH_KW + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE;
dim3 block_nums(num_blocks, OW, MIN(N_OD_OH, MAX_GRIDDIM_Z));
im2col_3d_kernel<<<block_nums, MIN(IC_KD_KH_KW, CUDA_IM2COL_BLOCK_SIZE) , 0, stream>>>(src, dst, N, IC, ID, IH, IW, OC, KD, KH, KW, OD, OH, OW,
OH_OW, KD_KH_KW, ID_IH_IW, KH_KW, IH_IW, IC_ID_IH_IW,
IC_KD_KH_KW, OW_KD_KH_KW, OD_OH_OW_IC_KD_KH_KW,
OH_OW_IC_KD_KH_KW, OW_IC_KD_KH_KW, N_OD_OH, OD_OH,
s0, s1, s2, p0, p1, p2, d0, d1, d2);
}
static void im2col_3d_cuda_f16(const float * src, half * dst,
int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW, int64_t OC,
int64_t KD, int64_t KH, int64_t KW, int64_t OD, int64_t OH, int64_t OW,
int s0, int s1, int s2, int p0, int p1, int p2, int d0, int d1, int d2, cudaStream_t stream) {
im2col_3d_cuda<half>(src, dst, N, IC, ID, IH, IW, OC, KD, KH, KW, OD, OH, OW, s0, s1, s2, p0, p1, p2, d0, d1, d2, stream);
}
static void im2col_3d_cuda_f32(const float * src, float * dst,
int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW, int64_t OC,
int64_t KD, int64_t KH, int64_t KW, int64_t OD, int64_t OH, int64_t OW,
int s0, int s1, int s2, int p0, int p1, int p2, int d0, int d1, int d2, cudaStream_t stream) {
im2col_3d_cuda<float>(src, dst, N, IC, ID, IH, IW, OC, KD, KH, KW, OD, OH, OW, s0, s1, s2, p0, p1, p2, d0, d1, d2, stream);
}
void ggml_cuda_op_im2col_3d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const float * src1_d = (const float *)src1->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
GGML_TENSOR_BINARY_OP_LOCALS
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
const int32_t s2 = ((const int32_t *)(dst->op_params))[2];
const int32_t p0 = ((const int32_t *)(dst->op_params))[3];
const int32_t p1 = ((const int32_t *)(dst->op_params))[4];
const int32_t p2 = ((const int32_t *)(dst->op_params))[5];
const int32_t d0 = ((const int32_t *)(dst->op_params))[6];
const int32_t d1 = ((const int32_t *)(dst->op_params))[7];
const int32_t d2 = ((const int32_t *)(dst->op_params))[8];
const int32_t IC = ((const int32_t *)(dst->op_params))[9];
const int64_t N = ne13 / IC;
const int64_t ID = ne12;
const int64_t IH = ne11;
const int64_t IW = ne10;
const int64_t OC = ne03 / IC;
const int64_t KD = ne02;
const int64_t KH = ne01;
const int64_t KW = ne00;
const int64_t OD = ne3 / N;
const int64_t OH = ne2;
const int64_t OW = ne1;
if(dst->type == GGML_TYPE_F16) {
im2col_3d_cuda_f16(src1_d, (half *) dst_d, N, IC, ID, IH, IW, OC, KD, KH, KW, OD, OH, OW, s0, s1, s2, p0, p1, p2, d0, d1, d2, stream);
} else {
im2col_3d_cuda_f32(src1_d, (float *) dst_d, N, IC, ID, IH, IW, OC, KD, KH, KW, OD, OH, OW, s0, s1, s2, p0, p1, p2, d0, d1, d2, stream);
}
}

View File

@@ -3,3 +3,4 @@
#define CUDA_IM2COL_BLOCK_SIZE 256
void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_im2col_3d(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

Some files were not shown because too many files have changed in this diff Show More