mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-05 13:53:23 +02:00
Compare commits
123 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
17bc5a815f | ||
|
|
ed54e32558 | ||
|
|
a972faebed | ||
|
|
550cf726e1 | ||
|
|
c252ce67c4 | ||
|
|
70cd37dbbe | ||
|
|
acc1b008cf | ||
|
|
7057faf64b | ||
|
|
fe1c92cd7b | ||
|
|
e68aa10d8f | ||
|
|
0a16bf52e6 | ||
|
|
88021565f0 | ||
|
|
56920f5665 | ||
|
|
b0d52998b9 | ||
|
|
f28d4f4ac9 | ||
|
|
9fcb29f22f | ||
|
|
5ef22d281d | ||
|
|
233d773d02 | ||
|
|
a885dcff11 | ||
|
|
663027fd54 | ||
|
|
cf0e3ba150 | ||
|
|
d413dca003 | ||
|
|
85ca66a746 | ||
|
|
3976dfbe00 | ||
|
|
d36e61c580 | ||
|
|
c97b5e5854 | ||
|
|
267e99867f | ||
|
|
3b15924d71 | ||
|
|
79bc429262 | ||
|
|
c4df49a42d | ||
|
|
3c3635d2f2 | ||
|
|
61bdfd5298 | ||
|
|
01806e7771 | ||
|
|
186415d595 | ||
|
|
fd621880f3 | ||
|
|
4281c7b315 | ||
|
|
5fac79cbc7 | ||
|
|
408ff524b4 | ||
|
|
5143fa895e | ||
|
|
3a550b5ca4 | ||
|
|
a81283820a | ||
|
|
c610b6c11b | ||
|
|
5d6688de08 | ||
|
|
4fd1242bef | ||
|
|
b2426e469e | ||
|
|
9e2b1e83c6 | ||
|
|
fb15d649ed | ||
|
|
856ed0947f | ||
|
|
d1e2adba65 | ||
|
|
c1c354e44c | ||
|
|
a68d914426 | ||
|
|
badb80cadb | ||
|
|
0a1b3982cd | ||
|
|
5421f63ab0 | ||
|
|
820bc98531 | ||
|
|
239b60e898 | ||
|
|
dff7551bfd | ||
|
|
0fce7a1248 | ||
|
|
8227695d7a | ||
|
|
0014fb4add | ||
|
|
661ae31c9c | ||
|
|
407c23786d | ||
|
|
cdedb70a99 | ||
|
|
2c8dac72eb | ||
|
|
40a751ea9a | ||
|
|
5eae934883 | ||
|
|
05c0380f2a | ||
|
|
8c3fdf44ec | ||
|
|
f6da8cb86a | ||
|
|
8a2234ea0c | ||
|
|
3de008208b | ||
|
|
69db8a52e6 | ||
|
|
c466abe158 | ||
|
|
0a2a3841e8 | ||
|
|
9961d244f2 | ||
|
|
25f1045f07 | ||
|
|
97669e4073 | ||
|
|
2f853687b3 | ||
|
|
ef2af57ddf | ||
|
|
5d804a4938 | ||
|
|
d4d8dbe383 | ||
|
|
35a42edac8 | ||
|
|
fec7911f8f | ||
|
|
078ce23ea7 | ||
|
|
a0c2b207c5 | ||
|
|
4b20d8b7e3 | ||
|
|
02c1813517 | ||
|
|
77dee9de97 | ||
|
|
4795c91c32 | ||
|
|
b66df9d9c9 | ||
|
|
b9382c3877 | ||
|
|
3dc7397a27 | ||
|
|
e92d53b29e | ||
|
|
0d161f021a | ||
|
|
4efd5a8316 | ||
|
|
274966226f | ||
|
|
9777032dcc | ||
|
|
7d3c9f2b21 | ||
|
|
bbbf5ecccb | ||
|
|
c37052ab4d | ||
|
|
5c16b9c87d | ||
|
|
b97c9edc59 | ||
|
|
94e82c7ead | ||
|
|
4d74393bcc | ||
|
|
dd892555b0 | ||
|
|
e81b8e4b7f | ||
|
|
38ad381f9f | ||
|
|
696fccf354 | ||
|
|
ef476916bb | ||
|
|
d82f6aa34a | ||
|
|
3d16b29c3b | ||
|
|
792b44f2ed | ||
|
|
81017865ee | ||
|
|
60e5eee31f | ||
|
|
009b709d6e | ||
|
|
e8d99dd0b6 | ||
|
|
a8bca68f72 | ||
|
|
c97dc09391 | ||
|
|
6c442f42ff | ||
|
|
73804145ab | ||
|
|
c8d0d14e77 | ||
|
|
84ab83cc0b | ||
|
|
55042b3692 |
@@ -22,7 +22,7 @@ AllowShortIfStatementsOnASingleLine: Never
|
||||
AllowShortLambdasOnASingleLine: Inline
|
||||
AllowShortLoopsOnASingleLine: false
|
||||
AlwaysBreakBeforeMultilineStrings: true
|
||||
BinPackArguments: false
|
||||
BinPackArguments: true
|
||||
BinPackParameters: false # OnePerLine
|
||||
BitFieldColonSpacing: Both
|
||||
BreakBeforeBraces: Custom # Attach
|
||||
|
||||
2
.github/workflows/close-issue.yml
vendored
2
.github/workflows/close-issue.yml
vendored
@@ -17,7 +17,7 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/stale@v5
|
||||
with:
|
||||
exempt-issue-labels: "refactoring,help wanted,good first issue,research,bug,roadmap"
|
||||
exempt-issue-labels: "refactoring,help wanted,good first issue,research 🔬,bug,roadmap"
|
||||
days-before-issue-stale: 30
|
||||
days-before-issue-close: 14
|
||||
stale-issue-label: "stale"
|
||||
|
||||
@@ -16,6 +16,9 @@
|
||||
- Use the following format for the squashed commit title: `<module> : <commit title> (#<issue_number>)`. For example: `utils : fix typo in utils.py (#1234)`
|
||||
- Optionally pick a `<module>` from here: https://github.com/ggml-org/llama.cpp/wiki/Modules
|
||||
- Consider adding yourself to [CODEOWNERS](CODEOWNERS)
|
||||
- Let authors, who are also collaborators, merge their own PRs
|
||||
- When merging a PR by a contributor, make sure you have a good understanding of the changes
|
||||
- Be mindful of maintenance: most of the work going into a feature happens after the PR is merged. If the PR author is not committed to contribute long-term, someone else needs to take responsibility (you)
|
||||
|
||||
# Coding guidelines
|
||||
|
||||
|
||||
@@ -137,6 +137,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- [X] [Trillion-7B-preview](https://huggingface.co/trillionlabs/Trillion-7B-preview)
|
||||
- [x] [Ling models](https://huggingface.co/collections/inclusionAI/ling-67c51c85b34a7ea0aba94c32)
|
||||
- [x] [LFM2 models](https://huggingface.co/collections/LiquidAI/lfm2-686d721927015b2ad73eaa38)
|
||||
- [x] [Hunyuan models](https://huggingface.co/collections/tencent/hunyuan-dense-model-6890632cda26b19119c9c5e7)
|
||||
|
||||
#### Multimodal
|
||||
|
||||
|
||||
20
ci/run.sh
20
ci/run.sh
@@ -386,10 +386,10 @@ function gg_run_open_llama_7b_v2 {
|
||||
|
||||
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
|
||||
function check_ppl {
|
||||
qnt="$1"
|
||||
@@ -520,8 +520,8 @@ function gg_run_pythia_1_4b {
|
||||
|
||||
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
|
||||
function check_ppl {
|
||||
qnt="$1"
|
||||
@@ -651,10 +651,10 @@ function gg_run_pythia_2_8b {
|
||||
|
||||
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
|
||||
function check_ppl {
|
||||
qnt="$1"
|
||||
|
||||
@@ -1263,6 +1263,18 @@ static std::string list_builtin_chat_templates() {
|
||||
return msg.str();
|
||||
}
|
||||
|
||||
static bool is_truthy(const std::string & value) {
|
||||
return value == "on" || value == "enabled" || value == "1";
|
||||
}
|
||||
|
||||
static bool is_falsey(const std::string & value) {
|
||||
return value == "off" || value == "disabled" || value == "0";
|
||||
}
|
||||
|
||||
static bool is_autoy(const std::string & value) {
|
||||
return value == "auto" || value == "-1";
|
||||
}
|
||||
|
||||
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
|
||||
// load dynamic backends
|
||||
ggml_backend_load_all();
|
||||
@@ -1544,13 +1556,21 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.n_chunks = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_RETRIEVAL}));
|
||||
add_opt(common_arg(
|
||||
{"-fa", "--flash-attn"},
|
||||
string_format("enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled"),
|
||||
[](common_params & params) {
|
||||
params.flash_attn = true;
|
||||
}
|
||||
).set_env("LLAMA_ARG_FLASH_ATTN"));
|
||||
add_opt(common_arg({ "-fa", "--flash-attn" }, "[on|off|auto]",
|
||||
string_format("set Flash Attention use ('on', 'off', or 'auto', default: '%s')",
|
||||
llama_flash_attn_type_name(params.flash_attn_type)),
|
||||
[](common_params & params, const std::string & value) {
|
||||
if (is_truthy(value)) {
|
||||
params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_ENABLED;
|
||||
} else if (is_falsey(value)) {
|
||||
params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_DISABLED;
|
||||
} else if (is_autoy(value)) {
|
||||
params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_AUTO;
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
string_format("error: unkown value for --flash-attn: '%s'\n", value.c_str()));
|
||||
}
|
||||
}).set_env("LLAMA_ARG_FLASH_ATTN"));
|
||||
add_opt(common_arg(
|
||||
{"-p", "--prompt"}, "PROMPT",
|
||||
"prompt to start generation with; for system message, use -sys",
|
||||
@@ -2458,7 +2478,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_N_CPU_MOE_DRAFT"));
|
||||
add_opt(common_arg(
|
||||
{"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
|
||||
"number of layers to store in VRAM",
|
||||
string_format("max. number of layers to store in VRAM (default: %d)", params.n_gpu_layers),
|
||||
[](common_params & params, int value) {
|
||||
params.n_gpu_layers = value;
|
||||
if (!llama_supports_gpu_offload()) {
|
||||
@@ -2555,7 +2575,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"--lora"}, "FNAME",
|
||||
"path to LoRA adapter (can be repeated to use multiple adapters)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.lora_adapters.push_back({ std::string(value), 1.0, nullptr });
|
||||
params.lora_adapters.push_back({ std::string(value), 1.0, "", "", nullptr });
|
||||
}
|
||||
// we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
|
||||
).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
|
||||
@@ -2563,7 +2583,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"--lora-scaled"}, "FNAME", "SCALE",
|
||||
"path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters)",
|
||||
[](common_params & params, const std::string & fname, const std::string & scale) {
|
||||
params.lora_adapters.push_back({ fname, std::stof(scale), nullptr });
|
||||
params.lora_adapters.push_back({ fname, std::stof(scale), "", "", nullptr });
|
||||
}
|
||||
// we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
|
||||
).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
|
||||
@@ -2954,13 +2974,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.endpoint_metrics = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_METRICS"));
|
||||
add_opt(common_arg(
|
||||
{"--slots"},
|
||||
string_format("enable slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"),
|
||||
[](common_params & params) {
|
||||
params.endpoint_slots = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS"));
|
||||
add_opt(common_arg(
|
||||
{"--props"},
|
||||
string_format("enable changing global properties via POST /props (default: %s)", params.endpoint_props ? "enabled" : "disabled"),
|
||||
@@ -2968,6 +2981,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.endpoint_props = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_PROPS"));
|
||||
add_opt(common_arg(
|
||||
{"--slots"},
|
||||
string_format("enable slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"),
|
||||
[](common_params & params) {
|
||||
params.endpoint_slots = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS"));
|
||||
add_opt(common_arg(
|
||||
{"--no-slots"},
|
||||
"disables slots monitoring endpoint",
|
||||
@@ -3126,13 +3146,21 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
common_log_set_file(common_log_main(), value.c_str());
|
||||
}
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"--log-colors"},
|
||||
"Enable colored logging",
|
||||
[](common_params &) {
|
||||
common_log_set_colors(common_log_main(), true);
|
||||
}
|
||||
).set_env("LLAMA_LOG_COLORS"));
|
||||
add_opt(common_arg({ "--log-colors" }, "[on|off|auto]",
|
||||
"Set colored logging ('on', 'off', or 'auto', default: 'auto')\n"
|
||||
"'auto' enables colors when output is to a terminal",
|
||||
[](common_params &, const std::string & value) {
|
||||
if (is_truthy(value)) {
|
||||
common_log_set_colors(common_log_main(), LOG_COLORS_ENABLED);
|
||||
} else if (is_falsey(value)) {
|
||||
common_log_set_colors(common_log_main(), LOG_COLORS_DISABLED);
|
||||
} else if (is_autoy(value)) {
|
||||
common_log_set_colors(common_log_main(), LOG_COLORS_AUTO);
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
string_format("error: unkown value for --log-colors: '%s'\n", value.c_str()));
|
||||
}
|
||||
}).set_env("LLAMA_LOG_COLORS"));
|
||||
add_opt(common_arg(
|
||||
{"-v", "--verbose", "--log-verbose"},
|
||||
"Set verbosity level to infinity (i.e. log all messages, useful for debugging)",
|
||||
@@ -3459,8 +3487,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF";
|
||||
params.model.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf";
|
||||
params.port = 8012;
|
||||
params.n_gpu_layers = 99;
|
||||
params.flash_attn = true;
|
||||
params.n_ubatch = 1024;
|
||||
params.n_batch = 1024;
|
||||
params.n_ctx = 0;
|
||||
@@ -3475,8 +3501,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF";
|
||||
params.model.hf_file = "qwen2.5-coder-3b-q8_0.gguf";
|
||||
params.port = 8012;
|
||||
params.n_gpu_layers = 99;
|
||||
params.flash_attn = true;
|
||||
params.n_ubatch = 1024;
|
||||
params.n_batch = 1024;
|
||||
params.n_ctx = 0;
|
||||
@@ -3491,8 +3515,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
|
||||
params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
|
||||
params.port = 8012;
|
||||
params.n_gpu_layers = 99;
|
||||
params.flash_attn = true;
|
||||
params.n_ubatch = 1024;
|
||||
params.n_batch = 1024;
|
||||
params.n_ctx = 0;
|
||||
@@ -3508,10 +3530,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
|
||||
params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
|
||||
params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
|
||||
params.speculative.n_gpu_layers = 99;
|
||||
params.port = 8012;
|
||||
params.n_gpu_layers = 99;
|
||||
params.flash_attn = true;
|
||||
params.n_ubatch = 1024;
|
||||
params.n_batch = 1024;
|
||||
params.n_ctx = 0;
|
||||
@@ -3527,10 +3546,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.model.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
|
||||
params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
|
||||
params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
|
||||
params.speculative.n_gpu_layers = 99;
|
||||
params.port = 8012;
|
||||
params.n_gpu_layers = 99;
|
||||
params.flash_attn = true;
|
||||
params.n_ubatch = 1024;
|
||||
params.n_batch = 1024;
|
||||
params.n_ctx = 0;
|
||||
@@ -3545,8 +3561,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.model.hf_repo = "ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF";
|
||||
params.model.hf_file = "qwen3-coder-30b-a3b-instruct-q8_0.gguf";
|
||||
params.port = 8012;
|
||||
params.n_gpu_layers = 99;
|
||||
params.flash_attn = true;
|
||||
params.n_ubatch = 1024;
|
||||
params.n_batch = 1024;
|
||||
params.n_ctx = 0;
|
||||
|
||||
404
common/chat.cpp
404
common/chat.cpp
@@ -163,6 +163,19 @@ common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::strin
|
||||
throw std::runtime_error("Invalid tool_choice: " + tool_choice);
|
||||
}
|
||||
|
||||
bool common_chat_templates_support_enable_thinking(const common_chat_templates * chat_templates) {
|
||||
common_chat_templates_inputs dummy_inputs;
|
||||
common_chat_msg msg;
|
||||
msg.role = "user";
|
||||
msg.content = "test";
|
||||
dummy_inputs.messages = {msg};
|
||||
dummy_inputs.enable_thinking = false;
|
||||
const auto rendered_no_thinking = common_chat_templates_apply(chat_templates, dummy_inputs);
|
||||
dummy_inputs.enable_thinking = true;
|
||||
const auto rendered_with_thinking = common_chat_templates_apply(chat_templates, dummy_inputs);
|
||||
return rendered_no_thinking.prompt != rendered_with_thinking.prompt;
|
||||
}
|
||||
|
||||
template <>
|
||||
std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const json & messages) {
|
||||
std::vector<common_chat_msg> msgs;
|
||||
@@ -618,10 +631,13 @@ const char * common_chat_format_name(common_chat_format format) {
|
||||
case COMMON_CHAT_FORMAT_FIREFUNCTION_V2: return "FireFunction v2";
|
||||
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2: return "Functionary v3.2";
|
||||
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1: return "Functionary v3.1 Llama 3.1";
|
||||
case COMMON_CHAT_FORMAT_DEEPSEEK_V3_1: return "DeepSeek V3.1";
|
||||
case COMMON_CHAT_FORMAT_HERMES_2_PRO: return "Hermes 2 Pro";
|
||||
case COMMON_CHAT_FORMAT_COMMAND_R7B: return "Command R7B";
|
||||
case COMMON_CHAT_FORMAT_GRANITE: return "Granite";
|
||||
case COMMON_CHAT_FORMAT_GPT_OSS: return "GPT-OSS";
|
||||
case COMMON_CHAT_FORMAT_SEED_OSS: return "Seed-OSS";
|
||||
case COMMON_CHAT_FORMAT_NEMOTRON_V2: return "Nemotron V2";
|
||||
default:
|
||||
throw std::runtime_error("Unknown chat format");
|
||||
}
|
||||
@@ -683,11 +699,13 @@ static void parse_json_tool_calls(
|
||||
size_t from = std::string::npos;
|
||||
auto first = true;
|
||||
while (true) {
|
||||
auto start_pos = builder.pos();
|
||||
auto res = function_regex_start_only && first
|
||||
? builder.try_consume_regex(*function_regex_start_only)
|
||||
: function_regex
|
||||
? builder.try_find_regex(*function_regex, from)
|
||||
: std::nullopt;
|
||||
|
||||
if (res) {
|
||||
std::string name;
|
||||
if (get_function_name) {
|
||||
@@ -722,6 +740,8 @@ static void parse_json_tool_calls(
|
||||
return;
|
||||
}
|
||||
throw common_chat_msg_partial_exception("incomplete tool call");
|
||||
} else {
|
||||
builder.move_to(start_pos);
|
||||
}
|
||||
break;
|
||||
}
|
||||
@@ -1183,6 +1203,67 @@ static common_chat_params common_chat_params_init_llama_3_x(const common_chat_te
|
||||
});
|
||||
return data;
|
||||
}
|
||||
|
||||
static common_chat_params common_chat_params_init_nemotron_v2(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
common_chat_params data;
|
||||
|
||||
// Generate the prompt using the apply() function with the template
|
||||
data.prompt = apply(tmpl, inputs);
|
||||
data.format = COMMON_CHAT_FORMAT_NEMOTRON_V2;
|
||||
|
||||
// Handle thinking tags appropriately based on inputs.enable_thinking
|
||||
if (string_ends_with(data.prompt, "<think>\n")) {
|
||||
if (!inputs.enable_thinking) {
|
||||
data.prompt += "</think>";
|
||||
} else {
|
||||
data.thinking_forced_open = true;
|
||||
}
|
||||
}
|
||||
|
||||
// When tools are present, build grammar for the <TOOLCALL> format, similar to CommandR, but without tool call ID
|
||||
if (!inputs.tools.is_null() && inputs.tools.is_array() && !inputs.tools.empty()) {
|
||||
data.grammar_lazy = true;
|
||||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||||
auto schemas = json::array();
|
||||
foreach_function(inputs.tools, [&](const json & tool) {
|
||||
const auto & function = tool.at("function");
|
||||
schemas.push_back({
|
||||
{ "type", "object" },
|
||||
{ "properties",
|
||||
{
|
||||
{ "name",
|
||||
{
|
||||
{ "type", "string" },
|
||||
{ "const", function.at("name") },
|
||||
} },
|
||||
{ "arguments", function.at("parameters") },
|
||||
} },
|
||||
{ "required", json::array({ "name", "arguments" }) },
|
||||
});
|
||||
});
|
||||
auto schema = json{
|
||||
{ "type", "array" },
|
||||
{ "items", schemas.size() == 1 ? schemas[0] : json{ { "anyOf", schemas } } },
|
||||
{ "minItems", 1 },
|
||||
};
|
||||
if (!inputs.parallel_tool_calls) {
|
||||
schema["maxItems"] = 1;
|
||||
}
|
||||
builder.add_rule("root",
|
||||
std::string(data.thinking_forced_open ? "( \"</think>\" space )? " : "") +
|
||||
"\"<TOOLCALL>\" " + builder.add_schema("tool_calls", schema) +
|
||||
" \"</TOOLCALL>\"");
|
||||
});
|
||||
data.grammar_triggers.push_back({ COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
|
||||
// If thinking_forced_open, then we capture the </think> tag in the grammar,
|
||||
// (important for required tool choice) and in the trigger's first capture (decides what is sent to the grammar)
|
||||
std::string(data.thinking_forced_open ?
|
||||
"[\\s\\S]*?(</think>\\s*)" :
|
||||
"(?:<think>[\\s\\S]*?</think>\\s*)?") +
|
||||
"(<TOOLCALL>)[\\s\\S]*" });
|
||||
}
|
||||
return data;
|
||||
}
|
||||
static void common_chat_parse_llama_3_1(common_chat_msg_parser & builder, bool with_builtin_tools = false) {
|
||||
if (!builder.syntax().parse_tool_calls) {
|
||||
builder.add_content(builder.consume_rest());
|
||||
@@ -1312,6 +1393,71 @@ static common_chat_params common_chat_params_init_deepseek_r1(const common_chat_
|
||||
}
|
||||
return data;
|
||||
}
|
||||
|
||||
static common_chat_params common_chat_params_init_deepseek_v3_1(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
common_chat_params data;
|
||||
|
||||
// Pass thinking context for DeepSeek V3.1 template
|
||||
json additional_context = {
|
||||
{"thinking", inputs.enable_thinking},
|
||||
};
|
||||
|
||||
auto prompt = apply(tmpl, inputs,
|
||||
/* messages_override= */ inputs.messages,
|
||||
/* tools_override= */ std::nullopt,
|
||||
additional_context);
|
||||
data.prompt = prompt;
|
||||
data.format = COMMON_CHAT_FORMAT_DEEPSEEK_V3_1;
|
||||
if (string_ends_with(data.prompt, "<think>")) {
|
||||
if (!inputs.enable_thinking) {
|
||||
data.prompt += "</think>";
|
||||
} else {
|
||||
data.thinking_forced_open = true;
|
||||
}
|
||||
}
|
||||
if (inputs.tools.is_array() && !inputs.tools.empty()) {
|
||||
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED && inputs.json_schema.is_null();
|
||||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||||
std::vector<std::string> tool_rules;
|
||||
foreach_function(inputs.tools, [&](const json & tool) {
|
||||
const auto & function = tool.at("function");
|
||||
std::string name = function.at("name");
|
||||
auto parameters = function.at("parameters");
|
||||
builder.resolve_refs(parameters);
|
||||
tool_rules.push_back(builder.add_rule(name + "-call",
|
||||
"( \"<|tool▁call▁begin|>\" )? \"" + name + "<|tool▁sep|>"
|
||||
"\" " + builder.add_schema(name + "-args", parameters) + " "
|
||||
"\"<|tool▁call▁end|>\""));
|
||||
});
|
||||
// Distill Qwen 7B & 32B models seem confused re/ syntax of their tool call opening tag,
|
||||
// so we accept common variants (then it's all constrained)
|
||||
builder.add_rule("root",
|
||||
std::string(data.thinking_forced_open ? "( \"</think>\" space )? " : "") +
|
||||
"( \"<|tool▁calls▁begin|>\" | \"<|tool_calls_begin|>\" | \"<|tool calls begin|>\" | \"<|tool\\\\_calls\\\\_begin|>\" | \"<|tool▁calls|>\" ) "
|
||||
"(" + string_join(tool_rules, " | ") + ")" + (inputs.parallel_tool_calls ? "*" : "") + " "
|
||||
"\"<|tool▁calls▁end|>\""
|
||||
" space");
|
||||
data.grammar_triggers.push_back({
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
|
||||
// If thinking_forced_open, then we capture the </think> tag in the grammar,
|
||||
// (important for required tool choice) and in the trigger's first capture (decides what is sent to the grammar)
|
||||
std::string(data.thinking_forced_open ? "[\\s\\S]*?(</think>\\s*)" : "(?:<think>[\\s\\S]*?</think>\\s*)?") +
|
||||
"(<|tool▁calls▁begin|>|<|tool_calls_begin|>|<|tool calls begin|>|<|tool\\\\_calls\\\\_begin|>|<|tool▁calls|>)[\\s\\S]*"
|
||||
});
|
||||
data.preserved_tokens = {
|
||||
"<think>",
|
||||
"</think>",
|
||||
"<|tool▁calls▁begin|>",
|
||||
"<|tool▁call▁begin|>",
|
||||
"<|tool▁sep|>",
|
||||
"<|tool▁call▁end|>",
|
||||
"<|tool▁calls▁end|>",
|
||||
};
|
||||
});
|
||||
}
|
||||
return data;
|
||||
}
|
||||
|
||||
static void common_chat_parse_deepseek_r1(common_chat_msg_parser & builder) {
|
||||
builder.try_parse_reasoning("<think>", "</think>");
|
||||
if (!builder.syntax().parse_tool_calls) {
|
||||
@@ -1333,6 +1479,66 @@ static void common_chat_parse_deepseek_r1(common_chat_msg_parser & builder) {
|
||||
tool_calls_end);
|
||||
}
|
||||
|
||||
static void common_chat_parse_deepseek_v3_1_content(common_chat_msg_parser & builder) {
|
||||
static const common_regex function_regex("(?:<|tool▁call▁begin|>)?([^\\n<]+)(?:<|tool▁sep|>)");
|
||||
|
||||
static const common_regex close_regex("(?:[\\s]*)?<|tool▁call▁end|>");
|
||||
static const common_regex tool_calls_begin("(?:<|tool▁calls▁begin|>|<|tool_calls_begin|>|<|tool calls begin|>|<|tool\\\\_calls\\\\_begin|>|<|tool▁calls|>)");
|
||||
static const common_regex tool_calls_end("<|tool▁calls▁end|>");
|
||||
|
||||
if (!builder.syntax().parse_tool_calls) {
|
||||
LOG_DBG("%s: not parse_tool_calls\n", __func__);
|
||||
builder.add_content(builder.consume_rest());
|
||||
return;
|
||||
}
|
||||
|
||||
LOG_DBG("%s: parse_tool_calls\n", __func__);
|
||||
|
||||
parse_json_tool_calls(
|
||||
builder,
|
||||
/* block_open= */ tool_calls_begin,
|
||||
/* function_regex_start_only= */ std::nullopt,
|
||||
function_regex,
|
||||
close_regex,
|
||||
tool_calls_end);
|
||||
}
|
||||
|
||||
static void common_chat_parse_deepseek_v3_1(common_chat_msg_parser & builder) {
|
||||
// DeepSeek V3.1 outputs reasoning content between "<think>" and "</think>" tags, followed by regular content
|
||||
// First try to parse using the standard reasoning parsing method
|
||||
LOG_DBG("%s: thinking_forced_open: %s\n", __func__, std::to_string(builder.syntax().thinking_forced_open).c_str());
|
||||
|
||||
auto start_pos = builder.pos();
|
||||
auto found_end_think = builder.try_find_literal("</think>");
|
||||
builder.move_to(start_pos);
|
||||
|
||||
if (builder.syntax().thinking_forced_open && !builder.is_partial() && !found_end_think) {
|
||||
LOG_DBG("%s: no end_think, not partial, adding content\n", __func__);
|
||||
common_chat_parse_deepseek_v3_1_content(builder);
|
||||
} else if (builder.try_parse_reasoning("<think>", "</think>")) {
|
||||
// If reasoning was parsed successfully, the remaining content is regular content
|
||||
LOG_DBG("%s: parsed reasoning, adding content\n", __func__);
|
||||
// </think><|tool▁calls▁begin|><|tool▁call▁begin|>function<|tool▁sep|>NAME\n```json\nJSON\n```<|tool▁call▁end|><|tool▁calls▁end|>
|
||||
common_chat_parse_deepseek_v3_1_content(builder);
|
||||
} else {
|
||||
if (builder.syntax().reasoning_format == COMMON_REASONING_FORMAT_NONE) {
|
||||
LOG_DBG("%s: reasoning_format none, adding content\n", __func__);
|
||||
common_chat_parse_deepseek_v3_1_content(builder);
|
||||
return;
|
||||
}
|
||||
// If no reasoning tags found, check if we should treat everything as reasoning
|
||||
if (builder.syntax().thinking_forced_open) {
|
||||
// If thinking is forced open but no tags found, treat everything as reasoning
|
||||
LOG_DBG("%s: thinking_forced_open, adding reasoning content\n", __func__);
|
||||
builder.add_reasoning_content(builder.consume_rest());
|
||||
} else {
|
||||
LOG_DBG("%s: no thinking_forced_open, adding content\n", __func__);
|
||||
// <|tool▁call▁begin|>NAME<|tool▁sep|>JSON<|tool▁call▁end|>
|
||||
common_chat_parse_deepseek_v3_1_content(builder);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static common_chat_params common_chat_params_init_gpt_oss(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
common_chat_params data;
|
||||
auto prompt = apply(tmpl, inputs);
|
||||
@@ -1829,7 +2035,7 @@ static common_chat_params common_chat_params_init_hermes_2_pro(const common_chat
|
||||
// If thinking_forced_open, then we capture the </think> tag in the grammar,
|
||||
// (important for required tool choice) and in the trigger's first capture (decides what is sent to the grammar)
|
||||
std::string(data.thinking_forced_open ? "[\\s\\S]*?(</think>\\s*)" : "(?:<think>[\\s\\S]*?</think>\\s*)?") + (
|
||||
"(\\s*"
|
||||
"\\s*("
|
||||
"(?:<tool_call>"
|
||||
"|<function"
|
||||
"|(?:```(?:json|xml)?\n\\s*)?(?:<function_call>|<tools>|<xml><json>|<response>)?"
|
||||
@@ -2059,6 +2265,121 @@ static void common_chat_parse_granite(common_chat_msg_parser & builder) {
|
||||
}
|
||||
}
|
||||
|
||||
static void common_chat_parse_nemotron_v2(common_chat_msg_parser & builder) {
|
||||
// Parse thinking tags
|
||||
builder.try_parse_reasoning("<think>", "</think>");
|
||||
if (!builder.syntax().parse_tool_calls) {
|
||||
builder.add_content(builder.consume_rest());
|
||||
return;
|
||||
}
|
||||
|
||||
// Look for tool calls
|
||||
static const common_regex tool_call_regex(regex_escape("<TOOLCALL>"));
|
||||
if (auto res = builder.try_find_regex(tool_call_regex)) {
|
||||
builder.move_to(res->groups[0].end);
|
||||
|
||||
// Expect JSON array of tool calls
|
||||
auto tool_calls_data = builder.consume_json();
|
||||
if (tool_calls_data.json.is_array()) {
|
||||
if (!builder.try_consume_literal("</TOOLCALL>")) {
|
||||
throw common_chat_msg_partial_exception("Incomplete tool call");
|
||||
}
|
||||
builder.add_tool_calls(tool_calls_data.json);
|
||||
} else {
|
||||
throw common_chat_msg_partial_exception("Incomplete tool call");
|
||||
}
|
||||
}
|
||||
builder.add_content(builder.consume_rest());
|
||||
}
|
||||
|
||||
static void common_chat_parse_seed_oss(common_chat_msg_parser & builder) {
|
||||
// Parse thinking tags first - this handles the main reasoning content
|
||||
builder.try_parse_reasoning("<seed:think>", "</seed:think>");
|
||||
|
||||
if (!builder.syntax().parse_tool_calls) {
|
||||
builder.add_content(builder.consume_rest());
|
||||
return;
|
||||
}
|
||||
|
||||
// Parse tool calls - Seed-OSS uses <seed:tool_call> format
|
||||
static const common_regex tool_call_begin_regex("<seed:tool_call>");
|
||||
static const common_regex tool_call_end_regex("</seed:tool_call>");
|
||||
static const common_regex function_regex("<function=([^>]+)>");
|
||||
static const common_regex param_regex("<parameter=([^>]+)>");
|
||||
|
||||
while (auto tool_res = builder.try_find_regex(tool_call_begin_regex)) {
|
||||
builder.consume_spaces(); // Consume whitespace after <seed:tool_call>
|
||||
|
||||
// Look for function call inside tool call, ignore any content before it
|
||||
if (auto func_res = builder.try_find_regex(function_regex, std::string::npos, false)) {
|
||||
auto function_name = builder.str(func_res->groups[1]);
|
||||
|
||||
// Parse Seed-OSS parameters <parameter=name>value</parameter>
|
||||
json args = json::object();
|
||||
// Parse all parameters
|
||||
while (auto param_res = builder.try_find_regex(param_regex, std::string::npos, false)) {
|
||||
// again, ignore noise around parameters
|
||||
auto param_name = builder.str(param_res->groups[1]);
|
||||
builder.move_to(param_res->groups[0].end);
|
||||
builder.consume_spaces(); // Consume whitespace after parameter
|
||||
auto savedPos = builder.pos();
|
||||
if (auto param_parse = builder.try_find_literal("</parameter>")) {
|
||||
auto param = param_parse->prelude;
|
||||
builder.move_to(savedPos);
|
||||
try {
|
||||
if (auto param_res = builder.try_consume_json()) {
|
||||
args[param_name] = param_res->json;
|
||||
} else {
|
||||
args[param_name] = param;
|
||||
}
|
||||
} catch (json::exception &) {
|
||||
args[param_name] = param;
|
||||
}
|
||||
} else {
|
||||
throw common_chat_msg_partial_exception("Incomplete tool parameter");
|
||||
}
|
||||
}
|
||||
// Look for closing function tag
|
||||
auto end_func = builder.try_find_literal("</function>");
|
||||
if (end_func) {
|
||||
builder.move_to(end_func->groups[0].end);
|
||||
builder.consume_spaces(); // Consume whitespace after </function>
|
||||
|
||||
// Add the tool call with parsed arguments, but only if we REALLY got the literal
|
||||
auto eaten_fragment = builder.input().substr(end_func->groups[0].begin, end_func->groups[0].end);
|
||||
auto funlen = std::string("</function>").length();
|
||||
if (eaten_fragment.length() >= funlen && eaten_fragment.substr(0, funlen) == std::string("</function>")) {
|
||||
if (!builder.add_tool_call(function_name, "", args.dump())) {
|
||||
throw common_chat_msg_partial_exception("Incomplete tool call");
|
||||
}
|
||||
} else {
|
||||
throw common_chat_msg_partial_exception("Incomplete tool call");
|
||||
}
|
||||
} else {
|
||||
throw common_chat_msg_partial_exception("Incomplete tool call");
|
||||
}
|
||||
// Look for closing tool call tag
|
||||
if (auto end_tool = builder.try_find_regex(tool_call_end_regex, std::string::npos, false)) {
|
||||
builder.move_to(end_tool->groups[0].end);
|
||||
builder.consume_spaces(); // Consume trailing whitespace after tool call
|
||||
} else {
|
||||
throw common_chat_msg_partial_exception("Incomplete tool call");
|
||||
}
|
||||
} else {
|
||||
// No function found - don't consume content here, let it be handled at the end
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Consume any remaining whitespace after all tool call processing
|
||||
builder.consume_spaces();
|
||||
auto remaining = builder.consume_rest();
|
||||
// If there's any non-whitespace content remaining, add it as content
|
||||
if (!string_strip(remaining).empty()) {
|
||||
builder.add_content(remaining);
|
||||
}
|
||||
}
|
||||
|
||||
static common_chat_params common_chat_params_init_without_tools(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
common_chat_params data;
|
||||
data.prompt = apply(tmpl, inputs);
|
||||
@@ -2075,8 +2396,62 @@ static common_chat_params common_chat_params_init_without_tools(const common_cha
|
||||
return data;
|
||||
}
|
||||
|
||||
static common_chat_params common_chat_params_init_seed_oss(
|
||||
const common_chat_template & tmpl,
|
||||
templates_params & params,
|
||||
const common_chat_templates_inputs & inputs)
|
||||
{
|
||||
common_chat_params data;
|
||||
data.prompt = apply(tmpl, params);
|
||||
data.format = COMMON_CHAT_FORMAT_SEED_OSS;
|
||||
if (string_ends_with(data.prompt, "<seed:think>")) {
|
||||
if (!inputs.enable_thinking) {
|
||||
data.prompt += "</seed:think>";
|
||||
} else {
|
||||
data.thinking_forced_open = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (params.tools.is_array() && !params.tools.empty()) {
|
||||
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
|
||||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||||
std::vector<std::string> tool_rules;
|
||||
foreach_function(params.tools, [&](const json & tool) {
|
||||
const auto & function = tool.at("function");
|
||||
std::string name = function.at("name");
|
||||
auto parameters = function.at("parameters");
|
||||
builder.resolve_refs(parameters);
|
||||
|
||||
// Create rule for Seed-OSS function call format
|
||||
std::string param_rules;
|
||||
if (parameters.contains("properties")) {
|
||||
for (const auto & [key, value] : parameters.at("properties").items()) {
|
||||
param_rules += "\"<parameter=" + key + ">\"" + builder.add_schema(name + "-arg-" + key, value) +
|
||||
"\"</parameter>\"";
|
||||
}
|
||||
}
|
||||
|
||||
tool_rules.push_back(builder.add_rule(name + "-call",
|
||||
"\"<seed:tool_call>\" space \"<function=" + name + ">\" space " +
|
||||
param_rules +
|
||||
" \"</function>\" space \"</seed:tool_call>\""));
|
||||
});
|
||||
|
||||
data.grammar_triggers.push_back({ COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<seed:tool_call>" });
|
||||
|
||||
data.preserved_tokens = {
|
||||
"<seed:think>", "</seed:think>", "<seed:tool_call>", "</seed:tool_call>",
|
||||
"<function=", "</function>", "<parameter=", "</parameter>",
|
||||
};
|
||||
|
||||
builder.add_rule("root", string_join(tool_rules, " | "));
|
||||
});
|
||||
}
|
||||
return data;
|
||||
}
|
||||
|
||||
static common_chat_params common_chat_templates_apply_jinja(
|
||||
const struct common_chat_templates * tmpls,
|
||||
const struct common_chat_templates * tmpls,
|
||||
const struct common_chat_templates_inputs & inputs)
|
||||
{
|
||||
templates_params params;
|
||||
@@ -2120,6 +2495,12 @@ static common_chat_params common_chat_templates_apply_jinja(
|
||||
}
|
||||
}
|
||||
|
||||
// DeepSeek V3.1: detect based on specific patterns in the template
|
||||
if (src.find("message['prefix'] is defined and message['prefix'] and thinking") != std::string::npos &&
|
||||
params.json_schema.is_null()) {
|
||||
return common_chat_params_init_deepseek_v3_1(tmpl, params);
|
||||
}
|
||||
|
||||
// DeepSeek R1: use handler in all cases except json schema (thinking / tools).
|
||||
if (src.find("<|tool▁calls▁begin|>") != std::string::npos && params.json_schema.is_null()) {
|
||||
return common_chat_params_init_deepseek_r1(tmpl, params);
|
||||
@@ -2145,6 +2526,16 @@ static common_chat_params common_chat_templates_apply_jinja(
|
||||
return common_chat_params_init_gpt_oss(tmpl, params);
|
||||
}
|
||||
|
||||
// Seed-OSS
|
||||
if (src.find("<seed:think>") != std::string::npos) {
|
||||
return common_chat_params_init_seed_oss(tmpl, params, inputs);
|
||||
}
|
||||
|
||||
// Nemotron v2
|
||||
if (src.find("<SPECIAL_10>") != std::string::npos) {
|
||||
return common_chat_params_init_nemotron_v2(tmpl, params);
|
||||
}
|
||||
|
||||
// Use generic handler when mixing tools + JSON schema.
|
||||
// TODO: support that mix in handlers below.
|
||||
if ((params.tools.is_array() && params.json_schema.is_object())) {
|
||||
@@ -2282,6 +2673,9 @@ static void common_chat_parse(common_chat_msg_parser & builder) {
|
||||
case COMMON_CHAT_FORMAT_DEEPSEEK_R1:
|
||||
common_chat_parse_deepseek_r1(builder);
|
||||
break;
|
||||
case COMMON_CHAT_FORMAT_DEEPSEEK_V3_1:
|
||||
common_chat_parse_deepseek_v3_1(builder);
|
||||
break;
|
||||
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2:
|
||||
common_chat_parse_functionary_v3_2(builder);
|
||||
break;
|
||||
@@ -2303,6 +2697,12 @@ static void common_chat_parse(common_chat_msg_parser & builder) {
|
||||
case COMMON_CHAT_FORMAT_GPT_OSS:
|
||||
common_chat_parse_gpt_oss(builder);
|
||||
break;
|
||||
case COMMON_CHAT_FORMAT_SEED_OSS:
|
||||
common_chat_parse_seed_oss(builder);
|
||||
break;
|
||||
case COMMON_CHAT_FORMAT_NEMOTRON_V2:
|
||||
common_chat_parse_nemotron_v2(builder);
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error(std::string("Unsupported format: ") + common_chat_format_name(builder.syntax().format));
|
||||
}
|
||||
|
||||
@@ -107,10 +107,13 @@ enum common_chat_format {
|
||||
COMMON_CHAT_FORMAT_FIREFUNCTION_V2,
|
||||
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2,
|
||||
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1,
|
||||
COMMON_CHAT_FORMAT_DEEPSEEK_V3_1,
|
||||
COMMON_CHAT_FORMAT_HERMES_2_PRO,
|
||||
COMMON_CHAT_FORMAT_COMMAND_R7B,
|
||||
COMMON_CHAT_FORMAT_GRANITE,
|
||||
COMMON_CHAT_FORMAT_GPT_OSS,
|
||||
COMMON_CHAT_FORMAT_SEED_OSS,
|
||||
COMMON_CHAT_FORMAT_NEMOTRON_V2,
|
||||
|
||||
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
|
||||
};
|
||||
@@ -197,6 +200,8 @@ common_chat_msg common_chat_parse(const std::string & input, bool is_p
|
||||
|
||||
common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::string & tool_choice);
|
||||
|
||||
bool common_chat_templates_support_enable_thinking(const common_chat_templates * chat_templates);
|
||||
|
||||
// Parses a JSON array of messages in OpenAI's chat completion API format.
|
||||
// T can be std::string containing JSON or nlohmann::ordered_json
|
||||
template <class T> std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const T & messages);
|
||||
|
||||
@@ -901,7 +901,8 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.path.c_str());
|
||||
LOG_ERR("%s: failed to load model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n",
|
||||
__func__, params.model.path.c_str());
|
||||
return iparams;
|
||||
}
|
||||
|
||||
@@ -911,7 +912,8 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
|
||||
llama_context * lctx = llama_init_from_model(model, cparams);
|
||||
if (lctx == NULL) {
|
||||
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str());
|
||||
LOG_ERR("%s: failed to create context with model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n",
|
||||
__func__, params.model.path.c_str());
|
||||
llama_model_free(model);
|
||||
return iparams;
|
||||
}
|
||||
@@ -988,7 +990,12 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
return iparams;
|
||||
}
|
||||
|
||||
char buf[1024];
|
||||
la.ptr = lora.get();
|
||||
llama_adapter_meta_val_str(la.ptr, "adapter.lora.task_name", buf, sizeof(buf));
|
||||
la.task_name = buf;
|
||||
llama_adapter_meta_val_str(la.ptr, "adapter.lora.prompt_prefix", buf, sizeof(buf));
|
||||
la.prompt_prefix = buf;
|
||||
iparams.lora.emplace_back(std::move(lora)); // copy to list of loaded adapters
|
||||
}
|
||||
|
||||
@@ -1152,10 +1159,10 @@ struct llama_context_params common_context_params_to_llama(const common_params &
|
||||
cparams.yarn_orig_ctx = params.yarn_orig_ctx;
|
||||
cparams.pooling_type = params.pooling_type;
|
||||
cparams.attention_type = params.attention_type;
|
||||
cparams.flash_attn_type = params.flash_attn_type;
|
||||
cparams.cb_eval = params.cb_eval;
|
||||
cparams.cb_eval_user_data = params.cb_eval_user_data;
|
||||
cparams.offload_kqv = !params.no_kv_offload;
|
||||
cparams.flash_attn = params.flash_attn;
|
||||
cparams.no_perf = params.no_perf;
|
||||
cparams.op_offload = !params.no_op_offload;
|
||||
cparams.swa_full = params.swa_full;
|
||||
|
||||
@@ -34,6 +34,9 @@ struct common_adapter_lora_info {
|
||||
std::string path;
|
||||
float scale;
|
||||
|
||||
std::string task_name;
|
||||
std::string prompt_prefix;
|
||||
|
||||
struct llama_adapter_lora * ptr;
|
||||
};
|
||||
|
||||
@@ -309,6 +312,7 @@ struct common_params {
|
||||
enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
|
||||
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
|
||||
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
|
||||
enum llama_flash_attn_type flash_attn_type = LLAMA_FLASH_ATTN_TYPE_AUTO; // whether to use Flash Attention
|
||||
|
||||
struct common_params_sampling sampling;
|
||||
struct common_params_speculative speculative;
|
||||
@@ -372,7 +376,6 @@ struct common_params {
|
||||
bool multiline_input = false; // reverse the usage of `\`
|
||||
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
|
||||
bool cont_batching = true; // insert new sequences for decoding on-the-fly
|
||||
bool flash_attn = false; // flash attention
|
||||
bool no_perf = false; // disable performance metrics
|
||||
bool ctx_shift = false; // context shift on infinite text generation
|
||||
bool swa_full = false; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
|
||||
@@ -441,7 +444,7 @@ struct common_params {
|
||||
|
||||
// "advanced" endpoints are disabled by default for better security
|
||||
bool webui = true;
|
||||
bool endpoint_slots = false;
|
||||
bool endpoint_slots = true;
|
||||
bool endpoint_props = false; // only control POST requests, not GET
|
||||
bool endpoint_metrics = false;
|
||||
|
||||
|
||||
@@ -843,9 +843,10 @@ public:
|
||||
_build_object_rule(
|
||||
properties, required, name,
|
||||
schema.contains("additionalProperties") ? schema["additionalProperties"] : json()));
|
||||
} else if ((schema_type.is_null() || schema_type == "object") && schema.contains("allOf")) {
|
||||
} else if ((schema_type.is_null() || schema_type == "object" || schema_type == "string") && schema.contains("allOf")) {
|
||||
std::unordered_set<std::string> required;
|
||||
std::vector<std::pair<std::string, json>> properties;
|
||||
std::map<std::string, size_t> enum_values;
|
||||
std::string hybrid_name = name;
|
||||
std::function<void(const json &, bool)> add_component = [&](const json & comp_schema, bool is_required) {
|
||||
if (comp_schema.contains("$ref")) {
|
||||
@@ -857,6 +858,14 @@ public:
|
||||
required.insert(prop.key());
|
||||
}
|
||||
}
|
||||
} else if (comp_schema.contains("enum")) {
|
||||
for (const auto & v : comp_schema["enum"]) {
|
||||
const auto rule = _generate_constant_rule(v);
|
||||
if (enum_values.find(rule) == enum_values.end()) {
|
||||
enum_values[rule] = 0;
|
||||
}
|
||||
enum_values[rule] += 1;
|
||||
}
|
||||
} else {
|
||||
// todo warning
|
||||
}
|
||||
@@ -870,6 +879,17 @@ public:
|
||||
add_component(t, true);
|
||||
}
|
||||
}
|
||||
if (!enum_values.empty()) {
|
||||
std::vector<std::string> enum_intersection;
|
||||
for (const auto & p : enum_values) {
|
||||
if (p.second == schema["allOf"].size()) {
|
||||
enum_intersection.push_back(p.first);
|
||||
}
|
||||
}
|
||||
if (!enum_intersection.empty()) {
|
||||
return _add_rule(rule_name, "(" + string_join(enum_intersection, " | ") + ") space");
|
||||
}
|
||||
}
|
||||
return _add_rule(rule_name, _build_object_rule(properties, required, hybrid_name, json()));
|
||||
} else if ((schema_type.is_null() || schema_type == "array") && (schema.contains("items") || schema.contains("prefixItems"))) {
|
||||
json items = schema.contains("items") ? schema["items"] : schema["prefixItems"];
|
||||
|
||||
@@ -4,17 +4,52 @@
|
||||
#include <condition_variable>
|
||||
#include <cstdarg>
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <mutex>
|
||||
#include <sstream>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
#if defined(_WIN32)
|
||||
# include <io.h>
|
||||
# include <windows.h>
|
||||
# define isatty _isatty
|
||||
# define fileno _fileno
|
||||
#else
|
||||
# include <unistd.h>
|
||||
#endif // defined(_WIN32)
|
||||
|
||||
int common_log_verbosity_thold = LOG_DEFAULT_LLAMA;
|
||||
|
||||
void common_log_set_verbosity_thold(int verbosity) {
|
||||
common_log_verbosity_thold = verbosity;
|
||||
}
|
||||
|
||||
// Auto-detect if colors should be enabled based on terminal and environment
|
||||
static bool common_log_should_use_colors_auto() {
|
||||
// Check NO_COLOR environment variable (https://no-color.org/)
|
||||
if (const char * no_color = std::getenv("NO_COLOR")) {
|
||||
if (no_color[0] != '\0') {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Check TERM environment variable
|
||||
if (const char * term = std::getenv("TERM")) {
|
||||
if (std::strcmp(term, "dumb") == 0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Check if stdout and stderr are connected to a terminal
|
||||
// We check both because log messages can go to either
|
||||
bool stdout_is_tty = isatty(fileno(stdout));
|
||||
bool stderr_is_tty = isatty(fileno(stderr));
|
||||
|
||||
return stdout_is_tty || stderr_is_tty;
|
||||
}
|
||||
|
||||
static int64_t t_us() {
|
||||
return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::system_clock::now().time_since_epoch()).count();
|
||||
}
|
||||
@@ -353,6 +388,11 @@ struct common_log * common_log_init() {
|
||||
|
||||
struct common_log * common_log_main() {
|
||||
static struct common_log log;
|
||||
static std::once_flag init_flag;
|
||||
std::call_once(init_flag, [&]() {
|
||||
// Set default to auto-detect colors
|
||||
log.set_colors(common_log_should_use_colors_auto());
|
||||
});
|
||||
|
||||
return &log;
|
||||
}
|
||||
@@ -380,8 +420,19 @@ void common_log_set_file(struct common_log * log, const char * file) {
|
||||
log->set_file(file);
|
||||
}
|
||||
|
||||
void common_log_set_colors(struct common_log * log, bool colors) {
|
||||
log->set_colors(colors);
|
||||
void common_log_set_colors(struct common_log * log, log_colors colors) {
|
||||
if (colors == LOG_COLORS_AUTO) {
|
||||
log->set_colors(common_log_should_use_colors_auto());
|
||||
return;
|
||||
}
|
||||
|
||||
if (colors == LOG_COLORS_DISABLED) {
|
||||
log->set_colors(false);
|
||||
return;
|
||||
}
|
||||
|
||||
GGML_ASSERT(colors == LOG_COLORS_ENABLED);
|
||||
log->set_colors(true);
|
||||
}
|
||||
|
||||
void common_log_set_prefix(struct common_log * log, bool prefix) {
|
||||
|
||||
14
common/log.h
14
common/log.h
@@ -24,6 +24,12 @@
|
||||
#define LOG_DEFAULT_DEBUG 1
|
||||
#define LOG_DEFAULT_LLAMA 0
|
||||
|
||||
enum log_colors {
|
||||
LOG_COLORS_AUTO = -1,
|
||||
LOG_COLORS_DISABLED = 0,
|
||||
LOG_COLORS_ENABLED = 1,
|
||||
};
|
||||
|
||||
// needed by the LOG_TMPL macro to avoid computing log arguments if the verbosity lower
|
||||
// set via common_log_set_verbosity()
|
||||
extern int common_log_verbosity_thold;
|
||||
@@ -65,10 +71,10 @@ void common_log_add(struct common_log * log, enum ggml_log_level level, const ch
|
||||
// D - debug (stderr, V = LOG_DEFAULT_DEBUG)
|
||||
//
|
||||
|
||||
void common_log_set_file (struct common_log * log, const char * file); // not thread-safe
|
||||
void common_log_set_colors (struct common_log * log, bool colors); // not thread-safe
|
||||
void common_log_set_prefix (struct common_log * log, bool prefix); // whether to output prefix to each log
|
||||
void common_log_set_timestamps(struct common_log * log, bool timestamps); // whether to output timestamps in the prefix
|
||||
void common_log_set_file (struct common_log * log, const char * file); // not thread-safe
|
||||
void common_log_set_colors (struct common_log * log, log_colors colors); // not thread-safe
|
||||
void common_log_set_prefix (struct common_log * log, bool prefix); // whether to output prefix to each log
|
||||
void common_log_set_timestamps(struct common_log * log, bool timestamps); // whether to output timestamps in the prefix
|
||||
|
||||
// helper macros for logging
|
||||
// use these to avoid computing log arguments if the verbosity of the log is higher than the threshold
|
||||
|
||||
@@ -426,8 +426,29 @@ uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
|
||||
|
||||
// helpers
|
||||
|
||||
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl) {
|
||||
return &gsmpl->cur_p;
|
||||
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl, bool do_sort) {
|
||||
auto * res = &gsmpl->cur_p;
|
||||
|
||||
if (do_sort && !res->sorted) {
|
||||
// remember the selected token before sorting
|
||||
const llama_token id = res->data[res->selected].id;
|
||||
|
||||
std::sort(res->data, res->data + res->size, [](const llama_token_data & a, const llama_token_data & b) {
|
||||
return a.p > b.p;
|
||||
});
|
||||
|
||||
// restore the selected token after sorting
|
||||
for (size_t i = 0; i < res->size; ++i) {
|
||||
if (res->data[i].id == id) {
|
||||
res->selected = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
res->sorted = true;
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
llama_token common_sampler_last(const struct common_sampler * gsmpl) {
|
||||
|
||||
@@ -86,7 +86,9 @@ uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl);
|
||||
// helpers
|
||||
|
||||
// access the internal list of current candidate tokens
|
||||
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl);
|
||||
// if do_sort == true, the candidates are guaranteed to be sorted afterwards (in descending order of probability)
|
||||
// the .sorted flag of the result indicates whether the returned candidates are sorted
|
||||
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl, bool do_sort);
|
||||
|
||||
// get the last accepted token
|
||||
llama_token common_sampler_last(const struct common_sampler * gsmpl);
|
||||
|
||||
@@ -317,7 +317,7 @@ llama_tokens common_speculative_gen_draft(
|
||||
|
||||
common_sampler_sample(smpl, ctx_dft, 0, true);
|
||||
|
||||
const auto * cur_p = common_sampler_get_candidates(smpl);
|
||||
const auto * cur_p = common_sampler_get_candidates(smpl, true);
|
||||
|
||||
for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) {
|
||||
LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n",
|
||||
|
||||
@@ -72,6 +72,7 @@ class ModelBase:
|
||||
endianess: gguf.GGUFEndian
|
||||
use_temp_file: bool
|
||||
lazy: bool
|
||||
dry_run: bool
|
||||
part_names: list[str]
|
||||
is_safetensors: bool
|
||||
hparams: dict[str, Any]
|
||||
@@ -111,6 +112,7 @@ class ModelBase:
|
||||
self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
|
||||
self.use_temp_file = use_temp_file
|
||||
self.lazy = not eager or (remote_hf_model_id is not None)
|
||||
self.dry_run = dry_run
|
||||
self.remote_hf_model_id = remote_hf_model_id
|
||||
if remote_hf_model_id is not None:
|
||||
self.is_safetensors = True
|
||||
@@ -300,10 +302,6 @@ class ModelBase:
|
||||
# data = data_torch.squeeze().numpy()
|
||||
data = data_torch.numpy()
|
||||
|
||||
# if data ends up empty, it means data_torch was a scalar tensor -> restore
|
||||
if len(data.shape) == 0:
|
||||
data = data_torch.numpy()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
|
||||
|
||||
@@ -4871,11 +4869,35 @@ class NeoBert(BertModel):
|
||||
@ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
|
||||
class XLMRobertaModel(BertModel):
|
||||
model_arch = gguf.MODEL_ARCH.BERT
|
||||
_lora_files = {}
|
||||
_lora_names = []
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
|
||||
hparams = kwargs.pop("hparams", None)
|
||||
if hparams is None:
|
||||
hparams = ModelBase.load_hparams(dir_model, False)
|
||||
|
||||
if lora_names := hparams.get("lora_adaptations"):
|
||||
self._lora_names = lora_names
|
||||
self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
|
||||
|
||||
super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
|
||||
self._xlmroberta_tokenizer_init()
|
||||
|
||||
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
|
||||
if self._lora_names:
|
||||
for name in self._lora_names:
|
||||
fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
|
||||
self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
|
||||
|
||||
return super().generate_extra_tensors()
|
||||
|
||||
def set_type(self):
|
||||
for lora_writer in self._lora_files.values():
|
||||
lora_writer.add_type(gguf.GGUFType.ADAPTER)
|
||||
lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
|
||||
super().set_type()
|
||||
|
||||
def set_vocab(self):
|
||||
self._xlmroberta_set_vocab()
|
||||
|
||||
@@ -4885,13 +4907,62 @@ class XLMRobertaModel(BertModel):
|
||||
if name.startswith("roberta."):
|
||||
name = name[8:]
|
||||
|
||||
# jina-embeddings-v3
|
||||
if ".parametrizations." in name:
|
||||
name = name.replace(".parametrizations.", ".")
|
||||
if name.endswith(".original"):
|
||||
name = name[:-9]
|
||||
|
||||
# position embeddings start at pad_token_id + 1, so just chop down the weight tensor
|
||||
if name == "embeddings.position_embeddings.weight":
|
||||
if self._position_offset is not None:
|
||||
data_torch = data_torch[self._position_offset:,:]
|
||||
|
||||
if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
|
||||
if name.startswith("pooler.dense"):
|
||||
return []
|
||||
|
||||
num_loras = data_torch.size(0)
|
||||
assert num_loras == len(self._lora_names)
|
||||
|
||||
# Split out each LoRA in their own GGUF
|
||||
for i, lora_writer in enumerate(self._lora_files.values()):
|
||||
new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
|
||||
data = data_torch[i, :, :]
|
||||
# Transpose/flip token_embd/types into correct shape
|
||||
if new_name == "token_embd.weight.lora_b":
|
||||
data = data.T
|
||||
elif new_name.startswith("token_types.weight."):
|
||||
new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
|
||||
lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
|
||||
|
||||
return []
|
||||
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
|
||||
# jina-embeddings-v3
|
||||
if rotary_emb_base := self.hparams.get("rotary_emb_base"):
|
||||
self.gguf_writer.add_rope_freq_base(rotary_emb_base)
|
||||
lora_alpha = self.hparams.get("lora_alpha")
|
||||
if lora_prompt_prefixes := self.hparams.get("task_instructions"):
|
||||
assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
|
||||
for lora_name, lora_writer in self._lora_files.items():
|
||||
lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
|
||||
lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
|
||||
if lora_prompt_prefixes:
|
||||
lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
|
||||
|
||||
def write(self):
|
||||
super().write()
|
||||
for lora_writer in self._lora_files.values():
|
||||
lora_writer.write_header_to_file()
|
||||
lora_writer.write_kv_data_to_file()
|
||||
lora_writer.write_tensors_to_file(progress=True)
|
||||
lora_writer.close()
|
||||
|
||||
|
||||
@ModelBase.register("GemmaForCausalLM")
|
||||
class GemmaModel(TextModel):
|
||||
@@ -5051,6 +5122,29 @@ class Gemma3Model(TextModel):
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@ModelBase.register("Gemma3TextModel")
|
||||
class EmbeddingGemma(Gemma3Model):
|
||||
model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
|
||||
# Override the sliding window size as it gets adjusted by the Gemma3TextConfig
|
||||
# constructor. We want to use the value from the original model's config.json.
|
||||
# ref: https://github.com/huggingface/transformers/pull/40700
|
||||
with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||
config = json.load(f)
|
||||
orig_sliding_window = config.get("sliding_window")
|
||||
if orig_sliding_window is None:
|
||||
raise ValueError("sliding_window not found in model config - this is required for the model")
|
||||
|
||||
logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
|
||||
f"instead of {self.hparams['sliding_window']}")
|
||||
self.gguf_writer.add_sliding_window(orig_sliding_window)
|
||||
|
||||
self._try_set_pooling_type()
|
||||
|
||||
|
||||
@ModelBase.register("Gemma3ForConditionalGeneration")
|
||||
class Gemma3VisionModel(MmprojModel):
|
||||
def set_gguf_parameters(self):
|
||||
@@ -7471,9 +7565,13 @@ class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
|
||||
]
|
||||
|
||||
# n_group and d_inner are used during reshape_tensors for mamba2
|
||||
self.d_model = self.find_hparam(["hidden_size", "d_model"])
|
||||
self.n_group = self.find_hparam(["n_groups"])
|
||||
self.d_inner = self.find_hparam(["expand"]) * self.d_model
|
||||
# NOTE: Explicitly include hparam prefix prefix for d_model to
|
||||
# disambiguate with top-level head_dim
|
||||
# NOTE 2: If needed for future models, this can be isolated in a method
|
||||
# to separate the prefix setting and teh keys used
|
||||
self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
|
||||
self.n_group = self.find_hparam(["n_groups", "num_groups"])
|
||||
self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
|
||||
|
||||
def get_attn_layers(self):
|
||||
# Explicit list of layer type names
|
||||
@@ -7534,12 +7632,12 @@ class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
|
||||
|
||||
## Mamba mixer params ##
|
||||
self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
|
||||
self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state"]))
|
||||
self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
|
||||
self.gguf_writer.add_ssm_group_count(self.n_group)
|
||||
self.gguf_writer.add_ssm_inner_size(self.d_inner)
|
||||
# NOTE: The mamba_dt_rank is _not_ the right field for how this is used
|
||||
# in llama.cpp
|
||||
self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads"]))
|
||||
self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
|
||||
|
||||
## Attention params ##
|
||||
head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
|
||||
@@ -7566,6 +7664,55 @@ class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
|
||||
Mamba2Model.set_vocab(self)
|
||||
|
||||
|
||||
@ModelBase.register("NemotronHForCausalLM")
|
||||
class NemotronHModel(GraniteHybridModel):
|
||||
"""Hybrid mamba2/attention model from NVIDIA"""
|
||||
model_arch = gguf.MODEL_ARCH.NEMOTRON_H
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
# Save the top-level head_dim for later
|
||||
self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
|
||||
assert self.head_dim is not None, "Could not find the attention head dim in config"
|
||||
|
||||
# Don't use expand to calculate d_inner
|
||||
self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
|
||||
|
||||
# Update the ssm / attn / mlp layers
|
||||
# M: Mamba2, *: Attention, -: MLP
|
||||
hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
|
||||
self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
|
||||
self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "-"]
|
||||
|
||||
def get_attn_layers(self):
|
||||
hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
|
||||
assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
|
||||
return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
|
||||
self.gguf_writer.add_key_length(self.head_dim)
|
||||
self.gguf_writer.add_value_length(self.head_dim)
|
||||
|
||||
# Set feed_forward_length
|
||||
# NOTE: This will trigger an override warning. This is preferrable to
|
||||
# duplicating all the parent logic
|
||||
n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
|
||||
self.gguf_writer.add_feed_forward_length([
|
||||
n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
|
||||
])
|
||||
|
||||
def set_vocab(self):
|
||||
super().set_vocab()
|
||||
|
||||
# The tokenizer _does_ add a BOS token (via post_processor type
|
||||
# TemplateProcessing) but does not set add_bos_token to true in the
|
||||
# config, so we need to explicitly override it here.
|
||||
self.gguf_writer.add_add_bos_token(True)
|
||||
|
||||
|
||||
@ModelBase.register("BailingMoeForCausalLM")
|
||||
class BailingMoeModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.BAILINGMOE
|
||||
|
||||
@@ -12,7 +12,7 @@ import json
|
||||
from math import prod
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any, Callable, Iterable, Iterator, Sequence, SupportsIndex, cast
|
||||
from transformers import AutoConfig
|
||||
from transformers import AutoConfig, AutoTokenizer
|
||||
|
||||
import torch
|
||||
|
||||
@@ -26,6 +26,8 @@ import gguf
|
||||
# reuse model definitions from convert_hf_to_gguf.py
|
||||
from convert_hf_to_gguf import LazyTorchTensor, ModelBase
|
||||
|
||||
from gguf.constants import GGUFValueType
|
||||
|
||||
logger = logging.getLogger("lora-to-gguf")
|
||||
|
||||
|
||||
@@ -369,7 +371,31 @@ if __name__ == '__main__':
|
||||
self.gguf_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
logger.debug("GGUF KV: %s = %d", gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha)
|
||||
self.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha)
|
||||
alora_invocation_tokens = lparams.get("alora_invocation_tokens")
|
||||
invocation_string = lparams.get("invocation_string")
|
||||
if invocation_string and not alora_invocation_tokens:
|
||||
logger.debug("Tokenizing invocation_string -> alora_invocation_tokens")
|
||||
base_model_path_or_id = hparams.get("_name_or_path")
|
||||
try:
|
||||
tokenizer = AutoTokenizer.from_pretrained(base_model_path_or_id)
|
||||
except ValueError:
|
||||
logger.error("Unable to load tokenizer from %s", base_model_path_or_id)
|
||||
raise
|
||||
# NOTE: There's an off-by-one with the older aLoRAs where
|
||||
# the invocation string includes the "<|start_of_turn|>"
|
||||
# token, but the adapters themselves were trained to
|
||||
# activate _after_ that first token, so we drop it here.
|
||||
alora_invocation_tokens = tokenizer(invocation_string)["input_ids"][1:]
|
||||
if alora_invocation_tokens:
|
||||
logger.debug("GGUF KV: %s = %s", gguf.Keys.Adapter.ALORA_INVOCATION_TOKENS, alora_invocation_tokens)
|
||||
self.gguf_writer.add_key_value(
|
||||
gguf.Keys.Adapter.ALORA_INVOCATION_TOKENS,
|
||||
alora_invocation_tokens,
|
||||
GGUFValueType.ARRAY,
|
||||
GGUFValueType.UINT32,
|
||||
)
|
||||
|
||||
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
|
||||
# Never add extra tensors (e.g. rope_freqs) for LoRA adapters
|
||||
|
||||
@@ -293,17 +293,14 @@ We would like to thank Tuo Dai, Shanni Li, and all of the project maintainers fr
|
||||
|
||||
## Environment variable setup
|
||||
|
||||
### GGML_CANN_ASYNC_MODE
|
||||
|
||||
Enables asynchronous operator submission. Disabled by default.
|
||||
|
||||
### GGML_CANN_MEM_POOL
|
||||
|
||||
Specifies the memory pool management strategy:
|
||||
Specifies the memory pool management strategy, Default is vmm.
|
||||
|
||||
- vmm: Utilizes a virtual memory manager pool. If hardware support for VMM is unavailable, falls back to the legacy (leg) memory pool.
|
||||
|
||||
- prio: Employs a priority queue-based memory pool management.
|
||||
|
||||
- leg: Uses a fixed-size buffer pool.
|
||||
|
||||
### GGML_CANN_DISABLE_BUF_POOL_CLEAN
|
||||
@@ -312,5 +309,8 @@ Controls automatic cleanup of the memory pool. This option is only effective whe
|
||||
|
||||
### GGML_CANN_WEIGHT_NZ
|
||||
|
||||
Converting the matmul weight format from ND to NZ can significantly improve performance on the 310I DUO NPU.
|
||||
Converting the matmul weight format from ND to NZ to improve performance. Enabled by default.
|
||||
|
||||
### GGML_CANN_ACL_GRAPH
|
||||
|
||||
Operators are executed using ACL graph execution, rather than in op-by-op (eager) mode. Enabled by default.
|
||||
|
||||
@@ -42,18 +42,6 @@ cmake --build build --config Release -j $(nproc)
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
```
|
||||
|
||||
- By default, NNPA is disabled by default. To enable it:
|
||||
|
||||
```bash
|
||||
cmake -S . -B build \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_BLAS=ON \
|
||||
-DGGML_BLAS_VENDOR=OpenBLAS \
|
||||
-DGGML_NNPA=ON
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
```
|
||||
|
||||
- For debug builds:
|
||||
|
||||
```bash
|
||||
@@ -164,15 +152,11 @@ All models need to be converted to Big-Endian. You can achieve this in three cas
|
||||
|
||||
Only available in IBM z15/LinuxONE 3 or later system with the `-DGGML_VXE=ON` (turned on by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z14/arch12. In such systems, the APIs can still run but will use a scalar implementation.
|
||||
|
||||
### 2. NNPA Vector Intrinsics Acceleration
|
||||
|
||||
Only available in IBM z16/LinuxONE 4 or later system with the `-DGGML_NNPA=ON` (turned off by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z15/arch13. In such systems, the APIs can still run but will use a scalar implementation.
|
||||
|
||||
### 3. zDNN Accelerator (WIP)
|
||||
### 2. zDNN Accelerator (WIP)
|
||||
|
||||
Only available in IBM z17/LinuxONE 5 or later system with the `-DGGML_ZDNN=ON` compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z15/arch13. In such systems, the APIs will default back to CPU routines.
|
||||
|
||||
### 4. Spyre Accelerator
|
||||
### 3. Spyre Accelerator
|
||||
|
||||
_Only available with IBM z17 / LinuxONE 5 or later system. No support currently available._
|
||||
|
||||
@@ -230,10 +214,6 @@ IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongl
|
||||
CXXFLAGS="-include cstdint" pip3 install -r requirements.txt
|
||||
```
|
||||
|
||||
5. `-DGGML_NNPA=ON` generates gibberish output
|
||||
|
||||
Answer: We are aware of this as detailed in [this issue](https://github.com/ggml-org/llama.cpp/issues/14877). Please either try reducing the number of threads, or disable the compile option using `-DGGML_NNPA=OFF`.
|
||||
|
||||
## Getting Help on IBM Z & LinuxONE
|
||||
|
||||
1. **Bugs, Feature Requests**
|
||||
@@ -258,38 +238,38 @@ IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongl
|
||||
|
||||
## Appendix B: SIMD Support Matrix
|
||||
|
||||
| | VX/VXE/VXE2 | NNPA | zDNN | Spyre |
|
||||
| ---------- | ----------- | ---- | ---- | ----- |
|
||||
| FP32 | ✅ | ✅ | ✅ | ❓ |
|
||||
| FP16 | ✅ | ✅ | ❓ | ❓ |
|
||||
| BF16 | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| Q4_0 | ✅ | ✅ | ❓ | ❓ |
|
||||
| Q4_1 | ✅ | ✅ | ❓ | ❓ |
|
||||
| MXFP4 | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| Q5_0 | ✅ | ✅ | ❓ | ❓ |
|
||||
| Q5_1 | ✅ | ✅ | ❓ | ❓ |
|
||||
| Q8_0 | ✅ | ✅ | ❓ | ❓ |
|
||||
| Q2_K | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| Q3_K | ✅ | ✅ | ❓ | ❓ |
|
||||
| Q4_K | ✅ | ✅ | ❓ | ❓ |
|
||||
| Q5_K | ✅ | ✅ | ❓ | ❓ |
|
||||
| Q6_K | ✅ | ✅ | ❓ | ❓ |
|
||||
| TQ1_0 | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| TQ2_0 | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| IQ2_XXS | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| IQ2_XS | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| IQ2_S | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| IQ3_XXS | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| IQ3_S | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| IQ1_S | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| IQ1_M | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| IQ4_NL | ✅ | ✅ | ❓ | ❓ |
|
||||
| IQ4_XS | ✅ | ✅ | ❓ | ❓ |
|
||||
| FP32->FP16 | 🚫 | ✅ | ❓ | ❓ |
|
||||
| FP16->FP32 | 🚫 | ✅ | ❓ | ❓ |
|
||||
| | VX/VXE/VXE2 | zDNN | Spyre |
|
||||
|------------|-------------|------|-------|
|
||||
| FP32 | ✅ | ✅ | ❓ |
|
||||
| FP16 | ✅ | ❓ | ❓ |
|
||||
| BF16 | 🚫 | ❓ | ❓ |
|
||||
| Q4_0 | ✅ | ❓ | ❓ |
|
||||
| Q4_1 | ✅ | ❓ | ❓ |
|
||||
| MXFP4 | 🚫 | ❓ | ❓ |
|
||||
| Q5_0 | ✅ | ❓ | ❓ |
|
||||
| Q5_1 | ✅ | ❓ | ❓ |
|
||||
| Q8_0 | ✅ | ❓ | ❓ |
|
||||
| Q2_K | 🚫 | ❓ | ❓ |
|
||||
| Q3_K | ✅ | ❓ | ❓ |
|
||||
| Q4_K | ✅ | ❓ | ❓ |
|
||||
| Q5_K | ✅ | ❓ | ❓ |
|
||||
| Q6_K | ✅ | ❓ | ❓ |
|
||||
| TQ1_0 | 🚫 | ❓ | ❓ |
|
||||
| TQ2_0 | 🚫 | ❓ | ❓ |
|
||||
| IQ2_XXS | 🚫 | ❓ | ❓ |
|
||||
| IQ2_XS | 🚫 | ❓ | ❓ |
|
||||
| IQ2_S | 🚫 | ❓ | ❓ |
|
||||
| IQ3_XXS | 🚫 | ❓ | ❓ |
|
||||
| IQ3_S | 🚫 | ❓ | ❓ |
|
||||
| IQ1_S | 🚫 | ❓ | ❓ |
|
||||
| IQ1_M | 🚫 | ❓ | ❓ |
|
||||
| IQ4_NL | ✅ | ❓ | ❓ |
|
||||
| IQ4_XS | ✅ | ❓ | ❓ |
|
||||
| FP32->FP16 | 🚫 | ❓ | ❓ |
|
||||
| FP16->FP32 | 🚫 | ❓ | ❓ |
|
||||
|
||||
- ✅ - acceleration available
|
||||
- 🚫 - acceleration unavailable, will still run using scalar implementation
|
||||
- ❓ - acceleration unknown, please contribute if you can test it yourself
|
||||
|
||||
Last Updated by **Aaron Teo (aaron.teo1@ibm.com)** on Aug 22, 2025.
|
||||
Last Updated by **Aaron Teo (aaron.teo1@ibm.com)** on Sep 6, 2025.
|
||||
|
||||
@@ -59,8 +59,6 @@ cmake --build build --config Release
|
||||
cmake --preset arm64-windows-llvm-release -D GGML_OPENMP=OFF
|
||||
cmake --build build-arm64-windows-llvm-release
|
||||
```
|
||||
Building for arm64 can also be done with the MSVC compiler with the build-arm64-windows-MSVC preset, or the standard CMake build instructions. However, note that the MSVC compiler does not support inline ARM assembly code, used e.g. for the accelerated Q4_0_N_M CPU kernels.
|
||||
|
||||
For building with ninja generator and clang compiler as default:
|
||||
-set path:set LIB=C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.41.34120\lib\x64\uwp;C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\x64
|
||||
```bash
|
||||
|
||||
@@ -21,6 +21,8 @@ Function calling is supported for all models (see https://github.com/ggml-org/ll
|
||||
- Use `--chat-template-file` to override the template when appropriate (see examples below)
|
||||
- Generic support may consume more tokens and be less efficient than a model's native format.
|
||||
|
||||
- Multiple/parallel tool calling is supported on some models but disabled by default, enable it by passing `"parallel_tool_calls": true` in the completion endpoint payload.
|
||||
|
||||
<details>
|
||||
<summary>Show some common templates and which format handler they use</summary>
|
||||
|
||||
|
||||
@@ -333,17 +333,17 @@ static void print_params(struct my_llama_hparams * params) {
|
||||
}
|
||||
|
||||
static void print_tensor_info(const struct ggml_context * ctx) {
|
||||
for (auto t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
for (auto * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
LOG_INF("%s: Allocating ", __func__);
|
||||
int64_t total = 1;
|
||||
int i = 0;
|
||||
for (; i < ggml_n_dims(t); ++i) {
|
||||
if (i > 0) LOG("x ");
|
||||
LOG("[%" PRId64 "] ", t->ne[i]);
|
||||
if (i > 0) { LOG_INF("x "); }
|
||||
LOG_INF("[%" PRId64 "] ", t->ne[i]);
|
||||
total *= t->ne[i];
|
||||
}
|
||||
if (i > 1) LOG("= [%" PRId64 "] ", total);
|
||||
LOG("float space for %s\n", ggml_get_name(t));
|
||||
if (i > 1) { LOG_INF("= [%" PRId64 "] ", total); }
|
||||
LOG_INF("float space for %s\n", ggml_get_name(t));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -564,7 +564,7 @@ int main(int argc, char ** argv) {
|
||||
ctx_params.n_ctx = params.n_ctx;
|
||||
ctx_params.n_batch = params.n_batch;
|
||||
ctx_params.n_ubatch = params.n_ubatch;
|
||||
ctx_params.flash_attn = params.flash_attn;
|
||||
ctx_params.flash_attn_type = params.flash_attn_type;
|
||||
ctx_params.no_perf = params.no_perf;
|
||||
ctx_params.type_k = params.cache_type_k;
|
||||
ctx_params.type_v = params.cache_type_v;
|
||||
|
||||
@@ -28,9 +28,51 @@ static std::string ggml_ne_string(const ggml_tensor * t) {
|
||||
return str;
|
||||
}
|
||||
|
||||
static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) {
|
||||
union {
|
||||
float f;
|
||||
uint32_t i;
|
||||
} u;
|
||||
u.i = (uint32_t)h.bits << 16;
|
||||
return u.f;
|
||||
}
|
||||
|
||||
static float ggml_get_float_value(uint8_t * data, ggml_type type, const size_t * nb, size_t i0, size_t i1, size_t i2, size_t i3) {
|
||||
size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
|
||||
float v;
|
||||
if (type == GGML_TYPE_F16) {
|
||||
v = ggml_fp16_to_fp32(*(ggml_fp16_t *) &data[i]);
|
||||
} else if (type == GGML_TYPE_F32) {
|
||||
v = *(float *) &data[i];
|
||||
} else if (type == GGML_TYPE_I64) {
|
||||
v = (float) *(int64_t *) &data[i];
|
||||
} else if (type == GGML_TYPE_I32) {
|
||||
v = (float) *(int32_t *) &data[i];
|
||||
} else if (type == GGML_TYPE_I16) {
|
||||
v = (float) *(int16_t *) &data[i];
|
||||
} else if (type == GGML_TYPE_I8) {
|
||||
v = (float) *(int8_t *) &data[i];
|
||||
} else if (type == GGML_TYPE_BF16) {
|
||||
v = ggml_compute_bf16_to_fp32(*(ggml_bf16_t *) &data[i]);
|
||||
} else {
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) {
|
||||
GGML_ASSERT(n > 0);
|
||||
float sum = 0;
|
||||
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
|
||||
for (int64_t i2 = 0; i2 < ne[2]; i2++) {
|
||||
for (int64_t i1 = 0; i1 < ne[1]; i1++) {
|
||||
for (int64_t i0 = 0; i0 < ne[0]; i0++) {
|
||||
const float v = ggml_get_float_value(data, type, nb, i0, i1, i2, i3);
|
||||
sum += v;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
|
||||
LOG(" [\n");
|
||||
for (int64_t i2 = 0; i2 < ne[2]; i2++) {
|
||||
@@ -50,25 +92,8 @@ static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne
|
||||
LOG("..., ");
|
||||
i0 = ne[0] - n;
|
||||
}
|
||||
size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
|
||||
float v;
|
||||
if (type == GGML_TYPE_F16) {
|
||||
v = ggml_fp16_to_fp32(*(ggml_fp16_t *) &data[i]);
|
||||
} else if (type == GGML_TYPE_F32) {
|
||||
v = *(float *) &data[i];
|
||||
} else if (type == GGML_TYPE_I64) {
|
||||
v = (float) *(int64_t *) &data[i];
|
||||
} else if (type == GGML_TYPE_I32) {
|
||||
v = (float) *(int32_t *) &data[i];
|
||||
} else if (type == GGML_TYPE_I16) {
|
||||
v = (float) *(int16_t *) &data[i];
|
||||
} else if (type == GGML_TYPE_I8) {
|
||||
v = (float) *(int8_t *) &data[i];
|
||||
} else {
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
const float v = ggml_get_float_value(data, type, nb, i0, i1, i2, i3);
|
||||
LOG("%12.4f", v);
|
||||
sum += v;
|
||||
if (i0 < ne[0] - 1) LOG(", ");
|
||||
}
|
||||
LOG("],\n");
|
||||
|
||||
@@ -586,9 +586,10 @@ class SchemaConverter:
|
||||
properties = list(schema.get('properties', {}).items())
|
||||
return self._add_rule(rule_name, self._build_object_rule(properties, required, name, schema.get('additionalProperties')))
|
||||
|
||||
elif schema_type in (None, 'object') and 'allOf' in schema:
|
||||
elif schema_type in (None, 'object', 'string') and 'allOf' in schema:
|
||||
required = set()
|
||||
properties = []
|
||||
enum_sets = []
|
||||
hybrid_name = name
|
||||
def add_component(comp_schema, is_required):
|
||||
if (ref := comp_schema.get('$ref')) is not None:
|
||||
@@ -600,6 +601,9 @@ class SchemaConverter:
|
||||
if is_required:
|
||||
required.add(prop_name)
|
||||
|
||||
if 'enum' in comp_schema:
|
||||
enum_sets.append(set(comp_schema['enum']))
|
||||
|
||||
for t in schema['allOf']:
|
||||
if 'anyOf' in t:
|
||||
for tt in t['anyOf']:
|
||||
@@ -607,6 +611,15 @@ class SchemaConverter:
|
||||
else:
|
||||
add_component(t, is_required=True)
|
||||
|
||||
if enum_sets:
|
||||
enum_intersection = enum_sets[0]
|
||||
for s in enum_sets[1:]:
|
||||
enum_intersection &= s
|
||||
|
||||
if enum_intersection:
|
||||
rule = '(' + ' | '.join((self._generate_constant_rule(v) for v in sorted(enum_intersection))) + ') space'
|
||||
return self._add_rule(rule_name, rule)
|
||||
|
||||
return self._add_rule(rule_name, self._build_object_rule(properties, required, hybrid_name, additional_properties=None))
|
||||
|
||||
elif schema_type in (None, 'array') and ('items' in schema or 'prefixItems' in schema):
|
||||
|
||||
@@ -63,7 +63,7 @@ causal-verify-logits: causal-run-original-model causal-run-converted-model
|
||||
@MODEL_PATH="$(MODEL_PATH)" ./scripts/utils/check-nmse.py -m ${MODEL_PATH}
|
||||
|
||||
causal-run-original-embeddings:
|
||||
@./scripts/causal/run-casual-gen-embeddings-org.sh
|
||||
@./scripts/causal/run-casual-gen-embeddings-org.py
|
||||
|
||||
causal-run-converted-embeddings:
|
||||
@./scripts/causal/run-converted-model-embeddings-logits.sh
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
--extra-index-url https://download.pytorch.org/whl/cpu
|
||||
torch~=2.6.0
|
||||
torchvision~=0.21.0
|
||||
transformers~=4.55.0
|
||||
huggingface-hub~=0.34.0
|
||||
torch
|
||||
torchvision
|
||||
transformers
|
||||
huggingface-hub
|
||||
accelerate
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
|
||||
@@ -3,11 +3,10 @@
|
||||
import argparse
|
||||
import os
|
||||
import importlib
|
||||
import sys
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM
|
||||
from pathlib import Path
|
||||
|
||||
unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
|
||||
@@ -43,6 +42,8 @@ if unreleased_model_name:
|
||||
model = model_class.from_pretrained(model_path)
|
||||
except (ImportError, AttributeError) as e:
|
||||
print(f"Failed to import or load model: {e}")
|
||||
print("Falling back to AutoModelForCausalLM")
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path)
|
||||
print(f"Model class: {type(model)}")
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
|
||||
@@ -9,15 +9,134 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
|
||||
### If you want to dump RoPE activations, apply this monkey patch to the model
|
||||
### class from Transformers that you are running (replace apertus.modeling_apertus
|
||||
### with the proper package and class for your model
|
||||
### === START ROPE DEBUG ===
|
||||
# from transformers.models.apertus.modeling_apertus import apply_rotary_pos_emb
|
||||
|
||||
parser = argparse.ArgumentParser(description='Process model with specified path')
|
||||
parser.add_argument('--model-path', '-m', help='Path to the model')
|
||||
# orig_rope = apply_rotary_pos_emb
|
||||
# torch.set_printoptions(threshold=float('inf'))
|
||||
# torch.set_printoptions(precision=6, sci_mode=False)
|
||||
|
||||
# def debug_rope(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
||||
# # log inputs
|
||||
# summarize(q, "RoPE.q_in")
|
||||
# summarize(k, "RoPE.k_in")
|
||||
|
||||
# # call original
|
||||
# q_out, k_out = orig_rope(q, k, cos, sin, position_ids, unsqueeze_dim)
|
||||
|
||||
# # log outputs
|
||||
# summarize(q_out, "RoPE.q_out")
|
||||
# summarize(k_out, "RoPE.k_out")
|
||||
|
||||
# return q_out, k_out
|
||||
|
||||
# # Patch it
|
||||
# import transformers.models.apertus.modeling_apertus as apertus_mod # noqa: E402
|
||||
# apertus_mod.apply_rotary_pos_emb = debug_rope
|
||||
### == END ROPE DEBUG ===
|
||||
|
||||
|
||||
def summarize(tensor: torch.Tensor, name: str, max_seq: int = 3, max_vals: int = 3):
|
||||
"""
|
||||
Print a tensor in llama.cpp debug style.
|
||||
|
||||
Supports:
|
||||
- 2D tensors (seq, hidden)
|
||||
- 3D tensors (batch, seq, hidden)
|
||||
- 4D tensors (batch, seq, heads, dim_per_head) via flattening heads × dim_per_head
|
||||
|
||||
Shows first and last max_vals of each vector per sequence position.
|
||||
"""
|
||||
t = tensor.detach().to(torch.float32).cpu()
|
||||
|
||||
# Determine dimensions
|
||||
if t.ndim == 3:
|
||||
_, s, _ = t.shape
|
||||
elif t.ndim == 2:
|
||||
_, s = 1, t.shape[0]
|
||||
t = t.unsqueeze(0)
|
||||
elif t.ndim == 4:
|
||||
_, s, _, _ = t.shape
|
||||
else:
|
||||
print(f"Skipping tensor due to unsupported dimensions: {t.ndim}")
|
||||
return
|
||||
|
||||
ten_shape = t.shape
|
||||
|
||||
print(f"ggml_debug: {name} = (f32) ... = {{{ten_shape}}}")
|
||||
print(" [")
|
||||
print(" [")
|
||||
|
||||
# Determine indices for first and last sequences
|
||||
first_indices = list(range(min(s, max_seq)))
|
||||
last_indices = list(range(max(0, s - max_seq), s))
|
||||
|
||||
# Check if there's an overlap between first and last indices or if we're at the edge case of s = 2 * max_seq
|
||||
has_overlap = bool(set(first_indices) & set(last_indices)) or (max_seq * 2 == s)
|
||||
|
||||
# Combine indices
|
||||
if has_overlap:
|
||||
# If there's overlap, just use the combined unique indices
|
||||
indices = sorted(list(set(first_indices + last_indices)))
|
||||
separator_index = None
|
||||
else:
|
||||
# If no overlap, we'll add a separator between first and last sequences
|
||||
indices = first_indices + last_indices
|
||||
separator_index = len(first_indices)
|
||||
|
||||
for i, si in enumerate(indices):
|
||||
# Add separator if needed
|
||||
if separator_index is not None and i == separator_index:
|
||||
print(" ...")
|
||||
|
||||
# Extract appropriate slice
|
||||
vec = t[0, si]
|
||||
if vec.ndim == 2: # 4D case: flatten heads × dim_per_head
|
||||
flat = vec.flatten().tolist()
|
||||
else: # 2D or 3D case
|
||||
flat = vec.tolist()
|
||||
|
||||
# First and last slices
|
||||
first = flat[:max_vals]
|
||||
last = flat[-max_vals:] if len(flat) >= max_vals else flat
|
||||
first_str = ", ".join(f"{v:12.4f}" for v in first)
|
||||
last_str = ", ".join(f"{v:12.4f}" for v in last)
|
||||
|
||||
print(f" [{first_str}, ..., {last_str}]")
|
||||
|
||||
print(" ],")
|
||||
print(" ]")
|
||||
print(f" sum = {t.sum().item():.6f}\n")
|
||||
|
||||
|
||||
def debug_hook(name):
|
||||
def fn(_m, input, output):
|
||||
if isinstance(input, torch.Tensor):
|
||||
summarize(input, name + "_in")
|
||||
elif isinstance(input, (tuple, list)) and isinstance(input[0], torch.Tensor):
|
||||
summarize(input[0], name + "_in")
|
||||
if isinstance(output, torch.Tensor):
|
||||
summarize(output, name + "_out")
|
||||
elif isinstance(output, (tuple, list)) and isinstance(output[0], torch.Tensor):
|
||||
summarize(output[0], name + "_out")
|
||||
|
||||
return fn
|
||||
|
||||
|
||||
unreleased_model_name = os.getenv("UNRELEASED_MODEL_NAME")
|
||||
|
||||
parser = argparse.ArgumentParser(description="Process model with specified path")
|
||||
parser.add_argument("--model-path", "-m", help="Path to the model")
|
||||
args = parser.parse_args()
|
||||
|
||||
model_path = os.environ.get('MODEL_PATH', args.model_path)
|
||||
model_path = os.environ.get("MODEL_PATH", args.model_path)
|
||||
if model_path is None:
|
||||
parser.error("Model path must be specified either via --model-path argument or MODEL_PATH environment variable")
|
||||
parser.error(
|
||||
"Model path must be specified either via --model-path argument or MODEL_PATH environment variable"
|
||||
)
|
||||
|
||||
config = AutoConfig.from_pretrained(model_path)
|
||||
|
||||
@@ -34,18 +153,30 @@ config = AutoConfig.from_pretrained(model_path)
|
||||
|
||||
if unreleased_model_name:
|
||||
model_name_lower = unreleased_model_name.lower()
|
||||
unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
|
||||
unreleased_module_path = (
|
||||
f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
|
||||
)
|
||||
class_name = f"{unreleased_model_name}ForCausalLM"
|
||||
print(f"Importing unreleased model module: {unreleased_module_path}")
|
||||
|
||||
try:
|
||||
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
|
||||
model = model_class.from_pretrained(model_path) # Note: from_pretrained, not fromPretrained
|
||||
model_class = getattr(
|
||||
importlib.import_module(unreleased_module_path), class_name
|
||||
)
|
||||
model = model_class.from_pretrained(
|
||||
model_path
|
||||
) # Note: from_pretrained, not fromPretrained
|
||||
except (ImportError, AttributeError) as e:
|
||||
print(f"Failed to import or load model: {e}")
|
||||
exit(1)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_path, device_map="auto", offload_folder="offload"
|
||||
)
|
||||
|
||||
for name, module in model.named_modules():
|
||||
if len(list(module.children())) == 0: # only leaf modules
|
||||
module.register_forward_hook(debug_hook(name))
|
||||
|
||||
model_name = os.path.basename(model_path)
|
||||
# Printing the Model class to allow for easier debugging. This can be useful
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
|
||||
@@ -7,7 +7,7 @@ base_model:
|
||||
Recommended way to run this model:
|
||||
|
||||
```sh
|
||||
llama-server -hf {namespace}/{model_name}-GGUF
|
||||
llama-server -hf {namespace}/{model_name}-GGUF --embeddings
|
||||
```
|
||||
|
||||
Then the endpoint can be accessed at http://localhost:8080/embedding, for
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
|
||||
@@ -1,4 +1,6 @@
|
||||
|
||||
#!/usr/bin/env bash
|
||||
|
||||
COLLECTION_SLUG=$(python ./create_collection.py --return-slug)
|
||||
echo "Created collection: $COLLECTION_SLUG"
|
||||
|
||||
|
||||
6
examples/model-conversion/scripts/utils/curl-embedding-server.sh
Executable file
6
examples/model-conversion/scripts/utils/curl-embedding-server.sh
Executable file
@@ -0,0 +1,6 @@
|
||||
#!/usr/bin/env bash
|
||||
curl --request POST \
|
||||
--url http://localhost:8080/embedding \
|
||||
--header "Content-Type: application/json" \
|
||||
--data '{"input": "Hello world today"}' \
|
||||
--silent
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# First try command line argument, then environment variable, then file
|
||||
CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}"
|
||||
|
||||
@@ -40,7 +40,7 @@ if os.path.exists(index_path):
|
||||
file_path = os.path.join(model_path, file_name)
|
||||
print(f"\n--- From {file_name} ---")
|
||||
|
||||
with safe_open(file_path, framework="pt") as f:
|
||||
with safe_open(file_path, framework="pt") as f: # type: ignore
|
||||
for tensor_name in sorted(tensor_names):
|
||||
tensor = f.get_tensor(tensor_name)
|
||||
print(f"- {tensor_name} : shape = {tensor.shape}, dtype = {tensor.dtype}")
|
||||
@@ -49,7 +49,7 @@ elif os.path.exists(single_file_path):
|
||||
# Single file model (original behavior)
|
||||
print("Single-file model detected")
|
||||
|
||||
with safe_open(single_file_path, framework="pt") as f:
|
||||
with safe_open(single_file_path, framework="pt") as f: # type: ignore
|
||||
keys = f.keys()
|
||||
print("Tensors in model:")
|
||||
for key in sorted(keys):
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
#
|
||||
|
||||
@@ -244,7 +244,7 @@ int main(int argc, char ** argv) {
|
||||
// stochastic verification
|
||||
common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true);
|
||||
|
||||
auto & dist_tgt = *common_sampler_get_candidates(smpl);
|
||||
auto & dist_tgt = *common_sampler_get_candidates(smpl, true);
|
||||
|
||||
float p_tgt = 0.0f;
|
||||
float p_dft = 0.0f;
|
||||
@@ -493,7 +493,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
common_sampler_sample(drafts[s].smpl, ctx_dft, drafts[s].i_batch_dft, true);
|
||||
|
||||
const auto * cur_p = common_sampler_get_candidates(drafts[s].smpl);
|
||||
const auto * cur_p = common_sampler_get_candidates(drafts[s].smpl, true);
|
||||
|
||||
for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p->size); ++k) {
|
||||
LOG_DBG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
cmake_minimum_required(VERSION 3.14) # for add_link_options and implicit target directories.
|
||||
project("ggml" C CXX)
|
||||
project("ggml" C CXX ASM)
|
||||
include(CheckIncludeFileCXX)
|
||||
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
@@ -129,10 +129,11 @@ endif()
|
||||
option(GGML_LASX "ggml: enable lasx" ON)
|
||||
option(GGML_LSX "ggml: enable lsx" ON)
|
||||
option(GGML_RVV "ggml: enable rvv" ON)
|
||||
option(GGML_RV_ZFH "ggml: enable riscv zfh" OFF)
|
||||
option(GGML_RV_ZFH "ggml: enable riscv zfh" ON)
|
||||
option(GGML_RV_ZVFH "ggml: enable riscv zvfh" ON)
|
||||
option(GGML_RV_ZICBOP "ggml: enable riscv zicbop" ON)
|
||||
option(GGML_XTHEADVECTOR "ggml: enable xtheadvector" OFF)
|
||||
option(GGML_VXE "ggml: enable vxe" ON)
|
||||
option(GGML_NNPA "ggml: enable nnpa" OFF) # temp disabled by default, see: https://github.com/ggml-org/llama.cpp/issues/14877
|
||||
|
||||
option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requires GGML_BACKEND_DL)" OFF)
|
||||
set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM")
|
||||
|
||||
@@ -307,6 +307,9 @@ extern "C" {
|
||||
GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
|
||||
GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);
|
||||
|
||||
// Split graph without allocating it
|
||||
GGML_API void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
|
||||
|
||||
// Allocate and compute graph on the backend scheduler
|
||||
GGML_API bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph); // returns success
|
||||
GGML_API enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
|
||||
|
||||
@@ -101,7 +101,6 @@ extern "C" {
|
||||
GGML_BACKEND_API int ggml_cpu_has_riscv_v (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_vsx (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_vxe (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_nnpa (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_wasm_simd (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_llamafile (void);
|
||||
|
||||
@@ -135,6 +134,7 @@ extern "C" {
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
|
||||
|
||||
GGML_BACKEND_API void ggml_cpu_fp32_to_fp32(const float *, float *, int64_t);
|
||||
GGML_BACKEND_API void ggml_cpu_fp32_to_i32 (const float *, int32_t *, int64_t);
|
||||
GGML_BACKEND_API void ggml_cpu_fp32_to_fp16(const float *, ggml_fp16_t *, int64_t);
|
||||
GGML_BACKEND_API void ggml_cpu_fp16_to_fp32(const ggml_fp16_t *, float *, int64_t);
|
||||
GGML_BACKEND_API void ggml_cpu_fp32_to_bf16(const float *, ggml_bf16_t *, int64_t);
|
||||
|
||||
@@ -511,6 +511,7 @@ extern "C" {
|
||||
GGML_OP_CONV_TRANSPOSE_1D,
|
||||
GGML_OP_IM2COL,
|
||||
GGML_OP_IM2COL_BACK,
|
||||
GGML_OP_IM2COL_3D,
|
||||
GGML_OP_CONV_2D,
|
||||
GGML_OP_CONV_3D,
|
||||
GGML_OP_CONV_2D_DW,
|
||||
@@ -1403,6 +1404,7 @@ extern "C" {
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// note: casting from f32 to i32 will discard the fractional part
|
||||
GGML_API struct ggml_tensor * ggml_cast(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
@@ -1527,7 +1529,11 @@ extern "C" {
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// supports 3D: a->ne[2] == b->ne[1]
|
||||
// supports 4D a:
|
||||
// a [n_embd, ne1, ne2, ne3]
|
||||
// b I32 [n_rows, ne2, ne3, 1]
|
||||
//
|
||||
// return [n_embd, n_rows, ne2, ne3]
|
||||
GGML_API struct ggml_tensor * ggml_get_rows(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a, // data
|
||||
@@ -1870,6 +1876,41 @@ extern "C" {
|
||||
int d0, // dilation dimension 0
|
||||
int d1); // dilation dimension 1
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_im2col_3d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
int64_t IC,
|
||||
int s0, // stride width
|
||||
int s1, // stride height
|
||||
int s2, // stride depth
|
||||
int p0, // padding width
|
||||
int p1, // padding height
|
||||
int p2, // padding depth
|
||||
int d0, // dilation width
|
||||
int d1, // dilation height
|
||||
int d2, // dilation depth
|
||||
enum ggml_type dst_type);
|
||||
|
||||
// a: [OC*IC, KD, KH, KW]
|
||||
// b: [N*IC, ID, IH, IW]
|
||||
// result: [N*OC, OD, OH, OW]
|
||||
GGML_API struct ggml_tensor * ggml_conv_3d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
int64_t IC,
|
||||
int s0, // stride width
|
||||
int s1, // stride height
|
||||
int s2, // stride depth
|
||||
int p0, // padding width
|
||||
int p1, // padding height
|
||||
int p2, // padding depth
|
||||
int d0, // dilation width
|
||||
int d1, // dilation height
|
||||
int d2 // dilation depth
|
||||
);
|
||||
|
||||
// kernel size is a->ne[0] x a->ne[1]
|
||||
// stride is equal to kernel size
|
||||
// padding is zero
|
||||
@@ -1941,7 +1982,7 @@ extern "C" {
|
||||
int d0, // dilation dimension 0
|
||||
int d1); // dilation dimension 1
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_conv_3d(
|
||||
GGML_API struct ggml_tensor * ggml_conv_3d_direct(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a, // kernel [KW, KH, KD, IC * OC]
|
||||
struct ggml_tensor * b, // input [W, H, D, C * N]
|
||||
@@ -2048,6 +2089,19 @@ extern "C" {
|
||||
int p2,
|
||||
int p3);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_pad_ext(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int lp0,
|
||||
int rp0,
|
||||
int lp1,
|
||||
int rp1,
|
||||
int lp2,
|
||||
int rp2,
|
||||
int lp3,
|
||||
int rp3
|
||||
);
|
||||
|
||||
// pad each dimension with reflection: [a, b, c, d] -> [b, a, b, c, d, c]
|
||||
GGML_API struct ggml_tensor * ggml_pad_reflect_1d(
|
||||
struct ggml_context * ctx,
|
||||
|
||||
@@ -114,6 +114,9 @@ extern "C" {
|
||||
void (*event_record)(ggml_backend_t backend, ggml_backend_event_t event);
|
||||
// wait for an event on on a different stream
|
||||
void (*event_wait) (ggml_backend_t backend, ggml_backend_event_t event);
|
||||
|
||||
// (optional) sort/optimize the nodes in the graph
|
||||
void (*optimize_graph) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
};
|
||||
|
||||
struct ggml_backend {
|
||||
|
||||
@@ -31,6 +31,7 @@
|
||||
// backend buffer type
|
||||
|
||||
const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
|
||||
GGML_ASSERT(buft);
|
||||
return buft->iface.get_name(buft);
|
||||
}
|
||||
|
||||
@@ -40,14 +41,17 @@ ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t
|
||||
return ggml_backend_buffer_init(buft, {}, NULL, 0);
|
||||
}
|
||||
|
||||
GGML_ASSERT(buft);
|
||||
return buft->iface.alloc_buffer(buft, size);
|
||||
}
|
||||
|
||||
size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
GGML_ASSERT(buft);
|
||||
return buft->iface.get_alignment(buft);
|
||||
}
|
||||
|
||||
size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
|
||||
GGML_ASSERT(buft);
|
||||
// get_max_size is optional, defaults to SIZE_MAX
|
||||
if (buft->iface.get_max_size) {
|
||||
return buft->iface.get_max_size(buft);
|
||||
@@ -56,6 +60,7 @@ size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
|
||||
}
|
||||
|
||||
size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor) {
|
||||
GGML_ASSERT(buft);
|
||||
// get_alloc_size is optional, defaults to ggml_nbytes
|
||||
if (buft->iface.get_alloc_size) {
|
||||
size_t size = buft->iface.get_alloc_size(buft, tensor);
|
||||
@@ -66,6 +71,7 @@ size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const s
|
||||
}
|
||||
|
||||
bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
|
||||
GGML_ASSERT(buft);
|
||||
if (buft->iface.is_host) {
|
||||
return buft->iface.is_host(buft);
|
||||
}
|
||||
@@ -73,6 +79,7 @@ bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
|
||||
}
|
||||
|
||||
ggml_backend_dev_t ggml_backend_buft_get_device(ggml_backend_buffer_type_t buft) {
|
||||
GGML_ASSERT(buft);
|
||||
return buft->device;
|
||||
}
|
||||
|
||||
@@ -110,10 +117,12 @@ void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
|
||||
}
|
||||
|
||||
size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
|
||||
GGML_ASSERT(buffer);
|
||||
return buffer->size;
|
||||
}
|
||||
|
||||
void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
GGML_ASSERT(buffer);
|
||||
// get_base is optional if the buffer is zero-sized
|
||||
if (buffer->size == 0) {
|
||||
return NULL;
|
||||
@@ -127,6 +136,7 @@ void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
}
|
||||
|
||||
enum ggml_status ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
GGML_ASSERT(buffer);
|
||||
// init_tensor is optional
|
||||
if (buffer->iface.init_tensor) {
|
||||
return buffer->iface.init_tensor(buffer, tensor);
|
||||
@@ -135,6 +145,7 @@ enum ggml_status ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, s
|
||||
}
|
||||
|
||||
void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
GGML_ASSERT(buffer);
|
||||
// clear is optional if the buffer is zero-sized
|
||||
if (buffer->size == 0) {
|
||||
return;
|
||||
@@ -160,6 +171,7 @@ bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
|
||||
}
|
||||
|
||||
void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
|
||||
GGML_ASSERT(buffer);
|
||||
buffer->usage = usage;
|
||||
|
||||
// FIXME: add a generic callback to the buffer interface
|
||||
@@ -169,14 +181,17 @@ void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backe
|
||||
}
|
||||
|
||||
enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage(ggml_backend_buffer_t buffer) {
|
||||
GGML_ASSERT(buffer);
|
||||
return buffer->usage;
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
|
||||
GGML_ASSERT(buffer);
|
||||
return buffer->buft;
|
||||
}
|
||||
|
||||
void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
|
||||
GGML_ASSERT(buffer);
|
||||
if (buffer->iface.reset) {
|
||||
buffer->iface.reset(buffer);
|
||||
}
|
||||
@@ -215,6 +230,7 @@ void ggml_backend_free(ggml_backend_t backend) {
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
|
||||
GGML_ASSERT(backend);
|
||||
return ggml_backend_dev_buffer_type(backend->device);
|
||||
}
|
||||
|
||||
@@ -231,6 +247,8 @@ size_t ggml_backend_get_max_size(ggml_backend_t backend) {
|
||||
}
|
||||
|
||||
void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(backend);
|
||||
GGML_ASSERT(tensor);
|
||||
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
||||
|
||||
@@ -242,6 +260,8 @@ void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor *
|
||||
}
|
||||
|
||||
void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(backend);
|
||||
GGML_ASSERT(tensor);
|
||||
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
|
||||
|
||||
@@ -283,6 +303,7 @@ void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, siz
|
||||
}
|
||||
|
||||
void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
|
||||
GGML_ASSERT(tensor);
|
||||
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
|
||||
|
||||
if (size == 0) {
|
||||
@@ -298,6 +319,7 @@ void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size
|
||||
}
|
||||
|
||||
void ggml_backend_synchronize(ggml_backend_t backend) {
|
||||
GGML_ASSERT(backend);
|
||||
if (backend->iface.synchronize == NULL) {
|
||||
return;
|
||||
}
|
||||
@@ -306,18 +328,21 @@ void ggml_backend_synchronize(ggml_backend_t backend) {
|
||||
}
|
||||
|
||||
ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
GGML_ASSERT(backend);
|
||||
GGML_ASSERT(backend->iface.graph_plan_create != NULL);
|
||||
|
||||
return backend->iface.graph_plan_create(backend, cgraph);
|
||||
}
|
||||
|
||||
void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
||||
GGML_ASSERT(backend);
|
||||
GGML_ASSERT(backend->iface.graph_plan_free != NULL);
|
||||
|
||||
backend->iface.graph_plan_free(backend, plan);
|
||||
}
|
||||
|
||||
enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
||||
GGML_ASSERT(backend);
|
||||
GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
|
||||
|
||||
return backend->iface.graph_plan_compute(backend, plan);
|
||||
@@ -330,22 +355,27 @@ enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_
|
||||
}
|
||||
|
||||
enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
GGML_ASSERT(backend);
|
||||
return backend->iface.graph_compute(backend, cgraph);
|
||||
}
|
||||
|
||||
bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||
GGML_ASSERT(backend);
|
||||
return ggml_backend_dev_supports_op(backend->device, op);
|
||||
}
|
||||
|
||||
bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
GGML_ASSERT(backend);
|
||||
return ggml_backend_dev_supports_buft(backend->device, buft);
|
||||
}
|
||||
|
||||
bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||
GGML_ASSERT(backend);
|
||||
return ggml_backend_dev_offload_op(backend->device, op);
|
||||
}
|
||||
|
||||
ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend) {
|
||||
GGML_ASSERT(backend);
|
||||
return backend->device;
|
||||
}
|
||||
|
||||
@@ -381,6 +411,7 @@ void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t b
|
||||
return;
|
||||
}
|
||||
|
||||
GGML_ASSERT(backend_dst);
|
||||
if (backend_dst->iface.cpy_tensor_async != NULL) {
|
||||
if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
|
||||
return;
|
||||
@@ -412,38 +443,52 @@ void ggml_backend_event_free(ggml_backend_event_t event) {
|
||||
}
|
||||
|
||||
void ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend) {
|
||||
GGML_ASSERT(backend);
|
||||
GGML_ASSERT(backend->iface.event_record != NULL);
|
||||
|
||||
backend->iface.event_record(backend, event);
|
||||
}
|
||||
|
||||
void ggml_backend_event_synchronize(ggml_backend_event_t event) {
|
||||
GGML_ASSERT(event);
|
||||
GGML_ASSERT(event->device->iface.event_synchronize);
|
||||
|
||||
event->device->iface.event_synchronize(event->device, event);
|
||||
}
|
||||
|
||||
void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
|
||||
GGML_ASSERT(backend);
|
||||
GGML_ASSERT(backend->iface.event_wait != NULL);
|
||||
|
||||
backend->iface.event_wait(backend, event);
|
||||
}
|
||||
|
||||
static void ggml_backend_optimize_graph(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
GGML_ASSERT(backend);
|
||||
if (backend->iface.optimize_graph != NULL) {
|
||||
backend->iface.optimize_graph(backend, cgraph);
|
||||
}
|
||||
}
|
||||
|
||||
// Backend device
|
||||
|
||||
const char * ggml_backend_dev_name(ggml_backend_dev_t device) {
|
||||
GGML_ASSERT(device);
|
||||
return device->iface.get_name(device);
|
||||
}
|
||||
|
||||
const char * ggml_backend_dev_description(ggml_backend_dev_t device) {
|
||||
GGML_ASSERT(device);
|
||||
return device->iface.get_description(device);
|
||||
}
|
||||
|
||||
void ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total) {
|
||||
GGML_ASSERT(device);
|
||||
device->iface.get_memory(device, free, total);
|
||||
}
|
||||
|
||||
enum ggml_backend_dev_type ggml_backend_dev_type(ggml_backend_dev_t device) {
|
||||
GGML_ASSERT(device);
|
||||
return device->iface.get_type(device);
|
||||
}
|
||||
|
||||
@@ -453,18 +498,22 @@ void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_d
|
||||
}
|
||||
|
||||
ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device) {
|
||||
GGML_ASSERT(device);
|
||||
return device->reg;
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params) {
|
||||
GGML_ASSERT(device);
|
||||
return device->iface.init_backend(device, params);
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device) {
|
||||
GGML_ASSERT(device);
|
||||
return device->iface.get_buffer_type(device);
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device) {
|
||||
GGML_ASSERT(device);
|
||||
if (device->iface.get_host_buffer_type == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
@@ -473,18 +522,22 @@ ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t
|
||||
}
|
||||
|
||||
ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size) {
|
||||
GGML_ASSERT(device);
|
||||
return device->iface.buffer_from_host_ptr(device, ptr, size, max_tensor_size);
|
||||
}
|
||||
|
||||
bool ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
|
||||
GGML_ASSERT(device);
|
||||
return device->iface.supports_op(device, op);
|
||||
}
|
||||
|
||||
bool ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft) {
|
||||
GGML_ASSERT(device);
|
||||
return device->iface.supports_buft(device, buft);
|
||||
}
|
||||
|
||||
bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
|
||||
GGML_ASSERT(device);
|
||||
if (device->iface.offload_op != NULL) {
|
||||
return device->iface.offload_op(device, op);
|
||||
}
|
||||
@@ -495,18 +548,22 @@ bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_te
|
||||
// Backend (reg)
|
||||
|
||||
const char * ggml_backend_reg_name(ggml_backend_reg_t reg) {
|
||||
GGML_ASSERT(reg);
|
||||
return reg->iface.get_name(reg);
|
||||
}
|
||||
|
||||
size_t ggml_backend_reg_dev_count(ggml_backend_reg_t reg) {
|
||||
GGML_ASSERT(reg);
|
||||
return reg->iface.get_device_count(reg);
|
||||
}
|
||||
|
||||
ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index) {
|
||||
GGML_ASSERT(reg);
|
||||
return reg->iface.get_device(reg, index);
|
||||
}
|
||||
|
||||
void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) {
|
||||
GGML_ASSERT(reg);
|
||||
if (!reg->iface.get_proc_address) {
|
||||
return NULL;
|
||||
}
|
||||
@@ -521,6 +578,7 @@ struct ggml_backend_multi_buffer_context {
|
||||
};
|
||||
|
||||
static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
GGML_ASSERT(buffer);
|
||||
ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
|
||||
for (size_t i = 0; i < ctx->n_buffers; i++) {
|
||||
ggml_backend_buffer_free(ctx->buffers[i]);
|
||||
@@ -531,6 +589,7 @@ static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer)
|
||||
}
|
||||
|
||||
static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
GGML_ASSERT(buffer);
|
||||
ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
|
||||
for (size_t i = 0; i < ctx->n_buffers; i++) {
|
||||
ggml_backend_buffer_clear(ctx->buffers[i], value);
|
||||
@@ -566,10 +625,12 @@ ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer
|
||||
}
|
||||
|
||||
bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
|
||||
GGML_ASSERT(buffer);
|
||||
return buffer->iface.free_buffer == ggml_backend_multi_buffer_free_buffer;
|
||||
}
|
||||
|
||||
void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
|
||||
GGML_ASSERT(buffer);
|
||||
GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
|
||||
ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
|
||||
for (size_t i = 0; i < ctx->n_buffers; i++) {
|
||||
@@ -597,7 +658,7 @@ static bool ggml_is_view_op(enum ggml_op op) {
|
||||
#endif
|
||||
|
||||
#ifndef GGML_SCHED_MAX_SPLIT_INPUTS
|
||||
#define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
|
||||
#define GGML_SCHED_MAX_SPLIT_INPUTS 30
|
||||
#endif
|
||||
|
||||
#ifndef GGML_SCHED_MAX_COPIES
|
||||
@@ -848,7 +909,7 @@ static void ggml_backend_sched_set_if_supported(ggml_backend_sched_t sched, stru
|
||||
}
|
||||
|
||||
// assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
|
||||
static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||
void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||
// reset splits
|
||||
sched->n_splits = 0;
|
||||
sched->n_graph_inputs = 0;
|
||||
@@ -1244,6 +1305,10 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
struct ggml_backend_sched_split * split = &sched->splits[i];
|
||||
split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
|
||||
|
||||
// Optimize this split of the graph. This needs to happen before we make graph_copy,
|
||||
// so they are in sync.
|
||||
ggml_backend_optimize_graph(sched->backends[split->backend_id], &split->graph);
|
||||
|
||||
// add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
|
||||
for (int j = 0; j < split->n_inputs; j++) {
|
||||
assert(graph_copy->size > (graph_copy->n_nodes + 1));
|
||||
@@ -1349,6 +1414,7 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
|
||||
}
|
||||
|
||||
static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
|
||||
GGML_ASSERT(sched);
|
||||
struct ggml_backend_sched_split * splits = sched->splits;
|
||||
|
||||
ggml_tensor * prev_ids_tensor = nullptr;
|
||||
@@ -1617,6 +1683,7 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
|
||||
}
|
||||
|
||||
void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
|
||||
GGML_ASSERT(sched);
|
||||
// reset state for the next run
|
||||
if (!sched->is_reset) {
|
||||
ggml_hash_set_reset(&sched->hash_set);
|
||||
@@ -1628,8 +1695,11 @@ void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
|
||||
}
|
||||
|
||||
bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
|
||||
GGML_ASSERT(sched);
|
||||
GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes + measure_graph->n_leafs);
|
||||
|
||||
ggml_backend_sched_reset(sched);
|
||||
|
||||
ggml_backend_sched_synchronize(sched);
|
||||
|
||||
ggml_backend_sched_split_graph(sched, measure_graph);
|
||||
@@ -1644,6 +1714,7 @@ bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph *
|
||||
}
|
||||
|
||||
bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||
GGML_ASSERT(sched);
|
||||
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs);
|
||||
GGML_ASSERT(!sched->is_alloc);
|
||||
|
||||
@@ -1668,6 +1739,7 @@ enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, st
|
||||
}
|
||||
|
||||
enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||
GGML_ASSERT(sched);
|
||||
if (!sched->is_reset && !sched->is_alloc) {
|
||||
ggml_backend_sched_reset(sched);
|
||||
}
|
||||
@@ -1682,6 +1754,7 @@ enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sch
|
||||
}
|
||||
|
||||
void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
|
||||
GGML_ASSERT(sched);
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
ggml_backend_synchronize(sched->backends[i]);
|
||||
}
|
||||
@@ -1694,28 +1767,34 @@ void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
|
||||
}
|
||||
|
||||
void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
|
||||
GGML_ASSERT(sched);
|
||||
sched->callback_eval = callback;
|
||||
sched->callback_eval_user_data = user_data;
|
||||
}
|
||||
|
||||
int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
|
||||
GGML_ASSERT(sched);
|
||||
return sched->n_splits;
|
||||
}
|
||||
|
||||
int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
|
||||
GGML_ASSERT(sched);
|
||||
return sched->n_copies;
|
||||
}
|
||||
|
||||
int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched) {
|
||||
GGML_ASSERT(sched);
|
||||
return sched->n_backends;
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i) {
|
||||
GGML_ASSERT(sched);
|
||||
GGML_ASSERT(i >= 0 && i < sched->n_backends);
|
||||
return sched->backends[i];
|
||||
}
|
||||
|
||||
size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
|
||||
GGML_ASSERT(sched);
|
||||
int backend_index = ggml_backend_sched_backend_id(sched, backend);
|
||||
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
|
||||
|
||||
@@ -1723,6 +1802,7 @@ size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backe
|
||||
}
|
||||
|
||||
void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
|
||||
GGML_ASSERT(sched);
|
||||
int backend_index = ggml_backend_sched_backend_id(sched, backend);
|
||||
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
|
||||
tensor_backend_id(node) = backend_index;
|
||||
@@ -1731,6 +1811,7 @@ void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct gg
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
|
||||
GGML_ASSERT(sched);
|
||||
int backend_index = tensor_backend_id(node);
|
||||
if (backend_index == -1) {
|
||||
return NULL;
|
||||
@@ -1741,6 +1822,7 @@ ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched,
|
||||
// utils
|
||||
|
||||
enum ggml_status ggml_backend_view_init(struct ggml_tensor * tensor) {
|
||||
GGML_ASSERT(tensor);
|
||||
GGML_ASSERT(tensor->buffer == NULL);
|
||||
GGML_ASSERT(tensor->view_src != NULL);
|
||||
GGML_ASSERT(tensor->view_src->buffer != NULL);
|
||||
@@ -1752,6 +1834,7 @@ enum ggml_status ggml_backend_view_init(struct ggml_tensor * tensor) {
|
||||
}
|
||||
|
||||
enum ggml_status ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
|
||||
GGML_ASSERT(tensor);
|
||||
GGML_ASSERT(tensor->buffer == NULL);
|
||||
GGML_ASSERT(tensor->data == NULL);
|
||||
GGML_ASSERT(tensor->view_src == NULL);
|
||||
@@ -1825,6 +1908,7 @@ static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_
|
||||
}
|
||||
|
||||
struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
|
||||
GGML_ASSERT(graph);
|
||||
struct ggml_hash_set hash_set = ggml_hash_set_new(graph->visited_hash_set.size);
|
||||
struct ggml_tensor ** node_copies = (ggml_tensor **) calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
|
||||
bool * node_init = (bool *) calloc(hash_set.size, sizeof(node_init[0]));
|
||||
@@ -1969,6 +2053,7 @@ bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t
|
||||
// CPU backend - buffer
|
||||
|
||||
static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
GGML_ASSERT(buffer);
|
||||
uintptr_t data = (uintptr_t)buffer->context;
|
||||
|
||||
// align the buffer
|
||||
@@ -1980,28 +2065,33 @@ static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
GGML_ASSERT(buffer);
|
||||
ggml_aligned_free(buffer->context, buffer->size);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
|
||||
GGML_ASSERT(tensor);
|
||||
memset((char *)tensor->data + offset, value, size);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(tensor);
|
||||
memcpy((char *)tensor->data + offset, data, size);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(tensor);
|
||||
memcpy(data, (const char *)tensor->data + offset, size);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
GGML_ASSERT(src);
|
||||
if (ggml_backend_buffer_is_host(src->buffer)) {
|
||||
memcpy(dst->data, src->data, ggml_nbytes(src));
|
||||
return true;
|
||||
@@ -2012,6 +2102,7 @@ static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, con
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
GGML_ASSERT(buffer);
|
||||
memset(buffer->context, value, buffer->size);
|
||||
}
|
||||
|
||||
|
||||
@@ -270,6 +270,7 @@ static struct ggml_backend_i blas_backend_i = {
|
||||
/* .graph_compute = */ ggml_backend_blas_graph_compute,
|
||||
/* .event_record = */ NULL,
|
||||
/* .event_wait = */ NULL,
|
||||
/* .optimize_graph = */ NULL,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_blas_guid(void) {
|
||||
|
||||
@@ -70,6 +70,8 @@
|
||||
#include <aclnnop/aclnn_zero.h>
|
||||
#include <aclnnop/aclnn_index_copy.h>
|
||||
#include <aclnnop/aclnn_index_select.h>
|
||||
#include <aclnnop/aclnn_clamp.h>
|
||||
#include <aclnnop/aclnn_threshold.h>
|
||||
#include <float.h>
|
||||
|
||||
#include <cmath>
|
||||
@@ -587,9 +589,16 @@ void ggml_cann_pad(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
// the position of elements in the array means which dirction to padding,
|
||||
// each position means: [dim0.front, dim0.behind, dim1.front, dim1.behind,
|
||||
// dim2.front, dim2.behind, dim3.front, dim3.behind]
|
||||
int64_t paddings[] = {
|
||||
0, dst->ne[0] - src->ne[0], 0, dst->ne[1] - src->ne[1],
|
||||
0, dst->ne[2] - src->ne[2], 0, dst->ne[3] - src->ne[3]};
|
||||
const int32_t lp0 = ggml_get_op_params_i32(dst, 0);
|
||||
const int32_t rp0 = ggml_get_op_params_i32(dst, 1);
|
||||
const int32_t lp1 = ggml_get_op_params_i32(dst, 2);
|
||||
const int32_t rp1 = ggml_get_op_params_i32(dst, 3);
|
||||
const int32_t lp2 = ggml_get_op_params_i32(dst, 4);
|
||||
const int32_t rp2 = ggml_get_op_params_i32(dst, 5);
|
||||
const int32_t lp3 = ggml_get_op_params_i32(dst, 6);
|
||||
const int32_t rp3 = ggml_get_op_params_i32(dst, 7);
|
||||
|
||||
int64_t paddings[] = {lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3};
|
||||
aclnn_pad(ctx, acl_src, acl_dst, paddings);
|
||||
ggml_cann_release_resources(ctx, acl_src, acl_dst);
|
||||
}
|
||||
@@ -964,8 +973,8 @@ void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
}
|
||||
aclTensor* acl_gamma = get_f32_cache_acl_tensor(
|
||||
ctx,
|
||||
&ctx.f32_one_cache,
|
||||
ctx.f32_one_cache_element,
|
||||
&ctx.rms_norm_one_tensor_cache.cache,
|
||||
ctx.rms_norm_one_tensor_cache.size,
|
||||
src->ne,
|
||||
acl_gamma_nb,
|
||||
1, // dims
|
||||
@@ -973,18 +982,19 @@ void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
);
|
||||
|
||||
// build rstd, zero...
|
||||
size_t acl_rstd_nb[GGML_MAX_DIMS];
|
||||
int64_t acl_rstd_ne[] = {src->ne[1], src->ne[2], src->ne[3]};
|
||||
size_t acl_rstd_nb[GGML_MAX_DIMS - 1];
|
||||
acl_rstd_nb[0] = sizeof(float);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
acl_rstd_nb[i] = acl_rstd_nb[i - 1] * src->ne[i - 1];
|
||||
for (int i = 1; i < GGML_MAX_DIMS - 1; i++) {
|
||||
acl_rstd_nb[i] = acl_rstd_nb[i - 1] * acl_rstd_ne[i - 1];
|
||||
}
|
||||
aclTensor* acl_rstd = get_f32_cache_acl_tensor(
|
||||
ctx,
|
||||
&ctx.f32_zero_cache,
|
||||
ctx.f32_zero_cache_element,
|
||||
src->ne,
|
||||
&ctx.rms_norm_zero_tensor_cache.cache,
|
||||
ctx.rms_norm_zero_tensor_cache.size,
|
||||
acl_rstd_ne,
|
||||
acl_rstd_nb,
|
||||
GGML_MAX_DIMS,
|
||||
GGML_MAX_DIMS - 1,
|
||||
0.0f // value
|
||||
);
|
||||
|
||||
@@ -1423,21 +1433,25 @@ static void aclnn_pow_tensor_tensor(ggml_backend_cann_context& ctx,
|
||||
* @param start Starting exponent offset.
|
||||
* @param stop Stopping exponent offset (exclusive).
|
||||
* @param step Step size for the exponent increment.
|
||||
* @param dtype Data type for slope tensor.
|
||||
*/
|
||||
static void aclnn_get_slope_inner(ggml_backend_cann_context& ctx, void* slope_buffer,
|
||||
float m, int64_t size, float start, float stop, float step){
|
||||
int64_t ne[] = {size};
|
||||
size_t nb[] = {sizeof(uint16_t)};
|
||||
float m, int64_t size, float start, float stop, float step, ggml_type dtype){
|
||||
aclDataType acl_type = ggml_cann_type_mapping(dtype);
|
||||
size_t type_size = ggml_type_size(dtype);
|
||||
|
||||
ggml_cann_pool_alloc arange_allocator(ctx.pool(), size * sizeof(uint16_t));
|
||||
int64_t ne[] = {size};
|
||||
size_t nb[] = {type_size};
|
||||
|
||||
ggml_cann_pool_alloc arange_allocator(ctx.pool(), size * type_size);
|
||||
void* arange_buffer = arange_allocator.get();
|
||||
|
||||
aclTensor* arange_tensor = ggml_cann_create_tensor(
|
||||
arange_buffer, ACL_FLOAT16, sizeof(uint16_t), ne, nb, 1);
|
||||
arange_buffer, acl_type, type_size, ne, nb, 1);
|
||||
aclnn_arange(ctx, arange_tensor, start, stop, step, size);
|
||||
|
||||
aclTensor* slope_tensor = ggml_cann_create_tensor(
|
||||
slope_buffer, ACL_FLOAT16, sizeof(uint16_t), ne, nb, 1);
|
||||
slope_buffer, acl_type, type_size, ne, nb, 1);
|
||||
|
||||
aclScalar* sc = aclCreateScalar(&m, aclDataType::ACL_FLOAT);
|
||||
|
||||
@@ -1468,10 +1482,11 @@ static void aclnn_get_slope_inner(ggml_backend_cann_context& ctx, void* slope_bu
|
||||
* @param n_head Total number of attention heads.
|
||||
* @param slope_buffer Pointer to the output buffer (float array) for storing slopes.
|
||||
* @param max_bias Maximum bias value for slope computation.
|
||||
* @param dtype Data type for slope tensor.
|
||||
*
|
||||
*/
|
||||
static void aclnn_get_slope(ggml_backend_cann_context & ctx, int64_t n_head,
|
||||
void* slope_buffer, float max_bias) {
|
||||
void* slope_buffer, float max_bias, ggml_type dtype) {
|
||||
const int n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
|
||||
|
||||
float m0 = powf(2.0f, -(max_bias) / n_head_log2);
|
||||
@@ -1488,7 +1503,7 @@ static void aclnn_get_slope(ggml_backend_cann_context & ctx, int64_t n_head,
|
||||
float step = 1;
|
||||
float count = n_head_log2;
|
||||
// end needs to be +1 because aclnn uses a left-closed, right-open interval.
|
||||
aclnn_get_slope_inner(ctx, slope_buffer, m0, count, start, end + 1, step);
|
||||
aclnn_get_slope_inner(ctx, slope_buffer, m0, count, start, end + 1, step, dtype);
|
||||
if (n_head_log2 < n_head) {
|
||||
// arange2
|
||||
start = 2 * (n_head_log2 - n_head_log2) + 1;
|
||||
@@ -1497,7 +1512,7 @@ static void aclnn_get_slope(ggml_backend_cann_context & ctx, int64_t n_head,
|
||||
count = n_head - n_head_log2;
|
||||
aclnn_get_slope_inner(
|
||||
ctx, (char *) slope_buffer + n_head_log2 * sizeof(float),
|
||||
m1, count, start, end + 1, step);
|
||||
m1, count, start, end + 1, step, dtype);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1534,7 +1549,7 @@ static void aclnn_add_alibi(ggml_backend_cann_context& ctx, ggml_tensor* mask,
|
||||
ggml_cann_pool_alloc bias_allocator(
|
||||
ctx.pool(), ggml_nelements(dst) * ggml_element_size(dst));
|
||||
bias_buffer = bias_allocator.get();
|
||||
aclnn_get_slope(ctx, n_heads, slope_buffer, max_bias);
|
||||
aclnn_get_slope(ctx, n_heads, slope_buffer, max_bias, GGML_TYPE_F32);
|
||||
}
|
||||
|
||||
// broadcast for mask, slop and dst;
|
||||
@@ -1760,10 +1775,10 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
case GGML_TYPE_F16: {
|
||||
aclTensor* acl_src0 = ggml_cann_create_tensor(src0);
|
||||
ggml_cann_pool_alloc src_buffer_allocator(
|
||||
ctx.pool(), ggml_nelements(src0) * sizeof(float_t));
|
||||
ctx.pool(), ggml_nelements(src0) * sizeof(float));
|
||||
void* src_trans_buffer = src_buffer_allocator.get();
|
||||
size_t src_trans_nb[GGML_MAX_DIMS];
|
||||
src_trans_nb[0] = sizeof(float_t);
|
||||
src_trans_nb[0] = sizeof(float);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
|
||||
}
|
||||
@@ -1807,14 +1822,14 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
|
||||
// [3,4,5,64] -> [3,4,5,2,32]
|
||||
dequant_ne = weight_ne;
|
||||
dequant_nb[0] = sizeof(float_t);
|
||||
dequant_nb[0] = sizeof(float);
|
||||
for (int i = 1; i < GGML_MAX_DIMS + 1; i++) {
|
||||
dequant_nb[i] = dequant_nb[i - 1] * dequant_ne[i - 1];
|
||||
}
|
||||
|
||||
scale_offset = ggml_nelements(src0) * sizeof(int8_t);
|
||||
ggml_cann_pool_alloc dequant_buffer_allocator(
|
||||
ctx.pool(), ggml_nelements(src0) * sizeof(float_t));
|
||||
ctx.pool(), ggml_nelements(src0) * sizeof(float));
|
||||
|
||||
aclTensor* acl_weight_tensor = ggml_cann_create_tensor(
|
||||
src0->data, ACL_INT8, sizeof(int8_t), weight_ne, weight_nb,
|
||||
@@ -1823,11 +1838,11 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
src0->data, ACL_FLOAT16, sizeof(uint16_t), scale_ne, scale_nb,
|
||||
GGML_MAX_DIMS + 1, ACL_FORMAT_ND, scale_offset);
|
||||
aclTensor* dequant_tensor = ggml_cann_create_tensor(
|
||||
dequant_buffer_allocator.get(), ACL_FLOAT, sizeof(float_t),
|
||||
dequant_buffer_allocator.get(), ACL_FLOAT, sizeof(float),
|
||||
dequant_ne, dequant_nb, GGML_MAX_DIMS + 1);
|
||||
|
||||
aclnn_mul(ctx, acl_weight_tensor, acl_scale_tensor, dequant_tensor);
|
||||
dequant_nb[0] = sizeof(float_t);
|
||||
dequant_nb[0] = sizeof(float);
|
||||
dequant_ne = src0->ne;
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
dequant_nb[i] = dequant_nb[i - 1] * src0->ne[i - 1];
|
||||
@@ -1948,7 +1963,7 @@ static void ggml_cann_mat_mul_fp(ggml_backend_cann_context& ctx,
|
||||
aclTensor* acl_weight_tensor;
|
||||
|
||||
// Only check env once.
|
||||
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or(""));
|
||||
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or("on"));
|
||||
if (weight_to_nz && is_matmul_weight(weight)) {
|
||||
int64_t acl_stride[2] = {1, transpose_ne[1]};
|
||||
|
||||
@@ -2248,46 +2263,35 @@ static void aclnn_index_fill_tensor(ggml_backend_cann_context& ctx,
|
||||
* 5. Compute sin(θ), cos(θ) and optionally scale by attn_factor.
|
||||
* 6. Expand sin/cos values by repeat or repeat_interleave depending
|
||||
* on whether @param is_neox is enabled.
|
||||
* 7. Store the computed values into persistent buffers
|
||||
* (ctx.rope_sin_ptr / ctx.rope_cos_ptr).
|
||||
*
|
||||
* @param ctx The CANN backend context, holding memory pool,
|
||||
* stream, and persistent buffers for rope init/cache.
|
||||
* @param dst The destination ggml_tensor whose computation
|
||||
* depends on the cached RoPE values (usually Qcur/Kcur).
|
||||
* @param theta_scale Scalar exponent base for computing theta scale values.
|
||||
* @param freq_scale Frequency scaling factor, applied to theta scale.
|
||||
* @param attn_factor Attention scaling factor, applied to sin/cos.
|
||||
* @param is_neox Whether to use Neox-style repeat strategy
|
||||
* (dim expansion vs repeat_interleave).
|
||||
* @param ctx The CANN backend context, holding memory pool,
|
||||
* stream, and persistent buffers for rope init/cache.
|
||||
* @param dst The destination ggml_tensor whose computation
|
||||
* depends on the RoPE values (usually Qcur/Kcur).
|
||||
* @param sin_tensor_buffer Pre-allocated buffer for storing repeated sin values.
|
||||
* @param cos_tensor_buffer Pre-allocated buffer for storing repeated cos values.
|
||||
* @param theta_scale Scalar exponent base for computing theta scale values.
|
||||
* @param freq_scale Frequency scaling factor, applied to theta scale.
|
||||
* @param attn_factor Attention scaling factor, applied to sin/cos.
|
||||
* @param is_neox Whether to use Neox-style repeat strategy
|
||||
* (dim expansion vs repeat_interleave).
|
||||
*/
|
||||
static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
|
||||
void* sin_tensor_buffer, void* cos_tensor_buffer,
|
||||
float* corr_dims, float ext_factor,
|
||||
float theta_scale, float freq_scale,
|
||||
float attn_factor, bool is_neox) {
|
||||
// int sin/cos cache, cache has different repeat method depond on
|
||||
// @param.is_neox
|
||||
bool is_q = (std::strncmp(dst->name, "Qcur-", 5) == 0);
|
||||
bool is_k = (std::strncmp(dst->name, "Kcur-", 5) == 0);
|
||||
|
||||
// used for accuracy testing
|
||||
bool is_attention = is_q || is_k;
|
||||
|
||||
// just compute in first layer in attention
|
||||
bool is_fisrt_layer = (std::strncmp(dst->name, "Qcur-0", GGML_MAX_NAME) == 0);
|
||||
if(is_attention && !is_fisrt_layer) {
|
||||
return;
|
||||
}
|
||||
|
||||
ggml_tensor* src0 = dst->src[0]; // input
|
||||
ggml_tensor* src1 = dst->src[1]; // position
|
||||
ggml_tensor* src2 = dst->src[2]; // freq_factors
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
int64_t theta_scale_length = ne00 / 2;
|
||||
int64_t theta_scale_length = src0->ne[0] / 2;
|
||||
int64_t theta_scale_ne[] = {theta_scale_length, 1, 1, 1};
|
||||
size_t theta_scale_nb[] = {sizeof(float_t), sizeof(float_t), sizeof(float_t),
|
||||
theta_scale_length * sizeof(float_t)};
|
||||
size_t theta_scale_nb[] = {sizeof(float), sizeof(float), sizeof(float),
|
||||
theta_scale_length * sizeof(float)};
|
||||
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||||
int64_t position_length = src1->ne[0];
|
||||
@@ -2297,65 +2301,115 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
|
||||
|
||||
int64_t theta_ne[] = {theta_scale_length, 1, position_length, 1};
|
||||
size_t theta_nb[GGML_MAX_DIMS];
|
||||
theta_nb[0] = sizeof(float_t);
|
||||
theta_nb[0] = sizeof(float);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
theta_nb[i] = theta_nb[i - 1] * theta_ne[i - 1];
|
||||
}
|
||||
|
||||
// init theta scale, just one time
|
||||
if(ctx.rope_init_ptr == nullptr || !is_attention) {
|
||||
// theta_scale arange, [0,1,...,ne00/2 - 1]
|
||||
if(ctx.rope_init_ptr != nullptr){
|
||||
ACL_CHECK(aclrtFree(ctx.rope_init_ptr));
|
||||
}
|
||||
ACL_CHECK(aclrtMalloc(&ctx.rope_init_ptr, theta_scale_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
// theta_scale arange, [0,1,...,ne00/2 - 1]
|
||||
aclTensor* acl_theta_scale_tensor = nullptr;
|
||||
// cache theta scale
|
||||
if (ctx.rope_cache.theta_scale_length != theta_scale_length ||
|
||||
// theta_scale and freq_scale should not change during the current token inference process,
|
||||
// so we can directly use == here instead of comparing the absolute difference.
|
||||
ctx.rope_cache.theta_scale != theta_scale ||
|
||||
ctx.rope_cache.freq_scale != freq_scale) {
|
||||
|
||||
aclTensor* acl_theta_scale_tensor =
|
||||
ggml_cann_create_tensor(ctx.rope_init_ptr, ACL_FLOAT, sizeof(float_t),
|
||||
ctx.rope_cache.theta_scale_length = theta_scale_length;
|
||||
ctx.rope_cache.theta_scale = theta_scale;
|
||||
ctx.rope_cache.freq_scale = freq_scale;
|
||||
|
||||
if (ctx.rope_cache.theta_scale_cache != nullptr) {
|
||||
ACL_CHECK(aclrtFree(ctx.rope_cache.theta_scale_cache));
|
||||
}
|
||||
ACL_CHECK(aclrtMalloc(&ctx.rope_cache.theta_scale_cache, theta_scale_length * sizeof(float), ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
|
||||
acl_theta_scale_tensor =
|
||||
ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float),
|
||||
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
|
||||
|
||||
float start = 0;
|
||||
float step = 1;
|
||||
float stop = ne00 / 2;
|
||||
float n_elements = ne00 / 2;
|
||||
float stop = theta_scale_length;
|
||||
float n_elements = theta_scale_length;
|
||||
aclnn_arange(ctx, acl_theta_scale_tensor, start, stop, step, n_elements);
|
||||
|
||||
ggml_cann_pool_alloc yarn_ramp_allocator(ctx.pool());
|
||||
aclTensor* acl_yarn_ramp_tensor = nullptr;
|
||||
if (ext_factor != 0) {
|
||||
// -rope_yarn_ramp
|
||||
// const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
|
||||
// return MIN(1, MAX(0, y)) - 1;
|
||||
yarn_ramp_allocator.alloc(theta_scale_length * sizeof(float));
|
||||
void* yarn_ramp_buffer = yarn_ramp_allocator.get();
|
||||
acl_yarn_ramp_tensor = ggml_cann_create_tensor(yarn_ramp_buffer, ACL_FLOAT, sizeof(float_t),
|
||||
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
|
||||
float zero_value = 0, one_value = 1;
|
||||
float denom_safe_value = MAX(0.001f, corr_dims[1] - corr_dims[0]);
|
||||
aclScalar* low = aclCreateScalar(&corr_dims[0], aclDataType::ACL_FLOAT);
|
||||
aclScalar* zero = aclCreateScalar(&zero_value, aclDataType::ACL_FLOAT);
|
||||
aclScalar* one = aclCreateScalar(&one_value, aclDataType::ACL_FLOAT);
|
||||
aclScalar* denom_safe = aclCreateScalar(&denom_safe_value, aclDataType::ACL_FLOAT);
|
||||
aclScalar* ext_factor_sc = aclCreateScalar(&ext_factor, aclDataType::ACL_FLOAT);
|
||||
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, Subs, acl_theta_scale_tensor, low, one, acl_yarn_ramp_tensor);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceDivs, acl_yarn_ramp_tensor, denom_safe);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceThreshold, acl_yarn_ramp_tensor, zero, zero);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceClampMax, acl_yarn_ramp_tensor, one);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceSubs, acl_yarn_ramp_tensor, one, one);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceMuls, acl_yarn_ramp_tensor, ext_factor_sc);
|
||||
|
||||
// theta_interp = freq_scale * theta_extrap;
|
||||
// theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
|
||||
// theta = freq_scale * theta_extrap * (1 - ramp_mix) + theta_extrap * ramp_mix;
|
||||
// theta = freq_scale * theta_extrap - freq_scale * theta_extrap * ramp_mix + theta_extrap * ramp_mix;
|
||||
// theta = theta_extrap * (freq_scale - freq_scale * ramp_mix + ramp_mix);
|
||||
//
|
||||
// we cache (freq_scale - freq_scale * ramp_mix + ramp_mix), Considering that the rope_yarn_ramp here is the inverse
|
||||
// cache freq_scale + (freq_scale - 1) * ramp_mix
|
||||
float freq_scale_1 = freq_scale - 1;
|
||||
aclScalar* freq_scale_sc = aclCreateScalar(&freq_scale, aclDataType::ACL_FLOAT);
|
||||
aclScalar* freq_scale_1_sc = aclCreateScalar(&freq_scale_1, aclDataType::ACL_FLOAT);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceMuls, acl_yarn_ramp_tensor, freq_scale_1_sc);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceAdds, acl_yarn_ramp_tensor, freq_scale_sc, one);
|
||||
|
||||
ggml_cann_release_resources(ctx, low, zero, one, denom_safe, ext_factor_sc, freq_scale_sc, freq_scale_1_sc);
|
||||
}
|
||||
|
||||
// power
|
||||
aclScalar* acl_theta_scale = aclCreateScalar(&theta_scale, aclDataType::ACL_FLOAT);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, PowScalarTensor, acl_theta_scale, acl_theta_scale_tensor,
|
||||
acl_theta_scale_tensor);
|
||||
|
||||
// freq_scale
|
||||
if (freq_scale != 1) {
|
||||
if (ext_factor != 0) {
|
||||
aclnn_mul(ctx, acl_theta_scale_tensor, acl_yarn_ramp_tensor);
|
||||
} else if (freq_scale != 1) {
|
||||
aclnn_muls(ctx, acl_theta_scale_tensor, freq_scale, nullptr, true);
|
||||
}
|
||||
|
||||
// freq_factors
|
||||
if (src2) {
|
||||
aclTensor* acl_freq_factors_tensor = ggml_cann_create_tensor(
|
||||
src2->data, ggml_cann_type_mapping(src2->type),
|
||||
ggml_type_size(src2->type), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
|
||||
aclnn_div(ctx, acl_theta_scale_tensor, acl_freq_factors_tensor);
|
||||
ggml_cann_release_resources(ctx, acl_freq_factors_tensor);
|
||||
}
|
||||
// release
|
||||
ggml_cann_release_resources(ctx, acl_theta_scale_tensor,acl_theta_scale);
|
||||
}
|
||||
|
||||
// init sin_repeat && cos_repeat, one token just init in 0 layer
|
||||
if(position_length > ctx.max_prompt_length) {
|
||||
ctx.max_prompt_length = position_length;
|
||||
int64_t repeat_theta_length = theta_scale_length * ctx.max_prompt_length * 2;
|
||||
if(ctx.rope_sin_ptr != nullptr) {
|
||||
ACL_CHECK(aclrtFree(ctx.rope_sin_ptr));
|
||||
ACL_CHECK(aclrtFree(ctx.rope_cos_ptr));
|
||||
}
|
||||
ACL_CHECK(aclrtMalloc(&ctx.rope_sin_ptr, repeat_theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
ACL_CHECK(aclrtMalloc(&ctx.rope_cos_ptr, repeat_theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
}
|
||||
|
||||
aclTensor* acl_theta_scale_tensor =
|
||||
ggml_cann_create_tensor(ctx.rope_init_ptr, ACL_FLOAT, sizeof(float_t),
|
||||
ggml_cann_release_resources(ctx, acl_yarn_ramp_tensor, acl_theta_scale);
|
||||
} else {
|
||||
// use cache
|
||||
acl_theta_scale_tensor =
|
||||
ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float),
|
||||
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
|
||||
}
|
||||
|
||||
ggml_cann_pool_alloc freq_fac_res_allocator(ctx.pool());
|
||||
// freq_factors
|
||||
if (src2) {
|
||||
freq_fac_res_allocator.alloc(theta_scale_length * sizeof(float));
|
||||
void* freq_fac_res_ptr = freq_fac_res_allocator.get();
|
||||
aclTensor* acl_freq_factors_tensor = ggml_cann_create_tensor(
|
||||
src2->data, ggml_cann_type_mapping(src2->type),
|
||||
ggml_type_size(src2->type), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
|
||||
aclTensor* acl_freq_fac_res_tensor = ggml_cann_create_tensor(
|
||||
freq_fac_res_ptr, ACL_FLOAT, sizeof(float),
|
||||
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
|
||||
aclnn_div(ctx, acl_theta_scale_tensor, acl_freq_factors_tensor, acl_freq_fac_res_tensor);
|
||||
std::swap(acl_theta_scale_tensor, acl_freq_fac_res_tensor);
|
||||
ggml_cann_release_resources(ctx, acl_freq_factors_tensor, acl_freq_fac_res_tensor);
|
||||
}
|
||||
|
||||
// position
|
||||
aclTensor* acl_position_tensor = ggml_cann_create_tensor(
|
||||
@@ -2365,49 +2419,53 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
|
||||
// power * position
|
||||
int64_t theta_length = theta_scale_length * position_length;
|
||||
ggml_cann_pool_alloc theta_allocator(ctx.pool(),
|
||||
theta_length * sizeof(float_t));
|
||||
theta_length * sizeof(float));
|
||||
void* theta_buffer = theta_allocator.get();
|
||||
|
||||
aclTensor* acl_theta_tensor =
|
||||
ggml_cann_create_tensor(theta_buffer, ACL_FLOAT, sizeof(float_t),
|
||||
ggml_cann_create_tensor(theta_buffer, ACL_FLOAT, sizeof(float),
|
||||
theta_ne, theta_nb, GGML_MAX_DIMS);
|
||||
aclnn_mul(ctx, acl_position_tensor, acl_theta_scale_tensor,
|
||||
acl_theta_tensor);
|
||||
|
||||
// sin/cos
|
||||
ggml_cann_pool_alloc sin_allocator(ctx.pool(),
|
||||
theta_length * sizeof(float_t));
|
||||
theta_length * sizeof(float));
|
||||
void* sin_buffer = sin_allocator.get();
|
||||
aclTensor* acl_sin_tensor = ggml_cann_create_tensor(
|
||||
sin_buffer, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
|
||||
sin_buffer, ACL_FLOAT, sizeof(float), theta_ne, theta_nb,
|
||||
GGML_MAX_DIMS, ACL_FORMAT_ND);
|
||||
aclnn_sin(ctx, acl_theta_tensor, acl_sin_tensor);
|
||||
|
||||
ggml_cann_pool_alloc cos_allocator(ctx.pool(),
|
||||
theta_length * sizeof(float_t));
|
||||
theta_length * sizeof(float));
|
||||
void* cos_buffer = cos_allocator.get();
|
||||
aclTensor* acl_cos_tensor = ggml_cann_create_tensor(
|
||||
cos_buffer, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
|
||||
cos_buffer, ACL_FLOAT, sizeof(float), theta_ne, theta_nb,
|
||||
GGML_MAX_DIMS, ACL_FORMAT_ND);
|
||||
aclnn_cos(ctx, acl_theta_tensor, acl_cos_tensor);
|
||||
|
||||
if (ext_factor != 0) {
|
||||
attn_factor *= 1.0f + 0.1f * logf(1.0f / freq_scale);
|
||||
}
|
||||
|
||||
// attn_factor
|
||||
if (attn_factor != 1) {
|
||||
aclnn_muls(ctx, acl_sin_tensor, attn_factor, nullptr, true);
|
||||
aclnn_muls(ctx, acl_cos_tensor, attn_factor, nullptr, true);
|
||||
}
|
||||
|
||||
int64_t sin_reshape_ne[4] = {ne00, 1, ne02, 1};
|
||||
int64_t sin_reshape_ne[4] = {src0->ne[0], 1, src0->ne[2], 1};
|
||||
size_t sin_reshape_nb[GGML_MAX_DIMS];
|
||||
sin_reshape_nb[0] = sizeof(float_t);
|
||||
sin_reshape_nb[0] = sizeof(float);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
sin_reshape_nb[i] = sin_reshape_nb[i - 1] * sin_reshape_ne[i - 1];
|
||||
}
|
||||
aclTensor* acl_sin_repeat_tensor =
|
||||
ggml_cann_create_tensor(ctx.rope_sin_ptr, ACL_FLOAT, sizeof(float_t),
|
||||
ggml_cann_create_tensor(sin_tensor_buffer, ACL_FLOAT, sizeof(float),
|
||||
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
|
||||
aclTensor* acl_cos_repeat_tensor =
|
||||
ggml_cann_create_tensor(ctx.rope_cos_ptr, ACL_FLOAT, sizeof(float_t),
|
||||
ggml_cann_create_tensor(cos_tensor_buffer, ACL_FLOAT, sizeof(float),
|
||||
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
|
||||
|
||||
// repeat
|
||||
@@ -2449,6 +2507,7 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
// TODO: use ascendc
|
||||
// Only test with LLAMA model.
|
||||
ggml_tensor* src0 = dst->src[0]; // input
|
||||
ggml_tensor* src1 = dst->src[1];
|
||||
|
||||
// param
|
||||
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
||||
@@ -2470,8 +2529,6 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
// TODO: n_dims <= ne0
|
||||
GGML_ASSERT(n_dims == ne0);
|
||||
GGML_ASSERT(n_dims % 2 == 0);
|
||||
// TODO: ext_factor != 0
|
||||
GGML_ASSERT(ext_factor == 0);
|
||||
|
||||
const float theta_scale = powf(freq_base, -2.0f / n_dims);
|
||||
|
||||
@@ -2481,20 +2538,28 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
|
||||
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
||||
|
||||
// sin/cos tensor length.
|
||||
int64_t repeat_theta_length = src0->ne[0] * src1->ne[0];
|
||||
ggml_cann_pool_alloc sin_tensor_allocator(ctx.pool(), repeat_theta_length * sizeof(float));
|
||||
ggml_cann_pool_alloc cos_tensor_allocator(ctx.pool(), repeat_theta_length * sizeof(float));
|
||||
void *sin_tensor_buffer = sin_tensor_allocator.get();
|
||||
void *cos_tensor_buffer = cos_tensor_allocator.get();
|
||||
|
||||
// init ctx.rope_cos/rope_sin cache
|
||||
aclnn_cache_init(ctx, dst, theta_scale, freq_scale, attn_factor, is_neox);
|
||||
aclnn_cache_init(ctx, dst, sin_tensor_buffer, cos_tensor_buffer, corr_dims, ext_factor,
|
||||
theta_scale, freq_scale, attn_factor, is_neox);
|
||||
|
||||
int64_t sin_reshape_ne[4] = {ne00, 1, ne02, 1};
|
||||
size_t sin_reshape_nb[GGML_MAX_DIMS];
|
||||
sin_reshape_nb[0] = sizeof(float_t);
|
||||
sin_reshape_nb[0] = sizeof(float);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
sin_reshape_nb[i] = sin_reshape_nb[i - 1] * sin_reshape_ne[i - 1];
|
||||
}
|
||||
aclTensor* acl_sin_reshape_tensor =
|
||||
ggml_cann_create_tensor(ctx.rope_sin_ptr, ACL_FLOAT, sizeof(float_t),
|
||||
ggml_cann_create_tensor(sin_tensor_buffer, ACL_FLOAT, sizeof(float),
|
||||
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
|
||||
aclTensor* acl_cos_reshape_tensor =
|
||||
ggml_cann_create_tensor(ctx.rope_cos_ptr, ACL_FLOAT, sizeof(float_t),
|
||||
ggml_cann_create_tensor(cos_tensor_buffer, ACL_FLOAT, sizeof(float),
|
||||
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
|
||||
|
||||
aclTensor* acl_src = ggml_cann_create_tensor(src0);
|
||||
@@ -2509,7 +2574,7 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
void* minus_one_scale_buffer = nullptr;
|
||||
ggml_cann_pool_alloc roll_allocator(ctx.pool(), ggml_nbytes(src0));
|
||||
ggml_cann_pool_alloc minus_one_scale_allocator(
|
||||
ctx.pool(), sizeof(float_t) * src0->ne[0]);
|
||||
ctx.pool(), sizeof(float) * src0->ne[0]);
|
||||
if (!is_neox) {
|
||||
// roll input: [q0,q1,q2,q3,...] -> [q1,q0,q3,q2,...]
|
||||
input_roll_buffer = roll_allocator.get();
|
||||
@@ -2539,13 +2604,13 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
|
||||
int64_t minus_one_ne[4] = {src0->ne[0], 1, 1, 1};
|
||||
size_t minus_one_nb[GGML_MAX_DIMS];
|
||||
minus_one_nb[0] = sizeof(float_t);
|
||||
minus_one_nb[0] = sizeof(float);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
minus_one_nb[i] = minus_one_nb[i - 1] * minus_one_ne[i - 1];
|
||||
}
|
||||
acl_minus_one_tensor = aclnn_values(
|
||||
ctx, minus_one_scale_buffer, sizeof(float_t) * src0->ne[0],
|
||||
minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), 1);
|
||||
ctx, minus_one_scale_buffer, sizeof(float) * src0->ne[0],
|
||||
minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float), 1);
|
||||
int64_t dim = 3;
|
||||
int64_t* index = new int64_t[src0->ne[0]];
|
||||
for (int i = 0; i < src0->ne[0]; i++) {
|
||||
@@ -2573,22 +2638,22 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
minus_one_scale_buffer = minus_one_scale_allocator.get();
|
||||
int64_t minus_one_ne[4] = {src0->ne[0], 1, 1, 1};
|
||||
size_t minus_one_nb[GGML_MAX_DIMS];
|
||||
minus_one_nb[0] = sizeof(float_t);
|
||||
minus_one_nb[0] = sizeof(float);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
minus_one_nb[i] = minus_one_nb[i - 1] * minus_one_ne[i - 1];
|
||||
}
|
||||
acl_minus_one_tensor = aclnn_values(
|
||||
ctx, minus_one_scale_buffer, sizeof(float_t) * src0->ne[0],
|
||||
minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), 1);
|
||||
ctx, minus_one_scale_buffer, sizeof(float) * src0->ne[0],
|
||||
minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float), 1);
|
||||
// -1 * first half
|
||||
int64_t first_half_ne[4] = {src0->ne[0] / 2, 1, 1, 1};
|
||||
size_t first_half_nb[GGML_MAX_DIMS];
|
||||
first_half_nb[0] = sizeof(float_t);
|
||||
first_half_nb[0] = sizeof(float);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
first_half_nb[i] = first_half_nb[i - 1] * first_half_ne[i - 1];
|
||||
}
|
||||
aclTensor* acl_first_half_tensor = ggml_cann_create_tensor(
|
||||
minus_one_scale_buffer, ACL_FLOAT, sizeof(float_t), first_half_ne,
|
||||
minus_one_scale_buffer, ACL_FLOAT, sizeof(float), first_half_ne,
|
||||
first_half_nb, GGML_MAX_DIMS);
|
||||
bool inplace = true;
|
||||
float scale = -1;
|
||||
@@ -2628,28 +2693,28 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
// TODO: ne0 != n_dims in mode2
|
||||
} else if (src0->type == GGML_TYPE_F16) {
|
||||
size_t input_fp32_nb[GGML_MAX_DIMS];
|
||||
input_fp32_nb[0] = sizeof(float_t);
|
||||
input_fp32_nb[0] = sizeof(float);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
input_fp32_nb[i] = input_fp32_nb[i - 1] * dst->ne[i - 1];
|
||||
}
|
||||
ggml_cann_pool_alloc fp32_allocator1(
|
||||
ctx.pool(), ggml_nelements(dst) * sizeof(float_t));
|
||||
ctx.pool(), ggml_nelements(dst) * sizeof(float));
|
||||
void* input_fp32_buffer1 = fp32_allocator1.get();
|
||||
aclTensor* input_fp32_tensor1 = ggml_cann_create_tensor(
|
||||
input_fp32_buffer1, ACL_FLOAT, sizeof(float_t), dst->ne,
|
||||
input_fp32_buffer1, ACL_FLOAT, sizeof(float), dst->ne,
|
||||
input_fp32_nb, GGML_MAX_DIMS);
|
||||
ggml_cann_pool_alloc fp32_allocator2(
|
||||
ctx.pool(), ggml_nelements(dst) * sizeof(float_t));
|
||||
ctx.pool(), ggml_nelements(dst) * sizeof(float));
|
||||
void* input_fp32_buffer2 = fp32_allocator2.get();
|
||||
aclTensor* input_fp32_tensor2 = ggml_cann_create_tensor(
|
||||
input_fp32_buffer2, ACL_FLOAT, sizeof(float_t), dst->ne,
|
||||
input_fp32_buffer2, ACL_FLOAT, sizeof(float), dst->ne,
|
||||
input_fp32_nb, GGML_MAX_DIMS);
|
||||
|
||||
ggml_cann_pool_alloc fp32_allocator(
|
||||
ctx.pool(), ggml_nelements(dst) * sizeof(float_t));
|
||||
ctx.pool(), ggml_nelements(dst) * sizeof(float));
|
||||
output_fp32_buffer = fp32_allocator.get();
|
||||
aclTensor* output_fp32_tensor = ggml_cann_create_tensor(
|
||||
output_fp32_buffer, ACL_FLOAT, sizeof(float_t), dst->ne,
|
||||
output_fp32_buffer, ACL_FLOAT, sizeof(float), dst->ne,
|
||||
input_fp32_nb, GGML_MAX_DIMS);
|
||||
aclnn_mul(ctx, acl_src, acl_cos_reshape_tensor, input_fp32_tensor1);
|
||||
aclnn_mul(ctx, acl_input_roll_mul_scale_tensor, acl_sin_reshape_tensor,
|
||||
@@ -2746,8 +2811,6 @@ void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* ds
|
||||
aclIntArray *padding = aclCreateIntArray(paddingVal, 1);
|
||||
int64_t dilationVal[] = {1};
|
||||
aclIntArray *dilation = aclCreateIntArray(dilationVal, 1);
|
||||
bool transposed = true;
|
||||
int64_t groups = 1;
|
||||
int8_t cubeMathType = 0;
|
||||
|
||||
#ifdef ASCEND_310P
|
||||
@@ -2755,7 +2818,7 @@ void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* ds
|
||||
#endif
|
||||
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, Convolution, acl_input, acl_weight, nullptr, stride,
|
||||
padding, dilation, transposed, padding, groups, acl_dst, cubeMathType);
|
||||
padding, dilation, true, padding, 1, acl_dst, cubeMathType);
|
||||
|
||||
ggml_cann_release_resources(ctx, acl_weight, acl_dst, stride, padding, dilation);
|
||||
}
|
||||
@@ -2864,174 +2927,49 @@ void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst){
|
||||
*/
|
||||
static void ggml_cann_mul_mat_id_fp(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
//dst [M, K, N, 1]
|
||||
ggml_tensor * src0 = dst->src[0]; //src0 [D, M, A, 1]
|
||||
ggml_tensor * src1 = dst->src[1]; //src1 [D, B, N, 1], B = K or B = 1
|
||||
ggml_tensor * src0 = dst->src[0]; //src0 [D, M, A, 1] -> [D, M, K, 1]
|
||||
ggml_tensor * src1 = dst->src[1]; //src1 [D, B, N, 1], B = K or B = 1 -> [D, 1, K, 1]
|
||||
ggml_tensor * ids = dst->src[2]; //ids [K, N]
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
GGML_ASSERT(src0->ne[3] == 1);
|
||||
GGML_ASSERT(src1->ne[3] == 1);
|
||||
GGML_ASSERT(dst->ne[3] == 1);
|
||||
|
||||
// copy index from npu to cpu
|
||||
int64_t n_as = ne02; // A
|
||||
int64_t n_ids = ids->ne[0]; // K
|
||||
int64_t batch = src1->ne[2];
|
||||
GGML_ASSERT(batch == ids->ne[1]);
|
||||
|
||||
std::vector<char> ids_host(ggml_nbytes(ids));
|
||||
ggml_cann_async_memcpy(ctx, ids_host.data(), ids->data, ggml_nbytes(ids),
|
||||
ACL_MEMCPY_DEVICE_TO_HOST);
|
||||
ACL_CHECK(aclrtSynchronizeStream(ctx.stream()));
|
||||
ggml_cann_pool_alloc export_allocator(ctx.pool(), src0->ne[0] * src0->ne[1] * ids->ne[0] * ggml_element_size(src0));
|
||||
void* export_ptr = export_allocator.get();
|
||||
for (int64_t i = 0; i < batch; i++) {
|
||||
aclTensor *select_index = ggml_cann_create_tensor(ids, ids->ne, ids->nb, 1, ACL_FORMAT_ND, i * ids->nb[1]);
|
||||
aclTensor *export_weight = ggml_cann_create_tensor(src0, src0->ne, src0->nb, 3);
|
||||
|
||||
char * src0_original = (char *) src0->data;
|
||||
char * src1_original = (char *) src1->data;
|
||||
char * dst_original = (char *) dst->data;
|
||||
size_t ori_src0_nb[4] = {nb00, nb01, nb02, nb03};
|
||||
|
||||
// src0 is F16, src1 is F32, dst is F32
|
||||
ggml_cann_pool_alloc src0_cast_allocator;
|
||||
if (src0->type == GGML_TYPE_F16) {
|
||||
src0_cast_allocator.alloc(ctx.pool(), sizeof(float) * ggml_nelements(src0));
|
||||
void* src0_cast_buf = src0_cast_allocator.get();
|
||||
|
||||
size_t cast_nb[GGML_MAX_DIMS];
|
||||
cast_nb[0] = sizeof(float_t);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
cast_nb[i] = cast_nb[i - 1] * src0->ne[i - 1];
|
||||
int64_t select_export_ne[] = {src0->ne[0], src0->ne[1], ids->ne[0]};
|
||||
size_t select_export_nb[3];
|
||||
select_export_nb[0] = src0->nb[0];
|
||||
for (int k = 1;k < 3; k++) {
|
||||
select_export_nb[k] = select_export_nb[k-1] * select_export_ne[k-1];
|
||||
}
|
||||
|
||||
aclTensor* acl_src0_f16 = ggml_cann_create_tensor(src0);
|
||||
aclTensor* acl_cast = ggml_cann_create_tensor(src0_cast_buf,
|
||||
ACL_FLOAT, sizeof(float), src0->ne, cast_nb, 4);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, Cast, acl_src0_f16, ACL_FLOAT, acl_cast);
|
||||
ggml_cann_release_resources(ctx, acl_cast, acl_src0_f16);
|
||||
aclTensor *select_export = ggml_cann_create_tensor(export_ptr, ggml_cann_type_mapping(src0->type), ggml_element_size(src0), select_export_ne, select_export_nb, 3);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, IndexSelect, export_weight, 0, select_index, select_export);
|
||||
|
||||
src0_original = (char *) src0_cast_buf;
|
||||
memcpy(ori_src0_nb, cast_nb, sizeof(ori_src0_nb));
|
||||
int64_t select_transpose_ne[] = {select_export_ne[1], select_export_ne[0], select_export_ne[2]};
|
||||
size_t select_transpose_nb[] = {select_export_nb[1], select_export_nb[0], select_export_nb[2]};
|
||||
aclTensor *select_export_transpose = ggml_cann_create_tensor(export_ptr, ggml_cann_type_mapping(src0->type), ggml_element_size(src0), select_transpose_ne, select_transpose_nb, 3);
|
||||
|
||||
int64_t active_tensor_ne[] = {src1->ne[0], 1, src1->ne[1]};
|
||||
size_t active_tensor_nb[] = {src1->nb[0], src1->nb[1], src1->nb[1]};
|
||||
aclTensor *active_tensor = ggml_cann_create_tensor(src1, active_tensor_ne, active_tensor_nb, 3, ACL_FORMAT_ND, i * src1->nb[2]);
|
||||
|
||||
int64_t dst_ne[] = {dst->ne[0], 1, dst->ne[1]};
|
||||
size_t dst_nb[] = {dst->nb[0], dst->nb[1], dst->nb[1]};
|
||||
aclTensor *acl_dst = ggml_cann_create_tensor(dst, dst_ne,dst_nb, 3, ACL_FORMAT_ND, i * dst->nb[2]);
|
||||
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, BatchMatMul, active_tensor, select_export_transpose, acl_dst, 2);
|
||||
|
||||
ggml_cann_release_resources(ctx, select_index, export_weight, select_export, active_tensor, acl_dst, select_export_transpose);
|
||||
}
|
||||
|
||||
#ifdef ASCEND_310P
|
||||
ggml_tensor src0_row = *src0;
|
||||
ggml_tensor src1_row = *src1;
|
||||
ggml_tensor dst_row = *dst;
|
||||
|
||||
if (src0->type == GGML_TYPE_F16) {
|
||||
src0_row.type = GGML_TYPE_F32;
|
||||
}
|
||||
|
||||
// src0_row [D, M, 1, 1] weight without permute
|
||||
src0_row.ne[2] = 1;
|
||||
src0_row.ne[3] = 1;
|
||||
src0_row.nb[0] = ori_src0_nb[0];
|
||||
src0_row.nb[1] = ori_src0_nb[1];
|
||||
src0_row.nb[2] = ori_src0_nb[1];
|
||||
src0_row.nb[3] = ori_src0_nb[1];
|
||||
|
||||
// src1_row [D, 1, 1, 1] -> input
|
||||
src1_row.ne[1] = 1;
|
||||
src1_row.ne[2] = 1;
|
||||
src1_row.ne[3] = 1;
|
||||
src1_row.nb[2] = nb11;
|
||||
src1_row.nb[3] = nb11;
|
||||
|
||||
// dst_row [M, 1, 1, 1] -> out
|
||||
dst_row.ne[1] = 1;
|
||||
dst_row.ne[2] = 1;
|
||||
dst_row.ne[3] = 1;
|
||||
dst_row.nb[2] = nb1;
|
||||
dst_row.nb[3] = nb1;
|
||||
|
||||
//create weight for one row
|
||||
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
|
||||
for (int64_t id = 0; id < n_ids; id++) {
|
||||
// expert index
|
||||
int32_t i02 = *(int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
|
||||
GGML_ASSERT(i02 >= 0 && i02 < n_as);
|
||||
|
||||
// If B = 1 (broadcast), always use 0; otherwise, use id.
|
||||
int64_t i11 = (ne11 == 1 ? 0 : id);
|
||||
int64_t i12 = iid1;
|
||||
|
||||
int64_t i1 = id;
|
||||
int64_t i2 = i12;
|
||||
|
||||
void* src0_tmp_ptr = src0_original + i02*ori_src0_nb[2];
|
||||
void* src1_tmp_ptr = src1_original + i11*nb11 + i12*nb12;
|
||||
void* dst_tmp_ptr = dst_original + i1*nb1 + i2*nb2;
|
||||
|
||||
src0_row.data = src0_tmp_ptr;
|
||||
src1_row.data = src1_tmp_ptr;
|
||||
dst_row.data = dst_tmp_ptr;
|
||||
dst_row.src[0] = &src0_row;
|
||||
dst_row.src[1] = &src1_row;
|
||||
|
||||
ggml_cann_mul_mat(ctx, &dst_row);
|
||||
}
|
||||
}
|
||||
return;
|
||||
#endif
|
||||
|
||||
std::vector<aclTensor*> src0_tensor_vec;
|
||||
std::vector<aclTensor*> src1_tensor_vec;
|
||||
std::vector<aclTensor*> dst_tensor_vec;
|
||||
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
|
||||
for (int64_t id = 0; id < n_ids; id++) {
|
||||
// src0_row [M, D] -> weight && permute
|
||||
int64_t src0_ne[2] = {ne01, ne00};
|
||||
size_t src0_nb[2] = {ori_src0_nb[1], ori_src0_nb[0]};
|
||||
// src1_row [D, 1] -> input
|
||||
int64_t src1_ne[2] = {ne10, 1};
|
||||
size_t src1_nb[2] = {nb10, nb11};
|
||||
// dst_row [M, 1] -> out
|
||||
int64_t dst_ne[2] = {ne0, 1};
|
||||
size_t dst_nb[2] = {nb0, nb1};
|
||||
|
||||
// expert index
|
||||
int32_t i02 = *(int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
|
||||
GGML_ASSERT(i02 >= 0 && i02 < n_as);
|
||||
|
||||
// If B = 1 (broadcast), always use 0; otherwise, use id.
|
||||
int64_t i11 = (ne11 == 1 ? 0 : id);
|
||||
int64_t i12 = iid1;
|
||||
|
||||
int64_t i1 = id;
|
||||
int64_t i2 = i12;
|
||||
|
||||
void* src0_tmp_ptr = src0_original + i02*ori_src0_nb[2];
|
||||
void* src1_tmp_ptr = src1_original + i11*nb11 + i12*nb12;
|
||||
void* dst_tmp_ptr = dst_original + i1*nb1 + i2*nb2;
|
||||
|
||||
aclTensor* acl_src0 = ggml_cann_create_tensor(src0_tmp_ptr,
|
||||
ACL_FLOAT, sizeof(float),
|
||||
src0_ne, src0_nb, 2);
|
||||
aclTensor* acl_src1 = ggml_cann_create_tensor(src1_tmp_ptr,
|
||||
ACL_FLOAT, sizeof(float),
|
||||
src1_ne, src1_nb, 2);
|
||||
aclTensor* acl_dst = ggml_cann_create_tensor(dst_tmp_ptr,
|
||||
ACL_FLOAT, sizeof(float),
|
||||
dst_ne, dst_nb, 2);
|
||||
|
||||
src0_tensor_vec.push_back(acl_src0);
|
||||
src1_tensor_vec.push_back(acl_src1);
|
||||
dst_tensor_vec.push_back(acl_dst);
|
||||
}
|
||||
}
|
||||
|
||||
size_t GROUP_SIZE = 128;
|
||||
// GroupedMatmulV3 required tensor_list.size < 128
|
||||
for (size_t i = 0; i < src0_tensor_vec.size(); i += GROUP_SIZE) {
|
||||
// split and call GroupedMatmulV3
|
||||
size_t end = std::min(i + GROUP_SIZE, src0_tensor_vec.size());
|
||||
std::vector<aclTensor*> src0_tensor_vec_split(src0_tensor_vec.begin() + i, src0_tensor_vec.begin() + end);
|
||||
std::vector<aclTensor*> src1_tensor_vec_split(src1_tensor_vec.begin() + i, src1_tensor_vec.begin() + end);
|
||||
std::vector<aclTensor*> dst_tensor_vec_split(dst_tensor_vec.begin() + i, dst_tensor_vec.begin() + end);
|
||||
|
||||
aclTensorList* src0_tensor_list = aclCreateTensorList(src0_tensor_vec_split.data(), src0_tensor_vec_split.size());
|
||||
aclTensorList* src1_tensor_list = aclCreateTensorList(src1_tensor_vec_split.data(), src1_tensor_vec_split.size());
|
||||
aclTensorList* dst_tensor_list = aclCreateTensorList(dst_tensor_vec_split.data(), dst_tensor_vec_split.size());
|
||||
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, GroupedMatmulV3, src1_tensor_list, src0_tensor_list,
|
||||
nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, -1, dst_tensor_list);
|
||||
|
||||
ggml_cann_release_resources(ctx, src0_tensor_list, src1_tensor_list, dst_tensor_list);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -3342,7 +3280,7 @@ void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst){
|
||||
const int64_t n_heads = src0->ne[2];
|
||||
ggml_cann_pool_alloc slope_allocator(ctx.pool(), n_heads * sizeof(uint16_t));
|
||||
void* slope_buffer = slope_allocator.get();
|
||||
aclnn_get_slope(ctx, n_heads, slope_buffer, maxBias);
|
||||
aclnn_get_slope(ctx, n_heads, slope_buffer, maxBias, GGML_TYPE_F16);
|
||||
|
||||
int64_t slope_ne[] = {1, 1, n_heads, 1};
|
||||
size_t slope_nb[GGML_MAX_DIMS];
|
||||
|
||||
@@ -360,6 +360,30 @@ struct ggml_cann_graph {
|
||||
};
|
||||
#endif // USE_ACL_GRAPH
|
||||
|
||||
struct ggml_cann_rope_cache {
|
||||
~ggml_cann_rope_cache() {
|
||||
if(theta_scale_cache != nullptr) {
|
||||
ACL_CHECK(aclrtFree(theta_scale_cache));
|
||||
}
|
||||
}
|
||||
|
||||
void* theta_scale_cache = nullptr;
|
||||
int64_t theta_scale_length = 0;
|
||||
float theta_scale = 0.0f;
|
||||
float freq_scale = 0.0f;
|
||||
};
|
||||
|
||||
struct ggml_cann_tensor_cache {
|
||||
~ggml_cann_tensor_cache() {
|
||||
if(cache != nullptr) {
|
||||
ACL_CHECK(aclrtFree(cache));
|
||||
}
|
||||
}
|
||||
|
||||
void* cache = nullptr;
|
||||
int64_t size = 0;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Context for managing CANN backend operations.
|
||||
*/
|
||||
@@ -371,19 +395,15 @@ struct ggml_backend_cann_context {
|
||||
#ifdef USE_ACL_GRAPH
|
||||
/// Cached CANN ACL graph used for executing the current ggml computation graph.
|
||||
std::unique_ptr<ggml_cann_graph> cann_graph;
|
||||
bool acl_graph_mode = true;
|
||||
#endif
|
||||
cann_task_queue task_queue;
|
||||
bool async_mode;
|
||||
// Rope Cache
|
||||
void* rope_init_ptr = nullptr;
|
||||
void* rope_sin_ptr = nullptr;
|
||||
void* rope_cos_ptr = nullptr;
|
||||
int64_t max_prompt_length = 0;
|
||||
ggml_cann_rope_cache rope_cache;
|
||||
// Constant Pool
|
||||
void* f32_zero_cache = nullptr;
|
||||
void* f32_one_cache = nullptr;
|
||||
int64_t f32_zero_cache_element = 0;
|
||||
int64_t f32_one_cache_element = 0;
|
||||
ggml_cann_tensor_cache rms_norm_one_tensor_cache;
|
||||
ggml_cann_tensor_cache rms_norm_zero_tensor_cache;
|
||||
|
||||
aclrtStream streams[GGML_CANN_MAX_STREAMS] = {nullptr}; /**< Array of streams for the device. */
|
||||
|
||||
@@ -399,6 +419,13 @@ struct ggml_backend_cann_context {
|
||||
async_mode = parse_bool(get_env("GGML_CANN_ASYNC_MODE").value_or(""));
|
||||
GGML_LOG_INFO("%s: device %d async operator submission is %s\n", __func__,
|
||||
device, async_mode ? "ON" : "OFF");
|
||||
#ifdef USE_ACL_GRAPH
|
||||
acl_graph_mode = parse_bool(get_env("GGML_CANN_ACL_GRAPH").value_or("on"));
|
||||
GGML_LOG_INFO("%s: device %d execution mode is %s (%s)\n",
|
||||
__func__, device,
|
||||
acl_graph_mode ? "GRAPH" : "EAGER",
|
||||
acl_graph_mode ? "acl graph enabled" : "acl graph disabled");
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -415,21 +442,6 @@ struct ggml_backend_cann_context {
|
||||
ACL_CHECK(aclrtDestroyStream(streams[i]));
|
||||
}
|
||||
}
|
||||
if(rope_init_ptr != nullptr) {
|
||||
ACL_CHECK(aclrtFree(rope_init_ptr));
|
||||
}
|
||||
if(rope_sin_ptr != nullptr) {
|
||||
ACL_CHECK(aclrtFree(rope_sin_ptr));
|
||||
}
|
||||
if(rope_cos_ptr != nullptr) {
|
||||
ACL_CHECK(aclrtFree(rope_cos_ptr));
|
||||
}
|
||||
if(f32_zero_cache != nullptr) {
|
||||
ACL_CHECK(aclrtFree(f32_zero_cache));
|
||||
}
|
||||
if(f32_one_cache != nullptr) {
|
||||
ACL_CHECK(aclrtFree(f32_one_cache));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
|
||||
@@ -1116,30 +1116,65 @@ static enum ggml_status ggml_backend_cann_buffer_init_tensor(
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
// ND to NZ Workspace Cache Management. Thread-safety: Not guaranteed
|
||||
namespace {
|
||||
void* g_nz_workspace = nullptr;
|
||||
size_t g_nz_workspace_allocated = 0;
|
||||
/**
|
||||
* @brief Workspace for caching NZ buffers per device.
|
||||
*
|
||||
* This struct manages a device buffer used in NZ computations. It supports
|
||||
* allocation, reallocation, and clearing of cached memory. The struct is
|
||||
* designed to be used with a global array, one per device.
|
||||
*/
|
||||
struct ggml_cann_nz_workspace {
|
||||
void* ptr; // Pointer to allocated device buffer
|
||||
size_t allocated; // Size of currently allocated buffer in bytes
|
||||
|
||||
void release_nz_workspace() {
|
||||
if (g_nz_workspace) {
|
||||
aclrtFree(g_nz_workspace);
|
||||
g_nz_workspace = nullptr;
|
||||
g_nz_workspace_allocated = 0;
|
||||
/**
|
||||
* @brief Constructor. Initializes the workspace with no allocated memory.
|
||||
*/
|
||||
ggml_cann_nz_workspace() : ptr(nullptr), allocated(0) {}
|
||||
|
||||
/**
|
||||
* @brief Free cached memory and reset the workspace.
|
||||
*
|
||||
* If a buffer has been allocated, this function releases it using
|
||||
* aclrtFree and resets internal state.
|
||||
*/
|
||||
void clear() {
|
||||
if (ptr) {
|
||||
ACL_CHECK(aclrtFree(ptr));
|
||||
ptr = nullptr;
|
||||
allocated = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void relloc_nz_workspace(size_t new_size) {
|
||||
if (new_size > g_nz_workspace_allocated) {
|
||||
if (g_nz_workspace) {
|
||||
aclrtFree(g_nz_workspace);
|
||||
g_nz_workspace = nullptr;
|
||||
/**
|
||||
* @brief Allocate or reallocate the workspace buffer.
|
||||
*
|
||||
* If the requested size is larger than the currently allocated size,
|
||||
* the old buffer will be freed and a new buffer of the requested size
|
||||
* will be allocated on the device.
|
||||
*
|
||||
* @param new_size Size in bytes to allocate for the workspace.
|
||||
*/
|
||||
void realloc(size_t new_size) {
|
||||
if (new_size > allocated) {
|
||||
clear();
|
||||
ACL_CHECK(aclrtMalloc(&ptr, new_size, ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
allocated = new_size;
|
||||
}
|
||||
ACL_CHECK(aclrtMalloc(&g_nz_workspace, new_size, ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
g_nz_workspace_allocated = new_size;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Get the device buffer pointer.
|
||||
*
|
||||
* @return Pointer to the allocated buffer, or nullptr if not allocated.
|
||||
*/
|
||||
void* get() const { return ptr; }
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Global array of NZ workspaces, one per device.
|
||||
*/
|
||||
static ggml_cann_nz_workspace g_nz_workspaces[GGML_CANN_MAX_DEVICES];
|
||||
|
||||
/**
|
||||
* @brief Convert tensor weights to NZ format using Ascend CANN API.
|
||||
@@ -1149,13 +1184,13 @@ namespace {
|
||||
* improve performance on certain hardware.
|
||||
*
|
||||
* @param tensor Pointer to the input ggml_tensor containing the weights.
|
||||
* @param data Pointer to the raw data buffer for the tensor weights.
|
||||
* @param offset Byte offset within the tensor data buffer where weights start.
|
||||
* @param device device id.
|
||||
*
|
||||
* @note The workspace buffer used in this function is managed globally and reused
|
||||
* across calls. This reduces overhead from repeated memory allocation and deallocation.
|
||||
*/
|
||||
static void weight_format_to_nz(ggml_tensor *tensor, const void *data, size_t offset) {
|
||||
static void weight_format_to_nz(ggml_tensor *tensor, size_t offset, int device) {
|
||||
aclTensor* weightTransposed = ggml_cann_create_tensor(tensor, tensor->ne,
|
||||
tensor->nb, 2, ACL_FORMAT_ND, offset);
|
||||
uint64_t workspaceSize = 0;
|
||||
@@ -1165,7 +1200,9 @@ static void weight_format_to_nz(ggml_tensor *tensor, const void *data, size_t of
|
||||
ACL_CHECK(aclnnTransMatmulWeightGetWorkspaceSize(weightTransposed,
|
||||
&workspaceSize, &executor));
|
||||
// Avoid frequent malloc/free of the workspace.
|
||||
relloc_nz_workspace(workspaceSize);
|
||||
g_nz_workspaces[device].realloc(workspaceSize);
|
||||
|
||||
void* g_nz_workspace = g_nz_workspaces[device].get();
|
||||
|
||||
ACL_CHECK(aclnnTransMatmulWeight(g_nz_workspace, workspaceSize, executor, nullptr));
|
||||
ACL_CHECK(aclDestroyTensor(weightTransposed));
|
||||
@@ -1196,14 +1233,14 @@ static void ggml_backend_cann_buffer_set_tensor(
|
||||
// Why aclrtSynchronizeDevice?
|
||||
|
||||
// Only check env once.
|
||||
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or(""));
|
||||
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or("on"));
|
||||
if (!need_transform(tensor->type)) {
|
||||
ACL_CHECK(aclrtMemcpy((char *)tensor->data + offset, size, data, size,
|
||||
ACL_MEMCPY_HOST_TO_DEVICE));
|
||||
if (weight_to_nz && is_matmul_weight((const ggml_tensor*)tensor)) {
|
||||
GGML_ASSERT(tensor->ne[2] == 1);
|
||||
GGML_ASSERT(tensor->ne[3] == 1);
|
||||
weight_format_to_nz(tensor, data, offset);
|
||||
weight_format_to_nz(tensor, offset, ctx->device);
|
||||
}
|
||||
} else {
|
||||
void *transform_buffer = malloc(size);
|
||||
@@ -1279,6 +1316,10 @@ static bool ggml_backend_cann_buffer_cpy_tensor(
|
||||
ACL_MEMCPY_DEVICE_TO_DEVICE));
|
||||
return true;
|
||||
} else {
|
||||
#ifdef ASCEND_310P
|
||||
// TODO: Support 310p P2P copy
|
||||
return false;
|
||||
#endif
|
||||
// Different device but can access by peer.
|
||||
int32_t canAccessPeer = 0;
|
||||
ACL_CHECK(aclrtDeviceCanAccessPeer(&canAccessPeer, src_ctx->device,
|
||||
@@ -1439,7 +1480,7 @@ static size_t ggml_backend_cann_buffer_type_get_alloc_size(
|
||||
int64_t ne0 = tensor->ne[0];
|
||||
|
||||
// Only check env once.
|
||||
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or(""));
|
||||
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or("on"));
|
||||
|
||||
// last line must bigger than 32, because every single op deal at
|
||||
// least 32 bytes.
|
||||
@@ -2000,6 +2041,8 @@ static bool ggml_backend_cann_cpy_tensor_async(
|
||||
GGML_ASSERT(ggml_backend_is_cann(backend_src) ||
|
||||
ggml_backend_is_cann(backend_dst));
|
||||
|
||||
GGML_ASSERT(!is_matmul_weight((const ggml_tensor*)src));
|
||||
|
||||
if (!ggml_backend_buffer_is_cann(src->buffer) ||
|
||||
!ggml_backend_buffer_is_cann(dst->buffer)) {
|
||||
return false;
|
||||
@@ -2020,6 +2063,10 @@ static bool ggml_backend_cann_cpy_tensor_async(
|
||||
return true;
|
||||
}
|
||||
if (backend_src != backend_dst) {
|
||||
#ifdef ASCEND_310P
|
||||
// TODO: Support 310p P2P copy
|
||||
return false;
|
||||
#endif
|
||||
ggml_backend_cann_buffer_context* buf_ctx_src =
|
||||
(ggml_backend_cann_buffer_context*)buf_src->context;
|
||||
ggml_backend_cann_buffer_context* buf_ctx_dst =
|
||||
@@ -2036,7 +2083,6 @@ static bool ggml_backend_cann_cpy_tensor_async(
|
||||
}
|
||||
|
||||
// need open both directions for memcpyasync between devices.
|
||||
ggml_cann_set_device(cann_ctx_dst->device);
|
||||
ACL_CHECK(aclrtDeviceEnablePeerAccess(cann_ctx_src->device, 0));
|
||||
ggml_cann_set_device(cann_ctx_src->device);
|
||||
ACL_CHECK(aclrtDeviceEnablePeerAccess(cann_ctx_dst->device, 0));
|
||||
@@ -2046,9 +2092,17 @@ static bool ggml_backend_cann_cpy_tensor_async(
|
||||
ACL_CHECK(aclrtMemcpyAsync(dst->data, copy_size, src->data, copy_size,
|
||||
ACL_MEMCPY_DEVICE_TO_DEVICE,
|
||||
cann_ctx_src->stream()));
|
||||
// record event on src stream after the copy
|
||||
// TODO: this event is not effective with acl graph mode, change to use aclrtSynchronizeStream
|
||||
// if (!cann_ctx_src->copy_event) {
|
||||
// ACL_CHECK(aclrtCreateEventWithFlag(&cann_ctx_src->copy_event, ACL_EVENT_SYNC));
|
||||
// }
|
||||
// ACL_CHECK(aclrtRecordEvent(cann_ctx_src->copy_event, cann_ctx_src->stream()));
|
||||
|
||||
//TODO: workaround for Event didn`t work here.
|
||||
aclrtSynchronizeStream(cann_ctx_src->stream());
|
||||
// // wait on dst stream for the copy to complete
|
||||
// ggml_cann_set_device(cann_ctx_dst->device);
|
||||
// ACL_CHECK(aclrtStreamWaitEvent(cann_ctx_dst->stream(), cann_ctx_src->copy_event));
|
||||
ACL_CHECK(aclrtSynchronizeStream(cann_ctx_src->stream()));
|
||||
} else {
|
||||
// src and dst are on the same backend
|
||||
ACL_CHECK(aclrtMemcpyAsync(dst->data, copy_size, src->data, copy_size,
|
||||
@@ -2246,11 +2300,16 @@ static enum ggml_status ggml_backend_cann_graph_compute(
|
||||
ggml_backend_cann_context* cann_ctx =
|
||||
(ggml_backend_cann_context*)backend->context;
|
||||
ggml_cann_set_device(cann_ctx->device);
|
||||
release_nz_workspace();
|
||||
g_nz_workspaces[cann_ctx->device].clear();
|
||||
|
||||
#ifdef USE_ACL_GRAPH
|
||||
bool use_cann_graph = true;
|
||||
bool cann_graph_update_required = false;
|
||||
|
||||
if (!cann_ctx->acl_graph_mode) {
|
||||
use_cann_graph = false;
|
||||
}
|
||||
|
||||
if (use_cann_graph) {
|
||||
if (cann_ctx->cann_graph == nullptr) {
|
||||
cann_ctx->cann_graph.reset(new ggml_cann_graph());
|
||||
@@ -2400,16 +2459,10 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
}
|
||||
case GGML_OP_ROPE: {
|
||||
// TODO: with ops-test v == 1
|
||||
float ext_factor = 0.0f;
|
||||
memcpy(&ext_factor, (const float *) op->op_params + 7, sizeof(float));
|
||||
// TODO: n_dims <= ne0
|
||||
if (op->src[0]->ne[0] != op->op_params[1]) {
|
||||
return false;
|
||||
}
|
||||
// TODO: ext_factor != 0
|
||||
if (ext_factor != 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
const int mode = ((const int32_t *) op->op_params)[2];
|
||||
if (mode & GGML_ROPE_TYPE_MROPE) {
|
||||
@@ -2418,10 +2471,11 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
if (mode & GGML_ROPE_TYPE_VISION) {
|
||||
return false;
|
||||
}
|
||||
|
||||
#ifdef ASCEND_310P
|
||||
if(!ggml_is_contiguous(op->src[0])){
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
return true;
|
||||
}
|
||||
case GGML_OP_UPSCALE: {
|
||||
@@ -2483,15 +2537,17 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
case GGML_OP_ARGMAX:
|
||||
case GGML_OP_COS:
|
||||
case GGML_OP_SIN:
|
||||
case GGML_OP_CONV_TRANSPOSE_1D:
|
||||
case GGML_OP_LOG:
|
||||
case GGML_OP_MEAN:
|
||||
case GGML_OP_PAD_REFLECT_1D:
|
||||
case GGML_OP_COUNT_EQUAL:
|
||||
return true;
|
||||
case GGML_OP_CONV_TRANSPOSE_1D:
|
||||
// TODO: ((weightL - 1) * dilationW - padLeft)=1336 should not be larger than 255.
|
||||
return (op->src[0]->ne[0] - 1) <= 255;
|
||||
case GGML_OP_SCALE:
|
||||
float bias;
|
||||
memcpy(&bias, (float*)op->op_params + 1, sizeof(float));
|
||||
memcpy(&bias, (const float *)(op->op_params) + 1, sizeof(float));
|
||||
return bias == 0.0f; // TODO: support bias != 0.0f
|
||||
case GGML_OP_SOFT_MAX:
|
||||
// TODO: support attention sinks [TAG_ATTN_SINKS]
|
||||
@@ -2522,19 +2578,12 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
// different head sizes of K and V are not supported yet
|
||||
return false;
|
||||
}
|
||||
if (op->src[0]->ne[0] == 192) {
|
||||
return false;
|
||||
}
|
||||
if (op->src[0]->ne[0] == 576) {
|
||||
// DeepSeek MLA
|
||||
return false;
|
||||
}
|
||||
if (op->src[0]->ne[0] % 16 != 0) {
|
||||
// TODO: padding to support
|
||||
return false;
|
||||
}
|
||||
float logitSoftcap = 0.0f;
|
||||
memcpy(&logitSoftcap, (float*)op->op_params + 2, sizeof(float));
|
||||
memcpy(&logitSoftcap, (const float *)(op->op_params) + 2, sizeof(float));
|
||||
if(logitSoftcap != 0.0f) {
|
||||
return false;
|
||||
}
|
||||
@@ -2641,6 +2690,7 @@ static const ggml_backend_i ggml_backend_cann_interface = {
|
||||
/* .graph_compute = */ ggml_backend_cann_graph_compute,
|
||||
/* .event_record = */ ggml_backend_cann_event_record,
|
||||
/* .event_wait = */ ggml_backend_cann_event_wait,
|
||||
/* .optimize_graph = */ NULL,
|
||||
};
|
||||
|
||||
/**
|
||||
|
||||
@@ -433,15 +433,22 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
ggml-cpu/arch/riscv/quants.c
|
||||
ggml-cpu/arch/riscv/repack.cpp
|
||||
)
|
||||
if (GGML_RVV)
|
||||
if (GGML_XTHEADVECTOR)
|
||||
list(APPEND ARCH_FLAGS -march=rv64gc_zfhmin_xtheadvector -mabi=lp64d)
|
||||
elseif (GGML_RV_ZFH)
|
||||
list(APPEND ARCH_FLAGS -march=rv64gcv_zfhmin -mabi=lp64d)
|
||||
else()
|
||||
list(APPEND ARCH_FLAGS -march=rv64gcv -mabi=lp64d)
|
||||
set(MARCH_STR "rv64gc")
|
||||
if (GGML_RV_ZFH)
|
||||
string(APPEND MARCH_STR "_zfh")
|
||||
endif()
|
||||
if (GGML_XTHEADVECTOR)
|
||||
string(APPEND MARCH_STR "_xtheadvector")
|
||||
elseif (GGML_RVV)
|
||||
string(APPEND MARCH_STR "_v")
|
||||
if (GGML_RV_ZVFH)
|
||||
string(APPEND MARCH_STR "_zvfh")
|
||||
endif()
|
||||
endif()
|
||||
if (GGML_RV_ZICBOP)
|
||||
string(APPEND MARCH_STR "_zicbop")
|
||||
endif()
|
||||
list(APPEND ARCH_FLAGS "-march=${MARCH_STR}" -mabi=lp64d)
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "s390x")
|
||||
message(STATUS "s390x detected")
|
||||
list(APPEND GGML_CPU_SOURCES ggml-cpu/arch/s390/quants.c)
|
||||
@@ -450,7 +457,6 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
|
||||
# TODO: Separation to determine activation of VX/VXE/VXE2
|
||||
if (${S390X_M} MATCHES "8561|8562")
|
||||
set(GGML_NNPA OFF)
|
||||
message(STATUS "z15 target")
|
||||
list(APPEND ARCH_FLAGS -march=z15)
|
||||
elseif (${S390X_M} MATCHES "3931")
|
||||
@@ -472,11 +478,6 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
list(APPEND ARCH_FLAGS -mvx -mzvector)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_VXE)
|
||||
endif()
|
||||
|
||||
if (GGML_NNPA)
|
||||
message(STATUS "NNPA enabled")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_NNPA)
|
||||
endif()
|
||||
elseif (CMAKE_SYSTEM_PROCESSOR MATCHES "wasm")
|
||||
message(STATUS "Wasm detected")
|
||||
list (APPEND GGML_CPU_SOURCES ggml-cpu/arch/wasm/quants.c)
|
||||
@@ -497,9 +498,9 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
|
||||
# Fetch KleidiAI sources:
|
||||
include(FetchContent)
|
||||
set(KLEIDIAI_COMMIT_TAG "v1.11.0")
|
||||
set(KLEIDIAI_COMMIT_TAG "v1.13.0")
|
||||
set(KLEIDIAI_DOWNLOAD_URL "https://github.com/ARM-software/kleidiai/archive/refs/tags/${KLEIDIAI_COMMIT_TAG}.tar.gz")
|
||||
set(KLEIDIAI_ARCHIVE_MD5 "3fe9e5ab964c375c53839296eb71eaa2")
|
||||
set(KLEIDIAI_ARCHIVE_MD5 "d82a8de939d9814621a5ba23907bdac1")
|
||||
|
||||
if (POLICY CMP0135)
|
||||
cmake_policy(SET CMP0135 NEW)
|
||||
@@ -555,6 +556,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p4x8sb_f32_neon.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32_neon.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.c)
|
||||
@@ -576,7 +578,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_fp32_bf16p_bf16p/kai_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_pack_bf16p2vlx2_f32_sme.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.c)
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.c
|
||||
${KLEIDIAI_SRC}/kai/kai_common_sme_asm.S)
|
||||
set(PRIVATE_ARCH_FLAGS "-fno-tree-vectorize;${PRIVATE_ARCH_FLAGS}+sve+sve2")
|
||||
endif()
|
||||
|
||||
|
||||
@@ -1270,29 +1270,40 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
|
||||
|
||||
int tmp, tmp2, sumi;
|
||||
float ftmp, ft2;
|
||||
const uint8_t * restrict q40;
|
||||
const uint8_t * restrict q41;
|
||||
const uint8_t * restrict q42;
|
||||
const uint8_t * restrict q43;
|
||||
const int8_t * restrict q80;
|
||||
const int8_t * restrict q81;
|
||||
const int8_t * restrict q82;
|
||||
const int8_t * restrict q83;
|
||||
int s0, s1, s2, s3;
|
||||
|
||||
__asm__ __volatile__(
|
||||
"vsetivli zero, 12, e8, m1\n\t"
|
||||
"vle8.v v1, (%[s6b])\n\t" // {aux[0], aux[1], aux[2]}
|
||||
"vsetivli zero, 4, e32, m1\n\t"
|
||||
"li %[s1], 8\n\t"
|
||||
"vsetivli zero, 4, e32, m1, ta, ma\n\t"
|
||||
"vle32.v v1, (%[s6b])\n\t"
|
||||
"vslide1down.vx v1, v1, zero\n\t"
|
||||
"vmv.v.x v16, zero\n\t"
|
||||
"vslidedown.vi v2, v1, 2\n\t"
|
||||
"vmv1r.v v3, v2\n\t"
|
||||
"vslideup.vi v2, v3, 1\n\t" // {aux[2], aux[2]}
|
||||
"vsetivli zero, 2, e32, m1\n\t"
|
||||
"vsetivli zero, 2, e32, m1, ta, ma\n\t"
|
||||
"vmv.v.i v4, 4\n\t"
|
||||
"vand.vx v8, v1, %[kmask1]\n\t"
|
||||
"vslide1up.vx v5, v4, zero\n\t" // {0, 4}
|
||||
"vsrl.vi v6, v1, 6\n\t"
|
||||
"vsrl.vv v7, v2, v5\n\t"
|
||||
"vsse32.v v8, (%[utmp]), %[s1]\n\t"
|
||||
"vand.vx v0, v6, %[kmask3]\n\t"
|
||||
"vand.vx v2, v7, %[kmask2]\n\t"
|
||||
"vsll.vi v6, v0, 4\n\t"
|
||||
"li %[t2], 8\n\t"
|
||||
"addi %[t1], %[utmp], 4\n\t"
|
||||
"addi %[s0], %[utmp], 4\n\t"
|
||||
"vor.vv v1, v6, v2\n\t"
|
||||
"vsse32.v v8, (%[utmp]), %[t2]\n\t"
|
||||
"vsse32.v v1, (%[t1]), %[t2]\n\t"
|
||||
"vsetivli zero, 8, e16, m1\n\t"
|
||||
"vsse32.v v1, (%[s0]), %[s1]\n\t"
|
||||
"vsetivli zero, 8, e16, m1, ta, ma\n\t"
|
||||
"vle32.v v2, (%[bsums])\n\t"
|
||||
"vnsrl.wi v0, v2, 0\n\t"
|
||||
"vnsrl.wi v1, v2, 16\n\t"
|
||||
@@ -1300,13 +1311,131 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
"vle8.v v3, (%[mins])\n\t"
|
||||
"vzext.vf2 v4, v3\n\t"
|
||||
"vwmul.vv v6, v4, v2\n\t"
|
||||
"vsetivli zero, 4, e32, m1, ta, ma\n\t"
|
||||
"vredsum.vs v0, v6, v16\n\t"
|
||||
"vredsum.vs v0, v7, v0\n\t"
|
||||
"vfcvt.f.x.v v0, v0\n\t"
|
||||
"vfmv.f.s %[ftmp], v0\n\t"
|
||||
"vsetivli zero, 16, e8, m1, ta, ma\n\t"
|
||||
"vle8.v v0, (%[xs])\n\t"
|
||||
"fnmsub.s %[sumf], %[dmin], %[ftmp], %[sumf]\n\t"
|
||||
"addi %[q40], %[xs], 64\n\t"
|
||||
"addi %[q41], %[xs], 16\n\t"
|
||||
"addi %[q42], %[xs], 32\n\t"
|
||||
"addi %[q43], %[xs], 48\n\t"
|
||||
"addi %[q80], %[ys], 64\n\t"
|
||||
"vle8.v v1, (%[q41])\n\t"
|
||||
"vle8.v v2, (%[q42])\n\t"
|
||||
"addi %[q81], %[ys], 16\n\t"
|
||||
"addi %[q41], %[q41], 64\n\t"
|
||||
"addi %[q82], %[ys], 32\n\t"
|
||||
"vle8.v v3, (%[q43])\n\t"
|
||||
"vle8.v v8, (%[ys])\n\t"
|
||||
"addi %[q42], %[q42], 64\n\t"
|
||||
"addi %[q83], %[ys], 48\n\t"
|
||||
"addi %[q43], %[q43], 64\n\t"
|
||||
"vsrl.vi v4, v0, 4\n\t"
|
||||
"vle8.v v9, (%[q81])\n\t"
|
||||
"vle8.v v10, (%[q82])\n\t"
|
||||
"vand.vi v0, v0, 0xF\n\t"
|
||||
"addi %[q81], %[q81], 64\n\t"
|
||||
"vsrl.vi v5, v1, 4\n\t"
|
||||
"addi %[q82], %[q82], 64\n\t"
|
||||
"vle8.v v11, (%[q83])\n\t"
|
||||
"vle8.v v12, (%[q80])\n\t"
|
||||
"vand.vi v1, v1, 0xF\n\t"
|
||||
"addi %[q83], %[q83], 64\n\t"
|
||||
"vsrl.vi v6, v2, 4\n\t"
|
||||
"addi %[q80], %[q80], 64\n\t"
|
||||
"vle8.v v13, (%[q81])\n\t"
|
||||
"vle8.v v14, (%[q82])\n\t"
|
||||
"vand.vi v2, v2, 0xF\n\t"
|
||||
"addi %[q81], %[q81], 64\n\t"
|
||||
"vsrl.vi v7, v3, 4\n\t"
|
||||
"addi %[q82], %[q82], 64\n\t"
|
||||
"vwmul.vv v16, v0, v8\n\t"
|
||||
"vle8.v v15, (%[q83])\n\t"
|
||||
"vle8.v v0, (%[q40])\n\t"
|
||||
"vand.vi v3, v3, 0xF\n\t"
|
||||
"addi %[q83], %[q83], 64\n\t"
|
||||
"vwmul.vv v24, v2, v12\n\t"
|
||||
"vwmul.vv v20, v4, v10\n\t"
|
||||
"vwmul.vv v28, v6, v14\n\t"
|
||||
"vwmacc.vv v16, v1, v9\n\t"
|
||||
"vle8.v v1, (%[q41])\n\t"
|
||||
"vle8.v v2, (%[q42])\n\t"
|
||||
"vwmacc.vv v24, v3, v13\n\t"
|
||||
"vwmacc.vv v20, v5, v11\n\t"
|
||||
"vwmacc.vv v28, v7, v15\n\t"
|
||||
"addi %[q40], %[q80], 64\n\t"
|
||||
"addi %[q41], %[q81], 64\n\t"
|
||||
"vle8.v v3, (%[q43])\n\t"
|
||||
"vle8.v v8, (%[q80])\n\t"
|
||||
"addi %[q42], %[q82], 64\n\t"
|
||||
"addi %[q43], %[q83], 64\n\t"
|
||||
"vsrl.vi v4, v0, 4\n\t"
|
||||
"vle8.v v9, (%[q81])\n\t"
|
||||
"vle8.v v10, (%[q82])\n\t"
|
||||
"vand.vi v0, v0, 0xF\n\t"
|
||||
"vsrl.vi v5, v1, 4\n\t"
|
||||
"vsrl.vi v7, v3, 4\n\t"
|
||||
"vand.vi v3, v3, 0xF\n\t"
|
||||
"vle8.v v11, (%[q83])\n\t"
|
||||
"vle8.v v12, (%[q40])\n\t"
|
||||
"vand.vi v1, v1, 0xF\n\t"
|
||||
"vsrl.vi v6, v2, 4\n\t"
|
||||
"vand.vi v2, v2, 0xF\n\t"
|
||||
"vwmul.vv v18, v0, v8\n\t"
|
||||
"vle8.v v13, (%[q41])\n\t"
|
||||
"vle8.v v14, (%[q42])\n\t"
|
||||
"vwmul.vv v26, v2, v12\n\t"
|
||||
"vwmul.vv v22, v4, v10\n\t"
|
||||
"vwmul.vv v30, v6, v14\n\t"
|
||||
"vwmacc.vv v18, v1, v9\n\t"
|
||||
"vle8.v v15, (%[q43])\n\t"
|
||||
"vwmacc.vv v26, v3, v13\n\t"
|
||||
"vwmacc.vv v22, v5, v11\n\t"
|
||||
"vwmacc.vv v30, v7, v15\n\t"
|
||||
"vmv.v.x v0, zero\n\t"
|
||||
"vsetivli zero, 8, e32, m2\n\t"
|
||||
"vredsum.vs v0, v6, v0\n\t"
|
||||
"vmv.x.s %[sumi], v0"
|
||||
: [t1] "=&r" (tmp), [t2] "=&r" (tmp2), [sumi] "=&r" (sumi)
|
||||
: [bsums] "r" (y[i].bsums), [mins] "r" (mins), [utmp] "r" (utmp)
|
||||
, [s6b] "r" (x[i].scales), [kmask1] "r" (kmask1)
|
||||
"vsetivli zero, 16, e16, m2, ta, ma\n\t"
|
||||
"vwredsum.vs v4, v16, v0\n\t"
|
||||
"lbu %[s0], 0(%[scale])\n\t"
|
||||
"vwredsum.vs v5, v20, v0\n\t"
|
||||
"lbu %[s1], 1(%[scale])\n\t"
|
||||
"vwredsum.vs v6, v24, v0\n\t"
|
||||
"lbu %[s2], 2(%[scale])\n\t"
|
||||
"vwredsum.vs v7, v28, v0\n\t"
|
||||
"lbu %[s3], 3(%[scale])\n\t"
|
||||
"vwredsum.vs v8, v18, v0\n\t"
|
||||
"lbu %[q40], 4(%[scale])\n\t"
|
||||
"vwredsum.vs v9, v22, v0\n\t"
|
||||
"lbu %[q41], 5(%[scale])\n\t"
|
||||
"vwredsum.vs v10, v26, v0\n\t"
|
||||
"lbu %[q42], 6(%[scale])\n\t"
|
||||
"vwredsum.vs v11, v30, v0\n\t"
|
||||
"lbu %[q43], 7(%[scale])\n\t"
|
||||
"vsetivli zero, 4, e32, m1, ta, ma\n\t"
|
||||
"vmul.vx v0, v4, %[s0]\n\t"
|
||||
"vmul.vx v1, v8, %[q40]\n\t"
|
||||
"vmacc.vx v0, %[s1], v5\n\t"
|
||||
"vmacc.vx v1, %[q41], v9\n\t"
|
||||
"vmacc.vx v0, %[s2], v6\n\t"
|
||||
"vmacc.vx v1, %[q42], v10\n\t"
|
||||
"vmacc.vx v0, %[s3], v7\n\t"
|
||||
"vmacc.vx v1, %[q43], v11\n\t"
|
||||
"vfcvt.f.x.v v0, v0\n\t"
|
||||
"vfcvt.f.x.v v1, v1\n\t"
|
||||
"vfmv.f.s %[ft2], v0\n\t"
|
||||
"vfmv.f.s %[ftmp], v1\n\t"
|
||||
"fadd.s %[ft2], %[ft2], %[ftmp]\n\t"
|
||||
"fmadd.s %[sumf], %[d], %[ft2], %[sumf]"
|
||||
: [ftmp] "=&f" (ftmp), [sumf] "+&f" (sumf), [ft2] "=&f" (ft2)
|
||||
, [s0] "=&r" (s0), [s1] "=&r" (s1), [s2] "=&r" (s2), [s3] "=&r" (s3)
|
||||
, [q40] "=&r" (q40), [q41] "=&r" (q41), [q42] "=&r" (q42), [q43] "=&r" (q43)
|
||||
, [q80] "=&r" (q80), [q81] "=&r" (q81), [q82] "=&r" (q82), [q83] "=&r" (q83)
|
||||
: [d] "f" (d), [ys] "r" (y[i].qs), [xs] "r" (x[i].qs), [scale] "r" (scales)
|
||||
, [bsums] "r" (y[i].bsums), [mins] "r" (mins), [utmp] "r" (utmp)
|
||||
, [s6b] "r" (&x[i]), [kmask1] "r" (kmask1), [dmin] "f" (dmin)
|
||||
, [kmask2] "r" (kmask2), [kmask3] "r" (kmask3)
|
||||
: "memory"
|
||||
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
|
||||
@@ -1314,59 +1443,6 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
|
||||
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
|
||||
);
|
||||
sumf -= dmin * sumi;
|
||||
|
||||
const uint8_t * restrict q4 = x[i].qs;
|
||||
const int8_t * restrict q8 = y[i].qs;
|
||||
|
||||
sumi = 0;
|
||||
const uint8_t * scale = scales;
|
||||
|
||||
for (int j = 0; j < QK_K/128; ++j) {
|
||||
int vl128 = 128, vl64 = 64, vl32 = 32;
|
||||
__asm__ __volatile__(
|
||||
"vsetvli zero, %[vl128], e8, m8\n\t"
|
||||
"vle8.v v8, (%[q8])\n\t"
|
||||
"vsetvli zero, %[vl64], e8, m4\n\t"
|
||||
"vle8.v v0, (%[q4])\n\t"
|
||||
"vsrl.vi v4, v0, 4\n\t"
|
||||
"vand.vi v0, v0, 0xF\n\t"
|
||||
"vsetvli zero, %[vl32], e8, m2\n\t"
|
||||
"vwmul.vv v28, v6, v14\n\t"
|
||||
"vwmul.vv v20, v4, v10\n\t"
|
||||
"vwmul.vv v24, v2, v12\n\t"
|
||||
"vwmul.vv v16, v0, v8\n\t"
|
||||
"vsetivli zero, 4, e32, m1\n\t"
|
||||
"vle8.v v2, (%[scale])\n\t"
|
||||
"vmv.v.x v0, zero\n\t"
|
||||
"vzext.vf4 v1, v2\n\t"
|
||||
"vsetvli zero, %[vl32], e16, m4\n\t"
|
||||
"vwredsum.vs v6, v24, v0\n\t"
|
||||
"vwredsum.vs v7, v28, v0\n\t"
|
||||
"vwredsum.vs v4, v16, v0\n\t"
|
||||
"vwredsum.vs v5, v20, v0\n\t"
|
||||
"vsetivli zero, 4, e32, m1\n\t"
|
||||
"vslideup.vi v6, v7, 1\n\t"
|
||||
"vslideup.vi v4, v5, 1\n\t"
|
||||
"vslideup.vi v4, v6, 2\n\t"
|
||||
"vmul.vv v8, v4, v1\n\t"
|
||||
"vredsum.vs v0, v8, v0\n\t"
|
||||
"vmv.x.s %[tmp], v0\n\t"
|
||||
"add %[sumi], %[sumi], %[tmp]"
|
||||
: [tmp] "=&r" (tmp), [sumi] "+&r" (sumi)
|
||||
: [vl128] "r" (vl128), [vl64] "r" (vl64), [vl32] "r" (vl32)
|
||||
, [q4] "r" (q4), [q8] "r" (q8), [scale] "r" (scale)
|
||||
: "memory"
|
||||
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
|
||||
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
|
||||
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
|
||||
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
|
||||
);
|
||||
|
||||
q4 += 64; q8 += 128; scale += 4;
|
||||
}
|
||||
|
||||
sumf += d * sumi;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
@@ -1693,6 +1769,8 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
case 128:
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
__builtin_prefetch(&x[i + 1].d, 0, 1);
|
||||
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
|
||||
const uint8_t * restrict q6 = x[i].ql;
|
||||
@@ -1701,23 +1779,59 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
const int8_t * restrict scale = x[i].scales;
|
||||
|
||||
int sum_t = 0;
|
||||
int t0;
|
||||
int q6h;
|
||||
float ftmp;
|
||||
|
||||
for (int j = 0; j < QK_K/128; ++j) {
|
||||
__asm__ __volatile__(
|
||||
"addi %[q6h], %[q6], 32\n\t"
|
||||
"ld t0, 0(%[scale])\n\t"
|
||||
"addi %[scale], %[scale], 8\n\t"
|
||||
"slli t6, t0, 1 * 8\n\t"
|
||||
"lb zero, 0(%[q6])\n\t"
|
||||
"slli t5, t0, 2 * 8\n\t"
|
||||
"slli t4, t0, 3 * 8\n\t"
|
||||
"lb zero, 0(%[q6h])\n\t"
|
||||
"slli t3, t0, 4 * 8\n\t"
|
||||
"slli t2, t0, 5 * 8\n\t"
|
||||
"lb zero, 0(%[qh])\n\t"
|
||||
"lb zero, 31(%[q6h])\n\t"
|
||||
"slli t1, t0, 6 * 8\n\t"
|
||||
"srai a7, t0, 56\n\t"
|
||||
"vsetvli zero, %[vl32], e8, m2\n\t"
|
||||
"vle8.v v8, (%[q6])\n\t"
|
||||
"srai t6, t6, 56\n\t"
|
||||
"srai t5, t5, 56\n\t"
|
||||
"srai t4, t4, 56\n\t"
|
||||
"srai t3, t3, 56\n\t"
|
||||
"vle8.v v10, (%[q6h])\n\t"
|
||||
"addi %[q6], %[q6], 64\n\t"
|
||||
"slli t0, t0, 7 * 8\n\t"
|
||||
"srai t2, t2, 56\n\t"
|
||||
"srai t1, t1, 56\n\t"
|
||||
"srai t0, t0, 56\n\t"
|
||||
"vle8.v v4, (%[qh])\n\t"
|
||||
"vsrl.vi v12, v8, 4\n\t"
|
||||
"vsrl.vi v14, v10, 4\n\t"
|
||||
"lb zero, 0(%[q8])\n\t"
|
||||
"vand.vi v8, v8, 0xF\n\t"
|
||||
"vand.vi v10, v10, 0xF\n\t"
|
||||
"lb zero, 32(%[q8])\n\t"
|
||||
"vsll.vi v0, v4, 4\n\t"
|
||||
"vsll.vi v2, v4, 2\n\t"
|
||||
"lb zero, 64(%[q8])\n\t"
|
||||
"vsrl.vi v6, v4, 2\n\t"
|
||||
"vsetvli zero, %[vl64], e8, m4\n\t"
|
||||
"vle8.v v8, (%[q6])\n\t"
|
||||
"vsrl.vi v12, v8, 4\n\t"
|
||||
"vand.vi v8, v8, 0xF\n\t"
|
||||
"vsetvli zero, %[vl128], e8, m8\n\t"
|
||||
"vand.vx v0, v0, %[mask]\n\t"
|
||||
"lb zero, 96(%[q8])\n\t"
|
||||
"vand.vx v2, v2, %[mask]\n\t"
|
||||
"vand.vx v4, v4, %[mask]\n\t"
|
||||
"vand.vx v6, v6, %[mask]\n\t"
|
||||
"vor.vv v8, v8, v0\n\t"
|
||||
"lb zero, 127(%[q8])\n\t"
|
||||
"vor.vv v10, v10, v2\n\t"
|
||||
"vor.vv v12, v12, v4\n\t"
|
||||
"vor.vv v14, v14, v6\n\t"
|
||||
"vsetvli zero, %[vl128], e8, m8\n\t"
|
||||
"vle8.v v0, (%[q8])\n\t"
|
||||
"vsub.vx v8, v8, %[vl32]\n\t"
|
||||
"vsetvli zero, %[vl64], e8, m4\n\t"
|
||||
@@ -1734,34 +1848,34 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
"vwredsum.vs v13, v28, v0\n\t"
|
||||
"vwredsum.vs v14, v30, v0\n\t"
|
||||
"vsetivli zero, 4, e32, m1\n\t"
|
||||
"vslideup.vi v10, v9, 1\n\t"
|
||||
"vslideup.vi v8, v7, 1\n\t"
|
||||
"vslideup.vi v11, v12, 1\n\t"
|
||||
"vslideup.vi v13, v14, 1\n\t"
|
||||
"vslideup.vi v10, v8, 2\n\t"
|
||||
"vslideup.vi v11, v13, 2\n\t"
|
||||
"vsetivli zero, 8, e32, m2\n\t"
|
||||
"vle8.v v2, (%[scale])\n\t"
|
||||
"vsext.vf4 v4, v2\n\t"
|
||||
"vmul.vv v2, v4, v10\n\t"
|
||||
"vredsum.vs v0, v2, v0\n\t"
|
||||
"vmv.x.s %[t0], v0\n\t"
|
||||
"add %[sumi], %[sumi], %[t0]"
|
||||
: [sumi] "+&r" (sum_t), [t0] "=&r" (t0)
|
||||
: [qh] "r" (qh), [q6] "r" (q6), [q8] "r" (q8), [scale] "r" (scale)
|
||||
"vmul.vx v0, v10, t0\n\t"
|
||||
"vmul.vx v1, v9, t1\n\t"
|
||||
"vmacc.vx v0, t2, v8\n\t"
|
||||
"vmacc.vx v1, t3, v7\n\t"
|
||||
"vmacc.vx v0, t4, v11\n\t"
|
||||
"vmacc.vx v1, t5, v12\n\t"
|
||||
"vmacc.vx v0, t6, v13\n\t"
|
||||
"vmacc.vx v1, a7, v14\n\t"
|
||||
"vadd.vv v0, v0, v1\n\t"
|
||||
"vfcvt.f.x.v v0, v0\n\t"
|
||||
"vfmv.f.s %[ftmp], v0\n\t"
|
||||
"fmadd.s %[sumf], %[d], %[ftmp], %[sumf]"
|
||||
: [q6] "+&r" (q6), [q6h] "=&r" (q6h)
|
||||
, [scale] "+&r" (scale)
|
||||
, [sumf] "+&f" (sumf), [ftmp] "=&f" (ftmp)
|
||||
: [qh] "r" (qh), [q8] "r" (q8)
|
||||
, [vl32] "r" (32), [vl64] "r" (64), [vl128] "r" (128)
|
||||
, [mask] "r" (0x30)
|
||||
, [mask] "r" (0x30), [d] "f" (d)
|
||||
: "memory"
|
||||
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
|
||||
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
|
||||
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
|
||||
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
|
||||
, "t0", "t1", "t2", "t3", "t4", "t5", "t6", "a7"
|
||||
, "a6", "a5", "a4", "a3"
|
||||
);
|
||||
q6 += 64; qh += 32; q8 += 128; scale += 8;
|
||||
qh += 32; q8 += 128;
|
||||
}
|
||||
|
||||
sumf += d * sum_t;
|
||||
|
||||
}
|
||||
break;
|
||||
default:
|
||||
|
||||
@@ -53,9 +53,9 @@ void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
|
||||
|
||||
#if defined(__VXE__) || defined(__VXE2__)
|
||||
for (int i = 0; i < nb; i++) {
|
||||
__vector float srcv [8];
|
||||
__vector float asrcv[8];
|
||||
__vector float amaxv[8];
|
||||
float32x4_t srcv [8];
|
||||
float32x4_t asrcv[8];
|
||||
float32x4_t amaxv[8];
|
||||
|
||||
for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
|
||||
for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
|
||||
@@ -74,8 +74,8 @@ void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
|
||||
y[i].d = GGML_CPU_FP32_TO_FP16(d);
|
||||
|
||||
for (int j = 0; j < 8; j++) {
|
||||
const __vector float v = vec_mul(srcv[j], vec_splats(id));
|
||||
const __vector int32_t vi = vec_signed(v);
|
||||
const float32x4_t v = vec_mul(srcv[j], vec_splats(id));
|
||||
const int32x4_t vi = vec_signed(v);
|
||||
|
||||
y[i].qs[4*j + 0] = vec_extract(vi, 0);
|
||||
y[i].qs[4*j + 1] = vec_extract(vi, 1);
|
||||
@@ -98,9 +98,9 @@ void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
|
||||
|
||||
#if defined(__VXE__) || defined(__VXE2__)
|
||||
for (int i = 0; i < nb; i++) {
|
||||
__vector float srcv [8];
|
||||
__vector float asrcv[8];
|
||||
__vector float amaxv[8];
|
||||
float32x4_t srcv [8];
|
||||
float32x4_t asrcv[8];
|
||||
float32x4_t amaxv[8];
|
||||
|
||||
for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
|
||||
for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
|
||||
@@ -118,11 +118,11 @@ void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
|
||||
|
||||
y[i].d = GGML_CPU_FP32_TO_FP16(d);
|
||||
|
||||
__vector int32_t acc = vec_splats(0);
|
||||
int32x4_t acc = vec_splats(0);
|
||||
|
||||
for (int j = 0; j < 8; j++) {
|
||||
const __vector float v = vec_mul(srcv[j], vec_splats(id));
|
||||
const __vector int32_t vi = vec_signed(v);
|
||||
const float32x4_t v = vec_mul(srcv[j], vec_splats(id));
|
||||
const int32x4_t vi = vec_signed(v);
|
||||
|
||||
y[i].qs[4*j + 0] = vec_extract(vi, 0);
|
||||
y[i].qs[4*j + 1] = vec_extract(vi, 1);
|
||||
@@ -162,37 +162,36 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
float sumf = 0;
|
||||
|
||||
#if defined(__VXE__) || defined(__VXE2__)
|
||||
__vector float acc = vec_splats(0.0f);
|
||||
float32x4_t acc = vec_splats(0.0f);
|
||||
|
||||
const __vector uint8_t v_m = vec_splats((const uint8_t)0x0F);
|
||||
const __vector int8_t v_s = vec_splats( (const int8_t)0x08);
|
||||
const uint8x16_t v_m = vec_splats((const uint8_t)0x0F);
|
||||
const int8x16_t v_s = vec_splats( (const int8_t)0x08);
|
||||
|
||||
for (; ib < nb; ++ib) {
|
||||
const __vector uint8_t v_x = vec_xl(0, x[ib].qs);
|
||||
const __vector int8_t v_xl = (const __vector int8_t)(v_x & v_m);
|
||||
const __vector int8_t v_xh = (const __vector int8_t)(v_x >> 4);
|
||||
const uint8x16_t v_x = vec_xl(0, x[ib].qs);
|
||||
const int8x16_t v_xl = (const int8x16_t)(v_x & v_m);
|
||||
const int8x16_t v_xh = (const int8x16_t)(v_x >> 4);
|
||||
|
||||
const __vector int8_t v_xls = vec_sub(v_xl, v_s);
|
||||
const __vector int8_t v_xhs = vec_sub(v_xh, v_s);
|
||||
const int8x16_t v_xls = vec_sub(v_xl, v_s);
|
||||
const int8x16_t v_xhs = vec_sub(v_xh, v_s);
|
||||
|
||||
const __vector int8_t v_yl = vec_xl(0 , y[ib].qs);
|
||||
const __vector int8_t v_yh = vec_xl(QK8_0/2, y[ib].qs);
|
||||
const int8x16_t v_yl = vec_xl(0 , y[ib].qs);
|
||||
const int8x16_t v_yh = vec_xl(QK8_0/2, y[ib].qs);
|
||||
|
||||
const __vector int16_t v_xylso = vec_mulo(v_xls, v_yl);
|
||||
const __vector int16_t v_xylse = vec_mule(v_xls, v_yl);
|
||||
const __vector int16_t v_xyhso = vec_mulo(v_xhs, v_yh);
|
||||
const __vector int16_t v_xyhse = vec_mule(v_xhs, v_yh);
|
||||
const int16x8_t v_xylso = vec_mulo(v_xls, v_yl);
|
||||
const int16x8_t v_xylse = vec_mule(v_xls, v_yl);
|
||||
const int16x8_t v_xyhso = vec_mulo(v_xhs, v_yh);
|
||||
const int16x8_t v_xyhse = vec_mule(v_xhs, v_yh);
|
||||
|
||||
__vector int16_t v_xy_ = v_xylso + v_xylse + v_xyhso + v_xyhse; v_xy_ += vec_reve(v_xy_);
|
||||
int16x8_t v_xy_ = v_xylso + v_xylse + v_xyhso + v_xyhse; v_xy_ += vec_reve(v_xy_);
|
||||
|
||||
const __vector float v_xy = vec_float(vec_unpackh(v_xy_));
|
||||
const __vector float v_d = vec_splats(GGML_CPU_FP16_TO_FP32(x[ib].d) * GGML_CPU_FP16_TO_FP32(y[ib].d));
|
||||
const float32x4_t v_xy = vec_float(vec_unpackh(v_xy_));
|
||||
const float32x4_t v_d = vec_splats(GGML_CPU_FP16_TO_FP32(x[ib].d) * GGML_CPU_FP16_TO_FP32(y[ib].d));
|
||||
|
||||
acc = vec_madd(v_xy, v_d, acc);
|
||||
}
|
||||
|
||||
sumf = acc[0] + acc[1] + acc[2] + acc[3];
|
||||
|
||||
sumf = vec_hsum_f32x4(acc);
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
@@ -249,8 +248,7 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
acc = vec_madd(v_xy, v_d, acc);
|
||||
}
|
||||
|
||||
sumf = acc[0] + acc[1] + acc[2] + acc[3] + summs;
|
||||
|
||||
sumf = vec_hsum_f32x4(acc) + summs;
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
@@ -351,7 +349,7 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
v_sum1 = vec_madd(v_xy1f, v_d1, v_sum1);
|
||||
}
|
||||
|
||||
sumf += vec_hsum(v_sum0) + vec_hsum(v_sum1);
|
||||
sumf += vec_hsum_f32x4(v_sum0) + vec_hsum_f32x4(v_sum1);
|
||||
|
||||
#pragma GCC unroll 4
|
||||
for (; ib < nb; ++ib) {
|
||||
@@ -390,7 +388,7 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
const float32x4_t v_d = vec_splats(GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d));
|
||||
const float32x4_t v_acc = vec_madd(v_xyf, v_d, vec_splats(0.0f));
|
||||
|
||||
sumf += vec_hsum(v_acc);
|
||||
sumf += vec_hsum_f32x4(v_acc);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
@@ -502,7 +500,7 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
v_sum1 = vec_madd(v_xy1f, v_d1, v_sum1);
|
||||
}
|
||||
|
||||
sumf += vec_hsum(v_sum0) + vec_hsum(v_sum1) + summs0 + summs1;
|
||||
sumf += vec_hsum_f32x4(v_sum0) + vec_hsum_f32x4(v_sum1) + summs0 + summs1;
|
||||
|
||||
#pragma GCC unroll 4
|
||||
for (; ib < nb; ++ib) {
|
||||
@@ -543,7 +541,7 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
const float32x4_t v_d = vec_splats(GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d));
|
||||
const float32x4_t v_acc = vec_madd(v_xyf, v_d, v_acc);
|
||||
|
||||
sumf += vec_hsum(v_acc) + summs;
|
||||
sumf += vec_hsum_f32x4(v_acc) + summs;
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
@@ -575,7 +573,7 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
float sumf = 0;
|
||||
|
||||
#if defined(__VXE__) || defined(__VXE2__)
|
||||
__vector float acc = vec_splats(0.0f);
|
||||
float32x4_t acc = vec_splats(0.0f);
|
||||
|
||||
#pragma GCC unroll 8
|
||||
for (; ib < nb; ++ib) {
|
||||
@@ -594,7 +592,7 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
acc = vec_madd(v_xy, v_d, acc);
|
||||
}
|
||||
|
||||
sumf = acc[0] + acc[1] + acc[2] + acc[3];
|
||||
sumf = vec_hsum_f32x4(acc);
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
@@ -718,10 +716,10 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
isum2 = ggml_vec_dot(v_z, q3bytes[2], q8bytes[6]);
|
||||
isum3 = ggml_vec_dot(v_z, q3bytes[3], q8bytes[7]);
|
||||
|
||||
isum += (isum0[0] + isum0[1] + isum0[2] + isum0[3]) * scale[0];
|
||||
isum += (isum1[0] + isum1[1] + isum1[2] + isum1[3]) * scale[1];
|
||||
isum += (isum2[0] + isum2[1] + isum2[2] + isum2[3]) * scale[2];
|
||||
isum += (isum3[0] + isum3[1] + isum3[2] + isum3[3]) * scale[3];
|
||||
isum += vec_hsum_i32x4(isum0) * scale[0];
|
||||
isum += vec_hsum_i32x4(isum1) * scale[1];
|
||||
isum += vec_hsum_i32x4(isum2) * scale[2];
|
||||
isum += vec_hsum_i32x4(isum3) * scale[3];
|
||||
|
||||
scale += 4;
|
||||
|
||||
@@ -819,7 +817,7 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
v_xl[1] = (int8x16_t)vec_and(v_x[1], v_lm);
|
||||
|
||||
const int32x4_t p1 = ggml_vec_dot(ggml_vec_dot(v_z, v_xl[0], v_y[0]), v_xl[1], v_y[1]);
|
||||
sumi1 += (p1[0] + p1[1] + p1[2] + p1[3]) * scales[2*j+0];
|
||||
sumi1 += vec_hsum_i32x4(p1) * scales[2*j+0];
|
||||
|
||||
v_y[0] = vec_xl(0 , y0);
|
||||
v_y[1] = vec_xl(16, y0);
|
||||
@@ -829,7 +827,7 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
v_xl[1] = (int8x16_t)vec_sr(v_x[1], 4);
|
||||
|
||||
const int32x4_t p2 = ggml_vec_dot(ggml_vec_dot(v_z, v_xl[0], v_y[0]), v_xl[1], v_y[1]);
|
||||
sumi2 += (p2[0] + p2[1] + p2[2] + p2[3]) * scales[2*j+1];
|
||||
sumi2 += vec_hsum_i32x4(p2) * scales[2*j+1];
|
||||
}
|
||||
|
||||
sumf += d * (sumi1 + sumi2);
|
||||
@@ -911,7 +909,7 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
const int32x4_t v_minsho = vec_mulo(v_ysums, v_minsh);
|
||||
const int32x4_t v_minshe = vec_mule(v_ysums, v_minsh);
|
||||
const int32x4_t v_mins = vec_add(v_minsho, v_minshe);
|
||||
const int32_t mins = v_mins[0] + v_mins[1] + v_mins[2] + v_mins[3];
|
||||
const int32_t mins = vec_hsum_i32x4(v_mins);
|
||||
|
||||
const uint8_t * scales = (const uint8_t *)utmp;
|
||||
const uint8_t * GGML_RESTRICT x0l = x[i].qs;
|
||||
@@ -948,8 +946,8 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
int32x4_t sumi0 = ggml_vec_dot(ggml_vec_dot(v_z, q5b[0], v_y[0]), q5b[1], v_y[1]);
|
||||
int32x4_t sumi1 = ggml_vec_dot(ggml_vec_dot(v_z, q5b[2], v_y[2]), q5b[3], v_y[3]);
|
||||
|
||||
sumi += (sumi0[0] + sumi0[1] + sumi0[2] + sumi0[3]) * *scales++;
|
||||
sumi += (sumi1[0] + sumi1[1] + sumi1[2] + sumi1[3]) * *scales++;
|
||||
sumi += vec_hsum_i32x4(sumi0) * *scales++;
|
||||
sumi += vec_hsum_i32x4(sumi1) * *scales++;
|
||||
}
|
||||
|
||||
sumf += d * sumi - dmin * mins;
|
||||
@@ -1020,7 +1018,7 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
const int32x4_t v_minshe = vec_mule(v_ysumsh, v_scaleh);
|
||||
const int32x4_t v_mins = v_minslo + v_minsle + v_minsho + v_minshe;
|
||||
|
||||
const int32_t mins = v_mins[0] + v_mins[1] + v_mins[2] + v_mins[3];
|
||||
const int32_t mins = vec_hsum_i32x4(v_mins);
|
||||
|
||||
int32_t isum = 0;
|
||||
for (int j = 0; j < QK_K/128; ++j) {
|
||||
@@ -1060,10 +1058,10 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
int32x4_t summs2 = ggml_vec_dot(v_z, q6b[2], v_y[2]);
|
||||
int32x4_t summs3 = ggml_vec_dot(v_z, q6b[3], v_y[3]);
|
||||
|
||||
isum += (summs0[0] + summs0[1] + summs0[2] + summs0[3]) * scale[0] +
|
||||
(summs1[0] + summs1[1] + summs1[2] + summs1[3]) * scale[1] +
|
||||
(summs2[0] + summs2[1] + summs2[2] + summs2[3]) * scale[2] +
|
||||
(summs3[0] + summs3[1] + summs3[2] + summs3[3]) * scale[3];
|
||||
isum += vec_hsum_i32x4(summs0) * scale[0] +
|
||||
vec_hsum_i32x4(summs1) * scale[1] +
|
||||
vec_hsum_i32x4(summs2) * scale[2] +
|
||||
vec_hsum_i32x4(summs3) * scale[3];
|
||||
|
||||
scale += 4;
|
||||
|
||||
@@ -1094,10 +1092,10 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
summs2 = ggml_vec_dot(v_z, q6b[2], v_y[2]);
|
||||
summs3 = ggml_vec_dot(v_z, q6b[3], v_y[3]);
|
||||
|
||||
isum += (summs0[0] + summs0[1] + summs0[2] + summs0[3]) * scale[0] +
|
||||
(summs1[0] + summs1[1] + summs1[2] + summs1[3]) * scale[1] +
|
||||
(summs2[0] + summs2[1] + summs2[2] + summs2[3]) * scale[2] +
|
||||
(summs3[0] + summs3[1] + summs3[2] + summs3[3]) * scale[3];
|
||||
isum += vec_hsum_i32x4(summs0) * scale[0] +
|
||||
vec_hsum_i32x4(summs1) * scale[1] +
|
||||
vec_hsum_i32x4(summs2) * scale[2] +
|
||||
vec_hsum_i32x4(summs3) * scale[3];
|
||||
|
||||
scale += 4;
|
||||
}
|
||||
@@ -1285,7 +1283,7 @@ void ggml_vec_dot_iq4_nl_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const v
|
||||
const int8x16_t v_yh = vec_xl(QK8_0/2, y0->qs);
|
||||
const int32x4_t v_xy = ggml_vec_dot(ggml_vec_dot(vec_splats(0), v_xl, v_yl), v_xh, v_yh);
|
||||
|
||||
sumf += GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d) * (v_xy[0] + v_xy[1] + v_xy[2] + v_xy[3]);
|
||||
sumf += GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d) * vec_hsum_i32x4(v_xy);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
@@ -1354,8 +1352,8 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
|
||||
|
||||
h >>= 4;
|
||||
|
||||
sumi1 += (vsumi0[0] + vsumi0[1] + vsumi0[2] + vsumi0[3]) * ls1;
|
||||
sumi2 += (vsumi1[0] + vsumi1[1] + vsumi1[2] + vsumi1[3]) * ls2;
|
||||
sumi1 += vec_hsum_i32x4(vsumi0) * ls1;
|
||||
sumi2 += vec_hsum_i32x4(vsumi1) * ls2;
|
||||
}
|
||||
|
||||
sumf += GGML_CPU_FP16_TO_FP32(x[ibl].d) * y[ibl].d * (sumi1 + sumi2);
|
||||
|
||||
@@ -68,12 +68,6 @@ struct ggml_compute_params {
|
||||
#endif // __VXE2__
|
||||
#endif // __s390x__ && __VEC__
|
||||
|
||||
#if defined(__s390x__) && defined(GGML_NNPA)
|
||||
#ifndef __NNPA__
|
||||
#define __NNPA__
|
||||
#endif // __NNPA__
|
||||
#endif // __s390x__ && GGML_NNPA
|
||||
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
#include <sys/prctl.h>
|
||||
#endif
|
||||
@@ -489,11 +483,16 @@ inline static int16x8_t vec_padd_s16(int16x8_t a, int16x8_t b) {
|
||||
/**
|
||||
* @see https://github.com/ggml-org/llama.cpp/pull/14037
|
||||
*/
|
||||
inline float vec_hsum(float32x4_t v) {
|
||||
inline static float vec_hsum_f32x4(float32x4_t v) {
|
||||
float32x4_t v_temp = v + vec_reve(v);
|
||||
return v_temp[0] + v_temp[1];
|
||||
}
|
||||
|
||||
inline static int32_t vec_hsum_i32x4(int32x4_t v) {
|
||||
int32x4_t v_temp = v + vec_reve(v);
|
||||
return v_temp[0] + v_temp[1];
|
||||
}
|
||||
|
||||
inline static int32x4_t ggml_vec_dot(int32x4_t acc, int8x16_t a, int8x16_t b) {
|
||||
const int16x8_t p = vec_mule(a, b) + vec_mulo(a, b);
|
||||
return acc + (vec_unpackh(p) + vec_unpackl(p));
|
||||
|
||||
@@ -373,6 +373,9 @@ static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
|
||||
.vec_dot_type = GGML_TYPE_Q8_K,
|
||||
.nrows = 1,
|
||||
},
|
||||
[GGML_TYPE_I32] = {
|
||||
.from_float = (ggml_from_float_t) ggml_cpu_fp32_to_i32,
|
||||
},
|
||||
};
|
||||
|
||||
const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type) {
|
||||
@@ -1876,6 +1879,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
{
|
||||
ggml_compute_forward_im2col_back_f32(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_IM2COL_3D:
|
||||
{
|
||||
ggml_compute_forward_im2col_3d(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_CONV_2D:
|
||||
{
|
||||
ggml_compute_forward_conv_2d(params, tensor);
|
||||
@@ -2255,6 +2262,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
} break;
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_IM2COL_BACK:
|
||||
case GGML_OP_IM2COL_3D:
|
||||
case GGML_OP_CONV_2D:
|
||||
case GGML_OP_CONV_3D:
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
@@ -2691,7 +2699,10 @@ struct ggml_cplan ggml_graph_plan(
|
||||
if (ggml_is_quantized(node->type) ||
|
||||
// F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
|
||||
(node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
|
||||
(node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
|
||||
(node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16) ||
|
||||
// conversion between F32 and I32
|
||||
(node->src[0]->type == GGML_TYPE_F32 && node->src[1] && node->src[1]->type == GGML_TYPE_I32) ||
|
||||
(node->src[0]->type == GGML_TYPE_I32 && node->src[1] && node->src[1]->type == GGML_TYPE_F32)) {
|
||||
cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
|
||||
}
|
||||
} break;
|
||||
@@ -3206,20 +3217,12 @@ void ggml_cpu_fp32_to_fp16(const float * x, ggml_fp16_t * y, int64_t n) {
|
||||
__m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
|
||||
_mm_storel_epi64((__m128i *)(y + i), y_vec);
|
||||
}
|
||||
#elif defined(__NNPA__)
|
||||
for (; i + 7 < n; i += 8) {
|
||||
float32x4_t v_xh = vec_xl(0, (const float *)(x + i + 0));
|
||||
float32x4_t v_xl = vec_xl(0, (const float *)(x + i + 4));
|
||||
uint16x8_t v_yd = vec_round_from_fp32(v_xh, v_xl, 0);
|
||||
uint16x8_t v_y = vec_convert_to_fp16(v_yd, 0);
|
||||
vec_xst(v_y, 0, (ggml_fp16_t *)(y + i));
|
||||
}
|
||||
for (; i + 3 < n; i += 4) {
|
||||
float32x4_t v_x = vec_xl(0, (const float *)(x + i));
|
||||
float32x4_t v_zero = vec_splats(0.0f);
|
||||
uint16x8_t v_yd = vec_round_from_fp32(v_x, v_zero, 0);
|
||||
uint16x8_t v_y = vec_convert_to_fp16(v_yd, 0);
|
||||
vec_xst(v_y, 0, (ggml_fp16_t *)(y + i));
|
||||
#elif defined(__riscv_zvfh)
|
||||
for (int vl; i < n; i += vl) {
|
||||
vl = __riscv_vsetvl_e32m2(n - i);
|
||||
vfloat32m2_t vx = __riscv_vle32_v_f32m2(&x[i], vl);
|
||||
vfloat16m1_t vy = __riscv_vfncvt_f_f_w_f16m1(vx, vl);
|
||||
__riscv_vse16_v_f16m1((_Float16 *)&y[i], vy, vl);
|
||||
}
|
||||
#endif
|
||||
for (; i < n; ++i) {
|
||||
@@ -3247,21 +3250,6 @@ void ggml_cpu_fp16_to_fp32(const ggml_fp16_t * x, float * y, int64_t n) {
|
||||
__m128 y_vec = _mm_cvtph_ps(x_vec);
|
||||
_mm_storeu_ps(y + i, y_vec);
|
||||
}
|
||||
#elif defined(__NNPA__)
|
||||
for (; i + 7 < n; i += 8) {
|
||||
uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)(x + i));
|
||||
uint16x8_t v_yd = vec_convert_from_fp16(v_x, 0);
|
||||
float32x4_t v_yh = vec_extend_to_fp32_hi(v_yd, 0);
|
||||
float32x4_t v_yl = vec_extend_to_fp32_lo(v_yd, 0);
|
||||
vec_xst(v_yh, 0, (float *)(y + i + 0));
|
||||
vec_xst(v_yl, 0, (float *)(y + i + 4));
|
||||
}
|
||||
for (; i + 3 < n; i += 4) {
|
||||
uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)(x + i));
|
||||
uint16x8_t v_yd = vec_convert_from_fp16(v_x, 0);
|
||||
float32x4_t v_yh = vec_extend_to_fp32_hi(v_yd, 0);
|
||||
vec_xst(v_yh, 0, (float *)(y + i));
|
||||
}
|
||||
#endif
|
||||
|
||||
for (; i < n; ++i) {
|
||||
@@ -3276,6 +3264,13 @@ void ggml_cpu_fp32_to_bf16(const float * x, ggml_bf16_t * y, int64_t n) {
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cpu_fp32_to_i32(const float * x, int32_t * y, int64_t n) {
|
||||
int64_t i = 0;
|
||||
for (; i < n; ++i) {
|
||||
y[i] = x[i];
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cpu_bf16_to_fp32(const ggml_bf16_t * x, float * y, int64_t n) {
|
||||
int64_t i = 0;
|
||||
#if defined(__AVX2__)
|
||||
@@ -3465,14 +3460,6 @@ int ggml_cpu_has_vxe(void) {
|
||||
#endif
|
||||
}
|
||||
|
||||
int ggml_cpu_has_nnpa(void) {
|
||||
#if defined(GGML_NNPA)
|
||||
return 1;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
int ggml_cpu_has_neon(void) {
|
||||
#if defined(__ARM_ARCH) && defined(__ARM_NEON)
|
||||
return 1;
|
||||
|
||||
@@ -190,6 +190,7 @@ static const struct ggml_backend_i ggml_backend_cpu_i = {
|
||||
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
|
||||
/* .event_record = */ NULL,
|
||||
/* .event_wait = */ NULL,
|
||||
/* .optimize_graph = */ NULL,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_cpu_guid(void) {
|
||||
@@ -348,8 +349,10 @@ static void ggml_backend_cpu_device_get_memory(ggml_backend_dev_t dev, size_t *
|
||||
long pages = sysconf(_SC_PHYS_PAGES);
|
||||
long page_size = sysconf(_SC_PAGE_SIZE);
|
||||
*total = pages * page_size;
|
||||
|
||||
// "free" system memory is ill-defined, for practical purposes assume that all of it is free:
|
||||
*free = *total;
|
||||
#endif
|
||||
#endif // _WIN32
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
@@ -576,9 +579,6 @@ static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t r
|
||||
if (ggml_cpu_has_vxe()) {
|
||||
features.push_back({ "VXE", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_nnpa()) {
|
||||
features.push_back({ "NNPA", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_wasm_simd()) {
|
||||
features.push_back({ "WASM_SIMD", "1" });
|
||||
}
|
||||
|
||||
@@ -14,6 +14,7 @@
|
||||
|
||||
#include "kai_lhs_pack_bf16p2vlx2_f32_sme.h"
|
||||
#include "kai_lhs_quant_pack_qsi8d32p_f32.h"
|
||||
#include "kai_lhs_quant_pack_qsi8d32p4x8sb_f32_neon.h"
|
||||
#include "kai_lhs_quant_pack_qsi8d32p_f32_neon.h"
|
||||
|
||||
#include "kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.h"
|
||||
@@ -127,6 +128,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
|
||||
},
|
||||
/* .gemm_lhs_info = */ {
|
||||
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32_neon,
|
||||
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32_neon,
|
||||
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32_neon,
|
||||
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32_neon,
|
||||
},
|
||||
/* SME GEMV */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
|
||||
@@ -141,7 +148,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
|
||||
},
|
||||
/* .lhs_info = */ {
|
||||
/* .gemv_lhs_info = */ {
|
||||
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32_neon,
|
||||
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32_neon,
|
||||
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32_neon,
|
||||
@@ -173,6 +180,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
},
|
||||
/* .gemm_lhs_info = */ {
|
||||
/* .get_offset = */ kai_get_lhs_offset_lhs_pack_bf16p2vlx2_f32_sme,
|
||||
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_pack_bf16p2vlx2_f32_sme,
|
||||
/* .packed_size = */ kai_get_lhs_packed_size_lhs_pack_bf16p2vlx2_f32_sme,
|
||||
/* .pack_func = */ kai_run_lhs_pack_bf16p2vlx2_f32_sme,
|
||||
},
|
||||
/* SME GEMV */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
@@ -187,7 +200,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
|
||||
},
|
||||
/* .lhs_info = */ {
|
||||
/* .gemv_lhs_info = */ {
|
||||
/* .get_offset = */ kai_get_lhs_offset_lhs_pack_bf16p2vlx2_f32_sme,
|
||||
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_pack_bf16p2vlx2_f32_sme,
|
||||
/* .packed_size = */ kai_get_lhs_packed_size_lhs_pack_bf16p2vlx2_f32_sme,
|
||||
@@ -222,6 +235,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
},
|
||||
/* .gemm_lhs_info = */ {
|
||||
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
|
||||
},
|
||||
/* DOTPROD GEMV */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
@@ -236,7 +255,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
},
|
||||
/* .lhs_info = */ {
|
||||
/* .gemv_lhs_info = */ {
|
||||
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
|
||||
@@ -270,6 +289,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
},
|
||||
/* .gemm_lhs_info = */ {
|
||||
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
|
||||
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
|
||||
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
|
||||
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
|
||||
},
|
||||
/* i8mm GEMV */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
@@ -284,7 +309,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
},
|
||||
/* .lhs_info = */ {
|
||||
/* .gemv_lhs_info = */ {
|
||||
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
|
||||
@@ -319,6 +344,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
},
|
||||
/* .gemm_lhs_info = */ {
|
||||
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
|
||||
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
|
||||
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
|
||||
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
|
||||
},
|
||||
/* i8mm GEMV */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
@@ -333,7 +364,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
},
|
||||
/* .lhs_info = */ {
|
||||
/* .gemv_lhs_info = */ {
|
||||
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
|
||||
@@ -367,6 +398,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
},
|
||||
/* .gemm_lhs_info = */ {
|
||||
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
|
||||
},
|
||||
/* DOTPROD GEMV */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
@@ -381,7 +418,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
},
|
||||
/* .lhs_info = */ {
|
||||
/* .gemv_lhs_info = */ {
|
||||
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
|
||||
|
||||
@@ -84,8 +84,11 @@ struct rhs_packing_info {
|
||||
|
||||
struct ggml_kleidiai_kernels {
|
||||
kernel_info gemm;
|
||||
lhs_packing_info gemm_lhs_info;
|
||||
|
||||
kernel_info gemv;
|
||||
lhs_packing_info lhs_info;
|
||||
lhs_packing_info gemv_lhs_info;
|
||||
|
||||
rhs_packing_info rhs_info;
|
||||
|
||||
cpu_feature required_cpu;
|
||||
|
||||
@@ -123,7 +123,9 @@ class tensor_traits : public ggml::cpu::tensor_traits {
|
||||
}
|
||||
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, op);
|
||||
GGML_ASSERT(kernels);
|
||||
kernel_info * kernel = op->src[1]->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
|
||||
bool is_gemv = op->src[1]->ne[1] == 1;
|
||||
kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm;
|
||||
lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info;
|
||||
|
||||
size_t k = op->src[0]->ne[0];
|
||||
size_t n = op->src[0]->ne[1];
|
||||
@@ -134,9 +136,9 @@ class tensor_traits : public ggml::cpu::tensor_traits {
|
||||
size_t sr = kernel->get_sr();
|
||||
|
||||
if (kernels->rhs_type == GGML_TYPE_Q4_0) {
|
||||
size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, QK4_0, mr, kr, sr);
|
||||
size = variant_call<size_t>(lhs_info->packed_size, m, k, QK4_0, mr, kr, sr);
|
||||
} else if (kernels->rhs_type == GGML_TYPE_F16) {
|
||||
size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, mr, kr, sr) +
|
||||
size = variant_call<size_t>(lhs_info->packed_size, m, k, mr, kr, sr) +
|
||||
variant_call<size_t>(kernels->rhs_info.packed_size, n, k) +
|
||||
k * n * sizeof(float) + n * sizeof(float);
|
||||
} else {
|
||||
@@ -152,7 +154,7 @@ class tensor_traits : public ggml::cpu::tensor_traits {
|
||||
if (dst->src[0]->type == GGML_TYPE_Q4_0) {
|
||||
return compute_forward_q4_0(params, dst);
|
||||
} else if (dst->src[0]->type == GGML_TYPE_F16) {
|
||||
return compute_forward_kv_cache(params, dst);
|
||||
return compute_forward_fp16(params, dst);
|
||||
}
|
||||
} else if (dst->op == GGML_OP_GET_ROWS) {
|
||||
if (dst->src[0]->type == GGML_TYPE_Q4_0) {
|
||||
@@ -162,7 +164,7 @@ class tensor_traits : public ggml::cpu::tensor_traits {
|
||||
return false;
|
||||
}
|
||||
|
||||
bool compute_forward_kv_cache(ggml_compute_params * params, struct ggml_tensor * dst) {
|
||||
bool compute_forward_fp16(ggml_compute_params * params, struct ggml_tensor * dst) {
|
||||
static std::atomic_flag first_to_arrive = ATOMIC_FLAG_INIT;
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
@@ -173,7 +175,9 @@ class tensor_traits : public ggml::cpu::tensor_traits {
|
||||
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst);
|
||||
GGML_ASSERT(kernels);
|
||||
|
||||
kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
|
||||
bool is_gemv = src1->ne[1] == 1;
|
||||
kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm;
|
||||
lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info;
|
||||
GGML_ASSERT(kernel);
|
||||
|
||||
const int nth = params->nth;
|
||||
@@ -198,7 +202,7 @@ class tensor_traits : public ggml::cpu::tensor_traits {
|
||||
const int64_t kr = static_cast<int64_t>(kernel->get_kr());
|
||||
const int64_t sr = static_cast<int64_t>(kernel->get_sr());
|
||||
|
||||
const size_t lhs_packed_size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, mr, kr, sr);
|
||||
const size_t lhs_packed_size = variant_call<size_t>(lhs_info->packed_size, m, k, mr, kr, sr);
|
||||
const size_t rhs_packed_size = variant_call<size_t>(kernels->rhs_info.packed_size, n, k);
|
||||
const size_t kxn_size = k * n * sizeof(float);
|
||||
const size_t bias_size = n * sizeof(float);
|
||||
@@ -229,12 +233,12 @@ class tensor_traits : public ggml::cpu::tensor_traits {
|
||||
const int64_t num_m_per_thread = (ith == num_threads - 1) ? num_m_per_threadN_1 : num_m_per_thread0;
|
||||
|
||||
const size_t lhs_offset = variant_call<size_t>(kernels->gemm.get_lhs_offset, m_start, lhs_stride);
|
||||
const size_t lhs_packed_offset = variant_call<size_t>(kernels->lhs_info.get_packed_offset, m_start, k, mr, kr, sr);
|
||||
const size_t lhs_packed_offset = variant_call<size_t>(lhs_info->get_packed_offset, m_start, k, mr, kr, sr);
|
||||
|
||||
const void * src_ptr = static_cast<const uint8_t *>(lhs_batch) + lhs_offset;
|
||||
void * dst_ptr = static_cast<uint8_t *>(lhs_packed) + lhs_packed_offset;
|
||||
|
||||
variant_call<void>(kernels->lhs_info.pack_func, num_m_per_thread, k, mr, kr, sr, 0, src_ptr, lhs_stride, dst_ptr);
|
||||
variant_call<void>(lhs_info->pack_func, num_m_per_thread, k, mr, kr, sr, 0, src_ptr, lhs_stride, dst_ptr);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -306,8 +310,9 @@ class tensor_traits : public ggml::cpu::tensor_traits {
|
||||
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst);
|
||||
GGML_ASSERT(kernels);
|
||||
|
||||
kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
|
||||
lhs_packing_info * lhs_info = &kernels->lhs_info;
|
||||
bool is_gemv = src1->ne[1] == 1;
|
||||
kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm;
|
||||
lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info;
|
||||
|
||||
GGML_ASSERT(kernel);
|
||||
|
||||
@@ -529,13 +534,8 @@ class extra_buffer_type : ggml::cpu::extra_buffer_type {
|
||||
if (op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type()) {
|
||||
return (ggml::cpu::tensor_traits *) op->src[0]->extra;
|
||||
}
|
||||
else if (ggml_kleidiai_select_kernels(ctx.features, op) &&
|
||||
op->src[0]->op == GGML_OP_VIEW &&
|
||||
(op->src[1]->op == GGML_OP_PERMUTE || op->src[1]->op == GGML_OP_SOFT_MAX) &&
|
||||
op->src[1]->ne[1] > 1) {
|
||||
if ((op->src[0]->nb[0] != 2) ||
|
||||
(op->src[1]->nb[0] != 4) ||
|
||||
(op->src[0]->nb[1] * op->src[0]->ne[1] != op->src[0]->nb[2]) ||
|
||||
else if (ggml_kleidiai_select_kernels(ctx.features, op) && op->src[1]->ne[1] > 1) {
|
||||
if ((op->src[0]->nb[1] * op->src[0]->ne[1] != op->src[0]->nb[2]) ||
|
||||
(op->src[1]->nb[1] * op->src[1]->ne[1] != op->src[1]->nb[2])) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
@@ -776,6 +776,24 @@ static void ggml_compute_forward_dup_f32(
|
||||
id += ne00 * (ne01 - ir1);
|
||||
}
|
||||
}
|
||||
} else if (dst->type == GGML_TYPE_I32) {
|
||||
size_t id = 0;
|
||||
int32_t * dst_ptr = (int32_t *) dst->data;
|
||||
|
||||
for (int i03 = 0; i03 < ne03; i03++) {
|
||||
for (int i02 = 0; i02 < ne02; i02++) {
|
||||
id += ne00 * ir0;
|
||||
for (int i01 = ir0; i01 < ir1; i01++) {
|
||||
for (int i00 = 0; i00 < ne00; i00++) {
|
||||
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
|
||||
dst_ptr[id] = *src0_ptr;
|
||||
id++;
|
||||
}
|
||||
}
|
||||
id += ne00 * (ne01 - ir1);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
GGML_ABORT("fatal error"); // TODO: implement
|
||||
}
|
||||
@@ -947,6 +965,144 @@ static void ggml_compute_forward_dup_f32(
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (dst->type == GGML_TYPE_I32) {
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
i10 += ne00 * ir0;
|
||||
while (i10 >= ne0) {
|
||||
i10 -= ne0;
|
||||
if (++i11 == ne1) {
|
||||
i11 = 0;
|
||||
if (++i12 == ne2) {
|
||||
i12 = 0;
|
||||
if (++i13 == ne3) {
|
||||
i13 = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
||||
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||||
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
||||
|
||||
*(int32_t *) dst_ptr = *(const float *) src0_ptr;
|
||||
|
||||
if (++i10 == ne0) {
|
||||
i10 = 0;
|
||||
if (++i11 == ne1) {
|
||||
i11 = 0;
|
||||
if (++i12 == ne2) {
|
||||
i12 = 0;
|
||||
if (++i13 == ne3) {
|
||||
i13 = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
i10 += ne00 * (ne01 - ir1);
|
||||
while (i10 >= ne0) {
|
||||
i10 -= ne0;
|
||||
if (++i11 == ne1) {
|
||||
i11 = 0;
|
||||
if (++i12 == ne2) {
|
||||
i12 = 0;
|
||||
if (++i13 == ne3) {
|
||||
i13 = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
GGML_ABORT("fatal error"); // TODO: implement
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_dup_i32(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
|
||||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS
|
||||
|
||||
const int ith = params->ith; // thread index
|
||||
const int nth = params->nth; // number of threads
|
||||
|
||||
// parallelize by rows
|
||||
const int nr = ne01;
|
||||
// number of rows per thread
|
||||
const int dr = (nr + nth - 1) / nth;
|
||||
// row range for this thread
|
||||
const int ir0 = dr * ith;
|
||||
const int ir1 = MIN(ir0 + dr, nr);
|
||||
|
||||
// dst counters
|
||||
|
||||
int64_t i10 = 0;
|
||||
int64_t i11 = 0;
|
||||
int64_t i12 = 0;
|
||||
int64_t i13 = 0;
|
||||
|
||||
// TODO: not optimal, but works
|
||||
if (dst->type == GGML_TYPE_F32) {
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
i10 += ne00 * ir0;
|
||||
while (i10 >= ne0) {
|
||||
i10 -= ne0;
|
||||
if (++i11 == ne1) {
|
||||
i11 = 0;
|
||||
if (++i12 == ne2) {
|
||||
i12 = 0;
|
||||
if (++i13 == ne3) {
|
||||
i13 = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
||||
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||||
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
||||
|
||||
*(float *) dst_ptr = *(const int32_t *) src0_ptr;
|
||||
|
||||
if (++i10 == ne0) {
|
||||
i10 = 0;
|
||||
if (++i11 == ne1) {
|
||||
i11 = 0;
|
||||
if (++i12 == ne2) {
|
||||
i12 = 0;
|
||||
if (++i13 == ne3) {
|
||||
i13 = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
i10 += ne00 * (ne01 - ir1);
|
||||
while (i10 >= ne0) {
|
||||
i10 -= ne0;
|
||||
if (++i11 == ne1) {
|
||||
i11 = 0;
|
||||
if (++i12 == ne2) {
|
||||
i12 = 0;
|
||||
if (++i13 == ne3) {
|
||||
i13 = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
GGML_ABORT("fatal error"); // TODO: implement
|
||||
}
|
||||
@@ -1177,6 +1333,10 @@ void ggml_compute_forward_dup(
|
||||
{
|
||||
ggml_compute_forward_dup_f32(params, dst);
|
||||
} break;
|
||||
case GGML_TYPE_I32:
|
||||
{
|
||||
ggml_compute_forward_dup_i32(params, dst);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
if (ggml_is_quantized(src0->type) && dst->type == GGML_TYPE_F32) {
|
||||
@@ -7027,6 +7187,209 @@ void ggml_compute_forward_im2col_back_f32(
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// ggml_compute_forward_im2col_3d_f16
|
||||
// src0: kernel [OC*IC, KD, KH, KW]
|
||||
// src1: image [N*IC, ID, IH, IW]
|
||||
// dst: result [N*OD, OH, OW, IC * KD * KH * KW]
|
||||
static void ggml_compute_forward_im2col_3d_f16(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F16);
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS;
|
||||
|
||||
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
|
||||
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
|
||||
const int32_t s2 = ((const int32_t *)(dst->op_params))[2];
|
||||
const int32_t p0 = ((const int32_t *)(dst->op_params))[3];
|
||||
const int32_t p1 = ((const int32_t *)(dst->op_params))[4];
|
||||
const int32_t p2 = ((const int32_t *)(dst->op_params))[5];
|
||||
const int32_t d0 = ((const int32_t *)(dst->op_params))[6];
|
||||
const int32_t d1 = ((const int32_t *)(dst->op_params))[7];
|
||||
const int32_t d2 = ((const int32_t *)(dst->op_params))[8];
|
||||
const int32_t IC = ((const int32_t *)(dst->op_params))[9];
|
||||
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int64_t N = ne13 / IC;
|
||||
const int64_t ID = ne12;
|
||||
const int64_t IH = ne11;
|
||||
const int64_t IW = ne10;
|
||||
|
||||
const int64_t OC = ne03 / IC;
|
||||
GGML_UNUSED(OC);
|
||||
const int64_t KD = ne02;
|
||||
const int64_t KH = ne01;
|
||||
const int64_t KW = ne00;
|
||||
|
||||
const int64_t OD = ne3 / N;
|
||||
const int64_t OH = ne2;
|
||||
const int64_t OW = ne1;
|
||||
const int64_t OH_OW = OH*OW;
|
||||
const int64_t KD_KH_KW = KD*KH*KW;
|
||||
const int64_t KH_KW = KH*KW;
|
||||
const int64_t IC_KD_KH_KW = IC*KD*KH*KW;
|
||||
|
||||
GGML_ASSERT(nb10 == sizeof(float));
|
||||
|
||||
// im2col: [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW]
|
||||
{
|
||||
ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
|
||||
|
||||
for (int64_t in = 0; in < N; in++) {
|
||||
for (int64_t iod = 0; iod < OD; iod++) {
|
||||
for (int64_t ioh = 0; ioh < OH; ioh++) {
|
||||
for (int64_t iow = 0; iow < OW; iow++) {
|
||||
for (int64_t iic = ith; iic < IC; iic += nth) {
|
||||
|
||||
// micro kernel
|
||||
ggml_fp16_t * dst_data = wdata + (in*OD*OH_OW + iod*OH_OW + ioh*OW + iow)*IC_KD_KH_KW; // [IC, KD, KH, KW]
|
||||
const float * const src_data = (const float *) ((const char *)src1->data + (in*IC + iic)*nb13); // [ID, IH, IW]
|
||||
|
||||
for (int64_t ikd = 0; ikd < KD; ikd++) {
|
||||
for (int64_t ikh = 0; ikh < KH; ikh++) {
|
||||
for (int64_t ikw = 0; ikw < KW; ikw++) {
|
||||
const int64_t iiw = iow*s0 + ikw*d0 - p0;
|
||||
const int64_t iih = ioh*s1 + ikh*d1 - p1;
|
||||
const int64_t iid = iod*s2 + ikd*d2 - p2;
|
||||
|
||||
if (iid < 0 || iid >= ID || iih < 0 || iih >= IH || iiw < 0 || iiw >= IW || iid < 0 || iid >= ID) {
|
||||
dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = 0;
|
||||
} else {
|
||||
const float * const s = (const float *) ((const char *)src_data + iid*nb12 + iih*nb11 + iiw*nb10); // [ID, IH, IW]
|
||||
dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = GGML_CPU_FP32_TO_FP16(*s);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_im2col_3d_f32
|
||||
// src0: kernel [OC*IC, KD, KH, KW]
|
||||
// src1: image [N*IC, ID, IH, IW]
|
||||
// dst: result [N*OD, OH, OW, IC * KD * KH * KW]
|
||||
static void ggml_compute_forward_im2col_3d_f32(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS;
|
||||
|
||||
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
|
||||
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
|
||||
const int32_t s2 = ((const int32_t *)(dst->op_params))[2];
|
||||
const int32_t p0 = ((const int32_t *)(dst->op_params))[3];
|
||||
const int32_t p1 = ((const int32_t *)(dst->op_params))[4];
|
||||
const int32_t p2 = ((const int32_t *)(dst->op_params))[5];
|
||||
const int32_t d0 = ((const int32_t *)(dst->op_params))[6];
|
||||
const int32_t d1 = ((const int32_t *)(dst->op_params))[7];
|
||||
const int32_t d2 = ((const int32_t *)(dst->op_params))[8];
|
||||
const int32_t IC = ((const int32_t *)(dst->op_params))[9];
|
||||
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int64_t N = ne13 / IC;
|
||||
const int64_t ID = ne12;
|
||||
const int64_t IH = ne11;
|
||||
const int64_t IW = ne10;
|
||||
|
||||
const int64_t OC = ne03 / IC;
|
||||
GGML_UNUSED(OC);
|
||||
const int64_t KD = ne02;
|
||||
const int64_t KH = ne01;
|
||||
const int64_t KW = ne00;
|
||||
|
||||
const int64_t OD = ne3 / N;
|
||||
const int64_t OH = ne2;
|
||||
const int64_t OW = ne1;
|
||||
|
||||
const int64_t OH_OW = OH*OW;
|
||||
const int64_t KD_KH_KW = KD*KH*KW;
|
||||
const int64_t KH_KW = KH*KW;
|
||||
const int64_t IC_KD_KH_KW = IC*KD*KH*KW;
|
||||
|
||||
GGML_ASSERT(nb10 == sizeof(float));
|
||||
|
||||
// im2col: [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW]
|
||||
{
|
||||
float * const wdata = (float *) dst->data;
|
||||
|
||||
for (int64_t in = 0; in < N; in++) {
|
||||
for (int64_t iod = 0; iod < OD; iod++) {
|
||||
for (int64_t ioh = 0; ioh < OH; ioh++) {
|
||||
for (int64_t iow = 0; iow < OW; iow++) {
|
||||
for (int64_t iic = ith; iic < IC; iic += nth) {
|
||||
|
||||
// micro kernel
|
||||
float * dst_data = wdata + (in*OD*OH_OW + iod*OH_OW + ioh*OW + iow)*IC_KD_KH_KW; // [IC, KD, KH, KW]
|
||||
const float * const src_data = (const float *) ((const char *)src1->data + (in*IC + iic)*nb13); // [ID, IH, IW]
|
||||
|
||||
for (int64_t ikd = 0; ikd < KD; ikd++) {
|
||||
for (int64_t ikh = 0; ikh < KH; ikh++) {
|
||||
for (int64_t ikw = 0; ikw < KW; ikw++) {
|
||||
const int64_t iiw = iow*s0 + ikw*d0 - p0;
|
||||
const int64_t iih = ioh*s1 + ikh*d1 - p1;
|
||||
const int64_t iid = iod*s2 + ikd*d2 - p2;
|
||||
|
||||
if (iid < 0 || iid >= ID || iih < 0 || iih >= IH || iiw < 0 || iiw >= IW || iid < 0 || iid >= ID) {
|
||||
dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = 0;
|
||||
} else {
|
||||
const float * const s = (const float *) ((const char *)src_data + iid*nb12 + iih*nb11 + iiw*nb10); // [ID, IH, IW]
|
||||
dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = *s;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void ggml_compute_forward_im2col_3d(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
switch (dst->type) {
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
ggml_compute_forward_im2col_3d_f16(params, dst);
|
||||
} break;
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
ggml_compute_forward_im2col_3d_f32(params, dst);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_call_mul_mat(ggml_type type, const ggml_compute_params * params, int64_t m, int64_t n, int64_t k,
|
||||
void * a, void * b, float * c) {
|
||||
const ggml_type_traits * traits = ggml_get_type_traits(type);
|
||||
@@ -8014,6 +8377,15 @@ static void ggml_compute_forward_pad_f32(
|
||||
GGML_TENSOR_UNARY_OP_LOCALS
|
||||
|
||||
float * dst_ptr = (float *) dst->data;
|
||||
const int32_t lp0 = ggml_get_op_params_i32(dst, 0);
|
||||
const int32_t rp0 = ggml_get_op_params_i32(dst, 1);
|
||||
const int32_t lp1 = ggml_get_op_params_i32(dst, 2);
|
||||
const int32_t rp1 = ggml_get_op_params_i32(dst, 3);
|
||||
const int32_t lp2 = ggml_get_op_params_i32(dst, 4);
|
||||
const int32_t rp2 = ggml_get_op_params_i32(dst, 5);
|
||||
const int32_t lp3 = ggml_get_op_params_i32(dst, 6);
|
||||
const int32_t rp3 = ggml_get_op_params_i32(dst, 7);
|
||||
|
||||
|
||||
// TODO: optimize
|
||||
|
||||
@@ -8022,10 +8394,12 @@ static void ggml_compute_forward_pad_f32(
|
||||
for (int64_t i0 = 0; i0 < ne0; ++i0) {
|
||||
for (int64_t i3 = 0; i3 < ne3; ++i3) {
|
||||
const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
|
||||
|
||||
const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||||
|
||||
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
||||
if ((i0 >= lp0 && i0 < ne0 - rp0) \
|
||||
&& (i1 >= lp1 && i1 < ne1 - rp1) \
|
||||
&& (i2 >= lp2 && i2 < ne2 - rp2) \
|
||||
&& (i3 >= lp3 && i3 < ne3 - rp3)) {
|
||||
const int64_t src_idx = (i3 - lp3)*nb03 + (i2 - lp2)*nb02 + (i1 - lp1)*nb01 + (i0 - lp0)*nb00;
|
||||
const float * src_ptr = (const float *)((char *) src0->data + src_idx);
|
||||
dst_ptr[dst_idx] = *src_ptr;
|
||||
} else {
|
||||
dst_ptr[dst_idx] = 0;
|
||||
@@ -9003,8 +9377,7 @@ static void ggml_compute_forward_ssm_scan_f32(
|
||||
GGML_ASSERT(src4->nb[0] == sizeof(float));
|
||||
GGML_ASSERT(src5->nb[0] == sizeof(float));
|
||||
GGML_ASSERT(src6->nb[0] == sizeof(int32_t));
|
||||
// allows optimizing the modulo since n_group should be a power of 2
|
||||
GGML_ASSERT((ng & -ng) == ng);
|
||||
GGML_ASSERT(nh % ng == 0);
|
||||
|
||||
// heads per thread
|
||||
const int dh = (nh + nth - 1)/nth;
|
||||
@@ -9035,6 +9408,7 @@ static void ggml_compute_forward_ssm_scan_f32(
|
||||
// ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
|
||||
const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
|
||||
const float dA = expf(dt_soft_plus * A[h]);
|
||||
const int g = h / (nh / ng); // repeat_interleave
|
||||
|
||||
// dim
|
||||
for (int i1 = 0; i1 < nr; ++i1) {
|
||||
@@ -9057,8 +9431,8 @@ static void ggml_compute_forward_ssm_scan_f32(
|
||||
// TODO: maybe unroll more?
|
||||
for (int j = 0; j < 1; j++) {
|
||||
GGML_F32_VEC t0 = GGML_F32_VEC_LOAD(s0 + i + j*ggml_f32_epr + ii*nc);
|
||||
GGML_F32_VEC t1 = GGML_F32_VEC_LOAD(B + i + j*ggml_f32_epr + (h & (ng - 1))*nc);
|
||||
GGML_F32_VEC t2 = GGML_F32_VEC_LOAD(C + i + j*ggml_f32_epr + (h & (ng - 1))*nc);
|
||||
GGML_F32_VEC t1 = GGML_F32_VEC_LOAD(B + i + j*ggml_f32_epr + g*nc);
|
||||
GGML_F32_VEC t2 = GGML_F32_VEC_LOAD(C + i + j*ggml_f32_epr + g*nc);
|
||||
|
||||
t0 = GGML_F32_VEC_MUL(t0, adA);
|
||||
t1 = GGML_F32_VEC_MUL(t1, axdt);
|
||||
@@ -9090,8 +9464,8 @@ static void ggml_compute_forward_ssm_scan_f32(
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ax[j] = GGML_F32_VEC_LOAD(s0 + i + j*GGML_F32_EPR + ii*nc);
|
||||
ay[j] = GGML_F32_VEC_LOAD(B + i + j*GGML_F32_EPR + (h & (ng - 1))*nc);
|
||||
az[j] = GGML_F32_VEC_LOAD(C + i + j*GGML_F32_EPR + (h & (ng - 1))*nc);
|
||||
ay[j] = GGML_F32_VEC_LOAD(B + i + j*GGML_F32_EPR + g*nc);
|
||||
az[j] = GGML_F32_VEC_LOAD(C + i + j*GGML_F32_EPR + g*nc);
|
||||
|
||||
ax[j] = GGML_F32_VEC_MUL(ax[j], adA);
|
||||
ay[j] = GGML_F32_VEC_MUL(ay[j], axdt);
|
||||
@@ -9113,7 +9487,7 @@ static void ggml_compute_forward_ssm_scan_f32(
|
||||
// d_state
|
||||
for (int i0 = np; i0 < nc; ++i0) {
|
||||
const int i = i0 + ii*nc;
|
||||
const int ig = i0 + (h & (ng - 1))*nc;
|
||||
const int ig = i0 + g*nc;
|
||||
// state = prev_state * dA + dB * x
|
||||
const float state = (s0[i] * dA) + (B[ig] * x_dt);
|
||||
// y = rowwise_dotprod(state, C)
|
||||
@@ -9130,6 +9504,7 @@ static void ggml_compute_forward_ssm_scan_f32(
|
||||
for (int h = ih0; h < ih1; ++h) {
|
||||
// ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
|
||||
const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
|
||||
const int g = h / (nh / ng); // repeat_interleave
|
||||
|
||||
// dim
|
||||
for (int i1 = 0; i1 < nr; ++i1) {
|
||||
@@ -9144,8 +9519,8 @@ static void ggml_compute_forward_ssm_scan_f32(
|
||||
// TODO: what happens when (d_state % svcntw()) != 0?
|
||||
for (int64_t k = 0; k < nc; k += svcntw()) {
|
||||
svfloat32_t vA = GGML_F32_VEC_LOAD(&A[h*nc + k]);
|
||||
svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k + (h & (ng - 1))*nc]);
|
||||
svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k + (h & (ng - 1))*nc]);
|
||||
svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k + g*nc]);
|
||||
svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k + g*nc]);
|
||||
svfloat32_t vs0 = GGML_F32_VEC_LOAD(&s0[ii*nc + k]);
|
||||
|
||||
svfloat32_t t1 = GGML_F32_VEC_MUL(vdt_soft_plus, vA);
|
||||
@@ -9165,7 +9540,7 @@ static void ggml_compute_forward_ssm_scan_f32(
|
||||
// d_state
|
||||
for (int i0 = 0; i0 < nc; ++i0) {
|
||||
const int i = i0 + ii*nc;
|
||||
const int ig = i0 + (h & (ng - 1))*nc;
|
||||
const int ig = i0 + g*nc;
|
||||
// state = prev_state * dA + dB * x
|
||||
const float state = (s0[i] * expf(dt_soft_plus * A[i0 + h*nc])) + (B[ig] * x_dt);
|
||||
// y = rowwise_dotprod(state, C)
|
||||
|
||||
@@ -69,6 +69,7 @@ void ggml_compute_forward_clamp(const struct ggml_compute_params * params, struc
|
||||
void ggml_compute_forward_conv_transpose_1d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_im2col(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_im2col_back_f32(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_im2col_3d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_conv_2d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_conv_3d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_conv_transpose_2d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
|
||||
@@ -114,26 +114,6 @@ extern "C" {
|
||||
#define GGML_CPU_COMPUTE_FP32_TO_FP16(x) riscv_compute_fp32_to_fp16(x)
|
||||
#define GGML_CPU_FP16_TO_FP32(x) GGML_CPU_COMPUTE_FP16_TO_FP32(x)
|
||||
#define GGML_CPU_FP32_TO_FP16(x) GGML_CPU_COMPUTE_FP32_TO_FP16(x)
|
||||
#elif defined(__NNPA__)
|
||||
#define GGML_CPU_COMPUTE_FP16_TO_FP32(x) nnpa_compute_fp16_to_fp32(x)
|
||||
#define GGML_CPU_COMPUTE_FP32_TO_FP16(x) nnpa_compute_fp32_to_fp16(x)
|
||||
|
||||
#define GGML_CPU_FP16_TO_FP32(x) GGML_CPU_COMPUTE_FP16_TO_FP32(x)
|
||||
#define GGML_CPU_FP32_TO_FP16(x) GGML_CPU_COMPUTE_FP32_TO_FP16(x)
|
||||
|
||||
static inline float nnpa_compute_fp16_to_fp32(ggml_fp16_t h) {
|
||||
uint16x8_t v_h = vec_splats(h);
|
||||
uint16x8_t v_hd = vec_convert_from_fp16(v_h, 0);
|
||||
return vec_extend_to_fp32_hi(v_hd, 0)[0];
|
||||
}
|
||||
|
||||
static inline ggml_fp16_t nnpa_compute_fp32_to_fp16(float f) {
|
||||
float32x4_t v_f = vec_splats(f);
|
||||
float32x4_t v_zero = vec_splats(0.0f);
|
||||
uint16x8_t v_hd = vec_round_from_fp32(v_f, v_zero, 0);
|
||||
uint16x8_t v_h = vec_convert_to_fp16(v_hd, 0);
|
||||
return vec_extract(v_h, 0);
|
||||
}
|
||||
#endif
|
||||
|
||||
// precomputed f32 table for f16 (256 KB)
|
||||
@@ -215,6 +195,47 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
|
||||
#define GGML_F32_VEC_MUL GGML_F32xt_MUL
|
||||
#define GGML_F32_VEC_REDUCE GGML_F32xt_REDUCE
|
||||
|
||||
// F16 SVE
|
||||
#define DEFAULT_PG32 svptrue_b32()
|
||||
#define DEFAULT_PG16 svptrue_b16()
|
||||
|
||||
#define GGML_F32Cxt svfloat16_t
|
||||
#define GGML_F32Cxt_ZERO svdup_n_f16(0.0f)
|
||||
#define GGML_F32Cxt_SET1(x) svdup_n_f16(x)
|
||||
#define GGML_F32Cxt_LOAD(p) svld1_f16(DEFAULT_PG16, (const __fp16 *)(p))
|
||||
#define GGML_F32Cxt_STORE(dst_ptr, src_vec) svst1_f16(DEFAULT_PG16, (__fp16 *)(dst_ptr), (src_vec))
|
||||
|
||||
#define GGML_F32Cxt_FMA_IMPL(pg, a, b, c) svmad_f16_x(pg, b, c, a)
|
||||
#define GGML_F32Cxt_FMA(...) GGML_F32Cxt_FMA_IMPL(DEFAULT_PG16, __VA_ARGS__)
|
||||
#define GGML_F32Cxt_ADD_IMPL(pg, a, b) svadd_f16_x(pg, a, b)
|
||||
#define GGML_F32Cxt_ADD(...) GGML_F32Cxt_ADD_IMPL(DEFAULT_PG16, __VA_ARGS__)
|
||||
#define GGML_F32Cxt_MUL_IMPL(pg, a, b) svmul_f16_x(pg, a, b)
|
||||
#define GGML_F32Cxt_MUL(...) GGML_F32Cxt_MUL_IMPL(DEFAULT_PG16, __VA_ARGS__)
|
||||
#define GGML_F32Cxt_REDUCE GGML_F16xt_REDUCE_MIXED
|
||||
|
||||
#define GGML_F16x_VEC GGML_F32Cxt
|
||||
#define GGML_F16x_VEC_ZERO GGML_F32Cxt_ZERO
|
||||
#define GGML_F16x_VEC_SET1 GGML_F32Cxt_SET1
|
||||
#define GGML_F16x_VEC_LOAD(p, i) GGML_F32Cxt_LOAD(p)
|
||||
#define GGML_F16x_VEC_STORE(p, r, i) GGML_F32Cxt_STORE((__fp16 *)(p), r)
|
||||
#define GGML_F16x_VEC_FMA GGML_F32Cxt_FMA
|
||||
#define GGML_F16x_VEC_ADD GGML_F32Cxt_ADD
|
||||
#define GGML_F16x_VEC_MUL GGML_F32Cxt_MUL
|
||||
#define GGML_F16x_VEC_REDUCE GGML_F32Cxt_REDUCE
|
||||
|
||||
#define GGML_F16xt_REDUCE_ONE_IMPL(pg, a) svaddv_f16(pg, a)
|
||||
#define GGML_F16xt_REDUCE_ONE(...) GGML_F16xt_REDUCE_ONE_IMPL(DEFAULT_PG16, __VA_ARGS__)
|
||||
|
||||
#define GGML_F16xt_REDUCE_MIXED_IMPL(pg16, res, sum1, sum2, sum3, sum4) \
|
||||
{ \
|
||||
sum1 = svadd_f16_x(pg16, sum1, sum2); \
|
||||
sum3 = svadd_f16_x(pg16, sum3, sum4); \
|
||||
sum1 = svadd_f16_x(pg16, sum1, sum3); \
|
||||
__fp16 sum_f16 = svaddv_f16(pg16, sum1); \
|
||||
(res) = (ggml_float) sum_f16; \
|
||||
}
|
||||
#define GGML_F16xt_REDUCE_MIXED(...) GGML_F16xt_REDUCE_MIXED_IMPL(DEFAULT_PG16, __VA_ARGS__)
|
||||
|
||||
// F16 NEON
|
||||
|
||||
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
|
||||
@@ -1115,11 +1136,6 @@ static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
|
||||
#define GGML_F16_EPR GGML_F32_EPR
|
||||
|
||||
static inline float32x4_t __lzs_f16cx4_load(const ggml_fp16_t * x) {
|
||||
#if defined(__NNPA__)
|
||||
uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)x);
|
||||
uint16x8_t v_xd = vec_convert_from_fp16(v_x, 0);
|
||||
return vec_extend_to_fp32_hi(v_xd, 0);
|
||||
#else
|
||||
float tmp[4];
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
@@ -1129,20 +1145,9 @@ static inline float32x4_t __lzs_f16cx4_load(const ggml_fp16_t * x) {
|
||||
// note: keep type-cast here to prevent compiler bugs
|
||||
// see: https://github.com/ggml-org/llama.cpp/issues/12846
|
||||
return vec_xl(0, (const float *)(tmp));
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline void __lzs_f16cx4_store(ggml_fp16_t * x, float32x4_t v_y) {
|
||||
#if defined(__NNPA__)
|
||||
float32x4_t v_zero = vec_splats(0.0f);
|
||||
uint16x8_t v_xd = vec_round_from_fp32(v_y, v_zero, 0);
|
||||
uint16x8_t v_x = vec_convert_to_fp16(v_xd, 0);
|
||||
|
||||
x[0] = vec_extract(v_x, 0);
|
||||
x[1] = vec_extract(v_x, 1);
|
||||
x[2] = vec_extract(v_x, 2);
|
||||
x[3] = vec_extract(v_x, 3);
|
||||
#else
|
||||
float arr[4];
|
||||
|
||||
// note: keep type-cast here to prevent compiler bugs
|
||||
@@ -1152,7 +1157,6 @@ static inline void __lzs_f16cx4_store(ggml_fp16_t * x, float32x4_t v_y) {
|
||||
for (int i = 0; i < 4; i++) {
|
||||
x[i] = GGML_CPU_FP32_TO_FP16(arr[i]);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
#define GGML_F16_VEC GGML_F32x4
|
||||
|
||||
@@ -85,15 +85,21 @@ void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * G
|
||||
// reduce sum1,sum2 to sum1
|
||||
GGML_F32_VEC_REDUCE(sumf, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8);
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
vfloat32m1_t vsum = __riscv_vfmv_v_f_f32m1(0.0f, 1);
|
||||
for (int i = 0, avl; i < n; i += avl) {
|
||||
avl = __riscv_vsetvl_e32m8(n - i);
|
||||
vfloat32m8_t ax = __riscv_vle32_v_f32m8(&x[i], avl);
|
||||
vfloat32m8_t ay = __riscv_vle32_v_f32m8(&y[i], avl);
|
||||
vfloat32m8_t prod = __riscv_vfmul_vv_f32m8(ax, ay, avl);
|
||||
vsum = __riscv_vfredusum_vs_f32m8_f32m1(prod, vsum, avl);
|
||||
int vl = __riscv_vsetvlmax_e32m8();
|
||||
vfloat32m1_t vs = __riscv_vfmv_v_f_f32m1(0.0f, 1);
|
||||
vfloat32m8_t vsum;
|
||||
vfloat32m8_t ax;
|
||||
vfloat32m8_t ay;
|
||||
vsum = __riscv_vfmv_v_f_f32m8_tu(vsum, 0.0f, vl);
|
||||
for (int i = 0; i < n; i += vl) {
|
||||
vl = __riscv_vsetvl_e32m8(n - i);
|
||||
ax = __riscv_vle32_v_f32m8_tu(ax, &x[i], vl);
|
||||
ay = __riscv_vle32_v_f32m8_tu(ay, &y[i], vl);
|
||||
vsum = __riscv_vfmacc_vv_f32m8_tu(vsum, ax, ay, vl);
|
||||
}
|
||||
sumf += __riscv_vfmv_f_s_f32m1_f32(vsum);
|
||||
vl = __riscv_vsetvlmax_e32m8();
|
||||
vs = __riscv_vfredusum_vs_f32m8_f32m1(vsum, vs, vl);
|
||||
sumf += __riscv_vfmv_f_s_f32m1_f32(vs);
|
||||
#else
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
@@ -207,38 +213,125 @@ void ggml_vec_dot_f16(int n, float * GGML_RESTRICT s, size_t bs, ggml_fp16_t * G
|
||||
|
||||
ggml_float sumf = 0.0;
|
||||
|
||||
#if defined(GGML_SIMD) && !defined(__riscv_v_intrinsic)
|
||||
const int np = (n & ~(GGML_F16_STEP - 1));
|
||||
|
||||
GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
|
||||
#if defined(GGML_SIMD)
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
const int sve_register_length = svcntb() * 8; //get vector length
|
||||
const int ggml_f16_epr = sve_register_length / 16; // running when 16
|
||||
const int ggml_f16_step = 8 * ggml_f16_epr; // choose 8 SVE registers
|
||||
|
||||
GGML_F16_VEC ax[GGML_F16_ARR];
|
||||
GGML_F16_VEC ay[GGML_F16_ARR];
|
||||
const int np= (n & ~(ggml_f16_step - 1));
|
||||
svfloat16_t sum1 = svdup_n_f16(0.0f);
|
||||
svfloat16_t sum2 = svdup_n_f16(0.0f);
|
||||
svfloat16_t sum3 = svdup_n_f16(0.0f);
|
||||
svfloat16_t sum4 = svdup_n_f16(0.0f);
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||||
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||||
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
|
||||
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||||
svfloat16_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8;
|
||||
svfloat16_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8;
|
||||
for (int i = 0; i < np; i += ggml_f16_step) {
|
||||
ax1 = GGML_F16x_VEC_LOAD(x + i + 0 * ggml_f16_epr, 0);
|
||||
ay1 = GGML_F16x_VEC_LOAD(y + i + 0 * ggml_f16_epr, 0);
|
||||
sum1 = GGML_F16x_VEC_FMA(sum1, ax1, ay1);
|
||||
|
||||
sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
|
||||
ax2 = GGML_F16x_VEC_LOAD(x + i + 1 * ggml_f16_epr, 1);
|
||||
ay2 = GGML_F16x_VEC_LOAD(y + i + 1 * ggml_f16_epr, 1);
|
||||
sum2 = GGML_F16x_VEC_FMA(sum2, ax2, ay2);
|
||||
|
||||
ax3 = GGML_F16x_VEC_LOAD(x + i + 2 * ggml_f16_epr, 2);
|
||||
ay3 = GGML_F16x_VEC_LOAD(y + i + 2 * ggml_f16_epr, 2);
|
||||
sum3 = GGML_F16x_VEC_FMA(sum3, ax3, ay3);
|
||||
|
||||
ax4 = GGML_F16x_VEC_LOAD(x + i + 3 * ggml_f16_epr, 3);
|
||||
ay4 = GGML_F16x_VEC_LOAD(y + i + 3 * ggml_f16_epr, 3);
|
||||
sum4 = GGML_F16x_VEC_FMA(sum4, ax4, ay4);
|
||||
|
||||
ax5 = GGML_F16x_VEC_LOAD(x + i + 4 * ggml_f16_epr, 4);
|
||||
ay5 = GGML_F16x_VEC_LOAD(y + i + 4 * ggml_f16_epr, 4);
|
||||
sum1 = GGML_F16x_VEC_FMA(sum1, ax5, ay5);
|
||||
|
||||
ax6 = GGML_F16x_VEC_LOAD(x + i + 5 * ggml_f16_epr, 5);
|
||||
ay6 = GGML_F16x_VEC_LOAD(y + i + 5 * ggml_f16_epr, 5);
|
||||
sum2 = GGML_F16x_VEC_FMA(sum2, ax6, ay6);
|
||||
|
||||
ax7 = GGML_F16x_VEC_LOAD(x + i + 6 * ggml_f16_epr, 6);
|
||||
ay7 = GGML_F16x_VEC_LOAD(y + i + 6 * ggml_f16_epr, 6);
|
||||
sum3 = GGML_F16x_VEC_FMA(sum3, ax7, ay7);
|
||||
|
||||
ax8 = GGML_F16x_VEC_LOAD(x + i + 7 * ggml_f16_epr, 7);
|
||||
ay8 = GGML_F16x_VEC_LOAD(y + i + 7 * ggml_f16_epr, 7);
|
||||
sum4 = GGML_F16x_VEC_FMA(sum4, ax8, ay8);
|
||||
}
|
||||
}
|
||||
|
||||
// reduce sum0..sum3 to sum0
|
||||
GGML_F16_VEC_REDUCE(sumf, sum);
|
||||
const int np2 = (n & ~(ggml_f16_epr - 1)); // round down to multiple of 8
|
||||
for (int k = np; k < np2; k += ggml_f16_epr) {
|
||||
svfloat16_t rx = GGML_F16x_VEC_LOAD(x + k, 0);
|
||||
svfloat16_t ry = GGML_F16x_VEC_LOAD(y + k, 0);
|
||||
sum1 = GGML_F16x_VEC_FMA(sum1, rx, ry);
|
||||
}
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i]));
|
||||
}
|
||||
if (np2 < n) {
|
||||
svbool_t pg = svwhilelt_b16(np2, n);
|
||||
svfloat16_t hx = svld1_f16(pg, (const __fp16 *)(x + np2));
|
||||
svfloat16_t hy = svld1_f16(pg, (const __fp16 *)(y + np2));
|
||||
|
||||
// if you hit this, you are likely running outside the FP range
|
||||
assert(!isnan(sumf) && !isinf(sumf));
|
||||
sum1 = svmad_f16_x(pg, hx, hy, sum1);
|
||||
}
|
||||
GGML_F16x_VEC_REDUCE(sumf, sum1, sum2, sum3, sum4);
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
#if defined(__riscv_zvfh)
|
||||
int vl = __riscv_vsetvlmax_e32m2();
|
||||
vfloat32m1_t vs = __riscv_vfmv_v_f_f32m1(0.0f, 1);
|
||||
vfloat32m2_t vsum;
|
||||
vfloat16m1_t ax;
|
||||
vfloat16m1_t ay;
|
||||
vsum = __riscv_vreinterpret_v_u32m2_f32m2(__riscv_vmv_v_x_u32m2(0, vl));
|
||||
for (int i = 0; i < n; i += vl) {
|
||||
vl = __riscv_vsetvl_e16m1(n - i);
|
||||
ax = __riscv_vle16_v_f16m1_tu(ax, (const _Float16 *)&x[i], vl);
|
||||
ay = __riscv_vle16_v_f16m1_tu(ay, (const _Float16 *)&y[i], vl);
|
||||
vsum = __riscv_vfwmacc_vv_f32m2_tu(vsum, ax, ay, vl);
|
||||
}
|
||||
vl = __riscv_vsetvlmax_e32m1();
|
||||
vfloat32m1_t ac0 = __riscv_vfadd_vv_f32m1(__riscv_vget_v_f32m2_f32m1(vsum, 0), __riscv_vget_v_f32m2_f32m1(vsum, 1), vl);
|
||||
vs = __riscv_vfredusum_vs_f32m1_f32m1(ac0, vs, vl);
|
||||
sumf += __riscv_vfmv_f_s_f32m1_f32(vs);
|
||||
#else
|
||||
for (int i = 0; i < n; ++i) {
|
||||
sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i]));
|
||||
}
|
||||
#endif // __riscv_zvfh
|
||||
#else
|
||||
const int np = (n & ~(GGML_F16_STEP - 1));
|
||||
|
||||
GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
|
||||
|
||||
GGML_F16_VEC ax[GGML_F16_ARR];
|
||||
GGML_F16_VEC ay[GGML_F16_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||||
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||||
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
|
||||
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||||
|
||||
sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
|
||||
}
|
||||
}
|
||||
|
||||
// reduce sum0..sum3 to sum0
|
||||
GGML_F16_VEC_REDUCE(sumf, sum);
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i]));
|
||||
}
|
||||
// if you hit this, you are likely running outside the FP range
|
||||
assert(!isnan(sumf) && !isinf(sumf));
|
||||
#endif
|
||||
#else
|
||||
for (int i = 0; i < n; ++i) {
|
||||
sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i]));
|
||||
}
|
||||
#endif
|
||||
#endif // GGML_SIMD
|
||||
|
||||
*s = sumf;
|
||||
}
|
||||
@@ -257,6 +350,12 @@ void ggml_vec_silu_f32(const int n, float * y, const float * x) {
|
||||
for (; i + 3 < n; i += 4) {
|
||||
_mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
|
||||
}
|
||||
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
|
||||
const int vlen = svcntw();
|
||||
for (; i < n; i += vlen) {
|
||||
const svbool_t pg = svwhilelt_b32_s32(i, n);
|
||||
svst1_f32(pg, y + i, ggml_v_silu(pg, svld1_f32(pg, x + i)));
|
||||
}
|
||||
#elif defined(__ARM_NEON) && defined(__aarch64__)
|
||||
for (; i + 3 < n; i += 4) {
|
||||
vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
|
||||
@@ -281,10 +380,24 @@ void ggml_vec_swiglu_f32(const int n, float * y, const float * x, const float *
|
||||
for (; i + 3 < n; i += 4) {
|
||||
_mm_storeu_ps(y + i, _mm_mul_ps(ggml_v_silu(_mm_loadu_ps(x + i)), _mm_loadu_ps(g + i)));
|
||||
}
|
||||
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
|
||||
const int vlen = svcntw();
|
||||
for (; i < n; i += vlen) {
|
||||
const svbool_t pg = svwhilelt_b32_s32(i, n);
|
||||
svst1_f32(pg, y + i, svmul_f32_x(pg, ggml_v_silu(pg, svld1_f32(pg, x + i)), svld1_f32(pg, g + i)));
|
||||
}
|
||||
#elif defined(__ARM_NEON) && defined(__aarch64__)
|
||||
for (; i + 3 < n; i += 4) {
|
||||
vst1q_f32(y + i, vmulq_f32(ggml_v_silu(vld1q_f32(x + i)), vld1q_f32(g + i)));
|
||||
}
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
for (int vl; i < n; i += vl) {
|
||||
vl = __riscv_vsetvl_e32m2(n - i);
|
||||
vfloat32m2_t vx = __riscv_vle32_v_f32m2(&x[i], vl);
|
||||
vfloat32m2_t vg = __riscv_vle32_v_f32m2(&g[i], vl);
|
||||
vfloat32m2_t vy = __riscv_vfmul_vv_f32m2(ggml_v_silu_m2(vx, vl), vg, vl);
|
||||
__riscv_vse32_v_f32m2(&y[i], vy, vl);
|
||||
}
|
||||
#endif
|
||||
for (; i < n; ++i) {
|
||||
y[i] = ggml_silu_f32(x[i]) * g[i];
|
||||
@@ -328,6 +441,15 @@ ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float
|
||||
#endif
|
||||
sum += (ggml_float)_mm_cvtss_f32(val);
|
||||
}
|
||||
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
|
||||
const int vlen = svcntw();
|
||||
for (; i < n; i += vlen) {
|
||||
const svbool_t pg = svwhilelt_b32_s32(i, n);
|
||||
svfloat32_t val = ggml_v_expf(pg, svsub_f32_x(pg, svld1_f32(pg, x + i),
|
||||
svdup_n_f32_x(pg, max)));
|
||||
svst1_f32(pg, y + i, val);
|
||||
sum += (ggml_float)svaddv_f32(pg, val);
|
||||
}
|
||||
#elif defined(__ARM_NEON) && defined(__aarch64__)
|
||||
for (; i + 3 < n; i += 4) {
|
||||
float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
|
||||
|
||||
@@ -119,45 +119,149 @@ inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * GG
|
||||
}
|
||||
|
||||
#if defined(GGML_SIMD)
|
||||
#if defined(__riscv_v_intrinsic)
|
||||
// todo: RVV impl
|
||||
for (int i = 0; i < n; ++i) {
|
||||
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
|
||||
sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i]));
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
|
||||
const int sve_register_length = svcntb() * 8;
|
||||
const int ggml_f16_epr = sve_register_length / 16; // running when 16
|
||||
const int ggml_f16_step = 8 * ggml_f16_epr; // choose 8 SVE registers
|
||||
|
||||
const int np = (n & ~(ggml_f16_step - 1));
|
||||
|
||||
svfloat16_t sum_00 = svdup_n_f16(0.0f);
|
||||
svfloat16_t sum_01 = svdup_n_f16(0.0f);
|
||||
svfloat16_t sum_02 = svdup_n_f16(0.0f);
|
||||
svfloat16_t sum_03 = svdup_n_f16(0.0f);
|
||||
|
||||
svfloat16_t sum_10 = svdup_n_f16(0.0f);
|
||||
svfloat16_t sum_11 = svdup_n_f16(0.0f);
|
||||
svfloat16_t sum_12 = svdup_n_f16(0.0f);
|
||||
svfloat16_t sum_13 = svdup_n_f16(0.0f);
|
||||
|
||||
svfloat16_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8;
|
||||
svfloat16_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8;
|
||||
|
||||
for (int i = 0; i < np; i += ggml_f16_step) {
|
||||
ay1 = GGML_F16x_VEC_LOAD(y + i + 0 * ggml_f16_epr, 0); // 8 elements
|
||||
|
||||
ax1 = GGML_F16x_VEC_LOAD(x[0] + i + 0*ggml_f16_epr, 0); // 8 elemnst
|
||||
sum_00 = GGML_F16x_VEC_FMA(sum_00, ax1, ay1); // sum_00 = sum_00+ax1*ay1
|
||||
ax1 = GGML_F16x_VEC_LOAD(x[1] + i + 0*ggml_f16_epr, 0); // 8 elements
|
||||
sum_10 = GGML_F16x_VEC_FMA(sum_10, ax1, ay1);
|
||||
|
||||
ay2 = GGML_F16x_VEC_LOAD(y + i + 1 * ggml_f16_epr, 1); // next 8 elements
|
||||
|
||||
ax2 = GGML_F16x_VEC_LOAD(x[0] + i + 1*ggml_f16_epr, 1); // next 8 ekements
|
||||
sum_01 = GGML_F16x_VEC_FMA(sum_01, ax2, ay2);
|
||||
ax2 = GGML_F16x_VEC_LOAD(x[1] + i + 1*ggml_f16_epr, 1);
|
||||
sum_11 = GGML_F16x_VEC_FMA(sum_11, ax2, ay2);
|
||||
|
||||
ay3 = GGML_F16x_VEC_LOAD(y + i + 2 * ggml_f16_epr, 2);
|
||||
|
||||
ax3 = GGML_F16x_VEC_LOAD(x[0] + i + 2*ggml_f16_epr, 2);
|
||||
sum_02 = GGML_F16x_VEC_FMA(sum_02, ax3, ay3);
|
||||
ax1 = GGML_F16x_VEC_LOAD(x[1] + i + 2*ggml_f16_epr, 2);
|
||||
sum_12 = GGML_F16x_VEC_FMA(sum_12, ax3, ay3);
|
||||
|
||||
ay4 = GGML_F16x_VEC_LOAD(y + i + 3 * ggml_f16_epr, 3);
|
||||
|
||||
ax4 = GGML_F16x_VEC_LOAD(x[0] + i + 3*ggml_f16_epr, 3);
|
||||
sum_03 = GGML_F16x_VEC_FMA(sum_03, ax4, ay4);
|
||||
ax4 = GGML_F16x_VEC_LOAD(x[1] + i + 3*ggml_f16_epr, 3);
|
||||
sum_13 = GGML_F16x_VEC_FMA(sum_13, ax4, ay4);
|
||||
|
||||
ay5 = GGML_F16x_VEC_LOAD(y + i + 4 * ggml_f16_epr, 4);
|
||||
|
||||
ax5 = GGML_F16x_VEC_LOAD(x[0] + i + 4*ggml_f16_epr, 4);
|
||||
|
||||
sum_00 = GGML_F16x_VEC_FMA(sum_00, ax5, ay5);
|
||||
ax5 = GGML_F16x_VEC_LOAD(x[1] + i + 4*ggml_f16_epr, 4);
|
||||
sum_10 = GGML_F16x_VEC_FMA(sum_10, ax5, ay5);
|
||||
|
||||
ay6 = GGML_F16x_VEC_LOAD(y + i + 5 * ggml_f16_epr, 5);
|
||||
|
||||
ax6 = GGML_F16x_VEC_LOAD(x[0] + i + 5*ggml_f16_epr, 5);
|
||||
|
||||
sum_01 = GGML_F16x_VEC_FMA(sum_01, ax6, ay6);
|
||||
ax6 = GGML_F16x_VEC_LOAD(x[1] + i + 5*ggml_f16_epr, 5);
|
||||
sum_11 = GGML_F16x_VEC_FMA(sum_11, ax6, ay6);
|
||||
|
||||
ay7 = GGML_F16x_VEC_LOAD(y + i + 6 * ggml_f16_epr, 6);
|
||||
|
||||
ax7 = GGML_F16x_VEC_LOAD(x[0] + i + 6*ggml_f16_epr, 6);
|
||||
|
||||
sum_02 = GGML_F16x_VEC_FMA(sum_02, ax7, ay7);
|
||||
ax7 = GGML_F16x_VEC_LOAD(x[1] + i + 6*ggml_f16_epr, 6);
|
||||
sum_12 = GGML_F16x_VEC_FMA(sum_12, ax7, ay7);
|
||||
|
||||
ay8 = GGML_F16x_VEC_LOAD(y + i + 7 * ggml_f16_epr, 7);
|
||||
|
||||
ax8 = GGML_F16x_VEC_LOAD(x[0] + i + 7*ggml_f16_epr, 7);
|
||||
|
||||
sum_03 = GGML_F16x_VEC_FMA(sum_03, ax8, ay8);
|
||||
ax8 = GGML_F16x_VEC_LOAD(x[1] + i + 7*ggml_f16_epr, 7);
|
||||
sum_13 = GGML_F16x_VEC_FMA(sum_13, ax8, ay8);
|
||||
}
|
||||
}
|
||||
#else
|
||||
const int np = (n & ~(GGML_F16_STEP - 1));
|
||||
|
||||
GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
|
||||
const int np2 = (n & ~(ggml_f16_epr - 1));
|
||||
for (int k = np; k < np2; k += ggml_f16_epr) {
|
||||
svfloat16_t ry = GGML_F16x_VEC_LOAD(y + k, 0);
|
||||
|
||||
GGML_F16_VEC ax[GGML_F16_ARR];
|
||||
GGML_F16_VEC ay[GGML_F16_ARR];
|
||||
svfloat16_t rx = GGML_F16x_VEC_LOAD(x[0] + k, 0);
|
||||
sum_00 = GGML_F16x_VEC_FMA(sum_00, rx, ry);
|
||||
rx = GGML_F16x_VEC_LOAD(x[1] + k, 0);
|
||||
sum_10 = GGML_F16x_VEC_FMA(sum_10, rx, ry);
|
||||
}
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||||
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||||
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||||
if (np2 < n) {
|
||||
svbool_t pg = svwhilelt_b16(np2, n);
|
||||
svfloat16_t hx_0 = svld1_f16(pg, (const __fp16 *)(x[0] + np2));
|
||||
svfloat16_t hx_1 = svld1_f16(pg, (const __fp16 *)(x[1] + np2));
|
||||
svfloat16_t hy = svld1_f16(pg, (const __fp16 *)(y + np2));
|
||||
|
||||
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
|
||||
ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
|
||||
sum_00 = svmad_f16_x(pg, hx_0, hy, sum_00);
|
||||
sum_10 = svmad_f16_x(pg, hx_1, hy, sum_10);
|
||||
}
|
||||
GGML_F16x_VEC_REDUCE(sumf[0], sum_00, sum_01, sum_02, sum_03);
|
||||
GGML_F16x_VEC_REDUCE(sumf[1], sum_10, sum_11, sum_12, sum_13);
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
// todo: RVV impl
|
||||
for (int i = 0; i < n; ++i) {
|
||||
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
|
||||
sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i]));
|
||||
}
|
||||
}
|
||||
#else
|
||||
const int np = (n & ~(GGML_F16_STEP - 1));
|
||||
|
||||
sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
|
||||
GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
|
||||
|
||||
GGML_F16_VEC ax[GGML_F16_ARR];
|
||||
GGML_F16_VEC ay[GGML_F16_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||||
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||||
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||||
|
||||
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
|
||||
ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
|
||||
|
||||
sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// reduce sum0..sum3 to sum0
|
||||
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
|
||||
GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
|
||||
}
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
|
||||
sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i]));
|
||||
// reduce sum0..sum3 to sum0
|
||||
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
|
||||
GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
|
||||
sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i]));
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
for (int i = 0; i < n; ++i) {
|
||||
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
|
||||
@@ -293,35 +397,112 @@ inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const
|
||||
|
||||
inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * GGML_RESTRICT y, const ggml_fp16_t * GGML_RESTRICT x, const float v) {
|
||||
#if defined(GGML_SIMD)
|
||||
#if defined(__riscv_v_intrinsic)
|
||||
// todo: RVV impl
|
||||
// scalar
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v);
|
||||
}
|
||||
#else
|
||||
const int np = (n & ~(GGML_F16_STEP - 1));
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
const int sve_register_length = svcntb() * 8;
|
||||
const int ggml_f16_epr = sve_register_length / 16;
|
||||
const int ggml_f16_step = 8 * ggml_f16_epr;
|
||||
|
||||
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
|
||||
GGML_F16x_VEC vx = GGML_F16x_VEC_SET1(v);
|
||||
|
||||
GGML_F16_VEC ax[GGML_F16_ARR];
|
||||
GGML_F16_VEC ay[GGML_F16_ARR];
|
||||
const int np= (n & ~(ggml_f16_step - 1));
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||||
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||||
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
|
||||
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||||
ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
|
||||
svfloat16_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8;
|
||||
svfloat16_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8;
|
||||
for (int i = 0; i < np; i += ggml_f16_step) {
|
||||
ax1 = GGML_F16x_VEC_LOAD(x + i + 0 * ggml_f16_epr, 0);
|
||||
ay1 = GGML_F16x_VEC_LOAD(y + i + 0 * ggml_f16_epr, 0);
|
||||
ay1 = GGML_F16x_VEC_FMA(ay1, ax1, vx);
|
||||
|
||||
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
|
||||
GGML_F16x_VEC_STORE(y + i + 0 * ggml_f16_epr, ay1, 0);
|
||||
|
||||
ax2 = GGML_F16x_VEC_LOAD(x + i + 1 * ggml_f16_epr, 1);
|
||||
ay2 = GGML_F16x_VEC_LOAD(y + i + 1 * ggml_f16_epr, 1);
|
||||
ay2 = GGML_F16x_VEC_FMA(ay2, ax2, vx);
|
||||
|
||||
GGML_F16x_VEC_STORE(y + i + 1 * ggml_f16_epr, ay2, 1);
|
||||
|
||||
ax3 = GGML_F16x_VEC_LOAD(x + i + 2 * ggml_f16_epr, 2);
|
||||
ay3 = GGML_F16x_VEC_LOAD(y + i + 2 * ggml_f16_epr, 2);
|
||||
ay3 = GGML_F16x_VEC_FMA(ay3, ax3, vx);
|
||||
|
||||
GGML_F16x_VEC_STORE(y + i + 2 * ggml_f16_epr, ay3, 2);
|
||||
|
||||
ax4 = GGML_F16x_VEC_LOAD(x + i + 3 * ggml_f16_epr, 3);
|
||||
ay4 = GGML_F16x_VEC_LOAD(y + i + 3 * ggml_f16_epr, 3);
|
||||
ay4 = GGML_F16x_VEC_FMA(ay4, ax4, vx);
|
||||
|
||||
GGML_F16x_VEC_STORE(y + i + 3 * ggml_f16_epr, ay4, 3);
|
||||
|
||||
ax5 = GGML_F16x_VEC_LOAD(x + i + 4 * ggml_f16_epr, 4);
|
||||
ay5 = GGML_F16x_VEC_LOAD(y + i + 4 * ggml_f16_epr, 4);
|
||||
ay5 = GGML_F16x_VEC_FMA(ay5, ax5, vx);
|
||||
|
||||
GGML_F16x_VEC_STORE(y + i + 4 * ggml_f16_epr, ay5, 4);
|
||||
|
||||
ax6 = GGML_F16x_VEC_LOAD(x + i + 5 * ggml_f16_epr, 5);
|
||||
ay6 = GGML_F16x_VEC_LOAD(y + i + 5 * ggml_f16_epr, 5);
|
||||
ay6 = GGML_F16x_VEC_FMA(ay6, ax6, vx);
|
||||
|
||||
GGML_F16x_VEC_STORE(y + i + 5 * ggml_f16_epr, ay6, 5);
|
||||
|
||||
ax7 = GGML_F16x_VEC_LOAD(x + i + 6 * ggml_f16_epr, 6);
|
||||
ay7 = GGML_F16x_VEC_LOAD(y + i + 6 * ggml_f16_epr, 6);
|
||||
ay7 = GGML_F16x_VEC_FMA(ay7, ax7, vx);
|
||||
|
||||
GGML_F16x_VEC_STORE(y + i + 6 * ggml_f16_epr, ay7, 6);
|
||||
|
||||
ax8 = GGML_F16x_VEC_LOAD(x + i + 7 * ggml_f16_epr, 7);
|
||||
ay8 = GGML_F16x_VEC_LOAD(y + i + 7 * ggml_f16_epr, 7);
|
||||
ay8 = GGML_F16x_VEC_FMA(ay8, ax8, vx);
|
||||
|
||||
GGML_F16x_VEC_STORE(y + i + 7 * ggml_f16_epr, ay8, 7);
|
||||
}
|
||||
}
|
||||
const int np2 = (n & ~(ggml_f16_epr - 1));
|
||||
for (int k = np; k < np2; k += ggml_f16_epr) {
|
||||
svfloat16_t rx = GGML_F16x_VEC_LOAD(x + k, 0);
|
||||
svfloat16_t ry = GGML_F16x_VEC_LOAD(y + k, 0);
|
||||
ry = GGML_F16x_VEC_FMA(ry, rx, vx);
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v);
|
||||
}
|
||||
#endif
|
||||
GGML_F16x_VEC_STORE(y + k, ry, 0);
|
||||
}
|
||||
|
||||
if (np2 < n) {
|
||||
svbool_t pg = svwhilelt_b16(np2, n);
|
||||
svfloat16_t hx = svld1_f16(pg, (const __fp16 *)(x + np2));
|
||||
svfloat16_t hy = svld1_f16(pg, (const __fp16 *)(y + np2));
|
||||
hy = svmad_f16_x(pg, hx, vx, hy);
|
||||
svst1_f16(pg, (__fp16 *)(y + np2), hy);
|
||||
}
|
||||
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
// todo: RVV impl
|
||||
// scalar
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v);
|
||||
}
|
||||
#else
|
||||
const int np = (n & ~(GGML_F16_STEP - 1));
|
||||
|
||||
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
|
||||
|
||||
GGML_F16_VEC ax[GGML_F16_ARR];
|
||||
GGML_F16_VEC ay[GGML_F16_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||||
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||||
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
|
||||
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||||
ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
|
||||
|
||||
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
|
||||
}
|
||||
}
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v);
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
// scalar
|
||||
for (int i = 0; i < n; ++i) {
|
||||
@@ -517,33 +698,59 @@ inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
|
||||
|
||||
inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
|
||||
#if defined(GGML_SIMD)
|
||||
#if defined(__riscv_v_intrinsic)
|
||||
// todo: RVV impl
|
||||
// scalar
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v);
|
||||
}
|
||||
#else
|
||||
const int np = (n & ~(GGML_F16_STEP - 1));
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
const int sve_register_length = svcntb() * 8;
|
||||
const int ggml_f16_epr = sve_register_length / 16;
|
||||
const int ggml_f16_step = 2 * ggml_f16_epr;
|
||||
|
||||
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
|
||||
GGML_F16x_VEC vx = GGML_F16x_VEC_SET1(v);
|
||||
const int np = (n & ~(ggml_f16_step - 1));
|
||||
svfloat16_t ay1, ay2;
|
||||
|
||||
GGML_F16_VEC ay[GGML_F16_ARR];
|
||||
for (int i = 0; i < np; i += ggml_f16_step) {
|
||||
ay1 = GGML_F16x_VEC_LOAD(y + i + 0*ggml_f16_epr, 0);
|
||||
ay1 = GGML_F16x_VEC_MUL(ay1, vx);
|
||||
GGML_F16x_VEC_STORE(y + i + 0*ggml_f16_epr, ay1, 0);
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||||
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||||
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||||
ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
|
||||
|
||||
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
|
||||
ay2 = GGML_F16x_VEC_LOAD(y + i + 1*ggml_f16_epr, 1);
|
||||
ay2 = GGML_F16x_VEC_MUL(ay2, vx);
|
||||
GGML_F16x_VEC_STORE(y + i + 1*ggml_f16_epr, ay2, 1);
|
||||
}
|
||||
}
|
||||
// leftovers
|
||||
// maximum number of leftover elements will be less that ggmlF_16x_epr. Apply predicated svmad on available elements only
|
||||
if (np < n) {
|
||||
svbool_t pg = svwhilelt_b16(np, n);
|
||||
svfloat16_t hy = svld1_f16(pg, (__fp16 *)(y + np));
|
||||
svfloat16_t out = svmul_f16_m(pg, hy, vx);
|
||||
svst1_f16(pg, (__fp16 *)(y + np), out);
|
||||
}
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
// todo: RVV impl
|
||||
// scalar
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v);
|
||||
}
|
||||
#else
|
||||
const int np = (n & ~(GGML_F16_STEP - 1));
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v);
|
||||
}
|
||||
#endif
|
||||
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
|
||||
|
||||
GGML_F16_VEC ay[GGML_F16_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||||
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||||
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||||
ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
|
||||
|
||||
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
|
||||
}
|
||||
}
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v);
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
// scalar
|
||||
for (int i = 0; i < n; ++i) {
|
||||
@@ -795,7 +1002,39 @@ https://github.com/openvinotoolkit/openvino/blob/master/src/plugins/intel_cpu/sr
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_NEON) && defined(__aarch64__)
|
||||
#if defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
|
||||
|
||||
inline static svfloat32_t ggml_v_expf(svbool_t pg, svfloat32_t x) {
|
||||
const svfloat32_t r = svdup_n_f32_x(pg, 0x1.8p23f);
|
||||
const svfloat32_t z = svmla_n_f32_x(pg, r, x, 0x1.715476p+0f);
|
||||
const svfloat32_t n = svsub_f32_x(pg, z, r);
|
||||
const svfloat32_t b = svmls_n_f32_x(pg, svmls_n_f32_x(pg, x, n, 0x1.62e4p-1f), n, 0x1.7f7d1cp-20f);
|
||||
const svuint32_t e = svlsl_n_u32_x(pg, svreinterpret_u32_f32(z), 23);
|
||||
const svfloat32_t k = svreinterpret_f32_u32(svadd_u32_x(pg, e, svreinterpret_u32_f32(svdup_n_f32_x(pg, 1))));
|
||||
const svbool_t c = svacgt_n_f32(pg, n, 126);
|
||||
const svfloat32_t u = svmul_f32_x(pg, b, b);
|
||||
const svfloat32_t j = svmla_f32_x(pg,
|
||||
svmul_n_f32_x(pg, b, 0x1.ffffecp-1f),
|
||||
svmla_f32_x(pg, svmla_f32_x(pg, svdup_n_f32_x(pg, 0x1.fffdb6p-2f), svdup_n_f32_x(pg, 0x1.555e66p-3f), b),
|
||||
svmla_f32_x(pg, svdup_n_f32_x(pg, 0x1.573e2ep-5f), svdup_n_f32_x(pg, 0x1.0e4020p-7f), b), u), u);
|
||||
const svuint32_t d = svdup_n_u32_z(svcmple_n_f32(pg, n, 0.0), 0x82000000);
|
||||
const svfloat32_t s1 = svreinterpret_f32_u32(svadd_n_u32_x(pg, d, 0x7f000000));
|
||||
const svfloat32_t s2 = svreinterpret_f32_u32(svsub_u32_x(pg, e, d));
|
||||
return svsel_f32(svacgt_f32(pg, n, svdup_n_f32_x(pg, 192)), svmul_f32_x(pg, s1, s1),
|
||||
svsel_f32(c, svmul_f32_x(pg, svmla_f32_x(pg, s2, s2, j), s1), svmla_f32_x(pg, k, k, j)));
|
||||
}
|
||||
|
||||
// computes silu x/(1+exp(-x)) in single precision vector
|
||||
inline static svfloat32_t ggml_v_silu(svbool_t pg, svfloat32_t x) {
|
||||
const svfloat32_t one = svdup_n_f32_x(pg, 1.0f);
|
||||
const svfloat32_t zero = svdup_n_f32_x(pg, 0.0f);
|
||||
const svfloat32_t neg_x = svsub_f32_x(pg, zero, x);
|
||||
const svfloat32_t exp_neg_x = ggml_v_expf(pg, neg_x);
|
||||
const svfloat32_t one_plus_exp_neg_x = svadd_f32_x(pg, one, exp_neg_x);
|
||||
return svdiv_f32_x(pg, x, one_plus_exp_neg_x);
|
||||
}
|
||||
|
||||
#elif defined(__ARM_NEON) && defined(__aarch64__)
|
||||
|
||||
// adapted from arm limited optimized routine
|
||||
// the maximum error is 1.45358 plus 0.5 ulps
|
||||
@@ -1030,6 +1269,14 @@ inline static vfloat32m2_t ggml_v_expf_m2(vfloat32m2_t x, int vl) {
|
||||
vl);
|
||||
}
|
||||
|
||||
// computes silu x/(1+exp(-x)) in single precision vector
|
||||
inline static vfloat32m2_t ggml_v_silu_m2(vfloat32m2_t x, int vl) {
|
||||
const vfloat32m2_t neg_x = __riscv_vfneg_v_f32m2(x, vl);
|
||||
const vfloat32m2_t exp_neg_x = ggml_v_expf_m2(neg_x, vl);
|
||||
const vfloat32m2_t one_plus_exp_neg_x = __riscv_vfadd_vf_f32m2(exp_neg_x, 1.0f, vl);
|
||||
return __riscv_vfdiv_vv_f32m2(x, one_plus_exp_neg_x, vl);
|
||||
}
|
||||
|
||||
#endif // __ARM_NEON / __AVX2__ / __SSE2__ / __riscv_v_intrinsic
|
||||
|
||||
inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
|
||||
@@ -44,6 +44,8 @@ if (CUDAToolkit_FOUND)
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
file(GLOB SRCS "template-instances/mmq*.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
file(GLOB SRCS "template-instances/mmf*.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
|
||||
if (GGML_CUDA_FA_ALL_QUANTS)
|
||||
file(GLOB SRCS "template-instances/fattn-vec*.cu")
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
#include "binbcast.cuh"
|
||||
#include <cstdint>
|
||||
#include <utility>
|
||||
|
||||
static __device__ __forceinline__ float op_repeat(const float a, const float b) {
|
||||
return b;
|
||||
@@ -22,13 +23,16 @@ static __device__ __forceinline__ float op_div(const float a, const float b) {
|
||||
return a / b;
|
||||
}
|
||||
|
||||
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
|
||||
|
||||
|
||||
template <float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t, typename... src1_ptrs>
|
||||
static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
|
||||
int ne0, int ne1, int ne2, int ne3,
|
||||
int ne10, int ne11, int ne12, int ne13,
|
||||
/*int s0, */ int s1, int s2, int s3,
|
||||
/*int s00,*/ int s01, int s02, int s03,
|
||||
/*int s10,*/ int s11, int s12, int s13) {
|
||||
const int ne0, const int ne1, const int ne2, const int ne3,
|
||||
const int ne10, const int ne11, const int ne12, const int ne13,
|
||||
/*int s0, */ const int s1, const int s2, const int s3,
|
||||
/*int s00,*/ const int s01, const int s02, const int s03,
|
||||
/*int s10,*/ const int s11, const int s12, const int s13,
|
||||
src1_ptrs... src1s) {
|
||||
const int i0s = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
const int i1 = (blockDim.y*blockIdx.y + threadIdx.y);
|
||||
const int i2 = (blockDim.z*blockIdx.z + threadIdx.z) / ne3;
|
||||
@@ -46,24 +50,31 @@ static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst
|
||||
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
|
||||
const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
|
||||
|
||||
const src0_t * src0_row = src0 + i_src0;
|
||||
const src1_t * src1_row = src1 + i_src1;
|
||||
const src0_t * src0_row = src0 ? (src0 + i_src0) : nullptr;
|
||||
dst_t * dst_row = dst + i_dst;
|
||||
|
||||
for (int i0 = i0s; i0 < ne0; i0 += blockDim.x*gridDim.x) {
|
||||
const int i10 = i0 % ne10;
|
||||
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
|
||||
|
||||
float result = src0_row ? (float) src0_row[i0] : 0.0f;
|
||||
if constexpr (sizeof...(src1_ptrs) > 0) {
|
||||
result = (..., (result = bin_op(result, (float)src1s[i_src1 + i10])));
|
||||
} else {
|
||||
result = bin_op(result, (float)src1[i_src1 + i10]);
|
||||
}
|
||||
|
||||
dst_row[i0] = (dst_t) result;
|
||||
}
|
||||
}
|
||||
|
||||
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
|
||||
static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
|
||||
int ne0, int ne1, int ne2, int ne3,
|
||||
int ne10, int ne11, int ne12, int ne13,
|
||||
/*int s0, */ int s1, int s2, int s3,
|
||||
/*int s00,*/ int s01, int s02, int s03,
|
||||
/*int s10,*/ int s11, int s12, int s13) {
|
||||
|
||||
template <float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t, typename... src1_ptrs>
|
||||
static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
|
||||
const int ne0, const int ne1, const int ne2,const int ne3,
|
||||
const int ne10, const int ne11, const int ne12, const int ne13,
|
||||
/*int s0, */ const int s1, const int s2, const int s3,
|
||||
/*int s00,*/ const int s01, const int s02, const int s03,
|
||||
/*int s10,*/ const int s11, const int s12, const int s13,
|
||||
src1_ptrs ... src1s) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
const int i3 = i/(ne2*ne1*ne0);
|
||||
@@ -83,12 +94,190 @@ static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * s
|
||||
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
|
||||
const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
|
||||
|
||||
const src0_t * src0_row = src0 + i_src0;
|
||||
const src1_t * src1_row = src1 + i_src1;
|
||||
const src0_t * src0_row = src0 ? (src0 + i_src0) : nullptr;
|
||||
dst_t * dst_row = dst + i_dst;
|
||||
|
||||
const int i10 = i0 % ne10;
|
||||
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
|
||||
|
||||
float result = src0_row ? (float) src0_row[i0] : 0.0f;
|
||||
if constexpr (sizeof...(src1_ptrs) > 0) {
|
||||
result = (..., (result = bin_op(result, (float)src1s[i_src1 + i10])));
|
||||
} else {
|
||||
result = bin_op(result, (float)src1[i_src1 + i10]);
|
||||
}
|
||||
|
||||
dst_row[i0] = (dst_t) result;
|
||||
}
|
||||
|
||||
template <float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t, size_t... I>
|
||||
static void launch_bin_bcast_pack(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd,
|
||||
cudaStream_t stream, std::index_sequence<I...>) {
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
int nr0 = ne10 / ne0;
|
||||
int nr1 = ne11 / ne1;
|
||||
int nr2 = ne12 / ne2;
|
||||
int nr3 = ne13 / ne3;
|
||||
|
||||
int nr[4] = { nr0, nr1, nr2, nr3 };
|
||||
|
||||
int64_t cne[] = { ne0, ne1, ne2, ne3 };
|
||||
int64_t cne0[] = { ne00, ne01, ne02, ne03 };
|
||||
int64_t cne1[] = { ne10, ne11, ne12, ne13 };
|
||||
|
||||
size_t cnb[] = { nb0, nb1, nb2, nb3 };
|
||||
size_t cnb0[] = { nb00, nb01, nb02, nb03 };
|
||||
size_t cnb1[] = { nb10, nb11, nb12, nb13 };
|
||||
|
||||
auto collapse = [](int64_t cne[]) {
|
||||
cne[0] *= cne[1];
|
||||
cne[1] = cne[2];
|
||||
cne[2] = cne[3];
|
||||
cne[3] = 1;
|
||||
};
|
||||
|
||||
auto collapse_nb = [](size_t cnb[], const int64_t cne[]) {
|
||||
cnb[1] *= cne[1];
|
||||
cnb[2] *= cne[2];
|
||||
cnb[3] *= cne[3];
|
||||
};
|
||||
|
||||
if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
|
||||
for (int i = 0; i < 4; i++) {
|
||||
if (nr[i] != 1) {
|
||||
break;
|
||||
}
|
||||
if (i > 0) {
|
||||
collapse_nb(cnb, cne);
|
||||
collapse_nb(cnb0, cne0);
|
||||
collapse_nb(cnb1, cne1);
|
||||
collapse(cne);
|
||||
collapse(cne0);
|
||||
collapse(cne1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
int64_t ne0 = cne[0];
|
||||
int64_t ne1 = cne[1];
|
||||
int64_t ne2 = cne[2];
|
||||
int64_t ne3 = cne[3];
|
||||
|
||||
//int64_t ne00 = cne0[0]; GGML_UNUSED(ne00);
|
||||
//int64_t ne01 = cne0[1]; GGML_UNUSED(ne01);
|
||||
//int64_t ne02 = cne0[2]; GGML_UNUSED(ne02);
|
||||
//int64_t ne03 = cne0[3]; GGML_UNUSED(ne03);
|
||||
|
||||
int64_t ne10 = cne1[0];
|
||||
int64_t ne11 = cne1[1];
|
||||
int64_t ne12 = cne1[2];
|
||||
int64_t ne13 = cne1[3];
|
||||
|
||||
size_t nb0 = cnb[0];
|
||||
size_t nb1 = cnb[1];
|
||||
size_t nb2 = cnb[2];
|
||||
size_t nb3 = cnb[3];
|
||||
|
||||
size_t nb00 = cnb0[0];
|
||||
size_t nb01 = cnb0[1];
|
||||
size_t nb02 = cnb0[2];
|
||||
size_t nb03 = cnb0[3];
|
||||
|
||||
size_t nb10 = cnb1[0];
|
||||
size_t nb11 = cnb1[1];
|
||||
size_t nb12 = cnb1[2];
|
||||
size_t nb13 = cnb1[3];
|
||||
|
||||
size_t s0 = nb0 / sizeof(dst_t);
|
||||
size_t s1 = nb1 / sizeof(dst_t);
|
||||
size_t s2 = nb2 / sizeof(dst_t);
|
||||
size_t s3 = nb3 / sizeof(dst_t);
|
||||
|
||||
size_t s10 = nb10 / sizeof(src1_t);
|
||||
size_t s11 = nb11 / sizeof(src1_t);
|
||||
size_t s12 = nb12 / sizeof(src1_t);
|
||||
size_t s13 = nb13 / sizeof(src1_t);
|
||||
|
||||
size_t s00 = nb00 / sizeof(src0_t);
|
||||
size_t s01 = nb01 / sizeof(src0_t);
|
||||
size_t s02 = nb02 / sizeof(src0_t);
|
||||
size_t s03 = nb03 / sizeof(src0_t);
|
||||
|
||||
GGML_ASSERT(nb0 % sizeof(dst_t) == 0);
|
||||
GGML_ASSERT(nb1 % sizeof(dst_t) == 0);
|
||||
GGML_ASSERT(nb2 % sizeof(dst_t) == 0);
|
||||
GGML_ASSERT(nb3 % sizeof(dst_t) == 0);
|
||||
|
||||
GGML_ASSERT(nb00 % sizeof(src0_t) == 0);
|
||||
GGML_ASSERT(nb01 % sizeof(src0_t) == 0);
|
||||
GGML_ASSERT(nb02 % sizeof(src0_t) == 0);
|
||||
GGML_ASSERT(nb03 % sizeof(src0_t) == 0);
|
||||
|
||||
GGML_ASSERT(nb10 % sizeof(src1_t) == 0);
|
||||
GGML_ASSERT(nb11 % sizeof(src1_t) == 0);
|
||||
GGML_ASSERT(nb12 % sizeof(src1_t) == 0);
|
||||
GGML_ASSERT(nb13 % sizeof(src1_t) == 0);
|
||||
|
||||
GGML_ASSERT(s0 == 1);
|
||||
GGML_ASSERT(s00 == 1);
|
||||
GGML_ASSERT(s10 == 1);
|
||||
|
||||
const int block_size = 128;
|
||||
|
||||
int64_t hne0 = std::max(ne0 / 2LL, 1LL);
|
||||
|
||||
dim3 block_dims;
|
||||
block_dims.x = std::min<unsigned int>(hne0, block_size);
|
||||
block_dims.y = std::min<unsigned int>(ne1, block_size / block_dims.x);
|
||||
block_dims.z = std::min(std::min<unsigned int>(ne2 * ne3, block_size / block_dims.x / block_dims.y), 64U);
|
||||
|
||||
dim3 block_nums((hne0 + block_dims.x - 1) / block_dims.x,
|
||||
(ne1 + block_dims.y - 1) / block_dims.y,
|
||||
(ne2 * ne3 + block_dims.z - 1) / block_dims.z);
|
||||
|
||||
if (block_nums.z > 65535) {
|
||||
int block_num = (ne0 * ne1 * ne2 * ne3 + block_size - 1) / block_size;
|
||||
if constexpr (sizeof...(I) > 0) {
|
||||
k_bin_bcast_unravel<bin_op, src0_t, src1_t, dst_t>
|
||||
<<<block_num, block_size, 0, stream>>>(src0_dd, src1_dd, dst_dd,
|
||||
ne0, ne1, ne2, ne3,
|
||||
ne10, ne11, ne12, ne13,
|
||||
/* s0, */ s1, s2, s3,
|
||||
/* s00,*/ s01, s02, s03,
|
||||
/* s10,*/ s11, s12,s13,
|
||||
(const src1_t *) dst->src[I + 1]->data...);
|
||||
} else {
|
||||
k_bin_bcast_unravel<bin_op, src0_t, src1_t, dst_t>
|
||||
<<<block_num, block_size, 0, stream>>>(src0_dd, src1_dd, dst_dd,
|
||||
ne0, ne1, ne2, ne3,
|
||||
ne10, ne11, ne12, ne13,
|
||||
/* s0, */ s1, s2, s3,
|
||||
/* s00,*/ s01, s02, s03,
|
||||
/* s10,*/ s11, s12,s13);
|
||||
}
|
||||
} else {
|
||||
if constexpr (sizeof...(I) > 0) {
|
||||
k_bin_bcast<bin_op, src0_t, src1_t, dst_t>
|
||||
<<<block_nums, block_dims, 0, stream>>>(src0_dd, src1_dd, dst_dd,
|
||||
ne0, ne1, ne2, ne3,
|
||||
ne10, ne11, ne12, ne13,
|
||||
/* s0, */ s1, s2, s3,
|
||||
/* s00,*/ s01, s02, s03,
|
||||
/* s10,*/ s11, s12,s13,
|
||||
(const src1_t *) dst->src[I + 1]->data...);
|
||||
} else {
|
||||
k_bin_bcast<bin_op, src0_t, src1_t, dst_t>
|
||||
<<<block_nums, block_dims, 0, stream>>>(src0_dd, src1_dd, dst_dd,
|
||||
ne0, ne1, ne2, ne3,
|
||||
ne10, ne11, ne12, ne13,
|
||||
/* s0, */ s1, s2, s3,
|
||||
/* s00,*/ s01, s02, s03,
|
||||
/* s10,*/ s11, s12,s13);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
@@ -120,160 +309,14 @@ static __global__ void k_repeat_back(
|
||||
dst[tid3*ne2*ne1*ne0 + tid2*ne1*ne0 + tid1*ne0 + tid0] = sum;
|
||||
}
|
||||
|
||||
template<float (*bin_op)(const float, const float)>
|
||||
template <float (*bin_op)(const float, const float), int n_fuse = 1>
|
||||
struct bin_bcast_cuda {
|
||||
template<typename src0_t, typename src1_t, typename dst_t>
|
||||
void operator()(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst,
|
||||
const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd,
|
||||
cudaStream_t stream) {
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
int nr0 = ne10/ne0;
|
||||
int nr1 = ne11/ne1;
|
||||
int nr2 = ne12/ne2;
|
||||
int nr3 = ne13/ne3;
|
||||
|
||||
int nr[4] = { nr0, nr1, nr2, nr3 };
|
||||
|
||||
// collapse dimensions until first broadcast dimension
|
||||
int64_t cne[] = {ne0, ne1, ne2, ne3};
|
||||
int64_t cne0[] = {ne00, ne01, ne02, ne03};
|
||||
int64_t cne1[] = {ne10, ne11, ne12, ne13};
|
||||
|
||||
size_t cnb[] = {nb0, nb1, nb2, nb3};
|
||||
size_t cnb0[] = {nb00, nb01, nb02, nb03};
|
||||
size_t cnb1[] = {nb10, nb11, nb12, nb13};
|
||||
|
||||
auto collapse = [](int64_t cne[]) {
|
||||
cne[0] *= cne[1];
|
||||
cne[1] = cne[2];
|
||||
cne[2] = cne[3];
|
||||
cne[3] = 1;
|
||||
};
|
||||
|
||||
auto collapse_nb = [](size_t cnb[], const int64_t cne[]) {
|
||||
cnb[1] *= cne[1];
|
||||
cnb[2] *= cne[2];
|
||||
cnb[3] *= cne[3];
|
||||
};
|
||||
|
||||
if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
|
||||
for (int i = 0; i < 4; i++) {
|
||||
if (nr[i] != 1) {
|
||||
break;
|
||||
}
|
||||
if (i > 0) {
|
||||
collapse_nb(cnb, cne);
|
||||
collapse_nb(cnb0, cne0);
|
||||
collapse_nb(cnb1, cne1);
|
||||
collapse(cne);
|
||||
collapse(cne0);
|
||||
collapse(cne1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
int64_t ne0 = cne[0];
|
||||
int64_t ne1 = cne[1];
|
||||
int64_t ne2 = cne[2];
|
||||
int64_t ne3 = cne[3];
|
||||
|
||||
//int64_t ne00 = cne0[0]; GGML_UNUSED(ne00);
|
||||
//int64_t ne01 = cne0[1]; GGML_UNUSED(ne01);
|
||||
//int64_t ne02 = cne0[2]; GGML_UNUSED(ne02);
|
||||
//int64_t ne03 = cne0[3]; GGML_UNUSED(ne03);
|
||||
|
||||
int64_t ne10 = cne1[0];
|
||||
int64_t ne11 = cne1[1];
|
||||
int64_t ne12 = cne1[2];
|
||||
int64_t ne13 = cne1[3];
|
||||
|
||||
size_t nb0 = cnb[0];
|
||||
size_t nb1 = cnb[1];
|
||||
size_t nb2 = cnb[2];
|
||||
size_t nb3 = cnb[3];
|
||||
|
||||
size_t nb00 = cnb0[0];
|
||||
size_t nb01 = cnb0[1];
|
||||
size_t nb02 = cnb0[2];
|
||||
size_t nb03 = cnb0[3];
|
||||
|
||||
size_t nb10 = cnb1[0];
|
||||
size_t nb11 = cnb1[1];
|
||||
size_t nb12 = cnb1[2];
|
||||
size_t nb13 = cnb1[3];
|
||||
|
||||
size_t s0 = nb0 / sizeof(dst_t);
|
||||
size_t s1 = nb1 / sizeof(dst_t);
|
||||
size_t s2 = nb2 / sizeof(dst_t);
|
||||
size_t s3 = nb3 / sizeof(dst_t);
|
||||
|
||||
size_t s10 = nb10 / sizeof(src1_t);
|
||||
size_t s11 = nb11 / sizeof(src1_t);
|
||||
size_t s12 = nb12 / sizeof(src1_t);
|
||||
size_t s13 = nb13 / sizeof(src1_t);
|
||||
|
||||
size_t s00 = nb00 / sizeof(src0_t);
|
||||
size_t s01 = nb01 / sizeof(src0_t);
|
||||
size_t s02 = nb02 / sizeof(src0_t);
|
||||
size_t s03 = nb03 / sizeof(src0_t);
|
||||
|
||||
GGML_ASSERT(nb0 % sizeof(dst_t) == 0);
|
||||
GGML_ASSERT(nb1 % sizeof(dst_t) == 0);
|
||||
GGML_ASSERT(nb2 % sizeof(dst_t) == 0);
|
||||
GGML_ASSERT(nb3 % sizeof(dst_t) == 0);
|
||||
|
||||
GGML_ASSERT(nb00 % sizeof(src0_t) == 0);
|
||||
GGML_ASSERT(nb01 % sizeof(src0_t) == 0);
|
||||
GGML_ASSERT(nb02 % sizeof(src0_t) == 0);
|
||||
GGML_ASSERT(nb03 % sizeof(src0_t) == 0);
|
||||
|
||||
GGML_ASSERT(nb10 % sizeof(src1_t) == 0);
|
||||
GGML_ASSERT(nb11 % sizeof(src1_t) == 0);
|
||||
GGML_ASSERT(nb12 % sizeof(src1_t) == 0);
|
||||
GGML_ASSERT(nb13 % sizeof(src1_t) == 0);
|
||||
|
||||
GGML_ASSERT(s0 == 1);
|
||||
GGML_ASSERT(s00 == 1);
|
||||
GGML_ASSERT(s10 == 1);
|
||||
|
||||
const int block_size = 128;
|
||||
|
||||
int64_t hne0 = std::max(ne0/2LL, 1LL);
|
||||
|
||||
dim3 block_dims;
|
||||
block_dims.x = std::min<unsigned int>(hne0, block_size);
|
||||
block_dims.y = std::min<unsigned int>(ne1, block_size / block_dims.x);
|
||||
block_dims.z = std::min(std::min<unsigned int>(ne2*ne3, block_size / block_dims.x / block_dims.y), 64U);
|
||||
|
||||
dim3 block_nums(
|
||||
(hne0 + block_dims.x - 1) / block_dims.x,
|
||||
(ne1 + block_dims.y - 1) / block_dims.y,
|
||||
(ne2*ne3 + block_dims.z - 1) / block_dims.z
|
||||
);
|
||||
|
||||
if (block_nums.z > 65535) {
|
||||
// this is the maximum number of blocks in z dimension, fallback to 1D grid kernel
|
||||
int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
|
||||
k_bin_bcast_unravel<bin_op><<<block_num, block_size, 0, stream>>>(
|
||||
src0_dd, src1_dd, dst_dd,
|
||||
ne0, ne1, ne2, ne3,
|
||||
ne10, ne11, ne12, ne13,
|
||||
/* s0, */ s1, s2, s3,
|
||||
/* s00, */ s01, s02, s03,
|
||||
/* s10, */ s11, s12, s13);
|
||||
} else {
|
||||
k_bin_bcast<bin_op><<<block_nums, block_dims, 0, stream>>>(
|
||||
src0_dd, src1_dd, dst_dd,
|
||||
ne0, ne1, ne2, ne3,
|
||||
ne10, ne11, ne12, ne13,
|
||||
/* s0, */ s1, s2, s3,
|
||||
/* s00, */ s01, s02, s03,
|
||||
/* s10, */ s11, s12, s13);
|
||||
}
|
||||
}
|
||||
launch_bin_bcast_pack<bin_op, src0_t, src1_t, dst_t>(
|
||||
src0, src1, dst, src0_dd, src1_dd, dst_dd, stream, std::make_index_sequence<n_fuse>{});
|
||||
}
|
||||
};
|
||||
|
||||
@@ -312,7 +355,7 @@ static void ggml_cuda_op_bin_bcast(
|
||||
}
|
||||
|
||||
void ggml_cuda_op_repeat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_repeat>>(dst, dst->src[0], dst, nullptr, dst->src[0]->data, dst->data, ctx.stream());
|
||||
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_repeat, 0>>(dst, dst->src[0], dst, nullptr, dst->src[0]->data, dst->data, ctx.stream());
|
||||
}
|
||||
|
||||
void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
@@ -331,6 +374,68 @@ void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_div>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
|
||||
}
|
||||
|
||||
template <float (*op)(const float, const float), int n_fuse>
|
||||
static void ggml_cuda_op_fused_binbcast_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
launch_bin_bcast_pack<op, float, float, float>(src0, src1, dst,
|
||||
(const float *) src0->data, (const float *) src1->data, (float *) dst->data,
|
||||
stream, std::make_index_sequence<n_fuse>{});
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
|
||||
launch_bin_bcast_pack<op, half, half, half>(src0, src1, dst,
|
||||
(const half *) src0->data, (const half *) src1->data, (half *) dst->data,
|
||||
stream, std::make_index_sequence<n_fuse>{});
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) {
|
||||
launch_bin_bcast_pack<op, half, float, half>(src0, src1, dst,
|
||||
(const half *) src0->data, (const float *) src1->data, (half *) dst->data,
|
||||
stream, std::make_index_sequence<n_fuse>{});
|
||||
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
|
||||
launch_bin_bcast_pack<op, half, float, float>(src0, src1, dst,
|
||||
(const half *) src0->data, (const float *) src1->data, (float *) dst->data,
|
||||
stream, std::make_index_sequence<n_fuse>{});
|
||||
} else {
|
||||
fprintf(stderr,
|
||||
"%s: unsupported types for fusion: dst: %s, src0: %s, src1: %s\n",
|
||||
__func__, ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void ggml_cuda_op_fused_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst, int n_fuse) {
|
||||
GGML_ASSERT(2 <= n_fuse && n_fuse <= 8);
|
||||
|
||||
switch (n_fuse) {
|
||||
case 2:
|
||||
ggml_cuda_op_fused_binbcast_impl<op_add, 2>(ctx, dst);
|
||||
break;
|
||||
case 3:
|
||||
ggml_cuda_op_fused_binbcast_impl<op_add, 3>(ctx, dst);
|
||||
break;
|
||||
case 4:
|
||||
ggml_cuda_op_fused_binbcast_impl<op_add, 4>(ctx, dst);
|
||||
break;
|
||||
case 5:
|
||||
ggml_cuda_op_fused_binbcast_impl<op_add, 5>(ctx, dst);
|
||||
break;
|
||||
case 6:
|
||||
ggml_cuda_op_fused_binbcast_impl<op_add, 6>(ctx, dst);
|
||||
break;
|
||||
case 7:
|
||||
ggml_cuda_op_fused_binbcast_impl<op_add, 7>(ctx, dst);
|
||||
break;
|
||||
case 8:
|
||||
ggml_cuda_op_fused_binbcast_impl<op_add, 8>(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false && "Unsupported n_fuse value");
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_op_repeat_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
|
||||
@@ -7,3 +7,5 @@ void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_repeat_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_fused_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst, int n_fuse);
|
||||
|
||||
@@ -545,6 +545,31 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
|
||||
#endif // defined(GGML_USE_HIP)
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const float v, const float u) {
|
||||
acc += v*u;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const float2 v, const float2 u) {
|
||||
acc += v.x*u.x;
|
||||
acc += v.y*u.y;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const half2 v, const half2 u) {
|
||||
#if defined(GGML_USE_HIP) && defined(GCN)
|
||||
asm volatile("v_dot2_f32_f16 %0, %1, %2, %0" : "+v"(acc) : "v"(v), "v"(u));
|
||||
#else
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
const float2 tmp = __half22float2(v*u);
|
||||
acc += tmp.x + tmp.y;
|
||||
#else
|
||||
const float2 tmpv = __half22float2(v);
|
||||
const float2 tmpu = __half22float2(u);
|
||||
acc += tmpv.x * tmpu.x;
|
||||
acc += tmpv.y * tmpu.y;
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
#endif // defined(GGML_USE_HIP) && defined(GCN)
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float ggml_cuda_e8m0_to_fp32(uint8_t x) {
|
||||
#if CUDART_VERSION >= 12080
|
||||
const nv_bfloat16 e = __nv_cvt_e8m0_to_bf16raw(x);
|
||||
@@ -563,6 +588,40 @@ static __device__ __forceinline__ float ggml_cuda_e8m0_to_fp32(uint8_t x) {
|
||||
#endif // CUDART_VERSION >= 12050
|
||||
}
|
||||
|
||||
// See https://gmplib.org/~tege/divcnst-pldi94.pdf figure 4.1.
|
||||
// Precompute mp (m' in the paper) and L such that division
|
||||
// can be computed using a multiply (high 32b of 64b result)
|
||||
// and a shift:
|
||||
//
|
||||
// n/d = (mulhi(n, mp) + n) >> L;
|
||||
static const uint3 init_fastdiv_values(uint32_t d) {
|
||||
GGML_ASSERT(d != 0);
|
||||
|
||||
// compute L = ceil(log2(d));
|
||||
uint32_t L = 0;
|
||||
while (L < 32 && (uint32_t{ 1 } << L) < d) {
|
||||
L++;
|
||||
}
|
||||
|
||||
uint32_t mp = (uint32_t) ((uint64_t{ 1 } << 32) * ((uint64_t{ 1 } << L) - d) / d + 1);
|
||||
// pack divisor as well to reduce error surface
|
||||
return make_uint3(mp, L, d);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ uint32_t fastdiv(uint32_t n, const uint3 fastdiv_values) {
|
||||
// expects fastdiv_values to contain <mp, L, divisor> in <x, y, z>
|
||||
// fastdiv_values.z is unused and optimized away by the compiler.
|
||||
// Compute high 32 bits of n * mp
|
||||
const uint32_t hi = __umulhi(n, fastdiv_values.x);
|
||||
// add n, apply bit shift
|
||||
return (hi + n) >> fastdiv_values.y;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ uint32_t fastmodulo(uint32_t n, const uint3 fastdiv_values) {
|
||||
// expects fastdiv_values to contain <mp, L, divisor> in <x, y, z> (see init_fastdiv_values)
|
||||
return n - fastdiv(n, fastdiv_values) * fastdiv_values.z;
|
||||
}
|
||||
|
||||
typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, float2 & v);
|
||||
|
||||
static __device__ __forceinline__ float get_alibi_slope(
|
||||
|
||||
166
ggml/src/ggml-cuda/conv2d.cu
Normal file
166
ggml/src/ggml-cuda/conv2d.cu
Normal file
@@ -0,0 +1,166 @@
|
||||
#include "conv2d.cuh"
|
||||
#include "convert.cuh"
|
||||
|
||||
struct conv_params {
|
||||
const int64_t IW, IH;
|
||||
const int64_t OW, OH;
|
||||
const int64_t KW, KH;
|
||||
const int64_t ST_X, ST_Y;
|
||||
const int64_t PD_X, PD_Y;
|
||||
const int64_t DL_X, DL_Y;
|
||||
const int64_t IC, OC;
|
||||
const int64_t B;
|
||||
const int64_t TOTAL;
|
||||
};
|
||||
|
||||
struct kernel_bounds {
|
||||
int64_t y_min, y_max;
|
||||
int64_t x_min, x_max;
|
||||
};
|
||||
|
||||
__device__ __forceinline__ int64_t max64(int64_t a, int64_t b) {
|
||||
return (a > b) ? a : b;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ int64_t min64(int64_t a, int64_t b) {
|
||||
return (a < b) ? a : b;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ kernel_bounds calculate_kernel_bounds(int64_t out_x, int64_t out_y, const conv_params & P) {
|
||||
kernel_bounds bounds;
|
||||
bounds.y_min = max64(0, (P.PD_Y - out_y * P.ST_Y + P.DL_Y - 1) / P.DL_Y);
|
||||
bounds.y_max = min64(P.KH, (P.IH + P.PD_Y - out_y * P.ST_Y + P.DL_Y - 1) / P.DL_Y);
|
||||
bounds.x_min = max64(0, (P.PD_X - out_x * P.ST_X + P.DL_X - 1) / P.DL_X);
|
||||
bounds.x_max = min64(P.KW, (P.IW + P.PD_X - out_x * P.ST_X + P.DL_X - 1) / P.DL_X);
|
||||
return bounds;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ int calculate_input_coord(int64_t out_coord,
|
||||
int64_t kern_coord,
|
||||
int64_t stride,
|
||||
int64_t dilation,
|
||||
int64_t padding) {
|
||||
return out_coord * stride + kern_coord * dilation - padding;
|
||||
}
|
||||
|
||||
struct whcn_layout {
|
||||
__device__ static int64_t input_index(int64_t n, int64_t c, int64_t y, int64_t x, const conv_params & P) {
|
||||
return n * (P.IC * P.IW * P.IH) + c * P.IW * P.IH + y * P.IW + x;
|
||||
}
|
||||
|
||||
__device__ static int64_t kernel_index(int64_t c_out, int64_t c_in, int64_t ky, int64_t kx, const conv_params & P) {
|
||||
return c_out * (P.IC * P.KH * P.KW) + c_in * (P.KH * P.KW) + ky * P.KW + kx;
|
||||
}
|
||||
|
||||
__device__ static int64_t output_index(int64_t n, int64_t c, int64_t y, int64_t x, const conv_params & P) {
|
||||
return n * (P.OC * P.OW * P.OH) + c * P.OW * P.OH + y * P.OW + x;
|
||||
}
|
||||
|
||||
__device__ static void unpack_indices(int64_t global_idx,
|
||||
const conv_params & P,
|
||||
int64_t & n,
|
||||
int64_t & c,
|
||||
int64_t & out_y,
|
||||
int64_t & out_x) {
|
||||
out_x = global_idx % P.OW;
|
||||
out_y = (global_idx / P.OW) % P.OH;
|
||||
c = (global_idx / (P.OW * P.OH)) % P.OC;
|
||||
n = global_idx / (P.OW * P.OH * P.OC);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename Layout>
|
||||
static __global__ void conv2d_kernel(const float * __restrict__ input,
|
||||
const T * __restrict__ kernel,
|
||||
float * __restrict__ output,
|
||||
const conv_params P) {
|
||||
const int64_t global_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
|
||||
if (global_idx >= P.TOTAL) {
|
||||
return;
|
||||
}
|
||||
|
||||
int64_t n, c_out, out_y, out_x;
|
||||
Layout::unpack_indices(global_idx, P, n, c_out, out_y, out_x);
|
||||
|
||||
float acc = 0.0f;
|
||||
|
||||
for (int64_t c_in = 0; c_in < P.IC; ++c_in) {
|
||||
kernel_bounds bounds = calculate_kernel_bounds(out_x, out_y, P);
|
||||
|
||||
for (int64_t ky = bounds.y_min; ky < bounds.y_max; ++ky) {
|
||||
const int64_t in_y = calculate_input_coord(out_y, ky, P.ST_Y, P.DL_Y, P.PD_Y);
|
||||
|
||||
for (int64_t kx = bounds.x_min; kx < bounds.x_max; ++kx) {
|
||||
const int64_t in_x = calculate_input_coord(out_x, kx, P.ST_X, P.DL_X, P.PD_X);
|
||||
|
||||
const float input_val = input[Layout::input_index(n, c_in, in_y, in_x, P)];
|
||||
const T kernel_val = kernel[Layout::kernel_index(c_out, c_in, ky, kx, P)];
|
||||
acc += (input_val * ggml_cuda_cast<float>(kernel_val));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// [N, OC, OH, OW]
|
||||
output[Layout::output_index(n, c_out, out_y, out_x, P)] = acc;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void conv2d_cuda(const float * X_D, const T * K_D, float * Y_D, const conv_params P, cudaStream_t st) {
|
||||
const int blocks = (P.TOTAL + CUDA_CONV2D_BLOCK_SIZE - 1) / CUDA_CONV2D_BLOCK_SIZE;
|
||||
conv2d_kernel<T, whcn_layout><<<blocks, CUDA_CONV2D_BLOCK_SIZE, 0, st>>>(X_D, K_D, Y_D, P);
|
||||
}
|
||||
|
||||
static void conv2d_cuda_f16(const float * X_D, const half * K_D, float * Y_D, const conv_params P, cudaStream_t st) {
|
||||
conv2d_cuda<half>(X_D, K_D, Y_D, P, st);
|
||||
}
|
||||
|
||||
static void conv2d_cuda_f32(const float * X_D, const float * K_D, float * Y_D, const conv_params P, cudaStream_t st) {
|
||||
conv2d_cuda<float>(X_D, K_D, Y_D, P, st);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_conv2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * kernel = dst->src[0];
|
||||
const ggml_tensor * input = dst->src[1];
|
||||
float * K_D = (float *) kernel->data;
|
||||
const float * X_D = (const float *) input->data;
|
||||
float * Y_D = (float *) dst->data;
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(kernel));
|
||||
GGML_ASSERT(kernel->type == GGML_TYPE_F16 || kernel->type == GGML_TYPE_F32);
|
||||
|
||||
// same number of input channels
|
||||
GGML_ASSERT(input->ne[2] == kernel->ne[2]);
|
||||
|
||||
cudaStream_t st = ctx.stream();
|
||||
|
||||
const int32_t * p = (const int32_t *) dst->op_params;
|
||||
const int ST_X = p[0]; // stride_x
|
||||
const int ST_Y = p[1]; // stride_y
|
||||
const int PD_X = p[2]; // padding_x
|
||||
const int PD_Y = p[3]; // padding_y
|
||||
const int DL_X = p[4]; // dilation_x
|
||||
const int DL_Y = p[5]; // dilation_y
|
||||
|
||||
// No cwhn
|
||||
GGML_ASSERT(p[6] == false);
|
||||
|
||||
const int IW = input->ne[0]; // input_w
|
||||
const int IH = input->ne[1]; // input_h
|
||||
const int OW = dst->ne[0]; // output_w
|
||||
const int OH = dst->ne[1]; // output_h
|
||||
const int KW = kernel->ne[0]; // kernel_w
|
||||
const int KH = kernel->ne[1]; // kernel_h
|
||||
const int IC = input->ne[2]; // input_channels
|
||||
const int OC = kernel->ne[3]; // ouptut_chanles
|
||||
const int B = input->ne[3]; // n_batches
|
||||
|
||||
const int64_t total = B * OC * OH * OW;
|
||||
conv_params params = { IW, IH, OW, OH, KW, KH, ST_X, ST_Y, PD_X, PD_Y, DL_X, DL_Y, IC, OC, B, total };
|
||||
|
||||
if (kernel->type == GGML_TYPE_F16) {
|
||||
conv2d_cuda_f16(X_D, (half *) K_D, Y_D, params, st);
|
||||
} else {
|
||||
conv2d_cuda_f32(X_D, K_D, Y_D, params, st);
|
||||
}
|
||||
}
|
||||
5
ggml/src/ggml-cuda/conv2d.cuh
Normal file
5
ggml/src/ggml-cuda/conv2d.cuh
Normal file
@@ -0,0 +1,5 @@
|
||||
#pragma once
|
||||
#include "common.cuh"
|
||||
|
||||
#define CUDA_CONV2D_BLOCK_SIZE 256
|
||||
void ggml_cuda_op_conv2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
@@ -38,6 +38,8 @@ template<typename dst_t, typename src_t>
|
||||
return __float2bfloat16(float(x));
|
||||
} else if constexpr(std::is_same_v<src_t, nv_bfloat16>) {
|
||||
return __bfloat162float(x);
|
||||
} else if constexpr(std::is_same_v<dst_t, int32_t>) {
|
||||
return int32_t(x);
|
||||
} else {
|
||||
return float(x);
|
||||
}
|
||||
|
||||
@@ -374,6 +374,10 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
|
||||
ggml_cpy_flt_cuda<nv_bfloat16, half> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_flt_cuda<nv_bfloat16, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_I32) {
|
||||
ggml_cpy_flt_cuda<float, int32_t> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_flt_cuda<int32_t, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else {
|
||||
GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,
|
||||
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||
|
||||
@@ -1,371 +0,0 @@
|
||||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
#include "fattn-tile-f16.cuh"
|
||||
|
||||
#define FATTN_KQ_STRIDE_TILE_F16 64
|
||||
|
||||
template<int D, int ncols, int nwarps, bool use_logit_softcap> // D == head size
|
||||
#if !defined(GGML_USE_HIP)
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 2)
|
||||
#endif // !defined(GGML_USE_HIP)
|
||||
static __global__ void flash_attn_tile_ext_f16(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
const char * __restrict__ sinks,
|
||||
const int * __restrict__ KV_max,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
const float max_bias,
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const float logit_softcap,
|
||||
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
|
||||
const int32_t nb01, const int32_t nb02, const int32_t nb03,
|
||||
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
|
||||
const int32_t nb11, const int32_t nb12, const int64_t nb13,
|
||||
const int32_t nb21, const int32_t nb22, const int64_t nb23,
|
||||
const int32_t ne31, const int32_t ne32, const int32_t ne33,
|
||||
const int32_t nb31, const int32_t nb32, const int64_t nb33) {
|
||||
#if defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE)
|
||||
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
#ifdef FP16_MMA_AVAILABLE
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
#endif // FP16_MMA_AVAILABLE
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
|
||||
|
||||
const int sequence = blockIdx.z / ne02;
|
||||
const int head = blockIdx.z - sequence*ne02;
|
||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||
const float2 * Q_f2 = (const float2 *) (Q + nb03* sequence + nb02* head + nb01*ic0);
|
||||
const half2 * K_h2 = (const half2 *) (K + nb13* sequence + nb12*(head / gqa_ratio));
|
||||
const half2 * V_h2 = (const half2 *) (V + nb13* sequence + nb12*(head / gqa_ratio)); // K and V have same shape
|
||||
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
|
||||
const float * sinksf = (const float *) (sinks);
|
||||
|
||||
const int stride_KV2 = nb11 / sizeof(half2);
|
||||
|
||||
const float slopef = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
|
||||
const half slopeh = __float2half(slopef);
|
||||
|
||||
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||||
|
||||
__shared__ half KQ[ncols*FATTN_KQ_STRIDE_TILE_F16];
|
||||
half2 * KQ2 = (half2 *) KQ;
|
||||
|
||||
__shared__ half2 KV_tmp[FATTN_KQ_STRIDE_TILE_F16][D/2 + 1]; // Pad D to avoid memory bank conflicts.
|
||||
|
||||
half kqmax[ncols/nwarps];
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
kqmax[j0/nwarps] = -HALF_MAX_HALF;
|
||||
}
|
||||
half2 kqsum[ncols/nwarps] = {{0.0f, 0.0f}};
|
||||
|
||||
half2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}};
|
||||
|
||||
// Convert Q to half2 and store in registers:
|
||||
__shared__ half2 Q_h2[ncols][D/2];
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
const float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f);
|
||||
Q_h2[j][i] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
|
||||
for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE_TILE_F16; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE_TILE_F16) {
|
||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||
|
||||
half kqmax_new[ncols/nwarps];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/nwarps; ++j) {
|
||||
kqmax_new[j] = kqmax[j];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += nwarps) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
|
||||
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||
|
||||
KV_tmp[i_KQ][k_KQ] = K_h2[int64_t(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
half2 sum2[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE][ncols/nwarps] = {{{0.0f, 0.0f}}};
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ = 0; k_KQ < D/2; ++k_KQ) {
|
||||
half2 K_k[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE];
|
||||
half2 Q_k[ncols/nwarps];
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.x;
|
||||
|
||||
K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
const int j_KQ = j_KQ_0 + threadIdx.y;
|
||||
|
||||
Q_k[j_KQ_0/nwarps] = Q_h2[j_KQ][k_KQ];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE]*Q_k[j_KQ_0/nwarps];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.x;
|
||||
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
const int j_KQ = j_KQ_0 + threadIdx.y;
|
||||
|
||||
half sum;
|
||||
if (use_logit_softcap) {
|
||||
const float2 tmp = __half22float2(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
|
||||
sum = logit_softcap * tanhf(tmp.x + tmp.y);
|
||||
} else {
|
||||
sum = __low2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]) + __high2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
|
||||
}
|
||||
sum += mask ? slopeh*maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
|
||||
|
||||
kqmax_new[j_KQ_0/nwarps] = ggml_cuda_hmax(kqmax_new[j_KQ_0/nwarps], sum);
|
||||
|
||||
KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F16 + i_KQ] = sum;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]);
|
||||
const half2 KQ_max_scale = __half2half2(hexp(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]));
|
||||
kqmax[j0/nwarps] = kqmax_new[j0/nwarps];
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F16/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
const half2 diff = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] - __half2half2(kqmax[j0/nwarps]);
|
||||
const half2 val = h2exp(diff);
|
||||
kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + val;
|
||||
KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] = val;
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE] *= KQ_max_scale;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += nwarps) {
|
||||
const int k = k0 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
KV_tmp[k][i] = V_h2[int64_t(k_VKQ_0 + k)*stride_KV2 + i];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += 2) {
|
||||
half2 V_k[(D/2)/WARP_SIZE][2];
|
||||
half2 KQ_k[ncols/nwarps];
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
V_k[i0/WARP_SIZE][0] = KV_tmp[k0 + 0][i];
|
||||
V_k[i0/WARP_SIZE][1] = KV_tmp[k0 + 1][i];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
KQ_k[j0/nwarps] = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + k0/2];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][0]* __low2half2(KQ_k[j0/nwarps]);
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][1]*__high2half2(KQ_k[j0/nwarps]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
//Attention sink: adjust running max and sum once per head
|
||||
if (sinksf && blockIdx.y == 0) {
|
||||
const half sink = __float2half(sinksf[head]);
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
half kqmax_new_j = fmaxf(kqmax[j0/nwarps], sink);
|
||||
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
||||
|
||||
const half2 KQ_max_scale = __half2half2(hexp(kqmax[j0/nwarps] - kqmax_new_j));
|
||||
kqmax[j0/nwarps] = kqmax_new_j;
|
||||
|
||||
const half val = hexp(sink - kqmax[j0/nwarps]);
|
||||
kqsum[j0/nwarps] = kqsum[j0/nwarps] * KQ_max_scale;
|
||||
if (threadIdx.x == 0) {
|
||||
kqsum[j0/nwarps].x = __hadd(__low2half(kqsum[j0/nwarps]), val);
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE] *= KQ_max_scale;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float2 * dst2 = (float2 *) dst;
|
||||
|
||||
#pragma unroll
|
||||
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
|
||||
const int j_VKQ = j_VKQ_0 + threadIdx.y;
|
||||
|
||||
if (ic0 + j_VKQ >= ne01) {
|
||||
return;
|
||||
}
|
||||
|
||||
half kqsum_j = __low2half(kqsum[j_VKQ_0/nwarps]) + __high2half(kqsum[j_VKQ_0/nwarps]);
|
||||
kqsum_j = warp_reduce_sum((float)kqsum_j);
|
||||
|
||||
const int j_dst_unrolled = ((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int i00 = 0; i00 < D/2; i00 += WARP_SIZE) {
|
||||
const int i0 = i00 + threadIdx.x;
|
||||
|
||||
half2 dst_val = VKQ[j_VKQ_0/nwarps][i0/WARP_SIZE];
|
||||
if (gridDim.y == 1) {
|
||||
dst_val /= __half2half2(kqsum_j);
|
||||
}
|
||||
dst2[j_dst_unrolled*(D/2) + i0] = __half22float2(dst_val);
|
||||
}
|
||||
|
||||
if (gridDim.y != 1 && threadIdx.x == 0) {
|
||||
dst_meta[j_dst_unrolled] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
|
||||
}
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
|
||||
max_bias, m0, m1, n_head_log2, logit_softcap,
|
||||
ne00, ne01, ne02, ne03,
|
||||
nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, ne13,
|
||||
nb11, nb12, nb13,
|
||||
nb21, nb22, nb23,
|
||||
ne31, ne32, ne33,
|
||||
nb31, nb32, nb33);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE)
|
||||
}
|
||||
|
||||
template <int cols_per_block, bool use_logit_softcap>
|
||||
void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
switch (Q->ne[0]) {
|
||||
case 64: {
|
||||
constexpr int D = 64;
|
||||
constexpr int nwarps = 8;
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, use_logit_softcap>;
|
||||
launch_fattn<D, cols_per_block, 1>
|
||||
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F16, true, true, false);
|
||||
} break;
|
||||
case 128: {
|
||||
constexpr int D = 128;
|
||||
constexpr int nwarps = 8;
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, use_logit_softcap>;
|
||||
launch_fattn<D, cols_per_block, 1>
|
||||
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F16, true, true, false);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ABORT("FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||
} break;
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
const int32_t precision = KQV->op_params[3];
|
||||
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
||||
|
||||
float logit_softcap;
|
||||
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
||||
|
||||
if (Q->ne[1] <= 16) {
|
||||
constexpr int cols_per_block = 16;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
launch_fattn_tile_f16_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
launch_fattn_tile_f16_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 32;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
launch_fattn_tile_f16_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
launch_fattn_tile_f16_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
}
|
||||
@@ -1,3 +0,0 @@
|
||||
#include "common.cuh"
|
||||
|
||||
void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
@@ -1,379 +0,0 @@
|
||||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
#include "fattn-tile-f32.cuh"
|
||||
|
||||
#define FATTN_KQ_STRIDE_TILE_F32 32
|
||||
|
||||
template<int D, int ncols, int nwarps, bool use_logit_softcap> // D == head size
|
||||
#if !defined(GGML_USE_HIP)
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 2)
|
||||
#endif // !defined(GGML_USE_HIP)
|
||||
static __global__ void flash_attn_tile_ext_f32(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
const char * __restrict__ sinks,
|
||||
const int * __restrict__ KV_max,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
const float max_bias,
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const float logit_softcap,
|
||||
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
|
||||
const int32_t nb01, const int32_t nb02, const int32_t nb03,
|
||||
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
|
||||
const int32_t nb11, const int32_t nb12, const int64_t nb13,
|
||||
const int32_t nb21, const int32_t nb22, const int64_t nb23,
|
||||
const int32_t ne31, const int32_t ne32, const int32_t ne33,
|
||||
const int32_t nb31, const int32_t nb32, const int64_t nb33) {
|
||||
#ifdef FLASH_ATTN_AVAILABLE
|
||||
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
#ifdef FP16_MMA_AVAILABLE
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
#endif // FP16_MMA_AVAILABLE
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
|
||||
max_bias, m0, m1, n_head_log2, logit_softcap,
|
||||
ne00, ne01, ne02, ne03,
|
||||
nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, ne13,
|
||||
nb11, nb12, nb13,
|
||||
nb21, nb22, nb23,
|
||||
ne31, ne32, ne33,
|
||||
nb31, nb32, nb33);
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
|
||||
// In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
|
||||
|
||||
const int sequence = blockIdx.z / ne02;
|
||||
const int head = blockIdx.z - sequence*ne02;
|
||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||
const float2 * Q_f2 = (const float2 *) (Q + nb03* sequence + nb02* head + nb01*ic0);
|
||||
const half2 * K_h2 = (const half2 *) (K + nb13* sequence + nb12*(head / gqa_ratio));
|
||||
const half2 * V_h2 = (const half2 *) (V + nb13* sequence + nb12*(head / gqa_ratio)); // K and V have same shape
|
||||
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
|
||||
const float * sinksf = (const float *) (sinks);
|
||||
|
||||
const int stride_KV2 = nb11 / sizeof(half2);
|
||||
|
||||
const float slope = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
|
||||
|
||||
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||||
|
||||
__shared__ float KQ[ncols*FATTN_KQ_STRIDE_TILE_F32];
|
||||
|
||||
__shared__ float KV_tmp[FATTN_KQ_STRIDE_TILE_F32][D + 1]; // Pad D to avoid memory bank conflicts.
|
||||
float2 * KV_tmp2 = (float2 *) KV_tmp;
|
||||
|
||||
float kqmax[ncols/nwarps];
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
kqmax[j0/nwarps] = -FLT_MAX/2.0f;
|
||||
}
|
||||
float kqsum[ncols/nwarps] = {0.0f};
|
||||
|
||||
float2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}};
|
||||
|
||||
// Convert Q to half2 and store in registers:
|
||||
__shared__ float Q_f[ncols][D];
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D; i0 += 2*WARP_SIZE) {
|
||||
float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i0/2 + threadIdx.x] : make_float2(0.0f, 0.0f);
|
||||
Q_f[j][i0 + 0*WARP_SIZE + threadIdx.x] = tmp.x * scale;
|
||||
Q_f[j][i0 + 1*WARP_SIZE + threadIdx.x] = tmp.y * scale;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
|
||||
for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE_TILE_F32; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE_TILE_F32) {
|
||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||
|
||||
float kqmax_new[ncols/nwarps];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/nwarps; ++j) {
|
||||
kqmax_new[j] = kqmax[j];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += nwarps) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 2*WARP_SIZE) {
|
||||
const half2 tmp = K_h2[int64_t(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ_0/2 + threadIdx.x];
|
||||
KV_tmp[i_KQ][k_KQ_0 + 0*WARP_SIZE + threadIdx.x] = __low2float(tmp);
|
||||
KV_tmp[i_KQ][k_KQ_0 + 1*WARP_SIZE + threadIdx.x] = __high2float(tmp);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
float sum[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE][ncols/nwarps] = {{0.0f}};
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ = 0; k_KQ < D; ++k_KQ) {
|
||||
float K_k[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE];
|
||||
float Q_k[ncols/nwarps];
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.x;
|
||||
|
||||
K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
const int j_KQ = j_KQ_0 + threadIdx.y;
|
||||
|
||||
Q_k[j_KQ_0/nwarps] = Q_f[j_KQ][k_KQ];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE] * Q_k[j_KQ_0/nwarps];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.x;
|
||||
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
const int j_KQ = j_KQ_0 + threadIdx.y;
|
||||
|
||||
if (use_logit_softcap) {
|
||||
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] = logit_softcap * tanhf(sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
|
||||
}
|
||||
|
||||
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += mask ? slope*__half2float(maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
|
||||
|
||||
kqmax_new[j_KQ_0/nwarps] = fmaxf(kqmax_new[j_KQ_0/nwarps], sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
|
||||
|
||||
KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F32 + i_KQ] = sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]);
|
||||
const float KQ_max_scale = expf(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]);
|
||||
kqmax[j0/nwarps] = kqmax_new[j0/nwarps];
|
||||
|
||||
float kqsum_add = 0.0f;
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F32; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
const float diff = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] - kqmax[j0/nwarps];
|
||||
const float val = expf(diff);
|
||||
kqsum_add += val;
|
||||
KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] = val;
|
||||
}
|
||||
kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + kqsum_add;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE].x *= KQ_max_scale;
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE].y *= KQ_max_scale;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F32; k0 += nwarps) {
|
||||
const int k = k0 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
const half2 tmp = V_h2[int64_t(k_VKQ_0 + k)*stride_KV2 + i];
|
||||
KV_tmp2[k*(D/2) + i].x = __low2float(tmp);
|
||||
KV_tmp2[k*(D/2) + i].y = __high2float(tmp);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int k = 0; k < FATTN_KQ_STRIDE_TILE_F32; ++k) {
|
||||
float2 V_k[(D/2)/WARP_SIZE];
|
||||
float KQ_k[ncols/nwarps];
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
V_k[i0/WARP_SIZE] = KV_tmp2[k*(D/2) + i];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
KQ_k[j0/nwarps] = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + k];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE].x += V_k[i0/WARP_SIZE].x*KQ_k[j0/nwarps];
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE].y += V_k[i0/WARP_SIZE].y*KQ_k[j0/nwarps];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
|
||||
//Attention sink: adjust running max and sum once per head
|
||||
if (sinksf && blockIdx.y == 0) {
|
||||
const float sink = sinksf[head];
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
float kqmax_new_j = fmaxf(kqmax[j0/nwarps], sink);
|
||||
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
||||
|
||||
const float KQ_max_scale = expf(kqmax[j0/nwarps] - kqmax_new_j);
|
||||
kqmax[j0/nwarps] = kqmax_new_j;
|
||||
|
||||
const float val = expf(sink - kqmax[j0/nwarps]);
|
||||
kqsum[j0/nwarps] = kqsum[j0/nwarps] * KQ_max_scale;
|
||||
if (threadIdx.x == 0) {
|
||||
kqsum[j0/nwarps] += val;
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE].x *= KQ_max_scale;
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE].y *= KQ_max_scale;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float2 * dst2 = (float2 *) dst;
|
||||
|
||||
#pragma unroll
|
||||
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
|
||||
const int j_VKQ = j_VKQ_0 + threadIdx.y;
|
||||
|
||||
if (ic0 + j_VKQ >= ne01) {
|
||||
return;
|
||||
}
|
||||
|
||||
float kqsum_j = kqsum[j_VKQ_0/nwarps];
|
||||
kqsum_j = warp_reduce_sum(kqsum_j);
|
||||
|
||||
const int j_dst_unrolled = ((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int i00 = 0; i00 < D/2; i00 += WARP_SIZE) {
|
||||
const int i0 = i00 + threadIdx.x;
|
||||
|
||||
float2 dst_val = VKQ[j_VKQ_0/nwarps][i0/WARP_SIZE];
|
||||
if (gridDim.y == 1) {
|
||||
dst_val.x /= kqsum_j;
|
||||
dst_val.y /= kqsum_j;
|
||||
}
|
||||
dst2[j_dst_unrolled*(D/2) + i0] = dst_val;
|
||||
}
|
||||
|
||||
if (gridDim.y != 1 && threadIdx.x == 0) {
|
||||
dst_meta[j_dst_unrolled] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
|
||||
}
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
|
||||
max_bias, m0, m1, n_head_log2, logit_softcap,
|
||||
ne00, ne01, ne02, ne03,
|
||||
nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, ne13,
|
||||
nb11, nb12, nb13,
|
||||
nb21, nb22, nb23,
|
||||
ne31, ne32, ne33,
|
||||
nb31, nb32, nb33);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // FLASH_ATTN_AVAILABLE
|
||||
}
|
||||
|
||||
template <int cols_per_block, bool use_logit_softcap>
|
||||
void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
switch (Q->ne[0]) {
|
||||
case 64: {
|
||||
constexpr int D = 64;
|
||||
constexpr int nwarps = 8;
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, use_logit_softcap>;
|
||||
launch_fattn<D, cols_per_block, 1>
|
||||
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F32, true, true, false);
|
||||
} break;
|
||||
case 128: {
|
||||
constexpr int D = 128;
|
||||
constexpr int nwarps = 8;
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, use_logit_softcap>;
|
||||
launch_fattn<D, cols_per_block, 1>
|
||||
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F32, true, true, false);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ABORT("FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||
} break;
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
float logit_softcap;
|
||||
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
||||
|
||||
if (Q->ne[1] <= 16) {
|
||||
constexpr int cols_per_block = 16;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
launch_fattn_tile_f32_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
launch_fattn_tile_f32_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 32;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
launch_fattn_tile_f32_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
launch_fattn_tile_f32_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
}
|
||||
@@ -1,3 +0,0 @@
|
||||
#include "common.cuh"
|
||||
|
||||
void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
591
ggml/src/ggml-cuda/fattn-tile.cu
Normal file
591
ggml/src/ggml-cuda/fattn-tile.cu
Normal file
@@ -0,0 +1,591 @@
|
||||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
#include "fattn-tile.cuh"
|
||||
|
||||
#define FATTN_TILE_NTHREADS 256
|
||||
|
||||
static int fattn_tile_get_kq_stride_host(const int D, const int ncols, const int cc, const int warp_size) {
|
||||
if (GGML_CUDA_CC_IS_AMD(cc)) {
|
||||
switch (D) {
|
||||
case 64:
|
||||
return ncols <= 16 ? 32 : 64;
|
||||
case 128:
|
||||
return ncols <= 16 ? 64 : warp_size;
|
||||
case 256:
|
||||
return 64;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
if (fast_fp16_available(cc)) {
|
||||
switch (D) {
|
||||
case 64:
|
||||
case 128:
|
||||
return 128;
|
||||
case 256:
|
||||
return ncols <= 16 ? 128 : 64;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
switch (D) {
|
||||
case 64:
|
||||
return ncols <= 16 ? 128 : 64;
|
||||
case 128:
|
||||
return ncols <= 16 ? 64 : 32;
|
||||
case 256:
|
||||
return 32;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
static constexpr __device__ int fattn_tile_get_kq_stride_device(int D, int ncols, int warp_size) {
|
||||
#ifdef GGML_USE_HIP
|
||||
switch (D) {
|
||||
case 64:
|
||||
return ncols <= 16 ? 32 : 64;
|
||||
case 128:
|
||||
return ncols <= 16 ? 64 : warp_size;
|
||||
case 256:
|
||||
return 64;
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
#else
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
switch (D) {
|
||||
case 64:
|
||||
case 128:
|
||||
return 128;
|
||||
case 256:
|
||||
return ncols <= 16 ? 128 : 64;
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
#else
|
||||
switch (D) {
|
||||
case 64:
|
||||
return ncols <= 16 ? 128 : 64;
|
||||
case 128:
|
||||
return ncols <= 16 ? 64 : 32;
|
||||
case 256:
|
||||
return 32;
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
#endif // GGML_USE_HIP
|
||||
GGML_UNUSED_VARS(ncols, warp_size);
|
||||
}
|
||||
|
||||
static constexpr __device__ int fattn_tile_get_kq_nbatch_device(int D, int ncols, int warp_size) {
|
||||
#ifdef GGML_USE_HIP
|
||||
switch (D) {
|
||||
case 64:
|
||||
return 64;
|
||||
case 128:
|
||||
return ncols <= 16 ? 2*warp_size : 128;
|
||||
case 256:
|
||||
return ncols <= 16 ? 128 : 2*warp_size;
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
#else
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
switch (D) {
|
||||
case 64:
|
||||
return 64;
|
||||
case 128:
|
||||
return ncols <= 16 ? 128 : 64;
|
||||
case 256:
|
||||
return ncols <= 16 ? 64 : 128;
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
#else
|
||||
switch (D) {
|
||||
case 64:
|
||||
return 64;
|
||||
case 128:
|
||||
return 128;
|
||||
case 256:
|
||||
return ncols <= 16 ? 128 : 64;
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
#endif // GGML_USE_HIP
|
||||
GGML_UNUSED_VARS(ncols, warp_size);
|
||||
}
|
||||
|
||||
template<int D, int ncols, bool use_logit_softcap> // D == head size
|
||||
#ifdef GGML_USE_HIP
|
||||
__launch_bounds__(FATTN_TILE_NTHREADS, 1)
|
||||
#else
|
||||
__launch_bounds__(FATTN_TILE_NTHREADS, 2)
|
||||
#endif // GGML_USE_HIP
|
||||
static __global__ void flash_attn_tile(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
const char * __restrict__ sinks,
|
||||
const int * __restrict__ KV_max,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
const float max_bias,
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const float logit_softcap,
|
||||
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
|
||||
const int32_t nb01, const int32_t nb02, const int32_t nb03,
|
||||
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
|
||||
const int32_t nb11, const int32_t nb12, const int64_t nb13,
|
||||
const int32_t nb21, const int32_t nb22, const int64_t nb23,
|
||||
const int32_t ne31, const int32_t ne32, const int32_t ne33,
|
||||
const int32_t nb31, const int32_t nb32, const int64_t nb33) {
|
||||
#ifdef FLASH_ATTN_AVAILABLE
|
||||
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
#ifdef FP16_MMA_AVAILABLE
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
#endif // FP16_MMA_AVAILABLE
|
||||
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
|
||||
max_bias, m0, m1, n_head_log2, logit_softcap,
|
||||
ne00, ne01, ne02, ne03,
|
||||
nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, ne13,
|
||||
nb11, nb12, nb13,
|
||||
nb21, nb22, nb23,
|
||||
ne31, ne32, ne33,
|
||||
nb31, nb32, nb33);
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int warp_size = 32;
|
||||
constexpr int nwarps = FATTN_TILE_NTHREADS / warp_size;
|
||||
constexpr int kq_stride = fattn_tile_get_kq_stride_device(D, ncols, warp_size);
|
||||
static_assert(kq_stride % warp_size == 0, "kq_stride not divisable by warp_size.");
|
||||
constexpr int kq_nbatch = fattn_tile_get_kq_nbatch_device(D, ncols, warp_size);
|
||||
static_assert(kq_nbatch % (2*warp_size) == 0, "bad kq_nbatch");
|
||||
|
||||
// In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
|
||||
|
||||
const int sequence = blockIdx.z / ne02;
|
||||
const int head = blockIdx.z - sequence*ne02;
|
||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||
const float2 * Q_f2 = (const float2 *) (Q + nb03* sequence + nb02* head + nb01*ic0);
|
||||
const half2 * K_h2 = (const half2 *) (K + nb13* sequence + nb12*(head / gqa_ratio));
|
||||
const half2 * V_h2 = (const half2 *) (V + nb13* sequence + nb12*(head / gqa_ratio)); // K and V have same shape
|
||||
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
|
||||
const float * sinksf = (const float *) (sinks);
|
||||
|
||||
const int stride_KV2 = nb11 / sizeof(half2);
|
||||
|
||||
const float slope = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
|
||||
|
||||
__shared__ float KQ[ncols][kq_stride];
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
__shared__ half2 Q_tmp[ncols][D/2];
|
||||
__shared__ half2 KV_tmp_h2[kq_stride * (kq_nbatch/2 + 1)]; // Padded to avoid memory bank conflicts.
|
||||
half2 VKQ[ncols/nwarps][D/(2*warp_size)] = {{{0.0f, 0.0f}}};
|
||||
#else
|
||||
__shared__ float Q_tmp[ncols][D];
|
||||
__shared__ float KV_tmp_f[kq_stride * (kq_nbatch + 1)]; // Padded to avoid memory bank conflicts.
|
||||
float2 * KV_tmp_f2 = (float2 *) KV_tmp_f;
|
||||
float2 VKQ[ncols/nwarps][D/(2*warp_size)] = {{{0.0f, 0.0f}}};
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
|
||||
|
||||
float kqmax[ncols/nwarps];
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
kqmax[j0/nwarps] = -FLT_MAX/2.0f;
|
||||
}
|
||||
float kqsum[ncols/nwarps] = {0.0f};
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
|
||||
const float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i0 + threadIdx.x] : make_float2(0.0f, 0.0f);
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
Q_tmp[j][i0 + threadIdx.x] = make_half2(tmp.x * scale, tmp.y * scale);
|
||||
#else
|
||||
Q_tmp[j][2*i0 + threadIdx.x] = tmp.x * scale;
|
||||
Q_tmp[j][2*i0 + warp_size + threadIdx.x] = tmp.y * scale;
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
|
||||
for (int k_VKQ_0 = blockIdx.y*kq_stride; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*kq_stride) {
|
||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||
|
||||
float kqmax_new[ncols/nwarps];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/nwarps; ++j) {
|
||||
kqmax_new[j] = kqmax[j];
|
||||
}
|
||||
|
||||
float sum[kq_stride/warp_size][ncols/nwarps] = {{0.0f}};
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += kq_nbatch) {
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < kq_stride; i_KQ_0 += nwarps) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_1 = 0; k_KQ_1 < kq_nbatch/2; k_KQ_1 += warp_size) {
|
||||
const half2 tmp_h2 = K_h2[int64_t(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ_0/2 + k_KQ_1 + threadIdx.x];
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
KV_tmp_h2[i_KQ*(kq_nbatch/2 + 1) + k_KQ_1 + threadIdx.x] = tmp_h2;
|
||||
#else
|
||||
const float2 tmp_f2 = __half22float2(tmp_h2);
|
||||
KV_tmp_f[i_KQ*(kq_nbatch + 1) + 2*k_KQ_1 + threadIdx.x] = tmp_f2.x;
|
||||
KV_tmp_f[i_KQ*(kq_nbatch + 1) + 2*k_KQ_1 + warp_size + threadIdx.x] = tmp_f2.y;
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
#pragma unroll
|
||||
for (int k_KQ_1 = 0; k_KQ_1 < kq_nbatch/2; ++k_KQ_1) {
|
||||
half2 K_k[kq_stride/warp_size];
|
||||
half2 Q_k[ncols/nwarps];
|
||||
#else
|
||||
#pragma unroll
|
||||
for (int k_KQ_1 = 0; k_KQ_1 < kq_nbatch; ++k_KQ_1) {
|
||||
float K_k[kq_stride/warp_size];
|
||||
float Q_k[ncols/nwarps];
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < kq_stride; i_KQ_0 += warp_size) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.x;
|
||||
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
K_k[i_KQ_0/warp_size] = KV_tmp_h2[i_KQ*(kq_nbatch/2 + 1) + k_KQ_1];
|
||||
#else
|
||||
K_k[i_KQ_0/warp_size] = KV_tmp_f [i_KQ*(kq_nbatch + 1) + k_KQ_1];
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
const int j_KQ = j_KQ_0 + threadIdx.y;
|
||||
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
Q_k[j_KQ_0/nwarps] = Q_tmp[j_KQ][k_KQ_0/2 + k_KQ_1];
|
||||
#else
|
||||
Q_k[j_KQ_0/nwarps] = Q_tmp[j_KQ][k_KQ_0 + k_KQ_1];
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < kq_stride; i_KQ_0 += warp_size) {
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
ggml_cuda_mad(sum[i_KQ_0/warp_size][j_KQ_0/nwarps], K_k[i_KQ_0/warp_size], Q_k[j_KQ_0/nwarps]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (k_KQ_0 + kq_nbatch < D) {
|
||||
__syncthreads(); // Sync not needed on last iteration.
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < kq_stride; i_KQ_0 += warp_size) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.x;
|
||||
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
const int j_KQ = j_KQ_0 + threadIdx.y;
|
||||
|
||||
if (use_logit_softcap) {
|
||||
sum[i_KQ_0/warp_size][j_KQ_0/nwarps] = logit_softcap * tanhf(sum[i_KQ_0/warp_size][j_KQ_0/nwarps]);
|
||||
}
|
||||
|
||||
sum[i_KQ_0/warp_size][j_KQ_0/nwarps] += mask ? slope*__half2float(maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
|
||||
|
||||
kqmax_new[j_KQ_0/nwarps] = fmaxf(kqmax_new[j_KQ_0/nwarps], sum[i_KQ_0/warp_size][j_KQ_0/nwarps]);
|
||||
|
||||
KQ[j_KQ][i_KQ] = sum[i_KQ_0/warp_size][j_KQ_0/nwarps];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
kqmax_new[j0/nwarps] = warp_reduce_max<warp_size>(kqmax_new[j0/nwarps]);
|
||||
const float KQ_max_scale = expf(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]);
|
||||
kqmax[j0/nwarps] = kqmax_new[j0/nwarps];
|
||||
|
||||
float kqsum_add = 0.0f;
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < kq_stride; i0 += warp_size) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
const float diff = KQ[j][i] - kqmax[j0/nwarps];
|
||||
const float val = expf(diff);
|
||||
kqsum_add += val;
|
||||
KQ[j][i] = val;
|
||||
}
|
||||
kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + kqsum_add;
|
||||
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale, KQ_max_scale);
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
|
||||
VKQ[j0/nwarps][i0/warp_size] *= KQ_max_scale_h2;
|
||||
}
|
||||
#else
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
|
||||
VKQ[j0/nwarps][i0/warp_size].x *= KQ_max_scale;
|
||||
VKQ[j0/nwarps][i0/warp_size].y *= KQ_max_scale;
|
||||
}
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
}
|
||||
|
||||
constexpr int V_cols_per_iter = kq_stride*kq_nbatch / D;
|
||||
static_assert(kq_stride % V_cols_per_iter == 0, "bad V_cols_per_iter");
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < kq_stride; k0 += V_cols_per_iter) {
|
||||
#pragma unroll
|
||||
for (int k1 = 0; k1 < V_cols_per_iter; k1 += nwarps) {
|
||||
const int k_tile = k1 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
const half2 tmp = V_h2[int64_t(k_VKQ_0 + k0 + k_tile)*stride_KV2 + i];
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
KV_tmp_h2[k_tile*(D/2) + i] = tmp;
|
||||
#else
|
||||
KV_tmp_f2[k_tile*(D/2) + i] = __half22float2(tmp);
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int k1 = 0; k1 < V_cols_per_iter; ++k1) {
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
half2 V_k[(D/2)/warp_size];
|
||||
half2 KQ_k[ncols/nwarps];
|
||||
#else
|
||||
float2 V_k[(D/2)/warp_size];
|
||||
float KQ_k[ncols/nwarps];
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
V_k[i0/warp_size] = KV_tmp_h2[k1*(D/2) + i];
|
||||
#else
|
||||
V_k[i0/warp_size] = KV_tmp_f2[k1*(D/2) + i];
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
const float tmp = KQ[j][k0 + k1];
|
||||
KQ_k[j0/nwarps] = make_half2(tmp, tmp);
|
||||
#else
|
||||
KQ_k[j0/nwarps] = KQ[j][k0 + k1];
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
VKQ[j0/nwarps][i0/warp_size] += V_k[i0/warp_size] *KQ_k[j0/nwarps];
|
||||
#else
|
||||
VKQ[j0/nwarps][i0/warp_size].x += V_k[i0/warp_size].x*KQ_k[j0/nwarps];
|
||||
VKQ[j0/nwarps][i0/warp_size].y += V_k[i0/warp_size].y*KQ_k[j0/nwarps];
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Attention sink: adjust running max and sum once per head
|
||||
if (sinksf && blockIdx.y == 0) {
|
||||
const float sink = sinksf[head];
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
float kqmax_new_j = fmaxf(kqmax[j0/nwarps], sink);
|
||||
kqmax_new_j = warp_reduce_max<warp_size>(kqmax_new_j);
|
||||
|
||||
const float KQ_max_scale = expf(kqmax[j0/nwarps] - kqmax_new_j);
|
||||
kqmax[j0/nwarps] = kqmax_new_j;
|
||||
|
||||
const float val = expf(sink - kqmax[j0/nwarps]);
|
||||
kqsum[j0/nwarps] = kqsum[j0/nwarps] * KQ_max_scale;
|
||||
if (threadIdx.x == 0) {
|
||||
kqsum[j0/nwarps] += val;
|
||||
}
|
||||
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale, KQ_max_scale);
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
|
||||
VKQ[j0/nwarps][i0/warp_size] *= KQ_max_scale_h2;
|
||||
}
|
||||
#else
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
|
||||
VKQ[j0/nwarps][i0/warp_size].x *= KQ_max_scale;
|
||||
VKQ[j0/nwarps][i0/warp_size].y *= KQ_max_scale;
|
||||
}
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
}
|
||||
}
|
||||
|
||||
float2 * dst2 = (float2 *) dst;
|
||||
|
||||
#pragma unroll
|
||||
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
|
||||
const int j_VKQ = j_VKQ_0 + threadIdx.y;
|
||||
|
||||
if (ic0 + j_VKQ >= ne01) {
|
||||
return;
|
||||
}
|
||||
|
||||
float kqsum_j = kqsum[j_VKQ_0/nwarps];
|
||||
kqsum_j = warp_reduce_sum<warp_size>(kqsum_j);
|
||||
|
||||
const int j_dst_unrolled = ((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int i00 = 0; i00 < D/2; i00 += warp_size) {
|
||||
const int i0 = i00 + threadIdx.x;
|
||||
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
float2 dst_val = __half22float2(VKQ[j_VKQ_0/nwarps][i0/warp_size]);
|
||||
#else
|
||||
float2 dst_val = VKQ[j_VKQ_0/nwarps][i0/warp_size];
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
|
||||
if (gridDim.y == 1) {
|
||||
dst_val.x /= kqsum_j;
|
||||
dst_val.y /= kqsum_j;
|
||||
}
|
||||
dst2[j_dst_unrolled*(D/2) + i0] = dst_val;
|
||||
}
|
||||
|
||||
if (gridDim.y != 1 && threadIdx.x == 0) {
|
||||
dst_meta[j_dst_unrolled] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
|
||||
}
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
|
||||
max_bias, m0, m1, n_head_log2, logit_softcap,
|
||||
ne00, ne01, ne02, ne03,
|
||||
nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, ne13,
|
||||
nb11, nb12, nb13,
|
||||
nb21, nb22, nb23,
|
||||
ne31, ne32, ne33,
|
||||
nb31, nb32, nb33);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // FLASH_ATTN_AVAILABLE
|
||||
}
|
||||
|
||||
template <int D, bool use_logit_softcap>
|
||||
static void launch_fattn_tile_switch_ncols(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
const int id = ggml_cuda_get_device();
|
||||
const int cc = ggml_cuda_info().devices[id].cc;
|
||||
const int warp_size = 32;
|
||||
const int nwarps = FATTN_TILE_NTHREADS / warp_size;
|
||||
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
|
||||
if (Q->ne[1] > 16) {
|
||||
constexpr int cols_per_block = 32;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile<D, cols_per_block, use_logit_softcap>;
|
||||
const int kq_stride = fattn_tile_get_kq_stride_host(D, cols_per_block, cc, warp_size);
|
||||
launch_fattn<D, cols_per_block, 1>
|
||||
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, kq_stride, true, true, false, warp_size);
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 16;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile<D, cols_per_block, use_logit_softcap>;
|
||||
const int kq_stride = fattn_tile_get_kq_stride_host(D, cols_per_block, cc, warp_size);
|
||||
launch_fattn<D, cols_per_block, 1>
|
||||
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, kq_stride, true, true, false, warp_size);
|
||||
}
|
||||
|
||||
template <bool use_logit_softcap>
|
||||
static void launch_fattn_tile_switch_head_size(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
switch (Q->ne[0]) {
|
||||
case 64: {
|
||||
launch_fattn_tile_switch_ncols< 64, use_logit_softcap>(ctx, dst);
|
||||
} break;
|
||||
case 128: {
|
||||
launch_fattn_tile_switch_ncols<128, use_logit_softcap>(ctx, dst);
|
||||
} break;
|
||||
case 256: {
|
||||
launch_fattn_tile_switch_ncols<256, use_logit_softcap>(ctx, dst);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ABORT("Unsupported head size");
|
||||
} break;
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext_tile(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * KQV = dst;
|
||||
|
||||
float logit_softcap;
|
||||
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
||||
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
launch_fattn_tile_switch_head_size<use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
launch_fattn_tile_switch_head_size<use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
}
|
||||
3
ggml/src/ggml-cuda/fattn-tile.cuh
Normal file
3
ggml/src/ggml-cuda/fattn-tile.cuh
Normal file
@@ -0,0 +1,3 @@
|
||||
#include "common.cuh"
|
||||
|
||||
void ggml_cuda_flash_attn_ext_tile(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
@@ -1,8 +1,7 @@
|
||||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
#include "fattn-mma-f16.cuh"
|
||||
#include "fattn-tile-f16.cuh"
|
||||
#include "fattn-tile-f32.cuh"
|
||||
#include "fattn-tile.cuh"
|
||||
#include "fattn-vec-f16.cuh"
|
||||
#include "fattn-vec-f32.cuh"
|
||||
#include "fattn-wmma-f16.cuh"
|
||||
@@ -271,8 +270,7 @@ static void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, gg
|
||||
// Best FlashAttention kernel for a specific GPU:
|
||||
enum best_fattn_kernel {
|
||||
BEST_FATTN_KERNEL_NONE = 0,
|
||||
BEST_FATTN_KERNEL_TILE_F32 = 200,
|
||||
BEST_FATTN_KERNEL_TILE_F16 = 210,
|
||||
BEST_FATTN_KERNEL_TILE = 200,
|
||||
BEST_FATTN_KERNEL_VEC_F32 = 100,
|
||||
BEST_FATTN_KERNEL_VEC_F16 = 110,
|
||||
BEST_FATTN_KERNEL_WMMA_F16 = 300,
|
||||
@@ -411,10 +409,7 @@ static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const
|
||||
}
|
||||
|
||||
// If there is no suitable kernel for tensor cores or small batch sizes, use the generic kernel for large batch sizes:
|
||||
if (prec == GGML_PREC_DEFAULT && fast_fp16_available(cc)) {
|
||||
return BEST_FATTN_KERNEL_TILE_F16;
|
||||
}
|
||||
return BEST_FATTN_KERNEL_TILE_F32;
|
||||
return BEST_FATTN_KERNEL_TILE;
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
@@ -422,11 +417,8 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
||||
switch (ggml_cuda_get_best_fattn_kernel(ggml_cuda_get_device(), dst)) {
|
||||
case BEST_FATTN_KERNEL_NONE:
|
||||
GGML_ABORT("fatal error");
|
||||
case BEST_FATTN_KERNEL_TILE_F32:
|
||||
ggml_cuda_flash_attn_ext_tile_f32(ctx, dst);
|
||||
break;
|
||||
case BEST_FATTN_KERNEL_TILE_F16:
|
||||
ggml_cuda_flash_attn_ext_tile_f16(ctx, dst);
|
||||
case BEST_FATTN_KERNEL_TILE:
|
||||
ggml_cuda_flash_attn_ext_tile(ctx, dst);
|
||||
break;
|
||||
case BEST_FATTN_KERNEL_VEC_F32:
|
||||
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
||||
|
||||
@@ -6,64 +6,66 @@ template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||||
static __global__ void k_get_rows(
|
||||
const void * __restrict__ src0, const int32_t * __restrict__ src1, dst_t * __restrict__ dst,
|
||||
const int64_t ne00, /*const int64_t ne01, const int64_t ne02, const int64_t ne03,*/
|
||||
/*const int64_t ne10, const int64_t ne11,*/ const int64_t ne12, /*const int64_t ne13,*/
|
||||
/*const int64_t ne10,*/ const int64_t ne11, const int64_t ne12, /*const int64_t ne13,*/
|
||||
/*const size_t s0,*/ const size_t s1, const size_t s2, const size_t s3,
|
||||
/*const size_t nb00,*/ const size_t nb01, const size_t nb02, const size_t nb03,
|
||||
const size_t s10, const size_t s11, const size_t s12/*, const size_t s13*/) {
|
||||
|
||||
// The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher.
|
||||
const int i00 = (blockIdx.y * blockDim.x + threadIdx.x)*2;
|
||||
const int i10 = blockIdx.x;
|
||||
const int i11 = blockIdx.z / ne12;
|
||||
const int i12 = blockIdx.z % ne12;
|
||||
for (int64_t z = blockIdx.z; z < ne11*ne12; z += gridDim.z) {
|
||||
for (int64_t i00 = 2*(blockIdx.y*blockDim.x + threadIdx.x); i00 < ne00; i00 += gridDim.y*blockDim.x) {
|
||||
// The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher.
|
||||
const int i10 = blockIdx.x;
|
||||
const int i11 = z / ne12; // TODO fastdiv
|
||||
const int i12 = z % ne12;
|
||||
|
||||
if (i00 >= ne00) {
|
||||
return;
|
||||
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
||||
|
||||
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
||||
const void * src0_row = (const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03;
|
||||
|
||||
const int ib = i00/qk; // block index
|
||||
const int iqs = (i00%qk)/qr; // quant index
|
||||
const int iybs = i00 - i00%qk; // dst block start index
|
||||
const int y_offset = qr == 1 ? 1 : qk/2;
|
||||
|
||||
// dequantize
|
||||
float2 v;
|
||||
dequantize_kernel(src0_row, ib, iqs, v);
|
||||
|
||||
dst_row[iybs + iqs + 0] = ggml_cuda_cast<dst_t>(v.x);
|
||||
dst_row[iybs + iqs + y_offset] = ggml_cuda_cast<dst_t>(v.y);
|
||||
}
|
||||
}
|
||||
|
||||
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
||||
|
||||
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
||||
const void * src0_row = (const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03;
|
||||
|
||||
const int ib = i00/qk; // block index
|
||||
const int iqs = (i00%qk)/qr; // quant index
|
||||
const int iybs = i00 - i00%qk; // dst block start index
|
||||
const int y_offset = qr == 1 ? 1 : qk/2;
|
||||
|
||||
// dequantize
|
||||
float2 v;
|
||||
dequantize_kernel(src0_row, ib, iqs, v);
|
||||
|
||||
dst_row[iybs + iqs + 0] = ggml_cuda_cast<dst_t>(v.x);
|
||||
dst_row[iybs + iqs + y_offset] = ggml_cuda_cast<dst_t>(v.y);
|
||||
}
|
||||
|
||||
template<typename src0_t, typename dst_t>
|
||||
static __global__ void k_get_rows_float(
|
||||
const src0_t * __restrict__ src0, const int32_t * __restrict__ src1, dst_t * __restrict__ dst,
|
||||
const int64_t ne00, /*const int64_t ne01, const int64_t ne02, const int64_t ne03,*/
|
||||
/*const int64_t ne10, const int64_t ne11,*/ const int64_t ne12, /*const int64_t ne13,*/
|
||||
/*const int64_t ne10,*/ const int64_t ne11, const int64_t ne12, /*const int64_t ne13,*/
|
||||
/*const size_t s0,*/ const size_t s1, const size_t s2, const size_t s3,
|
||||
/*const size_t nb00,*/ const size_t nb01, const size_t nb02, const size_t nb03,
|
||||
const size_t s10, const size_t s11, const size_t s12/*, const size_t s13*/) {
|
||||
|
||||
// The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher.
|
||||
const int i00 = blockIdx.y * blockDim.x + threadIdx.x;
|
||||
const int i10 = blockIdx.x;
|
||||
const int i11 = blockIdx.z / ne12;
|
||||
const int i12 = blockIdx.z % ne12;
|
||||
for (int64_t z = blockIdx.z; z < ne11*ne12; z += gridDim.z) {
|
||||
for (int64_t i00 = blockIdx.y*blockDim.x + threadIdx.x; i00 < ne00; i00 += gridDim.y*blockDim.x) {
|
||||
// The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher.
|
||||
const int i10 = blockIdx.x;
|
||||
const int i11 = z / ne12; // TODO fastdiv
|
||||
const int i12 = z % ne12;
|
||||
|
||||
if (i00 >= ne00) {
|
||||
return;
|
||||
if (i00 >= ne00) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
||||
|
||||
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
||||
const src0_t * src0_row = (const src0_t *)((const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03);
|
||||
|
||||
dst_row[i00] = ggml_cuda_cast<dst_t>(src0_row[i00]);
|
||||
}
|
||||
}
|
||||
|
||||
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
||||
|
||||
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
||||
const src0_t * src0_row = (const src0_t *)((const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03);
|
||||
|
||||
dst_row[i00] = ggml_cuda_cast<dst_t>(src0_row[i00]);
|
||||
}
|
||||
|
||||
template<typename grad_t, typename dst_t>
|
||||
@@ -98,7 +100,7 @@ static void get_rows_cuda_q(
|
||||
cudaStream_t stream) {
|
||||
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
|
||||
const int block_num_y = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
|
||||
const dim3 block_nums(ne10, block_num_y, ne11*ne12);
|
||||
const dim3 block_nums(ne10, MIN(block_num_y, UINT16_MAX), MIN(ne11*ne12, UINT16_MAX));
|
||||
|
||||
// strides in elements
|
||||
// const size_t s0 = nb0 / sizeof(dst_t);
|
||||
@@ -116,7 +118,7 @@ static void get_rows_cuda_q(
|
||||
k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
|
||||
src0_d, src1_d, dst_d,
|
||||
ne00, /*ne01, ne02, ne03,*/
|
||||
/*ne10, ne11,*/ ne12, /*ne13,*/
|
||||
/*ne10,*/ ne11, ne12, /*ne13,*/
|
||||
/* s0,*/ s1, s2, s3,
|
||||
/* nb00,*/ nb01, nb02, nb03,
|
||||
s10, s11, s12/*, s13*/);
|
||||
@@ -131,7 +133,7 @@ static void get_rows_cuda_float(
|
||||
cudaStream_t stream) {
|
||||
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
|
||||
const int block_num_y = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
|
||||
const dim3 block_nums(ne10, block_num_y, ne11*ne12);
|
||||
const dim3 block_nums(ne10, MIN(block_num_y, UINT16_MAX), MIN(ne11*ne12, UINT16_MAX));
|
||||
|
||||
// strides in elements
|
||||
// const size_t s0 = nb0 / sizeof(dst_t);
|
||||
@@ -147,7 +149,7 @@ static void get_rows_cuda_float(
|
||||
k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
|
||||
src0_d, src1_d, dst_d,
|
||||
ne00, /*ne01, ne02, ne03,*/
|
||||
/*ne10, ne11,*/ ne12, /*ne13,*/
|
||||
/*ne10,*/ ne11, ne12, /*ne13,*/
|
||||
/* s0,*/ s1, s2, s3,
|
||||
/* nb00,*/ nb01, nb02, nb03,
|
||||
s10, s11, s12/*, s13*/);
|
||||
|
||||
@@ -12,6 +12,7 @@
|
||||
#include "ggml-cuda/clamp.cuh"
|
||||
#include "ggml-cuda/concat.cuh"
|
||||
#include "ggml-cuda/conv-transpose-1d.cuh"
|
||||
#include "ggml-cuda/conv2d.cuh"
|
||||
#include "ggml-cuda/conv2d-dw.cuh"
|
||||
#include "ggml-cuda/conv2d-transpose.cuh"
|
||||
#include "ggml-cuda/convert.cuh"
|
||||
@@ -2108,6 +2109,11 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
|
||||
ggml_cuda_mul_mat_q(ctx, src0, src1, ids, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
if (ggml_cuda_should_use_mmf(src0->type, cc, WARP_SIZE, src0->ne, src1->ne[2])) {
|
||||
ggml_cuda_mul_mat_f(ctx, src0, src1, ids, dst);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
@@ -2451,6 +2457,12 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_OP_IM2COL:
|
||||
ggml_cuda_op_im2col(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_IM2COL_3D:
|
||||
ggml_cuda_op_im2col_3d(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_CONV_2D:
|
||||
ggml_cuda_op_conv2d(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
ggml_cuda_op_conv2d_dw(ctx, dst);
|
||||
break;
|
||||
@@ -2817,9 +2829,14 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
|
||||
return false;
|
||||
}
|
||||
|
||||
if (ops.size() == 2 && ops.begin()[0] == GGML_OP_RMS_NORM && ops.begin()[1] == GGML_OP_MUL) {
|
||||
if ((ops.size() == 2 || ops.size() == 3) && ops.begin()[0] == GGML_OP_RMS_NORM && ops.begin()[1] == GGML_OP_MUL) {
|
||||
const ggml_tensor *rms_norm = cgraph->nodes[node_idx];
|
||||
const ggml_tensor *mul = cgraph->nodes[node_idx+1];
|
||||
const ggml_tensor *add = nullptr;
|
||||
|
||||
if (ops.size() == 3 && ops.begin()[2] == GGML_OP_ADD) {
|
||||
add = cgraph->nodes[node_idx+2];
|
||||
}
|
||||
|
||||
GGML_ASSERT(rms_norm->src[0]->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(rms_norm->type == GGML_TYPE_F32);
|
||||
@@ -2831,6 +2848,12 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
|
||||
return false;
|
||||
}
|
||||
|
||||
if (add && (add->src[0]->type != GGML_TYPE_F32 ||
|
||||
add->src[1]->type != GGML_TYPE_F32 ||
|
||||
add->type != GGML_TYPE_F32) ) {
|
||||
return false;
|
||||
}
|
||||
|
||||
//if rms norm is the B operand, then we don't handle broadcast
|
||||
if (rms_norm == mul->src[1] && !ggml_are_same_shape(mul->src[0], rms_norm->src[1])) {
|
||||
return false;
|
||||
@@ -2841,6 +2864,10 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
|
||||
return false;
|
||||
}
|
||||
|
||||
if (add && (!ggml_is_contiguous(add->src[0]) || !ggml_is_contiguous_rows(add->src[1]))) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -2887,7 +2914,46 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
||||
|
||||
static bool disable_fusion = (getenv("GGML_CUDA_DISABLE_FUSION") != nullptr);
|
||||
if (!disable_fusion) {
|
||||
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL }, {})) {
|
||||
|
||||
if (node->op == GGML_OP_ADD) {
|
||||
int n_fuse = 0;
|
||||
ggml_op ops[8];
|
||||
std::fill(ops, ops + 8, GGML_OP_ADD);
|
||||
|
||||
for (; n_fuse <= 6; ++n_fuse){
|
||||
if (!ggml_can_fuse(cgraph, i + n_fuse, ops + n_fuse, 2)) {
|
||||
break;
|
||||
}
|
||||
if (cgraph->nodes[i + n_fuse] != cgraph->nodes[i + n_fuse + 1]->src[0]) {
|
||||
break;
|
||||
}
|
||||
if (!ggml_are_same_layout(cgraph->nodes[i + n_fuse]->src[1], cgraph->nodes[i + n_fuse + 1]->src[1])) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
n_fuse++;
|
||||
|
||||
if (n_fuse > 1) {
|
||||
for (int j = 0; j < n_fuse - 1; ++j) {
|
||||
node->src[j + 2] = cgraph->nodes[i + j + 1]->src[1];
|
||||
}
|
||||
cgraph->nodes[i + n_fuse - 1]->data = node->data;
|
||||
ggml_cuda_op_fused_add(*cuda_ctx, node, n_fuse);
|
||||
i += n_fuse - 1;
|
||||
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL, GGML_OP_ADD}, {})) {
|
||||
ggml_cuda_op_rms_norm_fused_add(*cuda_ctx, node, cgraph->nodes[i+1], cgraph->nodes[i+2]);
|
||||
i += 2;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL}, {})) {
|
||||
ggml_cuda_op_rms_norm_fused(*cuda_ctx, node, cgraph->nodes[i+1]);
|
||||
i++;
|
||||
continue;
|
||||
@@ -3074,6 +3140,7 @@ static const ggml_backend_i ggml_backend_cuda_interface = {
|
||||
/* .graph_compute = */ ggml_backend_cuda_graph_compute,
|
||||
/* .event_record = */ ggml_backend_cuda_event_record,
|
||||
/* .event_wait = */ ggml_backend_cuda_event_wait,
|
||||
/* .optimize_graph = */ NULL,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_cuda_guid() {
|
||||
@@ -3400,6 +3467,12 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_IQ4_NL) {
|
||||
return true;
|
||||
}
|
||||
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_I32) {
|
||||
return true;
|
||||
}
|
||||
if (src0_type == GGML_TYPE_I32 && src1_type == GGML_TYPE_F32) {
|
||||
return true;
|
||||
}
|
||||
if (src0_type == src1_type && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1])) {
|
||||
return true;
|
||||
}
|
||||
@@ -3501,6 +3574,8 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
return op->src[0]->nb[0] == ggml_type_size(op->src[0]->type) && ggml_is_contiguous_2(op->src[0]);
|
||||
}
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_IM2COL_3D:
|
||||
case GGML_OP_CONV_2D:
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
case GGML_OP_CONV_TRANSPOSE_2D:
|
||||
case GGML_OP_POOL_2D:
|
||||
@@ -3511,9 +3586,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
case GGML_OP_SUM_ROWS:
|
||||
case GGML_OP_MEAN:
|
||||
case GGML_OP_GROUP_NORM:
|
||||
case GGML_OP_PAD:
|
||||
return ggml_is_contiguous(op->src[0]);
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_PAD:
|
||||
case GGML_OP_PAD_REFLECT_1D:
|
||||
case GGML_OP_ARANGE:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
|
||||
@@ -112,3 +112,132 @@ void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
im2col_cuda_f32(src1_d, (float *) dst_d, IW, IH, OW, OH, KW, KH, IC, N, IC_IH_IW, IH_IW, s0, s1, p0, p1, d0, d1, stream);
|
||||
}
|
||||
}
|
||||
|
||||
// [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW]
|
||||
template <typename T>
|
||||
static __global__ void im2col_3d_kernel(
|
||||
const float * src, T * dst,
|
||||
int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW, int64_t OC,
|
||||
int64_t KD, int64_t KH, int64_t KW, int64_t OD, int64_t OH, int64_t OW,
|
||||
int64_t OH_OW, int64_t KD_KH_KW, int64_t ID_IH_IW, int64_t KH_KW, int64_t IH_IW, int64_t IC_ID_IH_IW,
|
||||
int64_t IC_KD_KH_KW, int64_t OW_KD_KH_KW, int64_t OD_OH_OW_IC_KD_KH_KW, int64_t OH_OW_IC_KD_KH_KW,
|
||||
int64_t OW_IC_KD_KH_KW, int64_t N_OD_OH, int64_t OD_OH,
|
||||
int s0, int s1, int s2, int p0, int p1, int p2, int d0, int d1, int d2) {
|
||||
const int64_t i = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
if (i >= IC_KD_KH_KW) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int64_t iic = i / KD_KH_KW;
|
||||
const int64_t ikd = (i - iic * KD_KH_KW) / KH_KW;
|
||||
const int64_t ikh = (i - iic * KD_KH_KW - ikd * KH_KW) / KW;
|
||||
const int64_t ikw = i % KW;
|
||||
|
||||
const int64_t iow = blockIdx.y;
|
||||
for (int64_t iz = blockIdx.z; iz < N_OD_OH; iz+=MAX_GRIDDIM_Z) {
|
||||
const int64_t in = iz / OD_OH;
|
||||
const int64_t iod = (iz - in*OD_OH) / OH;
|
||||
const int64_t ioh = iz % OH;
|
||||
|
||||
const int64_t iiw = iow * s0 + ikw * d0 - p0;
|
||||
const int64_t iih = ioh * s1 + ikh * d1 - p1;
|
||||
const int64_t iid = iod * s2 + ikd * d2 - p2;
|
||||
|
||||
const int64_t offset_dst = in*OD_OH_OW_IC_KD_KH_KW + iod*OH_OW_IC_KD_KH_KW + ioh*OW_IC_KD_KH_KW + iow*IC_KD_KH_KW + iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw;
|
||||
|
||||
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW || iid < 0 || iid >= ID) {
|
||||
dst[offset_dst] = 0.0f;
|
||||
} else {
|
||||
const int64_t offset_src = in*IC_ID_IH_IW + iic*ID_IH_IW + iid*IH_IW + iih*IW + iiw;
|
||||
dst[offset_dst] = src[offset_src];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW]
|
||||
template <typename T>
|
||||
static void im2col_3d_cuda(const float * src, T* dst,
|
||||
int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW, int64_t OC,
|
||||
int64_t KD, int64_t KH, int64_t KW, int64_t OD, int64_t OH, int64_t OW,
|
||||
int s0, int s1, int s2, int p0, int p1, int p2, int d0, int d1, int d2, cudaStream_t stream) {
|
||||
const int64_t OH_OW = OH*OW;
|
||||
const int64_t KD_KH_KW = KD*KH*KW;
|
||||
const int64_t ID_IH_IW = ID*IH*IW;
|
||||
const int64_t KH_KW = KH*KW;
|
||||
const int64_t IH_IW = IH*IW;
|
||||
const int64_t IC_KD_KH_KW = IC*KD*KH*KW;
|
||||
const int64_t OW_KD_KH_KW = OW*KD*KH*KW;
|
||||
const int64_t N_OD_OH = N*OD*OH;
|
||||
const int64_t OD_OH = OD*OH;
|
||||
const int64_t IC_ID_IH_IW = IC*ID*IH*IW;
|
||||
const int64_t OD_OH_OW_IC_KD_KH_KW = OD*OH*OW*IC*KD*KH*KW;
|
||||
const int64_t OH_OW_IC_KD_KH_KW = OH*OW*IC*KD*KH*KW;
|
||||
const int64_t OW_IC_KD_KH_KW = OW*IC*KD*KH*KW;
|
||||
const int64_t num_blocks = (IC_KD_KH_KW + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE;
|
||||
dim3 block_nums(num_blocks, OW, MIN(N_OD_OH, MAX_GRIDDIM_Z));
|
||||
im2col_3d_kernel<<<block_nums, MIN(IC_KD_KH_KW, CUDA_IM2COL_BLOCK_SIZE) , 0, stream>>>(src, dst, N, IC, ID, IH, IW, OC, KD, KH, KW, OD, OH, OW,
|
||||
OH_OW, KD_KH_KW, ID_IH_IW, KH_KW, IH_IW, IC_ID_IH_IW,
|
||||
IC_KD_KH_KW, OW_KD_KH_KW, OD_OH_OW_IC_KD_KH_KW,
|
||||
OH_OW_IC_KD_KH_KW, OW_IC_KD_KH_KW, N_OD_OH, OD_OH,
|
||||
s0, s1, s2, p0, p1, p2, d0, d1, d2);
|
||||
}
|
||||
|
||||
static void im2col_3d_cuda_f16(const float * src, half * dst,
|
||||
int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW, int64_t OC,
|
||||
int64_t KD, int64_t KH, int64_t KW, int64_t OD, int64_t OH, int64_t OW,
|
||||
int s0, int s1, int s2, int p0, int p1, int p2, int d0, int d1, int d2, cudaStream_t stream) {
|
||||
|
||||
im2col_3d_cuda<half>(src, dst, N, IC, ID, IH, IW, OC, KD, KH, KW, OD, OH, OW, s0, s1, s2, p0, p1, p2, d0, d1, d2, stream);
|
||||
}
|
||||
|
||||
static void im2col_3d_cuda_f32(const float * src, float * dst,
|
||||
int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW, int64_t OC,
|
||||
int64_t KD, int64_t KH, int64_t KW, int64_t OD, int64_t OH, int64_t OW,
|
||||
int s0, int s1, int s2, int p0, int p1, int p2, int d0, int d1, int d2, cudaStream_t stream) {
|
||||
|
||||
im2col_3d_cuda<float>(src, dst, N, IC, ID, IH, IW, OC, KD, KH, KW, OD, OH, OW, s0, s1, s2, p0, p1, p2, d0, d1, d2, stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_im2col_3d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
const float * src1_d = (const float *)src1->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
|
||||
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
|
||||
const int32_t s2 = ((const int32_t *)(dst->op_params))[2];
|
||||
const int32_t p0 = ((const int32_t *)(dst->op_params))[3];
|
||||
const int32_t p1 = ((const int32_t *)(dst->op_params))[4];
|
||||
const int32_t p2 = ((const int32_t *)(dst->op_params))[5];
|
||||
const int32_t d0 = ((const int32_t *)(dst->op_params))[6];
|
||||
const int32_t d1 = ((const int32_t *)(dst->op_params))[7];
|
||||
const int32_t d2 = ((const int32_t *)(dst->op_params))[8];
|
||||
const int32_t IC = ((const int32_t *)(dst->op_params))[9];
|
||||
|
||||
const int64_t N = ne13 / IC;
|
||||
const int64_t ID = ne12;
|
||||
const int64_t IH = ne11;
|
||||
const int64_t IW = ne10;
|
||||
|
||||
const int64_t OC = ne03 / IC;
|
||||
const int64_t KD = ne02;
|
||||
const int64_t KH = ne01;
|
||||
const int64_t KW = ne00;
|
||||
|
||||
const int64_t OD = ne3 / N;
|
||||
const int64_t OH = ne2;
|
||||
const int64_t OW = ne1;
|
||||
|
||||
if(dst->type == GGML_TYPE_F16) {
|
||||
im2col_3d_cuda_f16(src1_d, (half *) dst_d, N, IC, ID, IH, IW, OC, KD, KH, KW, OD, OH, OW, s0, s1, s2, p0, p1, p2, d0, d1, d2, stream);
|
||||
} else {
|
||||
im2col_3d_cuda_f32(src1_d, (float *) dst_d, N, IC, ID, IH, IW, OC, KD, KH, KW, OD, OH, OW, s0, s1, s2, p0, p1, p2, d0, d1, d2, stream);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -3,3 +3,4 @@
|
||||
#define CUDA_IM2COL_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
void ggml_cuda_op_im2col_3d(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
#pragma once
|
||||
// This file contains primitives that expose the tensor core PTX instructions for CUDA code.
|
||||
// The primitives can be used in a similar way as the nvcuda::wmma interface but with a well-defined memory layout.
|
||||
// The documentation for the PTX instructions can be found under:
|
||||
|
||||
@@ -1,343 +1,12 @@
|
||||
#include "ggml.h"
|
||||
#include "common.cuh"
|
||||
#include "mma.cuh"
|
||||
#include "mmf.cuh"
|
||||
|
||||
using namespace ggml_cuda_mma;
|
||||
|
||||
#define MMF_ROWS_PER_BLOCK 32
|
||||
|
||||
template <typename T, int rows_per_block, int cols_per_block, int nwarps>
|
||||
__launch_bounds__(ggml_cuda_get_physical_warp_size()*nwarps, 1)
|
||||
static __global__ void mul_mat_f(
|
||||
const T * __restrict__ x, const float * __restrict__ y, const int32_t * __restrict__ ids, float * __restrict__ dst,
|
||||
const int ncols, const int nchannels_y, const int stride_row, const int stride_col_y, const int stride_col_dst,
|
||||
const int channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
|
||||
const int sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
typedef tile<16, 8, T> tile_A;
|
||||
typedef tile< 8, 8, T> tile_B;
|
||||
typedef tile<16, 8, float> tile_C;
|
||||
|
||||
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
|
||||
constexpr int tile_k_padded = warp_size + 4;
|
||||
constexpr int ntA = rows_per_block / tile_A::I;
|
||||
constexpr int ntB = (cols_per_block + tile_B::I - 1) / tile_B::I;
|
||||
|
||||
const int row0 = blockIdx.x * rows_per_block;
|
||||
const int channel_dst = blockIdx.y;
|
||||
const int channel_x = channel_dst / channel_ratio;
|
||||
const int channel_y = channel_dst;
|
||||
const int sample_dst = blockIdx.z;
|
||||
const int sample_x = sample_dst / sample_ratio;
|
||||
const int sample_y = sample_dst;
|
||||
|
||||
x += int64_t(sample_x) *stride_sample_x + channel_x *stride_channel_x + row0*stride_row ;
|
||||
y += int64_t(sample_y) *stride_sample_y + channel_y *stride_channel_y;
|
||||
dst += int64_t(sample_dst)*stride_sample_dst + channel_dst*stride_channel_dst;
|
||||
|
||||
const float2 * y2 = (const float2 *) y;
|
||||
|
||||
extern __shared__ char data_mmv[];
|
||||
|
||||
tile_C C[ntA][ntB];
|
||||
|
||||
T * tile_xy = (T *) data_mmv + threadIdx.y*(tile_A::I * tile_k_padded);
|
||||
|
||||
for (int col = threadIdx.y*warp_size + threadIdx.x; col < ncols; col += nwarps*warp_size) {
|
||||
tile_A A[ntA][warp_size / tile_A::J];
|
||||
#pragma unroll
|
||||
for (int itA = 0; itA < ntA; ++itA) {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < tile_A::I; ++i) {
|
||||
tile_xy[i*tile_k_padded + threadIdx.x] = x[(itA*tile_A::I + i)*stride_row + col];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < warp_size; k0 += tile_A::J) {
|
||||
load_ldmatrix(A[itA][k0/tile_A::J], tile_xy + k0, tile_k_padded);
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int itB = 0; itB < ntB; ++itB) {
|
||||
if constexpr (std::is_same_v<T, float>) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < tile_B::I; ++j0) {
|
||||
const int j = j0 + itB*tile_B::I;
|
||||
|
||||
tile_xy[j0*tile_k_padded + threadIdx.x] = j < cols_per_block ? y[j*stride_col_y + col] : 0.0f;
|
||||
}
|
||||
} else if constexpr (std::is_same_v<T, half2> || std::is_same_v<T, nv_bfloat162>) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < tile_B::I; ++j0) {
|
||||
const int j = j0 + itB*tile_B::I;
|
||||
|
||||
const float2 tmp = j < cols_per_block ? y2[j*stride_col_y + col] : make_float2(0.0f, 0.0f);
|
||||
tile_xy[j0*tile_k_padded + threadIdx.x] = {tmp.x, tmp.y};
|
||||
}
|
||||
} else {
|
||||
static_assert(std::is_same_v<T, void>, "unsupported type");
|
||||
}
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < warp_size; k0 += tile_B::J) {
|
||||
tile_B B;
|
||||
load_ldmatrix(B, tile_xy + k0, tile_k_padded);
|
||||
#pragma unroll
|
||||
for (int itA = 0; itA < ntA; ++itA) {
|
||||
mma(C[itA][itB], A[itA][k0/tile_B::J], B);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float * buf_iw = (float *) data_mmv;
|
||||
constexpr int kiw = nwarps*rows_per_block + 4;
|
||||
|
||||
if (nwarps > 1) {
|
||||
__syncthreads();
|
||||
}
|
||||
#pragma unroll
|
||||
for (int itB = 0; itB < ntB; ++itB) {
|
||||
#pragma unroll
|
||||
for (int itA = 0; itA < ntA; ++itA) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < tile_C::ne; ++l) {
|
||||
const int i = threadIdx.y*rows_per_block + itA*tile_C::I + tile_C::get_i(l);
|
||||
const int j = itB*tile_C::J + tile_C::get_j(l);
|
||||
buf_iw[j*kiw + i] = C[itA][itB].x[l];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (nwarps > 1) {
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < cols_per_block; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
if (j0 + nwarps > cols_per_block && j >= cols_per_block) {
|
||||
return;
|
||||
}
|
||||
|
||||
float sum = 0.0f;
|
||||
static_assert(rows_per_block == warp_size, "need loop/check");
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < nwarps*rows_per_block; i0 += rows_per_block) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
sum += buf_iw[j*kiw + i];
|
||||
}
|
||||
dst[j*stride_col_dst + row0 + threadIdx.x] = sum;
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED_VARS(x, y, ids, dst,
|
||||
ncols, nchannels_y, stride_row, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
}
|
||||
|
||||
template <typename T, int cols_per_block>
|
||||
static void mul_mat_f_cuda(
|
||||
const T * x, const float * y, const int32_t * ids, float * dst,
|
||||
const int64_t ncols_x, const int64_t nrows_x,
|
||||
const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
|
||||
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
|
||||
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
|
||||
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
|
||||
cudaStream_t stream) {
|
||||
typedef tile<16, 8, T> tile_A;
|
||||
typedef tile< 8, 8, T> tile_B;
|
||||
|
||||
GGML_ASSERT(!ids && "mul_mat_id not implemented");
|
||||
|
||||
GGML_ASSERT(ncols_x % 2 == 0);
|
||||
GGML_ASSERT(stride_row % 2 == 0);
|
||||
GGML_ASSERT(stride_col_y % 2 == 0);
|
||||
GGML_ASSERT(ids || nchannels_dst % nchannels_x == 0);
|
||||
GGML_ASSERT( nsamples_dst % nsamples_x == 0);
|
||||
const int64_t channel_ratio = nchannels_dst / nchannels_x;
|
||||
const int64_t sample_ratio = nsamples_dst / nsamples_x;
|
||||
|
||||
const int device = ggml_cuda_get_device();
|
||||
const int warp_size = ggml_cuda_info().devices[device].warp_size;
|
||||
|
||||
int64_t nwarps_best = 1;
|
||||
int64_t niter_best = (ncols_x + warp_size*2 - 1) / (warp_size*2);
|
||||
int64_t max_block_size = 256;
|
||||
for (int64_t nwarps = 2; nwarps <= max_block_size/warp_size; nwarps++) {
|
||||
const int64_t niter = (ncols_x + nwarps*warp_size*2 - 1) / (nwarps*warp_size*2);
|
||||
if (niter < niter_best) {
|
||||
niter_best = niter;
|
||||
nwarps_best = nwarps;
|
||||
}
|
||||
}
|
||||
|
||||
constexpr int rows_per_block = MMF_ROWS_PER_BLOCK;
|
||||
const int nbytes_shared_iter = nwarps_best * tile_A::I * (warp_size + 4) * 4;
|
||||
const int nbytes_shared_combine = GGML_PAD(cols_per_block, tile_B::I) * (nwarps_best*rows_per_block + 4) * 4;
|
||||
const int nbytes_shared = std::max(nbytes_shared_iter, nbytes_shared_combine);
|
||||
const dim3 block_nums(nrows_x/rows_per_block, nchannels_dst, nsamples_dst);
|
||||
const dim3 block_dims(warp_size, nwarps_best, 1);
|
||||
switch (nwarps_best) {
|
||||
case 1: {
|
||||
mul_mat_f<T, rows_per_block, cols_per_block, 1><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, dst, ncols_x, nchannels_y, stride_row, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 2: {
|
||||
mul_mat_f<T, rows_per_block, cols_per_block, 2><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, dst, ncols_x, nchannels_y, stride_row, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 3: {
|
||||
mul_mat_f<T, rows_per_block, cols_per_block, 3><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, dst, ncols_x, nchannels_y, stride_row, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 4: {
|
||||
mul_mat_f<T, rows_per_block, cols_per_block, 4><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, dst, ncols_x, nchannels_y, stride_row, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 5: {
|
||||
mul_mat_f<T, rows_per_block, cols_per_block, 5><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, dst, ncols_x, nchannels_y, stride_row, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 6: {
|
||||
mul_mat_f<T, rows_per_block, cols_per_block, 6><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, dst, ncols_x, nchannels_y, stride_row, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 7: {
|
||||
mul_mat_f<T, rows_per_block, cols_per_block, 7><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, dst, ncols_x, nchannels_y, stride_row, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 8: {
|
||||
mul_mat_f<T, rows_per_block, cols_per_block, 8><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, dst, ncols_x, nchannels_y, stride_row, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ABORT("fatal error");
|
||||
} break;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void mul_mat_f_switch_cols_per_block(
|
||||
const T * x, const float * y, const int32_t * ids, float * dst,
|
||||
const int64_t ncols_x, const int64_t nrows_x, const int64_t ncols_dst,
|
||||
const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
|
||||
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
|
||||
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
|
||||
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
|
||||
cudaStream_t stream) {
|
||||
switch (ncols_dst) {
|
||||
case 1: {
|
||||
mul_mat_f_cuda<T, 1>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 2: {
|
||||
mul_mat_f_cuda<T, 2>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 3: {
|
||||
mul_mat_f_cuda<T, 3>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 4: {
|
||||
mul_mat_f_cuda<T, 4>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 5: {
|
||||
mul_mat_f_cuda<T, 5>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 6: {
|
||||
mul_mat_f_cuda<T, 6>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 7: {
|
||||
mul_mat_f_cuda<T, 7>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 8: {
|
||||
mul_mat_f_cuda<T, 8>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 9: {
|
||||
mul_mat_f_cuda<T, 9>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 10: {
|
||||
mul_mat_f_cuda<T, 10>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 11: {
|
||||
mul_mat_f_cuda<T, 11>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 12: {
|
||||
mul_mat_f_cuda<T, 12>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 13: {
|
||||
mul_mat_f_cuda<T, 13>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 14: {
|
||||
mul_mat_f_cuda<T, 14>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 15: {
|
||||
mul_mat_f_cuda<T, 15>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 16: {
|
||||
mul_mat_f_cuda<T, 16>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ABORT("fatal error");
|
||||
} break;
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_mul_mat_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) {
|
||||
GGML_ASSERT( src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(!ids || ids->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS;
|
||||
|
||||
const size_t ts_src0 = ggml_type_size(src0->type);
|
||||
@@ -365,55 +34,72 @@ void ggml_cuda_mul_mat_f(ggml_backend_cuda_context & ctx, const ggml_tensor * sr
|
||||
const int64_t s13 = src1->nb[3] / ts_src1;
|
||||
const int64_t s3 = dst->nb[3] / ts_dst;
|
||||
|
||||
const int64_t ids_s0 = ids ? ids->nb[0] / ggml_type_size(ids->type) : 0;
|
||||
const int64_t ids_s1 = ids ? ids->nb[1] / ggml_type_size(ids->type) : 0;
|
||||
|
||||
// For MUL_MAT_ID the memory layout is different than for MUL_MAT:
|
||||
const int64_t ncols_dst = ids ? ne2 : ne1;
|
||||
const int64_t nchannels_y = ids ? ne11 : ne12;
|
||||
const int64_t nchannels_dst = ids ? ne1 : ne2;
|
||||
const int64_t stride_channel_dst = ids ? s1 : s2;
|
||||
const int64_t stride_channel_y = ids ? s11 : s12;
|
||||
const int64_t nchannels_dst = ids ? ne1 : ne2;
|
||||
|
||||
GGML_ASSERT(!ids || ncols_dst == 1);
|
||||
const int64_t stride_col_dst = ids ? s2 : s1;
|
||||
const int64_t stride_col_y = ids ? s12 : s11;
|
||||
const int64_t stride_channel_dst = ids ? s1 : s2;
|
||||
|
||||
int64_t stride_channel_y = ids ? s11 : s12;
|
||||
int64_t nchannels_y = ids ? ne11 : ne12;
|
||||
|
||||
//mul_mat_id: handle broadcast
|
||||
if (ids && nchannels_y == 1) {
|
||||
stride_channel_y = 0;
|
||||
nchannels_y = ids->ne[0];
|
||||
}
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32: {
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
constexpr int vals_per_T = 1;
|
||||
mul_mat_f_switch_cols_per_block(
|
||||
src0_d, src1_d, ids_d, dst_d, ne00/vals_per_T, ne01, ncols_dst, s01/vals_per_T, s11/vals_per_T, s1,
|
||||
ne02, nchannels_y, nchannels_dst, s02/vals_per_T, stride_channel_y, stride_channel_dst,
|
||||
ne03, ne3, s03/vals_per_T, s13, s3, ctx.stream());
|
||||
src0_d, src1_d, ids_d, dst_d, ne00/vals_per_T, ne01, ncols_dst, s01/vals_per_T, stride_col_y/vals_per_T, stride_col_dst,
|
||||
ids_s0, ids_s1, ne02, nchannels_y, nchannels_dst, s02/vals_per_T, stride_channel_y, stride_channel_dst,
|
||||
ne03, ne3, s03/vals_per_T, s13, s3, ctx.stream());
|
||||
} break;
|
||||
case GGML_TYPE_F16: {
|
||||
const half2 * src0_d = (const half2 *) src0->data;
|
||||
constexpr int vals_per_T = 2;
|
||||
mul_mat_f_switch_cols_per_block(
|
||||
src0_d, src1_d, ids_d, dst_d, ne00/vals_per_T, ne01, ncols_dst, s01/vals_per_T, s11/vals_per_T, s1,
|
||||
ne02, nchannels_y, nchannels_dst, s02/vals_per_T, stride_channel_y, stride_channel_dst,
|
||||
ne03, ne3, s03/vals_per_T, s13, s3, ctx.stream());
|
||||
src0_d, src1_d, ids_d, dst_d, ne00/vals_per_T, ne01, ncols_dst, s01/vals_per_T, stride_col_y/vals_per_T, stride_col_dst,
|
||||
ids_s0, ids_s1, ne02, nchannels_y, nchannels_dst, s02/vals_per_T, stride_channel_y, stride_channel_dst,
|
||||
ne03, ne3, s03/vals_per_T, s13, s3, ctx.stream());
|
||||
} break;
|
||||
case GGML_TYPE_BF16: {
|
||||
const nv_bfloat162 * src0_d = (const nv_bfloat162 *) src0->data;
|
||||
constexpr int vals_per_T = 2;
|
||||
mul_mat_f_switch_cols_per_block(
|
||||
src0_d, src1_d, ids_d, dst_d, ne00/vals_per_T, ne01, ncols_dst, s01/vals_per_T, s11/vals_per_T, s1,
|
||||
ne02, nchannels_y, nchannels_dst, s02/vals_per_T, stride_channel_y, stride_channel_dst,
|
||||
ne03, ne3, s03/vals_per_T, s13, s3, ctx.stream());
|
||||
src0_d, src1_d, ids_d, dst_d, ne00/vals_per_T, ne01, ncols_dst, s01/vals_per_T, stride_col_y/vals_per_T, stride_col_dst,
|
||||
ids_s0, ids_s1, ne02, nchannels_y, nchannels_dst, s02/vals_per_T, stride_channel_y, stride_channel_dst,
|
||||
ne03, ne3, s03/vals_per_T, s13, s3, ctx.stream());
|
||||
} break;
|
||||
default:
|
||||
GGML_ABORT("unsupported type: %s", ggml_type_name(src0->type));
|
||||
}
|
||||
}
|
||||
|
||||
bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const int64_t * src0_ne, int64_t ne11) {
|
||||
bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const int64_t * src0_ne, const int src1_ncols) {
|
||||
|
||||
if (ggml_is_quantized(type)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (src0_ne[0] % (warp_size * (4/ggml_type_size(type))) != 0) {
|
||||
return false;
|
||||
}
|
||||
if (src0_ne[1] % MMF_ROWS_PER_BLOCK != 0) {
|
||||
return false;
|
||||
}
|
||||
if (ne11 > 16) {
|
||||
if (src1_ncols > 16) {
|
||||
return false;
|
||||
}
|
||||
|
||||
switch (type) {
|
||||
case GGML_TYPE_F32:
|
||||
return ampere_mma_available(cc);
|
||||
|
||||
@@ -1,5 +1,473 @@
|
||||
#pragma once
|
||||
|
||||
#include "mma.cuh"
|
||||
#include "common.cuh"
|
||||
|
||||
using namespace ggml_cuda_mma;
|
||||
|
||||
#define MMF_ROWS_PER_BLOCK 32
|
||||
|
||||
void ggml_cuda_mul_mat_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst);
|
||||
|
||||
bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const int64_t * scr0_ne, int64_t ne11);
|
||||
bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const int64_t * scr0_ne, const int src1_ncols);
|
||||
|
||||
template <typename T, int rows_per_block, int cols_per_block, int nwarps, bool has_ids>
|
||||
__launch_bounds__(ggml_cuda_get_physical_warp_size()*nwarps, 1)
|
||||
static __global__ void mul_mat_f(
|
||||
const T * __restrict__ x, const float * __restrict__ y, const int32_t * __restrict__ ids, float * __restrict__ dst,
|
||||
const int ncols, const int nchannels_dst, const int stride_row, const int stride_col_y, const int stride_col_dst,
|
||||
const int stride_col_id, const int stride_row_id,
|
||||
const int channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
|
||||
const int sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
typedef tile<16, 8, T> tile_A;
|
||||
typedef tile< 8, 8, T> tile_B;
|
||||
typedef tile<16, 8, float> tile_C;
|
||||
|
||||
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
|
||||
constexpr int tile_k_padded = warp_size + 4;
|
||||
constexpr int ntA = rows_per_block / tile_A::I;
|
||||
constexpr int ntB = (cols_per_block + tile_B::I - 1) / tile_B::I;
|
||||
|
||||
const int row0 = blockIdx.x * rows_per_block;
|
||||
|
||||
const int expert_idx = has_ids ? blockIdx.y : 0;
|
||||
const int channel_dst = has_ids ? 0 : blockIdx.y;
|
||||
|
||||
const int channel_x = has_ids ? expert_idx : (channel_dst / channel_ratio);
|
||||
const int channel_y = channel_dst;
|
||||
const int sample_dst = blockIdx.z;
|
||||
const int sample_x = sample_dst / sample_ratio;
|
||||
const int sample_y = sample_dst;
|
||||
|
||||
x += int64_t(sample_x) *stride_sample_x + channel_x *stride_channel_x + row0*stride_row ;
|
||||
y += int64_t(sample_y) *stride_sample_y + (has_ids ? 0 : channel_y *stride_channel_y);
|
||||
dst += int64_t(sample_dst)*stride_sample_dst + (has_ids ? 0 : channel_dst*stride_channel_dst);
|
||||
|
||||
const float2 * y2 = (const float2 *) y;
|
||||
|
||||
extern __shared__ char data_mmv[];
|
||||
|
||||
char * shmem_base = data_mmv;
|
||||
int * slot_map = (int *) shmem_base;
|
||||
char * compute_base = has_ids ? (shmem_base + GGML_PAD(cols_per_block, 16) * sizeof(int)) : shmem_base;
|
||||
|
||||
tile_C C[ntA][ntB];
|
||||
|
||||
T * tile_xy = (T *) compute_base + threadIdx.y*(tile_A::I * tile_k_padded);
|
||||
|
||||
if constexpr (has_ids) {
|
||||
__shared__ int has_any;
|
||||
if (threadIdx.y == 0) {
|
||||
int local_has_any = 0;
|
||||
for (int j = threadIdx.x; j < cols_per_block; j += warp_size) {
|
||||
int slot = -1;
|
||||
for (int k = 0; k < nchannels_dst; ++k) {
|
||||
const int idv = ids[j*stride_row_id + k*stride_col_id];
|
||||
if (idv == expert_idx) {
|
||||
slot = k;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (j < cols_per_block) {
|
||||
local_has_any |= (slot >= 0);
|
||||
slot_map[j] = slot;
|
||||
}
|
||||
}
|
||||
has_any = warp_reduce_any(local_has_any);
|
||||
}
|
||||
__syncthreads();
|
||||
if (has_any == 0) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
for (int col = threadIdx.y*warp_size + threadIdx.x; col < ncols; col += nwarps*warp_size) {
|
||||
tile_A A[ntA][warp_size / tile_A::J];
|
||||
#pragma unroll
|
||||
for (int itA = 0; itA < ntA; ++itA) {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < tile_A::I; ++i) {
|
||||
tile_xy[i*tile_k_padded + threadIdx.x] = x[(itA*tile_A::I + i)*stride_row + col];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < warp_size; k0 += tile_A::J) {
|
||||
load_ldmatrix(A[itA][k0/tile_A::J], tile_xy + k0, tile_k_padded);
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int itB = 0; itB < ntB; ++itB) {
|
||||
if constexpr (std::is_same_v<T, float>) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < tile_B::I; ++j0) {
|
||||
const int j = j0 + itB*tile_B::I;
|
||||
|
||||
if constexpr (!has_ids) {
|
||||
tile_xy[j0*tile_k_padded + threadIdx.x] = j < cols_per_block ? y[j*stride_col_y + col] : 0.0f;
|
||||
} else {
|
||||
float val = 0.0f;
|
||||
if (j < cols_per_block) {
|
||||
const int slot = slot_map[j];
|
||||
if (slot >= 0) {
|
||||
val = y[slot*stride_channel_y + j*stride_col_y + col];
|
||||
}
|
||||
}
|
||||
tile_xy[j0*tile_k_padded + threadIdx.x] = val;
|
||||
}
|
||||
}
|
||||
} else if constexpr (std::is_same_v<T, half2> || std::is_same_v<T, nv_bfloat162>) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < tile_B::I; ++j0) {
|
||||
const int j = j0 + itB*tile_B::I;
|
||||
|
||||
if constexpr (!has_ids) {
|
||||
const float2 tmp = j < cols_per_block ? y2[j*stride_col_y + col] : make_float2(0.0f, 0.0f);
|
||||
tile_xy[j0*tile_k_padded + threadIdx.x] = {tmp.x, tmp.y};
|
||||
} else {
|
||||
float2 tmp = make_float2(0.0f, 0.0f);
|
||||
if (j < cols_per_block) {
|
||||
const int slot = slot_map[j];
|
||||
if (slot >= 0) {
|
||||
const float2 * y2_slot = (const float2 *)(y + slot*stride_channel_y);
|
||||
tmp = y2_slot[j*stride_col_y + col];
|
||||
}
|
||||
}
|
||||
tile_xy[j0*tile_k_padded + threadIdx.x] = {tmp.x, tmp.y};
|
||||
}
|
||||
}
|
||||
} else {
|
||||
static_assert(std::is_same_v<T, void>, "unsupported type");
|
||||
}
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < warp_size; k0 += tile_B::J) {
|
||||
tile_B B;
|
||||
load_ldmatrix(B, tile_xy + k0, tile_k_padded);
|
||||
#pragma unroll
|
||||
for (int itA = 0; itA < ntA; ++itA) {
|
||||
mma(C[itA][itB], A[itA][k0/tile_B::J], B);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float * buf_iw = (float *) compute_base;
|
||||
constexpr int kiw = nwarps*rows_per_block + 4;
|
||||
|
||||
if (nwarps > 1) {
|
||||
__syncthreads();
|
||||
}
|
||||
#pragma unroll
|
||||
for (int itB = 0; itB < ntB; ++itB) {
|
||||
#pragma unroll
|
||||
for (int itA = 0; itA < ntA; ++itA) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < tile_C::ne; ++l) {
|
||||
const int i = threadIdx.y*rows_per_block + itA*tile_C::I + tile_C::get_i(l);
|
||||
const int j = itB*tile_C::J + tile_C::get_j(l);
|
||||
buf_iw[j*kiw + i] = C[itA][itB].x[l];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (nwarps > 1) {
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < cols_per_block; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
if (j0 + nwarps > cols_per_block && j >= cols_per_block) {
|
||||
return;
|
||||
}
|
||||
|
||||
float sum = 0.0f;
|
||||
static_assert(rows_per_block == warp_size, "need loop/check");
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < nwarps*rows_per_block; i0 += rows_per_block) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
sum += buf_iw[j*kiw + i];
|
||||
}
|
||||
|
||||
if constexpr (!has_ids) {
|
||||
dst[j*stride_col_dst + row0 + threadIdx.x] = sum;
|
||||
} else {
|
||||
const int slot = (j < cols_per_block) ? slot_map[j] : -1;
|
||||
if (slot >= 0) {
|
||||
dst[slot*stride_channel_dst + j*stride_col_dst + row0 + threadIdx.x] = sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED_VARS(x, y, ids, dst,
|
||||
ncols, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
}
|
||||
|
||||
template<typename T, int cols_per_block, int nwarps>
|
||||
static inline void mul_mat_f_switch_ids(
|
||||
const T * x, const float * y, const int32_t * ids, float * dst,
|
||||
const int64_t ncols_x, const int64_t nchannels_dst,
|
||||
const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
|
||||
const int64_t stride_col_id, const int64_t stride_row_id,
|
||||
const int64_t channel_ratio, const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst,
|
||||
const int64_t sample_ratio, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
|
||||
const dim3 & block_nums, const dim3 & block_dims, const int nbytes_shared_total, cudaStream_t stream) {
|
||||
if (ids) {
|
||||
mul_mat_f<T, MMF_ROWS_PER_BLOCK, cols_per_block, nwarps, true><<<block_nums, block_dims, nbytes_shared_total, stream>>>
|
||||
(x, y, ids, dst, ncols_x, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} else {
|
||||
mul_mat_f<T, MMF_ROWS_PER_BLOCK, cols_per_block, nwarps, false><<<block_nums, block_dims, nbytes_shared_total, stream>>>
|
||||
(x, y, ids, dst, ncols_x, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, int cols_per_block>
|
||||
void mul_mat_f_cuda(
|
||||
const T * x, const float * y, const int32_t * ids, float * dst,
|
||||
const int64_t ncols_x, const int64_t nrows_x, const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
|
||||
const int64_t stride_col_id, const int64_t stride_row_id,
|
||||
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
|
||||
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
|
||||
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
|
||||
cudaStream_t stream) {
|
||||
typedef tile<16, 8, T> tile_A;
|
||||
typedef tile< 8, 8, T> tile_B;
|
||||
|
||||
GGML_ASSERT(ncols_x % 2 == 0);
|
||||
GGML_ASSERT(stride_row % 2 == 0);
|
||||
GGML_ASSERT(stride_col_y % 2 == 0);
|
||||
GGML_ASSERT(ids || nchannels_dst % nchannels_x == 0);
|
||||
GGML_ASSERT( nsamples_dst % nsamples_x == 0);
|
||||
const int64_t channel_ratio = nchannels_dst / nchannels_x;
|
||||
const int64_t sample_ratio = nsamples_dst / nsamples_x;
|
||||
|
||||
const int device = ggml_cuda_get_device();
|
||||
const int warp_size = ggml_cuda_info().devices[device].warp_size;
|
||||
|
||||
int64_t nwarps_best = 1;
|
||||
int64_t niter_best = (ncols_x + warp_size*2 - 1) / (warp_size*2);
|
||||
int64_t max_block_size = 256;
|
||||
for (int64_t nwarps = 2; nwarps <= max_block_size/warp_size; nwarps++) {
|
||||
const int64_t niter = (ncols_x + nwarps*warp_size*2 - 1) / (nwarps*warp_size*2);
|
||||
if (niter < niter_best) {
|
||||
niter_best = niter;
|
||||
nwarps_best = nwarps;
|
||||
}
|
||||
}
|
||||
|
||||
constexpr int rows_per_block = MMF_ROWS_PER_BLOCK;
|
||||
const int nbytes_shared_iter = nwarps_best * tile_A::I * (warp_size + 4) * 4;
|
||||
const int nbytes_shared_combine = GGML_PAD(cols_per_block, tile_B::I) * (nwarps_best*rows_per_block + 4) * 4;
|
||||
const int nbytes_shared = std::max(nbytes_shared_iter, nbytes_shared_combine);
|
||||
const int nbytes_slotmap = ids ? GGML_PAD(cols_per_block, 16) * sizeof(int) : 0;
|
||||
const int nbytes_shared_total = nbytes_shared + nbytes_slotmap;
|
||||
const int64_t grid_y = ids ? nchannels_x : nchannels_dst; // per expert when ids present
|
||||
|
||||
const dim3 block_nums(nrows_x/rows_per_block, grid_y, nsamples_dst);
|
||||
const dim3 block_dims(warp_size, nwarps_best, 1);
|
||||
|
||||
switch (nwarps_best) {
|
||||
case 1: {
|
||||
mul_mat_f_switch_ids<T, cols_per_block, 1>(
|
||||
x, y, ids, dst, ncols_x, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
|
||||
} break;
|
||||
case 2: {
|
||||
mul_mat_f_switch_ids<T, cols_per_block, 2>(
|
||||
x, y, ids, dst, ncols_x, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
|
||||
} break;
|
||||
case 3: {
|
||||
mul_mat_f_switch_ids<T, cols_per_block, 3>(
|
||||
x, y, ids, dst, ncols_x, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
|
||||
} break;
|
||||
case 4: {
|
||||
mul_mat_f_switch_ids<T, cols_per_block, 4>(
|
||||
x, y, ids, dst, ncols_x, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
|
||||
} break;
|
||||
case 5: {
|
||||
mul_mat_f_switch_ids<T, cols_per_block, 5>(
|
||||
x, y, ids, dst, ncols_x, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
|
||||
} break;
|
||||
case 6: {
|
||||
mul_mat_f_switch_ids<T, cols_per_block, 6>(
|
||||
x, y, ids, dst, ncols_x, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
|
||||
} break;
|
||||
case 7: {
|
||||
mul_mat_f_switch_ids<T, cols_per_block, 7>(
|
||||
x, y, ids, dst, ncols_x, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
|
||||
} break;
|
||||
case 8: {
|
||||
mul_mat_f_switch_ids<T, cols_per_block, 8>(
|
||||
x, y, ids, dst, ncols_x, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ABORT("fatal error");
|
||||
} break;
|
||||
}
|
||||
|
||||
GGML_UNUSED_VARS(nchannels_y);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void mul_mat_f_switch_cols_per_block(
|
||||
const T * x, const float * y, const int32_t * ids, float * dst,
|
||||
const int64_t ncols_x, const int64_t nrows_x, const int64_t ncols_dst,
|
||||
const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
|
||||
const int64_t stride_col_id, const int stride_row_id,
|
||||
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
|
||||
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
|
||||
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
|
||||
cudaStream_t stream) {
|
||||
switch (ncols_dst) {
|
||||
case 1: {
|
||||
mul_mat_f_cuda<T, 1>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 2: {
|
||||
mul_mat_f_cuda<T, 2>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 3: {
|
||||
mul_mat_f_cuda<T, 3>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 4: {
|
||||
mul_mat_f_cuda<T, 4>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 5: {
|
||||
mul_mat_f_cuda<T, 5>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 6: {
|
||||
mul_mat_f_cuda<T, 6>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 7: {
|
||||
mul_mat_f_cuda<T, 7>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 8: {
|
||||
mul_mat_f_cuda<T, 8>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 9: {
|
||||
mul_mat_f_cuda<T, 9>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 10: {
|
||||
mul_mat_f_cuda<T, 10>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 11: {
|
||||
mul_mat_f_cuda<T, 11>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 12: {
|
||||
mul_mat_f_cuda<T, 12>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 13: {
|
||||
mul_mat_f_cuda<T, 13>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 14: {
|
||||
mul_mat_f_cuda<T, 14>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 15: {
|
||||
mul_mat_f_cuda<T, 15>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 16: {
|
||||
mul_mat_f_cuda<T, 16>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ABORT("fatal error");
|
||||
} break;
|
||||
}
|
||||
}
|
||||
|
||||
#define DECL_MMF_CASE_HELPER(T, ncols_dst) \
|
||||
template void mul_mat_f_cuda<T, ncols_dst>( \
|
||||
const T * x, const float * y, const int32_t * ids, float * dst, \
|
||||
const int64_t ncols_x, const int64_t nrows_x, const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst, \
|
||||
const int64_t stride_col_id, const int64_t stride_row_id, \
|
||||
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst, \
|
||||
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,\
|
||||
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst, \
|
||||
cudaStream_t stream);
|
||||
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
#define DECL_MMF_CASE_EXTERN(ncols_dst) \
|
||||
extern DECL_MMF_CASE_HELPER(float, ncols_dst) \
|
||||
extern DECL_MMF_CASE_HELPER(half2, ncols_dst) \
|
||||
extern DECL_MMF_CASE_HELPER(nv_bfloat162, ncols_dst)
|
||||
|
||||
#define DECL_MMF_CASE(ncols_dst) \
|
||||
DECL_MMF_CASE_HELPER(float, ncols_dst) \
|
||||
DECL_MMF_CASE_HELPER(half2, ncols_dst) \
|
||||
DECL_MMF_CASE_HELPER(nv_bfloat162, ncols_dst)
|
||||
|
||||
DECL_MMF_CASE_EXTERN(1);
|
||||
DECL_MMF_CASE_EXTERN(2);
|
||||
DECL_MMF_CASE_EXTERN(3);
|
||||
DECL_MMF_CASE_EXTERN(4);
|
||||
DECL_MMF_CASE_EXTERN(5);
|
||||
DECL_MMF_CASE_EXTERN(6);
|
||||
DECL_MMF_CASE_EXTERN(7);
|
||||
DECL_MMF_CASE_EXTERN(8);
|
||||
DECL_MMF_CASE_EXTERN(9);
|
||||
DECL_MMF_CASE_EXTERN(10);
|
||||
DECL_MMF_CASE_EXTERN(11);
|
||||
DECL_MMF_CASE_EXTERN(12);
|
||||
DECL_MMF_CASE_EXTERN(13);
|
||||
DECL_MMF_CASE_EXTERN(14);
|
||||
DECL_MMF_CASE_EXTERN(15);
|
||||
DECL_MMF_CASE_EXTERN(16);
|
||||
#else
|
||||
#define DECL_MMF_CASE(ncols_dst)
|
||||
#endif
|
||||
|
||||
@@ -141,9 +141,10 @@ template <ggml_type type, int ncols_dst>
|
||||
__launch_bounds__(calc_nwarps(ncols_dst, get_device_table_id())*ggml_cuda_get_physical_warp_size(), 1)
|
||||
static __global__ void mul_mat_vec_q(
|
||||
const void * __restrict__ vx, const void * __restrict__ vy, const int32_t * __restrict__ ids, float * __restrict__ dst,
|
||||
const int ncols_x, const int nchannels_y, const int stride_row_x, const int stride_col_y, const int stride_col_dst,
|
||||
const int channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
|
||||
const int sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
|
||||
const uint32_t ncols_x, const uint3 nchannels_y, const uint32_t stride_row_x, const uint32_t stride_col_y,
|
||||
const uint32_t stride_col_dst, const uint3 channel_ratio, const uint32_t stride_channel_x,
|
||||
const uint32_t stride_channel_y, const uint32_t stride_channel_dst, const uint3 sample_ratio,
|
||||
const uint32_t stride_sample_x, const uint32_t stride_sample_y, const uint32_t stride_sample_dst) {
|
||||
|
||||
constexpr int qk = ggml_cuda_type_traits<type>::qk;
|
||||
constexpr int qi = ggml_cuda_type_traits<type>::qi;
|
||||
@@ -161,12 +162,12 @@ static __global__ void mul_mat_vec_q(
|
||||
constexpr int blocks_per_iter = vdr * nwarps*warp_size / qi;
|
||||
|
||||
// The MUL_MAT_ID code path with ids != nullptr is only implemented for ncols_dst == 1.
|
||||
const int channel_dst = blockIdx.y;
|
||||
const int channel_x = ncols_dst == 1 && ids ? ids[channel_dst] : channel_dst / channel_ratio;
|
||||
const int channel_y = ncols_dst == 1 && ids ? channel_dst % nchannels_y : channel_dst;
|
||||
const int sample_dst = blockIdx.z;
|
||||
const int sample_x = sample_dst / sample_ratio;
|
||||
const int sample_y = sample_dst;
|
||||
const uint32_t channel_dst = blockIdx.y;
|
||||
const uint32_t channel_x = ncols_dst == 1 && ids ? ids[channel_dst] : fastdiv(channel_dst, channel_ratio);
|
||||
const uint32_t channel_y = ncols_dst == 1 && ids ? fastmodulo(channel_dst, nchannels_y) : channel_dst;
|
||||
const uint32_t sample_dst = blockIdx.z;
|
||||
const uint32_t sample_x = fastdiv(sample_dst, sample_ratio);
|
||||
const uint32_t sample_y = sample_dst;
|
||||
|
||||
// partial sum for each thread
|
||||
float tmp[ncols_dst][rows_per_cuda_block] = {{0.0f}};
|
||||
@@ -247,8 +248,9 @@ static void mul_mat_vec_q_switch_ncols_dst(
|
||||
GGML_ASSERT(ncols_x % ggml_blck_size(type) == 0);
|
||||
GGML_ASSERT(ncols_dst <= MMVQ_MAX_BATCH_SIZE);
|
||||
|
||||
const int channel_ratio = nchannels_dst / nchannels_x;
|
||||
const int sample_ratio = nsamples_dst / nsamples_x;
|
||||
const uint3 nchannels_y_fd = ids ? init_fastdiv_values(nchannels_y) : make_uint3(0, 0, 0);
|
||||
const uint3 channel_ratio_fd = ids ? make_uint3(0, 0, 0) : init_fastdiv_values(nchannels_dst / nchannels_x);
|
||||
const uint3 sample_ratio_fd = init_fastdiv_values(nsamples_dst / nsamples_x);
|
||||
|
||||
const int device = ggml_cuda_get_device();
|
||||
const int warp_size = ggml_cuda_info().devices[device].warp_size;
|
||||
@@ -256,86 +258,70 @@ static void mul_mat_vec_q_switch_ncols_dst(
|
||||
|
||||
GGML_ASSERT(!ids || ncols_dst == 1);
|
||||
switch (ncols_dst) {
|
||||
case 1:
|
||||
{
|
||||
case 1: {
|
||||
constexpr int c_ncols_dst = 1;
|
||||
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
|
||||
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
break;
|
||||
}
|
||||
case 2:
|
||||
{
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 2: {
|
||||
constexpr int c_ncols_dst = 2;
|
||||
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
|
||||
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
break;
|
||||
}
|
||||
case 3:
|
||||
{
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 3: {
|
||||
constexpr int c_ncols_dst = 3;
|
||||
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
|
||||
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
break;
|
||||
}
|
||||
case 4:
|
||||
{
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 4: {
|
||||
constexpr int c_ncols_dst = 4;
|
||||
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
|
||||
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
break;
|
||||
}
|
||||
case 5:
|
||||
{
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 5: {
|
||||
constexpr int c_ncols_dst = 5;
|
||||
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
|
||||
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
break;
|
||||
}
|
||||
case 6:
|
||||
{
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 6: {
|
||||
constexpr int c_ncols_dst = 6;
|
||||
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
|
||||
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
break;
|
||||
}
|
||||
case 7:
|
||||
{
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 7: {
|
||||
constexpr int c_ncols_dst = 7;
|
||||
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
|
||||
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
break;
|
||||
}
|
||||
case 8:
|
||||
{
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 8: {
|
||||
constexpr int c_ncols_dst = 8;
|
||||
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
|
||||
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
break;
|
||||
}
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
|
||||
@@ -104,12 +104,30 @@ static __global__ void group_norm_f32(const float * x, float * dst, const int gr
|
||||
}
|
||||
}
|
||||
|
||||
template <int block_size, bool do_multiply = false>
|
||||
static __global__ void rms_norm_f32(
|
||||
const float * x, float * dst, const int ncols, const int64_t stride_row, const int64_t stride_channel,
|
||||
const int64_t stride_sample, const float eps, const float * mul = nullptr, const int64_t mul_stride_row = 0,
|
||||
const int64_t mul_stride_channel = 0, const int64_t mul_stride_sample = 0, const int mul_ncols = 0,
|
||||
const int mul_nrows = 0, const int mul_nchannels = 0, const int mul_nsamples = 0) {
|
||||
template <int block_size, bool do_multiply = false, bool do_add = false>
|
||||
static __global__ void rms_norm_f32(const float * x,
|
||||
float * dst,
|
||||
const int ncols,
|
||||
const int64_t stride_row,
|
||||
const int64_t stride_channel,
|
||||
const int64_t stride_sample,
|
||||
const float eps,
|
||||
const float * mul = nullptr,
|
||||
const int64_t mul_stride_row = 0,
|
||||
const int64_t mul_stride_channel = 0,
|
||||
const int64_t mul_stride_sample = 0,
|
||||
const uint3 mul_ncols_packed = make_uint3(0, 0, 0),
|
||||
const uint3 mul_nrows_packed = make_uint3(0, 0, 0),
|
||||
const uint3 mul_nchannels_packed = make_uint3(0, 0, 0),
|
||||
const uint3 mul_nsamples_packed = make_uint3(0, 0, 0),
|
||||
const float * add = nullptr,
|
||||
const int64_t add_stride_row = 0,
|
||||
const int64_t add_stride_channel = 0,
|
||||
const int64_t add_stride_sample = 0,
|
||||
const uint3 add_ncols_packed = make_uint3(0, 0, 0),
|
||||
const uint3 add_nrows_packed = make_uint3(0, 0, 0),
|
||||
const uint3 add_nchannels_packed = make_uint3(0, 0, 0),
|
||||
const uint3 add_nsamples_packed = make_uint3(0, 0, 0)) {
|
||||
const int nrows = gridDim.x;
|
||||
const int nchannels = gridDim.y;
|
||||
|
||||
@@ -118,14 +136,23 @@ static __global__ void rms_norm_f32(
|
||||
const int sample = blockIdx.z;
|
||||
const int tid = threadIdx.x;
|
||||
|
||||
static_assert(!do_add || do_multiply, "fusing add is not supported without multiplying");
|
||||
|
||||
x += sample*stride_sample + channel*stride_channel + row*stride_row;
|
||||
dst += ((sample*nchannels + channel)*nrows + row)*ncols;
|
||||
|
||||
if constexpr (do_multiply) {
|
||||
const int mul_row = row % mul_nrows;
|
||||
const int mul_channel = channel % mul_nchannels;
|
||||
const int mul_sample = sample % mul_nsamples;
|
||||
mul += mul_sample*mul_stride_sample + mul_channel*mul_stride_channel + mul_row*mul_stride_row;
|
||||
const uint32_t mul_row = fastmodulo(row, mul_nrows_packed);
|
||||
const uint32_t mul_channel = fastmodulo(channel, mul_nchannels_packed);
|
||||
const uint32_t mul_sample = fastmodulo(sample, mul_nsamples_packed);
|
||||
mul += mul_sample * mul_stride_sample + mul_channel * mul_stride_channel + mul_row * mul_stride_row;
|
||||
}
|
||||
|
||||
if constexpr (do_add) {
|
||||
const int add_row = fastmodulo(row, add_nrows_packed);
|
||||
const int add_channel = fastmodulo(channel, add_nchannels_packed);
|
||||
const int add_sample = fastmodulo(sample, add_nsamples_packed);
|
||||
add += add_sample * add_stride_sample + add_channel * add_stride_channel + add_row * add_stride_row;
|
||||
}
|
||||
|
||||
float tmp = 0.0f; // partial sum for thread in warp
|
||||
@@ -138,15 +165,18 @@ static __global__ void rms_norm_f32(
|
||||
// sum up partial sums
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
if constexpr (block_size > WARP_SIZE) {
|
||||
static_assert(block_size == 1024, "unexpected block_size");
|
||||
static_assert((block_size <= 1024) && (block_size % 32 == 0), "unexpected block_size");
|
||||
__shared__ float s_sum[32];
|
||||
const int warp_id = threadIdx.x / WARP_SIZE;
|
||||
const int lane_id = threadIdx.x % WARP_SIZE;
|
||||
const int warp_id = tid / WARP_SIZE;
|
||||
const int lane_id = tid % WARP_SIZE;
|
||||
if (lane_id == 0) {
|
||||
s_sum[warp_id] = tmp;
|
||||
}
|
||||
__syncthreads();
|
||||
tmp = s_sum[lane_id];
|
||||
tmp = 0.0f;
|
||||
if (lane_id < (block_size / WARP_SIZE)) {
|
||||
tmp = s_sum[lane_id];
|
||||
}
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
}
|
||||
|
||||
@@ -154,9 +184,13 @@ static __global__ void rms_norm_f32(
|
||||
const float scale = rsqrtf(mean + eps);
|
||||
|
||||
for (int col = tid; col < ncols; col += block_size) {
|
||||
if constexpr (do_multiply) {
|
||||
const int mul_col = col % mul_ncols;
|
||||
dst[col] = scale * x[col] * mul[mul_col];
|
||||
if constexpr (do_multiply && do_add) {
|
||||
const int mul_col = fastmodulo(col, mul_ncols_packed);
|
||||
const int add_col = fastmodulo(col, add_ncols_packed);
|
||||
dst[col] = scale * x[col] * mul[mul_col] + add[add_col];
|
||||
} else if constexpr (do_multiply) {
|
||||
const int mul_col = fastmodulo(col, mul_ncols_packed);
|
||||
dst[col] = scale * x[col] * mul[mul_col];
|
||||
} else {
|
||||
dst[col] = scale * x[col];
|
||||
}
|
||||
@@ -323,31 +357,87 @@ static void rms_norm_f32_cuda(
|
||||
const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample, const float eps, cudaStream_t stream) {
|
||||
const dim3 blocks_num(nrows, nchannels, nsamples);
|
||||
if (ncols < 1024) {
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
rms_norm_f32<WARP_SIZE, false><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps);
|
||||
const dim3 block_dims(256, 1, 1);
|
||||
rms_norm_f32<256, false><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps);
|
||||
} else {
|
||||
const dim3 block_dims(1024, 1, 1);
|
||||
rms_norm_f32<1024, false><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps);
|
||||
}
|
||||
}
|
||||
|
||||
static void rms_norm_mul_f32_cuda(
|
||||
const float * x, const float * mul, float * dst, const int ncols, const int nrows, const int nchannels, const int nsamples,
|
||||
const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample,
|
||||
const int64_t mul_stride_row, const int64_t mul_stride_channel, const int64_t mul_stride_sample,
|
||||
const int mul_ncols, const int mul_nrows, const int mul_nchannels, const int mul_nsamples,
|
||||
const float eps, cudaStream_t stream) {
|
||||
static void rms_norm_mul_f32_cuda(const float * x,
|
||||
const float * mul,
|
||||
const float * add,
|
||||
float * dst,
|
||||
const int ncols,
|
||||
const int nrows,
|
||||
const int nchannels,
|
||||
const int nsamples,
|
||||
const int64_t stride_row,
|
||||
const int64_t stride_channel,
|
||||
const int64_t stride_sample,
|
||||
const int64_t mul_stride_row,
|
||||
const int64_t mul_stride_channel,
|
||||
const int64_t mul_stride_sample,
|
||||
const uint32_t mul_ncols,
|
||||
const uint32_t mul_nrows,
|
||||
const uint32_t mul_nchannels,
|
||||
const uint32_t mul_nsamples,
|
||||
const int64_t add_stride_row,
|
||||
const int64_t add_stride_channel,
|
||||
const int64_t add_stride_sample,
|
||||
const uint32_t add_ncols,
|
||||
const uint32_t add_nrows,
|
||||
const uint32_t add_nchannels,
|
||||
const uint32_t add_nsamples,
|
||||
const float eps,
|
||||
cudaStream_t stream) {
|
||||
const dim3 blocks_num(nrows, nchannels, nsamples);
|
||||
if (mul == nullptr) {
|
||||
rms_norm_f32_cuda(x, dst, ncols, nrows, nchannels, nsamples, stride_row, stride_channel, stride_sample, eps, stream);
|
||||
return;
|
||||
}
|
||||
if (ncols < 1024) {
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
rms_norm_f32<WARP_SIZE, true><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel, mul_stride_sample, mul_ncols, mul_nrows, mul_nchannels, mul_nsamples);
|
||||
if (add == nullptr) {
|
||||
const uint3 mul_ncols_packed = init_fastdiv_values(mul_ncols);
|
||||
const uint3 mul_nrows_packed = init_fastdiv_values(mul_nrows);
|
||||
const uint3 mul_nchannels_packed = init_fastdiv_values(mul_nchannels);
|
||||
const uint3 mul_nsamples_packed = init_fastdiv_values(mul_nsamples);
|
||||
if (ncols < 1024) {
|
||||
const dim3 block_dims(256, 1, 1);
|
||||
rms_norm_f32<256, true><<<blocks_num, block_dims, 0, stream>>>(
|
||||
x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel,
|
||||
mul_stride_sample, mul_ncols_packed, mul_nrows_packed, mul_nchannels_packed, mul_nsamples_packed);
|
||||
} else {
|
||||
const dim3 block_dims(1024, 1, 1);
|
||||
rms_norm_f32<1024, true><<<blocks_num, block_dims, 0, stream>>>(
|
||||
x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel,
|
||||
mul_stride_sample, mul_ncols_packed, mul_nrows_packed, mul_nchannels_packed, mul_nsamples_packed);
|
||||
}
|
||||
} else {
|
||||
const dim3 block_dims(1024, 1, 1);
|
||||
rms_norm_f32<1024, true><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel, mul_stride_sample, mul_ncols, mul_nrows, mul_nchannels, mul_nsamples);
|
||||
const uint3 mul_ncols_packed = init_fastdiv_values(mul_ncols);
|
||||
const uint3 mul_nrows_packed = init_fastdiv_values(mul_nrows);
|
||||
const uint3 mul_nchannels_packed = init_fastdiv_values(mul_nchannels);
|
||||
const uint3 mul_nsamples_packed = init_fastdiv_values(mul_nsamples);
|
||||
|
||||
const uint3 add_ncols_packed = init_fastdiv_values(add_ncols);
|
||||
const uint3 add_nrows_packed = init_fastdiv_values(add_nrows);
|
||||
const uint3 add_nchannels_packed = init_fastdiv_values(add_nchannels);
|
||||
const uint3 add_nsamples_packed = init_fastdiv_values(add_nsamples);
|
||||
if (ncols < 1024) {
|
||||
const dim3 block_dims(256, 1, 1);
|
||||
rms_norm_f32<256, true, true><<<blocks_num, block_dims, 0, stream>>>(
|
||||
x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel,
|
||||
mul_stride_sample, mul_ncols_packed, mul_nrows_packed, mul_nchannels_packed, mul_nsamples_packed, add,
|
||||
add_stride_row, add_stride_channel, add_stride_sample, add_ncols_packed, add_nrows_packed,
|
||||
add_nchannels_packed, add_nsamples_packed);
|
||||
} else {
|
||||
const dim3 block_dims(1024, 1, 1);
|
||||
rms_norm_f32<1024, true, true><<<blocks_num, block_dims, 0, stream>>>(
|
||||
x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel,
|
||||
mul_stride_sample, mul_ncols_packed, mul_nrows_packed, mul_nchannels_packed, mul_nsamples_packed, add,
|
||||
add_stride_row, add_stride_channel, add_stride_sample, add_ncols_packed, add_nrows_packed,
|
||||
add_nchannels_packed, add_nsamples_packed);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -491,7 +581,102 @@ void ggml_cuda_op_rms_norm_fused(ggml_backend_cuda_context & ctx, ggml_tensor *
|
||||
const int mul_nchannels = mul_src->ne[2];
|
||||
const int mul_nsamples = mul_src->ne[3];
|
||||
|
||||
rms_norm_mul_f32_cuda(src0_d, mul_d, dst_d, ne00, ne01, ne02, ne03, s01, s02, s03, mul_s01, mul_s02, mul_s03, mul_ncols, mul_nrows, mul_nchannels, mul_nsamples, eps, stream);
|
||||
rms_norm_mul_f32_cuda(src0_d, mul_d, nullptr, dst_d,
|
||||
ne00, ne01, ne02, ne03,
|
||||
/*s00*/ s01, s02, s03,
|
||||
/*mul_s00*/ mul_s01, mul_s02, mul_s03,
|
||||
mul_ncols, mul_nrows, mul_nchannels, mul_nsamples,
|
||||
/*add_s00*/ 0, 0, 0,
|
||||
0, 0, 0, 0,
|
||||
eps, stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_rms_norm_fused_add(ggml_backend_cuda_context & ctx,
|
||||
ggml_tensor * dst,
|
||||
ggml_tensor * mul_tensor,
|
||||
ggml_tensor * add_tensor) {
|
||||
const ggml_tensor * rms_norm_src = (ggml_tensor *) dst->src[0];
|
||||
float eps = 0.0f;
|
||||
|
||||
memcpy(&eps, dst->op_params, sizeof(float));
|
||||
|
||||
const float * src0_d = (const float *) rms_norm_src->data;
|
||||
const float * mul_d = nullptr;
|
||||
const ggml_tensor * mul_src = nullptr;
|
||||
|
||||
if (mul_tensor->src[0] == dst) {
|
||||
mul_d = (float *) mul_tensor->src[1]->data;
|
||||
mul_src = mul_tensor->src[1];
|
||||
} else if (mul_tensor->src[1] == dst) {
|
||||
mul_d = (float *) mul_tensor->src[0]->data;
|
||||
mul_src = mul_tensor->src[0];
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
const float * add_d = nullptr;
|
||||
const ggml_tensor * add_src = nullptr;
|
||||
|
||||
if (add_tensor->src[0] == mul_tensor) {
|
||||
add_d = (float *) add_tensor->src[1]->data;
|
||||
add_src = add_tensor->src[1];
|
||||
} else if (add_tensor->src[1] == mul_tensor) {
|
||||
add_d = (float *) add_tensor->src[0]->data;
|
||||
add_src = add_tensor->src[0];
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
float * dst_d = (float *) add_tensor->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(rms_norm_src->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(mul_tensor->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(add_tensor->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(eps >= 0.0f);
|
||||
|
||||
const int64_t ne00 = rms_norm_src->ne[0];
|
||||
const int64_t ne01 = rms_norm_src->ne[1];
|
||||
const int64_t ne02 = rms_norm_src->ne[2];
|
||||
const int64_t ne03 = rms_norm_src->ne[3];
|
||||
|
||||
const size_t ts0 = ggml_type_size(rms_norm_src->type);
|
||||
GGML_ASSERT(rms_norm_src->nb[0] == ts0);
|
||||
const int64_t s01 = rms_norm_src->nb[1] / ts0;
|
||||
const int64_t s02 = rms_norm_src->nb[2] / ts0;
|
||||
const int64_t s03 = rms_norm_src->nb[3] / ts0;
|
||||
|
||||
const size_t ts_mul = ggml_type_size(mul_src->type);
|
||||
GGML_ASSERT(mul_src->nb[0] == ts_mul);
|
||||
const int64_t mul_s01 = mul_src->nb[1] / ts_mul;
|
||||
const int64_t mul_s02 = mul_src->nb[2] / ts_mul;
|
||||
const int64_t mul_s03 = mul_src->nb[3] / ts_mul;
|
||||
|
||||
const int mul_ncols = mul_src->ne[0];
|
||||
const int mul_nrows = mul_src->ne[1];
|
||||
const int mul_nchannels = mul_src->ne[2];
|
||||
const int mul_nsamples = mul_src->ne[3];
|
||||
|
||||
const size_t ts_add = ggml_type_size(add_src->type);
|
||||
GGML_ASSERT(add_src->nb[0] == ts_add);
|
||||
const int64_t add_s01 = add_src->nb[1] / ts_add;
|
||||
const int64_t add_s02 = add_src->nb[2] / ts_add;
|
||||
const int64_t add_s03 = add_src->nb[3] / ts_add;
|
||||
|
||||
const int add_ncols = add_src->ne[0];
|
||||
const int add_nrows = add_src->ne[1];
|
||||
const int add_nchannels = add_src->ne[2];
|
||||
const int add_nsamples = add_src->ne[3];
|
||||
|
||||
rms_norm_mul_f32_cuda(src0_d, mul_d,add_d,dst_d,
|
||||
ne00,ne01, ne02, ne03,
|
||||
/*s00*/ s01, s02, s03,
|
||||
/*mul_s00*/ mul_s01, mul_s02, mul_s03,
|
||||
mul_ncols, mul_nrows, mul_nchannels, mul_nsamples,
|
||||
/*add_s00*/ add_s01, add_s02, add_s03,
|
||||
add_ncols, add_nrows, add_nchannels, add_nsamples,
|
||||
eps, stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_rms_norm_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
||||
@@ -8,6 +8,11 @@ void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_rms_norm_fused(ggml_backend_cuda_context & ctx, ggml_tensor * dst, ggml_tensor * mul_tensor);
|
||||
|
||||
void ggml_cuda_op_rms_norm_fused_add(ggml_backend_cuda_context & ctx,
|
||||
ggml_tensor * dst,
|
||||
ggml_tensor * mul_tensor,
|
||||
ggml_tensor * add_tensor);
|
||||
|
||||
void ggml_cuda_op_rms_norm_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_l2_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
@@ -1,36 +1,50 @@
|
||||
#include "pad.cuh"
|
||||
|
||||
static __global__ void pad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
|
||||
// blockIdx.z: idx of ne2*ne3, aka ne02*ne03
|
||||
// blockIdx.y: idx of ne1
|
||||
// blockIDx.x: idx of ne0 / BLOCK_SIZE
|
||||
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
if (nidx >= ne0) {
|
||||
static __global__ void pad_f32(const float * src, float * dst,
|
||||
const int lp0, const int rp0, const int lp1, const int rp1,
|
||||
const int lp2, const int rp2, const int lp3, const int rp3,
|
||||
const int ne0, const int ne1, const int ne2, const int ne3) {
|
||||
// blockIdx.z: i3*ne2+i2
|
||||
// blockIdx.y: i1
|
||||
// blockIDx.x: i0 / CUDA_PAD_BLOCK_SIZE
|
||||
// gridDim.y: ne1
|
||||
int i0 = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
int i1 = blockIdx.y;
|
||||
int i2 = blockIdx.z % ne2;
|
||||
int i3 = blockIdx.z / ne2;
|
||||
if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
|
||||
return;
|
||||
}
|
||||
|
||||
// operation
|
||||
int offset_dst =
|
||||
nidx +
|
||||
blockIdx.y * ne0 +
|
||||
blockIdx.z * ne0 * gridDim.y;
|
||||
if (nidx < ne00 && blockIdx.y < (unsigned)ne01 && blockIdx.z < (unsigned)(ne02*ne03)) {
|
||||
int offset_src =
|
||||
nidx +
|
||||
blockIdx.y * ne00 +
|
||||
blockIdx.z * ne00 * ne01;
|
||||
dst[offset_dst] = x[offset_src];
|
||||
const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
|
||||
if ((i0 >= lp0 && i0 < ne0 - rp0) &&
|
||||
(i1 >= lp1 && i1 < ne1 - rp1) &&
|
||||
(i2 >= lp2 && i2 < ne2 - rp2) &&
|
||||
(i3 >= lp3 && i3 < ne3 - rp3)) {
|
||||
const int64_t i00 = i0 - lp0;
|
||||
const int64_t i01 = i1 - lp1;
|
||||
const int64_t i02 = i2 - lp2;
|
||||
const int64_t i03 = i3 - lp3;
|
||||
const int64_t ne02 = ne2 - lp2 - rp2;
|
||||
const int64_t ne01 = ne1 - lp1 - rp1;
|
||||
const int64_t ne00 = ne0 - lp0 - rp0;
|
||||
|
||||
const int64_t src_idx = i03*(ne00*ne01*ne02) + i02*(ne00*ne01) + i01*ne00 + i00;
|
||||
|
||||
dst[dst_idx] = src[src_idx];
|
||||
} else {
|
||||
dst[offset_dst] = 0.0f;
|
||||
dst[dst_idx] = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
static void pad_f32_cuda(const float * x, float * dst,
|
||||
const int ne00, const int ne01, const int ne02, const int ne03,
|
||||
static void pad_f32_cuda(const float * src, float * dst,
|
||||
const int lp0, const int rp0, const int lp1, const int rp1,
|
||||
const int lp2, const int rp2, const int lp3, const int rp3,
|
||||
const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
|
||||
int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
|
||||
dim3 gridDim(num_blocks, ne1, ne2*ne3);
|
||||
pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
|
||||
pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(src, dst, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3, ne0, ne1, ne2, ne3);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
@@ -41,9 +55,18 @@ void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
const int32_t lp0 = ((const int32_t*)(dst->op_params))[0];
|
||||
const int32_t rp0 = ((const int32_t*)(dst->op_params))[1];
|
||||
const int32_t lp1 = ((const int32_t*)(dst->op_params))[2];
|
||||
const int32_t rp1 = ((const int32_t*)(dst->op_params))[3];
|
||||
const int32_t lp2 = ((const int32_t*)(dst->op_params))[4];
|
||||
const int32_t rp2 = ((const int32_t*)(dst->op_params))[5];
|
||||
const int32_t lp3 = ((const int32_t*)(dst->op_params))[6];
|
||||
const int32_t rp3 = ((const int32_t*)(dst->op_params))[7];
|
||||
|
||||
pad_f32_cuda(src0_d, dst_d,
|
||||
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
|
||||
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
|
||||
lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3,
|
||||
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
|
||||
}
|
||||
|
||||
@@ -1,26 +1,27 @@
|
||||
#include "quantize.cuh"
|
||||
#include <cstdint>
|
||||
|
||||
__launch_bounds__(CUDA_QUANTIZE_BLOCK_SIZE, 1)
|
||||
static __global__ void quantize_q8_1(
|
||||
const float * __restrict__ x, void * __restrict__ vy,
|
||||
const int64_t ne00, const int64_t s01, const int64_t s02, const int64_t s03,
|
||||
const int64_t ne0, const int ne1, const int ne2) {
|
||||
const int64_t ne0, const uint32_t ne1, const uint3 ne2) {
|
||||
const int64_t i0 = (int64_t)blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i0 >= ne0) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int64_t i3 = fastdiv(blockIdx.z, ne2);
|
||||
const int64_t i2 = blockIdx.z - i3*ne2.z;
|
||||
const int64_t i1 = blockIdx.y;
|
||||
const int64_t i2 = blockIdx.z % ne2;
|
||||
const int64_t i3 = blockIdx.z / ne2;
|
||||
|
||||
const int64_t & i00 = i0;
|
||||
const int64_t & i01 = i1;
|
||||
const int64_t & i02 = i2;
|
||||
const int64_t & i03 = i3;
|
||||
|
||||
const int64_t i_cont = ((i3*ne2 + i2) * ne1 + i1) * ne0 + i0;
|
||||
const int64_t i_cont = ((i3*ne2.z + i2) * ne1 + i1) * ne0 + i0;
|
||||
|
||||
block_q8_1 * y = (block_q8_1 *) vy;
|
||||
|
||||
@@ -31,10 +32,10 @@ static __global__ void quantize_q8_1(
|
||||
float amax = fabsf(xi);
|
||||
float sum = xi;
|
||||
|
||||
amax = warp_reduce_max(amax);
|
||||
sum = warp_reduce_sum(sum);
|
||||
amax = warp_reduce_max<QK8_1>(amax);
|
||||
sum = warp_reduce_sum<QK8_1>(sum);
|
||||
|
||||
const float d = amax / 127;
|
||||
const float d = amax / 127.0f;
|
||||
const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);
|
||||
|
||||
y[ib].qs[iqs] = q;
|
||||
@@ -43,8 +44,7 @@ static __global__ void quantize_q8_1(
|
||||
return;
|
||||
}
|
||||
|
||||
reinterpret_cast<half&>(y[ib].ds.x) = d;
|
||||
reinterpret_cast<half&>(y[ib].ds.y) = sum;
|
||||
y[ib].ds = make_half2(d, sum);
|
||||
}
|
||||
|
||||
template <mmq_q8_1_ds_layout ds_layout>
|
||||
@@ -152,10 +152,12 @@ void quantize_row_q8_1_cuda(
|
||||
GGML_ASSERT(!ids);
|
||||
GGML_ASSERT(ne0 % QK8_1 == 0);
|
||||
|
||||
const uint3 ne2_fastdiv = init_fastdiv_values(ne2);
|
||||
|
||||
const int64_t block_num_x = (ne0 + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
|
||||
const dim3 num_blocks(block_num_x, ne1, ne2*ne3);
|
||||
const dim3 block_size(CUDA_QUANTIZE_BLOCK_SIZE, 1, 1);
|
||||
quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, ne00, s01, s02, s03, ne0, ne1, ne2);
|
||||
quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, ne00, s01, s02, s03, ne0, ne1, ne2_fastdiv);
|
||||
GGML_UNUSED(type_src0);
|
||||
}
|
||||
|
||||
|
||||
@@ -1,18 +1,19 @@
|
||||
#include "scale.cuh"
|
||||
|
||||
static __global__ void scale_f32(const float * x, float * dst, const float scale, const float bias, const int k) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
#define MAX_GRIDDIM_X 0x7FFFFFFF
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
static __global__ void scale_f32(const float * x, float * dst, const float scale, const float bias, const int64_t nelements) {
|
||||
int64_t tid = (int64_t)blockIdx.x * (int64_t)blockDim.x + (int64_t)threadIdx.x;
|
||||
int64_t stride = (int64_t)blockDim.x * (int64_t)gridDim.x;
|
||||
|
||||
for (int64_t i = tid; i < nelements; i += stride) {
|
||||
dst[i] = scale * x[i] + bias;
|
||||
}
|
||||
|
||||
dst[i] = scale * x[i] + bias;
|
||||
}
|
||||
|
||||
static void scale_f32_cuda(const float * x, float * dst, const float scale, const float bias, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
|
||||
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, bias, k);
|
||||
static void scale_f32_cuda(const float * x, float * dst, const float scale, const float bias, const int64_t nelements, cudaStream_t stream) {
|
||||
const int64_t num_blocks = (nelements + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
|
||||
scale_f32<<<MIN(MAX_GRIDDIM_X, num_blocks), CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, bias, nelements);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_scale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user