Compare commits

..

6 Commits
b6325 ... b6331

Author SHA1 Message Date
Jeff Bolz
c37052ab4d vulkan: mul_mat_id coopmat2 optimizations (#15546)
* vulkan: mul_mat_id coopmat2 optimizations

Add a path for when the tile fits in BN/2, similar to what we have for mul_mat.

Only call fetch_scales/store_scales once per QUANT_K block, and once at the
beginning in case start_k is not aligned.

* Also add a path for BN/4 - worth a couple more percent
2025-08-31 09:06:43 +02:00
Daniel Bevenius
5c16b9c87d vulkan : remove unused portability_enumeration_ext variable (#15679)
This commit removes the portability_enumeration_ext variable from the
ggml_vk_instance_portability_enumeration_ext_available function as it
is initialized to false but never modified, making it redundant.
2025-08-31 08:46:42 +02:00
Jeff Bolz
b97c9edc59 vulkan: Allow fallback to sysmem memory when vidmem is full (#15649)
* vulkan: Allow fallback to sysmem memory when vidmem is full

* vulkan: Add env var GGML_VK_ALLOW_SYSMEM_FALLBACK
2025-08-31 08:30:54 +02:00
Jeff Bolz
94e82c7ead vulkan: clamp matmul and FA results to the max finite value (#15652)
* vulkan: clamp matmul and FA results to the max finite value

* only clamp for fp16
2025-08-31 08:27:57 +02:00
Charles Xu
4d74393bcc ggml: update kleidiai to v1.13.0 (#15663) 2025-08-31 00:03:42 +08:00
Diego Devesa
dd892555b0 Update build.md to remove MSVC arm64 notes (#15684)
Removed information about MSVC compiler limitations for arm64 builds.
2025-08-30 23:51:28 +08:00
14 changed files with 272 additions and 90 deletions

View File

@@ -59,8 +59,6 @@ cmake --build build --config Release
cmake --preset arm64-windows-llvm-release -D GGML_OPENMP=OFF
cmake --build build-arm64-windows-llvm-release
```
Building for arm64 can also be done with the MSVC compiler with the build-arm64-windows-MSVC preset, or the standard CMake build instructions. However, note that the MSVC compiler does not support inline ARM assembly code, used e.g. for the accelerated Q4_0_N_M CPU kernels.
For building with ninja generator and clang compiler as default:
-set path:set LIB=C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.41.34120\lib\x64\uwp;C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\x64
```bash

View File

@@ -1,5 +1,5 @@
cmake_minimum_required(VERSION 3.14) # for add_link_options and implicit target directories.
project("ggml" C CXX)
project("ggml" C CXX ASM)
include(CheckIncludeFileCXX)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)

View File

@@ -497,9 +497,9 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
# Fetch KleidiAI sources:
include(FetchContent)
set(KLEIDIAI_COMMIT_TAG "v1.11.0")
set(KLEIDIAI_COMMIT_TAG "v1.13.0")
set(KLEIDIAI_DOWNLOAD_URL "https://github.com/ARM-software/kleidiai/archive/refs/tags/${KLEIDIAI_COMMIT_TAG}.tar.gz")
set(KLEIDIAI_ARCHIVE_MD5 "3fe9e5ab964c375c53839296eb71eaa2")
set(KLEIDIAI_ARCHIVE_MD5 "d82a8de939d9814621a5ba23907bdac1")
if (POLICY CMP0135)
cmake_policy(SET CMP0135 NEW)
@@ -555,6 +555,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
list(APPEND GGML_KLEIDIAI_SOURCES
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p4x8sb_f32_neon.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32_neon.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.c)
@@ -576,7 +577,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_fp32_bf16p_bf16p/kai_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_pack_bf16p2vlx2_f32_sme.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.c)
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.c
${KLEIDIAI_SRC}/kai/kai_common_sme_asm.S)
set(PRIVATE_ARCH_FLAGS "-fno-tree-vectorize;${PRIVATE_ARCH_FLAGS}+sve+sve2")
endif()

View File

@@ -14,6 +14,7 @@
#include "kai_lhs_pack_bf16p2vlx2_f32_sme.h"
#include "kai_lhs_quant_pack_qsi8d32p_f32.h"
#include "kai_lhs_quant_pack_qsi8d32p4x8sb_f32_neon.h"
#include "kai_lhs_quant_pack_qsi8d32p_f32_neon.h"
#include "kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.h"
@@ -127,6 +128,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32_neon,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32_neon,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32_neon,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32_neon,
},
/* SME GEMV */
/* .kern_info = */ {
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
@@ -141,7 +148,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
},
/* .lhs_info = */ {
/* .gemv_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32_neon,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32_neon,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32_neon,
@@ -173,6 +180,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .run_kernel = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_pack_bf16p2vlx2_f32_sme,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_pack_bf16p2vlx2_f32_sme,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_pack_bf16p2vlx2_f32_sme,
/* .pack_func = */ kai_run_lhs_pack_bf16p2vlx2_f32_sme,
},
/* SME GEMV */
/* .kern_info = */ {
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
@@ -187,7 +200,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .run_kernel = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
},
/* .lhs_info = */ {
/* .gemv_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_pack_bf16p2vlx2_f32_sme,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_pack_bf16p2vlx2_f32_sme,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_pack_bf16p2vlx2_f32_sme,
@@ -222,6 +235,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
},
/* DOTPROD GEMV */
/* .kern_info = */ {
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
@@ -236,7 +255,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
},
/* .lhs_info = */ {
/* .gemv_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
@@ -270,6 +289,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
},
/* i8mm GEMV */
/* .kern_info = */ {
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
@@ -284,7 +309,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
},
/* .lhs_info = */ {
/* .gemv_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
@@ -319,6 +344,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
},
/* i8mm GEMV */
/* .kern_info = */ {
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
@@ -333,7 +364,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
},
/* .lhs_info = */ {
/* .gemv_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
@@ -367,6 +398,12 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
},
/* DOTPROD GEMV */
/* .kern_info = */ {
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
@@ -381,7 +418,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
},
/* .lhs_info = */ {
/* .gemv_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,

View File

@@ -84,8 +84,11 @@ struct rhs_packing_info {
struct ggml_kleidiai_kernels {
kernel_info gemm;
lhs_packing_info gemm_lhs_info;
kernel_info gemv;
lhs_packing_info lhs_info;
lhs_packing_info gemv_lhs_info;
rhs_packing_info rhs_info;
cpu_feature required_cpu;

View File

@@ -123,7 +123,9 @@ class tensor_traits : public ggml::cpu::tensor_traits {
}
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, op);
GGML_ASSERT(kernels);
kernel_info * kernel = op->src[1]->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
bool is_gemv = op->src[1]->ne[1] == 1;
kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm;
lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info;
size_t k = op->src[0]->ne[0];
size_t n = op->src[0]->ne[1];
@@ -134,9 +136,9 @@ class tensor_traits : public ggml::cpu::tensor_traits {
size_t sr = kernel->get_sr();
if (kernels->rhs_type == GGML_TYPE_Q4_0) {
size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, QK4_0, mr, kr, sr);
size = variant_call<size_t>(lhs_info->packed_size, m, k, QK4_0, mr, kr, sr);
} else if (kernels->rhs_type == GGML_TYPE_F16) {
size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, mr, kr, sr) +
size = variant_call<size_t>(lhs_info->packed_size, m, k, mr, kr, sr) +
variant_call<size_t>(kernels->rhs_info.packed_size, n, k) +
k * n * sizeof(float) + n * sizeof(float);
} else {
@@ -173,7 +175,9 @@ class tensor_traits : public ggml::cpu::tensor_traits {
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst);
GGML_ASSERT(kernels);
kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
bool is_gemv = src1->ne[1] == 1;
kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm;
lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info;
GGML_ASSERT(kernel);
const int nth = params->nth;
@@ -198,7 +202,7 @@ class tensor_traits : public ggml::cpu::tensor_traits {
const int64_t kr = static_cast<int64_t>(kernel->get_kr());
const int64_t sr = static_cast<int64_t>(kernel->get_sr());
const size_t lhs_packed_size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, mr, kr, sr);
const size_t lhs_packed_size = variant_call<size_t>(lhs_info->packed_size, m, k, mr, kr, sr);
const size_t rhs_packed_size = variant_call<size_t>(kernels->rhs_info.packed_size, n, k);
const size_t kxn_size = k * n * sizeof(float);
const size_t bias_size = n * sizeof(float);
@@ -229,12 +233,12 @@ class tensor_traits : public ggml::cpu::tensor_traits {
const int64_t num_m_per_thread = (ith == num_threads - 1) ? num_m_per_threadN_1 : num_m_per_thread0;
const size_t lhs_offset = variant_call<size_t>(kernels->gemm.get_lhs_offset, m_start, lhs_stride);
const size_t lhs_packed_offset = variant_call<size_t>(kernels->lhs_info.get_packed_offset, m_start, k, mr, kr, sr);
const size_t lhs_packed_offset = variant_call<size_t>(lhs_info->get_packed_offset, m_start, k, mr, kr, sr);
const void * src_ptr = static_cast<const uint8_t *>(lhs_batch) + lhs_offset;
void * dst_ptr = static_cast<uint8_t *>(lhs_packed) + lhs_packed_offset;
variant_call<void>(kernels->lhs_info.pack_func, num_m_per_thread, k, mr, kr, sr, 0, src_ptr, lhs_stride, dst_ptr);
variant_call<void>(lhs_info->pack_func, num_m_per_thread, k, mr, kr, sr, 0, src_ptr, lhs_stride, dst_ptr);
}
}
@@ -306,8 +310,9 @@ class tensor_traits : public ggml::cpu::tensor_traits {
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst);
GGML_ASSERT(kernels);
kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
lhs_packing_info * lhs_info = &kernels->lhs_info;
bool is_gemv = src1->ne[1] == 1;
kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm;
lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info;
GGML_ASSERT(kernel);

View File

@@ -566,6 +566,7 @@ struct vk_device_struct {
bool disable_fusion;
bool disable_host_visible_vidmem;
bool allow_sysmem_fallback;
#ifdef GGML_VULKAN_MEMORY_DEBUG
std::unique_ptr<vk_memory_logger> memory_logger;
@@ -1808,8 +1809,8 @@ static uint32_t find_properties(const vk::PhysicalDeviceMemoryProperties* mem_pr
return UINT32_MAX;
}
static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, vk::MemoryPropertyFlags req_flags, vk::MemoryPropertyFlags fallback_flags = vk::MemoryPropertyFlags(0)) {
VK_LOG_DEBUG("ggml_vk_create_buffer(" << device->name << ", " << size << ", " << to_string(req_flags) << ", " << to_string(fallback_flags) << ")");
static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, const std::initializer_list<vk::MemoryPropertyFlags> & req_flags_list) {
VK_LOG_DEBUG("ggml_vk_create_buffer(" << device->name << ", " << size << ", " << to_string(req_flags_list.begin()[0]) << ", " << to_string(req_flags_list.begin()[req_flags_list.size()-1]) << ")");
if (size > device->max_memory_allocation_size) {
throw vk::OutOfDeviceMemoryError("Requested buffer size exceeds device memory allocation limit");
}
@@ -1836,42 +1837,27 @@ static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, vk::Memor
vk::PhysicalDeviceMemoryProperties mem_props = device->physical_device.getMemoryProperties();
uint32_t memory_type_index = UINT32_MAX;
for (auto &req_flags : req_flags_list) {
uint32_t memory_type_index = find_properties(&mem_props, &mem_req, req_flags);
memory_type_index = find_properties(&mem_props, &mem_req, req_flags);
buf->memory_property_flags = req_flags;
if (memory_type_index == UINT32_MAX) {
continue;
}
buf->memory_property_flags = req_flags;
if (memory_type_index == UINT32_MAX && fallback_flags) {
memory_type_index = find_properties(&mem_props, &mem_req, fallback_flags);
buf->memory_property_flags = fallback_flags;
try {
buf->device_memory = device->device.allocateMemory({ mem_req.size, memory_type_index });
break;
} catch (const vk::SystemError& e) {
// loop and retry
}
}
if (memory_type_index == UINT32_MAX) {
if (buf->device_memory == VK_NULL_HANDLE) {
device->device.destroyBuffer(buf->buffer);
throw vk::OutOfDeviceMemoryError("No suitable memory type found");
}
try {
buf->device_memory = device->device.allocateMemory({ mem_req.size, memory_type_index });
} catch (const vk::SystemError& e) {
if (buf->memory_property_flags != fallback_flags) {
// Try again with fallback flags
memory_type_index = find_properties(&mem_props, &mem_req, fallback_flags);
buf->memory_property_flags = fallback_flags;
try {
buf->device_memory = device->device.allocateMemory({ mem_req.size, memory_type_index });
}
catch (const vk::SystemError& e) {
device->device.destroyBuffer(buf->buffer);
throw e;
}
} else {
// Out of Host/Device memory, clean up buffer
device->device.destroyBuffer(buf->buffer);
throw e;
}
}
buf->ptr = nullptr;
if (buf->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
@@ -1892,7 +1878,7 @@ static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, vk::Memor
static vk_buffer ggml_vk_create_buffer_check(vk_device& device, size_t size, vk::MemoryPropertyFlags req_flags, vk::MemoryPropertyFlags fallback_flags = vk::MemoryPropertyFlags(0)) {
try {
return ggml_vk_create_buffer(device, size, req_flags, fallback_flags);
return ggml_vk_create_buffer(device, size, {req_flags, fallback_flags});
} catch (const vk::SystemError& e) {
std::cerr << "ggml_vulkan: Memory allocation of size " << size << " failed." << std::endl;
std::cerr << "ggml_vulkan: " << e.what() << std::endl;
@@ -1904,15 +1890,29 @@ static vk_buffer ggml_vk_create_buffer_device(vk_device& device, size_t size) {
vk_buffer buf;
try {
if (device->prefer_host_memory) {
buf = ggml_vk_create_buffer(device, size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent, vk::MemoryPropertyFlagBits::eDeviceLocal);
buf = ggml_vk_create_buffer(device, size, {vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent,
vk::MemoryPropertyFlagBits::eDeviceLocal});
} else if (device->uma) {
// Fall back to host memory type
buf = ggml_vk_create_buffer(device, size, vk::MemoryPropertyFlagBits::eDeviceLocal, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent);
buf = ggml_vk_create_buffer(device, size, {vk::MemoryPropertyFlagBits::eDeviceLocal,
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent});
} else if (device->disable_host_visible_vidmem) {
buf = ggml_vk_create_buffer(device, size, vk::MemoryPropertyFlagBits::eDeviceLocal, vk::MemoryPropertyFlagBits::eDeviceLocal);
if (device->allow_sysmem_fallback) {
buf = ggml_vk_create_buffer(device, size, {vk::MemoryPropertyFlagBits::eDeviceLocal,
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent});
} else {
buf = ggml_vk_create_buffer(device, size, {vk::MemoryPropertyFlagBits::eDeviceLocal});
}
} else {
// use rebar if available, otherwise fallback to device only visible memory
buf = ggml_vk_create_buffer(device, size, vk::MemoryPropertyFlagBits::eDeviceLocal | vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent, vk::MemoryPropertyFlagBits::eDeviceLocal);
if (device->allow_sysmem_fallback) {
buf = ggml_vk_create_buffer(device, size, {vk::MemoryPropertyFlagBits::eDeviceLocal | vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent,
vk::MemoryPropertyFlagBits::eDeviceLocal,
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent});
} else {
buf = ggml_vk_create_buffer(device, size, {vk::MemoryPropertyFlagBits::eDeviceLocal | vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent,
vk::MemoryPropertyFlagBits::eDeviceLocal});
}
}
} catch (const vk::SystemError& e) {
std::cerr << "ggml_vulkan: Device memory allocation of size " << size << " failed." << std::endl;
@@ -2225,7 +2225,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
s_mmq_wg_denoms_k = { 32, 64, 1 };
// spec constants and tile sizes for quant matmul_id
l_warptile_mmqid = { 256, 128, 128, 16, 0, device->subgroup_size };
l_warptile_mmqid = { 256, 128, 128, 16, 1, device->subgroup_size };
m_warptile_mmqid = { 256, 128, 64, 16, 0, device->subgroup_size };
s_warptile_mmqid = { 256, 128, 64, 16, 0, device->subgroup_size };
l_mmqid_wg_denoms = { 128, 128, 1 };
@@ -3437,6 +3437,9 @@ static vk_device ggml_vk_get_device(size_t idx) {
const char* GGML_VK_DISABLE_HOST_VISIBLE_VIDMEM = getenv("GGML_VK_DISABLE_HOST_VISIBLE_VIDMEM");
device->disable_host_visible_vidmem = GGML_VK_DISABLE_HOST_VISIBLE_VIDMEM != nullptr;
const char* GGML_VK_ALLOW_SYSMEM_FALLBACK = getenv("GGML_VK_ALLOW_SYSMEM_FALLBACK");
device->allow_sysmem_fallback = GGML_VK_ALLOW_SYSMEM_FALLBACK != nullptr;
bool fp16_storage = false;
bool fp16_compute = false;
bool maintenance4_support = false;
@@ -4774,8 +4777,8 @@ static vk_buffer ggml_vk_create_buffer_temp(ggml_backend_vk_context * ctx, size_
static void * ggml_vk_host_malloc(vk_device& device, size_t size) {
VK_LOG_MEMORY("ggml_vk_host_malloc(" << size << ")");
vk_buffer buf = ggml_vk_create_buffer(device, size,
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached,
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent);
{vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached,
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent});
if(!(buf->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible)) {
fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory\n",
@@ -9182,7 +9185,7 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t
if (ctx->prealloc_split_k != nullptr) {
ggml_vk_destroy_buffer(ctx->prealloc_split_k);
}
ctx->prealloc_split_k = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne * split_k, vk::MemoryPropertyFlagBits::eDeviceLocal);
ctx->prealloc_split_k = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne * split_k, {vk::MemoryPropertyFlagBits::eDeviceLocal});
}
}
@@ -9192,9 +9195,9 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t
ggml_pipeline_allocate_descriptor_sets(ctx);
vk_buffer d_X = ggml_vk_create_buffer_check(ctx->device, sizeof(X_TYPE) * x_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
vk_buffer d_Y = ggml_vk_create_buffer_check(ctx->device, sizeof(Y_TYPE) * y_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
vk_buffer d_D = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
vk_buffer d_X = ggml_vk_create_buffer_check(ctx->device, sizeof(X_TYPE) * x_ne, {vk::MemoryPropertyFlagBits::eDeviceLocal});
vk_buffer d_Y = ggml_vk_create_buffer_check(ctx->device, sizeof(Y_TYPE) * y_ne, {vk::MemoryPropertyFlagBits::eDeviceLocal});
vk_buffer d_D = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne, {vk::MemoryPropertyFlagBits::eDeviceLocal});
X_TYPE* x = (X_TYPE *) malloc(sizeof(X_TYPE) * x_ne);
Y_TYPE* y = (Y_TYPE *) malloc(sizeof(Y_TYPE) * y_ne);
@@ -9420,8 +9423,8 @@ static void ggml_vk_test_dequant(ggml_backend_vk_context * ctx, size_t ne, ggml_
const size_t qx_sz = ne * ggml_type_size(quant)/ggml_blck_size(quant);
float * x = (float *) malloc(x_sz);
void * qx = malloc(qx_sz);
vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, vk::MemoryPropertyFlagBits::eDeviceLocal);
vk_buffer x_buf = ggml_vk_create_buffer_check(ctx->device, x_sz_f16, vk::MemoryPropertyFlagBits::eDeviceLocal);
vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal});
vk_buffer x_buf = ggml_vk_create_buffer_check(ctx->device, x_sz_f16, {vk::MemoryPropertyFlagBits::eDeviceLocal});
float * x_ref = (float *) malloc(x_sz);
ggml_fp16_t * x_chk = (ggml_fp16_t *) malloc(x_sz_f16);
@@ -9526,8 +9529,8 @@ static void ggml_vk_test_dequant(ggml_backend_vk_context * ctx, size_t ne, ggml_
// float * x = (float *) malloc(x_sz);
// block_q8_1 * qx = (block_q8_1 *)malloc(qx_sz);
// block_q8_1 * qx_res = (block_q8_1 *)malloc(qx_sz);
// vk_buffer x_buf = ggml_vk_create_buffer_check(ctx->device, x_sz, vk::MemoryPropertyFlagBits::eDeviceLocal);
// vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, vk::MemoryPropertyFlagBits::eDeviceLocal);
// vk_buffer x_buf = ggml_vk_create_buffer_check(ctx->device, x_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal});
// vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal});
//
// for (size_t i = 0; i < ne; i++) {
// x[i] = rand() / (float)RAND_MAX;
@@ -9674,10 +9677,10 @@ static void ggml_vk_test_dequant_matmul(ggml_backend_vk_context * ctx, size_t m,
float * x = (float *) malloc(x_sz);
float * y = (float *) malloc(y_sz);
void * qx = malloc(qx_sz);
vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, vk::MemoryPropertyFlagBits::eDeviceLocal);
vk_buffer y_buf = ggml_vk_create_buffer_check(ctx->device, y_sz, vk::MemoryPropertyFlagBits::eDeviceLocal);
vk_buffer qy_buf = ggml_vk_create_buffer_check(ctx->device, qy_sz, vk::MemoryPropertyFlagBits::eDeviceLocal);
vk_buffer d_buf = ggml_vk_create_buffer_check(ctx->device, d_sz, vk::MemoryPropertyFlagBits::eDeviceLocal);
vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal});
vk_buffer y_buf = ggml_vk_create_buffer_check(ctx->device, y_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal});
vk_buffer qy_buf = ggml_vk_create_buffer_check(ctx->device, qy_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal});
vk_buffer d_buf = ggml_vk_create_buffer_check(ctx->device, d_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal});
float * d = (float *) malloc(d_sz);
float * d_chk = (float *) malloc(d_sz);
@@ -9704,7 +9707,7 @@ static void ggml_vk_test_dequant_matmul(ggml_backend_vk_context * ctx, size_t m,
if (ctx->prealloc_split_k != nullptr) {
ggml_vk_destroy_buffer(ctx->prealloc_split_k);
}
ctx->prealloc_split_k = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne * split_k, vk::MemoryPropertyFlagBits::eDeviceLocal);
ctx->prealloc_split_k = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne * split_k, {vk::MemoryPropertyFlagBits::eDeviceLocal});
}
}
if (mmq) {
@@ -12012,16 +12015,13 @@ static bool ggml_vk_instance_validation_ext_available(const std::vector<vk::Exte
}
static bool ggml_vk_instance_portability_enumeration_ext_available(const std::vector<vk::ExtensionProperties>& instance_extensions) {
#ifdef __APPLE__
bool portability_enumeration_ext = false;
// Check for portability enumeration extension for MoltenVK support
for (const auto& properties : instance_extensions) {
if (strcmp("VK_KHR_portability_enumeration", properties.extensionName) == 0) {
return true;
}
}
if (!portability_enumeration_ext) {
std::cerr << "ggml_vulkan: WARNING: Instance extension VK_KHR_portability_enumeration not found." << std::endl;
}
std::cerr << "ggml_vulkan: WARNING: Instance extension VK_KHR_portability_enumeration not found." << std::endl;
#endif
return false;

View File

@@ -334,6 +334,9 @@ void main() {
[[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) {
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {
Of[r][d] *= Lfrcp[r];
#if defined(ACC_TYPE_MAX)
Of[r][d] = clamp(Of[r][d], -vec4(ACC_TYPE_MAX), vec4(ACC_TYPE_MAX));
#endif
}
}

View File

@@ -373,6 +373,9 @@ void main() {
[[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) {
[[unroll]] for (uint32_t r = 0; r < rows_per_thread; ++r) {
Of[r][d] *= ACC_TYPE(Lfrcp[r]);
#if defined(ACC_TYPE_MAX)
Of[r][d] = clamp(Of[r][d], -ACC_TYPE_MAX, ACC_TYPE_MAX);
#endif
}
}

View File

@@ -283,6 +283,10 @@ void main() {
O = Ldiag*O;
#if defined(ACC_TYPE_MAX)
[[unroll]] for (uint i = 0; i < O.length(); ++i) { O[i] = clamp(O[i], -ACC_TYPE_MAX, ACC_TYPE_MAX); }
#endif
uint32_t o_offset = iq3*p.ne2*p.ne1*HSV;
coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator> O_D = coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator>(O);

View File

@@ -111,6 +111,10 @@ void main() {
}
}
O *= L;
const float FLT_MAX = uintBitsToFloat(0x7F7FFFFF);
O = clamp(O, -FLT_MAX, FLT_MAX);
data_d[iq3 * D * N + D * n + d] = O;
}
}

View File

@@ -891,6 +891,20 @@ void main() {
barrier();
}
#if defined(ACC_TYPE_MAX)
#ifdef COOPMAT
[[unroll]] for (uint j = 0; j < cms_per_row * cms_per_col; j++) {
[[unroll]] for (uint i = 0; i < sums[j].length(); ++i) {
sums[j][i] = clamp(sums[j][i], -ACC_TYPE_MAX, ACC_TYPE_MAX);
}
}
#else
[[unroll]] for (uint i = 0; i < WMITER*TM*WNITER*TN; i++) {
sums[i] = clamp(sums[i], -ACC_TYPE_MAX, ACC_TYPE_MAX);
}
#endif
#endif
const uint dr = ir * BM + warp_r * WM;
const uint dc = ic * BN + warp_c * WN;

View File

@@ -349,6 +349,10 @@ void main() {
sum = coopMatMulAdd(mat_a, mat_b, sum);
block_k += BK;
}
#if defined(ACC_TYPE_MAX)
[[unroll]] for (uint i = 0; i < sum.length(); ++i) { sum[i] = clamp(sum[i], -ACC_TYPE_MAX, ACC_TYPE_MAX); }
#endif
coopmat<D_TYPE, gl_ScopeWorkgroup, BM, BNover4, gl_MatrixUseAccumulator> mat_d = coopmat<D_TYPE, gl_ScopeWorkgroup, BM, BNover4, gl_MatrixUseAccumulator>(sum);
coopMatStoreTensorNV(mat_d, data_d, pos_d, sliceTensorLayoutNV(tensorLayoutD, ic * BN, BNover4, ir * BM, BM), tensorViewTranspose);
@@ -388,6 +392,10 @@ void main() {
sum = coopMatMulAdd(mat_a, mat_b, sum);
block_k += BK;
}
#if defined(ACC_TYPE_MAX)
[[unroll]] for (uint i = 0; i < sum.length(); ++i) { sum[i] = clamp(sum[i], -ACC_TYPE_MAX, ACC_TYPE_MAX); }
#endif
coopmat<D_TYPE, gl_ScopeWorkgroup, BM, BNover2, gl_MatrixUseAccumulator> mat_d = coopmat<D_TYPE, gl_ScopeWorkgroup, BM, BNover2, gl_MatrixUseAccumulator>(sum);
coopMatStoreTensorNV(mat_d, data_d, pos_d, sliceTensorLayoutNV(tensorLayoutD, ic * BN, BNover2, ir * BM, BM), tensorViewTranspose);
@@ -428,6 +436,10 @@ void main() {
sum = coopMatMulAdd(mat_a, mat_b, sum);
block_k += BK;
}
#if defined(ACC_TYPE_MAX)
[[unroll]] for (uint i = 0; i < sum.length(); ++i) { sum[i] = clamp(sum[i], -ACC_TYPE_MAX, ACC_TYPE_MAX); }
#endif
coopmat<D_TYPE, gl_ScopeWorkgroup, BM, BN, gl_MatrixUseAccumulator> mat_d = coopmat<D_TYPE, gl_ScopeWorkgroup, BM, BN, gl_MatrixUseAccumulator>(sum);
coopMatStoreTensorNV(mat_d, data_d, pos_d, sliceTensorLayoutNV(tensorLayoutD, ic * BN, BN, ir * BM, BM), tensorViewTranspose);
@@ -444,18 +456,105 @@ void main() {
tensorLayoutBClamp = setTensorLayoutStrideNV(tensorLayoutBClamp, stride_b, 1);
coopmat<ACC_TYPE, gl_ScopeWorkgroup, BM, BN, gl_MatrixUseAccumulator> sum;
sum = coopmat<ACC_TYPE, gl_ScopeWorkgroup, BM, BN, gl_MatrixUseAccumulator>(0.0);
uint k_iters = (end_k - start_k + BK - 1) / BK;
fetch_scales(ir * BM, pos_a, stride_a, start_k, tid, false);
store_scales(tid);
#ifdef MUL_MAT_ID
if (enable_smaller_matrices && ic * BN + BNover4 >= _ne1) {
coopmat<ACC_TYPE, gl_ScopeWorkgroup, BM, BNover4, gl_MatrixUseAccumulator> sum;
sum = coopmat<ACC_TYPE, gl_ScopeWorkgroup, BM, BNover4, gl_MatrixUseAccumulator>(0.0);
[[dont_unroll]]
for (uint block_k = start_k, i = 0; i < k_iters; block_k += BK, ++i) {
if ((block_k % QUANT_K) == 0) {
store_scales(tid);
}
if (block_k + BK < end_k && ((block_k + BK) % QUANT_K) == 0) {
fetch_scales(ir * BM, pos_a, stride_a, block_k + BK, tid, false);
}
if ((ir + 1) * BM <= p.M && block_k + BK <= end_k) {
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BNover4, gl_MatrixUseB> mat_b;
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA);
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BNover4, block_k, BK), tensorViewTranspose, decodeFuncB);
sum = coopMatMulAdd(mat_a, mat_b, sum);
} else {
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BNover4, gl_MatrixUseB> mat_b;
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutAClamp, ir * BM, BM, block_k, BK) DECODEFUNCA);
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BNover4, block_k, BK), tensorViewTranspose, decodeFuncB);
sum = coopMatMulAdd(mat_a, mat_b, sum);
}
}
// Convert from ACC_TYPE to D_TYPE
coopmat<D_TYPE, gl_ScopeWorkgroup, BM, BNover4, gl_MatrixUseAccumulator> mat_d;
mat_d = coopmat<D_TYPE, gl_ScopeWorkgroup, BM, BNover4, gl_MatrixUseAccumulator>(sum);
// Call callback to store each element, remapping row through shared memory
coopMatPerElementNV(mat_d, mat_d, perElemOpD, ir, ic);
return;
}
if (enable_smaller_matrices && ic * BN + BNover2 >= _ne1) {
coopmat<ACC_TYPE, gl_ScopeWorkgroup, BM, BNover2, gl_MatrixUseAccumulator> sum;
sum = coopmat<ACC_TYPE, gl_ScopeWorkgroup, BM, BNover2, gl_MatrixUseAccumulator>(0.0);
[[dont_unroll]]
for (uint block_k = start_k, i = 0; i < k_iters; block_k += BK, ++i) {
if ((block_k % QUANT_K) == 0) {
store_scales(tid);
}
if (block_k + BK < end_k && ((block_k + BK) % QUANT_K) == 0) {
fetch_scales(ir * BM, pos_a, stride_a, block_k + BK, tid, false);
}
if ((ir + 1) * BM <= p.M && block_k + BK <= end_k) {
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BNover2, gl_MatrixUseB> mat_b;
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA);
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BNover2, block_k, BK), tensorViewTranspose, decodeFuncB);
sum = coopMatMulAdd(mat_a, mat_b, sum);
} else {
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BNover2, gl_MatrixUseB> mat_b;
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutAClamp, ir * BM, BM, block_k, BK) DECODEFUNCA);
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BNover2, block_k, BK), tensorViewTranspose, decodeFuncB);
sum = coopMatMulAdd(mat_a, mat_b, sum);
}
}
// Convert from ACC_TYPE to D_TYPE
coopmat<D_TYPE, gl_ScopeWorkgroup, BM, BNover2, gl_MatrixUseAccumulator> mat_d;
mat_d = coopmat<D_TYPE, gl_ScopeWorkgroup, BM, BNover2, gl_MatrixUseAccumulator>(sum);
// Call callback to store each element, remapping row through shared memory
coopMatPerElementNV(mat_d, mat_d, perElemOpD, ir, ic);
return;
}
#endif
coopmat<ACC_TYPE, gl_ScopeWorkgroup, BM, BN, gl_MatrixUseAccumulator> sum;
sum = coopmat<ACC_TYPE, gl_ScopeWorkgroup, BM, BN, gl_MatrixUseAccumulator>(0.0);
[[dont_unroll]]
for (uint block_k = start_k, i = 0; i < k_iters; block_k += BK, ++i) {
store_scales(tid);
if (block_k + BK < end_k) {
if ((block_k % QUANT_K) == 0) {
store_scales(tid);
}
if (block_k + BK < end_k && ((block_k + BK) % QUANT_K) == 0) {
fetch_scales(ir * BM, pos_a, stride_a, block_k + BK, tid, false);
}
@@ -485,6 +584,9 @@ void main() {
sum = coopMatMulAdd(mat_a, mat_b, sum);
}
}
#if defined(ACC_TYPE_MAX)
[[unroll]] for (uint i = 0; i < sum.length(); ++i) { sum[i] = clamp(sum[i], -ACC_TYPE_MAX, ACC_TYPE_MAX); }
#endif
// Convert from ACC_TYPE to D_TYPE
coopmat<D_TYPE, gl_ScopeWorkgroup, BM, BN, gl_MatrixUseAccumulator> mat_d;

View File

@@ -323,6 +323,9 @@ void matmul_shaders(bool fp16, MatMulIdType matmul_id_type, bool coopmat, bool c
}
base_dict["ACC_TYPE"] = f16acc ? "float16_t" : "float";
if (f16acc) {
base_dict["ACC_TYPE_MAX"] = "\"float16_t(65504.0)\"";
}
if (coopmat) {
base_dict["COOPMAT"] = "1";
@@ -437,8 +440,12 @@ void process_shaders() {
// flash attention
for (const auto& f16acc : {false, true}) {
std::string acctype = f16acc ? "float16_t" : "float";
std::string acctypev4 = f16acc ? "f16vec4" : "vec4";
std::map<std::string, std::string> fa_base_dict = base_dict;
fa_base_dict["ACC_TYPE"] = f16acc ? "float16_t" : "float";
fa_base_dict["ACC_TYPEV4"] = f16acc ? "f16vec4" : "vec4";
if (f16acc) {
fa_base_dict["ACC_TYPE_MAX"] = "\"float16_t(65504.0)\"";
}
for (const auto& tname : type_names) {
if (tname == "f32") {
@@ -449,30 +456,30 @@ void process_shaders() {
#if defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
if (tname == "f16") {
string_to_spv("flash_attn_f32_f16_" + tname, "flash_attn_cm2.comp",
merge_maps(base_dict, {{"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"ACC_TYPE", acctype}}), true, false, true, f16acc);
merge_maps(fa_base_dict, {{"Q_TYPE", "float"}, {"D_TYPE", "float"}}), true, false, true, f16acc);
} else {
std::string data_a_key = "DATA_A_" + to_uppercase(tname);
string_to_spv("flash_attn_f32_f16_" + tname, "flash_attn_cm2.comp",
merge_maps(base_dict, {{data_a_key, "1"}, {"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"ACC_TYPE", acctype}, {"DEQUANTFUNC", "dequantFunc"+to_uppercase(tname) }, {"BLOCK_SIZE", "QUANT_K_"+to_uppercase(tname) }}), true, false, true, f16acc);
merge_maps(fa_base_dict, {{data_a_key, "1"}, {"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"DEQUANTFUNC", "dequantFunc"+to_uppercase(tname) }, {"BLOCK_SIZE", "QUANT_K_"+to_uppercase(tname) }}), true, false, true, f16acc);
}
#endif
#if defined(GGML_VULKAN_COOPMAT_GLSLC_SUPPORT)
if (tname == "f16") {
string_to_spv("flash_attn_f32_f16_" + tname, "flash_attn_cm1.comp",
merge_maps(base_dict, {{"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"ACC_TYPE", acctype}, {"ACC_TYPEV4", acctypev4}, {"COOPMAT", "1"}}), true, true, false, f16acc);
merge_maps(fa_base_dict, {{"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"COOPMAT", "1"}}), true, true, false, f16acc);
} else if (tname == "q4_0" || tname == "q8_0") {
std::string data_a_key = "DATA_A_" + to_uppercase(tname);
string_to_spv("flash_attn_f32_f16_" + tname, "flash_attn_cm1.comp",
merge_maps(base_dict, {{data_a_key, "1"}, {"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"ACC_TYPE", acctype}, {"ACC_TYPEV4", acctypev4}, {"BLOCK_SIZE", "QUANT_K_"+to_uppercase(tname)}, {"COOPMAT", "1"}}), true, true, false, f16acc);
merge_maps(fa_base_dict, {{data_a_key, "1"}, {"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"BLOCK_SIZE", "QUANT_K_"+to_uppercase(tname)}, {"COOPMAT", "1"}}), true, true, false, f16acc);
}
#endif
if (tname == "f16") {
string_to_spv("flash_attn_f32_f16_" + tname, "flash_attn.comp",
merge_maps(base_dict, {{"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"ACC_TYPE", acctype}}), true, false, false, f16acc);
merge_maps(fa_base_dict, {{"Q_TYPE", "float"}, {"D_TYPE", "float"}}), true, false, false, f16acc);
} else if (tname == "q4_0" || tname == "q8_0") {
std::string data_a_key = "DATA_A_" + to_uppercase(tname);
string_to_spv("flash_attn_f32_f16_" + tname, "flash_attn.comp",
merge_maps(base_dict, {{data_a_key, "1"}, {"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"ACC_TYPE", acctype}, {"BLOCK_SIZE", "QUANT_K_"+to_uppercase(tname) }}), true, false, false, f16acc);
merge_maps(fa_base_dict, {{data_a_key, "1"}, {"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"BLOCK_SIZE", "QUANT_K_"+to_uppercase(tname) }}), true, false, false, f16acc);
}
}
}