Compare commits

..

1 Commits

Author SHA1 Message Date
Georgi Gerganov
4317d5abf5 wip 2025-08-28 13:55:21 +03:00
165 changed files with 3048 additions and 9088 deletions

View File

@@ -22,7 +22,7 @@ AllowShortIfStatementsOnASingleLine: Never
AllowShortLambdasOnASingleLine: Inline
AllowShortLoopsOnASingleLine: false
AlwaysBreakBeforeMultilineStrings: true
BinPackArguments: true
BinPackArguments: false
BinPackParameters: false # OnePerLine
BitFieldColonSpacing: Both
BreakBeforeBraces: Custom # Attach

View File

@@ -17,7 +17,7 @@ jobs:
steps:
- uses: actions/stale@v5
with:
exempt-issue-labels: "refactoring,help wanted,good first issue,research 🔬,bug,roadmap"
exempt-issue-labels: "refactoring,help wanted,good first issue,research,bug,roadmap"
days-before-issue-stale: 30
days-before-issue-close: 14
stale-issue-label: "stale"

View File

@@ -137,7 +137,6 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [X] [Trillion-7B-preview](https://huggingface.co/trillionlabs/Trillion-7B-preview)
- [x] [Ling models](https://huggingface.co/collections/inclusionAI/ling-67c51c85b34a7ea0aba94c32)
- [x] [LFM2 models](https://huggingface.co/collections/LiquidAI/lfm2-686d721927015b2ad73eaa38)
- [x] [Hunyuan models](https://huggingface.co/collections/tencent/hunyuan-dense-model-6890632cda26b19119c9c5e7)
#### Multimodal

View File

@@ -386,10 +386,10 @@ function gg_run_open_llama_7b_v2 {
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@@ -520,8 +520,8 @@ function gg_run_pythia_1_4b {
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@@ -651,10 +651,10 @@ function gg_run_pythia_2_8b {
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"

View File

@@ -1263,18 +1263,6 @@ static std::string list_builtin_chat_templates() {
return msg.str();
}
static bool is_truthy(const std::string & value) {
return value == "on" || value == "enabled" || value == "1";
}
static bool is_falsey(const std::string & value) {
return value == "off" || value == "disabled" || value == "0";
}
static bool is_autoy(const std::string & value) {
return value == "auto" || value == "-1";
}
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
// load dynamic backends
ggml_backend_load_all();
@@ -1556,21 +1544,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.n_chunks = value;
}
).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_RETRIEVAL}));
add_opt(common_arg({ "-fa", "--flash-attn" }, "[on|off|auto]",
string_format("set Flash Attention use ('on', 'off', or 'auto', default: '%s')",
llama_flash_attn_type_name(params.flash_attn_type)),
[](common_params & params, const std::string & value) {
if (is_truthy(value)) {
params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_ENABLED;
} else if (is_falsey(value)) {
params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_DISABLED;
} else if (is_autoy(value)) {
params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_AUTO;
} else {
throw std::runtime_error(
string_format("error: unkown value for --flash-attn: '%s'\n", value.c_str()));
}
}).set_env("LLAMA_ARG_FLASH_ATTN"));
add_opt(common_arg(
{"-fa", "--flash-attn"},
string_format("enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled"),
[](common_params & params) {
params.flash_attn = true;
}
).set_env("LLAMA_ARG_FLASH_ATTN"));
add_opt(common_arg(
{"-p", "--prompt"}, "PROMPT",
"prompt to start generation with; for system message, use -sys",
@@ -2478,7 +2458,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_N_CPU_MOE_DRAFT"));
add_opt(common_arg(
{"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
string_format("max. number of layers to store in VRAM (default: %d)", params.n_gpu_layers),
"number of layers to store in VRAM",
[](common_params & params, int value) {
params.n_gpu_layers = value;
if (!llama_supports_gpu_offload()) {
@@ -2575,7 +2555,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--lora"}, "FNAME",
"path to LoRA adapter (can be repeated to use multiple adapters)",
[](common_params & params, const std::string & value) {
params.lora_adapters.push_back({ std::string(value), 1.0, "", "", nullptr });
params.lora_adapters.push_back({ std::string(value), 1.0, nullptr });
}
// we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
@@ -2583,7 +2563,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--lora-scaled"}, "FNAME", "SCALE",
"path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters)",
[](common_params & params, const std::string & fname, const std::string & scale) {
params.lora_adapters.push_back({ fname, std::stof(scale), "", "", nullptr });
params.lora_adapters.push_back({ fname, std::stof(scale), nullptr });
}
// we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
@@ -2974,13 +2954,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.endpoint_metrics = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_METRICS"));
add_opt(common_arg(
{"--props"},
string_format("enable changing global properties via POST /props (default: %s)", params.endpoint_props ? "enabled" : "disabled"),
[](common_params & params) {
params.endpoint_props = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_PROPS"));
add_opt(common_arg(
{"--slots"},
string_format("enable slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"),
@@ -2988,6 +2961,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.endpoint_slots = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS"));
add_opt(common_arg(
{"--props"},
string_format("enable changing global properties via POST /props (default: %s)", params.endpoint_props ? "enabled" : "disabled"),
[](common_params & params) {
params.endpoint_props = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_PROPS"));
add_opt(common_arg(
{"--no-slots"},
"disables slots monitoring endpoint",
@@ -3146,21 +3126,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
common_log_set_file(common_log_main(), value.c_str());
}
));
add_opt(common_arg({ "--log-colors" }, "[on|off|auto]",
"Set colored logging ('on', 'off', or 'auto', default: 'auto')\n"
"'auto' enables colors when output is to a terminal",
[](common_params &, const std::string & value) {
if (is_truthy(value)) {
common_log_set_colors(common_log_main(), LOG_COLORS_ENABLED);
} else if (is_falsey(value)) {
common_log_set_colors(common_log_main(), LOG_COLORS_DISABLED);
} else if (is_autoy(value)) {
common_log_set_colors(common_log_main(), LOG_COLORS_AUTO);
} else {
throw std::invalid_argument(
string_format("error: unkown value for --log-colors: '%s'\n", value.c_str()));
}
}).set_env("LLAMA_LOG_COLORS"));
add_opt(common_arg(
{"--log-colors"},
"Enable colored logging",
[](common_params &) {
common_log_set_colors(common_log_main(), true);
}
).set_env("LLAMA_LOG_COLORS"));
add_opt(common_arg(
{"-v", "--verbose", "--log-verbose"},
"Set verbosity level to infinity (i.e. log all messages, useful for debugging)",
@@ -3487,6 +3459,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF";
params.model.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf";
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
params.n_ubatch = 1024;
params.n_batch = 1024;
params.n_ctx = 0;
@@ -3501,6 +3475,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF";
params.model.hf_file = "qwen2.5-coder-3b-q8_0.gguf";
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
params.n_ubatch = 1024;
params.n_batch = 1024;
params.n_ctx = 0;
@@ -3515,6 +3491,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
params.n_ubatch = 1024;
params.n_batch = 1024;
params.n_ctx = 0;
@@ -3530,7 +3508,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.speculative.n_gpu_layers = 99;
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
params.n_ubatch = 1024;
params.n_batch = 1024;
params.n_ctx = 0;
@@ -3546,7 +3527,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.model.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.speculative.n_gpu_layers = 99;
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
params.n_ubatch = 1024;
params.n_batch = 1024;
params.n_ctx = 0;
@@ -3561,6 +3545,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.model.hf_repo = "ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF";
params.model.hf_file = "qwen3-coder-30b-a3b-instruct-q8_0.gguf";
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
params.n_ubatch = 1024;
params.n_batch = 1024;
params.n_ctx = 0;

View File

@@ -163,19 +163,6 @@ common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::strin
throw std::runtime_error("Invalid tool_choice: " + tool_choice);
}
bool common_chat_templates_support_enable_thinking(const common_chat_templates * chat_templates) {
common_chat_templates_inputs dummy_inputs;
common_chat_msg msg;
msg.role = "user";
msg.content = "test";
dummy_inputs.messages = {msg};
dummy_inputs.enable_thinking = false;
const auto rendered_no_thinking = common_chat_templates_apply(chat_templates, dummy_inputs);
dummy_inputs.enable_thinking = true;
const auto rendered_with_thinking = common_chat_templates_apply(chat_templates, dummy_inputs);
return rendered_no_thinking.prompt != rendered_with_thinking.prompt;
}
template <>
std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const json & messages) {
std::vector<common_chat_msg> msgs;
@@ -635,8 +622,6 @@ const char * common_chat_format_name(common_chat_format format) {
case COMMON_CHAT_FORMAT_COMMAND_R7B: return "Command R7B";
case COMMON_CHAT_FORMAT_GRANITE: return "Granite";
case COMMON_CHAT_FORMAT_GPT_OSS: return "GPT-OSS";
case COMMON_CHAT_FORMAT_SEED_OSS: return "Seed-OSS";
case COMMON_CHAT_FORMAT_NEMOTRON_V2: return "Nemotron V2";
default:
throw std::runtime_error("Unknown chat format");
}
@@ -1198,67 +1183,6 @@ static common_chat_params common_chat_params_init_llama_3_x(const common_chat_te
});
return data;
}
static common_chat_params common_chat_params_init_nemotron_v2(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
// Generate the prompt using the apply() function with the template
data.prompt = apply(tmpl, inputs);
data.format = COMMON_CHAT_FORMAT_NEMOTRON_V2;
// Handle thinking tags appropriately based on inputs.enable_thinking
if (string_ends_with(data.prompt, "<think>\n")) {
if (!inputs.enable_thinking) {
data.prompt += "</think>";
} else {
data.thinking_forced_open = true;
}
}
// When tools are present, build grammar for the <TOOLCALL> format, similar to CommandR, but without tool call ID
if (!inputs.tools.is_null() && inputs.tools.is_array() && !inputs.tools.empty()) {
data.grammar_lazy = true;
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
auto schemas = json::array();
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool.at("function");
schemas.push_back({
{ "type", "object" },
{ "properties",
{
{ "name",
{
{ "type", "string" },
{ "const", function.at("name") },
} },
{ "arguments", function.at("parameters") },
} },
{ "required", json::array({ "name", "arguments" }) },
});
});
auto schema = json{
{ "type", "array" },
{ "items", schemas.size() == 1 ? schemas[0] : json{ { "anyOf", schemas } } },
{ "minItems", 1 },
};
if (!inputs.parallel_tool_calls) {
schema["maxItems"] = 1;
}
builder.add_rule("root",
std::string(data.thinking_forced_open ? "( \"</think>\" space )? " : "") +
"\"<TOOLCALL>\" " + builder.add_schema("tool_calls", schema) +
" \"</TOOLCALL>\"");
});
data.grammar_triggers.push_back({ COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
// If thinking_forced_open, then we capture the </think> tag in the grammar,
// (important for required tool choice) and in the trigger's first capture (decides what is sent to the grammar)
std::string(data.thinking_forced_open ?
"[\\s\\S]*?(</think>\\s*)" :
"(?:<think>[\\s\\S]*?</think>\\s*)?") +
"(<TOOLCALL>)[\\s\\S]*" });
}
return data;
}
static void common_chat_parse_llama_3_1(common_chat_msg_parser & builder, bool with_builtin_tools = false) {
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
@@ -1905,7 +1829,7 @@ static common_chat_params common_chat_params_init_hermes_2_pro(const common_chat
// If thinking_forced_open, then we capture the </think> tag in the grammar,
// (important for required tool choice) and in the trigger's first capture (decides what is sent to the grammar)
std::string(data.thinking_forced_open ? "[\\s\\S]*?(</think>\\s*)" : "(?:<think>[\\s\\S]*?</think>\\s*)?") + (
"\\s*("
"(\\s*"
"(?:<tool_call>"
"|<function"
"|(?:```(?:json|xml)?\n\\s*)?(?:<function_call>|<tools>|<xml><json>|<response>)?"
@@ -2135,121 +2059,6 @@ static void common_chat_parse_granite(common_chat_msg_parser & builder) {
}
}
static void common_chat_parse_nemotron_v2(common_chat_msg_parser & builder) {
// Parse thinking tags
builder.try_parse_reasoning("<think>", "</think>");
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
// Look for tool calls
static const common_regex tool_call_regex(regex_escape("<TOOLCALL>"));
if (auto res = builder.try_find_regex(tool_call_regex)) {
builder.move_to(res->groups[0].end);
// Expect JSON array of tool calls
auto tool_calls_data = builder.consume_json();
if (tool_calls_data.json.is_array()) {
if (!builder.try_consume_literal("</TOOLCALL>")) {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
builder.add_tool_calls(tool_calls_data.json);
} else {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
}
builder.add_content(builder.consume_rest());
}
static void common_chat_parse_seed_oss(common_chat_msg_parser & builder) {
// Parse thinking tags first - this handles the main reasoning content
builder.try_parse_reasoning("<seed:think>", "</seed:think>");
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
// Parse tool calls - Seed-OSS uses <seed:tool_call> format
static const common_regex tool_call_begin_regex("<seed:tool_call>");
static const common_regex tool_call_end_regex("</seed:tool_call>");
static const common_regex function_regex("<function=([^>]+)>");
static const common_regex param_regex("<parameter=([^>]+)>");
while (auto tool_res = builder.try_find_regex(tool_call_begin_regex)) {
builder.consume_spaces(); // Consume whitespace after <seed:tool_call>
// Look for function call inside tool call, ignore any content before it
if (auto func_res = builder.try_find_regex(function_regex, std::string::npos, false)) {
auto function_name = builder.str(func_res->groups[1]);
// Parse Seed-OSS parameters <parameter=name>value</parameter>
json args = json::object();
// Parse all parameters
while (auto param_res = builder.try_find_regex(param_regex, std::string::npos, false)) {
// again, ignore noise around parameters
auto param_name = builder.str(param_res->groups[1]);
builder.move_to(param_res->groups[0].end);
builder.consume_spaces(); // Consume whitespace after parameter
auto savedPos = builder.pos();
if (auto param_parse = builder.try_find_literal("</parameter>")) {
auto param = param_parse->prelude;
builder.move_to(savedPos);
try {
if (auto param_res = builder.try_consume_json()) {
args[param_name] = param_res->json;
} else {
args[param_name] = param;
}
} catch (json::exception &) {
args[param_name] = param;
}
} else {
throw common_chat_msg_partial_exception("Incomplete tool parameter");
}
}
// Look for closing function tag
auto end_func = builder.try_find_literal("</function>");
if (end_func) {
builder.move_to(end_func->groups[0].end);
builder.consume_spaces(); // Consume whitespace after </function>
// Add the tool call with parsed arguments, but only if we REALLY got the literal
auto eaten_fragment = builder.input().substr(end_func->groups[0].begin, end_func->groups[0].end);
auto funlen = std::string("</function>").length();
if (eaten_fragment.length() >= funlen && eaten_fragment.substr(0, funlen) == std::string("</function>")) {
if (!builder.add_tool_call(function_name, "", args.dump())) {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
} else {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
} else {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
// Look for closing tool call tag
if (auto end_tool = builder.try_find_regex(tool_call_end_regex, std::string::npos, false)) {
builder.move_to(end_tool->groups[0].end);
builder.consume_spaces(); // Consume trailing whitespace after tool call
} else {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
} else {
// No function found - don't consume content here, let it be handled at the end
break;
}
}
// Consume any remaining whitespace after all tool call processing
builder.consume_spaces();
auto remaining = builder.consume_rest();
// If there's any non-whitespace content remaining, add it as content
if (!string_strip(remaining).empty()) {
builder.add_content(remaining);
}
}
static common_chat_params common_chat_params_init_without_tools(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
data.prompt = apply(tmpl, inputs);
@@ -2266,62 +2075,8 @@ static common_chat_params common_chat_params_init_without_tools(const common_cha
return data;
}
static common_chat_params common_chat_params_init_seed_oss(
const common_chat_template & tmpl,
templates_params & params,
const common_chat_templates_inputs & inputs)
{
common_chat_params data;
data.prompt = apply(tmpl, params);
data.format = COMMON_CHAT_FORMAT_SEED_OSS;
if (string_ends_with(data.prompt, "<seed:think>")) {
if (!inputs.enable_thinking) {
data.prompt += "</seed:think>";
} else {
data.thinking_forced_open = true;
}
}
if (params.tools.is_array() && !params.tools.empty()) {
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
std::vector<std::string> tool_rules;
foreach_function(params.tools, [&](const json & tool) {
const auto & function = tool.at("function");
std::string name = function.at("name");
auto parameters = function.at("parameters");
builder.resolve_refs(parameters);
// Create rule for Seed-OSS function call format
std::string param_rules;
if (parameters.contains("properties")) {
for (const auto & [key, value] : parameters.at("properties").items()) {
param_rules += "\"<parameter=" + key + ">\"" + builder.add_schema(name + "-arg-" + key, value) +
"\"</parameter>\"";
}
}
tool_rules.push_back(builder.add_rule(name + "-call",
"\"<seed:tool_call>\" space \"<function=" + name + ">\" space " +
param_rules +
" \"</function>\" space \"</seed:tool_call>\""));
});
data.grammar_triggers.push_back({ COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<seed:tool_call>" });
data.preserved_tokens = {
"<seed:think>", "</seed:think>", "<seed:tool_call>", "</seed:tool_call>",
"<function=", "</function>", "<parameter=", "</parameter>",
};
builder.add_rule("root", string_join(tool_rules, " | "));
});
}
return data;
}
static common_chat_params common_chat_templates_apply_jinja(
const struct common_chat_templates * tmpls,
const struct common_chat_templates * tmpls,
const struct common_chat_templates_inputs & inputs)
{
templates_params params;
@@ -2390,16 +2145,6 @@ static common_chat_params common_chat_templates_apply_jinja(
return common_chat_params_init_gpt_oss(tmpl, params);
}
// Seed-OSS
if (src.find("<seed:think>") != std::string::npos) {
return common_chat_params_init_seed_oss(tmpl, params, inputs);
}
// Nemotron v2
if (src.find("<SPECIAL_10>") != std::string::npos) {
return common_chat_params_init_nemotron_v2(tmpl, params);
}
// Use generic handler when mixing tools + JSON schema.
// TODO: support that mix in handlers below.
if ((params.tools.is_array() && params.json_schema.is_object())) {
@@ -2558,12 +2303,6 @@ static void common_chat_parse(common_chat_msg_parser & builder) {
case COMMON_CHAT_FORMAT_GPT_OSS:
common_chat_parse_gpt_oss(builder);
break;
case COMMON_CHAT_FORMAT_SEED_OSS:
common_chat_parse_seed_oss(builder);
break;
case COMMON_CHAT_FORMAT_NEMOTRON_V2:
common_chat_parse_nemotron_v2(builder);
break;
default:
throw std::runtime_error(std::string("Unsupported format: ") + common_chat_format_name(builder.syntax().format));
}

View File

@@ -111,8 +111,6 @@ enum common_chat_format {
COMMON_CHAT_FORMAT_COMMAND_R7B,
COMMON_CHAT_FORMAT_GRANITE,
COMMON_CHAT_FORMAT_GPT_OSS,
COMMON_CHAT_FORMAT_SEED_OSS,
COMMON_CHAT_FORMAT_NEMOTRON_V2,
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
};
@@ -199,8 +197,6 @@ common_chat_msg common_chat_parse(const std::string & input, bool is_p
common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::string & tool_choice);
bool common_chat_templates_support_enable_thinking(const common_chat_templates * chat_templates);
// Parses a JSON array of messages in OpenAI's chat completion API format.
// T can be std::string containing JSON or nlohmann::ordered_json
template <class T> std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const T & messages);

View File

@@ -901,8 +901,7 @@ struct common_init_result common_init_from_params(common_params & params) {
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
if (model == NULL) {
LOG_ERR("%s: failed to load model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n",
__func__, params.model.path.c_str());
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.path.c_str());
return iparams;
}
@@ -912,8 +911,7 @@ struct common_init_result common_init_from_params(common_params & params) {
llama_context * lctx = llama_init_from_model(model, cparams);
if (lctx == NULL) {
LOG_ERR("%s: failed to create context with model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n",
__func__, params.model.path.c_str());
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str());
llama_model_free(model);
return iparams;
}
@@ -990,12 +988,7 @@ struct common_init_result common_init_from_params(common_params & params) {
return iparams;
}
char buf[1024];
la.ptr = lora.get();
llama_adapter_meta_val_str(la.ptr, "adapter.lora.task_name", buf, sizeof(buf));
la.task_name = buf;
llama_adapter_meta_val_str(la.ptr, "adapter.lora.prompt_prefix", buf, sizeof(buf));
la.prompt_prefix = buf;
iparams.lora.emplace_back(std::move(lora)); // copy to list of loaded adapters
}
@@ -1159,10 +1152,10 @@ struct llama_context_params common_context_params_to_llama(const common_params &
cparams.yarn_orig_ctx = params.yarn_orig_ctx;
cparams.pooling_type = params.pooling_type;
cparams.attention_type = params.attention_type;
cparams.flash_attn_type = params.flash_attn_type;
cparams.cb_eval = params.cb_eval;
cparams.cb_eval_user_data = params.cb_eval_user_data;
cparams.offload_kqv = !params.no_kv_offload;
cparams.flash_attn = params.flash_attn;
cparams.no_perf = params.no_perf;
cparams.op_offload = !params.no_op_offload;
cparams.swa_full = params.swa_full;

View File

@@ -34,9 +34,6 @@ struct common_adapter_lora_info {
std::string path;
float scale;
std::string task_name;
std::string prompt_prefix;
struct llama_adapter_lora * ptr;
};
@@ -312,7 +309,6 @@ struct common_params {
enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
enum llama_flash_attn_type flash_attn_type = LLAMA_FLASH_ATTN_TYPE_AUTO; // whether to use Flash Attention
struct common_params_sampling sampling;
struct common_params_speculative speculative;
@@ -376,6 +372,7 @@ struct common_params {
bool multiline_input = false; // reverse the usage of `\`
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
bool cont_batching = true; // insert new sequences for decoding on-the-fly
bool flash_attn = false; // flash attention
bool no_perf = false; // disable performance metrics
bool ctx_shift = false; // context shift on infinite text generation
bool swa_full = false; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
@@ -444,7 +441,7 @@ struct common_params {
// "advanced" endpoints are disabled by default for better security
bool webui = true;
bool endpoint_slots = true;
bool endpoint_slots = false;
bool endpoint_props = false; // only control POST requests, not GET
bool endpoint_metrics = false;

View File

@@ -4,52 +4,17 @@
#include <condition_variable>
#include <cstdarg>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <mutex>
#include <sstream>
#include <thread>
#include <vector>
#if defined(_WIN32)
# include <io.h>
# include <windows.h>
# define isatty _isatty
# define fileno _fileno
#else
# include <unistd.h>
#endif // defined(_WIN32)
int common_log_verbosity_thold = LOG_DEFAULT_LLAMA;
void common_log_set_verbosity_thold(int verbosity) {
common_log_verbosity_thold = verbosity;
}
// Auto-detect if colors should be enabled based on terminal and environment
static bool common_log_should_use_colors_auto() {
// Check NO_COLOR environment variable (https://no-color.org/)
if (const char * no_color = std::getenv("NO_COLOR")) {
if (no_color[0] != '\0') {
return false;
}
}
// Check TERM environment variable
if (const char * term = std::getenv("TERM")) {
if (std::strcmp(term, "dumb") == 0) {
return false;
}
}
// Check if stdout and stderr are connected to a terminal
// We check both because log messages can go to either
bool stdout_is_tty = isatty(fileno(stdout));
bool stderr_is_tty = isatty(fileno(stderr));
return stdout_is_tty || stderr_is_tty;
}
static int64_t t_us() {
return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::system_clock::now().time_since_epoch()).count();
}
@@ -388,11 +353,6 @@ struct common_log * common_log_init() {
struct common_log * common_log_main() {
static struct common_log log;
static std::once_flag init_flag;
std::call_once(init_flag, [&]() {
// Set default to auto-detect colors
log.set_colors(common_log_should_use_colors_auto());
});
return &log;
}
@@ -420,19 +380,8 @@ void common_log_set_file(struct common_log * log, const char * file) {
log->set_file(file);
}
void common_log_set_colors(struct common_log * log, log_colors colors) {
if (colors == LOG_COLORS_AUTO) {
log->set_colors(common_log_should_use_colors_auto());
return;
}
if (colors == LOG_COLORS_DISABLED) {
log->set_colors(false);
return;
}
GGML_ASSERT(colors == LOG_COLORS_ENABLED);
log->set_colors(true);
void common_log_set_colors(struct common_log * log, bool colors) {
log->set_colors(colors);
}
void common_log_set_prefix(struct common_log * log, bool prefix) {

View File

@@ -24,12 +24,6 @@
#define LOG_DEFAULT_DEBUG 1
#define LOG_DEFAULT_LLAMA 0
enum log_colors {
LOG_COLORS_AUTO = -1,
LOG_COLORS_DISABLED = 0,
LOG_COLORS_ENABLED = 1,
};
// needed by the LOG_TMPL macro to avoid computing log arguments if the verbosity lower
// set via common_log_set_verbosity()
extern int common_log_verbosity_thold;
@@ -71,10 +65,10 @@ void common_log_add(struct common_log * log, enum ggml_log_level level, const ch
// D - debug (stderr, V = LOG_DEFAULT_DEBUG)
//
void common_log_set_file (struct common_log * log, const char * file); // not thread-safe
void common_log_set_colors (struct common_log * log, log_colors colors); // not thread-safe
void common_log_set_prefix (struct common_log * log, bool prefix); // whether to output prefix to each log
void common_log_set_timestamps(struct common_log * log, bool timestamps); // whether to output timestamps in the prefix
void common_log_set_file (struct common_log * log, const char * file); // not thread-safe
void common_log_set_colors (struct common_log * log, bool colors); // not thread-safe
void common_log_set_prefix (struct common_log * log, bool prefix); // whether to output prefix to each log
void common_log_set_timestamps(struct common_log * log, bool timestamps); // whether to output timestamps in the prefix
// helper macros for logging
// use these to avoid computing log arguments if the verbosity of the log is higher than the threshold

View File

@@ -426,29 +426,8 @@ uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
// helpers
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl, bool do_sort) {
auto * res = &gsmpl->cur_p;
if (do_sort && !res->sorted) {
// remember the selected token before sorting
const llama_token id = res->data[res->selected].id;
std::sort(res->data, res->data + res->size, [](const llama_token_data & a, const llama_token_data & b) {
return a.p > b.p;
});
// restore the selected token after sorting
for (size_t i = 0; i < res->size; ++i) {
if (res->data[i].id == id) {
res->selected = i;
break;
}
}
res->sorted = true;
}
return res;
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl) {
return &gsmpl->cur_p;
}
llama_token common_sampler_last(const struct common_sampler * gsmpl) {

View File

@@ -86,9 +86,7 @@ uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl);
// helpers
// access the internal list of current candidate tokens
// if do_sort == true, the candidates are guaranteed to be sorted afterwards (in descending order of probability)
// the .sorted flag of the result indicates whether the returned candidates are sorted
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl, bool do_sort);
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl);
// get the last accepted token
llama_token common_sampler_last(const struct common_sampler * gsmpl);

View File

@@ -317,7 +317,7 @@ llama_tokens common_speculative_gen_draft(
common_sampler_sample(smpl, ctx_dft, 0, true);
const auto * cur_p = common_sampler_get_candidates(smpl, true);
const auto * cur_p = common_sampler_get_candidates(smpl);
for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) {
LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n",

View File

@@ -72,7 +72,6 @@ class ModelBase:
endianess: gguf.GGUFEndian
use_temp_file: bool
lazy: bool
dry_run: bool
part_names: list[str]
is_safetensors: bool
hparams: dict[str, Any]
@@ -112,7 +111,6 @@ class ModelBase:
self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
self.use_temp_file = use_temp_file
self.lazy = not eager or (remote_hf_model_id is not None)
self.dry_run = dry_run
self.remote_hf_model_id = remote_hf_model_id
if remote_hf_model_id is not None:
self.is_safetensors = True
@@ -302,6 +300,10 @@ class ModelBase:
# data = data_torch.squeeze().numpy()
data = data_torch.numpy()
# if data ends up empty, it means data_torch was a scalar tensor -> restore
if len(data.shape) == 0:
data = data_torch.numpy()
n_dims = len(data.shape)
data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
@@ -4869,35 +4871,11 @@ class NeoBert(BertModel):
@ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
class XLMRobertaModel(BertModel):
model_arch = gguf.MODEL_ARCH.BERT
_lora_files = {}
_lora_names = []
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
hparams = kwargs.pop("hparams", None)
if hparams is None:
hparams = ModelBase.load_hparams(dir_model, False)
if lora_names := hparams.get("lora_adaptations"):
self._lora_names = lora_names
self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._xlmroberta_tokenizer_init()
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
if self._lora_names:
for name in self._lora_names:
fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
return super().generate_extra_tensors()
def set_type(self):
for lora_writer in self._lora_files.values():
lora_writer.add_type(gguf.GGUFType.ADAPTER)
lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
super().set_type()
def set_vocab(self):
self._xlmroberta_set_vocab()
@@ -4907,62 +4885,13 @@ class XLMRobertaModel(BertModel):
if name.startswith("roberta."):
name = name[8:]
# jina-embeddings-v3
if ".parametrizations." in name:
name = name.replace(".parametrizations.", ".")
if name.endswith(".original"):
name = name[:-9]
# position embeddings start at pad_token_id + 1, so just chop down the weight tensor
if name == "embeddings.position_embeddings.weight":
if self._position_offset is not None:
data_torch = data_torch[self._position_offset:,:]
if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
if name.startswith("pooler.dense"):
return []
num_loras = data_torch.size(0)
assert num_loras == len(self._lora_names)
# Split out each LoRA in their own GGUF
for i, lora_writer in enumerate(self._lora_files.values()):
new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
data = data_torch[i, :, :]
# Transpose/flip token_embd/types into correct shape
if new_name == "token_embd.weight.lora_b":
data = data.T
elif new_name.startswith("token_types.weight."):
new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
return []
return super().modify_tensors(data_torch, name, bid)
def set_gguf_parameters(self):
super().set_gguf_parameters()
# jina-embeddings-v3
if rotary_emb_base := self.hparams.get("rotary_emb_base"):
self.gguf_writer.add_rope_freq_base(rotary_emb_base)
lora_alpha = self.hparams.get("lora_alpha")
if lora_prompt_prefixes := self.hparams.get("task_instructions"):
assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
for lora_name, lora_writer in self._lora_files.items():
lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
if lora_prompt_prefixes:
lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
def write(self):
super().write()
for lora_writer in self._lora_files.values():
lora_writer.write_header_to_file()
lora_writer.write_kv_data_to_file()
lora_writer.write_tensors_to_file(progress=True)
lora_writer.close()
@ModelBase.register("GemmaForCausalLM")
class GemmaModel(TextModel):
@@ -5122,15 +5051,6 @@ class Gemma3Model(TextModel):
return [(self.map_tensor_name(name), data_torch)]
@ModelBase.register("Gemma3TextModel")
class EmbeddingGemma(Gemma3Model):
model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
def set_gguf_parameters(self):
super().set_gguf_parameters()
self._try_set_pooling_type()
@ModelBase.register("Gemma3ForConditionalGeneration")
class Gemma3VisionModel(MmprojModel):
def set_gguf_parameters(self):
@@ -7551,13 +7471,9 @@ class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
]
# n_group and d_inner are used during reshape_tensors for mamba2
# NOTE: Explicitly include hparam prefix prefix for d_model to
# disambiguate with top-level head_dim
# NOTE 2: If needed for future models, this can be isolated in a method
# to separate the prefix setting and teh keys used
self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
self.n_group = self.find_hparam(["n_groups", "num_groups"])
self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
self.d_model = self.find_hparam(["hidden_size", "d_model"])
self.n_group = self.find_hparam(["n_groups"])
self.d_inner = self.find_hparam(["expand"]) * self.d_model
def get_attn_layers(self):
# Explicit list of layer type names
@@ -7618,12 +7534,12 @@ class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
## Mamba mixer params ##
self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state"]))
self.gguf_writer.add_ssm_group_count(self.n_group)
self.gguf_writer.add_ssm_inner_size(self.d_inner)
# NOTE: The mamba_dt_rank is _not_ the right field for how this is used
# in llama.cpp
self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads"]))
## Attention params ##
head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
@@ -7650,55 +7566,6 @@ class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
Mamba2Model.set_vocab(self)
@ModelBase.register("NemotronHForCausalLM")
class NemotronHModel(GraniteHybridModel):
"""Hybrid mamba2/attention model from NVIDIA"""
model_arch = gguf.MODEL_ARCH.NEMOTRON_H
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# Save the top-level head_dim for later
self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
assert self.head_dim is not None, "Could not find the attention head dim in config"
# Don't use expand to calculate d_inner
self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
# Update the ssm / attn / mlp layers
# M: Mamba2, *: Attention, -: MLP
hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "-"]
def get_attn_layers(self):
hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_key_length(self.head_dim)
self.gguf_writer.add_value_length(self.head_dim)
# Set feed_forward_length
# NOTE: This will trigger an override warning. This is preferrable to
# duplicating all the parent logic
n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
self.gguf_writer.add_feed_forward_length([
n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
])
def set_vocab(self):
super().set_vocab()
# The tokenizer _does_ add a BOS token (via post_processor type
# TemplateProcessing) but does not set add_bos_token to true in the
# config, so we need to explicitly override it here.
self.gguf_writer.add_add_bos_token(True)
@ModelBase.register("BailingMoeForCausalLM")
class BailingMoeModel(TextModel):
model_arch = gguf.MODEL_ARCH.BAILINGMOE

View File

@@ -12,7 +12,7 @@ import json
from math import prod
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Iterable, Iterator, Sequence, SupportsIndex, cast
from transformers import AutoConfig, AutoTokenizer
from transformers import AutoConfig
import torch
@@ -26,8 +26,6 @@ import gguf
# reuse model definitions from convert_hf_to_gguf.py
from convert_hf_to_gguf import LazyTorchTensor, ModelBase
from gguf.constants import GGUFValueType
logger = logging.getLogger("lora-to-gguf")
@@ -371,31 +369,7 @@ if __name__ == '__main__':
self.gguf_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
def set_gguf_parameters(self):
logger.debug("GGUF KV: %s = %d", gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha)
self.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha)
alora_invocation_tokens = lparams.get("alora_invocation_tokens")
invocation_string = lparams.get("invocation_string")
if invocation_string and not alora_invocation_tokens:
logger.debug("Tokenizing invocation_string -> alora_invocation_tokens")
base_model_path_or_id = hparams.get("_name_or_path")
try:
tokenizer = AutoTokenizer.from_pretrained(base_model_path_or_id)
except ValueError:
logger.error("Unable to load tokenizer from %s", base_model_path_or_id)
raise
# NOTE: There's an off-by-one with the older aLoRAs where
# the invocation string includes the "<|start_of_turn|>"
# token, but the adapters themselves were trained to
# activate _after_ that first token, so we drop it here.
alora_invocation_tokens = tokenizer(invocation_string)["input_ids"][1:]
if alora_invocation_tokens:
logger.debug("GGUF KV: %s = %s", gguf.Keys.Adapter.ALORA_INVOCATION_TOKENS, alora_invocation_tokens)
self.gguf_writer.add_key_value(
gguf.Keys.Adapter.ALORA_INVOCATION_TOKENS,
alora_invocation_tokens,
GGUFValueType.ARRAY,
GGUFValueType.UINT32,
)
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
# Never add extra tensors (e.g. rope_freqs) for LoRA adapters

View File

@@ -293,14 +293,17 @@ We would like to thank Tuo Dai, Shanni Li, and all of the project maintainers fr
## Environment variable setup
### GGML_CANN_ASYNC_MODE
Enables asynchronous operator submission. Disabled by default.
### GGML_CANN_MEM_POOL
Specifies the memory pool management strategy, Default is vmm.
Specifies the memory pool management strategy:
- vmm: Utilizes a virtual memory manager pool. If hardware support for VMM is unavailable, falls back to the legacy (leg) memory pool.
- prio: Employs a priority queue-based memory pool management.
- leg: Uses a fixed-size buffer pool.
### GGML_CANN_DISABLE_BUF_POOL_CLEAN
@@ -309,8 +312,5 @@ Controls automatic cleanup of the memory pool. This option is only effective whe
### GGML_CANN_WEIGHT_NZ
Converting the matmul weight format from ND to NZ to improve performance. Enabled by default.
Converting the matmul weight format from ND to NZ can significantly improve performance on the 310I DUO NPU.
### GGML_CANN_ACL_GRAPH
Operators are executed using ACL graph execution, rather than in op-by-op (eager) mode. Enabled by default.

View File

@@ -42,6 +42,18 @@ cmake --build build --config Release -j $(nproc)
cmake --build build --config Release -j $(nproc)
```
- By default, NNPA is disabled by default. To enable it:
```bash
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_BLAS=ON \
-DGGML_BLAS_VENDOR=OpenBLAS \
-DGGML_NNPA=ON
cmake --build build --config Release -j $(nproc)
```
- For debug builds:
```bash
@@ -152,11 +164,15 @@ All models need to be converted to Big-Endian. You can achieve this in three cas
Only available in IBM z15/LinuxONE 3 or later system with the `-DGGML_VXE=ON` (turned on by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z14/arch12. In such systems, the APIs can still run but will use a scalar implementation.
### 2. zDNN Accelerator (WIP)
### 2. NNPA Vector Intrinsics Acceleration
Only available in IBM z16/LinuxONE 4 or later system with the `-DGGML_NNPA=ON` (turned off by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z15/arch13. In such systems, the APIs can still run but will use a scalar implementation.
### 3. zDNN Accelerator (WIP)
Only available in IBM z17/LinuxONE 5 or later system with the `-DGGML_ZDNN=ON` compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z15/arch13. In such systems, the APIs will default back to CPU routines.
### 3. Spyre Accelerator
### 4. Spyre Accelerator
_Only available with IBM z17 / LinuxONE 5 or later system. No support currently available._
@@ -214,6 +230,10 @@ IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongl
CXXFLAGS="-include cstdint" pip3 install -r requirements.txt
```
5. `-DGGML_NNPA=ON` generates gibberish output
Answer: We are aware of this as detailed in [this issue](https://github.com/ggml-org/llama.cpp/issues/14877). Please either try reducing the number of threads, or disable the compile option using `-DGGML_NNPA=OFF`.
## Getting Help on IBM Z & LinuxONE
1. **Bugs, Feature Requests**
@@ -238,38 +258,38 @@ IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongl
## Appendix B: SIMD Support Matrix
| | VX/VXE/VXE2 | zDNN | Spyre |
|------------|-------------|------|-------|
| FP32 | ✅ | ✅ | ❓ |
| FP16 | ✅ | ❓ | ❓ |
| BF16 | 🚫 | ❓ | ❓ |
| Q4_0 | ✅ | ❓ | ❓ |
| Q4_1 | ✅ | ❓ | ❓ |
| MXFP4 | 🚫 | ❓ | ❓ |
| Q5_0 | ✅ | ❓ | ❓ |
| Q5_1 | ✅ | ❓ | ❓ |
| Q8_0 | ✅ | ❓ | ❓ |
| Q2_K | 🚫 | ❓ | ❓ |
| Q3_K | ✅ | ❓ | ❓ |
| Q4_K | ✅ | ❓ | ❓ |
| Q5_K | ✅ | ❓ | ❓ |
| Q6_K | ✅ | ❓ | ❓ |
| TQ1_0 | 🚫 | ❓ | ❓ |
| TQ2_0 | 🚫 | ❓ | ❓ |
| IQ2_XXS | 🚫 | ❓ | ❓ |
| IQ2_XS | 🚫 | ❓ | ❓ |
| IQ2_S | 🚫 | ❓ | ❓ |
| IQ3_XXS | 🚫 | ❓ | ❓ |
| IQ3_S | 🚫 | ❓ | ❓ |
| IQ1_S | 🚫 | ❓ | ❓ |
| IQ1_M | 🚫 | ❓ | ❓ |
| IQ4_NL | ✅ | ❓ | ❓ |
| IQ4_XS | ✅ | ❓ | ❓ |
| FP32->FP16 | 🚫 | ❓ | ❓ |
| FP16->FP32 | 🚫 | ❓ | ❓ |
| | VX/VXE/VXE2 | NNPA | zDNN | Spyre |
| ---------- | ----------- | ---- | ---- | ----- |
| FP32 | ✅ | ✅ | ✅ | ❓ |
| FP16 | ✅ | ✅ | ❓ | ❓ |
| BF16 | 🚫 | 🚫 | ❓ | ❓ |
| Q4_0 | ✅ | ✅ | ❓ | ❓ |
| Q4_1 | ✅ | ✅ | ❓ | ❓ |
| MXFP4 | 🚫 | 🚫 | ❓ | ❓ |
| Q5_0 | ✅ | ✅ | ❓ | ❓ |
| Q5_1 | ✅ | ✅ | ❓ | ❓ |
| Q8_0 | ✅ | ✅ | ❓ | ❓ |
| Q2_K | 🚫 | 🚫 | ❓ | ❓ |
| Q3_K | ✅ | ✅ | ❓ | ❓ |
| Q4_K | ✅ | ✅ | ❓ | ❓ |
| Q5_K | ✅ | ✅ | ❓ | ❓ |
| Q6_K | ✅ | ✅ | ❓ | ❓ |
| TQ1_0 | 🚫 | 🚫 | ❓ | ❓ |
| TQ2_0 | 🚫 | 🚫 | ❓ | ❓ |
| IQ2_XXS | 🚫 | 🚫 | ❓ | ❓ |
| IQ2_XS | 🚫 | 🚫 | ❓ | ❓ |
| IQ2_S | 🚫 | 🚫 | ❓ | ❓ |
| IQ3_XXS | 🚫 | 🚫 | ❓ | ❓ |
| IQ3_S | 🚫 | 🚫 | ❓ | ❓ |
| IQ1_S | 🚫 | 🚫 | ❓ | ❓ |
| IQ1_M | 🚫 | 🚫 | ❓ | ❓ |
| IQ4_NL | ✅ | ✅ | ❓ | ❓ |
| IQ4_XS | ✅ | ✅ | ❓ | ❓ |
| FP32->FP16 | 🚫 | ✅ | ❓ | ❓ |
| FP16->FP32 | 🚫 | ✅ | ❓ | ❓ |
- ✅ - acceleration available
- 🚫 - acceleration unavailable, will still run using scalar implementation
- ❓ - acceleration unknown, please contribute if you can test it yourself
Last Updated by **Aaron Teo (aaron.teo1@ibm.com)** on Sep 6, 2025.
Last Updated by **Aaron Teo (aaron.teo1@ibm.com)** on Aug 22, 2025.

View File

@@ -59,6 +59,8 @@ cmake --build build --config Release
cmake --preset arm64-windows-llvm-release -D GGML_OPENMP=OFF
cmake --build build-arm64-windows-llvm-release
```
Building for arm64 can also be done with the MSVC compiler with the build-arm64-windows-MSVC preset, or the standard CMake build instructions. However, note that the MSVC compiler does not support inline ARM assembly code, used e.g. for the accelerated Q4_0_N_M CPU kernels.
For building with ninja generator and clang compiler as default:
-set path:set LIB=C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.41.34120\lib\x64\uwp;C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\x64
```bash

View File

@@ -21,8 +21,6 @@ Function calling is supported for all models (see https://github.com/ggml-org/ll
- Use `--chat-template-file` to override the template when appropriate (see examples below)
- Generic support may consume more tokens and be less efficient than a model's native format.
- Multiple/parallel tool calling is supported on some models but disabled by default, enable it by passing `"parallel_tool_calls": true` in the completion endpoint payload.
<details>
<summary>Show some common templates and which format handler they use</summary>

View File

@@ -333,17 +333,17 @@ static void print_params(struct my_llama_hparams * params) {
}
static void print_tensor_info(const struct ggml_context * ctx) {
for (auto * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
for (auto t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
LOG_INF("%s: Allocating ", __func__);
int64_t total = 1;
int i = 0;
for (; i < ggml_n_dims(t); ++i) {
if (i > 0) { LOG_INF("x "); }
LOG_INF("[%" PRId64 "] ", t->ne[i]);
if (i > 0) LOG("x ");
LOG("[%" PRId64 "] ", t->ne[i]);
total *= t->ne[i];
}
if (i > 1) { LOG_INF("= [%" PRId64 "] ", total); }
LOG_INF("float space for %s\n", ggml_get_name(t));
if (i > 1) LOG("= [%" PRId64 "] ", total);
LOG("float space for %s\n", ggml_get_name(t));
}
}

View File

@@ -564,7 +564,7 @@ int main(int argc, char ** argv) {
ctx_params.n_ctx = params.n_ctx;
ctx_params.n_batch = params.n_batch;
ctx_params.n_ubatch = params.n_ubatch;
ctx_params.flash_attn_type = params.flash_attn_type;
ctx_params.flash_attn = params.flash_attn;
ctx_params.no_perf = params.no_perf;
ctx_params.type_k = params.cache_type_k;
ctx_params.type_v = params.cache_type_v;

View File

@@ -28,40 +28,9 @@ static std::string ggml_ne_string(const ggml_tensor * t) {
return str;
}
static float ggml_get_float_value(uint8_t * data, ggml_type type, const size_t * nb, size_t i0, size_t i1, size_t i2, size_t i3) {
size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
float v;
if (type == GGML_TYPE_F16) {
v = ggml_fp16_to_fp32(*(ggml_fp16_t *) &data[i]);
} else if (type == GGML_TYPE_F32) {
v = *(float *) &data[i];
} else if (type == GGML_TYPE_I64) {
v = (float) *(int64_t *) &data[i];
} else if (type == GGML_TYPE_I32) {
v = (float) *(int32_t *) &data[i];
} else if (type == GGML_TYPE_I16) {
v = (float) *(int16_t *) &data[i];
} else if (type == GGML_TYPE_I8) {
v = (float) *(int8_t *) &data[i];
} else {
GGML_ABORT("fatal error");
}
return v;
}
static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) {
GGML_ASSERT(n > 0);
float sum = 0;
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
for (int64_t i2 = 0; i2 < ne[2]; i2++) {
for (int64_t i1 = 0; i1 < ne[1]; i1++) {
for (int64_t i0 = 0; i0 < ne[0]; i0++) {
const float v = ggml_get_float_value(data, type, nb, i0, i1, i2, i3);
sum += v;
}
}
}
}
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
LOG(" [\n");
for (int64_t i2 = 0; i2 < ne[2]; i2++) {
@@ -81,8 +50,25 @@ static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne
LOG("..., ");
i0 = ne[0] - n;
}
const float v = ggml_get_float_value(data, type, nb, i0, i1, i2, i3);
size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
float v;
if (type == GGML_TYPE_F16) {
v = ggml_fp16_to_fp32(*(ggml_fp16_t *) &data[i]);
} else if (type == GGML_TYPE_F32) {
v = *(float *) &data[i];
} else if (type == GGML_TYPE_I64) {
v = (float) *(int64_t *) &data[i];
} else if (type == GGML_TYPE_I32) {
v = (float) *(int32_t *) &data[i];
} else if (type == GGML_TYPE_I16) {
v = (float) *(int16_t *) &data[i];
} else if (type == GGML_TYPE_I8) {
v = (float) *(int8_t *) &data[i];
} else {
GGML_ABORT("fatal error");
}
LOG("%12.4f", v);
sum += v;
if (i0 < ne[0] - 1) LOG(", ");
}
LOG("],\n");

View File

@@ -63,7 +63,7 @@ causal-verify-logits: causal-run-original-model causal-run-converted-model
@MODEL_PATH="$(MODEL_PATH)" ./scripts/utils/check-nmse.py -m ${MODEL_PATH}
causal-run-original-embeddings:
@./scripts/causal/run-casual-gen-embeddings-org.py
@./scripts/causal/run-casual-gen-embeddings-org.sh
causal-run-converted-embeddings:
@./scripts/causal/run-converted-model-embeddings-logits.sh

View File

@@ -1,4 +1,4 @@
#!/usr/bin/env bash
#/bin/bash
set -e

View File

@@ -1,4 +1,4 @@
#!/usr/bin/env bash
#!/bin/bash
set -e

View File

@@ -3,10 +3,11 @@
import argparse
import os
import importlib
import sys
import torch
import numpy as np
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM
from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForCausalLM
from pathlib import Path
unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
@@ -42,8 +43,6 @@ if unreleased_model_name:
model = model_class.from_pretrained(model_path)
except (ImportError, AttributeError) as e:
print(f"Failed to import or load model: {e}")
print("Falling back to AutoModelForCausalLM")
model = AutoModelForCausalLM.from_pretrained(model_path)
else:
model = AutoModelForCausalLM.from_pretrained(model_path)
print(f"Model class: {type(model)}")

View File

@@ -1,4 +1,4 @@
#!/usr/bin/env bash
#!/bin/bash
set -e

View File

@@ -1,4 +1,4 @@
#!/usr/bin/env bash
#!/bin/bash
set -e

View File

@@ -1,4 +1,4 @@
#!/usr/bin/env bash
#/bin/bash
set -e

View File

@@ -1,4 +1,4 @@
#!/usr/bin/env bash
#!/bin/bash
set -e

View File

@@ -7,7 +7,7 @@ base_model:
Recommended way to run this model:
```sh
llama-server -hf {namespace}/{model_name}-GGUF --embeddings
llama-server -hf {namespace}/{model_name}-GGUF
```
Then the endpoint can be accessed at http://localhost:8080/embedding, for

View File

@@ -1,4 +1,4 @@
#!/usr/bin/env bash
#!/bin/bash
set -e

View File

@@ -1,6 +1,4 @@
#!/usr/bin/env bash
COLLECTION_SLUG=$(python ./create_collection.py --return-slug)
echo "Created collection: $COLLECTION_SLUG"

View File

@@ -1,6 +0,0 @@
#!/usr/bin/env bash
curl --request POST \
--url http://localhost:8080/embedding \
--header "Content-Type: application/json" \
--data '{"input": "Hello world today"}' \
--silent

View File

@@ -1,4 +1,4 @@
#!/usr/bin/env bash
#!/bin/bash
# First try command line argument, then environment variable, then file
CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}"

View File

@@ -40,7 +40,7 @@ if os.path.exists(index_path):
file_path = os.path.join(model_path, file_name)
print(f"\n--- From {file_name} ---")
with safe_open(file_path, framework="pt") as f: # type: ignore
with safe_open(file_path, framework="pt") as f:
for tensor_name in sorted(tensor_names):
tensor = f.get_tensor(tensor_name)
print(f"- {tensor_name} : shape = {tensor.shape}, dtype = {tensor.dtype}")
@@ -49,7 +49,7 @@ elif os.path.exists(single_file_path):
# Single file model (original behavior)
print("Single-file model detected")
with safe_open(single_file_path, framework="pt") as f: # type: ignore
with safe_open(single_file_path, framework="pt") as f:
keys = f.keys()
print("Tensors in model:")
for key in sorted(keys):

View File

@@ -1,4 +1,4 @@
#!/usr/bin/env bash
#!/bin/bash
set -e

View File

@@ -1,4 +1,4 @@
#!/usr/bin/env bash
#!/bin/bash
set -e

View File

@@ -1,4 +1,4 @@
#!/usr/bin/env bash
#!/bin/bash
set -e

View File

@@ -1,4 +1,4 @@
#!/usr/bin/env bash
#!/bin/bash
set -e

View File

@@ -1,4 +1,4 @@
#!/usr/bin/env bash
#!/bin/bash
set -e
#

View File

@@ -244,7 +244,7 @@ int main(int argc, char ** argv) {
// stochastic verification
common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true);
auto & dist_tgt = *common_sampler_get_candidates(smpl, true);
auto & dist_tgt = *common_sampler_get_candidates(smpl);
float p_tgt = 0.0f;
float p_dft = 0.0f;
@@ -493,7 +493,7 @@ int main(int argc, char ** argv) {
common_sampler_sample(drafts[s].smpl, ctx_dft, drafts[s].i_batch_dft, true);
const auto * cur_p = common_sampler_get_candidates(drafts[s].smpl, true);
const auto * cur_p = common_sampler_get_candidates(drafts[s].smpl);
for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p->size); ++k) {
LOG_DBG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",

View File

@@ -1,5 +1,5 @@
cmake_minimum_required(VERSION 3.14) # for add_link_options and implicit target directories.
project("ggml" C CXX ASM)
project("ggml" C CXX)
include(CheckIncludeFileCXX)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
@@ -129,11 +129,10 @@ endif()
option(GGML_LASX "ggml: enable lasx" ON)
option(GGML_LSX "ggml: enable lsx" ON)
option(GGML_RVV "ggml: enable rvv" ON)
option(GGML_RV_ZFH "ggml: enable riscv zfh" ON)
option(GGML_RV_ZVFH "ggml: enable riscv zvfh" ON)
option(GGML_RV_ZICBOP "ggml: enable riscv zicbop" ON)
option(GGML_RV_ZFH "ggml: enable riscv zfh" OFF)
option(GGML_XTHEADVECTOR "ggml: enable xtheadvector" OFF)
option(GGML_VXE "ggml: enable vxe" ON)
option(GGML_NNPA "ggml: enable nnpa" OFF) # temp disabled by default, see: https://github.com/ggml-org/llama.cpp/issues/14877
option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requires GGML_BACKEND_DL)" OFF)
set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM")

View File

@@ -307,9 +307,6 @@ extern "C" {
GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);
// Split graph without allocating it
GGML_API void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
// Allocate and compute graph on the backend scheduler
GGML_API bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph); // returns success
GGML_API enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph);

View File

@@ -101,6 +101,7 @@ extern "C" {
GGML_BACKEND_API int ggml_cpu_has_riscv_v (void);
GGML_BACKEND_API int ggml_cpu_has_vsx (void);
GGML_BACKEND_API int ggml_cpu_has_vxe (void);
GGML_BACKEND_API int ggml_cpu_has_nnpa (void);
GGML_BACKEND_API int ggml_cpu_has_wasm_simd (void);
GGML_BACKEND_API int ggml_cpu_has_llamafile (void);

View File

@@ -511,7 +511,6 @@ extern "C" {
GGML_OP_CONV_TRANSPOSE_1D,
GGML_OP_IM2COL,
GGML_OP_IM2COL_BACK,
GGML_OP_IM2COL_3D,
GGML_OP_CONV_2D,
GGML_OP_CONV_3D,
GGML_OP_CONV_2D_DW,
@@ -1871,41 +1870,6 @@ extern "C" {
int d0, // dilation dimension 0
int d1); // dilation dimension 1
GGML_API struct ggml_tensor * ggml_im2col_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int64_t IC,
int s0, // stride width
int s1, // stride height
int s2, // stride depth
int p0, // padding width
int p1, // padding height
int p2, // padding depth
int d0, // dilation width
int d1, // dilation height
int d2, // dilation depth
enum ggml_type dst_type);
// a: [OC*IC, KD, KH, KW]
// b: [N*IC, ID, IH, IW]
// result: [N*OC, OD, OH, OW]
GGML_API struct ggml_tensor * ggml_conv_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int64_t IC,
int s0, // stride width
int s1, // stride height
int s2, // stride depth
int p0, // padding width
int p1, // padding height
int p2, // padding depth
int d0, // dilation width
int d1, // dilation height
int d2 // dilation depth
);
// kernel size is a->ne[0] x a->ne[1]
// stride is equal to kernel size
// padding is zero
@@ -1977,7 +1941,7 @@ extern "C" {
int d0, // dilation dimension 0
int d1); // dilation dimension 1
GGML_API struct ggml_tensor * ggml_conv_3d_direct(
GGML_API struct ggml_tensor * ggml_conv_3d(
struct ggml_context * ctx,
struct ggml_tensor * a, // kernel [KW, KH, KD, IC * OC]
struct ggml_tensor * b, // input [W, H, D, C * N]
@@ -2084,19 +2048,6 @@ extern "C" {
int p2,
int p3);
GGML_API struct ggml_tensor * ggml_pad_ext(
struct ggml_context * ctx,
struct ggml_tensor * a,
int lp0,
int rp0,
int lp1,
int rp1,
int lp2,
int rp2,
int lp3,
int rp3
);
// pad each dimension with reflection: [a, b, c, d] -> [b, a, b, c, d, c]
GGML_API struct ggml_tensor * ggml_pad_reflect_1d(
struct ggml_context * ctx,

View File

@@ -31,7 +31,6 @@
// backend buffer type
const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
GGML_ASSERT(buft);
return buft->iface.get_name(buft);
}
@@ -41,17 +40,14 @@ ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t
return ggml_backend_buffer_init(buft, {}, NULL, 0);
}
GGML_ASSERT(buft);
return buft->iface.alloc_buffer(buft, size);
}
size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
GGML_ASSERT(buft);
return buft->iface.get_alignment(buft);
}
size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
GGML_ASSERT(buft);
// get_max_size is optional, defaults to SIZE_MAX
if (buft->iface.get_max_size) {
return buft->iface.get_max_size(buft);
@@ -60,7 +56,6 @@ size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
}
size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor) {
GGML_ASSERT(buft);
// get_alloc_size is optional, defaults to ggml_nbytes
if (buft->iface.get_alloc_size) {
size_t size = buft->iface.get_alloc_size(buft, tensor);
@@ -71,7 +66,6 @@ size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const s
}
bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
GGML_ASSERT(buft);
if (buft->iface.is_host) {
return buft->iface.is_host(buft);
}
@@ -79,7 +73,6 @@ bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
}
ggml_backend_dev_t ggml_backend_buft_get_device(ggml_backend_buffer_type_t buft) {
GGML_ASSERT(buft);
return buft->device;
}
@@ -117,12 +110,10 @@ void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
}
size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
return buffer->size;
}
void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
// get_base is optional if the buffer is zero-sized
if (buffer->size == 0) {
return NULL;
@@ -136,7 +127,6 @@ void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
}
enum ggml_status ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
GGML_ASSERT(buffer);
// init_tensor is optional
if (buffer->iface.init_tensor) {
return buffer->iface.init_tensor(buffer, tensor);
@@ -145,7 +135,6 @@ enum ggml_status ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, s
}
void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
GGML_ASSERT(buffer);
// clear is optional if the buffer is zero-sized
if (buffer->size == 0) {
return;
@@ -171,7 +160,6 @@ bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
}
void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
GGML_ASSERT(buffer);
buffer->usage = usage;
// FIXME: add a generic callback to the buffer interface
@@ -181,17 +169,14 @@ void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backe
}
enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
return buffer->usage;
}
ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
return buffer->buft;
}
void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
if (buffer->iface.reset) {
buffer->iface.reset(buffer);
}
@@ -230,7 +215,6 @@ void ggml_backend_free(ggml_backend_t backend) {
}
ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
GGML_ASSERT(backend);
return ggml_backend_dev_buffer_type(backend->device);
}
@@ -247,8 +231,6 @@ size_t ggml_backend_get_max_size(ggml_backend_t backend) {
}
void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
GGML_ASSERT(backend);
GGML_ASSERT(tensor);
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
@@ -260,8 +242,6 @@ void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor *
}
void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
GGML_ASSERT(backend);
GGML_ASSERT(tensor);
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
@@ -303,7 +283,6 @@ void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, siz
}
void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
GGML_ASSERT(tensor);
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
if (size == 0) {
@@ -319,7 +298,6 @@ void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size
}
void ggml_backend_synchronize(ggml_backend_t backend) {
GGML_ASSERT(backend);
if (backend->iface.synchronize == NULL) {
return;
}
@@ -328,21 +306,18 @@ void ggml_backend_synchronize(ggml_backend_t backend) {
}
ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
GGML_ASSERT(backend);
GGML_ASSERT(backend->iface.graph_plan_create != NULL);
return backend->iface.graph_plan_create(backend, cgraph);
}
void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
GGML_ASSERT(backend);
GGML_ASSERT(backend->iface.graph_plan_free != NULL);
backend->iface.graph_plan_free(backend, plan);
}
enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
GGML_ASSERT(backend);
GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
return backend->iface.graph_plan_compute(backend, plan);
@@ -355,27 +330,22 @@ enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_
}
enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
GGML_ASSERT(backend);
return backend->iface.graph_compute(backend, cgraph);
}
bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
GGML_ASSERT(backend);
return ggml_backend_dev_supports_op(backend->device, op);
}
bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
GGML_ASSERT(backend);
return ggml_backend_dev_supports_buft(backend->device, buft);
}
bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
GGML_ASSERT(backend);
return ggml_backend_dev_offload_op(backend->device, op);
}
ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend) {
GGML_ASSERT(backend);
return backend->device;
}
@@ -411,7 +381,6 @@ void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t b
return;
}
GGML_ASSERT(backend_dst);
if (backend_dst->iface.cpy_tensor_async != NULL) {
if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
return;
@@ -443,21 +412,18 @@ void ggml_backend_event_free(ggml_backend_event_t event) {
}
void ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend) {
GGML_ASSERT(backend);
GGML_ASSERT(backend->iface.event_record != NULL);
backend->iface.event_record(backend, event);
}
void ggml_backend_event_synchronize(ggml_backend_event_t event) {
GGML_ASSERT(event);
GGML_ASSERT(event->device->iface.event_synchronize);
event->device->iface.event_synchronize(event->device, event);
}
void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
GGML_ASSERT(backend);
GGML_ASSERT(backend->iface.event_wait != NULL);
backend->iface.event_wait(backend, event);
@@ -466,22 +432,18 @@ void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event)
// Backend device
const char * ggml_backend_dev_name(ggml_backend_dev_t device) {
GGML_ASSERT(device);
return device->iface.get_name(device);
}
const char * ggml_backend_dev_description(ggml_backend_dev_t device) {
GGML_ASSERT(device);
return device->iface.get_description(device);
}
void ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total) {
GGML_ASSERT(device);
device->iface.get_memory(device, free, total);
}
enum ggml_backend_dev_type ggml_backend_dev_type(ggml_backend_dev_t device) {
GGML_ASSERT(device);
return device->iface.get_type(device);
}
@@ -491,22 +453,18 @@ void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_d
}
ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device) {
GGML_ASSERT(device);
return device->reg;
}
ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params) {
GGML_ASSERT(device);
return device->iface.init_backend(device, params);
}
ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device) {
GGML_ASSERT(device);
return device->iface.get_buffer_type(device);
}
ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device) {
GGML_ASSERT(device);
if (device->iface.get_host_buffer_type == NULL) {
return NULL;
}
@@ -515,22 +473,18 @@ ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t
}
ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size) {
GGML_ASSERT(device);
return device->iface.buffer_from_host_ptr(device, ptr, size, max_tensor_size);
}
bool ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
GGML_ASSERT(device);
return device->iface.supports_op(device, op);
}
bool ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft) {
GGML_ASSERT(device);
return device->iface.supports_buft(device, buft);
}
bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
GGML_ASSERT(device);
if (device->iface.offload_op != NULL) {
return device->iface.offload_op(device, op);
}
@@ -541,22 +495,18 @@ bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_te
// Backend (reg)
const char * ggml_backend_reg_name(ggml_backend_reg_t reg) {
GGML_ASSERT(reg);
return reg->iface.get_name(reg);
}
size_t ggml_backend_reg_dev_count(ggml_backend_reg_t reg) {
GGML_ASSERT(reg);
return reg->iface.get_device_count(reg);
}
ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index) {
GGML_ASSERT(reg);
return reg->iface.get_device(reg, index);
}
void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) {
GGML_ASSERT(reg);
if (!reg->iface.get_proc_address) {
return NULL;
}
@@ -571,7 +521,6 @@ struct ggml_backend_multi_buffer_context {
};
static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
for (size_t i = 0; i < ctx->n_buffers; i++) {
ggml_backend_buffer_free(ctx->buffers[i]);
@@ -582,7 +531,6 @@ static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer)
}
static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
GGML_ASSERT(buffer);
ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
for (size_t i = 0; i < ctx->n_buffers; i++) {
ggml_backend_buffer_clear(ctx->buffers[i], value);
@@ -618,12 +566,10 @@ ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer
}
bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
return buffer->iface.free_buffer == ggml_backend_multi_buffer_free_buffer;
}
void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
GGML_ASSERT(buffer);
GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
for (size_t i = 0; i < ctx->n_buffers; i++) {
@@ -651,7 +597,7 @@ static bool ggml_is_view_op(enum ggml_op op) {
#endif
#ifndef GGML_SCHED_MAX_SPLIT_INPUTS
#define GGML_SCHED_MAX_SPLIT_INPUTS 30
#define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
#endif
#ifndef GGML_SCHED_MAX_COPIES
@@ -902,7 +848,7 @@ static void ggml_backend_sched_set_if_supported(ggml_backend_sched_t sched, stru
}
// assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
// reset splits
sched->n_splits = 0;
sched->n_graph_inputs = 0;
@@ -1403,7 +1349,6 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
}
static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
GGML_ASSERT(sched);
struct ggml_backend_sched_split * splits = sched->splits;
ggml_tensor * prev_ids_tensor = nullptr;
@@ -1672,7 +1617,6 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
}
void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
GGML_ASSERT(sched);
// reset state for the next run
if (!sched->is_reset) {
ggml_hash_set_reset(&sched->hash_set);
@@ -1684,11 +1628,8 @@ void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
}
bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
GGML_ASSERT(sched);
GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes + measure_graph->n_leafs);
ggml_backend_sched_reset(sched);
ggml_backend_sched_synchronize(sched);
ggml_backend_sched_split_graph(sched, measure_graph);
@@ -1703,7 +1644,6 @@ bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph *
}
bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
GGML_ASSERT(sched);
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs);
GGML_ASSERT(!sched->is_alloc);
@@ -1728,7 +1668,6 @@ enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, st
}
enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
GGML_ASSERT(sched);
if (!sched->is_reset && !sched->is_alloc) {
ggml_backend_sched_reset(sched);
}
@@ -1743,7 +1682,6 @@ enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sch
}
void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
GGML_ASSERT(sched);
for (int i = 0; i < sched->n_backends; i++) {
ggml_backend_synchronize(sched->backends[i]);
}
@@ -1756,34 +1694,28 @@ void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
}
void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
GGML_ASSERT(sched);
sched->callback_eval = callback;
sched->callback_eval_user_data = user_data;
}
int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
GGML_ASSERT(sched);
return sched->n_splits;
}
int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
GGML_ASSERT(sched);
return sched->n_copies;
}
int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched) {
GGML_ASSERT(sched);
return sched->n_backends;
}
ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i) {
GGML_ASSERT(sched);
GGML_ASSERT(i >= 0 && i < sched->n_backends);
return sched->backends[i];
}
size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
GGML_ASSERT(sched);
int backend_index = ggml_backend_sched_backend_id(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
@@ -1791,7 +1723,6 @@ size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backe
}
void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
GGML_ASSERT(sched);
int backend_index = ggml_backend_sched_backend_id(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
tensor_backend_id(node) = backend_index;
@@ -1800,7 +1731,6 @@ void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct gg
}
ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
GGML_ASSERT(sched);
int backend_index = tensor_backend_id(node);
if (backend_index == -1) {
return NULL;
@@ -1811,7 +1741,6 @@ ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched,
// utils
enum ggml_status ggml_backend_view_init(struct ggml_tensor * tensor) {
GGML_ASSERT(tensor);
GGML_ASSERT(tensor->buffer == NULL);
GGML_ASSERT(tensor->view_src != NULL);
GGML_ASSERT(tensor->view_src->buffer != NULL);
@@ -1823,7 +1752,6 @@ enum ggml_status ggml_backend_view_init(struct ggml_tensor * tensor) {
}
enum ggml_status ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
GGML_ASSERT(tensor);
GGML_ASSERT(tensor->buffer == NULL);
GGML_ASSERT(tensor->data == NULL);
GGML_ASSERT(tensor->view_src == NULL);
@@ -1897,7 +1825,6 @@ static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_
}
struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
GGML_ASSERT(graph);
struct ggml_hash_set hash_set = ggml_hash_set_new(graph->visited_hash_set.size);
struct ggml_tensor ** node_copies = (ggml_tensor **) calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
bool * node_init = (bool *) calloc(hash_set.size, sizeof(node_init[0]));
@@ -2042,7 +1969,6 @@ bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t
// CPU backend - buffer
static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
uintptr_t data = (uintptr_t)buffer->context;
// align the buffer
@@ -2054,33 +1980,28 @@ static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
}
static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
ggml_aligned_free(buffer->context, buffer->size);
}
static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
GGML_ASSERT(tensor);
memset((char *)tensor->data + offset, value, size);
GGML_UNUSED(buffer);
}
static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
GGML_ASSERT(tensor);
memcpy((char *)tensor->data + offset, data, size);
GGML_UNUSED(buffer);
}
static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
GGML_ASSERT(tensor);
memcpy(data, (const char *)tensor->data + offset, size);
GGML_UNUSED(buffer);
}
static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
GGML_ASSERT(src);
if (ggml_backend_buffer_is_host(src->buffer)) {
memcpy(dst->data, src->data, ggml_nbytes(src));
return true;
@@ -2091,7 +2012,6 @@ static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, con
}
static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
GGML_ASSERT(buffer);
memset(buffer->context, value, buffer->size);
}

View File

@@ -70,8 +70,6 @@
#include <aclnnop/aclnn_zero.h>
#include <aclnnop/aclnn_index_copy.h>
#include <aclnnop/aclnn_index_select.h>
#include <aclnnop/aclnn_clamp.h>
#include <aclnnop/aclnn_threshold.h>
#include <float.h>
#include <cmath>
@@ -589,16 +587,9 @@ void ggml_cann_pad(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
// the position of elements in the array means which dirction to padding,
// each position means: [dim0.front, dim0.behind, dim1.front, dim1.behind,
// dim2.front, dim2.behind, dim3.front, dim3.behind]
const int32_t lp0 = ggml_get_op_params_i32(dst, 0);
const int32_t rp0 = ggml_get_op_params_i32(dst, 1);
const int32_t lp1 = ggml_get_op_params_i32(dst, 2);
const int32_t rp1 = ggml_get_op_params_i32(dst, 3);
const int32_t lp2 = ggml_get_op_params_i32(dst, 4);
const int32_t rp2 = ggml_get_op_params_i32(dst, 5);
const int32_t lp3 = ggml_get_op_params_i32(dst, 6);
const int32_t rp3 = ggml_get_op_params_i32(dst, 7);
int64_t paddings[] = {lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3};
int64_t paddings[] = {
0, dst->ne[0] - src->ne[0], 0, dst->ne[1] - src->ne[1],
0, dst->ne[2] - src->ne[2], 0, dst->ne[3] - src->ne[3]};
aclnn_pad(ctx, acl_src, acl_dst, paddings);
ggml_cann_release_resources(ctx, acl_src, acl_dst);
}
@@ -973,8 +964,8 @@ void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
}
aclTensor* acl_gamma = get_f32_cache_acl_tensor(
ctx,
&ctx.rms_norm_one_tensor_cache.cache,
ctx.rms_norm_one_tensor_cache.size,
&ctx.f32_one_cache,
ctx.f32_one_cache_element,
src->ne,
acl_gamma_nb,
1, // dims
@@ -982,19 +973,18 @@ void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
);
// build rstd, zero...
int64_t acl_rstd_ne[] = {src->ne[1], src->ne[2], src->ne[3]};
size_t acl_rstd_nb[GGML_MAX_DIMS - 1];
size_t acl_rstd_nb[GGML_MAX_DIMS];
acl_rstd_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS - 1; i++) {
acl_rstd_nb[i] = acl_rstd_nb[i - 1] * acl_rstd_ne[i - 1];
for (int i = 1; i < GGML_MAX_DIMS; i++) {
acl_rstd_nb[i] = acl_rstd_nb[i - 1] * src->ne[i - 1];
}
aclTensor* acl_rstd = get_f32_cache_acl_tensor(
ctx,
&ctx.rms_norm_zero_tensor_cache.cache,
ctx.rms_norm_zero_tensor_cache.size,
acl_rstd_ne,
&ctx.f32_zero_cache,
ctx.f32_zero_cache_element,
src->ne,
acl_rstd_nb,
GGML_MAX_DIMS - 1,
GGML_MAX_DIMS,
0.0f // value
);
@@ -1433,25 +1423,21 @@ static void aclnn_pow_tensor_tensor(ggml_backend_cann_context& ctx,
* @param start Starting exponent offset.
* @param stop Stopping exponent offset (exclusive).
* @param step Step size for the exponent increment.
* @param dtype Data type for slope tensor.
*/
static void aclnn_get_slope_inner(ggml_backend_cann_context& ctx, void* slope_buffer,
float m, int64_t size, float start, float stop, float step, ggml_type dtype){
aclDataType acl_type = ggml_cann_type_mapping(dtype);
size_t type_size = ggml_type_size(dtype);
float m, int64_t size, float start, float stop, float step){
int64_t ne[] = {size};
size_t nb[] = {type_size};
size_t nb[] = {sizeof(uint16_t)};
ggml_cann_pool_alloc arange_allocator(ctx.pool(), size * type_size);
ggml_cann_pool_alloc arange_allocator(ctx.pool(), size * sizeof(uint16_t));
void* arange_buffer = arange_allocator.get();
aclTensor* arange_tensor = ggml_cann_create_tensor(
arange_buffer, acl_type, type_size, ne, nb, 1);
arange_buffer, ACL_FLOAT16, sizeof(uint16_t), ne, nb, 1);
aclnn_arange(ctx, arange_tensor, start, stop, step, size);
aclTensor* slope_tensor = ggml_cann_create_tensor(
slope_buffer, acl_type, type_size, ne, nb, 1);
slope_buffer, ACL_FLOAT16, sizeof(uint16_t), ne, nb, 1);
aclScalar* sc = aclCreateScalar(&m, aclDataType::ACL_FLOAT);
@@ -1482,11 +1468,10 @@ static void aclnn_get_slope_inner(ggml_backend_cann_context& ctx, void* slope_bu
* @param n_head Total number of attention heads.
* @param slope_buffer Pointer to the output buffer (float array) for storing slopes.
* @param max_bias Maximum bias value for slope computation.
* @param dtype Data type for slope tensor.
*
*/
static void aclnn_get_slope(ggml_backend_cann_context & ctx, int64_t n_head,
void* slope_buffer, float max_bias, ggml_type dtype) {
void* slope_buffer, float max_bias) {
const int n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
float m0 = powf(2.0f, -(max_bias) / n_head_log2);
@@ -1503,7 +1488,7 @@ static void aclnn_get_slope(ggml_backend_cann_context & ctx, int64_t n_head,
float step = 1;
float count = n_head_log2;
// end needs to be +1 because aclnn uses a left-closed, right-open interval.
aclnn_get_slope_inner(ctx, slope_buffer, m0, count, start, end + 1, step, dtype);
aclnn_get_slope_inner(ctx, slope_buffer, m0, count, start, end + 1, step);
if (n_head_log2 < n_head) {
// arange2
start = 2 * (n_head_log2 - n_head_log2) + 1;
@@ -1512,7 +1497,7 @@ static void aclnn_get_slope(ggml_backend_cann_context & ctx, int64_t n_head,
count = n_head - n_head_log2;
aclnn_get_slope_inner(
ctx, (char *) slope_buffer + n_head_log2 * sizeof(float),
m1, count, start, end + 1, step, dtype);
m1, count, start, end + 1, step);
}
}
@@ -1549,7 +1534,7 @@ static void aclnn_add_alibi(ggml_backend_cann_context& ctx, ggml_tensor* mask,
ggml_cann_pool_alloc bias_allocator(
ctx.pool(), ggml_nelements(dst) * ggml_element_size(dst));
bias_buffer = bias_allocator.get();
aclnn_get_slope(ctx, n_heads, slope_buffer, max_bias, GGML_TYPE_F32);
aclnn_get_slope(ctx, n_heads, slope_buffer, max_bias);
}
// broadcast for mask, slop and dst;
@@ -1775,10 +1760,10 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
case GGML_TYPE_F16: {
aclTensor* acl_src0 = ggml_cann_create_tensor(src0);
ggml_cann_pool_alloc src_buffer_allocator(
ctx.pool(), ggml_nelements(src0) * sizeof(float));
ctx.pool(), ggml_nelements(src0) * sizeof(float_t));
void* src_trans_buffer = src_buffer_allocator.get();
size_t src_trans_nb[GGML_MAX_DIMS];
src_trans_nb[0] = sizeof(float);
src_trans_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
}
@@ -1822,14 +1807,14 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
// [3,4,5,64] -> [3,4,5,2,32]
dequant_ne = weight_ne;
dequant_nb[0] = sizeof(float);
dequant_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS + 1; i++) {
dequant_nb[i] = dequant_nb[i - 1] * dequant_ne[i - 1];
}
scale_offset = ggml_nelements(src0) * sizeof(int8_t);
ggml_cann_pool_alloc dequant_buffer_allocator(
ctx.pool(), ggml_nelements(src0) * sizeof(float));
ctx.pool(), ggml_nelements(src0) * sizeof(float_t));
aclTensor* acl_weight_tensor = ggml_cann_create_tensor(
src0->data, ACL_INT8, sizeof(int8_t), weight_ne, weight_nb,
@@ -1838,11 +1823,11 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
src0->data, ACL_FLOAT16, sizeof(uint16_t), scale_ne, scale_nb,
GGML_MAX_DIMS + 1, ACL_FORMAT_ND, scale_offset);
aclTensor* dequant_tensor = ggml_cann_create_tensor(
dequant_buffer_allocator.get(), ACL_FLOAT, sizeof(float),
dequant_buffer_allocator.get(), ACL_FLOAT, sizeof(float_t),
dequant_ne, dequant_nb, GGML_MAX_DIMS + 1);
aclnn_mul(ctx, acl_weight_tensor, acl_scale_tensor, dequant_tensor);
dequant_nb[0] = sizeof(float);
dequant_nb[0] = sizeof(float_t);
dequant_ne = src0->ne;
for (int i = 1; i < GGML_MAX_DIMS; i++) {
dequant_nb[i] = dequant_nb[i - 1] * src0->ne[i - 1];
@@ -1963,7 +1948,7 @@ static void ggml_cann_mat_mul_fp(ggml_backend_cann_context& ctx,
aclTensor* acl_weight_tensor;
// Only check env once.
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or("on"));
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or(""));
if (weight_to_nz && is_matmul_weight(weight)) {
int64_t acl_stride[2] = {1, transpose_ne[1]};
@@ -2263,35 +2248,46 @@ static void aclnn_index_fill_tensor(ggml_backend_cann_context& ctx,
* 5. Compute sin(θ), cos(θ) and optionally scale by attn_factor.
* 6. Expand sin/cos values by repeat or repeat_interleave depending
* on whether @param is_neox is enabled.
* 7. Store the computed values into persistent buffers
* (ctx.rope_sin_ptr / ctx.rope_cos_ptr).
*
* @param ctx The CANN backend context, holding memory pool,
* stream, and persistent buffers for rope init/cache.
* @param dst The destination ggml_tensor whose computation
* depends on the RoPE values (usually Qcur/Kcur).
* @param sin_tensor_buffer Pre-allocated buffer for storing repeated sin values.
* @param cos_tensor_buffer Pre-allocated buffer for storing repeated cos values.
* @param theta_scale Scalar exponent base for computing theta scale values.
* @param freq_scale Frequency scaling factor, applied to theta scale.
* @param attn_factor Attention scaling factor, applied to sin/cos.
* @param is_neox Whether to use Neox-style repeat strategy
* (dim expansion vs repeat_interleave).
* @param ctx The CANN backend context, holding memory pool,
* stream, and persistent buffers for rope init/cache.
* @param dst The destination ggml_tensor whose computation
* depends on the cached RoPE values (usually Qcur/Kcur).
* @param theta_scale Scalar exponent base for computing theta scale values.
* @param freq_scale Frequency scaling factor, applied to theta scale.
* @param attn_factor Attention scaling factor, applied to sin/cos.
* @param is_neox Whether to use Neox-style repeat strategy
* (dim expansion vs repeat_interleave).
*/
static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
void* sin_tensor_buffer, void* cos_tensor_buffer,
float* corr_dims, float ext_factor,
float theta_scale, float freq_scale,
float attn_factor, bool is_neox) {
// int sin/cos cache, cache has different repeat method depond on
// @param.is_neox
bool is_q = (std::strncmp(dst->name, "Qcur-", 5) == 0);
bool is_k = (std::strncmp(dst->name, "Kcur-", 5) == 0);
// used for accuracy testing
bool is_attention = is_q || is_k;
// just compute in first layer in attention
bool is_fisrt_layer = (std::strncmp(dst->name, "Qcur-0", GGML_MAX_NAME) == 0);
if(is_attention && !is_fisrt_layer) {
return;
}
ggml_tensor* src0 = dst->src[0]; // input
ggml_tensor* src1 = dst->src[1]; // position
ggml_tensor* src2 = dst->src[2]; // freq_factors
int64_t theta_scale_length = src0->ne[0] / 2;
GGML_TENSOR_BINARY_OP_LOCALS
int64_t theta_scale_length = ne00 / 2;
int64_t theta_scale_ne[] = {theta_scale_length, 1, 1, 1};
size_t theta_scale_nb[] = {sizeof(float), sizeof(float), sizeof(float),
theta_scale_length * sizeof(float)};
size_t theta_scale_nb[] = {sizeof(float_t), sizeof(float_t), sizeof(float_t),
theta_scale_length * sizeof(float_t)};
GGML_ASSERT(src1->type == GGML_TYPE_I32);
int64_t position_length = src1->ne[0];
@@ -2301,116 +2297,66 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
int64_t theta_ne[] = {theta_scale_length, 1, position_length, 1};
size_t theta_nb[GGML_MAX_DIMS];
theta_nb[0] = sizeof(float);
theta_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
theta_nb[i] = theta_nb[i - 1] * theta_ne[i - 1];
}
// theta_scale arange, [0,1,...,ne00/2 - 1]
aclTensor* acl_theta_scale_tensor = nullptr;
// cache theta scale
if (ctx.rope_cache.theta_scale_length != theta_scale_length ||
// theta_scale and freq_scale should not change during the current token inference process,
// so we can directly use == here instead of comparing the absolute difference.
ctx.rope_cache.theta_scale != theta_scale ||
ctx.rope_cache.freq_scale != freq_scale) {
ctx.rope_cache.theta_scale_length = theta_scale_length;
ctx.rope_cache.theta_scale = theta_scale;
ctx.rope_cache.freq_scale = freq_scale;
if (ctx.rope_cache.theta_scale_cache != nullptr) {
ACL_CHECK(aclrtFree(ctx.rope_cache.theta_scale_cache));
// init theta scale, just one time
if(ctx.rope_init_ptr == nullptr || !is_attention) {
// theta_scale arange, [0,1,...,ne00/2 - 1]
if(ctx.rope_init_ptr != nullptr){
ACL_CHECK(aclrtFree(ctx.rope_init_ptr));
}
ACL_CHECK(aclrtMalloc(&ctx.rope_cache.theta_scale_cache, theta_scale_length * sizeof(float), ACL_MEM_MALLOC_HUGE_FIRST));
ACL_CHECK(aclrtMalloc(&ctx.rope_init_ptr, theta_scale_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
acl_theta_scale_tensor =
ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float),
aclTensor* acl_theta_scale_tensor =
ggml_cann_create_tensor(ctx.rope_init_ptr, ACL_FLOAT, sizeof(float_t),
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
float start = 0;
float step = 1;
float stop = theta_scale_length;
float n_elements = theta_scale_length;
float stop = ne00 / 2;
float n_elements = ne00 / 2;
aclnn_arange(ctx, acl_theta_scale_tensor, start, stop, step, n_elements);
ggml_cann_pool_alloc yarn_ramp_allocator(ctx.pool());
aclTensor* acl_yarn_ramp_tensor = nullptr;
if (ext_factor != 0) {
// -rope_yarn_ramp
// const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
// return MIN(1, MAX(0, y)) - 1;
yarn_ramp_allocator.alloc(theta_scale_length * sizeof(float));
void* yarn_ramp_buffer = yarn_ramp_allocator.get();
acl_yarn_ramp_tensor = ggml_cann_create_tensor(yarn_ramp_buffer, ACL_FLOAT, sizeof(float_t),
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
float zero_value = 0, one_value = 1;
float denom_safe_value = MAX(0.001f, corr_dims[1] - corr_dims[0]);
aclScalar* low = aclCreateScalar(&corr_dims[0], aclDataType::ACL_FLOAT);
aclScalar* zero = aclCreateScalar(&zero_value, aclDataType::ACL_FLOAT);
aclScalar* one = aclCreateScalar(&one_value, aclDataType::ACL_FLOAT);
aclScalar* denom_safe = aclCreateScalar(&denom_safe_value, aclDataType::ACL_FLOAT);
aclScalar* ext_factor_sc = aclCreateScalar(&ext_factor, aclDataType::ACL_FLOAT);
GGML_CANN_CALL_ACLNN_OP(ctx, Subs, acl_theta_scale_tensor, low, one, acl_yarn_ramp_tensor);
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceDivs, acl_yarn_ramp_tensor, denom_safe);
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceThreshold, acl_yarn_ramp_tensor, zero, zero);
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceClampMax, acl_yarn_ramp_tensor, one);
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceSubs, acl_yarn_ramp_tensor, one, one);
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceMuls, acl_yarn_ramp_tensor, ext_factor_sc);
// theta_interp = freq_scale * theta_extrap;
// theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
// theta = freq_scale * theta_extrap * (1 - ramp_mix) + theta_extrap * ramp_mix;
// theta = freq_scale * theta_extrap - freq_scale * theta_extrap * ramp_mix + theta_extrap * ramp_mix;
// theta = theta_extrap * (freq_scale - freq_scale * ramp_mix + ramp_mix);
//
// we cache (freq_scale - freq_scale * ramp_mix + ramp_mix), Considering that the rope_yarn_ramp here is the inverse
// cache freq_scale + (freq_scale - 1) * ramp_mix
float freq_scale_1 = freq_scale - 1;
aclScalar* freq_scale_sc = aclCreateScalar(&freq_scale, aclDataType::ACL_FLOAT);
aclScalar* freq_scale_1_sc = aclCreateScalar(&freq_scale_1, aclDataType::ACL_FLOAT);
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceMuls, acl_yarn_ramp_tensor, freq_scale_1_sc);
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceAdds, acl_yarn_ramp_tensor, freq_scale_sc, one);
ggml_cann_release_resources(ctx, low, zero, one, denom_safe, ext_factor_sc, freq_scale_sc, freq_scale_1_sc);
}
// power
aclScalar* acl_theta_scale = aclCreateScalar(&theta_scale, aclDataType::ACL_FLOAT);
GGML_CANN_CALL_ACLNN_OP(ctx, PowScalarTensor, acl_theta_scale, acl_theta_scale_tensor,
acl_theta_scale_tensor);
if (ext_factor != 0) {
aclnn_mul(ctx, acl_theta_scale_tensor, acl_yarn_ramp_tensor);
} else if (freq_scale != 1) {
// freq_scale
if (freq_scale != 1) {
aclnn_muls(ctx, acl_theta_scale_tensor, freq_scale, nullptr, true);
}
ggml_cann_release_resources(ctx, acl_yarn_ramp_tensor, acl_theta_scale);
} else {
// use cache
acl_theta_scale_tensor =
ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float),
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
// freq_factors
if (src2) {
aclTensor* acl_freq_factors_tensor = ggml_cann_create_tensor(
src2->data, ggml_cann_type_mapping(src2->type),
ggml_type_size(src2->type), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
aclnn_div(ctx, acl_theta_scale_tensor, acl_freq_factors_tensor);
ggml_cann_release_resources(ctx, acl_freq_factors_tensor);
}
// release
ggml_cann_release_resources(ctx, acl_theta_scale_tensor,acl_theta_scale);
}
ggml_cann_pool_alloc freq_fac_res_allocator(ctx.pool());
// freq_factors
if (src2) {
freq_fac_res_allocator.alloc(theta_scale_length * sizeof(float));
void* freq_fac_res_ptr = freq_fac_res_allocator.get();
aclTensor* acl_freq_factors_tensor = ggml_cann_create_tensor(
src2->data, ggml_cann_type_mapping(src2->type),
ggml_type_size(src2->type), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
aclTensor* acl_freq_fac_res_tensor = ggml_cann_create_tensor(
freq_fac_res_ptr, ACL_FLOAT, sizeof(float),
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
aclnn_div(ctx, acl_theta_scale_tensor, acl_freq_factors_tensor, acl_freq_fac_res_tensor);
std::swap(acl_theta_scale_tensor, acl_freq_fac_res_tensor);
ggml_cann_release_resources(ctx, acl_freq_factors_tensor, acl_freq_fac_res_tensor);
// init sin_repeat && cos_repeat, one token just init in 0 layer
if(position_length > ctx.max_prompt_length) {
ctx.max_prompt_length = position_length;
int64_t repeat_theta_length = theta_scale_length * ctx.max_prompt_length * 2;
if(ctx.rope_sin_ptr != nullptr) {
ACL_CHECK(aclrtFree(ctx.rope_sin_ptr));
ACL_CHECK(aclrtFree(ctx.rope_cos_ptr));
}
ACL_CHECK(aclrtMalloc(&ctx.rope_sin_ptr, repeat_theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
ACL_CHECK(aclrtMalloc(&ctx.rope_cos_ptr, repeat_theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
}
aclTensor* acl_theta_scale_tensor =
ggml_cann_create_tensor(ctx.rope_init_ptr, ACL_FLOAT, sizeof(float_t),
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
// position
aclTensor* acl_position_tensor = ggml_cann_create_tensor(
src1->data, ggml_cann_type_mapping(src1->type),
@@ -2419,53 +2365,49 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
// power * position
int64_t theta_length = theta_scale_length * position_length;
ggml_cann_pool_alloc theta_allocator(ctx.pool(),
theta_length * sizeof(float));
theta_length * sizeof(float_t));
void* theta_buffer = theta_allocator.get();
aclTensor* acl_theta_tensor =
ggml_cann_create_tensor(theta_buffer, ACL_FLOAT, sizeof(float),
ggml_cann_create_tensor(theta_buffer, ACL_FLOAT, sizeof(float_t),
theta_ne, theta_nb, GGML_MAX_DIMS);
aclnn_mul(ctx, acl_position_tensor, acl_theta_scale_tensor,
acl_theta_tensor);
// sin/cos
ggml_cann_pool_alloc sin_allocator(ctx.pool(),
theta_length * sizeof(float));
theta_length * sizeof(float_t));
void* sin_buffer = sin_allocator.get();
aclTensor* acl_sin_tensor = ggml_cann_create_tensor(
sin_buffer, ACL_FLOAT, sizeof(float), theta_ne, theta_nb,
sin_buffer, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
GGML_MAX_DIMS, ACL_FORMAT_ND);
aclnn_sin(ctx, acl_theta_tensor, acl_sin_tensor);
ggml_cann_pool_alloc cos_allocator(ctx.pool(),
theta_length * sizeof(float));
theta_length * sizeof(float_t));
void* cos_buffer = cos_allocator.get();
aclTensor* acl_cos_tensor = ggml_cann_create_tensor(
cos_buffer, ACL_FLOAT, sizeof(float), theta_ne, theta_nb,
cos_buffer, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
GGML_MAX_DIMS, ACL_FORMAT_ND);
aclnn_cos(ctx, acl_theta_tensor, acl_cos_tensor);
if (ext_factor != 0) {
attn_factor *= 1.0f + 0.1f * logf(1.0f / freq_scale);
}
// attn_factor
if (attn_factor != 1) {
aclnn_muls(ctx, acl_sin_tensor, attn_factor, nullptr, true);
aclnn_muls(ctx, acl_cos_tensor, attn_factor, nullptr, true);
}
int64_t sin_reshape_ne[4] = {src0->ne[0], 1, src0->ne[2], 1};
int64_t sin_reshape_ne[4] = {ne00, 1, ne02, 1};
size_t sin_reshape_nb[GGML_MAX_DIMS];
sin_reshape_nb[0] = sizeof(float);
sin_reshape_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
sin_reshape_nb[i] = sin_reshape_nb[i - 1] * sin_reshape_ne[i - 1];
}
aclTensor* acl_sin_repeat_tensor =
ggml_cann_create_tensor(sin_tensor_buffer, ACL_FLOAT, sizeof(float),
ggml_cann_create_tensor(ctx.rope_sin_ptr, ACL_FLOAT, sizeof(float_t),
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
aclTensor* acl_cos_repeat_tensor =
ggml_cann_create_tensor(cos_tensor_buffer, ACL_FLOAT, sizeof(float),
ggml_cann_create_tensor(ctx.rope_cos_ptr, ACL_FLOAT, sizeof(float_t),
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
// repeat
@@ -2507,7 +2449,6 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
// TODO: use ascendc
// Only test with LLAMA model.
ggml_tensor* src0 = dst->src[0]; // input
ggml_tensor* src1 = dst->src[1];
// param
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
@@ -2529,6 +2470,8 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
// TODO: n_dims <= ne0
GGML_ASSERT(n_dims == ne0);
GGML_ASSERT(n_dims % 2 == 0);
// TODO: ext_factor != 0
GGML_ASSERT(ext_factor == 0);
const float theta_scale = powf(freq_base, -2.0f / n_dims);
@@ -2538,28 +2481,20 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
// sin/cos tensor length.
int64_t repeat_theta_length = src0->ne[0] * src1->ne[0];
ggml_cann_pool_alloc sin_tensor_allocator(ctx.pool(), repeat_theta_length * sizeof(float));
ggml_cann_pool_alloc cos_tensor_allocator(ctx.pool(), repeat_theta_length * sizeof(float));
void *sin_tensor_buffer = sin_tensor_allocator.get();
void *cos_tensor_buffer = cos_tensor_allocator.get();
// init ctx.rope_cos/rope_sin cache
aclnn_cache_init(ctx, dst, sin_tensor_buffer, cos_tensor_buffer, corr_dims, ext_factor,
theta_scale, freq_scale, attn_factor, is_neox);
aclnn_cache_init(ctx, dst, theta_scale, freq_scale, attn_factor, is_neox);
int64_t sin_reshape_ne[4] = {ne00, 1, ne02, 1};
size_t sin_reshape_nb[GGML_MAX_DIMS];
sin_reshape_nb[0] = sizeof(float);
sin_reshape_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
sin_reshape_nb[i] = sin_reshape_nb[i - 1] * sin_reshape_ne[i - 1];
}
aclTensor* acl_sin_reshape_tensor =
ggml_cann_create_tensor(sin_tensor_buffer, ACL_FLOAT, sizeof(float),
ggml_cann_create_tensor(ctx.rope_sin_ptr, ACL_FLOAT, sizeof(float_t),
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
aclTensor* acl_cos_reshape_tensor =
ggml_cann_create_tensor(cos_tensor_buffer, ACL_FLOAT, sizeof(float),
ggml_cann_create_tensor(ctx.rope_cos_ptr, ACL_FLOAT, sizeof(float_t),
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
aclTensor* acl_src = ggml_cann_create_tensor(src0);
@@ -2574,7 +2509,7 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
void* minus_one_scale_buffer = nullptr;
ggml_cann_pool_alloc roll_allocator(ctx.pool(), ggml_nbytes(src0));
ggml_cann_pool_alloc minus_one_scale_allocator(
ctx.pool(), sizeof(float) * src0->ne[0]);
ctx.pool(), sizeof(float_t) * src0->ne[0]);
if (!is_neox) {
// roll input: [q0,q1,q2,q3,...] -> [q1,q0,q3,q2,...]
input_roll_buffer = roll_allocator.get();
@@ -2604,13 +2539,13 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
int64_t minus_one_ne[4] = {src0->ne[0], 1, 1, 1};
size_t minus_one_nb[GGML_MAX_DIMS];
minus_one_nb[0] = sizeof(float);
minus_one_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
minus_one_nb[i] = minus_one_nb[i - 1] * minus_one_ne[i - 1];
}
acl_minus_one_tensor = aclnn_values(
ctx, minus_one_scale_buffer, sizeof(float) * src0->ne[0],
minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float), 1);
ctx, minus_one_scale_buffer, sizeof(float_t) * src0->ne[0],
minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), 1);
int64_t dim = 3;
int64_t* index = new int64_t[src0->ne[0]];
for (int i = 0; i < src0->ne[0]; i++) {
@@ -2638,22 +2573,22 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
minus_one_scale_buffer = minus_one_scale_allocator.get();
int64_t minus_one_ne[4] = {src0->ne[0], 1, 1, 1};
size_t minus_one_nb[GGML_MAX_DIMS];
minus_one_nb[0] = sizeof(float);
minus_one_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
minus_one_nb[i] = minus_one_nb[i - 1] * minus_one_ne[i - 1];
}
acl_minus_one_tensor = aclnn_values(
ctx, minus_one_scale_buffer, sizeof(float) * src0->ne[0],
minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float), 1);
ctx, minus_one_scale_buffer, sizeof(float_t) * src0->ne[0],
minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), 1);
// -1 * first half
int64_t first_half_ne[4] = {src0->ne[0] / 2, 1, 1, 1};
size_t first_half_nb[GGML_MAX_DIMS];
first_half_nb[0] = sizeof(float);
first_half_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
first_half_nb[i] = first_half_nb[i - 1] * first_half_ne[i - 1];
}
aclTensor* acl_first_half_tensor = ggml_cann_create_tensor(
minus_one_scale_buffer, ACL_FLOAT, sizeof(float), first_half_ne,
minus_one_scale_buffer, ACL_FLOAT, sizeof(float_t), first_half_ne,
first_half_nb, GGML_MAX_DIMS);
bool inplace = true;
float scale = -1;
@@ -2693,28 +2628,28 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
// TODO: ne0 != n_dims in mode2
} else if (src0->type == GGML_TYPE_F16) {
size_t input_fp32_nb[GGML_MAX_DIMS];
input_fp32_nb[0] = sizeof(float);
input_fp32_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
input_fp32_nb[i] = input_fp32_nb[i - 1] * dst->ne[i - 1];
}
ggml_cann_pool_alloc fp32_allocator1(
ctx.pool(), ggml_nelements(dst) * sizeof(float));
ctx.pool(), ggml_nelements(dst) * sizeof(float_t));
void* input_fp32_buffer1 = fp32_allocator1.get();
aclTensor* input_fp32_tensor1 = ggml_cann_create_tensor(
input_fp32_buffer1, ACL_FLOAT, sizeof(float), dst->ne,
input_fp32_buffer1, ACL_FLOAT, sizeof(float_t), dst->ne,
input_fp32_nb, GGML_MAX_DIMS);
ggml_cann_pool_alloc fp32_allocator2(
ctx.pool(), ggml_nelements(dst) * sizeof(float));
ctx.pool(), ggml_nelements(dst) * sizeof(float_t));
void* input_fp32_buffer2 = fp32_allocator2.get();
aclTensor* input_fp32_tensor2 = ggml_cann_create_tensor(
input_fp32_buffer2, ACL_FLOAT, sizeof(float), dst->ne,
input_fp32_buffer2, ACL_FLOAT, sizeof(float_t), dst->ne,
input_fp32_nb, GGML_MAX_DIMS);
ggml_cann_pool_alloc fp32_allocator(
ctx.pool(), ggml_nelements(dst) * sizeof(float));
ctx.pool(), ggml_nelements(dst) * sizeof(float_t));
output_fp32_buffer = fp32_allocator.get();
aclTensor* output_fp32_tensor = ggml_cann_create_tensor(
output_fp32_buffer, ACL_FLOAT, sizeof(float), dst->ne,
output_fp32_buffer, ACL_FLOAT, sizeof(float_t), dst->ne,
input_fp32_nb, GGML_MAX_DIMS);
aclnn_mul(ctx, acl_src, acl_cos_reshape_tensor, input_fp32_tensor1);
aclnn_mul(ctx, acl_input_roll_mul_scale_tensor, acl_sin_reshape_tensor,
@@ -2811,6 +2746,8 @@ void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* ds
aclIntArray *padding = aclCreateIntArray(paddingVal, 1);
int64_t dilationVal[] = {1};
aclIntArray *dilation = aclCreateIntArray(dilationVal, 1);
bool transposed = true;
int64_t groups = 1;
int8_t cubeMathType = 0;
#ifdef ASCEND_310P
@@ -2818,7 +2755,7 @@ void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* ds
#endif
GGML_CANN_CALL_ACLNN_OP(ctx, Convolution, acl_input, acl_weight, nullptr, stride,
padding, dilation, true, padding, 1, acl_dst, cubeMathType);
padding, dilation, transposed, padding, groups, acl_dst, cubeMathType);
ggml_cann_release_resources(ctx, acl_weight, acl_dst, stride, padding, dilation);
}
@@ -2927,49 +2864,174 @@ void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst){
*/
static void ggml_cann_mul_mat_id_fp(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
//dst [M, K, N, 1]
ggml_tensor * src0 = dst->src[0]; //src0 [D, M, A, 1] -> [D, M, K, 1]
ggml_tensor * src1 = dst->src[1]; //src1 [D, B, N, 1], B = K or B = 1 -> [D, 1, K, 1]
ggml_tensor * src0 = dst->src[0]; //src0 [D, M, A, 1]
ggml_tensor * src1 = dst->src[1]; //src1 [D, B, N, 1], B = K or B = 1
ggml_tensor * ids = dst->src[2]; //ids [K, N]
GGML_ASSERT(src0->ne[3] == 1);
GGML_ASSERT(src1->ne[3] == 1);
GGML_ASSERT(dst->ne[3] == 1);
GGML_TENSOR_BINARY_OP_LOCALS
int64_t batch = src1->ne[2];
GGML_ASSERT(batch == ids->ne[1]);
// copy index from npu to cpu
int64_t n_as = ne02; // A
int64_t n_ids = ids->ne[0]; // K
ggml_cann_pool_alloc export_allocator(ctx.pool(), src0->ne[0] * src0->ne[1] * ids->ne[0] * ggml_element_size(src0));
void* export_ptr = export_allocator.get();
for (int64_t i = 0; i < batch; i++) {
aclTensor *select_index = ggml_cann_create_tensor(ids, ids->ne, ids->nb, 1, ACL_FORMAT_ND, i * ids->nb[1]);
aclTensor *export_weight = ggml_cann_create_tensor(src0, src0->ne, src0->nb, 3);
std::vector<char> ids_host(ggml_nbytes(ids));
ggml_cann_async_memcpy(ctx, ids_host.data(), ids->data, ggml_nbytes(ids),
ACL_MEMCPY_DEVICE_TO_HOST);
ACL_CHECK(aclrtSynchronizeStream(ctx.stream()));
int64_t select_export_ne[] = {src0->ne[0], src0->ne[1], ids->ne[0]};
size_t select_export_nb[3];
select_export_nb[0] = src0->nb[0];
for (int k = 1;k < 3; k++) {
select_export_nb[k] = select_export_nb[k-1] * select_export_ne[k-1];
char * src0_original = (char *) src0->data;
char * src1_original = (char *) src1->data;
char * dst_original = (char *) dst->data;
size_t ori_src0_nb[4] = {nb00, nb01, nb02, nb03};
// src0 is F16, src1 is F32, dst is F32
ggml_cann_pool_alloc src0_cast_allocator;
if (src0->type == GGML_TYPE_F16) {
src0_cast_allocator.alloc(ctx.pool(), sizeof(float) * ggml_nelements(src0));
void* src0_cast_buf = src0_cast_allocator.get();
size_t cast_nb[GGML_MAX_DIMS];
cast_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
cast_nb[i] = cast_nb[i - 1] * src0->ne[i - 1];
}
aclTensor *select_export = ggml_cann_create_tensor(export_ptr, ggml_cann_type_mapping(src0->type), ggml_element_size(src0), select_export_ne, select_export_nb, 3);
GGML_CANN_CALL_ACLNN_OP(ctx, IndexSelect, export_weight, 0, select_index, select_export);
aclTensor* acl_src0_f16 = ggml_cann_create_tensor(src0);
aclTensor* acl_cast = ggml_cann_create_tensor(src0_cast_buf,
ACL_FLOAT, sizeof(float), src0->ne, cast_nb, 4);
GGML_CANN_CALL_ACLNN_OP(ctx, Cast, acl_src0_f16, ACL_FLOAT, acl_cast);
ggml_cann_release_resources(ctx, acl_cast, acl_src0_f16);
int64_t select_transpose_ne[] = {select_export_ne[1], select_export_ne[0], select_export_ne[2]};
size_t select_transpose_nb[] = {select_export_nb[1], select_export_nb[0], select_export_nb[2]};
aclTensor *select_export_transpose = ggml_cann_create_tensor(export_ptr, ggml_cann_type_mapping(src0->type), ggml_element_size(src0), select_transpose_ne, select_transpose_nb, 3);
int64_t active_tensor_ne[] = {src1->ne[0], 1, src1->ne[1]};
size_t active_tensor_nb[] = {src1->nb[0], src1->nb[1], src1->nb[1]};
aclTensor *active_tensor = ggml_cann_create_tensor(src1, active_tensor_ne, active_tensor_nb, 3, ACL_FORMAT_ND, i * src1->nb[2]);
int64_t dst_ne[] = {dst->ne[0], 1, dst->ne[1]};
size_t dst_nb[] = {dst->nb[0], dst->nb[1], dst->nb[1]};
aclTensor *acl_dst = ggml_cann_create_tensor(dst, dst_ne,dst_nb, 3, ACL_FORMAT_ND, i * dst->nb[2]);
GGML_CANN_CALL_ACLNN_OP(ctx, BatchMatMul, active_tensor, select_export_transpose, acl_dst, 2);
ggml_cann_release_resources(ctx, select_index, export_weight, select_export, active_tensor, acl_dst, select_export_transpose);
src0_original = (char *) src0_cast_buf;
memcpy(ori_src0_nb, cast_nb, sizeof(ori_src0_nb));
}
#ifdef ASCEND_310P
ggml_tensor src0_row = *src0;
ggml_tensor src1_row = *src1;
ggml_tensor dst_row = *dst;
if (src0->type == GGML_TYPE_F16) {
src0_row.type = GGML_TYPE_F32;
}
// src0_row [D, M, 1, 1] weight without permute
src0_row.ne[2] = 1;
src0_row.ne[3] = 1;
src0_row.nb[0] = ori_src0_nb[0];
src0_row.nb[1] = ori_src0_nb[1];
src0_row.nb[2] = ori_src0_nb[1];
src0_row.nb[3] = ori_src0_nb[1];
// src1_row [D, 1, 1, 1] -> input
src1_row.ne[1] = 1;
src1_row.ne[2] = 1;
src1_row.ne[3] = 1;
src1_row.nb[2] = nb11;
src1_row.nb[3] = nb11;
// dst_row [M, 1, 1, 1] -> out
dst_row.ne[1] = 1;
dst_row.ne[2] = 1;
dst_row.ne[3] = 1;
dst_row.nb[2] = nb1;
dst_row.nb[3] = nb1;
//create weight for one row
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
for (int64_t id = 0; id < n_ids; id++) {
// expert index
int32_t i02 = *(int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
GGML_ASSERT(i02 >= 0 && i02 < n_as);
// If B = 1 (broadcast), always use 0; otherwise, use id.
int64_t i11 = (ne11 == 1 ? 0 : id);
int64_t i12 = iid1;
int64_t i1 = id;
int64_t i2 = i12;
void* src0_tmp_ptr = src0_original + i02*ori_src0_nb[2];
void* src1_tmp_ptr = src1_original + i11*nb11 + i12*nb12;
void* dst_tmp_ptr = dst_original + i1*nb1 + i2*nb2;
src0_row.data = src0_tmp_ptr;
src1_row.data = src1_tmp_ptr;
dst_row.data = dst_tmp_ptr;
dst_row.src[0] = &src0_row;
dst_row.src[1] = &src1_row;
ggml_cann_mul_mat(ctx, &dst_row);
}
}
return;
#endif
std::vector<aclTensor*> src0_tensor_vec;
std::vector<aclTensor*> src1_tensor_vec;
std::vector<aclTensor*> dst_tensor_vec;
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
for (int64_t id = 0; id < n_ids; id++) {
// src0_row [M, D] -> weight && permute
int64_t src0_ne[2] = {ne01, ne00};
size_t src0_nb[2] = {ori_src0_nb[1], ori_src0_nb[0]};
// src1_row [D, 1] -> input
int64_t src1_ne[2] = {ne10, 1};
size_t src1_nb[2] = {nb10, nb11};
// dst_row [M, 1] -> out
int64_t dst_ne[2] = {ne0, 1};
size_t dst_nb[2] = {nb0, nb1};
// expert index
int32_t i02 = *(int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
GGML_ASSERT(i02 >= 0 && i02 < n_as);
// If B = 1 (broadcast), always use 0; otherwise, use id.
int64_t i11 = (ne11 == 1 ? 0 : id);
int64_t i12 = iid1;
int64_t i1 = id;
int64_t i2 = i12;
void* src0_tmp_ptr = src0_original + i02*ori_src0_nb[2];
void* src1_tmp_ptr = src1_original + i11*nb11 + i12*nb12;
void* dst_tmp_ptr = dst_original + i1*nb1 + i2*nb2;
aclTensor* acl_src0 = ggml_cann_create_tensor(src0_tmp_ptr,
ACL_FLOAT, sizeof(float),
src0_ne, src0_nb, 2);
aclTensor* acl_src1 = ggml_cann_create_tensor(src1_tmp_ptr,
ACL_FLOAT, sizeof(float),
src1_ne, src1_nb, 2);
aclTensor* acl_dst = ggml_cann_create_tensor(dst_tmp_ptr,
ACL_FLOAT, sizeof(float),
dst_ne, dst_nb, 2);
src0_tensor_vec.push_back(acl_src0);
src1_tensor_vec.push_back(acl_src1);
dst_tensor_vec.push_back(acl_dst);
}
}
size_t GROUP_SIZE = 128;
// GroupedMatmulV3 required tensor_list.size < 128
for (size_t i = 0; i < src0_tensor_vec.size(); i += GROUP_SIZE) {
// split and call GroupedMatmulV3
size_t end = std::min(i + GROUP_SIZE, src0_tensor_vec.size());
std::vector<aclTensor*> src0_tensor_vec_split(src0_tensor_vec.begin() + i, src0_tensor_vec.begin() + end);
std::vector<aclTensor*> src1_tensor_vec_split(src1_tensor_vec.begin() + i, src1_tensor_vec.begin() + end);
std::vector<aclTensor*> dst_tensor_vec_split(dst_tensor_vec.begin() + i, dst_tensor_vec.begin() + end);
aclTensorList* src0_tensor_list = aclCreateTensorList(src0_tensor_vec_split.data(), src0_tensor_vec_split.size());
aclTensorList* src1_tensor_list = aclCreateTensorList(src1_tensor_vec_split.data(), src1_tensor_vec_split.size());
aclTensorList* dst_tensor_list = aclCreateTensorList(dst_tensor_vec_split.data(), dst_tensor_vec_split.size());
GGML_CANN_CALL_ACLNN_OP(ctx, GroupedMatmulV3, src1_tensor_list, src0_tensor_list,
nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, -1, dst_tensor_list);
ggml_cann_release_resources(ctx, src0_tensor_list, src1_tensor_list, dst_tensor_list);
}
return;
}
/**
@@ -3280,7 +3342,7 @@ void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst){
const int64_t n_heads = src0->ne[2];
ggml_cann_pool_alloc slope_allocator(ctx.pool(), n_heads * sizeof(uint16_t));
void* slope_buffer = slope_allocator.get();
aclnn_get_slope(ctx, n_heads, slope_buffer, maxBias, GGML_TYPE_F16);
aclnn_get_slope(ctx, n_heads, slope_buffer, maxBias);
int64_t slope_ne[] = {1, 1, n_heads, 1};
size_t slope_nb[GGML_MAX_DIMS];

View File

@@ -360,30 +360,6 @@ struct ggml_cann_graph {
};
#endif // USE_ACL_GRAPH
struct ggml_cann_rope_cache {
~ggml_cann_rope_cache() {
if(theta_scale_cache != nullptr) {
ACL_CHECK(aclrtFree(theta_scale_cache));
}
}
void* theta_scale_cache = nullptr;
int64_t theta_scale_length = 0;
float theta_scale = 0.0f;
float freq_scale = 0.0f;
};
struct ggml_cann_tensor_cache {
~ggml_cann_tensor_cache() {
if(cache != nullptr) {
ACL_CHECK(aclrtFree(cache));
}
}
void* cache = nullptr;
int64_t size = 0;
};
/**
* @brief Context for managing CANN backend operations.
*/
@@ -395,15 +371,19 @@ struct ggml_backend_cann_context {
#ifdef USE_ACL_GRAPH
/// Cached CANN ACL graph used for executing the current ggml computation graph.
std::unique_ptr<ggml_cann_graph> cann_graph;
bool acl_graph_mode = true;
#endif
cann_task_queue task_queue;
bool async_mode;
// Rope Cache
ggml_cann_rope_cache rope_cache;
void* rope_init_ptr = nullptr;
void* rope_sin_ptr = nullptr;
void* rope_cos_ptr = nullptr;
int64_t max_prompt_length = 0;
// Constant Pool
ggml_cann_tensor_cache rms_norm_one_tensor_cache;
ggml_cann_tensor_cache rms_norm_zero_tensor_cache;
void* f32_zero_cache = nullptr;
void* f32_one_cache = nullptr;
int64_t f32_zero_cache_element = 0;
int64_t f32_one_cache_element = 0;
aclrtStream streams[GGML_CANN_MAX_STREAMS] = {nullptr}; /**< Array of streams for the device. */
@@ -419,13 +399,6 @@ struct ggml_backend_cann_context {
async_mode = parse_bool(get_env("GGML_CANN_ASYNC_MODE").value_or(""));
GGML_LOG_INFO("%s: device %d async operator submission is %s\n", __func__,
device, async_mode ? "ON" : "OFF");
#ifdef USE_ACL_GRAPH
acl_graph_mode = parse_bool(get_env("GGML_CANN_ACL_GRAPH").value_or("on"));
GGML_LOG_INFO("%s: device %d execution mode is %s (%s)\n",
__func__, device,
acl_graph_mode ? "GRAPH" : "EAGER",
acl_graph_mode ? "acl graph enabled" : "acl graph disabled");
#endif
}
/**
@@ -442,6 +415,21 @@ struct ggml_backend_cann_context {
ACL_CHECK(aclrtDestroyStream(streams[i]));
}
}
if(rope_init_ptr != nullptr) {
ACL_CHECK(aclrtFree(rope_init_ptr));
}
if(rope_sin_ptr != nullptr) {
ACL_CHECK(aclrtFree(rope_sin_ptr));
}
if(rope_cos_ptr != nullptr) {
ACL_CHECK(aclrtFree(rope_cos_ptr));
}
if(f32_zero_cache != nullptr) {
ACL_CHECK(aclrtFree(f32_zero_cache));
}
if(f32_one_cache != nullptr) {
ACL_CHECK(aclrtFree(f32_one_cache));
}
}
/**

View File

@@ -1116,65 +1116,30 @@ static enum ggml_status ggml_backend_cann_buffer_init_tensor(
return GGML_STATUS_SUCCESS;
}
/**
* @brief Workspace for caching NZ buffers per device.
*
* This struct manages a device buffer used in NZ computations. It supports
* allocation, reallocation, and clearing of cached memory. The struct is
* designed to be used with a global array, one per device.
*/
struct ggml_cann_nz_workspace {
void* ptr; // Pointer to allocated device buffer
size_t allocated; // Size of currently allocated buffer in bytes
// ND to NZ Workspace Cache Management. Thread-safety: Not guaranteed
namespace {
void* g_nz_workspace = nullptr;
size_t g_nz_workspace_allocated = 0;
/**
* @brief Constructor. Initializes the workspace with no allocated memory.
*/
ggml_cann_nz_workspace() : ptr(nullptr), allocated(0) {}
/**
* @brief Free cached memory and reset the workspace.
*
* If a buffer has been allocated, this function releases it using
* aclrtFree and resets internal state.
*/
void clear() {
if (ptr) {
ACL_CHECK(aclrtFree(ptr));
ptr = nullptr;
allocated = 0;
void release_nz_workspace() {
if (g_nz_workspace) {
aclrtFree(g_nz_workspace);
g_nz_workspace = nullptr;
g_nz_workspace_allocated = 0;
}
}
/**
* @brief Allocate or reallocate the workspace buffer.
*
* If the requested size is larger than the currently allocated size,
* the old buffer will be freed and a new buffer of the requested size
* will be allocated on the device.
*
* @param new_size Size in bytes to allocate for the workspace.
*/
void realloc(size_t new_size) {
if (new_size > allocated) {
clear();
ACL_CHECK(aclrtMalloc(&ptr, new_size, ACL_MEM_MALLOC_HUGE_FIRST));
allocated = new_size;
void relloc_nz_workspace(size_t new_size) {
if (new_size > g_nz_workspace_allocated) {
if (g_nz_workspace) {
aclrtFree(g_nz_workspace);
g_nz_workspace = nullptr;
}
ACL_CHECK(aclrtMalloc(&g_nz_workspace, new_size, ACL_MEM_MALLOC_HUGE_FIRST));
g_nz_workspace_allocated = new_size;
}
/**
* @brief Get the device buffer pointer.
*
* @return Pointer to the allocated buffer, or nullptr if not allocated.
*/
void* get() const { return ptr; }
};
/**
* @brief Global array of NZ workspaces, one per device.
*/
static ggml_cann_nz_workspace g_nz_workspaces[GGML_CANN_MAX_DEVICES];
}
}
/**
* @brief Convert tensor weights to NZ format using Ascend CANN API.
@@ -1184,13 +1149,13 @@ static ggml_cann_nz_workspace g_nz_workspaces[GGML_CANN_MAX_DEVICES];
* improve performance on certain hardware.
*
* @param tensor Pointer to the input ggml_tensor containing the weights.
* @param data Pointer to the raw data buffer for the tensor weights.
* @param offset Byte offset within the tensor data buffer where weights start.
* @param device device id.
*
* @note The workspace buffer used in this function is managed globally and reused
* across calls. This reduces overhead from repeated memory allocation and deallocation.
*/
static void weight_format_to_nz(ggml_tensor *tensor, size_t offset, int device) {
static void weight_format_to_nz(ggml_tensor *tensor, const void *data, size_t offset) {
aclTensor* weightTransposed = ggml_cann_create_tensor(tensor, tensor->ne,
tensor->nb, 2, ACL_FORMAT_ND, offset);
uint64_t workspaceSize = 0;
@@ -1200,9 +1165,7 @@ static void weight_format_to_nz(ggml_tensor *tensor, size_t offset, int device)
ACL_CHECK(aclnnTransMatmulWeightGetWorkspaceSize(weightTransposed,
&workspaceSize, &executor));
// Avoid frequent malloc/free of the workspace.
g_nz_workspaces[device].realloc(workspaceSize);
void* g_nz_workspace = g_nz_workspaces[device].get();
relloc_nz_workspace(workspaceSize);
ACL_CHECK(aclnnTransMatmulWeight(g_nz_workspace, workspaceSize, executor, nullptr));
ACL_CHECK(aclDestroyTensor(weightTransposed));
@@ -1233,14 +1196,14 @@ static void ggml_backend_cann_buffer_set_tensor(
// Why aclrtSynchronizeDevice?
// Only check env once.
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or("on"));
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or(""));
if (!need_transform(tensor->type)) {
ACL_CHECK(aclrtMemcpy((char *)tensor->data + offset, size, data, size,
ACL_MEMCPY_HOST_TO_DEVICE));
if (weight_to_nz && is_matmul_weight((const ggml_tensor*)tensor)) {
GGML_ASSERT(tensor->ne[2] == 1);
GGML_ASSERT(tensor->ne[3] == 1);
weight_format_to_nz(tensor, offset, ctx->device);
weight_format_to_nz(tensor, data, offset);
}
} else {
void *transform_buffer = malloc(size);
@@ -1316,10 +1279,6 @@ static bool ggml_backend_cann_buffer_cpy_tensor(
ACL_MEMCPY_DEVICE_TO_DEVICE));
return true;
} else {
#ifdef ASCEND_310P
// TODO: Support 310p P2P copy
return false;
#endif
// Different device but can access by peer.
int32_t canAccessPeer = 0;
ACL_CHECK(aclrtDeviceCanAccessPeer(&canAccessPeer, src_ctx->device,
@@ -1480,7 +1439,7 @@ static size_t ggml_backend_cann_buffer_type_get_alloc_size(
int64_t ne0 = tensor->ne[0];
// Only check env once.
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or("on"));
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or(""));
// last line must bigger than 32, because every single op deal at
// least 32 bytes.
@@ -2041,8 +2000,6 @@ static bool ggml_backend_cann_cpy_tensor_async(
GGML_ASSERT(ggml_backend_is_cann(backend_src) ||
ggml_backend_is_cann(backend_dst));
GGML_ASSERT(!is_matmul_weight((const ggml_tensor*)src));
if (!ggml_backend_buffer_is_cann(src->buffer) ||
!ggml_backend_buffer_is_cann(dst->buffer)) {
return false;
@@ -2063,10 +2020,6 @@ static bool ggml_backend_cann_cpy_tensor_async(
return true;
}
if (backend_src != backend_dst) {
#ifdef ASCEND_310P
// TODO: Support 310p P2P copy
return false;
#endif
ggml_backend_cann_buffer_context* buf_ctx_src =
(ggml_backend_cann_buffer_context*)buf_src->context;
ggml_backend_cann_buffer_context* buf_ctx_dst =
@@ -2083,6 +2036,7 @@ static bool ggml_backend_cann_cpy_tensor_async(
}
// need open both directions for memcpyasync between devices.
ggml_cann_set_device(cann_ctx_dst->device);
ACL_CHECK(aclrtDeviceEnablePeerAccess(cann_ctx_src->device, 0));
ggml_cann_set_device(cann_ctx_src->device);
ACL_CHECK(aclrtDeviceEnablePeerAccess(cann_ctx_dst->device, 0));
@@ -2092,17 +2046,9 @@ static bool ggml_backend_cann_cpy_tensor_async(
ACL_CHECK(aclrtMemcpyAsync(dst->data, copy_size, src->data, copy_size,
ACL_MEMCPY_DEVICE_TO_DEVICE,
cann_ctx_src->stream()));
// record event on src stream after the copy
// TODO: this event is not effective with acl graph mode, change to use aclrtSynchronizeStream
// if (!cann_ctx_src->copy_event) {
// ACL_CHECK(aclrtCreateEventWithFlag(&cann_ctx_src->copy_event, ACL_EVENT_SYNC));
// }
// ACL_CHECK(aclrtRecordEvent(cann_ctx_src->copy_event, cann_ctx_src->stream()));
// // wait on dst stream for the copy to complete
// ggml_cann_set_device(cann_ctx_dst->device);
// ACL_CHECK(aclrtStreamWaitEvent(cann_ctx_dst->stream(), cann_ctx_src->copy_event));
ACL_CHECK(aclrtSynchronizeStream(cann_ctx_src->stream()));
//TODO: workaround for Event didn`t work here.
aclrtSynchronizeStream(cann_ctx_src->stream());
} else {
// src and dst are on the same backend
ACL_CHECK(aclrtMemcpyAsync(dst->data, copy_size, src->data, copy_size,
@@ -2300,16 +2246,11 @@ static enum ggml_status ggml_backend_cann_graph_compute(
ggml_backend_cann_context* cann_ctx =
(ggml_backend_cann_context*)backend->context;
ggml_cann_set_device(cann_ctx->device);
g_nz_workspaces[cann_ctx->device].clear();
release_nz_workspace();
#ifdef USE_ACL_GRAPH
bool use_cann_graph = true;
bool cann_graph_update_required = false;
if (!cann_ctx->acl_graph_mode) {
use_cann_graph = false;
}
if (use_cann_graph) {
if (cann_ctx->cann_graph == nullptr) {
cann_ctx->cann_graph.reset(new ggml_cann_graph());
@@ -2459,10 +2400,16 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
}
case GGML_OP_ROPE: {
// TODO: with ops-test v == 1
float ext_factor = 0.0f;
memcpy(&ext_factor, (const float *) op->op_params + 7, sizeof(float));
// TODO: n_dims <= ne0
if (op->src[0]->ne[0] != op->op_params[1]) {
return false;
}
// TODO: ext_factor != 0
if (ext_factor != 0) {
return false;
}
const int mode = ((const int32_t *) op->op_params)[2];
if (mode & GGML_ROPE_TYPE_MROPE) {
@@ -2471,11 +2418,10 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
if (mode & GGML_ROPE_TYPE_VISION) {
return false;
}
#ifdef ASCEND_310P
if(!ggml_is_contiguous(op->src[0])){
return false;
}
#endif
return true;
}
case GGML_OP_UPSCALE: {
@@ -2537,17 +2483,15 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
case GGML_OP_ARGMAX:
case GGML_OP_COS:
case GGML_OP_SIN:
case GGML_OP_CONV_TRANSPOSE_1D:
case GGML_OP_LOG:
case GGML_OP_MEAN:
case GGML_OP_PAD_REFLECT_1D:
case GGML_OP_COUNT_EQUAL:
return true;
case GGML_OP_CONV_TRANSPOSE_1D:
// TODO: ((weightL - 1) * dilationW - padLeft)=1336 should not be larger than 255.
return (op->src[0]->ne[0] - 1) <= 255;
case GGML_OP_SCALE:
float bias;
memcpy(&bias, (const float *)(op->op_params) + 1, sizeof(float));
memcpy(&bias, (float*)op->op_params + 1, sizeof(float));
return bias == 0.0f; // TODO: support bias != 0.0f
case GGML_OP_SOFT_MAX:
// TODO: support attention sinks [TAG_ATTN_SINKS]
@@ -2578,12 +2522,19 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
// different head sizes of K and V are not supported yet
return false;
}
if (op->src[0]->ne[0] == 192) {
return false;
}
if (op->src[0]->ne[0] == 576) {
// DeepSeek MLA
return false;
}
if (op->src[0]->ne[0] % 16 != 0) {
// TODO: padding to support
return false;
}
float logitSoftcap = 0.0f;
memcpy(&logitSoftcap, (const float *)(op->op_params) + 2, sizeof(float));
memcpy(&logitSoftcap, (float*)op->op_params + 2, sizeof(float));
if(logitSoftcap != 0.0f) {
return false;
}

View File

@@ -433,22 +433,15 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
ggml-cpu/arch/riscv/quants.c
ggml-cpu/arch/riscv/repack.cpp
)
set(MARCH_STR "rv64gc")
if (GGML_RV_ZFH)
string(APPEND MARCH_STR "_zfh")
endif()
if (GGML_XTHEADVECTOR)
string(APPEND MARCH_STR "_xtheadvector")
elseif (GGML_RVV)
string(APPEND MARCH_STR "_v")
if (GGML_RV_ZVFH)
string(APPEND MARCH_STR "_zvfh")
if (GGML_RVV)
if (GGML_XTHEADVECTOR)
list(APPEND ARCH_FLAGS -march=rv64gc_zfhmin_xtheadvector -mabi=lp64d)
elseif (GGML_RV_ZFH)
list(APPEND ARCH_FLAGS -march=rv64gcv_zfhmin -mabi=lp64d)
else()
list(APPEND ARCH_FLAGS -march=rv64gcv -mabi=lp64d)
endif()
endif()
if (GGML_RV_ZICBOP)
string(APPEND MARCH_STR "_zicbop")
endif()
list(APPEND ARCH_FLAGS "-march=${MARCH_STR}" -mabi=lp64d)
elseif (GGML_SYSTEM_ARCH STREQUAL "s390x")
message(STATUS "s390x detected")
list(APPEND GGML_CPU_SOURCES ggml-cpu/arch/s390/quants.c)
@@ -457,6 +450,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
# TODO: Separation to determine activation of VX/VXE/VXE2
if (${S390X_M} MATCHES "8561|8562")
set(GGML_NNPA OFF)
message(STATUS "z15 target")
list(APPEND ARCH_FLAGS -march=z15)
elseif (${S390X_M} MATCHES "3931")
@@ -478,6 +472,11 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
list(APPEND ARCH_FLAGS -mvx -mzvector)
list(APPEND ARCH_DEFINITIONS GGML_VXE)
endif()
if (GGML_NNPA)
message(STATUS "NNPA enabled")
list(APPEND ARCH_DEFINITIONS GGML_NNPA)
endif()
elseif (CMAKE_SYSTEM_PROCESSOR MATCHES "wasm")
message(STATUS "Wasm detected")
list (APPEND GGML_CPU_SOURCES ggml-cpu/arch/wasm/quants.c)
@@ -498,9 +497,9 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
# Fetch KleidiAI sources:
include(FetchContent)
set(KLEIDIAI_COMMIT_TAG "v1.13.0")
set(KLEIDIAI_COMMIT_TAG "v1.11.0")
set(KLEIDIAI_DOWNLOAD_URL "https://github.com/ARM-software/kleidiai/archive/refs/tags/${KLEIDIAI_COMMIT_TAG}.tar.gz")
set(KLEIDIAI_ARCHIVE_MD5 "d82a8de939d9814621a5ba23907bdac1")
set(KLEIDIAI_ARCHIVE_MD5 "3fe9e5ab964c375c53839296eb71eaa2")
if (POLICY CMP0135)
cmake_policy(SET CMP0135 NEW)
@@ -556,7 +555,6 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
list(APPEND GGML_KLEIDIAI_SOURCES
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p4x8sb_f32_neon.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32_neon.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.c)
@@ -578,8 +576,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_fp32_bf16p_bf16p/kai_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_pack_bf16p2vlx2_f32_sme.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.c
${KLEIDIAI_SRC}/kai/kai_common_sme_asm.S)
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.c)
set(PRIVATE_ARCH_FLAGS "-fno-tree-vectorize;${PRIVATE_ARCH_FLAGS}+sve+sve2")
endif()

View File

@@ -1270,40 +1270,29 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
float ftmp, ft2;
const uint8_t * restrict q40;
const uint8_t * restrict q41;
const uint8_t * restrict q42;
const uint8_t * restrict q43;
const int8_t * restrict q80;
const int8_t * restrict q81;
const int8_t * restrict q82;
const int8_t * restrict q83;
int s0, s1, s2, s3;
int tmp, tmp2, sumi;
__asm__ __volatile__(
"li %[s1], 8\n\t"
"vsetivli zero, 4, e32, m1, ta, ma\n\t"
"vle32.v v1, (%[s6b])\n\t"
"vslide1down.vx v1, v1, zero\n\t"
"vmv.v.x v16, zero\n\t"
"vsetivli zero, 12, e8, m1\n\t"
"vle8.v v1, (%[s6b])\n\t" // {aux[0], aux[1], aux[2]}
"vsetivli zero, 4, e32, m1\n\t"
"vslidedown.vi v2, v1, 2\n\t"
"vmv1r.v v3, v2\n\t"
"vslideup.vi v2, v3, 1\n\t" // {aux[2], aux[2]}
"vsetivli zero, 2, e32, m1, ta, ma\n\t"
"vsetivli zero, 2, e32, m1\n\t"
"vmv.v.i v4, 4\n\t"
"vand.vx v8, v1, %[kmask1]\n\t"
"vslide1up.vx v5, v4, zero\n\t" // {0, 4}
"vsrl.vi v6, v1, 6\n\t"
"vsrl.vv v7, v2, v5\n\t"
"vsse32.v v8, (%[utmp]), %[s1]\n\t"
"vand.vx v0, v6, %[kmask3]\n\t"
"vand.vx v2, v7, %[kmask2]\n\t"
"vsll.vi v6, v0, 4\n\t"
"addi %[s0], %[utmp], 4\n\t"
"li %[t2], 8\n\t"
"addi %[t1], %[utmp], 4\n\t"
"vor.vv v1, v6, v2\n\t"
"vsse32.v v1, (%[s0]), %[s1]\n\t"
"vsetivli zero, 8, e16, m1, ta, ma\n\t"
"vsse32.v v8, (%[utmp]), %[t2]\n\t"
"vsse32.v v1, (%[t1]), %[t2]\n\t"
"vsetivli zero, 8, e16, m1\n\t"
"vle32.v v2, (%[bsums])\n\t"
"vnsrl.wi v0, v2, 0\n\t"
"vnsrl.wi v1, v2, 16\n\t"
@@ -1311,131 +1300,13 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
"vle8.v v3, (%[mins])\n\t"
"vzext.vf2 v4, v3\n\t"
"vwmul.vv v6, v4, v2\n\t"
"vsetivli zero, 4, e32, m1, ta, ma\n\t"
"vredsum.vs v0, v6, v16\n\t"
"vredsum.vs v0, v7, v0\n\t"
"vfcvt.f.x.v v0, v0\n\t"
"vfmv.f.s %[ftmp], v0\n\t"
"vsetivli zero, 16, e8, m1, ta, ma\n\t"
"vle8.v v0, (%[xs])\n\t"
"fnmsub.s %[sumf], %[dmin], %[ftmp], %[sumf]\n\t"
"addi %[q40], %[xs], 64\n\t"
"addi %[q41], %[xs], 16\n\t"
"addi %[q42], %[xs], 32\n\t"
"addi %[q43], %[xs], 48\n\t"
"addi %[q80], %[ys], 64\n\t"
"vle8.v v1, (%[q41])\n\t"
"vle8.v v2, (%[q42])\n\t"
"addi %[q81], %[ys], 16\n\t"
"addi %[q41], %[q41], 64\n\t"
"addi %[q82], %[ys], 32\n\t"
"vle8.v v3, (%[q43])\n\t"
"vle8.v v8, (%[ys])\n\t"
"addi %[q42], %[q42], 64\n\t"
"addi %[q83], %[ys], 48\n\t"
"addi %[q43], %[q43], 64\n\t"
"vsrl.vi v4, v0, 4\n\t"
"vle8.v v9, (%[q81])\n\t"
"vle8.v v10, (%[q82])\n\t"
"vand.vi v0, v0, 0xF\n\t"
"addi %[q81], %[q81], 64\n\t"
"vsrl.vi v5, v1, 4\n\t"
"addi %[q82], %[q82], 64\n\t"
"vle8.v v11, (%[q83])\n\t"
"vle8.v v12, (%[q80])\n\t"
"vand.vi v1, v1, 0xF\n\t"
"addi %[q83], %[q83], 64\n\t"
"vsrl.vi v6, v2, 4\n\t"
"addi %[q80], %[q80], 64\n\t"
"vle8.v v13, (%[q81])\n\t"
"vle8.v v14, (%[q82])\n\t"
"vand.vi v2, v2, 0xF\n\t"
"addi %[q81], %[q81], 64\n\t"
"vsrl.vi v7, v3, 4\n\t"
"addi %[q82], %[q82], 64\n\t"
"vwmul.vv v16, v0, v8\n\t"
"vle8.v v15, (%[q83])\n\t"
"vle8.v v0, (%[q40])\n\t"
"vand.vi v3, v3, 0xF\n\t"
"addi %[q83], %[q83], 64\n\t"
"vwmul.vv v24, v2, v12\n\t"
"vwmul.vv v20, v4, v10\n\t"
"vwmul.vv v28, v6, v14\n\t"
"vwmacc.vv v16, v1, v9\n\t"
"vle8.v v1, (%[q41])\n\t"
"vle8.v v2, (%[q42])\n\t"
"vwmacc.vv v24, v3, v13\n\t"
"vwmacc.vv v20, v5, v11\n\t"
"vwmacc.vv v28, v7, v15\n\t"
"addi %[q40], %[q80], 64\n\t"
"addi %[q41], %[q81], 64\n\t"
"vle8.v v3, (%[q43])\n\t"
"vle8.v v8, (%[q80])\n\t"
"addi %[q42], %[q82], 64\n\t"
"addi %[q43], %[q83], 64\n\t"
"vsrl.vi v4, v0, 4\n\t"
"vle8.v v9, (%[q81])\n\t"
"vle8.v v10, (%[q82])\n\t"
"vand.vi v0, v0, 0xF\n\t"
"vsrl.vi v5, v1, 4\n\t"
"vsrl.vi v7, v3, 4\n\t"
"vand.vi v3, v3, 0xF\n\t"
"vle8.v v11, (%[q83])\n\t"
"vle8.v v12, (%[q40])\n\t"
"vand.vi v1, v1, 0xF\n\t"
"vsrl.vi v6, v2, 4\n\t"
"vand.vi v2, v2, 0xF\n\t"
"vwmul.vv v18, v0, v8\n\t"
"vle8.v v13, (%[q41])\n\t"
"vle8.v v14, (%[q42])\n\t"
"vwmul.vv v26, v2, v12\n\t"
"vwmul.vv v22, v4, v10\n\t"
"vwmul.vv v30, v6, v14\n\t"
"vwmacc.vv v18, v1, v9\n\t"
"vle8.v v15, (%[q43])\n\t"
"vwmacc.vv v26, v3, v13\n\t"
"vwmacc.vv v22, v5, v11\n\t"
"vwmacc.vv v30, v7, v15\n\t"
"vmv.v.x v0, zero\n\t"
"vsetivli zero, 16, e16, m2, ta, ma\n\t"
"vwredsum.vs v4, v16, v0\n\t"
"lbu %[s0], 0(%[scale])\n\t"
"vwredsum.vs v5, v20, v0\n\t"
"lbu %[s1], 1(%[scale])\n\t"
"vwredsum.vs v6, v24, v0\n\t"
"lbu %[s2], 2(%[scale])\n\t"
"vwredsum.vs v7, v28, v0\n\t"
"lbu %[s3], 3(%[scale])\n\t"
"vwredsum.vs v8, v18, v0\n\t"
"lbu %[q40], 4(%[scale])\n\t"
"vwredsum.vs v9, v22, v0\n\t"
"lbu %[q41], 5(%[scale])\n\t"
"vwredsum.vs v10, v26, v0\n\t"
"lbu %[q42], 6(%[scale])\n\t"
"vwredsum.vs v11, v30, v0\n\t"
"lbu %[q43], 7(%[scale])\n\t"
"vsetivli zero, 4, e32, m1, ta, ma\n\t"
"vmul.vx v0, v4, %[s0]\n\t"
"vmul.vx v1, v8, %[q40]\n\t"
"vmacc.vx v0, %[s1], v5\n\t"
"vmacc.vx v1, %[q41], v9\n\t"
"vmacc.vx v0, %[s2], v6\n\t"
"vmacc.vx v1, %[q42], v10\n\t"
"vmacc.vx v0, %[s3], v7\n\t"
"vmacc.vx v1, %[q43], v11\n\t"
"vfcvt.f.x.v v0, v0\n\t"
"vfcvt.f.x.v v1, v1\n\t"
"vfmv.f.s %[ft2], v0\n\t"
"vfmv.f.s %[ftmp], v1\n\t"
"fadd.s %[ft2], %[ft2], %[ftmp]\n\t"
"fmadd.s %[sumf], %[d], %[ft2], %[sumf]"
: [ftmp] "=&f" (ftmp), [sumf] "+&f" (sumf), [ft2] "=&f" (ft2)
, [s0] "=&r" (s0), [s1] "=&r" (s1), [s2] "=&r" (s2), [s3] "=&r" (s3)
, [q40] "=&r" (q40), [q41] "=&r" (q41), [q42] "=&r" (q42), [q43] "=&r" (q43)
, [q80] "=&r" (q80), [q81] "=&r" (q81), [q82] "=&r" (q82), [q83] "=&r" (q83)
: [d] "f" (d), [ys] "r" (y[i].qs), [xs] "r" (x[i].qs), [scale] "r" (scales)
, [bsums] "r" (y[i].bsums), [mins] "r" (mins), [utmp] "r" (utmp)
, [s6b] "r" (&x[i]), [kmask1] "r" (kmask1), [dmin] "f" (dmin)
"vsetivli zero, 8, e32, m2\n\t"
"vredsum.vs v0, v6, v0\n\t"
"vmv.x.s %[sumi], v0"
: [t1] "=&r" (tmp), [t2] "=&r" (tmp2), [sumi] "=&r" (sumi)
: [bsums] "r" (y[i].bsums), [mins] "r" (mins), [utmp] "r" (utmp)
, [s6b] "r" (x[i].scales), [kmask1] "r" (kmask1)
, [kmask2] "r" (kmask2), [kmask3] "r" (kmask3)
: "memory"
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
@@ -1443,6 +1314,59 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
);
sumf -= dmin * sumi;
const uint8_t * restrict q4 = x[i].qs;
const int8_t * restrict q8 = y[i].qs;
sumi = 0;
const uint8_t * scale = scales;
for (int j = 0; j < QK_K/128; ++j) {
int vl128 = 128, vl64 = 64, vl32 = 32;
__asm__ __volatile__(
"vsetvli zero, %[vl128], e8, m8\n\t"
"vle8.v v8, (%[q8])\n\t"
"vsetvli zero, %[vl64], e8, m4\n\t"
"vle8.v v0, (%[q4])\n\t"
"vsrl.vi v4, v0, 4\n\t"
"vand.vi v0, v0, 0xF\n\t"
"vsetvli zero, %[vl32], e8, m2\n\t"
"vwmul.vv v28, v6, v14\n\t"
"vwmul.vv v20, v4, v10\n\t"
"vwmul.vv v24, v2, v12\n\t"
"vwmul.vv v16, v0, v8\n\t"
"vsetivli zero, 4, e32, m1\n\t"
"vle8.v v2, (%[scale])\n\t"
"vmv.v.x v0, zero\n\t"
"vzext.vf4 v1, v2\n\t"
"vsetvli zero, %[vl32], e16, m4\n\t"
"vwredsum.vs v6, v24, v0\n\t"
"vwredsum.vs v7, v28, v0\n\t"
"vwredsum.vs v4, v16, v0\n\t"
"vwredsum.vs v5, v20, v0\n\t"
"vsetivli zero, 4, e32, m1\n\t"
"vslideup.vi v6, v7, 1\n\t"
"vslideup.vi v4, v5, 1\n\t"
"vslideup.vi v4, v6, 2\n\t"
"vmul.vv v8, v4, v1\n\t"
"vredsum.vs v0, v8, v0\n\t"
"vmv.x.s %[tmp], v0\n\t"
"add %[sumi], %[sumi], %[tmp]"
: [tmp] "=&r" (tmp), [sumi] "+&r" (sumi)
: [vl128] "r" (vl128), [vl64] "r" (vl64), [vl32] "r" (vl32)
, [q4] "r" (q4), [q8] "r" (q8), [scale] "r" (scale)
: "memory"
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
);
q4 += 64; q8 += 128; scale += 4;
}
sumf += d * sumi;
}
break;
default:
@@ -1769,8 +1693,6 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
case 128:
for (int i = 0; i < nb; ++i) {
__builtin_prefetch(&x[i + 1].d, 0, 1);
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint8_t * restrict q6 = x[i].ql;
@@ -1779,59 +1701,23 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
const int8_t * restrict scale = x[i].scales;
int q6h;
float ftmp;
int sum_t = 0;
int t0;
for (int j = 0; j < QK_K/128; ++j) {
__asm__ __volatile__(
"addi %[q6h], %[q6], 32\n\t"
"ld t0, 0(%[scale])\n\t"
"addi %[scale], %[scale], 8\n\t"
"slli t6, t0, 1 * 8\n\t"
"lb zero, 0(%[q6])\n\t"
"slli t5, t0, 2 * 8\n\t"
"slli t4, t0, 3 * 8\n\t"
"lb zero, 0(%[q6h])\n\t"
"slli t3, t0, 4 * 8\n\t"
"slli t2, t0, 5 * 8\n\t"
"lb zero, 0(%[qh])\n\t"
"lb zero, 31(%[q6h])\n\t"
"slli t1, t0, 6 * 8\n\t"
"srai a7, t0, 56\n\t"
"vsetvli zero, %[vl32], e8, m2\n\t"
"vle8.v v8, (%[q6])\n\t"
"srai t6, t6, 56\n\t"
"srai t5, t5, 56\n\t"
"srai t4, t4, 56\n\t"
"srai t3, t3, 56\n\t"
"vle8.v v10, (%[q6h])\n\t"
"addi %[q6], %[q6], 64\n\t"
"slli t0, t0, 7 * 8\n\t"
"srai t2, t2, 56\n\t"
"srai t1, t1, 56\n\t"
"srai t0, t0, 56\n\t"
"vle8.v v4, (%[qh])\n\t"
"vsrl.vi v12, v8, 4\n\t"
"vsrl.vi v14, v10, 4\n\t"
"lb zero, 0(%[q8])\n\t"
"vand.vi v8, v8, 0xF\n\t"
"vand.vi v10, v10, 0xF\n\t"
"lb zero, 32(%[q8])\n\t"
"vsll.vi v0, v4, 4\n\t"
"vsll.vi v2, v4, 2\n\t"
"lb zero, 64(%[q8])\n\t"
"vsrl.vi v6, v4, 2\n\t"
"vand.vx v0, v0, %[mask]\n\t"
"lb zero, 96(%[q8])\n\t"
"vand.vx v2, v2, %[mask]\n\t"
"vand.vx v4, v4, %[mask]\n\t"
"vand.vx v6, v6, %[mask]\n\t"
"vor.vv v8, v8, v0\n\t"
"lb zero, 127(%[q8])\n\t"
"vor.vv v10, v10, v2\n\t"
"vor.vv v12, v12, v4\n\t"
"vor.vv v14, v14, v6\n\t"
"vsetvli zero, %[vl64], e8, m4\n\t"
"vle8.v v8, (%[q6])\n\t"
"vsrl.vi v12, v8, 4\n\t"
"vand.vi v8, v8, 0xF\n\t"
"vsetvli zero, %[vl128], e8, m8\n\t"
"vand.vx v0, v0, %[mask]\n\t"
"vor.vv v8, v8, v0\n\t"
"vle8.v v0, (%[q8])\n\t"
"vsub.vx v8, v8, %[vl32]\n\t"
"vsetvli zero, %[vl64], e8, m4\n\t"
@@ -1848,34 +1734,34 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
"vwredsum.vs v13, v28, v0\n\t"
"vwredsum.vs v14, v30, v0\n\t"
"vsetivli zero, 4, e32, m1\n\t"
"vmul.vx v0, v10, t0\n\t"
"vmul.vx v1, v9, t1\n\t"
"vmacc.vx v0, t2, v8\n\t"
"vmacc.vx v1, t3, v7\n\t"
"vmacc.vx v0, t4, v11\n\t"
"vmacc.vx v1, t5, v12\n\t"
"vmacc.vx v0, t6, v13\n\t"
"vmacc.vx v1, a7, v14\n\t"
"vadd.vv v0, v0, v1\n\t"
"vfcvt.f.x.v v0, v0\n\t"
"vfmv.f.s %[ftmp], v0\n\t"
"fmadd.s %[sumf], %[d], %[ftmp], %[sumf]"
: [q6] "+&r" (q6), [q6h] "=&r" (q6h)
, [scale] "+&r" (scale)
, [sumf] "+&f" (sumf), [ftmp] "=&f" (ftmp)
: [qh] "r" (qh), [q8] "r" (q8)
"vslideup.vi v10, v9, 1\n\t"
"vslideup.vi v8, v7, 1\n\t"
"vslideup.vi v11, v12, 1\n\t"
"vslideup.vi v13, v14, 1\n\t"
"vslideup.vi v10, v8, 2\n\t"
"vslideup.vi v11, v13, 2\n\t"
"vsetivli zero, 8, e32, m2\n\t"
"vle8.v v2, (%[scale])\n\t"
"vsext.vf4 v4, v2\n\t"
"vmul.vv v2, v4, v10\n\t"
"vredsum.vs v0, v2, v0\n\t"
"vmv.x.s %[t0], v0\n\t"
"add %[sumi], %[sumi], %[t0]"
: [sumi] "+&r" (sum_t), [t0] "=&r" (t0)
: [qh] "r" (qh), [q6] "r" (q6), [q8] "r" (q8), [scale] "r" (scale)
, [vl32] "r" (32), [vl64] "r" (64), [vl128] "r" (128)
, [mask] "r" (0x30), [d] "f" (d)
, [mask] "r" (0x30)
: "memory"
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
, "t0", "t1", "t2", "t3", "t4", "t5", "t6", "a7"
, "a6", "a5", "a4", "a3"
);
qh += 32; q8 += 128;
q6 += 64; qh += 32; q8 += 128; scale += 8;
}
sumf += d * sum_t;
}
break;
default:

View File

@@ -53,9 +53,9 @@ void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
#if defined(__VXE__) || defined(__VXE2__)
for (int i = 0; i < nb; i++) {
float32x4_t srcv [8];
float32x4_t asrcv[8];
float32x4_t amaxv[8];
__vector float srcv [8];
__vector float asrcv[8];
__vector float amaxv[8];
for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
@@ -74,8 +74,8 @@ void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
y[i].d = GGML_CPU_FP32_TO_FP16(d);
for (int j = 0; j < 8; j++) {
const float32x4_t v = vec_mul(srcv[j], vec_splats(id));
const int32x4_t vi = vec_signed(v);
const __vector float v = vec_mul(srcv[j], vec_splats(id));
const __vector int32_t vi = vec_signed(v);
y[i].qs[4*j + 0] = vec_extract(vi, 0);
y[i].qs[4*j + 1] = vec_extract(vi, 1);
@@ -98,9 +98,9 @@ void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
#if defined(__VXE__) || defined(__VXE2__)
for (int i = 0; i < nb; i++) {
float32x4_t srcv [8];
float32x4_t asrcv[8];
float32x4_t amaxv[8];
__vector float srcv [8];
__vector float asrcv[8];
__vector float amaxv[8];
for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
@@ -118,11 +118,11 @@ void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
y[i].d = GGML_CPU_FP32_TO_FP16(d);
int32x4_t acc = vec_splats(0);
__vector int32_t acc = vec_splats(0);
for (int j = 0; j < 8; j++) {
const float32x4_t v = vec_mul(srcv[j], vec_splats(id));
const int32x4_t vi = vec_signed(v);
const __vector float v = vec_mul(srcv[j], vec_splats(id));
const __vector int32_t vi = vec_signed(v);
y[i].qs[4*j + 0] = vec_extract(vi, 0);
y[i].qs[4*j + 1] = vec_extract(vi, 1);
@@ -162,36 +162,37 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
float sumf = 0;
#if defined(__VXE__) || defined(__VXE2__)
float32x4_t acc = vec_splats(0.0f);
__vector float acc = vec_splats(0.0f);
const uint8x16_t v_m = vec_splats((const uint8_t)0x0F);
const int8x16_t v_s = vec_splats( (const int8_t)0x08);
const __vector uint8_t v_m = vec_splats((const uint8_t)0x0F);
const __vector int8_t v_s = vec_splats( (const int8_t)0x08);
for (; ib < nb; ++ib) {
const uint8x16_t v_x = vec_xl(0, x[ib].qs);
const int8x16_t v_xl = (const int8x16_t)(v_x & v_m);
const int8x16_t v_xh = (const int8x16_t)(v_x >> 4);
const __vector uint8_t v_x = vec_xl(0, x[ib].qs);
const __vector int8_t v_xl = (const __vector int8_t)(v_x & v_m);
const __vector int8_t v_xh = (const __vector int8_t)(v_x >> 4);
const int8x16_t v_xls = vec_sub(v_xl, v_s);
const int8x16_t v_xhs = vec_sub(v_xh, v_s);
const __vector int8_t v_xls = vec_sub(v_xl, v_s);
const __vector int8_t v_xhs = vec_sub(v_xh, v_s);
const int8x16_t v_yl = vec_xl(0 , y[ib].qs);
const int8x16_t v_yh = vec_xl(QK8_0/2, y[ib].qs);
const __vector int8_t v_yl = vec_xl(0 , y[ib].qs);
const __vector int8_t v_yh = vec_xl(QK8_0/2, y[ib].qs);
const int16x8_t v_xylso = vec_mulo(v_xls, v_yl);
const int16x8_t v_xylse = vec_mule(v_xls, v_yl);
const int16x8_t v_xyhso = vec_mulo(v_xhs, v_yh);
const int16x8_t v_xyhse = vec_mule(v_xhs, v_yh);
const __vector int16_t v_xylso = vec_mulo(v_xls, v_yl);
const __vector int16_t v_xylse = vec_mule(v_xls, v_yl);
const __vector int16_t v_xyhso = vec_mulo(v_xhs, v_yh);
const __vector int16_t v_xyhse = vec_mule(v_xhs, v_yh);
int16x8_t v_xy_ = v_xylso + v_xylse + v_xyhso + v_xyhse; v_xy_ += vec_reve(v_xy_);
__vector int16_t v_xy_ = v_xylso + v_xylse + v_xyhso + v_xyhse; v_xy_ += vec_reve(v_xy_);
const float32x4_t v_xy = vec_float(vec_unpackh(v_xy_));
const float32x4_t v_d = vec_splats(GGML_CPU_FP16_TO_FP32(x[ib].d) * GGML_CPU_FP16_TO_FP32(y[ib].d));
const __vector float v_xy = vec_float(vec_unpackh(v_xy_));
const __vector float v_d = vec_splats(GGML_CPU_FP16_TO_FP32(x[ib].d) * GGML_CPU_FP16_TO_FP32(y[ib].d));
acc = vec_madd(v_xy, v_d, acc);
}
sumf = vec_hsum_f32x4(acc);
sumf = acc[0] + acc[1] + acc[2] + acc[3];
*s = sumf;
#else
UNUSED(nb);
@@ -248,7 +249,8 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
acc = vec_madd(v_xy, v_d, acc);
}
sumf = vec_hsum_f32x4(acc) + summs;
sumf = acc[0] + acc[1] + acc[2] + acc[3] + summs;
*s = sumf;
#else
UNUSED(nb);
@@ -349,7 +351,7 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
v_sum1 = vec_madd(v_xy1f, v_d1, v_sum1);
}
sumf += vec_hsum_f32x4(v_sum0) + vec_hsum_f32x4(v_sum1);
sumf += vec_hsum(v_sum0) + vec_hsum(v_sum1);
#pragma GCC unroll 4
for (; ib < nb; ++ib) {
@@ -388,7 +390,7 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
const float32x4_t v_d = vec_splats(GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d));
const float32x4_t v_acc = vec_madd(v_xyf, v_d, vec_splats(0.0f));
sumf += vec_hsum_f32x4(v_acc);
sumf += vec_hsum(v_acc);
}
*s = sumf;
@@ -500,7 +502,7 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
v_sum1 = vec_madd(v_xy1f, v_d1, v_sum1);
}
sumf += vec_hsum_f32x4(v_sum0) + vec_hsum_f32x4(v_sum1) + summs0 + summs1;
sumf += vec_hsum(v_sum0) + vec_hsum(v_sum1) + summs0 + summs1;
#pragma GCC unroll 4
for (; ib < nb; ++ib) {
@@ -541,7 +543,7 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
const float32x4_t v_d = vec_splats(GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d));
const float32x4_t v_acc = vec_madd(v_xyf, v_d, v_acc);
sumf += vec_hsum_f32x4(v_acc) + summs;
sumf += vec_hsum(v_acc) + summs;
}
*s = sumf;
@@ -573,7 +575,7 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
float sumf = 0;
#if defined(__VXE__) || defined(__VXE2__)
float32x4_t acc = vec_splats(0.0f);
__vector float acc = vec_splats(0.0f);
#pragma GCC unroll 8
for (; ib < nb; ++ib) {
@@ -592,7 +594,7 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
acc = vec_madd(v_xy, v_d, acc);
}
sumf = vec_hsum_f32x4(acc);
sumf = acc[0] + acc[1] + acc[2] + acc[3];
*s = sumf;
#else
@@ -716,10 +718,10 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
isum2 = ggml_vec_dot(v_z, q3bytes[2], q8bytes[6]);
isum3 = ggml_vec_dot(v_z, q3bytes[3], q8bytes[7]);
isum += vec_hsum_i32x4(isum0) * scale[0];
isum += vec_hsum_i32x4(isum1) * scale[1];
isum += vec_hsum_i32x4(isum2) * scale[2];
isum += vec_hsum_i32x4(isum3) * scale[3];
isum += (isum0[0] + isum0[1] + isum0[2] + isum0[3]) * scale[0];
isum += (isum1[0] + isum1[1] + isum1[2] + isum1[3]) * scale[1];
isum += (isum2[0] + isum2[1] + isum2[2] + isum2[3]) * scale[2];
isum += (isum3[0] + isum3[1] + isum3[2] + isum3[3]) * scale[3];
scale += 4;
@@ -817,7 +819,7 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
v_xl[1] = (int8x16_t)vec_and(v_x[1], v_lm);
const int32x4_t p1 = ggml_vec_dot(ggml_vec_dot(v_z, v_xl[0], v_y[0]), v_xl[1], v_y[1]);
sumi1 += vec_hsum_i32x4(p1) * scales[2*j+0];
sumi1 += (p1[0] + p1[1] + p1[2] + p1[3]) * scales[2*j+0];
v_y[0] = vec_xl(0 , y0);
v_y[1] = vec_xl(16, y0);
@@ -827,7 +829,7 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
v_xl[1] = (int8x16_t)vec_sr(v_x[1], 4);
const int32x4_t p2 = ggml_vec_dot(ggml_vec_dot(v_z, v_xl[0], v_y[0]), v_xl[1], v_y[1]);
sumi2 += vec_hsum_i32x4(p2) * scales[2*j+1];
sumi2 += (p2[0] + p2[1] + p2[2] + p2[3]) * scales[2*j+1];
}
sumf += d * (sumi1 + sumi2);
@@ -909,7 +911,7 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
const int32x4_t v_minsho = vec_mulo(v_ysums, v_minsh);
const int32x4_t v_minshe = vec_mule(v_ysums, v_minsh);
const int32x4_t v_mins = vec_add(v_minsho, v_minshe);
const int32_t mins = vec_hsum_i32x4(v_mins);
const int32_t mins = v_mins[0] + v_mins[1] + v_mins[2] + v_mins[3];
const uint8_t * scales = (const uint8_t *)utmp;
const uint8_t * GGML_RESTRICT x0l = x[i].qs;
@@ -946,8 +948,8 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
int32x4_t sumi0 = ggml_vec_dot(ggml_vec_dot(v_z, q5b[0], v_y[0]), q5b[1], v_y[1]);
int32x4_t sumi1 = ggml_vec_dot(ggml_vec_dot(v_z, q5b[2], v_y[2]), q5b[3], v_y[3]);
sumi += vec_hsum_i32x4(sumi0) * *scales++;
sumi += vec_hsum_i32x4(sumi1) * *scales++;
sumi += (sumi0[0] + sumi0[1] + sumi0[2] + sumi0[3]) * *scales++;
sumi += (sumi1[0] + sumi1[1] + sumi1[2] + sumi1[3]) * *scales++;
}
sumf += d * sumi - dmin * mins;
@@ -1018,7 +1020,7 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
const int32x4_t v_minshe = vec_mule(v_ysumsh, v_scaleh);
const int32x4_t v_mins = v_minslo + v_minsle + v_minsho + v_minshe;
const int32_t mins = vec_hsum_i32x4(v_mins);
const int32_t mins = v_mins[0] + v_mins[1] + v_mins[2] + v_mins[3];
int32_t isum = 0;
for (int j = 0; j < QK_K/128; ++j) {
@@ -1058,10 +1060,10 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
int32x4_t summs2 = ggml_vec_dot(v_z, q6b[2], v_y[2]);
int32x4_t summs3 = ggml_vec_dot(v_z, q6b[3], v_y[3]);
isum += vec_hsum_i32x4(summs0) * scale[0] +
vec_hsum_i32x4(summs1) * scale[1] +
vec_hsum_i32x4(summs2) * scale[2] +
vec_hsum_i32x4(summs3) * scale[3];
isum += (summs0[0] + summs0[1] + summs0[2] + summs0[3]) * scale[0] +
(summs1[0] + summs1[1] + summs1[2] + summs1[3]) * scale[1] +
(summs2[0] + summs2[1] + summs2[2] + summs2[3]) * scale[2] +
(summs3[0] + summs3[1] + summs3[2] + summs3[3]) * scale[3];
scale += 4;
@@ -1092,10 +1094,10 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
summs2 = ggml_vec_dot(v_z, q6b[2], v_y[2]);
summs3 = ggml_vec_dot(v_z, q6b[3], v_y[3]);
isum += vec_hsum_i32x4(summs0) * scale[0] +
vec_hsum_i32x4(summs1) * scale[1] +
vec_hsum_i32x4(summs2) * scale[2] +
vec_hsum_i32x4(summs3) * scale[3];
isum += (summs0[0] + summs0[1] + summs0[2] + summs0[3]) * scale[0] +
(summs1[0] + summs1[1] + summs1[2] + summs1[3]) * scale[1] +
(summs2[0] + summs2[1] + summs2[2] + summs2[3]) * scale[2] +
(summs3[0] + summs3[1] + summs3[2] + summs3[3]) * scale[3];
scale += 4;
}
@@ -1283,7 +1285,7 @@ void ggml_vec_dot_iq4_nl_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const v
const int8x16_t v_yh = vec_xl(QK8_0/2, y0->qs);
const int32x4_t v_xy = ggml_vec_dot(ggml_vec_dot(vec_splats(0), v_xl, v_yl), v_xh, v_yh);
sumf += GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d) * vec_hsum_i32x4(v_xy);
sumf += GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d) * (v_xy[0] + v_xy[1] + v_xy[2] + v_xy[3]);
}
*s = sumf;
@@ -1352,8 +1354,8 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
h >>= 4;
sumi1 += vec_hsum_i32x4(vsumi0) * ls1;
sumi2 += vec_hsum_i32x4(vsumi1) * ls2;
sumi1 += (vsumi0[0] + vsumi0[1] + vsumi0[2] + vsumi0[3]) * ls1;
sumi2 += (vsumi1[0] + vsumi1[1] + vsumi1[2] + vsumi1[3]) * ls2;
}
sumf += GGML_CPU_FP16_TO_FP32(x[ibl].d) * y[ibl].d * (sumi1 + sumi2);

View File

@@ -68,6 +68,12 @@ struct ggml_compute_params {
#endif // __VXE2__
#endif // __s390x__ && __VEC__
#if defined(__s390x__) && defined(GGML_NNPA)
#ifndef __NNPA__
#define __NNPA__
#endif // __NNPA__
#endif // __s390x__ && GGML_NNPA
#if defined(__ARM_FEATURE_SVE)
#include <sys/prctl.h>
#endif
@@ -483,16 +489,11 @@ inline static int16x8_t vec_padd_s16(int16x8_t a, int16x8_t b) {
/**
* @see https://github.com/ggml-org/llama.cpp/pull/14037
*/
inline static float vec_hsum_f32x4(float32x4_t v) {
inline float vec_hsum(float32x4_t v) {
float32x4_t v_temp = v + vec_reve(v);
return v_temp[0] + v_temp[1];
}
inline static int32_t vec_hsum_i32x4(int32x4_t v) {
int32x4_t v_temp = v + vec_reve(v);
return v_temp[0] + v_temp[1];
}
inline static int32x4_t ggml_vec_dot(int32x4_t acc, int8x16_t a, int8x16_t b) {
const int16x8_t p = vec_mule(a, b) + vec_mulo(a, b);
return acc + (vec_unpackh(p) + vec_unpackl(p));

View File

@@ -1876,10 +1876,6 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_im2col_back_f32(params, tensor);
} break;
case GGML_OP_IM2COL_3D:
{
ggml_compute_forward_im2col_3d(params, tensor);
} break;
case GGML_OP_CONV_2D:
{
ggml_compute_forward_conv_2d(params, tensor);
@@ -2259,7 +2255,6 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
} break;
case GGML_OP_IM2COL:
case GGML_OP_IM2COL_BACK:
case GGML_OP_IM2COL_3D:
case GGML_OP_CONV_2D:
case GGML_OP_CONV_3D:
case GGML_OP_CONV_2D_DW:
@@ -3211,12 +3206,20 @@ void ggml_cpu_fp32_to_fp16(const float * x, ggml_fp16_t * y, int64_t n) {
__m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
_mm_storel_epi64((__m128i *)(y + i), y_vec);
}
#elif defined(__riscv_zvfh)
for (int vl; i < n; i += vl) {
vl = __riscv_vsetvl_e32m2(n - i);
vfloat32m2_t vx = __riscv_vle32_v_f32m2(&x[i], vl);
vfloat16m1_t vy = __riscv_vfncvt_f_f_w_f16m1(vx, vl);
__riscv_vse16_v_f16m1((_Float16 *)&y[i], vy, vl);
#elif defined(__NNPA__)
for (; i + 7 < n; i += 8) {
float32x4_t v_xh = vec_xl(0, (const float *)(x + i + 0));
float32x4_t v_xl = vec_xl(0, (const float *)(x + i + 4));
uint16x8_t v_yd = vec_round_from_fp32(v_xh, v_xl, 0);
uint16x8_t v_y = vec_convert_to_fp16(v_yd, 0);
vec_xst(v_y, 0, (ggml_fp16_t *)(y + i));
}
for (; i + 3 < n; i += 4) {
float32x4_t v_x = vec_xl(0, (const float *)(x + i));
float32x4_t v_zero = vec_splats(0.0f);
uint16x8_t v_yd = vec_round_from_fp32(v_x, v_zero, 0);
uint16x8_t v_y = vec_convert_to_fp16(v_yd, 0);
vec_xst(v_y, 0, (ggml_fp16_t *)(y + i));
}
#endif
for (; i < n; ++i) {
@@ -3244,6 +3247,21 @@ void ggml_cpu_fp16_to_fp32(const ggml_fp16_t * x, float * y, int64_t n) {
__m128 y_vec = _mm_cvtph_ps(x_vec);
_mm_storeu_ps(y + i, y_vec);
}
#elif defined(__NNPA__)
for (; i + 7 < n; i += 8) {
uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)(x + i));
uint16x8_t v_yd = vec_convert_from_fp16(v_x, 0);
float32x4_t v_yh = vec_extend_to_fp32_hi(v_yd, 0);
float32x4_t v_yl = vec_extend_to_fp32_lo(v_yd, 0);
vec_xst(v_yh, 0, (float *)(y + i + 0));
vec_xst(v_yl, 0, (float *)(y + i + 4));
}
for (; i + 3 < n; i += 4) {
uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)(x + i));
uint16x8_t v_yd = vec_convert_from_fp16(v_x, 0);
float32x4_t v_yh = vec_extend_to_fp32_hi(v_yd, 0);
vec_xst(v_yh, 0, (float *)(y + i));
}
#endif
for (; i < n; ++i) {
@@ -3447,6 +3465,14 @@ int ggml_cpu_has_vxe(void) {
#endif
}
int ggml_cpu_has_nnpa(void) {
#if defined(GGML_NNPA)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_neon(void) {
#if defined(__ARM_ARCH) && defined(__ARM_NEON)
return 1;

View File

@@ -348,10 +348,8 @@ static void ggml_backend_cpu_device_get_memory(ggml_backend_dev_t dev, size_t *
long pages = sysconf(_SC_PHYS_PAGES);
long page_size = sysconf(_SC_PAGE_SIZE);
*total = pages * page_size;
// "free" system memory is ill-defined, for practical purposes assume that all of it is free:
*free = *total;
#endif // _WIN32
#endif
GGML_UNUSED(dev);
}
@@ -578,6 +576,9 @@ static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t r
if (ggml_cpu_has_vxe()) {
features.push_back({ "VXE", "1" });
}
if (ggml_cpu_has_nnpa()) {
features.push_back({ "NNPA", "1" });
}
if (ggml_cpu_has_wasm_simd()) {
features.push_back({ "WASM_SIMD", "1" });
}

View File

@@ -14,7 +14,6 @@
#include "kai_lhs_pack_bf16p2vlx2_f32_sme.h"
#include "kai_lhs_quant_pack_qsi8d32p_f32.h"
#include "kai_lhs_quant_pack_qsi8d32p4x8sb_f32_neon.h"
#include "kai_lhs_quant_pack_qsi8d32p_f32_neon.h"
#include "kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.h"
@@ -128,12 +127,6 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32_neon,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32_neon,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32_neon,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32_neon,
},
/* SME GEMV */
/* .kern_info = */ {
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
@@ -148,7 +141,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
},
/* .gemv_lhs_info = */ {
/* .lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32_neon,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32_neon,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32_neon,
@@ -180,12 +173,6 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .run_kernel = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_pack_bf16p2vlx2_f32_sme,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_pack_bf16p2vlx2_f32_sme,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_pack_bf16p2vlx2_f32_sme,
/* .pack_func = */ kai_run_lhs_pack_bf16p2vlx2_f32_sme,
},
/* SME GEMV */
/* .kern_info = */ {
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
@@ -200,7 +187,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .run_kernel = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
},
/* .gemv_lhs_info = */ {
/* .lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_pack_bf16p2vlx2_f32_sme,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_pack_bf16p2vlx2_f32_sme,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_pack_bf16p2vlx2_f32_sme,
@@ -235,12 +222,6 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
},
/* DOTPROD GEMV */
/* .kern_info = */ {
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
@@ -255,7 +236,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
},
/* .gemv_lhs_info = */ {
/* .lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
@@ -289,12 +270,6 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
},
/* i8mm GEMV */
/* .kern_info = */ {
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
@@ -309,7 +284,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
},
/* .gemv_lhs_info = */ {
/* .lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
@@ -344,12 +319,6 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
},
/* i8mm GEMV */
/* .kern_info = */ {
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
@@ -364,7 +333,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
},
/* .gemv_lhs_info = */ {
/* .lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
@@ -398,12 +367,6 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
},
/* DOTPROD GEMV */
/* .kern_info = */ {
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
@@ -418,7 +381,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
},
/* .gemv_lhs_info = */ {
/* .lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,

View File

@@ -84,11 +84,8 @@ struct rhs_packing_info {
struct ggml_kleidiai_kernels {
kernel_info gemm;
lhs_packing_info gemm_lhs_info;
kernel_info gemv;
lhs_packing_info gemv_lhs_info;
lhs_packing_info lhs_info;
rhs_packing_info rhs_info;
cpu_feature required_cpu;

View File

@@ -123,9 +123,7 @@ class tensor_traits : public ggml::cpu::tensor_traits {
}
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, op);
GGML_ASSERT(kernels);
bool is_gemv = op->src[1]->ne[1] == 1;
kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm;
lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info;
kernel_info * kernel = op->src[1]->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
size_t k = op->src[0]->ne[0];
size_t n = op->src[0]->ne[1];
@@ -136,9 +134,9 @@ class tensor_traits : public ggml::cpu::tensor_traits {
size_t sr = kernel->get_sr();
if (kernels->rhs_type == GGML_TYPE_Q4_0) {
size = variant_call<size_t>(lhs_info->packed_size, m, k, QK4_0, mr, kr, sr);
size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, QK4_0, mr, kr, sr);
} else if (kernels->rhs_type == GGML_TYPE_F16) {
size = variant_call<size_t>(lhs_info->packed_size, m, k, mr, kr, sr) +
size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, mr, kr, sr) +
variant_call<size_t>(kernels->rhs_info.packed_size, n, k) +
k * n * sizeof(float) + n * sizeof(float);
} else {
@@ -154,7 +152,7 @@ class tensor_traits : public ggml::cpu::tensor_traits {
if (dst->src[0]->type == GGML_TYPE_Q4_0) {
return compute_forward_q4_0(params, dst);
} else if (dst->src[0]->type == GGML_TYPE_F16) {
return compute_forward_fp16(params, dst);
return compute_forward_kv_cache(params, dst);
}
} else if (dst->op == GGML_OP_GET_ROWS) {
if (dst->src[0]->type == GGML_TYPE_Q4_0) {
@@ -164,7 +162,7 @@ class tensor_traits : public ggml::cpu::tensor_traits {
return false;
}
bool compute_forward_fp16(ggml_compute_params * params, struct ggml_tensor * dst) {
bool compute_forward_kv_cache(ggml_compute_params * params, struct ggml_tensor * dst) {
static std::atomic_flag first_to_arrive = ATOMIC_FLAG_INIT;
const ggml_tensor * src0 = dst->src[0];
@@ -175,9 +173,7 @@ class tensor_traits : public ggml::cpu::tensor_traits {
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst);
GGML_ASSERT(kernels);
bool is_gemv = src1->ne[1] == 1;
kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm;
lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info;
kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
GGML_ASSERT(kernel);
const int nth = params->nth;
@@ -202,7 +198,7 @@ class tensor_traits : public ggml::cpu::tensor_traits {
const int64_t kr = static_cast<int64_t>(kernel->get_kr());
const int64_t sr = static_cast<int64_t>(kernel->get_sr());
const size_t lhs_packed_size = variant_call<size_t>(lhs_info->packed_size, m, k, mr, kr, sr);
const size_t lhs_packed_size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, mr, kr, sr);
const size_t rhs_packed_size = variant_call<size_t>(kernels->rhs_info.packed_size, n, k);
const size_t kxn_size = k * n * sizeof(float);
const size_t bias_size = n * sizeof(float);
@@ -233,12 +229,12 @@ class tensor_traits : public ggml::cpu::tensor_traits {
const int64_t num_m_per_thread = (ith == num_threads - 1) ? num_m_per_threadN_1 : num_m_per_thread0;
const size_t lhs_offset = variant_call<size_t>(kernels->gemm.get_lhs_offset, m_start, lhs_stride);
const size_t lhs_packed_offset = variant_call<size_t>(lhs_info->get_packed_offset, m_start, k, mr, kr, sr);
const size_t lhs_packed_offset = variant_call<size_t>(kernels->lhs_info.get_packed_offset, m_start, k, mr, kr, sr);
const void * src_ptr = static_cast<const uint8_t *>(lhs_batch) + lhs_offset;
void * dst_ptr = static_cast<uint8_t *>(lhs_packed) + lhs_packed_offset;
variant_call<void>(lhs_info->pack_func, num_m_per_thread, k, mr, kr, sr, 0, src_ptr, lhs_stride, dst_ptr);
variant_call<void>(kernels->lhs_info.pack_func, num_m_per_thread, k, mr, kr, sr, 0, src_ptr, lhs_stride, dst_ptr);
}
}
@@ -310,9 +306,8 @@ class tensor_traits : public ggml::cpu::tensor_traits {
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst);
GGML_ASSERT(kernels);
bool is_gemv = src1->ne[1] == 1;
kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm;
lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info;
kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
lhs_packing_info * lhs_info = &kernels->lhs_info;
GGML_ASSERT(kernel);
@@ -534,8 +529,13 @@ class extra_buffer_type : ggml::cpu::extra_buffer_type {
if (op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type()) {
return (ggml::cpu::tensor_traits *) op->src[0]->extra;
}
else if (ggml_kleidiai_select_kernels(ctx.features, op) && op->src[1]->ne[1] > 1) {
if ((op->src[0]->nb[1] * op->src[0]->ne[1] != op->src[0]->nb[2]) ||
else if (ggml_kleidiai_select_kernels(ctx.features, op) &&
op->src[0]->op == GGML_OP_VIEW &&
(op->src[1]->op == GGML_OP_PERMUTE || op->src[1]->op == GGML_OP_SOFT_MAX) &&
op->src[1]->ne[1] > 1) {
if ((op->src[0]->nb[0] != 2) ||
(op->src[1]->nb[0] != 4) ||
(op->src[0]->nb[1] * op->src[0]->ne[1] != op->src[0]->nb[2]) ||
(op->src[1]->nb[1] * op->src[1]->ne[1] != op->src[1]->nb[2])) {
return nullptr;
}

View File

@@ -7027,209 +7027,6 @@ void ggml_compute_forward_im2col_back_f32(
}
}
// ggml_compute_forward_im2col_3d_f16
// src0: kernel [OC*IC, KD, KH, KW]
// src1: image [N*IC, ID, IH, IW]
// dst: result [N*OD, OH, OW, IC * KD * KH * KW]
static void ggml_compute_forward_im2col_3d_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F16);
GGML_TENSOR_BINARY_OP_LOCALS;
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
const int32_t s2 = ((const int32_t *)(dst->op_params))[2];
const int32_t p0 = ((const int32_t *)(dst->op_params))[3];
const int32_t p1 = ((const int32_t *)(dst->op_params))[4];
const int32_t p2 = ((const int32_t *)(dst->op_params))[5];
const int32_t d0 = ((const int32_t *)(dst->op_params))[6];
const int32_t d1 = ((const int32_t *)(dst->op_params))[7];
const int32_t d2 = ((const int32_t *)(dst->op_params))[8];
const int32_t IC = ((const int32_t *)(dst->op_params))[9];
const int ith = params->ith;
const int nth = params->nth;
const int64_t N = ne13 / IC;
const int64_t ID = ne12;
const int64_t IH = ne11;
const int64_t IW = ne10;
const int64_t OC = ne03 / IC;
GGML_UNUSED(OC);
const int64_t KD = ne02;
const int64_t KH = ne01;
const int64_t KW = ne00;
const int64_t OD = ne3 / N;
const int64_t OH = ne2;
const int64_t OW = ne1;
const int64_t OH_OW = OH*OW;
const int64_t KD_KH_KW = KD*KH*KW;
const int64_t KH_KW = KH*KW;
const int64_t IC_KD_KH_KW = IC*KD*KH*KW;
GGML_ASSERT(nb10 == sizeof(float));
// im2col: [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW]
{
ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
for (int64_t in = 0; in < N; in++) {
for (int64_t iod = 0; iod < OD; iod++) {
for (int64_t ioh = 0; ioh < OH; ioh++) {
for (int64_t iow = 0; iow < OW; iow++) {
for (int64_t iic = ith; iic < IC; iic += nth) {
// micro kernel
ggml_fp16_t * dst_data = wdata + (in*OD*OH_OW + iod*OH_OW + ioh*OW + iow)*IC_KD_KH_KW; // [IC, KD, KH, KW]
const float * const src_data = (const float *) ((const char *)src1->data + (in*IC + iic)*nb13); // [ID, IH, IW]
for (int64_t ikd = 0; ikd < KD; ikd++) {
for (int64_t ikh = 0; ikh < KH; ikh++) {
for (int64_t ikw = 0; ikw < KW; ikw++) {
const int64_t iiw = iow*s0 + ikw*d0 - p0;
const int64_t iih = ioh*s1 + ikh*d1 - p1;
const int64_t iid = iod*s2 + ikd*d2 - p2;
if (iid < 0 || iid >= ID || iih < 0 || iih >= IH || iiw < 0 || iiw >= IW || iid < 0 || iid >= ID) {
dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = 0;
} else {
const float * const s = (const float *) ((const char *)src_data + iid*nb12 + iih*nb11 + iiw*nb10); // [ID, IH, IW]
dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = GGML_CPU_FP32_TO_FP16(*s);
}
}
}
}
}
}
}
}
}
}
}
// ggml_compute_forward_im2col_3d_f32
// src0: kernel [OC*IC, KD, KH, KW]
// src1: image [N*IC, ID, IH, IW]
// dst: result [N*OD, OH, OW, IC * KD * KH * KW]
static void ggml_compute_forward_im2col_3d_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_TENSOR_BINARY_OP_LOCALS;
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
const int32_t s2 = ((const int32_t *)(dst->op_params))[2];
const int32_t p0 = ((const int32_t *)(dst->op_params))[3];
const int32_t p1 = ((const int32_t *)(dst->op_params))[4];
const int32_t p2 = ((const int32_t *)(dst->op_params))[5];
const int32_t d0 = ((const int32_t *)(dst->op_params))[6];
const int32_t d1 = ((const int32_t *)(dst->op_params))[7];
const int32_t d2 = ((const int32_t *)(dst->op_params))[8];
const int32_t IC = ((const int32_t *)(dst->op_params))[9];
const int ith = params->ith;
const int nth = params->nth;
const int64_t N = ne13 / IC;
const int64_t ID = ne12;
const int64_t IH = ne11;
const int64_t IW = ne10;
const int64_t OC = ne03 / IC;
GGML_UNUSED(OC);
const int64_t KD = ne02;
const int64_t KH = ne01;
const int64_t KW = ne00;
const int64_t OD = ne3 / N;
const int64_t OH = ne2;
const int64_t OW = ne1;
const int64_t OH_OW = OH*OW;
const int64_t KD_KH_KW = KD*KH*KW;
const int64_t KH_KW = KH*KW;
const int64_t IC_KD_KH_KW = IC*KD*KH*KW;
GGML_ASSERT(nb10 == sizeof(float));
// im2col: [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW]
{
float * const wdata = (float *) dst->data;
for (int64_t in = 0; in < N; in++) {
for (int64_t iod = 0; iod < OD; iod++) {
for (int64_t ioh = 0; ioh < OH; ioh++) {
for (int64_t iow = 0; iow < OW; iow++) {
for (int64_t iic = ith; iic < IC; iic += nth) {
// micro kernel
float * dst_data = wdata + (in*OD*OH_OW + iod*OH_OW + ioh*OW + iow)*IC_KD_KH_KW; // [IC, KD, KH, KW]
const float * const src_data = (const float *) ((const char *)src1->data + (in*IC + iic)*nb13); // [ID, IH, IW]
for (int64_t ikd = 0; ikd < KD; ikd++) {
for (int64_t ikh = 0; ikh < KH; ikh++) {
for (int64_t ikw = 0; ikw < KW; ikw++) {
const int64_t iiw = iow*s0 + ikw*d0 - p0;
const int64_t iih = ioh*s1 + ikh*d1 - p1;
const int64_t iid = iod*s2 + ikd*d2 - p2;
if (iid < 0 || iid >= ID || iih < 0 || iih >= IH || iiw < 0 || iiw >= IW || iid < 0 || iid >= ID) {
dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = 0;
} else {
const float * const s = (const float *) ((const char *)src_data + iid*nb12 + iih*nb11 + iiw*nb10); // [ID, IH, IW]
dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = *s;
}
}
}
}
}
}
}
}
}
}
}
void ggml_compute_forward_im2col_3d(
const ggml_compute_params * params,
ggml_tensor * dst) {
switch (dst->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_im2col_3d_f16(params, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_im2col_3d_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
static void ggml_call_mul_mat(ggml_type type, const ggml_compute_params * params, int64_t m, int64_t n, int64_t k,
void * a, void * b, float * c) {
const ggml_type_traits * traits = ggml_get_type_traits(type);
@@ -8217,15 +8014,6 @@ static void ggml_compute_forward_pad_f32(
GGML_TENSOR_UNARY_OP_LOCALS
float * dst_ptr = (float *) dst->data;
const int32_t lp0 = ggml_get_op_params_i32(dst, 0);
const int32_t rp0 = ggml_get_op_params_i32(dst, 1);
const int32_t lp1 = ggml_get_op_params_i32(dst, 2);
const int32_t rp1 = ggml_get_op_params_i32(dst, 3);
const int32_t lp2 = ggml_get_op_params_i32(dst, 4);
const int32_t rp2 = ggml_get_op_params_i32(dst, 5);
const int32_t lp3 = ggml_get_op_params_i32(dst, 6);
const int32_t rp3 = ggml_get_op_params_i32(dst, 7);
// TODO: optimize
@@ -8234,12 +8022,10 @@ static void ggml_compute_forward_pad_f32(
for (int64_t i0 = 0; i0 < ne0; ++i0) {
for (int64_t i3 = 0; i3 < ne3; ++i3) {
const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
if ((i0 >= lp0 && i0 < ne0 - rp0) \
&& (i1 >= lp1 && i1 < ne1 - rp1) \
&& (i2 >= lp2 && i2 < ne2 - rp2) \
&& (i3 >= lp3 && i3 < ne3 - rp3)) {
const int64_t src_idx = (i3 - lp3)*nb03 + (i2 - lp2)*nb02 + (i1 - lp1)*nb01 + (i0 - lp0)*nb00;
const float * src_ptr = (const float *)((char *) src0->data + src_idx);
const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
dst_ptr[dst_idx] = *src_ptr;
} else {
dst_ptr[dst_idx] = 0;
@@ -9217,7 +9003,8 @@ static void ggml_compute_forward_ssm_scan_f32(
GGML_ASSERT(src4->nb[0] == sizeof(float));
GGML_ASSERT(src5->nb[0] == sizeof(float));
GGML_ASSERT(src6->nb[0] == sizeof(int32_t));
GGML_ASSERT(nh % ng == 0);
// allows optimizing the modulo since n_group should be a power of 2
GGML_ASSERT((ng & -ng) == ng);
// heads per thread
const int dh = (nh + nth - 1)/nth;
@@ -9248,7 +9035,6 @@ static void ggml_compute_forward_ssm_scan_f32(
// ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
const float dA = expf(dt_soft_plus * A[h]);
const int g = h / (nh / ng); // repeat_interleave
// dim
for (int i1 = 0; i1 < nr; ++i1) {
@@ -9271,8 +9057,8 @@ static void ggml_compute_forward_ssm_scan_f32(
// TODO: maybe unroll more?
for (int j = 0; j < 1; j++) {
GGML_F32_VEC t0 = GGML_F32_VEC_LOAD(s0 + i + j*ggml_f32_epr + ii*nc);
GGML_F32_VEC t1 = GGML_F32_VEC_LOAD(B + i + j*ggml_f32_epr + g*nc);
GGML_F32_VEC t2 = GGML_F32_VEC_LOAD(C + i + j*ggml_f32_epr + g*nc);
GGML_F32_VEC t1 = GGML_F32_VEC_LOAD(B + i + j*ggml_f32_epr + (h & (ng - 1))*nc);
GGML_F32_VEC t2 = GGML_F32_VEC_LOAD(C + i + j*ggml_f32_epr + (h & (ng - 1))*nc);
t0 = GGML_F32_VEC_MUL(t0, adA);
t1 = GGML_F32_VEC_MUL(t1, axdt);
@@ -9304,8 +9090,8 @@ static void ggml_compute_forward_ssm_scan_f32(
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ax[j] = GGML_F32_VEC_LOAD(s0 + i + j*GGML_F32_EPR + ii*nc);
ay[j] = GGML_F32_VEC_LOAD(B + i + j*GGML_F32_EPR + g*nc);
az[j] = GGML_F32_VEC_LOAD(C + i + j*GGML_F32_EPR + g*nc);
ay[j] = GGML_F32_VEC_LOAD(B + i + j*GGML_F32_EPR + (h & (ng - 1))*nc);
az[j] = GGML_F32_VEC_LOAD(C + i + j*GGML_F32_EPR + (h & (ng - 1))*nc);
ax[j] = GGML_F32_VEC_MUL(ax[j], adA);
ay[j] = GGML_F32_VEC_MUL(ay[j], axdt);
@@ -9327,7 +9113,7 @@ static void ggml_compute_forward_ssm_scan_f32(
// d_state
for (int i0 = np; i0 < nc; ++i0) {
const int i = i0 + ii*nc;
const int ig = i0 + g*nc;
const int ig = i0 + (h & (ng - 1))*nc;
// state = prev_state * dA + dB * x
const float state = (s0[i] * dA) + (B[ig] * x_dt);
// y = rowwise_dotprod(state, C)
@@ -9344,7 +9130,6 @@ static void ggml_compute_forward_ssm_scan_f32(
for (int h = ih0; h < ih1; ++h) {
// ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
const int g = h / (nh / ng); // repeat_interleave
// dim
for (int i1 = 0; i1 < nr; ++i1) {
@@ -9359,8 +9144,8 @@ static void ggml_compute_forward_ssm_scan_f32(
// TODO: what happens when (d_state % svcntw()) != 0?
for (int64_t k = 0; k < nc; k += svcntw()) {
svfloat32_t vA = GGML_F32_VEC_LOAD(&A[h*nc + k]);
svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k + g*nc]);
svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k + g*nc]);
svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k + (h & (ng - 1))*nc]);
svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k + (h & (ng - 1))*nc]);
svfloat32_t vs0 = GGML_F32_VEC_LOAD(&s0[ii*nc + k]);
svfloat32_t t1 = GGML_F32_VEC_MUL(vdt_soft_plus, vA);
@@ -9380,7 +9165,7 @@ static void ggml_compute_forward_ssm_scan_f32(
// d_state
for (int i0 = 0; i0 < nc; ++i0) {
const int i = i0 + ii*nc;
const int ig = i0 + g*nc;
const int ig = i0 + (h & (ng - 1))*nc;
// state = prev_state * dA + dB * x
const float state = (s0[i] * expf(dt_soft_plus * A[i0 + h*nc])) + (B[ig] * x_dt);
// y = rowwise_dotprod(state, C)

View File

@@ -69,7 +69,6 @@ void ggml_compute_forward_clamp(const struct ggml_compute_params * params, struc
void ggml_compute_forward_conv_transpose_1d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_im2col(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_im2col_back_f32(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_im2col_3d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_conv_2d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_conv_3d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_conv_transpose_2d(const struct ggml_compute_params * params, struct ggml_tensor * dst);

View File

@@ -114,6 +114,26 @@ extern "C" {
#define GGML_CPU_COMPUTE_FP32_TO_FP16(x) riscv_compute_fp32_to_fp16(x)
#define GGML_CPU_FP16_TO_FP32(x) GGML_CPU_COMPUTE_FP16_TO_FP32(x)
#define GGML_CPU_FP32_TO_FP16(x) GGML_CPU_COMPUTE_FP32_TO_FP16(x)
#elif defined(__NNPA__)
#define GGML_CPU_COMPUTE_FP16_TO_FP32(x) nnpa_compute_fp16_to_fp32(x)
#define GGML_CPU_COMPUTE_FP32_TO_FP16(x) nnpa_compute_fp32_to_fp16(x)
#define GGML_CPU_FP16_TO_FP32(x) GGML_CPU_COMPUTE_FP16_TO_FP32(x)
#define GGML_CPU_FP32_TO_FP16(x) GGML_CPU_COMPUTE_FP32_TO_FP16(x)
static inline float nnpa_compute_fp16_to_fp32(ggml_fp16_t h) {
uint16x8_t v_h = vec_splats(h);
uint16x8_t v_hd = vec_convert_from_fp16(v_h, 0);
return vec_extend_to_fp32_hi(v_hd, 0)[0];
}
static inline ggml_fp16_t nnpa_compute_fp32_to_fp16(float f) {
float32x4_t v_f = vec_splats(f);
float32x4_t v_zero = vec_splats(0.0f);
uint16x8_t v_hd = vec_round_from_fp32(v_f, v_zero, 0);
uint16x8_t v_h = vec_convert_to_fp16(v_hd, 0);
return vec_extract(v_h, 0);
}
#endif
// precomputed f32 table for f16 (256 KB)
@@ -195,47 +215,6 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
#define GGML_F32_VEC_MUL GGML_F32xt_MUL
#define GGML_F32_VEC_REDUCE GGML_F32xt_REDUCE
// F16 SVE
#define DEFAULT_PG32 svptrue_b32()
#define DEFAULT_PG16 svptrue_b16()
#define GGML_F32Cxt svfloat16_t
#define GGML_F32Cxt_ZERO svdup_n_f16(0.0f)
#define GGML_F32Cxt_SET1(x) svdup_n_f16(x)
#define GGML_F32Cxt_LOAD(p) svld1_f16(DEFAULT_PG16, (const __fp16 *)(p))
#define GGML_F32Cxt_STORE(dst_ptr, src_vec) svst1_f16(DEFAULT_PG16, (__fp16 *)(dst_ptr), (src_vec))
#define GGML_F32Cxt_FMA_IMPL(pg, a, b, c) svmad_f16_x(pg, b, c, a)
#define GGML_F32Cxt_FMA(...) GGML_F32Cxt_FMA_IMPL(DEFAULT_PG16, __VA_ARGS__)
#define GGML_F32Cxt_ADD_IMPL(pg, a, b) svadd_f16_x(pg, a, b)
#define GGML_F32Cxt_ADD(...) GGML_F32Cxt_ADD_IMPL(DEFAULT_PG16, __VA_ARGS__)
#define GGML_F32Cxt_MUL_IMPL(pg, a, b) svmul_f16_x(pg, a, b)
#define GGML_F32Cxt_MUL(...) GGML_F32Cxt_MUL_IMPL(DEFAULT_PG16, __VA_ARGS__)
#define GGML_F32Cxt_REDUCE GGML_F16xt_REDUCE_MIXED
#define GGML_F16x_VEC GGML_F32Cxt
#define GGML_F16x_VEC_ZERO GGML_F32Cxt_ZERO
#define GGML_F16x_VEC_SET1 GGML_F32Cxt_SET1
#define GGML_F16x_VEC_LOAD(p, i) GGML_F32Cxt_LOAD(p)
#define GGML_F16x_VEC_STORE(p, r, i) GGML_F32Cxt_STORE((__fp16 *)(p), r)
#define GGML_F16x_VEC_FMA GGML_F32Cxt_FMA
#define GGML_F16x_VEC_ADD GGML_F32Cxt_ADD
#define GGML_F16x_VEC_MUL GGML_F32Cxt_MUL
#define GGML_F16x_VEC_REDUCE GGML_F32Cxt_REDUCE
#define GGML_F16xt_REDUCE_ONE_IMPL(pg, a) svaddv_f16(pg, a)
#define GGML_F16xt_REDUCE_ONE(...) GGML_F16xt_REDUCE_ONE_IMPL(DEFAULT_PG16, __VA_ARGS__)
#define GGML_F16xt_REDUCE_MIXED_IMPL(pg16, res, sum1, sum2, sum3, sum4) \
{ \
sum1 = svadd_f16_x(pg16, sum1, sum2); \
sum3 = svadd_f16_x(pg16, sum3, sum4); \
sum1 = svadd_f16_x(pg16, sum1, sum3); \
__fp16 sum_f16 = svaddv_f16(pg16, sum1); \
(res) = (ggml_float) sum_f16; \
}
#define GGML_F16xt_REDUCE_MIXED(...) GGML_F16xt_REDUCE_MIXED_IMPL(DEFAULT_PG16, __VA_ARGS__)
// F16 NEON
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
@@ -1136,6 +1115,11 @@ static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
#define GGML_F16_EPR GGML_F32_EPR
static inline float32x4_t __lzs_f16cx4_load(const ggml_fp16_t * x) {
#if defined(__NNPA__)
uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)x);
uint16x8_t v_xd = vec_convert_from_fp16(v_x, 0);
return vec_extend_to_fp32_hi(v_xd, 0);
#else
float tmp[4];
for (int i = 0; i < 4; i++) {
@@ -1145,9 +1129,20 @@ static inline float32x4_t __lzs_f16cx4_load(const ggml_fp16_t * x) {
// note: keep type-cast here to prevent compiler bugs
// see: https://github.com/ggml-org/llama.cpp/issues/12846
return vec_xl(0, (const float *)(tmp));
#endif
}
static inline void __lzs_f16cx4_store(ggml_fp16_t * x, float32x4_t v_y) {
#if defined(__NNPA__)
float32x4_t v_zero = vec_splats(0.0f);
uint16x8_t v_xd = vec_round_from_fp32(v_y, v_zero, 0);
uint16x8_t v_x = vec_convert_to_fp16(v_xd, 0);
x[0] = vec_extract(v_x, 0);
x[1] = vec_extract(v_x, 1);
x[2] = vec_extract(v_x, 2);
x[3] = vec_extract(v_x, 3);
#else
float arr[4];
// note: keep type-cast here to prevent compiler bugs
@@ -1157,6 +1152,7 @@ static inline void __lzs_f16cx4_store(ggml_fp16_t * x, float32x4_t v_y) {
for (int i = 0; i < 4; i++) {
x[i] = GGML_CPU_FP32_TO_FP16(arr[i]);
}
#endif
}
#define GGML_F16_VEC GGML_F32x4

View File

@@ -85,21 +85,15 @@ void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * G
// reduce sum1,sum2 to sum1
GGML_F32_VEC_REDUCE(sumf, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8);
#elif defined(__riscv_v_intrinsic)
int vl = __riscv_vsetvlmax_e32m8();
vfloat32m1_t vs = __riscv_vfmv_v_f_f32m1(0.0f, 1);
vfloat32m8_t vsum;
vfloat32m8_t ax;
vfloat32m8_t ay;
vsum = __riscv_vfmv_v_f_f32m8_tu(vsum, 0.0f, vl);
for (int i = 0; i < n; i += vl) {
vl = __riscv_vsetvl_e32m8(n - i);
ax = __riscv_vle32_v_f32m8_tu(ax, &x[i], vl);
ay = __riscv_vle32_v_f32m8_tu(ay, &y[i], vl);
vsum = __riscv_vfmacc_vv_f32m8_tu(vsum, ax, ay, vl);
vfloat32m1_t vsum = __riscv_vfmv_v_f_f32m1(0.0f, 1);
for (int i = 0, avl; i < n; i += avl) {
avl = __riscv_vsetvl_e32m8(n - i);
vfloat32m8_t ax = __riscv_vle32_v_f32m8(&x[i], avl);
vfloat32m8_t ay = __riscv_vle32_v_f32m8(&y[i], avl);
vfloat32m8_t prod = __riscv_vfmul_vv_f32m8(ax, ay, avl);
vsum = __riscv_vfredusum_vs_f32m8_f32m1(prod, vsum, avl);
}
vl = __riscv_vsetvlmax_e32m8();
vs = __riscv_vfredusum_vs_f32m8_f32m1(vsum, vs, vl);
sumf += __riscv_vfmv_f_s_f32m1_f32(vs);
sumf += __riscv_vfmv_f_s_f32m1_f32(vsum);
#else
const int np = (n & ~(GGML_F32_STEP - 1));
@@ -213,125 +207,38 @@ void ggml_vec_dot_f16(int n, float * GGML_RESTRICT s, size_t bs, ggml_fp16_t * G
ggml_float sumf = 0.0;
#if defined(GGML_SIMD) && !defined(__riscv_v_intrinsic)
const int np = (n & ~(GGML_F16_STEP - 1));
#if defined(GGML_SIMD)
#if defined(__ARM_FEATURE_SVE)
const int sve_register_length = svcntb() * 8; //get vector length
const int ggml_f16_epr = sve_register_length / 16; // running when 16
const int ggml_f16_step = 8 * ggml_f16_epr; // choose 8 SVE registers
GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
const int np= (n & ~(ggml_f16_step - 1));
svfloat16_t sum1 = svdup_n_f16(0.0f);
svfloat16_t sum2 = svdup_n_f16(0.0f);
svfloat16_t sum3 = svdup_n_f16(0.0f);
svfloat16_t sum4 = svdup_n_f16(0.0f);
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
svfloat16_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8;
svfloat16_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8;
for (int i = 0; i < np; i += ggml_f16_step) {
ax1 = GGML_F16x_VEC_LOAD(x + i + 0 * ggml_f16_epr, 0);
ay1 = GGML_F16x_VEC_LOAD(y + i + 0 * ggml_f16_epr, 0);
sum1 = GGML_F16x_VEC_FMA(sum1, ax1, ay1);
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
ax2 = GGML_F16x_VEC_LOAD(x + i + 1 * ggml_f16_epr, 1);
ay2 = GGML_F16x_VEC_LOAD(y + i + 1 * ggml_f16_epr, 1);
sum2 = GGML_F16x_VEC_FMA(sum2, ax2, ay2);
ax3 = GGML_F16x_VEC_LOAD(x + i + 2 * ggml_f16_epr, 2);
ay3 = GGML_F16x_VEC_LOAD(y + i + 2 * ggml_f16_epr, 2);
sum3 = GGML_F16x_VEC_FMA(sum3, ax3, ay3);
ax4 = GGML_F16x_VEC_LOAD(x + i + 3 * ggml_f16_epr, 3);
ay4 = GGML_F16x_VEC_LOAD(y + i + 3 * ggml_f16_epr, 3);
sum4 = GGML_F16x_VEC_FMA(sum4, ax4, ay4);
ax5 = GGML_F16x_VEC_LOAD(x + i + 4 * ggml_f16_epr, 4);
ay5 = GGML_F16x_VEC_LOAD(y + i + 4 * ggml_f16_epr, 4);
sum1 = GGML_F16x_VEC_FMA(sum1, ax5, ay5);
ax6 = GGML_F16x_VEC_LOAD(x + i + 5 * ggml_f16_epr, 5);
ay6 = GGML_F16x_VEC_LOAD(y + i + 5 * ggml_f16_epr, 5);
sum2 = GGML_F16x_VEC_FMA(sum2, ax6, ay6);
ax7 = GGML_F16x_VEC_LOAD(x + i + 6 * ggml_f16_epr, 6);
ay7 = GGML_F16x_VEC_LOAD(y + i + 6 * ggml_f16_epr, 6);
sum3 = GGML_F16x_VEC_FMA(sum3, ax7, ay7);
ax8 = GGML_F16x_VEC_LOAD(x + i + 7 * ggml_f16_epr, 7);
ay8 = GGML_F16x_VEC_LOAD(y + i + 7 * ggml_f16_epr, 7);
sum4 = GGML_F16x_VEC_FMA(sum4, ax8, ay8);
sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
}
}
const int np2 = (n & ~(ggml_f16_epr - 1)); // round down to multiple of 8
for (int k = np; k < np2; k += ggml_f16_epr) {
svfloat16_t rx = GGML_F16x_VEC_LOAD(x + k, 0);
svfloat16_t ry = GGML_F16x_VEC_LOAD(y + k, 0);
sum1 = GGML_F16x_VEC_FMA(sum1, rx, ry);
}
// reduce sum0..sum3 to sum0
GGML_F16_VEC_REDUCE(sumf, sum);
if (np2 < n) {
svbool_t pg = svwhilelt_b16(np2, n);
svfloat16_t hx = svld1_f16(pg, (const __fp16 *)(x + np2));
svfloat16_t hy = svld1_f16(pg, (const __fp16 *)(y + np2));
// leftovers
for (int i = np; i < n; ++i) {
sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i]));
}
sum1 = svmad_f16_x(pg, hx, hy, sum1);
}
GGML_F16x_VEC_REDUCE(sumf, sum1, sum2, sum3, sum4);
#elif defined(__riscv_v_intrinsic)
#if defined(__riscv_zvfh)
int vl = __riscv_vsetvlmax_e32m2();
vfloat32m1_t vs = __riscv_vfmv_v_f_f32m1(0.0f, 1);
vfloat32m2_t vsum;
vfloat16m1_t ax;
vfloat16m1_t ay;
vsum = __riscv_vreinterpret_v_u32m2_f32m2(__riscv_vmv_v_x_u32m2(0, vl));
for (int i = 0; i < n; i += vl) {
vl = __riscv_vsetvl_e16m1(n - i);
ax = __riscv_vle16_v_f16m1_tu(ax, (const _Float16 *)&x[i], vl);
ay = __riscv_vle16_v_f16m1_tu(ay, (const _Float16 *)&y[i], vl);
vsum = __riscv_vfwmacc_vv_f32m2_tu(vsum, ax, ay, vl);
}
vl = __riscv_vsetvlmax_e32m1();
vfloat32m1_t ac0 = __riscv_vfadd_vv_f32m1(__riscv_vget_v_f32m2_f32m1(vsum, 0), __riscv_vget_v_f32m2_f32m1(vsum, 1), vl);
vs = __riscv_vfredusum_vs_f32m1_f32m1(ac0, vs, vl);
sumf += __riscv_vfmv_f_s_f32m1_f32(vs);
#else
for (int i = 0; i < n; ++i) {
sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i]));
}
#endif // __riscv_zvfh
#else
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
}
}
// reduce sum0..sum3 to sum0
GGML_F16_VEC_REDUCE(sumf, sum);
// leftovers
for (int i = np; i < n; ++i) {
sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i]));
}
// if you hit this, you are likely running outside the FP range
assert(!isnan(sumf) && !isinf(sumf));
#endif
// if you hit this, you are likely running outside the FP range
assert(!isnan(sumf) && !isinf(sumf));
#else
for (int i = 0; i < n; ++i) {
sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i]));
}
#endif // GGML_SIMD
#endif
*s = sumf;
}
@@ -350,12 +257,6 @@ void ggml_vec_silu_f32(const int n, float * y, const float * x) {
for (; i + 3 < n; i += 4) {
_mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
}
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
const int vlen = svcntw();
for (; i < n; i += vlen) {
const svbool_t pg = svwhilelt_b32_s32(i, n);
svst1_f32(pg, y + i, ggml_v_silu(pg, svld1_f32(pg, x + i)));
}
#elif defined(__ARM_NEON) && defined(__aarch64__)
for (; i + 3 < n; i += 4) {
vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
@@ -380,24 +281,10 @@ void ggml_vec_swiglu_f32(const int n, float * y, const float * x, const float *
for (; i + 3 < n; i += 4) {
_mm_storeu_ps(y + i, _mm_mul_ps(ggml_v_silu(_mm_loadu_ps(x + i)), _mm_loadu_ps(g + i)));
}
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
const int vlen = svcntw();
for (; i < n; i += vlen) {
const svbool_t pg = svwhilelt_b32_s32(i, n);
svst1_f32(pg, y + i, svmul_f32_x(pg, ggml_v_silu(pg, svld1_f32(pg, x + i)), svld1_f32(pg, g + i)));
}
#elif defined(__ARM_NEON) && defined(__aarch64__)
for (; i + 3 < n; i += 4) {
vst1q_f32(y + i, vmulq_f32(ggml_v_silu(vld1q_f32(x + i)), vld1q_f32(g + i)));
}
#elif defined(__riscv_v_intrinsic)
for (int vl; i < n; i += vl) {
vl = __riscv_vsetvl_e32m2(n - i);
vfloat32m2_t vx = __riscv_vle32_v_f32m2(&x[i], vl);
vfloat32m2_t vg = __riscv_vle32_v_f32m2(&g[i], vl);
vfloat32m2_t vy = __riscv_vfmul_vv_f32m2(ggml_v_silu_m2(vx, vl), vg, vl);
__riscv_vse32_v_f32m2(&y[i], vy, vl);
}
#endif
for (; i < n; ++i) {
y[i] = ggml_silu_f32(x[i]) * g[i];
@@ -441,15 +328,6 @@ ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float
#endif
sum += (ggml_float)_mm_cvtss_f32(val);
}
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
const int vlen = svcntw();
for (; i < n; i += vlen) {
const svbool_t pg = svwhilelt_b32_s32(i, n);
svfloat32_t val = ggml_v_expf(pg, svsub_f32_x(pg, svld1_f32(pg, x + i),
svdup_n_f32_x(pg, max)));
svst1_f32(pg, y + i, val);
sum += (ggml_float)svaddv_f32(pg, val);
}
#elif defined(__ARM_NEON) && defined(__aarch64__)
for (; i + 3 < n; i += 4) {
float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),

View File

@@ -119,149 +119,45 @@ inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * GG
}
#if defined(GGML_SIMD)
#if defined(__ARM_FEATURE_SVE)
const int sve_register_length = svcntb() * 8;
const int ggml_f16_epr = sve_register_length / 16; // running when 16
const int ggml_f16_step = 8 * ggml_f16_epr; // choose 8 SVE registers
const int np = (n & ~(ggml_f16_step - 1));
svfloat16_t sum_00 = svdup_n_f16(0.0f);
svfloat16_t sum_01 = svdup_n_f16(0.0f);
svfloat16_t sum_02 = svdup_n_f16(0.0f);
svfloat16_t sum_03 = svdup_n_f16(0.0f);
svfloat16_t sum_10 = svdup_n_f16(0.0f);
svfloat16_t sum_11 = svdup_n_f16(0.0f);
svfloat16_t sum_12 = svdup_n_f16(0.0f);
svfloat16_t sum_13 = svdup_n_f16(0.0f);
svfloat16_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8;
svfloat16_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8;
for (int i = 0; i < np; i += ggml_f16_step) {
ay1 = GGML_F16x_VEC_LOAD(y + i + 0 * ggml_f16_epr, 0); // 8 elements
ax1 = GGML_F16x_VEC_LOAD(x[0] + i + 0*ggml_f16_epr, 0); // 8 elemnst
sum_00 = GGML_F16x_VEC_FMA(sum_00, ax1, ay1); // sum_00 = sum_00+ax1*ay1
ax1 = GGML_F16x_VEC_LOAD(x[1] + i + 0*ggml_f16_epr, 0); // 8 elements
sum_10 = GGML_F16x_VEC_FMA(sum_10, ax1, ay1);
ay2 = GGML_F16x_VEC_LOAD(y + i + 1 * ggml_f16_epr, 1); // next 8 elements
ax2 = GGML_F16x_VEC_LOAD(x[0] + i + 1*ggml_f16_epr, 1); // next 8 ekements
sum_01 = GGML_F16x_VEC_FMA(sum_01, ax2, ay2);
ax2 = GGML_F16x_VEC_LOAD(x[1] + i + 1*ggml_f16_epr, 1);
sum_11 = GGML_F16x_VEC_FMA(sum_11, ax2, ay2);
ay3 = GGML_F16x_VEC_LOAD(y + i + 2 * ggml_f16_epr, 2);
ax3 = GGML_F16x_VEC_LOAD(x[0] + i + 2*ggml_f16_epr, 2);
sum_02 = GGML_F16x_VEC_FMA(sum_02, ax3, ay3);
ax1 = GGML_F16x_VEC_LOAD(x[1] + i + 2*ggml_f16_epr, 2);
sum_12 = GGML_F16x_VEC_FMA(sum_12, ax3, ay3);
ay4 = GGML_F16x_VEC_LOAD(y + i + 3 * ggml_f16_epr, 3);
ax4 = GGML_F16x_VEC_LOAD(x[0] + i + 3*ggml_f16_epr, 3);
sum_03 = GGML_F16x_VEC_FMA(sum_03, ax4, ay4);
ax4 = GGML_F16x_VEC_LOAD(x[1] + i + 3*ggml_f16_epr, 3);
sum_13 = GGML_F16x_VEC_FMA(sum_13, ax4, ay4);
ay5 = GGML_F16x_VEC_LOAD(y + i + 4 * ggml_f16_epr, 4);
ax5 = GGML_F16x_VEC_LOAD(x[0] + i + 4*ggml_f16_epr, 4);
sum_00 = GGML_F16x_VEC_FMA(sum_00, ax5, ay5);
ax5 = GGML_F16x_VEC_LOAD(x[1] + i + 4*ggml_f16_epr, 4);
sum_10 = GGML_F16x_VEC_FMA(sum_10, ax5, ay5);
ay6 = GGML_F16x_VEC_LOAD(y + i + 5 * ggml_f16_epr, 5);
ax6 = GGML_F16x_VEC_LOAD(x[0] + i + 5*ggml_f16_epr, 5);
sum_01 = GGML_F16x_VEC_FMA(sum_01, ax6, ay6);
ax6 = GGML_F16x_VEC_LOAD(x[1] + i + 5*ggml_f16_epr, 5);
sum_11 = GGML_F16x_VEC_FMA(sum_11, ax6, ay6);
ay7 = GGML_F16x_VEC_LOAD(y + i + 6 * ggml_f16_epr, 6);
ax7 = GGML_F16x_VEC_LOAD(x[0] + i + 6*ggml_f16_epr, 6);
sum_02 = GGML_F16x_VEC_FMA(sum_02, ax7, ay7);
ax7 = GGML_F16x_VEC_LOAD(x[1] + i + 6*ggml_f16_epr, 6);
sum_12 = GGML_F16x_VEC_FMA(sum_12, ax7, ay7);
ay8 = GGML_F16x_VEC_LOAD(y + i + 7 * ggml_f16_epr, 7);
ax8 = GGML_F16x_VEC_LOAD(x[0] + i + 7*ggml_f16_epr, 7);
sum_03 = GGML_F16x_VEC_FMA(sum_03, ax8, ay8);
ax8 = GGML_F16x_VEC_LOAD(x[1] + i + 7*ggml_f16_epr, 7);
sum_13 = GGML_F16x_VEC_FMA(sum_13, ax8, ay8);
#if defined(__riscv_v_intrinsic)
// todo: RVV impl
for (int i = 0; i < n; ++i) {
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i]));
}
}
#else
const int np = (n & ~(GGML_F16_STEP - 1));
const int np2 = (n & ~(ggml_f16_epr - 1));
for (int k = np; k < np2; k += ggml_f16_epr) {
svfloat16_t ry = GGML_F16x_VEC_LOAD(y + k, 0);
GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
svfloat16_t rx = GGML_F16x_VEC_LOAD(x[0] + k, 0);
sum_00 = GGML_F16x_VEC_FMA(sum_00, rx, ry);
rx = GGML_F16x_VEC_LOAD(x[1] + k, 0);
sum_10 = GGML_F16x_VEC_FMA(sum_10, rx, ry);
}
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
if (np2 < n) {
svbool_t pg = svwhilelt_b16(np2, n);
svfloat16_t hx_0 = svld1_f16(pg, (const __fp16 *)(x[0] + np2));
svfloat16_t hx_1 = svld1_f16(pg, (const __fp16 *)(x[1] + np2));
svfloat16_t hy = svld1_f16(pg, (const __fp16 *)(y + np2));
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
sum_00 = svmad_f16_x(pg, hx_0, hy, sum_00);
sum_10 = svmad_f16_x(pg, hx_1, hy, sum_10);
}
GGML_F16x_VEC_REDUCE(sumf[0], sum_00, sum_01, sum_02, sum_03);
GGML_F16x_VEC_REDUCE(sumf[1], sum_10, sum_11, sum_12, sum_13);
#elif defined(__riscv_v_intrinsic)
// todo: RVV impl
for (int i = 0; i < n; ++i) {
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i]));
}
}
#else
const int np = (n & ~(GGML_F16_STEP - 1));
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
}
sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
}
}
}
// reduce sum0..sum3 to sum0
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
}
// reduce sum0..sum3 to sum0
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
}
// leftovers
for (int i = np; i < n; ++i) {
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i]));
}
// leftovers
for (int i = np; i < n; ++i) {
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i]));
}
#endif
}
#endif
#else
for (int i = 0; i < n; ++i) {
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
@@ -397,112 +293,35 @@ inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const
inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * GGML_RESTRICT y, const ggml_fp16_t * GGML_RESTRICT x, const float v) {
#if defined(GGML_SIMD)
#if defined(__ARM_FEATURE_SVE)
const int sve_register_length = svcntb() * 8;
const int ggml_f16_epr = sve_register_length / 16;
const int ggml_f16_step = 8 * ggml_f16_epr;
#if defined(__riscv_v_intrinsic)
// todo: RVV impl
// scalar
for (int i = 0; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v);
}
#else
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16x_VEC vx = GGML_F16x_VEC_SET1(v);
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
const int np= (n & ~(ggml_f16_step - 1));
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
svfloat16_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8;
svfloat16_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8;
for (int i = 0; i < np; i += ggml_f16_step) {
ax1 = GGML_F16x_VEC_LOAD(x + i + 0 * ggml_f16_epr, 0);
ay1 = GGML_F16x_VEC_LOAD(y + i + 0 * ggml_f16_epr, 0);
ay1 = GGML_F16x_VEC_FMA(ay1, ax1, vx);
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
GGML_F16x_VEC_STORE(y + i + 0 * ggml_f16_epr, ay1, 0);
ax2 = GGML_F16x_VEC_LOAD(x + i + 1 * ggml_f16_epr, 1);
ay2 = GGML_F16x_VEC_LOAD(y + i + 1 * ggml_f16_epr, 1);
ay2 = GGML_F16x_VEC_FMA(ay2, ax2, vx);
GGML_F16x_VEC_STORE(y + i + 1 * ggml_f16_epr, ay2, 1);
ax3 = GGML_F16x_VEC_LOAD(x + i + 2 * ggml_f16_epr, 2);
ay3 = GGML_F16x_VEC_LOAD(y + i + 2 * ggml_f16_epr, 2);
ay3 = GGML_F16x_VEC_FMA(ay3, ax3, vx);
GGML_F16x_VEC_STORE(y + i + 2 * ggml_f16_epr, ay3, 2);
ax4 = GGML_F16x_VEC_LOAD(x + i + 3 * ggml_f16_epr, 3);
ay4 = GGML_F16x_VEC_LOAD(y + i + 3 * ggml_f16_epr, 3);
ay4 = GGML_F16x_VEC_FMA(ay4, ax4, vx);
GGML_F16x_VEC_STORE(y + i + 3 * ggml_f16_epr, ay4, 3);
ax5 = GGML_F16x_VEC_LOAD(x + i + 4 * ggml_f16_epr, 4);
ay5 = GGML_F16x_VEC_LOAD(y + i + 4 * ggml_f16_epr, 4);
ay5 = GGML_F16x_VEC_FMA(ay5, ax5, vx);
GGML_F16x_VEC_STORE(y + i + 4 * ggml_f16_epr, ay5, 4);
ax6 = GGML_F16x_VEC_LOAD(x + i + 5 * ggml_f16_epr, 5);
ay6 = GGML_F16x_VEC_LOAD(y + i + 5 * ggml_f16_epr, 5);
ay6 = GGML_F16x_VEC_FMA(ay6, ax6, vx);
GGML_F16x_VEC_STORE(y + i + 5 * ggml_f16_epr, ay6, 5);
ax7 = GGML_F16x_VEC_LOAD(x + i + 6 * ggml_f16_epr, 6);
ay7 = GGML_F16x_VEC_LOAD(y + i + 6 * ggml_f16_epr, 6);
ay7 = GGML_F16x_VEC_FMA(ay7, ax7, vx);
GGML_F16x_VEC_STORE(y + i + 6 * ggml_f16_epr, ay7, 6);
ax8 = GGML_F16x_VEC_LOAD(x + i + 7 * ggml_f16_epr, 7);
ay8 = GGML_F16x_VEC_LOAD(y + i + 7 * ggml_f16_epr, 7);
ay8 = GGML_F16x_VEC_FMA(ay8, ax8, vx);
GGML_F16x_VEC_STORE(y + i + 7 * ggml_f16_epr, ay8, 7);
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
}
const int np2 = (n & ~(ggml_f16_epr - 1));
for (int k = np; k < np2; k += ggml_f16_epr) {
svfloat16_t rx = GGML_F16x_VEC_LOAD(x + k, 0);
svfloat16_t ry = GGML_F16x_VEC_LOAD(y + k, 0);
ry = GGML_F16x_VEC_FMA(ry, rx, vx);
}
GGML_F16x_VEC_STORE(y + k, ry, 0);
}
if (np2 < n) {
svbool_t pg = svwhilelt_b16(np2, n);
svfloat16_t hx = svld1_f16(pg, (const __fp16 *)(x + np2));
svfloat16_t hy = svld1_f16(pg, (const __fp16 *)(y + np2));
hy = svmad_f16_x(pg, hx, vx, hy);
svst1_f16(pg, (__fp16 *)(y + np2), hy);
}
#elif defined(__riscv_v_intrinsic)
// todo: RVV impl
// scalar
for (int i = 0; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v);
}
#else
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v);
}
#endif
// leftovers
for (int i = np; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v);
}
#endif
#else
// scalar
for (int i = 0; i < n; ++i) {
@@ -698,59 +517,33 @@ inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
#if defined(GGML_SIMD)
#if defined(__ARM_FEATURE_SVE)
const int sve_register_length = svcntb() * 8;
const int ggml_f16_epr = sve_register_length / 16;
const int ggml_f16_step = 2 * ggml_f16_epr;
#if defined(__riscv_v_intrinsic)
// todo: RVV impl
// scalar
for (int i = 0; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v);
}
#else
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16x_VEC vx = GGML_F16x_VEC_SET1(v);
const int np = (n & ~(ggml_f16_step - 1));
svfloat16_t ay1, ay2;
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
for (int i = 0; i < np; i += ggml_f16_step) {
ay1 = GGML_F16x_VEC_LOAD(y + i + 0*ggml_f16_epr, 0);
ay1 = GGML_F16x_VEC_MUL(ay1, vx);
GGML_F16x_VEC_STORE(y + i + 0*ggml_f16_epr, ay1, 0);
GGML_F16_VEC ay[GGML_F16_ARR];
ay2 = GGML_F16x_VEC_LOAD(y + i + 1*ggml_f16_epr, 1);
ay2 = GGML_F16x_VEC_MUL(ay2, vx);
GGML_F16x_VEC_STORE(y + i + 1*ggml_f16_epr, ay2, 1);
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
}
// leftovers
// maximum number of leftover elements will be less that ggmlF_16x_epr. Apply predicated svmad on available elements only
if (np < n) {
svbool_t pg = svwhilelt_b16(np, n);
svfloat16_t hy = svld1_f16(pg, (__fp16 *)(y + np));
svfloat16_t out = svmul_f16_m(pg, hy, vx);
svst1_f16(pg, (__fp16 *)(y + np), out);
}
#elif defined(__riscv_v_intrinsic)
// todo: RVV impl
// scalar
for (int i = 0; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v);
}
#else
const int np = (n & ~(GGML_F16_STEP - 1));
}
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v);
}
#endif
// leftovers
for (int i = np; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v);
}
#endif
#else
// scalar
for (int i = 0; i < n; ++i) {
@@ -1002,39 +795,7 @@ https://github.com/openvinotoolkit/openvino/blob/master/src/plugins/intel_cpu/sr
}
#endif
#if defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
inline static svfloat32_t ggml_v_expf(svbool_t pg, svfloat32_t x) {
const svfloat32_t r = svdup_n_f32_x(pg, 0x1.8p23f);
const svfloat32_t z = svmla_n_f32_x(pg, r, x, 0x1.715476p+0f);
const svfloat32_t n = svsub_f32_x(pg, z, r);
const svfloat32_t b = svmls_n_f32_x(pg, svmls_n_f32_x(pg, x, n, 0x1.62e4p-1f), n, 0x1.7f7d1cp-20f);
const svuint32_t e = svlsl_n_u32_x(pg, svreinterpret_u32_f32(z), 23);
const svfloat32_t k = svreinterpret_f32_u32(svadd_u32_x(pg, e, svreinterpret_u32_f32(svdup_n_f32_x(pg, 1))));
const svbool_t c = svacgt_n_f32(pg, n, 126);
const svfloat32_t u = svmul_f32_x(pg, b, b);
const svfloat32_t j = svmla_f32_x(pg,
svmul_n_f32_x(pg, b, 0x1.ffffecp-1f),
svmla_f32_x(pg, svmla_f32_x(pg, svdup_n_f32_x(pg, 0x1.fffdb6p-2f), svdup_n_f32_x(pg, 0x1.555e66p-3f), b),
svmla_f32_x(pg, svdup_n_f32_x(pg, 0x1.573e2ep-5f), svdup_n_f32_x(pg, 0x1.0e4020p-7f), b), u), u);
const svuint32_t d = svdup_n_u32_z(svcmple_n_f32(pg, n, 0.0), 0x82000000);
const svfloat32_t s1 = svreinterpret_f32_u32(svadd_n_u32_x(pg, d, 0x7f000000));
const svfloat32_t s2 = svreinterpret_f32_u32(svsub_u32_x(pg, e, d));
return svsel_f32(svacgt_f32(pg, n, svdup_n_f32_x(pg, 192)), svmul_f32_x(pg, s1, s1),
svsel_f32(c, svmul_f32_x(pg, svmla_f32_x(pg, s2, s2, j), s1), svmla_f32_x(pg, k, k, j)));
}
// computes silu x/(1+exp(-x)) in single precision vector
inline static svfloat32_t ggml_v_silu(svbool_t pg, svfloat32_t x) {
const svfloat32_t one = svdup_n_f32_x(pg, 1.0f);
const svfloat32_t zero = svdup_n_f32_x(pg, 0.0f);
const svfloat32_t neg_x = svsub_f32_x(pg, zero, x);
const svfloat32_t exp_neg_x = ggml_v_expf(pg, neg_x);
const svfloat32_t one_plus_exp_neg_x = svadd_f32_x(pg, one, exp_neg_x);
return svdiv_f32_x(pg, x, one_plus_exp_neg_x);
}
#elif defined(__ARM_NEON) && defined(__aarch64__)
#if defined(__ARM_NEON) && defined(__aarch64__)
// adapted from arm limited optimized routine
// the maximum error is 1.45358 plus 0.5 ulps
@@ -1269,14 +1030,6 @@ inline static vfloat32m2_t ggml_v_expf_m2(vfloat32m2_t x, int vl) {
vl);
}
// computes silu x/(1+exp(-x)) in single precision vector
inline static vfloat32m2_t ggml_v_silu_m2(vfloat32m2_t x, int vl) {
const vfloat32m2_t neg_x = __riscv_vfneg_v_f32m2(x, vl);
const vfloat32m2_t exp_neg_x = ggml_v_expf_m2(neg_x, vl);
const vfloat32m2_t one_plus_exp_neg_x = __riscv_vfadd_vf_f32m2(exp_neg_x, 1.0f, vl);
return __riscv_vfdiv_vv_f32m2(x, one_plus_exp_neg_x, vl);
}
#endif // __ARM_NEON / __AVX2__ / __SSE2__ / __riscv_v_intrinsic
inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {

View File

@@ -1,6 +1,5 @@
#include "binbcast.cuh"
#include <cstdint>
#include <utility>
static __device__ __forceinline__ float op_repeat(const float a, const float b) {
return b;
@@ -23,16 +22,13 @@ static __device__ __forceinline__ float op_div(const float a, const float b) {
return a / b;
}
template <float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t, typename... src1_ptrs>
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
const int ne0, const int ne1, const int ne2, const int ne3,
const int ne10, const int ne11, const int ne12, const int ne13,
/*int s0, */ const int s1, const int s2, const int s3,
/*int s00,*/ const int s01, const int s02, const int s03,
/*int s10,*/ const int s11, const int s12, const int s13,
src1_ptrs... src1s) {
int ne0, int ne1, int ne2, int ne3,
int ne10, int ne11, int ne12, int ne13,
/*int s0, */ int s1, int s2, int s3,
/*int s00,*/ int s01, int s02, int s03,
/*int s10,*/ int s11, int s12, int s13) {
const int i0s = blockDim.x*blockIdx.x + threadIdx.x;
const int i1 = (blockDim.y*blockIdx.y + threadIdx.y);
const int i2 = (blockDim.z*blockIdx.z + threadIdx.z) / ne3;
@@ -50,31 +46,24 @@ static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
const src0_t * src0_row = src0 ? (src0 + i_src0) : nullptr;
const src0_t * src0_row = src0 + i_src0;
const src1_t * src1_row = src1 + i_src1;
dst_t * dst_row = dst + i_dst;
for (int i0 = i0s; i0 < ne0; i0 += blockDim.x*gridDim.x) {
const int i10 = i0 % ne10;
float result = src0_row ? (float) src0_row[i0] : 0.0f;
if constexpr (sizeof...(src1_ptrs) > 0) {
result = (..., (result = bin_op(result, (float)src1s[i_src1 + i10])));
} else {
result = bin_op(result, (float)src1[i_src1 + i10]);
}
dst_row[i0] = (dst_t) result;
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
}
}
template <float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t, typename... src1_ptrs>
static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
const int ne0, const int ne1, const int ne2,const int ne3,
const int ne10, const int ne11, const int ne12, const int ne13,
/*int s0, */ const int s1, const int s2, const int s3,
/*int s00,*/ const int s01, const int s02, const int s03,
/*int s10,*/ const int s11, const int s12, const int s13,
src1_ptrs ... src1s) {
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
int ne0, int ne1, int ne2, int ne3,
int ne10, int ne11, int ne12, int ne13,
/*int s0, */ int s1, int s2, int s3,
/*int s00,*/ int s01, int s02, int s03,
/*int s10,*/ int s11, int s12, int s13) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
const int i3 = i/(ne2*ne1*ne0);
@@ -94,190 +83,12 @@ static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t *
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
const src0_t * src0_row = src0 ? (src0 + i_src0) : nullptr;
const src0_t * src0_row = src0 + i_src0;
const src1_t * src1_row = src1 + i_src1;
dst_t * dst_row = dst + i_dst;
const int i10 = i0 % ne10;
float result = src0_row ? (float) src0_row[i0] : 0.0f;
if constexpr (sizeof...(src1_ptrs) > 0) {
result = (..., (result = bin_op(result, (float)src1s[i_src1 + i10])));
} else {
result = bin_op(result, (float)src1[i_src1 + i10]);
}
dst_row[i0] = (dst_t) result;
}
template <float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t, size_t... I>
static void launch_bin_bcast_pack(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd,
cudaStream_t stream, std::index_sequence<I...>) {
GGML_TENSOR_BINARY_OP_LOCALS
int nr0 = ne10 / ne0;
int nr1 = ne11 / ne1;
int nr2 = ne12 / ne2;
int nr3 = ne13 / ne3;
int nr[4] = { nr0, nr1, nr2, nr3 };
int64_t cne[] = { ne0, ne1, ne2, ne3 };
int64_t cne0[] = { ne00, ne01, ne02, ne03 };
int64_t cne1[] = { ne10, ne11, ne12, ne13 };
size_t cnb[] = { nb0, nb1, nb2, nb3 };
size_t cnb0[] = { nb00, nb01, nb02, nb03 };
size_t cnb1[] = { nb10, nb11, nb12, nb13 };
auto collapse = [](int64_t cne[]) {
cne[0] *= cne[1];
cne[1] = cne[2];
cne[2] = cne[3];
cne[3] = 1;
};
auto collapse_nb = [](size_t cnb[], const int64_t cne[]) {
cnb[1] *= cne[1];
cnb[2] *= cne[2];
cnb[3] *= cne[3];
};
if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
for (int i = 0; i < 4; i++) {
if (nr[i] != 1) {
break;
}
if (i > 0) {
collapse_nb(cnb, cne);
collapse_nb(cnb0, cne0);
collapse_nb(cnb1, cne1);
collapse(cne);
collapse(cne0);
collapse(cne1);
}
}
}
{
int64_t ne0 = cne[0];
int64_t ne1 = cne[1];
int64_t ne2 = cne[2];
int64_t ne3 = cne[3];
//int64_t ne00 = cne0[0]; GGML_UNUSED(ne00);
//int64_t ne01 = cne0[1]; GGML_UNUSED(ne01);
//int64_t ne02 = cne0[2]; GGML_UNUSED(ne02);
//int64_t ne03 = cne0[3]; GGML_UNUSED(ne03);
int64_t ne10 = cne1[0];
int64_t ne11 = cne1[1];
int64_t ne12 = cne1[2];
int64_t ne13 = cne1[3];
size_t nb0 = cnb[0];
size_t nb1 = cnb[1];
size_t nb2 = cnb[2];
size_t nb3 = cnb[3];
size_t nb00 = cnb0[0];
size_t nb01 = cnb0[1];
size_t nb02 = cnb0[2];
size_t nb03 = cnb0[3];
size_t nb10 = cnb1[0];
size_t nb11 = cnb1[1];
size_t nb12 = cnb1[2];
size_t nb13 = cnb1[3];
size_t s0 = nb0 / sizeof(dst_t);
size_t s1 = nb1 / sizeof(dst_t);
size_t s2 = nb2 / sizeof(dst_t);
size_t s3 = nb3 / sizeof(dst_t);
size_t s10 = nb10 / sizeof(src1_t);
size_t s11 = nb11 / sizeof(src1_t);
size_t s12 = nb12 / sizeof(src1_t);
size_t s13 = nb13 / sizeof(src1_t);
size_t s00 = nb00 / sizeof(src0_t);
size_t s01 = nb01 / sizeof(src0_t);
size_t s02 = nb02 / sizeof(src0_t);
size_t s03 = nb03 / sizeof(src0_t);
GGML_ASSERT(nb0 % sizeof(dst_t) == 0);
GGML_ASSERT(nb1 % sizeof(dst_t) == 0);
GGML_ASSERT(nb2 % sizeof(dst_t) == 0);
GGML_ASSERT(nb3 % sizeof(dst_t) == 0);
GGML_ASSERT(nb00 % sizeof(src0_t) == 0);
GGML_ASSERT(nb01 % sizeof(src0_t) == 0);
GGML_ASSERT(nb02 % sizeof(src0_t) == 0);
GGML_ASSERT(nb03 % sizeof(src0_t) == 0);
GGML_ASSERT(nb10 % sizeof(src1_t) == 0);
GGML_ASSERT(nb11 % sizeof(src1_t) == 0);
GGML_ASSERT(nb12 % sizeof(src1_t) == 0);
GGML_ASSERT(nb13 % sizeof(src1_t) == 0);
GGML_ASSERT(s0 == 1);
GGML_ASSERT(s00 == 1);
GGML_ASSERT(s10 == 1);
const int block_size = 128;
int64_t hne0 = std::max(ne0 / 2LL, 1LL);
dim3 block_dims;
block_dims.x = std::min<unsigned int>(hne0, block_size);
block_dims.y = std::min<unsigned int>(ne1, block_size / block_dims.x);
block_dims.z = std::min(std::min<unsigned int>(ne2 * ne3, block_size / block_dims.x / block_dims.y), 64U);
dim3 block_nums((hne0 + block_dims.x - 1) / block_dims.x,
(ne1 + block_dims.y - 1) / block_dims.y,
(ne2 * ne3 + block_dims.z - 1) / block_dims.z);
if (block_nums.z > 65535) {
int block_num = (ne0 * ne1 * ne2 * ne3 + block_size - 1) / block_size;
if constexpr (sizeof...(I) > 0) {
k_bin_bcast_unravel<bin_op, src0_t, src1_t, dst_t>
<<<block_num, block_size, 0, stream>>>(src0_dd, src1_dd, dst_dd,
ne0, ne1, ne2, ne3,
ne10, ne11, ne12, ne13,
/* s0, */ s1, s2, s3,
/* s00,*/ s01, s02, s03,
/* s10,*/ s11, s12,s13,
(const src1_t *) dst->src[I + 1]->data...);
} else {
k_bin_bcast_unravel<bin_op, src0_t, src1_t, dst_t>
<<<block_num, block_size, 0, stream>>>(src0_dd, src1_dd, dst_dd,
ne0, ne1, ne2, ne3,
ne10, ne11, ne12, ne13,
/* s0, */ s1, s2, s3,
/* s00,*/ s01, s02, s03,
/* s10,*/ s11, s12,s13);
}
} else {
if constexpr (sizeof...(I) > 0) {
k_bin_bcast<bin_op, src0_t, src1_t, dst_t>
<<<block_nums, block_dims, 0, stream>>>(src0_dd, src1_dd, dst_dd,
ne0, ne1, ne2, ne3,
ne10, ne11, ne12, ne13,
/* s0, */ s1, s2, s3,
/* s00,*/ s01, s02, s03,
/* s10,*/ s11, s12,s13,
(const src1_t *) dst->src[I + 1]->data...);
} else {
k_bin_bcast<bin_op, src0_t, src1_t, dst_t>
<<<block_nums, block_dims, 0, stream>>>(src0_dd, src1_dd, dst_dd,
ne0, ne1, ne2, ne3,
ne10, ne11, ne12, ne13,
/* s0, */ s1, s2, s3,
/* s00,*/ s01, s02, s03,
/* s10,*/ s11, s12,s13);
}
}
}
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
}
template <typename T>
@@ -309,14 +120,160 @@ static __global__ void k_repeat_back(
dst[tid3*ne2*ne1*ne0 + tid2*ne1*ne0 + tid1*ne0 + tid0] = sum;
}
template <float (*bin_op)(const float, const float), int n_fuse = 1>
template<float (*bin_op)(const float, const float)>
struct bin_bcast_cuda {
template<typename src0_t, typename src1_t, typename dst_t>
void operator()(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst,
const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd,
cudaStream_t stream) {
launch_bin_bcast_pack<bin_op, src0_t, src1_t, dst_t>(
src0, src1, dst, src0_dd, src1_dd, dst_dd, stream, std::make_index_sequence<n_fuse>{});
GGML_TENSOR_BINARY_OP_LOCALS
int nr0 = ne10/ne0;
int nr1 = ne11/ne1;
int nr2 = ne12/ne2;
int nr3 = ne13/ne3;
int nr[4] = { nr0, nr1, nr2, nr3 };
// collapse dimensions until first broadcast dimension
int64_t cne[] = {ne0, ne1, ne2, ne3};
int64_t cne0[] = {ne00, ne01, ne02, ne03};
int64_t cne1[] = {ne10, ne11, ne12, ne13};
size_t cnb[] = {nb0, nb1, nb2, nb3};
size_t cnb0[] = {nb00, nb01, nb02, nb03};
size_t cnb1[] = {nb10, nb11, nb12, nb13};
auto collapse = [](int64_t cne[]) {
cne[0] *= cne[1];
cne[1] = cne[2];
cne[2] = cne[3];
cne[3] = 1;
};
auto collapse_nb = [](size_t cnb[], const int64_t cne[]) {
cnb[1] *= cne[1];
cnb[2] *= cne[2];
cnb[3] *= cne[3];
};
if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
for (int i = 0; i < 4; i++) {
if (nr[i] != 1) {
break;
}
if (i > 0) {
collapse_nb(cnb, cne);
collapse_nb(cnb0, cne0);
collapse_nb(cnb1, cne1);
collapse(cne);
collapse(cne0);
collapse(cne1);
}
}
}
{
int64_t ne0 = cne[0];
int64_t ne1 = cne[1];
int64_t ne2 = cne[2];
int64_t ne3 = cne[3];
//int64_t ne00 = cne0[0]; GGML_UNUSED(ne00);
//int64_t ne01 = cne0[1]; GGML_UNUSED(ne01);
//int64_t ne02 = cne0[2]; GGML_UNUSED(ne02);
//int64_t ne03 = cne0[3]; GGML_UNUSED(ne03);
int64_t ne10 = cne1[0];
int64_t ne11 = cne1[1];
int64_t ne12 = cne1[2];
int64_t ne13 = cne1[3];
size_t nb0 = cnb[0];
size_t nb1 = cnb[1];
size_t nb2 = cnb[2];
size_t nb3 = cnb[3];
size_t nb00 = cnb0[0];
size_t nb01 = cnb0[1];
size_t nb02 = cnb0[2];
size_t nb03 = cnb0[3];
size_t nb10 = cnb1[0];
size_t nb11 = cnb1[1];
size_t nb12 = cnb1[2];
size_t nb13 = cnb1[3];
size_t s0 = nb0 / sizeof(dst_t);
size_t s1 = nb1 / sizeof(dst_t);
size_t s2 = nb2 / sizeof(dst_t);
size_t s3 = nb3 / sizeof(dst_t);
size_t s10 = nb10 / sizeof(src1_t);
size_t s11 = nb11 / sizeof(src1_t);
size_t s12 = nb12 / sizeof(src1_t);
size_t s13 = nb13 / sizeof(src1_t);
size_t s00 = nb00 / sizeof(src0_t);
size_t s01 = nb01 / sizeof(src0_t);
size_t s02 = nb02 / sizeof(src0_t);
size_t s03 = nb03 / sizeof(src0_t);
GGML_ASSERT(nb0 % sizeof(dst_t) == 0);
GGML_ASSERT(nb1 % sizeof(dst_t) == 0);
GGML_ASSERT(nb2 % sizeof(dst_t) == 0);
GGML_ASSERT(nb3 % sizeof(dst_t) == 0);
GGML_ASSERT(nb00 % sizeof(src0_t) == 0);
GGML_ASSERT(nb01 % sizeof(src0_t) == 0);
GGML_ASSERT(nb02 % sizeof(src0_t) == 0);
GGML_ASSERT(nb03 % sizeof(src0_t) == 0);
GGML_ASSERT(nb10 % sizeof(src1_t) == 0);
GGML_ASSERT(nb11 % sizeof(src1_t) == 0);
GGML_ASSERT(nb12 % sizeof(src1_t) == 0);
GGML_ASSERT(nb13 % sizeof(src1_t) == 0);
GGML_ASSERT(s0 == 1);
GGML_ASSERT(s00 == 1);
GGML_ASSERT(s10 == 1);
const int block_size = 128;
int64_t hne0 = std::max(ne0/2LL, 1LL);
dim3 block_dims;
block_dims.x = std::min<unsigned int>(hne0, block_size);
block_dims.y = std::min<unsigned int>(ne1, block_size / block_dims.x);
block_dims.z = std::min(std::min<unsigned int>(ne2*ne3, block_size / block_dims.x / block_dims.y), 64U);
dim3 block_nums(
(hne0 + block_dims.x - 1) / block_dims.x,
(ne1 + block_dims.y - 1) / block_dims.y,
(ne2*ne3 + block_dims.z - 1) / block_dims.z
);
if (block_nums.z > 65535) {
// this is the maximum number of blocks in z dimension, fallback to 1D grid kernel
int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
k_bin_bcast_unravel<bin_op><<<block_num, block_size, 0, stream>>>(
src0_dd, src1_dd, dst_dd,
ne0, ne1, ne2, ne3,
ne10, ne11, ne12, ne13,
/* s0, */ s1, s2, s3,
/* s00, */ s01, s02, s03,
/* s10, */ s11, s12, s13);
} else {
k_bin_bcast<bin_op><<<block_nums, block_dims, 0, stream>>>(
src0_dd, src1_dd, dst_dd,
ne0, ne1, ne2, ne3,
ne10, ne11, ne12, ne13,
/* s0, */ s1, s2, s3,
/* s00, */ s01, s02, s03,
/* s10, */ s11, s12, s13);
}
}
}
};
@@ -355,7 +312,7 @@ static void ggml_cuda_op_bin_bcast(
}
void ggml_cuda_op_repeat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_repeat, 0>>(dst, dst->src[0], dst, nullptr, dst->src[0]->data, dst->data, ctx.stream());
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_repeat>>(dst, dst->src[0], dst, nullptr, dst->src[0]->data, dst->data, ctx.stream());
}
void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
@@ -374,68 +331,6 @@ void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_div>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
}
template <float (*op)(const float, const float), int n_fuse>
static void ggml_cuda_op_fused_binbcast_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
cudaStream_t stream = ctx.stream();
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
launch_bin_bcast_pack<op, float, float, float>(src0, src1, dst,
(const float *) src0->data, (const float *) src1->data, (float *) dst->data,
stream, std::make_index_sequence<n_fuse>{});
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
launch_bin_bcast_pack<op, half, half, half>(src0, src1, dst,
(const half *) src0->data, (const half *) src1->data, (half *) dst->data,
stream, std::make_index_sequence<n_fuse>{});
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) {
launch_bin_bcast_pack<op, half, float, half>(src0, src1, dst,
(const half *) src0->data, (const float *) src1->data, (half *) dst->data,
stream, std::make_index_sequence<n_fuse>{});
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
launch_bin_bcast_pack<op, half, float, float>(src0, src1, dst,
(const half *) src0->data, (const float *) src1->data, (float *) dst->data,
stream, std::make_index_sequence<n_fuse>{});
} else {
fprintf(stderr,
"%s: unsupported types for fusion: dst: %s, src0: %s, src1: %s\n",
__func__, ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
GGML_ABORT("fatal error");
}
}
void ggml_cuda_op_fused_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst, int n_fuse) {
GGML_ASSERT(2 <= n_fuse && n_fuse <= 8);
switch (n_fuse) {
case 2:
ggml_cuda_op_fused_binbcast_impl<op_add, 2>(ctx, dst);
break;
case 3:
ggml_cuda_op_fused_binbcast_impl<op_add, 3>(ctx, dst);
break;
case 4:
ggml_cuda_op_fused_binbcast_impl<op_add, 4>(ctx, dst);
break;
case 5:
ggml_cuda_op_fused_binbcast_impl<op_add, 5>(ctx, dst);
break;
case 6:
ggml_cuda_op_fused_binbcast_impl<op_add, 6>(ctx, dst);
break;
case 7:
ggml_cuda_op_fused_binbcast_impl<op_add, 7>(ctx, dst);
break;
case 8:
ggml_cuda_op_fused_binbcast_impl<op_add, 8>(ctx, dst);
break;
default:
GGML_ASSERT(false && "Unsupported n_fuse value");
}
}
void ggml_cuda_op_repeat_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];

View File

@@ -7,5 +7,3 @@ void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_repeat_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_fused_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst, int n_fuse);

View File

@@ -563,40 +563,6 @@ static __device__ __forceinline__ float ggml_cuda_e8m0_to_fp32(uint8_t x) {
#endif // CUDART_VERSION >= 12050
}
// See https://gmplib.org/~tege/divcnst-pldi94.pdf figure 4.1.
// Precompute mp (m' in the paper) and L such that division
// can be computed using a multiply (high 32b of 64b result)
// and a shift:
//
// n/d = (mulhi(n, mp) + n) >> L;
static const uint3 init_fastdiv_values(uint32_t d) {
GGML_ASSERT(d != 0);
// compute L = ceil(log2(d));
uint32_t L = 0;
while (L < 32 && (uint32_t{ 1 } << L) < d) {
L++;
}
uint32_t mp = (uint32_t) ((uint64_t{ 1 } << 32) * ((uint64_t{ 1 } << L) - d) / d + 1);
// pack divisor as well to reduce error surface
return make_uint3(mp, L, d);
}
static __device__ __forceinline__ uint32_t fastdiv(uint32_t n, const uint3 fastdiv_values) {
// expects fastdiv_values to contain <mp, L, divisor> in <x, y, z>
// fastdiv_values.z is unused and optimized away by the compiler.
// Compute high 32 bits of n * mp
const uint32_t hi = __umulhi(n, fastdiv_values.x);
// add n, apply bit shift
return (hi + n) >> fastdiv_values.y;
}
static __device__ __forceinline__ uint32_t fastmodulo(uint32_t n, const uint3 fastdiv_values) {
// expects fastdiv_values to contain <mp, L, divisor> in <x, y, z> (see init_fastdiv_values)
return n - fastdiv(n, fastdiv_values) * fastdiv_values.z;
}
typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, float2 & v);
static __device__ __forceinline__ float get_alibi_slope(

View File

@@ -1,166 +0,0 @@
#include "conv2d.cuh"
#include "convert.cuh"
struct conv_params {
const int64_t IW, IH;
const int64_t OW, OH;
const int64_t KW, KH;
const int64_t ST_X, ST_Y;
const int64_t PD_X, PD_Y;
const int64_t DL_X, DL_Y;
const int64_t IC, OC;
const int64_t B;
const int64_t TOTAL;
};
struct kernel_bounds {
int64_t y_min, y_max;
int64_t x_min, x_max;
};
__device__ __forceinline__ int64_t max64(int64_t a, int64_t b) {
return (a > b) ? a : b;
}
__device__ __forceinline__ int64_t min64(int64_t a, int64_t b) {
return (a < b) ? a : b;
}
__device__ __forceinline__ kernel_bounds calculate_kernel_bounds(int64_t out_x, int64_t out_y, const conv_params & P) {
kernel_bounds bounds;
bounds.y_min = max64(0, (P.PD_Y - out_y * P.ST_Y + P.DL_Y - 1) / P.DL_Y);
bounds.y_max = min64(P.KH, (P.IH + P.PD_Y - out_y * P.ST_Y + P.DL_Y - 1) / P.DL_Y);
bounds.x_min = max64(0, (P.PD_X - out_x * P.ST_X + P.DL_X - 1) / P.DL_X);
bounds.x_max = min64(P.KW, (P.IW + P.PD_X - out_x * P.ST_X + P.DL_X - 1) / P.DL_X);
return bounds;
}
__device__ __forceinline__ int calculate_input_coord(int64_t out_coord,
int64_t kern_coord,
int64_t stride,
int64_t dilation,
int64_t padding) {
return out_coord * stride + kern_coord * dilation - padding;
}
struct whcn_layout {
__device__ static int64_t input_index(int64_t n, int64_t c, int64_t y, int64_t x, const conv_params & P) {
return n * (P.IC * P.IW * P.IH) + c * P.IW * P.IH + y * P.IW + x;
}
__device__ static int64_t kernel_index(int64_t c_out, int64_t c_in, int64_t ky, int64_t kx, const conv_params & P) {
return c_out * (P.IC * P.KH * P.KW) + c_in * (P.KH * P.KW) + ky * P.KW + kx;
}
__device__ static int64_t output_index(int64_t n, int64_t c, int64_t y, int64_t x, const conv_params & P) {
return n * (P.OC * P.OW * P.OH) + c * P.OW * P.OH + y * P.OW + x;
}
__device__ static void unpack_indices(int64_t global_idx,
const conv_params & P,
int64_t & n,
int64_t & c,
int64_t & out_y,
int64_t & out_x) {
out_x = global_idx % P.OW;
out_y = (global_idx / P.OW) % P.OH;
c = (global_idx / (P.OW * P.OH)) % P.OC;
n = global_idx / (P.OW * P.OH * P.OC);
}
};
template <typename T, typename Layout>
static __global__ void conv2d_kernel(const float * __restrict__ input,
const T * __restrict__ kernel,
float * __restrict__ output,
const conv_params P) {
const int64_t global_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (global_idx >= P.TOTAL) {
return;
}
int64_t n, c_out, out_y, out_x;
Layout::unpack_indices(global_idx, P, n, c_out, out_y, out_x);
float acc = 0.0f;
for (int64_t c_in = 0; c_in < P.IC; ++c_in) {
kernel_bounds bounds = calculate_kernel_bounds(out_x, out_y, P);
for (int64_t ky = bounds.y_min; ky < bounds.y_max; ++ky) {
const int64_t in_y = calculate_input_coord(out_y, ky, P.ST_Y, P.DL_Y, P.PD_Y);
for (int64_t kx = bounds.x_min; kx < bounds.x_max; ++kx) {
const int64_t in_x = calculate_input_coord(out_x, kx, P.ST_X, P.DL_X, P.PD_X);
const float input_val = input[Layout::input_index(n, c_in, in_y, in_x, P)];
const T kernel_val = kernel[Layout::kernel_index(c_out, c_in, ky, kx, P)];
acc += (input_val * ggml_cuda_cast<float>(kernel_val));
}
}
}
// [N, OC, OH, OW]
output[Layout::output_index(n, c_out, out_y, out_x, P)] = acc;
}
template <typename T>
static void conv2d_cuda(const float * X_D, const T * K_D, float * Y_D, const conv_params P, cudaStream_t st) {
const int blocks = (P.TOTAL + CUDA_CONV2D_BLOCK_SIZE - 1) / CUDA_CONV2D_BLOCK_SIZE;
conv2d_kernel<T, whcn_layout><<<blocks, CUDA_CONV2D_BLOCK_SIZE, 0, st>>>(X_D, K_D, Y_D, P);
}
static void conv2d_cuda_f16(const float * X_D, const half * K_D, float * Y_D, const conv_params P, cudaStream_t st) {
conv2d_cuda<half>(X_D, K_D, Y_D, P, st);
}
static void conv2d_cuda_f32(const float * X_D, const float * K_D, float * Y_D, const conv_params P, cudaStream_t st) {
conv2d_cuda<float>(X_D, K_D, Y_D, P, st);
}
void ggml_cuda_op_conv2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * kernel = dst->src[0];
const ggml_tensor * input = dst->src[1];
float * K_D = (float *) kernel->data;
const float * X_D = (const float *) input->data;
float * Y_D = (float *) dst->data;
GGML_ASSERT(ggml_is_contiguous(kernel));
GGML_ASSERT(kernel->type == GGML_TYPE_F16 || kernel->type == GGML_TYPE_F32);
// same number of input channels
GGML_ASSERT(input->ne[2] == kernel->ne[2]);
cudaStream_t st = ctx.stream();
const int32_t * p = (const int32_t *) dst->op_params;
const int ST_X = p[0]; // stride_x
const int ST_Y = p[1]; // stride_y
const int PD_X = p[2]; // padding_x
const int PD_Y = p[3]; // padding_y
const int DL_X = p[4]; // dilation_x
const int DL_Y = p[5]; // dilation_y
// No cwhn
GGML_ASSERT(p[6] == false);
const int IW = input->ne[0]; // input_w
const int IH = input->ne[1]; // input_h
const int OW = dst->ne[0]; // output_w
const int OH = dst->ne[1]; // output_h
const int KW = kernel->ne[0]; // kernel_w
const int KH = kernel->ne[1]; // kernel_h
const int IC = input->ne[2]; // input_channels
const int OC = kernel->ne[3]; // ouptut_chanles
const int B = input->ne[3]; // n_batches
const int64_t total = B * OC * OH * OW;
conv_params params = { IW, IH, OW, OH, KW, KH, ST_X, ST_Y, PD_X, PD_Y, DL_X, DL_Y, IC, OC, B, total };
if (kernel->type == GGML_TYPE_F16) {
conv2d_cuda_f16(X_D, (half *) K_D, Y_D, params, st);
} else {
conv2d_cuda_f32(X_D, K_D, Y_D, params, st);
}
}

View File

@@ -1,5 +0,0 @@
#pragma once
#include "common.cuh"
#define CUDA_CONV2D_BLOCK_SIZE 256
void ggml_cuda_op_conv2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -0,0 +1,371 @@
#include "common.cuh"
#include "fattn-common.cuh"
#include "fattn-tile-f16.cuh"
#define FATTN_KQ_STRIDE_TILE_F16 64
template<int D, int ncols, int nwarps, bool use_logit_softcap> // D == head size
#if !defined(GGML_USE_HIP)
__launch_bounds__(nwarps*WARP_SIZE, 2)
#endif // !defined(GGML_USE_HIP)
static __global__ void flash_attn_tile_ext_f16(
const char * __restrict__ Q,
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const char * __restrict__ sinks,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
const float scale,
const float max_bias,
const float m0,
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
const int32_t nb01, const int32_t nb02, const int32_t nb03,
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
const int32_t nb11, const int32_t nb12, const int64_t nb13,
const int32_t nb21, const int32_t nb22, const int64_t nb23,
const int32_t ne31, const int32_t ne32, const int32_t ne33,
const int32_t nb31, const int32_t nb32, const int64_t nb33) {
#if defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE)
// Skip unused kernel variants for faster compilation:
#ifdef FP16_MMA_AVAILABLE
NO_DEVICE_CODE;
return;
#endif // FP16_MMA_AVAILABLE
if (use_logit_softcap && !(D == 128 || D == 256)) {
NO_DEVICE_CODE;
return;
}
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
const int sequence = blockIdx.z / ne02;
const int head = blockIdx.z - sequence*ne02;
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
const float2 * Q_f2 = (const float2 *) (Q + nb03* sequence + nb02* head + nb01*ic0);
const half2 * K_h2 = (const half2 *) (K + nb13* sequence + nb12*(head / gqa_ratio));
const half2 * V_h2 = (const half2 *) (V + nb13* sequence + nb12*(head / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
const float * sinksf = (const float *) (sinks);
const int stride_KV2 = nb11 / sizeof(half2);
const float slopef = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
const half slopeh = __float2half(slopef);
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
__shared__ half KQ[ncols*FATTN_KQ_STRIDE_TILE_F16];
half2 * KQ2 = (half2 *) KQ;
__shared__ half2 KV_tmp[FATTN_KQ_STRIDE_TILE_F16][D/2 + 1]; // Pad D to avoid memory bank conflicts.
half kqmax[ncols/nwarps];
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
kqmax[j0/nwarps] = -HALF_MAX_HALF;
}
half2 kqsum[ncols/nwarps] = {{0.0f, 0.0f}};
half2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}};
// Convert Q to half2 and store in registers:
__shared__ half2 Q_h2[ncols][D/2];
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
const float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f);
Q_h2[j][i] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
}
}
__syncthreads();
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE_TILE_F16; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE_TILE_F16) {
// Calculate KQ tile and keep track of new maximum KQ values:
half kqmax_new[ncols/nwarps];
#pragma unroll
for (int j = 0; j < ncols/nwarps; ++j) {
kqmax_new[j] = kqmax[j];
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += nwarps) {
const int i_KQ = i_KQ_0 + threadIdx.y;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
const int k_KQ = k_KQ_0 + threadIdx.x;
KV_tmp[i_KQ][k_KQ] = K_h2[int64_t(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
}
}
__syncthreads();
half2 sum2[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE][ncols/nwarps] = {{{0.0f, 0.0f}}};
#pragma unroll
for (int k_KQ = 0; k_KQ < D/2; ++k_KQ) {
half2 K_k[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE];
half2 Q_k[ncols/nwarps];
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
const int i_KQ = i_KQ_0 + threadIdx.x;
K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ];
}
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
const int j_KQ = j_KQ_0 + threadIdx.y;
Q_k[j_KQ_0/nwarps] = Q_h2[j_KQ][k_KQ];
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE]*Q_k[j_KQ_0/nwarps];
}
}
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
const int i_KQ = i_KQ_0 + threadIdx.x;
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
const int j_KQ = j_KQ_0 + threadIdx.y;
half sum;
if (use_logit_softcap) {
const float2 tmp = __half22float2(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
sum = logit_softcap * tanhf(tmp.x + tmp.y);
} else {
sum = __low2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]) + __high2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
}
sum += mask ? slopeh*maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
kqmax_new[j_KQ_0/nwarps] = ggml_cuda_hmax(kqmax_new[j_KQ_0/nwarps], sum);
KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F16 + i_KQ] = sum;
}
}
__syncthreads();
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]);
const half2 KQ_max_scale = __half2half2(hexp(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]));
kqmax[j0/nwarps] = kqmax_new[j0/nwarps];
#pragma unroll
for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F16/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
const half2 diff = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] - __half2half2(kqmax[j0/nwarps]);
const half2 val = h2exp(diff);
kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + val;
KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] = val;
}
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
VKQ[j0/nwarps][i0/WARP_SIZE] *= KQ_max_scale;
}
}
__syncthreads();
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += nwarps) {
const int k = k0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
KV_tmp[k][i] = V_h2[int64_t(k_VKQ_0 + k)*stride_KV2 + i];
}
}
__syncthreads();
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += 2) {
half2 V_k[(D/2)/WARP_SIZE][2];
half2 KQ_k[ncols/nwarps];
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
V_k[i0/WARP_SIZE][0] = KV_tmp[k0 + 0][i];
V_k[i0/WARP_SIZE][1] = KV_tmp[k0 + 1][i];
}
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
KQ_k[j0/nwarps] = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + k0/2];
}
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][0]* __low2half2(KQ_k[j0/nwarps]);
VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][1]*__high2half2(KQ_k[j0/nwarps]);
}
}
}
__syncthreads();
}
//Attention sink: adjust running max and sum once per head
if (sinksf && blockIdx.y == 0) {
const half sink = __float2half(sinksf[head]);
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
half kqmax_new_j = fmaxf(kqmax[j0/nwarps], sink);
kqmax_new_j = warp_reduce_max(kqmax_new_j);
const half2 KQ_max_scale = __half2half2(hexp(kqmax[j0/nwarps] - kqmax_new_j));
kqmax[j0/nwarps] = kqmax_new_j;
const half val = hexp(sink - kqmax[j0/nwarps]);
kqsum[j0/nwarps] = kqsum[j0/nwarps] * KQ_max_scale;
if (threadIdx.x == 0) {
kqsum[j0/nwarps].x = __hadd(__low2half(kqsum[j0/nwarps]), val);
}
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
VKQ[j0/nwarps][i0/WARP_SIZE] *= KQ_max_scale;
}
}
}
float2 * dst2 = (float2 *) dst;
#pragma unroll
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
const int j_VKQ = j_VKQ_0 + threadIdx.y;
if (ic0 + j_VKQ >= ne01) {
return;
}
half kqsum_j = __low2half(kqsum[j_VKQ_0/nwarps]) + __high2half(kqsum[j_VKQ_0/nwarps]);
kqsum_j = warp_reduce_sum((float)kqsum_j);
const int j_dst_unrolled = ((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y;
#pragma unroll
for (int i00 = 0; i00 < D/2; i00 += WARP_SIZE) {
const int i0 = i00 + threadIdx.x;
half2 dst_val = VKQ[j_VKQ_0/nwarps][i0/WARP_SIZE];
if (gridDim.y == 1) {
dst_val /= __half2half2(kqsum_j);
}
dst2[j_dst_unrolled*(D/2) + i0] = __half22float2(dst_val);
}
if (gridDim.y != 1 && threadIdx.x == 0) {
dst_meta[j_dst_unrolled] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
}
}
#else
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
max_bias, m0, m1, n_head_log2, logit_softcap,
ne00, ne01, ne02, ne03,
nb01, nb02, nb03,
ne10, ne11, ne12, ne13,
nb11, nb12, nb13,
nb21, nb22, nb23,
ne31, ne32, ne33,
nb31, nb32, nb33);
NO_DEVICE_CODE;
#endif // defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE)
}
template <int cols_per_block, bool use_logit_softcap>
void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
switch (Q->ne[0]) {
case 64: {
constexpr int D = 64;
constexpr int nwarps = 8;
constexpr size_t nbytes_shared = 0;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, use_logit_softcap>;
launch_fattn<D, cols_per_block, 1>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F16, true, true, false);
} break;
case 128: {
constexpr int D = 128;
constexpr int nwarps = 8;
constexpr size_t nbytes_shared = 0;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, use_logit_softcap>;
launch_fattn<D, cols_per_block, 1>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F16, true, true, false);
} break;
default: {
GGML_ABORT("FlashAttention without tensor cores only supports head sizes 64 and 128.");
} break;
}
}
void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
const int32_t precision = KQV->op_params[3];
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
if (Q->ne[1] <= 16) {
constexpr int cols_per_block = 16;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_f16_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_f16_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
}
return;
}
constexpr int cols_per_block = 32;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_f16_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_f16_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
}
}

View File

@@ -0,0 +1,3 @@
#include "common.cuh"
void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -0,0 +1,379 @@
#include "common.cuh"
#include "fattn-common.cuh"
#include "fattn-tile-f32.cuh"
#define FATTN_KQ_STRIDE_TILE_F32 32
template<int D, int ncols, int nwarps, bool use_logit_softcap> // D == head size
#if !defined(GGML_USE_HIP)
__launch_bounds__(nwarps*WARP_SIZE, 2)
#endif // !defined(GGML_USE_HIP)
static __global__ void flash_attn_tile_ext_f32(
const char * __restrict__ Q,
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const char * __restrict__ sinks,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
const float scale,
const float max_bias,
const float m0,
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
const int32_t nb01, const int32_t nb02, const int32_t nb03,
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
const int32_t nb11, const int32_t nb12, const int64_t nb13,
const int32_t nb21, const int32_t nb22, const int64_t nb23,
const int32_t ne31, const int32_t ne32, const int32_t ne33,
const int32_t nb31, const int32_t nb32, const int64_t nb33) {
#ifdef FLASH_ATTN_AVAILABLE
// Skip unused kernel variants for faster compilation:
#ifdef FP16_MMA_AVAILABLE
NO_DEVICE_CODE;
return;
#endif // FP16_MMA_AVAILABLE
if (use_logit_softcap && !(D == 128 || D == 256)) {
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
max_bias, m0, m1, n_head_log2, logit_softcap,
ne00, ne01, ne02, ne03,
nb01, nb02, nb03,
ne10, ne11, ne12, ne13,
nb11, nb12, nb13,
nb21, nb22, nb23,
ne31, ne32, ne33,
nb31, nb32, nb33);
NO_DEVICE_CODE;
return;
}
// In this kernel Q, K, V are matrices while i, j, k are matrix indices.
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
const int sequence = blockIdx.z / ne02;
const int head = blockIdx.z - sequence*ne02;
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
const float2 * Q_f2 = (const float2 *) (Q + nb03* sequence + nb02* head + nb01*ic0);
const half2 * K_h2 = (const half2 *) (K + nb13* sequence + nb12*(head / gqa_ratio));
const half2 * V_h2 = (const half2 *) (V + nb13* sequence + nb12*(head / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
const float * sinksf = (const float *) (sinks);
const int stride_KV2 = nb11 / sizeof(half2);
const float slope = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
__shared__ float KQ[ncols*FATTN_KQ_STRIDE_TILE_F32];
__shared__ float KV_tmp[FATTN_KQ_STRIDE_TILE_F32][D + 1]; // Pad D to avoid memory bank conflicts.
float2 * KV_tmp2 = (float2 *) KV_tmp;
float kqmax[ncols/nwarps];
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
kqmax[j0/nwarps] = -FLT_MAX/2.0f;
}
float kqsum[ncols/nwarps] = {0.0f};
float2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}};
// Convert Q to half2 and store in registers:
__shared__ float Q_f[ncols][D];
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D; i0 += 2*WARP_SIZE) {
float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i0/2 + threadIdx.x] : make_float2(0.0f, 0.0f);
Q_f[j][i0 + 0*WARP_SIZE + threadIdx.x] = tmp.x * scale;
Q_f[j][i0 + 1*WARP_SIZE + threadIdx.x] = tmp.y * scale;
}
}
__syncthreads();
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE_TILE_F32; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE_TILE_F32) {
// Calculate KQ tile and keep track of new maximum KQ values:
float kqmax_new[ncols/nwarps];
#pragma unroll
for (int j = 0; j < ncols/nwarps; ++j) {
kqmax_new[j] = kqmax[j];
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += nwarps) {
const int i_KQ = i_KQ_0 + threadIdx.y;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 2*WARP_SIZE) {
const half2 tmp = K_h2[int64_t(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ_0/2 + threadIdx.x];
KV_tmp[i_KQ][k_KQ_0 + 0*WARP_SIZE + threadIdx.x] = __low2float(tmp);
KV_tmp[i_KQ][k_KQ_0 + 1*WARP_SIZE + threadIdx.x] = __high2float(tmp);
}
}
__syncthreads();
float sum[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE][ncols/nwarps] = {{0.0f}};
#pragma unroll
for (int k_KQ = 0; k_KQ < D; ++k_KQ) {
float K_k[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE];
float Q_k[ncols/nwarps];
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
const int i_KQ = i_KQ_0 + threadIdx.x;
K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ];
}
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
const int j_KQ = j_KQ_0 + threadIdx.y;
Q_k[j_KQ_0/nwarps] = Q_f[j_KQ][k_KQ];
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE] * Q_k[j_KQ_0/nwarps];
}
}
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
const int i_KQ = i_KQ_0 + threadIdx.x;
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
const int j_KQ = j_KQ_0 + threadIdx.y;
if (use_logit_softcap) {
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] = logit_softcap * tanhf(sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
}
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += mask ? slope*__half2float(maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
kqmax_new[j_KQ_0/nwarps] = fmaxf(kqmax_new[j_KQ_0/nwarps], sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F32 + i_KQ] = sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps];
}
}
__syncthreads();
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]);
const float KQ_max_scale = expf(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]);
kqmax[j0/nwarps] = kqmax_new[j0/nwarps];
float kqsum_add = 0.0f;
#pragma unroll
for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F32; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
const float diff = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] - kqmax[j0/nwarps];
const float val = expf(diff);
kqsum_add += val;
KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] = val;
}
kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + kqsum_add;
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
VKQ[j0/nwarps][i0/WARP_SIZE].x *= KQ_max_scale;
VKQ[j0/nwarps][i0/WARP_SIZE].y *= KQ_max_scale;
}
}
__syncthreads();
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F32; k0 += nwarps) {
const int k = k0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
const half2 tmp = V_h2[int64_t(k_VKQ_0 + k)*stride_KV2 + i];
KV_tmp2[k*(D/2) + i].x = __low2float(tmp);
KV_tmp2[k*(D/2) + i].y = __high2float(tmp);
}
}
__syncthreads();
#pragma unroll
for (int k = 0; k < FATTN_KQ_STRIDE_TILE_F32; ++k) {
float2 V_k[(D/2)/WARP_SIZE];
float KQ_k[ncols/nwarps];
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
V_k[i0/WARP_SIZE] = KV_tmp2[k*(D/2) + i];
}
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
KQ_k[j0/nwarps] = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + k];
}
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
VKQ[j0/nwarps][i0/WARP_SIZE].x += V_k[i0/WARP_SIZE].x*KQ_k[j0/nwarps];
VKQ[j0/nwarps][i0/WARP_SIZE].y += V_k[i0/WARP_SIZE].y*KQ_k[j0/nwarps];
}
}
}
__syncthreads();
}
//Attention sink: adjust running max and sum once per head
if (sinksf && blockIdx.y == 0) {
const float sink = sinksf[head];
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
float kqmax_new_j = fmaxf(kqmax[j0/nwarps], sink);
kqmax_new_j = warp_reduce_max(kqmax_new_j);
const float KQ_max_scale = expf(kqmax[j0/nwarps] - kqmax_new_j);
kqmax[j0/nwarps] = kqmax_new_j;
const float val = expf(sink - kqmax[j0/nwarps]);
kqsum[j0/nwarps] = kqsum[j0/nwarps] * KQ_max_scale;
if (threadIdx.x == 0) {
kqsum[j0/nwarps] += val;
}
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
VKQ[j0/nwarps][i0/WARP_SIZE].x *= KQ_max_scale;
VKQ[j0/nwarps][i0/WARP_SIZE].y *= KQ_max_scale;
}
}
}
float2 * dst2 = (float2 *) dst;
#pragma unroll
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
const int j_VKQ = j_VKQ_0 + threadIdx.y;
if (ic0 + j_VKQ >= ne01) {
return;
}
float kqsum_j = kqsum[j_VKQ_0/nwarps];
kqsum_j = warp_reduce_sum(kqsum_j);
const int j_dst_unrolled = ((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y;
#pragma unroll
for (int i00 = 0; i00 < D/2; i00 += WARP_SIZE) {
const int i0 = i00 + threadIdx.x;
float2 dst_val = VKQ[j_VKQ_0/nwarps][i0/WARP_SIZE];
if (gridDim.y == 1) {
dst_val.x /= kqsum_j;
dst_val.y /= kqsum_j;
}
dst2[j_dst_unrolled*(D/2) + i0] = dst_val;
}
if (gridDim.y != 1 && threadIdx.x == 0) {
dst_meta[j_dst_unrolled] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
}
}
#else
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
max_bias, m0, m1, n_head_log2, logit_softcap,
ne00, ne01, ne02, ne03,
nb01, nb02, nb03,
ne10, ne11, ne12, ne13,
nb11, nb12, nb13,
nb21, nb22, nb23,
ne31, ne32, ne33,
nb31, nb32, nb33);
NO_DEVICE_CODE;
#endif // FLASH_ATTN_AVAILABLE
}
template <int cols_per_block, bool use_logit_softcap>
void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
switch (Q->ne[0]) {
case 64: {
constexpr int D = 64;
constexpr int nwarps = 8;
constexpr size_t nbytes_shared = 0;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, use_logit_softcap>;
launch_fattn<D, cols_per_block, 1>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F32, true, true, false);
} break;
case 128: {
constexpr int D = 128;
constexpr int nwarps = 8;
constexpr size_t nbytes_shared = 0;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, use_logit_softcap>;
launch_fattn<D, cols_per_block, 1>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F32, true, true, false);
} break;
default: {
GGML_ABORT("FlashAttention without tensor cores only supports head sizes 64 and 128.");
} break;
}
}
void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
if (Q->ne[1] <= 16) {
constexpr int cols_per_block = 16;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_f32_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_f32_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
}
return;
}
constexpr int cols_per_block = 32;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_f32_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_f32_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
}
}

View File

@@ -0,0 +1,3 @@
#include "common.cuh"
void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -1,596 +0,0 @@
#include "common.cuh"
#include "fattn-common.cuh"
#include "fattn-tile.cuh"
#define FATTN_TILE_NTHREADS 256
static int fattn_tile_get_kq_stride_host(const int D, const int ncols, const int cc, const int warp_size) {
if (GGML_CUDA_CC_IS_AMD(cc)) {
switch (D) {
case 64:
return ncols <= 16 ? 32 : 64;
case 128:
return ncols <= 16 ? 64 : warp_size;
case 256:
return 64;
default:
GGML_ABORT("fatal error");
return -1;
}
}
if (fast_fp16_available(cc)) {
switch (D) {
case 64:
case 128:
return 128;
case 256:
return ncols <= 16 ? 128 : 64;
default:
GGML_ABORT("fatal error");
return -1;
}
}
switch (D) {
case 64:
return ncols <= 16 ? 128 : 64;
case 128:
return ncols <= 16 ? 64 : 32;
case 256:
return 32;
default:
GGML_ABORT("fatal error");
return -1;
}
}
static constexpr __device__ int fattn_tile_get_kq_stride_device(int D, int ncols, int warp_size) {
#ifdef GGML_USE_HIP
switch (D) {
case 64:
return ncols <= 16 ? 32 : 64;
case 128:
return ncols <= 16 ? 64 : warp_size;
case 256:
return 64;
default:
return -1;
}
#else
#ifdef FAST_FP16_AVAILABLE
switch (D) {
case 64:
case 128:
return 128;
case 256:
return ncols <= 16 ? 128 : 64;
default:
return -1;
}
#else
switch (D) {
case 64:
return ncols <= 16 ? 128 : 64;
case 128:
return ncols <= 16 ? 64 : 32;
case 256:
return 32;
default:
return -1;
}
#endif // FAST_FP16_AVAILABLE
#endif // GGML_USE_HIP
GGML_UNUSED_VARS(ncols, warp_size);
}
static constexpr __device__ int fattn_tile_get_kq_nbatch_device(int D, int ncols, int warp_size) {
#ifdef GGML_USE_HIP
switch (D) {
case 64:
return 64;
case 128:
return ncols <= 16 ? 2*warp_size : 128;
case 256:
return ncols <= 16 ? 128 : 2*warp_size;
default:
return -1;
}
#else
#ifdef FAST_FP16_AVAILABLE
switch (D) {
case 64:
return 64;
case 128:
return ncols <= 16 ? 128 : 64;
case 256:
return ncols <= 16 ? 64 : 128;
default:
return -1;
}
#else
switch (D) {
case 64:
return 64;
case 128:
return 128;
case 256:
return ncols <= 16 ? 128 : 64;
default:
return -1;
}
#endif // FAST_FP16_AVAILABLE
#endif // GGML_USE_HIP
GGML_UNUSED_VARS(ncols, warp_size);
}
template<int D, int ncols, bool use_logit_softcap> // D == head size
#ifdef GGML_USE_HIP
__launch_bounds__(FATTN_TILE_NTHREADS, 1)
#else
__launch_bounds__(FATTN_TILE_NTHREADS, 2)
#endif // GGML_USE_HIP
static __global__ void flash_attn_tile(
const char * __restrict__ Q,
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const char * __restrict__ sinks,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
const float scale,
const float max_bias,
const float m0,
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
const int32_t nb01, const int32_t nb02, const int32_t nb03,
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
const int32_t nb11, const int32_t nb12, const int64_t nb13,
const int32_t nb21, const int32_t nb22, const int64_t nb23,
const int32_t ne31, const int32_t ne32, const int32_t ne33,
const int32_t nb31, const int32_t nb32, const int64_t nb33) {
#ifdef FLASH_ATTN_AVAILABLE
// Skip unused kernel variants for faster compilation:
#ifdef FP16_MMA_AVAILABLE
NO_DEVICE_CODE;
return;
#endif // FP16_MMA_AVAILABLE
if (use_logit_softcap && !(D == 128 || D == 256)) {
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
max_bias, m0, m1, n_head_log2, logit_softcap,
ne00, ne01, ne02, ne03,
nb01, nb02, nb03,
ne10, ne11, ne12, ne13,
nb11, nb12, nb13,
nb21, nb22, nb23,
ne31, ne32, ne33,
nb31, nb32, nb33);
NO_DEVICE_CODE;
return;
}
constexpr int warp_size = 32;
constexpr int nwarps = FATTN_TILE_NTHREADS / warp_size;
constexpr int kq_stride = fattn_tile_get_kq_stride_device(D, ncols, warp_size);
static_assert(kq_stride % warp_size == 0, "kq_stride not divisable by warp_size.");
constexpr int kq_nbatch = fattn_tile_get_kq_nbatch_device(D, ncols, warp_size);
static_assert(kq_nbatch % (2*warp_size) == 0, "bad kq_nbatch");
// In this kernel Q, K, V are matrices while i, j, k are matrix indices.
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
const int sequence = blockIdx.z / ne02;
const int head = blockIdx.z - sequence*ne02;
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
const float2 * Q_f2 = (const float2 *) (Q + nb03* sequence + nb02* head + nb01*ic0);
const half2 * K_h2 = (const half2 *) (K + nb13* sequence + nb12*(head / gqa_ratio));
const half2 * V_h2 = (const half2 *) (V + nb13* sequence + nb12*(head / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
const float * sinksf = (const float *) (sinks);
const int stride_KV2 = nb11 / sizeof(half2);
const float slope = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
__shared__ float KQ[ncols][kq_stride];
#ifdef FAST_FP16_AVAILABLE
__shared__ half2 Q_tmp[ncols][D/2];
__shared__ half2 KV_tmp_h2[kq_stride * (kq_nbatch/2 + 1)]; // Padded to avoid memory bank conflicts.
half2 VKQ[ncols/nwarps][D/(2*warp_size)] = {{{0.0f, 0.0f}}};
#else
__shared__ float Q_tmp[ncols][D];
__shared__ float KV_tmp_f[kq_stride * (kq_nbatch + 1)]; // Padded to avoid memory bank conflicts.
float2 * KV_tmp_f2 = (float2 *) KV_tmp_f;
float2 VKQ[ncols/nwarps][D/(2*warp_size)] = {{{0.0f, 0.0f}}};
#endif // FAST_FP16_AVAILABLE
float kqmax[ncols/nwarps];
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
kqmax[j0/nwarps] = -FLT_MAX/2.0f;
}
float kqsum[ncols/nwarps] = {0.0f};
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
const float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i0 + threadIdx.x] : make_float2(0.0f, 0.0f);
#ifdef FAST_FP16_AVAILABLE
Q_tmp[j][i0 + threadIdx.x] = make_half2(tmp.x * scale, tmp.y * scale);
#else
Q_tmp[j][2*i0 + threadIdx.x] = tmp.x * scale;
Q_tmp[j][2*i0 + warp_size + threadIdx.x] = tmp.y * scale;
#endif // FAST_FP16_AVAILABLE
}
}
__syncthreads();
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
for (int k_VKQ_0 = blockIdx.y*kq_stride; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*kq_stride) {
// Calculate KQ tile and keep track of new maximum KQ values:
float kqmax_new[ncols/nwarps];
#pragma unroll
for (int j = 0; j < ncols/nwarps; ++j) {
kqmax_new[j] = kqmax[j];
}
float sum[kq_stride/warp_size][ncols/nwarps] = {{0.0f}};
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += kq_nbatch) {
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < kq_stride; i_KQ_0 += nwarps) {
const int i_KQ = i_KQ_0 + threadIdx.y;
#pragma unroll
for (int k_KQ_1 = 0; k_KQ_1 < kq_nbatch/2; k_KQ_1 += warp_size) {
const half2 tmp_h2 = K_h2[int64_t(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ_0/2 + k_KQ_1 + threadIdx.x];
#ifdef FAST_FP16_AVAILABLE
KV_tmp_h2[i_KQ*(kq_nbatch/2 + 1) + k_KQ_1 + threadIdx.x] = tmp_h2;
#else
const float2 tmp_f2 = __half22float2(tmp_h2);
KV_tmp_f[i_KQ*(kq_nbatch + 1) + 2*k_KQ_1 + threadIdx.x] = tmp_f2.x;
KV_tmp_f[i_KQ*(kq_nbatch + 1) + 2*k_KQ_1 + warp_size + threadIdx.x] = tmp_f2.y;
#endif // FAST_FP16_AVAILABLE
}
}
__syncthreads();
#ifdef FAST_FP16_AVAILABLE
#pragma unroll
for (int k_KQ_1 = 0; k_KQ_1 < kq_nbatch/2; ++k_KQ_1) {
half2 K_k[kq_stride/warp_size];
half2 Q_k[ncols/nwarps];
#else
#pragma unroll
for (int k_KQ_1 = 0; k_KQ_1 < kq_nbatch; ++k_KQ_1) {
float K_k[kq_stride/warp_size];
float Q_k[ncols/nwarps];
#endif // FAST_FP16_AVAILABLE
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < kq_stride; i_KQ_0 += warp_size) {
const int i_KQ = i_KQ_0 + threadIdx.x;
#ifdef FAST_FP16_AVAILABLE
K_k[i_KQ_0/warp_size] = KV_tmp_h2[i_KQ*(kq_nbatch/2 + 1) + k_KQ_1];
#else
K_k[i_KQ_0/warp_size] = KV_tmp_f [i_KQ*(kq_nbatch + 1) + k_KQ_1];
#endif // FAST_FP16_AVAILABLE
}
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
const int j_KQ = j_KQ_0 + threadIdx.y;
#ifdef FAST_FP16_AVAILABLE
Q_k[j_KQ_0/nwarps] = Q_tmp[j_KQ][k_KQ_0/2 + k_KQ_1];
#else
Q_k[j_KQ_0/nwarps] = Q_tmp[j_KQ][k_KQ_0 + k_KQ_1];
#endif // FAST_FP16_AVAILABLE
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < kq_stride; i_KQ_0 += warp_size) {
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
#ifdef FAST_FP16_AVAILABLE
const float2 tmp = __half22float2(K_k[i_KQ_0/warp_size] * Q_k[j_KQ_0/nwarps]);
sum[i_KQ_0/warp_size][j_KQ_0/nwarps] += tmp.x + tmp.y;
#else
sum[i_KQ_0/warp_size][j_KQ_0/nwarps] += K_k[i_KQ_0/warp_size] * Q_k[j_KQ_0/nwarps];
#endif // FAST_FP16_AVAILABLE
}
}
}
if (k_KQ_0 + kq_nbatch < D) {
__syncthreads(); // Sync not needed on last iteration.
}
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < kq_stride; i_KQ_0 += warp_size) {
const int i_KQ = i_KQ_0 + threadIdx.x;
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
const int j_KQ = j_KQ_0 + threadIdx.y;
if (use_logit_softcap) {
sum[i_KQ_0/warp_size][j_KQ_0/nwarps] = logit_softcap * tanhf(sum[i_KQ_0/warp_size][j_KQ_0/nwarps]);
}
sum[i_KQ_0/warp_size][j_KQ_0/nwarps] += mask ? slope*__half2float(maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
kqmax_new[j_KQ_0/nwarps] = fmaxf(kqmax_new[j_KQ_0/nwarps], sum[i_KQ_0/warp_size][j_KQ_0/nwarps]);
KQ[j_KQ][i_KQ] = sum[i_KQ_0/warp_size][j_KQ_0/nwarps];
}
}
__syncthreads();
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
kqmax_new[j0/nwarps] = warp_reduce_max<warp_size>(kqmax_new[j0/nwarps]);
const float KQ_max_scale = expf(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]);
kqmax[j0/nwarps] = kqmax_new[j0/nwarps];
float kqsum_add = 0.0f;
#pragma unroll
for (int i0 = 0; i0 < kq_stride; i0 += warp_size) {
const int i = i0 + threadIdx.x;
const float diff = KQ[j][i] - kqmax[j0/nwarps];
const float val = expf(diff);
kqsum_add += val;
KQ[j][i] = val;
}
kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + kqsum_add;
#ifdef FAST_FP16_AVAILABLE
const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale, KQ_max_scale);
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
VKQ[j0/nwarps][i0/warp_size] *= KQ_max_scale_h2;
}
#else
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
VKQ[j0/nwarps][i0/warp_size].x *= KQ_max_scale;
VKQ[j0/nwarps][i0/warp_size].y *= KQ_max_scale;
}
#endif // FAST_FP16_AVAILABLE
}
constexpr int V_cols_per_iter = kq_stride*kq_nbatch / D;
static_assert(kq_stride % V_cols_per_iter == 0, "bad V_cols_per_iter");
#pragma unroll
for (int k0 = 0; k0 < kq_stride; k0 += V_cols_per_iter) {
#pragma unroll
for (int k1 = 0; k1 < V_cols_per_iter; k1 += nwarps) {
const int k_tile = k1 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
const int i = i0 + threadIdx.x;
const half2 tmp = V_h2[int64_t(k_VKQ_0 + k0 + k_tile)*stride_KV2 + i];
#ifdef FAST_FP16_AVAILABLE
KV_tmp_h2[k_tile*(D/2) + i] = tmp;
#else
KV_tmp_f2[k_tile*(D/2) + i] = __half22float2(tmp);
#endif // FAST_FP16_AVAILABLE
}
}
__syncthreads();
#pragma unroll
for (int k1 = 0; k1 < V_cols_per_iter; ++k1) {
#ifdef FAST_FP16_AVAILABLE
half2 V_k[(D/2)/warp_size];
half2 KQ_k[ncols/nwarps];
#else
float2 V_k[(D/2)/warp_size];
float KQ_k[ncols/nwarps];
#endif // FAST_FP16_AVAILABLE
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
const int i = i0 + threadIdx.x;
#ifdef FAST_FP16_AVAILABLE
V_k[i0/warp_size] = KV_tmp_h2[k1*(D/2) + i];
#else
V_k[i0/warp_size] = KV_tmp_f2[k1*(D/2) + i];
#endif // FAST_FP16_AVAILABLE
}
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#ifdef FAST_FP16_AVAILABLE
const float tmp = KQ[j][k0 + k1];
KQ_k[j0/nwarps] = make_half2(tmp, tmp);
#else
KQ_k[j0/nwarps] = KQ[j][k0 + k1];
#endif // FAST_FP16_AVAILABLE
}
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
#ifdef FAST_FP16_AVAILABLE
VKQ[j0/nwarps][i0/warp_size] += V_k[i0/warp_size] *KQ_k[j0/nwarps];
#else
VKQ[j0/nwarps][i0/warp_size].x += V_k[i0/warp_size].x*KQ_k[j0/nwarps];
VKQ[j0/nwarps][i0/warp_size].y += V_k[i0/warp_size].y*KQ_k[j0/nwarps];
#endif // FAST_FP16_AVAILABLE
}
}
}
__syncthreads();
}
}
// Attention sink: adjust running max and sum once per head
if (sinksf && blockIdx.y == 0) {
const float sink = sinksf[head];
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
float kqmax_new_j = fmaxf(kqmax[j0/nwarps], sink);
kqmax_new_j = warp_reduce_max<warp_size>(kqmax_new_j);
const float KQ_max_scale = expf(kqmax[j0/nwarps] - kqmax_new_j);
kqmax[j0/nwarps] = kqmax_new_j;
const float val = expf(sink - kqmax[j0/nwarps]);
kqsum[j0/nwarps] = kqsum[j0/nwarps] * KQ_max_scale;
if (threadIdx.x == 0) {
kqsum[j0/nwarps] += val;
}
#ifdef FAST_FP16_AVAILABLE
const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale, KQ_max_scale);
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
VKQ[j0/nwarps][i0/warp_size] *= KQ_max_scale_h2;
}
#else
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
VKQ[j0/nwarps][i0/warp_size].x *= KQ_max_scale;
VKQ[j0/nwarps][i0/warp_size].y *= KQ_max_scale;
}
#endif // FAST_FP16_AVAILABLE
}
}
float2 * dst2 = (float2 *) dst;
#pragma unroll
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
const int j_VKQ = j_VKQ_0 + threadIdx.y;
if (ic0 + j_VKQ >= ne01) {
return;
}
float kqsum_j = kqsum[j_VKQ_0/nwarps];
kqsum_j = warp_reduce_sum<warp_size>(kqsum_j);
const int j_dst_unrolled = ((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y;
#pragma unroll
for (int i00 = 0; i00 < D/2; i00 += warp_size) {
const int i0 = i00 + threadIdx.x;
#ifdef FAST_FP16_AVAILABLE
float2 dst_val = __half22float2(VKQ[j_VKQ_0/nwarps][i0/warp_size]);
#else
float2 dst_val = VKQ[j_VKQ_0/nwarps][i0/warp_size];
#endif // FAST_FP16_AVAILABLE
if (gridDim.y == 1) {
dst_val.x /= kqsum_j;
dst_val.y /= kqsum_j;
}
dst2[j_dst_unrolled*(D/2) + i0] = dst_val;
}
if (gridDim.y != 1 && threadIdx.x == 0) {
dst_meta[j_dst_unrolled] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
}
}
#else
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
max_bias, m0, m1, n_head_log2, logit_softcap,
ne00, ne01, ne02, ne03,
nb01, nb02, nb03,
ne10, ne11, ne12, ne13,
nb11, nb12, nb13,
nb21, nb22, nb23,
ne31, ne32, ne33,
nb31, nb32, nb33);
NO_DEVICE_CODE;
#endif // FLASH_ATTN_AVAILABLE
}
template <int D, bool use_logit_softcap>
static void launch_fattn_tile_switch_ncols(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
const int id = ggml_cuda_get_device();
const int cc = ggml_cuda_info().devices[id].cc;
const int warp_size = 32;
const int nwarps = FATTN_TILE_NTHREADS / warp_size;
constexpr size_t nbytes_shared = 0;
if (Q->ne[1] > 16) {
constexpr int cols_per_block = 32;
fattn_kernel_t fattn_kernel = flash_attn_tile<D, cols_per_block, use_logit_softcap>;
const int kq_stride = fattn_tile_get_kq_stride_host(D, cols_per_block, cc, warp_size);
launch_fattn<D, cols_per_block, 1>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, kq_stride, true, true, false, warp_size);
return;
}
constexpr int cols_per_block = 16;
fattn_kernel_t fattn_kernel = flash_attn_tile<D, cols_per_block, use_logit_softcap>;
const int kq_stride = fattn_tile_get_kq_stride_host(D, cols_per_block, cc, warp_size);
launch_fattn<D, cols_per_block, 1>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, kq_stride, true, true, false, warp_size);
}
template <bool use_logit_softcap>
static void launch_fattn_tile_switch_head_size(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
switch (Q->ne[0]) {
case 64: {
launch_fattn_tile_switch_ncols< 64, use_logit_softcap>(ctx, dst);
} break;
case 128: {
launch_fattn_tile_switch_ncols<128, use_logit_softcap>(ctx, dst);
} break;
case 256: {
launch_fattn_tile_switch_ncols<256, use_logit_softcap>(ctx, dst);
} break;
default: {
GGML_ABORT("Unsupported head size");
} break;
}
}
void ggml_cuda_flash_attn_ext_tile(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_switch_head_size<use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_switch_head_size<use_logit_softcap>(ctx, dst);
}
}

View File

@@ -1,3 +0,0 @@
#include "common.cuh"
void ggml_cuda_flash_attn_ext_tile(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -1,7 +1,8 @@
#include "common.cuh"
#include "fattn-common.cuh"
#include "fattn-mma-f16.cuh"
#include "fattn-tile.cuh"
#include "fattn-tile-f16.cuh"
#include "fattn-tile-f32.cuh"
#include "fattn-vec-f16.cuh"
#include "fattn-vec-f32.cuh"
#include "fattn-wmma-f16.cuh"
@@ -270,7 +271,8 @@ static void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, gg
// Best FlashAttention kernel for a specific GPU:
enum best_fattn_kernel {
BEST_FATTN_KERNEL_NONE = 0,
BEST_FATTN_KERNEL_TILE = 200,
BEST_FATTN_KERNEL_TILE_F32 = 200,
BEST_FATTN_KERNEL_TILE_F16 = 210,
BEST_FATTN_KERNEL_VEC_F32 = 100,
BEST_FATTN_KERNEL_VEC_F16 = 110,
BEST_FATTN_KERNEL_WMMA_F16 = 300,
@@ -409,7 +411,10 @@ static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const
}
// If there is no suitable kernel for tensor cores or small batch sizes, use the generic kernel for large batch sizes:
return BEST_FATTN_KERNEL_TILE;
if (prec == GGML_PREC_DEFAULT && fast_fp16_available(cc)) {
return BEST_FATTN_KERNEL_TILE_F16;
}
return BEST_FATTN_KERNEL_TILE_F32;
}
void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
@@ -417,8 +422,11 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
switch (ggml_cuda_get_best_fattn_kernel(ggml_cuda_get_device(), dst)) {
case BEST_FATTN_KERNEL_NONE:
GGML_ABORT("fatal error");
case BEST_FATTN_KERNEL_TILE:
ggml_cuda_flash_attn_ext_tile(ctx, dst);
case BEST_FATTN_KERNEL_TILE_F32:
ggml_cuda_flash_attn_ext_tile_f32(ctx, dst);
break;
case BEST_FATTN_KERNEL_TILE_F16:
ggml_cuda_flash_attn_ext_tile_f16(ctx, dst);
break;
case BEST_FATTN_KERNEL_VEC_F32:
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);

View File

@@ -2,8 +2,6 @@
#include "dequantize.cuh"
#include "convert.cuh"
#define MAX_GRIDDIM_Y 65535
template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
static __global__ void k_get_rows(
const void * __restrict__ src0, const int32_t * __restrict__ src1, dst_t * __restrict__ dst,
@@ -13,29 +11,32 @@ static __global__ void k_get_rows(
/*const size_t nb00,*/ const size_t nb01, const size_t nb02, const size_t nb03,
const size_t s10, const size_t s11, const size_t s12/*, const size_t s13*/) {
for (int64_t i00 = 2*(blockIdx.y*blockDim.x + threadIdx.x); i00 < ne00; i00 += gridDim.y*blockDim.x) {
// The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher.
const int i10 = blockIdx.x;
const int i11 = blockIdx.z / ne12;
const int i12 = blockIdx.z % ne12;
// The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher.
const int i00 = (blockIdx.y * blockDim.x + threadIdx.x)*2;
const int i10 = blockIdx.x;
const int i11 = blockIdx.z / ne12;
const int i12 = blockIdx.z % ne12;
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
const void * src0_row = (const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03;
const int ib = i00/qk; // block index
const int iqs = (i00%qk)/qr; // quant index
const int iybs = i00 - i00%qk; // dst block start index
const int y_offset = qr == 1 ? 1 : qk/2;
// dequantize
float2 v;
dequantize_kernel(src0_row, ib, iqs, v);
dst_row[iybs + iqs + 0] = ggml_cuda_cast<dst_t>(v.x);
dst_row[iybs + iqs + y_offset] = ggml_cuda_cast<dst_t>(v.y);
if (i00 >= ne00) {
return;
}
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
const void * src0_row = (const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03;
const int ib = i00/qk; // block index
const int iqs = (i00%qk)/qr; // quant index
const int iybs = i00 - i00%qk; // dst block start index
const int y_offset = qr == 1 ? 1 : qk/2;
// dequantize
float2 v;
dequantize_kernel(src0_row, ib, iqs, v);
dst_row[iybs + iqs + 0] = ggml_cuda_cast<dst_t>(v.x);
dst_row[iybs + iqs + y_offset] = ggml_cuda_cast<dst_t>(v.y);
}
template<typename src0_t, typename dst_t>
@@ -47,23 +48,22 @@ static __global__ void k_get_rows_float(
/*const size_t nb00,*/ const size_t nb01, const size_t nb02, const size_t nb03,
const size_t s10, const size_t s11, const size_t s12/*, const size_t s13*/) {
for (int64_t i00 = blockIdx.y*blockDim.x + threadIdx.x; i00 < ne00; i00 += gridDim.y*blockDim.x) {
// The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher.
const int i10 = blockIdx.x;
const int i11 = blockIdx.z / ne12;
const int i12 = blockIdx.z % ne12;
// The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher.
const int i00 = blockIdx.y * blockDim.x + threadIdx.x;
const int i10 = blockIdx.x;
const int i11 = blockIdx.z / ne12;
const int i12 = blockIdx.z % ne12;
if (i00 >= ne00) {
return;
}
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
const src0_t * src0_row = (const src0_t *)((const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03);
dst_row[i00] = ggml_cuda_cast<dst_t>(src0_row[i00]);
if (i00 >= ne00) {
return;
}
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
const src0_t * src0_row = (const src0_t *)((const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03);
dst_row[i00] = ggml_cuda_cast<dst_t>(src0_row[i00]);
}
template<typename grad_t, typename dst_t>
@@ -98,7 +98,7 @@ static void get_rows_cuda_q(
cudaStream_t stream) {
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
const int block_num_y = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
const dim3 block_nums(ne10, MIN(block_num_y, MAX_GRIDDIM_Y), ne11*ne12);
const dim3 block_nums(ne10, block_num_y, ne11*ne12);
// strides in elements
// const size_t s0 = nb0 / sizeof(dst_t);
@@ -131,7 +131,7 @@ static void get_rows_cuda_float(
cudaStream_t stream) {
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
const int block_num_y = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
const dim3 block_nums(ne10, MIN(block_num_y, MAX_GRIDDIM_Y), ne11*ne12);
const dim3 block_nums(ne10, block_num_y, ne11*ne12);
// strides in elements
// const size_t s0 = nb0 / sizeof(dst_t);

View File

@@ -12,7 +12,6 @@
#include "ggml-cuda/clamp.cuh"
#include "ggml-cuda/concat.cuh"
#include "ggml-cuda/conv-transpose-1d.cuh"
#include "ggml-cuda/conv2d.cuh"
#include "ggml-cuda/conv2d-dw.cuh"
#include "ggml-cuda/conv2d-transpose.cuh"
#include "ggml-cuda/convert.cuh"
@@ -2452,12 +2451,6 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_IM2COL:
ggml_cuda_op_im2col(ctx, dst);
break;
case GGML_OP_IM2COL_3D:
ggml_cuda_op_im2col_3d(ctx, dst);
break;
case GGML_OP_CONV_2D:
ggml_cuda_op_conv2d(ctx, dst);
break;
case GGML_OP_CONV_2D_DW:
ggml_cuda_op_conv2d_dw(ctx, dst);
break;
@@ -2824,14 +2817,9 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
return false;
}
if ((ops.size() == 2 || ops.size() == 3) && ops.begin()[0] == GGML_OP_RMS_NORM && ops.begin()[1] == GGML_OP_MUL) {
if (ops.size() == 2 && ops.begin()[0] == GGML_OP_RMS_NORM && ops.begin()[1] == GGML_OP_MUL) {
const ggml_tensor *rms_norm = cgraph->nodes[node_idx];
const ggml_tensor *mul = cgraph->nodes[node_idx+1];
const ggml_tensor *add = nullptr;
if (ops.size() == 3 && ops.begin()[2] == GGML_OP_ADD) {
add = cgraph->nodes[node_idx+2];
}
GGML_ASSERT(rms_norm->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(rms_norm->type == GGML_TYPE_F32);
@@ -2843,12 +2831,6 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
return false;
}
if (add && (add->src[0]->type != GGML_TYPE_F32 ||
add->src[1]->type != GGML_TYPE_F32 ||
add->type != GGML_TYPE_F32) ) {
return false;
}
//if rms norm is the B operand, then we don't handle broadcast
if (rms_norm == mul->src[1] && !ggml_are_same_shape(mul->src[0], rms_norm->src[1])) {
return false;
@@ -2859,10 +2841,6 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
return false;
}
if (add && (!ggml_is_contiguous(add->src[0]) || !ggml_is_contiguous_rows(add->src[1]))) {
return false;
}
return true;
}
@@ -2909,46 +2887,7 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
static bool disable_fusion = (getenv("GGML_CUDA_DISABLE_FUSION") != nullptr);
if (!disable_fusion) {
if (node->op == GGML_OP_ADD) {
int n_fuse = 0;
ggml_op ops[8];
std::fill(ops, ops + 8, GGML_OP_ADD);
for (; n_fuse <= 6; ++n_fuse){
if (!ggml_can_fuse(cgraph, i + n_fuse, ops + n_fuse, 2)) {
break;
}
if (cgraph->nodes[i + n_fuse] != cgraph->nodes[i + n_fuse + 1]->src[0]) {
break;
}
if (!ggml_are_same_layout(cgraph->nodes[i + n_fuse]->src[1], cgraph->nodes[i + n_fuse + 1]->src[1])) {
break;
}
}
n_fuse++;
if (n_fuse > 1) {
for (int j = 0; j < n_fuse - 1; ++j) {
node->src[j + 2] = cgraph->nodes[i + j + 1]->src[1];
}
cgraph->nodes[i + n_fuse - 1]->data = node->data;
ggml_cuda_op_fused_add(*cuda_ctx, node, n_fuse);
i += n_fuse - 1;
continue;
}
}
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL, GGML_OP_ADD}, {})) {
ggml_cuda_op_rms_norm_fused_add(*cuda_ctx, node, cgraph->nodes[i+1], cgraph->nodes[i+2]);
i += 2;
continue;
}
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL}, {})) {
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL }, {})) {
ggml_cuda_op_rms_norm_fused(*cuda_ctx, node, cgraph->nodes[i+1]);
i++;
continue;
@@ -3562,8 +3501,6 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
return op->src[0]->nb[0] == ggml_type_size(op->src[0]->type) && ggml_is_contiguous_2(op->src[0]);
}
case GGML_OP_IM2COL:
case GGML_OP_IM2COL_3D:
case GGML_OP_CONV_2D:
case GGML_OP_CONV_2D_DW:
case GGML_OP_CONV_TRANSPOSE_2D:
case GGML_OP_POOL_2D:

View File

@@ -112,132 +112,3 @@ void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
im2col_cuda_f32(src1_d, (float *) dst_d, IW, IH, OW, OH, KW, KH, IC, N, IC_IH_IW, IH_IW, s0, s1, p0, p1, d0, d1, stream);
}
}
// [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW]
template <typename T>
static __global__ void im2col_3d_kernel(
const float * src, T * dst,
int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW, int64_t OC,
int64_t KD, int64_t KH, int64_t KW, int64_t OD, int64_t OH, int64_t OW,
int64_t OH_OW, int64_t KD_KH_KW, int64_t ID_IH_IW, int64_t KH_KW, int64_t IH_IW, int64_t IC_ID_IH_IW,
int64_t IC_KD_KH_KW, int64_t OW_KD_KH_KW, int64_t OD_OH_OW_IC_KD_KH_KW, int64_t OH_OW_IC_KD_KH_KW,
int64_t OW_IC_KD_KH_KW, int64_t N_OD_OH, int64_t OD_OH,
int s0, int s1, int s2, int p0, int p1, int p2, int d0, int d1, int d2) {
const int64_t i = threadIdx.x + blockIdx.x * blockDim.x;
if (i >= IC_KD_KH_KW) {
return;
}
const int64_t iic = i / KD_KH_KW;
const int64_t ikd = (i - iic * KD_KH_KW) / KH_KW;
const int64_t ikh = (i - iic * KD_KH_KW - ikd * KH_KW) / KW;
const int64_t ikw = i % KW;
const int64_t iow = blockIdx.y;
for (int64_t iz = blockIdx.z; iz < N_OD_OH; iz+=MAX_GRIDDIM_Z) {
const int64_t in = iz / OD_OH;
const int64_t iod = (iz - in*OD_OH) / OH;
const int64_t ioh = iz % OH;
const int64_t iiw = iow * s0 + ikw * d0 - p0;
const int64_t iih = ioh * s1 + ikh * d1 - p1;
const int64_t iid = iod * s2 + ikd * d2 - p2;
const int64_t offset_dst = in*OD_OH_OW_IC_KD_KH_KW + iod*OH_OW_IC_KD_KH_KW + ioh*OW_IC_KD_KH_KW + iow*IC_KD_KH_KW + iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw;
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW || iid < 0 || iid >= ID) {
dst[offset_dst] = 0.0f;
} else {
const int64_t offset_src = in*IC_ID_IH_IW + iic*ID_IH_IW + iid*IH_IW + iih*IW + iiw;
dst[offset_dst] = src[offset_src];
}
}
}
// [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW]
template <typename T>
static void im2col_3d_cuda(const float * src, T* dst,
int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW, int64_t OC,
int64_t KD, int64_t KH, int64_t KW, int64_t OD, int64_t OH, int64_t OW,
int s0, int s1, int s2, int p0, int p1, int p2, int d0, int d1, int d2, cudaStream_t stream) {
const int64_t OH_OW = OH*OW;
const int64_t KD_KH_KW = KD*KH*KW;
const int64_t ID_IH_IW = ID*IH*IW;
const int64_t KH_KW = KH*KW;
const int64_t IH_IW = IH*IW;
const int64_t IC_KD_KH_KW = IC*KD*KH*KW;
const int64_t OW_KD_KH_KW = OW*KD*KH*KW;
const int64_t N_OD_OH = N*OD*OH;
const int64_t OD_OH = OD*OH;
const int64_t IC_ID_IH_IW = IC*ID*IH*IW;
const int64_t OD_OH_OW_IC_KD_KH_KW = OD*OH*OW*IC*KD*KH*KW;
const int64_t OH_OW_IC_KD_KH_KW = OH*OW*IC*KD*KH*KW;
const int64_t OW_IC_KD_KH_KW = OW*IC*KD*KH*KW;
const int64_t num_blocks = (IC_KD_KH_KW + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE;
dim3 block_nums(num_blocks, OW, MIN(N_OD_OH, MAX_GRIDDIM_Z));
im2col_3d_kernel<<<block_nums, MIN(IC_KD_KH_KW, CUDA_IM2COL_BLOCK_SIZE) , 0, stream>>>(src, dst, N, IC, ID, IH, IW, OC, KD, KH, KW, OD, OH, OW,
OH_OW, KD_KH_KW, ID_IH_IW, KH_KW, IH_IW, IC_ID_IH_IW,
IC_KD_KH_KW, OW_KD_KH_KW, OD_OH_OW_IC_KD_KH_KW,
OH_OW_IC_KD_KH_KW, OW_IC_KD_KH_KW, N_OD_OH, OD_OH,
s0, s1, s2, p0, p1, p2, d0, d1, d2);
}
static void im2col_3d_cuda_f16(const float * src, half * dst,
int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW, int64_t OC,
int64_t KD, int64_t KH, int64_t KW, int64_t OD, int64_t OH, int64_t OW,
int s0, int s1, int s2, int p0, int p1, int p2, int d0, int d1, int d2, cudaStream_t stream) {
im2col_3d_cuda<half>(src, dst, N, IC, ID, IH, IW, OC, KD, KH, KW, OD, OH, OW, s0, s1, s2, p0, p1, p2, d0, d1, d2, stream);
}
static void im2col_3d_cuda_f32(const float * src, float * dst,
int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW, int64_t OC,
int64_t KD, int64_t KH, int64_t KW, int64_t OD, int64_t OH, int64_t OW,
int s0, int s1, int s2, int p0, int p1, int p2, int d0, int d1, int d2, cudaStream_t stream) {
im2col_3d_cuda<float>(src, dst, N, IC, ID, IH, IW, OC, KD, KH, KW, OD, OH, OW, s0, s1, s2, p0, p1, p2, d0, d1, d2, stream);
}
void ggml_cuda_op_im2col_3d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const float * src1_d = (const float *)src1->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
GGML_TENSOR_BINARY_OP_LOCALS
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
const int32_t s2 = ((const int32_t *)(dst->op_params))[2];
const int32_t p0 = ((const int32_t *)(dst->op_params))[3];
const int32_t p1 = ((const int32_t *)(dst->op_params))[4];
const int32_t p2 = ((const int32_t *)(dst->op_params))[5];
const int32_t d0 = ((const int32_t *)(dst->op_params))[6];
const int32_t d1 = ((const int32_t *)(dst->op_params))[7];
const int32_t d2 = ((const int32_t *)(dst->op_params))[8];
const int32_t IC = ((const int32_t *)(dst->op_params))[9];
const int64_t N = ne13 / IC;
const int64_t ID = ne12;
const int64_t IH = ne11;
const int64_t IW = ne10;
const int64_t OC = ne03 / IC;
const int64_t KD = ne02;
const int64_t KH = ne01;
const int64_t KW = ne00;
const int64_t OD = ne3 / N;
const int64_t OH = ne2;
const int64_t OW = ne1;
if(dst->type == GGML_TYPE_F16) {
im2col_3d_cuda_f16(src1_d, (half *) dst_d, N, IC, ID, IH, IW, OC, KD, KH, KW, OD, OH, OW, s0, s1, s2, p0, p1, p2, d0, d1, d2, stream);
} else {
im2col_3d_cuda_f32(src1_d, (float *) dst_d, N, IC, ID, IH, IW, OC, KD, KH, KW, OD, OH, OW, s0, s1, s2, p0, p1, p2, d0, d1, d2, stream);
}
}

View File

@@ -3,4 +3,3 @@
#define CUDA_IM2COL_BLOCK_SIZE 256
void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_im2col_3d(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -141,10 +141,9 @@ template <ggml_type type, int ncols_dst>
__launch_bounds__(calc_nwarps(ncols_dst, get_device_table_id())*ggml_cuda_get_physical_warp_size(), 1)
static __global__ void mul_mat_vec_q(
const void * __restrict__ vx, const void * __restrict__ vy, const int32_t * __restrict__ ids, float * __restrict__ dst,
const uint32_t ncols_x, const uint3 nchannels_y, const uint32_t stride_row_x, const uint32_t stride_col_y,
const uint32_t stride_col_dst, const uint3 channel_ratio, const uint32_t stride_channel_x,
const uint32_t stride_channel_y, const uint32_t stride_channel_dst, const uint3 sample_ratio,
const uint32_t stride_sample_x, const uint32_t stride_sample_y, const uint32_t stride_sample_dst) {
const int ncols_x, const int nchannels_y, const int stride_row_x, const int stride_col_y, const int stride_col_dst,
const int channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
const int sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
constexpr int qk = ggml_cuda_type_traits<type>::qk;
constexpr int qi = ggml_cuda_type_traits<type>::qi;
@@ -162,12 +161,12 @@ static __global__ void mul_mat_vec_q(
constexpr int blocks_per_iter = vdr * nwarps*warp_size / qi;
// The MUL_MAT_ID code path with ids != nullptr is only implemented for ncols_dst == 1.
const uint32_t channel_dst = blockIdx.y;
const uint32_t channel_x = ncols_dst == 1 && ids ? ids[channel_dst] : fastdiv(channel_dst, channel_ratio);
const uint32_t channel_y = ncols_dst == 1 && ids ? fastmodulo(channel_dst, nchannels_y) : channel_dst;
const uint32_t sample_dst = blockIdx.z;
const uint32_t sample_x = fastdiv(sample_dst, sample_ratio);
const uint32_t sample_y = sample_dst;
const int channel_dst = blockIdx.y;
const int channel_x = ncols_dst == 1 && ids ? ids[channel_dst] : channel_dst / channel_ratio;
const int channel_y = ncols_dst == 1 && ids ? channel_dst % nchannels_y : channel_dst;
const int sample_dst = blockIdx.z;
const int sample_x = sample_dst / sample_ratio;
const int sample_y = sample_dst;
// partial sum for each thread
float tmp[ncols_dst][rows_per_cuda_block] = {{0.0f}};
@@ -248,9 +247,8 @@ static void mul_mat_vec_q_switch_ncols_dst(
GGML_ASSERT(ncols_x % ggml_blck_size(type) == 0);
GGML_ASSERT(ncols_dst <= MMVQ_MAX_BATCH_SIZE);
const uint3 nchannels_y_fd = ids ? init_fastdiv_values(nchannels_y) : make_uint3(0, 0, 0);
const uint3 channel_ratio_fd = ids ? make_uint3(0, 0, 0) : init_fastdiv_values(nchannels_dst / nchannels_x);
const uint3 sample_ratio_fd = init_fastdiv_values(nsamples_dst / nsamples_x);
const int channel_ratio = nchannels_dst / nchannels_x;
const int sample_ratio = nsamples_dst / nsamples_x;
const int device = ggml_cuda_get_device();
const int warp_size = ggml_cuda_info().devices[device].warp_size;
@@ -258,70 +256,86 @@ static void mul_mat_vec_q_switch_ncols_dst(
GGML_ASSERT(!ids || ncols_dst == 1);
switch (ncols_dst) {
case 1: {
case 1:
{
constexpr int c_ncols_dst = 1;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 2: {
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
break;
}
case 2:
{
constexpr int c_ncols_dst = 2;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 3: {
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
break;
}
case 3:
{
constexpr int c_ncols_dst = 3;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 4: {
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
break;
}
case 4:
{
constexpr int c_ncols_dst = 4;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 5: {
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
break;
}
case 5:
{
constexpr int c_ncols_dst = 5;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 6: {
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
break;
}
case 6:
{
constexpr int c_ncols_dst = 6;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 7: {
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
break;
}
case 7:
{
constexpr int c_ncols_dst = 7;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 8: {
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
break;
}
case 8:
{
constexpr int c_ncols_dst = 8;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
break;
}
default:
GGML_ABORT("fatal error");
break;

View File

@@ -104,30 +104,12 @@ static __global__ void group_norm_f32(const float * x, float * dst, const int gr
}
}
template <int block_size, bool do_multiply = false, bool do_add = false>
static __global__ void rms_norm_f32(const float * x,
float * dst,
const int ncols,
const int64_t stride_row,
const int64_t stride_channel,
const int64_t stride_sample,
const float eps,
const float * mul = nullptr,
const int64_t mul_stride_row = 0,
const int64_t mul_stride_channel = 0,
const int64_t mul_stride_sample = 0,
const uint3 mul_ncols_packed = make_uint3(0, 0, 0),
const uint3 mul_nrows_packed = make_uint3(0, 0, 0),
const uint3 mul_nchannels_packed = make_uint3(0, 0, 0),
const uint3 mul_nsamples_packed = make_uint3(0, 0, 0),
const float * add = nullptr,
const int64_t add_stride_row = 0,
const int64_t add_stride_channel = 0,
const int64_t add_stride_sample = 0,
const uint3 add_ncols_packed = make_uint3(0, 0, 0),
const uint3 add_nrows_packed = make_uint3(0, 0, 0),
const uint3 add_nchannels_packed = make_uint3(0, 0, 0),
const uint3 add_nsamples_packed = make_uint3(0, 0, 0)) {
template <int block_size, bool do_multiply = false>
static __global__ void rms_norm_f32(
const float * x, float * dst, const int ncols, const int64_t stride_row, const int64_t stride_channel,
const int64_t stride_sample, const float eps, const float * mul = nullptr, const int64_t mul_stride_row = 0,
const int64_t mul_stride_channel = 0, const int64_t mul_stride_sample = 0, const int mul_ncols = 0,
const int mul_nrows = 0, const int mul_nchannels = 0, const int mul_nsamples = 0) {
const int nrows = gridDim.x;
const int nchannels = gridDim.y;
@@ -136,23 +118,14 @@ static __global__ void rms_norm_f32(const float * x,
const int sample = blockIdx.z;
const int tid = threadIdx.x;
static_assert(!do_add || do_multiply, "fusing add is not supported without multiplying");
x += sample*stride_sample + channel*stride_channel + row*stride_row;
dst += ((sample*nchannels + channel)*nrows + row)*ncols;
if constexpr (do_multiply) {
const uint32_t mul_row = fastmodulo(row, mul_nrows_packed);
const uint32_t mul_channel = fastmodulo(channel, mul_nchannels_packed);
const uint32_t mul_sample = fastmodulo(sample, mul_nsamples_packed);
mul += mul_sample * mul_stride_sample + mul_channel * mul_stride_channel + mul_row * mul_stride_row;
}
if constexpr (do_add) {
const int add_row = fastmodulo(row, add_nrows_packed);
const int add_channel = fastmodulo(channel, add_nchannels_packed);
const int add_sample = fastmodulo(sample, add_nsamples_packed);
add += add_sample * add_stride_sample + add_channel * add_stride_channel + add_row * add_stride_row;
const int mul_row = row % mul_nrows;
const int mul_channel = channel % mul_nchannels;
const int mul_sample = sample % mul_nsamples;
mul += mul_sample*mul_stride_sample + mul_channel*mul_stride_channel + mul_row*mul_stride_row;
}
float tmp = 0.0f; // partial sum for thread in warp
@@ -165,18 +138,15 @@ static __global__ void rms_norm_f32(const float * x,
// sum up partial sums
tmp = warp_reduce_sum(tmp);
if constexpr (block_size > WARP_SIZE) {
static_assert((block_size <= 1024) && (block_size % 32 == 0), "unexpected block_size");
static_assert(block_size == 1024, "unexpected block_size");
__shared__ float s_sum[32];
const int warp_id = tid / WARP_SIZE;
const int lane_id = tid % WARP_SIZE;
const int warp_id = threadIdx.x / WARP_SIZE;
const int lane_id = threadIdx.x % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = tmp;
}
__syncthreads();
tmp = 0.0f;
if (lane_id < (block_size / WARP_SIZE)) {
tmp = s_sum[lane_id];
}
tmp = s_sum[lane_id];
tmp = warp_reduce_sum(tmp);
}
@@ -184,13 +154,9 @@ static __global__ void rms_norm_f32(const float * x,
const float scale = rsqrtf(mean + eps);
for (int col = tid; col < ncols; col += block_size) {
if constexpr (do_multiply && do_add) {
const int mul_col = fastmodulo(col, mul_ncols_packed);
const int add_col = fastmodulo(col, add_ncols_packed);
dst[col] = scale * x[col] * mul[mul_col] + add[add_col];
} else if constexpr (do_multiply) {
const int mul_col = fastmodulo(col, mul_ncols_packed);
dst[col] = scale * x[col] * mul[mul_col];
if constexpr (do_multiply) {
const int mul_col = col % mul_ncols;
dst[col] = scale * x[col] * mul[mul_col];
} else {
dst[col] = scale * x[col];
}
@@ -357,87 +323,31 @@ static void rms_norm_f32_cuda(
const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample, const float eps, cudaStream_t stream) {
const dim3 blocks_num(nrows, nchannels, nsamples);
if (ncols < 1024) {
const dim3 block_dims(256, 1, 1);
rms_norm_f32<256, false><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps);
const dim3 block_dims(WARP_SIZE, 1, 1);
rms_norm_f32<WARP_SIZE, false><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps);
} else {
const dim3 block_dims(1024, 1, 1);
rms_norm_f32<1024, false><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps);
}
}
static void rms_norm_mul_f32_cuda(const float * x,
const float * mul,
const float * add,
float * dst,
const int ncols,
const int nrows,
const int nchannels,
const int nsamples,
const int64_t stride_row,
const int64_t stride_channel,
const int64_t stride_sample,
const int64_t mul_stride_row,
const int64_t mul_stride_channel,
const int64_t mul_stride_sample,
const uint32_t mul_ncols,
const uint32_t mul_nrows,
const uint32_t mul_nchannels,
const uint32_t mul_nsamples,
const int64_t add_stride_row,
const int64_t add_stride_channel,
const int64_t add_stride_sample,
const uint32_t add_ncols,
const uint32_t add_nrows,
const uint32_t add_nchannels,
const uint32_t add_nsamples,
const float eps,
cudaStream_t stream) {
static void rms_norm_mul_f32_cuda(
const float * x, const float * mul, float * dst, const int ncols, const int nrows, const int nchannels, const int nsamples,
const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample,
const int64_t mul_stride_row, const int64_t mul_stride_channel, const int64_t mul_stride_sample,
const int mul_ncols, const int mul_nrows, const int mul_nchannels, const int mul_nsamples,
const float eps, cudaStream_t stream) {
const dim3 blocks_num(nrows, nchannels, nsamples);
if (mul == nullptr) {
rms_norm_f32_cuda(x, dst, ncols, nrows, nchannels, nsamples, stride_row, stride_channel, stride_sample, eps, stream);
return;
}
if (add == nullptr) {
const uint3 mul_ncols_packed = init_fastdiv_values(mul_ncols);
const uint3 mul_nrows_packed = init_fastdiv_values(mul_nrows);
const uint3 mul_nchannels_packed = init_fastdiv_values(mul_nchannels);
const uint3 mul_nsamples_packed = init_fastdiv_values(mul_nsamples);
if (ncols < 1024) {
const dim3 block_dims(256, 1, 1);
rms_norm_f32<256, true><<<blocks_num, block_dims, 0, stream>>>(
x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel,
mul_stride_sample, mul_ncols_packed, mul_nrows_packed, mul_nchannels_packed, mul_nsamples_packed);
} else {
const dim3 block_dims(1024, 1, 1);
rms_norm_f32<1024, true><<<blocks_num, block_dims, 0, stream>>>(
x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel,
mul_stride_sample, mul_ncols_packed, mul_nrows_packed, mul_nchannels_packed, mul_nsamples_packed);
}
if (ncols < 1024) {
const dim3 block_dims(WARP_SIZE, 1, 1);
rms_norm_f32<WARP_SIZE, true><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel, mul_stride_sample, mul_ncols, mul_nrows, mul_nchannels, mul_nsamples);
} else {
const uint3 mul_ncols_packed = init_fastdiv_values(mul_ncols);
const uint3 mul_nrows_packed = init_fastdiv_values(mul_nrows);
const uint3 mul_nchannels_packed = init_fastdiv_values(mul_nchannels);
const uint3 mul_nsamples_packed = init_fastdiv_values(mul_nsamples);
const uint3 add_ncols_packed = init_fastdiv_values(add_ncols);
const uint3 add_nrows_packed = init_fastdiv_values(add_nrows);
const uint3 add_nchannels_packed = init_fastdiv_values(add_nchannels);
const uint3 add_nsamples_packed = init_fastdiv_values(add_nsamples);
if (ncols < 1024) {
const dim3 block_dims(256, 1, 1);
rms_norm_f32<256, true, true><<<blocks_num, block_dims, 0, stream>>>(
x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel,
mul_stride_sample, mul_ncols_packed, mul_nrows_packed, mul_nchannels_packed, mul_nsamples_packed, add,
add_stride_row, add_stride_channel, add_stride_sample, add_ncols_packed, add_nrows_packed,
add_nchannels_packed, add_nsamples_packed);
} else {
const dim3 block_dims(1024, 1, 1);
rms_norm_f32<1024, true, true><<<blocks_num, block_dims, 0, stream>>>(
x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel,
mul_stride_sample, mul_ncols_packed, mul_nrows_packed, mul_nchannels_packed, mul_nsamples_packed, add,
add_stride_row, add_stride_channel, add_stride_sample, add_ncols_packed, add_nrows_packed,
add_nchannels_packed, add_nsamples_packed);
}
const dim3 block_dims(1024, 1, 1);
rms_norm_f32<1024, true><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel, mul_stride_sample, mul_ncols, mul_nrows, mul_nchannels, mul_nsamples);
}
}
@@ -581,102 +491,7 @@ void ggml_cuda_op_rms_norm_fused(ggml_backend_cuda_context & ctx, ggml_tensor *
const int mul_nchannels = mul_src->ne[2];
const int mul_nsamples = mul_src->ne[3];
rms_norm_mul_f32_cuda(src0_d, mul_d, nullptr, dst_d,
ne00, ne01, ne02, ne03,
/*s00*/ s01, s02, s03,
/*mul_s00*/ mul_s01, mul_s02, mul_s03,
mul_ncols, mul_nrows, mul_nchannels, mul_nsamples,
/*add_s00*/ 0, 0, 0,
0, 0, 0, 0,
eps, stream);
}
void ggml_cuda_op_rms_norm_fused_add(ggml_backend_cuda_context & ctx,
ggml_tensor * dst,
ggml_tensor * mul_tensor,
ggml_tensor * add_tensor) {
const ggml_tensor * rms_norm_src = (ggml_tensor *) dst->src[0];
float eps = 0.0f;
memcpy(&eps, dst->op_params, sizeof(float));
const float * src0_d = (const float *) rms_norm_src->data;
const float * mul_d = nullptr;
const ggml_tensor * mul_src = nullptr;
if (mul_tensor->src[0] == dst) {
mul_d = (float *) mul_tensor->src[1]->data;
mul_src = mul_tensor->src[1];
} else if (mul_tensor->src[1] == dst) {
mul_d = (float *) mul_tensor->src[0]->data;
mul_src = mul_tensor->src[0];
} else {
GGML_ASSERT(false);
}
const float * add_d = nullptr;
const ggml_tensor * add_src = nullptr;
if (add_tensor->src[0] == mul_tensor) {
add_d = (float *) add_tensor->src[1]->data;
add_src = add_tensor->src[1];
} else if (add_tensor->src[1] == mul_tensor) {
add_d = (float *) add_tensor->src[0]->data;
add_src = add_tensor->src[0];
} else {
GGML_ASSERT(false);
}
float * dst_d = (float *) add_tensor->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(rms_norm_src->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(mul_tensor->type == GGML_TYPE_F32);
GGML_ASSERT(add_tensor->type == GGML_TYPE_F32);
GGML_ASSERT(eps >= 0.0f);
const int64_t ne00 = rms_norm_src->ne[0];
const int64_t ne01 = rms_norm_src->ne[1];
const int64_t ne02 = rms_norm_src->ne[2];
const int64_t ne03 = rms_norm_src->ne[3];
const size_t ts0 = ggml_type_size(rms_norm_src->type);
GGML_ASSERT(rms_norm_src->nb[0] == ts0);
const int64_t s01 = rms_norm_src->nb[1] / ts0;
const int64_t s02 = rms_norm_src->nb[2] / ts0;
const int64_t s03 = rms_norm_src->nb[3] / ts0;
const size_t ts_mul = ggml_type_size(mul_src->type);
GGML_ASSERT(mul_src->nb[0] == ts_mul);
const int64_t mul_s01 = mul_src->nb[1] / ts_mul;
const int64_t mul_s02 = mul_src->nb[2] / ts_mul;
const int64_t mul_s03 = mul_src->nb[3] / ts_mul;
const int mul_ncols = mul_src->ne[0];
const int mul_nrows = mul_src->ne[1];
const int mul_nchannels = mul_src->ne[2];
const int mul_nsamples = mul_src->ne[3];
const size_t ts_add = ggml_type_size(add_src->type);
GGML_ASSERT(add_src->nb[0] == ts_add);
const int64_t add_s01 = add_src->nb[1] / ts_add;
const int64_t add_s02 = add_src->nb[2] / ts_add;
const int64_t add_s03 = add_src->nb[3] / ts_add;
const int add_ncols = add_src->ne[0];
const int add_nrows = add_src->ne[1];
const int add_nchannels = add_src->ne[2];
const int add_nsamples = add_src->ne[3];
rms_norm_mul_f32_cuda(src0_d, mul_d,add_d,dst_d,
ne00,ne01, ne02, ne03,
/*s00*/ s01, s02, s03,
/*mul_s00*/ mul_s01, mul_s02, mul_s03,
mul_ncols, mul_nrows, mul_nchannels, mul_nsamples,
/*add_s00*/ add_s01, add_s02, add_s03,
add_ncols, add_nrows, add_nchannels, add_nsamples,
eps, stream);
rms_norm_mul_f32_cuda(src0_d, mul_d, dst_d, ne00, ne01, ne02, ne03, s01, s02, s03, mul_s01, mul_s02, mul_s03, mul_ncols, mul_nrows, mul_nchannels, mul_nsamples, eps, stream);
}
void ggml_cuda_op_rms_norm_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {

View File

@@ -8,11 +8,6 @@ void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_rms_norm_fused(ggml_backend_cuda_context & ctx, ggml_tensor * dst, ggml_tensor * mul_tensor);
void ggml_cuda_op_rms_norm_fused_add(ggml_backend_cuda_context & ctx,
ggml_tensor * dst,
ggml_tensor * mul_tensor,
ggml_tensor * add_tensor);
void ggml_cuda_op_rms_norm_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_l2_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -1,50 +1,36 @@
#include "pad.cuh"
static __global__ void pad_f32(const float * src, float * dst,
const int lp0, const int rp0, const int lp1, const int rp1,
const int lp2, const int rp2, const int lp3, const int rp3,
const int ne0, const int ne1, const int ne2, const int ne3) {
// blockIdx.z: i3*ne2+i2
// blockIdx.y: i1
// blockIDx.x: i0 / CUDA_PAD_BLOCK_SIZE
// gridDim.y: ne1
int i0 = threadIdx.x + blockIdx.x * blockDim.x;
int i1 = blockIdx.y;
int i2 = blockIdx.z % ne2;
int i3 = blockIdx.z / ne2;
if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
static __global__ void pad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
// blockIdx.z: idx of ne2*ne3, aka ne02*ne03
// blockIdx.y: idx of ne1
// blockIDx.x: idx of ne0 / BLOCK_SIZE
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
if (nidx >= ne0) {
return;
}
// operation
const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
if ((i0 >= lp0 && i0 < ne0 - rp0) &&
(i1 >= lp1 && i1 < ne1 - rp1) &&
(i2 >= lp2 && i2 < ne2 - rp2) &&
(i3 >= lp3 && i3 < ne3 - rp3)) {
const int64_t i00 = i0 - lp0;
const int64_t i01 = i1 - lp1;
const int64_t i02 = i2 - lp2;
const int64_t i03 = i3 - lp3;
const int64_t ne02 = ne2 - lp2 - rp2;
const int64_t ne01 = ne1 - lp1 - rp1;
const int64_t ne00 = ne0 - lp0 - rp0;
const int64_t src_idx = i03*(ne00*ne01*ne02) + i02*(ne00*ne01) + i01*ne00 + i00;
dst[dst_idx] = src[src_idx];
int offset_dst =
nidx +
blockIdx.y * ne0 +
blockIdx.z * ne0 * gridDim.y;
if (nidx < ne00 && blockIdx.y < (unsigned)ne01 && blockIdx.z < (unsigned)(ne02*ne03)) {
int offset_src =
nidx +
blockIdx.y * ne00 +
blockIdx.z * ne00 * ne01;
dst[offset_dst] = x[offset_src];
} else {
dst[dst_idx] = 0.0f;
dst[offset_dst] = 0.0f;
}
}
static void pad_f32_cuda(const float * src, float * dst,
const int lp0, const int rp0, const int lp1, const int rp1,
const int lp2, const int rp2, const int lp3, const int rp3,
static void pad_f32_cuda(const float * x, float * dst,
const int ne00, const int ne01, const int ne02, const int ne03,
const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
dim3 gridDim(num_blocks, ne1, ne2*ne3);
pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(src, dst, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3, ne0, ne1, ne2, ne3);
pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
}
void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
@@ -55,18 +41,9 @@ void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0));
const int32_t lp0 = ((const int32_t*)(dst->op_params))[0];
const int32_t rp0 = ((const int32_t*)(dst->op_params))[1];
const int32_t lp1 = ((const int32_t*)(dst->op_params))[2];
const int32_t rp1 = ((const int32_t*)(dst->op_params))[3];
const int32_t lp2 = ((const int32_t*)(dst->op_params))[4];
const int32_t rp2 = ((const int32_t*)(dst->op_params))[5];
const int32_t lp3 = ((const int32_t*)(dst->op_params))[6];
const int32_t rp3 = ((const int32_t*)(dst->op_params))[7];
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
pad_f32_cuda(src0_d, dst_d,
lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3,
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
}

View File

@@ -1,27 +1,26 @@
#include "quantize.cuh"
#include <cstdint>
__launch_bounds__(CUDA_QUANTIZE_BLOCK_SIZE, 1)
static __global__ void quantize_q8_1(
const float * __restrict__ x, void * __restrict__ vy,
const int64_t ne00, const int64_t s01, const int64_t s02, const int64_t s03,
const int64_t ne0, const uint32_t ne1, const uint3 ne2) {
const int64_t ne0, const int ne1, const int ne2) {
const int64_t i0 = (int64_t)blockDim.x*blockIdx.x + threadIdx.x;
if (i0 >= ne0) {
return;
}
const int64_t i3 = fastdiv(blockIdx.z, ne2);
const int64_t i2 = blockIdx.z - i3*ne2.z;
const int64_t i1 = blockIdx.y;
const int64_t i2 = blockIdx.z % ne2;
const int64_t i3 = blockIdx.z / ne2;
const int64_t & i00 = i0;
const int64_t & i01 = i1;
const int64_t & i02 = i2;
const int64_t & i03 = i3;
const int64_t i_cont = ((i3*ne2.z + i2) * ne1 + i1) * ne0 + i0;
const int64_t i_cont = ((i3*ne2 + i2) * ne1 + i1) * ne0 + i0;
block_q8_1 * y = (block_q8_1 *) vy;
@@ -32,10 +31,10 @@ static __global__ void quantize_q8_1(
float amax = fabsf(xi);
float sum = xi;
amax = warp_reduce_max<QK8_1>(amax);
sum = warp_reduce_sum<QK8_1>(sum);
amax = warp_reduce_max(amax);
sum = warp_reduce_sum(sum);
const float d = amax / 127.0f;
const float d = amax / 127;
const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);
y[ib].qs[iqs] = q;
@@ -44,7 +43,8 @@ static __global__ void quantize_q8_1(
return;
}
y[ib].ds = make_half2(d, sum);
reinterpret_cast<half&>(y[ib].ds.x) = d;
reinterpret_cast<half&>(y[ib].ds.y) = sum;
}
template <mmq_q8_1_ds_layout ds_layout>
@@ -152,12 +152,10 @@ void quantize_row_q8_1_cuda(
GGML_ASSERT(!ids);
GGML_ASSERT(ne0 % QK8_1 == 0);
const uint3 ne2_fastdiv = init_fastdiv_values(ne2);
const int64_t block_num_x = (ne0 + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
const dim3 num_blocks(block_num_x, ne1, ne2*ne3);
const dim3 block_size(CUDA_QUANTIZE_BLOCK_SIZE, 1, 1);
quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, ne00, s01, s02, s03, ne0, ne1, ne2_fastdiv);
quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, ne00, s01, s02, s03, ne0, ne1, ne2);
GGML_UNUSED(type_src0);
}

View File

@@ -1,19 +1,18 @@
#include "scale.cuh"
#define MAX_GRIDDIM_X 0x7FFFFFFF
static __global__ void scale_f32(const float * x, float * dst, const float scale, const float bias, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
static __global__ void scale_f32(const float * x, float * dst, const float scale, const float bias, const int64_t nelements) {
int64_t tid = (int64_t)blockIdx.x * (int64_t)blockDim.x + (int64_t)threadIdx.x;
int64_t stride = (int64_t)blockDim.x * (int64_t)gridDim.x;
for (int64_t i = tid; i < nelements; i += stride) {
dst[i] = scale * x[i] + bias;
if (i >= k) {
return;
}
dst[i] = scale * x[i] + bias;
}
static void scale_f32_cuda(const float * x, float * dst, const float scale, const float bias, const int64_t nelements, cudaStream_t stream) {
const int64_t num_blocks = (nelements + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
scale_f32<<<MIN(MAX_GRIDDIM_X, num_blocks), CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, bias, nelements);
static void scale_f32_cuda(const float * x, float * dst, const float scale, const float bias, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, bias, k);
}
void ggml_cuda_op_scale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {

View File

@@ -129,7 +129,7 @@ __global__ void __launch_bounds__(d_state, 1)
const int head_off = ((blockIdx.x * splitH) % d_head) * sizeof(float);
const int seq_idx = blockIdx.y;
const int group_off = (head_idx / (n_head / n_group)) * d_state * sizeof(float);
const int group_off = (head_idx & (n_group - 1)) * d_state * sizeof(float);
const float * s0_block = (const float *) ((const char *) src0 + src6[seq_idx] * src0_nb3 + head_idx * src0_nb2 + head_off * d_state);
const float * x_block = (const float *) ((const char *) src1 + (seq_idx * src1_nb3) + blockIdx.x * splitH * sizeof(float));

View File

@@ -407,7 +407,6 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_4,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_6,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_8,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_10,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F16,
@@ -524,6 +523,13 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK192_HV128,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H256,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK576_HV512,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H40,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H40,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H40,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H40,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H40,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H40,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H40,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H64,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H64,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H64,
@@ -1440,7 +1446,6 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_4, mul_mm_id_map0_f16_ne20_4, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_6, mul_mm_id_map0_f16_ne20_6, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_8, mul_mm_id_map0_f16_ne20_8, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_10, mul_mm_id_map0_f16_ne20_10, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_16, mul_mm_id_map0_f16_ne20_16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F16, mul_mm_id_f32_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F16, mul_mm_id_f16_f16, has_simdgroup_mm);
@@ -1557,6 +1562,13 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK192_HV128, flash_attn_ext_q8_0_hk192_hv128, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H256, flash_attn_ext_q8_0_h256, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK576_HV512, flash_attn_ext_q8_0_hk576_hv512, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H40, flash_attn_ext_vec_f16_h40, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H40, flash_attn_ext_vec_bf16_h40, has_simdgroup_reduction && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H40, flash_attn_ext_vec_q4_0_h40, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H40, flash_attn_ext_vec_q4_1_h40, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H40, flash_attn_ext_vec_q5_0_h40, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H40, flash_attn_ext_vec_q5_1_h40, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H40, flash_attn_ext_vec_q8_0_h40, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H64, flash_attn_ext_vec_f16_h64, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H64, flash_attn_ext_vec_bf16_h64, has_simdgroup_reduction && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H64, flash_attn_ext_vec_q4_0_h64, has_simdgroup_reduction);
@@ -1888,10 +1900,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_OP_UPSCALE:
return op->src[0]->type == GGML_TYPE_F32 && op->op_params[0] == GGML_SCALE_MODE_NEAREST;
case GGML_OP_POOL_2D:
return op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_PAD:
return (ggml_get_op_params_i32(op, 0) == 0) && (ggml_get_op_params_i32(op, 2) == 0) &&
(ggml_get_op_params_i32(op, 4) == 0) && (ggml_get_op_params_i32(op, 6) == 0);
case GGML_OP_PAD_REFLECT_1D:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_ARGSORT:
@@ -1900,15 +1909,9 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_OP_ARANGE:
return true;
case GGML_OP_FLASH_ATTN_EXT:
// for new head sizes, add checks here
if (op->src[0]->ne[0] != 40 &&
op->src[0]->ne[0] != 64 &&
op->src[0]->ne[0] != 80 &&
op->src[0]->ne[0] != 96 &&
op->src[0]->ne[0] != 112 &&
op->src[0]->ne[0] != 128 &&
op->src[0]->ne[0] != 192 &&
op->src[0]->ne[0] != 256) {
if (op->src[0]->ne[0] == 32) {
// head size == 32 (e.g. bert-bge-small)
// TODO: not sure if it is worth adding kernels for this size
return false;
}
if (op->src[0]->ne[0] == 576) {
@@ -3981,7 +3984,6 @@ static int ggml_metal_encode_node(
case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_4 ].pipeline; break;
case 6: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_6 ].pipeline; break;
case 8: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_8 ].pipeline; break;
case 10: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_10].pipeline; break;
case 16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_16].pipeline; break;
default: GGML_ABORT("missing specialization for ne20 = %d", (int) ne20);
}
@@ -5136,8 +5138,10 @@ static int ggml_metal_encode_node(
bool use_vec_kernel = false;
// use non-vec kernel if the batch size is large or if the vec-kernel is not supported for this head size
if (ne01 >= 20 || (ne00 == 40 || ne00 == 80 || ne00 == 112)) {
// TODO: add vec kernels for (ne00%64 == 0) and maybe also for (ne00%32 == 0)
// for now avoiding mainly to keep the number of templates/kernels a bit lower
// these are now trivial to add after: https://github.com/ggml-org/llama.cpp/pull/12612
if (ne01 >= 20 || (ne00%128 != 0 && ne00 != 64 && ne00 != 96 && ne00 != 192 && ne00 != 576)) {
switch (src1->type) {
case GGML_TYPE_F16:
{
@@ -5325,6 +5329,24 @@ static int ggml_metal_encode_node(
use_vec_kernel = true;
switch (ne00) {
case 40:
{
switch (src1->type) {
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H40].pipeline; break;
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H40].pipeline; break;
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H40].pipeline; break;
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H40].pipeline; break;
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H40].pipeline; break;
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H40].pipeline; break;
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H40].pipeline; break;
default:
{
GGML_LOG_ERROR("unsupported type: %d\n", src1->type);
GGML_LOG_ERROR("add template specialization for this type\n");
GGML_ABORT("add template specialization for this type");
}
}
} break;
case 64:
{
switch (src1->type) {

View File

@@ -1983,15 +1983,14 @@ kernel void kernel_ssm_scan_f32(
device const float * s0_buff = (device const float *) ((device const char *) src0 + ir*args.nb02 + ids[i3]*args.nb03);
device float * s_buff = (device float *) ((device char *) dst + ir*args.nb02 + i3*args.nb03 + s_off);
const int64_t i = i0 + i1*nc;
const int64_t g = ir / (nh / ng); // repeat_interleave
float s0 = s0_buff[i];
float s = s_buff[i];
device const float * A = (device const float *) ((device const char *) src3 + ir*args.nb31);
device const float * x_block = (device const float *) ((device const char *) src1 + i1*nb10 + ir*args.nb11 + i3*args.nb13);
device const float * dt_block = (device const float *) ((device const char *) src2 + ir*nb20 + i3*args.nb22);
device const float * B_block = (device const float *) ((device const char *) src4 + g*args.nb41 + i3*args.nb43);
device const float * C_block = (device const float *) ((device const char *) src5 + g*args.nb51 + i3*args.nb53);
device const float * B_block = (device const float *) ((device const char *) src4 + (ir & (ng - 1))*args.nb41 + i3*args.nb43);
device const float * C_block = (device const float *) ((device const char *) src5 + (ir & (ng - 1))*args.nb51 + i3*args.nb53);
device float * y_block = (device float *) ((device char *) dst + (i1 + ir*(nr) + i3*(n_t*nh*nr))*nb00);
for (int64_t i2 = 0; i2 < n_t; ++i2) {
@@ -2099,15 +2098,14 @@ kernel void kernel_ssm_scan_f32_group(
device const float * s0_buff = (device const float *) ((device const char *) src0 + ir*args.nb02 + ids[i3]*args.nb03);
device float * s_buff = (device float *) ((device char *) dst + ir*args.nb02 + i3*args.nb03 + s_off);
const int64_t i = i0 + i1*nc;
const int64_t g = ir / (nh / ng); // repeat_interleave
float s0 = s0_buff[i];
float s = s_buff[i];
device const float * A = (device const float *) ((device const char *) src3 + ir*args.nb31); // {1, nh}
device const float * x_block = (device const float *) ((device const char *) src1 + i1*nb10 + ir*args.nb11 + i3*args.nb13);
device const float * dt_block = (device const float *) ((device const char *) src2 + ir*nb20 + i3*args.nb22);
device const float * B_block = (device const float *) ((device const char *) src4 + g*args.nb41 + i3*args.nb43);
device const float * C_block = (device const float *) ((device const char *) src5 + g*args.nb51 + i3*args.nb53);
device const float * B_block = (device const float *) ((device const char *) src4 + (ir & (ng - 1))*args.nb41 + i3*args.nb43);
device const float * C_block = (device const float *) ((device const char *) src5 + (ir & (ng - 1))*args.nb51 + i3*args.nb53);
device float * y_block = (device float *) ((device char *) dst + (i1 + ir*(nr) + i3*(n_t*nh*nr))*nb00);
for (int64_t i2 = 0; i2 < n_t; ++i2) {
@@ -4803,9 +4801,6 @@ kernel void kernel_flash_attn_ext_vec(
ushort3 ntg[[threads_per_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
static_assert(DK % 32 == 0, "DK must be divisible by 32");
static_assert(DV % 32 == 0, "DV must be divisible by 32");
const short nsg = ntg.y; // number of simdgroups
const short iwg = tgpig[2]%nwg;
@@ -5163,6 +5158,16 @@ kernel void kernel_flash_attn_ext_vec(
typedef decltype(kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 128, 128, 4>) flash_attn_ext_vec_t;
template [[host_name("kernel_flash_attn_ext_vec_f16_h40")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 40, 40, 8>;
#if defined(GGML_METAL_USE_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_h40")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 40, 40, 8>;
#endif
template [[host_name("kernel_flash_attn_ext_vec_q4_0_h40")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 40, 40, 8>;
template [[host_name("kernel_flash_attn_ext_vec_q4_1_h40")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 40, 40, 8>;
template [[host_name("kernel_flash_attn_ext_vec_q5_0_h40")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 40, 40, 8>;
template [[host_name("kernel_flash_attn_ext_vec_q5_1_h40")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 40, 40, 8>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_h40")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 40, 40, 8>;
template [[host_name("kernel_flash_attn_ext_vec_f16_h64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 64, 64, 8>;
#if defined(GGML_METAL_USE_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_h64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 64, 64, 8>;
@@ -7618,7 +7623,6 @@ template [[host_name("kernel_mul_mm_id_map0_f16_ne20_2" )]] kernel kernel_mul_mm
template [[host_name("kernel_mul_mm_id_map0_f16_ne20_4" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<4>;
template [[host_name("kernel_mul_mm_id_map0_f16_ne20_6" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<6>;
template [[host_name("kernel_mul_mm_id_map0_f16_ne20_8" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<8>;
template [[host_name("kernel_mul_mm_id_map0_f16_ne20_10")]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<10>;
template [[host_name("kernel_mul_mm_id_map0_f16_ne20_16")]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<16>;
template<typename T, typename T4x4, typename simdgroup_T8x8, typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread T4x4 &)>

View File

@@ -1339,7 +1339,7 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
if (!kernel_src_f16.empty() && !kernel_src_f32.empty() && !kernel_src_f32_f16.empty()) {
const struct { int dk; int dv; int bm; int bn; } fa_dims[] = {
{ 40, 40, 32, 32}, { 64, 64, 64, 64}, { 80, 80, 64, 32}, { 96, 96, 64, 32},
{ 64, 64, 64, 64}, { 80, 80, 64, 32}, { 96, 96, 64, 32},
{112, 112, 32, 32}, {128, 128, 32, 32}, {192, 128, 16, 16},
{192, 192, 16, 16}, {256, 256, 16, 16},
};
@@ -2701,9 +2701,7 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32; // Assuming F32 for now, can be expanded
case GGML_OP_PAD:
return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32 &&
op->src[0]->ne[3] == 1 && op->ne[3] == 1 &&
(ggml_get_op_params_i32(op, 0) == 0) && (ggml_get_op_params_i32(op, 2) == 0) &&
(ggml_get_op_params_i32(op, 4) == 0) && (ggml_get_op_params_i32(op, 6) == 0);
op->src[0]->ne[3] == 1 && op->ne[3] == 1;
case GGML_OP_UPSCALE:
return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
case GGML_OP_CONV_2D:
@@ -2778,6 +2776,10 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
case GGML_OP_FLASH_ATTN_EXT:
{
if (op->src[4]) {
return false;
}
const ggml_tensor * q = op->src[0];
const ggml_tensor * k = op->src[1];
const ggml_tensor * v = op->src[2];
@@ -2786,7 +2788,7 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
const int dv = v->ne[0];
const struct { int dk; int dv; } supported_dims[] = {
{ 40, 40}, { 64, 64}, { 80, 80}, { 96, 96},
{ 64, 64}, { 80, 80}, { 96, 96},
{112, 112}, {128, 128}, {192, 128},
{192, 192}, {256, 256},
};
@@ -5763,7 +5765,6 @@ static void ggml_cl_timestep_embedding(ggml_backend_t backend, const ggml_tensor
static void ggml_cl_flash_attn(ggml_backend_t backend, const ggml_tensor * q, const ggml_tensor * k, ggml_tensor * dst) {
const ggml_tensor * v = dst->src[2];
const ggml_tensor * mask = dst->src[3];
const ggml_tensor * sinks = dst->src[4];
GGML_ASSERT(q->extra);
GGML_ASSERT(k->extra);
GGML_ASSERT(v->extra);
@@ -5771,9 +5772,6 @@ static void ggml_cl_flash_attn(ggml_backend_t backend, const ggml_tensor * q, co
if (mask) {
GGML_ASSERT(mask->extra);
}
if (sinks) {
GGML_ASSERT(sinks->extra);
}
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
@@ -5815,7 +5813,6 @@ static void ggml_cl_flash_attn(ggml_backend_t backend, const ggml_tensor * q, co
ggml_tensor_extra_cl * extra_v = (ggml_tensor_extra_cl *)v->extra;
ggml_tensor_extra_cl * extra_o = (ggml_tensor_extra_cl *)dst->extra;
ggml_tensor_extra_cl * extra_mask = mask ? (ggml_tensor_extra_cl *)mask->extra : NULL;
ggml_tensor_extra_cl * extra_sinks = sinks ? (ggml_tensor_extra_cl *)sinks->extra : NULL;
cl_ulong offset_q = extra_q->offset + q->view_offs;
cl_ulong offset_k = extra_k->offset + k->view_offs;
@@ -5823,8 +5820,6 @@ static void ggml_cl_flash_attn(ggml_backend_t backend, const ggml_tensor * q, co
cl_ulong offset_o = extra_o->offset + dst->view_offs;
cl_mem mask_buffer = extra_mask ? extra_mask->data_device : NULL;
cl_ulong offset_mask = extra_mask ? extra_mask->offset + mask->view_offs : 0;
cl_mem sinks_buffer = extra_sinks ? extra_sinks->data_device : NULL;
cl_ulong offset_sinks = extra_sinks ? extra_sinks->offset + sinks->view_offs : 0;
const cl_ulong q_nb1 = q->nb[1], q_nb2 = q->nb[2], q_nb3 = q->nb[3];
const cl_ulong k_nb1 = k->nb[1], k_nb2 = k->nb[2], k_nb3 = k->nb[3];
@@ -5879,8 +5874,6 @@ static void ggml_cl_flash_attn(ggml_backend_t backend, const ggml_tensor * q, co
CL_CHECK(clSetKernelArg(kernel, 35, sizeof(cl_ulong), &mask_nb3));
CL_CHECK(clSetKernelArg(kernel, 36, sizeof(int), &mask_ne2));
CL_CHECK(clSetKernelArg(kernel, 37, sizeof(int), &mask_ne3));
CL_CHECK(clSetKernelArg(kernel, 38, sizeof(cl_mem), &sinks_buffer));
CL_CHECK(clSetKernelArg(kernel, 39, sizeof(cl_ulong), &offset_sinks));
if (n_q == 1) {
const size_t wg_size = 64;

View File

@@ -49,9 +49,7 @@ __kernel void flash_attn_f16(
const ulong mask_nb2,
const ulong mask_nb3,
const int mask_ne2,
const int mask_ne3,
const global void* sinks_void,
const ulong sinks_offset
const int mask_ne3
) {
const int tid = get_local_id(0);
const int block_q_idx = get_group_id(0);
@@ -173,20 +171,6 @@ __kernel void flash_attn_f16(
}
if (my_query_row < n_q) {
if (sinks_void != NULL) {
const global ACC_TYPE* sinks_ptr = (const global ACC_TYPE*)((const global char*)sinks_void + sinks_offset);
const ACC_TYPE m_sink = sinks_ptr[head_idx];
const ACC_TYPE m_final = max(m_i, m_sink);
const ACC_TYPE scale_o = exp(m_i - m_final);
#pragma unroll
for (int i = 0; i < DV_VEC; ++i) {
o_acc[i] *= scale_o;
}
l_i = l_i * exp(m_i - m_final) + exp(m_sink - m_final);
}
const ulong o_row_offset = batch_idx * o_nb3 + my_query_row * o_nb2 + head_idx * o_nb1;
global DATA_TYPE4 *o_row = (global DATA_TYPE4 *)(o_base + o_row_offset);
if (l_i > 0.0f) {
@@ -230,9 +214,7 @@ __kernel void flash_attn_f16_q1(
const ulong mask_nb2,
const ulong mask_nb3,
const int mask_ne2,
const int mask_ne3,
const global void* sinks_void,
const ulong sinks_offset
const int mask_ne3
) {
const int tid = get_local_id(0);
const int head_batch_idx = get_global_id(1);
@@ -265,12 +247,7 @@ __kernel void flash_attn_f16_q1(
float slope = get_alibi_slope(max_bias, head_idx, n_head_log2, m0, m1);
const global ACC_TYPE* sinks_ptr = NULL;
if (sinks_void != NULL) {
sinks_ptr = (const global ACC_TYPE*)((const global char*)sinks_void + sinks_offset);
}
ACC_TYPE m_i = (sinks_ptr != NULL) ? sinks_ptr[head_idx] : -INFINITY;
ACC_TYPE m_i = -INFINITY;
for (int k_idx = tid; k_idx < n_kv; k_idx += Q1_WG_SIZE) {
const ulong k_row_offset = batch_idx * k_nb3 + head_kv_idx * k_nb2 + k_idx * k_nb1;
const global DATA_TYPE4* k_ptr = (const global DATA_TYPE4*)(k_base + k_row_offset);
@@ -343,11 +320,7 @@ __kernel void flash_attn_f16_q1(
const ulong o_row_offset = batch_idx * o_nb3 + head_idx * o_nb1;
global DATA_TYPE4 *o_row = (global DATA_TYPE4 *)(o_base + o_row_offset);
ACC_TYPE l_final = local_l[0];
if (sinks_ptr != NULL) {
l_final += exp(sinks_ptr[head_idx] - m_final);
}
const ACC_TYPE l_final = local_l[0];
if (l_final > 0.0f) {
const ACC_TYPE l_inv = 1.0f / l_final;

View File

@@ -49,9 +49,7 @@ __kernel void flash_attn_f32(
const ulong mask_nb2,
const ulong mask_nb3,
const int mask_ne2,
const int mask_ne3,
const global void* sinks_void,
const ulong sinks_offset
const int mask_ne3
) {
const int tid = get_local_id(0);
const int block_q_idx = get_group_id(0);
@@ -173,20 +171,6 @@ __kernel void flash_attn_f32(
}
if (my_query_row < n_q) {
if (sinks_void != NULL) {
const global ACC_TYPE* sinks_ptr = (const global ACC_TYPE*)((const global char*)sinks_void + sinks_offset);
const ACC_TYPE m_sink = sinks_ptr[head_idx];
const ACC_TYPE m_final = max(m_i, m_sink);
const ACC_TYPE scale_o = exp(m_i - m_final);
#pragma unroll
for (int i = 0; i < DV_VEC; ++i) {
o_acc[i] *= scale_o;
}
l_i = l_i * exp(m_i - m_final) + exp(m_sink - m_final);
}
const ulong o_row_offset = batch_idx * o_nb3 + my_query_row * o_nb2 + head_idx * o_nb1;
global DATA_TYPE4 *o_row = (global DATA_TYPE4 *)(o_base + o_row_offset);
if (l_i > 0.0f) {
@@ -230,9 +214,7 @@ __kernel void flash_attn_f32_q1(
const ulong mask_nb2,
const ulong mask_nb3,
const int mask_ne2,
const int mask_ne3,
const global void* sinks_void,
const ulong sinks_offset
const int mask_ne3
) {
const int tid = get_local_id(0);
const int head_batch_idx = get_global_id(1);
@@ -265,12 +247,7 @@ __kernel void flash_attn_f32_q1(
float slope = get_alibi_slope(max_bias, head_idx, n_head_log2, m0, m1);
const global ACC_TYPE* sinks_ptr = NULL;
if (sinks_void != NULL) {
sinks_ptr = (const global ACC_TYPE*)((const global char*)sinks_void + sinks_offset);
}
ACC_TYPE m_i = (sinks_ptr != NULL) ? sinks_ptr[head_idx] : -INFINITY;
ACC_TYPE m_i = -INFINITY;
for (int k_idx = tid; k_idx < n_kv; k_idx += Q1_WG_SIZE) {
const ulong k_row_offset = batch_idx * k_nb3 + head_kv_idx * k_nb2 + k_idx * k_nb1;
const global DATA_TYPE4* k_ptr = (const global DATA_TYPE4*)(k_base + k_row_offset);
@@ -343,11 +320,7 @@ __kernel void flash_attn_f32_q1(
const ulong o_row_offset = batch_idx * o_nb3 + head_idx * o_nb1;
global DATA_TYPE4 *o_row = (global DATA_TYPE4 *)(o_base + o_row_offset);
ACC_TYPE l_final = local_l[0];
if (sinks_ptr != NULL) {
l_final += exp(sinks_ptr[head_idx] - m_final);
}
const ACC_TYPE l_final = local_l[0];
if (l_final > 0.0f) {
const ACC_TYPE l_inv = 1.0f / l_final;

View File

@@ -52,9 +52,7 @@ __kernel void flash_attn_f32_f16(
const ulong mask_nb2,
const ulong mask_nb3,
const int mask_ne2,
const int mask_ne3,
const global void* sinks_void,
const ulong sinks_offset
const int mask_ne3
) {
const int tid = get_local_id(0);
const int block_q_idx = get_group_id(0);
@@ -176,20 +174,6 @@ __kernel void flash_attn_f32_f16(
}
if (my_query_row < n_q) {
if (sinks_void != NULL) {
const global ACC_TYPE* sinks_ptr = (const global ACC_TYPE*)((const global char*)sinks_void + sinks_offset);
const ACC_TYPE m_sink = sinks_ptr[head_idx];
const ACC_TYPE m_final = max(m_i, m_sink);
const ACC_TYPE scale_o = exp(m_i - m_final);
#pragma unroll
for (int i = 0; i < DV_VEC; ++i) {
o_acc[i] *= scale_o;
}
l_i = l_i * exp(m_i - m_final) + exp(m_sink - m_final);
}
const ulong o_row_offset = batch_idx * o_nb3 + my_query_row * o_nb2 + head_idx * o_nb1;
global O_DATA_TYPE4 *o_row = (global O_DATA_TYPE4 *)(o_base + o_row_offset);
if (l_i > 0.0f) {
@@ -233,9 +217,7 @@ __kernel void flash_attn_f32_f16_q1(
const ulong mask_nb2,
const ulong mask_nb3,
const int mask_ne2,
const int mask_ne3,
const global void* sinks_void,
const ulong sinks_offset
const int mask_ne3
) {
const int tid = get_local_id(0);
const int head_batch_idx = get_global_id(1);
@@ -268,12 +250,7 @@ __kernel void flash_attn_f32_f16_q1(
float slope = get_alibi_slope(max_bias, head_idx, n_head_log2, m0, m1);
const global ACC_TYPE* sinks_ptr = NULL;
if (sinks_void != NULL) {
sinks_ptr = (const global ACC_TYPE*)((const global char*)sinks_void + sinks_offset);
}
ACC_TYPE m_i = (sinks_ptr != NULL) ? sinks_ptr[head_idx] : -INFINITY;
ACC_TYPE m_i = -INFINITY;
for (int k_idx = tid; k_idx < n_kv; k_idx += Q1_WG_SIZE) {
const ulong k_row_offset = batch_idx * k_nb3 + head_kv_idx * k_nb2 + k_idx * k_nb1;
const global KV_DATA_TYPE4* k_ptr = (const global KV_DATA_TYPE4*)(k_base + k_row_offset);
@@ -346,11 +323,7 @@ __kernel void flash_attn_f32_f16_q1(
const ulong o_row_offset = batch_idx * o_nb3 + head_idx * o_nb1;
global O_DATA_TYPE4 *o_row = (global O_DATA_TYPE4 *)(o_base + o_row_offset);
ACC_TYPE l_final = local_l[0];
if (sinks_ptr != NULL) {
l_final += exp(sinks_ptr[head_idx] - m_final);
}
const ACC_TYPE l_final = local_l[0];
if (l_final > 0.0f) {
const ACC_TYPE l_inv = 1.0f / l_final;

View File

@@ -4398,10 +4398,7 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
return ggml_is_contiguous(op->src[0]);
case GGML_OP_POOL_2D:
case GGML_OP_ACC:
return true;
case GGML_OP_PAD:
return (ggml_get_op_params_i32(op, 0) == 0) && (ggml_get_op_params_i32(op, 2) == 0) &&
(ggml_get_op_params_i32(op, 4) == 0) && (ggml_get_op_params_i32(op, 6) == 0);
case GGML_OP_LEAKY_RELU:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_RWKV_WKV6:

File diff suppressed because it is too large Load Diff

View File

@@ -334,9 +334,6 @@ void main() {
[[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) {
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {
Of[r][d] *= Lfrcp[r];
#if defined(ACC_TYPE_MAX)
Of[r][d] = clamp(Of[r][d], -vec4(ACC_TYPE_MAX), vec4(ACC_TYPE_MAX));
#endif
}
}

View File

@@ -373,9 +373,6 @@ void main() {
[[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) {
[[unroll]] for (uint32_t r = 0; r < rows_per_thread; ++r) {
Of[r][d] *= ACC_TYPE(Lfrcp[r]);
#if defined(ACC_TYPE_MAX)
Of[r][d] = clamp(Of[r][d], -ACC_TYPE_MAX, ACC_TYPE_MAX);
#endif
}
}

View File

@@ -283,10 +283,6 @@ void main() {
O = Ldiag*O;
#if defined(ACC_TYPE_MAX)
[[unroll]] for (uint i = 0; i < O.length(); ++i) { O[i] = clamp(O[i], -ACC_TYPE_MAX, ACC_TYPE_MAX); }
#endif
uint32_t o_offset = iq3*p.ne2*p.ne1*HSV;
coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator> O_D = coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator>(O);

View File

@@ -111,10 +111,6 @@ void main() {
}
}
O *= L;
const float FLT_MAX = uintBitsToFloat(0x7F7FFFFF);
O = clamp(O, -FLT_MAX, FLT_MAX);
data_d[iq3 * D * N + D * n + d] = O;
}
}

Some files were not shown because too many files have changed in this diff Show More